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Titre : Vers une interaction nucléaire effective de Gogny généralisée étendue à des forces spin–orbite
et tenseur de portées finies
Mots clés : Interaction nucléaire – Force tenseur – Problème à N corps – Structure nucléaire –
Fission nucléaire – Énergies d’excitation
Résumé : Peu après son élaboration à la fin des
années 1960, l’interaction de Daniel Gogny s’est
imposée comme une référence dans le paysage
des interactions nucléaires, effectives et phéno-
ménologiques. Sa nature de portée intrinsèque-
ment finie offre en effet la possibilité de traiter
sur un même pied d’égalité le champ moyen et
les corrélations d’appariement, sans risque de di-
vergences ultraviolettes, même au-delà du champ
moyen. Par ailleurs, la force tenseur, composante
essentielle des interactions réalistes, a souvent été
écartée des formulations effectives. Pourtant, elle
s’est très tôt révélée nécessaire à la reproduction
des propriétés élémentaires du système nucléaire
le plus rudimentaire, le deutéron. Depuis, son ac-
tion s’est manifestée à bien des égards, de l’arran-
gement des énergies à une particule, en passant
par la description des résonances géantes et des
états Gamow–Teller, jusqu’à impacter la magi-
cité de noyaux super lourds.

Dans ce travail de thèse, nous nous propo-
sons d’étendre l’expression analytique de l’inter-
action de Gogny à des termes spin–orbite et ten-
seur de portées finies. La forme résultante, voulue
de portée intégralement finie, permet de retrou-
ver la plupart des expressions analytiques éta-
blies à ce jour. Elle est en ce sens dénommée
« interaction de Gogny généralisée ». Le code nu-
mérique utilisé pour déduire les paramètres est
adapté aux termes nouvellement ajoutés, et une
paramétrisation intitulée DG, issue de l’ajuste-
ment global de l’ensemble des paramètres, en est
extraite. Pour ce faire, les propriétés d’apparie-
ment proton–neutron ont notamment été contrô-
lées pour la première fois dans une interaction
de Gogny, via des contraintes sur les éléments

de matrice appropriés. La consistance de l’in-
teraction de Gogny généralisée est d’abord éva-
luée dans la matière nucléaire infinie, en com-
paraison à diverses paramétrisations antérieures
et des calculs réalistes. Les équations d’état des
matières symétrique et neutronique, ainsi que
des grandeurs physiques tels l’énergie potentielle
décomposée en canaux (S, T ), les ondes par-
tielles ou des critères de stabilité associés aux
paramètres de Landau dans la théorie des li-
quides de Fermi, sont analysés. Les résultats ob-
tenus dans les noyaux finis, aussi bien au niveau
du champ moyen, à partir de l’approximation
Hartree–Fock–Bogoliubov, qu’au-delà, par l’in-
termédiaire de la méthode du mélange des confi-
gurations multiparticules–multitrous, sont déci-
sifs. Les caractéristiques substantielles des prin-
cipales interactions de Gogny sont préservées tan-
dis que de nombreux amendements sont à re-
censer. Au niveau du champ moyen, le déca-
lage dans les rayons de charge des isotopes du
plomb est plus fidèlement décrit, des inversions
entre états à une particule sont constatées, la
destruction d’une partie de l’énergie d’apparie-
ment survient dans des chaînes isotopique et iso-
tonique, la nature des déformations quadrupo-
laires axiales de certains noyaux mous sont modi-
fiées et les hauteurs des barrières de fission abais-
sées dans plusieurs pré-actinides et actinides. Au-
delà du champ moyen, la reproduction des pre-
mières énergies d’excitation de nombreux noyaux
légers pairs–pairs, impairs et impairs–impairs est
considérablement améliorée. Elle est interprétée
la plupart du temps comme la signature d’une
compétition subtile entre forces spin–orbite et
tenseur dans l’évolution des couches en énergie.
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Title: Towards a generalized effective nuclear Gogny interaction extended to finite-range spin–orbit
and tensor forces
Keywords: Nuclear interaction – Tensor force – N -body problem – Nuclear structure – Nuclear
fission – Excitation energies
Abstract: Soon after its development in the late
1960s, Daniel Gogny’s interaction became a ref-
erence in the landscape of nuclear, effective and
phenomenological interactions. Its intrinsically
finite-range nature makes it possible to treat the
mean field and pairing correlations on an equal
footing, while avoiding ultraviolet divergences,
even beyond the mean field. On the other hand,
the tensor force, an essential component of realis-
tic interactions, has often been sidelined in effec-
tive formulations. Yet, very early on, it proved
necessary to reproduce the elementary proper-
ties of the most rudimentary nuclear system, the
deuteron. Since then, its action has manifested
in many ways, from the arrangement of single-
particle energies, through the description of giant
resonances and Gamow–Teller states, to impact-
ing the magicity of superheavy nuclei.

In this thesis work, we propose to extend
the analytical expression of the Gogny interac-
tion to finite-range spin–orbit and tensor terms.
The resulting form, which is intended to be en-
tirely of finite range, enables to recover most
of the analytical expressions established to date.
It is in that sense referred to as the “general-
ized Gogny interaction”. The numerical code
used to deduce the parameters is adapted to
the newly introduced terms, and a parametriza-
tion entitled DG, produced by the global fitting
of all the parameters, is extracted. In partic-
ular, the proton–neutron pairing properties are
controlled for the first time in a Gogny inter-

action, via constraints on the appropriate ma-
trix elements. The consistency of the generalized
Gogny interaction is first evaluated in infinite nu-
clear matter, in comparison with various previ-
ous parametrizations and realistic calculations.
The equations of state for symmetric and neu-
tron matters, as well as physical quantities such
as the potential energy decomposed into (S, T )
channels, partial waves or stability criteria as-
sociated with Landau parameters in the theory
of Fermi liquids, are analyzed. The results ob-
tained in finite nuclei, both at the mean-field
level, from the Hartree–Fock–Bogoliubov ap-
proximation, and beyond, via the multiparticle–
multihole configuration mixing method, are deci-
sive. Substantial features of the main Gogny in-
teractions are preserved, while numerous amend-
ments are identified. At the mean-field level,
the kink in the charge radii of lead isotopes is
more accurately described, inversions between
single-particle states are observed, the destruc-
tion of part of the pairing energy occurs in iso-
topic and isotonic chains, the nature of the axial
quadrupole deformations of certain soft nuclei is
modified and the fission barrier heights lowered
in several pre-actinides and actinides. Beyond
the mean field, the reproduction of first excita-
tion energies of many light even–even, odd and
odd–odd nuclei is considerably improved. This
effect is most of the time interpreted as the sig-
nature of a subtle interplay between spin–orbit
and tensor forces in the shell evolution.
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Synthèse

L’interaction nucléaire, effective et phénoménologique de Gogny fut élaborée par le
physicien français Daniel Gogny vers la fin des années 1960. Sa principale motivation fut
de proposer une interaction performante au niveau du champ moyen et au-delà, tenant
compte de l’appariement, tout en prévenant l’apparition de divergences ultraviolettes as-
sociées aux corrélations retenues, rencontrées avec d’autres interactions effectives telle
l’interaction de Skyrme. Pour ce faire, des termes centraux de portées finies furent in-
troduits, en dépit des défis numériques d’ampleur soulevés à l’époque. L’interaction de
Gogny dépend d’un ensemble de paramètres qui est déduit de données expérimentales
ou de grandeurs physiques évaluées dans la matière nucléaire infinie. Le premier jeu de
paramètres – ou paramétrisation – mis au point par Gogny fut dénommé D1. Dès lors,
de nouvelles paramétrisations, visant à améliorer la reproduction de certaines quantités
physiques et observables, furent façonnées. L’exemple ayant eu la plus importante réper-
cussion dans la littérature spécialisée est certainement la paramétrisation D1S. Proposée
par Berger et al. en 1991, elle diminue notamment l’appariement ainsi que la hauteur des
barrières de fission dans la plupart des actinides, tous deux surévalués par la paramétri-
sation D1. Une autre manière d’améliorer les prédictions de l’interaction de Gogny est
d’étendre son expression analytique, en modifiant certains termes ou en en ajoutant de
nouveaux. La forme résultante dépend alors de davantage de paramètres, qui apportent
une plus grande latitude à l’interaction et permettent souvent une plus large ou plus pré-
cise reproduction de quantités physiques et d’observables ciblées. Il est à noter que cette
seconde voie est généralement plus ambitieuse que la première. En effet, elle nécessite le
calcul d’éléments de matrice voire de champs propres aux termes nouvellement ajoutés,
la recherche de contraintes pertinentes pour déduire un jeu de paramètres, et le choix de
la paramétrisation elle-même. L’interaction D2, établie par Chappert en 2006, va en ce
sens. Le terme dépendant de la densité, de portée nulle dans l’interaction originelle de
Gogny, acquiert une portée finie, de sorte que de nouveaux paramètres sont introduits.
L’ajustement de cette interaction a en particulier permis de contrôler la dérive des masses
observée avec la paramétrisation D1S.

La force tenseur est connue depuis les années 1940 pour constituer une composante es-
sentielle de l’interaction nucléaire. Elle est à l’origine de certaines propriétés fondamentales
comme l’énergie de liaison ou le moment quadrupolaire électrique du système nucléaire le
plus rudimentaire, le deutéron. Ces dernières années, son rôle clé a été souligné dans de
nombreuses études. La force tenseur intervient notamment dans l’arrangement des états
d’énergie à une particule, la description des résonances géantes, des états Gamow–Teller,
des propriétés de déformation de noyaux mous, et s’étend jusqu’aux noyaux superlourds
loin de la vallée de stabilité. Malgré cela, il faudra attendre les années 1970 pour que
celle-ci commence à être prise en compte dans les interactions effectives, de type Skyrme
ou M3Y. La raison étant que la force tenseur est liée à des effets fins, et que son traitement
est relativement complexe. Elle n’apparaîtra pour la première fois dans l’interaction de
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Gogny qu’en 2006, à la suite des travaux d’Otsuka et de collaborateurs, mais l’interaction
correspondante ne sera pas sondée en profondeur. Depuis, seules des interactions de Go-
gny comprenant un terme tenseur ajusté de manière perturbative, c’est-à-dire isolément
des autres paramètres, ont vu le jour.

Ce travail de thèse consiste à étendre l’expression analytique de l’interaction de Gogny,
à partir de la forme analytique D2, en rendant finie la portée du terme spin–orbite et en
incorporant un terme tenseur, directement de portée finie. Cette nouvelle interaction est
appelée interaction de Gogny généralisée, et surnommée DG. L’intérêt du terme tenseur
a été motivé au paragraphe précédent, tandis que la portée finie du terme spin–orbite
assure qu’aucune divergence ultraviolette n’est à craindre dans cette expression voulue
intégralement de portée finie. Contrairement aux interactions perturbatives, l’interaction
de Gogny généralisée est entièrement réajustée, en ce sens que tous les paramètres sont
déterminés ensemble, de façon cohérente.

Dans le Chapitre I, l’interaction de Gogny est située dans le paysage des interactions
nucléaires et ses caractéristiques principales comparées à celles de ses homologues. Son
évolution historique y est détaillée, avec un inventaire des différentes paramétrisations et
extensions analytiques proposées avant l’établissement de l’interaction DG. L’accent est
mis sur les expressions analytiques des interactions de type D1 et D2, et leurs spécificités
sont discutées. Les procédures d’ajustement des paramètres de D1S et D2 sont exposées,
notamment pour préparer le lecteur à la procédure d’ajustement de DG, qui est une gé-
néralisation de ces dernières. Le code d’ajustement, rendant possible de telles procédures,
y est disséqué ; d’abord dans sa version adaptée à D1S, ensuite dans son extension à D2.

Le formalisme Hartree–Fock restreint (HFR), faisant correspondre les valeurs expé-
rimentales des énergies de liaison et des rayons de charge au cadre théorique choisi, est
introduit, et les contraintes et filtres retenus listés. En premier lieu, les contraintes dé-
gagent, au moyen d’un système d’inversion, des jeux de paramètres tandis qu’en second
lieu, les filtres ne retiennent que les paramétrisations qui reproduisent avec une certaine
précision plusieurs grandeurs physiques dans la matière nucléaire infinie. Ces deux étapes
aboutissent, après différents tests dans les noyaux finis, aux paramétrisations D1S et D2.

Le Chapitre II est dédié aux aspects techniques de l’interaction de Gogny généralisée.
L’expression analytique de cette nouvelle interaction est fournie et est comparée aux
formes précédentes. Il apparaît notamment que l’action du terme spin–orbite est étendue
au canal T = 0, avec un terme dépendant de l’isospin, et que les expressions de la plupart
des interactions de Gogny antérieures peuvent être obtenues en considérant une limite
particulière de DG. C’est précisément en cela que cette nouvelle interaction de Gogny a
été baptisée « interaction de Gogny généralisée ».

La procédure d’ajustement de DG est ensuite présentée. Le choix des portées des
termes spin–orbite et tenseur est guidé par les théories d’échanges de mésons : l’interaction
tenseur est principalement véhiculée par le pion tandis que la contribution majeure du
terme spin–orbite s’apparente à l’échange d’un méson ω. Le premier agissant à longue
distance et le second à courte distance, les portées des termes spin–orbite et tenseur
ont été sélectionnées en conséquence. Les contraintes de la procédure d’ajustement de
D2 ont été reprises et étendues à DG. En plus, quatre contraintes ont été ajoutées afin
de déterminer les nouveaux paramètres spécifiques aux termes spin–orbite et tenseur.
Ces contraintes prennent la forme d’éléments de matrice couplés aux nombres quantiques
(J, T ) dans les couches sd et pf . Il a été demandé à ce que ces éléments de matrice, évalués
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via des modèles en couches, soient reproduits avec une erreur de 10% par l’interaction
DG. Parmi ces éléments de matrice, certains sont de type appariement et permettent de
contrôler pour la première fois dans une interaction de Gogny les propriétés d’appariement
proton–neutron dans le canal T = 0. Comme pour les contraintes, les filtres utilisés dans le
code d’ajustement de D2 ont été repris dans celui de DG, et trois nouveaux filtres ont été
considérés. Le premier garantit que l’intensité du terme spin–orbite de portée finie dans
le canal T = 1 reste proche de celle du terme spin–orbite originel de portée nulle, à la
limite d’une portée qui tend vers zéro. Le second a à voir avec un article de Sharma et al.
publié en 1995. Dans cet article, les auteurs montrent qu’en choisissant convenablement le
paramètre dépendant de l’isospin du terme spin–orbite dans une interaction de Skyrme,
une meilleure reproduction du décalage isotopique dans les rayons de charge du plomb est
obtenue. Puisqu’il est ici question d’une interaction de Gogny, qui plus est pourvue d’un
terme spin–orbite de portée finie, seules les paramétrisations pour lesquelles le paramètre
dépendant de l’isospin du terme spin–orbite n’était pas trop éloigné de la valeur trouvée
dans l’article mentionné ont été conservées. Le troisième s’inspire de l’interaction D1ST2c,
dont les paramètres spin–orbite et tenseur ont été ajustés conjointement. Des intervalles
de valeurs autorisées pour ces paramètres ont été définis afin de reproduire correctement
les écarts en énergie 1f des états à une particule neutron dans les noyaux doublement
magiques 40Ca, 48Ca et 56Ni. Finalement, plusieurs conditions imposées dans les codes de
noyaux finis ont permis de sélectionner l’interaction DG qui est analysée tout au long du
document.

Le code d’ajustement fournit directement de nombreux résultats dans la matière nu-
cléaire infinie afin de juger de la fiabilité de l’interaction DG. Il s’avère que les quantités
usuelles évaluées à la densité de saturation dans la matière nucléaire symétrique pour
l’interaction DG tombent toutes dans les intervalles de valeurs empiriques. L’équation
d’état de DG, à savoir l’évolution de l’énergie potentielle en fonction de la densité du
milieu, reproduit fidèlement les calculs réalistes, comme l’ensemble des interactions de
Gogny étudiées. Pour aller plus loin, l’énergie potentielle a d’abord été décomposée selon
son action dans les canaux (S, T ). Les interactions D2 et DG, aux courbes très simi-
laires, se présentent comme les meilleurs compromis. Leurs prédictions sont proches des
résultats réalistes dans les canaux impairs, tandis qu’elles restent comparables aux autres
interactions de Gogny dans les canaux pairs. La décomposition en ondes partielles offre
une description encore plus précise de l’énergie potentielle. Il apparaît que certaines ondes
partielles, notamment certaines ondes P et D, aux contributions significatives, sont mieux
reproduites par DG. Par ailleurs, sont étudiées des différences entre ondes partielles n’im-
pliquant que les termes spin–orbite et tenseur. Le fait qu’elles soient mieux décrites par
DG laissent à penser que ces termes ont été correctement ajustés, déjà au niveau de la
matière nucléaire. Les masses effectives neutron sont plus importantes que les masses
effectives proton avec l’interaction DG, pour toute asymétrie, en accord avec les prédic-
tions réalistes. De même, l’équation d’état dans la matière neutronique obtenue avec DG
est semblable à celle de D2, évitant ainsi l’effondrement constaté avec D1S aux grandes
densités. Pour terminer, les paramètres de Landau associés au terme tenseur ont été dé-
rivés dans la théorie des liquides de Fermi. Combinés aux paramètres propres aux autres
termes de l’interaction de Gogny généralisée, ils sont à l’origine de critères de stabilité et
de règles de somme. Les critères de stabilité, issus de la nécessité pour l’état fondamental
de quasiparticules de rester stable à toute légère déformation de la surface de Fermi, sont
tous satisfaits par l’interaction DG. Ce résultat est notoire dans la mesure où plusieurs
de ces critères n’étaient pas respectés par d’autres paramétrisations de type DG, retenues
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suite au processus d’ajustement. Quant aux règles de somme, systématiquement violées
par les interactions effectives dépendant de la densité, elles le sont davantage avec l’in-
teraction DG qu’avec les interactions D1S et D2. Cependant, elles le sont bien moins que
les interactions pourvues d’un terme tenseur perturbatif, que sont D1ST2a et D1ST2c.
De plus amples investigations devront être menées pour établir si cette violation se révèle
pathologique ou non.

Les résultats dans la matière nucléaire infinie servent de guides, mais ce sont surtout
les observations dans les noyaux finis qui permettent de crédibiliser une interaction nu-
cléaire. Pour cette raison, l’interaction DG a été sondée dans une approche de type champ
moyen, à l’approximation Hartree–Fock–Bogoliubov (HFB), dans le Chapitre III. Plus
précisément, le code HFB utilisé repose sur une base d’oscillateurs harmoniques axiaux à
deux centres, dont le formalisme est rappelé en première section. Aussi bien les propriétés
de volume, de surface que de déformation de l’interaction DG sont décortiquées.

Les énergies de liaison prédites le long des chaînes isotopiques dans les noyaux légers,
de masses intermédiaires et lourds sont satisfaisantes, souvent un peu plus faibles qu’avec
l’interaction D2, sauf proche de la magicité. Il en découle que le terme tenseur tend à
délier légèrement la plupart des isotopes étudiés. Concernant la dérive des masses, elle
est absente des chaînes isotopiques inspectées. Ce résultat était attendu puisque la dérive
est contrôlée dès la procédure d’ajustement, en demandant à ce que les différences entre
les énergies de liaison expérimentales et évaluées à l’approximation HFB dans les noyaux
doublement magiques 100Sn et 132Sn soient identiques. Les rayons de charge de DG sous-
évaluent presque toujours les prédictions de D1S, elles-mêmes plus basses que les valeurs
expérimentales. À ce stade, il est difficile de conclure, les corrélations au-delà du champ
moyen devant être prises en considération pour proposer une comparaison plus juste à
l’expérience. L’étude des rayons de charge trouve tout son intérêt pour analyser le décalage
isotopique dans les noyaux de plomb et de calcium. Dans les plombs, le décalage isotopique
est mieux reproduit avec DG qu’avec les interactions D1S et D2. Cet effet est imputable au
gap neutron (1i11/2−2g9/2), plus resserré avec DG et favorisant alors des rayons de charge
plus larges pour les isotopes plus lourds que le 208Pb. La diminution de l’intensité du
terme spin–orbite de l’interaction DG justifie une telle amélioration. Dans les calciums,
en revanche, le comportement singulier des rayons de charge n’est manifestement pas
répliqué par l’interaction DG. Enfin, les profils des distributions de densité de charge et
de neutrons dans les 208Pb et 48Ca obtenus avec DG et D2 sont assez semblables.

D’une part, l’énergie d’appariement neutron a été calculée le long de la chaîne isoto-
pique des étains. On constate une nette diminution de cette dernière avec DG, compara-
tivement à D1S et D2, entre les isotopes A = 110 et A = 124. Lorsque les états à une
particule neutron sont tracés, on note que les gaps proches du niveau de Fermi sont plus
larges avec DG qu’avec D1S et D2. Cette disposition entraîne une probabilité de diffusion
vers les états supérieurs moindre et réduit in fine l’énergie d’appariement prédite par DG.
Le réarrangement des états à une particule observé avec DG peut s’expliquer par l’action
conjointe des forces spin–orbite et tenseur. L’effet est particulièrement marqué, au point
d’engendrer deux inversions d’états, l’une pour l’isotope A = 112, l’autre pour l’isotope
A = 118. D’autre part, l’énergie d’appariement proton a été évaluée le long de la chaîne
isotonique N = 50. À nouveau, un déclin notable de l’énergie d’appariement apparaît avec
DG, pour la plupart des isotones. Les termes spin–orbite et tenseur justifient cet effet.
En particulier, l’énergie d’appariement est nulle avec DG dans l’isotone 90Zr. L’énergie
d’appariement n’étant pas une observable, les propriétés de surface devront être mises à
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l’épreuve par l’analyse plus poussée d’observables telles que la différence de masses pairs–
impairs le long de chaînes isotopiques et isotoniques. Finalement, la comparaison des
écarts énergétiques entre états partenaires de spin et des gaps avec les interactions D1S,
D2 et DG révèle que les termes spin–orbite et tenseur seuls ne peuvent rendre compte
de l’ensemble des tendances observées. Cela suggère que la renormalisation des termes
centraux et dépendant de la densité au passage de D2 à DG joue un rôle prépondérant
dans l’agencement des états à une particule.

Les propriétés de déformation ont été scrutées dans de nombreuses chaînes isoto-
piques. De manière générale, l’énergie de liaison obtenue avec DG dans la majorité des
isotopes légers est plus petite que celle des interactions D1S et D2, autour de la sphéricité.
Néanmoins, dans les noyaux magiques, d’autres comportements preuvent se présenter. Par
exemple, l’interaction DG prédit le 36S plus rigide, avec un puits plus prononcé à déforma-
tion quadrupolaire axiale nulle. Dans le 44S, la coexistence de formes est plus marquée avec
DG, les puits oblate et prolate étant plus profonds qu’avec les autres interactions. Parfois
même, une coexistence de formes fait irruption avec DG, là où le noyau était sphérique
avec D1S ; c’est le cas du 30S. Par comparaison avec les résultats d’autres interactions,
il apparaît que le terme tenseur est principalement responsable de ces effets. Bien que
les données expérimentales ne donnent accès qu’aux valeurs absolues des déformations
quadrupolaires axiales, on note que les prédictions de DG sont, pour les isotopes dans
lesquels la force tenseur a une action importante, plus en adéquation avec l’expérience.

Les barrières de fission le long des chemins asymétriques sont déterminées pour les
pré-actinides que sont les thoriums, et plusieurs actinides standards. Par rapport à l’in-
teraction D1S, les premières barrières de fission sont abaissées de 1 à 1,5 MeV dans les
thoriums et d’environ 2 MeV dans les actinides, avec l’interaction DG. Ainsi, elles sont
plus proches des valeurs expérimentales pour DG. Les différences restantes peuvent s’ex-
pliquer par la nécessité de tenir compte de la triaxialité. Des études réalisées avec D1S
montrent en effet que les hauteurs des premières barrières sont réduites de plusieurs MeV
dans les calculs triaxiaux, par rapport aux calculs axiaux. Pour ce qui est des secondes
barrières de fission, elles sont diminuées d’environ 1 MeV dans la plupart des actinides
analysés avec DG. Les valeurs expérimentales sont plus proches mais demeurent éloignées
de quelques MeV. Les énergies de référence choisies comme énergies du point zéro plutôt
que comme minima HFB devraient davantage réduire la hauteur des secondes barrières
de DG, comme ce fut le cas pour D1S. Des décalages en déformation sont également à
recenser avec DG. Les déformations quadrupolaires axiales correspondant à l’isomère de
fission et au point selle sont généralement plus grandes dans les actinides avec DG qu’avec
les autres interactions. Dans ces noyaux, les états isomériques de DG surviennent à des
élongations plus prononcées tandis que la séparation des fragments s’enclenche à plus
forte contrainte.

Dès sa conception, l’interaction de Gogny a été pensée de manière à fournir des résul-
tats probants au niveau du champ moyen, mais aussi et surtout au-delà, quand davan-
tage de corrélations sont prises en considération. Les résultats HFB étant satisfaisants,
l’interaction de Gogny généralisée a été investiguée, dans le Chapitre IV, à l’approxima-
tion au-delà du champ moyen que constitue la méthode du mélange de configurations
multiparticules–multitrous (MPMH). Les énergies d’excitation des premiers états excités
dans les noyaux pairs–pairs, impairs et impairs–impairs de la couche sd ont été évaluées.
Les valeurs moyennes et écarts-types des différences entre les énergies des premiers états
excités prédites théoriquement et expérimentalement sont, pour l’ensemble de ces noyaux,
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systématiquement et significativement réduits avec l’interaction DG. Ce succès était à pré-
voir puisque des filtres visant à améliorer la description des premières énergies d’excitation
dans ces noyaux furent placés dans le processus d’ajustement des paramètres. Alors que
les contraintes et filtres des codes d’ajustement des interactions de Gogny sont habituel-
lement restreints aux noyaux pairs, l’efficacité de l’interaction DG dans la description des
noyaux impairs et impairs–impairs montre l’importance de leur déploiement également
pour de tels noyaux.

Une analyse soignée de l’organisation des états à une particule a permis de mettre
en évidence que ces améliorations sont globalement dues à la diminution de l’intensité du
terme spin–orbite et localement à la présence du terme tenseur. Dans les noyaux pairs
par exemple, la valeur moyenne définie ci-dessus est à peine supérieure à 200 keV avec
DG, résultant principalement d’une force spin–orbite d’intensité plus faible que celle des
interactions D1S et D2. De façon complémentaire, la meilleure description des isotopes
30Si, 30S et 32S, aux énergies d’excitation fortement surévaluées par D1S et D2, est surtout
une conséquence du terme tenseur.

Dans les noyaux impairs et encore plus dans les noyaux impairs–impairs, l’importante
densité d’état à basse énergie entraîne des inversions d’états excités dans les spectres pré-
dits par le MPMH. Ainsi, il n’est pas rare que les spins–parités des premiers états excités
théoriques et expérimentaux de plusieurs de ces noyaux ne coïncident pas. C’est en l’oc-
currence ce qui se produit de manière répétée avec l’interaction DG. Le faible écart moyen
en énergie entre le premier état excité et le premier état ayant le couple de spin–parité
révélé par l’expérience confirme, cependant, que les inversions ont souvent lieu entre des
états énergétiquement rapprochés, de l’ordre de quelques centaines de keV. Il est proba-
blement trop tôt pour espérer un tel degré de précision d’une interaction effective comme
l’interaction de Gogny. Toutefois, les calculs aboutissant à ces résultats ont été réalisés en
ne résolvant que la première des deux équations MPMH. Lorsqu’une résolution complète-
ment auto-consistante de ces dernières sera rendue possible, ces conclusions devront être
réévaluées.

Au vu des résultats rapportés dans la matière nucléaire infinie ainsi qu’au niveau du
champ moyen et au-delà, l’interaction de Gogny généralisée prend une place de choix dans
le panorama des interations de Gogny. Bien entendu, davantage de quantités physiques
et d’observables devront être examinées pour accroître son champ d’application ou au
contraire pointer des limitations que des interactions ultérieures devront lever. Dans ce
dernier cas, une nouvelle paramétrisation de type DG pourra être recherchée, voire même
une nouvelle extension analytique proposée. À cette fin, le code d’ajustement a été étendu,
de sorte à pouvoir générer des paramétrisations d’une interaction de Gogny comportant
jusqu’à deux termes spin–orbite, tenseur et dépendant de la densité. Il appartient aux
générations futures de tirer profit (ou non) de ces travaux.
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Par-dessus l’horizon aux collines brunies,
Le soleil, cette fleur des splendeurs infinies,
Se penchait sur la terre à l’heure du couchant ;
Une humble marguerite, éclose au bord d’un champ,
Sur un mur gris, croulant parmi l’avoine folle,
Blanche, épanouissait sa candide auréole ;
Et la petite fleur, par-dessus le vieux mur,
Regardait fixement, dans l’éternel azur,
Le grand astre épanchant sa lumière immortelle.
« Et, moi, j’ai des rayons aussi ! » lui disait-elle.

— Victor Hugo, « Unité », Les Contemplations
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Preamble

We would like to take this opportunity to justify some of the choices we have made in
shaping the presentation that follows. Generally speaking, this document is intended, in
the manner of the Hartree–Fock–Bogoliubov (HFB) theory, to be self-consistent. By this
we mean that it is not overly dependent on external references. There are many reasons
for this. The main ones are given below.

Firstly, we hope to be able to guide the neophyte reader who is discovering the Gogny
interaction, from a report in the image of what the writer would have liked to find when
tackling the subject. Secondly, to gather and disseminate a wealth of information, both
published and unpublished, in a single place, and thus provide efficiency. Finally, as we
are introducing a so-called “generalized” interaction, it was the right moment to set out
the work that made such ambition possible, with a minimum of detail to understand the
overall terminology. The first chapter and the lengthy appendices are designed for that
matter.

In Chapter I, the symmetries of a realistic two-body interaction are given, as some will
be used to deduce symmetries related to HFB fields, at the heart of the derivations carried
out to test the generalized Gogny interaction. Similarly, we felt that the reminders about
the fitting procedures and the main properties of D1 and D2 analytical expressions, on
which our interaction is based, were relevant. Nor was it possible to incorporate a tensor
force into the Gogny interaction without mentioning previous attempts.

The appendices supply all the equations for building up the generalized Gogny inter-
action (Appendix B), as well as analyzing its features in infinite nuclear matter (Appendix
A) and at the HFB approximation (Appendix C). Appendix D eventually lists all the for-
mulas and conventions employed, along with some useful considerations. Unless explicitly
mentioned, it is not mandatory to consult them to understand the outcomes exposed in
the chapters.
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Introduction

The nuclear interaction, which depicts the force acting between nucleons (protons and
neutrons) within the atomic nucleus, is a key concept as it ensures the cohesion of matter
on a microscopic scale. A theoretical formulation, derived from the strong force, one of
Nature’s four fundamental interactions significantly operating at the smallest distances,
should be conceivable. Despite the efforts of physicists since its advent in the 1960s [1, 2],
such an undertaking remains perilous, not least because of the non-perturbative aspect
of the strong force in the energy range adapted to the nuclear interaction. Usually, the
general form of the realistic nuclear interaction is constrained from fundamental symme-
tries, some of which are shared with the strong force [3]. The large number of nucleons
making up the nucleus, up to more than three hundred, constitutes another challenge
[4]. On the one hand, this implies knowledge of all kinds of interaction, involving two,
three or more particles. On the other hand, the description of a system composed of
many interacting particles – be it between two, three or more bodies –, referred to as the
many-body problem, admits no general solution so far.

Several frameworks, based on various levels of approximation, tackle the issue. The
ones retained in the following are the so-called microscopic self-consistent mean-field ap-
proaches [5, 6]. Often founded on a variational principle, they allow a systematic treatment
down to the heaviest nuclei, from the main assumption that nucleons are moving indepen-
dently of each other, in a potential created by all their neighbors, called the mean field.
Additional long-range correlations are subsequently incorporated step by step through in-
creasingly sophisticated self-consistent mean-field theories. The price to be paid to benefit
from these is to abandon the authentic realistic nuclear interaction in favor of a renor-
malized effective interaction, which in essence takes short-range correlations into account
[7]. Effective interactions depend on parameters which are drawn from models or directly
from experiment, and determined within a fitting procedure. In parallel with relativis-
tic models constructed upon quantum field theories [8, 9], two non-relativistic effective
interactions were widely developed as early as the end of the 1960s, the Skyrme [10, 11]
and Gogny [12, 13] interactions. In their modern expressions, they are comparable in
that they account for two-body interactions, and phenomenologically simulate the corre-
lations generated by higher-body interactions in their density dependence. Conversely,
they differ intrinsically in that the Skyrme interaction is of zero range, while the Gogny
interaction presents finite-range central terms. To summarize, the Gogny interaction can
then be distinguished by the fact that is it a microscopic but non-relativistic, effective
and phenomenological two-body nuclear interaction of finite range.

Although raising analytical and, above all, numerical difficulties for that period, the
original Gogny interaction D1 soon became a reference, partly due to its ability to treat
the nuclear interaction and the pairing correlations on an equal footing [14]. Moreover,
its finite-range nature allowing to avoid the appearance of ultraviolet divergences, and
therefore the introduction of cut-offs, as is done with the Skyrme interaction, aroused
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interest. Numerous improvements to the original interaction have since been carried out.
They take two directions:
(i) The search for a new set of parameters of the original analytical expression;
(ii) The extension of the original analytical expression.

In both cases, extra data associated with the physics to be reproduced must be added
in order to adequately deduce the parameters. However, the second option is by far the
most ambitious, since it also requires the new analytical terms to be derived and imple-
mented in the fitting and mean-field or beyond mean-field codes. For these reasons, the
first option is most of the time preferred. An example of a well-known parametrization
(set of parameters) of the original analytical expression still used nowadays is the D1S
interaction [15]. It was introduced in 1991 by Berger et al. to enhance the description of
pairing correlations and lower the fission barrier heights in actinides, which were both too
important within mean-field calculations performed with interaction D1 [16]. Obviously,
the applications do not stop here, the aim being to probe as many physical phenomena
as possible by fitting a limited number of quantities. On the other side, one analytical
extension consisting in supplying a finite range to the density-dependent term was elab-
orated by Chappert in 2006, leading to a parametrization named D2 [17, 18]. Initially
built up to correct the binding energies in neutron-rich exotic nuclei underestimated by
interaction D1S, it turned out to bring the fission barriers further down, still a bit high
with the latter. In spite of these successive refinements, second fission barriers remain
high compared to experimental values in some actinides. Besides, when going beyond the
mean field, it appears that D1S [19] and D2 [20] interactions fail in reproducing the first
excitation energies of a few light nuclei, certain representatives of Si and S isotopic chains
being examples.

The tensor force was first introduced in the early 1940s, that is shortly after the
birth of nuclear physics. It proved to be of paramount importance to describe both the
binding and the electric quadrupole moment of the most rudimentary nuclear system,
the deuteron [21, 22]. The tensor force was accordingly systematically incorporated in
realistic interactions [23–27].

Nevertheless, the tensor force was dropped for many years in effective interactions, and
only quite recently has it enjoyed a revival. It is still rather uncommon, but is drawing
more and more attention. The justification lies in the fact that the tensor force is now
known to produce effects on a wealth of physical quantities, like binding energies [28, 29],
single-particle energies [30–32], giant resonances [33, 34], Gamow–Teller states [35–37]
and deformations of low- to heavy-mass nuclei [38–40]. Its action even extends to exotic
nuclei far from the stability valley [41] and super-heavy elements [42, 43]. It then becomes
delicate to finely describe these quantities without tensor dependence.

The first inclusion of a zero-range tensor force in a Skyrme interaction dates back to
the 1970s and was done by Stancu et al. [44] on top of the parametrization SIII [45].
Afterwards, other attempts were made, either on top on other existing parametrizations
[46–50], or by carrying out a global refit of the parameters [51]. Finite-range tensor terms
are even scarcer. In M3Y interactions [52], two tensor terms with Yukawa form factors are
considered, but were only lately applied to mean-field theories, in particular thanks to the
work of Nakada [53–56]. In the study of Onishi and Negele [57], a tensor force of Gaussian
form factor was added in place of the density-dependent term in a Gogny-type interaction.
The first real addition of a tensor force to the original analytical form of the Gogny
interaction, though, was performed by Otsuka et al. [58], but was not pursued. Other
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interactions with tensor terms integrated on top of the D1S parametrization [29, 59, 60]
(D1ST2a being an example) or by fitting the tensor and spin–orbit forces together [61]
were set up by Anguiano et al.

In a recent study [39], a comparison of the fission barriers obtained with D1S and
D1ST2a in Th isotopes showed that their heights were modified in a sensitive manner by
the tensor force. On the other hand, Otsuka [30] proposed a picture to explain quantita-
tively how the single-particle energies are shifted by the tensor force. It turns out that in
this vision, the tensor force is expected to strongly impact the single-particle spectra of
several spin–unsaturated nuclei, like some Si and S isotopes.

The purpose of the present work is to make the connection between the results of the
previous paragraph and the limitations exhibited by D1S and D2 interactions. In other
words, to expand the analytical expression of the Gogny interaction, starting from D2, to a
finite-range tensor term first, in order to amend the reproduction of fission barrier heights
at the mean field level, and first excitation energies beyond the mean field. We shall in
fact provide a finite range to the spin–orbit force as well, to propose a fully finite-range
interaction, entirely free from divergences when dealing with Hartree–Fock–Bogoliubov
and beyond mean-field calculations. Needless to say, we wish to preserve at the same
time the good properties characterizing the former interactions D1S and D2. It should be
emphasized that we consider a long-range tensor force and a small-range spin–orbit force.
Actually, it is known that a density-dependent term can mimic the effects of a tensor force
[62, 63]. Since the density-dependent term of D2 possesses a relatively small range, we
avoid double counting by allocating a long range to the tensor force, in agreement with the
one-pion-exchange potential of one-boson-exchange models. As for the spin–orbit force, a
small range ensures not to deviate too much from the zero-range term of the original Gogny
interaction, while its dominant contribution in one-boson-exchange potentials is also of
small range. The new interaction is dubbed as the “generalized Gogny interaction”, in the
sense that most of the previous Gogny interactions can be recovered from its analytical
form. The corresponding parametrization adopted in the following will bear the name
“DG”. Speaking of the fitting code, we should point out that the parameters related
to the newly introduced terms, as well as the old ones, will be determined together, to
guarantee overall consistency of the interaction. As the different terms influence each
other, in particular the spin–orbit and tensor ones, a separate fit of these might indeed
display certain limitations. Right from the start, the Gogny interaction was designed to
furnish faithful results not at the level of the mean field, but beyond it. Consequently, a
perfect reproduction of mean-field quantities is not desired; on the contrary, room must
be left for beyond mean-field correlations. We shall combine this philosophy with that of
constraining matrix elements to control, for the first time, the proton–neutron component
of the pairing. It should enable to drive the parameters so as to make the predictions
better, especially beyond the mean field, where the proton–neutron pairing comes into
play in our calculations.

The document is divided into four chapters and four appendices. In Chapter I, the
place of the Gogny interaction among its counterparts is taken up and discussed in details.
Its multiple parametrizations will be presented, with an emphasis on the fitting protocols
including tensor forces. Finally, the D1S and D2 fitting procedures will be dissected
in order to clarify the parts the parametrization DG depends on. In Chapter II, the
generalized Gogny interaction is constructed. Its analytical expression is given and the
fitting process explained. Some properties in infinite nuclear matter are also exposed and
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compared to other Gogny interactions. Chapters III and IV are dedicated to the results in
finite nuclei, at the mean-field level, through the Hartree–Fock–Bogoliubov approach and
beyond it, through the mutiparticle–multihole configuration mixing method, respectively.
Mean-field outcomes show the bulk and pairing properties of interaction DG, as well as
its implications on deformations and fission barrier heights. Beyond mean-field results are
focused on the first excitation energies of even–even, odd and odd–odd nuclei, in relation
with the shell evolution. All calculations needed to produce the outputs from Chapters I
to III can be found in Appendices A, B, C and D.
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Chapter I
The Gogny interaction

« Pour avoir du génie, faut être mort. Pour avoir du talent, faut être
vieux, et quand on est jeune, on est des cons. »

— Coluche

In this chapter, we begin by situating the Gogny interaction within the general land-
scape of nuclear interactions, motivating its analytical expression, its specificities as well
as the theoretical framework in which it operates. We focus thereafter on the evolution of
its parametrizations and analytical forms over time, introducing the various interactions
that will appear throughout the presentation. Specifically, we highlight the foundations
of the fitting procedure and certain germane properties of the former interactions that
will be taken up and extended to construct the generalized Gogny interaction.
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I. The Gogny interaction 1. Landscape of nuclear interactions

1. The Gogny interaction in the landscape of nuclear
interactions

1.1. The realistic nuclear interaction
The nuclear force is the interaction between the nucleons (protons and neutrons) of the

atomic nuclei, which ensures their cohesion. Without the nuclear interaction, the nuclei
would remain unstable and the Universe as we experience it could just not exist. We
empirically know, since the 1930s, that the nuclear force is composed of an attractive part
at medium and long ranges, and of a very strong repulsive part at short range, called the
hard-core repulsion. It is difficult to accurately separate the attractive from the repulsive
regions of the nuclear interaction between two nucleons since it depends not only on their
relative distance r ≡ |~r1 − ~r2| (where ~r1 and ~r2 are the nucleon locations), but also on
their velocities, their spins and, sometimes, on whether they are protons or neutrons (see
subsection I.1.2). However, it is agreed that around r . 0.7 fm, the hard-core repulsion
dominates while beyond, the attractive character of the nuclear force prevails, with an
exponential decline that practically vanishes at about r ∼ 3 fm (see Figure I.1). Protons
being electrically charged (unlike neutrons), the nuclear force competes with the Coulomb
interaction when both nucleons are protons. At r ∼ 1 fm, the nuclear interaction is about a
hundred times stronger than the Coulomb force, that can then be neglected. Nevertheless,
because it decreases only as the inverse of the proton distance, it becomes predominant
from r ∼ 4 fm, and then cannot be disregarded, as shown in the inset of Figure I.1. As
for the weak force, it does not take part in the dynamics of nucleons as it is not intense
enough, but it is at the origin of the decay of protons into neutrons, and vice versa.

As early as 1935, Yukawa [64] attempted to describe this singular force by assuming
that nucleons were exchanging particles that would mediate the nuclear interaction, in
analogy with the electromagnetic force which was, from a quantum mechanical point of
view, already understood as originating from exchanges of photons. These force-mediating
particles were latter referred to asmesons and the pion predicted by Yukawa, was observed
for the first time in cosmic rays in 1947. Yukawa was awarded the Nobel Prize of Physics
for his discovery in 1949. From there, many theories based on the exchange of various
mesons were born and proved to be very fruitful.

In 1964, Gell-Mann [1] and Zweig [2] independently postulated that hadrons, of which
nucleons and mesons are the representatives, were not elementary particles, but were
composed of more fundamental objects called quarks. In 1968, the SLAC’s scattering
experiments revealed the existence of quarks [65]. Actually the identity of the observed
particles was not clearly established at that time, but it was at least indubitable that
the proton was formed of smaller constituents. Since mesons were no longer seen as
elementary particles, it was necessary to relegate meson theories to the level of models
and to try to explain the origin of the nuclear force through the interaction between quarks.
The description of the interaction between quarks, mediated by gluons, is rooted in the
formalism of quantum chromodynamics (QCD), formulated during the 1970s [66, 67]. This
force, called the strong interaction, is one of the four fundamental interactions of Nature.
The strong force acts attractively or repulsively depending on the color charge associated
with the interacting quarks – in the same way that the electromagnetic force depends on
the electric charge associated with the interacting bodies –, and has the particularity to
be more intense as the distance between quarks increases [68]. More precisely, the strong
interaction is marked by two extreme behaviors. At large distances (or, equivalently, at
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Figure I.1 – Competition between nuclear and Coulomb potentials inside the nucleus.
Potentials are represented as functions of the distance between two nucleons (or two
protons, in the case of the Coulomb potential). The inset magnifies their behaviors at
large distances.

low-energy transfers), the force is so strong that it prevents the existence of free quarks, in
a phenomenon called color confinement [69]. At small distances (or, equivalently, at high-
energy transfers), the force becomes weaker so that quarks behave like nearly unbound
particles. As the interaction vanishes at asymptotically high energies, this phenomenon is
called asymptotic freedom [70]. This last feature of the strong interaction was discovered
by Gross and Wilczek [71], and independently by Politzer [72] in 1973. They shared the
Nobel Prize of Physics in 2004.

Nucleons are made out of three quarks (two up quarks and one down quark for pro-
tons, one up quark and two down quarks for neutrons), which makes them color-neutral
particles. Then, to first order, two nucleons are expected not to interact with one an-
other through the strong force. This is indeed what is observed since at large distances
(r > 2.5 fm), their interaction is almost zero. Nevertheless, this result is not exact (prob-
ably due to internal processes in the nucleons) since an interaction remains at smaller
distances (r < 2.5 fm). For this reason, the nuclear interaction is dubbed the residual
strong force. Once again, the situation is analogous to electromagnetism as two electri-
cally neutral atoms still feel a residual electromagnetic force through the van der Waals
interaction.

In theory, we should then be able to derive an expression for the nuclear interaction
from the QCD equations. In practice, two pathological issues arise [73]:
(i) the region in which the strong interaction is particularly intense corresponds to the

low-energy regime of nuclear physics;
(ii) nucleons are composite particles constituted of three quarks, so that the interaction

between two nucleons actually consists in a six-quark problem.
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As it is harsh to solve the QCD equations, physicists often resort to perturbative methods
to obtain approximate mathematical solutions. However, to be applied, perturbative
methods require the interaction to be weak enough. In the high-energy regime of particle
physics, QCD is perturbative as the strong interaction is sufficiently weak, but in the
low-energy regime of nuclear physics, QCD turns out to be highly non-perturbative as
the strong interaction is a way too intense.

Nowadays, mainly two approaches are developed to deal with these issues. The first
one tries to tackle the six-quark problem using computational power. The system is em-
bedded in a four-dimensional discretized lattice on which QCD equations are applied.
This is the so-called lattice quantum chromodynamics (LQCD) [74]. In 2007, Ishii and
collaborators demonstrated, based on LQCD numerical results, that the hard-core repul-
sion is also a consequence of the strong force [75]. This was a genuine breakthrough as
the hard-core repulsion, which is known to be essential to the structure of matter as we
know it, escaped a reliable theoretical interpretation so far. It must be emphasized that
LQCD necessitates such computational capacities that it cannot be considered a standard
technique for nuclear physics.

Standard techniques which seek a relation between low-energy QCD and the nuclear
interaction are known as nuclear effective field theories (EFTs) [76]. In a broad sense, EFTs
are based on a separation between the typical length scale (or energy scale) of the physical
phenomena one wants to describe and the typical length scale of the underlying dynamics,
which is expressly ignored. The more remarkable this separation, the more effective are
the EFT. Specifically, EFTs were extended to low-energy QCD in the 1990s, after the
pioneering work of Weinberg [77, 78]. Nuclear EFTs provide a low-energy depiction of
QCD in terms of hadrons, instead of quarks and gluons. All nuclear EFTs are constructed
in a way that follows a certain scheme. First, typical length scales and relevant degrees
of freedom for nuclear physics are identified. Then, appropriate symmetries of low-energy
QCD are listed and attention is paid on whether some are broken, to build up the most
general Lagrangian consistent with those symmetries and symmetry breakings. Finally,
as effective Lagrangians exhibit an infinite number of terms, one has to target the most
important contributions to restrict the study to their associated Feynman diagrams. The
first and surely the most widespread nuclear EFT is the chiral EFT (χEFT) [79]. We
use it as an example to briefly describe the mentioned steps. Chiral symmetry imposes,
to any massless particle, the existence of a “chiral partner”, i.e. another massless particle
with opposite parity. Since the nucleons are made of quarks which are nearly massless,
an approximate chiral symmetry should then manifest. If this symmetry held, we would
observe in particular mesons having approximately the same mass, with different parities –
since they are themselves composed of the same number of quarks. As it is not the case, we
usually state that the (approximate) chiral symmetry is spontaneously broken. According
to Goldstone’s theorem, this spontaneously symmetry breaking brings out a particle,
called the Goldstone boson, which here appears to be the pion. Thus, the pion becomes
the main mediator of the nuclear interaction. We can choose its mass to be the typical
energy scale Λπ ∼ mπ ' 140 MeV of the phenomena we wish to describe and the chiral-
symmetry breaking energy scale Λχ ∼ 1 GeV as the limit beyond which the phenomena
are not reachable by the theory. The last step, allowed by chiral perturbation theory
(ChPT) [80], is crucial since it permits, by taking back pertubative methods to χEFT, to
probe nuclear phenomena in a controlled manner, with the desired degree of accuracy. By
accounting for the ever increasing orders of the perturbative expansion, the knowledge of
the nuclear interaction is systematically refined, and, besides, in a fundamental way.
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Another tactic is simply to drop the quest for a fundamental description of the nuclear
interaction from the strong force, attempting to describe it in roundabout ways. We will
notably discuss such approaches in the following since this is the path we take in this
thesis.

1.2. Expression of the realistic two-body nuclear interaction
Although it is not yet possible to extract a general expression of the nuclear interaction

from the more fundamental QCD, we can constrain its analytical expression by imposing
some symmetries to be preserved [3, 4, 7]. Some symmetries are quite general whereas
others directly stem from QCD, which we shall point out. We highlight that the interaction
we want to construct is the realistic (or bare) nuclear interaction (by opposition to the
effective nuclear interaction we will defined later on), i.e. the authentic nuclear interaction
we introduced in the previous subsection. To describe microscopically such a nuclear
interaction, several hypotheses are postulated:
(i) nucleons are the elementary particles of the theory (their quarkish nature is con-

cealed);
(ii) they are considered point-like particles (their spatial extension is neglected);
(iii) they only interact through the nuclear interaction in vacuum;
(iv) the interaction propagates instantaneously as nucleons are assumed to obey a non-

relativistic dynamics.
In the following, we will specifically focus on the form of the two-body interaction v12
between nucleons labelled by 1 and 2, called the (bare) nucleon–nucleon interaction. Ob-
viously, a similar study for three- or higher-body nuclear interactions is perfectly feasible,
though a bit more sophisticated. The nucleon–nucleon interaction may depend on each of
the degrees of freedom associated with the two particles, that are their positions ~r1 and
~r2, their momenta ~p1 and ~p2, their spins ~σ1 and ~σ2 as well as their isospins ~τ1 and ~τ2

1, i.e.

v12 ≡ v(~r1, ~p1, ~σ1, ~τ1;~r2, ~p2, ~σ2, ~τ2). (I.1)

We start by enumerating all the symmetries we want the two-body realistic nuclear in-
teraction to satisfy:
1. Symmetry under the exchange of two nucleons

This symmetry traduces the fact that the interaction between particle 1 and particle
2 is the same as the interaction between particle 2 and particle 1, i.e. v12 = v21, or

v(~r1, ~p1, ~σ1, ~τ1;~r2, ~p2, ~σ2, ~τ2) = v(~r2, ~p2, ~σ2, ~τ2;~r1, ~p1, ~σ1, ~τ1). (I.2)

2. Translational symmetry
This symmetry ensures that the interaction between two nucleons does not depend
on their absolute position in space, it is the same everywhere in vacuum. If we
translate the two particles by an amount ~a, positions become ~r ′i = ~ri + ~a (with
i ∈ {1, 2}), and the interaction must remain unchanged,

v(~r ′1, ~p1, ~σ1, ~τ1;~r ′2, ~p2, ~σ2, ~τ2) = v(~r1, ~p1, ~σ1, ~τ1;~r2, ~p2, ~σ2, ~τ2), (I.3)

1. In fact, those quantities are the Pauli matrices associated with the spin and isospin operators (see
relations (D.6) and (D.7)).
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for any vector ~a. In other words, the interaction does not depend on the center-of-
mass position ~R ≡ (~r1 + ~r2)/2, but only on the relative position ~r ≡ ~r1 − ~r2 of the
two particles, that is to say

v12 = v(~r; ~p1, ~σ1, ~τ1; ~p2, ~σ2, ~τ2). (I.4)

3. Symmetry under Galilean transformations
A Galilean transformation consists in providing a constant velocity ~vG to the system.
Under such transformation, the momenta of the two nucleons become ~p ′i = ~pi+m~vG
(with i ∈ {1, 2}), where m is their mass. Imposing the Galilean invariance of the
interaction, that is to say

v(~r; ~p ′1, ~σ1, ~τ1; ~p ′2, ~σ2, ~τ2) = v(~r; ~p1, ~σ1, ~τ1; ~p2, ~σ2, ~τ2), (I.5)

simply amounts to demanding the principle of inertia to hold for the interaction.
Namely, the physics of the interaction is the same regardless of the frame in recti-
linear and uniform motion (with respect to a certain fixed frame) from which it is
studied. Therefore, the interaction does not depend of the center-of-mass momen-
tum ~P ≡ ~p1 + ~p2, but only on the relative momentum ~p ≡ (~p1 − ~p2)/2 between the
two particles, i.e.

v12 = v(~r, ~p;~σ1, ~τ1;~σ2, ~τ2). (I.6)

4. Full rotational symmetry
This symmetry guarantees that the interaction between the two nucleons does not
depend of their absolute orientation in (coordinate plus spin) space. Indeed, if
we rotate the two particles by an amount R, the positions and momenta become
~r ′ = R~r and ~p ′ = R~p, but the spins are also impacted and turn into ~σ ′i = R~σi
(with i ∈ {1, 2}). This is what we mean by “full” rotation, to be distinguished from
separate rotation in coordinate and spin spaces. 2 The interaction must remain
unchanged under those transformations, i.e.

v(~r ′, ~p ′;~σ ′1, ~τ1;~σ ′2, ~τ2) = v(~r, ~p;~σ1, ~τ1;~σ2, ~τ2), (I.7)

for any matrix R. From a quantum mechanical point of view, this means that the
two-body nuclear interaction commutes with the total momentum ~J ≡ ~L + ~S, i.e.
[v12, ~J ] = 0. For this to be true, the interaction must be a scalar (in coordinate
plus spin space), as rotations do not modify scalar quantities. The full rotational
symmetry also implies that the two-body matrix elements of the interaction are
diagonal in the quantum numbers J andMJ , and independent ofMJ (see subsection
B.2.1).

5. Parity (or space reflection) symmetry
As the strong interaction, from which the nuclear interaction should be obtained,
is invariant under parity transformations, we expect the nuclear interaction itself to
conserve that symmetry. Space reflection, as its name suggests, turns the interaction
into its mirror image. In this process, the spatial degrees of freedom are reversed,
~r ′ = −~r and ~p ′ = −~p, while the spins, as pseudovectors, are not modified. Then,
the interaction is symmetric under parity transformations if it satisfies

v(−~r,−~p;~σ1, ~τ1;~σ2, ~τ2) = v(~r, ~p;~σ1, ~τ1;~σ2, ~τ2). (I.8)
2. The distinction is crucial here as the non-central components of the two-body nuclear interaction

are invariant under full rotations, as the interaction must be, but not under separate coordinate and spin
rotations (see section D.6 for more details).
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6. Time-reversal symmetry
Once again, the strong interaction is time-reversal invariant so that we expect the
nuclear interaction to respect the time-reversal symmetry itself. Physically, this
requirement ensures that the equations of motion do not depend on the direction
of the arrow of time. Under a time-reversal transformation, only the momenta and
spins are flipped, i.e. ~p ′ = −~p and ~σ ′i = −~σi (with i ∈ {1, 2}). Then, time-reversal
invariance of the interaction imposes

v(~r,−~p;−~σ1, ~τ1;−~σ2, ~τ2) = v∗(~r, ~p;~σ1, ~τ1;~σ2, ~τ2). (I.9)

It is important to note that the time-reversal operator involves the complex conju-
gation, which explains the appearance of the complex conjugate of the interaction
in the above relation.

7. Hermiticity
The necessity for the two-body nuclear interaction to be Hermitian is essential since
it implies that the associated Hamiltonian is diagonalizable and that its eigenvalues
are real. This physical requisite formally reads

v†12 = v12. (I.10)

8. Charge independence
Charge independence assumes that the interaction between two neutrons has the
same strength as the interaction between two protons, as well as the interaction
between a neutron and a proton. 3 This is based on the observation that neutrons
and protons have practically the same mass. Mathematically speaking, they can be
represented as two components of the same state describing an elementary particle
(the nucleon) of isospin 1/2, in some abstract space called isospin space. By analogy
with the spin formalism, we can picture charge independence as equivalent to a
nuclear interaction invariant under any rotation in isospin space. If we rotate the
two particles by an amount R in the isospin space, the isospins become ~τ ′i = ~τi
(with i ∈ {1, 2}), and the interaction must remain the same,

v(~r, ~p;~σ1, ~τ
′

1 ;~σ2, ~τ
′

2) = v(~r, ~p;~σ1, ~τ1;~σ2, ~τ2), (I.11)

for any matrix R. This means that the two-body nuclear interaction commutes with
the total isospin ~T , i.e. [v12, ~T ] = 0. For this to be true, the interaction must be an
isoscalar (a scalar in isospin space). The charge independence also implies that the
two-body matrix elements of the interaction are diagonal in the quantum numbers
T and MT , and independent of MT (see subsection B.2.1). Let us emphasize that
this symmetry is not exact, the proton and neutron masses not being strictly the
same. 4

When all these eight symmetries are reproduced, we can infer the general expression
of the bare two-body nuclear interaction. So as not to slow down the discussion, we have

3. It is important to underline that this statement only makes sense if the two nucleons have the same
quantum numbers. Indeed, in the T = 1 channel, the proton–neutron interaction in the symmetric isospin
state (|νπ〉+ |πν〉)/

√
2 is the same as the neutron–neutron |νν〉 and proton–proton |ππ〉 interactions. In

the T = 0 channel, however, the antisymmetric isospin state (|νπ〉 − |πν〉)/
√

2 has no neutron–neutron
nor proton–proton equivalents and there is no reason for it to be equal to their contributions in the T = 1
channel since they do not share the same quantum number T .

4. The neutron is very slightly heavier than the proton, mπ/mν = 0.998 623 478 12(49) [81].
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deferred the associated demonstration in Appendix D. This interaction reads

v12 = v00 + v10(~σ1 · ~σ2) + v01(~τ1 · ~τ2) + v11(~σ1 · ~σ2)(~τ1 · ~τ2), (I.12)

where
vST ≡

5∑
k=1

fSTk (~r 2, ~p 2, ~L2)Ok, for S, T ∈ {0, 1}, (I.13)

which is defined in terms of the so-called form factors fSTk (~r 2, ~p 2, ~L2) and the operators
Ok, taking one of the following form

Ok =



1 if k = 1,
~L · ~S if k = 2,
S12(r̂) ≡ (~σ1 · r̂)(~σ2 · r̂)− 1

3~σ1 · ~σ2 if k = 3,
S12(p̂) ≡ (~σ1 · p̂)(~σ2 · p̂)− 1

3~σ1 · ~σ2 if k = 4,
Q12 ≡ 1

2

[
(~σ1 · ~L)(~σ2 · ~L) + (~σ2 · ~L)(~σ1 · ~L)

]
if k = 5.

(I.14)

Several remarks should be made concerning these expressions. The set of equations (I.12)–
(I.14) defines the most general realistic two-body nuclear interaction we can construct
from the eight symmetries. This does not imply that all operators (I.14) or even all
components of the interaction (I.13) must be present in some realistic interaction, they
are simply allowed by the symmetries. In the expression of the interaction (I.12), we
have decided to make the particular spin dependence (~σ1 · ~σ2) appear. This choice is
conventional and any of the other possible spin dependences could have replaced it, but
this one is wise since it enables to divide the interaction into four components (I.13),
each acting in a different channel (S, T ), where S and T are the spin and isospin in
the two-nucleon formalism. Then, everything happens as if there were four independent
interactions “living” in their own subspace (S, T ). This is a consideration that will often
be taken up later when analyzing parametrizations of the Gogny interaction. The various
possible operators (I.14) are named, in order of appearance, the unity operator, the spin–
orbit term, the tensor terms (in coordinate space, with r̂ ≡ ~r/|~r|, and in momentum space,
with p̂ ≡ ~p/|~p|, respectively), and the quadratic spin–orbit term. The factor −(~σ1 · ~σ2)/3
that has been added to the tensor terms ensures that they are isotropic, i.e. that they
vanish when integrated over all directions (see subsection D.4.1 for more details). Let us
finally note that, with the specific form (I.12) of the interaction, when one of the last four
operators of (I.14) intervenes in the subspace S = 1, the dependence in Pauli matrices
is at least cubic due to the scalar product (~σ1 · ~σ2). However, this is not a problem
since, as explained earlier, we can always convert this dependence into a combination of
independent, linear and quadratic terms in Pauli matrices.

1.3. Many-body problem and effective interactions
Until now, we have only considered the interaction between two nucleons in the vacuum

which already posed serious problems. Another challenge is that the atomic nuclei we
wish to characterize are most of the time made up of more than two nucleons; in general
2 ≤ A . 300, where A is the number of nucleons. To faithfully describe nuclei, one
must in principle know all two-body, three-body and higher-body interactions (since the
presence of extra nucleons disturbs the interaction between its neighbors), but also how
to describe a system of many interacting particles. In fact, this is the so-called nuclear
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A-body (or many-body) problem, for which there currently exists no general solution. This
problem goes far beyond nuclear physics and is also encountered in condensed matter
physics, quantum chemistry as well as atomic and molecular physics, for example. A
noticeable particularity of nuclei, though, is that the addition or removal of a single
nucleon can drastically change their internal structure and thus their properties, which
further complicates their study [4]. To cope with this complexity, a lot of methods have
been developed since the 1950s, which can be classified into two categories: macroscopic
and microscopic approaches.

The liquid drop model (LDM) was the first macroscopic model to emerge [82]. It is
based on the observation that, under normal conditions, the nucleus has low compressibil-
ity and a well-defined surface. In this model, the binding energies are evaluated by means
of the semi-empirical mass formula of Bethe and Weizsäcker [83, 84], expressed in terms of
global properties (like volume and surface energies) associated with parameters that are
phenomenologically determined. It was historically the first model to properly describe
the bulk properties of nuclei. As it failed to reproduce the surface properties, it was soon
necessary to supplement the model by microscopic shell corrections, in particular through
the work of Strutinsky [85, 86]. This macroscopic-microscopic approach, taking into ac-
count quantum effects, has proved to be very successful, especially after extensive tunings
(notably by the work of Myers and Swiatecki [87]), until reaching a high predictive power.
It is still used today in an improved version, the finite-range droplet model (FRDM),
which provides good predictions of both nuclear masses and deformations [88, 89].

The starting point of a microscopic theory of the nucleus is the nuclear Hamiltonian
which governs the behavior of A interacting nucleons,

H =
A∑
i=1

p2
i

2M +
∑
i<j

vij +
∑
i<j<k

vijk + . . . , (I.15)

where p2
i /2M denotes the kinetic energy of the i-th nucleon, M its mass, vij the two-body

interaction between nucleons i and j, vijk the three-body interaction between nucleons
i, j and k, and so forth. Note that the inequalities in the summations prevent multiple
counting. Thus, the objective is to either solve the time-independent Schrödinger equation

HΨ(ξ1, . . . , ξA) = EΨ(ξ1, . . . , ξA), (I.16)

or the time-dependent Schrödinger equation for dynamical processes like fission or nuclear
collisions,

i~∂Ψ
∂t

(ξ1, . . . , ξA, t) = HΨ(ξ1, . . . , ξA, t), (I.17)

where Ψ is the A-body wave function and ξi the degrees of freedom of the i-th nuclei, with
i ∈ {1, . . . , A}. Unfortunately, there is no general method to solve this equation exactly,
for any value of A. Nevertheless, several microscopic approaches, based on different levels
of approximation, satisfactorily tackle the problem. Among those, three main approaches
can be distinguished: ab initio, shell model and self-consistent mean-field theories.

Ab initio methods are the most fundamental of the three approaches as they try to
solve the many-body problem using the realistic nuclear interaction [90, 91]. Originally,
the terminology “ab initio” was dedicated to methods capable of solving exactly the
Schrödinger equation. Their application was very restrained, only to nuclei with A ≤ 16.
Nowadays, we designate by ab initio all the methods that attempt to solve the Schrödinger
equation, even in an approximate way, but still from a realistic interaction. According
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to this definition, ab initio methods are able to describe a wider spectrum of the nuclear
chart. It would be difficult to present extensively ab initio methods as they are numerous
and varied. Let us simply point out that the current trend is to search for a fully consistent
approach, deduced from QCD, which would provide exact nuclear structure calculations.
To this end, realistic forces deduced from EFT, and more specifically from χEFT, called
chiral interactions, are commonly used in ab initio approaches. Indeed, they allow a direct
connection with the QCD Lagrangian and often simplify calculations while χEFT has the
ability to generate many-body forces as all forces are treated on the same footing (it
suffices to increase the order of the expansion series to get the higher-body contributions
to the interaction). At present, ab initio methods can handle nuclei up to A ' 100 (see
Figure I.2).

The shell model was independently developed in the end of the 1940s by physicists
Goeppert Mayer [92, 93] and Jensen [94] who shared half of the Nobel Prize of Physics in
1963. In the original model, nucleons are described as independent particles immersed in
a three-dimensional harmonic oscillator potential with a spin–orbit component [95, 96].
From there, it was possible to show that the energy levels of the nucleons are organized in
shells, composed of subshells, whose energy gap is prominent at certain particular values
of the number of protons or neutrons. These numbers, later called the magic numbers of
nucleons provided great success to the shell model as they were experimentally observed
from the binding energies of the nuclei close to magicity [97, 98]. The model was efficient
to account for the properties of nuclei close to the stability line, but much less so as one
moves away from it. Extension to more sophisticated potentials have then been carried
out, of which the famous Woods–Saxon potential [99] is an example. One of the obstacles
to the shell model calculations is their dimension, which increases extremely rapidly with
the size of the system. To circumvent it, the Hilbert space of nucleons is usually divided
into an inert core of (a magic number of) spectator nucleons that interact little or not,
and a valence space composed of a few nucleons driving the properties of the nucleus.
Additionally, specific diagonalization schemes (like Monte Carlo [100] or Lanczos methods
[101]) are requisitioned to cope with large numerical calculations. The shell model allows
to deal with nuclei up to A ' 100.

Finally, the last approach is that of self-consistent mean-field (SCMF) theories, also
called energy density functional (EDF) approaches [5, 6]. We take some time to outline its
philosophy, as it will be considerably solicited in the document. Of the three approaches
presented, this is truly the only one that can scan almost the entire nuclide chart, as
exemplified with the D1M Gogny interaction [102] in Figure I.2. SCMF theories start
from the observation that only the one-body problem is exactly solvable. From there, the
nuclear Hamiltonian (I.15) is split up into two parts as [7, 103]

H =
A∑
i=1

(
p2
i

2m + Ui

)
︸ ︷︷ ︸

H0

+
∑
i<j

vij +
∑
i<j<k

vijk + . . .−
A∑
i=1

Ui︸ ︷︷ ︸
Ures

, (I.18)

where H0 is the exactly solvable one-body Hamiltonian and Ures the residual interaction.
In the vision of SCMF theories, particles are moving independently. Their dynamics is
dictated by the Hamiltonian H0 containing a common potential Ui, called the mean-field,
created by their surrounding neighbors. This description is obviously not so far from
that of the shell model. The residual interaction Ures then appears as a correction to
this independent particle picture by inducing (long-range) correlations in their dynam-
ics. In practice, we try to maximize the part of the interaction between nucleons taken
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in the mean-field Ui, to minimize the residual interaction Ures we neglect. We do so by
including the correlations step by step, that is to say by successively incorporating, in
the increasingly sophisticated SCMF approaches, different types of correlations that are
known to take place in nuclei. In the following, we will introduce the Hartree–Fock (HF)
approximation (see subsection A.1.2), which corresponds to the basic SCMF theory, only
effective in dealing with doubly magic nuclei. To describe open-shell nuclei, we will use
the Hartee–Fock–Bogoliubov (HFB) approximation (see section III.1), which takes into
account pairing correlations. Note that there exists beyond mean-field approaches like
random phase approximation (RPA) which integrates correlations associated with har-
monic oscillations of the mean-field, or generator coordinate method (GCM), dedicated
to large amplitude motions, for example. As we will illustrate in the thesis for HF and
HFB theories, SCMF methods are almost 5 always constructed in the same manner:
(i) the starting wave functions are chosen to be richer and richer as the different types

of correlations are taken into account (Slater determinants and BCS wave functions
for HF and HFB approaches, respectively);

(ii) unknown quantities of which the wave functions are composed of are obtained using
a variational principle; it consists in searching for these quantities that minimize
the total energy of the nucleus;

(iii) primal equations are eventually obtained and give both the ground state and the
excited states of the nucleus.

When one naively employs realistic interactions in HF theory, one ends up with a mean-
field having extremely large or even infinite values. Such physically unacceptable result
originates in the hard-core repulsion of bare potentials. At normal density, the nucleons
remain on average quite far from each other, as a consequence of the Pauli principle. Each
nucleon does not often have the opportunity to get close enough to its neighbors to feel
the very repulsive core of the nuclear interaction. However, it cannot be excluded that
sometimes two nucleons are momentarily at distances involving the hard-core repulsion. In
this case, they scatter violently on each other, which induces perturbations referred to as
short-range correlations. Although quite scarce, these events must be taken into account
as their intensity has a strong impact on the behavior of nuclei. Several attempts to take
these correlations into account appeared in the 1950s. One of the most widespread is that
of Brueckner [104]. Assuming short-range correlations to involve only two nucleons at a
time, Brueckner proposed a model consisting in renormalizing the realistic interaction into
an effective interaction, without a repulsive core, but integrating in essence the effects of
short-range correlations. The effective interaction is more elaborated because it depends
on the states of the nucleons in the neighborhood, in particular through their energies
and the density of the medium. Unlike bare interactions acting in vacuum, effective
interactions take place in the nuclear medium. Thus, the HF theory becomes applicable
provided that an effective interaction is used instead of a realistic one. It is the Brueckner–
Hartree–Fock (BHF) theory which justifies the HF approximation in nuclear physics.
Since the BHF theory is hard to set up in finite nuclei, especially for heavy and deformed
nuclei, its applications were mostly restricted to infinite nuclear matter.

This led physicists to construct parametrizations of nuclear effective interactions, i.e.
nuclear effective interactions depending on free parameters which are determined:
(i) from theoretical results obtained in Brueckner theory;

5. A notable exception is RPA, which does not use a variational principle to determine the states of
the nucleus.
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(ii) by adjusting them in order to reproduce key quantities of infinite nuclear matter
(saturation point, incompressibility, etc.);

(iii) in a phenomenological way, that is to say, by fitting them on experimental data of
various types, to be able to describe as many nuclei as possible.

Most of them also retain the explicit density dependence of the medium which is essential
in reproducing the standard properties of nuclei, like saturation, but abandon the energy
dependence which turns out to be less important. At this point, two schools of thought
coexist: those who believe that the effective interaction must retain some signatures of
the bare interaction, and those who do not. The former suggest that the interaction is
reasonably renormalized by the medium effects, so that the bare interaction can still serve
as a guideline. The general expression of the effective interaction is then conducted by
the available operators Ok of the bare interactions (see previous subsection), and chosen
relatively simple to avoid too expensive calculation times (especially in the 1970s). The
latter claim that the various contributions are strongly mixed up when parameters are
fitted on experimental data. As a consequence, the choice of these parameters can only
be dictated by the desire to reproduce specific observations with the highest accuracy.
We also notice that this phenomenological aspect of effective interactions allows, through
experimental data, to restore the physical effects (spatial extension, relativistic motion,
etc.) which had been put aside for realistic interactions, by the initial assumptions listed in
the previous subsection. The two main phenomenological effective interactions that have
been widely used and improved since are the so-called Skyrme and Gogny interactions.
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Figure I.2 – The chart of nuclides [105]. Nuclei whose masses are measured experimentally
are put into perspective with those recently predicted by ab initio approaches and the
D1M Gogny interaction.

We now describe the analytical expressions and fitting procedures associated with some
important phenomenological effective forces other than the Gogny interaction, which we
defer to the next dedicated section. This is important as it reveals a fairly traditional way
those interactions are fitted, many aspects of which are common to the Gogny interaction.

The original Skyrme interaction, introduced by Skyrme in 1958 [10, 11] and then
popularized by Vautherin and Brink in the 1970s [106, 107], is a fully zero-range force, as
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I. The Gogny interaction 1. Landscape of nuclear interactions

evidenced by the (omni)presence of delta functions, of the following form

v12 = t0(1 + x0Pσ)δ(~r1 − ~r2) + 1
2t1

[
δ(~r1 − ~r2)k2 + k′2δ(~r1 − ~r2)

]
+ t2~k

′ · δ(~r1 − ~r2)~k

+ 1
6t3(1 + Pσ)δ(~r1 − ~r2)ρ

(
~r1 + ~r2

2

)
+ iW0

[
~k′ × δ(~r1 − ~r2)~k

]
· (~σ1 + ~σ2),

(I.19)

where t0, t1, t2, t3, x0 and W0 are the adjustable parameters, ~k and ~k′ the momentum
operators respectively acting on the right and on the left, defined by ~k ≡ (~∇1 − ~∇2)/2i
and ~k′ ≡ −( ~∇1− ~∇2)/2i, ~σ1 and ~σ2 the Pauli vectors associated with the first and second
particle, defined in (D.1), and Pσ the spin-exchange operator, given by (D.8), allowing
to separately constrain the interaction in the spin channels S = 0 and S = 1. This
interaction is, in order, composed of:
(i) a short-range expansion of a Gaussian central term truncated at the second order,

leading to a contact term;
(ii) a two-body density-dependent term mimicking the three-body interactions evaluated

at the center-of-mass position;
(iii) a spin–orbit term.
In the original Skyrme interaction, the parameters were fitted in order to reproduce the
binding energy and the density of nuclear matter as well as binding energies and mass
differences of light nuclei (in particular 4He, 16O, 40Ca and nuclei of close mass numbers).
The goal of such a procedure was to build up a parametrization capable of describing as
many nuclei as possible from the limit cases of light and heavy nuclei (whose interiors
can be assimilated to nuclear matter). Actually Vautherin and Brink found out too small
nuclear radii for heavy nuclei with that fitting procedure, and then decided to improve it.
Their parametrization, which serves as the starting point for the Skyrme parametrizations
built to date, is adjusted to reproduce:
(i) binding energy and saturation density in nuclear matter;
(ii) binding energy and nuclear radius of 16O, calculated in a harmonic oscillator repre-

sentation;
(iii) symmetry energy in nuclear matter;
(iv) splitting of (1p3/2 – 1p1/2) levels in 16O at the HF approximation.
Additionally, in a second step, they performed HF calculations with their parametrization
for 16O and 208Pb so as to further refine the nuclear matter and the 16O input values.
Finally, the incompressibility of nuclear matter K∞ was used as a control quantity to
ensure the consistency of the parametrizations coming out of the code. It is worthwhile
to mention that the spin–orbit parameterW0 was fixed independently of the other param-
eters, from the fourth point above. This characteristic will be discussed at length in what
follows.

The reason why the Skyrme interaction is of zero range, despite the fundamentally
finite-range nature of the nuclear interaction, is twofold. First because it greatly simplifies
the calculations (both on theoretical and numerical aspects), and second since, in HF cal-
culations for which the Skyrme interaction was primitively designed, only low-momentum
matrix elements (k, k′ ≤ 2kF, where kF is the Fermi momentum) are significant. When one
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I. The Gogny interaction 1. Landscape of nuclear interactions

decides to use such an interaction in beyond mean-field approximations, though, ultravio-
let divergences appear because the contributions of matrix elements involving momentum
transfers above 2kF become non-negligible.

A finite-range phenomenological effective interaction, less exploited than its Skyrme
and Gogny counterparts, is the M3Y interaction. Introduced in the 1970s by Bertsch et
al. [52] to deal with inelastic scatterings, the M3Y (Michigan three Yukawa) has enjoyed
renewed interest in the 2000s, notably via Nakada’s work [53] who widely extended its
SCMF treatment. Originally, the M3Y interaction read

v12 =
3∑
i=1

(
t
C(01)
i P01 + t

C(10)
i P10 + t

C(00)
i P00 + t

C(11)
i P11

)
fC
i (r12)

+
2∑
i=1

(
t
SO(01)
i P01 + t

SO(11)
i P11

)
fSO
i (r12)~L · (~s1 + ~s2)

+
2∑
i=1

(
t
T(01)
i P01 + t

T(11)
i P11

)
fT
i (r12)r2

12S12,

(I.20)

where P01 ≡ (1− Pσ)(1 + Pτ )/4, P10 ≡ (1 + Pσ)(1− Pτ )/4, P00 ≡ (1− Pσ)(1− Pτ )/4 and
P11 ≡ (1+Pσ)(1+Pτ )/4 respectively project onto the singlet-even (S = 0, T = 1), triplet-
even (S = 1, T = 0), singlet-odd (S = 0, T = 0) and triplet-odd (S = 1, T = 1) channels
of the interaction. As its name suggests, the M3Y interaction is made up of Yukawa form
factors fi(r12) ≡ e−µir12/µir12, with µi the range of the interaction and ~r12 ≡ ~r1 − ~r2 the
relative position of the nucleon pair. This fully finite-range interaction is composed of:
(i) three Yukawa central terms;
(ii) two Yukawa spin–orbit terms;
(iii) two Yukawa tensor terms.
The spin–orbit terms involve the relative orbital angular momentum defined by ~L ≡
~r12 × ~p12, with the relative momentum ~p12 ≡ (~p1 − ~p2)/2, and the spin operators ~s1 and
~s2. The tensor operator is here defined as S12 ≡ 4[3(~s1 · r̂12)(~s2 · r̂12) − ~s1 · ~s2], with
r̂12 ≡ ~r12/r12.

In the original M3Y interaction, the three ranges of the central terms were fixed by
the values µC

1 = 0.25 fm, µC
2 = 0.4 fm and µC

3 = 1.414 fm. The medium- and long-range
parts of the interaction were interpreted in the light of one-boson-exchange (OBE) models
as originating from the interactions between nucleons and mesons ω and π, respectively,
while the short range is purely phenomenological. In fact, the set of parameters associated
with the third central term is given to exactly replicate the one pion exchange potential.
As for the spin–orbit and tensor terms, their respective ranges are µSO

1 = 0.25 fm and
µSO

2 = 0.4 fm, and µT
1 = 0.4 fm and µT

2 = 0.7 fm, because the spin–orbit force is known
to be mainly of short range while the tensor interaction mainly contributes at medium
and large distances in OBE models (see subsection II.1.2.1). In the original paper, three
procedures for fitting the remaining parameters were proposed, one of which was based
on the reproduction of the G-matrix elements of the Reid potential [23] in an harmonic
oscillator representation. Still with the aim of describing inelastic scattering, the Reid
potential was traded for the Paris potential [24] by Anantaraman et al. [108] some years
later. It is from their parameters that Nakada applied the M3Y interaction to the HF
approach. Nakada started with the original analytical expression given above, along with
a zero-range density-dependent term [54]

vDD
12 = tDD(1 + xDDPσ)δ(~r1 − ~r2)ρα(~r1), (I.21)
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I. The Gogny interaction 2. Evolution of the Gogny interaction

similar to that of the Gogny interaction – not evaluated at the center-of-mass position,
though –, as it was necessary to get the saturation point of nuclear matter. The parameters
were determined so as to reproduce:

(i) binding energies and root mean square radii of some spherical nuclei (16O, 40Ca, 48Ca,
90Zr, 132Sn and 208Pb);

(ii) saturation density and energy in nuclear matter (for the parameters of the density-
dependent interaction, t(DD) and x(DD));

(iii) splitting of the neutron (1p3/2 – 1p1/2) levels in 16O, as well as the ordering of
single-particle states in 208Pb, at the HF approximation.

Standard quantities evaluated in infinite nuclear matter, similar to those of the Gogny
interaction, we shall shortly discuss, were also used as filters. Based on the physical
quantities probed with the Gogny interaction, the M3Y interaction was later successfully
applied to the HFB theory, first including only the particle-like pairing [55], and then the
full pairing [56].

Phenomenological effective interactions, although furnishing convincing outputs, do
not take into account the relativistic nature of the nuclear interaction; they are non-
relativistic interactions. One could then be tempted to take advantage of the relativis-
tic version of Brueckner’s theory, the Dirac–Brueckner–Hartree–Fock (DBHF) theory, to
build a relativistic effective interaction [109, 110]. Nevertheless, the procedure is even
more complex to set up in finite nuclei and involves additional approximations. Instead,
the relativistic mean-field (RMF) model [8, 9], first introduced in the 1950s by Schiff
[111] and by Teller et al. [112, 113], and then revived by Walecka and his collaborators
[114, 115] in the 1970s, appears a great tool to capture that physics. This model is a rela-
tivistic quantum field theory based on the Yukawa vision of an interaction transmitted by
exchanges of mesons. In RMF, one considers a Lagrangian bringing into play nucleonic
degrees of freedom, through Dirac spinors, interacting by means of mesonic fields. As
the coupling constants involved in the Lagrangian are very strong, perturbation methods
cannot be applied. However, the mean-field approach appears as a reasonable approxima-
tion and is then used in practical calculations. The parameters of the RMF Lagrangian,
i.e. the number of mesons, their quantum numbers as well as their masses and coupling
constants, are fixed in order to reproduce some chosen quantities in nuclear matter and
experimental data in finite nuclei. In this perspective, RMF brings a phenomenological
description of the nuclear interaction. As such, it is often considered a relativistic gener-
alization of the self-consistent mean-field approaches employed for the phenomenological
interactions cited above, where instantaneous forces are replaced by mesonic degrees of
freedom. Note, moreover, that the spin–orbit force naturally comes out of RMF, and the
nuclear saturation is easily obtained.

2. Evolution of the Gogny interaction

2.1. The original Gogny interaction D1
Before giving at last the analytical expression of the Gogny interaction, we would like

to provide some background to its advent [20, 116, 117]. At the end of the 1960s, Gogny,
Pires and de Tourreil [118] proposed a soft-core realistic nucleon–nucleon interaction,
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called GPT, 6 aimed at reproducing some physical quantities and observables in both
nuclear matter and finite nuclei. The interaction is fully finite range, made out of twelve
central, six tensor, two spin–orbit and four quadratic spin–orbit terms, and was fitted so
as to faithfully describe:
(i) two-nucleon data (phase shifts up to 300 MeV, deuteron properties, scattering lengths

and effective ranges);
(ii) binding energies and charge radii of magic nuclei 16O, 40Ca, 90Zr and 208Pb, with

great accuracy at HF approximation;
(iii) reasonable saturation properties in nuclear matter.
Finally, this realistic interaction was shortly after put aside for a phenomenological effec-
tive interaction now referred to as the Gogny interaction [12]. Even though the Gogny
interaction left out any direct connection with realistic forces, the physics probed by the
G-matrix plus higher corrections of GPT was incorporated and simulated by a density
dependence, as we will see later on. The initial purpose of the Gogny interaction was to
bring out a self-consistent treatment of mean field and pairing correlations at the HFB
level. In order to avoid the ultraviolet divergences encountered by the Skyrme interaction
then in place, Gogny chose to attribute finite ranges to the central terms. In 1964, Gillet
and Vinh Mau [119, 120] introduced an interaction composed of one finite-range Gaussian
term, with all possible admixtures of spin- and isospin-exchange operators. Compared to
a Yukawa, this form factor had the advantage of being easier to handle in theoretical
developments and, above all, of being more manageable numerically since no trouble is
faced in r = 0. In 1967, Brink and Boeker [121] compared different types of interactions,
including that one and another composed of two Gaussian central terms proposed by
Volkov [122] a year before. The two-Gaussian form turned out to furnish the best set of
single-particle energies (SPEs) in 16O and root mean square radii of the tested nuclei. In
the same spirit, Gogny introduced two central terms of Gaussian form factors acting in
all (S, T ) channels. One is repulsive and of short range, the other attractive and of long
range, as in the article of Volkov, then catching the essence of the bare nuclear interac-
tion between two nucleons. The finite-range character of the effective Gogny interaction
enables short- and long-range correlations to be taken into account on an equal footing.
In that sense, it can be said that the original effective Gogny interaction bears a signature
of the realistic nuclear interaction. Note that the main effective interactions discussed so
far are placed on a timeline in Figure I.6, shown at the end of this chapter.

The original Gogny interaction is formulated in the D1 analytical expression of the
form

vD1
12 =

2∑
i=1

(Wi +BiPσ −HiPτ −MiPσPτ )e−(~r1−~r2)2/µ2
i

+ t0(1 + x0Pσ)δ(~r1 − ~r2)ρα
(
~r1 + ~r2

2

)
+ iW0

[
~k′ × δ(~r1 − ~r2)~k

]
· (~σ1 + ~σ2).

(I.22)

We find, by order of appearance, two Gaussian central terms, a zero-range density-
dependent term whose density is evaluated at the center-of-mass position, a zero–range
spin–orbit term (the last two being identical to that of the Skyrme interaction). The

6. French speakers must know that this denomination is not coincidence. By saying it aloud, they can
appreciate Gogny’s subtle sense of humor.
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adjustable parameters are Wi, Bi, Hi,Mi, µi, t0, x0, α and W0 (for i ∈ {1, 2}), while the
spin- and isospin-exchange operators Pσ and Pτ , defined in (D.8), allow to modulate the
central part of the interaction in all (S, T ) channels. When all these parameters are de-
termined, they constitute a parametrization (i.e. a set of parameters) of the D1 analytical
expression. It is often said that the Gogny interaction differs from its Skyrme predecessor
by the finite-range character of its central terms. This is true, but the density-dependent
term was also improved. Where it mimicked the effects of the three-body interaction
in the Skyrme interaction, it here mimics the effects of all A-body interactions through
the phenomenologically determined power α. By phenomenological, we mean that this
value affected to α was found out “by hand”, that is after several tests to reproduce the
saturation point in symmetric nuclear matter.

The Gogny interaction was designed to be treated consistently beyond the mean field.
It is essential to bear in mind that in this perspective, a place is deliberately left for
beyond mean-field correlations. In other words, the Gogny interaction is not intended to
produce mean-field results directly comparable with experiment in general. When going
beyond the mean field, ultraviolet divergences pop up in the pairing matrix elements if
the interaction is of zero range, as for the Skyrme interaction. This is the main reason, in
addition to the intrinsic finite-range nature of the nuclear interaction, that motivated the
introduction of finite-range central terms (despite the inherent numerical complications,
particularly challenging for that period). However, we have just stated that the density-
dependent was of zero range. We then need to justify why this is not a problem. The
zero-range density-dependent term (denoted as DD) is even in space, as can be easily
inferred from its expression. When evaluated on some two-body antisymmetrized state
(a), 7 this implies Pr = 1, and it becomes

vD1
DD|~r1s1t1 ~r2s2t2〉(S,T )

a ≡ vD1
DD(1− PrPσPτ )|~r1s1t1 ~r2s2t2〉(S,T )

= vD1
DD(1− PσPτ )|~r1s1t1 ~r2s2t2〉(S,T )

= vD1
DD

(
1− (−)S+T

)
|~r1s1t1 ~r2s2t2〉(S,T ). (I.23)

where ~ri, si and ti respectively denote the space, spin and isospin degrees of freedom of
the particle i ∈ {1, 2}, and where we have benefited from the relations (D.11). We see
that the zero-range density-dependent term does not contribute in the (S = 0, T = 0)
and (S = 1, T = 1) channels of the interaction. Besides, Gogny set x0 = 1 in the D1
analytical expression, so that the zero-range density-dependent term becomes

vD1
DD|~r1s1t1 ~r2s2t2〉(S,T ) = t0δ(~r1 − ~r2)ρα

(
~r1 + ~r2

2

)
(1 + Pσ)|~r1s1t1 ~r2s2t2〉(S,T )

= t0δ(~r1 − ~r2)ρα
(
~r1 + ~r2

2

)(
1− (−)S

)
|~r1s1t1 ~r2s2t2〉(S,T ). (I.24)

In these conditions, the zero-range density-dependent term does not contribute in the
(S = 0, T = 1) channel, it only takes part in the (S = 1, T = 0) channel. Since only
the T = 1 particle-like pairing correlations are taken into account in the original Gogny
interaction, no divergences emerge from the zero-range density-dependant term that has
not action in this channel. On the other hand, we know the spin–orbit interaction to
contribute only to the S = 1 channel (as we show in subsection II.1.1), while its zero-
range character makes it odd in space. These observations can be translated in terms

7. As can be seen in appendices, all quantities of interest involve two-body antisymmetrized matrix
elements.
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of exchange operators as Pσ = 1 and Pr = −1, respectively. When evaluated on some
two-body antisymmetrized state, the zero-range spin–orbit term (denoted as SO) then
becomes

vD1
SO|~r1s1t1 ~r2s2t2〉(S,T )

a ≡ vD1
SO(1− PrPσPτ )|~r1s1t1 ~r2s2t2〉(S,T )

= vD1
SO(1 + Pτ )|~r1s1t1 ~r2s2t2〉(S,T )

= vD1
SO

(
1− (−)T

)
|~r1s1t1 ~r2s2t2〉(S,T ). (I.25)

We see that the zero-range spin–orbit term only contributes to the (S = 1, T = 1) channel,
and then does take part in the pairing matrix elements taken into account beyond the
mean field. However, its contribution is so small that it is either simply discarded or taken
into account with a convergence criterion leaving no time for a divergence to show up in
oscillator bases.

Note that a contribution of the Coulomb potential, taking into account the electrical
nature of protons, is added to the nuclear Gogny interaction, as in the effective interactions
discussed in the previous subsection. It is generally written as

vCoul ≡
1
4(1 + 2t1z)(1 + 2t2z)

e2

|~r1 − ~r2|
, (I.26)

where tiz = ±1/2 (for i ∈ {1, 2}) denote the projections of the isospin operators along the
Oz axis.

We summarize our analysis on the contributions of the different terms of the D1
analytical form to the (S, T ) channels in Table I.1.

Channels
(S = 0, T = 0) (S = 0, T = 1) (S = 1, T = 0) (S = 1, T = 1)

Terms
Central 7 7 7 7

Density-dependent 7

Spin–orbit 7

Coulomb 7 7

Table I.1 – Decomposition of the terms involved in the D1 analytical expression according
to their actions in the (S, T ) channels (when x0 = 1). When a given term acts in a given
channel, it is marked by a cross, otherwise its contribution is zero.

The first parametrization associated with the analytical form (I.22) was called the D1
parametrization [14]. As this latter predicted too strong pairing correlations and fission
barrier heights [16], it was quickly outperformed in the 1980s by the D1S parametrization
[15], fixing these pathologies. The fitting procedure of this still widely-used interaction is
the topic of the next subsection.

2.2. The D1S parametrization
In the original fitting procedure of the Gogny interaction, several successive steps allow

the extraction of a parametrization [12, 13]. First, some initial data are picked up so as
to allocate quantitative values to constraints involving the parameters to be determined.
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Through the inversion of a system gathering those constraints, a set of parameters is
deduced. Then, this set faces filters. If it passes through all the filters, it becomes a
potential parametrization associated with the D1 analytical expression (I.22). In the
following, we are going to develop the steps that led to the D1S parametrization.

2.2.1. The HFR formalism

We insist on the fact that the fitting procedure is based on the inversion of a sys-
tem that permits a straight determination of the parameters. For this to be possible, a
convenient formalism should be taken [17].

We start from the Hamiltonian of the nucleus, assimilated to a A-body system whose
nucleons only interact though two-body forces. In second quantization, it reads

H =
∑
ab

〈a|tK|b〉c†acb + 1
4
∑
abcd

〈ac|v(a)
12 |bd〉c†ac†ccdcb, (I.27)

where we recognize the usual creation ca and annihilation c†a operators, the one-body
kinetic operator, written in terms of the momentum operator p ≡ ~k as

tK ≡
p2

2M , (I.28)

as well as the two-body antisymmetrized Gogny interaction

v
(a)
12 ≡ v12(1− PrPσPτ ). (I.29)

To solve the Schrödinger equation associated with the above Hamiltonian, the HF method
approximates the wave function of the system by a (normalized) Slater determinant ΦHF.
The Slater determinant is fully characterized by an antisymmetrized combination of in-
dividual wave functions ϕHF

i that must then be determined. In first quantization, it is
expressed as

ΦHF(ξ1, . . . , ξA) = 1√
A!

∣∣∣∣∣∣∣∣∣
ϕHF

1 (ξ1) . . . ϕHF
A (ξ1)

... . . . ...
ϕHF

1 (ξA) . . . ϕHF
A (ξA)

∣∣∣∣∣∣∣∣∣ , (I.30)

where ξi stands for the degrees of freedom of the i-th individual wave function ϕHF
i , with

i ∈ {1, . . . , A}. In practice, those are expanded on a basis of functions that are known.
The spherical harmonic oscillator (HO) functions were the ones retained in the fitting
procedure as they make the calculations with Gaussian form factors quite easy to deal
with. Denoting by an integer index a the set of quantum numbers of the spherical HO,
the expansion can be written

|ϕHF
i 〉 =

∞∑
a=1

Uia(~ω)|φa(~ω)〉, for i ∈ {1, . . . , A}, (I.31)

where φa(~ω) denotes the HO function of quantum numbers a and frequency ~ω. Deter-
mining the individual wave functions then comes down to getting the coefficients of the
expansion, Uia(~ω). Obviously, such an infinite series is not numerically tractable and is
practically truncated to some finite order n according to

|ϕHF
i (~ω)〉 =

n∑
a=1

Uia(~ω)|φa(~ω)〉, for i ∈ {1, . . . , A}. (I.32)
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In this truncation process, some of the information defining the individual wave functions
is lost as the basis is no longer complete, and they then become a priori frequency-
dependent. The choice of this frequency is crucial, since the results of the HF calculation
should not depend of its value. As the HF approach is based on the minimization of the
HF energy defined by EHF ≡ 〈ΦHF|H|ΦHF〉, the natural option is to select the frequency
for which this energy is minimal. If we now calculate the HF energy, we end up with,
using Wick’s theorem,

EHF =
∑
ab

〈a|tK|b〉ρba + 1
2
∑
abcd

〈ac|v(a)
12 |bd〉ρbaρdb, (I.33)

where we have introduced the shorthand notation |a〉 ≡ |φa(~ω)〉 and the one-body density
matrix as ρba ≡ 〈ΦHF|c†acb|ΦHF〉. Let us now point out that the individual wave functions,
characterized by the coefficients Uia(~ω), are solutions of the HF equations. On the other
hand, these equations rely on the Hamiltonian (I.27) which involves the Gogny interaction
v12. The coefficients will therefore depend directly on this interaction, what we write as
Uia(~ω, v12). Thus, we show that the density matrix can also be expanded with respect
to those coefficients as

ρab =
A∑
i=1

U∗ia(~ω, v12)Uib(~ω, v12). (I.34)

Sadly, because of the iterative mechanism used to solve the HF equations, there exists
no straight relation between the coefficients Uia(~ω, v12) and the interaction v12. This
implies that it is not possible to express, at the HF level, the energy directly in terms of
the parameters of the interaction as it involves the coefficients Uia(~ω, v12) through the
density matrices. This would have been beneficial though, since we could have constrained
the parameters from the binding energies of magic nuclei by means of a simple inversion
system. As a compromise, the Hartree–Fock restricted (HFR) approximation stipulates
that

Uia = δia, (I.35)
where δia stands for the Kronecker delta. The coefficients of the expansion (I.32) no longer
depend on either the HO frequency or the interaction, and this expansion simplifies as

|ϕHF
i (~ω)〉 = |φi(~ω)〉, for i ∈ {1, . . . , A}. (I.36)

In other words, the individual HF wave functions are the HO functions, and the density
matrix becomes trivial,

ρab = δabρaa =

1 if a ≤ A,

0 otherwise.
(I.37)

At the HFR level, the density matrix is diagonal in the HO representation. Its diagonal
elements are 1 or 0, depending on whether the corresponding HO eigenstate is occupied
or not. With these considerations, the HF energy (I.33) turns into an HFR energy of the
form

EHFR =
∑
a

〈a|tK|a〉ρaa + 1
2
∑
ab

〈ab|v(a)
12 |ab〉ρaaρbb, (I.38)

that can be expressed in terms of the parameters of the Gogny interaction, and eventually
be inverted to extract the values of the parameters.

Several remarks should be made. First, the approximation (I.35) may look crude.
In fact, the principle of the fitting procedure is not to perfectly reproduce the input data
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directly, as may be the objective of other methods (that attempt to minimize their pre-
dictions with data in the fitting process). Its philosophy consists in rapidly and rather
efficiently identifying relevant zones in the space of parameters. It is then the task of
the user to discriminate in the output the interactions that are more promising than the
others. Second, one must now find a way to consistently choose the values to be allocated
to the HFR quantities. We shall evoke this in the next subsection, which will further
justify the use of the HFR approximation.

2.2.2. Constraints

Among the fourteen parameters to be determined in the Gogny interaction, we al-
ready explained that x0 = 1 was mandatory to avoid pathologies when treating pairing
correlations. Moreover, it turned out that taking α = 1/3 for the power of the density
was also essential in reproducing the saturation point in symmetric nuclear matter. As
for the parameters t3, µ1 and µ2, they were left free, and in practice selected in relevant
intervals defined by the user. Finally, the strength of the spin–orbit interaction was fixed
separately from the other parameters. It was simply chosen in order to reproduce the neu-
tron (1p3/2 − 1p1/2) splitting in 16O at the HF approximation, as in the original Skyrme
interaction. The spin–orbit interaction does not take part in the fitting code we here de-
scribe. Consequently, the spherical HO states are only specified by their usual quantum
numbers n and l, through the occupation of the major shells N ≡ 2n + l, in the fitting
code. They are not distinguished by the additional quantum numbers j, projections of
the total angular momentum, appearing when the spin–orbit force comes into play. Thus,
the remaining eight parameters Wi, Bi, Hi and Mi (with i ∈ {1, 2}) were gotten from
a process we now want to describe, and whose formalism was exposed in the previous
subsection.

First system
Two spherical nuclei, 16O and 90Zr, were chosen as representatives of the low- and

medium-mass nuclei in the first system. We notice that two constraints for each nucleus
can be extracted from our discussion on the HFR approximation. On the one side, the
HFR energies of those nuclei are of course constrained. Actually a link between the HF
and HFR energies for these nuclei was made, in a similar fashion to the one we detail
in the case of the D2 interaction. Basically several reliable D1-type parametrizations
were generated, and all of them evaluated the HF and HFR energies of the two nuclei.
By plotting the HF energies as a function of the HFR energies, simple relations were
successively obtained for each nucleus. On the other side, we have argued that the HO
frequency had to be the one rendering the energy minimal. In the fitting code, this
requirement takes form through the following constraint on the HFR energy,

dEHFR

d(~ω) [X] = dEHFR

db [X] = 0, (I.39)

where X denotes the nucleus and b ≡
√
~/Mω is the spherical oscillator length. It remains

to determine how to attribute a value to this quantity. It turns out that, according to the
virial theorem, there exists a direct relation between the charge radius of a nucleus at the
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HFR approximation and its oscillator length. In our case, these relations read

RHFR
ch

[
16O

]
=
√

15
2 b

[
16O

]
, (I.40a)

RHFR
ch

[
90Zr

]
=
√

25
2 b

[
90Zr

]
, (I.40b)

To find which values to give to the charge radii of the two nuclei, the exact same procedure
described for the binding energies was undertaken. As we can see, the few quantities of
interest evaluated at the HFR level are straightforwardly connected to those at the HF
approximation. This makes the use of the HFR approximation all the more adapted.

The first constraints, on the HFR energies of the two spherical nuclei, split up into
kinetic and potential contributions and become

EHFR[X] ≡ EHFR
K [X] + EHFR

P [X]
= EHFR

K [X]
+
∑
i=1,2

FD
i [X](4Wi + 2Bi − 2Hi −Mi)

+
∑
i=1,2

FE
i [X](4Mi + 2Hi − 2Bi −Wi)

+G[X](t0, x0).

(I.41)

In this expression, HFR kinetic energies of 16O and 90Zr are explicitly given in (B.172),
while FD

i [X] and FE
i [X], direct and exchange contributions of the central terms to the

HFR potential energy are calculated in (B.178) and (B.182), respectively. As for the
contribution of the zero-range density-dependent term, it is denoted by G[X](t0, x0). 8

The same type of relations holds for the constraints on the derivatives of the HFR energies.
Explicitly,

E ′HFR[X] ≡ E ′HFR
K [X] + E ′HFR

P [X]
= E ′HFR

K [X]
+
∑
i=1,2

F ′Di [X](4Wi + 2Bi − 2Hi −Mi)

+
∑
i=1,2

F ′Ei [X](4Mi + 2Hi − 2Bi −Wi)

+G′[X](t0, x0),

(I.42)

where the primes stand for the derivative with respect to the oscillator length b. From
the expressions of the kinetic energies, we easily find out

E ′HFR
K

[
16O

]
/(A = 16) = −9

4
~2

Mb3 , (I.43a)

E ′HFR
K

[
90Zr

]
/(A = 90) = −71

18
~2

Mb3 . (I.43b)

As for the derivations of the potential contributions, a bit more tedious, they were done
in the fitting code. These four equations can be formulated in matrix form

AX = F, (I.44)
8. In the appendices, derivations are done for the finite-range density-dependent term (that will be

discussed in the next section). The zero-range density-dependent term can easily be recovered from it at
the zero-range limit. As a consequence, all quantities associated with the zero-range density-dependent
term can be deduced from the ones associated with its finite-range equivalent.
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where A is a 4× 4 matrix, and X and F two column vectors reading

A ≡


FD

1 [16O] FD
2 [16O] FE

1 [16O] FE
2 [16O]

F ′D1 [16O] F ′D2 [16O] F ′E1 [16O] F ′E2 [16O]
FD

1 [90Zr] FD
2 [90Zr] FE

1 [90Zr] FE
2 [90Zr]

F ′D1 [90Zr] F ′D2 [90Zr] F ′E1 [90Zr] F ′E2 [90Zr]

 , (I.45a)

X ≡


4W1 + 2B1 − 2H1 −M1
4W2 + 2B2 − 2H2 −M2
4M1 + 2H1 − 2B1 −W1
4M2 + 2H2 − 2B2 −W2

 , (I.45b)

F ≡


EHFR[16O]− EHFR

K [16O]−G[16O](t0, x0)
E ′HFR

K [16O]−G′[16O](t0, x0)
EHFR[90Zr]− EHFR

K [90Zr]−G[90Zr](t0, x0)
E ′HFR

K [90Zr]−G′[90Zr](t0, x0)

 . (I.45c)

We can then effortlessly obtain the combinations of parameters belonging to the vector
X by simply inverting the matrix A, i.e. X = A−1F .

Second system
Three constraints making up two subsystems were elaborated for the second system. As

we have said in the previous subsection, only the pairing properties in the (S = 0, T = 1)
channel were constrained in the original fitting procedure of the Gogny interaction. To fix
the intensity of this pairing, Gogny chose to constrain the values of two two-body matrix
elements (TBMEs) in the (S = 0, T = 1) channel. More precisely, TBMEs between
1s and 2s states of 32S evaluated in a spherical harmonic oscillator basis at the HFR
approximation were selected, namely

V1s ≡ 〈1s 1s|vD1
12 |1s 1s〉(S=0,T=1) =

∑
i=1,2

f i1s(Wi −Bi −Hi +Mi), (I.46a)

V2s ≡ 〈2s 2s|vD1
12 |2s 2s〉(S=0,T=1) =

∑
i=1,2

f i2s(Wi −Bi −Hi +Mi). (I.46b)

As expected, the contributions only come from central terms, through the quantities f i1s
and f i2s (with i ∈ {1, 2}) given in (B.41). As for the values V1s and V2s attributed to those
TBMEs, they were obtained from the requirement that the even–odd mass difference in
Sn isotopes reproduces satisfactory pairing effects [13].

Another constraint on the energy difference, at the HFR approximation, between
the neutron and proton 2s1/2 states in 48Ca was also retained. This energy difference,
manifestly sensitive to the isospin dependence of the interaction, reads

∆ε ≡ εν [2s1/2]− επ[2s1/2]. (I.47)

With the D1 analytical form, we have

∆ε =
∑
i=1,2

f iD(2Hi +Mi) + f iE(Wi + 2Bi) + g(t0, x0), (I.48)

where the direct and exchange components of the central terms are denoted by f iD and f iE
(with i ∈ {1, 2}), and are given by (B.200), while g(t0, x0) corresponds to the zero-range
density-dependent contribution. Actually, there should also be a contribution of the spin–
orbit term (see subsection B.6.4), but we have stated that the spin–orbit is neglected in
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the fitting procedure. The value assigned to ∆ε was found out from a requirement on
the symmetry energy aτ produced by the interaction in nuclear matter. A correction
stemming from the Coulomb potential was also added by Gogny to this value.

Note that a more detailed procedure for deducing the values to be assigned to the con-
straints is proposed in Chappert’s thesis, and discussed in subsection I.2.4.2.1. Gathering
all the constraints (I.44), (I.46) and (I.48), we end up with seven equations involving eight
parameters. In fact, one parameter, B1, was also set free as the parameters t3, µ1 and µ2
were. By inverting this system, a unique parameter set is obtained.

2.2.3. Filters

Once a set of parameters is generated, it still has to pass through filters nuclear matter
to be considered a trustworthy parametrization. There are three steps of filtering, based
on:
(i) Standard physical quantities;
(ii) Stability criteria and sum rules in the Landau theory of Fermi liquids;
(iii) The surface energy coefficient.
Basically, for the first point, the parametrization has to reproduce physical quantities
at the saturation density of symmetric nuclear matter (total energy, incompressibility,
effective mass and symmetry energy) in some intervals defined by empirical values. For
the second point, we must recall that criteria ensuring the stability of nuclear matter as
well as sum rules derived from the Pauli exclusion principle can be formulated in the
Landau theory of Fermi liquids (here in symmetric nuclear matter at saturation point).
Those rely on Landau parameters which directly depend on the values of the parameters.
In practice, the sum rules are always violated by effective interactions, but by calculating
their values, we can discriminate parametrizations whose violations are pathological from
those for which they are acceptable. Analytical expressions of standard physical quantities
as well as stability criteria and sum rules are reported in Appendix A for clarity. Finally,
the last point enables to lower the fission barriers in actinides, by making a link between
the surface energy coefficient evaluated in a semi-infinite nuclear matter and the fission
barrier heights.

2.2.4. Extraction of the D1S parametrization

We finally sum up and illustrate in Figure I.3 how the D1-type fitting code is working
with the example of the fitting process of the D1S parametrization we have just described.
As explained earlier, initial data on both bulk and pairing properties were gathered so as
to impose constraints on various physical quantities and observables at the HFR approx-
imation. These constraints shape two interdependent systems (as indicated by vertical
arrows), from (I.44), and (I.46) and (I.48), respectively, whose inversion leads to a set of
fourteen parameters. The potential parametrization is then confronted to filters that it
must pass to be considered a promising candidate. If not, the parametrization is thrown
away. This operation is automatically repeated with all the possible values authorized for
the parameters which are left free (as indicated by arrows on either side of the rectangle
at the bottom right of the inversion procedure). At the end, two options are available.
Either no parametrization is found, and the initial data needs to be slightly modified, in
line with experimental or model uncertainties, so that new constraints emerge and the
process can start over. Otherwise, a certain number of parametrizations can be generated,
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and it is up to the user to narrow some filters or use his expertise to deduce the most
interesting parametrization. This last statement is fundamental since it constitutes the
phenomenological aspect of the search for a parametrization of the Gogny interaction.

We can now enumerate the parameters constituting the D1S parametrization of the
analytical expression (I.22) in Table I.2. In the order of appearance are the zero-range
spin–orbit (i = 0), finite-range central (i ∈ {1, 2}) and zero-range density-dependent
(i = 3) terms.

i µi αi t0 x0 Wi Bi Hi Mi

(fm) (MeVfm4) (–)a (–)a (–)a (–)a

0 130.000
1 0.70 −1720.300 1300.000 −1813.530 1397.600
2 1.20 103.639 −163.483 162.812 −223.934
3 1/3 1390.600 1
a MeVfm5 (i = 0), MeV (i ∈ {1, 2}).

Table I.2 – D1S parametrization.

2.3. Other D1-type parametrizations
In this subsection, we evoke the D1-type parametrizations that followed D1S. We detail

a bit those of interest for the thesis, and briefly mention the others.

Parametrization D1P
The D1P parametrization, constructed by Farine et al. [123] was introduced in 1999 as

an improvement to D1S with respect to three major points:
(i) Depth of the optical potential in agreement with experimental data to energies

beyond 200 MeV;
(ii) Sum rules associated with Landau parameters less violated and some instabilities

cured;
(iii) A realistic behavior of the neutron matter equation of state achieved at high densi-

ties.
Although this interaction is not often mentioned in the literature, it has the merit of
introducing the need of a better reproduction of the neutron matter equation of state,
that will systematically be discussed afterwards.

Parametrization D1N
One important D1-type parametrization established in 2008 as part of Chappert’s the-

sis is the D1N interaction [17, 124]. In the 1990s technological breakthroughs led to the
production of radioactive nuclear beams of exotic nuclei, opening the door to new regions
of little known or unknown nuclei off the valley of stability [125]. Because no requirements
on such nuclei were considered in the D1S fitting code, this parametrization failed in re-
producing adequately the binding energies of exotic neutron-rich nuclei. This is peculiarly
striking when the energy difference between HFB predictions and experimental values is
plotted for many isotopic chains as a function of the neutron number N . In Figure I.4,
we indeed observe that the energy difference blows up for D1S, at the tails of isotopic
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chains, corresponding to exotic nuclei with large numbers of neutrons. This observation
was called the drift of energy (or masses) along isotopic chains.

To remedy this, a filter on the neutron matter equation of state was added to the D1S
fitting procedure. Eight points of the equation of state obtained by realistic calculations of
Friedman and Pandharipande [126] in neutron matter had to be reproduced, with chosen
accuracies, by the interaction to pass the filter. Since the neutron density remains lower
than the saturation density for atomic nuclei ρ0, five points fixed to densities satisfying
ρ ≤ ρ0 enabled a faithful description of nuclear structure data. On the other hand, three
points at densities such that ρ > ρ0 were demanded, with a view to future astrophysical
applications. The resulting parametrization was dubbed D1N and its benefits appears
clearly in Figure I.4. This interaction is fundamental since all its successors similarly take
up a constraint on the neutron matter equation of state.

Figure I.4 – Drift of masses along isotopic chains for D1S, D1N and D1M Gogny inter-
actions [127]. The energy difference between 5DCH and experimental masses, defined by
δB ≡ B5DCH −Bexp, is represented as a function of the neutron number N .

Parametrization D1M
Another remarkable D1-type parametrization built up by Goriely et al. in 2009 is the
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D1M interaction [102, 127]. The main purpose of this interaction was to improve the
overall reproduction of nuclear masses, while further reducing the tiny energy drift of D1N
(see Figure I.4). We mention that the fitting code used to create D1M is not an extension
of the fitting code we have discussed so far. It is founded on a different procedure. The
masses of 2149 nuclei were calculated using a mass formula where the quadrupole collective
corrections were taking into account by solving the collective Schrödinger equation with
the five-dimensional collection Hamiltonian, and their differences with the experimental
data minimized. Some standard physical quantities in infinite nuclear matter alike those
of D1S were also included in the fit, as well as requisites to reproduce the neutron matter
equation of state. With a better description of binding energies, this interaction seems
more suitable than previous D1-type parametrizations for astrophysical purposes.

Parametrization D1M?

In order to enlarge predictions of the Gogny interaction to astrophysical processes,
a new parametrization, modelled on D1M, was investigated by Gonzalez-Boquera and
collaborators in 2018 [128]. The aim of this interaction was to preserve the finite-nuclei
properties of D1M while being competitive with modern Skyrme interactions in catching
the physics of neutron stars. Note that astrophysical applications are beyond the scope
of this report and will consequently not be inspected.

2.4. The Gogny interaction D2
2.4.1. Analytical expression

In 2007, Chappert broke new ground by extending the expression of the original Gogny
interaction, rather than looking for another D1-type parametrization [17]. The density-
dependent term acquired a finite range, and the new analytical form, referred to as D2,
became

vD2
12 ≡

2∑
i=1

(Wi +BiPσ −HiPτ −MiPσPτ )Vi(r12)

+ (W3 +B3Pσ −H3Pτ −M3PσPτ )
V3(r12)

(µ3
√
π)3

ρα(~r1) + ρα(~r2)
2

+ iW0
[
~k′ × δ(~r1 − ~r2)~k

]
· (~σ1 + ~σ2).

(I.49)

The form factor associated with the finite-range density-dependent term is, like the central
terms, of Gaussian shape, i.e.

Vj(r12) ≡ e−(~r1−~r2)2/µ2
j , with j ∈ {1, 2, 3}. (I.50)

Note that the denominator (µ3
√
π)3 ensures that one recovers the exact zero-range density-

dependent term of the original Gogny interaction by means of the formula

lim
µ→0

e−(~r1−~r2)2/µ2

(µ
√
π)3 = δ(~r1 − ~r2). (I.51)

According to the Pauli exclusion principle, the exchange operators must satisfy the relation
PrPσPτ = −1. On the other hand, the delta function of the zero-range density-dependent
term implies Pr = 1, so that Pσ = −Pτ . This correspondence make the parameters H3
and M3 redundant as they act in the same (S, T ) channels as the parameters W3 and
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B3, respectively. Setting W3 = t0 and B3 = t0x0, we are eventually able to fall back on
the zero-range density-dependent term of the original Gogny interaction (I.22). On the
other hand, when the density-dependent term is of finite range, nothing can be inferred
regarding Pr contrary to its zero-range counterpart (see discussion in subsection I.2.1).
Such density-dependent term then contributes in all (S, T ) channels, with no risks of
divergences when taking into account pairing correlations (as shown in Table I.3). As for
the specific form of the density dependence, it is not founded on theoretical arguments,
but on numerical ones. It turns out to be the least numerically time-consuming form
among the three proposals made in Chappert’s thesis.

Channels
(S = 0, T = 0) (S = 0, T = 1) (S = 1, T = 0) (S = 1, T = 1)

Terms
Central 7 7 7 7

Density-dependent 7 7 7 7

Spin–orbit 7

Coulomb 7 7

Table I.3 – Decomposition of the terms involved in the D2 analytical expression according
to their actions in the (S, T ) channels. When a given term acts in a given channel, it is
marked by a cross, otherwise its contribution is zero.

Finally, all the other terms of the new analytical expression remain those of the original
Gogny interaction. Nonetheless, the fitting code also had to be prolonged to re-determine
all the parameters, including the density-dependent ones, in a fully consistent way [17].

2.4.2. Fitting procedure

2.4.2.1. Constraints

With the D2 analytical form, six additional parameters, with respect to the D1 an-
alytical expressions, W3, B3, H3,M3, µ3 and α, had to be fitted. This called for new
constraints.

For the same reason as before, α = 1/3. The range associated with the density-
dependent term was set free. Just like the previous ranges, an interval of values was
chosen and were only kept those generating relevant parametrizations. All in all four
additional constraints were needed to completely specify the D2 interaction. Chappert
initially chose to reproduce the binding energy and charge radius of another doubly magic
nucleus, the 100Sn, as well as two points driving the slope of the neutron matter equation
of state at low densities. The reason is straight, it allowed to constrain the bulk properties
of a heavier nucleus while, more importantly, avoiding the collapse of the neutron matter
equation of state observed with D1S, and corrected with D1N (see previous subsection).
Those constraints can be found in Chappert’s thesis. They are not given here as they
were ultimately not used to pull out the parametrization D2. Indeed, the inversion system
proved unstable for some values of µ3, which led to this protocol being abandoned. Instead,
the four parameters W3, B3, H3 and M3 were left free to vary in definite intervals, in the
manner of µ3, and the constraints on the neutron matter equation of state was relegated
to filters. No additional constraints were actually added in the fitting procedure of D2.
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We are thereby simply going to show how the pre-existing constraints are modified by the
presence of the finite-range density-dependent term.

According to what we have just said, the first inversion system was only supplemented
by the contributions coming from the finite-range density-dependent term. The second
inversion system is composed of constraints on pairing TBMEs in the (S = 0, T = 1)
channel as well as on the energy difference ∆ε. This time, the density-dependent term
brings a contribution in the (S = 0, T = 1) channel and the relations (I.46) generalize to

V1s ≡ 〈1s 1s|vD2
12 |1s 1s〉(S=0,T=1) =

∑
i=1,2

f i1s(Wi −Bi −Hi +Mi)

+ g1s(W3 −B3 −H3 +M3),
V2s ≡ 〈2s 2s|vD2

12 |2s 2s〉(S=0,T=1) =
∑
i=1,2

f i2s(Wi −Bi −Hi +Mi)

+ g2s(W3 −B3 −H3 +M3),

(I.52a)

(I.52b)

where f i1s and f i2s (with i ∈ {1, 2}), proper to the central contributions, are given in
(B.41), while g1s and g2s, evaluated numerically, account for the density-dependent ones.
For the energy difference ∆ε, the zero-range density-dependent component is replaced by
the finite-range one, now made up of direct and exchange parts. Indeed, the constraint
(I.48) becomes

∆ε =
∑
i=1,2

f iD(2Hi +Mi) + f iE(Wi + 2Bi)

+ gD(2H3 +M3) + gE(W3 + 2B3),
(I.53)

where the direct and exchange components of the central terms are denoted by f iD and f iE
(with i ∈ {1, 2}), and given by (B.200), while gD and gE correspond to the ones associated
with the density-dependent ones, computed in (B.203). As in the D1 case, the parameter
B1 was also set free.

Another important element of Chappert’s work was to shed more light how the values
attributed to the constraints could be defined, as we are going to show.

First system
As we have seen in the previous subsection, the binding energies and charge radii are

evaluated at the HFR approximation in the fitting code. It is necessary to find a rigorous
way of linking these quantities to the experimental values. Since 16O and 90Zr present no
pairing, we can sanely state that their binding energies and charge radii evaluated at the
HF approximation are nearly equal to their experimental values. To be precise, Chappert
authorized an error of 1% in that reproduction. The next step was to interpret these HF
values at the HFR level. To do so, several D2-type parametrizations were generated and
for each of them, the binding energies and charge radii of 16O and 90Zr were calculated at
both the HF and HFR approximations. For each nucleus, relations between the binding
energies (respectively, the charge radii) evaluated at the HF and HFR approximations were
established. Taking into account the errors, intervals of allowed values for the binding
energies and charge radii evaluated at the HFR level were set up. For the charge radii, a
final step was necessary. According to what we have said in subsection I.2.2.2, they can
be related to the oscillator lengths at the HFR approximation. Thus, it is by picking up
values in the intervals defined for the binding energies and oscillator lengths that Chappert
was able to construct the first system.
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Second system
The values assigned to the TBMEs V1s and V2s are based on three points. First, V1s was

calculated with several D2-type parametrizations, and compared to the pairing energies
of 16O predicted by these parametrizations at the HFB level. As the pairing has to
be zero in such a closed-shell nucleus, an interval of values for V1s associated with the
parametrizations providing no pairing was extracted. Second, knowing that the pairing
correlations influence the moment of inertia, moments of inertia of 158Sm were computed
with all parametrizations, still at the HFB level, and compared to the values of V1s. The
moment of inertia is not an observable, but it is directly related to the energy of the first 2+

1
excited state, which is. From the corresponding experimental value, the moment of inertia
of the nucleus, and subsequently the associated value of V1s was deduced. By allocating an
error of 10% on the experimental value, Chappert set up an interval of permissible values
for the moment of inertia and therefore restrained the interval of values of V1s. Third,
seven values for the difference V2s − V1s were chosen, giving rise to seven combinations of
parameters (W1−B1−H1 +M1) and (W2−B2−H2 +M2), by inverting equations (I.52).
The spatial form of the interaction in the (S = 0, T = 1) channel,

v
(S=0,T=1)
12 (r) = (W1 −B1 −H1 +M1)e−r2/µ2

1 + (W2 −B2 −H2 +M2)e−r2/µ2
2

+ (W3 −B3 −H3 +M3) e−r2/µ2
3

(µ3
√
π)3ρ

α(~r),
(I.54)

was finally plotted for all parametrizations. By requiring the spatial shape of the above
pairing interaction to be close to that of D1S, whose pairing properties were carefully
adjusted, it was possible to uniquely determine the values of V1s and V2s.

Finally, the constraint on the energy difference ∆ε allows to control the isospin de-
pendence of the interaction. When we look at the semi-empirical mass formula,

E = aVA− aSA
2/3 − aC

Z2

A1/3 + aτ
(N − Z)2

A
+ δ(N,Z), (I.55)

we see that the asymmetry of the nuclear system in terms of protons and neutrons is
taken into account through the difference (N − Z)2. For this reason, the coefficient aτ
which regulates the intensity of this contribution to the binding energy is often called the
symmetry energy. By computing and comparing the symmetry energies aτ and energy
differences ∆ε between several D2-type parametrizations, Chappert found a linear relation
linking the two quantities. As a consequence, the interval of empirical values for aτ
immediately provided an empirical interval for ∆ε. To refine the value to be set to ∆ε,
its action on the drift of the binding energies in the tin isotopic chain was studied. Since
100Sn and 132Sn are both doubly magic nuclei, we expect the difference between their
binding energies evaluated at the HFB level and experimentally to be the same, i.e.

EHFB
[

100Sn
]
− Eexp

[
100Sn

]
= EHFB

[
132Sn

]
− Eexp

[
132Sn

]
. (I.56)

This requirement obviously depends on the isospin characteristics of the interaction as
100Sn and 132Sn isotopes evince strong differences (N−Z). Indeed, Chappert showed that
∆ε had to be chosen with high precision to avoid any drift in the tin isotopic chain, that
is for the above relation to hold.

2.4.2.2. Filters
Regarding the filters in infinite nuclear matter, those of the D1S interaction were kept

and the zero-range density-dependent contributions replaced by the finite-range ones.
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These contributions to the standard physical quantities and to the Landau parameters
are reported in Appendix A for clarity.

On top of that, a filter on the neutron matter equation of state, already implemented
in the fitting code of D1N and discussed in the previous subsection, was considered. As
before, the main purpose of it was to cure the mass drift observed with D1S.

2.4.2.3. Extraction of the parametrization D2

As shown in Figure I.5, the scheme of the D2 fitting procedure is analogous to that
of the D1-type version, with an additional filter on the neutron matter equation of state.
We dye in green processes proper to the D2 fitting code or at least notably enhanced with
respect to that of the D1S parametrization, and in blue the steps already implemented
in the D1S fitting code. Obviously, all the constraints and filters had to trade their
zero-range density-dependent component for a finite range one. The two interdependent
systems were here constructed from (I.44), and (I.52) and (I.53), respectively. We remind
that the parameters of this new term,W3, B3, H3,M3 and µ3, were all set free (as indicated
by arrows on either side of the rectangle at the right of the inversion procedure). Precisions
on the way the initial data are obtained were also unveiled. To constrain the values of
V1s and V2s, it was asked for:
(i) no pairing in 16O;
(ii) the reproduction of the moment of inertia, deduced from the experimental value of

its 2+
1 first excited state, with an accuracy of 10%;

(iii) a spatial shape of the pairing interaction similar to that of D1S.
As for the value assigned to ∆ε, the requirements were:
(i) a symmetry energy falling in the empirical values;
(ii) no energy drift in the tin isotopic chain, between isotopes 100Sn and 132Sn.

These modifications we have summed up, connected with the D1-type fitting procedure,
make up the D2 fitting code, at the origin of the D2 parametrization (a set of sixteen
parameters).

We can now enumerate the parameters constituting the D2 parametrization 9 of the
analytical expression (I.49) in Table I.4. In the order of appearance are the zero-range
spin–orbit (i = 0), finite-range central (i ∈ {1, 2}) and finite-range density-dependent
(i = 3) terms.

i µi αi Wi Bi Hi Mi

(fm) (–)a (–)a (–)a (–)a

0 130.000
1 0.80 −1176.440 800.000 −927.366 1115.573
2 1.30 93.741 −161.161 122.414 −223.859
3 0.60 1/3 1800.000 600.000 400.000 −600.000
a MeVfm5 (i = 0), MeV (i ∈ {1, 2}), MeVfm4 (i = 3).

Table I.4 – D2 parametrization.

9. In Chappert’s thesis, two candidates for the D2 interaction, dubbed D2A and D2B, are compared.
The final D2 parametrization we discuss here corresponds to D2B.
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2.5. Other analytical forms
2.5.1. Tensor-dependent interactions

In this subsection, we list the attempts made to incorporate a tensor force in the
Gogny interaction. Some of them will indeed be useful in the search and analysis of our
own tensor-dependent interaction.

Parametrization GT2
Otsuka et al. [58] were the first to introduce in 2006 a tensor term in the Gogny

interaction. Basically, they took the D1 analytical expression (I.22) and supplemented it
by an isospin-dependent tensor force with a Gaussian shape of the form 10

vT
12 = WT(~τ1 · ~τ2)S̃12 e−(~r1−~r2)2/µ2

T , (I.57)

where their tensor operator is defined as

S̃12 ≡ 3(~σ1 · r̂12)(~σ2 · r̂12)− ~σ1 · ~σ2. (I.58)

All the parameters (including the spin–orbit one) were refitted in a fully consistent way,
based on five requirements:
(i) reproduction of the saturation point of D1S in symmetric nuclear matter;
(ii) an incompressibility within empirical values in symmetric nuclear matter;
(iii) binding energies of 16O, 40Ca, 48Ca, 56Ni, 132Sn and 132Sn reproduced with an accu-

racy of about 1% at the HF level;
(iv) the part of the central terms proportional to (~σ1 · ~σ2)(~τ1 · ~τ2) showing a positive

overall strength;
(v) strength WT such that the volume integral of the Gaussian form factor is equal to

that of the AV8’ potential [129].
Additionally, the range of the tensor force was chosen to be equal to the longest range of the
central part of the D1S interaction, namely µT = 1.2 fm. The corresponding parametriza-
tion, named GT2, was only tested regarding its predictions on the single-particle energies
at the HF approximation. To our knowledge, there have been no subsequent studies to
probe its pairing or beyond mean-field properties.

