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Abstract

This thesis aims at studying biological methanation to find the optimal conditions to
produce high purity biomethane as a value-added product. The objective is addressed
from a modeling point of view, based on the use of model-based control strategies and
data-driven soft sensors. A bibliography synthesis was carried out to set the theoretical
framework that includes dynamic models, control strategies, and monitoring tools
applied to biological methanation. An extension of the Anaerobic Digestion Model
No.l (ADMI1 _ME) was proposed to describe the dynamics of the biological
methanation process with the use of syngas (H», CO», and CO) as substrate. The
variation of the volumetric mass transfer coefficient is considered as a function of two
types of reactors, a bubble column reactor (BCR) and a Continuous Stirred Tank
Reactor (CSTR). The ADM1_ME was accurately calibrated and validated in different
operating conditions using experimental data from the literature. A Multi-Objective
Dynamic Optimization (MODO) strategy was proposed to optimize the biological
methanation performance. The MODO strategy was designed to consider three
different objective functions to maximize: (i) yield (Y¢y4) and productivity (Pcys) of
methane, (i1) Yoy and Py, simultaneously complemented by a switch to maximize
acetate yields (Y,.) and productivities (P,.), and (iii) economic optimality in terms of
(Gain) and (Profit margin). The results demonstrated the feasibility of the MODO
strategy and its robustness to switch between products of interest and the key role of
the manipulated variables (i.e., inlet liquid and gas flow rates) in the biological
methanation process. Furthermore, data-driven soft sensors were applied to detect
deviations from the optimal operation points when disturbances occurred in the
manipulated variables. Specifically, Support Vector Machine (SVM) showed
promising results and a potential application by using 2D visualizations constructed

by pair of features.

Keywords: Biological Methanation, Dynamic Modeling, Muti-Objective
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Résumé

Cette these vise a étudier la méthanation biologique afin de trouver les conditions
optimales pour produire du biométhane de haute pureté en tant que produit a valeur
ajoutée. L'objectif est abordé¢ du point de vue de la modélisation, en se basant sur
l'utilisation de stratégies de commande basées sur des modéles et de capteurs souples
pilotés par des données. Une synthése bibliographique a été réalisée pour établir le cadre
théorique comprenant les modeles dynamiques, les stratégies de commande et les outils
de surveillance utilisés pour la méthanation biologique. Une extension du modéle de
digestion anaérobie N°1 (ADMI1 _ME en anglais) a été proposée pour décrire la
dynamique du processus de méthanation biologique avec l'utilisation de gaz de synthése
(H2, CO; et CO) comme substrat. La variation du coefficient de transfert de maticre
volumétrique est considérée en fonction de deux types de réacteurs, un réacteur a colonne
a bulles et un réacteur a réservoir agité continu. L'ADM1_ ME a été calibré avec précision
et validé dans différentes conditions de fonctionnement en utilisant des données
expérimentales tirées de la littérature. Une stratégie d'optimisation dynamique multi-
objectifs (MODO en anglais) a été proposée pour optimiser les performances de la
méthanation biologique. La stratégie MODO a été congue pour prendre en compte trois
fonctions objectives différentes afin de maximiser : (i) le rendement (Yy,)et la
productivité (Pcy,) du méthane, (ii) maximiser Y,y et Pgy, simultanément, complété
par un commutateur pour maximiser les rendements (Y,.) et les productivités (P,.) de
l'acétate, et (iii) l'optimalité économique en termes de (Gain) et (Profit margin). Les
résultats ont démontré la faisabilité de la stratégie MODO et sa robustesse pour passer
d'un produit a l'autre, ainsi que le role clé des variables manipulées (c'est-a-dire les débits
d'entrée du liquide et du gaz) sur le processus de méthanation biologique. En outre, des
capteurs souples pilotés par les données ont été appliqués pour détecter les écarts par
rapport aux points de fonctionnement optimaux lorsque des perturbations se produisent
dans les variables manipulées. En particulier, la machine a vecteur de support (SVM en
anglais) a montré des résultats prometteurs et une application potentielle en utilisant des

visualisations en 2D construites par paire de prédicteurs.

Mots clefs : Méthanation biologique, Modéle dynamique, Optimisation Muti-Objective,
(Economique) commande prédictive basée modéele, Apprentissage automatique, Capteurs

souples, Détection des défauts






“All models are approximations. Essentially, all models are wrong, but some are
useful. However, the approximate nature of the model must always be borne in mind”

George Edward Pelham Box
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0. General Introduction

The depletion of non-renewable fossil-derived fuels associated with the increased
energy demand and the environmental problems related to fossil energy (Brémond et
al., 2021; Li et al., 2018), encourage the "green" transition towards the use of
renewable energies (Dar et al., 2021; Hupfauf et al., 2020). The European Union (EU)
presented a long-term strategy that aims climate neutrality by 2050, where the use of
renewable energies is expected to increase by at least 32% by 2030 (EC-European

Commission, 2018).

Biogas produced through Anaerobic Digestion (AD) is considered one of the most
promising renewable energy sources (Calise ef al., 2021; Li et al., 2018). However,
this biogas presents a low caloric value with 50-75% CHs and 25-50% CO; (Hupfauf
et al., 2020; Mulat et al., 2017).

Biological methanation has recently gained attention (Angelidaki et al., 2018;
Bensmann et al., 2014; Dumas et al., 2020; Voelklein et al., 2019) because it is a
promising technology to upgrade biogas by adding syngas (Rafrafi ef al., 2020). The
aim to perform biological methanation is to use the CO; contained in biogas as a
carbon source that combined with H> can produce CH4 and thus increase the CH4

content between 95 and 99% (Iglesias et al., 2021; Rusmanis ef al., 2019).

In this regard, it can cope with gas impurities (biogas may contain H2S), CH4 purity is
increased (higher energetic power for a purer CHas), and the CO: from biogas can be
valorized (avoiding CO> emissions). The biomethane essential advantages are: once
purified, it is used as a natural gas grid, energy storage, vehicle fuel (Luo and

Angelidaki, 2012), and its use for generating electricity (Hupfauf et al., 2020).

This work focuses on studying biological methanation from a process simulation
perspective. In this context, this thesis aims to develop a model for biological
methanation (biomethanation) that can be used to optimize process operation,
especially for producing value-added products such as methane and acetate. This
objective is accomplished thanks to Multi-Objective Model Predictive Control
schemes and the use of data-driven Soft Sensors, which are based on the use of a

dynamic model for biological methanation.

This thesis addresses the following three specific objectives:
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» To propose a model for biological methanation capable of simulating
the effect of the syngas addition at different operational conditions
using CSTR and BCR

* To maximize simultaneously multiple variables of interest such as
yields, productivities, or economic aspects

= To develop data-driven soft sensors for fault detection based on the

optimal operation of the biological methanation process

Figure 0.0.1 displays the link between the three specific objectives:

1 To propose a model for biological methanation capable of :
| simulating the effect of the syngas addition at different |
| operational conditions in a CSTR and BCR !

[Drocece Made] |
Inputs T Process Model | T Outputs
I
(Manipulated I oo - - o o o i
Variables) :

Controlled Variables

(Optimal Operation Point) !

1 To maximize simultaneously multiple variables of interest | 1 To develop data-driven soft sensors for fault]

I
'such as yields, productivities, or economic aspects | |detection based on the optimal operation of the'
""""""""""""""""""" 'b1010g1ca1 methanation process :

Figure 0.0.1. Thesis development scheme.

The contributions of this thesis include the formulation of a dynamic model for
biological methanation capable to describe accurately the dynamics of biological
methanation at different conditions. The advantage of the model over other models
proposed in the literature was the generalization of the operational conditions. This
model considers the volumetric mass transfer coefficient for two different reactor
configurations: a bubble column reactor ( BCR), transforming glucose, and a
continuous stirred tank reactor (CSTR), using primary sludge and activated ticked-
disintegrated waste. The model also considers the biological transformation of CO into
acetate and Hz by carboxydrotrophic acetogens and carboxydrotrophic hydrogenogens

and the uptake of COa.

The biological methanation process was optimized using control schemes such as
Multi-Objective Model Predictive Control, which simultaneously maximizes several

variables of interest using Pareto Optimal solutions.
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Another contribution of this thesis is the use of machine learning soft sensors oriented
for fault detection in the biomethanation process, which has helped to detect

disturbances in the manipulated variables.

This Ph.D. thesis is organized as follows. The first chapter presents the bibliography
study and sets the theoretical framework for the biological methanation process. This
first chapter is reported in four sections. The first and second sections provide insights
into the anaerobic digestion and biological methanation processes and the different
models used in the literature to represent those processes. The third section reviews
some of the model-based control approaches and optimization tools that will be used
in this work. The fourth section describes data-driven soft sensors, especially machine

learning soft sensors, whose application is monitoring and process fault detection.

The second chapter is divided into seven sections presenting the main results. The first
section is an introduction that summarizes and links the six following sections, which
are presented as an article type. The second section details the formulation of the
biological methanation model. The third, fourth, and fifth sections show different case
studies showing model predictive control (MPC) and multi-objective optimization
applications for biomethanation. The third section focuses on the maximization of
yield (Ygp4) and productivity (Pcys) of methane. The fourth section describes the
simultaneous maximization of (Yzy4, Pcya) which is complemented by a switch for
the maximization of yields (Y,.) and productivities (P,.) of acetate. The fifth section
accomplishes the Economic Multi-Objective Dynamic Optimization (EMODO) for
the maximization of economic variables, (Gain) and (Profit margin). The Sixth
and Seventh sections exhibit the application of machine learning soft sensors for fault
detection in the biological methanation process. The Sixth section presents the training
of several machine learning algorithms to check their ability to detect deviations from
the optimal operation when there are disturbances in the liquid and gas flow rates.
Section seventh shows the use of Support Vector Machines (SVM) in fault detection

with an emphasis on training pairs of features to build 2D visualization diagrams.

Finally, chapter three draws the conclusions and sets the perspectives of this Ph.D.
thesis based on the obtained results, making particular emphasis on a digital twin

perspective.
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Section 1 Anaerobic Digestion & Biological Methanation

Summary of Section 1

This section describes the anaerobic digestion process, its stages, and the factors
that could affect the process. Then, challenges related to the optimization of
biological methanation as a biogas upgrading technology are presented. It is
described the reactions involved in the process, its modes of operation (in-situ and
ex-situ), possible factors that limit the proper development of the process, and some

of the reactors commonly used.



Section 1. Anaerobic Digestion & Biological Methanation

Anaerobic Digestion (AD) for biogas production has been used since the ancient ages. There is
evidence of its implementation in ancient China (Bond & Templeton, 2011) and the use of
biogas to heat bath water in Assyria and Persia in the 10" century B.C. (Meegoda et al., 2018).
Significant developments in the use of AD date back to the 19 century. In 1808 Humpy Davy
demonstrated that it was possible to produce methane from the AD of cattle manure (Lusk,
1998). In 1859, India built the first AD plant to treat sewage. Later, in 1895, England built an
anaerobic digestion plant prototype to recover biogas for light street lamps (Lusk, 1998;
Meegoda et al., 2018). In the same century, China (1921) and Germany (1920) initiated the
construction of large-scale digesters (He, 2010). During the late 19 and early 20™ century, AD
became a more developed technology. However, it was not until the middle of the 20" century
that many countries became aware of the need to manage their waste, given the scarcity of

landfills and the pollution effects on human health associated with fossil fuels (Klinkner, 2014).

The attractiveness of biogas comes from its high content of methane (~60%), which has
interesting properties (see Table 1.1.1) and an extensive list of possible uses: in natural gas
grids, vehicle fuels, to generate electricity and heat, and chemical feedstock (Dar et al., 2021;

Hupfauf et al., 2020; Rafrafi et al., 2020).

Table 1.1.1. Physical properties of methane (Chemical Rubber Company, 2005; Perry & Green,
1999).

Property Value
Molecular weight 16.04 g/mol
Melting point 90.65K
Boiling point (Th) 111.65K
Heat Value 55 Mj /mol
Molar heat capacity (Cp) 35.7]/mol K
Standard molar enthalpy of formation (AfH %) -74.6 kJ /mol
Standard molar Gibbs energy of formation (ArG %) -50.5 kJ /mol
Standard molar entropy (So) 186.3 J/mol K
Critical temperature (T'c) 190.56 K
Critical pressure (Pc) 4.599x10° Pa
Critical molar volume (V¢) 0.099 m3 /mol
Heat combustion (AH,)* 890.8 kJ/mol

*https://www.engineeringtoolbox.com/

In the last 20 years, research on AD and biogas has increased considerably, especially in fields

such as environmental, energy chemical engineering, and agricultural sciences. Figure 1.1.1
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Section 1. Anaerobic Digestion & Biological Methanation

shows the number of annual articles reported by Scopus using the keywords "anaerobic
digestion" and "biogas", indicating a continuous effort of the scientific community to work in

a renewable and sustainable process.
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Figure 1.1.1. Scientific research articles dedicated to anaerobic digestion and biogas

production. Data obtained from https://www.scopus.com/, June 2023.

1.1 Anaerobic Digestion

AD 1is a complex biological process in which organic matter is anaerobically degraded
synergistically into a mixture of methane (CHs), carbon dioxide (CO2), and other gases in a
minor way by microbial consortia of fermenting bacteria, anaerobic oxidizing bacteria, and

methanogenic archaea (Angelidaki et al., 2011).

AD involves biological transformations, physicochemical processes, and mass transfer between
phases (Merkel & Krauth, 1999). Physicochemical processes are represented by components
such as anions and cations or ionized forms of the compounds generated and consumed through

AD, which is why multiple studies have focused on the analysis and variation of pH within this
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type of system (Bashir & Aggarwal, 2017; Begum et al., 2017; Chandra et al., 2012;
Czatzkowska et al., 2020; Krishania et al., 2013). Biological degradation process is the
fundament of CH4 production through AD in the liquid phase. Concerning mass transfer,
compounds such as CHa, Hz, and CO> are produced in the liquid phase and then released into

the gas phase through a concentration driving force or gradient between the two phases.
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Figure 1.1.2. Overall anaerobic digestion process. Adapted from (Schon, 2009).

Figure 1.1.2 presents the interaction of the three processes, the biological component through
AD, and its stages: hydrolysis, acidogenesis, acetogenesis, and methanogenesis. The interaction
of components such as acetate, propionate, butyrate, and bicarbonate with their anions and
cations obeys the physicochemical principles. Finally, mass transfer between the liquid and gas
phases is graphically represented as the formation of bubbles in the liquid phase. In practice,

both nucleation and mass transfer through an interphase are involved.

1.1.1 Anaerobic Digestion Process Stages

AD is divided into four stages associated with the degradation and conversion of organic
biomass: hydrolysis, acidogenesis, acetogenesis, and methanogenesis (Chandra et al., 2012;

Ferry, 2011; Henze et al., 2019; Mao et al., 2015; Roopnarain & Adeleke, 2017; Saha et al.,
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2020). This biogas produced in the AD contains between 50 - 75% of CHa4, 25 — 50 % of CO»,
and 2—7% of water vapor (Iglesias et al., 2021; Laguillaumie et al., 2022; Zupanci€ et al., 2022).

Figure 1.1.3 describes the AD and each component associated with each step in the process.
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Figure 1.1.3. Anaerobic digestion process. The numbers indicate the microorganisms groups:
1. Hydrolytic and fermentative bacteria, 2. Acetogenic bacteria, 3. Hydrogenotrophic
methanogens, 4. Acetoclastic methanogens. Adapted from (Batstone ef al., 2002; Henze et al.,

2019).
1.1.1.1 Hydrolysis

The first step of the AD process is hydrolysis, in which the organic matter, carbohydrates,
proteins, and fats (complex undissolved compounds or polymeric organic compounds) are
depolymerized into monomers or oligomers, sugars, glycerol, amino acids, long-chain fatty

acids (LCFA) (less complex dissolved compounds).
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This process generally takes place on the surface of acidogenic bacteria as it involves exo-
enzymes excreted by hydrolytic bacteria, such as Clostridia, Bacteroides, Fusobacterium,
Butyrivibrio, Micrococci, Streptococcus and Selenomonas (Chandra et al., 2012; Czatzkowska
et al., 2020). In most cases, this stage is the rate-limiting step of the overall digestion process
because the accessibility of enzymes reacting site is limited by the complex structure of

substrate particles (Henze et al., 2019).

1.1.1.2 Acidogenesis

The second step is acidogenesis; throughout this stage, the dissolved monomers or oligomers,
amino acids, LCFA, and the components produced in the hydrolysis step undergo a degradation
reaction. These components are assimilated into the acidogenic bacteria through the cell
membrane and later fermented or anaerobically oxidized (Henze et al., 2019) to produce
volatile fatty acids (VFA), such as propionate, butyrate, valerate, and in minor form amounts of
lactic, formic, and carbonic acid, alcohols, carbon dioxide, hydrogen, ammonia, as well as new
cell material. This step is carried out by the action of bacteria of the genera Bacillus sp.,
Pseudomonas sp., Clostridium sp., and Bifidobacterium sp. (Czatzkowska et al., 2020; Dar et
al.,2021).

The monosaccharides and the amino acids are the most abundant substrates for fermentation.
Monosaccharides enter either the Emben-Meyerhof-Parnas (EMP) or the Entner Doudorof
(ED) pathway, and later they are fermented via the acetyl-CoA pathway. At the same time,
amino acids utilize the Stickland reaction, where these substrates are degraded into acetate in a
coupled oxidation/reduction reaction (Angelidaki et al., 2011). The acidogenesis stage is the
most rapid in anaerobic conversion due to the high free energy change of the acidifying
reactions. Furthermore, acidogenic bacteria are able to metabolize the substrates in a pH

between 4 to 5.

1.1.1.3 Acetogenesis

In the third step, acetogenesis, the VFA produced in acidogenesis are reduced and transformed

into acetate, hydrogen, and carbon dioxide, as well as in new cellular material, by the action of
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bacteria of the genera Clostridium, Syntrophomonas sp., Syntrophobacter sp. (Chandra et al.,
2012; Czatzkowska et al., 2020).

An important aspect to consider at this stage is the inhibitory effect of Hz. The interaction
between Hz-producing acetogenic bacteria and Hz-consuming methanogenic bacteria regulates
the H» levels. By themselves, the reactions involved in the acetogenesis (see Table 1.1.2) are
thermodynamically unfavorable, presenting a AG°>0 (Henze et al., 2019). Once H» levels are
regulated through these syntrophic associations, the partial pressure ranges between 104-10°
atm, making the reactions thermodynamically favorable with a AG°'< 0 (Henze et al., 2019;

Luo et al., 2012).

1.1.1.4 Methanogenesis

In the last step, methanogenesis, the acetate, bicarbonate, and hydrogen are transformed into
methane and carbon dioxide, as well as in new cellular material in two types of reactions,
hydrogenotrophic methanogenesis and acetoclastic methanogenesis by the strictly anaerobic
methanogens of the order FEuryarcheota: Methanobacteriales, Methanococcales,

Methanomicrobiales, Methanosarcinales, and Methanocellales.

In hydrogenotrophic methanogenesis, CO: is reduced into CH4 using H» as a reduction agent
(Ashraf et al, 2020) by the action of hydrogenotrophic methanogens such as
Methanobacterium,  Methanospirillum, Methanothermobacter, and Methanosarcina. In
acetoclastic methanogenesis, acetate is decarboxylated and converted into CH4 by the action of
acetoclastic methanogens (e.g., Methanosaeta, Methanococcoides, and Methanosarcina)
(Bharathiraja et al., 2016; Czatzkowska et al., 2020; Dar et al., 2021; Dev et al., 2019; Henze
et al., 2019; Saha et al., 2020), Figure 1.1.4 shows the metabolic pathway, from acetate and
CO> to CHa.

Acetogenesis and methanogenesis usually run in parallel, as the symbiosis of two groups of
microorganisms. Among the total CHs produced, about 60%-70% originates from the
decarboxylation of acetate (by acetoclastic methanogens), while the remaining CH4 is produced
from COz reduction and conversion of H» (by hydrogenotrophic methanogens) (Bharathiraja et

al., 2016; Malinowsky et al., 2021; Pan et al., 2021).
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Figure 1.1.4. Methanogenesis pathways in anaerobic digestion by Methanosarcina barkeri.

Adapted from (Ferry, 2011; Lyu & Whitman, 2019; Welander & Metcalf, 2005).

1.1.1.5 Homoacetogenesis & Sintrophic Acetate Oxidation

Two other types of microorganisms participate in the AD process: homoacetogenic bacteria and
syntrophic acetate bacteria, which are activated when the concentration of H» is high. The
homoacetogenesis implies the conversion of H, and CO; into acetate by bacteria such as
Moorella thermoacetica (Clostridium thermoaceticum), Acetobacterium woodii, and
Clostridium ljungdahlii (Ashraf et al., 2020; Ferry, 2011; Liu et al., 2016; Pan et al., 2021;
Westerholm et al., 2016). Syntrophic acetate oxidation implies the conversion of acetate into
H; and CO; by bacteria such as Clostridium ultunense, Thermacetogenium phaeum, and

Syntrophaceticus schinkii (Pan et al., 2021).
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As previously mentioned, acetogenesis refers to acetate production by heterotrophic
microorganisms through butyrate, propionate, valerate oxidation, etc. Conversely,
homoacetogenesis is acetate production by autotrophic acetogenic microorganisms through

COz reduction with Hy (Pan ef al., 2021; Saady, 2013) (Figure 1.1.5).
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Figure 1.1.5. Acetyl-CoA Pathway. The reductive pathways comprise two branches (methyl
and carbonyl) through which the methyl and carboxyl groups of acetate are synthesized,

respectively. Adapted from (Saady, 2013; Westerholm et al., 2016).

Acetogens grow slowly in a syntrophic relationship with methanogens which allows to keed H»
partial pressures low <10 atm (Henze et al., 2019). Homoacetogens can grow faster than
acetogens (with organic substrates) in the presence of H> and CO,, which means high partial
pressures > 10~ atm (Ashraf et al., 2020; Liu et al., 2016). It implies that homoacetogens are

not inhibited by high H> concentrations (Saady, 2013), and they can change their metabolism
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under conditions of stress or depletion of organic compounds (Ashraf et al., 2020; Liu et al.,

2016).

Table 1.1.2. Main anaerobic bioreactions during the whole anaerobic digestion. Adapted from

(Angelidaki et al., 2011; Ashrafet al., 2020; Liu et al., 2016; Pan et al., 2021; Sun et al., 2021).

o
Reactions (k ]ifno )
Hydrolysis reactions:
(CeH1005)y + nH0 > nCeHq,06 -
Acidogenesis reactions:
Acetate: 206
CeH206 + 2H,0 - 2 CH3COOH + 4H, + 2CO0,
Butyrate: 954
Ce¢H20¢ » 2CH3;CH,CH,COOH + 2H, + 2CO0,
Propionate: 5794
Ce¢H20¢ + 2H, » 2 CH3;CH,COOH + 2H,0 '
Valerate: -143.3
CH;CH,C00™ + 2C0, + 6H, - CH3(CH,)3C00™ + 4H,0 -96.7
3CH;C00™ + 3H, + 2H* —» CH5(CH,)3C00~ + 4H,0 480
CH5(CH,),C00~ + CH3;C00~ + 2H, + H" + CH3(CH,)3;C00~ + 2H,0 )
Acetogenesis reactions:
Propionate: 1762
CH;CH,COOH + 2H,0 — CH3COOH + 3H, + CO, ’
Butyrate:
CH;CH,CH,COOH + 2H,0 - 2CH;COOH + 2H, +48.4
Methanogenesis reactions:
Hydrogen:
4H, + CO, — CH, + 2H,0 -1307
Acetate: 31.0
CH;COOH - CH, +CO, )
Syntrophic Acetate Oxidation (SAO) reactions:
Acetate:
CH,COOH + 2H,0 — 2C0, + 4H, 949
Homoacetogenesis reactions:
Autotrophic: 94,9
2C0, + 4H, - CH;COO0H + 2H,0 '
SAO coupled with hydrogenotrophic methanogenesis: 31.0

CH5CO0™+ 2H,0 > CH, + HCO5~

Syntrophic acetate oxidation is the process in that methyl groups of acetate are converted to

CO, with the generation of H> (Pan et al, 2021) and competing with the acetoclastic

methanogens by the action of bacterias such as Syntrophaceticus schinkii Clostridium

ultunense, Thermacetogenium phaeum, and Tepidanaerobacter acetatoxydans, (Ashraf et al.,
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2020; Ferry, 2011; Liu et al., 2016; Pan et al., 2021; Westerholm et al., 2016). The syntrophic
acetate oxidation process is unfavorable (AG°'=+94.9 kJ /mol). However, at low concentrations
of H> (low H» partial pressures), they couple with hydrogenotrophic bacteria, which allows the
overall reaction to be exergonic (AG°=-36.0 kJ/mol) and produce CHs with the equal

stoichiometric of acetoclastic methanogens (Pan et al., 2021).

Table 1.1.2 presents the reactions and their change in free energy associated. Acidogenesis
presents a AG°'<0, indicating that it is an exergonic process. Acetogenesis presents a AG°">0,
indicating that it is an endergonic process. Methanogenesis shows a AG°'<0 (exergonic
process), and syntrophic acetate oxidation and homoacetogenesis present a AG°'=-94.9, and
AG°'=+94.9, respectively. However, the coupled reaction between syntrophic acetate oxidation
with hydrogenotrophic methanogenesis presents a AG°'=-31.0, indicating that reactions can

occur.

1.1.2 Factors Affecting the Anaerobic Digestion Process

Several factors influence AD performance (Chew et al., 2021). Proper control of these factors

is critical to maximizing CH4 production and ensure the stability of the process.

1.1.2.1 Substrate composition

Several substrates have been used in AD. Li ef al. (2018) presented a review of a large variety
of substrates used in AD. The goal was to explore the characteristics of these substrates (high
organic matter concentration, salt, oil, and protein contents; low Carbon/Nitrogen ratio) and
their effect on AD efficiency. Nasir ef al. (2012) reviewed the potential of AD for biogas
production from livestock manure treatment and compared operating and performance data for
various AD configurations. They checked livestock manure such as cattle, swine, and poultry
manure. They concluded that the AD of livestock wastes could be an alternative disposal option
with CHs yields between 0.01-0.5 L/gVS . Sendilvadivelu et al. (2022) reviewed the
composition of municipal solid waste and input feedstock characteristics that affect the quality
of products, such as digestate and CH4 in AD. Values between 131-693 LCH,/kgVS were
reported from municipal solid substrates such as food waste, kitchen waste, vegetable waste.

Overall, a wide variety of studies refer to AD from multiple substrates.
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1.1.2.2 Temperature

Temperature is one of the most critical factors that affect the AD process. Smaller fluctuations
in temperature affect the biological activity of the microorganisms (Laiq Ur Rehman et al.,
2019). The AD process can be operated at three temperature ranges, psychrophilic AD (4-20°C,
although 15°C is usually used as optimal), mesophilic AD (20—45°C, optimal at 37°C), and
thermophilic AD (45-70°C, optimal at 55°C) (Ossa-Arias & Gonzalez-Martinez, 2021). The
mesophilic and thermophilic temperatures are the most common conditions in this process
(Raposo et al., 2012; Hupfauf et al., 2018; P. Wang et al., 2018). The correct choice depends
on the AD objectives, e.g., the operation of the AD process at thermophilic conditions implies
high biogas yields and deactivation of pathogens. However, temperature values between 40 and
50°C inhibit the activity of methanogens (Laiq Ur Rehman et al., 2019). On the other hand, the
operation at mesophilic conditions can maintain high organic loading rates but has lower

conversion rates (Laiq Ur Rehman et al., 2019; Sendilvadivelu et al., 2022; Van et al., 2019).

Hupfauf et al. (2018) studied the AD process at five different temperatures, 10, 20, 37, 45, and
55°C, using cattle slurry and maize straw as a substrate, with an OLR of 2.04 gVS/L/d. The
authors demonstrated that 45°C is a good alternative with similar results in CH4 content (22.4%)
concerning the thermophilic and mesophilic conditions (20.2 and 19.9%). Conversely,
Mortezaei et al. (2023) investigated the effects on AD with changes in the solids retention times
operating at two temperatures, 35°C and 55°C, where the latest improved the biogas production
between 34-42% concerning the mesophilic operation. Nie et al. (2021) presented an interesting
review of the effect of temperature in the different stages of AD. This work summarizes
different research works that studied the influence of temperature on AD and allowed us to

conclude some relevant aspects:

» Substrate hydrolysis rate increased with the temperature due to the increased activity of
the extracellular enzymes, i.e., thermophilic hydrolysis increases the activity of the
extracellular enzymes

» The production of VFA can be increased from psychrophilic and mesophilic
temperatures. However, there is still no agreement concerning the increase in VFA

when AD 1is developed at mesophilic and thermophilic conditions; During
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methanogenesis, most hydrogenotrophic and acetoclastic methanogens may shift with
the bioreaction temperature. For instance, acetoclastic methanogens predominate at
35°C, while hydrogenotrophic methanogens predominate at 45°C; Syntrophic acetate
oxidation is favored at low acetate concentrations, while acetoclastic methanogenesis is

favored at high acetate concentrations

1.1.2.3 pH

The pH in AD affects the activity of the microorganisms (Laiq Ur Rehman et al., 2019). The
CH4 formation in AD processes ranges between 6.5-8.5 and becomes unstable when the pH
drops below 6.0 or increases above 8.5 (Weiland, 2010). The optimal pH values for each stage
are 6-8 for hydrolysis, 5.5-6.5 for acidogenesis, 6.0-6.2 for acetogenesis, and 7.0-8.0 for
methanogenesis (Raposo et al., 2012; Van et al., 2019).

An interesting study was developed by Lindner ef al. (2015), which performed a two-phase
biogas plant composed of (i) a 124 L continuous acidification reactor operating at 60°C to
develop the first steps of the AD and (ii) two 62 L anaerobic filters to perform the
methanogenesis step at 37°C using as substrate maize silage. The aim was to evaluate the effect
of different pH values 5.5, 6.0, 7.0, and 7.5 over the AD process. In the continuous acidification
reactor, values closed to 12.0, 14.0, 7.0, and 2.0 g/kg were obtained for the VFA: caproic,
valerate, butyrate, propionate, and acetate (values estimated from a graphic). At pH 5.5 and 6.0,
the representative VFA was acetate with values of 6.5 and 10.0 g/kg, respectively, while
propionate was the representative VFA at pH 7.0 and 7.5 with values of 4.4 and 0.8 g/kg,
respectively. The CH4 content values of 0.4, 35.1, 48.0%, and 50.42% were obtained for pH of
5.5, 6.0, 7.0, and 7.5, respectively. In the anaerobic filters, a CHs of 64.3% was obtained with
a pH of 5.5, while the other pH reached a CH4 content higher than 71%. It is concluded that
acidogenesis and methanogenesis work better in the previously mentioned ranges. However,
when the entire system is analyzed in terms of CH4, biogas yields are higher with increasing
pH. For pH 5.5, values of 194.19 and 483.57 NL/kg for organic dry matter were obtained for
CH4 and biogas yield, respectively. On the other hand, for a pH of 7.5, values of 336.71 and
641.00 NL/kg of organic dry matter were obtained for CH4 and biogas yield, respectively.
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1.1.2.4 Hydraulic retention time and organic loading rate

Hydraulic Retention Time (HRT) is the average time interval that a liquid or dissolved
component remains in the reactor (Dong et al., 2022; Eggen and Vogelsang, 2015; Lindmark
et al., 2014). 1t is calculated as reactor volume over the input flow. A longer HRT contributes
to the high reduction of VFA, resulting in improved AD efficiency (Malinowsky et al., 2021;
Zamri et al., 2021). Tena et al. (2021) investigated the impact of HRT on CH4 production in
the two-stage thermophilic and mesophilic AD process. Two Continuous Stirred Tank Reactors
(CSTR) were used in series to perform the acidogenesis and methanogenesis steps. Eight HRT,
20, 16, 10, 6,5,4,3, and 2 days were imposed while the feed flow was made of a mixture of
sewage sludge and wine vinasse (0.5:0.5). According to their results, it can be concluded that
an AD operating at an HRT of 4 days is an excellent option to reduce the time of the process
and increase the CHsyield to 159.4 mLCH,/gCOD (COD: Chemical Oxygen Demand. Amount
of oxygen needed to degrade the organic matter into CO; and H>O). Decreasing the HRT below
4 days resulted in the accumulation of VFA. Sillero et al. (2023) investigated the influence on
methanogenesis of the HRT during co-digestion of a substrate mixture of sewage sludge, wine
vinasse, and poultry manure (0.495:0.495:0.01). The authors developed the AD process using
two 5 L CSTR connected in series. The first reactor was used to develop the acidogenic stage
at 55°C and pH 5.5. The second reactor was used to perform the methanogenesis step at 35°C
and pH 7.5 with seven HRT, 15, 12, 10, 8, 5, 4, and 3 days. The results showed that 12 days is
the best HRT for the methanogenesis with a maximum CHy yield was 391 mL/gVs.

The organic loading rate (OLR) is the amount of organic matter added to the AD system per
unit reactor volume per day (Grangeiro et al., 2019). High values in the OLR cause acidification
and inhibit the activity of different microorganisms, leading to reduced biogas production. Zhou
et al. (2022) proposed AD for food waste in a horizontal flow reactor operated in a semi-
continuous condition at mesophilic temperatures with OLR ranging from 1.00 to 13.80
kgVS/m3/d. Values between 0.173 - 0.516 L/g/d and 0.25 -5.69 L/L/d were obtained for
CHj4 yields and volumetric CH4 production, respectively. The authors demonstrated that high
OLR improved the AD process. Unyay et al. (2022) developed an AD process for raw
switchgrass in a sequential batch reactor (daily feed) and semi-CSTR at three different OLR
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0.75, 1.0, and 1.5 gVS/L/d . They found the optimum OLR in the semi-continuous
configuration at 1.0 gVS/L/d, where 35% of the switchgrass theoretical CH4 yield and 38%
energy recovery were attained. Higher OLR (1.5 gVS/L/d) caused low CH4 content due to the

VFA accumulation.

When there is a continuous or semi-continuous flow rate added to the system, the HRT and

OLR are related by the following Equation (Labatut & Pronto, 2018):

So ity (1.1.1)
OLR = HRT = So v
where OLR is expressed as VS or COD basis (g/L/d); HRT is expressed in days (d). S, refers
to the influent substrate concentration, VS or COD basis (g/L); qliﬁ] and V are the inlet liquid

flow rate (L/d); and volume reactor (L), respectively.

1.1.2.5 Mixing

The AD process could be carried out with continuous mixing, intermittent mixing, or not be
mixed at all (Lindmark et al., 2014). Zhang et al. (2019) investigated the effect of different
mixing strategies on AD of food waste. Three reactors operating at 35°C with an HRT of 5 days
were used. Reactor 1 (R1) was operated with semi-continuous mixing of 2 min/h at 80 rpm.
The Reactor 2 (R2) was operated with continuous mixing of 80 rpm for the duration of the
experiment. Reactor 3 (R3) was used as an unmixed control. The results showed that the semi-
continuously mixed R1 achieved AD efficiencies of 74.4%, which is higher than the
continuously mixed R2 (66.9%) and unmixed R4 (14.9%).

Ma et al. (2019) evaluated the effect of the mixing velocity using a two-phase AD system of
sewage sludge. The first phase consisted of the hydrolysis and acidogenesis process (HAP),
where it was used a 600 mL CSTR operating at 37°C with an OLR of 7.96 gVS/L/d. The
second phase was referred to as the methanogenesis process (MP). It was performed in a 600
mL CSTR operating at 37°C with an OLR of 0.796 gVS/L/d. Eight CSTR were used and
divided into four groups according to the mixing power in the HAP: group 1 (HAP1 at 30 rpm
and MP1 at 120 rpm), group 2 (HAP2 at 30 rpm and MP2 at 120 rpm), group 3 (HAP3 at 30
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rpm and MP3 at 120 rpm), group 4 (HAP4 at 30 rpm and MP4 at 120 rpm). Results showed
that the concentration of soluble COD and total VFA produced in group 3 (2134 + 58 mg/L
and 1311 + 22 mg/L) and group 4 (2030 + 39 mg/L and 1281 + 21 mg/L) was significantly
higher than those in group 1 (1346 + 32 mg/ L and 730 + 43 mg/L) and group 2 (1693 + 62
mg/L and 1144 + 32 mg/ L). On the other hand, Yang and Deng (2020) proposed a mixing
method for AD ("air mixing"), treating animal wastewater using air as a momentum source of
agitation. Four 4.0 L batch reactors operating at 35°C were used. Reactor 1 (R1) and reactor 2
(R2) were mixed with air and biogas. Reactor 3 (R3) was mixed using an axial flow impeller,
and Reactor 4 (R4) was used as control (unmixing). It was concluded that the addition of air
(R1) improved CH4 production by 6.4, 11.9, and 19.6% compared to the addition of biogas
(R2), mechanical agitation (R2), and control (R4), respectively. Additionally, the CH4 yield in
R1 improved by 6.5, 11.7, and 19.90 %, concerning R2, R3, and R4, concluding that adding air
improved the AD. The authors also analyzed the effect of mixing in the mass transfer process.
The degree of mixing (homogeneity) was calculated through the coefficient of variation (cv) of
the total solids concentrations in the system. The authors defined that cv-value less than 0.02
indicated homogeneous mixing. For R1 and R2, stable values close to 0.016 were obtained after
1.5 min of agitation. For R3, a value of 0.025 was obtained after 10 min of agitation, while a
value close to 0.17 were achieved in R4. They interpreted this result as a measure of the mass
transfer effect, where R1 and R2 presented the best improvement due to the substrate's and

sludge's physical movement when the bubbles were ascending.
1.2 Biological Methanation

Biological methanation, or biomethanation, is a promising technology to upgrade biogas by
adding syngas (Rafrafi et al., 2020). The aim is to upgrade residual components such as CO;
and increase the CH4 content (95 — 99 % CHa) towards the end of the process (Iglesias et al.,
2021; Rusmanis et al., 2019). One of the essential advantages of upgrading biogas is its use as
a natural gas grid, energy storage, and vehicle fuel (Luo & Angelidaki, 2012). Biological
methanation occurs in the last stage of AD. The occurrence of biological methanation requires
the addition of Ha. Several sources of H> can be used as either pure components or mixed with

others. An interesting mixture containing H> is syngas. The syngas loading (commonly a
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combination of H»:CO:CO;) can improve the process and convert the H, and CO; into CH4
(Grimalt-Alemany et al., 2018; Rusmanis et al., 2019). The hydrogenotrophic methanogens
with CO> consumption transform the H>. Although this route is well-known, carbon monoxide

(CO) consumption remains unclear (Sun et al., 2021).

The conversion of CO can be divided into direct reactions and indirect reactions. Directly, the
CO 1is transformed to CHs by the action of microorganisms such as Methanobacterium
thermoautotrophicum, etc. (Guiot et al., 2011). Indirectly, the CO is converted to acetate by
some species from genera, e.g., Clostridium, Acetobacterium, and Sporomusa, which can

produce acetate and alcohols (Karekar et al., 2022; Paniagua ef al., 2022).

Then, this reaction is flowed by acetoclastic methanogenesis to obtain CH4. The CO is also
transformed into H> by carboxydotrophic hydrogenogenesis (water gas shift). Some species of
the gender Rhodospirillum, Thermincola, convert CO to Hy and CO; (Y. Li et al., 2020;
Paniagua et al., 2022). Then, this reaction is followed by hydrogenotrophic methanogenesis.
The homoacetogens and syntrophic acetate oxidizers have a role in biological methanation. The
homoacetogens transform H, and CO» into acetate, and the syntrophic acetate oxidizing bacteria
oxidized the acetate to produce H> and CO» (Grimalt-Alemany et al., 2020; Pan et al., 2021).

Figure 1.1.6 presents the reaction pathways in biological methanation.
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Figure 1.1.6. Reaction pathway in biological methanation. Adapted from (Paniagua et al.,

2022).
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1.2.1 Biological Methanation strategies

There are two strategies to develop biological methanation (Figure 1.1.7): in-situ biological
methanation (directly in the AD reactor), where the syngas is added during the AD process, and
ex-situ biological methanation (in a separate unit), where an external reactor is used to enhance
the process using specialized methanogenic microorganisms (Jensen et al., 2018). In both cases,
concentrations above 90% are reported, where the conversion of biogas, specifically Ho, is

limited by the gas-liquid mass transfer rate (Luo et al., 2012; Rusmanis et al., 2019).

Upgraded biogas - Upgraded biogas
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§ 55}:/4 co, CH, CH,
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Figure 1.1.7. Scheme of in-situ and ex-situ biological methanation process. Adapted from

(Voelklein et al., 2019).

The advantage of in-situ biological methanation is the reduction of infrastructure costs, using
only one reactor where syngas is directly added, allowing AD and biological methanation to
occur simultaneously. The main drawback of in-situ biological methanation is that AD can be
affected by the high concentration of gas. The H> added to the system can inhibit the hydrolysis
and acetogenesis steps (Rafrafi et al., 2020). On the other hand, ex-situ biomethanation takes
place in a separate external reactor, which implies constructing an additional physical system.
The ex-situ biomethanation is typically adapted to suit the hydrogenotrophic methanogens due
to the facility to dissociate the process conditions, such as temperature and pressure of the
hydrolysis and acidogenesis steps to the methanogenesis step (Voelklein ef al., 2019). One of

the advantages of this technology is that it can process higher H> loading rates and obtain
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excellent gas conversion rates compared with the in-situ technology (Wu et al., 2021).
Regardless of the type of configuration, microorganisms, and metabolic pathways are similar

(Mulat et al., 2017; Rafrafi et al., 2020; Rusmanis et al., 2019).

Although ex-situ technology is currently preferred at the industrial level due to its properties
(Mulat et al., 2017; Rafrafi et al., 2020), studies have been developed using both technologies
to understand better. Luo et al. (2012) investigated the feasibility of converting H> to CH4 and
upgrading biogas through two types of experiments in-situ. The first experiment corresponded
to the study of the potential inhibition of H> on VFA degradation in batch operation. In contrast,
the second experiment involved CH4 production from H> continuously. In the batch operation,
they tested three initial partial pressure, 0.25, 0.5, and 1.0 atm; and 2 agitation speeds, 100 and
300 rpm. The results showed that at 100 rpm, the H> consumption rate decreased 66, 30, and
16 mL/L/h with the reduction of H: partial pressure 1.00, 0.50, and 0.25 atm, respectively.
However, at 300 rpm, the Hz consumption rate was almost constant at 270 mL/L/h, i.e.,
independent of the H» partial pressure. Their results showed that lower mixing intensity is
crucial to achieving H» utilization without inhibiting propionate and butyrate degradation.
Additionally, two CSTR were used to analyze the biogas production in the continuous
operation. Both reactors were fed with cattle manure until they reached a steady state. Then, H>
was added at a flow rate of 28.6 mL/L/h to one of those reactors and the second one was used
as a control; both reactors were operated for 1.5 months until they reached a new steady state.
After the H» addition, 80% of the added H> was consumed. The H> consumption rate was around
22.8 mL/L/h, indicating that gas liquid mass transfer is the limitating factor. The biogas
production increased concerning the control from 25.1+1.8 to 29.1+2 mL/L/h with a CHy
content increased from 624+2.5 to 65+3.3%, and CH4 production increased from 15.5+1.1 to

18.9+0.9 mL/L/h).

Voelklein et al. (2016) conducted several alternatives to upgrade the biological methanation.
One of those investigations started to understand the thermophilic degradation of grass silage
at increasing the OLR (more related to AD). The authors used a CSTR operating at 55°C with
five different OLR, 7, 6, 5, 4, and 3 gVS/L/d. They found yields between 351 and 405
Lcpa/kgVSs with a CHy content in the biogas produced between 51.5 and 52.9%. Therefore,
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another investigation was performed to study in-situ and ex-situ biological methanation
strategies for biogas upgrading potential (Voelklein ef al., 2019). The experiment was
developed using three reactors with a volume of 9.5 L: Batch in-situ, batch ex-situ, and
continuous ex-situ. The in-situ and ex-situ upgrading was performed at 55°C and ambient
pressure with an OLR of 4 gVS/L/d. The in-situ strategy achieved CH4 yields between 382
and 640 L/kgVS and a CH4 formation rate between 0.33-2.52 L/L/d with a CH4 content
between 32.1 and 60.3%. In the ex-sifu strategy, the batch operation achieved a CH4 formation
rate between 1.7-3.7L/kgVS/d with a CH4 content between 92-96%, while the continuous
operation achieved a CH4 formation rate between 0.85-9.1L/L/d with a CH4 content between
15-85%. In both cases, a significant increase in CH4 content was observed concerning the first
experiment, especially in the ex-situ batch operation, which elucidates the efficacy of improving

CHj4 content by adding syngas.

1.2.2 Process Limitations

In section 1.1.3. was presented the factors that affect the AD process. These factors have also
been considered in biological methanation. However, considering the addition of gases such as
H», CO, and CO: in the biological methanation process, it is necessary to address several of

these factors from a different perspective.

1.2.2.1 pH

pH is one of the most critical variables to consider in biological methanation, as it ensures the
correct stability of the different microbial consortia (Giwa et al., 2019). However, the selection
of pH depends on the type of microorganism desired to predominate in biological methanation.
The accumulation of VFA in the system causes a reduction in pH, leading to inhibitory
processes (Czatzkowska et al., 2020). This was corroborated by Rafrafi et al., (2020), who
mentioned that regardless of operation mode, in-situ or ex-situ, an increase in pH can inhibit
acetoclastic methanogenesis. Methanogenic bacteria prefer to work in neutral environments.
However, some strains can work in both basic and acidic environments, so the pH range in
which they work well is between 5.0 and 8.5 (Strobel et al., 2020). The addition of H, will
prefer to react with CO; instead of CO, resulting in rapid consumption of this H> and an increase

in pH, which can inhibit the activity of CO-consuming microorganisms (Paniagua et al., 2022).
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Several studies have focused on the effect of pH in biological methanation. Li ef al. (2020)
studied the impact of different substrates over biological methanation and added different
syngas ratios. The findings revealed inhibitory effects due to the pH increase associated with
adding H», which was solved using phosphate buffer for pH control. Ashraf et al. (2020)
investigated the pH effect as a control strategy to endure the process in stable conditions using
a thermophilic trickling filter to degrade cow manure. Among the two control strategies,
phosphate buffer addition and control CO2/H; feed ratio, the latest was selected as the best
method to control de pH below 8.5. The results highlighted that the pH is maintained at 8.5 in
the trickling filter by varying CO2/H> with ratios between 0.25 and 0.5.

