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This thesis aims at studying biological methanation to find the optimal conditions to produce high purity biomethane as a value-added product. The objective is addressed from a modeling point of view, based on the use of model-based control strategies and data-driven soft sensors. A bibliography synthesis was carried out to set the theoretical framework that includes dynamic models, control strategies, and monitoring tools applied to biological methanation. An extension of the Anaerobic Digestion Model

No.1 (ADM1_ME) was proposed to describe the dynamics of the biological methanation process with the use of syngas (H2, CO2, and CO) as substrate. The variation of the volumetric mass transfer coefficient is considered as a function of two types of reactors, a bubble column reactor (𝐵𝐶𝑅) and a Continuous Stirred Tank Reactor (𝐶𝑆𝑇𝑅). The ADM1_ME was accurately calibrated and validated in different operating conditions using experimental data from the literature. A Multi-Objective Dynamic Optimization (MODO) strategy was proposed to optimize the biological methanation performance. The MODO strategy was designed to consider three different objective functions to maximize: (i) yield (𝑌 ) and productivity (𝑃 ) of methane, (ii) 𝑌 and 𝑃 simultaneously complemented by a switch to maximize acetate yields (𝑌 ) and productivities (𝑃 ), and (iii) economic optimality in terms of (𝐺𝑎𝑖𝑛) and (𝑃𝑟𝑜𝑓𝑖𝑡 𝑚𝑎𝑟𝑔𝑖𝑛). The results demonstrated the feasibility of the MODO strategy and its robustness to switch between products of interest and the key role of the manipulated variables (i.e., inlet liquid and gas flow rates) in the biological methanation process. Furthermore, data-driven soft sensors were applied to detect deviations from the optimal operation points when disturbances occurred in the manipulated variables. Specifically, Support Vector Machine (SVM) showed promising results and a potential application by using 2D visualizations constructed by pair of features.

Résumé

Cette thèse vise à étudier la méthanation biologique afin de trouver les conditions optimales pour produire du biométhane de haute pureté en tant que produit à valeur ajoutée. L'objectif est abordé du point de vue de la modélisation, en se basant sur l'utilisation de stratégies de commande basées sur des modèles et de capteurs souples pilotés par des données. Une synthèse bibliographique a été réalisée pour établir le cadre théorique comprenant les modèles dynamiques, les stratégies de commande et les outils de surveillance utilisés pour la méthanation biologique. Une extension du modèle de digestion anaérobie N°1 (ADM1_ME en anglais) a été proposée pour décrire la dynamique du processus de méthanation biologique avec l'utilisation de gaz de synthèse (H2, CO2 et CO) comme substrat. La variation du coefficient de transfert de matière volumétrique est considérée en fonction de deux types de réacteurs, un réacteur à colonne à bulles et un réacteur à réservoir agité continu. L'ADM1_ME a été calibré avec précision et validé dans différentes conditions de fonctionnement en utilisant des données expérimentales tirées de la littérature. Une stratégie d'optimisation dynamique multiobjectifs (MODO en anglais) a été proposée pour optimiser les performances de la méthanation biologique. La stratégie MODO a été conçue pour prendre en compte trois fonctions objectives différentes afin de maximiser : (i) le rendement (𝑌 ) et la productivité (𝑃 ) du méthane, (ii) maximiser 𝑌 et 𝑃 simultanément, complété par un commutateur pour maximiser les rendements (𝑌 ) et les productivités (𝑃 ) de l'acétate, et (iii) l'optimalité économique en termes de (𝐺𝑎𝑖𝑛) et (𝑃𝑟𝑜𝑓𝑖𝑡 𝑚𝑎𝑟𝑔𝑖𝑛). Les résultats ont démontré la faisabilité de la stratégie MODO et sa robustesse pour passer d'un produit à l'autre, ainsi que le rôle clé des variables manipulées (c'est-à-dire les débits d'entrée du liquide et du gaz) sur le processus de méthanation biologique. En outre, des capteurs souples pilotés par les données ont été appliqués pour détecter les écarts par rapport aux points de fonctionnement optimaux lorsque des perturbations se produisent dans les variables manipulées. En particulier, la machine à vecteur de support (SVM en anglais) a montré des résultats prometteurs et une application potentielle en utilisant des visualisations en 2D construites par paire de prédicteurs.

Mots clefs : Méthanation biologique, Modèle dynamique, Optimisation Muti-Objective, (Economique) commande prédictive basée modèle, Apprentissage automatique, Capteurs souples, Détection des défauts "All models are approximations. Essentially, all models are wrong, but some are useful. However, the approximate nature of the model must always be borne in mind"

George Edward Pelham Box
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Figure 1.1.5. Acetyl-CoA Pathway. The reductive pathways comprise two branches (methyl and carbonyl) through which the methyl and carboxyl groups of acetate are synthesized, respectively. Adapted from [START_REF] Saady | Homoacetogenesis during hydrogen production by mixed cultures dark fermentation: Unresolved challenge[END_REF][START_REF] Westerholm | Biogas production through syntrophic acetate oxidation and deliberate operating strategies for improved digester performance[END_REF] List of Tables Table 1. [START_REF] Angelidaki | A comprehensive model of anaerobic bioconversion of complex substrates to biogas[END_REF]Ashraf et al., 2020;[START_REF] Liu | Function of homoacetogenesis on the heterotrophic methane production with exogenous H2/CO2 involved[END_REF]Pan et al., 2021;Sun et al., 2021) [START_REF] Angelidaki | A comprehensive model of anaerobic bioconversion of complex substrates to biogas[END_REF]Ashraf et al., 2020;[START_REF] Liu | Function of homoacetogenesis on the heterotrophic methane production with exogenous H2/CO2 involved[END_REF]Pan et al., 2021;Rafrafi et al., 2020;Sun et al., 2021) The depletion of non-renewable fossil-derived fuels associated with the increased energy demand and the environmental problems related to fossil energy (Brémond et al., 2021;Li et al., 2018), encourage the "green" transition towards the use of renewable energies (Dar et al., 2021;Hupfauf et al., 2020). The European Union (EU) presented a long-term strategy that aims climate neutrality by 2050, where the use of renewable energies is expected to increase by at least 32% by 2030 (EC-European Commission, 2018).

Biogas produced through Anaerobic Digestion (AD) is considered one of the most promising renewable energy sources [START_REF] Calise | A Review of the State of the Art of Biomethane Production: Recent Advancements and Integration of Renewable Energies[END_REF]Li et al., 2018). However, this biogas presents a low caloric value with 50-75% CH4 and 25-50% CO2 (Hupfauf et al., 2020;[START_REF] Mulat | Exogenous addition of H 2 for an in situ biogas upgrading through biological reduction of carbon dioxide into methane[END_REF].

Biological methanation has recently gained attention [START_REF] Angelidaki | Biogas upgrading and utilization: Current status and perspectives[END_REF]Bensmann et al., 2014;[START_REF] Dumas | Editorial: Biological Methanation or (Bio/Syn)-Gas Upgrading[END_REF]Voelklein et al., 2019) because it is a promising technology to upgrade biogas by adding syngas (Rafrafi et al., 2020). The aim to perform biological methanation is to use the CO2 contained in biogas as a carbon source that combined with H2 can produce CH4 and thus increase the CH4 content between 95 and 99% (Iglesias et al., 2021;Rusmanis et al., 2019).

In this regard, it can cope with gas impurities (biogas may contain H2S), CH4 purity is increased (higher energetic power for a purer CH4), and the CO2 from biogas can be valorized (avoiding CO2 emissions). The biomethane essential advantages are: once purified, it is used as a natural gas grid, energy storage, vehicle fuel (Luo and Angelidaki, 2012), and its use for generating electricity (Hupfauf et al., 2020). This work focuses on studying biological methanation from a process simulation perspective. In this context, this thesis aims to develop a model for biological methanation (biomethanation) that can be used to optimize process operation, especially for producing value-added products such as methane and acetate. This The contributions of this thesis include the formulation of a dynamic model for biological methanation capable to describe accurately the dynamics of biological methanation at different conditions. The advantage of the model over other models proposed in the literature was the generalization of the operational conditions. This model considers the volumetric mass transfer coefficient for two different reactor configurations: a bubble column reactor ( 𝐵𝐶𝑅 ), transforming glucose, and a continuous stirred tank reactor (𝐶𝑆𝑇𝑅), using primary sludge and activated tickeddisintegrated waste. The model also considers the biological transformation of CO into acetate and H2 by carboxydrotrophic acetogens and carboxydrotrophic hydrogenogens and the uptake of CO2.

The biological methanation process was optimized using control schemes such as Multi-Objective Model Predictive Control, which simultaneously maximizes several variables of interest using Pareto Optimal solutions.

General Introduction

Another contribution of this thesis is the use of machine learning soft sensors oriented for fault detection in the biomethanation process, which has helped to detect disturbances in the manipulated variables. This Ph.D. thesis is organized as follows. The first chapter presents the bibliography study and sets the theoretical framework for the biological methanation process. This first chapter is reported in four sections. The first and second sections provide insights into the anaerobic digestion and biological methanation processes and the different models used in the literature to represent those processes. The third section reviews some of the model-based control approaches and optimization tools that will be used in this work. The fourth section describes data-driven soft sensors, especially machine learning soft sensors, whose application is monitoring and process fault detection.

The second chapter is divided into seven sections presenting the main results. The first section is an introduction that summarizes and links the six following sections, which are presented as an article type. The second section details the formulation of the biological methanation model. The third, fourth, and fifth sections show different case studies showing model predictive control (MPC) and multi-objective optimization applications for biomethanation. The third section focuses on the maximization of yield (𝑌 ) and productivity (𝑃 ) of methane. The fourth section describes the simultaneous maximization of (𝑌 , 𝑃 ) which is complemented by a switch for the maximization of yields (𝑌 ) and productivities (𝑃 ) of acetate. The fifth section accomplishes the Economic Multi-Objective Dynamic Optimization (EMODO) for the maximization of economic variables, (𝐺𝑎𝑖𝑛) and (𝑃𝑟𝑜𝑓𝑖𝑡 𝑚𝑎𝑟𝑔𝑖𝑛). The Sixth and Seventh sections exhibit the application of machine learning soft sensors for fault detection in the biological methanation process. The Sixth section presents the training of several machine learning algorithms to check their ability to detect deviations from the optimal operation when there are disturbances in the liquid and gas flow rates.

Section seventh shows the use of Support Vector Machines (SVM) in fault detection with an emphasis on training pairs of features to build 2D visualization diagrams.

Finally, chapter three draws the conclusions and sets the perspectives of this Ph.D. thesis based on the obtained results, making particular emphasis on a digital twin perspective. Anaerobic Digestion (AD) for biogas production has been used since the ancient ages. There is evidence of its implementation in ancient China [START_REF] Bond | History and future of domestic biogas plants in the developing world[END_REF] and the use of biogas to heat bath water in Assyria and Persia in the 10 th century B.C. [START_REF] Meegoda | A Review of the Processes, Parameters, and Optimization of Anaerobic Digestion[END_REF].

Significant developments in the use of AD date back to the 19 th century. In 1808 Humpy Davy demonstrated that it was possible to produce methane from the AD of cattle manure [START_REF] Lusk | Methane Recovery from Animal Manures The Current Opportunities Casebook[END_REF]. In 1859, India built the first AD plant to treat sewage. Later, in 1895, England built an anaerobic digestion plant prototype to recover biogas for light street lamps [START_REF] Lusk | Methane Recovery from Animal Manures The Current Opportunities Casebook[END_REF][START_REF] Meegoda | A Review of the Processes, Parameters, and Optimization of Anaerobic Digestion[END_REF]. In the same century, China (1921) and Germany (1920) initiated the construction of large-scale digesters [START_REF] He | Anaerobic digestion: An intriguing long history in China[END_REF]. During the late 19 th and early 20 th century, AD became a more developed technology. However, it was not until the middle of the 20 th century that many countries became aware of the need to manage their waste, given the scarcity of landfills and the pollution effects on human health associated with fossil fuels [START_REF] Klinkner | Anaerobic Digestion as a Renewable Energy Source and Waste Management Technology: What Must be Done for This Technology to Realize Success in the United States? University of Massachusetts Law Revie[END_REF].

The attractiveness of biogas comes from its high content of methane (~60%), which has interesting properties (see Table 1.1.1) and an extensive list of possible uses: in natural gas grids, vehicle fuels, to generate electricity and heat, and chemical feedstock (Dar et al., 2021;Hupfauf et al., 2020;Rafrafi et al., 2020). In the last 20 years, research on AD and biogas has increased considerably, especially in fields such as environmental, energy chemical engineering, and agricultural sciences. 

Anaerobic Digestion

AD is a complex biological process in which organic matter is anaerobically degraded synergistically into a mixture of methane (CH4), carbon dioxide (CO2), and other gases in a minor way by microbial consortia of fermenting bacteria, anaerobic oxidizing bacteria, and methanogenic archaea [START_REF] Angelidaki | A comprehensive model of anaerobic bioconversion of complex substrates to biogas[END_REF]. AD involves biological transformations, physicochemical processes, and mass transfer between phases [START_REF] Merkel | Mass transfer of carbon dioxide in anaerobic reactors under dynamic substrate loading conditions[END_REF]. Physicochemical processes are represented by components such as anions and cations or ionized forms of the compounds generated and consumed through AD, which is why multiple studies have focused on the analysis and variation of pH within this 2 0 0 0 2 0 0 1 2 0 0 2 2 0 0 3 2 0 0 4 2 0 0 5 2 0 0 6 2 0 0 7 2 0 0 8 2 0 0 9 2 0 1 0
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Section 1. Anaerobic Digestion & Biological Methanation 39 type of system [START_REF] Bashir | Physicochemical, thermal and functional properties of gamma irradiated chickpea starch[END_REF][START_REF] Begum | Process intensification with inline pre and post processing mechanism for valorization of poultry litter through high rate biomethanation technology: A full scale experience[END_REF]Chandra et al., 2012;Czatzkowska et al., 2020;Krishania et al., 2013). Biological degradation process is the fundament of CH4 production through AD in the liquid phase. Concerning mass transfer, compounds such as CH4, H2, and CO2 are produced in the liquid phase and then released into the gas phase through a concentration driving force or gradient between the two phases. Overall anaerobic digestion process. Adapted from [START_REF] Schön | Numerical Modelling of Anaerobic Digestion Processes in Agricultural Biogas Plants Dissertation[END_REF].

Figure 1.1.2 presents the interaction of the three processes, the biological component through AD, and its stages: hydrolysis, acidogenesis, acetogenesis, and methanogenesis. The interaction of components such as acetate, propionate, butyrate, and bicarbonate with their anions and cations obeys the physicochemical principles. Finally, mass transfer between the liquid and gas phases is graphically represented as the formation of bubbles in the liquid phase. In practice, both nucleation and mass transfer through an interphase are involved.

Anaerobic Digestion Process Stages

AD is divided into four stages associated with the degradation and conversion of organic biomass: hydrolysis, acidogenesis, acetogenesis, and methanogenesis (Chandra et al., 2012;[START_REF] Ferry | Fundamentals of methanogenic pathways that are key to the biomethanation of complex biomass[END_REF]Henze et al., 2019;[START_REF] Mao | Review on research achievements of biogas from anaerobic digestion[END_REF][START_REF] Roopnarain | Current status, hurdles and future prospects of biogas digestion technology in Africa[END_REF]Saha et al., Section 1. Anaerobic Digestion & Biological Methanation 40 2020). This biogas produced in the AD contains between 50 -75% of CH4, 25 -50 % of CO2, and 2-7% of water vapor (Iglesias et al., 2021;Laguillaumie et al., 2022;[START_REF] Zupančič | Dynamic Modeling of Biological Methanation for Different Reactor Configurations: An Extension of the Anaerobic Digestion Model[END_REF]. 1. Hydrolytic and fermentative bacteria, 2. Acetogenic bacteria, 3. Hydrogenotrophic methanogens, 4. Acetoclastic methanogens. Adapted from (Batstone et al., 2002;Henze et al., 2019).

Hydrolysis

The first step of the AD process is hydrolysis, in which the organic matter, carbohydrates, proteins, and fats (complex undissolved compounds or polymeric organic compounds) are depolymerized into monomers or oligomers, sugars, glycerol, amino acids, long-chain fatty acids (LCFA) (less complex dissolved compounds).

This process generally takes place on the surface of acidogenic bacteria as it involves exoenzymes excreted by hydrolytic bacteria, such as Clostridia, Bacteroides, Fusobacterium, Butyrivibrio, Micrococci, Streptococcus and Selenomonas (Chandra et al., 2012;Czatzkowska et al., 2020). In most cases, this stage is the rate-limiting step of the overall digestion process because the accessibility of enzymes reacting site is limited by the complex structure of substrate particles (Henze et al., 2019).

Acidogenesis

The second step is acidogenesis; throughout this stage, the dissolved monomers or oligomers, amino acids, LCFA, and the components produced in the hydrolysis step undergo a degradation reaction. These components are assimilated into the acidogenic bacteria through the cell membrane and later fermented or anaerobically oxidized (Henze et al., 2019) to produce volatile fatty acids (𝑉𝐹𝐴), such as propionate, butyrate, valerate, and in minor form amounts of lactic, formic, and carbonic acid, alcohols, carbon dioxide, hydrogen, ammonia, as well as new cell material. This step is carried out by the action of bacteria of the genera Bacillus sp., Pseudomonas sp., Clostridium sp., and Bifidobacterium sp. (Czatzkowska et al., 2020;Dar et al., 2021).

The monosaccharides and the amino acids are the most abundant substrates for fermentation.

Monosaccharides enter either the Emben-Meyerhof-Parnas (EMP) or the Entner Doudorof (ED) pathway, and later they are fermented via the acetyl-CoA pathway. At the same time, amino acids utilize the Stickland reaction, where these substrates are degraded into acetate in a coupled oxidation/reduction reaction [START_REF] Angelidaki | A comprehensive model of anaerobic bioconversion of complex substrates to biogas[END_REF]. The acidogenesis stage is the most rapid in anaerobic conversion due to the high free energy change of the acidifying reactions. Furthermore, acidogenic bacteria are able to metabolize the substrates in a pH between 4 to 5.

Acetogenesis

In the third step, acetogenesis, the 𝑉𝐹𝐴 produced in acidogenesis are reduced and transformed into acetate, hydrogen, and carbon dioxide, as well as in new cellular material, by the action of bacteria of the genera Clostridium, Syntrophomonas sp., Syntrophobacter sp. (Chandra et al., 2012;Czatzkowska et al., 2020).

An important aspect to consider at this stage is the inhibitory effect of H2. The interaction between H2-producing acetogenic bacteria and H2-consuming methanogenic bacteria regulates the H2 levels. By themselves, the reactions involved in the acetogenesis (see Table 1.1.2) are thermodynamically unfavorable, presenting a Δ𝐺°′>0 (Henze et al., 2019). Once H2 levels are regulated through these syntrophic associations, the partial pressure ranges between 10 -4 -10 -6

𝑎𝑡𝑚, making the reactions thermodynamically favorable with a Δ𝐺°′< 0 (Henze et al., 2019;Luo et al., 2012).

Methanogenesis

In the last step, methanogenesis, the acetate, bicarbonate, and hydrogen are transformed into methane and carbon dioxide, as well as in new cellular material in two types of reactions, hydrogenotrophic methanogenesis and acetoclastic methanogenesis by the strictly anaerobic methanogens of the order Euryarcheota: Methanobacteriales, Methanococcales, Methanomicrobiales, Methanosarcinales, and Methanocellales.

In hydrogenotrophic methanogenesis, CO2 is reduced into CH4 using H2 as a reduction agent (Ashraf et al., 2020) by the action of hydrogenotrophic methanogens such as Methanobacterium, Methanospirillum, Methanothermobacter, and Methanosarcina. In acetoclastic methanogenesis, acetate is decarboxylated and converted into CH4 by the action of acetoclastic methanogens (e.g., Methanosaeta, Methanococcoides, and Methanosarcina) (Bharathiraja et al., 2016;Czatzkowska et al., 2020;Dar et al., 2021;Dev et al., 2019;Henze et al., 2019;Saha et al., 2020), Figure 1.1.4 shows the metabolic pathway, from acetate and CO2 to CH4.

Acetogenesis and methanogenesis usually run in parallel, as the symbiosis of two groups of microorganisms. Among the total CH4 produced, about 60%-70% originates from the decarboxylation of acetate (by acetoclastic methanogens), while the remaining CH4 is produced from CO2 reduction and conversion of H2 (by hydrogenotrophic methanogens) (Bharathiraja et al., 2016;[START_REF] Malinowsky | Start-up phase optimization of two-phase anaerobic digestion of food waste: Effects of organic loading rate and hydraulic retention time[END_REF]Pan et al., 2021). Adapted from [START_REF] Ferry | Fundamentals of methanogenic pathways that are key to the biomethanation of complex biomass[END_REF][START_REF] Lyu | Transplanting the pathway engineering toolbox to methanogens[END_REF][START_REF] Welander | Loss of the mtr operon in Methanosarcina blocks growth on methanol, but not methanogenesis, and reveals an unknown methanogenic pathway[END_REF].

Homoacetogenesis & Sintrophic Acetate Oxidation

Two other types of microorganisms participate in the AD process: homoacetogenic bacteria and syntrophic acetate bacteria, which are activated when the concentration of H2 is high. The homoacetogenesis implies the conversion of H2 and CO2 into acetate by bacteria such as Moorella thermoacetica (Clostridium thermoaceticum), Acetobacterium woodii, and Clostridium ljungdahlii (Ashraf et al., 2020;[START_REF] Ferry | Fundamentals of methanogenic pathways that are key to the biomethanation of complex biomass[END_REF][START_REF] Liu | Function of homoacetogenesis on the heterotrophic methane production with exogenous H2/CO2 involved[END_REF]Pan et al., 2021;[START_REF] Westerholm | Biogas production through syntrophic acetate oxidation and deliberate operating strategies for improved digester performance[END_REF]. Syntrophic acetate oxidation implies the conversion of acetate into H2 and CO2 by bacteria such as Clostridium ultunense, Thermacetogenium phaeum, and Syntrophaceticus schinkii (Pan et al., 2021). respectively. Adapted from [START_REF] Saady | Homoacetogenesis during hydrogen production by mixed cultures dark fermentation: Unresolved challenge[END_REF][START_REF] Westerholm | Biogas production through syntrophic acetate oxidation and deliberate operating strategies for improved digester performance[END_REF].

Acetogens grow slowly in a syntrophic relationship with methanogens which allows to keed H2 partial pressures low <10 -6 𝑎𝑡𝑚 (Henze et al., 2019). Homoacetogens can grow faster than acetogens (with organic substrates) in the presence of H2 and CO2, which means high partial pressures > 10 -3 𝑎𝑡𝑚 (Ashraf et al., 2020;[START_REF] Liu | Function of homoacetogenesis on the heterotrophic methane production with exogenous H2/CO2 involved[END_REF]. It implies that homoacetogens are not inhibited by high H2 concentrations [START_REF] Saady | Homoacetogenesis during hydrogen production by mixed cultures dark fermentation: Unresolved challenge[END_REF], and they can change their metabolism under conditions of stress or depletion of organic compounds (Ashraf et al., 2020;[START_REF] Liu | Function of homoacetogenesis on the heterotrophic methane production with exogenous H2/CO2 involved[END_REF].

Table 1.1.2. Main anaerobic bioreactions during the whole anaerobic digestion. Adapted from [START_REF] Angelidaki | A comprehensive model of anaerobic bioconversion of complex substrates to biogas[END_REF]Ashraf et al., 2020;[START_REF] Liu | Function of homoacetogenesis on the heterotrophic methane production with exogenous H2/CO2 involved[END_REF]Pan et al., 2021;Sun et al., 2021). Syntrophic acetate oxidation is the process in that methyl groups of acetate are converted to CO2 with the generation of H2 (Pan et al., 2021) and competing with the acetoclastic methanogens by the action of bacterias such as Syntrophaceticus schinkii Clostridium ultunense, Thermacetogenium phaeum, and Tepidanaerobacter acetatoxydans, (Ashraf et al., 2020;[START_REF] Ferry | Fundamentals of methanogenic pathways that are key to the biomethanation of complex biomass[END_REF][START_REF] Liu | Function of homoacetogenesis on the heterotrophic methane production with exogenous H2/CO2 involved[END_REF]Pan et al., 2021;[START_REF] Westerholm | Biogas production through syntrophic acetate oxidation and deliberate operating strategies for improved digester performance[END_REF]. The syntrophic acetate oxidation process is unfavorable (Δ𝐺°′=+94.9 𝑘𝐽/𝑚𝑜𝑙). However, at low concentrations of H2 (low H2 partial pressures), they couple with hydrogenotrophic bacteria, which allows the overall reaction to be exergonic (Δ𝐺°′=-36.0 𝑘𝐽/𝑚𝑜𝑙 ) and produce CH4 with the equal stoichiometric of acetoclastic methanogens (Pan et al., 2021).

Table 1.1.2 presents the reactions and their change in free energy associated. Acidogenesis presents a Δ𝐺°′<0, indicating that it is an exergonic process. Acetogenesis presents a Δ𝐺°′>0, indicating that it is an endergonic process. Methanogenesis shows a Δ𝐺°′<0 (exergonic process), and syntrophic acetate oxidation and homoacetogenesis present a Δ𝐺°′=-94.9, and Δ𝐺°′=+94.9, respectively. However, the coupled reaction between syntrophic acetate oxidation with hydrogenotrophic methanogenesis presents a Δ𝐺°′=-31.0, indicating that reactions can occur.

Factors Affecting the Anaerobic Digestion Process

Several factors influence AD performance [START_REF] Chew | Effects of anaerobic digestion of food waste on biogas production and environmental impacts: a review[END_REF]. Proper control of these factors is critical to maximizing CH4 production and ensure the stability of the process.

Substrate composition

Several substrates have been used in AD. Li et al. (2018) presented a review of a large variety of substrates used in AD. The goal was to explore the characteristics of these substrates (high organic matter concentration, salt, oil, and protein contents; low Carbon/Nitrogen ratio) and their effect on AD efficiency. Nasir et al. (2012) reviewed the potential of AD for biogas production from livestock manure treatment and compared operating and performance data for various AD configurations. They checked livestock manure such as cattle, swine, and poultry manure. They concluded that the AD of livestock wastes could be an alternative disposal option with CH4 yields between 0.01-0. Overall, a wide variety of studies refer to AD from multiple substrates.

Temperature

Temperature is one of the most critical factors that affect the AD process. Smaller fluctuations in temperature affect the biological activity of the microorganisms (Laiq Ur Rehman et al.,

2019

). The AD process can be operated at three temperature ranges, psychrophilic AD (4-20°C, although 15°C is usually used as optimal), mesophilic AD (20-45°C, optimal at 37°C), and thermophilic AD (45-70°C, optimal at 55°C) (Ossa-Arias & González-Martínez, 2021). The mesophilic and thermophilic temperatures are the most common conditions in this process [START_REF] Raposo | Anaerobic digestion of solid organic substrates in batch mode: An overview relating to methane yields and experimental procedures[END_REF][START_REF] Hupfauf | Temperature shapes the microbiota in anaerobic digestion and drives efficiency to a maximum at 45 °C[END_REF][START_REF] Wang | Microbial characteristics in anaerobic digestion process of food waste for methane production-A review[END_REF]. The correct choice depends on the AD objectives, e.g., the operation of the AD process at thermophilic conditions implies high biogas yields and deactivation of pathogens. However, temperature values between 40 and 50°C inhibit the activity of methanogens (Laiq Ur Rehman et al., 2019). On the other hand, the operation at mesophilic conditions can maintain high organic loading rates but has lower conversion rates (Laiq Ur Rehman et al., 2019;Sendilvadivelu et al., 2022;Van et al., 2019). The pH in AD affects the activity of the microorganisms (Laiq Ur Rehman et al., 2019). The CH4 formation in AD processes ranges between 6.5-8.5 and becomes unstable when the pH drops below 6.0 or increases above 8.5 [START_REF] Weiland | Biogas production: current state and perspectives[END_REF]. The optimal pH values for each stage are 6-8 for hydrolysis, 5.5-6.5 for acidogenesis, 6.0-6.2 for acetogenesis, and 7.0-8.0 for methanogenesis [START_REF] Raposo | Anaerobic digestion of solid organic substrates in batch mode: An overview relating to methane yields and experimental procedures[END_REF]Van et al., 2019).

An interesting study was developed by Lindner et al. (2015), which performed a two-phase biogas plant composed of (i) a 124 𝐿 continuous acidification reactor operating at 60°C to develop the first steps of the AD and (ii) two 62 𝐿 anaerobic filters to perform the methanogenesis step at 37°C using as substrate maize silage. The aim was to evaluate the effect of different pH values 5.5, 6.0, 7.0, and 7.5 over the AD process. In the continuous acidification reactor, values closed to 12.0, 14.0, 7.0, and 2.0 𝑔/𝑘𝑔 were obtained for the 𝑉𝐹𝐴: caproic, valerate, butyrate, propionate, and acetate (values estimated from a graphic). At pH 5.5 and 6.0, the representative 𝑉𝐹𝐴 was acetate with values of 6.5 and 10.0 𝑔/𝑘𝑔, respectively, while propionate was the representative 𝑉𝐹𝐴 at pH 7.0 and 7.5 with values of 4.4 and 0.8 𝑔/𝑘𝑔, respectively. The CH4 content values of 0.4, 35.1, 48.0 2 , and 50.42% were obtained for pH of 5.5, 6.0, 7.0, and 7.5, respectively. In the anaerobic filters, a CH4 of 64.3% was obtained with a pH of 5.5, while the other pH reached a CH4 content higher than 71%. It is concluded that acidogenesis and methanogenesis work better in the previously mentioned ranges. However, when the entire system is analyzed in terms of CH4, biogas yields are higher with increasing pH. For pH 5.5, values of 194.19 and 483.57 𝑁𝐿/𝑘𝑔 for organic dry matter were obtained for CH4 and biogas yield, respectively. On the other hand, for a pH of 7.5, values of 336.71 and 641.00 𝑁𝐿/𝑘𝑔 of organic dry matter were obtained for CH4 and biogas yield, respectively.

Hydraulic retention time and organic loading rate

Hydraulic Retention Time ( 𝐻𝑅𝑇 ) is the average time interval that a liquid or dissolved component remains in the reactor [START_REF] Dong | Manure treatment and recycling technologies[END_REF][START_REF] Eggen | Occurrence and Fate of Pharmaceuticals and Personal Care Products in Wastewater[END_REF]Lindmark et al., 2014). It is calculated as reactor volume over the input flow. A longer 𝐻𝑅𝑇 contributes to the high reduction of 𝑉𝐹𝐴, resulting in improved AD efficiency [START_REF] Malinowsky | Start-up phase optimization of two-phase anaerobic digestion of food waste: Effects of organic loading rate and hydraulic retention time[END_REF][START_REF] Zamri | A comprehensive review on anaerobic digestion of organic fraction of municipal solid waste[END_REF]. , 15, 12, 10, 8, 5, 4, and 3 days. The results showed that 12 days is the best 𝐻𝑅𝑇 for the methanogenesis with a maximum CH4 yield was 391 𝑚𝐿/𝑔𝑉𝑆.

The organic loading rate (𝑂𝐿𝑅) is the amount of organic matter added to the AD system per unit reactor volume per day [START_REF] Grangeiro | New trends in biogas production and utilization[END_REF]. High values in the 𝑂𝐿𝑅 cause acidification and inhibit the activity of different microorganisms, leading to reduced biogas production. When there is a continuous or semi-continuous flow rate added to the system, the 𝐻𝑅𝑇 and 𝑂𝐿𝑅 are related by the following Equation (Labatut & Pronto, 2018):

𝑂𝐿𝑅 = 𝑆 𝐻𝑅𝑇 = 𝑆 𝑞 𝑉 ( 1.1.1 )
where 𝑂𝐿𝑅 is expressed as 𝑉𝑆 or 𝐶𝑂𝐷 basis (𝑔/𝐿/𝑑); 𝐻𝑅𝑇 is expressed in days (𝑑). 𝑆 refers to the influent substrate concentration, 𝑉𝑆 or 𝐶𝑂𝐷 basis (𝑔/𝐿); 𝑞 and 𝑉 are the inlet liquid flow rate (𝐿/𝑑); and volume reactor (𝐿), respectively.

Mixing

The AD process could be carried out with continuous mixing, intermittent mixing, or not be mixed at all (Lindmark et al., 2014). [START_REF] Zhang | Optimizing mixing strategy to improve the performance of an anaerobic digestion waste-to-energy system for energy recovery from food waste[END_REF] investigated the effect of different mixing strategies on AD of food waste. Three reactors operating at 35°C with an 𝐻𝑅𝑇 of 5 days were used. Reactor 1 (R1) was operated with semi-continuous mixing of 2 𝑚𝑖𝑛/ℎ at 80 𝑟𝑝𝑚.

The Reactor 2 (R2) was operated with continuous mixing of 80 𝑟𝑝𝑚 for the duration of the experiment. Reactor 3 (R3) was used as an unmixed control. The results showed that the semicontinuously mixed R1 achieved AD efficiencies of 74.4%, which is higher than the continuously mixed R2 (66.9%) and unmixed R4 (14.9%). [START_REF] Ma | Effect of mixing intensity on hydrolysis and acidification of sewage sludge in two-stage anaerobic digestion: Characteristics of dissolved organic matter and the key microorganisms[END_REF] evaluated the effect of the mixing velocity using a two-phase AD system of sewage sludge. The first phase consisted of the hydrolysis and acidogenesis process (HAP),

where it was used a 600 𝑚𝐿 𝐶𝑆𝑇𝑅 operating at 37°C with an 𝑂𝐿𝑅 of 7.96 𝑔𝑉𝑆/𝐿/𝑑. The second phase was referred to as the methanogenesis process (MP). It was performed in a 600

𝑚𝐿 𝐶𝑆𝑇𝑅 operating at 37°C with an 𝑂𝐿𝑅 of 0.796 𝑔𝑉𝑆/𝐿/𝑑. Eight 𝐶𝑆𝑇𝑅 were used and divided into four groups according to the mixing power in the HAP: group 1 (HAP1 at 30 𝑟𝑝𝑚 and MP1 at 120 𝑟𝑝𝑚), group 2 (HAP2 at 30 𝑟𝑝𝑚 and MP2 at 120 𝑟𝑝𝑚), group 3 (HAP3 at 30 𝑚𝑔/𝐿 and 1144 ± 32 𝑚𝑔/ 𝐿). On the other hand, [START_REF] Yang | Using air instead of biogas for mixing and its effect on anaerobic digestion of animal wastewater with high suspended solids[END_REF] proposed a mixing method for AD ("air mixing"), treating animal wastewater using air as a momentum source of agitation. Four 4.0 𝐿 batch reactors operating at 35°C were used. Reactor 1 (R1) and reactor 2 (R2) were mixed with air and biogas. Reactor 3 (R3) was mixed using an axial flow impeller, and Reactor 4 (R4) was used as control (unmixing). It was concluded that the addition of air (R1) improved CH4 production by 6.4, 11.9, and 19.6% compared to the addition of biogas (R2), mechanical agitation (R2), and control (R4), respectively. Additionally, the CH4 yield in R1 improved by 6.5, 11.7, and 19.90 %, concerning R2, R3, and R4, concluding that adding air improved the AD. The authors also analyzed the effect of mixing in the mass transfer process.

The degree of mixing (homogeneity) was calculated through the coefficient of variation (𝑐𝑣) of the total solids concentrations in the system. The authors defined that 𝑐𝑣-value less than 0.02 indicated homogeneous mixing. For R1 and R2, stable values close to 0.016 were obtained after 1.5 min of agitation. For R3, a value of 0.025 was obtained after 10 min of agitation, while a value close to 0.17 were achieved in R4. They interpreted this result as a measure of the mass transfer effect, where R1 and R2 presented the best improvement due to the substrate's and sludge's physical movement when the bubbles were ascending.

Biological Methanation

Biological methanation, or biomethanation, is a promising technology to upgrade biogas by adding syngas (Rafrafi et al., 2020). The aim is to upgrade residual components such as CO2

and increase the CH4 content (95 -99 % CH4) towards the end of the process (Iglesias et al., 2021;Rusmanis et al., 2019). One of the essential advantages of upgrading biogas is its use as a natural gas grid, energy storage, and vehicle fuel (Luo & Angelidaki, 2012). Biological [START_REF] Grimalt-Alemany | Syngas biomethanation: state-of-the-art review and perspectives[END_REF]Rusmanis et al., 2019). The hydrogenotrophic methanogens with CO2 consumption transform the H2. Although this route is well-known, carbon monoxide (CO) consumption remains unclear (Sun et al., 2021).

The conversion of CO can be divided into direct reactions and indirect reactions. Directly, the CO is transformed to CH4 by the action of microorganisms such as Methanobacterium thermoautotrophicum, etc. (Guiot et al., 2011). Indirectly, the CO is converted to acetate by some species from genera, e.g., Clostridium, Acetobacterium, and Sporomusa, which can produce acetate and alcohols [START_REF] Karekar | Homo-Acetogens: Their Metabolism and Competitive Relationship with Hydrogenotrophic Methanogens[END_REF][START_REF] Paniagua | Syngas biomethanation: Current state and future perspectives[END_REF].

Then, this reaction is flowed by acetoclastic methanogenesis to obtain CH4. The CO is also transformed into H2 by carboxydotrophic hydrogenogenesis (water gas shift). Some species of the gender Rhodospirillum, Thermincola, convert CO to H2 and CO2 (Y. [START_REF] Li | Carbon monoxide conversion and syngas biomethanation mediated by different microbial consortia[END_REF][START_REF] Paniagua | Syngas biomethanation: Current state and future perspectives[END_REF]. Then, this reaction is followed by hydrogenotrophic methanogenesis.

The homoacetogens and syntrophic acetate oxidizers have a role in biological methanation. The homoacetogens transform H2 and CO2 into acetate, and the syntrophic acetate oxidizing bacteria oxidized the acetate to produce H2 and CO2 (Grimalt-Alemany et al., 2020;Pan et al., 2021). 

Biological Methanation strategies

There are two strategies to develop biological methanation (Figure 1.1.7): in-situ biological methanation (directly in the AD reactor), where the syngas is added during the AD process, and ex-situ biological methanation (in a separate unit), where an external reactor is used to enhance the process using specialized methanogenic microorganisms [START_REF] Jensen | Venturi-type injection system as a potential H2 mass transfer technology for fullscale in situ biomethanation[END_REF]. In both cases, concentrations above 90% are reported, where the conversion of biogas, specifically H2, is limited by the gas-liquid mass transfer rate (Luo et al., 2012;Rusmanis et al., 2019). The advantage of in-situ biological methanation is the reduction of infrastructure costs, using only one reactor where syngas is directly added, allowing AD and biological methanation to occur simultaneously. The main drawback of in-situ biological methanation is that AD can be affected by the high concentration of gas. The H2 added to the system can inhibit the hydrolysis and acetogenesis steps (Rafrafi et al., 2020). On the other hand, ex-situ biomethanation takes place in a separate external reactor, which implies constructing an additional physical system.

The ex-situ biomethanation is typically adapted to suit the hydrogenotrophic methanogens due to the facility to dissociate the process conditions, such as temperature and pressure of the hydrolysis and acidogenesis steps to the methanogenesis step (Voelklein et al., 2019). One of the advantages of this technology is that it can process higher H2 loading rates and obtain excellent gas conversion rates compared with the in-situ technology [START_REF] Wu | Improved robustness of exsitu biological methanation for electro-fuel production through the addition of graphene[END_REF].

Regardless of the type of configuration, microorganisms, and metabolic pathways are similar [START_REF] Mulat | Exogenous addition of H 2 for an in situ biogas upgrading through biological reduction of carbon dioxide into methane[END_REF]Rafrafi et al., 2020;Rusmanis et al., 2019).

Although ex-situ technology is currently preferred at the industrial level due to its properties [START_REF] Mulat | Exogenous addition of H 2 for an in situ biogas upgrading through biological reduction of carbon dioxide into methane[END_REF]Rafrafi et al., 2020), studies have been developed using both technologies to understand better. Luo et al. (2012) 

Process Limitations

In section 1.1.3. was presented the factors that affect the AD process. These factors have also been considered in biological methanation. However, considering the addition of gases such as H2, CO, and CO2 in the biological methanation process, it is necessary to address several of these factors from a different perspective.

pH

pH is one of the most critical variables to consider in biological methanation, as it ensures the correct stability of the different microbial consortia [START_REF] Giwa | Pyrolysis of difficult biodegradable fractions and the real syngas bio-methanation performance[END_REF]. However, the selection of pH depends on the type of microorganism desired to predominate in biological methanation.

The accumulation of 𝑉𝐹𝐴 in the system causes a reduction in pH, leading to inhibitory processes (Czatzkowska et al., 2020). This was corroborated by Rafrafi et al., (2020), who mentioned that regardless of operation mode, in-situ or ex-situ, an increase in pH can inhibit acetoclastic methanogenesis. Methanogenic bacteria prefer to work in neutral environments.

However, some strains can work in both basic and acidic environments, so the pH range in which they work well is between 5.0 and 8. 5 (Strobel et al., 2020). The addition of H2 will prefer to react with CO2 instead of CO, resulting in rapid consumption of this H2 and an increase in pH, which can inhibit the activity of CO-consuming microorganisms [START_REF] Paniagua | Syngas biomethanation: Current state and future perspectives[END_REF].
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Several studies have focused on the effect of pH in biological methanation. [START_REF] Li | Carbon monoxide conversion and syngas biomethanation mediated by different microbial consortia[END_REF] studied the impact of different substrates over biological methanation and added different syngas ratios. The findings revealed inhibitory effects due to the pH increase associated with adding H2, which was solved using phosphate buffer for pH control. Ashraf et al. (2020) investigated the pH effect as a control strategy to endure the process in stable conditions using a thermophilic trickling filter to degrade cow manure. Among the two control strategies, phosphate buffer addition and control CO2/H2 feed ratio, the latest was selected as the best method to control de pH below 8.5. The results highlighted that the pH is maintained at 8.5 in the trickling filter by varying CO2/H2 with ratios between 0.25 and 0.5. ), showing that adding coke oven gas did not negatively affect the process. The pH in stages I and II was 7.0 and 7.5, respectively. In stage III, the increase in the gas flow rate occasioned an increase of pH from 7.5 to 9.0, which reduced CH4 content to 64%, accumulation of 𝑉𝐹𝐴, and detection of H2 and CO, signs of process inhibition. To solve this problem, in stage IV, the pH of the reactor was controlled close to 8.0. The concentration of 𝑉𝐹𝐴 came back to 4.9 𝑔/𝐿, H2 and CO were not detected, and the AD of sewage sludge was not affected. The results showed that the in-situ addition of coke oven gas to the AD of sewage sludge was successfully achieved. However, the need to control the pH as the coke oven gas is added exists.

Temperature

The temperature impacts the gas-liquid mass transfer and the microorganism's interactions [START_REF] Paniagua | Syngas biomethanation: Current state and future perspectives[END_REF] Nevertheless, Y. [START_REF] Li | Carbon monoxide conversion and syngas biomethanation mediated by different microbial consortia[END_REF] showed that there were minor differences in the CH4 content between both operations when a continuous reactor under same conditions was used.

Type of culture

Biological methanation can be performed in pure or mixed cultures. Pure cultures imply operating the biological methanation process to conditions favoring its growth and process performance, i.e., the optimal growth conditions for a selected microorganism with an adequate metabolism. However, a mixed consortium rarely shares the same optimal growth conditions.

In recent years, the study of biological methanation has progressed from using pure cultures to understanding carboxydotrophic microorganisms to some studies with mixed cultures for use in the industrial sector [START_REF] Grimalt-Alemany | Syngas biomethanation: state-of-the-art review and perspectives[END_REF]. Both types of cultures have been investigated concerning biological methanation. Nevertheless, mixed cultures are more robust and do not require sterile conditions [START_REF] Rachbauer | Characteristics of adapted hydrogenotrophic community during biomethanation[END_REF]. In those studies, overall findings were elucidated:

 The adaptation of hydrogenotrophic microorganisms is affected by the addition of components such as acetate, resulting in a reduced carbon conversion [START_REF] Rachbauer | Characteristics of adapted hydrogenotrophic community during biomethanation[END_REF]  Mixed cultures are frequently used in the biological methanation process. They can support operational changes due to the high microbial diversity and resilience to large storage periods at different temperatures (Laguillaumie et al., 2022)  Carboxydotrophic microorganisms are considered to be more sensitive to CO than methanogens [START_REF] Figueras | Biomethanation of syngas by enriched mixed anaerobic consortium in pressurized agitated column[END_REF]  The substrate competition between different microorganisms is driven by kinetic competition and thermodynamic limitations. Additionally, the activity patterns differ between mesophilic and thermophilic enriched consortia, where the latest could be more suitable for industrial applications (Grimalt-Alemany et al., 2020)

Gas-liquid mass transfer

Gas-liquid mass transfer is the main limiting factor in biological methanation (Ngu et al., 2023;[START_REF] Paniagua | Syngas biomethanation: Current state and future perspectives[END_REF]Rusmanis et al., 2019). [START_REF] Andreides | Assessing the syngas biomethanation in anaerobic sludge digestion under different syngas loading rates and homogenisation[END_REF] studied mass transfer in biological methanation using mechanical and pneumatic agitation. The authors performed an experiment using a 𝐶𝑆𝑇𝑅 operated at 55°C with mechanical agitation (55 𝑟𝑝𝑚). The syngas a mixture of H2 and CO (0.55/0.45) was added to the system at different flow rates in 5 periods, 3.15, 7.35, 10.5, 15.75, 15.75 

Process Configurations

As previously mentioned, the biological methanation process is commonly limited by the gasliquid mass transfer, especially the H2 mass transfer [START_REF] Jensen | Venturi-type injection system as a potential H2 mass transfer technology for fullscale in situ biomethanation[END_REF]. The biological methanation process has been studied on several reactor types to overcome this limitation. The most common reactors are 𝐶𝑆𝑇𝑅, trickling beds reactor, and 𝐵𝐶𝑅.

Stirred tank reactors

Stirred thank reactors are the typical reactors used to develop the biomethanation process. The agitation mechanism guarantees the homogeneous mixing between the gas phase, components in the liquid phase, microorganisms, and the correct temperature distribution over the system.

The volumetric mass transfer coefficient is affected by several factors in this type of reactor, such as the geometry of the reactor, impeller configuration, agitation speed, and gas flow rate [START_REF] Paniagua | Syngas biomethanation: Current state and future perspectives[END_REF]. Mass transfer rate increases are often related to high agitation speeds and high syngas flow rates, causing the break up of large bubbles into smaller ones [START_REF] Diender | High Rate Biomethanation of Carbon Monoxide-Rich Gases via a Thermophilic Synthetic Coculture[END_REF]Jensen et al., 2021;[START_REF] Jiang | Low-Grade Syngas Biomethanation in Continuous Reactors with Respect to Gas-Liquid Mass Transfer and Reactor Start-Up Strategy[END_REF]. Luo and Angelidaki (2012) proposed increasing the agitation speed for upgrading biogas. The experiments were developed in an ex-situ operation to enrich the hydrogenotrophic methanogens for two months. Two substrates were used: sewage sludge at 37°C and manure at 55°C with a syngas content of H2:CO2 (4:1). Thermophilic conditions showed more efficiency than the mesophilic condition, with a conversion rate of 320 𝑚𝐿𝐶𝐻4/𝑔𝑉𝑆/ℎ. Therefore, a 𝐶𝑆𝑇𝑅 with a working volume of 600 mL was proposed to evaluate the effect of different operating conditions. The 𝐶𝑆𝑇𝑅 was operated at 55°C with a volume of 600 𝑚𝐿 in 5 The authors developed a full-scale venturi-type H2 injector to upgrade the biogas. Seven experiments were developed in a reactor with a volume of 1110 𝑚 operating at 52°C. They used as substrate a mixture of manure, straw briquettes, grass, and maize silage that was added

to the system at different 𝑂𝐿𝑅. The volume of H2 added to the system ranged from 3.4 to 33.5

𝑚 , which were added using the venturi-type injector system at flow rates ranging from 20 to 65 𝑚 /ℎ. Six of the seven experiments used a recirculation of headspace gas (∼100-120 𝑚 /ℎ ). It was found that H2 consumption rates ranged between 0.03 and 0.25 𝐿/𝑚 /𝑚𝑖𝑛 during the increased addition of H2. A value lower than 0.01 𝐿/𝑚 /𝑚𝑖𝑛 was obtained in the system without recirculation, contrary to values between 0.02 to 0.07 𝐿/𝑚 /𝑚𝑖𝑛 obtained with the recirculation. These results indicate that recirculation improved overall H2 consumption.