Parametrizations D1SV8, D1MV8, D1ST and D1MT
Five years later, Co’ et al. [59] also added an isospin-dependent tensor force on top of

the D1 analytical expression of the form

vT
12 = vτAV8’(r)

(
1− e−br2)

. (I.59)

The tensor-isospin dependence is fully contained in the tensor-isospin term of the Argonne
V8’ potential, denoted as vτAV8’(r) [129]. It is multiplied by a function which incorporates
the effects of the short-range correlations [130]. The authors looked at the excitation
spectra to target observables particularly sensitive to the tensor force. They found out
that the excitation energies of the 0− levels were good candidates and accordingly fitted

10. Actually the notations used in the article are a bit different, but equivalent to those which are more
convenient to be compared with the other tensor-dependent interactions.
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the free parameter b, which calibrates the strength of the tensor term, so as to reproduce
the first 0− excited state in 16O. To be precise, they first made HF calculations starting
from D1S and D1M parametrizations with no tensor forces to produce the wave functions
and SPEs. Then, they switch on the tensor forces in RPA calculations and selected the
value of b which reproduced the experimental energy of the 0− state in 16O. Finally, they
evaluated the wave functions and SPEs again with the new interactions and tuned the
spin–orbit parameter to find back the neutron (1p3/2 – 1p1/2) splitting in 16O. New RPA
calculations followed and the procedure was repeated until convergence. The outcoming
parametrizations were respectively labelled D1SV8 and D1MV8.

We emphasize that this fitting procedure is fundamentally different from that used
to elaborate GT2 in the sense that the D1S and D1M parametrizations were kept like
they were and the tensor forces (as well as the spin–orbit force) were adjusted aside, on
separate observables. We will often say in this situation that the tensor force is adjusted
separately or perturbatively. This is exactly what was already done for the spin–orbit
term in the original Skyrme and Gogny interactions. This approach offers the advantage
of isolating the effects produced by the term fitted perturbatively (when compared to the
primary parametrization), but it is incomplete since each term composing the interaction
participates in reproducing the observables. As a consequence, a single-term contribution
may be rearranged (or renormalized) by the contributions of all the other terms.

This fitting process was rapidly taken up step by step by Anguiano et al. [29] with the
isospin-dependent Argonne V18 potential [27] in place of the V8’ version, to build up a
tensor force of the form

vT
12 = vτAV18(r)

(
1− e−br2)

, (I.60)

and generated the D1ST and D1MT parametrizations from the tensor-free D1S and D1M
interactions.

Parametrizations D1ST2a, D1ST2b and D1ST2c
In 2012, Anguiano et al. [60] realized that the expression of the tensor force (I.60) was

not general enough to describe both proton–neutron and particle-like tensor effects. They
studied the N = 28 neutron energy gap, i.e. the energy difference between the neutron
2p3/2 and 1f7/2 levels, which is experimentally known to increase when going from 40Ca
to 48Ca [131]. This phenomenon is often attributed to the tensor force. Indeed, according
to Otsuka’s picture (see subsection III.2), the tensor has (almost) no effect on the SPEs
of 40Ca as it is both proton and neutron spin-saturated, while it does on those of 48Ca
(through a particle-like component) as it is only spin-saturated in protons. Practically,
whereas the SLy5 Skyrme interaction predicts an energy decrease in the N = 28 gap,
the same interaction supplemented by a tensor force managed to reverse this behavior, to
recover the trend evidenced by experimental data [48]. With D1S, the neutron 2p3/2 – 1f7/2
gap also moves in the wrong direction but the D1ST interaction worsens the predictions
by diminishing even more the energy of the N = 28 neutron gap. The pathology can of
course be cured by modifying the sign of the strength of the tensor term, but this would
alter the nuclear properties which are well described by the D1ST interaction (like the 0−
excitation energy of 16O on which it was adjusted). In order to cope with this issue, the
analytical expression of the tensor force was extended in a formulation identical to that
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introduced by Onishi and Negele [57]
vT

12 = (VT1 + VT2Pτ )e−(~r1−~r2)2/µ2
TS̃12 (I.61)

=
[(
VT1 + VT2

2

)
+ VT2

2 ~τ1 · ~τ2

]
e−(~r1−~r2)2/µ2

TS̃12,

with the expression (D.8b) of the isospin-exchange operator Pτ implying the second line
where the tensor term splits up into pure and isospin-dependent components. The authors
being focused on even–even nuclei, they know that the direct component of the HF tensor
field is zero (as we show in the appendices when it comes to the tensor force). The
exchange tensor field then involves TBMEs whose isospin part reads [38]

〈tatb|(VT1 + VT2Pτ )|tbta〉 = (VT1 + VT2)δtatb + VT2δta,−tb . (I.62)
This shows that the strength of the tensor interaction acting between particle-like pairs is
given by the sum VT1+VT2, and by VT2 between protons and neutrons, for even-even nuclei.
Thus, the combination VT1+VT2 was fitted on a particle-like property, the energy difference
between the neutron 1f5/2 and 1f7/2 states in 48Ca, evaluated at the HF approximation
and compared to the experimental value [132]. As for the parameter VT2, directly related
to the isospin-dependent component of the tensor force, it was chosen so as to reproduce
the 0− excitation energy of 16O. By the way the adjustment was performed according
to the iterative procedure of Co’ et al. detailed for the previous parametrizations. The
parameter of the spin–orbit parameter remains that of the D1S parametrization, and it
is the particle-like part of the tensor term, as described above, that is fitted on SPEs,
though. This parametrization was dubbed D1ST2a. Another parametrization, where the
particle-like part rather had to reproduce the N = 28 neutron gap increase was also set
up, and referred to as D1ST2b. On the other hand, the tensor range was chosen to be
that of the longest central part of D1S, as for GT2, namely µT = 1.2 fm.

Finally, Anguiano and Grasso [61] built up another parametrization for which the
spin–orbit and tensor parameters were jointly adjusted so as to reproduce the neutron
single-particle energies of three doubly-magic nuclei: 40Ca, 48Ca and 56Ni. This procedure,
already employed for other interactions [49, 50], is clever as we know the spin–orbit and
tensor interactions to produce fine effects on SPEs, that either tend to add to or cancel
each other out, depending on the energy spectra. Technically, the splitting of 40Ca is first
reproduced. According to Ostuka’s picture (see section III.2), the tensor force has no
effects because the spin partners are completely filled, so that the spin–orbit parameter
W0 can be tuned to match alone the experimental value. Then, keeping the new value for
the spin–orbit parameter, the splitting of 48Ca is analyzed. This nucleus is spin-saturated
in protons, but not in neutrons, so that the tensor shows a particle-like (neutron–neutron)
contribution. SinceW0 is fixed, only the particle-like tensor strength VT1 +VT2 is adjusted
to recover the experimental value. Finally, the remaining proton–neutron tensor intensity
is modulated on the experimental splitting of 56Ni, a spin-unsaturated nucleus, with W0
and VT1 + VT2 fixed above. It is worth noting that a maximum action of the tensor force
is guaranteed in 48Ca (for the particle-like contribution) as (1f7/2)ν is full and (1f5/2)ν
empty, and in 56Ni (for the proton–neutron contribution) as (1f7/2)π is full and (1f5/2)π
empty (see section III.2). The tensor range is the same as the other D1ST2 versions. This
parametrization was labelled D1ST2c.

The D1ST2a parametrization has the advantage of dissociating the tensor effects from
those proper to D1S, while the D1ST2c features a fitting protocol that we will (partly)
draw on to build up our tensor-dependent interaction. For these reasons, it will be useful
to have their parametrizations at hand, which we then record in Table I.5.

60



I. The Gogny interaction 2. Evolution of the Gogny interaction

W0 µT VT1 VT2
Interaction (MeVfm5) (fm) (MeV) (MeV)
D1ST2a 130 1.2 −135 115
D1ST2c 103 1.2 −135 60

Table I.5 – Spin–orbit and tensor parameters of the perturbative D1ST2a and D1ST2c
parametrizations. The central and density-dependent parameters are those of the D1S
parametrization, shown in Table I.2.

2.5.2. Three central terms

Lastly, we discuss another very recent analytical extension of the original Gogny in-
teraction, the D3G3 force [133]. In this interaction is added a third Gaussian central term
[134], i.e. the form (I.22) remains the same, but the index i now runs from 1 to 3. Two
main objectives led to the development of D3G3:
(i) A more faithful reproduction of physical quantities in infinite nuclear matter for

astrophysical applications;
(ii) A physical determination of Gaussian ranges.

It is argued that the third central term offers more latitude, that may improve the pre-
dictions in nuclear matter, at minimal cost. Indeed, adding an extra central term does
not require the analytical derivations and numerical implementation of new terms, as it is
the case for D2 and tensor-dependent extensions. The D3G3 interaction was fully refitted
from nuclear matter data, some of them being similar to those of D1S (standard quantities
as displayed in Table II.4) and neutron matter equation of state), as well as finite-nuclei
quantities and observables (binding energies of 48Ca, 56Ni and 208Pb at the HFR level,
and pairing TBMEs of 1s and 2s states in 16O at the HF approximation) [135]. The
fitting protocol is, however, different from ours involving the inversion of a system, and
relies on an extension of the D1M fitting code. Here the parameters are deduced from a
minimization procedure. Selected physical quantities are evaluated at each iteration for
a new set of parameters. If a parameter set reproduces these quantities better overall
than the previous one (i.e. if its χ2 is lower), then it is retained, otherwise the previous
parameter set instead is. The procedure is repeated a large number of times by exploring
the parameter space until some minimum value of χ2 is reached. As the space of param-
eters is infinite, the initial values of the parameters entered by the user, from which the
space of parameters is traversed, is crucial to determine a reliable parametrization in a
reasonable time. Thus, the authors tried to bring more physical insight in the way the
central ranges are chosen. In the philosophy of the M3Y interaction, they determined the
central ranges as if the force originated from the exchange of mesons between nucleons, as
described in OBE models. Contrary to the M3Y interaction, the form factors are Gaus-
sian but not Yukawa. They accordingly adapted the ranges so that the Gaussian form
factors reproduced the same physics as the Yukawa ones in infinite nuclear matter. They
did so with the short, medium and long ranges respectively accounting for the ρ, σ and
π meson exchanges. These ranges served as starting parameters in the fitting procedure
which, after minimization of χ2, resulted in the D3G3 interaction.

The principal parametrizations of the Gogny interaction discussed in this chapter are
placed on the timeline of Figure I.6.
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Chapter II
The generalized Gogny interaction

« Au centre de cette nébuleuse, quatorze cent mille fois plus
considérable que ce globe qu’elle va former un jour, je suis entraîné
dans les espaces planétaires ! Mon corps se subtilise, se sublime à
son tour et se mélange comme un atome impondérable à ces
immenses vapeurs qui tracent dans l’infini leur orbite enflammée ! »

— Jules Verne, Voyage au centre de la Terre

In this chapter, we propose an extension of the effective Gogny interaction, hereafter
called the “generalized Gogny interaction”. Our starting point is an augmented analytical
expression introducing new parameters that are determined phenomenologically, with data
drawn from models or directly from experiment. The construction of such an interaction
is described in great details, both in terms of its theoretical foundations and the numerical
challenges raised. The generalized Gogny interaction is finally put to the test in infinite
nuclear matter, a simple framework whose key features makes it possible to discriminate
between promising sets of parameters.
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1. Construction of the generalized Gogny interaction

1.1. Analytical expression
In order to construct what we are going to call the “generalized Gogny interaction”,

we take the analytical form of the D2 interaction (I.49), and we extend it by promoting
the spin–orbit term to a finite range and by adding a finite-range tensor term. This
generalized Gogny interaction has the following “DG” 1 analytical expression,

vDG
12 ≡

2∑
i=1

(Wi +BiPσ −HiPτ −MiPσPτ )Vi(r12)

+ (W3 +B3Pσ −H3Pτ −M3PσPτ )
V3(r12)

(µ3
√
π)3

ρα(~r1) + ρα(~r2)
2

+B(µ5)(W5 −H5Pτ )V5(r12) ~L · ~S
+ (W7 −H7Pτ )V7(r12)S12.

(II.1)

We identify, in the order of appearance, the central, density-dependent, spin–orbit and
tensor terms. The central and density-dependent terms are identical in every respect to
those of the D2 interaction. No additional density dependence have been added to the
other terms. All the potentials are chosen to be Gaussian form factors reading

Vj(r12) ≡ e−(~r1−~r2)2/µ2
j , with j ∈ {1, 2, 3, 5, 7}, (II.2)

where µj is the range of the associated term, with the relative distance between the two
nucleons given by ~r12 ≡ ~r1 − ~r2. By essence, the DG Gogny interaction is a fully finite-
range interaction. As exposed in the previous chapter, this guarantees that no divergences
appear when going beyond the mean field.

The finite-range spin–orbit force is identified by its spin–orbit operator ~L · ~S composed
of a total intrinsic momentum

~S ≡ ~σ1 + ~σ2

2 , (II.3)

and a total relative orbital momentum

~L ≡ ~r12 × ~p12, (II.4)

where the relative momentum of the two-nucleon system is

~p12 = ~p1 − ~p2

2 , (II.5)

with
~pi ≡ −i~∇i, (II.6)

1. For “D generalized”.
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the momentum of the particle i ∈ {1, 2}. Note that the gradient operator ~∇i acts on the
spatial degrees of freedom ~ri of the particle i. The coefficient

B(µ) ≡ − 4
µ2

1
(µ
√
π)3 (II.7)

ensures that one recovers the exact zero-range spin–orbit term of the original Gogny in-
teraction at the zero-range limit (i.e. when µ5 → 0), as it is shown in appendix D.5.1. The
spin–orbit term involves the simple admixture of parameters (W5−H5Pτ ). The justifica-
tion is trivial since, according to its definition (II.3), the operator ~S acts symmetrically
on the spin degrees of freedom, so that we have, for some two-body state,

~SPσ|~r1s1t1 ~r2s2t2〉 = ~S|~r1s2t1 ~r2s1t2〉 = ~S|~r1s1t1 ~r2s2t2〉, (II.8)

where ~ri, si and ti respectively denote the space, spin and isospin degrees of freedom of
the particle i (i ∈ {1, 2}). The spin exchange operator is then irrelevant when evaluating
two-body matrix elements of the spin–orbit force (Pσ = 1), hence its combination of
parameters. Equivalently, the spin–orbit term only contributes to the S = 1 channel of
the interaction (see relation (D.11a)). Thus, in addition to its finite range, the spin–orbit
force of the DG interaction presents an isospin-dependent component.

The finite-range tensor force is made up of the tensor operator S12, for which we have
conventionally chosen the expression 2

S12 ≡ (~σ1 · r̂12)(~σ2 · r̂12)− 1
3~σ1 · ~σ2, (II.9)

where the quantities ~σ1 and ~σ2 denote the Pauli matrices associated with each of the two
particles, and where r̂12 corresponds to the unit vector

r̂12 ≡
~r12

|~r12|
. (II.10)

The tensor force depends on an admixture of parameters of the same type as the spin–
orbit term, namely (W7−H7Pτ ). The reason is similar, and can be demonstrated following
(II.8), because the tensor operator acts symmetrically on the spin degrees of freedom as
well. The spin exchange operator is also irrelevant for the tensor force (Pσ = 1), which,
in turn, only contributes to the S = 1 channel of the interaction. In addition to its finite
range, the tensor force of the DG interaction presents an isospin-dependent component.
Unlike the spin–orbit term, though, it does not have a global multiplicative factor, since
there is no zero-range tensor term in the Gogny interaction to be recovered at the zero-
range limit. We summarize the contributions of the different terms of the DG analytical
form to the (S, T ) channels in Table II.1. The contributions should be compared with
those of D1 (Table I.1) and D2 (Table I.3) cases, to see the leeway brought by the DG
analytical expression. The terms of DG act in all the (S, T ) channels in which they are
able to act.

One strength of the DG analytical form is that most existing analytical expressions
of the Gogny interaction can be obtained from it. To recover D1, if it enough to switch
off the tensor interaction (W7 = H7 = 0) and to take the limits µ3 → 0 and µ5 → 0, and
only µ5 → 0 to fall back on D2. For D1ST2-type forms, the same transformations must

2. In fact, we chose this convention as it allows us to avoid carrying around a factor 3 in our calcula-
tions, given the equivalent expression for the tensor operator (D.58).
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Channels
(S = 0, T = 0) (S = 0, T = 1) (S = 1, T = 0) (S = 1, T = 1)

Terms
Central 7 7 7 7

Density-dependent 7 7 7 7

Spin–orbit 7 7

Tensor 7 7

Coulomb 7 7

Table II.1 – Decomposition of the terms involved in the D2 analytical expression according
to their actions in the (S, T ) channels. When a given term acts in a given channel, it is
marked by a cross, otherwise its contribution is zero.

be performed, and the conventions for the tensor operators, linked by a simple factor 3,
adapted (as explained in the next subsection). Finally, even D3G3 is easily reachable with
the same limits, and if we set in addition α = 0 in the second density-dependent term of
the fitting code (see next paragraph), redefining the parameters taking into account the
constant (µ

√
π)3. It is in that sense that our Gogny interaction is generalized.

All the other quantities appearing in the DG analytical expression were defined in the
previous chapter, in section I.2, to which we refer the reader if necessary. The indices
allotted to the parameters of the various terms may seem odd. Actually the fitting code
was generalized to handle up to two density-dependent, two spin–orbit and two tensor
terms. Then, the indices 4, 6 and 8 are already attached to the second density-dependent,
spin–orbit and tensor terms, respectively. In case the reader has to deal with the fitting
code at some point, we have chosen to keep these notations. Finally, we will drop the
superscript “DG” since the interaction we will be working with by default throughout the
thesis will obviously be the generalized Gogny interaction.

1.2. Fitting procedure
In this subsection, we develop the procedure leading to the DG parametrization we

have selected. Our aim was to generate an interaction that retained the reliable properties
of D1S and D2 while improving those we had targeted. To achieve this, we kept close to
the D2 parametrization. It does not mean the parameters of the spin–orbit and tensor
forces are determined separately from the other parameters; the interaction is entirely
refitted, but looked for in a region of central and density-dependent properties close to
those of the D2 interaction.

1.2.1. Ranges

We first want to motivate, from theoretical arguments, our choice for the values of the
spin–orbit µ5 and tensor µ7 ranges. As we have outlined in the previous chapter, Yukawa
introduced a model to explain the long-range behavior of the nuclear interaction in terms
of exchanges of a massive particle, the pion [64]. The great success of this approach pushed
physicists in the 1960s to extend this idea to other kind of then recently-discovered boson
particles. This led to the one-boson-exchange (OBE) models, which proved to be very
successful in accounting for the two-nucleon interaction. Within these models, it can
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be shown that essentially four bosons, the ω, ρ, σ and π mesons, are needed to describe
the short, medium and long parts of the interaction [136]. By means of Lagrangians and
rules on Feynman diagrams translating the interaction between nucleons and mesons, it is
then possible to obtain the potential created through their interaction [73]. In particular,
the potentials involve some of the central, tensor, spin–orbit and quadratic spin–orbit
components of the bare interaction we have established in (I.14). The main contribution
of the tensor force, already inferred by Yukawa, turns out to be in the so-called one-pion-
exchange potential (OPEP),

Vπ(~k) = − f 2
π

3m2
π

k2

k2 +m2
π

[
S̃12(k̂) + ~σ1 · ~σ2

]
~τ1 · ~τ2, (II.11)

where mπ is the mass of the pion, fπ its coupling constant to a nucleon and S̃12(k̂) the
tensor operator in momentum space. We see there are two components, one proportional
to ~σ1 · ~σ2, which is a central term, another one to the tensor operator, which is the most
important contribution of the tensor force to the bare interaction. The same study can
be carried out for the spin–orbit force. The main contribution of this latter is contained
in the one-omega-exchange potential, whose dominant terms read

Vω(~k) ' g2
ω

k2 +m2
ω

[
1− 3

~L · ~S
2M2

]
, (II.12)

where M is the mass of a nucleon, mω the mass of the meson omega, gω its coupling
constant 3 to a nucleon and ~L · ~S the spin–orbit operator. Once again, two components
pop up, one proportional to 1, which is a central term, another one to the spin–orbit
operator, which is the most important contribution of the spin–orbit force to the bare
interaction. An important point lies in that these momentum-space potentials can be
Fourier transformed to be expressed in position space as

Vπ(~r) = f 2
πmπ

12π

(1 + 3
mπr

+ 3
(mπr)2

)
e−mπr
mπr

S̃12(r̂)

+
(

e−mπr
mπr

− 4π
m3
π

δ(~r)
)
~σ1 · ~σ2

~τ1 · ~τ2,

Vω(~r) = g2
ωmω

4π

e−mωr
mωr

− 3 m2
ω

2M2

(
1

mωr
+ 1

(mωr)2

)
e−mωr
mωr

~L · ~S

,

(II.13a)

(II.13b)

where the tensor operator S̃12(r̂) is now defined in position space, and where Yukawa form
factors e−mr/mr appear. The fundamental tour de force made by Yukawa for the OPEP
and then extended in OBE potentials, is to identify the range µ of the meson–nucleon
potential with the Compton wavelength of the meson according to

µ = ~
mc

. (II.14)

From the experimental masses of pion mπ = 138 MeV and meson omega mω = 782 MeV,
we can then deduce the ranges of the (main contributions) of the tensor and spin–orbit

3. The vector and tensor couplings appearing in the Lagrangians give rise to different coupling con-
stants, respectively denoted by f and g.
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forces in the OBE model. We obtain µπ ' 1.43 fm and µω ' 0.25 fm. The tensor force
plays a major role in the long-range region whereas the spin–orbit force principally acts
in the short-range region of the nucleon–nucleon interaction.

We would like to take into account these considerations when selecting our tensor
and spin–orbit ranges. Two remarks are in order. First, we have detailed above how
to extract the ranges of the tensor and spin–orbit forces for a bare interaction, while
the Gogny interaction is effective. Actually, we have underlined in the previous chapter
that the Gogny interaction is expected to retain signatures of the bare interaction. It
is therefore not absurd to say that short- and long-range effects specific to the spin–
orbit and tensor terms should also persist in the effective Gogny interaction. Second, the
ranges have been derived from Yukawa form factors, while the Gogny interaction involves
Gaussian form factors of the type (II.2). The ranges calculated above cannot therefore
be taken for granted.

To see things more clearly, let us go back to the GPT interaction we have mentioned
in the previous chapter [118]. Even if GPT is a realistic interaction, it is on its fitting
procedure that Gogny based the construction of the effective interaction we are dealing
with. It can then be insightful to look at the values picked up for the tensor and spin–orbit
ranges which are of Gaussian shapes in GPT. For the tensor terms, two ranges of 1.539 fm
and 1.687 fm were obtained, compared to 0.6718 fm and 0.9296 fm for the two spin–orbit
terms. The values are of the same orders of magnitude than those deduced from the OBE
models, although slightly higher, certainly due to the different kinds of form factors. Thus,
assuming that the effective interaction keeps a remnant of the bare interaction, we may
choose tensor and spin–orbit ranges similar to those of the GPT interaction. Actually, we
could go a step further and find out what ranges should be assigned to the Gaussian form
factors so that they equal the corresponding Yukawa form factors, for each range µπ and
µω, at some definite distance. This is the way the central ranges of the D3G3 interaction
were evaluated in nuclear matter [133] (see subsection I.2.5.2). Nevertheless, we bear in
mind that Yukawa’s theory and its extensions are models, and we do not want to be too
restrictive in the way we determine the ranges. We will accordingly limit ourselves to
stating that the spin–orbit force must exhibit a short range so that µ5 ∈ [0.1, 1.0] fm, and
the tensor force a long range such that µ7 ∈ [1.0, 2.0] fm.

We finish by noting that a moderate short- to medium-range component of the bare
interaction is also often attributed to the tensor force (which is traduced by the exchange
of a meson ρ in OBE models). On the other hand, it has been known for years that
a density-dependent potential can simulate a tensor force [62, 63]. Since the density-
dependent term is more significant within the core of a nucleus than at its surface, there
is reason to think that the short- to medium-range of the tensor force can be absorbed in
a density-dependent potential. The D2 interaction from which the DG interaction is built
up already has a density-dependent term with a medium range µ3 = 0.6 fm. We consider
that at least part of the moderate component of the tensor force is renormalized in this
density-dependent term. The remaining part, if it exists, is probably negligible compared
with the dominant long-range component that we propose to add in the following.

1.2.2. Constraints

Let us start by looking at how the constraints already present in the fitting procedure
of D2, detailed in subsection I.2.4.2.1, are modified by the introduction of one finite-
range spin–orbit interaction and one finite-range tensor interaction. The HFR binding
energies and charge radii remain the same. Indeed, we show in subsections B.4.2.3 and
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B.4.2.4 that these terms do not contribute to the potential energy in our formalism,
at the HFR approximation. However, we could establish a direct connection between
binding energies (as well as charge radii) at HFR and HF (or HFB) approximations so
as to bring out a range of values authorized at the HFR approximation, as Chappert did
with D2 (see previous chapter). In practice, this is hard to set up because, contrary to
the D2 interaction, the spin–orbit intensity is not fixed (nor can it be, because of the
interdependence of the systems, as we shall soon see), and in any case, we have succeeded
without invoking such procedure. We then barely allow the binding energies and charge
radii to be chosen within the intervals deduced for D2. The constraints on the two-body
matrix elements (TBMEs) of the 1s and 2s states in the (S = 0, T = 1) channel are
not changed either. This is a direct consequence of the fact that the spin–orbit and
tensor interactions only act on S = 1 states. Finally, the tensor component of the energy
difference ∆ε is zero (see subsection B.6.3) whereas, although neglected in the D1S and
D2 fitting procedures, the spin–orbit component is not (see subsection B.6.4). We will
not try to evaluate it, but we will gently vary the overall value of ∆ε when necessary.

In addition to the ranges, the newly introduced spin–orbit and tensor terms come with
four parameters, two for the spin–orbit force, W5 and H5, and two for the tensor force,
W7 and H7, that must be determined. The simplest and most efficient way to do so is
to construct a system consisting of four linearly independent equations involving those
parameters. On the other hand, we would like this system to constrain the parameters
from physical grounds, and more specifically from physical quantities that could improve
the predictions of the former Gogny interactions. We know the D1S and D2 parametriza-
tions to be fairly good in describing the particle-like pairing. This is not surprising since
particle-like pairing TBMEs were constrained in the D1S and D2 fitting procedure for that
purpose (see equations (I.46) and (I.52)). On the other hand, the proton–neutron pair-
ing is not constrained with those interactions, resulting in unsatisfying proton–neutron
pairing properties when going beyond the mean field (only particle-like correlations are
taken into account in the HFB formalism we consider, see Appendix C). We therefore
chose to control this other type of pairing in our interaction to make it more reliable in its
applications beyond the mean field. By generalizing the idea consisting in constraining
particle-like TBMEs, we built up a system made of TBMEs, some of which are sensitive
to the proton–neutron pairing.

The values of the TBMEs chosen as inputs of the fitting code were extracted from the
shell-model USD and GPF interactions of Brown et al., related to the sd [137, 138] and
pf [139] shells, respectively. Considered as guidelines, they are coupled to the quantum
numbers (J, T ), respectively associated with the two-body total angular momentum and
isospin operator, in a formalism highlighted in subsection B.2.1. The fitting code being
spherically symmetric, the TBMEs of each term of the generalized Gogny interaction,
namely the central, density-dependent, spin–orbit and tensor terms, were derived in the
spherical harmonic oscillator representation and subsequently coupled to (J, T ). This is
the subject of section B.2, where we refer the reader for technical details. Those TBMEs
are denoted by 〈V C

a 〉
(J,T ) , 〈V C

b 〉
(J,T ) , 〈V DD

a 〉
(J,T ) , 〈V DD

b 〉
(J,T ) , 〈V SO〉(J,T ) and 〈V T〉(J,T ), re-

spectively, from now on. We mention that the central and density-dependent interactions
split up into two TBMEs, labelled by the subscripts a and b, associated with two differ-
ent combinations of parameters (see discussions right after equations (B.28) and (B.43)).
Thus, our TBMEs are related to those of Brown et al., called 〈V B〉(J,T ), by equations of
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the type

E ≡ 〈V B〉(J,T )−
∑
i=1,2

[(
Wi −Bi + (−)THi − (−)TMi

)
〈V C

a,i〉
(J,T )+

(
Bi − (−)TMi

)
〈V C

b,i〉
(J,T )

]

−
[(
W3 −B3 + (−)TH3 − (−)TM3

)
〈V DD

a 〉
(J,T )+

(
B3 + (−)TM3

)
〈V DD

b 〉
(J,T )

]
=
(
W5 + (−)TH5

)
〈V SO〉(J,T )+

(
W7 + (−)TH7

)
〈V T〉(J,T ). (II.15)

Since the parameters associated with the central terms are extracted from the previous
systems and the ones associated with the density-dependent interaction are left free, all
we need is four equations of the form above, two written for the component T = 0 and
two for the other component T = 1, to unequivocally determine the parameters of the
tensor and spin–orbit interactions. We can then obtain the parameters from constraints
on both T = 0 proton–neutron pairing TBMEs and T = 1 particle-like TBMEs. The four
equations, written E1, E2, E3 and E4 in the following, that shape the third system of the
fitting code of the generalized Gogny interaction, read

E1 =
(
W5 +H5

)
〈V SO〉(J1=1,T=0)

sd +
(
W7 +H7

)
〈V T〉(J1=1,T=0)

sd ,

E2 =
(
W5 −H5

)
〈V SO〉(J2=2,T=1)

sd +
(
W7 −H7

)
〈V T〉(J2=2,T=1)

sd ,

E3 =
(
W5 +H5

)
〈V SO〉(J3=1,T=0)

pf +
(
W7 +H7

)
〈V T〉(J3=1,T=0)

pf ,

E4 =
(
W5 −H5

)
〈V SO〉(J4=2,T=1)

pf +
(
W7 −H7

)
〈V T〉(J4=2,T=1)

pf ,

(II.16)

where the quantities Ei, with i ∈ {1, 2, 3, 4}, can be deduced from (II.15). Several remarks
are in order. First, two kinds of TBMEs were chosen, some coupled to J = 1 and others to
J = 2. When coupled to T = 0, J = 1 TBMEs indeed describe proton–neutron pairing,
while J = 2 generally accounts for quadrupole deformation properties. Second, the first
two equations were evaluated in the sd shell and the last two ones in the pf shell, as
indicated by the subscripts. The reason is merely that we wanted to catch the physics
related to low- and medium-mass nuclei. Third, the nuclei used for sd-shell and pf -shell
calculations are 18O and 42Ca, respectively. As well-known in shell model, the TBMEs can
effortlessly be extended to heavier nuclei of mass A that evolve smoothly from a reference
nucleus of mass Aref, by means of the formula [137, 139]

〈V B〉(J,T )(A) =
(
Aref

A

)0.3

〈V B〉(J,T )(Aref), (II.17)

where Aref = 18 for the sd shell and Aref = 42 for the pf shell. As for the oscillator
lengths, we approximated them thanks to the widely-used Blomqvist–Molinari relation,
obtained from a fit on nuclear charge radii [140, 141],

b =
√

0.90A1/3 + 0.70. (II.18)

From these considerations, the system (II.16) can be inverted to get the tensor and
spin–orbit parameters out of it. There are sixty-three sd-shell and one hundred and ninety-
five pf -shell TBMEs among which we can pick up values for the 〈V B〉(J,T ) quantities.
Moreover, a maximum discrepancy of 10% between those shell-model TBMEs and ours
is tolerated as there is no reason for them to be strictly equal to ours, evaluated in a
different framework. Then, in practice, a set of four shell-model TBMEs satisfying the
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above-mentioned requirements is taken and we keep all the parameters reproducing them
in the range 〈V B〉(J,T )±0.1〈V B〉(J,T ). Considering all the possibilities, – literally – hundreds
of thousands of tensor and spin–orbit parameters come out of this process, for a given set
of values assigned to the other parameters. With, in addition, all the possible central and
density-dependent parameters obtained from the previous constraints, we are left with a
staggering number of parametrizations.

1.2.3. Filters

At this stage, we hope the filters are strong enough to discard the bulk of the outcoming
parametrizations and retain only a reasonable number of promising ones. As with the
constraints, we first used the filters already in place for the D2 interaction (see section
I.2.4), except that a contribution of the tensor force to the Landau parameters had to be
incorporated (see section II.2.5). Although these filters non-negligibly reduce the number
of parametrizations, tens of thousands of them still slip through the net. An additional
filtering step of the tensor and spin–orbit parameters had to be implemented. This step
is based on the three points discussed below.

We have said at the beginning of this section that we want to generate a fully refitted
interaction while trying to stay close to the D2 interaction. The zero-range spin–orbit
term of the D2 interaction only acts in the (S = 1, T = 1) channel, with the intensity
W0 = 130 MeVfm5. Our finite-range spin–orbit interaction acts in this channel with an
intensity (W5−H5) modulated by a Gaussian form factor e−(~r1−~r2)2/µ2

5 . As expected, this
finite-range character allows us to gain latitude, since the spin–orbit term now depends on
the distance separating the nucleons. We would sadly lose, in this channel, the latitude
if we imposed our spin–orbit intensity to be equal to W0 at all distances. However, if we
impose our intensity to be W0 at the zero-range limit, then we retain this latitude while
ensuring that we produce, in this channel, a spin–orbit term that coincide with the D2
spin–orbit term at the zero-range limit. At this limit, the intensity of our spin–orbit force
is simply given by (W5−H5) (as explained in more details in appendix D.5.1). Since our
analytical form is not identical to that of the D2 interaction, and the contribution of the
spin–orbit term may be partially modified by the other terms in the fitting process, we
only ask to recover approximately the intensityW0 at the zero-range limit. Quantitatively,
we allow a relatively large range such that (W5 −H5) ∈ [110, 150] MeVfm5.

Almost thirty years ago, Sharma et al. [142] showed that an extended Skyrme interac-
tion with an isospin-dependent spin–orbit force was able to better reproduce the so-called
isotopic shift (or kink) in the charge radii of lead isotopes, than without. In their article,
the spin–orbit term takes the following form

vSO ≡ W0(1 + xwPτ )
[
~k′ × δ(~r1 − ~r2)~k

]
· (~σ1 + ~σ2), (II.19)

where xw = 0.1032 is a parameter fixing the intensity of the isospin-dependent spin–
orbit force to W0xw ' 28.759 MeVfm5. The interest of this study is twofold: in addition
to giving us an order of magnitude for the intensity of the isospin-dependent spin–orbit
force, it could enable us to better reproduce the kink. Indeed, among the parametrizations
of the Gogny interaction tested to date on this isotopic shift, the best agreement was found
for the D2 interaction, but it is still far from experimental data [17, 18]. Nevertheless, this
intensity must be considered with caution since the analytical form of the original Skyrme
interaction with an isospin-dependent spin–orbit force is quite different from ours. There
is in particular no tensor term, and the density-dependent and spin–orbit forces are of zero
range. On the contrary, all of our terms are of finite range and have an isospin dependence
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that may renormalize the intensity of the isospin-dependent spin–orbit force. This is why
we have talked about an “order of magnitude”. Moreover, no information is provided
on whether the sign of this intensity plays a significant role on the reproduction of the
kink. We then decided to add a filter demanding the intensity of our isospin-dependent
spin–orbit force to verify H5 ∈ [−50, 50] MeVfm5.

More recently, Anguiano and Grasso [61] built up a perturbative D1S-type Gogny in-
teraction supplemented by a finite-range tensor term we have talked about in the previous
chapter (see subsection I.2.5.1). For convenience, we here recall the analytical expression
chosen for their tensor term,

vT ≡ (VT1 + VT2Pτ )e−(~r1−~r2)2/µ2
TS̃12, (II.20)

where S̃12 is given in (I.58), and related to our tensor operator by S12 = 3S̃12 (see appendix
D.4.1). Their fitting procedure we have detailed in the above-mentioned section, at the
origin of the D1ST2c parametrization given in Table I.5, is of great interest to us. Indeed,
the combined actions of the spin–orbit and tensor parameters on the SPEs, which are
often intertwined, are separated and a convenient way to constrain their parameters is
undertaken. Taking into account the factor three linking our conventions for the tensor
operator and the signs which are crucial for SPEs to shift in the right direction, their
parameters become, in our notations, (W7 − H7) = −225 MeV and H7 = −180 MeV.
Once again, we must be careful with these values as our spin–orbit interaction is of finite
range, and we aim at carrying out a complete refit of all the parameters, unlike this
parametrization. Remarkably enough, though, the value of their spin–orbit parameter
falls within the range deduced from the two previous paragraphs, for certain values of
H5. We will therefore keep this particular value in a corner of our minds when looking at
the spin–orbit intensity of our interaction. Likewise, the rather long range µT = 1.2 fm
they chose for the tensor interaction is in line with the OBE models (see section II.1.2.1)
we rely on. We also recall our desire to stick to the philosophy of the original Gogny
interaction, which is to get satisfactory results not only at the mean-field level at which
the parameters were obtained here, but also beyond the mean field. Consequently, we
will use this study to identify a range of parameters for the tensor term, without being
too restrictive. We impose (W7 −H7) ∈ [−275,−175] MeV and H7 ∈ [−230,−130] MeV.

With these considerations, we are capable of efficiently filtering the parameters asso-
ciated with the spin–orbit and tensor parameters. Note that filters offer the advantage
of being adjustable at will, which is a welcome feature here since we are comparing quite
different analytical expressions.

1.2.4. Extraction of the parametrization DG

By adding the above-mentioned constraints and filters to the D2 fitting code, we are
in position to extract DG-type parametrizations. The global protocol is summarized and
illustrated in Figure II.1. The portions already present in the D1S and D2 fitting proce-
dures are dyed in blue and green, respectively, while the part specific to DG, discussed in
the previous subsections of this chapter, is colored in red. Obviously, any new interaction
changes most of the steps in the fitting code, so we are here only talking about significant
modifications. This fitting protocol must be compared with those of D1S (Figure I.3) and
D2 (Figure I.5). In the first place, initial data are implemented so as to allocate quan-
titative values to the constraints allowing the inversion of three systems. Those three
systems are coupled to one another, as indicated by the double vertical arrows. They
are constructed from the constraints (I.44), (I.52) and (I.53), and (II.16), respectively.
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II. The generalized Gogny interaction 1. Construction of the interaction

In addition to the initial data already used in the D2 fitting process, some shell-model
TBMEs taken from Brown et al. [137, 139] have been added. For conciseness, they are
written Vi ≡ 〈V B

i 〉
(J,T ), for i ∈ {1, 2, 3, 4}. They permit to fix four TBMEs that, com-

bined to the other constraints, give rise to the inversion procedure, eventually furnishing
a parametrization (a set of twenty-two parameters). This method is repeated a huge num-
ber of times, and the quantities that can be varied are marked by two arrows on either
side of their rectangle. In the second place, the resulting parametrizations face filters,
established from various criteria in infinite nuclear matter, as for the D1S and D2 inter-
actions, with Landau parameters including tensor forces this time, and from the ranges
of authorized values for the spin–orbit and tensor parameters. Each set of parameters,
derived from the inversion procedure, that passes through all those filters corresponds to
a DG-type parametrization. Let us stress that this method is valid for the DG analytical
form exposed in (II.1), containing a single spin–orbit term and a single tensor term. In
the fitting code, we have generalized the expressions to simulate up to two spin–orbit
and two tensor terms. We can therefore input up to eight shell-model TBMEs, leading
to a broader system coupling eight equations. The filters related to the tensor Landau
parameters have also been generalized to two ranges. All that remains is to find a way of
filtering the new parameters introduced to generate a DG interaction of this kind. Further
extending the analytical expression this way might be envisaged in a short future.

We will now try to describe how, in practice, we pulled out the DG parametrization
that will be dissected in the rest of the thesis. It is difficult to report, in an organized
manner, how we proceeded. First because it involved a never-ending back-and-forth
between the fitting code and the finite nuclei codes (HFB3 for mean-field and MPMH
for beyond mean-field results, see chapters III and IV). Each time a new looking-good
parametrization came out the fitting code, we indeed needed to check whether a bunch of
physical quantities and observables was properly reproduced in finite nuclei codes. Recip-
rocally, the outcomes gave us information on how the values attributed to the parameters
influenced those physical quantities and observables, so we modified the parameters ac-
cordingly. Then a new parametrization had to be tested in finite nuclei, and so on and
so forth. Second because the three systems to be inverted are coupled to one another.
This means that each time a constraint or an input is modified, the whole output set of
parameters changes.

The main physical quantities and observables we paid deep attention to all along the
process are: 4

(i) binding energies of 16O, 90Zr and 208Pb nuclei;
(ii) pairing energy in doubly magic nuclei;
(iii) SPEs in 40Ca, 48Ca and 56Ni nuclei;
(iv) kink in Pb isotopes;
(v) energy drift in neutron-rich nuclei;
(vi) energies of the first excited states for even–even and odd nuclei in sd shell.
All of those were controlled by means of the HFB3 code, except the last point that
relied on the MPMH code. Binding energies of 16O and 90Zr are constrained at the

4. In theory, all the physical quantities and observables we tried to reproduce had to be controlled. In
practice, it is principally the listed quantities that have been systematically tested. Either because they
vary significantly from one parametrization to the other (the energy drift, for example), or because we
wanted to reproduce them at all costs (the pairing energy, for example), all in a way that was relatively
easy to test (filtering each parametrization on fission barriers of standard actinides would be insane).
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II. The generalized Gogny interaction 1. Construction of the interaction

HFR approximation in the fitting code, so we wanted to make sure they were still good
at the HFB level. As a representative of heavy nuclei, 208Pb completed the analysis of
the binding energies of light and medium-mass nuclei. For an interaction to be reliable
enough, the pairing energy had obviously to be zero in doubly-magic nuclei. The third
and fourth points are related to the constraints and filters associated with DG, we have
mentioned in previous subsections. Indeed, we wanted to improve the SPEs behavior and
the experimental agreement of the kink in lead isotopes, with respect to the former Gogny
interactions. We also wished to avoid the energy drift of neutron-rich nuclei observed along
isotopic chains with D1S. As we have shown in the previous chapter, this drift is corrected
by D1N and D2 interactions, by in particular requiring the difference between the HFB and
experimental binding energies in 100Sn and 132Sn isotopes to be equal. Lastly, excitation
energies allowed us to analyze the actions of spin–orbit and tensor interactions beyond
the mean field.

Two-body matrix elements
In concrete terms, we started by attempting to stay close to D2. All the initial data

and constraints of the D2 fitting protocol were first kept. Free parameters including the
density-dependent ones, and all the ranges were those of D2. We varied the spin–orbit and
tensor ranges within the intervals µ5 ∈ [0.2, 1.0] fm and µ7 ∈ [1.0, 2.0] fm – in agreement
with our theoretical analysis without being too demanding –, and we looked for a set of
TBMEs leading to spin–orbit and tensor parameters that crosses the filters. This first
step was already not an easy task, since most sets of TBMEs provided spin–orbit and
tensor parameters far removed from the intervals we had defined (as we saw when we
lifted the corresponding filters). We tested these parametrizations anyway, but they were
far too bad to be retained.

Binding energies
Some of the few dozen parametrizations that passed the filters showed interesting be-

haviors with regard to the six points mentioned earlier, but all had definite pathologies
in terms of binding energies. In the best cases, the difference between HFB and experi-
mental energies was about 11 MeV in 100Sn and about 20 MeV in 208Pb. Even when we
changed the parameters or the global intensity of the density-dependent term, and the
ranges, moving away from D2, we ended up with the same kind of differences. The reason
is a bit subtle. Actually the fitting code takes constraints on binding energies at the
HFR approximation, for which there is no spin–orbit contribution, as we have empha-
sized in the previous chapter. Since the D1S and D2 interactions, that have the same
spin–orbit intensity W0 = 130 MeVfm5, produce quite good agreement with experimental
binding energies, this means that the constraints on HFR binding energies are relevant
for a zero-range spin–orbit force with this intensity only. We readily validated this rea-
soning as, when we imposed by hand the value 130 MeVfm5 to the spin–orbit intensity
(for the channel (S = 1, T = 1)) in the parametrizations coming out of the fitting code,
we found much more consistent binding energies at the HFB level. Unfortunately, we
noticed that such intensity was too strong to reduce the neutron (1f7/2 − 1f5/2) splitting
in 40Ca (in accordance with the value of 103 MeVfm5 taken by Anguiano and Grasso), as
with D1S and D2 interactions. We found a way to conciliate these two observations by
slightly modifying the initial data about the 16O and 90Zr HFR binding energies, within
the intervals drawn with D2, depending on the range of spin–orbit intensities we decided
to probe.
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II. The generalized Gogny interaction 1. Construction of the interaction

Energy difference ∆ε
On the other hand, by tuning the HFR binding energies, we altered the HFB binding

energies of 100Sn and 132Sn and then broke the same difference to the experimental energies
observed with D2. We therefore also had to play with the value of ∆ε, which is known,
together with the filter on the neutron matter equation of state, to shape this energy drift.
As exposed for D2, there exists a linear relation between symmetry energies aτ and energy
differences ∆ε. From a range of empirical values of the symmetry energy, we deduced a
range of empirical values for the energy difference from which we picked up values until
finding one predicting no energy drift in the Sn isotopic chain at HFB approximation.

Single-particle energies
Finally, we have said in subsection I.2.5.1 that the D1ST2c parametrization was ob-

tained by fitting the neutron (1f7/2 − 1f5/2) splitting successively in isotopes 40Ca, 48Ca
and 56Ni, at the HF level. We took up this procedure, but we simply ensured that the
splittings in these nuclei are closer to experimental values with DG than with D1S and
D2 interactions. Indeed, as we have mentioned several times, we tried to construct an
interaction following the philosophy of the original Gogny interaction, which is to provide
reliable results beyond the mean field, so that the reproduction of such mean-field results
is not expected to be perfect. We have also underlined that the experimental neutron
(1p3/2−1p1/2) splitting in 16O was used to fix the intensity of the spin–orbit interaction in
the D1 analytical form. We thus made sure not to deteriorate too much the value of this
splitting while tuning the intensities of our finite-range spin–orbit and tensor forces on
the other three isotopes. The neutron SPEs involved in the splittings discussed above are
displayed in Figure II.2, and the corresponding neutron energy splittings ∆εν are listed
in Table II.2.

We see that the neutron (1p3/2 − 1p1/2) splitting in 16O is about 400 keV from the
experimental value with DG, which then appears reasonable compared to the 300 keV
obtained with D2. Regarding the neutron (1f7/2 − 1f5/2) splittings in the other isotopes,
they are all closer to experimental values, as we wanted.

Energy difference ∆εν
16O 40Ca 48Ca 56Ni

Interaction (MeV) (MeV) (MeV) (MeV)
DG 5.69 8.05 8.94 7.49
D1S 6.08 9.13 8.37 8.84
D2 6.41 8.81 8.58 8.75
Exp. 6.10 6.80 8.80 7.16

Table II.2 – Energy differences ∆εν between the neutron SPEs 1p3/2 and 1p1/2 in 16O,
as well as between 1f7/2 and 1f5/2 in 40Ca, 48Ca and 58Ni isotopes, calculated at the HF
approximation, with DG, D1S and D2 interactions and compared to experimental values
[143].

These steps had to be reiterated, again and again, for different constraints (on TBMEs,
HFR binding energies or energy differences ∆ε), different filters (by widening or narrowing
the intervals defined in the previous section) and different free parameters (enumerated
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Figure II.2 – Neutron single-particle energies 1p3/2 and 1p1/2 in 16O as well as 1f7/2 and
1f5/2 in 40Ca, 48Ca and 56Ni isotopes, calculated at the HF approximation, with DG, D1S
and D2 interactions.

in the rectangle at the bottom right of the inversion procedure), refining the search as
promising parameter areas were identified. This phenomenological way of proceeding
can be akin to cooking, where a recipe is gradually improved by small pinches of various
ingredients, to give it the desired taste. It is no less precise or rigorous, however, and allows
us to keep an eye on quantities of interest, knowing the physics we wish our interaction
to properly describe. At the end of the day, it is a compromise in the reproduction of the
physical quantities and observables listed above that led to the DG parametrization we
chose.

Before giving the parameters of the DG interaction, we would like to justify that taking
the TBMEs of the USD and GXPF1 interactions as guidelines to constrain the TBMEs of
Gogny interactions was justified and a posteriori relevant. To do so, we compare in Figure
II.3 the sd-shell TBMEs coupled to (J, T ) of DG, D1S and D2 interactions discussed above
with those of the USD interaction.

Generally speaking, we see that the TBMEs in both T = 0 and T = 1 channels of D1S
and D2 interactions are comparable to those of the USD interaction. Imposing values
obtained from shell-model calculations to constrain the TBMEs of a Gogny interaction to
deduce some of its parameters, as we have done with DG, then appears consistent. There
are obviously some fluctuations in the overall agreements since the TBMEs of Gogny
interactions are not expected, to date, to reach the accuracy of those of the shell model.
This is why we have tolerated a maximum discrepancy of 10% in the reproduction of the
shell-model TBMEs with interaction DG. On the other hand, it is interesting to notice
that the TBMEs of D1S and D2 interactions are closer to the USD predictions in the
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T = 1 than in the T = 0 channel. It is in fact natural since only T = 1 TBMEs were
constrained in these interactions, as we have explained in the previous chapter. Following
this reasoning, the TBMEs of DG, constrained for the first time in the T = 0 channel,
should be closer to the USD predictions than those of interactions D1S and D2. This
is indeed what we observe by looking at panels (a), (c) and (e), since the values are
less scattered around the diagonal lines. For simplicity, we have carried out the study
with sd-shell TBMEs, but similar results are expected in the pf -shell when the Gogny
interactions are compared to GXPF1.

We can now give the parameters making up the DG parametrization of the analytical
expression (II.1) in Table II.3. In the order of appearance are the central (i ∈ {1, 2}),
density-dependent (i = 3), spin–orbit (i = 5) and tensor terms (i = 7), all of finite range.
As expected, the central and density-dependent terms are not too far from those of D2
(see Table I.4), and the spin–orbit and tensor parameters fit the intervals of the previous
subsection.

i µi αi Wi Bi Hi Mi

(fm) (–)a (–)a (–)a (–)a

1 0.80 −1190.016 800.000 −877.422 1198.923
2 1.24 109.179 −191.226 133.441 −277.509
3 0.60 1/3 1836.200 581.600 377.600 −633.220
5 0.20 145.483 29.634
7 1.10 −392.544 −196.481
a MeV (i ∈ {1, 2, 5, 7}), MeVfm4 (i = 3), MeVfm5 (i = 5).

Table II.3 – DG parametrization.

We insist on the fact that the intensity of our finite-range spin–orbit interaction is
entirely driven by the combination of parameters (W −HPτ ). The overall factor B(µ5)
only ensures to recover the analytical expression of the original zero-range spin–orbit
force at the limit µ5 → 0, as detailed in appendix D.5.1. It should not be considered
when talking about the intensity, as can be seen from the units, being the same for the
parameters of both zero-range and finite-range spin–orbit interactions.

2. Results in infinite nuclear matter
We begin our analysis of the results in infinite nuclear matter (INM). This model can

be seen as a theoretical framework giving us a rough idea of the structure and properties
of the interior of heavy nuclei. All the calculations used to bring out those outcomes
have been carried out in Appendix A, where we show in particular that the spin–orbit
and tensor interactions do not contribute (except when their partial waves are considered
individually, as studied in section II.2.4). We can then put the central and density-
dependent part of the DG interaction to the test, and make sure it does not stray too far
from the former convenient parametrizations. Numerous Gogny interactions are displayed.
The purpose is not to make a full comparison between them, but to learn how the DG
interaction compares with its competitors. On the one side, the D1S and D2 interactions,
on which we will mainly focus, were fitted from (successively enhanced versions of) the
same code. A comparison between them is a direct testimony of the implications of the
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II. The generalized Gogny interaction 2. Results in infinite nuclear matter

modifications made in the fitting code. On the other side, the D1M and D3G3 interactions,
deduced from another process, are often presented as worthy candidates in INM.

2.1. Symmetric infinite nuclear matter
Some results are exposed in symmetric infinite nuclear matter (SNM), which corre-

sponds to a medium composed of as many protons as neutrons, i.e. with an asymmetry
parameter equal to zero, β = 0.

2.1.1. Standard physical quantities

Firstly, numerical values of several common physical quantities evaluated in SNM at
the Hartee–Fock approximation for D1S [15], D1M [127], D3G3 [133], D2 [17, 18] and DG
interactions are given in Table II.4. Saturation density ρ0, energy (per nucleon) E0/A ≡
ES(ρ0)/A ((A.79) plus (A.80)), incompressibility K∞ ((A.85) plus (A.89)), effective mass
m∗/m (A.107) and symmetry energy aτ ≡ Esym(ρ0) ((A.98) plus (A.99)), all evaluated at
saturation density, are tabulated. Their formal definitions and physical meanings can be
found in Appendix A.

Physical quantities in SNM
ρ0 E0/A K∞ m∗/m aτ

Interaction (fm−3) (MeV) (MeV) (MeV)
DG 0.163 −16.01 210 0.74 31.1
D1S 0.163 −16.02 210 0.70 31.1
D1M 0.165 −16.03 225 0.75 28.6
D3G3 0.165 −16.05 227 0.68 32.6
D2 0.163 −16.00 209 0.74 31.1

Table II.4 – Various physical quantities evaluated in symmetric nuclear matter (SNM) for
different Gogny interactions.

We compare those to some empirical values. The saturation density is obtained from
the charge distribution of heavy nuclei taking into account the corrections induced by
Coulomb repulsion and surface tension, ρ0 = (0.17± 0.02) fm−3 [144]. Energy per nu-
cleon and symmetry energy appear explicitly in the semi-empirical mass formula. Their
values are then deduced from the successive adjustments of this formula on experimental
binding energies [145–149], E0/A = (16± 1) MeV and aτ = (30± 2) MeV. Incompress-
ibility was determined using various phenomenological effective interactions to repro-
duce experimental data of heavy nuclei and the energy of the breathing mode in 208Pb,
K∞ = (215± 15) MeV [150]. Finally, an experimental nucleon-nucleus scattering ana-
lyzed in the framework of the optical potential furnished values for the effective mass,
m∗/m = 0.70± 0.05 [151].

Unsurprisingly, the DG interaction, like its counterparts, sees all its physical quantities
fall within the ranges of empirical values. Indeed, as explained in the previous section,
these empirical values behave like filters in the fitting code, so that a DG-type interaction
with even one of its quantities outside these intervals would be rejected. The DG values
are pretty close to those of D2, which corroborates our will not to move too far from
D2, underpinned by the similarity of the central and density-dependent part of these
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interactions (see Table I.4). Finally, we note that the quantities of these two interactions
are not very different from the others, except for the incompressibility, which is lower, and
the effective masses of D1S and D3G3, which are the smallest; this is rather encouraging.

2.1.2. Equation of state

In Figure II.4 are drawn the SNM equations of state, that is the energy (per nucleon)
E0/A as a function of the medium density ρ, for several Gogny interactions, which are
compared to realistic calculations.
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Figure II.4 – Equations of state in symmetric nuclear matter (SNM) for D1S, D1M, D3G3,
D2 and DG interactions. Realistic calculations based on Friedman–Pandharipande (FP)
and Bethe–Brueckner–Goldstone approaches, with (BBG 3B) and without three-body
corrections (BBG 2B), are also represented.

We look at two realistic calculations, based on two different theoretical approaches.
The first one utilizes a variational method applied by Friedman and Pandharipande (FP)
[126] to the realistic interaction UV14 [152]. The Urbana potential possesses two- and
three-body contributions. It reproduces the scattering data in S-, P -, D- and F -waves and
fits the ground-state energy, density and compressibility in symmetric nuclear matter.
The second one takes advantage of the Bethe–Brueckner–Goldstone (BBG) method, a
generalization of the G-matrix appearing in the Goldstone development, applied by Baldo
et al. [153] to the realistic interaction AV14 [26]. The Argonne potential presents a good
fit to deuteron properties and neutron–proton scattering below 330 MeV. Unfortunately
the BBG method does not natively retain the three-body contributions, so that only two-
body interactions are taken into account within this approach. Nonetheless, by averaging
the position of a third particle by means of Lejeune et al. technique [154], a density
dependence simulating three-body effects can be adjoined to the BBG method. This is
what we dub “BBG 3B” in the following.
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Generally speaking, all Gogny interactions, including DG, correctly reproduce the
parabolic behavior observed in realistic FP calculations in this low-density regime. It is
worth noticing the limitation of realistic two-body calculations, whose parabola is wider,
with a minimum located at a lower energy for a higher density. The coordinates of
the saturation points (ρ0, E0/A), corresponding to the minima of the curves, are spotted
by black dashed lines for three-body realistic calculations, and by a red dashed line for
DG. We can check that, as well as falling within the intervals of empirical values (see
previous subsection), the DG saturation point is very close to that of the FP calculation
(0.159,−16.00). The saturation density of DG is a little bigger than the FP one, but this
is not a problem as we know that the saturation density must be close to 0.16 fm−3 for an
interaction to provide reliable results in finite nuclei. The saturation density predicted by
BBG 3B calculations, ρ ' 0.185 fm−3, then appears to be too high. Since incompressibility
is proportional to the second derivative of the energy evaluated at the saturation density
(see (A.83)), its magnitude tells us about the curvature of the equation of state around
that point. The greater the incompressibility, the steeper the rise of the curve. This is
indeed the case, as the D1M and D3G3 curves are rising more sharply than D1S, D2 and
DG around the saturation point, in line with the inequalities deduced from Table II.4,
KD1M
∞ ' KD3G3

∞ > KD1S
∞ ' KD2

∞ ' KDG
∞ . Note that this trend is more pronounced at high

densities, due to the factor 9ρ2 in the definition of K∞. These curves are therefore closer
to the FP results in the range [ρ0, 0.30] than are D1S, D2 and DG.

2.1.3. Energy in (S, T ) channels

In the previous subsection, we have made sure to recover the general shape of the
equation of state in SNM, with a consistent saturation point. We would now like to go
further and see what our DG nuclear potential looks like in more details. The potential
energy can be divided into kinetic and potential parts as

ES

A
= E

S
K
A

+ E
S
P
A
, (II.21)

with indices K and P standing for “kinetic” and “potential”, respectively. The potential
contribution (A.80) can itself be expressed as a sum over the coupled spin S ∈ {0, 1} and
isospin T ∈ {0, 1} of the two-nucleon system, i.e.

ES
P
A

=
∑
ST

ES
P
A

∣∣∣∣∣
ST

, (II.22)

where ES
P/A|ST corresponds to the potential energy (per nucleon) in the (S, T ) channel.

According to this decomposition, the nuclear potential can be viewed as four independent
interactions, each acting in its own subspace (S, T ). Physically, the S = 0 component
corresponds to the situation where the spins of the two nucleons are opposite, while the
main contribution of the S = 1 component corresponds to the situation where they are
aligned. On the other hand, the T = 0 component corresponds to the situation where a
neutron interacts with a proton, while the main contributions of the T = 1 component
correspond to the situation where two particles of the same sort interact (two protons
or two neutrons). The four possible configurations therefore give rise to four different
types of interaction. The technical details associated with this formalism are provided in
appendix D.1. The potential energy in the (S, T ) channels versus the Fermi momentum
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kF
5 are plotted in Figure II.5, and compared to the former realistic calculations.
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Figure II.5 – Potential energy as a function of the Fermi momentum in symmetric nuclear
matter for D1S, D1M, D2, D3G3 and DG interactions. The energy is decomposed in the
(S = 0, T = 0), (S = 1, T = 1), (S = 0, T = 1) and (S = 1, T = 0) channels in panels (a),
(b), (c) and (d), respectively. The results are compared to the two-body (BBG 2B) and
three-body (BBG 3B) Bethe–Brueckner–Goldstone realistic calculations. The ES

P/A = 0
equation is represented by a dashed line in panels (a) and (b) for clarity.

In the singlet-odd channel (S = 0, T = 0), realistic calculations are very similar, with
or without three-body effects taken into account. They predict positive potential energy
and a repulsion between nucleons (kF is homogeneous to the inverse of a length) that
increases with the Fermi momentum. The tested Gogny interactions are also repulsive
and fit rather well realistic curves for small values of kF, before collapsing and then
becoming attractive. For D1S, the collapse starts at kF ' 1.5 fm−1 and makes the energy
negative-valued from kF ' 1.8 fm−1. For D2 and DG, it is carried forward to kF ' 2.1 fm−1

and kF ' 2.0 fm−1, with negative-valued energies from kF ' 2.8 fm−1 and kF ' 2.7 fm−1,
respectively. Equivalently, D1S, D2 and DG become attractive from around ρ ' 1.4ρ0,
ρ ' 3.8ρ0 and ρ ' 3.3ρ0, respectively. This is not too pathological for D2 and DG as it
is for D1S, since the typical densities found in atomic nuclei reach, at most, a few times
the saturation density. Nevertheless, DG declines a little before D2, and we then had to
remain vigilant when choosing a DG parametrization to make certain this behavior was
not pushed back to even lower densities.

In the triplet-odd channel (S = 1, T = 1), the two types of realistic calculations
are nearly identical until kF ' 1.5 fm−1; beyond, the inclusion of the three-body effects

5. As some authors do, we could have produced these figures as a function of the density ρ, which
is linked to the Fermi momentum kF by the simple relation (A.27). We preferred to keep the Fermi
momentum, as the curves appear to be more explicit that way.
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implies a steeper rise. Their contributions are globally repulsive, except around kF '
1.3 fm−1, where they exhibit a tenuous attraction that does not exceed 500 keV. The
D1S interaction is repulsive at all densities, but fails to reproduce the rise of realistic
calculations, contrary to D2 and DG. The ascent is a little too strong with D2 and DG,
beginning at kF ' 1.2 fm−1 compared to kF ' 1.5 fm−1 for realistic calculations, although
very slightly closer to that of the BBG 3B curve in the case of DG. As for the attraction,
D2 and DG succeeded in reproducing it even though it takes place a bit earlier for D2 and
DG, at kF ' 1 fm−1, and reaches a maximum value of 350 keV and 200 keV, respectively.

In the singlet-even (S = 0, T = 1) channel, two- and three-body realistic calculations
blend into each other and are attractive up to kF ' 1.2 fm−1. Afterwards, while BBG
curve continues decreasing, the descent of BBG 3B stops at kF ' 1.3 fm−1 and evolves into
a highly repulsive behavior. This is clearly the channel in which the three-body effects are
the most visible. The BBG results are properly reproduced by D1S, without the physics of
the three-body interactions. By tuning the intensity of the finite-range density-dependent
term in this subspace, Chappert managed to create D2-type interactions following the
BBG 3B curve [17]. Regrettably, these interactions manifested non-zero pairing in magic
nuclei because of their excessive attractivity at low Fermi momenta. The conclusion was
that an interaction should not be too far from D1S in this channel so as not to show
pairing in magic nuclei, hence the D2 curve. We followed this recommendation for DG,
which in the end deviates very slenderly from D2 and remains close to the two-body
realistic predictions.

In the triplet-even (S = 1, T = 0) channel, realistic calculations reveal attraction with
decreasing energy until kF ' 2 fm−1, which is a bit more pronounced with the three-
body correction. A reduction of the potential energy per particle of about 8 MeV with
respect to pure BBG previsions is induced, at the minimum, by this correction. Indeed,
it is about −35.5 MeV without, compared to −43.5 MeV with three-body effects taken
into consideration. Then the curves go up, as a signature of repulsion. This tendency
is observed by D1S, even if the minimum of −24 MeV appears sooner, at kF ' 1.4 fm−1.
Predictions are amended with D2 and DG. Both are attractive and stick to the BBG
curve before reaching their minima at the higher Fermi momentum kF ' 1.7 fm−1, with
respective energies −30.5 MeV and −29.5 MeV. These very close points mark the start of
the final ascent predicted by realistic calculations.

As we have said in section II.1.2.1, the density-dependent term may include some of the
short-range effects of the tensor interaction. Albeit the tensor force does not contribute
to the energy in nuclear matter, its presence renormalizes the coefficients of the density-
dependent term and should, ultimately, affect the behavior of the DG interaction in
S = 1 channels. However, we have shown that the D2 and DG curves are very similar in
these channels. This observation can be attributed to the relatively long range associated
with the tensor term and its intensity, which is less than that of the density-dependent
interaction. We also point out that the filter on the neutron matter (β = 1) equation of
state (see next subsection) has an influence on the potential energy of symmetric matter
(β = 0), in the T = 1 channels. In the (S = 1, T = 1) channel, the D2 and DG results,
obtained from the same requirements on the neutron matter equation of state, are very
close, and improve the D1S results, fitted without such a filter. In the (S = 0, T = 1)
channel, there are in addition two constraints on the TBMEs of the 1s and 2s states. Since
their intensities remain the same for D1S, D2 and DG, they all produce alike curves.

Finally, D2 and DG interactions appear to us as the best compromises if we take a
general outlook of the four (S, T ) channels. This is particularly true in the odd channels.
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Indeed, D1M and D3G3 collapse before D2 and DG, respectively making the energy
negative-valued from kF ' 1.9 fm−1 and kF ' 2.6 fm−1 in the (S = 0, T = 0) channel. In
the (S = 1, T = 1) channel, they predict maximum attractions of −12 MeV and −1.1 MeV
respectively, which are a bit low compared to the value −500 keV of realistic calculations.

Note that our analysis has to be treated with hindsight. Nuclear matter is a model
that guides our search for a trustworthy parametrization, but its predictions do not have
to be perfectly reproduced. For instance, several D2-type interactions better fitted the
realistic curves in the above (S, T ) channels than D2, but were found to be unconvincing
in finite nuclei [17].

2.2. Neutron matter equation of state
As exposed in subsection I.2.3, a reduction of the energy drift along isotopic chains

was achieved by the D1N, D1M, D2 and D3G3 interactions. To do so, requirements
on the neutron matter (β = 1) equation of state was put in the fitting protocols of
those interactions. In the specific cases of D1S and D2, eight points of the equation of
state obtained by Friedman and Pandharipande (FP) [126] in neutron matter had to be
reproduced with chosen accuracies. Contrary to D1M and D3G3, the energy drift was
also controlled through a constraint on the energy difference ∆ε which can contribute to
shrink that drift.

In Figure II.6, the neutron matter equations of state for several Gogny interactions
are shown against the (neutron) density, and compared to FP predictions. It can be
seen in panel (a) that the realistic calculations describe a strictly increasing and positive
energy-valued equation of state at all densities, which ensures the stability of neutron
matter. This is not the case of the D1S interaction as it starts decreasing at ρ ' 3.5ρ0
until vanishing identically at ρ = 12ρ0. Albeit this is not a good news for astrophysical
perspectives, it is not an issue for atomic nuclei. However, even if in the range ρ ≤ ρ0
the D1S equation of states overestimates the realistic energies per particle by 3 MeV at
worst, this is actually problematic in neutron-rich nuclei for which the difference grows
fast. The need to drive the neutron matter equation of state appears to be clear.

In the ρ ≤ ρ0 regime, relevant for atomic nuclei, the D2 and DG interactions are no
more than 1.5 MeV above the realistic curve. This was expected since the fitting code
tolerates a maximum deviation of 10% to the FP values in this regime, and that they
reach a maximum energy of 16 MeV at saturation density.

In the ρ > ρ0 regime, potentially interesting for astrophysical purposes, the energy
difference to FP predictions enlarges a bit for the D2 and DG interactions, becoming about
2 MeV at ρ = 1.5ρ0, but remaining under control. The D1S interaction, in contrast, goes
completely off course and announces its collapse. Beyond 2ρ0, the values taken by the
energy are of less concern to us, the essential property being that the realistic equation of
state is approximately reproduced, and above all that the curves do not break up. This
is indeed the case for D2 and DG, with a somewhat better fit for DG at high densities.

2.3. Effective masses
In symmetric nuclear matter, neutron and proton effective masses are the same, with

a numerical value that has been given in Table II.4 for different Gogny interactions. This
is only because there is an equal number of neutrons and protons in SNM. As long as we
move to asymmetric nuclear matter, characterized by a non-zero asymmetry parameter,
β 6= 0, this is no longer true. We propose to study the evolution of the difference between
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Figure II.6 – Equations of state in neutron matter for D1S, D1M, D3G3, D2 and DG
interactions. Realistic calculations based on the work of Friedman and Pandharipande
(FP) are also represented. Densities are normalized by the saturation density ρ0. The
results are presented at all densities in the left-hand panel, and at a restricted range of
densities in the right-hand panel.

neutron and proton effective masses as a function of the medium asymmetry, for various
Gogny interactions, in Figure II.7.

The results are compared to microscopic calculations based on the so-called Brueckner–
Hartree–Fock (BHF) approximation of the Bethe–Brueckner–Goldstone (BBG) theory
[155]. Within this approach, the effective interaction to be used is evaluated by the self-
consistent treatment of the G-matrix. They are denoted BHF-BBG from now on. We first
notice that, for zero asymmetry, the effective mass of microscopic calculations m∗/m =
0.77 slightly overestimates the empirical values we took on, m∗/m = 0.70± 0.05. This is,
however, not the case of the other interactions that fit the interval, as already discussed
in subsection II.2.1.1. The D1M, D2 and DG interactions in particular are the closest
to the microscopic results. As the asymmetry grows, the neutron and proton effective
masses of the BHF-BBG scheme split up, with the neutron effective mass always greater
than the proton effective mass, reaching a maximum difference of 0.16 for pure neutron
matter (β = 1). It turns out that this behavior is described by both non-relativistic (as
considered here) and relativistic (using Dirac–Brueckner–Hartree–Fock approximation)
[156] microscopic calculations for neutron-rich nuclear matter. This salient phenomenon
must be respected in order to obtain a good reproduction of the neutron single-particle
energies, as we will see in section III.4.2. It is predicted by all the Gogny interactions
displayed. The maximum difference in neutron and proton effective masses is about 0.32,
0.30 and 0.36, reached at β = 1, for D1S, D2 and DG, respectively. The D2 interaction is
the closest to the microscopic value and DG the furthest away. We expected the filter on
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Figure II.7 – Evolution of the proton (full lines) and neutron (dashed lines) effective masses
as a function of the asymmetry parameter β for D1S, D2, D1M, D3G3 and DG interac-
tions. Microscopic calculations, founded on the Brueckner–Hartree–Fock approximation
of the Bethe–Brueckner–Goldstone (BHF-BBG) theory are also displayed.

the neutron matter equation of state (see previous subsection) to substantially improve
the difference in neutron and proton effective masses in neutron matter (β = 1) for DG,
as it did for D2.

2.4. Partial wave decomposition
As we have already explained, neither the spin–orbit nor the tensor terms of the

generalized Gogny interaction contribute to infinite nuclear matter. Thus, the quantities
we have studied so far do not allow to figure out whether they have been fitted the right
way. Actually we can get some clues, as we shall see, by projecting the potential energy
per particle in symmetric nuclear matter onto a basis characterized by the orbital ~L,
intrinsic ~S and total ~J ≡ ~L+ ~S angular momenta, according to

ES
P
A

=
∑
LSJ

ES
P
A

[
2S+1LJ

]
, (II.23)

where ES
P/A[2S+1LJ ] denotes the contribution to the potential energy of the state de-

fined by the usual spectroscopic notation 2S+1LJ , where L, S and J refer to the quantum
numbers associated with the angular momenta listed above. This expression is called the
partial wave decomposition of the interaction, where 2S+1LJ is a partial wave. Finite-range
interactions participate to all partial waves, but a careful analysis of BHF calculations
[157, 158] performed with the realistic interaction AV18 [27] reveals that the contribu-
tions of partial waves decrease as L grows. For L > 3, they become negligible, so that
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expansion (II.23) can be truncated to order L = 3. To justify this statement for the
generalized Gogny interaction and the other interactions it is compared to, we focus on
the first partial waves P,D and F in Figure II.8.
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Figure II.8 – Potential energy per particle of the partial waves 3P0,
3 P1,

3D2,
3D3,

3 F3
and 3F4 versus the Fermi momentum, evaluated in symmetric nuclear matter for DG,
D1S, D1ST2a, D1ST2c and D2 interactions. The predictions are compared with realistic
calculations using Brueckner–Hartree–Fock approximation [157, 158].
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It appears clearly that the contributions of the various Gogny interactions to the
potential energy decreases in a significant way as L grows, becoming very small for F
waves. Retaining only L ≤ 3 partial waves in the expansion (II.23) also for Gogny
interactions then makes sense. We see that the reproduction of P waves is enhanced by
the tensor-dependent interactions DG, D1ST2a and D1ST2c, with respect to D1S and D2,
although the monotony of 3P0 is not recovered. In D waves, the descent of the BHF curve
is less pronounced but observed with Gogny interactions, except for D1ST2-type ones in
3D2. In 3D3, the predictions of the DG interaction are the most convincing. Finally, the
results obtained with DG in F waves tend to worsen the description. However, this is
not pathological since the main contribution to the partial wave decomposition is due to
the P waves, and to a lesser extent, to the D waves. Indeed, for instance, DG and D2
predictions differ from about 2.5 MeV, 0.8 MeV and 150 keV in 3P0,

3D2 and 3F3 waves,
respectively, at kF = 1.5 fm−1. Consequently, even if D2 is closer to the BHF calculations
in 3D2 and 3F3, the important improvement is obtained with DG in 3P0.

Now, we would like to find a way to use the partial waves studied to discriminate the
contributions of the spin–orbit and tensor forces. On the one hand, it has been shown
[159] that for given values of L and S, the contributions of central and density-dependent
terms to ES

P/A[2S+1LJ ] are the same for all values of J , up to a global factor (2J + 1). On
the other hand, we know the spin–orbit and tensor terms to contribute only to the S = 1
channel. As a consequence, the differences

δP ≡
ES

P
A

[
3P0

]
− 1

3
ES

P
A

[
3P1

]
, (II.24a)

δD ≡
1
5
ES

P
A

[
3D2

]
− 1

7
ES

P
A

[
3D3

]
, (II.24b)

δF ≡
1
7
ES

P
A

[
3F3

]
− 1

9
ES

P
A

[
3F4

]
, (II.24c)

only depend on the spin–orbit and tensor forces. We want to emphasize here that the
total contributions of these terms to the partial wave decomposition is zero (when summed
up over all values of L, S and J in (II.24a)), but that the above differences written for
some partial waves are not. By comparing the predictions of effective interactions to BHF
results with respect to these differences, the spin–orbit and tensor terms are considered
separately from the other terms and their relevance can be assessed. This is precisely
what was done in [160] with the Skyrme N3LO pseudo-potential and in [161] for D1-type
Gogny interactions. We have extended the calculations to carry on this last study for
interactions DG, D1ST2a, D1ST2c and D2 [162]. The results are displayed in Figure II.9.

First of all, we notice that the magnitudes of the differences in partial waves evaluated
with Gogny interactions decreases sharply as L increases, until becoming very small in
F waves, in accordance with what we have said earlier. As expected, the contributions
of D1S and D2 interactions are the same since they are tensor-independent and their
spin–orbit terms are identical. They additionally provide no contributions in D and F
waves as the zero-range spin–orbit force is zero in L > 1 states, as one can show [159].
The predictions of δP are improved by all tensor-dependent interactions, but deteriorated
for the differences δD and δF , with respect to those of D1S and D2. This is rather
encouraging since, among the differences under study, the main contribution to the partial
wave decomposition is related to P waves. In particular, a striking change of monotony
is observed with DG and D1ST2c curves to get closer to the realistic calculations. It
is worth noticing that such behavior is not shared with D1ST2a, whose difference with
D1S and D2 is only due to the tensor force, the strength of the spin–orbit term being
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Figure II.9 – Potential energy per particle of the differences in partial waves δP , δD and
δD given in (II.24a) versus the Fermi momentum, evaluated in symmetric nuclear mat-
ter for DG, D1S, D1ST2a, D1ST2c and D2 interactions. The predictions are compared
with realistic calculations using Brueckner–Hartree–Fock approximation [157, 158]. Zero
differences are displayed by dashed lines for clarity.

the same (W5 = 130 MeVfm5). Although modifying the outputs in the right direction,
the tensor term alone here seems unable to reverse the monotony obtained with D1S
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and D2 interactions. For that purpose, the strength of the spin–orbit force must be
reduced as well, as for DG (W5−H5 = 115.849 MeVfm5) and D1ST2c (W5 = 103 MeVfm5)
interactions. The predictions of D1ST2c, whose spin–orbit is the lowest, are by the way
the best for P waves. Among the tensor-dependent interactions, DG has the least negative
impact on δP while it is slightly worse than D1ST2a in the reproduction of δF , but the
difference is minuscule, reaching at most 10 keV at kF = 1.5 fm−1. On the other side,
D1ST2a outcomes in P waves were not satisfactory enough. Gathering our remarks, we
can conclude that DG appears as the best comprise, its spin–orbit and tensor part globally
enhancing the description in terms of partial waves. In the light of this study, the spin–
orbit and tensor forces are correctly fitted at this stage, since they help refine the results
locally.

2.5. Landau parameters
We present in this section the Landau parameters as well as the related stability

criteria and sum rules obtained for the DG interaction in the framework of the Landau
theory of Fermi liquids. We have already discussed the benefits of such quantities in the
previous chapter. Let us add that the formalism enables us to test part of the residual
interaction, giving an insight into the consistency of our nuclear interaction. Naturally,
this study will however need to be extended to more complete RPA calculations for finite
nuclei. So as not to slow down the discussion, we have deferred the underlying formalism
in appendix A.4. We will content here to recall the key elements, and we urge the reader
to, at least, have a look at the dedicated section.

2.5.1. Formalism and physical quantities

We show in appendix A.4, on the one hand, that (the two-body matrix elements of) a
particle–hole interaction made up of tensor forces can be parametrized in simple terms. In
homogeneous symmetric infinite nuclear matter (SNM), at the long wavelength limit (or
Landau limit, corresponding to equal quasiparticle momenta in magnitude, |~k1| ' |~k2| '
kF), the latter reads [163, 164]

V L
ph = N−1

0

[
f 00(θ) + f 10(θ)(~σ1 · ~σ2) + f 01(θ)(~τ1 · ~τ2) + f 11(θ)(~σ1 · ~σ2)(~τ1 · ~τ2)

+ h10(θ) q
2
F
k2

F
S12(q̂12) + h11(θ) q

2
F
k2

F
S12(q̂12)(~τ1 · ~τ2)

]
,

(II.25)

where the density of quasiparticle states at the Fermi surface is given by

N0 ≡
2m∗VkF

π2~2 . (II.26)

The parameters fST and h1T , where S and T respectively refer to the two-nucleon spin
and isospin, characterize the quasiparticle interaction and then have to be determined.
The parameters fST are called the central terms since they involve the central part of the
nuclear interaction while the parameters h1T are the tensor terms, involving its non-central
part, with a tensor operator defined in momentum space as

S12(q̂12) ≡ (~σ1 · q̂12)(~σ2 · q̂12)− 1
3~σ1 · ~σ2, (II.27)
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where q̂12 ≡ (~q1 − ~q2)/|~q1 − ~q2| is the direction pointed by the relative quasiparticle
momentum. When evaluated at the Fermi surface, this relative momentum is denoted
qF ≡ ~kF − ~k′F.

On the other hand, we also show that for a density-dependent interaction like the
generalized Gogny interaction (II.1), the TBMEs of its particle–hole interaction can be
written [4, 165]

〈ph′|Vph|hp′〉 = 〈ph′|v(a)
12 |hp′〉+

∑
i

〈h′i|∂v
(a)
12

∂ρhp
|p′i〉+

∑
i

〈pi| ∂v
(a)
12

∂ρp′h′
|hi〉

+ 1
2
∑
ij

〈ij| ∂2v
(a)
12

∂ρhp∂ρp′h′
|ij〉,

(II.28)

Thus, by calculating the TBMEs using (II.28), and identifying them, at the long wave-
length limit, with the expression (II.25), it is possible to obtain the parameters fST and
h1T . More precisely, these are expanded in series of Legendre polynomials according to

fST (θ) =
∑
l

fSTl Pl(cos θ), (II.29a)

h1T (θ) =
∑
l

h1T
l Pl(cos θ), (II.29b)

and it is their coefficients fSTl and h1T
l , the so-called Landau parameters, that one needs

to evaluate, in principle for all values of l ∈ N, to fully characterize the particle–hole
interaction.

The central, density-dependent and tensor contributions to the TBMEs of (II.28)
are derived from subsections A.4.2.1 to A.4.2.4, where we also prove that the spin–orbit
TBMEs vanish in this framework. By summing up these components, we can derive the
values of the Landau parameters for any l. Table II.5 gives the values of the first six
central and non-central Landau parameters, evaluated at saturation density ρ0, for the
DG parametrization. The values of the Landau parameters associated with D1S and 2
interactions are also displayed in Tables II.6, for which non-central components do not
exist.

DG
l f 00

l f 10
l f 01

l f 11
l h10

l h11
l

0 −0.300 0.226 0.869 0.922 0.001 −0.800
1 −0.775 0.027 0.528 0.501 0.001 −0.559
2 −0.845 0.229 0.503 −0.027 −0.148
3 −0.299 0.084 0.159 −0.041 −0.025
4 −0.064 0.018 0.032 −0.011 −0.003
5 −0.010 0.003 0.005 −0.002
6 −0.001 0.001

Table II.5 – Numerical values of the first Landau parameters of the interaction DG eval-
uated at saturation density. Empty boxes correspond to Landau parameters with a mag-
nitude of less than 10−3.

Empirical values for the first Landau parameters can be deduced from experimental
data associated with collective states in 208Pb (excitation energies, transition probabilities,
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D1S
l f 00

l f 10
l f 01

l f 11
l

0 −0.376 0.463 0.746 0.633
1 −0.908 −0.182 0.470 0.607
2 −0.555 0.244 0.341 −0.038
3 −0.156 0.090 0.099 −0.035
4 −0.029 0.018 0.019 −0.008
5 −0.004 0.003 0.003 −0.001
6

D2
l f 00

l f 10
l f 01

l f 11
l

0 −0.312 0.197 0.850 0.962
1 −0.785 −0.008 0.462 0.498
2 −0.828 0.277 0.532 −0.047
3 −0.310 0.111 0.184 −0.053
4 −0.072 0.026 0.041 −0.015
5 −0.012 0.004 0.007 −0.003
6 −0.002 0.001 0.001

Tables II.6 – Same as in Table II.5, but for the D1S (left table) and D2 (right table)
interactions. 6

etc.). For a zero-range particle–hole interaction with no tensor forces, Ring et al. [166–
168] obtained quantities that can be directly related to Landau parameters using Migdal
theory [169], if we assume the l = 0 component in (II.29) to be the main contribution in
the expansions to a large extent. The empirical values read f 00

0 ' 0.137, f 10
0 ' 1.150, f 01

0 '
0.663 and f 11

0 ' 1.450. We see that f 00
0 and f 11

0 are closer to the empirical values with
DG than with D1S and D2 interactions. As for f 01

0 , the agreement remains pretty good
with all three interactions, but less with f 10

0 . Obviously, we were not expecting a perfect
match with these empirical values as our interaction is of finite range and the tensor
force may renormalize the central Landau parameters. On top of that, we see explicitly
that the main contribution to the Landau parameter f 00

l is not contained in the l = 0
component. A comparison with empirical values taking into account one or more of the
above hypotheses would certainly be more relevant.

It is not difficult to show that several physical quantities, namely incompressibility,
effective mass and symmetry energy, already calculated in SNM in section II.2.1.1, can
be related to some central Landau parameters as [169]

m∗

m
= 1 + 1

3f
00
1 , (II.30)

K∞ = 3~2k2
F

m∗

(
1 + f 00

0

)
, (II.31)

aτ = ~2k2
F

6m∗
(
1 + f 01

0

)
. (II.32)

We emphasize that these three quantities are not impacted by the Landau parameters
associated with the tensor force, so they are solely judges of the appropriateness of the
central Landau parameters. In Table II.7 are compared the values obtained by means of
the Landau parameters to the ones previously deduced from their analytical expressions
(see Table II.4).

It appears first that the effective mass is reproduced by both methods to a very good
approximation. We were then able to calculate symmetry energy and incompressibility

6. The attentive reader will notice that the values of the D1S and D2 Landau parameters are slightly
different from those usually given in the literature [17, 18]. In fact, the version of the fitting code
used by Chappert to provide what is found in the literature gives the values tabulated here. In-depth
discussions with Chappert did not enable us to determine the source of these (small) disparities. These
small differences will have little impact on the stability criteria and sum rules to be discussed.
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Physical quantities in SNM
m∗/m K∞ aτ

Determination method (MeV) (MeV)
Analytical expressions 0.741 820 209.961 31.2603
Landau parameters 0.741 820 210.672 31.2603

Table II.7 – Some physical quantities evaluated at the saturation density in SNM for
the DG Gogny interaction. The first row shows the numerical values obtained from
analytical expressions derived in Appendix A, the second row from Landau parameters
using relations (II.30).

from this common numerical value. The same conclusion occurs for the symmetry en-
ergy. Nevertheless, incompressibility is about 700 keV higher when evaluated by Landau
parameters than by its analytical expression. This discrepancy, although set aside, was
already there for the D2 interaction [17, 18]. 7 We consider it sufficiently small not to be
a cause of concern, and, in any case, it does not play a decisive role in what follows.

2.5.2. Stability criteria

It is explained in appendix A.4.3 that the quasiparticle ground state is stable against
small deformations if any variation of the free energy is positive, i.e. if δF > 0, where the
free energy is defined by [170, 171]

F ≡ E − µcA, (II.33)

with µc the chemical potential and A the number of nucleons. By slightly distorting the
ground state and applying this requirement, we can extract stability criteria associated
with Landau parameters. In the presence of tensor forces, the stability criteria in the
S = 0 channel simply read

f 0T
l + (2l + 1) > 0, for l ∈ N. (II.34)

In fact this expression remains the same without tensor forces since they do not contribute
in this channel. The above quantities evaluated for the first six values of l in the case of
the interaction DG are displayed in Table II.8, and in Tables II.9 for the interactions D1S
and D2.

The stability criteria in the S = 1 channel are effectively complicated when the tensor
force is taken into account. The condition becomes that the eigenvalues of the matrix F
must all be positive [163]. From the expression of the TBMEs of F , we can easily obtain
its eigenvalues. In the T = 0 channel, the TBMEs are given by (A.256), and it suffices to
replace f 10

l by f 11
l and h10

l by h11
l to get them in the T = 1 channel. We also show that for

some value of the total two-nucleon angular momentum J , the associated 3× 3 matrix is
divided into a diagonal 1× 1 sub-block corresponding to J = l = l′ (the sub-block J = 0
being diagonal as well), and a non-diagonal 2×2 sub-matrix. We then distinguish between
two types of eigenvalues. On the one side, we have the TBMEs belonging to the diagonal

7. We envisaged at some point that the discrepancy could be linked to an error in the derivation or
implementation of the Landau parameters (in particular in the contribution coming from the rearrange-
ment terms, on which only the parameter f00

0 depends). A scrupulous check was carried out and nothing
was found. The same applies to the analytical expression of the incompressibility and its implementation.
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sub-blocks, directly equal to the eigenvalues denoted λ(J,T )
0 . Their expression for the first

six values of (J, T = 0) are given in (A.257). On the other side, we have the non-diagonal
sub-matrices that must be diagonalized by means of the procedure described in (A.258),
to pull out two eigenvalues denoted λ(J,T )

± . The expressions of the TBMEs composing the
sub-matrices for the first four values of (J, T = 0) can be found in (A.261). The stability
criteria associated with the Landau parameters in the S = 1 channel of the interaction
DG are displayed in Table II.10. Note that we cannot compare those values to tensor-free
interactions like D1S and D2 since the related stability criteria obey different relations.

DG
l f 00

l + (2l + 1) f 01
l + (2l + 1)

0 0.700 1.869
1 2.225 3.528
2 4.155 5.503
3 6.701 7.159
4 8.936 9.032
5 10.990 11.005
6 12.999 13.001

Table II.8 – Numerical values of the first quantities related to the stability criteria (II.34)
of the interaction DG in the S = 0 channel. Columns two and three give the results in
the T = 0 and T = 1 channels, respectively.

D1S
l f 00

l + (2l + 1) f 01
l + (2l + 1)

0 0.624 1.633
1 2.092 3.607
2 4.445 4.962
3 6.844 6.965
4 8.971 8.992
5 10.996 10.999
6 13.000 13.000

D2
l f 00

l + (2l + 1) f 01
l + (2l + 1)

0 0.688 1.197
1 2.215 2.992
2 4.172 5.277
3 6.690 7.111
4 8.928 9.026
5 10.988 11.004
6 12.998 13.001

Tables II.9 – Same as in Table II.8, but for the D1S (left table) and D2 (right table)
interactions.

In principle, we should check that the stability criteria remain valid for all values of
l ∈ N and |l − 1| ≤ J ≤ l + 1. In practice, the Landau parameters converge rapidly
(in the sense that their absolute value decreases sharply as l increases), as can either
be inferred from their analytical expressions, given from subsections A.4.2.1 to A.4.2.4,
or directly from their first numerical values listed in Tables II.5 and II.6. It is worth
noticing by the way that the Landau parameters associated with the non-central part of
DG follow the same decreasing tendency as those of D1S and D2 interactions. We then
reasonably decided to calculate the Landau parameters until their magnitudes fell below
10−3. This took us up to l = 6. The stability criteria are based on TBMEs that, for
a given value of l, involve Landau parameters of maximum order l + 1 (see expression
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J λ
(J,0)
0 λ

(J,0)
+ λ

(J,0)
− λ

(J,1)
0 λ

(J,1)
+ λ

(J,1)
−

0 1.007 3.106
1 1.010 2.452 2.091 0.197 4.600 1.641
2 1.046 2.024 2.017 0.791 2.895 1.865
3 1.012 2.092 2.004 0.963 2.139 1.969
4 1.002 2.024 2.001 0.995 2.011 1.993
5 1.000 1.002 0.999 1.000
6 1.000 1.000

Table II.10 – Numerical values of the first eigenvalues of the free energy (II.33) for the
interaction DG. The stability criteria in the S = 1 channel require these values to be
positive. Columns two to four and five to seven give the results in the T = 0 and T = 1
channels, respectively.

(A.256)). For this reason, we evaluated the stability criteria up to the finite order lmax = 5
and Jmax = lmax + 1 = 6. This choice appears justified since the quantities related to the
stability criteria in the S = 0 channel seem to converge towards (2l+1), while those in the
S = 1 channel seem to converge towards 1 for the eigenvalues λ(J,T )

0 and 2 (up to J = 4)
for the eigenvalues λ(J,T )

± , 8 according to Tables II.9, II.8 and II.10. This was expected
according to the expressions (II.34), (A.257), (A.261) and (A.262). In the S = 0 channel,
we can see in particular that the DG stability criteria follow the same trend as those of
D1S and D2.

Thus, we obtain that the stability criteria are fulfilled in both S = 0 and S = 1
channels, explicitly up to lmax and Jmax – as all quantities in Tables II.8 and II.10 are
positive –, and implicitly for all values l ∈ N and |l − 1| ≤ J ≤ l + 1. It should be noted
that these criteria are fairly restrictive since most DG-type interactions we studied did
not meet all of them.

2.5.3. Sum rules

In appendix A.4.4, we parametrize the forward scattering amplitude of a quasiparticle
pair on the Fermi surface as [164, 170]

S = N−1
0

[
b00(θ) + b10(θ)(~σ1 · ~σ2) + b01(θ)(~τ1 · ~τ2) + b11(θ)(~σ1 · ~σ2)(~τ1 · ~τ2)

+ d10(θ) q
2
F
k2

F
S12(q̂12) + d11(θ) q

2
F
k2

F
S12(q̂12)(~τ1 · ~τ2)

]
,

(II.35)

where N0 is given in (II.26). The parameters bST and h1T fully characterize the forward
scattering amplitude. Just like the parameters of the quasiparticle interaction (II.29),

8. As the stability criteria are truncated (at Jmax = 6), particular attention must be paid at the
boundaries. There are only two eigenvalues for J = 5, one related to l = 4, the other to l = 5. For J = 6,
there is only one eigenvalue related to l = 5. The eigenvalue related to (J = 5, l = 5) corresponds to the
diagonal matrix element (A.257f). As for the eigenvalues (J = 5, l = 4) and (J = 6, l = 5), they would
normally be part of coupled matrix elements like those of (A.261), but written for the corresponding
values of J . Here, since the stability criteria are truncated, they simply appears as diagonal matrix
elements whose expressions have been calculated in (A.262). For this reason, they converge towards 1
instead of 2, like the other diagonal matrix elements. We have conventionally chosen to denote them
λ

(J,T )
− since they involve the lowest part of their (truncated) sub-matrices, as indicated in Table II.10.
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they are expanded in series of Legendre polynomials according to

bST (θ) =
∑
l

bSTl Pl(cos θ), (II.36a)

d1T (θ) =
∑
l

d1T
l Pl(cos θ). (II.36b)

On the one hand, when tensor forces are taken into account, one can show the following
relations,

b0T
l = f 0T

l

1 + f 0T
l /(2l + 1) , (II.37)

b1T
l = 1

3
∑
J

2J + 1
2l + 1 S

JT
ll , (II.38)

where f 0T
l are the central Landau parameters in the S = 0 channel introduced in the

previous subsection, while SJTll denotes the forward scattering amplitude coupled to (J, T ).
Its expression and the related quantities are given in (A.276), (A.277) and (A.278). On
the other hand, the Pauli exclusion principle forces the forward scattering amplitude to be
antisymmetric under the exchange of the two quasiparticles. This requirement translates
into the equation

PS ≡ PrPσPτS = −S. (II.39)

Combining the two last identities, we obtain that the Pauli principle holds if and only if
the so-called sum rules in the presence of tensor forces (A.280) and (A.281) are verified.
In fact, we truncate these two summations at the finite order lmax = 5 as we have done
for the stability criteria, so that they here become [164]

S1 ≡
lmax∑
l=0

[
f 00
l

1 + f 00
l /(2l + 1) + f 01

l

1 + f 01
l /(2l + 1) + 1

3
∑
J

2J + 1
2l + 1

(
SJ0
ll + SJ1

ll

)]
= 0, (II.40)

≡
∑
i

T i1,

S2 ≡
lmax∑
l=0

[
f 00
l

1 + f 00
l /(2l + 1) −

3f 01
l

1 + f 01
l /(2l + 1) +

∑
J

2J + 1
2l + 1

(
3SJ1

ll − SJ0
ll

)]
= 0, (II.41)

≡
∑
i

T i2.

We have decomposed the two sum rules into nine components i in order to evaluate their
relative contributions Ti. The two first contributions correspond to the sums over l of
the terms involving the Landau parameters f 00

l and f 01
l . The remaining ones correspond

to the sums over l of the last term for some given value of J . There are Jmax + 1 = 7
such quantities. These contributions together with the full sum rules S1 and S2 for the
interaction DG are listed in Table II.11.

Generally speaking, the sum rules are almost always violated by effective interactions
[172]. Calculating their numerical values nonetheless allows us to know to what extent
they are. As sum rules are not observables, it is difficult to say whether a definite non-zero
value accounts for a significant violation, or not. We then usually compare the predictions
of the interactions with each other. We do so in Table II.12, where the interaction DG
is in particular compared to D1S and D2, whose sum rules are simplifications of those
given above (see relations (A.273) and (A.274)). The value of S2 is smaller than that of
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i J T i1 T i2

1 −2.877 −2.877
2 1.564 −4.691
3 0 0.228 2.027
4 1 −3.482 −34.195
5 2 0.061 −0.739
6 3 0.161 −0.168
7 4 0.041 −0.139
8 5 0.007 −0.038
9 6 0.001 −0.005

−4.297 −40.826

Table II.11 – Relative contributions of the various terms T i1 and T i2 appearing in the sum
rules (II.40) and (II.41). The numerical values of the sum rules S1 and S2 are displayed
in the last row, under the dashed line.

S1 for DG, as is the case for the D1S and D2 interactions. Even so, their magnitudes are
much higher than for D1S and D2. Table II.11 unveils that the dominant contributions
to these sums correspond to i = 4, that is the third terms of S1 and S2 for J = 1. We now
focus on the contribution J = 1 of S2 as it is the largest. The fitting code reveals that
the component l = 1 is mainly responsible for it, to be precise, which then corresponds
to 3SJ1

11 − SJ0
11 . According to the expression (A.276) of the coupled forward scattering

amplitude, we have, in the channel T ,

S1T
11 = 3 〈11|F |11〉T − 1

〈11|F |11〉T
, (II.42)

where the associated TBMEs are given by (A.257b), i.e.

〈11|F |11〉T = 1 + 1
3f

1T
1 + 5

3h
1T
0 −

2
3h

1T
1 + 1

15h
1T
2 . (II.43)

Plugging the values of the Landau parameters of Table II.5, we get 〈11|F |11〉0 ' 1.010,
hence S10

11 ' 0.030, and 〈11|F |11〉1 ' 0.197, hence S11
11 ' −12.228. It is therefore the

high value of S11
11 , resulting from the low value of 〈11|F |11〉1, that causes the explosion

of the magnitude of S2. Actually, the low value of 〈11|F |11〉1 comes from the prevailing
contribution of the tensor Landau parameter h11

0 , since 5h11
0 /3 ' −1.333. A similar

study can be carried out to explain the high value of the component i = 4 of S1. As a
consequence, an important part of the violation of the DG sum rules can be attributed
to the tensor interaction. To get to the bottom of it, we look at the sum rules for the DG
interaction when the tensor interaction is set to zero (see Table II.12). We accordingly
find out that the Pauli principle is less violated, the values being of the order of magnitude
of those of D2; S2 is even closer to zero. Although the value of S2 is still far from that of
D1S, that of S1 is better.

For the sake of completeness, we could compare our values with the sum rules of
effective interactions containing a tensor term. Alas we found no such study in the
literature. 9 We therefore evaluated the sum rules for other tensor-dependent Gogny

9. There is an article in which sum rules are calculated for a zero-range tensor-dependent Skyrme
interaction [173]. However, these are of a different kind.
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Sum rules
S1 S2

Interaction
DG −4.297 −40.826
DG (no tensor) 0.048 −1.718
D1S −0.175 −0.650
D1ST2a 28.113 254.948
D1ST2c 28.131 254.897
D2 0.007 −2.104

Table II.12 – Numerical values of the sum rules for the D1S, D2, D1ST2a, D1ST2c and
DG Gogny interactions. The values obtained by switching off the tensor interaction in
DG are also tabulated as “DG (no tensor)”.

interactions, the D1ST2a and D1ST2c interactions. These are good candidates since their
perturbative natures allow to isolate the tensor effects on the sum rules (the spin–orbit
force giving no contribution), while their D1S part is little violated. Table II.12 indicates
that the D1ST2a and D1ST2c sum rules have similar values and are by far the most broken
of all tested interactions. They are the only ones to be overestimated to that extent. Yet,
the D1ST2-type interactions manifest some valuable characteristics, from the point of
view of their nuclear structure [60, 174], deformation [38, 40] and fission [39] properties.
Comparatively, our tensor-dependent interaction produces reasonable values. In order to
settle whether our sum rules are problematic or not, we would definitely need to test it in
finite-nuclei RPA calculations, which are beyond the scope of this report. It would also be
enlightening to know if there exists other tensor-dependent effective interactions capable
of reducing the sum rules to values comparable to those of DG, or even better. On the
other hand, it was shown for these latter that the inclusion of the rearrangement terms
associated with the density-dependent interaction reduced the violation of the sum rules.
It is then legitimate to think that adding a density dependence to the tensor term would
produce the same effect.
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Chapter III
Mean-field results

“People say sometimes that Beauty is superficial. That may be so.
But at least it is not so superficial as Thought is. To me, Beauty is
the wonder of wonders. It is only shallow people who do not judge
by appearances. The true mystery of the world is the visible, not
the invisible.”

— Oscar Wilde, The Picture of Dorian Grey

In this chapter, the mean-field properties of the generalized Gogny interaction are
analyzed within the Hartree–Fock–Bogoliubov approach. After introducing the related
formalism in a two-center axially symmetric representation, as well as the conditions
under which the calculations are performed, the bulk and surface characteristics of this
interaction are probed. The potential energy surfaces of light- to heavy-mass nuclei are
subsequently drawn to underline the specificities of the generalized Gogny interaction
regarding deformations and even fission barriers. Particular attention will be paid all
along the way to the relative roles of the spin–orbit and tensor forces to these aspects.
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1. General framework

1.1. Hartree–Fock–Bogoliubov formalism in a two-center basis
We first take some time to introduce the formalism of the Hartree–Fock–Bogoliubov

(HFB) theory in a two-center representation, which is a bit more elaborated compared to
the simple one-center version. The main reason, we will return later, is that it provides
a more appropriate description of the fission process, during and immediately after the
scission. We shall concentrate on the main principles used in Appendix C to derive the
HFB fields of the generalized Gogny interaction (II.1). For a more detailed presentation,
we refer the reader to the reviews [175, 176]. The formalism is exposed without imposing
time-reversal invariance, but the simplifications to be made when it is will be highlighted.

1.1.1. Bogoliubov transformation

The starting point to build up the HFB equations is to define the quasiparticle states
of the system, that is to say the elementary excitations of the nucleus in the mean-field ap-
proximation with pairing correlations taken into account. Since we want our quasiparticle
states to describe both proton and neutron states displaying an axial symmetry, they must
be eigenstates of the isospin operator Tz (with eigenvalues t = ±1/2) and of the angular
momentum Jz (with eigenvalues Ω), along the quantization axis Oz. In the following,
only the particle-like pairing correlations, i.e. proton–proton and neutron–neutron pair-
ing correlations, are taken into account. Within this formalism, the quasiparticle states
are expressed on the axial harmonic oscillator (HO) states by means of the Bogoliubov
transformation as

ξ†tΩn =
∑
ra

(
U tΩ
ranc

†
tΩra + V tΩ

ranctΩra
)
, (III.1)

in such a way that
ξtΩn|0̃〉 = 0, for all t,Ω, n, (III.2)

where we have defined the quasiparticle vacuum by

|0̃〉≡
∏
tΩn

ξtΩn|0〉, (III.3)
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with the particle vacuum denoted as |0〉. In the first expression, ra denotes the quantum
numbers associated with this basis, that turns out to be composed of axially-symmetric
harmonic oscillator (HO) wave functions in the HFB3 code, which we will further specify
in subsection III.1.2. As for the additional index n, it distinguishes the quasiparticle
states of the same quantum numbers t and Ω. The entities c†a and ca are the creation
and annihilation operators of quasiparticles associated with the axial HO states |a〉, in
the second quantization formalism. Quantities topped by a bar indicate that they are
reversed in time. We can show that the matrices U and V , acting as coefficients of the
Bogoliubov transformation, can be chosen real if we impose the quasiparticle vacuum |0̃〉
to be invariant under the T -simplex transformation (C.20). Note also that, as desired,
the Bogoliubov transformation preserves the quantum numbers t and Ω. For this reason,
they appear as superscripts in the matrices U and V to indicate that these are diagonal
with respect to those quantum numbers. This is a convention we will follow throughout
this report.

In the general case where the quasiparticle vacuum |0̃〉 is not time-reversal invariant,
we can define two types of density matrices, ρ and ρ, and a pairing tensor κ, as

ρtΩ ≡ V tΩ(V tΩ)T , (III.4a)
ρtΩ ≡ V tΩ(V tΩ)T , (III.4b)
κtΩ ≡ V tΩ(U tΩ)T , (III.4c)

or, equivalently, using their components, as
ρab ≡ 〈0̃|c†bca|0̃〉, (III.5a)
ρab ≡ 〈0̃|c

†
bca|0̃〉, (III.5b)

κab ≡ 〈0̃|cacb|0̃〉, (III.5c)
where the time-reversal operation is defined through its action on the creation operator
as ca ≡ TcaT

−1 = σac−a. With this definition, it is not difficult to show that the density
matrices are real and symmetric (under the exchange of their indices) while the pairing
tensor is only real. When time-reversal invariance is demanded, the two expressions of the
density matrices coincide, i.e. ρ = ρ, and the pairing tensor becomes symmetric (under
the exchange of its indices) as well. We have defined the pairing tensor in just this way
for this purpose.

1.1.2. Hartree–Fock–Bogoliubov energy

In the second quantization formalism, the effective nuclear Hamiltonian reads

H =
∑
ab

〈a|tK|b〉c†acb + 1
4
∑
abcd

〈ac|v(a)
12 |bd〉c†ac†ccdcb. (III.6)

Here, the one-body kinetic energy operator tK takes into account the one-body center-of-
mass correction 1 directly in its expression, since

tK =
(

1− 1
A

)
p2

2M , (III.7)

1. In fact, the HFB wave functions break the translational invariance of the Hamiltonian (III.6) since
the position of the center-of-mass is defined by the mean-field potential. This induces in particular
discrepancies in the evaluation of binding energies and other observables linked to surface properties
of nuclei [177]. It this therefore essential to restore this symmetry a posteriori through a “center-of-
mass correction”, composed of one- and two-body contributions in our case, as we neglect higher-body
contributions.
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where p ≡ ~k is the usual momentum operator and A is the number of nucleons in the
nucleus under study. The antisymmetrized effective nuclear interaction is given by

v
(a)
12 ≡ v12(1− PrPσPτ ), (III.8)

where v12 here designates the generalized Gogny interaction (II.1). This interaction di-
rectly takes into account the two-body center-of-mass correction, i.e.

〈ac|v(a)
12 |bd〉 = 〈ac|V (a)

12 |bd〉+ 1
AM

(
〈a|p|d〉〈c|p|b〉 − 〈a|p|b〉〈c|p|d〉

)
, (III.9)

where V12 is the interaction without the two-body center-of-mass correction, and A the
number of nucleons in the nucleus.

The energy of the nucleus stemming from the Hamiltonian (III.6), EHFB ≡ 〈0̃|H|0̃〉,
can be deduced using Wick’s theorem. We find out

EHFB =
∑
ab>0

[
〈a|tK|b〉ρba + 〈a|v(a)

12 |b〉ρab
]

+ 1
2
∑

abcd>0

[
〈ac|v(a)

12 |bd〉ρbaρdc + 〈ac|v(a)
12 |bd〉ρabρdc

+ 〈ac|v(a)
12 |bd〉ρbaρcd + 〈ac|v(a)

12 |bd〉ρabρcd
]

+ 1
4
∑

abcd>0

[
〈ac|v(a)

12 |bd〉κcaκdb − 〈ac|v
(a)
12 |bd〉κcaκbd

− 〈ac|v(a)
12 |bd〉κacκdb + 〈ac|v(a)

12 |bd〉κacκbd
]
,

(III.10)

In order to simplify this expression, we will need to take advantage of some properties
of the matrix elements of the kinetic energy operator tK and of the (antisymmetrized)
effective nuclear interaction v(a)

12 . 2 These properties will also be useful later, when we will
highlight the symmetries of the HFB fields to facilitate their derivation (see subsection
C.1.3). Therefore, the next lines are dedicated to demonstrate them.

Since tK is Hermitian and time-reversal invariant, 3 we have

〈a|tK|b〉 =
(
〈a|T †

)
tK
(
T |b〉

)
=
[
〈a|
(
T †tKT |b〉

)]∗
=
[
〈a|tK|b〉

]∗
= 〈b|tK|a〉. (III.12)

Note that we have used the identity TT † = T †T = 1 since the time-reversal operator
is antiunitary by definition. The parentheses are also important to precise whether the
time-reversal operator, which is antilinear, acts on its left or on its right. 4 Similarly, the

2. Note that the presence of a medium, taken into account through the density dependence of the gen-
eralized Gogny interaction, breaks translational and Galilean invariances of the bare nuclear interaction
(see subsection I.1.2), evolving in the vacuum.

3. Indeed, the time-reversal operator transforms the momentum vector ~p into its opposite −~p, i.e.
T~p T † = −~p, so that

Tp2T † = p2. (III.11)

4. For any states |α〉 and |β〉, an antilinear operator A satisfies the relation(
〈α|A

)
|β〉=

[
〈α|
(
A|β〉

)]∗
. (III.13)

This notation convention is the one used in [178].
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effective nuclear interaction v12 is Hermitian and time-reversal invariant (see equations
(I.9) and (I.10)), in such a way that

〈ac|v12|bd〉 =
(
〈ac|T †1T

†
2

)
v12

(
T2T1|bd〉

)
=
[
〈ac|

(
T †2T

†
1v12T2T1|bd〉

)]∗
=
[
〈ac|v12|bd〉

]∗
= 〈bd|v12|ac〉, (III.14)

where T1 and T2 respectively denote the time-reversal operators associated with the first
and the second particle. Knowing that v12 must remain invariant under the exchange of
the two particles 1↔ 2 (see (I.2)), we also find

〈ac|v12|bd〉 = 〈ca|v21|db〉 = 〈ca|v12|db〉, (III.15)

where the first equality comes from the exchange of the particle coordinates. Note that
the last three relations are true in any basis whose states satisfy the identity (C.14), as
long as v12 is an effective nuclear interaction fulfilling the required symmetries. Now, we
are going to prove that, in addition to these properties, the matrix elements of v12 are
real in the two-center axially-symmetric HO basis, as this is the one we will be working
in, in the following. Indeed, one can show that the axial HO states were invariant under
the T -simplex symmetry (C.20), hence

〈ac|v12|bd〉 =
(
〈ac|S†T1S

†
T2

)
v12

(
ST2ST1|bd〉

)
=
[
〈ac|

(
S†T2S

†
T1v12ST2ST1 |bd〉

)]∗
=
[
〈ac|v12|bd〉

]∗
, (III.16)

where ST1 and ST2 respectively denote the T -simplex operators associated with the first
and the second particle. Note that the T -simplex operator, being a product of unitary
operators, is unitary itself. It is also antilinear since the time-reversal operator is. For
the third equality to be true, the nuclear interaction v12 has to commute with the T -
simplex operator. The nuclear interaction does even more since it commutes with each of
the operators composing the T -simplex operator. Indeed, the nuclear interaction remains
invariant under a time-reversal transformation, a parity transformation or a full rotation,
in both coordinate and spin spaces (see equations (I.7)–(I.9)); it is T -simplex invariant.

Obviously, all these properties still hold for the antisymmetrized nuclear interaction
v

(a)
12 . Additionally, it verifies

〈ac|v(a)
12 |bd〉 ≡ 〈ac|v12|bd〉 − 〈ac|v12|bd〉 = −〈ac|v(a)

12 |db〉, (III.17)

as well as
〈ac|v(a)

12 |bd〉 = −〈ca|v(a)
12 |bd〉, (III.18)

where we have used property (III.15) with the above equation.
By means of these results, we can show that the HFB energy (III.10) simplifies as

EHFB =
∑
ab>0
〈a|tK|b〉

(
ρba + ρba

)
+

∑
abcd>0

[
〈ac|v(a)

12 |bd〉
1
2
(
ρbaρdc + ρbaρdc

)
+ 〈ac|v(a)

12 |bd〉ρbaρcd
]

+
∑

abcd>0
〈ac|v(a)

12 |bd〉κcaκdb.

(III.19)
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1.1.3. Hartree–Fock–Bogoliubov fields

Actually, the two-center axial HO basis is not orthogonal and implies the identity
〈a|b〉 = Sab 6= δab, where Sab is the overlap matrix between the states |a〉 and |b〉. Yet, to
derive and solve the HFB equations, we need an orthogonal basis, called a bi-orthogonal
basis in such two-center representation. We will not detail the procedure to construct this
bi-orthogonal representation but refer the reader to [175, 176] for extensive presentations
on how to proceed. In the bi-orthogonal representation, the states are denoted by |p〉, |q〉
and so on, and the HFB energy is still given by (III.19), upon exchanging the states of
the two-center HO basis by the ones of the bi-orthogonal basis.
The standard process to obtain the HFB equations consists in minimizing the HFB energy
with respect to ρ, ρ and κ, given by (III.5), while preserving the average number of
protons and neutrons by means of Lagrange multipliers. This amounts to minimizing the
functional

F [ρ, ρ, κ] ≡ E [ρ, ρ, κ]−
∑
t

µt〈0̃|Nt|0̃〉 − Λ(R2 −R), (III.20)

where Nt is the particle number operator of isospin t, µt the chemical potential of an
isospin-t particle and R the generalized density matrix expressed in terms of the density
matrices and pairing tensor defined in (III.4), as

RtΩ ≡
(

ρtΩ −κtΩ
−(κtΩ)T 1− ρtΩ

)
. (III.21)

The last constraint, where Λ is some real symmetric matrix composed of Lagrange multi-
pliers, imposes R2 = R, as it is a necessary condition for the Bogoliubov transformation
(III.1) to be unitary. The stationary condition dF = 0 finally leads to the so-called HFB
equations

[HHFB, R] = 0. (III.22)

The above matrix is defined in the bi-orthogonal basis as

H̃HFB ≡

 ẽ −∆̃
−∆̃T −ẽ

, (III.23)

where

ẽpq ≡ h̃pq − δpqµtp , (III.24a)

ẽpq ≡ h̃pq − δpqµtp , (III.24b)

with the mean-field Hamiltonians expressed as

h̃pq ≡
1 + δpq

2
∂EHFB

∂ρ̃qp
, (III.25a)

h̃pq ≡
1 + δpq

2
∂EHFB

∂ρ̃qp
, (III.25b)

and the pairing field as

∆̃pq ≡
1
2
∂EHFB

∂κ̃pq
. (III.26)
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Note that the quantities appearing with a tilde are conventionally expressed in the bi-
orthogonal basis. We now have to go back to the two-center HO basis since this is the
one we have defined to perform our calculations. Thanks to the relations

ρ = Mρ̃MT , (III.27a)
ρ = Mρ̃MT , (III.27b)
κ = Mκ̃MT , (III.27c)

where M is the transfer matrix from the bi-orthogonal representation to the two-center
HO representation, we can show that we find

h̃ = MThM, (III.28a)

h̃ = MThM, (III.28b)
∆̃ = MT∆M, (III.28c)

with, explicitly, in the tw-center axial HO basis,

hab ≡
1 + δab

2
∂EHFB

∂ρba
, (III.29a)

hab ≡
1 + δab

2
∂EHFB

∂ρba
, (III.29b)

∆ab ≡
1
2
∂EHFB

∂κab
. (III.29c)

Using the expression (III.19) of the HFB energy, we obtain

hab = 〈a|tK|b〉+
∑
cd>0

[
〈ac|v(a)

12 |bd〉ρdc + 〈ac|v(a)
12 |bd〉ρdc

]

+ 1 + δab
2

∑
a′b′c′d′

[
〈a′c′|∂v

(a)
12

∂ρba
|b′d′〉12

(
ρb′a′ρd′c′ + ρb′a′ρd′c′

)

+ 〈a′c′|∂v
(a)
12

∂ρba
|b′d′〉ρb′a′ρd′c′

]

+ 1 + δab
2

∑
a′b′c′d′

〈a′c′|∂v
(a)
12

∂ρba
|b′d′〉κc′a′κd′b′ ,

(III.30)

hab = 〈a|tK|b〉+
∑
cd>0

[
〈ac|v(a)

12 |bd〉ρdc + 〈ac|v(a)
12 |bd〉ρdc

]

+ 1 + δab
2

∑
a′b′c′d′

[
〈a′c′|∂v

(a)
12

∂ρba
|b′d′〉12

(
ρb′a′ρd′c′ + ρb′a′ρd′c′

)

+ 〈a′c′|∂v
(a)
12

∂ρba
|b′d′〉ρb′a′ρd′c′

]

+ 1 + δab
2

∑
a′b′c′d′

〈a′c′|∂v
(a)
12

∂ρba
|b′d′〉κc′a′κd′b′ ,

(III.31)

as well as
∆ab =

∑
cd>0
〈ab|v(a)

12 |cd〉κcd. (III.32)
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Alternatively, we can separate the different contributions to the HFB energy (III.19)
and express them in terms of HFB fields. To this end, we use the properties of the
two-body matrix elements shown in subsection C.1.2. We find

EHFB = EK + EP = EK + EMF + Epair. (III.33)

On the one hand, the kinetic energy

EK ≡
∑
ab>0

Kab

(
ρba + ρba

)
, (III.34)

is expressed in terms of the kinetic field

Kab ≡ 〈a|tK|b〉. (III.35)

On the other hand, the potential energy decomposes into a mean-field energy contribution,

EMF ≡
1
2
∑
ab>0

[
Γabρba + Γabρba

]
, (III.36)

expressed in terms of the mean-fields

Γab ≡
∑
cd>0

[
〈ac|v(a)

12 |bd〉ρdc + 〈ac|v(a)
12 |bd〉ρcd

]
, (III.37)

and
Γab ≡

∑
cd>0

[
〈ac|v(a)

12 |bd〉ρdc + 〈ac|v(a)
12 |bd〉ρcd

]
, (III.38)

and a pairing energy contribution,

Epair ≡
∑
ab>0

∆abκab, (III.39)

expressed in terms of the pairing field (III.32). Considering this writing of the HFB
energy, we can express the mean-field Hamiltonians (III.30) and (III.31) as

hab = Kab + Γab + ∂Γab + ∂∆ab, (III.40)
hab = Kab + Γab + ∂Γab + ∂∆ab, (III.41)

where the rearrangement fields, identified by a symbol ∂, are different from zero only if
the nuclear interaction under study explicitly depends on the density, as it the case of the
generalized Gogny interaction (II.1). Indeed, the rearrangement fields associated with the
mean-fields Γ and Γ read

∂Γab ≡
1 + δab

2
∑

a′b′c′d′

[
〈a′c′|∂v

(a)
12

∂ρba
|b′d′〉12

(
ρb′a′ρd′c′ + ρb′a′ρd′c′

)

+ 〈a′c′|∂v
(a)
12

∂ρba
|b′d′〉ρb′a′ρd′c′

]
,

(III.42)

and

∂Γab ≡
1 + δab

2
∑

a′b′c′d′

[
〈a′c′|∂v

(a)
12

∂ρba
|b′d′〉12

(
ρb′a′ρd′c′ + ρb′a′ρd′c′

)

+ 〈a′c′|∂v
(a)
12

∂ρba
|b′d′〉ρb′a′ρd′c′

]
,

(III.43)
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while the rearrangement fields associated with the pairing field read

∂∆ab ≡
1 + δab

2
∑

a′b′c′d′
〈a′c′|∂v

(a)
12

∂ρba
|b′d′〉κc′a′κd′b′ , (III.44)

and

∂∆ab ≡
1 + δab

2
∑

a′b′c′d′
〈a′c′|∂v

(a)
12

∂ρba
|b′d′〉κc′a′κd′b′ . (III.45)

To derive these fields, we will thus need an expression for the local nuclear density ρ(~r),
defined in (A.25). Inserting two completeness relations based on the two-center axial
states of the HO basis (C.1), we find

ρ(~r) =
∑
st

∑
στ

∑
mν
m′ν′

∑
Ω,Ω′>0

Φ∗tΩmν(~r, σ, τ)ΦtΩ′m′ν′(~r, σ, τ)〈tΩmν|ρ|tΩ′m′ν ′〉 . (III.46)

Using the orthogonality relations associated with the spin and isospin degrees of freedom
of the HO states (see (C.6)), the local density reduces to

ρ(~r) =
∑
st

∑
mν
m′ν′

∑
Ω,Ω′>0

φ∗mν(~r)φm′ν′(~r)δss′〈0̃|c
†
tΩmνctΩ′m′ν′|0̃〉 , (III.47)

where we have expressed the density matrix in terms of creation and annihilation oper-
ators. The contraction of those imposes Ω = Ω′. Besides, since s = s′, we also have
m = m′. Note that depending on the sign of Ω, the contraction is equal to the density
matrices ρ or ρ, which are defined in (III.5). Here, Ω > 0, so that

ρ(~r) =
∑
st

∑
mνν′

∑
Ω>0

φ∗mν(~r)φm′ν′(~r)δss′
(
ρtΩ=m+s
m′ν,mν + ρtΩ=m+s

m′ν,mν

)
, (III.48)

We can now replace the summations
∑
m

∑
Ω>0

by
∑
m≥0

∑
Ω

Θ(Ω) to get, benefiting from the

Kronecker delta,

ρ(~r) =
∑
st

∑
m≥0
νν′

φ∗mν(~r)φm′ν′(~r)
(
ρtΩ=m+s
m′ν,mν + ρtΩ=m+s

m′ν,mν

)
, (III.49)

Finally performing the summation over the spins, the local nuclear density can be written,
in a two-center axially symmetric HO basis,

ρ(~r) =
∑
m′≥0
νν′

φ∗mν(~r)φmν′(~r)

×
∑
t

[
ρ
tΩ=m+1/2
mν′mν + ρ

tΩ=m+1/2
mν′mν + Θ(m− 1/2)

(
ρ
tΩ=m−1/2
mν′mν + ρ

tΩ=m−1/2
mν′mν

)]
,

(III.50)

where we have introduced the Heaviside step function Θ(Ω) defined in (D.95), where the
density matrices ρtΩmν′mν and ρtΩmν′mν are given by (III.5), and where ν = (n⊥, nz) as well
as ν ′ = (n′⊥, n′z).

Finally, to solve the HFB equations, we first derive all the HFB fields to fully specify
h, h and ∆, the matrices ρ, ρ and κ being assumed known. Then, we transform these
quantities into the bi-orthogonal basis, using (III.28). We build the HFB Hamiltonian
(III.23) and diagonalize it. This provides the matrices Ũ , Ṽ , Ũ and Ṽ in the bi-orthogonal
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basis. We then move back to the two-center axial HO basis applying the following trans-
formations,

U tΩ = MŨ tΩ, (III.51a)
V tΩ = MṼ tΩ, (III.51b)

that furnish the matrices U , V , U and V in the two-center axial HO basis. These quantities
allow us to derive new matrices ρ, ρ and κ in this basis using (III.4), which, in turn, provide
new values for h, h and ∆. We then repeat this same procedure, iteratively, a number of
times until we obtain convergence.

1.2. Characteristics and conventions of the HFB3 code
We continue by exposing the characteristics and conventions of the HFB code, called

HFB3 [179], we have considered to generate all the results of this chapter. The purpose is
not to go into the technical details of the code, but to merely specify its main assumptions
and characteristics in order to better understand the outputs.

Currently, HFB3 is a time-reversal invariant HFB code made up of axially-symmetric
harmonic oscillator wave functions defined in a two-center basis, allowing parity breaking.
As part of this thesis work, we have actually derived the HFB fields associated with all the
terms of the generalized Gogny interaction (II.1) without imposing time-reversal invari-
ance. It then has been subsequently demanded when implementing the newly finite-range
spin–orbit and tensor forces. This restricts the study to even–even nuclei for the moment,
but work is in progress to release time-reversal invariance [180]. The choice of harmonic
oscillator wave functions is justified on both analytical and numerical aspects. The sep-
arable development [175, 181] (see subsection D.3 for more details) enables to simplify
the analytical derivations and optimize the numerical calculations of the HFB fields when
the quasiparticle states are expanded on a basis of harmonic oscillators, with Gaussian
form factors chosen for the potentials. By a two-center axially-symmetric representation,
we mean that the two centers display symmetry with respect to rotations around the Oz
axis and are separated by a distance d0 along z. The HFB formalism of this two-center
representation has been outlined in the previous subsection. Note that in the HFB3 code,
the two centers are equidistant from the origin. Finally, the parity breaking allows to
simulate two fragments with different density distributions during the fission process, as
illustrated in Figure III.1.

The benefits of having two centers are twofold. First, by choosing a typical distance
d0 of about a few Fermi, a configuration suitable to describe fission is achieved. Indeed,
in order to properly describe all possible configurations of the nucleus during the fission
process, in particular those corresponding to huge elongations or even two separated
fragments, it is natural to decompose the quasiparticle states on two sets of wave functions,
the distance between them being modified at will. Second, it enables to reduce the
truncation order of the basis (discussed in the next paragraph), i.e. to save computing time
while preserving the accuracy of the results. Nevertheless, to account for the structure
properties or deformations of low- to medium-mass nuclei, one center is enough. In
practice, when the nucleon number is such that A < 68, we set d0 = 0 in the HFB3 code,
and we fall back on the traditional HFB formalism.

As we have shown in (III.1), the quasiparticle states are expanded on a basis of func-
tions which are here chosen to be axial HO wave functions (C.1). These are characterized
by perpendicular ~ω⊥ and longitudinal ~ωz frequencies and a position d0/2 or −d0/2 in
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Figure III.1 – Illustration of the two-center axially-symmetric representation, with parity
breaking, of HFB3 [182]. The two centers, separated by a distance d0, forms a system
whose density distribution is not left–right symmetric, because of parity breaking.

the z coordinate. In practice, the infinite series expansion is truncated to a finite order to
be numerically tractable. However, in this process, some information about the quasipar-
ticle states is lost as the basis is no longer complete, and they then become dependent on
the three parameters ~ω⊥, ~ωz and d0. In practice, since the outputs of HFB calculations
must not depend on the parameters of the basis, the truncation order n is chosen suffi-
ciently large such that this dependence fades away (as we show in the next paragraph).
On the other hand, since the HFB approach is based on the minimization of the HFB
energy, the natural option is to select the parameters ~ω⊥, ~ωz and d0 which minimize the
energy. Note that the frequencies of the wave functions in both centers are assumed to
be the same. In addition to greatly simplifying the calculation of the HFB fields, on both
theoretical and numerical aspects, this hypothesis is justified as supplying different sets
of parameters for each center did not significantly modify the results, but complicated
the optimization of the parameters [175]. At the level of the off-center axial HO wave
functions, three parameters, namely ~ω⊥, ~ωz and d0, are chosen so as to minimize the
HFB energy.