Wang et al. (2013) developed in-situ biological methanation using coke oven gas (H2/CO 92/8)
and sewage sludge. The experiment consisted in upgrading the biogas using a 2 L CSTR
coupled with a hollow fiber membrane. The gas addition was developed in four stages. Stage I
(1-30 days): there was no gas added; stage II (31-60 days): 1300300 mL/d; stage I1I (61-72
days): 2600-2900 mL/d; stage IV (73-103 days): 2882432 mL /d. The CH4 content was around
64.4, 89.9, 97, and 98.8% in stages I, II, III, and IV. Nonetheless, the authors found some
relevant aspects in the experiment. In stage II, H> and CO were not detected, which indicated
they were utilized efficiently by the microorganisms. The VFA rounded 4.8 g/L (close to the
value in stage ), showing that adding coke oven gas did not negatively affect the process. The
pH in stages I and Il was 7.0 and 7.5, respectively. In stage III, the increase in the gas flow rate
occasioned an increase of pH from 7.5 to 9.0, which reduced CH4 content to 64%, accumulation
of VFA, and detection of H2 and CO, signs of process inhibition. To solve this problem, in stage
IV, the pH of the reactor was controlled close to 8.0. The concentration of VFA came back to
4.9 g/L, H> and CO were not detected, and the AD of sewage sludge was not affected. The
results showed that the in-situ addition of coke oven gas to the AD of sewage sludge was

successfully achieved. However, the need to control the pH as the coke oven gas is added exists.

1.2.2.2 Temperature

The temperature impacts the gas-liquid mass transfer and the microorganism's interactions
(Paniagua et al., 2022). Strobel et al. (2020) state that methanogens grow and live in mesophilic,

thermophilic, hyperthermophilic, and even psychrophilic environments. The lowest and highest
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temperatures reported are 15 and 98°C, respectively. Studies in biological methanation from
CO indicate acetate as the primary precursor of methanogenesis at mesophilic conditions and
H; as the primary precursor at thermophilic conditions (Grimalt-Alemany et al., 2018).
Asimakopoulos et al. (2020) compared the performance of two continuous trickle bed reactors
operated at mesophilic and thermophilic conditions. In both reactors, a mixed microbial
consortium was used. The results revealed that the operation at thermophilic conditions
achieved higher CH4 productivities (8.49 mmol/L/h ) and higher conversion efficiencies
(H2/CO 89 and 73%, respectively) of H> and CO concerning the mesophilic conditions.
Nevertheless, Y. Li et al. (2020) showed that there were minor differences in the CH4 content

between both operations when a continuous reactor under same conditions was used.

1.2.2.3 Type of culture

Biological methanation can be performed in pure or mixed cultures. Pure cultures imply
operating the biological methanation process to conditions favoring its growth and process
performance, i.e., the optimal growth conditions for a selected microorganism with an adequate
metabolism. However, a mixed consortium rarely shares the same optimal growth conditions.
In recent years, the study of biological methanation has progressed from using pure cultures to
understanding carboxydotrophic microorganisms to some studies with mixed cultures for use
in the industrial sector (Grimalt-Alemany et al., 2018). Both types of cultures have been
investigated concerning biological methanation. Nevertheless, mixed cultures are more robust

and do not require sterile conditions (Rachbauer et al., 2017).

Most authors have used enriched mixed cultures to develop the biological process with different
objectives. Rachbauer et al. (2017) evaluated the effect of process parameters such as acetic
acid concentration on carbon conversion in a trickle bed reactor using an enrichment culture of
hydrogenotrophic methanogens adapted from sewage sludge. Grimalt-Alemany et al. (2020)
characterized the syngas conversion routes utilized by a mixed consortium enriched at
mesophilic and thermophilic conditions. Figueras et al. (2021) used a mixed consortium to
explore high-pressure effects on a continuous lab-scale pilot using a pressurized agitated

column operating at thermophilic conditions. Laguillaumie et al. (2022) performed ex-situ

58



Section 1. Anaerobic Digestion & Biological Methanation

biological H» and CO methanation with a mixed culture in a bubble column reactor (BCR)

operating at 55°C.

In those studies, overall findings were elucidated:

* The adaptation of hydrogenotrophic microorganisms is affected by the addition of
components such as acetate, resulting in a reduced carbon conversion (Rachbauer et al.,
2017)

= Mixed cultures are frequently used in the biological methanation process. They can
support operational changes due to the high microbial diversity and resilience to large
storage periods at different temperatures (Laguillaumie ef al., 2022)

= Carboxydotrophic microorganisms are considered to be more sensitive to CO than
methanogens (Figueras et al., 2021)

» The substrate competition between different microorganisms is driven by kinetic
competition and thermodynamic limitations. Additionally, the activity patterns differ
between mesophilic and thermophilic enriched consortia, where the latest could be more

suitable for industrial applications (Grimalt-Alemany et al., 2020)

1.2.2.4 Gas-liquid mass transfer

Gas-liquid mass transfer is the main limiting factor in biological methanation (Ngu et al., 2023;
Paniagua et al., 2022; Rusmanis et al., 2019). Andreides et al. (2022) studied mass transfer in
biological methanation using mechanical and pneumatic agitation. The authors performed an
experiment using a CSTR operated at 55°C with mechanical agitation (55 rpm). The syngas a
mixture of H> and CO (0.55/0.45) was added to the system at different flow rates in 5 periods,
3.15, 7.35, 10.5, 15.75, 15.75 L/d, for period 1 (36-51 days), period 2 (51-81 days), period 3
(81-118 days), period 4 (118-130 days), and period 5 (130-150 days), respectively
Nevertheless, the increase in the syngas flow rate from period 3 to 4 affected negatively the
process, reducing the conversion efficiency of H> and CO from 60.7+4.3 and 58.1+2.7 to
54.443.0 and 54.1+3.6%, respectively. They used pneumatic agitation to correct the negative
effect, in period 5 of the process., The internal gas mixing rate was set at 7 L/L/d and the gas
flow rate was maintained constant along of period 4. This permitted to achieved conversion

efficiency of H, and CO of 84.3+4.0 and 73.9+6.6%, respectively. The modification to
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pneumatic mixing instead of mechanical stirring mixing ensured the efficient gas-liquid mass
transfer rate, with an increase in the hydrogen and carbon monoxide conversion efficiency close

to 30%.

The pressure increase, through bubble size reduction, ensures a longer residence time and
improves the mass transfer of components such as Hz (Ullrich ef al., 2018). As mentioned in
Section 1.2.1.3, Figueras et al. (2021) used a pressurized 10 L CSTR operating at 55°C and 4
bars to explore high-pressure effects on a continuous lab-scale pilot. The reactor was made of
three Rushton turbines operated at 1000 rpm. Syngas was added with a flow rate of 7.5 NL/h.
It was composed by CO, H», and CO> with a ratio 0.4:0.4:0.2, respectively. The biological
methanation of syngas was successfully developed with a conversion of CO and Hz to 97 and

98%, respectively and values close to 6.8 mmol/L/h was achieved in CH4 productivity.

Recently, Ngu et al. (2023) explored the H> gas—liquid mass transfer of biological methanation.
The experiment used a 22 L bubble column with an initial liquid height of 1200 mm and
internal diameter of 150 mm operating at 55°C and atmospheric pressure. H> and CO> were fed
with a ratio of 4:1 to the column. The unreacted gas was recirculated with a flow rate of 2
NL/min to increase the H> conversion. Two types of gas sparger were tested, a 4-point porous
sparger (made of 4 small glass sintered diffusers) and a uniform porous plate (single porous
sintered diffuser occupying the bottom cross-section of the column). The results showed that a
uniform porous plate favored a more intense mass transfer, hence the biological methanation
process. At an inlet gas flow rate of 0.14 NL/min, a CH4 production rate of 90+2 and 77+3
mlL/L/h, with a CH4 content of 80+2 and 44+3% were obtained, using the porous plate and 4-
points sparger, respectively. Additionally, experimental results were compared with
simulations obtained with 1D and Computational Fluid Dynamics (CFD) hydrodynamic
models. Lower inlet gas flowrate leads to higher CH4 purity but with lower productivity, which
was consistent with the experimental results. Finally, the 1D model was used to analyze and
compare the effect of increasing the inlet gas flow rate and the inlet bubble diameter with the
experimental results. It was found that productivity increased when the inlet gas flow rate

increased. Nevertheless, it did not imply higher CH4 purity. Moreover, a decrease in the inlet
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bubble diameter leads to an increase in CH4 purity. It means that smaller bubbles offer a higher

interfacial area for mass transfer and higher mass transfer efficiency.

1.2.3 Process Configurations

As previously mentioned, the biological methanation process is commonly limited by the gas-
liquid mass transfer, especially the H> mass transfer (Jensen et al., 2018). The biological
methanation process has been studied on several reactor types to overcome this limitation. The

most common reactors are CSTR, trickling beds reactor, and BCR.

1.2.3.1 Stirred tank reactors

Stirred thank reactors are the typical reactors used to develop the biomethanation process. The
agitation mechanism guarantees the homogeneous mixing between the gas phase, components
in the liquid phase, microorganisms, and the correct temperature distribution over the system.
The volumetric mass transfer coefficient is affected by several factors in this type of reactor,
such as the geometry of the reactor, impeller configuration, agitation speed, and gas flow rate
(Paniagua et al., 2022). Mass transfer rate increases are often related to high agitation speeds
and high syngas flow rates, causing the break up of large bubbles into smaller ones (Diender et

al., 2018; Jensen et al., 2021; Jiang et al., 2022).

Luo and Angelidaki (2012) proposed increasing the agitation speed for upgrading biogas. The
experiments were developed in an ex-sifu operation to enrich the hydrogenotrophic
methanogens for two months. Two substrates were used: sewage sludge at 37°C and manure at
55°C with a syngas content of H»:CO» (4:1). Thermophilic conditions showed more efficiency
than the mesophilic condition, with a conversion rate of 320 mLCH4/gVS/h. Therefore, a
CSTR with a working volume of 600 mL was proposed to evaluate the effect of different
operating conditions. The CSTR was operated at 55°C with a volume of 600 mL in 5 stages,
stage I (0-10 days), stage II (11-43 days), stage I1I (44-73 days), stage IV (74-96 days), and
stage V (97-135 days), with syngas (H2, CHa4, and CO»: 0.6/0.25/0.15) additions of 3, 6, 12, 12
and 24 L/Lr/d, respectively. The agitation was kept constant at 500 rpm for the first 3 stages
and then at 800 rpm for the last two stages to increase the mass transfer rate. The authors

demonstrated the feasibility of ex-situ biological methanation and exploration in the gas-liquid
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mass transfer limitations. They produced biogas (95% CHa) with a decrease of 90% between
44-73 days due to the gas-liquid mass transfer limitations and CHs yields close to 0.23
LCH,/LH, over all the process.

Jensen et al. (2018) studied the development of mass transfer technologies for in-situ biological
methanation in a full-scale AD reactor (agitated at 19 rpm) by increasing the syngas flow rates.
The authors developed a full-scale venturi-type H> injector to upgrade the biogas. Seven
experiments were developed in a reactor with a volume of 1110 m3 operating at 52°C. They
used as substrate a mixture of manure, straw briquettes, grass, and maize silage that was added
to the system at different OLR. The volume of H> added to the system ranged from 3.4 to 33.5
m3, which were added using the venturi-type injector system at flow rates ranging from 20 to
65 m3/h. Six of the seven experiments used a recirculation of headspace gas (~100-120
m3/h ). It was found that H» consumption rates ranged between 0.03 and 0.25
L/m3/min during the increased addition of Ha. A value lower than 0.01 L/m3/min was
obtained in the system without recirculation, contrary to values between 0.02 to 0.07
L/m3 /min obtained with the recirculation. These results indicate that recirculation improved

overall H2 consumption.

1.2.3.2 Trickling bed filters

Trickling bed filters comprise a column packed with inert materials of high specific surface
area, on which biofilm is developed. The syngas is added through the reactor, and the liquid
phase is trickled and recycled over the packing material (Paniagua et al., 2022). This type of
reactor is more efficient in terms of the gas-liquid mass transfer due to the low gas and liquid
flow rates and higher contact surface area between the gas and liquid phase (Grimalt-Alemany

etal.,2018).

Asimakopoulos et al. (2020) used trickle bed reactors to explore the effect of mesophilic and
thermophilic conditions. They used a reactor consisting of a trickle bed column of borosilicate
glass with a total packed bed volume of 180 mL and a height/diameter ratio of 4.18. The packed
bed consisted of polypropylene/polyethylene packing material. The liquid and gas phase were

flowing as co-currents entering at the top and leaving at the bottom. The recirculation of the
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liquid phase was performed at a constant flow rate of 200 mL/min. As mentioned in Section
1.2.1.2., high temperatures achieved higher CH4 productivities (8.49 mmol/L/h) and higher
conversion efficiencies (H2/CO 89 and 73%, respectively) of H2 and CO concerning the
mesophilic conditions. Sieborg et al. (2020) used ex-situ trickle bed reactors for the biological
CO;> methanation with polyurethane foam as packing material and cattle manure. The reactor
was operated under different gas retention times at mesophilic conditions. The reactor consisted
of a trickle bed column of polyvinyl chloride pipe with a total length of 60 cm and an internal
diameter of 2.72 cm with a total packed bed volume of 291 mL and a height/diameter ratio of
8.4. The liquid and gas phase were flowing co-current entering at the top and leaving at the
bottom. A distributor plate was fitted at the top of the reactor to provide even distribution of the
liquid phase. The trickle filters performance in terms of outlet gas composition, conversion
efficiency, and the specific CH4 production capacity was investigated at five different values of
gas retention time (GRT), 4h, 3h, 2.25h, 1.75h, 1.32h for period 1 (0-16 days), period 2 (17-
25 days), period 3 (26-39 days), period 4 (40-51 days), and period 5 (51-60 days), respectively.
The best results were obtained with the shortest gas retention time (1.32h) under thermophilic
conditions. The specific CH4 productivity was 2.08+0.04 Nm3/m3/d and CH4 yield with
respect to CO2 and H> were 1.04 £0.09 mol;-ys/molcpz, and 0.18+0.01 mol-ys/moly,,

respectively.

1.2.3.3 Bubble column and gas-lift bioreactors

Bubble column and gas-lift reactors have been explored in biological methanation processes
due to their advantages, such as high gas-liquid interfacial, high volumetric mass transfer
coefficient, non-mechanical mixing, and relatively low cost of operation (Grimalt-Alemany et
al., 2018). In the research performed by Laguillaumie et al. (2022), a pilot-scale BCR with a
working volume of 20 L was operated for ex-situ biological methanation of H2:CO2 at 55°C
with a mixed microbial culture. The aim was to investigate the reactivity of the biological
methanation process in a dynamic operation mode, such as gas load variations and feed
intermittence. The authors found that CH4 production rates increased linearly with the loading

rate, indicating the system's non-limiting gas-liquid mass transfer capacity.
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Kougias et al. (2017) compared CSTR and BCR for ex-situ biogas upgrading. The gas and
liquid flow rates in both reactors were 3 L/L/d and 80 mL/d, respectively. The liquid and gas
HRT were 15 mL/d and 8 h, respectively. Two different gas recirculation rates were applied
to evaluate the gas-liquid mass transfer process; 4 L/h during the days 0—18 (Period I) and 12
L/h during the days 19-51 (Period II). The author concluded that the most efficient biological
methanation was performed in the BCR with a CH4 content of 76% and 97-98% for periods I
and II, respectively. Concerning the CSTR, a value close to 54% was achieved for both periods.
The poor conversion of the gas substrates in the CSTR was mainly due to the limited gas-liquid
mass transfer rate, which the increase of the agitation speed can improve. The increase in the

CHj4 content between the two periods highlighted the recirculation effect in the BCR.

Guiot et al. (2011) used a closed-loop gas lift reactor with a working liquid volume of 30L
using granular sludge and supplied with CO. The authors evaluated the production of methane
and other metabolites, at different gas dilutions, feeding, and recirculation rates. The reactor
temperature and pH were controlled at 35£2°C and 7.1+0.2, respectively. The experiment was
developed in 6 stages, where the CO loading rate ranged from 15.0 to 122 mmol/gVS/d, the
gas recirculation ratio from 4:1 to 20:1, and the partial pressure of CO between 0.42 and 0.96
atm, regarding the stage one: 1.744 mmol/gVS/d, 20:1, and 0.62 atm for CO loading rate,
gas recirculation ratio and CO partial pressure, respectively. The authors achieving a CO
conversion efficiency of 75% with a CH4 production of 2.92+0.09 mmol/gVS/d. However, in
Stage six: 122 mmol/gVS/d, 4:1, and 0.96 atm for CO loading rate, gas recirculation ratio,
and CO partial pressure, respectively. The CO conversion efficiency was reduced to 17%,
concluding that high gas recirculation can be more effective in improving the CO gas-liquid

mass transfer compared to higher CO partial pressures in a gas lift reactor.
1.3 Conclusions Anaerobic Digestion & Biological Methanation

The biological methanation process could be applied as a biogas upgrading technology after the
methanogenesis step in the AD. Its application and development are challenging given the
multiple factors to consider, which leads to questions such as what type of substrates? Which

strategy could be considered, in-situ or ex-situ? Which type of reactor configuration? What are
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the key phenomena affecting the process? All those questions need to be evaluated to obtain

optimal performance of biological methanation.

Several authors studied biological methanation to upgrade its performance in terms of yields
and productivities. Some of these researchers have focused on exploring the effect of various
factors. The flow rate of gases such as H, and CO could lead to an accumulation of VFA and
posterior inhibition of the biological methanation process (Ashraf ez al., 2020; C. Liet al., 2020;
W. Wang et al., 2013). Concerning temperature, the operation at mesophilic and thermophilic
conditions are widely used. Nevertheless, the latest could be more suitable for industrial
applications due to the thermodynamic limitations at mesophilic conditions (Grimalt-Alemany
etal., 2020). Mixed cultures are more robust and do not require sterile conditions (Laguillaumie
et al., 2022; Rachbauer et al., 2017). Increasing the agitation in CSTR, the pressure in a
pressurized agitated column, and the recirculation ratio in the gas lift reactor improves the mass
transfer in the biological methanation (Guiot et al., 2011; Figueras et al., 2021; Andreides et
al., 2022). The reactor configuration plays an essential role in biological methanation. For a
CSTR, mass transfer rate increases are often related to the increase in the agitation speed and
syngas flow rates, both contributing to the high gas-liquid interfacial area (Jensen et al., 2018;
Luo & Angelidaki, 2012; Ngu et al., 2023; Paniagua et al., 2022). The ex-situ BCR showed
better results than ex-situ CSTR reactors in terms of CH4 content; the poor conversion of the

gas substrates in the CSTR is limited by the gas-liquid mass transfer rate (Kougias et al., 2017).

Table 1.1.3 summarizes the characteristics of the biological methanation reported through the
literature used in this thesis, which allowed us to highlight some questions that will be addressed

in this thesis:

*  Which are the best conditions to carry out biological methanation in different types of
reactors such as CSTR or BCR and what is the effect of using different kinds of
substrates varying GLR and OLR?

*  Which are the optimal operating conditions to improve the yields and productivities of
biological methanation? Can we set them automatically?
= (Can the variations in the composition of the syngas be used to upgrade the biological

methanation and its effect on the mass transfer process?
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How does the on-line monitoring of products and substrates such as sugars, VFA, Ho,
and CH4 over time help to improve the biological methanation?

Can the characterization of microorganisms provide information on the biological
methanation process performance?
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Summary of Section 2

This section describes the evolution of AD models, from models describing a few
compounds and microorganisms, inhibition by VFA, free ammonium, or high H>
pressures, to the establishment of more structured models that served as a tool to
study the AD process in more detail. Some of these models have been used to model
biological methanation, considering the addition of gases such as H> and CO to the
system. The evolution of these models increased the number of parameters and their
effect on the model outputs. Finally, sensitivity analysis methods are presented to

study the importance of the parameters in the process.



Section 2. Model and Simulation

2.1 Anaerobic Digestion Models

Over the last decades, several studies have been focused on modeling and simulation of the AD
process. The complexity of these models has evolved according to the need to represent better

the various phenomena occurring in the bioprocess.

Andrews and Graef (1971) developed a model to simulate the liquid, gas, and biological phases
(Figure 1.2.1). Their model was capable of following the dynamic response of five variables,
volatile acids concentration, alkalinity, pH, gas flow rate, and gas composition. This model
included an inhibition function for volatile acids concentration in a specific growth rate for the
CH4 microorganisms, and it considered the non-ionized volatile acids and the growth-limiting
substrate. The model also considered the interactions between the liquid, gas, and biological

phases.

[ Insoluble Organics ]

kq Extracellular enzymes

[Soluble Organics]

ko Acid bacteria

A
Bacterial Cell VFA Other Products
CO;, + Hy

ks Methanogenic bacteria

CH, +CO,
Bacterial Cells

Figure 1.2.1. Anaerobic digestion model proposed by Andrews and Graef (1971).

The model simulated correctly batch and continuous conditions and these simulations permitted
to infer some relevant aspects without intervening in the real process, e.g., in batch operation.
Thanks to the model, it was possible to regulate pH by controlling the carbon dioxide content
of the recirculated gas used for mixing (Figure 1.2.2-A) in batch mode. On the other hand, it

was possible to determinate the cause of some faults (organic or hydraulic overloading)
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according to the type of response in the concentration of microorganisms in continuous

operation (Figure 1.2.2-B).
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Figure 1.2.2. Simulation results using the model proposed by Andrews and Graef (1971). (A)

batch operation, (B) continuous operation.

Hill and Barth (1977) proposed a model to describe the dynamic behaviors of components such

as volatile matter, soluble organic, volatile acids, acids bacteria (facultative heterotrophs), CHs

formers (obligate anaerobes), and CO; following the scheme in Figure 1.2.3. This model

considered the inhibition by an organic acid or high ammonia concentrations. The model

considered the inhibition by non-ionized acids and non-ionized ammonia on the growth kinetics

of the CH4 formers. The growth rates of kinetic acid bacteria considered only ionized acids

inhibition. The pH was calculated using the solution of the electroneutrality equation solution

coupled to the CO> mass balance.
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Figure 1.2.3. Anaerobic digestion model proposed by Hill and Barth (1977).

The authors compared the simulation results with experimental data on a lab scale (4.5 L) and

a pilot scale (3785 L). The lab scale operated at 25°C using raw poultry waste with an OLR

ranging between 400 and 3203 gVS/m3/d. In the pilot-scale raw swine waste was used as a

substrate. Figure 1.2.4. shows some results obtained.
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Figure 1.2.4. Simulation results using the model proposed by Hill and Barth (1977).
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Mosey (1983) proposed a more sophisticated model, including the complex patterns of volatile
acid production and the characterization of the H> utilizing microorganisms. The model is
summarized in Figure 1.2.5.

Organic Matter

Carbohydrates
Proteins

Acid bacteria H;

Acetate 2-  Pyruvate
‘-‘ ; 1
l‘/ H: g, i’/ H;

—~a

Butyrate Propionate
Butyric Acid Propionic Acid

5

l‘\ Hz l\, Hz

Acetate =~ «———  Acetate

Acetogenic bacteria

CH;COOH i
Acetoclastic methanogenic H utilising methane
bacteria bacteria
e.g. Methanosarcina barkeri e.g. Methanospirillum huntatei
CHy4 + CO, CH, + H,O

Figure 1.2.5. Anaerobic digestion model proposed by Mosey (1983).

The acid-forming bacteria transform glucose into acetic acid, propionic, and butyric acids,
explaining that acetic acid is preferred. The acetogenic bacteria transform propionic and butyric
acids into acetic acid. The acetoclastic bacteria convert acetic acid into a mixture of CO; and
CH4. The H-utilizing bacteria remove the H> from the system by generating CH4. Some
assumptions were considered for the development of this model: (i) The internal pH is

maintained neutral and constant, (i1) The H» in the gas phase is diffused freely and rapidly
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through the obligate anaerobic cells, which implies that the partial pressure inside the cells is
the same as the system, (ii1) The redox potential of the bacteria is the same as the potential of
the growth. Model simulations were compared with steady-state data for the AD of 2000 mg/L
of glucose for 20 days operating at 35°C and pH 7.0. Then, a dynamic simulation of a 1 L
digester working at 35°C with an HRT of 10 days was performed using synthetic wastewater
(2000 mg /L glucose for substrate and 150 mg/L ammonium hydroxide). At day 10, glucose
concentration was increased until 12000 mg/mL leading the digester close to failure due to the
accumulation of volatile acids in the digester (pH reduction from 6.5 to 5.5). The simulation
results described some of the common problems in the AD process, such as the accumulation
of VFA. The limitations of the model were the assumption of a neutral pH and the restriction

on the use of microorganisms that high H pressures can inhibit. Figure 1.2.6 presents some

results obtained.
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Figure 1.2.6. Simulation results using the model proposed by Mosey (1983).
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Angelidaki et al. (1993) proposed a model that includes more species in the chemical
equilibrium. In particular, the authors considered the role of ammonia, CO,, and VFA on pH.
They also implemented growth inhibition by these species for some bacteria. The model was
developed according to Figure 1.2.7, where the inhibition phenomena inside the AD are
represented as discontinuous lines. The following items summarize the idea of the developed

model:

* The substrate composition and VFA produced to determine the pH of the process

The pH and temperature affect the ionization degree of ammonia

» Free ammonia controls the rate of the methanogenic step

* Inhibition of the methanogenic step results in an acetate accumulation

= Acetate accumulation inhibits the acetogenic steps, generating propionate and butyrate
accumulation.

» VFA accumulation inhibits the hydrolysis step

» VFA accumulation lowers pH, which in turn causes a reduction in the free ammonia

inhibition
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Figure 1.2.7. Anaerobic digestion model proposed by Angelidaki et al. (1993).

The model was validated with experimental data. The experiment was performed in a CSTR

with cattle manure as a substrate, operating at 55°C and atmospheric pressure. The HRT was
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15 days. The ammonia levels at steady state were 2.5 g/L. The model successfully reproduced
the experiments, with a minor CH4 yield and content deviation. Once validated, the model was
used to simulate temperature disturbances changing from 55°C to 50°C. The results showed an
increase in AD performance at 50°C. This improved in the performance was based on the
decrease and stabilization of acetate and propionate, a decrease in butyrate concentrations, and

an increase in the CHy yield and content. Figure 1.2.8 presents some results obtained.
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Figure 1.2.8. Simulation results using the model proposed by Angelidaki et al. (1993).

Moletta (1986) developed a model considering a two-step process, transforming glucose into
acetate by acetogenic bacteria and acetate into CHs and CO; by methanogenic bacteria,
separating growth and metabolite production expressions. Kleinstreuer and Poweigha (1982)
used as a base the model proposed by Andrews and Graef (1971) to simulate the production of
CHj4 from biomass for two cultures. Mata-Alvarez (1987) presented a model to simulate a two-

phase system for the digestion of wastes with high solid content.
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However, in 1997, the International Water Association (IWA) Anaerobic Digestion Model Task
Group focused on proposing a generalized model for AD, the “Anaerobic Digestion Model No
1 (ADM1)”. This model is probably the most used, extended, and modified model to explore
the different applications of AD. ADM1 was based on experience acquired over the previous
years in modeling and simulating the AD process (Esposito et al., 2011). The ADM1 proposed
by Batstone et al. (2002) was a structured model with multiple steps describing biochemical

and physicochemical processes (Figure 1.2.9).
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Figure 1.2.9. Anaerobic digestion model proposed by Batstone et al. (2002). (1) acidogenesis

from sugars, (2) acidogenesis from amino acids, (3) acetogenesis from LCFA, (4) acetogenesis
from propionate, (5) acetogenesis from butyrate and valerate, (6) acetoclastic methanogenesis,

and (7) hydrogenotrophic methanogenesis.
The biochemical processes include:

» The degradation of organic matter into carbohydrates, proteins, and lipids;
» The hydrolysis of these substrates to monosaccharides (sugar), amino acids, and long-

chain fatty acids (LCFA);

&9



Section 2. Model and Simulation

* The acidogenesis from sugars and amino acids to VFA and Ha;
» The acetogenesis of LCFA and VFA to acetate

* The separation of methanogenesis steps from acetate and H2:CO»

The physicochemical processes refer to: (i) the ionic association/dissociation of components
such as propionate, butyrate, valerate, and bicarbonate, (ii) the gas-liquid mass transfer of

components generated during digestion as Ha, CO», and CHa.

The ADMI reports concentrations of most of the components in Chemical Oxygen Demand
(COD) per volume unit. COD is the amount of oxygen needed to degrade the organic matter
into COz and H2O (see Annex 1.1). As CO2 could not be expressed in COD, its concentration

is presented as mol per volume.

Batstone et al. (2002) presented Equations ( 1.2.1 )-( 1.2.3 ) to summarize the model.

dSiiq,i _ QinSini _ Siig,iout N z o1, (12.1)
it Vi Vie 4,
pror = k1acoz (Sugcoz = Kico2Pcoz,gas) (12.2)
pasBcoz = —Pa/prco; = Kazpncos (Swcos *Sur — Kacoz " Scoz) (1.23)

Equation ( 1.2.1 ) refers to the mass balances of each component in the liquid phase. The term
Y j=1-10PjV;j is the sum of the kinetic rates for process j multiplied by v; ;. Equation ( 1.2.2)
refers to transferring gas components to the gas headspace (the example presented was CO2)
where k;acop 1s the volumetric mass transfer coefficient, K ¢ is Henry’s law equilibrium
constant and pcop gqs 1S the COz gas-phase partial pressure. Equation ( 1.2.3 ) is the dynamic

rate equation used for acid-base reactions.

The model solution of the differential equations can generate stiffer problems and introduce
errors in the ADMI1. Therefore, Rosen and Jeppsson (2006) proposed the use of Hill functions

to model the process to avoid stiff problems.
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The ADMI1 has been widely accepted and validated by multiple authors. It has been used to
simulate the dynamic behavior of a pilot-scale for anaerobic two-stage digestion of sewage
sludge (Blumensaat and Keller, 2005), to simulate a full-scale anaerobic sludge digester
(Ersahin, 2018; Ozgun, 2019), or even to simulate the AD process of source-sorted organic
fractions of municipal solid wastes (Calise ef al., 2020). The ADMI1 has also been used as a
base of multiple models that intend to reduce their complexity (Hassam et al., 2015; Arzate et
al., 2017; Weinrich and Nelles, 2021). Other authors have used extensions of the ADMI1 to
consider the co-digestion of mixed substrates such as sewage sludge/municipal solid waste
(Esposito et al., 2011). Additionally, it has been used to predict interactions between
phosphorus, sulfur, and iron in plant-wide simulation (Flores-Alsina et al., 2016) and to study

the inhibition phenomena by ammonium concentrations (Bai et al., 2017; Li et al., 2019).

Other models used the ADM1 for plant layout, for instance, the Benchmark Simulation Model
number 1 (BSM1) (Henze et al., 1987) and number 2 (BSM2) (Alex et al., 2018). The BSM1
plant was designed considering five compartments of activated sludge reactor, two anoxic
tanks, and three aerobic tanks, combining nitrification with pre-denitrification in a
configuration typical for achieving biological nitrogen removal in full-scale plants. The BSM2
included BSM1 for the biological treatment of wastewater sludge and the implementation of

the ADM1 model for anaerobic digestion (Rosen and Jeppsson, 2006).
2.2 Biological Methanation Models

The ADMI1 has been successfully accepted as a general dynamic model to represent AD.
However, its application in biological methanation is limited, especially in the gas-liquid mass
transfer aspects and biochemical processes such as the transformation of CO (Sun et al., 2021).
Only a few researchers have worked on generating advances in modeling biological

methanation, whose works will be presented in the following paragraphs.

Grimalt-Alemany et al. (2020) proposed a model to simulate the biological methanation using
a mixed microbial consortium for the first time. The biological methanation of syngas was
carried out at mesophilic and thermophilic conditions intended to study possible control

strategies through the modulation of key operating parameters. The model used the structure of
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the ADMI for the concentration of components in liquid and gas phases, the growth of different
biomass groups, and other physicochemical processes such as acid dissociation and gas-liquid
mass transfer. The novelty of this model consisted in considering possible syntrophic pathways
to the hydrogenotrophic methanogens and homoacetogens without assuming a strictly
kinetically driven competition between them. They considered a thermodynamic consistency

with a potential factor.

Their experiments were developed in 100 mL flasks (batch reactors) operating at 37°C and
60°C with an average pH of 7.2 and agitation of 100 rpm. The syngas was added, ranging the
CO partial pressure from 0.2 to 0.8 atm, and fixed the partial pressure of H> and CO; at 1.0

and 0.2 atm, respectively.

The thermodynamic potential factor (Fr), factor was considered in the modeling of the biomass

growth u = f(Fr) as follows,

1 ( AGA_AGC) AG, > AG
Fp={" " OP\7T 7 T Rl = Abc (1.2.4)

0,AG, < AG.

where AG, refers to the negative Gibbs free energy change of each biochemical reaction,
AGc = YurpAG, is the free energy conserved through each metabolic pathway calculated by
multiplying the ATP yield with the Gibbs free energy of phosphorylation (AG,); and xR is a
parameter to weigh the contribution of AGy4 to the reaction and AG to the overall Fr. If AG, =
AG., then Fr = 0, which indicates that the thermodynamic drive for the reaction to proceed
forward disappears, and the metabolism stops. The results correctly simulate the process, the
specific growth of the various microorganisms, and CHs productivity over time, even when the

partial pressure of the CO varied in the system.

Sun et al. (2021) modified and extended the ADM1 to consider syngas addition (CO + H») from
lab and pilot scale experiments. The authors considered that CO could be uptaken in two steps.
In the first step, the CO is transformed into H, and CO: by the carboxydotrophic
hydrogenogens. In the second step, the CO is converted into acetate and CO; by
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carboxydotrophic acetogens (Figure 1.1.6 in Section 1). Then, the methanogens metabolize H»

and acetate to produce CHa.

The authors proposed to use the volumetric mass transfer coefficient (k;a) based on the two-

film theory, expressed as Equation ( 1.2.5).

1 m;

1/(—k +—k]) (1.25)
y x
kLa=T

where k), = D, /RTS8, (P/Pbm) and k, = D;/8, (Cm/Cbm) are the gas and liquid mass
transfer coefficient, respectively, with 1/k,, and1/k, being the gas and liquid mass transfer
resistance. P refers to the gas pressure and m; = Ej/P is the solubility coefficient. Ej is the
Henry constant, R is the Universal gas constant, T represents the temperature of the system, &,
and &; are the theoretical gas and liquid film thickness. D, and D, are the diffusion coefficients
of the gas and liquid phase, respectively. The terms (Cm/Cbm) and (P /Pbm) are the drift and
diffusion factors of the gas and liquid phases, with Cbm and Pbm as the logarithmic average

of the concentrations and pressure on both sides of the stationary fluid and gas layer.

The authors validated their model experimentally. The experiment at lab scale was developed
in a bubble column reactor (BCR) with a working volume of 37.5 L operating at 37°C for 207
days. The OLR was 0.5 g/L/d of glucose (HRT= 20 days). The syngas addition (H2/CO =
0.5/0.5) was performed at five stages ranging from 0.2 to 1.0 L/L/d. The results were used to
calibrate the model, with R? of 0.97, 0.86, and 0.87 for CHa, H>, and CO outlet gas flow rates,
respectively. The experiment in pilot scale was performed in a working volume of 6 m3
operating at 35°C with an OLR of 1 g/L/d of glucose (HRT= 20 days). The syngas flow rate
was 1.10 m3/d (H2/CO/CH4/COs: impurity 0.15/0.22/0.17/0.35/0.11). Model validations gave
a R? between 0.83-0.89, 0.78-0.84, and 0.61-0.73 for CHa4, H», and CO, respectively. The
inconvenient of this model is that it does not consider the modeling of CO,, an important
compound found in syngas mixtures which is also uptaken since the carbon from CO» is used
for methane while the O2 is combined with H» to produce water. Additionally, the modified
ADMI used a k;a based on the film theory, which generates a significant increase in the

parameters of the model where some of them must be estimated experimentally.
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Tsapekos et al. (2022) developed an unstructured kinetic model to study the influence of the
variables such as partial pressure of H;, CO,, and pH in the hydrogenotrophic,
homoacetogenesis, and acetoclastic pathways with an inoculum adapted and non-adapted to
H»/CO; as substrates. The main assumption of the model is that an increase in the overall
pressure could alter conversion efficiency and favors homoacetogens over methanogens. The
relevant aspect of the model lies in the thermodynamic aspect to study the competition between
homoacetogens and methanogens for H» conversion. The proposed model considers
hydrogenotrophic methanogens, acetogenic bacteria, and acetoclastic methanogens; the
concentration of CO> and acetate in the liquid phase, and H», CH4, and CO; in the gas phase.
The model was used to simulate four cases varying the pressure and pH of the system. Case 1:
1.0 atm and pH of 8.39, Case 2: 1.0 atm and pH of 7.0, Case 3: 0.2 atm and pH of 8.39, and
Case 4: 0.2 atm and pH of 7.00. These results were compared with the experimental data. The
best coefficients of determination R? > 0.94 were obtained in case 2 for CO,, Hz, and CH4 in

the gas phase and the acetate concentration in the liquid phase.

Santus et al. (2022) proposed an ex-situ biological methanation model based on a simplified
and modified version of the ADMI, just considering hydrogenotrophic methanogenesis. The
model is made of 8 differential equations, describing particular mass balances of H> and CH4
in the liquid phase, inorganic carbon and nitrogen, Hz, CH4, and COz in the gas phase. It is
completed by the definition of growth law for hydrogenotrophic methanogens. The equations
for the components in the gas phase were modified to consider the addition of H> and CO» to
the system. The model was used to simulate two data sets. The first was in an up-flow reactor
for ex-situ biological methanation operating at 55°C, and the other performed in a 380 L CSTR
with a 460 L of headspace with H> and CO; as a substrate maintaining a relation 4:1. The model

predicted the CH4 outlet flow rate of two different configurations successfully.
2.3 Sensitivity Analysis and Confidence Intervals

The previous research presented models to describe AD and biological methanation. These
models are constituted by several parameters, e.g., stoichiometric, biochemical, and
physiochemical, and each one brings a degree of uncertainty to the model. Consequently, it is

necessary to consider a Sensitivity Analysis (SA), which intends to determine how the
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uncertainty of the parameters influences the outputs (Saltelli et al., 2004; Damblin et al., 2013;
Sepulveda et al., 2013; Sohier et al., 2014; Tosin et al., 2020).

SA can be classified into two main types: local sensitivity analysis (LSA) and global sensitivity
analysis (GSA) (Morio, 2011; Ochoa ef al., 2016a). LSA analyses minor disturbances of the
model inputs or parameters near the nominal value one by one. This means one factor at a time
(OAT). In contrast, the other parameters are fixed at the corresponding nominal value (Zi,
2011). However, this technique does not study all the parameter space over output variables
and the interaction between these parameters (Saltelli et al., 2017). GSA was developed to
identify the contribution of each uncertainty input (or parameter) to the outputs (Feng et al.,
2019; Kucherenko et al., 2015; Zhang et al., 2015). The sensitivity addresses the exploration
of the entire range of variation of the model parameters (Kiparissides et al., 2008), using a
probability density function associated with each input parameter and repeated simulations of

the model (Iooss and Lemaitre, 2015; Ochoa et al., 2016a; Tosin et al., 2020).

2.3.1 Global Sensitivity Analysis Methods

GSA includes three groups: regression methods, screening methods, and variance-based
methods (Sepulveda et al., 2014; Tooss and Lemaitre, 2015). One of the most commonly used
GSA in bioprocess are the Morris and Sobol’ Methods (Ashraf and Abu-Reesh, 2022;
Kiparissides et al., 2009; Ochoa et al., 2016b, 2016a; Rapadamnaba ef al., 2021; Ruano et al.,
2011; Tosin et al., 2020).

2.3.1.1 Sobol’ Method

The Sobol method (Sobol’, 2001) is an interesting variance-based method in which the variance
of the model output can be decomposed into partial variances that represent the contribution of
the inputs over the overall uncertainty of the model output (Morio, 2011; Ochoa et al., 2016a;
Sepulveda et al., 2013; Sobol’, 2001; Tosin et al., 2020).

Consider a model defined by ¢ as,

Y = £(0) (1.2.6)
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where Y € R™ is the model output of interest, and @ € R" is an n-dimensional parameter
vector defined as 8 = (64,0,,...,0,) and characterized by a probability density function
(PDF).

The function §(0) can be decomposed into summands of different dimensions, Equation ( 1.2.7).
n
P=ft ) 5O+ Y 5(0,0)+H G a8 = Y &8 (127)
i=1 1<i<jsn uc{1..n}

where:

£ = E[Y] = f £(0) fo,(6))d0

£0) = EY16] ~ & = [ s@ [ [fao0da] -
i=1

&j(6:,6;) = E[Y|6:,6;] — & — &(6)) — €;(6;) = ff(e) l_[ [fBi,Bl-(giij)dGide] —& —&(6) —&(6;)
i=1

&, is the mean of the function, &;(0;) and &; j(Hi, Hj) are the expectation terms of increasing
order and the conditional expectations defined recursively, fg,(6;) and fgi,gj(gi, 9]-) are the
marginal PDF of 6; and the interaction 6;,; (i = 1,2, ...,n).. This decomposition is unique,

provided that the inputs are independent and the individual terms are square-integrable (Efron

and Stein 1981).

The so-called ANOVA decomposition could be obtained from Equation ( 1.2.7 ) as follows
(Sobol’, 2001),

n

V() = z v,(6,) + Z v, (6,6,) + - +Vy (6, ..,0,) = Z V(£(6) forucl,..n} (1.2.8)

i=1 1<i<j<n u

where V(Eu (Hu)) express the conditional variance for the subvector 8,,, containing the variables

whose indices are indicated by the subset u.
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The variance of the output can be decomposed into terms depending on the parameters and their
interactions. In order to normalize the variances, it is possible to define a variance-based
sensitivity index (S1) associated with the subset u, which is the ratio between the contribution
given by the interaction among the components of u for the model variance and the total

variance, Equation ( 1.2.9).

_ V(5a(6w) (1.2.9)
TV

Based on this, foru c {1,...n}, and u # 0,

n
251u = ZSIi + Z Slij+-+SI ,=1 (1.2.10)
u i=1

1<i<jsn

The term SI; is the first-order sensitivity index, which measures the fraction of the total output

variance explained by the parameter 6; alone as,

B v (%:(6))

| (12.11)
=y m

Similarly, SI;; is the second order-sensitivity index that measures the amount of variance

caused by the interaction between the parameters 6; and 6; as,

V(&6
(?/](E/)])) I<i<j<n (12.12)

SI ij =
It is possible to construct the S for all orders until the nt" order index SI; ,,, which represents
the contribution of the interactions between all the parameters in 8. The total Sobol’ indices are
used to measure the full contribution of the it" random parameter 6; for the total variance either

by its single effect or by its interaction with others:
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Il
!_k
3

SIT; = z SI, i

uc{i,..,n}
i€u

(1.2.13)

Equation ( 1.2.14 ) indicates that the total sensitivity index does not only include the marginal
contribution of ; to the variance of the output, but it also contains its cooperative contribution

with all the other inputs.

2.3.1.2 Morris Method

Morris method (Morris, 1991) is the most frequently used screening method to perform SA by
analyzing one-factor-at-a-time (OAT). This is generally used when the number of model
parameters is higher and the computation of the model simulations is expensive (Feng et al.,
2019; Sepulveda et al., 2014). This method provides qualitative sensitivity measures, ranking
the factors according to their importance. Nevertheless, it does not quantify the importance of
one factor concerning another (Saltelli ez al., 2004). The Morris method applied to parameter
sensitivity discretizes the space of each parameter and performs a given number of OAT

designs. These designs and variation directions are randomly chosen from the parameter space.
The repetition of these steps allows the estimation of elementary effects (EEl-j ) for each

parameter i, which represents the relative difference between the outputs and the j* parameter
disturbance (Feng et al., 2019; Iooss and Lemaitre, 2015; Morio, 2011; Morris, 1991; Saltelli
etal.,2007).

Consider a trajectory in the parameter space as,

0/t =0/ +eiN  j=1,..r (1.2.15)

where j = 1, ..., r corresponds to the number of repetititons and @ € R™ is an n-dimensional

parameter vector defined as 8 = (64, 0,, ..., 0,).
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The effect of parameter variation can be evaluated by estimating the difference between the
model output with the actual parameter Hl-j and the updated parameter Hl-j + e/ AJ over a given

increment AJ. e/ is a vector of zeros but with a unit as its j* component (canonical base). This

variation is referred as elementary effects, which can be calculated as follows,

(0] +ein)) — (o)) (1.2.16)
A

EE] =

where Hl.j is a sample of input 8 and E(Gij ) is the corresponding model output. A/ is a step
between two consecutive input space points of the trajectory. The term (911 +elA ) represents
anew sample by moving the i*" parameter input from Hl.j to Hij + AJ , with the respective model

output E(Hij + ejAj).

The index j of EE l] expresses the ratio of the change of the output Y when the i*" parameter Hl.j

is given a particular change A/. Then, EEij can measure the effect of Hl-j in a given scope of

output Y. The sensitivity measures are expressed in terms of means ., and standard deviations

aij are defined as Equations ( 1.2.17 ) and ( 1.2.18).

. Zj|EE| (12.19)
l r
: 2
i "1 (EE] — u}) (1.2.20)
% = r—1

where EEl] is the elementary effect of the i*" parameter obtained at the j* repetition. The
sensitivity measures yij and al.j are the mean of the absolute value and standard deviation of the
distribution of the elementary effects, respectively. u measures the influence of the it"
parameter on the output. al.j is a measure of non-linear and interaction effects of the i*"
parameter. A high value of y; indicates that the parameter Hij has a more important effect on

the output. A high value of aij indicates that the elementary effect of Hij varies significantly
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from one to another, which shows that the value of EE l] is strongly influenced by the selected

sample points.

