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Introduction

1. Introduction in English

1.1. Factorization homology and topological field theory

Factorization homology as developed by Lurie and Ayala–Francis [Lur, AF15] is a local-
to-global invariant for topological manifolds. The invariants are constructed by taking
as local input data an En-algebra A in a (nice) higher symmetric monoidal category V,
together with a geometric input given by an n-dimensional manifold M , and producing
an object ∫

M
A ∈ V

by ‘integrating’A over the n-manifoldM in such a way that the construction is functorial
in the geometric input variable. It is a homology theory for topological manifolds satis-
fying a generalization of the Eilenberg–Steenrod axioms for homology theories of spaces
[AF15]. The notion of factorization homology dates back to the work of Beilinson–
Drinfeld [BD04] in the setting of conformal field theory. Since then, it has appeared
in many different areas of mathematics and physics. For instance, in dimension n = 1
factorization homology on S1 computes Hochschild homology for E1-algebras in symmet-
ric monoidal higher categories [Lur, AF15]. For coefficients in commutative differential
graded algebras, derived higher Hochschild chains were obtained by computing factor-
ization homology on higher dimensional spheres [GTZ14]. Factorization homology is
intimately linked to factorization algebras: evaluating factorization homology on open
subsets U ⊂ M gives a locally constant factorization algebra on M , whose global sec-
tions compute the factorization homology of M . Factorization algebras play a key role
in the work of Costello–Gwilliam [CG21] on perturbative quantum field theories, namely
they capture the structure present on quantum observables. In this thesis we will ex-
plore applications of factorization homology in an area of quantum physics known as
topological field theory.

An axiomatic approach to topological field theory (TFT) has been developed in the
late 80’s by Atiyah and Segal [Ati88, Seg04], defining a functorial TFT as a symmetric
monoidal functor from a d-dimensional topological bordism category, the category of
‘spacetimes’, to a category of algebraic nature. Depending on the target, a TFT may
describe the ‘time evolution’ of either the space of states of a physical system or of the
algebra of classical or quantum observables. However, in order to capture the locality of
physics it might not be enough to define the theory only on (d− 1)-dimensional ‘spatial
slices’ and d-dimensional ‘spacetimes’, but a TFT should also assign algebraic data to
lower dimensional manifolds, possibly with corners, so that one can not only propagate
in the time direction but also in spatial directions. Categorically, this leads to the notion
of a fully extended topological field theory defined as a symmetric monoidal functor from
an (∞, d)-category of d-dimensional bordisms to a higher categorical target. It is in this
context that Baez and Dolan [BD95] formulated the cobordism hypothesis stating that
fully extended (framed) TFTs are classified by the space of fully dualizable objects in the
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target category. An elaborate outline for a proof of the cobordism hypothesis is given
by Lurie [Lur09]. In the same work, Lurie indicates how factorization homology would
determine a fully extended TFT. Thereafter, Scheimbauer explicitly constructed this
fully extended TFT with target given by the Morita category Algn(S⊗) of En-algebras
in a symmetric monoidal higher category S⊗ [Sch14].

This thesis will focus on (n = 2)-dimensional aspects of topological field theories. As
a prominent example, we will consider Chern–Simons gauge theory. For an oriented
surface Σ, the phase space of classical fields in Chern–Simons theory with symmetry
group G on the product manifold Σ × R is the space of principal G-bundles with flat
connections on Σ modulo gauge equivalences. The corresponding moduli space ofG-local
systems can be described by the G-character stack of Σ:

CharG(Σ) = [Hom(π1(Σ), G)/G] .

Algebraically, this quotient stack may be studied via its category QCoh(CharG(Σ)) of
quasi-coherent sheaves. From a field theoretical perspective, this means that the functo-
rial TFTs we want to consider should take values in a target category of categories. One
such target is provided by the Morita 4-category of E2-algebras in a suitable symmetric
monoidal bicategory LinCat� of linear categories1. It was shown by Ben-Zvi–Brochier–
Jordan that factorization homology with coefficients in A = Rep(G) computes the cat-
egory of quasi-coherent sheaves on the moduli space of G-local systems [BZBJ18a]:∫

Σ
Rep(G) ∼= QCoh(CharG(Σ)) ∈ LinCat .

More generally, any (locally presentable) rigid balanced braided tensor category A de-
termines a local 2-dimensional oriented TFT [Sch14, BZBJ18a]:∫

(−)
A : Bordor,t

2 −→ Alg2(LinCat�), Mk 7−→
∫
Mk×R2−k

A .

It is expected that the construction extends to define a 3-dimensional fully extended
oriented TFT with values in Alg2(LinCat�), and even to a 4-dimensional TFT for suitable
coefficients, e.g. for A a fusion category [BJS21].

In topological field theory, bordism categories can be defined for manifolds with tan-
gential structure, which amounts to a lift of the classifying map M → BGL(n) of the
tangent bundle along a prescribed map BX → BGL(n) of topological spaces. The
same is true for factorization homology: for an n-manifold with tangential structure
M → BX , its factorization homology is computed by ‘integrating’ a BX -framed En-
algebra over M [AF15]. One part of this thesis will consist in computing factorization
homology on surfaces with a X = D × SO(2)-tangential structure for finite groups D,
i.e. on oriented 2-manifolds equipped with principal D-bundles. From a field theoreti-
cal perspective, adding a decoration by D-bundles leads to so-called D-equivariant field
theories [Tur10]. The work in this thesis on factorization homology for surfaces with
D-bundles can be understood as exploring the 2-dimensional aspects of field theories
defined on D-decorated manifolds.

1We will be more precise later on about the exact nature of the linear categories we want to consider.
For explicit constructions of higher Morita categories of En-algebras in an (∞, k)-categories see
[Sch14, Hau17, JFS17].
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Field theories may also be defined on bordism categories of manifolds with stratifi-
cations and colorings, or in a more physical language: field theories with defects. The
framework for computing factorization homology on stratified manifolds was constructed
in [AFT17]. A concrete example is categorical factorization homology on surfaces with
codimension 2 defects, or point defects, which are governed by braided module categories
over the braided tensor category describing the bulk theory [BZBJ18b]. In this thesis
we will compute factorization homology on marked surfaces for which the point defects
come from the theory of dynamical quantum groups. In particular, this will allow us to
access Poisson algebras arising in Chern–Simons theory with pointlike sources [BR05]
and their quantization via categorical factorization homology.

1.2. Combinatorial quantization

Let Σ = Σg,r be an oriented surface of genus g with r boundary components, r > 0. For
a linear algebraic group G, the moduli space of flat G-connections on Σ can be described
by the character variety:

CharG(Σ) = Hom(π1(Σ), G)/G .

This is the affine quotient of the representation variety Hom(π1(Σ), G) ∼= G2g+r−1 un-
der the conjugation action by the lattice gauge group G. The algebra of functions
on the character variety is the subalgebra (Og,r)G of G-invariant functions, where
Og,r = O(G)⊗2g+r−1. Fock and Rosly [FR99] constructed a Poisson bracket on the
algebra (Og,r)G using a combinatorial model for Σ by means of a ciliated ribbon graph
Γ = (E, •), as sketched below for the case Σ = Σ1,r:

a

b

er

e1

To each edge in Γ one assigns the Poisson (G×G)-space (G,Πr) with Poisson bivector
Πr defined via a classical r-matrix r ∈ g⊗ g. Subsequently, one uses fusion for Poisson
spaces [LM17] to obtain the Fock–Rosly Poisson bivector ΠFR on the product space
G2g+r−1 compatible with the diagonal G-action. The fusion procedure parallels how the
surface Σ may be obtained by successive fusion of disks D•,• with two marked intervals in
the boundary. The Fock–Rosly Poisson structure agrees with the Atiyah–Bott/Goldman
Poisson structure on the moduli space of flat G-connections [AB83, Gol84].

A deformation quantization of the Fock–Rosly Poisson structure was defined by Alekseev–
Grosse–Schomerus [AGS95, AGS96] and Buffenoir–Roche [BR95, BR96] who replaced
the group G by the corresponding quantum group Uq(g) and classical r-matrices by
quantum R-matrices for Uq(g). The resulting quantized algebra of functions on the rep-
resentation variety is the tensor product (Oq)g,r = Oq(G)⊗2g+r−1, where ⊗ is the tensor
product in Repq(G) and each Oq(G) is a copy of the braided dual of Uq(g), which is also
known as the reflection equation algebra, quantizing the Semenov-Tian-Shansky bracket
[STS94] on G. The commutation relations between the various tensor factors of (Oq)g,r
are given in terms of quantum R-matrices.
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In [BZBJ18a], Ben-Zvi–Brochier–Jordan use factorization homology with coefficients
in the balanced braided tensor category Repq(G) to obtain a functorial quantization of
the moduli stack CharG(Σ) of G-local systems on Σ. Intuitively, the local-to-global prop-
erty of factorization homology allows to quantize the theory locally, which amounts to
replacing the symmetric monoidal category Rep(G) with the braided monoidal category
Repq(G), and subsequently gluing these local quantizations via factorization homology
on Σ. Upon picking a combinatorial model for the surface, the internal endomorphism
algebra of the distinguished object O ∈

∫
Σ Repq(G) is shown to agree with the quantized

algebra of functions on the representation variety; EndRepq(G)(O) ∼= (Oq)g,r as algebras

in Repq(G), recovering the algebras previously obtained by Alekseev–Grosse–Schomerus
and Buffenoir–Roche. The subalgebra of invariants of EndRepq(G)(O) gives an explicit
quantization of the Fock–Rosly Poisson algebra of functions on the G-character variety,
equivariant for the action of the mapping class group of Σ, which follows naturally from
the topological framework of factorization homology.

In this thesis we will extend the factorization homology method for constructing func-
torial quantizations to the following generalized character varieties/stacks:

� Twisted character variety/stack:

Let ϕ : π1(Σ)→ Out(G) be a fixed Out(G)-bundle on Σ, where Out(G) is the group
of outer automorphisms ofG. A flat ϕ-twistedG-bundle is a flatGoOut(G)-bundle
P → Σ together with an equivalence π∗P ∼= ϕ, where π : GoOut(G)→ Out(G) is
the natural projection. Moduli spaces of twisted bundles have previously appeared
in relation with twisted group-valued moment maps in [Mei17, Zer21], or in the
context of finite symmetries for 2-dimensional Yang–Mills theory in [MSS22]. We
may describe the moduli space of flat ϕ-twisted G-bundles by either the ϕ-twisted
G-character variety

CharG,ϕ(Σ) = G2g+r−1/ϕG ,

which is the affine quotient with respect to the ϕ-twisted conjugation action, or
the corresponding ϕ-twisted character stack:

CharG,ϕ(Σ) =
[
G2g+r−1/ϕG

]
.

We will show that the twisted character variety admits a Fock–Rosly type Poisson
bivector Πϕ

FR defined in terms of an Out(G)-invariant classical r-matrix. We will
then define a ϕ-twisted quantum character stack via factorization homology on
Out(G)-decorated surfaces, and in particular obtain a deformation quantization of
the Poisson variety (CharG,ϕ(Σ),Πϕ

FR).

� Dynamical character variety/stack:

Let Γ = (E, V ) be a ciliated ribbon graph with a collection of marked vertices
{v1, . . . , vk} ⊆ V . For each marked vertex vi, let hi ⊂ g be a Lie sub-bialgebra and
(Li,ΠLi) a smooth Poisson variety for which ΠLi is induced from an action of the
double D(hi). We define the dynamical representation variety:

Repdyn(Γ, {(hi, Li)}i=1,...,k) =

k∏
i=1

Li ×GE .

A geometric example is the framed character variety of flat G-connections on the
marked surface {v1, . . . , vk} ⊂ Σ together with a reduction of the structure group
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from G to a maximal torus H ⊂ G over a small loop γi wrapping around the
marked point vi. In this case we have that for all i = 1, . . . , k, hi = h is a Cartan
subalgebra and Li = H.

Let Hi be a group with Lie algebra hi. The ribbon graph Γ determines an action ρΓ

of the group
∏k
i=1Hi ×GV \{v1,...,vk} on the dynamical representation variety. We

will show that given the data of classical dynamical r-matrices r(λi) : Li → g⊗g, as
defined in [DM05], the dynamical representation variety admits a combinatorial
Poisson structure Πdyn which is compatible with the action ρΓ. This Poisson
structure is a dynamical generalization of the Fock–Rosly Poisson structure on
G-character varieties. In the special case where the base spaces Li = h are Cartan
subalgebras, the Poisson structure Πdyn has previously appeared in [BR05] in the
context of Chern–Simons theory with dynamical sources.

For classical dynamical r-matrices r(λi) admitting quantizations by dynamical
twists J (λi), we will define braided module categories Mi encoding the data of
the corresponding dynamical quantum R-matricesR(λi). We obtain a deformation
quantization of the dynamical Fock–Rosly Poisson structure on dynamical charac-
ter varieties via factorization homology on a surface with point defects described
by the Mi.

We also define a dynamical character stack:

Chardyn(Γ, {(hi, Li)}i=1,...,k) =

[
k∏
i=1

Li ×GE/
k∏
i=1

Hi ×GV \{v1,...,vk}

]
.

For Li = H ⊂ G a maximal torus, and Hi = H for all i = 1, . . . , k, we describe
the category of quasi-coherent sheaves on the dynamical character stack via fac-
torization homology and define the corresponding dynamical quantum character
stack.

1.3. Outline

� Chapter 1 establishes the context underlying the research in this thesis and covers
the necessary background material. In § 1.1 we recall basics about Lie bialge-
bras, Poisson–Lie groups and lattice gauge theory. We review the construction of
the Fock–Rosly Poisson structure on G-character varieties via fusion of Poisson
spaces defined in terms of classical r-matrices. In § 1.2 we settle notation and
conventions for quantum groups and their representations. In § 1.3 we recollect
background material on factorization homology for oriented manifolds and estab-
lish the categorical setup in which we will operate. To that end, we introduce
the bicategory of locally presentable enriched categories, which allows to compute
factorization homology with coefficients coming from the representation theory of
quantum groups with formal or generic parameter. The section also contains a
discussion on the factorization homology approach to categorical quantization.

� Chapter 2 is based on joint work with Lukas Müller [KM23] on the quantization
of twisted character stacks. In § 2.1 we define the classical moduli space of
flat twisted bundles and present a novel combinatorial formula for the Poisson
structure on the moduli space. § 2.2 contains background material on factorization
homology on surfaces with principal D-bundles. Moreover, we show that the
braided tensor category Repq(G) is a coefficient system for factorization homology
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in the case that D = Out(G). In § 2.3 we compute factorization homology over
punctured surfaces with D-bundles decoration and use monadic reconstruction to
identify factorization homology with categories of modules over algebras defined
in purely combinatorial terms. In § 2.4 we prove that the algebras obtained
via factorization homology give a deformation quantization of the moduli space
of flat twisted bundles. In § 2.5 we discuss factorization homology for surfaces
with D-bundles that are closed and/or have point defects. In this context, we
give examples for point defects in the D-decorated setting coming from quantum
symmetric pairs.

� In Chapter 3 we discuss dynamical character varieties/stacks and their quanti-
zation via factorization homology. In § 3.1 we introduce fusion for dynamical
Poisson spaces defined in terms of dynamical r-matrices. As an application we
show that dynamical character varieties admit dynamical Fock–Rosly type Pois-
son brackets. In § 3.2 we establish the categorical setup for studying dynamical
quantum groups. We introduce the notion of a quasi-reflection datum giving rise to
point defects encoding dynamical twist quantizations (dynamical point defects).
In § 3.3 we compute factorization homology on surfaces with dynamical point
defects. Using monadic techniques we obtain algebras in dynamical extensions of
monoidal categories, which in particular give examples of dynamical algebras, such
as the dynamical FRT-algebra. In § 3.4 we show that the algebras obtained via
factorization homology give a deformation quantization of the dynamical charac-
ter varieties. We also explain how, for certain coefficients, factorization homology
with dynamical point defects defines a dynamical quantum character stack. As
an application, we discuss how our results recover a quantization of dynamical
Poisson algebras arising in Chern–Simons theory with pointlike sources.

2. Introduction en français

2.1. Homologie à factorisation et théorie des champs topologiques

L’homologie à factorisation comme développée selon Lurie et Ayala-Francis [Lur, AF15]
est un invariant local-global pour les variétés topologiques. Les invariants sont con-
struits en prenant comme donnée locale une algèbre En dans une catégorie monöıdale
symétrique supérieure V, comme donnée géométrique une variété M à dimension n, et
produisant un objet ∫

M
A ∈ V

en ‘intégrant’ A sur la n-variété M telle que la construction soit fonctorielle dans la
variable géométrique. C’est une théorie d’homologie pour les variétés topologiques satis-
faisant une généralisation des axiomes d’Eilenberg–Steenrod pour les théories d’homologie
des espaces topologiques [AF15]. L’homologie à factorisation trouve son origine dans les
travaux de Beilinson–Drinfeld [BD04] dans le cadre de la théorie conforme des champs.
Depuis lors, elle est apparu dans de nombreux domaines des mathématiques et de la
physique. Par exemple, en dimension n = 1 l’homologie à factorisation sur S1 calcule
l’homologie de Hochschild des algèbres E1 dans les catégories monöıdales symétriques
supérieures [Lur, AF15]. Pour les algèbres différentielles graduées commutatives, les
complexes de Hochschild supérieure ont été obtenus en calculant l’homologie à factori-
sation sur des sphères de dimension supérieure [GTZ14]. L’homologie à factorisation est
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intimement liée aux algèbres à factorisation: évaluer l’homologie à factorisation sur des
ouverts U ⊂M donne une algèbre à factorisation localement constante sur M , dont les
sections globales calculent l’homologie à factorisation de M . Les algèbres à factorization
jouent un rôle important dans les travaux de Costello–Gwilliam [CG21] sur la théorie
quantique perturbative des champs; elles capturent la structure présente sur les observ-
ables quantiques. Dans cette thèse, nous explorerons les applications de l’homologie à
factorisation dans un domaine de la physique quantique connu sous le nom de théorie
des champs topologiques.

Une approche axiomatique de la théorie des champs topologiques (TFT) a été développée
à la fin des années 80 par Atiyah et Segal [Ati88, Seg04], définissant une TFT fonctorielle
comme un foncteur monöıdal symétrique d’une catégorie des bordismes topologiques de
dimension d, la catégorie des ‘espaces-temps’, vers une catégorie algébrique. Selon la
catégorie algébrique, une TFT peut décrire l’évolution temporelle soit de l’espace des
états d’un système physique, soit de l’algèbre des observables classiques ou quantiques.
Cependant, afin d’incorporer la localité de la physique, il pourrait ne pas suffire de
définir la théorie uniquement sur des ‘tranches spatiales’ de dimension (d− 1) et sur des
‘espaces-temps’ de dimension d, mais une TFT devrait également attribuer des données
algébriques à des variétés de dimension inférieure, éventuellement à coins, de sorte que
l’on puisse non seulement se propager dans la direction du temps mais aussi dans les
directions spatiales. C’est dans ce contexte que Baez et Dolan [BD95] ont formulé
l’hypothèse du cobordisme indiquant que les TFT pleinement étendues à valeurs dans C
sont classifiés par l’espace des objets complètement dualisables dans la catégorie C. Une
esquisse de preuve détaillée de l’hypothèse du cobordisme est donnée par Lurie [Lur09].
Dans le même travail, Lurie indique comment l’homologie à factorisation déterminerait
une TFT pleinement étendue. Par la suite, Scheimbauer a construit cette TFT de
manière explicite à valeurs dans la catégorie de Morita Algn(S⊗) des algèbres En dans
une catégorie monöıdale symétrique supérieure S⊗ [Sch14].

Cette thèse se concentre sur les aspects des théories des champs topologiques de
dimension n = 2. Entre autre, nous considérons la théorie de jauge de Chern–Simons
avec le groupe de symétrie G. Etant donné une surface orientée Σ, l’espace des phases
pour les champs classiques dans la théorie de Chern–Simons sur la variété Σ × R est
donné par l’espace de modules de connexions plates de G-fibrés principaux sur Σ. Cet
espace de modules peut être décrit par le champ de caractères donné par le champ
quotient:

CharG(Σ) = [Hom(π1(Σ), G)/G] .

Ce champ quotient peut être étudié par la catégorie QCoh(CharG(Σ)) de faisceaux quasi-
cohérents. D’un point de vue de la théorie des champs, cela signifie que nous voulons
considérer les TFT fonctorielles à valeurs dans une catégorie de catégories. Une telle
catégorie est la 4-catégorie de Morita des algèbres E2 dans une bicatégorie monöıdale
symétrique LinCat� de catégories linéaires2. Il a été démontré par Ben-Zvi–Brochier–
Jordan que l’homologie à factorisation à coefficients dansA = Rep(G) calcule la catégorie
de faisceaux quasi-cohérents sur l’espace de modules de connexions plates de G-fibrés

2Nous serons plus précis par la suite sur la nature exacte des catégories linéaires que nous voulons
considérer. Pour des constructions explicites de catégories de Morita supérieures des algèbres En
dans une (∞, k)-catégories, voir [Sch14, Hau17, JFS17].

xii



Introduction

principaux [BZBJ18a]:∫
Σ
Rep(G) ∼= QCoh(CharG(Σ)) ∈ LinCat .

Plus généralement, étant donné une catégorie A (localement présentable) monöıdale
tressée balancée, A définit une TFT locale orientée de dimension 2 [Sch14, BZBJ18a]:∫

(−)
A : Bordor,t

2 −→ Alg2(LinCat�), Mk 7−→
∫
Mk×R2−k

A .

Il est attendu que cette construction s’étende pour définir une 3-TFT locale à valeurs
dans Alg2(LinCat�), et même à une 4-TFT pleinement étendue pour des coefficients
appropriés, par exemple pour A une catégorie de fusion [BJS21].

Dans la théorie des champs topologiques, les bordismes peuvent être munies d’une
structure tangentielle, c’est-à-dire un relèvement de l’application classifianteM → BGL(n)
du fibré tangent le long d’une application BX → BGL(n) d’espaces topologiques. On
peut également définir l’homologie à factorisation pour les variétés munies de structures
tangentielles: étant donnée une n-variété munie d’une structure tangentielle M → BX ,
l’homologie à factorisation est calculée en ‘intégrant’ une algèbre En BX -structurée sur
M [AF15]. Une partie de cette thèse consistera à calculer l’homologie à factorisation
pour des surfaces munies d’une structure tangentielle X = D×SO(2), pour D un groupe
fini, c’est-à-dire sur les 2-variétés orientées munies des D-fibrés principaux. Du point de
vue de la théorie des champs, la décoration par des D-fibrés principaux donne lieu à des
théories des champs D-équivariantes [Tur10]. Le travail de cette thèse sur l’homologie à
factorisation pour les surfaces munies des D-fibrés principaux est donc une exploration
des théories des champs D-equivariantes de dimension 2.

Les théories des champs peuvent également être définies pour des catégories de bor-
dismes stratifiés et colorés, ou dans un langage plus physique: pour les théories des
champs avec défauts. Le cadre de calcul de l’homologie à factorisation sur les variétés
stratifiées a été construit dans [AFT17]. Un exemple est donné par l’homologie à factori-
sation catégorique sur des surfaces avec des défauts de codimension 2 (défauts ponctuels)
qui sont classifiés par des catégories modules tressées sur la catégorie monöıdale tressée
décrivant la théorie du bulk [BZBJ18b]. Dans cette thèse nous calculons l’homologie à
factorisation sur des surfaces marquées pour lesquelles les défauts ponctuels proviennent
de la théorie des groupes quantiques dynamiques. En particulier, cela nous permettra
d’accéder aux algèbres de Poisson et leur quantification issues de la théorie de Chern–
Simons avec des sources ponctuelles [BR05].

2.2. Quantification combinatoire

Soit Σ = Σg,r une surface orientée de genre g et r composantes de bord, r > 0. Pour un
groupe algébrique linéaire G, l’espace de modules des G-connexions plates sur Σ peut
être décrit par la variété de caractères:

CharG(Σ) = Hom(π1(Σ), G)/G .

C’est le quotient affine de la variété de représentations Hom(π1(Σ), G) ∼= G2g+r−1 sous
l’action de conjugaison par le groupe G. L’algèbre des fonctions sur la variété de car-
actères est la sous-algèbre (Og,r)G des fonctionsG-invariantes, avecOg,r = O(G)⊗2g+r−1.
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Fock et Rosly [FR99] ont construit un crochet de Poisson sur l’algèbre (Og,r)G avec un
modèle combinatoire pour Σ en utilisant un graphe orienté Γ = (E, •) plongé sur Σ
muni d’un ordre linéaire sur l’ensemble des demi-arêtes, comme illustré ci-dessous pour
le cas Σ = Σ1,r:

a

b

er

e1

A chaque arête de Γ on attache la (G × G)-variété (G,Πr) munie d’un tenseur de
Poisson Πr défini par une r-matrice classique r ∈ g⊗ g. Par la suite, on utilise la fusion
des espaces de Poisson [LM17] pour obtenir le crochet de Poisson de Fock–Rosly ΠFR

sur l’espace produit G2g+r−1 compatible avec l’action diagonale de G. La procédure de
fusion est parallèle à la façon dont la surface Σ peut être obtenue par fusion successive
de disques D•,• avec deux intervalles marqués dans leur bord. La structure de Poisson de
Fock–Rosly correspond à la structure de Atiyah–Bott/Goldman sur l’espace de modules
de G-connexions plates [AB83, Gol84].

Une quantification par déformation de la structure de Poisson de Fock–Rosly a été
définie par Alekseev–Grosse–Schomerus [AGS95, AGS96] et Buffenoir–Roche [BR95,
BR96] en remplacant le groupe G par le groupe quantique Uq(g) et les r-matrices
classiques par des R-matrices quantiques pour Uq(g). Le résultat est une algèbre de
fonctions quantifiées sur la variété de représentations donnée par le produit tensoriel
(Oq)g,r = Oq(G)⊗2g+r−1 dans Repq(G), où Oq(G) est l’algèbre quantifiant le crochet de
Semenov-Tian-Shansky [STS94] sur G. Les relations de commutation entre les facteurs
tensoriels de (Oq)g,r sont données en termes de R-matrices quantiques.

Dans [BZBJ18a], Ben-Zvi–Brochier–Jordan utilisent l’homologie à factorisation avec
des coefficients dans la catégorie Repq(G) pour obtenir une quantification fonctorielle
du champ CharG(Σ) des G-fibrés plats sur Σ. Intuitivement, la propriété de localité de
l’homologie à factorisation permet de quantifier la théorie localement, ce qui revient à
remplacer la catégorie monöıdale symétrique Rep(G) par la catégorie monöıdale tressée
Repq(G), et à recoller ensuite ces quantifications locales via l’homologie à factorisation
sur Σ. En choisissant un modèle combinatoire pour la surface, l’algèbre des endomor-
phismes de l’objet distingué O ∈

∫
Σ Repq(G) est equivalent à l’algèbre des fonctions

quantifiées sur la variété de représentations; EndRepq(G)(O) ∼= (Oq)g,r comme algèbres

dans Repq(G), retrouvant les algèbres précédemment obtenues par Alekseev–Grosse–
Schomerus et Buffenoir–Roche. La sous-algèbre des invariants de EndRepq(G)(O) donne
une quantification explicite de l’algèbre de Poisson de Fock–Rosly sur la variété de
caractères, équivariante pour l’action du groupe des difféotopies de Σ, ce qui découle
naturellement du cadre topologique de l’homologie à factorisation.