Finally, as we have said, the truncation order n also has to be optimized to avoid a
strong dependence on the parameters of the basis. It in fact defines the number of quanta
of energy in the harmonic oscillators of each center (or the number of major shells), by
means of the relation

(2n⊥ + |m|+ 1)~Ω⊥ +
(
nz + 1

2

)
~Ωz ≤

(
n+ 3

2

)
~Ω, (III.52)

with (~Ω)3 ≡ (~Ω⊥)2~Ωz. The quantities ~Ω⊥ and ~Ωz denote the frequencies associated
with the size of the two-center representation. They are taken different from the frequen-
cies of the HO wave functions discussed above so as to allow simultaneous optimization of
the singular frequencies ~ω⊥ and ~ωz as well as the two-center basis itself. Indeed, setting
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the deformation parameter Q ≡ ~Ω⊥/~Ωz, relation (III.52) pushes the quantum numbers
to obey the inequalities

0 ≤ 2n⊥ + |m| ≤ nmax
⊥ ≡

(
n+ 3

2

)
Q−1/3 − 1

2Q − 1, (III.53a)

0 ≤ nz ≤ nmax
z ≡ Q

(
nmax
⊥ − (2n⊥ + |m|)

)
. (III.53b)

Then, the truncation of the basis is defined by the parameters n and Q. All in all, the two-
center representation is characterized by five parameters: the three parameters ~ω⊥, ~ωz
and d0 involved in the off-center axially-symmetric wave functions on the one hand, and
the two parameters n and Q which specify the truncation of the basis on the other hand.
In the HFB3 code, it is conventionally the oscillator lengths b⊥ and bz (which are directly
related to the aforementioned frequencies ~ω, see equations (C.7)) that are rather chosen
so as to minimize the energy. In practice, the truncation order n is fixed for a given
nucleus, and the remaining parameters are optimized. We take this occasion to give in
Table III.1 the value of the parameter n to treat a nucleus with maximum mass number.

≤ A n

19 7
39 8
59 9
79 10
99 11

119 12
139 13
169 14
189 15
289 16

Table III.1 – Correspondence between the maximum mass number A of a given nucleus
and the associated value attributed to the parameter n in order to optimize the basis.

The outputs for the D1S interaction exposed in this chapter are obtained by optimizing
the parameters the way we have just described. Doing so with the more sophisticated
D2 and DG interactions is feasible but rapidly time-consuming, especially on heavy-mass
nuclei. For this reason, their results are most of the time achieved by starting from
the optimized parameters found for the D1S solution, and then minimizing the energy
without re-optimizing the parameters. This scheme saves a considerable amount of time
while almost unaffecting the outcomes.

Another important point lies in that the tensor force added in the generalized Gogny
interaction is known to have a strong influence on the deformation properties of some
isotopes [38]. Consequently, looking for the minimum energy predicted by DG around the
axial deformation for which the HFB energy is minimal with D1S, in a given nucleus, may
bring us to a local (and not global) minimum of DG. This is less likely to happen with
D2 since no tensor term is considered, but not excluded. We have accordingly decided to
calculate the complete potential energy surfaces (PES) with respect to axial quadrupole
deformations, for all isotopes of this chapter, with D1S, D2 and DG interactions, to
properly extract global energy minima. To achieve this, we have exploited (part of) the
power of the CEA/DAM supercomputer.
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III. Mean-field results 2. Tensor effects on single-particle energies

Finally, we mention that all the results exposed below, with each interaction, are by
default performed using the exact Coulomb force, recently implemented in the HFB3 code
[183]. Sometimes, we will also consider the outputs using the simpler Slater approximation
to underline the role played by the exact Coulomb potential.

2. Tensor effects on single-particle energies
Before introducing the results, we first need to recall the effects of the tensor effects

to be expected on single-particle energies (SPEs). The role of the spin–orbit interaction
on the SPEs into two subshells is well-known for many years [97, 98]. On the other
hand, reductions in the energy gaps of some spin-partner states were already suspected
to be due to the tensor force over forty years ago [184–186], but a robust quantitative
description of the attached mechanism was only proposed in the 2000s by Otsuka et al.
[30]. This subsection is meant to introduce the big picture of their interpretation of the
tensor effects, referred to as Otsuka’s picture in this document [31, 32].

Otsuka et al. focus on the monopole component of the tensor force, meaning that the
many-body effects, related to higher multipole moments, are discarded. In general, the
monopole part of a two-body nuclear interaction v12 is defined by

V T
j1,j2 ≡

∑
J(2J + 1) 〈j1j2|v12|j1j2〉JT∑

J(2J + 1) , (III.54)

where 〈j1j2|v12|j1j2〉JT represents the (diagonal) TBMEs of the interaction, evaluated
between states coupled to total angular momentum J and isospin T . We denote by
j> ≡ l+ 1/2 and j< ≡ l−1/2 as well as j′> ≡ l′+ 1/2 and j′< ≡ l′−1/2 proton or neutron
spin-partner states stemming from the spin–orbit splitting. One can show, provided the
radial wave functions in j> and j< states are the same (as it is the case of HOs we consider
in this chapter), that the monopole components (V T)Tj1,j2 of the tensor force satisfy the
identity

(2j> + 1)(V T)Tj>,j′ + (2j< + 1)(V T)Tj<,j′ = 0, (III.55)

where j′ is either j′> or j′<. From this equality, several properties of the tensor monopole
components can be raised:
(i) the interaction acts between protons, between neutrons and also between one proton

and one neutron; it is however three times stronger in the T = 0 than in the T = 1
channel since 5

(V T)T=0
j,j′ = 3(V T)T=1

j,j′ , for j 6= j′, (III.56)

where j is either j> or j<;
(ii) the interaction between j> and j′ is opposed to that between j< and j′;
(iii) the interaction never involves s states as they are not separated into two subshells

j> and j<;
(iv) the action of two fully occupied (or empty) j> and j< states on j′ is zero as the

corresponding interactions compensate one another.

5. This relation can be easily obtained by evaluating the isospin TBMEs of the tensor monopole
component, thanks to (D.12b).
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Note that when all spin-partner states j> and j< are filled with nucleons (and the above
spin-partner states are empty), we say that the nucleus is spin-saturated (and spin-
unsaturated when it is not the case). We can go a bit further regarding the second
point. Relation (III.55) stipulates that the monopole component of the tensor interaction
between states j> and j′, weighted by the maximum number of nucleons lying in j>, is
counterbalanced by that between states j< and j′, weighted by the maximum number of
nucleons lying in j<. Then, as we fill the lower orbital j>, the monopole tensor interaction
generated by the nucleons sitting there grows, and is not offset by the upper orbital j<,
which is empty. Once the lower orbital is saturated, we start filling the upper orbital j<
and the corresponding monopole tensor interaction progressively compensates that pro-
duced by the nucleons lying in the lower orbital j>. When the upper orbital is saturated
in turn, the effects compensate exactly and the global monopole component of the tensor
force acting on j′ is zero. For this reason, Otsuka’s picture unveils that (the monopole
component of) the tensor force acts maximally on a state j′ when one of the spin-partner
states is completely filled while the other is empty.

Although (V T)Tj>,j′ and (V T)Tj<,j′ are opposite, we still do not know which one is
attractive and which one is repulsive. To settle the question, we can invoke some kind
of intuitive toy models or directly compare both possibilities to spectroscopic data. It
turns out that j> and j′< states attract each other whereas j> and j′> (as well as j< and
j′<) repel each other. The attraction lowers while the repulsion raises the corresponding
levels (in energy). 6 An example of a proton–neutron monopole tensor interaction is given
schematically in Figure III.2.

Figure III.2 – Illustration of the tensor monopole force acting between proton and neutron
spin-partner single-particle states. If the neutron state j′> ≡ l′+ 1/2 is (at least partially)
filled, it produces attraction of the higher proton state j< ≡ l − 1/2, lowering its energy,
and repulsion of the lower proton state j> ≡ l + 1/2, raising its energy. Similar effects
between neutron and between proton states may also occur but are not displayed here for
clarity [32].

Since the effects of the tensor force on SPEs will be investigated to a great extent in
this chapter and in Chapter IV, in particular in the sd shell, we take some time to describe
an sd-shell nucleus in which the monopole component of the tensor force is expected to
be important, namely 30Si (Z = 14, N = 16). An illustration of the SPE spectrum of 30Si
in the sd shell is shown in Figure III.3 to make the analysis clearer.

First, we notice that the proton and neutron spin-partner states below the sd shell
are completely filled (1p3/2 and 1p1/2 subshells) while those above are empty, so that

6. This terminology, introduced by Otsuka et al., will be used throughout the document.
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they do not affect the orbitals we have displayed. We emphasize for what follows that
proton and neutron 1d5/2 states are completely filled with six particles. In the proton
sector of the sd shell (left side of the diagram), the spin-partner states j> = (1d3/2)π and
j< = (1d5/2)π attract each other. This attraction, corresponding to the proton–proton
component of the (monopole part of the) tensor force tends to lower (1d5/2)π and (1d3/2)π.
Note that according to what we have said, this configuration maximizes the attraction.
If (1d5/2)π was only partially filled, or if it was entirely but (1d3/2)π only partially, the
attraction would be less. If (1d3/2)π was entirely filled with four protons, no attraction
would manifest.

In the neutron sector (right side of the diagram), the conclusions made for protons
are exactly the same for neutrons, as the content of the spin-partner states is unchanged.
This constitutes the neutron–neutron component of the tensor force. The neutrons filling
the state (2s1/2)ν do not take part in the tensor effects (at least at the first approximation
considered in Otsuka’s picture).

The subshells (1d3/2)π and (1d3/2)ν being empty, the tensor force between them is
zero. However, as j< = (1d5/2)π is completely filled and j′> = (1d3/2)ν empty, a strong
attraction resulting from the tensor force appears between these states, which tends to
lower the (1d3/2)ν state. Once again, this configuration maximizes the attraction. If
(1d5/2)π was only partially filled, or if it was entirely but (1d3/2)ν only partially, the
attraction would be less. If (1d3/2)ν was entirely filled with four protons, no attraction
would manifest. Similarly, as j′< = (1d5/2)ν is completely filled and j> = (1d3/2)π empty,
a strong tensor attraction manifests, contributing in lowering the j> = (1d3/2)π orbital.
These effects constitute the proton–neutron component of the (monopole part of the)
tensor force, and are expected to be stronger than those associated with the particle-like
contributions (see equation (III.56)).

(1d5/2)π

(2s1/2)π

(1d3/2)π

protons neutrons

(1d5/2)ν

(2s1/2)ν

(1d3/2)ν

30Si

Figure III.3 – Schematic illustration of the single-particle energy spectrum of 30Si in the
sd shell, separated into proton (left side) and neutron (right side) sectors. Nucleons are
placed on the lowest orbitals (HF scheme).

With the example of 30Si, we see how the tensor force can modify the energy gaps
between SPEs. It should be kept in mind, though, that we here only take into account
monopole effects, which constitutes an approximation. Thus, depending on the nucleus,
we do not expect to perfectly reproduce the predictions of this model, but at least to
roughly follow its tendency. It should not be forgotten in addition that all the terms of
the generalized Gogny interaction have a role to play in shifting the SPEs, and specifically
the spin–orbit force.
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3. Bulk properties

3.1. Binding energies
We begin our analysis of the generalized Gogny interaction by comparing its bulk

properties, and more specifically the binding energies in this subsection, with D1S and
D2 predictions as well as with experimental data. To do so, the difference between recent
experimental and theoretical HFB binding energies for low- to heavy-mass nuclei along
six isotopic chains are displayed in Figure III.4. This difference is defined as

∆EHFB ≡ EHFB − Eexp, (III.57)

where EHFB and Eexp respectively denote the HFB and experimental binding energies.
In O isotopes, DG and D2 outputs are pretty similar, with notable improvements for

DG in 16O and 24O which are a bit underestimated by D2. We recall that the binding
energy of the doubly magic nucleus 16O was constrained at the HFR approximation in
the fitting code. The tuning of that value to generate DG seems to be at the origin of the
better reproduction appearing at the HFB level. As for S isotopes, we see that they are
all predicted less bound than evidenced experimentally. This is even more pronounced
with DG, except for 36S. Actually, this tendency of the tensor force to slightly loosen
nuclear systems was observed with the perturbative tensor-dependent Gogny D1ST [29]
and D1ST2a [40] interactions. The lower binding energy of 36S, associated with the closure
of the N = 20 shell, will be further analyzed in subsection III.5.2.

The case of Sn isotopes is of great importance as the energy drift was controlled in
the fitting procedure by ensuring that the value of ∆EHFB is the same for both doubly
magic isotopes 100Sn and 132Sn. This scheme, already undertaken with D2, is clearly
visible, unlike D1S. In addition, the energy difference for those nuclei was found to be of
about 2 MeV [17]. 7 As required, no energy drift takes place in this isotopic chain with
DG either. However, the energy differences for 100Sn and 132Sn of about 5.2 MeV look a
little too strong. Actually it was harsh to reduce these differences while preserving the
other good features of the parametrization at the level of the fitting code. Nevertheless,
during the fitting procedure, calculations of the binding energies were done with n = 15
harmonic oscillator shells, thus reducing the energy differences further to about 3.5 MeV.
Surprisingly, it appears that the arch shape observed with D1S and D2 fades from 118Sn
before forming a kind of plateau to the doubly magic nucleus 132Sn. At this stage, we will
not give an interpretation, but we will come back to this point in subsection III.4.1.1. In
Gd isotopes, no energy drift shows up with D2 based on the binding energies displayed.
With D1S, it is known that an energy drift appears. This is indeed what we can discrim-
inate here as an energy of 4.7 MeV already separates the predictions of the two farthest
isotopes. For DG, this difference is reduced to 3.5 MeV, and levels off from 158Gd, contrary
to D1S that keeps increasing. It seems to indicate that the binding energies are controlled
with DG in those isotopes as well, so that no energy drift shows up.

With Pb isotopes, the situation is globally satisfactory with DG as there is no energy
drift at this level (only about 1 MeV in the energy differences of 194Pb and 214Pb against

7. In fact, we see that the HFB calculations performed here display almost no difference to experi-
mental data. There are at least two possible reasons for that. First, we have noticed that the higher the
truncation order n, the closer we get to the experimental values. We then may have considered a larger
value. Second, as we will see, the exact Coulomb potential slenderly increases (the magnitude of) the
resulting binding energies, compared to those obtained with the Slater approximation.
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Figure III.4 – Difference between experimental [187] and HFB binding energies, expressed
in (III.57), as a function of the number of nucleons A. Results are provided along O, S,
Sn, Gd, Pb and Th isotopic chains for DG, D1S and D2 interactions. Horizontal dashed
lines display perfect agreement with experiment and vertical bars the experimental errors.
Lines are drawn to guide the eye.

3 MeV for D1S). The binding energy of 208Pb, fitted to match the experimental value at
the HFB level with D2, reaches an energy difference of 4.1 MeV with DG. As explained
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in the fitting procedure, this latter was about 20 MeV in the early attempts. From this
point of view, the difference is more reasonable, but still a far from experiment, at the
HFB level. Finally, the general tendency observed with Gd isotopes is reproduced with
Th isotopes. While a better description of binding energies with DG than with D2 can be
seen for the lightest isotopes, a difference of about 3.9 MeV appears when moving towards
the neutron-rich isotopes, which remains less important than with D1S, reaching about
5.8 MeV. The conclusion made for Gd isotopes then holds for Th isotopes.

Contrary to D1S, the binding energies predicted at the HFB level by both DG and
D2 interactions almost always underestimate the experimental values (except in some O
isotopes here). This was desirable since, as a variational method, the HFB approach must
provide energies larger than or equal to the actual ground-state energies. Furthermore,
we know in particular the dynamic quadrupole correlations taken into account beyond the
mean field to bring an increment of energy in soft nuclei that will improve the theoretical
predictions. Generally speaking, the pathological energy drifts observed with D1S are
softened by DG and D2 interactions. However, it would be necessary to extend the
calculations to a large number of isotopic chains, as had been done for D1S, D1N [124],
D1M [127] and D2 [17, 18] interactions, to assess the mass drift of DG on a wider scale,
including beyond mean-field correlations.

3.2. Charge radii
We continue by looking at the charge radii predicted by the generalized Gogny inter-

action, in comparison with D1S, D2 and experimental outcomes. We first need to give
our definition of the charge radius as different forms exist depending on the corrections
which are incorporated. The charge radii of this document are calculated by means of the
formula

R2
ch = R2

π + 3
2
(
P 2 −B2

)
+ N

Z
〈r2
ν〉, (III.58)

where the first term involves the proton radius Rπ while the second and third terms
are corrections accounting for the spatial extension of the proton and its center-of-mass
motion as well as the charge distribution within the neutron, respectively. In the first
correction, we have P ≡

√
2/3

√
〈r2
π〉, with the root mean square radius of the proton√

〈r2
π〉 ' 0.8414 fm [81], as well as B ≡

√
~/MωA, with ~2/M ' 41.47 and Bethe’s

formula linking the frequency ~ω to the number of nucleons A, i.e. ~ω = 1.85+35.5A−1/3.
In the second one, the ratio of neutrons over protons is multiplied by the mean square
radius of the neutron 〈r2

ν〉 ' −0.110 fm2 [188]. Actually, this expression of the charge
radius can be directly obtained from the common definition

R2
ch ≡

∫
d3r r2ρch(r)∫
d3r ρch(r)

(III.59)

and the charge density distribution ρch(r) defined in equation (III.64). This ensures
cohesion between the various quantities of interest.

Considering the definition (III.58), the difference between recent experimental and
theoretical HFB charge radii for low- to heavy-mass nuclei along six isotopic chains are
represented in Figure III.5. This difference is defined as

∆RHFB
ch ≡ RHFB

ch −Rexp
ch , (III.60)
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Figure III.5 – Difference between experimental [189] and HFB charge radii, expressed in
(III.58), as a function of the number of nucleons A. Results are provided along Ne, Ar, Sn,
Gd, Hg and Th isotopic chains for DG, D1S and D2 interactions. Vertical bars indicate
the experimental errors.

where RHFB
ch and Rexp

ch respectively denote the HFB and experimental charge radii.
For low-mass nuclei (panels (a) and (b)), the results obtained with the three inter-

actions overall follow the same trend, and are shifted around the horizontal dashed line
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such that the charge radii of certain isotopes are better reproduced by one interaction or
another; it is not possible to discriminate the most convincing interaction.

This shift also manifests in heavier nuclei but the charge radii are systematically
underestimated by all three interactions (putting aside a few exceptions with D1S). Con-
sequently, it appears clearly that the predictions are globally better with D1S, at the HFB
level. However, in particular in Sn and Hg isotopes, DG is closer to D1S predictions than
D2. Based on these examples, it seems that the DG interaction cures, at least partially
and in medium- to heavy-mass nuclei, the lack of precision in the description of charge
radii with D2 at the HFB level, as called out in [190].

Once again, it would be useful to generalize the study to more nuclei in order to
confirm our results on a larger scale. The underestimation of charge radii by medium- to
heavy-mass isotopes supports the fact that they will be raised in soft nuclei when going
beyond the mean field, through the incorporation of collective excitations of small or
large amplitudes in random phase approximation (RPA) or generator coordinate method
(GCM) approaches, for example. This is indeed what was observed for the D1S interaction
from the five-dimensional collective quadrupole Hamiltonian (5DCH) method in [191].
The charge radii of D1S were predicted too large within this formalism. It is accordingly
satisfactory that the charge radii of DG and D2 are a bit smaller. The same study carried
out with these interactions would reveal whether the diminution in charge radii brought
by DG is sufficient or if they need to be further diminished, as with interaction D2.

3.3. Isotopic shifts in squared charge radii
The isotopic shift (or kink) in charge radii corresponds to “abnormally” small or high

charge radii of one or several isotopes with respect to their neighbors resulting, as its
name suggests, in a shift. Usually, to highlight this effect, the following difference between
squared charge radii is studied,

∆R2
ch(A) ≡ R2

ch(A)−R2
ch(Aref), (III.61)

where the charge radii Rch are evaluated for a reference nucleus of mass number Aref from
which the effect shows up, and for the neighboring isotopes of mass number A.

The best-known and most widely discussed case in the literature is that of the Pb
isotopic chain, with which we start our analysis.

3.3.1. Lead isotopic shift

In this Pb isotopic chain, the kink appears at 208Pb, so that the difference in squared
charge radii reads

∆R2
ch(A) ≡ R2

ch(A)−R2
ch(208). (III.62)

The charge radii as well as the isotopic shift calculated for the Pb isotopic chain with DG,
D1S and D2 interactions and compared to experimental data are shown in Figure III.6.

In panel (a), we see that charge radii predicted by all thee interactions are underes-
timated with respect to experimental data. This follows the explanation we have given
in previous subsection. As detailed in the text, a distinct bent appears with the exper-
imental values at A = 208 and extends to heavier isotopes. This phenomenon is visible
with D2 and to a lesser extent with D1S, but it is most remarkable with DG. Things
are even clearer in panel (b). Indeed, the kink, still lower than experimental predictions,
looks better reproduced with DG than with D1S and D2 interactions. In order to be more
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Figure III.6 – The charge radii and differences in squared charge radii, as defined in
(III.62) for Pb isotopes, are represented against the neutron number N in panels (a) and
(b), respectively, for DG, D2 and D1S interactions. They are compared to experimental
data, with vertical bars showing experimental errors [189].

quantitative, we have evaluated the angle formed by the straight lines connecting isotopes
200Pb to 208Pb and 208Pb to 214Pb for various interactions. The results are displayed in
Table III.2. The numerical values confirms our observations as the slightly better kink
exhibited by D2 is appreciably improved with DG, with respect to D1S.

Now, we would like to understand what peculiarities of DG are responsible for its
better reproduction of the isotopic shift. Since the central and density-dependent part of
DG remains close to D2, we tend to rather attribute this effect to either the spin–orbit or
tensor forces. On the one hand, we have explained in the fitting process that Sharma et al.
[142] proved that a Skyrme interaction augmented with an isospin-dependent spin–orbit
force was able to better reproduce the kink in Pb isotopes. For that reason, a value for
our parameter H5 fixing the intensity of the isospin-dependent spin–orbit term close to
theirs was required in the fitting protocol. On the other hand, Colò et al. found out no
improvement regarding the Pb isotopic shift when they added a tensor force on top of the
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Angle
θ

Interaction (◦)
DG 1.51
DG (H5 = 0) 0.18
DG (W7 = H7 = 0) 1.65
D1S 0.64
D1ST2a 1.74
D1ST2c 1.11
D2 0.87
Exp 2.76

Table III.2 – Angle formed by the straight lines connecting isotopes 200Pb to 208Pb and
208Pb to 214Pb, used to quantify the kink. The results are provided for Gogny interactions
DG, D1S, D1ST2a, D1ST2c, D2 and experimental data, as well as for DG when the spin–
orbit parameter H5 is set to zero or when the tensor is switched off (W7 = H7 = 0).

Skyrme parametrization SLy5 [48]. Yet, Lesinski et al. noticed that this kink was sensitive
to tensor terms in Skyrme interactions, even if they could not be held responsible for the
entire effect [51]. It seems that under some circumstances, the spin–orbit and tensor forces
are both involved in the reproduction of the Pb isotopic shift in Skyrme interactions. To
our knowledge, such studies are missing for the Gogny interaction. Then, we propose an
attempt to untie the roles of the (finite-range) spin–orbit and tensor forces of the Gogny
interaction on this observable.

We have represented in Figure III.7 the isotopic shifts for the perturbative tensor-
dependent D1ST2a and D1ST2c interactions, as well as those obtained with the DG
parametrization when the isospin-dependent spin–orbit strength is set to zero (H5 = 0)
and then when the overall tensor is switched off (W7 = H7 = 0). This allows to evaluate
separately the effects of the spin–orbit and tensor effects with respect to D1S, as well as
within the DG interaction.

The results indicate that the spin–orbit and tensor forces of the Gogny interaction are
profoundly involved in the reproduction of the kink in Pb isotopes. The numerical values
of the isotopic shifts for the above-mentioned interactions are listed in Table III.2. We
observe that they are better predicted by D1ST2a and D1ST2c interactions than with
D1S. As the former is only supplemented by a tensor force besides the D1S parameters,
it reveals that the tensor term unambiguously takes part in the reproduction of the kink.
The latter additionally reduces the intensity of the D1S spin–orbit force (from 130 MeVfm5

to 103 MeVfm5). Since its kink is notably lowered with respect to D1ST2a, it also reveals
that the spin–orbit interaction has a non-negligible influence. Although D1ST2a and
D1ST2c do not reach the experimental value, it appears that the isotopic shift is very
sensitive to their contributions. We can conclude that, based on these examples, the
inclusion of the spin–orbit and tensor forces is necessary to better reproduce the isotopic
shift in Pb isotopes when dealing with Gogny interactions. If we now turn into the
modified DG parametrizations, we first see than when the small isospin dependence (H5 =
29.634 MeVfm5) of the spin–orbit interaction is set to zero, the kink nearly disappears. On
the contrary, when the tensor force is switched off, the kink is slenderly improved. This
implies two interesting features of our interaction. Firstly, the isospin-dependent spin–
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Figure III.7 – Same as in Figure III.6 panel (b), but now for interactions D1ST2a and
D1ST2c, as well as interaction DG when the spin–orbit parameter H5 is set to zero or
when the tensor is switched off (W7 = H7 = 0).

orbit term is mainly responsible for the value of the angle θ, despite its small strength.
This was quite expected since it has been fitted for that purpose, but was not guaranteed
since the effect showed up for a zero-range spin–orbit term of a Skyrme interaction with a
different analytical expression. Secondly, contrary to the D1ST2a and D1ST2c cases, our
tensor force destroys part of the good reproduction of the Pb kink. This is astonishing
considering that filters deduced from the tensor parameters of the D1ST2c interaction
have been set up in the fitting process of DG. Actually we should be careful in our
interpretation because the parametrizations D1ST2a and D1ST2c were not completely
refitted as DG is, and switching off terms in this latter do not produce fully consistent
interactions either since its parameters were determined all together. Nonetheless, it would
be enlightening to look deeper into the relative contributions of the spin–orbit and tensor
forces to the Pb isotopic shift, within the Gogny interaction. If the way in which the
tensor terms act on the kink is understood, in the same manner as the isospin component
of the spin–orbit force is, an additional filter could be added in the fitting code to select
the tensor parameters accordingly.

Finally, we would like to give an explanation from SPE considerations on how the spin–
orbit and tensor forces can influence the kink in Pb isotopes. It is often argued that the
neutron splitting (1i11/2− 2g9/2) in 208Pb is directly related to the kink [51, 192]. Indeed,
as these states get closer, the 1i11/2 level is further filled through pairing correlations from
nucleons in the lower 2g9/2 level, for isotopes with N > 126. The partial filling of the
1i11/2 level increases the neutron radius more than when only the 1i13/2 is occupied (with
no pairing correlations showing up), as for N ≤ 126 isotopes. Since the charge density
distribution follows the evolution of the neutron density distribution in Pb isotopes (and
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in particular in 208Pb, as we show in subsection III.3.4.1), the charge radii of N > 126
isotopes grow faster than for N ≤ 126 ones. To expose how this discussion applies to the
interactions we have mentioned so far, we represent the neutron 1i11/2 and 2g9/2 states in
Figure III.8 and enumerate the corresponding neutron energy differences in Table III.3.
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Figure III.8 – Neutron single-particle energies of 1i11/2 and 2g9/2 states in 208Pb for DG,
D1S, D2, D1ST2a, D1ST2c and DG interactions when H5 = 0 and when W7 = H7 = 0.

Energy difference
∆εν

Interaction (MeV)
DG 0.925
DG (H5 = 0) 2.156
DG (W7 = H7 = 0) 0.841
D1S 1.867
D1ST2a 0.592
D1ST2c 0.999
D2 1.514

Table III.3 – Energy difference between the neutron 1i11/2 and 2g9/2 states in 208Pb for
DG, D1S, D1ST2a, D1ST2c, D2 and DG when H5 = 0 and when W7 = H7 = 0.

Comparison of numerical values in Tables III.2 and III.3 proves that the qualitative
description provided above is quantitatively verified by the Gogny interactions we have
analyzed. Indeed, the smaller the energy difference between the neutron 1i11/2 and 2g9/2
states, the more accurately the experimental Pb isotopic shift is reproduced.
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The displacement of the neutron SPEs shown in Figure III.8 can be attributed to the
spin–orbit and tensor forces to some extent. We know the spin–orbit term to favor the
splitting between spin-partner states proportionally to its intensity. Here, this intensity
(in the T = 1 channel) was reduced when going from D1S to DG, from 130 MeVfm5 to
W5−H5 = 115.849 MeVfm5, such that it is expected to shrink the neutron (2g9/2− 2g7/2)
and (1i11/2 − 1i13/2) splittings, ending up in narrowing the neutron (1i11/9 − 2g9/2) gap.
On the other hand, according to Ostuka’s picture (see section III.2), the completely filled
(1i13/2)ν state lowers the (1i11/2)ν state while the completely filled (1h11/2)π state reduces
the (2g9/2 − 2g7/2)ν and (1i11/2 − 1i13/2)ν splittings. The global effect of the tensor force
is therefore to shrink the neutron gap (1i11/9 − 2g9/2). Note that such vision does not
consider the role of the spin–orbit force in the T = 0 channel, whose intensity is given by
W5 +H5 = 175.117 MeVfm5 with DG. To our knowledge, the action of the proton–neutron
component of the spin–orbit interaction on SPEs is not widely discussed in the literature.
Yet, this information would be crucial to state whether the spin–orbit force improves the
description of the kink because of a lower intensity in the T = 1 channel as suggested
above, or whether it is related to the isospin-dependent parameter H5, as highlighted by
Sharma et al. [142].

Actually, another interpretation can be given to explain this arrangement of neutron
SPEs. One can show that the density of states in the vicinity of the Fermi level in finite
nuclei is proportional to the effective masses calculated in infinite nuclear matter [17].
The asymmetry of the medium, defined by β ≡ N −Z/N +Z, reaches β ' 0.21 in 208Pb.
From Figure II.7, we can extract the neutron effective masses (m∗ν/m) at such asymmetry
for DG, D1S and D2 interactions. They read (m∗ν/m)DG ' 0.78, (m∗ν/m)D1S ' 0.73 and
(m∗ν/m)D2 ' 0.77. Since we have (m∗ν/m)DG > (m∗ν/m)D2 > (m∗ν/m)D1S, the density
of neutron states around the Fermi level in 208Pb should be greater with DG than with
D2, and greater with D2 than with D1S. This is indeed what is observed in Figure III.8.
Thus, the better reproduction of the kink in Pb isotopes could be associated with a higher
neutron effective mass in nuclear matter. It is worth noticing that the neutron effective
mass of DG is the closest to that predicted by realistic calculations at β ' 0.21, according
to Figure II.7. It is not excluded that these various interpretations are complementary,
but further investigations at the fitting stage should be undertaken in the future to settle
the question.

As we have pointed out, the isotopic shift is closer to the experimental value with DG
than with D1S and D2 interactions. However, this is not satisfactory enough as it reaches
only just over half that value with DG. It has already been discussed that adding filters at
the fitting stage to constrain the tensor parameters may enhance the outcomes. A recent
study conducted by Kanada-En’yo established that allocating a density dependence to
the spin–orbit force in the Skyrme interaction remarkably improved the reproduction of
the kink in Pb isotopes [192]. This sounds natural since both the spin–orbit and density-
dependent terms are known to have a strong action on the arrangement of SPEs, from
which the kink can be explained. Following this idea, there is great probability that such
analytical extension would also make the predictions of Gogny interactions better. As we
have underlined that the position of the neutron SPEs, relevant to justify the kink in Pb
isotopes, was the result of a competition between spin–orbit and tensor forces, it suggests
that supplementing the tensor term with a density dependence as well may further drive
the kink in the right direction.
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3.3.2. Calcium isotopic shift

In Ca isotopes, a similar phenomenon occurs for 42Ca and 44Ca as well as for 48Ca,
whose charge radii are “abnormally” large and small, respectively. As a consequence, the
difference in squared charge radii is sometimes defined with respect to Aref = 40, and
sometimes with respect to Aref = 46. We will conventionally choose the first option and
study the quantity

∆R2
ch(A) ≡ R2

ch(A)−R2
ch(40). (III.63)

It turns out that Skyrme parametrizations constructed so far fail in reproducing such
behavior [5, 51]. In fact, in the region 20 < N < 26, the disagreement between theoretical
and experimental predictions with Skyrme interactions is thought to be due to defor-
mation and pairing effects, while that for 48Ca is not understood yet [192]. For Gogny
parametrizations, no extensive studies have been carried out in this direction. Even so,
the tensor force is renowned to modify the deformation properties of some nuclei (see
section III.5) and, along with the spin–orbit force, to significantly modify the gaps in
some nuclei, ending up in altering the pairing properties (see next section). Thus, we
wanted to figure out whether the finite-range spin–orbit and tensor forces could improve
the description of the kink in Ca isotopes. The charge radii and isotopic shift for Ca
isotopes are displayed in Figure III.9 for DG, D1S and D2 interactions, and are compared
to experimental data.

In panel (a), we see that the charge radii are globally underestimated by DG and D2
interactions (except for 48Ca which is slightly overestimated by DG). This is in agreement
with our general discussion on charge radii (see subsection III.3.2), but not for D1S which
substantially overestimates the charge radii of Ca isotopes from 46Ca to 50Ca. The bump
appearing for 42Ca and 44Ca is not even sketched by any of the three interactions, and
the bent at 48Ca is slightly more pronounced with DG and D2 than with D1S.

These last observations are confirmed by panel (b). Interactions DG, D2 and D1S are
all alike and fail in predicting the particular squared charge radii of 42Ca, 44Ca and 48Ca
isotopes. The same trend was recently noticed with D1ST2a [195].

We could invoke again that providing density dependences to the spin–orbit and tensor
interactions may be a solution. However, the density-dependent spin–orbit term consid-
ered by Kanada-En’yo in Skyrme interactions did not solve the problem [192]. As for the
effects of a density-dependent tensor term on isotopic shifts, such studies are still missing.
Besides, DG does not change the spherical shape of these isotopes, already predicted by
D2 and D1S interactions (see subsection III.5.1).

3.4. Nuclear density distributions
We now turn our attention to the nuclear density distributions of two spherical nuclei,

namely 208Pb and 48Ca, with DG, D1S and D2 interactions. 8 Contrary to the neutron
density distribution, the proton density distribution is not directly accessible to experi-
ment. In fact, different types of corrections need to be taken into account in the proton
density distribution, giving rise to the charge density distribution, which can be mea-
sured experimentally. For ease of comparison, we detail here the amendments to the
proton density distribution we consider. The charge density distribution is defined by

ρch(r) ≡
∫

d3r′
[
ρπ(r′)gπ(|~r − ~r ′|) + ρν(r′)gν(|~r − ~r ′|)

]
, (III.64)

8. We have checked out that both nuclei were predicted spherical by DG, D1S and D2 interactions.
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Figure III.9 – The charge radii and differences in squared charge radii, as defined in
(III.63) for Ca isotopes, are represented against the neutron number N in panels (a) and
(b), respectively, for DG, D2 and D1S interactions. They are compared to experimental
data, with vertical bars showing experimental errors [189, 193, 194].

where point-like proton ρπ(r′) and neutron ρν(r′) density distributions are folded by proton
gπ(|~r − ~r ′|) and neutron gν(|~r − ~r ′|) form factors. The proton form factor,

gπ(|~r − ~r ′|) ≡ 1
[π(P 2 −B2)]3/2 e−(~r−~r ′)2/(P 2−B2), (III.65)

is a distribution which takes into account the spatial extension of the proton as well as
its center-of-mass motion, when convoluted with the point-like proton density [196]. As
for the neutron form factor,

gν(|~r − ~r ′|) ≡ −
2
3

〈r2
ν〉

r2
1(r1
√
π)3

(
r − r′

r1

)2
1− 2

5

(
r − r′

r1

)2
e−(~r−~r ′)2/r2

1 , (III.66)

it is parametrized so as to account for the charge distribution within the neutron, when
convoluted with the point-like neutron density [197]. In this distribution, we have r1 ≡
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√
2/5 · 0.71 fm. The other quantities appearing in the above definitions have been given

in subsection III.3.2.

3.4.1. Density distributions in 208Pb

The neutron and charge density distributions predicted by DG, D1S and D2 interac-
tions for 208Pb are represented in Figure III.10. As the uncertainty in the determination
of the neutron density is large, the error is represented by a gray envelope on either side
of the experimental measurement. 9 At small distances from the center of the nucleus,
r ≤ 0.5 fm, all three interactions are a bit outside the envelope, although DG and D2 are
a bit closer. At higher densities, they are almost always contained in the envelope, except
around r ' 1.7 fm and r ' 5.3 fm where D1S slightly deviates from the experimental area,
contrary to D2 and DG interactions. Similarly, at large distances around r ' 7.5 fm, they
all thinly underestimate the neutron density distribution. Actually, it is difficult to have a
faithful reproduction of the density distributions at small distances at the HFB level since
the bump observed is related to the filling the 3s1/2 orbitals, taken into account through
beyond mean-field approaches.

The description of the charge density distribution is pretty well reproduced by all
three interactions, with a reasonable discrepancy of about 0.007 fm−3 at zero distance,
and gradually fades away until disappearing at about r ' 4 fm. The results provided by
the three interactions are once again comparable, and very slightly better at all distances
with DG and D2. Note in passing that the three corrections added to the bare proton
density distribution are similar for all interactions, with a maximum contribution at zero
distance of no more than 0.004 fm−3.

3.4.2. Density distributions in 48Ca

We now carry out the exact same analysis on the nuclear density distributions for
48Ca, whose results are displayed in Figure III.11. Unfortunately, the quantities Ri and
Q±i appearing in the distribution (III.67) are not available for 48Ca, such that we have
extracted by hand the envelope from [200], and interpolated the data. At small distances,
r ≤ 0.7 fm, all three interactions are outside the envelope, but this time D1S is closer.
They then enter the experimental zone, before separating again at about r ' 1.4 fm.
Nevertheless DG and D2 quickly return near experimental values, at r ' 2.4 fm, against
r ' 3.2 fm for D1S interaction. Beyond, they all follow the experimental curve and
slenderly overestimate the neutron density distribution at large distances, from about
r ' 4.2 fm to 5.2 fm.

As for the charge density distributions of the Gogny interactions, they are all mod-
erately far from experimental predictions, especially in the region r ≤ 2 fm. The phe-
nomenon is more pronounced at zero distance, reaching a difference of 0.017 fm−3 with

9. The upper (+) and lower (−) edges of the envelope are determined using a model-independent
sum-of-Gaussians distribution of the form

ρ±ν (r) = N

2π3/2γ

12∑
i=1

Q±i
1 + 2R2

i /γ
2

(
e−(r−Ri)2/γ2

+ e−(r+Ri)2/γ2
)
, (III.67)

with N the number of neutrons, γ ≡ 1.70/
√

3/2 the width of the Gaussians, as well as the position Ri
and the fraction of neutrons Q±i in the i-th Gaussian, which are given for 208Pb in [198].
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Figure III.10 – Neutron (full lines) and charge (dashed lines) density distributions obtained
with DG, D1S and D2 interactions at the HFB approximation, compared to experiment
in 208Pb [198, 199]. The gray envelope shows the uncertainty of the experimental neutron
density distribution.

D1S and 0.022 fm−3 with DG and D2, respectively. At large distances, from r ' 3.4 fm,
all three interactions merge the experimental curve.

Generally speaking, we note that the theoretical predictions are better in 208Pb than
in 48Ca. In particular, DG and D2 curves seem to more accurately fit experimental
data than D1S. One way of improving our description would be to pull out the density
distributions from random phase approximation (RPA) calculations, which would then
take into account more correlations in the ground state. The closeness of the DG and
D2 results suggests that the spin–orbit and tensor terms have no major influence on the
density distributions. If we stick to the HFB outputs, we tend to mainly attribute the
good local predictions of DG and D2 interactions to their finite-range density-dependent
term. In that logic, it might be worth attaching a density dependence to the spin–orbit
and tensor forces.

4. Surface properties

4.1. Pairing energy
4.1.1. Tin isotopic chain

We carry on our analysis of the generalized Gogny interaction by looking at its surface
properties, and more particularly its pairing energy in this subsection, which are compared
to the D1S and D2 predictions. The pairing energy, drawing its contributions from the
central, density-dependent, spin–orbit, tensor and Coulomb pairing fields, for interaction
DG, is examined in the Sn isotopic chain. Since these nuclei possess a magic number
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Figure III.11 – Same as in Figure III.10, but now for 48Ca. Experimental data have been
extracted from [199, 200].

of protons (Z = 50), they allow to isolate the neutron pairing correlations. The pairing
energies of DG, D2 and D1S interactions, calculated using the exact exchange Coulomb
potential as well as the Slater approximation, are represented in Figure III.12.

We first note we have checked that the proton contribution to the pairing energy is,
as expected, zero so that only the neutron pairing energy is responsible for what follows.
As required, the pairing energies vanish for all three interactions in the doubly magic
isotopes 100Sn and 132Sn. This result was mandatory to guarantee consistency of our
parametrization, and was actually systematically verified at the fitting stage. Pairing
energies are not significantly changed when the exact Coulomb potential is taken into
account. Only for the interaction DG, between A = 100 to A = 116, the intensity of the
pairing energy is increased by at most 300 keV, due to the mean-field rearrangement. This
was expected since the Coulomb term contributes to the proton pairing energy exclusively.
Once these details have been given, the striking effect is obviously the collapse in pairing
energy observed with DG, compared to D1S and D2 interactions. From A = 110, the well
shape is broken with DG, and the strength of the pairing energy decreases up to A = 118
before growing again up to A = 124, returning to values comparable to those of D1S and
D2 interactions. This phenomenon clarifies the decline of the difference between HFB and
experimental binding energies, with respect to D1S and D2 interaction, we have observed
sooner along the Sn isotopic chain (see panel (c) of Figure III.4). Indeed, when (the
intensity of) the pairing energy starts to fall down with DG, at A = 110, the associated
binding energy is also reduced. This indicates manifestly the responsibility of the pairing
energy in the peculiar diminution of the binding energies, specific to the DG interaction,
in the Sn isotopic chain.

To understand what is going on in the region between 60 ≤ N ≤ 76, we look at
the neutron SPEs of the corresponding isotopes in Figure III.13, with DG, D1S and D2
interactions (employing the exact Coulomb term), extracted from an HF calculation. A
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Figure III.12 – Pairing energy as a function of the nucleon number A in the Sn isotopic
chain, evaluated for DG, D1S and D2 interactions, with and without the exact Coulomb
potential.

quite impressive effect stands out: two inversions of neutron levels, one between 1g7/2 and
2d5/2 at N = 62 and another between 2d3/2 and 3s1/2 states at N = 68 appear with DG,
compared to D1S and D2 interactions. Even more interestingly, they occur roughly where
the monotony of the pairing energy curve changes, as we have described in the previous
paragraph. Needless to say, we could be more precise if odd isotopes were also considered,
but we can already be quantitative by focusing on the values of the neutron gaps given
in Table III.4.

(1g7/2 − 1g9/2)ν (2d3/2 − 2d5/2)ν
DG D1S D2 DG D1S D2

Isotope (MeV) (MeV) (MeV) (MeV) (MeV) (MeV)
110Sn 6.202 8.143 7.953 2.599 2.909 2.754
112Sn 6.153 8.080 7.881 2.544 2.909 2.745
114Sn 6.032 8.014 7.806 2.535 2.911 2.738
116Sn 5.959 7.938 7.713 2.498 2.914 2.729
118Sn 5.913 7.846 7.599 2.438 2.913 2.716
120Sn 5.871 7.735 7.462 2.390 2.907 2.703

Table III.4 – Neutron energy gaps (1g7/2 − 1g9/2)ν and (2d3/2 − 2d5/2)ν of Sn isotopes
predicted by DG, D1S and D2 interactions at the HF approximation.

On the one hand, we see that the (1g9/2 − 1g7/2) neutron gap of DG is considerably
reduced compared to that of D1S and D2 interactions in all the Sn isotopes displayed. In
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Figure III.13 – Neutron single-particle energies 1h11/2, 2d3/2, 3s1/2, 1g7/2 and 2d5/2 as a
function of the neutron number N in the Sn isotopic chain, evaluated for DG, D1S and
D2 interactions.

110Sn, the difference with D1S (D2) reaches about 1.9 MeV (1.8 MeV) and about 1.9 MeV
(1.6 MeV) in 120Sn. Moreover, for all three interactions, the gap is shrunk as the neutron
number N grows. On the other hand, the neutron gap (2d3/2 − 2d5/2) is also predicted
smaller by DG than by D1S and D2 interactions, but to a lesser extent since it only differs
by 300 keV and 150 keV in 110Sn, and by 500 keV and 300 keV in 110Sn, respectively. We
notice in addition that only the gap of DG is significantly reduced when going to heavier
isotopes. This corroborates the observations of Figure III.13. Since the gap (1g9/2−1g7/2),
rather small with DG (compared to that of D1S and D2), narrows, the 1g7/2 orbital is
lowered while the 2d5/2 is raised by the same phenomenon in the other gap (2d3/2−2d5/2).
The two states end up crossing each other, implying the inversion spotted at N = 62.
As for the second inversion at N = 68, it is also related to the gap (2d3/2 − 2d5/2) being
reduced, as the state 2d3/2 is lowered when N grows, while 3s1/2 is not shifted. Note that
the second inversion is subtler than the first one as the energy differences between DG,
and D1S and D2 gaps are smaller.

These gap reductions also shed light on why the pairing energy of interaction DG is
diminished in the region 60 ≤ N ≤ 76. From N = 60 to N = 64, the neutron gap
(3s1/2 − 1g7/2) is enlarged in a significant way with DG because of the decline of the
orbital 1g7/2, thus limiting pairing correlations. This applies from N = 68 as well, since
the orbital 2d3/2 continues to move downward right after the inversion with the state
3s1/2, producing a (small) enlargement of the (3s1/2 − 2d3/2) gap.

We close this subsection by trying to identify the reasons for the two level inversions
we have discriminated. First, we underline that the reductions of the gaps in Table III.4
are not particularly pronounced for specific isotopes, but are quite general, suggesting a
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predominance of the spin–orbit force. The intensity of the spin–orbit in the DG interaction
has been substantially lowered with respect to D1S and D2 interaction (from 130 MeVfm5

to 115.849 MeVfm5). This diminution should be accompanied with a diminution of the
spin–orbit splitting, in particular between 2d3/2 and 2d5/2, as well as between 1g7/2 and
1g9/2 orbitals. This is in line with our observations. It must be emphasized that the
splitting of spin-partner states j≷ ≡ l±1/2 increases with growing values of l, so that the
splitting should be more shrunk between 1g7/2 and 1g9/2 than between 2d3/2 and 2d5/2
states. This is once again what we have noticed above. Obviously the central, density-
dependent and tensor forces take part in the overall arrangement exposed so far, but the
spin–orbit appears to be mainly responsible for the two inversions of neutron orbitals.

4.1.2. N = 50 isotonic chain

The proton twin of the previous analysis is the study of the pairing energy in the
N = 50 isotonic chain. Indeed, the associated nuclei exhibit a magic number of neutrons
and then allow to isolate the proton pairing correlations. The pairing energies of DG, D2
and D1S interactions, computed using the exact exchange Coulomb potential, are shown
in Figure III.14. Note that contrary to the Sn isotopes, all isotones of the aforementioned
chain are not predicted spherical by the three interactions. We accordingly extracted the
pairing energies at the HFB minima.
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Figure III.14 – Pairing energy as a function of the nucleon number A in the N = 50
isotonic chain, evaluated for DG, D1S and D2 interactions, with and without the exact
Coulomb potential.

We have first checked that this time the neutron contribution to the pairing energy
is zero, so that only the proton pairing energy is involved in the following discussion.
As a whole, the same trend is observed with all three interactions, with a DG pairing
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energy smaller than those predicted by D1S and D2 interactions from isotones A = 82 to
A = 92, reaching a maximum difference with D2 of about 1.6 MeV for isotone A = 86.
Pairing energies vanish at magic numbers Z = 28 and Z = 50, as required, and a distinct
diminution of the pairing energy appears at the Z = 40 subshell. While the pairing energy
at this point is small with D1S and D2 interactions, of about −2.2 MeV and −1.4 MeV
respectively, it completely cancels out with DG. We will now interpret this phenomenon
in terms of SPE considerations at the HF approximation.

In Figure III.15, the proton SPEs around the Fermi level of N = 50 isotones in the
region 36 ≤ Z ≤ 44 are given for DG, D1S and D2 interactions (employing the exact
Coulomb term). Unlike along Sn isotopic chain, no level inversions are observed, but the
proton gap (1g9/2− 2p1/2), corresponding to the gap of the Fermi level in isotone Z = 40,
is enlarged in a significant way. To be more quantitative, we furnish the values of some
proton energy gaps in Table III.5.
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Figure III.15 – Proton single-particle energies 1g9/2, 2p1/2, 2p3/2 and 1f5/2 as a function of
the number of protons Z in the N = 50 isotonic chain, evaluated for DG, D1S and D2
interactions.

In isotone 88Sr, the gap is slightly wider with DG than those of D1S and D2 interac-
tions, resulting in a little smaller proton pairing energy. The level 2p1/2 is fully filled at
Z = 40 so that the gap becomes (1g9/2 − 2p1/2) and is about 2.4 MeV (2.5 MeV) larger
with DG than with D1S (D2) interactions; it is almost doubled. This enlargement of the
Z = 40 gap is at the origin of the zero pairing energy of 90Zr. Finally, in 92Mo, pairing
correlations mainly comes from the 1g9/2 orbital.

The enlargement of the proton gap (1g9/2−2p1/2) observed in 90Zr with DG is also the
consequence on a competition between spin–orbit and tensor forces. The reduction of the
spin–orbit strength brings spin-partner states (1g7/2)π and (1g9/2)π as well as (2p1/2)π and
(2p3/2)π closer. On the other side, because the level (1g9/2)ν is completely filled, a strong
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Proton energy gap
DG D1S D2

Isotone (MeV) (MeV) (MeV)
(2p1/2 − 2p3/2) (2p1/2 − 2p3/2) (2p1/2 − 2p3/2)

88Sr 2.350 2.267 2.198
(1g9/2 − 2p1/2) (1g9/2 − 2p1/2) (1g9/2 − 2p1/2)

90Zr 3.928 2.481 2.407
(2d5/2 − 1g9/2) (2d5/2 − 1g9/2) (2d5/2 − 1g9/2)

92Mo 6.354 7.235 7.300

Table III.5 – Proton energy gaps of some N = 50 isotones predicted by DG, D1S and D2
interactions at the HF approximation.

tensor repulsion with (1g9/2)π comes into play and raises the energy of that level. All in all,
the spin–orbit and tensor terms contribute to the opening of the proton gap (1g9/2−2p1/2)
in 90Zr, killing the small pairing energy displayed by D1S and D2 interactions. Recently,
Miyahara and Nakada pointed out, using the M3Y parametrization P6, that the tensor
force favored the spherical shape of nucleus 90Zr [201]. This is precisely what we have just
shown as the tensor force accentuates the magicity of this nucleus.

4.2. Single-particle energies
We now would like to provide a global picture on the way the splittings and gaps at

the Fermi levels transform when going from D1S and D2 to DG interaction, at the HF
approximation. For that purpose, we consider several spherical nuclei along the O, Ca,
Ni, Zr, Sn and Pb isotopic chains, as carried out for D1ST and D1MT parametrizations in
[29]. We will not comment all cases, but simply highlight relevant examples in particular
to give evidence of spin–orbit and tensor actions on the shell evolution.

4.2.1. Energy splittings

Proton splittings
We begin with the proton splittings 1p, 1d and 1f , shown for DG, D1S and D2 inter-

actions in Figure III.16.
We first notice that D1S and D2 predictions are rather comparable for all tested nuclei.

This informs that the differences in the central and density-dependent parts between
D1S and D2 do not have strong implications on the proton splittings (the intensity of
their spin–orbit terms being the same). On the opposite, DG sometimes appreciably
deviates from them, suggesting, as expected, that the spin–orbit and tensor forces are
tied to shell evolution. In O and Ca isotopes for instance, DG systematically reduces
the 1p, 1d and 1f splittings. In O isotopes, no action shows up on the proton 1p SPEs
as they are spin-saturated in protons. Since the spin–orbit intensity has been lessened
(in the T = 1 channel) with DG, the 1p splitting is lowered via the spin–orbit force
only. This explanation holds for the 1p and 1d splittings of the proton spin-saturated Ca
nuclei. When not spin-saturated in neutrons, the tensor force combines with its spin–
orbit counterpart to modify 1d and 1f splittings in O isotopes, as well as 1f splittings
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Figure III.16 – Proton splittings displayed for certain nuclei of the O, Ca, Ni, Zr, Sn and Pb
isotopic chains, as a function of the neutron number N . The 1f (1f7/2−1f5/2), 1d (1d5/2−
1d3/2) and 1p (1p3/2 − 1p1/2) splittings are represented in panels (a), (b) and (c), respec-
tively.

in Ca isotopes. For example, in 22O, the tensor force amplifies the reduction of the 1d
splitting through its proton–neutron component. The (1d5/2)ν state, which is completely
filled, attracts (1d3/2)π and repels (1d5/2)π states, which are empty. The addition of the
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spin–orbit and tensor contributions explains the particularly broad 1d splitting in this
nucleus.

In Ni isotopes, an oscillating behavior of the splittings is described by DG, around
the D1S and D2 values. This phenomenon is difficult to understand from the point of
view of pure spin–orbit and tensor effects, especially for the 1p and 1d splittings. Indeed,
the corresponding states are entirely filled so that the tensor force is zero and only the
spin–orbit should contribute to bring those states closer. However, in 48Ni and 68Ni
isotopes, the 1p and 1d splittings are widened by DG, with respect to those of D1S and
D2 interactions. The same phenomenon appears in fact for 1f splittings. In 48Ni for
example, the small proton–proton tensor attraction between orbitals 1f7/2 and 1f5/2 is
expected to slightly lowers the state 1f5/2, then contributing to enhance the reduction of
the 1f splitting, mainly due to the spin–orbit action. This is not what we observe in panel
(a). Let us note that these gap expansions have always reasonable amplitudes compared
to the splitting reductions in certain O or Ca isotopes. They do not exceed 1 MeV, and
could then be related to the central and density-dependent part, that of DG being a bit
different from those of D1S and D2 interactions.

From 90Zr, all spin-partner states involved in the 1p, 1d and 1f splittings are fully
occupied, so that only the DG spin–orbit force is supposed to reduce them with respect
to D1S and D2 interactions. This is what we see, except in 114Sn and 116Sn, whose small
splitting enlargements might also be attributed to the central and density-dependent part.
In the other isotopes, it is worth noticing that the splitting reductions are stronger for 1f
than for 1d states, and even more than for 1p states, in agreement with the proportionality
of the spin–orbit splitting with l.

Neutron splittings
The same study can obviously be performed for neutron splittings. In Figure III.17, the

neutron splittings 1p, 1d and 1f predicted by DG, D1S and D2 interactions are displayed.
Once again, it appears that D1S and D2 predictions are quite similar in the nuclei

under study, while DG shows important discrepancies. However, the overall tendency is
different from that observed with proton splittings, as the number of protons and neutrons
is different (except in 40Ca, 56Ni and 100Sn). With the DG interaction, the results in O and
Ca isotopes are closer to those of D1S and D2, Ni and Sn splittings are always reduced
while that of 90Zr is broadened. We remind the reader that the DG interaction was fitted
to reproduce the neutron 1f splittings of isotopes 40Ca, 48Ca and 56Ni better than D1S
and D2. In addition, the neutron 1p splitting of 16O had to remain appropriate. These
constraints unavoidably affect the neutron SPEs of medium-mass nuclei evaluated with
the DG interaction.

Once again, the changes observed when going from D1S and D2 to DG cannot be fully
explained by the interplay between spin–orbit and tensor forces. Indeed, the neutron
splittings should always be reduced with DG for the nuclei selected, but it is not the case.
Whereas the evolution of the proton splitting of 22O with DG was correctly understood
invoking the relative spin–orbit and tensor contributions, this is no longer true in the
neutron sector. The reduction of the neutron splitting (1d5/2 − 1d3/2) implied by the
spin–orbit force should combine with the lowering of the 1d3/2 level due to its tensor
attraction with 1d3/2, ending up in a narrower neutron 1d splitting in this proton spin-
saturated nucleus. The opposite effect is actually observed in Figure III.17. This hints
again that the central and density-dependent part of DG cannot be discarded from such
interpretation. Reciprocally, the evolution of the proton 1f splitting of 48Ni, that was not
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Figure III.17 – Same as in III.16, but now for neutron single-particle energies.

faithfully described by spin–orbit and tensor effects, here is. As usual the 1f splitting
is shrunk by the spin–orbit force with DG while the state (1f7/2)π, which is completely
filled, lowers (1f5/2)ν and raises (1f7/2)ν , which are empty. The powerful action of the
tensor force combined with that of the spin–orbit term are responsible for the considerable
reduction of the neutron 1f splitting caused by DG in that isotope.

In heavier isotopes, as in the proton sector, all spin-partner states involved in the
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1p, 1d and 1f splittings are saturated, so that the tensor force vanishes. We then expect
these splittings to be all reduced by the spin–orbit component of DG, with respect to
D1S and D2. This is the case, excluding the isotope 90Zr. Central and density-dependent
terms may then have a determining role to play in the positioning of the neutron SPEs
of this nucleus.

4.2.2. Energy gaps

Finally, the proton and neutron energy gaps of the Fermi levels for the isotopes stud-
ied so far are displayed for DG, D1S and D2 interactions, and compared to available
experimental data in Figure III.18.
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Figure III.18 – Proton (panel (a)) and neutron (panel (b)) energy gaps of the Fermi levels
shown for certain nuclei of the O, Ca, Ni, Zr, Sn and Pb isotopic chains, as a function
of the nucleon number A. When available, experimental data are represented by black
triangles [202, 203]. Note that energy gaps of 28O, 48Ni, 60Ca, 78Ni and 100Sn have not been
measured but estimated from the binding energies of the neighboring nuclei.

Contrary to the splittings, we first see here that the proton and neutron gaps are often
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enlarged when going from D1S and D2 to DG interactions. The effect is more visible for
the proton gaps of O and Ca isotopes. Moreover, the neutron gaps of 14O, 16O, 48Ca, 114Sn
and 132Sn better fit experimental values with DG than with the other interactions, while
only the proton gaps of 16O and 132Sn do so with DG. This observation confirms that the
constraints on the neutron splittings imposed in the fitting process drive the neutron gaps
as well.

In 132Sn, the gap (1g7/2 − 1g9/2)π is reduced with DG because of the spin–orbit force,
while the state (1h11/2)ν , which attracts (1g7/2)π and repels (1g9/2)π by means of the tensor
force, favors this reduction. Thus, in this nucleus, the joint actions of the spin–orbit and
tensor forces contribute to improve the description of the proton gap.

In the neutron sector, the better agreement with the experimental data for 16O, 40Ca
and 48Ca isotopes has believably to do with their respective constraints on the neutron
1p and 1f splittings. In 14O, the gap (1p3/2 − 1p1/2)ν should be diminished by DG as the
spin–orbit force brings the corresponding states closer while the state (1p3/2)ν attracts
(1p1/2)ν through the tensor term. However, this gap is widened by DG, with respect to
those of D1S and D2 interactions according to the figure. This suggests once again that
we cannot predict the movements of the SPEs of DG by only calling upon the spin–orbit
and tensor forces. For 114Sn, though, we have already pointed out in subsection III.4.1.1
that the spin–orbit force was mainly responsible for an inversion of states, at the origin of
the increase of the DG neutron gap (3s1/2 − 2d5/2). Finally, a combination of spin–orbit
and tensor forces seem to account for the reduction of the neutron gap in 132Sn isotope.

It appears from our analysis on the splittings and gaps at the Fermi levels in both
proton and neutron sectors, that the spin–orbit and tensor forces definitely have a strong
role to play in the arrangement of SPEs with the DG interaction. Nevertheless, its central
and density-dependent part is also important and sometimes dominates the spin–orbit
and tensor contributions in the shell evolution. Actually the SPEs evaluated at the HF
approximation are not quantities directly measurable from experiments, and consequently
limits the interpretation. In the next chapter, we will connect such results with the first
excitation energies of spin–parity Jπ in various nuclei beyond the mean field. This will
allow to shed light on the reliability on the DG predictions regarding the evolution of
SPEs.

5. Deformations
So far we have studied the characteristics of the interaction DG at the HFB energy

minimum only. In this section, we look at how the HFB energy evolves with the defor-
mation, latter called the HFB deformation energy. For that purpose, the axial potential
energy surfaces (PES) along Mg, Si, S, Ca and Sn isotopic chains obtained with DG,
D1S and D2 interactions are studied with respect to the quadrupole moment Q20. All
the other moments appearing in the multipole expansion of the radius are set to zero, in
such a way that we are dealing with pure axially symmetric deformations. In fact, for
ease of comparisons, we will rather consider the dimensionless quadrupole deformation
parameter β2, related in our conventions with the quadrupole moment by the identity

β2 ≡
4π

3AR2Q20, (III.68)

where the radius of the nucleus is defined through the empirical formula R = R0A
1/3,

with the nucleon number A and R0 = 1.2 fm.
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5.1. Magnesium potential energy surfaces

We begin with the PES along the Mg isotopic chain, given for the three interactions
in Figure III.19.
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Figure III.19 – Potential energy surfaces of the Mg isotopes as a function of the quadrupole
deformation parameter β2, obtained for DG, D1S (with and without using Slater approx-
imation) and D2 interactions.
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First of all, it appears clearly that the results obtained using the exact exchange
Coulomb potential (blue full lines) and the Slater approximation (blue dashed lines) with
the D1S interaction are not very different. They are shifted by at most of few hundred
of keV. Another interesting feature, we have already spotted at HFB minima, is that
the interaction DG often provides a bit less binding energy, with respect to D1S and D2
predictions. This is particularly visible from isotopes 22Mg to 30Mg and in 34Mg, and
reaches a maximum decrement of 3.2 MeV with respect to D2 in 26Mg at the spherical
point (β2 = 0). In 32Mg, however, the interaction DG favors sphericity with a more
pronounced well than that of D2. By considering quadrupole deformations with axial
symmetry assumed using the parametrization P6 of interaction M3Y, Suzuki et al. found
that the tensor force favored sphericity in magic N = 20 nuclei [204]. Observation of this
effect with the generalized Gogny interaction seem to indicate that our tensor force acts
in the same way as in this M3Y interaction. In 22Mg, we see that two wells, one oblate
(β2 < 0) and one prolate (β2 > 0), start to form and anticipate a competition between
the corresponding local minima to become global and fix the shape of the nucleus in the
heavier isotopes (expect for 30Mg which displays a rather flat PES around sphericity).
Most of the time, all three interactions coincide in predicting oblate or prolate shape for
Mg isotopes. Nonetheless, this is not the case of 26Mg, which apparently displays a shape
coexistence, since two energy wells with relatively equal depths show up. We accordingly
study this nucleus in more details in the following.

In Figure III.20, the PES of 26Mg is shown. It appears clearer on this graph that the
nucleus is predicted prolate by DG and oblate by D1S and D2 interactions in the ground
state (at the HFB level, at least). Quantitatively, the values of the HFB deformation
energies EHFB at the oblate and prolate local minima β2 are displayed for DG, D1S and
D2 interactions in Table III.6. We see that the oblate and prolate minima of D1S and D2
are separated by 60 keV and 110 keV, respectively. This means that the ground states of
26Mg described by those interactions are not stable as a small amount of energy can tip
the system into the other minimum and drastically change its shape. The prolate shape
associated with DG is a bit more stable as it is separated by 290 keV from the oblate
minimum, but it is still showing a shape coexistence. Note also that these minima are
predicted more deformed with DG than with D1S and D2 interactions as the values of
|β2| are greater. Interestingly, the tensor force is supposed to have a significant action
on the SPEs already at the spherical point in this nucleus. Besides, a study similar to
this one carried out with perturbative D1ST2a interaction provided comparable results
in 26Mg [38]. Because the spin–orbit intensity of D1ST2a is that of D1S, this effect was
thought to be due to the tensor force. We here draw the same conclusion, the tensor force
is mainly held responsible for these effects.

Oblate minimum Prolate minimum
β2 EHFB β2 EHFB

Interaction (MeV) (MeV)
DG −0.331 −208.982 0.433 −209.270
D1S −0.280 −212.669 0.382 −212.560
D2 −0.306 −211.159 0.357 −211.094

Table III.6 – Deformation energies and quadrupole deformation parameters at the oblate
and prolate local minima of 26Mg, predicted by DG, D1S and D2 interactions.
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Figure III.20 – Potential energy curve of 26Mg as a function of the quadrupole deformation
parameter β2, obtained for DG, D1S (with and without using Slater approximation) and
D2 interactions. The points indicate outputs of HFB calculations.

Finally, we compare the shapes showing up at the HFB minima in Mg isotopes with
DG, D1S and D2 interactions with those predicted by the finite-range droplet model
(FRDM) and experimental data [202], when available, in Figure III.21.

In panel (a), we check that the nature of the quadrupole deformations (oblate, prolate
or spherical shape) among Gogny interactions are, as mentioned above, always the same,
except in 26Mg. When we compare these predictions with those of the FRDM, it turns
out that they often match. Only in 30Mg, 32Mg and 32Mg they are different from all three
interactions. Remarkably, the prolate shape of 26Mg specific to the DG interaction is in
line with the FRDM results. On the contrary, the spherical shape of 32Mg accentuated
by the interaction DG (in the sense that the nucleus is predicted more rigid) is found
prolate by the FRDM. Obviously, this comparison must be considered with caution since
the FRDM is, as its name says, a model.

As only the magnitudes of the quadrupole deformations can be related to experimen-
tal data, we compare these quantities with the predictions of Gogny interactions in panel
(b). Globally, we see that the interaction DG is closer to experiment for 22Mg, 26Mg and
28Mg isotopes. It is worth emphasizing that the prediction is notably amended with DG
for 26Mg, corresponding to a nucleus in which the tensor force acts in a predominant
manner, changing its shape and increasing the value of β2, as we have discussed above.
We finally notice that the deformations predicted by all three Gogny interactions under-
estimate the experimental values. Actually, with the HFB approach we have only taken
into account static correlations. Going beyond the mean field to incorporate dynamic
correlations (vibrations, collective rotations, etc.) should bring up more deformation to
the Mg isotopes.
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Figure III.21 – The values of the quadrupole deformation parameters β2 in the ground
state for Mg isotopes with DG, D1S and D2 interactions are compared with the predictions
of the finite-range droplet model [89] in panel (a). A similar comparison of |β2| with
experimental data [202] is carried in panel (b).

5.2. Silicon and Sulfur potential energy surfaces
We continue with the PES along the Si and S isotopic chains, given for the three

interactions in Figures III.22 and III.23, respectively. They are studied together as they
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present quite alike behaviors on many aspects.
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Figure III.22 – Same as in Figure III.19, but now for the Si isotopic chain.

The general remarks made for Mg isotopes remain true. Taking into account the
exact Coulomb potential rather that evaluated at the Slater approximation does not
change the results in a meaningful way, and the isotopes described by DG are essentially
less bound than with D1S and D2 interactions. In 34Si and 36S, though, the spherical
shapes are favored with DG, compared to D2, as the wells around β2 = 0 are deeper and
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Figure III.23 – Same as in Figure III.19, but now for the S isotopic chain.

less wide in these isotopes. Once again, this corroborates the results obtained by Suzuki
et al. [204]. On the opposite, the authors show that the tensor favors deformations
in magic N = 28 nuclei. This is effectively what we get since the energy difference
between the prolate minimum and the spherical point reaches 3.2 MeV with DG, against
2.4 MeV and 1.8 MeV, respectively, with D1S and D2 interactions in 42Si. There is also a
prolate well taking shape with interaction DG, indicating that deformed configurations are
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preferred. The same situation occurs in 44S since the prolate minimum is 1.7 MeV away
from the spherical point for interaction DG, versus 1.1 MeV and 1.0 MeV for interactions
D1S and D2, respectively. While the nature of the minima is broadly the same for all three
interactions (with small energy or deformation shifts), we can see that the interaction DG
differs from the other two in isotopes 30Si, 30S, 34S, 48S and 50S. Since the effect is more
remarkable in 30S than in 34S, 48S and 50S, we look at 30S in more details from now on
(30Si and 30S being mirror nuclei).

In Figure III.24, the PES of 30S is represented. We see on this graph that two distinct
wells, one oblate and one prolate, show up with DG, whereas interactions D1S and D2
seem to remain spherical in the ground state. To be more quantitative, the values of
the HFB deformation energies EHFB at the global minimum and at the spherical point
are listed for DG, D1S and D2 interactions in Table III.7. We observe that the nucleus
is indeed predicted spherical for D1S, but that it is actually prolate with D2. This was
difficult to discriminate as the prolate minimum of D2 is only 30 keV lower than the
spherical point. On the contrary, 450 keV separates the oblate from the spherical shape
with DG, and even less from the prolate solution, so that 30S is predicted deformed by
this interaction. Moreover, the oblate minimum is twice as deformed with DG as with D2
interaction. Qualitative agreement with D1ST2a interaction is found in this nucleus as
well [38], so that the tensor force favors deformations here again. Note by the way that
the tensor effects in this nucleus, and the neighboring isotopes, already manifesting in the
SPEs at the spherical point, will be investigated in the next chapter.
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Figure III.24 – Same as in Figure III.20, but now the isotope 30S.

Finally, we compare the shapes appearing at the HFB minima in Si and S isotopes
with DG, D1S and D2 interactions with those predicted by the FRDM and experimental
data [202], when available, in Figures III.25 and III.26, respectively.

In panels (a), we see that the predictions of Gogny interactions are often in agreement
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Global minimum Spherical point
β2 EHFB β2 EHFB

Interaction (MeV) (MeV)
DG −0.301 −235.975 0 −234.424
D1S 0 −240.625 0 −240.625
D2 −0.151 −238.127 0 −238.098

Table III.7 – Deformation energies and quadrupole deformation parameters at the global
minimum and spherical point of 30S, predicted by DG, D1S and D2 interactions.

with those of the FRDM. In 40Si, 26S, 44S, 46S and 50S, however, the deformation natures
are different from those predicted by the three interactions. On the other hand, the oblate
shapes of 30Si and 30S, predicted by DG and D2 interactions, are in line with the FRDM
results. Likewise, 48S exhibits an oblate shape with DG, in accordance with FRDM
predictions, while it remains spherical according to D1S and D2 interactions. Besides,
the spherical shapes of 34Si and 36S stressed by the interaction DG are also shared by the
FRDM.

In panels (b), it appears that the predictions of interaction DG are closer to the
experimental values for 28Si, 30Si, 32Si, 30S, 32S and 34S isotopes (compared to those of D1S
only for 32Si). It is worth underlining that the results are in particular improved with DG
for the mirror nuclei 30Si and 30S, corresponding to the isotopes in which the tensor force
is prominent. Indeed we have shown above that 30S was strongly distorted through its
action (the same result holds for 30Si). Finally, we notice that the deformations predicted
by all three Gogny interactions underestimate the experimental values, although a bit less
than for Mg isotopes. This is due to the limitations of the HFB treatment; extensions
beyond the mean field must be undertaken to refine the outcomes.

5.3. Calcium potential energy surfaces
The PES along the Ca isotopic chain are given for the DG, D1S and D2 interactions

in Figure III.27.
We see that the ground states of all Ca isotopes are predicted spherical by the three

interactions, showing a deep well at β2 = 0. Although the solutions are a little less bound
away from the spherical point with DG, the spherical wells are systematically predicted
narrower with this latter compared to that of D2 from 34Ca to 48Ca, and even compared
to D1S from 50Ca. This was to be expected since the remarks we have made for magic
N = 20 isotones Mg, Si and S, exhibiting similar tensor effects, obviously apply to magic
Z = 20 isotopes. In the doubly magic Z = N = 20 nucleus 40Ca, we consistently find out
that the spherical well is more pronounced with DG with respect to D2 interaction than
for the neighboring isotopes, reaching a difference of 1.6 MeV. The sphericity is reinforced
by the receding prolate minimum with the DG interaction. Actually we have performed
the calculations on Ca isotopes to probe the properties of the DG interaction on PES
of medium-mass nuclei, but over all to get information for our study on the kink (see
subsection III.3.3.2). As it was argued that the deformation properties could influence
the isotopic shift, we wanted to analyze the shapes of Ca isotopes. Interaction DG in fact
predicts more rigid spherical nuclei, in agreement with the enlargement of both proton
and neutron gaps with respect to those of D1S and D2 interactions, as shown in Figure
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Figure III.25 – Same as in Figure III.21, but now for the Si isotopic chain.

III.18. To go further in the connection of dynamical deformations and pairing correlations
to the isotopic shift, beyond mean-field calculations must be carried out.
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Figure III.26 – Same as in Figure III.21, but now for the S isotopic chain.

5.4. Tin potential energy curves

Finally, the PES along the Sn isotopic chain are represented for the DG, D1S and D2
interactions in Figure III.28.

Here again, the ground states of all Sn isotopes are predicted spherical by the three
interactions, with deeper wells at deformation β2 = 0 close to the magic nuclei 100Sn and
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Figure III.27 – Same as in Figure III.19, but now for the Ca isotopic chain.

132Sn, as required. The PES of DG, D1S and D2 interactions follow the same patterns,
but are shifted from one another, with D2 overall providing solutions less bound than
those of D1S and more bound compared to DG. Specifically at the spherical points, this
was already spotted in panel (c) of Figure III.4. In particular, the difference in energy at
the spherical point from 100Sn to 118Sn between DG and, D1S and D2, decreases while it
then grows up in heavier isotopes. This is in agreement with the results of Figure III.18
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Figure III.28 – Same as in Figure III.19, but now for the Sn isotopic chain.

since the neutron pairing gaps of DG are reduced for isotopes 100Sn and 132Sn, and on the
contrary enlarged for isotopes 114Sn and 116Sn, with respect to D1S and D2 interactions
at the spherical point. Indeed, we have attributed this effect to the related diminution of
neutron pairing energies with DG, observed in Figure III.12.
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6. Fission barriers
Finally, we look at the PES of some pre-actinides and actinides to report how their

fission barriers are modified by the interaction DG. This kind of nuclei present two barriers.
The first one, characterized by a height BI, corresponds to the amount of energy required
for the nucleus to move from its ground state (marked by a first well), to a possible
metastable state called the fission isomer (marked by a second well). There, a second
barrier, characterized by a height BII, describes the amount of energy required for the
nucleus to undergo fission, i.e. to scission into two lighter fragments.

In the following, the asymmetric (the axial octupole moment Q30 is not constrained)
fission barriers will be considered to evaluate the fission barrier heights at quadrupole
deformations β2 in Th isotopes and standard actinides. To be able to compare fission
barriers more clearly between each of the Gogny interactions, we define the normalized
deformation energy by

EHFB ≡ EHFB − EGS
HFB, (III.69)

where EGS
HFB is the deformation energy in the ground state for a given nucleus.

6.1. Thorium isotopes
We begin with the PES of four Th isotopes, represented in Figure III.29.
Generally speaking, we see that the PES of all interactions follow the same pattern.

Nevertheless, they can be slightly shifted in deformation or in energy in certain regions,
from one interaction to another. To quantify these effects, we first compare the first fission
barrier heights of DG, D1S (with and without Slater approximation) and D2 interactions
in Table III.8.

First fission barrier height BI

226Th 228Th 232Th 234Th
Interaction (MeV) (MeV) (MeV) (MeV)
DG 7.3 7.1 8.0 8.4
D1S 8.5 8.7 9.3 9.9
D1S (Slater) 7.6 7.7 8.8 9.4
D2 7.4 7.5 8.2 8.8
Exp 6.2 5.8 6.1

Table III.8 – First fission barrier heights BI of isotopes 226Th, 228Th, 232Th and 234Th
obtained with DG, D1S (with and without the exact Coulomb potential) and D2 interac-
tions. They are compared to experimental data when available [205, 206].

It appears that the heights of the first barriers in the Th isotopes under study have
comparable sizes with DG and D2 interactions, and are about 1 to 1.5 MeV smaller than
those of D1S. It is interesting to see that the exact Coulomb potential tends to increase
the heights of these barriers with respect to the same solution using the Slater approx-
imation, for interaction D1S. The effect is moderate on 232Th and 234Th isotopes, not
exceeding 500 keV, but more pronounced on 226Th and 228Th isotopes, of about 1 MeV.
Since the calculations have been performed with the exact Coulomb force for DG and D2
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Figure III.29 – Potential energy curves of 226Th, 228Th, 232Th and 234Th as a function of
the quadrupole deformation parameter, evaluated at the one-center limit for DG, D1S
(with and without the exact Coulomb potential) and D2 interactions. The first BDG

I and
second BDG

II fission barrier heights of DG are represented.

interactions, the comparisons will be priorly made with the exact Coulomb force for in-
teraction D1S. The last row of the above table shows that the heights are systematically
overestimated by all Gogny interactions, but are less with DG and D2 interactions, of
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about 1 to 2 MeV, compared to experimental values. On the other hand, we know that
when triaxial quadrupole deformations are taken into account (Q22 6= 0), the heights of
the first barriers are diminished by a few MeV. With interaction D1S, it has been shown
that triaxiality lowers the first fission barriers by about 1 to 3 MeV, depending on the Th
isotope [207]. Triaxial calculations must be performed with D2 and DG interactions to
validate such figures, but the predictions are heading in the right direction.

Second fission barrier height BII

226Th 228Th 232Th 234Th
Interaction (MeV) (MeV) (MeV) (MeV)
DG 9.4 8.9 8.9 9.1
D1S 9.3 9.2 8.9 9.2
D1S (Slater) 8.5 8.3 8.2 8.6
D2 8.7 8.6 8.6 8.9
Exp 6.5 6.7 6.3

Table III.9 – Same as in Table III.8, but now for the second fission barrier heights BII.
When available, experimental data are extracted from [205, 206].

The same analysis is carried out with the second fission barrier heights in Table III.9.
Generally speaking, the comments made for the exact Coulomb potential remain true.
This time, however, the heights are not significantly reduced by interactions D2 and DG
compared to D1S. Those predicted by DG and D1S are comparable, and even higher
with DG in the case of 226Th. It then appears that the second fission barriers of DG
are about 2 to 3 MeV higher than the experimental values. These observations are not
pathological, so far, since the heights are calculated from the HFB ground states, while
the zero-point energies should rather be considered to provide relevant comparisons to
experiment. Using a D1S interaction, the zero-point energies in these Th isotopes were
estimated to be of about 2 to 3 MeV [207]. In the light of such corrections, the fission
barriers predicted by D2 and DG seem more reasonable, even though this study must be
extended to interactions D2 and DG.

Deformations
226Th 228Th 232Th 234Th

βisom
2 βII

2 βisom
2 βII

2 βisom
2 βII

2 βisom
2 βII

2
Interaction
DG 0.659 1.214 0.684 1.196 0.863 1.229 0.883 1.244
D1S 0.659 1.248 0.684 1.231 0.830 1.229 0.818 1.244
D1S (Slater) 0.659 1.283 0.684 1.265 0.830 1.229 0.851 1.277
D2 0.659 1.214 0.684 1.196 0.830 1.195 0.818 1.244

Table III.10 – Values of the quadrupole deformation parameters at the second well, βisom
2 ,

and at the second fission barrier, βII
2 , for 226Th, 228Th, 232Th and 234Th isotopes, obtained

with DG, D1S (with and without Slater approximation) and D2 interactions.

We have discussed the energy shifts of the PES, and we now focus on the deformation
ones. In Table III.10 are displayed the values of the quadrupole deformation parameters
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where the fission isomer lies, βisom
2 , and at the second fission barrier, βII

2 , for all three
Gogny interactions. We see that the values of βisom

2 are slenderly higher with DG in 232Th
and 234Th while the values of βII

2 are smaller in 226Th and 228Th (compared to those
of D1S). This means that with interaction DG, the isomeric states in 232Th and 234Th
correspond to more elongated configurations while in 226Th and 228Th, isotopes are found
less deformed at the saddle point, when following the asymmetric paths.

We emphasize that the results of this subsection (both shifts in energy and deforma-
tion of Th PES with interaction DG) are in qualitative agreement with those obtained by
Bernard et al. [39] for the interaction D1ST2a. Because this latter was set up by adding
a perturbatively fitted tensor force on top of the D1S parametrization, the authors at-
tributed the shifts to the tensor term. Although it is not possible to strictly disentangle
the action of the tensor force from that of the other terms in a fully refitted interaction
like ours, we then tend to hold the tensor term responsible for these effects as well.

6.2. Standard actinides
We continue our discussion with the same study applied to four actinides, namely

236U, 238U, 240Pu and 254Cf, represented in Figure III.30.
Once again, it is reassuring to see that the PES of all interactions display similar

behaviors, with energy and deformation shifts in some regions. The first fission barrier
heights of DG, D1S (with and without Slater approximation) and D2 interactions are
listed in Table III.11.

First fission barrier height BI

236U 238U 240Pu 252Cf
Interaction (MeV) (MeV) (MeV) (MeV)
DG 8.9 9.3 9.9 10.4
D1S 10.8 11.2 11.5 12.4
D1S (Slater) 10.0 10.6 11.0 12.0
D2 9.8 10.2 10.9 11.9
Exp 5.0 6.3 6.1 5.3

Table III.11 – First fission barrier heights BI of nuclei 236U, 238U, 240Pu and 252Cf obtained
with DG, D1S (with and without the exact Coulomb potential) and D2 interactions. They
are compared to experimental data when available [205, 206].

It turns out that the heights of the first fission barriers in the actinides under study
are lowered by about 500 keV to 1 MeV with D2 and about 2 MeV with DG, compared
to those of the D1S interaction. As for the exact Coulomb potential, it increases the
first fission barriers by 400 to 800 keV, depending on the actinide. The heights are still
important with all Gogny interactions with respect to the experimental values, but the
successive improvements brought up by D2 and DG interactions are encouraging. Indeed,
while the discrepancies with experiment reached 5 to 7 MeV for D1S, they are reduced
to 3 to 5 MeV for DG interaction. By the way, the heights of the first barriers of D1S
were lowered by 2 to 4 MeV in such actinides when triaxiality was involved in [207]. In
the same manner, the zero-point energies are found to be of about 2 to 3 MeV in these
latter. Taking into account these considerations should then further lower our first barrier
heights, in agreement with experiment.
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Figure III.30 – Potential energy curves of 236U, 238U, 240Pu and 252Cf as a function of the
quadrupole deformation parameter, evaluated at the one-center limit for DG, D1S (with
and without the exact Coulomb potential) and D2 interactions. The first BDG

I and second
BDG

II fission barrier heights of DG are represented.

The same analysis is performed with the second fission barrier heights in Table III.12.
The heights are reduced by about 500 keV when going from D1S to D2 interactions, in
isotopes 236U and 238U, and by about 1 MeV when going from D1S to DG, except in
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Second fission barrier height BII

236U 238U 240Pu 252Cf
Interaction (MeV) (MeV) (MeV) (MeV)
DG 8.1 8.5 8.3 4.7
D1S 9.0 9.4 8.4 5.6
D1S (Slater) 8.0 8.7 7.9 5.6
D2 8.5 8.8 8.1 5.6
Exp 5.7 5.5 5.2 3.5

Table III.12 – Same as in Table III.11, but now for the second fission barrier heights BII.
When available, experimental data are extracted from [205, 206].

240Pu. The exact Coulomb potential raises the second barriers by 1 MeV in 236U, and by
about 500 keV in isotopes 238U and 240Pu. Generally speaking, as for Th isotopes, the
predictions are better with DG compared to D1S and D2 interactions, but are still above
experimental data. Once again, the discrepancies are rather small, of about 1 to 3 MeV,
and the corrections brought by the zero-point energies should improve the agreement with
experiment.

Deformations
236U 238U 240Pu 252Cf

βisom
2 βII

2 βisom
2 βII

2 βisom
2 βII

2 βisom
2 βII

2
Interaction
DG 0.903 1.323 0.955 1.337 0.942 1.350 0.926 1.418
D1S 0.839 1.226 0.827 1.273 0.816 1.287 0.926 1.389
D1S (Slater) 0.839 1.259 0.827 1.273 0.847 1.287 0.897 1.360
D2 0.839 1.226 0.827 1.273 0.816 1.287 0.897 1.360

Table III.13 – Values of the quadrupole deformation parameters at the second well, βisom
2 ,

and at the second fission barrier, βII
2 , for 236U, 238U, 240Pu and 252Cf nuclei, obtained with

DG, D1S (with and without Slater approximation) and D2 interactions.

We finally focus on the deformation shifts by looking at the quadrupole deformations
at isomer and second fission barrier positions in Table III.13. We see that the values of
βisom

2 and βII
2 are globally higher in the actinides we have probed with interaction DG.

This phenomenon shows that the isomeric states and fission processes show up for more
elongated configurations of these nuclei with DG than with D1S and D2 interactions,
when following the asymmetric paths.

Such results were qualitatively obtained for the heaviest Th isotopes we studied, and
were attributed to the tensor force. We then tend to hold the tensor force responsible for
those shifts in actinides as well. Obviously, the analysis should be generalized to more
pre-actinides and actinides to validate our observations. Furthermore, triaxial calculations
should be carried out for interaction DG as they can also involve shifts in deformation
[207].

In fact, to properly model the fission process, both static and dynamic properties of the
fissioning system must be known. The HFB treatment we have exposed constitutes the
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III. Mean-field results 6. Fission barriers

first step, related to static properties. Then, dynamical calculations based on these results
are usually undertaken to describe the time evolution of the nucleus until its scission
point. They may incorporate static out-of-equilibrium nuclear configurations, couplings
between intrinsic and collective degrees of freedom, and subsequently the dynamics of
large-amplitude collective vibrations to refine the dynamical description. An example of
such method is the time-dependent generator coordinate method (TDGCM). It is beyond
the scope of the present study, but should be handled in the future to directly connect
the predictions of interaction DG to well-defined observables like the yield distributions
of fission fragments and related quantities.
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Chapter IV
Beyond mean-field results

“Some birds are not meant to be caged, that’s all. Their feathers
are just too bright, their songs too sweet and wild. So you let them
go, or when you open the cage to feed them they somehow fly out
past you. And the part of you that knows it was wrong to imprison
them in the first place rejoices, but still, the place where you live is
that much more drab and empty for their departure.”

— Stephen King, Rita Hayworth and the Shawshank Redemption

In this chapter, the relevance of the generalized Gogny interaction regarding its spec-
troscopic properties beyond the mean field is gauged within the multiparticle–multihole
configuration mixing method. After succinctly recalling the underlying formalism, the
first excitation energies of various Gogny interactions are evaluated, in the sd shell, and
compared to experimental data. Starting with even–even nuclei, the calculations are sub-
sequently extended for the first time to odd and odd–odd nuclei. In-depth analysis reveals
that the predictions of the generalized Gogny interaction stem from a skillful interplay
between spin–orbit and tensor forces.
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4.4. Multiparticle–multihole excitations . . . . . . . . . . . . . . . 203

1. MPMH formalism
In this section, we recall the formalism of the multiparticle–multihole configuration

mixing method. It is not our intention to extensively introduce this approach, we shall
merely lay the basics and underline the concepts that will be important in the following.
For a complete introduction, we refer the reader to [208, 209].

As detailed in the first chapter (see subsection I.1.3), the starting point of self-
consistent mean-field (SCMF) approaches is to separate the many-body Schrödinger equa-
tion into an exactly solvable one-body Hamiltonian and a residual interaction accounting
for long-range correlations. The different types of correlations are incorporated at var-
ious levels of approximation through increasingly sophisticated SCMF theories. When
taking into account more than simple pairing correlations, treatable at the mean-field
level through the HFB approach (see previous chapter), they are referred to as beyond
mean-field theories. The multiparticle–multihole (MPMH) configuration mixing method
is one of those. As a continuation of similar frameworks developed in atomic physics and
quantum chemistry (often referred to as multi-configurational self-consistent field meth-
ods) [210–212], the MPMH method is a self-consistent variational approach. Contrary to
these latter, though, the MPMH brings out more complexity since:
(i) two kinds of particles (proton and neutron) come into play;
(ii) the nucleon–nucleon interaction is not known.

The second point results in considering here an effective interaction made up of a density-
dependent term which further intricates the problem, as we shall shortly see. Nevertheless,
these difficulties also arise in other nuclear SCMF approaches, while the MPMH method
allows to:
(i) treat the ground and excited states of even–even, odd–odd and odd nuclei in the

same theoretical framework;
(ii) take into account all long-range correlations (pairing correlations and correlations

associated with collective excitations as well as particle–vibration couplings);
(iii) avoid symmetry breakings.
For example, within the HFB approach, one is often limited to even–even nuclei because
the time-reversal symmetry is broken when a nucleus with an odd number of proton or
neutron is studied. Even if the time-reversal symmetry is released (which significantly
complicates the expressions of the fields, as we have experienced in Appendix C), the
particle–vibration coupling is no longer negligible because of the unpaired nucleon. On
the other hand, it is well-known that the number of particle is only conserved on average
at the HFB level, and that the RPA equations slightly violate the Pauli principle (as a
consequence of the quasi-boson approximation). In the MPMH, the proton and neutron
numbers are both separately preserved, and the Pauli principle holds.

We begin by giving the Hamiltonian of the nucleus consisting in a A-body system for
which we only consider two-body interactions and neglect higher-body contributions. In
second quantization, it can be written

H2B =
∑
ab

〈a|tK|b〉c†acb + 1
4
∑
abcd

〈ac|v(a)
12 |bd〉c†ac†ccdcb, (IV.1)
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where we recognize the usual creation ca and annihilation c†a operators, the one-body
kinetic operator, written in terms of the momentum operator p ≡ ~k as

tK ≡
p2

2M , (IV.2)

as well as the two-body antisymmetrized interaction

v
(a)
12 ≡ v12(1− PrPσPτ ), (IV.3)

with v12 the generalized Gogny force (II.1).
As in any variational approach, the exact wave function of the system |Ψ〉 is approx-

imated by a trial wave function |Φ〉, |Ψ〉 ' |Φ〉. In the MPMH approach, the trial wave
function is a superposition of Slater determinants |φα〉, which are themselves expressed as
a direct product of proton (π) and neutron (ν) Slater determinants, |φα〉 ≡ |φαπ〉 ⊗ |φαν 〉,
such that

|Φ〉 ≡
∑
α

Aα|φα〉 (IV.4a)

≡
∑
απαν

Aαπαν |φαπ〉 ⊗ |φαν 〉, (IV.4b)

where the mixing coefficients Aα represent the weights of the Slater determinants |φα〉 in
the trial wave function. Note that in general we have Aαπαν 6= AαπAαν because of the
correlations between protons and neutrons. This would only be the case if the residual
proton–neutron interaction was neglected. Each Slater determinant, corresponding to a
many-body configuration of the system, is a multiparticle–multihole (mp–mh) excitation
of a reference state |φ0〉, that is to say

|φα〉 ≡
Mα∏
i=0

(
c†pichi

)
|φ0〉 (IV.5a)

≡
Mαπ∏
iπ=0

(
c†piπ

chiπ

)
|φ0π〉 ⊗

Mαν∏
iν=0

(
c†piν

chiν

)
|φ0ν 〉, (IV.5b)

where, in the first equation, we have introduced a pair of creation operators for “particle”
(p) and “hole” (h) states. They are divided into proton and neutron operators in the
second line, with the reference state being the direct product of proton and neutron
reference states, |φ0〉 ≡ |φ0π〉⊗|φ0ν 〉. The number of particle–hole excitations c†pch applied
to |φ0〉 in order to generate |φα〉 is called the excitation order of the configuration |φα〉,
Mα ≡ Mαπ + Mαν . We talk about 0p–0h excitation when no particle–hole excitation is
applied, 1p–1h excitation when one particle–hole excitation is applied (which is barely the
reference state), 2p–2h excitations when two particle–hole excitations are applied, and so
on. This leads to the excited states |0p0h〉, |1p1h〉, |2p2h〉, etc. Obviously, there are many
possible configurations for a given excitation order; some of them are illustrated in Figure
IV.1. Finally the reference state corresponds to an HF-type ground state obtained by
filling the lowest orbitals with the A = Z +N nucleons of the nucleus, i.e.

|φ0〉 ≡
A∏
i=1

c†i |0〉 (IV.6a)

≡
Z∏

iπ=1
c†iπ |0π〉 ⊗

N∏
iν=1

c†iν |0ν〉, (IV.6b)
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where the particle vacuum is expressed as the direct product of proton and neutron vacua,
|0〉 ≡ |0π〉 ⊗ |0ν〉. The reference state is itself made up of an antisymmetrized product of
individual orbitals (or single-particle states) |ϕi〉 ≡ c†i |0〉.

protons neutrons

Fermi level

particle states

hole states

|φ0〉

|φα〉 = |1p1h〉 |φα〉 = |1p1h〉

|φα〉 = |2p2h〉 |φα〉 = |2p2h〉

|φα〉 = |2p2h〉

Figure IV.1 – Examples of particle–hole excitations of the reference state |φ0〉 up to |2p2h〉.
Protons and neutrons are represented in red and blue, respectively, and the Fermi level,
displayed by a green dashed line, separates hole from particle states.
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Theoretically, those individual states are expanded on an infinite basis of functions
that are known (in the same manner as in the fitting code, see subsection I.2.2.1), which
are chosen to be axially-symmetric harmonic oscillator wave functions in the MPMH code.
In this case the configurations|φα〉 span the complete Hilbert spaceH and are independent
of the individual orbitals. In practice, as it is not possible to numerically deal with an
infinite series, this expansion is truncated to some finite order n. The trial wave function
|Φ〉 can then only be varied in some subspace S ⊂ H and becomes a priori dependent on
the nature of the single-particle states. If the basis of single-particle states is large enough,
the subspace S covers an important part of H and the solution remains satisfactory. In
practice, the size of the many-body space S is tremendous as it encompasses all possible
excitations of a system composed of A particles with M single-particle states, for both
types of nucleons. Thus, the expansion (IV.4a) is further restricted to a subspace P ⊂ S
to stay tractable, and becomes

|Φ〉 =
∑
α∈P

Aα|φα〉. (IV.7)

One drawback of these two successive truncations at both the one- and many-body levels
is that the trial wave function may now significantly depend on the nature of the single-
particle states |ϕi〉. Consequently, in the MPMH approach, the orbitals are determined so
as to optimize at best the information contained in P through a minimization procedure.
In other words, the two sets of unknown quantities to be specified are:

(i) The mixing coefficients {Aα} characterizing the expansion (IV.7);
(ii) The individual orbitals {|ϕi〉} characterizing the many-body states |φα〉.

The equation determining the mixing coefficients is obtained by minimizing the energy
functional E ≡ 〈Φ|H2B|Φ〉 with respect to the mixing coefficients while the individual
orbitals are fixed. Conversely, the equation defining the individual orbitals is obtained by
minimizing the energy functional with respect to the individual orbitals while the mixing
coefficients are fixed. Mathematically speaking these statements amount to imposingδAE = 0,

δϕE = 0,
(IV.8)

where δA and δϕ denote the variations with respect to mixing coefficients and individual
orbitals, respectively. For a density-dependent force like the generalized Gogny interac-
tion, we can show that these relations lead to the following coupled MPMH equations

∑
β∈P

Aβ 〈φα|H[ρ, σ]|φβ〉 = λAα, ∀α ∈ P , (IV.9a)
[
h[ρ, σ], ρ

]
= G[σ]. (IV.9b)

We will not describe the physics of these equations in detail, but we simply mention a
few interesting aspects.

The first equation represents the diagonalization of the modified Hamiltonian in the
many-body configuration space, where its associated eigenvalues are denoted λ. It is
expressed as

H[ρ, σ] ≡ H2B[ρ] +R[ρ, σ], (IV.10)
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with the operator R[ρ, σ] defined by

R[ρ, σ] ≡
∫

d3r 〈Φ|δv12[ρ]
δρ(~r) |Φ〉ρ(~r)

= 1
4

∫
d3r 〈ab|δv12[ρ]

δρ(~r) |cd〉(ρcaρdb − ρcbρda + σac,bd)ρ(~r), (IV.11)

and is usually called the “rearrangement term” since due to the density dependence of
the nuclear interaction. It basically represents the response of the system to a small
density variation. It is worth mentioning that this quantity depends on the one-body and
two-body correlation matrix densities of the correlated state |Φ〉, whose elements read

ρab ≡ 〈Φ|c†bca|Φ〉, (IV.12a)
σab,cd ≡ 〈Φ|c†ac†ccdcb|Φ〉 − ρbaρdc + ρbcρda. (IV.12b)

These dependences make the configuration mixing equation non-linear, and it should be
kept in mind that the computation of those two quantities is required to specify the
rearrangement term. We notice that this first equation really looks like the so-called
shell-model secular equation. This is not so surprising because the expansion (IV.4a) is
comparable to that performed in shell-model theory, except that it is more general, since
a priori not restricted to a given major shell.

The second equation involves a one-body mean-field Hamiltonian which also depends
on the two types of matrix densities through the rearrangement term, according to

h[ρ, σ] = K + Γ[ρ] +R[ρ, σ], (IV.13)

where K and Γ[ρ] respectively stand for kinetic and mean-field-type contributions. This
Hamiltonian can be seen as a generalization of the HF field since it is constructed from
the density matrix of the many-configuration system (IV.12a), rather than from a simple
Slater determinant. As for the quantity G[σ], it is referred to as the source term and
includes the effect of correlations beyond this mean field. Again, this second equation
looks like the so-called HF equation (A.14). Actually, we can even prove that if only the
reference state is included in expansion (IV.4a), i.e. if |Φ〉 = |φ0〉, the two-body correlation
density matrix vanishes, the one-body density matrix reduces to the HF density matrix
and we fall back on the HF equations [209]. The MPMH method can be seen as a
generalization of the HF approximation where the residual correlations are taken into
account in the source term. In short, the MPMH configuration mixing method is an
approach that aims to combine and generalize mean-field and shell-model approximations
to capitalize on their respective advantages while incorporating additional beyond mean-
field effects.

Let us finally point out that the resolution of both MPMH equations (IV.9) is based on
an iterative process. We start with an HF solution (characterized by the density matrices
ρ = ρHF and σ = 0) that furnishes an initial set of individual wave functions from which
we build the many-body configuration basis and solve the first equation (IV.9a). This
provides mixing coefficients from which we can calculate ρ and σ and solve the second
equation (IV.9b). With the new set of individual wave functions, the process starts over,
and is repeated again and again until convergence of the matrices ρ and σ. The mixing
coefficients and individual wave functions are then obtained fully self-consistently. Practi-
cally, the complete procedure becomes time-consuming when the matrix H to diagonalize
is large. Furthermore, the fully self-consistent MPMH method has been developed only
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for even–even nuclei so far. Waiting for a soon extension of the self-consistency to odd and
odd–odd nuclei, we resort to a simpler scheme in which the diagonalization of equation
(IV.9a) is only performed once from the initial data (ρ = ρHF, σ = 0). By doing so, the
outputs produced by even–even, odd and odd–odd nuclei can be compared as they are all
treated on a same footing, and we also avoid numerical issues when dealing with medium-
mass isotopes. In return, the rearrangement term cannot be included (we have said that
we needed in particular to know σ in order to specify the rearrangement term, which is
not, here) and the self-consistency is lost. We will see that this is not problematic for
our purposes by showing in due time how the restoration of the self-consistency impacts
the results. We also specify that the results given in the following are all obtained by
truncating the one-body basis to the finite order n = 10.

2. Even–even nuclei in sd shell

2.1. First excitation energies
In this section, we study and compare excitation energies of the first (as indicated by

the subscript) excited states Jπ = 2+
1 of even–even nuclei for DG, D1S and D2 Gogny

interactions, in the sd shell. This means that the possible multiparticle–multihole exci-
tations are restrained to the SPEs belonging to this major shell, namely 1d5/2, 2s1/2 and
1d3/2 levels. Preliminary works in this direction were carried out for D1S in [19, 213–215].

We analyze in Figure IV.2 the difference between the excitation energies 2+
1 predicted

by the MPMH and the experimental values for the sd-shell isotopes, namely Ne, Mg, Si,
S and Ar. This difference is defined as

∆EMPMH[2+
1 ] ≡ EMPMH[2+

1 ]− Eexp[2+
1 ], (IV.14)

where EMPMH[2+
1 ] and Eexp[2+

1 ] respectively denote the excitation energies of the first ex-
cited state evaluated by the MPMH method and experimentally [202]. Note that we have
excluded 26S, 28Ar and 30Ar from our study since these nuclei are known to be unbound
experimentally.

Generally speaking, we see that MPMH results are very close to experimental values
for all three interactions, with on average differences of the order of a few hundred keV. To
be more quantitative, we have computed the usual mean values and standard deviations,
respectively defined by

〈x〉 ≡ 1
N

N∑
i=1
|xi|, (IV.15a)

σ(x) ≡
√
〈x2〉 − 〈x〉2, (IV.15b)

for the whole bunch of nuclei in Table IV.1, and then for each isotopic chain in Table
IV.2. Of the three interactions, Table IV.1 shows that the MPMH predictions obtained
with DG are the most qualitative. Notably, the mean difference is almost half that of
D2 and the standard deviation more than three times smaller than that of D1S. On the
contrary, the D2 interaction deteriorates the relatively good mean value of D1S. This may
be explained by the fact that, unlike DG and D1S interactions, D2 was not controlled
on quantities evaluated beyond the mean field in its fitting process or subsequently. It
appears how important it may be to target the quantities we wish a faithful reproduction
of right from the fitting stage.
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Figure IV.2 – Energy difference between first excitation energies predicted by the MPMH
and experimental data, expressed by (IV.14), as a function of the number of neutrons
N . The results are shown for DG, D1S and D2 interaction, in panels (a), (b) and (c),
respectively. Horizontal dashed lines display perfect agreement with experiment [202].
The sd-shell isotopes studied are labelled by different colors, as indicated in the legend.

If we now look at the mean differences and standard deviations in each isotopic chain
(even if there is not much elements), as displayed in Table IV.2, we deduce that our
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All isotopes
〈x〉 σ(x)

Interaction (keV) (keV)
DG 232 171
D1S 356 561
D2 438 382

Table IV.1 – Mean value and standard deviation of the difference x ≡ ∆EMPMH[2+
1 ], as

defined in (IV.15), evaluated for the complete set of studied isotopes, with DG, D1S and
D2 interactions.

comparison between the interactions is broadly maintained in separate isotopic chains.
Specifically, the mean values and standard deviations are the lowest with the DG inter-
action for all isotopic chains, except in Mg isotopes for which the mean value is slightly
lower with D1S. Again, D2 is not as good as its counterparts, except in Si isotopes, the
mean value and standard deviation being lower than those of D1S. This is also true in S
and Ar isotopes where D2 values deviate less from the mean values than D1S ones. We
will thereby preferentially compare the DG outputs with those of D1S since we want to
put forward the amendments with respect to the most convincing interaction to date.

Let us now try to justify the improvements brought by interaction DG. As we will
see later on, there is a strong link between the description of first excitation energies and
the SPE spectra. Indeed, the smaller the energy gap between the ground state and the
first excited state, the greater the probability of particle–hole excitations from the lower
towards the higher state. On the other hand, the DG interaction promotes a finite range
to the spin–orbit force and includes a finite-range tensor force, which are fully refitted
along with the other terms. These latter are known to significantly impact the position
of SPEs. Knowing moreover that the central and density-dependent part of DG is close
to that of D2, it is reasonable to think that one or both of the spin–orbit and tensor
forces are (mainly) responsible for the observed effects. Since the trend described here is
global, and that the tensor term plays a dominant role only in some specific configurations
of SPEs, we can legitimately attribute the overall effect to the spin–orbit term, whose
intensity has been lowered from 130 MeVfm5 to 115.849 MeVfm5 in the T = 1 channel
when going from D1S and D2 interactions to DG. Actually this deduction has already
been tested when dealing with the fitting procedure since the first excitation energies have
been evaluated for several DG-type parametrizations (see subsection II.1.2.4). We have
found out, by gently tuning its intensity, that the spin–orbit term is responsible for the
fine overall reproduction of this observable, which was a little too strong in this purpose,
with D1S and D2 interactions.

Even though the MPMH predictions are satisfactory as a whole for all three inter-
actions, Figure IV.2 reveals that some first excitation energies of Si (red dots) and S
(green dots) isotopes are overestimated by more than 1 MeV with D1S and D2. More
precisely, 30Si and 30S stand out with an overestimation of 2.179 MeV and 1.480 MeV re-
spectively, with D1S. With D2, the disagreement is lowered for these nuclei, to 1.843 MeV
and 1.351 MeV, respectively, but 32S which was particularly well predicted by D1S with an
underestimation of 20 keV, is degraded with D2 and reach an overestimation of 1.062 MeV.
These nuclei are at the origin of the highest mean values and standard deviations of Si
and S isotopic chains among all the others, as shown in Table IV.2, for D1S and D2
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Ne Mg Si S Ar
〈x〉 σ(x) 〈x〉 σ(x) 〈x〉 σ(x) 〈x〉 σ(x) 〈x〉 σ(x)

Interaction (keV) (keV) (keV) (keV) (keV) (keV) (keV) (keV) (keV) (keV)
DG 120 44 197 121 313 232 281 236 279 150
D1S 191 104 163 129 539 923 596 861 329 279
D2 306 155 284 143 491 564 769 529 384 237

Table IV.2 – Same as in Table IV.1, but for each isotopic chain.

interactions. On the opposite, DG does not exhibit such pathologies since the absolute
differences are always lower than 1 MeV, as indicated in panel (a) of Figure IV.2. For
30Si, 30S and 32S, they are respectively 234 keV, 97 keV and −482 keV. Note however that
28Si which was well reproduced by D1S and D2 interactions, with differences of 150 keV
and 221 keV, is less by DG as the difference becomes −666 keV. 1 Therefore, DG seems
to cure (or at least considerably reduce) the overestimated first excitation energies of
30Si, 30S and 32S isotopes by lowering them to values of the order of those found in nuclei
of approximately the same mass. 2 This is confirmed in Table IV.2 as the mean values of
Si and S are more reasonable with DG, and of the order of that of Ar isotopes, even if their
standard deviations remain the highest. This phenomenon cannot be assigned to some
kind of long-range correlations as one could have assumed for an analysis based on HFB
results, for instance, because they are all taken into account in the MPMH procedure. In
the next subsection, we discuss a more fundamental interpretation, based on an interplay
between spin–orbit and tensor effects.

Finally, we remind that the excitation energies evaluated in this section were obtained
without solving the second MPMH equation (IV.9b) ensuring the full self-consistency. In
a recent article [19], a comparison of the outputs with and without considering the full
self-consistency for the D1S interaction evinced that the general trend was maintained
when switching on the resolution of the second equation, but that the overall agreement
with experiment was substantially improved. In particular, the excitations energies were
corrected up to 600 keV for the nuclei 30Si and 30S in which the reproduction was the
less satisfying. There are then good chance that the restoration of self-consistency in a
subsequent study generates even better MPMH predictions.

2.2. Interplay between spin–orbit and tensor interactions
As presented in the previous chapter (see subsection III.2), the tensor effects are most

pronounced for nuclei in which the low spin-partner states are completely filled while their
higher spin-partner states are empty, according to Ostuka’s picture. In the sd shell, this
situation corresponds to the proton and neutron states 1d5/2 filled with six particles and
their proton and neutron spin partner states 1d3/2 empty, as illustrated in Figure III.3.
Isotopes 30Si, 30S and 32S whose first excitation energies are overestimated by D1S and
D2 interactions are remarkably enough all of this sort. Then there are reasons to believe
that these discrepancies are in particular due to the lack of a tensor force in the D1S and

1. This is not an actual devil nucleus, as shown in subsection IV.2.4.
2. Actually, in 30Si and 30S, not only the 2+

1 state is overestimated, but also the higher 4+
1 and 6+

1
states with D1S and D2 interactions. This led the authors of [19] to characterize this effect as a “monopole
shift”, in analogy with a similar phenomenon observed in shell-model calculations.

170



IV. Beyond mean-field results 2. Even–even nuclei in sd shell

D2 analytical expressions.

To get some insight, we have first plotted the proton and neutron SPEs of Si and S
isotopes at the HF approximation in Figure IV.3. Note that for open-shell isotopes, we
have considered the equal filling approximation. In panel (a), we see that the (1d5/2)π
and (2s1/2)π states are not very different from one interaction to another, while the DG
(1d3/2)π state starts to slightly move downwards from N = 12 to N = 16, with respect
to those of D1S and D2, thus reducing the (2s1/2 − 1d3/2)π gap. On the neutron side,
the (1d5/2)ν and (1d3/2)ν states get closer with DG than with D1S and D2 interactions
in panel (b). This convergence of neutron levels appears stronger than the decline of
the proton (1d3/2)π state and is not restricted to some specific isotopes. The exact same
tendency is observed with S isotopes in panels (c) and (d). In that sense, it appears that
the diminishing of the (1d5/2)π state is believably largely due to the tensor force since
it is dominant in N = 14 and N = 16 isotopes. On the other hand, as the lowering of
the difference (1d5/2 − 1d3/2)ν is observed all along the isotopic chains, without isolated
behaviors, it is rather a signature of the spin–orbit interaction. Indeed, as the T = 1
intensity of the spin–orbit term was decreased when going from W0 = 130 MeVfm5 with
D1S and D2 interactions to W5 − H5 = 115.849 MeVfm5 with DG, we expect the spin–
orbit splitting to be lessened. Thus, it seems that for isotopes in which both proton and
neutron gaps are shrunk, particle–hole excitations happen more likely and the energy
needed to reach the first excited state is noticeably lowered. We highlight that the good
reproduction of Si and S isotopes with DG is to us a combination of spin–orbit and tensor
effects. If this was only due to the spin–orbit force, then we would expect a diminution
of the excitations energies of all Si and S isotopes, which is not the case. If this was only
a consequence of the tensor force, the small descent of (1d3/2)π would probably not be
enough to lower the excitations energies by a few hundred keV, as we will see in the next
paragraph. Besides, we have interpreted the overall better agreement of the excitation
energies to be mainly due to the spin–orbit term; this also applies to Si and S isotopes.

In order to compare the energy gaps between orbitals predicted by the three interac-
tions in the nuclei of interest, we have displayed the energy differences between proton and
neutron SPEs in Table IV.3 for 28Si, 30Si, 30S and 32S isotopes. As explained qualitatively,
we see that proton (1d5/2− 2s1/2)π and neutron (2s1/2− 1d3/2)ν gaps for 30Si are reduced
in the case of DG, compared to D1S and D2. Whereas it is decreased by nearly 1 MeV in
the proton sector when going from D1S to DG, it reduces further to 2 MeV in the neutron
sector. In 30S the effects are essentially the same on proton (2s1/2 − 1d3/2)π and neutron
(1d5/2 − 2s1/2)ν gaps, with a reduction of about 1 MeV for DG, with respect to D1S. Fi-
nally, in 32S the proton (2s1/2 − 1d3/2)π and neutron (2s1/2 − 1d3/2)ν gaps remain quite
unchanged, with a neutron gap smaller by about 300 keV when going from D1S to DG.
It is interesting that of these three isotopes, this latter is the one whose first excitation
energy is the least well reproduced, and is also the only one to be underestimated. When
looking at panel (c) in Figure IV.3, we observe that for 32S the descent of (1d3/2)π with
DG (considered as a consequence of the tensor force) is somewhat compensated by the
ascent of (2s1/2)π with D1S, such that both interactions predict similar proton gaps. As
the spin–orbit and tensor forces are not expected to act on s states at first approximation,
the higher (2s1/2)π states of D1S and D2 compared to DG should be of another nature.
Perhaps this is attributable to the central and density-dependent terms of DG, which are
a bit different from those of its counterparts. In general, we notice that the shrinking of
the neutron energy gaps is often quantitatively significant when going from D1S to DG.
For this reason, the spin–orbit term which we assume to be mainly responsible for it must
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Figure IV.3 – Single-particle energies of the sd shell along Si (left panels) and S (right pan-
els) isotopic chains, for proton (upper panels) and neutron (lower panels) levels. Results
are given for DG, D1S and D2 interactions.

be considered when dealing with SPEs of Si and S isotopes.
We close this subsection by discussing the relative contributions of the particle-like

and proton–neutron components of the tensor force to the effects we have underlined.
According to Ostuka’s picture, this proton–neutron component is maximal when both
proton–proton and neutron–neutron contributions are. With the example of 32S, we in-
deed see that neutron and proton 1d5/2 states are full such that particle-like contributions
of the tensor force between (1d5/2)π and (1d3/2)π states as well as between (1d5/2)ν and
(1d3/2)ν are maximum. At the same time, attraction between (1d5/2)π and (1d3/2)ν as well
as between (1d5/2)ν and (1d3/2)π is also maximum. It is therefore not possible to isolate
particle-like and proton–neutron contributions of the tensor interaction with this type of
nuclei. However, we can do so if we focus on mirror nuclei 22Si and 22O whose SPEs are
shown in Figures IV.3 and IV.4. In 22Si, no neutron–neutron tensor interaction is expected
since the neutron sd shell is empty, and the lower spin-partner states completely filled.
On the other side, the proton–proton and proton–neutron tensor interactions between
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28Si
(1d5/2 − 2s1/2)π (2s1/2 − 1d3/2)π (1d5/2 − 2s1/2)ν (2s1/2 − 1d3/2)ν

Interaction (MeV) (MeV) (MeV) (MeV)
DG 5.173 2.370 4.891 2.554
D1S 4.877 3.484 5.058 3.568
D2 5.671 2.799 5.887 2.898

30Si
DG 4.547 3.021 4.955 2.691
D1S 5.457 3.267 4.608 4.563
D2 4.579 3.865 5.581 3.389

30S
DG 4.918 2.679 4.132 3.238
D1S 4.694 3.793 5.229 3.433
D2 5.470 3.016 4.636 4.003

32S
DG 4.320 3.144 4.288 3.111
D1S 5.161 3.131 5.147 3.450
D2 4.671 3.638 4.704 3.951

Table IV.3 – Proton and neutron energy gaps of 28Si, 30Si, 30S and 32S isotopes predicted
by DG, D1S and D2 interactions at the HF approximation.

(1d5/2)π, which is full, and the empty (1d3/2)ν and (1d3/2)π states should be important.
Actually the state (1d3/2)π is almost not impacted, going from 5.568 MeV with D1S, to
5.760 MeV with DG. On the contrary, the state (1d3/2)ν is significantly lowered, from
−7.339 MeV to −8.128 MeV, when going from D1S to DG. The roles of neutrons and pro-
tons are reversed for 22O. We see that (1d3/2)π is notably lowered, from −4.226 MeV to
−5.171 MeV, while (1d3/2)ν remains quite unchanged, going from 1.016 MeV to 1.040 MeV,
with D1S and DG interactions, respectively.

It appears, based on Otsuka’s picture, that the proton–neutron contribution of our
tensor interaction has more prominent effects on SPEs (and then on excitation energies)
than the particle-like ones. This may be related to the additional T = 0 pairing TBMEs
we have constrained in the fitting code of DG (see subsection II.1.2.2). In fact, previ-
ous studies [19, 216] suggested that the uncontrolled T = 0 matrix elements could be
associated with shifts in the excitation energy spectra, as we have observed in the first
excitation energies of some Si and S isotopes with D1S and D2. It seems that the control
of the T = 0 channel with the addition of the proton–neutron component of the tensor
force (together with the spin–orbit interaction) regulates this channel and predicts more
reasonable excitation energies for 30Si, 30S and 32S nuclei. This argument is in qualitative
agreement with Otsuka’s analysis where the monopole tensor force in the T = 0 channel
is three times stronger than in the T = 1 channel (see equation (III.56)). Finally since we
are dealing with even–even nuclei so far, we can separate particle-like from proton–neutron
contributions of the tensor interaction as we have done in (I.62). We find that the particle-
like and proton–neutron intensities are respectively given by W7 − H7 = −196.063 MeV
and H7 = 196.481 MeV, with the interaction DG. This proximity in the magnitude of the
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intensities hints that the effects described here are not specific to the values attributed to
W7 and H7 in the fitting process. The proton–neutron contribution of the tensor force is
stronger than the particle-like one, as expected.
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Figure IV.4 – Same as in Figure IV.3, but for the O isotopic chain with proton (left panel)
and neutron (right panel) levels.

2.3. Multiparticle–multihole excitations
We now would like to provide more information on how the nucleons are distributed

in the sd subshells from one interaction to another, and how their migration from the
ground to the first excited state translates.

2.3.1. Occupation of the ground and first excited states

Ground state
We start by looking at the occupation of the ground states 0+ in the Si and S isotopic

chains. In Figure IV.5 is represented the average number of protons (left panels) and
neutrons (right panels) in the single-particle states composing the ground state, as a
function of the neutron number N , of Si isotopes, for DG, D1S and D2 interactions. The
same quantities are displayed for the S isotopic chain in Figure IV.6.

In the proton sector of Figure IV.5 (left panels), we observe that the six protons
of the sd shell are mainly occupying the lowest state 1d5/2 for all three interactions in
24Si, as expected. As the number of neutrons increases, though, this state is gradually
depopulated in favor of the higher 2s1/2 state, and to a lesser extent, in the favor of the
highest 1d3/2 state. More precisely, this phenomenon is specifically marked from isotopes
N = 12 to N = 16 and then fades away. On the other hand, it predominates with the
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Figure IV.5 – Occupation of the ground states 0+ of Si isotopes defined as the number of
protons (left panels) and neutrons (right panels) filling the sd subshells, namely the 1d5/2
(lower panels), 2s1/2 (middle panels) and 1d3/2 (upper panels) levels.

DG interaction, compared to D1S and D2. In 30Si for instance, 0.341 and 0.196 protons
are filling the respective 2s1/2 and 1d3/2 states with DG, against 0.150 and 0.119 protons
in those same states with D1S. These differences are readily understandable when we
compare the proton gaps (1d5/2− 2s1/2) and (2s1/2− 1d3/2) provided in Table IV.3 of the
DG and D1S interactions for this isotope. They are indeed about 900 keV and 250 keV
larger with D1S, respectively, so that proton excitations from 1d5/2 towards higher states
are less likely with D1S than are with DG. This effect being particularly pronounced for
28Si and 30Si isotopes, i.e. when the tensor force acts strongly, we have reasons to believe
that this latter is to a great extent responsible for it. Let us note that the number of
protons is fixed here so that, according to Ostuka’s picture, the filling of (1d5/2)ν causes
the lowering of (1d3/2)π and allows protons to reach the top state more easily, as observed.
This confirms the importance of the proton–neutron contribution of the tensor force in
the arrangement of single-particle levels.

In the neutron sector (right panels), we see in panel (f) that the state 1d5/2 is progres-

175



IV. Beyond mean-field results 2. Even–even nuclei in sd shell

sively populated as the number of neutrons increases. Again, DG stands out because the
occupation of 1d5/2 and 2s1/2 states are reduced to the benefit of the higher 1d3/2 state
from N = 12 to N = 16 isotopes. In 30Si for example, 1.756 and 0.460 neutrons are filling
the respective 2s1/2 and 1d3/2 states with DG, against 1.901 and 0.269 neutrons in those
same states with D1S. We notice here that neutrons from both 1d5/2 and 2s1/2 states are
jumping towards 1d3/2. Like before, this is explained by the shrinking of the neutron gap
(2s1/2 − 1d3/2) of about 1.9 MeV when going from D1S to DG interactions. Note by the
way that the reduction of the proton gaps for this nucleus was not as strong as this one, as
shown in the previous paragraph. Finally, for heavier isotopes, the tensor effects become
less visible as the highest state starts to fill up.

We notice that the analysis we have just carried out for Si isotopes can be extended
to the S isotopic chain of Figure IV.6. Keeping in mind that the proton 2s1/2 state is now
filled, the exact same remarks can be made. The migration of nucleons towards higher
states is in particular pronounced from N = 12 to N = 16 isotopes, for the reasons we
have discriminated. We do not repeat the study and let the reader see that the trends on
both proton and neutron sides are similar.
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Figure IV.6 – Same as in Figure IV.5, but for the S isotopic chain.
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First excited state
We now focus on the second purpose of this subsection, namely learning how the nucle-

ons rearrange in the sd subshells in the first excited state, in comparison with the ground
state. As in Figures IV.5 and IV.6, the occupations in terms of single-particle states for
Si and S isotopes are shown in Figures IV.7 and IV.8, respectively, but now for the first
excited state 2+

1 .
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Figure IV.7 – Occupation of the first excited states 2+
1 of Si isotopes defined as the number

of protons (left panels) and neutrons (right panels) filling the sd subshells, namely the
1d5/2 (lower panels), 2s1/2 (middle panels) and 1d3/2 (upper panels) levels.

In Figure IV.7, we first notice that the peculiar behavior of the interaction DG, spotted
in the ground state for isotopes fromN = 12 toN = 16, remains present in the first excited
state, in proton and neutron sectors. This is rather reassuring since our interpretation of
the tensor effects based on energy gaps must also hold for first excited states we try to
describe the physics of. In the proton sector (left panels), it turns out that the 2s1/2 and
1d3/2 states are globally more populated than the same levels in the ground state of Figure
IV.5. Indeed, 0.830 and 0.242 protons (to be compared with the values 0.341 and 0.196
in the ground state) respectively occupy these states in 30Si, with the DG interaction. On
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the neutron side (right panels), particles also switch to higher energy states. In 30Si, 0.746
neutrons (to be compared with the value 0.460 in the ground state) reach the 1d3/2 level
with the DG interaction. The same pattern is observed with most of the other isotopes, be
it with the DG, D1S or D2 interactions. We claim that this general phenomenon simply
stems from the increment of energy brought to the system in the first excited state such
that nucleons are more likely to spread to upper levels. This engenders strong variations
in the structure of the MPMH wave function of the system, with breaking of pairs, as we
are going to see.

Once again, the results obtained for Si isotopes can be transposed to S isotopes,
displayed in Figure IV.8. The behavior of the interaction DG and the larger number
of particles filling the highest sd subshells, with respect to the ground-state case, are
maintained.
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Figure IV.8 – Same as in Figure IV.7, but for the S isotopic chain.
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2.3.2. Excitations of the wave function of the system

We recall that the MPMH wave function of the system |Φ〉 is a superposition of
weighted multiparticle–multihole excitations, characterized by an excitation order M ,
of an HF-type reference state (see first subsection). In order to determine which types of
excitation are responsible for the distribution of nucleons in the sd subshells we have just
described, and in what proportions, we represent the components of the MPMH wave
function by means of bar charts. The decomposition is provided for closed-subshell nuclei
28Si, 30Si, 30S and 32S, with each DG, D1S and D2 interactions, and in both the ground
state and the first excited state, as shown in Figures IV.9 and IV.10, respectively. Note
that a limit of 12p–12h excitations is in force in the sd shell.

In Figure IV.9, generally speaking, the component M = 0 appears as the dominant
contribution to the total ground-state wave function for all interactions and isotopes
(except for the specific case of 28Si for D1S and DG, we put aside and discuss in the next
subsection). This component does not necessitate the displacement of nucleons towards
the upper single-particle states, unlike M ≥ 1 excitations, and is therefore energetically
favorable. Then, as the excitation order grows, more and more nucleons are moved, which
increases the energy cost and reduces the probability of such excitations. Let us point
out that the proportion of the M = 4 component is always greater than that of M = 3.
The M = 3 component needfully involves breaking a pair of nucleons, which turns out to
be less likely than exciting two pairs of nucleons, corresponding to the main contribution
of M = 4 excitations. We now concentrate on the changes occurring when going from
D1S to DG interaction. We see that the portion of M = 0 components is systematically
diminished to the benefit of excitations of higher orders, M > 1. For instance, in 30Si,
the components M = 0,M = 2,M = 3 and M = 4 respectively represent 58.9% (76.2%),
31.0% (20.3%), 3.8% (1.3%) and 5.2% (2.0%) of the ground-state wave function with DG
(D1S) interaction, the M = 1 and M > 4 components being negligible. Actually this is
explained by the smaller proton and neutron gaps of DG with respect to D1S (see Table
IV.3). Since the gaps are shrunk, the collectivity of the wave function diversifies as more
components of higher excitation orders, now energetically more favorable, come into play.

We now look at how the components of the wave function of the system rearrange in
the first excited state 2+

1 of Figure IV.10. We first mention that the M = 0 contribution
vanishes identically as the low single-particle states are fully occupied, at the HF approx-
imation, in the isotopes displayed. As a consequence, nucleons must shift towards higher
states for the first excited state to gain energy. Overall, the same tendency is observed
as in the ground state, the lowest component M = 1, corresponding to the pair-breaking
mechanism, is preponderant and the higher excitation orders less represented. This time,
it appears that the M = 3 component is always greater than the M = 2 component.
As more energy is brought to the system in the first excited state than in the ground
state, it seems that breaking a pair of nucleons is now more likely than exciting it. For
the same reasons as in the ground state, the portion of the lowest M = 1 components is
systematically reduced in favor of excitations of higher orders M > 1, when going from
D1S to DG. For example, in 30Si, the components M = 1,M = 2,M = 3,M = 4 and
M = 5 respectively represent 58.5% (70.5%), 12.2% (8.6%), 21.4% (17.0%), 5.2% (2.4%)
and 2.3% (1.3%) of the ground-state wave function with DG (D1S) interaction, theM > 5
components being negligible. Compared with the ground state, this example illustrates
that there are more high-order excitations in the first excited state. In particular, M > 2
excitations are much more represented; the wave function of the system exhibits more
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Figure IV.9 – Decomposition of the wave function of the system in the ground state 0+ in
terms of multiparticle–multihole excitations of order M . Results are shown for DG, D1S
and D2 interactions in 28Si, 30Si, 30S and 32S isotopes.

collectivity in the first excited state than in the ground state. Again, this was expected
as the increment of energy brought in the first excited state allows more sophisticated
excitations to show up.