Trickling bed filters

Trickling bed filters comprise a column packed with inert materials of high specific surface area, on which biofilm is developed. The syngas is added through the reactor, and the liquid phase is trickled and recycled over the packing material [START_REF] Paniagua | Syngas biomethanation: Current state and future perspectives[END_REF]. This type of reactor is more efficient in terms of the gas-liquid mass transfer due to the low gas and liquid flow rates and higher contact surface area between the gas and liquid phase (Grimalt-Alemany 𝐿/ℎ during the days 19-51 (Period II). The author concluded that the most efficient biological methanation was performed in the 𝐵𝐶𝑅 with a CH4 content of 76% and 97-98% for periods I and II, respectively. Concerning the 𝐶𝑆𝑇𝑅, a value close to 54% was achieved for both periods.

et
The poor conversion of the gas substrates in the 𝐶𝑆𝑇𝑅 was mainly due to the limited gas-liquid mass transfer rate, which the increase of the agitation speed can improve. The increase in the CH4 content between the two periods highlighted the recirculation effect in the 𝐵𝐶𝑅. and CO partial pressure, respectively. The CO conversion efficiency was reduced to 17%, concluding that high gas recirculation can be more effective in improving the CO gas-liquid mass transfer compared to higher CO partial pressures in a gas lift reactor.

Conclusions Anaerobic Digestion & Biological Methanation

The biological methanation process could be applied as a biogas upgrading technology after the methanogenesis step in the AD. Its application and development are challenging given the multiple factors to consider, which leads to questions such as what type of substrates? Which strategy could be considered, in-situ or ex-situ? Which type of reactor configuration? What are the key phenomena affecting the process? All those questions need to be evaluated to obtain optimal performance of biological methanation.

Several authors studied biological methanation to upgrade its performance in terms of yields and productivities. Some of these researchers have focused on exploring the effect of various factors. The flow rate of gases such as H2 and CO could lead to an accumulation of 𝑉𝐹𝐴 and posterior inhibition of the biological methanation process (Ashraf et al., 2020;[START_REF] Li | Carbon monoxide conversion and syngas biomethanation mediated by different microbial consortia[END_REF] W. [START_REF] Wang | Performance and microbial community analysis of the anaerobic reactor with coke oven gas biomethanation and in situ biogas upgrading[END_REF]. Concerning temperature, the operation at mesophilic and thermophilic conditions are widely used. Nevertheless, the latest could be more suitable for industrial applications due to the thermodynamic limitations at mesophilic conditions (Grimalt-Alemany et al., 2020). Mixed cultures are more robust and do not require sterile conditions (Laguillaumie et al., 2022;[START_REF] Rachbauer | Characteristics of adapted hydrogenotrophic community during biomethanation[END_REF]. Increasing the agitation in 𝐶𝑆𝑇𝑅 , the pressure in a pressurized agitated column, and the recirculation ratio in the gas lift reactor improves the mass transfer in the biological methanation (Guiot et al., 2011;[START_REF] Figueras | Biomethanation of syngas by enriched mixed anaerobic consortium in pressurized agitated column[END_REF][START_REF] Andreides | Assessing the syngas biomethanation in anaerobic sludge digestion under different syngas loading rates and homogenisation[END_REF]. The reactor configuration plays an essential role in biological methanation. For a 𝐶𝑆𝑇𝑅, mass transfer rate increases are often related to the increase in the agitation speed and syngas flow rates, both contributing to the high gas-liquid interfacial area [START_REF] Jensen | Venturi-type injection system as a potential H2 mass transfer technology for fullscale in situ biomethanation[END_REF]Luo & Angelidaki, 2012;Ngu et al., 2023;[START_REF] Paniagua | Syngas biomethanation: Current state and future perspectives[END_REF]. The ex-situ 𝐵𝐶𝑅 showed better results than ex-situ 𝐶𝑆𝑇𝑅 reactors in terms of CH4 content; the poor conversion of the gas substrates in the 𝐶𝑆𝑇𝑅 is limited by the gas-liquid mass transfer rate [START_REF] Kougias | Ex-situ biogas upgrading and enhancement in different reactor systems[END_REF].

Table 1.1.3 summarizes the characteristics of the biological methanation reported through the literature used in this thesis, which allowed us to highlight some questions that will be addressed in this thesis:

 Which are the best conditions to carry out biological methanation in different types of reactors such as 𝐶𝑆𝑇𝑅 or 𝐵𝐶𝑅 and what is the effect of using different kinds of substrates varying 𝐺𝐿𝑅 and 𝑂𝐿𝑅?

 Which are the optimal operating conditions to improve the yields and productivities of biological methanation? Can we set them automatically?  Can the variations in the composition of the syngas be used to upgrade the biological methanation and its effect on the mass transfer process?

 How does the on-line monitoring of products and substrates such as sugars, 𝑉𝐹𝐴, H2, and CH4 over time help to improve the biological methanation?  Can the characterization of microorganisms provide information on the biological methanation process performance? This section describes the evolution of AD models, from models describing a few compounds and microorganisms, inhibition by 𝑉𝐹𝐴, free ammonium, or high H2 pressures, to the establishment of more structured models that served as a tool to study the AD process in more detail. Some of these models have been used to model biological methanation, considering the addition of gases such as H2 and CO to the system. The evolution of these models increased the number of parameters and their effect on the model outputs. Finally, sensitivity analysis methods are presented to study the importance of the parameters in the process.

Anaerobic Digestion Models

Over the last decades, several studies have been focused on modeling and simulation of the AD process. The complexity of these models has evolved according to the need to represent better the various phenomena occurring in the bioprocess.

Andrews and Graef (1971) developed a model to simulate the liquid, gas, and biological phases The acid-forming bacteria transform glucose into acetic acid, propionic, and butyric acids, explaining that acetic acid is preferred. The acetogenic bacteria transform propionic and butyric acids into acetic acid. The acetoclastic bacteria convert acetic acid into a mixture of CO2 and CH4. The H2-utilizing bacteria remove the H2 from the system by generating CH4. Some assumptions were considered for the development of this model: (i) The internal pH is maintained neutral and constant, (ii) The H2 in the gas phase is diffused freely and rapidly through the obligate anaerobic cells, which implies that the partial pressure inside the cells is the same as the system, (iii) The redox potential of the bacteria is the same as the potential of the growth. Model simulations were compared with steady-state data for the AD of 2000 𝑚𝑔/𝐿 of glucose for 20 days operating at 35°C and pH 7.0. Then, a dynamic simulation of a 1 𝐿 digester working at 35°C with an 𝐻𝑅𝑇 of 10 days was performed using synthetic wastewater equilibrium. In particular, the authors considered the role of ammonia, CO2, and 𝑉𝐹𝐴 on pH.

(
They also implemented growth inhibition by these species for some bacteria. separating growth and metabolite production expressions. [START_REF] Kleinstreuer | Dynamic simulator for anaerobic digestion processes[END_REF] used as a base the model proposed by [START_REF] Zhou | Effects of organic loading rates on highsolids anaerobic digestion of food waste in horizontal flow reactor: Methane production[END_REF] to simulate the production of CH4 from biomass for two cultures. [START_REF] Mata-Alvarez | A dynamic simulation of a two-phase anaerobic digestion system for solid wastes[END_REF] presented a model to simulate a twophase system for the digestion of wastes with high solid content. 5) acetogenesis from butyrate and valerate, ( 6) acetoclastic methanogenesis, and ( 7) hydrogenotrophic methanogenesis.

The biochemical processes include:

 The degradation of organic matter into carbohydrates, proteins, and lipids;

 The hydrolysis of these substrates to monosaccharides (sugar), amino acids, and longchain fatty acids (LCFA);

 The acidogenesis from sugars and amino acids to 𝑉𝐹𝐴 and H2;

 The acetogenesis of LCFA and 𝑉𝐹𝐴 to acetate  The separation of methanogenesis steps from acetate and H2:CO2

The physicochemical processes refer to: (i) the ionic association/dissociation of components such as propionate, butyrate, valerate, and bicarbonate, (ii) the gas-liquid mass transfer of components generated during digestion as H2, CO2, and CH4.

The ADM1 reports concentrations of most of the components in Chemical Oxygen Demand (𝐶𝑂𝐷) per volume unit. 𝐶𝑂𝐷 is the amount of oxygen needed to degrade the organic matter into CO2 and H2O (see Annex 1.1). As CO2 could not be expressed in 𝐶𝑂𝐷, its concentration is presented as 𝑚𝑜𝑙 per volume. 

𝜌 , = 𝑘 𝑎 𝑆 , -𝐾 , 𝑝 , ( 1.2.2 ) 
𝜌 / = -𝜌 / = k / S . . • S -K , • S ( 1.2.3 )
Equation ( 1.2.1 ) refers to the mass balances of each component in the liquid phase. The term ∑ 𝜌 𝑣 , is the sum of the kinetic rates for process 𝑗 multiplied by 𝑣 , . Equation ( 1.2.2 ) refers to transferring gas components to the gas headspace (the example presented was CO2)

where 𝑘 𝑎 is the volumetric mass transfer coefficient, 𝐾 , is Henry's law equilibrium constant and 𝑝 , is the CO2 gas-phase partial pressure. Equation ( 1.2.3 ) is the dynamic rate equation used for acid-base reactions.

The model solution of the differential equations can generate stiffer problems and introduce errors in the ADM1. Therefore, Rosen and Jeppsson (2006) proposed the use of Hill functions to model the process to avoid stiff problems.
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The ADM1 has been widely accepted and validated by multiple authors. It has been used to simulate the dynamic behavior of a pilot-scale for anaerobic two-stage digestion of sewage sludge (Blumensaat and Keller, 2005), to simulate a full-scale anaerobic sludge digester [START_REF] Ersahin | Modeling the dynamic performance of full-scale anaerobic primary sludge digester using Anaerobic Digestion Model No. 1 (ADM1)[END_REF][START_REF] Ozgun | Anaerobic Digestion Model No. 1 (ADM1) for mathematical modeling of full-scale sludge digester performance in a municipal wastewater treatment plant[END_REF], or even to simulate the AD process of source-sorted organic fractions of municipal solid wastes [START_REF] Calise | Modeling of the Anaerobic Digestion of Organic Wastes: Integration of Heat Transfer and Biochemical Aspects[END_REF]. The ADM1 has also been used as a base of multiple models that intend to reduce their complexity [START_REF] Hassam | A generic and systematic procedure to derive a simplified model from the anaerobic digestion model No. 1 (ADM1)[END_REF][START_REF] Arzate | Anaerobic Digestion Model (AM2) for the Description of Biogas Processes at Dynamic Feedstock Loading Rates[END_REF][START_REF] Weinrich | Systematic simplification of the Anaerobic Digestion Model No. 1 (ADM1) -Model development and stoichiometric analysis[END_REF]. Other authors have used extensions of the ADM1 to consider the co-digestion of mixed substrates such as sewage sludge/municipal solid waste [START_REF] Esposito | Model calibration and validation for OFMSW and sewage sludge co-digestion reactors[END_REF]. Additionally, it has been used to predict interactions between phosphorus, sulfur, and iron in plant-wide simulation [START_REF] Flores-Alsina | Modelling phosphorus (P), sulfur (S) and iron (Fe) interactions for dynamic simulations of anaerobic digestion processes[END_REF] and to study the inhibition phenomena by ammonium concentrations (Bai et al., 2017;[START_REF] Li | Modified anaerobic digestion model No.1 (ADM1) for modeling anaerobic digestion process at different ammonium concentrations[END_REF].

Other models used the ADM1 for plant layout, for instance, the Benchmark Simulation Model number 1 (BSM1) [START_REF] Henze | Activated Sludge Model No 1[END_REF] and number 2 (BSM2) (Alex et al., 2018). The BSM1 plant was designed considering five compartments of activated sludge reactor, two anoxic tanks, and three aerobic tanks, combining nitrification with pre-denitrification in a configuration typical for achieving biological nitrogen removal in full-scale plants. The BSM2 included BSM1 for the biological treatment of wastewater sludge and the implementation of the ADM1 model for anaerobic digestion (Rosen and Jeppsson, 2006).

Biological Methanation Models

The ADM1 has been successfully accepted as a general dynamic model to represent AD.

However, its application in biological methanation is limited, especially in the gas-liquid mass transfer aspects and biochemical processes such as the transformation of CO (Sun et al., 2021).

Only a few researchers have worked on generating advances in modeling biological methanation, whose works will be presented in the following paragraphs. The thermodynamic potential factor (𝐹 ), factor was considered in the modeling of the biomass growth 𝜇 = 𝑓(𝐹 ) as follows,

Grimalt

𝐹 = 1 -𝑒𝑥𝑝 - ∆𝐺 -∆𝐺 𝜒 , ∆𝐺 ≥ ∆𝐺 0, ∆𝐺 ≤ ∆𝐺 ( 1.2.4 )
where ∆𝐺 refers to the negative Gibbs free energy change of each biochemical reaction, ∆𝐺 = 𝑌 ∆𝐺 is the free energy conserved through each metabolic pathway calculated by multiplying the ATP yield with the Gibbs free energy of phosphorylation (∆𝐺 ); and 𝜒 is a parameter to weigh the contribution of ∆𝐺 to the reaction and ∆𝐺 to the overall 𝐹 . If ∆𝐺 ≈ ∆𝐺 , then 𝐹 = 0, which indicates that the thermodynamic drive for the reaction to proceed forward disappears, and the metabolism stops. The results correctly simulate the process, the specific growth of the various microorganisms, and CH4 productivity over time, even when the partial pressure of the CO varied in the system. Sun et al. (2021) modified and extended the ADM1 to consider syngas addition (CO + H2) from lab and pilot scale experiments. The authors considered that CO could be uptaken in two steps.

In the first step, the CO is transformed into H2 and CO2 by the carboxydotrophic hydrogenogens. In the second step, the CO is converted into acetate and CO2 by The authors validated their model experimentally. The experiment at lab scale was developed in a bubble column reactor (𝐵𝐶𝑅) with a working volume of 37.5 𝐿 operating at 37°C for 207 days. The 𝑂𝐿𝑅 was 0.5 𝑔/𝐿/𝑑 of glucose (𝐻𝑅𝑇= 20 days). The syngas addition (H2/CO = 0.5/0.5) was performed at five stages ranging from 0.2 to 1.0 𝐿/𝐿/𝑑. The results were used to calibrate the model, with 𝑅 of 0.97, 0.86, and 0.87 for CH4, H2, and CO outlet gas flow rates, respectively. The experiment in pilot scale was performed in a working volume of 6 𝑚 operating at 35°C with an 𝑂𝐿𝑅 of 1 𝑔/𝐿/𝑑 of glucose (𝐻𝑅𝑇= 20 days). The syngas flow rate was 1.10 𝑚 /𝑑 (H2/CO/CH4/CO2: impurity 0.15/0.22/0.17/0.35/0.11). Model validations gave a 𝑅 between 0.83-0.89, 0.78-0.84, and 0.61-0.73 for CH4, H2, and CO, respectively. The inconvenient of this model is that it does not consider the modeling of CO2, an important compound found in syngas mixtures which is also uptaken since the carbon from CO2 is used for methane while the O2 is combined with H2 to produce water. Additionally, the modified ADM1 used a 𝑘 𝑎 based on the film theory, which generates a significant increase in the parameters of the model where some of them must be estimated experimentally. Tsapekos et al. (2022) developed an unstructured kinetic model to study the influence of the variables such as partial pressure of H2, CO2, and pH in the hydrogenotrophic, homoacetogenesis, and acetoclastic pathways with an inoculum adapted and non-adapted to H2/CO2 as substrates. The main assumption of the model is that an increase in the overall pressure could alter conversion efficiency and favors homoacetogens over methanogens. The relevant aspect of the model lies in the thermodynamic aspect to study the competition between homoacetogens and methanogens for H2 conversion. The proposed model considers hydrogenotrophic methanogens, acetogenic bacteria, and acetoclastic methanogens; the concentration of CO2 and acetate in the liquid phase, and H2, CH4, and CO2 in the gas phase.

The model was used to simulate four cases varying the pressure and pH of the system. Case 1:

1.0 𝑎𝑡𝑚 and pH of 8.39, Case 2: 1.0 𝑎𝑡𝑚 and pH of 7.0, Case 3: 0.2 𝑎𝑡𝑚 and pH of 8.39, and Case 4: 0.2 𝑎𝑡𝑚 and pH of 7.00. These results were compared with the experimental data. The best coefficients of determination 𝑅 > 0.94 were obtained in case 2 for CO2, H2, and CH4 in the gas phase and the acetate concentration in the liquid phase. 

Sensitivity Analysis and Confidence Intervals

The previous research presented models to describe AD and biological methanation. These models are constituted by several parameters, e.g., stoichiometric, biochemical, and physiochemical, and each one brings a degree of uncertainty to the model. Consequently, it is necessary to consider a Sensitivity Analysis (SA), which intends to determine how the uncertainty of the parameters influences the outputs [START_REF] Saltelli | Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models[END_REF]Damblin et al., 2013;Sepulveda et al., 2013;Sohier et al., 2014;Tosin et al., 2020).

SA can be classified into two main types: local sensitivity analysis (LSA) and global sensitivity analysis (GSA) (Morio, 2011;Ochoa et al., 2016a). LSA analyses minor disturbances of the model inputs or parameters near the nominal value one by one. This means one factor at a time (OAT). In contrast, the other parameters are fixed at the corresponding nominal value [START_REF] Zi | Sensitivity analysis approaches applied to systems biology models[END_REF]. However, this technique does not study all the parameter space over output variables and the interaction between these parameters [START_REF] Saltelli | Why So Many Published Sensitivity Analyses Are False[END_REF]. GSA was developed to identify the contribution of each uncertainty input (or parameter) to the outputs (Feng et al., 2019;Kucherenko et al., 2015;Zhang et al., 2015). The sensitivity addresses the exploration of the entire range of variation of the model parameters [START_REF] Kiparissides | Application of global sensitivity analysis to biological models[END_REF], using a probability density function associated with each input parameter and repeated simulations of the model (Iooss and Lemaître, 2015;Ochoa et al., 2016a;Tosin et al., 2020).

Global Sensitivity Analysis Methods

GSA includes three groups: regression methods, screening methods, and variance-based methods (Sepúlveda et al., 2014;Iooss and Lemaître, 2015). One of the most commonly used GSA in bioprocess are the Morris and Sobol' Methods [START_REF] Ashraf | Variance-based global sensitivity analysis of a multipopulation, single-chamber microbial fuel cell operating in continuous flow mode at steady state[END_REF][START_REF] Kiparissides | Global Sensitivity Analysis Challenges in Biological Systems Modeling[END_REF]Ochoa et al., 2016bOchoa et al., , 2016a;;[START_REF] Rapadamnaba | Global sensitivity analysis for assessing the parameters importance and setting a stopping criterion in a biomedical inverse problem[END_REF][START_REF] Ruano | Application of the Morris method for screening the influential parameters of fuzzy controllers applied to wastewater treatment plants[END_REF]Tosin et al., 2020).

Sobol' Method

The Sobol method (Sobol′, 2001) is an interesting variance-based method in which the variance of the model output can be decomposed into partial variances that represent the contribution of the inputs over the overall uncertainty of the model output (Morio, 2011;Ochoa et al., 2016a;Sepulveda et al., 2013;Sobol′, 2001;Tosin et al., 2020).

Consider a model defined by ξ as,

𝑌 = ξ(𝜽) ( 1.2.6 )
where 𝑌 ∈ ℛ is the model output of interest, and 𝜽 ∈ ℛ is an n-dimensional parameter vector defined as 𝜽 = (𝜃 , 𝜃 , … , 𝜃 ) and characterized by a probability density function (PDF).

The function ξ(𝛉) can be decomposed into summands of different dimensions, Equation ( 1.2.7 ).

𝑌 = ξ + ξ (𝜃 ) + ξ 𝜃 , 𝜃 + ⋯ + ξ … (𝜃 , … , 𝜃 ) = ξ 𝐮 ( 𝐮⊆{ … } 𝜃 𝐮 ) ( 1.2.7 )
where:

⎩ ⎪ ⎪ ⎨ ⎪ ⎪ ⎧ 𝜉 = 𝔼[𝑌] = 𝜉(𝜽) 𝑓 (𝜃 )𝑑𝜽 𝜉 (𝜃 ) = 𝔼[𝑌|𝜃 ] -𝜉 = 𝜉(𝜽) 𝑓 (𝜃 )𝑑𝜃 -𝜉 𝜉 𝜃 , 𝜃 = 𝔼 𝑌 𝜃 , 𝜃 -𝜉 -𝜉 (𝜃 ) -𝜉 𝜃 = 𝜉(𝜽) 𝑓 , 𝜃 , 𝜃 𝑑𝜃 𝑑𝜃 -𝜉 -𝜉 (𝜃 ) -𝜉 𝜃
ξ is the mean of the function, ξ (𝜃 ) and ξ 𝜃 , 𝜃 are the expectation terms of increasing order and the conditional expectations defined recursively, 𝑓 (𝜃 ) and 𝑓 , 𝜃 , 𝜃 are the marginal PDF of 𝜃 and the interaction 𝜃 , 𝜃 (𝑖 = 1,2, … , 𝑛).. This decomposition is unique, provided that the inputs are independent and the individual terms are square-integrable [START_REF] Efron | The Jackknife Estimate of Variance[END_REF].

The so-called ANOVA decomposition could be obtained from Equation ( 1.2.7 ) as follows (Sobol′, 2001),

𝑉(𝑌) = 𝑉 𝑖 (𝜃 𝑖 ) 𝑛 𝑖=1 + 𝑉 𝑖𝑗 𝜃 𝑖 , 𝜃 𝑗 + ⋯ + 𝑉 1… 𝑛 (𝜃 𝑖 , … , 𝜃 𝑛 ) 1≤𝑖<𝑗≤𝑛 = 𝑉 ξ 𝐮 (𝜃 𝐮 ) 𝐮 for 𝐮 ⊂ {1, … 𝑛} ( 1.2.8 )
where 𝑉 ξ 𝐮 (𝜃 𝐮 ) express the conditional variance for the subvector 𝜃 𝐮 , containing the variables whose indices are indicated by the subset 𝐮.
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The variance of the output can be decomposed into terms depending on the parameters and their interactions. In order to normalize the variances, it is possible to define a variance-based sensitivity index (𝑆𝐼) associated with the subset 𝐮, which is the ratio between the contribution given by the interaction among the components of 𝐮 for the model variance and the total variance, Equation ( 1.2.9 ).

𝑆𝐼 𝐮 = 𝑉 ξ 𝐮 (θ 𝐮 ) 𝑉(𝑌)
( 1.2.9 )

Based on this, for 𝐮 ⊂ {1, … 𝑛}, and 𝐮 ≠ 𝟎,

𝑆𝐼 𝐮 𝐮 = 𝑆𝐼 + 𝑆𝐼 + ⋯ + 𝑆𝐼 … = 1 ( 1.2.10 )
The term 𝑆𝐼 is the first-order sensitivity index, which measures the fraction of the total output variance explained by the parameter 𝜃 alone as,

𝑆𝐼 = 𝑉 ξ (𝜃 ) 𝑉(𝑌) 𝑖 = 1, … , 𝑛 ( 1.2.11 )
Similarly, 𝑆𝐼 is the second order-sensitivity index that measures the amount of variance caused by the interaction between the parameters 𝜃 and 𝜃 as,

𝑆𝐼 = 𝑉 ξ 𝜃 𝑉(𝑌) 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 ( 1.2.12 )
It is possible to construct the SI for all orders until the 𝑛 order index 𝑆𝐼 … , which represents the contribution of the interactions between all the parameters in 𝜽. The total Sobol' indices are used to measure the full contribution of the 𝑖 random parameter 𝜃 for the total variance either by its single effect or by its interaction with others:

𝑆𝐼𝑇 = 𝑆𝐼 𝐮 𝐮⊂{ ,…, } ∈𝐮 𝑖 = 1, … , 𝑛 ( 1.2.13 )
Equation ( 1.2.14 ) indicates that the total sensitivity index does not only include the marginal contribution of 𝜃 to the variance of the output, but it also contains its cooperative contribution with all the other inputs.

Morris Method

Morris method (Morris, 1991) is the most frequently used screening method to perform SA by analyzing one-factor-at-a-time (OAT). This is generally used when the number of model parameters is higher and the computation of the model simulations is expensive (Feng et al., 2019;Sepúlveda et al., 2014). This method provides qualitative sensitivity measures, ranking the factors according to their importance. Nevertheless, it does not quantify the importance of one factor concerning another [START_REF] Saltelli | Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models[END_REF]. The Morris method applied to parameter sensitivity discretizes the space of each parameter and performs a given number of OAT designs. These designs and variation directions are randomly chosen from the parameter space.

The repetition of these steps allows the estimation of elementary effects 𝐸𝐸 for each parameter 𝑖, which represents the relative difference between the outputs and the 𝑗 parameter disturbance (Feng et al., 2019;Iooss and Lemaître, 2015;Morio, 2011;Morris, 1991;[START_REF] Saltelli | Global Sensitivity Analysis[END_REF].

Consider a trajectory in the parameter space as, 2.15 ) where j = 1, … , r corresponds to the number of repetititons and 𝜽 ∈ ℛ is an n-dimensional parameter vector defined as 𝜽 = (𝜃 , 𝜃 , … , 𝜃 ).

𝜃 = 𝜃 + 𝑒 ∆ j = 1, … , r ( 1. 
The effect of parameter variation can be evaluated by estimating the difference between the model output with the actual parameter 𝜃 and the updated parameter 𝜃 + 𝑒 ∆ over a given increment ∆ . 𝑒 is a vector of zeros but with a unit as its 𝑗 component (canonical base). This variation is referred as elementary effects, which can be calculated as follows,

𝐸𝐸 = 𝜉 𝜃 + 𝑒 ∆ -𝜉 𝜃 ∆ ( 1.2.16 )
where 𝜃 is a sample of input 𝜽 and ξ 𝜃 is the corresponding model output. ∆ is a step between two consecutive input space points of the trajectory. 

Parameter Estimation and Confidence Regions

Parameter estimation is one of the most relevant aspects in the formulation and calibration of models. The calibration must guarantee that the accuracy obtained by the parametric estimation is maintained, even when there is a slight variation in the parameters.

Parameter estimation is frequently calculated by minimizing a quadratic cost function that compares the experimental data set with the results obtained by the model. Then, the confidence intervals for these estimated parameters are computed via scalar functions of the Fisher information matrix (𝐹𝐼𝑀) [START_REF] Rodríguez-Fernández | Robust parameter estimation in nonlinear dynamic process models[END_REF]. However, the determination of the 𝐹𝐼𝑀 depends on the parameters' values and the responses' behavior (calculated with the use of the partial derivatives 𝜕𝑌/𝜕𝜃 ), which makes difficult to perform the parameter estimation especially when there are non-linear interactions between parameters (Rodriguez-Fernandez et al., 2007).

Fisher Information Matrix

Consider again the model previously defined in Section 1. where 𝑌 ∈ ℛ is the vector of model outputs, and 𝜽 ∈ ℛ is an n-dimensional parameter vector defined as 𝜽 = (𝜃 , 𝜃 , … , 𝜃 ). The parameter estimation is often conducted to minimize a quadratic function as, Equation ( 1.2.22 ) [START_REF] Dochain | Dynamical Modelling & Estimation in Wastewater Treatment Processes[END_REF].

𝐽(𝜽) = 𝑌(𝜃) -𝑌 • 𝑊 • 𝑌(𝜃) -𝑌 ( 1.2.22 )
where 𝑌 and 𝑌(𝜃) are the vectors of experimental measurements and model predictions at the time 𝑡 (𝑖=1 to N) respectively. 𝑊 is a square matrix with weighting coefficients. The expected value of the objective function for a parameter set slightly different from the optimal one is defined as: ( 1.2.29 )

where 𝑊 is a weighting matrix usually chosen as the measurement error covariance matrix, and 𝑄(𝑡 ) is defined as, Equation ( 1.2.30 ). 

𝑄(𝑡 ) = ⎣ ⎢ ⎢ ⎡ 𝑆𝐼 (𝑡 ) 𝑆𝐼 (𝑡 ) 𝑆𝐼 (𝑡 ) 𝑆𝐼 (𝑡 ) … 𝑆𝐼 (𝑡 ) … 𝑆𝐼 (𝑡 ) ⋮ ⋮ 𝑆𝐼 (𝑡 ) 𝑆𝐼 (𝑡 ) ⋱ ⋮ … 𝑆𝐼 (𝑡 ) ⎦ ⎥ ⎥ ⎤ ( 1.2.

Sensitivity Analysis Applications in AD and Biological Methanation

There are at least fifteen investigations in the literature related to the LSA and twelve related to GSA applied over models that represent the AD [START_REF] Barahmand | Sensitivity Analysis and Anaerobic Digestion Modeling: A Scoping Review[END_REF]. Most of these researchers considered the ADM1 model complex due to the many parameters and The analyzed parameters were the volumetric mass transfer coefficient of oxygen and all the related with the hydrogenotrophic kinetics and stoichiometric. The analyzed outputs were the H2 transfer rate, CH4 production rate, and CH4 concentration in the gas phase. As conclusion they found that CH4 concentration in gas phase was highly influenced by the maximum specific uptake of hydrogenotrophic methanogens, the volumetric mass transfer coefficient of H2, and the half-saturation constant on dissolved H2.

Conclusions of Modeling and Simulation

Several models for AD have been developed over the last decades, and several approaches were consolidated during this time. The emergence of powerful computational machinery has allowed the possibility to explore AD by mathematically complex models. The modeling of AD started with models that represent the hydrolysis, acetogenesis, and methanogenesis, which was focused on the production of volatile acids as a whole and the subsequent production of CH4 and CO2 [START_REF] Zhou | Effects of organic loading rates on highsolids anaerobic digestion of food waste in horizontal flow reactor: Methane production[END_REF]. Then, more sophisticated models were developed. Those models permitted the characterization of primary volatile acids, such as propionate, valerate, butyrate, and acetate, as well as the differentiation in the CH4 and CO2 produced from acetate (acetoclastic methanogens) and H2 (hydrogenotrophic methanogens) (Batstone et al., 2002). In this regard, the ADM1 proposed by the IWA Anaerobic Digestion Model Task Group is probably the most used model to simulate and predict AD. This model has been extended to study ammonia inhibition (Bai et al., 2017;[START_REF] Li | Modified anaerobic digestion model No.1 (ADM1) for modeling anaerobic digestion process at different ammonium concentrations[END_REF], the prediction of interactions for model reduction to explore a specific task desire for the researchers [START_REF] Hassam | A generic and systematic procedure to derive a simplified model from the anaerobic digestion model No. 1 (ADM1)[END_REF][START_REF] Arzate | Anaerobic Digestion Model (AM2) for the Description of Biogas Processes at Dynamic Feedstock Loading Rates[END_REF][START_REF] Weinrich | Systematic simplification of the Anaerobic Digestion Model No. 1 (ADM1) -Model development and stoichiometric analysis[END_REF].

The application of ADM1 in biological methanation is quite recent. Therefore, a few investigations have intended to develop a model representing biological methanation. They used well-known theories, such as the two-film theory, to calculate the different volumetric mass transfer coefficients (Sun et al., 2021) or to explore different reactor configurations for biological methanation (Santus et al., 2022).

Another highlighted aspect is assessing the SA and parameter estimation considering confidence intervals. Some researchers explored the GSA over models representing the AD, which are frequently simplified versions of the ADM1 model [START_REF] Donoso-Bravo | Identification in an anaerobic batch system: global sensitivity analysis, multi-start strategy and optimization criterion selection[END_REF][START_REF] Schroyen | Modelling and simulation of anaerobic digestion of various lignocellulosic substrates in batch reactors: Influence of lignin content and phenolic compounds II[END_REF]. Nevertheless, in biological methanation, GSA has not been explored yet.

Unfortunately, these models present weaknesses concerning biological methanation, e.g., restrictions for the generalization of the model given its formulation for particular conditions, the increased complexity of the model, or the incomplete representation of the most relevant variables and phenomena in the biological methanation.

Based on this, some questions can be drawn:

 Can a mathematical model of biological methanation accurately reproduce multiple operational conditions with emphasis on different liquid 𝑂𝐿𝑅, syngas addition, and varying 𝐺𝐿𝑅?

 How can the transformation of CO into acetate and H2 and their inhibitions be described in a model for biological methanation?

Alex, J., Benedetti, L., Copp, J., Gernaey, K.V., Jeppsson, U., Nopens, I., Pons, M.N., Rosen, C., Steyer, J.P., Vanrolleghem, P., 2018. Benchmark Simulation Model no. 2 (BSM2). 2018.

Model-Based Control

The industry continues to have difficulties developing products based on biological processes, particularly when trying to obtain these products from raw materials, which are wastes from other processes. The implementation of biological processes can be expensive due to different factors, for example, the cost of equipments and materials necessary to carry out the process.

Consequently, different model-based optimization techniques have been used to analyze and improve them. However, this kind of optimization begins with experimentation (usually at a laboratory scale) that enables an understanding of biological processes. Then, through modeling and simulation, the strategy to optimize these biological processes is developed without the need to continue with experimental development (Mitsos et al., 2018).

Biological processes are complex systems whose dynamics are governed by the non-linear behavior of the microorganisms involved [START_REF] Van Impe | Power and limitations of model based bioprocess optimization[END_REF]. The challenge in its development is maintaining the best (frequently called "optimal") environmental conditions for the proper growth of the different microorganisms. Nevertheless, the characteristics of the bioprocesses are time-varying, making them sensitive to disturbances, resulting in deviations from the desired operating conditions.

The formulation of a model allows the development of monitoring, optimization, and control techniques [START_REF] Rathore | Bioprocess Control: Current Progress and Future Perspectives[END_REF]. Bioprocess control focuses on maintaining an optimal condition for microorganisms to grow, multiply, and generate the desired product [START_REF] Alford | Bioprocess control: Advances and challenges[END_REF]. However, the complexity and non-linearity of the bioprocesses can make them difficult to control [START_REF] Doran | Bioprocess engineering principles[END_REF].

The principles in biological processes are similar to chemical processes; the only difference is the nature of the catalyst (bacteria, fungi, or enzymes). Indeed, control approaches used in chemical processes can be applied to biological processes [START_REF] Alford | Bioprocess control: Advances and challenges[END_REF][START_REF] Luo | Bioprocess systems analysis, modeling, estimation, and control[END_REF].

The most common closed-loop controller is the Proportional Integral Derivative (PID). In this controller, the difference between the controlled variable and the set point (desired value) at time 𝑡, is used to calculate the control action [START_REF] Marlin | Process control: designing processes and control systems for dynamic performance : solutions manual to accompany[END_REF]. This control action is determined Section 3. Bioprocess Control and Optimization 113 in proportion to the error, the integral of the error, and the derivative of the error concerning time [START_REF] Doran | Bioprocess engineering principles[END_REF]. PID is a controller that works well for processes with a linear behavior or in a pseudo-linear region [START_REF] Bastin | On-line Estimation and Adaptive Control of Bioreactors[END_REF][START_REF] Pind | Monitoring and Control of Anaerobic Reactors[END_REF][START_REF] Alford | Bioprocess control: Advances and challenges[END_REF][START_REF] Rathore | Bioprocess Control: Current Progress and Future Perspectives[END_REF]. However, it does not consider the future behavior of the process (predictions) on the current control actions [START_REF] Rossiter | Model-Based Predictive Control[END_REF]. The model-based control is an alternative since they use a model as a basis. The most commonly used model-based controls are adaptive control, optimal control, optimal adaptive control, and model predictive control.

Adaptive Control

The adaptive control used in biological processes is based on the fact that some kinetics are unknown. Parametric estimation is implemented and confers the property of adapting itself to variations in the kinetics. In other words, it can modify its behavior in response to changes in the dynamics of the process and the character of the disturbances [START_REF] Åström | Adaptive control[END_REF].

There are two approaches used commonly in adaptive control. One is the self-tuning regulator model adaptive control, commonly known as indirect adaptive control, which first recursively identifies the unknown model parameters and then uses these estimates to update the controller parameters through some fixed transformation. Another approach is the reference adaptive control or direct adaptive control, which updates the controller parameters directly from the measurements of the prediction error [START_REF] Sastry | Adaptive control: stability, convergence, and robustness[END_REF].

Adaptive control presents some disadvantages. The determination of an optimal strategy varied and rich in information is necessary to guarantee that the model parameters can be identified.

In other words, it is necessary to know the maximum prior knowledge concerning the process in advance. The difficulty in tuning the controller parameters and sensitivity to system variability make the adaptive control susceptible to adapt inappropriately [START_REF] Sastry | Adaptive control: stability, convergence, and robustness[END_REF][START_REF] Van Impe | Power and limitations of model based bioprocess optimization[END_REF].

Adaptive control has been applied in AD processes. In [START_REF] Renard | Adaptive control of anaerobic digestion processes?a pilot-scale application[END_REF] The design of the controller was performed considering that: (i) biomass dynamic is not available, (ii) the specific reaction rates are complety unknown, (iii) the on-line measurements are the inlet and outlet glucose concentrations, and (iv) model output are glucose and acetate.

In other words, the control problem of output pollution level using an appropriate control input.

A comprehensive review of adaptive control strategies is presented by [START_REF] Pind | Monitoring and Control of Anaerobic Reactors[END_REF] where different objectives were studied, e.g., regulation at a particular reference point or optimization of process performance.

Optimal Control

The Optimal Control approach aims at optimizing a reference trajectory [START_REF] Bryson | Applied optimal control: optimization, estimation, and control[END_REF][START_REF] Sastry | Adaptive control: stability, convergence, and robustness[END_REF].

Consider the following objective function, generated from the dynamic system 𝜉, Equation ( 1. 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ⎩ ⎪ ⎨ ⎪ ⎧ 𝑑𝑌 𝑑𝑡 = 𝜉(𝑌, 𝑢, 𝜃, 𝑡) 𝑡 ∈ 0, 𝑡 𝜆 (𝑌, 𝑢, 𝜃, 𝑡) ≤ 0 𝑖 = 1,2, … , 𝑛 𝜓 (𝑌, 𝑢, 𝜃, 𝑡) = 0 𝑖 = 1,2, … , 𝑛 𝑢 ≤ 𝑢 ≤ 𝑢 ( 1.3.3 )
where 𝑌 corresponds to the states variables, 𝜆 (𝑌) and 𝜓 (𝑌) are the 𝑛 inequality and 𝑛 equality constraints, respectively. 𝑢 , 𝑢 correspond to the lower and upper bounds for the manipulated inputs 𝑢.

Optimization techniques such as the principle of Pontryagin or the Bellman method are used to solve this problem [START_REF] Bertsekas | Dynamic Programming and Optimal Control, 3rd ed, Athena scientific optimization and computation series[END_REF][START_REF] Zabczyk | Mathematical Control Theory[END_REF].

Both control strategies present some limitations. Optimal control could fail due to modeling uncertainties, while adaptive control requires complete knowledge of the kinetic functions [START_REF] Bastin | Nonlinear and Adaptive Control in Biotechnology: A Tutorial[END_REF]Lewis et al., 2012b;[START_REF] Vrabie | Optimal adaptive control and differential games by reinforcement learning principles[END_REF] and it does not guarantee the optimality of the results (Lewis et al., 2012a;[START_REF] Nguyen | Bi-objective optimal control modification adaptive control for systems with input uncertainty[END_REF][START_REF] Van Impe | Optimal Adaptive Control of Fed-Batch Fermentation Processes[END_REF].

Optimal Adaptive Control

The optimal adaptive control arises from the need to integrate the best of optimal and adaptive controllers [START_REF] Van Impe | Optimal Adaptive Control of Fed-Batch Fermentation Processes[END_REF]. Smets et al. (2004) proposed an optimal adaptive control approach for biological processes.

Their methodology was derived in three steps. In step 1, the process model was assumed to be well-known. Then, an optimal control solution for a given optimization problem was computed.

In step 2, a nearly optimal heuristic controller was constructed based on analyzing the optimal control from biological and mathematical perspectives. To do this, the process variables that characterize optimal control solutions were selected and the reference trajectory was constructed for the characteristic process variable as a function of time. In the last step, the heuristic model controller was incorporated inside a linearized controller, and the adaptive estimation of the states and parameters was performed on-line.
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This approach was used to design a substrate feeding rate controller of a fed-batch reactor.

Three implementations were tested to optimize a penicillin G fed-batch fermentation process, depending on which variables are available for on-line measurements, (i) substrate and biomass concentration in the reactor, (ii) only substrate concentration, and (iii) carbon dioxide evolution rate (Van Impe and Bastin, 1995).

Model Predictive Control

Model Predictive Control (MPC) is the type of controller where the control actions are based on the optimization of a criterion (Camacho and Bordons, 2007). This criterion is associated with the future behavior of the system, predicted by a dynamic model [START_REF] Rossiter | Model-Based Predictive Control[END_REF].

The MPC implementation follows several steps (Camacho and Bordons, 2007). 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ⎩ ⎪ ⎨ ⎪ ⎧ 𝑑𝑌 𝑑𝑡 = 𝜉(𝑌, 𝑢, 𝜃, 𝑡) 𝑡 ∈ 0, 𝑡 𝜆 (𝑌, 𝑢, 𝜃, 𝑡) ≤ 0 𝑖 = 1,2, … , 𝑛 𝜓 (𝑌, 𝑢, 𝜃, 𝑡) = 0 𝑖 = 1,2, … , 𝑛 𝑢 ≤ 𝑢 ≤ 𝑢 ( 1.3.6 )
MPC has been widely applied for bioprocess optimization [START_REF] Rathore | Bioprocess Control: Current Progress and Future Perspectives[END_REF], e.g., to control full-scale biogas production according to the demand [START_REF] Mauky | Model Predictive Control for Demand-Driven Biogas Production in Full Scale[END_REF], to adjust glucose and lactose feed in a fed-batch reactor producing a green fluorescent protein with E.coli [START_REF] Ulonska | Automatic controller failure detection with application in model based control of an E. coli fed-batch[END_REF], to control variables in the AD such as CH4 production rate, using manipulated variables such as glucose flow rate [START_REF] Ahmed | A model predictive optimal control system for the practical automatic start-up of anaerobic digesters[END_REF]. It has also been Section 3. Bioprocess Control and Optimization 118 applied in the pharmaceutical industry to control the excessive lactate production in a fed-batch reactor to cultivate Chinese hamster ovary cells [START_REF] Schmitt | Forecasting and control of lactate bifurcation in Chinese hamster ovary cell culture processes[END_REF].

There are some advantages of using MPC [START_REF] García | Model predictive control: Theory and practice-A survey[END_REF]Yamashita et al., 2016;[START_REF] Rossiter | Model-Based Predictive Control[END_REF]:

 The incorporation of an explicit model for the process calculations. This means the consideration of the dynamic characteristics of the process  It is possible to know the effect that the disturbances caused on the process  The possibility of incorporating constraints on the system (physical limitations of the processes)

 High acceptance at the industrial level However, the MPC feasibility could be affected by its strong dependence on the model, making it less effective when the system dynamics are not accurately captured or when unexpected disturbances arise that are not accounted in the process model [START_REF] Chinea-Herranz | Control of integrated unit operations[END_REF][START_REF] Schwenzer | Review on model predictive control: an engineering perspective[END_REF].

Economic Model Predictive Control

The current challenge of MPC is the integration of dynamic market-driven operations, including more efficient and agile operations (Ellis et al., 2017). The solution is to consider the economic objective (concerned management, scheduling, or involving the multivariable loop controls) directly in the cost function of the control system and to redefine the MPC towards a new approach known as Economic Model Predictive Control (EMPC). The EMPC controller is developed to optimize the economic process performance rather than tracking a set point [START_REF] Rawlings | Fundamentals of economic model predictive control[END_REF][START_REF] Zhang | Economic model predictive control with triggered evaluations: State and output feedback[END_REF].

The tracking cost function usually uses a quadratic cost that penalizes the deviation of state and inputs from the corresponding reference trajectory. Nonetheless, the EMPC cost function could use any general stage cost that reflects the process/system economics (Ellis et al., 2017) The paradigm between an MPC and EMPC relies on the operation of the processes. A MPC aims to maintain a feasible steady state, although the steady state is not necessarily the best economic operation. Moreover, EMPC aims to determine the optimal operating strategy based on the economic aspects respecting operational constraints. These economic aspects could be real-time energy, substrates pricing, or time-varying disturbances [START_REF] Rawlings | Fundamentals of economic model predictive control[END_REF]Ellis et al., 2017).

Let us consider the following objective function generated from the dynamic system (𝜉),

Equation ( 1.3.7 ). 𝐽 = 𝜔 • 𝜑 𝜉(𝑌(𝑡), 𝑢(𝑡), 𝑡) + 𝜔 • 𝜑 (𝑢(𝑡)) ( 1.3.7 )
The optimization problem for the EMPC is formulated as Equation ( 1.3.8 ), subject to the constraints in Equation ( 1.3.9 ). The first term 𝜔 • 𝜑 𝜉(𝑌(𝑡), 𝑢(𝑡)), 𝑡) represents the process performance criterium. The second term 𝜔 • 𝜑 (𝑢(𝑡)) holds for the economic performance criterium, where 𝜑 (𝑢(𝑡)) is the cost related to the control inputs 𝑢(𝑡). 𝜔 and 𝜔 represent the relative weighting between the process and economic performance criteria and the relative weighting between the cost of the control inputs and economic performance criteria.

EMPC has been applied in different areas: optimization of the production of liquid oxygen and nitrogen from an air separation process with an integrated liquefication cycle and liquid assist operation [START_REF] Caspari | A flexible air separation process: 2. Optimal operation using economic model predictive control[END_REF], in drinking water networks [START_REF] Limon | Single-layer economic model predictive control for periodic operation[END_REF], in thermal energy storage [START_REF] Touretzky | Integrating scheduling and control for economic MPC of buildings with energy storage[END_REF], in chemical processes [START_REF] Santander | Economic model predictive control of chemical processes with parameter uncertainty[END_REF], in the aeration systems of a full-scale wastewater treatment plant [START_REF] Nejjari | Economic Model Predictive Control of Aeration Systems in a Full Scale Biological Wastewater Treatment Plant[END_REF]. In this paper, Nejjari and co-workers developed an EMPC strategy to control the dissolved oxygen concentrations in an aerated reactor of a wastewater treatment plant while optimizing the effluent quality and operating cost. The activated sludge models (ASM) and the Benchmark Simulation Model number 1 (BSM1) were used as dynamic models to represent the plant. The performance of the objective function considered the tracking term (𝐽 ), the output water quality term 𝐽 , the smooth set-points for equipment conservation (𝐽 ) , and the economic cost (𝐽 ), Equation ( 1.3.10 ).