Dans cette thèse, nous étendons la méthode d’homologie à factorisation pour constru-
ire des quantifications fonctorielles aux variétés/champs de caractères généralisé(e)s qui
suivent:

� Variété/Champ de caractères tordu(e):

Soit ϕ : π1(Σ) → Out(G) un Out(G)-fibré sur Σ, où Out(G) est le groupe des
automorphismes extérieurs de G. Un G-fibré plat ϕ-tordu est un GoOut(G)-fibré
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plat P → Σ avec une équivalence π∗P ∼= ϕ, où π : G o Out(G) → Out(G) est la
projection naturelle. Les espaces de modules de fibrés tordus sont déjà apparus
en relation avec des applications moments tordues dans [Mei17, Zer21], ou dans le
contexte des symétries finies pour la théorie de Yang–Mills en dimension 2 dans
[MSS22]. Nous pouvons décrire l’espace de modules de G-fibrés plats ϕ-tordus soit
par la variété de caractères ϕ-tordue

CharG,ϕ(Σ) = G2g+r−1/ϕG ,

définie comme le quotient affine par rapport à l’action de conjugaison ϕ-tordue,
soit par le champ de caractères ϕ-tordu:

CharG,ϕ(Σ) =
[
G2g+r−1/ϕG

]
.

Nous montrerons que la variété de caractères tordue admet un tenseur de Pois-
son Πϕ

FR de type Fock–Rosly défini à l’aide d’une r-matrice classique Out(G)-
invariante. Nous définirons ensuite un champ de caractères quantique ϕ-tordu par
l’homologie à factorisation sur des surfaces décorées avec des Out(G)-fibrés, et en
particulier nous obtiendrons une quantification par déformation de la variété de
Poisson (CharG,ϕ(Σ),Πϕ

FR).

� Variété/Champ de caractères dynamique:

Soit Γ = (E, V ) un graphe orienté, muni d’un ordre linéaire sur l’ensemble des
demi-arêtes incident à chaque sommet, avec une collection de sommets marqués
{v1, . . . , vk} ⊆ V . Pour chaque sommet marqué vi, on se donne hi ⊂ g une
sous-bigèbre de Lie et (Li,ΠLi) une variété de Poisson lisse pour laquelle ΠLi est
induit par une action du double D(hi). On définit la variété de représentations
dynamique:

Repdyn(Γ, {(hi, Li)}i=1,...,k) =
k∏
i=1

Li ×GE .

Un exemple géométrique est l’espace desG-connexions plates sur la surface marquée
{v1, . . . , vk} ⊂ Σ avec une réduction du groupe structural G à un tore maximal
H ⊂ G sur une petite boucle γi entourant le point marqué vi et avec une trivial-
isation du fibré au voisinage de vi. Dans ce cas on a que pour tout i = 1, . . . , k,
hi = h est une sous-algèbre de Cartan et Li = H.

Soit Hi un groupe d’algèbre de Lie hi. Le graphe Γ détermine une action ρΓ du
groupe

∏k
i=1Hi ×GV \{v1,...,vk} sur la variété de représentations dynamique. Nous

montrerons que, étant donné des r-matrices dynamiques classiques r(λi) : Li →
g ⊗ g, telles que définies dans [DM05], la variété de représentations dynamique
admet une structure de Poisson combinatoire Πdyn compatible avec l’action ρΓ.
Cette structure de Poisson est une généralisation dynamique de la structure de
Poisson de Fock–Rosly sur les variétés de caractères. Dans le cas particulier où les
espaces de base Li = h sont des sous-algèbres de Cartan, la structure de Poisson
Πdyn est déjà apparue dans le contexte de la théorie de Chern–Simons avec des
sources dynamiques [BR05].

Pour les r-matrices dynamiques classiques r(λi) avec des quantifications par twists
dynamiques J (λi), nous définirons des catégories modules tresséss Mi encodant
les données des R-matrices quantiques dynamiquesR(λi). On obtient une quantifi-
cation par déformation de la structure de Poisson dynamique de type Fock–Rosly
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sur les variétés de caractères dynamiques via l’homologie à factorisation sur une
surface avec des défauts ponctuels décrits par les Mi.

Nous définissons le champ de caractères dynamique:

Chardyn(Γ, {(hi, Li)}i=1,...,k) =

[
k∏
i=1

Li ×GE/
k∏
i=1

Hi ×GV \{v1,...,vk}

]
.

Pour Li = H ⊂ G un tore maximal, et Hi = H pour tout i = 1, . . . , k, on décrit
la catégorie des faisceaux quasi-cohérents sur le champ de caractères dynamique
via l’homologie à factorisation et on définit le champ de charactère quantiques
dynamiques correspondant.

2.3. Résumé

� Le Chapitre 1 établit le contexte sous-jacent à la recherche dans cette thèse et
donne le matériel de base nécessaire. Dans le § 1.1 nous rapellons les bases sur
les bigèbres de Lie, les groupes de Poisson–Lie et la théorie de jauge sur réseau.
Nous rappelons la construction de la structure de Poisson de Fock–Rosly sur les
variétés de caractères via la fusion d’espaces de Poisson définis en termes de r-
matrices classiques. Dans le § 1.2 nous établissons la notation et les conven-
tions pour les groupes quantiques et leurs représentations. Dans le § 1.3, nous
donnons les bases sur l’homologie à factorisation pour les variétés orientées et
établissons le cadre catégoriel dans lequel nous allons opérer. Pour cela, nous
introduisons la bicatégorie des catégories localement présentables enrichies, qui
permet de calculer l’homologie à factorisation avec des coefficients issus de la
théorie des représentations des groupes quantiques. La section contient également
une discussion sur l’approche d’homologie à factorisation pour la quantification
catégorique.

� Le Chapitre 2 est basé sur une collaboration avec Lukas Müller [KM23] sur la
quantification des champs de caractères tordus. Dans le § 2.1 nous définissons
l’espace de modules classique de fibrés plats tordus et présentons une nouvelle
formule combinatoire pour la structure de Poisson sur cet espace de modules. Le
§ 2.2 contient le matériel de base sur l’homologie à factorisation sur des surfaces
munies desD-fibrés principaux. De plus, nous montrons que la catégorie monöıdale
tressée Repq(G) est un système de coefficients pour l’homologie à factorisation dans
le cas où D = Out(G). Dans le § 2.3 nous calculons l’homologie à factorisation sur
des surfaces à bord munies de D-fibrés et utilisons la reconstruction monadique
pour identifier l’homologie à factorisation avec des catégories de modules sur des
algèbres définies en termes purement combinatoires. Dans le § 2.4 nous prouvons
que les algèbres obtenues via l’homologie à factorisation donnent une quantification
par déformation de l’espace de modules de fibrés plats tordus. Le § 2.5 concerne
l’homologie à factorisation pour les surfaces munies de D-fibrés qui sont fermées
et/ou qui ont des défauts ponctuels. Dans ce contexte, nous donnons des exemples
de défauts ponctuels dans le cadre D-décoré provenant de paires symmetriques
quantiques.

� Dans le Chapitre 3, nous parlons des variétés/champs de caractères dynamiques
et de leur quantification via l’homologie à factorisation. Dans le § 3.1 nous in-
troduisons la fusion pour les espaces de Poisson dynamiques définis en termes de
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r-matrices dynamiques. Comme application, nous montrons que les variétés de
caractères dynamiques admettent des crochets de Poisson dynamiques de type
Fock–Rosly. Dans le § 3.2 nous établissons le cadre catégoriel pour étudier les
groupes quantiques dynamiques. Nous introduisons la notion de donnée de quasi-
reflection donnant lieu à des défauts ponctuels incorporant des quantifications par
twist dynamique (défauts ponctuels dynamiques). Dans le § 3.3 nous calculons
l’homologie à factorisation sur les surfaces avec des défauts ponctuels dynamiques.
En utilisant des techniques monadiques, nous obtenons des algèbres dans des ex-
tensions dynamiques de catégories monöıdales, qui donnent notamment des ex-
emples d’algèbres dynamiques, comme l’algèbre FRT dynamique. Dans le § 3.4
nous montrons que les algèbres obtenues via l’homologie à factorisation donnent
une quantification par déformation des variétés de caractères dynamiques et nous
expliquons comment l’homologie à factorisation avec des défauts ponctuels dy-
namiques définit un champ de caractères quantique dynamique. Comme applica-
tion, nous discutons la façon dont nos résultats produisent une quantification des
algèbres de Poisson dynamiques issues de la théorie de Chern–Simons avec des
sources ponctuelles.
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1. Background

1.1. Character varieties and lattice gauge theory

Let G be a semi-simple linear algebraic group over C. The G-character variety CharG(Σ)
of a surface Σ is defined as the set of equivalence classes

CharG(Σ) = Hom(π1(Σ), G)/G

of group homomorphisms from the fundamental group of Σ to G. It is well-known
that character varieties describe the moduli space of flat G-bundles on Σ and as such
are extensively studied in the context of gauge theories, for example in Chern–Simons
on 3-manifolds of the form Σ × [0, 1]. For closed surfaces, the moduli space of flat
G-bundles is symplectic [AB83, Gol84]. The symplectic structure was constructed in
the differential geometric setting by Atiyah–Bott [AB83] from the infinite-dimensional
symplectic manifold of all connections via symplectic reduction with respect to the
gauge group and moment map given by the curvature. The same symplectic structure
appeared in the work of Goldman [Gol84], where the construction is in terms of group
cohomology.

In this thesis we will focus on a later construction due to Fock–Rosly [FR93, FR99]
for surfaces with boundary. Taking advantage of the fact that the moduli space is finite-
dimensional, Fock–Rosly’s idea was to replace the gauge theory on Σ by a lattice gauge
theory, meaning that the surface is considered as a combinatorial object for which a
flat bundle is described by means of a discrete connection. In more details, for a finite
collection of marked points V ⊂ ∂Σ and a graph Γ = (E, V ) presenting the marked
surface, Fock–Rosly constructed a Poisson structure ΠFR on the finite-dimensional space
GE of discrete flat connections, or equivalently on the moduli space of flat G-bundles
with a fixed trivialization over each marked point. The lattice gauge group GV naturally
acts by changing the trivialization. Taking the quotient, the Fock–Rosly (FR) Poisson
structure descends to the full moduli space of flat G-bundles. The latter agrees with
the Poisson structure obtained via infinite-dimensional reduction from the space of all
connections à la Atiyah–Bott [FR99, Proposition 5].

In § 1.1.1 we provide background on Poisson–Lie groups and their infinitesimal analogs,
Lie bialgebras, which are part of the data entering the FR-construction. We recall how
classical r-matrices give rise to multiplicative Poisson structures and more general Pois-
son varieties with compatible group actions. In § 1.1.2 we give a detailed overview on
Fock–Rosly’s approach to defining Poisson structures on character varieties. We will see
that the FR-construction is an example of a Poisson structure defined via Lie bialgebra
actions and classical r-matrices. Finally, in § 1.1.3 we discuss how the same data used
in the FR-construction also defines a (0-shifted) Poisson structure on the G-character
stack.
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1. Background

1.1.1. Lie bialgebras and Poisson–Lie groups

Unless otherwise stated, all groups will be semi-simple linear algebraic groups over C.
The main reference for the background material presented in this section are [KS04] and
the lecture notes [ES02a].

Lie bialgebras The tensor product g⊗ g is a g-module via the adjoint action

ad(2)
y (x1 ⊗ x2) = ady(x1)⊗ x2 + x1 ⊗ ady(x2) ,

for any pure tensor x1 ⊗ x2 ∈ g⊗ g.

Definition 1.1.1. A Lie bialgebra is a Lie algebra (g, [−,−]) together with an anti-
symmetric linear map δ : g→ g⊗ g, called the co-bracket, satisfying

� co-Jacobi identity:
Cyc(δ ⊗ 1)δ(x) = 0

where Cyc: g⊗3 → g⊗3 is the linear map defined as

x1 ⊗ x2 ⊗ x3 7−→ x1 ⊗ x2 ⊗ x3 + x2 ⊗ x3 ⊗ x1 + x3 ⊗ x1 ⊗ x2

for any pure tensor x1 ⊗ x2 ⊗ x3 ∈ g⊗3.

� δ is a 1-cocycle:

δ([x, y]) = ad(2)
x δ(y)− ad(2)

y δ(x)

= [1⊗ x+ x⊗ 1, δ(y)] + [δ(x), 1⊗ y + y ⊗ 1] ,

for all x, y ∈ g.

The co-Jacobi identity for δ guarantees that the dual map δ∗ : g∗ ⊗ g∗ → g∗ endows
g∗ with the structure of a Lie algebra. Fixing a basis (ei)i∈I for g with dual basis (θi)i∈I
for g∗, we introduce structure constants for the bracket and co-bracket

[ei, ej ] = fkijek, δ(ek) = cijk ei ⊗ ej (1.1)

and then we also have δ∗(θi ⊗ θj) = cijk θ
k.

Classical r-matrices We will now focus on the case where the co-bracket δ of a Lie
bialgebra g is not just a 1-cocycle as in Definition 1.1.1, but also a 1-coboundary. More
precisely, we are asking that δ : g→ g⊗2 is a linear map of the form

δ(x) = ad(2)
x (r)

= [x⊗ 1 + 1⊗ x, r]

for a fixed element r ∈ g⊗ g. In this situation we write δ = δr. As every coboundary is
a cocylce, the cocycle condition of Definition 1.1.1 is automatically satisfied.

Definition 1.1.2. An element r ∈ g⊗ g is called a classical r-matrix if

� the symmetric part r12 + r21 is g-invariant
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1. Background

� r satisfies the classical Yang–Baxter equation (CYBE)

CYB(r) = 0

where CYB(r) = [r12, r13] + [r12, r23] + [r13, r23] is the Yang–Baxter operator.

We will usually denote by ω = 1
2(r12 − r21) the anti-symmetric part of r and by t =

1
2(r12 + r21) its symmetric part.

In a basis (ei)i∈I for g the CYBE reads

rijrab
(

[ei, ea]⊗ ej ⊗ eb + ei ⊗ [ej , ea]⊗ eb + ei ⊗ ea ⊗ [ej , eb]
)

= 0 .

Note that g-invariance of the symmetric part guarantees that the bracket δ∗ on g∗ is
anti-symmetric and the CYBE is a sufficient condition for the Jacobi identity to hold
for (g∗, δ∗). This last point is nicely explained in [KS04, Section 2.2].

Definition 1.1.3. A Lie bialgebra (g, [−,−], δ) is called quasi-triangular if its cobracket
is of the form

δr : g −→ g⊗ g, x 7−→ [x⊗ 1 + 1⊗ x, r]

where r ∈ g⊗ g is a classical r-matrix.

Note that the co-bracket only depends on the anti-symmetric part ω since by as-
sumption t is ad-invariant. The following two propositions will be useful when defining
Poisson structures via Lie algebra actions and classical r-matrices.

Proposition 1.1.4. [KS04, Section 2.2] For r = ω + t ∈ g⊗ g we have that CYB(r) ∈
∧3g and

CYB(r) = CYB(ω) + CYB(t) .

Proposition 1.1.5. CYB(t) = [t13, t23] = [t23, t12] = [t12, t13]

Proof. We have

CYB(t) = tijtab
(

[ei, ea]⊗ ej ⊗ eb + ei ⊗ [ej , ea]⊗ eb + ei ⊗ ea ⊗ [ej , eb]
)

= −tijtabad(2)
ea (ei ⊗ ej)⊗ eb + tijtabei ⊗ ea ⊗ [ej , eb]

= tijtabei ⊗ ea ⊗ [ej , eb]

= [t13, t23]

by ad-invariance of t, and similarly one can verify the remaining equalities.

Poisson–Lie groups Similarly to how Lie algebras are considered infinitesimal coun-
terparts to groups, Lie bialgebras are infinitesimal structures associated to certain multi-
plicative Poisson structures called Poisson–Lie groups1. The study of Poisson–Lie groups
and their relation to Lie bialgebras was initiated by Drinfeld [Dri00].

Definition 1.1.6. A Poisson–Lie structure on a group G is a Poisson bivector ΠG ∈
∧2TG which is such that the multiplication m : G×G→ G is a Poisson map. We call
the pair (G,ΠG) a Poisson–Lie group.

1In the algebraic setting such groups are sometimes called Poisson algebraic groups. We will however
adapt the more common terminology and refer to G as a Poisson–Lie group.
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1. Background

Let g be the Lie algebra of G. If (G,ΠG) is a Poisson–Lie group, g is naturally a Lie
bialgebra: we may regard the Poisson bivector as a map ΠG : G → ∧2g by identifying
TgG ∼= g. Then, (g, δ) with δ = dΠG : g→ ∧2g is a Lie bialgebra, see for example [ES02a,
Section 2.2]. The additional structure of a Poisson bivector on G thus corresponds to
the additional structure of the co-bracket turning g into a Lie bialgebra. As for Lie
algebras, the uniqueness in passing from Lie bialgebras to Poisson–Lie groups requires
connectedness and simply-connectedness [Dri00], see also [ES02a, Theorem 2.2].

The main example for us of a multiplicative Poisson structure will be the following.

Example 1.1.7. Given a classical r-matrix r ∈ g⊗ g one can define a 2-tensor by

Π = rR,R − rL,L ,

where the superscripts indicate that both tensor factors of r act via right-, respectively
left-invariant vector fields as defined in Equation (1.2) below. Since the symmetric part
of r is ad-invariant this is a multiplicative bivector on G. One can show that the CYBE
for r guarantees that Π is a Poisson bivector. The pair (G,Π) is called a quasi-triangular
Poisson–Lie group since its tangent Lie bialgebra g is quasi-triangular with co-bracket
δr. The corresponding Poisson bracket on O(G) is called the Sklyanin bracket. 4

Group actions and Poisson varieties Let M be a smooth algebraic variety with a
left G-action ρ : G×M →M , (g,m) 7→ g .m. We often refer to M simply as a G-space.
For x ∈ g, the vector field xρ encoding the infinitesimal action of G on M is

xρ . f(m) =
d

dt

∣∣∣
t=0

f(e−tx . m) ,

where we use the symbol . to denote both the action of the group G on M and the
action of the corresponding vector field on the algebra of functions O(M). By the
above we get a Lie algebra homomorphism ρ∗ : g → Γ(M,TM), x 7→ xρ, where the
Lie bracket on the algebra of vector fields Γ(M,TM) is the commutator. The map ρ∗
extends to a morphism of associative algebras from ∧•g to the algebra of multi-vector
fields Γ(M,∧•TM) by setting

(x1 ∧ · · · ∧ xp)ρ(m) = xρ1(m) ∧ · · · ∧ xρp(m) .

The group G acts on itself via right and left multiplication. The respective infinitesimal
actions are encoded in left invariant and right invariant vector fields on G. These vector
fields act on functions via2:

(f / xL)(g) =
d

dt

∣∣∣
t=0

f(ge−tx), (xR . f)(g) =
d

dt

∣∣∣
t=0

f(e−txg) , (1.2)

So that for the left G-action given by conjugation Ad : G×G→ G, (g, h) 7→ ghg−1, we
get xad = xR − xL for the infinitesimal action. Note that the left invariant vector fields
act on the right, but the minus sign turns it into a left action.

Remark 1.1.8. The formulas in (1.2) make sense in the algebraic setting since for all
x ∈ g we have that etx is a well-defined C[t]/tn-point of G for every n ∈ N.

2Notice that here the superscripts L and R refer to left-, respectively right-, invariant vector fields and
not to the action by right, respectively left, multiplication.
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1. Background

Assume now that G is a Poisson–Lie group and M a G-space equipped with a Poisson
structure {−,−}M . The following is a compatibility condition between the action and
the Poisson structures on G and M that will allow to define a Poisson structure on
quotient spaces.

Definition 1.1.9. [LW90] Let (G, {−,−}G) be a Poisson–Lie group and (M, {−,−}M )
a Poisson space with a left G-action. The action ρ : G ×M → M , ρ(g,m) = g . m, of
G on M is called a Poisson action if ρ is a Poisson map. If ρ is a Poisson action, we
call M a Poisson G-space.

Explicitly, for g, h ∈ G, m ∈M , the action ρ is Poisson if

{ϕ,ψ}M (g . m) = {ϕ(− . m), ψ(− . m)}G(g) + {ϕ(g .−), ψ(g .−)}M (m) .

Since for any G-invariant function ϑ ∈ O(M)G we have

ϑ(g .−) = ϑ, ϑ(− . m) = ϑ(m) = const ,

for all m ∈M and g ∈ G, the Poisson bracket on M descends to the algebra O(M)G of
G-invariant functions if the G-action is Poisson.

The following proposition gives an infinitesimal characterization of Poisson actions.
We denote by δ the co-bracket on g coming from the Poisson–Lie structure on G.

Proposition 1.1.10. [LW90, Theorem 2.6] Let ΠM be the Poisson bivector on M . The
action ρ : G×M →M is Poisson if and only if

Lxρ(ΠM ) = ρ∗δ(x)

for all x ∈ g.

We end this section by giving an example of a Poisson G-space that will play a promi-
nent role when defining Poisson structures on character varieties in the next section. We
will use the implicit summation notation r = r1 ⊗ r2 for the classical r-matrix.

Example 1.1.11. Consider G as a left G × G-space via ρ : ((g1, g2), h) 7→ g1hg
−1
2 .

Assume that r = ω + t is a classical r-matrix for the Lie algebra g of G. Then, the
bivector field

ΠG = rR,R − rL,L2,1 = ωR,R + ωL,L (1.3)

on G is Poisson, due to g-invariance of t and the CYBE. Moreover, the left G×G-action
on (G,ΠG) is Poisson. Indeed, the following is a classical r-matrix for g⊕ g:

r̃ = (r1, 0)⊗ (r2, 0)− (0, r2)⊗ (0, r1) .

It induces the above Poisson bivector via the G × G-action; ΠG = ρ∗r̃. Now, for any
(x, y) ∈ g⊕ g we can compute the Schouten bracket

J(x, y)ρ,ΠGK = JxR − yL, ωR,R + ωL,LK

= ad(2)
x (ω)R,R + ad(2)

y (ω)L,L

= ρ∗ad
(2)
(x,y)(r̃)

and by Proposition 1.1.10 we conclude that the action ρ is Poisson. 4
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1. Background

Figure 1.1.: An example of a ciliated ribbon graph embedded into a punctured surface.
Every edge is divided into an outgoing half-edge (green) and an incoming half-edge
(red). The linear order of the half-edges is represented by placing a cilium at the vertex
separating the minimal and the maximal half-edge incident to that vertex.

1.1.2. Fock–Rosly Poisson structure on character varieties

The original reference for the material in this section is [FR93, FR99]. For a more
detailed presentation of the subject we refer to the lecture notes [Aud97].

Let Σ = Σg,r be a compact oriented surface of genus g with r > 0 boundary com-
ponents and a collection V of marked points on the boundary ∂Σ. By a skeleton for
Σ we mean an embedded graph Γ ⊂ Σ such that the set of vertices is V and Γ is a
deformation retract of Σ. Equivalently, the surface Σ may be combinatorially described
by means of a ciliated ribbon graph, that is, a directed graph Γ = (E, V ), with E the
set of oriented edges and V the set of vertices, together with a linear order on the set
of ends of edges Ê(v) at each vertex v ∈ V . Given a ciliated ribbon graph Γ, one can
fatten each edge into a ribbon and each vertex into a disk such that Γ is a skeleton for
the resulting surface. An example of a ciliated ribbon graph with one vertex is pictured
in Figure 1.1.

Given the choice of a skeleton for Σ, let Π1(Σ, V ) be the fundamental groupoid of Σ
based at V . The representation variety is defined by

RepG(Σ, V ) = Hom(Π1(Σ, V ), G) ,

where G is regarded as a groupoid with one object and elements of G as morphisms.
Since the edges of Γ constitute a system of free generators, there is a natural identification

RepG(Σ, V ) ∼= GE .

Note that GE is a finite-dimensional smooth algebraic variety and independent of the
concrete form of the ciliated ribbon graph Γ or topology of Σ. However, we will see that
the FR-Poisson structure on RepG(Σ, V ) is sensitive to the topology.

An element in RepG(Σ, V ) is called a discrete connection. This terminology is moti-
vated by the following remark.

Remark 1.1.12. Geometrically, the representation variety is the moduli space of flat
principal G-bundles AG(Σ, V ) that are trivialized over each point v ∈ V . The identifi-
cation with the representation variety is via the holonomy map

AG(Σ, V )
∼=−→ GE , A 7−→

∏
γ∈E

holγ(A)

where holγ is the holonomy along the path γ.
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1. Background

There is a natural action of the lattice gauge group GV on RepG(Σ, V )

GV ×GE −→ GE

((hv)v∈V , (gγ)γ∈E) 7−→ (ht(γ)gh
−1
s(γ))γ∈E ,

where s(γ) is the starting and t(γ) the target vertex of γ. Taking the affine quotient of
the lattice gauge group action yields the character variety:

CharG(Σ) = RepG(Σ, V )/GV .

Remark 1.1.13. The moduli space AG(Σ, V ) from Remark 1.1.12 is the space of flat
G-bundles modulo gauge transformations which are trivial at the set of vertices V of the
graph Γ. Further reduction by the group GV , which acts by changing the trivialization,
then gives the space MG(Σ) of flat G-bundles modulo all gauge transformations.

Let (ei)i∈I be a basis for g. We denote by eRi (α) and eLi (α) the right-, and left-invariant
vector fields on GE whose left action on a function f ∈ O(GE) is:

eRi (α) . f(g1, . . . , gE) =
d

dt
|t=0f(g1, . . . , e

−teigα, . . . , gE) , (1.4)

(−eLi (α)) . f(g1, . . . , gE) =
d

dt
|t=0f(g1, . . . , gαe

tei , . . . , gE) . (1.5)

The FR-Poisson structure on CharG(Σ) is constructed as follows: to each vertex v ∈ V
one assigns a classical r-matrix r(v), such that the symmetric components of the chosen
r-matrices agree and are non-degenerate. Denote the set of half-edges incident to a
vertex v by Ê(v) and fix a linear ordering ≺ on Ê(v). The Fock–Rosly Poisson bivector
is defined as follows [FR99, Proposition 3]:

ΠFR =
∑
v∈V

∑
α≺β

α,β∈Ê(v)

r(v)ijxi(α, v) ∧ xj(β, v) +
∑

α∈Ê(v)

r(v)ijxi(α, v) ∧ xj(α, v) , (1.6)

where

xi(α, v) =

{
−eLi (α), α is source half-edge at v

eRi (α), α is end half-edge at v .

In [FR99], the proof that ΠFR is indeed a Poisson bivector on the character vari-
ety CharG(Σ) is left as a computation to the reader. A more conceptual proof that
(RepG(Σ, V ),ΠFR) is a Poisson variety compatible with the action of the lattice gauge
group was given by Mouquin in [Mou17, Theorem 4.2]. In the next paragraph we will
outline Mouquin’s approach to defining the FR-Poisson structure via r-matrices and Lie
bialgebra actions. We will adopt the same strategy when defining Poisson structures on
twisted character varieties in § 2.1.1 of Chapter 2. Also, we will give a generalization of
[Mou17, Theorem 4.2] to Poisson structures defined in terms of dynamical r-matrices in
§ 3.1.2 of Chapter 3.

Lastly, we should note that the FR-Poisson algebra on the character variety is inde-
pendent of the choices of the r-matrices and the linear ordering at each vertex [FR99,
Proposition 5], see also [Aud97, Section 2.3]. The Poisson structure only depends on
the symmetric part t ∈ Sym2(g)g of the r-matrices, i.e. on a non-degenerate invariant
symmetric pairing.
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1. Background

FR-construction via fusion For simplicity we consider the case where Γ has only
one vertex, for the general case see [Mou17, Section 4] or the proof of Proposition 3.1.4.
As before, Ê is the set of half-edges of Γ with a linear order ≺. For an edge δ ∈ E we
write s(δ) ∈ Ê for the source half-edge and t(δ) ∈ Ê for the end half-edge. The following

is a classical r-matrix for the direct product Lie algebra gÊ :

rÊ =
∑
δ∈E

(r1)t(δ) ⊗ (r2)t(δ) − (r2)s(δ) ⊗ (r1)s(δ) , (1.7)

where (x)α is the image of x ∈ g under the embedding of g into gÊ as the α-component.