2.4. The case of 28Si

Finally, we come to the case of 28Si, whose first excitation energy predicted by DG is
the furthest from the experimental value in sd shell, with an underestimation of 666 keV.
We try to give some clues as to why, of the four isotopes is the sd shell in which the tensor
force plays an important role, only this nucleus presents such a mismatch.

First, we recall that taking full self-consistency into account in the MPMH procedure
improves the overall agreement with experimental data. For D1S, we have said that
it reduced of about 600 keV the overestimated first excitation energies of 30Si and 30S.
We can then reasonably anticipate a better reproduction of 28Si excitation energy with
fully self-consistent calculations. Second, it is a bit surprising that this nucleus is so
well reproduced with D1S and D2 interactions (with small overestimations of 150 keV and
221 keV, respectively) in the light of our physical interpretation based on a combination of
spin–orbit and tensor effects, whereas the other isotopes 30Si, 30S and 32S are not. We may
assume that the physics of this nucleus is, exceptionally and involuntary, already caught in
the central and density-dependent part of the D1S and D2 interactions. Consequently, the
adjusted spin–orbit and tensor forces of the DG interaction, whose central and density-
dependent part is not very different from that of the former interactions, may imply a
double counting of alike effects. One might also be tempted to say that the intensity of
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Figure IV.10 – Same as in Figure IV.9, but for the first excited state 2+
1 .

the spin–orbit or tensor terms is somewhat too strong, leading to an excessive drop in the
excitation energy of 28Si. However we have noticed that lowering these intensities would
also raise the excitation energies of the other Si and S isotopes, ending up in worsening
their good overall reproduction. Third, it seems that 28Si presents complex spectroscopic
properties. Indeed, Figures IV.5 and IV.7 show in particular that of all Si isotopes, 28Si is
the one showing the most distinctly a depletion of the 1d5/2 state for the higher proton and
neutron states. The phenomenon is particularly striking for the DG interaction and 2s1/2
states. Yet, its associated proton (1d5/2−2s1/2)π and neutron (1d5/2−2s1/2)ν gaps are not
even smaller than those of its neighbors, as indicated in Table IV.3. To conclude we can
also point out that according to Figures IV.9 and IV.10, this nucleus displays a pretty rich
collectivity in its wave function, even more pronounced with the DG interaction. This
might be the sign that uncommon processes occur in this N = Z nucleus.

3. Odd nuclei in sd shell

3.1. Spin–parities
We continue by focusing on the same kind of results, but now for odd nuclei in the

sd shell. In total, sixty odd nuclei belong to the sd shell, among which nine are unbound
experimentally. These, namely 25P, 25S, 27Cl, 29Cl, 27Ar, 29Ar, 29K, 31K and 33K, will then
be discarded in our analysis. On top of them, 27F and 29Ne will not be considered either
since, as negative-parity isotopes, their spectroscopy involve pf subshells we do not take
into account here. We are finally left with forty-nine positive-parity odd nuclei in the sd
shell. In odd nuclei, the density of states is known to be higher than in even–even nuclei
at low energy. The consequence is that inversions between low-lying states predicted
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theoretically may occur more frequently. To account for this effect with DG, D1S and D2
interactions, we compare in Figures IV.11 and IV.12 their predicted spin–parities in the
ground state and first excited state, respectively, with experimental data, whenever they
exist.

In Figure IV.11, we see that overall, all three interactions present a good reproduction
of measured spin–parities in the ground state. We can be more quantitative thanks to
Table IV.4, in which are shown the agreement rates with experiment for each spin–parity
and globally, for DG, D1S and D2 interactions. On the left side, a global reproduction of
more than 80% is reached for all three interactions in the ground state. Even though D2
appears to be better than DG, they are actually pretty similar as only four more nuclei
out of forty-seven are correctly reproduced with D2. Predictions of the three interactions
are identical with respect to 1/2+, DG is slightly better for 3/2+ and the real difference
lies in the 5/2+ states which are degraded when going from D1S and D2 to DG. Lastly,
we mention that the two nuclei whose experimental spin–parities are yet unknown (circles
without surrounding squares) will not change this trend as the three interactions predict
same results.

Agreement rate (%)
Ground state First excited state

1/2+ 3/2+ 5/2+ Total 1/2+ 3/2+ 5/2+ Total
Interaction
DG 75.0 94.4 70.6 80.9 75.0 30.0 71.4 62.1
D1S 75.0 83.3 100.0 87.2 70.0 70.0 71.4 70.3
D2 75.0 88.9 100.0 89.4 70.0 50.0 71.4 64.9

Table IV.4 – Agreement rates with experiment in the prediction of spin–parities in the
ground state (left side) and in the first excited state (right side), for DG, D1S and D2
interactions.

The overall reproduction of measured spin–parities in the first excited state is quite
deteriorated compared to those of the ground state for all three interactions, as illustrated
in Figure IV.12. This was expected since the level inversions already present in certain
ground states are generally reflected in the associated first excited states, to which are
added new inversions, related to the first excited state, in other nuclei. Even so, we ob-
serve on the right side of Table IV.4 a global reproduction of more than 60% for all three
interactions in the first excited state. This time D1S appears as the best candidate, but
only three nuclei out of thirty-seven make the difference with DG. With a 24.5% drop in
the overall agreement rate compared to the ground state, D2 is the most impacted inter-
action. This drop is about 18.7% and 17.0% for DG and D1S interactions, respectively.
When looking at separate spin–parities, it turns out that the reproduction is slenderly
better with DG for 1/2+, equal with all interactions for 5/2+, but that the difference
really manifests in 3/2+ states. Indeed, Figure IV.12 reveals that many experimentally
measured 3/2+ states are actually predicted as 5/2+ states. This is particularly remark-
able with interaction DG. Let us also note that no 7/2+ states are predicted by DG,
contrary to D1S and D2 interactions, in accordance with available experimental data.
Finally, it must be pointed out that experimental spin–parities related to first excited
states of twelve nuclei are missing, and that some of them present different theoretical
outputs with DG, D1S and D2. It is then not excluded that future data could change a
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Figure IV.11 – Comparison between spin–parities Jπ ∈ {1/2+, 3/2+, 5/2+} predicted by
the MPMH method for DG (upper panel), D1S (middle panel) and D2 (lower panel)
interactions and experimental data [202], in the ground state. MPMH and experimental
results are represented by circles and squares, respectively.

bit the trend we have just described.
Now, we would like to have a better understanding on why some spin–parities are

not properly reproduced by the three interactions. We suppose that the high density of
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Figure IV.12 – Same as in Figure IV.11, but now for the first excited state. Spin–parities
are here such that Jπ ∈ {1/2+, 3/2+, 5/2+, 7/2+}.

states in odd nuclei at low density is responsible for it. Accordingly, some spin–parities
would be wrongly assigned to ground and first excited states whereas the right associated
state may be close by in energy. To get to the bottom of it, we have evaluated the energy
difference between the ground state (as well as the first excited state) and the lowest state
having the spin–parity measured experimentally, for all nuclei whose spin–parities do not
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fit experimental data, with DG, D1S and D2 interactions. The resulting mean values,
together with standard deviations, evaluated by means of relations (IV.15), are displayed
in Table IV.5.

Ground state First excited state
〈∆E〉 σ(∆E) 〈∆E〉 σ(∆E)

Interaction (MeV) (MeV) (MeV) (MeV)
DG 0.597 0.737 0.520 0.426
D1S 1.214 1.088 0.515 0.440
D2 1.684 0.780 0.553 0.446

Table IV.5 – Mean values and standard deviations of the theoretical energy difference
∆E between ground states (left side) or first excited states (right side) and the lowest
states whose spin–parities are those of experimental measurements, for DG, D1S and D2
interactions.

In the ground state (left side of the table), the mean difference is about 600 keV for
DG, which means that, on average, the state showing the spin–parity determined from
experiment is not that far from the one this spin–parity has been attributed to by the
MPMH method (for nuclei whose spin–parities does not match experimental values). It
is more litigious with D1S and D2 since the gap with experiment widens. We should
nonetheless bear in mind that fewer spin–parities are incorrectly reproduced by these
interactions, so these mean values would drop if we took into account the spin–parities they
faithfully reproduce while DG does not. We also underline that the standard deviations
are relatively important; some differences are very low and then not expected to be handled
by these interactions, while others are rather strong and then more embarrassing. In the
first excited state (right side of the table), the mean differences are about 500 keV for
all three interactions, with lower standard deviations. Consequently, although agreement
rates are lower in the first excited states than in the ground states, this is not problematic
at this stage. Indeed, the related level inversions are hardly avoidable since they involve
fine spectroscopic effects these interactions are not meant to perfectly account for. Gogny
interactions have been fitted and mainly tested on even–even nuclei so far. It is accordingly
not so surprising that results for odd nuclei exhibit some limitations. Moreover, the full
self-consistency should be considered before making definite conclusions, as it is supposed
to refine the results.

3.2. First excitation energies
We now turn into the calculation of the difference between the excitation energies

of the first excited state evaluated by the MPMH method and experimentally, which is
defined as

∆EMPMH[Jπ] ≡ EMPMH[Jπ]− Eexp[Jπ], (IV.16)

where EMPMH[Jπ] and Eexp[Jπ] respectively denote the excitation energies, of spin–parity
Jπ, of the first excited state evaluated by the MPMH method and from experiment [202].
Note that among the forty-nine odd nuclei we have retained, the first excitation energies
of thirty-seven of them are known experimentally. In the light of our discussion from
previous subsection, the theoretical excitation energies EMPMH[Jπ] of those nuclei are
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associated with the first state showing the spin–parity measured experimentally. The
results are presented in Figure IV.13 for DG, D1S and D2 interactions.

In contrast to even–even nuclei, the results appear more nuanced between interactions
for odd nuclei. With D1S and D2, the excitation energies of certain nuclei are particularly
overestimated, which is not the case with DG interaction. Quantitatively, Table IV.6
displays the mean values and standard deviations as defined in (IV.15), for each appearing
spin–parity and in total. Our observations are confirmed since MPMH results are the
greatest with DG. In particular, the mean difference is almost half that of D1S and the
standard deviation less than half of it. As for D2, its mean value is relatively important
but its standard deviation approximately that of D1S. The same hierarchy can be set up
in each type of spin–parity states. Mean values and standard deviations are always the
lowest with DG, especially for 1/2+ and 3/2+ states in which the outputs are remarkably
improved with respect to D1S and D2. On the contrary, D2 shows important discrepancies
with experiment in these states. For this reason, we will preferably compare the results
brought by DG with those of D1S to highlight its advantages with respect to the reliable
interaction we have at hand (between D1S and D2). Because this effect is global, we
tend to identify the spin–orbit force as being mainly responsible for it. The complete
justification follows that exposed in subsection IV.2.1 for even–even nuclei. Here also,
already at the level of the fitting process, we have noticed that the intensity of the spin–
orbit term proper to D1S and D2 interactions was a bit too high to produce a good overall
reproduction of excitations energies. By generating parametrizations of lower spin–orbit
intensities, like DG, the outputs proved to be more pertinent.

1/2+ 3/2+ 5/2+ Total
〈x〉 σ(x) 〈x〉 σ(x) 〈x〉 σ(x) 〈x〉 σ(x)

Interaction (keV) (keV) (keV) (keV) (keV) (keV) (keV) (keV)
DG 423 253 288 188 105 82 337 263
D1S 874 794 631 657 131 74 659 698
D2 1098 539 898 799 132 139 821 673

Table IV.6 – Mean values and standard deviations of the difference x ≡ ∆EMPMH[Jπ], as
defined in (IV.16), evaluated for each spin–parity Jπ ∈ {1/2+, 3/2+, 5/2+} and globally,
with DG, D1S and D2 interactions.

A closer look at Figure IV.13 unveils that the energy difference appreciably increases
from N = 14 with D1S and D2 interactions. Interestingly, we have mentioned in the pre-
vious section that isotopes with neutrons in the region between N = 14 and N = 16 were
specifically sensitive to the tensor force. It makes all the more sense that Si (red symbols)
and S (green symbols) isotopes have excitation energies among the least well reproduced
of all the nuclei belonging to this region, with both D1S and D2 interactions. In concrete
terms, 29Si and 31Si are respectively overestimated by 1.640 MeV and 2.518 MeV with D1S.
With D2, the disagreements reach by 1.862 MeV and 2.320 MeV for these two nuclei. On
top of them, 31S and 33S, which were decently described by D1S with energy differences
of 698 keV and 258 keV, are worsened with D2, with overestimations of 1.636 MeV and
1.357 MeV, respectively. Besides, we notice that beyond N = 17, two other Si and S iso-
topes, namely 33Si and 35S, exhibit also high energy differences, 1.806 MeV (1.624 MeV)
and 1.112 MeV (1.801 MeV) with D1S (D2), respectively. Even if the tensor force in the
neutron sector is not expected to be as strong as the one acting in N = 13 to N = 17 iso-
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Figure IV.13 – Energy difference between the first excitation energies predicted by the
MPMH and experimental data, expressed by (IV.16), as a function of the number of
neutrons N . The results are shown for DG, D1S and D2 interactions, in panels (a), (b)
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topes, we shall discuss in the next subsection that the overall action of the tensor term may
not be negligible. On the other hand, DG does not present such pathologies since the dif-
ferences are always lower than 1 MeV, as indicated in panel (a). For 29Si, 31Si, 33Si, 31S, 33S
and 35S, they are respectively 178 keV, 626 keV, 466 keV, 348 keV,−319 keV and −366 keV.
Therefore, as for even–even Si and S isotopes, DG seems to cure (or at least notably
reduce) the overestimated first excitation energies of odd Si and S isotopes. Note that
we have commented on nuclei with an odd number of neutrons to make the link with the
previous section; however the study also applies to nuclei with an odd number of protons.

Finally, we mention again that the restoration of the full self-consistency is supposed to
make the agreement with experiment better. Unlike even–even nuclei, though, there have
been no previous studies in odd nuclei to give us information on the order of magnitude
of the correction to be expected.

3.3. Single-particle energies

We have detailed in previous subsection that 29Si, 31Si, 33Si, 31S, 33S and 35S isotopes
are predicted with too high first excitation energies with either D1S or D2. In the same
way as isotopes 28Si, 30Si, 30S and 32S discussed in subsection IV.2.2, this effect may be
seen as an interplay between spin–orbit and tensor forces.

In order to ascertain that the analysis made for even–even nuclei still hold for their
odd counterparts, we have represented in Figure IV.14 the proton and neutron SPEs of
Si and S isotopes at the HF level, invoking the equal filling approximation. As expected,
no particular behavior on SPEs stand out with odd Si and S isotopes. The results are
qualitatively very similar to those of Figure IV.3 regarding the reduction of proton and
neutron gaps when going from D1S to DG interactions. The general interpretation based
on a combination of spin–orbit and tensor effects remains the same.

Table IV.7 allows us to be more precise by quantifying proton and neutron gaps for
the Si and S isotopes we are interested in, with all three interactions. In 29Si, proton
(2s1/2 − 1d3/2)π and neutron (2s1/2 − 1d3/2)ν gaps are both reduced by about 800 keV
when going from D1S to DG, while only this neutron gap is significantly shrunk, by
about 1.7 MeV and 2 MeV, in 31Si and 33Si, respectively. In 29S, proton (2s1/2 − 1d3/2)π
and neutron (1d5/2 − 2s1/2)ν are respectively diminished by about 500 keV and 900 keV
when going from D1S to DG. A reduction of the same order takes place in this neutron
gap for 29S whereas the proton gap (1d5/2−2s1/2)π is decreased by about 600 keV. Finally,
only neutron gaps (1d5/2−2s1/2)ν and (2s1/2−1d3/2)ν are substantially modified with DG,
showing a decline of about 1.1 MeV and 900 keV, respectively, with respect to D1S. These
figures are interesting since they testimony the way the gaps are changed when the upper
(1d3/2)ν level starts to fill up. On the one hand, we notice, by comparing Tables IV.3
and IV.7, that the same kinds of gap reductions appear for 28Si and 29Si isotopes when
going from D1S to DG. This pattern also shows up for 30S and 31Si isotopes. This was
expected as we have designated the tensor force to justify, to some extent, the shrinking
of the gaps. Here, as only (about) one additional neutron is filling the (2s1/2)ν state
in 29Si and 31Si, compared to 28Si and 30S, the tensor effects should roughly remain the
same according to Otsuka’s picture. On the other hand, between 30Si and 31Si, as well
as between 32S and 33S, (about) one additional neutron lies in the (1d3/2)ν state. As this
spin-partner state is no longer empty, the intensity of the tensor force is supposed to fall
in the associated nuclei. We observe that while both proton and neutron gaps of 30Si
and 32S were greatly enlarged when going from D1S to DG, only neutron gaps are so for
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Figure IV.14 – Single-particle energies of the sd shell along Si (left panels) and S (right
panels) isotopic chains, for proton (upper panels) and neutron (lower panels) levels. Re-
sults are given for DG, D1S and D2 interactions

31Si and 33S. Referring to Ostuka’s interpretation, this phenomenon cannot be ascribed
to the proton–proton contribution of the tensor force as it is unchanged within Si and
S isotopes. However, the intensity of the proton–neutron contribution is diminished in
31Si and 33S with respect to 30Si and 32S because of the filling of the (1d3/2)ν state. It
then seems that the widening of the proton gaps for these isotopes are related to the
proton–neutron component of the tensor force. This reasoning is supported by isotopes
33Si and 35S, in which the proton–neutron tensor force is expected to be even lower, as
we see small proton gaps.

Obviously, our interpretation must be taken with a grain of salt. Indeed, if the effects
were fully understandable within Otsuka’s picture, we would observe a diminution of the
neutron gaps between D1S and DG interactions when going from 30Si to 31Si and 33Si, as
well as from 31S to 33S and 35S, since the intensity of the neutron–neutron tensor force
is supposed to decrease. This is manifestly not the case. Second because all the terms
making up the Gogny interactions participate in the description of SPEs. In particular, the
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29Si
(1d5/2 − 2s1/2)π (2s1/2 − 1d3/2)π (1d5/2 − 2s1/2)ν (2s1/2 − 1d3/2)ν

Interaction (MeV) (MeV) (MeV) (MeV)
DG 4.832 2.718 4.971 2.572
D1S 4.902 3.498 4.962 3.795
D2 5.047 3.399 5.744 3.130

31Si
DG 5.036 2.912 4.896 2.263
D1S 5.135 2.922 4.727 3.998
D2 4.560 3.476 5.651 3.107

33Si
DG 5.096 2.679 4.873 1.399
D1S 4.908 2.273 4.987 3.402
D2 4.607 2.667 5.871 2.539

31S
DG 4.625 2.883 4.209 3.157
D1S 4.976 3.358 5.130 3.446
D2 5.056 3.313 4.668 3.960

33S
DG 4.584 2.994 4.150 2.818
D1S 5.209 2.709 5.091 3.368
D2 4.764 3.223 4.685 3.819

35S
DG 5.182 2.664 3.960 2.233
D1S 5.377 1.850 5.037 3.212
D2 5.032 2.365 4.709 3.572

Table IV.7 – Proton and neutron energy gaps of 29Si, 31Si, 33Si, 31S, 33S and 35S isotopes
predicted by DG, D1S and D2 interactions at the HF level employed with the equal filling
approximation.

spin–orbit term, considered predominantly responsible for the overall better agreement of
first excitation energies, cannot be discarded. Likewise, it is difficult to entirely attribute
the displacement of the 1s1/2 states for DG, with respect to D1S and D2 interactions in
Figure IV.14, to spin–orbit and tensor forces, since they are not supposed to act on it to
first approximation.

3.4. Multiparticle–multihole excitations
We now reiterate the study carried out in subsection IV.2.3 on the locations of the

nucleons within the sd subshells in the ground and first excited states, but now for odd
nuclei. We begin by focusing on the occupation of the ground states for Si and S isotopic
chains. In Figure IV.15 is displayed the average number of protons (left panels) and
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neutrons (right panels) in the single-particle states constituting the ground state, as a
function of the neutron number N , of Si isotopes, for DG, D1S and D2 interactions. The
same quantities are represented for the S isotopic chain in Figure IV.16.

In Figure IV.15, generally speaking, we observe the same tendency in both proton and
neutron sectors as that illustrated in Figure IV.5 for even–even isotopes. The increasing
concentration of nucleons in the upper states 2s1/2 and 1d3/2, prominent with the inter-
action DG, prevails for isotopes with N = 13 and N = 15. This corroborates the same
observation made for even–even isotopes with a number of neutrons ranging from N = 12
to N = 16.
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Figure IV.15 – Occupation of the ground states of Si isotopes defined as the number of
proton (left panels) and neutrons (right panels) filling the sd subshells, namely the 1d5/2
(lower panels), 2s1/2 (middle panels) and 1d3/2 (upper panels) levels.

Now, let us point out some differences brought by odd isotopes. In the proton sector
(left panels), for example, 0.730 and 0.333 protons are filling the respective 2s1/2 and
1d3/2 states of 29Si with DG. In comparison, we have said that those same states were less
occupied (0.341 and 0.196 protons, respectively) in 30Si. It is difficult to draw conclusions
based on the proton gaps of those isotopes as (1d5/2 − 2s1/2)π is slightly broader while
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(2s1/2−1d3/2)π slightly narrower for 29Si, with respect to those of 30Si. Nevertheless we are
tempted to say that the single neutron a priori lying in the (2s1/2)ν state of 29Si has more
chances to form a pair with a proton than when already paired to another neutron in 30Si.
Such proton–neutron pair can then scatter towards the upper states, explaining the higher
occupations of (2s1/2)π and (1d3/2)π states in 29Si. In the neutron sector (right panels)
of 29Si, 1.189 and 0.464 neutrons are located in the states 2s1/2 and 1d3/2, respectively.
In 30Si, we have found 1.756 and 0.460 neutrons in those same states. The fact that
on average more neutrons fill the 2s1/2 state with 30Si was predictable as this nucleus is
by definition made up of one extra neutron. However, the reason why nearly the same
number of neutrons occupy the highest level may be less on, given that their neutron
gaps (2s1/2 − 1d3/2)ν are not so different (with the DG interaction). In fact, even though
only one neutron is in (2s1/2)ν with 29Si, which then offers less possibilities to reach the
(1d5/2)ν than with two neutrons, the energy to supply is lower and this configuration more
favorable.

Finally, we notice that for 33Si, in which the tensor force is not supposed to be strong
in the neutron sector, 0.309 (0.129) and 0.085 (0.114) protons as well as 1.946 (1.978)
and 3.063 (3.038) neutrons sit in the respective 2s1/2 and 1d3/2 states, with DG (D1S)
interactions. This fits the data of Table IV.7 as the proton gap (2s1/2 − 1d3/2)π is much
less reduced than the neutron gap (2s1/2 − 1d3/2)ν when going from D1S to DG, namely
400 keV versus 2 MeV. It means that the reduction of the neutron gap is principally
responsible for the better reproduction of the first excitation energy of 33Si with DG. This
was quite unexpected.

For S isotopes as well, the migration of nucleons towards 2s1/2 and 1d3/2 states is
important for N = 13 and N = 15, and is in particular marked for the interaction DG,
as shown in Figure IV.16. By considering now two protons in the 2s1/2 state, the same
type of remarks we have just made can be adjusted for odd S isotopes.

Let us eventually examine the occupation of the single-particle states for DG, D1S and
D2, but now in the first excited state. The average number of nucleons filling 1d5/2, 2s1/2
and 1d3/2 proton and neutron states along Si and S isotopic chains are given in Figures
IV.17 and IV.18, respectively.

First of all, we notice in Figure IV.17 that the depletion of the lowest state to the
benefit of the upper states in N = 13 and N = 15 isotopes is still in force in both proton
and neutron sectors for Si nuclei. It should be noted, though, that it is less apparent in
the transition from D1S to DG than it was for the ground state or even the first excited
state in even–even isotopes (see Figure IV.7). In the same manner as in those latter, we
also observe that the 2s1/2 and 1d3/2 levels are more populated in the first excited state
than in the ground state, for the Si isotopes we have selected. Indeed, in 29Si for instance,
0.958 and 0.369 protons (to be compared with the values 0.730 and 0.333 in the ground
state) respectively stand in 2s1/2 and 1d3/2 states. On the other side, 1.511 and 0.505
neutrons (to be compared with the values 1.189 and 0.464 in the ground state) reach those
same states in the neutron sector. In 30Si, we recall that 0.830 and 0.242 protons as well
as 1.594 and 0.746 neutrons occupy the corresponding 2s1/2 and 1d3/2 states. As more
protons are in the upper subshells, our interpretation based on proton–neutron excitations
in the ground state seems to hold here, in the first excited state. Complementarily, as
more neutrons are filling the highest state for 30Si, it appears that more excitations are
related with the neutron pair than with the single neutron.

Once again, the results obtained for Si isotopes can be transposed to S isotopes.

192



IV. Beyond mean-field results 4. Odd–odd nuclei in sd shell

0

1

2

3
1d

3
/
2

S

(a)

Proton states

DG

D1S

D2

(d)

Neutron states

0

1

2

2s
1
/
2

(b) (e)

9 11 13 15 17 19

2

4

6

1d
5
/
2

(c)

9 11 13 15 17 19

(f)

O
cc

u
p

at
io

n
of

th
e

gr
ou

n
d

st
at

e

Number of neutrons N

Figure IV.16 – Same as in Figure IV.15, but for the S isotopic chain.

Indeed, the general pattern we have just exposed is recovered for S isotopes, as displayed
in Figure IV.18.

4. Odd–odd nuclei in sd shell

4.1. Spin–parities
We finally end our study of the MPMH spectroscopy in the sd shell with odd–odd

nuclei. In total, thirty-six odd–odd nuclei belong to the sd shell, among which nine are
unbound experimentally. These, namely 28F, 24P, 26Cl, 28Cl, 30Cl, 28K, 30K, 32K and 34K,
will then not be considered in the following. In odd–odd nuclei, the density of states at
low energy is known to be even higher than in odd nuclei. Just like we have observed
for odd nuclei, the spin–parity Jπ of a given odd–odd nucleus measured from experiment
consequently does not necessarily matches that predicted with the MPMH. The situation
is illustrated in Figures IV.19 and IV.20 where the predicted spin–parities in the ground
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Figure IV.17 – Occupation of the Si isotopes first excited states defined as the number of
proton (left panels) and neutrons (right panels) filling the sd subshells, namely the 1d5/2
(lower panels), 2s1/2 (middle panels) and 1d3/2 (upper panels) levels.

and first excited state, respectively, are compared with experimental data, when available.
In Figure IV.19, it appears that overall, the reproduction of measured spin–parities

in the ground state is more mixed than in odd nuclei (see Figure IV.11). For D1S and
D2 interactions, it seems slightly less good but for DG the damaging is pronounced. The
precise agreement rates with experiment for DG, D1S and D2 interactions are listed in
Table IV.8. Note that we have not distinguished the results by spin–parities as there
are not enough cases for this to be relevant. We effectively see that the agreement in
the ground state is mainly tarnished for DG, with less than one spin–parity in two cor-
rectly predicted. On the opposite, the agreement remains satisfactory for D1S and D2
interactions, with a reproduction of more than 75%.

In the first excited state, the general prediction of spin–parities is worsened compared
to those of the ground state for all three interactions, as shown in Figure IV.20. As for odd
nuclei, this phenomenon was expected since the mixing of low-energy levels observed in
the ground states propagates in the associated first excited states, to which are added new
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Figure IV.18 – Same as in Figure IV.17, but for the S isotopic chain.

Agreement rate (%)
Ground state First excited state

Interaction
DG 44.0 27.3
D1S 76.0 45.5
D2 84.0 40.9

Table IV.8 – Agreement rates with experiment in the prediction of spin–parities in the
ground state (left side) and in the first excited state (right side), for DG, D1S and D2
interactions.

inversions specific to the first excited states. The interactions D1S and D2 are importantly
affected in the first excited state, with an agreement falling below 50%. The accuracy is
even lower with DG, just over a quarter, but only three nuclei out of twenty-two make the
difference with D1S. With a 43.1% drop in the overall reproduction of spin–parities when
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Figure IV.19 – Comparison between spin–parities Jπ ∈ {0+, 1+, 2+, 3+, 4+, 5+} predicted
by the MPMH method for DG (upper panel), D1S (middle panel) and D2 (lower panel)
interactions and experimental data [202] for the ground state. MPMH and experimental
results are represented by circles and squares, respectively.

going from the ground to the first excited state, D2 is the most affected, followed by D1S
(30.5%) and DG (16.7%). The same decline has been observed in odd nuclei, although
less prominent. We lastly mention that experimental measurements of six nuclei are still
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missing. Most theoretical outputs of the MPMH method for these nuclei are different
with DG, and with D1S and D2. This could modulate our statistics, when experimental
data come out.
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Figure IV.20 – Same as in Figure IV.19, but now for the first excited state.

For odd nuclei, we have shown that the existence of several states within a relatively
small range in energy was responsible for the discrepancies in the description of spin–
parities in both ground and first excited states. As this description is even poorer for
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odd–odd nuclei, we assume that our explanation still holds. We then carry out the same
analysis. In Table IV.9, the mean values and standard deviations of the energy difference
between the ground state (as well as the first excited state) and the lowest state having
the spin–parity measured experimentally, for all nuclei whose spin–parities do not fit
experimental data are provided, for DG, D1S and D2 interactions. In the ground state
(left side of the table), the mean difference is about 400 keV for DG, and reduced to less
than 300 keV for D1S and D2. This shows that the distribution of low-energy states is
on average more compact for odd–odd than for odd nuclei (see Table IV.5), as expected.
Standard deviations are also smaller, meaning that there are less disparities within energy
differences ∆E . In the first excited state (right side of the table), the mean differences are
slightly higher, about 400 to 500 keV for all three interactions, with reasonable standard
deviations. These are of the order of what we have observed for odd nuclei. It turns out
that most of spin–parity mismatches between theoretical and experimental predictions
are caused by level inversions of no more than a few hundred keV. At present, Gogny
interactions cannot be expected to utterly reproduce such fine structure effects in odd–odd
nuclei, even more subtle than in odd nuclei, for which they have not been tuned. Besides,
full self-consistent MPMH calculations should be performed to have a more meticulous
picture.

Ground state First excited state
〈∆E〉 σ(∆E) 〈∆E〉 σ(∆E)

Interaction (keV) (keV) (keV) (keV)
DG 390 208 442 291
D1S 232 210 485 489
D2 296 448 469 441

Table IV.9 – Mean values and standard deviations of the theoretical energy difference
∆E between ground states (left side) or first excited states (right side) and the lowest
states whose spin–parities are those of experimental measurements, for DG, D1S and D2
interactions.

4.2. First excitation energies
We now evaluate the difference between the excitation energies of the first excited

state evaluated by the MPMH approach and experimentally, which has been defined in
(IV.16). Note that among the twenty-seven odd–odd nuclei we have retained, the first
excitation energies of twenty-one of them are known experimentally. According to our
discussion of the previous subsection, the theoretical excitation energies of those nuclei
are associated with the first state showing the spin–parity measured experimentally. The
results are plotted in Figure IV.21 for DG, D1S and D2 interactions.

In general, the excitation energies are satisfactorily reproduced by all three interactions
in odd–odd nuclei. With differences rarely above a few hundred keV, they look better than
in odd nuclei and thinly worse than in even–even nuclei. To be more precise, the mean
values and standard deviations, as defined in (IV.15), are displayed in Table IV.10, for DG,
D1S and D2 interactions. Note that we have not calculated these quantities for each spin–
parity or isotopic chain as there are not enough representatives. The outputs are better
with DG, putting finishing touches to the quality of this interaction in the description of
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Figure IV.21 – Energy difference between the first excitation energies predicted by the
MPMH and experimental data, expressed by (IV.16), as a function of the number of
neutrons N . The results are shown for DG, D1S and D2 interactions, in panels (a), (b)
and (c), respectively. Horizontal dashed lines display perfect agreement with experiment.
The sd-shell isotopes studied are labelled by different colors and their spin–parities Jπ ∈
{0+, 1+, 2+, 3+, 4+} by different shapes, as indicated in the legend.
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first excitation energies, beyond the mean field, of all sd-shell nuclei. The mean difference
is about 100 keV smaller than that of D1S or D2, and the standard deviation less than
half that of D1S. We notice that D1S and D2 results are pretty similar, but since we have
mostly compared DG to D1S so far, we shall continue this way for the sake of clarity.
Since we are describing a global effect here, it is principally attributed to the spin–orbit
interaction, as for the other types of nuclei. This is something we have realized during the
fitting process, as lessening the intensity of the spin–orbit term improved the description
of odd–odd nuclei in terms of their first excitation energies.

〈x〉 σ(x)
Interaction (keV) (keV)
DG 299 230
D1S 437 491
D2 400 413

Table IV.10 – Mean values and standard deviations of the difference x ≡ ∆EMPMH[Jπ], as
defined in (IV.16), evaluated with DG, D1S and D2 interactions.

We can discriminate three nuclei whose energy differences are over 1 MeV with D1S
and D2 interactions. Because they are manifestly decreased by DG, they play a crucial
role in the overall higher mean values discussed above. In 22Na (magenta circle), the exci-
tation energy of the first excited state is overestimated by 1.151 MeV with D1S, 1.048 MeV
with D2, and only 68 keV with DG. As for 26Al (pink circle), it is 1.238 MeV, 1.186 MeV
and 617 keV with D1S, D2 and DG, respectively. Finally, for 38K (gray circle), we find out
1.821 MeV, 1.433 MeV and 470 keV, with the same interactions. The results are slightly
better with D2 than D1S, but not sufficiently lowered to achieve the accuracy of DG,
invariably below 1 MeV. It is interesting to notice that these nuclei have all 0+ exper-
imental spin–parities (as indicated by the circles) and a same number of protons and
neutron, i.e. N = Z. Another nucleus, namely 30Na (magenta square), also stands out
with an overestimated energy difference of 937 keV for all three interactions. Actually this
is the experimental first excitation energy of this nucleus as the associated spin–parity is
assigned to the ground state by the MPMH method (conventionally chosen as the origin
of the energy spectrum). In fact, we are approaching the N = 20 island of inversion with
this nucleus [217]. The sole mixing of sd-shell states considered here is no longer suffi-
cient to describe the spectroscopy of this nucleus. The pf -shell states, and in particular
(1f7/2)ν , should be taken into account as they may intrude the lower orbitals.

Finally, we recall that the full self-consistency, we still do not know the order of
magnitude of in odd–odd nuclei, is supposed to enhance the MPMH predictions.

4.3. Single-particle energies
In previous subsection, we have observed that 22Na, 26Al and 38K isotopes are described

with overestimated first excitation energies, with both D1S and D2. The tensor force is
expected to be diminished in those nuclei as no one presents a completely filled spin-
partner state while the other is empty. Only in 26Al we may expect some effect as the
1d5/2 states start to fill up.

In order to understand what is going on in the above-mentioned nuclei, we plot in
Figure IV.22 the proton and neutron SPEs of Na and Al isotopes at the HF level, obtained
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with the equal filling approximation. We specify that the full isotopic chains have been
displayed to emphasize the potential gap reductions of the nuclei we are interested in
with respect to their neighbors, and to see the modifications relatively to the Si and S
cases we have investigated in detail. For K nuclei, unfortunately, such study is not viable
as most odd–odd isotopes are unbound. We will then content to give the values of the
gaps associated with 38K in what follows. On the whole, the descent of the proton state
1d3/2, more pronounced at N = 13 and N = 15, and the global reductions of neutron
gaps observed with DG are still in place in Na and Al isotopes. In the neutron sector, the
phenomenon is less marked than in Si and S isotopes (see Figure IV.14), but still clear.
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Figure IV.22 – Single-particle energies of the sd shell along Na (left panels) and Al (right
panels) isotopic chains, for proton (upper panels) and neutron (lower panels) levels. Re-
sults are given for DG, D1S and D2 interactions.

Going further, we furnish the proton and neutron gaps of 22Na, 26Al and 38K predicted
by all three interactions in Table IV.11. We indeed observe the shrinking of several gaps for
all isotopes when going from D1S to DG, at the origin of more reasonable first excitation
energies. In 22Na and 26Al, the reductions are salient in proton and neutron (2s1/2−1d3/2)
gaps. Of about 600 keV in both (2s1/2− 1d3/2) gaps in 22Na, they reach about 1 MeV and
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900 keV in (2s1/2 − 1d3/2)π and (2s1/2 − 1d3/2)ν in 26Al, respectively. On the other hand,
the main reductions take place in proton and neutron gaps (1d5/2 − 2s1/2) in 38K. They
are diminished by about 400 keV and 500 keV, respectively. Let us note by the way that
these gaps are also systematically narrowed when going from D1S to D2. This coincides
with the lower excitation energies obtained for the three nuclei with D2, but the effect is
a priori too weak to sufficiently lower them. We point out that the gap reductions are
stronger in 26Al, in which the tensor force is supposed to show some action, than in 22Na
and 38K, in which its action is very limited. Its more dominant action in 26Al compared
to 22Na is graphically observable, in particular in the proton sector, when focusing on
their respective gaps, in panels (a) and (c) of Figure IV.22. We then claim that the drop
in the energy differences of 22Na and 38K when going from D1S to DG is mainly due to
the lower spin–orbit intensity while a non-negligible tensor component must additionally
be taken into account to explain those of 26Al.

22Na
(1d5/2 − 2s1/2)π (2s1/2 − 1d3/2)π (1d5/2 − 2s1/2)ν (2s1/2 − 1d3/2)ν

Interaction (MeV) (MeV) (MeV) (MeV)
DG 4.523 2.792 4.479 2.951
D1S 4.534 3.441 4.764 3.535
D2 5.048 3.187 5.321 3.299

26Al
DG 5.037 2.488 4.828 2.665
D1S 4.826 3.456 5.022 3.545
D2 5.560 2.910 5.789 3.013

38K
DG 4.887 1.586 4.794 1.766
D1S 5.324 1.692 5.292 1.936
D2 5.186 2.018 5.148 2.287

Table IV.11 – Proton and neutron energy gaps of 22Na, 26Al and 38K isotopes predicted
by DG, D1S and D2 interactions at the HF level, with the equal filling approximation.

Finally, we would like to say that the diminutions of the energy gaps are in general less
important here than in even–even and odd Si and S isotopes whose excitation energies are
overestimated (with D1S or D2). This is in accordance with the fact that the excitation
energies of these nuclei are usually more overestimated than those we focus on in this
section. When going from D1S to DG, the reduction of the proton and neutron gaps
(2s1/2 − 1d3/2) of 26Al must indeed be multiplied by a factor 1.7 to get those of 28Si,
displayed in Table IV.3. This shows how strong the tensor effects become when the lower
spin-partner states of the sd shell are filled. Another interesting example is that of 27Si,
since it has only one more proton than 26Al. In this nucleus, the proton and neutron gaps
(2s1/2 − 1d3/2) are reduced by about 900 keV and 1.1 MeV when going from D1S to DG.
Thus, the addition of one proton increases the diminution of the gap (2s1/2 − 1d3/2)π by
about 300 keV, and by about 100 keV for the gap (2s1/2 − 1d3/2)ν . Once again, it seems
that the proton–neutron component of the tensor force is noteworthy.
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4.4. Multiparticle–multihole excitations
We eventually look at how the nucleons are distributed within the single-particle levels

in the ground and first excited states of 22Na, 26Al and 38K isotopes. We begin with the
occupation of the ground state in Na and Al isotopic chains. In Figures IV.23 and IV.24
are represented the average number of protons (left panels) and neutrons (right panels) in
the single-particle states making up the ground state, as a function of the neutron number
N , of Na and Al isotopes, respectively, for DG, D1S and D2 interactions.
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Figure IV.23 – Occupation of the ground states of Na isotopes, defined as the number of
proton (left panels) and neutrons (right panels) filling the sd subshells, namely the 1d5/2
(lower panels), 2s1/2 (middle panels) and 1d3/2 (upper panels) levels.

In Figure IV.23, we observe, from N = 13 in the proton sector (left panels), a depletion
of the lowest state in favor of the 2s1/2 state, and to a lesser extent, in favor of the 1d3/2
state, with the interaction DG. This is basically the phenomenon showing up in Si and
S isotopes, but with greater amplitude (see Figures IV.15 and IV.16). In the neutron
sector (right panels), the same trend can be spotted, but only from N = 15. In 22Na,
only a small ascent of the 2s1/2 states is perceptible in panels (b) and (e). This fits the
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small variations of the gaps (2s1/2 − 1d3/2) of Table IV.11 when going from D1S to DG.
Concretely, 0.333 and 0.170 protons are filling the respective 2s1/2 and 1d3/2 states with
DG, against 0.306 and 0.181 with D1S. On the neutron side, 0.342 and 0.171 neutrons lie
in these same states with DG, versus 0.312 and 0.184 with D1S.
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Figure IV.24 – Same as in Figure IV.24, but for the Al isotopic chain.

The same depletion occurs from N = 13 in the Al isotopic chain of Figure IV.24. This
time, the effect is more visible, in both proton and neutron sectors, although a bit less
than in Si and S isotopes. Such behavior was expected since more protons fill the 1d5/2
state (which renders transitions towards upper states more likely), and the gap reductions
seem more prominent with Al isotopes, based on the examples of 22Na and 26Al. Indeed,
0.796 and 0.370 protons (0.805 and 0.368 neutrons) occupy the respective 1d5/2 and 2s1/2
states with DG, against 0.339 and 0.287 protons (0.342 and 0.290 neutrons) with D1S.
Note that the increasing intensity of the phenomenon with the average number of protons
filling the lowest state (three in Na, five in Al and six in Si as well as in S isotopes),
sustains the idea that the tensor term naturally plays a role in the occupation of the
single-particle states.
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We have not represented the occupation of K isotopes as most of their odd–odd mem-
bers are unbound experimentally. We still give the results for 38K. The states 1d5/2, 2s1/2
and 1d3/2 are filled by 5.867, 1.593 and 3.539 protons, as well as 5.877, 1.610 and 3.513
protons, with DG, against 5.980, 1.818 and 3.202 protons, as well as 5.980, 1.829 and 3.191
protons, with D1S. The migration towards the upper states is manifest with DG. The rel-
atively significant reductions of the proton and neutron gaps (1d5/2 − 2s1/2) explain the
transitions between the states they link, but also the smaller reductions of the proton and
neutron gaps (2s1/2 − 1d3/2) exhibit a discernible influence.

Finally, we turn into the occupation of the sd subshells for DG, D1S and D2, but now
for the first excited state. The average number of nucleons standing in the 1d5/2, 2s1/2 and
1d3/2 proton and neutron states along Na and Al isotopic chains are provided in Figures
IV.25 and IV.26, respectively.
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Figure IV.25 – Occupation of the first excited states of Na isotopes, defined as the number
of proton (left panels) and neutrons (right panels) filling the sd subshells, namely the 1d5/2
(lower panels), 2s1/2 (middle panels) and 1d3/2 (upper panels) levels.

In Figure IV.25, we see that the phenomenon we have described in the ground state
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is still present, and even more pronounced, especially in the neutron sector, in the first
excited state. The augmentation of the number of particles occupying the 1d3/2 states
with interaction DG is now distinct. On the other hand, the migration of nucleons from
1d5/2 towards 2s1/2 states with DG appears sooner, from N = 9. This globally results in
upper states being more occupied in the first excited state than in the ground state. For
22Na, 0.363 and 0.199 protons (to be compared with 0.306 and 0.181 in the ground state)
as well as 0.373 and 0.199 neutrons (to be compared with 0.342 and 0.171 in the ground
state) are populating the 2s1/2 and 1d3/2 levels in the first excited state, respectively.
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Figure IV.26 – Same as in Figure IV.25, but for the Al isotopic chain.

For Al isotopes, the situation is quite the opposite to the one detailed for Na isotopes,
when going from the ground to the first excited state, as illustrated in Figure IV.26. In
fact, even if the peculiar behavior is also taking place sooner, from N = 11, it is less
marked than in the ground state. As a consequence, the upper states are now in general
less occupied in the first excited state than in the ground state. For 26Al, 0.477 and 0.342
protons (to be compared with 0.796 and 0.370 in the ground state) as well as 0.486 and
0.340 neutrons (to be compared with 0.805 and 0.368 in the ground state) are lying in
the 2s1/2 and 1d3/2 levels of the first excited state, respectively.
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It is also interesting to compare the occupation of the single-particle states of 26Al
and 27Si in the first excited state, here with interaction DG. In 27Si, 1.003 and 0.438
protons, as well as 0.813 and 0.339 neutrons occupy the 2s1/2 and 1d3/2 states, respectively.
Unsurprisingly, more protons reach these states in 27Si than in 26Al as an additional proton
is involved. With the same number of neutrons, though, more neutrons reach the 2s1/2
state in 27Si. Yet, their gaps (1d5/2 − 2s1/2)ν are pretty similar, 4.828 MeV for 26Al and
4.891 MeV for 27Si, with DG. This suggests that the single proton and neutron in 26Al
tend to pair up, and that their scattering to higher-energy states will be less energetically
favorable than that of the single neutron in 27Si.

Finally, in 38K as well, less nucleons are filling the first excited state with respect to
the ground state. To be quantitative, 2.000 protons and neutrons (to be compared with
1.593 protons and 1.610 neutrons in the ground state) are saturating the 2s1/2 states,
while 3.018 protons and 3.017 neutrons (to be compared with 3.539 protons and 3.513
neutrons) stay in the 1d3/2 states.
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Conclusion

We constructed a generalized fully finite-range Gogny interaction provided with spin–
orbit and tensor terms. The associated analytical expression encompasses almost all
previous ones and is intrinsically free from ultraviolet divergences at the Hartree–Fock–
Bogoliubov level and when going beyond the mean field. In this venture, we had to
extend the existing fitting procedure to integrate new constraints and filters in order to
efficiently discriminate trustworthy sets of parameters. The constraints took the form
of requirements, drawn from the shell model, on two-body matrix elements allowing to
control for the first time the proton–neutron pairing properties of a Gogny interaction.
To make this possible, the spherical two-body matrix elements of the newly introduced
finite-range spin–orbit and tensor forces were derived analytically. As for the filters, they
were founded on the three following points:
(i) a spin–orbit intensity in the T = 1 channel approximately equal to that of the

original Gogny interaction at the zero-range limit;
(ii) an isospin-dependent spin–orbit parameter of the order of that established by Sharma

et al. [142] to better reproduce the kink in Pb isotopes;
(iii) tensor parameters close to those of Anguiano and Grasso [61], obtained by fitting

the 1f splittings of three nuclei while considering the combined actions of spin–orbit
and tensor forces.

The choice of the spin–orbit and tensor ranges used as inputs in the fitting code were
guided by the exchanges of π and ω mesons in the one-boson-exchange models. The out-
coming parametrizations were successively tested in infinite nuclear matter and from the
perspectives of mean-field and beyond mean-field approaches, before the best compromise
was found for the parametrization referred to as DG. We additionally asked our globally
refitted parametrization not to deviate too much from the former parametrization D2, to
preserve its qualitative features.

In nuclear matter, we found that interaction DG presents satisfactory results, in par-
ticular regarding:
(i) physical quantities correctly reproduced by D2 (standard quantities evaluated at

the saturation density, potential energy in (S, T ) channels, equations of state in
symmetric and neutron matters, effective masses and Landau parameters);

(ii) partial waves, with spin–orbit and tensor forces showing good behavior in P waves;
(iii) instabilities, as all stability criteria resulted from both central and non-central terms

in the context of the Landau theory of Fermi liquids were fulfilled.
The first point was expected since both the spin–orbit and tensor forces are zero in the
nuclear matter framework we considered, the others are unprecedented. In particular, the
contributions of the tensor force to the second and third points had to be computed.

The consistency of an effective interaction is truly evaluated in finite nuclei. We
accordingly deduced the mean and pairing Hartree–Fock–Bogoliubov fields associated
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with the finite-range spin–orbit and tensor terms, in a two-center basis. For the generalized
Gogny interaction, mean-field calculations within the Hartree–Fock–Bogoliubov approach
revealed interesting outputs, that are:
(i) a slight decrease in the binding energies of many nuclei;
(ii) charge radii and nuclear density distributions of the order of those of the former

D1S and D2 interactions;
(iii) a better reproduction of the kink in Pb isotopes;
(iv) a reduction of the pairing energies in some isotopes and isotones of the Z = 50 and

N = 50 chains;
(v) significant modifications in the splittings and Fermi gaps of many nuclei;
(vi) changes in the nature of the quadrupole deformations of certain light nuclei, in

agreement with experimental data;
(vii) a lowering of fission barrier heights, in line with experiment, as well as deformation

shifts in the potential energy surfaces of Th isotopes and standard actinides.
Most of these points were interpreted as coming from a subtle interplay between the
spin–orbit and tensor forces. However, point two was mainly attributed to the central
and density-dependent part, while points six and seven seemed principally due to the
tensor component.

When we developed our interaction, we decided to adopt the philosophy of the origi-
nal Gogny interaction, that is to aim for a fine description not at the level of the mean
field, but beyond it. As a consequence, some space for the correlations beyond the mean
field were deliberately introduced. Within the multiparticle–multihole configuration mix-
ing method, we showed that the first excitation energies of even–even and odd nuclei
were strongly improved by the generalized Gogny interaction. Here also, the competition
between spin–orbit and tensor forces was held responsible, sometimes one contribution
more predominantly than the other, for the outcomes, in connection with their respective
effects on shell evolution.

From the set of results we have listed, the generalized Gogny interaction stood out as
a quality interaction in the landscape of phenomenological effective interactions fashioned
to date. Nevertheless, several improvements and extensions could be envisaged in the
future, including:
(i) larger analyses and enhancements applied to the current DG parametrization;
(ii) the search for a new parametrization of the generalized Gogny interaction;
(iii) extensions of the analytical expression of the generalized Gogny interaction.

We begin with the first point. It may be interesting to test parametrization DG
within the random phase approximation, and more specifically regarding the sum rules
in the Landau theory of Fermi liquids, which are violated in a significant way by the
tensor force. Similarly, the nuclear density distributions, known to be better described
at this approximation [17], would certainly better fit the experimental data also with
interaction DG. We did not discuss the astrophysical applications of interaction DG. Yet,
interaction D2 [218], and more generally Gogny interactions, can show reliable properties
in neutron stars [128, 219, 220], in particular through the filters on the potential energy
in (S, T ) channels and on the neutron matter equation of state. It may be enlightening
to undertake work in this direction. To confirm our observations on the effect of the
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tensor force on the axial quadrupole deformations, a detailed study of the moments of
inertia of the related nuclei would be welcomed. As for fission barriers of pre-actinides and
actinides, we already pointed out that extensions to asymmetric potential energy surfaces
and triaxiality, as well as a dynamical treatment of the process, would unavoidably enable
to further dissect the role of the tensor force. Eventually, as the full self-consistency of the
multiparticle–multihole configuration mixing method is supposed to refine the excitation
energies, such procedure should be done for all even–even, odd and odd–odd nuclei. There
is incidentally no reason for this study to be limited to the first excitation energies, and
could be employed for higher ones as well.

Another possibility is to trade the DG parametrization for a new one, still built up
from the analytical expression of the generalized Gogny interaction. In the fitting code of
DG, we imposed constraints on four two-body matrix elements, two in the sd shell, two
in the pf shell. Such procedure could be adapted to filters by asking for the reproduction
of a large number of matrix elements, like all the sixty-three of the sd shell for instance,
since their evaluation is pretty fast in the fitting code. A standard deviation would be
calculated and all the parametrizations whose latter exceeds a chosen accuracy would be
automatically rejected. This would for sure improve the predictions on the excitation
energies evaluated within the multiparticle–multihole configuration mixing method. To
reduce the second fission barriers that were predicted too high in actinides with the original
Gogny interaction, a filter on the surface energy coefficient calculated in a semi-infinite
nuclear matter, was added in the fitting procedure of D1S [16]. These calculations could
be generalized to the finite-range tensor force and implemented in the fitting code with
the same objective.

Instead of looking for new parametrizations, the degrees of freedom could be increased
by directly extending the analytical expression of the generalized Gogny interaction.
There are several options, more or less difficult to set up, which are:
(i) adding another finite-range density-dependent term;
(ii) replacing the phenomenological density-dependent term by a genuine finite-range

three-body density-dependent term;
(iii) adding another finite-range spin–orbit or tensor term, or both at the same time;
(iv) attaching a density dependence to the finite-range spin–orbit or tensor term, or both

at the same time.
Adding another finite-range density-dependent term would require the least amount

of work. As we have said, the fitting code is already made up for such purpose, and no
additional analytical calculations are necessary. A preliminary work we have carried out
in this direction, from the analytical form of D2, turned out encouraging as it was quite
easy to control the energy drift in Sn isotopes while amending the predictions in some
(S, T ) channels.

A genuine three-body interaction, analogous to that of the original Skyrme interaction
[106], with a finite range, could replace the current phenomenologically determined two-
body density-dependent term [221]. In the absence of a density-dependent term raised
to some fractional power, it is likely that reproduction of the saturation point will also
require the incorporation of a tensor term, this time of short range. Such extension is
less straightforward than the former one, though, since it is accompanied with analytical
calculations and a subsequent implementation in the different codes. These changes on
the density dependence should make the interaction better in many respects, including
notably the relative positions of the single-particle states, which we have seen, especially
in the s states, can be improved.
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Otherwise, we could incorporate a new finite-range spin–orbit term, a new finite-range
tensor term, or both at the same time. Once again, the fitting code is ready for this and
no more work is required as four extra constraints related to two-body matrix elements
have already been implemented. Finding a way to filter the new parameters appropriately
appears a priori as the only requisite. This would bring us progressively to the number of
parameters of M3Y and GPT interactions, so that it may be rewarding to draw inspiration
from their fitting protocols [52, 118].

Finally, some of the analytical extensions enumerated could be combined by provid-
ing density dependences to one or several spin–orbit and tensor terms, or even both at
the same time. Actually, considering a zero-range density-dependent spin–orbit term in
the Gogny interaction was conceived a few years ago, but not pursued [222]. Chances
are that the description of nuclear density distributions, Landau parameters (and then
sum rules and stability criteria) as well as the kink in Pb isotopes will be enhanced by
such generalizations according to what we have suggested throughout the document. To
achieve this, relevant constraints on these or other quantities will have to be formulated,
in order to properly take advantage of the latitude brought by the extensions. Anyone
interested in such developments must be warned that they are far from being trivial.
On the analytical aspect, the spin–orbit and tensor forces were the most challenging to
derive while the density dependence brings rearrangement terms, eventually leading to
even more quantities to be calculated. On the numerical aspect, the density-dependent
and tensor terms already involved numerical integrals in the Hartree–Fock–Bogoliubov
fields, noticeably increasing the need for computational resources to find out a solution.
The situation will evidently become more intricate when finite-range density-dependent
spin–orbit and tensor terms will be taken into account. Computation times will have to
be kept to a reasonable level, particularly in the case of large-scale calculations such as
those required to generate potential energy surfaces. However, with modern computing
power, such considerations remain viable.
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Sur le coteau, là-bas où sont les tombes,
Un beau palmier, comme un panache vert,
Dresse sa tête, où le soir les colombes
Viennent nicher et se mettre à couvert.

Mais le matin elles quittent les branches ;
Comme un collier qui s’égrène, on les voit
S’éparpiller dans l’air bleu, toutes blanches,
Et se poser plus loin sur quelque toit.

Mon âme est l’arbre où tous les soirs, comme elles,
De blancs essaims de folles visions
Tombent des cieux en palpitant des ailes,
Pour s’envoler dès les premiers rayons.

— Théophile Gautier, « Les colombes », La Comédie de la mort
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Appendix A
Infinite nuclear matter

“Whoever undertakes to set himself up as a judge of Truth and
Knowledge is shipwrecked by the laughter of the gods.”

— Albert Einstein

Homogeneous infinite nuclear matter refers to a boundless neutral medium composed
of a large number of nucleons exclusively interacting through the nuclear force. As such,
this is a model portraying an ideal system of infinite volume exhibiting translational
invariance with no surface effects. It is in particular very useful to describe the core of
heavy nuclei whose structure, fairly uniform, is broadly comparable to nuclear matter. In
this appendix, we will evaluate various physical quantities as well as stability criteria and
sum rules derived from Landau parameters calculated in infinite nuclear matter. They
will indeed serve as filters in the selection of parameterizations of the generalized Gogny
interaction.
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A. Infinite nuclear matter 1. Hartree–Fock approximation in nuclear matter
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4.1. Effective quasiparticle interaction . . . . . . . . . . . . . . . . 237
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The first section tries to recall in a concise and pedagogical way the formalisms of
infinite nuclear matter (INM) [223] and Hartee–Fock (HF) approximation [4, 224, 225].
The two following sections are mainly based on the thesis of Chappert [17], where we have
added the calculations in the general case of asymmetric infinite nuclear matter, which had
not been completed, for future applications. Besides, we have extended those calculations
to the newly introduced finite-range tensor and spin–orbit interactions. The derivations
of the Landau parameters associated with central and density-dependent interactions are
established from [226], and continued for the tensor and spin–orbit forces. Finally, the
stability criteria and sum rules of tensor-dependent interactions found in the literature
[163, 164] are applied to the generalized Gogny interaction.

1. Hartree–Fock approximation in nuclear matter

Let us mention right away the conditions under which we will be working all along
this appendix. By homogeneous INM, we mean that it manifests the same properties
everywhere in the medium. Moreover, we will postulate both an (isospin)-asymmetric and
a spin-saturated INM. Asymmetric INM refers to a medium where there is not as many
protons as neutrons. As for spin-saturated (or spin-symmetric, or even spin-unpolarized)
INM, we mean that there is no spin excess, i.e. there is as many protons and neutrons of
spin up than protons and neutrons of spin down. Formally, if we designate by N↑ and N↓
(respectively by Z↑ and Z↓) the number of neutrons (respectively protons) with spin up
and with spin down, an asymmetric medium corresponds to N↑ +N↓ 6= Z↑ + Z↓, while a
spin-saturated medium satisfies N↑ + Z↑ = N↓ + Z↓. These are the three characteristics
of what we simply call infinite nuclear matter in the following. Sometimes we will specify
the asymmetry of the medium (see the asymmetry parameter defined in (A.29)) or, in
footnotes, the changes to be made when other assumptions are released.

In this chapter, various physical quantities will be evaluated in INM at the HF ap-
proximation. It is therefore appropriate to recall the INM and HF formalisms, thanks to
[4, 17].
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A. Infinite nuclear matter 1. Hartree–Fock approximation in nuclear matter

1.1. Plane wave representation
In INM, nucleons are described by plane wave functions. The associated quantum

states of this basis are characterized by the set of quantum numbers

|~kst〉, (A.1)

where ~k is the wave vector describing the spatial degrees of freedom, and s = ±1/2 and
t = ±1/2 the projections of the spin and isospin along the quantization axis, chosen to
be Oz, respectively.

The plane wave functions then take the form

Φ~kst(~r, σ, τ) = 〈~rστ |~kst〉 = φ~k(~r)ξs(σ)ζt(τ), (A.2)

where ξs(σ) and ζt(τ) are the (normalized) spin and isospin wave functions, associated
with σ and τ , the Pauli matrices describing the spin and isospin degrees of freedom,
respectively, and where the spatial plane wave functions are expressed as

φ~k(~r) = 1√
V

ei~k·~r, (A.3)

with the normalization coefficient 1/
√
V involving the volume V of the nuclear medium.

If the nucleons are moving in a finite volume, the situation is equivalent to particles
trapped in a three-dimensional box in such a way that the boundary conditions impose
quantified momenta ~k. If, instead, the volume is infinite, we have no such conditions and
the momenta are considered continuous. To go from a finite to an infinite volume, one
must therefore perform the following transformation

∑
~k

→ V
(2π)3

∫
d3k. (A.4)

We demand the plane wave functions to be orthogonal, i.e. to satisfy the orthogonality
relation, for continuous momenta,

∑
στ

∫
d3rΦ∗~kst(~r, σ, τ)Φ~k′s′t′(~r, σ, τ) = δ(~k − ~k′)δss′δtt′ . (A.5)

1.2. Hartree–Fock approximation
In general, the Schrödinger equation governing the dynamics of the A nucleons within

a nucleus is
H|ψ〉 ≡

[
A∑
i=1

p2
i

2m +
∑
i<j

vij

]
|ψ〉 = E|ψ〉. (A.6)

This equation is not exactly solvable because of the interaction term vij which implies
that the A-body wave function |ψ〉 depends on the degrees of freedom of all the nucleons,
leading to a tremendous problem for which there unfortunately exists no general solution.
One way to get around this issue is to assume that the nucleons move independently of
each other in an average potential, called the mean field, created by their neighbors. This
is the independent particle picture. In this approximation, the A-body wave function
ΦHF becomes separable and can therefore be expressed as a product of one-particle wave
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A. Infinite nuclear matter 1. Hartree–Fock approximation in nuclear matter

functions ϕHF. To account for the antisymmetry of fermionic systems, this wave function
is expressed as a Slater determinant of the type

ΦHF(ξ1, . . . , ξA) = 1√
A!

∣∣∣∣∣∣∣∣∣
ϕHF

1 (ξ1) . . . ϕHF
A (ξ1)

... . . . ...
ϕHF

1 (ξA) . . . ϕHF
A (ξA)

∣∣∣∣∣∣∣∣∣ , (A.7)

where ξi stands for the degrees of freedom of the i-th individual wave function ϕHF
i , with

i ∈ {1, . . . , A}.
Based on the independent particle picture, the Hartree–Fock (HF) method is a vari-

ational approach in which the Slater determinant ΦHF is taken as trial wave function.
Then, the Hartree–Fock energy, corresponding to the average energy of the nucleus in
the (normalized) determinantal state |ΦHF〉, is simply EHF ≡ 〈ΦHF|H|ΦHF〉. In order to
evaluate the HF energy, we shall rewrite the nuclear Hamiltonian (A.6) in the second
quantization formalism, i.e.

H =
∑
ab

〈a|tK|b〉c†acb + 1
4
∑
abcd

〈ac|v(a)
12 |bd〉c†ac†ccdcb, (A.8)

with the above states characterizing the individual wave functions of the Slater determi-
nant. We have defined the usual one-body kinetic operator in terms of the momentum
operator p ≡ ~k as

tK ≡
p2

2m, (A.9)

as well as the antisymmetrized interaction

v
(a)
12 ≡ v12(1− PrPσPτ ). (A.10)

As for the A-body HF wave function (A.7), it becomes, in second quantization,

|ΦHF〉 =
∏
a∈F

c†a |0〉, (A.11)

where F is the Fermi sea and |0〉 the vacuum particle state. Using Wick’s theorem, we
show that the total energy of the nucleus reads, at the HF approximation,

EHF =
∑
ab

〈a|tK|b〉ρba + 1
2
∑
abcd

〈ac|v(a)
12 |bd〉ρbaρdb, (A.12)

where we have defined the one-body density matrix as ρba ≡ 〈ΦHF|c†acb|ΦHF〉. One can
show that choosing a Slater determinant as trial wave function amounts to requiring that
the density matrix satisfies the relation ρ2 = ρ. Thus, the HF approach consists in mini-
mizing the HF energy while preserving this condition by means of Lagrange multipliers.
This amounts to minimizing the functional

F [ρ] ≡ EHF[ρ]− Λ(ρ2 − ρ), (A.13)

where Λ is a matrix composed of Lagrange multipliers ensuring the requirement ρ2 = ρ.
The stationary condition dF = 0 finally leads to the so-called HF equation,[

hHF, ρ
]

= 0, (A.14)
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A. Infinite nuclear matter 2. Energy in infinite nuclear matter

where we have defined the individual (or one-body) Hamiltonian to which each nucleon
of the nucleus is subjected, as hHF ≡ ∂EHF/∂ρ. This relation tells us there exists a basis
in which both the individual Hamiltonian and the density matrix are diagonal. In this
basis, hereafter called the HF basis, the density matrix is simply

ρab = δabρaa =

1 if |a〉 is occupied,
0 otherwise.

(A.15)

Let us then rewrite the HF energy in this basis, in terms of HF fields, as

EHF = EK + EP = EK + EMF, (A.16)

where the kinetic energy
EK ≡

∑
a

Kaaρaa, (A.17)

is expressed in terms of the kinetic field

Kaa ≡ 〈a|tK|a〉, (A.18)

and the potential energy drawing, at the HF approximation, its only contribution from
the mean-field energy,

EP = EMF ≡
1
2
∑
a

Γaaρaa, (A.19)

is expressed in terms of the mean field in the HF basis,

Γaa ≡
∑
b

〈ab|v(a)
12 |ab〉ρbb. (A.20)

As for the individual Hamiltonian in the HF basis, hHF
aa ≡ ∂EHF/∂ρaa, it reads

hHF
aa = Kaa + Γaa + ∂Γaa, (A.21)

where we have introduced the rearrangement field in the HF basis,

∂Γaa ≡
1
2
∑
a′b′
〈a′b′|∂v

(a)
12

∂ρaa
|a′b′〉ρa′a′ρb′b′ . (A.22)

Since each of the fields describing the individual Hamiltonian at the HF approximation
in the HF basis (A.21) is diagonal (as the density matrices are), the individual Hamiltonian
is diagonal itself. Therefore, each non-zero matrix element of this Hamiltonian corresponds
to an eigenvalue εHF

a , identified as an individual (or one-body) energy, i.e.

εHF
a = hHF

aa = Kaa + Γaa + ∂Γaa. (A.23)

In INM, the plane wave functions are exact solutions of the one-particle Schrödinger
equation. Thus, the individual wave functions ϕHF

i (i ∈ {1, . . . , A}) of the Slater determi-
nant (A.7) are simply those of the plane waves (A.2). In other words, the states appearing
in the above HF quantities will be (A.1) in INM. Note also that in practical calculations,
we will not bother with the density matrix (A.15) since it is always equal to unity, in the
HF basis, for the occupied states on which the summations are performed.
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2. Energy in infinite nuclear matter
In this section, we will derive the energy in INM at the HF approximation, in the HF

basis, as outlined in the previous section.
To be able to do so, we will first need the evaluate the local nuclear density in this

formalism. In general, the local nuclear density is given by

ρ(~r) ≡
∑
στ

〈~rστ |ρ|~rστ〉 (A.24)

=
∑
στ

∑
ab

Φ∗a(~r, σ, τ)Φb(~r, σ, τ)ρba. (A.25)

From the first to the second line, we have used two completeness relations associated
with the sets of quantum numbers a and b characterizing some states. The chosen wave
functions are denoted by Φ, and ρba ≡ 〈a|ρ|b〉 are the (matrix elements of the) density
matrix expressed in this basis.

Then, the density of isospin-t particles in INM reads

ρt(~r) ≡
∑
στ

∑
~k1s1

∑
~k2s2

Φ∗~k1s1t1
(~r, σ, τ)Φ~k1s2t2

(~r, σ, τ)ρ~k1s1t,~k2s2t

= V
(2π)3

∑
s

∫
d3k φ∗~kst(~r, σ, τ)φ~kst(~r, σ, τ)

= 2V
(2π)2

∑
s

∫ ktF

0
dk k2φ∗~kst(~r, σ, τ)φ~kst(~r, σ, τ)

= (ktF)3

3π2 , (A.26)

where we have used the particular form of the density matrix in the HF basis (A.15),
the plane wave functions (A.2) and the orthogonality relation (A.5). Above, the Fermi
momentum of the isospin-t particle is denoted by ktF. We notice that the local density
is, as expected, constant in infinite nuclear matter, i.e. ρ(~r) = ρ, as a signature of its
invariance by translation. Now, the total nuclear density is nothing but the sum of the
neutron ρν and proton ρπ density contributions, i.e.

ρ = ρν + ρπ = 2k3
F

3π2 , (A.27)

where the total Fermi momentum can be expressed as

k3
F = (kνF)3 + (kπF)3

2 . (A.28)

In order to evaluate the proportion of neutrons and protons in INM, we introduce the
asymmetry parameter

β ≡ ρν − ρπ
ρ

. (A.29)

When there are (not) as many neutrons as protons, β = 0 (β 6= 0), infinite nuclear matter
is said to be symmetric (asymmetric). When entirely composed of neutrons (protons),
β = 1 (β = −1), we talk about neutron (proton) infinite nuclear matter.
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At the HF approximation, the energy is given by (A.16) in the HF basis, so that

E = EK + Epot

=
∑
~kst

〈~kst|tK|~kst〉ρ~kst,~kst

+ 1
2
∑
~k1s1t1

∑
~k2s2t2

〈~k1s1t1 ~k2s2t2|v(a)
12 |~k1s1t1 ~k2s2t2〉ρ~k1s1t1,~k2s2t2

.
(A.30)

In the following, we will therefore derive this energy by separately evaluating its kinetic
and potential contributions in asymmetric, as well as in the particular cases of symmetric
(β = 0) and neutron (β = 1) infinite nuclear matter. It is indeed the building blocks of
the physical quantities we will compute in the next section.

2.1. Kinetic energy
The total kinetic energy reads

EK ≡
∑
~kst

〈~kst|tK|~kst〉ρ~kst,~kst

=
∑
~kst

~2k2

2m

= V
π2

∑
t

∫ ktF

0
dk ~2k4

2m

=
∑
t

3
5
~2(ktF)2

2m ρtV , (A.31)

where we made it possible to separate the proton and neutron contributions to the kinetic
energy. Note that the number of nucleons filling INM is A = ρV , such that the kinetic
energy per nucleon can be expressed as

EK

A
=
∑
t

3
5
~2(ktF)2

2m
ρt
ρ
. (A.32)

We shall keep the kinetic energy written this way since it is the most suitable one for
computing the different particular cases we will consider in the following.

2.2. Potential energy
The total potential energy is

EP ≡
1
2
∑
~k1s1t1

∑
~k2s2q2

〈~k1s1t1 ~k2s2t2|v(a)
12 |~k1s1t1 ~k2s2q2〉ρ~k1s1t1,~k2s2t2

, (A.33)

where the antisymmetrized two-body interaction is given by v(a)
12 ≡ v12(1 − PrPσPτ ). In

the following, we will evaluate this potential for each term of the generalized Gogny
interaction (II.1).
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2.2.1. Central and density-dependent contributions

Let us start with the contributions of the central and density-dependent (CDD) in-
teractions to the potential energy (A.33). The antisymmetrized CDD interactions can be
encompassed in the following expression,

v
CDD,(a)
12 ≡ vCDD

12 (1− PrPσPτ )
= (W +BPσ −HPτ −MPσPτ )V (r12)D[ρ](1− PrPσPτ )
= PDV (r12)D[ρ] + PEV (r12)D[ρ]Pr, (A.34)

with the Gaussian potential
V (r12) ≡ e−(~r1−~r2)2/µ2

, (A.35)
and the functional of the density, specific to the density-dependent interaction,

D[ρ] ≡ ρα(~r1) + ρα(~r2)
2 . (A.36)

The central contributions to the potential energy are obtained by setting α = 0 and
summing over the central ranges µ1 and µ2. To get the density-dependent term, it suffices
to consider α 6= 0 and choose a third range µ3 (up to some factor 1/(µ

√
π)3 we do not

keep in the following for simplicity). On the other hand, the spin-isospin components of
the direct and exchange components of the CDD interaction are respectively

PD ≡ W +BPσ −HPτ −MPσPτ , (A.37a)
PE ≡M +HPσ −BPτ −WPσPτ . (A.37b)

Separating the spatial and spin-isospin two-body matrix elements (TBMEs) as well as
the direct and exchange components of the CDD interaction, the potential energy becomes

EP = 1
2
∑
~k1s1t1

∑
~k2s2t2

[
〈~k1~k2|V (r12)D[ρ]|~k1~k2〉〈s1t1s2t2|PD|s1t1s2t2〉

+ 〈~k1~k2|V (r12)D[ρ]|~k2~k1〉〈s1t1s2t2|PE|s1t1s2t2〉
]
.

(A.38)

Let us now start by calculating the spatial TBMEs of the potential energy. The direct
component reads, by definition,

〈~k1~k2|V (r12)D[ρ]|~k1~k2〉 ≡
∫

d3r1

∫
d3r2 φ

∗
~k1

(~r1)φ∗~k2
(~r2)V (r12)D[ρ]φ~k1

(~r1)φ~k2
(~r2)

= 1
V2

∫
d3r1

∫
d3r2 e−(~r1−~r2)2/µ2 ρα(~r1) + ρα(~r2)

2
= ρα

V2

∫
d3r

∫
d3R e−r2/µ2

= ρα

V

∫
d3r e−r2/µ2

. (A.39)

where, from the second to the third line, we have used the translational invariance of
INM, i.e. ρ(~r1) = ρ(~r2) = ρ, and moved from nucleon coordinates (~r1, ~r2) to the relative
and center-of-mass coordinates (~r, ~R), defined as 1

~r ≡ ~r1 − ~r2, and ~R ≡ ~r1 + ~r2

2 , (A.40)

1. Note that these conventions for the relative and center-of-mass coordinates are different from the
ones we will consider in the calculations related to the spherical (see (B.224)) and axial (see (C.513))
harmonic oscillators.
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whose Jacobian is equal to unity. Finally, considering the relative distance between two
nucleons as being potentially infinite in INM, that is, assuming an infinite volume of the
medium, V → ∞, the Gauss integral (D.118) eventually furnishes

〈~k1~k2|V (r12)D[ρ]|~k1~k2〉 = ρα

V
(µ
√
π)3. (A.41)

Since the above matrix element does not explicitly depend on the momenta ~k1 and ~k2,
the contribution of the direct spatial term to the potential energy is straightforward, and
at the continuous limit (A.4), reads

∑
~k1~k2

〈~k1~k2|V (r12)D[ρ]|~k1~k2〉 = Vρα

(2π)6 (µ
√
π)3 4π(kt1F )3

3
4π(kt2F )3

3 , (A.42)

where kt1F and kt2F are the Fermi momenta associated with ~k1 and ~k2, respectively.
Let us continue with the exchange component. We find, by definition,

〈~k1~k2|V (r12)D[ρ]|~k2~k1〉 ≡
∫

d3r1

∫
d3r2 φ

∗
~k1

(~r1)φ∗~k2
(~r2)V (r12)D[ρ]φ~k2

(~r1)φ~k1
(~r2)

= 1
V2

∫
d3r1

∫
d3r2 e−i(~k1−~k2)·(~r1−~r2)e−(~r1−~r2)2/µ2 ρα(~r1) + ρα(~r2)

2
= ρα

V

∫
d3r e−i(~k1−~k2)·~re−r2/µ2

, (A.43)

where we have performed the same steps as for the direct term (A.39). The last integral
can be evaluated by completing the square of the argument of the above exponential
according to

−
[
r2

µ2 + i(~k1 − ~k2) · ~r − (~k1 − ~k2)2µ2

4

]2

− (~k1 − ~k2)2µ2

4 , (A.44)

so that, we obtain, after the change of variable ~x ≡ ~r/µ + i(~k1 − ~k2)µ/2 and a Gaussian
integration (D.118),

〈~k1~k2|V (r12)D[ρ]|~k2~k1〉 = ρα

V
(µ
√
π)3e−(~k1−~k2)2µ2/4. (A.45)

This time, the contribution of the exchange spatial term to the potential energy is not
straightforward because the associated matrix element depends explicitly on the momenta
~k1 and ~k2. Indeed, we have

∑
~k1~k2

〈~k1~k2|V (r12)D[ρ]|~k2~k1〉 = Vρα

(2π)6 (µ
√
π)3

∫
d3k1

∫
d3k2 e−(~k1−~k2)2µ2/4. (A.46)

Since the calculation of this integral is a bit long and wearisome, we have reported it in
section D.7.2, for clarity. We find out, at the continuous limit (A.4),

∑
~k1~k2

〈~k1~k2|V (r12)D[ρ]|~k2~k1〉 = Vρα

(2π)6 (µ
√
π)3I(Xt1 , Xt2), (A.47)
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where we have defined the dimensionless quantity Xt ≡ µktF, and where I(Xt1 , Xt2),
derived in (D.141), is given by

I(Xt1 , Xt2) =
(

2
µ

)6
π2

6 Q(Xt1 , Xt2), (A.48)

with

Q(Xt1 , Xt2) ≡ e−
(
Xt1 +Xt2

2

)2(
X2
t1 +X2

t2 −Xt1Xt2 − 2
)

− e−
(
Xt1−Xt2

2

)2(
X2
t1 +X2

t2 +Xt1Xt2 − 2
)

+
√
π

2 erf
(
Xt1 +Xt2

2

)(
X3
t1 +X3

t2

)
−
√
π

2 erf
(
Xt1 −Xt2

2

)(
X3
t1 −X

3
t2

)
.

(A.49)

Now that we have obtained some expressions for the spatial parts of the potential
energy (A.38), let us do the same for its spin-isospin parts. By going from the two-
particle representation to the coupled one, we get, for the direct part,
〈s1q1s2t2|W +BPσ −HPτ −MPσPτ |s1q1s2t2〉 =

∑
SMS

∑
TMT

〈1/2s11/2s2|SMS〉2

× 〈1/2t11/2t2|TMT 〉2(W − (−)SB + (−)TH − (−)S+TM),
(A.50)

where the brackets denote the Clebsch–Gordan coefficients. Since we have s1, s2 = ±1/2,
the summations over s1 and s2 in the potential energy make the spin Clebsch–Gordan
coefficients disappear. Note that we cannot apply the same procedure for the isospin
Clebsch–Gordan coefficients as we have shown that the space parts of the potential energy
explicitly depend on the isospins (see equations (A.42) and (A.47)). The process is the
same for the exchange spin-isospin part, and the potential energy (A.38) becomes

EP = 1
2
∑
t1t2

∑
TMT

〈1/2t11/2t2|TMT 〉2
∑
S

(2S + 1)

×
∑
~k1~k2

[
〈~k1~k2|V (r12)D[ρ]|~k1~k2〉

(
W − (−)SB + (−)TH − (−)S+TM

)
+ 〈~k1~k2|V (r12)D[ρ]|~k2~k1〉

(
M − (−)SH + (−)TB − (−)S+TW

)]
,

(A.51)

where we have additionally performed the summation over MS. The potential energy can
be written in the condensed notation

EP = 8
√
π
∑
t1t2

∑
ST

LTt1t2
∑
~k1~k2

[
AST 〈~k1~k2|V (r12)D[ρ]|~k1~k2〉

− BST 〈~k1~k2|V (r12)D[ρ]|~k2~k1〉
]
,

(A.52)

where we have defined

LTt1t2 ≡
1

2T + 1
∑
MT

〈1/2t11/2t2|TMT 〉2 , (A.53a)

AST ≡ (2S + 1)(2T + 1)
16
√
π

(
W − (−)SB + (−)TH − (−)S+TM

)
, (A.53b)

BST ≡ −(2S + 1)(2T + 1)
16
√
π

(
M − (−)SH + (−)TB − (−)S+TW

)
. (A.53c)
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Noticing that the volume can be written V = A/ρ = A × 3π2µ3/2X3, with X ≡ µkF,
and plugging the expressions of the space parts (A.42) and (A.47), we write down the
potential energy per nucleon as

EP

A
= 2 ρ

α

X3

∑
ST

∑
t1t2

LTt1t2

[
AST (Xt1Xt2)3

6 − BSTQ(Xt1 , Xt2)
]
, (A.54)

where Q(Xt1 , Xt2) is defined above. Using the particular values of the Clebsch–Gordan
coefficients and the fact that T 2 = T , we obtain, from (A.53a),

LTt1t2 = 1
2T + 1

[
Tδt1t2 + 1

2δt1,−t2
]
, (A.55)

so that, by doing the summations over the projections of the isospins t1 and t2, we separate
the proton π and neutron ν contributions according to

EP

A
= 2 ρ

α

X3

∑
ST

1
2T + 1

[
AST

6
(
TX6

π + TX6
ν +X3

πX
3
ν

)

− BST
(
TQ(Xπ, Xπ) + TQ(Xν , Xν) +Q(Xπ, Xν)

)]
.

(A.56)

It remains to perform the last two summations over S and T . Thus, the contribution
from the central and density-dependent terms to the potential energy per nucleon in
asymmetric INM reads

EP

A
= ρα

X3

[
A
6
(
X6
π +X6

ν

)
− A

′

6
(
X3
π −X3

ν

)2

+ (B′ − B)
(
Q(Xπ, Xπ) +Q(Xν , Xν)

)
− 2B′Q(Xπ, Xν)

]
,

(A.57)

with the quantities

A ≡
∑
ST

AST = 1
2
√
π

(
2W +B −H − M

2

)
, (A.58a)

B ≡
∑
ST

AST = 1
2
√
π

(
W

2 +B −H − 2M
)
, (A.58b)

A′ ≡
∑
ST

AST

2T + 1 = 1
2
√
π

(
W + B

2

)
, (A.58c)

B′ ≡
∑
ST

BST

2T + 1 = − 1
2
√
π

(
M + H

2

)
. (A.58d)

2.2.2. Tensor contribution

Let us continue with the contribution of the tensor interaction to the total potential
energy (A.33). The antisymmetrized tensor interaction can be expressed as

v
T,(a)
12 ≡ vT

12(1− PrPσPτ )
= (W −HPτ )V (r12)S12(1− PrPτ )
= PDV (r12)S12 + PEV (r12)S12Pr, (A.59)
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where the Gaussian potential is expressed in (A.35), and where the tensor operator S12,
given by (D.49), removes the operator Pσ since it acts symmetrically on the spin variables
(see discussion in section II). As for the isospin components of the direct and exchange
tensor interaction, they are respectively

PD ≡ W −HPτ , (A.60a)
PE ≡ H −WPτ . (A.60b)

Using the equivalent form of the tensor operator (D.58) and separating the spatial
and spin-isospin TBMEs as well as the direct and exchange components of the tensor
interaction, the potential energy becomes

EP = 1
2
∑
l

(−)l
∑
~k1s1t1

∑
~k2s2q2

×
[
〈~k1~k2|V (r12)[r̂12 ⊗ r̂12](2)

−l |~k1~k2〉〈s1t1s2t2|PD[~σ1 ⊗ ~σ2](2)
l |s1t1s2t2〉

+ 〈~k1~k2|V (r12)[r̂12 ⊗ r̂12](2)
−l |~k2~k1〉〈s1t1s2t2|PE[~σ1 ⊗ ~σ2](2)

l |s1t1s2t2〉
]
.

(A.61)

Let us first consider the direct spin-isospin TBMEs. The spin and isospin degrees of
freedom split up in such a way that

〈s1t1s2t2|PD[~σ1 ⊗ ~σ2](2)
l |s1t1s2t2〉 = 〈t1t2|PD|t1t2〉〈s1s2|[~σ1 ⊗ ~σ2](2)

l |s1s2〉. (A.62)

Then, the spin TBMEs can be evaluated by means of the general formula (D.20). We
obtain

〈s1s2|[~σ1 ⊗ ~σ2](2)
l |s1s2〉 = 4

√
2
3s1s2δl,0, (A.63)

so that the spin part of the potential energy associated with the direct component of the
tensor interaction vanishes, i.e.∑

s1s2

〈s1s2|[~σ1 ⊗ ~σ2](2)
l |s1s2〉 = 0. (A.64)

At the HF approximation (in the HF basis), the direct component of the tensor interaction
does not contribute to the potential energy.

As for the exchange spin-isospin TBMEs, they also split up according to

〈s1t1s2t2|PE[~σ1 ⊗ ~σ2](2)
l |s2t2s1t1〉 = 〈t1t2|PE|t2t1〉〈s1s2|[~σ1 ⊗ ~σ2](2)

l |s2s1〉 . (A.65)

The spin TBMEs evaluated with (D.20) gives

〈s1s2|[~σ1 ⊗ ~σ2](2)
l |s2s1〉 = 4

√
2
3s1s2δl,0(δs1s2 + δs1,−s2), (A.66)

so that the spin part of the potential energy associated with the exchange component of
the tensor interaction vanishes, i.e.∑

s1s2

〈s1s2|[~σ1 ⊗ ~σ2](2)
l |s2s1〉 = 0. (A.67)

At the HF approximation (in the HF basis), the exchange component of the tensor in-
teraction does not contribute to the potential energy either. It follows that the tensor
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contribution to the potential energy is zero at the HF approximation (in the HF basis). 2

It is therefore not necessary to calculate the spatial TBMEs of the tensor interaction as
their contribution to the potential energy is already zero. However, it is easy to see that
they (only the exchange TBMEs, to be precise) do not vanish in general (see subsection
B.4.2.3).

2.2.3. Spin–orbit contribution

Finally, let us look at the contribution of the spin–orbit interaction to the potential
energy (A.33). The spin–orbit interaction we consider here is the equivalent writing
(D.80). The antisymmetrized spin–orbit interaction can then be written

v
SO,(a)
12 ≡ vSO

12 (1− PrPσPτ )
= (W −HPτ )

[
~∇12G(r12) × ~∇12

]
· (~σ1 + ~σ2)(1− PrPτ )

= PD
[
~∇12G(r12) × ~∇12

]
· (~σ1 + ~σ2)

+ PE
[
~∇12G(r12) × ~∇12

]
· (~σ1 + ~σ2)Pr,

(A.68)

where we will not need to specify the function G(r12), and where we have intentionally
omitted the factor iB(µ)/4 for conciseness (see subsection D.5.1 to get their definitions).
Note also that the operator ~σ1 +~σ2 = 2~S, with ~S given by (II.3), removes the operator Pσ
since it acts symmetrically on the spin variables (see discussion in section II). The isospin
components of the direct and exchange spin–orbit interaction are respectively

PD ≡ W −HPτ , (A.69a)
PE ≡ H −WPτ . (A.69b)

Separating the spatial and spin-isospin TBMEs as well as the direct and exchange
components of the spin–orbit interaction above, the potential energy becomes

EP = 1
2
∑
~k1s1t1

∑
~k2s2t2

[
〈~k1~k2|

[
~∇12G(r12) × ~∇12

]
|~k1~k2〉·〈s1t1s2t2|PD(~σ1 + ~σ2)|s1t1s2t2〉

+ 〈~k1~k2|
[
~∇12G(r12) × ~∇12

]
|~k2~k1〉·〈s1t1s2t2|PE(~σ1 + ~σ2)|s1t1s2t2〉

]
.

(A.70)

Let us first consider the direct spatial TBMEs. By definition, we have,

〈~k1~k2|
[
~∇12G(r12) × ~∇12

]
|~k1~k2〉

≡
∫

d3r1

∫
d3r2 φ

∗
~k1

(~r1)φ∗~k2
(~r2)

[
~∇12G(r12) × ~∇12

]
φ~k1

(~r1)φ~k2
(~r2)

= 1
V2

∫
d3r1

∫
d3r2

(
e−i~k1·~r1e−i~k2·~r2 ~∇12

)
G(r12) ×

(
~∇12ei~k1·~r1ei~k2·~r2

)
= 1
V2

∫
d3r1

∫
d3r2G(r12)

[
(~k1 − ~k2) × (~k1 − ~k2)

]
= 0. (A.71)

At the HF approximation in INM (in the HF basis), the direct component of the spin–
orbit interaction does not contribute to the potential energy. Let us see also what is going

2. Let us emphasize that this result does not depend on the infinite nuclear matter framework, since
the associated spatial matrix elements are generally non-zero for the tensor interaction. Nevertheless, it is
specific to the HF basis at the HF approximation which conditions the form of the spin matrix elements,
then zero for the tensor interaction.
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on with the direct spin-isospin TBME. The spin and isospin degrees of freedom split up
in such a way that

〈s1t1s2t2|PD[~σ1 + ~σ2](1)
l |s1t1s2t2〉 = 〈t1t2|PD|t1t2〉〈s1s2|[~σ1 + ~σ2](1)

l |s1s2〉. (A.72)

Then, the spin TBMEs can be evaluated by means of the general formula (D.22). We
obtain

〈s1s2|[~σ1 + ~σ2](1)
l |s1s2〉 = 2(s1 + s2)δl,0, (A.73)

so that the spin part of the potential energy associated with the direct spin–orbit inter-
action vanishes, i.e. ∑

s1s2

〈s1s2|[~σ1 + ~σ2](1)
l |s1s2〉 = 0. (A.74)

Just like for the tensor interaction, the direct component of the spin–orbit interaction
does not contribute to the potential energy at the HF approximation (in the HF basis).

As for the exchange spatial TBMEs, they read, by definition,

〈~k1~k2|
[
~∇12G(r12) × ~∇12

]
|~k2~k1〉

≡
∫

d3r1

∫
d3r2 φ

∗
~k1

(~r1)φ∗~k2
(~r2)

[
~∇12G(r12) × ~∇12

]
φ~k2

(~r1)φ~k1
(~r2)

= 1
V2

∫
d3r1

∫
d3r2

(
e−i~k1·~r1e−i~k2·~r2 ~∇12

)
G(r12) ×

(
~∇12ei~k2·~r1ei~k1·~r2

)
= − 1
V2

∫
d3r1

∫
d3r2G(r12)

[
(~k1 − ~k2) × (~k1 − ~k2)

]
= 0. (A.75)

At the HF approximation in INM (in the HF basis), the exchange component of the spin–
orbit interaction does not contribute to the potential energy either. Thus, in INM, the
spin–orbit interaction does not contribute to the potential energy since its spatial matrix
elements vanish. As for the exchange spin-isospin TBMEs, they also split up according
to

〈s1t1s2t2|PE[~σ1 + ~σ2](1)
l |s1t1s2t2〉 = 〈t1t2|PE|t2t1〉〈s1s2|[~σ1 + ~σ2](1)

l |s2s1〉. (A.76)

Then, the spin TBMEs can be evaluated by means of (D.22). We obtain

〈s1s2|[~σ1 + ~σ2](1)
l |s2s1〉 = 2(s1 + s2)δs1s2δl,0, (A.77)

so that the spin part of the potential energy associated with the direct spin–orbit inter-
action vanishes, i.e. ∑

s1s2

〈s1s2|[~σ1 + ~σ2](1)
l |s1s2〉 = 0. (A.78)

Just like for the tensor interaction, the exchange component of the spin–orbit interaction
does not contribute to the potential energy at the HF approximation (in the HF basis).

It follows that the spin–orbit contribution to the potential energy is zero at the HF
approximation (in the HF basis). 3

3. This result, common to the tensor interaction (see previous subsection), adds to the fact that the
spin–orbit interaction does not contribute to the potential energy in INM also because of its spatial
matrix elements being zero; which is not the case of the tensor term.
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2.3. Energy in symmetric nuclear matter
In the case of symmetric INM (β = 0), there are as many neutrons as protons, so that

kνF = kπF = kF, and then Xν = Xπ = X. The kinetic energy per nucleon (A.32) then
becomes

ES
K
A

= 3
5
~2k2

F
2m . (A.79)

As for the potential energy per nucleon (A.33), it simplifies as

ES
P
A

= 2ρα
∑
ST

[
ASTX

3

6 − B
ST
(

e−X2
( 1
X
− 2
X3

)
− 3
X

+ 2
X3 +

√
π erf(X)

)]
. (A.80)

Note that we have restored the dependence in S and T to be able to evaluate the contri-
bution of the energy in the symmetric matter in each channel (S, T ) of the interaction.

2.4. Energy in neutron nuclear matter
In the case of infinite neutron (or simply neutron) INM (β = 1), the medium is only

composed of neutrons, so that kπF = 0 and kνF = 21/3kF, and then Xπ = 0 and Xν = 21/3X.
The kinetic energy per nucleon (A.32) then becomes

EN
K
A

= 3
5
~2(kνF)2

2m . (A.81)

As for the potential energy per nucleon (A.33), it simplifies as

V ν
pot

A
= 4ρα

∑
ST

T

2T + 1

[
ASTX

3

6 − B
ST Q(Xν , Xν)

X3
ν

]
, (A.82)

where we have restored the dependence in S and T just like for symmetric INM.

3. Physical quantities in infinite nuclear matter
In this section, we will take advantage of the energy considerations from the previous

section to evaluate various physical quantities in asymmetric, as well as for symmetric
(β = 0) and neutron (β = 1) INM.

3.1. Incompressibility
The incompressibility corresponds to the amount of energy needed to modify the

density of the medium – here of INM – around the equilibrium position (the energy
minimum). The incompressibility is defined by

K∞ ≡ 9ρ2∂
2E/A
∂ρ2

∣∣∣∣∣
ρ0

, (A.83)

which is only valid at the energy minimum corresponding to some nuclear density ρ0 called
the saturation density. Mathematically speaking, the first derivative of the energy at that
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point is zero (extremum condition), that is to say ∂E/∂ρ|ρ0 = 0. Given the expression of
our kinetic (A.32) and potential (A.33) energies, it will be easier to perform the derivation
on the Fermi momentum kF rather than on the density. The relation between the density
and the Fermi momentum (A.27) allows us to write

K∞ ≡ k2
F
∂2E/A
∂k2

F

∣∣∣∣∣
k0

F

, (A.84)

where the Fermi momentum corresponding to the saturation density is, using (A.27),
k0

F = (3π2ρ0/2)1/3. The extremum condition then becomes ∂E/∂kF|k0
F

= 0.
Let us start by considering the contribution of the kinetic energy to the incompress-

ibility. Combining equation (A.32) and the Fermi momenta as functions of the asymmetry
parameter β, kνF = kF(1 + β)1/3 and kπF = kF(1− β)1/3, we eventually get

k2
F
∂2EK/A

∂k2
F

∣∣∣∣∣
k0

F

= 2EK

A

∣∣∣∣∣
k0

F

. (A.85)

As for the contribution from the potential energy (A.33), the calculation is quite long
and error-prone but we made it to the end. In asymmetric INM with some asymmetry
parameter β, we obtain

k2
F
∂2EP/A

∂k2
F

= 3(α− 1)(3α− 4)ρα
X3
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X6
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−A′
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∂X2Q(Xπ, Xπ) + ∂2

∂X2Q(Xν , Xν)
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∂X2Q(Xπ, Xν)
]
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(A.86)

that has to be evaluated at kF = k0
F. Note that the derivatives of the function Q are

performed with respect to X = µkF instead of kF to get rid of overall µ factors. The first
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derivative reads
∂

∂X
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(A.87)

and the second derivative is
∂2
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(A.88)
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+ 3
√
π

[(
(1− β)2/3Xπ + (1 + β)2/3Xν

)
erf

(
Xπ +Xν

2

)

−
(
(1− β)2/3Xπ − (1 + β)2/3Xν

)
erf

(
Xπ −Xν

2

)]
.

Note that the derivatives of Q(Xπ, Xπ) and Q(Xν , Xν) can easily be deduced from the
above ones by making the substitutions Xν → Xπ and 1 + β → 1− β, and Xπ → Xν and
1− β → 1 + β, respectively.

3.1.1. Incompressibility in symmetric nuclear matter

In the case of symmetric INM (β = 0), there are as many neutrons as protons, so that
kνF = kπF = kF, and then Xν = Xπ = X. Thus, the contribution of the potential energy to
the incompressibility (A.86) is greatly simplified, and becomes

k2
F
∂2ES

P/A

∂k2
F

= 3(α− 1)(3α− 4)ρα
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[
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]
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5AX4 − B ∂2

∂X2Q(X,X)
]
,

(A.89)

that has to be evaluated at kF = k0
F, and where the function Q is simply

Q(X,X) = e−X2(X2 − 2)− 3X2 + 2 +
√
πX3 erf(X), (A.90)

while the derivatives are given by

1
3
∂

∂X
Q(X,X) = 2X

(
e−X2 − 1

)
+
√
πX2 erf(X), (A.91)

and
1
6
∂2

∂X2Q(X,X) = e−X2(1−X2)− 1 +
√
πX erf(X). (A.92)

Plugging these expressions in equation (A.89), we consistently recover the results from
Chappert’s thesis [17].

3.1.2. Incompressibility in neutron nuclear matter

In the case of neutron INM (β = 1), the medium is only composed of neutrons, so
that kπF = 0 and kνF = 21/3kF, and then Xπ = 0 and Xν = 21/3X. Thus, the contribution
of the potential energy to the incompressibility (A.86) is greatly simplified, and becomes

k2
F
∂2EνP/A
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[
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,

(A.93)
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that has to be evaluated at kF = k0
F, and where the function Q is simply

Q(Xν , Xν) = e−X2
ν

(
X2
ν − 2

)
− 3X2

ν + 2 +
√
πX3

ν erf(Xν), (A.94)

while the derivatives are given by
1

21/33
∂
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Q(Xν , Xν) = 2Xν

(
e−X2

ν − 1
)

+
√
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ν erf(Xν), (A.95)

and
1

22/36
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∂X2Q(Xν , Xν) = e−X2
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(
1−X2

ν

)
− 1 +

√
πXν erf(Xν). (A.96)

3.2. Symmetry energy
The symmetry energy quantifies the variation of the total energy as a function of the

asymmetry β of the medium, here in INM. The symmetry energy is defined by

Esym ≡
1
2
∂2E/A
∂β2

∣∣∣∣
β=0

. (A.97)

We notice that the derivative is evaluated at zero asymmetry (β = 0), i.e. in symmet-
ric INM. Indeed, the symmetric matter is the reference point around which the energy
fluctuations due to the asymmetry are evaluated.

Let us start by considering the contribution of the kinetic energy to the symmetry
energy. From equation (A.32), we obtain

1
2
∂2EK/A

∂β2
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β=0

= 1
3
~2(ktF)2

2M = 5
9
ES

K
A
, (A.98)

that we have defined with respect to the kinetic energy per nucleon of symmetric matter
(A.79). As for the contribution from the potential energy (A.33), the calculation is once
again quite long and tedious. However, the evaluation in β = 0 simplifies the result so
that we eventually find out

1
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(A.99)

3.3. Effective mass
The effective mass m∗ corresponds to the renormalized mass the nucleons would have

if they were considered as moving freely, rather than submitted to the nuclear potential
with their actual mass m. By definition, the (inverse of the) effective mass of an isospin-t
particle reads

1
m∗t
≡ 1

~2k

dεt(~k)
dk

∣∣∣∣∣
k=ktF

, (A.100)

where the one-body energy of an isospin-t particle, is given, according to (B.126), in INM,
by

εt(~k) = ~2k2

2m + Γt(~k) + ∂Γ. (A.101)
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Two remarks are in order regarding the rearrangement field ∂Γ (at the HF approximation,
in the HF basis). It is the same for both protons and neutrons (see subsection C.2.1.4,
where the conclusion still holds at the HF approximation), but more importantly, it does
not depend on the momentum ~k as it can be inferred from its expression (A.22). As a
consequence, it does not contribute to the effective mass defined above. Thus, we have

1
m∗t

= 1
m

+ 1
~2k

dΓt(~k)
dk

∣∣∣∣∣
k=ktF

. (A.102)

We will then have to derive the mean field Γt(~k) for each term of the generalized Gogny
interaction. Actually, we do not need to make the full calculation as we already computed
the potential energy in the previous section, which is linked to the mean field by (A.19).

3.3.1. Central and density-dependent contributions

The central and density-dependent interactions are encompassed in the expression
(A.34). Following the exact same steps that led to the contributions of those interactions
to the potential energy (A.54), we eventually find out
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))]
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(A.103)

which is the mean field associated with the central and density-dependent interactions.
In this expression, we have defined the function

gy(x) ≡
√
π

2 erf(x) + 1
y

e−x2
. (A.104)

Taking the derivative of the mean field and evaluating it at k = ktF, we get
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(A.105)

where we have used the following derivatives,
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. (A.106)

Finally, the contribution of the central and density-dependent terms to the effective mass
can be written as

m
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= 1− 4mµ2ρα
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∑
ST

1
2T + 1

BST

X3
t

(
2Tf(t, t) + f(t,−t)
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, (A.107)
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where we have defined the isospin-dependent function

f(t, t′) ≡
(

1− XtXt′

2

)
e−
(
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2

)2

−
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1 + XtXt′
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(
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2

)2

. (A.108)

Note that we have directly taken into account the contribution coming from the kinetic
energy (which is the unity term of the right-hand side part) since, as we show in the
following subsections, the tensor and spin–orbit mean fields cancel out and therefore do
not contribute to the effective mass.

3.3.2. Tensor contribution

Let us now focus on the mean field associated with the tensor interaction (A.59). In
a similar manner that the potential energy associated with the tensor interaction is zero
(see subsection A.2.2.2), we show, following the same steps, that the corresponding mean
field vanishes, because of its spin part. In fact, we show it explicitly in subsection B.4.2.3
as the expression of the mean field at the HFR approximation is the same as the one in
the HF basis of the HF approximation we consider here. Then, the tensor interaction
does not contribute to the effective mass (A.102).

3.3.3. Spin–orbit contribution

The mean field associated with the spin–orbit interaction (A.68) does not contribute
to the effective mass (A.102) either, but for a different reason than the tensor interaction.
Indeed, we show that the direct spin part of the spin–orbit mean field does not vanish.
In fact, we show it explicitly in subsection B.4.2.4 as the expression of the mean field at
the HFR approximation is same as the one in the HF basis of the HF approximation we
consider here. What is then responsible for the spin–orbit mean field to be zero is, as we
have shown in subsection A.2.2.3, that its spatial matrix elements are zero in the plane
wave function representation.

4. Landau parameters
In this section, we will derive what are called the stability criteria and sum rules asso-

ciated with the generalized Gogny interaction within the theory of normal Fermi liquids,
in symmetric INM. Those are valuable indicators of the consistency of the parametriza-
tions coming out of the fitting code. To do so, we will first need to introduce the effective
quasiparticle interaction and make the link with the Landau parameters.

4.1. Effective quasiparticle interaction
In this subsection, we quickly recall how the effective quasiparticle interaction is de-

fined in the context of the time-dependent Hartree–Fock (TDHF) theory in the limit of
small amplitudes, before deriving its expression for a density-dependent interaction.

We start from the TDHF equations and assume a weak external field, that is to say we
only allow oscillations with small amplitudes of the stationary density, which is itself so-
lution of the stationary HF equations. Working in the particle–hole representation within
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the HF basis, we show [4, 165] that we fall back on the Random Phase Approximation
(RPA) equations if we assume a residual interaction given by

〈ph′|Vph|hp′〉 = ∂2EHF

∂ρhp∂ρp′h′
, (A.109)

where EHF is the HF energy (A.12). Note that the residual interaction at the RPA
level traduces the oscillations of small amplitudes of the system and is referred to as the
quasiparticle (or particle–hole) interaction, then denoted as Vph. For a density-dependent
interaction like the generalized Gogny interaction (II.1), the second derivative of the HF
energy with respect to the density matrices provides

〈ph′|Vph|hp′〉 = 〈ph′|v(a)
12 |hp′〉+

∑
i

〈h′i|∂v
(a)
12

∂ρhp
|p′i〉+

∑
i

〈pi| ∂v
(a)
12

∂ρp′h′
|hi〉

+ 1
2
∑
ij

〈ij| ∂2v
(a)
12

∂ρhp∂ρp′h′
|ij〉,

(A.110)

where the summations are performed on the occupied states, i.e. on the hole states in
the particle–hole representation. The last three quantities of the right-hand side term are
specific to density-dependent interactions as they involve derivatives of the density; they
are called the rearrangement terms. Since the particle–hole interaction is here expressed
in terms of the effective interaction v12, we adequately call it the effective quasiparticle
(or particle–hole) interaction.

4.2. Theory of normal Fermi liquids
Let us start by briefly recalling what a normal Fermi liquid is and what it implies to

assume INM as being one [171, 227–231].
We consider an ideal system made up of a non-interacting homogeneous gas of fermions

at zero temperature. The system presents translational invariance and the one-body wave
functions are the plane waves (A.2). Accordingly, the wave function of the whole system
corresponds to an antisymmetric linear combination of those plane waves. An eigenstate
of the system is defined by listing which are the occupied plane waves. This information is
provided by the distribution function ρ(~k), where ~k is the momentum of the plane wave.
Under the above hypotheses, the distribution function of the system in the ground state
corresponds to an isotropic distribution of the type

ρ(~k) =

1 for |~k| ≤ kF,

0 for |~k| > kF.
(A.111)

This implies that the Fermi surface of a normal Fermi liquid in momentum space is
spherical. 4 Now, the fundamental assumption of Landau’s theory of Fermi liquids is that

4. We here use the notations introduced at the beginning of section A.1. In the case of a spin-
polarized medium, corresponding to N↑ + Z↑ 6= N↓ + Z↓, two distinct Fermi surfaces, one for spin up
and another for spin down nucleons show up. Besides, the problem becomes more difficult since the spin
excess introduces an anisotropy in the system so that the Fermi surfaces are not spherical in general. In
particular, the Fermi surfaces deviate from spherical shapes because of the coupling between momentum
and spin implied by the tensor term of the interaction. These observations remain true in a spin-isospin
polarized medium, corresponding to N↑ +Z↓ 6= N↓ +Z↑, but with four Fermi surfaces (one for each spin
and isospin projection) [232].
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when one gradually turns on the interaction, the ideal system adiabatically develops into
the real system in such a way that the classification of states remains the same. It means
that in the interacting system the one-body wave functions remain the plane waves and
the distribution function in the ground state is still given by the definition above. Note,
however, that the distribution function now describes the occupation of quasiparticle
states. Indeed, if one adds a particle with momentum |~k| > kF (or, equivalently, a hole
with momentum |~k| ≤ kF) to the ideal ground state and turns on the interaction, the
system becomes a real ground state plus a quasiparticle of momentum ~k. If a system obeys
Landau’s assumption, it is said to be a normal Fermi liquid. Note that, for quasiparticles
to be a meaningful concept, they must have reasonably long lifetimes. One can show that
in a normal Fermi liquid, the characteristic length of a quasiparticle with momentum ~k
at zero temperature is proportional to (k − kF)2, because of the Pauli principle. Since
the typical lifetime of a quasiparticle is inversely proportional to its characteristic length,
assuming the quasiparticles to be close enough to the Fermi surface guarantees them
sufficiently long lifetimes.

The energy E of the real system depends on the distribution function of the quasipar-
ticles. Landau [227–229] investigated how this energy is modified when one changes the
distribution function ρ(~k) by an amount δρ(~k). Geometrically, this equates to translate
the Fermi sphere by a small momentum (giving a uniform velocity to the system) without
modifying its size or its shape. The resulting change in energy at the first order in δρ(~k)
is

δE =
∑
~k

ε(~k)δρ(~k), (A.112)

where the summation should in principle also run over spin and isospin projections, but
we decided to forget those degrees of freedom for a moment, to simplify the treatment.
The quantity ε(~k) is interpreted as the energy of a quasiparticle with momentum ~k. In
other words, the quasiparticle energy is obtained by varying the energy with respect to
the quasiparticle distribution, i.e.

ε(~k) ≡ δE [ρ]
δρ(~k)

. (A.113)

Actually, Landau found out that result demanding the conservation of the quasiparticle
momentum [171]. Moreover, the energy of a quasiparticle is modified if the distribution of
the other quasiparticles changes. Thus, Landau also took into account the second order
variations of the distribution function by writing the total change in energy as

δE =
∑
~k

ε0(~k)δρ(~k) + 1
2
∑
~k~k′

F(~k,~k′)δρ(~k)δρ(~k′). (A.114)

It appears that ε0(~k) corresponds to the energy of a non-interacting quasiparticle. By
means of relation (A.113), a variation of the distribution function of the other quasipar-
ticles changes ε0(~k) into

ε(~k) = ε0(~k) +
∑
~k′

F(~k,~k′)δρ(~k′), (A.115)

so that the function F(~k,~k′) describes the interaction between the quasiparticles. For-
mally, it can be written as the second functional derivative of the energy with respect to
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the distribution function,

F(~k,~k′) ≡ δε[ρ(~k)]
δρ(~k′)

≡ δ2E [ρ]
δρ(~k)δρ(~k′)

, (A.116)

where we have denoted by ~k and ~k′ the momenta of the two particles, instead of ~k1
and ~k2 as we did in the appendix, since this notation is more transparent at the Lan-
dau limit discussed below. From now on, this quantity is called the quasiparticle (or
particle–hole) interaction in the light of its physical interpretation. Note that it is only
defined at the Landau limit, i.e. near the Fermi surface where |~k| ' |~k′| ' kF, because
of the reasonably long lifetime requirement we discussed earlier. Let us report that the
Landau limit is sometimes called the limit of equal momenta or, accordingly, the long-
wavelength limit. Thus, at this limit, the particle–hole interaction only depends on the
angle between the momenta ~k and ~k′, sometimes referred to as the Landau angle θ. We
also observe that this quasiparticle interaction is defined in the same way as the effective
quasiparticle interaction calculated at the TDHF approximation in the limit of small am-
plitude oscillations (A.109). Then, those quantities coincide at the Landau limit, that is
to say F(~kF, ~σ1, ~τ1;~k′F, ~σ2, ~τ2) = 〈~kF~σ1~τ1;~k′F~σ2~τ2|Vph|~kF~σ1~τ1;~k′F~σ2~τ2〉 ≡V L

ph, where we have
restored the spin and isospin dependences of the quasiparticle interaction. Midgal [169]
was the first to establish this link between the theory of normal Fermi liquids and heavy
atomic nuclei, in the framework of INM. This equivalence was in particular showed by
Gogny and Padjen for the D1 interaction in [172].

Therefore, in homogeneous and symmetric INM, the particle–hole interaction can be
parametrized as 5

V L
ph = N−1

0

[
f(θ) + g(θ)(~σ1 · ~σ2) + f ′(θ)(~τ1 · ~τ2) + g′(θ)(~σ1 · ~σ2)(~τ1 · ~τ2)

+ h(θ) q
2
F
k2

F
S12(q̂12) + h′(θ) q

2
F
k2

F
S12(q̂12)(~τ1 · ~τ2)

]
,

(A.118)

where the density of quasiparticle states at the Fermi surface is defined by

N0 ≡
2m∗VkF

π2~2 . (A.119)

This factor ensures that the parameters f, f ′, g, g′, h and h′ are dimensionless quantities.
Note that these parameters to be determined only depend on the angle between the
momenta ~kF and ~k′F of the quasiparticle pair. As for S12(q̂12), it is the tensor operator in
momentum space defined, by analogy with (D.49) in coordinate space, as

S12(q̂12) = (~σ1 · q̂12)(~σ2 · q̂12)− 1
3~σ1 · ~σ2, (A.120)

5. In isospin-asymmetric nuclear matter, the above equation would become

Ftt′(~k,~k′) ≡
δ2E [ρ]

δρt(~k)δρt′(~k′)
, (A.117)

since there would then be three different contributions to the quasiparticle interaction, of neutron–neutron
Fνν , proton–proton Fππ and proton–neutron Fπν types, that would complicate the problem a bit [232–
234]. Fortunately, the charge independence (see equation (I.11) and the discussion below) assumed here
implies that these three contributions are equal.
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where the direction pointed by the relative momentum is q̂12 ≡ ~q12/|~q12|, in momentum
space. This expression is the most general form of the quasiparticle interaction considering
the symmetry constraints to be satisfied (see section I.1.2). Actually, because of the
presence of a medium, the Galilean translational invariance is broken and two new non-
central terms, dubbed as the center-of-mass tensor and the cross-vector interactions, arise
[235, 236]. Nevertheless, we have not taken them into account in our treatment. 6 The
first four terms are called the central terms as they are related to the central part of the
interaction while the two last ones are the tensor terms which are related to the non-central
part of the interaction. Accordingly, the central parameters f, g, f ′ and g′ respectively
contribute to the (S = 0, T = 0), (S = 1, T = 0), (S = 0, T = 1) and (S = 1, T = 1)
channels of the interaction while the tensor parameters h and h′ respectively contribute
to the (S = 1, T = 0) and (S = 1, T = 1) channels of the interaction, but not in the S = 0
channel, as expected for a tensor interaction (see section II). In the following, we will then
cast these parameters into the quantities fST (θ), where f 00(θ) ≡ f(θ), f 10(θ) ≡ g(θ),
f 01(θ) ≡ f ′(θ) and f 11(θ) ≡ g′(θ), and h1T (θ), where h10(θ) = h(θ) and h11(θ) = h′(θ).
Now, since the particle–hole interaction only depends on the Landau angle θ between the
quasiparticles, these quantities can be expanded in series of Legendre polynomials with
argument k̂ · k̂′ = cos θ, according to

fST (θ) =
∑
l

fSTl Pl(cos θ), (A.121a)

h1T (θ) =
∑
l

h1T
l Pl(cos θ), (A.121b)

where the coefficients fSTl and h1T
l of these expansions are the so-called Landau parameters

that one needs to evaluate, in principle for all values of l, to fully characterize the particle–
hole interaction. In fact, those coefficients converge quite rapidly (in the sense that their
absolute value decreases sharply as l increases; see section II.2.5 for more details), so that
we only need to calculate the coefficients for the first values of l in practice. Finally, note
that, contrary to the central terms, the tensor terms exhibit a factor q2

F/k
2
F, where the

relative momentum at the Fermi surface is ~qF ≡ ~kF − ~k′F, whose magnitude reads

qF = kF

√
2(1− cos θ). (A.122)

This factor is conventional but often chosen as it is well-suited to calculate the response
function. We will not calculate the response function here, but we will stick to this
convention to simplify the contribution of the tensor force to the sum rules (see subsection
A.4.4). Note that some authors have defined the tensor terms without this factor, claiming
that it leads to a faster convergence of the corresponding Landau parameters [236]. In
any case, there exists a recurrence relation linking the two conventions [236]. Defining
h1T (θ) ≡ q2

F/k
2
Fh̃

1T (θ), expanding this relation as in (A.121), using the orthogonality
relation (D.107) of the Legendre polynomials and then their recurrence relation (D.108),
we eventually obtain

h1T
l (θ) = 2

[
h̃1T
l (θ)− l

2l − 1 h̃
1T
l−1(θ)− l + 1

2l + 3 h̃
1T
l+1(θ)

]
, for l ∈ N. (A.123)

In the following subsections, we will then give analytical expressions for the Landau
parameters fSTl (θ) and h1T

l (θ) of the generalized Gogny interaction.
6. Logically, these terms should have been introduced, in coordinate space, already at the level of the

generalized Gogny interaction (II.1), so that they would have appeared naturally in the quasiparticle
interaction above. We have chosen to stick to the usual tensor force present in the nucleon–nucleon
interaction (see equation (I.14)), which is why we do not consider these terms here.
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4.2.1. Central and density-dependent contributions

In this subsection, we shall derive the various Landau parameters associated with
the finite-range central and density-dependent terms of the generalized Gogny interac-
tion (II.1). The antisymmetrized central and density-dependent (CDD) interactions are
characterized by the set of equations (A.34)–(A.36), with their direct and exchange spin-
isospin components (A.37) respectively written under the equivalent forms

PD ≡
(
W + B

2 −
H

2 −
M

4

)
+
(
B

2 −
M

4

)
(~σ1 · ~σ2)

−
(
H

2 + M

4

)
(~τ1 · ~τ2)− M

4 (~σ1 · ~σ2)(~τ1 · ~τ2),
(A.124a)

PE ≡
(
M + H

2 −
B

2 −
W

4

)
+
(
H

2 −
W

4

)
(~σ1 · ~σ2)

−
(
B

2 + W

4

)
(~τ1 · ~τ2)− W

4 (~σ1 · ~σ2)(~τ1 · ~τ2).
(A.124b)

We notice that the direct spin-isospin components of the CDD interactions can be deduced
from the exchange ones upon replacing W,B,H,M by M,H,B,W .

In order to get the contributions from the central and density-dependent interactions
to the matrix elements of the particle–hole interaction (A.110), we shall evaluate the
following antisymmetrized matrix elements in the particle–hole representation,

〈~kp~kh′|vCDD,(a)
12 |~kh~kp′〉 = 〈~kp~kh′|V (r12)D[ρ]|~kh~kp′〉PD

+ 〈~kp~kh′ |V (r12)D[ρ]|~kp′~kh〉PE,
(A.125)

where we have explicitly separated the direct and exchange as well as the spatial and
spin-isospin parts. Since the spin-isospin part is fully specified by (A.124), we focus on
the spatial parts. In fact, the calculation is pretty similar to what we have done in (A.43).
The only difference is that the conservation of the quasiparticle pair momentum is invoked
here, i.e. ~kp + ~kh′ = ~kh + ~kp′ . We eventually find out

〈~kp~kh′ |V (r12)D[ρ]|~kh~kp′〉 = ρα

V
(µ
√
π)3 e−µ2(~kp−~kh)2/4, (A.126a)

〈~kp~kh′ |V (r12)D[ρ]|~kp′~kh〉 = ρα

V
(µ
√
π)3 e−µ2(~kp−~kp′ )2/4, (A.126b)

where, from α = 0, we obtain the central contributions and from α 6= 0 the density-
dependent one. Now, at the Landau limit, |~kp| = |~kh| = |~kF| and |~kp′ | = |~kh′| = |~k′F|, so
that the above relations become

〈~kF~k
′
F|V (r12)D[ρ]|~kF~k

′
F〉 = ρα

V
(µ
√
π)3 ≡ Gα

µ(0), (A.127a)

〈~kF~k
′
F|V (r12)D[ρ]|~k′F~kF〉 = ρα

V
(µ
√
π)3 e−µ2~q 2

F/4 ≡ Gα
µ(~qF), (A.127b)

where we have defined the function Gα
µ(~k) ≡ ρα(µ

√
π)3/V × e−µ2~k 2/4 and considered

the relative momentum at the Fermi surface, ~qF = ~kF − ~k′F. In order to connect these
expressions to the parameters appearing in (A.118), we also define

G̃α
µ(~k) ≡ N0G

α
µ(~k) = 2m∗kFρ

α

π2~2 (µ
√
π)3 e−µ2~k 2/4. (A.128)
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Then, with (A.124) and (A.125), we have,

f 00(θ) =
(
W + B

2 −
H

2 −
M

4

)
G̃α
µ(0) +

(
M + H

2 −
B

2 −
W

4

)
G̃α
µ(~qF), (A.129a)

f 10(θ) =
(
B

2 −
M

4

)
G̃α
µ(0) +

(
H

2 −
W

4

)
G̃α
µ(~qF), (A.129b)

f 01(θ) = −
(
H

2 + M

4

)
G̃α
µ(0)−

(
B

2 + W

4

)
G̃α
µ(~qF), (A.129c)

f 11(θ) = −M4 G̃α
µ(0)− W

4 G̃α
µ(~qF). (A.129d)

To get the Landau parameters out of the fST , we expanded them in Legendre polynomials
according to (A.121a). Let us see how to do the same with the function

G̃α
µ(~qF) = N0

ρα

V
(µ
√
π)3 e−µ2k2

F(1−cos θ)/2, (A.130)

where we have used the magnitude of the relative momentum at the Fermi surface (A.122).
The plane wave expansion of the exponential (D.116) furnishes

eµ2k2
F cos θ/2 = ei(−iµ2k2

F) cos θ/2 =
∑
l

(2l + 1)iljl
(
− iµ2k2

F/2
)
Pl(cos θ). (A.131)

If the argument of the Bessel function of the first kind jl had been real, we would have
directly considered its analytical expression for a given l, the first three examples of which
are given by (D.115). Here, however, the argument is purely imaginary, so we have no
choice but to expand the function in infinite series according to (D.114). In practice this
series will be truncated to a finite order, which is not a problem since this series converges
rather quickly. We therefore find out

eµ2k2
F cos θ/2 =

√
π

2
∑
l

(2l + 1)
∑
m

(
µ2k2

F/4
)2m+l

m!Γ(m+ l + 3/2)Pl(cos θ), (A.132)

and finally obtain
G̃α
µ(~qF) = G̃α

µ(0)
∑
l

GlPl(cos θ), (A.133)

where the coefficients of this expansion in Legendre polynomials are defined by

Gl ≡
√
π

2 (2l + 1) e−µ2k2
F/2

∑
m

(
µ2k2

F/4
)2m+l

m!Γ(m+ l + 3/2) . (A.134)

Thus, the contributions of the central and density-dependent interactions to the Landau
parameters defined in (A.121), can be evaluated, for l ∈ N, by means of the relations

f 00
l = G̃α

µ(0)
[(
W + B

2 −
H

2 −
M

4

)
δl,0 +

(
M + H

2 −
B

2 −
W

4

)
Gl

]
,

f 10
l = G̃α

µ(0)
[(
B

2 −
M

4

)
δl,0 +

(
H

2 −
W

4

)
Gl

]
,

f 01
l = −G̃α

µ(0)
[(
H

2 + M

4

)
δl,0 +

(
B

2 + W

4

)
Gl

]
,

f 11
l = −G̃α

µ(0)
[
M

4 δl,0 + W

4 Gl

]
.

(A.135a)

(A.135b)

(A.135c)

(A.135d)
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We keep in mind that we must set α = 0 in the quantity G̃α
µ(0) to get the contributions

of the central terms, and divide it by the coefficient (µ
√
π)3 to get the one of the density-

dependent term.

4.2.2. Rearrangement contributions

In this subsection, we continue by deriving the Landau parameters associated with
the rearrangement terms of the generalized Gogny interaction (II.1). We recall in passing
that only the density-dependent term gives rise to such terms. According to (A.110),
there are three rearrangement terms. To compute the first one, it will be useful to write
the derivative of the antisymmetrized interaction as

∂v
(a)
12

∂ρhp
= ∂v

(a)
12

∂ρ(~r1)
∂ρ(~r1)
∂ρhp

+ ∂v
(a)
12

∂ρ(~r2)
∂ρ(~r2)
∂ρhp

= α

2
V (r12)
(µ
√
π)3

[
ρα−1(~r1)∂ρ(~r1)

∂ρhp
+ ρα−1(~r2)∂ρ(~r2)

∂ρhp

]
(PD + PEPr), (A.136)

where the spin-isospin components of the direct PD and exchange PE density-dependent
interaction are given by (A.124). Using the definition (A.24) of the local nuclear density,
we can rewrite the above derivatives thanks to the formula

∂ρ(~r)
∂ρhp

=
∑
στ

Φ∗p(~r, σ, τ)Φh(~r, σ, τ)

=
∑
στ

∫
d3r′Φ∗p(~r, σ, τ)δ(~r − ~r ′)Φh(~r, σ, τ)

= 〈p|δ(~r − ~r ′)|h〉. (A.137)

Then, the derivative (A.136) becomes

∂v
(a)
12

∂ρhp
= α

2
V (r12)
(µ
√
π)3 〈p|ρ

α−1(~r1)δ(~r1 − ~r3) + ρα−1(~r2)δ(~r2 − ~r3)|h〉

× (PD + PEPr),
(A.138)

and the first rearrangement term appearing in (A.110) can be written

∑
i

〈h′i|∂v
(a)
12

∂ρhp
|p′i〉 = α

2
∑
i

〈h′ip| V (r12)
(µ
√
π)3

[
ρα−1(~r1)δ(~r1 − ~r3)

+ ρα−1(~r2)δ(~r2 − ~r3)
]
(P12

D + P12
E P

12
r )|p′ih〉,

(A.139)

since the quantities only acting on the particles 1 and 2, spotted by their indices 12, can
be incorporated in the three-body matrix element, having no action on the third particle
p and third hole h. Defining

vd1
12 ≡

α

2
∑
i

〈i| V (r23)
(µ
√
π)3

[
ρα−1(~r2)δ(~r1 − ~r2) + ρα−1(~r3)δ(~r1 − ~r3)

]
× (P23

D + P23
E P

23
r )|i〉,

(A.140)

we find out, after a circular permutation of the variables in (A.139),

∑
i

〈h′i|∂v
(a)
12

∂ρhp
|p′i〉 = 〈ph′|vd1

12 |hp′〉. (A.141)
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We then start by evaluating the direct component of (A.140), which reads

vd1
12 |D ≡

α

2
∑
i

〈i| V (r23)
(µ
√
π)3

[
ρα−1(~r2)δ(~r1 − ~r2) + ρα−1(~r3)δ(~r1 − ~r3)

]
P23

D |i〉. (A.142)

Considering the continuous limit (A.4), we obtain (with i renamed 3 for convenience),

vd1
12 |D = α

2
V

(2π)3

∑
u3

〈u3|P23
D |u3〉 ×

∫
d3r3

∫
d3k3 φ

∗
~k3

(~r3) V (r23)
(µ
√
π)3

×
[
ρα−1(~r2)δ(~r1 − ~r2) + ρα−1(~r3)δ(~r1 − ~r3)

]
φ~k3

(~r3).
(A.143)

On the one hand, the calculation of the nuclear density (A.27) at the continuous limit
(A.4) immediately brings

V
(2π)3

∫
d3k3 |φ~k3

(~r3)|2 = ρ(~r3)
4 , (A.144)

where the factor 4 comes from the spin and isospin degeneracies. On the other hand,
expressing the scalar product of Pauli matrices, we have

〈s3|~σ2 · ~σ3|s3〉 =
∑
k

(−)kσ−k2 〈s3|σk3 |s3〉 = 2s3σ
0
2, (A.145)

where we have used the unified relation of the matrix elements of the Pauli matrices
(D.18). We obviously get an equivalent relation for the Pauli matrices associated with
the isospin, so that ∑

s3

〈s3|~σ2 · ~σ3|s3〉 =
∑
t3

〈t3|~τ2 · ~τ3|t3〉 = 0, (A.146)

in such a way that, eventually only the unity operator of P23
D contributes to the matrix

elements, i.e. ∑
s3t3

〈s3t3|P23
D |s3t3〉 = 4

(
W + B

2 −
H

2 −
M

4

)
. (A.147)

Gathering those two results and taking into account the translational invariance of INM,
i.e. ρ(~r3) = ρ, it follows that

vd1
12 |D = αρ

2

(
W + B

2 −
H

2 −
M

4

) ∫
d3r3

V (r23)
(µ
√
π)3

[
ρα−1(~r2)δ(~r1 − ~r2) + ρα−1(~r3)δ(~r1 − ~r3)

]
= αρ

2

(
W + B

2 −
H

2 −
M

4

)[
ρα−1(~r1) V (r12)

(µ
√
π)3 + ρα−1(~r2)δ(~r1 − ~r2)

]
, (A.148)

where the first integral has been evaluated by means of the Gauss integral (D.118). Now,
to get the direct contribution of the first rearrangement term (A.141), we need to evaluate
the TBMEs

〈ph′|vd1
12 |D|hp′〉 = 〈~kp~kh′ |vd1

12 |D|~kh~kp′〉

= αρ

2

(
W + B

2 −
H

2 −
M

4

)
× 〈~kp~kh′ |

[
ρα−1(~r1) V (r12)

(µ
√
π)3 + ρα−1(~r2)δ(~r1 − ~r2)

]
|~kh~kp′〉.