𝐽 = 𝐽 (𝑡) + 𝐽 (𝑡) + 𝐽 (𝑡) + 𝐽 (𝑡) ( 1.3.10 )
where 𝐽 (𝑡) was calculated using Equation ( 1. 3.11 ). The use of EMPC presents advantages such as improvements in economic performance by integrating the process operation tasks of scheduling and the possibility of using it as a decisionmaking tool between control objectives and economic aspects [START_REF] Angeli | Economic Model Predictive Control[END_REF][START_REF] Limon | Single-layer economic model predictive control for periodic operation[END_REF]. However, the EMPC also presents disadvantages relate to the MPC, such as dependency on the model accuracy [START_REF] Caspari | A flexible air separation process: 2. Optimal operation using economic model predictive control[END_REF].

𝐽 (𝑡) = 𝑊 𝜔 • 𝑢(𝑡) + 𝜔 (𝑡) • 𝑢(𝑡) ( 1.
According to Ellis et al. (2017), there are three challenges in working with EMPC:

 To establish correctly a mathematic representation of the economic terms for the process in the construction of the cost function, the process model, and the constraints  To guarantee through the formulation of an EMPC control theory, the essential control properties, such as closed-loop stability  To develop the numerical computational algorithms that will allow the application of the desired control actions in real-time operation

Dynamic & Multi-Objective Optimization

Dynamic optimizations have been applied successfully over biological processes. However, optimal decisions must be made to find trade-offs between two or more conflicting variables.

Multi-objective Optimization (MOO) is a research field of multiple-criteria decision-making that involves the optimization of more than one objective simultaneously (Chang, 2015).

Commonly, the 𝑚 objective functions (𝐽 (𝑌)) are conflicting, and the number of solutions (trade-offs) might be infinite. ( 1. 3.13 ) where 𝐽 , … , 𝐽 are the 𝑚 objective functions to minimize, 𝑌 are the state variables (ODE system), 𝜆 and 𝜓 indicate inequality and equality constraints on the states variables, 𝑢 are the control variables, 𝜃 are the parameters, 𝑢 and 𝑢 correspond to the lower and upper bounds of the control variable.

Two approaches have been used to solve multi-objective optimization problems. The first method consists of weighting the objectives and then optimizing the weighted sum. However, the weights need to be predefined, and this choice could be ambiguous. The second approach consists of finding a set of optimal solutions (via Pareto fronts), including the trade-off between objectives [START_REF] Coello Coello | A Comprehensive Survey of Evolutionary-Based Multiobjective Optimization Techniques[END_REF][START_REF] Logist | Fast Pareto set generation for nonlinear optimal control problems with multiple objectives[END_REF][START_REF] Bortz | Multi-criteria optimization in chemical process design and decision support by navigation on Pareto sets[END_REF]Mitsos et al., 2018).

Each solution is considered a Pareto Optimal Point (POP) if it is not dominated by any other solution in the solution space; all these solutions are the well-known Pareto optimal set (POS), also called the Pareto front (see Figure 1.3.2) [START_REF] Bortz | Multi-criteria optimization in chemical process design and decision support by navigation on Pareto sets[END_REF]. A solution is called nondominated if none of the objective functions can be improved without degrading some other objective functions [START_REF] Konak | Multi-objective optimization using genetic algorithms: A tutorial[END_REF][START_REF] Dupont | Multi objective particle swarm optimization using enhanced dominance and guide selection[END_REF][START_REF] Ahmadi | An archivebased multi-objective evolutionary algorithm with adaptive search space partitioning to deal with expensive optimization problems: Application to process eco-design[END_REF]. [START_REF] Kennedy | Particle swarm optimization[END_REF][START_REF] Coello Coello | A Comprehensive Survey of Evolutionary-Based Multiobjective Optimization Techniques[END_REF][START_REF] Bortz | Multi-criteria optimization in chemical process design and decision support by navigation on Pareto sets[END_REF][START_REF] Reyes-Sierra | Multi-objective particle swarm optimizers: A survey of the state-of-the-art[END_REF]Mitsos et al., 2018).

Conclusions Bioprocess Control and Optimization

There are several model-based control approaches with satisfactory results at the industrial level. However, the MPC becomes at replacing the PID controllers successfully at the laboratory and industrial levels [START_REF] Ahmed | A model predictive optimal control system for the practical automatic start-up of anaerobic digesters[END_REF][START_REF] Mauky | Model Predictive Control for Demand-Driven Biogas Production in Full Scale[END_REF][START_REF] Schmitt | Forecasting and control of lactate bifurcation in Chinese hamster ovary cell culture processes[END_REF][START_REF] Ulonska | Automatic controller failure detection with application in model based control of an E. coli fed-batch[END_REF]. The main advantages of MPC are the consideration of the Section 3. Bioprocess Control and Optimization 124 dynamic characteristics of the process, the possibility of knowing the effect of the disturbances caused on the process, and the incorporation of the physical limitations of the processes [START_REF] García | Model predictive control: Theory and practice-A survey[END_REF]Yamashita et al., 2016;[START_REF] Rossiter | Model-Based Predictive Control[END_REF]. Other control process approaches combine some of the presented controllers, e.g., [START_REF] Jabarivelisdeh | Adaptive predictive control of bioprocesses with constraint-based modeling and estimation[END_REF] presented an adaptive MPC control to consider the biological variability using model-based flux balance analysis to maximize ethanol production.

Another aspect to highlight in this section is the extension of MPC to the approach EMPC as intended to integrate the dynamic market-driven operations (Ellis et al., 2017) by considering economic objectives that reflect the process/system economics [START_REF] Zhang | Economic model predictive control with triggered evaluations: State and output feedback[END_REF].

Nevertheless, applying model-based controls and approaches such as EMPC on biological methanation remains unexplored.

In the literature, only control strategies for biological methanation that have been reported implemented PI controllers. Bensmann et al. (2014) implemented two simple Proportional Integral (PI) controllers to limit the hydrogen added to the system to supply the demands of the product gas. The control strategy aims to detect the transfer limit by the accumulation of H2 in the gas phase and the biological limit by depletion of CO2. The controller uses the measure of the molar fractions of H2 and CO2 in the systems. If those variables are close to the limits (i.e., the maximum and minimum feasible molar fractions of H2 and CO2, respectively), the H2 flow rate is manipulated. The PI control was tested over three different qualitative cases regarding the violation of the biological limit (case I), the transfer limit (case III), or both (case II), all with satisfactory results in avoiding the accumulation of H2 in the system. Nevertheless, if the case is to improve the process performance (optimize), it is necessary to consider more advanced techniques such as model-based controls.

This section permits us to elucidate some relevant questions that need to be considered in this thesis, especially related to biological methanation:  How to implement a computationally feasible model-based control strategy for biological methanation?

 Can the multi-objective optimization approaches improve biological methanation? At the industrial level, physical sensors have been applied for monitoring, control, and optimization tasks. These sensors have allowed the acquisition of valuable information in the process. Regardless of the type of process to be developed, several types of sensors (e.g., temperature, pH, pressure, and flow rates sensors [START_REF] Kazemi | Robust data-driven soft sensors for online monitoring of volatile fatty acids in anaerobic digestion processes[END_REF] will always be necessary to correct processes during monitoring. Physical sensors have limitations, such as high purchase, installation, and maintenance costs. For example, if the maintenance is not performed periodically, the sensor could fault due to the constant exposition to extreme conditions inside the reactor [START_REF] Doraiswami | ROBUST MODEL-BASED SOFT SENSOR: DESIGN AND APPLICATION[END_REF]. In recent years, soft sensors have become an alternative to the monitory process in modern industry (Yan et al., 2021).

Soft sensors are mathematical models that estimate a hard-to-measure property using relatively easy measurements (Kazemi et al., 2021;[START_REF] Sharma | Soft-sensor development for biochemical systems using genetic programming[END_REF][START_REF] Zhu | Modern soft-sensing modeling methods for fermentation processes[END_REF]. In our context, soft sensors are related with two words, "software" since the models are computer programs and "sensor" because these models provide similar information to the physical sensors (Kadlec et al., 2009;[START_REF] Zhu | Modern soft-sensing modeling methods for fermentation processes[END_REF]. (Kadlec and Gabrys, 2009;Yan et al., 2021).

Model-driven soft sensors (white-box models) can be subdivided into first principle models, Kalman filters, and adaptative observers. Model-driven soft sensors are based on the knowledge of process phenomenology, i.e., the use of mass and energy balances and constitutive physicalchemical equations to describe reaction kinetics and mass transfer in the process (Fortuna et al., 2007). One of the limitations of this approach is that it might require an in-depth knowledge of the process. Data-driven soft sensors (black-box models) used the recorded, stored, and provided historical data of the process, describing the real process conditions and empirical observations. These models are considered more realistic than model-driven since they exploit real process information [START_REF] Gopakumar | A deep learning based data driven soft sensor for bioprocesses[END_REF]. Hybrid soft sensors (grey-box models) combine model-driven and data-driven soft sensors. Figure 1.4.1 summarizes the type of soft sensors and their applications [START_REF] Kazemi | Robust data-driven soft sensors for online monitoring of volatile fatty acids in anaerobic digestion processes[END_REF][START_REF] Wade | Not Just Numbers: Mathematical Modelling and Its Contribution to Anaerobic Digestion Processes[END_REF]. Soft sensors present three main applications in the industry: on-line predictions, process monitoring, and process and sensor fault detection (Kadlec et al., 2009;[START_REF] Sharma | Soft-sensor development for biochemical systems using genetic programming[END_REF]. Soft sensors have been developed to estimate variables that cannot be measured directly through automated systems, e.g., temperature, pH, or flow rates can be measured on-line. In contrast, some variables, such as concentrations, in particular cell concentrations, require offline quantification using complex methodologies, and these concentrations are frequently related to process performance, yields or productivity. Sensor fault detection is another area explored with soft sensors. Many sensors could have faults during measurements of some critical variables. Soft sensors can double-check the system behavior and detect these faults (Fortuna et al., 2007;Kadlec et al., 2009). Another application of soft sensors is process monitoring and process fault detection. It is important to highlight that sensor and process fault detection are two different applications. In the framework of this thesis, we mainly work with process fault detection. These soft sensors can be trained to describe the expected process performance or to recognize possible fault detection, i.e., deviations from the target trajectory [START_REF] Kadlec | Review of adaptation mechanisms for data-driven soft sensors[END_REF]Kazemi et al., 2021).

Nowadays, the most popular data-driven techniques are the principle component analysis, regression models, fuzzy logic, and techniques from machine learning theory such as neural networks and support vector machines (Kadlec and Gabrys, 2009;[START_REF] Gopakumar | A deep learning based data driven soft sensor for bioprocesses[END_REF][START_REF] Brunner | Challenges in the Development of Soft Sensors for Bioprocesses: A Critical Review[END_REF]. Support vector machine (SVM) has gained acceptance in constructing data-driven soft sensors (Sbárbaro and del Villar, 2010; Sharma and Tambe, 2014) due to the theoretical background in the statistical learning theory, the simplicity in implementation, the capacity to work with high-dimensional and small datasets, and efficiency in avoiding the local minima and overlapping classes (overfitting) [START_REF] Kadlec | Review of adaptation mechanisms for data-driven soft sensors[END_REF]Yan et al., 2021).

This thesis focuses on using data-driven soft sensors based on machine learning techniques with particular attention to support vector machines. Therefore, the following subsections present a definition of machine learning algorithms, their categories, a detailed explanation of support vector machines, and a brief explanation of other algorithms used in this work. 

Machine Learning Algorithms Development

Machine learning involves designing algorithms that automatically detect and extract recurring patterns in a dataset [START_REF] Deisenroth | Mathematics for Machine Learning[END_REF][START_REF] Muller | Introduction to Machine Learning with Python: A Guide for Data Scientists[END_REF] that can be numerical, textual, or visual (Yuxi (Hayden) Liu, 2020). Detecting these patterns leads the algorithms to learn, improve their accuracy, and make predictions on new input data.

There are four main aspects to consider in machine learning algorithms, as presented in Figure Model identification involves training and generating the best model. It is an iterative process in which the model is trained using the dataset. Then the model results are compared with the expected values using some statistical criteria, e.g., Akaike, Bayes, etc. The weights and biases are adjusted to improve the accuracy of the result. Finally, the trained model is validated with new data. The origin of these data depends on the problem to be solved (Fortuna et al., 2007).

Generally, the dataset is partitioned 70/30 or 80/20, i.e., 70 or 80% of the dataset is derived for training the algorithms, and the remaining 30 or 20% to evaluate the model's performance.

General Machine Learning Categories

There are three main categories in which machine learning can be formulated according to the type of learning: unsupervised, reinforcement, and supervised learning.

In unsupervised learning, the dataset to train the algorithms only contains indicative signals without any description or output assigned (unlabeled data). This type of machine learning aims to find similar characteristics in the instances included in the dataset and group them, followed by interpretation of the results [START_REF] Watson | On the Philosophy of Unsupervised Learning[END_REF].

In reinforcement learning, some supervised learning exists, but not in the usual form where each dataset output corresponds to an input. Reinforcement learning receives feedback after selecting an output for a given input or observation, and the system evaluates its performance based on that feedback response and reacts accordingly. The feedback indicates how the output (action in reinforcement learning) fulfills the learner's goals (Yuxi (Hayden) Liu, 2020).

In supervised learning, the dataset to train the algorithms contains pairs of input, a description, classes, or desired outputs besides indicative signals. The learning goal is to find a general rule that maps input to output [START_REF] Simeone | A Very Brief Introduction to Machine Learning with Applications to Communication Systems[END_REF][START_REF] Yuxi | Python Machine Learning By Example[END_REF]. This thesis will focus on using supervised Machine Learning Algorithms, emphasizing classification. The following subsections will introduce some of the most popular learning algorithms. 

Supervised Machine Learning Algorithms

The main goal of supervised machine algorithms is to build a model capable of predicting the class of a sample given a set of features [START_REF] Nasteski | An overview of the supervised machine learning methods[END_REF].

In the context of this thesis, the machine learning inputs refer to the features and instances.

Features correspond to the state variables of the dynamic models ( see section 3 chapter1) and instances correspond to each one of the time samples Supervised learning is divided into two categories, regression and classification. These of 𝑿 is generated using the same 𝑝 function, which means that all the instances are independently identically distributed (i.i.d.).

𝒟 can be rewritten as,

𝒟 = {𝒙 𝒊 , 𝒈 𝒊 } ( 1.4.2 )
with 𝒙 𝒊 ϵ ℛ × consists of an input vector with 𝑁 instances and 𝑝 Features and the associated response (𝒈 𝒊 ϵ ℛ × ).

The aim is to obtain a model 𝑠(𝑥) that generalizes the input-output mapping (Φ) in 𝒟 to Networks [START_REF] Fawagreh | Random forests: From early developments to recent advancements[END_REF][START_REF] Muller | Introduction to Machine Learning with Python: A Guide for Data Scientists[END_REF][START_REF] Rokach | Decision Trees[END_REF][START_REF] Vapnik | Support vector method for function approximation, regression estimation, and signal processing[END_REF][START_REF] Wu | Top 10 Section 4. Soft Sensors and Fault Detection 168 algorithms in data mining[END_REF]. [START_REF] Cristianini | An Introduction to Support Vector Machines and Other Kernel-based Learning Methods[END_REF]. This section presents an SVM with two classes as an example. However, these algorithms could be applied to multiple classes. The algorithms are trained with a dataset 𝒟 described in Equation ( 1.4.2 ). Usually, the data are in the form of attribute vectors or matrices. Therefore, the input space is a subset 𝜖 ℛ × .

Machine Learning Algorithms

Once the attribute vectors are available, a number of sets of hypotheses could be chosen for the problem to predict desired outputs [START_REF] Cristianini | An Introduction to Support Vector Machines and Other Kernel-based Learning Methods[END_REF].

The SVM Optimization Problem SVM algorithms need to solve an optimization problem, i.e., maximizing a particular mathematical function concerning a given 𝒟. This mathematical function is commonly referred to as a discriminant function. It establishes the rules for determining the class label of unknown inputs (𝑥) [START_REF] Tharwat | Linear vs. quadratic discriminant analysis classifier: A tutorial[END_REF].

Defining the optimization problem requires knowing its nature:

 Linear discriminant, in which the cases linearly separable or non-separable occurs, or  Kernel type, in which the non-linear discriminant is possible.

The two cases are approached through four concepts: (i) the separating hyperplane, (ii) the maximum-margin hyperplane, (iii) the soft margin, and (iv) the kernel function [START_REF] Noble | What is a support vector machine?[END_REF].

(i) The Separating Hyperplane

Let us consider again a dataset 𝒟 = {𝒙 𝒊 , 𝒈 𝒊 } defined in Equation ( 1.4.2 ), where each point 𝒙 𝒊 ϵ ℛ × consists of an input vector and the associated response (𝒈 𝒊 ϵ ℛ × ). Each one with features and whose response variable has two levels (for example, +1 and -1). Hyperplanes could be used to build a classifier that allows predicting to which class a sample belongs based on its features. The point falls on one side or the other of the hyperplane. Thus, a hyperplane can be understood to divide a p-dimensional space into two halves.

The simplest case corresponds to the linearly separable case [START_REF] Cervantes | A comprehensive survey on support vector machine classification: Applications, challenges and trends[END_REF], where The definition of hyperplane for perfectly linearly separable cases results in infinite possibilities, lines red, green, and black in Figure 1.4.5-A. SVM tries to find the maximal margin separation between the hyperplane and the data, i.e., to find the hyperplane furthest from all the data; it is called the maximal margin hyperplane or optimal separation hyperplane [START_REF] Cervantes | A comprehensive survey on support vector machine classification: Applications, challenges and trends[END_REF][START_REF] Deisenroth | Mathematics for Machine Learning[END_REF][START_REF] Kowalczyk | Support Vector Machines Succintctly[END_REF][START_REF] Panup | A Novel Twin Support Vector Machine with Generalized Pinball Loss Function for Pattern Classification[END_REF]. To do that, it is necessary to calculate the perpendicular distance of each point to a given hyperplane.

The smallest of these distances (known as the margin) [START_REF] Cervantes | A comprehensive survey on support vector machine classification: Applications, challenges and trends[END_REF][START_REF] Noble | What is a support vector machine?[END_REF] determines how far the hyperplane is from the training data (𝑥 ); it means that the optimal hyperplane distance to the closest negative data is equal to the distance to the nearest positive data. where 𝐽(𝑊) is a quadratic function. Thus, there is a single global minimum.

(iii) The Soft Margin

It is impossible to separate all the outputs perfectly in several datasets [START_REF] Kowalczyk | Support Vector Machines Succintctly[END_REF] (Figure 1.4.5-D). It is possible to find data close to the 𝑥 on the wrong side of the hyperplane.

These points are called outliers. However, a linear classifier may still be appropriate [START_REF] Bzdok | Machine learning: supervised methods[END_REF].

Applying SVM in non-linearly separable cases is possible to obtain good performance, but the data must be "almost" linearly separable. The use of slack variables ζ ,…, ζ , one for each data can solve this (Figure 1.4.5-E) and change the constrains:

𝑧 (𝑊 𝒙 𝒊 + 𝑊 ) ≥ 1 ∀𝑖 to 𝑧 (𝑊 𝒙 𝒊 + 𝑊 ) ≥ 1 -𝜉 ∀𝑖
where 𝜉 is a measured of deviation from the ideal for data 𝑖, and is classified as: Learning non-linear relations with a linear machine is necessary to select a set of non-linear features and rewrite the data in the new representation, i.e., apply a fixed non-linear mapping of data to a feature space used by the linear machine. In Figure 1.4.7-B, the data were squared;

 If ζ > 1 data 𝑖 is
in Figure 1.4.7-C, a non-linear mapping projects the data from the two-dimensional space to four dimensions (corresponding to the products of all pairs of features), allowing the data to be linearly separated. Finally, Figure 1.4.7-D presents the case where the dataset is projected into a space with too many dimensions; the projected hyperplane comes from an SVM that uses a very high-dimensional kernel function [START_REF] Noble | What is a support vector machine?[END_REF].

It is possible to represent this mathematically using Equation ( 1. 4.11 ).

𝑠(𝑥) = 𝑊 Φ (𝑥) + 𝑏 ( 1.4.11 )
where Φ: 𝑋 → 𝐹 is a non-linear map from the input space to some feature space.

Non-linear machines can be built in two steps: first, a fixed non-linear mapping transforms the data into a feature space 𝐹, and then a linear machine is used to classify them in the feature space [START_REF] Cristianini | An Introduction to Support Vector Machines and Other Kernel-based Learning Methods[END_REF], Figure 1.4.8. the training data. Therefore, the decision rule can be evaluated using just inner products between the test point and the training data [START_REF] Cristianini | An Introduction to Support Vector Machines and Other Kernel-based Learning Methods[END_REF]:

𝑠(𝑥) = 𝛼 𝑔 Φ(𝑥 ) • Φ(𝑥) + 𝑏 ( 1.4.12 )
If we have a way of computing the inner product (Φ(𝑥 ) • Φ(𝑥)) in feature space as a function of the original input points, merging the two steps needed to build a non-linear learning machine becomes possible. This direct computation method is called a kernel function. The kernel function is a mathematical transformation that allows to project data from a low-dimensional space to a higher dimension space.

Mathematically a kernel is a function 𝐾, such that for all 𝑥, 𝑥 ∈ 𝑋, Equation ( 1.4.13 ).

𝐾(𝑥

, 𝑥 ) = Φ(𝑥) • Φ(𝑥 ) ( 1.4.13 )
where Φ is a mapping from 𝑋 to an (inner product) feature space 𝐹.

The name kernel is derived from integral operator theory, which supports much of the theory of the relation between kernels and their corresponding feature spaces. An essential consequence of the dual representation is that the dimension of the feature space does not have to affect the calculation. Since the feature vectors are not represented explicitly, the number of operations required to compute the inner product by evaluating the kernel function is not necessarily proportional to the number of features. The only information used about the training data is their matrix Gram (𝐾) in the feature space, it is also called the kernel matrix. The key to this approach is finding a kernel function that can be evaluated efficiently. with 𝑐 = 0 and 𝑑 = 1 it is a linear kernel.

Gaussian Kernel or Radial Basis Function (RBF):

𝐾 𝒙 𝒊 , 𝒙 𝒋 = 𝑒 ‖ ‖
( 1.4.17 )

The value of 1 2𝜎 ⁄ controls the Kernel's behavior; when it is very small, the final model is equivalent to that obtained with a linear kernel as its value increases (flexibility of the model).

𝜎 represents the width of the RBF.

Other Machine Learning Algorithms Decision trees

The decision trees (DT) algorithm follows a methodology where the classification process is performed using a hierarchical decision on the feature's variables, similar to a tree structure.

Each decision node corresponds to a feature test, which is referred to as the split, and each leaf node refers to the attributes. DT algorithms are generally a recursive process, i.e., a sequence of splits is performed from the top (root node) to the bottom (leaf nodes) over a dataset. Each decision node corresponds to a split of the dataset into subsets, where each subset will be used as the dataset of the next decision node. The challenge with DT is how to perform the partition. The split is performed based on the feature-value pair, which causes the largest information gain. The entropy measures the uncertainty of the information in the dataset. A high value of entropy means high uncertainty and more information is necessary to develop the model [START_REF] Charbuty | Classification Based on Decision Tree Algorithm for Machine Learning[END_REF]. The disadvantage of using the information gain criterion is that features with a large number of instances will be encouraged, regardless of their relevance for classification [START_REF] Priyanka | Decision tree classifier: a detailed survey[END_REF].

(ii) The C 4.5 algorithm addresses the problem mentioned for the ID3, using a variant of the information gain criterion by performing the gain ratio, Equation ( 1.4.20 ). where 𝐼(𝒟) is the dataset purity,

𝑃(𝒟

𝐼(𝒟) = 1 - 𝑃(𝑔|𝒟) ( 1.4.22 )
CART algorithm presents some advantages over the other trees: the algorithm itself identifies the most significant variables and eliminates the non-significant ones. Furthermore, it is nonparametric and can easily handle outliers [START_REF] Priyanka | Decision tree classifier: a detailed survey[END_REF][START_REF] Singh | Comparative Study Id3, Cart And C4.5 Decision Tree Algorithm: A Survey[END_REF]).

An aspect to consider in the use of DT is overfitting. DT with a perfect training result may have a poor ability to generalize concerning other DT with an acceptable training result, i.e., perfect training results do not mean perfect test results. The cause of this is the noise in the dataset collection. Pruning is used to reduce the risk of overfitting, i.e., cutting off some branches of the tree caused by this noise. There are two options for pruning, pre-pruning and post-pruning.

The first tries to prune the branches when the tree is grown, while the second re-examines fully grown trees to decide which branches should be removed [START_REF] Zhou | Ensemble methods: foundations and algorithms[END_REF].

Random Forest

Random Forest (RF) is a classifier defined as an ensemble classifier. This metric distance is used to select the nearest neighbors. Afterward, it is necessary to assign the class to 𝑞, which is commonly performed, considering the class of the closest neighbors.

There are two ways to develop this idea. The first one is the distance-weighted voting, Equation

( 1. 4.26 ).

𝑉𝑜𝑡𝑒 𝑔 = 1 𝑑(𝑞, 𝑥 ) 1 𝑔 , 𝑔 ( 1.4.26 )
The neighbors vote and these votes are weighted by the inverse of their distance. The vote assigned by the neighbor 𝑥 to class 𝑔 is divided by the distance to their neighbor. The term 1(𝑔 , 𝑔 ) is one if the class labels match and zero in the opposite case.

The second is based on Shepard's work, using exponential function rather than the inverse distance, Equation ( 1.4.27 ).

𝑉𝑜𝑡𝑒 𝑔 = 𝑒 ( , ) 1 𝑦 , 𝑦 The term 𝐶 accounts for the denominator of Equation ( 1.4.29 ) and the other constant terms from the Gaussian distribution.

Neural Network

Neuronal Network (NN) algorithm is based on the functioning of the neural networks in the brain. It can be described as an interconnected group of nodes, called neurons through axons, and thus form the network structure [START_REF] Zhou | Ensemble methods: foundations and algorithms[END_REF]. In NN, the output of one neuron is the input to another neuron, constructing signals that are multiplied by the respective connection weights (signal strengths), and the signals are aggregated and compared with a threshold called the bias of the neuron (Uddin et al., 2019).

One of the most used NN is the multi-layer feed-forward network. In this NN, the neurons are related layer by layer, i.e., there is an input layer that receives the input feature vector, the output vector where each neuron commonly corresponds to a possible label, and the hidden layer, which is the layer between input and output layer, Figure 1.4.11-D.

The Back-Propagation Neuronal Network (BPNN) is one of the most implemented in NN.

BPNN consists of feeding forwarded the input layer, the information could be processed through the hidden layer to the output layer, and the error is calculated by comparing the output of the NN with the ground truth. Finally, this error is propagated to the hidden layer and returned to the input layer, correcting the weights and bias to reduce this error [START_REF] Zhou | Ensemble methods: foundations and algorithms[END_REF].

Machine Learning Models in Biological Process

This subsection mainly presents examples of machine learning models used in biological processes. The above-mentioned black box machine learning approaches are of two types, (a)

regression and (b) classification [START_REF] Gupta | Review of explainable machine learning for anaerobic digestion[END_REF]. The regression goal is to predict output variables using numerical or categorical predictor variables (Kazemi et al., In the first study, they evaluated several data-driven soft sensors to develop robust 𝑉𝐹𝐴 monitoring using easy on-line measured variables in the AD process. The authors explored soft sensors such as BPNN, SVM, RF, extreme learning machines, and GP. The dataset was obtained using the BSM2 with different 𝑂𝐿𝑅 as a plant model and the ASM1 and ADM1 models to describe the phenomena involved in transforming the activated sludge and AD reactor, respectively. The dataset was built using thirteen variables as inputs, which were measured at the input and output of the system for a total of 609 days every 15 minutes. The influence of these variables on the process was evaluated through a feature ranking method, determining that the variables with the strongest influence were pH, ammonia concertation, pressure, and CO2 molar fraction. Therefore, these variables were used to build the soft sensors.

The authors concluded that genetic programming achieved the best results in terms of 𝑅 > 0.99 and normalized root mean squared error 𝑁𝑅𝑀𝑆𝐸 < 0.0037 for the test. Nevertheless, the NN, SVM, and extreme learning machine also achieved good results 𝑅 > 0.99 and 𝑁𝑅𝑀𝑆𝐸 < 0.0090. Finally, it was demonstrated that the use of this type of soft sensors in AD processes is possible from the use of datasets generated from models such as BSM2. Cumulative sum, and T 2 Hotelling's charts). These control charts were built using the residual determined between the simulated 𝑉𝐹𝐴 and the predicted 𝑉𝐹𝐴 using the SVM. The quality of the fault detection methods was evaluated using some statistics criteria such as precision, recall, and F1 scores. They disturbed the acetate concentration in the system by manipulating the maximum uptake rate of acetate in BSM2 from ±5% to ±15% concerning the default value. The disturbance was simulated from day 530 to the end of the simulation. All the control charts obtained interesting results. However, the 𝑉𝐹𝐴 cumulative sum achieved the best F1 score, i.e., it was considered the best control chart to determine small-magnitude faults. 

Conclusions Soft Sensors and Fault Detection

Soft sensors have become a valuable tool for monitoring, control, and optimization tasks in biological processes due to the capacity to use on-line measurements to estimate unmeasurable variables in real time [START_REF] Brunner | Challenges in the Development of Soft Sensors for Bioprocesses: A Critical Review[END_REF]Yan et al., 2021). Soft sensors are a low-cost alternative concerning physical devices and it can be implemented on existing hardware (Fortuna et al., 2007;Jiang et al., 2021).

Data-driven approaches are based on readily available online data or historical recordings of the process [START_REF] Cruz | Application of machine learning in anaerobic digestion: Perspectives and challenges[END_REF], avoiding the need to build a mathematical description that requires an in-depth knowledge of the process [START_REF] Gopakumar | A deep learning based data driven soft sensor for bioprocesses[END_REF]Kadlec and Gabrys, 2009;[START_REF] Wade | Not Just Numbers: Mathematical Modelling and Its Contribution to Anaerobic Digestion Processes[END_REF].

Several data-driven soft sensors have been successfully applied to biological processes, especially in AD. Table 1.4.1 summarizes the previously described works comparing the type Section 4. Soft Sensors and Fault Detection 160 of algorithm that was used and the application. The interesting aspect is the wide use of those soft sensors. As a regression type to predict variables such as 𝑉𝐹𝐴 or CH4 production [START_REF] Kazemi | Robust data-driven soft sensors for online monitoring of volatile fatty acids in anaerobic digestion processes[END_REF][START_REF] Tufaner | Modeling of biogas production from cattle manure with co-digestion of different organic wastes using an artificial neural network[END_REF]. As a classification type to describe the process based on the CH4 content (Wang et al., 2020) or a combination of both tasks (Cinar et al., 2022).

There are no works in process fault detection over the biological methanation process.

However, some studies have promising results in AD (Kazemi et al.,2020a) using Machine learning models. This leads us to think that it is feasible to perform similar studies on biological methanation, which has not been explored yet.

This section provides some questions that we could explore:

 Can machine learning be used as a data-driven soft sensor in biological methanation?

 Can these soft sensors be used to detect faults during the process? 

Chapter 2 Principal Contributions

The literature value consisted of two datasets: Operational Condition 1 (OP1) and Operational Condition 2 (OP2). Approximately 2/3 of both datasets were used in the calibration and the rest in the validation of the model. An exciting aspect of this study was that both datasets were completely different, i.e., OP1 was generated in a mesophilic 𝐵𝐶𝑅 that used glucose and syngas (H2/CO 0.55/0.45) as substrate in the liquid and gas phases, respectively. On the contrary, OP2 consisted of a thermophilic 𝐶𝑆𝑇𝑅 using primary sludge, activated ticked-disintegrated waste, and syngas (H2/CO 0.5/0.5) as substrates in the liquid and gas phases, respectively.

Model simulations were accurate in the calibration step with 𝑅 > 0.90 and a 𝑅𝑀𝑆𝐸 < 0.38 for all outlet gas flow rates in OP1, and 𝑅 > 0.91 and a 𝑅𝑀𝑆𝐸 < 2.52 for all gas percent in OP2.

In the validation step with OP1, 𝑅 > 0.74 and a 𝑅𝑀𝑆𝐸 < 0.94 were obtained for output variables such as CO and H2 gas flow rates. With OP2 values of 𝑅 > 0.82 and 𝑅𝑀𝑆𝐸 < 5.15

were achieved for all gas percent composition at the output. It was concluded that ADM1_ME is a promising model that could be used to simulate, optimize, and control a wide range of operating conditions in biological methanation.

One of the common needs of biological processes is the simultaneous optimization of multiple variables, which are commonly conflicting. Therefore, in Section 3 of Chapter 1, some questions related to this topic were concluded: Can the multi-objective optimization approaches improve biological methanation? And how to implement a computationally feasible modelbased control strategy for biological methanation?

With this on mind, a Multi-Objective Dynamic Optimization (MODO) was applied for biological methanation in the article in Section 3. A Model Predictive Control (MPC) schema was applied using the dynamic model ADM1_ME proposed in Section 2. The aim was to enhance the biological methanation process by maximizing two objective functions: methane yield and productivity, by using the inlet liquid and gas flow rates as manipulated variables.

The MODO strategy handled different trade-offs between the objective functions. We proposed five cases of study based on the selection of different Pareto Optimal Point (POP) from the Pareto Optimal Set (POS). Case 1 simulated literature value (without control). Cases 2-4 used the POP that maximized either methane productivity, the Euclidean length between them, or methane yield, respectively. The Euclidean length refers to the maximum distance from the POS to the origin. Case 5 was the most interesting. It consisted in switching between the maximum productivity, Euclidean length, and yield.

The results evidenced the conflicting behavior between objective variables and improved yield and productivity to 1.02 and 3.67 times concerning case 1. Case 5 permitted us to elucidate the process's robustness and the well-accounted adaptations of the manipulated variables in simulation, especially for switching between objectives. We concluded that the MODO strategy could be considered a powerful tool to adapt the process for industry's requirements.

In the biological methanation process, besides methane, there are other value-added products, such as acetate, which can serve as a chemical platform in various industries. Therefore, in the article in Section 4, a MODO strategy with a more complexity level was applied to the biological methanation process to consider enhancing the biological methanation. Objectives were to maximize yields and productivities of methane and acetate, with the inlet liquid and gas flow rates as manipulated variables. Five case studies were proposed. Case 1 was used as a reference case without control. Case 2 consisted of using the POP directly in simulation. In contrast, cases 3 and 4 consisted of POP that allowed the maximization of the Euclidean distance, i.e., simultaneous maximization of the yield and productivity of both methane (case 3) and acetate (case 4). Case 5 was used to demonstrate the robustness of the MODO strategy by switching the objectives between maximization of performances in the objective variables in terms of methane and acetate.

The results showed that the advantages of using the dynamic part in the MODO strategy are a reduction of approximately two days the time in which the steady state is reached once there is a stages changes and the reduction in the inlet gas flow rate. Additionally, the robustness of the strategy was demonstrated by the good adaptation of switching between products of interest, such as methane and acetate. It is concluded that the MODO strategy could allow the maximization between objective variables such as yield and productivity of methane and acetate in the biological methanation process. However, the potential scope is much broader, as it can consider adaptations to market requirements for methane and acetate.

The articles of the previous sections considered objective variables such as yields and productivities of methane and acetate and manipulated variables such as liquid and gas flow rates. To solve the highlighted part of the question concluded in Section 3 of Chapter 1: Could the multi-objective optimizations consider several objectives, such as the yields, the productivities, and other variables in economic terms (e.g., substrates prices)? It is necessary to consider economic aspects, such as the substrate costs or product selling prices in the MODO strategy applied over the biological methanation process.

Therefore, in the article of Section 5, an Economic Multi-Objective Dynamic Optimization (EMODO) strategy was proposed based on the same principle as the MODO strategy but considering economic objective functions.

The objective function of the EMODO strategy deal with the maximization of 𝐺𝑎𝑖𝑛 and 𝑃𝑟𝑜𝑓𝑖𝑡 𝑚𝑎𝑟𝑔𝑖𝑛 for methane and acetate by using the inlet liquid and gas flow rates as manipulated variables. The objective called 𝐺𝑎𝑖𝑛 was built based on the methane and acetate selling prices. This variable accounted for the global gain in 𝐸𝑈𝑅 per liter of reactor per day.

The 𝑃𝑟𝑜𝑓𝑖𝑡 𝑚𝑎𝑟𝑔𝑖𝑛 was built based on the profitability of the process, considering the relation of the net incoming, i.e., the difference between the revenue by selling the products (methane + acetate) and the cost of the substrates (glucose + H2 and CO2) over the total revenue.

The results showed that the EMODO strategy was a good alternative to improve the biological methanation regarding economic variables by manipulating the inlet liquid and gas flow rates.

It was concluded that the EMODO strategy could be a good decision-making tool in selecting a profitable condition for the biological methanation process, even if there are fluctuations in the prices of the substrates and products.

As it was mentioned in Section 2 of Chapter 1, biological methanation is a complex process that can be affected by several factors, such as operating conditions or fluctuations in the liquid or gas flow rates, making the system susceptible to faults. Hence the importance of process monitoring using machine learning soft sensors described in Section 4 of Chapter 1. Machine learning soft sensors can be used as an alternative to detect the deviations of the biological methanation from an optimal operation or desired state. The questions that we tried to answer were: Can machine learning be used as a data-driven soft sensor in biological methanation?

And can these soft sensors be used to detect faults during the process?

Therefore Section 6 presents the training of machine learning algorithms, such as Decision Trees (DT), Random Forest (RF), Gaussian Naïve Bayes (GNB), k-Nearest Neighbors (k-NN), Quadratic Discriminant Analysis (QDA), Neural Networks (NN), and different Support Vector

Machines (SVM). The objective of evaluating multiple algorithms was to explore alternatives with different levels of complexity and interpretability.

The results obtained in Section 5 using de MODO strategy were selected as an optimal operation point for the biological methanation. Then, the ADM1_ME was used to generate a dataset applying disturbances of ±10, ±15, and ±20% to the liquid and gas inlet flow rates with respect to their optimal values.

The results obtained are promising. DT, RF, and SVM reached the best results regarding statistic metrics with an average F1-score higher than 0. The results obtained in Section 6 elucidated the advantages of using machine learning soft sensors to detect faults in the biological methanation process, especially with support vector machine models that showed shorter computation time with good accuracy. Although the results are promising, one of the objectives of this thesis is to provide simple, accurate, and fast detection of faults in the biological methanation process.

Consequently, in the article of Section 7, SVM was studied in more detail and applied for detecting faults in the biological methanation process. The selection of SVM algorithms was based on two aspects: (i) SVM presented one of the best results compared to the other algorithms, (ii) as mentioned in Section 4 of Chapter 1, SVM are a good alternative to construct soft sensors given its solid foundation in statistical learning theory, the capacity to work with high-dimensional feature space, small instances, and efficiency in avoiding overfitting.

Section 1. Chapter Introduction 179 Quadratic, cubic, and Radial Basis Function (RBF) SVM were trained using the same principle as the machine learning algorithms in Section 6 to detect the optimal conditions and to classify disturbances.

The results in Section 3 were used as an optimal operation point for the biological methanation.

Then, disturbances of ±10, ±15, and ±20% in the inlet and gas flow rates with respect to the optimal conditions were generated using the ADM1_ME to obtain a dataset. This dataset was then used to train the three SVM algorithms and to detect the optimal operation as well as the deviation from the optimal points subject to the aforementioned disturbances.

The results showed that in the test, a statistic metric accuracy higher than 0.88, 0.81, and 0.88 were obtained for the quadric, cubic, and RBF SVM, respectively. This study highlights that SVM models were trained using pairs of features to build 2D maps that indicate if the biological methanation process is operated in the optimal region or if a disturbance in the liquid flow rate causes a process deviation. We concluded that SVM presents promising results to classify data and can become a powerful tool at the industrial level in detecting and classifying faults in the biological methanation process, mainly if these faults occur in the inlet liquid and gas inlet flow rates.

Introduction

The production of biogas (a mixture of CH4 and CO2) by anaerobic digestion (AD) is currently one of the most promising options in terms of bioenergy production (Brémond et al., 2021).

This biogas can be used locally to generate heat or electricity without any additional processing.

However, it needs to be refined or purified to be used as vehicle fuels or for injection into the gas grid system [START_REF] Gustafsson | Well-to-wheel climate performance of gas and electric vehicles in Europe[END_REF][START_REF] Zupančič | Dynamic Modeling of Biological Methanation for Different Reactor Configurations: An Extension of the Anaerobic Digestion Model[END_REF].

Biogas could endure post-treatment alternatives either to remove impurities (e.g., H2S, excess of water) or to be upgraded into biomethane (95 -99 % CH4) for a further injection in the gas grid. Biogas upgrading involves increasing the CH4 concentration by removing CO2 (Iglesias et al., 2021;Rusmanis et al., 2019). Some technologies employed in biogas upgrading include physical absorption (water, amine, and organic scrubbing), pressure swing adsorption, and membrane separation [START_REF] Gustafsson | Well-to-wheel climate performance of gas and electric vehicles in Europe[END_REF]Iglesias et al., 2021). Another process that has gained interest and is currently under development is biological methanation, also called biomethanation (Rafrafi et al., 2020).

In the biological methanation process, the CO2 contained in the biogas is converted into CH4 by using hydrogen coming from the addition of syngas, which is generally composed of CO2, CO, and H2 (Rusmanis et al., 2019). Biological methanation involves a complex microbial consortium whose composition changes due to operational conditions, such as temperature, pH, hydraulic retention time, and syngas composition (Grimalt-Alemany et al., 2020;[START_REF] Li | Carbon monoxide conversion and syngas biomethanation mediated by different microbial consortia[END_REF]. Biological methanation can be performed either in-situ where syngas is introduced into the AD reactor, or ex-situ, where a microbial consortium, coming from the AD and adapted for H2 consumption, is introduced into a second bioreactor to convert syngas into a high-purity CH4 (Rusmanis et al., 2019).

Until now, the development of dynamic models for AD has been focused on incorporating detailed knowledge of the process stages, the microorganisms involved, and the operating conditions. One of the first dynamic models to investigate AD was proposed b Mosey (1983), The physicochemical reactions describe ion associations, dissociations, and gas/liquid transfer phenomena. The ADM1 has been modified (Rosen and Jeppsson, 2006) to solve stiffness problems, mainly due to the mass transfer equations. Thus, these authors proposed a Benchmark Simulation Model (BSM). Several researchers have adapted the BSM to consider inhibition by free ammonia in high-solid sludge fermentation (Bai et al., 2017), to design optimal continuous operation of experimental anaerobic digestion [START_REF] Balde | Modeling of a Continuous Anaerobic Digestion of Wastes[END_REF], or to simulate the dynamic behavior of a pilot-scale process for two-stage anaerobic digestion of sewage sludge (Blumensaat and Keller, 2005). Both models are a good basis for modeling the biological methanation process. However, they present deficiencies in considering the type of reactor, which directly affects how the mass transfer phenomenon is represented. This is highly important since H2 transfer is one of the limiting factors of biological methanation [START_REF] Ngu | Spatio-temporal 1D gas-liquid model for biological methanation in lab scale and industrial bubble column[END_REF]. Additionally, the model from Sun 

Modeling of biological methanation has been

Description of the Biological Methanation Process

Biological methanation is a process in which the biogas produced through the well-known AD is upgraded by the biological conversion of CO2 and syngas to obtain high-purity CH4 (Rafrafi et al., 2020). In AD, the organic matter, such as agricultural residues, organic effluents from the food industry, animal manure, or waste/wastewater residues, are transformed through the synergistic work of a variety of microorganisms into a mixture of CH4 and CO2 through four steps: (i) hydrolysis, (ii) acidogenesis, (iii) acetogenesis and (iv) methanogenesis (Dar et al., 2021). The biogas produced in the AD contains between 50 -75% of CH4, 25 -50 % of CO2, and 2-7% water vapor (Iglesias et al., 2021;Laguillaumie et al., 2022;[START_REF] Zupančič | Dynamic Modeling of Biological Methanation for Different Reactor Configurations: An Extension of the Anaerobic Digestion Model[END_REF].

Hereby, the process is extended to biological methanation, which includes CH4 production from a gas load, converting an inlet flow of H2 and CO into high-purity CH4 (Sun et al., 2021).

Hydrolysis

In this step, the fermentative bacteria release enzymes that transform complex organic polymers (carbohydrates, proteins, and lipids) into soluble monomers, such as monosaccharides, amino acids, and long-chain fatty acids (LCFA). This process generally takes place on the surface of the acidogenic bacteria as it involves exo-enzymes secreted by hydrolytic bacteria, such as Clostridia, Bacteroides, Fusobacterium, Butyrivibrio, Micrococci, Streptococcus, and

Selenomonas (Chandra et al., 2012;Czatzkowska et al., 2020).

Acidogenesis

Throughout the acidogenesis, the dissolved monomers or oligomers, amino acids, LCFA, in general, the components produced in the hydrolysis step undergo degradation reaction. These components are diffused into the acidogenic bacteria through the cell membrane and later fermented or anaerobically oxidized (Henze et al., 2019) and produce mainly volatile fatty acids (𝑉𝐹𝐴), such as propionate, butyrate, valerate, acetate, as well as new cell material. This step is carried out by the action of bacteria of the genera Bacillus sp., Pseudomonas sp., Clostridium sp., and Bifidobacterium sp. (Czatzkowska et al., 2020;Dar et al., 2021).

Acetogenesis

The 𝑉𝐹𝐴 produced in the acidogenesis are reduced and transformed into acetate, H2, and CO2, as well as in new cellular material by the action of bacteria of the genera Clostridium, Syntrophomonas sp., Syntrophobacter sp. (Chandra et al., 2012;Czatzkowska et al., 2020).

Methanogenesis

Acetate and H2 are converted into CH4 and CO2, as well as in new cellular material in two types of processes, hydrogenotrophic methanogenesis, and acetoclastic methanogenesis, by the strictly anaerobic methanogens of the order Euryarchaeota: Methanobacteriales, Methanococcales, Methanomicrobiales, Methanosarcinales, and Methanocellales.

In hydrogenotrophic methanogenesis, the CO2 is reduced into CH4 using H2 as a reduction agent (Ashraf et al., 2020) by the action of hydrogenotrophic methanogens, Methanobacterium, Methanogenium, Methanocorpusculum, Methanothermobacter and Methanosarcina. In acetoclastic methanogenesis, the acetate is decarboxylated and converted into CH4 by the action of acetoclastic methanogens, Methanosaeta, Methanococcoides, and Methanosarcina (Bharathiraja et al., 2016;Czatzkowska et al., 2020;Dar et al., 2021;Dev et al., 2019;Henze et al., 2019;Saha et al., 2020).

Biological Methanation

Biological methanation occurs in the last stage of AD. The syngas loading (commonly a combination of H2:CO:CO2) can be used to improve the process and convert the H2 and CO2 into CH4 (Rusmanis et al., 2019). The hydrogenotrophic methanogens with CO2 consumption transform the H2. Although this is a well-known route, CO consumption is still unclear (Sun et al., 2021). The CO can be transformed indirectly into H2 by carboxydotrophic hydrogenogenesis (water gas shift), then into acetate by CO-acetogenesis or COhomoacetogenesis, and finally transformed into CH4 through the hydrogenotrophic and acetoclastic methanogenesis (Guiot et al., 2011). [START_REF] Angelidaki | A comprehensive model of anaerobic bioconversion of complex substrates to biogas[END_REF]Ashraf et al., 2020;[START_REF] Liu | Function of homoacetogenesis on the heterotrophic methane production with exogenous H2/CO2 involved[END_REF]Pan et al., 2021;Rafrafi et al., 2020;Sun et al., 2021). The biological methanation process can be performed in two ways: in-situ (directly in the AD reactor) or ex-situ (in a separate unit). The advantage of in-situ biological methanation is the reduction of infrastructure costs due to the use of only one reactor where syngas is directly added, allowing AD and biological methanation to occur simultaneously. The main drawback of in-situ biological methanation is that AD can be affected by the high concentration of gas.

Reactions

For instance, the H2 added into the system can inhibit the early stages of the process. On the other hand, ex-situ biological methanation takes place in a separate external reactor, typically adapted to suit the hydrogenotrophic methanogens. Regardless of the type of configuration, microorganisms and metabolic pathways are similar [START_REF] Mulat | Exogenous addition of H 2 for an in situ biogas upgrading through biological reduction of carbon dioxide into methane[END_REF]Rafrafi et al., 2020;Rusmanis et al., 2019). 𝐼 , concerns inhibition with respect to H2, and 𝐼 , concerns inhibition with respect to CO.

Mass Balances

Mass balances are derived from the ADM1 proposed by Batstone et al. (2002), which considers disintegration, hydrolysis, and uptake of the various components as well as biomass decay.

Differently from ADM1, the model extension ADM1_ME considers the uptake of sugar, volatile fatty acids (e.g., butyrate, propionate, and acetate), the uptake of H2 and CO, and In Equation ( 2.2.1 ), the term -∑ ∑ 𝐶 𝑣 , µ is introduced in the CO2 mass balance for the liquid phase (Annexes Section 1.2, Equation ( 4.1.9 )), based on the original version of the ADM1 (Batstone et al., 2002) (without considering the components associated with the hydrolysis). This term describes the fractionation of inorganic carbon, the composition of various species, and a standard biomass composition (Rosen and Jeppsson, 2006). Table 2.2.2 summarizes the stoichiometric coefficients associated with the variables in liquid phase and biomass growth.

𝑋 𝑌 -1 𝑋 𝑌 -1 𝑋 𝑌 -1 𝑋 𝑌 -1 𝑋 𝑌 -1 𝑆 , - 𝐶 𝑣 , - 𝐶 𝑣 , - 𝐶 𝑣 , - 𝐶 𝑣 , - 𝐶 𝑣 , 𝑆 , ( 1 -𝑌 ) ( 1 -𝑌 ) 𝑆 , ( 1 -𝑌 ) 𝑓 , ( 1 -𝑌 ) 𝑓 , 1 -𝑌 𝑓 , ( 1 -𝑌 ) 𝑓 , -1 𝑆 , -1 𝑆 , ( 1 -𝑌 ) 𝑓 , ( 1 -𝑌 ) 𝑓 , 1 -𝑌 𝑓 , - 1 
( 1 -𝑌 ) 𝑓 , 𝑆 , ( 1 -𝑌 ) 𝑓 -1 𝑆 , ( 1 -𝑌 ) 𝑓 , -1 𝑆 , -

Mass Transfer Rate Definition

The gas-liquid mass transfer rates are expressed as in Equation ( 2 The volumetric mass transfer coefficient (𝑘 𝑎) was set constant (200 1 𝑑 ⁄ ) in the ADM1 (Batstone et al., 2002). However, for the biological methanation process, it is necessary to integrate the effect of the addition of gas on mass transfer. Depending on the reactor configuration, well-established correlations for 𝐵𝐶𝑅 Equation ( 2.2.5 ) and 𝐶𝑆𝑇𝑅 Equation ( 2.2.6 ) have been used to estimate 𝑘 𝑎. Both rely on the superficial gas velocity defined as the inlet gas flow rate divided by the cross-sectional area of the vessel (𝑈 = 𝑞 𝐴 ⁄ ). If there is no addition of gas to the system, 𝑈 is zero. In a 𝐵𝐶𝑅, the sparger type is crucial to ensure efficient gas distribution [START_REF] Nauman | Chemical Reactor Design, Optimization, and Scaleup[END_REF]. For a 𝐶𝑆𝑇𝑅 , the energy injected in the system controls the bubble size and turbulence, thus correlating with the mass transfer coefficient. This 1×10 4 (Van't, 1979). This means that if small variations are introduced into 𝑏 , , 𝑏 , would show large changes.

The mass transfer coefficient 𝑘 is proportional to the square root of the diffusivity in the liquid phase [START_REF] Higbie | The rate of absorption of a pure gas into still liquid during short periods of exposure[END_REF]. In a biological methanation process, some substrates (H2, CO, and CO2) are initially present in a gaseous form and must thus transfer from the gas to the liquid phase before getting involved in the biochemical reaction. As a result, the biochemical reaction rates might be, in the end, limited by the mass transfer rate. When comparing different gases, 192 considering both the 𝑘 𝑎 and the solubility it appears that the lowest value is that of 𝑘 𝑎 . For this reason, it can be claimed that if mass transfer becomes the limiting phenomena, it will be the mass transfer rate of H2 which limit the bioreaction rate (Jensen et al., 2021;[START_REF] Ngu | Spatio-temporal 1D gas-liquid model for biological methanation in lab scale and industrial bubble column[END_REF]. Therefore, only 𝑘 𝑎 was calculated using Equation ( 2.2.5 ) and Equation ( 2.2.6 ).

The rest were calculated as,

𝑘 𝑎 , = 𝑘 𝑎 𝐷 𝐷 ( 2.2.7 )
In this equation, the sub-index 𝑖 ϵ [1,4] corresponds to H2, CH4, CO, and CO2. 𝐷 is the diffusion of 𝐻 and 𝐷 is the diffusion of 𝐶𝐻 , 𝐶𝑂, and 𝐶𝑂 .

An interesting analysis can be performed by increasing 𝑈 in the 𝐵𝐶𝑅, and the 𝑃𝑜𝑤𝑒𝑟/𝑉 in the 𝐶𝑆𝑇𝑅. For the case of the 𝐵𝐶𝑅, it was assumed that the organic loading and gas loading rates were the same as proposed in the operational condition one (OP1) (Section 2.5, Table 2.2.4). Figure 2.2.2-A displays the variation of 𝑘 𝑎 , with the change of 𝑈 in a range from 173 to 6912 𝑚 𝑑 ⁄ , i.e., the boundaries indicated by Deckwer et al. (1983) ranged between 0.002 and 0.08 𝑚 𝑠 ⁄ . All the 𝑘 𝑎, increased with a different rate, i.e., 𝑘 𝑎, was the higher, followed by 𝑘 𝑎, , 𝑘 𝑎, , and 𝑘 𝑎, . For the case of the 𝐶𝑆𝑇𝑅, the organic loading and gas loading rates were assumed to be the same as proposed in operational condition two (OP2) (Section 2.5, Table 2.2.4). The 𝑞 was fixed at the maximum value proposed for OP2. Figure 2.

2.2-B

shows the variation of the 𝑘 𝑎 , concerning 𝑃𝑜𝑤𝑒𝑟/𝑉 , which was varied from 1 to 1×10 5 𝑊/𝐿, i.e., the boundaries indicated by Van't, (1979) ranged between 1×10 3 and 1×10 5 𝑊/𝑚 𝑚 𝑠 ⁄ . Similar to the 𝐵𝐶𝑅, all the 𝑘 𝑎 , increased at a different rate, i.e., 𝑘 𝑎, displayed the largest value, followed by 𝑘 𝑎, , 𝑘 𝑎, , and 𝑘 𝑎, . 

Constitutive Equations

The total 𝑞 and specific 𝑞 , outlet gas flow rates can be calculated with Equations ( 2.2.8 ) and ( 2.2.9 ) (Rosen and Jeppsson, 2006). 2 .2.25 ) indicates that the total sensitivity index does not only include the marginal contribution of 𝜃 to the variance of the output, but it also contains its cooperative contribution with all the other inputs. The total sensitivity index removes the parameter 𝜃 from the analysis and allocates the resulting variance reduction to that parameter.

𝑞 = 𝐾 𝑃 -𝑃 ( 

Morris Method

The Morris method is the most well-known (Morris, 1991) screening method which performs SA by analyzing one-factor-at-a-time (OAT). This is generally used when the number of model parameters is large, and the computation of model simulations is expensive. This method provides qualitative sensitivity measures, ranking the factors by their importance. Nevertheless, it does not quantify the importance of one factor concerning another [START_REF] Saltelli | Sensitivity analysis in practice: a guide to assessing scientific models[END_REF]. The Morris method applied to parameter sensitivity discretizes the space of each parameter and performs a given number of OAT designs. These designs and variation directions are randomly chosen from the parameter space. The repetition of these steps allows the estimation of elementary effects 𝐸𝐸 for each parameter 𝑖, which represents the relative difference between the outputs and the 𝑗 parameter disturbance (Feng et al., 2019;Iooss and Lemaître, 2015;Morio, 2011;Morris, 1991;Saltelli, 2008).

Consider a trajectory in the parameter space as, 2.2.26 ) where j = 1, … , r corresponds to the number of repetititons and 𝜽 ∈ ℛ is an n-dimensional parameter vector defined as 𝜽 = (𝜃 , 𝜃 , … , 𝜃 ). The effect of parameter variation can be evaluated by estimating the difference between the model output with the actual parameter 𝜃 and the updated parameter 𝜃 + 𝑒 ∆ over a given increment ∆ . 𝑒 is a vector of zeros but with a unit as its 𝑗 component (canonical base). This variation is referred as elementary effects, which can be calculated as follows, 

𝜃 = 𝜃 + 𝑒 ∆ j = 1, … , r ( 
𝐸𝐸 = 𝜉 𝜃 + 𝑒 ∆ -𝜉 𝜃 ∆ ( 2.2.

Bioreactors Operating Conditions

This study used two experimental datasets from the literature to derive the model extension.

The first dataset was taken from (Sun et al., 2021), where the experiments were developed at operational condition one (OP1). The second dataset was obtained from [START_REF] Andreides | Assessing the syngas biomethanation in anaerobic sludge digestion under different syngas loading rates and homogenisation[END_REF], whose experiment was carried out at operational condition two (OP2). Both operating conditions are reported in Table 2.2.3.

The measured outputs were different for each operating condition. For OP1, these corresponded to the outlet flow rates of CH4, H2, and CO. For OP2, the measured outputs were the percent of CH4, H2, CO, and CO2 in the gas phase. Inlet liquid flow rate (𝐿/𝑑) 1.9 0.5 𝐻𝑅𝑇: hydraulic retention time.

In OP1, the loading consisted of two additions: glucose and syngas. The organic loading rate (𝑂𝐿𝑅) of glucose was kept at 0.5 𝑔/𝐿 / 𝑑, where 𝐿 represents the volume of the reactor.

Syngas containing 50% v/v of H2 and CO (𝐻 /𝐶𝑂 ≈ 1) was added into the reactor with a continuous flow but at different rates after the first reference stage. For OP2, the liquid fraction Section 2. Dynamic Modeling of Biological Methanation for Different Reactor Configurations: An Extension of the Anaerobic Digestion Model No. 1 201 of the 𝑂𝐿𝑅 was a mixture of primary sludge and activated ticked-disintegrated waste (volume ratio of 3:1), which was fed with a flow rate varying in time. Syngas was also added into the reactor at diverse rates after a reference stage. In this case, however, the syngas contained 55% v/v of H2 and 45% v/v CO (𝐻 /𝐶𝑂 ≈ 0.55/0.45). Table 2.2.4 reports the stages in which the substrates were added to the reactors. To standardize the units for both operating conditions, the 𝑂𝐿𝑅 is expressed as 𝑔𝐶𝑂𝐷/𝐿 /𝑑 and the gas loading rate is expressed as 𝐿/ 𝐿 /𝑑 . In OP1, the 𝑂𝐿𝑅 was expressed in 𝑔𝐶𝑂𝐷/𝐿 /𝑑 by multiplying the value 0.5 𝑔𝐺𝑙𝑢/𝐿 /𝑑, by a factor of 1.07 𝑔𝐶𝑂𝐷/𝑔𝐺𝑙𝑢. In OP2, a mixture of different substrates was used. Those mixtures are usually expressed in terms of volatile solids (𝑉𝑆). Therefore, an equivalence between 𝐶𝑂𝐷 and 𝑉𝑆 must be estimated. 

Model Calibration and Validation

In this study, model simulations were implemented in MATLAB® and run using a computer with Intel® Core i7 8665U 2.11 GHz and 16 GB RAM. The ADM1_ME was calibrated using the measured outputs mentioned in the previous section, CH4, H2, and CO outlet flow rates for OP1, and CH4 H2, CO, and CO2 percent in the gas phase for OP2.

Sobol's method was implemented using the toolbox: Global sensitivity and uncertainty analysis (GSUA) [START_REF] Velez | Global sensitivity and uncertainty analysis (GSUA)[END_REF], whereas the Morris method was performed by the toolbox:

Sensitivity analysis-Morris method (advanced) [START_REF] Mr | Sensitivity Analysis -Morris method (advanced)[END_REF]. The two abovementioned SA methods were performed to identify the effects of a change in the parameters on the model outputs.

The ADM1_ME is described by 60 parameters comprising stoichiometric and kinetic parameters (see Annexes Section 2, Table 4.2.1). Among those parameters, a group of 𝑛 = 26 parameters was selected to analyze their impact on the gas flow rates for OP1 and gases percent for OP2 (see Annexes Section 2, Table 4.2.1). Those comprised mostly kinetic parameters and the parameters where the estimation is more uncertain. The Morris method performs analysis upon several simulation runs, e.g., (𝑛 + 1) • 10. In this case, however, a larger number of simulation runs were executed (𝑛 + 1) • 100, i.e., 2700, to guarantee a good sampling in the distribution of the parameter domain. Since the Sobol' method is computationally expensive compared to the Morris method, only 200 simulation runs were evaluated per output.

The toolbox GSUA for Sobol' method allowed the computation of the first-order sensitivity indices with a scalar characteristic (𝑆𝐼 ) as, Section 2. Dynamic Modeling of Biological Methanation for Different Reactor Configurations: An Extension of the Anaerobic Digestion Model No. 1

203 𝑆𝐼 = 𝜉(𝑆𝑆𝐸) = 𝜉 (𝑌(𝜃 ) -𝑌(𝜃 , )) ( 2.2.32 )
where the sum squared error (𝑆𝑆𝐸) was the scalar characteristic, measured between the output variable (𝑌 (𝜃 )) calculated with the varied parameter 𝜃 , sampled with a uniform distribution, and the output variable (𝑌 𝜃 , ) calculated with the nominal value of the parameter 𝜃 , .

The most sensitive parameters found with SA were selected to recalibrate the model, while the rest of the parameters were fixed to the nominal values reported in the ADM1 (Batstone et al., 2002).

Parameter estimation was performed to minimize the adapted root mean square error (𝑅𝑀𝑆𝐸 ) reported in Equation ( 2.2.33 ). The outputs for OP1 were the outlet gas flow rates, 𝑞 , , 𝑞 , , and 𝑞 , . Nevertheless, for OP2, the outputs were the gases percent, 𝑝 , , 𝑝 , , 𝑝 , , and 𝑝 , . Therefore, Equation ( 2 Confidence intervals were determined for each estimated parameter by computing the Global Sensitivity Information Matrix (𝐺𝑆𝐼𝑀 ). This matrix is based on the first-order sensitivity indices (𝑆𝐼 ) of the Sobol' method and is analogous to the Fisher Information Matrix (𝐹𝐼𝑀) [START_REF] Asprey | Statistical tools for optimal dynamic model building[END_REF]Rodriguez-Fernandez et al., 2007). The 𝐺𝑆𝐼𝑀 is calculated as,

𝐺𝑆𝐼𝑀 = [𝑄 (𝑡 ) 𝑊 𝑄(𝑡 )] / ( 2.2.36 )
where 𝑊 is a weighting matrix usually chosen as the measurement error covariance matrix, and 𝑄(𝑡 ) is defined as,

𝑄(𝑡 ) = ⎣ ⎢ ⎢ ⎡ 𝑆𝐼 (𝑡 ) 𝑆𝐼 (𝑡 ) 𝑆𝐼 (𝑡 ) 𝑆𝐼 (𝑡 ) … 𝑆𝐼 (𝑡 ) … 𝑆𝐼 (𝑡 ) ⋮ ⋮ 𝑆𝐼 (𝑡 ) 𝑆𝐼 (𝑡 ) ⋱ ⋮ … 𝑆𝐼 (𝑡 ) ⎦ ⎥ ⎥ ⎤ ( 2.2.37 )
In this case, 𝑆𝐼 𝑛 𝑚 (𝑡 𝑡 ) measures the sensitivity of the state 𝑌 concerning the parameter 𝜃 at the time 𝑡 . Then the variance of each parameter 𝜃 can be approximated by 𝜎 (𝜃 ) ≈ 𝐺𝑆𝐼𝑀 and used to evaluate the 95% confidence intervals as: 𝜃 ± 1.96 The first-order sensitivity indices of Sobol' Method were computed for the 26 selected parameters and evaluated for each output and operating condition. Table 2.2.5 summarizes the results. The sum of the variance is considered to be around 100%. Sobol' method allowed the determination of the first-order sensitivity index given the scalar characteristic. A threshold value of 5% was proposed to consider which parameters were sensitive.

Concerning OP1, a value of 5.6 was obtained for the first-order sensitivity index of 𝑌 compared to 𝑞 , . For 𝑞 , , the parameters µ , , 𝑌 , 𝑌 , 𝑌 , 𝑘 𝑎 , and µ , were found to be the most sensitive. Regarding 𝑞 , , the parameters reporting the highest values were 𝑌 , 𝑌 , 𝑌 , 𝐾𝐼 , , 𝐾𝑠 , and 𝐾 . Finally, the parameters µ , , µ , , 𝑌 , 𝐾𝐼 , , and 𝐾𝐼 , were found to be the most sensitive for 𝑞 , .

For OP2, the parameters 𝐾𝐼 , , µ , , 𝑌 , and 𝑌 were reported as the most sensitivities for the 𝑝 , . Regarding 𝑝 , , the parameters µ , , 𝐾𝑠 , 𝑌 , 𝐾 , 𝐾𝐼 , , and 𝑌 were found to be the most sensitive, while the parameters reporting the highest values for were also affected by 𝑌 . The other high-influence parameters reported an effect in just one output. Therefore, the selection of unique candidates for parameter estimation was not straightforward. Nevertheless, parameters that appeared as sensitive for most of the model outputs were considered good candidates for parameter estimation, e.g., 𝑌 , 𝑌 ,𝑌 , µ , , µ , , 𝐾𝐼 , , 𝐾𝑠 , and 𝐾 . The elementary effects of the Morris method were computed for all 26 parameters. 2.2.5 for more details). For OP1, 12, 10, 8, and 5 parameters were determined as high-influence factors over 𝑞 , , 𝑞 , , 𝑞 , , and 𝑞 , , respectively. Differently, for OP2, 10, 11, 7, and 18 parameters were determined as high influence factors over 𝑝 , , 𝑝 , , 𝑝 , , and 𝑝 , , respectively. As both operating conditions represented different output variables (OP1: outlet gas flow rates and OP2: gases percent), the sensitivity concerning each factor could be different. Additionally, the operating conditions are not the same. OP1 was carried out under mesophilic temperatures, while OP2 was developed under thermophilic conditions. These conditions could affect the kinetics at which microorganisms are converting the substrates. Therefore, the best trade-off was pursued with both sets of parameters. In OP1 parameters, such as µ , , 𝑌 , 𝑌 , µ , , and 𝐾𝑠 presented an influence over all the model outputs, and Both methods were similar in measuring the contribution of the parameters to each model output, either by the first-order sensitivity index or the elementary effects. However, Sobol' method was more computationally expensive. For instance, it takes more than one hour to run 200 simulations per output, while the Morris method ran 2700 simulations per output in less than one hour. Comparing the two sensitivity methods, selecting a group of parameters to be estimated was possible.
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Table 2.2.6 reports the 14 most sensitive parameters of ADM1_ME that affect the model outputs of both operating conditions.

Parameter Estimation and Model Validation

The 14 most sensitive parameters were estimated using the fmincon function from MATLAB ® to solve an optimization problem whose objective function was given by Equation ( 2.2.33 ).

The weights 𝑊 and 𝑊 were manually adjusted to values of 1 and 1 × 10 . To guarantee Section 2. Dynamic Modeling of Biological Methanation for Different Reactor Configurations: An Extension of the Anaerobic Digestion Model No. 1 210 that the optimum was a global optimum, simulations were run ten times, adding 10% noise to each obtained parameter after the third iteration. The 𝑅𝑀𝑆𝐸 was minimized to a value of 10.67. Table 2.2.6 shows the estimated parameters and their respective confidence intervals.

Parameters such as 𝑌 , 𝑌 , 𝑌 , 𝑌 , 𝑌 , µ , , 𝐾𝑠 , 𝐾𝑠 and 𝐾 have confidence intervals according to their magnitude, and contain the initial value used in the estimation.

Parameters such as µ , , 𝐾𝐼 , , and 𝐾𝑠 have smaller confidence intervals, indicating that their values cannot change significantly, i.e., there is a 95% probability of finding their precise value in the given interval. The confidence intervals for µ , and µ , are comparable with the mentioned work (Blumensaat and Keller, 2005) and the values reported in the original ADM1 (Batstone et al., 2002). Reference of the initial value used in parametric estimation: ¶ (Batstone et al., 2002) * (Sun et al., 2021) Table 2.2.7 reports the statistical evaluation of the calibration of the ADM1_ME with the two operating conditions. Values higher than 0.90 and 0.91 were determined for 𝑅 with OP1 and OP2.

The variables 𝑞 , and 𝑝 , reported the highest values corresponding to 0.95 and 0.98, respectively. In general, the ADM1_ME showed a good fitting to the results of both operating conditions. Concerning the 𝑅𝑀𝑆𝐸, values lower than 0.38 and 2.52 were obtained with OP1 and OP2, where the variables 𝑞 , , 𝑞 , , 𝑝 , and 𝑝 , displayed the best results.

The model showed better accuracy on these variables, i.e., the variation in error when the model results and the operating conditions are compared is lower for these variables. The difference in the magnitude between the 𝑅𝑀𝑆𝐸 for OP1 and OP2 is related to the magnitude of Δ𝑞 , and Δ𝑝 , (numerators in Equation ( 2.2.33 )) , and the use of the weights 𝑊 and 𝑊 previously proposed (𝑊 = 1 × 10 𝑊 ) helps to counterbalance the differences in variable magnitude when the optimizer is applied. to note that the behavior of the experimental data obtained from the two operational conditions differs. For OP1, there is an increase in the CH4 content with a decrease in the CO2 content, demonstrating the conversion of CO2 into CH4. However, for OP2, a decrease in both was observed. This decrease represents the negative effect of increasing the syngas addition in the biological methanation process [START_REF] Andreides | Assessing the syngas biomethanation in anaerobic sludge digestion under different syngas loading rates and homogenisation[END_REF]. Even if different, the model fitted both datasets correctly. For OP1 (Figure 2.2.5-A), the model correctly fitted the experimental behavior of 𝑞 , and 𝑞 , . However, it presents difficulties in reproducing the experimental behavior of 𝑞 , . This could be due to unreported changes in the syngas composition, which was assumed to be the same for the simulations. Although there is no experimental data available for 𝑞 , , the model simulates 𝑞 , whose dynamic is reducing progressively to compensate for the increase in methane content. On the other hand, 

OP1 and (B) OP2.

The results were slightly similar in both cases, e.g., a final concentration of 5.9×10 -4 and 5.6×10 - 4 𝑔𝐶𝑂𝐷 𝐿 ⁄ were obtained for 𝑆 , with OP1 and OP2. Concentrations of 2.6×10 -2 and 2.5×10 - 3.47×10 -7 and 4.89×10 -7 𝑔𝐶𝑂𝐷 𝐿 ⁄ for 𝑆 , , whereas values of 1.74×10 -7 and 1.92×10 -7 𝑔𝐶𝑂𝐷 𝐿 ⁄ were reached for 𝑆 , .Concentrations of 6.84×10 -2 and 8.1×10 -2 𝑔𝐶𝑂𝐷 𝐿 ⁄ were obtained for 𝑆 , . However, values of 1.11×10 -5 and 3.20×10 -3 𝑚𝑜𝑙 𝐿 ⁄ were achieved for 𝑆 , with the OP1 and OP2. This is evident from Figure 2.2.5 in which CO2 is almost exhausted for OP1 at stages IV-V, but there is still some CO2 for OP2 at stage IV. both operating conditions corresponded to 2.25 and 1.00 𝑔𝐶𝑂𝐷 𝐿 ⁄ for 𝑆 , , 0.03 and 0.10 𝑔𝐶𝑂𝐷 𝐿 ⁄ for 𝑆 , , and 6.18×10 -3 and 0.00 𝑔𝐶𝑂𝐷 𝐿 ⁄ for 𝑆 , .

The behavior for 𝑆 , , 𝑋 , and 𝑆 , between OP1 and OP2 are not directly comparable. They differ due to the dependence on either 𝑂𝐿𝑅 or 𝐺𝐿𝑅 . However, it is observed that the ADM1_ME reproduces different operational conditions and provides information about components such as 𝑋 that are not easy to measure.

Additionally, the model respects the 𝐶𝑂𝐷 balance, which was calculated as proposed by [START_REF] Paudel | Hydrogen Production in the Anaerobic Treatment of Domestic-Grade Synthetic Wastewater[END_REF].

𝐶𝑂𝐷 + 𝐶𝑂𝐷 + 𝐶𝑂𝐷 = 𝐶𝑂𝐷 + 𝐶𝑂𝐷 + 𝐶𝑂𝐷 ( 1.2.38 )
where 𝐶𝑂𝐷 and 𝐶𝑂𝐷 are the loading in the liquid and gas streams; 𝐶𝑂𝐷 is the initial 𝐶𝑂𝐷 biomass; 𝐶𝑂𝐷 , , 𝐶𝑂𝐷 , , and 𝐶𝑂𝐷 , are the 𝐶𝑂𝐷 output in the liquid phase, the 𝐶𝑂𝐷 converted to produce biogas, and the assimilated 𝐶𝑂𝐷 for biomass growth, respectively.

For OP1, errors of 1.34, 2.88, 2.89, 2.45, 1.84, and 1.84% were obtained for the 𝐶𝑂𝐷 balance of the stages: reference, I, II, III, IV, and V, respectively. For OP2, the errors of the 𝐶𝑂𝐷 balance were 4.07, 3.90, 2.48, 2.07, and 1.14 for stages: reference, I, II, III, and IV. The small errors could be due to the initial concentrations of biomass in the reactor.

Concerning the mass transfer, to improve the biological methanation process by increasing the syngas added, it is necessary to maintain the mass transfer capacity of the system. In a 𝐵𝐶𝑅, the system must be kept in a homogeneous bubbly flow regime, where the bubble size is nearly constant and dictated by the sparger design and the system properties [START_REF] Hissanaga | Mass transfer modeling and simulation of a transient homogeneous bubbly flow in a bubble column[END_REF].

In a 𝐶𝑆𝑇𝑅, the impeller agitation speed must increase as the gas flow rates increases, ensuring high gas retention and complete dispersion (avoid flooding). In addition, in the case of aerated systems, the power consumption is lower than the non-aerated system due to the presence of cavities behind the agitator blade [START_REF] Gabelle | Effect of tank size on kLa and mixing time in aerated stirred reactors with non-newtonian[END_REF]. It is necessary to mention that this As previously mentioned, one of the limiting factors of the performance of biological methanation is the mass transfer process (Guiot et al., 2011;[START_REF] Luo | Anaerobic Digestion for Simultaneous Sewage Sludge Treatment and CO Biomethanation: Process Performance and Microbial Ecology[END_REF]Rafrafi et al., 2020). The behavior is explored for both operating conditions, OP1 and OP2. Figure 2.2.9 displays the dynamic behavior of the volumetric mass transfer coefficients for OP1 and OP2.

In both cases, the values of 𝑘 𝑎 , in the reference stage were 200 1 𝑑 ⁄ , as proposed in Batstone et al. (2002). However, 𝑘 𝑎 , in OP1 (Figure 2.2.9-A) depends only on the added gas flow rate.

Therefore, their values decrease in stage I and then increased progressively up to 394. 

Conclusions

An extension of the Anaerobic Digestion Model No. 1 (ADM1_ME) was proposed to represent the biological methanation process. The model extension was derived and assessed based on two operating conditions from the literature using two different bioreactor configurations:

bubble column reactor and continuous stirred tank reactor, with two different substrates:

glucose and a mixture of primary sludge and ticked-disintegrated waste activated, respectively.

Sensitivity analysis was performed by the Sobol' and Morris method to identify the candidate parameters to be estimated. In this case, 14 of the 26 previously selected parameters (mainly kinetic ones) strongly influenced the model outputs. Model validation was accurately performed where the variables 𝑞 , and 𝑞 , reported the best fitting (𝑅 > 0.74 and 𝑅𝑀𝑆𝐸 < 0.94) for OP1, while for OP2 all the variables presented similar fitting (𝑅 > 0.82 and 𝑅𝑀𝑆𝐸 < 5.15). Simulation results demonstrated that the proposed model could reproduce the gas outlet flow rates of the biological methanation process for 𝐵𝐶𝑅 and 𝐶𝑆𝑇𝑅 while providing information about the dynamics of the biomasses involved in the process. Additionally, the model was able to simulate different operating conditions and the use of various substrates, where an increase in CH4 and a decrease in CO2 content is expected. Further work will explore the application of the model in model-based optimization to maximize yields and productivities of CH4. Moreover, the model could be simulated for different conditions to generate data that could be used for machine-learning-based fault detection techniques.
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Introduction

The use of dynamic models allows us to gain a better understanding of different biological processes. One of those is biological methanation. In this process, the organic matter, such as agricultural residues, organic effluents from the food industry, animal manure, or waste/wastewater residues, are transformed through the synergistic work of a variety of microorganisms into a mixture of CH4 and CO2 (Dar et al., 2021). This process was first modeled using the Anaerobic Digestion Model No. 1 (ADM1) (Batstone et al., 2002). This model has been adapted to solve stiffness problems (Rosen and Jeppsson, 2006), variation of pH (Czatzkowska et al., 2020), and the inclusion of gas addition to obtain high-purity methane (Sun et al., 2021). However, managing the biological methanation process is still an arduous task due to the multiple molecules and different microorganisms involved. As a result, obtaining desired objectives, such as high yields, high productivity, low processing times, or low flow rates, remains difficult at an industrial scale, especially when it is necessary to optimize several of them simultaneously.

The use of dynamic models plays a crucial role in the design of control strategies, e.g., optimal control, adaptive control, or model predictive control (MPC) [START_REF] Luna | Optimal Control Applied to Oenological Management of Red Wine Fermentative Macerations[END_REF]Morales-Rodelo et al., 2020;Smets et al., 2004) to maintain the value of the variables of interest during the process or to optimize several variables. In other words, a multi-objective optimization (MOO). When we talk about MPC, we refer to optimal controllers, i.e., the control action responds to the optimization of a criterion (cost function) related to the system's future behavior determined from the dynamic model (Camacho and Bordons, 2007).

MOO involves multiple criteria decision-making. It implies optimizing problems where there are more than one variable to be optimized simultaneously, and those variables are usually conflictive (Chang, 2015;Vertovec et al., 2021). In this context, an optimal solution set that fulfills the desired conditions of the conflicting variables is established and selected as Pareto optimal set (POS). If another solution does not dominate a solution point, it is considered a Pareto Optimal Point (POP). Therefore, it is ideal to have the highest number of Pareto optimal solutions [START_REF] Deb | A fast and elitist multi-objective genetic algorithm: NSGA-II[END_REF].
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This work aims at proposing a Multi-Objective Dynamic Optimization (MODO) to find the trade-off between the maxima methane yield and productivity of the biological methanation process through a Pareto Optimal Set (POS). Afterward, a POP is selected and used as the optimal reference trajectory. Then, a dynamic optimization is formulated in terms of a MPC to modify the inlet liquid and gas flow rates to achieve the optimal values of yield and productivity obtained from the POP.

Biological Methanation Model Extension Proposal

The Anaerobic Digestion (AD) process can be divided into four phases: hydrolysis, acidogenesis, acetogenesis, and methanogenesis (Dar et al., 2021). In the first phase, the fermentative bacteria excrete enzymes that hydrolyze complex organic polymers (carbohydrates, proteins, and lipids) into soluble monomers, such as monosaccharides, amino acids, and long-chain fatty acids. In the second phase, these monomers are transformed into volatile fatty acids (𝑉𝐹𝐴), such as acetate, propionate, and butyrate. In the third phase, all the 𝑉𝐹𝐴 are transformed into acetate, H2, and CO2. The fourth phase involves the conversion of these components by methanogenic archaea into biogas, i.e., a mixture of CH4 and CO2. Finally, this process is extended to biological methanation, including methane production by the biological activity of methanogenic bacteria converting the added H2 and CO.

The model was based on experimental data from the literature (Sun et al., 2021). The entire experiment was carried out in a bioreactor with a working volume 𝑉 of 37. 

Multi-objective Optimization

Several variables can be optimized in biological processes, yields, productivities, process times, etc. Most of these variables are often conflicting. Therefore, it is necessary to find a trade-off between them; this is called a multi-objective optimization (MOO) problem. In this case, multiple optimal solutions that satisfy the desired conditions of both variables can be found. This is known as the POS. In general, a MOO can be formulated as follows, 

Dynamic Optimization as a Model Predictive Control

MPC is one of the most widely used control methods in the industry (Morales-Rodelo et al., 2020;Yamashita et al., 2016). A MPC is an advanced control strategy that solves an optimal control problem at every sampling time. The control uses an explicit model to predict the system's outputs at a future time by calculating the future control sequences to minimize a cost function [START_REF] Giraldo | Tuning of Model Predictive Controllers Based on Hybrid Optimization[END_REF]. The dynamic optimization (control problem) determines the future control value that minimizes a specified performance index, i.e., the input variables, that minimizes the following objective function, where 𝑢 is the vector of the control variables, 𝐻 and 𝐻 are the prediction and control horizons, 𝐽(𝑡 + 𝑗|𝑡) refers to the output prediction calculated at time instant 𝑡 + 𝑗 using the information available at time instant 𝑡, 𝐽 * holds for the reference trajectory, enables to reach the set point. These variables are determined by the MOO, ∆𝑢(𝑡 + 𝑗|𝑡) is the control move at time instant 𝑡 + 𝑗 calculated using information available at time instant 𝑡.

A MODO strategy is proposed to determine the optimal values of the objective functions (Figure 2.3.1). This strategy entails five steps:

Step 1 -Model definition: Proposition of the dynamic model representative of the biological process.

Step 2 -Definition of the multi-objective optimization problem: Definition of the objective functions 𝐽 , … , 𝐽 to be maximized/minimized by the MOO optimization, the vector of the control variables 𝑢, the constraints 𝜆 and 𝜓 , and the bounds 𝑢 and 𝑢 of the control variables in the MOO optimization.

Step 3 -Selection of the Pareto optimal point (POP): Determination of the Pareto optimal set 𝐽 * , … , 𝐽 * and selection of the POP to be used as the reference trajectory in the dynamic optimization.

Step 4 -Definition of the dynamic problem with a single weighted objective: Formulation of an objective function considering the previously identified POP in terms of a MPC problem.

To indicate the initial guess values 𝑢 , the constraints 𝜆 and 𝜓 , and the bounds 𝑢 and 𝑢 of the control variables in the dynamic optimization.

Step 5 -Implementation of the optimization: Execution of the dynamic optimization and determination of the optimal values of the control and optimized variables at each time. 

Multi-Objective Optimization

In this study, the simulations were run using an Intel ® Core i7 8665U et al., 2019).
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The MOO was performed for stages I-V. 60 POP were computed for each stage. In which 20, 22, 20, 28, and 23 iterations were executed in 14.65, 19.01, 23.15, 38.29, 56.33 

Multi-Objective Dynamic Optimization

To perform the dynamic optimization, the patternsearch function from MATLAB ® was used.

The dynamic optimization problem was proposed as, where 𝑌 (𝑡) and 𝑃 (𝑡) were calculated by using ( 2.3.6 ) and ( 2.3.7 ). 𝑌 * , and 𝑃 * are the POP values for yield and productivity computed by the MOO, ∆𝑞 (𝑡) and ∆𝑞 (𝑡) represent the differences between the inlet gas and liquid flow rates before and after each step in the dynamic optimization. 𝑊 , and 𝑊 , are the parameters that weight the importance of the control effort for each input in the optimization.

Five cases were studied to assess the dynamic optimization: 𝐿/𝑑 in case 1 stage V to 8.01×10 3 𝐿/𝑑 in stage V.

In case 5, the 𝑌 , 𝑃 , and the 𝑞 follow the behavior of case 2 in stage I, case 3 in stages II and III, case 4 in stage IV, and case 2 in stage V. However, the 𝑞 differs for all cases and stages.

Table 2.2.4 reports the obtained values for 𝑌 , and 𝑃 , as well as a ratio of their respective values concerning case 1 (literature value). Values larger than one show that the MODO is better than the literature value. For case 2, the 𝑌 was 0.99 times lower than that for case 1 in stage I and 0.95 times in stage V. On the other hand, the 𝑃 increases 3.72 times and decreases to 2.34 times from stages I to V, respectively. Concerning case 3, the 𝑌 ratio varied between 1.05 and 0.99 times, while the 𝑃 ratio changed between 3.26 and 2.13 times concerning without MODO (case 1) for stages I and V, respectively. For case 4, the 𝑌 was 1.08 times higher than the 𝑌 for case 1 in stage I and 1.01 times in stage V. On the other hand, the 𝑃 increased between 1.28 and 1.44 for the different stages.

For case 2, the 𝑞 increased slightly, ranging from 1.9 𝐿/𝑑 (case 1) to a value up to 8.4 𝐿/𝑑 in stage V. However, the 𝑞 needed was higher, ranging from the values reported in Table 2.3.1 (case 1) to values between 2.69×10 3 and 9.99×10 3 𝐿/𝑑 between stages I and V. In case 3, to maintain the maximum 𝑌 and 𝑃 , the MODO suggested keeping the 𝑞 at 7.0 𝐿/𝑑 during all stages while changing the 𝑞 between 2.73×10 3 and 8.44×10 

Conclusions

This work presented a MODO strategy for the biological methanation process based on the dynamic model ADM1_ME. Optimizations for two objectives were performed: maximization of 𝑌 and 𝑃 by modifying the inlet liquid and gas flow rates. The proposed strategy showed the conflicting behavior of both objectives. Five case studies were compared, it was observed that the maximization of 𝑃 lowers the 𝑌 ratio and vice versa. Case 5 reported a switching strategy between objectives, which allows us to demonstrate the robustness of the process and the well-accounted adaptations of the input variables in simulations. Additionally, it was demonstrated that both input variables have a role in MODO. For instance, the variable inlet gas flow rate made a higher effort than the inlet liquid flow rate. This was observed in case 5, where the behavior of the inlet gas flow rate differed in all cases. These results show the feasibility of the MODO strategy and its use for multiple control objectives.

Introduction

In Anaerobic Digestion (AD), organic matter is transformed by the synergistic work of different microorganisms into CH4 and CO2 through four steps: hydrolysis, acidogenesis, acetogenesis, and methanogenesis. The biogas contains 50-75% CH4 and 25-50 % CO2 (Iglesias et al., 2021).

Biological methanation uses microorganisms to convert the CO2 in the biogas from AD and syngas (a mixture of H2, CO, and CO2) to obtain high-purity CH4. Nevertheless, this process could also be used to produce value-added products such as acetate [START_REF] Chaikitkaew | Simultaneous biogas upgrading and acetic acid production by homoacetogens consortium enriched from peatland soil[END_REF].

Acetate serves as a chemical platform in the textile, polymer, pharmaceutical, and food industries [START_REF] Martín-Espejo | Sustainable routes for acetic acid production: Traditional processes vs a low-carbon, biogas-based strategy[END_REF]. However, controlling this type of process is an arduous task due to the multiple reactions and microorganisms involved. As a result, obtaining desired performances of yields or productivities at an industrial scale remains difficult, mainly when it is necessary to optimize several of them simultaneously. Dynamic models play a crucial role in the design of control strategies. For instance, Model Predictive Control (MPC) (Morales-Rodelo et al., 2020) is implemented to maintain or optimize several variables. MPC refers to control actions that respond to the optimization of a criterion related to the system's future behavior determined by the dynamic model (Camacho and Bordons, 2007). Multi-Objective Optimization (MOO) implies optimizing problems where there is more than one objective to be optimized simultaneously. These objectives are usually conflictive (Vertovec et al., 2021).

This work aims at proposing a Multi-objective Dynamic Optimization (MODO) to maximize yield and productivity of the biological methanation process regarding two potential products:

CH4 and acetate. The proposed dynamic optimization approach used a MPC with two control variables corresponding to the inlet liquid and gas flow rates. MPC uses the Pareto Optimal Set (POS), where each solution is considered a Pareto Optimal Point (POP). The MODO strategy's robustness is analyzed by switching between the optimized values for CH4 and acetate.

Multi-Objective Dynamic Optimization as Control Strategy

A MODO strategy was proposed in previous work [START_REF] Acosta-Pavas | Dynamic Modeling of Biological Methanation for Different Reactor Configurations: An Extension of the Anaerobic Digestion Model[END_REF] to determine the optimal values of the objectives. This strategy entails the following steps:

Section 4. Switching Multi-Objective Dynamic Optimization (MODO) for the Production of Value-Added Products
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Step 1-Model definition: Proposition of the dynamic model to represent the biological process.

Step ) is also subject to Equation ( 2.4.2 ).

Step 5 -Implementation of the optimization: Execution of the dynamic optimization and determination of the optimal values of the control and optimized variables at each time.

Multi-objective Dynamic Optimization in Biological Methanation Process

The main goal was to optimize yields (𝑌 , 𝑌 ) and productivities (𝑃 , 𝑃 ) of two valueadded products, CH4 and acetate, to demonstrate that a control strategy could help to improve the biological methanation process. Two manipulated variables were proposed for the optimization: the inlet gas 𝑞 and liquid 𝑞 flow rates.

Step 1: The model employed for the simulation corresponds to an extension of the Anaerobic Digestion Model No. 1 (ADM1_ME) to consider the conversion of H2 and CO to improve CH4 production, which was proposed in previous work (Acosta-Pavas et al., 2022). The model was built upon experimental data from the literature (Sun et al., 2021). The experiment was carried out in a bubble column reactor with a working volume of 37. The paretosearch function from MATLAB ® was used to obtain the POS for each stage. In this study, the simulations were run using an Intel® Core i7 8665U 2.11 GHz, 16 GB RAM computer.

Step 3: For the selection of the POPs, the POS was computed by the MOO for each of the V stages. In the MOO for CH4 maximization, 60 POP were obtained for each stage. On the other hand, In the MOO for acetate maximization, 60 POP points were computed for stages I, II, and V, while 29 and 35 POP were computed in stages III and IV. ( 2.4.12 ) where ℎ = 𝐶𝐻 and acetate. The optimization was also subject to the constraints in Equation ( 2.4.10 ). 𝑌 * and 𝑃 * are the POP values for yield and productivity computed by the MOO, ∆𝑞 (𝑡) and ∆𝑞 (𝑡) the differences between the inlet gas and liquid flow rates before and after each step in the dynamic optimization. 𝑊 , and 𝑊 , are the parameters that weight the importance of the control effort term in the optimization. In all cases, the initial values for both manipulated variables were 1.0 𝐿/𝑑. 𝐻 and 𝐻 were considered to have equal values and were equivalent to the final time of each stage.

Step 5: Five cases were studied to assess the dynamic optimization. Case 1 was the literature value (data without MODO). For the remaining cases, we wanted to demonstrate first a comparison between the direct use of the POP in simulation (case 2) and the inclusion of POP into a MODO (case 3). Then, a switching strategy was proposed between the maximization for 𝑑 CH4 (case 3) and 𝑑 acetate (case 4). Case 5 verifies the robustness of the MODO, switching between the CH4 maximization in stages I-III and acetate maximization in stages IV-V. For cases 2-5 the weights 𝑊 , and 𝑊 , were manually adjusted to values of 1 × 10 . 
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When 𝑑 for CH4 was maximized, 𝑃 increased between 3.26 to 2.13 times from stage I to V concerning case 1, while 𝑌 was maintained similarly. On the other side, when 𝑑 for acetate was maximized, 𝑃 is increased between 669 to 680 times from stage I to V concerning case 1, while 𝑌 is increased until 138 to 228 times from stage I to V.

Conclusion

A MODO strategy was successfully applied over a biological methanation process based on the dynamic model ADM1_ME. The feasibility of using Paretos to find the trade-off between objective functions such as yields and productivities of CH4 and acetate was demonstrated, and the subsequent application of a dynamic optimization that allows an improvement in the response by reducing approximately two days the time in which the steady state is reached in the stage changes. Additionally, a reduction in gas flow rates up to 1.5×10 3 𝐿/𝑑 was achieved with dynamic optimization. It demonstrated the robustness of the MODO strategy to switch between products of interest, CH4 and acetate. It was evidenced the key role of the inlet liquid and gas flow rates as control variables due to its ability to adapt well to each case and stage.

Although these results show the feasibility of the proposed strategy, it is important to note that these are simulation results, and the microorganism's adaptation to the proposed switching conditions might differ. However, this work showed the possibility of optimizing the production of these two products more smoothly and the change of objectives.

Introduction

The successful implementation of biological processes requires optimization to be competitive against chemical processes in economic terms. Emerging bioprocesses such as biological methanation can benefit from multi-objective optimization by maximizing or minimizing multiple variables of interest simultaneously.

Biological methanation or Biomethanation is a process in which the biogas produced through the Anaerobic Digestion (AD) is upgraded by the biological conversion of CO2 using syngas (a combination of H2, CO, and CO2) to obtain high-purity CH4 (Rafrafi et al., 2020). The biogas produced in the AD contains between 50 -75% of CH4, 25 -50 % of CO2, and 2-7% water vapor (Laguillaumie et al., 2022). Through biological methanation, the biogas can be upgraded into biomethane (95 -99 %) while removing CO2 with the addition of H2 or syngas (CO/H2) (Sun et al., 2021). The hydrogenotrophic methanogens with CO2 consumption transform the H2. The CO can be transformed indirectly into H2 by carboxydotrophic hydrogenogenesis, then into acetate by CO-acetogenesis and CO-homoacetogenesis, and finally transformed into CH4 through hydrogenotrophic and acetoclastic methanogenesis (Guiot et al., 2011). Other works have shown that biological methanation can also be used to produce acetate (Laguillaumie et al., 2022), a molecule of interest that could help make this process more economically profitable. Based on this complex biological system, managing the biological methanation process is still an arduous task. Therefore, achieving desired objectives such as high productivities, high-profit margins, or low flow rates remains difficult at an industrial scale, especially when it is desired to optimize several variables simultaneously.

Multi-Objective Optimization (MOO) involves optimizing problems where there is more than one objective to be optimized simultaneously, and these objectives are usually conflictive. The use of dynamic models plays a crucial role in designing control strategies. For instance, Model

Predictive Control (MPC) (Morales-Rodelo et al., 2020) is implemented to maintain or optimize several variables simultaneously (e.g., productivities and yields). MPC refers to control actions that optimize a criterion in the system's future behavior, which is determined by the dynamic model (Camacho & Bordons, 2007). Economic MPC (EMPC) has recently been Section 5. Economic Multi-Objective Dynamic Optimization (EMODO) as a Decision-Making tool in Biological Methanation Process
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proposed incorporating a general cost function or performance index in its formulation to consider economic criteria in process optimization (Ellis et al., 2017).

MOO has been applied in bioprocess to find the trade-off between yields and productivities [START_REF] Nimmegeers | Interactive Multi-objective Dynamic Optimization of Bioreactors under Parametric Uncertainty[END_REF]. In the AD considering the determination of Pareto Optimal Sets (POS) to find the trade-off between the green degree as environmental impact and net present value as an economic aspect (Li et al., 2018). In biological methanation, MOO has been applied

to minimize energy consumption and maximize the green degree and CH4 production [START_REF] Yan | Dynamic Modeling of Biological Methanation for Different Reactor Configurations: An Extension of the Anaerobic Digestion Model[END_REF]. However, these works not consider the dynamic optimization of the process, improving the performance of economic objectives.

This work aims at implementing an Economic Multi-Objective Dynamic Optimization (EMODO) strategy as a decision-making tool for the biological methanation process to guarantee the maximization of the 𝐺𝑎𝑖𝑛 and 𝑃𝑟𝑜𝑓𝑖𝑡 𝑚𝑎𝑟𝑔𝑖𝑛 . The 𝑃𝑟𝑜𝑓𝑖𝑡 𝑚𝑎𝑟𝑔𝑖𝑛 was calculated based on changes in market prices using glucose, H2, and CO as substrates and CH4

and acetate as products. The 𝐺𝑎𝑖𝑛 was calculated with the price of CH4 and acetate production.

POS associated with three process stages were determined through MOO. Each POS solution was considered a Pareto Optimal Point (POP). The POS is considered the first part of the decision-making tool, where it is necessary to select the best POP that maximizes the 𝐺𝑎𝑖𝑛 and 𝑃𝑟𝑜𝑓𝑖𝑡 𝑚𝑎𝑟𝑔𝑖𝑛. In dynamic optimization is used a MPC, which is referred to as the second part of the decision-making tool that optimizes the performance of economic objectives with two control variables corresponding to 𝑞 and 𝑞 . To verify the efficacy of the EMODO strategy, the biological methanation process is simulated considering disturbances of ±20 % in the substrates, sugar, H2, and CO cost, and the selling price of the products CH4 and acetate.

Economic Multi-Objective Dynamic Optimization (EMODO)

Several variables can be optimized in the biological methanation process: yields, productivities, process times, etc. Most of these variables are often conflicting To propose economic variables, literature values of 3.40×10 -4 ,1.63×10 -4 , 5.96×10 -4 , and 1.63×10 -3 𝐸𝑈𝑅/𝑔𝐶𝑂𝐷 were suggested for the cost of sugar, syngas, the selling price of CH4, and selling price of acetate, respectively (see Annexes Section 3). Then, to verify the efficacy of the EMODO strategy, selling prices were simulated, considering disturbances in the price.

First, an increase of 20% (+20%) in the selling price of CH4 and a reduction of 20% (-20%) in the selling price of acetate were considered from 70-100 days (Disturb 1). Then, an increase of 20% in the cost of syngas was simulated from 190-210 days (Disturb 2). Finally, a decrease of 20% in the selling price of CH4 and an increase of 20% in the cost of syngas were considered from 260-290 days (Disturb 3). At each stage, one POP was selected, which corresponded to the maximization of the Euclidean length (𝑑 ) for the 𝐺𝑎𝑖𝑛 and the 𝑃𝑟𝑜𝑓𝑖𝑡 𝑚𝑎𝑟𝑔𝑖𝑛 (red squares in Figure 2.5.1). For all the stages, 𝑑 was calculated as the distance from the origin, using a normalization as in Equation ( 2.5.11 ). Step 5 -Implementation of the optimization: Two cases were analyzed. Case 1 corresponded to the use of the POP identified in step 3 and applied directly in the simulation with the ADM1_ME (Pareto results). Case 2 referred to dynamic optimization as a control strategy (Dynamic opt). The weights 𝑊 , and 𝑊 , were manually adjusted to values of 1 × 10 . The prediction (𝐻 ) and control (𝐻 ) horizons were considered to have equal values and were equivalent to the final time of each stage (Table 2.5.1). Optimization was performed with the patternsearch algorithm in MATLAB ® .

The results of the optimization are displayed in Figure 2.5.2. In both cases, the 𝐺𝑎𝑖𝑛 increased at each stage change, while the 𝑃𝑟𝑜𝑓𝑖𝑡 𝑚𝑎𝑟𝑔𝑖𝑛 varied between 30 and 35% (Figure 2.5.2-C).

For both economic variables, it is observed that the dynamic optimization improved the model's response, smoothing the transition between stages, which is ideal in this type of biological process to avoid additional disturbances. From a 𝐺𝑎𝑖𝑛 point of view, it can be increased by maintaining similar 𝑃𝑟𝑜𝑓𝑖𝑡 𝑚𝑎𝑟𝑔𝑖𝑛 .

However, it should be noted that a significant increase in 𝑞 is needed to achieve these changes, as in stage II, where values of 91 𝐿/𝑑 were obtained.

Conclusions

The EMODO strategy demonstrates to be a good alternative to obtain the best 𝐺𝑎𝑖𝑛 and 𝑃𝑟𝑜𝑓𝑖𝑡 𝑚𝑎𝑟𝑔𝑖𝑛 by manipulating 𝑞 , and 𝑞 . These variables played a key role and ranged between optimal values of 22 -91 𝐿 𝑑 ⁄ and 4.00 and 4.22 𝐿 𝑑 ⁄ through all stages. The proposed strategy shows the conflicting behavior of both economic objectives and the high dependence of the substrates added to the process (the three POS, clearly differentiated for each stage). The application of dynamic optimization improves the response, smoothing the transitions between stages. The efficacy of the EMODO strategy is demonstrated with a successful adaptation to three disturbances in the substrate's cost and the product's selling price. These results show the feasibility of the proposed methodology as a decision-making tool and its use for multiple control objectives.
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Introduction

Biological methanation is a bioprocess recognized for its potential to produce methane (Rusmanis et al., 2019). In this process, the biogas produced through the Anaerobic Digestion (AD) is upgraded by the biological conversion of CO2 and syngas (a combination of H2, CO, and CO2) to obtain high-purity CH4 (Rafrafi et al., 2020). The biogas produced in the AD contains between 50 -75% of CH4, 25 -50 % of CO2, and 2-7% water vapor. The hydrogenotrophic methanogens transform the H2 with CO2 consumption. The CO can be converted indirectly into H2 by carboxydotrophic hydrogenogenesis, then into acetate by COacetogenesis and CO-homoacetogenesis, and finally transformed into CH4 through hydrogenotrophic and acetoclastic methanogenesis (Guiot et al., 2011).

Biological methanation involves a large number of microorganisms interacting simultaneously.

Small variations in the inlet flow rates, or variations in operational conditions, such as changes in the temperature or pH, can generate significant variations in process outputs, resulting in a product with undesired specifications (biogas with low CH4 content), which at the industrial level imply high operational costs.

Soft sensors are models that estimate a hard-to-measure property using relatively easy measurements (Kazemi et al., 2020) Although several of these machine learning models have been successfully applied over the AD process, the application to model biological methanation process is still unexplored.

The present study aims to compare several machine learning models to detect small disturbances respect to deviations from the optimal operation of biological methanation. The optimal operation refers to the optimal values of the inlet liquid and gas flow rates determined by the Multi-objective Dynamic Optimization (MODO) strategy. Additionally, disturbances were assumed to occur from variations in the inlet liquid and gas flow rates.

The remainder of the paper is as follows. Section 6.2 presents the dynamical biological methanation model used to generate the datasets and explains the optimal operation and training dataset generations. Section 6.3 describes the experimental setup and the discussion of the results. Finally, Section 0 presents the main conclusions of the study and future research lines.

Biological Methanation Model and Optimization

This section describes the dynamic model and the optimization approach used to find the optimal operation of the biological methanation process. Finally, the explanation of disturbances in inlet liquid and gas flow rates is presented to generate the datasets.

The simulations of the biological methanation process were carried out using the ADM1_ME.

It was considered a bubble column reactor (𝐵𝐶𝑅) with a working volume of 37.5 𝐿 and a hydraulic retention time (𝐻𝑅𝑇) of 20 days operating at 37°C for 330 days. The organic loading rate (𝑂𝐿𝑅) varied over time in all stages. The reference stage corresponded to the simulation without gas addition, with a 𝑞 of 1.88 𝐿/𝑑. 𝑞 , 𝑞 , and the gas loading rate (𝐺𝐿𝑅) were optimized by the MODO strategy for stages I-III. In the MODO strategy, the weights 𝑊 , and 𝑊 , were manually adjusted to values of 1×10 -7 .

𝐻 and 𝐻 were considered to have equal values and were equivalent to the final time of each stage (Table 2.6.1).

ADM1_ME Disturbances and Dataset Generation

To train the supervised learning algorithms for fault detection in the biological methanation process, two datasets were constructed using the ADM1_ME. In the first dataset (dataset 1), disturbances of ±10% (10% HL, 10% LL), ±15% (15% HL, 15% LL), and ±20% (20% HL, 20% LL) concerning the optimal operation were performed in 𝑞 . LL and HL refer to the lower and higher liquid disturbances concerning the operational operation. Similarly, in the second dataset (dataset 2), disturbances of ±10% (10% HG, 10% LG), ±15% (15% HG, 15%

LG), and ±20% (20% HG, 20% LG) concerning the optimal value were performed in 𝑞 .

LG and HG refer to the lower and higher gas disturbances concerning the operational operation. 

Results and Discussion

The two datasets described in the previous section have been used to assess the performance of the machine learning algorithms to model the biological methanation process:

-Decision Tree CART -Random Forest (RF)

-Gaussian Naïve Bayes (GNB)

-k-Nearest Neighbors (k-NN) -Quadratic Discriminant Analysis (QDA) -Linear SVM -Quadratic SVM -Cubic SVM -Radial Basis Function (RBF) SVM -Back Propagation Neural Network (BPNN)
All the algorithms were trained using the Scikit-Learn Python module for machine learning.

The two datasets have been generated ensuring an equilibrated data proportion at each Section 6. Fault Detection in Biological Methanation Process using Machine Learning: A Comparative Study of Different Algorithms 271 disturbance. Therefore, a random 80/20 split was performed in both datasets, 80% (1853 ×28) of the dataset was used for training and 20% (464 × 28) for testing. A fivefold cross-validation with three repetitions was performed to guarantee the correct distribution of the instances (classbalanced). It is important to highlight that both datasets were normalized to train the SVM models.

An optimization was performed to determine the best optimizer and model hyperparameters to evaluate the best SVM between the linear, quadratic, cubic, and RBF SVM. In particular, the parameter 𝐶 ranged from 15 to 25 with a step size of 1.0, the bias term in the linear SVM ranged from 0.001 to 3 with a step size of 0.5, and the gamma value ranged between the options auto and scale. The accuracy and F1-score measures have been used as model performance metrics.

Accuracy is the ratio of correct predictions across the total population size. The F1 score is a weighted combination of precision and recall, with values between 0 and 1. A value of 1 indicates a perfect performance in terms of precision and recall, while a value of 0 indicates otherwise [START_REF] Pezoulas | Machine learning and data analytics[END_REF]. In this paper, the goal is to use SVM models to detect deviations from an optimal region at which biological methanation can operate. For this study, the optimal conditions have been computed by Multi-objective Dynamic Optimization (MODO) and disturbances were assumed to occur from variations in the inlet liquid flow rates.

Support Vector Machine

SVM is a machine learning method for regression and classification (Kazemi et al., 2020). The advantages of SVM are its simplicity, easy implementation, and the theoretical proof that it will find a hyperplane that separates the data [START_REF] Kowalczyk | Support Vector Machines Succintctly[END_REF]. The use of SVM relies on the training with a given dataset (or inputs) having associated classes (or output values) for solving pattern recognition [START_REF] Vapnik | Support vector method for function approximation, regression estimation, and signal processing[END_REF]. This dataset is in the form of vectors or matrices. It means that the input space X is a subset ϵ ℛ × . Then, this dataset is mapped into a non-linear space Φ. By applying this mapping procedure, non-linear problems could be solved in linear space [START_REF] Cristianini | An Introduction to Support Vector Machines and Other Kernel-based Learning Methods[END_REF]Kazemi et al., 2020), which allows to obtain a high dimensional feature space Φ(𝑋) where the prediction of the desired vector of outputs 𝑠 in ℛ is possible [START_REF] Bzdok | Machine learning: supervised methods[END_REF][START_REF] Cervantes | A comprehensive survey on support vector machine classification: Applications, challenges and trends[END_REF].

The SVM optimization problem is to find the optimal hyperplane that separates the data correctly. Then, hyperplanes can be used to build a classifier that allows to predict class to which an observation belongs based on its features [START_REF] Bzdok | Machine learning: supervised methods[END_REF]. Thus, a hyperplane can be understood to divide a p-dimensional space into two halves [START_REF] Kowalczyk | Support Vector Machines Succintctly[END_REF]. The problem foundation of Equation ( 2.7.2 ) relies on convex quadratic programming. The Lagrangian function is utilized to integrate the constraints into the cost function, and the dual representation could be solved as in [START_REF] Xiao | Gray-Related Support Vector Machine Optimization Strategy and Its Implementation in Forecasting Photovoltaic Output Power[END_REF], ( 2.7.4 ) with the Kernel function 𝐾, the inner product can be computed. The key to this approach is finding a Kernel function that can be evaluated efficiently. Some of the most used Kernel functions are [START_REF] Cervantes | A comprehensive survey on support vector machine classification: Applications, challenges and trends[END_REF]: Linear, polynomial, and RBF Kernels. For 𝑋 in stage V, values closed to 0.03 𝑔𝐶𝑂𝐷 𝐿 ⁄ were reached for disturbance of 20% LL, optimal point, and disturbance of 20% HL, respectively. It is concluded that the process presents a higher sensitivity to disturbances in the inlet liquid flow rate. Therefore, 𝑞 is proposed as a disturbance variable to generate data for the SVM models. 
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A dataset of 80 points was selected as the test dataset (80×15). This dataset was built using 20 points from the optimal region and 10 points from each region of the disturbance in the inlet liquid flow rates. These points came from random regions which differ from those selected for training.

7.5 Results and Discussion

Training and Test of SVM Models

The fitcecoc function from MATLAB® was used to train the SVM models. Gaussian kernels for the RBF model and Polynomial kernels with orders 2 and 3 for quadratic and cubic models were used for each training set. Finally, cross-validation was performed with 5-Folds.

Accuracies of 0.96, 0.96, and 0.90 for the quadratic, cubic, and RBF models were obtained in the training of the SVM models. Afterward, the test evaluation was performed for each SVM model. Table 2.7.4 summarizes the results. The quadratic, cubic, and RBF SVM models obtained accuracies of 0.88, 0.81, and 0.88. For quadratic SVM, 5 of the 20 optimal points were predicted as 10% LL and 5 of the 10 points in the 20% HL disturbance were predicted as 10% LL. For the cubic SVM model, 5 of the 20 points at the optimal were predicted as 10% LL and 5 of the 10 points in the 20% HL disturbance Section 7. Use of Support Vector Machine to Fault Detection in Biological Methanation Process 288 were predicted as 20% LL. For RBF SVM, 5 of the 10 points in the 10% LL disturbance and 5 of the 10 points in the 20% HL were predicted as optimal.

Fault Detection Based on SVM Models

Once the SVM models have been trained and tested, we analyzed pairs of features using the cubic SVM model to determine possible features to include or exclude. 2D visualizations were computed for each disturbance. The goal was to find pairs of features that allow faster detection of faults in the biological methanation process. In the case of 𝑋 and 𝑋 the regions in the 2D visualization are not separable, which makes it challenging to use for predictions. In the case of 𝑋 and 𝑋 , there is a separation with minor differences between regions. For cases where 𝑆 , is used with 𝑞 , or 𝑋 , the graphics show a remarkable separation. To highlight the implementation, let us consider the following two points from the test dataset (white points in In these cases, with the evaluation of the 2D visualizations, it is observed that the points fall in the 15% LL region, which is consistent with the expected predictions. Nevertheless, it must be careful when performing fast evaluations, e.g., in the 2D visualizations for pairs of features 𝑆 , and 𝑋 , it could be assumed that the test point corresponds to a 10% LL disturbance. Nevertheless, it is clearly observed (zoom in It is evident that combinations of features, such as 𝑆 , , 𝑞 , , and 𝑋 allow adequate separation of the optimal and disturbances regions. Therefore, those features can be considered in reducing the number of features for training cubic SVM models. Those results can be used to propose a tool for monitoring the biological methanation process and detecting deviations in 𝑞 , and 𝑞 , , using features such as 𝑆 , and 𝑋 , which can be measured online.

Conclusions

The detection of deviations from the optimal operation points in the biological methanation process using three SVM models was determined. The quadratic and cubic SVM achieved accuracies higher than 0.96 for the training. The RBF SVM obtained accuracies higher than 0.89. In the test evaluation, all SVM achieved accuracies higher than 0.81. A 2D visualization considering pairs of features in the cubic SVM training for fast fault detection when disturbances of 𝑞 and 𝑞 occurred showed that 𝑆 , , 𝑞 , , and 𝑋 could provide an

Chapter 3 Conclusions and Perspectives Section 1 Conclusions & Perspectives

The general objective of this thesis was to develop a model for biological methanation (biomethanation) that can be used to optimize process operation, especially for producing value-added products such as methane and acetate at the industrial scale. The approach was based on model-based control. During this work, a dynamic model was proposed to implement control strategies and develop data-driven soft sensors to detect faults.

In literature, most of the models and optimization strategies have been developed and applied over the Anaerobic Digestion (AD) process, leaving the biological methanation unexplored.

Just a limited number of models were found for biological methanation (Grimalt-Alemany et al., 2020;Santus et al., 2022;Sun et al., 2021;Tsapekos et al., 2022), while model-based control has not been applied to biological methanation yet.

Biomethanation models did not consider some essential aspects, such as the transformation of CO and CO2, the use of different substrates, and the effect of syngas addition on the gas-liquid mass transfer process.

In this context, Chapter 1 presented a literature review that addressed aspects of the modeling, optimization, and monitoring of biological processes, emphasizing biological methanation.

From Section 1, it was possible to have a detailed explanation of the biological methanation, presenting some of the microorganisms involved, factors influencing its behavior, and different configurations reported in the literature. As dynamic modeling was the core of this thesis, Section 2 studied different dynamic models for AD and biological methanation. To implement the optimization of the process, Section 3 presented model-based controls as a powerful tool to maintain optimal profiles in non-linear systems, among which the MPC was highlighted. The principle of the MPC relies on tracking a reference trajectory based on optimizing a criterium (Camacho and Bordons, 2007). In our case, this criterium was based on the simultaneous maximization of yields, productivities, or economic variables. Therefore, this section also showed strategies such as Pareto Optimal Set to calculate these reference trajectories considering multiple objectives.

Another aspect that has not yet been studied is the detection of faults in the biomethanation process. Consequently, we addressed in Section 4 the use of soft sensors as fast tools for detecting faults in the biological methanation process. Specifically, we focused on presenting is based on multiple-criteria decision-making, involves more than one objective to be optimized simultaneously (Chang, 2015).

Different model-based optimization techniques have been used to analyze and improve the biological process. However, this kind of optimization begins with experimentation that enables an understanding of biological processes. Unfortunately, it implies that the optimization of biological processes are time-consuming and economically expensive. Modeling and simulation are a good manner to optimize these biological processes without the need to develop an experimental setup (Mitsos et al., 2018).

Therefore, a Multi-Objective Dynamic Optimization (MODO) was built to develop the optimization of the biological methanation process, where some questions of Section 3 were answered:

-Can the multi-objective optimization approaches improve biological methanation?

This was addressed for the first time with a MODO strategy to maximize simultaneously two objective functions, yields and productivities. It was computed using a Multi-Objective Optimization (MOO) based on Pareto Optimal Set. MODO strategy use as control variables the inlet liquid 𝑞 and gas 𝑞 flow rates.

-How to implement a computationally feasible model-based control strategy for biological methanation? The MOO was couplished with a model predictive control (MPC) schema using the dynamic model ADM1_ME.

In Section 3 was computed the maximization of yield (𝑌 ) and productivity (𝑃 ) of methane. Section 4 showed the maximization of (𝑌 , 𝑃 ) and it was complemented by switching between the maximization of yields (𝑌 ) and productivities (𝑃 ) of acetate. Then, to answer the last part of the question: Could the multi-objective optimizations consider several objectives, such as the yields, the productivities, and other variables in economic terms (e.g., substrates prices)? Section 5 accomplished the Economic Multi-Objective Dynamic Optimization (EMODO) for the maximization of economic variables, (𝐺𝑎𝑖𝑛) and

(𝑃𝑟𝑜𝑓𝑖𝑡 𝑚𝑎𝑟𝑔𝑖𝑛).

Section 1. Conclusions & Perspectives
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The results showed the feasibility of the MODO strategy to switch between products of interest using two control variables, 𝑞 and 𝑞 . It is important to note that these are simulation results

and that the adaptation of the microorganisms may vary, especially in the switching between products such as methane and acetate. However, this work generated advances in the biological methanation process optimization through multi-objective optimizations and model-based control tools.

Questions of Section 4 of Chapter 1 were addressed: Can machine learning be used as a datadriven soft sensor in biological methanation? And can these soft sensors be used to detect faults during the process? An approach to detect faults in the biological methanation process was studied in sections 6 and 7 to answer these questions.

The development of several machine learning models led to the detection and classification of deviations from the optimal operation points when disturbances occurred in the 𝑞 and 𝑞 .

In Section 6, Machine learning algorithms, such as decision trees, random forest, and radial basis function Support Vector Machine (SVM), obtained the best statistical metrics accuracy and F1-score results. Then in Section 7, SVM were applied to construct 2D visualization formed by training pair of features. SVM were used due to: the good results that could be obtained, the simplicity of implementation, and the efficiency in avoiding overfitting.

It is important to note that this is the first study to use machine learning soft sensors in fault detection on the biological methanation process. Although it is an area that has been scarcely studied, this work generated insights towards the easy and fast application of machine learning soft sensors on biological processes, mainly in the industrial application of 2D visualization considering pairs of features (variables that can be measured on-line), which provides an easy and fast reading of the deviations of certain variables in the process.

The results of this thesis lead us to think about some perspectives:

An interesting approach that could be explored is coupling metabolic and dynamic models to obtain deep insights into the biological methanation process, especially in the methanogenesis step where the syngas is added. The metabolic modeling uses constraint-based methods, which implement cellular limitations on biological networks such as physicochemical, genotypical, Section 1. Conclusions & Perspectives 296 environmental, thermodynamic, etc. [START_REF] Perez-Garcia | Metabolic Network Modeling of Microbial Interactions in Natural and Engineered Environmental Systems[END_REF]. Here, the challenge is the metabolic construction of some populations that could be used to determine the biochemical properties of key components and analyze methanogenic metabolism [START_REF] Feist | Modeling methanogenesis with a genome-scale metabolic reconstruction of Methanosarcina barker[END_REF]. This task could be addressed using hybrid-cybernetic models, which integrate intracellular kinetics with a description of metabolic regulation [START_REF] Robles-Rodriguez | Dynamic metabolic modeling of lipid accumulation and citric acid production by Yarrowia lipolytica[END_REF][START_REF] Shuler | Cell Growth Dynamics[END_REF]. On this basis, a more robust study could be performed in the biological methanation process, analyzing the behavior of the different microorganisms in implementing the MODO strategy.

The MODO strategy could be used to consider energetic issues to improve biological methanation, e.g., the minimization of the power input required for mixing a 𝐶𝑆𝑇𝑅 and the simultaneous maximization of the performance or the maximization of the volumetric mass transfer coefficient. Therefore, we can propose energy balances and then design multi-objective optimizations to maximize the volumetric mass transfer coefficient and minimize the power consumption in a bioreactor [START_REF] Krasławski | Application of fuzzy multiobjective optimization for self-sucking impellers in a bioreactor[END_REF].

Concerning the machine learning soft sensors, one of those perspectives is to evaluate more complex datasets that integrate diverse combinations of disturbances into the training of machine learning algorithms to detect and classify faults in the biological methanation process.

In this case, homogeneous ensemble methods such as AdaBoost and Gradient Boosting

Classifiers could be explored to improve the current results.

It is possible to assess the coupling of regression and classification machine learning models to improve the performance of the biological methanation process. The regression machine learning models could be employed as soft sensors for monitoring variables that are difficult to measure, such as biomass or substrates. This could be complemented by selecting the most important features to train the models. On the other hand, classification machine learning models could be proposed as previously presented in this thesis, in the detection of faults in the process but considering simultaneous disturbances in the manipulated variables, or could be used to classify the performance of the process in low, medium, and high, according to the methane content in the outlet gas flow rate (Cinar et al., 2022;Wang et al., 2020). ( 4.1.35 ) where 𝑁 is the flux of species H2, CH4, CO and CO2 expressed as 𝐶𝑂𝐷 (Chemical oxygen demand: amount of oxygen needed to degrade the organic matter into CO2 and H2O). 𝑘 𝑎 , is the volumetric mass transfer coefficient of component 𝑖, and 𝑆 , -𝛾 , 𝐻 𝑃 , is the driving force. 𝐻 , and 𝑃 , are the, Henry's law equilibrium constant, and partial pressure of component 𝑖, respectively. 𝛾 , is the 𝐶𝑂𝐷, e.g., 16 𝑔𝐶𝑂𝐷 𝑚𝑜𝑙 ⁄ for H2 and CO, and 64 𝑔𝐶𝑂𝐷 𝑚𝑜𝑙 ⁄ for CH4, it permits the conversion between the 𝑚𝑜𝑙𝑒𝑠 and 𝑔𝐶𝑂𝐷 of a component 𝑖. It is important to mention that the CO2 do not present a 𝐶𝑂𝐷, therefore, through this paper it will be expressed in mol instead of 𝐶𝑂𝐷, as suggested in (Batstone et al., 2002).

Decay biomass (µ

Section 2 Sensitivity analysis

A total of 60 parameters were considered in the ADM1_ME, 22 stoichiometric, 23 biochemical, and 15 physiochemical parameters (Table 4.2.1). In which 26 parameters were considered in the SA. All stoichiometric coefficients 𝑓 , and 𝐶 were fixed for the sensitivity analysis, except 𝑓 , which was an unknown parameter. All 𝑌 were used in the SA. Concerning biochemical parameters, the 𝐾 , and all µ , , 𝐾𝑠 , 𝐾𝐼 , , and 𝐾𝐼 , were considered in the SA. With respect to physiochemical parameters, all were fixed except 𝐾 , 𝑘 𝑎 , which were used in the SA. 

Morris Method Results

With the Morris method ( 
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  schemes and the use of data-driven Soft Sensors, which are based on the use of a dynamic model for biological methanation.
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  Figure 1.1.1 Section 1. Anaerobic Digestion & Biological Methanation 38shows the number of annual articles reported by Scopus using the keywords "anaerobic digestion" and "biogas", indicating a continuous effort of the scientific community to work in a renewable and sustainable process.

Figure 1

 1 Figure 1.1.1. Scientific research articles dedicated to anaerobic digestion and biogas production. Data obtained from https://www.scopus.com/, June 2023.

Figure

  Figure 1.1.2. Overall anaerobic digestion process. Adapted from[START_REF] Schön | Numerical Modelling of Anaerobic Digestion Processes in Agricultural Biogas Plants Dissertation[END_REF].

Figure 1

 1 Figure 1.1.3 describes the AD and each component associated with each step in the process.

Figure 1 . 1 . 3 .

 113 Figure 1.1.3. Anaerobic digestion process. The numbers indicate the microorganisms groups:

Figure 1 . 1 . 4 .

 114 Figure 1.1.4. Methanogenesis pathways in anaerobic digestion by Methanosarcina barkeri.

Section 1 .

 1 Anaerobic Digestion & Biological Methanation 44 As previously mentioned, acetogenesis refers to acetate production by heterotrophic microorganisms through butyrate, propionate, valerate oxidation, etc. Conversely, homoacetogenesis is acetate production by autotrophic acetogenic microorganisms through CO2 reduction with H2 (Pan et al., 2021; Saady, 2013) (Figure 1.1.5).

Figure 1

 1 Figure 1.1.5. Acetyl-CoA Pathway. The reductive pathways comprise two branches (methyl and carbonyl) through which the methyl and carboxyl groups of acetate are synthesized,

  Tena et al. (2021) investigated the impact of 𝐻𝑅𝑇 on CH4 production in the two-stage thermophilic and mesophilic AD process. Two Continuous Stirred Tank Reactors (𝐶𝑆𝑇𝑅) were used in series to perform the acidogenesis and methanogenesis steps.Eight 𝐻𝑅𝑇, 20, 16, 10, 6,5,4,3, and 2 days were imposed while the feed flow was made of a mixture of sewage sludge and wine vinasse (0.5:0.5). According to their results, it can be concluded that an AD operating at an 𝐻𝑅𝑇 of 4 days is an excellent option to reduce the time of the process and increase the CH4 yield to 159.4 𝑚𝐿𝐶𝐻 /𝑔𝐶𝑂𝐷 (𝐶𝑂𝐷: Chemical Oxygen Demand. Amount of oxygen needed to degrade the organic matter into CO2 and H2O). Decreasing the 𝐻𝑅𝑇 below 4 days resulted in the accumulation of 𝑉𝐹𝐴. Sillero et al. (2023) investigated the influence on methanogenesis of the 𝐻𝑅𝑇 during co-digestion of a substrate mixture of sewage sludge, wine vinasse, and poultry manure (0.495:0.495:0.01). The authors developed the AD process using two 5 𝐿 𝐶𝑆𝑇𝑅 connected in series. The first reactor was used to develop the acidogenic stage at 55°C and pH 5.5. The second reactor was used to perform the methanogenesis step at 35°C and pH 7.5 with seven 𝐻𝑅𝑇

  methanation occurs in the last stage of AD. The occurrence of biological methanation requires the addition of H2. Several sources of H2 can be used as either pure components or mixed with others. An interesting mixture containing H2 is syngas. The syngas loading (commonly a Section 1. Anaerobic Digestion & Biological Methanation 52 combination of H2:CO:CO2) can improve the process and convert the H2 and CO2 into CH4

Figure 1

 1 Figure 1.1.6 presents the reaction pathways in biological methanation.

Figure 1 . 1 . 6 .

 116 Figure 1.1.6. Reaction pathway in biological methanation. Adapted from (Paniagua et al., 2022).

Figure 1 . 1 . 7 .

 117 Figure 1.1.7. Scheme of in-situ and ex-situ biological methanation process. Adapted from (Voelklein et al., 2019).

  Most authors have used enriched mixed cultures to develop the biological process with different objectives. Rachbauer et al. (2017) evaluated the effect of process parameters such as acetic acid concentration on carbon conversion in a trickle bed reactor using an enrichment culture of hydrogenotrophic methanogens adapted from sewage sludge. Grimalt-Alemany et al. (2020) characterized the syngas conversion routes utilized by a mixed consortium enriched at mesophilic and thermophilic conditions. Figueras et al. (2021) used a mixed consortium to explore high-pressure effects on a continuous lab-scale pilot using a pressurized agitated column operating at thermophilic conditions. Laguillaumie et al. (2022) performed ex-situ Section 1. Anaerobic Digestion & Biological Methanation 59 biological H2 and CO methanation with a mixed culture in a bubble column reactor (𝐵𝐶𝑅) operating at 55°C.

  Figure 1.2.1). Their model was capable of following the dynamic response of five variables, volatile acids concentration, alkalinity, pH, gas flow rate, and gas composition. This model included an inhibition function for volatile acids concentration in a specific growth rate for the CH4 microorganisms, and it considered the non-ionized volatile acids and the growth-limiting substrate. The model also considered the interactions between the liquid, gas, and biological phases.

Figure 1 . 2 . 1 .

 121 Figure 1.2.1. Anaerobic digestion model proposed by Andrews and Graef (1971).

Figure 1 . 2 . 2 .

 122 Figure 1.2.2. Simulation results using the model proposed by Andrews and Graef (1971). (A) batch operation, (B) continuous operation.

Figure 1 . 2 . 3 .

 123 Figure 1.2.3. Anaerobic digestion model proposed by[START_REF] Hill | A Dynamic Model for Simulation of Animal Waste Digestion[END_REF].

Figure 1 . 2 . 4 .

 124 Figure 1.2.4. Simulation results using the model proposed by[START_REF] Hill | A Dynamic Model for Simulation of Animal Waste Digestion[END_REF].

Figure 1 . 2 . 5 .

 125 Figure 1.2.5. Anaerobic digestion model proposed by Mosey (1983).

(

  2000 𝑚𝑔/𝐿 glucose for substrate and 150 𝑚𝑔/𝐿 ammonium hydroxide). At day 10, glucose concentration was increased until 12000 𝑚𝑔/𝑚𝐿 leading the digester close to failure due to the accumulation of volatile acids in the digester (pH reduction from 6.5 to 5.5). The simulation results described some of the common problems in the AD process, such as the accumulation of 𝑉𝐹𝐴. The limitations of the model were the assumption of a neutral pH and the restriction on the use of microorganisms that high H2 pressures can inhibit. Figure1.2.6 presents some results obtained.

Figure 1 . 2 . 6 .

 126 Figure 1.2.6. Simulation results using the model proposed by Mosey (1983).

Figure 1 . 2 . 7 .

 127 Figure 1.2.7. Anaerobic digestion model proposed by Angelidaki et al. (1993).

Figure 1 . 2 . 8 .

 128 Figure 1.2.8. Simulation results using the model proposed by Angelidaki et al. (1993).

Section 2 .

 2 Model and Simulation89However, in 1997, the International Water Association (IWA) Anaerobic Digestion Model Task Group focused on proposing a generalized model for AD, the "Anaerobic Digestion Model No 1 (ADM1)". This model is probably the most used, extended, and modified model to explore the different applications of AD. ADM1 was based on experience acquired over the previous years in modeling and simulating the AD process[START_REF] Esposito | Model calibration and validation for OFMSW and sewage sludge co-digestion reactors[END_REF]. The ADM1 proposed byBatstone et al. (2002) was a structured model with multiple steps describing biochemical and physicochemical processes (Figure1.2.9).

Figure 1 . 2 . 9 .

 129 Figure 1.2.9. Anaerobic digestion model proposed by Batstone et al. (2002). (1) acidogenesis from sugars, (2) acidogenesis from amino acids, (3) acetogenesis from LCFA, (4) acetogenesis from propionate, (5) acetogenesis from butyrate and valerate, (6) acetoclastic methanogenesis,

  -Alemany et al. (2020) proposed a model to simulate the biological methanation using a mixed microbial consortium for the first time. The biological methanation of syngas was carried out at mesophilic and thermophilic conditions intended to study possible control strategies through the modulation of key operating parameters. The model used the structure of the ADM1 for the concentration of components in liquid and gas phases, the growth of different biomass groups, and other physicochemical processes such as acid dissociation and gas-liquid mass transfer. The novelty of this model consisted in considering possible syntrophic pathways to the hydrogenotrophic methanogens and homoacetogens without assuming a strictly kinetically driven competition between them. They considered a thermodynamic consistency with a potential factor. Their experiments were developed in 100 𝑚𝐿 flasks (batch reactors) operating at 37°C and 60°C with an average pH of 7.2 and agitation of 100 𝑟𝑝𝑚. The syngas was added, ranging the CO partial pressure from 0.2 to 0.8 𝑎𝑡𝑚, and fixed the partial pressure of H2 and CO2 at 1.0 and 0.2 𝑎𝑡𝑚, respectively.

Section 2 .

 2 Model and Simulation 93 carboxydotrophic acetogens (Figure 1.1.6 in Section 1). Then, the methanogens metabolize H2 and acetate to produce CH4. The authors proposed to use the volumetric mass transfer coefficient (𝑘 𝑎) based on the twofilm theory, expressed as Equation ( 1.2.5 ). gas and liquid mass transfer coefficient, respectively, with 1 𝑘 ⁄ and1 𝑘 ⁄ being the gas and liquid mass transfer resistance. 𝑃 refers to the gas pressure and 𝑚 = 𝐸 𝑃 ⁄ is the solubility coefficient. 𝐸 is the Henry constant, 𝑅 is the Universal gas constant, 𝑇 represents the temperature of the system, 𝛿 and 𝛿 are the theoretical gas and liquid film thickness. 𝐷 and 𝐷 are the diffusion coefficients of the gas and liquid phase, respectively. The terms (𝐶𝑚 𝐶𝑏𝑚 ⁄ ) and (𝑃 𝑃𝑏𝑚 ⁄ ) are the drift and diffusion factors of the gas and liquid phases, with 𝐶𝑏𝑚 and 𝑃𝑏𝑚 as the logarithmic average of the concentrations and pressure on both sides of the stationary fluid and gas layer.

Santus

  et al. (2022) proposed an ex-situ biological methanation model based on a simplified and modified version of the ADM1, just considering hydrogenotrophic methanogenesis. The model is made of 8 differential equations, describing particular mass balances of H2 and CH4 in the liquid phase, inorganic carbon and nitrogen, H2, CH4, and CO2 in the gas phase. It is completed by the definition of growth law for hydrogenotrophic methanogens. The equations for the components in the gas phase were modified to consider the addition of H2 and CO2 to the system. The model was used to simulate two data sets. The first was in an up-flow reactor for ex-situ biological methanation operating at 55°C, and the other performed in a 380 𝐿 𝐶𝑆𝑇𝑅 with a 460 𝐿 of headspace with H2 and CO2 as a substrate maintaining a relation 4:1. The model predicted the CH4 outlet flow rate of two different configurations successfully.

  variables involved. They have opted to work with simplified versions to study some relevant parameters in an easier manner.[START_REF] Donoso-Bravo | Identification in an anaerobic batch system: global sensitivity analysis, multi-start strategy and optimization criterion selection[END_REF] used a GSA to determine the most sensitive parameters of a model that describes AD. The model was made of five mass balances over acidogenic and methanogenic microorganisms, acetate, CH4, and inorganic carbon. The Sobol' GSA technique was implemented to analyze the effect of 12 parameters over four outputs, biogas flow, pH, glucose, and acetate. Despite being a simplified version of the AD process, the GSA found four key parameters that affect the outputs of the process, the maximum specific growth rates of both biomass and the stoichiometric coefficients for the substrates glucose and acetate. The authors complemented the GSA by estimating these parameters using a Classical least-squares estimator as a cost function and the covariance that can be obtained through the evaluation of the 𝐹𝐼𝑀 to determine the confidence intervals.[START_REF] Schroyen | Modelling and simulation of anaerobic digestion of various lignocellulosic substrates in batch reactors: Influence of lignin content and phenolic compounds II[END_REF] performed a GSA over a reduced version of the ADM1 and assessed the biogas production of 7 substrates with different lignin content. The SA was performed using Monte Carlo simulations and assuming a uniform distribution. This model described the process in four steps. The insoluble organic matter is hydrolyzed to volatile dissolved solids through first-order kinetics. The acidogenic bacteria transform the volatile dissolved solids to 𝑉𝐹𝐴, which are then transformed by methanogenic microorganisms into CH4 following Monod kinetics. The authors found that the most sensitive parameters were those related with the hydrolysis step. Section 2. Model and Simulation 104 All these works provided advances in the identification of the most influential parameters of AD and the estimation of parameters. However, finding any information concerning the SA and parameter estimation has been scarce for biological methanation. The model constructed by Grimalt-Alemany et al. (2020) for biomethanation was analyzed with LSA to evaluate the model outputs sensitivity with the estimated parameter values. They performed a parameter estimation, especially of the parameters related to the specific growth rate of carboxydotrophic acetogens and hydrogenotrophic methanogens. Santus et al. (2022) proposed an ex-situ biological methanation model based on a simplified and modified version of the ADM1, just considering hydrogenotrophic methanogenesis. The authors performed a SA to assess the most significant parameters via an individual parameter-based sensitivity analysis.

Section 2 .

 2 Model and Simulation 105 between phosphorus, sulfur, and iron in plant-wide simulation (Flores-Alsina et al., 2016), and

  Step 1. The process model predicts the future outputs for a certain horizon 𝑁 (prediction horizon) at each instant 𝑡. These predicted outputs {𝑌(𝑡 + 𝑘|𝑡) 𝑘 = 1 … 𝑁 } depend on the known values up to instant 𝑡 and on the future control signal {𝑢 = (𝑡 + 𝑘|𝑡) 𝑘 = 0, … , 𝑁 -1}. Step 2. The set of future control signals is calculated by minimizing a criterion (cost function) to maintain the process near the reference trajectory {r(𝑡 + 𝑘|𝑡) 𝑘 = 1 … 𝑁 } . Step 3. The control signal 𝑢(𝑡 | 𝑡) is given to the process while the subsequent control signals computed are rejected because Y(𝑡 + 1) is already known. Finally, step 1 is repeated, and the system is updated. The MPC strategy is represented in Figure 1.3.1. The use of MPC considers 4 crucial elements: The prediction model (𝑑𝑌 𝑑𝑡 ⁄ ) to describe de behavior of the system, the cost function (𝐽) which indicates the optimization criterium, the constraints (𝜆 , 𝜓 , 𝑢 , 𝑢 ) to bound the evolution of the system, and the optimization method to minimize the cost function.

Figure 1

 1 Figure 1.3.1. Model Predictive Control Strategy. Adapted from[START_REF] García | Model predictive control: Theory and practice-A survey[END_REF].

  • 𝜑 𝜉(𝑌(𝑡), 𝑢(𝑡), 𝑡) + 𝜔 • 𝜑 (𝑢(𝑡)) 𝑌, 𝑢, 𝜃, 𝑡) 𝑡 ∈ 0, 𝑡 𝜆 (𝑌(𝑡), 𝑢(𝑡), 𝜃, 𝑡) ≤ 0 𝑖 = 1,2, … , 𝑛 𝜓 (𝑌(𝑡), 𝑢(𝑡), 𝜃, 𝑡) = 0 𝑖 = 1,2, … , 𝑛 𝑢 ≤ 𝑢(𝑡) ≤ 𝑢( 1.3.9 ) 

  3.11 ) Section 3. Bioprocess Control and Optimization 121 herein, 𝜔 corresponds to a known vector related to the economic costs of the water treatment, 𝜔 (𝑡) holds to a vector associated with the economic cost of the flow through certain actuators (pumps only) and their control cost (pumping), in this case 𝜔 (𝑡) was time-varying due to pumping effort having different values according to the time of the day (electricity costs). 𝑊 refers to the weight matrix that expresses the relative priority of one objective concerning the others.

Section 3 .

 3 Figure 1.3.2. Pareto Optimal Set for two objective functions 𝐽 (𝑌) and 𝐽 (𝑌). Black continuous line (-) correspond to the Pareto Optimal Set. The colored squares ( , , ) correspond to three different Pareto Optimal Points, representing the trade-offs between the two objective functions.

  According to Fortuna et al. (2007) and Jiang et al. (2021), the use of soft sensors presents several advantages:  Soft sensors are low-cost alternatives to hardware devices (physical sensors)  They are not subject to physical constraints such as space installation and extreme working conditions  This type of sensor can be implemented on existing hardware (embedded systems)  Soft and physical sensors work in parallel, which allows them to obtain valuable information for fault detection tasks  It allows the real-time estimation of data, improving the performance of the control strategies Soft sensors can be classified in three standard classes: model-driven soft sensors, data-driven soft sensors, and hybrid soft sensors

Figure 1

 1 Figure 1.4.1. Soft sensor categories adapted from(Kadlec et al., 2009; Kadlec and Gabrys, 2009; Jiang et al., 2021).
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 4 Soft Sensors and Fault Detection 134

1. 4

 4 .2: dataset, model, training, and validation.

Figure 1 . 4 . 2 .

 142 Figure 1.4.2. Steps in the development of Machine Learning algorithms. Illustration adapted from the webpage Techvidvan, June 2023.

  Figure 1.4.3 presents the three types of machine learning.

Figure 1 . 4 . 3 .

 143 Figure 1.4.3. Categories of machine learning. Adapted from (Yuxi (Hayden) Liu, 2020).

Section 4 .

 4 algorithms could be explained mathematically as follows:Considering a dataset 𝒟 generated as, Soft Sensors and Fault Detection 137 where 𝑿 is the input space and 𝑝(𝑥, 𝑔) is the true joint distribution. Each sample pair (𝑥 , 𝑔 )

  unknown inputs 𝑥. The quality of the prediction 𝑠(𝑥) for a test pair (𝑥, 𝑔) is measured by a given loss function as ℓ(𝑔, 𝑠(𝑥)).The outputs 𝑔 are discrete variables that take a finite number of possible values in classification algorithms, i.e., to predict a class label from a predefined list of possibilities[START_REF] Muller | Introduction to Machine Learning with Python: A Guide for Data Scientists[END_REF][START_REF] Yuxi | Python Machine Learning By Example[END_REF]. The objective is to present an unclassified input ( instances + features ), evaluate it in the trained model and have the model perform a binary classification ( and ). Figure 1.4.4 illustrates the binary case, where the goal is to predict between two classes ( and ) from an unclassified input 𝑥. The most straightforward case to understand the binary classification could be defined as, ℓ(𝑔, 𝑠(𝑥)) = +1 𝑖𝑓 𝑔 = 𝑠(𝑥) -1 𝑖𝑓 𝑔 ≠ 𝑠(𝑥) ( 1.4.3 ) where +1 and -1 correspond to correct and incorrect classification, respectively. The most common supervised machine learning algorithms which differ in the level of interpretation are Decision Trees, Random Forests, k-Nearest Neighbor, Random Forests, Naïve Bayes, Quadratic Discriminant Analysis, Support Vector Machines, and Neural

  One of the most robust and accurate machine learning algorithms used in literature is the Support Vector Machine (SVM). It works well in high-dimensional spaces when there is a clear margin of separation between classes. It has been successfully applied in several scientific and engineering areas[START_REF] Batuwita | Class Imbalance Learning Methods for Support Vector Machines, Imbalanced Learning[END_REF][START_REF] Cervantes | A comprehensive survey on support vector machine classification: Applications, challenges and trends[END_REF][START_REF] Cabrera | Análisis Del Comportamiento Del Algoritmo Svm Para Diferentes Kernel En Ambientes Controlados[END_REF][START_REF] Panup | A Novel Twin Support Vector Machine with Generalized Pinball Loss Function for Pattern Classification[END_REF][START_REF] Wu | Top 10 Section 4. Soft Sensors and Fault Detection 168 algorithms in data mining[END_REF][START_REF] Xiao | Gray-Related Support Vector Machine Optimization Strategy and Its Implementation in Forecasting Photovoltaic Output Power[END_REF] The idea of SVM relies on mapping the input data or features 𝑥 𝜖 ℛ × into a nonlinear space in order to predict a desired vector of outputs 𝑔 𝜖 ℛ ×[START_REF] Zhu | Modern soft-sensing modeling methods for fermentation processes[END_REF] (Figure 1.4.4). It solves pattern recognition (classification) and regression problems (Cristianini and Shawe-

Figure 1 . 4 . 4 .

 144 Figure 1.4.4. SVM basis idea with two classes. 𝑿: Input space associated with labels ( and ). 𝜱: transformations based on the hypothesis space of linear functions.

Figure 1 . 4 . 5 .

 145 Figure 1.4.5. Support vector machine (SVM) graphical representation. (A) linearly separable case with two labels, (B) optimal hyperplane defined by support vectors, (C) Support vectors definition (Margin hyperplane), (D) data defined on the wrong side of the hyperplane (outliers), (E) deviation of ideal data (slack variables).

Section 4 .

 4 Soft Sensors and Fault Detection 141 The SVM optimization problem is reduced to maximize the margin by determining the support vectors, which are the data closest to the separating hyperplane. They are the most complex patterns to classify. Support vectors completely define the optimal hyperplane. The SVM finds the hyperplane (continuous line) with the broadest margin 2𝑏 in Figure 1.4.5-C. The points inside the margin's edge (discontinuous lines) are called support vectors. Margin is twice the absolute distance 𝑏 from the closest data to the separating hyperplane, and it can be calculated as Equation ( 1.4.5 ). The absolute distance between 𝑥 and the boundary 𝑔(𝑥) = 0 (Deisenroth et al., 2020; Yuxi (Hayden) Liu, 2020). hyperplane |𝑊 𝑥 + 𝑊 | =1 (See Figure 1.4.5-C), the distance between any data𝑥 and the decision hyperplane 𝑠(𝑥) = 0 is defined as, is defined as twice the absolute distance from the closest training data to the separating hyperplane (Equation ( 1.4.5 )) and in the case of a unique hyperplane the absolute distance is given by Equation ( 1.4.6 ), thus, the margin is, (𝑊 𝒙 𝒊 + 𝑊 ) ≥ +1 ∀𝑖

  Figure 1.4.6. Hyperplane with large 𝐶, few data not in ideal position (left), and small 𝐶, several data not in ideal position (right).

Figure 1 . 4 . 7 .

 147 Figure 1.4.7. Graphic representation of the non-linear dataset. Adapted from (Noble, 2006). (A) a non-linear one-dimensional dataset, (B) the dataset was squared, (C) a non-linearly twodimensional dataset, which is linearly separable in four dimensions, (D) An SVM that has overfit a two-dimensional dataset.

Figure 1 . 4 . 8 .

 148 Figure 1.4.8. Support vector machine (SVM) graphical representation for the non-linear case.

Section 4 .

 4 Figure 1.4.9 shows a common structure for a DT[START_REF] Aggarwal | Data Mining: The Textbook[END_REF][START_REF] Rokach | Decision Trees[END_REF]Uddin et al., 2019;[START_REF] Zhou | Ensemble methods: foundations and algorithms[END_REF].

Figure 1

 1 Figure 1.4.9. Decision tree algorithm scheme. Root node (C1), decision nodes (C2, C4, and C3), and leaf nodes (class A and B).

  ; 𝒟 , 𝒟 , … , 𝒟 ) = 𝐺(𝒟; 𝒟 , 𝒟 , … , 𝒟 ) • the information gain criterion normalizes the number of features values, using a correction factor that penalizes the number of subsets 𝑘 and the size of each subset |𝒟 |. The feature with the highest gain ratio, among the features with better than average information gains is selected for the split.(iii)In the CART algorithm, the information gain criterion corresponds with the overall Gini index (𝐺𝑖𝑛𝑖). For a 𝑘 subset into 𝒟, the 𝐺𝑖𝑛𝑖 can be calculated as the weighted average of the 𝐺𝑖𝑛𝑖 index values of each 𝒟 , where the weight of 𝒟 is |𝒟 |.𝐺𝑖𝑛𝑖(𝒟; 𝒟 , 𝒟 , … , 𝒟 ) = 𝐼(

  RF uses several basic DT to build a forest (Biau and Scornet, 2016) (Figure 1.4.10).

Figure 1 . 4 .

 14 Figure 1.4.10. Random Forest scheme with three different decision trees. Root node (C1, C4, C7), decision nodes (C2, C3, C5, C6, C8, C9), and leaf nodes (class A and B).

Figure 1 . 4 .

 14 Figure 1.4.11. Naïve Bayes, k-Nearest Neighbors, Quadratic discriminant analysis, and Neural Network with two classes blue circle ( ) and orange x ( ).

  Quadratic Discriminant Analysis (QDA) is an algorithm that assumes a quadratic decision boundary, assuming that the features follow a normal distribution and quadratic interaction between classes[START_REF] Hastie | The Elements of Statistical Learning[END_REF], Figure 1.4.11-C. The QDA algorithm is derived from probabilistic approaches which model the conditional class distribution of the data 𝑃(𝑥|𝑔) for each class ℎ. QDA could be formulated for each sample 𝒙 𝒊 ϵ ℛ × as,

Kazemi

  et al. (2020a) also applied the SVM algorithm to fault detection. The dataset was selected similarly using the BSM2 model and 13 input variables. To detect the faults, the 𝑉𝐹𝐴 Section 4. Soft Sensors and Fault Detection 158 soft sensor was used together with three statistical control charts (Square prediction error,

  87 and accuracy values higher than 0.90 and 0.85 in the training and test. After training several types of machine learning soft sensors, we noticed that several algorithms could correctly classify faulty data in biological methanation. Computation times lower than 0.19 seconds were obtained in the training of models such as DT, while RF and SVM presented values of 13.75 and 4.77 seconds.

  who developed a model to consider how the microorganisms managed to control the pH value Section 2. Dynamic Modeling of Biological Methanation for Different Reactor Configurations: An Extension of the Anaerobic Digestion Model No. 1 182 and the redox potential of their growth medium. A dynamic model describing AD from several types of wastes was developed by Angelidaki et al. (1999). Their work described the substrate by its composition in terms of essential organic components, i.e., carbohydrates, lipids, proteins, volatile fatty acids, long-chain fatty acids, and inorganic components. This partition allowed the authors to simulate the dynamic changes during the process with different types of substrates. Batstone et al. (2002) proposed the well-known Anaerobic Digestion Model No. 1 (ADM1), which included multiple steps describing the biochemical and physicochemical reactions involved in AD. Regarding the biochemical reaction, the ADM1 considers the disintegration of components, such as carbohydrates, lipids, and proteins, into particulate constituents that are further hydrolyzed into soluble monomers precursors of CH4 formation.

  scarcely studied. To our knowledge, only a few works have been reported.Grimalt-Alemany et al. (2020) proposed two structured models to describe the mesophilic and the thermophilic syngas biological methanation processes in batch mode. Each model presented a different structure based on catabolic routes as a function of the operating conditions. All biomass growth processes were made thermodynamically consistent by including a thermodynamic potential factor. Although these adaptations improved the predictive capacity of the models, the studied carbon source was only limited to the added gas, which could hamper any straightforward adaptation to other sources, such as agro-industrial residues, sludge, or sugars. The different volumetric mass transfer coefficients were calculated experimentally under specific mesophilic and thermophilic conditions. Although promising, the validation of results and the calculation of the mass transfer coefficient from experiments make Section 2. Dynamic Modeling of Biological Methanation for Different Reactor Configurations: An Extension of the Anaerobic Digestion Model No. 1 183 the adaptation of the model to other reactor configurations and conditions difficult. Sun et al. (2021) proposed an extension of the ADM1, considering biochemical reactions for the CO contained in the syngas under mesophilic conditions in continuous mode. In their work, a volumetric mass transfer equation was developed from the two-film theory to describe the mass transfer process. This consideration makes it difficult to apply the model to different process conditions and increases the number of parameters in the process.

  et al. (2021) does not present the dynamic behavior of components, such as CO2, which complicates the comprehensive analysis and the closing of the carbon balance in the biogas produced from AD. This work aims to generate advances in understanding the dynamics of the biological methanation process by extending the Anaerobic Digestion Model No. 1 (ADM1_ME) to consider in-situ syngas addition. The model could be adapted to different substrates: agroindustrial waste, sludge, or sugars, and considers the addition of syngas at mesophilic and thermophilic conditions. The ADM1_ME represents the dynamic behavior of CH4, H2, CO, and CO2 in liquid and gas phases, the inclusion of CO as a substrate of the process, and the adaptation of the volumetric mass transfer coefficient for two different configurations of bioreactor: bubble column reactor (𝐵𝐶𝑅) and continuous stirred tank reactor (𝐶𝑆𝑇𝑅). This new model is based on the need to have a generic model for the biological methanation process with the capacity to be adapted to mesophilic and thermophilic conditions, to different substrates, and to allow the dynamic analysis of the volumetric mass transfer coefficients for different types of reactors. Section 2. Dynamic Modeling of Biological Methanation for Different Reactor Configurations: An Extension of the Anaerobic Digestion Model No. 1 184
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 2 Dynamic Modeling of Biological Methanation for Different Reactor Configurations: An Extension of the Anaerobic Digestion Model No. 1 1872.3 Anaerobic Digestion Model Extension (ADM1_ME)In this work, an extension of the Anaerobic Digestion Model No. 1 (ADM1_ME) is proposed based on the biological methanation scheme presented in Figure2.2.1. The scheme includes acidogenesis, acetogenesis, methanogenesis, and its extension to consider CO and H2 addition.

Figure 2 . 2 . 1 .

 221 Figure 2.2.1. Biological methanation scheme implemented in the ADM1_ME including: (𝜇 ) acidogenesis from sugars, 𝜇 acetogenesis from propionate, (𝜇 ) acetogenesis from butyrate, (𝜇 ) acetoclastic methanogenesis, (𝜇 ) hydrogenotrophic methanogenesis, and(𝜇 ) acetogenesis and carboxydotrophic hydrogenogenesis from carbon monoxide.
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Figure 2 . 2 . 2 .

 222 Figure 2.2.2. Variation of the volumetric mass transfer coefficient: (A) concerning the superficial gas velocity 𝑈 for a 𝐵𝐶𝑅 (Equation ( 2.2.5 )), and (B) with respect to the 𝑃𝑜𝑤𝑒𝑟 𝑉 ⁄ for a 𝐶𝑆𝑇𝑅 (Equation ( 2.2.6 )).
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 223224 Figure 2.2.3. Morris sensitivity analysis with OP1 over the model outputs: (A) 𝑞 , , (B) 𝑞 , , (C) 𝑞 , , and (D) 𝑞 , .
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 223 Figure 2.2.4 show only the high influence factors identified for each output ordered by ascending maximum (see Annexes Section 2, Table

Factors

  

Figure 2 .

 2 Figure 2.2.5 displays the results of the simulations of the ADM1_ME with the estimated parameters against the experimental values. Regarding the experimental values, it is important

Figure 2 . 2 . 5 -

 225 Figure 2.2.5-B shows the ADM1_ME adjustment with the OP2. The model reproduces in a better way the behavior of 𝑝 , , 𝑝 , , 𝑝 , , and 𝑝 , .

Figure 2 . 2 . 5 .

 225 Figure 2.2.5. Outlet gas flow rate 𝑞 , and gas percent 𝑝 , with the ADM1_ME. (A) OP1 and (B) OP2.

2

 2 𝑔𝐶𝑂𝐷 𝐿 ⁄ were obtained for 𝑆 , , while values of 0.15 and 0.16 𝑔𝐶𝑂𝐷 𝐿 ⁄ were obtained for 𝑆 , . Steady-state concentrations of 0.21 and 0.23 𝑔𝐶𝑂𝐷 𝐿 ⁄ were obtained for 𝑆 ,

Figure 2 .

 2 Figure 2.2.7 presents the biomass concentrations of 𝑋 , 𝑋 , 𝑋 , 𝑋 , 𝑋 , and 𝑋 which were simulated by the ADM1_ME with OP1 and OP2.

Figure 2 . 2 . 7 .

 227 Figure 2.2.7. Biomass concentrations that degrade the components: sugar (𝑋 ), butyrate (𝑋 ), propionate 𝑋 , acetate (𝑋 ), CO (𝑋 ), H2 (𝑋 ). (A) OP1 and (B) OP2.

Figure 2 . 2 . 8 .

 228 Figure 2.2.8. Concentrations in the gas phase of H2 𝑆 , CH4 𝑆 , , CO 𝑆 , and CO2 𝑆 , . (A) OP1 and (B) OP2.

Figure 2 .

 2 Figure 2.2.8 displays the variables 𝑆 , , 𝑆 , , 𝑆 , , and 𝑆 , simulated by the ADM1_ME with OP1 and OP2. Gas concentrations of 0.03 and 0.13 𝑔𝐶𝑂𝐷 𝐿 ⁄ were obtained for 𝑆 , with OP1 and OP2. The obtained gas concentrations at the end of the simulation for

Section 2 .

 2 Dynamic Modeling of Biological Methanation for Different Reactor Configurations: An Extension of the Anaerobic Digestion Model No. 1 217 model is based on the hypothesis where both operational conditions are carried out satisfactorily: The 𝐵𝐶𝑅 is operated in a homogeneous bubbly flow regime, and the power consumption in a 𝐶𝑆𝑇𝑅 is constant, which allows maintaining the mass transfer.

Figure 2 . 2 . 9 .

 229 Figure 2.2.9. Volumetric mass transfer coefficient of CH4 (𝑘𝐿𝑎 ), H2 (𝑘𝐿𝑎 ), CO (𝑘𝐿𝑎 ), and CO2 (𝑘𝐿𝑎 ). (A) OP1 and (B) OP2.

  (𝑌, 𝑢, 𝜃, 𝑡) 𝑡 ∈ 0, 𝑡 𝜆 (𝑌, 𝑢, 𝜃, 𝑡) ≤ 0 𝑖 = 1,2, … , 𝑛 𝜓 (𝑌, 𝑢, 𝜃, 𝑡) = 0 𝑖 = 1,2, … , 𝑛 𝑢 ≤ 𝑢 ≤ 𝑢 where 𝐽 * , … , 𝐽 * are the 𝑚 objective functions, 𝑌 the state variables, 𝜆 and 𝜓 indicate inequality and equality constraints on the variable states, 𝑢 and 𝜃 denote the control variables and parameters, and 𝑢 , 𝑢 correspond to the lower and upper bounds of the control variables (Tsiantis et al., 2018).

Figure 2 .

 2 Figure 2.3.1. Multi-objective dynamic optimization strategy.

2 -Step 4 -

 24 Definition of the multi-objective optimization problem: Definition of the objective functions 𝐽 * , … , 𝐽 * to be maximized/minimized by the MOO. A MOO can be formulated as 𝐽 * , … , 𝐽 * are the 𝑚 objective functions; 𝑌 the state variables; 𝑢 and 𝜃 the control variables and parameters, respectively. The dynamic model is represented by 𝑑𝑌 𝑑𝑡 ⁄ ; 𝜆 and 𝜓 indicate inequality and equality constraints. 𝑢 and 𝑢 corresponds to the lower and upper bounds of the control variables. Step 3 -Selection of the Pareto optimal point (POP): Determination of the Pareto optimal set 𝐽 * , … , 𝐽 * and selection of the POP to be used as the reference trajectory in the dynamic optimization. Definition of the dynamic problem with a single weighted objective: Formulation of an objective function considering the previously identified POP in terms of a MPC problem. Dynamic optimization determines the input variables that minimize the following objective function, 𝑢 is the vector of the control variables; 𝐻 and 𝐻 are the prediction and control horizons; 𝐽(𝑡 + 𝑗|𝑡) is the output prediction calculated at time instant 𝑡 + 𝑗 using the information available at time instant 𝑡. 𝐽 * is a reference trajectory that enables to reach the set Section 4. Switching Multi-Objective Dynamic Optimization (MODO) for the Production of Value-Added Products 243 point and is determined by the MOO. The term ∆𝑢(𝑡 + 𝑗|𝑡) is the control move at time instant 𝑡 + 𝑗 calculated using information available at time instant 𝑡. The problem in Equation ( 2.4.3

Figure 2 .Figure 2 . 4 . 1 .

 2241 Figure 2.4.1 shows the POS for CH4 and acetate at each stage. A progressive increase in 𝑃 was observed while 𝑌 decreased slightly. The 𝑌 and 𝑃 increased between stages I and II, then the 𝑌 decreased in all stages. However, the 𝑃 increased until stage IV and then decreased in stage V.

Figure 2 .

 2 Figure 2.4.2-A presents the results of cases 1 to 3. Case 1 is the base case regarding the results obtained from the literature. The advantages of using dynamic optimization are observed when cases 2 and 3 are compared. Both of them achieved similar results for 𝑃 . However, the behavior at each stage change is smoother and faster in case 3 due to the dynamic part of the MODO (zoom in Figure 2.4.2-A). For instance, between stages II and III, the time to reach 95% of the steady state decreased from 104 days in case 2 to 102 days in case 3. 𝑌 was similar in all cases, 𝑞 varied from 7.1 to 6.9 𝐿/𝑑 at stage V. For 𝑞 , a value of 10.0×10 3 𝐿/𝑑 was

Figure 2 . 4 . 2 .

 242 Figure 2.4.2. Inlet liquid and gas flow rates, yields, and productivities in the MODO. (A) Comparison of cases 1-3; (B) comparison of cases 3-5.

Figure 2 .

 2 Figure 2.4.2-B displays cases 3 to 5. In case 3 stage V, a value of 0.89 𝐿/𝐿𝑟/𝑑 was obtained for 𝑃 , while 0.33 𝐿 𝑔𝐶𝑂𝐷 ⁄ was obtained for 𝑌 . On the other hand, in case 4 stage V a value of 0.27 𝑔𝐶𝑂𝐷 𝐿 ⁄ 𝑟/𝑑 and 0.07 𝑔𝐶𝑂𝐷 𝑔𝐶𝑂𝐷 ⁄ were achieved for 𝑃 and 𝑌 , respectively. In stage IV, the switch was applied. Therefore, the reference values for 𝑃 and 𝑌 were achieved at the end of the stage. Finally, values of 0.27 𝑔𝐶𝑂𝐷 𝐿𝑟/ ⁄ 𝑑 and 0.07 𝑔𝐶𝑂𝐷 𝑔𝐶𝑂𝐷 ⁄ were obtained in stage V for 𝑃 and 𝑌 , the same at case 4. The control variables were adapted to each case to maintain similar values. It means that the MODO strategy is robust, permitting the definition of multi-objectives of different types and preserving the reference values determined in the MOO.

Figure 2 . 5 .

 25 1 presents the three Pareto fronts computed for each stage, where 60 POP were calculated.

Figure 2 . 5 . 1 .

 251 Figure 2.5.1. Pareto optimal sets for stages I-III and maximum Euclidean length.

Step 4 -

 4 Definition of the dynamic problem with a single weighted objective: To consider a dynamic optimization, the two previously defined objectives and its POP were merged into one objective function and solved based on an MPC problem. The proposed dynamic optimization determines the input variables that minimize the following objective function,
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 5252 Figure 2.5.2. ADM1_ME inputs and outputs. (A) ADM1_ME Economic inputs (B) ADM1_ME inputs (C) ADM1_ME Economic outputs. Case 1: Pareto results, case 2: dynamic optimization as a control strategy (Dynamic opt). Disturbance 1-3 (Disturb 1-3).

Figure 2 .

 2 Figure 2.6.1-A shows that all disturbances in 𝑞 decreased the 𝐺𝑎𝑖𝑛 with respect to the optimal operation, especially with 20% LL disturbance. On the other hand, increases in 𝑞 significantly decreased the 𝑃𝑟𝑜𝑓𝑖𝑡 𝑚𝑎𝑟𝑔𝑖𝑛 with respect to the optimal operation while

Figure 2 . 6 . 1 .

 261 Figure 2.6.1. Effect of disturbances over the optimized economic objectives 𝐺𝑎𝑖𝑛 and 𝑃𝑟𝑜𝑓𝑖𝑡 𝑚𝑎𝑟𝑔𝑖𝑛. (A) Disturbances in Dataset 1. (B) disturbances in Dataset 2.

  𝛼 * ) = 0.0 0.0 ≤ 𝛼 , 𝛼 * ≤ 𝐶 where 𝛼 represent the Lagrangian multiplier.Linear learning machines could be expressed in a dual representation, i.e, it can be expressed as a linear combination of the training data. Therefore, the decision rule can be evaluated using just inner products between the test point and the training points[START_REF] Cervantes | A comprehensive survey on support vector machine classification: Applications, challenges and trends[END_REF] Cinar et al., 2022), Section 7. Use of Support Vector Machine to Fault Detection in Biological Methanation Process 281 𝑠(𝑥) = 𝛼 𝑦 𝐾 𝒙 𝒊 , 𝒙 𝒋 + 𝑏

Section 7 .Figure 2

 72 Figure 2.7.1. 𝑆 , , 𝑞 , 𝑋 , 𝑋 , and 𝑋 , with added gas flow rate disturbances.

Figure 2 . 7 . 2 .Section 7 . 7 . 4 . 2

 2727742 Figure 2.7.2. 𝑆 , , 𝑞 , 𝑋 , 𝑋 , and 𝑋 , with inlet liquid flow rate disturbances.

Figure 2 . 7 .

 27 3 presents these 2D visualizations and the training points for different pairs of features.

Figure 2 -

 2 Data from the test dataset: 𝑆 , = 1.42 × 10 𝑔𝐶𝑂𝐷 𝐿 ⁄ and 𝑋 = 0.57 𝑔𝐶𝑂𝐷 𝐿 ⁄ -Normalized data: (-0.53, 0.13) -Expected prediction: The point falls within the 15 %LL region (ii) Features 𝑺 𝒍𝒊𝒒,𝒔𝒖 , 𝒒 𝒈𝒂𝒔,𝑪𝑯𝟒 -Data from the test dataset: 𝑆 , = 1.42 × 10 𝑔𝐶𝑂𝐷 𝐿 ⁄ and 𝑞 , = 3.02 × 10 𝐿 𝑑 ⁄ -Normalized data: (-0.53, 0.46) -Expected prediction: The point falls within the 15 %LL region
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 273273 Figure 2.7.3. 2D visualization using pair of features.

  soft sensors as a tool based on previously obtained data, which can complement dynamic models to represent unknown phenomena that dynamic models cannot still describe.In this Ph.D. thesis, machine learning algorithms were presented as tools for (i) estimation and monitoring of variables of interest, (ii) process classification based on the amount of any of the compounds generated, and (iii) detection of faults in bioprocesses.The results of this thesis were presented in Chapter 2 through a series of sections. From a simulation point of view, Section 2 of Chapter 2 provided positive answers to the following question from Chapter 1: Can a mathematical model of biological methanation accurately reproduce multiple operational conditions with emphasis on different liquid 𝑶𝑳𝑹, syngas addition, and varying 𝑮𝑳𝑹? How can the transformation of CO into acetate and H2 and their inhibitions be described in a model for biological methanation? An extension of the anaerobic digestion model (ADM1_ME) was proposed to describe the dynamics of biological methanation. The advantage of the ADM1_ME over the models proposed in the literature was the generalization of the operating conditions by adapting the volumetric mass transfer coefficient for two different reactor configurations: (i) a mesophilic bubble column reactor (𝐵𝐶𝑅), using glucose, and (ii) a thermophilic continuous stirred tank reactor ( 𝐶𝑆𝑇𝑅 ), using primary sludge and activated ticked-disintegrated waste. The ADM1_ME was built to consider the biological transformation of CO into acetate and H2 by carboxydrotrophic acetogens and carboxydrotrophic hydrogenogens. The model was calibrated and validated using two experimental operating conditions from the literature, Operational Condition 1 (OP1) and Operational Condition 2 (OP2), developed with a varying 𝑂𝐿𝑅 and 𝐺𝐿𝑅. According to the statistical evaluation, a coefficient of determination 𝑅 > 0.74 and a Root Mean Squared Error 𝑅𝑀𝑆𝐸 < 5.15 were obtained in the model validation with both operational conditions, which allowed us to highlight the feasibility of the ADM1_ME to describe the biological methanation process at different operational conditions and reactor configurations. Several variables can be optimized in biological processes, yields, productivities, process times, etc. Most of these variables are often conflicting. Multi-objective Optimization (MOO), which Section 1. Conclusions & Perspectives 294
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 422 Figure 4.2.2. First-order sensitivity index with a scalar characteristic (SI ) with OP2 over outputs: (A) p , , (B) p , , (C) p , , and (D) p , . The influence is calculated based on scalar characteristic 𝑆𝐼 = ξ(SSE) = ξ ∑(𝑌 (𝜃 ) -𝑌 (𝜃 ,)) .
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Table 1
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	Property	Value
	Molecular weight	16.04 𝑔/𝑚𝑜𝑙
	Melting point	90.65𝐾
	Boiling point (𝑇𝑏)	111.65𝐾
	Heat Value	55 𝑀𝐽/𝑚𝑜𝑙
	Molar heat capacity (𝐶𝑝)	35.7 𝐽/𝑚𝑜𝑙 𝐾
	Standard molar enthalpy of formation (∆ 𝐻 °)	-74.6 𝑘𝐽/𝑚𝑜𝑙
	Standard molar Gibbs energy of formation (∆ 𝐺 °)	-50.5 𝑘𝐽/𝑚𝑜𝑙
	Standard molar entropy (𝑆𝑜)	186.3 𝐽/𝑚𝑜𝑙 𝐾
	Critical temperature (𝑇𝑐)	190.56 𝐾
	Critical pressure (𝑃𝑐)	4.599×10 -6 𝑃𝑎
	Critical molar volume (𝑉𝑐)	0.099 𝑚 /𝑚𝑜𝑙
	Heat combustion (∆𝐻 °)*	890.8 kJ/mol
	*https://www.engineeringtoolbox.com/	

.1.1. Physical properties of methane (Chemical Rubber Company, 2005; Perry & Green, 1999).

  𝑔𝑉𝑆/𝐿/𝑑 . They found the optimum 𝑂𝐿𝑅 in the semi-continuous configuration at 1.0 𝑔𝑉𝑆/𝐿/𝑑, where 35% of the switchgrass theoretical CH4 yield and 38% energy recovery were attained. Higher 𝑂𝐿𝑅 (1.5 𝑔𝑉𝑆/𝐿/𝑑) caused low CH4 content due to the

	Section 1. Anaerobic Digestion & Biological Methanation
	0.75, 1.0, and 1.5 𝑉𝐹𝐴 accumulation.
	CH4 yields and volumetric CH4 production, respectively. The authors demonstrated that high
	𝑂𝐿𝑅 improved the AD process. Ünyay et al. (2022) developed an AD process for raw
	switchgrass in a sequential batch reactor (daily feed) and semi-𝐶𝑆𝑇𝑅 at three different 𝑂𝐿𝑅
	50

[START_REF] Zhou | Effects of organic loading rates on highsolids anaerobic digestion of food waste in horizontal flow reactor: Methane production[END_REF] 

proposed AD for food waste in a horizontal flow reactor operated in a semicontinuous condition at mesophilic temperatures with 𝑂𝐿𝑅 ranging from 1.00 to 13.80 𝑘𝑔𝑉𝑆/𝑚 /𝑑. Values between 0.173 -0.516 𝐿/𝑔/𝑑 and 0.25 -5.69 𝐿/𝐿/𝑑 were obtained for

  Section 1. Anaerobic Digestion & Biological Methanation51𝑟𝑝𝑚 and MP3 at 120 𝑟𝑝𝑚), group 4 (HAP4 at 30 𝑟𝑝𝑚 and MP4 at 120 𝑟𝑝𝑚). Results showed that the concentration of soluble 𝐶𝑂𝐷 and total 𝑉𝐹𝐴 produced in group 3 (2134 ± 58 𝑚𝑔/𝐿 and 1311 ± 22 𝑚𝑔/𝐿) and group 4 (2030 ± 39 𝑚𝑔/𝐿 and 1281 ± 21 𝑚𝑔/𝐿) was significantly higher than those in group 1 (1346 ± 32 𝑚𝑔/ 𝐿 and 730 ± 43 𝑚𝑔/𝐿) and group 2 (1693 ± 62

  al., 2018).

	Section 1. Anaerobic Digestion & Biological Methanation Section 1. Anaerobic Digestion & Biological Methanation
	liquid phase was performed at a constant flow rate of 200 𝑚𝐿/𝑚𝑖𝑛. As mentioned in Section Kougias et al. (2017) compared 𝐶𝑆𝑇𝑅 and 𝐵𝐶𝑅 for ex-situ biogas upgrading. The gas and
	1.2.1.2., high temperatures achieved higher CH4 productivities (8.49 𝑚𝑚𝑜𝑙/𝐿/ℎ) and higher liquid flow rates in both reactors were 3 𝐿/𝐿/𝑑 and 80 𝑚𝐿/𝑑, respectively. The liquid and gas
	conversion efficiencies (H2/CO 89 and 73%, respectively) of H2 and CO concerning the 𝐻𝑅𝑇 were 15 𝑚𝐿/𝑑 and 8 ℎ, respectively. Two different gas recirculation rates were applied
	mesophilic conditions. Sieborg et al. (2020) used ex-situ trickle bed reactors for the biological to evaluate the gas-liquid mass transfer process; 4 𝐿/ℎ during the days 0-18 (Period I) and 12
	CO2 methanation with polyurethane foam as packing material and cattle manure. The reactor
	was operated under different gas retention times at mesophilic conditions. The reactor consisted
	of a trickle bed column of polyvinyl chloride pipe with a total length of 60 𝑐𝑚 and an internal
	diameter of 2.72 𝑐𝑚 with a total packed bed volume of 291 𝑚𝐿 and a height/diameter ratio of
	8.4. The liquid and gas phase were flowing co-current entering at the top and leaving at the
	bottom. A distributor plate was fitted at the top of the reactor to provide even distribution of the
	liquid phase. The trickle filters performance in terms of outlet gas composition, conversion
	efficiency, and the specific CH4 production capacity was investigated at five different values of
	gas retention time (GRT), 4ℎ, 3ℎ, 2.25ℎ, 1.75ℎ, 1.32ℎ for period 1 (0-16 days), period 2 (17-
	25 days), period 3 (26-39 days), period 4 (40-51 days), and period 5 (51-60 days), respectively.
	The best results were obtained with the shortest gas retention time (1.32ℎ) under thermophilic
	conditions. The specific CH4 productivity was 2.08±0.04 𝑁𝑚 /𝑚 /𝑑 and CH4 yield with
	respect to CO2 and H2 were 1.04 ±0.09 𝑚𝑜𝑙 /𝑚𝑜𝑙 , and 0.18±0.01 𝑚𝑜𝑙 /𝑚𝑜𝑙 ,
	respectively.
	1.2.3.3 Bubble column and gas-lift bioreactors
	Bubble column and gas-lift reactors have been explored in biological methanation processes
	due to their advantages, such as high gas-liquid interfacial, high volumetric mass transfer
	coefficient, non-mechanical mixing, and relatively low cost of operation (Grimalt-Alemany et
	al., 2018). In the research performed by Laguillaumie et al. (2022), a pilot-scale 𝐵𝐶𝑅 with a
	working volume of 20 𝐿 was operated for ex-situ biological methanation of H2:CO2 at 55°C
	Asimakopoulos et al. (2020) used trickle bed reactors to explore the effect of mesophilic and with a mixed microbial culture. The aim was to investigate the reactivity of the biological
	thermophilic conditions. They used a reactor consisting of a trickle bed column of borosilicate methanation process in a dynamic operation mode, such as gas load variations and feed
	glass with a total packed bed volume of 180 𝑚𝐿 and a height/diameter ratio of 4.18. The packed intermittence. The authors found that CH4 production rates increased linearly with the loading
	bed consisted of polypropylene/polyethylene packing material. The liquid and gas phase were rate, indicating the system's non-limiting gas-liquid mass transfer capacity.
	flowing as co-currents entering at the top and leaving at the bottom. The recirculation of the
	63 64
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	Table 1.1.3. Summary of performances and operating conditions of biological methantion reported in the literature. Table 1.1.3. Continuation summary of performances and operating conditions of biological methantion reported in the literature. Table 1.1.3. Continuation summary of performances and operating conditions of biological methantion reported in the literature. Table 1.1.3. Reference Reference CH4 Content Productivity (%) Yield Syngas Content Time Agitation (rpm) Pressure (𝒂𝒕𝒎) pH Temper ature (°C) Reactor design and strategy (ex-situ / in-situ) Substrate Reference CH4 Producti vity Content (%) Yield Syngas Content Time Agitation (rpm) Pressure (𝒂𝒕𝒎) pH Temperatu re (°C) Reactor design and strategy (ex-situ / in-situ) Substrate Reference CH4 Producti vity Content (%) Yield Syngas Content Time Agitation (rpm) Pressure (𝒂𝒕𝒎) pH Temper ature (°C) Reactor design and strategy (ex-situ / in-situ) Substrate CH4 Productiv ity Yield Content (%) Yield Syngas Content Time Agitation (rpm) Pressure (𝒂𝒕𝒎) pH Temperatur e (°C) Reactor design and strategy (ex-situ / in-situ) Substrate Table 1.1.4. Continuation performance characteristics in biological methanation reported in the literature. Reference CH4 Productivit y Yield Content (%) Yield Syngas Content Time Agitation (rpm) Pressure (𝒂𝒕𝒎) pH Tempera ture (°C) Reactor design and strategy (ex-situ / in-situ) Substrate digestion? Renewable (Luo & Angelidaki, 2012) NR 1.5-5.3 𝐿/𝐿/𝑑 NR 89.9-95.4 NR 0.23 𝐿/𝐿𝐻 H2 / CH4 /CO2 (60/25/15) 135𝑑 300 500-800 1.5 1* NR 7.8 37 55 600 𝑚𝐿 𝐶𝑆𝑇𝑅 -ex-situ operation Sewage sludge Digested manure (Y. Wang et al., 2018) 4.19 𝑚𝑚𝑜𝑙/ 𝑔𝑉𝑆/𝑑 NR 5.32 𝑚𝑚𝑜𝑙/ 𝑔𝑉𝑆 Blast furnace gas CO/ CO2/H2/N2 (22/22/4/52) 230𝑑 100 2.6 7.2 37 110 𝑚𝐿 bottles Granular sludge (Asimakop oulos et al., 3.13 𝑚𝑚𝑜𝑙/ 𝐿 /ℎ NR NR H2/CO2 CO/N2 (45/25/20/10 ) 2020) 9𝑑 NA 1.3 7.0 37 180 𝑚𝐿 Trickle bed reactors *polypropylene /polyethylene as packing material with a 3.7-15.5 𝑚𝐿/𝐿/ℎ Serum bottles -8.49 𝑚𝑚𝑜𝑙/ 61-67.8 (Luo et al., 𝑚𝐿/𝐿/ℎ NR NR H2/CO2 25ℎ 100-300 0.25-1.0 8 55 2012) (4/1) ex-situ batch operation Cattle Manure (Mulat et al., 2017) 267-272 𝑚𝐿/𝐿/𝑑 87.9-89.4 NR H2 24𝑑 100 1* 7-8 52 120 𝑚𝐿 bottles -in-situ batch Maize leaf 𝐿 /ℎ 60 mass flow of 10 𝑚𝐿/𝑚𝑖𝑛 Sludge mixture (Grimalt-Alemany et al., 2020) NR NR NR NR 1.83𝑚𝑚𝑜𝑙/ 𝑔𝑉𝑆/ℎ 33.48 𝑚𝑚𝑜𝑙/ 𝑔𝑉𝑆/ℎ CO:CO2 ± 17𝑑 100 2 6.9 7.1 37 60 100𝑚𝐿 flasks -in-situ operation Anaerobic sludge Household (Ashraf et al., 2020) 8.54 𝑁𝑚 / 𝑚 /𝑑 NR NR CO2:H2 0.273 215𝑑 NA 1 7.9 52 291×10 -6 𝑚 Trickled filter -ex-situ operation *polyurethane foam (surface area 560-580 m2 m-3) as packing material with a mass flow 50 𝑚𝐿/ 𝑚𝑖𝑛 operation 18.9 𝑚𝐿/𝐿/ℎ 65 200 𝑚𝐿/ 𝑔𝑉𝑆 60𝑑 65 NR 8.3 3.5 𝐿 𝐶𝑆𝑇𝑅 (Y. Li et NR al., 2020) $ 1110 𝑚 Manure-based Anaerobic (Jensen et NR al., 2018) 44.8-63.6 0.003-0.31 𝑚𝑜𝑙/𝑚𝑜𝑙 H2 120𝑑 19 1 5.5-7.8 52 digester -in-situ batch Straw Briquettes Grass silage Maize silage operation (C. Li et al., 2020) NR 95 NR CO: CO2:H2 (1:0:3) 500ℎ 200 1* 7.8-8.8 55 118 𝑚𝐿 Serum bottles -batch operation Cattle manure Sewage sludge Gaseous H2:CO2 66.37-73.35 NR H2/CO (3/1, 4/1 and 5/1) 95𝑑 ¶ 400 1* 7.2 37 1.7 𝐿 semi-continuous stirred tank reactor 0.00578 𝑚 Trickle-bed reactor Anaerobic sludge (Laguillau mie et al., 2022) 3.97 𝑁𝐿/ 𝐿/𝑑 NR 54-76 1 𝑚𝑜𝑙/ 𝑔𝑇𝑆𝑆/𝑑 CO:H2 (ratio 4.2) 405𝑑 NR 300 1* 6-8 ¶ 55 20 𝐿 𝐵𝐶𝑅 -ex situ operación 1.4 L STR -ex-situ wastes Duck manures, Bovine manures (Guiot et al., 2011) NR NR 4.77 𝑚𝑚𝑜𝑙/ 𝑔𝑉𝑆/𝑑 CO 100𝑑 100-400 2.5 6.9-7.8 35 30𝐿 closed-loop gas lift reactor Cow manure Granular sludge and Sustainable Energy Reviews (W. Wang et 436.5-625.5𝑚𝐿/ al., 2013) 𝐿/𝑑 89.9-98.8 NR Coke oven gas H2:CO 103𝑑 200 2.6 8.0 37 2 𝐿 𝐶𝑆𝑇𝑅 with a hollow fiber membrane module -in-situ (0.92:0.08) operation Sewage sludge (Figueras et al., 2021) 6.8 𝑚𝑚𝑜𝑙/ 𝐿/ℎ NR NR CO: H2:CO2 (0.4:0.4:0.2) 74𝑑 1000 3.95 (4 bar) 6.0 55 10 𝐿 𝐶𝑆𝑇𝑅 Sludge (Rachbauer et al., 2017) 0.55 𝑚𝑚𝑜𝑙 NR NR H2/CO2 (0.8/0.2) 4𝑑 125 1* 7.0 38 *Polypropylene packing rings as packing material with a mass flow of 250 𝑚𝐿/𝑚𝑖𝑛 Sewage sludge (Kougias et al., 2017) NR 76-98 NR CH4:CO2:H2 (23:15:62) 51𝑑 NA 1* 8.0 52 operation 1.2 L Bubble column Thermophilic digestate (Andreides et al., 2022) 0.31-0.57 𝐿/ 𝐿/𝑑 34.8-65.1 0.36-0.63 𝐿/ 𝑔𝑉𝑆 H2/CO (0.55/0.45) 150𝑑 55 1* 7.6-8.6 55 10.5 operation Primary sludge and thickened-disintegrated 150, https://doi.org/10.1016/j.rser.2021.111453 waste (3:1) https://doi.org/10.1002/elsc.201100150 Ngu, V., regulate anaerobic ¶ estimated from a figure; *assumed atmospheric pressure; $ conditions for H2:CO effect; ± Initial proportion not specified; 𝑇𝑆𝑆: Total suspended solids; NR: Not reported. ¶ estimated from a figure; *assumed atmospheric pressure; $ conditions for H2:CO effect; ± Initial proportion not specified; 𝑇𝑆𝑆: Total suspended solids; NR: Not reported. ¶ estimated from a figure; *assumed atmospheric pressure; $ conditions for H2:CO effect; ± Initial proportion not specified; 𝑇𝑆𝑆: Total suspended solids; NR: Not reported. ¶ estimated from a figure; *assumed atmospheric pressure; $ conditions for H2:CO effect; ± Initial proportion not specified; 𝑇𝑆𝑆: Total suspended solids; NR: Not reported. ¶ estimated from a figure; *assumed atmospheric pressure; $ conditions for H2/CO effect; ± Initial proportion not specified; 𝑇𝑆𝑆: Total suspended solids; NR: Not reported. 111453. 𝐿 𝐶𝑆𝑇𝑅 -in-situ Krishania, M., Kumar, V., Vijay, V.K., Malik, A., 2013. Analysis of different techniques used for improvement of biomethanation process: A review. Fuel 106, 1-9. Sustainable Food Waste-To-Energy Systems. Elsevier, pp. 47-67. https://doi.org/10.1016/B978-0-12-811157-4.00004-8 by different microbial consortia. Bioresource Technology 314, 123739. https:/process stability. Bioresource Technology 248, 20-28. reduction of carbon dioxide into methane. Waste Management 68, 146-156. manure treatment for biogas production. Eng. Life Sci. 12, 258-269. anaerobic sludge blanket reactor. Bioresource Technology 361, 127654. https:/continuous stirred tank reactor system. Biomass and Bioenergy 156, 106306. and mechanism. Chemosphere 293, 133650. https:/stability https:/
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  𝐸𝐸 is the elementary effect of the 𝑖 parameter obtained at the 𝑗 repetition. The sensitivity measures 𝜇 and 𝜎 are the mean of the absolute value and standard deviation of the distribution of the elementary effects, respectively. 𝜇 * measures the influence of the 𝑖 parameter on the output. 𝜎 is a measure of non-linear and interaction effects of the 𝑖 parameter. A high value of 𝜇 * indicates that the parameter 𝜃 has a more important effect on the output. A high value of 𝜎 indicates that the elementary effect of 𝜃 varies significantly Section 2. Model and Simulation 100 from one to another, which shows that the value of 𝐸𝐸 is strongly influenced by the selected sample points.

	𝜇 * =	∑	𝑟 𝐸𝐸	( 1.2.19 )
	𝜎 =	∑		r -1 𝐸𝐸 -𝜇 *	( 1.2.20 )
	where			

The term 𝜃 + 𝑒 ∆ represents a new sample by moving the 𝑖 parameter input from 𝜃 to 𝜃 + ∆ , with the respective model output ξ 𝜃 + 𝑒 ∆ .

The index 𝑗 of 𝐸𝐸 expresses the ratio of the change of the output 𝑌 when the 𝑖 parameter 𝜃 is given a particular change ∆ . Then, 𝐸𝐸 can measure the effect of 𝜃 in a given scope of output 𝑌. The sensitivity measures are expressed in terms of means 𝜇 * , and standard deviations 𝜎 are defined as Equations ( 1.2.17 ) and ( 1.2.18 ).

  𝐶 represents the measurement error covariance matrix (𝑊 is typically chosen as 𝐶 and the second term reduces to a scalar). 𝜕𝑌/𝜕𝜃 are the partial derivatives of each output concerning each parameter, i.e., the output sensitivity functions, which quantify the dependence of the model predictions on the parameter values. The term between brackets in Equation ( 1.2.23 ) is

							Section 2. Model and Simulation
			𝑠 =	𝑁 -𝑝 𝐽(𝜃)	( 1.2.27 )
	The confidence intervals (𝐶𝐼) for each estimated parameter can be calculated as, Equation (
	1.2.28 ).					
	𝔼[𝐽(𝜃 + ∆𝜃)] ≅ ∆𝜃	𝜕𝑌 𝜕𝜃 𝐶𝐼 = 𝜃 ± 𝑡 (𝑡 ) 𝑊 / 𝜎(𝜃 ) 𝜕𝑌 𝜕𝜃 (𝑡 ) ∆𝜃 +	𝑡 (𝐶 𝑊 )	( 1.2.23 ) ( 1.2.28 )
	with a confidence level specified as 100(1 -𝛼) % and 𝑡-values obtained from the Student-
	𝑡 distribution.					
	2.3.2.2 Global Sensitivity Information Matrix
	the so-called Fisher Information Matrix (𝐹𝐼𝑀):
	𝐹𝐼𝑀 =	𝜕𝑌 𝜕𝜃	(𝑡 ) 𝑊	𝜕𝑌 𝜕𝜃	(𝑡 )
	𝐶𝑜𝑣 = 𝐹𝐼𝑀 =		𝜕𝑌 𝜕𝜃	(𝑡 ) 𝑊	𝜕𝑌 𝜕𝜃	(𝑡 )	( 1.2.25 )
		𝜎(𝜃 ) = 𝑠 𝐶𝑜𝑣	( 1.2.26 )
	with					
							102

( 1.

2.24 ) 

𝐹𝐼𝑀 equation expresses the information content of the experimental data

[START_REF] Rodriguez-Fernandez | Simultaneous model discrimination and parameter estimation in dynamic models of cellular systems[END_REF] 

by ensuring that the fit of a parameter set slightly different from the best parameter set is significantly worse. This matrix is the inverse of the parameter estimation error covariance matrix (𝐶𝑜𝑣) of the best linear unbiased estimator, Equation ( 1.2.25 ).

The formulation of the 𝐹𝐼𝑀 leads to the delimitation of confidence regions around the best parameter estimates for different confidence levels. Once the 𝐶𝑜𝑣 is calculated, approximate standard errors (𝜎) for the parameters can be formulated by evaluating the residual mean square (𝑠 ), Equations ( 1.2.26 )-( 1.2.27 ). Rodriguez-Fernandez et al. (2007) proposed a novel methodology for optimal experimental design based on Sobol' global sensitivity indices to increase the parameter's precision. The idea was to use the information proportioned by the GSA and construct the confidence intervals for the estimated parameters. Similar to the 𝐹𝐼𝑀, the authors proposed the use of a matrix called the Global Sensitivity Information Matrix (𝐺𝑆𝐼𝑀) based on the first-order 𝑆𝐼 . The 𝐺𝑆𝐼𝑀 is calculated as, Equation ( 1.2.29 ).

𝐺𝑆𝐼𝑀 = [𝑄 (𝑡 ) • 𝑊 • 𝑄(𝑡 )]

  𝑆𝐼 𝑛 𝑚 (𝑡 𝑡 ) measures the sensitivity of the state 𝑌 concerning the parameter 𝜃 at the time 𝑡 . Then the variance of each parameter 𝜃 can be approximated by 𝜎 (𝜃 ) ≈ 𝐺𝑆𝐼𝑀 and used to evaluate the confidence intervals as presented in Equations ( 1.2.26 )-( 1.2.27 ).

	Section 2. Model and Simulation
	In this case,
	30 )
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  , an adaptive control was used to regulate the substrate in the output at reference values, despite fluctuations of the input concentration by acting in the 𝐻𝑅𝑇. The model considered a simplified AD process, including the net accumulation of biomass, substrate, and CH4 gas production rate. The control strategy was evaluated in a 60 𝐿 𝐶𝑆𝑇𝑅 mechanically agitated, operating at 35°𝐶. As substrate was used spent liquor from citric acid fermentation (50% volatile solids), which was recirculated with a flow rate of 10 𝐿/ℎ.[START_REF] Petre | Adaptive and robust-adaptive control strategies for anaerobic wastewater treatment bioprocesses[END_REF] used an adaptive control for AD in wastewater treatment. The authors proposed a dynamic model representing the substrates, glucose, acetate, CO2, CH4, and the acidogenic and acetoclastic methanogens involved in AD.

  .Optimize: Tracking cost function (constant or changing set-points)

	Section 3. Bioprocess Control and Optimization
	Commonly, tracking MPC optimization problems takes the following general form (Limon et
	al., 2014):
	Subject to:
	 Dynamic model initialized with state measurement/estimate
	 State/input constraints
	 Stability constraints
	However, the EMPC optimization problem takes the following general form (Limon et al.,
	2014):
	Optimize: Economic cost function
	Subject to:
	 Dynamic model initialized with state measurement/estimate
	 State/input constraints
	 Economic-oriented constraints
	 Stability constraints
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  Section 3. Bioprocess Control and Optimization 122 In biological process optimization, the solution could be of two types, local or global. Local solutions strongly depend on the initial value used for the optimization, while global solutions are computationally more expensive but provide a global solution to the process.A MOO can be mathematically stated as in[START_REF] Sawaragi | Theory of multiobjective optimization[END_REF][START_REF] Ahmadi | An archivebased multi-objective evolutionary algorithm with adaptive search space partitioning to deal with expensive optimization problems: Application to process eco-design[END_REF] 

	Equation ( 1.3.12 ) subject to the constraints in Equation ( 1.3.13 ).
	min , , ,	{𝐽 (𝑌, 𝑢, 𝜃), … , 𝐽 (𝑌, 𝑢, 𝜃)}	( 1.3.12 )
	𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜	⎧ ⎪ ⎩ ⎨ 𝜓 (𝑌, 𝑢, 𝜃, 𝑡) = 0 𝑑𝑌 𝑑𝑡 = 𝜉(𝑌, 𝑢, 𝜃, 𝑡) 𝜆 (𝑌, 𝑢, 𝜃, 𝑡) ≤ 0 ⎪ 𝑢 ≤ 𝑢(𝑡) ≤ 𝑢 𝑡 ∈ 0, 𝑡 𝑖 = 1,2, … , 𝑛 𝑖 = 1,2, … , 𝑛

  Then, this function is evaluated by at least 𝑙 evaluations as the decision rule, Equation ( 1.4.14 ). Section 4. Soft Sensors and Fault Detection 147With the use of kernels, it is possible to operate in the feature space without knowing the details of how the input data was transformed. Some of the Kernel functions that will be used in this work are represented by Equations (

	1.4.15 )-( 1.4.17 ) (Cervantes et al., 2020):	
	Linear Kernel :		
	𝐾 𝒙 𝒊 , 𝒙 𝒋 = 𝒙 𝒊 • 𝒙 𝒋	( 1.4.15 )
	Polynomic Kernel :		
	𝐾 𝒙 𝒊 , 𝒙 𝒋 = 𝒙 𝒊 • 𝒙 𝒋 + 𝑐	( 1.4.16 )
	𝑠(𝑥) =	𝛼 𝐾(𝑥, 𝑥 ) + 𝑏	( 1.4.14 )

  According to the test results, the MLP neural network was the best to predict the outlet 𝐶𝑂𝐷 in the process with a 𝑅 >0.87 and 𝑀𝑆𝐸 < 98.3, values significantly higher compared with the RBNN and GRNN (𝑅 >0.75 and 𝑀𝑆𝐸 < 157).

	Section 4. Soft Sensors and Fault Detection
	Sharma and Tambe (2014) used three different soft sensors. Multi-Layer Perceptron (MLP) Yilmaz et al. (2010) used three different NN techniques to determine the output 𝐶𝑂𝐷 in the AD
	Neural Network (NN), RBF Support Vector Regression (SVR), and Genetic programming process: MLPNN, Radial Basis Neural Network (RBNN), and Generalized Regression neural
	(GP), for monitoring two biological processes: the extracellular production of lipase and the network (GRNN). The experiments were performed in a 1.33 L up-flow anaerobic filter (UAF)
	bacterial production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer. In the first reactor with an 𝐻𝑅𝑇 of 24 h, operating at 35°C for 130 days. The UAF reactors treated a
	process, a GP-based soft sensor is used to predict the lipase activity from four inputs, soy oil, mixture of sludge and wastewater (30% v/v). The reactor was also continuously fed with
	2020b; Robles-NH4NO3, corn steep liquor concentrations, and fermentation time. The results showed that the increasing cyanide (CN) concentrations from 1 mg/L to 130 mg/L. The three NN techniques
	Rodriguez et al., 2022; Sharma and Tambe, 2014; Tufaner et al., 2017). The classification three model-driven methods achieved good results in the test in terms of 𝑅 > 0.83 and used as inputs: the inlet chemical oxygen demand, 𝐻𝑅𝑇, and inlet cyanide concentration. The
	objective addresses fault or anomalous detection (Kazemi et al., 2020a) or categorizes a process 𝑅𝑀𝑆𝐸 < 1.54. However, the GP presented better results compared with the others (𝑅 > 0.92 dataset was composed of 134 experimental data, split in a proportion of 70/30 for the training
	according to the determinate substrate produced (Cinar et al., 2022; Wang et al., 2020). Robles-Rodriguez et al. (2016) developed a soft sensor based on SVM coupled with a Particle and 𝑅𝑀𝑆𝐸 < 0.96 ). In the second case a GP based soft sensor is used to estimate the accumulation of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from four inputs, acetate and and test. Kazemi et al. (2020b) performed interesting studies of soft sensors over the AD process with
	different aims.
	The experiments were developed in a 3 𝐿 fermenter operating at 30°C and pH 6.8 with a
	synthetic medium (glucose) as a substrate. Quadratic, cubic, and Radial Basis Function (RBF)
	SVM models were constructed using seven datasets with 8 k-folds cross-validation and three
	datasets for the test. Twelve measurements (on-line and off-line measures) were used as features data points from five AD reactors, where one half was used for training, one quarter for
	to train the model. A total of 8 predictor combinations were computed via the Root Mean Square validation, and the rest for the test sets. An interesting aspect is that the authors evaluated 11
	Error (RMSE). The preliminary results indicated that a quadratic SVM with ten features algorithms to identify the back propagation in terms of the MSE. The authors concluded that
	achieved the best results. Nevertheless, a new SVM model was performed using only on-line BPNN could be used as a soft sensor to determine the biogas performance in the AD with
	measurements, where the RBF SVM obtained good results concerning the RMSE for the coefficients of determination (𝑅 ) of 0.89 and 0.75 for the training and test.
	validation and training, concluding that SVM can accurately represent the process's non-
	linearities.
	156

Swarm Optimization (PSO) algorithm for monitoring lipid fermentation of Yarrowia lipolytica growing on glucose. The objective was to estimate the lipid, biomass, and citric acid concentrations. PSO was performed to estimate the SVM parameters 𝐶, 𝜎, 𝑎𝑛𝑑 𝜀 to avoid local minimum and high calculations times. SVM was trained and validated with different datasets of fed-batch fermentations using the on-line measurements: added base to control pH and partial oxygen pressure. The authors determined that SVM models coupled with PSO estimate the lipids and biomass concentration in fed-batch reactors satisfactory, concluding that the soft sensor in a PSO-SVM is an efficient alternative for monitoring fermentations. Robles-Rodriguez et al. (2022) used a soft sensor based on SVM to monitor the production of proteins by B. thuringiensis, a microorganism with physiological changes during fermentation.

propionate concentration, incubation period, and pH. The results showed that all the three model-driven achieved good results in the test in terms of 𝑅 > 0.93 and 𝑅𝑀𝑆𝐸 < 3.8 . However, the GP and the RBF SVR have better results compared with the MLPNN (𝑅 >0.93 and 𝑅𝑀𝑆𝐸 < 2.6). In both cases it was concluded that soft sensors, especially the GP, could be applied to monitor biological processes with non-linearities

[START_REF] Tufaner | Modeling of biogas production from cattle manure with co-digestion of different organic wastes using an artificial neural network[END_REF] 

performed a Back Propagation Neural Network (BPNN) soft sensor to estimate the biogas production in the AD process. The experiments were performed in 6.15 L up-flow anaerobic sludge blanket (UASB) reactors operating at mesophilic conditions. The reactors treated cattle manure with the co-digestion of different substrates such as grass waste, household organic waste, industrial organic waste, and sludge. The BPNN considered ten inputs: working days, influent 𝐶𝑂𝐷, influent pH, influent alkalinity, influent ammonia, total influent phosphorus, 𝐻𝑅𝑇, waste adding ratio, pretreatment waste sorts, and reactor number, while the biogas production was considered as output. The dataset comprised 180 experimental

  The experiments were performed in a 5.4 𝐿 𝐶𝑆𝑇𝑅 operating at 42°C and 55 𝑟𝑝𝑚. Pellets (animal feed material) were used as a substrate for the AD. Four 𝐶𝑆𝑇𝑅 with different temperatures and organic loading rates were evaluated. The dataset was built with ten

	in the AD process. features with possible impacts on the model, biogas production, nutrient solution usage, biogas
	production temperature, biogas pressure, waste vapor pressure, standard volume, reactor
	temperature, character, and feed. Then, the dataset was classified based on the volume of dry
	gas in the normal state, low class (9.91-901.82 𝑁𝑚𝐿/𝑑 ), medium class (901.82 -
	1707.86 𝑁𝑚𝐿/𝑑), and high class (>1707.86 𝑁𝑚𝐿/𝑑). The regression models used the RMSE
	to identify the accuracy of the prediction, while classification models used the confusion matrix
	approach to classify the AD according to the standard CH4 volume and compute the precision,
	Wang et al. (2020) performed an interesting study to predict CH4 production and identify
	the results of the algorithms with low, medium, and high CH4 production. Values of 0.64, 0.73,
	0.59, and 0.61 were determined for RF, logistic regression multiclass, SVM, and k-NN,
	respectively. This result shows that the logistic regression multiclass was suitable for
	classifying the dataset proposed.
	Cinar et al. (2022) used various machine learning algorithms (linear regression, logistic
	regression, k-NN, DT, RF, SVM, and extreme gradient boosting) to study temperature changes

determinant operational parameters. Four machine learning algorithms were selected for regression and classification: RF, logistic regression multiclass, SVM, and k-NN. Their model used as inputs the total content of carbon and nitrogen, C/N ratio, cellulose, xylan, lignin, and glucan content, and temperature and as output the CH4 production. The dataset was built using 17 instances from the literature with the same AD configuration. In both cases, the dataset was split randomly into training and test set: 15/2 and 14/3 for regression and classification, respectively. The instances were divided into three classes according to the CH4 content to evaluate the classification, low (>300 𝑚𝐿/𝐿/𝑑 ), medium (300-400 𝑚𝐿/𝐿/𝑑 ), and high (>400 𝑚𝐿/𝐿/𝑑). All the machine learning algorithms demonstrated good results in predicting CH4 production. RMSE of 65.1, 83.6, 83.6 and 36.9 were achieved in the RF, logistic regression multiclass, SVM, and k-NN during the training. During the validation, RMSE values of 81.

5, 71.7,68.6, and 89.0 

were obtained in the RF, logistic regression multiclass, SVM, and k-NN, respectively. On the other hand, the accuracy metric was used in the classification to measure recall, and F1-score. Only the best results were presented for the regression and classification models. In the regression, 𝑅𝑀𝑆𝐸 of

246.96, 72.16, and 93.91 

were obtained for the linear regression, DT and RF, respectively, while in classification, accuracy values of 0.93, 0.89, 0.88, and 0.86 were determined for SVM, RF, k-NN, and DT, respectively. The authors successfully implemented machine learning models capable of predicting changes in the temperature and feedings in the AD and performing efficient real-time monitoring.

  Table 1.4.1. Soft sensor in biological process.

	Table 1.4.1. Continuation soft sensor in biological process.	Reference Comments Accuracy / F1 score 𝑹𝑴𝑺𝑬 𝑹 𝟐 Outputs Inputs Application type Method applied Process Reference Comments Accuracy / F1 score 𝑹𝑴𝑺𝑬 𝑹 𝟐 Outputs Inputs Application type Method applied Process Reference Comments Accuracy / F1 score 𝑹𝑴𝑺𝑬 𝑹 𝟐 Outputs Inputs Applica tion type Method applied Process	(Robles-estimate the SVM biomass, Added base to performed to Lipid, control pH, Rodriguez parameters 𝐶, --et al., 𝜎, 𝑎𝑛𝑑 𝜀 to avoid ----and citric acid volume and partial oxygen 2016) local minimum concentrat pressure and high ion Process Monitoring Particle Swarm Optimization (PSO)-SVM Lipid fermentations (Tufaner et al., 2017) Evaluation of 11 algorithms to identify the back propagation in terms of the MSE. The scaled conjugate gradient backpropagation ----0.89 for training and 0.75 for test Biogas production 𝐶𝑂𝐷, pH, The PSO was Time, inlet alkalinity, ammonia, and total phosphorus, 𝐻𝑅𝑇, waste adding ratio, calculations times with an MSE of 0.0322 was pretreatment selected waste sorts, 148.65 for Partial and reactor (Robles-Exploration of training Protein Rodriguez SVM using --et al., quadratic, cubic, and 172.29 for --concentrat ion 2022) and RBF kernels validation pressure, agitation, pH, aereation, and strain number Process Monitoring Quadratic, cubic, and RBF SVM Protein production All the soft sensors are considered black box models. number on-line prediction BPNN AD of cattle manure with the co-digestion of different substrates such as grass waste, house hold organic waste industrial organic waste and sludge (Wang et al., 2020) Further improvements such as increasing the amount of data and algorithm optimization could benefit the application of machine learning in predicting digestion performance Concerning the regression models, the linear regression on the contrary, the model, decision tree (Kazemi, Extracellular GP is an Soy oil, extension of the 𝑅𝑀𝑆𝐸 < Genetic --1.54 * algorithm. Given 𝑅 > 0.83 * Lipase activity NH4NO3 , and corn concentration the objective production of lipase enzyme Steyer et al., 2020) genetic programming soft sensor is transparency, which makes it easy to integrate into process control systems without any further modifications --𝑁𝑅𝑀𝑆𝐸 < 0.0090 $* 𝑅 > 0.99 * 𝑉𝐹𝐴 pH, ammonia concertation, pressure and Process Monitoring BPNN, SVM, RF, Extreme learning Activated sludge (Cinar et al., 2022) and random forest obtained the best RME. In classification models, the SVM, RF, and (Sharma function, the GA On-line and Tambe, searches and 𝑅 >0.93 * 2014) optimizes the poly(3-Acetate, prediction Genetic programming (GP), neural network, RBF SVR Bacterial production of values of the hydroxybu propionate poly(3-decision variables --that would 𝑅𝑀𝑆𝐸 < 2.6 * tyrate-co-3-concentration, incubation hydroxybutyrate -co-3-maximize/minimi hydroxyva period, and hydroxyvalerate ze the function lerate) pH (Kazemi et al., 2020a) A control chart is a graphical technique wherein a value of specific statistics is presented over time and, for the normal operation of the process, the statistics must not pass a predetermined control limit F1 score = 0.96 # ----CO2 molar fraction. Process fault detection machine, genetic program ming (Yilmaz et al., 2010) k-NN algorithms --With values of 0.64,0.73,0.5 9,0.61 for RF, logistic regression multiclass, SVM and k-NN, respectively £ accuracy values of 0.93, 0.89, 0.88, and 0.86 were determined for SVM, RF, k-NN, and DT, respectively ç --RMSE < 89 in test 𝑅𝑀𝑆𝐸 < 246.96 * 𝑅𝑀𝑆𝐸 < 98.3 + 81.5 * ----𝑅 >0.87 + CH4 productio n Standard CH4 volume Outlet 𝐶𝑂𝐷 Total content of carbon and nitrogen, C/N ratio, cellulose, xylan, lignin, and glucan content, and temperature biogas production, nutrient, biogas production temperature and pressure, waste vapor pressure, standard volume, reactor temperature, character, and feed Inlet 𝐶𝑂𝐷, 𝐻𝑅𝑇, and inlet cyanide concentration. Process Monitor ing and Classifi cation Process Monitor ing and Classifi cation On-line predicti on RF logistic regression multiclass SVM k-NN linear regression, logistic regression, k-NN , DT, RF, SVM, and extreme gradient boosting MLP NN, RBNN, and Generalized Regression NN AD with different substrates from the literature AD with 𝑂𝐿𝑅 and temperature variations AD of a mixture of sludge and wastewater (30% v/v), and cyanide concentrations	* for all methods applied * for all methods applied; + the MLP NN; $ normalize RMSE ( 𝑁𝑅𝑀𝑆𝐸 ) ; # 𝑉𝐹𝐴 CUSUM with +5% disturbance in µ , £ 𝑁𝑚𝐿/𝑑), and high 𝑁𝑚𝐿/𝑑), medium class (901.82 -1707.86 Low class (9.91-901.82 In classification for low, medium, and high CH4 production; ç	class.

) Table

1

.4.1. Continuation soft sensor in biological process.

Table 2

 2 

	.2.1 presents a summary of the

Table 2 .

 2 2.1. Reactions involved in biological methanation. Adapted from

  Section 2. Dynamic Modeling of Biological Methanation for Different Reactor Configurations: An Extension of the Anaerobic Digestion Model No. 1 188 biomass decay. The model describes three types of variables: soluble (𝑆 , ), particulate (𝑋 ) and gas 𝑆 , components. Particulate components are considered to be part of the biomass as in the ADM1 (see Annexes Section 1 for more details). The model is here rewritten as State variables in the gas phase 𝑺 𝒈𝒂𝒔, 𝒊 : H2, and CO, respectively. For the gas phase, the sub-index 𝑖 ϵ [1,4] corresponds to H2, CH4, CO, and CO2. The inlet flow rates of liquid and gas are represented by 𝑞 and 𝑞 , respectively, while 𝑞 denotes the outlet gas flow rate. 𝑉 and 𝑉 are the liquid and gas volumes, respectively, 𝑆 , , 𝑆 , , and 𝑋 hold for the inlet concentration of the component 𝑗 in the liquid phase, the inlet concentration of component 𝑖 in gas phase, and the inlet concentration of biomass 𝑘 in the liquid phase. 𝑌 is the yield of biomass k, 𝑓 , the stoichiometric coefficients; µ and µ ,

	Equations ( 2.2.1 ) -( 2.2.3 ).					
	State variables in the liquid phase 𝑺 𝒍𝒊𝒒,𝒋 :			
	𝑑𝑆 , 𝑑𝑡	=	𝑞 𝑉	𝑆 , -𝑆 , +	𝑌 𝑓 , µ -𝑁	( 2.2.1 )
	State variables in biomass (𝑿 𝒌 ):				
	𝑑𝑋 𝑑𝑡	=	𝑞 𝑉	𝑋 -𝑋 + 𝑌 µ -µ ,		( 2.2.2 )
	𝑑𝑆 , 𝑑𝑡	=	𝑞 𝑉	𝑆 , +𝑁	𝑉 𝑉	-	𝑞 𝑉	𝑆 ,	( 2.2.3 )

Sub-index 𝑗 ϵ [1,8] denotes glucose, butyrate, propionate, acetate, H2, CH4, CO, and CO2 in the liquid phase. The H2, CH4, and CO are expressed in 𝑔𝐶𝑂𝐷/𝐿, and CO2 is expressed in 𝑚𝑜𝑙/𝐿. Chemical Oxygen Demand (𝐶𝑂𝐷) is the amount of oxygen needed to degrade the organic matter into CO2 and H2O. It is important to mention that CO2 would be expressed in 𝑚𝑜𝑙𝑒𝑠 instead of 𝐶𝑂𝐷, as suggested in

(Batstone et al., 2002)

.

6] 

reads for the biomass that degrade glucose, butyrate, propionate, acetate, the growth and decay rate of biomass k, and 𝑁 the mass transfer rate of component 𝑖.

Table 2 .

 2 2.2 Petersen matrix for soluble component in the ADM1_ME.

	Reac	tion	rate	𝜇	𝜇	𝜇	𝜇	𝜇	𝜇	µ ,	µ ,	µ ,	µ ,	µ ,	µ ,
			𝑋						𝑌						-1

  1

	Component	Process	Uptake of 1 sugar	Uptake of 2 butyrate	Uptake of 3 propionate	Uptake of 4 acetate	Uptake of CO 5	Uptake of 𝐻 6	Decay of 𝑋 7	Decay of 𝑋 8	Decay of 𝑋 9	Decay of 𝑋 10	Decay of 𝑋 11	Decay of 𝑋 12

  Section 2. Dynamic Modeling of Biological Methanation for Different Reactor Configurations: An Extension of the Anaerobic Digestion Model No. 1 191 energy dissipation per unit of volume in the presence of gas, the so-called gassed power input(𝑃𝑜𝑤𝑒𝑟 ) , depends on the impeller type, rotation speed and aeration number[START_REF] Gary | Fluid mixing and gas dispersion in agitated tanks[END_REF][START_REF] Liu | Investigation and modeling of gas-liquid mass transfer in a sparged and non-sparged continuous stirred tank reactor with potential application in syngas fermentation[END_REF].

	2.3.2.1 Bubble Column Reactor (𝑩𝑪𝑹) Volumetric Mass Transfer Coefficient
	The volumetric mass transfer coefficient in a 𝐵𝐶𝑅 can be defined as,
		𝑘 𝑎 , = 𝑏 , 𝑈 ,			( 2.2.5 )
	𝑈 is the superficial gas velocity, 𝑏 ,	and 𝑏 ,	are parameters that can be affected by the
	liquid phase properties and type of sparger. Values of 0.467 and 0.82 were respectively
	proposed by Deckwer et al. (1983) for tap water and salt solutions with 𝑈 ranging between
	0.002-0.08 𝑚 𝑠 ⁄ .				
	𝑘 𝑎 , = 𝑏 ,	𝑃𝑜𝑤𝑒𝑟 𝑉	,	𝑈 ,	( 2.2.6 )
	𝑏 , , 𝑏 , , and 𝑏 ,	are constant parameters. The values of 𝑏 ,	and 𝑏 ,	present
	variations: 0.4< 𝑏 , <1 and 0< 𝑏 , <0.7. The value of 𝑏 , , however, is not reported in
	most cases, but it is highly correlated to 𝑏 ,		because 𝑃𝑜𝑤𝑒𝑟 𝑉 ⁄	range from 1×10 3 -

2.3.2.2 Continuous Stirred Tank Reactor (𝑪𝑺𝑻𝑹) Volumetric Mass Transfer Coefficient

The volumetric mass transfer coefficient in a 𝐶𝑆𝑇𝑅 can be defined as,

  27 )where 𝜃 is a sample of input 𝜽 and ξ 𝜃 is the corresponding model output. ∆ is a step between two consecutive input space points of the trajectory. The term 𝜃 + 𝑒 ∆ represents 𝐸𝐸 is the elementary effect of the 𝑖 parameter obtained at the 𝑗 repetition. The sensitivity measures 𝜇 and 𝜎 are the mean of the absolute value and standard deviation of the distribution of the elementary effects, respectively. 𝜇 * measures the influence of the 𝑖 parameter on the output. 𝜎 is a measure of non-linear and interaction effects of the 𝑖 parameter. A high value of 𝜇 * indicates that the parameter 𝜃 has a more important effect on Section 2. Dynamic Modeling of Biological Methanation for Different Reactor Configurations: An Extension of the Anaerobic Digestion Model No. 1 200 the output. A high value of 𝜎 indicates that the elementary effect of 𝜃 varies significantly from one to another, which shows that the value of 𝐸𝐸 is strongly influenced by the selected sample points.

	𝜇 * =	∑	𝑟 𝐸𝐸	( 2.2.30 )
	𝜎 =	∑		r -1 𝐸𝐸 -𝜇 *	( 2.2.31 )
	where			

a new sample by moving the 𝑖 parameter input from 𝜃 to 𝜃 + ∆ , with the respective model output ξ 𝜃 + 𝑒 ∆ .

The index 𝑗 of 𝐸𝐸 expresses the ratio of the change of the output 𝑌 when the 𝑖 parameter 𝜃 is given a particular change ∆ . Then, 𝐸𝐸 can measure the effect of 𝜃 in a given scope of output 𝑌. The sensitivity measures are expressed in terms of means 𝜇 * , and standard deviations 𝜎 are defined as Equations ( 2.2.28 ) and

( 2.2.29 )

.
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	Operational conditions	OP1	OP2
	Reactor type	𝐵𝐶𝑅	𝐶𝑆𝑇𝑅
	Temperature (°𝐶)	37	55
	Working volume (𝐿)	37.5	10.5
	𝐻𝑅𝑇 (𝑑)	20	21
	Experimental time (𝑑)	207	150

2.3

. Operational conditions from OP1

(Sun et al., 2021) 

and OP2

[START_REF] Andreides | Assessing the syngas biomethanation in anaerobic sludge digestion under different syngas loading rates and homogenisation[END_REF]

.
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 2 2.4. Syngas flow rate, gas loading rate, and organic loading rate from OP1(Sun et al., 2021) and OP2[START_REF] Andreides | Assessing the syngas biomethanation in anaerobic sludge digestion under different syngas loading rates and homogenisation[END_REF].

				Recirculation		Organic loading
	Stage Time (𝒅)	Syngas flow rate (𝑳/𝒅)	flow rate (𝑳/𝒉)	Gas loading rate (𝑳/ 𝑳 𝒓 /𝒅)	rate (𝒈𝑪𝑶𝑫/𝑳 𝒓 / 𝒅)
					OP1	
	Reference 1-32	0.0	0.0	0.0	
	I	33-64	7.5	3.75	0.2	
	II	65-101	7.5	60	0.2	
						0.53
	III	102-135	15.0	120	0.4	
	IV	136-171	37.5	120	1.0	
	V	172-207	37.5	240	1.0	
					OP2	
	Reference 1-36	0.0	-	0.0	3.08
	I	36-51	3.15	-	0.3	3.72
	II	51-81	7.35	-	0.7	3.24
	III	81-118	10.5	-	1.0	3.09
	IV	118-130	15.75	-	1.5	2.84

  Some authors mentioned 1.42 𝑔𝐶𝑂𝐷/𝑔𝑉𝑆 for activated sludge(Ahnert et al., 2021), while others indicated values between 1.6 -1.7 𝑔𝐶𝑂𝐷/𝑔𝑉𝑆(Batstone et al., 2010). In this case, an Section 2. Dynamic Modeling of Biological Methanation for Different Reactor Configurations: An Extension of the Anaerobic Digestion Model No. 1 202 estimation using the function fmincon from MATLAB® was performed by minimizing the RMSE with a lower and upper value of 1.42 and 1.7 𝑔𝐶𝑂𝐷/𝑔𝑉𝑆, respectively. A value of 1.62 𝑔𝐶𝑂𝐷/𝑔𝑉𝑆 was obtained. Additionally, a value of 0.025 𝑚𝑜𝑙/𝑔𝐶𝑂𝐷 was used for the CO2 balance (lower than the one proposed for sugar 0.0313 𝑚𝑜𝑙/𝑔𝐶𝑂𝐷). To model the mass transfer for OP2, a value of 0.69 was used for 𝑏 , in Equation ( 2.2.5 ) since the 𝐵𝐶𝑅 structure is not known in detail.

  .2.33 ) considers 𝑞 , for OP1 and 𝑝 , for OP2.𝑌, and 𝑌 are the experimental, mean, and model data, respectively.

		Section 2. Dynamic Modeling of Biological Methanation for Different Reactor
			Configurations: An Extension of the Anaerobic Digestion Model No. 1
				𝑅 = 1 -	∑ 𝑌 -𝑌	( 2.2.34 )
						∑ 𝑌 -𝑌
				𝑅𝑀𝑆𝐸 =	1 𝑛 /		𝑌 -𝑌	( 2.2.35 )
	In the former equations, 𝑖 denotes CH4, H2, and CO for OP1 and CH4, H2, CO, and CO2 for
	OP2. 𝑛 /		is the number of observations for the operating condition OP1 or OP2, 𝑌 ,
	𝑅𝑀𝑆𝐸 =	𝑊 𝑛	𝑞 , -𝑞 , 𝑚𝑎𝑥 (𝑞 , )	+	𝑛 𝑊	𝑚𝑎𝑥 (𝑝 , ) 𝑝̂ , -𝑝 ,	( 2.2.33 )
	Sub-index 𝑖 ϵ [1,4] corresponds to CH4, H2, CO, and CO2. Note that only the first three are used
	for OP1. 𝑛	and 𝑛	are the number of observations in OP1 and OP2. 𝑊	and 𝑊	are
	the weights to trade-off the estimation of OP1 and OP2.
	Model validation was carried out with the results from OP1 (stages IV and V) and OP2 (stages
	III and IV). The coefficient of determination (𝑅 ), and the root mean squared error (𝑅𝑀𝑆𝐸)
	were used as criteria to qualify parameter estimation, Equations (2.2.32) -(2.2.33).
								204
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 2 2.5. First-order sensitivity index with a scalar characteristic (𝑆𝐼 ) with the Sobol' method from OP1(Sun et al., 2021) and OP2[START_REF] Andreides | Assessing the syngas biomethanation in anaerobic sludge digestion under different syngas loading rates and homogenisation[END_REF]. Section 2. Dynamic Modeling of Biological Methanation for Different Reactor Configurations: An Extension of the Anaerobic Digestion Model No. 1 This normalization helps to identify which parameters contribute the most to the total variance, i.e., the most sensitive parameters (see Annexes Section 0-2.2, Figure 4.2.1-Figure 4.2.2 ).

	Paramete		𝑺𝑰 𝒊𝒔 for OP1			𝑺𝑰 𝒊𝒔 for OP2	
	r / Model outputs	𝑞 ,	𝑞 ,	𝑞 ,	𝑞 ,	𝑝 ,	𝑝 ,	𝑝 ,	𝑝 ,
	𝑌	2.8	3.0	6.2	2.5	0.7	8.4	3.6	4.1
	𝑌	4.1	5.9	6.7	8.0	1.3	2.9	2.5	1.7
	𝑌	5.6	6.4	3.5	2.6	1.4	1.5	3.5	3.2
	𝑌	4.4	7.2	1.8	2.4	1.4	5.3	4.7	2.2
	𝑌	3.0	2.5	5.7	2.9	5.1	1.7	5.0	1.4
	𝑌	3.9	4.7	1.8	3.1	8.7	2.7	2.8	2.5
	µ ,	3.1	9.0	2.4	10.0	3.3	2.7	5.7	8.4
	µ ,	3.2	3.6	3.9	9.6	0.7	3.1	2.1	2.5
	µ ,	3.0	3.4	3.1	1.7	5.3	11.8	8.8	0.3
	µ ,	4.0	2.2	3.0	4.4	1.2	2.5	2.8	6.0
	µ ,	3.1	4.0	3.0	2.7	1.2	4.4	11.5	3.1
	µ ,	3.3	5.7	4.7	2.7	0.6	3.2	4.0	11.3
	𝑓 ,	3.7	2.5	4.3	3.7	1.3	1.8	1.3	5.4
	𝐾𝐼 ,	4.0	3.3	2.6	2.1	44.2	2.0	3.9	14.6
	𝐾𝐼 ,	4.9	3.9	3.3	6.7	0.8	3.4	4.8	0.4
	𝐾𝐼 ,	3.9	3.3	3.7	6.2	1.3	7.0	3.3	2.7
	𝐾𝐼 ,	4.4	3.0	4.5	2.5	3.3	2.5	3.8	3.6

  𝑝 , were µ , , µ , , 𝐾𝑠 , µ , , and 𝑌 . Concerning 𝑞 , , the most sensitive parameters were 𝐾𝐼 , , µ , , µ , , µ , , 𝑓 , , 𝐾𝑠 , and 𝑘 𝑎 . Section 2. Dynamic Modeling of Biological Methanation for Different Reactor Configurations: An Extension of the Anaerobic Digestion Model No. 1 207 In OP2, 𝐾𝑠 presented an effect on the model outputs 𝑞 , and 𝑞 , , while 𝐾𝐼 , affected 𝑞 , and 𝑞 , .The growth rate µ , presented an effect over 𝑞 , and 𝑞 , , while µ , did it over 𝑞 , and 𝑞 , . The model outputs 𝑞 , and 𝑞 ,

  𝑌 , 𝐾 , and µ , affected the model outputs 𝑞 , , 𝑞 , , and 𝑞 , . 𝐾𝑠 and 𝐾𝑠 only influenced 𝑞 , and 𝑞 , . The other high-influence parameters presented an effect just in one output. In OP2, µ , , 𝐾𝑠 , µ , , 𝑌 influence all the model outputs. 𝑌 , µ , , and 𝑌 reported an influence on 𝑞 , , 𝑞 , , and 𝑞 , , and 𝐾𝑠 , µ , , and 𝑌 affected 𝑞 , , 𝑞 , , and 𝑞 , . 𝐾𝐼 , , and 𝐾𝑠 presented an influence on 𝑞 , and 𝑞

, . The other high influence parameters presented an effect just in one output. Therefore, good candidates for parameter estimation were 𝑌 , 𝑌 , 𝑌 , µ , , µ , , µ , , µ , , 𝐾𝑠 , 𝐾𝑠 , 𝐾𝑠 , and 𝐾 .
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 2 2.6. Estimated parameters for the ADM1_ME.

	Parameter	Initial value	Estimated value value
	𝑌	0.1 ¶	0.0814
	𝑌	0.06 ¶	0.0605
	𝑌	0.06 ¶	0.0281
	𝑌	0.05 ¶	0.0429
	𝑌	0.025*	0.0226
	µ ,	45*	31.59
	µ ,	13 ¶	10.40
	µ ,	12.5*	8.79
	µ ,	90*	109.47
	𝐾𝐼 ,	1.00×10 -6*	9.75×10 -7
	𝐾𝑠	0.02*	0.0211
	𝐾𝑠	0.05*	0.0496
	𝐾𝑠	1.00×10 -6 *	1.03×10 -6
	𝐾	5.00×10 4 ¶	4.99×10 4

Table 2 .

 2 2.7. Statistical analysis for ADM1_ME calibration with OP1 and OP2.

				OP1				OP2	
	Criteria	𝑞 ,	𝑞 ,	𝑞 ,	𝑞 ,	𝑝 ,	𝑝 ,	𝑝 ,	𝑝 ,
	𝑅	0.95	0.90	0.90	--	0.98	0.97	0.96	0.91
	𝑅𝑀𝑆𝐸	0.29	0.38	0.27	--	1.06	1.94	1.36	2.52

Table 2 . 2

 22 𝑞 , . Concerning the 𝑅𝑀𝑆𝐸, values less than 0.94 and 5.15 were exhibited with OP1 and OP2. The best-predicted variables were 𝑞 , and 𝑞 , (𝑅 > 0.74 and 𝑅𝑀𝑆𝐸 < 0.94) with OP1. Concerning OP2, all the variables presented similar fitting (𝑅 > 0.82 and 𝑅𝑀𝑆𝐸 < 5.15), resulting in a better model prediction.

.8 reports the statistical evaluation of the ADM1_ME validation with the two operating conditions. Values higher than 0.74 and 0.82 were obtained in the 𝑅 with OP1 and OP2, except for

Table 2 .

 2 2.8. Statistical analysis for ADM1_ME validation with OP1 and OP2. Figure 2.2.6 presents the concentration of 𝑆 , , 𝑆 , , 𝑆 , , 𝑆 , , 𝑆 , , 𝑆 , , 𝑆 , , Concentrations in the liquid phase: sugar 𝑆 , , butyrate 𝑆 , , propionate 𝑆 , , acetate 𝑆 , , CO 𝑆 , , H2 𝑆 , CH4 𝑆 , and CO2 𝑆 , .

			OP1				OP2		
	Criteria	𝒒 𝒈𝒂𝒔,𝑪𝑯𝟒	𝒒 𝒈𝒂𝒔,𝑯𝟐	𝒒 𝒈𝒂𝒔,𝑪𝑶 𝒒 𝒈𝒂𝒔,𝑪𝑶𝟐	𝒑 𝐠𝐚𝐬,𝐂𝐇𝟒 𝒑 𝐠𝐚𝐬,𝐇𝟐 𝒑 𝐠𝐚𝐬,𝐂𝐎 𝒑 𝐠𝐚𝐬,𝐂𝐎𝟐
	𝑅	0.39	0.74	0.81	--	0.84	0.87	0.82	0.83
	𝑅𝑀𝑆𝐸	0.94	0.94	0.22	--	5.15	1.79	1.30	4.19

  6, 347.1, 597.3, and 389.7 1 𝑑 ⁄ for 𝑘 𝑎 , 𝑘 𝑎 , 𝑘 𝑎 , and 𝑘 𝑎 in stage V. In contrast, the 𝑘 𝑎 , 𝑘 𝑎 , 𝑘 𝑎 , and 𝑘 𝑎 , in stage V given the contribution provided by the gassed power.

	in OP2 (Figure 2.2.9-B) decreased in stage I below the value in the reference stage and
	increased progressively until reaching values of 56.22, 49.46, 85.08, and 55.54 1 𝑑 ⁄ for 𝑘 𝑎 ,

Table 2 .

 2 The gas addition was performed in five stages, in which the inlet gas flow rate 𝑞 𝑔𝑎𝑠 𝑖𝑛 and the gas loading rate (𝐺𝐿𝑅) were varied in time. These values are reported in Table2.3.1. 3.1. Experimental conditions from literature(Sun et al., 2021). 𝑉 is the molar fraction volume, 𝑆 , is the inlet concentration of component 𝑗 in the liquid phase, 𝑞 is the outlet gas flow rate, 𝑓 , are the stoichiometric coefficients, 𝑋 is the inlet concentration of biomass 𝑘, µ and 𝐾 , are the growth rate and decay constant of biomass k, 𝑌 is the yield of biomass k, and 𝑁 is the mass transfer rate of component 𝑖.

	5 𝐿 and

Table 2 .

 2 𝑚𝑖𝑛 , respectively. Figure2.3.2-A displays the POS for each stage. In stages I and IV, the POS is far from the literature value, which indicates that optimization can perform a representative change in both optimum variables. For the other stages, the literature point is near the POS, denoting that the experiment was performed to maximize yield.Three POP were selected to analyze different cases of biological methanation improvement. 3.2 summarizes the selected POP at each stage.

	The first POP considered the maximization of 𝑃 . The second POP maximized the Euclidean
	length, which was performed by normalizing the POS [0,1] and determining the maximum
	Euclidean length (𝑑	) from the origin on the normalized coordinates. The third POP
	involved the maximization of 𝑌	(orange, yellow, and purple squares in Figure 2.3.2-A).

Table 2 .

 2 3.2. Multi-objective optimization results.

		POP for maximum 𝑃		POP for maximum 𝑑			POP for maximum 𝑌
	Stage											
		𝑌 ×10 -1		𝑃 ×10 -1	𝑌 ×10 -1		𝑃	×10 -1	𝑌 ×10 -1		𝑃 ×10 -1
		(𝐿 𝑔𝐶𝑂𝐷 ⁄	)	(𝐿 𝐿𝑟/ ⁄	𝑑)	(𝐿 𝑔𝐶𝑂𝐷 ⁄	)	(𝐿 𝐿𝑟/ ⁄	𝑑)	(𝐿 𝑔𝐶𝑂𝐷 ⁄	)	(𝐿 𝐿𝑟/ ⁄	𝑑)
	I	3.155		8.011	3.341		7.080	3.443		2.984
	II	3.156		8.012	3.340		7.107	3.443		2.984
	III	3.159		8.471	3.330		7.599	3.417		4.042
	IV	3.149		9.847	3.308		9.042	3.371		5.940
	V	3.167		9.844	3.313		8.943	3.371		5.940

  Case 1: ADM1_ME without MODO (literature value). Case 2: ADM1_ME with MODO (POP for maximum 𝑃 ). Case 3: ADM1_ME with MODO (POP for maximum Euclidean length). Case 4: ADM1_ME with MODO (POP for maximum 𝑌 ). Case 5: ADM1_ME with MODO switching between the maximum 𝑃 (stages I, V), maximum Euclidean length (stages II, III), and maximum yield (stage IV). In all cases, the initial guess (𝑢 ) was 1.0 𝐿/𝑑 for both control variables. The lower and upper bounds of the objective variables 𝑌 and 𝑃 , and the constraints were the same as presented in the MOO. 𝐻 and 𝐻 were considered equal with values corresponding to the time of each stage (see Table 2.3.1).

	Section 3. Multi-Objective Dynamic Optimization Applied to Biological Methanation
							Process
		0.8		0.8	
		0.6		0.6	
		0.4		0.4	
			Stage I			Stage II
		0.32	0.33	0.34	0.32	0.33	0.34
		0.8		1	
		0.6		0.8	
				0.6	
		0.4	Stage III			Stage IV
		0.32	0.33	0.34	0.315 0.32 0.325 0.33 0.335
			1			
			0.8			
			0.6			
				Stage V	
			0.315 0.32 0.325 0.33 0.335	
		POS		Maximum P CH4	Maximum Euclidean Length
		Maximum Y CH4	Literature Value		
				Y CH4 (L/gCOD added )	
	For cases 2, 3, 4, and 5, the simulation times were 2.12, 3.35, 3.37, and 2.89 𝑚𝑖𝑛, respectively,
	in which the weights 𝑊 , and 𝑊 , were manually adjusted to values of 1 × 10 . Figure
	2.3.2-B shows the dynamical behavior of optimum and control variables.
	With regard to case 2 in stage V, the 𝑃	was maximized from 4.9×10 -1 without MODO to
	9.84×10 -1 𝐿 𝐿𝑟 ⁄ /𝑑 with a slight decrease in 𝑌 from 3.34×10 -1 without MODO to 3.17×10 -
	1 𝐿 𝑔𝐶𝑂𝐷 ⁄	with MODO. The 𝑞 increased from 1.9 𝐿/𝑑 without MODO to 8.4 𝐿/𝑑
	with MODO and remained constant for all stages. The 𝑞 increased from 37.5 𝐿/𝑑 without
	MODO to 10.0×10 3 𝐿/𝑑 with MODO in stage V.		
	Figure 2.3.2. (A) Pareto optimal set for stages I-V. (B) Methane yield, methane productivity,
	and inlet liquid and gas flow rates in the MODO strategy.	
							235

  𝐿 𝐿𝑟 ⁄ /𝑑 in stage V. The 𝑞 increased from 1.9 𝐿/𝑑 without MODO to 7.0 𝐿/𝑑 with DMO in stage V. The 𝑞 increased from 37.5 𝐿/𝑑 without MODO to 8.40×10 3 𝐿/𝑑 with 𝑑 in stage V. The 𝑞 increased up to 3.69 𝐿/𝑑 in stage V. The 𝑞 increased from 37.5

	Section 3. Multi-Objective Dynamic Optimization Applied to Biological Methanation
				Process
	In case 3, the 𝑌	increased from 3.18×10 -1 to 3.34×10 -1 𝐿 𝑔𝐶𝑂𝐷 ⁄	in stage I, but
	decreased compared to case 1 in stage V. The 𝑃	increased from 4.19×10 -1 without MODO
	to 9.82×10 -1 DMO in stage V.		
	In case 4, the 𝑌	achieved a value of 3.44×10 -1 𝐿 𝑔𝐶𝑂𝐷 ⁄	in stage I, but decreased
	slightly to 3.37×10 -1 𝐿 𝑔𝐶𝑂𝐷 ⁄	in stage V. The 𝑃	reached a value of 5.94×10 -1
	𝐿 𝐿𝑟 ⁄ /		
				236
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 2 3 𝐿/𝑑 from stage I to V. For case 4, an 𝑞 between 2.56 𝐿/𝑑 and 3.70 𝐿/𝑑 from stage I to V was used to maintain Section 3. Multi-Objective Dynamic Optimization Applied to Biological Methanation Process 237 the maximum 𝑌 . The 𝑞 ranged between 2.69×10 3 and 8.07×10 3 𝐿/𝑑 from stage I to V.Case 5 followed the same behavior for the 𝑞 , whereas the 𝑞 behavior was different for all cases. 3.3. Methane yield and productivity ratio with MODO.

		Case 1	Case 2	Case 3	Case 4	Case 5
	Stage	Value ×10 -1	Value ×10 -1 Ratio	𝒀 𝑪𝑯𝟒 (𝑳 𝒈𝑪𝑶𝑫 𝒂𝒅𝒅𝒆𝒅 ⁄ Value ×10 -1 Ratio Value ) ×10 -1 Ratio	Value ×10 -1 Ratio
	I	3.18	3.15	0.99	3.33	1.05	3.43	1.08	3.15	0.99
	II	3.42	3.15	0.92	3.33	0.97	3.44	1.00	3.33	0.97
	III	3.39	3.16	0.93	3.32	0.98	3.41	1.01	3.32	0.98
	IV	3.31	3.15	0.95	3.30	1.00	3.36	1.02	3.36	1.02
	V	3.34	3.16	0.95	3.31	0.99	3.37	1.01	3.16	0.95
					𝑷 𝑪𝑯𝟒 (𝑳 𝑳𝒓/𝒅 ⁄ )			
	I	2.17	8.07	3.72	7.08	3.26	2.98	1.37	7.98	3.67
	II	2.34	8.00	3.42	7.10	3.04	2.98	1.28	7.11	3.04
	III	2.80	8.46	3.02	7.60	2.71	4.04	1.44	7.60	2.71
	IV	4.15	9.85	2.37	9.04	2.18	5.94	1.43	5.94	1.43
	V	4.19	9.82	2.34	8.94	2.13	5.94	1.42	9.82	2.34

  𝑞is the outlet gas flow rate, 𝑉 and 𝑉 the liquid and molar fraction volume; 𝑆 , , 𝑆 , , and 𝑋 are the inlet concentrations of components 𝑗 in the liquid phase, the inlet concentration of components 𝑖 in the gas phase, and the inlet concentration of biomass 𝑘 in the liquid phase; 𝑌 is the yield of biomass 𝑘, 𝑓 , refers to the stoichiometric coefficients; µ and 𝐾 , are the growth rate and decay constant of biomass 𝑘, and 𝑁 is the mass transfer rate of component 𝑖. Two objectives were considered: the yields 𝑌 , 𝑌 and productivities 𝑃 , 𝑃 , for CH4 and acetate. These are defined as,

	Section 4. Switching Multi-Objective Dynamic Optimization (MODO) for the Section 4. Switching Multi-Objective Dynamic Optimization (MODO) for the
					Production of Value-Added Products Production of Value-Added Products
	where ℎ = 𝐶𝐻 , 𝑎𝑐𝑒𝑡𝑎𝑡𝑒, the value 0.39 𝐿/𝑔𝐶𝑂𝐷	represents the maximum theoretical
	𝑑𝑋 𝑑𝑡 cumulative CH4 volume at 37°C or 0.35 𝐿/𝑔𝐶𝑂𝐷 = 𝑞 𝑉 𝑋 -𝑋 + 𝑌 µ -µ ,	( 2.4.6 ) at standard temperature and pressure
	conditions (only for 𝑃 , and 𝑌 maximization).
	Sub-index 𝑗 ϵ [1,8] denotes glucose, butyrate, propionate, acetate, H2, CH4, CO, and CO2 in the
	liquid phase. Sub-index 𝑘 ϵ [1,6] reads for the biomass that degrade glucose, butyrate,
	propionate, acetate, H2, and CO, respectively. For the gas phase, the sub-index 𝑖 ϵ [1,4]
	corresponds to H2, CH4, CO, and CO2. Step 2: 𝑌 = 𝑞 , 𝑔𝐶𝑂𝐷	; 𝑃	=	𝑞 , 𝑉	( 2.4.7 )
	5 𝐿 and a hydraulic retention time (𝐻𝑅𝑇) of 20 days operating at 37°C for 207 days. The organic loading rate (𝑂𝐿𝑅) was 0.53 𝑌 = 𝑞 • 𝑆 , 𝑔𝐶𝑂𝐷 • 𝑉 𝑉 ; 𝑃 = 𝑞 • 𝑆 , ( 2.4.8 )
	𝑔𝐶𝑂𝐷 𝐿 ⁄ /𝑑 with 𝑞 of 1.9 𝐿 𝑑 ⁄ . The gas addition was carried out in five stages (I -V), in
	which 𝑞 The MOO for 𝑌 * and 𝑃 * maximization was proposed as, and the gas loading rate (𝐺𝐿𝑅) were varied in time. The model could be rewritten
	as,				
		𝑚𝑎𝑥	(𝑃 * , 𝑌 * )		( 2.4.9 )
		,			
	𝑑𝑆 , 𝑑𝑡 𝑑𝑆 , 𝑑𝑡 = = 𝑞 𝑉 𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑞 𝑉	𝑆 , +𝑁 𝑆 , -𝑆 , + 𝑉 𝑉 ⎩ 1.0 ≤ 𝑞 𝑙𝑖𝑞 𝑖𝑛 ≤ 100.0 𝐿/𝑑 -𝑞 𝑉 𝑌 𝑓 , µ -𝑁 𝑆 , ⎪ ⎨ ⎪ 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 (2.3.4) -(2.3.6) ⎧ 𝑌 ≤ 0.39 𝐿/𝑔𝐶𝑂𝐷 1.0 ≤ 𝑞 𝑔𝑎𝑠 𝑖𝑛 ≤ 10.0 × 10 𝐿/𝑑	( 2.4.4 ) ( 2.4.5 ) ( 2.4.10 )
						244 245

  The dynamic optimization was performed with the patternsearch function from MATLAB ® was used. The dynamic optimization for 𝑌 and 𝑃 maximization was proposed as follows,

		Section 4. Switching Multi-Objective Dynamic Optimization (MODO) for the
								Production of Value-Added Products
	Step 4: 𝑚𝑖𝑛 ,	0.7 0.8 0.9 1 |𝑌 * -𝑌 (𝑡)| 𝑌 *	+	|𝑃 * -𝑃 (𝑡)| 𝑃 *	(A) +	𝑊 , ∆𝑞 (𝑡) + 𝑊 , ∆𝑞 (𝑡)
		0.6							
		0.5							
		0.4	Stage I Stage II					
			Stage III					
		0.3	Stage IV Stage V					
			Maximum Euclidean length			
		0.31	0.315	0.32	0.325	0.33	0.335	0.34	0.345
					Y CH4 (L/gCOD added )	
						(B)			
		0.27							
								Stage I	
								Stage II	
		0.265						Stage III Stage IV
								Stage V	
								Maximum Euclidean length
		0.26							
		0.255							
		0.25							
		0.245							
		0.24							
		0.068	0.07	0.072	0.074	0.076	0.078	0.08	0.082	0.084
					Y ac (gCOD/gCOD added )	
										247

Table 2 .

 2 Biological methanation was modeled by a dynamic model based on an extension of the Anaerobic Digestion Model No. 1 (ADM1_ME) (Acosta-Pavas et al., 2023).This model considers the uptake of sugar, volatile fatty acids, such as butyrate, propionate, and acetate, the uptake of H2 and CO, and the decay of biomass and in-situ syngas addition. The ADM1_ME describes three types of variables: soluble (𝑆 , ), particulated biomass (𝑋 ) and gas 𝑆 , components. The ADM1_ME is summarized as Equations ( 2.5.1 )-( 2.5.3 ). Chemical Oxygen Demand (𝐶𝑂𝐷) is the amount of oxygen needed to degrade the organic matter into CO2 and H2O. It is important to mention that CO2 is expressed in 𝑚𝑜𝑙 instead of 𝐶𝑂𝐷, as suggested byBatstone et al. (2002). Sub-index 𝑘 ϵ[1,6] denotes for the biomass that degrade glucose, butyrate, propionate, acetate, H2, and CO, respectively. For the gas phase, the sub-index 𝑖 ϵ[1,4] corresponds to H2, CH4, CO, and CO2. The inlet flow rates of liquid and gas are represented by 𝑞 and 𝑞 , respectively, while 𝑞 denotes the outlet gas flow rate. 𝑉 and 𝑉 are the liquid and gas volumes, respectively. 𝑆 , , 𝑆 , and 𝑋 Section 5. Economic Multi-Objective Dynamic Optimization (EMODO) as a Decision-Making tool in Biological Methanation Process 255 represent the inlet concentration of the component 𝑗 in the liquid phase, the inlet concentration of component 𝑖 in gas phase, and the inlet concentration of biomass 𝑘 in the liquid phase, respectively. 𝑌 is the yield of biomass k, 𝑓 , corresponds the stoichiometric coefficients; µ and µ , refer to the growth and decay rate of biomass k, and 𝑁 to the mass transfer rate of component 𝑖.The simulations of the biological methanation process were carried out using the ADM1_ME considering a bubble column reactor (𝐵𝐶𝑅) with a working volume of 37.5 𝐿 and a hydraulic retention time (𝐻𝑅𝑇) of 20 days operating at 37°C for 330 days. The organic loading rate (𝑂𝐿𝑅) was varied over time in all stages, according to Table2.5.1. The reference stage corresponded to the simulation without gas addition, with a 𝑞 of 1.88 𝐿 𝑑 ⁄ . The flow rates 𝑞 , 𝑞 , and the gas loading rate (𝐺𝐿𝑅) will be optimized by the EMODO strategy for stages I -III. 5.1. Stages and 𝑂𝐿𝑅 simulated with the ADM1_ME.

	. A Multi-Objective Dynamic

  Definition of the multi-objective optimization problem: The definition of economic optimization corresponds to the maximization of the gain of CH4 and acetate (𝐺𝑎𝑖𝑛), and the profit margin of CH4 and acetate (𝑃𝑟𝑜𝑓𝑖𝑡 𝑚𝑎𝑟𝑔𝑖𝑛) by modifying the 𝑞 and 𝑞 . The economic multi-objective optimization to find the POS was proposed as,

	Section 5. Economic Multi-Objective Dynamic Optimization (EMODO) as a Decision-Section 5. Economic Multi-Objective Dynamic Optimization (EMODO) as a Decision-
							Making tool in Biological Methanation Process Making tool in Biological Methanation Process
	(𝐺𝑎𝑖𝑛, 𝑝𝑟𝑜𝑓𝑖𝑡 𝑚𝑎𝑟𝑔𝑖𝑛) from MATLAB ® was used to obtain the POS for each stage. Step 2 -𝑚𝑎𝑥	( 2.5.4 )
			,			
					𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 (2.4.1) -(2.2.3)
		𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜	1 ≤ 𝑞		≤ 100 𝐿 𝑑 ⁄	( 2.5.5 )
					1.88 ≤ 𝑞 ≤ 10 𝐿 𝑑 ⁄
	The objective variables are,			
	𝐺𝑎𝑖𝑛 =	𝑎𝑐𝑒𝑡𝑎𝑡𝑒 𝑠𝑒𝑙𝑙𝑖𝑛𝑔 𝑝𝑟𝑖𝑐𝑒 • 𝑆 , 𝐻𝑅𝑇	+	22.4 • 𝑉 𝐶𝐻 𝑠𝑒𝑙𝑙𝑖𝑛𝑔 𝑝𝑟𝑖𝑐𝑒 • 𝑞 ,	• 64	( 2.5.6 )
	𝑃𝑟𝑜𝑓𝑖𝑡 𝑚𝑎𝑟𝑔𝑖𝑛 =	(𝐶𝐻 𝑠𝑎𝑙𝑒𝑠 + 𝑎𝑐𝑒𝑡𝑎𝑡𝑒 𝑠𝑎𝑙𝑒𝑠 ) -𝑆𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒𝑠 𝑐𝑜𝑠𝑡 𝐶𝐻 𝑠𝑎𝑙𝑒𝑠 + 𝑎𝑐𝑒𝑡𝑎𝑡𝑒 𝑠𝑎𝑙𝑒𝑠	• 100%	( 2.5.7 )
	where 64 𝑔𝐶𝑂𝐷/𝑚𝑜𝑙 is the 𝐶𝑂𝐷 for CH4 and 22.4 𝐿/𝑚𝑜𝑙 is the molar volume of an ideal gas
	at standard conditions. 𝑆𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒𝑠 𝑐𝑜𝑠𝑡 refers to the cost of glucose and syngas
	(Equation ( 2.5.8 )). 𝐶𝐻 𝑠𝑎𝑙𝑒𝑠 and 𝑎𝑐𝑒𝑡𝑎𝑡𝑒 𝑠𝑎𝑙𝑒𝑠 are the gains in 𝐸𝑈𝑅 for selling all
	the CH4 and acetate produced, Equations ( 2.5.9 )-( 2.5.10 ).
	𝑆𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒𝑠 𝑐𝑜𝑠𝑡 = (𝑆𝑢𝑔𝑎𝑟 𝑐𝑜𝑠𝑡 • 𝑂𝐿𝑅) + (𝑆𝑦𝑛𝑔𝑎𝑠 𝑐𝑜𝑠𝑡 • 𝐺𝐿𝑅) • 𝑉	( 2.5.8 )
		𝐶𝐻 𝑠𝑎𝑙𝑒𝑠 =	22.4 𝐶𝐻 𝑠𝑒𝑙𝑙𝑖𝑛𝑔 𝑝𝑟𝑖𝑐𝑒 • 𝑞 ,	• 64	( 2.5.9 )
		𝑎𝑐𝑒𝑡𝑎𝑡𝑒 𝑠𝑎𝑙𝑒𝑠 =	𝐻𝑅𝑇 𝑎𝑐𝑒𝑡𝑎𝑡𝑒 𝑠𝑒𝑙𝑙𝑖𝑛𝑔 𝑝𝑟𝑖𝑐𝑒 • 𝑆 , • 𝑉	( 2.5.10 )
	Step 3 -Selection of the Pareto optimal point (POP): In this study, the simulations were run
	using an Intel® Core i7 8665U 2.11 GHz, 16 GB RAM computer. The paretosearch function
							256 257

  denote the POP values for 𝐺𝑎𝑖𝑛 and 𝑃𝑟𝑜𝑓𝑖𝑡 𝑚𝑎𝑟𝑔𝑖𝑛 computed by the MOO, ∆𝑞 (𝑡) and ∆𝑞 (𝑡) are the differences between 𝑞 and 𝑞 , respectively, before and after each step of the dynamic optimization. 𝑊 , and 𝑊 , are the parameters that weigh the importance of the control effort term in the optimization. The initial values for both manipulated

	Section 5. Economic Multi-Objective Dynamic Optimization (EMODO) as a Decision-
					Making tool in Biological Methanation Process
	𝑚𝑖𝑛 ,	|𝐺𝑎𝑖𝑛 * -𝐺𝑎𝑖𝑛(𝑡)| 𝐺𝑎𝑖𝑛 *	+	|𝑃𝑟𝑜𝑓𝑖𝑡 𝑚𝑎𝑟𝑔𝑖𝑛 * -𝑃𝑟𝑜𝑓𝑖𝑡 𝑔𝑎𝑖𝑛(𝑡)| 𝑃𝑟𝑜𝑓𝑖𝑡 𝑔𝑎𝑖𝑛 *	( 2.5.12 )
		+	𝑊 , ∆𝑞 (𝑡) + 𝑊 , ∆𝑞 (𝑡)
	Equation ( 2.5.12 ) is subject to the constraints in Equation ( 2.5.5 ). 𝐺𝑎𝑖𝑛 * and
	𝑃𝑟𝑜𝑓𝑖𝑡 𝑚𝑎𝑟𝑔𝑖𝑛 variables, 𝑞 and 𝑞 were 1 𝐿 𝑑 ⁄ and 1.88 𝐿 𝑑 ⁄ , respectively.
						258

* 

  𝐿/𝑑 was observed in stage II. In contrast, 𝑞 showed an increase of 5.85 and 11.15 𝐿/𝑑 in stages I and III, respectively, and a reduction of 9.49 𝐿/𝑑 in stage II.

	Section 5. Economic Multi-Objective Dynamic Optimization (EMODO) as a Decision-
			Making tool in Biological Methanation Process
	increase of 3.6 ×10 -2 If the EMODO strategy is considered as a decision-making tool in the biological methanation
	process, it is necessary to refer to the ADM1_ME inputs (Figure 2.5.2-B) and the ADM1_ME
	outputs at a steady state (Figure 2.5.2-C). For stages I and III, there were slight decreases in
	𝑞 , while the 𝑂𝐿𝑅 doubled, and the 𝑞	increased from 22 to 25 𝐿/𝑑, respectively, resulting
	in an increase in 𝐺𝐿𝑅 from 0.60 to 0.97 𝐿 𝐿 /𝑑 ⁄	. This led to an increase in 𝐺𝑎𝑖𝑛 from 1.27×10 -
	3 to 2.68×10 -3 𝐸𝑈𝑅 𝐿 /𝑑 ⁄	, while the 𝑃𝑟𝑜𝑓𝑖𝑡 𝑚𝑎𝑟𝑔𝑖𝑛 slightly increased from 33.8% to 36.0%.
			260

  . Soft sensors have been recently proposed based on Machine Learning techniques to study these types of problems in AD. Section 6. Fault Detection in Biological Methanation Process using Machine Learning: A Comparative Study of Different Algorithms 265 Four machine learning algorithms were selected for regression and classification: RF, logistic regression multiclass, SVM, and k-NN. The k-NN algorithm demonstrated better prediction in the regression models, while the logistic regression multiclass algorithm showed higher accuracy in classification models. Kazemi et al. ( 2021) used several data-driven approaches to detect faults in the evolution of the total volatile fatty acids (𝑉𝐹𝐴) concentrations of the AD process. 𝑉𝐹𝐴 concentration was used as a state indicator of the AD process since they are highly susceptible to system input variations. The soft sensors were trained with a dataset Benchmark Simulation Model No.2 (BSM2) developed by the International Water Association (IWA). Three 𝑉𝐹𝐴 soft sensors were tested and compared: support vector machine (SVM), extreme learning machine (ELM), and the ensemble of neural network (ENN). SVM presented the best results in terms of accuracy and robustness.

	Kazemi et al. (2020) explored machine learning methods such as back-propagation neural
	network, Support Vector Machine (SVM), Random Forest (RF), extreme learning machines,
	and genetic programming to monitor volatile fatty acids ( 𝑉𝐹𝐴 ) using on-line measured
	variables. Cinar et al. (2022) used seven different machine learning algorithms: linear
	regression, logistic regression, nearest neighbors, decision trees, random forest, SVM, and
	XGBoost to define and predict the possible impacts of wide-range temperature fluctuations on
	process stability in the AD process compared to experimental data. Wang et al. (2020)
	performed a study to predict CH4 production in AD using seven operation parameters:
	temperature, C/N ratio, total nitrogen and carbon, glucan, lignin, xylan, and cellulose content.
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 2 

	.6.1 summarizes the values of each

Table 2 .

 2 6.1. Optimal conditions used in the simulation with the ADM1 ME.

	Stage	Time (days)	𝒒 𝒍𝒊𝒒 𝒊𝒏 (𝑳/𝒅)	𝒒 𝒈𝒂𝒔 𝒊𝒏 (𝑳/𝒅)	𝑶𝑳𝑹 (𝒈𝑪𝑶𝑫/𝑳𝒓/𝒅)	𝑮𝑳𝑹 (𝑳/𝑳𝒓/𝒅)	𝑮𝒂𝒊𝒏 (𝑬𝑼𝑹/𝑳𝒓/𝒅)	𝑷𝒓𝒐𝒇𝒊𝒕 𝒎𝒂𝒓𝒈𝒊𝒏 (%)
	Reference	0-30	1.88	-	0.53	-	3.11×10 -4	40.91
	I	30-130	3.99	22.38	1.07	0.60	1.27×10 -3	33.77
	II	130230	4.22	90.96	1.60	2.43	2.17×10 -3	30.59
	III	230-330	4.14	36.88	2.13	0.98	2.68×10 -3	35.95

Table 2 .

 2 6.2 summarizes the variables that are directly related to the inputs and outputs of the process and can be measured easily in the process. Variables such as biomass concentration were omitted due to the difficulty in their measure.

	Finally, two datasets were built using the ADM1 ME simulations and the features in Table
	2.6.2. Dataset 1 corresponds to the simulation of the optimal operation and the six disturbances
	(10% HL, 10% LL, 15% HL, 15% LL, 20% HL, and 20% LL) over 𝑞 (Dimension of dataset

Table 2 .

 2 6.2. Variables used to train the supervised learning algorithms.

	Variable	Description	Variable	Description
	1 Time	Process time	15 𝑞 ,	CH4 outlet gas flow rate
	2	𝑆 ,	Sugar concentration in liquid phase 16 𝑞 ,	H2 outlet gas flow rate
	3	𝑆 ,	Butyrate concentration in liquid phase	17 𝑞 ,	CO outlet gas flow rate
	4	𝑆 ,	Propionate concentration in liquid phase	18 𝑞 ,	CO2 outlet gas flow rate
	5	𝑆 ,	Acetate concentration in liquid phase	19 𝑃 ,	H2 partial pressure
	6	𝑆 ,	CO concentration in liquid phase	20 𝑃 ,	CH4 partial pressure
	7	𝑆 ,	H2 concentration in liquid phase	21 𝑃 ,	CO partial pressure
	8 𝑆 ,	CH4 concentration in liquid phase	22 𝑃 ,	CO2 partial pressure
	9	𝑆 ,	CO2 concentration in liquid phase	23	𝑃	Total Pressure
	10 𝑆 ,	H2 concentration in gas phase	24 𝑝 ,	H2 percent composition
	11 𝑆 ,	CH4 concentration in gas phase	25 𝑝 ,	CH4 percent composition
	12 𝑆 ,	CO concentration in gas phase	26 𝑝 ,	CO percent composition
	13 𝑆 ,	CO2 concentration in gas phase	27 𝑝 ,	CO2 percent composition
	14	𝑞	Total outlet gas flow rate	28	𝑝𝐻	pH of the system

Table 2 .

 2 6.3 presents the accuracy results of seven machine learning models for disturbances in

	𝑞	and 𝑞	(dataset 1 and dataset 2). Only the SVM with the best results in the
	hyperparameter optimization is shown. The three machine learning models with the best
	accuracy results were selected to study the faults in detail.

Table 2 .

 2 6.3. Accuracy of training and test process with liquid and gas disturbances (best results are presented in bold).As future work, we propose to: (i) study the effect of using more complex datasets based on the combination of disturbances in 𝑞 and 𝑞 in order to train machine learning models for fault detection when disturbances in gas and liquid flow rates occur at the same time, (ii): explore the use of homogeneous ensemble methods such as Forest, Bagging, and Voting classifiers or heterogeneous ensemble methods such as AdaBoost and Gradient Boosting Classifiers to try to improve the results obtained with the different methods presented in the current study, (iii) compare the obtained results with traditional methodologies for fault detection in bioprocesses (Principal Component Analysis) or deep learning methods.al. (2020) used SVM soft-Sensors to detect small magnitudes faults in 𝑉𝐹𝐴 concentrations with pH, ammonia concentration, pressure, and CO2 molar fraction as features.

	Machine		Accuracy dataset 1	Accuracy dataset 2
	Learning model	Training	Test	Computation time (𝒔𝒆𝒈)	Training Test	Computation time (𝒔𝒆𝒈)
	CART	0.92	0.89	0.38	0.57	0.54	0.74
	RF	0.92	0.89	12.53	0.92	0.87	13.75
	GNB	0.29	0.27	0.11	0.14	0.14	0.13
	NN	0.88	0.78	1.20	0.89	0.78	1.45
	QDA	0.82	0.82	0.17	0.91	0.88	0.19
	RBF SVM	0.90	0.85	4.77	0.90	0.87	3.36
	BPNN	0.82	0.77	59.83	0.62	0.58	23.95

  is a non-linear map function that can be represented by the use of Kernel functions 𝐾 𝒙 𝒊 , 𝒙 𝒋 , 𝑏 and 𝑊 are the offsets and weight vector (support vectors), respectively (Xiao et Section 7. Use of Support Vector Machine to Fault Detection in Biological Methanation Process 280 al., 2022). The determination of the values of the weight vector follows an optimization problem that can be formulated as, ) is a measure of the number of misclassified data, 𝐶 is a constant which measures the relative weight of the first and second terms, 𝜀 displays the loss function variable, and ζ , ζ * are slack variables that allow certain points to fall on the incorrect side of the hyperplane.

	The output of SVM can be represented as, 𝑠(𝑥) = 𝑊 Φ (𝑥) + 𝑏 , , 𝐽(𝑾, ζ , … , ζ ) = 1 2 ‖𝑾‖ + 𝐶 𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑠𝑖 -𝑊 Φ(𝒙𝒊) -𝑊 ≤ 𝜀 -ζ (ζ + ζ * ) 𝑊 Φ(𝒙𝒊) + 𝑊 -𝑦𝑖 ≤ 𝜀 -ζ ζ , ζ * ≥ 0 ∀𝑖 Φ(𝑥) 𝑚𝑖𝑛 where ∑ (ζ + ζ	∀𝑖 ∀𝑖	( 2.7.1 ) ( 2.7.2 )

* 
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 2 𝐾 𝒙 𝒊 , 𝒙 𝒋 = 𝒙 𝒊 • 𝒙 𝒋( 2.7.5 ) 𝐾 𝒙 𝒊 , 𝒙 𝒋 = 𝒙 𝒊 • 𝒙 𝒋 + 𝑐( 2.7.6 ) The biological methanation process was simulated by the ADM1_ME prosed in a previous work[START_REF] Acosta-Pavas | Dynamic Modeling of Biological Methanation for Different Reactor Configurations: An Extension of the Anaerobic Digestion Model[END_REF] to include gas. The operation time was 207 days with a working volume of 37.5 𝐿 at 37°C. The organic loading rate (𝑂𝐿𝑅) was 0.53 𝑔𝐶𝑂𝐷 𝐿𝑟/ ⁄ 𝑑 of glucose and the inlet liquid flow rate 𝑞 was 1.9 𝐿 𝑑 ⁄ . For the first 32 days there was no gas addition, afterwards, it was carried out in 5 stages. The ADM1_ME is rewritten as, Section 7. Use of Support Vector Machine to Fault Detection in Biological Methanation Process Sub-index 𝑗 ϵ [1,8] denotes glucose, butyrate, propionate, acetate, H2, CH4, CO, and CO2 in the liquid phase. Sub-index 𝑘 ϵ [1,6] reads for the biomass that degrade glucose, butyrate, propionate, acetate, H2, and CO, respectively. For the gas phase, the sub-index 𝑖 ϵ [1,4] corresponds to H2, CH4, CO, and CO2. 𝑉 and 𝑉 are the working and gas molar fraction volume, 𝑓 , are the stoichiometric coefficients, 𝑆 , and 𝑆 , are the inlet concentration of components 𝑖 and 𝑗. 𝑋 is the inlet concentration of biomass 𝑘, µ is the growth rate of biomass 𝑘, 𝑌 is the yield of biomass 𝑘, 𝑁 is the mass transfer rate of component 𝑖, 𝑞 is the inlet liquid flow rate, 𝑞 is the outlet gas flow rate. The ADM1_ME model has been employed in a MODO strategy prosed in previous work (Acosta-Pavas et al., 2022). The objective was to find the optimal operating point, i.e., the inlet gas 𝑞 and liquid 𝑞 flow rates that maximize optimize the biological methanation process. The MODO intended to maximize the methane yield and productivity along the process. The yield 𝑌 (𝐿/𝑔𝐶𝑂𝐷 ) is the ratio between the CH4 outlet flow rate and the total 𝐶𝑂𝐷 grams added (𝑔𝐶𝑂𝐷 ) per day, while productivity 𝑃 (𝐿 𝐿𝑟 ⁄ /𝑑) is the ratio between the flow rate of the CH4 formed and the volume of the reactor. The mathematical formulation of methane yield and productivity is reported in Equation ( 2.7.11 ) -( 2.7.12 ). Section 7. Use of Support Vector Machine to Fault Detection in Biological Methanation Process 283 To consider both objectives and a good trade-off with the input variables, the optimization control problem was defined as, Both objectives were normalized into a single objective function with trajectory corrections. The parameters 𝑊 , and 𝑊 , weights the importance of the control effort term in the optimization, ∆𝑞 𝑔𝑎𝑠 𝑖𝑛 (𝑡) and ∆𝑞 𝑙𝑖𝑞 𝑖𝑛 (𝑡) are the differences between the injected gas and inlet flow rates before and after each control step. The values of 𝑌 * and 𝑃 * are the optimal values of yield and productivity determined by the Multi-Objective Optimization (MOO) through the Pareto Optimal Set (POS) with the same definitions of Equations ( 2.7.11 ) and ( 2.7.12 ). Table 2.7.1 summarizes the MODO strategy results for maximizing the Euclidean length (Case 3 in Section 3). It reported the optimal profiles of the control variables, 𝑞 and 𝑞 , and the respective values of the variables, gas loading rate (𝐺𝐿𝑅), and the 𝑂𝐿𝑅 for each stage of the process. 7.1. Input data in ADM1_ME for each stage obtained in MODO (Acosta-Pavas et al., 2022). Section 7. Use of Support Vector Machine to Fault Detection in Biological Methanation Process 284 7.4 Methodology 7.4.1 Biological Methanation Disturbance Analysis Disturbances of ±10%, ±15%, and ±20% in 𝑞 , and 𝑞 , with respect to the optimal value were performed, Table 2.7.2. Table 2.7.2. 𝑞 and 𝑞 disturbances in ADM1_ME. Figure 2.7.1 presents the effect of disturbances in 𝑞 on the 𝑆 , , 𝑞 , and the biomasses 𝑋 , 𝑋 and 𝑋 . For 𝑆 , in stage V, values of 2.27, 2.29, and 2.30 𝑔𝐶𝑂𝐷 𝐿 ⁄ were reached for 20% LG disturbance, optimal point, and 20% HG disturbance, respectively. Regarding 𝑞 , a value of 34 𝐿 𝑑 ⁄ was reached in stage V for disturbances of 20% LG, optimal point, and disturbance of 20% HG. The biomasses 𝑋 , 𝑋 and 𝑋 did not display any variations with respect to changes in the optimal value of 𝑞 . Figure 2.7.2 presents the effect of disturbances in 𝑞 on the 𝑆 , , 𝑞 , and the biomasses 𝑋 , 𝑋 y 𝑋 . For 𝑆 , , no changes were observed in comparison with the optimal value except for the disturbance of 20% HL. For 𝑞 in stage V, values of 29, 34, and 37 𝐿 𝑑 ⁄ for disturbance of 20% LL, the optimal point and disturbance of 20% HL were reached. Regarding 𝑋 in stage V, values of 0.31, 0.31, and 0.30 𝑔𝐶𝑂𝐷 𝐿 ⁄ were reached for 20% LL disturbance, optimal point, and 20% HL disturbance, respectively. For 𝑋 in stage V, values of 0.67, 0.55, and 0.48 𝑔𝐶𝑂𝐷 𝐿 ⁄ for disturbance of 20% LL, optimal point, and disturbance of 20% HL were reached, respectively.

	Linear Kernel :								
	Polynomic Kernel :								
	Gaussian Kernel or Radial Basis Function (RBF):				
			𝐾 𝒙 𝒊 , 𝒙 𝒋 = 𝑒					( 2.7.7 )
	7.3 Biological Methanation Process Model and Multi-Objective
	Dynamic Control Strategy					
	𝑑𝑆 , 𝑑𝑡	=	𝑞 𝑉	𝑆 , +𝑁	𝑉 𝑉	-	𝑞 𝑉	𝑆 ,	( 2.7.8 )
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 2 7.3. Variables selected to train the SVM models.Section 7. Use of Support Vector Machine to Fault Detection in Biological Methanation Process

		Variable	Description	Variable		Description
	1	Time	Time	9	𝑆 ,	H2 gas concentration
	2	𝑆 ,	Sugar concentration 10	𝑆 ,	CH4 gas concentration
	3	𝑋	Sugar biomass	11	𝑆 ,	CO gas concentration
	4	𝑋	Butyrate biomass	12	𝑞	Total Outlet gas flow rate
	5	𝑋	Propionate biomass 13	𝑞 ,	CH4 outlet gas flow rate
	6	𝑋	Acetate biomass	14	𝑞 ,	H2 outlet gas flow rate
	7	𝑋	CO biomass	15	𝑞 ,	CO outlet gas flow rate
	8	𝑋	H2 biomass			

Table 2 .

 2 7.4. Evaluation test of SVM models.

	Disturbance	Points	Quadratic SVM	Cubic SVM	RBF SVM
	Optimal	20	Optimal: 15 10% LL: 5	Optimal: 15 10% LL: 5	Optimal: 20
	10% LL	10	10% LL: 10	10% LL: 5 20%LL: 5	10% LL: 5 Optimal : 5
	15% LL	10	15% LL:10	15% LL: 10	15% LL: 10
	20% LL	10	20% LL: 10	20% LL: 10	20% LL: 10
	10% HL	10	10% HL: 10	10% HL: 10	10% HL: 10
	15% HL	10	15% HL: 10	15% HL: 10	15% HL: 10
	20% HL	10	20% HL: 5 10% LL: 5	20% HL: 5 20%LL: 5	20% HL: 5 Optimal: 5
	𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚		0.88	0.81	0.88

  𝒌,𝒅𝒆𝒄 ) :

		µ ,	= 𝐾 ,		𝑋			( 4.1.26 )
		µ ,	= 𝐾 ,		𝑋			( 4.1.27 )
		µ ,	= 𝐾 ,	𝑋			( 4.1.28 )
		µ ,	= 𝐾 ,		𝑋			( 4.1.29 )
		µ ,	= 𝐾 ,		𝑋			( 4.1.30 )
		µ ,	= 𝐾 ,		𝑋			( 4.1.31 )
	1.2.3 Mass transfer rates					
	𝑁 = 𝑘 𝑎 ,	𝑆 , -𝛾 , 𝐻 𝑃 ,		( 4.1.32 )
	𝑁	= 𝑘 𝑎 ,	𝑆 ,		-𝛾 ,	𝐻	𝑃 ,	( 4.1.33 )
	𝑁 = 𝑘 𝑎 ,	𝑆 , -𝛾 , 𝐻 𝑃 ,		( 4.1.34 )
	𝑁	= 𝑘 𝑎 ,	𝑆 ,	-𝐻	𝑃 ,	

Table 4 .

 4 2.1. Parameters considered in the ADM1_ME.

	Parameter	Units	Value	Reference SA	Estimated	Description
			Stoichiometric parameters (22 parameters)
	𝑓 ,		0.3	-	X	Stoichiometric conversion of CO to acetate
						Stoichiometric conversion
	𝑓 ,		0.7	-		of CO to H2. The sum
						𝑓 , + 𝑓 , = 1
	𝑓 ,		0.19			Stoichiometric conversion of sugar to H2
	𝑓 ,		0.13			Stoichiometric conversion of sugar to butyrate
	𝑓 ,	-	0.27			Stoichiometric conversion of sugar to propionate
	𝑓 ,		0.41			Stoichiometric conversion of sugar to acetate
	𝑓 ,		0.57	(Rosen and Jeppsson,		Stoichiometric conversion of propionate to acetate
	𝑓 ,		0.43	2006)		Stoichiometric conversion of propionate to H2
	𝑓 ,		0.8			Stoichiometric conversion of butyrate to acetate
	𝑓 ,		0.2			Stoichiometric conversion of butyrate to H2
						Stoichiometric conversion
	𝐶 ,		0.0313			of sugar to inorganic
						carbon
						Stoichiometric conversion
	𝐶 ,		0.025	-		of sugar to inorganic
						carbon
						Stoichiometric conversion
	𝐶	𝑚𝑜𝑙 𝑔𝐶𝑂𝐷 ⁄	0.0268			of propionate to inorganic
						carbon
				(Rosen and		Stoichiometric conversion
	𝐶		0.0313	Jeppsson,		of acetate to inorganic
				2006)		carbon
						Stoichiometric conversion
	𝐶		0.0313			of biomass to inorganic
						carbon

Table 4

 4 .2.2), parameters such as 𝑌 , 𝑌 , 𝑌 , µ , , µ , , µ , , 𝐾𝑠 , 𝐾𝑠 , 𝐾𝑠 , and 𝐾 presented a representative effect in at least two of the model outputs with DS1. On the other side, 𝑌 , 𝑌 , 𝑌 , 𝑌 , µ , , µ , , µ , , µ , , 𝐾𝐼 , , 𝐾𝑠 , 𝐾𝑠 , and 𝐾𝑠 presented a representative effect on at least two of the model outputs with OP2. From the sensitivity analysis using both methods, 14 parameters

	(A)

Volumetric mass transfer coefficient (1/d)Volumetric mass transfer coefficient (1/d)

Abbreviations

𝑅𝑀𝑆𝐸 : Adapted root mean square error

Section 3 Bioprocess Control and Optimization

Summary of Section 3 This section introduces model-based control approaches, such as MPC, which has worked adequately in bioprocess, and it has even been extended to optimize the economic process performance rather than tracking to a set point. One of the common needs of biological processes is the optimization of multiple variables simultaneously, and those variables are commonly conflicting. Optimal solution approaches such as Pareto optimal sets are presented as a strategy to find the tradeoffs between conflicting variables, such as yields, productivities, or others related to the economic aspects of the process.

Section 4 Soft Sensors and Fault Detection

Summary of Section 4 This section briefly introduces data-driven soft sensors as a valuable tool for monitoring, control, and optimization tasks in biological processes. Our attention is specially focused on soft sensors based on machine learning algorithms to process monitoring and fault detection. This section aims to present several supervised machine learning algorithms with particular detail on the Support Vector Machine (SVM) used in this thesis to process fault detection and classification. We aim to highlight that data-driven soft sensors have been widely applied to biological processes such as AD. However, from our knowledge, we have not found an application for biological methanation.

Summary of Chapter 2

The work developed during this thesis is presented as publications, where each section describes a scientific paper. The first section is an introduction to the publications, which include a summary, brief comments, and highlights of each work. In Section 2 is presented the Extended Anaerobic Digestion Model No.1 (ADM1_ME) for biological methanation, which is the base of all the optimization tools and data-driven models used in this thesis. In Sections 3-5 is applied the Mutlti-Objective Dynamic Optimization (MODO) strategy for different objectives.

Section 3 is proposed for the simultaneous maximization of methane yield and productivity. In Section 4, the grade of complexity is increased, considering the maximization of yield and productivity of methane and acetate. Section 5 is developed to maximize two economic objectives, Gain and Profit Margin, simultaneously. In Sections 6 and 7, data-driven machine learning models are trained to fault detections in the biological methanation process. Those sections aimed to detect and classify deviations from the optimal biological methanation operations determined with the MODO strategy when disturbances of ±10, ±15, and ±20% occur in the inlet liquid flow rate. Section 6 addresses the use of several data-driven machine learning such as decision trees, random forest, quadratic discriminant analysis, neural networks, etc, while Section 7 is mainly oriented toward using a data-driven Support Vector Machine (SVM).

Section 1 Chapter Introduction

Some of the questions formulated in Section 1 of Chapter 1 were related to the experimental development of the biological methanation process, for example, which are the best conditions to carry out biological methanation in different types of reactors such as 𝐶𝑆𝑇𝑅 or 𝐵𝐶𝑅 and what is the effect of using different kinds of substrates varying 𝐺𝐿𝑅 and 𝑂𝐿𝑅? This question could be answered from the bibliography review. Nevertheless, other questions in this thesis were addressed from a modeling and simulation perspective, e.g., Which are the optimal operating conditions to improve the yields and productivities of biological methanation?

Can we set them automatically? Can the variations in the composition of the syngas be used to upgrade the biological methanation and its effect on the mass transfer process?

As mentioned in Section 3 of Chapter 1, the dynamic modeling of biological processes is a tool that allows performing multiple scenarios without developing an experimental setup. However, to propose a model for biological methanation, it is necessary to review some of the questions proposed in Section 2 of Chapter 1: Can a mathematical model of biological methanation accurately reproduce multiple operational conditions with emphasis on using different kinds of substrates varying 𝐺𝐿𝑅 and 𝑂𝐿𝑅? How can the transformation of CO into acetate and H2 and their inhibitions be described in a model for biological methanation?

To address these questions, the article of Section 2 proposes a model for biological methanation (ADM1_ME). The objective was to obtain a model allowing a global representation of the process. We initially extended the Anaerobic Digestion Model No. 1 (ADM1) to consider the addition of syngas (H2, CO2, and CO) as a substrate. We used equations that allowed us to analyze the variation of the volumetric transfer coefficient in relation to the reactor type, a bubble column reactor (𝐵𝐶𝑅) and a Continuous Stirred Tank Reactor (𝐶𝑆𝑇𝑅). The parameters of this model were analyzed with sensitivity analysis to find the parameters that could significantly affect the system outputs. Afterwards, the ADM1_ME was calibrated by estimating the most sensitive model parameters identified from the sensitivity analysis and to fit the model outputs with the literature value. This parameter estimation was performed to minimize an adapted root mean of square errors. The ADM1_ME was validated by assessing the model performance against literature value to guarantee the model's reliability. In both cases, statistical analysis was performed using two criteria: the coefficient of determination (𝑅 ) and the root mean squared error (𝑅𝑀𝑆𝐸). ( 2.2.11 ) where 𝑅 and 𝑇 are the Universal gas constant and the temperature of the process, respectively.

For each component 𝑖 in the gas phase, the percent composition 

Global Sensitivity Analysis Techniques

Biological kinetic models are constituted of several parameters, e.g., stoichiometric, biochemical, and physicochemical parameters, which present a certain degree of uncertainty.

Sensitivity Analysis (SA) is a powerful alternative to determine how the uncertainty of the model inputs or parameters influence the outputs (Damblin et al., 2013;Sepulveda et al., 2013;Sohier et al., 2014;Tosin et al., 2020). Sensitivity Analysis was developed to identify the contribution of each uncertainty of the inputs on the outputs (Feng et al., 2019;Kucherenko et al., 2015;Zhang et al., 2015). Techniques for SA can be classified into local and global (Morio, 2011;Ochoa et al., 2016). In the context of this work, we will focus on Global sensitivity analysis (GSA).

In GSA, the model is studied from a probabilistic point of view. The exploration of the entire range of variation of the model parameters is considered using a probability density function associated with each input parameter and repeated simulations of the model (Iooss and Lemaître, 2015;Ochoa et al., 2016;Tosin et al., 2020). GSA could employ regression, screening, and variance-based methods (Sepúlveda et al., 2014).

Sobol's Method

The Sobol method (Sobol′, 2001) (Morio, 2011;Ochoa et al., 2016;Sepulveda et al., 2013;Sobol′, 2001;Tosin et al., 2020).

Consider the model define by ξ, Equation ( 2.2.17 ).

𝑌 = 𝑆 , , X , 𝑆 , = ξ(𝜽) ( 2.2.17 ) where 𝑌 ∈ ℛ is the model output of interest, and 𝜽 ∈ ℛ is a n-dimensional parameter vector defined as 𝜽 = (𝜃 , 𝜃 , … , 𝜃 ) and characterized by a probability density function (PDF).

The function ξ(𝛉) can be decomposed into summands of different dimensions, Equation ( 2 .2.18 ). .2.18 ) where:

ξ is the mean of the function, ξ (𝜃 ) and ξ 𝜃 , 𝜃 are the expectation terms of increasing order and the conditional expectations defined recursively. This decomposition is unique, provided the inputs are independent, and the individual terms are square integrable. Squaring Equation ( 2.2.18 ) and integrating, we can get the so-called ANOVA decomposition as,

where 𝑉 ξ 𝐮 (𝜃 𝐮 ) express the conditional variance for the subvector 𝜃 𝐮 , containing the variables whose indices are indicated by the subset 𝐮. The variance of the output can be decomposed into terms depending on the parameters and their interactions. The variance-based sensitivity index (𝑆𝐼) associated with the subset 𝐮 is defined as the ratio between the contribution given by the interaction among the components of 𝐮 for the model variance and the total variance, Equation ( 2.2.21 ).

Based on this, for 𝐮 ⊂ {1, … 𝑛}, and 𝐮 ≠ 𝟎,

The term 𝑆𝐼 is the first-order sensitivity index, which measures the fraction of the total output variance explained by the parameter 𝜃 alone as,

Similarly, 𝑆𝐼 is the second order-sensitivity index that measures the amount of variance caused by the interaction between the parameters 𝜃 and 𝜃 as,

It is possible to construct the SI for all orders until the 𝑛 order index 𝑆𝐼 … , which represents the contribution of the interactions between all the parameters in 𝜽. To measure the full contribution of the 𝑖 random parameter 𝜃 for the total variance either by its single effect or by its interaction with others, we use the total Sobol' indices,

Extended Anaerobic Digestion Model (ADM1 ME)

An extension of the Anaerobic Digestion Model No. 1 (ADM1_ME) to consider in-situ syngas addition to the biological methanation process was proposed in our previous work (Acosta- 2.6.4 shows a detailed analysis based on the F1-score. For disturbances in the liquid phase, values of 0.89 were obtained in the macro average for the decision tree CART and the RF, while a value of 0.90 was obtained for RBF SVM. The three machine learning models presented similar results. However, each of them showed different F1-scores for each class, i.e.,

CART presented the lower and highest F1-scores in 10% HL and 15% LL, with values of 0.79 and 0.94, respectively. Nevertheless, with RF, a value of 0.84 was obtained as a lower F1-score in 15% HL disturbance, while values of 0.92 were obtained as a higher F1-score in an optimal operation and 20% HL. Finally, with RBF SVM, values in the F1-score of 0.68 and 0.90 were obtained with 15% HL and 10% LL disturbances, respectively.

For disturbances in the gas phase, values of 0.87, 0.89, and 0.87 were obtained in the macro average for the decision tree CART, quadratic discriminant analysis, and RBF SVM, respectively. The machine learning models displayed similar results. However, the RF presented the lower and higher F1-scores in 10% HG and optimal operation, with values of 0.85 and 0.91, respectively. The QDA presented values of 0.78 and 0.96 in 10% HG and optimal operation, respectively. The RBF SVM showed values of 0.77 and 0.93 in 20% LG and 10%

LG, respectively. 

Introduction

Biological methanation is a process in which the biogas produced through Anaerobic Digestion (AD) is upgraded by the biological conversion of CO2 and syngas to obtain high-purity CH4 (Rafrafi et al., 2020). In AD, the organic matter such as lignocellulosic and amylaceous materials (agricultural residues), food residues (organic effluents from food industry), animal manure, and human excreta (waste or wastewater residues), are transformed into a mixture of methane, and carbon dioxide by a microbial complex consortium (Dar et al., 2021). It is a complex process which entails four steps: (i) hydrolysis, (ii) acidogenesis, (ii) acetogenesis and

(iv) methanogenesis. In the first step, fermentative bacteria excrete enzymes that transform complex organic polymers (i.e., carbohydrates, proteins, and lipids) into soluble monomers, such as monosaccharides, amino acids, and long-chain fatty acids. In the second step, these monomers are converted into volatile fatty acids (𝑉𝐹𝐴), such as acetate, propionate, and butyrate. In the third step, all the 𝑉𝐹𝐴 are transformed into acetate, hydrogen, and carbon dioxide. Finally, the fourth step involves the conversion of these components into biogas, (i.e., mixture of methane, carbon dioxide, and carbon monoxide). New advance technologies such as biological methanation has been proposed including the addition of gases to improve methane formation. In this paper, the used dataset was generated from a model (ADM1 _ME) [START_REF] Acosta-Pavas | Dynamic Modeling of Biological Methanation for Different Reactor Configurations: An Extension of the Anaerobic Digestion Model[END_REF] considering also the input of hydrogen and carbon monoxide.

Given the multiple molecules and different microorganisms involved, small disturbances in the system inputs or operational conditions make the biological methanation process susceptible to deviations from the desired values, e.g., deviation from steady states or optimal operation points, which at the industrial level imply high operational costs. Soft-Sensors were recently 

Section 2 Towards Digital Twins Perspectives

Through this thesis, the aspects of dynamic modelisation, optimization, and faults detections are adressed. This is how one of the perspectives of this work arises, the exploration of a way to merge all the individual tools into a global and uniform system [START_REF] Neubauer | Potential of Integrating Model-Based Design of Experiments Approaches and Process Analytical Technologies for Bioprocess Scale-Down[END_REF] to be applied to biological methanation. The first approach is the formulation of digital twins.

Digital twins can be defined in many ways [START_REF] Glaessgen | The Digital Twin Paradigm for Future NASA and U[END_REF][START_REF] Stark | Digital Twin[END_REF]Jiang et al., 2021). In our context, "a virtual representation of a physical system (and its associated environment and processes) that is updated through the exchange of information between the physical and virtual systems" (VanDerHorn and Mahadevan, 2021). Thelen et al. In the context of biological processes, especially in biological methanation, 𝑃𝑆 can be related to the systems associated with online data acquisition during the experimental process, Section 2. Towards Digital Twins Perspectives 298 generating a data set. 𝑃2𝑉 updates the state of the Digital Twin based on the data obtained. In this part, process faults can be included. 𝐷𝑆 refers to the model used to represent the obtained data set. In our case, it can be represented with the mathematical models: dynamic models or soft sensors. 𝑉2𝑃 is in charge of the prediction and optimization of the optimal trajectories of the process. Then, this information will be sent to the system in real-time. Here, the system is designed to optimize multiple variables, e.g., yields and productivities of the process, using strategies such as MOO or EMPC.

At this moment there are no reports of digital twins applied to biological methanation. However, there are some researches on AD. [START_REF] Moretta | Enhancement of anaerobic digestion digital twin through aerobic simulation and kinetic optimization for co-digestion scenarios[END_REF] studied the AD process by improving the ADM1 model, called Anaerobic Digestion Enhancement (ADE), in which the authors considered a digital twin. The objective was to improve the ADM1 model, i.e., the CH4 content by increasing its application at the industrial level. The authors considered that the ADE could process different feedstocks (i.e., animal manure, silage, sludge) through co-digestion to produce biogas. However, to have a more realistic representation of the process, the authors included the production of hydrogen sulfide in the ADE, which can be found in significant concentrations in these feedstocks.

Additionally, the authors included the kinetic reactions and mass balances equations to produce hydrogen sulphide from the sulphur by Sulphur-Oxidizing-Bacteria. They optimized the kinetic parameters for different configurations and feedstocks using as measured variables the biogas flow rate. Finally, the results obtained from the simulation were used to optimize a plant, and the plant simulation results were adjusted to typical operating ranges, demonstrating the reliability and flexibility of using the ADE. The same authors, [START_REF] Federico | Conceptual Design of Digital Twin for Bio-methanol Production from Microalgae[END_REF], developed the conceptual design of a digital twin for producing bio-methanol as a value-added product of the AD process using microalgae. This conceptual design used the ADE model for biogas production and the subsequent implementation of a biorefinery to convert biogas into bioethanol. Finally, the authors performed an economic analysis to investigate the feasibility of producing methanol from biogas produced using microalgae. Although the results are interesting, other aspects must be considered and integrated in real-time to consider a functional digital twin (see Figure 3.2.1).

Annexes

Section 1 Biological Methanation Model Development 

Anaerobic Digestion Model Extension (ADM1_ME)

The ADM1_Me model is a derivative of the ADM1 model, which is a well-established framework for simulating anaerobic digestion. This model is based on a series of bioreactions that are responsible for breaking down complex organic matter into methane. In order to enhance the performance of the ADM1 model, the ADM1_Me model introduces the use of H2

and CO in the gaseous phase as substrates for biomethanation. This modification alters the traditional model to take on the form of 𝑑𝑆 𝑑𝑡 ⁄ = 𝑖𝑛𝑝𝑢𝑡𝑠 -𝑜𝑢𝑡𝑝𝑢𝑡𝑠 + 𝑟 with 𝑟 = 𝑀𝜇 , where 𝑀 represents the stoichiometric matrix and 𝜇 represents the reaction rate of each associated microorganism. The term -∑ ∑ 𝐶 𝑣 , µ refers to the carbon balance from compound 𝑗 on uptake of 𝑘, which is derived for the formation of inorganic carbon, i.e., the stoichiometric balance of inorganic carbon in each 𝑘 processes (Batstone et al., 2002). In this definition 𝐶 is the carbon content of component 𝑗, and 𝑣 , the rates coefficients for component 𝑗 on uptake of 𝑘.

Mass balances

As an example, considers the glucose uptake derived from inorganic carbon: over outputs 𝑞 , and 𝑝 , were computed. It was observed that parameters such as 𝑌 , 𝑌 , and µ , , presented a representative effect in at least two of the model outputs with OP1.

On the other hand, 𝑌 , µ , , µ , , 𝐾𝐼 , , and 𝐾𝑠 presented a representative effect in at least two of the model outputs with OP2. [START_REF] Vidra | Bio-produced Acetic Acid: A Review[END_REF]