One can modify the direct product r-matrix rÊ via

rΓ = rÊ −MixÊ,≺(r), where MixÊ,≺(r) =
∑
α≺β
α,β∈Ê

(r2)α ∧ (r1)β . (1.8)

The resulting 2-tensor rΓ is again a classical r-matrix for gÊ [LM17, Theorem 6.2]. It is
important to note that while the diagonal map

(g, δr)
diag−−→ (gÊ , δrΓ)

is an embedding of Lie bialgebras, the same is not true for the direct product Lie

bialgebra (gÊ , δ
rÊ

), see also Remark 1.1.15 below.

There is a natural action of GÊ on GE :

ρΓ : GÊ ×GE −→ GE

((hα)
α∈Ê , (gγ)γ∈E) 7−→ (ht(γ)gγh

−1
s(γ))γ∈E .

The induced 2-tensor field ρΓ
∗ (r

Γ) on GE is a bivector field since ρΓ
∗ (r

Γ
12 +rΓ

21) = 0 due to
ad-invariance of the symmetric part of the r-matrix. It turns out that ρΓ

∗ (r
Γ) is actually

a Poisson bivector field, as can be deduced from the following proposition:

Proposition 1.1.14. [LM17, Proposition 2.18] Let ρ : G ×M → M be a G-space and
r ∈ g⊗ g a classical r-matrix. If ρ∗r is a bivector field then it is a Poisson bivector field
and (M,ρ∗r) is a Poisson G-space.

Proof. One has to show that the Schouten bracket Jρ∗r, ρ∗rK vanishes. By assumption
ρ∗t = 0 and thus

Jρ∗r, ρ∗rK = 2ρ∗CYB(ω)

= −2ρ∗CYB(t) .

We denote by t : g∗ → g the map defined by t(η) = 〈t1, η〉t2. By Proposition 1.1.5 we
have ρ∗CYB(t) = ρ∗[t12, t13]. Hence, for every m ∈M and α, β, γ ∈ T ∗mM we find

ρ∗CYB(t)(m)(α, β, γ) = 〈ρ∗mα, [t(ρ∗mβ), t(ρ∗mγ)] , (1.9)

where ρm : g → TmM , ρm(x) = ρ∗(x)(m) and ρ∗m : T ∗mM → g is the dual map. The
stabilizer subalgebra ker(ρm) ⊂ g at m is coisotropic with respect to t, meaning that
t(im(ρ∗m)) ⊂ ker(ρm). It follows that (1.9) = 0. Finally, the claim that (M,ρ∗) is a
Poisson G-space then follows from

Jρ∗x, ρ∗ωK = ρ∗ad
(2)
x (ω) = ρ∗δ(x)

for all x ∈ g and Proposition 1.1.10.
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1. Background

The above proposition thus implies that RepG(Σ) is a Poisson GÊ-space. Finally,

since the diagonal map g
diag−−→ gÊ is an embedding of Lie bialgebras, one concludes that(

RepG(Σ), ρΓ
∗ (r

Γ)
)

(1.10)

is a Poisson G-space, namely the one discovered by Fock–Rosly.

Remark 1.1.15. The Poisson G-space defined in this way can be understood as the

result of fusion of the Poisson GÊ-space RepG(Σ) = GE equipped with the direct product

Poisson structure ρΓ
∗ r
Ê. The necessity of fusion is due to the following observation. For

two Poisson G-spaces (Y1,ΠY1) and (Y2,ΠY2), their direct product Y1×Y2 has a natural
Poisson structure ΠY1 + ΠY2 and a natural G-action coming from the diagonal map.
However, the resulting Poisson space

(Y1 × Y2,ΠY1 + ΠY2)

is in general not a Poisson G-space under the diagonal action. One way to resolve this
problem is to take their fusion product instead. A fusion product for Poisson spaces
was defined by Lu–Mouquin in [LM17, Definition 6.9] by means of classical r-matrices.
It agrees, up to a twist, with the fusion product of quasi-Poisson spaces introduced by
Alekseev–Kosmann-Schwarzbach–Meinrenken in [AKSM00]. Coming back to the case of
the representation variety: given several copies of the Poisson space (G,ΠG), where ΠG

is the Poisson structure from Example 1.1.11, the direct product Poisson space is

(G× · · · ×G,ΠG + · · ·+ ΠG) = (GE , ρΓ
∗ r
Ê)

This is a Poisson GÊ-space under the action ρΓ. Whereas the fusion product due to
[LM17] is

(G× · · · ×G,ΠG + · · ·+ ΠG − ρΓ
∗MixÊ,≺(r))

equipped with the G-action ρΓ ◦ diag. In summary, the Poisson structure (1.10) on
the representation variety is a fusion product of several copies of the group G with its
G×G-Poisson structure ΠG.

We are now going to describe ΠΓ = ρΓ
∗ (r

Γ) in some more details, so that it will be
easy to see that ΠΓ agrees with the Fock–Rosly Poisson bivector from Equation (1.6).
To that end, decompose the bivector field as

ΠΓ =
∑
γ∈E

ΠΓ
γ,γ +

∑
γ<δ

δ,γ∈{1,...,|E|}

(
ΠΓ
γ,δ − τ(ΠΓ

γ,δ)
)
,

where ΠΓ
γ,δ acts on the γ-component of the first tensor factor and on the δ-component

of the second tensor factor of GE ×GE , and τ swaps the tensor factors of the 2-tensor
field ΠΓ

γ,δ.

The components of the r-matrix contributing to the first term ΠΓ
γ,γ are

rΓ
γ = (r1)t(γ) ⊗ (r2)t(γ) − (r2)s(γ) ⊗ (r1)s(γ) + (r2)t(γ) ∧ (r1)s(γ)

Under the pushforward ρΓ
∗ we then get

Πγ,γ = ωad,ad + tR,L − tL,R , (1.11)
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1. Background

(a)

γ/δ δ/γ

(b)

γ/δ δ/γ

(c)

δ/γγ/δ

Figure 1.2.: Ciliated graphs with one vertex and two edges labeled by two ordered
elements γ < δ of the set {1, . . . , |E|}. We will refer to the graphs with the red labels as
positively (a) unlinked, (b) linked, (c) nested, and we say that the graphs with the blue
labels are negatively (a) unlinked, (b) linked, (c) nested.

where we used ad-invariance of t. The above Poisson structure was first introduced
by Semenov-Tian-Shansky (STS) [STS94] and we will accordingly denote this Poisson
bivector field by ΠSTS .

For Πγ,δ, γ 6= δ, we have to distinguish the following cases, see also Figure 1.2:

� γ, δ are positively unlinked: t(γ) ≺ s(γ) ≺ t(δ) ≺ s(δ)

rΓ
unlinked

(1.8)
= −

(
(r2)t(γ) ⊗ (r1)t(δ) + (r2)t(γ) ⊗ (r1)s(δ) + (r2)s(γ) ⊗ (r1)t(δ)

+(r2)s(γ) ⊗ (r1)s(δ)
)

ΠΓ
γ,δ = ρΓ

∗
(
rΓ
unlinked

)
= −rad,ad2,1

� γ, δ positively linked: t(γ) ≺ t(δ) ≺ s(γ) ≺ s(δ)

rΓ
linked

(1.8)
= −

(
(r2)t(γ) ⊗ (r1)t(δ) + (r2)t(γ) ⊗ (r1)s(δ) − (r1)s(γ) ⊗ (r2)t(δ)

+(r2)s(γ) ⊗ (r1)s(δ)
)

ΠΓ
γ,δ = ρΓ

∗
(
rΓ
linked

)
= −rad,ad2,1 − 2tL,R

� γ, δ positively nested: t(γ) ≺ t(δ) ≺ s(δ) ≺ s(γ)

rΓ
nested

(1.8)
= −

(
(r2)t(γ) ⊗ (r1)t(δ) + (r2)t(γ) ⊗ (r1)s(δ) − (r1)s(γ) ⊗ (r2)t(δ)

−(r1)s(γ) ⊗ (r2)s(δ)
)

ΠΓ
γ,δ = ρΓ

∗
(
rΓ
nested

)
= −rad,ad2,1 − 2tL,R + 2tL,L

The remaining three cases depicted in Figure 1.2 can be worked out analogously.

1.1.3. Character stacks

In [Saf21b], Safronov relates multiplicative Poisson structures, such as Poisson–Lie
groups, as well as Poisson G-spaces to the notion of shifted Poisson structures for (de-
rived) Artin stacks introduced in [CPT+17]. The intuition behind the definition of a
shifted Poisson structure on a stack is the following. First recall that for a smooth
algebraic variety M , a Poisson structure is a bivector Π ∈ Γ(M,∧2TM) such that
JΠ,ΠK = 0. Now, let X be an Artin stack. For example; X = [M/G] for M a smooth
algebraic variety. Infinitesimally, an Artin stack may be studied via its tangent complex
TX . Accordingly, the algebra of n-shifted polyvector fields is

Pol(X,n) = Γ(X,Sym(TX [−n− 1])) .
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Then, a n-shifted Poisson structure on X is a formal power series Π = Π2 + Π3 + . . . ,
where each Πk ∈ Pol(X,n) is of weight k and internal degree n+2, satisfying the Maurer-
Cartan equation dΠ + 1

2JΠ,ΠK, that is, the Schouten bracket of the shifted bivector Π2

is not zero on the nose but homotopic to zero in a coherent way. A precise definition of
a shifted Poisson structure on an algebraic stack can be found in [CPT+17].

Recall that the G-character stack of Σ is defined by the quotient stack:

CharG(Σ) = [RepG(Σ)/G] .

In the previous section we have seen that the representation variety (RepG(Σ),ΠFR) is
a Poisson G-space in the case that G is equipped with the quasi-triangular Poisson–Lie
group structure ΠG = rR,R−rL,L. We may view (ΠFR,ΠG) as an object in the groupoid
QPois(RepG(Σ), G) whose objects are (quasi-)Poisson structures on G and compatible
(quasi-)Poisson structures on RepG(Σ). Morphisms in this category are induced by
twists λ ∈ ∧2g modifying both ΠG and ΠRepG(Σ).

It was shown in [Saf21b, Proposition 2.14] that for any G-space M , there is an equiv-
alence of groupoids

Cois(p, 1) ∼= QPois(M,G), p : [M/G] −→ BG ,

where on the left we have the groupoid of 1-shifted coisotropic structures on p. In
particular, Cois(p, 1) contains the information of an 0-shifted Poisson structure on [M/G]
(see for example [Saf21b, Section 1.3] for more details on the relation between shifted
coisotropic and Poisson structures).

Applying the above to the situation at hand, we find that the data (ΠFR,ΠG) gives
rise to a 0-shifted Poisson structure on the character stack CharG(Σ). It is expected
that factorization homology

∫
Σ Repq(G) computes a quantization of this shifted Poisson

structure. However, to our knowledge, there is so far no known formula for the shifted
Poisson structure on CharG(Σ).

1.2. Hopf algebras and their representations

Throughout, k is either a field K of characteristic zero or the ring K[[~]] of formal power
series. We will write ⊗ for the (completed) tensor product in the category of (complete)
k-modules.

In this section we recall basic definitions of quasi-triangular Hopf algebra theory with
a focus on the theory of quantum groups and their representations. For a detailed
exposition on Hopf algebras we refer to Majid’s text [Maj95]. For basics on quantum
groups and their representations we mainly follow the books by Chari–Pressley [CP95]
and Kassel [Kas95].

Basic definitions and notation A Hopf algebra H is a unital k-algebra with coprod-
uct ∆: H → H ⊗H, counit ε : H → k and antipode S : H → H. The maps ∆ and ε are
algebra homomorphisms and S is an anti-homomorphism. Usually we will adopt implicit
summation notation for tensors, for example we will write h = h1⊗· · ·⊗hk for an element
h ∈ H⊗k. We will use Sweedler’s notation for the coproduct, i.e. ∆(h) = h(1) ⊗ h(2), for
h ∈ H.

The Hopf algebra H is called quasi-triangular if there exists a universal R-matrix,
which is an invertible element R ∈ H ⊗H satisfying

(∆⊗ id)R = R1,3R2,3, (id⊗∆)R = R1,3R1,2 ,

11



1. Background

where the notation means for example R1,3 = R1 ⊗ 1 ⊗ R2 with implicit summation
notation R = R1 ⊗R2, and

∆op(h) = R∆(h)R−1 , (1.12)

for all h ∈ H. The opposite coproduct ∆op is the composition of ∆ and the operator τ
switching the two tensor factors. The above implies that the universal R-matrix satisfies
the quantum Yang–Baxter equation (YBE):

R1,2R1,3R2,3 = R2,3R1,3R1,2 .

Moreover, the following normalization condition holds

(ε⊗ id)R = 1⊗ 1 = (id⊗ ε)R ,

and one also has
(S ⊗ id)R = R−1, (id⊗ S)R−1 = R .

A quasi-triangular Hopf algebra is called ribbon, if it has an invertible, central element
ν ∈ H such that

ν2 = uS(u) ,

for u = S(R2)R1 and

S(ν) = ν, ε(ν) = 1, ∆(ν) = (R2,1R)−1(ν ⊗ ν) .

On a categorical level, quasi-triangular Hopf algebras give rise to rigid braided tensor
categories. Indeed, for a quasi-triangular Hopf algebra (H,R) over K, we will write
H-Mod for the category of locally-finite3 H-modules. One then defines a braiding for
H-Mod by acting with the universal R-matrix:

βV,W (v ⊗ w) = R2 . w ⊗R1 . v, V,W ∈ H-Mod .

This is an H-module map because of (1.12). The braid equation for β is a consequence
of the quantum YBE. Also, note that the category H-Mod is generated under filtered
colimits by finite-dimensionalH-modules and is therefore rigid4. For a finite-dimensional
left H-module V , the dual K-vector space V ∗ is again a left H-module using the antipode

(h I ϕ)(v) = ϕ(S(h) . v), v ∈ V, ϕ ∈ V ∗ .

The pair (V ∗,I) is the left dual to (V, .). The right dual to V is defined similarly using
the inverse of the antipode. If H is ribbon, there is a canonical identification of the left
and right dual.

1.2.1. Quantum groups with a formal parameter

Throughout, let g be a finite-dimensional complex semi-simple Lie algebra and ~ a formal
parameter. A quantized universal enveloping algebra (QUEA) U~(g) is a formal defor-
mations of the classical universal enveloping algebra U(g), according to the definition
below.

Definition 1.2.1. A formal deformation of a Hopf algebra A with multiplication m
and coproduct ∆ is a topological Hopf algebra A~, which is isomorphic to A[[~]] as a
C[[~]]-module, with multiplication m~ and coproduct ∆~ such that

m = m~ mod ~, ∆ = ∆~ mod ~ .
3A module V is called locally-finite if for all v ∈ V the submodule H.v generated by v is finite-

dimensional.
4We call a category rigid if the compact objects are dualizable.
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Drinfeld–Jimbo quantum groups In the following all tensor products are assumed
to be completed in the ~-adic topology. Let g be of rank n with Cartan matrix A =
(aij)1≤i,j≤n. We write Π = {α1, . . . , αn} for the set of simple roots. We rescale the
pairing (−,−) coming from the Killing form such that the entries of the symmetrized
Cartan matrix DA = (diaij)i,j are (DA)ij = (αi, αj).

Definition 1.2.2. Let U~(g) be the algebra topologically generated by the 3n symbols
(Hi, X

+
i , X

−
i )i=1,...,n subjected to the following relations:

[Hi, Hj ] = 0, [Hi, X
±
j ] = ±aijX±j

[X+
i , X

−
i ] = δij

edi~Hi − e−di~Hi
edi~ − e−di~

(1.13)

and for i 6= j:

1−aij∑
k=0

(−1)k
[
1− aij
k

]
edi~

(X±i )kX±j (X±i )1−aij−k = 0 . (1.14)

The deformation U~(g) of the universal enveloping algebra is again a Hopf algebra
with coproduct

∆~(Hi) = Hi ⊗ 1 + 1⊗Hi

∆~(X+
i ) = X+

i ⊗ e
di~Hi + 1⊗X+

i , ∆~(X−i ) = X−i ⊗ 1 + e−di~Hi ⊗X−i .

The rest of the Hopf algebra structure can be found in [CP95]. The Hopf algebra U~(g)
is a QUEA [CP95, Proposition 6.5.1].

Let δr be the standard Lie bialgebra structure on g with classical r-matrix r =
1
2

∑
iHi ⊗ Hi +

∑
α∈∆+ X+

α ⊗ X−α , where the second sum runs over the set of posi-
tive roots. The cobracket uniquely extends to the universal enveloping algebra U(g)
[CP95, Proposition 6.2.3]. Then, one has

δr(a) =
∆~(a~)−∆op

~ (a~)

~
mod(~) , (1.15)

for a = a~ mod(~), meaning that U~(g) is a quantization of the standard Lie bialgebra
structure on g.

There is a PBW-type basis for U~(g) consisting of the generators (Hi)i=1,...,n and ‘root
vectors’ associated to the set of positive roots ∆+. In order to define the root vectors in
the quantum case one uses the action of the braid group Bg on U~(g), in analogy to the
classical situation where one uses the Weyl group action to define the root vectors. For
Dynkin diagrams of ADE-type the braid group has generators Ti, i = 1, . . . , n, subjected
to the following relations

TiTjTi = TjTiTj if the vertices i and j are connected

TjTi = TiTj if the vertices i and j are not connected .

Formulas for the action of Bg on the generators of U~(g) can be found in [CP95,
Theorem 8.1.2]. Positive and negative root vectors for the QUEA are now defined using
the braid group action:

13



1. Background

Definition 1.2.3. Fix a reduced decomposition ω0 = si1si2 . . . siN of the longest element

ω0 of the Weyl group W of g. The positive/negative root vectors (X
+/−
βk

)1≤k≤N are
defined by

X
+/−
βk

= Ti1Ti2 . . . Tik−1
(X

+/−
ik

) .

Remark 1.2.4. There is a bijective correspondence between reduced decompositions of
the longest element of the Weyl group and normal orderings5 on the set of positive roots
∆+. Given a reduced composition ω0 = si1si2 . . . siN the set

β1 = αi1 ≺ β2 = si1(αi2) ≺ . . . ≺ βN = si1si2 . . . siN−1(αiN )

is a normal ordering in ∆+ [Zhe87].

The universal R-matrix The QUEA U~(g) is quasi-triangular [CP95, Theorem 8.3.9].
In order to give an explicit formula for the universal R-matrix, we fix a decomposition of
the longest element ω0 in the Weyl group and denote by (X±βk)1≤k≤N the set of positive
and negative root vectors. The R-matrix admits the following multiplicative formula

R~ = exp
(
~
∑
i,j

(B−1)ijHi ⊗Hj

) ∏
β1≺···≺βk≺···≺βN

expqβk

(
(1− q−2

βk
)X+

βk
⊗X−βk

)
(1.16)

= ΩR̂ ,

where B = (d−1
j aij)i,j and the product is ordered according to the chosen normal order-

ing on the positive roots as in Remark 1.2.4.

Representation theory For any complex vector space V , the left C[[~]]-module V [[~]]
is the set of all formal series ∑

n∈N
vn~n, vn ∈ V .

We call V [[~]] a topologically free module. If V is finite-dimensional, we say that V [[~]]
has finite rank. The topological tensor product ⊗̂ of two topologically free modules is
again topologically free:

V [[~]]⊗̂W [[~]] ∼= (V ⊗W )[[~]] .

For a topological Hopf algebra A~ we will write A~-Modfd for the category of topologically
free A~-modules of finite rank.

Since there are no non-trivial deformations of U(g) as an algebra, the representation
theory U~(g)-Mod is analogous to that of the Lie algebra g: for a dominant integral
weight λ ∈ P+ and highest weight module Vλ, there exists a unique topologically free
U~(g)-module Ṽλ, such that Ṽλ/~Ṽλ ∼= Vλ, and every module in U~(g)-Mod is a direct
sum of modules of this form, see [Kas95, Section XVII.2].

The category U~(g)-Modfd is braided monoidal with braiding induced by the action
of the universal R-matrix R~. Moreover, every object V [[~]] has a dual V ∗[[~]] with
U~(g)-action defined via the antipode. The topological Hopf algebra U~(g) has a ribbon
element [Kas95, Proposition XVII.3.1]

θ~ = e−~ρu~ ,

where ρ ∈ h corresponds to the half-sum of positive roots under the isomorphism h∗ ∼= h
and u~ = S(R2

~)R1
~, turning U~(g)-Modfd into a ribbon tensor category.

5An ordering ≺ of a set of positive roots ∆+ is called normal if for any three roots α, β, γ such that
γ = α+ β we have either α ≺ γ ≺ β or β ≺ γ ≺ α.
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1.2.2. Quantum groups with a generic parameter

Let G be a semi-simple linear algebraic group over C and H ⊂ G a maixmal torus with
corresponding Cartan subalgebra h ⊂ g. We denote by Λ = Hom(H,Gm) the weight
lattice of H. As before, DA = (diaij)1≤i,j≤n is the symmetrized Cartan matrix and
from the Killing form we get a pairing (−,−) on Λ which is such that (αi, αj) = (DA)i,j
for all simple roots αi. Let q ∈ C× be a complex number which is not a root of unity.
Exponentiation gives the following pairing on the weight lattice:

Λ× Λ −→ C
×, (λ, µ) 7−→ q−(λ,µ) .

Set qi = qdi . The algebra Uq(g) over C has generators Kλ for λ ∈ Λ and X±i for
i = 1, . . . , n subjected to the relations

K0 = 1, KλKµ = Kλ+µ

KλX
+
i K

−1
λ = q(λ,αi)X+

i , KλX
−
i K

−1
λ = q−(λ,αi)X−i

[X+
i , X

−
j ] = δij

Kαi −K−1
αi

qi − q−1
i

for all λ, µ ∈ Λ and 1 ≤ i, j ≤ n, together with the quantum Serre relations, which are
q-versions of the Equations (1.14). The quantum group Uq(g) is a Hopf algebra over C
with coproduct

∆(Kλ) = Kλ ⊗Kλ

∆(X+
i ) = X+

i ⊗Ki + 1⊗X+
i , ∆(X−i ) = X−i ⊗ 1 +K−1

i ⊗X
−
i ,

and the rest of the Hopf algebra structure may be found in [CP95, Section 9.1]. The
Cartan part Uq(h) = C[Λ] is generated by the Kλ for λ ∈ Λ and we denote by
Uq(b), Uq(b

−) ⊂ Uq(g) the quantum Borel subalgebras generated by the Kλ’s and the
X+
i ’s, respectively by the Kλ’s and the X−i ’s.

Representation theory We will denote by Repq(H) the full subcategory of the cat-
egory of Uq(h)-modules that are spanned by weight vectors vλ, λ ∈ Λ, on which the
generators Kµ act by multiplication with q(λ,µ). The category Repq(H) is a braided
tensor category with braiding:

β(vλ ⊗ wµ) = q−(λ,µ)wµ ⊗ vλ .

The representation category Repq(G) of the quantum group is defined as the category
of locally-finite integrable Uq(g)-modules. These are modules with locally-finite Uq(g)-
action, whose restriction to Uq(h) lies in Repq(H). The action of the quantum nilpotent
subalgebras Uq(n) and Uq(n

−) is locally nilpotent.
The category Repq(G) is semi-simple: every object may be presented as a (possibly

infinite) direct sum of finite-dimensional irreducible highest weight modules V (λ) for λ
lying in the lattice P+ of dominant integral weights. Moreover, Repq(G) is a braided
tensor category [CP95, Section 10.1.D]. For a representation V ⊗ W ∈ Repq(G), the
braiding is defined by the so-called quasi R-matrix

ΘV,W = τ ◦ EV,W R̂V,W ,

where R̂V,W is the q-version of R̂ defined in (1.16) in the representation V ⊗W . This is
well-defined since the action of the quantum nilpotent alegbras is locally nilpotent. The
operator EV,W is defined by EV,W (vλ⊗wµ) = q(λ,µ)vλ⊗wµ, for all λ, µ ∈ Λ, and τ flips
the two tensor factors.
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1.3. Categorical factorization homology

In § 1.3.1 we give a short introduction to factorization homology for oriented mani-
folds. We will also discuss factorization homology on surfaces with certain stratifications,
namely with boundary conditions and with point defects. In § 1.3.2 we present the cat-
egorical set-up in which we will carry out our computations. To that end, we introduce
the bicategory of locally presentable enriched categories and show that it satisfies the
necessary technical conditions to serve as a target for computing factorization homology.
In § 1.3.3 we lay out the main ideas behind the categorical approach to quantization. In
§ 1.3.4 we recall the basics about monadic reconstruction for abelian module categories
which will be used throughout the thesis to obtain an explicit algebraic presentation for
factorization homology on (decorated) surfaces.

1.3.1. Factorization homology on oriented manifolds

The algebraic input data for factorization homology on oriented n-manifolds are framed
En-algebras in symmetric monoidal (∞, 1)-categories. Factorization homology then com-
putes functorial invariants of oriented n-manifolds by ‘averaging’ the local input data
over a given manifold. In the scope of this thesis we will only be concerned with the case
of surfaces (n = 2) and categorical framed E2-algebras. We will nevertheless give first the
basic definitions for manifolds of any dimension before restricting to the 2-dimensional,
categorical case. References for a more in depth introduction to factorization homology
are [AF19] as well as the lecture notes [Gin15].

Basic definitions The geometric input for factorization homology will be an object in
the following category:

Definition 1.3.1. Manor
n is the (∞, 1)-category whose

� objects are oriented n-dimensional manifolds

� the space of morphisms Embor(X,Y ) is the space of oriented smooth embeddings
of X into Y equipped with the compact-open topology

The disjoint union of manifolds endows Manor
n with the structure of a symmetric monoidal

(∞, 1)-category.

We denote by Diskor
n ⊂ Manor

n the full symmetric monoidal subcategory whose objects
are Euclidean spaces and disjoint unions thereof.

We now fix a symmetric monoidal (∞, 1)-category (C,⊗). We will assume that C is
cocomplete and the tensor functor ⊗ distributes over colimits in each variable. These
technical assumptions will ensure that factorization homology with coefficients in (C,⊗)
as introduced in Definition 1.3.4 below is well-defined.

Definition 1.3.2. A framed En-algebra in C is a symmetric monoidal functor

A : Diskor,t
n −→ C⊗ .

Since Diskor
n is generated as a symmetric monoidal category by Rn, we also denote by

A the image of the generator Rn under the above functor.

Example 1.3.3. In Figure 1.3 we give a sketch for n = 2 of the disk operations in Diskor
2

and the corresponding algebraic structures on the framed E2-algebra A : Diskor,t
2 →

C⊗. 4
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↪→  m : A⊗A → A  β : m⇒ m ◦ σ

 θ : idA ⇒ idA

Figure 1.3.: First row : Disk embeddings (or isotopies thereof) in Diskor
2 that give rise to

the multiplication m and the braiding β in A = A(R2). Here σ denotes the braiding in
C. Second row : Loop in the space of disk embeddings Diskor

2 coming from rotating the
disk by 2π.