(A.149)
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By definition,

〈~kp~kh′ |vd1
12 |D|~kh~kp′〉 = αρ

2

(
W + B

2 −
H

2 −
M

4

)
×
∫

d3r1

∫
d3r2 φ

∗
~kp

(~r1)φ∗~kh′ (~r2)
[
ρα−1(~r1) V (r12)

(µ
√
π)3 + ρα−1(~r2)δ(~r1 − ~r2)

]
φ~kh(~r1)φ~kp′ (~r2)

= αρ

2V2

(
W + B

2 −
H

2 −
M

4

)
×
∫

d3r1

∫
d3r2 e−i(~kp−~kh)·~r1ei(~kp′−~kh′ )·~r2

[
ρα−1(~r1) V (r12)

(µ
√
π)3 + ρα−1(~r2)δ(~r1 − ~r2)

]
.

(A.150)

Using the conservation of the quasiparticle pair momentum ~kp + ~kh = ~kp′ + ~kh′ , the
translational invariance of INM, i.e. ρ(~r1) = ρ(~r2) = ρ, and going from the nucleon to
the center-of-mass and relative coordinates defined in (A.40), whose Jacobian is equal to
unity, while splitting the integral into two parts, we successively obtain

〈~kp~kh′|vd1
12 |D|~kh~kp′〉 = αρ

2V2

(
W + B

2 −
H

2 −
M

4

)
×
∫

d3r1

∫
d3r2 e−i(~kp−~kh)·(~r1−~r2)

[
ρα−1(~r1) V (r12)

(µ
√
π)3 + ρα−1(~r2)δ(~r1 − ~r2)

]
.

= αρα

2V2

(
W + B

2 −
H

2 −
M

4

)

×
[ ∫

d3R
∫

d3r e−i(~kp−~kh)·~r e−r2/µ2

(µ
√
π)3 +

∫
d3R

∫
d3r e−i(~kp−~kh)·~rδ(~r)

]
.

(A.151)

Considering an infinite volume, V → ∞, and repeating the steps that led to (A.45), we
can perform the two integrals with Gaussian integrals (D.118). Indeed,

〈~kp~kh′|vd1
12 |D|~kh~kp′〉 = αρα

2V

(
W + B

2 −
H

2 −
M

4

)

×
[ ∫

d3r e−i(~kp−~kh)·~r e−r2/µ2

(µ
√
π)3 +

∫
d3r e−i(~kp−~kh)·~rδ(~r)

]

= αρα

2V

(
W + B

2 −
H

2 −
M

4

)[
e−(~kp−~kh)2µ2/4 + 1

]
. (A.152)

At the Landau limit, we have |~kp| = |~kh| = |~kF| and |~kp′ | = |~kh′ | = |~k′F|, so that the direct
component of the first rearrangement term reads

〈~kF~k
′
F|vd1

12 |D|~kF~k
′
F〉 = αρα

V

(
W + B

2 −
H

2 −
M

4

)
. (A.153)

We continue by evaluating the exchange component of (A.140), which is

vd1
12 |E ≡

α

2
∑
i

〈i| V (r23)
(µ
√
π)3

[
ρα−1(~r2)δ(~r1 − ~r2) + ρα−1(~r3)δ(~r1 − ~r3)

]
P23

E P
23
r |i〉. (A.154)

The calculation is trickier than the direct term because of the space exchange operator
P 23
r that forces us to consider directly the two-body matrix element

〈ph′|vd1
12 |E|hp′〉 = α

2
∑
i

〈ph′i| V (r23)
(µ
√
π)3

[
ρα−1(~r2)δ(~r1 − ~r2) + ρα−1(~r3)δ(~r1 − ~r3)

]
× P23

E |hip′〉,
(A.155)
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since P 23
r |hp′i〉 = |hip′〉. Considering again the continuous limit (A.4), we obtain (with i

renamed 3 for convenience),

〈ph′|vd1
12 |E|hp′〉 = α

2
V

(2π)3

∑
u3

〈u3|P23
E |u3〉 ×

∫
d3k3

∫
d3r3

∫
d3r2

∫
d3r1

× φ∗~kp(~r1)φ∗~kh′ (~r2)φ∗~k3
(~r3) V (r23)

(µ
√
π)3

[
ρα−1(~r2)δ(~r1 − ~r2)

+ ρα−1(~r3)δ(~r1 − ~r3)
]
φ~kh(~r1)φ~k3

(~r2)φ~kp′ (~r3).

(A.156)

To get the spin-isospin contribution, we just need to change W,B,H,M for M,H,B,W
in (A.147), so that

∑
s3t3

〈s3t3|P23
E |s3t3〉 = 4

(
M + H

2 −
B

2 −
W

4

)
. (A.157)

Then, we have

〈ph′|vd1
12 |E|hp′〉 = 〈~kp~kh′ |vd1

12 |E|~kh~kp′〉

= 2
(2π)3

α

V2

(
M + H

2 −
B

2 −
W

4

) ∫
d3k3

×
∫

d3r3

∫
d3r2

∫
d3r1 e−i(~kp−~kh)·~r1e−i(~k3−~kp′ )·~r2e−i(~kh′−~k3)·~r3

× V (r23)
(µ
√
π)3

[
ρα−1(~r2)δ(~r1 − ~r2) + ρα−1(~r3)δ(~r1 − ~r3)

]
.

(A.158)

Splitting the integral into two parts and evaluating the integrals over ~r1, we get

〈~kp~kh′|vd1
12 |E|~kh~kp′〉 = 2

(2π)3
α

V2

(
M + H

2 −
B

2 −
W

4

)

×
[ ∫

d3k3

∫
d3r3

∫
d3r2

∫
d3r1 ρ

α−1(~r2)δ(~r1 − ~r2) V (r23)
(µ
√
π)3

× e−i(~kp−~kh)·~r1e−i(~k3−~kp′ )·~r2e−i(~kh′−~k3)·~r3

+
∫

d3k3

∫
d3r3

∫
d3r2

∫
d3r1 ρ

α−1(~r3)δ(~r1 − ~r3) V (r23)
(µ
√
π)3

× e−i(~kp−~kh)·~r1e−i(~k3−~kp′ )·~r2e−i(~kh′−~k3)·~r3

]

= 2
(2π)3

α

V2

(
M + H

2 −
B

2 −
W

4

)

×
[ ∫

d3k3

∫
d3r3

∫
d3r2 ρ

α−1(~r2) V (r23)
(µ
√
π)3

× e−i(~kp+~k3−~kh−~kp′ )·~r2e−i(~kh′−~k3)·~r3

+
∫

d3k3

∫
d3r3

∫
d3r2 ρ

α−1(~r3) V (r23)
(µ
√
π)3

× e−i(~k3−~kp′ )·~r2e−i(~kp+~kh′−~kh−~k3)·~r3

]
.

(A.159)
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The conservation of the quasiparticle pair momentum ~kp + ~kh′ = ~kh + ~kp′ provides

〈~kp~kh′|vd1
12 |E|~kh~kp′〉 = 2

(2π)3
α

V2

(
M + H

2 −
B

2 −
W

4

)

×
[ ∫

d3k3

∫
d3r3

∫
d3r2 ρ

α−1(~r2) V (r23)
(µ
√
π)3 e−i(~kh′−~k3)·(~r3−~r2)

+
∫

d3k3

∫
d3r3

∫
d3r2 ρ

α−1(~r3) V (r23)
(µ
√
π)3 e−i(~kp′−~k3)·(~r3−~r2)

]

= 2
(2π)3

αρα−1

V2

(
M + H

2 −
B

2 −
W

4

)

×
[ ∫

d3r1

∫
d3r2

V (r12)
(µ
√
π)3 e−i~kh′ ·(~r1−~r2)

∫
d3k3 e−i~k3·(~r1−~r2)

+
∫

d3r1

∫
d3r2

V (r12)
(µ
√
π)3 e−i~kp′ ·(~r1−~r2)

∫
d3k3 e−i~k3·(~r1−~r2)

]
,

(A.160)

where we have renamed the integration variable ~r3 into ~r1 and used the translational
invariance of INM, i.e. ρ(~r1) = ρ(~r2) = ρ. The integral over ~k3 reads∫

d3k3 e−i~k3·(~r1−~r2) = 2π
∫ kF

0
dk3 k

2
3

∫ π

0
dθ sin θ e−ik3r cos θ

= 2π
∫ kF

0
dk3 k3

1
ir
[
e−ik3r cos θ

]π
0

= 4π
r

∫ kF

0
dk3 k3 sin(k3r)

= 4π
r

1
r2

∫ kFr

0
d(k3r) k3r sin(k3r)

= 4π
r

sin kFr − kFr cos kFr

r2 = 4πk2
F

r
j1(kFr), (A.161)

with ~r ≡ ~r1 − ~r2 and the spherical Bessel function of the first kind given by (D.115c).
Finally, the expression of the constant nuclear density in INM (A.27) gives

1
(2π)3

∫
d3k3 e−i~k3·(~r1−~r2) = 3ρ

4
j1(kFr)
kFr

. (A.162)

Moving from the nucleon to the center-of-mass and relative coordinates defined in (A.40)
and considering an infinite volume, V → ∞, we find out

〈~kp~kh′ |vd1
12 |E|~kh~kp′〉 = 3αρα

2V2

(
M + H

2 −
B

2 −
W

4

)

×
[ ∫

d3R
∫

d3r e−i~kh′ ·~r e−r2/µ2

(µ
√
π)3

j1(kFr)
kFr

+
∫

d3R
∫

d3r e−i~kp′ ·~r e−r2/µ2

(µ
√
π)3

j1(kFr)
kFr

]
,

= 3αρα
2V

(
M + H

2 −
B

2 −
W

4

)

×
[ ∫

d3r e−i~kh′ ·~r e−r2/µ2

(µ
√
π)3

j1(kFr)
kFr

+
∫

d3r e−i~kp′ ·~r e−r2/µ2

(µ
√
π)3

j1(kFr)
kFr

]
,

(A.163)
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At the Landau limit, we have |~kp| = |~kh| = |~kF| and |~kp′| = |~kh′ | = |~k′F|, so that the two
integrals coincide and we obtain

〈~kF~k
′
F|vd1

12 |E|~kF~k
′
F〉 = 3αρα

V

(
M + H

2 −
B

2 −
W

4

)

×
∫

d3r e−ikFr cos θ e−r2/µ2

(µ
√
π)3

j1(kFr)
kFr

= 6παρα
V

(
M + H

2 −
B

2 −
W

4

)

×
∫

dr r2 e−r2/µ2

(µ
√
π)3

j1(kFr)
kFr

∫ π

0
dθ sin θ e−ikFr cos θ.

(A.164)

The angular integral is simply∫ π

0
dθ sin θ e−ikFr cos θ = 1

ikFr

∫ π

0
dθ ikFr sin θ e−ikFr cos θ

= 2 sin kFr

kFr
= 2j0(kFr), (A.165)

with the spherical Bessel function of the first kind given by (D.115a). Finally, the exchange
component of the first rearrangement term reads

〈~kF~k
′
F|vd1

12 |E|~kF~k
′
F〉 = 12παρα

V

(
M + H

2 −
B

2 −
W

4

)

×
∫ ∞

0
dr r2 e−r2/µ2

(µ
√
π)3

j1(kFr)
kFr

j0(kFr),
(A.166)

This is consistently the expression found in [18]. Let us now evaluate the above radial
integral, hereafter called Id1 , analytically. Using the expressions of the spherical Bessel
functions of the first kind (D.115a) and (D.115b), and linearizing the sine and cosine
functions, we have to evaluate

Id1 ≡ 1
2k2

F

1
(µ
√
π)3

∫ ∞
0

dr e−r2/µ2
[

1− cos 2kFr

(kFr)2 − sin 2kFr

kFr

]
. (A.167)

The series expansions of the sine and cosine functions, and the parity of the integrands
provide

Id1 = 1
k2

F

1
(µ
√
π)3

∫ +∞

−∞
dr e−r2/µ2

[∑
n

(−)n
(2n+ 2)!(2kFr)2n − 1

2
∑
n

(−)n
(2n+ 1)!(2kFr)2n

]

=
√
π

k3
F

1
(µ
√
π)3

[∑
n

(−)n(µkF)2n+1

(2n+ 1)(2n+ 2)n! −
1
2
∑
n

(−)n(µkF)2n+1

(2n+ 1)n!

]
, (A.168)

where we have inverted the integrals and sums, and used the expression (D.120). We
recognize the series expansion of the error function (D.97) in the second right-hand side,
so that

Id1 =
√
π

2k3
F

1
(µ
√
π)3

[
2
∑
n

(−)n(µkF)2n+1

(2n+ 1)n!

(
1− 2n+ 1

2n+ 2

)
−
√
π

2 erf(µkF)
]

=
√
π

2k3
F

1
(µ
√
π)3

[
√
π erf(µkF)−

∑
n

(−)n(µkF)2n+1

(n+ 1)! −
√
π

2 erf(µkF)
]
. (A.169)
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Setting X ≡ µkF and recognizing the series expansion of the function (e−X2 − 1)/X in
the second right-hand side term, we finally get

Id1 = 1
2πX3

[
1
X

(
e−X2 − 1

)
+
√
π

2 erf(X)
]
. (A.170)

Thus, the exchange first rearrangement term becomes

〈~kF~k
′
F|vd1

12 |E|~kF~k
′
F〉 = 6αρα

VX3

(
M + H

2 −
B

2 −
W

4

)
×
[

1
X

(
e−X2 − 1

)
+
√
π

2 erf(X)
]
,

(A.171)

where the values of the error function (D.96) are tabulated in the fitting code.

In order to compute the second rearrangement term of the quasiparticle interaction
(A.110), it will be useful to give an expression for the derivative appearing therein. Ac-
cording to (A.138), it directly reads

∂v
(a)
12

∂ρp′h′
= α

2
V (r12)
(µ
√
π)3 〈h

′|ρα−1(~r1)δ(~r1 − ~r3) + ρα−1(~r2)δ(~r2 − ~r3)|p′〉

× (PD + PEPr),
(A.172)

In the same way as for the first rearrangement term, we see that the second rearrangement
term can be written ∑

i

〈pi| ∂v
(a)
12

∂ρp′h′
|hi〉 = 〈ph′|vd2

12 |hp′〉, (A.173)

where we have defined

vd2
12 ≡

α

2
∑
i

〈i| V (r13)
(µ
√
π)3

[
ρα−1(~r1)δ(~r1 − ~r2) + ρα−1(~r3)δ(~r2 − ~r3)

]
× (P13

D + P13
E P

13
r )|i〉.

(A.174)

We then start by evaluating the direct component of the above one-body matrix element,
which reads

vd2
12 |D ≡

α

2
∑
i

〈i| V (r13)
(µ
√
π)3

[
ρα−1(~r1)δ(~r1 − ~r2) + ρα−1(~r3)δ(~r2 − ~r3)

]
P13

D |i〉. (A.175)

The procedure is similar to the one undertaken for the direct component of the first
rearrangement term, leading to the result (A.148). Here, it comes

vd2
12 |D = αρ

2

(
W + B

2 −
H

2 −
M

4

)[
ρα−1(~r1) V (r12)

(µ
√
π)3 + ρα−1(~r1)δ(~r1 − ~r2)

]
. (A.176)

We now need to evaluate the two-body matrix elements

〈ph′|vd2
12 |D|hp′〉 = 〈~kp~kh′|vd2

12 |D|~kh~kp′〉

= αρ

2

(
W + B

2 −
H

2 −
M

4

)
× 〈~kp~kh′ |

[
ρα−1(~r1) V (r12)

(µ
√
π)3 + ρα−1(~r1)δ(~r1 − ~r2)

]
|~kh~kp′〉.

(A.177)
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By following the steps leading to (A.152), we finally get

〈~kp~kh′|vd2
12 |D|~kh~kp′〉 = αρα

2V

(
W + B

2 −
H

2 −
M

4

)[
e−(~kp−~kh)2µ2/4 + 1

]
, (A.178)

which is in fact exactly the expression we have found out for the first rearrangement term
(A.152). At the Landau limit, we have |~kp| = |~kh| = |~kF| and |~kp′ | = |~kh′ | = |~k′F|, so that
the direct component of the second rearrangement term reads

〈~kF~k
′
F|vd2

12 |D|~kF~k
′
F〉 = αρα

V

(
W + B

2 −
H

2 −
M

4

)
, (A.179)

just like the direct component of the first rearrangement term (A.153).
We continue by evaluating the exchange component of (A.174), which is

vd2
12 |E ≡

α

2
∑
i

〈i| V (r13)
(µ
√
π)3

[
ρα−1(~r1)δ(~r1 − ~r2) + ρα−1(~r3)δ(~r2 − ~r3)

]
W 13

E P13
r |i〉. (A.180)

Once again, we have to deal with the space exchange operator P 13
r that forces us to

consider directly the two-body matrix element

〈ph′|vd2
12 |E|hp′〉 = α

2
∑
i

〈ph′i| V (r13)
(µ
√
π)3

[
ρα−1(~r1)δ(~r1 − ~r2) + ρα−1(~r3)δ(~r2 − ~r3)

]
× P13

E |ip′h〉,
(A.181)

since P 13
r |hp′i〉 = |ip′h〉. The derivation is analogous to the first rearrangement term

leading to (A.163). We obtain

〈ph′|vd2
12 |E|hp′〉 = 〈~kp~kh′ |vd2

12 |E|~kh~kp′〉

= 3αρα
2V

(
M + H

2 −
B

2 −
W

4

)[ ∫
d3r e−i~kh·~r e−r2/µ2

(µ
√
π)3

j1(kFr)
kFr

+
∫

d3r e−i~kp·~r e−r2/µ2

(µ
√
π)3

j1(kFr)
kFr

]
.

(A.182)

At the Landau limit, we have |~kp| = |~kh| = |~kF|, and we end up with the same expression
we have obtained with the first rearrangement term, namely

〈~kF~k
′
F|vd2

12 |E|~kF~k
′
F〉 = 3αρα

V

(
M + H

2 −
B

2 −
W

4

)

×
∫

d3r e−ikFr cos θ e−r2/µ2

(µ
√
π)3

j1(kFr)
kFr

,

(A.183)

so that the exchange component of the second rearrangement term eventually reads

〈~kF~k
′
F|vd2

12 |E|~kF~k
′
F〉 = 12παρα

V

(
M + H

2 −
B

2 −
W

4

)

×
∫ ∞

0
dr r2 e−r2/µ2

(µ
√
π)3

j1(kFr)
kFr

j0(kFr).
(A.184)
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This is the same exchange term as the first rearrangement term (A.171), where the radial
integral has been calculated in (A.170). We then get

〈~kF~k
′
F|vd2

12 |E|~kF~k
′
F〉 = 6αρα

VX3

(
M + H

2 −
B

2 −
W

4

)
×
[

1
X

(
e−X2 − 1

)
+
√
π

2 erf(X)
]
,

(A.185)

just like for the first rearrangement term .

Finally, to derive the third rearrangement term of the quasiparticle interaction (A.110),
we proceed in the way as before, with a second derivative. Taking advantage of the first
derivative (A.138), this latter reads

∂2v
(a)
12

∂ρhp∂ρp′h′
≡ ∂

∂ρp′h′

(
∂v

(a)
12

∂ρhp

)

= α(α− 1)
2

V (r12)
(µ
√
π)3 〈ph

′|ρα−2(~r1)δ(~r1 − ~r3)δ(~r1 − ~r4)

+ ρα−2(~r2)δ(~r2 − ~r3)δ(~r2 − ~r4)|hp′〉(PD + PEPr),
(A.186)

Thus, the third rearrangement term appearing in (A.110) can be written

1
2
∑
ij

〈ij| ∂2v
(a)
12

∂ρhp∂ρp′h′
|ij〉 = α(α− 1)

4
∑
ij

〈ijph′| V (r12)
(µ
√
π)3

×
[
ρα−2(~r1)δ(~r1 − ~r3)δ(~r1 − ~r4) + ρα−2(~r2)δ(~r2 − ~r3)δ(~r2 − ~r4)

]
× (P12

D + P12
E P

12
r )|ijhp′〉,

(A.187)

since the quantities only acting on the particles 1 and 2, spotted by their indices 12, can
be incorporated in the four-body matrix element, having no action on the third particle
p and third hole h, nor on the fourth particle p′ and fourth hole h′. Defining

vd3
12 ≡

α(α− 1)
4

∑
ij

〈ij| V (r34)
(µ
√
π)3

[
ρα−2(~r3)δ(~r1 − ~r3)δ(~r2 − ~r3)

+ ρα−1(~r4)δ(~r1 − ~r4)δ(~r2 − ~r4)
]
(P34

D + P34
E P

34
r )|ij〉,

(A.188)

we find out, after two circular permutations of the variables in (A.187),

1
2
∑
ij

〈ij| ∂2v
(a)
12

∂ρhp∂ρp′h′
|ij〉 = 〈ph′|vd3

12 |hp′〉. (A.189)

We then start by evaluating the direct component of (A.188), which reads

vd3
12 |D ≡

α(α− 1)
4

∑
ij

〈ij| V (r34)
(µ
√
π)3

[
ρα−2(~r3)δ(~r1 − ~r3)δ(~r2 − ~r3)

+ ρα−1(~r4)δ(~r1 − ~r4)δ(~r2 − ~r4)
]
P34

D |ij〉,
(A.190)
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Considering the continuous limit (A.4), we obtain (with i and j respectively renamed 3
and 4 for convenience),

vd3
12 |D = α(α− 1)

4
V2

(2π)6

∑
u3u4

〈u3u4|P34
D |u3u4〉 ×

∫
d3r3

∫
d3r4

∫
d3k3

∫
d3k4

× φ∗~k3
(~r3)φ∗~k4

(~r4) V (r34)
(µ
√
π)3

[
ρα−2(~r3)δ(~r1 − ~r3)δ(~r2 − ~r3)

+ ρα−2(~r4)δ(~r1 − ~r4)δ(~r2 − ~r4)
]
φ~k3

(~r3)φ~k4
(~r4).

(A.191)

On the one hand, expressing the scalar product of Pauli matrices as we have done in
(A.145), we find

〈s3s4|~σ3 · ~σ4|s3s4〉 =
∑
k

(−)k〈s3|σk3 |s3〉〈s4|σ−k4 |s4〉 = 4s3s4, (A.192)

where we have used the unified relation of the matrix elements of the Pauli matrices
(D.18). We obviously get an equivalent relation for the Pauli matrices associated with
the isospin, so that ∑

s3s4

〈s3s4|~σ3 · ~σ4|s3s4〉 =
∑
t3t4

〈t3t4|~τ3 · ~τ4|t3t4〉 = 0, (A.193)

in such a way that, eventually only the unity operator of P34
D contributes to the matrix

elements, i.e. ∑
s3t3

∑
s4t4

〈s3t3 s4t4|P34
D |s3t3 s4t4〉 = 16

(
W + B

2 −
H

2 −
M

4

)
. (A.194)

Combining this result with the nuclear density (A.144), and invoking the translational
invariance of INM, i.e. ρ(~r1) = ρ(~r2) = ρ, it follows that

vd3
12 |D = α(α− 1)ρ2

4

(
W + B

2 −
H

2 −
M

4

) ∫
d3r3

∫
d3r4

V (r34)
(µ
√
π)3

×
[
ρα−2(~r3)δ(~r1 − ~r3)δ(~r2 − ~r3) + ρα−2(~r4)δ(~r1 − ~r4)δ(~r2 − ~r4)

]
.

(A.195)

Now, to get the direct contribution of the third rearrangement term (A.189), we need to
evaluate the two-body matrix elements

〈ph′|vd3
12 |D|hp′〉 = 〈~kp~kh′|vd3

12 |D|~kh~kp′〉

= α(α− 1)ρ2

4

(
W + B

2 −
H

2 −
M

4

) ∫
d3r3

∫
d3r4

× 〈~kp~kh′|
V (r34)
(µ
√
π)3

[
ρα−2(~r3)δ(~r1 − ~r3)δ(~r2 − ~r3)

+ ρα−2(~r4)δ(~r1 − ~r4)δ(~r2 − ~r4)
]
|~kh~kp′〉.

(A.196)

By definition,

〈~kp~kh′ |vd3
12 |D|~kh~kp′〉 = α(α− 1)ρ2

4

(
W + B

2 −
H

2 −
M

4

) ∫
d3r1

∫
d3r2

∫
d3r3

∫
d3r4

× φ∗~kp(~r1)φ∗~kh′ (~r2) V (r34)
(µ
√
π)3

[
ρα−2(~r3)δ(~r1 − ~r3)δ(~r2 − ~r3)

+ ρα−2(~r4)δ(~r1 − ~r4)δ(~r2 − ~r4)
]
φ~kh(~r1)φ~kp′ (~r2)
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= α(α− 1)ρ2

4V2

(
W + B

2 −
H

2 −
M

4

)
×
[ ∫

d3r3

∫
d3r4 e−i(~kp+~kh′−~kh−~kp′ )·~r3

V (r34)
(µ
√
π)3ρ

α−2(~r3)

+
∫

d3r3

∫
d3r4 e−i(~kp+~kh′−~kh−~kp′ )·~r4

V (r34)
(µ
√
π)3ρ

α−2(~r4)
]
,

(A.197)

where we have performed the straight integrals over ~r1 and ~r2, and separated the expres-
sion into two parts. Then, using the conservation of the quasiparticle pair momentum
~kp + ~kh = ~kp′ + ~kh′ , we obtain

〈~kp~kh′|vd3
12 |D|~kh~kp′〉 = α(α− 1)ρ2

2V2

(
W + B

2 −
H

2 −
M

4

)
×
∫

d3r1

∫
d3r2

V (r12)
(µ
√
π)3ρ

α−2(~r1),
(A.198)

since the two integrals are equal, as we see when exchanging the integration variables ~r3
and ~r4 in the second integral. Note that we have also relabelled ~r3 as ~r1 and ~r4 as ~r2.
Using the translational invariance of INM, i.e. ρ(~r1) = ρ, and going from the nucleon to
the center-of-mass and relative coordinates defined in (A.40), it comes

〈~kp~kh′ |vd3
12 |D|~kh~kp′〉 = α(α− 1)ρα

2V2

(
W + B

2 −
H

2 −
M

4

) ∫
d3r

∫
d3R

e−r2/µ2

(µ
√
π)3

= α(α− 1)ρα
2V

(
W + B

2 −
H

2 −
M

4

) ∫
d3r

e−r2/µ2

(µ
√
π)3

= α(α− 1)ρα
2V

(
W + B

2 −
H

2 −
M

4

)
, (A.199)

where we have considered an infinite volume V → ∞ and performed the integral by
means of the Gauss integral (D.118). At the Landau limit, we have |~kp| = |~kh| = |~kF| and
|~kp′| = |~kh′| = |~k′F|, so that the direct contribution of the third rearrangement term reads

〈~kF~k
′
F|vd3

12 |D|~kF~k
′
F〉 = α(α− 1)ρα

2V

(
W + B

2 −
H

2 −
M

4

)
. (A.200)

We continue by evaluating the exchange component of (A.188), which is

vd3
12 |E ≡

α(α− 1)
4

∑
ij

〈ij| V (r34)
(µ
√
π)3

[
ρα−2(~r3)δ(~r1 − ~r3)δ(~r2 − ~r3)

+ ρα−1(~r4)δ(~r1 − ~r4)δ(~r2 − ~r4)
]
P34

D P
34
r |ij〉,

(A.201)

Here, contrary to the first two rearrangement terms (A.155) and (A.181), we can eval-
uate the above quantity without having to consider the full two-body matrix element
〈ph′|vd2

12 |E|hp′〉 since P 34
r |ij〉 = |ji〉. However, it turns out that it is not possible to sim-

plify the result as we have done for the direct terms in (A.148) and (A.176). Therefore,
it will be more efficient to simply follow the procedure adopted for the first two exchange
terms. We then have

〈ph′|vd3
12 |E|hp′〉 = V (r34)

(µ
√
π)3

[
ρα−2(~r3)δ(~r1 − ~r3)δ(~r2 − ~r3)

+ ρα−1(~r4)δ(~r1 − ~r4)δ(~r2 − ~r4)
]
P34

E |hp′ji〉.
(A.202)
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Considering again the continuous limit (A.4), we obtain (with i and j respectively renamed
3 and 4 for convenience),

〈ph′|vd3
12 |E|hp′〉 = α(α− 1)

4
V2

(2π)6

∑
u3u4

〈u3u4|P34
E |u3u4〉

×
∫

d3k3

∫
d3k4

∫
d3r4

∫
d3r3

∫
d3r2

∫
d3r1 φ

∗
~kp

(~r1)φ∗~kh′ (~r2)φ∗~k3
(~r3)φ∗~k4

(~r4)

× V (r34)
(µ
√
π)3

[
ρα−2(~r3)δ(~r1 − ~r3)δ(~r2 − ~r3) + ρα−2(~r4)δ(~r1 − ~r4)δ(~r2 − ~r4)

]
× φ~kh(~r1)φ~kp′ (~r2)φ~k4

(~r3)φ~k3
(~r4).

(A.203)

To get the spin-isospin contribution, we just need to change W,B,H,M for M,H,B,W
in (A.194), so that∑

s3t3

∑
s4t4

〈s3t3 s4t4|P34
E |s3t3 s4t4〉 = 16

(
M + H

2 −
B

2 −
W

4

)
. (A.204)

Thus,
〈ph′|vd3

12 |E|hp′〉 = 〈~kp~kh′ |vd3
12 |E|~kh~kp′〉

= 4α(α− 1)
(2π)6V2

(
M + H

2 −
B

2 −
W

4

)
×
∫

d3k3

∫
d3k4

∫
d3r4

∫
d3r3

∫
d3r2

∫
d3r1 e−i(~kp−~kh)·~r1e−i(~kh′−~kp′ )·~r2

× V (r34)
(µ
√
π)3

[
ρα−2(~r3)δ(~r1 − ~r3)δ(~r2 − ~r3) + ρα−2(~r4)δ(~r1 − ~r4)δ(~r2 − ~r4)

]
× e−i(~k3−~k4)·~r3e−i(~k4−~k3)·~r4 .

(A.205)

Splitting the integral into two parts and evaluating the integrals over ~r1 and ~r2 taking
into account the conservation of the quasiparticle pair momentum ~kp +~kh = ~kp′ +~kh′ , we
obtain

〈~kp~kh′ |vd3
12 |E|~kh~kp′〉 = 4α(α− 1)

(2π)6V2

(
M + H

2 −
B

2 −
W

4

)

×
[ ∫

d3k3

∫
d3k4

∫
d3r4

∫
d3r3

∫
d3r2

∫
d3r1

V (r34)
(µ
√
π)3

× ρα−2(~r3)δ(~r1 − ~r3)δ(~r2 − ~r3)e−i(~kp−~kh)·(~r1−~r2)e−i(~k3−~k4)·(~r3−~r4)

+
∫

d3k3

∫
d3k4

∫
d3r4

∫
d3r3

∫
d3r2

∫
d3r1

V (r34)
(µ
√
π)3

× ρα−2(~r4)δ(~r1 − ~r4)δ(~r2 − ~r4)e−i(~kp−~kh)·(~r1−~r2)e−i(~k3−~k4)·(~r3−~r4)
]

= 4α(α− 1)
(2π)6V2

(
M + H

2 −
B

2 −
W

4

)

×
[ ∫

d3k3

∫
d3k4

∫
d3r4

∫
d3r3 ρ

α−2(~r3) V (r34)
(µ
√
π)3

× e−i(~k3−~k4)·(~r3−~r4)

×
∫

d3k3

∫
d3k4

∫
d3r4

∫
d3r3 ρ

α−2(~r4) V (r34)
(µ
√
π)3

× e−i(~k3−~k4)·(~r3−~r4).

(A.206)
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We now relabel the integration variables ~r3 as ~r1 and ~r4 as ~r2, and use the translational
invariance of INM, i.e. ρ(~r1) = ρ(~r2) = ρ to find out that the above integrals are the same
and read

〈~kp~kh′ |vd3
12 |E|~kh~kp′〉 = 8α(α− 1)ρα−2

(2π)6V2

(
M + H

2 −
B

2 −
W

4

)

×
∫

d3r1

∫
d3r2

V (r12)
(µ
√
π)3

∫
d3k3 e−i~k3·(~r1−~r2)

∫
d3k4 ei~k4·(~r1−~r2).

(A.207)

It is not difficult to see that∫
d3k3 e−i~k3·(~r1−~r2) =

∫
d3k4 ei~k4·(~r1−~r2), (A.208)

that we have already evaluated in (A.162). Now, moving from the nucleon to the center-
of-mass and relative coordinates defined in (A.40) and considering an infinite volume,
V → ∞, we obtain

〈~kp~kh′|vd3
12 |E|~kh~kp′〉 = 9α(α− 1)ρα

2V2

(
M + H

2 −
B

2 −
W

4

)

×
∫

d3r
∫

d3R
e−r2/µ2

(µ
√
π)3

[
j1(kFr)
kFr

]2

= 18πα(α− 1)ρα
V

(
M + H

2 −
B

2 −
W

4

)

×
∫ ∞

0
dr r2 e−r2/µ2

(µ
√
π)3

[
j1(kFr)
kFr

]2

.

(A.209)

At the Landau limit, we have |~kp| = |~kh| = |~kF| and |~kp′ | = |~kh′| = |~k′F|, so that the
exchange component of the third rearrangement term reads

〈~kF~k
′
F|vd3

12 |E|~kF~k
′
F〉 = 18πα(α− 1)ρα

V

(
M + H

2 −
B

2 −
W

4

)

×
∫ ∞

0
dr r2 e−r2/µ2

(µ
√
π)3

[
j1(kFr)
kFr

]2

,

(A.210)

This is consistently the expression found in [18]. Let us now evaluate the above radial
integral, hereafter called Id3 , analytically. The procedure is the same as the one that led
to (A.170), although more complex. We eventually obtain

Id3 = 1
6πX6

[
e−X2(X2 − 2)− (3X2 − 2) +

√
πX3 erf(X)

]
. (A.211)

The exchange contribution of the third rearrangement terms then becomes

〈~kF~k
′
F|vd3

12 |E|~kF~k
′
F〉 = 3α(α− 1)ρα

VX6

(
M + H

2 −
B

2 −
W

4

)
×
[
e−X2(X2 − 2)− (3X2 − 2) +

√
πX3 erf(X)

]
,

(A.212)

where we recall that X ≡ µkF, and that the values of the error function are tabulated in
the fitting code.
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Now that we have calculated all the rearrangement terms of the quasiparticle inter-
action, let us see how to express them in terms of the Landau parameters. It has been
shown that these terms contribute only to the channel (S = 0, T = 0) of the quasiparticle
interaction (see equations (A.147) and (A.157) for the first two terms, as well as (A.194)
and (A.204) for the third term). Putting together the direct contributions on one side
and the exchange contributions on the other side of the three rearrangement terms, we
have

f 00(θ) = G̃α
µ(0)

[
(3 + α)α

2

(
W + B

2 −
H

2 −
M

4

)

+ 3α
X3

(
4K1(X) + α− 1

X3 K2(X)
)(
M + H

2 −
B

2 −
W

4

)]
,

(A.213)

where we have defined the functions

K1(X) ≡ 1
X

(
e−X2 − 1

)
+
√
π

2 erf(X), (A.214a)

K2(X) ≡ e−X2(X2 − 2)− (3X2 − 2) +
√
πX3 erf(X), (A.214b)

as well as
G̃α
µ(0) ≡ N0G

α
µ(0) = N0

ρα

V
, (A.215)

where N0 is the density of quasiparticle states at the Fermi surface (A.119), ensuring the
connection of our matrix elements with the parameters appearing in (A.118). Note that
we have definedGα

µ(0) without the factor (µ
√
π)3, contrary to what we did in (A.128). The

reason is that the rearrangement terms are exclusively derived from the density-dependent
term, for which the potential (A.35) must then be divided by this factor. Now, since the
right-hand side of (A.213) does not depend on the angle θ between the quasiparticles, the
rearrangement terms only contribute to the component l = 0 of the Landau parameter
f 00
l . Indeed, the expansion (A.121a) is independent of θ only for l = 0 as P0(cos θ) = 1.
Thus, the contribution of the rearrangement terms to the Landau parameters reads

f 00
l = G̃α

µ(0)δl,0
[

(3 + α)α
2

(
W + B

2 −
H

2 −
M

4

)

+ 3α
X3

(
4K1(X) + α− 1

X3 K2(X)
)(
M + H

2 −
B

2 −
W

4

)]
.

(A.216)

4.2.3. Tensor contribution

In this subsection, we shall derive the Landau parameters associated with the finite-
range tensor term of the generalized Gogny interaction (II.1). The antisymmetrized tensor
interaction is characterized by the equation (A.59), with its direct and exchange spin-
isospin components (A.60) respectively written under the equivalent forms

PD ≡
(
W − H

2

)
− H

2 ~τ1 · ~τ2, (A.217a)

PE ≡
(
H − W

2

)
− W

2 ~τ1 · ~τ2. (A.217b)

We notice that the direct isospin components of the tensor interaction can be deduced
from the exchange ones by switching W and H, in the same idea as what we did for the
central and density-dependent terms.
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In order to get the contribution from the tensor interaction to the matrix elements
of the particle–hole interaction (A.110), we shall evaluate the following antisymmetrized
matrix elements in the particle–hole representation,

〈~kp~kh′|vT,(a)
12 |~kh~kp′〉 = 〈~kp~kh′|V (r12)S12(r̂12)|~kh~kp′〉PD

+ 〈~kp~kh′ |V (r12)S12(r̂12)|~kp′~kh〉PE,
(A.218)

where we have explicitly separated the direct and exchange as well as the spatial-spin and
isospin parts. We have also specified that the above tensor operator acts in the coordinate
space by adding r̂12 as argument. Since the isospin part is fully specified by (A.217), we
focus on the spatial-spin parts. For the direct spatial-spin part, we have, by definition,

〈~kp~kh′ |V (r12)S12(r̂12)|~kh~kp′〉 =
∫

d3r1

∫
d3r2 φ

∗
~kp

(~r1)φ∗~kh′ (~r2)V (r12)S12(r̂12)φ~kh(~r1)φ~kp′ (~r2)

=
∑
k

(−)k[~σ1 ⊗ ~σ2](2)
−k

1
V2

×
∫

d3r1

∫
d3r2 ei(~kh−~kp)·(~r1−~r2)V (r12)[r̂12 ⊗ r̂12](2)

k

=
∑
k

(−)k[~σ1 ⊗ ~σ2](2)
−k

1
V

∫
d3r ei~q12·~rV (r)[r̂ ⊗ r̂](2)

k . (A.219)

From the first to the second line, we have used the equivalent form (D.58) of the tensor
operator and invoked the conservation the quasiparticle pair momentum, that is to say
~kp + ~kh′ = ~kh + ~kp′ . From the second to the third line, we have defined the relative
momentum of the quasiparticle pair ~q12 ≡ ~kh − ~kp = ~kh′ − ~kp′ and moved from the
nucleon to the relative and center-of-mass coordinates defined in (A.40). Now, using the
writing (B.211) and the plane wave expansion of the exponential in terms of the spherical
harmonics (D.117), the above integral becomes

1
V

∫
d3r ei~q12·~rV (r)[r̂ ⊗ r̂](2)

k = 4π
V

√
8π
15

∫
dr r2V (r)

∑
lm

iljl(q12r)Y m∗
l (q̂12)

∫
dr̂ Y m

l (r̂)Y k
2 (r̂)

= 4π
V

(−)k+1Y −k∗2 (q̂12)
∫

dr r2V (r)j2(q12r)

= −4π
V

[q̂12 ⊗ q̂12](2)
k

∫
dr r2V (r)j2(q12r). (A.220)

From the first to the second line, we have used the orthogonality relation of the spherical
harmonics (B.205) and from the second to the third line the writing (B.211) in momentum
space. Considering the tensor operator in momentum space (A.120), we finally obtain

〈~kp~kh′|V (r12)S12(r̂12)|~kh~kp′〉 = −4π
V
S12(q̂12)

∫
dr r2V (r)j2(q12r). (A.221)

The calculation of the exchange spatial-spin part is done in the same manner. We even-
tually find out

〈~kp~kh′|V (r12)S12(r̂12)|~kp′~kh〉 = −4π
V
S12(q̂ ′12)

∫
dr r2V (r)j2(q′12r), (A.222)

with a relative momentum between the quasiparticle pair given by ~q ′12 ≡ ~kp′−~kp = ~kh′−~kh.
Now, at the Landau limit, we have |~kp| = |~kh| = |~kF| and |~kp′ | = |~kh′ | = |~k′F|, so that
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|~q12| = 0 and |~q ′12| = qF, the relative momentum at the Fermi surface, which is given by
(A.122). This implies

〈~kF~k
′
F|V (r12)S12(r̂12)|~kF~k

′
F〉 = 0, (A.223a)

〈~kF~k
′
F|V (r12)S12(r̂12)|~k′F~kF〉 = −4π

V
S12(q̂ ′12)

∫
dr r2V (r)j2(qFr). (A.223b)

Therefore, the direct spatial-spin part of the tensor interaction vanishes at the Landau
limit. The direct component of the (finite-range) tensor force does not contribute to the
Landau parameters. Moreover, from (A.110), (A.217b) and (A.223a), we get

h10(θ) q
2
F
k2

F
S12(q̂F) =

(
H − W

2

)
〈~kF~k

′
F|V (r12)S12(r̂12)|~k′F~kF〉, (A.224a)

h11(θ) q
2
F
k2

F
S12(q̂F) = −W2 〈

~kF~k
′
F|V (r12)S12(r̂12)|~k′F~kF〉, (A.224b)

since q̂12 = q̂F as this quantity only indicates the direction of the relative momentum be-
tween the quasiparticles. Expanding the parameters h1T in series of Legendre polynomials
according to (A.121b), the resulting coefficients, the Landau parameters associated with
the tensor interaction, are given by (D.110), that is to say, in our case

h10
l =

(
H − W

2

)
Hl(qF), (A.225a)

h11
l = −W2 Hl(qF), (A.225b)

where, after the change of variable u ≡ cos θ, we have defined the function

Hl(k) ≡ −2π
V

(2l + 1)
∫ 1

−1
du Pl(u)

2(1− u)

∫ ∞
0

dr r2V (r)j2(kr). (A.226)

This is the final expression Pastore et al. also get in their review of linear response function
in homogeneous INM [234].

Let us now try to simplify this expression. To do so, we first set

Al(r) ≡
∫ 1

−1
du Pl(u)

2(1− u)j2(qFr), (A.227)

to evaluate the first integral. The simple change of variable x ≡ qFr = xF

√
2(1− u) with

xF ≡ kFr provides

Al(r) =
∫ 2xF

0
dx x

x2
F

x2
F
x2 Pl

(
1− x2

2x2
F

)
j2(x)

=
∫ 2xF

0

dx
x

[( 3
x2 −

1
x

)
sin x− 3

x2 cosx
]
Pl

(
1− x2

2x2
F

)
, (A.228)

where we have plugged the expression of the second spherical Bessel function of the first
kind (D.115c). By virtue of the series expansion (D.105) of the Legendre polynomial, we
obtain

Al(r) =
l∑

i=0

(−)i(l + i)!
(i!)2(l − i)!

1
(2xF)2i I2(i−2)(r), (A.229)
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with the integral

I2(i−2)(r) ≡
∫ 2xF

0
dx
[
(3− x2) sin x− 3x cosx

]
x2(i−2). (A.230)

Setting n ≡ i− 2, we shall evaluate the integral

I2n(r) =
∫ 2xF

0
dx
(
3x2n sin x− x2n+2 sin x− 3x2n+1 cosx

)
(A.231)

for n ≥ −2. For n ≥ 0, we derive the following results using integration by parts,∫ 2xF

0
dx x2n+1 cosx = (2xF)2n+1 sin 2xF − (2n+ 1)J2n(r), (A.232a)∫ 2xF

0
dx x2n+2 sin x = −(2xF)2n+2 cos 2xF

+ (2n+ 2)
[
(2xF)2n+1 sin 2xF − (2n+ 1)J2n(r)

]
,

(A.232b)

where we have defined the integral

J2n(r) ≡
∫ 2xF

0
dx x2n sin x. (A.233)

Gathering all the contributions, we obtain

I2n(r) = (2n+ 2)(2n+ 4)J2n(r)− (2n+ 5)(2xF)2n+1 sin 2xF + (2xF)2n+2 cos 2xF. (A.234)

It only remains to evaluate the integral J2n(r). From the formula (D.121), we find

J2n = (2n)!
 n∑
t=0

(−)t+1 x2n−2t

(2n− 2t)! cosx+
n−1∑
t=0

(−)t x2n−2t−1

(2n− 2t− 1)! sin x
2xF

0

= (2n)!
(−)n+1 cosx+

n−1∑
t=0

(−)t x2n−2t

(2n− 2t)!

(
(2n− 2t)sin x

x
− cosx

)2xF

0

= (2n)!
(−)n(1− cos 2xF)

+
n−1∑
t=0

(−)t (2xF)2n−2t

(2n− 2t)!

(
(2n− 2t)sin 2xF

2xF
− cos 2xF

).
(A.235)

For n = −1, we have to evaluate

I−2(r) =
∫ 2xF

0
dx
(

3 sin x
x2 − sin x− 3 cosx

x

)
. (A.236)

Integration by parts provides∫ 2xF

0
dx cosx

x
= sin 2xF

2xF
− 1 +

∫ 2xF

0
dx sin x

x2 , (A.237)

so that we end up with
I−2(r) = cos 2xF −

3 sin 2xF

2xF
+ 2. (A.238)
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For n = −2, we have to evaluate

I−4(r) =
∫ 2xF

0
dx
(

3 sin x
x4 − sin x

x2 −
3 cosx
x3

)
. (A.239)

Integration by parts provides
∫ 2xF

0
dx sin x

x2 = −
[

cosx
x2

]2xF

0
− 2

∫ 2xF

0
dx cosx

x3 , (A.240a)

∫ 2xF

0
dx cosx

x3 =
[

sin x
x3

]2xF

0
+ 3

∫ 2xF

0
dx sin x

x4 , (A.240b)

so that we end up with

I−4(r) =
[
x cosx− sin x

x3

]2xF

0
= 2xF cos 2xF − sin 2xF

(2xF)3 + 1
3 . (A.241)

Thus, the function Al(r) defined in (A.229) is fully specified. Injecting it in (A.226), we
finally find out

Hl(qF) = −2π
V

(2l + 1)
l∑

i=0

(−)i(l + i)!
(i!)2(l − i)!

∫ ∞
0

dr r2(1−i) e−r2/µ2
I2(i−2)(r). (A.242)

We then give the expressions of the above quantity for the first values of l, which have
been implemented in the fitting code (and verified with Mathematica). The corresponding
integrals are evaluated in a similar manner as we have done for the previous terms. We
have:

H0 = − π3/2

4Vk3
F

[
2
3X

3 +Xe−X2 −
√
π

2 erf(X)
]
, (A.243a)

H1 = −3π3/2

4Vk3
F

[
2
3X

3 −X
(
e−X2 + 4

)
+ 5

2
√
π erf(X)

]
, (A.243b)

H2 = −5π3/2

4Vk3
F

[
2
3X

3 +X
(
e−X2 − 12

)
+ 24
X

(
e−X2 − 1

)
+ 35

2
√
π erf(X)

]
, (A.243c)

H3 = −7π3/2

4Vk3
F

[
2
3X

3 −X
(
e−X2 + 24

)
+ 40
X

(
e−X2 − 3

)
− 80
X3

(
e−X2 − 1

)
+ 105

2
√
π erf(X)

]
,

(A.243d)

H4 = −9π3/2

4Vk3
F

[
2
3X

3 +X
(
e−X2 − 40

)
+ 8
X

(
17e−X2 − 45

)
+ 112
X3

(
e−X2 + 5

)
+ 672
X5

(
e−X2 − 1

)
+ 231

2
√
π erf(X)

]
,

(A.243e)

H5 = −11π3/2

4Vk3
F

[
2
3X

3 −X
(
e−X2 + 60

)
+ 8
X

(
23e−X2 − 105

)
− 64
X3

(
8e−X2 − 35

)
− 864
X5

(
3e−X2 + 7

)
− 8 640

X7

(
e−X2 + 1

)
+ 429

2
√
π erf(X)

]
,

(A.243f)
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H6 = −13π3/2

4Vk3
F

[
2
3X

3 +X
(
e−X2 − 84

)
+ 80
X

(
5e−X2 − 21

)
− 320
X3

(
2e−X2 + 21

)
+ 480
X5

(
19e−X2 − 63

)
+ 10 560

X7

(
5e−X2 + 9

)
+ 147 840

X9

(
e−X2 − 1

)
+ 715

2
√
π erf(X)

]
,

(A.243g)

H7 = −15π3/2

4Vk3
F

[
2
3X

3 −X
(
e−X2 + 112

)
+ 16
X

(
31e−X2 − 189

)
− 160
X3

(
11e−X2 − 105

)
− 480
X5

(
47e−X2 + 231

)
− 1 920

X7

(
11e−X2 − 297

)
− 174 720

X9

(
7e−X2 + 11

)
− 3 144 960

X11

(
e−X2 − 1

)
+ 1 105

2
√
π erf(X)

]
,

(A.243h)

where we have defined X ≡ µkF and used the error function defined in (D.96). Thanks to
the relations (A.225) these expressions allow us to fully determine the Landau parameters
associated with the tensor force.

4.2.4. Spin–orbit contribution

In this subsection, we prove that the spin–orbit interaction characterized by (A.68)
does not contribute to the Landau parameters in INM.

Following the steps that led to (A.71) and (A.75) along with the conservation of the
quasiparticle pair momentum, ~kp +~kh′ = ~kh +~kp′ , the direct and exchange spatial matrix
elements of the spin–orbit interaction in the particle–hole representation respectively read

〈~kp~kh′|
[
~∇12G(r12) × ~∇12

]
|~kh~kp′〉

= 1
V2

∫
d3r1

∫
d3r2 e−i(~kp−~kh)·(~r1−~r2)G(r12)

[
(~kp − ~kh′) × (~kh − ~kp′)

]
,

(A.244a)

〈~kp~kh′|
[
~∇12G(r12) × ~∇12

]
|~kp′~kh〉

= − 1
V2

∫
d3r1

∫
d3r2 e−i(~kp−~kh)·(~r1−~r2)G(r12)

[
(~kp − ~kh′) × (~kh − ~kp′)

]
.

(A.244b)

Now, at the Landau limit, we have |~kp| = |~kh| = |~kF| and |~kp′ | = |~kh′ | = |~k′F|, so that

〈~kF~k
′
F|
[
~∇12G(r12) × ~∇12

]
|~kF~k

′
F〉

= 1
V2

∫
d3r1

∫
d3r2G(r12)

[
(~kF − ~k′F) × (~kF − ~k′F)

]
= 0,

(A.245a)

〈~kF~k
′
F|
[
~∇12G(r12) × ~∇12

]
|~k′F~kF〉

= − 1
V2

∫
d3r1

∫
d3r2G(r12)

[
(~kF − ~k′F) × (~kF − ~k′F)

]
= 0.

(A.245b)

Therefore, at the Landau limit, the spatial matrix elements associated with the spin–orbit
interaction vanish. Thus, the spin–orbit interaction does not contribute to the Landau
parameters in INM. This is the reason why there are no such parameters in the expression
of the quasiparticle interaction (A.118).
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4.3. Stability criteria
In this subsection, we introduce and derive stability criteria associated with the Landau

parameters (in homogeneous and symmetric INM), with and without tensor terms.

4.3.1. Stability criteria without tensor forces

We start by establishing stability criteria [17, 170, 171, 230] considering the quasipar-
ticle interaction (A.118) without tensor terms, i.e. with h(θ) = h′(θ) = 0.

We have said in the previous subsection that the quasiparticle ground state defines
a spherical Fermi surface in momentum space. Then, this state effectively corresponds
to a ground state if it is stable against small deformations, i.e. if it is associated with a
minimum of the free energy

F ≡ E − µcA, (A.246)
where µc is the chemical potential and A the number of nucleons. In order to slightly
distort the Fermi surface, let us define an infinitesimal displacement u(θ, ϕ) in momentum
space in terms of spherical harmonics (B.204) according to

u(θ, ϕ) =
∑
lm

ulmY
m
l (θ, ϕ), (A.247)

for which we assume the reality condition u∗lm = (−)mul−m. Then, the change in the
distribution function (A.111) becomes

δρ(~k) =

1 if kF ≤ |~k| ≤ kF + u(θ, ϕ),
0 otherwise.

(A.248)

Considering the continuous limit (A.4) to transform the summations of equation (A.114)
while considering the above distribution function, the variation in free energy is given by

δF = V
(2π)3

∑
sq

∫
dr̂
∫ kF+u(θ,ϕ)

kF
dk k2(ε0(k)− µc)

+ 1
2
V2

(2π)6

∑
sq

∑
s′q′

∫
dr̂
∫

dr̂ ′
∫ kF+u(θ,ϕ)

kF
dk k2

∫ kF+u(θ′,ϕ′)

kF
dk′ k′2F(~k,~k′),

(A.249)

Since we are interested in small displacements of the Fermi surface, we will only keep the
lowest orders in u(θ, ϕ). For the first right-hand side term, the lowest order is 2 as we
notice that ε0(kF) = µc, so that the terms of order 1 vanish. For the second right-hand
side term, it is 1, for each integral. Performing the integrations over momenta, we get

δF = V
(2π)3

~2k3
F

2m∗
∑
sq

∫
dr̂ u2(θ, ϕ)+ V

2k4
F

(2π)6

∑
sq

∑
s′q′

∫
dr̂ u(θ, ϕ)

∫
dr̂ ′ u(θ′, ϕ′)F(ξ), (A.250)

where ξ is the angle between the directions (θ, ϕ) and (θ′, ϕ′). As the quasiparticle inter-
action only depends on this angle, we can expand it in Legendre polynomials,

F(ξ) =
∑
l

FlPl(cos ξ). (A.251)

Let us remark here that we have assumed the displacement (A.247) and the quasiparticle
interaction (A.251) to be independent on the spin and isospin variables for simplicity. We
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will see later how the result generalizes when these dependences are restored. Inserting
(A.247) and (A.251) in (A.250), and using the properties of the spherical harmonics
(B.205) and (B.207) as well as the Legendre expansion (D.106), we eventually obtain

δF = V
(2π)3

~2k3
F

2m∗
∑
lm

|ulm|2
(

1 +N0
Fl

2l + 1

)
, (A.252)

where N0 is the density of quasiparticle states at the Fermi surface (A.119). Thus, if the
free energy is minimal for a spherical Fermi surface corresponding to the ground state,
any variation of the free energy must be positive, i.e. δF > 0. It implies the stability
criterion

f 00
l > −(2l + 1), for l ∈ N, (A.253)

where we have used the notations leading to (A.121). Since we have assumed (A.247) and
(A.251) to be independent on the spin and isospin variables, this result only holds in the
(S = 0, T = 0) channel. However, we can extend it to the other channels by repeating the
calculation while displacing the Fermi surface in the directions ~u(θ, ϕ) · ~σ, u(θ, ϕ)τz and
~u(θ, ϕ) ·~στz, where Oz is chosen as quantization axis. It brings the same stability criteria
for the channels (S = 1, T = 0), (S = 0, T = 1) and (S = 1, T = 0), respectively, i.e.

fSTl > −(2l + 1), for l ∈ N. (A.254)

For the ground state to be stable when the quasiparticle interaction is purely composed
of central terms, the above stability criteria have to be fulfilled at any time.

4.3.2. Stability criteria with tensor forces

We now focus on the stability criteria considering the full quasiparticle interaction
(A.118) with tensor terms, i.e. with h(θ), h′(θ) 6= 0. We will give the new stability criteria
and only sketch their derivation [163], this latter being pretty similar (although more
intricate) to the one without non-central terms of the previous subsection.

As the tensor terms only act in the S = 1 channel of the quasiparticle interaction, we
can immediately state that the stability criteria in the S = 0 channel remain the same as
in (A.254), i.e.

f 0T
l > −(2l + 1), for l ∈ N. (A.255)

Nevertheless, they are modified in the S = 1 channel, as expected. As before, we consider
a variation of the free energy engendered by some displacement of the Fermi surface. The
displacements in the (S = 1, T = 0) and (S = 1, T = 1) channels are respectively ~u(θ, ϕ)·~σ
and ~u(θ, ϕ) ·~στz, in agreement with the fact that the tensor interaction explicitly involves
the spin variables. In the (S = 1, T = 0) channel, we show that the change in free energy
is eventually given by its matrix elements coupled to the particle–hole quantum numbers
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J and J ′ as [163]

〈l′J ′|F |lJ〉 = δll′δJJ ′

(
1 + 1

2l + 1f
10
l + 2l

(2l − 1)(2l + 1)h
10
l−1

+ 2(l + 1)
(2l + 1)(2l + 3)h

10
l+1

)

+ δJJ ′

15(−)J
(

1 1 2
0 0 0

)(
l l′ 2
0 0 0

){
1 l′ J
l 1 2

}

×
[√

2l + 1
2l′ + 1h

10
l′ +

√
2l′ + 1
2l + 1 h

10
l

]

−
3
√

(2l + 1)(2l′ + 1)
2J + 1

(
l 1 J
0 0 0

)(
l′ 1 J
0 0 0

)
h10
J

− 3
√

(2l + 1)(2l′ + 1)
∑
l′′

(
l 1 l′′

0 0 0

)(
l′ 1 l′′

0 0 0

){
1 l′ J
1 l l′′

}
h10
l′′

,

(A.256)

where the parentheses and the brackets respectively denote the Wigner-3j and 6j symbols.
For the (S = 1, T = 1) channel, we find out the exact same relation after substituting
f 10
l by f 11

l and h10
l by h11

l , for all l. Thus, the condition for stability of the ground state
becomes that the matrix F (whose elements are given above for the (S = 1, T = 0)
channel) has only positive eigenvalues. Note in passing that switching off the tensor
interaction, i.e. demanding h10

l = 0 in the equation above and h11
l = 0 in the (S = 1, T = 1)

channel, for all l, consistently brings back the stability criteria without tensor terms
(A.254) in the associated channels.

Let us now analyze how to extract the eigenvalues of the matrix F from the above
expression. First, we note that J and J ′ are the total momenta that couple the angular
and intrinsic momenta of two quasiparticle pairs, in such a way that |l − 1| ≤ J ≤ l + 1
and |l′ − 1| ≤ J ′ ≤ l′ + 1 (as can in particular be inferred from the Wigner-6j symbols).
By the way, those momenta have to be equal, J = J ′, otherwise the matrix elements are
zero. Besides, the properties of the Wigner-3j symbols impose l and l′ to be of the same
parity. Therefore, for a given J , there is only one 2 × 2 matrix to diagonalize, the case
J = l = l′ being a diagonal sub-block. The case J = 0, l = l′ = 1 is also diagonal since
the sub-block J = l = l′ = 1 is, as stated above. We then give the stability criteria for
the first values of J, l and l′.

From the diagonal matrix elements, we obtain:

for J = 0, l = l′ = 1, 1 + 1
3f

10
1 −

10
3 h

10
0 + 4

3h
10
1 −

2
15h

10
2 > 0, (A.257a)

for J = 1, l = l′ = 1, 1 + 1
3f

10
1 + 5

3h
10
0 −

2
3h

10
1 + 1

15h
10
2 > 0, (A.257b)

for J = 2, l = l′ = 2, 1 + 1
5f

10
2 + 7

15h
10
1 −

2
5h

10
2 + 3

35h
10
3 > 0, (A.257c)

for J = 3, l = l′ = 3, 1 + 1
7f

10
3 + 9

35h
10
2 −

2
7h

10
3 + 5

63h
10
4 > 0, (A.257d)

for J = 4, l = l′ = 4, 1 + 1
9f

10
4 + 11

63h
10
3 −

2
9h

10
4 + 7

99h
10
5 > 0, (A.257e)

for J = 5, l = l′ = 5, 1 + 1
11f

10
5 + 13

99h
10
4 −

2
11h

10
5 + 9

143h
10
6 > 0. (A.257f)
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The first four conditions are extracted from [163]. We have checked them all, and evaluate
the two last ones for our purposes.

For a given J , the sub-matrix 2× 2 of F to diagonalize is defined by

F J ≡
(
〈J − 1 J |F |J − 1 J〉 〈J − 1 J |F |J + 1 J〉
〈J + 1 J |F |J − 1 J〉 〈J + 1 J |F |J + 1 J〉

)
. (A.258)

The standard diagonalization procedure consists in finding the solutions λJ±, then called
the eigenvalues, of the equation det(F J − λJ±1) = 0, where the left-hand side is a second
order polynomial in λJ±. Therefore, the stability criteria for the sub-matrix simply read

λJ± ≡
−bJ ±

√
∆J

2 > 0, (A.259)

where

bJ ≡ −
(
〈J − 1 J |A|J − 1 J〉+ 〈J + 1 J |A|J + 1 J〉

)
, (A.260a)

cJ ≡ −〈J − 1 J |A|J + 1 J〉〈J + 1 J |A|J − 1 J〉, (A.260b)
∆J ≡ b2

J − 4cJ . (A.260c)

We will therefore give the matrix elements involved in the sub-matrices of the form (A.258)
from which the stability criteria are obtained by means of (A.259). Those coupled matrix
elements are:

for J = 1,


〈01|F |01〉 = 1 + f 10

0 ,

〈01|F |21〉 = 〈21|F |01〉 = −
√

2
(
h10

0 − 2
3h

10
1 + 1

5h
10
2

)
,

〈21|F |21〉 = 1 + 1
5f

10
2 − 7

15h
10
1 + 2

5h
10
2 − 3

35h
10
3 ,

(A.261a)

for J = 2,


〈12|F |12〉 = 1 + 1

3f
10
1 − 1

3h
10
0 + 2

15h
10
1 − 1

75h
10
2 ,

〈12|F |32〉 = 〈32|F |12〉 = −
√

6
(

1
5h

10
1 − 6

25h
10
2 + 3

35h
10
3

)
,

〈32|F |32〉 = 1 + 1
7f

10
3 − 36

175h
10
2 + 8

35h
10
2 − 4

63h
10
4 ,

(A.261b)

for J = 3,


〈23|F |23〉 = 1 + 1

5f
10
2 − 2

15h
10
1 + 12

105h
10
2 − 6

245h
10
3 ,

〈23|F |43〉 = 〈43|F |23〉 = −
√

3
(

6
35h

10
2 − 12

49h
10
3 + 10

105h
10
4

)
,

〈43|F |43〉 = 1 + 1
9f

10
4 − 55

441h
10
3 + 10

63h
10
4 − 5

99h
10
5 ,

(A.261c)

for J = 4,


〈34|F |34〉 = 1 + 1

7f
10
3 − 3

35h
10
2 + 2

9h
10
3 − 29

189h
10
4 ,

〈34|F |54〉 = 〈54|F |34〉 = −
√

5
(

2
21h

10
3 − 4

27h
10
4 + 2

33h
10
5

)
,

〈54|F |54〉 = 1 + 1
11f

10
5 − 26

297h
10
4 + 4

33h
10
5 − 18

143h
10
6 .

(A.261d)

The two first sets of matrix elements are extracted from [163]. We have checked them all,
and evaluate the two last ones for our purposes. We take this opportunity to give two
additional off-diagonal matrix elements we need in section II.2.5, namely

for J = 5, 〈45|F |45〉 = 1 + 1
9f

10
4 −

4
63h

10
3 + 8

99h
10
4 −

46
363h

10
5 , (A.262a)

for J = 6, 〈56|F |56〉 = 1 + 1
11f

10
5 −

5
99h

10
4 + 10

143h
10
5 −

45
1 859h

10
6 . (A.262b)

We remind that all those matrix elements given for the (S = 1, T = 0) channel can
immediately be deduced for the (S = 1, T = 1) channel, applying the changes f 10

l → f 11
l

and h10
l → h11

l , for all l.
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4.4. Sum rules
In this subsection, we introduce and derive the sum rules associated with the Landau

parameters (in homogeneous and symmetric INM), with and without tensor terms. We
start with the framework that applies to both cases.

Within the theory of normal Fermi liquids, we can express the forward scattering
amplitude of a quasiparticle pair on the Fermi surface [164, 170] in terms of parameters
in pretty much the same way as we did for the quasiparticle interaction (A.118), i.e.

S = N−1
0

[
b(θ) + c(θ)(~σ1 · ~σ2) + b′(θ)(~τ1 · ~τ2) + c′(θ)(~σ1 · ~σ2)(~τ1 · ~τ2)

+ d(θ) q
2
F
k2

F
S12(q̂12) + d′(θ) q

2
F
k2

F
S12(q̂12)(~τ1 · ~τ2)

]
,
(A.263)

with S ≡ S(~kF, ~σ1, ~τ1;~k′F, ~σ2, ~τ2) and N0 the density of quasiparticle states at the Fermi
surface defined in (A.119) ensuring that b, b′, c, c′, d, d′ are dimensionless quantities.
Note that these parameters to be determined only depend on the momenta ~kF and ~k′F
of the quasiparticle pair. Now, just like the Landau parameters, we will cast these pa-
rameters into common notations bST (θ) and d1T (θ) reflecting the (S, T ) channel in which
they contribute, namely b00(θ) ≡ b(θ), b10(θ) ≡ c(θ), b01(θ) ≡ b′(θ), b11(θ) ≡ c′(θ), and
d10(θ) ≡ d(θ), d11(θ) ≡ d′(θ). As we have done for the parameters of the quasiparticle
interaction (A.121), we will expand these parameters in Legendre polynomials, as they
only depend on the Landau angle θ between the two quasiparticles,

bST (θ) =
∑
l

bSTl Pl(cos θ), (A.264a)

d1T (θ) =
∑
l

d1T
l Pl(cos θ). (A.264b)

Now, the Pauli exclusion principle imposes the forward scattering amplitude to be
antisymmetric under the exchange of the two (ingoing or outgoing) quasiparticles, what
we write as

PS ≡ PrPσPτS = −S, (A.265)
where the operators Pr, Pσ and Pτ respectively exchange momenta, spins and isospins of
the two quasiparticles. Let us evaluate this action when the momenta of the quasiparticles
are equal, i.e. when ~kF = ~k′F, and then Pr = 1. Since then ~q12 = 0, the tensors terms do
not contribute. 7 By means of the definitions (D.8) of the exchange operators as well as
the properties (D.13), we obtain

4PS(~q12 = 0) = (b+ 3b′ + 3c+ 9c′) + (b+ 3b′ − c− 3c′)(~σ1 · ~σ2)
+ (b− b′ + 3c− 3c′)(~τ1 · ~τ2) + (b− b′ − c+ c′)(~σ1 · ~σ2)(~τ1 · ~τ2).

(A.267)

7. This is the main reason we chose the first convention for the tensor terms (see discussion after
(A.121)). Indeed, the tensor terms are expected to vanish for ~q12 = 0, in accordance with the expression
of the one-pion-exchange contribution to the tensor interaction (II.11). If we had chosen the other
convention, the tensor terms would not have been zero in this case. To ensure the vanishing anyway, the
coefficients of the expansion in Legendre polynomials (A.121b) should additionally satisfy the condition
[236]

∞∑
l=0

h1T
l = 0, (A.266)

which is necessarily violated if the series is truncated at some finite order, as we practically do (see section
II.2.5). Nevertheless, this is not too pathological as we know the coefficients to converge quite rapidly.
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Considering the antisymmetrization condition of the forward scattering amplitude to-
gether with the above relation in each of the four (S, T ) channels, we get, from the
properties (D.11), four equations that are

5b+ 3b′ + 3c+ 9c′ = 0,
b+ 3b′ + 3c− 3c′ = 0,
b+ 3b′ + 3c− 3c′ = 0,
b− b′ − c+ 5c′ = 0.

(A.268)

We notice that the second and third equations are the same. Moreover, multiplying the
second line by two, the fourth line by three and adding the result, we fall back on the
first equation. Thus, only two of the three remaining equations are linearly independent.
We decide to keep the first and second ones. Using the notations we have introduced to
bring some physics insight, we write down the two linearly independent equations as5b00 + 3b10 + 3b01 + 9b11 = 0,

b00 + 3b10 + 3b01 − 3b11 = 0.
(A.269)

Summing the equations and plugging the expansions (A.264a) in the result (keeping in
mind that θ = 0 as ~kF = ~k′F), we get the first sum rule,

∑
l

(
b00
l + b10

l + b01
l + b11

l

)
= 0. (A.270)

Now, dividing the first equation by two and subtracting it three half of the second one,
we obtain the second sum rule,

∑
l

(
b00
l − 3b10

l − 3b01
l + 9b11

l

)
= 0. (A.271)

Note we could have chosen other combinations of the two linearly independent equations
(A.269) that would have led to different sum rules. Nevertheless, those are convenient
since their physical interpretation is obvious. The first and second sum rules are the
relations we obtain when considering the antisymmetrization condition (A.265) in the
triplet–odd (S = 1, T = 1) and singlet–odd (S = 0, T = 0) channels, respectively. As
such, they project onto the triplet–odd and singlet–odd states respectively, ensuring that
the forward scattering amplitude of two quasiparticles with same momenta vanishes in
odd partial waves. Note by the way that there are no such sum rules in even-parity states
since the forward scattering amplitude is not expected to vanish for quasiparticles with
same momenta in even partial waves. This is indeed what we find out when we consider
the antisymmetrization condition (A.265) in the triplet–even (S = 1, T = 0) and singlet–
even (S = 0, T = 1) channels. In conclusion, the Pauli exclusion principle is satisfied
when the forward scattering amplitude is only composed of central terms if and only if
the above sum rules hold.

4.4.1. Sum rules without tensor forces

Let us now write down the sum rules in terms of Landau parameters when there are
no tensor forces [17, 164, 170].

268



A. Infinite nuclear matter 4. Landau parameters

When there are no tensor forces, the link between the forward scattering amplitude
and the quasiparticle interaction is quite simple so that their respective parameters can
be expressed in relation to each other according to

bSTl = fSTl
1 + fSTl /(2l + 1) , for l ∈ N. (A.272)

Then, the sum rules (A.270) and (A.271) merely become

∑
l

[
f 00
l

1 + f 00
l /(2l + 1) + f 10

l

1 + f 10
l /(2l + 1)

+ f 01
l

1 + f 01
l /(2l + 1) + f 11

l

1 + f 11
l /(2l + 1)

]
= 0,

(A.273)

as well as

∑
l

[
f 00
l

1 + f 00
l /(2l + 1) −

3f 10
l

1 + f 10
l /(2l + 1)

− 3f 01
l

1 + f 01
l /(2l + 1) + 9f 11

l

1 + f 11
l /(2l + 1)

]
= 0.

(A.274)

In the absence of tensor forces, the two equations above must be satisfied for the Pauli
exclusion principle to hold.

4.4.2. Sum rules with tensor forces

Let us finally write down the sum rules in terms of Landau parameters in the presence
of tensor forces [164].

As we have seen in the framework outlined earlier, the tensor parameters d(θ) and d′(θ)
do not take part in the sum rules since they are derived in the limit of equal momenta for
which ~q12 = 0. However, the spin-dependent nature of the tensor forces complicates the
equation connecting the forward scattering amplitude to the quasiparticle interaction. To
solve it, we need to couple the angular and intrinsic momenta of the quasiparticle pair to
the total momentum J . Then, we show that the parameters in the S = 1 channel can be
written in terms of the forward scattering amplitude coupled to J as

b1T
l = 1

3
∑
J

2J + 1
2l + 1 S

JT
ll , (A.275)

where SJTll is the forward scattering amplitude composed of a diagonal part (for J = l = l′

and J = 0, l = l′ = 1) and a non diagonal part (for l = J ± 1 and l′ = J ∓ 1), such that

SJTll =


FJTll

1 + FJTll /(2l + 1) for the diagonal part,

D−1
[
FJTll

(
1 + FJTl′l′

2l′ + 1

)
− (FJTll′ )2

2l′ + 1

]
for the non diagonal part,

(A.276)

with the quantity

D ≡

1 + FJTll
2l + 1

1 + FJTl′l′
2l′ + 1

− (FJTll′ )2

(2l + 1)(2l′ + 1) . (A.277)
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The quasiparticle interaction coupled to J is related to the matrix elements of the free
energy F expressed in the formalism we have defined before, according to

FJTll′ =
√

(2l + 1)(2l′ + 1)
(
〈l′J |F |lJ〉 − δll′

)
, (A.278)

where the matrix elements are given by (A.256) for T = 0, and by the same relation with
the transformations f 10

l → f 11
l and h10

l → h11
l , for all l, when T = 1.

As for the parameters in the S = 0 channel, they are still given by (A.272) since the
tensor forces do not act in this channel, i.e.

b0T
l = f 0T

l

1 + f 0T
l /(2l + 1) , for l ∈ N. (A.279)

Then, the sum rules (A.270) and (A.271) become

∑
l

[
f 00
l

1 + f 00
l /(2l + 1) + f 01

l

1 + f 01
l /(2l + 1) + 1

3
∑
J

2J + 1
2l + 1

(
SJ0
ll + SJ1

ll

)]
= 0, (A.280)

as well as

∑
l

[
f 00
l

1 + f 00
l /(2l + 1) −

3f 01
l

1 + f 01
l /(2l + 1) +

∑
J

2J + 1
2l + 1

(
3SJ1

ll − SJ0
ll

)]
= 0, (A.281)

where the first values of SJTll can easily be deduced from the first values of the diagonal
(A.257) and coupled (A.261) matrix elements, together with the relations (A.276) and
(A.278) 8.

By switching off the tensor interaction in (A.256), i.e. by demanding h10
l = 0 (and

h11
l = 0 in the (S = 1, T = 1) channel) for all l, we find out

〈l′J |F |lJ〉 = δll′

(
1 + f 1T

l

2l + 1

)
, (A.284)

so that (A.276) reduces, for both the diagonal and non diagonal parts, to

SJTll = f 1T
l

1 + f 1T
l /(2l + 1) , (A.285)

in such a way that we recover (A.272) for all S and T , and consistently fall back on the
sum rules without tensor forces, given by (A.273) and (A.274).

8. In the article [164], the first and second sum rules when tensor forces are taken into account
respectively read ∑

l

[
f00
l

1 + f00
l /(2l + 1) +

∑
J

2J + 1
2l + 1 S

J1
ll

]
= 0, (A.282)

and ∑
l

[
2
3

f00
l

1 + f00
l /(2l + 1) + f01

l

1 + f01
l /(2l + 1) + 1

3
∑
J

2J + 1
2l + 1 S

J0
ll

]
= 0. (A.283)

These are equivalent to ours since the first relation can be obtained by multiplying our first sum rule by
three and adding it the second one, and the second relation by multiplying our first sum rule by nine
and subtracting it the second one. In practice, these sum rules are violated (see section II.2.5.3), so that
the two writings are no longer equivalent. As we are proposing a generalization of the sum rules (A.273)
and (A.274) in the presence of tensor forces, we have implemented the forms (A.281) and (A.281) that
restore these when the tensor forces are set to zero.
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Appendix B
Spherical symmetry

“I am now convinced that theoretical physics is actual philosophy.” 1

— Max Born

In this appendix, we deal with the quantities involved in the fitting procedure, eval-
uated in the spherical harmonic oscillator representation. After recalling this formalism,
we derive the associated two-body matrix elements of the generalized Gogny interaction,
coupled to the quantum numbers (J, T ), as those are involved in the inversion process
leading to the parameters of the tensor and spin–orbit terms. Then, we calculate differ-
ent energies at the restricted Hartree–Fock approximation serving as constraints in the
fitting code, while the last section is devoted to listing the useful formulas of the spherical
symmetry.

Chapter contents
1. Spherical harmonic oscillator representation . . . . . . . . . . . . . . . 272
2. Derivation of the two-body matrix elements . . . . . . . . . . . . . . . 273

2.1. Coupling to (J, T ) process . . . . . . . . . . . . . . . . . . . . 273
2.2. Central two-body matrix elements . . . . . . . . . . . . . . . . 275
2.3. Density-dependent two-body matrix elements . . . . . . . . . 278
2.4. Tensor two-body matrix elements . . . . . . . . . . . . . . . . 282
2.5. Spin–orbit two-body matrix elements . . . . . . . . . . . . . . 285
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4.1. Kinetic field . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
4.2. Mean field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
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4.2.2. Density-dependent contribution . . . . . . . . . . . 294
4.2.3. Tensor contribution . . . . . . . . . . . . . . . . . . 295
4.2.4. Spin–orbit contribution . . . . . . . . . . . . . . . . 296

4.3. Rearrangement field . . . . . . . . . . . . . . . . . . . . . . . 297
5. Hartree–Fock restricted energy . . . . . . . . . . . . . . . . . . . . . . 298

5.1. Kinetic energy . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
5.2. Potential energy . . . . . . . . . . . . . . . . . . . . . . . . . . 298

1. This quote is of course dedicated to Guillaume Blanchon and his HF code, with the “stockage
merdier 9j”.
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5.2.1. Central contribution . . . . . . . . . . . . . . . . . . 299
5.2.2. Density-dependent contribution . . . . . . . . . . . 300
5.2.3. Tensor contribution . . . . . . . . . . . . . . . . . . 301
5.2.4. Spin–orbit contribution . . . . . . . . . . . . . . . . 301

6. Calculation of the energy difference ∆ε . . . . . . . . . . . . . . . . . 302
6.1. Central interaction . . . . . . . . . . . . . . . . . . . . . . . . 302
6.2. Density-dependent interaction . . . . . . . . . . . . . . . . . . 303
6.3. Tensor interaction . . . . . . . . . . . . . . . . . . . . . . . . . 303
6.4. Spin–orbit interaction . . . . . . . . . . . . . . . . . . . . . . . 303

7. Formulas for the spherical symmetry . . . . . . . . . . . . . . . . . . . 304
7.1. Spherical harmonics . . . . . . . . . . . . . . . . . . . . . . . . 304
7.2. Action of the gradient operator in spherical symmetry . . . . 305
7.3. Talman coefficients in spherical symmetry . . . . . . . . . . . 306
7.4. Moshinsky coefficients in spherical symmetry . . . . . . . . . 306

The first section briefly recalls the formalism of the spherical harmonic oscillator (HO)
representation, based on [17, 175, 181]. The second section is devoted to the derivation of
the two-body matrix elements (TBMEs) in this basis, for both the common central and
density-dependent terms [17, 175, 181], and the newly introduced finite-range tensor and
spin–orbit terms. Actually those two last terms have already been computed in [181], yet
in an old-fashioned way. We also detail how the radial integral of the density-dependent
term is implemented in the fitting code. On the other hand, we have coupled all the
TBMEs to the quantum numbers (J, T ) as in [137], since they are put into relation with the
(J, T )-coupled TBMEs of [137, 139] in the inversion procedure (see section II.1.2.2). The
Hartree–Fock restricted (HFR) approximation is presented and the following calculatory
sections are mainly based on Chappert thesis [17], where we have taken into account the
contributions of the tensor and spin–orbit forces.

1. Spherical harmonic oscillator representation
In the fitting code, the TBMEs are expressed in a one-center spherical HO represen-

tation that we then need to specify. The states |a〉 of this basis are characterized by the
set of quantum numbers

|a〉 = |raua〉 = |nalamlasata〉, (B.1)
where the triplet ra = (na, la,mla) specifies the orbitals of the spherical HO, while the
doublet ua = (sa = ±1/2, ta = ±1/2) corresponds to the projections of the spin and
isospin along the quantization axis, chosen to be Oz, respectively.

The spherically symmetric HO wave functions then take the form

Φa(~r, σ, τ) ≡ 〈~rτσ|a〉 = φra(~r)ξsa(σ)ζta(τ), (B.2)

where ξsa(σ) and ζta(τ) are the (normalized) spin and isospin wave functions, associated
with σ and τ , the Pauli matrices describing the spin and isospin degrees of freedom,
respectively, and where the spatial spherical wave functions are expressed, in spherical
coordinates ~r = (r, r̂) = (r, θ, ϕ), as

φra(~r) =
[

2
b3

na!
Γ(na + la + 3/2)

]1/2

e−r2/2b2
(
r

b

)la
Lla+1/2
na

(
r2

b2

)
Y mla
la

(r̂), (B.3)
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where b =
√
~/Mω is the oscillator length, with ~ω the oscillator frequency and M

the mass of the nucleus considered. Note that Lla+1/2
na (r2/b2) refers to the generalized

Laguerre polynomial and Y mla
la

(r̂) the spherical harmonics, whose expression can be found
in (B.204). We impose the spherical HO wave functions to satisfy the orthogonality
relation ∑

στ

∫
d3rΦ∗a(~r, σ, τ)Φb(~r, σ, τ) = δrarbδsasbδtatb . (B.4)

In the following, we will often meet the spherical HO wave functions (B.3) with their
quantum numbers equal to zero. For convenience, we write them down once and for all,

φ0(~r) = 1√
4π

[
4√
πb3

]1/2

e−r2/2b2
, (B.5)

with the associated spherical harmonics given by Y 0
0 (r̂) = 1/

√
4π, according to (B.208).

The angular dependence of the spherical wave functions (B.3) being entirely contained in
the spherical harmonics, we can simply define their radial part as

φ(ra)(r) ≡ φra(~r)/Y mla
la

(r̂), (B.6)

where we have introduced the notation (ra) = (na, la). Note that we also have the
particular case φ(0)(r) =

√
4πφ0(~r). Finally, we can define the spherical HO wave functions

deprived of their exponential as

φ̂(ra)(r) ≡ er2/2b2
φ(ra)(r), (B.7)

where we have additionally removed the angular dependence according to (B.6).

2. Derivation of the two-body matrix elements
In this section, we will derive the TBMEs associated with each of the terms of the

generalized Gogny interaction in the formalism outlined above. In the first subsection,
we will describe the conventions adopted in the coupling process of the TBMEs to the
quantum numbers (J, T ), and then derive them explicitly. As far as possible, we will try
to make the calculations of the TBMEs of each term independent of one another, so that
the reader can follow these notes in the desired order. Nevertheless, comparisons between
the results obtained with the various terms will allow us to highlight their similarities and
differences.

2.1. Coupling to (J, T ) process
The TBME of the generalized Gogny interaction v12, given in (II.1), considered in the

fitting code are coupled to the quantum numbers (J, T ), normalized and antisymmetrized
(na), in the same way as in [137]. They write

〈ãb̃JT |v12|c̃d̃JT 〉na = 1√
(1 + δ

ã̃b
)(1 + δ

c̃d̃
)

×
[
〈ãb̃JT |v12|c̃d̃JT 〉+ (−)jc+jd+J+T 〈ãb̃JT |v12|d̃c̃JT 〉

]
,

(B.8)
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where the states are defined by the set of quantum numbers

|ã〉 = |janala〉, (B.9)

with ji the projection of the (one-body) total angular momentum ~ji = ~li+~si, where ~li and
~si are respectively the (one-body) orbital and intrinsic angular momenta. As for J and
T , they correspond to the quantum numbers associated with the two-body total angular
momentum ~J = ~ja+~jb = ~jc+~jd and the two-body isospin operator, which is not an angular
momentum (see equation (D.7) and the discussion below), ~T = ~ta + ~tb = ~tc + ~td (where
the ~ti are the (one-body) isospin operators), respectively. It is important to differentiate
these states from the “pure” spherical HO states (B.1). Note that we have subsequently
introduced the Kronecker delta δ

ã̃b
= δjajbδnanbδlalb .

We notice that those TBMEs are diagonal in J and T and do not depend on their
projectionsMJ andMT , while in general they are written 〈αJMJTMT |v12|α′J ′M ′

JT
′M ′

T 〉,
where α and α′ are the set of quantum numbers, here ãb̃ and c̃d̃, characterizing the
state. This is in fact a consequence of the invariance of the two-body nuclear interaction
v12 under rotations in coordinate plus spin and isospin spaces (see section I.1.2). If the
interaction is rotationally invariant, it commutes with ~J , and in particular with ~J2, the
component Jz and the usual ladder operators J+ and J−. Dropping for a moment the
isospin dependence, we can then write down [7]

〈αJMJ |v12 ~J
2|α′J ′M ′

J〉 − 〈αJMJ | ~J2v12|α′J ′M ′
J〉 = 0, (B.10)

so that
〈αJMJ |v12|α′J ′M ′

J〉[J(J + 1)− J ′(J ′ + 1)] = 0. (B.11)

Therefore, the TBMEs of the interaction are zero unless we have J = J ′, that is to say

〈αJMJ |v12|α′J ′M ′
J〉 = δJJ ′〈αJMJ |v12|α′JM ′

J〉. (B.12)

Then, the relation (B.10) with ~J2 replaced by Jz similarly provides

〈αJMJ |v12|α′JM ′
J〉[MJ −M ′

J ] = 0. (B.13)

Therefore, the TBMEs of the interaction are zero unless we also have MJ = M ′
J , that is

to say
〈αJMJ |v12|α′JM ′

J〉 = δMJM
′
J
〈αJMJ |v12|α′JMJ〉. (B.14)

Finally, since the action of the ladder operator J+ is

J+|JMJ − 1〉 ≡
√
J(J + 1)−MJ(MJ − 1)|JMJ〉, (B.15)

we deduce, for −J + 1 ≤MJ ≤ J + 1,

〈αJMJ |v12|α′JMJ〉 = 〈αJMJ |v12J+|α′JMJ − 1〉√
J(J + 1)−MJ(MJ − 1)

. (B.16)

On the other hand, the TBME of the right-hand side can be written

〈αJMJ |v12J+|α′JMJ − 1〉 =
√
J(J + 1)−MJ(MJ − 1)

× 〈αJMJ − 1|v12|α′JMJ − 1〉,
(B.17)
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where we have used the fact that v12 and J+ commute as well as the identity J+ = J†−.
Combining the last two equations, we obtain, for all allowed values of MJ ,

〈αJMJ |v12|α′JMJ〉 = 〈αJMJ − 1|v12|α′JMJ − 1〉, where − J < MJ < J. (B.18)

This proves that the TBMEs of the interaction are independent of MJ .
All in all, the TBMEs of the interaction are diagonal in J and MJ , and do not depend

on MJ , what we can formally express as

〈αJMJ |v12|α′J ′M ′
J〉 = δJJ ′δMJM

′
J
〈αJ |v12|α′J〉. (B.19)

Actually, the above calculations are a simple application of the Wigner–Eckart theorem
to the interaction v12, viewed as a scalar (i.e. a spherical tensor of rank 0) [224], where
the reduced TBMEs are conventionally related to the standard TBMEs by

〈αJ‖v12‖α′J〉 ≡
√

2J + 1〈αJ |v12|α′J〉. (B.20)

The same procedure can be undertaken in the isospin space to show that the TBME of the
interaction are diagonal in T and MT , and do not depend on MT , what we can formally
express as

〈αTMT |v12|α′T ′M ′
T 〉 = δTT ′δMTM

′
T
〈αT |v12|α′T 〉. (B.21)

Indeed, the interaction being rotationally invariant in the isospin space due to the charge
invariance (see equation (I.11) and the related discussion), it commutes with ~T , and in
particular with ~T 2, the component Tz and the ladder operators T+ and T−. This result
can also be found by viewing the interaction v12 as an isoscalar (i.e. a spherical tensor of
rank 0 in the isospin space) [224], with the convention (B.20) for the isospin (J should be
replaced by T ). We then understand why the TBMEs are directly considered under the
form appearing on the left-hand side of (B.8).

Thus, it remains to evaluate the contributions of each term of the generalized Gogny
interaction to the non-normalized and non-antisymmetrized TBME 〈ãb̃JT |v12|c̃d̃JT 〉 and
〈ãb̃JT |v12|d̃c̃JT 〉; we do so in the next subsections.

2.2. Central two-body matrix elements
We start by deriving the TBMEs of the central terms whose expression we recall below,

vC
12 = (W +BPσ −HPτ −MPσPτ )V (r12), (B.22)

where V (r12) is the Gaussian potential given by

V (r12) ≡ e−(~r1−~r2)2/µ2
. (B.23)

As explained in the previous section, we need to express the TBMEs with the conventions
chosen in [137]. The central TBMEs are therefore recoupled to (J, T ), normalized and
antisymmetrized (na) according to (B.8), i.e.

〈ãb̃JT |vC
12|c̃d̃JT 〉na = 1√

(1 + δ
ã̃b

)(1 + δ
c̃d̃

)

×
[
〈ãb̃JT |vC

12|c̃d̃JT 〉+ (−)jc+jd+J+T 〈ãb̃JT |vC
12|d̃c̃JT 〉

]
,

(B.24)
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We can effortlessly evaluate the isospin dependence of the non-normalized and non-
antisymmetrized central TBMEs, and write them as

〈ãb̃JT |vC
12|c̃d̃JT 〉 = 〈ãb̃J |(W +BPσ + (−)TH + (−)TMPσ)V (r12)︸ ︷︷ ︸

ṽC
12

|c̃d̃J〉. (B.25)

The transformation from jj coupling to LS coupling provides [237]

〈ãb̃J |ṽC
12|c̃d̃J〉 =

∑
LS

∑
L′S′

ĵaĵbĵcĵdL̂L̂
′ŜŜ ′


la lb L

1/2 1/2 S
ja jb J



lc ld L′

1/2 1/2 S ′

jc jd J


× 〈nala

1
2 nblb

1
2 LSJ |ṽ

C
12|nclc

1
2 ndld

1
2 L

′S ′J〉︸ ︷︷ ︸
BC

,

(B.26)

where the braces denote the Wigner-9j symbols and where we have defined L̂ ≡
√

2L+ 1.
The space and spin parts split up in such a way that

BC =
∑

MLMS

∑
M ′LM

′
S

〈LMLSMS|JML +MS〉〈L′M ′
LS
′M ′

S|JM ′
L +M ′

S〉

× 〈nala nblb LML|V (r12)|nclc ndld L′M ′
L〉︸ ︷︷ ︸

CC

× 〈12
1
2 SMS|(W +BPσ + (−)TH + (−)TMPσ)|12

1
2 S

′M ′
S〉︸ ︷︷ ︸

DC

,

(B.27)

where the brackets denote the Clebsch–Gordan coefficients.
On the one hand, the formulas (D.11) allow us to simplify the above spin TBME as

DC =
[
(W −B + (−)TH − (−)TM) + S(S + 1)(B + (−)TM)

]
δSS′δMSM

′
S
. (B.28)

We see that the central TBMEs are divided into two pieces, one proportional to the
combination of parameters (W − B + (−)TH − (−)TM), the other to S(S + 1)(B +
(−)TM). The corresponding TBMEs are denoted by V C

a and V C
b in the second part

II.1.2.2, respectively. In this way, we have decorrelated the isospin from the spin degrees
of freedom so that the combination of parameters involved in the central TBMEs (B.24)
can be determined for a given total isospin T .

On the other hand, the above space TBMEs read

CC =
∑

mlamlb

∑
mlcmld

〈lamlalbmlb|LML〉〈lcmlclcmlc|L′M ′
L〉

× 〈nalamla nblbmlb|V (r12)|nclcmlc ndldmld〉︸ ︷︷ ︸
vC
rarbrcrd

. (B.29)

Thus, we need to evaluate the central TBMEs in the spherical HO basis, whose wave
functions are defined in (B.3). By definition,

vC
rarbrcrd

≡
∫

d3r1

∫
d3r2 φ

∗
ra(~r1)φ∗rb(~r2)V (r12)φrc(~r1)φrd(~r2). (B.30)
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Since the wave functions and the central potential commute, we can rearrange the terms
according to

vC
rarbrcrd

=
∫

d3r1

∫
d3r2 φ

∗
ra(~r1)φrc(~r1)V (r12)φ∗rb(~r2)φrd(~r2). (B.31)

Using twice the Gogny separable development in spherical symmetry (B.219), we obtain

vC
rarbrcrd

=
∑
rµrν

T
(rµ)
(ra)(rc)T

(rν)
(rb)(rd)〈lamla|Y

mlµ∗
lµ
|lcmlc〉〈lbmb|Y mlν∗

lν
|ldmld〉

×
∫

d3r1

∫
d3r2 φ0(~r1)φ0(~r2)V (r12)φrµ(~r1)φrν (~r2).

(B.32)

Then, applying twice the Moshinsky transformation in spherical symmetry (B.225), we
get

vC
rarbrcrd

=
∑
rµrν

T
(rµ)
(ra)(rc)T

(rν)
(rb)(rd)〈lamla|Y

mlµ∗
lµ
|lcmlc〉〈lbmlb|Y mlν∗

lν
|ldmld〉

×
∑
rλrσ

M rλrσ
rµrν

∫
d3r φ0(~r)V (

√
2r)φrλ(~r)

∫
d3Rφ∗0(~R)φrσ(~R),

(B.33)

since the Jacobian of the change of variables (~r1, ~r2)→ (~r, ~R), given by (B.224), is equal
to unity and the spherical Moshinsky coefficient, specified by (B.227), fixes the range of
values of rσ according to (B.229) and (B.230). Note that in the particular case r′µ = r′ν = 0,
the spherical Moshinsky coefficient reduces to (B.234). Note also that φ0(~R) = φ∗0(~R)
because of (B.5).

The integral over ~R is readily carried out considering the orthogonality relation of the
spherical HO wave functions (B.4). On the other hand, we can simplify the integral over
~r by pulling out its angular part by means of (B.6), namely∫

d3r φ0(~r)V (
√

2r)φrσ(~r) =
∫

dr r2φ(0)(r)V (
√

2r)φ(rσ)(r)
∫

d2r̂ Y mlσ
lλ

(r̂)Y 0∗
0 (r̂)

= δlσ ,0δmlσ ,0

∫
dr r2φ(0)(r)V (

√
2r)φ(rσ)(r), (B.34)

where we have used the orthogonality relation of the spherical harmonics (B.205) and the
fact that Y 0

0 (r̂) = Y 0∗
0 (r̂) because of (B.208). Thus, the only thing that remains to be

done is to evaluate the above radial integral. Considering the particular wave functions
(B.5) and

φ(nσ ,0)(r) =
[

2
b3

nσ!
Γ(nσ + 3/2)

]1/2

e−r2/2b2
L1/2
nσ

(
r2

b2

)
, (B.35)

we can write down∫ ∞
0

dr r2φ(0,0)(r)V (
√

2r)φ(nσ ,0)(r) =
[

8
b6√π

nσ!
Γ(nσ + 3/2)

]1/2

×
∫ ∞

0
dr r2e−(µ2+2b2)r2/µ2b2

L1/2
nσ

(
r2

b2

)
.

(B.36)

Taking advantage of the series expansion of the generalized Laguerre polynomial (D.100),
we find ∫ ∞

0
dr r2φ(0,0)(r)V (

√
2r)φ(nσ ,0)(r) =

[
8

b6√π
nσ! Γ(nσ + 3/2)

]1/2

×
nσ∑
i=0

(−)i
i!(nσ − i)! Γ(i+ 3/2)

∫ ∞
0

dr r2i+2e−r2/p2
,

(B.37)
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where we have set the change of variable p ≡ µb/
√
µ2 + 2b2. Using the formula (D.119),

we can determine the above integral, and we end up with

∫ ∞
0

dr r2φ(0,0)(r)V (
√

2r)φ(nσ ,0)(r) =
[

2√
π
nσ! Γ(nσ + 3/2)

]1/2 nλ∑
i=0

(−)iG−i−3/2

i!(nσ − i)!
, (B.38)

with

G ≡ 1 + 2b2

µ2 . (B.39)

Finally, by gathering all the terms, we get an expression for the TBMEs of the central
terms in the spherical HO basis, that reads

vC
rarbrcrd

=
∑
rµrν

T
(rµ)
(ra)(rc)T

(rν)
(rb)(rd)〈lamla|Y

mlµ∗
lµ
|lcmlc〉〈lbmlb|Y mlν∗

lν
|ldmld〉

×M0 rσ
rµ rν

[
2√
π
nσ! Γ(nσ + 3/2)

]1/2 nσ∑
i=0

(−)iG−i−3/2

i!(nσ − i)!
,

(B.40)

where G is given in (B.39). In this expression, rσ = (nσ, 0, 0), with nσ given by (B.232),
while the conditions (B.213) and (B.223) have to be fulfilled at any time.

In the specific cases of 1s and 2s states, the quantum numbers are ra = rb = rc =
rd = (0, 0, 0) and ra = rb = rc = rd = (1, 0, 0), respectively. Then, the contributions to
the central terms to the 1s and 2s TBMEs can respectively be written

f1s ≡ 〈000 000|V (r12)|000 000〉
= G−3/2, (B.41a)

f2s ≡ 〈100 100|V (r12)|100 100〉

= G−3/2
(41

64 −
79
48G

−1 + 385
96 G

−2 − 175
48 G

−3 + 105
64 G

−4
)
. (B.41b)

2.3. Density-dependent two-body matrix elements
We continue by deriving the TBME of the (finite-range) density-dependent interaction

whose expression we recall below,

V DD = (W +BPσ −HPτ −MPσPτ )V (r12)D[ρ], (B.42)

where V (r12) is the Gaussian potential (B.23), and

D[ρ] ≡ ρα(~r1) + ρα(~r2)
2 (B.43)

the density functional which represents the density of the nucleus under study at its
center-of-mass position. For conciseness, we have omitted the factor 1/(µ

√
π)3, but it is

obviously taken into account in the fitting code.
The coupling procedure to the quantum numbers (J, T ) and the spin dependence of the

density-dependent term being formally identical to those of the central terms, we refer the
reader to the previous subsection for their construction for the density-dependent term.
Let us simply note that the density-dependent TBMEs proportional to the combinations
of parameters (W − B + (−)TH − (−)TM) and S(S + 1)(B + (−)TM), as discussed
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right after equation (B.28), are respectively denoted by V DD
a and V DD

b in the second part
II.1.2.2.

Thus, we only need to evaluate the TBMEs of the density-dependent interaction,
expressed as

vDD
rarbrcrd

≡ 〈nalamla nblbmlb|V (r12)D[ρ]|nclcmlc ndldmld〉, (B.44)
in the spherical HO basis, whose wave functions are defined in (B.3). By definition,

vDD
rarbrcrd

≡
∫

d3r1

∫
d3r2 φ

∗
ra(~r1)φ∗rb(~r2)V (r12)D[ρ]φrc(~r1)φrd(~r2). (B.45)

Since the density functional commutes with the wave functions, we can rearrange the
terms and, as for the central terms, consider the Gogny separable development in spherical
symmetry (B.219) twice, to express

vDD
rarbrcrd

=
∑
rµrν

T
(rµ)
(ra)(rc)T

(rν)
(rb)(rd)〈lamla|Y

mlµ∗
lµ
|lcmlc〉〈lbmlb|Y mlν∗

lν
|ldmld〉

× 1
2

[ ∫
d3r1

∫
d3r2 φ0(~r1)φ0(~r2)ρα(~r1)V (r12)φrµ(~r1)φrν (~r2)

+
∫

d3r1

∫
d3r2 φ0(~r1)φ0(~r2)ρα(~r2)V (r12)φrµ(~r1)φrν (~r2)

]
.

(B.46)

We notice that the second integral is deduced from the first one by exchanging the quan-
tum numbers rµ and rν . Then, we only need to focus on the first integral to find an expres-
sion for the above TBMEs. This time, we have no interest in employing the Moshinsky
transformation since the density would couple the relative and center-of-mass coordinates.
Instead, we can perform the integral over ~r2 by means of the following formula [181], 2∫

d3r2 e−(~r1−~r2)2/µ2
φ0(~r2)φrν (~r2) = Kλ(rν)φ0(~r1, b

√
g)φrν (~r1, b

√
g), (B.47)

where, in the above wave functions, the oscillator length b is replaced by b
√
g, with

g ≡ 1 + µ2/b2. The new quantities are expressed in terms of g as K ≡ π[b
√
g − 1]3/2 and

λ(rν) ≡ g−nν−lν/2. Thus, we will have to evaluate integrals of the form

Irµrν ≡
∫

d3r φ0(~r)φrµ(~r)ρα(~r)φ0(~r, b√g)φrν (~r, b
√
g). (B.48)

Taking into account that the density is spherically symmetric, i.e. ρ(~r) = ρ(r), as well as
the definitions (B.5) and (B.6), we get

Irµrν = 1
4π

4√
πb3

∫
dr r2ρα(r)e−r2/2b2e−r2/2gb2

φ(rµ)(r)φ(rν)(r, b
√
g)

×
∫

d2r̂ Y
mlµ
lµ

(r̂)Y mlν
lν

(r̂).
(B.49)

Invoking the orthogonality of the spherical harmonics (B.205) and pulling out the expo-
nentials of the wave functions according to (B.7), the integral becomes

Irµrν = (−)mlµ
(
√
πb)3 δlµlνδmlµ,−mlν

∫ ∞
0

dr r2ρα(r)e−(1+g)r2/gb2
φ̂(rµ)(r)φ̂(rν)(r, b

√
g)︸ ︷︷ ︸

J(rµ)(rν )

. (B.50)

2. In fact, this formula is demonstrated from the generating functions of the spherical HO, in the same
idea the relation (C.109), with the generating functions of the axial HO, is obtained. As the introduction
of the generating functions in spherical symmetry would have been long and useful only here, we have
chosen to leave it at admitting this relation.
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At this point, there is at least two ways to evaluate the integral J(rµ)(rν) numerically.
The most straightforward one consists in setting the change of variable x ≡ (1 +g)r2/gb2,
to find out

J(rµ)(rν) = 1
2

[
gb2

1 + g

]3/2 ∫ ∞
0

dx
√
xe−xf(rµ)(rν)(x), (B.51)

where we have defined the function

f(rµ)(rν)(x) ≡ ρα
(√

gb2

1 + g

√
x

)
φ̂(rµ)

(√
gb2

1 + g

√
x

)
φ̂(rν)

(√
gb2

1 + g

√
x, b
√
g

)
. (B.52)

We can then apply the generalized Gauss–Laguerre quadrature which states that
∫ ∞

0
dx
√
xe−xf(rµ)(rν)(x) '

n∑
i=1

wif(rµ)(rν)(xi), (B.53)

where n is the quadrature order, xi the i-th root of the generalized Laguerre polynomial
L1/2
n (x) and wi a weight factor that reads

wi ≡
Γ(n+ 3/2)xi

n!(n+ 1)2
[
L

1/2
n+1(xi)

]2 . (B.54)

Gathering the results, the integral (B.48) we wanted to calculate can be approximated by

Irµrν '
(−)mlµ

2

[
1
π

g

1 + g

]3/2

δlµlνδmlµ,−mlν

n∑
i=1

wif(rµ)(rν)(xi), (B.55)

with wi and f(rµ)(rν)(xi) given above. The last summation can then be evaluated numeri-
cally, up to a certain order n.

The second method requires more work but is numerically advantageous. This is the
one adopted in the fitting procedure. Starting from the general definition of the local
nuclear density (A.25), we can write down

ρ(~r) = 2
∑
ra

φ∗ra(~r)φra(~r)
(
ρπra,ra + ρνra,ra

)
, (B.56)

where the factor 2 comes from the spin degeneracy and where we have separated the
proton π and neutron ν density matrices. Pulling out the angular dependencies of the
wave functions and using the addition theorem (B.206), we obtain

ρ(~r) = 2
∑
nl

φ(n,l)(r)φ(n,l)(r)
∑
ml

Y ml∗
l (r̂)Y ml

l (r̂)
(
ρπnl,nl + ρνnl,nl

)

= 1
2π

∑
nl

(2l + 1) 2
b3

n!
Γ(n+ l + 3/2)e−r2/b2

(
r

b

)2l[
Ll+1/2
n

(
r2

b2

)]2(
ρπnl,nl + ρνnl,nl

)
,

(B.57)

where we have proved that the nuclear density does not depend on the orientation in space,
as expected in spherical symmetry. Note that the density matrix does not depend on ml

as the occupation of the major shells is only specified by n and l (see equation (B.117)
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and the related discussion). The relation between the generalized Laguerre polynomials
and the confluent hypergeometric function (D.103) permits to get

ρ(r) = 1
b3 e−r2/b2

[
1

2π
∑
nl

(2l + 1)2Γ(n+ l + 3/2)
n!Γ(l + 3/2)2

(
r

b

)2l

× 1F1(−n, l + 3/2, r2/b2)2
(
ρπnl,nl + ρνnl,nl

)]
.

(B.58)

Inserting this expression for the density in the radial integral appearing in (B.50), we
obtain

J(rµ)(rν) = 1
b3(α+1)

1
g3/4

∫ ∞
0

dr r2e−(α+1+1/g)r2/gb2
F(rµ)

(
r2

b2

)
F(rν)

(
r2

gb2

)
ρ̃α
(
r2

b2

)
, (B.59)

where we have used the relation (D.103) again with the generalized Laguerre polynomials
of the wave functions, and defined the quantities

F(rµ)

(
r2

b2

)
≡
[

2Γ(nµ + lµ + 3/2)
nµ!

]1/2 1
Γ(lµ + 3/2)

(
r

b

)lµ
× 1F1(−nµ, lµ + 3/2, r2/b2),

(B.60a)

F(rν)

(
r2

gb2

)
≡
[

2Γ(nν + lµ + 3/2)
nν !

]1/2 1
Γ(lµ + 3/2)

(
r
√
gb

)lν
× 1F1(−nν , lµ + 3/2, r2/gb2),

(B.60b)

ρ̃

(
r2

b2

)
≡ 1

2π
∑
nl

(2l + 1)2Γ(n+ l + 3/2)
n!Γ(l + 3/2)2

(
r

b

)2l

× 1F1(−n, l + 3/2, r2/b2)2
(
ρπnl,nl + ρνnl,nl

)
.

(B.60c)

The change of variable x ≡ r/b
√
α + 1 + 1/g eventually furnishes

J(rµ)(rν) = 1
b3α

1
g3/4

1√
α + 1 + 1/g

∫ ∞
0

dx e−x2
f(rµ)(rν)(x2), (B.61)

with the function

f(rµ)(rν)(x2) ≡ x2

α + 1 + 1/gF(rµ)

(
x2

α + 1 + 1/g

)
F(rν)

(
x2

g(α + 1 + 1/g)

)

× ρ̃α
(

x2

α + 1 + 1/g

)
.

(B.62)

The Gauss–Hermite quadrature allows to approximate integrals defined on the entire
space according to ∫ +∞

−∞
dx e−x2

f(x) '
n∑
i=0

wif(xi), (B.63)

where n is the quadrature order, xi the i-th root of the Hermite polynomial Hn(x) at
which the function f is evaluated, and wi a weight factor that reads

wi ≡
2n−1n!

√
π

n2[Hn−1(xi)]2
. (B.64)
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Here, the integral (B.61) runs from zero to infinity, but since the roots of the Hermite
polynomials are symmetric (to each root xi corresponds another root −xi) and the in-
tegrand is even, we can approximate it with the Gauss–Hermite quadrature according
to ∫ ∞

0
dx e−x2

f(rµ)(rν)(x2) '
n∑
i=0

wif(rµ)(rν)(x2), (B.65)

where f(rµ)(rν)(x2) is given by (B.62). When we will truncate the series at a certain order
n, it will then be necessary to consider 2n roots and weight factors associated with the
complete quadrature (B.63). In the fitting code, the quadrature order is n = 10 as the
series converges quite rapidly, so that the first twenty Gauss–Hermite roots and weights
are needed. Gathering the results, the integral (B.48) we wanted to evaluate can be
approximated by

Irµrν '
(−)mlµ

(
√
πg1/4bα+1)3

1√
α + 1 + 1/g

δlµlνδmlµ,−mlν

n∑
i=1

wif(rµ)(rν)(x2
i ), (B.66)

with wi and f(rµ)(rν)(x2
i ) given above.

Finally, in both cases, the TBMEs of the density-dependent interaction, in the spher-
ical HO basis, read

vDD
rarbrcrd

= 1
2K

∑
rµrν

T
(rµ)
(ra)(rc)T

(rν)
(rb)(rd)〈lamla|Y

mlµ∗
lµ
|lcmlc〉〈lbmlb|Y mlν∗

lν
|ldmld〉

×
[
λ(rν)Irµrν + λ(rµ)Irνrµ

]
,

(B.67)

where the integrals Irµrν and Irνrµ are either given by (B.55) or (B.66). In this expression,
we have lµ = lν and mlµ = −mlν while the conditions (B.213) and (B.223) have to be
fulfilled at any time.

2.4. Tensor two-body matrix elements
In order to easily compute the TBMEs of the tensor interaction, we shall separate the

space and spin-isospin degrees of freedom according to the equivalent form of the tensor
operator (D.58). The tensor interaction then reads

vT
12 = (W −HPτ )V (r12)[r̂12 ⊗ r̂12](2) · [~σ1 ⊗ ~σ2](2), (B.68)

where V (r12) is the Gaussian potential (B.23). As for the previous terms, the normalized
and antisymmetrized (na) TBMEs, recoupled to (J, T ), of the tensor interaction can be
written by means of (B.8), i.e.

〈ãb̃JT |vT
12|cdJT 〉na = 1√

(1 + δ
ã̃b

)(1 + δ
c̃d̃

)

×
[
〈ãb̃JT |vT

12|c̃d̃JT 〉+ (−)jc+jd+J+T 〈ãb̃JT |vT
12|d̃c̃JT 〉

]
,

(B.69)

We can extract the isospin dependence of the non-normalized and non-antisymmetrized
tensor TBMEs according to

〈ãb̃JT |vT
12|c̃d̃JT 〉 = (W + (−)TH)〈ãb̃J |ṽT

12|c̃d̃J〉, (B.70)
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where Ṽ T corresponds to (B.68) deprived of its combination of parameters. Gathering
the results, we find

〈ãb̃JT |vT
12|c̃d̃JT 〉na = W + (−)TH√

(1 + δ
ã̃b

)(1 + δ
c̃d̃

)

×
[
〈ãb̃J |ṽT

12|c̃d̃J〉+ (−)jc+jd+J+T 〈ãb̃J |ṽT
12|d̃c̃J〉

]
.

(B.71)

In the following, we will then evaluate

〈ãb̃J |ṽT
12|c̃d̃J〉 =

∑
k

(−)k〈ãb̃J |ṽT,k
12 |c̃d̃J〉, (B.72)

where the k-th component of the tensor interaction is defined as

ṽT,k
12 ≡ V (r12)[r̂12 ⊗ r̂12](2)

−k[~σ1 ⊗ ~σ2](2)
k . (B.73)

The transformation from jj coupling to LS coupling provides

〈ãb̃J |ṽT,k
12 |c̃d̃J〉 =

∑
LS

∑
L′S′

ĵaĵbĵcĵdL̂L̂
′ŜŜ ′


la lb L

1/2 1/2 S
ja jb J



lc ld L′

1/2 1/2 S ′

jc jd J


× 〈nala

1
2 nblb

1
2 LSJ |ṽ

T,k
12 |nclc

1
2 ndld

1
2 L

′S ′J〉︸ ︷︷ ︸
BT
k

,

(B.74)

where the space and spin parts split up in such a way that

BT
k =

∑
MLMS

∑
M ′LM

′
S

〈LMLSMS|JML +MS〉〈L′M ′
LS
′M ′

S|JM ′
L +M ′

S〉

〈nala nblb LML|V (r12)[r̂12 ⊗ r̂12](2)
−k|nclc ndld L′M ′

L〉︸ ︷︷ ︸
CT
−k

× 〈12
1
2 SMS|[~σ1 ⊗ ~σ2](2)

k |
1
2

1
2 S

′M ′
S〉︸ ︷︷ ︸

DT
k

.

(B.75)

On the one hand, the Wigner–Eckart theorem relates the above spin TBME to its reduced
counterpart according to [237]

DT
k = (−)S−MS

(
S 2 S ′

−MS k M ′
S

)
〈12

1
2 S‖[~σ1 ⊗ ~σ2](2)‖1

2
1
2 S

′〉, (B.76)

where the double bar denotes the reduced TBME, that can itself be expressed as

〈12
1
2 S‖[~σ1 ⊗ ~σ2](2)‖1

2
1
2 S

′〉 =
√

5ŜŜ ′


1/2 1/2 S
1/2 1/2 S ′

1 1 2

 〈
1
2‖~σ1‖

1
2〉〈

1
2‖~σ2‖

1
2〉, (B.77)

with the reduced (one-body) matrix elements

〈12‖~σi‖
1
2〉 =

√
6, for i ∈ {1, 2}, (B.78)
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since we are dealing with Pauli matrices, verifying (D.6). Note that the Wigner-3j symbol
appearing above with parentheses implies 2 ≤ S + S ′, so that, necessarily, S = S ′ = 1.
This result was expected as we know that the tensor term only acts in the S = 1 channel
of the interaction (see section II.1.1). Gathering the equations, we obtain, for the spin
part of the tensor TBMEs,

DT
k = 6

√
5(−)S−MS ŜŜ ′

(
S 2 S ′

−MS k M ′
S

)
1/2 1/2 S
1/2 1/2 S ′

1 1 2

. (B.79)

As for the tensor space part, we find

CT
−k =

∑
mlamlb

∑
mlcmld

〈lamlalbmlb|LML〉〈lcmlclcmlc|L′M ′
L〉

× 〈nalamla nblbmlb|V (r12)[r̂12 ⊗ r̂12](2)
−k|nclcmlc ndldmld〉︸ ︷︷ ︸

vT−k
rarbrcrd

. (B.80)

Thus, we need to evaluate the tensor TBMEs in the spherical HO basis, whose wave
functions are defined in (B.3). By definition,

vT−k
rarbrcrd

≡
∫

d3r1

∫
d3r2 φ

∗
ra(~r1)φ∗rb(~r2)V (r12)[r̂12 ⊗ r̂12](2)

−kφrc(~r1)φrd(~r2), (B.81)

Since the sandwiched quantity commutes with the wave functions, we have

vT−k
rarbrcrd

=
∫

d3r1

∫
d3r2 φ

∗
ra(~r1)φrc(~r1)V (r12)[r̂12 ⊗ r̂12](2)

−kφ
∗
rb

(~r2)φrd(~r2). (B.82)

Applying twice the Gogny separable development in spherical symmetry (B.219), we
obtain

vT−k
rarbrcrd

=
∑
rµrν

T
(rµ)
(ra)(rc)T

(rν)
(rb)(rd)〈lamla|Y

mlµ∗
lµ
|lcmlc〉〈lbmlb|Y mlν∗

lν
|ldmld〉

×
∫

d3r1

∫
d3r2 φ0(~r1)φ0(~r1)V (r12)[r̂12 ⊗ r̂12](2)

−kφrµ(~r2)φrν (~r2).
(B.83)

Now, applying twice the Moshinsky transformation in spherical symmetry (B.225), we
get

vT−k
rarbrcrd

=
∑
rµrν

T
(rµ)
(ra)(rc)T

(rν)
(rb)(rd)〈lamla|Y

mlµ∗
lµ
|lcmlc〉〈lbmlb|Y mlν∗

lν
|ldmld〉

×
∑
rλrσ

M rλ rσ
rµ rν

∫
d3r φ0(~r)V (

√
2r)[r̂ ⊗ r̂](2)

−kφrλ(~r)
∫

d3Rφ∗0(~R)φrσ(~R),
(B.84)

since the Jacobian of the change of variables (~r1, ~r2)→ (~r, ~R), given by (B.224), is equal
to unity and the spherical Moshinsky coefficient, specified by (B.227), fixes the range of
values of rσ according to (B.229) and (B.230). Note that in the particular case r′µ = r′ν = 0,
the spherical Moshinsky coefficient reduces to (B.234). Note also that φ0(~R) = φ∗0(~R)
because of (B.5).

The integral over ~R is readily carried out considering the orthogonality relation of
the spherical HO wave functions (B.4). On the other hand, using the writing (B.211) in
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spherical symmetry, we can simplify the integral over ~r by pulling out its angular part by
means of (B.6), namely

∫
d3r φ0(~r)V (

√
2r)[r̂ ⊗ r̂](2)

−kφrσ(~r) =
√

8π
15

∫
d3r φ0(~r)V (

√
2r)φrσ(~r)Y −k2 (r̂)

=
√

8π
15

1√
4π

∫
dr r2φ(0)(r)V (

√
2r)φ(rσ)(r)

×
∫

d2r̂ Y −k2 (r̂)Y mlσ
lσ

(r̂)

= (−)k
√

2
15δlσ ,2δmlσ ,k

×
∫

dr r2φ(0)(r)V (
√

2r)φ(rσ)(r),
(B.85)

where we have used the orthogonality of the spherical harmonics (B.205). Thus, the only
thing that remains to be done is to evaluate the above integral. Considering the particular
wave functions (B.5) and

φ(nσ ,2) =
[

2
b3

nσ!
Γ(nσ + 7/2)

]1/2

e−r2/2b2
(
r

b

)2
L5/2
nσ

(
r2

b2

)
, (B.86)

as well as the series expansion of the generalized Laguerre polynomial (D.100), we obtain,
after a development similar to the one made for the central TBMEs,

∫
dr r2φ(0,0)(r)V (

√
2r)φ(nσ ,2)(r) =

[
2√
π
nσ! Γ(nσ + 7/2)

]1/2

×
nσ∑
i=0

(−)iG−i−5/2

i!(nσ − i)!(i+ 5/2) ,
(B.87)

where G is defined in (B.39). Finally, by gathering all the results, we get an expression
for the TBMEs of the tensor interaction in the spherical HO basis, that reads

vT−k
rarbrcrd

= (−)k
√

2
15

∑
rµrν

T
(rµ)
(ra)(rc)T

(rν)
(rb)(rd)〈lamla|Y

mlµ∗
lµ
|lcmlc〉〈lbmlb|Y mlν∗

lν
|ldmld〉

×M0 rσ
rµrν

[
2√
π
nσ! Γ(nσ + 7/2)

]1/2 nσ∑
i=0

(−)iG−i−5/2

i!(nσ − i)!(i+ 5/2) ,
(B.88)

where G is expressed in (B.39). In this expression, rσ = (nσ, 2, k), with nσ given by
(B.232), while the conditions (B.213) and (B.223) have to be fulfilled at any time.

2.5. Spin–orbit two-body matrix elements
In order to easily compute the TBMEs of the spin–orbit interaction, we shall separate

the space and spin-isospin degrees of freedom according to the equivalent form of the
spin–orbit operator (D.85). The interaction we are considering in this section then reads

vSO
12 = B̃(µ)(W −HPτ )V (r12)[~r12 ⊗ ~∇12](1) · [~σ1 + ~σ2](1), (B.89)
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where V (r12) is the Gaussian potential (B.23) and B̃(µ) the coefficient given by

B̃(µ) ≡ − 1
2
√

2
B(µ) =

√
2

µ2
1

(µ
√
π)3 , (B.90)

with B(µ) defined in (II.7). As for the previous terms, the normalized and antisym-
metrized (na) TBMEs, coupled to (J, T ), of the spin–orbit interaction can be written by
means of (B.8), i.e.

〈ãb̃JT |vSO
12 |c̃d̃JT 〉na = 1√

(1 + δ
ã̃b

)(1 + δ
c̃d̃

)

×
[
〈ãb̃JT |vSO

12 |c̃d̃JT 〉+ (−)jc+jd+J+T 〈ãb̃JT |vSO
12 |d̃c̃JT 〉

]
,

(B.91)

We can extract the isospin dependence of the non-normalized and non-antisymmetrized
spin–orbit TBMEs, as we have done for the tensor interaction, according to

〈ãb̃JT |vSO
12 |c̃d̃JT 〉 = B̃(µ)(W + (−)TH)〈ãb̃J |ṽSO

12 |c̃d̃J〉, (B.92)

where Ṽ SO corresponds to (B.89) deprived of its combination of parameters. Gathering
the results, we find

〈ãb̃JT |vSO
12 |c̃d̃JT 〉na = B̃(µ) W + (−)TH√

(1 + δ
ã̃b

)(1 + δ
c̃d̃

)

×
[
〈ãb̃J |ṽSO

12 |c̃d̃J〉+ (−)jc+jd+J+T 〈ãb̃J |ṽSO
12 |d̃c̃J〉

]
.

(B.93)

In the following, we will then evaluate

〈ãb̃J |ṽSO
12 |c̃d̃J〉 =

∑
k

(−)k〈ãb̃J |ṽSO,k
12 |c̃d̃J〉, (B.94)

where the k-th component of the spin–orbit interaction is defined as

ṽSO,k
12 ≡ V (r12)[~r12 ⊗ ~∇12](1)

−k[~σ1 + ~σ2](1)
k . (B.95)

The transformation from jj coupling to LS coupling provides

〈ãb̃J |ṽSO,k
12 |c̃d̃J〉 =

∑
LS

∑
L′S′

ĵaĵbĵcĵdL̂L̂
′ŜŜ ′


la lb L

1/2 1/2 S
ja jb J



lc ld L′

1/2 1/2 S ′

jc jd J


× 〈nala

1
2 nblb

1
2 LSJ |ṽ

SO,k
12 |nclc

1
2 ndld

1
2 L

′S ′J〉︸ ︷︷ ︸
BSO
k

,

(B.96)

where the space and spin parts split up in such a way that

BSO
k =

∑
MLMS

∑
M ′LM

′
S

〈LMLSMS|JML +MS〉〈L′M ′
LS
′M ′

S|JM ′
L +M ′

S〉

〈nala nblb LML|V (r12)[~r12 ⊗ ∇̂12](1)
−k|nclc ndld L′M ′

L〉︸ ︷︷ ︸
CSO
−k

× 〈12
1
2 SMS|[~σ1 + ~σ2](1)

k |
1
2

1
2 S
′M ′

S〉︸ ︷︷ ︸
DSO
k

.

(B.97)
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On the one hand, the Wigner–Eckart theorem relates the above spin TBME to its reduced
counterpart according to [237]

DSO
k = (−)S−MS

(
S 1 S ′

−MS k M ′
S

)
〈12

1
2 S‖~σ1 + ~σ2‖

1
2

1
2 S

′〉. (B.98)

Separating the contributions from the first and second particles in the spin reduced TBME,
we obtain

〈12
1
2 S‖~σ1 + ~σ2‖

1
2

1
2 S

′〉 = 〈12
1
2 S‖~σ1‖

1
2

1
2 S

′〉︸ ︷︷ ︸
E1

+ 〈12
1
2 S‖~σ2‖

1
2

1
2 S

′〉︸ ︷︷ ︸
E2

, (B.99)

where we have [237]

E1 = (−)S′ŜŜ ′
{

1/2 S 1/2
S ′ 1/2 1

}
〈12‖~σ1‖

1
2〉, (B.100a)

E2 = (−)SŜŜ ′
{

1/2 S 1/2
S ′ 1/2 1

}
〈12‖~σ2‖

1
2〉, (B.100b)

with the above reduced matrix elements given by (B.78). On the one hand, the Wigner-3j
symbol appearing in (B.98) implies that S and S ′ cannot be simultaneously equal to 0.
On the other hand, if S = 0 and S ′ = 1 or S = 1 and S ′ = 0, the quantities E1 and E2
expressed above cancel one another so that the spin–orbit TBMEs vanish. Thus, the only
possibility is S = S ′ = 1, just like for the tensor interaction (see discussion right after
equation (B.78)). Once again, this result was expected since we know that the spin–orbit
term only acts in the S = 1 channel of the interaction (see section II.1.1). Gathering the
equations, we obtain, for the spin part of the spin–orbit TBMEs,

DSO
k = 2

√
6(−)S−MS ŜŜ ′

(
S 1 S ′

−MS k M ′
S

){
1/2 S 1/2
S ′ 1/2 1

}
. (B.101)

As for the spin–orbit space part, we find
CSO
−k =

∑
mlamlb

∑
mlcmld

〈lamlalbmlb|LML〉〈lcmlclcmlc|L′M ′
L〉

× 〈nalamla nblbmlb|V (r12)[~r12 ⊗ ∇̂12](1)
−k|nclcmlc ndldmld〉︸ ︷︷ ︸

vSO−k
rarbrcrd

. (B.102)

Thus, we need to evaluate the spin–orbit TBME in the spherical HO basis, whose wave
functions are defined in (B.3). Decoupling the tensor product, we have,

vSO−k
rarbrcrd

=
∑
αβ

〈1α1β|1− k〉〈nalamla nblbmlb|rα12V (r12)∇β
12|nclcmlc ndldmld〉︸ ︷︷ ︸

vSOαβ
rarbrcrd

, (B.103)

with, by definition,

vSOαβ
rarbrcrd

≡
∫

d3r1

∫
d3r2 φ

∗
ra(~r1)φ∗rb(~r2)V (r12)rα12

[
∇β

12φrc(~r1)φrd(~r2)
]
. (B.104)

This time, the sandwiched quantity does not commute with the wave functions because
of the gradient operator. Then, by separating the gradients acting on the first and second
particles, we obtain

vSOαβ
rarbrcrd

=
∫

d3r1

∫
d3r2 φ

∗
ra(~r1)φ∗rb(~r2)V (r12)rα12

[
∇β

1φrc(~r1)
]
φrd(~r2)

−
∫

d3r1

∫
d3r2 φ

∗
ra(~r1)φ∗rb(~r2)V (r12)rα12φrc(~r1)

[
∇β

2φrd(~r2)
]
.

(B.105)
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In the following, we will call Iαβ1 and Iαβ2 the first and second integrals of the above right-
hand side term (we purposely omit the other indices for conciseness). We fill focus on
the integral Iαβ1 , the integral Iαβ2 being easily deductible from it. We have to evaluate
the action of the gradient operator on the wave functions with the help of the gradient
formula in spherical symmetry (B.218). We find

Iαβ1 = 1
b

∑
j=±1

(−)lc+mlc+β+1
(
lc 1 lc + j
mlc β −mlc − β

)

×
[
a

(rc)
j

∫
d3r1

∫
d3r2 φ

∗
ra(~r1)φnc−j,lc+j,mlc+β(~r1)V (r12)rα12φ

∗
rb

(~r2)φrd(~r2)

+ c
(rc)
j

∫
d3r1

∫
d3r2 φ

∗
ra(~r1)φnc,lc+j,mlc+β(~r1)V (r12)rα12φ

∗
rb

(~r2)φrd(~r2)
]
,

(B.106)

where the coefficients a(rc)
j and c(rc)

j are defined in (B.217). Now, using the Gogny separable
development in spherical symmetry (B.219) four times, we end up with

Iαβ1 = 1
b

∑
j=±1

(−)lc+mlc+β+1
(
lc 1 lc + j
mlc β −mlc − β

)

×
∑
lµmlµ

∑
rν

T
(rν)
(rb)(rd)〈lamla|Y

mlµ∗
lµ
|lc + j mlc + β〉〈lbmlb|Y mlν∗

lν
|ldmld〉

×
[
a

(rc)
j

∑
nµ

T
(rµ)
(ra)(nc−j,lc+j)

×
∫

d3r1

∫
d3r2 φ0(~r1)φ0(~r2)V (r12)rα12φrµ(~r1)φrν (~r2)

+ c
(rc)
j

∑
n′µ

T
(r′µ)
(ra)(nc,lc+j)

∫
d3r1

∫
d3r2 φ0(~r1)φ0(~r2)V (r12)rα12φr′µ(~r1)φrν (~r2)

]
.

(B.107)

Let us note that we have introduced the notations rµ = (nµ, lµ,mlµ) and r′µ = (n′µ, lµ,mlµ)
since the quantum numbers nµ and n′µ run over distinct ranges of values, as they appear
in different Talman coefficients (see condition (B.223)). In the following, we will focus
on the first integral, the second one is deduced by the transformation rµ → r′µ. Then,
applying twice the Moshinsky transformation in spherical symmetry (B.225) on the first
integral, we get∫

d3r1

∫
d3r2 φ0(~r1)φ0(~r2)V (r12)rα12φrµ(~r1)φrν (~r2) =

√
2
∑
rλrσ

M rλrσ
rµrν

×
∫

d3r φ0(~r)V (
√

2r)rαφrσ(~r)
∫

d3Rφ∗0(~R)φrλ(~R),
(B.108)

since the Jacobian of the change of variables (~r1, ~r2)→ (~r, ~R), given by (B.224), is equal
to unity and the spherical Moshinsky coefficient, specified by (B.227), fixes the range of
values of rσ according to (B.229) and (B.230). Note that in the particular case r′µ = r′ν = 0,
the spherical Moshinsky coefficient reduces to (B.234). Note also that φ0(~R) = φ∗0(~R)
because of (B.5).

The integral over ~R is readily carried out considering the orthogonality relation of
the spherical HO wave functions (B.4). On the other hand, using the writing (B.210) in
spherical symmetry, we can simplify the integral over ~r by pulling out its angular part by
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means of (B.6), namely

∫
d3r φ0(~r)V (

√
2r)rαφrσ(~r) =

√
4π
3

∫
d3r rφ0(~r)V (

√
2r)φrσ(~r)Y α

1 (r̂)

=
√

4π
3

1√
4π

∫
dr r3φ(0)(r)V (

√
2r)φ(rσ)(r)

×
∫

d2r̂ Y α
1 (r̂)Y mlσ

lσ
(r̂)

= (−)α√
3
δlσ ,1δmlσ ,−α

×
∫

dr r3φ(0)(r)V (
√

2r)φ(rσ)(r),
(B.109)

where we have used the orthogonality of the spherical harmonics (B.205). Finally, using
the identity rφ(0,0)(r) =

√
3/2bφ(0,1)(r) of the spherical HO wave functions (B.3), we

obtain

∫
d3r φ0(~r)V (

√
2r)rα12φrσ(~r) = (−)αb√

2
δlσ ,1δmlσ ,−α

×
∫

dr r2φ(0,1)(r)V (
√

2r)φ(nσ ,1)(r).
(B.110)

Thus, the only thing that remains to be done is to evaluate the above integral. Considering
the particular wave functions

φ(0,1)(r) =
[

8
3
√
πb3

]1/2
r

b
e−r2/2b2

, (B.111)

and

φ(nσ ,1)(r) =
[

2
b3

nσ!
Γ(nσ + 5/2)

]1/2
r

b
e−r2/2b2

L3/2
nσ

(
r2

b2

)
, (B.112)

as well as the series expansion of the generalized Laguerre polynomial (D.100), we obtain,
after a development similar to the ones made for the central and tensor TBMEs,

∫
dr r2φ(0,1)(r)V (

√
2r)φ(nσ ,1)(r) =

[
4

3
√
π
nσ! Γ(nσ + 5/2)

]1/2

×
nσ∑
i=0

(−)iG−i−5/2

i!(nσ − i)!
,

(B.113)

where G is defined in (B.39). Gathering all the results, we can write down the expression
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for the first integral Iαβ1 , given by (B.106), namely

Iαβ1 =
∑
j=±1

(−)lc+mlc+α+β+1
(
lc 1 lc + j
mlc β −mlc − β

)

×
∑
l′µm

′
lµ

∑
rν

T
(rν)
(rb)(rd)〈lamla|Y

m′lµ∗
l′µ
|lc + j mlc + β〉〈lbmlb|Y mlν∗

lν
|ldmld〉

×

a(rc)
j T

(r(1)
µ )

(ra)(nc−j,lc+j)M
0 r(1)
σ

r
(1)
µ rν

[
4

3
√
π
n(1)
σ ! Γ(n(1)

σ + 5/2)
]1/2

×
n

(1)
σ∑
i=0

(−)iG−i−5/2

i!(n(1)
σ − i)!

+ c
(rc)
j T

(r(2)
µ )

(ra)(nc,lc+j)M
0 r(2)
σ

r
(2)
µ rν

[
4

3
√
π
n(2)
σ ! Γ(n(2)

σ + 5/2)
]1/2

×
n

(2)
σ∑
i=0

(−)iG−i−5/2

i!(n(2)
σ − i)!

.

(B.114)

where G is expressed in (B.39). For clarity, we have changed the notations a bit in the
above expression. They are r(i)

µ = (n(i)
µ , l

′
µ,m

′
lµ) for i ∈ {1, 2} and rν = (nν , lν ,mν).

Moreover, we have r(1)
σ = (n(1)

σ , 2, k) and r(2)
σ = (n(2)

σ , 2, k) with n(1)
σ = (X(1)

µ + Xν − 2)/2
and n(2)

σ = (X(2)
µ +Xν−2)/2, according to (B.232). We see that n(1)

σ and n(2)
σ respectively

depend on the values of n(1)
µ and n(2)

µ , hence the notations chosen. Moreover, the conditions
(B.213) and (B.223) have to be fulfilled at any time. For the sake of completeness, we
also write down the full expression of the integral Iαβ2 whose derivation is analogous to
the one of Iαβ1 . We have

Iαβ2 =
∑
j=±1

(−)ld+mld+α+β+1
(
ld 1 ld + j
mld β −mld − β

)

×
∑
l′νm

′
lν

∑
rµ

T
(rµ)
(ra)(rc)〈lamla|Y

mlµ∗
lµ
|lcmlc〉〈lbmlb|Y

m′lν∗
l′ν
|ld + j mld + β〉

×
[
a

(rd)
j T

(r(1)
ν )

(rb)(nd−j,ld+j)M
0 r(3)
σ

rµr
(1)
ν

[
4

3
√
π
n(3)
σ ! Γ(n(3)

σ + 5/2)
]1/2

×
n

(3)
σ∑
i=0

(−)iG−i−5/2

i!(n(3)
σ − i)!

+ c
(rd)
j T

(r(2)
ν )

(rb)(nd,ld+j)M
0 r(4)
σ

rµr
(2)
ν

[
4

3
√
π
n(4)
σ ! Γ(n(4)

σ + 5/2)
]1/2

×
n

(4)
σ∑
i=0

(−)iG−i−5/2

i!(n(4)
σ − i)!

]
,

(B.115)

where G is expressed in (B.39). Once again, we have changed the notations a bit in
the above expression. They are r(i)

ν = (n(i)
ν , l

′
ν ,m

′
lν) for i ∈ {1, 2} and rµ = (nµ, lµ,mµ).

Besides, we have r(3)
σ = (n(3)

σ , 2, k) and r(4)
σ = (n(4)

σ , 2, k) with n(3)
σ = (Xµ + X(1)

ν − 2)/2
and n(4)

σ = (Xµ +X(2)
ν −2)/2, according to (B.232). We see that n(3)

σ and n(4)
σ respectively
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depend on the values of n(1)
ν and n(2)

ν , hence the notations chosen (see the previous para-
graph). From equation (B.103) and these expressions, we directly deduce the TBME of
the spin–orbit interaction in the spherical HO basis.

3. From HF to HFR approximation
As presented in section I.2.2.1, in the fitting procedure, the different quantities are

evaluated at the Hartree–Fock restricted (HFR) approximation. The HFR approximation
consists in a more restrained HF approach (presented in subsection A.1.2), where the
density matrix is imposed to be diagonal, i.e.

ρab = δabρaa =

1 if |a〉 is occupied,
0 otherwise.

(B.116)

In addition, we have mentioned that the splitting of the states according to the projections
of their total angular momentum does not show up in the fitting procedure since the spin–
orbit interaction, inducing that effect, is neglected. The spherical HO states are then fully
specified by their quantum numbers n and l, through their major shells N ≡ 2n+ l, and
the density matrix at the HFR approximation simply is

ρnl,nl =

1 if |nl〉 is occupied,
0 otherwise.

(B.117)

Thus, at the HFR approximation, the total HF energy (A.12) reduces to

EHFR =
∑
a

〈a|t|a〉ρaa + 1
2
∑
ac

〈ab|v(a)
12 |ab〉ρbbρaa, (B.118)

or, in terms of HFR fields, as

EHFR = EHFR
K + EHFR

P = EHFR
K + EHFR

MF , (B.119)

where the kinetic energy
EHFR

K ≡
∑
a

Kaaρaa, (B.120)

is expressed in terms of the kinetic field

Kaa ≡ 〈a|t|a〉, (B.121)

and the potential energy
EHFR

P = EHFR
MF ≡

1
2
∑
a

Γaaρaa, (B.122)

is expressed in terms of the mean field

Γaa ≡
∑
b

〈ab|v(a)
12 |ab〉ρbb. (B.123)

The individual (or one-body) Hamiltonian to which each nucleon of the nucleus is sub-
jected satisfies the relation hHFR

aa ≡ ∂EHFR/∂ρaa, so that

hHFR
aa = Kaa + Γaa + ∂Γaa, (B.124)
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where the rearrangement field is

∂Γab ≡
1
2
∑
a′b′
〈a′b′|∂v

(a)
12

∂ρaa
|a′b′〉ρa′a′ρb′b′ . (B.125)

Since each of the fields describing the individual Hamiltonian at the HFR approximation
(B.124) is diagonal (as the density matrices are), the individual Hamiltonian is diagonal
itself. Therefore, each non-zero matrix element of this Hamiltonian corresponds to an
eigenvalue εHFR

a , identified as an individual (or one-body) energy, i.e.

εHFR
a = hHFR

aa = Kaa + Γaa + ∂Γaa. (B.126)

Note that in practical calculations, we will not bother with the density matrix (B.117)
since it is always equal to unity, at the HFR approximation, for the occupied states on
which the summations are performed. Moreover, although the spin–orbit interaction is
not taken into account in the fitting procedure, we will still evaluate how the quantities
calculated at the HFR approximation are modified when a spin–orbit term is considered.

4. Derivation of the Hartree–Fock restricted fields
In order to evaluate later the total (B.119) and individual (B.126) energies at the HFR

approximation, let us calculate the various HFR fields introduced in the previous section.

4.1. Kinetic field
At the HFR approximation, the kinetic field is given by (B.121). By virtue of the

virial theorem, we can evaluate its contribution in the spherical HO representation, and
obtain

Kaa = ~ω
2

(
2na + la + 3

2

)
. (B.127)

4.2. Mean field
At the HFR approximation, the mean field is given by (B.123). For the sake of clarity,

we will decompose this field into a direct and an exchange component in the following, as
Γaa ≡ Γaa|D + Γaa|E, where

Γaa|D ≡
∑
b

〈ab|v12|ab〉ρbb, (B.128a)

Γaa|E ≡
∑
b

〈ab|v12|ba〉ρbb. (B.128b)

It is now necessary to evaluate these contributions for the fields of the generalized Gogny
interaction (II.1).

4.2.1. Central contribution

Let us start by deriving the direct mean field associated with the central terms. The
central terms are given by (B.22), where we now use the shorthand notation for the
spin-isospin part,

P ≡ W +BPσ −HPτ −MPσPτ . (B.129)
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The spatial and spin-isospin degrees of freedom split up in such a way that

ΓC
aa|D =

∑
rbub

〈rarb|V (r12)|rarb〉〈uaub|WD|uaub〉. (B.130)

On the one hand, the spin-isospin TBMEs of the central terms are easy to compute since
their spin-isospin part is only a combination of spin- and isospin-exchange operators. We
find out, in general,

〈uaub|P|ucud〉 =
(
Wδsascδsbsd +Bδsasdδsbsc

)
δtatcδtbtd

−
(
Hδsascδsbsd +Mδsasdδsbsc

)
δtatdδtbtc .

(B.131)

In the particular case of the HFR approximation, this equation reduces to

〈uaub|P|uaub〉 = W +Bδsasd − (H +Mδsasb)δtatb , (B.132)

so that we immediately get∑
sb

〈sata sbtb|P|sata sbtb〉= 2W +B − (2H +M)δtatb . (B.133)

On the other hand, the spatial TBMEs associated with the central terms have been calcu-
lated in (B.40). The respective definitions of the integral over three spherical harmonics
(B.212) and of the particular value of the Moshinsky coefficient (B.231), coupled with the
properties of the Wigner-3j symbols, allow to simplify the spatial part according to∑

mlb

〈nalamla nblbmlb|V (r12)|nalamla nblbmlb〉= SC
nalanblb

|D, (B.134)

where he have defined

SC
nalanblb

|D ≡
1

4π (2lb + 1)
∑
nµnν

T
(nµ0)
(nala)(nala)T

(nν0)
(nblb)(nblb)Inµnν0, (B.135)

with the quantity

Inn′l ≡
1

2n+n′+l
(n+ n′ + l)!Γ(n+ n′ + l + 3/2)

[n!n′!Γ(n+ l + 3/2)Γ(n′ + l + 3/2)]1/2
n+n′+l∑
i=0

(−)iG−i−3/2

i!(n+ n′ + l − i)! . (B.136)

Finally, the direct mean field associated with the central terms writes

ΓC
aa|D =

∑
nblbtb

(2W +B − (2H +M)δtatb)SC
nalanblb

|D. (B.137)

The calculation of the exchange mean field associated with the central terms is similar.
We have

ΓC
aa|E =

∑
rbub

〈rarb|V (r12)|rbra〉〈uaub|WE|ubua〉. (B.138)

Using (B.131) in the particular case of the HFR approximation, we directly get for the
spin-isospin part, ∑

sb

〈sata sbtb|P|sbtb sata〉= 2M +H − (2B +W )δtatb . (B.139)
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The exchange spatial part is obtained in the same way as the direct part, with the last
three indices of the spatial TBME reversed. Following the same steps, we eventually get∑

mlb

〈nalamla nblbmlb|V (r12)|nblbmlb nalamla〉= SC
nalanblb

|E, (B.140)

where he have defined

SC
nalanblb

|E ≡
1

4π (2lb + 1)

×
∑

nµnν lµ

(2lµ + 1)
(
la lb lµ
0 0 0

)2

T
(nµlµ)
(nala)(nblb)T

(nν lµ)
(nblb)(nala)Inµnν lµ ,

(B.141)

where the quantity I is defined in (B.136). Finally, the exchange mean field associated
with the central terms writes

ΓC
aa|E =

∑
nblbtb

(2M +H − (2B +W )δqaqb)SC
nalanblb

|E. (B.142)

Note that the ranges of values taken by the quantum numbers nµ, nν and lµ appearing in
the equations above can easily be deduced from (B.213) and (B.223). In the expressions
(B.137) and (B.142), we have not performed the summation on the isospin with the future
purpose of separating the proton and neutron contributions.

4.2.2. Density-dependent contribution

Let us continue with the derivation of the direct mean field associated with the density-
dependent term. The density-dependent term is given by (B.42), where we now use the
shorthand notation for the spin-isospin part (B.129), which is precisely the one of the
central terms. The spatial and spin-isospin degrees of freedom split up in such a way that

ΓDD
aa |D =

∑
rbub

〈rarb|V (r12)D[ρ]|rarb〉〈uaub|P|uaub〉. (B.143)

Since the spin-isospin part of the density-dependent term is exactly the same as the one
of the central terms (B.133), we immediately find∑

sb

〈sata sbtb|PD|sata sbtb〉= 2W +B − (2H +M)δtatb . (B.144)

On the other hand, the spatial TBMEs associated with the density-dependent term have
been calculated in (B.46). Integrating the angular parts of the integrals appearing in
(B.46) and using the definition of the integral over three spherical harmonics (B.212),
along with with the properties of the Wigner-3j symbols, permits to simplify the spatial
part according to∑

mlb

〈nalamla nblbmlb|V (r12)D[ρ]|nalamla nblbmlb〉= SDD
nalanblb

|D, (B.145)

where he have defined

SDD
nalanblb

|D ≡
1

4π (2lb + 1)
∑
nµnν

T
(nµ0)
(nala)(nala)T

(nν0)
(nblb)(nblb)

1
2
[
Jnµnν0 + Jnνnµ0

]
, (B.146)
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with the integral

Jnn′l = Kλ(n′l)

∫ ∞
0

dr r2φ(00)(r)φ(nl)(r)ρα(r)φ(00)(r, b
√
g)φ(n′l)(r, b

√
g), (B.147)

which is nothing but the integral appearing in (B.50), with lµ = lν , that we have already
evaluated numerically.

Finally, the direct mean field associated with the density-dependent term writes

ΓDD
aa |D =

∑
nblbtb

(2W +B − (2H +M)δtatb)SDD
nalanblb

|D. (B.148)

The calculation of the exchange mean field associated with the density-dependent term
is similar. We obtain

ΓC
aa|E =

∑
rbub

〈rarb|V (r12)D[ρ]|rbra〉〈uaub|P|ubua〉. (B.149)

Since the spin-isospin part of the density-dependent term is exactly the same as the one
of the central terms (B.139), we immediately find∑

sb

〈sata sbtb|P|sbtb sata〉= 2M +H − (2B +W )δtatb . (B.150)

The exchange spatial part is obtained in the same way as the direct part, with the last
three indices of the spatial TBME reversed. Following the same steps, we eventually get∑

mlb

〈nalamla nblbmlb|V (r12)D[ρ]|nblbmlb nalamla〉= SDD
nalanblb

|E, (B.151)

where he have defined

SDD
nalanblb

|E ≡
1

4π (2lb + 1)
∑

nµnν lµ

(2lµ + 1)

×
(
la lb lµ
0 0 0

)2

T
(nµlµ)
(nala)(nblb)T

(nν lµ)
(nblb)(nala)

1
2
[
Jnµnν lµ + Jnνnν lµ

]
,

(B.152)

where the integral J is defined in (B.147). Finally, the exchange mean field associated
with the density-dependent term writes

ΓDD
aa |E =

∑
nblbqb

(2M +H − (2B +W )δqaqb)SDD
nalanblb

|E. (B.153)

Note that the ranges of values taken by the quantum numbers nµ, nν and lµ appearing in
the equations above can easily be deduced from (B.213) and (B.223). As for the central
terms, in the expressions (B.148) and (B.153), we have not performed the summation on
the isospin with the future purpose of separating the proton and neutron contributions.

4.2.3. Tensor contribution

We now look at the derivation of the direct mean field associated with the tensor term.
The tensor interaction is given by (B.68), where we use the shorthand notation for the
spin-isospin part,

P ≡ W −HPτ . (B.154)
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Separating the spatial and spin-isospin degrees of freedom, we obtain

ΓT
aa|D =

∑
rbub

〈rarb|V (r12)[r̂12 ⊗ r̂12](2)
−k|rarb〉〈uaub|P [~σ1 ⊗ ~σ2](2)

k |uaub〉. (B.155)

Let us evaluate the spin-isospin TBMEs of the tensor term. The isospin TBMEs are
trivial and read, in general,

〈tatb|P|tctd〉 = Wδtatcδtbtd −Hδtatdδtbtc . (B.156)

As for the spin TBMEs, we have calculated their general expression in (D.20). In the
particular case of the HFR approximation, this expression reduces to

〈sasb|[~σ1 ⊗ ~σ2](2)
k |sasb〉 = 4

√
2
3sascδk,0, (B.157)

so that the spin part of the tensor direct mean field vanishes, i.e.∑
sb

〈sasb|[~σ1 ⊗ ~σ2](2)
k |sasb〉 = 0. (B.158)

Thus, at the HFR approximation, the direct tensor mean field is zero.
The calculation of the exchange mean field associated with the tensor term is similar.

We obtain

ΓT
aa|E =

∑
rbub

〈rarb|V (r12)[r̂12 ⊗ r̂12](2)
−k|rbra〉〈uaub|P [~σ1 ⊗ ~σ2](2)

k |ubua〉. (B.159)

Again, from equation (D.20), we deduce the following spin TBMEs at the HFB approxi-
mation,

〈sasb|[~σ1 ⊗ ~σ2](2)
k |sbsa〉 = 4

√
2
3sascδk,0(δsasb + δsa,−sb), (B.160)

so that the spin part of the tensor exchange mean field vanishes as well, i.e.∑
sb

〈sasb|[~σ1 ⊗ ~σ2](2)
k |sbsa〉 = 0. (B.161)

Thus, at the HFR approximation, the exchange tensor mean field is also zero. It follows
that, the tensor mean field vanishes at the HFR approximation. 3 It is therefore not
necessary to calculate the spatial contribution to the tensor mean field.

4.2.4. Spin–orbit contribution

Finally, we discuss the derivation of the direct mean field associated with the spin–
orbit term. The spin–orbit interaction is given by (B.89), where we now use the shorthand
notation for the spin-isospin part (B.154), which is precisely the one of the tensor term.
Separating the spatial and spin-isospin degrees of freedom, we obtain

ΓSO
aa |D =

∑
rbub

〈rarb|V (r12)[~r12 ⊗ ~∇12](1)
−k|rarb〉〈uaub|P [~σ1 + ~σ2](1)

k |uaub〉. (B.162)

3. Here, the HFR approximation is essential to infer that the tensor term gives no contribution. Indeed,
at the less restrictive HF approximation, the (exchange) tensor mean field does not vanish.
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Let us evaluate the spin-isospin TBMEs of the spin–orbit term. The isospin TBMEs are
precisely the ones of the tensor term (B.156). As for the spin TBME, we have calculated
their general expression in (D.22). In the particular case of the HFR approximation, this
expression reduces to

〈sasb|[~σ1 + ~σ2](1)
k |sasb〉 = 2(sa + sb)δk,0, (B.163)

so that the spin part of the spin-orbit direct mean field simply reads∑
sb

〈sasb|[~σ1 ⊗ ~σ2](2)
k |sasb〉 = 4saδk,0. (B.164)

The calculation of the exchange mean field associated with the spin–orbit term is
similar. We obtain

ΓSO
aa |E =

∑
rbub

〈rarb|V (r12)[~r12 ⊗ ~∇12](1)
−k|rbra〉〈uaub|P [~σ1 + ~σ2](1)

k |ubua〉. (B.165)

Again, from equation (D.22), we deduce the following spin TBMEs at the HFB approxi-
mation,

〈sasb|[~σ1 + ~σ2](1)
k |sbsa〉 = 2(sa + sb)δsasbδk,0, (B.166)

so that the spin part of the spin–orbit exchange mean field vanishes, i.e.∑
sb

〈sasb|[~σ1 + ~σ2](1)
k |sbsa〉 = 0. (B.167)

Thus, at the HFR approximation, the spin–orbit exchange mean field is zero, since its spin
part is. This is not the case of the direct mean field; its spin part does not vanish and there
is no reason for the spatial part to vanish either. The only thing we can infer regarding
the direct space part is that k = 0 since we can deduce from the ranges of values taken by
the quantum numbers appearing in (B.114) and (B.115), that k = mlc +mld−mla−mlb.
If we were considering the spin–orbit interaction at the HFR approximation in the fitting
code, we should then evaluate its direct mean-field contribution, but we neglect it, as
stated earlier.

4.3. Rearrangement field
At the HFR approximation, the rearrangement field is given by (B.125). Only the

density-dependent term has such a non-zero rearrangement field since it is the only term
that explicitly depends on the local nuclear density. By definition (A.25), in the spherical
HO representation, this density can be written

ρ(~r) =
∑
στ

∑
ab

Φ∗a(~r, σ, τ)Φb(~r, σ, τ)ρba, (B.168)

where the wave functions are the ones of the spherical HO, defined by (B.2). Thus, the
rearrangement field involves the derivative

∂ρ(~r)
∂ρaa

=
∑
στ

Φ∗a(~r, σ, τ)Φa(~r, σ, τ)

= φ∗ra(~r)φra(~r), (B.169)
where we have used the orthogonality of the spin and isospin wave functions (contained
in (B.4)) when going from the first to the second line. Then, it appears that the rear-
rangement field is independent of the isospin ta. Because of this property, we will in fact
not need to calculate the rearrangement field for the quantities we are interested in, as
we will see.
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5. Hartree–Fock restricted energy
At the HFR approximation, the total energy of the nucleus is given by (B.119). In

this section, we shall then evaluate both its kinetic and potential contributions.

5.1. Kinetic energy
At the HFR approximation, the kinetic energy is given by (B.120). Explicitly,

EHFR
K ≡

∑
a

Kaaρaa =
∑

nalamla
sata

~ω
2

(
2na + la + 3

2

)
ρaa, (B.170)

where we have used the expression of the kinetic field derived in (B.127). We end up with

EHFR
K = 2

∑
(nala)π

(2la + 1)
(

2na + la + 3
2

)~ω
2

+ 2
∑

(nala)ν
(2la + 1)

(
2na + la + 3

2

)~ω
2 .

(B.171)

The degeneracy factor 2(2la+1) appears because a given state has the same kinetic energy
no matter the values of its quantum numbers sa and mla, at the origin of factors 2 and
(2la + 1), respectively. Note that the summations concern the proton π and neutron ν
occupied states (na, la), in the spherical HO basis. We will need this kinetic energy for
the oxygen 16O and zirconium 90Zr. By adding the successive contributions of each shell
up to the proton and neutron Fermi levels according to the above relation, we eventually
obtain

EHFR
K

[
16O

]
/(A = 16) = 9

8~ω, (B.172a)

EHFR
K

[
90Zr

]
/(A = 90) = 71

36~ω, (B.172b)

where we have normalized the kinetic energies by the number of nucleons A in the corre-
sponding nuclei.

5.2. Potential energy
At the HFR approximation, the potential energy is given by (B.122). For the sake of

clarity, we will decompose the potential energy into a direct and an exchange component
in the following, as EP ≡ EP|D + EP|E, where

EP|D ≡
1
2
∑
a

Γaa|Dρaa, (B.173a)

EP|E ≡
1
2
∑
a

Γaa|Eρaa. (B.173b)

It is now necessary to evaluate these contributions for the fields of the generalized Gogny
interaction (II.1). Note that in the following, we will use the notation

S̃nalanblb ≡ (2la + 1)Snalanblb , (B.174)

for the direct and exchange contributions of both the central and density-dependent terms,
since they do not explicitly depend on the quantum number mla.
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5.2.1. Central contribution

Let us start by deriving the direct component of the potential energy associated with
the central terms. We have, using (B.137),

ED
P |D ≡

1
2
∑
a

ΓD
aa|Dρaa,

= 1
2
∑
satatb

∑
nala

∑
nblb

(2M +B − (2H +M)δtatb)S̃C
nalanblb

|D. (B.175)

Separating the proton and neutron shells, we obtain, in the general case of an asymmetric
nucleus,

ED
P |D = (2W +B − 2H −M)

∑
(nala)π

∑
(nblb)π

S̃C
nalanblb

|D

+ (2W +B − 2H −M)
∑

(nala)ν

∑
(nblb)ν

S̃C
nalanblb

|D

+ 2(2W +B)
∑

(nala)π

∑
(nblb)ν

S̃C
nalanblb

|D,

(B.176)

where we have taken advantage of the symmetry of the quantity SC
nalanblb

|D under the
exchange of indices (na, la)↔ (nb, lb), and where the summations over (nala)π and (nblb)ν
run over the full set of quantum numbers characterizing the states occupied by protons π
and neutrons ν. When the nucleus is symmetric, this set is the same for both proton and
neutron quantum numbers. Then, the potential energy becomes

ED
P |D = (4W + 2B − 2H −M)FD[X], (B.177)

where we have defined (X denoting the nucleus under study),

FD[X] ≡ 2
∑

(nala)π

∑
(nblb)ν

S̃C
nalanblb

|D. (B.178)

This identity holds for the symmetric 16O, but, in principle, not for the asymmetric
90Zr. Let us now consider an asymmetric nucleus that has more neutrons than protons,
i.e. νmax = πmax + ν+, where νmax and πmax are the numbers of neutrons and protons
respectively, and where ν+ is the neutron excess. This choice is conventional, the proton
excess is treated in a similar way. From equation (B.176), we get

ED
P |D = 2(4W + 2B − 2H −M)

∑
(nala)π

∑
(nblb)ν

S̃C
nalanblb

|D

+ (2W +B − 2H −M)
νmax∑

(nala)ν=πmax+1

νmax∑
(nblb)ν=πmax+1

S̃C
nalanblb

|D.
(B.179)

We observe that a new contribution, proportional to (2W + B − 2H −M), is added in
the case of an asymmetric nucleus. However, this contribution is negligible compared
to that of (4W + 2B − 2H −M) for weakly asymmetric nuclei like the 90Zr, since then
ν+ − 1 � νmax, πmax. As a consequence, we will legitimately assume that the identity
(B.177) also holds for the 90Zr.
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The calculation of the exchange component of the potential energy associated with
the central terms is similar. We obtain, using (B.142),

EC
P |E ≡

1
2
∑
a

ΓD
aa|Eρaa,

= 1
2
∑
satatb

∑
nala

∑
nblb

(2M +B − (2H +M)δtatb)S̃C
nalanblb

|E. (B.180)

For a symmetric nucleus like the 16O, we end up with

EC
P |E = (4M + 2H − 2B −W )FE[X], (B.181)

where we have defined (X denoting the nucleus under study),

FE[X] ≡ 2
∑

(nala)π

∑
(nblb)ν

S̃C
nalanblb

|E, (B.182)

while, for an asymmetric nucleus with a neutron excess, we find

EC
P |E = 2(4M + 2H − 2B −W )

∑
(nala)π

∑
(nblb)ν

S̃C
nalanblb

|E

+ (2M +H − 2B −W )
νmax∑

(nala)ν=πmax+1

νmax∑
(nblb)ν=πmax+1

S̃C
nalanblb

|E.
(B.183)

Here again, the contribution proportional to (2M +H − 2B −W ) is negligible compared
to that of (4M + 2H − 2B−W ) for weakly asymmetric nuclei like the 90Zr. We will then
assume that the identity (B.181) also holds for the 90Zr.

5.2.2. Density-dependent contribution

The procedure introduced above is similar for the density-dependent interaction. Using
(B.148), we find that the direct component of the potential energy associated with the
density-dependent term reads

EDD
P |D ≡

1
2
∑
a

ΓDD
aa |Dρaa,

= 1
2
∑
satatb

∑
nala

∑
nblb

(2M +B − (2H +M)δtatb)S̃DD
nalanblb

|D. (B.184)

Separating the proton and neutron shells, we obtain, in the general case of an asymmetric
nucleus,

EDD
P |D = (2W +B − 2H −M)

∑
(nala)π

∑
(nblb)π

S̃DD
nalanblb

|D

+ (2W +B − 2H −M)
∑

(nala)ν

∑
(nblb)ν

S̃DD
nalanblb

|D

+ 2(2W +B)
∑

(nala)π

∑
(nblb)ν

S̃DD
nalanblb

|D,

(B.185)

where we have taken advantage of the symmetry of the quantity SDD
nalanblb

|D under the
exchange of indices (na, la)↔ (nb, lb). When the nucleus is symmetric, this set is the same
for both proton and neutron quantum numbers. Then, the potential energy becomes

EDD
P |D = 2(4W + 2B − 2H −M)

∑
(nala)π

∑
(nblb)ν

S̃DD
nalanblb

|D. (B.186)
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Following the procedure developed for the central terms, we find, for an asymmetric
nucleus with a neutron excess,

EDD
P |D = 2(4W + 2B − 2H −M)

∑
(nala)π

∑
(nblb)ν

S̃DD
nalanblb

|D

+ (2W +B − 2H −M)
νmax∑

(nala)ν=πmax+1

νmax∑
(nblb)ν=πmax+1

S̃DD
nalanblb

|D.
(B.187)

As it was the case for the central terms, we observe that a new contribution, proportional
to (2W +B−2H−M), is added in the case of an asymmetric nucleus. Here again, we will
neglect this contribution for weakly asymmetric nuclei like the 90Zr, so that the relation
(B.186) holds for this nucleus as well.

The calculation of the exchange component of the potential energy associated with
the density-dependent is similar. We obtain, using (B.153),

EDD
P |E ≡

1
2
∑
a

ΓDD
aa |Eρaa,

= 1
2
∑
saqaqb

∑
nala

∑
nblb

(2M +B − (2H +M)δqaqb)S̃DD
nalanblb

|E. (B.188)

For a symmetric nucleus like the 16O, we end up with

EDD
P |E = 2(4M + 2H − 2B −W )

∑
(nala)π

∑
(nblb)ν

S̃DD
nalanblb

|E, (B.189)

while, for an asymmetric nucleus with a neutron excess, we find

EDD
P |E = 2(4M + 2H − 2B −W )

∑
(nala)π

∑
(nblb)ν

S̃DD
nalanblb

|E

+ (2M +H − 2B −W )
νmax∑

(nala)ν=πmax+1

νmax∑
(nblb)ν=πmax+1

S̃DD
nalanblb

|E.
(B.190)

Here again, the contribution proportional to (2M +H − 2B −W ) is negligible compared
to that of (4M + 2H − 2B−W ) for weakly asymmetric nuclei like the 90Zr. We will then
assume that the identity (B.188) also holds for the 90Zr.

5.2.3. Tensor contribution

We have shown in subsection B.4.2.3 that the mean field associated with the tensor
interaction vanishes at the HFR approximation. Thus, the tensor interaction does not
contribute to the HFR potential energy EHFR

P .

5.2.4. Spin–orbit contribution

We have shown in subsection B.4.2.4 that the exchange mean field associated with the
spin–orbit interaction vanishes at the HFR approximation. Thus, it brings no contribution
to the potential energy. However, the direct mean field is not zero and may then contribute
to the potential energy. By definition, this direct component of the potential energy
associated with the spin–orbit term reads

ESO
P |D ≡

1
2
∑
a

ΓSO
aa |Dρaa. (B.191)
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According to (B.164), the spin part of the above potential energy reads∑
sa

4saδk,0 = 0. (B.192)

Thus, the potential energy associated with the spin–orbit interaction vanishes at the HFR
approximation, since the spin parts of both its direct and exchange components are zero.
Even if the spin–orbit interaction had been considered at the HFR approximation, it
would have provided no contribution to the potential energy EHFR

P .

6. Calculation of the energy difference ∆ε
One of the quantities constrained in the fitting code is the energy difference between

the neutron and proton 2s1/2 states in the calcium 48Ca, at the HFR approximation, that
we write as

∆ε ≡ εν2s1/2
− επ2s1/2

, (B.193)

where ε denotes the individual energy of the corresponding state at the HFR approxima-
tion, given by (B.126). At this approximation, neither the kinetic field given by (B.127),
nor the rearrangement field (see equation (B.169) and the discussion below), depend on
the isospin. Thus, only the neutron and proton mean fields contribute to ∆ε, in such a
way that

∆ε = Γν2s1/2
− Γπ2s1/2

. (B.194)

It is now necessary to evaluate these contributions for the fields of the generalized Gogny
interaction (II.1).

6.1. Central interaction
Let us start by evaluating the contribution to this energy difference ∆ε coming from

the central terms. It is
∆εC = ΓC ν

2s1/2
− ΓCπ

2s1/2
, (B.195)

where the expressions of the central mean fields will be deduced from (B.137) and (B.142).
These contributions eventually furnish, after filling the shells, for the neutron mean field,

ΓC ν
2s1/2

=
∑

(nblb)ν

[(
2W +B − (2H +M)

)
S̃C

10nblb|D

−
(
2M +H − (2B +W )

)
S̃C

10nblb|E
]

+
∑

(nblb)π

[
(2W +B)S̃C

10nblb|D − (2M +H)S̃C
10nblb|E

]
,

(B.196)

and, for the proton mean field,

ΓCπ
2s1/2

=
∑

(nblb)ν

[
(2W +B)S̃C

10nblb|D − (2M +H)S̃C
10nblb|E

]
+

∑
(nblb)π

[(
2W +B − (2H +M)

)
S̃C

10nblb|D

−
(
(2M +H)− (2B +W )

)
S̃C

10nblb|E
]
.

(B.197)
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Gathering the results, we obtain

∆εC = −(2H +M)
[ ∑

(nblb)ν
S̃C

10nblb|D −
∑

(nblb)π
S̃C

10nblb|D
]

+ (2B +W )
[ ∑

(nblb)ν
S̃C

10nblb|E −
∑

(nblb)π
S̃C

10nblb|E
]
.

(B.198)

The 48Ca has twenty protons and twenty-eight neutrons. The proton Fermi level is there-
fore 2s (n = 1, l = 0), which is saturated, and the neutron Fermi level 1f (n = 0, l = 3),
which contains eight neutrons among the fourteen available slots. Then, the central con-
tribution to the energy difference (B.193) reads

∆εC = (2H +M)fD + (2B +W )fE, (B.199)

where we have defined

fD ≡ −
4
7 S̃

C
10 03|D, (B.200a)

fE ≡ +4
7 S̃

C
10 03|E, (B.200b)

with the prefactors traducing the occupation of the neutron Fermi level.

6.2. Density-dependent interaction
The calculation of the contribution from the density-dependent term to ∆ε is similar

to the central terms. We have
∆εDD = ΓDD ν

2s1/2
− ΓDDπ

2s1/2
, (B.201)

where the expressions of the density-dependent mean fields will be deduced from (B.148)
and (B.153). We eventually find out, in a similar way we have done for the central terms,

∆εDD = (2H +M)gD + (2B +W )gE, (B.202)

where we have defined

gD ≡ −
4
7 S̃

DD
10 03|D, (B.203a)

gE ≡ +4
7 S̃

DD
10 03|E. (B.203b)

6.3. Tensor interaction
We have shown in subsection B.4.2.3 that the mean field associated with the tensor

interaction vanishes at the HFR approximation. Thus, the tensor interaction does not
contribute to the energy difference ∆ε at this approximation, ∆εT = 0.

6.4. Spin–orbit interaction
We have shown in subsection B.4.2.4 that the exchange mean field associated with

the spin–orbit interaction vanishes at the HFR approximation, but the direct one does
not. Then, the spin–orbit interaction contributes to the energy difference ∆ε at the HFR
approximation, ∆εSO 6= 0. As already mentioned, we neglect this contribution in the
fitting procedure. Otherwise, it should have been taken into account while distinguishing
the HO states by their quantum numbers j, projections of the total angular momentum.
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7. Formulas for the spherical symmetry
In this section, we give the main formulas used to carry out the above calculations in

the framework of the spherical harmonic oscillator representation. We will not attempt to
justify the developments leading to those and refer the reader in particular to [175, 181]
for more detailed presentations.

7.1. Spherical harmonics
The spherical harmonics considered in the spherical HO wave functions (B.3) are

conventionally defined as

Y ml
l (θ, ϕ) ≡ (−)ml

√√√√(2l + 1)
4π

(l −ml)!
(l +ml)!

Pml
l (cos θ)eimlϕ, (B.204)

where Pml
l (cos θ) are the associated Legendre polynomials. By definition, the spherical

harmonics satisfy the orthogonality relation∫
d2r̂ Y ml

l (r̂)Y m′l∗
l′ (r̂) = δll′δmlm′l , (B.205)

as well as the so-called addition theorem
∑
ml

Y ml∗
l (r̂)Y ml

l (r̂) = 2l + 1
4π , (B.206)

where we recall the notation for the angular variables, r̂ = (θ, ϕ), and where we have used
the reality condition

Y ml∗
l (r̂) = (−)mlY −mll (r̂). (B.207)

In the calculations, we often met the spherical harmonics (B.204) with their quantum
numbers equal to zero. They simply read

Y 0
0 (r̂) = 1√

4π
. (B.208)

One shows that the spherical harmonics can be written as a product of irreducible
tensors of the form [238]

Y ml
l (r̂) = 1

rl

√√√√ 1
4π

(2l + 1)!
2l(l!)2

[
. . . [[~r ⊗ ~r](2) ⊗ ~r](3) . . .⊗ ~r

]l
ml
. (B.209)

In the particular case l = 1, useful for tensor calculations, this relation brings

Y ml
1 (r̂) = 1

r

√
3

4πr
ml , (B.210)

and in the particular case l = 2, useful for spin–orbit calculations,

Y ml
2 (r̂) = 1

r2

√
15
8π [~r ⊗ ~r](2)

ml
. (B.211)
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Finally, the integral of the product of three spherical harmonics reads

∫
d2r̂ Y mla∗

la
(r̂)Y mlµ∗

lµ
(r̂)Y mlc

lc
(r̂) = (−)mlc

√
(2la + 1)(2lµ + 1)(2lc + 1)

4π

×
(
la lµ lc
0 0 0

)(
la lµ lc
mla mlµ −mlc

)
,

(B.212)

which is non-zero if and only if the conditions

mli ≤ |li| for i ∈ {a, µ, c}, (B.213a)
|la − lc| ≤ lµ ≤ la + lc, (B.213b)
mlµ = −(mla +mlc), (B.213c)

imposed by the above Wigner-3j symbols, denoted by the parentheses, are satisfied.

7.2. Action of the gradient operator in spherical symmetry
We can decompose the action of the gradient operator on the spherical harmonic

oscillator wave functions according to its components in the spherical basis (see definition
(D.14)). Then, each spherical component β = 0,±1 of the gradient operator acts in the
following way on a wave function φr(~r) = φ(n,l)(r)Y ml

l (r̂) [181],

∇βφr(~r) ≡
∑
j=±1

(−)l+ml+β+1
(
l 1 l + j
ml β −ml − β

)
glj(r)φ(n,l)(r)Y ml+β

l+j (r̂), (B.214)

where the operator glj(r) is defined by

glj(r) ≡ j

√
l + 1

2 (j + 1)
[

d
dr − j

l(j − 1)
r

]
. (B.215)

Using the definition of the spherical HO wave functions (B.3), it is not difficult to prove
the recurrence relation

glj(r)φ(n,l)(r) = 1
b

[
a

(n,l)
j φ(n−j,l+j)(r) + c

(n,l)
j φ(n,l+j)(r)

]
, (B.216)

with the coefficients

a
(n,l)
j ≡ −

√(
n− 1

2(j − 1)
)(
l + 1

2(j + 1)
)
,

c
(n,l)
j ≡ −

√(
n+ l + 1

2(j + 1)
)(
l + 1

2 (j + 1)
)
.

(B.217)

Combining equations (B.214) and (B.216) leads to the final form of the gradient formula,
i.e. for β = 0,±1,

∇βφr(~r) = 1
b

∑
j=±1

(−)l+ml+β+1
(
l 1 l + j
ml β −ml − β

)

×
[
a

(n,l)
j φn−j,l+j,ml+β(~r) + c

(n,l)
j φn,l+j,ml+β(~r)

]
.

(B.218)
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7.3. Talman coefficients in spherical symmetry
The Gogny separable development [181] (see section D.3 for a quick presentation)

applied on spherical HO wave functions provides the relation

φ∗ra(~r)φrb(~r) =
∑
rµ

T
(rµ)
(ra)(rb)〈lamla|Y

mlµ∗
lµ
|lbmlb〉φ0(~r)φrµ(~r), (B.219)

where, by definition,

〈lamla|Y
mlµ∗
lµ
|lbmlb〉 ≡

∫
d2r̂ Y mla∗

la
(r̂)Y mlµ∗

lµ
(r̂)Y mlb

lb
(r̂), (B.220)

with the integral over three spherical harmonics given in (B.212), and where it appears a
coefficient called the spherical Talman coefficient, that reads

T
(rµ)
(ra)(rb) = (−)nµN (rµ)

(ra)(rb)
∑
ij

(−)i+j
i!(na − i)!j!(nb − j)!

×
Γ
[

1
2(la + lb + lµ) + i+ j + 3/2

]
Γ
[

1
2(la + lb − lµ) + i+ j + 1

]
Γ[la + i+ 3/2] Γ[lb + j + 3/2] Γ

[
1
2(la + lb − lµ)− nµ + i+ j + 1

] , (B.221)

with

N
(rµ)
(ra)(rb) ≡

[
2π3/2na! Γ[na + la + 3/2]nb! Γ[nb + lb + 3/2]

nµ! Γ[nµ + lµ + 3/2]

]1/2

. (B.222)

The spherical Talman coefficient is non-zero if and only if the following inequalities are
satisfied,

max
(

0, |Na −Nb| − lµ
2

)
≤ nµ ≤

Na +Nb − lµ
2 , (B.223)

with Xa ≡ 2na + la.

7.4. Moshinsky coefficients in spherical symmetry
The Moshinsky transformation allows us to move from the nucleon coordinates (~r1, ~r2)

to the relative and center-of-mass coordinates (~r, ~R), defined as 4

~r ≡ ~r1 − ~r2√
2

, and ~R ≡ ~r1 + ~r2√
2

. (B.224)

The Moshinky transformation applied on spherical HO wave functions furnishes the
relation

φrµ(~r1)φrν (~r2) =
∑
rλrσ

M rλrσ
rµrν φrλ(~R)φrσ(~r), (B.225)

4. This convention is important; another definition of the relative and center-of-mass coordinates
(~r, ~R) would bring a different expression of the Moshinsky coefficient.
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where it appears a coefficient called the spherical Moshinsky coefficient, that reads [175] 5

M rλrσ
rµrν =

∑
rarb

∑
rcrd

(−)Xd
(

1√
2

)Xa+Xb+Xc+Xd
Crµ∗
rarcC

rν∗
rbrd

Crλ
rarb

Crσ
rcrd

, (B.227)

with
Crµ
rarb
≡ (−)na+nb−nµN

(rµ)
(ra)(rb)〈lµmlµ|Y mla

la
|lbmlb〉δXµ,Xa+Xb , (B.228)

where N (rµ)
(ra)(rb) is given by (B.222).

One can show that the spherical Moshinsky coefficient implies

nσ = Xµ +Xν −Xλ − lσ
2 , (B.229)

as well as
mlσ = mlµ +mlν −mlλ, (B.230)

while the range of values taken by rλ is only constrained by mlλ ≤ |lλ|. Thus, the
summation over rσ in (B.225) actually corresponds to a simple summation over lσ.

In the case rλ = 0, the spherical Moshinsky coefficient simplifies according to

M0 rσ
rµrν = (−)lµ−lν+lσ/2

√
4π
(

1√
2

)Xµ+Xν

×
[

2√
π

nσ! Γ(nσ + lσ + 3/2)
nµ! Γ(nµ + lµ + 3/2)nν ! Γ(nν + lν + 3/2)

]1/2

〈lσmlσ|Y
mlµ
lµ
|lνmlν〉,

(B.231)

which implies
nσ = Xµ +Xν − lσ

2 , (B.232)

and
mlσ = mlµ +mlν . (B.233)

In the case rµ = rν = 0, the spherical Moshinsky coefficient reduces to

M rλrσ
0 0 = δrλ,0δrσ ,0. (B.234)

5. In his article about the separable development [181], Gogny uses the convention of Baranger and
Davies [239] for the Moshinsky coefficient. Its Moshinsky coefficient that we call Mrλrσ

rµrν |G, is linked to
ours by the relation

Mrλrσ
rµrν |G = (−)lλ+lσ−mlλMrλrσ

rµrν . (B.226)
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Appendix C
Axial symmetry

« Chaque fois que la science avance d’un pas, c’est qu’un imbécile la
pousse, sans le faire exprès. »

— Émile Zola, La joie de vivre

In this appendix, we deal with the Hartree–Fock–Bogoliubov fields of the generalized
Gogny interaction in a two-center axially symmetric harmonic oscillator representation.
These fields are the building blocks necessary to set up the above-mentioned formalism
and to deduce various quantities of interest. After a brief presentation on the properties
of the axial wave functions and the symmetries of the related fields in the first section,
we derive these latter one by one, including the newly introduced finite-range tensor and
spin–orbit fields, in a second section. The last section essentially recalls some useful
formulas for these calculations.
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C. Axial symmetry 1. Preliminary considerations

3. Formulas for the axial symmetry . . . . . . . . . . . . . . . . . . . . . 388
3.1. Action of the gradient operator in axial symmetry . . . . . . . 388
3.2. Generating functions in axial symmetry . . . . . . . . . . . . 389
3.3. Talman coefficients in axial symmetry . . . . . . . . . . . . . 390

3.3.1. Radial Talman coefficient . . . . . . . . . . . . . . . 390
3.3.2. Talman coefficient relative to the z coordinate . . . 391

3.4. Moshinsky coefficients in axial symmetry . . . . . . . . . . . . 392
3.4.1. Radial Moshinsky coefficient . . . . . . . . . . . . . 392
3.4.2. Moshinsky coefficient relative to the z coordinate . 393

The first section introduces the axial harmonic oscillator (HO) states considered in the
calculations as well as the symmetries of the Hartree–Fock–Bogoliubov (HFB) fields that
will be taken up to simplify the search for their expressions. The second section is devoted
to the derivation of these fields, for both the common central and density-dependent terms
[175, 176], and the newly introduced finite-range tensor and spin–orbit interactions. The
derivation of the central and density-dependent fields is not the focus of this work, but
has the merit of smoothly introducing the methods used to derive the tensor and spin-
orbit fields, while proposing generalized expressions that do not impose time reversal
invariance. We also detail how the integrals involved in the mean- and pairing fields can
be evaluated, analytically or numerically depending on the case. We eventually specify the
new expressions of these fields when time-reversal invariance is imposed (as in the HFB3
code we use in this thesis). For the central and density-dependent fields, we consistently
recover the expressions found by Chappert [17]. Finally, some useful formulas for the
axial symmetry are given in the last section [175, 176].

1. Preliminary considerations

1.1. Axial harmonic oscillator wave functions
As explained, the HFB quasiparticle states will be expanded on a harmonic oscillator

(HO) wave function basis whose states are characterized by the set of quantum numbers

|a〉 = |jaraua〉 = |jamaνatasa〉 = |jaman⊥anzataΩa〉, (C.1)

where the triplet ra = (ma, νa) = (ma, n⊥a, nza) specifies the orbitals of the axial HO, while
the doublet ua = (ta = ±1/2, sa = ±1/2) corresponds to the projections of the spin and
the isospin along the quantization axis, chosen to be Oz, respectively. Equivalently, since
these states display an axial symmetry about Oz, they are eigenstates of the corresponding
total angular momentum Jz. Thus, we can specify our HO state by the projection of Jz,
namely Ωa ≡ ma + sa, rather than by the quantum number sa. As for the quantum
number ja, it defines the shift from the origin, along Oz, of the wave function.

The axially symmetric HO wave function then takes the form

Φa(~r, σ, τ) ≡ 〈~rτσ|a〉 = φjara(~r)ξsa(σ)ζta(τ), (C.2)

where ξsa(σ) and ζta(τ) are the (normalized) spin and isospin wave functions, associated
with σ and τ , the Pauli matrices describing the spin and isospin degrees of freedom,
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respectively, and where the spatial axial wave functions are decomposed, in cylindrical
coordinates ~r = (~r⊥, z) = (r⊥, ϕ, z), into

φjara(~r) ≡ φman⊥a(~r⊥)φjanza(z), (C.3)

The first function is a two-dimensional radial HO wave function, which depends on the
direction ~r⊥ perpendicular to the symmetry axis Oz, and reads

φman⊥a(~r⊥) ≡ 1
b⊥
√
π

[
n⊥a!

(n⊥a + |ma|)!

]1/2

e−r2
⊥/2b

2
⊥

(
r⊥
b⊥

)|ma|
L|ma|n⊥a

(
r2
⊥
b2
⊥

)
eimaϕ, (C.4)

where L|ma|n⊥a
(r2
⊥/b

2
⊥) denotes the generalized Laguerre polynomial. The second function is

an off-center one-dimensional wave function along z that reads

φjanza(z) = φnza(z − dja) ≡
1

(bz
√
π)1/2

1
(2nzanza!)1/2 e−(z−dja )2/2b2

zHnza

(
z − dja
bz

)
, (C.5)

where Hnza((z−dja)/bz) denotes the (off-center) Hermite polynomial. Note that we either
specify the position of the center with the index ja or directly with the distance dja in the
argument of the wave function (but not both at the same time).

We impose the axial HO wave functions to satisfy the orthogonality relation∑
στ

∫
d3rΦ∗a(~r, σ, τ)Φb(~r, σ, τ) = δrarbδsasbδtatb . (C.6)

The oscillator lengths appearing in the HO wave functions are linked to the HO pa-
rameters β⊥ and βz, and the oscillator frequencies ~ω⊥ and ~ωz, by the relations

b⊥ = 1√
β⊥

=
√

~
mω⊥

, (C.7a)

bz = 1√
βz

=
√

~
mωz

, (C.7b)

where m is the mass of the nucleus under study. In the following, we will often meet the
above HO wave functions with their quantum numbers equal to zero. For convenience,
we write them down once and for all,

φ00(~r⊥) = 1
b⊥
√
π

e−r2
⊥/2b

2
⊥ , (C.8a)

φja0(z) = 1
(bz
√
π)1/2 e−(z−dja )2/2b2

z . (C.8b)

Most of the time, we will simply write φja0(~r) = φ00(~r⊥)φja0(z) the corresponding axial
HO wave function, with 0 = (0, 0, 0) as index. At some point, we will also need the radial
HO wave functions without their angular dependence, that is to say the quantities

φ̃|ma|n⊥a(r⊥) ≡ e−imaϕφman⊥a(~r⊥). (C.9)

Finally, we can define the HO wave functions deprived of their exponential, i.e.

φ̂man⊥a(r⊥) ≡ er2
⊥/2b

2
⊥φ̃man⊥a(r⊥), (C.10a)

φ̂janza(z) ≡ e(z−da)2/2b2
zφjanza(z), (C.10b)

where we have additionally removed the angular dependence in the radial wave function
according to (C.9).
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1.2. Properties and symmetries of the harmonic oscillator states
One important property of the harmonic oscillator states (C.1) we are considering is

the way they transform under the time-reversal operator T . By definition, 1

T |a〉 ≡ |a〉 ≡ σa|−a〉, (C.14)

where the factor σa corresponds to the double of the projection of the spin along the Oz
axis according to (D.6), namely σa ≡ 2sa, with the current notations. Note that we have
removed the constant ~ since we do not need to deal with it at this stage. We have also
set

|−a〉 ≡ |ja −man⊥anzata − Ωa〉. (C.15)
Let us now define what we call the simplex operator S,

S ≡ Π e−iπJy , (C.16)

where Π is the parity operator and Jy ≡ Ly + Sy the total angular momentum operator
along Oy, decomposed into orbital Ly and intrinsic Sy momentum operators. The quantity
e−iπJy corresponds to a rotation of an angle π about the Oy axis in full space (coordinate
plus spin spaces). The axial coordinates are then transformed according to (r⊥, ϕ, z) →
(r⊥,−ϕ+ π, z), which has, according to (C.3), the following effect

e−iπLy |jaman⊥anzataΩa〉= (−)ma+nza |ja −man⊥anzataΩa〉. (C.17)

As for the parity operator, it corresponds to a reflection along all coordinates, i.e. in axial
coordinates, to the coordinates transformation (r⊥, ϕ, z) → (r⊥, ϕ + π,−z). With (C.3),
we then get

Π|a〉 = (−)ma+nza |a〉. (C.18)
Combining results (C.12), (C.17) and (C.18), we finally have

S|a〉 = σa|−a〉. (C.19)

Thus, we see that the simplex operator and the time-reversal operator have the same
action of the axial HO states, such that

ST |a〉 ≡ TS−1|a〉 = |a〉, (C.20)

where we have defined the T -simplex operator ST . In other words, the axial HO states
remain invariant under the T -simplex operator, this is a symmetry of the system charac-
terized by its state |a〉.

1. Actually, this result arises naturally if we consider the usual definition of the time-reversal operator,

T ≡ Ke−iπSy , (C.11)

where K is the complex conjugation operator and Sy the spin operator along Oy. On the one hand, using
Euler’s formula in terms of Pauli matrices, we get e−iπSy = −iσy, where σy is the Pauli matrix defined
in (D.2). The matrix representation of σy and |sa〉 directly provides

e−iπSy |sa〉 = σa|−sa〉. (C.12)

On the other hand, the definition of the axial HO wave functions (C.3) brings

K|jamaνatasa〉 = |ja −maνatasa〉. (C.13)

Combining these results, we obtain (C.14).
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C. Axial symmetry 1. Preliminary considerations

1.3. Symmetries of the Hartree–Fock–Bogoliubov fields

Finally we give the symmetries of the HFB fields we have introduced in the previous
subsection. We will indeed exploit these symmetries in the next section to considerably
simplify the calculation of the fields.

First, since we have considered a Bogoliubov transformation (III.1) which preserves
the quantum numbers Ω and t, the density matrices and the pairing tensor defined in
terms of the matrices of this transformation (III.4) themselves preserve these quantum
numbers. In other words, they are diagonal in Ω and t in the chosen basis, what we write
as

ρab = δΩaΩbδtatbρ
taΩa
maνa,mbνb

, (C.21a)
ρab = δΩaΩbδtatbρ

taΩa
maνa,mbνb

, (C.21b)
κab = δΩaΩbδtatbκ

taΩa
maνa,mbνb

, (C.21c)

where we recall that the superscripts identify, in our convention, the conserved quantum
numbers. Plugging these expressions in the various HFB fields, and taking into account
that the nuclear interaction v12 is invariant under a full rotation (in both coordinate and
spin spaces) and under a rotation in the isospin space (see equations (I.7) and (I.11)), we
find out that the fields preserve the quantum numbers Ω and t as well. Explicitly,

Γab = δΩaΩbδtatbΓtaΩa
maνa,mbνb

, (C.22a)
Γab = δΩaΩbδtatbΓtaΩa

maνa,mbνb
, (C.22b)

∆ab = δΩaΩbδtatb∆taΩa
maνa,mbνb

, (C.22c)
∂Γab = δΩaΩbδtatb∂ΓtaΩa

maνa,mbνb
, (C.22d)

∂Γab = δΩaΩbδtatb∂ΓtaΩa
maνa,mbνb

, (C.22e)
∂∆ab = δΩaΩbδtatb∂∆taΩa

maνa,mbνb
, (C.22f)

∂∆ab = δΩaΩbδtatb∂∆taΩa
maνa,mbνb

. (C.22g)

Let us continue by analyzing how the fields transform when their indices are inter-
changed. We start with the mean field (III.37), by noticing that

Γba =
∑
cd>0

[
〈bc|v(a)

12 |ad〉ρdc + 〈bc|v(a)
12 |ad〉ρcd

]
=
∑
cd>0

[
〈bd|v(a)

12 |ac〉ρcd + 〈bd|v(a)
12 |ac〉ρdc

]
=
∑
cd>0

[
〈ac|v(a)

12 |bd〉ρdc + 〈ac|v(a)
12 |bd〉ρcd

]
≡ Γab. (C.23)

From the first to the second line, we have exchanged the dummy indices c and d, and from
the second to the third line, we have used the fact that the two-body matrix elements
are real in the axial HO representation (see (III.16)) and that the density matrices are
symmetric. The result is obviously the same with the other mean field (III.38). Then,
the HFB mean fields are symmetric (under the exchange of their indices).
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As for the pairing field (III.32), we have

∆ba =
∑
cd>0
〈ba|v(a)

12 |cd〉κcd

=
∑
cd>0
〈ba|v(a)

12 |dc〉κdc

=
∑
cd>0
〈ab|v(a)

12 |cd〉κdc. (C.24)

From the first to the second line, we have exchanged the dummy indices c and d, and
from the second to the third line, we have used the facts that the interaction is invariant
under the exchange of the two particles and time-reversal symmetry, and that the two-
body matrix elements are real in the axial HO representation (see (III.14), (III.15) and
(III.16)). We emphasize that the HFB pairing field is not symmetric as the mean fields
are since, in general, the pairing tensor is not symmetric itself, κdc 6= κcd (contrary to the
density matrices). It is only when time-reversal invariance is imposed that the pairing
tensor becomes symmetric and then the pairing field as well.

The rearrangement fields, whether they are associated with mean fields ((III.42) and
(III.43)) or the pairing field ((III.44) and (III.45)), are invariant under the exchange of
their indices, i.e.

∂Γab = ∂Γba, (C.25a)
∂Γab = ∂Γba, (C.25b)
∂∆ab = ∂∆ba, (C.25c)
∂∆ab = ∂∆ba. (C.25d)

Indeed, based on their expressions, they are symmetric if the derivatives ∂v(a)
12 /∂ρba and

∂v
(a)
12 /∂ρba are. They are, since the density matrices are.

2. Derivation of the fields
In this section, we will derive the fields associated with each of the terms of the

generalized Gogny interaction (II.1), in the framework outlined in the above section.
As far as possible, we will try to make the calculations of these fields independent of
one another, so that the reader can follow these notes in the desired order. Nevertheless,
comparisons between the results obtained with the various terms will allow us to highlight
their similarities and differences.

2.1. Central and density-dependent contributions
In this subsection, we shall derive the various fields associated with the finite-range

central and density-dependent terms of the generalized Gogny interaction (II.1). The
antisymmetrized finite-range central and density-dependent (CDD) interactions can be
encompassed in the following expression,

v
CDD,(a)
12 ≡ vCDD

12 (1− PrPσPτ )
= (W +BPσ −HPτ −MPσPτ )V (r12)D[ρ](1− PrPσPτ )
= PDV (r12)D[ρ] + PEV (r12)D[ρ]Pr, (C.26)
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with the Gaussian potential
V (r12) ≡ e−(~r1−~r2)2/µ2

, (C.27)
and the functional of the density, specific to the density-dependent interaction,

D[ρ] ≡ ρα(~r1) + ρα(~r2)
2 , (C.28)

where the local nuclear density is defined in (III.50). The central contributions to the
generalized Gogny interaction are obtained by setting α = 0 above and summing (C.26)
over the central ranges µ1 and µ2. To get the density-dependent term, it suffices to choose
a third range µ3 in (C.26), with α = 1/3. On the other hand, the spin-isospin components
of the direct and exchange CDD fields are respectively

PD ≡ W +BPσ −HPτ −MPσPτ , (C.29a)
PE ≡M +HPσ −BPτ −WPσPτ . (C.29b)

We notice that the direct components of the CDD fields can be deduced from the exchange
ones by replacing W,B,H,M by M,H,B,W and removing the operator Pr. Thus, in the
following, we will start by deriving the exchange CDD fields from which, then, we will
deduce the direct ones.

2.1.1. Central and density-dependent mean fields

We start by deriving the mean field Γ, expressed in (III.37), of the central and density-
dependent interactions (C.26), which is not time-reversal invariant for the moment. Given
that the density matrices (C.21) and the fields (C.22) are diagonal in t and Ω, this CDD
mean field can be written

ΓtΩrarb =
∑
t′Ω′>0
rcrd

[
〈tsara t′scrc|vCDD,(a)

12 |tsbrb t′sdrd〉ρt
′Ω′
rdrc

+ 〈tsara t′scrc|vCDD,(a)
12 |tsbrb t′sdrd〉ρt

′Ω′
rcrd

]
.

(C.30)

Let us first concentrate on the exchange CDD mean field, which reads

ΓtΩrarb|E =
∑
t′Ω′>0
rcrd

[
〈rarc|V (r12)D[ρ]Pr|rbrd〉〈tsa t′sc|PE|tsb t′sd〉ρt

′Ω′
rdrc

+ σcσd〈ra − rc|V (r12)D[ρ]Pr|rb − rd〉〈tsa t′ − sc|PE|tsb t′ − sd〉ρt
′Ω′
rcrd

]
.

(C.31)

Let us try to reduce the range of values taken by the quantum numbers involved in
the above matrix elements. We first assume that Ω > 0 (the case Ω < 0 can easily be
deduced considering the transformation Ω → −Ω). In this case, the projections ma and
mb are positive or zero (because Ω = ma + sa = mb + sb > 0, where sa = ±1/2 and
sb = ±1/2) and differ at most from 1 (if sa = −sb). Then we can set in the following
ma ≡ m and mb ≡ m + λ, with m ≥ 0 and |λ| ≤ 1. Consequently, if we set sa ≡ s, we
will have sb = s−λ, where s = ±1/2. In fact, since Γ is symmetric under the exchange of
its indices (see equation (C.23)), it is enough to restrict ourselves to λ ∈ {0, 1}, the case
λ = −1 being deduced from the case λ = 1 by symmetry.

In the same way, as Ω′ > 0, the projections mc and md are positive or zero (because
Ω′ = mc + sc = md + sd > 0, where sc = ±1/2 and sd = ±1/2) and differ at most from
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1 (if sc = −sd). On the other hand, we know that the central and density-dependent
interactions commute with ~L (and ~S, as they also commute with ~J ; see discussion in
subsection D.6.1). In other words, these interactions must remain invariant under any
rotation in the coordinate space where they behave like scalars. As a consequence, the
projections m of Lz (since Oz is the quantization axis) of the ingoing pair and outgoing
pair must be equal, that is to say

ma +mc = mb +md, in the first matrix element, (C.32a)
ma −mc = mb −md, in the second matrix element. (C.32b)

Therefore, we can set md ≡ m′ and sd ≡ s′, with m′ ≥ 0 and s′ = ±1/2, in the first
matrix element of the above equation, which implies, according to the conservation law,
mc = m′ + λ and sc = s′ − λ. In the second matrix element, we will rather set mc ≡ m′

and sc ≡ s′, which implies md = m′ + λ and sd = s′ − λ. The reason for this particular
choice will appear later; it allows to simplify the final expression of the direct CDD mean
field (see equation (C.41)).

With these notations, the exchange CDD mean field becomes

ΓtΩ=m+s
mνa,m+λ νb|E =

∑
t′Ω′>0
m′νcνd

×
[
〈mνa m′ + λ νc|V (r12)D[ρ]Pr|m+ λ νb m

′νd〉

× 〈ts t′s′ − λ|PE|ts− λ t′s′〉ρt
′m′+s′
m′νd,m′+λ νc

+ 4s′(s′ − λ)〈mνa −m′νc|V (r12)D[ρ]Pr|m+ λ νb − (m′ + λ) νd〉
× 〈ts t′ − s′|PE|ts− λ t′ − (s′ − λ)〉ρt′m′+s′m′νc,m′+λ νd

]
.

(C.33)

Let us first focus on the spin-isospin part. We set

X
(+)tsλ
Ω′m′νdνc |E ≡

∑
t′
〈ts t′s′ − λ|PE|ts− λ t′s′〉ρt

′m′+s′
m′νd,m′+λ νc , (C.34a)

X
(−)tsλ
Ω′m′νcνd |E ≡

∑
t′

4s′(s′ − λ)〈ts t′ − s′|PE|ts− λ t′ − (s′ − λ)〉ρt′m′+s′m′νc,m′+λ νd , (C.34b)

in the first and second matrix elements respectively. Using the expression of PE, given by
(C.29), we can evaluate the above spin-isospin matrix elements. We find

X
(+)tsλ
Ω′m′νdνc |E =

∑
t′

[
(M −Bδtt′)δλ,0 + (H −Wδtt′)δss′

]
ρt
′m′+s′
m′νd,m′+λ νc , (C.35a)

X
(−)tsλ
Ω′m′νcνd |E =

∑
t′

[
(M −Bδtt′)δλ,0 + (H −Wδtt′)(1− 4sλ)δs+s′,λ

]
ρt
′m′+s′
m′νc,m′+λ νd . (C.35b)

Now, setting

R
(+)tsλ
m′νdνc

|E ≡
∑
Ω′

Θ(Ω′)X(+)tsλ
Ω′m′νdνc|E =

∑
s′=±s

Θ(m′ + s′)X(+)tsλ
m′+s′m′νdνc |E, (C.36a)

R
(−)tsλ
m′νcνd

|E ≡
∑
Ω′

Θ(Ω′)X(−)tsλ
Ω′m′νcνd|E =

∑
s′=±s

Θ(m′ + s′)X(−)tsλ
m′+s′m′νcνd|E, (C.36b)
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we end up with

R
(+)tsλ
m′νdνc

|E =
∑
t′

{
Θ(m′ + s)

[
(M −Bδtt′)δλ,0 + (H −Wδtt′)

]
ρt
′m′+s
m′νd,m′+λ νc

+ Θ(m′ − s)(M −Bδtt′)δλ,0ρt
′m′−s
m′νd,m′+λ νc

}
,

R
(−)tsλ
m′νcνd

|E =
∑
t′

{
Θ(m′ + s)

[
(M −Bδtt′)δλ,0 − (H −Wδtt′)δλ,2s

]
ρt
′m′+s
m′νc,m′+λ νd

+ Θ(m′ − s)
[
H +M − (W +B)δtt′

]
δλ,0ρ

t′m′−s
m′νc,m′+λ νd

}
,

(C.37a)

(C.37b)

and the exchange CDD mean field can be written

ΓtΩ=m+s
mνa,m+λ νb|E =

∑
m′≥0
νcνd

[
〈mνa m′ + λ νc|V (r12)F [ρ]|m′νd m+ λ νb〉R(+)tsλ

m′νdνc
|E

+ 〈mνa −m′νc|V (r12)D[ρ]|−(m′ + λ) νd m+ λ νb〉R(−)tsλ
m′νcνd

|E
]
,

(C.38)

where we have replaced the summations
∑
m′

∑
Ω′>0

by
∑
m′≥0

∑
Ω′

Θ(Ω′) and applied the operator

Pr.
To get the direct CDD mean field out of the exchange one, it suffices to exchange

W,B,H,M by M,H,B,W and omit the operator Pr. The latter is therefore

ΓtΩ=m+s
mνa,m+λ νb|D =

∑
m′≥0
νcνd

[
〈mνa m′ + λ νc|V (r12)D[ρ]|m+ λ νb m

′νd〉R(+)tsλ
m′νdνc

|D

+ 〈mνa −m′νd|V (r12)D[ρ]|m+ λ νb − (m′ + λ) νc〉R(−)tsλ
m′νdνc

|D
]
,

(C.39)

where we have switched the dummy indices νc and νd in the second matrix element of the
right-hand side term. The quantities appearing in the direct CDD mean field are

R
(+)tsλ
m′νdνc

|D =
∑
t′

{
Θ(m′ + s)

[
(W −Hδtt′)δλ,0 + (B −Mδtt′)

]
ρt
′m′+s
m′νd,m′+λ νc

+ Θ(m′ − s)(W −Hδtt′)δλ,0ρt
′m′−s
m′νd,m′+λ νc

}
,

R
(−)tsλ
m′νdνc

|D =
∑
t′

{
Θ(m′ + s)

[
(W −Hδtt′)δλ,0 − (B −Mδtt′)δλ,2s

]
ρt
′m′+s
m′νd,m′+λ νc

+ Θ(m′ − s)
(
W +B − (H +M)δtt′

)
δλ,0ρ

t′m′−s
m′νd,m′+λ νc

}
.

(C.40a)

(C.40b)

Now, by writing down the two spatial matrix elements involved in the direct CDD mean
field, we notice that they are equal, because of the expression of the axial wave functions
(C.3) and the fact that they commute with the quantity V (r12)D[ρ]. This is the reason
for our particular choice discussed above (see discussion after (C.31)). The direct CDD
mean field is then simplified according to

ΓtΩ=m+s
mνa,m+λ νb|D =

∑
m′≥0
νcνd

〈mνa m′ + λ νc|V (r12)D[ρ]|m+ λ νb m
′νd〉Rtsλ

m′νdνc
|D, (C.41)
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where we have
Rtsλ
m′νdνc

|D ≡ R
(+)tsλ
m′νdνc

|D +R
(−)tsλ
m′νdνc

|D, (C.42)
that is to say,

Rtsλ
m′νdνc

|D =
∑
t′

{
Θ(m′ + s)

[(
(W −Hδtt′)δλ,0 + (B −Mδtt′)

)
ρt
′m′+s
m′νd,m′+λ νc

+
(
(W −Hδtt′)δλ,0 − (B −Mδtt′)δλ,2s

)
ρt
′m′+s
m′νd,m′+λ νc

]
+ Θ(m′ − s)δλ,0

[
(W −Hδtt′)ρt

′m′−s
m′νd,m′+λ νc

+
(
W +B − (H +M)δtt′

)
ρt
′m′−s
m′νd,m′+λ νc

]}
.

(C.43)

From the boxed equations, we can now explicitly write down the expressions of the
direct and exchange CDD mean fields Γ for each value of λ. We recall that these fields
are not time-reversal invariant. Note also that if λ = 1, then s = 1/2 since the identity
sb ≡ s− 1 = ±1/2 holds only if s = 1/2.
• Exchange CDD mean field Γ for λ = 0:

ΓtΩ=m+s
mνa,mνb

|E =
∑
m′≥0
νcνd

[
〈mνa m′νc|V (r12)D[ρ]|m′νd mνb〉R(+)ts0

m′νdνc
|E

+ 〈mνa −m′νc|V (r12)D[ρ]|−m′νd mνb〉R(−)ts0
m′νcνd

|E
]
,

(C.44)

where

R
(+)ts0
m′νdνc

|E =
∑
t′

[
Θ(m′ + s)

(
H +M − (W +B)δtt′

)
ρt
′m′+s
m′νd,m′νc

+ Θ(m′ − s)(M −Bδtt′)ρt
′m′−s
m′νd,m′νc

]
,

R
(−)ts0
m′νcνd

|E =
∑
t′

[
Θ(m′ + s)(M −Bδtt′)ρt

′m′+s
m′νc,m′νd

+ Θ(m′ − s)
(
H +M − (W +B)δtt′

)
ρt
′m′−s
m′νc,m′νd

]
.

(C.45a)

(C.45b)

• Direct CDD mean field Γ for λ = 0:
ΓtΩ=m+s
mνa,mνb

|D =
∑
m′≥0
νcνd

〈mνa m′νc|V (r12)D[ρ]|mνb m′νd〉Rts0
m′νdνc

|D, (C.46)

where

Rts0
m′νdνc

|D =
∑
t′

[
Θ(m′ + s)ρt′m′+sm′νd,m′νc

+ Θ(m′ − s)ρt′m′−sm′νd,m′νc

]
×
(
W +B − (H +M)δtt′

)
+
[
Θ(m′ + s)ρt′m′+sm′νd,m′νc

+ Θ(m′ − s)ρt′m′−sm′νd,m′νc

]
(W −Hδtt′),

(C.47)

Let us note that the quantities R(±)ts0|E and Rts0|D are symmetric under the exchange of
νc and νd since the density matrices ρ and ρ are symmetric (under the exchange of their
indices) and diagonal in m′.
• Exchange CDD mean field Γ for λ = 1:
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ΓtΩ=m+1/2
mνa,m+1 νb |E =

∑
m′≥0
νcνd

[
〈mνa m′ + 1 νc|V (r12)D[ρ]|m′νd m+ 1 νb〉R(+)t1/2 1

m′νdνc
|E

+ 〈mνa −m′νc|V (r12)D[ρ]|−(m′ + 1) νd m+ 1 νb〉R(−)t1/2 1
m′νcνd

|E
]
,

(C.48)

where
R

(+)t1/2 1
m′νdνc

|E =
∑
t′

(H −Wδtt′)ρt
′m′+1/2
m′νd,m′+1 νc ,

R
(−)t1/2 1
m′νcνd

|E = −
∑
t′

(H −Wδtt′)ρt
′m′+1/2
m′νc,m′+1 νd .

(C.49a)

(C.49b)

• Direct CDD mean field Γ for λ = 1:

ΓtΩ=m+1/2
mνa,m+1 νb|D =

∑
m′≥0
νcνd

〈mνa m′ + 1 νc|V (r12)D[ρ]|m+ 1 νb m′νd〉Rt1/2 1
m′νdνc

|D, (C.50)

where
R
t1/2 1
m′νdνc

|D =
∑
t′

(B −Mδtt′)
[
ρ
t′m′+1/2
m′νd,m′+1 νc − ρ

t′m′+1/2
m′νd,m′+1 νc

]
. (C.51)

This time, the quantities R(±)t1/2 1|E and Rt1/2 1|D are not symmetric under the exchange
of νc and νd since the density matrices ρ and ρ are not diagonal in m′, though symmetric.

The CDD mean field Γ can easily be deduced by exchanging ρ and ρ in the expressions
of the CDD mean field Γ, as we notice by comparing the expressions of the mean fields
(III.37) and (III.38). We can see that only the quantities R(±) are impacted by this
transformation. We will call them R(±) in the following. It turns out that there exists
some straight relations between the quantities R(±) and R(±) for the CDD interactions.
They read

R
(±)ts0
m′νdνc

|E = R
(∓)t−s0
m′νdνc

|E,

R
ts0
m′νdνc

|D = Rt−s0
m′νdνc

|D,

R
(±)t1/2 1
m′νdνc

|E = −R(∓)t1/2 1
m′νdνc

|E,

R
t1/2 1
m′νdνc

|D = −Rt1/2 1
m′νdνc

|D,

(C.52a)
(C.52b)

(C.52c)

(C.52d)

as we can deduce from (C.45), (C.47), (C.49) and (C.51). Accordingly, we can explicitly
write down the expressions of the direct and exchange CDD mean fields Γ for each value
of λ. We recall that these fields are not time-reversal invariant. Note also that if λ = 1,
then s = 1/2 since the identity sb ≡ s− 1 = ±1/2 holds only if s = 1/2.
• Exchange CDD mean field Γ for λ = 0:

ΓtΩ=m+s
mνa,mνb

|E =
∑
m′≥0
νcνd

[
〈mνa m′νc|V (r12)D[ρ]|m′νd mνb〉R(−)t−s0

m′νdνc
|E

+ 〈mνa −m′νc|V (r12)D[ρ]|−m′νd mνb〉R(+)t−s0
m′νcνd

|E
]
,

(C.53)

where the quantities R(±)ts0|E are given by (C.45).

• Direct CDD mean field Γ for λ = 0:
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ΓtΩ=m+s
mνa,mνb

|D =
∑
m′≥0
νcνd

〈mνa m′νc|V (r12)D[ρ]|mνb m′νd〉Rt−s0
m′νdνc

|D, (C.54)

where the quantity Rts0|D is given by (C.47).
• Exchange CDD mean field Γ for λ = 1:

ΓtΩ=m+1/2
mνa,m+1 νb|E = −

∑
m′≥0
νcνd

[
〈mνa m′ + 1 νc|V (r12)D[ρ]|m′νd m+ 1 νb〉R(−)t1/2 1

m′νdνc
|E

+ 〈mνa −m′νc|V (r12)D[ρ]|−(m′ + 1) νd m+ 1 νb〉R(+)t1/2 1
m′νcνd

|E
]
,

(C.55)

where the quantities R(±)t1/2 1|E are given by (C.49).
• Direct CDD mean field Γ for λ = 1:

ΓtΩ=m+1/2
mνa,m+1 νb|D = −

∑
m′≥0
νcνd

〈mνa m′ + 1 νc|V (r12)D[ρ]|m+ 1 νb m′νd〉Rt1/2 1
m′νdνc

|D, (C.56)

where the quantity Rt1/2 1|D is given by (C.51).
We observe that the same quantities R appear in both Γ and Γ mean fields. Thus,

the remarks concerning their symmetries made before remain valid, and the fields can be
calculated simultaneously in an HFB code.

Time-reversal invariant mean fields
Now, we assume the time-reversal invariance of the CDD mean fields Γ and Γ, i.e. we

set ρ = ρ. In this case, we have R(±) = R(±), so that the mean fields coincide, Γ = Γ.
They simplify according to the following expressions, where the notation |T identifies the
time-reversal invariant quantities.

The exchange CDD mean fields, (C.38) and the corresponding field Γ, become

ΓtΩ=m+s
mνa,m+λ νb|

T
E =

∑
m′≥0
νcνd

[
〈mνa m′ + λ νc|V (r12)D[ρ]|m′νd m+ λ νb〉R(+)tsλ

m′νdνc
|TE

+ 〈mνa −m′νc|V (r12)D[ρ]|−(m′ + λ) νd m+ λ νb〉R(−)tsλ
m′νcνd

|TE
]
,

(C.57)

where the quantities (C.37) simplify according to

R
(+)tsλ
m′νdνc

|E =
∑
t′

{
Θ(m′ + s)

[
(M −Bδtt′)δλ,0 + (H −Wδtt′)

]
ρt
′m′+s
m′νd,m′+λ νc

+ Θ(m′ − s)(M −Bδtt′)δλ,0ρt
′m′−s
m′νd,m′+λ νc

}
,

R
(−)tsλ
m′νcνd

|E =
∑
t′

{
Θ(m′ + s)

[
(M −Bδtt′)δλ,0 − (H −Wδtt′)δλ,2s

]
ρt
′m′+s
m′νc,m′+λ νd

+ Θ(m′ − s)
(
H +M − (W +B)δtt′

)
ρt
′m′−s
m′νc,m′+λ νd

}
.

(C.58a)

(C.58b)

In a similar way, the direct CDD mean fields, (C.41) and the corresponding field Γ, become

ΓtΩ=m+s
mνa,m+λ νb|

T
D =

∑
m′≥0
νcνd

〈mνa m′ + λ νc|V (r12)D[ρ]|m+ λ νb m
′νd〉Rtsλ

m′νdνc
|TD, (C.59)
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where the quantity (C.43) simplifies according to

Rtsλ
m′νdνc

|TD =
∑
t′

×
{

Θ(m′ + s)
[
2(W −Hδtt′)δλ,0 + (B −Mδtt′)(1− δλ,2s)

]
ρt
′m′+s
m′νd,m′+λ νc

+ Θ(m′ − s)δλ,0
[
2W +B − (2H +M)δtt′

]
ρt
′m′−s
m′νd,m′+λ νc

}
.

(C.60)

From the boxed equations, we can now explicitly write down the expressions of the
time-reversal invariant direct and exchange CDD mean field for each value of λ. Note
also that if λ = 1, then s = 1/2 since the identity sb ≡ s−1 = ±1/2 holds only if s = 1/2.
• Time-reversal invariant exchange CDD mean field for λ = 0:

ΓtΩ=m+s
mνa,mνb

|TE =
∑
m′≥0
νcνd

[
〈mνa m′νc|V (r12)D[ρ]|m′νd mνb〉Rts0

m′νdνc
|TE

+ 〈mνa −m′νc|V (r12)D[ρ]|−m′νd mνb〉Rt−s0
m′νdνc

|TE
]
,

(C.61)

where we have set
Rts0
m′νdνc

|TE ≡ R
(+)ts0
m′νdνc

|TE = R
(−)t−s0
m′νdνc

|TE, (C.62)
that is to say,

Rts0
m′νdνc

|TE =
∑
t′

[
Θ(m′ + s)

(
H +M − (W +B)δtt′

)
ρt
′m′+s
m′νd,m′νc

+ Θ(m′ − s)(M −Bδtt′)ρt
′m′−s
m′νd,m′νc

]
.

(C.63)

• Time-reversal invariant direct CDD mean field Γ for λ = 0:
ΓtΩ=m+1/2
mνa,mνb

|TD =
∑
m′≥0
νcνd

〈mνa m′νc|V (r12)D[ρ]|mνb m′νd〉Rt0
m′νdνc

|TD, (C.64)

with
Rt0
m′νdνc

|TD =
∑
t′

(
2W +B − (2H +M)δtt′

)
×
[
ρ
t′m′+1/2
m′νd,m′νc

+ Θ(m′ − 1/2)ρt
′m′−1/2
m′νd,m′νc

]
,

(C.65)

where we have removed the superscript s in the above quantity since it does not depend
on its particular value, and then set s = 1/2 in the CDD mean field. We notice that the
quantities Rts0|TE and Rt0|TD are symmetric under the exchange of νc and νd as they already
are when time-reversal invariance is not yet imposed. In particular, this symmetry was
used to exchange the indices of the quantity Rt−s0|TE appearing in (C.61).
• Time-reversal invariant exchange CDD mean field Γ for λ = 1:

ΓtΩ=m+1/2
mνa,m+1 νb|

T
E =

∑
m′≥0
νcνd

[
〈mνa m′ + 1 νc|V (r12)D[ρ]|m′νd m+ 1 νb〉Rt1/2 1

m′νdνc
|TE

− 〈mνa −m′νc|V (r12)D[ρ]|−(m′ + 1) νd m+ 1 νb〉Rt1/2 1
m′νcνd

|TE
]
,

(C.66)

where we have set
R
t1/2 1
m′νdνc

|TE ≡ R
(+)t1/2 1
m′νdνc

|TE = −R(−)t1/2 1
m′νdνc

|TE, (C.67)
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that is to say,
R
t1/2 1
m′νdνc

|TE =
∑
t′

(H −Wδtt′)ρt
′m′+1/2
m′νd,m′+1 νc . (C.68)

We notice that the quantity Rt1/2 1
m′νdνc

|TE is not symmetric under the exchange of νc and νd
since the density matrix ρ is not diagonal in m′, though symmetric.
• Time-reversal invariant direct CDD mean field Γ for λ = 1:

ΓtΩ=m+1/2
mνa,m+1 νb|

T
D = 0 (C.69)

since we have
R
t1/2 1
m′νdνc

|TD = 0. (C.70)

These expressions show that the direct mean field is always easier to calculate than
the exchange one, especially when time-reversal invariance is demanded. This is one of
the main reasons why zero-range effective interactions, in which the exchange field has the
same form as the direct field, are widely used in the literature. We note that we recover
the expressions of the time-reversal invariant mean fields obtained by Chappert [17].

2.1.2. Central and density-dependent pairing field

We continue by deriving the pairing field (III.32) of the central and density-dependent
interaction (C.26), which is not time-reversal invariant for the moment. Given that the
pairing tensor (C.21) and the fields (C.22) are diagonal in t and Ω, this CDD pairing field
can be written

∆tΩ
rarb

=
∑
t′Ω′>0
rcrd

〈tsara tsbrb|vCDD,(a)
12 |t′scrc t′sdrd〉κt

′Ω′
rcrd

. (C.71)

As for the CDD mean fields, let us first concentrate on the exchange component of
the CDD pairing field. It reads

∆tΩ
rarb
|E =

∑
t′Ω′>0
rcrd

〈ra − rb|V (r12)D[ρ]Pr|rc − rd〉

× σbσd〈tsa t− sb|PE|t′sc t′ − sd〉κt
′Ω′
rcrd

.

(C.72)

We name the quantum numbers of the above matrix element in the same way as we have
done for the second matrix element of the CDD mean field (C.33), while keeping in mind
that here λ ∈ {−1, 0, 1} since the pairing field is not symmetric under the exchange of its
indices, contrary to the mean field (see equation (C.24) and the discussion below). With
these notations, the exchange CDD pairing field becomes

∆tΩ=m+s
mνa,m+λ νb|E =

∑
t′Ω′>0
m′νcνd

〈mνa − (m+ λ) νb|V (r12)D[ρ]Pr|m′νc − (m′ + λ) νd〉

× 4(s− λ)(s′ − λ)〈ts t− (s− λ)|PE|t′s′ t′ − (s′ − λ)〉κt′m′+s′m′νc,m′+λ νd .

(C.73)

Once again, let us first focus on the spin-isospin part. We set

AtsλΩ′m′νcνd |E ≡
∑
t′

4(s− λ)(s′ − λ)〈ts t− (s− λ)|PE|t′s′ t′ − (s′ − λ)〉

× κt′m′+s′m′νc,m′+λ νd ,
(C.74)
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Using the expression of PE, given by (C.29), we can evaluate the above spin-isospin matrix
elements. Taking into account the sum over t, we find

AtsλΩ′m′νcνd|E =
[
(M −B)δss′ + (W −H)(1− 4sλ)δλ,s+s′

]
κtm

′+s′
m′νc,m′+λ νd , (C.75)

Now, setting

Stsλm′νcνd |E ≡
∑
Ω′

Θ(Ω′)AtsλΩ′m′νcνd |E =
∑
s′=±s

Θ(m′ + s′)Atsλm′+s′m′νcνd |E, (C.76)

we end up with

Stsλm′νcνd|E = Θ(m′ + s)
[
(M −B) + (H −W )δλ,2s

]
κtm

′+s
m′νc,m′+λ νd

−Θ(m′ − s)δλ,0(H −W )κtm′−sm′νc,m′+λ νd ,
(C.77)

and the exchange CDD pairing field can be written

∆tΩ=m+s
mνa,m+λ νb|E =

∑
m′≥0
νcνd

× 〈mνa − (m+ λ) νb|V (r12)D[ρ]|−(m′ + λ) νd m′νc〉Stsλm′νcνd |E,
(C.78)

where, as for the CDD mean fields, we have simply replaced the summations
∑
m′

∑
Ω′>0

by
∑
m′≥0

∑
Ω′

Θ(Ω′) and applied the operator Pr. Now, writing the above matrix element

under its integral form, we see that it is equivalent, because of the expression of the
axial wave functions (C.3) and the fact that they commute with the quantity V (r12)D[ρ],
to 〈mνa −m′νc|V (r12)D[ρ]|−(m′ + λ) νd (m+ λ) νb〉. Thus, the exchange CDD pairing
field reads

∆tΩ=m+s
mνa,m+λ νb|E =

∑
m′≥0
νcνd

× 〈mνa −m′νc|V (r12)D[ρ]|−(m′ + λ) νd (m+ λ) νb〉Stsλm′νcνd |E.
(C.79)

To get the direct CDD pairing field out of the exchange one, we first exchange
W,B,H,M by M,H,B,W and omit the operator Pr to obtain

∆tΩ=m+s
mνa,m+λ νb|D =

∑
m′≥0
νcνd

× 〈mνa − (m+ λ) νb|V (r12)D[ρ]|m′νc − (m′ + λ) νd〉Stsλm′νcνd |D.
(C.80)

Just like we have done with the exchange term, we notice that the matrix element can
be written 〈mνa (m+ λ) νd|V (r12)D[ρ]|m′νc (m+ λ) νb〉. Finally exchanging the dummy
indices νc and νd, the direct CDD pairing field becomes

∆tΩ=m+s
mνa,m+λ νb|D =

∑
m′≥0
νcνd

× 〈mνa (m′ + λ) νc|V (r12)D[ρ]|m′νd (m+ λ) νb〉Stsλm′νdνc |D,
(C.81)
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where
Stsλm′νdνc |D = Θ(m′ + s)

[
(W −H) + (B −M)δλ,2s

]
κtm

′+s
m′νd,m′+λ νc

−Θ(m′ − s)δλ,0(B −M)κtm′−sm′νd,m′+λ νc .
(C.82)

Finally, the full CDD pairing field (direct plus exchange components) can be written
as

∆tΩ=m+s
mνa,m+λ νb =

∑
m′≥0
νcνd

×
[
〈mνa m′ + λ νc|V (r12)D[ρ]|m′νd m+ λ νb〉Stsλm′νdνc|D

+ 〈mνa −m′νc|V (r12)D[ρ]|−(m′ + λ) νd m+ λ νb〉Stsλm′νcνd |E
]
.

(C.83)

We see that the pairing field has the same structure as the exchange mean field (C.38).
This is the reason for our specific transformations leading to (C.79) and (C.81). Indeed,
the pairing fields can therefore be calculated simultaneously with the exchange mean fields
in an HFB code.

From the boxed equations, we can now explicitly write down the expressions of the
above CDD pairing field for each value of λ. We recall that this field is not time-reversal
invariant. We also note that if |λ| = 1, then λ = 2s as we deduce from sb ≡ s−λ = ±1/2
when λ 6= 0.
• CDD pairing field for λ = 0:

∆tΩ=m+s
mνa,mνb

=
∑
m′≥0
νcνd

[
〈mνa m′νc|V (r12)D[ρ]|m′νd mνb〉Sts0m′νdνc

+ 〈mνa −m′νc|V (r12)D[ρ]|−m′νd mνb〉St−s0m′νcνd

]
,

(C.84)

where we have set
Sts0m′νdνc

≡ Sts0m′νdνc
|D = St−s0m′νdνc

|E, (C.85)

with

Sts0m′νcνd
= Θ(m′ + s)(W −H)κtm′+sm′νc,m′νd

−Θ(m′ − s)(B −M)κtm′−sm′νc,m′νd
. (C.86)

• CDD pairing field for |λ| = 1:

∆tΩ=m+s
mνa,m+2s νb =

∑
m′≥0
νcνd

[
〈mνa m′ + 2s νc|V (r12)D[ρ]|m′νd m+ 2s νb〉Sts 2s

m′νdνc

− 〈mνa −m′νc|V (r12)D[ρ]|−(m′ + 2s) νd m+ 2s νb〉Sts 2s
m′νcνd

]
,

(C.87)

where we have set
Sts 2s
m′νdνc

≡ Sts 2s
m′νdνc

|D = −Sts 2s
m′νdνc

|E, (C.88)

with
Sts 2s
m′νcνd

= Θ(m′ + s)(W +B −H −M)κtm′+sm′νc,m′+2s νd . (C.89)

Note that the quantities Sts0 and Sts 2s are not symmetric under the exchange of νd and
νc since the pairing tensor κ is not.
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Time-reversal invariant fields
Now, we assume the time-reversal invariance of the CDD pairing field, i.e. the pairing

tensor κ becomes symmetric under the exchange of its indices. Then, the pairing field
becomes symmetric (see discussion below equation (C.24)) and it suffices to consider its
expression for λ ∈ {0, 1}. If λ = 1, then s = 1/2 since the identity sb ≡ s − 1 = ±1/2
holds only if s = 1/2.
• Time-reversal invariant CDD pairing field for λ = 0:

∆tΩ=m+s
mνa,mνb

|T =
∑
m′≥0
νcνd

[
〈mνa m′νc|V (r12)D[ρ]|m′νd mνb〉Sts0m′νdνc

+ 〈mνa −m′νc|V (r12)D[ρ]|−m′νd mνb〉St−s0m′νdνc

]
,

(C.90)

where the quantity Sts0 is given in (C.86). This time, this quantity is symmetric under
the exchange of νc and νd since the pairing tensor is symmetric and diagonal in m′.
• Time-reversal invariant CDD pairing field for λ = 1:

∆tΩ=m+1/2
mνa,m+1 νb|

T =
∑
m′≥0
νcνd

[
〈mνa m′ + 1 νc|V (r12)D[ρ]|m′νd m+ 1 νb〉St1/2 1

m′νdνc

− 〈mνa −m′νc|V (r12)D[ρ]|−(m′ + 1) νd m+ 1 νb〉St1/2 1
m′νcνd

]
,

(C.91)

where
S
t1/2 1
m′νcνd

= (W +B −H −M)κtm
′+1/2

m′νc,m′+1 νd . (C.92)

The quantity St1/2 1 is not symmetric under the exchange of νc and νd since the pairing
tensor κ is not diagonal inm′, though symmetric. We note that we recover the expressions
of the time-reversal invariant pairing fields obtained by Chappert [17].

2.1.3. Central and density-dependent spatial matrix elements

In the previous subsection, we have treated the spin-isospin parts of the central and
density-dependent mean- and pairing fields. In order to fully specify these fields, it remains
to determine their spatial parts, which we now undertake.

Identifying the position of the centers by the quantum numbers j, the spatial depen-
dence of the CDD fields lies in the two-body matrix elements of the form

vjajcjbjdrarcrbrd
≡ 〈jara jcrc|V (r12)D[ρ]|jbrb jdrd〉. (C.93)

By expliciting the functional of the density (C.28), we get

vjajcjbjdrarcrbrd
= 1

2

∫
d3r1

∫
d3r2

× φ∗jara(~r1)φ∗jcrc(~r2)V (r12)
[
ρα(~r1) + ρα(~r2)

]
φjbrb(~r1)φjdrd(~r2).

(C.94)

Since the wave functions and the sandwiched quantity commute, we can rearrange the
terms and break the integral into two parts, according to

vjajcjbjdrarcrbrd
= 1

2

∫
d3r1

∫
d3r2 V (r12)

[
ρα(~r1)φ∗jara(~r1)φjbrb(~r1)φ∗jcrc(~r2)φjdrd(~r2)

+ ρα(~r2)φ∗jara(~r1)φjbrb(~r1)φ∗jcrc(~r2)φjdrd(~r2)
]
.

(C.95)
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Now, using twice the Gogny separable development in axial symmetry (C.495), on ~r1
coordinates in the first integral and on ~r2 coordinates in the second one, we find

vjajcjbjdrarcrbrd
= 1

2

∫
d3r1

∫
d3r2 V (r12)

×
[
ρα(~r1)φ∗jara(~r1)φjbrb(~r1)

∑
rµ

T
rµ
jcrc jdrd

φjcd0(~r2)φjcdrµ(~r2)

+ ρα(~r2)φ∗jcrc(~r2)φjdrd(~r2)
∑
r′µ

T
r′µ
jara jbrb

φjab0(~r1)φjabr′µ(~r1)
]
.

(C.96)

Now, we switch the coordinates ~r1 and ~r2 in the second integral, taking into account the
fact that the potential V (r12) is central. Setting ~r ≡ ~r1 as well as ~r ′ ≡ ~r2, we finally
obtain

vjajcjbjdrarcrbrd
= 1

2

∫
d3r ρα(~r)

[
φ∗jara(~r)φjbrb(~r)

∑
rµ

T
rµ
jcrc jdrd

Gjcdrµ(~r)

+ φ∗jcrc(~r)φjdrd(~r)
∑
r′µ

T
r′µ
jara jbrb

Gjabr′µ(~r)
]
,

(C.97)

where we have set
Gjrµ(~r) ≡

∫
d3r′ V (|~r − ~r ′|)φj0(~r ′)φjrµ(~r ′), (C.98)

that we will now try to evaluate. Since the wave functions and the potential can be
separated along their r⊥ and z parts, we can separate the above quantity in the same
way, according to

Gjrµ(~r) = G(2)
mµn⊥µ

(~r⊥)G(1)
jnzµ(z), (C.99)

where
G(N)
µ (~u) ≡

∫
dNu′ e−(~u−~u′)2/µ2

CDDφ0(~u ′ − ~d)φµ(~u ′ − ~d), (C.100)

with the condensed notation

φµ(~u ′ − ~d) ≡

φmµn⊥µ(~r⊥) for N = 2,
φnzµ(z − dj) for N = 1.

(C.101)

Note that the range of the central and density-dependent terms has been dubbed µCDD
to avoid confusions with the set of quantum numbers µ = (mµ, n⊥µ, nzµ). By means of
the fundamental relation linking the wave functions to their generating functions in N
dimensions (C.485), we can evaluate (C.100) for both N = 1 and N = 2 cases. Indeed,
by expliciting the wave functions, we get

∑
µ

χ∗µ(~t)G(N)
µ (~u) =

(
β

π

)N/2 ∫
dNu′ e−(~u−~u′)2/µ2

CDDe−β(~u′−~d)2+2
√
β~t·(~u′−~d)−t2 . (C.102)

Let us now complete the square of the argument of the exponential appearing in the
integral above. It reads, after simplifications,

−

 1
gµCDD

~u ′−gµCDD

(
~u

µ2
CDD

+β~d+
√
β~t

)2

−βg2(~u− ~d)2+2
√
βg2~t·(~u− ~d)−g2t2, (C.103)

where we have defined
g ≡ 1√

1 + βµ2
CDD

. (C.104)
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Setting ~v ≡ (1/gµCDD)~u ′ − gµ(~u/µ2
CDD + β~d+

√
β~t), the Gauss integral (D.118) over this

new variable furnishes

∑
µ

χ∗µ(~t)G(N)
µ (~u) =

(
β

π

)N/2
πN/2(gµCDD)Ne−βg2(~u−~d)2+2

√
βg2~t·(~u−~d)−g2t2 . (C.105)

Now, applying the fundamental relation (C.485) again, but in reverse order, considering
an off-centered wave function, namely using,

∑
µ

χ∗µ(~t)φµ
(
g(~u− ~d)

)
=
(
β

π

)N/4
e−βg2(~u−~d)2/2+2

√
βg2(~u−~d)−g2t2 , (C.106)

we find

∑
µ

χ∗µ(~t)G(N)
µ (~u) =

(
β

π

)N/4
πN/2(gµCDD)Ne−βg2(~u−~d)2/2∑

µ

χ∗µ(~t)φµ
(
g(~u− ~d)

)
, (C.107)

such that, with the definition (C.8) and the first property of (C.491),

∑
µ

χ∗µ(~t)G(N)
µ (~u) = (gµCDD

√
π)Nφ0

(
g(~u− ~d)

)∑
µ

gXµχ∗µ(~t)φµ
(
g(~u− ~d)

)
, (C.108)

where Xµ is given in (C.492). This equality is only true if the coefficients of the expansion
of the generating function χ∗µ(~t) on both sides are equal, that is to say if

G(N)
µ (~u) = (gµCDD

√
π)NgXµφ0

(
g(~u− ~d)

)
φµ
(
g(~u− ~d)

)
. (C.109)

We can deduce the expressions of the above quantity for N = 1 and N = 2, i.e.

G(2)
n⊥µmµ

(~r⊥) = N⊥φ00(g⊥~r⊥)φmµn⊥µ(g⊥~r⊥), (C.110a)

G
(1)
jnzµ(z) = Nzφ0

(
gz(z − dj)

)
φnzµ

(
gz(z − dj)

)
, (C.110b)

where

N⊥ ≡ πµ2
CDDg

2n⊥µ+|mµ|+2
⊥ , and Nz ≡

√
πµCDDg

2nzµ+1
z , (C.111)

as well as

g⊥ ≡
b⊥√

µ2
CDD + b2

⊥

, and gz ≡
bz√

µ2
CDD + b2

z

. (C.112)

Finally,
Gjrµ(~rg) = Nrφj0(~rg)φjrµ(~rg), (C.113)

where ~rg ≡ (g⊥~r⊥, gz(z − dj)), and

Nr ≡ N⊥Nz = (µCDD
√
π)3g

2n⊥µ+|mµ|+2
⊥ gnzµ+1

z . (C.114)
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Central interactions
Let us start by seeking an expression for the spatial matrix elements associated with

the central terms. For this, we start from equation (C.97) where we set α = 0 and, for
convenience, we exchange rµ with r′µ, such that

vjajcjbjdrarcrbrd
= 1

2

∫
d3r

[
φ∗jara(~r)φjbrb(~r)

∑
r′µ

T
r′µ
jcrc jdrd

Gjcdr′µ(~r)

+ φ∗jcrc(~r)φjdrd(~r)
∑
rµ

T
rµ
jara jbrb

Gjabrµ(~r)
]
.

(C.115)

Using the Gogny separable development (C.495) again, we obtain

vjajcjbjdrarcrbrd
= 1

2
∑
rµr′µ

T
rµ
jara jbrb

T
r′µ
jcrc jdrd

×
∫

d3r
[
Gjabrµ(~r)φjcd0(~r)φjcdr′µ(~r) +Gjcdr′µ(~r)φjab0(~r)φjabrµ(~r)

]
.

(C.116)

Using the expression of Gjrµ(~r) given by (C.98) to exchange the integration variables ~r
and ~r ′ in the second quantity appearing in the bracket, we find out that the latter is
identical to the first one, hence

vjajcjbjdrarcrbrd
=
∑
rµr′µ

T
rµ
jara jbrb

T
r′µ
jcrc jdrd

∫
d3r Gjabrµ(~r)φjcd0(~r)φjcdr′µ(~r). (C.117)

We notice that the above integral takes the form

Ijrµj′r′µ ≡
∫

d3r Gjrµ(~r)φj′0(~r)φj′r′µ(~r), (C.118)

that we can separate along the r⊥ and z directions, as we can do it for both the wave
functions and the function Gjrµ(~r), given by (C.99), i.e. we can write

Ijrµj′r′µ = I
(2)
mµn⊥µm′µn

′
⊥µ
I

(1)
jnzµj′n′zµ

, (C.119)

where
I

(N)
jµj′µ′ ≡

∫
dNuG(N)

jµ (~u)φ0(~u− ~dj′)φµ′(~u− ~dj′), (C.120)

with N = 1 or N = 2. The expression of G(N)
jµ (~u) has just been evaluated in (C.109), with

(C.104), while we have used the condensed notation (C.101) again. In the following, the
range of the central terms will be denoted by µC. Our integral then becomes

I
(N)
jµj′µ′ = (gµC

√
π)NgXµ

∫
dNuφ0(~u− ~dj′)φ0

(
g(~u− ~dj)

)
φµ′(~u− ~dj′)φµ

(
g(~u− ~dj)

)
. (C.121)

Expliciting the wave functions and using twice the fundamental relation linking the wave
functions to their generating functions (C.485), we get

∑
µµ′

χ∗µ(~t)χ∗µ′(~t ′)I
(N)
jµj′µ′ =

(
gµCβ√
π

)N ∫
dNu e−g2β(~u−~dj)2+2g2

√
β~t·(~u−~dj)−g2t2

× e−β(~u−~dj′ )2+2
√
β~t ′·(~u−~dj′ )−t′2 ,

(C.122)
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where we have used the properties (C.491) of the generating functions. Completing the
square of the argument of the exponential, we find, after simplifications,

−
[√

β(1 + g2)~u− g
2~t+ ~t ′ +

√
β(g2~dj + ~dj′)√

1 + g2

]2

− g2

1 + g2

[√
β(~dj− ~dj′)+(~t−~t ′)

]2
. (C.123)

Setting ~v ≡
√
β(1 + g2)~u−(g2~t+~t ′+

√
β(g2~dj + ~dj′))/

√
1 + g2, the Gauss integral (D.118)

over this new variable furnishes
∑
µµ′

χ∗µ(~t)χ∗µ′(~t ′)I
(N)
jµj′µ′ =

(
gµC
√
β√

1 + g2

)N
e−δ2+2~δ·~T−T 2

, (C.124)

where we have defined

~δ ≡ g
√
β√

1 + g2 (~dj′ − ~dj), (C.125a)

~T ≡ g√
1 + g2 (~t− ~t ′). (C.125b)

Applying the fundamental relation (C.485) again, but in reverse order, considering a wave
function with a parameter β = 1 defined by ψλ(

√
β~r) = β−N/4φλ(~r), we obtain

∑
µµ′

χ∗µ(~t)χ∗µ′(~t ′)I
(N)
jµj′µ′ =

(
gµC
√
β√

1 + g2

)N
πN/4e−δ2/2∑

λ

χ∗λ(~T )ψλ(~δ). (C.126)

Using the properties (C.491) and (C.493) of the generating functions, we can prove the
equality

χ∗λ(~T ) =
(

g√
1 + g2

)Xλ∑
µµ′

(−)XµNµNµ
′

Nµ+µ′
χµ(~t)χµ′(~t ′)δµ+µ′,−λ, (C.127)

where the coefficients Nµ are given by (C.488) and Xµ by (C.492), such that eventually

∑
µµ′

χ∗µ(~t)χ∗µ′(~t ′)I
(N)
jµj′µ′ =

(
gµC
√
β√

1 + g2

)N
πN/4e−δ2/2∑

µµ′
(−)XµNµNµ

′

Nµ+µ′

×
(

g√
1 + g2

)Xµ+Xµ′

χ∗µ(~t)χ∗µ′(~t ′)ψµ+µ′(~δ),
(C.128)

where we have taken advantage of the properties (C.491) and (C.493) again. This equality
is only true if the coefficients of the expansions of the generating functions χ∗µ(~t) and χ∗µ′(~t~′)
on both sides are equal, that is to say if

I
(N)
jµj′µ′ = (−)XµπN/4(µC

√
β)N

(2 + βµ2)(Xµ+Xµ′+N)/2
NµNµ′
Nµ+µ′

e−δ2/2ψµ+µ′(~δ), (C.129)

where we have plugged the expression of g, given by (C.104). We can deduce the expression
of the above quantity for N = 2,

I
(2)
mµn⊥µm′µn

′
⊥µ

= δmµ,−m′µ
β⊥µ

2
C

(2 + β⊥µ2
C)n⊥µ+n′⊥µ+|mµ|+1

×
(n⊥µ + n′⊥µ + |mµ|)![

n⊥µ!(n⊥µ + |mµ|)!n′⊥µ!(n′⊥µ + |mµ|)!
]1/2 , (C.130)
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since (C.488) and (C.492). For N = 1, we have

I
(1)
jnzµj′n′zµ

= (−)nzµπ1/4µC
√
βz

(2 + βzµ2
C)(nzµ+n′zµ+1)/2

[
(nzµ + n′zµ)!
nzµ!n′zµ!

]2

e−δ2
z/2ψnzµ+n′zµ(δz), (C.131)

since (C.490) and (C.492), and where

δz ≡
√

βz
2 + βzµ2

C
(dj′ − dj). (C.132)

Note that we could have applied the Moshinsky transformation in axial symmetry (C.516),
directly on the wave functions appearing in equation (C.116) in order to move to center-
of-mass and relative coordinates and solve the integral. This consistently brings the same
result. We will not detail the related calculations here since this method will already be
applied to derive the tensor and spin–orbit matrix elements in the following.

Density-dependent interaction
Now, let us continue by finding an expression for the spatial matrix elements associated

with the density-dependent term. For this, we start from equation (C.97) again, but with
α = 1/3 6= 0. The only angular dependence of the function Gjrµ(~u), given by (C.99), is
contained in the wave function φjrµ(~rg). Thus, by extracting the angular dependence of
the wave function as we have done in (C.9), i.e. by writing

φjrµ(~rg) = φ̃j|rµ|(rg)eimµϕ, (C.133)

we can similarly extract the angular dependence of the function Gjrµ(~rg),

Gjrµ(~rg) = G̃j|rµ|(rg)eimµϕ, (C.134)

where
G̃j|rµ|(rg) ≡ Nrφj0(rg)φ̃jrµ(rg). (C.135)

Extracting the phases of the wave functions appearing in the two-body matrix element
and taking into account that the local density is axially symmetric, i.e. ρ(~r) = ρ(r), we
obtain

vjajcjbjdrarcrbrd
= πδma+mc,mb+md

∫
d2rρα(r)

[
φ̃ja|ra|(r)φ̃jb|rb|(r)

∑
rµ

T
rµ
jcrc jdrd

G̃jcd|rµ|(rg)

+ φ̃jc|rc|(r)φ̃jd|rd|(r)
∑
r′µ

T
r′µ
jara jbrb

G̃jab|r′µ|(rg)
]
,

(C.136)

where the Kronecker delta enforces the condition ma +mc = mb +md already deduced in
(C.32), as a consequence of the fact that the central and density-dependent interactions
commute with Lz (see section D.6).

Finally, setting
Fjabrarb(rg) ≡

∑
rµ

T
rµ
jara jbrb

G̃jcd|rµ|(rg), (C.137)

the two-body matrix elements can analytically be written

vjajcjbjdrarcrbrd
= πδma+mc,mb+md

∫
d2r ρα(r)

×
[
φ̃ja|ra|(r)φ̃jb|rb|(r)Fjcdrcrd(rg) + φ̃jc|rc|(r)φ̃jd|rd|(r)Fjabrarb(rg)

]
,

(C.138)
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In the following, we will see how to approximate this integral which can be hardly eval-
uated analytically because of the expression of the local density, given by (III.50). More
precisely, we will approximate an integral of the form

I ≡
∫

d2r ρα(r)φ̃ja|ra|(r)φ̃jb|rb|(r)Fjcdrcrd(rg), (C.139)

where we purposely omit the r and j indices for conciseness. First, we split up the wave
functions and the function Fjcdrcrd(rg) according to their radial and z parts, that is to say,

Fjcdrcrd(rg) =
∑
n⊥µ

Tmµn⊥µmcn⊥cmdn⊥d
G|mµ|n⊥µ(g⊥r⊥)×

∑
nzµ

T
nzµ
jcnzc jdnzd

Gnzµ(gz(z − dcd)), (C.140)

where

G|mµ|n⊥µ(g⊥r⊥) = N⊥φ00(g⊥r⊥)φmµn⊥µ(g⊥r⊥), (C.141a)
Gnzµ(gz(z − dcd)) = Nzφ0(gz(z − dcd))φnzµ(gz(z − dcd)), (C.141b)

with

N⊥ ≡ πµ2
DDg

2n⊥µ+|mµ|+2
⊥ , (C.142a)

Nz ≡
√
πµDDg

nzµ+1
z . (C.142b)

Note that the range of the density-dependent term has been dubbed µDD. The integral
(C.139) then becomes

I =
∫ +∞

−∞
dz Iz(z)

∫ ∞
0

dr⊥ I⊥(r⊥)ρα(r⊥, z)︸ ︷︷ ︸
I1(z)

, (C.143)

where
I1(z) = N⊥

∑
n⊥µ

Tmµn⊥µmcn⊥cmdn⊥d

×
∫ ∞

0
dr⊥ r⊥φ|ma|n⊥a(r⊥)φ|mb|n⊥b(r⊥)φ00(g⊥r⊥)φ|mµ|n⊥µ(g⊥r⊥)ρα(r⊥, z).

(C.144)

In order to apply the Gauss–Laguerre quadrature, we pull the exponentials out of the
wave functions using (C.10), so that

I1(z) = N⊥
∑
n⊥µ

Tmµn⊥µmcn⊥cmdn⊥d

∫ ∞
0

dr⊥ r⊥e−(1+g2
⊥)r2
⊥/b

2
⊥

× φ̂|ma|n⊥a(r⊥)φ̂|mb|n⊥b(r⊥)φ̂00(g⊥r⊥)φ̂|mµ|n⊥µ(g⊥r⊥)ρα(r⊥, z).
(C.145)

Setting x ≡ (1 + g2
⊥)r2
⊥/b

2
⊥, we end up with

I1(z) = N⊥b
2
⊥

2(1 + g2
⊥)
∑
n⊥µ

Tmµn⊥µmcn⊥cmdn⊥d

∫ ∞
0

dx e−xf|mµ|n⊥µ(x, z), (C.146)

where we have defined

f|mµ|n⊥µ(x, z) ≡ φ̂|ma|n⊥a

 b⊥√
1 + g2

⊥

√
x

φ̂|mb|n⊥b
 b⊥√

1 + g2
⊥

√
x


× φ̂00

 g⊥b⊥√
1 + g2

⊥

√
x

φ̂|mµ|n⊥µ
 g⊥b⊥√

1 + g2
⊥

√
x


× ρα

 b⊥√
1 + g2

⊥

√
x, z

.
(C.147)
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By means of the Gauss–Laguerre quadrature, we can approximate the above integral
according to ∫ ∞

0
dx e−xf|mµ|n⊥µ(x, z) '

n∑
i=0

vif|mµ|n⊥µ(xi, z), (C.148)

where n is the quadrature order, xi the i-th root of the Laguerre polynomial Ln(x) at
which the function (C.147) is evaluated, and vi a weight factor that reads

vi ≡
xi

(n+ 1)2[Ln+1(xi)]2
. (C.149)

We obtain

I1(z) ' N⊥b
2
⊥

2(1 + g2
⊥)
∑
n⊥µ

Tmµn⊥µmcn⊥cmdn⊥d

n∑
i=0

vi

× φ̂|ma|n⊥a(x̃i)φ̂|mb|n⊥b(x̃i)φ̂00(g⊥x̃i)φ̂|mµ|n⊥µ(g⊥x̃i)ρα(x̃i, z),
(C.150)

with
x̃i ≡

b⊥√
1 + g2

⊥

√
xi. (C.151)

To get an expression for (C.143), it remains to evaluate

I2(x̃i) ≡
∫ +∞

−∞
dz Iz(z)ρα(x̃i, z). (C.152)

We have

I2(x̃i) = Nz

∑
nzµ

T
nzµ
jcnzc jdnzd

∫ +∞

−∞
dz φnza(z − da)φnzb(z − db)φ0

(
gz(z − dcd)

)
× φnzµ

(
gz(z − dcd)

)
ρα(x̃i, z).

(C.153)

In order to apply the Gauss–Hermite quadrature, we pull the exponentials out of the wave
functions using (C.10), so that

I2(x̃i) = Nz

∑
nzµ

T
nzµ
jcnzc jdnzd

∫ +∞

−∞
dz e−[(z−da)2+(z−db)2+2g2

z(z−dcd)2]/2b2
z φ̂nza(z − da)

× φ̂nzb(z − db)φ̂0
(
gz(z − dcd)

)
φ̂nzµ

(
gz(z − dcd)

)
ρα(x̃i, z).

(C.154)

Let us now complete the square of the argument of the exponential appearing in the
integral above. It reads

−


√

1 + g2
z

bz
z − da + db + 2g2

zdcd

2bz
√

1 + g2
z

2

+ 1
2b2
z

(da + db + 2g2
zdcd)2

2(1 + g2
z)

−
(
d2
a + d2

b + 2g2
zd

2
cd

),
(C.155)

in such a way that we get

I2(x̃i) = Nze[(da+db+2g2
zdcd)2/(2(1+g2

z))−(d2
a+d2

b+2g2
zd

2
cd)]/2b2

z
∑
nzµ

T
nzµ
jcnzc jdnzd

×
∫ +∞

−∞
dz e−

[√
1+g2

zz/bz−(da+db+2g2
zdcd)/2bz

√
1+g2

z

]2

φ̂nza(z − da)

× φ̂nzb(z − db)φ̂0
(
gz(z − dcd)

)
φ̂nzµ

(
gz(z − dcd)

)
ρα(x̃i, z).

(C.156)
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The change of variable y ≡
√

1 + g2
zz/bz − (da + db + 2g2

zdcd)/2bz
√

1 + g2
z provides

I2(x̃i) = Nzbz√
1 + g2

z

e[(da+db+2g2
zdcd)2/(2(1+g2

z))−(d2
a+d2

b+2g2
zd

2
cd)]/2b2

z

×
∑
nzµ

T
nzµ
jcnzc jdnzd

∫ +∞

−∞
dy e−y2

gnzµ(x̃i, y),
(C.157)

where

gnzµ(x̃i, y) ≡ φ̂nza

 bz√
1 + g2

z

y + da + db + 2g2
zdcd

2(1 + g2
z)

− da


× φ̂nzb

 bz√
1 + g2

z

y + da + db + 2g2
zdcd

2(1 + g2
z)

− db


× φ̂0

gz
 bz√

1 + g2
z

y + da + db + 2g2
zdcd

2(1 + g2
z)

− dcd


× φ̂nzµ

gz
 bz√

1 + g2
z

y + da + db + 2g2
zdcd

2(1 + g2
z)

− dcd


× ρα

x̃i, bz√
1 + g2

z

y + da + db + 2g2
zdcd

2(1 + g2
z)

.

(C.158)

By means of the Gauss–Hermite quadrature, we can approximate the above integral ac-
cording to ∫ +∞

−∞
dy e−y2

gnzµ(x̃i, y) '
m∑
j=0

wjgnzµ(x̃i, yj), (C.159)

where m is the quadrature order, yj the j-th root of the Hermite polynomial Hm(y) at
which the function (C.158) is evaluated, and wj a weight factor that reads

wj ≡
2m−1m!

√
π

m2[Hm−1(yj)]2
. (C.160)

We obtain

I2(x̃i) '
Nzbz√
1 + g2

z

e[(da+db+2g2
zdcd)2/(2(1+g2

z))−(d2
a+d2

b+2g2
zd

2
cd)]/2b2

z

×
∑
nzµ

T
nzµ
jcnzc jdnzd

m∑
j=0

wjφ̂nza(ỹj − da)φ̂nzb(ỹj − db)

× φ̂0
(
gz(ỹj − dcd)

)
φ̂nzµ

(
gz(ỹj − dcd)

)
ρα(x̃i, ỹj),

(C.161)

with

ỹj ≡
bz√

1 + g2
z

yj + da + db + 2g2
zdcd

2(1 + g2
z)

. (C.162)
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Combining the results (C.150) and (C.161), we can furnish an approximate expression
for the integral (C.139) at the quadrature order (n,m). We find

I ' N⊥b
2
⊥

2(1 + g2
⊥)

Nzbz√
1 + g2

z

e[(da+db+2g2
zdcd)2/(2(1+g2

z))−(d2
a+d2

b+2g2
zd

2
cd)]/2b2

z

×
∑
rµ

T
rµ
jara jbrb

n∑
i=0

m∑
j=0

viwjφ̂|ra|(x̃i, ỹj − da)φ̂|rb|(x̃i, ỹj − db)

× φ̂0
(
g⊥x̃i, gz(ỹj − dcd)

)
φ̂|rµ|

(
g⊥x̃i, gz(ỹj − dcd)

)
ρα(x̃i, ỹj),

(C.163)

where we have gathered the axial and z-relative Talman coefficients as well as the x̃i-
and ỹj-dependent wave functions, where the latter coordinates are respectively given by
(C.151) and (C.162).

2.1.4. Rearrangement fields associated with the mean fields

As already mentioned in the first section, since the generalized Gogny interaction
(II.1) contains a density-dependent term, rearrangement fields arise. In this subsection,
we will derive the rearrangement fields associated with the mean fields (III.37) and (III.38).
According to their expressions (III.42) and (III.43), we first need to evaluate the derivative
of the interaction (C.26) (that we will simply call the density-dependent interaction (DD)
in the following, the central terms not giving rise to rearrangement fields), with respect
to ρba and ρba. This interaction only depends on the density through the local nuclear
density ρ(~r), so that we can write

∂vDD
12

∂ρba
=
∫

d3r
∂vDD

12
∂ρ(~r)

∂ρ(~r)
∂ρba

, (C.164a)

∂vDD
12

∂ρba
=
∫

d3r
∂vDD

12
∂ρ(~r)

∂ρ(~r)
∂ρba

. (C.164b)

We have to derive the nuclear density we have defined in (III.50). We find out 2

1 + δab
2

∂ρ(~r)
∂ρba

= 1 + δab
2

∂ρ(~r)
∂ρba

= δmambφ
∗
jbmaνb

(~r)φjamaνa(~r), (C.165)

where a = (t,Ω, νa,ma) and b = (t,Ω, νb,mb). We deduce from (C.164) that the partial
derivatives of vDD

12 with respect to ρba and ρba are equal. The rearrangement fields ∂Γ and
∂Γ are then constructed from the same “derived interaction” ∂vab12, that we define as

∂vab12 ≡
1 + δab

2
∂vDD

12
∂ρba

= 1 + δab
2

∂vDD
12

∂ρba
= δmamb

∫
d3r

∂vDD
12

∂ρ(~r)φ
∗
jbmaνb

(~r)φjamaνa(~r), (C.166)

where we have omitted the superscript DD in the name of the derived interaction since,
by definition, only the density-dependent term generates such a quantity. It follows that

2. To perform this derivative, it may be worthwhile to expand the summations over ν and ν′ to see that
ρmνa,mνb and ρmνb,mνa (respectively, ρmνa,mνb and ρmνb,mνa) bring the same contribution when derived
with respect to ρba (with respect to ρba, respectively) because of their symmetry under the exchange of
their indices. That explains the factor 2 in the denominator in the case νa 6= νb. Moreover, when m = 0,
we necessarily have sa = sb = 1/2 because Ω > 0, so that we do not need to take into account the case
Ω = m− 1/2.
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the matrix elements composing the rearrangement fields ∂Γ and ∂Γ are the same, so that
the rearrangement fields themselves are equal, i.e.

∂Γab = ∂Γab. (C.167)

To fully specify the derived interaction, it remains to evaluate the derivative of the DD
interaction with respect to the total nuclear density. Given the form of this interaction,
(C.26), we find

∂vDD
12

∂ρ(~r) = α

2 (W +BPσ −HPτ −MPσPτ )V (r12)
(
δ(~r − ~r1) + δ(~r − ~r2)

)
ρα−1(~r). (C.168)

Consequently, the derived interaction can be written

∂vab12 = (W +BPσ −HPτ −MPσPτ )V (r12)D′ab[ρ], (C.169)

where
D′ab[ρ] ≡ α

2 δmamb
[
ρα−1(~r1)φ∗jbmaνb(~r1)φjamaνa(~r1)

+ ρα−1(~r2)φ∗jbmaνb(~r2)φjamaνa(~r2)
]
.

(C.170)

We notice that the derived interaction is similar to the density-dependent interaction vDD
12 ;

only the functional D[ρ] is replaced by D′ab[ρ] in its expression. The antisymmetrized
derived interaction also looks like the antisymmetrized DD interaction (C.26), since

∂v
ab,(a)
12 ≡ ∂vab12(1− PrPσPτ ) = PDV (r12)D′ab[ρ] + PEV (r12)D′ab[ρ], (C.171)

where the combinations of exchange operators PD and PE are given by (C.29). With these
notations, the rearrangement fields (III.42) and (III.43) are

∂Γab =
∑

a′b′c′d′>0

[
〈a′c′|∂vab,(a)

12 |b′d′〉12
(
ρb′a′ρd′c′ + ρb′a′ρd′c′

)
+ 〈a′c′|∂vab,(a)

12 |b′d′〉ρb′a′ρd′c′
]
.

(C.172)

Let us remark that the antisymmetrized derived interaction is diagonal in m (as we have
m ≡ ma = mb), since D′ab[ρ] is. On the other hand, we recall that the rearrangement fields
are also diagonal in t ≡ ta = tb and in Ω ≡ Ωa = Ωb (see (C.22)). Moreover, we notice
that ∂vab,(a)

12 does not explicitly depend on t, nor on Ω (because it does not depend on
the spins sa and sb). Accordingly, the matrix elements of the rearrangement field above,
and the rearrangement field itself, are independent of t and Ω. We can then remove these
indices and write

∂ΓtΩmaνa,mbνb = δmamb∂Γmaνa,maνb . (C.173)
We shall then evaluate

∂Γmνa,mνb =
∑

a′b′c′d′>0

[
〈a′c′|∂vab,(a)

12 |b′d′〉12
(
ρb′a′ρd′c′ + ρb′a′ρd′c′

)
+ 〈a′c′|∂vab,(a)

12 |b′d′〉ρb′a′ρd′c′
]
,

(C.174)

where, as explained before, a = (m, νa), b = (m, νb) and a′ = (t′,Ω′,m′a, ν ′a). In order to
simplify the rearrangement field, it is convenient to introduce new fields, analogous to the
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mean fields (III.37) and (III.38), but where the matrix elements of the antisymmetrized
derived interaction, rather than the matrix elements of the standard antisymmetrized
interaction, are considered. These fields, called the “auxiliary mean fields” in the following,
are defined as

(Γ̃ab)a′b′ ≡
∑
c′d′>0

[
〈a′c′|∂vab,(a)

12 |b′d′〉ρd′c′ + 〈a′c′|∂vab,(a)
12 |b′d′〉ρc′d′

]
,

(Γ̃ab)a′b′ ≡
∑
c′d′>0

[
〈a′c′|∂vab,(a)

12 |b′d′〉ρd′c′ + 〈a′c′|∂v
ab,(a)
12 |b′d′〉ρc′d′

]
.

(C.175a)

(C.175b)

The rearrangement field can then be written as

∂Γab = 1
2
∑
a′b′>0

[
(Γ̃ab)a′b′ρb′a′ + (Γ̃ab)a′b′ρb′a′

]
. (C.176)

Indeed, plugging (C.175) in (C.176), we get

∂Γab = 1
2

∑
a′b′c′d′>0

[(
〈a′c′|∂vab,(a)

12 |b′d′〉ρd′c′ + 〈a′c′|∂vab,(a)
12 |b′d′〉ρc′d′

)
ρb′a′

+
(
〈a′c′|∂vab,(a)

12 |b′d′〉ρd′c′ + 〈a′c′|∂v
ab,(a)
12 |b′d′〉ρc′d′

)
ρb′a′

]
=

∑
a′b′c′d′>0

[
〈a′c′|∂vab,(a)

12 |b′d′〉12
(
ρb′a′ρd′c′ + ρb′a′ρd′c′

)
+ 〈a′c′|∂vab,(a)

12 |b′d′〉12
(
ρb′a′ρd′c′ + ρb′a′ρc′d′

)]
.

(C.177)

Now, relabelling the quantum numbers and considering the symmetry of the density
matrices ρ and ρ under the exchange of their indices, we obtain∑

a′b′c′d′>0
〈a′c′|∂vab,(a)

12 |b′d′〉ρb′a′ρc′d′ =
∑

a′b′c′d′>0
〈c′a′|∂vab,(a)

12 |d′b′〉ρd′c′ρa′b′ (C.178)

=
∑

a′b′c′d′>0
〈c′a′|∂vab,(a)

12 |d′b′〉ρc′d′ρb′a′ . (C.179)

It only remains to prove that 〈c′a′|∂vab,(a)
12 |d′b′〉 = 〈a′c′|∂vab,(a)

12 |b′d′〉, and then we will have
equality between (C.174) and (C.176). We can write

〈a′c′|∂vab,(a)
12 |b′d′〉 =

(
〈a′c′|T †1T

†
2

)
∂v

ab,(a)
12

(
T2T1|b′d′〉

)
=
[
〈a′c′|

(
T †1T

†
2∂v

ab,(a)
12 T2T1|b′d′〉

)]∗
= 〈a′c′|∂vab,(a)

12 |b′d′〉∗

= 〈a′c′|∂vab,(a)
12 |b′d′〉

= 〈c′a′|∂vab,(a)
12 |d′b′〉. (C.180)

From the first to the second line, we have noticed that the derived interaction is Hermitian,
i.e. ∂vab†12 = ∂vab12, according to its expression (C.169). From the second to the third line,
we have considered the fact that ∂vab12 is time-reversal invariant, since v12 is (see equation
(I.9)). 3 From the third to the fourth line, we have observed that the matrix elements

3. Indeed, applying the time-reversal operator on ∂vab12, we find

∂vab12 = 1 + δab
2

∂vDD
12

∂ρba
= 1 + δab

2
∂vDD

12
∂ρba

= 1 + δab
2

∂vDD
12

∂ρba
= ∂vab12, (C.181)

since vDD
12 is time-reversal invariant.
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of ∂vab12 are real, as we can carry out the exact same analysis we have done to show that
the matrix elements of v12 are real (see equation (III.16)). Finally, from the fourth to
the last line, we have taken into account the invariance of ∂vab12 under the exchange of the
two particles, as it appears clearly from its expression (C.169). 4 Thus, the rearrangement
field associated with the mean fields can be written (C.176).

With this writing of the rearrangement field, we can benefit from the results already
derived for the mean fields in subsection C.2.1.1. We just have to replace the standard
antisymmetrized interaction vDD,(a)

12 by the antisymmetrized derived one, ∂vab,(a)
12 (they are

detailed further, in (C.186)).
It remains to treat the summation in (C.176). Let us consider the first term only (the

second one is identical, we just need to put a bar on top of the quantities). It reads

T ab ≡ 1
2
∑
a′b′>0

Γ̃aba′b′ρb′a′ =
∑

Ω′>0
m′am

′
b

(gab)Ω′
m′am

′
b
, (C.182)

with
(gab)Ω′

m′am
′
b
≡ 1

2
∑
t′ν′aν

′
b

(Γ̃ab)t′Ω′m′aν
′
a,m
′
b
ν′
b
ρt
′Ω′
m′aν

′
a,m
′
b
ν′
b
, (C.183)

where we have used the symmetry of the density matrix ρ under the exchange of its
indices. First carrying out the summation over m′a = Ω′ ± 1/2 and m′b = Ω′ ± 1/2, then
consideringm′ ≡ Ω′±1/2 and finally gathering the terms using the symmetry of gab under
the exchange of its indices m′a and m′b (since both Γ̃ab and ρ exhibit this symmetry), we
successively find

T ab =
∑

Ω′>0

[
(gab)Ω′

Ω′−1/2,Ω′−1/2 + (gab)Ω′
Ω′−1/2,Ω′+1/2

+ (gab)Ω′
Ω′+1/2,Ω′−1/2 + (gab)Ω′

Ω′+1/2,Ω′+1/2

]
=
∑
m′≥0

[
(gab)m

′+1/2
m′,m′ + (gab)m

′+1/2
m′+1,m′ + (gab)m

′+1/2
m′,m′+1 + (gab)m

′+1/2
m′+1,m′+1

]
=
∑
m′≥0

[
(gab)m

′+1/2
m′,m′ + 2(gab)m

′+1/2
m′,m′+1 + Θ(m′ − 1/2)(gab)m

′−1/2
m′,m′

]
=
∑
m′≥0

[( ∑
s′=±1/2

Θ(m′ + s′)(gab)m′+s′m′,m′

)
+ 2(gab)m

′+1/2
m′,m′+1

]
. (C.184)

Thus, the rearrangement field (C.174) eventually becomes

∂Γab = 1
2
∑

t′m′≥0
ν′aν
′
b

[( ∑
s′=±1/2

Θ(m′ + s′)(Γ̃ab)t′m′+s′m′ν′a,m
′ν′
b
ρt
′m′+s′
m′ν′a,m

′ν′
b

)

+ 2(Γ̃ab)t
′m′+1/2
m′ν′a,m

′+1 ν′
b
ρ
t′m′+1/2
m′ν′a,m

′+1 ν′
b

+
( ∑
s′=±1/2

Θ(m′ + s′)(Γ̃ab)t′m′+s′m′ν′a,m
′ν′
b
ρt
′m′+s′
m′ν′a,m

′ν′
b

)

+ 2(Γ̃ab)t
′m′+1/2
m′ν′a,m

′+1 ν′
b
ρ
t′m′+1/2
m′ν′a,m

′+1 ν′
b

]
,

(C.185)

4. Note that all the properties of the derived interaction we have listed are also satisfied by the nuclear
interaction v12. In fact, this was to be expected since the rearrangement fields must retain the properties
of the mean- and pairing fields, which are imposed by the symmetries of v12 (see subsection I.1.2).
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where we recall that a = (m, νa) and b = (m, νb). Note that we will also take care to
consider the direct and exchange contributions of the auxiliary mean fields, that is to say
Γ̃ab ≡ Γ̃ab|D + Γ̃ab|E and Γ̃ab ≡ Γ̃ab|D + Γ̃ab|E. Explicitly, they read:

(Γ̃ab)t′Ω′=m′+s′m′ν′a,m
′ν′
b
|E =

∑
m′′≥0
ν′cν
′
d

[
〈m′ν ′a m′′ν ′c|V (r12)F ′ab[ρ]|m′′ν ′d m′ν ′b〉R

(+)t′s′0
m′′ν′

d
ν′c
|E

+ 〈m′ν ′a −m′′ν ′c|V (r12)F ′ab[ρ]|−m′′ν ′d m′ν ′b〉R
(−)t′s′0
m′′ν′cν

′
d
|E
]
,

(C.186a)

(Γ̃ab)t′Ω′=m′+s′m′ν′a,m
′ν′
b
|D =

∑
m′′≥0
ν′cν
′
d

〈m′ν ′a m′′ν ′c|V (r12)F ′ab[ρ]|m′ν ′b m′′ν ′d〉Rt′s′0
m′′ν′

d
ν′c
|D, (C.186b)

(Γ̃ab)t
′Ω′=m′+1/2
m′ν′a,m

′+1 ν′
b
|E =

∑
m′′≥0
ν′cν
′
d

×
[
〈m′ν ′a m′′ + 1 ν ′c|V (r12)F ′ab[ρ]|m′′ν ′d m′ + 1 ν ′b〉R

(+)t′1/2 1
m′′ν′

d
ν′c
|E

+ 〈m′ν ′a −m′′ν ′c|V (r12)F ′ab[ρ]|−(m′′ + 1) ν ′d m′ + 1 ν ′b〉R
(−)t′1/2 1
m′′ν′cν

′
d
|E
]
,

(C.186c)

(Γ̃ab)t
′Ω′=m′+1/2
m′ν′a,m

′+1 ν′
b
|D =

∑
m′′≥0
ν′cν
′
d

× 〈m′ν ′a m′′ + 1 ν ′c|V (r12)F ′ab[ρ]|m′ + 1 ν ′b m′′ν ′d〉R
t′1/2 1
m′′ν′

d
ν′c
|D,

(C.186d)

(Γ̃ab)t′Ω′=m′+s′m′ν′a,m
′ν′
b
|E =

∑
m′′≥0
ν′cν
′
d

[
〈m′ν ′a m′′ν ′c|V (r12)F ′ab[ρ]|m′′ν ′d m′ν ′b〉R

(−)t′−s′0
m′′ν′

d
ν′c
|E

+ 〈m′ν ′a −m′′ν ′c|V (r12)F ′ab[ρ]|−m′′ν ′d m′ν ′b〉R
(+)t′−s′0
m′′ν′cν

′
d
|E
]
,

(C.186e)

(Γ̃ab)t′Ω′=m′+s′m′ν′a,m
′ν′
b
|D =

∑
m′′≥0
ν′cν
′
d

〈m′ν ′a m′′ν ′c|V (r12)F ′ab[ρ]|m′ν ′b m′′ν ′d〉Rt′−s′0
m′′ν′

d
ν′c
|D, (C.186f)

(Γ̃ab)t
′Ω′=m′+1/2
m′ν′a,m

′+1 ν′
b
|E = −

∑
m′′≥0
ν′cν
′
d

×
[
〈m′ν ′a m′′ + 1 ν ′c|V (r12)F ′ab[ρ]|m′′ν ′d m′ + 1 ν ′b〉R

(−)t′1/2 1
m′′ν′

d
ν′c
|E

+ 〈m′ν ′a −m′′ν ′c|V (r12)F ′ab[ρ]|−(m′′ + 1) ν ′d m′ + 1 ν ′b〉R
(+)t′1/2 1
m′′ν′cν

′
d
|E
]
,

(C.186g)

(Γ̃ab)t
′Ω′=m′+1/2
m′ν′a,m

′+1 ν′
b
|D = −

∑
m′′≥0
ν′cν
′
d

× 〈m′ν ′a m′′ + 1 ν ′c|V (r12)F ′ab[ρ]|m′ + 1 ν ′b m′′ν ′d〉R
t′1/2 1
m′′ν′

d
ν′c
|D,

(C.186h)

where the quantities R appearing are given by (C.45), (C.47), (C.49) or (C.51).

Now, we assume the time-reversal invariance of the rearrangement field associated with
the mean fields, i.e. we set ρ = ρ. In this case, the fields we have introduced coincide, that
is to say Γ̃ab = Γ̃ab. The rearrangement field then simplifies according to the following
expressions, where the notation |T identifies the time-reversal invariant quantities. The
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exchange contribution reads

∂Γab|TE =
∑

t′m′≥0
ν′aν
′
b

[
(Γ̃ab)t

′m′+1/2
m′ν′a,m

′ν′
b
|TE ρ

t′m′+1/2
m′ν′a,m

′ν′
b

+ Θ(m′ − 1/2)(Γ̃ab)t
′m′−1/2
m′ν′a,m

′ν′
b
|TE ρ

t′m′−1/2
m′ν′a,m

′ν′
b

+ 2(Γ̃ab)t
′m′+1/2
m′ν′a,m

′+1 ν′
b
|TE ρ

t′m′+1/2
m′ν′a,m

′+1 ν′
b

]
,

(C.187)

while the direct one is

∂Γab|TD =
∑

t′m′≥0
ν′aν
′
b

[
(Γ̃ab)t

′m′+1/2
m′ν′a,m

′ν′
b
|TD
(
ρ
t′m′+1/2
m′ν′a,m

′ν′
b

+ Θ(m′ − 1/2)ρt
′m′−1/2
m′ν′a,m

′ν′
b

)]
, (C.188)

because, the direct parts of the auxiliary mean fields (C.175), similarly to the direct mean
fields, are diagonal in m and independent of Ω. Indeed, explicitly:

(Γ̃ab)t′Ω′=m′+s′m′ν′a,m
′ν′
b
|TE =

∑
m′′≥0
ν′cν
′
d

[
〈m′ν ′a m′′ν ′c|V (r12)F ′ab[ρ]|m′′ν ′d m′ν ′b〉Rt′s′0

m′′ν′
d
ν′c
|TE

+ 〈m′ν ′a −m′′ν ′c|V (r12)F ′ab[ρ]|−m′′ν ′d m′ν ′b〉Rt′−s′0
m′′ν′cν

′
d
|TE
]
,

(C.189a)

(Γ̃ab)t′Ω′=m′+s′m′ν′a,m
′ν′
b
|TD =

∑
m′′≥0
ν′cν
′
d

〈m′ν ′a m′′ν ′c|V (r12)F ′ab[ρ]|m′ν ′b m′′ν ′d〉Rt′0
m′′ν′

d
ν′c
|TD, (C.189b)

(Γ̃ab)t
′Ω′=m′+1/2
m′ν′a,m

′+1 ν′
b
|TE =

∑
m′′≥0
ν′cν
′
d

[
〈m′ν ′a m′′ + 1 ν ′c|V (r12)F ′ab[ρ]|m′′ν ′d m′ + 1 ν ′b〉

− 〈m′ν ′a −m′′ν ′d|V (r12)F ′ab[ρ]|−(m′′ + 1) ν ′c m′ + 1 ν ′b〉
]
R
t′1/2 1
m′′ν′

d
ν′c
|TE,

(C.189c)

(Γ̃ab)t
′Ω′=m′+1/2
m′ν′a,m

′+1 ν′
b
|TD = 0, (C.189d)

where the quantities R appearing are given by (C.63), (C.65) or (C.68). We note that
we recover the expressions of the time-reversal invariant rearrangement fields associated
with mean fields obtained by Chappert [17].

2.1.5. Rearrangement fields associated with the pairing field

In this subsection, we will derive the rearrangement fields associated with the pairing
field (III.32). According to their expressions (III.44) and (III.45), we first need to evaluate
the derivative of the interaction (C.26) (that we will simply call the density-dependent
interaction (DD) in the following, the central terms not giving rise to rearrangement
fields), with respect to ρba and ρba. In the previous subsection, we have shown that the
derivatives of this interaction with respect to ρba and ρba were the same, so that, as for
the rearrangement fields associated with the mean fields, ∂Γ and ∂Γ, the rearrangement
fields associated with the pairing field, ∂∆ and ∂∆, are constructed from the same “derived
interaction” ∂vab12, that we have defined in (C.169). As a consequence, the matrix elements
composing the rearrangement fields ∂∆ and ∂∆ are the same, so that the rearrangement
fields themselves are equal, i.e.

∂∆ = ∂∆, (C.190)
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where
∂∆ab =

∑
a′b′c′d′>0

〈a′c′|∂vab,(a)
12 |b′d′〉κc′a′κd′b′ . (C.191)

Introducing the antisymmetrized derived interaction as in (C.171), we remark that it is
diagonal in m (as m ≡ ma = mb), since D′ab[ρ] is. On the other hand, we recall that the
rearrangement fields are also diagonal in t ≡ ta = tb and in Ω ≡ Ωa = Ωb (see (C.22)).
Moreover, we notice that ∂vab,(a)

12 does not explicitly depend on t, nor on Ω (because it does
not depend on the spins sa and sb). Accordingly, the matrix elements of the rearrangement
field above, and the rearrangement field itself, are independent of t and Ω. We can then
remove these indices and write, as for the rearrangement field associated with the mean
fields,

∂∆tΩ
maνa,mbνb

= δmamb∂∆maνa,maνb . (C.192)
We shall then evaluate

∂∆mνa,mνb =
∑

a′b′c′d′>0
〈a′c′|∂vab,(a)

12 |b′d′〉κc′a′κd′b′ , (C.193)

where, as explained before, a = (m, νa), b = (m, νb) and a′ = (t′,Ω′,m′a, ν ′a). In order to
simplify the rearrangement field, it is convenient to introduce a new field, analogous to
the pairing field (III.32), but where the matrix elements of the antisymmetrized derived
interaction, rather than the matrix elements of the standard antisymmetrized interaction,
are considered. This field, called the “auxiliary pairing field” in the following, is defined
as

(∆̃ab)c′a′ ≡
∑
b′d′>0

〈c′a′|∂vab,(a)
12 |b′d′〉κb′d′ . (C.194)

Using the property (C.180) of the matrix elements of the antisymmetrized derived inter-
action we have shown and exchanging the indices b′ and d′ in the summation, we obtain

(∆̃ab)c′a′ =
∑
b′d′>0

〈a′c′|∂vab,(a)
12 |b′d′〉κd′b′ , (C.195)

The rearrangement field can then be rewritten as

∂∆ab =
∑
a′b′>0

(∆̃ab)a′b′κa′b′ , (C.196)

where we have exchanged the dummy indices a′ and c′ and renamed c′ by b′.
With this writing of the rearrangement field, we can benefit from the results already

derived for the density-dependent pairing field in subsection C.2.1.2. We just have to
replace the standard antisymmetrized interaction vDD,(a)

12 by the antisymmetrized derived
one, ∂vab,(a)

12 (they are detailed further, in (C.201)).
It remains to treat the summation in (C.196). We have

∂∆ab =
∑

Ω′>0
m′am

′
b

(gab)Ω′
m′am

′
b
, (C.197)

with
(gab)Ω′

m′am
′
b
≡

∑
t′ν′aν

′
b

(∆̃ab)t′Ω′m′aν
′
a,m
′
b
ν′
b
κt
′Ω′
m′aν

′
a,m
′
b
ν′
b
, (C.198)

where we recall that the pairing tensor κ is not symmetric under the exchange of its indices
(contrary to ρ). First carrying out the summation over m′a = Ω′±1/2 and m′b = Ω′±1/2,
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then considering m′ ≡ Ω′± 1/2 and finally gathering the terms keeping in mind that this
time gab is not symmetric under the exchange of its indices m′a and m′b (since neither ∆̃ab

nor κ exhibit this symmetry in general), we successively find

∂∆ab =
∑

Ω′>0

[
(gab)Ω′

Ω′−1/2,Ω′−1/2 + (gab)Ω′
Ω′−1/2,Ω′+1/2

+ (gab)Ω′
Ω′+1/2,Ω′−1/2 + (gab)Ω′

Ω′+1/2,Ω′+1/2

]
=
∑
m′≥0

[
(gab)m

′+1/2
m′,m′ + (gab)m

′+1/2
m′+1,m′ + (gab)m

′+1/2
m′,m′+1 + (gab)m

′+1/2
m′+1,m′+1

]
=

∑
m′≥0

[
(gab)m

′+1/2
m′,m′ + (gab)m

′+1/2
m′+1,m′ + (gab)m

′+1/2
m′,m′+1

+ Θ(m′ − 1/2)(gab)m
′−1/2

m′,m′

]
=
∑
m′≥0

[( ∑
s=±1/2

Θ(m′ + s)(gab)m′+sm′,m′

)
+ (gab)m

′+1/2
m′+1,m′ + (gab)m

′+1/2
m′,m′+1

]
. (C.199)

Thus, the rearrangement field (C.193) eventually becomes

∂∆ab =
∑

t′m′≥0
ν′aν
′
b

[( ∑
s′=±1/2

Θ(m′ + s′)(∆̃ab)t′m′+s′m′ν′a,m
′ν′
b
κt
′m′+s′
m′ν′a,m

′ν′
b

)

+ (∆̃ab)t
′m′+1/2
m′+1 ν′a,m′ν′b

κ
t′m′+1/2
m′+1 ν′a,m′ν′b

+ (∆̃ab)t
′m′+1/2
m′ν′a,m

′+1 ν′
b
κ
t′m′+1/2
m′ν′a,m

′+1 ν′
b

]
,

(C.200)

where we recall that a = (m, νa) and b = (m, νb). Explicitly, equations (C.84) and (C.91)
allow us to write the auxiliary pairing fields as:

(∆̃ab)t′Ω′=m′+s′m′ν′a,m
′ν′
b

=
∑
m′′≥0
ν′cν
′
d

[
〈m′ν ′a −m′ν ′b|V (r12)D′ab[ρ]|m′′ν ′c −m′′ν ′d〉St

′s′0
m′′ν′cν

′
d

+ 〈m′ν ′a −m′ν ′b|V (r12)D′ab[ρ]|−m′′ν ′d m′′ν ′c〉St
′−s′0
m′′ν′cν

′
d

]
,

(C.201a)

(∆̃ab)t
′Ω′=m′+1/2
m′ν′a,m

′+1 ν′
b

=
∑
m′′≥0
ν′cν
′
d

×
[
〈m′ν ′a − (m′ + 1) ν ′b|V (r12)D′ab[ρ]|m′′ν ′c − (m′′ + 1) ν ′d〉

− 〈m′ν ′a − (m′ + 1) ν ′b|V (r12)D′ab[ρ]|−(m′′ + 1) ν ′d m′′ν ′c〉
]
S
t′1/2 1
m′′ν′cν

′
d
,

(C.201b)

(∆̃ab)t
′Ω′=m′+1/2
m′+1 ν′a,m′ν′b

=
∑
m′′≥0
ν′cν
′
d

×
[
〈m′ + 1 ν ′a −m′ν ′b|V (r12)D′ab[ρ]|m′′ + 1 ν ′c −m′′ν ′d〉

− 〈m′ + 1 ν ′a −m′ν ′b|V (r12)D′ab[ρ]|−m′′ν ′d m′′ + 1 ν ′c〉
]
S
t′−1/2−1
m′′+1 ν′cν′d

.

(C.201c)

where the quantities S appearing are given by (C.86) and (C.92).
Now, we assume the time-reversal invariance of the rearrangement field associated

with the pairing field, ∂∆ab. It implies that the pairing tensor κ becomes symmetric under
the exchange of its indices. Then, the auxiliary pairing field ∆̃ab becomes symmetric as
well, such that the last two terms of (C.200) become equal and the rearrangement field
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simplifies as

∂∆ab|T =
∑

t′m′≥0
ν′aν
′
b

[( ∑
s′=±1/2

Θ(m′ + s′)(∆̃ab)t′m′+s′m′ν′a,m
′ν′
b
κt
′m′+s′
m′ν′a,m

′ν′
b

)

+ 2(∆̃ab)t
′m′+1/2
m′ν′a,m

′+1 ν′
b
κ
t′m′+1/2
m′ν′a,m

′+1 ν′
b

]
,

(C.202)

where the notation |T identifies the time-reversal invariant quantities and where the ex-
pressions of ∆̃ab|T = ∆̃ab are given by (C.201). We note that we recover the expressions
of the time-reversal invariant rearrangement fields associated with pairing fields obtained
by Chappert [17].

2.1.6. Rearrangement spatial matrix elements

When we derived the rearrangement fields arising from the density-dependent term
(see subsection C.2.1.4), we ended up with a spatial dependence contained in two-body
matrix elements of the form

vjajcjbjdrarcrbrd, a′b′
≡ 〈jara jcrc|V (r12)D′a′b′ [ρ]|jbrb jdrd〉, (C.203)

where the functional D′a′b′ [ρ] was given by (C.170), that is

D′a′b′ [ρ] ≡ α

2 δm
′
am
′
b

[
ρα−1(~r1)φ∗j′

b
m′aν

′
b
(~r1)φj′am′aν′a(~r1)

+ ρα−1(~r2)φ∗j′
b
m′aν

′
b
(~r2)φj′am′aν′a(~r2)

]
,

(C.204)

where we recall that a′ = (j′a,m′a, ν ′a) and b′ = (j′b,m′b, ν ′b). Note that because of the
similarity between D[ρ], given by (C.28), and D′a′b′ [ρ], it is not necessary to do the entire
calculation of the above matrix element. It is sufficient to replace ρα(r) by

αδm′am′bρ
α−1(r)φ∗j′

b
m′aν

′
b
(~r)φj′am′aν′a(~r) = αδm′am′bρ

α−1(r)φ̃j′a|m′a|ν′a(r)φ̃j′b|m′a|ν′b(r) (C.205)

in equation (C.138). The equality comes from the fact that the two wave functions have
opposite phases that compensate one another. The substitution directly provides

vjajcjbjdrarcrbrd, a′b′
= παδm′am′bδma+mc,mb+md

∫
d2r ρα−1(r)φ̃j′a|m′a|ν′a(r)φ̃j′b|m′a|ν′b(r)

×
[
φ̃ja|ma|νa(r)φ̃jb|mb|νb(r)Fjcdrcrd(rg) + φ̃jc|mc|νc(r)φ̃jd|md|νd(r)Fjabrarb(rg)

]
.

(C.206)

As for the spatial matrix elements of the mean- and pairing fields, we end up having
to approximate an integral which can be hardly evaluated analytically because of the
expression of the density, given by (III.50). The procedure is quite similar; our aim we
will be to approximate an integral of the form

I ≡
∫

d2r ρα−1(r)φ̃j′a|m′a|ν′a(r)φ̃j′b|m′a|ν′b(r)φ̃ja|ma|νa(r)φ̃jb|mb|νb(r)Fjcdrcrd(rg), (C.207)

where we purposely omitted the r and j indices in I for conciseness. As before, we split
up the wave functions and the function Fjcdrcrd(rg) according to their radial and z parts,
so that the integral becomes

I =
∫ +∞

−∞
dz Iz(z)

∫ ∞
0

dr⊥ I⊥(r⊥)ρα−1(r⊥, z)︸ ︷︷ ︸
I1(z)

, (C.208)
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where

I1(z) = N⊥
∑
n⊥µ

Tmµn⊥µmcn⊥cmdn⊥d

∫ ∞
0

dr⊥ r⊥φ|ma|n⊥a(r⊥)φ|mb|n⊥b(r⊥)

× φ|m′a|n′⊥a(r⊥)φ|m′a|n′⊥b(r⊥)φ00(g⊥r⊥)φ|mµ|n⊥µ(g⊥r⊥)ρα−1(r⊥, z).
(C.209)

In order to apply the Gauss–Laguerre quadrature, we pull the exponentials out of the
wave functions using (C.10), so that

I1(z) = N⊥
∑
n⊥µ

Tmµn⊥µmcn⊥cmdn⊥d

∫ ∞
0

dr⊥ r⊥e−(2+g2
⊥)r2
⊥/b

2
⊥φ̂|ma|n⊥a(r⊥)φ̂|mb|n⊥b(r⊥)

× φ̂|m′a|n′⊥a(r⊥)φ̂|m′a|n′⊥b(r⊥)φ̂00(g⊥r⊥)φ̂|mµ|n⊥µ(g⊥r⊥)ρα−1(r⊥, z).
(C.210)

Setting x ≡ (2 + g2
⊥)r2
⊥/b

2
⊥, we end up with

I1(z) = N⊥b
2
⊥

2(2 + g2
⊥)
∑
n⊥µ

Tmµn⊥µmcn⊥cmdn⊥d

∫ ∞
0

dx e−xf|mµ|n⊥µ(x, z), (C.211)

where we have defined

f|mµ|n⊥µ(x, z) ≡ φ̂|ma|n⊥a

 b⊥√
2 + g2

⊥

√
x

φ̂|mb|n⊥b
 b⊥√

2 + g2
⊥

√
x


× φ̂|m′a|n′⊥a

 b⊥√
2 + g2

⊥

√
x

φ̂|m′a|n′⊥b
 b⊥√

2 + g2
⊥

√
x


× φ̂00

 g⊥b⊥√
2 + g2

⊥

√
x

φ̂|mµ|n⊥µ
 g⊥b⊥√

2 + g2
⊥

√
x


× ρα−1

 b⊥√
2 + g2

⊥

√
x, z

.

(C.212)

By means of the Gauss–Laguerre quadrature, we can approximate the above integral
according to ∫ ∞

0
dx e−xf|mµ|n⊥µ(x, z) '

n∑
i=0

vif|mµ|n⊥µ(xi, z), (C.213)

where n is the quadrature order, xi the i-th root of the Laguerre polynomial Ln(x) at
which the function (C.212) is evaluated, and vi a weight factor that reads

vi ≡
xi

(n+ 1)2[Ln+1(xi)]2
. (C.214)

We obtain

I1(x̃i, z) = N⊥b
2
⊥

2(2 + g2
⊥)
∑
n⊥µ

Tmµn⊥µmcn⊥cmdn⊥d

n∑
i=0

vi(xi)φ̂|ma|n⊥a(x̃i)φ̂|mb|n⊥b(x̃i)

× φ̂|m′a|n′⊥a(x̃i)φ̂|m′a|n′⊥b(x̃i)φ̂00(g⊥x̃i)φ̂|mµ|n⊥µ(g⊥x̃i)ρα−1(x̃i, z),
(C.215)

where
x̃i ≡

b⊥√
2 + g2

⊥

√
xi. (C.216)
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To get an expression for (C.208), it remains to evaluate

I2(x̃i) ≡
∫ +∞

−∞
dz Iz(z)ρα−1(x̃i, z). (C.217)

We have

I2(x̃i) = Nz

∑
nzµ

T
nzµ
jcnzc jdnzd

∫ +∞

−∞
dz φnza(z − da)φnzb(z − db)φn′za(z − d

′
a)

× φn′
zb

(z − d ′b)φ0
(
gz(z − dcd)

)
φnzµ

(
gz(z − dcd)

)
ρα−1(x̃i, z).

(C.218)

In order to apply the Gauss–Hermite quadrature, we pull the exponentials out of the wave
functions using (C.10), so that

I2(x̃i) = Nz

∑
nzµ

T
nzµ
jcnzc jdnzd

∫ +∞

−∞
dz e−[(z−da)2+(z−db)2+(z−d ′a)2+(z−d ′b)

2+2g2
z(z−dcd)2]/2b2

z

× φ̂nza(z − da)φ̂nzb(z − db)φ̂n′za(z − d
′
a)φ̂n′zb(z − d

′
b)

× φ̂0
(
gz(z − dcd)

)
φ̂nzµ

(
gz(z − dcd)

)
ρα−1(x̃i, z).

(C.219)

Let us now complete the square of the argument of the exponential appearing in the
integral above. It reads

−


√

2 + g2
z

bz
z − da + db + d ′a + d ′b + 2g2

zdcd

2bz
√

2 + g2
z

2

+ 1
2b2
z

(da + db + d ′a + d ′b + 2g2
zdcd)2

2(2 + g2
z)

−
(
d2
a + d2

b + d ′ 2a + d ′ 2b + 2g2
zd

2
cd

),
(C.220)

in such a way that we get

I2(x̃i) = Nze[(da+db+d ′a+d ′b+2g2
zdcd)2/(2(2+g2

z))−(d2
a+d2

b+d
′ 2
a +d ′ 2b +2g2

zd
2
cd)]/2b2

z

×
∑
nzµ

T
nzµ
jcnzc jdnzd

∫ +∞

−∞
dz e−

[√
2+g2

zz/bz−(da+db+d ′a+d ′b+2g2
zdcd)/2bz

√
2+g2

z

]2

× φ̂nza(z − da)φ̂nzb(z − db)φ̂n′za(z − d
′
a)φ̂n′zb(z − d

′
b)

× φ̂0
(
gz(z − dcd)

)
φ̂nzµ

(
gz(z − dcd)

)
ρα−1(x̃i, z).

(C.221)

The change of variable y ≡
√

2 + g2
zz/bz− (da+db+d ′a+d ′b+2g2

zdcd)/2bz
√

2 + g2
z provides

I2(x̃i) = Nzbz√
2 + g2

z

e[(da+db+d ′a+d ′b+2g2
zdcd)2/(2(2+g2

z))−(d2
a+d2

b+d
′ 2
a +d ′ 2b +2g2

zd
2
cd)]/2b2

z

×
∑
nzµ

T
nzµ
jcnzc jdnzd

∫ +∞

−∞
dy e−y2

gnzµ(x̃i, y),
(C.222)
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where we have defined

gnzµ(x̃i, y) ≡ φ̂nza

 bz√
2 + g2

z

y + da + db + d ′a + d ′b + 2g2
zdcd

2(2 + g2
z)

− da


× φ̂nzb

 bz√
2 + g2

z

y + da + db + d ′a + d ′b + 2g2
zdcd

2(2 + g2
z)

− db


× φ̂n′za

 bz√
2 + g2

z

y + da + db + d ′a + d ′b + 2g2
zdcd

2(2 + g2
z)

− d ′a


× φ̂n′

zb

 bz√
2 + g2

z

y + da + db + d ′a + d ′b + 2g2
zdcd

2(2 + g2
z)

− d ′b


× φ̂0

gz
 bz√

2 + g2
z

y + da + db + d ′a + d ′b + 2g2
zdcd

2(2 + g2
z)

− dcd


× φ̂nzµ

gz
 bz√

2 + g2
z

y + da + db + d ′a + d ′b + 2g2
zdcd

2(2 + g2
z)

− dcd


× ρα−1

 b⊥√
2 + g2

⊥

√
xi,

bz√
2 + g2

z

y + da + db + d ′a + d ′b + 2g2
zdcd

2(2 + g2
z)

.

(C.223)

By means of the Gauss–Hermite quadrature, we can approximate the above integral ac-
cording to ∫ +∞

−∞
dy e−y2

gnzµ(x̃i, y) '
m∑
j=0

wjgnzµ(x̃i, yj), (C.224)

where m is the quadrature order, yj the j-th root of the Hermite polynomial Hm(y) at
which the function (C.223) is evaluated, and wj a weight factor that reads

wj ≡
2m−1m!

√
π

m2[Hm−1(yj)]2
. (C.225)

We obtain

I2(x̃i, ỹj) = Nzbz√
2 + g2

z

e[(da+db+d ′a+d ′b+2g2
zdcd)2/(2(2+g2

z))−(d2
a+d2

b+d
′ 2
a +d ′ 2b +2g2

zd
2
cd)]/2b2

z

×
∑
nzµ

T
nzµ
jcnzc jdnzd

m∑
j=0

wj(yj)φ̂nza(ỹj − da)φ̂nzb(ỹj − db)φ̂n′za(ỹj − d
′
a)

× φ̂n′
zb

(ỹj − d ′b)φ̂0
(
gz(ỹj − dcd)

)
φ̂nzµ

(
gz(ỹj − dcd)

)
ρα−1(x̃i, ỹj),

(C.226)

with

ỹj ≡
bz√

2 + g2
z

y + da + db + d ′a + d ′b + 2g2
zdcd

2(2 + g2
z)

. (C.227)
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Combining the results (C.215) and (C.226), we can furnish an approximate expression for
the integral (C.208) at the quadrature order (n,m). We find

I = N⊥b
2
⊥

2(2 + g2
⊥)

Nzbz√
2 + g2

z

e[(da+db+d ′a+d ′b+2g2
zdcd)2/(2(2+g2

z))−(d2
a+d2

b+d
′ 2
a +d ′ 2b +2g2

zd
2
cd)]/2b2

z

×
∑
rµ

T
rµ
jara jbrb

n∑
i=0

m∑
j=0

viwjφ̂|ma|νa(x̃i, ỹj − da)φ̂|mb|νb(x̃i, ỹj − db)

× φ̂|m′a|ν′a(x̃i, ỹj − d
′
a)φ̂|m′a|ν′b(x̃i, ỹj − d

′
b)φ̂0

(
g⊥x̃i, gz(ỹj − dcd)

)
× φ̂|mµ|νµ

(
g⊥x̃i, gz(ỹj − dcd)

)
ρα−1(x̃i, ỹj),

(C.228)

where we have gathered the axial and z-relative Talman coefficients as well as the x̃i-
and ỹj-dependent wave functions, where the latter coordinates are respectively given by
(C.216) and (C.227).

2.2. Tensor contribution
In this subsection, we shall derive the mean- and pairing fields associated with the

finite-range tensor term of the generalized Gogny interaction (II.1). Note that there are
no rearrangement fields associated with the tensor term since it is density-independent.
The antisymmetrized finite-range tensor interaction considered in the following reads

v
T,(a)
12 ≡ vT

12(1− PrPσPτ )
= (W −HPτ )V (r12)S12(1− PrPτ )
= PDV (r12)S12 + PEV (r12)S12Pr, (C.229)

where the tensor operator S12, given by (D.49), removes the operator Pσ since it acts
symmetrically on the spin variables (see discussion in section II). To perform the calcu-
lations, we will use the equivalent form (D.58) of the tensor operator. Note also that the
isospin components of the direct and exchange tensor fields are respectively

PD ≡ W −HPτ , (C.230a)
PE ≡ H −WPτ . (C.230b)

We notice that the direct components of the tensor fields can be deduced from the ex-
change ones by switching W and H and removing the operator Pr, in the same idea as
what we have done for the central and density-dependent terms. Thus, in the following,
we will start by deriving the exchange tensor fields from which, then, we will deduce the
direct ones.

2.2.1. Tensor mean fields

We start by deriving the mean field Γ, given by (III.37), of the tensor interaction
(C.229), which is not time-reversal invariant for the moment. Given that the density
matrices (C.21) and the fields (C.22) are diagonal in t and Ω, this tensor mean field can
be written

ΓtΩrarb =
∑
t′Ω′>0
rcrd

[
〈tsara t′scrc|vT,(a)

12 |tsbrb t′sdrd〉ρt
′Ω′
rdrc

+ 〈tsara t′scrc|vT,(a)
12 |tsbrb t′sdrd〉ρt

′Ω′
rcrd

]
.

(C.231)
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Let us first concentrate on the exchange tensor mean field. It reads

ΓtΩrarb|E =
∑
t′Ω′>0
rcrd

∑
k

(−)k
[
〈rarc|V (r12)[r̂12 ⊗ r̂12](2)

−kPr|rbrd〉

× 〈tsa t′sc|PE[~σ1 ⊗ ~σ2](2)
k |tsb t′sd〉ρt

′Ω′
rdrc

+ σcσd〈ra − rc|V (r12)[r̂12 ⊗ r̂12](2)
−kPr|rb − rd〉

× 〈tsa t′ − sc|PE[~σ1 ⊗ ~σ2](2)
k |tsb t′ − sd〉ρt

′Ω′
rcrd

]
.

(C.232)

From the arguments already mentioned for the central and density-dependent terms
(see discussion right after (C.31)), we will set in the following ma ≡ m and mb ≡ m + λ
as well as sa ≡ s and sb ≡ s− λ, with m ≥ 0 and λ ∈ {0, 1} in both matrix elements.

Now, contrary to the CDD interactions, the tensor interaction does not commute
with ~L (nor ~S), as it is shown in subsection D.6.2. Consequently, the conservation laws
(C.32) no longer hold. Nevertheless, since the matrix elements must remain scalars in
the coordinate space, the Wigner–Eckart theorem imposes the more general conservation
laws

ma +mc = mb +md − k, in the first matrix element, (C.233a)
ma −mc = mb −md − k, in the second matrix element. (C.233b)

Then, as Ω′ > 0, we know that mc and md are positive or zero and differ at most from 1.
Therefore, we can set md ≡ m′ and sd ≡ s′, with m′ ≥ 0 and s′ = ±1/2, in the first matrix
element of the above equation, which implies, according to the associated conservation
law, mc = m′+λ−k and sc = s′−λ+k. In the second matrix element, we will rather set
mc = m′ and sc = s′, which implies md = m′ + λ− k and sd = s′ − λ+ k. The reason for
this particular choice is the same as for the central and density-dependent terms; it allows
to simplify the final expression of the direct tensor mean field (see equation (C.250)). Let
us remark in passing that since λ ∈ {0, 1}, the value k = −2 is forbidden. It appears in
fact only for the case λ = −1 which is simply deduced from the case λ = 1 by symmetry.
Thus, for the tensor mean field, we will not need to evaluate the spatial integral involving
the component [r̂12⊗ r̂12](2)

2 . Finally, to ease the notations, we will write λ′ ≡ λ− k, with
|λ′| ≤ 1. The summation over k will thus be replaced by that over λ′.

With these notations, the exchange tensor mean field becomes

ΓtΩ=m+s
mνa,m+λ νb|E =

∑
t′Ω′>0
m′νcνd

∑
λ′

(−)λ−λ′

×
[
〈mνa m′ + λ′ νc|V (r12)[r̂12 ⊗ r̂12](2)

λ′−λPr|m+ λ νb m
′νd〉

× 〈ts t′s′ − λ′|PE[~σ1 ⊗ ~σ2](2)
λ−λ′ |t s− λ t′s′〉ρt

′m′+s′
m′νd,m′+λ′νc

+ 4s′(s′ − λ′)〈mνa −m′νc|V (r12)[r̂12 ⊗ r̂12](2)
λ′−λPr|m+ λ νb − (m′ + λ′) νd〉

× 〈ts t′ − s′|PE[~σ1 ⊗ ~σ2](2)
λ−λ′|t s− λ t′ − (s′ − λ′)〉ρt′m′+s′m′νc,m′+λ′νd

]
.

(C.234)

Let us first focus on the spin-isospin part, which is no longer trivial for the tensor
interaction. We set

X
(+)tsλ
Ω′m′νdνcλ′|E ≡ Y

(+)sλ
s′λ′ × Z

(+)t
Ω′m′νdνcλ′ |E, (C.235a)

X
(−)tsλ
Ω′m′νcνdλ′|E ≡ Y

(−)sλ
s′λ′ × Z

(−)t
Ω′m′νcνdλ′ |E, (C.235b)
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in the first and second matrix elements respectively, where their spin parts read

Y
(+)sλ
s′λ′ ≡ 〈s s′ − λ′|[~σ1 ⊗ ~σ2](2)

λ−λ′|s− λ s′〉, (C.236a)
Y

(−)sλ
s′λ′ ≡ 4s′(s′ − λ′)〈s − s′|[~σ1 ⊗ ~σ2](2)

λ−λ′|s− λ − (s′ − λ′)〉, (C.236b)

and their isospin parts are

Z
(+)t
Ω′m′νdνcλ′ |E ≡

∑
t′

(H −Wδtt′) ρt
′Ω′
m′νd,m′+λ′νc , (C.237a)

Z
(−)t
Ω′m′νcνdλ′ |E ≡

∑
t′

(H −Wδtt′) ρt
′Ω′
m′νc,m′+λ′νd , (C.237b)

or, by explicitly separating their particle-like and proton-neutron contributions,

Z
(+)t
Ω′m′νdνcλ′ |E = (H −W ) ρtΩ′m′νd,m′+λ′νc +H ρ−tΩ

′

m′νd,m′+λ′νc ,

Z
(−)t
Ω′m′νcνdλ′ |E = (H −W ) ρtΩ′m′νc,m′+λ′νd +H ρ−tΩ

′

m′νc,m′+λ′νd .

(C.238a)
(C.238b)

On the other hand, since the direct and exchange tensor mean fields have the same spin
part, we also have implicitly set

Y
(±)sλ
s′λ′ ≡ Y

(±)sλ
s′λ′ |D = Y

(±)sλ
s′λ′ |E. (C.239)

To evaluate the quantities Y (±), we need to find out the general expression of the spin
matrix element 〈sa sc|[~σ1 ⊗ ~σ2](2)

λ−λ′ |sb sd〉. It is given by (D.20). Applying this formula to
(C.236) keeping in mind that λ ∈ {0, 1}, we obtain

Y
(+)sλ
s′λ′ = 4ss′δλ,0

[√
2
3δλ

′,0 + δλ′,2s′

]

− δλ,1δs,1/2
[
2s′δλ′,0 +

√
2
3δλ

′,1δs′,1/2 − 2δλ′,−1δs′,−1/2

]
,

Y
(−)sλ
s′λ′ = −4ss′δλ,0

[√
2
3δλ

′,0 + δλ′,2s′

]

+ δλ,1δs,1/2

[
2s′δλ′,0 +

√
2
3δλ

′,1δs′,1/2 − 2δλ′,−1δs′,−1/2

]
,

(C.240a)

(C.240b)

where we notice that
Y sλ
s′λ′ ≡ Y

(+)sλ
s′λ′ = −Y (−)sλ

s′λ′ , (C.241)

with

Y sλ
s′λ′ ≡ 4ss′δλ,0

[√
2
3δλ

′,0 + δλ′,2s′

]

− δλ,1δs,1/2
[
2s′δλ′,0 +

√
2
3δλ

′,1δs′,1/2 − 2δλ′,−1δs′,−1/2

]
.

(C.242)

We check that the spin diagonal part of the tensor mean field corresponds to λ = 0 and
its non-diagonal part to λ = 1. Note that if the tensor mean field is spin diagonal, then
it is also diagonal in m, in agreement with the fact that the tensor mean field is diagonal
in Ω (Ωa = Ωb and sa = sb imply ma = mb).
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Then, from (C.235), we get

X
(+)tsλ
Ω′m′νdνcλ′|E ≡ Y sλ

s′λ′ × Z
(+)t
Ω′m′νdνcλ′ |E, (C.243a)

X
(−)tsλ
Ω′m′νcνdλ′|E ≡ −Y

sλ
s′λ′ × Z

(−)t
Ω′m′νcνdλ′|E. (C.243b)

Now, setting

R
(+)tsλ
m′νdνcλ′

|E ≡
∑
Ω′

Θ(Ω′)X(+)tsλ
Ω′m′νdνcλ′|E =

∑
s′=±s

Θ(m′ + s′)X(+)tsλ
m′+s′m′νdνcλ′|E, (C.244a)

R
(−)tsλ
m′νcνdλ′

|E ≡
∑
Ω′

Θ(Ω′)X(−)tsλ
Ω′m′νcνdλ′ |E =

∑
s′=±s

Θ(m′ + s′)X(−)tsλ
m′+s′m′νcνdλ′|E, (C.244b)

we end up with

R
(+)tsλ
m′νdνcλ′

|E = Θ(m′ + s)Y sλ
sλ′Z

(+)t
m′+sm′νdνcλ′|E

+ Θ(m′ − s)Y sλ
−sλ′Z

(+)t
m′−sm′νdνcλ′|E,

R
(−)tsλ
m′νcνdλ′

|E = −Θ(m′ + s)Y sλ
sλ′Z

(−)t
m′+sm′νcνdλ′ |E

−Θ(m′ − s)Y sλ
−sλ′Z

(−)t
m′−sm′νcνdλ′ |E,

(C.245a)

(C.245b)

and the exchange tensor mean field can be written

ΓtΩ=m+s
mνa,m+λ νb|E =

∑
m′≥0
νcνd

1∑
λ′=−1

(−)λ−λ′

×
[
〈mνa m′ + λ′ νc|V (r12)[r̂12 ⊗ r̂12](2)

λ′−λ|m′νd m+ λ νb〉R(+)tsλ
m′νdνcλ′

|E
+ 〈mνa −m′νc|V (r12)[r̂12 ⊗ r̂12](2)

λ′−λ|−(m′ + λ′) νd m+ λ νb〉R(−)tsλ
m′νcνdλ′

|E
]
,

(C.246)

where, as previously done for the central and density-dependent terms, we have replaced
the summations

∑
m′

∑
Ω′>0

by
∑
m′≥0

∑
Ω′

Θ(Ω′) and applied the operator Pr.

To get the direct tensor mean field out of the exchange one, it suffices to exchange H
and W and omit the operator Pr. The latter is therefore

ΓtΩ=m+s
mνa,m+λ νb|D =

∑
m′≥0
νcνd

1∑
λ′=−1

(−)λ−λ′

×
[
〈mνa m′ + λ′ νc|V (r12)[r̂12 ⊗ r̂12](2)

λ′−λ|m+ λ νb m
′νd〉R(+)tsλ

m′νdνcλ′
|D

+ 〈mνa −m′νd|V (r12)[r̂12 ⊗ r̂12](2)
λ′−λ|m+ λ νb − (m′ + λ′) νc〉R(−)tsλ

m′νdνcλ′
|D
]
,

(C.247)

where we have switched the dummy indices νc and νd in the second matrix element of the
right-hand side term. The quantities appearing in the direct tensor mean field are

R
(+)tsλ
m′νdνcλ′

|D = Θ(m′ + s)Y sλ
sλ′Z

(+)t
m′+sm′νdνcλ′ |D + Θ(m′ − s)Y sλ

−sλ′Z
(+)t
m′−sm′νdνcλ′ |D,

R
(−)tsλ
m′νcνdλ′

|D = −Θ(m′ + s)Y sλ
sλ′Z

(−)t
m′+sm′νcνdλ′|D −Θ(m′ − s)Y sλ

−sλ′Z
(−)t
m′−sm′νcνdλ′ |D,

(C.248a)
(C.248b)

where the quantities Y are given by (C.242), and

Z
(+)t
Ω′m′νdνcλ′|D = (W −H) ρtΩ′m′νd,m′+λ′νc +W ρ−tΩ

′

m′νd,m′+λ′νc ,

Z
(−)t
Ω′m′νcνdλ′|D = (W −H) ρtΩ′m′νc,m′+λ′νd +W ρ−tΩ

′

m′νc,m′+λ′νd .

(C.249a)
(C.249b)
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Now, by writing down the two spatial matrix elements involved in the direct tensor mean
field, we notice that they are equal, because of the expression of the axial wave functions
(C.3) and the fact that they commute with the tensor [r̂12 ⊗ r̂12](2)

λ′−λ. This is the reason
for our particular choice discussed earlier (see discusion after (C.232)). The direct tensor
mean field is then simplified according to

ΓtΩ=m+s
mνa,m+λ νb|D =

∑
m′≥0
νcνd

1∑
λ′=−1

(−)λ−λ′

× 〈mνa m′ + λ′ νc|V (r12)[r̂12 ⊗ r̂12](2)
λ′−λ|m+ λ νb m

′νd〉Rtsλ
m′νdνcλ′

|D,

(C.250)

where we have
Rtsλ
m′νdνcλ′

|D ≡ R
(+)tsλ
m′νdνcλ′

|D +R
(−)tsλ
m′νdνcλ′

|D, (C.251)

that is to say,

Rtsλ
m′νdνcλ′

|D = Θ(m′ + s)Y sλ
sλ′

[
Z

(+)t
m′+sm′νdνcλ′|D − Z

(−)t
m′+sm′νdνcλ′|D

]
+ Θ(m′ − s)Y sλ

−sλ′
[
Z

(+)t
m′−sm′νdνcλ′|D − Z

(−)t
m′−sm′νdνcλ′ |D

]
,

(C.252)

where the quantities Y and Z(±)|D are respectively given by (C.242) and (C.249).

From the boxed equations, we can now explicitly write down the expressions of the
direct and exchange tensor mean fields Γ for each value of λ. We recall that these fields
are not time-reversal invariant, and that the quantities Z(±)|E and Z(±)|D, respectively
given by (C.238) and (C.249), are the same no matter the value of λ. Finally, note that
if λ = 1, then s = 1/2 (as we could have already seen in (C.240)) since the identity
sb ≡ s− 1 = ±1/2 holds only if s = 1/2.
• Exchange tensor mean field Γ for λ = 0:

ΓtΩ=m+s
mνa,mνb

|E =
∑
m′≥0
νcνd

1∑
λ′=−1

(−)λ′

×
[
〈mνa m′ + λ′ νc|V (r12)[r̂12 ⊗ r̂12](2)

λ′ |m′νd mνb〉R
(+)ts0
m′νdνcλ′

|E
+ 〈mνa −m′νc|V (r12)[r̂12 ⊗ r̂12](2)

λ′ |−(m′ + λ′) νd mνb〉R(−)ts0
m′νcνdλ′

|E
]
,

(C.253)

where
R

(+)ts0
m′νdνcλ′

|E = Θ(m′ + s)Y s0
sλ′Z

(+)t
m′+sm′νdνcλ′ |E

+ Θ(m′ − s)Y s0
−sλ′Z

(+)t
m′−sm′νdνcλ′|E,

R
(−)ts0
m′νcνdλ′

|E = −Θ(m′ + s)Y s0
sλ′Z

(−)t
m′+sm′νcνdλ′ |E

−Θ(m′ − s)Y s0
−sλ′Z

(−)t
m′−sm′νcνdλ′ |E,

(C.254a)

(C.254b)

with

Y s0
±sλ′ = ±

[√
2
3δλ

′,0 + δλ′,±2s

]
. (C.255)

• Direct tensor mean field Γ for λ = 0:
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ΓtΩ=m+s
mνa,mνb

|D =
∑
m′≥0
νcνd

1∑
λ′=−1

(−)λ′

× 〈mνa m′ + λ′ νc|V (r12)[r̂12 ⊗ r̂12](2)
λ′ |mνb m′νd〉Rts0

m′νdνcλ′
|D,

(C.256)

where

Rts0
m′νdνcλ′

|D = Θ(m′ + s)Y s0
sλ′

[
Z

(+)t
m′+sm′νdνcλ′ |D − Z

(−)t
m′−sm′νdνcλ′ |D

]
+ Θ(m′ − s)Y s0

−sλ′
[
Z

(+)t
m′+sm′νdνcλ′|D − Z

(−)t
m′−sm′νdνcλ′ |D

]
,

(C.257)

with the quantities Y given by (C.255). Note that the quantities R(±)ts0|E and Rts0|D are
symmetric under the exchange of νc and νd only if λ′ = 0 such that the corresponding
quantities Z(±)|E and Z(±)|D display this symmetry as their density matrices ρ and ρ,
besides being symmetric, are diagonal in m′.
• Exchange tensor mean field Γ for λ = 1:

ΓtΩ=m+1/2
mνa,m+1 νb|E =

∑
m′≥0
νcνd

1∑
λ′=−1

(−)λ′−1

×
[
〈mνa m′ + λ′ νc|V (r12)[r̂12 ⊗ r̂12](2)

λ′−1|m′νd m+ 1 νb〉R(+)t1/2 1
m′νdνcλ′

|E
+ 〈mνa −m′νc|V (r12)[r̂12 ⊗ r̂12](2)

λ′−1|−(m′ + λ′) νd m+ 1 νb〉R(−)t1/2 1
m′νcνdλ′

|E
]
,

(C.258)

where
R

(+)t1/2 1
m′νdνcλ′

|E = Y
1/2 1

1/2λ′Z
(+)t
m′+1/2m′νdνcλ′|E

+ Θ(m′ − 1/2)Y 1/2 1
−1/2λ′Z

(+)t
m′−1/2m′νdνcλ′|E,

R
(−)t1/2 1
m′νcνdλ′

|E = −Y 1/2 1
1/2λ′Z

(−)t
m′+1/2m′νcνdλ′ |E

−Θ(m′ − 1/2)Y 1/2 1
−1/2λ′Z

(−)t
m′−1/2m′νcνdλ′|E,

(C.259a)

(C.259b)

with

Y
1/2 1

1/2λ′ = −
[
δλ′,0 +

√
2
3δλ

′,1

]
,

Y
1/2 1
−1/2λ′ = δλ′,0 + 2δλ′,−1.

(C.260a)

(C.260b)

• Direct tensor mean field Γ for λ = 1:

ΓtΩ=m+1/2
mνa,m+1 νb|D =

∑
m′≥0
νcνd

1∑
λ′=−1

(−)λ′−1

× 〈mνa m′ + λ′ νc|V (r12)[r̂12 ⊗ r̂12](2)
λ′−1|m+ 1 νb m′νd〉Rt1/2 1

m′νdνcλ′
|D,

(C.261)

where

R
t1/2 1
m′νdνcλ′

|D = Y
1/2 1

1/2λ′
[
Z

(+)t
m′+1/2m′νdνcλ′|D − Z

(−)t
m′+1/2m′νdνcλ′ |D

+ Θ(m′ − 1/2)Y 1/2 1
−1/2λ′

[
Z

(+)t
m′−1/2m′νdνcλ′|D − Z

(−)t
m′−1/2m′νdνcλ′|D

]
,

(C.262)

with the quantities Y given by (C.260). Here again, the quantities R(±)t1/2 1|E and Rt1/2 1|D
are symmetric under the exchange of νc and νd only if λ′ = 0 such that the corresponding
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quantities Z(±)|E and Z(±)|D display this symmetry as their density matrices ρ and ρ,
besides being symmetric, are diagonal in m′.

The tensor mean field Γ can easily be deduced by exchanging ρ and ρ in the expressions
of the tensor mean field Γ, as we notice by comparing the expressions of the mean fields
(III.37) and (III.38). We can see that only the quantities R(±) are impacted by this
transformation. We will call them R(±) in the following. Unfortunately, there are no
straight relations between the quantities R(±) and R(±) for the tensor interaction, as
there were for the central and density-dependent terms (see equations (C.52)). As a
consequence, the tensor mean fields Γ and Γ will be computed simultaneously in the
code, but with different quantities R(±) and R(±). In addition, note that the quantities Y
making up the R(±) remain the same under this transformation, hence

Y sλ
s′λ′ = Y sλ

s′λ′ . (C.263)

Accordingly, the exchange tensor mean field Γ can be expressed as

ΓtΩ=m+s
mνa,m+λ νb|E =

∑
m′≥0
νcνd

1∑
λ′=−1

(−)λ+λ′

×
[
〈mνa m′ + λ′ νc|V (r12)[r̂12 ⊗ r̂12](2)

λ′−λ|m′νd m+ λ νb〉R
(+)tsλ
m′νdνcλ′

|E

+ 〈mνa −m′νc|V (r12)[r̂12 ⊗ r̂12](2)
λ′−λ|−(m′ + λ′) νd m+ λ νb〉R

(−)tsλ
m′νcνdλ′

|E
]
,

(C.264)

where
R

(+)tsλ
m′νdνcλ′

|E = Θ(m′ + s)Y sλ
sλ′Z

(+)t
m′+sm′νdνcλ′|E

+ Θ(m′ − s)Y sλ
−sλ′Z

(+)t
m′−sm′νdνcλ′|E,

R
(−)tsλ
m′νcνdλ′

|E = −Θ(m′ + s)Y sλ
sλ′Z

(−)t
m′+sm′νcνdλ′ |E

−Θ(m′ − s)Y sλ
−sλ′Z

(−)t
m′−sm′νcνdλ′ |E,

(C.265a)

(C.265b)

with the quantities Y expressed in (C.242), and with

Z
(+)t
Ω′m′νdνcλ′ |E ≡

∑
t′

(H −Wδtt′) ρt
′Ω′
m′νd,m′+λ′νc , (C.266a)

Z
(−)t
Ω′m′νcνdλ′ |E ≡

∑
t′

(H −Wδtt′) ρt
′Ω′
m′νc,m′+λ′νd , (C.266b)

or, by explicitly separating their particle-like and proton-neutron contributions,

Z
(+)t
Ω′m′νdνcλ′|E = (H −W ) ρtΩ′m′νd,m′+λ′νc +H ρ−tΩ

′

m′νd,m′+λ′νc ,

Z
(−)t
Ω′m′νcνdλ′|E = (H −W ) ρtΩ′m′νc,m′+λ′νd +H ρ−tΩ

′

m′νc,m′+λ′νd .

(C.267a)

(C.267b)

As for the direct tensor mean field Γ, it reads

ΓtΩ=m+s
mνa,m+λ νb|D =

∑
m′≥0
νcνd

1∑
λ′=−1

(−)λ−λ′

× 〈mνa m′ + λ′ νc|V (r12)[r̂12 ⊗ r̂12](2)
λ′−λ|m+ λ νb m

′νd〉R
tsλ
m′νdνcλ′

|D,

(C.268)
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where

R
tsλ
m′νdνcλ′

|D = Θ(m′ + s)Y sλ
sλ′

[
Z

(+)t
m′+sm′νdνcλ′ |D − Z

(−)t
m′+sm′νdνcλ′|D

]
+ Θ(m′ − s)Y sλ

−sλ′
[
Z

(+)t
m′−sm′νdνcλ′ |D − Z

(−)t
m′−sm′νdνcλ′|D

]
,

(C.269)

with the quantities Y expressed in (C.242), and with

Z
(+)t
Ω′m′νdνcλ′ |D = (W −H) ρtΩ′m′νd,m′+λ′νc +W ρ−tΩ

′

m′νd,m′+λ′νc ,

Z
(−)t
Ω′m′νcνdλ′ |D = (W −H) ρtΩ′m′νc,m′+λ′νd +W ρ−tΩ

′

m′νc,m′+λ′νd .

(C.270a)

(C.270b)

From the boxed equations, we can now explicitly write down the expressions of the
direct and exchange tensor mean fields Γ for each value of λ. We recall that these fields
are not time-reversal invariant, and that the quantities Z(±)|E and Z(±)|D, respectively
given by (C.267) and (C.270), are the same no matter the value of λ. Finally, note that
if λ = 1, then s = 1/2 (as we could have already seen in (C.240)) since the identity
sb ≡ s− 1 = ±1/2 holds only if s = 1/2.
• Exchange tensor mean field Γ for λ = 0:

ΓtΩ=m+s
mνa,mνb

|E =
∑
m′≥0
νcνd

1∑
λ′=−1

(−)λ′

×
[
〈mνa m′ + λ′ νc|V (r12)[r̂12 ⊗ r̂12](2)

λ′ |m′νd mνb〉R
(+)ts0
m′νdνcλ′

|E

+ 〈mνa −m′νc|V (r12)[r̂12 ⊗ r̂12](2)
λ′ |−(m′ + λ′) νd mνb〉R

(−)ts0
m′νcνdλ′

|E
]
,

(C.271)

where
R

(+)ts0
m′νdνcλ′

|E = Θ(m′ + s)Y s0
sλ′Z

(+)t
m′+sm′νdνcλ′|E

+ Θ(m′ − s)Y s0
−sλ′Z

(+)t
m′−sm′νdνcλ′|E,

R
(−)ts0
m′νcνdλ′

|E = −Θ(m′ + s)Y s0
sλ′Z

(−)t
m′+sm′νcνdλ′ |E

−Θ(m′ − s)Y s0
−sλ′Z

(−)t
m′−sm′νcνdλ′ |E,

(C.272a)

(C.272b)

with the quantities Y given by (C.255).
• Direct tensor mean field Γ for λ = 0:

ΓtΩ=m+s
mνa,mνb

|D =
∑
m′≥0
νcνd

1∑
λ′=−1

(−)λ′

× 〈mνa m′ + λ′ νc|V (r12)[r̂12 ⊗ r̂12](2)
λ′ |mνb m′νd〉R

ts0
m′νdνcλ′

|D,

(C.273)

where

R
ts0
m′νdνcλ′

|D = Θ(m′ + s)Y s0
sλ′

[
Z

(+)t
m′+sm′νdνcλ′ |D − Z

(−)t
m′+sm′νdνcλ′|D

]
+ Θ(m′ − s)Y s0

−sλ′
[
Z

(+)t
m′−sm′νdνcλ′ |D − Z

(−)t
m′−sm′νdνcλ′|D

]
,

(C.274)

with the quantities Y given by (C.255). Note that the quantities R(±)ts0|E and Rts0|D are
symmetric under the exchange of νc and νd only if λ′ = 0 such that the corresponding
quantities Z(±)|E and Z(±)|D display this symmetry as their density matrices ρ and ρ are,
besides being symmetric, diagonal in m′.
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• Exchange tensor mean field Γ for λ = 1:

ΓtΩ=m+1/2
mνa,m+1 νb|E =

∑
m′≥0
νcνd

1∑
λ′=−1

(−)λ′−1

×
[
〈mνa m′ + λ′ νc|V (r12)[r̂12 ⊗ r̂12](2)

λ′−1|m′νd m+ 1 νb〉R
(+)t1/2 1
m′νdνcλ′

|E

+ 〈mνa −m′νc|V (r12)[r̂12 ⊗ r̂12](2)
λ′−1|−(m′ + λ′) νd m+ 1 νb〉R

(−)t1/2 1
m′νcνdλ′

|E
]
,

(C.275)

where
R

(+)t1/2 1
m′νdνcλ′

|E = Y
1/2 1

1/2λ′Z
(+)t
m′+1/2m′νdνcλ′ |E

+ Θ(m′ − 1/2)Y 1/2 1
−1/2λ′Z

(+)t
m′−1/2m′νdνcλ′ |E,

R
(−)t1/2 1
m′νcνdλ′

|E = −Y 1/2 1
1/2λ′Z

(−)t
m′+1/2m′νcνdλ′|E

−Θ(m′ − 1/2)Y 1/2 1
−1/2λ′Z

(−)t
m′−1/2m′νcνdλ′|E,

(C.276a)

(C.276b)

with the quantities Y given by (C.260).

• Direct tensor mean field Γ for λ = 1:

ΓtΩ=m+1/2
mνa,m+1 νb |D =

∑
m′≥0
νcνd

1∑
λ′=−1

(−)λ′−1

× 〈mνa m′ + λ′ νc|V (r12)[r̂12 ⊗ r̂12](2)
λ′−1|m+ 1 νb m′νd〉R

t1/2 1
m′νdνcλ′

|D,

(C.277)

where

R
t1/2 1
m′νdνcλ′

|D = Y
1/2 1

1/2λ′
[
Z

(+)t
m′+1/2m′νdνcλ′ |D − Z

(−)t
m′+1/2m′νdνcλ′ |D

]
+ Θ(m′ − 1/2)Y 1/2 1

−1/2λ′
[
Z

(+)t
m′−1/2m′νdνcλ′|D − Z

(−)t
m′−1/2m′νdνcλ′ |D

]
,

(C.278)

with the quantities Y given by (C.260). Here again, the quantities R(±)t1/2 1|E and Rt1/2 1|D
are symmetric under the exchange of νc and νd only if λ′ = 0 such that the corresponding
quantities Z(±)|E and Z

(±)|D display this symmetry as their density matrices ρ and ρ,
besides being symmetric, are diagonal in m′.

Time-reversal invariant fields
Now, we assume the time-reversal invariance of the tensor mean fields Γ and Γ, i.e.

we set ρ = ρ. In this case, as the quantity Y sλ
s′λ′ remains unchanged under time-reversal

symmetry and Z(±) = Z(±), we have R(±) = R(±), so that eventually the mean fields
coincide, Γ = Γ. They simplify according to the following expressions.

The exchange tensor mean fields (C.246) and (C.264) become

ΓtΩ=m+s
mνa,m+λ νb |

T
E =

∑
m′≥0
νcνd

1∑
λ′=−1

(−)λ−λ′

×
[
〈mνa m′ + λ′ νc|V (r12)[r̂12 ⊗ r̂12](2)

λ′−λ|m′νd m+ λ νb〉Rtsλ
m′νdνcλ′

|TE
− 〈mνa −m′νc|V (r12)[r̂12 ⊗ r̂12](2)

λ′−λ|−(m′ + λ′) νd m+ λ νb〉Rtsλ
m′νcνdλ′

|TE
]
,

(C.279)
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where the quantities (C.245) and (C.265) simplify according to

Rtsλ
m′νdνcλ′

|TE ≡ R
(+)tsλ
m′νdνcλ′

|TE = −R(−)tsλ
m′νdνcλ′

|TE, (C.280)

with

Rtsλ
m′νdνcλ′

|TE = Θ(m′ + s)Y sλ
sλ′Z

t
m′+sm′νdνcλ′|

T
E + Θ(m′ − s)Y sλ

−sλ′Z
t
m′−sm′νdνcλ′ |

T
E, (C.281)

since we notice that

Zt
Ω′m′νdνcλ′ |

T
E ≡ Z

(+)t
Ω′m′νdνcλ′|

T
E = Z

(−)t
Ω′m′νdνcλ′|

T
E, (C.282)

where
Zt

Ω′m′νdνcλ′|
T
E = (H −W )ρtΩ′m′νd,m′+λ′νc +Hρ−tΩ

′

m′νd,m′+λ′νc , (C.283)

while the quantities Y , given by (C.242), remain unchanged under time-reversal symmetry.
On the other hand, the direct tensor mean fields (C.250) and (C.268) become

ΓtΩ=m+s
mνa,m+λ νb|

T
D = 0, (C.284)

since the quantities (C.252) and (C.269) simplify according to

Rtsλ
m′νdνcλ′

|TD = 0, (C.285)

as we notice that
Z

(+)t
Ω′m′νdνcλ′ |

T
D = Z

(−)t
Ω′m′νdνcλ′ |

T
D. (C.286)

In other words, the direct tensor mean field is zero when the time-reversal symmetry is
imposed. Thus, the full time-reversal tensor mean field (direct plus exchange components)
can be written

ΓtΩ=m+s
mνa,m+λ νb|

T =
∑
m′≥0
νcνd

1∑
λ′=−1

(−)λ−λ′

×
[
〈mνa m′ + λ′ νc|V (r12)[r̂12 ⊗ r̂12](2)

λ′−λ|m′νd m+ λ νb〉Rtsλ
m′νdνcλ′

|T

− 〈mνa −m′νc|V (r12)[r̂12 ⊗ r̂12](2)
λ′−λ|−(m′ + λ′) νd m+ λ νb〉Rtsλ

m′νcνdλ′
|T
]
,

(C.287)

where
Rtsλ
m′νdνcλ′

|T ≡ Rtsλ
m′νdνcλ′

|TE, (C.288)
with Rtsλ

m′νdνcλ′
|TE given by (C.281), and

Zt
Ω′m′νdνcλ′ |

T = Zt
Ω′m′νdνcλ′ |

T
E, (C.289)

with Zt
Ω′m′νdνcλ′|

T
E given by (C.283).

From the boxed equations, we can now explicitly write down the expressions of the
time-reversal invariant tensor mean field for each value of λ. Note that the quantity Z|E,
given by (C.282), is the same no matter the value of λ. Finally, note that if λ = 1, then
s = 1/2 (as we could have already seen in (C.240)) since the identity sb ≡ s− 1 = ±1/2
holds only if s = 1/2.
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• Time-reversal invariant tensor mean field for λ = 0:

ΓtΩ=m+s
mνa,mνb

|T =
∑
m′≥0
νcνd

1∑
λ′=−1

(−)λ′

×
[
〈mνa m′ + λ′ νc|V (r12)[r̂12 ⊗ r̂12](2)

λ′ |m′νd mνb〉Rts0
m′νdνcλ′

|T

− 〈mνa −m′νc|V (r12)[r̂12 ⊗ r̂12](2)
λ′ |−(m′ + λ′) νd mνb〉Rts0

m′νcνdλ′
|T
]
,

(C.290)

where

Rts0
m′νdνcλ′

|T = Θ(m′ + s)Y s0
sλ′Z

t
m′+sm′νdνcλ′|

T + Θ(m′ − s)Y s0
−sλ′Z

t
m′−sm′νdνcλ′ |

T, (C.291)

with the quantities Y given by (C.255).
• Time-reversal invariant tensor mean field for λ = 1:

ΓtΩ=m+1/2
mνa,m+1 νb|

T =
∑
m′≥0
νcνd

1∑
λ′=−1

(−)λ′−1

×
[
〈mνa m′ + λ′ νc|V (r12)[r̂12 ⊗ r̂12](2)

λ′−1|m′νd m+ 1 νb〉Rt1/2 1
m′νdνcλ′

|T

− 〈mνa −m′νc|V (r12)[r̂12 ⊗ r̂12](2)
λ′−1|−(m′ + λ′) νd m+ 1 νb〉Rt1/2 1

m′νcνdλ′
|T
]
,

(C.292)

where

R
t1/2 1
m′νdνcλ′

|T = Y
1/2 1

1/2λ′Z
t
m′+1/2m′νdνcλ′ |

T + Θ(m′ − 1/2)Y 1/2 1
−1/2λ′Z

t
m′−1/2m′νdνcλ′ |

T, (C.293)

with the quantities Y given by (C.260). Note that the quantities Rts0|T and Rt1/2 1|T are
symmetric under the exchange of νc and νd only if λ′ = 0 such that the corresponding
quantities Z|T display this symmetry as their density matrix ρ, besides being symmetric,
is diagonal in m′.

2.2.2. Tensor pairing field

We continue by deriving the pairing field (III.32) of the tensor interaction (C.229),
which is not time-reversal invariant for the moment. Given that the pairing tensor (C.21)
and the fields (C.22) are diagonal in t and Ω, this tensor pairing field can be written

∆tΩ
rarb

=
∑
t′Ω′>0
rcrd

〈tsara tsbrb|vT,(a)
12 |t′scrc t′sdrd〉κt

′Ω′
rcrd

. (C.294)

As for the tensor mean fields, let us first concentrate on the exchange component of
the tensor pairing field. It reads

∆tΩ
rarb
|E =

∑
t′Ω′>0
rcrd

∑
k

(−)k〈ra − rb|V (r12)[r̂12 ⊗ r̂12](2)
−kPr|rc − rd〉

× σbσd〈tsa t− sb|PE[~σ1 ⊗ ~σ2](2)
k |t′sc t′ − sd〉κt

′Ω′
rcrd

.

(C.295)

We name the quantum numbers of the above matrix element in the same way as we have
done for the second matrix element of the tensor mean field (C.234), while keeping in mind
that here λ ∈ {−1, 0, 1} since the pairing field is not symmetric under the exchange of its
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indices, contrary to the mean field (see discussion (C.24) and the discussion below). Note
in passing that all the spatial integrals of the tensor pairing field have to be evaluated so
that all the components of [r̂12 ⊗ r̂12](2)

−k exist. With these notations, the exchange tensor
pairing field becomes

∆tΩ=m+s
mνa,m+λ νb|E =

∑
t′Ω′>0
m′νcνd

∑
λ′

(−)λ−λ′ × 4(s− λ)(s′ − λ′)

× 〈mνa − (m+ λ) νb|V (r12)[r̂12 ⊗ r̂12](2)
λ′−λPr|m′νc − (m′ + λ′) νd〉

× 〈ts t− (s− λ)|PE[~σ1 ⊗ ~σ2](2)
λ−λ′|t′s′ t′ − (s′ − λ′)〉κt′m′+s′m′νc,m′+λ′νd .

(C.296)

Once again, let us first focus on the spin-isospin part. We set

AtsλΩ′m′νcνdλ′|E ≡ Bsλ
s′λ′ × Ct

Ω′m′νcνdλ′ |E, (C.297)

where the spin part reads

Bsλ
s′λ′ ≡ 4(s− λ)(s′ − λ′)〈s − (s− λ)|[~σ1 ⊗ ~σ2](2)

λ−λ′ |s′ − (s′ − λ′)〉, (C.298)

and the isospin part is

Ct
Ω′m′νcνdλ′|E = (H −W )κtm′+s′m′νc,m′+λ′νd , (C.299)

where we notice that there is only a particle-like contribution coming from the tensor
pairing field. On the other hand, since the direct and exchange tensor pairing fields have
the same spin part, we also have implicitly set

Bsλ
s′λ′ ≡ Bsλ

s′λ′ |D = Bsλ
s′λ′ |E. (C.300)

Using carefully the expression of the spin matrix element (D.20), we obtain

Bsλ
s′λ′ = −16s(s− λ)2(s′ − λ′)

{
δss′

[√
2
3δλλ

′ − δλ+λ′,2s

]

+ δs,−s′

[√
2
3δλ,0δλ

′,0 + 2δλ,2sδλ,−λ′ − δλ−λ′,2s
]}
,

(C.301)

where we have separated the s = s′ and s 6= s′ contributions to the tensor pairing field, its
spin diagonal part being given by λ = 0 and the non-diagonal one by λ 6= 0, as expected.
Note that if the tensor pairing field is spin diagonal, then it is also diagonal in m, just
like the tensor mean fields are.

Then, from (C.297), we get

AtsλΩ′m′νcνdλ′ |E = (H −W )Bsλ
s′λ′κ

tm′+s′
m′νc,m′+λ′νd . (C.302)

Now, setting

Stsλm′νcνdλ′|E ≡
∑
Ω′

Θ(Ω′)AtsλΩ′m′νcνdλ′ |E =
∑
s′=±s

Θ(m′ + s′)Atsλm′+s′m′νcνdλ′|E, (C.303)

we end up with

Stsλm′νcνdλ′ |E = (H −W )
[
Θ(m′ + s)Bsλ

sλ′κ
tm′+s
m′νc,m′+λ′νd

+ Θ(m′ − s)Bsλ
−sλ′κ

tm′−s
m′νc,m′+λ′νd

]
,

(C.304)
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and the exchange tensor pairing field can be written

∆tΩ=m+s
mνa,m+λ νb|E =

∑
m′≥0
νcνd

1∑
λ′=−1

(−)λ−λ′

× 〈mνa − (m+ λ) νb|V (r12)[r̂12 ⊗ r̂12](2)
λ′−λ|−(m′ + λ′) νd m′νc〉Stsλm′νcνdλ′|E,

(C.305)

where, as we have done for the tensor mean fields, we have replaced the summations∑
m′

∑
Ω′>0

by
∑
m′≥0

∑
Ω′

Θ(Ω′) and applied the operator Pr. Now, writing the above matrix

element under its integral form, we see that, because of the expression of the axial wave
functions (C.3) and the fact that they commute with the tensor [r̂12⊗ r̂12](2)

λ′−λ, it is equiv-
alent to 〈mνa −m′νc|V (r12)[r̂12 ⊗ r̂12](2)

λ′−λ|−(m′ + λ′) νd m+ λ νb〉. Thus, the exchange
tensor pairing field reads

∆tΩ=m+s
mνa,m+λ νb|E =

∑
m′≥0
νcνd

1∑
λ′=−1

(−)λ−λ′

× 〈mνa −m′νc|V (r12)[r̂12 ⊗ r̂12](2)
λ′−λ|−(m′ + λ′) νd m+ λ νb〉Stsλm′νcνdλ′ |E.

(C.306)

To get the direct tensor pairing field out of the exchange one, we first switch H and
W and omit the operator Pr to obtain

∆tΩ=m+s
mνa,m+λ νb|D =

∑
m′≥0
νcνd

1∑
λ′=−1

(−)λ−λ′

× 〈mνa − (m+ λ) νb|V (r12)[r̂12 ⊗ r̂12](2)
λ′−λ|m′νc − (m′ + λ′) νd〉Stsλm′νcνdλ′ |D.

(C.307)

Just like we have done with the exchange term, we notice that the matrix element can
be written 〈mνa m′ + λ′ νd|V (r12)[r̂12 ⊗ r̂12](2)

λ′−λ|m′νc m+ λ νb〉. Finally exchanging the
dummy indices νc and νd, the direct tensor pairing field becomes

∆tΩ=m+s
mνa,m+λ νb |D =

∑
m′≥0
νcνd

1∑
λ′=−1

(−)λ−λ′

× 〈mνa m′ + λ′ νc|V (r12)[r̂12 ⊗ r̂12](2)
λ′−λ|m′νd m+ λ νb〉Stsλm′νdνcλ′|D,

(C.308)

where
Stsλm′νdνcλ′ |D = (W −H)

[
Θ(m′ + s)Bsλ

sλ′κ
tm′+s
m′νd,m′+λ′νc

+ Θ(m′ − s)Bsλ
−sλ′κ

tm′−s
m′νd,m′+λ′νc

]
,

(C.309)

with the quantities B given by (C.301).
Finally, the identity

Stsλm′νcνdλ′ ≡ −S
tsλ
m′νcνdλ′

|E = Stsλm′νcνdλ′ |D (C.310)
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allows us to write down the full tensor pairing field (direct plus exchange components) as

∆tΩ=m+s
mνa,m+λ νb =

∑
m′≥0
νcνd

1∑
λ′=−1

(−)λ−λ′

×
[
〈mνa m′ + λ′ νc|V (r12)[r̂12 ⊗ r̂12](2)

λ′−λ|m′νd m+ λ νb〉Stsλm′νdνcλ′

− 〈mνa −m′νc|V (r12)[r̂12 ⊗ r̂12](2)
λ′−λ|−(m′ + λ′) νd m+ λ νb〉Stsλm′νcνdλ′

]
,

(C.311)

As it was the case with the CDD pairing field, we see that the tensor pairing field has
the same structure as the tensor mean field (C.246). This is the reason of our specific
transformations leading to (C.306) and (C.308). Indeed, the pairing fields can therefore
be calculated simultaneously with the mean fields in an HFB code.

From the boxed equations, we can now explicitly write down the expressions of the
above tensor pairing field for each value of λ. We recall that this field is not time-reversal
invariant. We also note that if |λ| = 1, then λ = 2s as we deduce from sb ≡ s−λ = ±1/2
when λ 6= 0.
• Tensor pairing field for λ = 0:

∆tΩ=m+s
mνa,mνb

=
∑
m′≥0
νcνd

1∑
λ′=−1

(−)λ′

×
[
〈mνa m′ + λ′ νc|V (r12)[r̂12 ⊗ r̂12](2)

λ′ |m′νd mνb〉Sts0m′νdνcλ′

− 〈mνa −m′νc|V (r12)[r̂12 ⊗ r̂12](2)
λ′ |−(m′ + λ′) νd mνb〉Sts0m′νcνdλ′

]
,

(C.312)

where
Sts0m′νcνdλ′

= (W −H)
[
Θ(m′ + s)Bs0

sλ′κ
tm′+s
m′νc,m′+λ′νd

+ Θ(m′ − s)Bs0
−sλ′κ

tm′−s
m′νc,m′+λ′νd

]
,

(C.313)

with

Bs0
±sλ′ = ∓

[√
2
3δλ

′,0 + δλ′,±2s

]
. (C.314)

• Tensor pairing field for |λ| = 1:

∆tΩ=m+s
mνa,m+2s νb =

∑
m′≥0
νcνd

1∑
λ′=−1

(−)λ′−2s

×
[
〈mνa m′ + λ′ νc|V (r12)[r̂12 ⊗ r̂12](2)

λ′−2s|m′νd m+ 2s νb〉Sts 2s
m′νdνcλ′

− 〈mνa −m′νc|V (r12)[r̂12 ⊗ r̂12](2)
λ′−2s|−(m′ + λ′) νd m+ 2s νb〉Sts 2s

m′νcνdλ′

]
,

(C.315)

where
Sts 2s
m′νcνdλ′

= (W −H)
[
Θ(m′ + s)Bs 2s

sλ′ κ
tm′+s
m′νc,m′+λ′νd

+ Θ(m′ − s)Bs 2s
−sλ′κ

tm′−s
m′νc,m′+λ′νd

]
,

(C.316)
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with

Bs 2s
sλ′ = δλ′,0 +

√
2
3δλ

′,2s,

Bs 2s
−sλ′ = −

[
δλ′,0 + 2δλ′,−2s

]
.

(C.317a)

(C.317b)

Note that the quantities Sts0 and Sts 2s are not symmetric under the exchange of νc and
νd since the pairing tensor κ is not.

Time-reversal invariant fields
Now, we assume the time-reversal invariance of the tensor pairing field, i.e. the pairing

tensor κ becomes symmetric under the exchange of its indices. Then, the pairing field
becomes symmetric (see discussion below equation (C.24)) and it suffices to consider
its expression for λ ∈ {0, 1}. For λ = 0, its expression is still given by (C.312), with
Sts0|T = Sts0. If λ = 1, then s = 1/2 (as we could have already seen in (C.301)) since the
identity sb ≡ s− 1 = ±1/2 holds only if s = 1/2.
• Time-reversal invariant tensor pairing field for λ = 1:

∆tΩ=m+1/2
mνa,m+1 νb|

T =
∑
m′≥0
νcνd

1∑
λ′=−1

(−)λ′−1

×
[
〈mνa m′ + λ′ νc|V (r12)[r̂12 ⊗ r̂12](2)

λ′−1|m′νd m+ 1 νb〉St1/2 1
m′νdνcλ′

|T

− 〈mνa −m′νc|V (r12)[r̂12 ⊗ r̂12](2)
λ′−1|−(m′ + λ′) νd m+ 1 νb〉St1/2 1

m′νcνdλ′
|T
]
,

(C.318)

where
S
t1/2 1
m′νcνdλ′

|T = (W −H)
[
B

1/2 1
1/2λ′κ

tm′+1/2
m′νc,m′+λ′νd

+ Θ(m′ − 1/2)B1/2 1
−1/2λ′κ

tm′−1/2
m′νc,m′+λ′νd

]
,

(C.319)

with
S
t1/2 1
m′νcνdλ′

|T = S
t1/2 1
m′νcνdλ′

, (C.320)

and

B
1/2 1
1/2λ′ = δλ′,0 +

√
2
3δλ

′,1,

B
1/2 1
−1/2λ′ = −

[
δλ′,0 + 2δλ′,−1

]
.

(C.321a)

(C.321b)

Note that the quantities Sts0 and St1/2 1 are symmetric under the exchange of νc and νd
only if λ′ = 0 such that the pairing tensor κ, besides being symmetric, is diagonal in m′.

2.2.3. Tensor spatial matrix elements

In the previous subsection, we have treated the spin-isospin parts of the tensor mean-
and pairing fields. In order to fully specify these fields, it remains to determine their
spatial parts, which we now undertake.

Identifying the position of the centers by the quantum numbers j, the spatial depen-
dence of the tensor fields lies in the two-body matrix elements of the form

vjajcjbjd, krarcrbrd
≡ 〈jara jcrc|V (r12)[r̂12 ⊗ r̂12](2)

−k|jbrb jdrd〉, (C.322)
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where we recall that k = λ − λ′ (see equation (C.233) and the related discussion). By
definition,

vjajcjbjd, krarcrbrd
=
∫

d3r1

∫
d3r2 φ

∗
jara(~r1)φ∗jcrc(~r2)V (r12)[r̂12 ⊗ r̂12](2)

−kφjbrb(~r1)φjdrd(~r2). (C.323)

Since the wave functions and the sandwiched quantity commute, we can rearrange the
terms according to

vjajcjbjd, krarcrbrd
=
∫

d3r1

∫
d3r2 V (r12)[r̂12 ⊗ r̂12](2)

−kφ
∗
jara(~r1)φjbrb(~r1)φ∗jcrc(~r2)φjdrd(~r2). (C.324)

Now, using twice the Gogny separable development in axial symmetry (C.495), on both
~r1 and ~r2 coordinates, we find

vjajcjbjd, krarcrbrd
=
∑
rµrν

T
rµ
jara jbrb

T rνjcrc jdrd

∫
d3r1

∫
d3r2

× V (r12)[r̂12 ⊗ r̂12](2)
−kφjab0(~r1)φjcd0(~r2)φjabrµ(~r2)φjcdrν (~r2),

(C.325)

where the axial Talman coefficients are specified in (C.497) and the ranges of values taken
by rµ and rν can be deduced from (C.503), (C.504) and (C.510). Applying twice the
Moshinsky transformation in axial symmetry (C.514), we get

vjajcjbjd, krarcrbrd
=
∑
rµrν

T
rµ
jara jbrb

T rνjcrc jdrd
∑
rλ

M rλ rσ
rµ rν

×
∫

d3r V (
√

2r)[r̂ ⊗ r̂](2)
−kφ0(~r − ~dabcd)φrσ(~r − ~dabcd)

×
∫

d3Rφ∗0(~R− ~Dabcd)φrλ(~R− ~Dabcd),

(C.326)

since the Jacobian of the change of variables (~r1, ~r2) → (~r, ~R) is equal to unity, the
quantity r̂ is scale-invariant and the axial Moshinsky coefficient, specified by (C.516),
fixes the range of values of rσ according to (C.521), (C.522) and (C.530). Note that in the
particular case r′µ = r′ν = 0, the axial Moshinsky coefficient reduces to M r′λr

′
σ

0 0 = δr′
λ
,0δr′σ ,0

because of (C.526) and (C.533). Note also that φ0(~R) = φ∗0(~R), by virtue of (C.8).
Finally, from (C.496) and (C.515), we can express the above distances as

~dabcd ≡
~dab − ~dcd√

2
, and ~Dabcd ≡

~dab + ~dcd√
2

, (C.327)

with
~dab ≡

~da + ~db
2 . (C.328)

The integral over ~R is readily carried out considering the orthogonality relation of the
axial wave function (C.6), so that, eventually,

vjajcjbjd, krarcrbrd
=
∑
rµrν

T
rµ
jara jbrb

T rνjcrc jdrdM
0 rσ
rµ rν

×
∫

d3r V (
√

2r)[r̂ ⊗ r̂](2)
−kφ0(~r − ~dabcd)φrσ(~r − ~dabcd),

(C.329)

with the Moshinsky coefficient M0 rσ
rµ rν given by merging the results (C.523) and (C.531)

and the new values taken by rσ specified by (C.524), (C.525) and (C.532).

361



C. Axial symmetry 2. Derivation of the fields

Thus, in the following, we shall evaluate the integral defined by

Ikrσ(~dabcd) ≡
∫

d3r V (
√

2r)[r̂ ⊗ r̂](2)
−kφ0(~r − ~dabcd)φrσ(~r − ~dabcd). (C.330)

First, we recall that, in axial symmetry where ~r = (r⊥, ϕ, z), the components of the tensor
[r̂ ⊗ r̂](2) are

[r̂ ⊗ r̂](2)
0 = 1√

6
2z2 − r2

⊥
r2
⊥ + z2 ,

[r̂ ⊗ r̂](2)
±1 = ∓zr⊥e±iϕ

r2
⊥ + z2 ,

[r̂ ⊗ r̂](2)
±2 = 1

2
r2
⊥e±2iϕ

r2
⊥ + z2 .

(C.331a)

(C.331b)

(C.331c)

Accordingly, it appears that the integral (C.330) can be separated along the directions
Oz and perpendicular to Oz if and only if the quantity V (

√
2r)/r2 is the product of a

function of r⊥ by a function of z. In particular, if the tensor potential is Gaussian, as it
is the case for the analytical form of the Gogny interaction we are studying, the quantity
V (
√

2r)/r2 cannot be written as a product of a function of r⊥ by a function of z, such
that the integral cannot be separated along the directions Oz and perpendicular to Oz.
One way to address this issue is to consider the relation

1
r2 =

∫ ∞
0

dξ e−ξr2
, (C.332)

so that the integral (C.330) becomes separable. Indeed, for a Gaussian tensor potential,
we have

V (
√

2r)[r̂ ⊗ r̂](2)
−k = e−2r2/µ2P−k(r⊥, z)

r2 e−ikϕ

=
∫ ∞

0
dξ e−r2(2/µ2+ξ)P−k(r⊥, z)e−ikϕ, (C.333)

where the polynomial P−k is defined by

P0 = 2z2 − r2
⊥√

6
,

P±1 = ∓zr⊥,

P±2 = r2
⊥
2 ,

(C.334a)

(C.334b)

(C.334c)

in such a way that the integral (C.330) separates according to

Ikrσ(~dabcd) =
∫ ∞

0
dξ
∫ +∞

−∞
dz e−z2(2/µ2+ξ)φ0(z − dabcd)φnzσ(z − dabcd)

×
∫

d2r⊥ e−r2
⊥(2/µ2+ξ)e−ikϕφ00(~r⊥)φmσn⊥σ(~r⊥)P−k(r⊥, z).

(C.335)

According to the definition (C.8), φ00(~r⊥) = φ00(r⊥) since this wave function has no
angular dependence. Furthermore, we can write φmσn⊥σ(~r⊥) = eimσϕφ̃|mσ |n⊥σ(r⊥), thanks
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to the relation (C.9). From these equations, we can easily evaluate the angular part of
the integral over r⊥, so that

Ikrσ(~dabcd) = 2πδk,mσ
∫ ∞

0
dξ
∫ +∞

−∞
dz e−z2(2/µ2+ξ)φ0(z − dabcd)φnzσ(z − dabcd)

×
∫ ∞

0
dr⊥ r⊥e−r2

⊥(2/µ2+ξ)φ00(r⊥)φ̃|mσ |n⊥σ(r⊥)P−k(r⊥, z).
(C.336)

Note that the Kronecker delta enforces the symmetry condition k = mb−ma +md−mc,
in accordance with the fact that the tensor interaction does not commute with Lz (see
discussion right after (C.232)). Otherwise, we would recover the conservation law of the
central and density-dependent interactions that do commute with Lz (see equation (C.136)
and the discussion below). Mathematically speaking, the tensor interaction involves a
tensor of rank 2, so that its projection satisfies −2 ≤ k ≤ 2 while the central and density-
dependent interactions only involve scalars, i.e. tensors of rank 0, for which the projection
is necessarily k = 0, so that ma +mc = mc +md, as expected.

Finally, we can include the different cases encountered in the unified expression

Ikrσ(~dabcd) = 2πδk,mσ
2∑

m=0

2∑
n=0

Pmn
−k

∫ ∞
0

dξ Kz m
nzσ(ξ, dabcd)K⊥n|mσ |n⊥σ(ξ), (C.337)

where
Pmn

0 = 1√
6

(2δm,2δn,0 − δm,0δn,2),

Pmn
±1 = ∓δm,1δn,1,

Pmn
±2 = 1

2δm,0δn,2,

(C.338a)

(C.338b)

(C.338c)

and

Kz m
nzσ(ξ, dabcd) =

∫ +∞

−∞
dz zm e−z2(2/µ2+ξ)φ0(z − dabcd)φnzσ(z − dabcd), (C.339)

K⊥n|mσ |n⊥σ(ξ) =
∫ ∞

0
dr⊥ rn+1

⊥ e−r2
⊥(2/µ2+ξ)φ00(r⊥)φ̃|mσ |n⊥σ(r⊥). (C.340)

To complete the calculation of the spatial part of the tensor term, we need to evaluate
the above integrals. Since the wave functions are not off-center along r⊥, the calculation
of the associated integral is quite easy and we will then start with this one.

The series expansion of the generalized Laguerre polynomial (D.100) making up the
radial wave function φ̃|mσ |n⊥σ(r⊥) of (C.340) combined to the result (D.119) leads to

K⊥n|mσ |n⊥σ(ξ) = bn⊥
2π [n⊥σ!(n⊥σ + |mσ|)!]1/2

×
n⊥σ∑
i=0

(−)i
i!(n⊥σ − i)!(i+ |mσ|)!

Γ(i+ n/2 + |mσ|/2 + 1)G−i−n/2−|mσ |/2−1
⊥ (ξ),

(C.341)

with

G⊥(ξ) ≡ 2b2
⊥ + µ2 + µ2b2

⊥ξ

µ2 , (C.342)

the analogous version of the spherical quantity (B.39) for the radial part of the axial
symmetry, when ξ = 0.
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The wave functions being off-center along z, the calculation of the associated integral
is a bit more tedious. From the expressions of the wave functions relative to z, (C.5), and
the series expansion of the Hermite polynomial (D.98), we obtain

Kz m
nzσ(ξ, dabcd) = 1

bnzσ+1
z

[
2nzσnzσ!

π

]1/2 bnzσ/2c∑
j=0

(−)j
22jj!(nzσ − 2j)!b

2j
z

×
∫ +∞

−∞
dz zm(z − dabcd)nzσ−2j e−z2(2/µ2+ξ)e−(z−dabcd)2/b2

z︸ ︷︷ ︸
A

.
(C.343)

Shifting z′ = z − dabcd and using the binomial formula, the above integral becomes

A =
m∑
l=0

m!
l!(m− l)!d

m−l
abcd

∫ +∞

−∞
dz′ z′nzσ+l−2j e−(z′+dabcd)2(2/µ2+ξ)e−z′2/b2

z︸ ︷︷ ︸
B

. (C.344)

Let us now complete the square of the argument of the exponential appearing in the
integral above. It reads

−


√
Gz(ξ)
bz

z′ +
(

2
µ2 + ξ

)
bzdabcd√
Gz(ξ)

2

−
(

2
µ2 + ξ

)
d2
abcd

Gz(ξ)
, (C.345)

where we have set

Gz(ξ) ≡
2b2
z + µ2 + µ2b2

zξ

µ2 , (C.346)

the analogous version of the spherical quantity (B.39) for the z part in axial symmetry,
when ξ = 0. Then, the integral B can be rewritten as

B = e−(2/µ2+ξ)d2
abcd/Gz(ξ)

×
∫ +∞

−∞
dz′ z′nzσ+l−2j e−

[√
Gz(ξ)z′/bz+(2/µ2+ξ)bzdabcd/

√
Gz(ξ)

]2

.
(C.347)

Another change of variable, namely u ≡
√
Gz(ξ)z′/bz + (2/µ2 + ξ)bzdabcd/

√
Gz(ξ), where

ξ is considered fixed here, gives

B = bz√
Gz(ξ)

e−(2/µ2+ξ)d2
abcd/Gz(ξ)

×
∫ +∞

−∞
du
 bz√

Gz(ξ)
u−

(
2
µ2 + ξ

)
b2
zdabcd
Gz(ξ)

nzσ+l−2j

e−u2

︸ ︷︷ ︸
C

.
(C.348)

Applying the binomial formula again, we end up with

C =
nzσ+l−2j∑

p=0
(−)nzσ+l−p (nzσ + l − 2j)!

p!(nzσ + l − 2j − p)!

×

 bz√
Gz(ξ)

p( 2
µ2 + ξ

)
b2
zdabcd
Gz(ξ)

nzσ+l−2j−p

Jp,

(C.349)
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where the integral
Jp ≡

∫ +∞

−∞
duup e−u2 (C.350)

is given by (D.120). Finally, by gathering all the terms, we find

Kz m
nzσ(ξ, dabcd) = (−)nzσ

[
2nzσnzσ!

π

]1/2

e−Fz(ξ)d2
abcd

bnzσ/2c∑
j=0

(−)j
22jj!(nzσ − 2j)!

×
m∑
l=0

(−)l m!
l!(m− l)!d

m−l
abcd

nzσ+l−2j∑
p=0
p∈2N

(nzσ + l − 2j)!
p!(nzσ + l − 2j − p)!

× bnzσ+2l−2j−p
z G−p/2−1/2

z (ξ)
[
Fz(ξ)dabcd

]nzσ+l−2j−p
Γ
(
p+ 1

2

)
,

(C.351)

where the notation p ∈ 2N indicates that p has to be even. The quantities appearing are

Fz(ξ) ≡
(

2
µ2 + ξ

)
1

Gz(ξ)
= 2 + µ2ξ

2b2
z + µ2 + µ2b2

zξ
, (C.352)

and Gz(ξ), that is expressed in (C.346). Then, to get an expression for (C.337), it remains
to evaluate the integral over ξ. Initially, we wrote this integral as∫ ∞

0
dξ Kz m

nzσ(ξ, dabcd)K⊥n|mσ |n⊥σ(ξ) =
∫ ∞

0
dξ e−ξfmn|mσ |n⊥σnzσ(ξ, dabcd), (C.353)

where we defined

fmn|mσ |n⊥σnzσ(ξ, dabcd) ≡ eξKz m
nzσ(ξ, dabcd)K⊥n|mσ |n⊥σ(ξ). (C.354)

This writing allowed us to perform a Gauss–Laguerre quadrature to approximate the
above integral according to

∫ ∞
0

dξ e−ξfmn|mσ |n⊥σnzσ(ξ, dabcd) '
N∑
q=0

wqf
mn
|mσ |n⊥σnzσ(ξq, dabcd), (C.355)

with N the quadrature order, ξq the q-th root of the Laguerre polynomial LN(ξq) at which
the function (C.354) is evaluated, and wq a weight factor that reads

wq ≡
ξq

(N + 1)2[LN+1(ξq)]2
. (C.356)

Sadly, the integrand increases quite fast so that it is not smooth enough to ensure a decent
convergence. Indeed, we needed to push the quadrature order to N = 200 for the fields
to converge with a precision of 10−6 in their matrix elements. In order to reduce this
number, we made the change of variable ξ ≡ x/1− x to get∫ ∞

0
dξ Kz m

nzσ(ξ, dabcd)K⊥n|mσ |n⊥σ(ξ) =
∫ 1

0
dx gmn|mσ |n⊥σnzσ(x, dabcd), (C.357)

with the function

gmn|mσ |n⊥σnzσ(x, dabcd) ≡
1

(1− x)2K
z m
nzσ

(
x

1− x, dabcd
)
K⊥n|mσ |n⊥σ

(
x

1− x

)
. (C.358)
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Now using a Gauss–Legendre quadrature on the interval [0, 1], the integral is approximated
according to ∫ 1

0
dx gmn|mσ |n⊥σnzσ(x, dabcd) '

N ′∑
q=0

w̃qg
mn
|mσ |n⊥σnzσ(x̃q, dabcd). (C.359)

It is important to mention that the weight factors read

w̃q ≡
1

(1− x̃2
q)[P ′N(x̃q)]2

, (C.360)

and that the Gauss–Legendre nodes on the interval [0, 1], x̃q, are related to the ones on
the interval [−1, 1], xq, for traditional Gauss–Legendre quadratures as

x̃q ≡
xq + 1

2 , (C.361)

as we performed a translation. With this new method, the order N = 20 is enough to
reach a precision of 10−6 in the fields.

At the one-center limit, all centers coincide (ja = jb = jc = jd), so that dabcd = 0.
Obviously, the spin-isospin matrix elements (of the tensor interaction) evaluated in the
previous subsections remain the same. As for the tensor spatial matrix elements (C.329),
they remain valid provided that the integral (C.330) is evaluated for dabcd = 0 and that
the Talman coefficients relative to z are those given by (C.511) rather than by (C.506),
in the same way that the conditions (C.512) rather than (C.510) will have to be taken
into account at this limit. When the integral (C.330) is evaluated for dabcd = 0, only its
part relative to z, whose final expression is given by (C.351), is affected. It simplifies as

Kz m
nzσ(ξ, 0) =

[
2nzσnzσ!

π

]1/2

bmz

bnzσ/2c∑
j=0

(−)j
22jj!(nzσ − 2j)!δnzσ+m−2j,2N

×G−nzσ/2−m/2+j−1/2
z (ξ) Γ

(
nzσ +m− 2j + 1

2

)
,

(C.362)

where Gz(ξ) is expressed in (C.346) and where the notation δnzσ+m−2j,2N indicates that
the sum nzσ + m − 2j must be even. To get an expression for (C.337) at the one-center
limit, it is enough to repeat the procedure presented in the two-center case in (C.355),
while imposing dabcd = 0.

2.3. Spin–orbit contribution
In this subsection, we shall derive the mean- and pairing fields associated with the

finite-range spin–orbit term of the generalized Gogny interaction (II.1). Note that there
are no rearrangement fields associated with the spin–orbit term since it does not depend
on the density. The antisymmetrized finite-range spin–orbit interaction considered in the
following reads

v
SO,(a)
12 ≡ vSO

12 (1− PrPσPτ )
= (W −HPτ )B(µ)V (r12)~L · ~S(1− PrPτ )
= PDB̃(µ)V (r12)[~r12 ⊗ ~∇12](1) · [~σ1 + ~σ2](1)

+ PEB̃(µ)V (r12)[~r12 ⊗ ~∇12](1) · [~σ1 + ~σ2](1)Pr,
(C.363)

366



C. Axial symmetry 2. Derivation of the fields

where the angular momenta involved in the second equation have been defined in (II.3)
and (II.4). Note that ~S removes the operator Pσ since it acts symmetrically on the spin
variables (see discussion in section II). Note that we have used the equivalent form (D.85)
of the spin–orbit operator in the third equation, with the factor

B̃(µ) ≡ − 1
2
√

2
B(µ) =

√
2

µ2
1

(µ
√
π)3 , (C.364)

ensuring that we recover the exact expression of the zero-range spin–orbit interaction at
the zero-range limit (see subsection D.5.1 for more details), where B(µ) is given by (II.7).
The isospin components of the direct and exchange fields are respectively

PD ≡ W −HPτ , (C.365a)
PE ≡ H −WPτ . (C.365b)

We notice that the direct components of the spin–orbit fields can be deduced from the
exchange ones by switching W and H and removing the operator Pr, as we have done for
the other terms of the Gogny interaction. Thus, in the following, we will start by deriving
the exchange spin–orbit fields from which, then, we will deduce the direct ones.

2.3.1. Spin–orbit mean fields

We start by deriving the mean field Γ, given by (III.37), of the spin–orbit interaction
(C.363), which is not time-reversal invariant for the moment. Given that density matrices
(C.21) and the fields (C.22) are diagonal in t and Ω, this spin–orbit mean field can be
written

ΓtΩrarb =
∑
t′Ω′>0
rcrd

[
〈tsara t′scrc|vSO,(a)

12 |tsbrb t′sdrd〉ρt
′Ω′
rdrc

+ 〈tsara t′scrc|vSO,(a)
12 |tsbrb t′sdrd〉ρt

′Ω′
rcrd

]
.

(C.366)

Let us first concentrate on the exchange spin–orbit mean field. It reads

ΓtΩrarb|E = B̃(µ)
∑
t′Ω′>0
rcrd

∑
k

(−)k
[
〈rarc|V (r12)[~r12 ⊗ ~∇12](1)

−kPr|rbrd〉

× 〈tsa t′sc|PE[~σ1 + ~σ2](1)
k |tsb t′sd〉ρt

′Ω′
rdrc

+ σcσd〈ra − rc|V (r12)[~r12 ⊗ ~∇12](1)
−kPr|rb − rd〉

× 〈tsa t′ − sc|PE[~σ1 + ~σ2](1)
k |tsb t′ − sd〉ρt

′Ω′
rcrd

]
.

(C.367)

The analysis on symmetries exposed for the tensor interaction remains valid for the
spin–orbit term since the spin–orbit operator ~L · ~S does not commute with ~L or ~S either,
as it is shown in subsection D.6.3. The structure of the fields of the spin-orbit interaction
will therefore be similar to that of the tensor interaction. In particular, the conservation
laws (C.233) still hold for the spin–orbit interaction, with −1 ≤ k ≤ 1. We use the same
conventions and notations as for the tensor term, and thus refer the reader to the previous
section for more details.
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The exchange spin–orbit mean field becomes

ΓtΩ=m+s
mνa,m+λ νb|E = B̃(µ)

∑
t′Ω′>0
m′νcνd

∑
λ′

(−)λ−λ′

×
[
〈mνa m′ + λ′ νc|V (r12)[~r12 ⊗ ~∇12](1)

λ′−λPr|m+ λ νb m
′νd〉

× 〈ts t′s′ − λ′|PE[~σ1 + ~σ2](1)
λ−λ′ |t s− λ t′s′〉ρt

′m′+s′
m′νd,m′+λ′νc

+ 4s′(s′ − λ′)〈mνa −m′νc|V (r12)[~r12 ⊗ ~∇12](1)
λ′−λPr|m+ λ νb − (m′ + λ′) νd〉

× 〈ts t′ − s′|PE[~σ1 + ~σ2](1)
λ−λ′|t s− λ t′ − (s′ − λ′)〉ρt′m′+s′m′νc,m′+λ′νd

]
.

(C.368)

Let us first focus on the spin-isospin part, which is not trivial for the spin–orbit
interaction either. As for the tensor term, we set

X
(+)tsλ
Ω′m′νdνcλ′|E ≡ Y

(+)sλ
s′λ′ × Z

(+)t
Ω′m′νdνcλ′ |E, (C.369a)

X
(−)tsλ
Ω′m′νcνdλ′|E ≡ Y

(−)sλ
s′λ′ × Z

(−)t
Ω′m′νcνdλ′ |E, (C.369b)

in the first and second matrix elements respectively, where their spin parts read

Y
(+)sλ
s′λ′ ≡ 〈s s′ − λ′|[~σ1 + ~σ2](1)

λ−λ′|s− λ s′〉, (C.370a)
Y

(−)sλ
s′λ′ ≡ 4s′(s′ − λ′)〈s − s′|[~σ1 + ~σ2](1)

λ−λ′|s− λ − (s′ − λ′)〉, (C.370b)

and their isospin parts are

Z
(+)t
Ω′m′νdνcλ′ |E ≡

∑
t′

(H −Wδtt′) ρt
′Ω′
m′νd,m′+λ′νc , (C.371a)

Z
(−)t
Ω′m′νcνdλ′ |E ≡

∑
t′

(H −Wδtt′) ρt
′Ω′
m′νc,m′+λ′νd , (C.371b)

or, by explicitly separating their particle-like and proton-neutron contributions,

Z
(+)t
Ω′m′νdνcλ′ |E = (H −W ) ρtΩ′m′νd,m′+λ′νc +H ρ−tΩ

′

m′νd,m′+λ′νc ,

Z
(−)t
Ω′m′νcνdλ′ |E = (H −W ) ρtΩ′m′νc,m′+λ′νd +H ρ−tΩ

′

m′νc,m′+λ′νd .

(C.372a)
(C.372b)

Note that these quantities are identical to those of the tensor term (C.238), provided that
we consider the tensor coefficients W and H instead of the spin–orbit ones. On the other
hand, since the direct and exchange spin–orbit mean fields have the same spin part, we
also have implicitly set

Y
(±)sλ
s′λ′ ≡ Y

(±)sλ
s′λ′ |D = Y

(±)sλ
s′λ′ |E. (C.373)

To evaluate the quantities Y (±), we need to find out the general expression of the spin
matrix element 〈sa sc|[~σ1 + ~σ2](1)

λ−λ′|sb sd〉. It is given by (D.22). Applying this formula to
(C.370) keeping in mind that λ ∈ {0, 1}, we obtain

Y
(+)sλ
s′λ′ = δλ,0

[
2(s+ s′)δλ′,0 +

√
2λ′δλ′,2s′

]
−
√

2δλ,1δs,1/2δλ′,0,

Y
(−)sλ
s′λ′ = δλ,0

[
2(s− s′)δλ′,0 −

√
2λ′δλ′,2s′

]
−
√

2δλ,1δs,1/2δλ′,0,

(C.374a)

(C.374b)

where we notice that
Y sλ
s′λ′ ≡ Y

(+)sλ
s′λ′ = Y

(−)sλ
−s′−λ′ , (C.375)
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with
Y sλ
s′λ′ = δλ,0

[
2(s+ s′)δλ′,0 +

√
2λ′δλ′,2s′

]
−
√

2δλ,1δs,1/2δλ′,0. (C.376)

We check that the spin diagonal part of the spin–orbit mean field corresponds to λ = 0
and its non-diagonal part to λ = 1. Note that if the spin–orbit mean field is spin diagonal,
then it is also diagonal in m, in agreement with the fact that the spin–orbit mean field is
diagonal in Ω (Ωa = Ωb and sa = sb imply ma = mb).

Then, from (C.369), we get

X
(+)tsλ
Ω′m′νdνcλ′ |E ≡ Y sλ

s′λ′ × Z
(+)t
Ω′m′νdνcλ′ |E, (C.377a)

X
(−)tsλ
Ω′m′νcνdλ′ |E ≡ Y sλ

−s′−λ′ × Z
(−)t
Ω′m′νcνdλ′ |E. (C.377b)

Now, setting

R
(+)tsλ
m′νdνcλ′

|E ≡
∑
Ω′

Θ(Ω′)X(+)tsλ
Ω′m′νdνcλ′|E =

∑
s′=±s

Θ(m′ + s′)X(+)tsλ
m′+s′m′νdνcλ′|E, (C.378a)

R
(−)tsλ
m′νcνdλ′

|E ≡
∑
Ω′

Θ(Ω′)X(−)tsλ
Ω′m′νcνdλ′ |E =

∑
s′=±s

Θ(m′ + s′)X(−)tsλ
m′+s′m′νcνdλ′|E, (C.378b)

we end up with

R
(+)tsλ
m′νdνcλ′

|E = Θ(m′ + s)Y sλ
sλ′Z

(+)t
m′+sm′νdνcλ′|E

+ Θ(m′ − s)Y sλ
−sλ′Z

(+)t
m′−sm′νdνcλ′|E,

R
(−)tsλ
m′νcνdλ′

|E = Θ(m′ + s)Y sλ
−s−λ′Z

(−)t
m′+sm′νcνdλ′|E

+ Θ(m′ − s)Y sλ
s−λ′Z

(−)t
m′−sm′νcνdλ′|E,

(C.379a)

(C.379b)

and the exchange spin–orbit mean field can be written

ΓtΩ=m+s
mνa,m+λ νb|E = B̃(µ)

∑
m′≥0
νcνd

1∑
λ′=−1

(−)λ−λ′

×
[
〈mνa m′ + λ′ νc|V (r12)[~r12 ⊗ ~∇12](1)

λ′−λ|m′νd m+ λ νb〉R(+)tsλ
m′νdνcλ′

|E
+ 〈mνa −m′νc|V (r12)[~r12 ⊗ ~∇12](1)

λ′−λ|−(m′ + λ′) νd m+ λ νb〉R(−)tsλ
m′νcνdλ′

|E
]
,

(C.380)

where, as previously done for the other terms, we have replaced the summations
∑
m′

∑
Ω′>0

by
∑
m′≥0

∑
Ω′

Θ(Ω′) and applied the operator Pr.

To get the direct spin–orbit mean field out of the exchange one, it suffices to exchange
H and W and omit the operator Pr. The latter is therefore

ΓtΩ=m+s
mνa,m+λ νb |D = B̃(µ)

∑
m′≥0
νcνd

1∑
λ′=−1

(−)λ−λ′

×
[
〈mνa m′ + λ′ νc|V (r12)[~r12 ⊗ ~∇12](1)

λ′−λ|m+ λ νb m
′νd〉R(+)tsλ

m′νdνcλ′
|D

+ 〈mνa −m′νc|V (r12)[~r12 ⊗ ~∇12](1)
λ′−λ|m+ λ νb − (m′ + λ′) νd〉R(−)tsλ

m′νcνdλ′
|D
]
,

(C.381)
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composed of the quantities

R
(+)tsλ
m′νdνcλ′

|D = Θ(m′ + s)Y sλ
sλ′Z

(+)t
m′+sm′νdνcλ′|D

+ Θ(m′ − s)Y sλ
−sλ′Z

(+)t
m′−sm′νdνcλ′|D,

R
(−)tsλ
m′νcνdλ′

|D = Θ(m′ + s)Y sλ
−s−λ′Z

(−)t
m′+sm′νcνdλ′|D

+ Θ(m′ − s)Y sλ
s−λ′Z

(−)t
m′−sm′νcνdλ′|D,

(C.382a)

(C.382b)

the quantities Y given by (C.376), and where

Z
(+)t
Ω′m′νdνcλ′ |D = (W −H) ρtΩ′m′νd,m′+λ′νc +W ρ−tΩ

′

m′νd,m′+λ′νc ,

Z
(−)t
Ω′m′νcνdλ′ |D = (W −H) ρtΩ′m′νc,m′+λ′νd +W ρ−tΩ

′

m′νc,m′+λ′νd .

(C.383a)
(C.383b)

Note that these quantities are identical to those of the tensor term (C.249), provided that
we consider the tensor coefficients W and H instead of the spin–orbit ones. It is crucial
to notice that, contrary to the central, density-dependent and tensor cases, the first and
the second matrix elements appearing in the above direct spin–orbit mean field are not
equal. Indeed, the action of the gradient operator on the wave functions prevents such a
simplification. 5

From the boxed equations, we can now explicitly write down the expressions of the
direct and exchange spin–orbit mean fields Γ for each value of λ. We recall that these
fields are not time-reversal invariant, and note that the quantities Z(±)|E and Z(±)|D,
respectively given by (C.372) and (C.383), are the same no matter the value of λ. Finally,
note that if λ = 1, then s = 1/2 (as we could have already seen in (C.376)) since the
identity sb ≡ s− 1 = ±1/2 holds only if s = 1/2.
• Exchange spin–orbit mean field Γ for λ = 0:

ΓtΩ=m+s
mνa,mνb

|E = B̃(µ)
∑
m′≥0
νcνd

1∑
λ′=−1

(−)λ′

×
[
〈mνa m′ + λ′ νc|V (r12)[~r12 ⊗ ~∇12](1)

λ′ |m′νd mνb〉R
(+)ts0
m′νdνcλ′

|E
+ 〈mνa −m′νc|V (r12)[~r12 ⊗ ~∇12](1)

λ′ |−(m′ + λ′) νd mνb〉R(−)ts0
m′νcνdλ′

|E
]
,

(C.384)

where
R

(+)ts0
m′νdνcλ′

|E = Θ(m′ + s)Y s0
sλ′Z

(+)t
m′+sm′νdνcλ′|E

+ Θ(m′ − s)Y s0
−sλ′Z

(+)t
m′−sm′νdνcλ′|E,

R
(−)ts0
m′νcνdλ′

|E = Θ(m′ + s)Y s0
−s−λ′Z

(−)t
m′+sm′νcνdλ′|E

+ Θ(m′ − s)Y s0
s−λ′Z

(−)t
m′−sm′νcνdλ′|E,

(C.385a)

(C.385b)

with
Y s0
sλ′ = 4sδλ′,0 +

√
2λ′δλ′,2s,

Y s0
−sλ′ =

√
2λ′δλ′,−2s.

(C.386a)
(C.386b)

5. We insist on this distinctive feature of the spin–orbit term which, at first, had escaped us and led
to wrong expressions of the spin–orbit fields.
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• Direct spin–orbit mean field Γ for λ = 0:

ΓtΩ=m+s
mνa,m+λ νb |D = B̃(µ)

∑
m′≥0
νcνd

1∑
λ′=−1

(−)λ′

×
[
〈mνa m′ + λ′ νc|V (r12)[~r12 ⊗ ~∇12](1)

λ′ |m+ λ νb m
′νd〉R(+)ts0

m′νdνcλ′
|D

+ 〈mνa −m′νc|V (r12)[~r12 ⊗ ~∇12](1)
λ′ |m+ λ νb − (m′ + λ′) νd〉R(−)ts0

m′νcνdλ′
|D
]
,

(C.387)

where
R

(+)ts0
m′νdνcλ′

|D = Θ(m′ + s)Y s0
sλ′Z

(+)t
m′+sm′νdνcλ′|D

+ Θ(m′ − s)Y s0
−sλ′Z

(+)t
m′−sm′νdνcλ′|D,

R
(−)ts0
m′νcνdλ′

|D = Θ(m′ + s)Y s0
−s−λ′Z

(−)t
m′+sm′νcνdλ′|D

+ Θ(m′ − s)Y s0
s−λ′Z

(−)t
m′−sm′νcνdλ′|D,

(C.388a)

(C.388b)

with the quantities Y given by (C.386). Just like the equivalent quantities for the tensor
mean field, R(±)ts0|E and R(±)ts0|D are symmetric under the exchange of νc and νd only if
λ′ = 0 such that the corresponding quantities Z(±)|E and Z(±)|D display this symmetry
as their density matrices ρ and ρ, besides being symmetric, are diagonal in m′.
• Exchange spin–orbit mean field Γ for λ = 1:

ΓtΩ=m+1/2
mνa,m+1 νb|E = −B̃(µ)

∑
m′≥0
νcνd

×
[
〈mνa m′νc|V (r12)[~r12 ⊗ ~∇12](1)

−1|m′νd m+ 1 νb〉R(+)t1/2 1
m′νdνc0 |E

+ 〈mνa −m′νc|V (r12)[~r12 ⊗ ~∇12](1)
−1|−m′νd m+ 1 νb〉R(−)t1/2 1

m′νdνc0 |E
]
,

(C.389)

where

R
(+)t1/2 1
m′νdνc0 |E = Y

1/2 1
1/2 0

[
Z

(+)t
m′+1/2m′νdνc0|E + Θ(m′ − 1/2)Z(+)t

m′−1/2m′νdνc0|E
]
,

R
(−)t1/2 1
m′νdνc0 |E = Y

1/2 1
1/2 0

[
Z

(−)t
m′+1/2m′νdνc0|E + Θ(m′ − 1/2)Z(−)t

m′−1/2m′νdνc0|E
]
,

(C.390a)

(C.390b)

with
Y

1/2 1
±1/2λ′ = −

√
2δλ′,0, (C.391)

that imposes λ′ = 0 in the above mean field.
• Direct spin–orbit mean field Γ for λ = 1:

ΓtΩ=m+s
mνa,m+λ νb|D = −B̃(µ)

∑
m′≥0
νcνd

×
[
〈mνa m′νc|V (r12)[~r12 ⊗ ~∇12](1)

−1|m+ 1 νb m′νd〉R(+)t1/2 1
m′νdνc0 |D

+ 〈mνa −m′νc|V (r12)[~r12 ⊗ ~∇12](1)
−1|m+ 1 νb −m′νd〉R(−)t1/2 1

m′νcνd0 |D
]
,

(C.392)

where

R
(+)t1/2 1
m′νdνc0 |D = Y

1/2 1
1/2 0

[
Z

(+)t
m′+1/2m′νdνc0|D + Θ(m′ − 1/2)Z(+)t

m′−1/2m′νdνc0|D
]
,

R
(−)t1/2 1
m′νdνc0 |D = Y

1/2 1
1/2 0

[
Z

(−)t
m′+1/2m′νdνc0|D + Θ(m′ − 1/2)Z(−)t

m′−1/2m′νdνc0|D
]
,

(C.393a)

(C.393b)
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with the quantity Y given by (C.391), that imposes λ′ = 0 in the above mean field. The
quantities R(±)t1/2 1|E and R(±)t1/2 1|D are symmetric under the exchange of νc and νd since
the corresponding quantities Z(±)|E and Z(±)|D display this symmetry as their density
matrices ρ and ρ are symmetric and diagonal in m′. In particular, this symmetry was
used to exchange the indices of the quantities R(−)t1/2 1|E and R(−)t1/2 1|D appearing above.

The spin–orbit mean field Γ can easily be deduced by exchanging ρ and ρ in the
expressions of the spin–orbit mean field Γ, as we notice by comparing the expressions
of the mean fields (III.37) and (III.38). We can see that only the quantities R(±) are
impacted by this transformation. We will call them R(±) in the following. Unfortunately,
there are no straight relations between the quantities R(±) and R(±) for the spin–orbit
interaction, as it was already the case for the tensor term. As a consequence, the spin–
orbit mean fields Γ and Γ will be computed simultaneously in the code, but with different
quantities R(±) and R(±). Furthermore, note that the quantities Y (±) making up R(±)

remain the same under this transformation, hence

Y sλ
s′λ′ = Y sλ

s′λ′ . (C.394)

Accordingly, the exchange spin–orbit mean field Γ can be expressed as

ΓtΩ=m+s
mνa,m+λ νb|E = B̃(µ)

∑
m′≥0
νcνd

1∑
λ′=−1

(−)λ−λ′

×
[
〈mνa m′ + λ′ νc|V (r12)[~r12 ⊗ ~∇12](1)

λ′−λ|m′νd m+ λ νb〉R
(+)tsλ
m′νdνcλ′

|E

+ 〈mνa −m′νc|V (r12)[~r12 ⊗ ~∇12](1)
λ′−λ|−(m′ + λ′) νd m+ λ νb〉R

(−)tsλ
m′νcνdλ′

|E
]
,

(C.395)

where
R

(+)tsλ
m′νdνcλ′

|E = Θ(m′ + s)Y sλ
sλ′Z

(+)t
m′+sm′νdνcλ′ |E

+ Θ(m′ − s)Y sλ
−sλ′Z

(+)t
m′−sm′νdνcλ′ |E,

R
(−)tsλ
m′νcνdλ′

|E = Θ(m′ + s)Y sλ
−s−λ′Z

(−)t
m′+sm′νcνdλ′ |E

+ Θ(m′ − s)Y sλ
s−λ′Z

(−)t
m′−sm′νcνdλ′ |E,

(C.396a)

(C.396b)

with the quantities Y expressed in (C.376), and with

Z
(+)t
Ω′m′νdνcλ′ |E ≡

∑
t′

(H −Wδtt′) ρt
′Ω′
m′νd,m′+λ′νc , (C.397a)

Z
(−)t
Ω′m′νcνdλ′ |E ≡

∑
t′

(H −Wδtt′) ρt
′Ω′
m′νc,m′+λ′νd , (C.397b)

or, by explicitly separating their particle-like and proton-neutron contributions,

Z
(+)t
Ω′m′νdνcλ′|E = (H −W ) ρtΩ′m′νd,m′+λ′νc +H ρ−tΩ

′

m′νd,m′+λ′νc ,

Z
(−)t
Ω′m′νcνdλ′|E = (H −W ) ρtΩ′m′νc,m′+λ′νd +H ρ−tΩ

′

m′νc,m′+λ′νd .

(C.398a)

(C.398b)

Note that these quantities are identical to those of the tensor term (C.267), provided that
we consider the tensor coefficients W and H instead of the spin–orbit ones.
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As for the direct spin–orbit mean field, it reads

ΓtΩ=m+s
mνa,m+λ νb|D = B̃(µ)

∑
m′≥0
νcνd

1∑
λ′=−1

(−)λ−λ′

×
[
〈mνa m′ + λ′ νc|V (r12)[~r12 ⊗ ~∇12](1)

λ′−λ|m+ λ νb m
′νd〉R

(+)tsλ
m′νdνcλ′

|D

+ 〈mνa −m′νc|V (r12)[~r12 ⊗ ~∇12](1)
λ′−λ|m+ λ νb − (m′ + λ′) νd〉R

(−)tsλ
m′νcνdλ′

|D
]
,

(C.399)

where
R

(+)tsλ
m′νdνcλ′

|D = Θ(m′ + s)Y sλ
sλ′Z

(+)t
m′+sm′νdνcλ′ |D

+ Θ(m′ − s)Y sλ
−sλ′Z

(+)t
m′−sm′νdνcλ′ |D,

R
(−)tsλ
m′νcνdλ′

|D = Θ(m′ + s)Y sλ
−s−λ′Z

(−)t
m′+sm′νcνdλ′ |D

+ Θ(m′ − s)Y sλ
s−λ′Z

(−)t
m′−sm′νcνdλ′ |D,

(C.400a)

(C.400b)

with the quantities Y expressed in (C.376), and with

Z
(+)t
Ω′m′νdνcλ′ |D = (W −H) ρtΩ′m′νd,m′+λ′νc +W ρ−tΩ

′

m′νd,m′+λ′νc ,

Z
(−)t
Ω′m′νcνdλ′ |D = (W −H) ρtΩ′m′νc,m′+λ′νd +W ρ−tΩ

′

m′νc,m′+λ′νd .

(C.401a)

(C.401b)

Note that these quantities are identical to those of the tensor term (C.270), provided that
we consider the tensor coefficients W and H instead of the spin–orbit ones.

From the boxed equations, we can now explicitly write down the expressions of the
direct and exchange spin–orbit mean fields Γ for each value of λ. We recall that these
fields are not time-reversal invariant and note that the quantities Z(±)|E and Z

(±)|D,
respectively given by (C.398) and (C.401), are the same no matter the value of λ. Finally,
note that if λ = 1, then s = 1/2 (as we could have already seen in (C.376)) since the
identity sb ≡ s− 1 = ±1/2 holds only if s = 1/2.
• Exchange spin–orbit mean field Γ for λ = 0:

ΓtΩ=m+s
mνa,mνb

|E = B̃(µ)
∑
m′≥0
νcνd

1∑
λ′=−1

(−)λ′

×
[
〈mνa m′ + λ′ νc|V (r12)[~r12 ⊗ ~∇12](1)

λ′ |m′νd mνb〉R
(+)ts0
m′νdνcλ′

|E

+ 〈mνa −m′νc|V (r12)[~r12 ⊗ ~∇12](1)
λ′ |−(m′ + λ′) νd mνb〉R

(−)ts0
m′νcνdλ′

|E
]
,

(C.402)

where
R

(+)ts0
m′νdνcλ′

|E = Θ(m′ + s)Y s0
sλ′Z

(+)t
m′+sm′νdνcλ′ |E

+ Θ(m′ − s)Y s0
−sλ′Z

(+)t
m′−sm′νdνcλ′ |E,

R
(−)ts0
m′νcνdλ′

|E = Θ(m′ + s)Y s0
−s−λ′Z

(−)t
m′+sm′νcνdλ′ |E

+ Θ(m′ − s)Y s0
s−λ′Z

(−)t
m′−sm′νcνdλ′ |E,

(C.403a)

(C.403b)

with the quantities Y given by (C.386).
• Direct spin–orbit mean field Γ for λ = 0:
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ΓtΩ=m+s
mνa,m+λ νb|D = B̃(µ)

∑
m′≥0
νcνd

1∑
λ′=−1

(−)λ′

×
[
〈mνa m′ + λ′ νc|V (r12)[~r12 ⊗ ~∇12](1)

λ′ |mνb m′νd〉R
(+)ts0
m′νdνcλ′

|D

+ 〈mνa −m′νc|V (r12)[~r12 ⊗ ~∇12](1)
λ′ |mνb − (m′ + λ′) νd〉R

(−)ts0
m′νcνdλ′

|D
]
,

(C.404)

where
R

(+)ts0
m′νdνcλ′

|D = Θ(m′ + s)Y s0
sλ′Z

(+)t
m′+sm′νdνcλ′ |D

+ Θ(m′ − s)Y s0
−sλ′Z

(+)t
m′−sm′νdνcλ′ |D,

R
(−)ts0
m′νcνdλ′

|D = Θ(m′ + s)Y s0
−s−λ′Z

(−)t
m′+sm′νcνdλ′ |D

+ Θ(m′ − s)Y s0
s−λ′Z

(−)t
m′−sm′νcνdλ′ |D,

(C.405a)

(C.405b)

with the quantities Y given by (C.386). Note that the quantities R(±)ts0|E and R(±)ts0|D
are symmetric under the exchange of νc and νd only if λ′ = 0 such that the corresponding
quantities Z(±)|E and Z(±)|D display this symmetry as their density matrices ρ and ρ,
besides being symmetric, are diagonal in m′.

• Exchange spin–orbit mean field Γ for λ = 1:

ΓtΩ=m+1/2
mνa,m+1 νb|E = −B̃(µ)

∑
m′≥0
νcνd

×
[
〈mνa m′νc|V (r12)[~r12 ⊗ ~∇12](1)

−1|m′νd m+ 1 νb〉R
(+)t1/2 1
m′νdνc0 |E

+ 〈mνa −m′νc|V (r12)[~r12 ⊗ ~∇12](1)
−1|−m′νd m+ 1 νb〉R

(−)t1/2 1
m′νdνc0 |E

]
,

(C.406)

where

R
(+)t1/2 1
m′νdνc0 |E = Y

1/2 1
1/2 0

[
Z

(+)t
m′+1/2m′νdνc0|E + Θ(m′ − 1/2)Z(+)t

m′−1/2m′νdνc0|E
]
,

R
(−)t1/2 1
m′νdνc0 |E = Y

1/2 1
1/2 0

[
Z

(−)t
m′+1/2m′νdνc0|E + Θ(m′ − 1/2)Z(−)t

m′−1/2m′νdνc0|E
]
,

(C.407a)

(C.407b)

with the quantities Y given by (C.391), that imposes λ′ = 0 in the above mean field.

• Direct spin–orbit mean field Γ for λ = 1:

ΓtΩ=m+1/2
mνa,m+1 νb|D = −B̃(µ)

∑
m′≥0
νcνd

×
[
〈mνa m′νc|V (r12)[~r12 ⊗ ~∇12](1)

−1|m+ 1 νb m′νd〉R
(+)t1/2 1
m′νdνc0 |D

+ 〈mνa −m′νc|V (r12)[~r12 ⊗ ~∇12](1)
−1|m+ 1 νb −m′νd〉R

(−)t1/2 1
m′νdνc0 |D

]
,

(C.408)

where

R
(+)t1/2 1
m′νdνc0 |D = Y

1/2 1
1/2 0

[
Z

(+)t
m′+1/2m′νdνc0|D + Θ(m′ − 1/2)Z(+)t

m′−1/2m′νdνc0|D
]
,

R
(−)t1/2 1
m′νdνc0 |D = Y

1/2 1
1/2 0

[
Z

(−)t
m′+1/2m′νdνc0|D + Θ(m′ − 1/2)Z(−)t

m′−1/2m′νdνc0|D
]
,

(C.409a)

(C.409b)
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with the quantity Y given by (C.391), that imposes λ′ = 0 in the above mean field. The
quantities R(±)t1/2 1|E and R(±)t1/2 1|D are symmetric under the exchange of νc and νd since
the corresponding quantities Z(±)|E and Z

(±)|D display this symmetry as their density
matrices ρ and ρ are symmetric and diagonal in m′. In particular, this symmetry has
been used to exchange the indices of the quantities R(−)t1/2 1|E and R(−)t1/2 1|D appearing
above.

Time-reversal invariant fields
Now, we assume the time-reversal invariance of the spin–orbit mean fields Γ and Γ, i.e.

we set ρ = ρ. In this case, as the quantity Y sλ
s′λ′ remains unchanged under time-reversal

symmetry and Z(±) = Z(±), we have R(±) = R(±), so that eventually the mean fields
coincide, Γ = Γ. They simplify according to the following expressions.

The exchange spin–orbit mean fields (C.380) and (C.395) become

ΓtΩ=m+s
mνa,m+λ νb|

T
E = B̃(µ)

∑
m′≥0
νcνd

1∑
λ′=−1

(−)λ−λ′

×
[
〈mνa m′ + λ′ νc|V (r12)[~r12 ⊗ ~∇12](1)

λ′−λ|m′νd m+ λ νb〉R(+)tsλ
m′νdνcλ′

|TE
+ 〈mνa −m′νc|V (r12)[~r12 ⊗ ~∇12](1)

λ′−λ|−(m′ + λ′) νd m+ λ νb〉R(−)tsλ
m′νcνdλ′

|TE
]
,

(C.410)

where the quantities (C.379) and (C.396) simplify according to

R
(+)tsλ
m′νdνcλ′

|TE = Θ(m′ + s)Y sλ
sλ′Z

t
m′+sm′νdνcλ′|

T
E

+ Θ(m′ − s)Y sλ
−sλ′Z

t
m′−sm′νdνcλ′|

T
E,

R
(−)tsλ
m′νcνdλ′

|TE = Θ(m′ + s)Y sλ
−s−λ′Z

t
m′+sm′νcνdλ′|

T
E

+ Θ(m′ − s)Y sλ
s−λ′Z

t
m′−sm′νcνdλ′|

T
E,

(C.411a)

(C.411b)

since we notice that

Zt
Ω′m′νdνcλ′ |

T
E ≡ Z

(+)t
Ω′m′νdνcλ′|

T
E = Z

(−)t
Ω′m′νdνcλ′|

T
E, (C.412)

while the quantities Y , given by (C.376), remain unchanged under time-reversal symmetry.
In a similar way, the direct spin–orbit mean fields (C.381) and (C.399) become

ΓtΩ=m+s
mνa,m+λ νb|

T
D = B̃(µ)

∑
m′≥0
νcνd

1∑
λ′=−1

(−)λ−λ′

×
[
〈mνa m′ + λ′ νc|V (r12)[~r12 ⊗ ~∇12](1)

λ′−λ|m+ λ νb m
′νd〉R(+)tsλ

m′νdνcλ′
|TD

+ 〈mνa −m′νc|V (r12)[~r12 ⊗ ~∇12](1)
λ′−λ|m+ λ νb − (m′ + λ′) νd〉R(−)tsλ

m′νcνdλ′
|TD
]
,

(C.413)

where the quantities (C.382) and (C.400) simplify according to

R
(+)tsλ
m′νdνcλ′

|TD = Θ(m′ + s)Y sλ
sλ′Z

t
m′+sm′νdνcλ′|

T
D

+ Θ(m′ − s)Y sλ
−sλ′Z

t
m′−sm′νdνcλ′|

T
D,

R
(−)tsλ
m′νcνdλ′

|TD = Θ(m′ + s)Y sλ
−s−λ′Z

t
m′+sm′νcνdλ′|

T
D

+ Θ(m′ − s)Y sλ
s−λ′Z

t
m′−sm′νcνdλ′|

T
D,

(C.414a)

(C.414b)
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since we notice that

Zt
Ω′m′νdνcλ′ |

T
D ≡ Z

(+)t
Ω′m′νdνcλ′|

T
D = Z

(−)t
Ω′m′νdνcλ′ |

T
D, (C.415)

while the quantities Y , given by (C.376), remain unchanged under time-reversal symmetry.

From the boxed equations, we can now explicitly write down the expressions of the
time-reversal invariant direct and exchange spin–orbit mean fields for each value of λ.
Note that the quantities Z|E and Z|D, respectively given by (C.412) and (C.415), are the
same no matter the value of λ. Finally, note that if λ = 1, then s = 1/2 (as we could
have already seen in (C.376)) since the identity sb ≡ s− 1 = ±1/2 holds only if s = 1/2.
• Time-reversal invariant exchange spin–orbit mean field for λ = 0:

ΓtΩ=m+s
mνa,mνb

|TE = B̃(µ)
∑
m′≥0
νcνd

1∑
λ′=−1

(−)λ′

×
[
〈mνa m′ + λ′ νc|V (r12)[~r12 ⊗ ~∇12](1)

λ′ |m′νd mνb〉R
(+)ts0
m′νdνcλ′

|TE
+ 〈mνa −m′νc|V (r12)[~r12 ⊗ ~∇12](1)

λ′ |−(m′ + λ′) νd mνb〉R(−)ts0
m′νcνdλ′

|TE
]
,

(C.416)

where
R

(+)ts0
m′νdνcλ′

|TE = Θ(m′ + s)Y s0
sλ′Z

t
m′+sm′νdνcλ′|

T
E

+ Θ(m′ − s)Y s0
−sλ′Z

t
m′−sm′νdνcλ′|

T
E,

R
(−)ts0
m′νcνdλ′

|TE = Θ(m′ + s)Y s0
−s−λ′Z

t
m′+sm′νcνdλ′|

T
E

+ Θ(m′ − s)Y s0
s−λ′Z

t
m′−sm′νcνdλ′|

T
E,

(C.417a)

(C.417b)

with the quantities Y given by (C.386).

• Time-reversal invariant direct spin–orbit mean field for λ = 0:

ΓtΩ=m+s
mνa,mνb

|TD = B̃(µ)
∑
m′≥0
νcνd

1∑
λ′=−1

(−)λ′

×
[
〈mνa m′ + λ′ νc|V (r12)[~r12 ⊗ ~∇12](1)

λ′ |mνb m′νd〉R
(+)ts0
m′νdνcλ′

|TD
+ 〈mνa −m′νc|V (r12)[~r12 ⊗ ~∇12](1)

λ′ |mνb − (m′ + λ′) νd〉R(−)ts0
m′νcνdλ′

|TD
]
,

(C.418)

where
R

(+)ts0
m′νdνcλ′

|TD = Θ(m′ + s)Y s0
sλ′Z

t
m′+sm′νdνcλ′|

T
D

+ Θ(m′ − s)Y s0
−sλ′Z

t
m′−sm′νdνcλ′|

T
D,

R
(−)ts0
m′νcνdλ′

|TD = Θ(m′ + s)Y s0
−s−λ′Z

t
m′+sm′νcνdλ′|

T
D

+ Θ(m′ − s)Y s0
s−λ′Z

t
m′−sm′νcνdλ′|

T
D,

(C.419a)

(C.419b)

with the quantities Y given by (C.386). Note that the quantities Rts0|TE and Rts0|TD are
symmetric under the exchange of νc and νd only if λ′ = 0 such that the corresponding
quantities Z|E and Z|D display this symmetry as their density matrix ρ, besides being
symmetric, is diagonal in m′.

• Time-reversal invariant exchange spin–orbit mean field for λ = 1:
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ΓtΩ=m+1/2
mνa,m+1 νb|

T
E = −B̃(µ)

∑
m′≥0
νcνd

×
[
〈mνa m′νc|V (r12)[~r12 ⊗ ~∇12](1)

−1|m′νd m+ 1 νb〉

+ 〈mνa −m′νc|V (r12)[~r12 ⊗ ~∇12](1)
−1|−m′νd m+ 1 νb〉

]
R
t1/2 1
m′νdνc0|

T
E,

(C.420)

where
R
t1/2 1
m′νdνc0|

T
E ≡ R

(+)t1/2 1
m′νdνc0 |

T
E = R

(−)t1/2 1
m′νdνc0 |

T
E, (C.421)

with

R
t1/2 1
m′νdνc0|

T
E = Y

1/2 1
1/2 0

[
Zt
m′+1/2m′νdνc0|

T
E + Θ(m′ − 1/2)Zt

m′−1/2m′νdνc0|
T
E

]
, (C.422)

and the quantity Y given by (C.391), that imposes λ′ = 0 in the above mean field.
• Time-reversal invariant direct spin–orbit mean field for λ = 1:

ΓtΩ=m+1/2
mνa,m+1 νb|

T
D = −B̃(µ)

∑
m′≥0
νcνd

×
[
〈mνa m′νc|V (r12)[~r12 ⊗ ~∇12](1)

−1|m+ 1 νb m′νd〉

+ 〈mνa −m′νc|V (r12)[~r12 ⊗ ~∇12](1)
−1|m+ 1 νb −m′νd〉

]
R
t1/2 1
m′νdνc0|

T
D,

(C.423)

where

R
t1/2 1
m′νdνc0|

T
D = Y

1/2 1
1/2 0

[
Zt
m′+1/2m′νdνc0|

T
D + Θ(m′ − 1/2)Zt

m′−1/2m′νdνc0|
T
D

]
, (C.424)

and the quantity Y given by (C.391), that imposes λ′ = 0 in the above mean field.
Therefore, the quantities Rt1/2 1|TE and Rt1/2 1|TD are symmetric under the exchange of νc
and νd since the corresponding quantities Z|TE and Z|TD display this symmetry as their
density matrix ρ is symmetric and diagonal in m′.

2.3.2. Spin–orbit pairing field

We continue by deriving the pairing field (III.32) of the spin–orbit interaction (C.363),
which is not time-reversal invariant for the moment. Given that the pairing tensor (C.21)
and the fields (C.22) are diagonal in t and Ω, this spin–orbit pairing field can be written

∆tΩ
rarb

=
∑
t′Ω′>0
rcrd

〈tsara tsbrb|v(SO),(a)
12 |t′scrc t′sdrd〉κt

′Ω′
rcrd

. (C.425)

As for the spin–orbit mean fields, let us first concentrate on the exchange component
of the spin–orbit pairing field. It reads

∆tΩ
rarb
|E = B̃(µ)

∑
t′Ω′>0
rcrd

∑
k

(−)k〈ra − rb|V (r12)[~r12 ⊗ ~∇12](1)
−kPr|rc − rd〉

× σbσd〈tsa t− sb|PE[~σ1 + ~σ2](1)
k |t′sc t′ − sd〉κt

′Ω′
rcrd

.

(C.426)

We name the quantum numbers of the above matrix element in the same way as we have
done for the second matrix element of the spin–orbit mean field (C.368), while keeping in
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mind that here λ ∈ {−1, 0, 1} since the pairing field is not symmetric under the exchange
of its indices, contrary to the mean field (see equation (C.24) and the discussion below).
With these notations, the exchange spin–orbit pairing field becomes

∆tΩ=m+s
mνa,m+λ νb|E = B̃(µ)

∑
t′Ω′>0
m′νcνd

∑
λ′

(−)λ−λ′ × 4(s− λ)(s′ − λ′)

× 〈mνa − (m+ λ) νb|V (r12)[~r12 ⊗ ~∇12](1)
λ′−λPr|m′νc − (m′ + λ′) νd〉

× 〈ts t− (s− λ)|PE[~σ1 + ~σ2](1)
λ−λ′|t′s′ t′ − (s′ − λ′)〉κt′m′+s′m′νc,m′+λ′νd .

(C.427)

Once again, let us first concentrate on the spin-isospin part. We set

AtsλΩ′m′νcνdλ′|E ≡ Bsλ
s′λ′ × Ct

Ω′m′νcνdλ′|E, (C.428)

where the spin part reads

Bsλ
s′λ′ ≡ 4(s− λ)(s′ − λ′)〈s − (s− λ)|[~σ1 + ~σ2](1)

λ−λ′ |s′ − (s′ − λ′)〉, (C.429)

and the isospin part is

Ct
Ω′m′νcνdλ′ |E = (H −W )κtm′+s′m′νc,m′+λ′νd , (C.430)

where we notice that there is only a particle-like contribution to the density coming from
the spin–orbit pairing field. Note that this quantity is identical to the one of the tensor
term (C.299), provided that we consider the tensor coefficients W and H instead of the
spin–orbit ones. On the other hand, since the direct and exchange spin–orbit pairing
fields have the same spin part, we also have implicitly set

Bsλ
s′λ′ ≡ Bsλ

s′λ′ |D = Bsλ
s′λ′ |E. (C.431)

Using carefully the expression of the spin matrix element (D.22), we obtain

Bsλ
s′λ′ = 4(s− λ)(s′ − λ′)

{
δss′

[
2λδλλ′ −

√
2(λ− λ′)δλ+λ′,2s

]
− 2s
√

2δs,−s′δλ−λ′,2s
}
,

(C.432)

where we have separated the s = s′ and s 6= s′ contributions to the spin–orbit pairing
field, its spin diagonal part being given by λ = 0 and the non-diagonal one by λ 6= 0, as
expected. Note that if the spin–orbit pairing field is diagonal, then it is also diagonal in
m, just like the spin–orbit mean fields are.

Then, from (C.428), we get

AtsλΩ′m′νcνdλ′ |E = (H −W )Bsλ
s′λ′κ

tm′+s′
m′νc,m′+λ′νd . (C.433)

Now, setting

Stsλm′νcνdλ′|E ≡
∑
Ω′

Θ(Ω′)AtsλΩ′m′νcνdλ′ |E =
∑
s′=±s

Θ(m′ + s′)Atsλm′+s′m′νcνdλ′|E, (C.434)

we end up with

Stsλm′νcνdλ′ |E = (H −W )
[
Θ(m′ + s)Bsλ

sλ′κ
tm′+s
m′νc,m′+λ′νd

+ Θ(m′ − s)Bsλ
−sλ′κ

tm′−s
m′νc,m′+λ′νd

]
,

(C.435)
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and the exchange spin–orbit mean field can be written

∆tΩ=m+s
mνa,m+λ νb|E = B̃(µ)

∑
m′≥0
νcνd

1∑
λ′=−1

(−)λ−λ′

× 〈mνa − (m+ λ) νb|V (r12)[~r12 ⊗ ~∇12](1)
λ′−λ|−(m′ + λ′) νd m′νc〉Stsλm′νcνdλ′ |E,

(C.436)

where, as for the spin–orbit mean fields, we have replaced the summations
∑
m′

∑
Ω′>0

by∑
m′≥0

∑
Ω′

Θ(Ω′) and applied the operator Pr. One might be tempted to say, like the cen-

tral, density-dependent and tensor cases, that the above matrix element is equivalent
to 〈mνa −m′νc|V (r12)[~r12 ⊗ ~∇12](1)

λ′−λ|−(m′ + λ′) νd m+ λ νb〉. Unfortunately, this state-
ment is wrong as the gradient operator of the spin–orbit term prevents the commutation
of the wave functions (the situation is similar to what we have discussed for the spin–orbit
mean field below equation (C.381)).

To get the direct spin–orbit mean field out of the exchange one, we first switch H and
W and omit the operator Pr to obtain

∆tΩ=m+s
mνa,m+λ νb|D = B̃(µ)

∑
m′≥0
νcνd

1∑
λ′=−1

(−)λ−λ′

× 〈mνa − (m+ λ) νb|V (r12)[~r12 ⊗ ~∇12](1)
λ′−λ|m′νc − (m′ + λ′) νd〉Stsλm′νcνdλ′|D,

(C.437)

where
Stsλm′νcνdλ′ |D = (W −H)

[
Θ(m′ + s)Bsλ

sλ′κ
tm′+s
m′νc,m′+λ′νd

+ Θ(m′ − s)Bsλ
−sλ′κ

tm′−s
m′νc,m′+λ′νd

]
,

(C.438)

with the quantities B given by (C.432).
Finally, the identity

Stsλm′νcνdλ′ ≡ −S
tsλ
m′νcνdλ′

|E = Stsλm′νcνdλ′|D, (C.439)

allows us to write down the full spin–orbit pairing field (direct plus exchange components)
as

∆tΩ=m+s
mνa,m+λ νb = B̃(µ)

∑
m′≥0
νcνd

1∑
λ′=−1

(−)λ−λ′

×
[
〈mνa − (m+ λ) νb|V (r12)[~r12 ⊗ ~∇12](1)

λ′−λ|m′νc − (m′ + λ′) νd〉

− 〈mνa − (m+ λ) νb|V (r12)[~r12 ⊗ ~∇12](1)
λ′−λ|−(m′ + λ′) νd m′νc〉

]
Stsλm′νcνdλ′ .

(C.440)

Contrary to the CDD and tensor pairing fields, we see that the spin–orbit pairing field
does not share the structure of an exchange spin–orbit mean field (due to the gradient
operator that prevents the required transformations). Regrettably, the spin–orbit pairing
fields can therefore not be calculated simultaneously with the spin–orbit mean fields in
an HFB code.
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From the boxed equations, we can now explicitly write down the expressions of the
above spin–orbit pairing field for each value of λ. We recall that this field is not time-
reversal invariant. We also note that if |λ| = 1, then λ = 2s as we can deduce from
sb ≡ s− λ = ±1/2 when λ 6= 0.
• Spin–orbit pairing field for λ = 0:

∆tΩ=m+s
mνa,m+λ νb = −B̃(µ)

∑
m′≥0
νcνd

∑
λ′=±1

×
[
〈mνa −mνb|V (r12)[~r12 ⊗ ~∇12](1)

λ′ |m′νc − (m′ + λ′) νd〉

− 〈mνa −mνb|V (r12)[~r12 ⊗ ~∇12](1)
λ′ |−(m′ + λ′) νd m′νc〉

]
Sts0m′νcνdλ′

.

(C.441)

where
Sts0m′νcνdλ′

= (W −H)
[
Θ(m′ + s)Bs0

sλ′κ
tm′+s
m′νc,m′+λ′νd

+ Θ(m′ − s)Bs0
−sλ′κ

tm′−s
m′νc,m′+λ′νd

]
,

(C.442)

with
Bs0
±sλ′ = −2s

√
2δλ′,±2s, (C.443)

that imposes λ′ = ±1 in the above pairing field.
• Spin–orbit pairing field for |λ| = 1:

∆tΩ=m+s
mνa,m+2s νb = B̃(µ)

∑
m′≥0
νcνd

1∑
λ′=−1

(−)λ′−2s

×
[
〈mνa − (m+ 2s) νb|V (r12)[~r12 ⊗ ~∇12](1)

λ′−2s|m′νc − (m′ + λ′) νd〉

− 〈mνa − (m+ 2s) νb|V (r12)[~r12 ⊗ ~∇12](1)
λ′−2s|−(m′ + λ′) νd m′νc〉

]
Sts 2s
m′νcνdλ′

,

(C.444)

where
Sts 2s
m′νcνdλ′

= (W −H)
[
Θ(m′ + s)Bs 2s

sλ′ κ
tm′+s
m′νc,m′+λ′νd

+ Θ(m′ − s)Bs 2s
−sλ′κ

tm′−s
m′νc,m′+λ′νd

]
,

(C.445)

with
Bs 2s
sλ′ = 2s

√
2δλ′,0 + 4sδλ′,2s,

Bs 2s
−sλ′ = −2s

√
2δλ′,0.

(C.446a)
(C.446b)

Note that the quantities Sts0 and Sts 2s are not symmetric under the exchange of νc and
νd since the pairing tensor κ is not.

Time-reversal invariant fields
Now, we assume the time-reversal invariance of the spin–orbit pairing field, i.e. the

pairing tensor κ becomes symmetric under the exchange of its indices. Then, the pairing
field becomes symmetric (see discussion discussion below equation (C.24)) and it suffices
to consider its expression for λ ∈ {0, 1}. For λ = 0, its expression is still given by (C.441).
In this case, the quantity Sts0 is not symmetric under the exchange of νc and νd since
the pairing tensor κ is not diagonal in m′ (as λ′ 6= 0), though symmetric. If λ = 1, then
s = 1/2 (as we could have already seen in (C.432)) since the identity sb ≡ s− 1 = ±1/2
holds only if s = 1/2.
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• Time-reversal invariant spin–orbit pairing field for λ = 1:

∆tΩ=m+1/2
mνa,m+1 νb = B̃(µ)

∑
m′≥0
νcνd

1∑
λ′=0

(−)λ′−1

×
[
〈mνa m+ 1 νb|V (r12)[~r12 ⊗ ~∇12](1)

λ′−1|m′νc − (m′ + λ′) νd〉
]

− 〈mνa m+ 1 νb|V (r12)[~r12 ⊗ ~∇12](1)
λ′−1|−(m′ + λ′) νd m′νc〉St1/2 1

m′νcνdλ′

]
,

(C.447)

where

S
t1/2 1
m′νcνdλ′

= (W −H)
[
B

1/2 1
1/2λ′κ

tm′+1/2
m′νc,m′+λ′νd + Θ(m′ − 1/2)B1/2 1

−1/2λ′κ
tm′−1/2
m′νc,m′+λ′νd

]
, (C.448)

with
B

1/2 1
1/2λ′ =

√
2δλ′,0 + 2δλ′,1,

B
1/2 1
−1/2λ′ = −

√
2δλ′,0,

(C.449a)

(C.449b)

that impose λ′ ∈ {0, 1} in the above pairing field. Note that the quantity St1/2 1 is
symmetric under the exchange of νc and νd only if λ′ = 0 such that the pairing tensor κ,
besides being symmetric, is diagonal in m′.

2.3.3. Spin–orbit spatial matrix elements

In the previous subsection, we have treated the spin-isospin parts of the spin–orbit
mean- and pairing fields. In order to fully specify these fields, it remains to determine
their spatial parts, which we now undertake.

Identifying the position of the centers by the quantum numbers j, the spatial depen-
dence of the spin–orbit fields lies in the two-body matrix elements of the form

vjajcjbjd, krarcrbrd
≡ 〈jara jcrc|V (r12)[~r12 ⊗ ~∇12](1)

−k|jbrb jdrd〉, (C.450)

where we recall that k = λ − λ′ (see equation (C.233) and the related discussion). By
definition,

vjajcjbjd, krarcrbrd
=
∫

d3r1

∫
d3r2 φ

∗
jara(~r1)φ∗jcrc(~r2)V (r12)[~r12 ⊗ ~∇12](1)

−kφjbrb(~r1)φjdrd(~r2). (C.451)

Contrary to the previous terms, this time the wave functions do not commute with the
sandwhiched quantity because of the gradient operator. Accordingly, we have no choice
but to apply the gradient operator on the wave functions on its right. Decoupling the
tensor product and separating the action of the gradient on the coordinates ~r1 and ~r2, we
get

vjajcjbjd, krarcrbrd
=
∑
αβ

〈1α1β|1− k〉

×
{ ∫

d3r1

∫
d3r2 φ

∗
jara(~r1)φ∗jcrc(~r2)V (r12)rα12

[
∇β

1φjbrb(~r1)
]
φjdrd(~r2)

−
∫

d3r1

∫
d3r2 φ

∗
jara(~r1)φ∗jcrc(~r2)V (r12)rα12φjbrb(~r1)

[
∇β

2φjdrd(~r2)
]}
,

(C.452)

where the Clebsch–Gordan coefficient is not zero only if α+β = −k. In the following, we
will call Iαβ1 and Iαβ2 the first and second integrals of the above right-hand side term (we
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purposely omit the r and j indices for conciseness). We fill focus on the integral Iαβ1 , the
integral Iαβ2 being easily deductible from it.

By separating the radial and z parts of the axial wave function on which the gradient
acts, namely by writing φjbrb(~r1) = φmbn⊥b(~r⊥1)φjbnzb(z1), we can first express the action
of the gradient on the wave function along z using (C.483), to obtain, for β = 0,

∇0
1φjbnzb(z1) =

√
βz
2

[
√
nzb φjb,nzb−1(z1)−

√
nzb + 1φjb,nzb+1(z1)

]
, (C.453)

since the chain rule applied on the off-center wave function φjbnzb(z1) furnishes

d
dz1

[
φnzb(z1 − db)

]
=
[

dφnzb
dz1

]
(z1 − db). (C.454)

As for the action of the gradient on the radial wave function, we find, from (C.484), for
β = ±1,

∇β
1φmbn⊥b(~r⊥1) = Θ(2mb + β)

√
β⊥
2

[√
n⊥b +mb + 1 + β

2 φmb+β,n⊥b(~r⊥1)

+
√
n⊥b + 1− β

2 φmb+β,n⊥b−β(~r⊥1)
]

−Θ(−2mb − β)
√
β⊥
2

[√
n⊥b −mb + 1− β

2 φmb+β,n⊥b(~r⊥1)

+
√
n⊥b + 1 + β

2 φmb+βn⊥b+β(~r⊥1)
]
,

(C.455)

Thus, the action of the gradient operator on the axial wave function is

∇β
1φjbrb(~r1) = δβ,0φmbn⊥b(~r⊥1)∇0

1φjbnzb(z1) + δ|β|,1φjbnzb(z1)∇β
1φmbn⊥b(~r⊥1), (C.456)

where the action of the gradient for β = 0 and β = ±1 is respectively given by (C.453)
and (C.455).

As for the previous terms, we apply the Gogny separable development in axial sym-
metry (C.495) on both the ~r1 and ~r2 coordinates. The one on the ~r1 coordinates is the
same as for the previous terms, and is straightforward, i.e.

φ∗jcrc(~r2)φjdrd(~r2) =
∑
rν

T rνjcrc jdrdφjcd0(~r2)φjcdrν (~r2). (C.457)

Nevertheless, the Gogny separable development on the ~r2 coordinates is less on. Indeed,
because of the gradient, we have to apply the Gogny separable development several times,
sometimes on radial wave functions by means of (C.495), sometimes on wave functions
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along z by means of (C.498). After doing so, we end up with

φ∗jara(~r1)
[
∇β

1φjbrb(~r1)
]

= δβ,0

√
βz
2 φjab0(~r1)

∑
n⊥µ

Tmµn⊥µman⊥ambn⊥b
φmµn⊥µ(~r⊥1)

×
{
√
nzb

∑
n

(1)
zµ

T
n

(1)
zµ

janza jb,nzb−1φjabn(1)
zµ

(z1)−
√
nzb + 1

∑
n

(2)
zµ

T
n

(2)
zµ

janza jb,nzb+1φjabn(2)
zµ

(z1)
}

+δ|β|,1

√
β⊥
2 φjab0(~r1)

∑
nzµ

T
nzµ
janza jbnzb

φjabnzµ(z1)

×
{

Θ(2mb + β)
[√

n⊥b +mb + 1 + β

2
∑
n

(1)
⊥µ

T
m′µn

(1)
⊥µ

man⊥amb+β,n⊥bφm′µn
(1)
⊥µ

(~r⊥1)

+
√
n⊥b + 1− β

2
∑
n

(2)
⊥µ

T
m′µn

(2)
⊥µ

man⊥amb+β,n⊥b−βφm′µn
(2)
⊥µ

(~r⊥1)
]

−Θ(−2mb − β)
[√

n⊥b −mb + 1− β
2

∑
n

(1)
⊥µ

T
m′µn

(1)
⊥µ

man⊥amb+β,n⊥bφm′µn
(1)
⊥µ

(~r⊥1)

+
√
n⊥b + 1 + β

2
∑
n

(3)
⊥µ

T
m′µn

(3)
⊥µ

man⊥amb+β,n⊥b+βφm′µn
(3)
⊥µ

(~r⊥1)
]}
,

(C.458)

where the values taken by n
(i)
⊥µ for i ∈ {0, 1, 2, 3} (where n(0)

⊥µ ≡ n⊥µ) can be obtained
from (C.504), m(′)

µ can be expressed through (C.503), and the values taken by n(j)
zµ for

j ∈ {0, 1, 2} (where n(0)
zµ ≡ nzµ) can be found in (C.510). The integral we want to evaluate

then becomes

Iαβ1 =
∑
rν

T rνjcrc jdrd

∫
d3r1

∫
d3r2

× V (r12)rα12φ
∗
jara(~r1)

[
∇β

1φjbrb(~r1)
]
φjcd0(~r2)φjcdrν (~r2),

(C.459)

where the quantity φ∗jara(~r1)
[
∇β

1φjbrb(~r1)
]
is provided above, and where the expressions or

values taken by rν = (mν , n⊥ν , nzν) can be deduced from (C.503), (C.504) and (C.510).
We now apply the Moshinsky transformation in axial symmetry (C.516). We see that

we can extract the wave function φjab0(~r1) from (C.458), so that the Moshinsky transfor-
mation for rν = 0 is identical to the one of the previous terms, and is straightforward,
i.e.

φjab0(~r1)φjcd0(~r2) = φ0(~R− ~Dabcd)φ0(~r − ~dabcd), (C.460)

since the Jacobian of the change of variables (~r1, ~r2) → (~r, ~R) is equal to unity and the
axial Moshinsky coefficient, specified by (C.516), satisfies the identityM rλ′ rσ′

0 0 = δrλ′ ,0δrσ′ ,0
because of (C.526) and (C.533). By writing φjcdrν (~r2) = φmνn⊥ν (~r⊥2)φjcdnzν (z2), we see
that the same situation occurs for the Moshinsky transformation in the case rν 6= 0 as for
the Gogny separable development on the ~r2 coordinates. Indeed, we have to apply the
Moshinsky transformation several times, sometimes on radial wave functions by means of
(C.514), sometimes on wave functions along z by means of (C.527). Depending on the
Moshinsky transformation considered, different integrals come out. The orthogonality re-
lation of the off-center axial wave functions allows us to evaluate both the radial integrals,

383



C. Axial symmetry 2. Derivation of the fields

given by ∫
d2R⊥ φ

∗
0(~R⊥)φ

m
(′)
λ
n

(i)
⊥λ

(~R⊥) = δ
n

(i)
⊥λ,0

δ
m

(′)
λ
,0 for i ∈ {0, 1, 2, 3}, (C.461)

and the integrals along z, given by∫
dZ φ∗0(Z −Dabcd)φn(j)

zλ

(Z −Dabcd) = δ
n

(j)
zλ
,0 for j ∈ {0, 1, 2}, (C.462)

where we have used the relations φ00(~R⊥) = φ∗00(~R⊥) and φ0(Z) = φ∗0(Z), by virtue of
(C.8). The distances found in the last three equations are expressed by (C.327), with
(C.328). Noticing that, when changing variables, rα12 =

√
2rα, we are finally led to

Iαβ1 =
∑
rν

T rνjcrc jdrd

∫
d3r V (

√
2r)rαφ0(~r − ~dabcd)F β

1,rνrσ(~r − ~dabcd), (C.463)

where

F β
1,rνrσ(~r − ~dabcd) ≡

δβ,0
bz

∑
n⊥µ

Tmµn⊥µn⊥ama n⊥bmb
M00mσn⊥σ

mµn⊥µmνn⊥ν
φmσn⊥σ(~r⊥)

×
{
√
nzb

∑
n

(1)
zµ

T
n

(1)
zµ

janza jb,nzb−1M
0n(1)

zσ

n
(1)
zµ nzν

φ
n

(1)
zσ

(z − dabcd)

−
√
nzb + 1

∑
n

(2)
zµ

T
n

(2)
zµ

janza jb,nzb+1M
0n(2)

zσ

n
(2)
zµ nzν

φ
n

(2)
zσ

(z − dabcd)
}

+ δ|β|,1
b⊥

∑
nzµ

T
nzµ
janza jbnzb

M0nzσ
nzµnzνφnzσ(z − dabcd)

×
{

Θ(2mb + β)
[√

n⊥b +mb + 1 + β

2
∑
n

(1)
⊥µ

T
m′µn

(1)
⊥µ

man⊥amb+β,n⊥bM
00m′σn

(1)
⊥σ

m′µn
(1)
⊥µmνn⊥ν

φ
m′σn

(1)
⊥σ

(~r⊥)

+
√
n⊥b + 1− β

2
∑
n

(2)
⊥µ

T
m′µn

(2)
⊥µ

man⊥amb+β,n⊥b−βM
00m′σn

(2)
⊥σ

m′µn
(2)
⊥µmνn⊥ν

φ
m′σn

(2)
⊥σ

(~r⊥)
]

−Θ(−2mb − β)[√
n⊥b −mb + 1− β

2
∑
n

(1)
⊥µ

T
m′µn

(1)
⊥µ

man⊥amb+β,n⊥bM
00m′σn

(1)
⊥σ

m′µn
(1)
⊥µmνn⊥ν

φ
m′σn

(1)
⊥σ

(~r⊥)

+
√
n⊥b + 1 + β

2
∑
n

(3)
⊥µ

T
m′µn

(3)
⊥µ

man⊥amb+β,n⊥b+βM
00m′σn

(3)
⊥σ

m′µn
(3)
⊥µmνn⊥ν

φ
m′σn

(3)
⊥σ

(~r⊥)
]}
,

(C.464)

where we recall that the quantities βz and bz as well as β⊥ and b⊥ are respectively linked by
the relations (C.7). The radial Moshinsky coefficients M00m(′)

σ n
(i)
⊥σ

m
(′)
µ n

(i)
⊥µmνn⊥ν

are given by (C.516)

while the expressions of n(i)
⊥σ for i ∈ {0, 1, 2, 3} (where n

(0)
⊥σ ≡ n⊥σ) andm(′)

σ can respectively
be obtained from (C.524) and (C.525). As for the Moshinsky coefficients relative to z,
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M0n(j)
zσ

n
(j)
zµnzν

, they are given by (C.528) while the expressions of n(j)
zσ for j ∈ {0, 1, 2} (where

n(0)
zµ ≡ nzσ) can be obtained from (C.532).
For the sake of completeness, we write the full expression of the integral Iαβ2 whose

derivation is analogous to the one of Iαβ1 we have just presented. We have

Iαβ2 =
∑
rµ

T
rµ
jara jbrb

∫
d3r V (

√
2r)rαφ0(~r − ~dabcd)F β

2,rµrρ(~r − ~dabcd), (C.465)

where

F β
2,rµrρ(~r − ~dabcd) ≡

δβ,0
bz

∑
n⊥ν

Tmνn⊥νmcn⊥cmdn⊥d
M00mρn⊥ρ

mµn⊥µmνn⊥ν
φmρn⊥ρ(~r⊥)

×
{
√
nzd

∑
n

(1)
zν

T n
(1)
zν

jcnzc jd,nzd−1M
0n(1)

zρ

nzµn
(1)
zν

φ
n

(1)
zρ

(z − dabcd)

−
√
nzd + 1

∑
n

(2)
zν

T n
(2)
zν

jcnzc jd,nzd+1M
0n(2)

zρ

nzµn
(1)
zν

φ
n

(2)
zρ

(z − dabcd)
}

+ δ|β|,1
b⊥

∑
nzν

T nzνjcnzc jdnzd
M0nzρ

nzµnzνφnzρ(z − dabcd)

×
{

Θ(2md + β)
[√

n⊥d +md + 1 + β

2
∑
n

(1)
⊥ν

T
m′νn

(1)
⊥ν

mcn⊥cmd+β,n⊥dM
00m′ρn

(1)
⊥ρ

mµn⊥µm′νn
(1)
⊥ν
φ
m′ρn

(1)
⊥ρ

(~r⊥)

+
√
n⊥d + 1− β

2
∑
n

(2)
⊥ν

T
m′νn

(2)
⊥ν

mcn⊥cmd+β,n⊥d−βM
00m′ρn

(2)
⊥ρ

mµn⊥µm′νn
(2)
⊥ν
φ
m′ρn

(2)
⊥ρ

(~r⊥)
]

−Θ(−2md − β)[√
n⊥d −md + 1− β

2
∑
n

(1)
⊥ν

T
m′νn

(1)
⊥ν

mcn⊥cmd+β,n⊥dM
00m′ρn

(1)
⊥ρ

mµn⊥µm′νn
(1)
⊥ν
φ
m′ρn

(1)
⊥ρ

(~r⊥)

+
√
n⊥d + 1 + β

2
∑
n

(3)
⊥ν

T
m′νn

(3)
⊥ν

mcn⊥cmd+β,n⊥d+βM
00m′ρn

(3)
⊥ρ

mµn⊥µm′νn
(3)
⊥ν
φ
m′ρn

(3)
⊥ρ

(~r⊥)
]}
.

(C.466)

As for the expressions of the Talman and Moshinsky coefficients as well as the expressions
or the values taken by the various indices, they can be deduced from the same equations
as for the integral Iαβ1 .

Thus, in order to evaluate both Iαβ1 and Iαβ2 integrals, we will need to find an expression
for

Iαrη =
∫

d3r V (
√

2r)rαφ0(~r − ~dabcd)φrη(~r − ~dabcd), (C.467)

with η = σ to get Iαβ1 and η = ρ to get Iαβ2 . In fact, Iαrσ and Iαrρ are the same integrals,
only the expressions or values taken by rσ and rρ may differ.

First, we recall that, in axial symmetry where ~r = (r⊥, ϕ, z), the components rα of
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the vector ~r are
r0 = z,

r±1 = ∓ 1√
2
r⊥e±iϕ.

(C.468a)

(C.468b)

Here, the integral (C.467) is much simpler to evaluate than the one the tensor term (C.330)
because, in the absence of a 1/r2 dependence, it is directly separable into a product of
integrals along the directions Oz and perpendicular to Oz when considering a Gaussian
potential. Indeed,

V (
√

2r)rα = e−2r2/µ2
Qα(r⊥, z)eiαϕ, (C.469)

where the polynomial Qα is defined by

Q0 = z,

Q±1 = ∓ 1√
2
r⊥,

(C.470a)

(C.470b)

in such a way that the integral (C.467) separates according to

Iαrη(~dabcd) =
∫ +∞

−∞
dz e−2z2/µ2

φ0(z − dabcd)φnzη(z − dabcd)

×
∫

d2r⊥ e−2r2
⊥/µ

2eiαϕφ00(~r⊥)φmηn⊥η(~r⊥)Qα(r⊥, z).
(C.471)

According to the definition (C.8), φ00(~r⊥) = φ00(r⊥) since this wave function has no
angular dependence. Furthermore, we can write φmηn⊥η(~r⊥) = eimηϕφ̃|mη |n⊥η(r⊥), thanks
to the relation (C.9). Then, just like the tensor term, we can easily evaluate the angular
part of the integral over r⊥, so that

Iαrη(~dabcd) = 2πδα,−mη
∫ +∞

−∞
dz e−2z2/µ2

φ0(z − dabcd)φnzη(z − dabcd)

×
∫ ∞

0
dr⊥ r⊥e−2r2

⊥/µ
2
φ00(r⊥)φ̃|mη |n⊥η(r⊥)Qα(r⊥, z).

(C.472)

Note that the Kronecker delta enforces the symmetry condition α = ma−mb +mc−md,
in accordance with the fact that the spin–orbit interaction does not commute with Lz
(see discussion right after (C.367)). Otherwise, we would recover the conservation law of
the central and density-dependent interactions that do commute with Lz (see equation
(C.136) and the discussion below). Mathematically speaking, the spin–orbit interaction
involves a tensor of rank 1, so that its projection satisfies −1 ≤ k = −(α + β) ≤ 1.
The situation is then similar to the one of the tensor interaction, except that this latter
involves a tensor of rank 2 (see equation (C.336) and discussion below).

Finally, we can include the different cases encountered in the unified expression

Iαrη(~dabcd) = 2πδα,−mη
1∑

m=0

1∑
n=0

Qmn
α Kz m

nzη (0, dabcd)K⊥n|mη |n⊥η(0), (C.473)

where
Qmn

0 = δm,1δn,0,

Qmn
±1 = ∓ 1√

2
δm,0δn,1,

(C.474a)

(C.474b)
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and

Kz m
nzη (0, dabcd) =

∫ +∞

−∞
dz zm e−2z2/µ2

φ0(z − dabcd)φnzη(z − dabcd), (C.475)

K⊥n|mη |n⊥η(0) =
∫ ∞

0
dr⊥ rn+1

⊥ e−2r2
⊥/µ

2
φ00(r⊥)φ̃|mη |n⊥η(r⊥). (C.476)

Note that these expressions correspond to the more general expressions obtained in the
calculation of the tensor spatial matrix elements, namely (C.339) and (C.340), in the case
ξ = 0, hence the chosen notation. Consequently (and luckily), we do not need to evaluate
them again.

Indeed, from (C.341) in the case ξ = 0, we find

K⊥n|mη |n⊥η(0) = bn⊥
2π [n⊥η!(n⊥η + |mη|)!]1/2

×
n⊥η∑
i=0

(−)i
i!(n⊥η − i)!(i+ |mη|)!

Γ(i+ n/2 + |mη|/2 + 1)G−i−n/2−|mη |/2−1
⊥ (0),

(C.477)

with

G⊥(0) ≡ 2b2
⊥ + µ2

µ2 , (C.478)

the analogous version of the spherical quantity (B.39) for the radial part in axial symmetry.
In the same way, from (C.351) in the case ξ = 0, we obtain

Kz m
nzη (0, dabcd) = (−)nzη

[
2nzηnzη!

π

]1/2

e−Fz(0)d2
abcd

bnzη/2c∑
j=0

(−)j
22jj!(nzη − 2j)!

×
m∑
l=0

(−)l m!
l!(m− l)!d

m−l
abcd

nzη+l−2j∑
p=0
p∈2N

(−)p (nzη + l − 2j)!
p!(nzη + l − 2j − p)!

× bnzσ+2l−2j−p
z G−p/2−1/2

z (0)
[
Fz(0)dabcd

]nzη+l−2j−p
Γ
(
p+ 1

2

)
,

(C.479)

where the notation p ∈ 2N indicates that p has to be even. The quantities appearing are

Gz(0) ≡ 2b2
z + µ2

µ2 , (C.480)

the analogous version of the spherical quantity (B.39) for the z part in axial symmetry,
as well as

Fz(0) = 2
µ2Gz(0) = 2

2b2
z + µ2 . (C.481)

We notice that the finite-range spin–orbit two-body matrix elements of the generalized
Gogny interaction (II.1), in a two-center axially symmetric representation, are purely
analytical.

At the one-center limit, all centers coincide (ja = jb = jc = jd), so that dabcd = 0.
Obviously, the spin-isospin matrix elements (of the spin–orbit interaction) evaluated in
the previous subsections remain the same. As for the spin–orbit spatial matrix elements,
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deduced from the integrals (C.463) and (C.465), they remain valid provided that the
integral (C.467) is evaluated for dabcd = 0 and that the Talman coefficients relative to z
are those given by (C.511) rather than by (C.506), in the same way that the conditions
(C.512) rather than (C.510) will have to be taken into account at this limit. When the
integral (C.467) is evaluated for dabcd = 0, only its part relative to z, whose final expression
is given by (C.479), is affected. It simplifies as

Kz m
nzη (0, 0) =

[
2nzηnzη!

π

]1/2

bmz

bnzη/2c∑
i=0

(−)j
22jj!(nzη − 2j)!δnzη+m−2j,2N

×G−nzη/2−m/2+j−1/2
z (0) Γ

(
nzη +m− 2j + 1

2

)
,

(C.482)

where Gz(0) is expressed in (C.478) and where the notation δnzη+m−2j,2N indicates that
the sum nzη + m − 2j must be even. To evaluate (C.473) at the one-center limit, it is
then enough to replace the expression of Kz m

nzη (0, dabcd) by the expression of Kz m
nzη (0, 0).

3. Formulas for the axial symmetry
In this section, we give the main formulas used to carry out the above calculations

in the chosen framework, namely the two-center axial harmonic oscillator representation.
We will not attempt to justify the developments leading to those and refer the reader to
[175, 176] for more detailed presentations.

3.1. Action of the gradient operator in axial symmetry
We give the action of the gradient operator on the harmonic oscillators wave functions

in one and two dimensions.
In one dimension, we find out, from the recurrence relations (D.99) between the Her-

mite polynomials,

dφnz
dz (z) =

√
βz
2

[
√
nz φnz−1(z)−

√
nz + 1φnz+1(z)

]
. (C.483)

In two dimensions, we find out, from the recurrence relations (D.102) between the gener-
alized Laguerre polynomials,

∇λφmn⊥(~r⊥) =
√
β⊥
2

[√
n⊥ +m+ 1 + λ

2 φm+λ,n⊥(~r⊥)

+
√
n⊥ + 1− λ

2 φm+λ,n⊥−λ(~r⊥)
]

if m > −λ2 ,
(C.484a)

∇λφmn⊥(~r⊥) = −
√
β⊥
2

[√
n⊥ −m+ 1− λ

2 φm+λ,n⊥(~r⊥)

+
√
n⊥ + 1 + λ

2 φm+λ,n⊥+λ(~r⊥)
]

if m < −λ2 ,
(C.484b)

where ∇λ with λ = ±1 is the gradient operator expressed in the spherical basis (see
definition (D.14)).
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3.2. Generating functions in axial symmetry
The generating functions χ take all their interest in the fundamental relation which

links them to the functions of the harmonic oscillator φ, here in dimension N = 1 or
N = 2, according to

∑
n

χ∗n(~t)φn(~r) =
(
β

π

)N/4
e−βr2/2+2

√
β~t·~r−t2 , (C.485)

where n denotes the set of quantum numbers in dimension N and β the corresponding
oscillator parameter, i.e. n = (m,n⊥) and β = β⊥ if N = 2, and, n = nz and β = βz
if N = 1. The axial generating functions associated with the axial harmonic oscillators,
that satisfy the above relation, are given by

χr(~t) ≡ χmn⊥(~t⊥)χnz(tz), (C.486)

where the radial generating function is

χmn⊥(~t⊥) ≡ Nmn⊥t
2n⊥+|m|
⊥ eimϕt , (C.487)

with the coefficient
Nmn⊥ ≡

(−)n⊥
(n⊥!(n⊥ + |m|)!)1/2 , (C.488)

while the generating function along z is

χnz(tz) ≡ Nnztnzz , (C.489)

with the coefficient

Nnz ≡
(

2nz
nz!

)1/2

. (C.490)

In our calculations, we will need the following properties satisfied by the above generating
functions, for a ∈ R,

χn(a~t) = aXnχn(~t), (C.491a)
χ∗n(~t) = χ−n(~t), (C.491b)

where

Xn ≡

2n⊥ + |m| if N = 2,
nz if N = 1,

and − n ≡

(n⊥,−m) if N = 2,
nz if N = 1.

(C.492)

We will also need the sum and product rules

χnµ(~t)χnµ′ (~t) =
∑
ν

NnµNnµ′
Nnν

δµ+µ′,νχnν (~t), (C.493a)

χnν (~t1 + ~t2) =
∑
µµ′

NnµNnµ′
Nnν

δµ+µ′,νχnµ(~t1)χnµ′ (~t2), (C.493b)

where

µ+ µ′ = ν ⇐⇒

Xµ +Xµ′ = Xν and mµ +mµ′ = mν if N = 2,
nzµ + nzµ′ = nzν if N = 1,

(C.494)

with X ≡ 2n⊥ + |m|.
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3.3. Talman coefficients in axial symmetry
The Gogny separable development [181] (see section D.3 for a quick presentation)

applied on two-center axial HO wave functions provides the relation

φ∗jara(~r)φjbrb(~r) =
∑
rµ

T
rµ
jara jbrb

φjab0(~r)φjabrµ(~r), (C.495)

where the quantum number jab locates the associated wave functions at a distance

~dab =
~da + ~db

2 , (C.496)

and where the axial Talman coefficient can be decomposed into the product

T
rµ
jara jbrb

= Tmµn⊥µman⊥ambn⊥b
× T nzµjanza jbnzb

. (C.497)

The quantity Tmµn⊥µman⊥ambn⊥b denotes the radial Talman coefficient and T nzµjanza jbnzb
the Talman

coefficient relative to the z coordinate. Note that only the Talman coefficient relative to z
is impacted by the decentering of the wave functions, in relation with the fact that these
ones are only decentered along z. We now need to specify the expressions of the Talman
coefficients and the ranges of values taken by the quantum numbers rµ = (mµ, n⊥µ, nzµ).

3.3.1. Radial Talman coefficient

It is also possible to apply the separable Gogny expansion directly to the radial HO
wave functions to get

φ∗man⊥a(~r⊥)φmbn⊥b(~r⊥) =
∑
n⊥µ

Tmµn⊥µman⊥ambn⊥b
φ00(~r⊥)φmµn⊥µ(~r⊥). (C.498)

We can show [175, 176] that the radial Talman coefficient reads

Tmµn⊥µman⊥ambn⊥b
= (−)n⊥a+n⊥b−n⊥µ

×
[
n⊥a!(n⊥a + |ma|)!n⊥b!(n⊥b + |mb|)!n⊥µ!(n⊥µ + |mµ|)!

]1/2
×
∑
m

[(
X ′a ± (m+ |ma|)

2

)
!
(
X ′b ± (m+ |mb|)

2

)
!
(
X ′µ ± (m+ |mµ|)

2

)
!
]−1

,

(C.499)

where we have set

X ′a ≡
Xµ +Xb −Xa

2 , (C.500a)

X ′b ≡
Xµ +Xa −Xb

2 , (C.500b)

X ′µ ≡
Xa +Xb −Xµ

2 , (C.500c)

have used the notation(
X ± |m|

2

)
! ≡

(
X + |m|

2

)
!
(
X − |m|

2

)
! = n⊥!(n⊥ + |m|)!, (C.501)
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and where, besides having to be of the same parity as X ′a +ma, the index m must verify

−max(X ′a +ma, X
′
b +mb, Xµ +ma +mb)
≤ m ≤ min(X ′a −ma, X

′
b −mb, Xµ +ma +mb).

(C.502)

Note in addition that the radial Talman coefficient implies

mµ = mb −ma, (C.503)

and is different from zero if and only the inequalities

|Xa −Xb| − |mµ|
2 ≤ n⊥µ ≤

Xa +Xb − |mµ|
2 (C.504)

are fulfilled.

3.3.2. Talman coefficient relative to the z coordinate

It is also possible to apply the separable Gogny expansion directly to the HO wave
functions relative to z, to get

φ∗janza(z)φjbnzb(z) =
∑
nzµ

T
nzµ
janza jbnzb

φjab0(z)φjabnzµ(z). (C.505)

In the general case where the wave functions do not belong to the same center (ja 6= jb),
we can show [175, 176] that the Talman coefficient relative to z reads

T
nzµ
janza jbnzb

=
√
nza!nzb!nzµ!

∑
n

1
n!(nzµ − n)!

Rjajb
nza−n,nzb−nzµ+n√

(nza − n)!(nzb − nzµ + n)!
, (C.506)

where

Rjajb
nzanzb

≡ (−)nzbe−σ2
ab

√
nza!nzb!
2nza+nzb

nza∑
p=0

nzb∑
q=0

Hp+q(σab)
p!q!

(
nza−p

2

)
!
(
nzb−q

2

)
!
, (C.507)

with
σab ≡

db − da
2

√
βz, (C.508)

the HO parameter βz being defined in (C.7), and the condition

max(0, nzµ − nzb) ≤ n ≤ min(nza, nzµ). (C.509)

Note in addition that the Talman coefficient relative to z is different from zero, for ja 6= jb,
if and only the inequalities

0 ≤ nzµ ≤ nza + nzb (C.510)
are fulfilled.

In the particular case where the wave functions belong to the same center (ja = jb),
the above Talman coefficient relative to z simplifies according to

T nzµnzanzb
=

√
nza!nzb!nzµ!(

nza−nzb+nzµ
2

)
!
(
nzb−nza+nzµ

2

)
!
(
nza+nzb−nzµ

2

)
!
, (C.511)
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where we have not specified the position of the centers since they now coincide. The
Talman coefficient relative to z is different from zero, for ja = jb, if the statements

nzµ has the same parity as nza + nzb,

|nza − nzb| ≤ nzµ ≤ nza + nzb,

(C.512a)
(C.512b)

are fulfilled.

3.4. Moshinsky coefficients in axial symmetry
The Moshinsky transformation allows us to move from the nucleon coordinates (~r1, ~r2)

to the relative and center-of-mass coordinates (~r = (~r⊥, z), ~R = (~R⊥, Z)), defined as 6

~r ≡ ~r1 − ~r2√
2

, and ~R ≡ ~r1 + ~r2√
2

. (C.513)

The Moshinky transformation of two-center axial HO wave functions is encoded in the
relation

φjara(~r1)φjbrb(~r2) =
∑
rλ

M rλrσ
rarb

φrλ(~R− ~Dab)φrσ(~r − ~dab), (C.514)

where the distances appearing are defined by

~dab ≡
~da − ~db√

2
, and ~Dab ≡

~da + ~db√
2

, (C.515)

and where the axial Moshinsky coefficient can be decomposed into the product
M rλrσ

rarb
= Mmλn⊥λmσn⊥σ

man⊥ambn⊥b
×Mnzλnzσ

nzanzb
. (C.516)

The quantity Mmλn⊥λmσn⊥σ
man⊥ambn⊥b

denotes the radial Moshinsky coefficient and Mnzλnzσ
nzanzb

the
Moshinsky coefficient relative to the z coordinate. Note that neither the radial Moshinsky
coefficient nor the Moshinsky coefficient relative to the z coordinate are impacted by
the decentering of the wave functions. We now need to specify the expressions of the
Moshinsky coefficients as well as the ranges of values taken by the quantum numbers
rσ = (mσ, n⊥σ, nzσ).

3.4.1. Radial Moshinsky coefficient

It is also possible to apply the Moshinksy transformation directly to the radial HO
wave functions to get

φman⊥a(~r⊥1)φmbn⊥b(~r⊥2) =
∑

mλn⊥λ

Mmλn⊥λmσn⊥σ
man⊥ambn⊥b

φmλn⊥λ(~R⊥)φmσn⊥σ(~r⊥), (C.517)

We can show [175, 176] that the radial Moshinsky coefficient reads

Mmλn⊥λmσn⊥σ
man⊥ambn⊥b

= (−)n⊥a+n⊥b+n⊥λ+n⊥σ

2(Xa+Xb)/2

×
[(
Xa ±ma

2

)
!
(
Xb ±mb

2

)
!
(
Xλ ±mλ

2

)
!
(
Xσ ±mσ

2

)
!
]1/2

×
∑
n⊥m

(−)m(
X±|m|

2

)
!
(
Xb−X±|mb−m|

2

)
!
(
Xσ−X±|mσ−m|

2

)
!
(
Xσ−Xb+X±|mσ−mb+m|

2

)
!
,

(C.518)

6. This convention is important; another definition of the relative and center-of-mass coordinates
(~r, ~R) would bring a different expression of the Moshinsky coefficient.
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where we have set X ≡ 2n⊥ + |m|, used the notation (C.501) and where the index n⊥
must verify the inequalities

max(0, Xb −Xλ − |m|+ |m+mλ −mb|)
≤ 2n⊥ ≤ min(Xb − |m|+ |m−mb|, Xσ − |m|+ |m−mσ|),

(C.519)

and the index m, the inequalities,

−min(Xb −mb, Xσ −mσ, Xλ +mλ − 2mb, Xa +ma − 2mσ)
≤ 2m ≤ min(Xb +mb, Xσ +mσ, Xλ +mλ + 2mb, Xa +ma + 2mσ).

(C.520)

Note in addition that the radial Moshinsky coefficient implies

n⊥σ = Xa +Xb −Xλ − |mσ|
2 , (C.521)

and
mσ = ma +mb −mλ, (C.522)

while the range of values taken by n⊥λ and mλ are not constrained.
In the case rλ = 0, the radial Moshinsky coefficient simplifies according to

M00mσn⊥σ
man⊥ambn⊥b

= (−)(|ma|−|mb|−|mσ |)/2

2(Xa+Xb)/2


(
Xa+Xb±|ma+mb|

2

)
!(

Xa±|ma|
2

)
!
(
Xb±|mb|

2

)
!


1/2

, (C.523)

which implies
n⊥σ = Xa +Xb − |mσ|

2 , (C.524)

and
mσ = ma +mb. (C.525)

In the case ra = rb = 0, the radial Moshinsky coefficient simplifies according to

Mmλn⊥λmσn⊥σ
00 00 = δn⊥λ,0δn⊥σ ,0δmλ,0δmσ ,0. (C.526)

3.4.2. Moshinsky coefficient relative to the z coordinate

It is also possible to apply the Moshinsky transformation directly to the HO wave
functions relative to z, to get

φnza(z1 − da)φnzb(z2 − db) =
∑
nzλ

Mnzλnzσ
nzanzb

φnzλ(Z −Dab)φnzσ(z − dab), (C.527)

where the distances appearing in the wave functions are defined in (C.515). We can show
[175, 176] that the Moshinsky coefficient relative to z reads

Mnzλnzσ
nzanzb

=
[
nza!nzb!nzλ!nzσ!

2nza+nzb

]1/2

×
∑
nz

(−)nz
nz!(nzb − nz)!(nzσ − nz)!(nzλ − nzb + nz)!

,

(C.528)
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with the condition
max(0, nzb − nzλ) ≤ nz ≤ min(nzb, nzσ). (C.529)

Note in addition that the Moshinky coefficient relative to z implies

nzσ = nza + nzb − nzλ. (C.530)

In the case rλ = 0, the Moshinsky coefficient relative to z simplifies according to

M0nzσ
nzanzb

= (−)nzb
2(nza+nzb)/2

[
(nza + nzb)!
nza!nzb!

]1/2

, (C.531)

which implies
nzσ = nza + nzb. (C.532)

In the case ra = rb = 0, the Moshinsky coefficient relative to z simplifies according to

Mnzλnzσ
0 0 = δnzλ,0 δnzσ ,0. (C.533)
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Chapter D
Miscellaneous

“For particulars, as every one knows, make for virtue and happiness;
generalities are intellectually necessary evils.”

— Aldous Huxley, Brave New World

In this appendix, we provide most of the formulas used to carry out the derivations as
well as generalities and various properties useful for understanding the whole document,
and that were not mentioned elsewhere. We begin by recalling some definitions and
properties related to the spin and isospin formalisms. Then, the general form of the
nuclear two-body nuclear interaction and the so-called Gogny separable development are
demonstrated. We continue by bringing up notable features of the tensor and spin–
orbit interactions and discussing the behavior of the generalized Gogny interaction under
rotations. Finally, the main functions, polynomials, series expansions and integrals we
take advantage of all along the calculations are enumerated.
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D. Miscellaneous 1. Pauli matrices and exchange operators

1. Pauli matrices and exchange operators
In this section, we give some useful properties of the Pauli matrices we benefit from in

the developments. We do the same for the spin- and isospin-exchange operators as they
are expressed in terms of the Pauli matrices.

By definition, the Pauli vector reads

~σ = σxx̂+ σyŷ + σz ẑ, (D.1)

where x̂, ŷ and ŷ are the components of the unit vector r̂ ≡ ~r/|~r|, giving the directions of
the Pauli vector components, which are the common Pauli matrices defined by

σx ≡
(

0 1
1 0

)
, σy ≡

(
0 −i
i 0

)
, σz ≡

(
1 0
0 −1

)
. (D.2)

Using these definitions, one quickly obtains

~σ2 = 31. (D.3)

Similarly, it is not difficult to show that the product of any two Pauli matrices can be
written as

σiσj = δij1 + iεijkσk, (D.4)
where δij denotes the Kronecker delta and εijk the Levi-Civita symbol. This relation helps
us derive the following identity where we first expand the scalar product,

(~σ · r̂)2 = (~σ · r̂)(~σ · r̂) =
∑
i

σir̂i
∑
j

σj r̂j

=
∑
ij

r̂ir̂j(δij1 + iεijkσk)

= r̂ · r̂ + iσ(r̂ × r̂) = r̂ · r̂ = 1, (D.5)

and finally use the component expression of the cross product (marked by ×). We now
point out that the Pauli vector is related to the spin operator ~s by the simple relation

~σ = 2
~
~s. (D.6)

This identity is then also true for each component of the Pauli vector and the spin operator.
We note that those relations hold for the isospin as well. To distinguish them from the
above ones, we replace σ by τ . In particular, the Pauli vector (associated with the isospin)
is related to the isospin operator ~t by the simple relation

~τ = 2~t. (D.7)

We emphasize that the isospin, although describable by a formalism very close to that of
the spin, is not an angular momentum; it is an dimensionless quantity, hence the absence
of the constant ~ in this definition. The spin-exchange and isospin-exchange operators
between the particles 1 and 2 can respectively be defined in terms of Pauli vectors as

Pσ ≡
1 + ~σ1 · ~σ2

2 , (D.8a)

Pτ ≡
1 + ~τ1 · ~τ2

2 , (D.8b)
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D. Miscellaneous 1. Pauli matrices and exchange operators

where the Pauli vectors associated with the first particle are ~σ1 and ~τ1, and the ones
associated with the second particle are ~σ2 and ~τ2. As their names suggest, those operators
respectively exchange the spin and isospin projections of the two particles. Formally,

Pσ|s1s2〉 = |s2s1〉, (D.9a)
Pτ |t1t2〉 = |t2t1〉, (D.9b)

where s1 and s2 as well as t1 and t2 are the projections of the spin and isospin, respectively,
along the quantization axis, chosen to be Oz. As a consequence of these equalities, we
have P 2

σ = P 2
τ = 1. Now, since the particles we are dealing with are nucleons, that is to

say in particular spin-1/2 and isospin-1/2 particles, we have the relations

Pσ = 1
21 + 2~s1 · ~s2 = 1

21 + ~S2 − ~s 2
1 − ~s 2

2

= ~S2 − 1,
(D.10a)

Pτ = 1
21 + 2~t1 · ~t2 = 1

21 + ~T 2 − ~t 2
1 − ~t 2

2

= ~T 2 − 1.
(D.10b)

Using those results, we can infer the action of the spin-exchange and isospin-exchange
operators on the states coupled to the total spin and total isospin as

Pσ |SMS〉 = [S(S + 1)− 1] |SMS〉 = (−)S+1 |SMS〉, (D.11a)
Pτ |TMT 〉 = [T (T + 1)− 1] |TMT 〉 = (−)T+1 |TMT 〉, (D.11b)

where the rightmost equalities come from the fact that S, T ∈ {0, 1}. Alternatively, the
definitions (D.8) provide

(~σ1 · ~σ2) |SMS〉 = [2(−)S+1 − 1] |SMS〉, (D.12a)
(~τ1 · ~τ2) |TMT 〉 = [2(−)T+1 − 1] |TMT 〉. (D.12b)

Finally, the definitions (D.8) combined with the identities P 2
σ = P 2

τ = 1 imply

(~σ1 · ~σ2)2 = 31− 2~σ1 · ~σ2, (D.13a)
(~τ1 · ~τ2)2 = 31− 2~τ1 · ~τ2. (D.13b)

In the spherical basis, the Pauli vector writes

~σ = σ+1ê+ + σ−1ê− + σz ẑ, (D.14)

where the unit vectors ê+ and ê− can be expressed as linear combinations of x̂ and ŷ,
just like these components of the Pauli vector are expressed as linear combinations of the
Pauli matrices (D.2) as 1

σ+1 ≡ −
σx√

2
+ i σy√

2
, (D.16a)

σ−1 ≡
σx√

2
+ i σy√

2
. (D.16b)

1. Those components should not be confused with the ladder operators σ+ and σ−, often encountered
in quantum mechanics, which are related to them by the relations

σ+ ≡ −
√

2σ+1, (D.15a)
σ− ≡

√
2σ−1. (D.15b)
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By definition, the spherical components of the Pauli vector act in the following way on
the projections of the spin,

σ+1
∣∣−1/2

〉
= −
√

2
∣∣1/2〉, (D.17a)

σ−1
∣∣1/2〉 =

√
2
∣∣−1/2

〉
, (D.17b)

σz|s〉 = 2s|s〉. (D.17c)
We then propose a unified notation to describe the matrix element of any spherical com-
ponent of the Pauli vector as

〈sa|σm|sb〉 = 2saδsasbδm,0 −m
√

2δsa,sb+m, for m = 0,±1. (D.18)
When dealing with the tensor interaction, we have to find out an expression for the matrix
elements of the operator [~σ1 ⊗ ~σ2](2)

k . By first decoupling this tensor product, we get

〈sa sc|[~σ1 ⊗ ~σ2](2)
k |sb sd〉 =

∑
m

〈1m1k −m|2k〉〈sa|σm|sb〉〈sc|σk−m|sd〉, (D.19)

where we have used the properties of the Clebsch–Gordan coefficients, denoted by the
brackets. Simplifying this expression by means of the unified expression (D.18) and plug-
ging the particular values of the Clebsch–Gordan coefficients that appear, we get, after a
lengthy but straight calculation,

〈sa sc|[~σ1 ⊗ ~σ2](2)
k |sb sd〉 = 4sasc

{
δsasb

[√
2
3δscsdδk,0 − δsc,−sdδk,2sc

]

− δsa,−sb

[
δscsdδk,2sa − δsc,−sd

(√
2
3δsa,−scδk,0 + 2δsascδk,4sa

)]}
.

(D.20)

When dealing with the spin–orbit interaction, it is an expression for the matrix elements
of the operator [~σ1 + ~σ2](1)

k that we need to find out. Separating the two contributions,
we first obtain

〈sa sc|[~σ1 + ~σ2](1)
k |sb sd〉 = 〈sa|σ1,k|sb〉δscsd + 〈sc|σ2,k|sd〉δsasb . (D.21)

Now taking advantage of the unified relation (D.18), we get, without difficulty,

〈sa sc|[~σ1 + ~σ2](1)
k |sb sd〉 = 2(sa + sc)δsasbδscsdδk,0

−
√

2k
[
δsasbδsc,−sdδk,2sc + δsa,−sbδscsdδk,2sa

]
.

(D.22)

2. Construction of the realistic two-body nuclear in-
teraction

In the following, we seek to determine the most general form of the two-body nuclear
interaction preserving the eight symmetries exposed in section I.1.2.

Because of charge independence, the isospin dependence of the two-body nuclear in-
teraction must be scalar. According to the property (D.3) of Pauli matrices, the only
possible scalars are the unity operator 1, the scalar product ~τ1 · ~τ2 and powers of ~τ1 · ~τ2.
However, the additional property (D.13) reduces the powers of ~τ1 · ~τ2 to linear combina-
tions of 1 and ~τ1 · ~τ2. Thus, the most general isospin dependence of the interaction is
contained in the expression

v(~r, ~p;~σ1, ~τ1;~σ2, ~τ2) = v(0)(~r, ~p;~σ1;~σ2) + v(1)(~r, ~p;~σ1;~σ2)~τ1 · ~τ2, (D.23)
where we have omitted the unity operator for clarity.
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Spin dependences
Now, let us have a look at the possible spin dependences of the two-body nuclear

interaction. We can already state that this dependence will be independent, linear or
quadratic in Pauli matrices. Indeed, the properties of Pauli matrices allow to express the
higher dependences as linear combinations of independent, linear or quadratic terms in
Pauli matrices (see for instance section D.1).
We begin with the linear dependence. According to the rotational symmetry, the spin
dependence of the interaction must be scalar. The only possibilities at linear order are,
for i ∈ {0, 1},

v(i)(~r, ~p;~σ1;~σ2) = ~a1 · ~σ1 + ~a2 · ~σ2. (D.24)

The symmetry under the exchange of the two nucleons implies ~a1 = ~a2 ≡ ~a/2, so that
v(i)(~r, ~p;~σ1;~σ2) = ~a · ~S, where we have defined ~S ≡ (~σ1 + ~σ2)/2. The vector ~a has to be
chosen among the available vectors the interaction may depend on, namely ~r, ~p and a
combination of them, ~L ≡ ~r × ~p. Note that since ~S and all those vectors are Hermitian,
the Hermiticity condition is guaranteed. Besides, ~S is invariant under a parity transfor-
mation and odd under time-reversal symmetry, so that the vector ~a must have the same
behaviour for the nuclear interaction to be both parity and time-reversal invariant. The
vectors ~r and ~p, being odd under parity, are not suitable. Only the vector ~L behaves the
appropriate way. Moreover, the vectors ~S and ~L are both Hermitian. Thus, at linear
order in Pauli matrices, the spin dependence of the interaction is given by ~L · ~S, because
of its symmetries.
We continue with the quadratic dependence. Once again, the rotational symmetry im-
poses the spin dependence of the interaction to be scalar. At second order, the possibilities
are a priori, for i ∈ {0, 1},

v(i)(~r, ~p;~σ1;~σ2) = ~a1 · ~σ2
1 + ~a2 · ~σ2

2 + ~σ1 · ~σ2 +~b · (~σ1 × ~σ2)
+ (~σ1 · ~c1)(~σ2 · ~c2) + (~σ1 × ~d1) · (~σ2 × ~d2).

(D.25)

The first two terms are actually proportional to the unity operator because of (D.3).
The third term is invariant under the exchange of the two nucleons, under parity and
time-reversal symmetries, and obviously Hermitian, we can keep it. The vector (~σ1 × ~σ2)
appearing in the fourth term is odd under the exchange of the two nucleons (by definition
of the vector product) and invariant under parity and time-reversal symmetries. The
vector ~b that has to be either ~r, ~p or ~L must then behave the same way. Nevertheless,
none of these vectors does. For the fifth term the conclusion is the same unless we
choose ~c1 = ~c2 ≡ ~c. In this case, the term is invariant under the exchange of the two
nucleons, under parity and time-reversal symmetries, and obviously Hermitian, whatever
the vector ~c, be it ~r, ~p or ~L. In the case ~c ≡ ~L, note however that the invariance under
the exchange of the two nucleons is not satisfied as (~σ1 · ~L) and (~σ2 · ~L) do not commute
(since the components of ~L fulfil the canonical commutation relations). In order to avoid
this issue, we rather build the symmetric quantity [(~σ1 · ~L)(~σ2 · ~L) + (~σ2 · ~L)(~σ1 · ~L)]/2,
which then respect all the symmetries. Finally, the last term can be expressed as a
linear combination of the third and fifth terms. Indeed, the quadruple product furnishes
(~σ1 × ~d1) · (~σ2 × ~d2) = (~σ1 ·~σ2)(~d1 · ~d2)− (~σ1 · ~d2)(~σ2 · ~d1). In the first right-hand side term,
the scalar product (~d1 · ~d2) must be conveniently constructed from the available vectors
~r, ~p and ~L (see below). As for the second right-hand side term, it has to be discarded
when ~d1 6= ~d2 according to what we have previously said. Thus, at second order in Pauli
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matrices, the spin dependence of the interaction may be given by ~σ1 · ~σ2, (~σ1 · ~r)(~σ2 · ~r),
(~σ1 · ~p)(~σ2 · ~p) or [(~σ1 · ~L)(~σ2 · ~L) + (~σ2 · ~L)(~σ1 · ~L)]/2, because of its symmetries.

Spatial dependences
Lastly, we focus on the possible spatial dependences of the two-body nuclear interaction.

First, we notice that the Hermiticity condition applied to the time-reversal symmetry
permits to rewrite the requirement (I.9) as

v(~r,−~p;−~σ1, ~τ1;−~σ2, ~τ2) = vT(~r, ~p;~σ1, ~τ1;~σ2, ~τ2), (D.26)

where the transpose operation merely reverses the order of the operators constituting the
interaction [3].

According to the rotational symmetry, the spatial dependence of the two-body nuclear
interaction must be scalar. Moreover, the possible scalars must be invariant under time-
reversal symmetry (D.26). The time-reversal invariant scalars made up of the available
vectors ~r, ~p and ~L are ~r 2 ≡ ~r · ~r, ~p 2 ≡ ~p · ~p, ~L2 ≡ ~L · ~L and (~r · ~p+ ~p · ~r)2. 2 On the other
hand, the last scalar can be expressed as a function of the first three,

(~r · ~p+ ~p · ~r)2 = (~r · ~p)2 + (~p · ~r)2 + (~r · ~p)(~p · ~r) + (~p · ~r)(~r · ~p)
= 2(~r · ~p)(~p · ~r) + 2(~p · ~r)(~r · ~p) + 3i~[(~r · ~p)− (~p · ~r)]
= 2(~r 2~p 2 + ~p 2~r 2)− 4~L2 − 9~2. (D.27)

From the first to the second line, we have used the canonical commutation relations
leading to (~r · ~p)2 = (~r · ~p)(~p · ~r) + 3i~(~r · ~p) and (~p · ~r)2 = (~p · ~r)(~r · ~p)− 3i~(~p · ~r). From
the second to the third line, we have taken advantage of the quadruple products giving
(~r ·~p)(~p ·~r) = ~r 2~p 2−~L2 and (~p ·~r)(~r ·~p) = ~p 2~r 2−~L2. Therefore, the time-reversal invariant
scalars are necessarily functions of ~r 2, ~p 2 and ~L2. In addition, they are invariant under
the exchange of two nucleons and parity transformations, as well as obviously Hermitian.
Thus, the spatial dependence of the interaction is expressed in terms of ~r 2, ~p 2 and ~L2,
because of its symmetries, what we write down as, for i ∈ {0, 1},

v(i)(~r, ~p) = v(i)(~r 2, ~p 2, ~L2), (D.28)

the spin dependence having been treated above.
By bringing together the studies of the isospin, spin and space dependences, we can

infer the general form the two-body nuclear interaction takes when all eight symmetries
are reproduced, namely it can be formulated as

v12 = v00 + v10(~σ1 · ~σ2) + v01(~τ1 · ~τ2) + v11(~σ1 · ~σ2)(~τ1 · ~τ2), (D.29)

where

vST =
5∑

k=1
fSTk (~r 2, ~p 2, ~L2)Ok, for S, T ∈ {0, 1}, (D.30)

with fSTk (~r 2, ~p 2, ~L2), functions of the scalars ~r 2, ~p 2 and ~L2 called form factors, and Ok

2. It is worth mentioning that the combinations (~r · ~p)2 and (~p · ~r)2 are not suitable as they are not
time-reversal invariant, because ~r and ~p do not commute, and then the condition (D.26) is not fulfilled.
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operators of one of the following forms,

Ok =



1 if k = 1,
~L · ~S if k = 2,
S12(r̂) ≡ (~σ1 · r̂)(~σ2 · r̂)− 1

3~σ1 · ~σ2 if k = 3,
S12(p̂) ≡ (~σ1 · p̂)(~σ2 · p̂)− 1

3~σ1 · ~σ2 if k = 4,
Q12 ≡ 1

2

[
(~σ1 · ~L)(~σ2 · ~L) + (~σ2 · ~L)(~σ1 · ~L)

]
if k = 5.

(D.31)

This is the most general expression of the realistic two-body nuclear interaction, obtained
from the symmetries to be fulfilled, we have discussed at the beginning of the document.

3. The Gogny separable development
The Gogny separable development [175, 181] is a powerful tool that allows to separate

the spatial degrees of freedom of a two-body potential, be it central or non-central, in any
basis of the harmonic oscillator (HO). Schematically, the separable development reads

v(~r1 − ~r2) ∼
∑
rµ

φ̂rµ(~r1)frµ(~r2), (D.32)

where v(~r1−~r2) is the two-body potential (in this thesis, the generalized Gogny interaction
(II.1)), rµ the set of quantum numbers characterizing the spatial degrees of freedom in
some HO basis (namely (B.1) in spherical symmetry, and (C.1) in axial symmetry), φ̂rµ(~r1)
the HO wave function deprived of its exponential factor (their radial part is given by (B.7)
in spherical symmetry, and by (C.10) in axial symmetry), and frµ(~r2) some function of ~r2.
Formally, the separable development stipulates that the potential and the development of
the right-hand side part are equivalent in the sense that their two-body matrix elements
(TBMEs) evaluated in any basis of the harmonic oscillator are equal, i.e.

〈rarb|v(~r1 − ~r2)|rcrd〉 =
∑
rµ

〈rarb|φ̂rµ(~r1)frµ(~r2)|rcrd〉. (D.33)

Thus, the TBMEs of the potential in some HO basis can be written as a product of
one-body matrix elements according to

〈rarb|v(~r1 − ~r2)|rcrd〉 =
m∑

rµ=1
〈ra|φ̂rµ(~r1)|rc〉〈rb|frµ(~r2)|rd〉, (D.34)

or, equivalently, by means of the symmetry under the exchange of the two particles (I.2),

〈rarb|v(~r1 − ~r2)|rcrd〉 =
m′∑
rµ=1
〈ra|frµ(~r1)|rc〉〈rb|φ̂rµ(~r2)|rd〉, (D.35)

where, in general, m 6= m′. These separations are very useful, both analytically and
numerically. Analytically, they simplify the calculations by decorrelating the spatial co-
ordinates of the two particles. Numerically, they allow to optimize the loops, especially
when implementing fields (see appendix C), by reducing the number of time-demanding
operations. Actually, the existence of such a development relies on the following property
of the HO wave functions [181],

φ∗ra(~r)φrc(~r) =
∑
rµ

T rµrarcφ0(~r)φrµ(~r). (D.36)
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As it is essential to demonstrate the separable development, this property itself is some-
times called, as we do in the thesis, the separable Gogny development. For the spherical
and axial symmetries, the corresponding properties are given by (B.219) and (C.495),
from which we can extract the value of the factor T rµrarc ≡ 〈ra|φ̂rµ(~r1)|rc〉, involving the
so-called Talman coefficients. In the next subsections, we prove the Gogny separable
development for central and non-central potentials.

3.1. Central potentials
Let us start with a central potential which, by definition, only depends on the relative

distance between the two nucleons, v(|~r1 − ~r2|). Its TBMEs in some HO representation
are

〈rarb|v(|~r1 − ~r2|)|rcrd〉 =
∫

d3r1

∫
d3r2 φ

∗
ra(~r1)φ∗rb(~r2)v(|~r1 − ~r2|)φrc(~r1)φrd(~r2), (D.37)

where φ denotes the HO wave function. Since the potential is central, it commutes with
the wave functions; we can then apply the relation (D.36) to obtain

〈rarb|v(|~r1 − ~r2|)|rcrd〉 =
∑
rµ

T rµrarc

×
∫

d3r2 φ
∗
rb

(~r2)
∫

d3r1 φ0(~r1)φrµ(~r1)v(|~r1 − ~r2|)φrd(~r2).
(D.38)

Defining the quantity

frµ(~r2) ≡
∫

d3r1 φ0(~r1)φrµ(~r1)v(|~r1 − ~r2|), (D.39)

we finally get the first form of the Gogny separable development (D.34). If instead of
applying the relation (D.36) on the wave functions evaluated in ~r1, we apply it on the
ones evaluated in ~r2, we equivalently end up with the second form of the Gogny separable
development (D.35).

3.2. Non-central potentials
We continue with the non-central potentials, which, in the case of the generalized

Gogny interaction (II.1) we are interested in, are summarized in the tensor and spin–
orbit potentials.

The tensor potential can in fact be written in terms of a central potential as

vT ≡ v(|~r1 − ~r2|)S12, (D.40)

where S12 is the tensor operator (II.9). But since the tensor operator commutes with the
HO wave functions appearing in (D.37), it barely behaves like a central potential, and its
separable development is immediately demonstrated, with

frµ(~r2, ~σ1, ~σ2) ≡
∫

d3r1 φ0(~r1)φrµ(~r1)v(|~r1 − ~r2|)S12. (D.41)

Once again, applying the relation (D.36) on the wave functions evaluated in ~r2 would lead
to the second form of the Gogny separable development (D.35).

The spin–orbit potential can also be written in terms of a central potential as

vSO ≡ v(|~r1 − ~r2|)(~r12 × ~∇12) · ~S, (D.42)
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where ~S is given by (II.3) and where we have freed ourselves from fractors to define
the relative position ~r12 ≡ ~r1 − ~r2 and the relative gradient ~∇12 ≡ ~∇1 − ~∇2. Here the
demonstration is a bit trickier as the non-central part of the spin–orbit potential does not
commute with the HO wave functions because of the gradient operator. Separating the
spatial from the spin degrees of freedom according to

〈rarb|vSO|rcrd〉 = 〈rarb|v(|~r1 − ~r2|)(~r12 × ~∇12)|rcrd〉 · ~S, (D.43)

we have,

〈rarb|v(|~r1 − ~r2|)(~r12 × ~∇12)|rcrd〉 =∫
d3r1

∫
d3r2 φ

∗
ra(~r1)φ∗rb(~r2)v(|~r1 − ~r2|)(~r12 × ~∇12)φrc(~r1)φrd(~r2).

(D.44)

Splitting the integral into two parts, we obtain

〈rarb|v(|~r1 − ~r2|)(~r12 × ~∇12)|rcrd〉 =∫
d3r1

∫
d3r2 φ

∗
ra(~r1)φ∗rb(~r2)φrd(~r2)v(|~r1 − ~r2|)(~r12 × ~∇1)φrc(~r1)

−
∫

d3r1

∫
d3r2 φ

∗
ra(~r1)φrc(~r1)φ∗rb(~r2)v(|~r1 − ~r2|)(~r12 × ~∇2)φrd(~r2).

(D.45)

By virtue of the formula (D.36) applied on both parts, we find out

〈rarb|v(|~r1 − ~r2|)(~r12 × ~∇12)|rcrd〉 =
∑
rµ

T rµrbrd〈ra|~frµ(~r1)|rc〉

−
∑
rν

T rνrarc〈rb|~frν (~r2)|rd〉.
(D.46)

where we have defined the vector quantities

~frµ(~r1) ≡
∫

d3r2 φ0(~r2)φrµ(~r2)v(|~r1 − ~r2|)~r12 × ~∇1, (D.47a)

~frν (~r2) ≡
∫

d3r1 φ0(~r1)φrν (~r1)v(|~r1 − ~r2|)~r12 × ~∇2. (D.47b)

Finally adding the spin part, it comes

〈rarb|vSO|rcrd〉 =
∑
rµ

〈rb|φ̂rµ(~r2)|rd〉〈ra|~frµ(~r1)|rc〉 · ~S

−
∑
rν

〈ra|φ̂rν (~r1)|rc〉〈rb|~frν (~r2)|rd〉 · ~S.
(D.48)

Thus, each of the above parts of the spin–orbit potential can be decomposed into a product
of a one-body matrix element in ~r1 and another one in ~r2. This is precisely the definition
of the Gogny separable development (D.32), which separately holds for both parts. Note
that we had no choice but to apply the formula (D.36) on the wave functions evaluated
in ~r2 in the first integral, and on the ones evaluated in ~r1 in the second integral of (D.45).
Therefore, contrary to the central and tensor potentials, we cannot decide to apply this
formula on the wave functions depending on the other variables to get the second form of
the separable development (D.35). To do so, we rather notice that the spin–orbit potential
is symmetric under the exchange of variables (~r1, ~σ1)↔ (~r2, ~σ2).
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4. Tensor interaction

4.1. Expression of the tensor operator
As expressed in the first part (II.9), the convention chosen for the tensor operator of

the generalized Gogny interaction (II.1) is

S12 ≡ (~σ1 · r̂12)(~σ2 · r̂12)− 1
3~σ1 · ~σ2. (D.49)

Another convention often adopted in the literature is the following,

S̃12 = 3(~σ1 · r̂12)(~σ2 · r̂12)− ~σ1 · ~σ2, (D.50)

which simply corresponds to the first one multiplied by a factor 3. Actually, these two con-
ventions are equivalent, the only requirement being that the tensor operator is isotropic,
i.e. that its integral over all directions vanishes, that is to say

∫
d2r̂ S12 ≡

∫
d2r̂ S̃12 = 0, (D.51)

where r̂ = (θ, ϕ).
Indeed, Oz being the quantization axis, we show that whatever the orientation of the

spins of the nucleons (which are spin-1/2 particles, with either spin up or spin down), we
find out the relation

(~σ1 · r̂12)(~σ2 · r̂12) = ~σ1 · ~σ2 cos2 θ, (D.52)

where we make it clear that θ refers to the angle of the relative position between the two
particles ~r12 and the axis Oz. Then,∫

d2r̂ S12 = ~σ1 · ~σ2

∫ 2π

0
dϕ

∫ π

0
dθ sin θ cos2 θ − 1

3~σ1 · ~σ2

∫
d2r̂ = 0, (D.53)

as expected. The outcome is obviously the same with the other convention (D.50).

4.2. The tensor operator is a tensor
In this subsection, we will answer the question: “Why is the tensor interaction called

the tensor interaction?” (and it is not even a joke).
We shall write the tensor operator (D.49) in some specific way. Considering the com-

ponents of the three-dimensional vectors r̂12, ~σ1 and ~σ2, we deduce

(~σ1 · r̂12)(~σ2 · r̂12) =
3∑
ij

σ1iσ2j r̂12ir̂12j

= 1
2

3∑
ij

(σ1iσ2j + σ1jσ2i)r̂12ir̂12j, (D.54)

where in the last equation we have symmetrized the right-hand side quantity with re-
spect to the exchange of the indices 1 and 2. This step is crucial as it ensures that the
tensor operator is invariant under the exchange of the two particles, which is one of the
fundamental symmetries the nuclear interaction has to fulfil (see subsection I.1.2).
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On the other hand, we notice that ∑i(r̂12i)2 = 1 since |r̂12| = 1. Therefore,

~σ1 · ~σ2 =
3∑
ij

~σ1 · ~σ2δij r̂12ir̂12j. (D.55)

By merging the two previous results, we can write down the tensor operator (D.49) as

S12 =
∑
ij

Tij r̂12ir̂12j, (D.56)

where Tij is an irreducible tensor of rank 2, whose expression reads

Tij = 1
2
(
σ1iσ2j + σ1jσ2i

)
− δij

3 ~σ1 · ~σ2. (D.57)

It is precisely because the tensor operator can be expressed in terms of a tensor, unlike
the other terms of the nuclear interaction, that it is called the “tensor interaction”.

4.3. Equivalent forms of the tensor operator
In this subsection, we want to show that the tensor operator (D.49) is strictly equiv-

alent to the following forms involving tensors of rank 2,

S12 = [r̂12 ⊗ r̂12](2) · [~σ1 ⊗ ~σ2](2), (D.58)

and 3

S12 =
√

5
[
[r̂12 ⊗ r̂12](2) ⊗ [~σ1 ⊗ ~σ2](2)

](0)
, (D.59)

as well as tensors of rank 1,

S12 = 2(~S · r̂12)2 − 2
3
~S2. (D.60)

Indeed, expanding the scalar product, using the coupling procedure between irreducible
tensors and some symmetry properties of the Clebsch–Gordan coefficients, we successively
obtain

(~σ1 · r̂12)(~σ2 · r̂12) =
∑
µ1µ2

(−)µ1+µ2 r̂µ1
12 r̂

µ2
12σ

−µ1
1 σ−µ2

2

=
∑
µ1µ2

(−)µ1+µ2
∑
λµ

∑
λ′µ′
〈1µ11µ2|λµ〉〈1µ11µ2|λ′ − µ′〉[r̂12 ⊗ r̂12](λ)

µ [~σ1 ⊗ ~σ2](λ
′)

µ′

=
∑
λµ

∑
λ′µ′

(−)µ−λ′
∑
µ1µ2

〈1µ11µ2|λµ〉〈1µ11µ2|λ′ − µ′〉[r̂12 ⊗ r̂12](λ)
µ [~σ1 ⊗ ~σ2](λ

′)
µ′

=
∑
λµ

∑
λ′µ′

(−)µ−λδλλ′δµ,−µ′ [r̂12 ⊗ r̂12](λ)
µ [~σ1 ⊗ ~σ2](λ

′)
µ′

=
∑
λµ

(−)µ−λ[r̂12 ⊗ r̂12](λ)
µ [~σ1 ⊗ ~σ2](λ)

−µ. (D.61)

3. This is the form adopted by Gogny in his article about the separable development [181].
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Because of the invariance of the quantity [r̂12 ⊗ r̂12](λ)
µ under the exchange of the r̂12, we

can write, using the coupling procedure,

[r̂12 ⊗ r̂12](λ)
µ =

∑
µ1µ2

〈1µ11µ2|λµ〉r̂µ1
12 r̂

µ2
12 , (D.62a)

=
∑
µ1µ2

〈1µ21µ1|λµ〉r̂µ1
12 r̂

µ2
12 . (D.62b)

On the other hand, the symmetry properties of the Clebsch–Gordan coefficients provide

〈1µ11µ2|λµ〉 = (−)λ〈1µ21µ1|λµ〉. (D.63)

Thus, the only way the equations (D.62) can be true without [r̂12⊗ r̂12](λ)
µ being zero is if

λ = 0 or λ = 2. When λ = 0, we get the following contribution from equation (D.61),

[r̂12 ⊗ r̂12](0)
0 [~σ1 ⊗ ~σ2](0)

0 =
∑
µ1µ2

〈1µ11µ2|00〉r̂µ1
12 r̂

µ2
12
∑
ν1ν2

〈1ν11ν2|00〉σν1
1 σ

ν2
2

= 1
3

(∑
µ

(−)µr̂µ12r̂
−µ
12

)(∑
ν

(−)νσν1σ−ν2

)

= 1
3(r̂12 · r̂12)(~σ1 · ~σ2) = 1

3~σ1 · ~σ2. (D.64)

This last term compensates the second right-hand side term of the form (D.49). When
λ = 2, we get, by definition of the scalar product in the spherical basis,∑

µ

(−)µ[r̂12 ⊗ r̂12](2)
µ [~σ1 ⊗ ~σ2](2)

−µ ≡ [r̂12 ⊗ r̂12](2) · [~σ1 ⊗ ~σ2](2). (D.65)

Therefore, combining this result with (D.61) and (D.64), we end up with the first equiva-
lent form of the tensor operator (D.58). If, instead, we use the coupling procedure when
λ = 2, we get the following contribution from equation (D.61),∑
µ

(−)µ[r̂12 ⊗ r̂12](2)
µ [~σ1 ⊗ ~σ2](2)

−µ =
∑
µ

(−)µ
∑
λ′µ′
〈2µ2− µ|λ′µ′〉

[
[r̂12 ⊗ r̂12](2) ⊗ [~σ1 ⊗ ~σ2](2)

](λ′)
µ′

=
∑
λ′

∑
µ

(−)µ〈2µ2− µ|λ′0〉︸ ︷︷ ︸√
5δλ′,0

[
[r̂12 ⊗ r̂12](2) ⊗ [~σ1 ⊗ ~σ2](2)

](λ′)
0

=
√

5
[
[r̂12 ⊗ r̂12](2) ⊗ [~σ1 ⊗ ~σ2](2)

](0)
. (D.66)

Thus, combining this result with (D.61) and (D.64), we end up with the second equivalent
form of the tensor operator (D.59).

The third equivalent form of the tensor operator is deduced from (D.49), noticing that
we find out, on one side,

~σ1 · ~σ2 = 2~S2 − 31, (D.67)
by combining relations (D.8) and (D.10a), and, on the other side,

2(~S · r̂12)2 = 1
2
[
(~σ1 + ~σ2) · r̂12

]2
= 1

2
[
(~σ1 · r̂12)2 + (~σ2 · r̂12)2 + 2(~σ1 · r̂12)(~σ2 · r̂12)

]
= 1 + (~σ1 · r̂12)(~σ2 · r̂12), (D.68)

by considering the identities (II.3) and (D.5).
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5. Spin–orbit interaction

5.1. The spin–orbit interaction at the zero-range limit
In this subsection, we determine the expression the coefficient B(µ) below must take

so that, we recover, from the finite-range spin–orbit term we consider in the generalized
Gogny interaction (II.1), i.e.

vSO
12 = B(µ)(W −HPτ )V (r12, µ)~L · ~S, (D.69)

the exact zero-range spin–orbit term of the original Gogny interaction at the zero-range
limit, that is

i
4W0

[(
~∇1 − ~∇2

)
δ(~r1 − ~r2) ×

(
~∇1 − ~∇2

)]
· (~σ1 + ~σ2), (D.70)

where V (r12, µ) is the Gaussian potential given by (II.2), with the dependence on the range
µ specified for clarity. We also recall that here the symbol × denotes the cross product.
Actually, in the following calculations, we will restrict ourselves to the particular case of a
Gaussian potential only at the end. Indeed, we will treat a more general potential, whose
only requirement will be to verify the equation (D.72).

First, the definitions (II.3)–(II.6) of the quantities appearing in the spin–orbit inter-
action (D.69) allows us to rewrite it as

vSO
12 = − i

4B(µ)(W −HPτ )V (r12, µ)
[
~r12 × ~∇12

]
· (~σ1 + ~σ2), (D.71)

where we have defined the relative gradient ~∇12 ≡ ~∇1 − ~∇2. Now, let us consider a
potential V (r12, µ) from which we can find a function G(r12, µ) satisfying

~∇12G(r12, µ) = V (r12, µ)~r12. (D.72)
In the particular case of a Gaussian potential, we have (up to some constant), 4

G(r12, µ) = −µ
2

4 e−(~r1−~r2)2/µ2
. (D.73)

The expression (D.71) then becomes

vSO
12 = − i

4B(µ)(W −HPτ )
[
~∇12G(r12, µ) × ~∇12

]
· (~σ1 + ~σ2). (D.74)

Let us now consider the spatial two-body matrix element of the above expression in some
basis, such as encountered in the document. By definition,

〈rarb|~∇12G(r12, µ) × ~∇12|rcrd〉 ≡
∫

d3r1

∫
d3r2 φ

∗
ra(~r1)φ∗rb(~r2)

×
(
~∇1 − ~∇2

)
G(r12, µ) ×

(
~∇1 − ~∇2

)
φrc(~r1)φrd(~r2).

(D.75)

The product rule provides
〈rarb|~∇12G(r12, µ) × ~∇12|rcrd〉 =∫

d3r1

∫
d3r2

[
φ∗rb(~r2)~∇1

(
φ∗ra(~r1)G(r12, µ)

)
− φ∗ra(~r1)~∇2

(
φ∗rb(~r2)G(r12, µ)

)]
×
(
~∇1 − ~∇2

)
φrc(~r1)φrd(~r2)

−
∫

d3r1

∫
d3r2

[
φ∗rb(~r2)G(r12, µ)~∇1φ

∗
ra(~r1)− φ∗ra(~r1)G(r12, µ)~∇2φ

∗
rb

(~r2)
]

×
(
~∇1 − ~∇2

)
φrc(~r1)φrd(~r2).

(D.76)

4. Watch out, ~∇12 6= ~∇r12 , where ~∇r12 denotes the derivative with respect to r12.
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From the first right-hand side term, we can extract the following quantity, that we trans-
form using the identity ~∇× (ϕ ~A) = ϕ~∇× ~A+ (~∇ϕ) × ~A, where ϕ and ~A are scalar and
vector fields respectively, and the fact that the curl of a gradient acting on a scalar field
is zero, i.e. ~∇× ~∇ϕ = 0,∫

d3r1

∫
d3r2 φ

∗
rb

(~r2)~∇1
(
φ∗ra(~r1)G(r12, µ)

)
× ~∇1φrc(~r1)φrd(~r2)

=
∫

d3r2 φ
∗
rb

(~r2)φrd(~r2)
∫

d3r1 ~∇1 ×
(
φ∗ra(~r1)G(r12, µ)~∇1φrc(~r1)

)
.

(D.77)

Stokes’ theorem allows to express the last volume integral as a surface integral, as∫
R3

d3r1 ~∇1 ×
(
φ∗ra(~r1)G(r12, µ)~∇1φrc(~r1)

)
=
∫
∂R3

d2r1 ·
(
φ∗ra(~r1)G(r12, µ)~∇1φrc(~r1)

)
.

(D.78)

The surface integral is zero provided that its integrand goes sufficiently rapidly to zero
when |~r1| → ∞ (with ~r2 fixed). This is the case considering the behavior of harmonic
oscillator wave functions and of the quantity G(r12, µ) at infinity. Note that the conclusion
is the same with the other three contributions coming from the first right-hand side term
of (D.76), so that this term is zero. As for the second right-hand side term, it can be
rewritten in such a way that

〈rarb|~∇12G(r12, µ) × ~∇12|rcrd〉 =

−
∫

d3r1

∫
d3r2 φ

∗
ra(~r1)φ∗rb(~r2)

(
~∇1 − ~∇2

)
G(r12, µ) ×

(
~∇1 − ~∇2

)
φrc(~r1)φrd(~r2)

≡ −〈rarb| ~∇12G(r12, µ) × ~∇12|rcrd〉.

(D.79)

Since this equality holds in any basis, the finite-range spin–orbit interaction (D.74) has
the equivalent writing

vSO
12 = i

4B(µ)(W −HPτ )
[
~∇12G(r12, µ) × ~∇12

]
· (~σ1 + ~σ2). (D.80)

Now that we have a finite-range spin–orbit term that looks like its zero-range counter-
part (D.70), we can identify them at the zero-range limit. We are then looking for the
expression of B(µ) so that the equality

lim
µ→0

i
4B(µ)W

[
~∇12G(r12, µ)×~∇12

]
·(~σ1+~σ2) = i

4W0
[
~∇12δ(~r1−~r2)×~∇12

]
·(~σ1+~σ2) (D.81)

is true. Note that we have set the parameter H = 0 at the zero-range limit since we know
the zero-range spin–orbit term of the original Gogny interaction to contribution only to
the (S = 1, T = 1) channel of the interaction. As we are only interested, at this point, in
the analytical form the finite-range spin–orbit term has to take and not in the particular
values of its parameters, we can also set W = W0. The equation above therefore reduces
to

lim
µ→0

B(µ)G(r12, µ) = δ(~r1 − ~r2). (D.82)

Integrating this equality and simplifying the left-hand side by means of an integration by
parts, we find that we must eventually have

lim
µ→0
−2π

3 B(µ)
∫ ∞

0
dr12 r

4
12V (r12, µ) = 1. (D.83)
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This is an equivalent writing of what Brink and Vautherin found out to recover the
expression of the zero-range spin–orbit force of the Skyrme interaction [106]. This is
reassuring, since the spin–orbit force is the same for both original Skyrme and Gogny
interactions. For a Gaussian potential V (r12) such as (II.2), the integration provides

B(µ) = − 4
µ2

1
(µ
√
π)3 . (D.84)

It is therefore this expression of the coefficient B(µ) that we consider in the finite-range
spin–orbit term of the generalized Gogny interaction (II.1). We know this coefficient to
be correct as we have recovered, using it, both the exact zero-range spherical spin–orbit
matrix elements and axial spin–orbit fields of Appendices B and C, at the zero-range
limit.

5.2. Equivalent forms of the spin–orbit operator

In this subsection, we want to show that the spin–orbit operator ~L · ~S is strictly
equivalent to the following forms involving tensors of rank 1,

~L · ~S = − 1
2
√

2
[~r12 ⊗ ~∇12](1) · [~σ1 + ~σ2](1), (D.85)

and

~L · ~S =
√

3
2
[
[~r12 ⊗ ~∇12](1) ⊗ [~σ1 + ~σ2](1)

](0)
. (D.86)

Indeed, using the definitions (II.3)–(II.5) of the ~L, ~S and ~p12 operators, we obtain

~L · ~S = − i
4(~r12 × ~∇12) · (~σ1 + ~σ2), (D.87)

where we recall that the symbol × refers to the cross product between two vectors. Those
two vectors can equivalently be seen as tensors of rank 1. Accordingly, we can define their
tensor product, symbolized by ⊗, from their cross product according to

[~r12 ⊗ ~∇12](1) = i√
2
~r12 × ~∇12, (D.88)

where the notation [](1) states that we are dealing with a tensor of rank 1. This formula
can easily be demonstrated by expliciting, for example, the components of each of the
quantities in the spherical basis, and showing that they are all equal. As for the quantity
(~σ1 + ~σ2), it is a vector, and then also a tensor of rank 1 that we denote as [~σ1 + ~σ2](1)

from now on. Then, combining the two last identities, we end up with the first equivalent
form of the spin–orbit operator (D.85).

Now, starting from the first equivalent form and following the procedure that led
to (D.66) for the tensor operator, i.e. using the coupling procedure between irreducible
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tensors and some properties of the Clebsch–Gordan coefficients, we end up with

~L · ~S = − 1√
2
∑
µ

(−)µ[~r12 ⊗ ~∇12](1)
µ [~σ1 + ~σ2](1)

−µ

= − 1√
2
∑
µ

(−)µ
∑
λ′µ′
〈1µ1− µ|λ′µ′〉

[
[~r12 ⊗ ~∇12](1) ⊗ [~σ1 + ~σ2](1)

](λ′)
µ′

= − 1√
2
∑
λ′

∑
µ

(−)µ〈1µ1− µ|λ′0〉︸ ︷︷ ︸
−
√

3δλ′,0

[
[~r12 ⊗ ~∇12](1) ⊗ [~σ1 + ~σ2](1)

](λ′)
0

=
√

3
2
[
[~r12 ⊗ ~∇12](1) ⊗ [~σ1 + ~σ2](1)

](0)
, (D.89)

which is the second equivalent form of the spin–orbit operator (D.86) we wanted to reach.

6. Commutation relations

When constructing the two-body nuclear interaction (see subsection I.1.2), we learnt
that the different terms involved in the generalized Gogny interaction (II.1) commute with
the total angular momentum ~J ≡ ~L+ ~S. This means that the interaction is a scalar in the
(coordinate plus spin) space, i.e. it is invariant under a full rotation, in both coordinate
and spin spaces. In this section, we examine whether those terms are also invariant under
separate rotations in coordinate and spin spaces, i.e. if they commute with the angular ~L
and intrinsic ~S momenta.

6.1. Central and density-dependent interactions

By definition, a central term is invariant under any rotation in the coordinate space.
This is confirmed by the obvious commutation relations [Pσ, ~L] = [Pτ , ~L] = 0. Since the
central terms also commute with the total momentum ~J = ~L + ~S, they then commute
with the intrinsic momentum ~S, i.e. they are invariant under any rotation in the spin
space. Alternatively, we show that [Pσ, ~S] = [Pτ , ~S] = 0 since Pσ = ~S2 − 1.

The functional of the density (A.36) does not change these relations so that they
remain true for the density-dependent interaction.

6.2. Tensor interaction

By definition, the tensor force is a non-central interaction. It is therefore expected not
to commute with the angular momentum ~L. Let us show it explicitly with the equivalent
form (D.58) of the tensor operator. We are particularly interested in proving it for the
component Lz since the quantization axis is chosen to be Oz (and then the conservation
laws of the quantum numbers associated with the spin projections are written on this
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axis). For the component Lz, we find out

[S12, Lz] = 2[(~S · r̂12)(~S · r̂12), Lz]

= 2
(

(~S · r̂12)[~S · r̂12, Lz] + [~S · r̂12, Lz] (~S · r̂12)
)

= 4(~S · r̂12)[~S · r̂12, Lz]
= 4(~S · r̂12)

∑
i

Si[r̂12i, Lz]

= 4i~(~S · r̂12)
∑
ij

εizjSir̂12j

= −4i~(~S · r̂12)(~S × r̂12)z 6= 0, (D.90)

where we have benefited from the usual canonical commutation relations, leading to the z
component (~S × r̂12)z, which has been expressed in terms of the Levi-Civita symbol εizj.
Note that from the second to the third line, we have pretended that the operator ~S · r̂12
commutes with [~S · r̂12, Lz] (or with (~S × r̂12)z, according to what we have just shown).
As this is not trivial, let us show it explicitly,

[(~S · r̂12), (~S × r̂12)z] =
∑
ijk

εzij[Skr̂12k, Sir̂12j]

=
∑
ijk

εzij[Sk, Si] r̂12j r̂12k

= i~
∑
ijkl

εzjiεkliSlr̂12j r̂12k

= i~
∑
jkl

(
Slr̂12j r̂12kδzkδjl − Slr̂12j r̂12kδzlδjk

)
= i~

∑
j

[Sj, r̂12z] r̂12j = 0. (D.91)

We obtain analogous results for the other components Lx and Ly. It appears that the
tensor interaction does not commute with ~L, i.e. it is not invariant under a rotation
in the coordinate space. As it commutes, however, with the total angular momentum
~J = ~L + ~S, we must have [S12, ~S] = −[S12, ~L], in such a way that the tensor interaction
does not commute with the intrinsic momentum ~S either, i.e. it is not invariant under a
rotation in the spin space. Let us check this out; in particular for the component Sz, for
the same reason given above. Following the same steps, we get

[S12, Sz] = 4(~S · r̂12)
∑
i

[Si, Sz] r̂12i

= 4i~(~S · r̂12)
∑
ij

εizjSj r̂12i

= 4i~(~S · r̂12)(~S × r̂12)z 6= 0, (D.92)

where we have used (D.91) again, as (~S × r̂12)z = i~[~S · r̂12, Lz], and the usual canonical
commutation relations. We then consistently get [S12, Sz] = −[S12, Lz], and analogous
relations for the other components Sx and Sy.

6.3. Spin–orbit interaction
The spin–orbit interaction being a non-central force as well, the conclusions are the

same as for the tensor interaction. It does not commute with either ~L or ~S, i.e. it is
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not invariant under separate rotations in coordinate and spin spaces. Formally, for the
component Lz, we find out

[~L · ~S, Lz] =
∑
i

[LiSi, Lz]

= i~
∑
ij

εizjLjSi

= i~(~L× ~S)z 6= 0, (D.93)

where we have used the same relations as in the previous subsection. We obtain analogous
results for the other components Lx and Ly. For the component Sz, we get

[~L · ~S, Sz] =
∑
i

[LiSi, Sz]

= i~
∑
ij

εizjLiSj

= −i~(~L× ~S)z 6= 0, (D.94)

where we have used the same relations as in the previous subsection again. We then con-
sistently get [~L · ~S, Sz] = −[~L · ~S, Lz], and analogous relations for the other components
Sx and Sy.

7. Mathematical stuff
In this section, we give some definitions and properties of the functions, polynomials,

series expansions and integrals used in the calculations. Our aim is to facilitate the
reader’s task of verifying the analytical developments by providing only the material used
in this thesis, with the chosen conventions. The equations are mainly extracted from
[240, 241].

7.1. Functions, polynomials and series expansions
The Heaviside step function is defined as

Θ(x) ≡

1 if x ≥ 0,
0 if x < 0.

(D.95)

The error function is defined, for x ∈ R, as

erf(x) ≡ 2√
π

∫ x

0
dt e−t2 . (D.96)

The series expansion of the error function, for x ∈ C, is

erf(x) = 2√
π

∞∑
n=0

(−)nx2n+1

(2n+ 1)n! . (D.97)

The series expansion of the Hermite polynomial, for x ∈ R, reads

Hn(x) = n!
bn/2c∑
i=0

(−)i(2x)n−2i

i!(n− 2i)! , with n ∈ N, (D.98)
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where bc denotes the floor function.
The Hermite polynomials verify the recurrence relations

Hn+1(x) = 2xHn(x)− 2nHn−1(x), (D.99a)
H ′n(x) = 2nHn−1(x), (D.99b)
H ′′n(x) = 2xH ′n(x)− 2nHn(x), (D.99c)

where the prime stands for the derivative operation.
The series expansion of the generalized Laguerre polynomial, for x ∈ R, is given by

Lαn(x) = Γ(n+ α + 1)
n∑
i=0

(−)ixi
i!(n− i)!Γ(i+ α + 1) , with n ∈ N and α ∈ R, (D.100)

where Γ is the so-called gamma function, defined, for x ∈ R, as

Γ(x) ≡
∫ ∞

0
dt tx−1e−x. (D.101)

The generalized Laguerre polynomials verify the recurrence relations

Lαn(x) = Lα+1
n (x)− Lα+1

n−1(x), (D.102a)
xLα+1

n (x) = (n+ α + 1)Lαn(x)− (n+ 1)Lαn+1(x), (D.102b)
nLαn(x) = (2n+ α− x− 1)Lαn−1(x)− (n+ α− 1)Lαn−2(x), (D.102c)
Lα ′n (x) = −Lα+1

n−1(x), (D.102d)
xLα ′n (x) = nLαn(x)− (n+ α)Lαn−1(x), (D.102e)
xLα ′′n (x) = (x− α− 1)Lα ′n (x)− nLαn(x). (D.102f)

The generalized Laguerre polynomials are related to the confluent hypergeometric function
by the formula

Lαn(x) = Γ(n+ α + 1)
Γ(α + 1)n! 1F1(−n;α + 1;x), (D.103)

where the confluent hypergeometric function is a generalized hypergeometric series given
by

1F1(a; b;x) =
∞∑
n=0

a(n)xn

b(n)n! , (D.104)

where a(n) ≡ a(a+ 1) . . . (a+ n− 1) denotes the rising factorial.
One series expansion of the Legendre polynomial, for −1 ≤ x ≤ 1, is given by

Pl(x) =
l∑

i=0

(l + i)!
(i!)2(l − i)!

(
x− 1

2

)i
, with l ∈ N. (D.105)

Another one, given in terms of the spherical harmonics (B.204), reads

Pl(cos ξ) = 4π
2l + 1

l∑
m=−l

Y m∗
l (θ, ϕ)Y m

l (θ′, ϕ′), (D.106)

where ξ is the angle between the directions (θ, ϕ) and (θ′, ϕ′).
The Legendre polynomials verify the orthogonality relation∫ 1

−1
dxPl(x)P ′l (x) = 2

2l + 1δll
′ , (D.107)
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as well as the recurrence relation

(l + 1)Pl+1(x) = (2l + 1)xPl(x)− lPl−1(x). (D.108)

The completeness of the Legendre polynomials implies that any continuous function f on
the interval [−1, 1] can be expanded in Legendre polynomials according to

f(x) =
∞∑
l=0

alPl(x), (D.109)

provided that the coefficients of the expansion are given by

al ≡
2l + 1

2

∫ 1

−1
dx f(x)Pl(x). (D.110)

The series expansion of the Bessel function of the first kind, for x ∈ C, is given by

Jα(x) =
∞∑
m=0

(−)m
m!Γ(m+ α + 1)

(
x

2

)2m+α
, with α ∈ Z/2. (D.111)

When the argument is purely imaginary, we have in particular

Jα(ix) = iα
∞∑
m=0

1
m!Γ(m+ α + 1)

(
x

2

)2m+α
, with α ∈ Z/2. (D.112)

The spherical Bessel function of the first kind is defined in terms of the Bessel function
of the first kind, for x ∈ C, as

jn(x) ≡
√
π

2xJn+1/2(x), with n ∈ Z. (D.113)

When the argument is purely imaginary, we have in particular

jn(ix) = in
√
π

2

∞∑
m=0

1
m!Γ(m+ n+ 3/2)

(
x

2

)2m+n
, with n ∈ Z. (D.114)

We provide the expressions of the first spherical Bessel functions of the first kind, for
x ∈ R, which appear in the developments,

j0(x) = sin x
x

, (D.115a)

j1(x) = sin x
x2 −

cosx
x

, (D.115b)

j2(x) =
(

3
x2 − 1

)
sin x
x
− 3 cosx

x2 . (D.115c)

The plane wave expansion of the exponential function in terms of Legendre polynomials
reads

ei~k·~r =
∞∑
l=0

(2l + 1)iljl(kr)Pl(cos θ), (D.116)

where jl(kr) is the l-th spherical Bessel function of the first kind defined above, and
cos θ ≡ k̂ · r̂ the direction between the vectors ~k and ~r.
By means of (D.106), we can similarly expand the exponential functions in spherical
harmonics (B.204) according to

ei~k·~r = 4π
∞∑
l=0

l∑
m=−l

iljl(kr)Y m∗
l (r̂)Y m

l (k̂). (D.117)
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7.2. Integrals
The Gauss integral in N dimensions reads∫ +∞

−∞
dNx e−αx2 =

(
π

α

)N/2
, with α ∈ R∗. (D.118)

From the definition of the gamma function (D.101), we can show the following relation∫ ∞
0

dx xne−αxβ = Γ[(n+ 1)/β]
βα(n+1)/β , with n ∈ N and α, β ∈ R∗. (D.119)

We can take advantage of this result to evaluate the following integral, for α ∈ R∗ and
β = 2, according to the parity of the exponent n ∈ N,

∫ +∞

−∞
dx xne−αx2 =


Γ[(n+1)/2]
α(n+1)/2 =

√
π

α(n+1)/2
(2n)!
4nn! if n is even,

0 if n is odd.
(D.120)

By induction, using successive integrations by parts, we can show that
∫

dx xn sin x = cosx
bn/2c∑
k=0

(−)k+1 n!
(n− 2k)!x

n−2k

+ sin x
b(n−1)/2c∑

k=0
(−)k n!

(n− 2k − 1)!x
n−2k−1, with n ∈ N,

(D.121)

where we have omitted the constant of integration, for conciseness.
When dealing with infinite nuclear matter, a double integral of the following form has to
be calculated (see equation (A.46)),

I ≡
∫

d3k1

∫
d3k2 e−(~k1−~k2)2µ2/4, (D.122)

where the magnitude of the momentum ~k1 goes from 0 to kt1F , and from 0 to kt2F for the
momentum ~k2. We choose the spherical coordinates in such a way that ~k1 and ~k2 are
related by a rotation of polar angle θ, and have the same azimuthal angle ϕ. This allows
us to write (~k1 − ~k2)2 = k2

1 + k2
2 − 2k1k2 cos θ. Setting the change of variables ~x = µ~k1/2

and ~y = µ~k2/2, the integral becomes

I =
(

2
µ

)6 ∫
d3x

∫
d3y e−(~x−~y)2

, (D.123)

where the magnitude of the vector ~x goes from 0 to L1 ≡ µkt1F /2, and from 0 to L2 ≡ µkt2F /2
for ~y. We can now evaluate the integral according to

I = 2π
(

2
µ

)6 ∫
d3x

∫ L2

0
dy y2e−x2−y2

∫ π

0
dθ sin θ e2xy cos θ

= 4π2
(

2
µ

)6 ∫ L1

0
dx x

∫ L2

0
dy y

[
e−(x−y)2 − e−(x+y)2] (D.124)

Noticing that
−
∫ L1

0
dx x e−(x+y)2 =

∫ 0

−L1
dx x e−(x+y)2

, (D.125)
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we can rewrite our integral as

I = 4π2
(

2
µ

)6 ∫ L1

−L1
dx xJ(x), (D.126)

where we have defined the integral

J(x) ≡
∫ L2

0
dy y e−(x−y)2

, (D.127)

that we are now going to evaluate. We get

J(x) =
∫ L2

0
dy (y − x+ x) e−(y−x)2

= 1
2

(
e−x2 − e−(L2−x)2

)
+ x

(
E(x) + E(L2 − x)

)
, (D.128)

where we have defined the function

E(x) ≡
√
π

2 erf(x) =
∫ x

0
dt e−t2 , (D.129)

in order to avoid carrying the factor 2/
√
π of the error function (D.96). Thus, our integral

can be rewritten

I = 4π2
(

2
µ

)6(1
2J1 + J2

)
, (D.130)

with the integrals

J1 ≡ −
∫ L1

−L1
dx x e−(L2−x)2

, (D.131a)

J2 ≡
∫ L1

−L1
dx x2 E(L2 − x), (D.131b)

where the odd functions cancel out when integrated over this symmetric interval. On the
one hand, we obtain

J1 = −
∫ L1−L2

−L1−L2
dx (x+ L2) e−x2

= 1
2

(
e−(L1−L2)2 − e(L1+L2)2

)
− L2

(
E(L1 − L2) + E(L1 + L2)

)
. (D.132)

On the other hand, we find out

J2 = −
∫ L1−L2

−L1−L2
dx (x+ L2)2 E(x)

= L3
1

3 E(L1 + L2)− L3
1

3 E(L1 − L2) + 1
3J3, (D.133)

using an integration by parts and defining

J3 ≡
∫ L1−L2

−L1−L2
dx (x3 + 3x2L2 + 3xL2

2 + L3
2)e−x2

. (D.134)

Let us evaluate this last integral by defining another integral, namely

Kn ≡
∫ L1−L2

−L1−L2
dx xne−x2

, with n ∈ N. (D.135)

416



An integration by parts provides

Kn = n− 1
2 Kn−2 + 1

2
[
(−L1 − L2)n−1 e−(L1+L2)2 − (L1 − L2)n−1 e−(L1−L2)2]

. (D.136)

Since the maximum value we encounter is n = 3, we only need to evaluate the integral
Kn in the particular cases n = 0 and n = 1. We straightforwardly get

K0 = E(L1 − L2) + E(L1 + L2), (D.137a)

K1 = 1
2
[
e−(L1+L2)2 − e−(L1−L2)2]

. (D.137b)

The integral (D.134) then reads

J3 = K3 + 3L2K2 + 3L2
2K1 + L3

2K0

= e−(L1+L2)2
(1

2 + 3
2L

2
2 −

3
2L2(L1 + L2) + 1

2(L1 + L2)2
)

− e−(L1−L2)2
(1

2 + 3
2L

2
2 + 3

2L2(L1 − L2) + 1
2(L1 − L2)2

)
+
(3

2L2 + L3
2

)(
E(L1 + L2) + E(L1 − L2)

)
,

(D.138)

so that the integral (D.133) reduces to

J2 = 1
3e−(L1+L2)2

(1
2 + L2

1
2 + L2

2
2 −

L1L2

2

)
− 1

3e−(L1−L2)2
(1

2 + L2
1

2 + L2
2

2 + L1L2

2

)
+ E(L1 + L2)

(
L3

1
3 + L3

2
2 + L2

2

)
+ E(L1 − L2)

(
− L3

1
3 + L3

2
2 + L2

2

)
.

(D.139)

Gathering all those results in (D.130), we find

I =
(

2
µ

)6
π2

3

{
e−(L1+L2)2[2(L2

1 + L2
2 − L1L2)− 1

]
− e−(L1−L2)2[2(L2

1 + L2
2 + L1L2)− 1

]
+ 4E(L1 + L2)(L3

1 + L3
2)

− 4E(L1 − L2)(L3
1 − L3

2)
}
,

(D.140)

and finally, by setting, Xti ≡ µktiF = 2Li for i ∈ {1, 2} and using (D.129), we get the
following expression for the integral (D.122),

I(Xt1 , Xt2) =
(

2
µ

)6
π2

6 Q(Xt1 , Xt2), (D.141)

where

Q(Xt1 , Xt2) ≡ e−
(
Xt1 +Xt2

2

)2(
X2
t1 +X2

t2 −Xt1Xt2 − 2
)

− e−
(
Xt1−Xt2

2

)2(
X2
t1 +X2

t2 +Xt1Xt2 − 2
)

+
√
π

2 erf
(
Xt1 +Xt2

2

)
(X3

t1 +X3
t2)

−
√
π

2 erf
(
Xt1 −Xt2

2

)
(X3

t1 −X
3
t2).

(D.142)
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