2.3.2 Parameter Estimation and Confidence Regions

Parameter estimation is one of the most relevant aspects in the formulation and calibration of
models. The calibration must guarantee that the accuracy obtained by the parametric estimation

1s maintained, even when there is a slight variation in the parameters.

Parameter estimation is frequently calculated by minimizing a quadratic cost function that
compares the experimental data set with the results obtained by the model. Then, the confidence
intervals for these estimated parameters are computed via scalar functions of the Fisher
information matrix (FIM) (Rodriguez-Fernandez et al., 2005). However, the determination of
the FIM depends on the parameters’ values and the responses’ behavior (calculated with the
use of the partial derivatives dY /06 ), which makes difficult to perform the parameter
estimation especially when there are non-linear interactions between parameters (Rodriguez-

Fernandez et al., 2007).

2.3.2.1 Fisher Information Matrix

Consider again the model previously defined in Section 1.3.1.1 represented by &, Equation (

1.2.21).

Y =£(0) (1.2.18) (1.2.21)

where Y € R™ is the vector of model outputs, and @ € R" is an n-dimensional parameter
vector defined as @ = (64, 0,, ..., 6,). The parameter estimation is often conducted to minimize

a quadratic function as, Equation ( 1.2.22 ) (Dochain and Vanrolleghem, 2015).

N
J(0) = Z(Y(H) — ?)T W - (v(e) = 1) (1.2.22)
i=1
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where ¥ and Y (8) are the vectors of experimental measurements and model predictions at the
time t; (i=1 to N) respectively. W; is a square matrix with weighting coefficients. The expected
value of the objective function for a parameter set slightly different from the optimal one is

defined as:

N T
aY aY
E/(6 +86)) = 46" [Z <% (a-)) W, <% (a-))

i=1

N
80+ ) £ (CW) (12.23)
i=1

C; represents the measurement error covariance matrix (W; is typically chosen as C; and the
second term reduces to a scalar). dY /36 are the partial derivatives of each output concerning
each parameter, i.e., the output sensitivity functions, which quantify the dependence of the
model predictions on the parameter values. The term between brackets in Equation ( 1.2.23 ) is

the so-called Fisher Information Matrix (FIM):

oy \(ay
FIM = Z <% (ti)> w; <% (m) (1.2.24)
i=1

FIM equation expresses the information content of the experimental data (Rodriguez-
Fernandez et al., 2013) by ensuring that the fit of a parameter set slightly different from the best
parameter set is significantly worse. This matrix is the inverse of the parameter estimation error

covariance matrix (Cov) of the best linear unbiased estimator, Equation ( 1.2.25).

-1

N T
cov=rimi=( (Z_; (m)) W (Z—; (ti)) (1225)

i=1
The formulation of the FIM leads to the delimitation of confidence regions around the best
parameter estimates for different confidence levels. Once the Cov is calculated, approximate

standard errors (o) for the parameters can be formulated by evaluating the residual mean square

(s?), Equations ( 1.2.26 )-( 1.2.27).

a(0;) = s/Covy (1.2.26)

with
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2_JO (1.2.27)
N-p

The confidence intervals (CI) for each estimated parameter can be calculated as, Equation (

1.2.28).

Cl =0 £ty a(6)) (1.2.28)

with a confidence level specified as 100(1 — a) % and t-values obtained from the Student-

t distribution.

2.3.2.2 Global Sensitivity Information Matrix

Rodriguez-Fernandez et al. (2007) proposed a novel methodology for optimal experimental
design based on Sobol’ global sensitivity indices to increase the parameter’s precision. The idea
was to use the information proportioned by the GSA and construct the confidence intervals for
the estimated parameters. Similar to the FIM, the authors proposed the use of a matrix called

the Global Sensitivity Information Matrix (GSIM) based on the first-order SI;.

The GSIM is calculated as, Equation ( 1.2.29).

N
GSIM = Z[QT(tt) W Q)] (1.2.29)
t=1

where W, ™! is a weighting matrix usually chosen as the measurement error covariance matrix,

and Q(t;) is defined as, Equation ( 1.2.30).

SIH(ty) SI;(t) .. SLi(ty)
o) = | SE@) SE@) .. SI(e) (1.230)
SIM(E) SIPGE) . SITED
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In this case, SI);' (t;) measures the sensitivity of the state Y;,, concerning the parameter 6,, at the
time t,. Then the variance of each parameter 6; can be approximated by 62(6;) ~ GSIM;* and

used to evaluate the confidence intervals as presented in Equations ( 1.2.26 )-( 1.2.27).

2.4 Sensitivity Analysis Applications in AD and Biological

Methanation

There are at least fifteen investigations in the literature related to the LSA and twelve related to
GSA applied over models that represent the AD (Barahmand and Samarakoon, 2022). Most of
these researchers considered the ADM1 model complex due to the many parameters and
variables involved. They have opted to work with simplified versions to study some relevant

parameters in an easier manner.

Donoso-Bravo et al. (2013) used a GSA to determine the most sensitive parameters of a model
that describes AD. The model was made of five mass balances over acidogenic and
methanogenic microorganisms, acetate, CHs, and inorganic carbon. The Sobol’ GSA technique
was implemented to analyze the effect of 12 parameters over four outputs, biogas flow, pH,
glucose, and acetate. Despite being a simplified version of the AD process, the GSA found four
key parameters that affect the outputs of the process, the maximum specific growth rates of
both biomass and the stoichiometric coefficients for the substrates glucose and acetate. The
authors complemented the GSA by estimating these parameters using a Classical least-squares
estimator as a cost function and the covariance that can be obtained through the evaluation of
the FIM to determine the confidence intervals. Schroyen et al. (2018) performed a GSA over a
reduced version of the ADMI and assessed the biogas production of 7 substrates with different
lignin content. The SA was performed using Monte Carlo simulations and assuming a uniform
distribution. This model described the process in four steps. The insoluble organic matter is
hydrolyzed to volatile dissolved solids through first-order kinetics. The acidogenic bacteria
transform the volatile dissolved solids to VFA, which are then transformed by methanogenic
microorganisms into CHy following Monod kinetics. The authors found that the most sensitive

parameters were those related with the hydrolysis step.
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All these works provided advances in the identification of the most influential parameters of
AD and the estimation of parameters. However, finding any information concerning the SA and

parameter estimation has been scarce for biological methanation.

The model constructed by Grimalt-Alemany et al. (2020) for biomethanation was analyzed with
LSA to evaluate the model outputs sensitivity with the estimated parameter values. They
performed a parameter estimation, especially of the parameters related to the specific growth
rate of carboxydotrophic acetogens and hydrogenotrophic methanogens. Santus et al. (2022)
proposed an ex-situ biological methanation model based on a simplified and modified version
of the ADM1, just considering hydrogenotrophic methanogenesis. The authors performed a SA
to assess the most significant parameters via an individual parameter-based sensitivity analysis.
The analyzed parameters were the volumetric mass transfer coefficient of oxygen and all the
related with the hydrogenotrophic kinetics and stoichiometric. The analyzed outputs were the
H; transfer rate, CH4 production rate, and CH4 concentration in the gas phase. As conclusion
they found that CH4 concentration in gas phase was highly influenced by the maximum specific
uptake of hydrogenotrophic methanogens, the volumetric mass transfer coefficient of H», and

the half-saturation constant on dissolved Ho.
2.5 Conclusions of Modeling and Simulation

Several models for AD have been developed over the last decades, and several approaches were
consolidated during this time. The emergence of powerful computational machinery has
allowed the possibility to explore AD by mathematically complex models. The modeling of AD
started with models that represent the hydrolysis, acetogenesis, and methanogenesis, which was
focused on the production of volatile acids as a whole and the subsequent production of CH4
and COz (Andrews and Graef, 1971). Then, more sophisticated models were developed. Those
models permitted the characterization of primary volatile acids, such as propionate, valerate,
butyrate, and acetate, as well as the differentiation in the CH4 and CO; produced from acetate
(acetoclastic methanogens) and H» (hydrogenotrophic methanogens) (Batstone et al., 2002). In
this regard, the ADMI1 proposed by the IWA Anaerobic Digestion Model Task Group is
probably the most used model to simulate and predict AD. This model has been extended to

study ammonia inhibition (Bai et al., 2017; Li et al., 2019), the prediction of interactions
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between phosphorus, sulfur, and iron in plant-wide simulation (Flores-Alsina et al., 2016), and
for model reduction to explore a specific task desire for the researchers (Hassam et al., 2015;

Arzate et al., 2017; Weinrich and Nelles, 2021).

The application of ADMI1 in biological methanation is quite recent. Therefore, a few
investigations have intended to develop a model representing biological methanation. They
used well-known theories, such as the two-film theory, to calculate the different volumetric
mass transfer coefficients (Sun ef al., 2021) or to explore different reactor configurations for

biological methanation (Santus et al., 2022).

Another highlighted aspect is assessing the SA and parameter estimation considering
confidence intervals. Some researchers explored the GSA over models representing the AD,
which are frequently simplified versions of the ADM1 model (Donoso-Bravo et al., 2013;
Schroyen et al., 2018). Nevertheless, in biological methanation, GSA has not been explored

yet.

Unfortunately, these models present weaknesses concerning biological methanation, e.g.,
restrictions for the generalization of the model given its formulation for particular conditions,
the increased complexity of the model, or the incomplete representation of the most relevant

variables and phenomena in the biological methanation.
Based on this, some questions can be drawn:

» (Can a mathematical model of biological methanation accurately reproduce multiple
operational conditions with emphasis on different liquid OLR, syngas addition, and
varying GLR?

* How can the transformation of CO into acetate and H2 and their inhibitions be described

in a model for biological methanation?
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Summary of Section 3

This section introduces model-based control approaches, such as MPC, which has
worked adequately in bioprocess, and it has even been extended to optimize the
economic process performance rather than tracking to a set point. One of the
common needs of biological processes is the optimization of multiple variables
simultaneously, and those variables are commonly conflicting. Optimal solution
approaches such as Pareto optimal sets are presented as a strategy to find the trade-
offs between conflicting variables, such as yields, productivities, or others related to

the economic aspects of the process.
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3.1 Model-Based Control

The industry continues to have difficulties developing products based on biological processes,
particularly when trying to obtain these products from raw materials, which are wastes from
other processes. The implementation of biological processes can be expensive due to different
factors, for example, the cost of equipments and materials necessary to carry out the process.
Consequently, different model-based optimization techniques have been used to analyze and
improve them. However, this kind of optimization begins with experimentation (usually at a
laboratory scale) that enables an understanding of biological processes. Then, through modeling
and simulation, the strategy to optimize these biological processes is developed without the

need to continue with experimental development (Mitsos et al., 2018).

Biological processes are complex systems whose dynamics are governed by the non-linear
behavior of the microorganisms involved (Van Impe, 1996). The challenge in its development
is maintaining the best (frequently called “optimal”) environmental conditions for the proper
growth of the different microorganisms. Nevertheless, the characteristics of the bioprocesses
are time-varying, making them sensitive to disturbances, resulting in deviations from the

desired operating conditions.

The formulation of a model allows the development of monitoring, optimization, and control
techniques (Rathore et al., 2021). Bioprocess control focuses on maintaining an optimal
condition for microorganisms to grow, multiply, and generate the desired product (Alford,
2006). However, the complexity and non-linearity of the bioprocesses can make them difficult

to control (Doran, 2013).

The principles in biological processes are similar to chemical processes; the only difference is
the nature of the catalyst (bacteria, fungi, or enzymes). Indeed, control approaches used in

chemical processes can be applied to biological processes (Alford, 2006; Luo et al., 2021).

The most common closed-loop controller is the Proportional Integral Derivative (PID). In this
controller, the difference between the controlled variable and the set point (desired value) at

time t, is used to calculate the control action (Marlin, 1995). This control action is determined
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in proportion to the error, the integral of the error, and the derivative of the error concerning
time (Doran, 2013). PID is a controller that works well for processes with a linear behavior or
in a pseudo-linear region (Bastin and Dochain, 1990; Pind et al., 2003; Alford, 2006; Rathore
et al., 2021). However, it does not consider the future behavior of the process (predictions) on
the current control actions (Rossiter, 2017). The model-based control is an alternative since
they use a model as a basis. The most commonly used model-based controls are adaptive

control, optimal control, optimal adaptive control, and model predictive control.

3.1.1 Adaptive Control

The adaptive control used in biological processes is based on the fact that some kinetics are
unknown. Parametric estimation is implemented and confers the property of adapting itself to
variations in the kinetics. In other words, it can modify its behavior in response to changes in
the dynamics of the process and the character of the disturbances (Astrdom and Wittenmark,

2008).

There are two approaches used commonly in adaptive control. One is the self-tuning regulator
model adaptive control, commonly known as indirect adaptive control, which first recursively
identifies the unknown model parameters and then uses these estimates to update the controller
parameters through some fixed transformation. Another approach is the reference adaptive
control or direct adaptive control, which updates the controller parameters directly from the

measurements of the prediction error (Sastry and Bodson, 1989).

Adaptive control presents some disadvantages. The determination of an optimal strategy varied
and rich in information is necessary to guarantee that the model parameters can be identified.
In other words, it is necessary to know the maximum prior knowledge concerning the process
in advance. The difficulty in tuning the controller parameters and sensitivity to system
variability make the adaptive control susceptible to adapt inappropriately (Sastry and Bodson,

1989; Van Impe, 1996).

Adaptive control has been applied in AD processes. In Renard et al. (1988), an adaptive control
was used to regulate the substrate in the output at reference values, despite fluctuations of the

input concentration by acting in the HRT. The model considered a simplified AD process,

113



Section 3. Bioprocess Control and Optimization

including the net accumulation of biomass, substrate, and CHs gas production rate. The control
strategy was evaluated in a 60 L CSTR mechanically agitated, operating at 35°C. As substrate
was used spent liquor from citric acid fermentation (50% volatile solids), which was
recirculated with a flow rate of 10 L/h. Petre et al. (2013) used an adaptive control for AD in
wastewater treatment. The authors proposed a dynamic model representing the substrates,
glucose, acetate, CO>, CHy, and the acidogenic and acetoclastic methanogens involved in AD.
The design of the controller was performed considering that: (i) biomass dynamic is not
available, (i1) the specific reaction rates are complety unknown, (iii) the on-line measurements
are the inlet and outlet glucose concentrations, and (iv) model output are glucose and acetate.
In other words, the control problem of output pollution level using an appropriate control input.
A comprehensive review of adaptive control strategies is presented by Pind et al. (2003) where
different objectives were studied, e.g., regulation at a particular reference point or optimization

of process performance.

3.1.2 Optimal Control

The Optimal Control approach aims at optimizing a reference trajectory (Bryson and Ho, 1975;
Sastry and Bodson, 1989).

Consider the following objective function, generated from the dynamic system &, Equation (

1.3.1).

tr
J =0 (s ulty).t)) + f L(Y (), u(ty), tr) dt (1.3.1)
to
where ¢ is the cost function that evaluates the final state of the system (terminal cost), L is the
instantaneous cost function that measures the performance at each instant time t. The second
term represents the integral of the instantaneous cost function over time (the sum of the

instantaneous cost functions over time).

Optimal control is formulated as the optimization problem of Equation ( 1.3.2 ), subject to the

constraints in Equation ( 1.3.3).
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minjJ (1.3.2)
u(t)

dY

S ={ruen te [0, ¢]

Subjectto { 4;(Y, u,0,t) <0 i=12,..,m (13.3)
l/)i(Y, u, 9) t) = O i = 1,2, ey nw

ut <u<u?

where Y corresponds to the states variables, 4;(Y) and 1;(Y) are the n, inequality and n

equality constraints, respectively. u%, uY correspond to the lower and upper bounds for the

manipulated inputs u.

Optimization techniques such as the principle of Pontryagin or the Bellman method are used to

solve this problem (Bertsekas, 2007; Zabczyk, 2008).

Both control strategies present some limitations. Optimal control could fail due to modeling
uncertainties, while adaptive control requires complete knowledge of the kinetic functions
(Bastin and Van Impe, 1995; Lewis ef al., 2012b; Vrabie et al., 2013) and it does not guarantee
the optimality of the results (Lewis et al., 2012a; T. Nguyen, 2014; Van Impe and Bastin, 1995).

3.1.3 Optimal Adaptive Control

The optimal adaptive control arises from the need to integrate the best of optimal and adaptive

controllers (Van Impe and Bastin, 1995).

Smets et al. (2004) proposed an optimal adaptive control approach for biological processes.
Their methodology was derived in three steps. In step 1, the process model was assumed to be
well-known. Then, an optimal control solution for a given optimization problem was computed.
In step 2, a nearly optimal heuristic controller was constructed based on analyzing the optimal
control from biological and mathematical perspectives. To do this, the process variables that
characterize optimal control solutions were selected and the reference trajectory was
constructed for the characteristic process variable as a function of time. In the last step, the
heuristic model controller was incorporated inside a linearized controller, and the adaptive

estimation of the states and parameters was performed on-line.
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This approach was used to design a substrate feeding rate controller of a fed-batch reactor.
Three implementations were tested to optimize a penicillin G fed-batch fermentation process,
depending on which variables are available for on-line measurements, (i) substrate and biomass
concentration in the reactor, (ii) only substrate concentration, and (iii) carbon dioxide evolution

rate (Van Impe and Bastin, 1995).

3.1.4 Model Predictive Control

Model Predictive Control (MPC) is the type of controller where the control actions are based
on the optimization of a criterion (Camacho and Bordons, 2007). This criterion is associated

with the future behavior of the system, predicted by a dynamic model (Rossiter, 2017).

The MPC implementation follows several steps (Camacho and Bordons, 2007). Step 1. The
process model predicts the future outputs for a certain horizon N (prediction horizon) at each
instant t. These predicted outputs {Y (t + k|t) k = 1...N } depend on the known values up to
instant t and on the future control signal {u = (t + k|t) k =0, ..., N — 1}. Step 2. The set of
future control signals is calculated by minimizing a criterion (cost function) to maintain the
process near the reference trajectory {r(t + k|t) k =1..N }. Step 3. The control signal
u(t | t) is given to the process while the subsequent control signals computed are rejected
because Y(t + 1) is already known. Finally, step 1 is repeated, and the system is updated. The
MPC strategy is represented in Figure 1.3.1.

The use of MPC considers 4 crucial elements: The prediction model (dY /dt) to describe de
behavior of the system, the cost function (J) which indicates the optimization criterium, the
constraints (1;,y;, ut,uY) to bound the evolution of the system, and the optimization method

to minimize the cost function.
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Figure 1.3.1. Model Predictive Control Strategy. Adapted from (Garcia et al., 1989).

If it is assumed that the objective function generated from the dynamic system (§), could be

represented by Equation ( 1.3.4).

J = @(EY (t),u(t),t)) (1.3.4)

Thus the optimization problem for the MPC is formulated as, Equation ( 1.3.5 ), subject to the

constraints in Equation ( 1.3.6).

inl = mi 1.3.5
min] = min (§(Y(6), u(t), ) (1.3.5)

( d—Yzf(Yuet) t €[0,¢]
dt St '
Subjectto Ai(Y, u,G,t)SO i=12,..,n (136)
(Y, u,0,t) =0 i=12,..,ny
ul <u<uV

MPC has been widely applied for bioprocess optimization (Rathore et al., 2021), e.g., to control
full-scale biogas production according to the demand (Mauky et al., 2016), to adjust glucose
and lactose feed in a fed-batch reactor producing a green fluorescent protein with E.coli
(Ulonska et al., 2018), to control variables in the AD such as CHs production rate, using

manipulated variables such as glucose flow rate (Ahmed and Rodriguez, 2020). It has also been
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applied in the pharmaceutical industry to control the excessive lactate production in a fed-batch

reactor to cultivate Chinese hamster ovary cells (Schmitt et al., 2019).

There are some advantages of using MPC (Garcia et al., 1989; Yamashita et al., 2016; Rossiter,
2017):

» The incorporation of an explicit model for the process calculations. This means the
consideration of the dynamic characteristics of the process

= [tis possible to know the effect that the disturbances caused on the process

* The possibility of incorporating constraints on the system (physical limitations of the
processes)

= High acceptance at the industrial level

However, the MPC feasibility could be affected by its strong dependence on the model, making
it less effective when the system dynamics are not accurately captured or when unexpected
disturbances arise that are not accounted in the process model (Chinea-Herranz & Rodriguez,

2012; Schwenzer et al., 2021).

3.1.5 Economic Model Predictive Control

The current challenge of MPC is the integration of dynamic market-driven operations, including
more efficient and agile operations (Ellis ef al., 2017). The solution is to consider the economic
objective (concerned management, scheduling, or involving the multivariable loop controls)
directly in the cost function of the control system and to redefine the MPC towards a new
approach known as Economic Model Predictive Control (EMPC). The EMPC controller is
developed to optimize the economic process performance rather than tracking a set point

(Rawlings et al., 2012; Zhang et al., 2014).

The tracking cost function usually uses a quadratic cost that penalizes the deviation of state and
inputs from the corresponding reference trajectory. Nonetheless, the EMPC cost function could

use any general stage cost that reflects the process/system economics (Ellis ez al., 2017).
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Commonly, tracking MPC optimization problems takes the following general form (Limon e?

al., 2014);

Optimize: Tracking cost function (constant or changing set-points)
Subject to:

= Dynamic model initialized with state measurement/estimate
= State/input constraints
= Stability constraints

However, the EMPC optimization problem takes the following general form (Limon et al.,
2014):

Optimize: Economic cost function
Subject to:

= Dynamic model initialized with state measurement/estimate
= State/input constraints

= Economic-oriented constraints

= Stability constraints

The paradigm between an MPC and EMPC relies on the operation of the processes. A MPC
aims to maintain a feasible steady state, although the steady state is not necessarily the best
economic operation. Moreover, EMPC aims to determine the optimal operating strategy based
on the economic aspects respecting operational constraints. These economic aspects could be
real-time energy, substrates pricing, or time-varying disturbances (Rawlings et al., 2012; Ellis

etal.,2017).

Let us consider the following objective function generated from the dynamic system (&),

Equation ( 1.3.7).

J = ;- @1 (EY (), u(®), 1) + wy - 9o (u(t)) (13.7)

The optimization problem for the EMPC is formulated as Equation ( 1.3.8 ), subject to the

constraints in Equation ( 1.3.9).

Zl(lt’)l] = (01 91X @), u(®), 1)) + w2 " @2 (u(t))) (1.3.8)
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( d—Y=§(Yu9t) t €[0,t]
dt B o
Subject to { Ai(Y(¢), u(t),6,t) <0 i=12,..,m (1.39)
Pi(Y (), u(®),6,0)=0 i=12,..,ny
ul <u(t) <u?

The first term w1 - (pl(f (Y (t),u(t), t)) represents the process performance criterium. The
second term w, - @, (u(t)) holds for the economic performance criterium, where ¢, (u(t)) is
the cost related to the control inputs u(t). w; and w, represent the relative weighting between
the process and economic performance criteria and the relative weighting between the cost of

the control inputs and economic performance criteria.

EMPC has been applied in different areas: optimization of the production of liquid oxygen and
nitrogen from an air separation process with an integrated liquefication cycle and liquid assist
operation (Caspari et al., 2019), in drinking water networks (Limon et al., 2014), in thermal
energy storage (Touretzky and Baldea, 2014), in chemical processes (Santander et al., 2016),
in the aeration systems of a full-scale wastewater treatment plant (Nejjari et al., 2017). In this
paper, Nejjari and co-workers developed an EMPC strategy to control the dissolved oxygen
concentrations in an aerated reactor of a wastewater treatment plant while optimizing the
effluent quality and operating cost. The activated sludge models (ASM) and the Benchmark
Simulation Model number 1 (BSM1) were used as dynamic models to represent the plant. The
performance of the objective function considered the tracking term (Jirqcx), the output water

quality term (]qual), the smooth set-points for equipment conservation (Js,,), and the

economic cost (J..,), Equation ( 1.3.10).

Hp-1 Hp Hp Hp-1
J= Z Jeco () + k=1]track(t) + kzquual(t) + z o Jsmo (1) (1.3.10)

k=0

where /.., (t) was calculated using Equation ( 1.3.11).

Jeco(t) = VVe(w1 ~u(t) + w,(t) - u(t)) (1.3.11)
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herein, w; corresponds to a known vector related to the economic costs of the water treatment,
w, (t) holds to a vector associated with the economic cost of the flow through certain actuators
(pumps only) and their control cost (pumping), in this case w,(t) was time-varying due to
pumping effort having different values according to the time of the day (electricity costs). W,
refers to the weight matrix that expresses the relative priority of one objective concerning the

others.

The use of EMPC presents advantages such as improvements in economic performance by
integrating the process operation tasks of scheduling and the possibility of using it as a decision-
making tool between control objectives and economic aspects (Angeli, 2013; Limon et al.,
2014). However, the EMPC also presents disadvantages relate to the MPC, such as dependency

on the model accuracy (Caspari et al., 2019).
According to Ellis et al. (2017), there are three challenges in working with EMPC:

* To establish correctly a mathematic representation of the economic terms for the process
in the construction of the cost function, the process model, and the constraints

» To guarantee through the formulation of an EMPC control theory, the essential control
properties, such as closed-loop stability

* To develop the numerical computational algorithms that will allow the application of

the desired control actions in real-time operation
3.2 Dynamic & Multi-Objective Optimization

Dynamic optimizations have been applied successfully over biological processes. However,
optimal decisions must be made to find trade-offs between two or more conflicting variables.
Multi-objective Optimization (MOO) is a research field of multiple-criteria decision-making
that involves the optimization of more than one objective simultaneously (Chang, 2015).
Commonly, the m objective functions (J,,,(Y)) are conflicting, and the number of solutions

(trade-offs) might be infinite.
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In biological process optimization, the solution could be of two types, local or global. Local
solutions strongly depend on the initial value used for the optimization, while global solutions

are computationally more expensive but provide a global solution to the process.

A MOO can be mathematically stated as in (Sawaragi et al., 1985; Ahmadi et al., 2016),
Equation ( 1.3.12 ) subject to the constraints in Equation ( 1.3.13).

min {/; (Y, u,8), ..., Jn(Y,u,0)} (1.3.12)
Y, u,0,t

dy
= uon  te [0, ¢¢]

Subject to { Li(Y,u,6,t) <0 i=12,..,m (1.3.13)
PV, u,60,6)=0 i=12,.,ny

ul <u) <uv

where /;, ..., J;, are the m objective functions to minimize, Y are the state variables (ODE
system), A; and v; indicate inequality and equality constraints on the states variables, u are the
control variables, 8 are the parameters, uand u¥ correspond to the lower and upper bounds of

the control variable.

Two approaches have been used to solve multi-objective optimization problems. The first
method consists of weighting the objectives and then optimizing the weighted sum. However,
the weights need to be predefined, and this choice could be ambiguous. The second approach
consists of finding a set of optimal solutions (via Pareto fronts), including the trade-off between
objectives (Coello Coello, 1999; Logist ef al., 2010; Bortz et al., 2014; Mitsos et al., 2018).
Each solution is considered a Pareto Optimal Point (POP) if it is not dominated by any other
solution in the solution space; all these solutions are the well-known Pareto optimal set (POS),
also called the Pareto front (see Figure 1.3.2) (Bortz et al., 2014). A solution is called non-
dominated if none of the objective functions can be improved without degrading some other

objective functions (Konak et al., 2006; Dupont et al., 2008; Ahmadi et al., 2016).
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Pareto Optimal Set Trade-offs

It Ju(Y), Ix(Y)
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Figure 1.3.2. Pareto Optimal Set for two objective functions /; (Y) and J,(Y). Black continuous
line (-) correspond to the Pareto Optimal Set. The colored squares (I, B, ) correspond to
three different Pareto Optimal Points, representing the trade-offs between the two objective

functions.

The algorithms for determining Pareto-optimal solutions can be classified into deterministic
and stochastic. Deterministic algorithms are based on Scalarization techniques. These are time-
efficient and yield accurate results for the optima; however, they usually find only the local
optimum related to the starting point. Some examples are the Weighted Sum Approach, Goal
Programming, Goal Attainment, and e-Constraint Method. Stochastic algorithms, also known
as Evolutionary Algorithms, try to find the global optimum by sampling large areas of the
objective space. This means that more points are evaluated at a time, which lead to time-
consuming and less accurate procedures. Some examples are Multiple Objective Genetic
Algorithms, Non-Dominated Sorting Genetic Algorithms, Niched Pareto Genetic Algorithms,
and Multi-objective Particle Swarm Optimization (Kennedy and Eberhart, 1995; Coello Coello,
1999; Bortz et al., 2014; Reyes-Sierra and Coello, 2006; Mitsos et al., 2018).

3.3 Conclusions Bioprocess Control and Optimization

There are several model-based control approaches with satisfactory results at the industrial
level. However, the MPC becomes at replacing the PID controllers successfully at the
laboratory and industrial levels (Ahmed and Rodriguez, 2020; Mauky et al., 2016; Schmitt et
al., 2019; Ulonska et al., 2018). The main advantages of MPC are the consideration of the
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dynamic characteristics of the process, the possibility of knowing the effect of the disturbances
caused on the process, and the incorporation of the physical limitations of the processes (Garcia
et al., 1989; Yamashita et al., 2016; Rossiter, 2017). Other control process approaches combine
some of the presented controllers, e.g., Jabarivelisdeh et al. (2020) presented an adaptive MPC
control to consider the biological variability using model-based flux balance analysis to

maximize ethanol production.

Another aspect to highlight in this section is the extension of MPC to the approach EMPC as
intended to integrate the dynamic market-driven operations (Ellis et al., 2017) by considering
economic objectives that reflect the process/system economics (Zhang et al., 2014).
Nevertheless, applying model-based controls and approaches such as EMPC on biological

methanation remains unexplored.

In the literature, only control strategies for biological methanation that have been reported
implemented PI controllers. Bensmann et al. (2014) implemented two simple Proportional
Integral (PI) controllers to limit the hydrogen added to the system to supply the demands of the
product gas. The control strategy aims to detect the transfer limit by the accumulation of H> in
the gas phase and the biological limit by depletion of CO». The controller uses the measure of
the molar fractions of H2 and CO: in the systems. If those variables are close to the limits (i.e.,
the maximum and minimum feasible molar fractions of H, and CO», respectively), the H> flow
rate is manipulated. The PI control was tested over three different qualitative cases regarding
the violation of the biological limit (case I), the transfer limit (case III), or both (case II), all
with satisfactory results in avoiding the accumulation of Hz in the system. Nevertheless, if the
case is to improve the process performance (optimize), it is necessary to consider more

advanced techniques such as model-based controls.

This section permits us to elucidate some relevant questions that need to be considered in this

thesis, especially related to biological methanation:

* How to implement a computationally feasible model-based control strategy for
biological methanation?

» (Can the multi-objective optimization approaches improve biological methanation?

124



Section 3. Bioprocess Control and Optimization

» Could the multi-objective optimizations consider several objectives, such as the yields,

the productivities, and other variables in economic terms (e.g., substrates prices)?
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Summary of Section 4

This section briefly introduces data-driven soft sensors as a valuable tool for
monitoring, control, and optimization tasks in biological processes. Our attention is
specially focused on soft sensors based on machine learning algorithms to process
monitoring and fault detection. This section aims to present several supervised
machine learning algorithms with particular detail on the Support Vector Machine
(SVM) used in this thesis to process fault detection and classification. We aim to
highlight that data-driven soft sensors have been widely applied to biological
processes such as AD. However, from our knowledge, we have not found an

application for biological methanation.
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At the industrial level, physical sensors have been applied for monitoring, control, and
optimization tasks. These sensors have allowed the acquisition of valuable information in the
process. Regardless of the type of process to be developed, several types of sensors (e.g.,
temperature, pH, pressure, and flow rates sensors (Kazemi et al., 2020b) will always be
necessary to correct processes during monitoring. Physical sensors have limitations, such as
high purchase, installation, and maintenance costs. For example, if the maintenance is not
performed periodically, the sensor could fault due to the constant exposition to extreme
conditions inside the reactor (Doraiswami and Cheded, 2014). In recent years, soft sensors

have become an alternative to the monitory process in modern industry (Yan et al., 2021).

Soft sensors are mathematical models that estimate a hard-to-measure property using relatively
easy measurements (Kazemi et al., 2021; Sharma and Tambe, 2014; Zhu et al., 2020). In our
context, soft sensors are related with two words, “software” since the models are computer
programs and ‘“sensor” because these models provide similar information to the physical

sensors (Kadlec et al., 2009; Zhu et al., 2020).

According to Fortuna et al. (2007) and Jiang et al. (2021), the use of soft sensors presents

several advantages:

= Soft sensors are low-cost alternatives to hardware devices (physical sensors)

» They are not subject to physical constraints such as space installation and extreme
working conditions

= This type of sensor can be implemented on existing hardware (embedded systems)

= Soft and physical sensors work in parallel, which allows them to obtain valuable
information for fault detection tasks

= [t allows the real-time estimation of data, improving the performance of the control

strategies

Soft sensors can be classified in three standard classes: model-driven soft sensors, data-driven

soft sensors, and hybrid soft sensors (Kadlec and Gabrys, 2009; Yan ef al., 2021).

Model-driven soft sensors (white-box models) can be subdivided into first principle models,

Kalman filters, and adaptative observers. Model-driven soft sensors are based on the knowledge
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of process phenomenology, i.e., the use of mass and energy balances and constitutive physical-
chemical equations to describe reaction kinetics and mass transfer in the process (Fortuna et al.,
2007). One of the limitations of this approach is that it might require an in-depth knowledge of
the process. Data-driven soft sensors (black-box models) used the recorded, stored, and
provided historical data of the process, describing the real process conditions and empirical
observations. These models are considered more realistic than model-driven since they exploit
real process information (Gopakumar et al., 2018). Hybrid soft sensors (grey-box models)
combine model-driven and data-driven soft sensors. Figure 1.4.1 summarizes the type of soft

sensors and their applications (Kazemi et al., 2020b; Wade, 2020).

Model-driven
soft sensors

Data-driven
soft sensors

{ ]

I

I

I

I

I

|

I
: | § T T )
|| First principle Kalman Adaptive ’u

I

Iy

I

I

I

I

I

I

I

I

I

I

I

Principal Regression . Machine
. Fuzzy logic .
component analysis models learning
i

model filters observes

-Decision tree

-Random forest
-k-nearest neighbors
-Neural networks
-Support vector machine

White box Black box
models | 0 a models

Hybrid soft
sensors

[ 1 |

Model based- Extended kalman
neural networks filters

Soft sensor
application

{ { !
On-line Process monitoring

predictions Bensess fauls and process fault

Figure 1.4.1. Soft sensor categories adapted from (Kadlec et al., 2009; Kadlec and Gabrys,
2009; Jiang et al., 2021).
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Soft sensors present three main applications in the industry: on-line predictions, process
monitoring, and process and sensor fault detection (Kadlec et al., 2009; Sharma and Tambe,
2014). Soft sensors have been developed to estimate variables that cannot be measured directly
through automated systems, e.g., temperature, pH, or flow rates can be measured on-line. In
contrast, some variables, such as concentrations, in particular cell concentrations, require off-
line quantification using complex methodologies, and these concentrations are frequently
related to process performance, yields or productivity. Sensor fault detection is another area
explored with soft sensors. Many sensors could have faults during measurements of some
critical variables. Soft sensors can double-check the system behavior and detect these faults
(Fortuna et al., 2007; Kadlec et al., 2009). Another application of soft sensors is process
monitoring and process fault detection. It is important to highlight that sensor and process fault
detection are two different applications. In the framework of this thesis, we mainly work with
process fault detection. These soft sensors can be trained to describe the expected process
performance or to recognize possible fault detection, i.e., deviations from the target trajectory

(Kadlec et al., 2011; Kazemi et al., 2021).

Nowadays, the most popular data-driven techniques are the principle component analysis,
regression models, fuzzy logic, and techniques from machine learning theory such as neural
networks and support vector machines (Kadlec and Gabrys, 2009; Gopakumar et al., 2018;
Brunner ef al., 2021). Support vector machine (SVM) has gained acceptance in constructing
data-driven soft sensors (Sbarbaro and del Villar, 2010; Sharma and Tambe, 2014) due to the
theoretical background in the statistical learning theory, the simplicity in implementation, the
capacity to work with high-dimensional and small datasets, and efficiency in avoiding the local

minima and overlapping classes (overfitting) (Kadlec ef al., 2011; Yan et al., 2021).

This thesis focuses on using data-driven soft sensors based on machine learning techniques with
particular attention to support vector machines. Therefore, the following subsections present a
definition of machine learning algorithms, their categories, a detailed explanation of support

vector machines, and a brief explanation of other algorithms used in this work.
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4.1 Machine Learning Algorithms Development

Machine learning involves designing algorithms that automatically detect and extract recurring
patterns in a dataset (Deisenroth et al., 2020; Muller and Guido, 2016) that can be numerical,
textual, or visual (Yuxi (Hayden) Liu, 2020). Detecting these patterns leads the algorithms to

learn, improve their accuracy, and make predictions on new input data.

There are four main aspects to consider in machine learning algorithms, as presented in Figure

1.4.2: dataset, model, training, and validation.

3. Model Identification

ML Model

Training Data

WA=

A
XK
X

1. Data Collection 2. Variables and
and Filtering Model Str.ucture
Selection New Data (Test Data)
4. Model
Validation

Figure 1.4.2. Steps in the development of Machine Learning algorithms. Illustration adapted

from the webpage Techvidvan, June 2023.

Data collection and filtering imply the selection and preparation of the training dataset. The
dataset must be carefully prepared, organized, and cleaned. Otherwise, the training of the
machine learning model may be biased, and the results of the future predictions will be directly

affected.

Variables and model structure selection entail the selection of the algorithm for training the
model. The type of algorithm used depends on the nature, volume of training data, and the

problem to be solved.
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Model identification involves training and generating the best model. It is an iterative process
in which the model is trained using the dataset. Then the model results are compared with the
expected values using some statistical criteria, e.g., Akaike, Bayes, etc. The weights and biases
are adjusted to improve the accuracy of the result. Finally, the trained model is validated with
new data. The origin of these data depends on the problem to be solved (Fortuna et al., 2007).
Generally, the dataset is partitioned 70/30 or 80/20, i.e., 70 or 80% of the dataset is derived for

training the algorithms, and the remaining 30 or 20% to evaluate the model’s performance.

4.1.1 General Machine Learning Categories

There are three main categories in which machine learning can be formulated according to the

type of learning: unsupervised, reinforcement, and supervised learning.

In unsupervised learning, the dataset to train the algorithms only contains indicative signals
without any description or output assigned (unlabeled data). This type of machine learning aims
to find similar characteristics in the instances included in the dataset and group them, followed

by interpretation of the results (Watson, 2023).

In reinforcement learning, some supervised learning exists, but not in the usual form where
each dataset output corresponds to an input. Reinforcement learning receives feedback after
selecting an output for a given input or observation, and the system evaluates its performance
based on that feedback response and reacts accordingly. The feedback indicates how the output

(action in reinforcement learning) fulfills the learner’s goals (Yuxi (Hayden) Liu, 2020).

In supervised learning, the dataset to train the algorithms contains pairs of input, a description,
classes, or desired outputs besides indicative signals. The learning goal is to find a general rule
that maps input to output (Simeone, 2018; Yuxi (Hayden) Liu, 2020). Figure 1.4.3 presents the

three types of machine learning.

This thesis will focus on using supervised Machine Learning Algorithms, emphasizing
classification. The following subsections will introduce some of the most popular learning

algorithms.
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Figure 1.4.3. Categories of machine learning. Adapted from (Yuxi (Hayden) Liu, 2020).

4.1.2 Supervised Machine Learning Algorithms

The main goal of supervised machine algorithms is to build a model capable of predicting the

class of a sample given a set of features (Nasteski, 2017).

In the context of this thesis, the machine learning inputs refer to the features and instances.
Features correspond to the state variables of the dynamic models ( see section 3 chapterl) and

instances correspond to each one of the time samples

Supervised learning is divided into two categories, regression and classification. These

algorithms could be explained mathematically as follows:

Considering a dataset D generated as,

X=@9) 7 rxg) i=1..,N (1.4.1)
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where X is the input space and p(x, g) is the true joint distribution. Each sample pair (x;, g;)
of X is generated using the same p function, which means that all the instances are

independently identically distributed (i.i.d.).

D can be rewritten as,

D = {x; g;} (1.4.2)

with x; € RN*P consists of an input vector with N instances and p Features and the associated

response (g; € RNV*1).

The aim is to obtain a model s(x) that generalizes the input-output mapping (®) in D to
unknown inputs x. The quality of the prediction s(x) for a test pair (x, g) is measured by a

given loss function as £(g, s(x)).

The outputs g are discrete variables that take a finite number of possible values in classification
algorithms, i.e., to predict a class label from a predefined list of possibilities (Muller and Guido,
2016; Yuxi (Hayden) Liu, 2020). The objective is to present an unclassified input ( instances +
features ), evaluate it in the trained model and have the model perform a binary classification (
® and X). Figure 1.4.4 illustrates the binary case, where the goal is to predict between two
classes ( @ and X) from an unclassified input x. The most straightforward case to understand

the binary classification could be defined as,

_(+1 if g =s(x) 143
t(g,5(0)) = { -1 ifg #sx) ( )

where +1 and —1 correspond to correct and incorrect classification, respectively.

The most common supervised machine learning algorithms which differ in the level of
interpretation are Decision Trees, Random Forests, k-Nearest Neighbor, Random Forests,
Naive Bayes, Quadratic Discriminant Analysis, Support Vector Machines, and Neural
Networks (Fawagreh ef al., 2014; Muller and Guido, 2016; Rokach and Maimon, 2005; Vapnik
etal.,1997; Wu et al., 2008).
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4.1.3 Machine Learning Algorithms
4.1.3.1 Support Vector Machine

One of the most robust and accurate machine learning algorithms used in literature is the
Support Vector Machine (SVM). It works well in high-dimensional spaces when there is a clear
margin of separation between classes. It has been successfully applied in several scientific and
engineering areas (Batuwita and Palade, 2013; Cervantes et al., 2020; Lopez Cabrera and

Pereira-Toledo, 2018; Panup et al., 2022; Wu et al., 2008; Xiao et al., 2022)

The idea of SVM relies on mapping the input data or features x; € RV*? into a nonlinear space
in order to predict a desired vector of outputs g; € RV*! (Zhu et al., 2020) (Figure 1.4.4). It
solves pattern recognition (classification) and regression problems (Cristianini and Shawe-
Taylor, 2000). This section presents an SVM with two classes as an example. However, these

algorithms could be applied to multiple classes.

X(®)= feature
space

X= input space

Figure 1.4.4. SVM basis idea with two classes. X: Input space associated with labels (® and X

). @: transformations based on the hypothesis space of linear functions.

The algorithms are trained with a dataset D described in Equation ( 1.4.2 ). Usually, the data
are in the form of attribute vectors or matrices. Therefore, the input space is a subset € RV*P.
Once the attribute vectors are available, a number of sets of hypotheses could be chosen for the

problem to predict desired outputs (Cristianini and Shawe-Taylor, 2000).
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The SVM Optimization Problem

SVM algorithms need to solve an optimization problem, i.e., maximizing a particular
mathematical function concerning a given D. This mathematical function is commonly referred
to as a discriminant function. It establishes the rules for determining the class label of unknown

inputs (x) (Tharwat, 2016).

Defining the optimization problem requires knowing its nature:

» Linear discriminant, in which the cases linearly separable or non-separable occurs, or

= Kernel type, in which the non-linear discriminant is possible.

The two cases are approached through four concepts: (i) the separating hyperplane, (ii) the

maximum-margin hyperplane, (iii) the soft margin, and (iv) the kernel function (Noble, 2006).

(i) The Separating Hyperplane

Let us consider again a dataset D = {x;, g;} defined in Equation ( 1.4.2 ), where each point
x; € RN*P consists of an input vector and the associated response (g; € RN*1). Each one with
features and whose response variable has two levels (for example, +1 and -1). Hyperplanes
could be used to build a classifier that allows predicting to which class a sample belongs based
on its features. The point falls on one side or the other of the hyperplane. Thus, a hyperplane

can be understood to divide a p-dimensional space into two halves.

The simplest case corresponds to the linearly separable case (Cervantes et al., 2020), where
points of two classes (+1 and -1) are perfectly separable by various hyperplanes. In two
dimensions (Figure 1.4.5-A), a straight line divides the space in half; in three dimensions, a

plane divides the space (Figure 1.4.5-B).

(ii) The Maximum-Margin Hyperplane

It is necessary to calculate the sign of the discriminant function to find out which side of the

hyperplane a given point falls, which is linear if it can be written as Equation ( 1.4.4).

s(x) >0—->x €eclass1(+1) (1.4.4)

s(x) =WTx + W, if {S(x) < 0-x€class2(-1)
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Figure 1.4.5. Support vector machine (SVM) graphical representation. (A) linearly separable
case with two labels, (B) optimal hyperplane defined by support vectors, (C) Support vectors
definition (Margin hyperplane), (D) data defined on the wrong side of the hyperplane (outliers),

(E) deviation of ideal data (slack variables).

The definition of hyperplane for perfectly linearly separable cases results in infinite
possibilities, lines red, green, and black in Figure 1.4.5-A. SVM tries to find the maximal
margin separation between the hyperplane and the data, i.e., to find the hyperplane furthest from
all the data; it is called the maximal margin hyperplane or optimal separation hyperplane
(Cervantes et al., 2020; Deisenroth et al., 2020; Kowalczyk, 2017; Panup et al., 2022). To do
that, it is necessary to calculate the perpendicular distance of each point to a given hyperplane.
The smallest of these distances (known as the margin) (Cervantes et al., 2020; Noble, 2006)
determines how far the hyperplane is from the training data (x;); it means that the optimal
hyperplane distance to the closest negative data is equal to the distance to the nearest positive

data.
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The SVM optimization problem is reduced to maximize the margin by determining the support
vectors, which are the data closest to the separating hyperplane. They are the most complex

patterns to classify. Support vectors completely define the optimal hyperplane.

The SVM finds the hyperplane (continuous line) with the broadest margin 2b in Figure 1.4.5-
C. The points inside the margin’s edge (discontinuous lines) are called support vectors. Margin
is twice the absolute distance b from the closest data to the separating hyperplane, and it can be
calculated as Equation ( 1.4.5 ). The absolute distance between x; and the boundary g(x) = 0
(Deisenroth et al., 2020; Yuxi (Hayden) Liu, 2020).