Definition 1.3.4. [AF15] Factorization homology
∫

(−)A with coefficients in the framed
En-algebra A is defined as the left Kan extension of the diagram

Diskor,t
n C⊗

Manor
n

A

∫
(−)A

The left Kan extension admits a point-wise formula: the value of factorization homol-
ogy on a manifold M is computed by the colimit∫

M
A = colim

(
Diskor

n /M → Diskor
n
A−→ C

)
over all possible disk embeddings into M . The assumptions on C guarantee that the
above colimit exists and makes factorization homology into a symmetric monoidal func-
tor [AF15, Proposition 3.7]. The value of factorization homology on any manifold M is
naturally pointed by the inclusion ∅ ↪→M of the empty manifold:∫

∅
A ∼= 1C −→

∫
M
A .

Remark 1.3.5. Factorization homology can be defined on manifolds with more general
tangential structures than the choice of an orientation. Recall that for a topological group
G and a homomorphism ρ : G→ GL(n), a G-structure on a manifold M is a homotopy
lift of the classifying map of the frame bundle through Bρ:

BG

M BGL(n)

Bρ

An example that will play a key role later in Chapter 2 is the following. For D a

finite group, let G = D × SO(n) and ρ : D × SO(n)
prSO(n)−−−−−→ SO(n) ↪→ GL(n). The

resulting tangential structure amounts to the choice of an orientation together with a
map M → BD, i.e. a principal D-bundle.
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N

M− M+

M0

Figure 1.4.: Example of a collar-gluing.

⊗-Excision Factorization homology, being a homology theory for manifolds, satisfies a
certain gluing property called ⊗-excision. Excision will be the main tool for computing
factorization homology since it allows to reconstruct the value of factorization homology
from a certain decomposition of M , namely from a collar-gluing [AF15, Section 3.3]. A
collar-gluing is a decomposition M = M−

⋃
M0

M+, where M+ and M− are open subsets
of M , together with a direct product structure on M0 = M−∩M+, i.e. a diffeomorphism

θ : M0
∼=−→ N × (−1, 1) of oriented manifolds. See Figure 1.4 for an example.

Factorization homology
∫
N×(−1,1)A for the product manifold N×(−1, 1) has a natural

E1-algebra structure coming from embeddings of open intervals, which gives rise to an

E1-algebra structure on
∫
M0
A under the equivalence M0

θ∼= N × (−1, 1). Let us fix
oriented embeddings

µ− : [−1, 1) t (−1, 1) ↪→ [−1, 1) and µ+ : (−1, 1) t (−1, 1] ↪→ (−1, 1]

such that µ−(−1) = −1 and µ+(1) = 1. Under the diffeomorphism θ these maps lift to
embeddings

act− : M− tM0 −→M− and act+ : M0 tM+ −→M+

see Figure 1.5 for a sketch. The maps act− and act+ induce right-, respectively left-
module

∫
M0
A-module structures on the corresponding factorization homologies.

Lemma 1.3.6. [AF15, Lemma 3.18] Let M = M−
⋃
M0

M+ be a collar-gluing of ori-
ented n-manifolds and let A be a framed En-algebra in C. There is an equivalence of
categories ∫

M
A ∼=

∫
M−

A ⊗∫
M0
A

∫
M+

A ,

where on the right hand side the relative tensor product is computed by the colimit of
the 2-sided bar construction:

. . . M− ⊗N ⊗N ⊗M+ M− ⊗N ⊗M+ M− ⊗M+ (1.17)

for M− =
∫
M−
A, M+ =

∫
M+
A and N =

∫
M0
A.

Figure 1.5.: The map which induces the right
∫
M0
A-module structure on

∫
M−
A. Here,

the green collar depicts the product manifold N × (−1, 1).
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Boundary conditions and point defects We will be interested in studying field
theories and their quantization defined on surfaces with certain defects. For example,
the Fock–Rosly Poisson algebra from § 1.1.2 arises from the G-character variety for
a surface Σ with non-empty boundary ∂Σ. The algebraic data used to define a field
theory on a manifold with boundary via factorization homology is called a boundary
condition. The other type of defect we want to consider are codimension 2 defects,
that is, surfaces with marked points. Algebraically, these defects are incorporated by
so-called point defects. The latter will play an important role in Chapter 3, where we
use factorization homology to describe moduli spaces arising in Chern–Simons theory
with point-like sources. We can understand both manifolds with boundary and marked
points as particular examples of stratified manifolds. The extension of factorization
homology to stratified manifolds is due to [AFT17] and we will spell out the details for
the two cases of interest to us.

For the case of boundary conditions, we introduce the (∞, 1)-category Manor
2,∂ of ori-

ented 2-dimensional manifolds Σ with boundary ∂Σ. We denote by Diskor
2,∂ the full

subcategory with objects disjoint unions of disks R2 and half disks R × R≥0. We will
adopt the following terminology:

Definition 1.3.7. A boundary condition is a symmetric monoidal functor F : Diskor,t
2,∂ →

C⊗.

Similarly to the case of smooth manifolds, given a boundary condition F , factorization
homology with coefficients in F is defined by the left Kan extension [AFT17]:

Diskor,t
2,∂ C⊗

Manor
2,∂

F

∫
(−) F

Remark 1.3.8. Unless otherwise stated, we will always work with trivial boundary
conditions, meaning that we use the same disk algebra for a disk with empty boundary,
as for a disk with non-empty boundary.

For the case of point defects, we define the category Manor
2,∗ whose objects are oriented

2-dimensional manifolds Σ together with a collection of marked points x1, . . . , xn ∈ Σ.
Morphisms are embeddings of manifolds, mapping marked points bijectively onto marked
points. We denote by Diskor

2,∗ the full subcategory generated under disjoint unions by
disks R2 and disks R2

∗ with precisely one marked point.

Definition 1.3.9. A point defect is a symmetric monoidal functor F : Diskor,t
2,∗ → C⊗.

Given a point defect F , factorization homology with coefficients in F is defined by
the left Kan extension [AFT17]:

Diskor,t
2,∗ C⊗

Manor
2,∗

F

∫
(−) F
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1.3.2. The categorical case

From now on we specialize to factorization homology on 2-dimensional manifolds with
values in a suitable category of (enriched) categories. Note that in this case factorization
homology, being an (∞, 1)-functor from Manor

2 to the ambient category of categories, will
factor through the homotopy 2-category of oriented manifolds since the target is only
2-categorical. More precisely, from now on Manor

2 denotes the (2, 1)-category whose
objects are oriented surfaces, 1-morphisms are oriented embeddings and 2-morphisms
are equivalence classes of isotopies between embeddings.

Categorical framed E2-algebras By a result of Salvatore–Wahl [SW03] we have
that categorical framed E2-algebras F : Diskor

2 → Cat are classified by balanced braided
tensor categories. Recall that for a braided tensor category A a balancing (or twist) is
an automorphism of the identity functor θ : id ⇒ id so that it is compatible with the
braiding β of A:

θX⊗Y = βY,X ◦ θY ⊗ θX ◦ βX,Y : X ⊗ Y → X ⊗ Y .

The balancing comes from the loop in the space of embeddings given by rotating a disk
about 2π, see Figure 1.3. We also recall that a ribbon category is a rigid balanced
braided tensor category so that the components of the balancing satisfy θV ∨ = (θV )∨.

Example 1.3.10. Important examples of balanced braided monoidal categories come
from the representation theory of ribbon Hopf algebras (H, ν). The balancing θV : V →
V for any V ∈ H-Mod is induced by the action of the ribbon element ν. In particular, in
§ 1.2.1 we have seen that the quantum group U~(g) provides an example of a topological
ribbon Hopf algebra. A closely related example is the category Repq(G), which is also
ribbon with balancing [CP95, Proposition 8.3.15]

θV (λ) : V (λ)→ V (λ), θV (λ)(v) = q−(λ,λ)−λ(ρ)v ,

for any highest weight vector v ∈ V (λ). 4

We will now further specify the categorical setting in which we want to compute
factorization homology.

Locally presentable enriched categories The notion of locally presentable cate-
gories was first introduced by Gabriel–Ulmer in [GU71]. Their extension to the enriched
setting is due to Kelly [Kel82] and was further developed in [BQR98]. One of the main
advantages in working with locally presentable categories is that cocontinuous functors
between them admit right adjoints. This will be of great importance if we want to
obtain an explicit algebraic description of the categories computing factorization homol-
ogy. The necessary background material on enriched locally presentable categories can
be found in § A.2 of the appendix.

The target for factorization homology in this thesis will be the (2, 1)-category V-Pres
of V-enriched locally presentable categories, introduced in Definition 1.3.11 below. We
will show in Theorem 1.3.14 that for suitable V, the ambient category V-Pres satisfies the
conditions of [AF15] to compute factorization homology. When working with represen-
tation categories of quantum groups, we will be mostly interested in categories enriched

over V = VectC, i.e. the case of C-linear categories, and V = ̂C[[~]]-Mod. Namely, the
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category of complete modules over the formal power series ring C[[~]] introduced in
§ A.1.1 of the appendix.

Let V be a complete and cocomplete symmetric monoidal closed category. We fix a
regular cardinal α0 and assume that V is locally α0-presentable and that the subcategory
of α0-compacts is closed under the tensor product and contains the monoidal unit. When
in this situation we say that V is a locally α0-presentable base.

Definition 1.3.11. Let V be locally α0-presentable base. Fix a regular cardinal α ≥ α0.
We define V-Pres to be the (2, 1)-category whose

� objects are locally α-presentable V-enriched categories

� 1-morphisms are V-enriched cocontinuous functors preserving α-compact objects

� 2-morphisms are V-enriched natural isomorphisms

For α = ℵ0 we call V-Pres the category of locally finitely presentable enriched cate-
gories.

Tensor product and cocompleteness It will be convenient to introduce the (2, 1)-
category V-Rex whose objects are small V-enriched categories having all α-small colimits,
1-morphisms are V-functors preserving α-small colimits, and 2-morphisms are natural
isomorphisms. Given a category C ∈ V-Rex, one can take its ind-completion ind(C), also
known as free completion under α-filtered colimits, which lands in V-Pres. Conversely,
the subcategory of compact objects cmp(A) of a locally α-presentable V-category A is
small and has all α-small colimits. These operations extend to a 2-categorical equivalence
[Kel82, Section 9]:

ind : V-Rex� V-Pres : cmp . (1.18)

In [Kel05, Section 6.5], Kelly introduced a tensor product � of small V-enriched cate-
gories with α-small colimits, which is uniquely characterized by the following universal
property: for C and D two categories in V-Rex, their Kelly tensor product is an object
C �D ∈ V-Rex such that for any E ∈ V-Rex there is a natural equivalence

V-Rex[C �D, E ] ∼= V-Rex[C,D; E ]

between the category of functors C � D → E in V-Rex and the category of functors
C × D → E that preserve α-small colimits in each variable, where × is the naive tensor
product of V-enriched categories from Appendix A.1. Furthermore, it is shown in [Kel05]
that the Kelly tensor product endows V-Rex with the structure of a symmetric monoidal
closed (2, 1)-category.

Remark 1.3.12. In the K-linear setting, it was shown in [Fra13] that the Kelly tensor
product of two abelian categories is again abelian and coincides in this case with the
Deligne tensor product.

We can now transport the Kelly tensor product along the equivalence (1.18). The
resulting tensor product � in V-Pres admits the following description. Let C and D be
two V-enriched locally presentable categories. Their tensor product C � D ∈ V-Pres is
defined by

C �D = V-Lex(cmp(C)op, cmp(D)op;V) ,

that is, by functors cmp(C)op×cmp(D)op → V preserving α-small limits in each variable
separately. The equivalence (1.18) extends to an equivalence of symmetric monoidal
(2, 1)-categories.
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Example 1.3.13. Given V = VectK, we write PresK for the corresponding category of
K-linear locally finitely presentable categories. Let A,B be K-algebras. Their categories
of modules A-Mod and B-Mod are locally finitely presentable K-linear categories. Their
tensor product in PresK is identified with A-Mod�B-Mod ∼= (A⊗B)-Mod. 4

In Theorem 1.3.14 below we will show that bicolimits exist in V-Pres and that the ten-
sor product� preserves them. In the V = Set case, a sketch of proof for 2-cocompleteness
of Pres can be found in [CJF13, Proposition 2.1.11]. The idea is to take the diagram
whose bicolimit one wants to compute, and consider the corresponding diagram in the
category Presop, whose objects are locally presentable categories, 1-morphisms are right
adjoints and 2-morphisms are natural isomorphisms. The claim is that the bilimit of
this diagram exists and can be computed in Cat. In the enriched case, we have the
following:

Theorem 1.3.14. V-Pres has all bicolimits and the tensor product � of locally pre-
sentable V-categories preserves them.

Proof. Before turning to the case of V-Pres, we first need to recall some basics about
computing bilimits in bi- and 2-categories. To that end, let K and B be bicategories
and W : K → Cat and D : K → B pseudo-functors. The W -weighted bilimit of D is an
object {W,D} ∈ B together with an equivalence

HomB(X, {W,D}) ∼= Hom[K,Cat]bicat(W,HomB(X,D(−))) ,

pseudo-natural in X, where [K,Cat]bicat is the 2-category of pseudo-functors, pseudo-
natural transformations between them and modifications. If one considers diagrams
in a 2-category C, one can use the following strictification results. The inclusion of the
category 2Cat of 2-categories and 2-functors into the the category BiCat of bicategories
and pseudo-functors has a left adjoint known as strictification

st : BiCat� 2Cat : ι .

Moreover, the components of the unit map A → st(A) are equivalences of bicategories
[GPS95, Section 4.10]. Higher categorical aspects of the strictification adjunction were
studied in [Cam19], where in particular the following universal property of strictifica-
tion is proven: for every bicategory K and 2-category C there is an isomorphism of
2-categories

[st(K), C]pseudo ∼= [K, C]bicat ,

where [st(K), C]pseudo is the 2-category of 2-functors, pseudo-natural transformations and
modifications. So if D is a diagram in C, for any X ∈ C we have

Hom[K,Cat]bicat(W,HomC(X,D(−))) ∼= Hom[st(K),Cat]pseudo(W
′,HomC(X,D

′(−))) , (1.19)

where W ′ and D′ are the 2-functors corresponding to W and D under strictification.
In the above we used that in the following diagram both the left triangle and the outer
diagram commute by definition of the strictification of a pseudo-functor

st(K)

K V-Cat Cat

D′

HomV-Cat(X,D(−))′

∼=

D HomV-Cat(X,(−))
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But then also the right triangle commutes since the unit of the strictification adjunction
is an equivalence. From (1.19) we then find that a 2-category with all pseudo-limits also
has all bilimits.

Now, consider the 2-category V-Presop of locally α-presentable V-enriched categories,
whose 1-morphisms are continuous functors with rank α and 2-morphisms are natural
isomorphisms. In [Bir84, Theorem 6.10] it was shown that V-Presop has all products,
inserters and equifiers and that they are computed in V-Cat. It then follows by [Kel89,
Proposition 5.2] that V-Presop has all pseudo-limits. We conclude by the previous dis-
cussion that V-Pres has all bicolimits.

For the second assertion, note that the tensor product preserves bicolimits since V-Pres
is a symmetric monoidal closed (2, 1)-category, which we may deduce from equivalence
(1.18).

1.3.3. Quantization and factorization homology

In this section we will discuss the role of factorization homology in the quantization of
G-character varieties.

Deformation quantization of braided categories Let (A, ·, {−,−}) be a Poisson
algebra. A formal deformation quantization of A is an associative algebra (A~, ∗) over
the ring of formal power series C[[~]], where A~ = A[[~]] as a C[[~]]-module. The product
∗ is such that A~/(~) = A as commutative algebras and in the semi-classical limit one
recovers the Poisson bracket

{a, b} =
ã ∗ b̃− b̃ ∗ ã

~
mod(~) ,

where a = ã mod(~) and b = b̃ mod(~). The categorical analog to a Poisson structure
on a commutative algebra is an infinitesimal braiding on a symmetric monoidal K-linear
category. For a K-linear monoidal category (C,⊗) with symmetry σ, an infinitesimal
braiding on C is a natural transformation

tX,Y : X ⊗ Y → X ⊗ Y, X, Y ∈ C

satisfying the symmetry condition tY,X = σX,Y ◦ tX,Y ◦ σY,X , such that β = σ ◦ (1 + εt)
is a braiding in the K[ε]/(ε2)-linear category C[ε], which has the same objects as C and
whose morphisms spaces are defined by extension of scalars:

MapC[ε](X,Y ) = MapC(X,Y )⊗K K[ε]/(ε2) .

For us, the underlying symmetric monoidal category will be U(g)-Mod and t ∈ (Sym2g)g

is a symmetric g-invariant tensor. Then, U(g)-Mod is infinitesimally braided via

tX,Y (x⊗ y) = tijei . x⊗ ej . y, x ∈ X, y ∈ Y ,

in a basis (ei)i∈I of g.
Naturally, the question arises if one can deformation-quantize any infinitesimally

braided category into a braided K[[~]]-linear category. The answer is affirmative [Car93].
Namely, using Drinfeld’s associator [Dri90], it has been shown in loc. cit. that any in-
finitesimally braided category (C, t) is the semi-classical limit of a braided monoidal
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K[[~]]-linear category C[[~]] with the same tensor product, associativity constraint com-
ing from the Drinfeld associator Φ and braiding β = σ ◦ e~t/2.

For the example at hand, a quantization of (U(g)-Mod, t) is given by the Drinfeld
category U(g)Φ-Mod[[~]]. In this thesis, instead of working with the Drinfeld category
we shall work with categories coming from the representation theory of Drinfeld–Jimbo
algebras. Equivalence of these two categories is due to Drinfeld:

Theorem 1.3.15. [Dri89b, Dri89a] There exists a balanced braided tensor equivalence
between the Drinfeld category U(g)Φ-Mod[[~]] and the category Rep~(G) of topologically
free U~(g)-modules of finite rank.

The category Rep~(G) is a formal deformation of Rep(G) as a braided monoidal cat-
egory. Its semi-classical limit

Repε(G) ∼= Rep~(G)⊗K[[~]] K[ε]/(ε)2

is a Kε = K[ε]/(ε2)-linear braided category of modules over Uε(g), where Uε(g) ∼= U(g)⊗
Kε as Kε-modules. The braiding in Repε(G) comes from the classical r-matrix r:

βX,Y (x⊗ y) = τ ◦ (x⊗ y + εrijei . x⊗ ej . y) .

This is a natural isomorphism in Repε(G) due to:

∆op
ε (−) = (1− εr)∆ε(−)(1 + εr) ,

where ∆ε denotes the infinitesimally deformed coproduct. The category Repε(G) should
be understood as the categorical analog of a first order deformation of a commutative
algebra.

“Factorization homology commutes with quantization” Assume we are given
local (categorical) quantum observables Obsloc

~ , by which we mean a C[[~]]-linear braided
category such that its classical limit Obsloc

~ /(~) ∼= Obsloc
cl is symmetric monoidal. Fol-

lowing the ideas of Ben-Zvi–Brochier–Jordan [BZBJ18a], we may glue the local quan-
tizations Obsloc

~ via factorization homology to obtain global quantum observables living
on a surface Σ:

Obs~(Σ) =

∫
Σ
Obsloc

~ ∈ ( ̂C[[~]]-Mod)-Cat .

Example 1.3.16. An example of a local quantum observable is the category Rep~(G).
We call its factorization homology

∫
Σ Rep~(G) the quantum character stack of Σ. This

category was extensively studied by Ben-Zvi–Brochier–Jordan in the presentable, K-
linear setting [BZBJ18a]. 4

Let Obsloc
cl,ε be the semi-classical limit of Obsloc

~ . This is a braided Cε-linear category

such that Obsloc
cl,ε/(ε)

∼= Obsloc
cl is symmetric monoidal. As before, we may define the

corresponding global observables Obscl,ε(Σ) via factorization homology.
In an ongoing collaboration with Eilind Karlsson, Lukas Müller and Jan Pulmann

[KKMP] we will show that given a local quantization Obsloc
~  Obsloc

cl,ε, the factoriza-
tion homology Obs~(Σ) quantizes Obscl,ε(Σ). To that end, we introduce bicategories
BD0-Cat and P0-Cat of categorical quantum- and (semi-)classical observables, respec-
tively. Roughly, objects in these bicategories are pointed C[[~]]-, respectively Cε-enriched
categories, together with the structure of a symmetric monoidal category on their clas-
sical limit ~ → 0, respectively ε → 0. Similarly, the local quantum and (semi-)classical
observables live in bicategories E2(BD0-Cat) ∼= BD2-Cat and E2(P0-Cat) ∼= P2-Cat, re-
spectively. We will then show the following.
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↪→

act−−→
∫

ΣA � A
∫

ΣA

Figure 1.6.: Disk embedding inducing A-module structure on
∫

ΣA.

Claim 1.3.17. [KKMP] There exists a ‘classical limit functor’ BDi-Cat → Pi-Cat,
given by −⊗C[[~]] Cε, which is such that

Obscl,ε(Σ) ∼= Obs~(Σ)⊗C[[~]] Cε .

That is, the classical limit functor commutes with factorization homology.

In this thesis we will follow a slightly different strategy, namely we will characterize the
categories Obs~(Σ) computed by factorization homology in terms of explicit algebraic
data, as is explained in the next section. This allows for instance to compare Obs~(Σ)
to previously constructed quantizations, or to show by means of a direct computation
that Obs~(Σ) provides a quantization of a given classical Poisson algebra of observables.

Internal endomorphism algebras In order to extract explicit algebraic data from
factorization homology, we will use the following observation due to Ben-Zvi–Brochier–
Jordan: given local coefficientsA, the categories we are interested in are the factorization
homologies

∫
ΣA for surfaces Σ with boundary. As illustrated in Figure 1.6, embedding

a disk along a marked interval in the boundary ∂Σ turns
∫

ΣA into a module category
over

∫
D
A ∼= A. The A-module structure then allows to describe the categories

∫
ΣA

internal to A, as we will explain in the following.
We have seen that factorization homology is pointed via the canonical embedding
∅ ↪→ Σ. We denote the corresponding distinguished object by OΣ ∈

∫
ΣA. Acting on

the distinguished object gives a colimit preserving functor

actOΣ
: A −→

∫
Σ
A .

In the presentable setting it is guaranteed that this functor has a right adjoint actROΣ
.

If we assume that A is rigid, the adjunction data defines a canonical algebra in A; the
internal endomorphism algebra

EndA(OΣ) = actROΣ

(
actOΣ

(1A)
)
.

As an instructive example, we will now compute the internal endomorphism algebra for
the case of the annulus Σ = Ann and we will see that we recover a quantization of the
FR-Poisson algebra from § 1.1.2. Examples for more general surfaces will be presented
in Chapters 2 and 3 of the thesis. The case of punctured surfaces in the K-linear setting
is content of [BZBJ18a, Section 5].

Let Ĉ ∈ V-Pres be the free cocompletion of a small V-enriched balanced braided
category C (we refer to A.2.2 for background on free cocompletions). To compute fac-
torization homology on the annulus we make use of excision:∫

Ann
Ĉ ∼= Ĉ �

Ĉ�Ĉ
Ĉ .

The relative tensor product is computed as the colimit of the truncated 2-sided bar
construction (1.17) in V-Pres.
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Proposition 1.3.18. We have

EndĈ(OAnn) ∼= TTR(1Ĉ)
∼=
∫ c∈C

c∨ ⊗ c ,

as algebras in Ĉ.6

Proof. In Propositions A.2.14 and A.2.15 of the appendix we show that the right adjoint
to the tensor product functor T : Ĉ � Ĉ → Ĉ is monadic and Ĉ � Ĉ-linear. Thus, there is
an equivalence

Ĉ ∼= TR(1Ĉ)-ModĈ�Ĉ

as right (Ĉ � Ĉ)-module categories. Together with the fact that the excision property
is compatible with the pointing, that is, OAnn ∼= OD �Ĉ�Ĉ OD, we find that the action
functor induced by embedding a disk along a marked interval in ∂Ann may be identified
with

actOAnn(a) ∼= a� TR(1Ĉ)

Its right adjoint is

actROAnn(a� (b1 � b2)) ∼= a / (b1 � b2) = a⊗ T (b1 � b2) .

Let’s now consider the case of the G-character variety for the annulus. To that end, let
̂Rep~(G) be the free cocompletion of the category of topologically free U~(g)-modules of

finite rank. By Proposition A.2.11, ̂Rep~(G) is a locally presentable category enriched in
complete C[[~]]-modules. By the preceding discussion and the representation theory of
the topological quantum group (§ 1.2.1) we find that the internal endomorphism algebra

of the pointing OAnn ∈
∫
Ann

̂Rep~(G) is

End ̂Rep~(G)
(OAnn) ∼=

⊕
λ∈P+

Ṽλ
∨
⊗ Ṽλ

∼= O~(G) .

In the above, O~(G) is understood as its image under the restricted Yoneda embedding

of the category of topologically free and locally-finite U~(g)-modules7 into ̂Rep~(G). We
have that O~(G) ∼= O(G)[[~]] as C[[~]]-modules. The algebra O~(G) is well-known,
it appeared for example in [DM03] under the name of reflection equation dual to the
quantum group U~(g).

Taking the semi-classical limit locally, i.e. Rep~(G)  Repε(G), we get a first-order
deformation of the commutative algebra O(G):

End ̂Repε(G)
(OAnn) ∼= Oε(G)

where Oε(G) ∼= O(G)[ε]/(ε2) as Kε-modules with multiplication mε satisfying

mε −mop
ε = {−,−}STS .

The bracket on the right is the STS-Poisson bracket on the representation variety
RepG(Ann). But (Oε(G),mε) is precisely the semi-classical limit of the internal endomor-

phism algebra of
∫
Ann

̂Rep~(G). This observation captures the idea that “factorization
homology commutes with quantization” on the level of algebras.

6See Remark A.2.13 of the appendix for more details on the coend algebra TTR(1).
7We say that a topologically free module W [[~]] is locally-finite if W is so.
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(a) Internal fusion of disk with two marked
points by gluing along the marked intervals.

(b) The annulus constructed by gluing a
handle to a marked disk with two intervals.

Figure 1.7.

Combinatorial Poisson structures and their categorical quantization Recall
from Remark 1.1.15 that the Poisson G-space (G,ΠSTS ) was obtained by (internal)
fusion from the Poisson G×G-space (G,ΠG). Geometrically, for a disk with two marked
points D•,• in its boundary, internal fusion can be understood as the result of a self-gluing
of the disk along two segments containing the marked points as illustrated in Figure 1.7a.
In factorization homology, this gluing procedure is paralleled by excision: as pictured in
Figure 1.7b, the marked annulus Ann• is obtained from a disk with two marked boundary
intervals and a distinguished marked point by gluing a handle along the marked intervals.
In this section we have seen that using excision in this way we indeed quantize the
Poisson variety (G,ΠSTS ). A similar observation can be made for more general surfaces
with boundary. Namely, upon picking a combinatorial presentation of the surface Σ,
excision allows to extract an explicit deformation quantization from

∫
Σ Rep~(G) of the

Poisson structure on CharG(Σ) defined according to the fusion rules dictated by the
combinatorial presentation.

1.3.4. Monadic reconstruction for abelian module categories

In this section we give some more details on monadic reconstruction for the special case
of abelian module categories.

Applying monadic reconstruction techniques to module categories was first done for
fusion categories in the work of Ostrik [Ost03], and later in the setting of finite abelian
categories in [DSPS13]. Here, we will recall its further generalization to abelian cate-
gories in PresK, as developed in [BZBJ18a, Section 4].

Given a tensor category A ∈ PresK and a right A-module category M ∈ PresK with
cocontinuous action functor

act : M�A −→M, act(m� a) = m / a ,

define for every object m ∈ M a functor actm : A →M by acting on the distinguished
object; actm(a) = m / a. Since everything takes place in PresK, the functor actm has a
right adjoint actRm. For objects m,n ∈M, define the internal homomorphisms

HomA(m,n) = actRm(n) ∈ A

from m to n in A. As in the previous section, the internal endomorphism algebra of m
is then defined to be the algebra

EndA(m) = HomA(m,m) = actRm(actm(1A))

internal to A.
For each m ∈M, there is a functor

ãctRm : M−→ (actRm ◦ actm)-ModA (1.20)
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sending an object n ∈ M to the internal homomorphisms HomA(m,n) with canonical
action actRm ◦ actm ◦ actRm(n)→ actRm(n) induced by the counit of the adjunction actm a
actRm. The monadicity theorem, stated for the presentable K-linear setting in Theorem
1.3.20 below, then tells us when the functor (1.20) is an equivalence. We will use the
following terminology.

Definition 1.3.19. An object m ∈M is called

� an A-generator if actRm is conservative,

� A-projective if actRm is colimit-preserving,

� an A-progenerator if it is both A-projective and an A-generator.

The following is an application of Beck’s monadicity theorem for module categories
in PresK.

Theorem 1.3.20 ([BZBJ18a, Theorem 4.6]). Let A ∈ PresK be a tensor category and
M ∈ PresK an A-module category. Assume that A is rigid. Let m ∈ M be an A-
progenerator. Then, the functor

ãctRm : M
∼=−→ EndA(m)-ModA , (1.21)

is an equivalence of A-module categories, where A acts on the right by the tensor product.

Remark 1.3.21. The rigidity assumption in the above theorem guarantees that the
composition actRm ◦ actm is again an A-module functor, and as a consequence

actRm ◦ actm ∼= actRm(actm(1A))⊗ (−) = EndA(m)⊗ (−) ,

leading to the result as stated in (1.21).

When computing categorical factorization homology for a surface, we will make ex-
tensive use of �-excision. In particular, this means that we wish to apply monadic
reconstruction to relative tensor productsM�AN of module categories. The following
special case will be of particular interest for us. Assume that the A-module structure
on N comes from a tensor functor F : A → N and assume 1N is a progenerator for the
A-module structure on N induced by F . When in this setting, one has the following
base-change formula for abelian categories in PresK:

Theorem 1.3.22 ([BZBJ18a, Theorem 4.12]). Let A,M,N ∈ PresK be abelian cate-
gories. Assume that A is rigid, M is a right A-module category with progenerator m
and that F : A → N is a tensor functor such that 1N is a progenerator for the induced
left A-module structure. Then, there is an equivalence of N -module categories:

M�A N ∼= F (EndA(m)) -modN .

The following is a slight modification of the above theorem. Again, all categories are
assumed to be abelian.

Theorem 1.3.23. Let A ∈ PresK be a rigid tensor category and let M,N ∈ PresK be
right and left A-module categories. Assume that M is dualizable as an object in PresK,
and that m ∈M is an A-progenerator. Then, we have

M�A N ∼= EndA(m)-ModN ,

where one uses the A-action on N to define the category of EndA(m)-modules in N .
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Proof. Since m ∈ M is an A-progenerator, we have that M is A-dualizable with dual
M∨ = ModA-End(m) [BJS21, Proposition 5.8], and we have

M∼= HomA(M∨,A), m′ 7→ (−)⊗End(m) Hom(m,m′)

as right A-module categories. By rigidity we have that A is dualizable over its enveloping
algebra Aop �A and since M is dualizable as an object in PresK we can apply [BJS21,
Proposition 5.3] to get an equivalence

HomA(M∨,A)�A N ∼= HomA(M∨,N ), F (−)� n 7→ F (−) . n .

Composition with evaluation at End(m) ∈M∨, we get a functorM�AN → N admit-
ting a left adjoint. In more details we have:

M�A N
GR−−→ N

m′ � n 7→ Hom(m,m′) . n

N GL−−→M�A N
n 7→ m� n

where we used that GR fits into the following commutative diagram

M�A N N

HomA(M∨,A)�A N HomA(M∨,N )

GR

∼=
∼=

evEnd(m)

The right adjoint GR is colimit preserving and conservative. The latter assertion follows
exactly as in the proof of [BZBJ18a, Theorem 4.12], namely from the fact that if an
A-module functor F evaluates to zero at End(m) implies that F is zero. But for abelian
categories this implies that the evaluation functor is conservative. Thus, by Beck’s
monadicity theorem, we find M�A N ∼= GR ◦GL-ModN ∼= EndA(m)-ModN .

Remark 1.3.24. In Theorem 1.3.23, the A-module category M is assumed to be du-
alizable in PresK. Typical examples of dualizable locally presentable categories are the
presheaf categories Ĉ = [Cop,VectK], that is, the free cocompletion of a small K-linear
category C [BCJF15, Lemma 3.5]. It is shown in [Kel05, Theorem 5.26], that if a co-
complete category D has a small set Dcp of compact projective objects8 constituting a
strong generator, then D ∼= D̂cp, and D is dualizable.

Another example is the following. Assume that D ∈ PresK has a compact projective
strong generator Dcp. Let T : D → D be a monad and assume that T preserves colimits.
Then, the forgetful functor U : T -ModD → D is cocontinuous and thus freeT (x) for
x ∈ Dcp is compact projective. It is also a strong generator since U is conservative and
thus T -ModD is dualizable in PresK.

8An object c ∈ C is compact projective if MapC(c,−) : C → VectK preserves all colimits.
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This chapter is based on joint work with Lukas Müller [KM23].

In this chapter we extend the work on categorical factorization homology by Ben-
Zvi–Brochier–Jordan [BZBJ18a, BZBJ18b] to oriented surfaces decorated with principal
bundles with finite structure group D. In the oriented D-decorated setting, the coeffi-
cients A for computing factorization homology are balanced braided tensor categories
with a D-action via balanced braided automorphisms. For every oriented 2-dimensional
manifold Σ with D-bundle decoration ϕ : Σ → BD, factorization homology assignes a
linear category ∫

(Σ,ϕ)
A

in a functorial way. For applications in mathematical physics, we will examine the
example of A = Repq(G), where Repq(G) is the category of integrable representations of
the quantum group Uq(g) associated to a semi-simple group G, which admits a natural
action of the group of outer automorphisms Out(G). We will use these coefficients to
construct a functorial quantization of the moduli space of flat Out(G)-twisted bundles.
These moduli spaces arise naturally when studying finite symmetries in gauge theory.

Symmetries for field theories can be understood as transformations of the space of
fields preserving the classical action functional. We are interested in symmetries for
gauge theories where the space of fields is described by means of connections on principal
G-bundles. Explicitly, for an outer automorphism κ : G → G of the structure group,
the symmetry lifts to the gauge fields by forming the associated G-bundle along the
group homomorphism κ. In [MSS22], these symmetries were studied in the context of
2-dimensional Yang–Mills theory. Here, we will study Out(G)-symmetries for the moduli
space of flat G-bundles via factorization homology. On the level of the local coefficients,
the symmetry is incorporated through the Out(G)-action on the representation category
of G via pullbacks. We will show that this action extends to the representation category
of the quantum group. Hence, factorization homology with coefficients in Repq(G) will
allow us to study Out(G)-symmetries for the corresponding quantum field theory.

Coupling of a gauge theory to background gauge fields may be realized by incorpo-
rating the symmetries as defects into the field theory. In [MSS22] it is shown that the
partition function for Yang–Mills theory in the presence of an Out(G)-defect network
on a closed oriented surface Σ can be computed as a path integral over the space of
so-called Out(G)-twisted bundles with connections. The latter may be locally described
by transition functions taking values in Go Out(G), where the Out(G)-bundle is fixed.
In the topological setting, the moduli space of flat Out(G)-twisted bundles was studied
in [Mei17, Zer21] and in particular it has been shown there that it carries a canonical
Atiyah–Bott like symplectic structure. Here, we realize the moduli space of flat twisted
bundles as a lattice gauge theory. We will construct a Poisson structure on the moduli
space in a combinatorial fashion à la Fock–Rosly. The value of factorization homology
on a surface decorated with Out(G)-bundles describes the coupling of the (quantum)
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field theory to non-trivial Out(G)-background fields and yields a functorial quantization
of the moduli space of flat twisted bundles.

Lastly, we note that factorization homology on surfaces with principal bundles exam-
ined in this chapter is a special case of equivariant factorization homology for global
quotient orbifolds as introduced in [Wee18a], namely the case of free actions. Moreover,
when we consider surfaces with marked points, the local coefficients realizing the point
defects in the D = Z2-decorated setting are closely related to so-called Z2-braided pairs
[Wee18b], which are local coefficients for Z2-orbifold surfaces with isolated singulari-
ties. Prominent examples of Z2-braided pairs come from the representation theory of
quantum symmetric pairs. The methods developed in this chapter thus provide a step
in the direction of computing the quantum character varieties of orbifold surfaces with
isolated singularities via factorization homology on surfaces with principal bundles and
point defects.

Outline Throughout, K denotes a field of characteristic zero, usually K = C. Unless
otherwise stated, G is a semi-simple algebraic group over C.

Let Σ be a surface with a fixed Out(G)-bundle ϕ : Σ → BOut(G). In § 2.1 we
define the classical moduli space Charϕ(Σ, G) of equivalence classes of ϕ-twisted G-
representations of the fundamental group of Σ. We show that the twisted representation
variety admits a Poisson structure, defined in terms of an Out(G)-invariant classical r-
matrix and a combinatorial presentation of the surface, which moreover descends to the
quotient by the twisted conjugation action. The aim of this chapter is to work towards
a functorial quantization of this Poisson variety.

In § 2.2 we review categorical factorization homology on 2-manifolds equipped with an
SO(2)×D tangential structure, following [AF15]. We will see that the local categorical
data for factorization homology on D-decorated surfaces is classified by balanced braided
tensor categories with a D-action ϑ. As our main example, we will describe an action of
Dynkin diagram automorphisms on the representation category Repq(G) of a quantum
group. We will also explain how D-twisted module categories arise from �-excision on
decorated surfaces. We conclude the section with reconstruction results for balanced
braided tensor categories with D-action: for each group element d ∈ D we obtain an

algebra FdA =
∫ V ∈cmp(A)

V ∨ ⊗ ϑ(d−1).V which is a twisted version of Lyubashenko’s
coend algebra [Lyu95b].

In § 2.3 we compute factorization homology of a punctured oriented surface Σ with
a fixed D-bundle ϕ : Σ→ BD. We will use a combinatorial presentation of the surface
(Σ, ϕ) by means of a ciliated ribbon graph Γ with one vertex, whose edges are decorated
by group elements d1, . . . , dn ∈ D, n = 2g + r − 1, describing the bundle ϕ up to
equivalence. This combinatorial description allows one to define an algebra ad1,...,dn

Γ =⊗n
i=1F

di,...,dn
A internal to A, where each FdiA is a twisted coend algebra. For a rigid

balanced braided abelian category A ∈ PresK, we show in Theorem 2.3.2 that there is
an equivalence of categories ∫

(Σ,ϕ)
A ∼= ad1,...,dn

Γ -ModA

identifying factorization homology with the category of modules over an algebra which
can be described in purely combinatorial terms. This result is an extension of [BZBJ18a,
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Theorem 5.14] to surfaces with D-bundles. We then consider the case of the D-decorated
annulus. We will see that the factorization homologies

∫
(S1×R,ϕ)A for varying decoration

ϕ assemble into a categorical algebra over the little bundles operad defined by Müller–
Woike in [MW20]. Moreover, for each d ∈ D we identify

∫
(S1×R,γd)A with a twisted

version of the Drinfeld center of A.

§ 2.4 contains the main application of this chapter: the quantization of the twisted
character variety Charϕ(Σ, G) via factorization homology on the surface Σ with Out(G)-
bundle decoration ϕ and coefficients in Repq(G). We will first show that the category of
quasi-coherent sheaves on the classical moduli space can be computed via factorization
homology ∫

(Σ,ϕ)
Rep(G) ∼=

n⊗
i=1

O(G)κi-ModRep(G)
∼= QCoh

(
Charϕ(Σ, G)

)
,

where
⊗n

i=1O(G)κi is the algebra of functions on the ϕ-twisted representation variety
Repϕ(Σ, G) with the induced ϕ-twisted action by G. We then proceed to quantize
these moduli spaces by locally choosing coefficients in the representation category of the
corresponding quantum group Repq(G) and subsequently gluing this local data together
via factorization homology over the decorated surface (Σ, ϕ):∫

(Σ,ϕ)
Repq(G) ∼= aκ1,...,κn

Γ -ModRepq(G) .

We then show in Theorem 2.4.3 by means of a direct computation that the above provides
indeed a quantization of the twisted character variety.

In § 2.5 we discuss the case of closed surfaces with D-bundles, as well as the case of
D-decorated surfaces with point defects. For the latter, the categorical data classifying
point defects are so-called equivariant braided module categories [KM23, Proposition
3.18]. Representation theoretic examples of point defects in the equivariant setting come
from ribbon Hopf algebras equipped with an involution and their coideal subalgebras.
Such data is for example provided by quantum symmetric pairs.

2.1. Classical moduli space

Given a fixed Out(G)-bundle ϕ on a surface Σ, the moduli space of flat ϕ-twisted bundles
on Σ is the space of flat GoOut(G)-bundles together with a gauge transformation from
the induced Out(G)-bundle to ϕ [Mei17, MSS22]. This moduli space may be described
by means of twisted character varieties, which we will introduce in what follows.

Throughout Σ = Σg,r is a connected oriented surface with at least one boundary
component. Let Γ = (E, V ) be a ciliated ribbon graph model for Σ with one vertex
V = {v} whose edges are the generators of the fundamental group π1(Σ) = π1(Σ, v).
Moreover, we decorate the surface with a principal Out(G)-bundle, which we describe
by a group homomorphism

ϕ : π1(Σ) −→ Out(G)

[γi] 7−→ ϕ([γi]) = κi

Definition 2.1.1. Let p : G o Out(G) → Out(G) be the natural projection. The ϕ-
twisted representation variety Repϕ(Σ, G) is the preimage of ϕ under the map

Rep(Σ, Go Out(G))
p∗−→ Rep(Σ,Out(G)) .
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2. Twisted character varieties

More explicitly, elements in Repϕ(Σ, G) are maps ψ : π1(Σ)→ G, which are such that

ψ([γi] ◦ [γj ]) = ψ([γi])κi(ψ([γj ])) ,

for any pair γi, γj of loops in π1(Σ). There is a natural G-action on the ϕ-twisted
representation variety via twisted conjugation, i.e. the action of an element g ∈ G is

(g.ψ)([γi]) = gψ([γi])κi(g)−1 .

Since π1(Σ) is a free group on E = 2g + r − 1 generators, we get an identification
Repϕ(Σ, G) ∼= GE . The ϕ-twisted character variety is then defined to be the quotient

Charϕ(Σ, G) = Repϕ(Σ, G)/ϕG

∼= GE/ϕG ,

where the notation /ϕ indicates that G acts via twisted conjugation.

Remark 2.1.2.

� There is a bijective correspondence between elements in the twisted representation
variety Repϕ(Σ, G) and elements in the moduli space Mϕ(Σ, G) of isomorphism
classes of flat twisted G-bundles which are trivial over v, which is established via
the holonomy map. As in the untwisted case, the group G acts on Mϕ(Σ, G) by
changing the trivialization. The moduli space of flat twisted bundles is the quotient

Aϕ(Σ, G) =Mϕ(Σ, G)/ϕG .

� Let κ ∈ Out(G) and consider κ′ = Adg ◦ κ for some g ∈ G. Right multiplication

G
Rg−−→ G is a map of G-spaces intertwining the κ- and the κ′-twisted conjugation

action. Thus, in order to study twisted character varieties it suffices to work with
outer automorphisms. The inner automorphisms correspond to gauge transforma-
tions.

We denote the algebra of functions on the twisted character variety by O(GE)Gϕ . This

is the algebra of functions on GE which are invariant under the twisted conjugation
action, i.e. functions on the the affine quotient by the G-action. If we consider the
stacky quotient instead, we use boldface letters to denote the ϕ-twisted character stack :

Charϕ(Σ, G) = [GE/ϕG] .

We may study character stacks via their categories of quasi-coherent sheaves. In our
case, QCoh(Charϕ(Σ, G)) is the category of modules over O(GE)ϕ in Rep(G). Later on
in § 2.4.1 we will see that one can recover the category of quasi-coherent sheaves on the
twisted character stack via factorization homology on the ϕ-decorated surface Σ.

2.1.1. The twisted Fock–Rosly Poisson structure

In § 1.1.2 we recalled a construction due to Mouquin [Mou17] and Lu–Mouquin [LM17],
which reformulates the Poisson structure on the character variety discovered by Fock
and Rosly in the framework of Poisson structures defined via Lie bialgebra actions
and classical r-matrices. We will pursue the same strategy here to show that twisted
character varieties are Poisson.
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2. Twisted character varieties

We fix a ribbon graph model Γ for the surface Σ together with a linear ordering ≺
on the set Ê of ends of edges of Γ. We also fix an Out(G)-invariant classical r-matrix
r ∈ g ⊗ g. For example, the r-matrix for the standard Lie bialgebra structure on g,
i.e. the one quantized by the Drinfeld–Jimbo quantum group, is Out(G)-invariant (see
Proposition 2.2.4).

Recall from § 1.1.2 (Equations (1.7) and (1.8)) the definition of the r-matrix rΓ for

the Lie algebra rÊ . Given the Out(G)-bundle decoration ϕ : π1(Σ)→ Out(G), we define
an action

ρΓ
ϕ : GÊ ×GE −→ GE

((hα)
α∈Ê , (gγ)γ∈E) 7−→ (ht(γ)gγκγ(hs(γ))

−1)γ∈E

where s(γ) is the source half-edge of γ and t(γ) is the end half-edge. The action induces

a Lie algebra homomorphism (ρΓ
ϕ)∗ : gÊ → X(GE). The ϕ-twisted Fock–Rosly 2-tensor

in Equation (2.1) below is the image of the r-matrix rΓ under this pushforward map.

Proposition 2.1.3. Let Γ ⊂ Σ be a skeleton with one vertex v. For a given choice
r = rijei ⊗ ej ∈ g ⊗ g of Out(G)-invariant classical r-matrix, define the following 2-
tensor on Repϕ(Σ, G)

Πϕ
FR =

∑
α≺β

rijxi(α) ∧ xj(β) +
1

2

∑
α

rijxi(α) ∧ xj(α) , (2.1)

where α and β run over the set of ordered half-edges, and

xi(α) =

{
eRi (α), α is end half-edge

−(κα)∗e
L
i (α), α is source half-edge

where eRi (α) and eLi (α) are right-, respectively left-invariant vector fields on GE whose
action on a function f ∈ O(GE) was described in (1.4), and κα is the automorphism
corresponding to the edge whose source half-edge is α. Then we have the following:

1. Πϕ
FR is a Poisson bivector on Repϕ(Σ, G).

2. (Repϕ(Σ, G),Πϕ
FR) is a Poisson G-space under the ϕ-twisted conjugation action.

3. The Poisson bracket between G-invariant functions is independent of the chosen
ciliated ribbon graph Γ ⊂ Σ and only depends on the symmetric part of the r-
matrix.

Proof. The 2-tensor field Πϕ
FR in (2.1) is the image of the r-matrix rΓ under the pushfor-

ward (ρΓ
ϕ)∗. The symmetric part of rΓ is tΓ =

∑
α∈E(t1)t(α)⊗(t2)t(α)−(t1)s(α)⊗(t2)s(α).

Its image under (ρΓ
ϕ)∗ is thus: ∑

α∈E
tR,R − (κα)∗(t

L,L)

But by assumption the r-matrix r = ω+t is invariant under the action of the outer auto-
morphism group. Together with the g-invariance of the symmetric part t of the classical
r-matrix we thus find that (ρΓ

ϕ)∗(r
Γ) is a bivector. We can now apply Proposition 1.1.14

to conclude that Πϕ
FR is a Poisson bivector for which the action of the quasi-triangular

Poisson–Lie group G given by ρΓ
ϕ ◦ diag is Poisson.

35



2. Twisted character varieties

It will be convenient to rewrite the twisted FR-Poisson bivector Πϕ
FR in the following

form: for an automorphism κ ∈ Out(G), define the bivector field

Πκ
STS = ωad(κ),ad(κ) + tR,L(κ) − tL(κ),R , (2.2)

where the superscripts indicate that the action by left-invariant vector fields is twisted
by the automorphism κ, and we used the notation xad(κ) = xR − κ∗xL for the vector
field generated by the element x ∈ g via the twisted adjoint action h 7→ ghκ(g−1) of G
on itself. At the identity κ = e, the bivector field Πe

STS agrees with the STS-Poisson
structure on G [STS94]. We then write the twisted FR-Poisson structure as follows

Πϕ
FR =

∑
α∈E

Πκα
STS +

∑
α<β

α,β∈{1,...,|E|}

(Πα,β − τ(Πα,β)) ,

where Πα,β is a 2-tensor, acting on the α-component of the first factor and on the
β-component of the second factor of GE ×GE , and is defined by

Πα,β =


−rad(κα),ad(κβ)

2,1 , if α and β are positively unlinked

−rad(κα),ad(κβ)
2,1 − 2tL(κα),R , if α and β are positively linked

−rad(κα),ad(κβ)
2,1 − 2tL(κα),R + 2tL(κα),L(κβ) , if α and β are positively nested

(2.3)

And for the remaining three cases we have

Πα,β =


r
ad(κα),ad(κβ)
1,2 , if α and β are negatively unlinked

r
ad(κα),ad(κβ)
1,2 + 2tR,L(κβ) , if α and β are negatively linked

r
ad(κα),ad(κβ)
1,2 + 2tR,L(κβ) − 2tL(κα),L(κβ) , if α and β are negatively nested

(2.4)

2.2. Factorization homology on surfaces with principal bundles

Throughout we fix a finite group D. In this section we will explain how one computes
categorical factorization homology of a surface Σ decorated with a principal D-bundle
ϕ : Σ→ BD. We will see that the local categorical input data for factorization homology
on a D-decorated surface are braided tensor categories with D-action. In applications to
(quantum) physics, one is mostly interested in factorization homology with coefficients
coming from the representation theory of (quantum) groups. Our main example for
local coefficients will come from an action of the outer automorphism group on the
representation category of the quantum group.

Setup We want to compute factorization homology of surfaces withD×SO(2)-tangential
structure and values in the (2, 1)-category PresK of locally finitely presentable K-linear
categories. Since the target is only 2-categorical, factorization homology with values in
PresK will factor through the following (2, 1)-category of D-decorated manifolds:

Definition 2.2.1. ManD2 is the (2, 1)-category whose

� objects are pairs (Σ, ϕ), where Σ is a smooth oriented surface and ϕ : Σ→ BD is
a continuous map, i.e. the data of a principal D-bundle on Σ.
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2. Twisted character varieties

� 1-morphisms (Σ, ϕ)
(f,h)−−−→ (Σ′, ϕ′) are embeddings f : Σ → Σ′ together with a ho-

motopy h : ϕ⇒ f∗ϕ′.

� 2-morphisms (f, h)
(χ,γ)−−−→ (f ′, h′) are isotopies χ : f → f ′, together with maps

γ : Σ×∆2 → BD filling

f ′∗ϕ′

ϕ f∗ϕ′

h

h′

χ∗ϕ′

Two such pairs (χ, γ) and (χ′, γ′) are equivalent if there exists an isotopy of iso-
topies χ → χ′, i.e. a map Ω: Σ × ∆2 → Σ′ filling the bottom in Diagram (2.5),
and a compatible homotopy Γ: Σ×∆3 → BD filling

ϕ

f ′∗ϕ′

f∗ϕ′

f ′∗ϕ′

h′

h

χ∗ϕ′

χ′∗ϕ′

h′

(2.5)

where the faces are labeled with the various maps which are part of the 1-morphisms.

The category ManD2 is symmetric monoidal under the disjoint union of manifolds. We
denote by DiskD2 ⊂ ManD2 the full symmetric monoidal subcategory generated by disks
R2 with constant maps to the base point ∗ ∈ BD. Note that even though the D-bundles
on disks are trivial, there are non-trivial 1-morphisms given by gauge transformations.

We can now define categorical DiskD2 -algebras analogously to the undecorated case,
namely as symmetric monoidal functors A : DiskD2 → PresK. Factorization homology∫

(−)A with coefficients in the categorical DiskD2 -algebra A is then defined as the left

Kan extension of the diagram [AF15]:

DiskD2 PresK

ManD2

A

∫
(−)A

2.2.1. Local categorical data

We have seen in § 1.3.2 that the data of a categorical Diskor
2 -algebra is equivalent to that

of a balanced braided tensor category. For the D-decorated case, we intuitively have the
following: since D-bundles on a disk can be assumed to be trivial, DiskD2 -algebras are
again balanced braided tensor categories, however the D-bundle decoration adds non-
trivial automorphisms on the level of 1-morphisms as sketched in Figure 2.1, inducing a
D-action on the balanced braided tensor category. Group actions on categorical Diskor

2 -
algebras are defined as follows:
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Figure 2.1.: Identity disk embedding in DiskD2 with homotopy d : id∗(∗)→ ∗ inducing an
automorphism of A for each d ∈ D, i.e. a D-action on A.

Definition 2.2.2. Let A be a balanced braided tensor category. A D-action on A is a
2-functor

ϑ : ∗ //D −→ ∗//AutbBr (A)

from the category with one object and D as automorphisms to the 2-category with one ob-
ject, balanced braided automorphisms of A as 1-morphisms and natural transformations
as 2-morphisms. In more details, the action consists of a monoidal equivalences

ϑ(d) : A −→ A, for each d ∈ D

respecting the balancing and the braiding, such that for each composable pair di, dj ∈ D
we have a natural isomorphism cij : ϑ(didj)

∼=−→ ϑ(di)ϑ(dj) satisfying the usual associa-
tivity axiom.

In summary, we have the following concise description of categorical DiskD2 -algebras:

Proposition 2.2.3. [Wee18a, Proposition 4.6] A categorical DiskD2 -algebra is a balanced
braided tensor category equipped with a D-action.

The main example for us will be the following.

Actions of Dynkin diagram automorphisms and their quantization We assume
that G is simply-connected. In this case, the outer automorphism group Out(G) of G can
be identified with the group of Dynkin diagram automorphisms. Concretely, the non-
trivial outer automorphism groups are listed in the table below and the corresponding
Dynkin diagram automorphisms are displayed in Figure 2.2.

Type An , n ≥ 2 Dn , n > 4 D4 E6

Out(G) Z2 Z2 S3 Z2

The category Rep(G) of G-representations is a symmetric monoidal category. More-
over it is rigid and the trivial balancing turns Rep(G) into a ribbon category. The finite
group Out(G) acts naturally on the category Rep(G) by pulling back representations:

ϑ(κ) : Rep(G) −→ Rep(G), V 7−→ (κ−1)∗(V ) .

The goal here is to show that this symmetry extends to the representation category of
the corresponding quantum group, see Proposition 2.2.4 below.

We will use the following notation and conventions. Let g be a finite-dimensional
semi-simple complex Lie algebra g with Cartan matrix (aij)1≤i,j≤n. We fix a Cartan
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subalgebra h ⊂ g and select a set of simple roots Π = {α1, . . . , αn}. We write Λ
for the weight lattice and we choose a symmetric bilinear form (−,−) on Λ such that
(αi, αj) = aij . For the rest of this paragraph we will restrict our attention to Lie algebras
with Dynkin diagrams of type An (n ≥ 2), Dn (n ≥ 4), or E6, since these are the only
cases for which we have non-trivial Dynkin diagram automorphisms.

The QUEA U~(g) is the topological Hopf algebra over C[[~]] with generators {Hαi ,
X±αi}αi∈Π, subjected to certain relations, see § 1.2.1 for more details. In order to define
positive and negative root vectors, we fix a reduced decomposition ω0 = si1si2 . . . siN of
the longest element ω0 in the Weyl group of g. The positive and negative root vectors
are then defined by

X±βr = Ti1Ti2 . . . Tir−1X
±
αir

,

that is by acting on the generators with elements Ti ∈ Bg of the braid group associated
to g. The QUEA U~(g) is quasi-triangular with universal R-matrix defined by the
multiplicative formula

R = ΩR̂, Ω =
∏
αi∈Π

e~(a−1
ij Hαi⊗Hαj ), R̂ =

≺∏
βr

R̂βr ,

where the second product is ordered according to the normal ordering ≺ defined by the
reduced decomposition of ω0, and R̂βr = expq((1 − q−2)X+

βr
⊗ X−βr) for q = exp(~).

It is shown in [CP95, Corollary 8.3.12] that R is independent of the chosen reduced
decomposition of ω0.

We denote by Rep~(G) the category of topologically free left modules over U~(g) of
finite rank. This tensor category comes with a braiding defined via the universal R-
matrix R of U~(g).

Proposition 2.2.4. The braided tensor category Rep~(G) admits a left action of Out(G).

Proof. The outer automorphisms Out(G) can be identified with the automorphism group
Aut(Π) of the Dynkin diagram of g. An element κ ∈ Aut(Π) acts on the generators of
U~(g) via

Hαi 7−→ Hακ(i)
, X±αi 7−→ X±ακ(i)

.

The action respects the relations in Definition 1.2.2 since a Dynkin diagram automor-
phism preserves the Cartan matrix. We thus get an action ρ of Out(G) on the tensor
category Rep~(G) defined by pulling back a representation along the inverse automor-
phism, i.e. ρ(κ)(X) = (κ−1)∗X, for any X ∈ Rep~(G). It is left to show that the action
preserves the braiding. The action of κ on a positive, respectively negative, root vector
is

κ.X±βr = Tκ(ir) . . . Tκ(ir−1)X
±
ακ(ir)

.

(a) (b) (c) (d)

Figure 2.2.: Dynkin diagrams and their automorphisms a) An, n even b) An, n odd, c)
E6, d) Dn, n > 4. The white nodes represent a commuting set of simple reflections, and
similarly for the black nodes.
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We now make use of the following explicit expressions for ω0, details can be found for
example in [Hum90, Section 3.19]. First, divide the nodes of the Dynkin diagram into
two nonempty disjoint subsets S and S′ so that each consists of nodes representing a
commuting set of simple reflections. In Figure 2.2, the subsets S and S′ are distinguished
by their coloring. Let a and b be the products of the simple reflections in S and S′,
respectively. For An (n odd), Dn (n ≥ 4) and E6 we can set ω0 = (ab)h, where h is
the respective Coxeter number. A Dynkin diagram automorphisms preserve the subsets
S and S′, see Figure 2.2, and thus sends a reduced decomposition of the longest Weyl
group element ω0 to another reduced decomposition of ω0. For An (n even), ω0 can
be represented either as ω0 = (ab)

n
2 a or as ω0 = b(ab)

n
2 . For a Dynkin diagram of

this type the automorphism exchanges S and S′, see again Figure 2.2, thus sending a
reduced decomposition of ω0 to another one. But since the R-matrix is independent of
the chosen reduced decomposition the result follows.

Example 2.2.5. Let g = sl3 with simple roots Π = {α1, α2}. There are two choices
of normal orderings on the set of positive roots ∆+ corresponding to the two reduced
decompositions ω0 = s1s2s1 and ω0 = s2s1s2. The positive/negative root vectors for the
two choices are

� ω0 = s1s2s1 : X±β1
= X±1 , X±β2

= −X±1 X
±
2 + e−~X±2 X

±
1 , X±β3

= X±2

� ω0 = s2s1s2 : X±β1
= X±2 , X±β2

= −X±2 X
±
1 + e−~X±1 X

±
2 , X±β3

= X±1

and the Dynkin diagram automorphism κ({1, 2}) = {2, 1} relates the two sets of root
vectors. 4

Proposition 2.2.6. The action of Out(G) on Rep~(G) is compatible with the balancing
automorphism of Rep~(G).

Proof. The balancing in Rep~(G) is induced by the action of the ribbon element c~ =
exp(~Hρ)u~ of U~(g), see [CP95, Section 8.3.F]. Here, Hρ =

∑n
i=1 µiHαi with coefficients

µi =
∑n

j=1 a
−1
ij and u~ = m~(S~ ⊗ id)R2,1 with m~ and S~ the multiplication and

antipode in U~(g) respectively. It follows from Proposition 2.2.4 that a Dynkin diagram
automorphism κ ∈ Aut(Π) preserves the element u~. So it is left to show that κ preserves
the element Hρ. Since the Cartan matrix is invariant under the Dynking diagram
automorphism, we have µi =

∑n
j=1 a

−1
i,j =

∑n
j=1 a

−1
κ(i),κ(j) =

∑n
j=1 a

−1
κ(i),j = µκ(i) and

thus κ.Hρ = Hρ.

Let q ∈ C× be a non-zero complex number which is not a root of unity and let
Uq(g) be the corresponding quantum group as defined in [CP95, Section 9]. We denote
by Repq(G) the category of locally-finite integrable Uq(g)-modules. Strictly speaking,
Uq(g) is not quasi-triangular. However, it’s representation category admits a braiding
[CP95, Section 10.1.D]. On a representation V ⊗ V ′ ∈ Repq(G), the braiding is defined

by the so-called quasi R-matrix ΘV,V ′ = τ ◦ EV,V ′R̂V,V ′ , where τ is the map swapping
the tensor factors and EV,V ′ is an invertible operator on V ⊗ V ′ acting on the subspace
Vλ ⊗ V ′µ by the scalar q(λ,µ), for λ, µ ∈ Λ. Moreover, the standard ribbon element for

Uq(g) acts on Vλ as the constant q−(λ,λ)−2(λ,ρ) with ρ the half-sum of positive roots,
giving rise to the balancing in Uq(g). Hence, we get the q-analog of Proposition 2.2.4:

Proposition 2.2.7. The braided balanced tensor category Repq(G) admits a left action
of Out(G).
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2.2.2. �-Excision

Similarly to the case of oriented manifolds, factorization homology with tangential D×
SO(2)-structure satisfies excision [AF15, Lemma 3.18]. For a collar gluing Σ = Σ− ∪Σ0

Σ+ of aD-decorated surface (Σ, ϕ), together with a diffeomorphism of oriented manifolds

θ : N × (−1, 1)
∼=−→ Σ0, the map θ∗(ϕ|Σ0) : N × (−1, 1) → BD is not required to be

constant along the interval (−1, 1) of the collar, though it will always be homotopic to
the constant map. Of course, this homotopy trivializes the map only locally. Globally,
the bundles decoration induces a D-twist in the module structure coming from excision.
We will make this more precise in Example 2.2.8 for the case of the D-decorated annulus.
The case for more general surfaces is content of Proposition 2.2.10 below.

Example 2.2.8. Let Annd = (Ann, γd) be an annulus decorated with a map γd : Ann→
BD which sends the free generator of π1(Ann) to the group element d ∈ D. We then
choose a collar-gluing Ann ∼= Σ− ∪Σ0 Σ+ for the annulus, as sketched on the right hand
side of Figure 2.3a, and an equivalence in ManD2 so that the maps to BD are constant
on Σ− \Σ0 and Σ+ \Σ0 and is given by the loop γd on a fixed open interval in Σ0, which
is depicted by the red interval in Figure 2.3a.

We denote by I+ = (−1, 1) the open interval with positive orientation and by I− the
same interval but with negative orientation. We have a diffeomorphism θ : (I+ t I−)×
R
∼=−→ Σ0 of oriented manifolds. And we can choose the map γ′d such that its pullback

along θ is constant in radial direction and given by γd on (−1
2 ,

1
2) ⊂ I+. Even though

θ∗(γ′d|Σ0) is not constant along I+, it will be homotopic to the constant map at the base
point ∗ ∈ BD. We now fix such a homotopy H : θ∗(γ′d|Σ0) ⇒ ∗: the homotopy H is
constant along I− and on I+ it is given by

H : I+ × [0, 1] −→ BD, (c, t) 7−→


∗, c ≥ 1

2

γd(c+ 1
2 + t(1

2 − c)), c ∈ (−1
2 ,

1
2)

γd(t), c ≤ −1
2

(2.6)

as illustrated in Figure 2.3b. The equivalence ((I+ t I−) × R, ∗) (θ,H)−−−→ (Σ0, γ
′
d|Σ0) in

ManD2 induces equivalences of categories∫
(Σ0,γ′d|Σ0

)
A ∼=

∫
((I+tI−)×R,∗)

A ∼= A�A (2.7)

for any framed E2-algebra A ∈ PresK with D-action. For notational convenience we will
denote C = ((I+ t I−)× R, ∗) in the following.

γd

∼=

Σ0

γ′d

(a) Collar gluing for D-decorated annulus.

H(s, t0) =

−1 −1
2

1
2 1

γd(t > t0)

γd(t0)

(b) Sketch of the homotopy H for some fixed
t0 ∈ [0, 1].

Figure 2.3.
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Next, we will deduce the
∫
C A-module structure on

∫
(Σ−,γ′d|Σ− )A and

∫
(Σ+,γ′d|Σ+

)A.

To that end, we fix oriented embeddings:

µ+ µ−

−1 1 −1 1 −1− 1
2

1
2

1 −1 1 −1 1 −1− 1
2

1
2

1

Using the equivalence (θ,H) we can lift these embeddings to maps act− : (Σ−, γ
′
d|Σ−)t

C → (Σ−, γ
′
d|Σ−) and act+ : C t (Σ+, γ

′
d|Σ+) → (Σ+, γ

′
d|Σ+) of D-structured manifolds.

The non-trivial part of the homotopies for the left, respectively right, C-module struc-
tures can be deduced from Figure 2.4. Explicitly, the non-trivial part of the homotopy
h+ : (∗, γ′d)⇒ act∗+γ

′
d for the left action is

h+ : (−1, 1)× [0, 1] −→ BD

(c, t) 7−→ γ−1
d (t)

h+ : (−1, 1]× [0, 1] −→ BD

(m, t) 7−→ H(m, t)

and the non-trivial part of the homotopy h− : (γ′d, ∗)⇒ act∗−(γ′d) for the right action is

h− : [−1, 1)× [0, 1] −→ BD, (m, t) 7−→


γ−1
d (t), m ≥ 1

2

γd(m+ 1
2 − t(

1
2 +m)), m ∈ (−1

2 ,
1
2)

∗, m ≤ −1
2

(2.8)

Note that h− is constant along the open interval (−1, 1).
Denote by Σ∗− and Σ∗+ two objects in ManD2 diffeomorphic to Σ− and Σ+, with collars

[−1, 1) × R and (−1, 1] × R, whose maps to BD are assumed to be constant. The
value of factorization homology on these manifolds naturally defines module categories
M− and M+ over the tensor category

∫
C A from (2.7). In order to obtain an explicit

description of the module structures obtained by excision, note that the homotopy H

from (2.6) can be used to construct an equivalence (θ+, H+) : (Σ∗+, ∗)
∼=−→ (Σ+, γ

′
d|Σ+).

Explicitly, the homotopy H+ agrees with H on Σ∗+ ∩ (I+ × R) and is constant else. We
use this equivalence to identify

∫
(Σ+,γ′d|Σ+

)A ∼=M+ as categories. This equivalence can

be promoted to an equivalence of
∫
C A-module categories, i.e. the following diagram is

commutative

C t Σ+ Σ+

C t Σ∗+ Σ∗+

idt(θ+,H+)

(act+,h+)

(θ+,H+)

act∗+

γd act+

id t (θ,H) (θ,H)−1

µ+

(a) Left module structure

act−

(θ,H) t id (θ,H)−1

µ−

(b) Right module structure

Figure 2.4.: Left- and right disk action on a disk decorated with a map to BD that
agrees with γd on the blue interval and is constant everywhere else.
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where act∗+ is the map inducing the regular action on the level of the factorization
homologies

reg : (A�A)�M+ −→M+, (a1 � a2)� b 7−→ a1 ⊗ a2 ⊗ b .

where M+
∼= A as categories.

Note that we can not use H again to obtain an equivalence of Σ− with Σ∗− since the
homotopy H is not constant near {−1}×R on the collar. But we will use the homotopy

h− from (2.8) instead: we get an equivalence (θ−, H−) : (Σ∗−, ∗)
∼=−→ (Σ−, γ

′
d|Σ−), where

H− agrees with h− on the collar and is constant else. Then, the following diagram is
commutative in ManD2 :

Σ− t C Σ−

Σ∗− t C Σ∗−

(act−,h−)

(θ−,H−)t(id,γ−1
d ) (θ−,H−)

act∗−

From the horizontal maps we deduce that the module structure relevant for excision is
obtained by twisting the regular action by the D-action:

M− � (A�A)
id�(ϑ(d−1)�id)−−−−−−−−−→M− � (A�A)

reg−−→ A (2.9)

where again as categories we have M− ∼= A. In summary, we find∫
(Ann,γd)

A ∼=Md �
A�A

A

where Md is the category A with the d-twisted regular action (2.9).

Remark 2.2.9. Notice that alternatively we could have chosen a trivialization of Σ0

which extends to Σ− rather than Σ+, which would have resulted in a twisting of M+ by
ϑ(d) instead. In this sense the module structures featuring in excision on D-decorated
surfaces are not unique, though the value of the relative tensor product is.

4

The following proposition is a generalization of the previous example, see also [KM23,
Example 2.11].

Proposition 2.2.10. Let (Σ, ϕ) ∈ ManD2 , Σ ∼= Σ−∪Σ0 Σ+ a collar-gluing and let θ : Σ0
∼=

N × (−1, 1) be a diffeomorphism. Assume that ϕ is such that its restriction ϕ|Σ−\Σ0
as

well as ϕ|Σ+\Σ0
agree with the constant map to the base point ∗ of BD and

(θ−1)∗ϕ(n, t) =

{
∗, for t /∈ (−1

2 ,
1
2)

γd−1(t+ 1
2), for t ∈ (−1

2 ,
1
2)

as illustrated in Figure 2.5. Let C =
∫

(N×(−1,1),∗)A, M+ =
∫

(Σ+,∗)A and M− =∫
(Σ−,∗)A. Then, we have an equivalence∫

(Σ,ϕ)
A ∼=M−,d �

C
M+ ,

where M−,d denotes the category M− with d-twisted C-action:

act−,d : M− � C
id�ϑ(d)−−−−−→M− � C

act−−−−→M− .
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N × (−1, 1)

Σ− \ Σ0

Σ+ \ Σ0

BD
∗ ∗

γd−1

−1
2

1
2

Figure 2.5.: The map ϕ on a collar-gluing.

2.2.3. Reconstruction for rigid balanced braided tensor categories with
D-action

We say that a braided tensor category A is rigid if all compact objects have duals.
For d ∈ D, consider the right A�2-module category Md, whose underlying category

is A and the action is

regd : Md �A�A
id�id�ϑ(d)−−−−−−−→Md �A�A

T 3

−→Md , (2.10)

where T 3 is the iterated tensor product functor x�y�z 7→ x⊗y⊗z. This is the module
structure from Example 2.2.8 obtained via factorization homology of the d-decorated
annulus.

The internal endomorphism algebra EndA�2(1A) of the monoidal unit 1A can be ex-
plicitly described by the coend∫ V ∈cmp(A)

V ∨ � ϑ(d−1).V , (2.11)

where V ∨ is the dual of V and the colimit is taken over a generating set of compact
objects in A. In the above we used that the twisted regular action is the pre-composition
of the regular action with the automorphism id � ϑ(d) whose adjoint is id � ϑ(d−1).
Together with the coend formula for the right adjoint of the regular action.

Applying the tensor product functor T : A � A → A to the internal endomorphism
algebra EndA�2(1A) we get the twisted coend algebra:

FdA =

∫ V ∈cmp(A)

V ∨ ⊗ ϑ(d−1).V . (2.12)

Using the canonical maps V ∨ ⊗ ϑ(d−1).V
ιV−→ FdA we can express the multiplication in

FdA by means of the following diagram

V ∨ ϑ(d−1).V W∨ ϑ(d−1).W

(V ⊗W )∨ ϑ(d−1).(V ⊗W )

(2.13)

At the identity element e ∈ D, the coend algebra (2.12) agrees with Lyubashenko’s
coend

∫
V ∨ ⊗ V [Lyu95b], which in particular is a braided Hopf algebra in A. We will

discuss this special case in some more details in the following example:
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2. Twisted character varieties

Example 2.2.11. Let H be a ribbon Hopf algebra with D-action, meaning that an
element d ∈ D acts on H be Hopf algebra automorphisms and preserves the universal
R-matrix, R ∈ (H ⊗ H)D, and the ribbon element ν ∈ HD. Let H-Mod be the rigid
balanced braided tensor category of locally-finite left modules over H on which the
elements d ∈ D act through pulling back representations along d−1.

Let’s first consider the coend (2.12) at the identity element e ∈ D. For every finite-
dimensional H-module V , there is a linear map

iV : V ∨ ⊗ V −→ H◦, ϕ⊗ v 7−→ V
cϕv .

to the restricted dual H◦ spanned by matrix coefficients. We wrote
V
cϕv for the linear

function on H defined by
V
cϕv (h) = ϕ(h . v) for any h ∈ H. The linear map iV is a map

of H-modules if H◦ is endowed with the coadjoint H-module structure:

ad∗ : H ⊗H◦ −→ H◦, h⊗ ψ 7−→ ψ(S(h(1))(−)h(2)) .

The family of maps (V ∨ ⊗ V iV−→ H◦)V ∈H-Modfd satisfies the universal property of the
coend H◦ ∼=

∫
V ∨⊗ V , see for example [Lyu95a, Theorem 3.3.1] and references therein.

The multiplication (2.13) endows the coend with the structure of an algebra in H-Mod,
which is called the braided dual of H, also known as the reflection equation algebra
(RE-algebra).

The RE-algebra can be obtained from the so-called Faddeev-Reshetikhin-Takhtajan
algebra (FRT-algebra) via twisting by a cocycle defined in terms of the universal R-
matrix [DM03]. In more detail, the FRT-algebra is identified with the coend

FFRT =

∫ V ∈H-Modfd

V ∨ � V ∈ H-Modop �H-Mod ,

where H-Modop is the category with the opposite monoidal product, with multiplication
mFRT induced by the canonical maps

(V ∨�V )⊗ (W∨�W ) = (V ∨⊗opW∨)� (V ⊗W ) ∼= (W ⊗V )∨� (W ⊗V )
ιV⊗W−−−−→ FFRT .

Thus, for φ, ψ ∈ H◦ we have mFRT (φ ⊗ ψ)(h) = φ(h(1))ψ(h(2)) for any h ∈ H. The
RE-algebra is the image of the FRT-algebra under the composite functor

H-Modop �H-Mod
(id,σ)�id−−−−−→ H-Mod�H-Mod

T−→ H-Mod , (2.14)

where (id, σ) denotes the identity functor, equipped with a non-trivial tensor structure
σ = τ ◦ (R .) in H-Mod.

In the decorated case, we pre-compose the functor in (2.14) with the automorphism
1�ϑ(d). Then, for any d ∈ D, the underlying vector space of FdH-Mod is identified again
with H◦ via

ιV : V ∨ ⊗ d∗V −→ H◦, φ⊗ v 7−→ φ(− . (d−1)∗v) ,

for any V ∈ H-Modfd, but H◦ is now equipped with the twisted coadjoint action ad∗d(h⊗
ψ) = ψ(S(h(1))(−)d.h(2)). The multiplication on the coend algebra was already defined
in (2.13). Explicitly, writing R = R1 ⊗ R2 for the universal R-matrix, the product of
φ, ψ ∈ FdH-Mod is

md
RE(φ⊗ ψ) = mFRT(φ(R1(−)d.R′1)⊗ ψ(S(R′2)R2(−)) , (2.15)

where we used primes to distinguish different copies of the R-matrix. In the language
of [DM03], we say that FdH-Mod is obtained from (H◦, ad∗d) by twisting with the cocycle
R1 ⊗ d.R′1 ⊗R2R′2 ⊗ 1. 4
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Example 2.2.12. The category of integrable finite-dimensional Uq(g)-modules is a
braided tensor category via the quasi R-matrix Θ. The quantized coordinate algebra
Oq(G) is then defined as the algebra of matrix coefficients of finite-dimensional inte-
grable representations. Given an automorphism κ ∈ Out(G), the twisted coend algebra
(2.12) takes the form

FκRepq(G) =
⊕

V (λ), λ∈P+

V (λ)∨ ⊗ κ∗V (λ)

where the sum runs over the irreducible highest weight modules. By a quantum version
of the Peter–Weyl theorem (see for example [KS97, Section 11]) we get an identification⊕

V (λ) V (λ)∨⊗ κ∗V (λ) ∼= Oq(G) as algebras in Repq(G), where Oq(G) is equipped with
the κ-twisted multiplication mκ

RE from (2.15). 4

2.3. Computations on punctured surfaces with principal
bundles

In this section we will show that factorization homology on a surface with boundary
and D-bundles decoration can be computed as the category of modules over an algebra
defined in purely combinatorial terms. This result relies on �-excision of factorization
homology and monadic reconstruction techniques for abelian module categories.

Throughout we consider connected oriented surfaces with at least one boundary com-
ponent. We will pick a ciliated ribbon graph model with one vertex for the surfaces,
which in [BZBJ18a] is conveniently defined via a gluing-pattern, that is a bijection

P : {1, 1′, . . . , n, n′} → {1, . . . , 2n} ,

such that P (i) < P (i′). Here, n is the number of edges of the ribbon graph model of Σ.
Given a gluing pattern P , we can reconstruct Σ as depicted in Figure 2.6b, namely by
gluing n disks D�,� with two marked intervals each to a disk �2nD� with 2n+ 1 marked
intervals, thereby gluing the intervals i and i′ to P (i) and P (i′), respectively.

Definition 2.3.1. A D-labeled gluing pattern is a gluing pattern P : {1, 1′, . . . , n, n′} →
{1, . . . , 2n} together with n elements d1, . . . , dn ∈ D.

Since the fundamental group of a genus g surface with r boundary components is free
on n = 2g+r−1 generators, a D-labeled gluing pattern determines a principal D-bundle
on the surface constructed from the gluing pattern. Furthermore, up to equivalence all
principal D-bundles on surfaces with at least one boundary arise in this way.

For aD-labeled gluing pattern (P, d1 . . . dn) we are going to define an algebra ad1,...,dn
P ∈

A. As an object in A, it is defined by the tensor product

ad1,...,dn
P =

n⊗
i=1

FdiA , (2.16)

where the FdiA are defined by the coend in Equation (2.12). The gluing pattern can be
used to define an algebra structure on this object in complete analogy with [BZBJ18a].

To that end, we will use the following terminology: two labeled disks Ddi�,� and D
dj
�,�

with i < j are called
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[γd1 ] [γdr ] [γdr+1 ][γdr+2 ] [γdn−1 ][γdn ]

(a) Generators of the homotopy group π1(Σ).

P (1) P (1′) P (r) P (r′) · · · P (n) |
P ((n− 1)′)

P (n′)

d1 dr dn−1 dn

(b) Gluing a surface from a decorated gluing pat-
tern.

Figure 2.6.

� positively (negatively) linked if P (i) < P (j) < P (i′) < P (j′)
(
P (j) < P (i) <

P (j′) < P (i′)
)

� positively (negatively) nested if P (i) < P (j) < P (j′) < P (i′)
(
P (j) < P (i) <

P (i′) < P (j′)
)

� positively (negatively) unlinked if P (i) < P (i′) < P (j) < P (j′)
(
P (j) < P (j′) <

P (i) < P (i′)
)

The corresponding ciliated ribbon graphs were previously sketched in Figure 1.2. To
each of the above cases, we assign a crossing morphism as depicted in Figure 2.7 below.

+-linked +-nested +-unlinked

FdiA FdjA

FdiAFdjA

FdiA FdiA

FdiA FdiA

FdjA FdjA

FdjA FdjA

L+ = N+ = U+ = (2.17)

Figure 2.7.: Definition of crossing morphisms L+, N+, U+ : FdiA ⊗ F
dj
A → F

dj
A ⊗ F

di
A for

positively linked, nested and unlinked decorated disks. Notice that we read the diagrams
from bottom to top.

Now, for each pair of indices 1 ≤ i < j ≤ n, the restriction of the multiplication to

FdiA ⊗F
dj
A ⊂ a

d1,...,dn
P is defined by

FdiA ⊗F
dj
A ⊗F

di
A ⊗F

dj
A

id⊗C⊗id−−−−−→ FdiA ⊗F
di
A ⊗F

dj
A ⊗F

dj
A

m⊗m−−−→ FdiA ⊗F
dj
A ,

where C is either L±, N± or U±, depending on whether the decorated disks Ddi�,� and

D
dj
�,� are ±-linked, ±-nested or ±-unlinked.
Finally, given a D-labeled gluing pattern, we wish to describe the module structure

induced by gluing the marked disks Ddi�,� to the disk �2nD� as sketched in Figure 2.6b.
To that end, we look at the example of a sphere with three punctures (S2)3 and a
D-bundle described by the map ϕ : π1((S2)3) → D sending the two generators of the
fundamental group to d1 and d2, respectively. The corresponding gluing pattern is
P (1, 1′, 2, 2′) = (1, 2, 3, 4), decorated by the tuple (d1, d2) ∈ D ×D. We then choose a
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∼=

Σ0

γd2

γd1

Figure 2.8.: Example: D-decorated sphere with three punctures.

collar-gluing (S2)3
∼= Σ−∪Σ0 Σ+ for the punctured sphere, as sketched on the right hand

side of Figure 2.8, and an equivalence in ManD2 , so that the maps to BD are constant
on Σ− \ Σ0 and Σ+ \ Σ0 and agree with the loops γd1 and γd2 on fixed open intervals
in Σ0, which are depicted by the red and blue intervals in Figure 2.8. We immediately
see that we are in a situation similar to Proposition 2.2.10: the right A � A-module
structure on

∫
D
di
�,�
A, for i = 1, 2, comes from the twisted regular action regdi from

(2.10). The module structure for more general decorated gluing patterns can be worked
out analogously.

Theorem 2.3.2. Let A be a rigid balanced braided abelian category in PresK. Let Σ
be a surfaces with at least one boundary component and a marked interval in ∂Σ. Fix
a principal D-bundle ϕ : Σ → BD on Σ and a corresponding D-labeled gluing pattern
(P, d1, . . . , dn). There is an equivalence of categories∫

(Σ,ϕ)
A ∼= ad1,...,dn

P -ModA . (2.18)

Proof. The following is an extension of the proof of [BZBJ18a, Theorem 5.14] to surfaces
with D-bundles. We have seen that for a d-labeled disk Dd�,� with two marked intervals
we have

∫
Dd�,�
A ∼= A as categories, with the markings inducing the structure of a right

A�2-module category with module structure being the twisted regular action regd. Now,∫
tiD

di
�,�
A ∼= A�n has the structure of a right A�2n-module category. Indeed, using the

decorated gluing pattern (P, d1, . . . , dn) we have an action:

regd1,...,dn
P : (x1 � · · ·� xn)� (y1 � · · ·� y2n) 7−→ (x1 ⊗ yP (1) ⊗ ϑ(d1).yP (1′))� . . .

· · ·� (xn ⊗ yP (n) ⊗ ϑ(dn).yP (n′))

We denote the resulting right module category by Md1,...,dn
P .

On the other hand, we have the disk �2nD� with 2n marked intervals to the left and
one marked interval to the right. This turns

∫
�2nD�

A ∼= A into a (A�2n,A)-bimodule

via the iterated tensor product

(x1 � · · ·� x2n)� y � z 7−→ x1 ⊗ · · · ⊗ x2n ⊗ y ⊗ z.

We denote the resulting bimodule category by A�2nAA. Using excision, we then have∫
(Σ,ϕ)

A ∼=Md1,...,dn
P �

A�2n
A�2nAA .
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Let τP : {1, . . . , 2n} → {1, . . . , 2n} be the bijection given by postcomposing the map
defined by 2k − 1 7→ k, 2k 7→ k′ with P . Notice that the map τ−1

P is part of the action

regd1,...,d2

P . Now we use that the unit 1A is a progenerator for the right regular action
[BZBJ18a, Proposition 4.15]. Since ϑ(d) is an automorphism of A, it is also a progenera-
tor for the twisted regular action. So we can apply monadic reconstruction as in Theorem
1.3.20 to identifyMd1,...,dn

P with modules over an algebra EndA�2n(1A�n)d1,...,dn
P ∈ A�2n,

obtained from EndA�2(1A)d1�· · ·�EndA�2(1A)dn by acting with τP . Applying Corollary
1.3.22 to the dominant tensor functor T 2n : A2n → A, we thus get∫

Σ
A ∼= T 2n(EndA�2n(1A�n)d1,...,dn

P )-ModA

as right A-module categories.
Let us write T 2n(EndA�2n(1A�n)d1,...,dn

P ) = ãP for brevity. We want to show that there

is an isomorphism of algebras ãP ∼= ad1,...,dn
P . To that end, consider the subalgebras

F (i,i′)
A = EndAP (i)�AP (i′)

(1A)di ∈ A�2n

and their images under the tensor functor F (i)
A = T 2n(F (i,i′)

A ) ∈ A. By embedding each

F (i)
A into ãP we get a map

m̃P : F (1)
A ⊗ · · · ⊗ F

(n)
A ↪→ ã⊗nP

m̃−→ ãP ,

where m̃ is the multiplication in ãP . This map establishes the isomorphism on the level

of objects in A. The restriction of the multiplication to the image of one of the F (i)
A

agrees with the multiplication m in FdiA . So it is left to show that for each pair of indices
1 ≤ i < j ≤ n the composition

F (i)
A ⊗F

(j)
A ⊗F

(i)
A ⊗F

(j)
A

id⊗C⊗id−−−−−→ F (i)
A ⊗F

(i)
A ⊗F

(j)
A ⊗F

(j)
A

m⊗m−−−→ F (i)
A ⊗F

(j)
A

m̃P−−→ ãP ,

for C being L±, N± or U±, agrees with m̃P |(F(i)
A ⊗F

(j)
A )⊗2 . To that end, consider the

following diagram

T 4(F (i,i′)
A ⊗F (j,j′)

A ) = T 4(F (j,j′)
A ⊗F (i,i′)

A )

F (i)
A ⊗F

(j)
A F (j)

A ⊗F
(i)
A

ãP

T 4(m)

Si,j

m̃P m̃P

Sj,i

where the label T 4(m) on the vertical arrow means applying the tensor functor to the

multiplication in EndA�2n(1A�n)d1,...,dn
P . The dashed arrows, making the above diagram

commute, are described by exhibiting the tensor structure of the iterated tensor product
functor

Si,j : F (i)
A ⊗F

(j)
A = T 4(F (i,i′)

A )⊗ T 4(F (j,j′)
A )

∼=−→ T 4(F (i,i′)
A ⊗F (j,j′)

A )
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2. Twisted character varieties

defined by the shuffle braiding1. As an example, consider the gluing pattern P (1, 1′, 2, 2′) =
(1, 3, 4, 2) describing positively nested handles. The corresponding shuffle braiding is

S1,2 = (1⊗ 1⊗ σ) ◦ (1⊗ σ ⊗ 1), S2,1 = (σ ⊗ 1⊗ 1) ◦ (1⊗ σ ⊗ 1),

and we observe that the composition S−1
1,2 ◦S2,1 agrees with the nested crossing morphism

N+
1,2 : Fd2

A ⊗F
d1
A → F

d1
A ⊗F

d2
A . From commutativity of the above diagram, we then get

that m̃P |Fd2A ⊗Fd1A
= m̃P |Fd1A ⊗Fd2A

◦N+
1,2, which finishes the proof for the positively nested

case. The other five cases can be worked out analogously.

Remark 2.3.3. The result of Theorem 2.3.2 holds in the K-linear, abelian setting. For

coefficients in the C[[~]]-linear setting we find the following. Let V = ̂C[[~]]-Mod be the
category of complete C[[~]]-modules (see § A.1.1 of the appendix) and C a small balanced
braided monoidal V-enriched category with a D-action. We will assume that all objects
in C have duals. An example to have in mind is the category Rep~(G)fd of topologically
free U~(g)-modules of finite rank with the Out(G)-action described in Proposition 2.2.4.
Then, the free cocompletion Ĉ ∈ V-Pres with its induced D-action is a DiskD2 -algebra in
V-Pres.

Given a decorated gluing pattern (P, {d1, . . . , dn}) for a surface Σ with D-bundle ϕ
and a marked interval in ∂Σ, we get an adjunction in V-Pres

actOΣ
: Ĉ ∼=

∫
D
Ĉ

∫
(Σ,ϕ) Ĉ ∼=M

d1,...,dn
P �

Ĉ�2n
Ĉ : actROΣ

,

induced by the embedding of a disk along the marked interval. As in the proof of Theorem
2.3.2,Md1,...,dn

P
∼= Ĉ�n as plain categories and with Ĉ�2n-module structure determined by

the decorated gluing pattern. The adjunction determines a canonical algebra in Ĉ, namely
EndĈ(OΣ) ∼= actROΣ

(actOΣ
(1)). By the same reasoning as in the proof of Theorem 2.3.2,

we get an isomorphism of algebras

EndĈ(OΣ) ∼= ad1,...,dn

Ĉ,P
,

where the algebra ad1,...,dn

Ĉ,P
is defined in the same way as in the K-linear case. We thus

get a functor

actROΣ
:

∫
(Σ,ϕ)

Ĉ −→ ad1,...,dn

Ĉ,P
-ModĈ .

However, since the category Ĉ is not abelian, we can not apply the reconstruction re-
sult from § 1.3.4 to deduce if this functor is an equivalence. Extending the monadic
reconstruction results to the C[[~]]-linear setting will be content of future work.

2.3.1. The case of the D-decorated annulus

Throughout this section let A ∈ PresK be a ribbon category. We want to explore the
algebraic structures that arise on the collection of the factorization homologies∫

(S1×R,ϕ)
A

1The shuffle braiding S : a1 ⊗ · · · ⊗ an ⊗ b1 ⊗ · · · ⊗ bn
∼=−→ a1 ⊗ b1 ⊗ · · · ⊗ an ⊗ bn is S = σan,bn−1 ◦ · · · ◦

σa3⊗···⊗an,b2 ◦ σa2⊗···⊗an,b1 , where σ is the braiding of A.
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2. Twisted character varieties

for varying decoration ϕ : S1×R→ BD. More precisely, we will see that the factorization
homologies assemble into an algebra over the little bundles operad, as defined by Müller–
Woike [MW20]. We then compute the components of the resulting categorical algebra
by means of twisted Drinfeld centers introduced in [FSS17].

We first recall that in the undecorated case,
∫
S1×RA has a monoidal structure coming

from the pair of pants: evaluating factorization homology on the pair of embeddings
sketched in Figure 2.9 gives rise to a diagram∫

S1×R
A�

∫
S1×R

A (ι1tι2)∗−−−−−→
∫

Pants
A ιout∗←−−−

∫
S1×R

A (2.19)

in PresK. The composition (ι∗out)
R ◦ (ι1 t ι2)∗ defines an E2-algebra structure ⊗Pants on∫

S1×RA.

ι1 t ι2 ιout

Figure 2.9.: The maps inducing the monoidal structure ⊗Pants.

In the D-decorated setting, the situation is different since the annulus may be endowed
with non-constant maps into BD. These maps induce induce an interesting algebraic
structure on the collection of factorization homologies, namely the structure of an algebra
over the operad of little D-bundles. The little D-bundles operad ED2 is colored over the
space of maps ϕ : S1 → BD. Its space of operations ED2

( ψ
(ϕ1,...,ϕr)

)
may be pictured as

a bordism (S1)tr → S1, which is decorated with a map to BD whose restriction to the
ingoing boundary agrees with (ϕ1, . . . , ϕr) and to the outgoing boundary with ψ (we
refer to [MW20] for a detailed definition of the little bundles operad and its algebras).
The main result of [MW20, Theorem 4.13] identifies categorical algebras over the little
D-bundles operad with braided D-crossed categories as defined by Turaev [Tur10] and
recalled below.

Definition 2.3.4. A braided D-crossed category is a D-graded monoidal category AD =⊕
d∈DAd, such that ⊗ : Ad �Ad′ → Add′, together with a D-action ρ on AD and a D-

braiding c. The action is such that the image of the component Ad under ρ(h) lies in
Ahdh−1. The D-braiding consists of natural isomorphisms cX,Y : X ⊗ Y → d.Y ⊗X for
X ∈ Ad, satisfying natural coherence conditions.

In summary, we find the following:

Proposition 2.3.5. The collection of the factorization homologies on S1 × R equipped
with a decoration by D-bundles has the structure of a braided D-crossed category.

We will now describe the components
∫

(S1×R,γd)A of the D-crossed category defined
by factorization homology, where γd denotes the map corresponding to the loop d ∈
π1(BD) = D and which is constant in the radial direction. To that end, recall that for
an A-bimodule category M ∈ PresK, the bimodule trace of M is defined as the relative
tensor product

TrA(M) =M �
A�Aop

A ,
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2. Twisted character varieties

where Aop denotes the category A with the opposite monoidal structure: x⊗opy = y⊗x
for x, y ∈ A.

For an undecorated annulus, we have an equivalence∫
S1×R

A ∼= A�A�Aop A . (2.20)

Thus factorization homology on the annulus computes Hochschild homology, or the
monoidal trace, of the balanced braided tensor category A. The monoidal trace (2.20)
can be understood as the categorical counterpart of the co-center A/[A,A] of an asso-
ciative algebra A. On the other hand, the Drinfeld center Z(A) of the tensor category
A is the categorical equivalent of the center Z(A) of the algebra A. If A is rigid, one
may identify [DSPS13, Lemma 2.4.5 and Corollary 2.4.11]

Z(A) = HomA�Aop(A,A) ∼= 〈ll〉A�A�Aop A ,

where l : A → Aop is the monoidal equivalence sending each compact object x ∈ cmp(A)
to its left dual ∨x and 〈ll〉A is the bimodule whose left action is pulled back along ll. But
A is a ribbon category, in particular this means that we have a natural monoidal iso-
morphism α : idA ⇒ ll which allows to identify AAA ∼= 〈ll〉(AAA) as bimodule categories.
We thus see that the rigidity together with the pivotal structure allow to identify the
monoidal trace with the Drinfeld center.

In the decorated setting, we will need the following: for a monoidal functor F : A → A
denote by M〈F 〉 the bimodule whose right action is pulled back along F . Then, the

F -twisted Drinfeld center ZF (M) is defined to be center of the bimodule category
M〈F 〉, see [FSS17, Definition 2.12]. We can now relate the components of the D-crossed
category defined by factorization homology on annuli with D-bundles to twisted Drinfeld
centers:

Proposition 2.3.6. Let A be a ribbon category with D-action. For each d ∈ D, there
is an equivalence ∫

(S1×R,γd)
A ∼= TrA(ϑ(d)A) ,

of the factorization homology on the d-decorated annulus and the bimodule trace of A
with the d-twisted left regular action. Furthermore, we have an identification

TrA(ϑ(d)A) ∼= Zϑ(d−1)(A)

of the bimodule trace with the ϑ(d−1)-twisted Drinfeld center of A.

Proof. The first assertion follows directly from Example 2.2.8. For the second statement,
we apply the monadicity Theorem 1.3.20 to describe ϑ(d)A internal to A�Aop

ϑ(d)A ∼= Endϑ(d)(1A)-ModA�Aop ,

where Endϑ(d)(1A) is the endomorphism algebra of the monoidal unit in A � Aop with
respect to the ϑ(d)-twisted canonical right A�Aop-action.

We will denote by r : A → Aop the monoidal equivalence sending a compact object
x ∈ cmp(A) to its right dual x∨. Then, a categorical version of the Eilenberg-Watts
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2. Twisted character varieties

theorem [BJS21, Lemma 5.7] gives the first equivalence in the following sequence of
identifications:

Endϑ(d)(1A)-ModA ∼= HomA�Aop(ModA�Aop-Endϑ(d)(1A),A)
∼= HomA�Aop(〈ϑ(d−1)〉A〈rr〉,A)

∼= Zϑ(d−1)(A) .

The second equivalence is again by monadic reconstruction and the last equivalence is
[FSS17, Lemma 2.13] together with the fact that A is a ribbon category.

2.4. Quantization of the twisted Fock–Rosly Poisson structure

We will now re-examine the moduli spaces from § 2.1 from the point of view of Out(G)-
structured factorization homology with coefficients in Rep(G). We explain how one
obtains a deformation quantization of the twisted Fock–Rosly Poisson structure from
gluing the local categorical quantizations, i.e. Repq(G) with an Out(G)-action, over the
surface with its Out(G)-bundle decoration.

2.4.1. Twisted character stack

Throughout this section, Σ is an oriented surface with boundary and a fixed Out(G)-
bundle ϕ : π(Σ) → Out(G). With the tools developed in the preceding sections we
can now compute the category of quasi-coherent sheaves on the twisted character stack
Charϕ(Σ, G) via Out(G)-structured factorization homology:

Proposition 2.4.1. Given a decorated gluing pattern (P, κ1, . . . , κn) for (Σ, ϕ), there is
an isomorphism O(G2g+r−1)ϕ ∼= a

κ1,...,κ2g+r−1

P of algebras in Rep(G).

Proof. To establish the isomorphism on the level of vector spaces, we use the algebraic
Peter–Weyl theorem:

O(G) ∼=
⊕
V

V ∨ ⊗ V ,

where the sum on the right hand side is over all irreducible representations of G and
O(G) is the Hopf algebra of matrix coefficients of irreducible G-representations. Next we
take into account the twist by an automorphism κ ∈ Out(G): a group element h ∈ G acts
on φ ∈ O(G)κ via h . φ = φ(h−1(−)κ(h)). As explained in Example 2.2.11, we thus get
an isomorphism FκRep(G) =

⊕
V V

∨ ⊗ κ∗V ∼= O(G)κ compatible with the G-action.

In combination with Theorem 2.3.2, the above result shows that
∫

(Σ,ϕ) Rep(G) agrees
with the category of quasi-coherent sheaves on the ϕ-twisted character stack.

2.4.2. Deformation quantization

In § 2.3 we constructed an algebra aκ1,...,κn
P , n = 2g+r−1, from a combinatorial presen-

tation (P, d1, . . . , dn) of the decorated surface Σ. In order to show that these algebras
provide a deformation quantization of

(
Char(Σ, G),Πϕ

FR

)
from Proposition 2.1.1, we con-

sider aκ1,...,κn
P as an object in the category Rep~(G) of topologically-free modules over

U~(g). Explicitly, the algebra the tensor product
⊗n

i=1O~(G)κi , where each O~(G)κi
is a κi-twisted RE-algebra of quantized algebraic functions. The multiplication on the
tensor product is defined in terms of the crossing morphisms depicted in Figure 2.7. We
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will show in Theorem 2.4.3 below that for all elements fκi~ ∈ O~(G)κi and g
κj
~ ∈ O~(G)κj

we have
[fκi~ , g

κj
~ ]

~
mod(~) = {fκi , gκj} ,

where {−,−} is the twisted Fock–Rosly Poisson structure and fκi = fκi~ mod(~) ∈
O(G)κi , and similarly for gκj .

Remark 2.4.2. Equivalently, we could directly work with the algebras aκ1,...,κn
̂Rep~(G)fd,P

ob-

tained in the formal setting as described in Remark 2.3.3. Indeed, we have the following

identifications as objects in ̂Rep~(G)fd (see Proposition A.2.12 and Remark A.2.13 of
the appendix for more on coend algebras in free cocompletions):

Fe ̂Rep~(G)fd
=

∫ V ∈Rep~(G)fd

YV ∗ ⊗Day YV

∼=
⊕

Vλ, λ∈P+

MapU(g)-Modfd(−, V ∗λ ⊗ Vλ)[[~]]

∼= MapU(g)-Modlf

(
ι(−),

⊕
Vλ, λ∈P+

V ∗λ ⊗ Vλ
)

[[~]]

∼= MapRep~(G)lf

(
ι(−),

⊕
Vλ, λ∈P+

V ∗λ [[~]]⊗̂Vλ[[~]]
)

where ι : U(g)-Modfd → U(g)-Modlf is the inclusion of finite-dimensional U(g)-modules
into the category of locally-finite U(g)-modules, and similarly for the categories of topologically-
free U~(g)-modules. We also used that U~(g) ∼= U(g)[[~]] as algebras over C[[~]]. Along
the same lines, we find that the κ-twisted coend algebras admit the following description
(suppressing the restricted Yoneda embeddings from the notation)

Fκ ̂Rep~(G)fd
∼=

⊕
Vλ, λ∈P+

Vλ[[~]]⊗̂κ∗Vλ[[~]] .

In summary, we find that aκ1,...,κn
̂Rep~(G)fd

is the image of aκ1,...,κn
P under the embedding of

Rep~(G)lf → ̂Rep~(G)fd.

Theorem 2.4.3. The algebra a
κ1,...,κ2g+r−1

P is a deformation quantization of the twisted
Fock–Rosly Poisson structure on Rep(Σ, G) ∼= G2g+r−1. Its subalgebra of U~(g)-invariants
is a quantization of the induced Poisson structure on the character variety Char(Σ, G)
which is independent of the chosen gluing pattern P .

Proof. First, we show that the semi-classical limit of the commutator of two quantized
functions in O~(G)κ agrees with the κ-twisted STS Poisson structure Πκ

STS. We recall
from Example 2.2.11 that the multiplication in the κ-twisted RE-algebra O~(G)κ is
related to the multiplication in the FRT-algebra via a twisting cocycle defined in terms
of R-matrices. The commutator in the (untwisted) FRT-algebra H◦, H = U~(g), can be
computed by acting with

(1⊗op 1)� (1⊗ 1)− ((R2)−1 ⊗op (R1)−1)� (R′2 ⊗R′1)

on the components V ∨ ⊗op W∨ � V ⊗W , for V,W ∈ Rep~(G), since the multiplication
in the FRT-algebra is given by the Hopf pairing 〈−,−〉 between H◦ and H:

〈mFRT(φψ), h〉 = 〈φ⊗ ψ,∆(h)〉, φ, ψ ∈ H◦, h ∈ H
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and ∆(−) = R−1∆op(−)R. Now we take into account the twist by κ, as well as the twist-
ing cocycle R′1⊗κ.R1⊗R′2R2⊗1, to compute the commutator in O~(G)κ component-
wise by acting with

(R′1 ⊗op R′2R2)� (κ.R1 ⊗ 1)− C ◦ (R′2R2 ⊗op R′1)� (1⊗ κ.R1) (2.21)

where C = ((R2)−1 ⊗op (R1)−1)� (κ.R′2 ⊗ κ.R′1)

on V ∨ ⊗op W∨ � V ⊗ W . To compute the semi-classical limit of the action (2.21),
we use that the R-matrix has the following ~-expansion: R = 1 + ~r + O(~2), where
r = r1 ⊗ r2 ∈ g⊗2 is the classical r-matrix. Explicitly, the semi-classical limit of (2.21)
is

r3(κ),2 + r1,2 − r4(κ),1 − r2,1 + r2,1 − r4,3 ∈ U(g)⊗4 ,

where for instance r3(κ),2 = 1 ⊗ r2 ⊗ κ∗r1 ⊗ 1 ∈ U(g)⊗4. More explicitly, the first two

copies of U(g)⊗4 act on O(G)κ via x 7→ xR, for x ∈ g, and the last two copies act
via x 7→ −κ∗xL. Thus, we find that the semi-classical limit of the commutator is the
following bivector field on G:

−rL(κ),R + rR,R + r
R,L(κ)
2,1 − rL,L2,1 = ωad(κ),ad(κ) + tR,L(κ) − tL(κ),R

= Πκ
STS .

In the above we used that rR,R − rL,L2,1 = ωR,R + ωL,L.
Next, we prove the claim for two positively unlinked edges α < β. We recall that the

crossing morphism for two unlinked edges α < β is given by acting on Oκβ~ (G)⊗Oκα~ (G)
with

U+ = τ12,34 ◦ (R1 ⊗ 1⊗ 1⊗ κα.R2)(1⊗ κβ.R1 ⊗ 1⊗ κα.R2)

(R1 ⊗ 1⊗R2 ⊗ 1)(1⊗ κβ.R1 ⊗R2 ⊗ 1)

= τ12,34 ◦ Ũ+

Hence, the commutator on components φ⊗ κ∗αv ∈ Oκα~ (G) and ψ ⊗ κ∗βw ∈ O
κβ
~ (G) can

be computed via

(mOκα~ (G) ⊗mOκβ~ (G)
) ◦ (1− (U+)7,8,1,2)(φ⊗ κ∗αv ⊗ 1⊗4 ⊗ ψ ⊗ κ∗βw) .

Taking the semi-classical limit of this action thus amounts to

1− τ(Ũ+)

~
mod(~) = −r3,2(κα) − r4(κβ),2(κα) − r3,1 − r4(κβ),1 ∈ U(g)⊗4 , (2.22)

where this time the first and third copy in U(g)⊗4 act via x 7→ xR and the second and the
forth copy via x 7→ −κ∗xL, so that the right hand side of (2.22) acts on Oκα(G)⊗Oκβ (G)

via −rad(κα),ad(κβ)
2,1 , which agrees with Πα,β from Equation (2.3) as claimed. Similarly,

for two positively linked edges we have

1− τ(L̃+)

~
mod(~) = r2(κα),3 − r4(κβ),2(κα) − r3,1 − r4(κβ),1 ,

which differs from the unlinked case by adding a term −2tL(κα),R, which agrees with the
Poisson bivector from (2.3). Lastly, for two positively nested edges we find

1− τ(Ñ+)

~
mod(~) = r2(κα),3 + r2(κα),4(κβ) − r3,1 − r4(κβ),1 ,
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which differs from the linked case by adding the term 2tL(κα),L(κβ), in agreement with
(2.3), which ends the proof for the positively unlinked, linked and nested case. The
remaining three cases can be worked out analogously.

2.5. Closed and marked surfaces with D-bundles

In the preceding sections, all surfaces were assumed to have at least one boundary
component. We can close up a surface with boundary by gluing in disks. In this section
we will discuss how to compute D-structured factorization homology on the resulting
closed surfaces. We will also allow for certain stratifications on the closed surfaces,
namely point defects.

2.5.1. Closed surfaces

Let Σ be a closed surface equipped with a map ϕ : Σ → BD. We use a decomposition
of Σ into a surface Σ◦ with one boundary component and a disk D, see Figure 2.10. We
denote ϕ◦ = ϕ|Σ◦ . The bundle ϕ◦ has trivial holonomy around the boundary ∂Σ◦ since
the bundle extends to Σ.

Then, we can use excision to compute factorization homology on the closed decorated
surface (Σ, ϕ) as the relative tensor product:∫

(Σ,ϕ)
A ∼=

∫
(Σ◦,ϕ◦)

A �∫
(Ann,∗)A

A . (2.23)

For a combinatorial presentation (P, d1, . . . , d2g) of the decorated surface Σ◦, we showed
in Theorem 2.3.2 that one obtains identifications∫

(Σ◦,ϕ◦)
A ∼= a

d1,...,d2g

P -ModA,

∫
(Ann,∗)

A ∼= FeA-ModA ,

internal to the disk category
∫
D
A ∼= A. For the case of closed surfaces we will have to

describe the categorical factorization homology internal to the annulus category
∫
AnnA

instead. The techniques to do so were developed in [BZBJ18b, Section 4]. In the
following paragraph we review the main results that will be used to compute factorization
homology on a closed D-decorated surface via the relative tensor product (2.23).

We first recall the notion of a quantum moment map from [Saf21a, Section 3]. We will
write F = FeA for the (untwisted) reflection equation algebra in A. For every V ∈ A
there is a natural isomorphism, the so-called “field goal” transformation [BZBJ18b,
Section 4.2]

τV : F ⊗ V −→ V ⊗F , τV =

F V

V F

, (2.24)

Figure 2.10.: The surface Σ◦ obtained from Σ by removing a disk D.
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yielding a monoidal functor F-ModA → (F ,F)-BimodA by sending a left F-module to
a bimodule for which the right F-module structure is obtained via τ . Now let B be an
algebra in A. A quantum moment map is an algebra map µB : F → B in A, making the
following diagram commute

B ⊗F B ⊗B

B

F ⊗B B ⊗B

τB

id⊗µB
m

µB⊗id m

(2.25)

It is shown in [Saf21a, Proposition 3.7] that for a right (F-ModA)-module category
M and an object m ∈ M having an internal endomorphism algbera EndA(m) in A,
there exists a quantum moment map µ : F → EndA(O). We will explain how to obtain
this quantum moment map for the situation at hand and how to use it to compute
factorization homology on closed surfaces.

Let M =
∫

(Σ◦,ϕ◦)A, which is naturally a right
∫
AnnA-module category via the em-

bedding of the annulus into the boundary ∂Σ◦. Recall that the module category M
is pointed via the inclusion of the empty manifold and we denote the resulting distin-
guished object by OΣ◦ ∈ M. We have the following weakly commuting diagram of
embeddings:

actDOΣ

actDOAnn actAnnOΣ

Figure 2.11.: Weakly commuting diagram of embeddings.

By the commutativity (up to homotopy) of the embeddings in Figure 2.11 one gets
an algebra morphism

EndA(OΣ◦) = (actDOΣ◦
)R ◦ actDOΣ◦

(1A)

∼= (actDOAnn)
R ◦ (actAnnOΣ◦

)R ◦ actAnnOΣ◦
◦ actDOAnn(1A)

η←−−−− (actDOAnn)
R ◦ actDOAnn(1A)

∼= F ,

where η is the unit of the adjunction induced by the embedding of the annulus into the
marked boundary component. Under the equivalence

∫
AnnA ∼= F-ModA for the annulus

category, the functor actDOAnn identifies with the free F-module functor freeF : A →
F-ModA with right adjoint given by the forgetful functor U . In particular, we have

U(EndF-ModA(OΣ◦)︸ ︷︷ ︸
B

) ∼= EndA(OΣ◦) .

Since B is an algebra in F-ModA it follows that the map µ : F → EndA(OΣ◦) given
by the image of the unit map η : 1 → B under the forgetful functor U makes Diagram
(2.25) commute and hence is a quantum moment map.
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More generally, we have the following:

Proposition 2.5.1. An algebra in F-ModA is the same as an algebra in A with a
quantum moment map.

Proof. An algebra B ∈ F-ModA has a F-balanced multiplication

B ⊗F B −→ B, b⊗ b′ 7−→ bb′ ,

which is a left F-module map, as well as a right F-module map for the right module
structure defined by the half-braiding τB : F ⊗ B → B ⊗ F . One can easily check that
the map

µ : F −→ B, λ 7−→ λ . 1B

is a quantum moment map. Conversely, the pair (A,µ), with A an algebra in A and
µ : F → A a quantum moment map, defines an algebra in the category of (F ,F)-
bimodules via

λ . a = µ(λ)a, a / λ = aµ(λ)

for λ ∈ F and a ∈ A. Since µ makes Diagram (2.25) commute, we have A ∈ F-ModA ⊂
(F ,F)-BimodA.

It then follows from the previous discussion, together with the fact that an A-
progenerator is also an

∫
AnnA-progenerator [BZBJ18b, Theorem 4.3], that there is an

equivalence ∫
Σ◦
A ∼= EndA(OΣ◦)-Mod∫

AnnA
(2.26)

of
∫
AnnA-module categories, where EndA(OΣ◦) is equipped with the algebra structure

coming from the quantum moment map. Under the above identification, the right action
of
∫
AnnA on

∫
Σ◦ A is given by the relative tensor product

V �X 7−→ V ⊗F X ,

where one uses the quantum moment map and the field goal transformation to form the
relative tensor product.

Applying the previous discussion to the reconstruction result from Theorem 2.3.2, we
get quantum moment maps

µΣ◦ : F −→ a
d1,...,d2g

P and µD : F −→ 1A , (2.27)

which endow a
d1,...d2g

P and 1A with the structure of algebras in F-ModA, leading to the
following result:

Proposition 2.5.2. We have an equivalence of categories∫
(Σ,ϕ)

A ∼= (a
d1,...,d2g

P , 1A)-BimodF-ModA , (2.28)

between the factorization homology for a closed decorated surface (Σ, ϕ) and the category

of (a
d1,...,d2g

P , 1A)-bimodules internal to the annulus category
∫
AnnA.
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Proof. Using the identification (2.26) and excision we get∫
(Σ,ϕ)

A ∼= a
d1,...,d2g

P -Mod∫
AnnA

�∫
AnnA

1A-Mod∫
AnnA

.

Applying monadic reconstruction for relative tensor products as in [BZBJ18a, Theorem
4.12] we get the equivalence stated in the proposition.

We end this section with an explicit example of a quantum moment map for the alge-
bras obtained via monadic reconstruction from factorization homology on D-decorated
surfaces.

Example 2.5.3. Throughout, let A = Repq(G) and D = Out(G). Let us first consider
the undecorated case. For Σ = Pants described by the gluing pattern P (1, 1′, 2, 2′) =
(1, 2, 3, 4), we have

∫
PantsA ∼= aP -ModA and an algebra map ∆: F → aP = F⊗F which

is the coproduct of the bialgebra F defined on components by:

V ∨ ⊗ V id⊗coevV ⊗id−−−−−−−−→ V ∨ ⊗ V ⊗ V ∨ ⊗ V ιV ⊗ιV−−−−→ F ⊗F . (2.29)

The map ∆ also satisfies the quantum moment map condition (2.25). It quantizes the
classical multiplicative moment map sending a discrete connection (m1,m2) ∈ G×G to
its holonomy around the marked boundary component, i.e. µcl(m1,m2) = m1m2.

Now, we decorate P by the tuple (d, d−1) describing a D-bundle ϕ on Pants. By
Theorem 2.3.2 we find∫

(Pants,ϕ)
A ∼= ad,d

−1

P -ModA ∼= Fd ⊗ F̃d-ModA (2.30)

where

Fd =

∫ X∈cmp(A)

X∨ ⊗ ϑ(d−1).X, F̃d =

∫ X∈cmp(A)

ϑ(d−1).X∨ ⊗X .

The second identification in (2.30) comes from theA�A-module equivalence 〈id�ϑ(d)〉A ∼=
〈ϑ(d−1)�id〉A.

Proposition 2.5.4. The following defines a quantum moment map for Fd ⊗ F̃d:

V ∨ ⊗ V
id⊗coevϑ(d−1).V ⊗id−−−−−−−−−−−−→ V ∨ ⊗ ϑ(d−1).V ⊗ ϑ(d−1).V ∨ ⊗ V → Fd ⊗ F̃d . (2.31)

Proof. In order for (2.31) to be an algebra map, the following has to commute

V ∨ ⊗ V ⊗W∨ ⊗W (V ⊗W )∨ ⊗ (V ⊗W )

V ∨ ⊗ V ⊗ V ∨ ⊗ V ⊗W∨ ⊗W ⊗W∨ ⊗W Fd ⊗ F̃d

mRE

(id⊗coevϑ(d−1)⊗id)⊗2 id⊗coevϑ(d−1).(V⊗W )⊗id

(mFd⊗mF̃d )◦(id⊗C⊗id)

where C is the unlinked crossing morphism from Figure 2.7. Commutativity of the
above diagram will follows from the observation that for any element h ∈ Uq(g) and
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v ∈ V we have

h . coevϑ(d−1).V (1)(1⊗ v) = h . d∗ei ⊗ d∗f i(1⊗ v)

= d.h(1) . d
∗ei ⊗ d∗f i(S(d.h(2)) . v)

= (d.h)(1)(S((d.h)(2))) . v

= d.ε(h)coevϑ(d−1).V (1)(1⊗ v)

together with the relations (id ⊗ ε)R = 1 ⊗ 1 = (ε ⊗ id)R, R1,3R1,2 = (id ⊗ ∆)R and
R1,3R2,3 = (∆⊗ id)R for the universal R-matrix R. By the same relations one can also
proof that the map (2.31) makes Diagram (2.25) commute.

On a classical level, multiplicative moment maps that are equivariant with respect to
twisted conjugation were studied in [Mei17, Zer21]. Writing Gκ for the group G viewed as
a G-space under κ-twisted conjugation, an example of such a moment map is provided
by the identity map id : Gκ → Gκ. More interesting examples may be constructed
via fusion: for (Gκ,Φ = id) and (Gκ

′
,Φ′ = id), their fusion product is the G-space

Gκ~Gκ
′

= Gκ×κ∗Gκ′ , where the notation means that the G-action on the second copy
is pulled back along κ, i.e. g.(a, b) = (gaκ(g−1), κ(g)bκ′κ(g)−1). Then, µcl = Φ · Φ′ is a
Gκκ

′
-valued moment map. The moment map µ from (2.31) is thus a quantization of the

fusion product Gκ ~Gκ
′

in the special case that κ′ = κ−1. 4

Remark 2.5.5. The quantum moment maps in Example 2.5.3 are defined in purely
algebraic terms. We end this section with a (informal) discussion relating them to the
quantum moment maps previously obtained via the embeddings depicted in Figure 2.11.
For simplicity we will do so only for the case of the (undecorated) pair of pants Σ = Pants
discussed in the beginning of Example 2.5.3.

For the topological point of view on quantum moment maps it will be convenient to use
the identification of the reflection equation algebra F with the so-called internal skein
algebra of Ann [GJS21, Proposition 2.26]. An element in the latter may be represented
by an internal skein

V V ∗

for V ∈ A a compact projective generator. Moreover, the internal skein algebra of
Pants, presented by the gluing pattern P as in Example 2.5.3, is isomorphic to the
algebra aP = F ⊗ F [GJS21, Proposition 2.29]. The embedding of the annulus into the
marked boundary component of Pants then induces an algebra map F → aP . The image
of the internal skein depicted above under this embedding is

V V ∗

∼=

V V ∗
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where on the right hand side we have the coevaluation K
coevV−−−→ V ⊗ V ∗, relating the

topological picture to the quantum moment map defined in (2.29).

2.5.2. Point defects

For surfaces without D-bundles decoration, factorization homology on surfaces with
marked points was discussed in § 1.3.1. In the categorical setting, point defects

F : Diskor
2,∗ −→ PresK

are classified by so-called balanced braided module categories [BZBJ18b] (see also § 3.2.4
for a definition).

Including the decoration by D-bundles, the objects in the marked disk category DiskD2,∗
are on the one hand unmarked disks equipped with constant maps ∗ : D → BD to the
base point and on the other hand marked disks Dd∗ equipped with a map

γd : D∗ \ ∗ −→ BD

with holonomy d. The categorical description of the corresponding point defects

F : DiskD2,∗ −→ PresK

was worked out in [KM23, Section 3.4.2] by means of a combinatorial model for the
topological operad whose envelope is the disk category DiskD2,∗. The result is the follow-
ing:

Proposition 2.5.6. [KM23, Definition 3.17 and Proposition 3.18] In the D-decorated
setting, point defects F : DiskD2,∗ → Pres are classified by pairs (A,M), where A is a
balanced braided tensor category with a D-action ϑA, andM is a D-equivariant balanced
braided module category over A. The latter is a D-graded category M =

⊕
d∈DMd

together with

� a D-action ϑM(d) : M → M, such that the image of the component Md′ under
ϑM(d) lies in Mdd′d−1

� a D-equivariant A-action ⊗ : M�A → A

� natural isomorphisms

Ed : −⊗− ⇒ (−⊗−) ◦ (−� ϑA(d)(−)), ϕd : id⇒ ϑM(d) ,

such that for all d ∈ D, M ∈Md and X,Y ∈ A we have:

EdM⊗X,Y = (idM⊗σϑA(d).Y,X) ◦ (EdM,Y⊗idX) ◦ (id⊗σX,Y ) (2.32)

EdM,X⊗Y = (idM⊗σϑ(d).X,ϑ(d).Y ) ◦ (EdM,Y⊗idϑ(d).X) (2.33)

◦ (idM⊗σϑ(d).X,Y ) ◦ (EM,X⊗idY )

ϕdM⊗X = EdϑM(d).M,X ◦ (ϕdM⊗θX) , (2.34)

where θ is the balancing in A. Note that we suppressed coherence isomorphisms.

Remark 2.5.7. Given Relations (2.32) and (2.34), one can check that the remaining
Relation (2.33) is automatically satisfied and does therefore not appear in the definition
of a D-equivariant braided module category in [KM23].
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d′

BD
dd′d−1

id

d

Figure 2.12.: Identity embedding of a marked disk with homotopy d : d′ → dd′d−1.

The topological origin of the D-action on the D-graded category M is sketched in
Figure 2.12. The A-action comes from embedding a unmarked disk D into a marked
disk Dd∗ for any d ∈ D. The family of natural isomorphisms {Ed}d∈D and {ϕd}d∈D come
from the loops in the space of D-structured embeddings, dragging the disk D around
the marked point in Dd∗ and rotating the marked disk Dd∗ about 2π, respectively. See
also [KM23, Figure 12].

Having specified the local categorical data, let now ManD2,∗ be the (2, 1)-category
whose objects are oriented surfaces Σ, together with a collection of marked points
x = {x1, . . . , xr} ⊂ Σ and a continuous map ϕ : Σ\x→ BD. Morphisms are embeddings
of surfaces, mapping marked points bijectively onto marked points, which are compat-
ible with the morphisms into BD. Let M be an equivariant balanced braided module
category over A. As in the undecorated case, factorization homology

∫
(Σ,ϕ,x)(A,M)

is defined via left Kan extension [AFT17]. Let Σ◦ be the surface obtained from Σ by
removing a small disk Ddi around each marked point xi, where the label di indicates
that the holonomy of ϕ around the i-th boundary component ∂iΣ

◦ is determined by the
group element di ∈ D. Applying excision, we may express factorization homology over
the marked surface Σ via the following relative tensor product:∫

(Σ,ϕ,x)
(A,M) ∼=

∫
(Σ◦,ϕ|Σ◦ )

A �( ∫
(Ann,γd1

)A�···�
∫
(Ann,γdr

)A
) (Md1 � · · ·�Mdr

)
.

We will end this section by giving a representation theoretic example for point defects
in the D-equivariant setting.

Example 2.5.8. We fix D = Z2. Let H be a ribbon Hopf algebra with an involution
φ : H → H, i.e. a Z2-action preserving the universal R-matrix and the ribbon element.
Let A be a right coideal subalgebra of H, meaning that A ⊆ H is a subalgebra for which
∆(A) ⊂ A ⊗H. This turns A-Mod into a module category over H-Mod. Furthermore,
we assume that A is equipped with a so-called φ-universal K-matrix. The latter was
introduced in [BK19, Definition 4.10] and [Kol19, Definition 2.7] and recalled in what
follows. We write Rφ = (id ⊗ φ)R for the φ-twisted universal R-matrix R ∈ H ⊗ H.
Then, a φ-universal K-matrix for A is an invertible element K ∈ A⊗H such that

K∆(a) = (id⊗ φ)∆(a)K, for all a ∈ A (2.35)

(∆⊗ id)K = Rφ3,2K1,3R2,3 (2.36)

(id⊗∆)K = R3,2K1,3Rφ2,3K1,2 (2.37)

The φ-universal K-matrix turns A-Mod into an equivariant balanced braided module
category over H-Mod. Indeed, the natural isomorphism E : − ⊗− ⇒ (−⊗−) ◦ (id � φ)
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is defined by acting with the universal K-matrix. This is an A-module map due to
Equation (2.35). We also see that Relation (2.32) is satisfied due to Equation (2.35).
Lastly, Relation (2.33) follows from Equation (2.37) together with the φ-invariance of
R. 4

The above example is of particular interest in the situation where the pair (H,A)
is a quantum symmetric pair (Uq(g),Bq). Intuitively, quantum symmetric pairs are
quantum-analogs of Lie algebra involutions and their fixed-point subalgebras. In more
details, Uq(g) is a quantized universal enveloping algebra of a complex semi-simple Lie
algebra g with an involution θ : g→ g. Let gθ = {x ∈ g | θ(x) = x} be the Lie subalgebra
of fixed points. Then Bq = Bq(θ) is a coideal subalgebra of Uq(g) that specializes to
U(gθ) as q → 1.2 It was shown in [Kol19, Theorem 3.11] that there exists a φ-universal
K-matrix3 for the pair (Uq(g),Bq), turning the category of representations of the coideal
subalgebra Bq into a Z2-equivariant braided module category over Repq(G).

Remark 2.5.9. The topological origin of quantum symmetric pairs was first studied
by Weelinck in [Wee18b] by means of categorical algebras over an operad of involutive
little disks, which are classified by so-called Z2-braided pairs. In the situation of Exam-
ple 2.5.8, our notion of a Z2-equivariant braided module category is very closely related
to the notion of a Z2-braided pair from [Wee18b, Definition 3.1]: the latter consists of
a braided category A endowed with an anti-monoidal braided involution Φ: A → Aop,
t : Φ2 ∼= id, together with a A-module category M and a family of natural isomor-
phisms −⊗− ⇒ −⊗Φ(−), satisfying certain coherence relations. As was already noted
in [Wee18b, Remark 3.6], given a balanced braided (strict) involution Φ: A → A, one
can define an anti-involution by (Φ, σ) and the balancing provides the natural isomor-
phism Φ2 ∼= id. In this way, a Z2-equivariant module category M over A defines a
Z2-braided pair.

2Quantum symmetric pairs usually carry multi-indices since there is a family of coideal subalgebras of
Uq(g) quantizing U(gθ). Since we are not going into details here, we decided to drop the multi-indices
from the notation.

3The involution φ depends on a chosen diagram automorphism τ , which enters the definition of θ : g→
g.
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In this chapter we will compute factorization homology on surfaces with point defects
coming from the theory of dynamical quantum groups [EV98b, Eti02]. Given a marked
surface {v1, . . . , vk} ⊂ Σ, the local coefficients describing the bulk will be representation
categories of ribbon Hopf algebras, for example (quantum) group representations, and
the point defects {v1, . . . , vk} will be governed by dynamical twists coming from solu-
tions to the quantum dynamical Yang–Baxter equation (DYBE). We will make use of a
categorical framework established by Donin–Mudrov [DM05] in which notions such as
the quantum dynamical Yang–Baxter equation and dynamical twists may be formulated
in terms of dynamical extensions of monoidal categories. A prominent example is the
universal fusion matrix J (λ)V,W ∈ O(H)⊗End(V ⊗W ), V,W ∈ Repq(G), introduced by
Etingof–Varchenko in [EV99], which satisfies the quantum DYBE over the base algebra
O(H) of rational functions on a maximal torus H ⊂ G. The dynamical twist J (λ)
is also the unique solution to the linear Arnaudon–Buffenoir–Ragoucy–Roche (ABRR)
equation [ABRR98], which in particular will allow us to consider J (λ) as a point defect
in oriented factorization homology.

In [BZBJ18a], categorical factorization homology with local coefficients in Repq(G)
was used to construct a functorial quantization of the moduli space of flat G-connections
(see § 1.3). Here, we will use factorization homology on marked surfaces to study and
quantize dynamical moduli spaces, by which we mean the following. Let {hi ⊂ g}i=1,...,k

be a family of Lie sub-bialgebras and Hi ⊂ G subgroups with Lie algebra hi. For each
i = 1, . . . , k, fix a so-called Poisson hi-base space Li, which is a smooth variety endowed
with an action of the double D(h) (see § 3.1.1 for a precise definition). Let Γ = (V,E)
be a ciliated ribbon graph, for which we select a subset of vertices {v1, . . . , vk} ⊂ V and
assign to each vi the data of a classical dynamical r-matrix r(λi) : Li → g⊗ g. We then
define a dynamical representation variety

Repdyn(G,Γ) =
∏
vi

Li ×GE ,

which gets a natural action of the dynamical lattice gauge group ΠviHi×GV \{vi}. We will
show that Repdyn(G,Γ) admits a dynamical Fock–Rosly type Poisson structure, which
moreover descends to the dynamical moduli space, i.e. to the quotient with respect to
the dynamical lattice gauge group action. If the classical dynamical r-matrices r(λi)
admit twist quantizations, we will show that we may glue these local quantizations
via categorical factorization homology to obtain a global quantization of the dynamical
moduli space.

A geometric example is the following: let H ⊂ G be a maximal torus and consider
the moduli space of flat G-connections on the marked surface {v1, . . . , vk} ⊂ Σ together
with a reduction of the structure group from G to H over each small loop γi wrapping
around the marked point vi. Assuming that Σ has at least one boundary component,
we may describe this moduli space by

MH⊂G(Σ, {vi}) = AH⊂G(Σ, {vi})/H×k ,
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where AH⊂G(Σ, {vi}) ∼= H×k × G×2g+r+k−2 is the space of flat connections together
with a trivialization over each marked point vi. This is an example of a dynamical
representation variety endowed with an action of the reduced lattice gauge group Hk.

Another example of a dynamical moduli space has previously appeared in Chern–
Simons theory coupled to point-like sources as studied by Buffenoir–Roche in [BR05].
In loc. cit., a Hamiltonian analysis is carried out for Chern–Simons theory on the product
manifold Σ × [0, 1], where Σ has k punctures v1, . . . , vk corresponding to the location
of the sources. The coupling term for the sources is described by assigning a regular
semi-simple element χi ∈ hreg to each puncture, where h ⊂ g is a Cartan subalgebra. It
is found that the algebra of boundary-boundary holonomies along the curves

v1

vk

vi

v2

has a Poisson structure explicitly described in terms of classical dynamical r-matrices
r(χ̃1), . . . , r(χ̃k) defined on open subsets of the commutative base h, generalizing the
Fock–Rosly Poisson structure to the dynamical setting1. The algebra of dynamical
boundary-boundary holonomies may also be understood as the algebra of functions on
the dynamical representation variety

Repdyn(G,Γ) =
∏
i

Ui ×G×(k−1), Ui ⊂ h, χ̃i ∈ Ui

for the graph Γ = ({v1, . . . , vk}, E) depicted above, which carries an action of the group
H×k. In [BR05], these Poisson algebras were quantized along the lines of the combina-
torial quantization formalism via quantum dynamical R-matrices. We will show how to
recover some of the quantization results from [BR05] using factorization homology on
marked surfaces.

Outline Throughout, let K denote a field of characteristic zero, usually K = C. By G
we mean a semi-simple algebraic group over C.

In § 3.1 we recollect background material on the classical dynamical Yang–Baxter
equation formulated over Poisson base spaces. We then introduce the notion of a dynam-
ical representation variety and show that it admits a Fock–Rosly type Poisson structure
defined in terms of a decorated ribbon graph and classical dynamical r-matrices over
Poisson base spaces.

Having established the (semi-)classical setup, we review in § 3.2 the categorical setting
in which the quantum dynamical Yang–Baxter equation can be formulated, following
the work of Donin–Mudrov [DM05] and the more recent work of Kalmykov–Safronov
[KS20]. We then introduce the notion of quasi-reflection datum, encompassing the data
of a dynamical twist over a general base algebra, whose representation categories give
rise to point defects in categorical factorization homology. A prominent example of a
quasi-reflection datum arises from the linear ABRR-equation [ABRR98] satisfied by the
universal fusion matrix [EV99]. The construction of the universal fusion matrix was

1When studying Chern–Simons theory on the punctured sphere S1
v1,...,vk , an additional flatness con-

straint will have to be taken into account [BR05, Section 3.2].
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originally done by Etingof–Varchenko in representation theoretic terms and more re-
cently by Kalmykov–Safronov [KS20] employing a more categorical language. In § 3.2.3,
we will study the topological aspects of the construction due to Kalmykov–Safronov by
computing factorization homology on annuli with circular line defects prescribed by the
(Repq(G),Repq(H))-central algebra Repq(B), that is, the representation category of a
quantum borel subalgebra Uq(b) ⊂ Uq(g).

In § 3.3, we compute factorization homology on surfaces with marked points categor-
ically described by dynamical point defects. By this we mean point defects coming from
the theory of dynamical quantum groups. More precisely, for each marked point, the
local categorical data is given by a pair (A, CL), where A is a balanced braided tensor
category and CL is the dynamical extension of a monoidal category C over a commu-
tative algebra L ∈ Z(C) in the Drinfeld center, called the base algebra. The A-module
structure on the dynamical extension comes from a dynamical twist J (λ), i.e. from a
monoidal functor

Fλ : A F−→ C freeL−−−→ CL, J (λ)X,Y ∈ L ⊗ Hom(F (X)⊗ F (Y ), F (X ⊗ Y )) .

Given a oriented, connected surface Σ = Σg,r, r > 0, with a collection of marked points
{v1, . . . , vk} ⊂ Σ, we may combinatorially describe Σ by means of a ciliated ribbon
graph Γ = (V,E) with a collection of decorated vertices {v1, . . . , vk} ⊂ V describing
the marked points. Picking such a combinatorial model allows one to define an algebra
internal to the dynamical extension (C1 � · · ·� Ck)L1�···�Lk :

aΓ
λ1,...,λk

= (Fλ1 � · · ·� Fλk)
(
⊗|E|i=1F

(i)
)

,

where the components F (i) of the tensor algebra are either given by the coend algebra∫ X∈Acp

X∨�X ∈ A�A or the reflection equation algebra
∫ X∈Acp

X∨⊗X ∈ A. We then
show in Theorem 3.3.3 that for suitable coefficients, factorization homology on marked
surfaces with dynamical point defects is characterized by the category of modules over
the algebra aΓ

λ1,...,λk
:∫

(Σ,{v1,...,vk})
(A, {(Ci)Li}i=1,...,k) ∼= aΓ

λ1,...,λk
-ModC1�···�Ck .

The equivalence is established using monadic reconstruction techniques. The algebras
aΓ
λ1,...,λk

provide examples of so-called dynamical associative algebras, which are quan-
tizations of Poisson dynamical algebras [DM05]. We will also show that for certain
coefficients A, the algebras aΓ

λ1,...,λk
are module algebras over quantum groupoids intro-

duced in [DM06].

In § 3.4, we first show that the algebras aΓ
λ1,...,λk

obtained from Theorem 3.3.3 give
an equivariant deformation quantization of the algebra of functions on the dynamical
representation variety in the direction of the dynamical Fock–Rosly Poisson structure.
We then describe the category of quasi-coherent sheaves on the dynamical moduli stack

QCoh
([

Πk
i Vi ×GE

/
Πk
iHi

])
, Vi ⊆ Hi

via the factorization homologies on a covering. This allows us to construct a dynamical
quantum moduli stack via factorization homology with dynamical point defects. As
an application, we then relate our results to the classical and quantum Chern–Simons
theory with point-like sources as studied by Buffenoir–Roche [BR05].
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3.1. Dynamical Poisson spaces

The quantum dynamical Yang–Baxter equation (DYBE) plays an important role in
various areas of mathematics and physics. It first appeared in the context of integrable
models of conformal field theory in the work of Gervais–Neveu [GN84] and was later
rediscovered by Felder [Fel95]. Similarly to how solutions to the quantum Yang–Baxter
equation are related to the theory of Hopf algebras and quantum groups, Etingof–
Varchenko [EV98b, EV99] and Xu [Xu01] showed that one can interpret solutions to
the quantum DYBE in terms of Hopf algebroids and quantum groupoids. A categorical
interpretation of the Hopf algebroids arising in this way was given in [DM06]. For an
extensive review of the literature and background on the quantum DYBE we refer to
[ES02b].

On the classical level, the dynamical Yang–Baxter equation was first introduced by
[Fel95]. Solutions to the classical DYBE are so-called classical dynamical r-matrices,
recalled in what follows. Let l ⊂ g be a pair of finite-dimensional Lie algebras and let
Ω•l∗(g

∗) be the subspace of differential forms Ω•(g∗) that are constant on the fibers of the
natural projection map g∗ � l∗, i.e. we have that Ω•l∗(g

∗) ∼= O(l∗)⊗∧•g. The Schouten
bracket J−,−K, together with the de Rham differential ddR, turn Ω•l∗(g

∗) into a dg Lie
algebra. Then, a triangular dynamical r-matrix over l is a Maurer–Cartan element ω(λ)
in (Ω2

l∗(g
∗)l, J−,−K, ddR). Note that upon fixing a basis (hi)i∈I for l, with dual basis

(λi)i∈I , the Maurer–Cartan equation ddRω(λ) + 1
2Jω(λ), ω(λ)K = 0 reads

∑
i

∂hi ∧
ω(λ)

∂λi
− [ω(λ)12, ω(λ)13] + [ω(λ)12, ω(λ)23] + [ω(λ)13, ω(λ)23]︸ ︷︷ ︸

CYB(ω(λ))

= 0

which coincides with the form of the classical DYBE as usually presented in literature.

Similarly, r(λ) = ω(λ) + t ∈
(
O(l∗) ⊗ g ⊗ g

)l
, such that t ∈ Sym2(g) is constant and

g-invariant, is called classical dynamical r-matrix if it satisfies ddRr(λ)−CYB(r(λ)) = 0.
The classical DYBE for a pair of Lie algebras l ⊂ g was extensively studied by Etingof,
Schiffmann and Varchenko [ES01, EV98a, Sch98].

One may further generalize to consider dynamical r-matrices over Poisson–Lie groups
[FM02, EEM04]. Let L ⊂ G be a pair of Poisson–Lie groups with Lie bialgebras l
and g respectively. Similarly to the Lie algebra case, let Ω•L∗(G

∗) be the space of forms
constant on the fibers of the natural projection G∗ � L∗. Note that using a trivialization
T ∗G∗ ∼= g × G∗, we have Ω•L∗(G

∗) ∼= O(H∗) ⊗ ∧•g. The co-bracket δ extends to a
differential δ : O(L∗) ⊗ ∧•g → O(L∗) ⊗ ∧•+1g, turning (Ω•L∗(G

∗)l, J−,−K, ddR + δ) into
a dg Lie algebra. The notion of a (triangular) classical dynamical r-matrix over L∗ can
now be formulated in complete analogy to the Lie algebra case.

In this thesis, we will work with a version of the classical (quantum) dynamical Yang–
Baxter equation formulated over Poisson base spaces (base algebras) as developed in
[DM05], such that examples include both the case of base spaces given by Lie subalgebra
l ⊂ g, as well as the case of Poisson–Lie dynamical r-matrices. To that end, we will
begin this section by recalling the main definitions of [DM05]. We will then use classical
dynamical r-matrices over Poisson base spaces to introduce dynamical generalizations
of Fock–Rosly type Poisson structures. The quantum picture will be addressed in the
next section.
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3. Dynamical character varieties

3.1.1. Dynamical r-matrices over Poisson base spaces

Throughout we fix a finite-dimensional complex semi-simple Lie algebra g with Lie
bialgebra structure δ. We also fix a Lie sub-bialgebra h ