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soutenance m’a vraiment fait chaud au coeur.
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Introduction

Proteins are complex molecules that are essential to life. Indeed, they are in
charge of many processes within cells: they provide structure, catalyze reac-
tions, transmit signals and much more. This wide variety of functions can be
repurposed for many applications in biotechnologies, medicine, green chem-
istry, etc. If billion of years of evolution have adapted proteins to perform
enhanced or new functions for biological needs, industrial applications present
specific conditions for which natural proteins may not be suited. Computa-
tional Protein Design (CPD) aims at finding new proteins with desired prop-
erties or functions.

Proteins are composed of a succession of small molecules called amino acids.
Most proteins fold into a 3D shape, determined by the physico-chemical prop-
erties of their amino acids. Since the function of a protein is tightly linked
to its 3D structure, CPD consists in crafting a structure hosting the targeted
characteristics, then finding finding a sequence that folds into the target struc-
ture. We focus on sequence design. Sequence search can be reformulated as a
discrete reasoning problem seeking to minimize an energy-score capturing in-
teractions within the protein. Existing scoring functions are based on physics
approximation and/or statistics and their quality may limit practical design.

In this work, we aim to capture more finely the sequence-structure rela-
tionships of natural proteins by deep learning a new score function. This score
function will be optimized with existing discrete reasoning tools to design new
proteins. For practical applications, it can optionally be combined with ad-
ditional constraints or knowledge to better guide the design toward a protein
sequence satisfying all the design requirements.

Our main objective faces two challenges. First, protein structures define
challenging data for learning, requiring dedicated neural architectures. Second,
we aim to develop a pipeline combining learning and reasoning. Building such
a hybrid compound is one of the open challenges of Artificial Intelligence. In
a divide-and-conquer spirit, we tackle both difficulties separately.
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INTRODUCTION

Organisation of the manuscript

This manuscript is organized in 5 chapters.

In Chapter 1, we introduce all the notions that will be used in this inter-
disciplinary work: protein basics, Deep Learning and the automated reasoning
compound we use: Graphical Models. In Chapter 2, we review existing ap-
proaches for Computational Protein Design, with a particular emphasis on the
most recent methods based on Deep Learning (DL). Discussing the strengths
and weaknesses of the 2 main kinds of approaches, DL-based and energy-based,
will lead us to the exact formulation of our main goal which aims to take the
best of both worlds.

Chapter 3 will digress slightly from proteins to focus on hybrid AI. We
take a brief overview of existing approaches to place our problem in the right
framework, so-called Decision-Focused Learning. We focus on a toy problem
with interesting parallels to CPD, learning how to play the game of Sudoku.
We introduce a new loss for scalable coupling of Deep Learning with discrete
reasoning.

We are back to proteins in Chapter 4 where we detail and discuss the pro-
tein representation we chose, together with the architecture we use to learn our
score function for CPD. We optimize it to design proteins in Chapter 5. Ex-
tensive in silico (i.e., computational) validation is performed before applying
our score function to practical design projects.

Thesis contributions

A review of the Deep Learning methods for CPD. The literature
about DL on protein data is recent but very rich. We classified existing DL
approaches for design based on how the protein was represented. If this work
dates back to 2021, it is extended to include more recent approaches in Chap-
ter 2.

Marianne Defresne, Sophie Barbe, and Thomas Schiex (2021). Protein
Design with Deep Learning. International Journal of Molecular Sciences 22.21.
issn: 1422-0067

A loss for scalably coupling Deep Learning and discrete reasoning.
Our formulation of CPD requires a hybrid pipeline that scales to large in-
stances as proteins contain hundreds of amino acids or more. We also want
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to benefit from exact solving at inference. Since no existing methods offered
both advantages, we developed a different approach based on a dedicated loss.

Marianne Defresne, Sophie Barbe, and Thomas Schiex (2023). Scalable
Coupling of Deep Learning with Logical Reasoning. Thirty-second Interna-
tional Joint Conference on Artificial Intelligence, IJCAI’2023.

A deep learned scoring function for CPD. We introduce Effie, our deep-
learned score function for protein design. We show through in silico and
experimental validation that optimizing Effie results in good-quality protein
sequences. Finally, we provide evidence of some advantages of optimizing a
score function over pure DL approaches.

Marianne Defresne et al. Computational Protein Design with Hybrid Arti-
ficial Intelligence. In preparation.

Delphine Dessaux, Samuel Buchet, Marianne Defresne, Simon de Givry,
Thomas Schiex, Sophie Barbe. Negative design for specific interfaces in protein
assemblies. In preparation.

Oral presentations

Marianne Defresne, Thomas Schiex, Sophie Barbe. 2023. Scalable Coupling
of Deep Learning with Logical Reasoning. IJCAI 2023, Macao, S.A.R.

Marianne Defresne, Thomas Schiex, Sophie Barbe. 2023. Scalable Coupling
of Deep Learning with Logical Reasoning. France@International at PFIA 2023,
Strasbourg, France.

Marianne Defresne, Thomas Schiex, Sophie Barbe. 2023. Computational
Protein Design with Artificial Intelligence. GGMM 2023, Toulouse, France.

Marianne Defresne, Thomas Schiex, Sophie Barbe. 2023. Learning to rea-
son: Embedding the solver or not Embedding the solver?. Constraint Program-
ming and Machine Learning Bridge at AAAI 2023, Washington DC, USA.

Marianne Defresne, Thomas Schiex, Sophie Barbe. 2022. Computational
Protein Design with Automated Reasoning and Deep Learning. MASIM work-
shop, Paris, France.

Marianne Defresne, Thomas Schiex, Sophie Barbe. 2022. Computational
Protein Design with Automated Reasoning and Deep Learning. BioSynSys
2022, Paris, France.
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The following abbreviations are used in this manuscript:

AI Artificial Intelligence
CFN Cost Function Network
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CP Constraint Programming
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CNN Convolutional Neural Network
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DFL Decision-Focused Learning
DL Deep Learning
DPBB Double-ψ β-Barrel
DR Discrete Reasoning
GM Graphical Model
GMEC Global Minimum Energy Conformation
GNN Graph Neural Network
KBP Knowledge-Based Potential
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NLP Natural Language Processing
PDB Protein Data Bank
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RNN Recurrent Neural Network
WCSP Weighted Constraint Satisfaction Problem
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Chapter 1

Background

This chapter presents all the notions and concepts that will be used in this
thesis. Since this work is multi-disciplinary, at the crossroad between two
branches of AI and applied to protein design, some background is introduced
to make this document accessible to scientist with various backgrounds.

First, Section 1.1.3 gives basic notions on proteins, from sequence to func-
tion via structure. Second, Section 1.2.5 introduces Deep Learning through
a simple example, then describes the four main ingredients required, namely
data, neural networks, loss functions and optimizers. Third, Section 1.3.3
presents Graphical Models and how they are used for automated reasoning,
with an emphasis on the particular case of Cost Function Networks.

13



CHAPTER 1. BACKGROUND

1.1 Proteins

Proteins are sometimes described as the “machinery of life”. Indeed, these
biological macro-molecules perform a wide variety of functions in all living
organisms.

Some proteins, named enzymes, catalyze chemical reactions and are there-
fore essential to cell metabolism. Others have a structural role, such as collagen
in tissues or keratin in nails; or a mechanical function such as allowing mus-
cles to move. Hormone proteins like insulin have a regulatory function. Some
proteins ensure transport of other molecules in the cell and outside, others are
involved in cell signaling, storage or immune response.

The function fulfilled by a protein is tightly linked to its 3D structure, and
results from billion of years of evolution. These notions are briefly explained
in this section, which is restricted to proteins with an ordered 3D structure.

1.1.1 Protein Sequence

A protein is a macro-molecule composed of a succession of amino acid residues
[Branden and Tooze, 2012]. Each of the 20 natural amino acids share a common
structure, called the main chain: a central carbon atom Cα, to which are
attached an amine group (NH2), a carboxyl group (COOH) and a hydrogen
atom. What differentiate one amino acid from another is its side chain, which
is also tied to the alpha carbon. Two amino acids are linked together via
a peptide bond between the carbon atom of the carboxyl group of the first
amino acid and the nitrogen atom of the amino group of the second one (see
Figure 1.1). Once bonded, an amino acid is called a residue. The succession
of the residue main chain atoms is called the backbone of the protein.

Each amino acid is identified by a one-letter or a three-letter code (see
Table 1.1). They are usually divided into groups based on the physico-chemical
properties of their side-chain. Among the various classifications that have been
proposed [Taylor, 1986], there is a partition between hydrophobic side chains,
charged residues and polar side chains. Finer classes can be proposed, including
size-based (large or small), aliphatic or aromatic and positively or negatively
charged. It is worth mentioning two special cases. The glycine has a single
hydrogen atom as a side chain, and therefore specific properties. The proline,
whose side chain connects to the backbone nitrogen, confers rigidity to the
backbone.

The peptide bond is planar and rather rigid, but rotations of the backbone
are possible around the C − Cα bond and the Cα −N bond (see Figure 1.1).

14



1.1. PROTEINS

Figure 1.1: Each amino acid is composed of an amine group and a carboxyl group
around a central carbon atom, as well as a variable part called the side chain (in
orange). Two amino acids bond together via a peptide bond (in red) and they are
then called residues. The peptide unit (in dotted line) is planar. The backbone is
flexible via rotation around ϕ and ψ angles (in blue).

They are measured by dihedral angles denoted ϕ and ψ, respectively, and they
are the main factor of backbone flexibility. A third dihedral angle, ω, measures
the rotation around the peptide bond N − C itself and is usually equal to π
radians (trans conformation), although it can sometimes take the value 0 (cis
conformation).

Side chains are also flexible: they can move in 3-dimensional (3D) space
through rotations around the side-chain covalent bonds. The number of de-
grees of freedom varies with the type of amino acid. They are described by
dihedral angles noted χi with i ∈ {1, 2, 3, 4} depending on the type of amino
acid. As a consequence, different conformations of the side chain are possible.
The most common conformations are called rotamers, and they are described
in dedicated libraries [Dunbrack Jr and Cohen, 1997].

1.1.2 Protein Structure

A Hierarchical Organization

The 3D structure of a protein can be described in a hierarchical way (see
Figure 1.2). First, the amino acid sequence of a protein is also called its
primary structure. The residues of the sequence arrange themselves into local
secondary structure elements, joined by flexible loops. There are 2 dominant
types of secondary structure elements, α-helices and β-sheets, whose shape is

15



CHAPTER 1. BACKGROUND

Table 1.1: A possible classification of canonical amino acids, based on the chemical
properties of their side chain.

Class Name 3-letter code 1-letter code

Hydrophobic Alanine Ala A
Valine Val V
Leucine Leu L
Isoleucine Ile I
Phenylalanine Phe F
Methionine Met M

Charged Aspartic acid Asp D
Glutamic acid Glu E
Lysine Lys K
Arginine Arg R

Polar Threonine Thr T
Cysteine Cys C
Asparagine Asn N
Glutamine Gln Q
Histidine His H
Tyrosine Tyr Y
Tryptophan Trp W

Special cases Glycine Gly G
Proline Pro P

due to regular patterns of hydrogen bonds between backbone atoms.

Secondary structure elements further organize themselves into a stable and
functional 3D structure, called the tertiary structure. The overall topology
— or fold — is determined by the way secondary structure elements connect
together. A part on the polypeptide chain that adopts a stable and inde-
pendent fold is called a domain. The structure is stabilized by interactions
between residues brought into contact when the protein folds. Those inter-
actions include hydrogen bonds, electrostatic and van der Waals interactions,
and for some proteins disulfide bridge (a covalent bond between two cysteins).
Hydrophobic residues unfavourably interact with water, the most common
environment of protein. Therefore, hydrophobic interactions tend to create
proteins with a core of densely packed hydrophobic residues, and a surface
composed of hydrophilic (polar or charged) side chains.

16



1.1. PROTEINS

Several polypeptidic chains can assemble to form a functional complex. In
this case, their position is described by the quaternary structure. Such proteins
are called multimeric, by opposition to monomers, composed of a single chain.

Figure 1.2: Protein structural organization is hierarchical. First, the unfolded
protein sequence forms local secondary structure elements. Then those elements
arrange themselves into a stable and functional 3D structure. Several chains can
connect to form a complex called quaternary structure.

Proteins can be classified into 3 groups based on their tertiary or quater-
nary structure: globular, fibrous and membrane proteins. Globular proteins
are soluble and they fold into an approximately spherical shape, hence their
name. Fibrous proteins, such as collagen and keratin, have a structural role.
Membrane proteins are part of cell membranes, and therefore they fold into
a lipidic environment rather than water. Some of them are transmembrane:
only a part of the protein lives in the membrane, while the rest has a soluble
environment. Finally, some proteins are intrinsically disordered, meaning that
they have an ordered structure only in presence of a binding partner [Dunker
et al., 2001]. This work only covers ordered proteins, and it mainly focuses on
globular proteins.

The 3D structure of a protein or a complex can be determined experi-
mentally using X-ray crystallography, Nuclear Magnetic Resonance (NMR)
or cryogenic electron microscopy (Cryo-EM) [Bhella, 2019]. They are usually
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CHAPTER 1. BACKGROUND

stored into the Protein Data Bank (PDB) [Berman et al., 2000], an open-access
database. As of May 2023, the PDB contains 177, 000 structure, sometimes
redundant, and for each of them, the Cartesian coordinates of each atom are
available. Globular proteins being easier to crystallize than membrane proteins
[Walian et al., 2004], they are over-represented in the PDB.

Folding and Flexibility

The sequence of a protein almost completely determines its native structure
(for a given environment), as shown by Anfinsen’s milestone experiment [An-
finsen, 1973]. He postulated his thermodynamical hypothesis: the native con-
formation is the most thermodynamically stable shape (in the intracellular
environment). More precisely, the sequence folds into a conformation with
minimal free-energy to ensure the overall stability of the protein.

However, the exact relationship between sequence and structure is yet to
be established. Even if the best structure prediction algorithms have reached
experimental accuracy [Jumper et al., 2021], they are not interpretable and
therefore do not explain the folding mechanisms. Yet, Levinthal’s paradox im-
plies such mechanisms exist [Levinthal, 1969]. Indeed, an unfolded polypeptide
chain has many degrees of freedom and therefore an astronomical number of
possible conformations (approximated to 3198 for a small protein of size 100). If
a protein had to randomly explore all possible conformations to fold, it would
take longer than the age of universe. Yet, folding takes between 10−9 and 10−6

seconds, thus suggesting the existence of guiding mechanisms.

The 3D structure of a protein being stable does not imply it is rigid. Protein
dynamics is due to local flexibility and collective movements. Local flexibility
is due to the continuous motion of each atom which animates the protein
with small-temperature-dependent breathing movements. Structure can also
undergo significant collective motion, for instance due to electron transfer or
large conformational changes between different final states of the protein, a
phenomenon called allostery [Tsai et al., 2009]. Allostery is essential for many
functions. A classic example is haemoglobin, that switches state upon binding
to a dioxygen molecule to transport it in the blood.

1.1.3 Evolution and Function

Existing natural proteins result from billions of years of evolution. Random
changes in DNA sequences create random mutations in protein sequences,
which have been selected based on the functional advantage provided to the
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organism producing the protein. The function of a protein is tightly linked to
its 3D structure, which is determined by its sequence.

Homology

Homologous proteins, that have evolved from a common ancestor, often present
similar function and structure. More precisely, the core region is usually con-
served, while there is variability in the loop regions connecting secondary struc-
ture elements. Homology can be detected by a significant similarity in the
amino acid sequence of two or more proteins. Two sequences are similar (re-
spectively identical) at a given position if they have a similar (resp. identical)
residue. Similarity between residues can be quantified by substitution matrices
such as BLOSUM62 [Henikoff and Henikoff, 1992].

Algorithms, such as BLAST [Altschul et al., 1990], are used to align se-
quences and compute their similarity. The information is stored into a Multiple-
Sequence Alignment (MSA), a matrix in which each row corresponds to a se-
quence and each column to a position in the sequence. Above 30% identity,
two proteins are considered to be from the same family, and therefore to have
a similar fold and biochemical function.

Figure 1.3: A Multiple Sequence Alignment (MSA) contains one sequence per row,
and each column is a position in the amino acid sequence, with N the length of the
sequence (left). A Position-Specific Scoring Matrix (PSSM) gives the probability of
each type of amino acid at each position; therefore, it is a matrix of shape 20 ∗ n
(middle). A substitution matrix, here BLOSUM62 (right) is independent of the
protein or the family considered. It indicates the similarity between residues.

Much information can be derived from the evolutionary information con-
tained in MSAs. First, single-residue-level information can be obtained by
building a position-specific scoring matrix (PSSM). Each column corresponds
again to a position, and each row corresponds to one type of amino acid. The
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PSSM gives the frequency of each residue at each position: a residue conserved
at a given position suggests it is a key residue for the function of the protein
or the stability of the structure.

Information on pairs of residues can also be derived from MSA. The de-
tection of co-evolving residues, i.e., that mutate in response to each other
mutations, is a tool to detect contacts in the 3D space [Morcos et al., 2011;
de Oliveira and Deane, 2017; AlQuraishi, 2019]. Indeed, co-evolutionary cou-
plings suggest interaction and therefore proximity in space. Figure 1.3 illus-
trates a MSA, a PSSM and a substitution matrix.

Classification of Protein Architectures

Many amino acid sequences fold into a similar 3D structure. Indeed, for a
small protein of 150 residues, there are around 10195 possible sequences (many
of which would not fold), while the number of known folds for natural proteins
is around 1, 200 [Chandonia et al., 2019].

A domain can be seen as either a structural, evolutive, folding or func-
tional unit. Therefore, they are several ways of classifying them, based on
both sequence, structure and sequence similarity. Two main classifications ex-
ist: SCOPe [Chandonia et al., 2019] and CATH [Sillitoe et al., 2015]. In the
Structural CLassification of Proteins (SCOPe), domains are classified based
on different levels of similarity: the class (for instance all α-helices or all β-
strands), the fold (same topology), the superfamily (same fold but low sequence
identity) and the family (same fold and high sequence identity). The acronym
CATH stands for the four hierarchical levels used: the class, the architecture,
the topology (same as fold in SCOPe) and homologous superfamily (similar
function). Although very similar, these two classifications complement each
other and allow to give a fairly comprehensive view of the classification and
the links between the known domains [Hadley and Jones, 1999].

Protein Interactions

The main characteristic of proteins is their ability to bind to other molecules,
which allows them to fulfill their biological function. They can bind to other
proteins, to small molecules called a ligand or to DNA. Protein-protein inter-
actions result in complexes (quaternary structure) that can contain thousands
of amino acids. The contact area is called the interface and it is usually highly
specific. The specificity of the interaction is determined by the tertiary struc-
ture of the proteins in contact and the position of the residue side chains at the
interface. Binding to a ligand occurs at a small region of the protein surface
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called the binding site, which is is also highly specific as it recognizes only one
(or very few) type of molecule.

Among the many functions fulfilled by proteins, one of particular interest is
catalysis, performed by enzymes. They catalyze chemical reactions in the cell
and thus they are heavily involved in cell metabolism. An enzyme is highly
specific as it usually only catalyzes one type of reaction at a given site. Catal-
ysis happens upon binding to a substrate (one reagent of the reaction). The
binding site and the catalytic site form the active site. Some enzymes requires
another chemical species, called co-factor, to be active. As any catalyst, an
enzyme accelerates the reaction but it is not modified by it. Therefore, it is
reusable and thus of high interest for green chemical processes, by opposition
to classical synthetic chemistry which uses more polluting catalysts.

21



CHAPTER 1. BACKGROUND

1.2 Deep Learning

In this section, we describe the Deep Learning notions necessary to under-
stand the various approaches proposed for protein design, and detailed in Sec-
tion 2.3.3.

Deep Learning (DL) is a sub-category of Machine Learning aiming to ex-
tract patterns from data [Lecun et al., 2015]. DL is particularly efficient to
process raw inputs into features, therefore by-passing the tedious and complex
task of features hand-crafting. It has shown unprecedented performances on
various kind of complex inputs, including images [Lecun et al., 1998], language
[Vaswani et al., 2017; Kenton and Toutanova, 2019] and protein structures and
sequences.

Schematically, the learning process relies on 4 main ingredients:

1. a large amount of data

2. an artificial neural network processing the data

3. a learning objective, called the loss function

4. an optimization process

Each of them will be described in a dedicated section. First, in order to
illustrate the interplay between those 4 ingredients, we introduce the simple
and historic example of the Multi-Layer Perceptron.

1.2.1 The Multi-Layer Perceptron

The Multi-Layer Perceptron (MLP), also called fully-connected or feed-forward
neural network, is the most basic of neural net architectures. Each layer takes
as input a fixed-size vector x ∈ Rd0 , then produces another vector y ∈ Rd1

such that

y = Ax+ b

with A ∈ Rd0×d1 and b ∈ Rd1 . Then a non-linear function, called an activation
function, is applied to y.

z = σ(y)

Each output of σ is called a neuron. The most usual activation functions
are the sigmoid and variants of the Rectified Linear Unit (ReLU) (plotted in
Figure 1.4).
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Figure 1.4: Plot of common activation functions: the ReLU (left) and the sigmoid
(right). Their goal is to apply non-linearities between neural layers.

Several such layers are stacked together to form the complete MLP. The
output of the final layer (either a real number or a vector of real numbers) is
used to produce an answer to the targeted task. The learning process consists
in adjusting the matrices parameters (called weights) so that the output reli-
ably produces a correct answer. In the supervised setting, learning is achieved
by processing a large collection of input vectors with associated known so-
lution (or label) and minimizing an objective quantified in the loss function
using some variant of gradient descent.

The global parameters of the MLP architecture, such as the number of
layers (the depth of the neural net), the number of neurons (d1, the width)
or the activation function also impact the overall performances. They are
called hyperparameters and they also need to be tuned to achieve the best
performances.

Several criteria can be used to define the performance of a neural network.
It can be a metric assessed on the validation (for hyperparameter tuning) or
the test set, such as precision or mean error. The metric (or set of metrics) is
chosen based on the task of interest. Other objectives can be targeted, includ-
ing improving the speed of the prediction or the size of the model. Finally,
performance can be assessed regarding data: a neural net is data-efficient if it
requires few data for training, and it generalizes well if its test metric is also
high on unseen data (see Subsection 1.2.5). All of these criteria to assess per-
formance are task-dependant, and they are decided based on what the neural
net will be used for.

Since training a neural net requires to process many times a large set of
data, efficient computations are required. It is achieved via parallel computa-
tions: several inputs are processed simultaneously using a variable number of
Graphics Processing Units (GPUs). Those inputs are stacked into tensors, i.e,
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multi-dimensional matrices. Any data to be processed by a neural net must
be expressed as a tensor.

MLPs are universal approximators [Hornik et al., 1989], meaning that they
can approximate any continuous function as precisely as desired (given enough
data and neurons). However, they do not take into account the specificities
of the problem (for instance, invariance: a protein structure that is rotated
has different coordinates but it stays the same structure), which limits their
performances in practical settings where both the amount of data and the
model size are limited. Therefore, various architectures have been developed
and dedicated to a specific type of data, including images, graphs or sequences
(see Section 1.2.3). Nevertheless, training any neural network always requires
the elements described in this section, namely data, a specific architecture, a
loss function and an optimization process. Each of them will be detailed in
the following sections.

1.2.2 Data

A critical element for the overall performances of a neural network is the
amount of available data and the way they are represented. Neural networks
have been successful on many complex data types, including images, language
and structured data such as graphs [Wu et al., 2021]. In all cases, both input
and output data must be expressed as tensors. Mathematically, input data are
described as a sample drawn from a probability distribution (almost always
unknown).

These data are split into 3 subsets: training, validation and test sets. The
training set is used to learn the weights of the neural net. The validation
set is used to tune the hyperparameters and possibly to decide when to stop
training. Once all parameters are chosen, the performances of the neural net
are assessed on the test set, chosen to be representative of the target task.
If the goal is to generalize to unseen data, the three datasets should be as
independent as possible.

In the supervised setting, the input data is associated with a ground truth
label to be recovered. For instance, images can be associated with an object
present in the image [Deng et al., 2009]. In this case, the neural network
learns by imitation. In practice, labelled data are less common than unlabelled
data, handled by unsupervised methods. The last major training setting is
Reinforcement Learning [Kaelbling et al., 1996], where an agent learns by
interacting with its environment. It will not be discussed further in this work.
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The specificity of the output also impacts the setting. The output of a
predictive model can be interpreted as an information over the input. If it is
a real number, the model performs a regression: if it is a class, the model per-
forms a classification. For instance, for an input protein sequence, its stability
could be predicted (regression), or whether it is intrinsically disordered or not
(classification). The output of a generative model is a new sample, drawn from
the (unknown) input distribution. For instance, from protein sequences of a
given family, one may want to generate a new sequence of a protein that would
belong to this family. A summary of the different settings based on the kind
of input and output is proposed in Figure 1.5.

Figure 1.5: Existing settings (in bold) based on the kind of input (in green) and
output (in red) data.

1.2.3 Architectures

The type of data to process, as well as the desired output (prediction or gen-
eration of a new sample), drive the choice of the best-suited architecture of
neural network. Neural nets are especially useful to process raw data; when
highly-informative features are available, classic ML methods such as logistic
regression or SVM are often sufficient. Therefore, this section is organized
around the type of data to process: first, images processed by Convolutional
Neural Network (CNN), then sequences by recurrent architecture and attention
models and graphs by Graphs Neural Nets (GNN). Finally, some architectures
for generative models are described.

Convolutional Neural Network

Basic MLPs have been refined to process images by restricting their linear
transformations to local convolutions [Lecun et al., 1998]. This operation com-
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putes a pixel state as a linear combination of neighbouring pixels only. Through
convolution, the output of a translated image is just translated. Convolutions
are interleaved with pooling layers that merge blocks of (usually 2 × 2) pix-
els, thus reducing scale. The succession of convolutive and pooling layers,
separated by activation functions, can extract more and more global features
while taking into account neighbouring information. Figure 1.7 summarizes
the resulting Convolutional Neural Network (CNN).

CNNs are an example of an architecture leveraging the symmetries of the
problem (i.e, a translated motif stays the same motif) through translation-
equivariance (translation of the input results in a similarly translated output)
[Matsugu et al., 2003]. Invariance can exist for all sorts of operations on the
input, including rotations and permutations. An architecture that transforms
its output in the same way as the input is said equivariant. Both invariance
and equivariance are a major target in Deep Learning since they reduce the
number of parameters to be learned without losing any power of representation.
Less data is needed and performances improve in terms of training time, data-
efficiency and generalization ability.

Figure 1.6: Residual connec-
tion.

Empirically, CNN accuracy was observed
to increase with the number of layers used
(the depth), but this eventually lead to
numerical issues during back-propagation,
which slows down and possibly stops learn-
ing. To go deeper, residual connections [He
et al., 2016] were introduced: the input of a
layer is directly added to the output of fol-
lowing layers (see Figure 1.6).

Finally, while CNNs exploit translation-
equivariance, they are sensitive to rotation of the input. Thus, a rotated
motif in the input - possibly a protein structure - will not be automatically
recognized. A usual approach to tackle this issue is to use data augmentation
[Shorten and Khoshgoftaar, 2019]: the training set is completed by similarly
perturbed (rotated) images. However, this approach makes training longer and
harder and using rotation-equivariant architectures is better.

Recurrent Architecture and Attention Models

Text is a very common type of data, that has been massively analyzed in
Natural Language Processing (NLP), driving the development of dedicated
architectures. From existing unlabelled sentences, widely available, training
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Figure 1.7: Convolutional neural network (CNN) architecture. The architecture
is composed of a succession of convolutions, followed by an activation function and
pooling layers to extract more and more global features from the image. Then,if the
task is a classification or a regression, these features are flattened into a vector fed
into a usual MLP which predicts the class or regression value.

can be supervised by next-word prediction or masking: completing a partial
or masked sentence with an appropriate word. Protein sequences can be seen
as sentences made of amino acid types, and thus can be processed by the same
architectures.

Compared to images, that can always be scaled to a fixed format, sentences
have variable length. Recurrent Neural Networks (RNN) have been developed
to process each word at a time by the same operation. The current output
is computed from the current input word and the previous output, hence the
name recurrent (see Figure 1.8). The idea, which is reminiscent of Hidden
Markov Models, is to integrate the information from previous words to predict
the next one. To preserve information from previous words, additional pa-
rameters, acting as a form of memory, have been introduced in LSTMs (long
short-term memory) [Hochreiter and Schmidhuber, 1997].

Individual words must be embedded into fixed-size numerical tensors (vec-
tors here). The most obvious approach is to sort all words and identify each
by its position i. But close numbers may correspond to semantically unrelated
words and this makes training difficult. One Hot encoding represents word by
a vector of 0s, except for a 1 at the ith position.

A more informative representation uses an embedding learned by a Lan-
guage Model (LM) [Mikolov et al., 2013; Le and Mikolov, 2014] to give them
a semantic flavor. Similar embeddings (in terms of cosine distance between
vectors) should have a similar meaning. Ultimately, they can even be used to
get a working semantic “algebra” as often exemplified by the (approximately
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satisfied) equation (king - man + woman = queen) [Vylomova et al., 2016].
Suitable learned embeddings are critical for the performances of various models
built on top of them.

Figure 1.8: Pipeline of a Recurrent Neural Network. Elements x of the input
sequence are processed individually by the same weights W.

A more recent approach to handle sequential data replaces recurrence by
so-called attention mechanisms, popularized in the Transformer architecture
[Vaswani et al., 2017]. Recurrent architectures have an inherent difficulty in
exploiting long-distance interactions in a sequence [Hochreiter et al., 2001].
Transformers have been precisely designed to fight this limitation by leveraging
self-attention to identify which part of the input is important (and how) for
the prediction. The neural net can then focus on those parts, no matter their
range, to predict the output. For instance, when predicting protein contacts,
attention can make each residue attend to only few other residues, which are
therefore more likely to truly be in contact [Bhattacharya et al., 2020].

To allow for considering any distant interaction, the size of the input se-
quence is bounded to a maximum and data processing is parallel instead of
being sequential. This makes the process potentially more efficient but also
more memory intensive, especially for large maximum lengths.

Graph Neural Networks

Previous architectures focused on numerical data, which can be directly repre-
sented as tensors. However, it excludes many structured data, such as interac-
tion networks, molecular structures or meshed surfaces [Bronstein et al., 2017].

28



1.2. DEEP LEARNING

Therefore, a dedicated architecture is required; this section will focus only on
graphs, but Geometric Deep Learning has extended the developed models to
other structured non-Euclidean data [Bronstein et al., 2021].

One of the first application of Graph Neural Networks (GNN) was on
molecules [Gilmer et al., 2017], that can naturally be represented as graphs:
each atom corresponds to a vertex and the covalent bonds are edges. Each layer
of the proposed GNN consists in 2 operations, as summarized in Figure 1.9:
message passing and graph pooling.

Message passing, first introduced for graphical models [Pearl, 1982], is for-
mally described in equation 1.1. Each node v is associated with a state hv,
initialized from its input features or randomly. During one iteration of message
passing, each node updates its state based on its previous state and messages
received from their neighbouring (i.e., connected) nodes. These message are
aggregated based on a parametric (i.e., learnable) function f , that can also
depends on node and edge features [Wu et al., 2021].

h(t)v = ϕ(h(t−1)
v ,

∑
u∈N(v)

f(h(t−1)
u )) (1.1)

Following message passing, a graph pooling operation reduces the size of
the graph by fusing nodes together. The mathematical details of the message-
passing and graph-pooling operations result in variations of GNN architectures.
Notable ones include attention [Velickovic et al., 2017] or relational reasoning
[Palm et al., 2018].

GNNs suffer from some limitations. First, message passing requires many-
operations to connect distant nodes, which limits their ability to model long-
range dependencies. Second, their expressive power is limited as they are
unable to distinguish isomorphic graphs in some cases [Morris et al., 2019].

Very few alternatives to process graphs without message passing have been
proposed [Liu et al., 2021; Hu et al., 2021]. We based our architecture on the
work by Liu et al., a MLP augmented with a gating mechanism acting like
attention to focus on the most relevant part of the input [Liu et al., 2021; Hu
et al., 2021].

Architectures for Generative Models

Generative models aim at learning the unknown distribution of the training
data in order to generate new data from the same distribution. A simple gener-
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Figure 1.9: One layer of a Graph Neural Network. First, each node sends a message
to its neighbours and updates its own state based on the messages received. Then,
the graph is reduced using a specific pooling operation.

ative model can be learned using auto-encoders: an input x is successively re-
duced in dimensionality by an encoder, producing an internal low dimensional
representation of the input x (a latent representation). This representation
is then decoded to produce back the original input x. This encoder-decoder
pair is trained as a single network that must learn the identity function. This
process has been simplified in Variational Auto-Encoders (VAE) [Kingma and
Welling, 2014] with a simpler latent distribution representation. The learned
latent representation may be useful as a learned embedding of the input but
also for generative purposes: new data can be generated by sampling the la-
tent space and decoding it. However, this often leads to inconsistent output
because the fraction of the latent space that describes correct output may be
very tiny.

Another popular approach is based on Generative Adversarial Networks
(GAN) [Goodfellow et al., 2014]. GANs also use a combination of two neu-
ral nets: a generator that learns how to generate new data (from the same
distribution as the training data) and a discriminator that learns to predict
whether its input is out-of-distribution or not. The training objective, encap-
sulated inside the loss, encourages the generator to fool the discriminator and
the discriminator to reject out-of-distribution data, hence the name adversar-
ial. After training, the generator alone is used to generate new data. Training
GANs can be challenging as both learners need to learn at comparable speed
[Arjovsky et al., 2017]. GAN and VAE are unsupervised methods but the inner
architecture of their networks are of the same type as discussed before (MLP,
CNN, attention-based), depending on the type of data to handle.
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More recently, diffusion models have been proposed, initially to generate
images. They work in two steps. First, during the forward diffusion stage,
the data is perturbed by adding more and more Gaussian noise. In the reverse
stage, the model is trained to reverse the diffusion process and predict back the
input data [Croitoru et al., 2023]. Once trained, those models can generate
new samples by denoising a random input, and they usually produce high-
quality and diverse samples. They have now been applied to other kind of
data, including protein structures [Watson et al., 2022; Anand and Achim,
2022].

Figure 1.10: Examples of generative models. From top to bottom: Variational
Auto-encoder (VAE) and Generative Adversarial Network (GAN) models. The en-
coder, decoder, generator and discriminator may be neural networks of any type
(including MLPs, recurrent and attention-based).

1.2.4 Loss Function and Optimization

Loss Function

A numerical loss function quantifies how well the learning objective is reached,
based on known answers (supervised case) or not. At each training iteration,
a sample is processed by the network into a predicted output. The loss on
this output is computed, then its gradients with respect to each of the net’s
weight are computed using backpropagation, a technique based on the chain
rule [Lecun et al., 2015]. Finally, the weights are updated using gradient-
descent-like method.
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The choice of the loss function is critical to the overall performance. Since
neural training is based on its gradients, the loss function must be differen-
tiable. It is obviously chosen based on the problem setting. Regression tasks
often use mean absolute or squared error. For classification, the output vector
is turned into a probability over each class, then its cross-entropy is used as
loss. Unsupervised methods require specific loss function, such as the likeli-
hood [LeCun et al., 2006]. Beyond these very common tasks, the loss is chosen
on a case-by-case basis.

Beyond supervised or unsupervised models, intermediate settings exist,
such as self-supervised learning [Doersch and Zisserman, 2017], where a su-
pervision signal is built out of unlabelled data, and transfer learning. During
transfer [Pan and Yang, 2010], an already-trained model is reused on a new
task. It is very common for Language Models: a model is first trained on very
large corpus of texts to produce good-quality learned embedding. Then, those
embeddings are used as inputs of a downstream task. An existing network
can also be fine-tuned on a smaller, more-specific dataset. It is used as good
initial weight to train on the task of interest (with a smaller learning rate, or
with some layer frozen). Finally, it is possible to train on several objective at
the same time, a method called multi-task learning. It usually improve per-
formances on each individual task as well as generalizability [Caruana, 1998;
Baxter, 2000] (see Subsection 1.2.5).

Optimization by Gradient Descent

Learning is the process of updating the neural net weights such that the loss
is minimized. Formally, in the supervised setting, input X and target Y are
drawn from a probability distribution P . The goal is to learn a function
matching X to Y . This function fθ is parameterized by the weights θ ∈ Rp of
the neural net. The statistical problem is

min
θ∈Rp

EX,Y∼PL(Y, fθ(X))

In practice, it is solved by Empirical Risk Minimization: the empirical
expectation of the loss over the training set is minimized.

min
θ∈Rp

∑
x,y∈trainset

1

|trainset|
L(y, fθ(x))

The optimization is based on gradient descent. In its basic form, the gradi-
ents of the loss L is computed with respect to each weight w, then the weights
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are updated as follows:
wt+1 = wt − η∇wL(w)

The parameter η is called the learning rate (LR) and it is critical for the
training convergence. If too small, convergence will be slow; if too big, even a
local minimum will not be reached.

The default gradient descent is batch gradient descent, where the gradi-
ents over all training examples are computed and averaged to take one step of
descent. It converges directly to the best expectation of the gradient that can
be computed, but it is costly for large dataset. Many variants have been pro-
posed to improve convergence speed and performances [Ruder, 2016]. Notable
improvements include mini-batch gradient descent, where a fixed number of
training examples are used for one update. Another variant is the stochastic
gradient descent (SGD), where only one example is processed to take a descent
step. It achieves faster iteration, but has a lower convergence rate [Bottou and
Bousquet, 2007].

Another very popular optimizer is Adam [Kingma and Ba, 2015], whose
name is derived from adaptative moment estimation. While SGD uses a single
learning rate for all weights during all training, Adam computes adaptative
LR for different weight based on estimations of first and second moments of
gradients. The momentum avoids being stuck into local minima.

A major issue during training is exploding or vanishing gradient. Indeed,
too big or too small gradients, often resulting from very deep architecture,
slow or even stop convergence. It can be partly dealt with with input nor-
malization: avoiding to have big and small weights (thus small/large updates)
may prevent from staying stuck into a plateau region. A step further is batch
normalization, that normalizes the input of each hidden layer. Another tool
against vanishing gradient is a good weight initialization. Commonly used
are Xavier’s initialization [Glorot and Bengio, 2010] on layers with symmetric
activations, and Kaiming’s initialization [He et al., 2015] for ReLU.

1.2.5 Generalization Ability

The goal when training a neural network is to perform well (in terms of metric,
time, data-efficiency, . . . ) on the task of interest. This task is simulated by the
test set, which should be as representative as possible (i.e., drawn from the
distribution of interest). For instance, a DL model trained to classify medical
images from a specific device may perform poorly on images from other devices
[Liu et al., 2019]. In this example, the test set should have contained images
from all the devices the model was aimed to process.
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Figure 1.11: Illustration of over-fitting on a binary classification task.

The DL model may be aimed to perform well on any data, including unseen
one. This is known as generalizability. It is measured on the test set, which (in
this case) should be as different as possible from both training and validation
set. Otherwise, reproducibility issues may arise [Kapoor and Narayanan, 2022].
In the previous example, performances were good only on images from one
device, but they could not be reproduced on other devices. This illustrates the
importance of data being drawn from the distribution of interest (in this case,
images from many devices and not a single one).

Figure 1.12: Illustration of early stopping to avoid over-fitting. When the loss as-
sessed on an independent validation set starts increasing, training should be stopped.

Generalizability issues can also result from over-fitting. It occurs when the
model fits the training data so tightly that it learns the dataset and therefore
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the model performs poorly on independent data (see Figure 1.11). A few guide-
lines can help reduce overfitting. In accordance with the parsimony principle,
the chosen neural architecture should be the simplest that fits for the best
results. Some mechanisms can be added, such as the popular dropout [Sri-
vastava et al., 2014] that randomly deactivates some neurons during training.
To simplify the model and avoid over-fitting, regularization on the neural net’s
weights can be added in order to encourage weights to be small. It is automati-
cally handled by the optimizer as the weight decay. Finally, over-fitting can be
limited by stopping training early: when the validation loss starts increasing,
it indicates the generalization error is increasing and therefore training should
be stopped. It is illustrated in Figure 1.12.
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1.3 Graphical Models for Automated Reason-

ing

The previous section described deep learning, one branch of Artificial Intelli-
gence (AI). This section deals with an another aspect, reasoning. It focuses on
Graphical Models, a family of models that encompass many NP-hard reasoning
and optimization frameworks, both deterministic and stochastic.

After introducing graphical models, this section focuses on a specific frame-
work to model numerical functions, Cost Function Networks. Definitions and
examples are given, then the solvers we used are introduced.

1.3.1 Discrete Graphical Models

Graphical Models (GMs) are a family of models aiming to describe functions of
many variables using decomposability [Cooper et al., 2020]. In this work, only
discrete GMs (i.e., describing a function over discrete variables) are considered,
even though GMs with continuous variables, such as Gaussian GM [Uhler,
2017], exist. A joint function on all the variables of the set is defined by
combining simpler functions, e.g. involving a small subset of variables. The
combination is done by an associative and commutative operator, such as the
addition, multiplication or the logical operations.

As suggested by their name, GMs can be represented graphically (see an
example on Figure 1.13). Each variable is associated with a vertex, and edges
are drawn between each pair of variables participating together in a function.
The graphical representation makes it possible to describe a function on many
variables concisely as one edge can be interpreted as one pairwise function.

Figure 1.13: Graphical representation of a GM. Each variable Xi corresponds to
a vertex and there is one edge if two variables participate together in a function.

Many reasoning and optimization frameworks can be described as discrete
graphical models. GM with Boolean variables corresponds to propositional
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logic, with one usual query being satisfiability problem (SAT). GM on finite-
domain variable can describe functions that are Boolean (e.g., Constraint Net-
works, with one query being Constraint Satisfaction Problem (CSP)) or finite-
domain functions (detailed in the next subsection). All of these examples are
deterministic. GMs can also describe discrete probability distributions using
small real-valued functions. This includes the widely-used Markov Random
Fields (MRF) [Koller and Friedman, 2009] and Bayesian Networks [Bishop
and Nasrabadi, 2006]. Stochastic GMs are of particular interest because they
can be learned from data.

Since GMs gather many settings, they have a wide variety of applications.
Deterministic GM are used for knowledge representation, and learning and
reasoning tasks. It includes scheduling [Baptiste et al., 2001] and planning
[Van Beek and Chen, 1999] among many others [Dechter, 2013]. Stochastic
variants are used in statistics, including physics statistics, and Machine Learn-
ing, with MRF being often applied to image processing such as segmentation
[Li, 2009].

1.3.2 Cost Function Networks

Definition

Cost Function Networks (CFN) are the main type of GM that will be used in
this thesis. They were chosen for their ability to represent both numerical and
logical functions.

For clarity, in the rest of the document, sets, vectors and tensors will be
usually denoted in bold. Formally, a CFNM is a triplet (X,D,C) with:

• X = {X1, ..., Xn} a set of variables

• D = {D1, ..., Dn} a set of finite domains. For a subset of variables
S ∈ X, the Cartesian product of all Di with Xi ∈ S is noted DS.

• C a set of cost functions cS. Each depends on a subset of variables
S ∈ X and cS : DS → {0, ..., k}

Each cost function cS is a numerical function bounded by an integer k (or
possibly +∞). Using as addition a+k b = min(a+ b, k), a joint cost function
is defined by:

CM(x) =
∑
cS∈C

cS(x[S])

where x[S] denotes the projection of x on S.
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Once the joint cost function CM is described by a CFN, many queries can
be asked on CM. One of the most important is minimization, which is known
as the Weighted Constraint Satisfaction Problem (WCSP). Formally, it aims
to find an assignment x of all variables such that:

x = argmin
y∈DX

CM(y)

The WCSP decision problem is NP-complete. It means computing the cost of
an assignment is polynomial, but there is no known method to compute an
optimal solution efficiently (i.e., in polynomial time).

An important property of CFNs is them being invariant under scaling and
shifting (i.e., an affine transformation) of all the weights. Such a transfor-
mation does not change the optimal solution, but it changes of course the
cost of the optimum. Thanks to this property, using discrete positive-valued
cost functions is not restrictive in practice. Indeed, fixed decimal point num-
bers are handled by scaling, and negative number by shifting. In particular,
maximization problems can be solved as well as minimization.

Constraints and Redundancy

A constraint is a cost function F such that F (t) ∈ {0,∞}: it exactly forbids
all assignments t such that F (t) = ∞. Said otherwise, a constraint either
allows or forbid an assignment.

When a given function F is never larger than another function F ′ (denoted
(F ≤ F ′)), F is known as a relaxation of F ′. If F and F ′ are constraints and
such that F ≤ F ′, we say that F is a logical consequence of F ′. Whenever F ′

is satisfied (i.e., equal to 0), F is satisfied too.

For a set of constraints C, F ∈ C is redundant w.r.t. C iff C and C \ {F}
define the same function. At a finer grain, we say F is partially redundant if
∃F ′ < F such that (C \ {F}) ∪ {F ′} and C define the same function.

Consider for example Y = {Y1, Y2, Y3, Y4} with domains {0, 1} and C =
{Y1 ̸= Y2, Y2+Y3 > 1, Y3 ̸= Y4}. No constraint is redundant in C, but if Y2 and
Y3 have already been assigned to 1, then the constraint Y2 + Y3 > 1 becomes
redundant w.r.t. C′ = C ∪ {Y2 = 1, Y3 = 1}. In the context of {Y1 = 0},
Y2 + Y3 > 1 becomes partially redundant, as it could equivalently be replaced
by the weaker Y2 = Y3.
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Example

We illustrate how to model problems into CFN on the example of Sudoku.
Sudoku is a game consisting in filling a 9× 9 grid with integers between 1 and
9 such that no identical figures are in the same row, column or square (see
Figure 1.14 (left)). This problem only contains constraints, thus representable
by Boolean cost functions. Such logical information is represented by a CFN
with costs in {0,∞}. Given a pair of variables, an infinite cost on a pair of
values forbids the joint assignment of these values to the variables.

Figure 1.14: Left: a filled grid of Sudoku. No cells on the same row, column or 3∗3
square contains the same figure. These rules are constraints and they are encoded
in a cost function (Right).

The CFN has 81 variables, each corresponding to one cell of the grid and
with domain {1, ..., 9}. To prevent constrained variables (i.e., corresponding
to cells on the same row, column or square) from simultaneously taking the
same value, a cost of ∞ will be given on assignments of an identical pair,
and costs of 0 otherwise. Therefore, there will be a pairwise cost function on
each constrained pair of variables. A convenient way to visualize pairwise cost
functions is via tensors, as shown in Figure 1.14 (right).

The rules of Sudoku are redundant. Partial redundancy is obvious: when
only one cell is empty, it can be guessed from the information of the row
alone, without looking at the column or the sub-square. Some rules are also
completely redundant, and removing them does not change the solution of the
Sudoku grid. The minimal set of rules from Sudoku is still an open question,
even if it has been proven that (at least) 162 over the 810 are redundant
[Demoen and de la Banda, 2014].
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Tools to Solve a CFN

In this work, we will use existing solvers mostly as black boxes to solve our WC-
SPs of interest. For exact resolution, we use the open-source solver toulbar2
[Allouche et al., 2015; Hurley et al., 2016], available at
https://github.com/toulbar2/toulbar2.

In addition to providing the optimal solution(s), toulbar2 builds a proof of
optimality. Nevertheless, solving becomes more and more expensive as the size
of the problem increases: in the worst-case scenario, the complexity increases
exponentially with the number of variables. However, the number of calcula-
tions can be arbitrarily limited via a parameter called backtrack [Harvey and
Ginsberg, 1995]: solutions are provided in limited time, but their quality is
not guaranteed.

Toulbar2 performances have been assessed independently on various com-
petitions. It won several medals in competitions on Max-CSP (CPAI08, 2022
XCSP3) and probabilistic graphical models (UAI 2008, 2010, 2014, 2022 on the
MAP task). For protein design (in the discrete pairwise formulation, detailed
in Section 2.2.1), it was said to have “significantly improved the state-of-the-art
efficiency” [Hallen and Donald, 2019]. Some of toulbar2’s additional function-
alities have been introduced specifically for designing proteins, including the
production of guaranteed diverse high-quality solutions [Ruffini et al., 2019].

Still, protein design problems may have hundreds to thousands of variables,
and therefore exact solving may become practically intractable. In those cases,
an approximate probabilistic solver that scales better is attractive. We will use
the Low-Rank Bloc Coordinate Descent (LR-BCD) method [Durante et al.,
2022], which is based on a convex relaxation of the WCSP.

1.3.3 Probabilistic Interpretation of CFNs

CFNs as Markov Random Fields

CFN can be interpreted as a Markov Random Field, a type of stochastic GM
[Koller and Friedman, 2009] for which the assignment of a variable corresponds
to the realisation of a random variable. A discrete MRFM is defined on a set
of discrete domain variables X and a set C of non-negative real-valued cost
functions. It induces a joint probability distribution PM defined by:
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CM(x) =
∏
cS∈C

cS(x[S])

PM(X = x) ∝ CM(x)

One usual query on MRF is Maximum a Posteriori (MAP), i.e., maximizing
PM, which is equivalent to maximizing CM. If we take the negative logarithm
of the probability distribution, we find back the joint cost function defined by
a CFN:

max
x∈DX

∏
cS∈C

cS(x[S])⇔ max
x∈DX

log(
∏
cS∈C

cS(x[S]))

⇔ min
x∈DX

∑
cS∈C

− log cS(x[S])

Therefore, solving a WCSP over a CFN (with infinite bound: k = ∞) is
equivalent to solving MAP over a MRF. Since MRFs can be estimated from
data [Taskar et al., 2004] (i.e., finding the probability distribution of variable
assignment), the probabilistic interpretation of CFN makes it possible to learn
it from data as well [Brouard et al., 2020].

This probabilistic interpretation can be considered from a statistical physics
point of view. In a MRF, the probability of a set of variables X to be assigned
to a set of values x is considered. This probability can be written using Boltz-
mann’s equation, which gives the probability of a system X to be in a state
x:

P (X = x) =
1

Z(T )
e−U(x)/T

where T is the system temperature and Z is the normalization constant (also
called partition function). U(x) is the potential energy of the system in state
x. Estimating the MRF is the same as finding U from data.

We saw that a MRF is equivalent to a CFN through a − log transform.
Therefore, the energy U(xi) can be interpreted as a cost in a CFN. Thus, an
infinite cost or energy corresponds to a zero probability, which is a forbidden
assignment.

41



CHAPTER 1. BACKGROUND

Estimating an MRF

One major interest of MRFs is that they can be estimated from data.

We consider a dataset S containing m values (yl)1≤l≤m of a sequence of
variables Y . We assume these values to be i.i.d. samples drawn from an un-
known probability distribution P (Y). We want to find an estimate PM of this
distribution using a Markov Random FieldM.

A natural criteria for the GMM is the negative logarithm of the probability
of the observed samples, or negative log-likelihood (NLL) :

NLL(S) = − log(
∏
y∈S

PM(Y = y)) = −
∑
y∈S

log(PM(Y = y)))

However, this negative log-likelihood is intractable because the computation
of the normalizing constant is #P-hard, a complexity class harder than NP.
Indeed, a solution of a NP-hard problem can be verified in polynomial time,
while verifying the solution of a #P-hard problem is NP-hard.

A tractable alternative is the negative pseudo log-likelihood [Besag, 1975]:

NPLL(S) = −
∑
y∈S

log(
∏
i

PM(yi|y−i))

where y−i denotes the sequence y after removal of the value yi.

The NPLL works at the level of each variable Yi, in the context of y−i,
the assignment of all other variables. In the case of Sudoku, it means we suc-
cessively try to predict one cell knowing all the others. Computing each term
P (yi) of the NPLL requires only normalization over one variable Yi, a compu-
tationally easy task. Moreover, it is known to be asymptotically consistent,
i.e., it asymptotically converges towards the correct GM [Besag, 1975; Geman
and Graffigne, 1986].

Gradients of the Negative Pseudo Log-likelihood

We now consider the case where the MRFM is the output of a neural network.
This neural net can be trained using the NPLL as a loss, which requires to
compute the NPLL gradients.

We assume M to be pairwise, i.e., with cost function of arity at most
2. The cost function on a pair of variables (Yi, Yj) is denoted M[i, j]. It is
interesting to look into the contribution of every sample y to the gradient

∂NPLL
∂M[i,j](vi,vj)

of the NPLL for a given pair of values (vi, vj) of (Yi, Yj).
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As proven in Annex A, the contribution of sample (ω,y) to ∂NPLL
∂M[i,j](vi,vj)

is:

∂NPLL

∂M[i, j](vi, vj)
= [1(yi = vi, yj = vj)− PN(ω)(vi|y−i)1(yj = vj)]

+ [1(yi = vi, yj = vj)− PN(ω)(vj|y−j)1(yi = vi)]

43



BIBLIOGRAPHY

Bibliography
Allouche, D., De Givry, S., Katsirelos, G., Schiex, T., and Zytnicki, M. (2015).

Anytime hybrid best-first search with tree decomposition for weighted csp. In
Principles and Practice of Constraint Programming: 21st International Confer-
ence, CP 2015, Cork, Ireland, August 31–September 4, 2015, Proceedings 21,
pages 12–29. Springer.

AlQuraishi, M. (2019). Alphafold at CASP13. Bioinformatics, 35(22):4862–4865.

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990). Basic
local alignment search tool. Journal of molecular biology, 215(3):403–410.

Anand, N. and Achim, T. (2022). Protein structure and sequence genera-
tion with equivariant denoising diffusion probabilistic models. arXiv preprint
arXiv:2205.15019.

Anfinsen, C. B. (1973). Principles that govern the folding of protein chains. Science,
181(4096):223–230.

Arjovsky, M., Chintala, S., and Bottou, L. (2017). Wasserstein generative adversarial
networks. In Precup, D. and Teh, Y. W., editors, Proceedings of the 34th Inter-
national Conference on Machine Learning, volume 70 of Proceedings of Machine
Learning Research, pages 214–223. PMLR.

Baptiste, P., Le Pape, C., and Nuijten, W. (2001). Constraint-based scheduling:
applying constraint programming to scheduling problems, volume 39. Springer
Science & Business Media.

Baxter, J. (2000). A model of inductive bias learning. Journal of artificial intelligence
research, 12:149–198.

Berman, H., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T., Weissig, H.,
Shindyalov, I., and Bourne, P. (2000). The protein data bank. Nucleic Acids
Res., 28:235–242.

Besag, J. (1975). Statistical analysis of non-lattice data. Journal of the Royal
Statistical Society: Series D (The Statistician), 24(3):179–195.

Bhattacharya, N., Thomas, N., Rao, R., Daupras, J., Koo, P., Baker, D., Song,
Y. S., and Ovchinnikov, S. (2020). Single layers of attention suffice to predict
protein contacts. bioRxiv.

Bhella, D. (2019). Cryo-electron microscopy: an introduction to the technique, and
considerations when working to establish a national facility. Biophysical reviews,
11(4):515–519.

44



BIBLIOGRAPHY

Bishop, C. M. and Nasrabadi, N. M. (2006). Pattern recognition and machine learn-
ing, volume 4. Springer.

Bottou, L. and Bousquet, O. (2007). The tradeoffs of large scale learning. Advances
in neural information processing systems, 20.

Branden, C. I. and Tooze, J. (2012). Introduction to protein structure. Garland
Science.

Bronstein, M. M., Bruna, J., Cohen, T., and Veličković, P. (2021). Geometric
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Chapter 2

Computational Protein Design

The goal of this thesis is to propose a novel method for Computational Protein
Design (CPD), based on both discrete optimization and deep learning. This chapter
presents the context of this work.

First, Section 2.1.2 gives a brief overview of existing protein design methods, to-
gether with some successes and challenges. Second, Section 2.2.4 focuses on energy-
based methods, the traditional approach for Computational Protein Design and the
basis of this work. Third, Section 2.3.3 gives a comprehensive review of the recent
deep-learning-based methods for CPD. They are sorted based on their input (either
a protein structure or sequence), further classified into the protein representation
chosen. Finally, we conclude on the respective advantages of both DL-based and
energy based methods, and we present the novel hybrid approach we developed.
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2.1 Generalities on Protein Design

This section provides an overview of existing design methods. It first presents the
motivation through the wide variety of potential application areas, then describe ex-
isting methods, both experimental and rational. Finally, past successes and present
challenges are highlighted.

2.1.1 Goal and Interest

Protein design aims to conceive new proteins with optimized or new functions or
properties. While natural proteins may sometimes be suitable for certain appli-
cations, frequently, there is no existing protein that meets all the desired crite-
ria. Therefore, custom-designed proteins hold significant importance across various
fields. Protein design can involve the redesign of an existing protein or the de novo
design of a new protein from scratch.

Protein design has seen notable successes across a wide range of application fields
and protein types. Antibodies, for instance, are of great interest in medicine, both for
therapy and diagnosis. Previous accomplishments include the design of antibodies
with significantly enhanced binding affinity to target proteins [Clark et al., 2006] and
the development of a protein-based diagnostic tool [Yeh et al., 2023a]. Enzymes, with
their catalytic capabilities, play crucial roles in green chemistry and biotechnology
for sustainable bioproduction and biotransformation processes. They are used in
various industrial processes, such as starch processing with amylases and biomass
conversion with cellulases. In order to make enzymes fit for industrial processes,
design can aim to enhance their thermostability [Lu et al., 2022], to make them able
to catalyze new reactions [Röthlisberger et al., 2008; Jiang et al., 2008] or to use
a more cost-effective cofactor [Mallinson et al., 2023]. Additionally, the design of
protein assemblies has significant applications in nano(bio)technologies, including
the utilization of molecular machines [Ng et al., 2019] and self-assembling proteins
[Noguchi et al., 2019; Votteler et al., 2016].

Protein engineering has thus become a key technology for tailoring protein func-
tions and properties to meet specific requirements. Design strategies can be split into
two non-exclusive categories described below: experimental and rational approaches.

2.1.2 Overview of Existing Methods

Experimental Approaches

Experimental approaches are based on directed evolution [Packer and Liu, 2015;
Romero and Arnold, 2009], whose application on enzymes was crowned in 2018 by
Frances Arnold’s Nobel prize. The main idea is to modify genetic information by
random mutagenesis or gene shuffling in order to mimic natural evolution. It is based
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on two iterative steps: the generation of libraries of mutants, and high-throughput
screening to select mutants with high activity.

This method is efficient to alter or optimize existing proteins, and it does not
require any knowledge on the structure or the ability to predict the effect of a
mutation. However, it is costly, both in time and in resources, and the required
high-throughput screening is not available on all design targets. Moreover, only a
limited fraction of the sequence space is explored.

Rational Approaches

Rational approaches exploit knowledge on structure and/or function (which is not
always available) to make the desired changes.

Traditional rational design approaches are based on bioinformatics (phylogeny
analysis, ancestral sequence reconstruction, . . . ) and molecular modelling (3D struc-
tural model prediction, docking, molecular dynamics, analysis of intra/inter molecu-
lar interactions, . . . ). For instance, when an active site is identified (possibly via the
study of conserved positions in homologuous proteins or through molecular mod-
elling), point mutations can be tested for increased activity [Shlyk-Kerner et al.,
2006]. Those approaches require knowledge and expertise on the target protein, and
the exploration of the sequence space is limited to a very small number of variants,
mostly single-point mutations. They can be combined with experimental approaches
such as site-directed mutagenesis —to make specific mutating change in DNA— or
controlled randomization to guide the construction of small-size library where the
diversity is focused on key regions.

More recently, machine learning methods have been leveraged to produce fitness
model of proteins, i.e., predicting a property from the sequence. Such models can
then be used to select the most promising mutants for the target property. Two
strategies exist to estimate those models, and they can be combined [Hsu et al.,
2021]. First, a ML model can be fit on a dataset of protein mutants with properties
assessed in lab, for instance via mutational scanning experiment. Experimentally-
labelled data are difficult to generate, thus they are not always available. Even
when they are, the amount of data is limited and they are very often restricted to
one or very few mutations. Second, a ML-based fitness model can be estimated
from evolutionary data. Much information can be derived from a Multiple Sequence
Alignment (MSA) of homologuous proteins (as detailed in Subsection 1.1.3), includ-
ing per-position preferences and co-evolving residues. This can be used to estimate
a Hidden Markov Model or a Markov Random Field (the terminology Potts model
is also used) [Vorberg et al., 2018] describing the fitness landscape. Recently, the
coupling a DL-based fitness estimator with a sampling procedure resulted in a β-
lactamase, an enzyme associated with anti-bio-resistance, with both higher stability
and activity [Fram et al., 2023].
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In terms of automated in silico exploration and filtering of the whole sequence
space, the most successful approach is Computational Protein Design (CPD). It is
defined as the computer-aided rational design of a protein that folds into a structure
to facilitate a function or property [Samish, 2017]. The most usual approach to
CPD consists in choosing or de novo constructing a target backbone that could
carry the function of interest, and then identify a sequence that will fold onto this
backbone and present the expected properties. In this case, the input of the problem
is the target backbone, and the output is the designed sequence(s). This approach
is sometimes referred as the inverse folding problem.

Pioneering works focused on redesigning the hydrophobic core of existing pro-
teins based on knowledge on protein stability [Dahiyat and Mayo, 1996]. As method-
ological advances were achieved, design objectives diversified and targets expanded.
In 2003, a new topology fold, named top7, was designed from scratch, paving the
way toward de novo protein design [Kuhlman et al., 2003]. New functional enzymes
[Jiang et al., 2008], and enzymes with new substrate specificity [Verges et al., 2015]
are other remarkable achievements. The size and complexity of design keeps increas-
ing with recent self-assembling nanocages [Votteler et al., 2016] and tunable protein
biosensors [Quijano-Rubio et al., 2021].

Figure 2.1: Number of publications on Computational Protein Design in the
PubMed database since 1990.

All those successes may explain why Computational Protein Design is a rapidly-
developing area, as illustrated in Figure 2.1. The methodological developments
behind those successes are described in the next subsection.
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2.2 Energy-based Methods

Computational Protein Design (CPD) aims at finding the best-suited sequence(s)
folding onto an input 3D protein structure so that it fulfills a function of interest.
The CPD problem is formulated as an optimization problem: it aims to find the
most stable protein sequence on the input structure. Since maximizing stability
is equivalent to minimizing energy, sequences are selected based on an objective
function quantifying, among others, their energy.

The CPD framework requires 3 ingredients. First, the designed system (rep-
resented by the input backbone) must be realistically modelled to carry the function
or properties of interest. This work will not detail how it is obtained. Second, the
objective function, and particularly the energy function, should be defined as
accurately as possible. Third, an efficient optimization framework is needed.

This section first introduces the paradigm of CPD and highlights the challenges
to face, then it describes the existing energy functions and it finally details the
existing optimization methods.

2.2.1 Paradigm and Challenges

Computational Protein Design is a problem whose input is a protein 3D structure
backbone, and the output is a sequence (or a library of sequences) likely to fold onto
this backbone. An energy-based objective function is chosen to score sequences,
then the sequence space is explored to obtain the designed sequences. They are
to be tested experimentally, and the result can be integrated to the protocol via a
feedback loop. The complete CPD protocol is summarized in Figure 2.2.

The main challenge faced by CPD is the combinatorial explosion of the search
space. Indeed, at each position of the sequence, one amino acid among the 20
canonical ones must be chosen, resulting in 20n possible sequences, with n the length
of the sequence. For a small protein of 100 residues, it represents about 10130 possible
sequences, which is more than the number of atom in the universe. The search space
is even larger if in addition to the choice of amino acid, its side chain must be placed
properly in 3D space.

In order to restrain the astronomical search space, simplifying hypotheses are
usually used. First, the backbone of the protein is assumed to be rigid. Second,
the side chain of residues can only adopt discrete conformations called rotamers.
Libraries of the most common rotamers, such as Dunbrack’s, are used in practice
[Dunbrack Jr, 2002]. Nevertheless, despite these simplifications, CPD remains a
non-deterministic polynomial-time hard (NP-hard) problem [Pierce and Winfree,
2002].

Under those assumptions, the main objective of design can be formulating as
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Figure 2.2: The protocol of Computational Protein Design. From the design
objective, an (or several) input 3D backbone is crafted. An energy function is used
to score sequences on the input structure, then the sequence space is explored to
find low-energy sequence(s). The designed sequences are then post-evaluated in
silico and validated experimentally. Optionally, they can be subsequently optimized
by a round of directed evolution, or experimental information can be used to guide
computational design. Deep-Learning based methods simplify this protocol (dotted
lines) by directly mapping the objective or the input structure to a sequence.

finding the sequence s minimizing the energy E:

s∗ = argmin
s∈S

min
r∈R(s)

E(r)

S in the sequence space and R(s) is the ensemble of rotamers associated with a
sequence s. The optimal conformation (sequence + rotamers) s∗ for the input back-
bone is called Global Minimum Energy Conformation (GMEC). The energy E is
given by an energy function, that scores each of the possible conformations. They
are detailed in Subsection 2.2.2.

For computational efficiency, a simplified energy is often used. It is written as a
sum of unary (one-body) and pairwise (two-body) terms, with i and j representing
2 positions in the sequence:

E(r) = E∅ +

n∑
i=1

Ei(ri) +
∑
i<j

Ei,j(ri, rj)

Those terms represent interactions between residues in the protein, but also possibly
with their partners (ligand, cofactor, other proteins, . . . ).

In the rest of this chapter, we will focus on the optimization of the energy.
However, it is important to note that for practical design, maximizing stability
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is rarely the only objective. Indeed, to design a specific function and required
properties, specific global and local biochemical and geometrical constraints are
imposed. Possible additional objectives include symmetry of the designed sequence,
diversity, high binding affinity to a ligand, or requirement in terms of composition
(for instance, prohibit cysteins to avoid the formation of disulfide bridges).

2.2.2 Energy and Scoring Functions

Energy functions aim to model physical interactions between atoms. They need to be
accurate, but also computationally tractable. Applying full first principle quantum
chemistry calculations on macromolecular systems such as proteins is not feasible.
Therefore, approximations have been developed in the form of physics-based force-
fields used for molecular dynamics. As protein design requires a trade-off favouring
more computational efficiency over accuracy, physics-based energy terms have been
simplified and enriched with statistical terms to form scoring functions.

Physics-based Energy

Molecular mechanics energy functions, or force fields, are based on the principles of
Newton’s classical physics. The molecular system is described at the atomic level,
and the interactions within are modelled by the force field, used to compute the
potential energy of the system [Ponder and Case, 2003].

The total potential energy of a system is calculated as the sum of energies rep-
resenting bonded and non-bonded interactions between atoms.

Etotal = Ebonded + Enon−bonded

Bonded terms correspond to interactions between covalently-bonded atoms. They
include a bond-stretching term, and angle-bending term and a dihedral-rotation
term. Non-bonded interactions are the sum of electrostatic and van der Waals
interactions, modelled as Coulomb and Lennard-Jones potentials. Coulomb poten-
tial results from the attractive or repulsive force between charged particles, while
Lennard-Jones potential models the fact that two interacting particles repel each
other at very close distance, attract each other at moderate distance, and do not
interact at infinite distance.

The molecular system may include one or several proteins as well as small
molecules. Therefore, the interactions represented include inter and intra protein in-
teractions and binding interactions with a ligand. In addition to interactions inside
the molecular system, interactions with the solvent need to be represented. Indeed,
for the majority of proteins that folds into aqueous environment, it is the hydropho-
bic interactions with water that drive the burial of the hydrophobic core. Membrane
proteins are in a lipidic environment and thus interact differently with their solvent.
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The solvent can be represented either explicitly as a set of water molecules, which
is computationally expensive, or implicitly by a dedicated energy term (a dielectric
constant).

Force fields are widely used for molecular dynamics simulations. Among the most
commonly used for proteins, there are AMBER [Maier et al., 2015] and CHARMM
[Vanommeslaeghe et al., 2010]. They are usually combined with solvent models
computationally too costly to be used for design.

Scoring Functions

Force fields do not take into account some features observed in protein structures.
Therefore, some additional terms, statistically derived from experimental observa-
tions, have been introduced.

For instance, hydrophobic interactions tend to result in hydrophobic residues
being buried at the core of proteins, and polar residues being exposed at the surface.
However, polar residue can be important at the core of the protein. The introduction
of a hydrogen-bonding rule for the introduction of polar or charged residues in the
core resulted in an improved stability or thioredoxin core design [Bolon et al., 2003].

A good illustration of the mix between physics-based and statistical terms is the
Rosetta energy function widely used for design named ref2015 [Alford et al., 2017].

Etotal = λ1Enon-bounded + λ2Esolvent + λ3Etorsion + λ4Ebonded + λ5Eref

• The Enon-bounded term represents physical interactions as previously (Coulomb
and Lennard-Jones potentials, and hydrogen bonds).

• The Esolvant term represents the solvent. Indeed, if an energy scoring function
needs to represent the solvent, computationally-expensive explicit representa-
tion are seldom used in design.

• The torsion terms Etorsion include rotamer and dihedral preferences.

• Finally, the reference energy term Eref aims to account for the variable chem-
ical composition of amino acids.

The importance of each energy term is weighted by factors λi that are derived from
a training set containing both small and macro-molecules. They are crucial since
the drawback of combining physics and statistics is that some terms can be partially
redundant.

When combining physics-based and statistical terms, the resulting function does
not represent potential energy anymore. Therefore, it is called a scoring function.
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Nevertheless, it is aimed to be used the same way. In the case of design, the scor-
ing function is used to guide the conformation-sequence search and estimate the
likelihood of a conformation.

The conformation-sequence space contains all the possible sequences and the
possible placements of the side chains, represented by rotamers. Since the main
challenge of protein design comes from the huge size of this search space, reducing
it will likely increase resolution time. Therefore, one way to increase the efficiency
of scoring function is coarse-graining : instead of representing all the atoms of the
protein, a residue-level representation is used. The design problem reduces to finding
the residue without explicit consideration of side chain placement.

Knowledge-based Potentials

In order to further improve the speed/accuracy balance of scoring functions, some ap-
proaches completely replaced all the physics-based terms by statistical terms. Such
approaches are called knowledge-based potentials (KBP) [Poole and Ranganathan,
2006]. Potential is a terminology from physics used to qualify any term defining a
potential energy function.

Most KBPs are based on the inverse Boltzmann equation:

Ei,j = −RT ln(
P obs(i, j)

P ref (i, j)
)

with T the temperature, R the gas constant and (i, j) the current pair of atoms or
residues. P obs is the joint probability of observing the pair of residues (i, j) while
P ref is the reference probability. One classical reference state is simply the average
over the 20 different amino acid types [Samudrala and Moult, 1998].

These probability distributions are computed on known structure from the PDB.
At first, they were based solely on contacts via a distance cut-off [Tanaka and Scher-
aga, 1976; Park and Levitt, 1996]. Improvements have been made through the
consideration of distance-dependency [Zhou and Zhou, 2002], then the inclusion of
orientation terms [Buchete et al., 2004]. Current KBPs differ from each other in the
way they consider the distance and the orientation preferences of the pairwise con-
tacts [Zhou and Skolnick, 2011; Lu and Skolnick, 2001; López-Blanco and Chacón,
2019].

More recently, deep learning has been used to learn protein-specific potential.
Those potentials present the advantages of not requiring pairwise decomposition,
and they are computationally efficient. They have been used for conformation pre-
diction [Du et al., 2020a], to generate designable backbone [Huang et al., 2022] and
for unsupervised contact prediction [Sercu et al., 2021]. The neural net for pro-
tein structure prediction AlphaFold [Jumper et al., 2021] shows evidence of having
learned something akin to an energy function for scoring the accuracy of candidate
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structure [Roney and Ovchinnikov, 2022]. For design, the energy has been modelled
as the log-probability of the sequence conditioned by the structure, and candidate
sequences sampled accordingly [Anand et al., 2022].

2.2.3 Existing Algorithms

CPD requires to solve NP-hard problems on exponential search space [Pierce and
Winfree, 2002]. In practice, for the sizes of the problems that need to be solved, so-
lutions can be produced. Existing approaches rely either on stochastic optimization
or provable methods.

Stochastic Approaches

The widely-used for design Rosetta Molecular Modelling Suite [Leaver-Fay et al.,
2011] relies on Monte-Carlo Simulated Annealing [Van Laarhoven et al., 1987] to
produce low-energy sequences.

Starting from a random sequence, the sequence space is explored locally by as-
sessing a random mutation at each iteration. It is accepted based on the Metropolis
criterion. If the energy of the new sequence decreases, the mutation is accepted. If
the energy increases, the mutation has a probability of acceptance proportional to
the negative energy difference and inversely proportional to the system temperature.
The idea behind the Metropolis criterion is to be able to overcome energetic barriers
and thus avoid to be stuck in a local minimum. The higher the temperature, the
less selective the criterion and thus the more diverse the sequences. Usually, itera-
tions start at a high temperature to sample space, then the temperature decreases
progressively toward a minimum.

The Metropolis criterion is stochastic. Therefore, even when starting from the
same initial sequence, a different sequence is obtained at the end of the procedure,
with no guarantee of reaching the global optimum (even when it is reached, there is
no way to know it). Therefore, the design procedure is often repeated several times
to generate a library of low-energy sequences.

First Exact Methods

Deterministic approaches do not involve any random process, and they build a proof
that the obtained solution is optimal (or close to the optimum). To do so, they
explore a search tree. Each of its node is a sub-problem defined on on a restricted
search space. A solution is found when a leaf node is reached.

A well-known protein design software based on an exact method is Osprey [Hallen
et al., 2018]. It identifies the GMEC using a combination of Dead-End-Elimination
(DEE) [Desmet et al., 1992] and A* [Hart et al., 1968] (a best-first search Branch
& Bound). DEE reduces the search space by eliminating energetically-dominated
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rotamers, as they cannot be part of the optimal solution. A* explores the remaining
search tree to find the lowest energy solution.

This algorithm suffers from exponential space and time complexities, which limits
its application to small proteins. More efficient tree search algorithms exist. In
particular, the formulation of the CPD problem as a Cost Function Network (CFN)
and its resolution with standard depth-first search algorithm presents a polynomially
bounded space complexity. Moreover, the CFN-based approach has been shown to
solve the CPD problem faster than the DEE/A* approach [Allouche et al., 2014] and
it is empirically efficient when combined with Rosetta scoring functions [Simoncini
et al., 2015].

CPD with Cost Function Networks

The CPD problem can be expressed as a Cost Function Network (X,D,C) [Traoré
et al., 2013].

• Each position in the sequence is associated with one variable Xi. If the se-
quence is composed of n amino acid, i ∈ {1, . . . , n}.

• The domain of a variable is either the 20 canonical amino-acid (coarse-grain
case) or a set of discrete rotamers (all-atom case). In the coarse-grain case,
only the amino acid identity is to be chosen; in the all-atom case, the conforma-
tion of the side chain must be decided too. This work uses the coarse-grained
representation, and therefore Di is of size 20 for all variables Xi.

• The cost functions C correspond to the unary and binary energy terms Ei and
Ei,j . The binary terms are represented as a matrix of shape 20×20 indicating
the cost of assigning each pair of variables.

Once expressed as a CFN, the CPD problem is solved by toulbar2 which finds
the optimal sequence for the input backbone. In addition to the optimal solution,
toulbar2 is also able to exhaustively enumerate all the sequences within a bounded
energy gap, which is useful to generate libraries of sequences to be tested experimen-
tally. This functionality was further improved to generate sequence libraries with
guaranteed diversity [Ruffini et al., 2019].

Applications sometimes target functions that cannot be represented by a single
input backbone. For instance, for a protein designed to bind to a given target, the
designed sequence should fit both the bound and unbound conformations. In other
cases, the designed protein should be able to recognize several ligands or to adopt
different conformation to fulfill its function. In all those case, it is useful to consider
2 (or more) input structures, and optimize the sequence on both structures. This
can be done via positive multi-state design (MSD) [Vucinic et al., 2020]. In other
cases, the designed protein should assembles or recognize some partners, but not
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others. This can be expressed as favouring some conformations, and disfavouring
others, which can be done by negative design.

2.2.4 Limitations

This formulation of CPD has known many successes (some of them have been de-
tailed in Subsection 2.1.2) but it suffers from some limitations. To begin with, the
problem is ill-defined: it targets the minimum-energy sequence for the input struc-
ture, but the input backbone is not necessarily the structure of minimum energy for
the sequence, which implies the designed sequence will not necessarily fold onto the
target structure.

In addition, each of the 3 ingredients restricts the method. Representing the
target protein as a 3D backbone requires some prior knowledge on the protein struc-
ture. Moreover, this backbone is usually considered as rigid and thus it does not
account for the flexibility of the protein, which is often crucial for its function. It is
only partially alleviated by multi-state design.

Second, the quality of the designed sequence directly depends on the quality of
the objective function. However, regardless of the energy function chosen, it is an
approximation, which can degrade the quality of solutions. Third, the optimiza-
tion problem is NP-hard. Therefore, even the most efficient algorithms become
intractable as the size of the problem (i.e., the number of residues on the protein)
increases.

These limitations may explain the shift actually occurring toward deep-learning
based methods. By learning a direct mapping from structure or function to sequence,
they bypass the difficulties raised by the optimization of an energy function.
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2.3 Protein Design with Deep Learning

In the wake of its tremendous successes in processing image video and speech, Deep
Learning (DL) has been applied to many fields, including structural biology. In
this area, the most visible success has certainly be AlphaFold for protein structure
prediction [Jumper et al., 2021]. It demonstrates the ability of neural nets to learn
the complex relationship between protein sequences and structures. This success
was made possible by the existence of the Protein Data Bank (PDB) [Berman et al.,
2000], which gathers all the protein structures experimentally resolved and makes
them publicly available.

In the wake of this breakthrough, DL has been applied to many prediction tasks
involving protein structures, including protein-protein interaction [Gainza et al.,
2020], protein binding interfaces [Krapp et al., 2023], protein flexibility [Vander Meer-
sche et al., 2021] and protein conformation [Cretin et al., 2021]. DL has also become
a very appealing approach for Computational Protein Design (CPD). The first two
subsections present the DL existing approaches for structure-based and sequence-
based design. They follow and update a review paper we published in 2021 [Defresne
et al., 2021]. Then, we discuss how to assess and compare DL-based CPD methods.

Figure 2.3 summarizes the classification between DL-based protein design meth-
ods presented in this section. It relies on a first level on the distinction between
structure-based and sequence-based methods. On a second level, methods are clas-
sified based on the type of representation they use.

2.3.1 Structure-based Methods

Applying DL to CPD is not straightforward. Indeed, DL methods require suitable
representations of both input and output data. In the case of CPD, the output is
a protein sequence, whose length vary between instances. The input is a 3D struc-
ture, which contains a rich relational information that should be concisely encoded.
Indeed, protein structures are naturally insensitive to rotations and translations.
Ideally, the chosen representation should account for this property (referred to as
rotation/translation invariance) to make training efficient.

This section is organized around the different protein structure representations
proposed. The first ones were based on hand-crafted features, which was convenient
to use but did not leverage geometrical properties of the structure. To date, four
major types of representations are used: voxels, distance maps, graphs and point
clouds (which are a degenerated case of graph). We describe the use, benefits and
drawbacks of each for CPD, as well as the neural architectures used to process them.
All the approaches described are summarized in Table 2.1.
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Figure 2.3: Protein structure and sequence representations used for deep learning.
The sequence can be both an input and an output: language models process a
one-hot encoding into a learned embedding, while structure-based methods often
produce a PSSM from which designed sequences are sampled. Among the structure
representations, the graph-based are currently the more popular, but there is still
no consensus.
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Hand-crafted and Sequential Representations

Given the input protein backbone, one straight-forward way to represent it as a
tensor is to consider it as a sequence of distances, angles and dihedrals (as usual in
molecular modelling). While rotation and translation invariant, this 1D representa-
tion is not ideal in the context of deep or machine learning because of its sensitivity
to noise through the well-known “lever effect”: a tiny change in one dihedral angle
may translate in very large changes in distant Cartesian coordinates, resulting in
drastic effect on energy [Li et al., 2014; Wang et al., 2018; O’Connell et al., 2018].

Instead, each position in the sequence can be associated with per-residue geomet-
ric and structural features (characteristics deemed to be significant for the learning
problem), possibly completed with other features related for example to the target
design properties. Such an approach was used in the first DL-based CPD systems,
starting with SPIN [Li et al., 2014] and its extension SPIN2 [O’Connell et al., 2018],
as well as work by [Wang et al., 2018]. They differed by the features considered,
but all of them stacked the features and fed them into a MLP to produce a pro-
tein sequence by predicting the probability of each amino acid type at each position
(which corresponds to a Position-Specific Scoring Matrix).

The main advantage of using hand-crafted structural features is to obtain a fixed-
size feature vector, which is required by many DL architectures, including MLPs
and CNNs. Even recurrent models, that accept sequences of variable length, need a
fixed-size word embedding (the amino acid feature vector). The obvious drawback
resides in the features themselves. Crafting and selecting suitable features, with
enough information to learn the complex sequence/structure relationship, is a hard
task and important information may just be lacking (or some may be redundant).
Neural networks have an ability to automatically extract features that should be
leveraged, but it requires to represent the entire structure instead of residue-level
features.

Voxel Representation

As a three-dimensional object, a protein structure can be directly analyzed as volu-
metric data (like a 3D image) that can be fed into a 3D-CNN: the space is discretized
into cubic voxels of typically 1 Å side. Atoms within each voxel are counted and a
Gaussian filter is applied to the discrete count to produce an occupancy map. Each
type of atoms is counted independently, and treated as different channels, like RGB
channels [Anand et al., 2022; Qi and Zhang, 2020; Shroff et al., 2019; Zhang et al.,
2020].

The usually considered task is to predict an amino acid given its local envi-
ronment. The input of the network is a box of size about 20 Å, centered on the
target residue. The geometrical environment is canonized to ensure rotational and
translational invariance. This input, of shape C×(volume of the cube) with C the
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number of channels, is fed into a 3D CNN (whose architecture details vary between
approaches), which is trained on existing proteins, to output a probability over the
20 possible amino acids. This task is also useful for single-point mutation predic-
tion [Shroff et al., 2019, 2020], or for protein design, either indirectly (using the
prediction to reduce the search space of Rosetta) or directly by taking the maxi-
mum probability for each amino acid [Zhang et al., 2020], or by sampling [Anand
et al., 2022]. While DenseCPD [Qi and Zhang, 2020] outperformed several competi-
tors in a recent benchmark experiment [Castorina et al., 2021], these results have
to be taken with caution because the training and testing datasets used were not
separated in the evaluation.

The main interest of this approach is the ability of 3D-CNNs to take into account
the geometry of the protein structure. 3D-CNNs are used to identify structural
motifs, independently of their scale or position, which is critical to decipher the
sequence/structure relationship. The sensitivity of CNNs to rotation is cancelled
by the use of canonized frames but this may not be always sufficient in the context
of protein complexes [Eismann et al., 2021]. This limitation can be bypassed by
rotational data-augmentation, which increases computation time. Discretization
also requires to settle compromises between computational complexity and fidelity.

More recent approaches, ABACUS-R [Huang et al., 2023] and ProDESIGN-LE
[Liu et al., 2022], have taken over the same task of predicting an amino acid from
its environment but tried to overcome the limits of CNNs. First, they reason at the
residue-level instead of the atom-level to avoid the computationally-heavy step of
side chain optimization. Second, the environment is described by features on the
nearest neighbours of the central residue, which are fed into a Transformer. The de-
tails of these features vary with the approach, but they are based on coordinates in a
rotation and translation invariant fashion. The use of the nearest neighbours remove
the need of a discretization of space, but it imposes the same number of neighbours
for each environment. Like CNN-based approaches, the neural net outputs a prob-
ability over the type of amino acid, which is iteratively sampled to produce the
sequence. Both approaches have been experimentally validated.

Distance Maps

A distance map is a 2D representation of a protein structure. It is a n × n matrix
(n being the length of the protein) giving the distance between Cα atoms of each
pair of amino acids. Contact maps are binary maps obtained by putting a distance
threshold on the distance map. Both contact and distance maps have been massively
used for protein structure prediction methods, including AlphaFold [Senior et al.,
2020], trRosetta [Yang et al., 2020] and their successors [Jumper et al., 2021; Baek
et al., 2021].

These structure prediction networks can be partially inverted to iteratively bias
a sequence (starting from a random one) towards a target structure. The inversion
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is based on so-called symbolic gradients: when an input sequence and an output
structure are given, backpropagation can not only compute gradients on the weights
(for training) but also on the input. The first structure prediction network to be
inverted [Norn et al., 2020] was trRosetta, which predicts (among other things) a
distance map from a sequence. The inversion process tends to optimize the input
sequence so that it folds in the target structure. The major claimed advantage
here is that the resulting sequence seems to avoid the pitfall of the usual ill-posed
CPD problem: the predicted sequences seem to implicitly avoid the existence of
alternate stable backbones. Soon after its release, AlphaFold [Jumper et al., 2021]
was inverted in a similar way [Goverde et al., 2023] .

Structure prediction networks can also be exploited to hallucinate ideal proteins.
The first proposed approach is iterative: a random single mutation is applied on a
sequence, the distance map of the new sequence is computed using trRosetta [An-
ishchenko et al., 2020], and the mutation is kept based on an objective encouraging
the sequence to be different from background. This process was iterated, starting
from a random sequence. Around 20% of the designed sequences were experimen-
tally shown to produce folds consistent with the predicted structure. However, the
generated structure could not be controlled. This method was improved to gener-
ate symmetric protein assemblies [Wicky et al., 2022], with the long-term goal of
designing complex components for nanomachines and biomaterials. A combination
of AlphaFold hallucination and inpainting (i.e., masking then predicting some part
of the sequence) was used to successfully design de novo proteins with active sites
and protein binding sites [Wang et al., 2022].

Distance map can also be used directly to represent an input structure. SPROF
extended SPIN2 by incorporating 3D information in the form of a contact map [Chen
et al., 2020]. The map is processed as an image, and the corresponding sequence as
a caption. Then, taking inspiration from the usual “image captioning” task, they
coupled a RNN and a CNN to output a PSSM, from which a designed sequence is
produced. A similar idea was used to design protein-protein interactions [Syrlybaeva
and Strauch, 2023].

As a 2D representation of a 3D structure, contact and distance maps offer several
advantages. They are a low-dimensional, which makes computations efficient. They
are images that benefit from all DL methods developed in the field such as CNNs
with residual connections [Senior et al., 2020; Yang et al., 2020; Chen et al., 2020].
Finally, they are invariant for rotation or translation of the protein structure. The
dimension reduction leads to the loss of some geometric information that can often
be recovered [Adhikari and Cheng, 2018].

Graph Representations

Graphs are well-suited to represent relationships, here between residues in a protein
structure. In the most basic graph, each node, or vertex, corresponds to one residue,
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and edges connect pairs of residues within a distance threshold. Such a graph is
equivalent to a contact map. A graph can be advantageous when there are few
interactions between amino acid (modelled by a small distance threshold). With
a sparse graph (with few edges compared to a complete graph), computations can
be more efficient than on a distance map which explicitly represents all pairwise
interactions. Contact maps are naturally sparse as the number of contacts of each
residue is bounded. Moreover, additional information can be injected into so-called
node and edges attributes. For instance, commonly used edge attributes include
distances, direction and orientation between residues [Ingraham et al., 2019; Strokach
et al., 2020; Dauparas et al., 2022] while dihedral features are sometimes added as
node features. Table 2.2 summarizes the features considered in the main approaches.

Graph-based representations have gained in popularity since the pioneer work of
the Structured Transformer proposed in 2019 [Ingraham et al., 2019]. This method
considered direction and orientation from a local coordinates system, thus enabling
rotation and translation invariance. A Transformer architecture was adapted and
used as an encoder to process the graph. Then an auto-regressive decoder produces
the output sequence, residue after residue. This work had been a basis to following
approaches, which often reuse the same dataset for training and test, enabling a
fair comparison between approaches. These methods differ mainly in the features
considered and the neural architecture used to process them.

The Geometric Vector Perceptron (GVP) [Jing et al., 2021] used similar node and
edge features (even though encoded differently), but used a Graph Neural Network
instead, with a specific graph convolution that was rotation and translation equivari-
ant. The resulting operations were also computationally more tractable than other
equivariant approaches [Fuchs et al., 2020]. In parallel, the ProteinSolver [Strokach
et al., 2020] also proposed their own implementation of message passing operations
to propagate information between neighbouring residues. Like GVP, node and edge
embedding are processed through several graph convolution and aggregation blocks.
In both cases, the final node embeddings are fed into feed-forward layers to predict
the missing residues auto-regressively.

Further improvement resulted from a change of features: instead of relative po-
sitions and orientations between neighbouring residues, ProteinMPNN [Dauparas
et al., 2022] simply uses distances between all the backbone atoms, which provides
a better inductive bias. The network was proposed by the Baker lab, which also
developed the Rosetta tools for design, and it had been extensively experimentally
validated, and proved to have higher success rates than the classical design tools.
Improvement of a similar range was made possible by training a GVP-like architec-
ture on tens of thousand of structures predicted by AlphaFold [Hsu et al., 2022].
Finally, PiFold [Gao et al., 2023] suppressed the auto-regressive decoding of the
sequence and directly output the designed sequence, enabling a faster design. How-
ever, it also limits the possibility of controlling the design outputs, which is often
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Approach
Edge attributes Node attributes

Cα dist. bb dist. dir. orient. seq dihedral dir.
Structured Trf ✓ ✓ ✓ ✓ ✓
Protein Solver ✓ ✓
GVP ✓ ✓ ✓ ✓ ✓
ProteinMPNN ✓ ✓ ✓
PiFold ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 2.2: Edge and node attributes used in graph-based approaches. For edge
attributes, distances (either between α carbons only or all atoms in the backbone),
direction (dir) and orientation (orient.) are between a pair of residues. The attribute
seq refers to the number of residues between in the sequence. For node attributes,
the direction (dir.) can be the direction toward the side chain, or with the previ-
ous/following residue [Jing et al., 2021]. The way these features are encoded may
vary between approaches.

necessary in practice (see Subsection 2.3.3 for details on how to assess DL-based
design methods).

Like any approach using a coarse-grained representation (i.e., at the residue
level instead of the atomic level), difficulties linked with the side chain flexibility
are elegantly side-stepped. However, it makes it impossible to represent molecules
which are not made of amino acids, which is the case of many ligands. An all-atom
graph was used to learn a protein structure representation that takes into account
the primary, secondary and tertiary level of a protein [Hermosilla Casajús et al.,
2021]. The pooling operations on the graph resulted into a change of scale, from
all-atom to residue level then to even coarser scale. However, to our knowledge,
all-atom graph representations have yet to be used for protein design.

Point Clouds (3D Coordinates)

The most brutal way to represent a structure is probably as a point cloud, the list of
all 3D coordinates of its constituents, much like a PDB file. This dense information
can be filtered to just keep the coordinates of Cα atoms [Eliasof et al., 2021], or an
all (heavy) atom representation can be preserved [Du et al., 2020b].

Such representations have been used by MimNet [Eliasof et al., 2021], a GNN-
like architecture that is reversible and therefore can do both folding (forward) and
design (backward). Simultaneously training on both tasks results into a better design
when the structure is better predicted. Coordinates can also be considered as a set
of points, as in Atom Transformer, a network learning an energy function to predict
the protein conformation [Du et al., 2020b].

By comparison with the general graph representation, point clouds do not reduce
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the geometric information about the structure. They can be directly processed
by rotation-equivariant operations, avoiding data augmentation. However, these
operations are often costly in terms of computation time [Fuchs et al., 2020].

Very recently, point cloud representations have known an unprecedented pop-
ularity thanks to diffusion models. The idea behind them is to transform a high-
dimensional distribution (here, 3D frames) into a simpler one, and to learn how
to reverse the process. This makes it possible to generate backbones by starting
from random coordinates and iteratively denoising it [Watson et al., 2023]. It is of
particular interest for design, as this backbone is the input of the structure-based
design process. Compared with previous approaches, both the classical ones based
on fragment assemblies [Huang et al., 2016; Dou et al., 2018], and the DL-ones us-
ing generative models, either GANs [Anand and Huang, 2018] or VAE [Guo et al.,
2020; Eguchi et al., 2020; Lin et al., 2021], diffusion models result in more designable
backbones, i.e., they can be realized by a protein sequence [Lee et al., 2022]. More
broadly, diffusion models have gained in popularity over other generative models as
they have a better training stability, sample quality and diversity.

Even more interesting for protein design in practice is conditioned backbone
generation: generating a backbone presenting the desired secondary structures or
hosting the functional site of interest. The diffusion process can be constrained
toward target secondary structure using blocks indicating which position should
belong to a given secondary structure [Anand and Achim, 2022; Lee et al., 2022].
RFdiffusion offers even more control over the designed backbone [Watson et al.,
2023]: it can also be used to design protein binder, symmetric oligomer or enzyme
active site. Chroma [Ingraham et al., 2022] handles various topology specifications
too, as well as text caption such as ”Protein with CHAD domain” or ”Crystal
structure of aminotransferase”.

If Chroma and RFdiffusion are coupled with a dedicated neural net for the
design task (respectively a GNN and ProteinMPNN), other methods implement an
inpainting strategy to make the diffusion process generates both the backbone and
a corresponding sequence [Anand and Achim, 2022; Lee et al., 2022]. It should be
noted that ProteinSGM [Lee et al., 2022] does not represent the structure with its
coordinates but rather as an image (similar to contact maps).

Applied Successes

The use of deep learning for protein design is very recent. The majority of structure-
based approaches focus on methodological advances: they present a design method
applicable on any (globular) protein, and offer some evidence — in silico and more
rarely experimentally — that the resulting sequences will indeed fold onto the target
structure. However, practical design goes beyond the inverse folding problem. Still,
deep learning has proven to be successful on few applied problems. With the popu-
larity of DL-methods for design, one can only expect to see many more successes in
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the near future.

Protein design targets a function rather than a structure, which is only used as
a convenient proxy for function. When the goal is to improve an existing protein,
its structure can be used as input of the design network. For instance, Mutcompute
improved an enzyme degrading PET plastics, both in activity and thermostability
[Lu et al., 2022]. It is based on a 3DCNN trained to predict the probability of an
amino acid given its local environment [Shroff et al., 2020], and was used to identify
stabilizing mutations that were tested experimentally. The discovery of beneficial
mutations for enzyme could also be applied to antigen stabilization [Byrne and
McLellan, 2022].

De novo design presents the additional difficulty of crafting the input backbone.
Hallucinations of proteins structure prediction networks makes it possible to craft
backbones with functional sites [Wang et al., 2022]. It was applied to the design
of luciferase, an enzyme of interest for biomedical imaging [Yeh et al., 2023b]. A
substrate-binding pocket and an active site were introduced into an existing scaffold
by trRosetta hallucination. Then the resulting backbone was designed with either
Rosetta or ProteinMPNN, and the designed sequences showed activity with a non-
natural substrate.

2.3.2 Sequence-based Design

Using a structure as input is convenient, but the generation of this backbone can be
a limiting step. Pure sequence-based approaches bypass this need by designing se-
quences solely from other sequences. In this case, training datasets can be extremely
large: more than two billions sequences have been clustered in the “Big Fantastic
Database” [Jumper et al., 2021] or in Mgnify [Richardson et al., 2023]. These two
databases have been recently combined [Mirdita et al., 2022]. A tiny fraction of se-
quences within are associated with a reliable functional label (80,000 with Molecular
Function Gene Ontology in SwissProt [Consortium, 2021]).

Since neural nets only accept tensors for input and output, protein sequences
must be formatted into a tensor. The most straightforward way is one-hot en-
coding: each amino acid is represented by a Boolean vector of size 20 (or more if
gaps/unknown amino acids need to be represented), all concatenated into a n× 20
matrix representing the full sequence, with n the length of the sequence. This simple
encoding is widely used in DL protein design methods based on generative models,
including language models (LM).

Generative Models

Generative models can be used to design new sequences that should carry the func-
tion of the input training set, usually an MSA built from one chosen functional
protein. This has already been proven to be feasible using generative probabilistic
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models (thus using no DL) such as Markov Random Fields [Tian et al., 2018; Cheung
and Yu, 2019; Russ et al., 2020] and auto-regressive models [Trinquier et al., 2021],
closely related to Bayesian networks [Srinivas, 1993]. While they explicitly target
a function, these methods seem intrinsically limited to sampling the distribution
generated by nature, which is not ideal to design proteins offering new functions, or
to extend the scope of an existing function to non-natural conditions.

All kind of generative models have been used to design sequences, including
GANs [Repecka et al., 2021] to design new functional sequences (here a malate
dehydrogenase MSA was used as a starting point), VAE [Greener et al., 2018] to
craft metal-binding site to sequences or to predict sequences folding according to a
general topological description and an encoder/decoder architecture [Wu et al., 2020]
to design peptide signal sequences. These approaches have been recently reviewed
[Wu et al., 2021].

These models are fed with one hot-encoding, which is a limited representation
that does not integrate much information per se. It makes all the configurations
equidistant, whereas some sequences are biologically or physically closer than others.
Learning meaningful protein representations — or embedding — is a task by itself.

Learning Protein Representation

A more informative input than a one-hot vector can be obtained through a suit-
able sequence embedding, a fixed-size vector representing the sequence, learned to
capture important information. Several approaches inspired from Natural Language
Processing (NLP) tried to decipher “the language of life” [Heinzinger et al., 2019]
by considering the protein sequence as a sentence and the amino acids as words. A
natural sequence corresponds to a meaningful and correct sentence. In this context,
“next word prediction” approaches can be directly leveraged to predict the next
amino acid or to recover a masked sequence [Rives et al., 2021].

This tight connection with NLP has attracted a lot of interest and many NLP
approaches have been adapted to protein. In order of publication, noteworthy ap-
proaches include protein word embeddings [Yang et al., 2018]; UniRep [Alley et al.,
2019], based on recurrent architectures; SeqVec [Heinzinger et al., 2019], based on
Embedding from Language Models [Peters et al., 2018]; ESM [Rives et al., 2021],
based on the attention-based Transformer. Finally, ProtTrans [Elnaggar et al., 2021]
compared 6 successful NLP architectures on a dataset of an unprecedented size
(2,122 million proteins, 8 times larger than those previously used). They all pro-
duce a fixed-length embedding for each amino acid, then average them to obtain the
sequence embedding.

One major drawback of protein embedding is the computational cost to learn
them. The most complex of the models mentioned above, ProtTrans, was trained
using Summit, the world’s second fastest computer. Such costs are prohibitive for
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most research groups, meaning the learned protein embeddings can have an impact
only if the trained model is publicly available, as it is the case for ProtTrans.

If the embeddings are meaningful by themselves (the embedding space can be
clustered along protein functional, biophysical and structural properties [Elnaggar
et al., 2021; Rives et al., 2021]), they are especially interesting when used as inputs
for subsequent supervised tasks. Indeed, simple models on top of such embedding
outperformed complex models taking one-hot encoded amino acids as inputs on
molecular function prediction tasks [Villegas-Morcillo et al., 2020].

With the goal of providing more meaningful protein representation for down-
stream predictive task, some approaches enriched the embedding with structural
information. One of them built a representation only from structure by considering
the multiple level of a protein (primary, secondary, tertiary) [Hermosilla Casajús
et al., 2021], while another fused the sequence representation from a language model
with a structural representation learned under self-supervision by predicting inter-
residue distances and dihedral angles from known structures [Chen et al., 2023].
Both outperformed pure LM representations, including on predicting enzyme clas-
sification.

Design with Language Models

Beyond protein representation learning, language models can also be adapted to
generate new sequences.

ProGen [Madani et al., 2020], its extension ProGen2 [Nijkamp et al., 2022] and
ProtGPT2 [Ferruz et al., 2022] are autoregressive: the next amino acid is decoded
based on the context of already-predicted residues. ProtGPT2 was shown to gen-
erate realistic sequences, diverse and distant from existing ones, that are predicted
to fold onto ordered structure. Yet, this generation is unconstrained, resulting in
limited control over the produced sequences. ProGen proposed two ways to bias the
generation toward specific functions. First, conditioning it with tags describing the
desired properties with keywords (such as cellular component, biological process and
function terms). Second, fine-tuning the model on a set of protein of interest: in the
case of lysozyme, this resulted in resulted in generated sequences with a conserved
function, even rivaling that of a natural hen egg white lysozyme [Madani et al.,
2021].

Computational generation can be coupled with lab experiments, either by active
learning or in silico. Active learning aims to iteratively propose new candidates to
test based on previous experimental results. A method based on GFlowNets [Jain
et al., 2022] computationally assessed candidates on their performance (predicted
by an oracle), diversity and novelty. It outperformed other ML methods on the
generation of peptide, DNA and green fluorescent protein. UniRep embeddings have
been used for in silico directed evolution [Biswas et al., 2021]. Embeddings were
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first fine-tuned on sequences related to the target protein. Then, a low number (24
or 96) of experimentally-characterized mutants of the wild-type were used to train
a linear regression predicting the activity from the fine-tuned embeddings. Finally,
top sequence candidates were selected by in silico directed evolution based on the
activity predicted by linear regression. About 10% of them displayed an activity
higher than the wild-type.

2.3.3 Assessing CPD Methods

Sequences designed by any neural network (or any design methodology) need to
be assessed. The soundest way to verify a sequence has the desired function or
properties is through experimental validation. However, the aim of Computational
Protein Design is to reduce the burden of experimental validation as much as pos-
sible. Therefore, computational evaluation is needed as well.

First, from a pure-DL perspective, computational metrics are required to select
the architecture and parameters of the neural net, to define how to test its perfor-
mance, and possibly to compare it with other methods. Second, once the model is
decided, criteria to filter the produced sequences are needed. Finally, the selected
sequences can be tested experimentally. Since it requires time and resources, this
crucial step is often absent from papers, which are very recent.

This section focuses mostly on assessing structure-based methods as they are
the scope of this work. Nevertheless, some of the evaluation can also be applied to
sequence-based methods.

Computational Metrics

There is no perfect metric to assess computational protein design methods.

The most usual one is Native Sequence Recovery rate (NSR). It evaluates whether
design produces sequences similar to the native protein sequence of a given natural
structure. However, with the restricted number of observed folds [Chandonia et al.,
2018], it is known that many sequences will adopt a similar structure (degeneracy).
Thus, a designed sequence with an NSR between 30 and 40% is already considered as
satisfactory, matching the sequence identity between homologous proteins [Dawson
et al., 2016].

Another common metric is perplexity. Once again, it is directly inspired from
Natural Language Processing [Brown et al., 1992]: it measures how well a probability
model predicts a sample, and it is used to evaluate language models. Perplexity
can be understood intuitively on the example of protein sequence design. At each
position, the model has to choose between 20 amino acids. A perplexity of 9 (as
reported by the first paper to use it in the context of CPD [Ingraham et al., 2019])
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means the model is as confused as if it had to pick between 9 residues. The lower
the perplexity, the better (with the best possible perplexity being 1).

It is also often impossible to directly compare the NSR or the perplexity of differ-
ent methods if they have not been measured (and trained, when machine learning is
used) on the same sets of target backbones [Castorina et al., 2021]: some backbones
are more constrained than others and this influences the likelihood of reconstructing
the native sequence. The composition of the set of structures used for measuring
NSR or perplexity may therefore strongly influence the final numerical estimation.

Sequence Filtering

Once the neural net is trained and validated, it can be used to produce sequences,
whose quality needs to be evaluated. First, one could verify they seem realistic,
for instance if they recover the natural amino acid propensity [Ferruz et al., 2022],
and if they are predicted to exhibit key biological properties, such as a hydrophobic
core region tightly packed with few exposed residues [Anand et al., 2022]. Finally,
oracles can be used to select the sequences that are likely to present the function or
property of interest [Karimi et al., 2020; Jain et al., 2022].

Another desirable property of the designed sequences is their diversity [Melnyk
et al., 2022]. Indeed, experimentally testing various sequences is likely to augment
the success rates. Many of the described structure-based methods are auto-regressive
[Anand et al., 2022; Jing et al., 2021; Dauparas et al., 2022], so the diversity of the
sequences can be controlled by the sampling temperature (defined in the paragraph
on simulated annealing, page 60). However, it often results in a trade-off between
quality and diversity. Other methods do not present any way of generating diversity
[Gao et al., 2023], making them of little practical interest.

Finally, the recent outbreak of DL in protein structure prediction had a great
impact on design. AlphaFold, the winner — with a large margin — of the CASP13
and CASP14 competitions (Critical Assessment of protein Structure Prediction) [Se-
nior et al., 2020; Jumper et al., 2021], reaches experimental accuracy in the template
modelling category (i,e., when structures of homologous proteins are known). In a
nutshell, AlphaFold is fed with the sequence to predict, evolutionary information in
the form of a MSA, and optionally templates (structure of homologous proteins).
It is based on 2 modules: EvoFormer, to reason about spatial and evolutionary
relationships, and a structure module that directly outputs the 3D coordinates of
structure. An iterative refinement known as recycling is used by recursively feeding
the output to the same modules, with a significant impact on accuracy. In addition
to the predicted structure, AlphaFold output 2 confidence scores, one local (pLDDT)
and one global (pTM), as well as the predicted Aligned Error (pAE) between pairs
of residues. AlphaFold was extended to deal with multimers [Evans et al., 2021], and
it widely inspired following works, including the faster ESMFold [Lin et al., 2023],
OmegaFold (dedicated to prediction from a single sequence) [Wu et al., 2022] and
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RosettaFold [Baek et al., 2021].

The main impact of AlphaFold on design is through forward folding : it makes it
possible to assess whether the designed sequence will fold onto the target backbone.
However, there is no consensus on the metric to use: some methods use the local
score (pLDDT) [Dauparas et al., 2022], other prefer the global alignment score
(pTM) [Nijkamp et al., 2022] or the predicted Aligned Error (pAE). In addition,
some approaches run AlphaFold with evolutionary information while others prefer
the single-sequence mode.

Beyond forward folding for validation, some design architectures directly in-
corporate AlphaFold in the design loop using a loss based on AlphaFold output
(geometry or confidence score) [Jendrusch et al., 2021; Moffat et al., 2021], but they
are very costly to train.

Experimental Validation

The only way to be certain that a designed sequence displays the target structure,
function or properties is to experimentally test it. This validation is quite uncom-
mon among existing DL-based approaches because it is an expensive process (in
people, time and money). Another possible explanation is these methods are very
recent, and validation takes times; therefore, most papers focus on methodological
development.

There are several ways to verify that the actual fold matches the target one.
Circular dichroism can be used to assess whether the expected secondary structures
are present [Strokach et al., 2020]. Resolving the entire structure is even more costly,
and it can be done by X-ray crystallography or cryoEM or RMN spectroscopy [Anand
et al., 2022] .

Adopting the target fold does not necessarily results in fulfilling the target func-
tion or properties. These have to be tested experimentally as well. For instance,
thermostability is often assessed by melting temperature [Lu et al., 2022]. Assessing
a function requires a specific test, which are not always easy carry out. Easy ac-
tivities to assess include those resulting in a visual signal, such as green fluorescent
proteins [Jain et al., 2022] and luciferase [Yeh et al., 2023b] .

Beyond the Inverse Folding Problem

Many of the described structure-based methods have a purely computational per-
spective, and focus only on the inverse folding problem: predicting a sequence for
the input structure. It is already highly challenging from the DL point of view, as
finding a suitable protein representation and an architecture to process is difficult.
Yet, the goal of protein design is to obtain a function or property of interest, not to
reproduce a structure.
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Usually, the design target includes specific properties that are not captured
by the backbone structure alone. This includes affinity, catalytic activity, ligand-
specificity, ease of expression that needs specific essays. In practice, to have real
added value compared to natural proteins, designed proteins often require to be
functional in non-natural conditions in terms of temperature, pH, solvent or ligand-
specificity for example. In this situation, recovering the native sequence becomes
increasingly unlikely and the native sequence recovery rate (NSR), less and less
relevant.
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Conclusion

DL-based vs Energy-based Methods for CPD

Comparison between classical energy-based CPD methods and structure-based DL
models turns out to the advantage of the latter both in terms of computational
metrics [Ingraham et al., 2019; Jing et al., 2021] but of also experimental validation:
ProteinMPNN was able to ”save” many designs failed by Rosetta [Dauparas et al.,
2022]. DL methods do not need discretized side chain geometry, and some of them
explicitly model flexible backbones by using topological features instead of exact co-
ordinates [Ingraham et al., 2019], something that is far from simple for energy-based
methods [Bouchiba et al., 2021]. The ill-posed nature of the inverse folding formu-
lation can also be avoided: design methods based on reversed structure prediction
[Norn et al., 2020] seem to implicitly account for alternative backbone conformations.

However, most of the existing structure-based proposals are focused on designing
sequences for a fold. In practice, various additional constraints need to be imposed,
on the chemical composition (sequence), on the geometry, or the stability of various
critical regions. Practical designs rarely require to produce a new sequence for a
known fold. Pure sequence-based approaches starting from a known family sharing
a function do target a function, but may be limited to sampling the distribution of
natural proteins. Instead, computational protein design is most useful when radically
new functions or properties need to be created.

Therefore, one of the main weaknesses of DL approaches to protein design proba-
bly lies in the difficulty they have to produce specifically targeted out-of-distribution
protein sequences which would fold and work in non-natural conditions in terms of
pH, temperature, ligand-specificity, target, catalytic activity or other enhanced prop-
erties. This is often dealt with, in energy-based design, using multiple criteria or
constraints capturing not only energy, but also design targets. Some DL approaches
have tried to incorporate constraints to their model by adding conditioning tags
[Madani et al., 2020] or additional features, such as a supplementary one-hot vector
indicating the desired type of metallo-binding site to add [Greener et al., 2018]. Im-
posing constraints on DL models output is a challenging problem for Deep Learning
in general, for which specific but expensive losses have been proposed [Xu et al.,
2018]. This usually requires a new training every time a new constraint needs to be
enforced.

Objective of the Thesis

The main goal of this thesis is to combine the specific strengths of both the DL-based
and the energy-based approaches for computational protein design.

More specifically, we aim to add a DL component to the already existing CFN-
like reasoning methods. It will be in charge of decoding the sequence-structure
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relationships from the mass of available data and to encode this information so
that it can be used in place of existing energy functions. This implies to train
a neural network to produce an output akin to a pairwise decomposable energy.
The idea behind is to simultaneously benefit from the proven ability of DL to learn
from existing proteins and the ability of energy-based methods to impose additional
constraints often necessary for practical design.

Figure 2.4: Schematic pipeline of our proposed computational protein design ap-
proach. Ei,j is the energy scoring matrix between two arbitrary residues.

An illustration of the basic pipeline of the hybrid CPD method we proposed in
this work is displayed in Figure 2.4. There are 2 main challenges to be tackled:

• Combining automated reasoning and Deep Learning: in a nutshell, DL
relies on continuous optimization (gradient descent), while automated reason-
ing is based on discrete optimization. Combining both is still an open problem
in artificial intelligence. This is the subject of Chapter 3.

• Learning on protein structure data: as detailed above, efficient learn-
ing requires both a suitable representation of data and a dedicated architec-
ture to process them. In the case of protein structures, many representations
have been proposed, and their is not a consensus on the best suited one yet.
Naturally, the choice of the neural architecture is tightly linked to the data
representation. Chapter 4 describes the approach we chose.
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Chapter 3

Coupling Deep Learning and
Automated Reasoning

Introduction

Integrating learning and reasoning is one of the most promising path toward a gen-
eral AI [Hochreiter, 2022] and therefore one of the major challenge in AI [Bengio
et al., 2021]. A parallel is very often drawn with the two modes of human thoughts
theorized by the psychologist Daniel Kahneman [Kahneman, 2011]: ”System 1” is
fast and about perception, much like Deep Learning, while ”System 2” is slower and
logical, like reasoning. The integration of logical reasoning with Deep Learning is
the object of neuro-symbolic (NeSy) methods.

Reasoning is performing logical inference, i.e., inferring new facts from known
ones. Many NeSy approaches relies on first-order-like logic, including DeepProbLog
[Manhaeve et al., 2018], Logic Tensor Network [Badreddine et al., 2022] or NeurASP
[Yang et al., 2020]. It is out of the scope of this work, as we rely on constraint
programming discrete optimization, which is within the framework of propositional
logic. The notion of Cost Function Network (CFN) we work with is an extension of
the SAT framework, where one tries to satisfy constraints between variables. CFNs
are defined by weighted constraints (we usually call them costs) and finite-domain
variables. We use them to solve weighted constraint satisfaction problems, a discrete
optimization task which is the reasoning compound of our framework.

Turning a real-life situation into rules or constraints to apply propositional logic
is a hard task requiring expert knowledge. The goal of NeSy methods is to au-
tomatize it using Deep Learning to extract knowledge out of the environment. The
integration of DL requires sub-symbolic representations (such as vectors or tensors),
obtained via the third paradigm underpinning AI: probability [Raedt et al., 2020].
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Facts can be associated with a probability to be true [De Raedt and Kimmig, 2015]
and constraints can be relaxed into weighted constraints that are real-valued instead
of Boolean [Xu et al., 2018]. CFNs fit well within this framework as they are based
on weighted constraints and they are related to Markov Random Fields (MRFs), a
type of probabilistic Graphical Model (GM). We will use the MRF interpretation
to learn the costs from data. Even though it is out of our scope, we could link our
work within first order-logic-like frameworks through another type of GM, Markov
Logic Networks.

Computational Protein Design is an example of a real-life decision problem.
Indeed, the input protein structure defines a CFN via the specification of an energy
function built from physics-based or statistical observations. This energy function
defines the costs of the discrete problem, but it is never directly observed. However,
it can be deduced from the input structure, and some solutions — namely the native
sequence — are observed. In order to learn how to design a new sequence from an
input structure, we chose to learn the energy function, and then solve the resulting
discrete problem.

We defined the learning problem as an unsupervised task: the target energy is
unknown (and we are not interested in imitating existing energy functions as we aim
to learn a better one). Instead, we want the predicted energy, when minimized, to
lead to protein sequences suited to the target backbone. The only training signal
comes from the observation of native sequences. The problem of predicting high-
quality solutions of a discrete reasoning problem from a new observation is often
referred as Decision-Focused Learning (DFL) [Wilder et al., 2019]. We illustrated it
on the problem we tackled in this work in Figure 3.1.

Figure 3.1: Decision-focused framework on two decision-making problems: learn-
ing to play Sudoku and learning to design proteins. In both cases, natural inputs
(respectively a Sudoku grid or a protein structure) are observed together with a
solution, but the parameters of the underlying problems (the rules or the energy
function) are unknown. At inference, some constraints can be added a posteriori.

We distinguish 2 categories of DFL problems: one category has access to his-
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torical data of (some of) the parameters defining the discrete problem, while the
other one never observes any parameters, and tries to predict them solely from ex-
isting solutions. The first category encompasses the Predict-then-optimize and the
Predict-and-optimize frameworks [Elmachtoub and Grigas, 2022; Mandi et al., 2020;
Liu et al., 2023], recently reviewed in [Kotary et al., 2021]. The former regresses
parameters while the latter often use regret as the loss, i.e., the loss in criteria gener-
ated by using predicted instead of true values of the parameters. The CPD problem
belongs instead to the second category since no ground truth energy exists.

Our formulation of learning how to design proteins requires both a hybrid learning-
and-reasoning pipeline, and a neural architecture dedicated to protein data. In order
to split the difficulty, we first focused on developing a pipeline to learn how to rea-
son on simpler problems. This is the object of this chapter. We chose to focus on a
Sudoku toy problem because it is a popular benchmark in the Constraint Program-
ming community and because of its striking parallels with the CPD problem, as we
will detail.

First, Section 3.1.2 introduces decision-focused learning together with the ex-
isting approaches and it describes the toy problem of Sudoku. We developed two
approaches to solve this problem. The first one, presented in Section 3.2.3, directly
embeds the discrete solver as a neural layer, while the second one offers a more
scalable approach by decoupling training from solving. We called this approach
the Emmental-PLL [Defresne et al., 2023]. It is described in Section 3.3.3 and we
presented it at the International Joint Conference on Artificial Intelligence (IJCAI)
2023 in Macao, SAR.
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3.1 Learning to Reason and the Sudoku Toy

Problem

This section first introduces the framework of Decision-Focused Learning with no
parameter history, its challenges and existing approaches. It then focuses on learning
how to play Sudoku solely from example of solved grids. This problem is a popular
benchmark that we also used as a toy problem to develop and test a hybrid pipeline
coupling DL and discrete reasoning (DR).

3.1.1 Decision-Focused Learning

Formulation

In this work, we assume that we observe samples (ω,y) of the values y of the
variables Y as low-cost solutions of an underlying constrained optimization problem
with parameters influenced by natural inputs ω. In the case of CPD, ω will be
the input protein structure and y a native amino-acid sequence observed on this
structure (see Figure 3.2).

From a data set S of pairs (ω,y), we want to train a model N which predicts a
discrete reasoning model N(ω) such that the observed solution y is a solution of the
predicted discrete problem:

y ∈ argmin
y∈DY

N(ω)(y) (3.1)

This is the objective of Decision-Focused Learning [Wilder et al., 2019; Mandi et al.,
2022]: the quality of the predictions by the model N is assessed based on the quality
of the solutions resulting from the optimization of its output. In our case, the model
N is a neural network with an arbitrary architecture.

The discrete reasoning model C = N(ω) defines the last layer of our hybrid
neural+reasoning architecture. In our case, it is a pairwise graphical model (GM)
expressed as a Cost Function Network (CFN). One good property of CFNs is their
ability to express both numerical and logical functions. In order to supervise the
training of the neural net N , we assume that the variables in Y are identified and
their domains D are known. Therefore, the model N only predicts the cost functions
of N(ω), that, we assume, take their value in R̄ = R ∪ {∞}.

Additionally, we also want to exploit any information that would be available on
elements of the input ω. For instance, some variables in Y can already be assigned,
and therefore they can be directly incorporated into the discrete model N(ω). In the
plain Sudoku problem, a partially filled grid of numbers is observed in ω and each
observed value in the grid is known to be the value of its corresponding variable.
Some information can also already be known from the natural input, or influence

96



3.1. LEARNING TO REASON AND THE SUDOKU TOY PROBLEM

Figure 3.2: Our hybrid learning architecture: natural inputs ω (left) feed a neural
net N in charge of predicting all pairwise cost functions Fij of the discrete reasoning
problem N(ω). Our approach is illustrated here on 2 possible problems: visual
Sudoku problem and protein design (bottom).

only a subset of all the variables Y. For instance, we will tackle a visual Sudoku
task where visual inputs contributes to the rules.

Challenges

We want to train the neural net N to produce good cost functions in the sense that
their joint minima is the observed solution y. We have no historical data of these
costs. Hence, the supervision is indirect and based on the objective described in
equation 3.1.

To assess this objective directly, the optimal solution y∗ of the predicted discrete
model N(ω) is compared to the observed solution y through some loss L:

L(y∗,y) = L(argmin
t∈DY

N(ω)(t),y) (3.2)

The discrete solver is embedded as a neural layer, necessary to compute the
training objective. The main challenge here comes from the loss L being discrete
because y and y∗ are discrete. Training a DL model such as our neural netN requires
a differentiable and informative loss function. Indeed, the gradients of the loss are
backpropagated to update the net’s weights. A function based on the output of a
discrete solver, such as y∗, is piecewise constant [Pogančić et al., 2020]. Therefore,
it has either 0 or non-existing gradients, as illustrated in Figure 3.3. In all cases,
they are uninformative to train a neural network.

Therefore, the main challenge of Decision-Focused Learning is to be able to
backpropagate through the discrete solver to train the neural network.

A second challenge comes from repeatedly calling the solver on training instances.
If the optimization problem is NP-hard, it drastically limits the size of instances that
the neural net can be trained on. We will see in Section 3.2.2 that tractability issues
already arise on a Sudoku toy problem with 81 variables.
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Figure 3.3: A loss function L computed based on the solution of a discrete solver
is piecewise constant. Its gradients ∇L are 0 everywhere except at points of discon-
tinuity, where they are not defined.

Existing Approaches

Existing approaches for Decision-Focused Learning with no parameter label can be
divided into two groups: the first group relies on a fully-differentiable architecture,
while the second group uses a dedicated loss to learn the parameters separately from
the optimization.

Fully differentiable solver. Most of the proposed methods belong to the fully-
differentiable class. The pioneer work OptNet [Amos and Kolter, 2017] implicitely
differentiate through small quadratic programs by using the Karush-Kuhn-Tucker
conditions, resulting in a convex optimization layer. More recent methods have fo-
cused on linear optimization layers. They build approximation of any discrete solver
to differentiate through the piece-wise constant loss. The blackbox approach builds
a continuous interpolation of the loss [Pogančić et al., 2020; Roĺınek et al., 2020].
If the first version required an extra hyperparameter for trade-off between faithful-
ness and informativeness, as well as 2 calls to the discrete solver for each training
instances, both these limitations were alleviated in a second version [Sahoo et al.,
2023]. The dominant approach to turn any solver into a differentiable function is
regularization, as formalized by [Blondel et al., 2020]. Methods based on perturbing
the input of the solver with random noise to make it differentiable [Berthet et al.,
2020; Niepert et al., 2021] are special case of regularization [Dalle et al., 2022]. Fi-
nally, for combinatorial optimization (CO), SATNet [Wang et al., 2019] offers an
approach based on a convex relaxation of the discrete weighted MAXSAT problem:
a semi-definite program relaxation is built and differentiated through a fixed-point
condition satisfied by optimal solutions.

GNN. The pure DL approach based on Recurrent Relational Nets (RRN) [Palm
et al., 2018] can also be inserted in this category. Indeed, it uses a GNN module
that can be added to any graph-representation-based neural net to enable many-
step relational reasoning. Each iteration of message passing represents a reasoning
step; increasing the number of steps increased the neural net’s reasoning abilities
(up to a plateau point). A message-passing algorithm called Belief Propagation
is used for inferring approximate solutions on GM [Yedidia et al., 2003], so the
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decoder net of RRN can be seen as a polynomial-time solver. The main difference
with Belief Propagation is that it passes embeddings of messages rather than plain
message. Generally speaking, GNN and neuro-symbolic methods are tightly linked,
as surveyed by [Lamb et al., 2020].

Tractability. All these methods solve the discrete problem predicted for each
training instances at each epochs. On NP-hard problems, such as MaxSAT or integer
linear programming, these architectures may have excruciating training costs and
are therefore applied only on tiny instances (20-cities traveling salesperson problems
[Pogančić et al., 2020] or 3 jobs/10 machines scheduling problems [Mandi et al.,
2022]). A better tractability can be reached through convex approximations, like
SATNet, but it is double-edged: approximate solving at training and inference can
lead to sub-optimal performances. To keep an exact solver in the training loop,
[Mulamba et al., 2021] proposed a cache of previous solution, used to approximate
the optimization for some instances. Authors showed on a variety of methods that
solving 5% of instances is enough to the recover same accuracy with a much lower
training cost. In Section 3.2.3, we present a method based on the Hinge loss and
exact solving with toulbar2. It enters this first category of approaches and indeed
suffers from tractability issues.

Dedicated Loss. The second group of approaches for Decision-focused Learning
relies on a dedicated loss to learn good parameters without an optimizer in the
training loop. The DL-free methods by [Brouard et al., 2020] extract preferences
from data. It estimated the cost functions of a CFN using an approximate log-
likelihood [Park et al., 2017] and convex optimization. In Section 3.3.3 we adopt a
very similar approach, but we insert DL in the pipeline, and the neural net is trained
under our custom loss. One limitation of these approaches is the solver necessarily
being after all the neural layers.

Multiple Solutions The majority of decision problems have several solutions.
Ignoring solution multiplicity results in sub-optimal training [Nandwani et al., 2021].
However, defining a training loss in this context is non-trivial: a naive error com-
puted on all the observed solutions would unnecessarily penalize the model. Indeed,
even if it predicts a correct solution, it may differ considerably from the other ob-
served solutions. For instance, performances of RRN [Palm et al., 2018] was shown
to considerably drop on problems with multiple solutions [Nandwani et al., 2021].
Moreover, handling solution multiplicity is often coupled with dealing with incom-
plete information as only part of the possible solutions may be observed. In this
setting, a new task was introduced: predicting any one of the possible solutions
[Nandwani et al., 2021]. They proposed a generic RL formulation to enable any
NeSy predictor to handle solution multiplicity.
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Figure 3.4: The toy problem of learning to play Sudoku. First, a neural network
predicts the rule, in the form of a cost matrix, for each pair of cells. Then, a discrete
solver (in our case, toulbar2) fills the grid based on the predicted grid.

3.1.2 The Sudoku Toy Problem

The NP-complete Sudoku problem is a classical logical reasoning problem that has
been repeatedly used as a benchmark in a “learning to reason” context [Amos and
Kolter, 2017; Wang et al., 2019; Brouard et al., 2020; Nandwani et al., 2021; Chang
et al., 2020; Chen et al., 2020; Mulamba et al., 2020; Topan et al., 2021]. The task is
to learn how to solve new Sudoku grids from a set of solved grids, without knowing
the game rules. It is illustrated on Figure 3.4. Some approaches simplify the learning
problem by using the rule structure as a prior [Palm et al., 2018] and imposing all
the constraints to be the same [Franc and Savchynskyyy, 2008].

Task

Given samples (ωl,yl) of initial and solved Sudoku grids, we want to learn how to
solve new grids. Even if the rules of this game are well known (two cells on the
same row, column or square cannot contain the same figure), we assume they are
inaccessible during training or inference. The quality of the predicted rules is only
assessed based on how well they make it possible to solve the problem.

A 9 × 9 Sudoku grid is represented as 81 cell coordinates with a possible hint
when available. Each cell is represented by a GM variable with domain {1, . . . , 9}.
The neural net N receives the pairs of coordinates of pairs of cells (Yi, Yj) and
predicts all pairwise cost matrices N(ω)[i, j]. The neural net predicts only binary
costs. There is no need to predict unary costs as an equivalent problem can be
defined with binary costs only [Cooper et al., 2020]. For the plain Sudoku, hints are
directly given to the solver to set the values of their corresponding variable in N(ω).

We interpret the predicted cost matrices N(ω)[i, j] as the rules of Sudoku. For
pairs of cells on the same row, column or sub-square, we expect soft difference-like
cost function to be predicted (a matrix with higher costs on the diagonal) that pre-
vents the use of the same value for the two variables. Other cost matrices should be
flat, indicating the absence of a pairwise constraint. For details on the representation
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of Sudoku as a Cost Function Network (CFN), see the example page 39.

Sudoku players know that Sudoku grids can be more or less challenging. As
one could expect, it is also harder to train how to solve hard grids than easy grids
[Brouard et al., 2020; Palm et al., 2018]. We use the number of initially filled cells
(hints) as a proxy to the problem hardness, a grid with fewer hints being harder.
The minimal number of hints required to define a single solution is 17 [McGuire
et al., 2014], defining the hardest single-solution Sudoku grids. We use an existing
data set [Palm et al., 2018], composed of single-solution grids with 17 to 34 hints.
We use 1, 000 grids for training and 256 for validation (both including all hardness).
As in [Palm et al., 2018], we test on the hardest 17-hints instances, 1, 000 in total.

Similarities to CPD

Sudoku is of course a very simple problem, especially when compared to protein de-
sign. It is therefore more convenient to develop and test our architecture. However,
we also chose Sudoku as our toy problem because it has interesting parallels with
the task of designing proteins.

The Sudoku grid is a structured input, just as the protein backbone. It is
composed of cells comparable to residues. The goal is to choose the identity of each
cell or residue, among either 9 or 20 possibilities.

The rules governing the choice of a cell or a residue is based on pairwise interac-
tions. Indeed, all the rules of Sudoku can be stated in terms of pairs of cells, while
we write the energy function of a protein as a sum of pairwise terms. Finally, the
cost functions describing those interactions depend only on coordinates. For Su-
doku, rules depend on which row and column a cell is in, while physics interaction
in a protein depends on atomic coordinates.

Obviously, CPD is a much more challenging problem. The resulting discrete
problems are much larger, up to 10, 000 variables. This is the reason why we insist
on the importance of developing a scalable training approach. In this section, the
approaches we present are agnostic to the neural architecture. Therefore, as we will
see in Section 4 for CPD, those methods are directly applicable to other problems
that can be represented as CFNs.

Application of Existing Methods

Several of the methods for Decision-Focused Learning have been applied on the task
of learning how to play Sudoku. This task is a benchmark for learning to reason.

The pioneer OptNet [Amos and Kolter, 2017] learned the rules of small 4 × 4
Sudoku grids. RRN [Palm et al., 2018] tackled regular 9×9 grids but they explicitly
encode relationships between variables. SATNet [Wang et al., 2019] learns all the
rules without any prior about their structure but they focus on easy grids with an
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average of 36.2 hints. Analysis by [Brouard et al., 2020] showed that a model solving
100% of 33-hint grids can solve as few as 40% of the hardest 17-hint grids. Same
authors proposed an alternative hybrid approach learning CFNs, but it is DL-free
and therefore not end-to-end differentiable.

In this work, we aim for an hybrid method combining Deep Learning and CFN
optimization to learn how to solve Sudoku grids of any hardness and without prior
on the rules (other than them being between pairs of variables). The approaches
mentioned here will be used for comparisons (except OptNet that does not scale to
regular-size Sudoku grids).

Variant Tasks

Published Sudoku grids have a unique solution. Yet, if some of the initial hints are
removed, several solutions will be compatible with the remaining hints. For instance,
a grid with fewer than 17 hints will necessarily have several solutions. Therefore, the
task of learning how to play Sudoku can be tackled in a multiple solution setting, as
proposed by [Nandwani et al., 2021]. They created a dataset of Sudoku grids with
multiple solutions. During training, at most 5 solutions per grid as observed, while
at inference the goal is to predict any of the possible solutions.

A classical variant of the Sudoku problem is the visual Sudoku, where the hints
are given as handwritten digits, such as MNIST digits [Lecun et al., 1998]. Solving
visual grids is a challenging task as it requires to perform logical reasoning while
dealing with uncertainties [Mulamba et al., 2020]. More challenging tasks com-
bine learning to recognize digits with a reasoning task. DRNets learn by de-mixing
overlapping visual Sudokus [Chen et al., 2020], while a very recent neuro-symbolic
benchmark consist in predicting whether complete visual grids are correct or not
[Augustine et al., 2022; Pryor et al., 2022]. in both cases, rules are known. Alterna-
tively, [Brouard et al., 2020] learned the Sudoku rules on visual grids, but they used
a neural net already trained to recognize digits.

The task we are interested in is to simultaneously learn how to play the game
and how to recognize digit, as done by SATNet [Wang et al., 2019]. This approach
was a breakthrough in integrating learning and reasoning. However, without explicit
supervision, it is not able to map visual inputs (the handwritten digits) to symbolic
variables (numerical digits) [Chang et al., 2020]. This mapping is known as symbol
grounding. It is important to note that the combination of simultaneously learning
how to play Sudoku and how to recognize digits is significantly harder than each sub-
problem separately. Reusing SATNet architecture, [Topan et al., 2021] proposed a
method to tackle the ungrounded visual Sudoku. The observed grids do not contain
the label of the initial hints given as images. This way, the problem cannot be
trivially broken into two sub-problems. Using a heavily-engineered method based
on self-clustering with GANs and distillation, they reached an accuracy similar to
SATNet’s performance with indirect digit supervision.
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3.2 Embedding the Solver as a Neural Layer

The first approach we explored to learn how to play Sudoku was to embed the
solver toulbar2 as a neural layer. For each training grid, it solves the predicted
Graphical Model, then the predicted solution is compared to observed solution. In
order to backpropagate the discrete error into the neural net, we used the Hinge loss
[Tsochantaridis et al., 2005], as described in Subsection 3.2.1. We then present the
results we obtained with it and the training difficulty inherent in the method.

3.2.1 The Hinge Loss

In our problem formulation (illustrated in Figure 3.4), the parameters of the discrete
problem, the Sudoku rules, are never observed. Therefore, the predicted model
cannot be directly assessed. Instead, the solution y∗ obtained by minimizing the
predicted GM is compared with the observed solution y. They can be compared by
the Hamming loss.

L(y,y∗) = Hamming(y,y∗) =
n∑

i=1

α1[yi ̸= y∗i ]

where α ∈ R∗
+ is the weight given to each error on a variable.

The variables in y and y∗ being discrete, this loss is computed on discrete points.
Thus it is piece-wise constant and it cannot be directly backpropagated through the
neural net. To obtain meaningful gradients, we used the Hinge loss, an informative
differentiable upper bound on our target loss [Tsochantaridis et al., 2005]. The Hinge
loss is :

Hinge(ω,y) = max
t∈DY

[L(y, t) + (N(ω)(y)−N(ω)(t))]

Intuitively, as solutions set further away from the observed one, their cost must
increase. The Hinge loss is a contrastive loss, i.e., it seeks to create a margin in costs
between the true solution and others. The range of this margin is controlled by the
parameter α. The Hinge loss is specifically easy to express for pairwise-decomposable
losses L, such as the Hamming loss above. Indeed, it can be re-written as:

Hinge(ω,y) = N(ω)(y)− min
t∈DY

[N(ω)(t)− L(y, t)]︸ ︷︷ ︸
argmin=ym

The term N(ω)(y) is the cost generated by the GM predicted by the neural net.
Using the decomposability of L, the term
mint∈DY [N(ω)(t)− L(y, t)] is obtained by minimizing a perturbed problem where

103



CHAPTER 3. COUPLING DEEP LEARNING AND AUTOMATED
REASONING

the correct solution has been penalized. More precisely, we denote Fi,j ∈ Rd×d

the cost function on the pair of variables (Yi, Yj), i.e., Fi,j = N(ω)[i, j]. In the
case of Sudoku, the domain size d is 9. Similarly, we note Fi the unary cost func-
tion on a single variable Yi. The perturbed problem consists in adding unary costs
Fi(ti) = −α1[ti ̸= yi].

The perturbed problem is obtained by increasing the costs of the observed as-
signment of all variables Yi to increase the gap between the costs of observed and
unobserved assignments. This gap is controlled by the margin α. The perturbed
problem is solved by toulbar2 (instead of the problem originally predicted by the
neural net), and its optimal solution is denoted ym.

From the solutions of the perturbed problem, the gradients of the Hinge loss
are easily computed. Indeed, the Hinge loss contains costs N(ω)[i, j](vi, vj) with a
positive sign iff vi = yi and vj = yj ; and with a negative sign iff vi = ymi and vj = ymj .
The only possibly non-zero gradient terms will be therefore +1 for N(ω)[i, j](yi, yj)
and −1 for N(ω)[i, j](ymi , y

m
j ) which will cancel iff yi = ymi and yj = ymj , i.e., when

the correct solution is found. Algorithm 1 gives the pseudo-code to compute the
gradients with the Hinge loss. Those gradients are then backpropagated through
the neural net to update its weights.

We note that the Hinge loss for the Hamming loss with a 0-margin (also called the
contrastive Viterbi loss or the perceptron loss [LeCun et al., 2006]) is equivalent to
the loss of [Sahoo et al., 2023] with no projection. Indeed, their gradient expression
is the same as ours with a null margin.

Algorithm 1 Computing the gradient of the Hinge loss.

function Hinge(x, y)
W ← NeuralNet(x)
ym ←Solver(binary = W , unary = y) ▷ Solves the perturbed problem.
Init grad to 0 ▷ Tensor of shape (n× n× d× d)
for pair (i, j) do

grad[i, j][yi, yj]+ = 1
grad[i, j][ymi , y

m
j ]− = 1

end for
return grad

end function

3.2.2 Training and Tractability

Training Details

The complete training pipeline with the Hinge loss, detailed hereafter, is summarized
in Figure 3.5.
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The Sudoku is represented as a set of pairs of variables, each taking value in
{1, . . . , 9}. A variable is represented by its coordinates (row and column number).
From this information alone, a neural network is expected to predict the correct
rules for each pair of variables. It is worthy to note that weights are shared: the
same neural net is applied on each pair of cells. Therefore, a single Sudoku grid is
highly informative as it contains 81 ∗ 40 = 3240 pairs of variables.

Since the expected rules are very simple and the goal is to assess the loss, we
arbitrarily fixed the architecture and we did not try to optimize it. We used a 10-layer
Multi-Layer Perceptron of 128 neurons and residual connections [He et al., 2016]
every 2 layers. We chose standard ReLU activations, and therefore we initialized
the weights using the Kaiming initialization [He et al., 2015]. Finally, we used the
Adam optimizer with a weight decay of 10−4 and a learning rate of 10−3 (other
parameters take default values).

For each training grid, the predicted GM is then solved with toulbar2 using the
python interface pyToulbar2 version 0.0.0.2 (with default parameters if not speci-
fied). For the solver, the costs between two variables yi and yj are insensitive to
permutation between i and j. To incorporate this invariance within the neural net,
we predict only cost matrices for pairs (yi, yj)i<j and we set N(ω)[j, i] = N(ω)[i, j]T .

As mentioned in Section 1.3.3, CFNs are invariant to shifting and scaling of
costs. Therefore, a infinite number of equivalent CFNs can be learned to correctly
solve Sudoku grids. Since the optimization of a sparse GM may be more tractable,
we chose to favour the CFN with 0-cost when no rule applies. We did so by applying
a L1 regularization to the predicted GM N(ω). This regularization should not be
confused with the usual regularization on the neural weight to limit over-fitting. We
also applied such a regularization (L2, through weight decay in Adam). In addition,
we quantized the representation of real costs so that close-to-zero costs are rounded.

Figure 3.5: The training pipeline with the Hinge loss. For each pair of cells, a
neural net predicts the corresponding cost function. The set of such function forms
the GM describing the learned rules of Sudoku. Toulbar2 solves a problem with
margin (true affectation are penalized with an additional cost). Then, the neural
net is updated based on the Hinge loss gradients.
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Intractability Issues

At the beginning of training, weights are initialized randomly. Thus, the predicted
GM is random. However, random problems are notoriously difficult for exact solvers
[Zhang, 2001]. Solving a single random instance can take hours and the training set
contains 1, 000 grids.

The regularization term must be tuned properly: if too strong, all costs are zeros
and if too weak, the regularization has no effect. We empirically observed it should
be tuned together with the margin chosen in the Hinge loss. We found that a margin
of 0.1 with a regularization of 5.10−5 worked. Due to the training difficulties with
the Hinge loss, we did not explore it extensively.

Indeed, the L1-regularization is not sufficient for a tractable training since it
only makes the GM sparser as training progresses. We tried and limit the solver to
a partial search by limiting the number of backtracks, but it did not solve the issue.
Thus, we created easier problems to train the neural net in stages of increasing
difficulty. Starting from the current grid, we completed it using y until only k
variables are to be assigned. Starting from k = 20, we trained the network until the
percentage of solved grids from the validation set plateaued, then we increased k by
10. In the final training stage, complete problems are solved.

Tuning the discrete solver, predicting sparser GMs and increasing the difficulty
of the problem throughout training makes it possible to complete full training in 2
to 3 days.

3.2.3 Results

Solving Sudokus

Approach Acc. #hints Train set Param.

[Palm et al., 2018] 96.6% 17 180,000 200k
[Wang et al., 2019] 99.8% 36.2 9,000 600k

[Brouard et al., 2020] 100% 17 9,000 -
Hinge (here) 100% 17 1,000 180k

Table 3.1: Accuracies of related works. The ’# hints’ gives the hardness of the
test set. Param. is the number of parameters of the nets.

We compared our method with previous baselines that learned how to play
Sudoku: Recurrent Relational Network (RRN) [Palm et al., 2018], SATNet [Wang
et al., 2019] and a toulbar2-based approach [Brouard et al., 2020]. The comparison
metric, accuracy, is the percentage of test grids fully solved. No partial reward is
given for properly guessing part of a grid. As in [Palm et al., 2018], we test on
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the hardest 17-hints instances, 1, 000 in total. Table 3.1 gives for each approach its
accuracy, the size of the training set, the difficulty of the test grids and the number
of parameters in the neural net (if applicable).

We first notice the pure DL-based approach, RRN, requires much more data
than hybrid approaches. Even then, it fails to solve all the hardest grids, which
illustrate the difficulty of neural networks to reason. SATNet is assessed on a much
easier test set composed of grids with an average of 36.2 hints instead of 17. Yet, it
also fails in solving all the grids due to the approximate solving during training and
inference. Both hybrid approaches using exact solving solve all the hardest grids;
the advantage of the Hinge loss (and of using DL) lies in terms of data-efficiency:
9 times fewer training grids are required. We did not try to reduce the size of the
training set even further.

Interpreting the Learned Model

Figure 3.6: Histogram summarizing the GM learned under the Hinge loss. For pairs
of variables on the same row, column or sub-square, the matrix diagonal indicates if a
cost preventing them from taking the same value has been learned (left histogram),
while non-diagonal costs are 0 as expected (middle histogram). Non-constrained
matrices only contains 0, as expected (right histogram).

An advantage of hybrid reasoning-and-learning method is its higher interpretabil-
ity, compared with a neural network alone. Indeed, the decision made can be under-
stood by looking at the predicted GM (the solver decision is transparent as it finds
the optimal one). In the case of Sudoku, we can verify the correct rules have been
learned.

There are 2 categories of cost matrices to be learned: matrices representing
constrained pairs of variables (that should be prevented from taking the same value),
and unconstrained matrices (that should be zeros). Figure 3.6 contains 3 histograms
summarizing this information. We notice that thanks to the L1-regularization, 0-
costs are properly learned.
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Interestingly, only a part of the rules are learned: some pairs on the same row,
column or sub-square are not explicitly prevented by the predicted GM from the
taking the same value. We empirically observed that the learned rules were sufficient
for solving even the hardest Sudoku grids. This is coherent with the fact that the
traditional rules of Sudoku are known to be redundant [Demoen and de la Banda,
2014]. The Hinge loss having a global view of the problem, it does not need to learn
redundant constraints.
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3.3 Solver-free Training with the Emmental-

PLL

Despite being successful in learning how to play Sudoku, the Hinge loss is not suited
to the problematic of this work due to its training time. Indeed, Sudoku is a small
problem with 81 variables, while we want in fine to learn on proteins, whose size
can go up to thousands of variables. Therefore, a more tractable method is required.
Since the intractability comes from the solver being in the training loop, we explored
a 2-stage approach in which a neural net is first trained apart to predict a Graphical
Model, which is then optimized at inference.

In this section, we first describe how the predicted GM can be evaluated with-
out being solved thanks to a probabilistic interpretation. We then describe the
Emmental-PLL loss, a variant of the well-established pseudo log-likelihood (PLL)
for MRFs [Besag, 1975] that we developed to learn in such context. Finally, we
present the results obtained using the E-PLL on the Sudoku toy problem and some
variants.

3.3.1 Two-stage Approach: Learning, then Optimizing

Taking the solver out of the training loop requires to be able to assess the Graphical
Model (GM) predicted by the neural network without solving it. To do so, we rely
on the probabilistic interpretation of a CFN as a Markov Random Field (MRF) and
the estimation of MRF from data using the negative pseudo log-likelihood (NPLL),
as described in Subsection 1.3.3 page 40.

From Costs to Probability

The graphical model predicted by the neural network is interpreted as an MRF in
order to use the NPLL as a training loss.

NPLL(S) = −
∑
y∈S

log(
∏
i

PM(yi|y−i))

This requires to obtain a probability distribution PN(ω) out of the costs predicted
by the neural net.

For each pair of cells (Yi, Yj), the neural net predicts a cost function Fi,j ∈ Rd∗d

(in the case of Sudoku, d = 9). It can be defined as a cost table indicating how much
an assignment of (yi, yj) costs. For instance, the cost of (yi = a, yj = b) is Fi,j [a, b].

To compute the NPLL, P (Yi|y−i) must be calculated for each variable Yi. This
term gives the probability of each value for the cell Yi when all the other cells are
known. Since all the other variables are known, all the binary costs including Yi can
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be reduced to unary costs mi that depend only on Yi:

mi(Yi) =
∑
j ̸=i

Fij(Yi, yj)

In a message passing interpretation, mi(·) ∈ R̄|Di| represents the sum of all
messages received from neighbor variables Yj through the incident functions Fij ,
given Yj = yj . The terms mi(·) correspond to the potential functions of the MRF.
For a given variable Yi and its observed value yi:

P (Yi = yi|y−i) =
e−mi(Yi)[yi]∑d
k=1 e

−mi(Yi)[k]

= softmax(−mi(Yi))

Therefore, each cost vector is turned into a probability using a softmax function.
Computing the NPLL is in O(n(n − 1)d) per sample and epoch. It can easily be
vectorized (computed independently on each variable).

The NPLL Fails on Logical Information

The NPLL enables a scalable training to learn a GM optimization problem from
natural inputs. However, the proof of asymptotic consistency of the NPLL [Besag,
1975; Geman and Graffigne, 1986] relies on identifiability assumptions, i.e., two for-
mulations of the problem that are different lead to different sets of solutions. In the
case of constraints, where the cost values are Boolean (0 for authorized, ∞ for for-
bidden), these assumptions do not hold because of rules redundancy. Unsurprisingly,
the NPLL is known to perform poorly in the presence of large costs [Montanari and
Pereira, 2009].

We observed this issue with large costs empirically. We trained the same neural
net with the same amount of L1 regularization as in the previous section, under the
supervision the NPLL. At inference, the predicted GM was solved by toulbar2. This
pipeline failed at solving even the simplest Sudoku problems.

To better understand what the neural net learned, we plotted histograms sum-
marizing the costs in Figure 3.7. We observed that only part of the constraints (left
histogram) had been learned. At inference, the rules are incomplete and therefore
toulbar2 fails to properly fill the grid. More precisely, the neural net systematically
learns 324 constraints. Under closer inspection, it only learns rules between variables
on the same row (or column depending on the weight initialization).

3.3.2 The Emmental-PLL

In order to propose a variant of the NPLL able to learn on logic information, we
first needed to understand its behaviour.
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Figure 3.7: Histograms summarizing the GM learned under the NPLL supervi-
sion. The middle and right histograms show it learns 0-cost when there are no
constraint (like the Hinge). However, the left histogram indicates that among all
the constraints, only a subset is learned. This subset does not recapitulate of the
rules, and therefore the optimization during inference fails.

Understanding the NPLL Behaviour

Intuitively, when playing Sudoku, if you have one cell to guess in the grid, looking
at the row it belongs to is enough to infer its value. There is no need to additionally
look at the column or sub-square.

Training with the NPLL is similar since each cell has to be guessed from the rest
of the grid. Therefore, the value of the NPLL is minimal when all the rules or only
the row rule have been learned. Therefore, gradients increasing costs between vari-
ables on a row or a sub-square are very small and these other rules are not learned.
This intuitive explanation of the behaviour of the NPLL can be reformulated math-
ematically.

To understand the incapacity of the NPLL to deal with logical information, we
need to look at its gradients in a context of redundant constraints. Given a pair
(ω,y), its contribution to the NPLL gradients ∂NPLL

∂N(ω)[i,j](vi,vj)
for a given pair of values

(vi, vj) of a pair of variables (Yi, Yj) is:

[1(yi = vi, yj = vj)− PN(ω)(vi|y−i)1(yj = vj)]

+ [1(yi = vi, yj = vj)− PN(ω)(vj |y−j)1(yi = vi)]

The details of the gradient calculation can be found on Subsection 1.3.3 page 40.

The two terms in the gradient above come from NPLL terms computed on vari-
ables Yi and Yj respectively. Consider the example (given page 38) with four Boolean
variables, C = {Y1 ̸= Y2, Y2 + Y3 > 1, Y3 ̸= Y4} and y = (0, 1, 1, 0). We focus on
the variables Yi=2 and Yj=3 and assume that C should hold under ω, which means
that the pair of values (Y2 = 0, Y3 = 0) should be predicted as forbidden. Being
forbidden under ω, 1(y2 = 0, y3 = 0) = 0.
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If additionally, the forbidden pairs (Y1 = 0, Y2 = 0) and (Y3 = 0, Y4 = 0) have
already reached a high cost under ω, then both PN(ω)(Y2 = 0|y−2) and P

N(ω)(Y3 =
0|y−3) will be close to zero, as well as the gradient itself. This will lead to a negligible
(if any) change in the cost of the pair (Y2 = 0, Y3 = 0): learning will be blocked or
tremendously slowed down. Said otherwise, the fact that, in the context of (ω,y),
the forbidden pair (Y2 = 0, Y3 = 0) is redundant w.r.t. already identified forbidden
pairs (Y1 = 0, Y2 = 0) and (Y3 = 0, Y4 = 0) effectively prevents any change in the
cost N(ω)[2, 3](0, 0).

The issue with the NPLL lies therefore in the dynamic of the stochastic gradient
optimization: the early identification of some high costs under ω will prevent the
increase of other significant costs which are redundant in the context of the observed
y, but not redundant in the unconditioned problem.

We can now understand the behaviour of the NPLL when learning how to play
Sudoku. Once the rules on the row have been learned, the rules on the columns or
on the sub-squares become redundant in the context where all the cells save one are
known. Therefore, under the NPLL, the other rules are not — and cannot be —
learned.

Introducing the Emmental-PLL

Inspired by “dropout” in deep learning [Srivastava et al., 2014], we introduce the
Emmental NPLL (E-NPLL) as an alternative to the NPLL that should still work
when constraints (infeasibilities) are present in S.

The E-NPLL is a stochastic loss defined as

E-NPLL(y) = −
∑
Yi∈Y

log(PN(ω)(yi|y−({i}∪Mi)))

where each Mi is a random subset of {1, . . . , n} \ {i} and y−({i}∪Mi) are values of

Y−({i}∪Mi) = Y \ (Mi ∪ {i}). In this formula,PN(ω)(yi|y−({i}∪Mi)) is a short (and
slighly abusive) notation for softmax(−mi(Yi)).

The idea of the E-NPLL follows directly from the previous gradient analysis: we
want to prevent functions with already-learned high cost from blocking the learning
of others significant and redundant (in the context of the assignment) costs by
shrinking their gradients. To do so, we mask a random fraction of the predicted
cost functions. When an already-learned high cost is masked, the backpropagated
gradients will be able to increase the costs of the other redundant functions.

We combined this strategy with an L1 regularization on the GM predicted by
the neural net to encourage the prediction of zero costs which makes the GM opti-
mization problem easier to solve. Because the E-NPLL is designed to fight the side
effects of redundant constraints on gradients, we expect it to learn a GM N(ω) with
all redundant pairwise constraints.
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We can now understand how the E-NPLL works. When a final cell is to be
guessed, if a part of the row it belongs to is masked, one has to look at the column
and/or sub-square to guess it properly. Masking some randomly-chosen cells of the
grid forces the neural network to learn all the constraints in order to systematically
provide a good guess.

3.3.3 Experiments

We performed various experiments to assess the supervision provided by the E-
NPLL:

• Learning to play Sudoku to assess its ability to learn logical rules

• Learning in a variant setting with multiple solutions and under incomplete
information.

• Learning to play Futoshiki, another grid-game with more challenging rules to
learn

• Learning the visual Sudoku, where the hints are given as MNIST digits, to
simulate natural inputs.

As in previous evaluations, performances are measured by the percentage of
correctly filled grids; no partial credit is given for individual digits. Unless speci-
fied otherwise, all experiments used a Nvidia RTX-6000 with 24GB of VRAM and
a 2.2 GHz CPU with 128 GB of RAM. We reused the same neural architecture
as in Subsection 3.2.2, with no additional effort to tune it. We used the Adam
optimizer with a weight decay of 10−4 and a learning rate of 10−3 (other param-
eters take default values). An L1 regularization with multiplier 5.10−4 was ap-
plied on the cost matrices N(ω)[i, j]. For inference, we used toulbar2 through it
python interface PyToulbar2. Code and data are available on the Forge MIA at
https://forgemia.inra.fr/marianne.defresne/emmental-pll.

In all the experiments, at inference, the neural net predicts a cost matrix for each
pair of cells, plus optionally unary cost vectors. The set of them form a GM that is
given to the solver, together with the initial hints. The solver returns the optimal
solution, which is compared to the true one. It is worth to note that the E-PLL is
agnostic to both the neural architecture and the solver. They should respectively
be chosen depending on the input to process and the instance format of the solver.

Sudoku

As in Subsection 3.2.1, we used a subset of the dataset from Palm et al. [2018]
composed of 1000 training grids and 256 for validation, with a number of hints
(representing the hardness of the grid) spanning from 17 to 34. The neural net is
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trained under the sole supervision of the E-NPLL (the solver is not used during
training).

As we did not tune the neural architecture, the validation set is only used to
stop training. If the NPLL predicts individual cells in the context of the rest of the
solution, monitoring this accuracy is not enough to ensure a sufficient set of rules has
been learned. In practice, we indeed observed all the individual cells are properly
predicted before the training has converged. Therefore, we chose to call the solver
during validation to decide when to end the training. Fully solving the validation
grids at the end of each epoch would result in the same intractability issues we faced
with the Hinge loss.

Instead, our validation consists in a fast assessment of the predicted GM quality
on the task of predicting a 0-cost solution of the input grid. If such solution is found,
it is compared to the true one. Training is stopped when all the validation grid are
solved properly under this scheme. Technically speaking, costs are quantized such
that small costs are 0 and negative costs are also put to 0. Then, the solver is asked
to find a 0-cost solution by setting its upper bound to 10−3 (our quantization level).

As previously, we then tested on the hardest 17-hints instances, 1, 000 in total.
We repeated all the experiments with 10 different initialization of the weights. Av-
erage performance over those 10 training is given, along with a standard deviation.
When training with the E-NPLL, messages from k randomly chosen other variables
are ignored. In terms of accuracy, the training is largely insensitive to the value of
the hyper-parameter k (see Table 3.2) as long as it is neither 0 (regular NPLL) nor
close to n − 1 (no information). However, larger values of k tend to lead to longer
training. We set k = 10 for all Sudoku experiments. In this case, training takes less
than 15 minutes. At inference, the predicted N(ω) leads to 100% accuracy on the
1, 000 hard test-set grids.

k Epochs Training time (s) Runs with 100% test
grids solved

0 100 - 0%
10 23.2± 2.6 566± 67 100%
20 38.6± 6.9 900± 151 90%
50 50.4± 7.6 1257± 184 90%
70 27.2± 2.7 724± 83 100%
80 100 - 0%

Table 3.2: Average performances over 10 initialization, for various number of E-
NPLL holes k. Training is limited to 100 epochs.

In Table 3.3, we compared our results with previous approaches that learn how
to solve Sudoku. The Graph Neural Net approach of Recurrent Relational Network
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(RRN) [Palm et al., 2018], the convex optimization layer SATNet [Wang et al.,
2019] and a hybrid ML/CP method [Brouard et al., 2020]. It should be noted that
SATNet’s accuracy was measured on a test set of easy Sudoku grids (avg. 36.2 hints).
All the methods that rely on an exact solver were able to reach 100% accuracy but
Deep Learning better exploits the inductive bias provided by the grid geometry and
therefore our method has better data efficiency. In our case, with k = 10, we still
obtained 100% accuracy on 17-hints grids using a training set with 200 grids. More
epochs were necessary (less than 200) but training time did not increase (587± 32s
over 10 training using 10 different seeds).

Approach Acc. #hints Train set Param.

Palm et al. [2018] 96.6% 17 180,000 200k
Wang et al. [2019] 99.8% 36.2 9,000 600k

Brouard et al. [2020] 100% 17 9,000 -
Hinge (here) 100% 17 1,000 180k

E-NPLL (here) 100% 17 200 180k

Table 3.3: Accuracies of related works. The ’# hints’ gives the hardness of the
test set. Param. is the number of parameters of the nets.

As done for previous losses, we interpreted the GM learned with the E-NPLL in
terms of which rules had been learned. Histograms in Figure 3.8 show that all the
rules of Sudoku have been properly learned. Therefore, we can be confident that the
accuracy of 100% observed on the test set actually extends to any Sudoku instance.

Figure 3.8: Histograms of the GM learned with the E-NPLL. As with the PLL and
the Hinge loss, 0-cost are learned when there is no constraint (middle and right).
Constraints between all the pairs are learned (they have strictly positive cost along
the diagonal, preventing a pair of constrained variables to take the same value).

Sudoku with Multiple Solutions

In our setting, we observe instances and the associated solution (ω,y). However,
reasoning problems usually have more than one solution. In the case where only one-
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of-many solutions is observed, is our approach still able to learn a proper GM? Since
the E-NPLL never compares a solver-produced solution to the provided solution y,
it should not be sensitive to the existence of many solutions.

To test this, we used the Sudoku benchmark set used in [Nandwani et al., 2021],
where each grid has more than one solution. They formulated the task of Learning-
One-of-Many as being able to predict any one of the solution at inference. However,
the set of solutions is only partially accessible during training. For each training grid,
at most 5 solutions are present in the training set. We use 1, 000; 64 and 256 grids
of the data set from [Nandwani et al., 2021] respectively for training, validating, and
testing. All hyper-parameters are set as previously and the validation set is only
used to stop training as for plain Sudoku. The testing criteria is to be able to retrieve
one of the feasible solutions (all of them are known for testing) by optimizing the
predicted GM.

We used the same training procedure as with the unique-solution dataset. To
compute the NPLL, we selected one of the provided solutions randomly at each
epoch. As before, we repeated training for 10 different initializations of the neural
net weight. On average, training took 723.4 ± 64.9 seconds (21.4 ± 1.9 epochs),
leading to one of the expected solutions for 100% of the test grids. By comparison,
SelectR, the RL-based method developed by [Nandwani et al., 2021], recovers one
of the possible solutions for 86.7% of the test grids (see Table 3.4).

Approach SelectR E-PLL

Accuracy 86.7% 100%

Table 3.4: Comparison with SelectR, the approach from [Nandwani et al., 2021]
on the multi-solution dataset. Accuracy refers to the ability to predict one of the
possible solutions.

In fact, since the correct rules are identified with the E-NPLL, we verified that
thresholding the learned costs into Boolean enables a complete enumeration of all
feasible solutions for all instances in the test set.

Futoshiki

During July 2023, I co-supervised, with my supervisor T. Schiex, Romain Gam-
bardella, an intern from an engineering school. We asked him to use the E-NPLL
to try and learn the rules of Futoshiki. Like the Sudoku, the grid must be filled in
such a way that there is no repetition of digit on any row, column or sub-square. In
addition, some inequalities are given between pairs of cells. This rule results in cost
matrices that are less sparse than with Sudoku. The diagonal still contains positive
costs to prevent 2 same digits, but it also contains positive costs on the lower (resp.
upper) triangular part in case of superior (resp. inferior) inequality constraint.
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Figure 3.9: A solved Futoshiki. Bold figures are the initial hints, together with
the inequalities.

We generated our own dataset, composed of 5 × 5 grids. Starting from an
empty grid, inequalities were generated randomly. For each pair of adjacent cells,
an inequality was added with a fixed uniform probability. The inequality was turned
into a constraint in toulbar2, then the solver was asked to solve the grid. One grid
may have several solutions. To avoid the introduction of bias by selecting one,
random unary costs drawn from a uniform distribution are added to each variable.
This way, a small random cost is added to each solution, helping toulbar2 to select
one uniformly. This process was repeated to generate the entire dataset: 1000
training grids, 64 for validation and 200 for testing.

A grid is only represented by its inequalities, no digits are given as hints. As for
Sudoku, each pair of cells is represented by its coordinates (row and column indices)
and an additional feature representing the inequality (1 if i > j, −1 is i < j and 0 if
no inequality). This is fed into the same neural net as for Sudoku. Training starts
with an initial learning rate of 10−3, which is divided by 10 each time the NPLL
computed on the validation loss increases. Training is stopped when the learning
rate is below 10−5.

For inference on the test grids, a threshold is applied on all the cost functions:
all values below 1 are set to 0. All of the 200 grids were correctly solved.

Visual Sudoku

One strength of neural network is their ability to process natural input and handle
noisy data. We simulate such a scenario by tackling the visual Sudoku problem
[Franc and Savchynskyyy, 2008; Wang et al., 2019], where each hint is replaced with
MNIST digits [Lecun et al., 1998], as illustrated in Figure 3.10. The goal is to
simultaneously learn how to play Sudoku and how to recognize handwritten digits.

We reused our previous architecture, and we added an untrained LeNet network
[Lecun et al., 1998] to recognize the digits. The negated logits predicted by LeNet
(i.e., before a softmax is applied to turn them into probabilities) were injected as
unary costs into the GM. The logits were negated following the MRF definition
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Figure 3.10: An example of a visual Sudoku input: each hint is replaced by a
MNIST image.

and added to the MRF for each variable Yi with a hint. Together with the binary
costs produced by the same neural net as before, they formed the GM representing
the visual Sudoku. This GM was fed to our regularized E-NPLL loss for back-
propagating solutions. The complete pipeline is illustrated in Figure 3.11.

Both neural networks were trained simultaneously from random initialization
with the same learning rate. No new tuning was necessary. To check for sensitivity
to initialization, 10 runs with different seeds were performed. This is important as a
80% training failure rate was observed for SATNet in [Chang et al., 2020] depending
on the initialization.

Figure 3.11: Pipeline of the visual Sudoku. A LeNet network recognizes digits
and produces unary costs, while a second network predicts the rules for each pair of
cells as binary costs. All these functions form a GM that is fed onto the E-NPLL.

Our data set is built from the symbolic Sudoku data set by replacing hints with
corresponding MNIST images, as in [Brouard et al., 2020]. More precisely, a hash
function is used to map each hint to a MNIST image so that a given grid always
corresponds to the same image throughout training. Each image of a digit in the
grid is known to represent the value of a single variable, observed in y, providing
grounding information to LeNet [Chang et al., 2020]. We used the same 1, 000 grids
for training, the validation set contains 64 grids, only used to stop training.
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After training, we extracted the LeNet network alone: it reached a 97.6% ac-
curacy on MNIST, being indirectly supervised by the provided hints, through the
E-NPLL (the supervision is direct in SATNet Chang et al. [2020]). We tested again
on 1, 000 hard grids (see Table 3.5). When all the hints are correctly predicted, grids
are correctly filled, as proper rules have been learned. Moreover, in 8.7% of cases,
the solver was able to correct LeNet’s errors, leading to an overall accuracy of 76%
on hard grids. Training took an average time of 1150± 13s.

MNIST accuracy Correctly solved grids Of which corrected

97.6± 0.9% 760± 9 87± 3

Table 3.5: Visual Sudoku performance (1, 000 hard 17-hints test grids)

We also compared our architecture with SATNet, using their data set of 9K
training and 1K easy test grids (average of 36.2 hints Wang et al. [2019]). We used
the exact same parameters as in the previous experiment and reused an untrained
SATNet’s ConvNet to process MNIST digits. We trained for at most 20 epochs
(100 for SATNet) using 64 of the training grids for validation (to decide when to
stop training). On this data set, SATNet’s accuracy is 63.2%. SATNet’s authors
compared this to a theoretical maximum accuracy of 74.7%, assuming a SOTA 99.2%
accuracy MNIST classifier and a perfect Sudoku solver. In our case, integrating
LeNet’s uncertainty on classification as negated logits in the GM pushed accuracy
well beyond this theoretical limit (see Table 3.6). Since the ConvNet was trained
through the E-NPLL loss, its weights are automatically adjusted to optimize the
joint pseudo log-likelihood that includes also the Sudoku rules being learned. This
automatically calibrates its output for the task. It is similar to what was done, a
posteriori and with known hard Sudoku rules, in [Mulamba et al., 2020].

SATNet Theoretical Ours

63.2 % 74.2% 94.1± 0.8%

Table 3.6: Fraction of solved grids using SATNet data set for training and testing
(averaged over 3 different initializations).

Grounding in the Visual Sudoku

The way we solve visual Sudoku so far benefits like SATNet from supervised symbol
grounding [Chang et al., 2020]: they indirectly use the ground truth grid to train
the MNIST classifier in a supervised fashion. Without those intermediate labels,
SATNet completely fails, with a 0% accuracy. It shows an inability to map per-
ceptions (the handwritten digits) into the corresponding symbols. In fact, SATNet
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first trains the classifier thanks to the available hints in the output (a form of data
leakage), then learns the Sudoku rules.

Our intern Romain Gambardella worked on training the visual Sudoku in the
same setting as [Topan et al., 2021], where hints have been removed from the output
to prevent them from grounding. We restrict the dataset to 17-hint grids, 1000 for
training, 64 for validation and 100 for testing. Both neural nets (Le Net for digit
recognition and a MLP for learning rules) are unchanged but their interface is mod-
ified: instead of using LeNet’s output as unary term, it is given as additional feature
in the MLP’s input. The NPLL cannot be computed with missing information, so
we explicitly model missing hints as unknown value. Therefore, each variable has a
domain of size 10 instead of 9. As for the Futoshiki, training is stopped when the
learning rate becomes too low.

This setting is significantly harder, training is unsurprisingly longer: it takes
between 2 and 3 hours. Still, we reached a similar accuracy as on the ungrounded
visual Sudoku, with 95 out of 100 test visual grids correctly solved. After training,
LeNet has learned a permutation over digits, that is corrected by the ResMLP to
predict the correct value. It is worthy to note that we place ourselves in more
favourable conditions by taking only 17-digit grids (vs an average on 36.2% on
SATNet’s dataset). Indeed, visual grids with fewer hints are actually easier as
LeNet’s is less likely to make a classification mistake [Brouard et al., 2020].

In future work, we would like to avoid learning two permutations, the second
correcting the first one learned by LeNet. Instead, we want to learn only the ground-
ing permutation, that is the permutation mapping the visual perception to the digit
symbols. To do so, we plan to add a one-layer perceptron that maps LeNet’s output
into a unary cost (that is the permutation to learn). As in [Topan et al., 2021],
the ground truth value of hint is masked. Since the NPLL cannot apply on missing
data, we will impute the hint with an optimization layer: toulbar2 will be given the
rules learned so far to predict the hints, and these values will be backpropagated.
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Conclusion

This section introduced Decision-focused learning. We developed a hybrid neu-
ral+graphical model architecture and we explored several loss functions for learning
how to solve discrete reasoning problems. The whole architecture being differen-
tiable, it makes it possible to define a graphical model from natural inputs.

First, we used the Hinge loss to incorporate the solver into the training loop.
As it deals with the global problem, it is insensitive to redundant constraints and
it tends to not predict them. However, repetitively solving NP-hard instance has
a cost which is prohibitive when working on large instances. Therefore, this loss is
not adapted to protein design.

Then, we adapted Besag’s pseudo log-likelihood to enable it to learn logical
information. Our Emmental-PLL removes the solver from the training loop, and
therefore it is much more tractable. On various NP-hard Sudoku benchmarks, it
is able to produce correct solutions from natural input (including images), while
being data-efficient and capable of generalization in incomplete multiple-solution
settings. During inference, an exact solver provides robust prediction. It is even
able to partly correct noisy neural predictions. The E-PLL is agnostic to both the
neural architecture and the solver. However, it imposes the GM prediction is the last
layer of the architecture. Other approaches, including the Hinge loss or blackbox
[Pogančić et al., 2020; Sahoo et al., 2023], do not suffer from this limitation. Still,
it is probably a reasonable assumption for most decision-focused learning problems
[Wilder et al., 2019], including protein design.

This architecture could be further explored to remove redundant constraints.
We briefly tried to combine the E-PLL as pre-training and the Hinge loss to re-
move redundancy, but it failed as no constraint was forgotten. Moreover, as done
for SATNet [Lim et al., 2022], the ultimate GM layer of our architecture could
be analyzed during training to identify emerging properties such as symmetries or
global decomposable constraints, allowing for more efficient learning and improved
human understanding. For memory and computational efficiency, we limited our-
selves to pairwise models but the use of other languages (e.g., weighted clauses) in
replacement of, or addition to, pairwise functions would enhance the capacity of the
architecture to capture many-bodies interactions. Another possibility is the use of
latent/hidden variables [Stergiou and Walsh, 1999].

We also would like to explore another way of grounding in Sudoku in order to
learn the actual grounding permutation. This is the permutation mapping the visual
perception to the digit symbols. To do so, we plan to add a one-layer perceptron
that maps LeNet’s output into a unary cost (that is the permutation to learn). As
in [Topan et al., 2021], the ground truth value of hint is masked. Since the NPLL
cannot apply on missing data, we will impute the hint with an optimization layer:
toulbar2 will be given the rules learn so far to predict the hints, and these values
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will be backpropagated.

The Hinge loss training cost could be reduced by training with an approximate
solver. We experimented it with the approximate WCSP solver LR-BCD [Durante
et al., 2022]. Since it is a stochastic solver, we made it predict 20 solutions for
each training instance, and we chose the best one in terms of predicted cost to be
backpropagated. Surprisingly, it completely fails. Closer investigation of the rules
learned throughout training gives a totally different dynamic than with the exact
solver, with some diagonal costs on the same matrix skyrocketing while other are
zeros.

Alternative schemes where all the solutions are backpropagated, optionally weighted
by their exponential negative cost, gave the same results. Worse, when starting from
a trained net — thus already predicting the correct rules —, further training with
LR-BCD ruined the rules learned. We ruled out the possibility of a code mistake
by training with another approximate solver, toulbar2 with no allowed backtrack.
The rules were not exact, but the tendency was correct (we did not spend time
assessing whether they could be learned properly). The same behaviour of LR-BCD
was noted on protein data, which is all the more so surprising LR-BCD gives good
result in designing proteins at inference time (detailed in Chapter 5). Investigating
it further could be plan for future work.

The rest of this manuscript will focus on protein design. Since our E-NPLL loss
is very general, it can be directly applied to learn score functions from examples of
existing protein structures. However, learning on such data sets specific challenges
that will be addressed in the next section.
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Chapter 4

Learning Effie, an Energy
Scoring Function for Design

Introduction

Computational Protein Design (CPD) aims to produce protein sequences fulfilling
a function of interest for a given application. Describing the target function as an
input for a computational method is a hard task, so the tight links between a protein
function and its structure are exploited instead to craft a protein backbone used as
a proxy input. The goal of CPD then reduces to the task of predicting sequences
folding onto the input protein backbone.

We have already reported that this task starts to be well mastered by neural-
based approaches. However, the real objective of CPD is a function and not a
structure. Reaching it often requires to enforce some additional properties, which
is still difficult to do with a neural network. Energy-based methods manage it by
adding objectives and constraints to the optimization problems representing the
design problem.

This work aims to bring together the advantages of both energy-based and
neural-based methods by developing a new hybrid pipeline. First, a neural network,
trained on existing protein structures, predicts a Graphical Model representing the
interactions within the protein backbone. This GM is then optimized to obtain a
protein sequence that is both stable on the target structure and meet additional
optional design requirements. Thus, the produced sequences will be more likely to
fulfill the target function and properties.

In this chapter, we describe the methodology to learn Effie, an Energy Function
Familiarly Introduced as Effie. For a given protein backbone, Effie is a pairwise
Graphical Model predicted by a neural net and that will be optimized in place of
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traditional energy functions to design sequences. Effie models the probability of
a sequence given the target structure. This chapter focuses on methodology; the
results of applying Effie to protein design will be given in the next chapter.

As we discussed in Chapter 1, Deep Learning requires 4 main ingredients: data,
a neural architecture, a loss function and an optimization process. In Chapter 3,
we introduced the Emmental-NPLL, a loss to learn how to reason that we directly
applied to protein design. This chapter describes the 3 other ingredients required to
learn Effie.

Through the reviewing of current DL-based methods for protein design in Sec-
tion 2.3.3, we noted there is no consensus so far about the most-suited representation
of the input structure. The first step was therefore to choose a representation suited
to the learning of a pairwise Graphical Model. This is the object of Section 4.1,
that also describes the datasets we used. These data are processed by a neural
architecture adapted to both leverage protein data specificity and produce a GM.
The development of this architecture is related in Section 4.2. Finally, Section 4.3
focuses on the training process.
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4.1 Protein Data

There is still no consensus on the best suited way to represent the input protein
structure, even though graph representations are the most popular. We first list
the properties we want the structure representation to have. We then describe the
representation we chose, along with the features we tried. Finally, we present the
two datasets we used to train and validate our model.

4.1.1 Desired Properties of the Data Representation

An adapted representation is crucial for an efficient learning [Laine et al., 2021].
Indeed, if the input data has some properties such as invariances, injecting them
as inductive bias through its representation reduces the space of mapping functions
learnable by the neural network. It leads to more data efficiency, notably by avoiding
the need of data augmentation.

Varying-size Input

The first difficulty when working with protein data is size variation between in-
stances. It is possible to reduce a protein to a fixed-size vector using an embedding,
obtained from the sequence using a language model (see Section 2.3.2), from the
structure [Hermosilla Casajús et al., 2021] or from both [Chen et al., 2023]. How-
ever, the information about the geometry would be lost.

Therefore, using a representation that allows for size variation is preferable.
However, it requires a neural architecture adapted to process various input shape.
It can be done via a recurrence mechanism, as done in Natural Language Processing.
For instance, a MLP with sliding windows has been used to process input protein
structures [Wang et al., 2018]. A graphical representation is particularly well-suited
as message passing operations are designed to be insensitive to the number of neigh-
bours [Gilmer et al., 2017].

Rotation and Translation Invariance

Protein structures are non Euclidean data. They are not as regular as an image
for instance, which can be represented as a regular grid. Still, they do have some
regularity properties. A global rotation or translation of the whole structure does
not modify it. In particular, the interactions within the protein will be the same.
The group of 3D rotations and translations is denoted SE(3). The previous property
can be reformulated as SE(3)-invariance, that should be used as an inductive bias
to facilitate training.

There are two ways to take into account invariances. First, the representa-
tion itself can be insensitive to the global orientation of the structure, either using
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invariant features or canonized environments (see Section 2.3.3). Second, the neu-
ral architecture can use only equivariant operations, such as Tensor Field Network
[Thomas et al., 2018] or SE(3)-Transformer [Fuchs et al., 2020]. It means that the
output of the network net undergoes the same transformation as the input (if the
output is a scalar, it will be invariant). Such architectures have been applied to
small molecular graphs [Jiao et al., 2023], protein complexes [Eismann et al., 2021]
and inverse folding [McPartlon et al., 2022]. Moreover, [Anand and Achim, 2022]
reused the equivariant IPA attention from AlphaFold [Jumper et al., 2021] for struc-
ture generation by diffusion. Finally, some approaches mixed invariant features and
equivariant message-passing operations [Jing et al., 2021].

Local Environment

The physical interactions within a protein result from local forces, such as the elec-
trostatic interaction that decreases proportionally to the square of the distance.
Therefore, to properly from a protein structure, a particular emphasis on local en-
vironments is pertinent.

For instance, all the CNN-based design methods explicitly represent the local
environment of each residue, usually on a box of 20Å side centered around the
target residue. Similarly, graph-based approaches define a notion of neighbouring
residues, and the mechanism of message passing weakens interactions between far-
apart nodes. Those examples show that local environments can be introduced both
in the structure representation and in the neural architecture.

4.1.2 The Protein Structure as a Set of Residue Pairs

In our design pipeline (illustrated in Figure 2.4), the neural network takes as input
a protein backbone and it outputs a pairwise Graphical Model, expressed as a Cost
Function Network.

Neural Input and Output

As for Sudoku, the output GM is composed of a score matrix for each pair of residues.
These matrices represent the interactions within the proteins. Since we aim for a
pairwise prediction, we represent the protein as a full set of pairs of residues, similarly
to what is done in the KORP potential [López-Blanco and Chacón, 2019]. This is
equivalent to a fully-connected graph representation. However, the processing of the
data will be quite different as we focus on pairs of residues and not on neighbourhood
(see Section 4.2 for details).

The input protein backbone B is composed of the coordinates of N, Cα, C and O
atoms for each of the n residues of the protein (thus, B ∈ Rn×4×3). To process the
backbone in a way that is invariant to both translation and rotation, we chose to use
invariant features. Indeed, the coordinates are not invariant. An alternative would
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have been to use an equivariant architecture, but they tend to be computationally
expensive [Thomas et al., 2018].

Sequence Features

We encoded information on both the sequence and the structure using features be-
tween pairs of residues. We denote Bi and Bj the backbone coordinates of two
residues at the position i and j respectively, with i, j ∈ {1, . . . , n}. For the sequence
information, we used positional encoding of |j − i| (initially introduced for Trans-
formers Vaswani et al. [2017]) to represent the number of residues in-between the
pair in the sequence.

Relative Position Features

We build invariant structural features by expressing the relative position and orien-
tation between a pair of residues, as illustrated in Figure 4.1.

We first need to build reference frames on each residue. The α-carbon is the
origin of the frame and the first axis is in the N − Cα direction. The other axes
are built using a Gram-Schmidt ortho-normalization process applied on the C −Cα

direction. The last axis is normal to the peptide plan and oriented such that the
frame is direct.

Figure 4.1: Relative position and orientation between residue Bi (bottom left)
and Bj (top right). On each residue, a frame (Vx, Vy, Vz) is built. Features are built
based on the translation and rotation from one frame to the other. Figure adapted
from [López-Blanco and Chacón, 2019].

The relative position and orientation between two frames can be decomposed
into a translation and a rotation. The translation is a direction plus a distance.
For each residue, the reference point is the alpha carbon of coordinate Cα. Thus,
the direction of the translation from Bi to Bj is the unit vector

Cαj−Cαi

||Cαj−Cαi|| and the

distance is ||Cαj − Cαi||.
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Expressing the rotation between Bi and Bj is trickier. We first used the same set
of angles as in KORP, encoded by their sine and cosine. This resulted into 5∗2 = 10
features. Instead, we chose a more compact representation based on quaternion.
This way to represent a 3D rotation is simpler than Euler angles and more stable
that a rotation matrix [Kenwright, 2012]. A rotation consists in rotating by a certain
angle around a certain axis, which corresponds to a point on a hyper sphere. This
point is the quaternion q = (w, x, y, z). It is also sometimes written q = w+ v⃗, with
v⃗ = (x, y, z) being the rotation axis and α = 2×arcos(w) the angle. A quaternion is
such that w2+x2+y2+z2 = 1 The advantage of quaternion is that an algebra can be
defined on them [Sola, 2017]. A composition of rotation then consists in multiplying
quaternions, and the reverse rotation is the inverse quaternion. However, there
is an ambivalence between a rotation of +π and −π, which can perturb training
[Zhou et al., 2019]. The ambivalence is contained in the sign of w: (w, x, y, z) and
(−w, x, y, z) represent the same rotation. Therefore, to remove ambiguity for the
neural net, we systematically select the quaternion with a positive sign.

In addition to those pairwise features, we used features on each residue. Contact
numbers, defined as the number of neighbours at a given threshold, are used as a
proxy indicating how buried the residue is. Sine and cosine of dihedral angles are
also given.

Distance Features

Variations around those relative position features were used by most of the DL-
based design methods, including Structured Transformer [Ingraham et al., 2019],
Geometric Vector Perceptron [Jing et al., 2021] and Protein Solver [Strokach et al.,
2020].

Then in 2022, ProteinMPNN [Dauparas et al., 2022] came out. It used much sim-
pler features, only based on distances. These features lead to superior performances,
which may be explained by the fact that they avoid any discontinuity. As discussed
in the next Chapter and Annex C.2, we also observed that replacing quaternions
with those distances resulted in enhanced performances.

In details, these features contain distances between all the backbone atoms (N,
Cα, C and O plus a virtual Cβ) of the 2 residues. The virtual Cβ coordinates are
calculated based on the other backbone atoms coordinates using ideal angle and
bond length definitions [Dauparas et al., 2022]:

Cβ = −0.58273431 ∗ a+ 0.56802827 ∗ b− 0.54067466 ∗ c+ Cα

with b = Cα −N , c = C − Cα, a = cross(b, c)

These 25 distances are encoded with 16 Gaussian radial basis functions (GRBF)
with centers evenly spaced between 0 and 20Å. For a distance d, its GRBF encoding

134



4.1. PROTEIN DATA

is:

{e−(d−d0)2}d0∈{0, 43 ..., 15∗43
=20}

In total, there are 25 ∗ 16 = 400 distance features.

Handling Missing Residues

The protein structure data we use have been experimentally resolved and therefore
they are exposed to missing information. If sequences are usually complete, some
residues have unknown coordinates. We call them missing residues.

Since most of our features are based on distances, there is almost no information
in the features of a pair containing (at least) one missing residue. They are partic-
ularly common on N-ter and C-ter as they usually are flexible loops. We apply a
pre-processing step to cut out all missing information on the extremities of protein
sequences.

Missing residues can also happen within proteins. In our first dataset (detailed
hereafter), 14, 000 out of 18, 000 proteins have at least one missing residue after
pre-processing, with an average of 8.3%. All the distances and angles on a pair of
residues containing (at least) one missing are undefined and arbitrarily set to 0.

4.1.3 Datasets

To train our model, we use protein structures from the Protein Data Bank [Berman
et al., 2000]. For each structure, at least one native sequence is known, enabling
unsupervised training with the Emmental-PLL. In this work, we reused 2 existing
datasets. The first one is restricted to single-chain proteins and the second one also
contains protein complexes.

Single-chain Dataset

The first dataset (single-chain), from [Ingraham et al., 2019], is composed of single
chains of proteins. Most of the DL-based design methods use this dataset for both
training and testing, enabling easy comparison between methods.

In order to assess the ability of a DL model to generalize to unseen protein, the
dataset should be rigorously split into training, validation and test sets such that
there is no redundancy between sets. Sequence and structure similarities between
proteins make this splitting non-trivial. A first filter on sequence similarity was ap-
plied such that all sequences differ from a minimal percentage (40% in this dataset).
Yet, it is not enough to prevent redundancy as protein with low identity can have
the same fold.

To ensure similar folds remain in the same subset, splitting was based on the
CATH4.2 classification [Sillitoe et al., 2015]. All proteins with the same topology
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are on the same set, which corresponds to the first 3 numbers of CAT code. For
instance, all proteins with a code starting by 3.30.70 are on the same split. This
resulted in a dataset of 18, 024 chains in the training set, 608 chains in the validation
set, and 1, 120 chains in the test set. Proteins have at most 500 residues as longer
proteins are filtered out.

The identity of an amino acid not only depends on interactions with neighbouring
residues, but also with the environment. Membrane proteins, that fold into a lipidic
environment, have a different composition from soluble proteins. When the solvent
is not represented, the neural net may lack important information to decide which
residues may fit. Using the Protein Data Bank of Transmembrane Proteins [Kozma
et al., 2012], we found that the single-chain dataset contains very few transmembrane
proteins (223 in the training set, 41 in the validation set and 29 in the test set).
Therefore, a DL model trained on this dataset may reasonably be applied only on
soluble proteins.

Finally, in order to restrict to single-chain proteins, [Ingraham et al., 2019]
cut complexes into single chains. Only a part of the dataset corresponds to truly
monomeric proteins. This subset, which we call monomeric set, contains protein
shorter than 150 residues. Splitting complexes into single chains may noise the in-
formation and be misleading. Indeed, the distribution of amino acids at an interface
between chains is not the same as amino acids at the surface, which are mostly
hydrophilic as they are exposed to the solvant. This shortcoming is bypassed by
considering multi-chain proteins.

Multi-chain Dataset

The second dataset (multi-chain) was developed to train ProteinMPNN [Dauparas
et al., 2022]. It is composed of protein assemblies in the PDB (as of Aug 02, 2021)
determined by X-ray crystallography or cryoEM with a resolution better than 3.5Å.
Proteins were clustered with a 30% identity cut-off into 25, 361 clusters, which were
split randomly into training (23,358), validation (1,464), and testing (1,539) sets
such that chains from a given assembly are all in the same set. For each training
epoch, one sequence member of each cluster is selected at random. If it corresponds
to several conformations, one is randomly chosen. Then the biological assembly is
reconstructed from the PDB entry.

Additional features are available on this dataset: for each residue, the chain
it belongs to is known. Moreover, proteins are annotated as being soluble or in a
membrane, which enables to train models specialized in soluble-only. In total, this
dataset contains 3498 membrane proteins.

Training on this dataset set new challenges, as protein complexes can have up
to 10, 000 residues, which raises new issues in terms of memory and computational
tractability. This will be discussed in Section 4.3.
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4.2 Architecture

Our neural architecture is an auto-encoder that maps an input protein backbone into
a latent representation, the pairwise Graphical Model expressed as a Cost Function
Network (CFN). At inference, the predicted GM is decoded by the solver toulbar2
through optimization into designed sequences. More precisely, the neural net is fed
with each pair of residues in the protein, and it produces a 20× 20 cost matrix for
each of them.

The complete architecture is organized around two neural nets, as illustrated in
Figure 4.2. A first one extracts information about the environment of each residue.
Then the second one is fed information about a pair of residues and it produces a
cost matrix.

Figure 4.2: Overview of the neural architecture. First, a target residue and its
neighbours are processed by a gated net to extract a feature vector informative on the
environment of the target residue. Then, for each pair of residues, their environment
are concatenated along with their relative features and given to a ResMLP which
produces a cost matrix. The set of cost matrices forms the GM representing the
protein design problem.

4.2.1 Extracting Environment Information

When we listed the desired properties of our protein backbone representation, we
specified that the local environment of each residue should be taken into account as
most of the interactions are local. We chose to represent the backbone as a set of
pairs of residues, each pair being represented by invariant features describing relative
position and orientation.

However, this is not directly informative about the environment of a given
residue. Instead of putting this environment information on the representation ex-
plicitly - as it is done in graphs through the neighbourhood of a given node -, the
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first part of the neural architecture is in charge of extracting it.

Neighbour Feature Extraction

For a given target residue i, all its neighbours within 10Å are extracted. The distance
between Cα atoms is used. The features of each neighbour with respect to the target
residue are computed and stacked into a tensor in which each line corresponds to a
neighbour and each column is a feature. This tensor has shape seq len×nb ft where
seq len is the maximum number of neighbours (it is set to 45 as it is the maximum
contact number at 10Å observed in the dataset) and nb ft the feature dimension.
If the target residue has fewer than seq len neighbours, the vector is padded.

When using relative position features, the rotation of each neighbour with respect
to the frame of residue i is expressed with a quaternion and its translation with 3D
unit-vector, resulting in 4 + 3 = 7 features. In addition, the distance is given using
a GRBF encoding using 16 kernels, as well as the sequential information with a
positional encoding of size 16 too. Finally, the contact numbers at 5 and 10Å and
the cosine and sine of the dihedral angles ψ and ϕ are given for each residue of the
pair, which represent respectively 4 and 2 ∗ 4 = 8 features. In total, the information
of each neighbours with respect to the central residue is given by a vector of length
51.

When using distance features, the distances between each backbone atoms of
the target residue and of each neighbour are computed. With the GRBF encoding,
it results in 25 ∗ 16 = 400 features for each neighbour, to which are added the 16
features of the positional encoding.

Through the Neural Net

The whole protein backbone is processed into environment embeddings at once. To
do so, the backbone is considered as a batch: the tensor of neighbours of each residue
are stacked into a tensor of shape n× seq len× nb ft processed in parallel. An in-
put linear layer with hidden dim neurons is applied first, followed by a gated-MLP
(gMLP) [Liu et al., 2021]. This simple architecture has proven to be more efficient
that Transformers in image application. In practice, we tested a GPT2 architec-
ture with the same number of parameters and observed a drop in performance (see
Annex C.1).

Through the gMLP layers, information on neighbours are considered and selected
thanks to the gating mechanism. The gMLP output has the same shape as the
input (i.e., n× seq len× hidden dim). The contribution of each neighbour is then
averaged into a tensor of shape n × hidden dim which contains the environment
embedding vector of each residue. This vector is not interpretable per se, but it
contains an internal representation of the central residue environment. We explored
an alternative way to build the environment embedding, proposed in [Liu et al.,
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2022]. We added a vector representing the target residue to the tensor representing
its neighbours. After the tensor was fed into the gMLP, the processed target residue
vector was used as environment embedding. However, it did not prove as efficient
as simply averaging (see Annex C.1).

An Iterative Variant

Our intern Romain Gambardella suggested a variant architecture, illustrated in Fig-
ure 4.3. He replaced the input layer by a short resMLP and applied the same
gatedMLP to obtain environment features. These features (before averaging) go
through a second gMLP for several iterations. The input of the next iteration is the
output of the previous one, concatenated with the first environment features. The
output of the last iteration is averaged to form the environment vector.

It can be seen as gMLP blocks linked with residual connections. It is also
similar to a Graph Neural Net, were each message passing step is done by one
iteration through the second gMLP. However, standard GNNs do not have a gating
mechanism like the one provided by the gMLP.

Figure 4.3: Iterative variant of the architecture. A new gMLP and a new ResNet
are added to process environment. At each iteration, the current embedding and
the features processed by the first gMLP are concatenated and fed to the second
gMLP + ResMLP.

4.2.2 Predicting Pairwise Energy Matrices

The goal of the neural architecture is to learn a CFN whose cost matrices represent
pairwise energy score functions. These score functions are (plus a constant) the
negative logarithm of the probability of a sequence s given the input backbone B
(logP (seq = s|struct = B)) and they quantify the interaction within the input
protein backbone. They are to be minimized to obtain the designed sequence(s).

139



CHAPTER 4. LEARNING EFFIE, AN ENERGY SCORING FUNCTION
FOR DESIGN

A Graphical Model for Protein Design

A CFN (X,D,C) is composed of 3 elements. The variables X and their domain D
are fixed by the input backbone. Indeed, the variables correspond to each position
in the backbone, and each of them can take a value in the 20 canonical amino acids.
Therefore, the only element that remains to be predicted by the neural architecture
is the set of cost functions C.

As done by classical energy-based methods for Computational Protein Design
(see Section 2.2.4), we restrict ourselves to pairwise energy terms. Therefore, our
model is only able to consider 2-body interactions, by opposition to most DL-based
methods that can represent many-body interactions. Even though considering many-
body interactions is theoretically necessary [Kauffman and Weinberger, 1989], we did
not find 2-body interactions limiting in practice.

For each pair of positions (i, j) in the input backbone, a matrix of shape 20× 20
is predicted. It indicates how much it costs to simultaneously assign one residue
identity to position i and another (possibly the same) to position j. The set of cost
functions forms the predicted GM. For sequence design, it will be optimized in the
exact same way as the traditional physics-based energies. This is why we sometimes
abusively call the neural output an energy. However, it is just a score that cannot
be directly physically interpreted.

The major difference between Effie and traditional energy functions is Effie being
− logP (seq|struct) while the latter are − logP (seq, struct). Since P (seq, struct) =
P (seq|struct)×P (struct), physics-based energy functions can assess the probability
of the input backbone while Effie has no notion of what is a probable structure.

Neural Processing

We use a second neural net to predict these score matrices. It takes as input the
environment feature vector of each residue of a given pair, concatenated with their
relative features (either their relative position or a set of distances). In the case
of multi-chain proteins, we added a bit indicating whether both residues are in the
same chain.

According to the principle of parsimony, we used the simplest suited architecture
to limit overfitting: a MLP with residual connections, which enable deeper archi-
tecture [He et al., 2016]. The size of the final layer is 400 so that the output can be
reshaped in a 20× 20 matrix.

We also explored the pertinence of using unary terms (results in the next chap-
ter), i.e., a term quantifying the cost of assigning one residue identity at a given
position (independently of all the other positions). To predict them, we used another
MLP to process the environment feature vectors into vector of shape 20 representing
unary terms.
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4.3 Training Schemes

The last thing left to do is to train the neural architecture we have just defined on
our protein data. If the data and the neural architecture have to be crafted to tackle
the specificity of protein structure data, training to predict a graphical model is a
direct application of the pipeline we used to learn how to play Sudoku in Chapter 3.
The only difference is the variation of size between protein instances, and it required
only few adaptations.

In this section, we first describe the regularized loss we used and then the opti-
mization process. Finally, we discuss the memory limitations we faced and how we
dealt with them. All our code was written in Python using PyTorch version 11.10.2.

4.3.1 Loss Function

The Emmental-NPLL

The main purpose of developing a scalable loss for decision-focused learning problems
such as learning to play Sudoku is to adapt it to protein design problems. Therefore,
we used the Emmental-NPLL as our main loss.

The E-NPLL has only one parameter to tune: the number of holes h, i.e., the
number of variables to be masked when computing the pseudo log-likelihood. In the
toy problem of Sudoku, the grid size was fixed, and therefore we use a fixed k. In
the case of proteins, the problem size varies between instances. We adapt the E-
NPLL by choosing a value of k proportional to the number of residues of the protein.
Therefore, using the same notations as in Section 3.3.3, the E-NPLL becomes:

E-NPLL(y) = −
∑
Yi∈Y

log(PN(ω)(yi|y−({i}∪Mi)))

where each Mi is a random subset of {1, . . . , n} \ {i} of size k = ⌊p × n⌋ with
p ∈ [0, 1].

Intuitively, the regular pseudo log-likelihood (i.e., k = 0) consists in indepen-
dently guessing the identity of each amino acid based on the other amino acids on
the protein. The cost of each possible identity is turned into a probability using
a softmax function. In this respect, the NPLL is similar to a task previously pro-
posed to train neural networks for protein design: predicting one amino acid from its
local environment [Zhang et al., 2020; Shroff et al., 2020]. Those methods use cross-
entropy (CE) as the loss. The main difference between these two losses is the CE
is directly applied to the neural net’s prediction (independently on each variable),
while the NPLL is a sum on every variables of marginal conditional probabilities
computed based on the predicted GM.
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When using the E-NPLL, only part of the environment of each residue is known.
The E-NPLL was designed to tackle the regular PLL’s inability to deal with logical
information, and more generally with large energies [Montanari and Pereira, 2009].
It is not clear whether such information is present in the protein design problem.
Yet, we found the E-NPLL leads to better performances than the regular PLL (see
results detailed in the ablation study, Table 5.3).

An intuitive explanation can be proposed to explain the superiority of the E-
PLL: in some cases, some amino acid assignations are indeed forbidden or highly
unfavourable. For instance, if the environment of the target residue is such that only
a small amino acid can fit in, large ones like tryptophan or tyrosine are associated
with a high energy. Such redundant information can only be partially learned with
the regular PLL.

Regularization

Like in the previous problem of learning to play Sudoku, we trained with a L1-
regularization on the costs. The total loss is written as a term fitting the data (the
E-NPLL) and a regularization:

E-NPLL(y) = −
∑
Yi∈Y

log(PN(ω)(yi|y−({i}∪Mi))) + λ
∑
i,j ̸=i

∑
(a,b)∈Di×Dj

|N(ω)[i, j](a, b)|

The L1-regularization favours sparse graphical models, which are appealing for
two reasons. First, a sparse GM is likely to be easier to optimize. Second, it is a way
to enforce the physics-based prior that far apart residues do not interact directly.
Indeed, the NPLL alone will learn costs that tend to flatten with the distance but
it has no reason to favour 0-cost.

When applying the L1-regularization, we indeed observed that the neural net
learns a score that depends on the distance, as displayed in Figure 4.4. Above 10 Å,
the score quickly decreases with the distance, and it is 0 beyond 20 Å. Using the reg-
ularization avoids the use of an arbitrary distance cut-off, which is common to both
energy scoring function like Rosetta and neural-based methods, where the cut-off is
used to define the neighbourhood (graph-based methods) or the local environment
(voxel-based methods).

Variants

In some cases, we also predict unary terms N(ω)[i] that must be integrated into
the loss as unary cost functions. They can be directly integrated to the E-NPLL
computation by adding them to the unary costs computed given the rest of the
variables (for a position i, mi =

∑
j ̸=iN(ω)[i, j](Yi, yj)). We have also explored
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Figure 4.4: Variation of the cost of residue pairs with respect to their distance.
Each dot corresponds to a pair of residue (i, j), whose associated cost is the maximum
of the absolute valued of N(ω)[i, j].

multi-task learning where we want the unary costs to be predictive by themselves.
In this case, we add to the loss the cross-entropy computed on the softmax unary
costs. The total loss becomes:

Loss = E-NPLL + CE + L1

We also tried to include another prior knowledge: some amino acid types are
more common than others. We plot in Figure 4.5 the amino acid distribution in the
training dataset. In ML-terms, the prediction of one amino acid corresponds to an
imbalanced classification problem. Thus, we implemented a balanced E-NPLL to
favour rare amino acids by re-weighting each predicted cost by the square root of
the inverse frequency of the corresponding class [Cui et al., 2019]:

mbalanced(i) = m(i)× 1√
freq(yi)

where freq(yi) is the frequency of the amino acid type of yi observed in the training
set. Training under the balanced E-NPLL resulted in a predicted distribution of
amino acid closer to the native one (in terms of Kullback-Leibler divergence: 0.91
with the balanced E-NPLL vs 3.05 without), but it decreased the NSR.

Similarly, we explored a ”soft” PLL. The idea is to penalize confusion between
similar amino acids less than between very different ones. Indeed, predicting an
isoleucine instead of a leucine is likely to be better than predicting an arginin.
Similarity between amino acids was measured using the BLOSUM62 substitution
matrix [Henikoff and Henikoff, 1992]. The contribution of each residue to the NPLL,
expressed as a unary term, is added to the similarity between the target residue and
the current one. We use an addition instead of a multiplication because the PLL is
similar to a logarithm of probability (energy).
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Figure 4.5: Histograms of the percentage of each type of amino acid in the valida-
tion dataset.

Finally, inspired by [Zaidi et al., 2022], who trained a denoising auto-encoder to
predict molecular properties, arguing that is equivalent to learning a force field, we
tried and learn a denoiser. Gaussian noise was added to each coordinate (indepen-
dently), then a new MLP was connected to the gMLP output to predict the noise.
The total loss was the sum of the NPLL and the mean square error on the pre-
dicted noise. As detailed in Annex C.2, none of these variants resulted in improved
performances.

4.3.2 Optimization

Weight Initialization

The neural net’s weight are initialized randomly, with a fixed seed to ensure repro-
ducibility between trainings and compare models independently of the initialization.

Yet, a good weight initialization is important to prevent the outputs of the
activation function of any layer from vanishing or exploding, which would reduce
in respectively small or big gradients and result in slow convergence [Glorot and
Bengio, 2010]. Since we used as activation functions the Gaussian Error Linear Unit
(GELU) [Hendrycks and Gimpel, 2016], a differentiable variant of the ReLU, we
chose the Kaiming intialization [He et al., 2015]. Bias of linear layers are initialized
at 0. Moreover, in order to speed up training, a layer normalization is applied after
each linear layer.
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The Optimizer

We used Adam [Kingma and Ba, 2014], a variant of the stochastic gradient descent
with adaptive moment estimation, as our optimizer. The neural net is trained with
a weight decay of 10−3 to limit overfitting and an initial learning rate of 5.10−4. All
other parameters take default value (i.e., β1 = 0.9, β2 = 0.999 and ϵ = 10−8). A L1
regularization of 10−4 is applied to the predicted costs.

We used a learning rate scheduling throughout training. It is based on the
validation loss, that is defined as the percentage of amino acid correctly predicted
given their environment. The learning rate is divided by 10 each time the validation
loss decreases (i.e., with patience 0) until it reaches 10−8.

Adaptive Learning Rate

The way a protein instance is processed results in an unusual notion of batch. Indeed,
even if the neural prediction is on a pair of residue, the NPLL is a sum over every
variables. Therefore, a protein of n residues corresponds to n(n−1)

2 inputs and n
outputs and so the size of the batch is difficult to define. Since proteins vary in size,
the batch size varies as well throughout training.

In literature, it is usually recommended to choose the learning rate depending
on the batch size bs, usually proportional to bs or to its square root [Smith et al.,
2018]. Thus, we implemented an adaptive learning rate that depends on the size of
the protein. For each training instance, the neural net is updated using as learning
rate:

LR = LR0 ∗ nadapt

with LR0 the fixed learning rate and adapt ∈ {1, 0.5}.

Implementing this adaptive learning rate requires to be careful with potential
interaction with the scheduler. Indeed, it is the basic learning rate LR0 that is
decreased when the validation loss decreases and not the current learning rate used
by the optimizer.

We found that the adaptive learning rate has little impact on the single-chain
dataset, which is composed of proteins up to 500 amino acids, but it becomes ben-
eficial on the multi-chain dataset, with protein size up to 10, 000 residues.

4.3.3 Memory Limitations

The weights of the neural net are updated on each training protein structure inde-
pendently, which represents an input of size n(n−1)

2 (with n the number of residues in
the protein). Therefore, processing a single protein may not fit in the GPU memory.
We first develop our model on a RTX-6000 card with 32Go of RAM, then we trained
on a Nvidia A100 card with 80 Go memory.
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Indeed, the neural net produces a cost matrix for each pair of residue in the
protein, which corresponds to a space complexity of O(n2). To reduce it, we in-
troduce a distance cut-off so that only close enough pairs of residues are processed.
This cut-off is set at 15Å, which is more than classical energy-based or neural-based
methods that used between 9 and 12Å. Combined with the L1 regularization, this
still allows the neural net to learn the dependency between cost and distance as
explained previously.

The distance cut-off makes it possible to process proteins up to around a thou-
sand residues, but it is not enough when the size reaches several thousands. Reduc-
ing the size of the model or of the features (for instance, by reducing the number
of Gaussian kernels used to encode distances) is not a good solution as it dam-
ages performances. Another idea is to process large proteins in several batches, but
computing the PLL requires the complete GM, i.e., all the pairwise costs.

We found a workable solution by changing the way the GM is represented. The
first and easiest representation is a symmetric tensor W of shape n × n × 20 × 20.
The first 2 dimensions corresponds to the pair of positions and the last 2 are the
domain sizes. Starting from a tensor filled with 0, all the pairs (i, j) with i < j
and within the distance cut-off are processed in parallel and used to fill the tensor
representing the GM. The lower triangular part, corresponding to pairs with j < i
are filled by symmetrization.

This tensor is very sparse, especially for large proteins, as many pairs are not
within the distance cut-off but their cost matrix (filled with zeros) is stored within
the tensor W . A sparser representation is to store only the information of the
closest neighbours. On the training set, the contact number (maximum number of
neighbours) at 15Å is 128, so storing the 128 closest neighbours of each residue is
enough to retrieve the complete GM. Therefore, we stored the GM as 2 tensors: one
of shape n×128×20×20 contains the cost matrix of each residue and its closest 128
neighbours, and a second tensor of shape n×128 is used to remember the neighbours
index.

From the sparse representation, it is easy to reconstruct the full representation
W, which is more convenient to use. However, during training we only use the
sparse representation, whose space complexity is O(n) instead of O(n2). It set
additional implementation challenges for both the symmetrization of the GM and
the parallelized computation of the loss. With the sparse representation and the
distance cut-off, all the proteins of the multi-chain dataset can fit on a single Nvidia
A100 GPU card with 80 Go memory.
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Conclusion

We have presented the whole methodology to learn Effie, the score function we will
optimize to design new proteins. If the method we developed to learn graphical mod-
els, based on the Emmental-PLL, could be directly applied, the neural architecture
and optimization had to be adapted to the specificities of protein data.

Effie is a general score function: it is learned once on all existing protein struc-
tures. It can be specialized to a given application problem during inference by
adding constraints to the graphical model. Inference set new challenges that will be
described in the following chapter, as well as the in silico and experimental validation
of Effie.

We have learned Effie as the negative logarithm of the probability of the se-
quence given the structure, − logP (seq|struct). Optimizing this objective, as done
by most DL-based design methods, does not imply that the target structure is
optimal for the designed sequence, P (struct|seq). Indeed, the sequence can have
another global minimum, as noted by (Norn et al. [2020]). It has been argued that
the objective P (struct|seq) theoretically leads to increased protein stability and/or
conformational specificity [Stern et al., 2023].

There are tight links between both objectives, as Bayes’ theorem allows to ex-
press one wrt the other.

P (struct|seq) = P (seq, struct)

P (seq)
=
P (seq|struct)× P (struct)

P (seq)

Since this objective is maximized on the sequence, P (struct) can be eliminated from
the objective. Therefore, using a tool predicting the probability of the sequence, such
as a large Language Model trained on sequence databases [Elnaggar et al., 2021],
P (struct|seq) could be computed using Effie, similarly to what was done in (Stern
et al. [2023]).
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Chapter 5

Designing Proteins with Effie

Introduction

The main goal of this work is to learn a score function for Computational Protein
Design (CPD). Chapter 4 has described in details how to learn our Energy Function
Familiarly Introduced as Effie (Effie). Yet, it has not discussed how Effie is used for
actual design. Effie has been designed to define a CFN that can be optimized by
a discrete solver but full redesign CPD instances on large proteins are challenging.
Standard methods alleviate tractability issues by simulated annealing, which may
lead to increasingly non-optimal solutions [Simoncini et al., 2015]. Instead, we rely
on the exact solver toulbar2 [Hurley et al., 2016] or a convex approximation of
the problem that still offers some theoretical guarantees [Goemans and Williamson,
1995].

With the optimization, we are able to predict solutions of our learned problem,
i.e., the designed sequences. Since we placed ourselves within the Decision-Focused
Learning framework, we will assess and tune the neural model by comparing our
predicted sequences to the observed native sequences. The now-standard metric to
evaluate DL-methods for CPD is the Native Sequence Recovery rate (NSR), even if
it is imperfect, as we will discuss. As a first reference, 2 proteins with more than 30%
sequence similarities are often considered to be from the same family and therefore
share the same fold. Optimization details and hyper-parameter tuning is the object
of Section 5.1.

Our selected models are then assessed on various design-related tasks and com-
pared to existing approaches in Section 5.2. Part of the comparisons are versus
existing pairwise-decomposable scoring functions for design, as our goal was to learn
a better one. In particular, we compare with 2 energy functions from the stan-
dard RosettaDesign toolkit: ref2015 [Alford et al., 2017] and beta-nov16 [Pavlovicz
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et al., 2020]. Both are all-atom and they predict P (seq, struct). In those respects,
they differ from Effie that is coarse-grained and predicts P (seq|struct). The rest
of our comparisons are versus pure DL-based methods, that are becoming more
and more popular. They either directly map the sequence to the structure or they
auto-regressively decode the sequence from the predicted conditional probability
distributions. In both case, they bypass the need for optimization. Yet, as we will
discuss, it is not necessarily an advantage for practical designs.

One recent method stands out from all the DL-based methods for CPD we
described in Section 2. This is different with TERMinator (and its simplified version
COORDinator) [Li et al., 2023], a pairwise-decomposable score function learned from
data. These scoring functions also use a pseudo log-likelihood as a loss, even though
we will show the Emmental-NPLL offers some boost in performances. One of the
main difference with our approach reside in the optimization at inference, as they
use simulated annealing. Since this approach is very similar to our work, it will
have a dedicated place in our comparisons and discussion. Finally, Section 5.2 is
also the place to discuss the utility of metrics evaluating DL-methods for design,
and particularly NSR.

In fine, the only definite way to assess what has been learned by a DL-based
method is to experimentally evaluate the designed sequences. We used Effie on 3
applied projects, some of them leading to experimental validations, as described in
Section 5.3. We selected these projects for their biological interests, but they are
also the occasion to illustrate additional constraints or properties that may occur in
practice. In those cases, we will demonstrate the advantages of optimization-based
design over sampled methods.
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5.1 Optimizing the Learned Graphical Model

Once the neural network has been trained, it can be used to design new protein
sequences from the coordinates of a backbone. It predicts the associated Graphical
Model, which is then optimized to produce the designed sequence. This sequence
is then compared to the observed solution (the native sequence) through the Na-
tive Sequence Recovery rate (NSR), i.e., the percentage of similarity between both
sequences.

In this section, we first describe how the inference is done, either with the exact
solver toulbar2 or with the approximate and tractable method LR-BCD. Then,
we use the NSR as the main metric to select the hyper-parameters of our neural
architecture.

5.1.1 Inference

Exact Inference with Toulbar2

Starting from an input backbone, the neural net predicts cost matrices Ei,j for
each pair of residues at position (i, j). These costs are used in place of traditional
physics-based or knowledge-based energy functions to define the optimization prob-
lem describing the Computational Protein Design problem:

argmin
i,j

n∑
i,j=1

Ei,j = argmax log(P (seq|struct))

This optimization problem is solved using the discrete prover toulbar2 [Hurley et al.,
2016] through its python interface PyToulbar2 version 0.0.0.2.

The problem is modelled as a Cost Function Network (CFN). Each residue at
position i ∈ {1, . . . , n} in the backbone defines a variable with domain containing
the 20 canonical amino acids. Each 20 × 20 matrix predicted by the neural net is
used to define the binary cost function on the pair (i, j). Only the upper part of
the matrix (corresponding to i < j) is needed to define these costs, hence the choice
of imposing symmetric predictions. If the neural net makes predictions for single
residues, they are used as unary cost functions.

To test the method, we perform a full redesign. However, some applications
require to only design part of the protein (e.g., the interface between several chains).
In this case, the residues that are not redesigned are given as assigned to the solver.

This formulation of CPD being NP-hard [Pierce and Winfree, 2002], tractability
issues arise from the optimization. We tried and limit them by predicting sparser
matrix thanks to the L1 regularization. We also limit the resolution of toulbar2 to
2 digits after decimal point. Yet, exactly optimizing large proteins (more than one
or two hundred residues) is intractable. Therefore, we decided to use approximate
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solvers. The first one was toulbar2 with a limited number of allowed backtrack for
some control on the trade-off time/solution quality. However, there are no guarantee
on the quality of the solution found when the search is stopped at the end of the
allowed backtracks.

Optimizing Large Proteins with LR-BCD

For a more tractable optimization with theoretical guarantees, we rely on the LR-
BCD method that solves a convex relaxation of the MAP-MRF problem and uses
stochastic rounding to provide solution [Durante et al., 2022].

LR-BCD has 3 parameters to be chosen: the number of iterations, the rank
and the number of roundings. Iterations and rank control trade-off between speed
and closeness to optimality of the convex relaxation. Computations are done with
continuous variables, which are then brought back to discrete domains by several
rounding procedures, whose number is controlled by the third parameter. The com-
bination of convex relaxation with stochastic rounding offers guarentees in terms of
distance to optimality [Goemans and Williamson, 1995]. Each rounding procedure
is followed by a local optimization to possibly further improve the quality of the
output solution.

To compute the NSR of the sequences designed with LR-BCD, we tested 3
methods. We averaged the NSR over all the designed sequences or we selected the
sequence with the lowest predicted energy. We also tried an intermediate method
where we averaged the NSR of each sequence weighted by the softmax of the energy.
As detailed in Annex B, selecting the best sequence gives the best NSR. Since the
rounding is stochastic, the designed sequence may change between runs.

We experimentally chose each parameter of LR-BCD by fixing the others and
make it vary. All the experimental details are in Annex B. We found the rank and
the number of iterations do not have a large impact (see Figure B.1b and B.1a
respectively). We set the number of iterations to 5 and we use the option −4 for the
rank. The number of rounding impacts the variability of solutions between runs (see
Figure B.1c). Using 50 roundings instead of 20 reduces the energy variability, but
further increasing to 100 roundings does not seem to improve further. Therefore,
we predicted 50 sequences and chose the best one in our experiments.

To ensure the quality of LR-BCD solutions, we compared them with the solu-
tions, guaranteed to be optimal, obtained by the exact solver toulbar2. We fully
redesigned with both methods all the proteins from the monomeric dataset, which
are shorter than 150 residues. Solutions found by LR-BCD are in average at 0.56% of
the optimal Effie score, so LR-BCD provide protein sequences close to the optimum.
We also compared the sequences designed by both solver with native sequences in
terms of similarity. Results are plotted in Figure 5.1. Sequences by LR-BCD have
a similar NSR to those obtained by exact optimization.
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Figure 5.1: Similarity to the native sequence (NSR) of sequences designed with
toulbar2 or LR-BCD.

Finally, we compared LR-BCD with another approximate solver: toulbar2 with
no backtrack allowed. Both gives similar results but LR-BCD is faster (see Fig-
ure B.2). Therefore, we use LR-BCD as default solver for in silico validation. It can
optimize proteins up to 1, 500 residues. Our applied projects focus on small proteins
or partial redesign, so we could use toulbar2.

5.1.2 Hyperparameter Tuning

The main metric to assess DL-based design pipelines is the Native Sequence Recovery
rate (NSR), i.e., the sequence similarity between the native and designed sequences.
Even though it has many drawbacks, as discussed in Section 2.3.3, we used it as the
main criteria to select our neural model and tune its hyper-parameters.

Hyperparameter List

The hyperparameters of our architecture are:

• Optimization:

– Learning rate: initial value (5 ∗ 10−4), scheduler (divide the LR by 10
each time the validation loss decreases, with patience 0)

– Algorithm: Adam [Kingma and Ba, 2015] with a weight decay of 10−3.
Other values take default parameters

• Architecture

– gMLP: sequence length (48), input layer width or embedding dimension
(128), output dimension (128), width (multiplying factor of the input
dimension, here 4), number of layers or depth (12)
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– ResMLP: number of blocks (3) and block size (2), hence resulting in 6
layers, width (128)

• Features

– Number of kernels and of positional embeddings (both 16)

– Distance cut-off between pairs of residues (15) and number of neighbours
(128)

• Loss

– E-NPLL with p = 0.3. Only the binary terms are used.

– Regularization on the learned cost function: L1, with a regularization
term of 10−4

The indicated values are those on the single-chain dataset. None of the variant losses
we tried (balanced PLL, soft PLL, cross-entropy on unary terms, denoiser) led to
improved performances.

The values of each hyperparameters have been chosen by fixing all parameters
saved one and training a model whose performances was assessed by its NSR on the
validation set. In the case where two models had similar NSR, we applied parsimony
and chose the simplest model (e.g., with fewer parameters or more regularization).
Details of the choice of each hyperparameter are described in Annex C.

An Iterative Variant

A variant architecture was proposed by our intern. The embedding dimension is
twice as large (256). A first ResMLP with 3 blocks and a first gMLP with 3 layers
(instead of 12) and the same the width (2 ∗ 256) is applied. Then a second ResMLP
and a second gMLP, with same shape, are iteratively applied. Finally, the resulting
environment embedding is processed by a third resMLP (3 blocks of size 2 and width
256) to produce cost functions. All the features and optimization parameters are
kept the same as for the non-iterative version. It contains 3.4M parameters, vs 2.6M
for the previous model.

Extension to Multi-chain Proteins

Multi-chain proteins are larger (in our dataset, up to 10, 000 residues instead of 500)
and contains both intra and inter-chain interactions. To enable Effie to capture
both interactions, we hypothesized that an increase in the neural net capacity was
required. We verified it in Annex C.3, and we made some change in the architecture:
the gMLP was deepened to 15 layers, and the resMLP was both deepened to 10
blocks and enlarged to a hidden dimension of 256.
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We also started from a lower initial learning rate (5 ∗ 10−5) and we found that
the adaptive learning rate was now beneficial (see Table C.9). More precisely, we
changed the learning rate for each protein such that it was proportional to the square
root of the number of variables (akin to the batch size). Training and testing on
multi-chain proteins led to better residue-level and protein-level predictions than
on the single-chain set (Table 5.1). For memory issues, only multi-chain proteins
shorter than 1, 500 amino acids were considered.

Dataset Single-chain Multi-chain

Accuracy 46% 57%

NSR (median) 42.8% 47.7%

Table 5.1: Comparison of performances obtained on the single-chain and multi-
chain dataset. Accuracy is a per-residue metric assessed on predicting one residue
given the rest of the protein, while NSR is a per-protein metric.

For practical designs, we trained additional models. It is suggested in Protein-
MPNN [Dauparas et al., 2022] that adding a small Gaussian noise to the coordinates
of training proteins helps improving forward folding. We trained additional models,
with noise with standard deviation of 0.2, 0.14 or 0.02 Å. Since our applications
(in Section 5.3) deal with soluble proteins only, we trained these noised models by
excluding all transmembrane proteins. The list of these proteins is included in the
dataset.

Effie Versions

Throughout the thesis, different versions of Effie were developed. Some application
were started before the latest versions were developed and therefore they use former
version. All the existing versions are summarized in Table 5.2.

Quat. Distances

Dataset Noise V1 V2.1 V2.2 V3

Single 0 x x x x

Multi 0 D D x
Multi 0.02 D x
Multi 0.14 D
Multi 0.2 D x

Table 5.2: Versions of Effie mentioned in this work. D means the version has been
used for practical design.
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Effie versions differ from architecture and training settings. V1 is the version
using quaternions, while all others use distances. V2 is our current default version;
V2.1 and V2.2 corresponds to the same architecture, but the V2.2 is optimized
in memory (as described in described in Section 4.3.3). By opposition to V2.2,
V2.1 cannot been trained on proteins longer than 3, 000 residues due to memory
limitation, which represents only 3.6% on proteins but 23% of residues pairs within
15Å. Still, most of the time, V2.1 and V2.2 lead to similar performances and therefore
the sub-version is not specified. V3 is the iterative variant. As it is very recent, it has
not been applied on practical designs yet. They can be trained on the single-chain
or the multi-chain datasets, with optional noise of the backbones. For instance,
Effie V2.2-multi-0.2 is default version for design. It is the architecture optimized
in memory, trained on the multi-chain dataset by adding a Gaussian noise with
standard deviation of 0.2Å to input backbones.

Ablation Study

We made sure that all the major components of our architecture are useful through
an ablation study displayed in Table 5.3. Results were obtained with Effie V2.1 on
the single-chain test set.

Model NSR

Effie 42.8%

No ensemble learning (p = 0.3) 42.3%
Regular PLL (p = 0) 41.2%
No environment information (i.e., no gMLP) 33.5%
No sequence information (feature i− j) 41.2%
No distance cut-off at 15Åbetween residue pairs 40.3%
No L1 regularization on learned costs 41.9%

Table 5.3: Ablation study performed on the single-chain test set.

Our final model is an ensemble of three models, trained with different values of
the E-NPLL (respectively p = 0.1, p = 0.3, p = 0.4), which allowed a gain of 0.5%
NSR when compared to a single model. Interestingly, even though we developed
the E-NPLL to deal with logical information, it also proved beneficial in the case of
protein data as it lead to a 1.1% increase in NSR. We hypothesize this improvement
comes from the existence of high energies in CPD problems, that cannot be estimated
with the regular NPLL, as explained in Subsection 3.3.1.

Removing the dedicated neural net to extract the neighbour information of each
residue is the ablation that lead to the largest drop in performances, which is coher-
ent with physics-based intuition. The distance cut-off on pairs of residue is beneficial
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in terms of NSR, but also in terms of memory usage and optimization time. It can be
seen as an inductive bias, as far apart residues do not interact. Similarly, the L1 reg-
ularization, by encouraging the predicted costs to be sparse, speeds up optimization
while improving NSR.
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5.2 Assessing Effie in silico

As we are in an unsupervised setting, there is no ground-truth energy. Thus, the
quality of the learned cost functions cannot be assessed directly. Instead, we rely on
auxiliary tasks.

The first tests were done at the residue level to assess whether basics physics-
chemical properties are recovered. We then performed full design on test structures
and we compared the predicted and native sequences. The quality of the designed
sequences was also assessed by forward folding, i.e., their structure was predicted in
silico and compared to the target backbone. Finally, we assessed the limits of Effie
on a structure quality prediction task.

5.2.1 Recovering Natural Amino Acid Properties

At residue-level, we made two tests : predicting one residue given its environment
and predicting the effect of a single mutation. The results suggest that Effie has
learned some insights about what a functional protein is.

Predicting One Masked Residue

The first task we assessed Effie (V2-single) on is the prediction of one masked residue
while the rest of the protein is known. This task is included into its training ob-
jective, thus it performs well at it: 46.2% of the residues of the test proteins of the
single-chain dataset are correctly predicted (missing residues are excluded for the
task). Moreover, we estimated core and surface residues based on the number of
neighbouring residues (respectively more than 25 and less than 15) and we found
that amino acids at the core of the protein are better predicted (62.6% are correct)
than at the surface (39.2%). This was expected as core residues are known to be
more constrained than surface ones.

As expected, per-residue accuracy is better on the multi-chain dataset (see Ta-
ble 5.4). The iterative variant also considerably improves this metric. These results
cannot be directly compared with CNN-based approaches predicting one residue
from its environment (for instance 57% accuracy in [Anand et al., 2022]). Indeed,
they use all-atom information (so the exact conformation of environmental side
chains are known) while we only have coarse-grain representation.

When Effie makes mistakes, it tends to confuse residues with similar physic-
chemical properties. This can be seen on the confusion matrix (Figure 5.2a). For
instance, aspartic acid (D) is often mistaken for glutamic acid (E), which are both
negatively charged. Similarly, leucine (L) and isoleucine (I) are often switched. On
the contrary, amino acids with very specific properties, such as glycine (G), proline
(P) and cystein (C) are almost always correct. When compared with the BLOSUM62
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(a) Confusion matrix

(b) Distribution of predicted and ground truth amino acid identity.

Figure 5.2: Effie’s predictions on the task of predicting one amino acid from its
environment.

substitution matrix [Henikoff and Henikoff, 1992], Effie’s predictions are similar to
the native residue (they have a positive BLOSUM62 score) in 74.6% of cases.

Finally, Effie’s predictions on a single residue mostly recover the natural amino
acid propensity (see Figure 5.2b). Effie seems to slightly over-favour common
residues such as leucine (L), alanine (A), glycine (G) and glutamic acid (E) while
rare residues like tryptophan (W), cystein (C) or histidine (H) are ralerly predicted.
This is likely to be a direct consequence of the dataset being unbalanced. We
compared both predicted and native distributions in terms of Kullback-Leibler di-
vergence (lower is better): with default training, the KL divergence is 3.05 on the
single-chain dataset. When using the balanced E-NPLL (described page 144), it
drops to 0.91, but full-design metrics deteriorate.
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Model Test set Accuracy

Effie (V2) single-chain 46.2%
Effie (V3) single-chain 51.2%

Effie (V2) multi-chain 54.1%
Effie (V3) multi-chain 59.5%

Table 5.4: Per-residue accuracy of various version on Effie, computed on either the
single-chain or the multi-chain test set.

Predicting the Effect of a Single Mutation

The ability to predict one residue given its environment is tightly linked to the
ability to predict the effect of single-point mutation, which in turn can enable de-
sign. For instance, the activity and thermostability of an enzyme degrading PET
were enhanced by identifying the native residues that were the least suited to their
environment and mutate them [Lu et al., 2022].

Score function Accuracy AUROC

Effie (V2-multi) 78.3% 0.66
Effie (V3-multi) 77.2% 0.65
beta-nov16 38.0% 0.44

Table 5.5: Comparison between Effie and beta-nov16 on the atom3d benchmark.

Even though it was not explicitly trained for it, we assessed Effie’s ability to
do 0-shot prediction of the effect of a single mutation on two benchmarks. The
first one is the Mutation Stability Prediction task of Atom3D [Townshend et al.,
2020]. The dataset is based on the SKEMPI database [Jankauskaitė et al., 2019] of
binding free energy changes upon mutations within interfaces of complexes. Single-
point mutations were collected and mutated structure were obtained via molecular
modelling. As we did not retrained Effie for the task, we only used the test set.
The task is a binary classification: predicting whether a mutation at the interface
will stabilize the complex. We scored each native/mutant couple with either Effie
(V2-multi), Effie (V3-multi) or beta-nov16 [Pavlovicz et al., 2020]. If the mutant
has a lower energy score, the mutation is classified as stabilizing. We also computed
the AUROC, the recommended metric for this benchmark. On both metrics, both
Effie versions largely outperforms betanov16 (see Table 5.5). Interestingly, the V2
performs slightly better than the V3, even though the V3 is far superior in previous
task (Table 5.4).

The second benchmark [Rocklin et al., 2017] is composed of 10 de novo mini-
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proteins with various folds. Each have 775 variants whose stability has been exper-
imentally assessed. The goal is to predict the stability of each variant. The metric
used is the Pearson correlation between the stability score and the predicted energy.
We compared Effie with 3 design methods presented in Section 2.3.3, all trained on
the single-chain dataset using : Structured Transformer (Str-Trf) [Ingraham et al.,
2019], the Geometric Vector Perceptron (GVP) [Jing et al., 2021] and COORDinator
[Li et al., 2023]. First, all DL-based methods largely outperformed beta-nov16 that
reached an average correlation of 0.14. As displayed in Table 5.6, Effie V2, GVP and
TERMinator lead to similar results. Once again, Effie (V3) is slightly outperformed
by the default version.

Fold Str-Trf GVP COORDinator Effie (V2) Effie (V3)

EEHEE 37 0.47 0.60 0.53 0.59 0.55
EEHEE 1498 0.45 0.38 0.37 0.39 0.39
EEHEE 1702 0.12 0.26 0.23 0.25 0.27
EEHEE 1716 0.47 0.54 0.56 0.54 0.50
HEEH 779 0.57 0.58 0.48 0.57 0.55
HEEH 223 0.36 0.47 0.51 0.52 0.40
HEEH 726 0.21 0.22 0.23 0.18 0.15
HEEH 872 0.23 0.33 0.36 0.33 0.32
HHH 134 0.36 0.45 0.46 0.42 0.35
HHH 138 0.41 0.48 0.49 0.42 0.41

Average 0.37 0.42 0.44 0.42 0.39

Table 5.6: Comparison of 4 design methods on stability prediction of de novo mini
proteins. The fold is indicated with E for β-sheets and H for α-helices. All methods
were trained on the single-chain dataset.

5.2.2 Full Redesign

After training and assessing Effie on residue-level tasks, we tested it on the design
of full proteins. From an input backbone, the neural net predicts the set of Effie
score functions, which are optimized to produce a protein sequence.

We compare first with other methods based on a pairwise-decomposable score
function, which are similar to ours. Then we compared to non-decomposable meth-
ods, which encompasses most of DL-based design approaches. The first group of
methods (including ours) is limited to 2-body interactions while the second group
can represent many-body interactions. In both cases, comparisons are made based
on the NSR metric. Finally, we highlight the possibility of adding a posteriori
knowledge to decomposable approaches without retraining.
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Comparison with Pairwise-decomposable Methods

Since our main goal is to learn a pairwise energy scoring function that is better than
existing one, we first compared with the Rosetta design pipeline [Park et al., 2016]
(results are extracted from [Ingraham et al., 2019]). Since the comparison was done
on the monomeric proteins from the single test, which are shorter than 150 amino
acids, we optimized Effie (V2-single) with both toulbar2 and LR-BCD. As displayed
in Table 5.7, both optimization schemes lead to very similar results in terms on
NSR, and largely outperform Rosetta.

Metric LR-BCD toulbar2 Rosetta

NSR (median) 29.4% 29.8% 17.8%

Optim. Convex approx. Exact SA

Table 5.7: Comparison of the performance of the approximate solver LR-BCD and
the exact solver toulbar2 when optimizing Effie (single) on small proteins. Additional
comparison is made with the standard Rosetta design pipeline, based on simulated
annealing (SA).

To the best of our knowledge, there are 2 other DL-learned pairwise score func-
tions for design, both proposed by [Li et al., 2023]: COORDinator, based solely on
the structure coordinates (like us), and TERMInator, that additionally used costly-
to-computer Tertiary Repeating Motifs (TERMs). They differ from our approach
as they design sequences by simulated annealing (like Rosetta) and not by exact or
convex optimization. We compared them with Effie (V2-single) and Effie (V3-single)
in Table 5.8, all 4 score functions being trained and tested on the same dataset. Effie
(V2) outperformed COORDinator with a margin of 2.5 points. It is only slightly
above TERMinator, but Effie does not require TERMs inputs, that take 4 minutes
per residue to compute (SI of [Li et al., 2023]). Effie V3 considerably outperforms
all other scores.

Metric TERMinator COORDinator Effie (V2) Effie (V3)

NSR 42.4% 40.3% 42.8% 47.9%

Table 5.8: Comparison between learned score functions for design on the single
test set. Median NSR is given.

Another usual metric to assess a fully-redesigned sequence is perplexity, defined
as the probability of a residue identity given previous residues:

− exp(−1

t

t∑
i

logP (xi|x<i))
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with n the length of the sequence. We cannot compute this perplexity as it would
require to estimate the partition function of the probability distribution resulting
from the CFN, a #P-hard task. Instead, we defined a pseudo-perplexity, based on
the negative pseudo log-likelihood instead of the negative likelihood :

− exp(−1

t

t∑
i

logP (xi|x−i))

The pseudo-perplexity on the single-chain test set id 5.11 for Effie V2 and 4.46 for
the V3. It means the model is as confused as if it had to make a choice between 5
residue identities (instead of 20 if randomly chosen).

Comparison with Non-decomposable Methods

Non-decomposable approaches use only Deep Learning, and no discrete optimization
compound. They present the advantage of allowing the neural net to consider high-
order interactions. Most of them auto-regressively decode the sequence by predicting
the probability distribution over one amino acid given the structure and the already-
decoded sequence, and sample the next residue from this distribution. This includes
Structured Transformer (Str. Trf) [Ingraham et al., 2019], the Geometric Vector
Perceptron (GVP) [Jing et al., 2021] and ProteinMPNN [Dauparas et al., 2022].
Other methods, like PiFold [Gao et al., 2023] directly maps the input backbone to
an output sequence.

Once again, all these methods have been trained and tested on the single-chain
dataset and therefore they can be directly compared, as done in Table 5.9. Note
that the score reported for ProteinMPNN differs from the one presented in the orig-
inal paper. Indeed, ProteinMPNN authors directly assigned residues with missing
coordinates to the native ones. Instead, we report the NSR when missing residues
are removed [Gao et al., 2023], as done by other methods.

Approach Str. Trf GVP ProteinMPNN PiFold

Type AR AR AR Direct map

NSR 36.4% 40.2% 45.9% 51.6%

Table 5.9: NSR on the single-chain dataset achieved by pure DL- non-
decomposable models. They either decode the sequence auto-regressively (AR) or
directly map the input backbone to the sequence.

If the most recently proposed method PiFold improve over Effie in terms of NSR,
practical design is not about recovering the native sequence. Instead, additional
properties on the designed sequence often need to be enforced, which cannot be
done with directly-mapping methods like PiFold. With auto-regressive models, some
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properties can be enforced, but it is not straight-forward. For instance, designing
diverse sequences requires to increase the sampling temperature, which mechanically
degrades the quality of the sequences. With an exact solver like toulbar2, the trade-
off between quality and diversity can be optimized and controlled as it is possible
to find the best possible sequence that differs from the optimal sequence by a given
number of mutations [Ruffini et al., 2019].

We will illustrate some other specific tasks that can only be done by a posteriori
conditioning and biasing. Additional knowledge can be considered a posteriori to
bias Effie’s probability distribution. Conditioning is done trough additional con-
straints. Examples are given in our applied projects in Section 5.3.

Additional Insights

The NSR, by comparing with the native sequence alone, does not take into account
the fact that several sequences can adopt the same fold. Therefore, a sequence that
indeed folds onto the target structure may have a poor NSR score. To take this
degeneracy into account, we additionally computed the native sequence similarity
rate (NSSR), defined based on the BLOSUM62 [Henikoff and Henikoff, 1992] substi-
tution matrix. If a predicted residue has a positive similarity score with the native
one, it will be counted as correct for the NSSR. With Effie V2, we reached a NSSR
of 72% on the single-chain dataset 76.2% on the multi-chain, suggesting again that
the substitutions made by Effie are chemically and physically plausible.

Model NSSR (single) NSSR (multi)

Effie V2 72% 76.2%
Effie V3 76.4% 79.3%

Table 5.10: Native sequence similarity rate (NSSR), on 2 architectures and on 2
test sets (single-chain and multi-chain).

In order to be more confident in using Effie for practical designs, we further
assessed the sequences that were poorly designed, defined as proteins with a NSR<
30. In the multi-chain test set, there were 4 of them: 3 are coiled-coils (PDB ids
6FPR, 1GD2 and 4CFG), i.e. bundles of α-helices, which is similar to what was
observed for TERMInator [Li et al., 2023]. The last one (5TS4) is a de novo protein
with an experimentally resolved idealized structure. Outside of these very particular
cases, the NSR is always above 30, which is considered the threshold above which
two proteins are likely from the same family and share the same fold.

Adding Knowledge A Posteriori

With our method, any knowledge can be added a posteriori to bias the predic-
tion without retraining as long as it can be expressed in the CFN framework. We
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illustrate this capability on extending Effie to transmembrane proteins without re-
training.

We use the multi-chain dataset that contains a total of 3498 transmembrane
proteins. Membrane residues are identified using TMbed [Bernhofer and Rost, 2022],
a DL method based on a large language model to predict the membrane residues
of an input sequence. It has a very low false-positive rate (fewer than 1% of non
transmembrane proteins have a residue predicted as membrane). We used TMbed
in default configuration to predict the membrane residues of all the dataset. Those
residues are uncommon (0.7% of all residues in the multi-chain dataset).

Figure 5.3: Distribution of amino acids within membrane (orange) and out of
membrane (blue), computed on the proteins of the multi-chain validation set. Tm
stands for transmembrane.

A cell membrane is composed of lipids, whose polar heads are at the surface
of the membrane (in contact with the solvent) and the long apolar tails are within
the membrane. Therefore, the part of a protein within the hearl of the membrane
is in an apolar environment instead of a polar one. Therefore, the distribution of
amino acids within a membrane changes from the distribution within soluble parts,
as shown in Figure 5.3. For instance, charged residues (both negatively — D and E
— or positively — K, R H —) are much less common in a membrane.

Effie does not perform as well on predicting membrane residues: given the envi-
ronment, 54.5% of soluble residues are correctly predicted by the V2-multi version,
vs only 46.0% of transmembrane residues. We hypothesized that the distribution
being different is a useful inductive biais to predict them better. We a posteriori
added a unary term Ftm to membrane residues to bias the distribution. This term is
negative when an amino acid type is more common within membranes to encourage
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its prediction.

Ftm[i] = log(
Dsoluble[i]

Dtm[i]
)

with i ∈ D a type of amino acid, Dtm (resp. Dsoluble) being the distribution of
transmembrane (resp. soluble) residues and so Dtm[i] is the frequency of type i in
transmembrane residues.

We fully redesigned the transmembrane proteins of the test set (shorter than
1, 500 residues) either with no additional information or with the unary transmem-
brane term. We observed a substantial gain in median NSR (see table 5.11). More-
over, for each protein, the NSR when adding unary terms is at least as good as the
NSR with the default model. Therefore, we successfully biased Effie a posteriori to
adapt it to score transmembrane residues.

Model NSR (median)

Effie 36.0%
Effie + unary tm 37.9%

Table 5.11: NSR on the full redesign on transmembrane test proteins, with Effie
(multi) or with the same model and additional transmembrane (tm) unary terms.

An auto-regressive DL-model like ProteinMPNN [Dauparas et al., 2022] can
be biased as well. Indeed, since it predicts the distribution over a target residue
(knowing the par of the sequence that have already been decoded), this distribution
can be biased to favour transmembrane amino acids as we did. However, the decision
made for the target residue is independent of future choices, which is likely to result
in non-optimal sequences. Moreover, it is only possible to control the choice over
single residues, not pairs or more.

Biasing the model by adding knowledge on transmembrane residues a posteri-
ori indicated that this knowledge is a good inductive bias. Therefore, we tried to
train a model with one additional feature indicating whether a residue is within the
membrane. Surprisingly, the resulting model learned to ignore this feature: the pre-
diction is the same when membrane residues are identified or not. We hypothesized
this behaviour could be due to imbalance between in and out-membrane residues
(0.7% of residues are within a membrane in the multi-chain dataset). Penalizing
more errors on membrane residues (from 10 to 100 times) did not alleviate this is-
sues. We then hypothesized that this feature being per-residue (and not on residue
pairs), introducing unary costs to take it into account may be beneficial. Yet, the
resulting model did not result in better predicting membrane residues or better de-
signing trans-membrane proteins. Further investigating this behaviour may lead to
improving the overall model.
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5.2.3 Forward Folding

The CPD task aims to recover an input backbone structure (with optional additional
properties in practice). Therefore, a straight-forward way to assess the designed
proteins is to verify they fold back onto the target structure. This evaluation is
called forward folding. If experimental characterization is long and costly, the recent
advances in protein structure prediction enable a fast and quite reliable evaluation.
For instance, AlphaFold2 reaches an experimental accuracy on monomeric proteins,
when used with MSA and template [Jumper et al., 2021].

Most of the design methods proposed after CASP14 use AlphaFold2 for forward
folding, except when they have already used it for generating data or within the
design pipeline [Hsu et al., 2022; Goverde et al., 2023]. In these cases, an independent
baseline such as TrRosetta [Yang et al., 2020] or ESMFold [Lin et al., 2023] is used.
So far, there is so far no consensus on the metric to use. If the alignment between
the predicted and the target structure is interesting, for instance measured with the
Root Mean Square Deviation (RMSD), assessments are often based on AlphaFold2’s
confidence metrics. ProteinMPNN [Dauparas et al., 2022] used the mean pLDDT on
several designs, TERMinator prefered the pTM score [Li et al., 2023] and DLbinder
design [Bennett et al., 2023] chose the pAE.

Moreover, AlphaFold2 is not always used in the same conditions: ProteinMPNN
uses it in single-sequence mode while TERMinator gives an MSA as additional input.
All these differences in usage make comparison between methods difficult, all-the-
more-so results are often given as plots rather than tables. We chose to use the same
setting as ProteinMPNN: single-sequence mode with 3 recycles. Indeed, we want to
test our design method independently of the number of homologous proteins of test
proteins. We run design on LocalColabFold [Mirdita et al., 2022] version 1.5.2.

Figure 5.4: The pLDDT of the designed vs the native sequences. Each point
represent a backbone. Done with Effie multi, on the multi-chain test set.

171



CHAPTER 5. DESIGNING PROTEINS WITH EFFIE

We first compared the confidence of AlphaFold2 on folding designed sequences
VS their native counterpart. The performance of AlphaFold2 from a sequence only
is usually poorer, because it lacks all the information derived from evolutionary
data. Here we observed in Figure 5.4 that pLDDTs are almost always better for the
designed sequences, sometimes with an important gap. It means designed sequences
more strongly encode structure than native sequences, which is coherent with obser-
vation on ProteinMPNN [Dauparas et al., 2022]. We agree with their explanation
that evolution does not optimize solely for stability (other properties linked to sur-
vival in the environment are optimized as well), leading to weaker sequence-structure
mapping.

We then compared the different versions of Effie on our multi-chain test set
(93 soluble proteins). Some versions were trained with coordinates blurred with
a Gaussian noise because it was previously observed [Dauparas et al., 2022] that
it often significantly improves AlphaFold2’s confidence metrics. As displayed in
Table 5.12, we came to a similar observation, as adding a small noise (with standard
deviation 0.02 Å) slightly improves both pLDDT and pTM while slightly decreasing
NSR. With bigger noise (standard deviation 0.2 Å), both tendencies are amplified.
We reused the same level of noise as in the default version of ProteinMPNN.

Model NSR pLDDT (↑) pTM (↑)

Native 100% 45.0 0.30

Effie (V2-multi) 44% 52.2 0.36
Effie (V2-multi-0.02) 44% 51.4 0.34
Effie (V2-multi-0.2) 39% 57.9 0.40

Effie (V3-multi) 53% 51.5 0.36
Effie (V3-multi-0.02) 50% 52.4 0.35
Effie (V3-multi-0.2) 44% 57.4 0.40

Table 5.12: NSR and forward folding metrics on different version of Effie, all
trained on the multi-chain dataset. For comparison, native sequences have been
folded as well. The decimal number in the version name indicates the amount of
Gaussian noise in Å added to the coordinates during training (if the is none, no
noise was used during training).

ProteinMPNN’s authors offered a basic explanation for this preference: noising
coordinates blurs out local details of the backbone geometry, hence the decrease of
NSR, but it also helps the model focusing on overall topology, leading to sequences
favoured by AlphaFold2. TERMinator’s authors went deeper, pointing out some
over-fitting by DL models [Li et al., 2023]. Two sequences only few mutations apart
will often adopt the same structure, a few structural adjustments aside. Training
on highly-specified crystal coordinates may result in over-fitting on specific residue
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arrangements. We would like to add that this argument is supported by DL methods
going way beyond 30% NSR, the biological threshold upon which 2 sequences can
share the same fold. TERMinator’s authors argue that noising coordinates reduces
this bias, thus leading to better forward folding performances.

This observation is a further indicator that NSR is a limited metric. When
it is high, additionnal metrics would be required to assess the utility of a learned
score function. It also seems coherent with the fact that the designs by Effie (V3)
are not considered better (even slightly poorer) by AlphaFold2 than the designs
by other version of Effie, even though their NSR is much better. Effie (V3) may
spot micro-details in the backbone, perhaps linked to crystallography, that are not
significant in practice. Another explanation, that has not been discussed in previous
work to our knowledge, comes from AlphaFold2 itself. The sequences produced by
Effie (V3) are different from natural sequences as they are optimized. Thus, they
might fall out of the distribution skill of AlphaFold2, which predicts pLDDT which
does not correspond to reality. The hypothesis can only be validated by costly
experimentation.

For practical designs, we favour forward folding over NSR and therefore we use
noised Effie (multi) models. We wondered whether adding at inference the same level
of noise as used during training would further improves the metrics, but it actually
deteriorated all of them (see Table C.15 in Annex C). Further work could focus on
perturbing the backbones in a more realistic fashion than Gaussian noise that is
likely to break properties of a protein structure. It could be done with backrub or
molecular modelling, but with a much higher computation cost.

5.2.4 Model Quality Assessment

Model quality assessment requires to assess the probability of a structure given a
sequence P (struct|seq). This task is common to assess physics-based energy scores,
which predict the probability of both the sequence and the structure P (seq, struct).
However, Effie has not been trained on this objective but rather on predicting the
probability of the sequence given the backbone P (seq|struct). Yet, an unrealistic
structure is likely to be ill-suited to the native sequence, explaining Effie’s decent
performance.

3DRobot Decoys

Since one of the inspirations for this work was the KORP potential, we compared
the score function we learned with their knowledge-based potential. KORP did
not target protein design, but it focused on model quality assessment (and loop
modelling, but it is out of our scope). They identified or evaluated decoys, i.e.,
artificial structures of various quality. These are standard tasks to assess physics-
based energy functions as native structure or high-quality decoys should have a lower
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energy. Even though Effie has not been trained for this task, we assessed whether
its score is able to discriminate plausible structures.

One of their benchmark is 3DRobot [Deng et al., 2016], which contains 300
decoys for 200 proteins. The goal is to identify the target protein among the decoys.
The target proteins are non-redundant (fewer then 20% identity) and span various
domain classes (48α, 40β and 112α/β domains). Decoys were generated by an
algorithm based on fragment assembly and they are diverse and are continuously
distributed in RMSD space.

For a fair comparison, we removed redundancies between the training set and
3DR decoy set and we trained a new model on it. Since it was one of our first valida-
tion tasks, we worked with our first baseline, Effie V1, based on quaternion features.
We followed the procedure from the KORP paper and we removed all sequences with
more than 50% identity with one of the target protein (which is not very stringent).
We used the software CD-hit-2d [Li and Godzik, 2006] in command line mode to
cluster two sets of sequences with an identity threshold (exact parameters were -c

0.5 -n 3 -d 0 -M 16000 -T 8 -s2 0). It resulted in a dataset containing 17, 202
sequences.

Model NN ZN

KORP 193 3.43
Effie (V1) 200 4.27

Table 5.13: Comparison with KORP on the 3DRobot dataset.

For each target protein and its 300 decoys, we predicted the energy score of the
native sequence over the backbone. The protein with the lowest score is predicted
as the native protein. We used two metrics: NN , the number of times the native
proteins was identified (over 200) and ZN , the standard deviation between the score
of the native protein and the average score of the decoys. As displayed in Table 5.13,
Effie identifies all the native proteins, and the gap between their score and the
average decoy score is larger.

Rosetta Decoy Set

Another standard benchmark is the Rosetta decoy set [Park et al., 2016], composed
of 133 protein structures each with thousand structure decoys each. The task is
to sort these decoys based on their quality, measured by the TM score (a number
between 0 and 1 indicating how well they align with the native structure).

Performances are measured in terms of Spearman’s correlation between the
score/energy of each decoy and its TM-score, and in terms of what is the TM-score
of the best-ranked structure. We compared Effie (single) with the Rosetta energy
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function ref2015 [Alford et al., 2017], DeepAccNet, a DL model for estimating the
accuracy of protein structure models [Hiranuma et al., 2021], and an AlphaFold2’s
composite score developed in [Roney and Ovchinnikov, 2022]. All results are ex-
tracted from [Roney and Ovchinnikov, 2022]. There is only one version of Effie, the
most recent one when this comparison was done.

Méthode Spearman
(median)

Spearman
(mean)

TM best
(median)

TM best
(mean)

Effie (V2-single) 0.813 0.786 0.930 0.907
Rosetta 0.798 0.759 0.922 0.901

AF2-based 0.942 0.923 0.945 0.931
DeepAccNet 0.859 0.831 0.933 0.917

Table 5.14: Comparison on Rosetta Decoy set.

As shown in Table 5.14, Effie slightly outperforms Rosetta, which is remarkable
because they do not have access to the same information: Effie is coarse-grained,
while Rosetta’s function is all-atom. Unsurprisingly, Effie is largely outperformed
by DeepAccNet, which is dedicated to this task, and AlphaFold2.

Note that comparing DL methods that have not been trained on the same set is
always risky, all the more so when the test set is not independent. Here, all the DL-
based methods may have been trained on some of the structure of the Rosetta Decoy
set. A fairer comparison would be the CASP14 set, which was not yet available at
the time any of these models were trained [Roney and Ovchinnikov, 2022].
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5.3 Applied Designs

After training and fine-tuning our model and assessing it in silico, we applied Effie to
practical sequence design problems. Each of them has its own specificities requiring
additional constraints or exact optimization. They illustrate some advantages of a
posteriori conditioning and biasing.

First, following [Colom et al., 2022], we tried to enumerate variants of the SARS-
CoV-2, with the additional idea of bounding the number of mutations, and recovered
some of the existing variants. Second, we worked on a hexameric protein platform
for synthetic biology using a negative multi-state design approach. We give some in
silico and experimental evidence that our method is better suited to negative design.
Third, we redesigned the core of the RNA polymerase using a constrained number
of different amino acid types, showing how simpler chemistry could already have led
to important proteins.

5.3.1 Enumeration of Potential SARS-Cov-2 Variants

To infect us, the spike protein of the SARS-Cov-2 binds to the human ACE2 receptor
to form a complex and then proceed to penetrate human cells. The first structure of
this complex was published in March 2020 [Walls et al., 2020]. The binding region
is often denoted as the Receptor Binding Domain or RBD. Among the mutations
observed in variants of SARS-Cov-2 [Philip et al., 2023], those in the RBD are of
particular concern as they may increase the virus’ ability to bind to human receptors
and escape neutralizing antibodies. A representation of the RBD bound to ACE2
is given in Figure 5.5.

Figure 5.5: Structure of the region binding domain (RBD, in blue) bound to the
human ACE2 receptor (in green). The 27 interface amino acid that can be redesigned
are in red.

Following [Colom et al., 2022], we assume that the binding affinity between the
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RBD and the ACE2 receptor increases with the difference in (free) energy between
the bound and unbound states. We use the Effie score as an approximation of this
energy.

−∆E = (ERBD + EACE2)− ERBD+ACE2

ERBD is the energy of the RBD alone (unbound state) and ERBD+ACE2 is the
energy of the complex when the RB2 is bound to ACE2. To optimize its binding
affinity, the virus would therefore benefit from a decreased stability of the unbound
RBD, represented by −ERBD. However, the RBD must maintain its structure, and
to also avoid related entropic losses, its stability must remain sufficient. One can
therefore assume that the viral evolution will tend to optimize ∆E while avoiding
excessive destabilization of the RBD.

To model this situation, in their work, the authors only allow the 27 interface
amino acids of RBD (called the RBM for Receptor Binding Motif) to mutate. The
ACE2 sequence is known and fixed. The (free) energy is estimated by the full-atom
Rosetta scoring function beta-nov16 [Pavlovicz et al., 2020]. Ideally, one would
like to solve a difficult constrained multi-state design problem capturing the above
objective for maximum affinity with an additional constraint bounding the energy of
the RBD in its unbound form. Because of the extreme computational complexity of
this problem (proved to be NPNP -complete in [Vucinic et al., 2020]), the authors use
a heuristic approach where they first enumerate low-energy bounded form sequences
which are then filtered by removing those that give an excessively high energy to
the unbound RBD.

However, the coarse-grain nature of Effie, which avoids all reasoning on the side-
chain geometries, opens the door to a more elegant and possibly more tractable
approach. We used Effie (V2.2-multi-0.02) to estimate the energies of sequences on
the bound and unbound systems (PDB 6VXX processed as in [Colom et al., 2022]).
Ideally, we could then search for sequences maximizing the binding affinity under
the constraint that the energy of the RBD remains within e energy units of the wild
type RBD energy EWT :

minERBD+ACE2 − ERBD

s.t. ERBD < EWT + e

In this objective, the energy term EACE2 is constant as the structure and sequence
are assumed to be fixed. But this formulation requires to bound ERBD, a full graph-
ical model, which is currently not possible in existing Graphical Models optimization
tools. We therefore consider a Lagrangian relaxation of the problem, which can then
be written as:

minERBD+ACE2 − (1− λ)ERBD

where the criteria to optimize is penalized by an amount proportional to ERBD.
The value of λ, our Lagrangian multiplier, is, however, unknown.
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To determine a reasonable value for λ, we solved the above Lagrangian for various
values of λ with toulbar2 and obtained a minimal energy E∗

λ for each λ. The best
value for λ is one that defines an objective that is apparently optimized by the virus.
We therefore decided to use the value of λ that gives the WT sequence a Lagrangian
score that is closest to its minimum value, that is, the value of λ which minimizes:

(ERBD+ACE2
WT − (1− λ)ERBD

WT )−min
s

(ERBD+ACE2
s − (1− λ)ERBD

s )

Using a simple grid search, we found the best value to be λ = −0.5 (see table 5.15).

λ -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1

∆E 13.3 10.6 8.6 7.4 7.1 7.6 8.3 9.1 10.2 11.5 12.9

Table 5.15: Variation of ∆E wrt λ, computed for the wild-type sequence. Energy
scores use the arbitrary units implicitly defined by Effie.

As the SARS-CoV2 virus evolves, it successively includes new mutations and
must always remain functional, as captured by a sufficiently low value of the above
Lagrangian (with λ = −0.5). To see if we could at least isolate the first pre-omicron
variants of the SARS-CoV2, we enumerated all the sequences within 17 Effie units of
the optimal score of the above Lagrangian that had up to 3 mutations. Among the 28
million such variant sequences, we used toulbar2 to enumerate 7, 119, 327 sequences
in less than 60 seconds on a recent Linux server, using only one thread. The list
of enumerated variants includes all non-omicron important variants of SARS-Cov-2
(alpha, beta, delta, gamma, kappa, lambda, iota, mu). Indeed, Table 5.16 shows
the distance to the optimum of the most important variants at this date and we can
see that all non-omicron variants are within this 17 units threshold. Reaching the
omicron variants would require tolerating 7 to 8 mutations in the RBM and allow
for a score degradation above 18.80 which defines an extremely large sequence space.
Indeed, the number of possible variants explode with the number of mutations, as
displayed in Figure 5.6.

The score predicted by Effie is not very discriminatory since around 25% of
sequences meet the scoring cutoff. This is also partly explained by the small number
of allowed mutations. More sequences could be filtered out using probabilities based
on mutation frequency between amino acids. These probabilities can be computed
from SARS-Cov-2 DNA mutation rates [Sohpal, 2020] and codon (3 DNA letters)
encoding each amino acid type. We leave this for future work.

5.3.2 The SpaceHex Project

Description of the Project

Bacterial microcompartments (BMC) are protein assemblies that spontaneously
form in the cytoplasm of many bacteria. By encapsulating metabolic pathways,
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Figure 5.6: Number of variants with a maximum number of mutations (1, 2 or 3)
with an energy score below the score of existing variant (x axis). The number of
possible variants explodes as the number of mutations increases: with one mutation,
less than 500 sequences meet the score cut-off, while with 3 mutations they are more
than 7 millions.

they can optimize the yield of enzymatic reactions. Therefore, they are of great
interest in synthetic biology to increase production yield.

BMCs are composed of hexamers (proteins with 6 chains), trimers and pentamers
that form its facets, edges, and vertices, as illustrated in Figure 5.7. In this project,
we focus on the hexamers. They are of interest in themselves as they can be used
a platform for the spatial organisation of molecules in biotechnology applications.
More precisely, we aim to design protein chains with specific interfaces (i.e., with
high interaction selectivity) such that they form heteromeric hexameric assemblies.
We are interested in trimers of dimers ABABAB composed of two chains A and
B (called heteromer AB in the following), and we want to avoid homo-hexamers
AAAAAA or BBBBBB (called homomers AA and BB respectively). They are illus-
tated in Figure 5.8.

From a Computational Protein Design perspective, this problem presents several
characteristics. First, we aim to design symmetrical proteins. Thus, the CFN can
be reduced to optimize a smaller equivalent problem. Second, since the succession of
chains in each hexamer matters, multi-state negative approaches are required. The
multi-state design allows us to consider several states simultaneously [Vucinic et al.,
2020], and the negative design disfavours some of them. As discussed in the previous
project, a coarse-grain function like Effie makes negative design much simpler as it
avoids the optimization of the side-chains.
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Mutant No. mut. ∆ GMEC

20H (Beta V2) (B.1.351) 3 16.55
20I (Alpha V1) (B.1.1.7) 1 9.26
20J (Gamma V3) (P.1) 3 14.90
21A (Delta) (B.1.617.2) 0 7.13
21B (Kappa) (B.1.617.1) 1 11.12
21D (Eta) (B.1.525) 1 12.13
21F (Iota) (B.1.526) 1 12.13
21G (Lambda) (C.37) 0 7.13
21H (Mu) (B.1.621) 2 14.25
21K (Omicron) (BA.1) 7 18.90
21L (Omicron) (BA.2) 7 18.80
22A & 22B (Omicron) (BA.4&5) 7 20.52
22C (Omicron) (BA.2.12.1) 7 18.80
22D (Omicron) (BA.2.75) 7 20.05
22E (Omicron) (BQ.1) 8 20.52
22F (Omicron) (XBB) 8 23.70
23A (Omicron) (XBB.1.5) 8 24.24
23B (Omicron) (XBB.1.16) 8 24.24

Table 5.16: Variants of SARS-Cov-2, with their number of mutations (no. mut.)
in the RBM and the distance to the optimal score computed on the Lagrangian
problem with λ = −0.5.

Input Backbone and Designable Residues

The input backbone was constructed by Delphine Dessaux, post-doctoral fellow at
TBI. She started from the chain A of an hexamer crystal structure forming a BMC
(PDB id 5L38) [Mallette and Kimber, 2017]. Then a symmetrical hexamer con-
formation was built from this protein chain with Rosetta using symmetric facilities
and minimized with Rosetta ref2015 score function. Each chain being composed of
n = 91 residues, the input backbone is composed of 91×6 = 546 residues. A cartoon
representation is displayed in Figure 5.9.

Only a partial redesign is done. For the design of specific interfaces, three dif-
ferent designable regions at the interface between two chains were defined. These
regions are comprised of 21, 29 or 39 residues (they are named respectively small,
interm. and large). All residue types are accepted.
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Figure 5.7: A bacterial micro-compartment (left), and its schematical representa-
tion (middle) with hexamers that form facets and edges. One hexamer is detailed
on the right, with one of its 6 chains highlighted. Figure adapted from [Kirst and
Kerfeld, 2019].

Figure 5.8: Simplified view of the homo-hexamer (6 identical chains, all in blue)
and the hetero-hexamer (chains A in blue and chains B in red). Figure curtesy of
D. Dessaux.

Reduction of the CFN

We predict our score function Effie as a CFN from the target backbone using the
best version at this time, V2.1-multi-0.14.

Since the target protein is symmetrical, the CFN can be reduced to a smaller
equivalent problem. The symmetry is of order 6 for the homomer AA (or BB) and
of order 3 for the heteromer AB. Therefore, instead of problems with 6×n variables,
they can be reduced to problems of respectively n and 2× n variables.

Figure 5.10 illustrates how the CFN is reduced in the case of the heteromer AB.
The cost functions are stacked into a tensor of shape 6n× 6n× 20× 20 representing
the hexamer ABABAB, which will be turned into a 2n × 2n × 20 × 20 defining an
equivalent problem on a dimer AB. To do so, the tensor is divided into 6× 6 blocks,
each representing the interactions between 2 chains. The possible interactions are
AA, AB, BA and BB. Since only the upper triangular part is used to define the

181



CHAPTER 5. DESIGNING PROTEINS WITH EFFIE

Figure 5.9: Cartoon view of the input backbone. The symmetry between the 6
chains is clearly visible.

costs, BA interactions are ignored (they are equivalent to AB interactions). All the
AB blocks (in the upper part) are summed together.

For AA (or equivalently BB) interactions, some precautions must be taken, as
illustrated in the bottom right par of the Figure. One block AA is composed of n×n
sub-blocks of shape 20. Each sublock represent the interaction between 2 residues
on a chain A. Two residues at the same position on 2 chains A must be the same,
so only diagonal costs of diagonal sub-costs are kept. They represent unary costs.
Moreover, sub-blocks on the lower part of block A are symmetrized and added to
their upper block counterpart. Otherwise, these costs would be lost when defining
the CFN.

Figure 5.10: Reduction of the CFN of an hetero-hexamer ABABAB into an equiv-
alent problem on a dimer AB. Each square corresponds to one block representing
interactions between 2 chains (A and A in blue, B and B in green, and A and B in
black).
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Bi-objective Optimization

We produce 2 reduced CFNs per design region: one for the homomer AA (or BB) and
one for the heteromer AB. Since we used coarse-grained representation, multi-state
design boils down to adding the CFNs representing each state.

Our goal is for the heteromer to assemble, but not the homomer. Both CFNs
were simultaneously optimized by Samuel Buchet, post-doctoral fellow at MIAT,
using toulbar2 and the bi-criteria objective.

min EAB(seqA, seqB)

max EAA(seqA) + EBB(seqB)

s.t. seqA, seqB ∈ Dd

Where EAA(seqA) is the energy of the homo-hexamer AA on the homomer backbone,
D is the list of the 20 cananical amino acids and d is the number of residues to design.
The non-designable residues are assigned to their native amino acid identity.

This bi-objective can be approximated with weights controlling the ratio between
both objectives:

minw1 ∗ EAB(seqA, seqB) + w2 ∗ (EAA(seqA) + EBB(seqB))

with w1 ≥ 0 to favour the heteromer and w2 ≤ 0 to disfavour both homomers.

We varied the weights w1 and w2 to favour more or less one objective over
the other using dichotomic method [Aneja and Nair, 1979]. For each pair of weights
(w1, w2), one sequence was designed. In the first round of design described hereafter,
we limited ourselves to the small and the interm. design regions because exact
optimization on the large region becomes expensive computationally.

In Silico Validation

We designed a total of 60 sequences with Effie + toulbar2. We also designed se-
quences with ProteinMPNN [Dauparas et al., 2022] for comparison and to increase
our chances of having one successful design. Indeed, ProteinMPNN has state-of-
the-art in silico performances and it has been experimentally validated. If all the
experiments reported on ProteinMPNN have been on single-state or multi-state de-
sign problems, authors mention that negative weights can be used for negative design
and this option is implemented in the code they provide. Sequences were predicted
by the default model, trained with a noise of 0.2Å standard deviation and sampled
at T = 0.1. Weights ranging from −0.9 to −0.1 where used on the homomer (with
a weight of 1 on the heteromer). For each weight, 10 sequences were predicted,
resulting in a total of 90 sequences.

For each designed sequence, D. Dessaux achieved side-chain packing using toul-
bar2 plus Rosetta energy scoring functions. Indeed, all-atom functions are required
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for this task. Then, she minimized the sequence using Rosetta ref2015 [Alford et al.,
2017].

We first compared sequences designed by Effie+toulbar2 and by ProteinMPNN
in silico. Since we want the heteromer to assemble, but not the homomer, our tests
are based on the energy differences between both (EAB−EAA and EAB−EBB). The
more negative these two values are, the more likely the heteromer is to be favoured
over the homomers. The first basic test was to verify that both these energies are
negative for each sequence. Otherwise, it means the design did not disfavour the
homomers. Since Effie is optimized, all its sequences have negative difference (Effie)
scores. However, ProteinMPNN seems to struggle with negative design as 76/90
(84.4%) of its sequences have at least one positive difference (ProteinMPNN) score.

Scoring

Design Effie ProteinMPNN betanov16

Effie -195.2 -95.5 -1519.6

ProteinMPNN 35.4 -56.2 -1376.7

Table 5.17: The score EAB − EAA + EAB − EBB assessed with 3 criteria (Effie,
ProteinMPNN and betanov16) and averaged over all the sequences designed either
with ProteinMPNN of Effie+toulbar2. When scoring with beta-nov16, sequences
for which the heteromer AB was too destabilized (score > −1000) were excluded.

We then assessed the sequences of both models based on 3 criteria: Effie score,
ProteinMPNN score and beta-nov16 score [Pavlovicz et al., 2020]. For some designs,
beta-nov16 scored the target heteromer AB with very high energies, indicating it
can not fold as desired. It happened for designs by both Effie and ProteinMPNN,
and none of them were able to score these problematic designs as disfavourably as
beta-nov16. Thus, when scoring with beta-nov16, we excluded designs distabilizing
the heteromer AB too much. Since the wild type has an energy of -1314 beta-
nov16 units we excluded sequences with a heteromer AB form scored lower than
-1000 beta-nov16 units. This is an arbitrary cut-off that can be modified without
impacting conclusions. Criteria cannot be directly compared as they do not share
the same units. In Table 5.17, for each model we report the average score EAB −
EAA + EAB − EBB assessed with the three criteria.

Beta-nov16 is used as an independent score, and it shows a clear preference
for Effie’s sequences. Unsurprisingly, Effie’s score favours Effie’s sequence; it even
considers that ProteinMPNN has failed to design negatively. More surprisingly,
the ProteinMPNN score also prefers Effie’s sequences. It means that the design
problem defined by ProteinMPNN has lower energy solutions than those produced.
ProteinMPNN was not able to find them by sampling but Effie could. We re-assessed
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Effie and ProteinMPNN scores after minimization, and it showed the same trends.
In short, on this negative design problem, ProteinMPNN is not good at optimizing
its own criteria and it considers that Effie’s sequences optimize it better. This is a
direct consequence on designing sequences by sampling instead of optimizing.

Experimental Validation

Figure 5.11: The tripartieGFP technology used for SpaceHex. Figure courtesy of
Lucie Barthe, PhD student at TBI.

We further compared both approaches experimentally. The most promising se-
quences were selected based on the energy difference between the homomer and the
heteromer. In total, 14 sequences were selected for Effie and 10 for ProteinMPNN.
Experimental validation was carried out by Lucie Barthe and Luis Garcia-Alles from
Toulouse Biotechnology Institute (TBI). To evaluate whether the hetero-hexamers
could be formed, they assessed the quantity of AB interactions using the tripartite
GFP technology [Cabantous et al., 2013], illustrated in Figure 5.11.

The Green Fluorescent Protein (GFP) is a protein with 11 β-strands. It is
divided into 3 fragments: two β-strands (GFP10 and GFP11) and the rest of the
protein (GFP9). GFP10 is linked to the monomer A and GFP11 to monomer B.
If the two monomers interact, like in the hetero-hexamer ABABAB, they bring
the two fragments closer together, which favours their binding to the GFP9 and the
reconstruction of the full GFP. This reconstruction is visible through the fluorescence
of the protein.

Therefore, a high level a fluorescence indicates more AB interactions. If only
the homomers AA and BB form, there is no fluorescence. As shown in Figure 5.12,

185



CHAPTER 5. DESIGNING PROTEINS WITH EFFIE

sequences obtained with Effie show more fluorescence than sequences by protein-
MPNN, so they present more heteromers. Moreover, all the proteins designed by
Effie saved one present a fluorescent signal above the negative control, while 4/10
designs by ProteinMPNN are below. For these proteins, no heteromers AB form, so
the negative design apparently failed.

Designs with Effie Designs with ProteinMPNN
Negative 
controls

Positive 
control

Figure 5.12: Experimental validation of designs obtained with Effie or Protein-
MPNN. A high level of fluorescence indicates more AB interactions, suggesting more
hetero-hexamers have been formed. The dotted line corresponds to the highest level
of fluorescence of negative controls. A signal below this line cannot be interpreted
as positive. Figure by Lucie Barthe.

5.3.3 Designing the Core Fold of RNA Polymerase

Complex protein structures are often assumed to have evolved from small and simple
folds. One of these ”prototype” folds is the double-ψ β-barrel (DPBB), which is
present in several fundamental enzymes. In particular, the core domain of the RNA
polymerase is composed of 2 DPBBs [Castillo et al., 1999].

Here, we take up previous work [Yagi et al., 2021] that aimed at showing that the
crucial RNA polymerase enzyme could be synthesized with a simplified chemistry,
involving only a small subset of all 20 natural amino acids (and associated codons).
This would support the hypothesis that life could have started with such a simple
RNA polymerase. In their paper, the DPBB fold was synthesized using only 7 types
of amino acids. This was joint work between the teams in TBI, MIAT and the
RIKEN Center for Biosystems Dynamics Research (Japan).
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We tried to extend these results with fewer types of amino acids using Effie or
ProteinMPNN. This setting is especially challenging as it aims for out-of-distribution
generalization as, in our knowledge, no globular natural protein sequence is com-
posed of so few types of amino acids.

Starting from one of their crystal structure (PDB 7DXZ), we computed the
symmetry axis between the two monomers of the DPBB and we made the backbone
precisely symmetric using AnAnaS [Pagès et al., 2018]. Backbones before and after
pre-processing are displayed in Figure 5.13. Each monomer is composed of 42 amino
acid residues.

(a) Crystal structure. (b) Predicted structure.

Figure 5.13: Crystal structure of the DPBB of RNA polymerase with 7 amino
acid types and structure of one designed sequence with 6 types, predicted with
AlphaFold.

We predicted the cost functions from the pre-processed backbone using Effie
multi (trained with a noise of 0.02Å, 0.2Å or no noise). We constrained the number
k of amino acid types using a N-value constraint [Pachet and Roy, 1999], encoded in
toulbar2 with a generalized linear constraint [Montalbano et al., 2022] and additional
Boolean variables, each indicating if a given type of amino acid is used. Without
any constraint, the Effie-optimal sequence uses 12 different types of amino acids
among the 20 available ones. We asked toulbar2 to find the optimal sequence while
constraining the design with increasingly lower values of k. Figure 5.14 shows how
Effie’s score degrades as the constraint on the composition is tightened. From this
curve, we decided to focus on designs using from 5 to 7 different amino acid types.
We enumerated all solutions for k ∈ {5, 6, 7} within 10 units of the optimum, and
kept the 100 best solutions (in terms of predicted energy) for each value of k and for
each Effie model (for k = 5, there were fewer than 100 solutions that were all kept).

We predicted the structure of ∽ 450 sequences designed with Effie for k =
6 using AlphaFold (AF2) [Jumper et al., 2021]. The structure is predicted with
LocalColabFold [Mirdita et al., 2022] without any template in single-sequence mode.
In the best AF2 model (showing the lowest RMSD over all Cα w.r.t. the targeted
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Figure 5.14: Optimum Effie’s score (X-axis) as the constraint on the number of
amino acid types used is tightened (Y-xis).

backbone structure), we observe that AF2 is able to almost perfectly recover the
targeted structure (RMSD = 1.31Å), as shown in Figure 5.13b.

For each predicted structure, we collected the scores (pAE, pLDDT and pTM)
and we computed the actual TM [Zhang and Skolnick, 2004] and Root Mean Square
Deviation (RMSD), an alignment metric. Two types of RMSDs were computed:

• a local RMSD computed using the PyMol software: it rejects ill-aligned Cα,
which results in an optimistic metric.

• a global RMSD over all Cα using a simple python-biotite script.

Model Noise k = 7 k = 6 k = 5

Effie v1 0 7 5 0
Effie v1 0.14 33 1 0

Effie v2 0 5 5 0
Effie v2 0.02 1 0 0
Effie v2 0.2 0 0 0

PMPNN1 Default 0 0 0
PMPNN2 Default 6 0 1
PMPNN3 Default 0 0 -

Table 5.18: Number of designed sequences with RMSD (global) < 3Å, pLDDT >
60 and pAE < 10, when designing with k = 7, k = 6 or k = 5 residues. PMPNN1
are the design made with ProteinMPNN on the first subset selected by Effie. All
Effie models have been trained on multi-chain proteins.
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Several sequences give interesting results, with RMSD (PyMol) < 2Å, pLDDT >
60 and pAE < 10. The pTM score is usually redundant with the other scores so
we did not use it as an additional sequence filter. All the sequences satisfying those
conditions have been gathered, and the associated most common subsets of amino
acid types were selected. We kept 3 subsets for both k = 6 and k = 7 and 2
subsets for k = 5. For k = 7, the 3 subsets contain the amino acid DAGRV, with in
addition either EL, TK or ET. This is in very good agreement with the subset that
was experimentally tested in the original work [Yagi et al., 2021]: DAGRV-EK. For
k = 6, all the subsets again contain DAGRV, with in addition L, T or E. For k = 5,
the subset DAGRV is the most frequent and DTAGV is the second best.

Enforcing a N-value constraint on a sequence decoded auto-regressively, as done
by pure-DL based models like ProteinMPNN, is not possible. Instead, we restricted
ProteinMPNN [Dauparas et al., 2022] to design using only the subsets of amino
acid types selected by Effie+toulbar2. This was achieved using the omit AAs flag
of ProteinMPNN, forbidding the 13, 14 or 15 types that were note not used in the
corresponding Effie designs. We designed 100 ProteinMPNN sequences for each
subset using a temperature T = 0.01.

In Table 5.18, we report the number of high-quality sequences obtained with each
model. We define high-quality sequences based on global RMSD, pLDDT and pAE.
We set the threshold to 3Å for RMSD to account for the more demanding global
RMSD criteria. Still, the trends in the number of sequences for each model are the
same. Selecting sequences based on the TM score alone, i.e., the alignment between
the target and the predicted structure, gives very similar results. We completed
these results with violin plots to visualize all the designed sequences in Figure 5.15.

Concerning Effie sequences, the v1 seems to produce better quality sequences
than the v2, both in terms of high-quality sequences and overall distributions. More-
over, the v2 no noise produces better sequences than noised models. It is the only
task on which we observe an advantage of non-noised models over noised ones.
This observation may be due to the input backbone really well fitting for the task.
Overall, Effie predicts sequences of better quality than ProteinMPNN. Indeed, Effie
sequences have a higher TM-score and there a more high-quality sequences. In par-
ticular, ProteinMPNN is able to produce high-quality sequences for only one subset
of size k = 7, and none of size k = 6. However, it is the only model that produces a
good-quality sequence for k = 5. This is surprising because the corresponding subset
is also a subset of set tested for k = 6, where no high-quality sequence appeared.
We assume that this is a direct consequence of the very constrained settings which
forces ProteinMPNN to sample out-of-distribution sequences.

We have selected the most promising sequences with fewer than 7 amino acid
types. They have been sent to our collaborators in Japan who are synthesizing and
crystallizing them.
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Figure 5.15: TM scores of all the designed sequences with Effie and ProteinMPNN
models, allowing k = 7, 6 or 5 amino acid types.
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Conclusion

In this chapter, we optimized Effie, our learned score function, to design proteins.
The similarity of the designed and native sequences was compared to choose the
hyper-parameters of the neural model. Once learned, Effie was assessed on various
residue and protein-level tasks before being applied on practical design projects.