W7 xi + W (1.4.5)

Margin =
g Wl

For a unique hyperplane |WTx; + W,| =1 (See Figure 1.4.5-C), the distance between any data

x; and the decision hyperplane s(x) = 0 is defined as,

Wixi+Wol _ 1 (14.6)
Wil Wi

Since the margin is defined as twice the absolute distance from the closest training data to the
separating hyperplane (Equation ( 1.4.5 )) and in the case of a unique hyperplane the absolute

distance is given by Equation ( 1.4.6 ), thus, the margin is,

1 _ 2 (1.4.7)
wil[(wi

Margin = 2
The goal is to maximize the margin:

Wix, + Wy > 1 if x;,is positive data

Subject to {
J WTx; + Wy < =1 if x;,is negative data

Let:

{Zi =1 if x;,is positive data
z; =—1 if x;,is negative data
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It is possible to convert the problem as,

1
- - 2 (1.4.8)
min J(W) > W]

Subject to {z;(WTx; + W) = +1 Vi
where J(W) is a quadratic function. Thus, there is a single global minimum.
(iii) The Soft Margin

It is impossible to separate all the outputs perfectly in several datasets (Kowalczyk, 2017)
(Figure 1.4.5-D). It is possible to find data close to the x; on the wrong side of the hyperplane.
These points are called outliers. However, a linear classifier may still be appropriate (Bzdok et

al., 2018).

Applying SVM in non-linearly separable cases is possible to obtain good performance, but the
data must be “almost” linearly separable. The use of slack variables (;,..., ,,, one for each data

can solve this (Figure 1.4.5-E) and change the constrains:
Zl-(WTx,- + WO) >1 Vi to Zl-(WTx,- + WO) >1- fi Vi
where &; is a measured of deviation from the ideal for data i, and is classified as:

= [If{; > 1datai is on the wrong side of the hyperplane

» If0 < {; <1sampleiis on the right side of the separating hyperplane but within the

region of the maximum margin

» [f{; < 0is the ideal case for sample i
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Figure 1.4.6. Hyperplane with large C, few data not in ideal position (left), and small C, several

data not in ideal position (right).

Then, Equation ( 1.4.8 ) is transformed as,
1 n
j =— 2 e (1.4.9)
Jnin, JW, G, = SIWIE +C Z(zl +)
=

zi—WTo(xi) - Wy < e—§& Vi
Subject to A WTd(xi) + Wy —z; < e =&, Vi
&, & =0 Vi

The term Y7~ (g; + i) corresponds to the number of misclassified data, & displays the loss
function variable, §; and &; are slack variables that allow certain points to fall on the incorrect
side of the hyperplane, and C is a constant that measures the relative weight of the first and

second terms.

If C is small, it allows many instances in a non-ideal position (loose segregation); if C is large,
it is possible to have and accept just a few data in a non-ideal position (strict segregation),

Figure 1.4.6.

The problem foundation of Equation ( 1.4.9 ) relies on convex quadratic programming. The
Lagrangian function is utilized to integrate the constrains into the cost function, and the dual

representation, may be solved as in Xiao et al. (2022), Equation ( 1.4.10).
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max |2 " (@ — )@ ~ ) 0C)D(5) + Y (@~ @y~ Y (@ —apye|  (1410)

ij=1
Subject to {37 (a; —aj) =00 0.0<a;a; <C
where «; represent the Lagrangian multiplier.
(iv) The Kernel Function
In some cases, data are not linearly separable. Therefore, the machine learning model obtained

could not give correct results even if the hyperplane is optimally determined (Cervantes et al.,

2020); an example is presented in Figure 1.4.7-A.

g2 4 gz A
X +1 o X+ @
@®-1 O @ -1 P
900008 33 XXX 00000- .o ¢
o °
® °
(A) g (B) a1

g2 4

(©) B (D) g

Figure 1.4.7. Graphic representation of the non-linear dataset. Adapted from (Noble, 2006).
(A) a non-linear one-dimensional dataset, (B) the dataset was squared, (C) a non-linearly two-
dimensional dataset, which is linearly separable in four dimensions, (D) An SVM that has

overfit a two-dimensional dataset.

Learning non-linear relations with a linear machine is necessary to select a set of non-linear

features and rewrite the data in the new representation, i.e., apply a fixed non-linear mapping
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of data to a feature space used by the linear machine. In Figure 1.4.7-B, the data were squared;
in Figure 1.4.7-C, a non-linear mapping projects the data from the two-dimensional space to
four dimensions (corresponding to the products of all pairs of features), allowing the data to be
linearly separated. Finally, Figure 1.4.7-D presents the case where the dataset is projected into
a space with too many dimensions; the projected hyperplane comes from an SVM that uses a

very high-dimensional kernel function (Noble, 2006).

It is possible to represent this mathematically using Equation ( 1.4.11).

N
s(x) =ZWTCDl-(x)+b (1.4.11)
i=1

where ®: X — F is a non-linear map from the input space to some feature space.

Non-linear machines can be built in two steps: first, a fixed non-linear mapping transforms the
data into a feature space F, and then a linear machine is used to classify them in the feature

space (Cristianini and Shawe-Taylor, 2000), Figure 1.4.8.
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Figure 1.4.8. Support vector machine (SVM) graphical representation for the non-linear case.

One important property of linear learning machines is that they can be expressed in a dual

representation. The hypothesis or decision function can be described as a linear combination of
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the training data. Therefore, the decision rule can be evaluated using just inner products between

the test point and the training data (Cristianini and Shawe-Taylor, 2000):

N

S(x) = Z al-gl-(d)(xi) . (D(x)) +b ( 1.4.12 )

i=1

If we have a way of computing the inner product (®(x;) - ®(x)) in feature space as a function
of the original input points, merging the two steps needed to build a non-linear learning machine
becomes possible. This direct computation method is called a kernel function. The kernel
function is a mathematical transformation that allows to project data from a low-dimensional

space to a higher dimension space.

Mathematically a kernel is a function K, such that for all x, x; € X, Equation ( 1.4.13).

K(x,x) = (@(x) - (x)) (1.4.13)
where @ is a mapping from X to an (inner product) feature space F.

The name kernel is derived from integral operator theory, which supports much of the theory
of the relation between kernels and their corresponding feature spaces. An essential
consequence of the dual representation is that the dimension of the feature space does not have
to affect the calculation. Since the feature vectors are not represented explicitly, the number of
operations required to compute the inner product by evaluating the kernel function is not
necessarily proportional to the number of features. The only information used about the training
data is their matrix Gram (K) in the feature space, it is also called the kernel matrix. The key
to this approach is finding a kernel function that can be evaluated efficiently. Then, this function

is evaluated by at least [ evaluations as the decision rule, Equation ( 1.4.14 ).

l

s(x) = Z a;K(x,x;) + b (1.4.14)

i=1
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With the use of kernels, it is possible to operate in the feature space without knowing the details

of how the input data was transformed.

Some of the Kernel functions that will be used in this work are represented by Equations (

1.4.15)-( 1.4.17 ) (Cervantes et al., 2020):

Linear Kernel :
K(x,-, x]-) = X; " X (1.4.15)
Polynomic Kernel :
K(xix;) = (x; - xj + c)d (14.16)
with ¢ = 0 and d = 1 it is a linear kernel.
Gaussian Kernel or Radial Basis Function (RBF):
—llx—xll? (1.4.17)

K(xi,xj) =e 20°

The value of 1/202 controls the Kernel’s behavior; when it is very small, the final model is
equivalent to that obtained with a linear kernel as its value increases (flexibility of the model).

o represents the width of the RBF.

4.1.3.2 Other Machine Learning Algorithms
Decision trees

The decision trees (DT) algorithm follows a methodology where the classification process is
performed using a hierarchical decision on the feature’s variables, similar to a tree structure.
Each decision node corresponds to a feature test, which is referred to as the split, and each leaf
node refers to the attributes. DT algorithms are generally a recursive process, i.e., a sequence
of splits is performed from the top (root node) to the bottom (leaf nodes) over a dataset. Each
decision node corresponds to a split of the dataset into subsets, where each subset will be used

as the dataset of the next decision node. The challenge with DT is how to perform the partition.

147



Section 4. Soft Sensors and Fault Detection

Figure 1.4.9 shows a common structure for a DT (Aggarwal, 2015; Rokach and Maimon, 2005;
Uddin et al., 2019; Zhou, 2012).

[ Root node ]

[ Decision node ] [ C1 ] |
T F

[ Leaf node ] W

| C2 ] | C3 ]

True/Wl‘Se TWlse
[ Class A ] [ C4 ] [ Class A ] [ Class B ]
TNQ
[ Class A ] [ Class B ]

Figure 1.4.9. Decision tree algorithm scheme. Root node (C1), decision nodes (C2, C4, and
C3), and leaf nodes (class A and B).

Depending on the information gain criterion used to perform the partition, i.e., based on the
measure used to evaluate the quality of a split at a particular node in the tree; The decision trees
can be classified into (i) ID3, (i1) C4.5, and (iii)) CART (Charbuty and Abdulazeez, 2021;
Rokach and Maimon, 2005):

(1)  The ID3 algorithm uses as information gain criterion the entropy (E (D)) of the dataset
D, defined as,

E(D) = —Z P(g|D)logP(g|D) (1.4.18)
g

herein, g € {g4, g2, ---, gn} is the vector of possible classes. P(g|D) holds for the probability

of instances in D that belong to class g.

The training set D is partitioned into subsets Dy, Dy, ..., Dy, with weights |Dy|, the overall
entropy is calculated and compared with the weighted average of the subset entropies; The

amount of the reduction is the information gain (G), Equation ( 1.4.19).
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G(D; Dy, Dy, ..., Dy) = E(D) — Zl 1 IDllE(Dk) (1.4.19)
The split is performed based on the feature-value pair, which causes the largest information
gain. The entropy measures the uncertainty of the information in the dataset. A high value of
entropy means high uncertainty and more information is necessary to develop the model
(Charbuty and Abdulazeez, 2021). The disadvantage of using the information gain criterion is
that features with a large number of instances will be encouraged, regardless of their relevance

for classification (Priyanka and Kumar, 2020).

(i)  The C 4.5 algorithm addresses the problem mentioned for the ID3, using a variant of

the information gain criterion by performing the gain ratio, Equation ( 1.4.20 ).

© 1D |Dk|>_1 (1.4.20)

v ARG 1 101 9 D]

This variant of the information gain criterion normalizes the number of features values, using a
correction factor that penalizes the number of subsets k and the size of each subset |Dj|. The
feature with the highest gain ratio, among the features with better than average information

gains is selected for the split.

(i)  Inthe CART algorithm, the information gain criterion corresponds with the overall Gini
index (Gini). For a k subset into D, the Gini can be calculated as the weighted average

of the Gini index values of each Dy, where the weight of Dy, is |Dy]|.

Gini(D; D1, Dy, ..., Dy) = (D) — Z B IDll 1(D) (1.4.21)

where I(D) is the dataset purity,

(D) =1 —Z P(g|D)> (1422)
g
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CART algorithm presents some advantages over the other trees: the algorithm itself identifies
the most significant variables and eliminates the non-significant ones. Furthermore, it is non-

parametric and can easily handle outliers (Priyanka and Kumar, 2020; Singh and Giri, 2014).

An aspect to consider in the use of DT is overfitting. DT with a perfect training result may have
a poor ability to generalize concerning other DT with an acceptable training result, i.e., perfect
training results do not mean perfect test results. The cause of this is the noise in the dataset
collection. Pruning is used to reduce the risk of overfitting, i.e., cutting off some branches of
the tree caused by this noise. There are two options for pruning, pre-pruning and post-pruning.
The first tries to prune the branches when the tree is grown, while the second re-examines fully

grown trees to decide which branches should be removed (Zhou, 2012).
Random Forest

Random Forest (RF) is a classifier defined as an ensemble classifier. RF uses several basic DT

to build a forest (Biau and Scornet, 2016) (Figure 1.4.10).

|

: Tru alse 1‘ : M i iDT3 c7 i
: [c2 ] C3 | L C5 ce | | cg | ea ] |
| True "\ False TrV\F\alse Il True "\ False True~" \False 1 True alse M\Eaise:
| I

| Il

Prediction DT1 Prediction DT3

:r Random Forest ﬂ:
| prediction I
e

Figure 1.4.10. Random Forest scheme with three different decision trees. Root node (C1, C4,
C7), decision nodes (C2, C3, C5, C6, C8, C9), and leaf nodes (class A and B).

The DT in the RF are trained with different parts of the training dataset. To classify a new
sample (x, g) the inputs x of that sample must pass through each DT, which considers a
different part of x to give a classification. Finally, the RF selects the average prediction of these

DT, i.e., the classification with more votes (Uddin ez al., 2019).
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Naive Bayes

Naive Bayes (NB) algorithm predicts a sample's probability of belonging to a specific class.
Consider again the dataset (D = {x;, g;}) defined in Equation ( 1.4.2 ). NB calculates a

posterior class probability to a sample using the Bayes theorem (Mehmood ef al., 2018),

P(x;|g)P(g) (1.4.23)

P(glx) =5

NB states as hypothesis, the individuality between each pair of features, i.e., each sample is
assumed to belong to one class g € {g1, g2, ---, gn} (Ranganathan et al., 2019; Uddin et al.,
2019) as,

h
P(g|x) = P(9) l_LzlP(ing) (1.4.24)

The example presented by Uddin ef al. (2019) illustrates the idea in the NB algorithm, Figure
1.4.11-A.

Consider a trained NB, the green circle (®) in Figure 1.4.11-A must be classified into one of
two classes blue circle (@) and orange x (¥X). According to the prior probability, 20/30 = 0.67
for orange X and 10/30 = 0.33 for blue circle, which is more probable to fall in the orange x
class. However, if it is considered the four points, three blue circles, and one orange X, the like-
hood of the green circle in the blue circle is 3/10 = 0.3 the likelihood for the orange x is
1/20 = 0.05. The posterior probability is calculated for both classes. The blue circle is
0.33 X 0.3 = 0.099, and the orange x 0.67 X 0.05 = 0.034. Thus, according to the NB

technique, the sample is classified as a blue circle.
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Figure 1.4.11. Naive Bayes, k-Nearest Neighbors, Quadratic discriminant analysis, and Neural

Network with two classes blue circle (®) and orange x (X).
k-Nearest Neighbors

k-Nearest Neighbors (k-NN) algorithm is considered a simpler version of the NB, where it is
not required to compute the probability values. In this algorithm, the k nearest neighbors are
considered to determine the classes. It follows a Memory-based Classification rather than
having an explicit training process (Cunningham and Delany, 2022), Figure 1.4.11-B. k-NN is
developed in 2 steps. Step 1. The nearest neighbors are determined. Step 2. With the neighbors

previously calculated is the determined class. This algorithm could be defined as follows:

Consider the training dataset (D = {x;, g;}) from Equation ( 1.4.2 ). The distance between the

unknown sample g and x; for each x; is calculated as,

d(q,x;) = Z wr - 8(q,%;)¢ (1.4.25)

feF
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This equation represents the sum over all the features FeR*", where w; is the weight for each
feature and §(q, x;) r is the metric distance. Metric distance is zero If ¢ = x; and one if ¢ # x;.

This metric distance is used to select the nearest neighbors. Afterward, it is necessary to assign
the class to g, which is commonly performed, considering the class of the closest neighbors.
There are two ways to develop this idea. The first one is the distance-weighted voting, Equation

(1.4.26).

h
1
Vote(g;) = Zml(gﬁgc) (14.26)
c=1

The neighbors vote and these votes are weighted by the inverse of their distance. The vote

assigned by the neighbor x to class g; is divided by the distance to their neighbor. The term

1(gj, 9¢) is one if the class labels match and zero in the opposite case.

The second is based on Shepard’s work, using exponential function rather than the inverse

distance, Equation ( 1.4.27).

k
Vote(g)) = ) @ 1(y;, ) (1427)
c=1

Quadratic Discriminant Analysis

Quadratic Discriminant Analysis (QDA) is an algorithm that assumes a quadratic decision
boundary, assuming that the features follow a normal distribution and quadratic interaction

between classes (Hastie et al., 2009), Figure 1.4.11-C.

The QDA algorithm is derived from probabilistic approaches which model the conditional class
distribution of the data P(x|g) for each class h. QDA could be formulated for each sample

x; € RNXP ag,

Pxilg)P(g)) _ P(xilgi)P(g:) (1.4.28)
P(x;) Xn P(xil9)P(9)

P(gilx) =
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and the class h, which maximizes the posterior probability is selected.

(~5G—pn)T Skt Ge-un)) (1.4.29)

P(xlg) = e

(2m)@/2|Z, /2
Then, the predicted class is the one that maximizes the logarithmic of the posterior represented

as follows, Equation ( 1.4.30).

logP(glx) = logP(x|g) + logP(g) + Cs
(1.430)

1 1 -1
= —ElogIZhI — E(X - .uh)Tzh (x — pp) +logP(g) + Cy¢

The term Cg; accounts for the denominator of Equation ( 1.4.29 ) and the other constant terms

from the Gaussian distribution.
Neural Network

Neuronal Network (NN) algorithm is based on the functioning of the neural networks in the
brain. It can be described as an interconnected group of nodes, called neurons through axons,
and thus form the network structure (Zhou, 2012). In NN, the output of one neuron is the input
to another neuron, constructing signals that are multiplied by the respective connection weights
(signal strengths), and the signals are aggregated and compared with a threshold called the bias
of the neuron (Uddin et al., 2019).

One of the most used NN is the multi-layer feed-forward network. In this NN, the neurons are
related layer by layer, i.e., there is an input layer that receives the input feature vector, the output
vector where each neuron commonly corresponds to a possible label, and the hidden layer,

which is the layer between input and output layer, Figure 1.4.11-D.

The Back-Propagation Neuronal Network (BPNN) is one of the most implemented in NN.
BPNN consists of feeding forwarded the input layer, the information could be processed
through the hidden layer to the output layer, and the error is calculated by comparing the output
of the NN with the ground truth. Finally, this error is propagated to the hidden layer and returned

to the input layer, correcting the weights and bias to reduce this error (Zhou, 2012).
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4.2 Machine Learning Models in Biological Process

This subsection mainly presents examples of machine learning models used in biological
processes. The above-mentioned black box machine learning approaches are of two types, (a)
regression and (b) classification (Gupta et al., 2023). The regression goal is to predict output
variables using numerical or categorical predictor variables (Kazemi et al., 2020b; Robles-
Rodriguez et al., 2022; Sharma and Tambe, 2014; Tufaner et al., 2017). The classification
objective addresses fault or anomalous detection (Kazemi et al., 2020a) or categorizes a process

according to the determinate substrate produced (Cinar ef al., 2022; Wang et al., 2020).

Robles-Rodriguez et al. (2016) developed a soft sensor based on SVM coupled with a Particle
Swarm Optimization (PSO) algorithm for monitoring lipid fermentation of Yarrowia lipolytica
growing on glucose. The objective was to estimate the lipid, biomass, and citric acid
concentrations. PSO was performed to estimate the SVM parameters C, g, and ¢ to avoid local
minimum and high calculations times. SVM was trained and validated with different datasets
of fed-batch fermentations using the on-line measurements: added base to control pH and partial
oxygen pressure. The authors determined that SVM models coupled with PSO estimate the
lipids and biomass concentration in fed-batch reactors satisfactory, concluding that the soft

sensor in a PSO-SVM is an efficient alternative for monitoring fermentations.

Robles-Rodriguez et al. (2022) used a soft sensor based on SVM to monitor the production of
proteins by B. thuringiensis, a microorganism with physiological changes during fermentation.
The experiments were developed in a 3 L fermenter operating at 30°C and pH 6.8 with a
synthetic medium (glucose) as a substrate. Quadratic, cubic, and Radial Basis Function (RBF)
SVM models were constructed using seven datasets with 8 k-folds cross-validation and three
datasets for the test. Twelve measurements (on-line and off-line measures) were used as features
to train the model. A total of 8 predictor combinations were computed via the Root Mean Square
Error (RMSE). The preliminary results indicated that a quadratic SVM with ten features
achieved the best results. Nevertheless, a new SVM model was performed using only on-line
measurements, where the RBF SVM obtained good results concerning the RMSE for the
validation and training, concluding that SVM can accurately represent the process's non-

linearities.
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Sharma and Tambe (2014) used three different soft sensors. Multi-Layer Perceptron (MLP)
Neural Network (NN), RBF Support Vector Regression (SVR), and Genetic programming
(GP), for monitoring two biological processes: the extracellular production of lipase and the
bacterial production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer. In the first
process, a GP-based soft sensor is used to predict the lipase activity from four inputs, soy oil,
NH4NO:3, corn steep liquor concentrations, and fermentation time. The results showed that the
three model-driven methods achieved good results in the test in terms of R? > 0.83 and
RMSE < 1.54. However, the GP presented better results compared with the others (R? > 0.92
and RMSE < 0.96). In the second case a GP based soft sensor is used to estimate the
accumulation of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from four inputs, acetate and
propionate concentration, incubation period, and pH. The results showed that all the three
model-driven achieved good results in the test in terms of R? > 0.93 and RMSE < 3.8.
However, the GP and the RBF SVR have better results compared with the MLPNN (R?>0.93
and RMSE < 2.6). In both cases it was concluded that soft sensors, especially the GP, could

be applied to monitor biological processes with non-linearities

Tufaner et al. (2017) performed a Back Propagation Neural Network (BPNN) soft sensor to
estimate the biogas production in the AD process. The experiments were performed in 6.15 L
up-flow anaerobic sludge blanket (UASB) reactors operating at mesophilic conditions. The
reactors treated cattle manure with the co-digestion of different substrates such as grass waste,
household organic waste, industrial organic waste, and sludge. The BPNN considered ten
inputs: working days, influent COD, influent pH, influent alkalinity, influent ammonia, total
influent phosphorus, HRT, waste adding ratio, pretreatment waste sorts, and reactor number,
while the biogas production was considered as output. The dataset comprised 180 experimental
data points from five AD reactors, where one half was used for training, one quarter for
validation, and the rest for the test sets. An interesting aspect is that the authors evaluated 11
algorithms to identify the back propagation in terms of the MSE. The authors concluded that
BPNN could be used as a soft sensor to determine the biogas performance in the AD with

coefficients of determination (R?) of 0.89 and 0.75 for the training and test.
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Yilmaz et al. (2010) used three different NN techniques to determine the output COD in the AD
process: MLPNN, Radial Basis Neural Network (RBNN), and Generalized Regression neural
network (GRNN). The experiments were performed in a 1.33 L up-flow anaerobic filter (UAF)
reactor with an HRT of 24 h, operating at 35°C for 130 days. The UAF reactors treated a
mixture of sludge and wastewater (30% v/v). The reactor was also continuously fed with
increasing cyanide (CN) concentrations from 1 mg/L to 130 mg/L. The three NN techniques
used as inputs: the inlet chemical oxygen demand, HRT, and inlet cyanide concentration. The
dataset was composed of 134 experimental data, split in a proportion of 70/30 for the training
and test. According to the test results, the MLP neural network was the best to predict the outlet
COD in the process with a R?>0.87 and MSE < 98.3, values significantly higher compared
with the RBNN and GRNN (R?>0.75 and MSE < 157).

Kazemi et al. (2020b) performed interesting studies of soft sensors over the AD process with
different aims. In the first study, they evaluated several data-driven soft sensors to develop
robust VFA monitoring using easy on-line measured variables in the AD process. The authors
explored soft sensors such as BPNN, SVM, RF, extreme learning machines, and GP. The
dataset was obtained using the BSM2 with different OLR as a plant model and the ASM1 and
ADMI models to describe the phenomena involved in transforming the activated sludge and
AD reactor, respectively. The dataset was built using thirteen variables as inputs, which were
measured at the input and output of the system for a total of 609 days every 15 minutes. The
influence of these variables on the process was evaluated through a feature ranking method,
determining that the variables with the strongest influence were pH, ammonia concertation,
pressure, and CO2 molar fraction. Therefore, these variables were used to build the soft sensors.
The authors concluded that genetic programming achieved the best results in terms of R? >
0.99 and normalized root mean squared error NRMSE < 0.0037 for the test. Nevertheless,
the NN, SVM, and extreme learning machine also achieved good results R? > 0.99 and
NRMSE < 0.0090. Finally, it was demonstrated that the use of this type of soft sensors in AD

processes is possible from the use of datasets generated from models such as BSM2.

Kazemi et al. (2020a) also applied the SVM algorithm to fault detection. The dataset was
selected similarly using the BSM2 model and 13 input variables. To detect the faults, the VFA
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soft sensor was used together with three statistical control charts (Square prediction error,
Cumulative sum, and T? Hotelling’s charts). These control charts were built using the residual
determined between the simulated VFA and the predicted VFA using the SVM. The quality of
the fault detection methods was evaluated using some statistics criteria such as precision, recall,
and F1 scores. They disturbed the acetate concentration in the system by manipulating the
maximum uptake rate of acetate in BSM2 from £5% to +15% concerning the default value. The
disturbance was simulated from day 530 to the end of the simulation. All the control charts
obtained interesting results. However, the VFA cumulative sum achieved the best F1 score, i.e.,

it was considered the best control chart to determine small-magnitude faults.

Wang et al. (2020) performed an interesting study to predict CH4 production and identify
determinant operational parameters. Four machine learning algorithms were selected for
regression and classification: RF, logistic regression multiclass, SVM, and k-NN. Their model
used as inputs the total content of carbon and nitrogen, C/N ratio, cellulose, xylan, lignin, and
glucan content, and temperature and as output the CH4 production. The dataset was built using
17 instances from the literature with the same AD configuration. In both cases, the dataset was
split randomly into training and test set: 15/2 and 14/3 for regression and classification,
respectively. The instances were divided into three classes according to the CHs content to
evaluate the classification, low (>300 mL/L/d), medium (300-400 mL/L/d), and high
(>400 mL/L/d). All the machine learning algorithms demonstrated good results in predicting
CHj4 production. RMSE of 65.1, 83.6, 83.6 and 36.9 were achieved in the RF, logistic regression
multiclass, SVM, and k-NN during the training. During the validation, RMSE values of 81.5,
71.7,68.6, and 89.0 were obtained in the RF, logistic regression multiclass, SVM, and k-NN,
respectively. On the other hand, the accuracy metric was used in the classification to measure
the results of the algorithms with low, medium, and high CH4 production. Values of 0.64, 0.73,
0.59, and 0.61 were determined for RF, logistic regression multiclass, SVM, and k-NN,
respectively. This result shows that the logistic regression multiclass was suitable for

classifying the dataset proposed.

Cinar et al. (2022) used various machine learning algorithms (linear regression, logistic

regression, k-NN, DT, RF, SVM, and extreme gradient boosting) to study temperature changes
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in the AD process. The experiments were performed in a 5.4 L CSTR operating at 42°C and 55
rpm. Pellets (animal feed material) were used as a substrate for the AD. Four CSTR with
different temperatures and organic loading rates were evaluated. The dataset was built with ten
features with possible impacts on the model, biogas production, nutrient solution usage, biogas
production temperature, biogas pressure, waste vapor pressure, standard volume, reactor
temperature, character, and feed. Then, the dataset was classified based on the volume of dry
gas in the normal state, low class (9.91-901.82 NmL/d ), medium class (901.82 -
1707.86 NmL/d), and high class (>1707.86 NmL /d). The regression models used the RMSE
to identify the accuracy of the prediction, while classification models used the confusion matrix
approach to classify the AD according to the standard CH4 volume and compute the precision,
recall, and F1-score. Only the best results were presented for the regression and classification
models. In the regression, RMSE of 246.96, 72.16, and 93.91 were obtained for the linear
regression, DT and RF, respectively, while in classification, accuracy values of 0.93, 0.89, 0.88,
and 0.86 were determined for SVM, RF, k-NN, and DT, respectively. The authors successfully
implemented machine learning models capable of predicting changes in the temperature and

feedings in the AD and performing efficient real-time monitoring.

4.3 Conclusions Soft Sensors and Fault Detection

Soft sensors have become a valuable tool for monitoring, control, and optimization tasks in
biological processes due to the capacity to use on-line measurements to estimate unmeasurable
variables in real time (Brunner ef al., 2021; Yan et al., 2021). Soft sensors are a low-cost
alternative concerning physical devices and it can be implemented on existing hardware

(Fortuna et al., 2007, Jiang et al., 2021).

Data-driven approaches are based on readily available online data or historical recordings of
the process (Cruz et al., 2022), avoiding the need to build a mathematical description that
requires an in-depth knowledge of the process (Gopakumar et al., 2018; Kadlec and Gabrys,
2009; Wade, 2020).

Several data-driven soft sensors have been successfully applied to biological processes,

especially in AD. Table 1.4.1 summarizes the previously described works comparing the type
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of algorithm that was used and the application. The interesting aspect is the wide use of those
soft sensors. As a regression type to predict variables such as VFA or CH4 production (Kazemi
et al., 2020b; Tufaner et al., 2017). As a classification type to describe the process based on the
CHj4 content (Wang et al., 2020) or a combination of both tasks (Cinar ef al., 2022).

There are no works in process fault detection over the biological methanation process.
However, some studies have promising results in AD (Kazemi et al.,2020a) using Machine
learning models. This leads us to think that it is feasible to perform similar studies on biological

methanation, which has not been explored yet.

This section provides some questions that we could explore:

= Can machine learning be used as a data-driven soft sensor in biological methanation?

= Can these soft sensors be used to detect faults during the process?
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Summary of Chapter 2

The work developed during this thesis is presented as publications, where each
section describes a scientific paper. The first section is an introduction to the
publications, which include a summary, brief comments, and highlights of each
work. In Section 2 is presented the Extended Anaerobic Digestion Model No.lI
(ADM1 ME) for biological methanation, which is the base of all the optimization
tools and data-driven models used in this thesis. In Sections 3-5 is applied the
Mutlti-Objective Dynamic Optimization (MODO) strategy for different objectives.
Section 3 is proposed for the simultaneous maximization of methane yield and
productivity. In Section 4, the grade of complexity is increased, considering the
maximization of yield and productivity of methane and acetate. Section 5 is
developed to maximize two economic objectives, Gain and Profit Margin,
simultaneously. In Sections 6 and 7, data-driven machine learning models are
trained to fault detections in the biological methanation process. Those sections
aimed to detect and classify deviations from the optimal biological methanation
operations determined with the MODO strategy when disturbances of £10, £15,
and £20% occur in the inlet liquid flow rate. Section 6 addresses the use of several
data-driven machine learning such as decision trees, random forest, quadratic
discriminant analysis, neural networks, etc, while Section 7 is mainly oriented

toward using a data-driven Support Vector Machine (SVM).



Section 1 Chapter Introduction

Some of the questions formulated in Section 1 of Chapter 1 were related to the experimental
development of the biological methanation process, for example, which are the best conditions
to carry out biological methanation in different types of reactors such as CSTR or BCR and
what is the effect of using different kinds of substrates varying GLR and OLR? This question
could be answered from the bibliography review. Nevertheless, other questions in this thesis
were addressed from a modeling and simulation perspective, e.g., Which are the optimal
operating conditions to improve the yields and productivities of biological methanation?
Can we set them automatically? Can the variations in the composition of the syngas be used

to upgrade the biological methanation and its effect on the mass transfer process?

As mentioned in Section 3 of Chapter 1, the dynamic modeling of biological processes is a tool
that allows performing multiple scenarios without developing an experimental setup. However,
to propose a model for biological methanation, it is necessary to review some of the questions
proposed in Section 2 of Chapter 1: Can a mathematical model of biological methanation
accurately reproduce multiple operational conditions with emphasis on using different kinds of
substrates varying GLR and OLR? How can the transformation of CO into acetate and H> and

their inhibitions be described in a model for biological methanation?

To address these questions, the article of Section 2 proposes a model for biological methanation
(ADM1_ME). The objective was to obtain a model allowing a global representation of the
process. We initially extended the Anaerobic Digestion Model No. 1 (ADM1) to consider the
addition of syngas (H>, CO,, and CO) as a substrate. We used equations that allowed us to
analyze the variation of the volumetric transfer coefficient in relation to the reactor type, a
bubble column reactor (BCR) and a Continuous Stirred Tank Reactor (CSTR). The parameters
of this model were analyzed with sensitivity analysis to find the parameters that could
significantly affect the system outputs. Afterwards, the ADMI1 ME was calibrated by
estimating the most sensitive model parameters identified from the sensitivity analysis and to
fit the model outputs with the literature value. This parameter estimation was performed to
minimize an adapted root mean of square errors. The ADM1 ME was validated by assessing
the model performance against literature value to guarantee the model's reliability. In both
cases, statistical analysis was performed using two criteria: the coefficient of determination

(R?) and the root mean squared error (RMSE).
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The literature value consisted of two datasets: Operational Condition 1 (OP1) and Operational
Condition 2 (OP2). Approximately 2/3 of both datasets were used in the calibration and the rest
in the validation of the model. An exciting aspect of this study was that both datasets were
completely different, i.e., OP1 was generated in a mesophilic BCR that used glucose and syngas
(H2/CO 0.55/0.45) as substrate in the liquid and gas phases, respectively. On the contrary, OP2
consisted of a thermophilic CSTR using primary sludge, activated ticked-disintegrated waste,

and syngas (H2/CO 0.5/0.5) as substrates in the liquid and gas phases, respectively.

Model simulations were accurate in the calibration step with R? > 0.90 and a RMSE < 0.38 for
all outlet gas flow rates in OP1, and R? > 0.91 and a RMSE < 2.52 for all gas percent in OP2.
In the validation step with OP1, R? > 0.74 and a RMSE < 0.94 were obtained for output
variables such as CO and H; gas flow rates. With OP2 values of R? > 0.82 and RMSE < 5.15
were achieved for all gas percent composition at the output. It was concluded that ADM1_ ME
is a promising model that could be used to simulate, optimize, and control a wide range of

operating conditions in biological methanation.

One of the common needs of biological processes is the simultaneous optimization of multiple
variables, which are commonly conflicting. Therefore, in Section 3 of Chapter 1, some
questions related to this topic were concluded: Can the multi-objective optimization approaches
improve biological methanation? And how to implement a computationally feasible model-

based control strategy for biological methanation?

With this on mind, a Multi-Objective Dynamic Optimization (MODO) was applied for
biological methanation in the article in Section 3. A Model Predictive Control (MPC) schema
was applied using the dynamic model ADM1 ME proposed in Section 2. The aim was to
enhance the biological methanation process by maximizing two objective functions: methane

yield and productivity, by using the inlet liquid and gas flow rates as manipulated variables.

The MODO strategy handled different trade-offs between the objective functions. We proposed
five cases of study based on the selection of different Pareto Optimal Point (POP) from the
Pareto Optimal Set (POS). Case 1 simulated literature value (without control). Cases 2-4 used

the POP that maximized either methane productivity, the Euclidean length between them, or
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methane yield, respectively. The Euclidean length refers to the maximum distance from the
POS to the origin. Case 5 was the most interesting. It consisted in switching between the

maximum productivity, Euclidean length, and yield.

The results evidenced the conflicting behavior between objective variables and improved yield
and productivity to 1.02 and 3.67 times concerning case 1. Case 5 permitted us to elucidate the
process’s robustness and the well-accounted adaptations of the manipulated variables in
simulation, especially for switching between objectives. We concluded that the MODO strategy

could be considered a powerful tool to adapt the process for industry's requirements.

In the biological methanation process, besides methane, there are other value-added products,
such as acetate, which can serve as a chemical platform in various industries. Therefore, in the
article in Section 4, a MODO strategy with a more complexity level was applied to the
biological methanation process to consider enhancing the biological methanation. Objectives
were to maximize yields and productivities of methane and acetate, with the inlet liquid and gas
flow rates as manipulated variables. Five case studies were proposed. Case 1 was used as a
reference case without control. Case 2 consisted of using the POP directly in simulation. In
contrast, cases 3 and 4 consisted of POP that allowed the maximization of the Euclidean
distance, i.e., simultaneous maximization of the yield and productivity of both methane (case
3) and acetate (case 4). Case 5 was used to demonstrate the robustness of the MODO strategy
by switching the objectives between maximization of performances in the objective variables

in terms of methane and acetate.

The results showed that the advantages of using the dynamic part in the MODO strategy are a
reduction of approximately two days the time in which the steady state is reached once there is
a stages changes and the reduction in the inlet gas flow rate. Additionally, the robustness of the
strategy was demonstrated by the good adaptation of switching between products of interest,
such as methane and acetate. It is concluded that the MODO strategy could allow the
maximization between objective variables such as yield and productivity of methane and acetate
in the biological methanation process. However, the potential scope is much broader, as it can

consider adaptations to market requirements for methane and acetate.
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The articles of the previous sections considered objective variables such as yields and
productivities of methane and acetate and manipulated variables such as liquid and gas flow
rates. To solve the highlighted part of the question concluded in Section 3 of Chapter 1: Could
the multi-objective optimizations consider several objectives, such as the yields, the
productivities, and other variables in economic terms (e.g., substrates prices)? It is
necessary to consider economic aspects, such as the substrate costs or product selling prices in

the MODO strategy applied over the biological methanation process.

Therefore, in the article of Section S, an Economic Multi-Objective Dynamic Optimization
(EMODO) strategy was proposed based on the same principle as the MODO strategy but

considering economic objective functions.

The objective function of the EMODO strategy deal with the maximization of Gain and
Profit margin for methane and acetate by using the inlet liquid and gas flow rates as
manipulated variables. The objective called Gain was built based on the methane and acetate
selling prices. This variable accounted for the global gain in EUR per liter of reactor per day.
The Profit margin was built based on the profitability of the process, considering the relation
of the net incoming, i.e., the difference between the revenue by selling the products (methane

+ acetate) and the cost of the substrates (glucose + H» and CO») over the total revenue.

The results showed that the EMODO strategy was a good alternative to improve the biological
methanation regarding economic variables by manipulating the inlet liquid and gas flow rates.
It was concluded that the EMODO strategy could be a good decision-making tool in selecting
a profitable condition for the biological methanation process, even if there are fluctuations in

the prices of the substrates and products.

As it was mentioned in Section 2 of Chapter 1, biological methanation is a complex process
that can be affected by several factors, such as operating conditions or fluctuations in the liquid
or gas flow rates, making the system susceptible to faults. Hence the importance of process
monitoring using machine learning soft sensors described in Section 4 of Chapter 1. Machine
learning soft sensors can be used as an alternative to detect the deviations of the biological

methanation from an optimal operation or desired state. The questions that we tried to answer
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were: Can machine learning be used as a data-driven soft sensor in biological methanation?

And can these soft sensors be used to detect faults during the process?

Therefore Section 6 presents the training of machine learning algorithms, such as Decision
Trees (DT), Random Forest (RF), Gaussian Naive Bayes (GNB), k-Nearest Neighbors (k-NN),
Quadratic Discriminant Analysis (QDA), Neural Networks (NN), and different Support Vector
Machines (SVM). The objective of evaluating multiple algorithms was to explore alternatives

with different levels of complexity and interpretability.

The results obtained in Section 5 using de MODO strategy were selected as an optimal
operation point for the biological methanation. Then, the ADM1 ME was used to generate a
dataset applying disturbances of =10, £15, and £20% to the liquid and gas inlet flow rates with

respect to their optimal values.

The results obtained are promising. DT, RF, and SVM reached the best results regarding
statistic metrics with an average F1-score higher than 0.87 and accuracy values higher than 0.90
and 0.85 in the training and test. After training several types of machine learning soft sensors,
we noticed that several algorithms could correctly classify faulty data in biological methanation.
Computation times lower than 0.19 seconds were obtained in the training of models such as

DT, while RF and SVM presented values of 13.75 and 4.77 seconds.

The results obtained in Section 6 elucidated the advantages of using machine learning soft
sensors to detect faults in the biological methanation process, especially with support vector
machine models that showed shorter computation time with good accuracy. Although the
results are promising, one of the objectives of this thesis is to provide simple, accurate, and fast

detection of faults in the biological methanation process.

Consequently, in the article of Section 7, SVM was studied in more detail and applied for
detecting faults in the biological methanation process. The selection of SVM algorithms was
based on two aspects: (i) SVM presented one of the best results compared to the other
algorithms, (ii) as mentioned in Section 4 of Chapter 1, SVM are a good alternative to construct
soft sensors given its solid foundation in statistical learning theory, the capacity to work with

high-dimensional feature space, small instances, and efficiency in avoiding overfitting.
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Quadratic, cubic, and Radial Basis Function (RBF) SVM were trained using the same principle
as the machine learning algorithms in Section 6 to detect the optimal conditions and to classify

disturbances.

The results in Section 3 were used as an optimal operation point for the biological methanation.
Then, disturbances of £10, +£15, and +20% in the inlet and gas flow rates with respect to the
optimal conditions were generated using the ADM1 ME to obtain a dataset. This dataset was
then used to train the three SVM algorithms and to detect the optimal operation as well as the

deviation from the optimal points subject to the aforementioned disturbances.

The results showed that in the test, a statistic metric accuracy higher than 0.88, 0.81, and 0.88
were obtained for the quadric, cubic, and RBF SVM, respectively. This study highlights that
SVM models were trained using pairs of features to build 2D maps that indicate if the biological
methanation process is operated in the optimal region or if a disturbance in the liquid flow rate
causes a process deviation. We concluded that SVM presents promising results to classify data
and can become a powerful tool at the industrial level in detecting and classifying faults in the
biological methanation process, mainly if these faults occur in the inlet liquid and gas inlet flow

rates.

179



Section 2 Dynamic Modeling of Biological Methanation for
Different Reactor Configurations: An Extension of the
Anaerobic Digestion Model No. 1

Juan C. Acosta-Pavas?, Carlos. E Robles-Rodriguez?, Jérome Morchain?, Claire Dumas?,

Arnaud Cockx?® César A. Aceves-Lara®

aTBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France

Publications:

Acosta-Pavas, J. C., Robles-Rodriguez, Carlos. E., Morchain, J., Dumas, C., Cockx, A., & Aceves-Lara, C. A.
(2023). Dynamic Modeling of Biological Methanation for Different Reactor Configurations: An Extension of the
Anaerobic Digestion Model No. 1. Fuel, 344, 128106. https://doi.org/10.1016/].fuel. 2023.128106

Acosta-pavas, J. C., Morchain, J., Dumas, C., Ngu, V., Cockx, A., Aceves-Lara C.A. (2022). Towards Anaerobic
Digestion (ADM No. 1) Model's Extensions and Reductions with In-situ Gas Injection for Biomethane Production.
In A. Kugi, A. Korner, W. Kemmetmiiller, A. Deutschmann-Olek, F. Breitenecker, 1. Troch (eds.), 1 0" Vienna
International Conference on Mathematical Modelling (Vol. 55(20), pp. 635-6409). IFAC-PapersOnlLine.
https://doi.org/10.1016/j.ifacol. 2022.09.167

Abstract

In biological methanation, the methane produced by anaerobic digestion (AD) is upgraded with
the addition of syngas. Several mathematical models have been developed to represent the AD
process. However, the modeling of biological methanation is still under development. In this
work, an extension of the anaerobic digestion model (ADM1_ ME) was proposed to describe
the dynamics of biological methanation. The model considered adding syngas flow rate
(H2:CO) and adapting the volumetric mass transfer coefficient for two different reactor
configurations: bubble column reactor and continuous stirred tank reactor operating at
mesophilic and thermophilic conditions. A sensitivity analysis using the Sobol’ and Morris
methods was performed for this model, where fourteen parameters were selected for model
calibration. Simulation results showed an accurate fit for two experimental operating conditions
from literature with a RMSE <5.15. The results showed the feasibility of the ADM1 ME to
describe the biological methanation process at different operational conditions and reactor

configurations.

Keywords: Anaerobic Digestion, Biological Methanation, Sensitivity Analysis, Parameter
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2.1 Introduction

The production of biogas (a mixture of CH4 and CO.) by anaerobic digestion (AD) is currently
one of the most promising options in terms of bioenergy production (Brémond ef al., 2021).
This biogas can be used locally to generate heat or electricity without any additional processing.
However, it needs to be refined or purified to be used as vehicle fuels or for injection into the

gas grid system (Gustafsson et al., 2021; Zupancic€ et al., 2022).

Biogas could endure post-treatment alternatives either to remove impurities (e.g., H2S, excess
of water) or to be upgraded into biomethane (95 — 99 % CHas) for a further injection in the gas
grid. Biogas upgrading involves increasing the CH4 concentration by removing CO; (Iglesias
et al.,2021; Rusmanis et al., 2019). Some technologies employed in biogas upgrading include
physical absorption (water, amine, and organic scrubbing), pressure swing adsorption, and
membrane separation (Gustafsson et al., 2021; Iglesias et al., 2021). Another process that has
gained interest and is currently under development is biological methanation, also called

biomethanation (Rafrafi et al., 2020).

In the biological methanation process, the CO> contained in the biogas is converted into CH4
by using hydrogen coming from the addition of syngas, which is generally composed of CO,
CO, and H> (Rusmanis et al., 2019). Biological methanation involves a complex microbial
consortium whose composition changes due to operational conditions, such as temperature, pH,
hydraulic retention time, and syngas composition (Grimalt-Alemany et al., 2020; Li et al.,
2020). Biological methanation can be performed either in-situ where syngas is introduced into
the AD reactor, or ex-situ, where a microbial consortium, coming from the AD and adapted for
H> consumption, is introduced into a second bioreactor to convert syngas into a high-purity CHs

(Rusmanis et al., 2019).

Until now, the development of dynamic models for AD has been focused on incorporating
detailed knowledge of the process stages, the microorganisms involved, and the operating
conditions. One of the first dynamic models to investigate AD was proposed b Mosey (1983),

who developed a model to consider how the microorganisms managed to control the pH value
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and the redox potential of their growth medium. A dynamic model describing AD from several
types of wastes was developed by Angelidaki ef al. (1999). Their work described the substrate
by its composition in terms of essential organic components, i.e., carbohydrates, lipids, proteins,
volatile fatty acids, long-chain fatty acids, and inorganic components. This partition allowed
the authors to simulate the dynamic changes during the process with different types of
substrates. Batstone et al. (2002) proposed the well-known Anaerobic Digestion Model No. 1
(ADM1), which included multiple steps describing the biochemical and physicochemical
reactions involved in AD. Regarding the biochemical reaction, the ADMI1 considers the
disintegration of components, such as carbohydrates, lipids, and proteins, into particulate

constituents that are further hydrolyzed into soluble monomers precursors of CH4 formation.

The physicochemical reactions describe ion associations, dissociations, and gas/liquid transfer
phenomena. The ADMI has been modified (Rosen and Jeppsson, 2006) to solve stiffness
problems, mainly due to the mass transfer equations. Thus, these authors proposed a Benchmark
Simulation Model (BSM). Several researchers have adapted the BSM to consider inhibition by
free ammonia in high-solid sludge fermentation (Bai et al., 2017), to design optimal continuous
operation of experimental anaerobic digestion (Balde et al., 2020), or to simulate the dynamic
behavior of a pilot-scale process for two-stage anaerobic digestion of sewage sludge

(Blumensaat and Keller, 2005).

Modeling of biological methanation has been scarcely studied. To our knowledge, only a few
works have been reported. Grimalt-Alemany et al. (2020) proposed two structured models to
describe the mesophilic and the thermophilic syngas biological methanation processes in batch
mode. Each model presented a different structure based on catabolic routes as a function of the
operating conditions. All biomass growth processes were made thermodynamically consistent
by including a thermodynamic potential factor. Although these adaptations improved the
predictive capacity of the models, the studied carbon source was only limited to the added gas,
which could hamper any straightforward adaptation to other sources, such as agro-industrial
residues, sludge, or sugars. The different volumetric mass transfer coefficients were calculated
experimentally under specific mesophilic and thermophilic conditions. Although promising, the

validation of results and the calculation of the mass transfer coefficient from experiments make
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the adaptation of the model to other reactor configurations and conditions difficult. Sun et al.
(2021) proposed an extension of the ADMI1, considering biochemical reactions for the CO
contained in the syngas under mesophilic conditions in continuous mode. In their work, a
volumetric mass transfer equation was developed from the two-film theory to describe the mass
transfer process. This consideration makes it difficult to apply the model to different process

conditions and increases the number of parameters in the process.

Both models are a good basis for modeling the biological methanation process. However, they
present deficiencies in considering the type of reactor, which directly affects how the mass
transfer phenomenon is represented. This is highly important since H> transfer is one of the
limiting factors of biological methanation (Ngu ef al., 2022). Additionally, the model from Sun
et al. (2021) does not present the dynamic behavior of components, such as CO», which
complicates the comprehensive analysis and the closing of the carbon balance in the biogas

produced from AD.

This work aims to generate advances in understanding the dynamics of the biological
methanation process by extending the Anaerobic Digestion Model No. 1 (ADM1_ME) to
consider in-situ syngas addition. The model could be adapted to different substrates: agro-
industrial waste, sludge, or sugars, and considers the addition of syngas at mesophilic and
thermophilic conditions. The ADM1_ME represents the dynamic behavior of CH4, Hz, CO, and
CO in liquid and gas phases, the inclusion of CO as a substrate of the process, and the
adaptation of the volumetric mass transfer coefficient for two different configurations of
bioreactor: bubble column reactor (BCR) and continuous stirred tank reactor (CSTR). This new
model is based on the need to have a generic model for the biological methanation process with
the capacity to be adapted to mesophilic and thermophilic conditions, to different substrates,
and to allow the dynamic analysis of the volumetric mass transfer coefficients for different

types of reactors.
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2.2 Description of the Biological Methanation Process

Biological methanation is a process in which the biogas produced through the well-known AD
is upgraded by the biological conversion of COz and syngas to obtain high-purity CH4 (Rafrafi
et al., 2020). In AD, the organic matter, such as agricultural residues, organic effluents from
the food industry, animal manure, or waste/wastewater residues, are transformed through the
synergistic work of a variety of microorganisms into a mixture of CH4 and CO; through four
steps: (i) hydrolysis, (ii) acidogenesis, (iii) acetogenesis and (iv) methanogenesis (Dar et al.,
2021). The biogas produced in the AD contains between 50 - 75% of CHa4, 25 —50 % of CO,
and 2—7% water vapor (Iglesias ef al., 2021; Laguillaumie et al., 2022; Zupancic et al., 2022).
Hereby, the process is extended to biological methanation, which includes CH4 production from

a gas load, converting an inlet flow of H, and CO into high-purity CHs (Sun et al., 2021).
2.2.1 Hydrolysis

In this step, the fermentative bacteria release enzymes that transform complex organic polymers
(carbohydrates, proteins, and lipids) into soluble monomers, such as monosaccharides, amino
acids, and long-chain fatty acids (LCFA). This process generally takes place on the surface of
the acidogenic bacteria as it involves exo-enzymes secreted by hydrolytic bacteria, such as
Clostridia, Bacteroides, Fusobacterium, Butyrivibrio, Micrococci, Streptococcus, and

Selenomonas (Chandra et al., 2012; Czatzkowska et al., 2020).
2.2.2 Acidogenesis

Throughout the acidogenesis, the dissolved monomers or oligomers, amino acids, LCFA, in
general, the components produced in the hydrolysis step undergo degradation reaction. These
components are diffused into the acidogenic bacteria through the cell membrane and later
fermented or anaerobically oxidized (Henze et al., 2019) and produce mainly volatile fatty acids
(VFA), such as propionate, butyrate, valerate, acetate, as well as new cell material. This step is
carried out by the action of bacteria of the genera Bacillus sp., Pseudomonas sp., Clostridium

sp., and Bifidobacterium sp. (Czatzkowska et al., 2020; Dar et al., 2021).
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2.2.3 Acetogenesis

The VFA produced in the acidogenesis are reduced and transformed into acetate, H», and CO»,
as well as in new cellular material by the action of bacteria of the genera Clostridium,

Syntrophomonas sp., Syntrophobacter sp. (Chandra et al., 2012; Czatzkowska et al., 2020).
2.2.4 Methanogenesis

Acetate and H are converted into CHs and CO», as well as in new cellular material in two types
of processes, hydrogenotrophic methanogenesis, and acetoclastic methanogenesis, by the
strictly anaerobic methanogens of the order Euryarchaeota: Methanobacteriales,

Methanococcales, Methanomicrobiales, Methanosarcinales, and Methanocellales.

In hydrogenotrophic methanogenesis, the CO is reduced into CH4 using H» as a reduction agent
(Ashraf et al., 2020) by the action of hydrogenotrophic methanogens, Methanobacterium,
Methanogenium, Methanocorpusculum, Methanothermobacter and Methanosarcina. In
acetoclastic methanogenesis, the acetate is decarboxylated and converted into CH4 by the action
of acetoclastic methanogens, Methanosaeta, Methanococcoides, and Methanosarcina
(Bharathiraja et al., 2016; Czatzkowska et al., 2020; Dar et al., 2021; Dev et al., 2019; Henze
et al.,2019; Saha et al., 2020).

2.2.5 Biological Methanation

Biological methanation occurs in the last stage of AD. The syngas loading (commonly a
combination of H>:CO:CO3) can be used to improve the process and convert the H, and CO>
into CH4 (Rusmanis et al., 2019). The hydrogenotrophic methanogens with CO> consumption
transform the H>. Although this is a well-known route, CO consumption is still unclear (Sun et
al., 2021). The CO can be transformed indirectly into H> by carboxydotrophic
hydrogenogenesis (water gas shift), then into acetate by CO-acetogenesis or CO-
homoacetogenesis, and finally transformed into CHs4 through the hydrogenotrophic and
acetoclastic methanogenesis (Guiot et al., 2011). Table 2.2.1 presents a summary of the

reactions involved in the biological methanation process.

185



Section 2. Dynamic Modeling of Biological Methanation for Different Reactor
Configurations: An Extension of the Anaerobic Digestion Model No. 1

Table 2.2.1. Reactions involved in biological methanation. Adapted from (Angelidaki et al.,

2011; Ashraf et al., 2020; Liu et al., 2016; Pan et al., 2021; Rafrafi et al., 2020; Sun et al.,

2021).
Reactions AG°'(kJ /mol)
Acidogenesis reactions:
Acetate:  Cg4H,0¢ + 2H,0 - 2 CH3;COOH + 4H, + 2CO0, -206
Butyrate: C¢H.,0¢ - 2 CH3;CH,CH,COOH + 2H, + 2CO0, -254
Propionate: C¢H;,0¢ + 2H, » 2 CH3;CH,COOH + 2H,0 -279.4
Acetogenesis reactions:
Propionate: CH;CH,COOH + 2H,0 — CH;COOH + 3H, + CO, +76
Butyrate: CH;CH,CH,COOH + 2H,0 — 2CH3;COOH + 2H, +48.4
Methanogenesis reactions:
Hydrogen: 4H, + CO, —» CH, + 2H,0 -130.7
Acetate: CH3;COOH — CH, + CO, -31.0
Carbon monoxide reactions:
4C0 + 2H,0 » CH3;COOH + 2 CO, -176
2C0 + 2H, » CH3COOH -67
CO + H,0 » CO, + H, -20

The biological methanation process can be performed in two ways: in-situ (directly in the AD
reactor) or ex-situ (in a separate unit). The advantage of in-situ biological methanation is the
reduction of infrastructure costs due to the use of only one reactor where syngas is directly
added, allowing AD and biological methanation to occur simultaneously. The main drawback
of in-situ biological methanation is that AD can be affected by the high concentration of gas.
For instance, the H> added into the system can inhibit the early stages of the process. On the
other hand, ex-situ biological methanation takes place in a separate external reactor, typically
adapted to suit the hydrogenotrophic methanogens. Regardless of the type of configuration,
microorganisms and metabolic pathways are similar (Mulat et al., 2017; Rafrafi et al., 2020;

Rusmanis et al., 2019).
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2.3 Anaerobic Digestion Model Extension (ADM1_ME)

In this work, an extension of the Anaerobic Digestion Model No. 1 (ADM1_ME) is proposed
based on the biological methanation scheme presented in Figure 2.2.1. The scheme includes

acidogenesis, acetogenesis, methanogenesis, and its extension to consider CO and H> addition.

[ Monosaccharides ]
T
Hs

| l

[ Propionate ] [ Butyrate ]

I Reaction rates —

i Hbw Syngas addition i = =
PIro’
i Inhibition concerning H,
Inhibition concerning CO
\
“’[ Acetate ] Ihz, k [ CO, / Hy ]‘1
A |
Hac M2
CH g !
A e
/ B :_ r_Hl / (_(_)j
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addition
Heo | Lecton )
|
co - e J

Figure 2.2.1. Biological methanation scheme implemented in the ADM1 ME including: (ug,)
acidogenesis from sugars, (ypm) acetogenesis from propionate, (u;,) acetogenesis from
butyrate, (u,.) acetoclastic methanogenesis, (Uy,) hydrogenotrophic methanogenesis, and
(Uco) acetogenesis and carboxydotrophic hydrogenogenesis from carbon monoxide.

Iy, concerns inhibition with respect to Ha, and I  concerns inhibition with respect to CO.

2.3.1 Mass Balances

Mass balances are derived from the ADM1 proposed by Batstone et al. (2002), which considers
disintegration, hydrolysis, and uptake of the various components as well as biomass decay.
Differently from ADMI, the model extension ADM1_ ME considers the uptake of sugar,
volatile fatty acids (e.g., butyrate, propionate, and acetate), the uptake of H> and CO, and
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biomass decay. The model describes three types of variables: soluble (S, ;), particulate (X;)

and gas (Sgas,l-) components. Particulate components are considered to be part of the biomass

as in the ADMI1 (see Annexes Section 1 for more details). The model is here rewritten as

Equations (2.2.1)—(2.2.3).

State variables in the liquid phase (S lig,j ):

dsl' J qlln .
— 2 = A (Si i =Suiq ) + Z Y fj b —N; (2.2.1)
at Vg 4

State variables in biomass (X} ):

dXj ‘hm ;
—— = L (X Xp) + Yietse — Miegec (22.2)
dt Vi
State variables in the gas phase (S gas, i):
. in .
ASgas,i _ gas Sé,ﬁsﬁNi <Vllq> _ 9gas Syasi (2.2.3)
dt Vgag ’ Vgas Vgas

Sub-index j € [1,8] denotes glucose, butyrate, propionate, acetate, H,, CHs, CO, and CO in the liquid
phase. The H,, CHs4, and CO are expressed in gCOD /L, and CO; is expressed in mol/L. Chemical
Oxygen Demand (COD) is the amount of oxygen needed to degrade the organic matter into CO, and
HO. It is important to mention that CO, would be expressed in moles instead of COD, as suggested in
(Batstone et al., 2002). Sub-index k € [1,6] reads for the biomass that degrade glucose, butyrate,
propionate, acetate, H», and CO, respectively. For the gas phase, the sub-index i € [1,4] corresponds to
H,, CH4, CO, and CO,. The inlet flow rates of liquid and gas are represented by qfﬁl and qggs,
respectively, while qg445 denotes the outlet gas flow rate. Vj;, and V44 are the liquid and gas volumes,
respectively, Sli{;, o Sg}ls’i , and Xi* hold for the inlet concentration of the component j in the liquid
phase, the inlet concentration of component i in gas phase, and the inlet concentration of biomass k in

the liquid phase. Yy is the yield of biomass £, f;; the stoichiometric coefficients; y; and py gec the

growth and decay rate of biomass £, and N; the mass transfer rate of component i.
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In Equation ( 2.2.1 ), the term — ¥3_,(X7-; Cjvj ety ) is introduced in the CO mass balance
for the liquid phase (Annexes Section 1.2, Equation ( 4.1.9 )), based on the original version of
the ADM1 (Batstone et al., 2002) (without considering the components associated with the
hydrolysis). This term describes the fractionation of inorganic carbon, the composition of
various species, and a standard biomass composition (Rosen and Jeppsson, 2006). Table 2.2.2
summarizes the stoichiometric coefficients associated with the variables in liquid phase and

biomass growth.
2.3.2 Mass Transfer Rate Definition

The gas-liquid mass transfer rates are expressed as in Equation ( 2.2.4 ) to relate the liquid and

gas balances.

N; = kya;(Siq; — YcopiHiPyas,i) (224)

where N; is the flux of species Hy, CHa4, and CO, expressed as gCOD /L/d, and CO, expressed
as mol/L/d . kya; is the volumetric mass transfer coefficient of component i, and
(Sliq'j —VCOD,iHinas,i) is the driving force. H;, and Py,s; are Henry’s law equilibrium
constant and partial pressure of component i, respectively. ycop; 1S a conversion factor

between the moles and gCOD of a component i, e.g., 16 gCOD /mol for H> and CO, and 64
gCoD /mol for CHa.

The volumetric mass transfer coefficient (k,a) was set constant (200 1/d) in the ADMI
(Batstone et al., 2002). However, for the biological methanation process, it is necessary to
integrate the effect of the addition of gas on mass transfer. Depending on the reactor
configuration, well-established correlations for BCR Equation ( 2.2.5 ) and CSTR Equation (
2.2.6 ) have been used to estimate k; a. Both rely on the superficial gas velocity defined as the
inlet gas flow rate divided by the cross-sectional area of the vessel (U; = qgas /A). If there is
no addition of gas to the system, U is zero. In a BCR, the sparger type is crucial to ensure
efficient gas distribution (Nauman, 2008). For a CSTR, the energy injected in the system

controls the bubble size and turbulence, thus correlating with the mass transfer coefficient. This
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energy dissipation per unit of volume in the presence of gas, the so-called gassed power input
(Power ), depends on the impeller type, rotation speed and aeration number (Gary, B.

Tatterson, 1991; Liu et al., 2019).

2.3.2.1 Bubble Column Reactor (BCR) Volumetric Mass Transfer Coefficient

The volumetric mass transfer coefficient in a BCR can be defined as,

b
kLa,[ — b(),OPlUGllopl ( 225 )

U; 1s the superficial gas velocity, by gp1 and by gp are parameters that can be affected by the
liquid phase properties and type of sparger. Values of 0.467 and 0.82 were respectively
proposed by Deckwer et al. (1983) for tap water and salt solutions with U, ranging between
0.002-0.08 m/s.

2.3.2.2 Continuous Stirred Tank Reactor (CSTR) Volumetric Mass Transfer Coefficient

The volumetric mass transfer coefficient in a CSTR can be defined as,

b
(Power) YO baor: (226)

by op2, b1op > and b, pp, are constant parameters. The values of by gp, and b, pp, present
variations: 0.4<b; op,<1 and 0< b, p,<0.7. The value of b, op,, however, is not reported in
most cases, but it is highly correlated to by gp, because (Power/ Vi ) range from 1x10° -
1x10* (Van’t, 1979). This means that if small variations are introduced into by 0p 5 bo,op

would show large changes.

The mass transfer coefficient k; is proportional to the square root of the diffusivity in the liquid
phase (Higbie, 1935). In a biological methanation process, some substrates (Hz, CO, and COz)
are initially present in a gaseous form and must thus transfer from the gas to the liquid phase
before getting involved in the biochemical reaction. As a result, the biochemical reaction rates

might be, in the end, limited by the mass transfer rate. When comparing different gases,
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considering both the k; a and the solubility it appears that the lowest value is that of k; ay,. For
this reason, it can be claimed that if mass transfer becomes the limiting phenomena, it will be
the mass transfer rate of H, which limit the bioreaction rate (Jensen et al., 2021; Ngu et al.,
2022). Therefore, only k;ay, was calculated using Equation ( 2.2.5 ) and Equation ( 2.2.6 ).

The rest were calculated as,

D; (22.7)

kLa,i =kpay; _D
H2

In this equation, the sub-index i € [1,4] corresponds to Hz, CH4, CO, and COy. Dy, is the
diffusion of H, and D; is the diffusion of CH,, CO, and CO,.

An interesting analysis can be performed by increasing Ug in the BCR, and the Power /V;, in
the CSTR. For the case of the BCR, it was assumed that the organic loading and gas loading
rates were the same as proposed in the operational condition one (OP1) (Section 2.5, Table
2.2.4). Figure 2.2.2-A displays the variation of k;a; with the change of U;; in a range from 173
to 6912 m/d, i.e., the boundaries indicated by Deckwer et al. (1983) ranged between 0.002 and
0.08 m/s. All the k; a,; increased with a different rate, i.e., k; a,y, was the higher, followed by
kia,co, k.a,coz, and k;a,cys. For the case of the CSTR, the organic loading and gas loading
rates were assumed to be the same as proposed in operational condition two (OP2) (Section 2.5,
Table 2.2.4). The qg}ls was fixed at the maximum value proposed for OP2. Figure 2.2.2-B
shows the variation of the k;a; concerning Power /V,;,, which was varied from 1 to 1x10°
W /L, i.e., the boundaries indicated by Van’t, (1979) ranged between 1x10° and 1x10° W /m3
m/s. Similar to the BCR, all the k a; increased at a different rate, i.e., kya,y, displayed the

largest value, followed by k; a,co, k1a,co , and k;a,cy -
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Figure 2.2.2. Variation of the volumetric mass transfer coefficient: (A) concerning the
superficial gas velocity U; for a BCR (Equation ( 2.2.5 )), and (B) with respect to the
Power /V,;q for a CSTR (Equation ( 2.2.6)).

2.3.3 Constitutive Equations

The total (ans) and specific (ans,i) outlet gas flow rates can be calculated with Equations (

2.2.8 )and (2.2.9 ) (Rosen and Jeppsson, 2006).

Qgas = KP(Pgas - Patm) (2.2.8)
Pgas,i
ans,i = qgas ( Pias ) ( 2.2.9 )

In these equations, the sub-index i € [1,4] corresponds to Hz, CH4, CO, and COs. Kp is a
parameter related to the friction in the gas outlet, i.e., this parameter fixes the pressure drop at

the gas outlet. Py, Byas and Pyqq;, are the atmospheric, total, and partial pressure of
component i, respectively. The term (Pgas,l- / Pgas) is the molar fraction of component i, in

which the partial (Pgas' i) and total pressure (Pgas) are calculated by using Equations ( 2.2.10
)-(2.2.11).
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Pas: _ SgasiRT (2.2.10)
' Ycob,i
Pyas = z Pyas, (22.11)

where R and T are the Universal gas constant and the temperature of the process, respectively.

For each component i in the gas phase, the percent composition (pgas, l-) was calculated based

on the molar fraction, Equations ( 2.2.12).

P .
_ (Poasi) . 22.12)
Poasi = 100% (
gas,t <Pgas )

To model the conversion rates process, the biochemical reaction rates () are considered by
Monod kinetics for substrate consumption with inhibition, while biomass decay (uk,dec)
follows first-order kinetics. This allows the representation of the cell growth and death
associated with each biomass involved in the process. Their mathematical representation is

expressed as,

_ IJ-m,kSliq,j

_ (22.13)
KSk + Sliq,j

M Xicluz ilcok

Hi,dec = Kidec Xk (2.2.14)

where W,  is the maximum specific growth rate, Ks;, the saturation constant, and K}, 4. the
decay biomass constant. The term Iy, ; in Equation ( 2.2.13 ) concerns inhibition respect to Ho,
which affects the reaction rates of butyrate, propionate, and acetate. The term I, ,, concerns

inhibition respect to CO, which occurs for the reaction rates of acetate and H». Equations (

2.2.15)—(2.2.16 ) represent these inhibitions.
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1
Lipi = (22.15)
H2k 1+ Sigu2/Kluzk

1 (2.2.16)

Lo =
COrT 1+ Stig.co/Klco

K1y, i are the inhibition constants over butyrate, propionate, and acetate due to H2, meanwhile

Kl¢o x are the inhibition constants of the effect of CO over acetate and Ha.
2.4 Global Sensitivity Analysis Techniques

Biological kinetic models are constituted of several parameters, e.g., stoichiometric,
biochemical, and physicochemical parameters, which present a certain degree of uncertainty.
Sensitivity Analysis (SA) is a powerful alternative to determine how the uncertainty of the
model inputs or parameters influence the outputs (Damblin et al., 2013; Sepulveda et al., 2013;
Sohier et al., 2014; Tosin et al., 2020). Sensitivity Analysis was developed to identify the
contribution of each uncertainty of the inputs on the outputs (Feng et al., 2019; Kucherenko et
al.,2015; Zhang et al., 2015). Techniques for SA can be classified into local and global (Morio,
2011; Ochoa et al., 2016). In the context of this work, we will focus on Global sensitivity
analysis (GSA).

In GSA, the model is studied from a probabilistic point of view. The exploration of the entire
range of variation of the model parameters is considered using a probability density function
associated with each input parameter and repeated simulations of the model (Iooss and
Lemaitre, 2015; Ochoa et al., 2016; Tosin et al., 2020). GSA could employ regression,

screening, and variance-based methods (Sepulveda et al., 2014).
2.4.1 Sobol’s Method

The Sobol method (Sobol’, 2001) is an interesting variance-based method in which the variance

of the model output can be decomposed into partial variances that represent the contribution of
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the inputs over the overall uncertainty of the model output (Morio, 2011; Ochoa et al., 2016;
Sepulveda et al., 2013; Sobol’, 2001; Tosin et al., 2020).

Consider the model define by &, Equation ( 2.2.17).

Y = [Siiqj» Xk Sgasi] = &(0) (2.2.17)

where Y € R™ is the model output of interest, and @ € R" is a n-dimensional parameter vector

defined as 8 = (64, 0,, ..., 8,) and characterized by a probability density function (PDF).

The function §(0) can be decomposed into summands of different dimensions, Equation (

2.2.18).

P=f 4 Y BO)+ Y Ey(08) b 08 = Y Bu(8)  (2218)
i=1

1<i<jsn uc{1..p}

where:

& = E[Y]
£.(0) = E[Y]6;] — & (2.2.19)

§j(6.6;) = E[Y]6;,6;] =% — & —§;

& is the mean of the function, &;(0;) and §; ]-(Hi, 9]-) are the expectation terms of increasing
order and the conditional expectations defined recursively. This decomposition is unique,
provided the inputs are independent, and the individual terms are square integrable. Squaring

Equation ( 2.2.18 ) and integrating, we can get the so-called ANOVA decomposition as,

V() = ZVL.(HL.) R z v, (6,0) +-+v, .o, ...,QH)ZV(zu(eu)) foruc{1,.n} (1220)

1<i<j<n

where V(Eu (Hu)) express the conditional variance for the subvector 8,,, containing the variables

whose indices are indicated by the subset u.
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The variance of the output can be decomposed into terms depending on the parameters and their
interactions. The variance-based sensitivity index (SI) associated with the subset u is defined
as the ratio between the contribution given by the interaction among the components of u for

the model variance and the total variance, Equation ( 2.2.21).

RACH)) (2221)
==V~

Based on this, foru c {1,...n}, and u # 0,

n
251u = ZSIi + Z Slij+ - +SL, =1 (2222)
u i=1

1<i<jsn

The term SI; is the first-order sensitivity index, which measures the fraction of the total output

variance explained by the parameter 6; alone as,

B V(%:(6))

_ (22.23)
Sl ==

Similarly, SI;; is the second order-sensitivity index that measures the amount of variance

caused by the interaction between the parameters 6; and 6; as,

(?/’(—(Y)’)) 1<i<j<n (2.2.24)

SIl] =
It is possible to construct the SI for all orders until the nt" order index SI; ,,, which represents
the contribution of the interactions between all the parameters in 8. To measure the full
contribution of the i*" random parameter 6; for the total variance either by its single effect or

by its interaction with others, we use the total Sobol’ indices,
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SIlT = Z Sl i=1,..,n (2.2.25)

uc{i,..,n}
i€u
Equation ( 2.2.25 ) indicates that the total sensitivity index does not only include the marginal
contribution of 8; to the variance of the output, but it also contains its cooperative contribution
with all the other inputs. The total sensitivity index removes the parameter 8; from the analysis

and allocates the resulting variance reduction to that parameter.
2.4.2 Morris Method

The Morris method is the most well-known (Morris, 1991) screening method which performs
SA by analyzing one-factor-at-a-time (OAT). This is generally used when the number of model
parameters is large, and the computation of model simulations is expensive. This method
provides qualitative sensitivity measures, ranking the factors by their importance. Nevertheless,
it does not quantify the importance of one factor concerning another (Saltelli, 2004). The Morris
method applied to parameter sensitivity discretizes the space of each parameter and performs a
given number of OAT designs. These designs and variation directions are randomly chosen

from the parameter space. The repetition of these steps allows the estimation of elementary
effects (E E l] ) for each parameter i, which represents the relative difference between the outputs

and the j** parameter disturbance (Feng et al., 2019; Iooss and Lemaitre, 2015; Morio, 2011;
Morris, 1991; Saltelli, 2008).

Consider a trajectory in the parameter space as,
0/ =0/ 4N j=1,..r (2.2.26)

where j = 1, ..., 1 corresponds to the number of repetititons and @ € R™ is an n-dimensional

parameter vector defined as 8 = (64, 0,, ..., 0,).
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The effect of parameter variation can be evaluated by estimating the difference between the
model output with the actual parameter Hl.j and the updated parameter Hl.j + e/ AJ over a given

increment AJ. e/ is a vector of zeros but with a unit as its j** component (canonical base). This

variation is referred as elementary effects, which can be calculated as follows,

£(6] +e/n)) —&(6]) (2.227)
A

EE] =

where Hl-j is a sample of input 8 and E(Hij ) is the corresponding model output. A/ is a step
between two consecutive input space points of the trajectory. The term (911 +e/N ) represents
anew sample by moving the i*" parameter input from Hl-j to Hij + AJ , with the respective model

output §(8; + e/4)).

The index j of EE l] expresses the ratio of the change of the output ¥ when the it* parameter Hl-j

is given a particular change A/. Then, EEl] can measure the effect of Hl.j in a given scope of

output Y. The sensitivity measures are expressed in terms of means ;, and standard deviations

aij are defined as Equations ( 2.2.28 ) and ( 2.2.29).

. _ Zj=i|EE]] (2.230)
! r
; 2
. o1(EE] — i) (2.2.31)
% = r—1

where EEl-j is the elementary effect of the i*" parameter obtained at the j"* repetition. The
sensitivity measures ,ul-j and al-j are the mean of the absolute value and standard deviation of the
distribution of the elementary effects, respectively. u; measures the influence of the i"
parameter on the output. al-j is a measure of non-linear and interaction effects of the it"

parameter. A high value of y; indicates that the parameter Hij has a more important effect on
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the output. A high value of aij indicates that the elementary effect of Hij varies significantly

from one to another, which shows that the value of EE l] is strongly influenced by the selected

sample points.
2.5 Bioreactors Operating Conditions

This study used two experimental datasets from the literature to derive the model extension.
The first dataset was taken from (Sun ef al., 2021), where the experiments were developed at
operational condition one (OP1). The second dataset was obtained from (Andreides et al.,
2022), whose experiment was carried out at operational condition two (OP2). Both operating

conditions are reported in Table 2.2.3.

The measured outputs were different for each operating condition. For OP1, these corresponded
to the outlet flow rates of CHas, Hz, and CO. For OP2, the measured outputs were the percent of
CHg4, H2, CO, and CO; in the gas phase.

Table 2.2.3. Operational conditions from OP1 (Sun et al., 2021) and OP2 (Andreides et al.,
2022).

Operational conditions OP1 oP2
Reactor type BCR CSTR
Temperature (°C) 37 55
Working volume (L) 37.5 10.5
HRT (d) 20 21
Experimental time (d) 207 150
Inlet liquid flow rate (L/d) 1.9 0.5

HRT: hydraulic retention time.

In OP1, the loading consisted of two additions: glucose and syngas. The organic loading rate
(OLR) of glucose was kept at 0.5 g/L,./ d, where L, represents the volume of the reactor.
Syngas containing 50% v/v of H> and CO (H,/CO = 1) was added into the reactor with a

continuous flow but at different rates after the first reference stage. For OP2, the liquid fraction
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of the OLR was a mixture of primary sludge and activated ticked-disintegrated waste (volume
ratio of 3:1), which was fed with a flow rate varying in time. Syngas was also added into the
reactor at diverse rates after a reference stage. In this case, however, the syngas contained 55%
v/v of Hy and 45% v/v CO (H,/CO =~ 0.55/0.45). Table 2.2.4 reports the stages in which the

substrates were added to the reactors.

Table 2.2.4. Syngas flow rate, gas loading rate, and organic loading rate from OP1 (Sun et al.,

2021) and OP2 (Andreides et al., 2022).

Recirculation Organic loading
Syngas flow rate Gas loading rate
Stage Time (d) flow rate (L/h) rate (gCOD/L, /
(L/d) (L/ L, /d)
d)
OP1
Reference  1-32 0.0 0.0 0.0
I 33-64 7.5 3.75 0.2
II 65-101 7.5 60 0.2
0.53
I 102-135 15.0 120 0.4
v 136-171 37.5 120 1.0
v 172-207 37.5 240 1.0
OoP2
Reference  1-36 0.0 - 0.0 3.08
I 36-51 3.15 - 0.3 3.72
I 51-81 7.35 - 0.7 3.24
I 81-118 10.5 - 1.0 3.09
v 118-130 15.75 - 1.5 2.84

To standardize the units for both operating conditions, the OLR is expressed as gCOD/L,. /d
and the gas loading rate is expressed as L/ L, /d. In OP1, the OLR was expressed in
gCOD/L, /d by multiplying the value 0.5 gGlu/L, /d, by a factor of 1.07 gCOD/gGlu. In
OP2, a mixture of different substrates was used. Those mixtures are usually expressed in terms
of volatile solids (VS). Therefore, an equivalence between COD and VS must be estimated.
Some authors mentioned 1.42 gCOD/gVS for activated sludge (Ahnert ef al., 2021), while
others indicated values between 1.6 — 1.7 gCOD/gV§ (Batstone et al., 2010). In this case, an
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estimation using the function fmincon from MATLAB® was performed by minimizing the
RMSE with a lower and upper value of 1.42 and 1.7 gCOD /gV'S, respectively. A value of 1.62
gCOD /gVSs was obtained. Additionally, a value of 0.025 mol/gCOD was used for the CO»
balance (lower than the one proposed for sugar 0.0313 mol/gCOD). To model the mass transfer
for OP2, a value of 0.69 was used for by pp; in Equation ( 2.2.5 ) since the BCR structure is not

known in detail.

2.6 Model Calibration and Validation

In this study, model simulations were implemented in MATLAB® and run using a computer
with Intel® Core 17 8665U 2.11 GHz and 16 GB RAM. The ADM1_ ME was calibrated using
the measured outputs mentioned in the previous section, CHs, H>, and CO outlet flow rates for

OP1, and CH4 Ho, CO, and CO; percent in the gas phase for OP2.

Sobol’s method was implemented using the toolbox: Global sensitivity and uncertainty analysis
(GSUA) (Velez S. Carlos M., 2022), whereas the Morris method was performed by the toolbox:
Sensitivity analysis-Morris method (advanced) (Mr, 2022). The two abovementioned SA
methods were performed to identify the effects of a change in the parameters on the model

outputs.

The ADMI1 ME is described by 60 parameters comprising stoichiometric and kinetic
parameters (see Annexes Section 2, Table 4.2.1). Among those parameters, a group of n = 26
parameters was selected to analyze their impact on the gas flow rates for OP1 and gases percent
for OP2 (see Annexes Section 2, Table 4.2.1). Those comprised mostly kinetic parameters and
the parameters where the estimation is more uncertain. The Morris method performs analysis
upon several simulation runs, e.g., (n + 1) - 10. In this case, however, a larger number of
simulation runs were executed (n + 1) - 100, i.e., 2700, to guarantee a good sampling in the
distribution of the parameter domain. Since the Sobol' method is computationally expensive

compared to the Morris method, only 200 simulation runs were evaluated per output.

The toolbox GSUA for Sobol’ method allowed the computation of the first-order sensitivity

indices with a scalar characteristic (S1;) as,
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Shiy = §(SSE) = £ (D (Y (8) = Y (B10m))’?) (2232)

where the sum squared error (SSE) was the scalar characteristic, measured between the output
variable (Y;,(0;)) calculated with the varied parameter 6;, sampled with a uniform distribution,

and the output variable (Ym(Hi'nom)) calculated with the nominal value of the parameter

Hi,nom-

The most sensitive parameters found with SA were selected to recalibrate the model, while the
rest of the parameters were fixed to the nominal values reported in the ADM1 (Batstone et al.,

2002).

Parameter estimation was performed to minimize the adapted root mean square error
(RMSE,;) reported in Equation ( 2.2.33 ). The outputs for OP1 were the outlet gas flow rates,

Qgas,CHa»> Qgasuz> and qgqsco- Nevertheless, for OP2, the outputs were the gases percent,
Pgas,cH4> Pgas,H2> Pgas,co» a0d Pgas coz- Therefore, Equation (2.2.33 ) considers q g4, for OP1

and pggs,; for OP2.

3 ~ 2 4 n 2
RMSE,, = | Y0P 2 <|q9a5'i - qﬂas,i|> 4+ Wors <|pgas,i — Pgas,i|> (2.2.33)
=1

Nop1 =1 max (ans,i) Nop2 e max (pgas,i)

Sub-index i € [1,4] corresponds to CHs, Hz, CO, and CO». Note that only the first three are used
for OP1. nypy and ngyp, are the number of observations in OP1 and OP2. W;p, and Wyp, are

the weights to trade-off the estimation of OP1 and OP2.

Model validation was carried out with the results from OP1 (stages IV and V) and OP2 (stages
III and IV). The coefficient of determination (R?), and the root mean squared error (RMSE)

were used as criteria to qualify parameter estimation, Equations (2.2.32) — (2.2.33).
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RZ=1- (7 -Y) (2.2.34)

RMSE; = \/;Z(? —y)’ (2.2.35)

Nop1/0P2

In the former equations, i denotes CH4, Hz, and CO for OP1 and CH4, H>, CO, and CO> for

OP2. npp1/0p2 18 the number of observations for the operating condition OP1 or OP2, Y,

A~

Y nean, and Y are the experimental, mean, and model data, respectively.

Confidence intervals were determined for each estimated parameter by computing the Global
Sensitivity Information Matrix (GSIM). This matrix is based on the first-order sensitivity
indices (SI;) of the Sobol’ method and is analogous to the Fisher Information Matrix (FIM)
(Asprey and Macchietto, 2000; Rodriguez-Fernandez et al., 2007). The GSIM is calculated as,

Nopi/0P2

GSIM = Z [QT (t,) WL Q(t)] (2.2.36)

t=1

where W, is a weighting matrix usually chosen as the measurement error covariance matrix,

and Q(t,) is defined as,

SIH(ty) SI;(t) .. SLi(ty)
o) = | SE@) SE@) .. SIh(e) (2237)
SIM(E) SIPGE) . SITED

In this case, SI,' (t;) measures the sensitivity of the state Y;,, concerning the parameter 6,, at the
time t,. Then the variance of each parameter 6; can be approximated by 02(6;) ~ GSIM;* and
used to evaluate the 95% confidence intervals as: 6; + 1.96 - 6(0;) where (6;) is the standard

deviation.
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2.7 Results and Discussion

2.7.1 Sensitivity Analysis

The first-order sensitivity indices of Sobol’ Method were computed for the 26 selected
parameters and evaluated for each output and operating condition. Table 2.2.5 summarizes the

results. The sum of the variance is considered to be around 100%.

Table 2.2.5. First-order sensitivity index with a scalar characteristic (SI;5) with the Sobol’

method from OP1 (Sun et al., 2021) and OP2 (Andreides ef al., 2022).

Paramete S1;s for OP1 SI;s for OP2
r / Model
outputs Qgas,cHa YgasH2 YGgasco Ygas,coz PgascH4 DPgasH2 Pgasco Pgas,CO2
Ysu 2.8 3.0 6.2 2.5 0.7 8.4 3.6 4.1
You 4.1 59 6.7 8.0 1.3 2.9 2.5 1.7
Yoro 5.6 6.4 3.5 2.6 1.4 1.5 3.5 3.2
Yac 4.4 7.2 1.8 24 1.4 53 4.7 2.2
Yo 3.0 2.5 5.7 2.9 5.1 1.7 5.0 1.4
Yio 3.9 4.7 1.8 3.1 8.7 2.7 2.8 2.5
Mo, su 3.1 9.0 24 10.0 33 2.7 5.7 8.4
Mo bu 3.2 3.6 3.9 9.6 0.7 3.1 2.1 2.5
Wn,pro 3.0 3.4 3.1 1.7 53 11.8 8.8 0.3
M, ac 4.0 2.2 3.0 4.4 1.2 2.5 2.8 6.0
Hm.co 3.1 4.0 3.0 2.7 1.2 4.4 11.5 3.1
Hom, H2 33 5.7 4.7 2.7 0.6 3.2 4.0 11.3
fac,co 3.7 2.5 4.3 3.7 1.3 1.8 1.3 54
Klyy oc 4.0 3.3 2.6 2.1 44.2 2.0 3.9 14.6
Klyy b 4.9 3.9 33 6.7 0.8 34 4.8 0.4
Klyz pro 3.9 33 3.7 6.2 1.3 7.0 33 2.7
Klcg o 44 3.0 4.5 2.5 33 2.5 3.8 3.6
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Kleo wz 3.8 1.5 5.2 3.1 0.4 14 33 3.0
Kse, 3.5 2.6 4.0 3.4 1.7 86 25 27
Ksp, 42 1.7 3.3 2.1 2.1 36 20 09
KSyo 4.7 4.9 3.4 2.3 0.8 22 3.1 2.2
Ks,. 49 2.4 3.0 2.8 0.7 2.1 1.6 2.7
Ksco 24 2.4 3.9 3.9 4.8 3.1 32 27
Ksy, 3.0 2.9 5.1 3.0 1.8 32 37 54
kiay, 4.8 5.9 2.6 2.9 3.6 1.5 37 54

Kp 42 2.3 5.1 2.8 2.3 75 29 1.5
> 99.9 1002 99.8  100.1 100.0  100.1 100.1 99.9

This normalization helps to identify which parameters contribute the most to the total variance,

i.e., the most sensitive parameters (see Annexes Section 0-2.2, Figure 4.2.1-Figure 4.2.2).

Sobol' method allowed the determination of the first-order sensitivity index given the scalar
characteristic. A threshold value of 5% was proposed to consider which parameters were

sensitive.

Concerning OP1, a value of 5.6 was obtained for the first-order sensitivity index of ¥,
compared t0 qgqs,cra- FOr Ggasuz, the parameters Wy sy, Yac, Ypro, You, Kr@pz, and Wy po
were found to be the most sensitive. Regarding qg45,co, the parameters reporting the highest
values were Yy, Yoy, Yoo, Klco pz, KSyz, and Kp. Finally, the parameters Wy, cu» Bmpus You

Klyz, by, and Kly; pro were found to be the most sensitive for qgq,co2-

For OP2, the parameters Kly; q¢, Umpro> Yco» and Yy, were reported as the most sensitivities
for the pgqschsa. Regarding pyasn2, the parameters Wy, 10, KSsys You, Kp, Kl pro» and Yqc
were found to be the most sensitive, while the parameters reporting the highest values for

Pgas,co WET€ Wm co»> Mmpro> KSsus Mmsu> and Yeo. Concerning qgqs.c02, the most sensitive

parameters were K1y ac, Wm,H2> Winsus Hm,acs fac,co» KSh2, and kpay,.
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In OP2, Ksg, presented an effect on the model outputs qgq5cn and qgqs,co » While Ky, ¢

affected qgas 2 and qgqsco - The growth rate Wy, -, presented an effect over qgqqc0 and

Qgas,coz> While Wy, o, did it over qgq5 cHsa and qgqs 2. The model outputs qgq5 52 and Ggqsco2

were also affected by Y. The other high-influence parameters reported an effect in just one

output. Therefore, the selection of unique candidates for parameter estimation was not

straightforward. Nevertheless, parameters that appeared as sensitive for most of the model

outputs were considered good candidates for parameter estimation, e.g., Yy, Ypr0.Yco, Mm sus

U, pro» Kly; acr KSsy, and Kp.
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Figure 2.2.3. Morris sensitivity analysis with OP1 over the model outputs: (A) qgqs,cH4, (B)

qgas,HZa (C) qgas,COa and (D) CIgas,COZ-
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Figure 2.2.4. Morris sensitivity analysis with OP2 over the model outputs: (A) pgas.cn > (B)

Pgas,H2» ©) Pgas,co» and (D) Pgas,coz-

The elementary effects of the Morris method were computed for all 26 parameters. Figure 2.2.3

and Figure 2.2.4 show only the high influence factors identified for each output ordered by

ascending maximum (see Annexes Section 2, Table 2.2.5 for more details). For OP1, 12, 10, 8,

and 5 parameters were determined as high-influence factors over q g4 cHas Qgas,H2> 9gas,co»> and

dgas,co2, respectively. Differently, for OP2, 10, 11, 7, and 18 parameters were determined as

high influence factors over pgqs cHas Pgas,H2s Pgas,co» a0d Dgas,co2» respectively.
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As both operating conditions represented different output variables (OP1: outlet gas flow rates
and OP2: gases percent), the sensitivity concerning each factor could be different. Additionally,
the operating conditions are not the same. OP1 was carried out under mesophilic temperatures,
while OP2 was developed under thermophilic conditions. These conditions could affect the
kinetics at which microorganisms are converting the substrates. Therefore, the best trade-off
was pursued with both sets of parameters. In OP1 parameters, such as Py, s, Yous Yac, M acs
and Ksg, presented an influence over all the model outputs, and Yy,,.,, Kp, and p,y, - affected
the model outputs qgas crar QgasHz> aNd Ggasco- KSqc and Ksp,, only influenced qgqs,cha
and qgqs n2- The other high-influence parameters presented an effect just in one output. In OP2,
Hm.su> KSg2, Umu2, Yy influence all the model outputs. Y., Wy a0, and Yy, reported an
influence on Ggas,ch4, Qgasuz, and Ggascoz, and Ksco, Hm,co, and Y¢o affected qgqsp2,
dgas,co» a0d qgas.co2- Kz ac, and Ksg. presented an influence on qgqscnsa and qgqs.co2- The
other high influence parameters presented an effect just in one output. Therefore, good
candidates for parameter estimation were Yg,, V0, Yac, Wmsus> Mmpros Mmac> Mmaz> KSsus

Ksge, KSyy, and Kp.

Both methods were similar in measuring the contribution of the parameters to each model
output, either by the first-order sensitivity index or the elementary effects. However, Sobol’
method was more computationally expensive. For instance, it takes more than one hour to run
200 simulations per output, while the Morris method ran 2700 simulations per output in less
than one hour. Comparing the two sensitivity methods, selecting a group of parameters to be

estimated was possible.

Table 2.2.6 reports the 14 most sensitive parameters of ADM1 ME that affect the model

outputs of both operating conditions.
2.7.2 Parameter Estimation and Model Validation

The 14 most sensitive parameters were estimated using the finincon function from MATLAB®
to solve an optimization problem whose objective function was given by Equation ( 2.2.33 ).

The weights Wyp; and W,p were manually adjusted to values of 1 and 1 X 103. To guarantee
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that the optimum was a global optimum, simulations were run ten times, adding 10% noise to
each obtained parameter after the third iteration. The RMSE,g; was minimized to a value of
10.67. Table 2.2.6 shows the estimated parameters and their respective confidence intervals.
Parameters such as Yg,, Yyu, YprosYac» Yoo, Mmpz» KSsu, KSqc and Kp have confidence
intervals according to their magnitude, and contain the initial value used in the estimation.
Parameters such as W, s, KIgz oc, and Ksy, have smaller confidence intervals, indicating that
their values cannot change significantly, i.e., there is a 95% probability of finding their precise
value in the given interval. The confidence intervals for p, 4. and Wy, ,-, are comparable with

the mentioned work (Blumensaat and Keller, 2005) and the values reported in the original

ADMI (Batstone et al., 2002).

Table 2.2.6. Estimated parameters for the ADM1 ME.

Parameter Initial value Estimated value value
You 0.11 0.0814
You 0.06" 0.0605
Yoro 0.06" 0.0281
Yo 0.057 0.0429
Yeo 0.025%* 0.0226

Hom, su 45% 31.59
Hom,pro 131 10.40
Hm.ac 12.5% 8.79
Mo, H2 90* 109.47
Kl ac 1.00x107°" 9.75x107
Ksg, 0.02* 0.0211
Ks,. 0.05* 0.0496
Ksy» 1.00x107* 1.03x10¢
Kp 5.00x10% 4.99x10*

Reference of the initial value used in parametric estimation: Y(Batstone et al., 2002) * (Sun et al., 2021)

Table 2.2.7 reports the statistical evaluation of the calibration of the ADM1 ME with the two

operating conditions. Values higher than 0.90 and 0.91 were determined for R? with OP1 and
OP2.

The variables qgq5cn and pgas cua reported the highest values corresponding to 0.95 and 0.98,

respectively. In general, the ADM1_ ME showed a good fitting to the results of both operating
conditions. Concerning the RMSE, values lower than 0.38 and 2.52 were obtained with OP1

and OP2, where the variables qgqs,cHa» Qgas,co> Pgas,cia aNd Dgas cha displayed the best results.
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The model showed better accuracy on these variables, i.e., the variation in error when the model
results and the operating conditions are compared is lower for these variables. The difference

in the magnitude between the RMSE for OP1 and OP2 is related to the magnitude of Aq g4
and Apggs,; (numerators in Equation ( 2.2.33 )) , and the use of the weights W,p and Wyp,

previously proposed (Wpp, = 1 X 103Wyp;) helps to counterbalance the differences in

variable magnitude when the optimizer is applied.

Table 2.2.7. Statistical analysis for ADM1_ ME calibration with OP1 and OP2.

OP1 OP2
Criteria
ans,CH4 ans,HZ qgaS,CO ans,COZ pgas,CH4 pgas,HZ pgas,CO pgas,COZ
R? 0.95 0.90 0.90 -- 0.98 0.97 0.96 0.91
RMSE 0.29 0.38 0.27 -- 1.06 1.94 1.36 2.52

Figure 2.2.5 displays the results of the simulations of the ADM1 ME with the estimated
parameters against the experimental values. Regarding the experimental values, it is important
to note that the behavior of the experimental data obtained from the two operational conditions
differs. For OP1, there is an increase in the CH4 content with a decrease in the CO> content,
demonstrating the conversion of CO; into CH4. However, for OP2, a decrease in both was
observed. This decrease represents the negative effect of increasing the syngas addition in the
biological methanation process (Andreides ef al., 2022). Even if different, the model fitted both
datasets correctly. For OP1 (Figure 2.2.5-A), the model correctly fitted the experimental
behavior of qgqscns and qgqsco - However, it presents difficulties in reproducing the
experimental behavior of qgqsp2. This could be due to unreported changes in the syngas
composition, which was assumed to be the same for the simulations. Although there is no
experimental data available for qgq5c0 , the model simulates qg45c02, Whose dynamic is
reducing progressively to compensate for the increase in methane content. On the other hand,

Figure 2.2.5-B shows the ADM1_ ME adjustment with the OP2. The model reproduces in a

better way the behavior of pgqs cha» Dgas,nz> Pgas,co» and Pgasco -
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Figure 2.2.5. Outlet gas flow rate (qgas,i) and gas percent (pgasli) with the ADM1_ME. (A)
OP1 and (B) OP2.

Table 2.2.8 reports the statistical evaluation of the ADM1 ME validation with the two
operating conditions. Values higher than 0.74 and 0.82 were obtained in the R? with OP1 and
OP2, except for qgqs,cn - Concerning the RMSE, values less than 0.94 and 5.15 were exhibited
with OP1 and OP2. The best-predicted variables were qgq5n2 and qgqs.co (R? > 0.74 and

RMSE < 0.94) with OP1. Concerning OP2, all the variables presented similar fitting (R? > 0.82
and RMSE < 5.15), resulting in a better model prediction.

Table 2.2.8. Statistical analysis for ADM1_ ME validation with OP1 and OP2.

OP1 oP2
Criteria
qgas,CH4- qgas,HZ qgas,CO qgas,COZ pgas,CH4 pgas,HZ pgas,CO pgas,COZ
R? 0.39 0.74 0.81 -- 0.84 0.87 0.82 0.83
RMSE 0.94 0.94 0.22 -- 5.15 1.79 1.30 4.19
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2.7.3 Model Analysis

Figure 2.2.6 presents the concentration of Sy;g sy Siig,bus Stigpro» Stig.acs Stig,cos Stig,Hz» Stiq,cH4»

and Sy;4,co2 With both operating conditions.
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Figure 2.2.6. Concentrations in the liquid phase: sugar (Sliq,su)a butyrate (Sliq,bu)a propionate

(Sliq,pro)a acetate (Sliq,ac)a CO (Sliq,CO)a Ha (Sliq,HZ) CHs (Sliq,CH4-) and CO2 (Sliq,COZ)- (A)
OP1 and (B) OP2.

The results were slightly similar in both cases, e.g., a final concentration of 5.9x10* and 5.6x10-
4 gCOD /L were obtained for S lig,su With OP1 and OP2. Concentrations of 2.6 102 and 2.5x10°
2gCoD /L were obtained for Stiq,pu> While values of 0.15 and 0.16 gCOD /L were obtained for

Siigpro - Steady-state concentrations of 0.21 and 0.23 gCOD/L were obtained for Sj;qac,
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3.47x107 and 4.89x107 gCOD/L for Sy o, whereas values of 1.74x107 and 1.92x107
gCOD /L were reached for Sy, , .Concentrations of 6.84x10% and 8.1x102 gCOD /L were
obtained for Sy;q ¢y . However, values of 1.11x107 and 3.20x107 mol/L were achieved for
Siig.coz with the OP1 and OP2. This is evident from Figure 2.2.5 in which CO; is almost
exhausted for OP1 at stages IV-V, but there is still some CO> for OP2 at stage IV.

Figure 2.2.7 presents the biomass concentrations of X, Xpy, Xpro» Xac» Xco» and Xp, which

were simulated by the ADM1_ME with OP1 and OP2.
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Figure 2.2.7. Biomass concentrations that degrade the components: sugar (X, ), butyrate

(Xpu), propionate (Xpr, ), acetate (Xq4.), CO (X¢o), H2 (Xy2)- (A) OP1 and (B) OP2.

The final biomass concentrations of X, were 0.62 and 3.56 gCOD/L for OP1 and OP2,
respectively. Concentrations of 0.05 and 0.31 gCOD /L around were obtained for X}, and
Xpro, whereas values of 0.25 and 1.18 gCOD /L were obtained for X,.. At the end of the
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simulation, concentrations of 0.11 and 0.04 gCOD /L were obtained for X4, and 0.06 and 0.10
gCoOD /L for Xy, with OP1 and OP2. Regarding X, and Xy,, it was observed that its
concentration decreased drastically. However, it increased as the gas was added. This behavior
illustrates the correlation between the added gas flow rate and the biomass concentration
throughout the simulation of both OP1 and OP2. Results from OP1 indicate that the
concentration of Xy, fluctuated between 0.023 and 0.063 gCOD /L between stages II to V.
Similarly, values ranged between 0.02 and 0.11 gCOD /L were found for X across the same
stages. In contrast, OP2 displayed a consistent Xy, concentration of approximately 0.10

gCOD /L throughout all stages while X, values varied between 0.024 and 0.037 gCOD /L in
stages I-V.
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Figure 2.2.8. Concentrations in the gas phase of H (Sgas,HZ) CH4 (SgaS,CH ) , CO
(Sgasco) and CO2 (Syasco )- (A) OP1 and (B) OP2.

Figure 2.2.8 displays the variables Syq5 12, Sgas,char Sgas,co» and Sgasco simulated by the

ADMI1_ ME with OP1 and OP2. Gas concentrations of 0.03 and 0.13 gCOD /L were obtained

for Sgqsn2 With OP1 and OP2. The obtained gas concentrations at the end of the simulation for
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both operating conditions corresponded to 2.25 and 1.00 gCOD /L for Sy45 cpa, 0.03 and 0.10
gCOD /L for Sy45co, and 6.18x107 and 0.00 gCOD /L for Sgas,co -

The behavior for Sy;4,;, Xk, and Sy4s; between OP1 and OP2 are not directly comparable. They
differ due to the dependence on either OLR or GLR. However, it is observed that the
ADMI1 ME reproduces different operational conditions and provides information about

components such as X}, that are not easy to measure.

Additionally, the model respects the COD balance, which was calculated as proposed by Paudel
et al.(2015).

CODYL + CODfs + COD, = CODJYt + CODGYE + CODYY: (1.2.38)

where C ODlil?}I and C ODgﬁs are the loading in the liquid and gas streams; C OD};’}O is the initial
COD biomass; CODyjq out, CODgas our, and CODyjp oy are the COD output in the liquid phase,
the COD converted to produce biogas, and the assimilated COD for biomass growth,

respectively.

For OP1, errors of 1.34, 2.88, 2.89, 2.45, 1.84, and 1.84% were obtained for the COD balance
of the stages: reference, I, II, III, IV, and V, respectively. For OP2, the errors of the COD
balance were 4.07, 3.90, 2.48, 2.07, and 1.14 for stages: reference, L, I, III, and IV. The small

errors could be due to the initial concentrations of biomass in the reactor.

Concerning the mass transfer, to improve the biological methanation process by increasing the
syngas added, it is necessary to maintain the mass transfer capacity of the system. In a BCR,
the system must be kept in a homogeneous bubbly flow regime, where the bubble size is nearly
constant and dictated by the sparger design and the system properties (Hissanaga et al., 2020).
In a CSTR, the impeller agitation speed must increase as the gas flow rates increases, ensuring
high gas retention and complete dispersion (avoid flooding). In addition, in the case of aerated
systems, the power consumption is lower than the non-aerated system due to the presence of

cavities behind the agitator blade (Gabelle ef al., 2011). It is necessary to mention that this
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model is based on the hypothesis where both operational conditions are carried out
satisfactorily: The BCR is operated in a homogeneous bubbly flow regime, and the power

consumption in a CSTR is constant, which allows maintaining the mass transfer.
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Figure 2.2.9. Volumetric mass transfer coefficient of CHs (kLacy ), Ha (kLay,), CO (kLacp),
and CO; (kLaco ). (A) OP1 and (B) OP2.

As previously mentioned, one of the limiting factors of the performance of biological
methanation is the mass transfer process (Guiot et al., 2011; Luo et al., 2013; Rafrafi et al.,
2020). The behavior is explored for both operating conditions, OP1 and OP2. Figure 2.2.9
displays the dynamic behavior of the volumetric mass transfer coefficients for OP1 and OP2.
In both cases, the values of k; a ; in the reference stage were 200 1/d, as proposed in Batstone
et al. (2002). However, k;a; in OP1 (Figure 2.2.9-A) depends only on the added gas flow rate.
Therefore, their values decrease in stage I and then increased progressively up to 394.6, 347.1,
597.3, and 389.7 1/d for k aco, kacy , kpay,, and kyaco in stage V. In contrast, the k; a ;
in OP2 (Figure 2.2.9-B) decreased in stage I below the value in the reference stage and
increased progressively until reaching values of 56.22, 49.46, 85.08, and 55.54 1/d for k;aco,

kiacys, kray,, and k;aco , in stage V given the contribution provided by the gassed power.
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2.8 Conclusions

An extension of the Anaerobic Digestion Model No. 1 (ADM1_ME) was proposed to represent
the biological methanation process. The model extension was derived and assessed based on
two operating conditions from the literature using two different bioreactor configurations:
bubble column reactor and continuous stirred tank reactor, with two different substrates:
glucose and a mixture of primary sludge and ticked-disintegrated waste activated, respectively.
Sensitivity analysis was performed by the Sobol” and Morris method to identify the candidate
parameters to be estimated. In this case, 14 of the 26 previously selected parameters (mainly
kinetic ones) strongly influenced the model outputs. Model validation was accurately

performed where the variables qgq5c0 and qgqsn2 reported the best fitting (R? > 0.74 and

RMSE < 0.94) for OP1, while for OP2 all the variables presented similar fitting (R? > 0.82 and
RMSE < 5.15). Simulation results demonstrated that the proposed model could reproduce the
gas outlet flow rates of the biological methanation process for BCR and CSTR while providing
information about the dynamics of the biomasses involved in the process. Additionally, the
model was able to simulate different operating conditions and the use of various substrates,
where an increase in CH4 and a decrease in CO; content is expected. Further work will explore
the application of the model in model-based optimization to maximize yields and productivities
of CH4. Moreover, the model could be simulated for different conditions to generate data that

could be used for machine-learning-based fault detection techniques.
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Abstract

Dynamic mathematical models could be beneficial for understanding and simulating processes
to achieve an optimal operation. The optimum, however, could depend on several variables that
can be conflicting. In this regard, Multi-objective Dynamic Optimization (MODO) is necessary
for the trade-off between several objectives. This work proposes a MODO as a control strategy
integrating two optimization problems. The objective is to maximize the methane yield and
productivity of the biological methanation processes by modifying the inlet liquid and gas flow
rates. First, multi-objective optimization was applied. Three Pareto optimal points were selected
to develop five cases in dynamic optimization. Case 1 corresponded to the literature value.
Cases 2, 3, and 4 were considered as objectives: the maximum methane productivity, maximum
methane productivity and yield, and maximum methane yield, respectively. Case 5 was
performed to assess a switch between objectives. For case 3, the yield decreased to 0.97 times,
while the productivity increased 3.26 times concerning case 1. The added gas flow rate ranged
from 2.69 to 8.43 m3/d, and the inlet liquid flow rate reached an approximate value of 7.0x10°

3m3/d. These results showed the feasibility and good efficiency of the proposed methodology.

Keywords: Biological Methanation, Muti-Objective Optimization, Pareto Optimal Set,

Dynamic Optimization, Model Predictive Control
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3.1 Introduction

The use of dynamic models allows us to gain a better understanding of different biological
processes. One of those is biological methanation. In this process, the organic matter, such as
agricultural residues, organic effluents from the food industry, animal manure, or
waste/wastewater residues, are transformed through the synergistic work of a variety of
microorganisms into a mixture of CHs4 and CO> (Dar et al., 2021). This process was first
modeled using the Anaerobic Digestion Model No. 1 (ADM1) (Batstone et al., 2002). This
model has been adapted to solve stiffness problems (Rosen and Jeppsson, 2006), variation of
pH (Czatzkowska et al., 2020), and the inclusion of gas addition to obtain high-purity methane
(Sun et al., 2021). However, managing the biological methanation process is still an arduous
task due to the multiple molecules and different microorganisms involved. As a result, obtaining
desired objectives, such as high yields, high productivity, low processing times, or low flow
rates, remains difficult at an industrial scale, especially when it is necessary to optimize several

of them simultaneously.

The use of dynamic models plays a crucial role in the design of control strategies, e.g., optimal
control, adaptive control, or model predictive control (MPC) (Luna et al., 2021; Morales-
Rodelo et al., 2020; Smets et al., 2004) to maintain the value of the variables of interest during
the process or to optimize several variables. In other words, a multi-objective optimization
(MOOQO). When we talk about MPC, we refer to optimal controllers, i.e., the control action
responds to the optimization of a criterion (cost function) related to the system's future behavior

determined from the dynamic model (Camacho and Bordons, 2007).

MOO involves multiple criteria decision-making. It implies optimizing problems where there
are more than one variable to be optimized simultaneously, and those variables are usually
conflictive (Chang, 2015; Vertovec et al., 2021). In this context, an optimal solution set that
fulfills the desired conditions of the conflicting variables is established and selected as Pareto
optimal set (POS). If another solution does not dominate a solution point, it is considered a
Pareto Optimal Point (POP). Therefore, it is ideal to have the highest number of Pareto optimal
solutions (Deb et al., 2002).
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This work aims at proposing a Multi-Objective Dynamic Optimization (MODO) to find the
trade-off between the maxima methane yield and productivity of the biological methanation
process through a Pareto Optimal Set (POS). Afterward, a POP is selected and used as the
optimal reference trajectory. Then, a dynamic optimization is formulated in terms of a MPC to
modify the inlet liquid and gas flow rates to achieve the optimal values of yield and productivity

obtained from the POP.
3.2 Biological Methanation Model Extension Proposal

The Anaerobic Digestion (AD) process can be divided into four phases: hydrolysis,
acidogenesis, acetogenesis, and methanogenesis (Dar et al., 2021). In the first phase, the
fermentative bacteria excrete enzymes that hydrolyze complex organic polymers
(carbohydrates, proteins, and lipids) into soluble monomers, such as monosaccharides, amino
acids, and long-chain fatty acids. In the second phase, these monomers are transformed into
volatile fatty acids (VFA), such as acetate, propionate, and butyrate. In the third phase, all the
VFA are transformed into acetate, H,, and CO,. The fourth phase involves the conversion of
these components by methanogenic archaea into biogas, i.e., a mixture of CH4 and CO;. Finally,
this process is extended to biological methanation, including methane production by the

biological activity of methanogenic bacteria converting the added H, and CO.

The model was based on experimental data from the literature (Sun et al., 2021). The entire
experiment was carried out in a bioreactor with a working volume (Vliq) of 37.5 L and

hydraulic retention time (HRT') of 20 days operating at 37°C for 207 days. The organic loading

rate (OLR) was 0.53 gCOD /L /d of glucose with an inlet liquid flow rate (q;'?q) of 1.9L/d.

The gas addition was performed in five stages, in which the inlet gas flow rate (q;"as) and the

gas loading rate (GLR) were varied in time. These values are reported in Table 2.3.1.
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Table 2.3.1. Experimental conditions from literature (Sun et al., 2021).

Stage Time (Day) qyys (L/d) GLR (L/Lr/d)
Reference 1-32 - -
I 33-64 75 0.2
11 65-101 75 0.2
11 102-135 15 0.4
v 136-171 37.5 1.0
\Y% 172-207 37.5 1.0

An extension of the Anaerobic Digestion Model No. 1 (ADM1_ME) to consider the addition
of Hz and CO to improve CH4 production was proposed in our previous work (Acosta-Pavas et

al., 2023). Here, it is rewritten as,

ngas,i _ q.géls gin 1N Vliq _ QQasS ' (2.3.1)
dt Vgas gas,t l Vgas Vgas gas,t
dsl' J qlln .
Zote) _ 2Ma (gin g ) + ij,kuka _ N, (2.3.2)
dt Vg 4
dx, qon
—t = (X =X1) + Yiewse Xy — Kicgec Xi (2.33)
dt Vi

where sub-index i € [1,4] corresponds to Hy, CH4, CO, and CO; sub-index j € [1,8] denotes
glucose, butyrate, propionate, acetate, H>, CHs, CO, and CO; in the liquid phase; and sub-index
k €[1,6] reads for the biomass that degrade glucose, butyrate, propionate, acetate, H», and CO,

in

respectively. V4 is the molar fraction volume, S, ;

is the inlet concentration of component j
in the liquid phase, g4, is the outlet gas flow rate, f; ; are the stoichiometric coefficients, X in
is the inlet concentration of biomass k, p; and K, 4., are the growth rate and decay constant of

biomass &, Y} is the yield of biomass 4, and N; is the mass transfer rate of component i.

3.3 Multi-objective Dynamic Optimization Construction as

Control Strategy

228



Section 3. Multi-Objective Dynamic Optimization Applied to Biological Methanation
Process

3.3.1 Multi-objective Optimization

Several variables can be optimized in biological processes, yields, productivities, process times,
etc. Most of these variables are often conflicting. Therefore, it is necessary to find a trade-off
between them; this is called a multi-objective optimization (MOO) problem. In this case,
multiple optimal solutions that satisfy the desired conditions of both variables can be found.

This is known as the POS. In general, a MOO can be formulated as follows,
min{J;(Y,u,8),...,J;,(Y,u,0)} (23.4)
Yub.t

dy/dt =&(Y,u,0,t) te|0,tf]

A(Y,u,0,t) <0 i=12,..,m

Y;(Y,u,0,t) =0 i=12,..,ny
ub<u<uy

Subject to

where J7,...,Jm, are the m objective functions, Y the state variables, 4; and 1; indicate
inequality and equality constraints on the variable states, u and 8 denote the control variables
and parameters, and u*, uVcorrespond to the lower and upper bounds of the control variables

(Tsiantis et al., 2018).

3.3.2 Dynamic Optimization as a Model Predictive Control

MPC is one of the most widely used control methods in the industry (Morales-Rodelo et al.,
2020; Yamashita ef al., 2016). A MPC is an advanced control strategy that solves an optimal
control problem at every sampling time. The control uses an explicit model to predict the
system's outputs at a future time by calculating the future control sequences to minimize a cost
function (Giraldo et al., 2022). The dynamic optimization (control problem) determines the
future control value that minimizes a specified performance index, i.e., the input variables, that

minimizes the following objective function,

t+Hp t+H,
min Z U = J(t + IO + Z W, Au(t + j|t)? (2.3.5)
u
=t =t
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dy/dt = é(Y,u,0,t)
, 4i(Y,u,6,t) <0 i=12,..,m
Subject to iwi(y’u’ 0,t) =0 i=12, "
ul <u<uV

where u is the vector of the control variables, H,, and H, are the prediction and control
horizons, J(t + j|t) refers to the output prediction calculated at time instant t + j using the
information available at time instant ¢, J* holds for the reference trajectory, enables to reach the
set point. These variables are determined by the MOO, Au(t + j|t) is the control move at time

instant t + j calculated using information available at time instant ¢.

A MODO strategy is proposed to determine the optimal values of the objective functions (Figure

2.3.1). This strategy entails five steps:

Step 1 - Model definition: Proposition of the dynamic model representative of the biological

process.

Step 2 - Definition of the multi-objective optimization problem: Definition of the objective
functions /4, ..., J;, to be maximized/minimized by the MOO optimization, the vector of the
control variables u, the constraints A; and 1;, and the bounds u* and uY of the control variables

in the MOO optimization.

Step 3 - Selection of the Pareto optimal point (POP): Determination of the Pareto optimal
set J1, ..., Jm and selection of the POP to be used as the reference trajectory in the dynamic

optimization.

Step 4 - Definition of the dynamic problem with a single weighted objective: Formulation
of an objective function considering the previously identified POP in terms of a MPC problem.
To indicate the initial guess values u,, the constraints A; and ;, and the bounds u* and uY of

the control variables in the dynamic optimization.

Step 5 - Implementation of the optimization: Execution of the dynamic optimization and

determination of the optimal values of the control and optimized variables at each time.
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Process
Start MODO
Propose a dynamic model dy
representative of the Step 1-Model definition —- = §(Y,u,6,t)
biological process
Select the objective functions Jj, ..., Jm Step 2-Definition of the multi-objective
to be maximized, the vector of optimization problem
manipulated variables u with the dy/dt = (Y, u,6,t)
respective bonundaries u’ and uY, o . (Y, 1,0,t) <0 i=12..,m
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Figure 2.3.1. Multi-objective dynamic optimization strategy.
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3.4 Case Study: Multi-Objective Dynamic Optimization in

Biological Methanation Process

The main objective was to optimize the yield (Y5 ) and productivity (P;y ), obtaining larger
values than those obtained in the literature (data without MODO). q g&s and q l‘{g were proposed
as control variables. The yield Y.y was defined as the CHs outlet flow rate (qgas,cm)

produced over the total COD grams added per day, while productivity Py was the ratio

between qgqs cna and Vyiq, expressed as,

qgaS,CH4- ( 2 3 6 )
in i in i in i T
Sliq,su quq + Sgas,HZ q;nas + Sgas,CO q;nas

Yena =

_ qgas,CH4 ( 237 )

3.4.1 Multi-Objective Optimization

In this study, the simulations were run using an Intel® Core i7 8665U 2.11 GHz, 16 GB RAM
computer. The paretosearch function from MATLAB® was used to obtain the POS for each

stage. The MOO was proposed as,

max . (Ycpa Pcua) (2.3.8)

in
Agasiiq

Equations (2.3.1) — (2.3.3)
Subiect t Yena < 0.39L/9C0Dgagea
UPJECt 01 1.0 < qgasin < 10.0 X 103 L/d
1.0< Qiiq,in <100 L/d

The system is subject to the Equations ( 2.3.1 )-( 2.3.3 ), which correspond to the model
dynamics (ADM1 ME), and 0.39 L/gCOD 4.4 represents the theoretical cumulative CHy
volume at 37°C or 0.35 L/gCOD ;4404 at standard temperature and pressure conditions (Filer

etal.,2019).
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The MOO was performed for stages I-V. 60 POP were computed for each stage. In which 20,
22, 20, 28, and 23 iterations were executed in 14.65, 19.01, 23.15, 38.29, 56.33 min,
respectively. Figure 2.3.2-A displays the POS for each stage. In stages I and IV, the POS is far
from the literature value, which indicates that optimization can perform a representative change
in both optimum variables. For the other stages, the literature point is near the POS, denoting

that the experiment was performed to maximize yield.

Three POP were selected to analyze different cases of biological methanation improvement.
The first POP considered the maximization of Py, . The second POP maximized the Euclidean
length, which was performed by normalizing the POS [0,1] and determining the maximum
Euclidean length (d,,q,) from the origin on the normalized coordinates. The third POP
involved the maximization of Y.y, (orange, yellow, and purple squares in Figure 2.3.2-A).

Table 2.3.2 summarizes the selected POP at each stage.

Table 2.3.2. Multi-objective optimization results.

POP for maximum Pcp, POP for maximum d,,,, POP for maximum Yy,
Stage

Yepax107! Prpax107! Yepax10! Pepa X107 Yepax10! Prpax107!
(L/9CODgagea) (L/Lr/d) (L/gCODgggea) (L/Lr/d) (L/gCODgqgeqa) (L/Lr/Qd)

I 3.155 8.011 3.341 7.080 3.443 2.984

II 3.156 8.012 3.340 7.107 3.443 2.984

1 3.159 8.471 3.330 7.599 3.417 4.042

v 3.149 9.847 3.308 9.042 3.371 5.940

v 3.167 9.844 3.313 8.943 3.371 5.940

3.4.2 Multi-Objective Dynamic Optimization

To perform the dynamic optimization, the patternsearch function from MATLAB® was used.

The dynamic optimization problem was proposed as,

t+H,

tHHp B ) . )
min (Z <|Y“” YC”"(t)l) + <|PC”“ PC”"(t)l) + Z W1 g (02 + W, Aqgg;(t)2> (2.3.9)

{qg"as,q%} Yena Peya

Jj=t j=t
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Equations (2.3.1) — (2.3.3)
_ Yerna <0.39L/9C0Dgqgea
Subjectto 110 <q" <10.0x 103 L/d

1.0 < q;';; <100L/d

where Yy (t) and Pgy (t) were calculated by using (2.3.6 ) and ( 2.3.7 ). Y¢y4, and Piy, are
the POP values for yield and productivity computed by the MOO, Aqi ()? and Aqf, ()
represent the differences between the inlet gas and liquid flow rates before and after each step
in the dynamic optimization. Wy, ; and W,, , are the parameters that weight the importance of

the control effort for each input in the optimization.

Five cases were studied to assess the dynamic optimization: Case 1: ADM1 ME without
MODO (literature value). Case 2: ADM1_ ME with MODO (POP for maximum P;y ). Case
3: ADM1_ME with MODO (POP for maximum Euclidean length). Case 4: ADM1 ME with
MODO (POP for maximum Y;y,). Case S: ADM1_ ME with MODO switching between the
maximum Pgy (stages I, V), maximum Euclidean length (stages II, III), and maximum yield
(stage IV). In all cases, the initial guess (uy) was 1.0 L/d for both control variables. The lower
and upper bounds of the objective variables Y.y, and Pcy,, and the constraints were the same
as presented in the MOO. H, and H, were considered equal with values corresponding to the

time of each stage (see Table 2.3.1).

For cases 2, 3, 4, and 5, the simulation times were 2.12, 3.35, 3.37, and 2.89 min, respectively,
in which the weights W, ; and W,,, were manually adjusted to values of 1 x 107°. Figure

2.3.2-B shows the dynamical behavior of optimum and control variables.

With regard to case 2 in stage V, the Pc; was maximized from 4.9x10"! without MODO to
9.84x10°" L/Lr /d with a slight decrease in Y.y, from 3.34x10! without MODO to 3.17x10-
' L/gCODgqgeq With MODO. The q/f}, increased from 1.9 L/d without MODO to 8.4 L/d
with MODO and remained constant for all stages. The g} increased from 37.5 L/d without
MODO to 10.0x10° L/d with MODO in stage V.
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Figure 2.3.2. (A) Pareto optimal set for stages I-V. (B) Methane yield, methane productivity,
and inlet liquid and gas flow rates in the MODO strategy.
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In case 3, the Yy, increased from 3.18x10! to 3.34x107' L/gCOD 4404 in stage I, but
decreased compared to case 1 in stage V. The Py, increased from 4.19x10™! without MODO
to 9.82x10" L/Lr /d in stage V. The q;1}, increased from 1.9 L/d without MODO to 7.0 L/d
with DMO in stage V. The qJj% increased from 37.5 L/d without MODO to 8.40x 103 L/d with
DMO in stage V.

In case 4, the Y.y, achieved a value of 3.44x107" L/gCOD 4404 in stage I, but decreased
slightly to 3.37x10" L/gCODg440q in stage V. The Pgy, reached a value of 5.94x10!
L/Lr /d instage V. The q{{ﬁl increased up t0 3.69 L/d instage V. The qJs increased from 37.5
L/d in case 1 stage V to 8.01x10° L/d in stage V.

In case 5, the Y¢p4, Pcya, and the qf{g follow the behavior of case 2 in stage I, case 3 in stages
IT and III, case 4 in stage IV, and case 2 in stage V. However, the g differs for all cases and

stages.

Table 2.2.4 reports the obtained values for Yy,, and Pcy,, as well as a ratio of their respective
values concerning case 1 (literature value). Values larger than one show that the MODO 1is
better than the literature value. For case 2, the Yy, was 0.99 times lower than that for case 1 in
stage [ and 0.95 times in stage V. On the other hand, the Py, increases 3.72 times and decreases
to 2.34 times from stages [ to V, respectively. Concerning case 3, the Yy, ratio varied between
1.05 and 0.99 times, while the P.p, ratio changed between 3.26 and 2.13 times concerning
without MODO (case 1) for stages I and V, respectively. For case 4, the Y,y was 1.08 times
higher than the Y, for case 1 in stage [ and 1.01 times in stage V. On the other hand, the Py
increased between 1.28 and 1.44 for the different stages.

For case 2, the ql"{; increased slightly, ranging from 1.9 L/d (case 1) to a value up to 8.4 L/d
in stage V. However, the qJ%s needed was higher, ranging from the values reported in Table
2.3.1 (case 1) to values between 2.69x10° and 9.99x10° L /d between stages I and V. In case 3,
to maintain the maximum Y.y, and P;y , the MODO suggested keeping the ‘h% at 7.0L/d
during all stages while changing the gl between 2.73x10% and 8.44x10° L/d from stage I to
V. For case 4, an ‘h% between 2.56 L/d and 3.70 L/d from stage I to V was used to maintain
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the maximum Y;z,. The ql% ranged between 2.69x10° and 8.07x10° L/d from stage I to V.

Case 5 followed the same behavior for the ql"{;, whereas the g, behavior was different for all

cases.

Table 2.3.3. Methane yield and productivity ratio with MODO.

Case 1 Case 2 Case 3 Case 4 Case 5

Yena (L/gCODgg404)
Z?lol_lle ‘iiﬁ)l_lle Ratio ‘iiﬁ)l_lle Ratio Z?lol_lle Ratio ‘iiﬁ)l_lle Ratio
I 3.18 3.15 0.99 3.33 1.05 3.43 1.08 3.15 0.99
1I 342 3.15 0.92 3.33 0.97 3.44 1.00 3.33 0.97
111 3.39 3.16 0.93 3.32 0.98 341 1.01 3.32 0.98
v 3.31 3.15 0.95 3.30 1.00 3.36 1.02 3.36 1.02
A% 3.34 3.16 0.95 3.31 0.99 3.37 1.01 3.16 0.95
Pcys (L/Lr/d)
I 2.17 8.07 3.72 7.08 3.26 2.98 1.37 7.98 3.67
11 2.34 8.00 342 7.10 3.04 2.98 1.28 7.11 3.04
111 2.80 8.46 3.02 7.60 2.71 4.04 1.44 7.60 2.71
1Y 4.15 9.85 2.37 9.04 2.18 5.94 1.43 5.94 1.43
\% 4.19 9.82 2.34 8.94 2.13 5.94 1.42 9.82 2.34

Stage

3.5 Conclusions

This work presented a MODO strategy for the biological methanation process based on the
dynamic model ADM1_ME. Optimizations for two objectives were performed: maximization
of Yoy and Pyy by modifying the inlet liquid and gas flow rates. The proposed strategy
showed the conflicting behavior of both objectives. Five case studies were compared, it was
observed that the maximization of P.y, lowers the Y-y, ratio and vice versa. Case 5 reported a
switching strategy between objectives, which allows us to demonstrate the robustness of the
process and the well-accounted adaptations of the input variables in simulations. Additionally,
it was demonstrated that both input variables have a role in MODO. For instance, the variable
inlet gas flow rate made a higher effort than the inlet liquid flow rate. This was observed in case
5, where the behavior of the inlet gas flow rate differed in all cases. These results show the

feasibility of the MODO strategy and its use for multiple control objectives.
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Abstract

A Multi-Objective Dynamic Optimization (MODO) applied in the biological methanation
process is developed. The MODO strategy was designed to find the trade-off between the
maxima yield and productivity of methane and acetate, modifying the inlet liquid and gas flow
rates. First, a multi-objective optimization was applied to find the Pareto Optimal Set (POS)
between productivity and yield of methane and acetate independently. Then, Pareto optimal
points (POP) were selected to develop five cases in dynamic optimization, which approach used
a MPC. Cases 1-2 corresponded to the literature value and the use of the Pareto results directly
in simulation. Cases 3-4 addressed POP to maximize the Euclidean length for methane and
acetate. Case 5 was performed to assess a switch between these objectives. The ability of the
MODO strategy to perform the switch was demonstrated. Additionally, the dynamic

optimization reduced the inlet gas flow rate to 1.5x10° L/d.

Keywords: Biological Methanation, Multi-Objective Optimization, Dynamic Optimization,
Value-Added Products
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4.1 Introduction

In Anaerobic Digestion (AD), organic matter is transformed by the synergistic work of different
microorganisms into CHs and CO; through four steps: hydrolysis, acidogenesis, acetogenesis,
and methanogenesis. The biogas contains 50-75% CH4 and 25-50 % CO- (Iglesias et al., 2021).
Biological methanation uses microorganisms to convert the CO> in the biogas from AD and
syngas (a mixture of Hy, CO, and CO») to obtain high-purity CHs4. Nevertheless, this process
could also be used to produce value-added products such as acetate (Chaikitkaew et al., 2021).
Acetate serves as a chemical platform in the textile, polymer, pharmaceutical, and food
industries (Martin-Espejo et al., 2022). However, controlling this type of process is an arduous
task due to the multiple reactions and microorganisms involved. As a result, obtaining desired
performances of yields or productivities at an industrial scale remains difficult, mainly when it
is necessary to optimize several of them simultaneously. Dynamic models play a crucial role in
the design of control strategies. For instance, Model Predictive Control (MPC) (Morales-
Rodelo et al., 2020) is implemented to maintain or optimize several variables. MPC refers to
control actions that respond to the optimization of a criterion related to the system's future
behavior determined by the dynamic model (Camacho and Bordons, 2007). Multi-Objective
Optimization (MOO) implies optimizing problems where there is more than one objective to

be optimized simultaneously. These objectives are usually conflictive (Vertovec et al., 2021).

This work aims at proposing a Multi-objective Dynamic Optimization (MODO) to maximize
yield and productivity of the biological methanation process regarding two potential products:
CHj4 and acetate. The proposed dynamic optimization approach used a MPC with two control
variables corresponding to the inlet liquid and gas flow rates. MPC uses the Pareto Optimal Set
(POS), where each solution is considered a Pareto Optimal Point (POP). The MODO strategy's

robustness is analyzed by switching between the optimized values for CH4 and acetate.
4.2 Multi-Objective Dynamic Optimization as Control Strategy

A MODO strategy was proposed in previous work (Acosta-Pavas et al., 2023) to determine the

optimal values of the objectives. This strategy entails the following steps:
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Step 1-Model definition: Proposition of the dynamic model to represent the biological process.

Step 2 - Definition of the multi-objective optimization problem: Definition of the objective
functions /7, ..., J;, to be maximized/minimized by the MOO. A MOO can be formulated as a

minimization problem, Equation ( 2.4.1).

min {J{(Y,u,8), ..., ] (Y,u,0)} (24.1)
Y, u,6,t

dy/dt = &(Y,u,0,t)
. A (Y, u,0,t) <0 i=12,..,m (2.4.2)
Subject to il[)i(Y, w0,)=0  i=12,..,ny
ul <u<ul

where /7, ..., J;, are the m objective functions; Y the state variables; u and 6 the control
variables and parameters, respectively. The dynamic model is represented by dY /dt; A; and y;
indicate inequality and equality constraints. u* and uY corresponds to the lower and upper

bounds of the control variables.

Step 3 - Selection of the Pareto optimal point (POP): Determination of the Pareto optimal
set J1, ...,Jm and selection of the POP to be used as the reference trajectory in the dynamic

optimization.

Step 4-Definition of the dynamic problem with a single weighted objective: Formulation of
an objective function considering the previously identified POP in terms of a MPC problem.
Dynamic optimization determines the input variables that minimize the following objective

function,

min ]t< ]* > + £ 'U.( ]l)

where u is the vector of the control variables; H,, and H, are the prediction and control

horizons; J(t + j|t) is the output prediction calculated at time instant t + j using the

information available at time instant t. J* is a reference trajectory that enables to reach the set
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point and is determined by the MOO. The term Au(t + j|t) is the control move at time instant
t + j calculated using information available at time instant ¢. The problem in Equation ( 2.4.3

) is also subject to Equation ( 2.4.2 ).

Step 5 - Implementation of the optimization: Execution of the dynamic optimization and

determination of the optimal values of the control and optimized variables at each time.

4.3 Multi-objective = Dynamic Optimization in Biological

Methanation Process

The main goal was to optimize yields (Y¢y , Y,.) and productivities (Pgpy4, Pyc) of two value-
added products, CHs and acetate, to demonstrate that a control strategy could help to improve

the biological methanation process. Two manipulated variables were proposed for the

optimization: the inlet gas (g4 ) and liquid (gJ%s) flow rates.

Step 1: The model employed for the simulation corresponds to an extension of the Anaerobic
Digestion Model No. 1 (ADM1_ME) to consider the conversion of H, and CO to improve CHy4
production, which was proposed in previous work (Acosta-Pavas et al., 2022). The model was
built upon experimental data from the literature (Sun et al., 2021). The experiment was carried
out in a bubble column reactor with a working volume of 37.5 L and a hydraulic retention time
(HRT) of 20 days operating at 37°C for 207 days. The organic loading rate (OLR) was 0.53
gCOD /L /d with qliﬁ] of 1.9 L/d. The gas addition was carried out in five stages (I -V), in
which qgéls and the gas loading rate (GLR) were varied in time. The model could be rewritten

as,

dSgas,i _ dgas sin LN Viig\ _ dgas s (2.4.4)
dt Vgas gas,l l Vgas Vgas gas,l
dsl' J qlln .
% = L (Sify i=Suiqs) + Z Yefiete —N; (24.5)
t Viig -
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A, _ iy

aXy _ (2.4.6)
dt Vg

(X—Xp) + Vil — W gec

Sub-index j € [1,8] denotes glucose, butyrate, propionate, acetate, H», CHs, CO, and COx in the
liquid phase. Sub-index k € [1,6] reads for the biomass that degrade glucose, butyrate,
propionate, acetate, H>, and CO, respectively. For the gas phase, the sub-index i € [1,4]
corresponds to Ha, CHa, CO, and COz. q4q4; is the outlet gas flow rate, V;;, and V45 the liquid

in Sin

lig.j» Sgas,i> and X" are the inlet concentrations of components j

and molar fraction volume; S
in the liquid phase, the inlet concentration of components i in the gas phase, and the inlet
concentration of biomass k in the liquid phase; Y is the yield of biomass k, f;  refers to the
stoichiometric coefficients; y; and Ky 4. are the growth rate and decay constant of biomass k,

and N; is the mass transfer rate of component i.

Step 2: Two objectives were considered: the yields Y.y , Y, and productivities Pcyy, P, for

CHa4 and acetate. These are defined as,

ans,CH4 ans,CH4
Vo = —22CH — (2.4.7)
cHa 9CODyqgdea cHa Viig

Y. = q;ﬁ, ' Sliq,ac ) _ Qllzra ) Sliq,ac (2.4.8)
Y gCO0Duggeq " Vig' Viig

The MOO for Y} and P;, maximization was proposed as,

max_ (P, Yy) (2.4.9)

in__in
{ans' djiq

Equations (2.3.4) — (2.3.6)
Yen <0.39L/9C0Dgqgea

Subjectto1,0<q" <10.0x103L/d
gas
1.0 < g, <100.0L/d

(2.4.10)
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where h = CH,4, acetate, the value 0.39 L/gCOD,440qrepresents the maximum theoretical
cumulative CH4 volume at 37°C or 0.35 L/gCOD 4404 at standard temperature and pressure

conditions (only for Py, and Yoy maximization).

The paretosearch function from MATLAB® was used to obtain the POS for each stage. In this
study, the simulations were run using an Intel® Core 17 8665U 2.11 GHz, 16 GB RAM

computer.

Step 3: For the selection of the POPs, the POS was computed by the MOO for each of the V
stages. In the MOO for CH4 maximization, 60 POP were obtained for each stage. On the other
hand, In the MOO for acetate maximization, 60 POP points were computed for stages I, II, and

V, while 29 and 35 POP were computed in stages III and IV.

Figure 2.4.1 shows the POS for CH4 and acetate at each stage. A progressive increase in Pey
was observed while Y., decreased slightly. The Y, and P, increased between stages [ and II,
then the Y,. decreased in all stages. However, the P,. increased until stage IV and then

decreased in stage V.

At each stage, the POPs were selected to maximize the Euclidean length (d,,q,) for CHs (red
squares in Figure 2.4.1-A) and for acetate (red squares in Figure 2.4.1-B). In both cases d 4

is calculated from the origin using a normalization as in Equation ( 2.4.11 ).

d = max ( ¥y = min(ty ) )2 . ( oy —min By ) )2 (24.11)
max(Yiy,) — min(Yy,) max(Ply,) — min(Ply,)

245



Section 4. Switching Multi-Objective Dynamic Optimization (MODO) for the
Production of Value-Added Products

A

1 = =
09 b
0.8 F b
0.7 1
<}
-
=
= 06F .
<
jan)
S
o
051 8\ 7
04 @ Stagel (@) ®
@ Stage Il
O Stage III ‘
| @ StagelV
03 @® StageV d
B Maximum Euclidean length
0.31 0.315 0.32 0.325 0.33 0.335 0.34 0.345
Y epq (L/2COD, 44)
(B)
0.27 T . T T T T
\ @ Stagel
@ Stage II
0.265 O Stage III 1
@ Stage IV
P @ StageV
B Maximum Euclidean length
0.26 - :
<
—
=
8 0.255 1 Q :
% O
g
-9
0.25 :
0.245 - [ ] 1
[
0.24 Il 1 1 1 Il 1 1
0.068 0.07 0.072 0.074 0.076  0.078 0.08 0.082 0.084

Figure 2.4.1. Pareto optimal sets for CH4 (A), and acetate (B) at each stage.

Y, (2COD/gCOD_ )

246



Section 4. Switching Multi-Objective Dynamic Optimization (MODO) for the
Production of Value-Added Products

Step 4: The dynamic optimization was performed with the patternsearch function from
MATLAB® was used. The dynamic optimization for Y;, and P, maximization was proposed as

follows,

{qurzlzs' qm;} =t =t

< = RON (1P - PO o 2.4.12
min <Z< g y,;h > +( g Pﬁh > +2Wu,1Aq;2’as(t)2 +Wu,quZZZ(t)2> (24.12)

where h = CH, and acetate. The optimization was also subject to the constraints in Equation (
2.4.10 ). Y;" and P;" are the POP values for yield and productivity computed by the MOO,
Aqg}ls(t)z and Aql%(t)z the differences between the inlet gas and liquid flow rates before and
after each step in the dynamic optimization. W,, ; and W,, , are the parameters that weight the
importance of the control effort term in the optimization. In all cases, the initial values for both

manipulated variables were 1.0 L/d. H,, and H, were considered to have equal values and were

equivalent to the final time of each stage.

Step 5: Five cases were studied to assess the dynamic optimization. Case 1 was the literature
value (data without MODO). For the remaining cases, we wanted to demonstrate first a
comparison between the direct use of the POP in simulation (case 2) and the inclusion of POP
into a MODO (case 3). Then, a switching strategy was proposed between the maximization for
dmax CHa (case 3) and d,,,,, acetate (case 4). Case 5 verifies the robustness of the MODO,
switching between the CH4 maximization in stages I-III and acetate maximization in stages I'V-

V. For cases 2-5 the weights W, ; and W,, , were manually adjusted to values of 1 x 107°.

Figure 2.4.2-A presents the results of cases 1 to 3. Case 1 is the base case regarding the results
obtained from the literature. The advantages of using dynamic optimization are observed when
cases 2 and 3 are compared. Both of them achieved similar results for Pcy,. However, the
behavior at each stage change is smoother and faster in case 3 due to the dynamic part of the
MODO (zoom in Figure 2.4.2-A). For instance, between stages II and III, the time to reach 95%
of the steady state decreased from 104 days in case 2 to 102 days in case 3. Yy, was similar in

all cases, qli{; varied from 7.1 to 6.9 L/d at stage V. For qgéls, a value of 10.0x10° L/d was
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obtained in case 2 for all stages. Nonetheless, this value was reduced in case 3, ranging from

2.73x10° to 8.44x10° L/d.
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Figure 2.4.2. Inlet liquid and gas flow rates, yields, and productivities in the MODO. (A)

Comparison of cases 1-3; (B) comparison of cases 3-5.

Figure 2.4.2-B displays cases 3 to 5. In case 3 stage V, a value of 0.89 L/Lr/d was obtained
for Pcyy4, while 0.33 L/ gCOD 4404 Was obtained for Y5 . On the other hand, in case 4 stage
V a value of 0.27 gCOD,./Lr/d and 0.07 gCOD,./gCOD 440qa Were achieved for P,. and
Y., respectively. In stage IV, the switch was applied. Therefore, the reference values for P,
and Y, were achieved at the end of the stage. Finally, values of 0.27 gCOD,./Lr/ d and 0.07
gCOD,./gCOD ;4404 Were obtained in stage V for P, and Y, the same at case 4. The control
variables were adapted to each case to maintain similar values. It means that the MODO strategy
is robust, permitting the definition of multi-objectives of different types and preserving the

reference values determined in the MOO.
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When d,,,,, for CH4 was maximized, Py increased between 3.26 to 2.13 times from stage |
to V concerning case 1, while Y,y was maintained similarly. On the other side, when d,,4y
for acetate was maximized, P, is increased between 669 to 680 times from stage I to V

concerning case 1, while Y. is increased until 138 to 228 times from stage [ to V.
4.4 Conclusion

A MODO strategy was successfully applied over a biological methanation process based on the
dynamic model ADM1 ME. The feasibility of using Paretos to find the trade-off between
objective functions such as yields and productivities of CH4 and acetate was demonstrated, and
the subsequent application of a dynamic optimization that allows an improvement in the
response by reducing approximately two days the time in which the steady state is reached in
the stage changes. Additionally, a reduction in gas flow rates up to 1.5x10° L/d was achieved
with dynamic optimization. It demonstrated the robustness of the MODO strategy to switch
between products of interest, CH4 and acetate. It was evidenced the key role of the inlet liquid
and gas flow rates as control variables due to its ability to adapt well to each case and stage.
Although these results show the feasibility of the proposed strategy, it is important to note that
these are simulation results, and the microorganism's adaptation to the proposed switching
conditions might differ. However, this work showed the possibility of optimizing the

production of these two products more smoothly and the change of objectives.
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Abstract

In biological methanation, the methane produced by anaerobic digestion is upgraded with the
addition of syngas. The successful implementation of biological methanation requires
optimizing the production to be economically competitive against chemical processes.
Optimization is an arduous task, especially when it is desired to optimize multiple objectives
that can be conflicting, such as yields, productivities, process times, and profit gains, among
others. In this context, this work aims to implement an Economic Multi-Objective Dynamic
Optimization (EMODO) approach as a decision-making tool for adequately operating the
biological methanation process. The proposed EMODO strategy was based on a previously
developed dynamic model for biological methanation. This strategy effectively optimized the

Gain and the Profit margin by manipulating the inlet flow rates of gas (qgéls) and liquid
(qliﬁ]). The strategy also highlights the conflicting behavior of economic objectives and the

dependence on substrates. The dynamic optimization improves the response time of the model
smoothing the transitions between stages and achieving well adaptation to disturbances

regarding the substrates' cost and the products' selling prices.

Keywords: Biological Methanation, Economic Model Predictive Control, Economic Multi-

Objective Optimization, Dynamic Optimization, Market evolution



Section 5. Economic Multi-Objective Dynamic Optimization (EMODO) as a Decision-
Making tool in Biological Methanation Process

5.1 Introduction

The successful implementation of biological processes requires optimization to be competitive
against chemical processes in economic terms. Emerging bioprocesses such as biological
methanation can benefit from multi-objective optimization by maximizing or minimizing

multiple variables of interest simultaneously.

Biological methanation or Biomethanation is a process in which the biogas produced through
the Anaerobic Digestion (AD) is upgraded by the biological conversion of CO; using syngas (a
combination of Hz, CO, and COz) to obtain high-purity CH4 (Rafrafi ef al., 2020). The biogas
produced in the AD contains between 50 - 75% of CHa, 25 — 50 % of CO», and 2—7% water
vapor (Laguillaumie et al., 2022). Through biological methanation, the biogas can be upgraded
into biomethane (95 — 99 %) while removing CO, with the addition of H> or syngas (CO/H»)
(Sun et al., 2021). The hydrogenotrophic methanogens with CO> consumption transform the
H>. The CO can be transformed indirectly into H> by carboxydotrophic hydrogenogenesis, then
into acetate by CO-acetogenesis and CO-homoacetogenesis, and finally transformed into CH4
through hydrogenotrophic and acetoclastic methanogenesis (Guiot ef al., 2011). Other works
have shown that biological methanation can also be used to produce acetate (Laguillaumie et
al., 2022), a molecule of interest that could help make this process more economically
profitable. Based on this complex biological system, managing the biological methanation
process is still an arduous task. Therefore, achieving desired objectives such as high
productivities, high-profit margins, or low flow rates remains difficult at an industrial scale,

especially when it is desired to optimize several variables simultaneously.

Multi-Objective Optimization (MOO) involves optimizing problems where there is more than
one objective to be optimized simultaneously, and these objectives are usually conflictive. The
use of dynamic models plays a crucial role in designing control strategies. For instance, Model
Predictive Control (MPC) (Morales-Rodelo et al., 2020) is implemented to maintain or
optimize several variables simultaneously (e.g., productivities and yields). MPC refers to
control actions that optimize a criterion in the system's future behavior, which is determined by

the dynamic model (Camacho & Bordons, 2007). Economic MPC (EMPC) has recently been
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proposed incorporating a general cost function or performance index in its formulation to

consider economic criteria in process optimization (Ellis et al., 2017).

MOO has been applied in bioprocess to find the trade-off between yields and productivities
(Nimmegeers et al., 2018). In the AD considering the determination of Pareto Optimal Sets
(POS) to find the trade-off between the green degree as environmental impact and net present
value as an economic aspect (Li et al., 2018). In biological methanation, MOO has been applied
to minimize energy consumption and maximize the green degree and CH4 production (Yan et
al., 2016). However, these works not consider the dynamic optimization of the process,

improving the performance of economic objectives.

This work aims at implementing an Economic Multi-Objective Dynamic Optimization
(EMODO) strategy as a decision-making tool for the biological methanation process to
guarantee the maximization of the Gain and Profit margin. The Profit margin was
calculated based on changes in market prices using glucose, H», and CO as substrates and CH4

and acetate as products. The Gain was calculated with the price of CHs and acetate production.

POS associated with three process stages were determined through MOQ. Each POS solution
was considered a Pareto Optimal Point (POP). The POS is considered the first part of the
decision-making tool, where it is necessary to select the best POP that maximizes the Gain and
Profit margin. In dynamic optimization is used a MPC, which is referred to as the second
part of the decision-making tool that optimizes the performance of economic objectives with
two control variables corresponding to qg}ls and qf}}]. To verify the efficacy of the EMODO
strategy, the biological methanation process is simulated considering disturbances of £20 % in

the substrates, sugar, H», and CO cost, and the selling price of the products CH4 and acetate.
5.2 Economic Multi-Objective Dynamic Optimization (EMODO)

Several variables can be optimized in the biological methanation process: yields, productivities,
process times, efc. Most of these variables are often conflicting. A Multi-Objective Dynamic
Optimization (MODO) strategy was proposed in previous work (Acosta-Pavas et al., 2022)

address the mentioned problem. However, this methodology does not consider any information
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about market evolution. The formulation of a cost function could directly or indirectly reflect
the process economy to consider economic optimization. Therefore, in this study, the MODO
strategy is modified to consider economic aspects such as substrates costs or prices market
through the Economic Multi-Objective Dynamic Optimization (EMODO) as the following five
steps.

Step 1 - Model definition: Biological methanation was modeled by a dynamic model based on
an extension of the Anaerobic Digestion Model No. 1 (ADM1_ME) (Acosta-Pavas et al., 2023).
This model considers the uptake of sugar, volatile fatty acids, such as butyrate, propionate, and
acetate, the uptake of H> and CO, and the decay of biomass and in-sifu syngas addition. The
ADMI_ME describes three types of variables: soluble (S, ;), particulated biomass (X) and

gas (Sgas‘i) components. The ADM1_ME is summarized as Equations ( 2.5.1 )-(2.5.3).

dSl CIl
qu o (Sltqj ~Suiq,j) + z Yiefjxhi —N; (2.5.1)
K
dx in.
S0 _ Tia im0 ) + Viewg — Wi ec (252)
at Vi ,
dSgas,i — Agas S;cll“-l-N (Vliq> _ Msgasi (2.5.3)
dt Vgas Vgas Vgas f

Sub-index j € [1,8] represents glucose, butyrate, propionate, acetate, H», CH4, CO, and CO> in
the liquid phase. The H2, CHs, and CO are expressed in gCOD /L, and CO; is expressed in
mol/L. Chemical Oxygen Demand (COD) is the amount of oxygen needed to degrade the
organic matter into CO, and H>O. It is important to mention that CO, is expressed in mol
instead of COD, as suggested by Batstone et al. (2002). Sub-index k € [1,6] denotes for the
biomass that degrade glucose, butyrate, propionate, acetate, H», and CO, respectively. For the
gas phase, the sub-index i € [1,4] corresponds to Ho, CH4, CO, and COa». The inlet flow rates of

liquid and gas are represented by qli{; and Clgés, respectively, while q445 denotes the outlet gas

flow rate. Vj;q and Vg4, are the liquid and gas volumes, respectively. Suq It gaSl and X"
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represent the inlet concentration of the component j in the liquid phase, the inlet concentration
of component i in gas phase, and the inlet concentration of biomass k in the liquid phase,
respectively. Yy is the yield of biomass £, f; ;. corresponds the stoichiometric coefficients; py
and Wy ge. refer to the growth and decay rate of biomass &, and N; to the mass transfer rate of

component i.

The simulations of the biological methanation process were carried out using the ADM1 ME
considering a bubble column reactor (BCR) with a working volume of 37.5 L and a hydraulic
retention time (HRT) of 20 days operating at 37°C for 330 days. The organic loading rate (OLR)
was varied over time in all stages, according to Table 2.5.1. The reference stage corresponded

to the simulation without gas addition, with a qliﬁl of 1.88 L/d. The flow rates ql%, qlhs. and

the gas loading rate (GLR) will be optimized by the EMODO strategy for stages I — III.

Table 2.5.1. Stages and OLR simulated with the ADM1 ME.

Stage Time (Day) OLR (gCoOD/L/d)
Reference 1-30 0.53
I 30-130 1.07
II 130-230 1.60
111 230-330 2.13

To propose economic variables, literature values of 3.40x107%,1.63x10*, 5.96x10*, and
1.63x10° EUR/gCOD were suggested for the cost of sugar, syngas, the selling price of CHa,
and selling price of acetate, respectively (see Annexes Section 3). Then, to verify the efficacy
of the EMODO strategy, selling prices were simulated, considering disturbances in the price.
First, an increase of 20% (+20%) in the selling price of CH4 and a reduction of 20% (-20%) in
the selling price of acetate were considered from 70-100 days (Disturb 1). Then, an increase of
20% in the cost of syngas was simulated from 190-210 days (Disturb 2). Finally, a decrease of
20% in the selling price of CH4 and an increase of 20% in the cost of syngas were considered

from 260-290 days (Disturb 3).
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Step 2 - Definition of the multi-objective optimization problem: The definition of economic
optimization corresponds to the maximization of the gain of CHy4 and acetate (Gain), and the
profit margin of CH4 and acetate (Profit margin) by modifying the qg}ls and qliﬁ]. The

economic multi-objective optimization to find the POS was proposed as,

max (Gain,profit margin) (2.54)

in in
{ans' djiq

Equations (2.4.1) — (2.2.3)
Subject to{ 1<qfy <100 L/d (2.5.5)

1.88< g, <10 L/d

The objective variables are,

Gain — acetate selling price * Sjiq ac N CH, selling price - qgqs,cua * 64 (25.6)
HRT 22.4-Vyq

(CH, sales + acetate sales ) — Substrates cost
CH, sales + acetate sales

Profit margin =

where 64 gCOD /mol is the COD for CH4 and 22.4 L /mol is the molar volume of an ideal gas
at standard conditions. Substrates cost refers to the cost of glucose and syngas
(Equation ( 2.5.8 )). CH, sales and acetate sales are the gains in EUR for selling all
the CH4 and acetate produced, Equations ( 2.5.9 )-( 2.5.10).

Substrates cost = ((Sugar cost - OLR) + (Syngas cost - GLR) ) - Vi, (2.5.8)
CH, selling price - - 64
CH, sales = — gp Qgas,cra (2.5.9)
22.4
acetate selling price - S; Vi
acetate sales = gH?j?T ligac  "liq (2.5.10)

Step 3 - Selection of the Pareto optimal point (POP): In this study, the simulations were run
using an Intel® Core 17 8665U 2.11 GHz, 16 GB RAM computer. The paretosearch function
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from MATLAB® was used to obtain the POS for each stage. Figure 2.5.1 presents the three

Pareto fronts computed for each stage, where 60 POP were calculated.
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Figure 2.5.1. Pareto optimal sets for stages I-III and maximum Euclidean length.

At each stage, one POP was selected, which corresponded to the maximization of the Euclidean
length (d,,4) for the Gain and the Profit margin (red squares in Figure 2.5.1). For all the

stages, d;qr Was calculated as the distance from the origin, using a normalization as in
Equation ( 2.5.11).

dmax

<\]< Gain* — min(Gain*) )2 ( Profit margin* — min( Profit margin®) >2> (25.11)
= max

max(Gain*) — min(Gain*) max( Profit margin*) — min( Profit margin*)

Step 4 - Definition of the dynamic problem with a single weighted objective: To consider a
dynamic optimization, the two previously defined objectives and its POP were merged into one
objective function and solved based on an MPC problem. The proposed dynamic optimization

determines the input variables that minimize the following objective function,
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min

{aits aify) Gain Profit gain

t+Hp ) )
(Z <|Gain* - Gain(t)l) N <|Profit margin* — Profit gain(t)l)

j=t

(2.5.12)

t+H,
+ Z Wu,l Aqgtlls(t)z + Wu,Z A%’&@Y)
j=t

Equation ( 2.5.12 ) is subject to the constraints in Equation ( 2.5.5 ). Gain® and
Profit margin® denote the POP values for Gain and Profit margin computed by the MOO,
Aqls(t)? and Aqjfy (¢)? are the differences between qlJs and qjfy, respectively, before and
after each step of the dynamic optimization. W,, ; and W, , are the parameters that weigh the
importance of the control effort term in the optimization. The initial values for both manipulated

variables, qg}ls and qlil?fl were 1 L/d and 1.88 L/d, respectively.

Step S - Implementation of the optimization: Two cases were analyzed. Case 1 corresponded
to the use of the POP identified in step 3 and applied directly in the simulation with the
ADMI1 ME (Pareto results). Case 2 referred to dynamic optimization as a control strategy
(Dynamic opt). The weights W, ; and W, , were manually adjusted to values of 1 x 1077 The
prediction (H,) and control (H) horizons were considered to have equal values and were
equivalent to the final time of each stage (Table 2.5.1). Optimization was performed with the

patternsearch algorithm in MATLAB®.

The results of the optimization are displayed in Figure 2.5.2. In both cases, the Gain increased
at each stage change, while the Profit margin varied between 30 and 35% (Figure 2.5.2-C).
For both economic variables, it is observed that the dynamic optimization improved the model's
response, smoothing the transition between stages, which is ideal in this type of biological

process to avoid additional disturbances.
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Figure 2.5.2. ADMI1 ME inputs and outputs. (A) ADMI1 ME Economic inputs (B)
ADMI1_ ME inputs (C) ADM1_ME Economic outputs. Case 1: Pareto results, case 2: dynamic

optimization as a control strategy (Dynamic opt). Disturbance 1-3 (Disturb 1-3).

Additionally, the EMODO strategy responds satisfactorily to the three proposed disturbances
regarding the cost of substrates and the selling price of products, especially with the disturbance
presented between 190-210 days, where there was a 20% increase in syngas cost and subsequent

transition between stages II and III (Figure 2.5.2-A).

In Figure 2.5.2-B, comparing case 2 to case 1 in terms of control variables, a slight reduction

of 3.3x1072 and 7.5%10 L/d was observed for qjf; in stages I and III, respectively. A slight
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increase of 3.6 X102 L/d was observed in stage II. In contrast, Clgés showed an increase of

5.85and 11.15 L/d in stages I and III, respectively, and a reduction of 9.49 L/d in stage II.

If the EMODO strategy is considered as a decision-making tool in the biological methanation
process, it is necessary to refer to the ADM1 ME inputs (Figure 2.5.2-B) and the ADM1_ME
outputs at a steady state (Figure 2.5.2-C). For stages I and III, there were slight decreases in
qlil?}l, while the OLR doubled, and the qg}ls increased from 22 to 25 L /d, respectively, resulting
in an increase in GLR from 0.60 to 0.97 L /L, /d. This led to an increase in Gain from 1.27x10"
310 2.68x10° EUR/L, /d, while the Profit margin slightly increased from 33.8% to 36.0%.

From a Gain point of view, it can be increased by maintaining similar Profit margin.
However, it should be noted that a significant increase in Clgés is needed to achieve these

changes, as in stage II, where values of 91 L/d were obtained.
5.3 Conclusions

The EMODO strategy demonstrates to be a good alternative to obtain the best Gain and

Profit margin by manipulating qg}ls, and ql"}}]. These variables played a key role and ranged

between optimal values of 22 - 91 L/d and 4.00 and 4.22 L/d through all stages. The proposed
strategy shows the conflicting behavior of both economic objectives and the high dependence
of the substrates added to the process (the three POS, clearly differentiated for each stage). The
application of dynamic optimization improves the response, smoothing the transitions between
stages. The efficacy of the EMODO strategy is demonstrated with a successful adaptation to
three disturbances in the substrate's cost and the product's selling price. These results show the
feasibility of the proposed methodology as a decision-making tool and its use for multiple

control objectives.
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Abstract

In this paper we present a study that evaluates different machine learning models for fault
detection based on the optimal operation of the biological methanation process. The optimal
operation has been obtained from a multi-objective dynamic optimization based on an extended
model of the anaerobic digestion model (ADM1 ME). Two datasets have been generated for
the ADM1 ME model by generating disturbances on the inlet liquid flow rate (dataset 1) and
the inlet gas flow rate (dataset 2). Variations of £10, 15, and £20% of both optimal inlets have
been assumed. These datasets have been used to train several algorithms: decision tree CART,
Random Forest (RF), Gaussian Naive Bayes (GNB), k-Nearest Neighbors (k-NN), Quadratic
Discriminant Analysis (QDA), Support Vector Machine (SVM), and Neural Network (NN). In
dataset 1, CART, RF, and Radial Basis Function (RBF) SVM have achieved accuracies higher
than 0.90 and 0.85 in the training and test, respectively. In dataset 2, accuracies higher than
0.90 and 0.87 have been obtained for the RF, QDA, and RBF SVM models in the training and

test, respectively.

Keywords: Biological Methanation, Multi-Objective Dynamic Optimization, Soft Sensors,

Machine Learning Algorithms, Fault Detection



Section 6. Fault Detection in Biological Methanation Process using Machine Learning: A
Comparative Study of Different Algorithms

6.1 Introduction

Biological methanation is a bioprocess recognized for its potential to produce methane
(Rusmanis et al., 2019). In this process, the biogas produced through the Anaerobic Digestion
(AD) is upgraded by the biological conversion of CO> and syngas (a combination of Hz, CO,
and CO») to obtain high-purity CH4 (Rafrafi et al., 2020). The biogas produced in the AD
contains between 50 — 75% of CHas, 25 — 50 % of CO», and 2-7% water vapor. The
hydrogenotrophic methanogens transform the H> with CO; consumption. The CO can be
converted indirectly into Hz2 by carboxydotrophic hydrogenogenesis, then into acetate by CO-
acetogenesis and CO-homoacetogenesis, and finally transformed into CHs through

hydrogenotrophic and acetoclastic methanogenesis (Guiot ef al., 2011).

Biological methanation involves a large number of microorganisms interacting simultaneously.
Small variations in the inlet flow rates, or variations in operational conditions, such as changes
in the temperature or pH, can generate significant variations in process outputs, resulting in a
product with undesired specifications (biogas with low CHs content), which at the industrial

level imply high operational costs.

Soft sensors are models that estimate a hard-to-measure property using relatively easy
measurements (Kazemi et al., 2020). Soft sensors have been recently proposed based on

Machine Learning techniques to study these types of problems in AD.

Kazemi et al. (2020) explored machine learning methods such as back-propagation neural
network, Support Vector Machine (SVM), Random Forest (RF), extreme learning machines,
and genetic programming to monitor volatile fatty acids (VFA) using on-line measured
variables. Cinar et al. (2022) used seven different machine learning algorithms: linear
regression, logistic regression, nearest neighbors, decision trees, random forest, SVM, and
XGBoost to define and predict the possible impacts of wide-range temperature fluctuations on
process stability in the AD process compared to experimental data. Wang et al. (2020)
performed a study to predict CHs production in AD using seven operation parameters:

temperature, C/N ratio, total nitrogen and carbon, glucan, lignin, xylan, and cellulose content.
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Four machine learning algorithms were selected for regression and classification: RF, logistic
regression multiclass, SVM, and k-NN. The k-NN algorithm demonstrated better prediction in
the regression models, while the logistic regression multiclass algorithm showed higher
accuracy in classification models. Kazemi et al. ( 2021) used several data-driven approaches to
detect faults in the evolution of the total volatile fatty acids (VFA) concentrations of the AD
process. VFA concentration was used as a state indicator of the AD process since they are
highly susceptible to system input variations. The soft sensors were trained with a dataset
Benchmark Simulation Model No.2 (BSM2) developed by the International Water Association
(IWA). Three VFA soft sensors were tested and compared: support vector machine (SVM),
extreme learning machine (ELM), and the ensemble of neural network (ENN). SVM presented

the best results in terms of accuracy and robustness.

Although several of these machine learning models have been successfully applied over the AD

process, the application to model biological methanation process is still unexplored.

The present study aims to compare several machine learning models to detect small
disturbances respect to deviations from the optimal operation of biological methanation. The
optimal operation refers to the optimal values of the inlet liquid and gas flow rates determined
by the Multi-objective Dynamic Optimization (MODO) strategy. Additionally, disturbances

were assumed to occur from variations in the inlet liquid and gas flow rates.

The remainder of the paper is as follows. Section 6.2 presents the dynamical biological
methanation model used to generate the datasets and explains the optimal operation and training
dataset generations. Section 6.3 describes the experimental setup and the discussion of the

results. Finally, Section 0 presents the main conclusions of the study and future research lines.
6.2 Biological Methanation Model and Optimization

This section describes the dynamic model and the optimization approach used to find the
optimal operation of the biological methanation process. Finally, the explanation of

disturbances in inlet liquid and gas flow rates is presented to generate the datasets.

265



Section 6. Fault Detection in Biological Methanation Process using Machine Learning: A
Comparative Study of Different Algorithms

6.2.1 Extended Anaerobic Digestion Model (ADM1 ME)

An extension of the Anaerobic Digestion Model No. 1 (ADM1_ME) to consider in-situ syngas
addition to the biological methanation process was proposed in our previous work (Acosta-
Pavas et al., 2023). The ADM1 ME model considers the uptake of sugar, VFA (such as butyrate,
propionate, and acetate), H> and CO, and biomass decay. The model describes three types of

variables: soluble Sy, ;, particulate biomass X and gas Sg4,; components. The dynamic model

is summarized in Equations ( 2.6.1 )-( 2.6.3).

dsl' J qlln .
Zote) _ 2Ma (gin g ) +Zka,-,kuk N, (2.6.1)
dt Wy, 4
dX n.
—~ = %(Xllcn_xk) + Yielk — Hi,dec (2.62)
dt Vliq !
dSgas,i _ qgasgin N Yig ) _9gas ¢ (2.63)
dt Vgas gas,t L Vgas Vgas gas,t

Sub-index j € [1,8] denotes glucose, butyrate, propionate, acetate, H», CH4, CO, and CO; in
the liquid phase. The H>, CH4, and CO are expressed in gCOD /L, and COz is expressed in
mol /L. Chemical Oxygen Demand (COD) is the amount of oxygen needed to degrade the
organic matter into CO; and H>O. Sub-index k € [1,6] reads for the biomass that degrades
glucose, butyrate, propionate, acetate, H2, and CO, respectively. For the gas phase, the sub-
index i € [1,4] corresponds to H2, CHa, CO, and COx. The inlet flow rates of liquid and gas are

represented by qliﬁ] and qg}ls, respectively, while q445 denotes the outlet gas flow rate. Vy;, and

%

gas are the liquid and gas volumes, respectively, Sf{}], ji» Sgas,i> and X " hold for the inlet

concentration of the component j in the liquid phase, the inlet concentration of component i in
the gas phase, and the inlet concentration of biomass k in the liquid phase. Y} is the yield of
biomass k, f; the stoichiometric coefficients; w and py g the growth and decay rate of

biomass k, and N; the mass transfer rate of component i.
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6.2.2 Optimal Operation

All the simulations and optimizations developed for the ADM1_ME model have been run using
an Intel®Core 17 8665U 2.11 GHz, 16 GB RAM computer, and MATLAB software.

The optimal operation was determined by a MODO strategy developed in previous work
(Acosta-Pavas et al., 2022). The MODO intended to discriminate in terms of economic
performances between the production of two possible products of the biological methanation

process: CHs and acetate by manipulating the inputs g gas and q ILZ:; The two explored objectives

concerned the generation of a product Gain and the use of substrates Profit margin.

The Pareto optimal sets (POS) associated with the process stages were determined through
Multi-Objective Optimization (MOQ). Each solution is considered a Pareto Optimal Point
(POP). Dynamic optimization uses a model Predictive Control (MPC) approach to optimize the
performance of economic objectives with two control variables corresponding to ans and qli{;,
i.e., the dynamic optimization determines the input variables that minimize the following

objective function,

t+Hp (|Gain® — Gain(t) | 2 |Profit margin® — Profit margin(t) | 2

(et atty) ( Gain' ) ( Profit margin’ ) (264)

t+H¢ ]
£ Wb (O + Wiabaly
Jj=

Equations (2.6.1) — (2.6.3)
subject to 1<qi <100 L/d
1.88 < %q <10 L/d

where Gain* and Profit margin® denote the POP values for Gain and Profit margin
computed by the MOO, Agl%s(t)? and Aqjfy(t)*are the differences between glfs and q/f},
respectively, before and after each step of the dynamic optimization. H,, and H. are the
prediction and control horizons. W, ; and W,, , are the weights to balance the importance of the

control effort term in the optimization.
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The simulations of the biological methanation process were carried out using the ADM1 ME.
It was considered a bubble column reactor (BCR) with a working volume of 37.5 L and a
hydraulic retention time (HRT) of 20 days operating at 37°C for 330 days. The organic loading
rate (OLR) varied over time in all stages. The reference stage corresponded to the simulation
without gas addition, with a q/f}, of 1.88 L/d. q{l, qbhs, and the gas loading rate (GLR) were
optimized by the MODO strategy for stages I-III. Table 2.6.1 summarizes the values of each

variable at each stage.

Table 2.6.1. Optimal conditions used in the simulation with the ADM1 ME.

Stage Time iy qins OLR GLR Gain Profit margin
& (days)  (L/d) (L/d) (gCOD/Lr/d)  (L/Lr/d) (EUR/Lr/d) (%)
Reference 0-30 1.88 - 0.53 - 3.11x10* 40.91
I 30-130  3.99 2238 1.07 0.60 1.27%103 33.77
i 130230 422 90.96 1.60 243 2.17%107 30.59
11 230-330  4.14  36.88 2.13 0.98 2.68x107 35.95

In the MODO strategy, the weights W, ; and W,, , were manually adjusted to values of 1x107.
H, and H. were considered to have equal values and were equivalent to the final time of each

stage (Table 2.6.1).

6.2.3 ADM1_ME Disturbances and Dataset Generation

To train the supervised learning algorithms for fault detection in the biological methanation
process, two datasets were constructed using the ADM1_ME. In the first dataset (dataset 1),
disturbances of +10% (10% HL, 10% LL), £15% (15% HL, 15% LL), and +20% (20% HL,
20% LL) concerning the optimal operation were performed in ql"{;. LL and HL refer to the
lower and higher liquid disturbances concerning the operational operation. Similarly, in the
second dataset (dataset 2), disturbances of £10% (10% HG, 10% LG), £15% (15% HG, 15%
LG), and £20% (20% HG, 20% LG) concerning the optimal value were performed in qggs. LG

and HG refer to the lower and higher gas disturbances concerning the operational operation.

Figure 2.6.1-A shows that all disturbances in ‘h% decreased the Gain with respect to the
optimal operation, especially with 20% LL disturbance. On the other hand, increases in ‘h%

significantly decreased the Profit margin with respect to the optimal operation while
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decreasing the maintained values close to the optimum. On the other side, disturbances in g

(Figure 2.6.1-B) generate a slight variation in the Gain and the Profit margin.
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Figure 2.6.1. Effect of disturbances over the optimized economic objectives Gain and

Profit margin. (A) Disturbances in Dataset 1. (B) disturbances in Dataset 2.

The ADM1 ME model was developed to describe the dynamics of biological methanation, i.e.,

concentrations, flow rates, pressures, and other variables over time. Table 2.6.2 summarizes the

variables that are directly related to the inputs and outputs of the process and can be measured

easily in the process. Variables such as biomass concentration were omitted due to the difficulty

in their measure.

Finally, two datasets were built using the ADM1 ME simulations and the features in Table

2.6.2. Dataset 1 corresponds to the simulation of the optimal operation and the six disturbances

(10% HL, 10% LL, 15% HL, 15% LL, 20% HL, and 20% LL) over q{}b (Dimension of dataset
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1: 2317x28). Similarly, Dataset 2 corresponds to the simulation of the optimal operation and

the six disturbances (10% HG, 10% LG, 15% HG, 15% LG, 20% HG, and 20% LG) over q{{ﬁl

(Dimension of dataset 2: 2317x28).

Table 2.6.2. Variables used to train the supervised learning algorithms.

Variable Description Variable Description
1 Time Process time 15 qgascus CHaoutlet gas flow rate
2 Siigsu  Sugar concentration in liquid phase 16  qgqsn2  H: outlet gas flow rate

Butyrate concentration in liquid

3 Siiq,bu phase 17 qgasco CO outlet gas flow rate
4 Sliq'pm Il:}rl(;};;onate concentration in liquid 18 Qgas,coz CO; outlet gas flow rate
5 Sugac pAhc:Stzte concentration in liquid 19 Pyusus Ha partial pressure
6 Siigco  CO concentration in liquid phase 20 Pyascua CHapartial pressure
7 Siiguz  Ha concentration in liquid phase 21  Pygsco  CO partial pressure
8  Siigcusa CHa concentration in liquid phase 22 Pygsco2  COs partial pressure
9  Siigcoz CO: concentration in liquid phase 23 Byas Total Pressure
10 SgasH2  Ha concentration in gas phase 24 pgasu2 Hopercent composition
11 Sgascwa CHa concentration in gas phase 25 Pgascna CHapercent composition
12 Sgasco  CO concentration in gas phase 26 Pgasco CO percent composition
13 Syasco2  COz concentration in gas phase 27 Pgascoz COz percent composition
14 dgas Total outlet gas flow rate 28 pH pH of the system

6.3 Results and Discussion

The two datasets described in the previous section have been used to assess the performance of

the machine learning algorithms to model the biological methanation process:

- Decision Tree CART

- Random Forest (RF)

- Gaussian Naive Bayes (GNB)
- k-Nearest Neighbors (k-NN)

- Quadratic Discriminant Analysis

(QDA)

Linear SVM

Quadratic SVM

Cubic SVM

Radial Basis Function (RBF) SVM

Back Propagation Neural Network
(BPNN)

All the algorithms were trained using the Scikit-Learn Python module for machine learning.

The two datasets have been generated ensuring an equilibrated data proportion at each
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disturbance. Therefore, a random 80/20 split was performed in both datasets, 80% (1853 x28)
of the dataset was used for training and 20% (464 x 28) for testing. A fivefold cross-validation
with three repetitions was performed to guarantee the correct distribution of the instances (class-
balanced). It is important to highlight that both datasets were normalized to train the SVM

models.

An optimization was performed to determine the best optimizer and model hyperparameters to
evaluate the best SVM between the linear, quadratic, cubic, and RBF SVM. In particular, the
parameter C ranged from 15 to 25 with a step size of 1.0, the bias term in the linear SVM ranged
from 0.001 to 3 with a step size of 0.5, and the gamma value ranged between the options auto

and scale. The accuracy and F1-score measures have been used as model performance metrics.

Accuracy is the ratio of correct predictions across the total population size. The Fi score is a
weighted combination of precision and recall, with values between 0 and 1. A value of 1
indicates a perfect performance in terms of precision and recall, while a value of 0 indicates

otherwise (Pezoulas et al., 2020).

Table 2.6.3 presents the accuracy results of seven machine learning models for disturbances in
q{{ﬁl and qggs (dataset 1 and dataset 2). Only the SVM with the best results in the

hyperparameter optimization is shown. The three machine learning models with the best

accuracy results were selected to study the faults in detail.

Table 2.6.3. Accuracy of training and test process with liquid and gas disturbances (best results

are presented in bold).

Machine Accuracy dataset 1 Accuracy dataset 2
Learnin . :
model ; Training Test Cqmputatlon Training Test C(?mputatlon
time (seg) time (seg)
CART 0.92 0.89 0.38 0.57 0.54 0.74
RF 0.92 0.89 12.53 0.92 0.87 13.75
GNB 0.29 0.27 0.11 0.14 0.14 0.13
NN 0.88 0.78 1.20 0.89 0.78 1.45
QDA 0.82 0.82 0.17 0.91 0.88 0.19
RBF SVM 0.90 0.85 4.77 0.90 0.87 3.36
BPNN 0.82 0.77 59.83 0.62 0.58 23.95
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With regard to dataset 1, the best results have been obtained by the CART and RF models, with
accuracy values of 0.92 and 0.82 for training and testing, respectively. Additionally, the RBF
SVM model also provide satisfactory accuracy results with values of 0.90 and 0.85 for training
and test, respectively. With regard to dataset 2, the RF, QDA, and RBF SVM models provide
the best results in accuracy, with values in the training of 0.92, 0.91, and 0.90, respectively, and

values in the test of 0.87, 0.88, and 0.87, respectively.

Both datasets were generated using the ADM1 ME model. The effect of each disturbance

in
liq

differed significantly on both objective variables (see Figure 2.6.1). Disturbances in ( g;},) have
a higher effect on the output variables since the microorganisms are more sensitive to liquid
substrate variations, which was reflected in the training of the different algorithms.
Nevertheless, some of these algorithms, such as RF and RBF SVM obtained similar results with
both datasets. The computation times obtained with both datasets for CART and QDA presented
values less than 0.19 seconds, while RF and SVM presented values of 13.75 and 4.77 seconds.
SVM models showed shorter computation time with good accuracy (Table 2.6.3), which could
be associated with its capacity to work with high-dimensional feature space, small instances,

and efficiency in avoiding overfitting (Yan et al., 2021).

Figure 2.6.2 presents the confusion matrix for the test of the best three machine learning models.
With dataset 1, some classes proved difficult to differentiate. For instance, in the decision tree
CART, on average 11% of the instances in each class were classified incorrectly, and the
majority of the classes were incorrectly classified as 10% HL disturbance. In the RF, on average
11% of the instances in each class were classified incorrectly, and the most conflicting classes
were 10% LL and 15% HL. In RBF SVM, on average 15% of the instances in each class were
classified incorrectly, and the most conflicting classes were associated with the HL
disturbances, especially the 15% HL. With dataset 2, in the RF, 13% of the instances in each
class were classified incorrectly, and most classes were incorrectly classified as 10% HG
disturbance. In the quadratic discriminant analysis, on average 12% of the instances in each
class were classified incorrectly, and the most conflicting classes were the low disturbances

10% HG and 10% LG. In the RBF SVM, on average 13% of the instances in each class were
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classified incorrectly, and the most conflicting classes were the low disturbances 10%

20% LG.
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Figure 2.6.2. Confusion matrix of best machine learning models. Dataset 1: (A) CART, (C)
RF, (E) RBF SVM. Dataset 2: (B) RF, (D) QDA, (F) RBF SVM.
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Table 2.6.4 shows a detailed analysis based on the Fl-score. For disturbances in the liquid
phase, values of 0.89 were obtained in the macro average for the decision tree CART and the
RF, while a value of 0.90 was obtained for RBF SVM. The three machine learning models
presented similar results. However, each of them showed different F1-scores for each class, i.e.,
CART presented the lower and highest F1-scores in 10% HL and 15% LL, with values of 0.79
and 0.94, respectively. Nevertheless, with RF, a value of 0.84 was obtained as a lower F1-score
in 15% HL disturbance, while values of 0.92 were obtained as a higher F1-score in an optimal
operation and 20% HL. Finally, with RBF SVM, values in the F1-score of 0.68 and 0.90 were
obtained with 15% HL and 10% LL disturbances, respectively.

For disturbances in the gas phase, values of 0.87, 0.89, and 0.87 were obtained in the macro
average for the decision tree CART, quadratic discriminant analysis, and RBF SVM,
respectively. The machine learning models displayed similar results. However, the RF
presented the lower and higher F1-scores in 10% HG and optimal operation, with values of 0.85
and 0.91, respectively. The QDA presented values of 0.78 and 0.96 in 10% HG and optimal
operation, respectively. The RBF SVM showed values of 0.77 and 0.93 in 20% LG and 10%
LG, respectively.

Table 2.6.4. F1 score results with both datasets.

F1- score dataset 1 F1- score dataset 2
Classes Decision RBF Classes RBF
tree CART RF SVM RF QDA SVM
10 HL 0.79 0.87 0.88 10 HG 0.85 0.78 0.86
10 LL 0.92 0.91 0.90 10 LG 0.90 0.86 0.93
15 HL 0.89 0.84 0.68 15 HG 0.88 0.93 0.88
15LL 0.94 0.89 0.87 15LG 0.85 0.92 0.87
20 HL 0.87 0.92 0.89 20 HG 0.86 0.88 0.89
20LL 0.92 0.88 0.89 20LG 0.86 0.88 0.77
Optimal 0.92 0.92 0.89 Optimal 0.91 0.96 0.89
Macro 0.89 0.89 0.90 Macro 0.87 0.89 0.87
Average Average
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6.4 Conclusions

In this paper, we have presented an approach to fault detection in the biological methanation
process based on the practical assessment of machine learning models in the biological
methanation process. The best results to detect disturbances in the inlet liquid flow rate
concerning the optimal operation have been obtained using decision trees and RF, which
achieved accuracies of 0.92 and 0.89 in the training and test, and 0.89 in F1-scores. In the case
of gas inlet flow rate disturbances, the best results have been obtained using RF, QDA, and
RBF SVM, which achieved accuracies of 0.92, 0.91, and 0.90% in training and test, and F1-
scores of 0.87, 0.89, and 0.87, respectively.

As future work, we propose to: (i) study the effect of using more complex datasets based on the
combination of disturbances in ‘h% and q ggs in order to train machine learning models for fault
detection when disturbances in gas and liquid flow rates occur at the same time, (ii): explore
the use of homogeneous ensemble methods such as Forest, Bagging, and Voting classifiers or
heterogeneous ensemble methods such as AdaBoost and Gradient Boosting Classifiers to try to
improve the results obtained with the different methods presented in the current study, (iii)
compare the obtained results with traditional methodologies for fault detection in bioprocesses

(Principal Component Analysis) or deep learning methods.
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Abstract

Biological methanation processes are complex due to the interaction of multiple molecules and
different microorganisms. Hence, changes in the system inputs or operational conditions make
them susceptible to faults, e.g., deviation from steady states or optimal operation points. Support
Vector Machine (SVM) is a relatively simple technique that can be used to identify those
deviations. In this study, SVM have been applied for fault detection in the biological
methanation process. Data obtained from a model-based Multi-Objective Dynamic
Optimization (MODO) have been considered as the optimal operating point. Disturbances of
+10%, +15%, and £20% in the inlet liquid flow rate with respect to the optimal were generated
by simulation with an extended Anaerobic Digestion Model No. 1 (ADM1_ME). Three SVM
models, quadratic, cubic, and Radial Basis Function (RBF) were trained and validated with a
dataset of 449 points (449x15) and 80 (449%15) points, respectively. The aim was to classify
the regions of each disturbance and identify the percentage of the disturbance. Accuracies
higher than 0.96 and 0.81 were achieved for all SVM models in the training and test,

respectively.

Keywords: Biological Methanation, Multi-Objective Dynamic Optimization, Soft Sensors,

Support Vector Machine, Fault Detection
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7.1 Introduction

Biological methanation is a process in which the biogas produced through Anaerobic Digestion
(AD) is upgraded by the biological conversion of CO; and syngas to obtain high-purity CHs
(Rafrafi et al., 2020). In AD, the organic matter such as lignocellulosic and amylaceous
materials (agricultural residues), food residues (organic effluents from food industry), animal
manure, and human excreta (waste or wastewater residues), are transformed into a mixture of
methane, and carbon dioxide by a microbial complex consortium (Dar et al., 2021). It is a
complex process which entails four steps: (i) hydrolysis, (i1) acidogenesis, (ii) acetogenesis and
(iv) methanogenesis. In the first step, fermentative bacteria excrete enzymes that transform
complex organic polymers (i.e., carbohydrates, proteins, and lipids) into soluble monomers,
such as monosaccharides, amino acids, and long-chain fatty acids. In the second step, these
monomers are converted into volatile fatty acids (VFA), such as acetate, propionate, and
butyrate. In the third step, all the VFA are transformed into acetate, hydrogen, and carbon
dioxide. Finally, the fourth step involves the conversion of these components into biogas, (i.e.,
mixture of methane, carbon dioxide, and carbon monoxide). New advance technologies such
as biological methanation has been proposed including the addition of gases to improve
methane formation. In this paper, the used dataset was generated from a model (ADM1 ME)

(Acosta-Pavas et al., 2023) considering also the input of hydrogen and carbon monoxide.

Given the multiple molecules and different microorganisms involved, small disturbances in the
system inputs or operational conditions make the biological methanation process susceptible to
deviations from the desired values, e.g., deviation from steady states or optimal operation
points, which at the industrial level imply high operational costs. Soft-Sensors were recently
proposed based on Machine Learning techniques to study this type of problem in different
processes. Cinar et al. (2022) used seven different machine learning algorithms, linear
regression, logistic regression, k-nearest neighbors, decision trees, random forest, SVM, and
XGBoost to define and predict the possible impacts of wide-range temperature fluctuations on

process stability in the anaerobic digestion process compared to experimental data. Kazemi et
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al. (2020) used SVM soft-Sensors to detect small magnitudes faults in VFA concentrations with

pH, ammonia concentration, pressure, and CO> molar fraction as features.

In this paper, the goal is to use SVM models to detect deviations from an optimal region at
which biological methanation can operate. For this study, the optimal conditions have been
computed by Multi-objective Dynamic Optimization (MODOQO) and disturbances were assumed

to occur from variations in the inlet liquid flow rates.
7.2 Support Vector Machine

SVM is a machine learning method for regression and classification (Kazemi ef al., 2020). The
advantages of SVM are its simplicity, easy implementation, and the theoretical proof that it will
find a hyperplane that separates the data (Kowalczyk, 2017). The use of SVM relies on the
training with a given dataset (or inputs) having associated classes (or output values) for solving
pattern recognition (Vapnik et al., 1997). This dataset is in the form of vectors or matrices. It
means that the input space X is a subset € R™*™. Then, this dataset is mapped into a non-linear
space ®. By applying this mapping procedure, non-linear problems could be solved in linear
space (Cristianini and Shawe-Taylor, 2000; Kazemi et al., 2020), which allows to obtain a high
dimensional feature space @ (X) where the prediction of the desired vector of outputs s in R is

possible (Bzdok et al., 2018; Cervantes et al., 2020).

The SVM optimization problem is to find the optimal hyperplane that separates the data
correctly. Then, hyperplanes can be used to build a classifier that allows to predict class to
which an observation belongs based on its features (Bzdok et al., 2018). Thus, a hyperplane can

be understood to divide a p-dimensional space into two halves (Kowalczyk, 2017).

The output of SVM can be represented as,

s(x) =WTd;(x) + b (2.7.1)

®(x) is a non-linear map function that can be represented by the use of Kernel functions

K (x,-, x]-), b and W are the offsets and weight vector (support vectors), respectively (Xiao et
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al., 2022). The determination of the values of the weight vector follows an optimization

problem that can be formulated as,

1 n
Jmin JW,G, 0 = S IWIE + czl(zl- +3) (2.72)

si—WTdxi)—Wy < e—7 Vi
Subject to {WTd(xi) + Wy —yi < e—7 Vi

where Y;i-,({; + {7) is a measure of the number of misclassified data, C is a constant which
measures the relative weight of the first and second terms, € displays the loss function variable,
and (;, (; are slack variables that allow certain points to fall on the incorrect side of the

hyperplane.

The problem foundation of Equation ( 2.7.2 ) relies on convex quadratic programming. The
Lagrangian function is utilized to integrate the constraints into the cost function, and the dual

representation could be solved as in (Xiao ef al., 2022),

max |~ " (@ - a) (e - )OI (x) + ;(ai -y —;(ai - a)yie (27:3)

ij=1

n
Subject to {Z((xi -a/)=00 00<a;,a;<C
i=1

where a; represent the Lagrangian multiplier.

Linear learning machines could be expressed in a dual representation, i.e, it can be expressed
as a linear combination of the training data. Therefore, the decision rule can be evaluated using
just inner products between the test point and the training points (Cervantes et al., 2020; Cinar

etal., 2022),
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n

s(x) = Z ociyiK(xi, x]-) +b (2.7.4)

=1

with the Kernel function K, the inner product can be computed. The key to this approach is
finding a Kernel function that can be evaluated efficiently. Some of the most used Kernel

functions are (Cervantes et al., 2020): Linear, polynomial, and RBF Kernels.

Linear Kernel :

K(xox;) = 50 x; (2.7.5)

Polynomic Kernel :

d
K(xi,x]-) = (xi-x]-+c) (276)
Gaussian Kernel or Radial Basis Function (RBF):
=] (2.7.7)

K(xi,x]-) =e 202

7.3 Biological Methanation Process Model and Multi-Objective
Dynamic Control Strategy

The biological methanation process was simulated by the ADM1_ ME prosed in a previous
work (Acosta-Pavas et al., 2023) to include gas. The operation time was 207 days with a

working volume of 37.5 L at 37°C. The organic loading rate (OLR) was 0.53 gCOD /Lr/d of

glucose and the inlet liquid flow rate (ql‘ﬁ]) was 1.9 L/d. For the first 32 days there was no gas

addition, afterwards, it was carried out in 5 stages. The ADM1_ME is rewritten as,

dSgas,i _ dgas gin N, <Vliq> _ Agas S (2.7.8)

as,i gas,i
dt Vgas g Vgas Vgas
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ds,. . in.
o) M (sin ~Suq,) + Z Vifjwhe = Ni (27.9)
dt Vliq ’ -
X, aily .. .
Tk _dug (X =Xi) + Vil — Wi dec (27.10)
at Vg ’

Sub-index j € [1,8] denotes glucose, butyrate, propionate, acetate, H,, CHs, CO, and CO» in the
liquid phase. Sub-index k € [1,6] reads for the biomass that degrade glucose, butyrate,
propionate, acetate, H>, and CO, respectively. For the gas phase, the sub-index i € [1,4]
corresponds to Hz, CHs, CO, and COsz. Vj;, and V44 are the working and gas molar fraction
in

volume, f; are the stoichiometric coefficients, Sgg,; and Sjjg ;are the inlet concentration of

components i and j. X ,‘;" is the inlet concentration of biomass k, L, is the growth rate of

biomass k, Y, is the yield of biomass k, N; is the mass transfer rate of component i, qlil?fl is the

inlet liquid flow rate, g4 is the outlet gas flow rate.

The ADM1_ME model has been employed in a MODO strategy prosed in previous work
(Acosta-Pavas ef al., 2022). The objective was to find the optimal operating point, i.e., the inlet
gas (qg}ls) and liquid (qﬂ}l) flow rates that maximize optimize the biological methanation
process. The MODO intended to maximize the methane yield and productivity along the
process. The yield Yyy4(L/gCOD,4404) is the ratio between the CHa4 outlet flow rate and the
total COD grams added (gCOD,440q4) per day, while productivity Peys (L/Lr /d) is the ratio
between the flow rate of the CHs formed and the volume of the reactor. The mathematical

formulation of methane yield and productivity is reported in Equation ( 2.7.11 ) —( 2.7.12).

o Agas,chs , (2.7.11)

Yena = in 4 gin in | gin in
lig,su qliq gas,H2 qgas gas,CO qgas

Py = % (2.7.12)
liq
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To consider both objectives and a good trade-off with the input variables, the optimization

control problem was defined as,

O (Vns = Ve N | (1P = Pea O\ o 2.7.13
min (Z < CH4 _ ca(t) ) +< CH4 k cra(t) ) " Z W, Aqgas(t)z + Wy, Aqlily:l(ty) ( . )
CH4 ¢

{adssalty) = Pena =

Equations (2.6.8) — (2.6.10)
YCH4 < 0.39 L/gCODadded

Subjecttoq 1,0 < gin < 10.0 x 10° L/d

1.0 <gq{f, <100L/d

Both objectives were normalized into a single objective function with trajectory corrections.
The parameters W, ; and W, , weights the importance of the control effort term in the
optimization, Aq;”as(t)z and Aq% (t)2 are the differences between the injected gas and inlet flow
rates before and after each control step. The values of Y/, and Pgy, are the optimal values of
yield and productivity determined by the Multi-Objective Optimization (MOO) through the
Pareto Optimal Set (POS) with the same definitions of Equations ( 2.7.11 ) and ( 2.7.12). Table

2.7.1 summarizes the MODO strategy results for maximizing the Euclidean length (Case 3 in
Section 3). It reported the optimal profiles of the control variables, qgas and ql%, and the
respective values of the variables, gas loading rate (GLR), and the OLR for each stage of the

process.

Table 2.7.1. Input data in ADM1_ME for each stage obtained in MODO (Acosta-Pavas et al.,
2022).

Time i OLR in x103 GLR

Sage vy LD gcopizay i) (L/Lr/d)
I 33-64 2.73 0.07
11 65-101 3.99 0.11
1 102-135 7.00 0.53 5.26 0.14
I\% 136-171 7.77 0.21
\% 172-207 8.44 0.23
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7.4 Methodology

7.4.1 Biological Methanation Disturbance Analysis

Disturbances of £10%, +15%, and £20% in qg4s,in and q;iq,;n With respect to the optimal value

were performed, Table 2.7.2.

Table 2.7.2. g5 and qli{; disturbances in ADM1_ME.

Liquid disturbance Gas disturbance
10% less liquid disturbance 10% LL  10% less gas disturbance 10% LG
15% less liquid disturbance 15% LL  15% less gas disturbance 15% LG
20% less liquid disturbance 20% LL  20% less gas disturbance 20% LG
10% higher liquid disturbance 10% HL  10% higher gas disturbance =~ 10% HG
15% higher liquid disturbance 15% HL  15% higher gas disturbance  15% HG
20% higher liquid disturbance 20% HL  20% higher gas disturbance  20% HG

Figure 2.7.1 presents the effect of disturbances in qgéls on the Syq5cn > Ggas, and the biomasses
Xac> Xco and Xy, For Sgascns in stage V, values of 2.27, 2.29, and 2.30 gCOD /L were
reached for 20% LG disturbance, optimal point, and 20% HG disturbance, respectively.
Regarding q44s, a value of 34 L/d was reached in stage V for disturbances of 20% LG, optimal
point, and disturbance of 20% HG. The biomasses X,., Xco and Xy, did not display any
variations with respect to changes in the optimal value of qgas. Figure 2.7.2 presents the effect
of disturbances in qlil?fl on the Syas.ch » Ggas, and the biomasses X¢, Xco Y Xp2. For Sgas cha,
no changes were observed in comparison with the optimal value except for the disturbance of
20% HL. For qg4q4s in stage V, values of 29, 34, and 37 L/d for disturbance of 20% LL, the
optimal point and disturbance of 20% HL were reached. Regarding X,. in stage V, values of
0.31, 0.31, and 0.30 gCOD /L were reached for 20% LL disturbance, optimal point, and 20%
HL disturbance, respectively. For X, in stage V, values of 0.67, 0.55, and 0.48 gCOD /L for
disturbance of 20% LL, optimal point, and disturbance of 20% HL were reached, respectively.
For Xy, in stage V, values closed to 0.03 gCOD /L were reached for disturbance of 20% LL,
optimal point, and disturbance of 20% HL, respectively. It is concluded that the process presents
a higher sensitivity to disturbances in the inlet liquid flow rate. Therefore, qlil?fl is proposed as a

disturbance variable to generate data for the SVM models.
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Figure 2.7.1. Sy45 cn > Qgass Xac> Xco» and Xp,, with added gas flow rate disturbances.
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Figure 2.7.2. Syq5 cn > Qgass Xac» Xco» and Xy, with inlet liquid flow rate disturbances.
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7.4.2 Training of SVM Models

Three types of SVM models were trained: quadratic, cubic, and RBF. A total of 449 points and
15 features were used as training dataset (449%15). The interest in these features is due to the
direct relation with the inputs and outputs of the process, such as sugar concentration,
biomasses, outlet concentrations, and gas flow rates (see Table 2.7.3). Time was also selected
since each of the stages was analyzed concerning it. This dataset was obtained from the MODO
strategy applied over the ADM1_ ME. The points were selected between each stage change until

reaching the steady state. Each one of the features was normalized to train the model as,

Pred; — Pred; (2.7.14)

Pred; y =
) o,

Pred; y is the i normalized predictor, Pred;, and o; are the average and standard deviation
values of i predictor. The performance evaluation for fault detection is assessed by the accuracy

metric formulated as,

TP
Accuracy = TP FN (2.7.15)

where TP are the true positive values, and FN are the false negative values.

Table 2.7.3. Variables selected to train the SVM models.

Variable Description Variable Description
1 Time Time 9 SgasH2 H; gas concentration
2 Slig,su Sugar concentration 10 Sgas,cHa CH4 gas concentration
3 Xsu Sugar biomass 11 Sgas,co CO gas concentration
4 Xou Butyrate biomass 12 qgas ;E:;Zal Outlet gas flow
5 Xpro Propionate biomass 13 Qgas,cHa CHys outlet gas flow rate
6 Xac Acetate biomass 14 Qgas,H2 H; outlet gas flow rate
7 Xco CO biomass 15 dgas,co CO outlet gas flow rate
8 Xco H, biomass
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A dataset of 80 points was selected as the test dataset (80x15). This dataset was built using 20
points from the optimal region and 10 points from each region of the disturbance in the inlet
liquid flow rates. These points came from random regions which differ from those selected for

training.
7.5 Results and Discussion

7.5.1 Training and Test of SVM Models

The fitcecoc function from MATLAB® was used to train the SVM models. Gaussian kernels
for the RBF model and Polynomial kernels with orders 2 and 3 for quadratic and cubic models
were used for each training set. Finally, cross-validation was performed with 5-Folds.
Accuracies of 0.96, 0.96, and 0.90 for the quadratic, cubic, and RBF models were obtained in
the training of the SVM models. Afterward, the test evaluation was performed for each SVM

model. Table 2.7.4 summarizes the results.

Table 2.7.4. Evaluation test of SVM models.

. . Quadratic Cubic
Disturbance Points SVM SVM RBF SVM
. Optimal: 15 Optimal: 15 N
Optimal 20 10% LL: 5 10% L1 5 Optimal: 20
10% LL: 5 10% LL: 5
o 0 .
10% LL 10 10% LL: 10 20%LL: 5 Optimal : 5
V) .
15% LL 10 15% LL:10 15% LL: 10 15% LL: 10
20% LL 10 20% LL: 10 20% LL: 10 20% LL: 10
() .
10% HL 10 10% HL: 10 10% HL: 10 10% HL: 10
0 .
15% HL 10 15% HL: 10 15% HL: 10 15% HL: 10
20% HL: 5 20% HL: 5 20% HL: 5
o
20% HL 10 10% LL: 5 20%LL: 5 Optimal: 5
Accuracy 0.88 0.81 0.88

The quadratic, cubic, and RBF SVM models obtained accuracies of 0.88, 0.81, and 0.88. For
quadratic SVM, 5 of the 20 optimal points were predicted as 10% LL and 5 of the 10 points in
the 20% HL disturbance were predicted as 10% LL. For the cubic SVM model, 5 of the 20
points at the optimal were predicted as 10% LL and 5 of the 10 points in the 20% HL disturbance
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were predicted as 20% LL. For RBF SVM, 5 of the 10 points in the 10% LL disturbance and 5
of the 10 points in the 20% HL were predicted as optimal.

7.5.2 Fault Detection Based on SVM Models

Once the SVM models have been trained and tested, we analyzed pairs of features using the
cubic SVM model to determine possible features to include or exclude. 2D visualizations were
computed for each disturbance. Figure 2.7.3 presents these 2D visualizations and the training

points for different pairs of features.

The goal was to find pairs of features that allow faster detection of faults in the biological
methanation process. In the case of X, and X, the regions in the 2D visualization are not
separable, which makes it challenging to use for predictions. In the case of X, and Xy, there
is a separation with minor differences between regions. For cases where Sj;4 o, 1s used with
dgas,cHa OF Xy, the graphics show a remarkable separation. To highlight the implementation,

let us consider the following two points from the test dataset (white points in Figure 2.7.3):

(i)  Features S;;q us Xsu

- Data from the test dataset: Sy, = 1.42 X 1073 gCOD /L and X, = 0.57 gCOD/L

- Normalized data: (-0.53, 0.13)
- Expected prediction: The point falls within the 15 %LL region

(ii) Features Sliq,sua qgas,CH4-

- Data from the test dataset: Sjq ¢, = 1.42 x 1072 gCOD /L and qgq5cna = 3.02x 1072 L/d

- Normalized data: (-0.53, 0.46)
- Expected prediction: The point falls within the 15 %LL region

In these cases, with the evaluation of the 2D visualizations, it is observed that the points fall in
the 15% LL region, which is consistent with the expected predictions. Nevertheless, it must be
careful when performing fast evaluations, e.g., in the 2D visualizations for pairs of features
Siiq,su and Xy, it could be assumed that the test point corresponds to a 10% LL disturbance.
Nevertheless, it is clearly observed (zoom in Figure 2.7.3) that it corresponds to a 15% LL

disturbance.
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Figure 2.7.3. 2D visualization using pair of features.

It is evident that combinations of features, such as Sj;q s, Ggas,cHar and X, allow adequate
separation of the optimal and disturbances regions. Therefore, those features can be considered
in reducing the number of features for training cubic SVM models. Those results can be used
to propose a tool for monitoring the biological methanation process and detecting deviations in

Qiig,in @nd qgqs,in, using features such as S5 o, and X, which can be measured online.

7.6 Conclusions

The detection of deviations from the optimal operation points in the biological methanation
process using three SVM models was determined. The quadratic and cubic SVM achieved
accuracies higher than 0.96 for the training. The RBF SVM obtained accuracies higher than
0.89. In the test evaluation, all SVM achieved accuracies higher than 0.81. A 2D visualization

considering pairs of features in the cubic SVM training for fast fault detection when

disturbances of qg}ls and qfﬁl occurred showed that Sy;4 s, Ggas,cra> and X, could provide an

289



Section 7. Use of Support Vector Machine to Fault Detection in Biological Methanation
Process

efficient identification (fault detection) of the regions that represent a percentage of deviation

from the optimal points.
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Section 1 Conclusions & Perspectives

The general objective of this thesis was to develop a model for biological methanation
(biomethanation) that can be used to optimize process operation, especially for producing
value-added products such as methane and acetate at the industrial scale. The approach was
based on model-based control. During this work, a dynamic model was proposed to implement

control strategies and develop data-driven soft sensors to detect faults.

In literature, most of the models and optimization strategies have been developed and applied
over the Anaerobic Digestion (AD) process, leaving the biological methanation unexplored.
Just a limited number of models were found for biological methanation (Grimalt-Alemany et
al., 2020; Santus et al., 2022; Sun et al., 2021; Tsapekos et al., 2022), while model-based

control has not been applied to biological methanation yet.

Biomethanation models did not consider some essential aspects, such as the transformation of
CO and COa, the use of different substrates, and the effect of syngas addition on the gas-liquid

mass transfer process.

In this context, Chapter 1 presented a literature review that addressed aspects of the modeling,
optimization, and monitoring of biological processes, emphasizing biological methanation.
From Section 1, it was possible to have a detailed explanation of the biological methanation,
presenting some of the microorganisms involved, factors influencing its behavior, and different
configurations reported in the literature. As dynamic modeling was the core of this thesis,
Section 2 studied different dynamic models for AD and biological methanation. To implement
the optimization of the process, Section 3 presented model-based controls as a powerful tool to
maintain optimal profiles in non-linear systems, among which the MPC was highlighted. The
principle of the MPC relies on tracking a reference trajectory based on optimizing a criterium
(Camacho and Bordons, 2007). In our case, this criteritum was based on the simultaneous
maximization of yields, productivities, or economic variables. Therefore, this section also
showed strategies such as Pareto Optimal Set to calculate these reference trajectories

considering multiple objectives.

Another aspect that has not yet been studied is the detection of faults in the biomethanation
process. Consequently, we addressed in Section 4 the use of soft sensors as fast tools for

detecting faults in the biological methanation process. Specifically, we focused on presenting
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data-driven soft sensors as a tool based on previously obtained data, which can complement
dynamic models to represent unknown phenomena that dynamic models cannot still describe.
In this Ph.D. thesis, machine learning algorithms were presented as tools for (1) estimation and
monitoring of variables of interest, (ii) process classification based on the amount of any of the

compounds generated, and (iii) detection of faults in bioprocesses.
The results of this thesis were presented in Chapter 2 through a series of sections.

From a simulation point of view, Section 2 of Chapter 2 provided positive answers to the
following question from Chapter 1: Can a mathematical model of biological methanation
accurately reproduce multiple operational conditions with emphasis on different liquid
OLR, syngas addition, and varying GLR? How can the transformation of CO into acetate

and H: and their inhibitions be described in a model for biological methanation?

An extension of the anaerobic digestion model (ADM1_ME) was proposed to describe the
dynamics of biological methanation. The advantage of the ADM1 ME over the models
proposed in the literature was the generalization of the operating conditions by adapting the
volumetric mass transfer coefficient for two different reactor configurations: (i) a mesophilic
bubble column reactor (BCR), using glucose, and (ii) a thermophilic continuous stirred tank
reactor ( CSTR ), using primary sludge and activated ticked-disintegrated waste. The
ADMI1_ ME was built to consider the biological transformation of CO into acetate and H»> by

carboxydrotrophic acetogens and carboxydrotrophic hydrogenogens.

The model was calibrated and validated using two experimental operating conditions from the
literature, Operational Condition 1 (OP1) and Operational Condition 2 (OP2), developed with
a varying OLR and GLR. According to the statistical evaluation, a coefficient of determination
R? > 0.74 and a Root Mean Squared Error RMSE < 5.15 were obtained in the model
validation with both operational conditions, which allowed us to highlight the feasibility of the
ADMI1 ME to describe the biological methanation process at different operational conditions

and reactor configurations.

Several variables can be optimized in biological processes, yields, productivities, process times,

etc. Most of these variables are often conflicting. Multi-objective Optimization (MOQO), which
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is based on multiple-criteria decision-making, involves more than one objective to be optimized

simultaneously (Chang, 2015).

Different model-based optimization techniques have been used to analyze and improve the
biological process. However, this kind of optimization begins with experimentation that enables
an understanding of biological processes. Unfortunately, it implies that the optimization of
biological processes are time-consuming and economically expensive. Modeling and
simulation are a good manner to optimize these biological processes without the need to develop

an experimental setup (Mitsos et al., 2018).

Therefore, a Multi-Objective Dynamic Optimization (MODO) was built to develop the
optimization of the biological methanation process, where some questions of Section 3 were

answered:

- Can the multi-objective optimization approaches improve biological methanation?
This was addressed for the first time with a MODO strategy to maximize simultaneously
two objective functions, yields and productivities. It was computed using a Multi-
Objective Optimization (MOO) based on Pareto Optimal Set. MODO strategy use as
control variables the inlet liquid (qf7) and gas (qJ%) flow rates.

- How to implement a computationally feasible model-based control strategy for
biological methanation? The MOO was couplished with a model predictive control

(MPC) schema using the dynamic model ADM1_ME.

In Section 3 was computed the maximization of yield (Y, ) and productivity (Pcy ) of
methane. Section 4 showed the maximization of (Yoy4, Pcya) and it was complemented by
switching between the maximization of yields (Y,.) and productivities (P,.) of acetate. Then,
to answer the last part of the question: Could the multi-objective optimizations consider
several objectives, such as the yields, the productivities, and other variables in economic
terms (e.g., substrates prices)? Section 5 accomplished the Economic Multi-Objective
Dynamic Optimization (EMODO) for the maximization of economic variables, (Gain) and

(Profit margin).
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The results showed the feasibility of the MODO strategy to switch between products of interest
using two control variables, ql"{; and qJ%s. It is important to note that these are simulation results
and that the adaptation of the microorganisms may vary, especially in the switching between
products such as methane and acetate. However, this work generated advances in the biological
methanation process optimization through multi-objective optimizations and model-based

control tools.

Questions of Section 4 of Chapter 1 were addressed: Can machine learning be used as a data-
driven soft sensor in biological methanation? And can these soft sensors be used to detect
faults during the process? An approach to detect faults in the biological methanation process

was studied in sections 6 and 7 to answer these questions.

The development of several machine learning models led to the detection and classification of
deviations from the optimal operation points when disturbances occurred in the qliﬁ] and qg}ls.

In Section 6, Machine learning algorithms, such as decision trees, random forest, and radial
basis function Support Vector Machine (SVM), obtained the best statistical metrics accuracy
and F1-score results. Then in Section 7, SVM were applied to construct 2D visualization formed
by training pair of features. SVM were used due to: the good results that could be obtained, the

simplicity of implementation, and the efficiency in avoiding overfitting.

It is important to note that this is the first study to use machine learning soft sensors in fault
detection on the biological methanation process. Although it is an area that has been scarcely
studied, this work generated insights towards the easy and fast application of machine learning
soft sensors on biological processes, mainly in the industrial application of 2D visualization
considering pairs of features (variables that can be measured on-line), which provides an easy

and fast reading of the deviations of certain variables in the process.
The results of this thesis lead us to think about some perspectives:

An interesting approach that could be explored is coupling metabolic and dynamic models to
obtain deep insights into the biological methanation process, especially in the methanogenesis
step where the syngas is added. The metabolic modeling uses constraint-based methods, which

implement cellular limitations on biological networks such as physicochemical, genotypical,
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environmental, thermodynamic, etc. (Perez-Garcia et al., 2016). Here, the challenge is the
metabolic construction of some populations that could be used to determine the biochemical
properties of key components and analyze methanogenic metabolism (Feist et al., 2006). This
task could be addressed using hybrid-cybernetic models, which integrate intracellular kinetics
with a description of metabolic regulation (Robles-Rodriguez et al., 2017; Shuler and Varner,
2011). On this basis, a more robust study could be performed in the biological methanation
process, analyzing the behavior of the different microorganisms in implementing the MODO

strategy.

The MODO strategy could be used to consider energetic issues to improve biological
methanation, e.g., the minimization of the power input required for mixing a CSTR and the
simultaneous maximization of the performance or the maximization of the volumetric mass
transfer coefficient. Therefore, we can propose energy balances and then design multi-objective
optimizations to maximize the volumetric mass transfer coefficient and minimize the power

consumption in a bioreactor (Krastawski et al., 1991).

Concerning the machine learning soft sensors, one of those perspectives is to evaluate more
complex datasets that integrate diverse combinations of disturbances into the training of
machine learning algorithms to detect and classify faults in the biological methanation process.
In this case, homogeneous ensemble methods such as AdaBoost and Gradient Boosting

Classifiers could be explored to improve the current results.

It is possible to assess the coupling of regression and classification machine learning models to
improve the performance of the biological methanation process. The regression machine
learning models could be employed as soft sensors for monitoring variables that are difficult to
measure, such as biomass or substrates. This could be complemented by selecting the most
important features to train the models. On the other hand, classification machine learning
models could be proposed as previously presented in this thesis, in the detection of faults in the
process but considering simultaneous disturbances in the manipulated variables, or could be
used to classify the performance of the process in low, medium, and high, according to the

methane content in the outlet gas flow rate (Cinar et al., 2022; Wang et al., 2020).
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Section 2 Towards Digital Twins Perspectives

Through this thesis, the aspects of dynamic modelisation, optimization, and faults detections
are adressed. This is how one of the perspectives of this work arises, the exploration of a way
to merge all the individual tools into a global and uniform system (Neubauer ef al., 2020) to

be applied to biological methanation. The first approach is the formulation of digital twins.

Digital twins can be defined in many ways (Glaessgen and Stargel, 2012; Stark and Damerau,
2019; Jiang et al., 2021). In our context, “a virtual representation of a physical system (and its
associated environment and processes) that is updated through the exchange of information
between the physical and virtual systems” (VanDerHorn and Mahadevan, 2021). Thelen et al.
(2022, 2023) proposed a five-dimensional digital twin model as Digital twin =
F(PS,DS,P2V,V2P,0PT) where PS and DS consisted in the physical and digital system, P2V
and V2P referred to the updating and prediction engine, and OPT held for the optimization

dimension. Figure 3.2.1 summarizes the five-dimensional digital twin adapted to this work.

Digital system (DS) Dynamic modeling Section 2 Chapter 1
Data-driven modeling Section 4 Chapter 1

ﬁ ﬂ Model predictive control

Machine learning model . - - (MPC)
Fault diagnostics Update digital Predict physical Economic model predictive

Section 4 Chapter 1 S State (her) control

EMPC)
Data Control (
ﬁ@ BCD ! Section 3 Chapter 1

Physical system (PS)

= 7 T 77777777 [ Multi-objective optimization
| (2)Off-line optimization (OPT) | (MOO)
Il_ (©)On-line optimization _} Section 3 Chapter 1

Figure 3.2.1. Five-dimensional digital twin. Adapted from (Juarez et al., 2021; Thelen et al.,
2022).
In the context of biological processes, especially in biological methanation, PS can be related

to the systems associated with online data acquisition during the experimental process,
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generating a data set. P2V updates the state of the Digital Twin based on the data obtained. In
this part, process faults can be included. DS refers to the model used to represent the obtained
data set. In our case, it can be represented with the mathematical models: dynamic models or
soft sensors. V2P is in charge of the prediction and optimization of the optimal trajectories of
the process. Then, this information will be sent to the system in real-time. Here, the system is
designed to optimize multiple variables, e.g., yields and productivities of the process, using

strategies such as MOO or EMPC.

At this moment there are no reports of digital twins applied to biological methanation. However,
there are some researches on AD. Moretta ef al. (2021) studied the AD process by improving
the ADM1 model, called Anaerobic Digestion Enhancement (ADE), in which the authors
considered a digital twin. The objective was to improve the ADM1 model, i.e., the CHs4 content
by increasing its application at the industrial level. The authors considered that the ADE could
process different feedstocks (i.e., animal manure, silage, sludge) through co-digestion to
produce biogas. However, to have a more realistic representation of the process, the authors
included the production of hydrogen sulfide in the ADE, which can be found in significant

concentrations in these feedstocks.

Additionally, the authors included the kinetic reactions and mass balances equations to produce
hydrogen sulphide from the sulphur by Sulphur-Oxidizing-Bacteria. They optimized the kinetic
parameters for different configurations and feedstocks using as measured variables the biogas
flow rate. Finally, the results obtained from the simulation were used to optimize a plant, and
the plant simulation results were adjusted to typical operating ranges, demonstrating the
reliability and flexibility of using the ADE. The same authors, Moretta ef al. (2022), developed
the conceptual design of a digital twin for producing bio-methanol as a value-added product of
the AD process using microalgae. This conceptual design used the ADE model for biogas
production and the subsequent implementation of a biorefinery to convert biogas into
bioethanol. Finally, the authors performed an economic analysis to investigate the feasibility of
producing methanol from biogas produced using microalgae. Although the results are
interesting, other aspects must be considered and integrated in real-time to consider a functional

digital twin (see Figure 3.2.1).
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Section 1 Biological Methanation Model Development

1.1 Chemical Oxygen Demand (COD) calculation

Consider the COD calculation for CH,, according to the balanced Equation ( 4.1.1 ):

CH, + 20,- CO,+ 2H,0
(4.1.1)

1mol CH, 6490,

To degrade one mole of CH, to CO,, and H,0, 64g of oxygen are needed; in other words,

(0)))
ol

6422 (Henze et al., 2019):

2mol0, 3290, 6490, 64 gcobD
1mol CH,1mol 0, 1molCH, mol

1.2 Anaerobic Digestion Model Extension (ADM1_ME)

The ADM1 Me model is a derivative of the ADM1 model, which is a well-established
framework for simulating anaerobic digestion. This model is based on a series of bioreactions
that are responsible for breaking down complex organic matter into methane. In order to
enhance the performance of the ADM1 model, the ADM1_ Me model introduces the use of H»
and CO in the gaseous phase as substrates for biomethanation. This modification alters the
traditional model to take on the form of dS/dt = inputs — outputs + r with r = My, where
M represents the stoichiometric matrix and p;, represents the reaction rate of each associated

microorganism.
1.2.1 Mass balances

State variables in the liquid phase (S lig, j ):

dSliq,su qlﬁ] i 4.1.2

T = qu (Sllirclz,su - Sliq,su) — Usy ( )

dSigpu Qg ;o 4.13

— 2 = (Sllirtlz,bu - Sliq,bu) + (1 - Ysu)fbu,su#su — Hpu ( o )
dt Viig
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(4.1.4)

dSliq,pro qlin i
= (Sllirtlz,pro - Sliq,pro) +(1- Ysu)fpro,su.usu — Upro
dt Viig

dSiiq, Qliq ;i
CZ' £ = WZZ (Sllirtlz,ac - Sliq,ac) + (1 - Ysu)fac,su#su + (1 - Ybu)fac,bu#bu (415 )
+ (1 - Ypro)fac,pro#pro — Hac + (1 - YCO)fac,co#CO
BStigeo _ iig 4.1.6
22 = (Sh’;,co - Sliq,co) — tco — Neo (4.1.6)
dt Vig
ASigrz ity ;i
C}i = WZ (SllirclI,HZ - Sliq,HZ) + (1 - Ysu)fHZ,su:usu + (1 - Ybu)fHZ,buﬂbu ( 4.1.7 )
+ (1 - Ypro)fHZ,proHpro + (1 - Yco)fHZ,coHCO — HUyz — NHZ
dsy; n
1;;114 = Vl . (Szli’};,cm - Sliq,CH4) + (1 = Yo dlae + (1 = Yy2duyo — Nepa (4.1.8)
liq
i 6 7
dSig,coz Qig ;;
Ziq 2= = (SIE o2 — Sugcoz) — Z Z Civj bk | — Neoz (4.1.9)
t Viig k=1 \j=1

The term (— 22:1(2;7&1 Civjk uk)) refers to the carbon balance from compound j on uptake of

k, which is derived for the formation of inorganic carbon, i.e., the stoichiometric balance of

inorganic carbon in each k processes (Batstone ef al., 2002). In this definition C; is the carbon

content of component j, and v; . the rates coefficients for component j on uptake of k.
As an example, considers the glucose uptake derived from inorganic carbon:

S1 = _Csu + (1 - Ysu)(fbu,sucbu + fpro,sucpro + fac,suCac) + Ysquac

This is equivalent to the difference between the total available from sugar (C,,), which is
derived from the compounds butyrate (1 — Ysu)( fbu,squu), propionate (1 — Ysu)( fpm,suCpm)
and acetate (1 — Ysu)(fac,suCac) and the formation of biomass (Y, Cpqc), resulting in the

theoretical amount of residual carbon that will be derived to inorganic carbon.
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Following the idea, the terms s,- s5 represent the resulting amount of carbon derived to CO>

formation from sugar, butyrate, propionate, acetate, and Hz, while s¢ represents the carbon

derived to CO» formation from all biomass degradation.

S; = —Cpy + 1- Ybu)(fac,bucac) +

Yac Cbac

S3 = _Cpro + (1 - Ypro)(fac,pro Cac) + YproCbac

Sy = —Cqc + (1- Yac)CCH4 + Yo Chac

Ss = (1 = Yy2)Cepa + Yu2Cpac
Se = —Chac

State variables in biomass (X} ):

dXe, _ dilg

— Xin _
dt Vu-q( s
dt Vig * 2*

prro Qlltr(lq i

= (XIIJ;O - Xpro) + Yproﬂpro — Upro,dec

dt Vi

dXo _ Qig
dt Vi

dX,,  dim

dt Vi

dXyo =%(Xm _
dt Vig © 12

(xin -

- 2 (xgy -

Xsu) + Ysuﬂsu — Hsu,dec

Xbu) + Ybu:ubu — Hpu,dec

Xac) + Yac.uac — Hac,dec

Xco) + Ycolflco — HUco,dec

XHZ) + Yuolhz — Huzdec

(4.1.10)

(4.1.11)

(4.1.12)

(4.1.13)

(4.1.14)

(4.1.15)
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State variables in gas phase (S gas, ,-):

ds q Vi q
gas, H2 gas in Ylig gas (4.1.16)
S +—Ny, ——S
dt Vgas gas,H2 Vgas H2 Vgas gas, H2
das q V, q
gas, CH4 gas lig gas 4.1.17
dt Vgas Slas CH4 + Vgas NCH4 %Sgas,CHzL ( )
as Vi
84529 qgaS Slas co +-— llq Nco - qgas Sgas co ( 4.1.18 )
dt Vgas Vgas Vgas '
dSgas, coz qgas + Viig N _dgas ¢ (4.1.19)
dt I(gas gas coz l(gas coz Vgas gascoz
1.2.2 Constitutive equations
Biochemical reactions (i ):
_ Pmsu Siigsu 4.1.20
Hsu = KSsu"‘Sliq,su Xsu ( )
l»lm,bu Sliq,bu
Hpu = mxwlm, vulco, H2 (4.1.21)
Wm,pro Stig,pro
Hpro = Kspi)_,_—sll:];oxprolﬂz, prolco, H2 (4.1.22)
Um,ac Sliq ac
— , L I (4.1.23)
Hac KSac + Sliq,ac ac'H2,ac'CoO, ac
_ MmH2 Siig H2 4.1.24
M2 = KSHa2+Stiq 2 Xuzlco, 2 ( )
Hm,co Stig,co
leo = m iq Xco (4.1.25)

Ksco + Siig,co
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Decay biomass (L gec) :

Hsu, dec = Ksu, dec Xsu (4.1.26)
Mbu, dec = Kbu, dec Xpu (4.1.27)
Hpro, dec = Kpro, dec Xpro (4.1.28)
Hac, dec = Kac, dec Xac (4.1.29)
Hco, dec = Kco, dec Xco (4.1.30)
Hu2, dec = Kuz, dec Xu2 (4.131)

1.2.3 Mass transfer rates
Niz = ki@ u2 (Siguz = Yeon, n2 Huz Pgasz) (4.1.32)
Neus = kipacpa (Sliq,CH4 — Ycob, cia Hena Pgas,cm) (4.1.33)
Nco = kiaco (Siigco — Yeon, co Heo Pyasco) (4.1.34)
(4.1.35)

Ncoz = kracoz (Sliq,COZ — Hcoz Pgas,COZ)

where N; is the flux of species H,, CH4, CO and CO, expressed as COD (Chemical oxygen demand:
amount of oxygen needed to degrade the organic matter into CO, and H;O). k a; is the volumetric mass
transfer coefficient of component i, and (Sliq, i — Ycob,i Hi Pgas,i) is the driving force. H;, and Py
are the, Henry’s law equilibrium constant, and partial pressure of component i, respectively. Y¢op, ; 1S
the COD, e.g., 16 gCOD /mol for H, and CO, and 64 gCOD /mol for CHa, it permits the conversion
between the moles and gCOD of a component i. It is important to mention that the CO, do not present
a COD, therefore, through this paper it will be expressed in mol instead of COD, as suggested in
(Batstone et al., 2002).
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A total of 60 parameters were considered in the ADM1 ME, 22 stoichiometric, 23 biochemical,

and 15 physiochemical parameters (Table 4.2.1). In which 26 parameters were considered in

the SA. All stoichiometric coefficients f; , and C; were fixed for the sensitivity analysis, except

fac,co which was an unknown parameter. All ¥}, were used in the SA. Concerning biochemical

parameters, the Ky, 400 and all p, ., Ksy, Ky, x, and Kl  were considered in the SA. With

respect to physiochemical parameters, all were fixed except Kp, k;ay,, which were used in the

SA.

Table 4.2.1. Parameters considered in the ADM1_ME.

Parameter Units Value Reference SA  Estimated Description
Stoichiometric parameters (22 parameters)
Stoichiometric conversion
facco 0.3 ) X of CO to acetate
Stoichiometric conversion
fuz,co 0.7 - of CO to H. The sum
facco *+ frzco =1
Fuo 019 Stoichiometric conversion
St ) of sugar to H,
£, 013 Stoichiometric conversion
st ) of sugar to butyrate
Stoichiometric conversion
f pro,su _ 0.27 :
of sugar to propionate
Froc 041 Stoichiometric conversion
’ ) of sugar to acetate
(Rosen and Stoichiometric conversion
facpro 0.57 Je f ionate t tat
ppsson, of propionate to acetate
2006) Stoichiometric conversion
fizpro 0.43 of propionate to Hy
Stoichiometric conversion
fachu 0.8 of butyrate to acetate
Stoichiometric conversion
fuzpu 0.2 of butyrate to H,
Stoichiometric conversion
Csups1 0.0313 of sugar to inorganic
carbon
Stoichiometric conversion
Csups2 0.025 - of sugar to inorganic
carbon
Stoichiometric conversion
Coro mol./gCOD 0.0268 of propionate to inorganic
carbon
(Rosen and Stoichiometric conversion
Cac 0.0313 Jeppsson, of acetate to inorganic
2006) carbon
Stoichiometric conversion
Cpac 0.0313 of biomass to inorganic

carbon
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Stoichiometric conversion

Cena 0.0156 of methane to inorganic
carbon
Yo 0.1 X X Biomass yield from sugar
Biomass yield from
You 0.06 X X butyrate
Ypro 0.04 X X B1omass yield from
propionate
Yac gCOoDy/gCOD; 0.05 X X Biomass yield from acetate
(Sun et al., Biomass yield from CO
Yeo 0.025 2021) X X
(Rosen and Biomass yield from H»
Yio 0.06 Jeppsson, X
2006)
Biochemical parameters (23 parameters)
Maximum growth rate of
Him,su 45 X X sugar biomass
Maximum growth rate of
Hm,bu 20 X butyrate biomass
T 13 X X Maxi.murtn %r.owth rate of
1/d propionate biomass
125 X X Maximum growth rate of
Hm.ac ' acetate biomass
Maximum growth rate of
Hm,co 75 X CO biomass
Maximum growth rate of
Hm, 12 20 X X hydrogen biomass
Substrate saturation
KSsu 0.02 (Sun et al., X X constant of sugar biomass
2021) Substrate saturation
Kspy, 0.3 X constant of butyrate
biomass
Substrate saturation
KSpro 0.3 X constant of propionate
biomass
geon/L Substrate saturation
Ksg 0.05 X X constant of acetate
biomass
Substrate saturation
-6
Ksco 810 X constant of CO biomass
Substrate saturation
Ksy, 1x10°¢ X X constant of hydrogen
biomass
Inhibition constant of H, to
-6 _
Klyz, ac 1>10 X X acetate
Kliiy b 1x105  (Rosenand X Inhibition constant of H; to
Jeppsson b;ll'iy;ate f
i ’ Inhibition constant of H; to
6
Klyz, pro gCoD/L 3.5%10 2006) X propionate
Inhibition constant of CO
6 _
Klco, ac 1x10 X to acetate
Klo 1 1x106 i X Inhibition constant of CO
, to Hy
Koy dec 1/d 0.02 (Rosen and Sugar biomass decay
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Jeppsson, constant
2006) Butyrate biomass deca
Kou, aec 0.02 conZtant g
Propionate biomass decay
Koro, dec 0.02 constant
Acetate biomass deca;
Kac, aec 0.02 constant !
CO biomass deca
Keo, dec 0.02 constant !
K2, dec 0.02 H, biomass decay constant
Physiochemical parameters (15 parameters)
Kp m3/bar — d 5x10*  (Rosenand X X Parameter related to the
friction in the gas outlet
Jeppsson, Volumetric mass transfer
1@z 1/d 200 2006) X coefficient of H,
*7.3074% Henry’s law constants.The
H _ 10 Van't Hoff equation was
Hz,0P1 #%6.6857 used to correct by
x104 temperature:
H.
*0.0259 L
H ; AgorMi( 1 1
€02,0pi *%0.0171 _ Hl,oe‘ﬁ(m‘m)
_ (Sander, ]
mol/L — bar 2015) i=H,, CO,, CH,.,*
*0.0011 Tps =310.15 K, **
H ) **8.2805 Tps,=328.15 K,

CH4,DSi x104 Ago 1 H;=Enthalpy of
dissolution, H?= Henry’s
constant at reference
temperature

Heo 9.7x10* Henry’s law constants

Doy 1.57%10° B;{ffuswny constant of

4
Dy, m2/s 4.65x10°  (Cussler, Diffusivity constant of Hy
9 2011) Diffusivity constant of
Dcoz 1.98x10 co
e 2
Dco 2.03x10” Diffusivity constant of CO
— Parameter in
bo.op1 0.467 k,a; calculation with DS1
(Deckwer ;
- ot al. iarame‘;er lm .
: 1.a; calculation wit

bi.op 0.82 1983) DS1.Value adjusted to
0.62

b - 2.6X -Parameter in

0.0P2 1072 kya; calculation with DS2
b — 04 (Van'’t, Parameter in
1.0P2 ' 1979) k;a; calculation with DS2
- Parameter in
b; 0p2 0.5

k;a; calculation with DS2
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2.1 Sobol’ Method Results

From Sobol' method (Figure 4.2.1-Figure 4.2.2), Sobol’ sensitivy analysis with OP1 and OP2
over outputs qgqs; and pgqs; were computed. It was observed that parameters such as Yy,

Ypro» and Wy, o, presented a representative effect in at least two of the model outputs with OPI.

On the other hand, Y¢o, Win sus Mim,pro> Klnz, ac» and Ksg, presented a representative effect in at

least two of the model outputs with OP2.

(B)

Parameters
Parameters
(5]
H

9.0% 1

1 7.2%
5.6% 1 Y

L 2.8% . . . . L1 Y,

. 3.0% .
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9
Influence Percent (%)

Influence Percent (%)
© (D)
T T — 8%
2.9%
3.0%

3.9%
2.8%
2.3%
2.1%
3.4%
3.1%
2.5%

Parameters
Parameters
2

25% . . .
0 1 2 3 4 5 6 7 8 9 10
Influence Percent (%)

Influence Percent (%)

Figure 4.2.1. First order sensitivity index with a scalar characteristic (SI;5) with OP1 over
outputs: (A) qgas,chas B) Agashzs (C) gascos and (D) qgas,co - The influence is calculated

based on scalar characteristic SI;; = E(SSE) = &(X(Ym(6:) — Yin(Binom))?)-
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(A) (B)

S
i3
3
Parameters

11.8%

15 20 25 30 35 40 45
Influence Percent (%)

(W

. . . . . . .
0 5 10 15 20 25 30 35 40 45
Influence Percent (%)

©

14.6%

Parameters
Parameters

su I I
0 5 10 15 20 25 30 35 40 45
Influence Percent (%)

. . . . . . .
15 20 25 30 35 40 45
Influence Percent (%)

Figure 4.2.2. First-order sensitivity index with a scalar characteristic (Sl;s) with OP2 over

outputs: (A) Pgas,cha> (B) Pgasnzs (C) Pgas,cos and (D) Pgas coz- The influence is calculated

based on scalar characteristic SI;; = £(SSE) = E(Z(Ym(ei) — Ym(Bi'nom))z).
2.2 Morris Method Results

With the Morris method (Table 4.2.2), parameters such as Yg, , Ypro, Yac, Mmsu
Mm pros» Mm,acs KSsu> KSpro,» KSqc, and Kp presented a representative effect in at least two of the
model outputs with DSI. On the other side, Yo, , Yoc ., Y2, Yoo, Mmsu » Mmac »
Mo 12 Wm.cor» K1n2, acs KSac, KSyo, and Ks¢o presented a representative effect on at least two of

the model outputs with OP2. From the sensitivity analysis using both methods, 14 parameters
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are selected for estimation: Ysua Ybua YprOa YaCa YCOa Hm,su> l»lm,prm Hm,acs Wm,H2» KIHZ, ac» Kssua

KSac, KSh2, Kp.

Table 4.2.2. Most influence parameters in Morris Method.

Model outputs Parameters

lJ-m,sua Ysua KSaC’ YaCa Um,aCa Um,bua Yprm Ybua KSprOa Kssua KPa

Hm,pro

OP1 gas,H2 Kp, Wm,ac> Hm,su> You, Yac, KSac, Yproa Ksproa Hm,pro> Kssy
ans,CO um,sua KP> st Kssua Yaca Yproa um,proa um,ac

ans,CH4

CIgas,COZ lJ-m,sw Ysua YaCa lJ-m,aCa KSsu
pgas,CH4 um,sua KICO, H2> Yaca KSHZa um,HZa um,aca Ysua YHZa KIHZ, ac’ Ksac

OP2 pgas,HZ KSHZa YHZ)H“H‘L,HZ) KSCOa Um,COa YCOa Ysua lJ-m,aCa I’J‘m,bu’ Um,sua Yac
Pgas,co Ksco, Ksya, Um,su> Him,co» Yeo, Wm,H2, You

pgas,COZ YCOa Kssua um,proayproa um,CO> fac,CO
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Section 3 Market Prices

Table 4.3.1 summarizes the cost production and selling prices used in the Economic Multi-

Objective Optimization.

Table 4.3.1. Cost production of sugar and syngas and selling prices of biogas and acetate.

Conversion
Component  Value Unit Reference*
(EUR/gCOD)
0.321 USD /kg 2.86x10* European Union Sugar Import Price
Sugar Cost
production 420 EUR/Ton 3.94x10* World Sugar Market
Mean Value 3.40x104+7.63x10°
Syngas Cost .
90 USD/TMC 1.20x10* (Pei et al., 2016)
production
1.73 USD /kgH?2 2.05x10 International Energy Agency (IEA)
Mean Value 3.40x104+6.06x107
0.1645 EUR/KWH 6.30x10* Selectra
Bio-gas
(biomethane) 0.1325 EUR/KWH 5.07x10* 2_fournisseurs-electricite.com
selling price:
0.1645 EUR/KWH 6.30x10 3_fournisseurs-electricite.com
0.1615 EUR/KWH 6.18x10 4 _fournisseurs-electricite.com
Mean Value 5.96x104+£5-96x10
Acetate
1805 USD/Ton 1.61x1073 Chemanalyst
Selling Price

1845 USD/Ton 1.64x10°3 (Vidra & Németh, 2017)
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Mean Value 1.63x103+2.52x10°

*References consulted on December 2022.

All the market prices were converted on units of EUR/gCOD as following,

- Sugar Cost Production

USD 180.15g 1kg 1mol 0.95EUR EUR

kg 1mol 1x103g192gCOD 1USD =] gCoD

EUR 1TON 180.15g 1mol = EUR
TON 1x106g 1mol 192gCOD"‘ ' gCOD

- Syngas Cost Production :

USD TCM 224L 1mol 0.95EUR EUR

TCM 1 x 10°L 1mol 16gCOD 1USD =l gcobD

EUR 39.17KWH 1kg 2g 1mol _ _ EUR
KWH kg 1x103gmol16gCOD" " gCOD

USD 2g 1kg 1mol 0.95EUR EUR

kgy, mol1x 103g16gCcOD 1USD ~ ° gCOD
-Bio-gas (biomethane) Selling price:

EUR 1KWH55M] 1kg 16.04g 1mol EUR

KWH 36M] kg 1x10°g 1mol 64gC0D | gcoD

EUR IMWH 1KWH55M] 1kg 16.04g 1mol =] EUR
MWH1 x 103KWH 3.6M] kg 1x103g 1mol 64gCOD" ~ gCOD

- Acetate Selling Price :

USD 1TON 60.052g 1mol 0.95EUR . EUR
TON 1x106g 1mol 64gCOD 1USD " ' gCOD

314



Section 3. Market Prices

3.1 References

Pei, P., Korom, S. F., Ling, K., & Nasah, J. (2016). Cost comparison of syngas production from natural
gas conversion and underground coal gasification. Mitigation and Adaptation Strategies for
Global Change, 21(4), 629—643. https://doi.org/10.1007/s11027-014-9588-x

Vidra, A., & Németh, A. (2017). Bio-produced Acetic Acid: A Review. Periodica Polytechnica
Chemical Engineering, 62(3), 245-256. https://doi.org/10.3311/PPch.11004

315