The in silico validation highlighted some limitations of the commonly-used met-
rics in design, particularly the NSR. Indeed, one of our variant architectures offers
a large boost in NSR which is not reflected on other tests, both mutation effect
prediction and forward folding. In those conditions, the comparison between neural
architectures solely based on NSR seem uninformative in terms of design utility. We
did not work with perplexity as it is intractable in our case, but it is likely to suffer
from the same shortcoming as NSR.

Design utility also comes from the ability to fulfill design objectives. We argued
throughout this work that optimization can offer practical advantages that are out-
of-reach of other DL models that design the sequence either auto-regressively or by
direct mapping. Our applied projects present specific problems that are difficult
for sampling-based methods, like the negative design for SpaceHex, and problems
that can be only be tackled through optimization, like enumerating of sub-optimal
solutions and limitations of the number of mutations to predict covid variants and
restricting of the number of amino acid type to design a DPBB. We offer evidence of
the short-comings of pure DL models by using ProteinMPNN, an approach thought
for practical design [Dauparas et al., 2022] and experimentally validated [Yeh et al.,
2023], on the same tasks.

In practice, predicting a sequence folding on a target structure is only a part
of the design pipeline. The designed sequences are selected in silico and evaluated
experimentally. One of the post-processing step is to adapt the structure to the
sequence through relaxation. Since it is usually done using Rosetta energy functions,
we wondered whether Effie could be used as well. We did some preliminary work to
update the structure coordinates to the designed sequence based on an adversarial
attack method [Goodfellow et al., 2014], constrained to respect characteristics of a
protein structure. This work is describe in Annex D, but the results we obtained so
far seem encouraging but non-conclusive.

Other future work can be considered. Practical designs often involve ligands,
which are not composed of residue. Therefore, the interaction between a protein
and a ligand cannot be predicted by Effie (or any other DL methods, which are
all coarse-grain). Yet, Effie could be combined with an all-atom potential [Alford
et al., 2017; Pavlovicz et al., 2020] that will be in charge of modelling protein-ligand
interaction, while Effie would be used to represent intra-protein interactions.

Concerning the neural net itself, it is likely to benefit from data augmentation
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using predicted structures, as done in [Hsu et al., 2022]. Moreover, training could be
revisited. If a first stage under the E-NPLL seems necessary, a second stage under
the Hinge loss could improve the quality of Effie at it would consider the protein as
a whole. The Hinge loss on the complete protein would obviously be intractable,
but alternative schemes can be used. We briefly tried to design only a small sphere
around a randomly selected residue to limit the optimization problem to about 20
residues. It was not directly conclusive, but since we improved the model and we
consider more metrics than the sole NSR, it will be interesting to further explore
this idea.
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Conclusion

This thesis presented a new hybrid approach for Computational Protein Design
(CPD) combining Deep Learning and Automated Reasoning. After introducing
all the required notions, we defined the problem of structure-based protein design.
When reviewing existing methods in Chapter 2, we distinguished traditional energy-
based methods from more recent pure DL-based methods. We noted that the latter
offers better performances, both in silico and experimentally, but the former has
practical advantages as additional design objectives and constraints can be repre-
sented and enforced. In this work, we aimed to bring the best of both worlds into
a hybrid method. More precisely, we aimed to take advantage of existing protein
structures by learning a scoring function that was optimized to design new proteins.

This formulation of CPD is a challenging unsupervised problem as the score
function must be learned from examples of good solutions alone. In Chapter 3, we
placed our problem within the framework of Decision-Focused Learning. Since none
of the existing approaches offered both scalability to large instances and exact solving
at inference, we introduced a new loss, the Emmental-PLL, to learn a Graphical
Model that is solved only at inference. On the toy problem of learning how to play
Sudoku, and some variants, our hybrid pipeline presented state-of-the-art results.
This problem was the occasion to illustrate some advantages in combining learning
and reasoning, including interpretability, data efficiency, and the possibility to add a
posteriori knowledge or constraints. All these properties are desirable in CPD too.

Protein structures, being non-Euclidean data, set new learning challenges. A
consensus about the most suited representation has yet to be reached. In Chap-
ter 4, we described the data representation and neural architecture we used to learn
Effie, our scoring function in the form of a Graphical Model. Effie was optimized in
Chapter 5 and extensively assessed in silico. It outperformed energy-based methods
and was competitive with pure DL-based approaches for designing proteins. More-
over, Effie can tackle other related tasks for which it had not been trained, suggesting
that some physics-chemical concepts have been learned. Finally, we demonstrated
the advantages of our hybrid approach over pure DL methods on applied design
projects, one of them being experimentally validated.
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CONCLUSION

Perspectives

Our work could be extended in two directions: Computational Protein Design and
hybrid AI.

From a hybrid-AI perspective, we could extend the Emmental-PLL to other
applications. Since it is agnostic to the neural net, any problems that can be repre-
sented as a CFN/MRF can potentially be tackled. In practice, memory consumption
will limit the Graphical Model to include terms between at most 3 variables (on small
problems). To alleviate this issue, we could use latent variables to encode more com-
plex interactions with pairwise terms. Moreover, the Hinge loss has the ability to
consider a discrete problem as a whole and therefore not learn redundant constraints.
When this property is desired, we could further explore the convergence of training
under the Hinge loss but with an approximate solver for more tractability. Such
training may also benefit protein design.

In CPD, the confidence we can have in Effie’s quality will build over the course
of practical designs it will be applied to. Therefore, our main perspective is to
apply it to as many projects as possible. Particularly challenging tasks are the one
including interactions between several molecules, proteins or not. They are also
highly interesting as many functions occur through interactions. Moreover, we now
have several versions of Effie with variable performances depending on the task.
Yet, we do not completely understand which version is the best for a given task, so
further exploration is needed. Results obtained using various versions of Effie also
opened questions about the in silico assessment of designed methods and designed
sequences. It is necessary, as large-scale experimental validation is not realistic,
but the metrics used can disagree. A more unified and robust in silico assessment
would be useful. Suggesting one will require to have a better understanding of the
limitations of AlphaFold2, which is often trusted as ground truth even though its
distribution of expertise is not well known, especially in single-sequence mode with
no template.

Designing a protein goes beyond the prediction of a sequence for an input back-
bone. A longer-term objective would be to automatize the whole design process.
For instance, diffusion models could be used to generate the input backbone and
the predicted backbone could be minimized through Effie’s relaxation. Then, the
solver toulbar2 could be asked to predict more sequences which will be automatically
filtered out based on forward folding. In the case of several rounds of experimental
validation, active learning could be used to incorporate early results to find more
suitable candidate sequences in subsequent rounds. Finally, our formulation of CPD
itself could be challenged. Many restricting hypothesis are used so that the problem
can be tackled. In particular, the backbone is considered rigid while most func-
tions involve protein flexibility. This can be only partially alleviated by considering
multiple input backbones.
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Appendix A

Gradients of the NPLL

The negative pseudo log-likelihood of the dataset S is the sum of the negative log-
probability of each (yl):

NPLL(S) =
m∑
l=1

NPLL(yl)

= −
m∑
l=1

 ∑
Yi∈Y

logPM(yli|yl
−i)


where

PM(yli|yl
−i) =

exp(−
∑

j ̸=iM[i, j](yli, y
l
j))∑

vi∈Di exp(−
∑

j ̸=iM[i, j](vi, ylj))

The conditional probability above is obtained using the normalizing constant
ZM(yl

−i) in the denominator:

ZM(yl
−i) =

∑
vi∈Di

exp(−
∑
j ̸=i

M[i, j](vi, y
l
j))

computed over all possible values vi of Yi. This corresponds to the application of a
softmax on the logits −

∑
j ̸=iM[i, j](vi, y

l
j).

Minimizing the NPLL means maximizing the probability above, therefore mak-
ing −M[i, j](·, ylj) higher on the observed value yli (used in the numerator) than on

the other values vi ̸= yli or equivalently, the cost M[i, j](·, ylj) lower on yli than on
other values: the NPLL is a contrastive loss that seeks to create a margin between
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the values that are observed in the sample S and the other values of the variable,
for every variable and every sample.

Focusing on one sample y ∈ S , we expand and get:

NPLL(y) =

−
∑
Yi∈Y

−∑
j ̸=i

M[i, j](yi, yj)

− logZM(y−i)

 (A.1)

The NPLL is a sum over all variables Yi ∈ Y and we consider the contribution
of a given variable Yi. To compute the gradients of the corresponding term of the
NPLL, we first compute the partial derivative of the logarithm of the normalizing
constant ZM(y−i) (i fixed) w.r.t. M)[i, j](vi, yj) (for arbitrary j ̸= i and vi ∈ Di,
other costs do not appear in ZM(y−i) and the corresponding partial derivative is
0).

∂ logZM(y−i)

∂M[i, j](vi, yj)
=
− exp(−

∑
k ̸=iM[i, k](vi, yk))

ZM(y−i)

= −PM(vi|y−i)

For any Yi, the partial derivative of the first term in equation A.1 w.r.t. M[i, j](vi, vj)
is −1(vi = yi, vj = yj).

Overall, given that M[i, j](vi, vj) and M[j, i](vj , vi) are the same, the contri-
bution of sample (ω,y) to ∂NPLL

∂M[i,j](vi,vj)
will reduce to the non-zero contributions of

variables Yi and Yj :

∂NPLL

∂M[i, j](vi, vj)
= [1(yi = vi, yj = vj)− PN(ω)(vi|y−i)1(yj = vj)]

+ [1(yi = vi, yj = vj)− PN(ω)(vj |y−j)1(yi = vi)]
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Appendix B

Parameters of LR-BCD

Parameter Selection

LR-BCD has 3 parameters to be chosen: the number of iterations, the rank and the
number of roundings. We experimentally chose each of them by fixing 2 parameters
and make the last vary. We randomly selected 17 proteins with less than 100 amino
acids chosen randomly from the single-chain test set. For each protein and each
number of rounding to test, we run LR-BCD 10 times and plot the span in energy
observed on the 10 designed sequences. Results are in Figure B.1.

NSR Computation

LR-BCD produces as many solutions as the number of roundings (denoted nR). To
compute the NSR, we compared 3 methods:

• Mean NSR on the nR predictions

• NSR of the solution with the lowest predicted energy (denoted E0)

• Mean NSR, weighted by the energy softmax e−(Ei−E0)/m∑nR
j=1 e

−(Ej−E0)/m
, with n the num-

ber of residues

Comparison was done on the single-chain test set, with Effie V1-single. For each
protein, the NSR was computed with one of the methods (named respectively mean,
best and softmax), then we took either the mean or the median over the whole test
set. In both cases, selecting the sequence with the lowest energy gave the best results
(see Table B.1 ).
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NSR Mean Best Softmax

Mean 33.4% 34.1% 33.5%
Median 34.4% 35.3% 34.5%

Table B.1: Comparison on the 3 methods to compute the NSR over one prediction
of LR-BCD.

Comparison with Toulbar2 no Backtrack

We compared LR-BCD and toulbar2 with no backtrack on the single-chain test set.
Both give similar results in terms of NSR, but LR-BCD inference time is almost
independent of the size of the instance, while toulbar2 with no backtrack presents a
linear trend between both.

204



0.0 2.5 5.0 7.5 10.0 12.5 15.0
Instances

1000

750

500

250

0

250

500

750

1000

St
an

da
rd

 d
ev

ia
tio

n

Standard deviation, -k=-1 and -nbR=200 fixed, -it varies
it=5
it=10
it=20
it=40
it=-1

(a) Impact of the number of iteration.
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(b) Impact of the rank.
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(c) Impact of the number of roundings.

Figure B.1: Impact of each parameter of LR-BCD on the energy span between
solutions of 10 independent runs. Experiments made with Valentin Durante, PhD
at MIAT and designer of the LR-BCD algorithm.
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Figure B.2: Comparison between LR-BCD and toulbar2 with no backtrack. Left:
inference time on each instance. Right: NSR on each instance.
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Appendix C

Effie’s Hyperparameters

Each hyper-parameter was chosen by fixing all the others and making it vary. If the
resulting model resulted in improved NSR or a simpler model, it hyper-parameter
was selected. In our experiments, choices were made on the per-residue accuracy,
which is a good indicator of the final NSR.

For each set of experiments, a table is given. The first row is the current baseline
with which comparisons are made. All results are given on validation sets, and by
default we worked on the single-chain dataset.

C.1 First Baseline: Quaternion Features

Our first baseline used quaternion features. This section describes how its hyper-
parameters were chosen to come up with Effie V1.

Optimization and Architecture Parameters

Our first baseline has the following parameters:

• Relative-position features

– Translation unit vector and quaternion

– Positional embedding

– Contact numbers, dihedral angles

• Architecture:

– gMLP: seq len= 45, depth= 12, ff mult = 4, out dim = 128

– resMLP: n block = 15, block size = 2, hidden = 128
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• Optimization:

– initial LR = 10−4, cut to 10−5 when validation loss increases, wd = 10−4,
Adam optimizer

– No regularization over the predicted GM (we tried L1 and L2)

– No distance cut-off between pairs of variables (indicated by thresh)

Difference to the baseline Acc. NSR Conclusion

- 41.0% 18.1% Baseline

LR = 10−3 40.1% - initial LR 1e-4 + decrease
weight decay = 0.001 41.2% - keep + regularization

gMLP out dim=32 41.0% - gMLP out dim = 32
ff mult=2 39.5% - keep ff mult=4
embed dim=64 40.3% - keep embed dim=64
thresh = 10 40.4% 33.6 % thresh=10
ResMLP hidden size=64 38.7% - keep width ResNet to 128
depth gMLP=15, nblocks =
20, gMLP out dim=32

41.3% - Increase the capacity of
both nets

Multi-task, alpha = 0.5 41.0% 33.2% No multi-task
Multi-task, alpha = 0.75 41.1% 33.2% No multi-task

Regularization: 0.0001 L1 41.1% 30.2% Keep L1
Regularization: 0.0001 L2 40.9\% 14.7% No L2

Table C.1: Variation of different parameters of the first baseline (in terms of
optimization, architecture and regularization) and the resulting performances.

Unary Terms and Environment Feature Extraction

The baseline only predicts binary terms. We added the prediction of unary terms
and we tried multi-task learning by feeding them to a cross-entropy loss. The total
loss is αPLL + (1 − α)CE. Results (in Table C.2) show it does not lead to better
NSR than the baseline with a L1-regularization or a distance cut-off.

Concerning the architecture we used to extract the information about the en-
vironment of a single residue, we compared gMLP to GPT2 architecture. We also
compared 2 ways of aggregating the output into a single feature vector: either by
averaging (mean), or by taking the line representing the target residue (central).
Results in Table C.3 focuses on prediction using unary terms only (thus training
was done with the sole cross-entropy). The gMLP architecture lead to better NSR
than GPT2, and averaging their output representation is clearly better.
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Learning task Accuracy NSR Conclusion

Single-task (α = 0) 41.0% 18.1% Baseline
Single-task (α = 0) 40.4% 33.6% With thresh=10

Multi-task, α = 0.5 41.0% 33.2% No multi-task
Multi-task, α = 0.75 41.1% 33.2% No multi-task

Table C.2: Comparison of models trained to predict both unary and binary terms
or unary terms only.

Envt ft vector Archi Accuracy # Params.

Central GPT 29.8% 37.9M
Mean GPT 30.6% 37.9M
Central gMLP 22.8% 10.9M
Mean gMLP 32.6% 10.9M

Table C.3: Comparison of architecture to extract the environment feature vector.

New Baseline

Based on the conclusion drawn from each training in Table C.1, the capacity of both
nets is increased. After tuning other parameters, we realized the capacity was larger
than necessary. Predicting both unary and binary terms, and applying multi-task
learning do not increase performance, so we focus on binary terms in the following.

Using a distance cut-off between pairs of residues increase speed up to 3-fold and
it increases NSR (even though it slightly reduces accuracy), so we keep it. In terms
of regularization on the predicted GM, the L1 improves over the L2, and it increases
NSR. Both the distance cut-off and the L1 help the optimization by creating sparser
matrices.

In fine, our second baseline reaches a mean NSR of 33.6%. We then used the
median NSR as main metric and we have a median NSR of 34.9 %. This baseline is
Effie V1.

C.2 Second Baseline: Distance Features

This section describes the adaptation made upon changing from quaternion to dis-
tance features. The resulting version, Effie V2.1, was then optimized in memory so
that it could process proteins up to 10, 000 residues. The optimized version is Effie
V2.2.

209



APPENDIX C. EFFIE’S HYPERPARAMETERS

New Features

We replace the input features with distance features, and we kept the architecture
and the optimization parameters unchanged. As shown in Table C.4, performances
clearly improved.

Features Accuracy NSR

Relative position 40.4% % 34.9%
Distances 43.9% 38.2%

Table C.4: Comparison of input features.

Further investigation, displayed in table C.5, shown that adding information
about dihedral angles was not useful. It must be implied by the set of distances
given as input. We also tried to set a distance cut-off to define which neighbours are
within the environment (parameter thresh neigh), which enhanced accuracy. In
our final architecture, this threshold is replaced by a sequence length of 128, which
is more then the contact number at 10Å, ensuring that all the neighbours within
10Å are considered.

Dihedral Thresh neigh Accuracy NSR

No None 43.9% 38.2%
Yes None 41.8% -
Yes 10 43.6% 37.9%

Table C.5: Influence of dihedral angles and distance cut-off on the neighbourhood
of a target residue.

Adding the E-NPLL

Event though the NPLL was developed to tackle logical information, it proved to be
beneficial in the case of proteins as well. As displayed in Table C.6, masking 10% of
amino acids throughout training lead to a gain of 1.2% NSR.

E-NPLL NSR

p = 0 38.2%
p = 0.1 39.4%

Table C.6: Using the E-NPLL instead of the regular NPLL improves NSR.
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Alternative Training Schemes

The training schemes are detailed in Section 4.3. Here we report only results.

”Soft” PLL

Using a soft PLL to better learn degeneracy (the fact that several sequences fit the
same backbone) resulted in deteriorated performances.

NPLL Accuracy NSR

Regular 43.9% 38.2%
Soft 41.9% 35.5%

Table C.7: Comparison of the soft NPLL with the regular.

Denoising Model

Multi-task training on denoising the input coordinate (measured by MSE loss) along
the NPLL training resulted in deteriorated performances.

Loss Accuracy NSR

NPLL 43.9% 38.2%
NPLL+MSE 41.2% 34.1%

Table C.8: Comparison of the NPLL alone and multi-task training with the NPLL
and a denoiser.

Adaptative Learning Rate

On the single-chain dataset, using an adaptive learning rate (LR) is detrimental. In
Table C.9, 0 means there is no adaptive LR, 1 means the LR is proportional to our
batch size (i.e., the number of variables) and 1

2 means the LR is proportional to
the square root of the batch size. Interestingly, an adaptive LR is beneficial on the
multi-chain dataset, that contains much larger proteins (see Annex C.3).

Reducing the Number of Parameters

Once parameters had been tuned, we realized our architecture had much more pa-
rameters than needed, which may lead to overfitting. Thus, we explored how to
reduce some parameters. In these experiments, p is fixed to 0.1.
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Adapt LR Acc NSR

1/2 44.9% 39.7%
0 44.9% 40.3%
1 41.6 % 39.5%

Table C.9: Effect of using an adaptive learning rate on the single-chain dataset.

Detailed results are in Table C.10. We reduced both the depth and width of
the resMLP (3 blocks ans 128 hidden neurons). For the gMLP, only the width is
reduced. Using fewer kernels to encode the distance features degrades performances.

Description # param Acc NSR Conclusion

Baseline 5.2M 46.0 39.4 Baseline
nb blocks = 3 1.5M 46.1 39.6 3 blocks are enough
depth gMLP=10 4.5M 45.9 38.9 keep depth gMLP=12
nb kernel=8 5.1M 44.9 38.4 keep 16 kernels
ff mult=4 4.5M 46.0 39.2 keep ff mult=4
hidden=128, nb blocs = 5 2.6M 46.3 39.5 Reduce hidden to 128
hidden=128, nb blocs = 3 2.5M 46.2 40.0 new baseline
hidden=128, nb blocs = 1 2.5M 45.4 39.4 Keep 3 blocks

Table C.10: Models with reduced number of parameters.

Effect of Symmetrization

We symmetrized the output of the neural net to interpret it as a graphical model.
Yet, we found this is actually a beneficial inductive bias, that led to enhanced
performances (Table C.11.)

Symmetrize Accuracy NSR

No 47.1% 36.4%
Yes 46.0% 39.4%

Table C.11: Effect of symmetrization.

Choice of the Value of p

We trained the same architecture with different value of the Emmental-PLL’s pa-
rameter p. Results are in Table C.12. As we favour NSR over accuracy, we set
p = 0.3.
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Description Acc NSR median

p=0.1 46.0 39.4
p=0.2 45.1 39.7
p=0.3 44.8 40.5
p=0.4 44.7 40.3

Table C.12: Performances of the same architecture trained with different value of
k.

C.3 Extension to Multi-chain Proteins

On the multi-chain dataset, we hypothesized that a higher capacity was required to
capture both inter and intra-chain interactions. In Table C.13, models are assessed
on the multi-chain validation set, therefore results cannot be directly compared
with those obtained previously on the single-chain. Moreover, for a fair comparison
between models, we randomly selected 100 protein structures in the validation set
together with one sequence, and we computed metrics on this subset.

Increasing the Capacity of the Neural Nets

We decided to increase both the width and the depth of the resMLP (to 10 blocks
and 258 hidden neurons) and the depth of the gMLP (to 15). The output dimension
of the gMLP was increased to 128, but its width was kept the same, which was
convenient as it limits the memory usage. In all these models, the initial learning
rate was dropped to 5.10−5 as it leads to better validation loss.

Description k Acc NSR Conclusion

Baseline False 51.9% - -
hidden = 256, n block=5,
gMLP outputdim=128

10 52.7% - Keep all modifs

same + ff mult=6 10 52.5% - Keep ff\ mult=4
same + ff mult=6 +
depth\ gMLP=15

10 53.4% - Keep depth gMLP 15

same + gMLPout 128 10 53.9% 46.1% Keep gMLPout=128
same + n blocks=10 10 54.6% 46.9% Keep 10 blocks
same 30 54.0% 47.6% k=30

Table C.13: Increasing the capacity for multi-chain proteins.
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Adaptive Learning Rate

Multi-chain proteins being much larger than single-chain proteins, training with an
adaptive learning rate becomes beneficial, as shown in Table C.9.

Adapt LR Acc NSR

1/2 54.6% 46.9%
0 51.0% 45.0%

Table C.14: Comparison of model with an adaptive learning rate proportional to
the square root of the batch size (1/2) or with no adaptive LR (0).

Noisy Inference and Forward Folding

Noise (train) Noise (inf) NSR (median) plddt (mean) pTM (mean)
0.2 0 39.0 60.0 0.41
0.2 0.2 35.0 56.7 0.37
0.02 0 44.5 52.6 0.35
0.02 0.02 44.0 53.2 0.36

Table C.15: NSR and forward folding metric on models noised during training.
Adding noise during inference (inf) as well deteriorates metrics.
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Appendix D

Effie Relaxation

In practical design, the optimization of a sequence is always followed by a min-
imization or relaxation procedure, usually using RosettaDesign’s tools, to allow
the structure to make small conformationnal adjustments. One design protocol of
Rosetta, RosettaFastDesign, consists in successive rounds of design plus relaxation,
with the relaxed structure being the input for the successive round. Inspired by this
methodology, we tried to obtain an end-to-end relaxation of Effie through the neural
architecture.

The forward pass of our neural model map coordinates to cost functions, which,
once optimized, produce a sequence. The idea is to freeze the neural network and
to backpropagate to update the coordinates crd such that they are more suited to
the sequence y. Both the native or a designed sequence can be backpropagated.

crd = crd− η∂PLL(N (crd), y)

∂crd

With η a parameter to control the range of the coordinate change (similarly to the
learning rate).

We directly applied an adversarial method, the Fast Gradient Sign Attack [Good-
fellow et al., 2014].

Constraining the Coordinate Updates

The issue with this approach is that coordinates are updated without any knowledge
of what the input represent. However, coordinates represent atoms that are linked
together by covalent bonds, and therefore they cannot move independently. The
expected consequence is that the point cloud resulting from a coordinate update
does not resemble a protein anymore. Indeed, we report the span on the value of
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bond length and angles before and after relaxation in Table D.1, and we notice the
span is much wider after relaxation.

Bond/angle crd (PDB) crd (relaxed)

N-Cα (Å) 1.43-1.49 0.89-3.14
Cα-C (Å) 1.48-1.57 0.66-3.85
ω (°) 162-201 98-278

Table D.1: Span on two bond length and the angle ω observed before and after
relaxation (η = 0.01) on the protein 1A2F, chain A.

We listed 5 constraints on each residue the resulting structure should satisfy.
Four are on bond angles between each atom, that is known to be approximately
constant. The last one is on the dihedral angle ω that is planar: most of the time
ω = 180° (trans-residue), and some times ω = 0° (cis-residue). More precisely, we
set (length are in Å):

bond NCα = (71 + 75)/100

bond CC = (76 ∗ 2)/100
bond CO = (67 + 57)/100

bond CN = 1.32

We did not enforce those constraint directly, but we rather added a penalization
term to the loss evaluating how violated a constraint is. This term is an harmonic
potential on each bond and ω angle, i.e., the square difference between expected
and observed value of the bond/angle. We set the weight of this penalization to 0.1

η .
As displayed in Figure D.1, the penalization term is enough to maintain plausible
structures throughout several rounds of relaxation. Moreover, even though we did
not constraint ϕ and ψ dihedral angles, they keep plausible values through relaxation,
as displayed is the Ramachandran plot in Figure D.2.

Testing the Relaxation

Our first test was on a xylanase that was previously redesigned by the team (PDB
id 2C1F). We first perturbed its coordinates with a Gaussian noise, then we applied
several iterations of relaxation (by backpropagating the native sequence) and we
found that the relaxed structure was closer to the initial structure than the perturbed
structure (in terms of RMSD, see Figure D.3). We then tried to mutate some residues
in loops, either a small one into a large one (e.g., G129Y or G129F) or vice versa
(e.g., W188A or W188G), to see if the structure was relaxed to accommodate the
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Figure D.1: Variation of the predicted energy, the span of the N −Cα bond and of
the deviation of ω angle form its initial position through several steps of relaxation,
with or without penalization term to encore constraints.

Figure D.2: Ramachandran plots of dihedral angles in the protein 1A2F, before
and after relaxation.

change in residue size. If Effie always disfavoured the mutation with respect to the
native residue, inspection of the resulting structure with PyMol was not conclusive.

Finally, we used the relaxation to carry out our version of Rosetta FastDesign
protocol. Using Effie (V2.1-single), we iteratively designed the proteins of the single-
chain validation set: on sequence was predicted, then it was backpropagated to relax
the structure, which was design again, n times in total. For the n designed sequences,
the one with the lowest predicted score was chosen. Then we compared the resulting
NSR to the one obtained by our standard design procedure (i.e, n = 1). We varied
the parameters n and η, but each time we obtained a median gain in NSR very close
to 0. Thus, the iterative relaxation+design does not seem to improve the quality
of designed proteins. It might be interesting to complement this observation with
forward-folding metrics.
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Figure D.3: Relaxation of a perturbed backbone, and its alignment to the original
structure through the relaxation (measured in RMSD).
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Appendix E

Résumé en français

Contexte

Les protéines sont des molécules complexes essentielles à la vie. En effet, elles sont
en charge de nombreux processus au sein de cellules: elles fournissent une structure,
catalysent des réactions, transmettent des signaux et bien plus encore. Cette grande
variété de fonctions peut être réutilisée dans de nombreuses applications en biotech-
nologie, médecine, chimie verte, etc. Si des millions d’années d’évolution ont adapté
les protéines pour améliorer leur fonction ou en créer de nouvelles pour les besoins
biologiques, les applications industrielles présentent des conditions spécifiques pour
lesquelles les protéines naturelles peuvent ne pas convenir. Le design computation-
nel de protéines (CPD) vise à trouver de nouvelles protéines ayant les propriétés ou
les fonctions souhaitées [Huang et al., 2016].

Les protéines sont composées d’une succession de petites molécules appelées
acides aminés. La plupart des protéines se replient selon une forme 3D spécifique et
déterminée par les propriétés physico-chimiques de leurs acides aminés. La fonction
d’une protéine étant reliée à sa structure 3D, le CPD peut consister à trouver une
séquence se repliant sur une structure cible choisie pour porter les caractéritiques
souhaitées. La recherche de séquences peut être reformulée comme un problème de
raisonnement discret dont le but est de minimiser une fonction de score capturant
les interactions au sein de la protéine. Les fonctions de score existantes sont basées
sur des approximations physiques et/ou des statistiques [Park et al., 2016] et leur
qualité peut être limitante en pratique.

Problématique

Dans cette thèse, nous cherchons à capturer plus finement la relation séquence-
structure des protéines naturelles en apprenant une nouvelle fonction de score à
l’aide du Deep Learning (”apprentissage profond”). Cette fonction de score est
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optimisée avec les outils de raisonnement discret existants [Traoré et al., 2013] pour
designer de nouvelles protéines. Elle peut optionellement être combinée avec des
contraintes ou des connaissances supplémentaires pour mieux guider le design vers
une séquence de protéine présentant toutes les caractéristiques voulues.

Figure E.1: Vue schématique de la pipeline que nous proposons pour le design
computationnel de protéines. Ei,j est la fonction de score entre deux amino acides
i et j de la protéine.

Notre objectif se heurte à deux difficultés principales. Premièrement, les struc-
tures de protéines sont des données non-Euclidiennes et donc difficiles à représenter
en vue de leur traitement par un réseau de neurones. Deuxièmement, nous voulons
développer un pipeline hybride capable à la fois de raisonner et d’apprendre. La
construction d’un tel composé hybride est l’un des défis ouverts de l’intelligence
artificielle [Hochreiter, 2022]. Dans cette thèse, nous abordons les deux difficultés
séparément.

Contributions

Ces travaux sont organisés en 5 chapitres et autour de 3 contributions principales:
une classification des approches de CPD basées Deep Learning; une fonction de perte
(”loss”) pour combiner apprentissage et raisonnement; une fonction de score apprise
pour le design de protéines.

Nous avons commencé par introduire toutes les notions utilisées dans ces travaux
trans-disciplinaires dans le chapitre 1: les protéines, le Deep Learning et les modèles
graphiques, qui sont le modèle de raisonnement que nous utilisons. Nous avons
ensuite répertorié les approches existantes pour le CPD, avec une attention parti-
culière sur les méthodes les plus récentes basées sur le Deep Learning [Ingraham
et al., 2019; Dauparas et al., 2022]. Dans une revue publiée en 2021 [Defresne
et al., 2021] et complétée dans le chapitre 2, nous avons classé ces méthodes selon la
représentation des protéines utilisée, et nous avons montré qu’il n’y a pour l’instant
pas de consensus sur la manière la plus adaptée de représenter une structure de
protéine pour la tache de design. Nous avons également comparé ces méthodes
utilisant du Deep Learning avec les méthodes plus traditionnelles optimisant une
fonction de score. Les premières offrent de meilleures performances, à la fois compu-
tationnellement et expérimentalement, mais les dernières présentent des avantages
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pratiques puisqu’elles permettent d’ajouter des objectifs de design et/ou des con-
traines supplémentaires. Nos travaux cherchent à réunir le meilleur des deux mon-
des dans une méthode hybride consistant à apprendre une fonction de score, puis à
l’optimiser pour designer de nouvelles protéines.

Le chapitre 3 a été l’occasion de s’éloigner momentanément des protéines pour se
concentrer sur l’intelligence artificielle hybride. Une brève description des méthodes
actuelles nous a permis de placer nos travaux dans le cadre du Decision-Focused
Learning (”apprentissage axé sur la prise de décision”). Notre formulation du
problème de CPD nécessite une approche hybride qui s’adapte à de grandes in-
stances, car les protéines peuvent contenir des milliers d’acides aminés. Nous voulons
aussi bénéficier d’une résolution exacte à l’inférence. Puisque qu’aucune approche
existante n’offre les deux avantages, nous avons développé une methode basée sur une
nouvelle fonction de perte, la pseudo log-vraissemblance emmental [Defresne et al.,
2023]. Ces travaux ont été publiés et présentés à IJCAI 2023. Pour développer
cette approche, nous avons travaillé sur l’apprentissage des règles du Sudoku, un
problème-jouet avec d’intéressants parallèles avec le CPD. Notre fonction de perte
nous a permis de dépasser l’état de l’art sur ce problème et quelques variants, qui sont
un benchmark usuel des methodes pour apprendre à raisonner. Enfin, apprendre à
jouer au Sudoku a été l’occasion d’illustrer les avantages de combiner raisonnement
et apprentissage. En effet, cela est plus interprétable, nécessite moins de données et
offre la possibilité d’ajouter des connaissances ou contraintes a posteriori. Toutes
ces propriétés sont également souhaitables pour le CPD.

Nous sommes revenus à notre problème de design de protéines au chapitre 4, où
nous avons présenté la représentation de protéines que nous avons choisie, basée sur
des paires d’acides aminés. Nous avons également détaillé toute l’architecture utilisée
pour apprendre Effie, notre fonction de score sous la forme d’un modèle graphique
pour le design de protéines. Nous l’avons optimisée pour designer des protéines
puis nous l’avons evaluée de manière approfondie in silico (i.e., computationelle-
ment) dans le chapitre 5. L’optimisation d’Effie permet d’obtenir des séquences
de meilleure qualité qu’avec les fonctions de score traditionnelles, tout en étant
compétitive avec les méthodes utilisant seulement du Deep Learning. De plus, Effie
peut également être utilisée sur des taches pour lesquelles elle n’a pas été entrâınée,
suggérant que des concepts physico-chimiques ont été appris. Enfin, nous avons
montré les avantages de notre méthode hybride par rapport aux méthodes pure-
ment Deep Learning sur trois projets appliqués nécessitant l’ajout de contraintes ou
de connaissance et l’optimisation des séquences designées. L’un de ces projets a été
validé expérimentalement.
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Abstract. Proteins are complex molecules that fulfill many functions in living
organisms. Some of these functions can be repurposed for applications in biotech-
nology, medicine, green chemistry . . . . The goal of Computational Protein Design
(CPD) is to predict a protein sequence fit for an application. Since the function of
a protein is tightly linked to its 3D structure, CPD can be formulated as predict-
ing a sequence folding onto a target structure and therefore fulfilling a function of
interest. Existing approaches are based on the optimization of an energy function
scoring interactions within the proteins or they are purely based on Deep Learning.
In this thesis, we present a new hybrid approach for CPD, combining Deep Learning
(DL) and Automated Reasoning.

Our first contribution is to categorized existing DL approaches based on the
protein representation. Discussing their advantages and drawbacks with respect to
traditional energy-based methods lead us to try and take the best of both worlds
by learning a new scoring function that is optimized to design proteins. This score
function is a Graphical Model, a reasoning compound already successfully used
to optimize proteins. This objective requires a hybrid pipeline combining Deep
Learning and discrete optimization. Such hybridization being an open challenge
in Artificial Intelligence, we first developed a method to learn Graphical Models
from data that allows exact inference while being scalable. It was developed on the
standard benchmark of learning how to play Sudoku, on which it reaches state-of-
the-art results.

We then applied this hybrid pipeline to protein design. A protein structure being
non-Euclidean data, it requires a suited representation and a fitting neural architec-
ture to be processed. We learned a new scoring function for design that we named
Effie. We extensively validated it in silico. On design tasks, it outperformed tra-
ditional energy-based methods while being competitive with DL-based approaches.
Moreover, it can tackle tasks for which it has not been explicitly trained, suggest-
ing some physical-chemical concepts have been learned. Finally, we applied it on 3
projects where the design objectives required to bias or conditioned Effie a posteriori
via the addition of knowledge or constraints. In this context, we showed the interest
of our hybrid approach as Effie + discrete optimization outperformed pure Deep
Learning methods.

Keywords. Computational Protein Design, Deep Learning, Automated Reason-
ing, Hybrid AI, Graphical Model.



Résumé. Les protéines sont des molécules complexes qui remplissent de nom-
breuses fonctions dans les organismes vivants. Certaines de ces fonctions peuvent
être reprises pour des applications en biotechnologie, médecine, chimie verte, etc.
L’objectif du design computationnel de protéines (CPD) est de prédire une séquence
de protéine adaptée à une application. La fonction d’une protéine étant étroitement
liée à sa structure 3D, le CPD peut être formulé comme la prédiction d’une séquence
se repliant sur une structure cible et remplissant ainsi la fonction d’intérêt. Les
approches existantes sont basées soit sur l’optimisation d’une fonction d’énergie
évaluant les interactions au sein d’une protéine, ou sont soit purement basées sur
l’apprentissage profond. Dans cette thèse, nous présentons une nouvelle approche
hybride pour le CPD, combinant Deep Learning (DL) et raisonnement automatique.

Notre première contribution consiste à catégoriser les approches DL existantes
selon la représentation des protéines utilisée. Discuter de leurs avantages et in-
convénients par rapport aux méthodes traditionnelles basées sur l’énergie nous a
conduits à vouloir essayer de prendre le meilleur des deux mondes en apprenant une
nouvelle fonction de score optimisée pour la conception de protéines. Cette fonction
de score est un modèle graphique, un composant de raisonnement déjà utilisé avec
succès pour optimiser des protéines. Notre objectif nécessite une pipeline hybride
combinant Deep Learning et optimisation discrète. Une telle hybridation étant un
défi ouvert en Intelligence Artificielle, nous avons d’abord développé une méthode
pour apprendre un modèle graphique à partir de données et qui permet une inférence
exacte tout en passant à l’échelle sur de grandes instances. Cette méthode a été
développée sur le benchmark standard de l’apprentissage des règles du Sudoku, sur
lequel elle dépasse l’état de l’art.

Nous avons ensuite appliqué cette architecture hybride à la conception de protéines.
La structure d’une protéine étant une donnée non euclidienne, elle nécessite une
représentation adaptée et une architecture neuronale adéquate pour être traitée.
Nous avons appris une nouvelle fonction de score pour la conception que nous avons
appelée Effie. Nous l’avons d’abord validée in silico. Pour les tâches de design, elle
surpasse les méthodes traditionnelles basées sur l’énergie tout en étant compétitive
par rapport aux approches basées DL. De plus, elle peut s’attaquer à des tâches
pour lesquelles elle n’a pas été explicitement entrâınée, ce qui suggère qu’elle a
appris certains concepts physico-chimiques. Enfin, nous l’avons appliquée sur 3 pro-
jets concrets dont les objectifs de design nécessitaient de biaiser ou de conditionner
Effie a posteriori via l’ajout de connaissances ou de contraintes. Dans ce contexte,
nous avons montré l’intérêt de notre approche hybride puisque Effie + optimisation
discrète a surpassé les méthodes de Deep Learning pures.

Mot-clés. Design Computationnel de Protéines, Deep Learning, Raisonnement
Automatique, IA hybride, Modèles Graphiques.
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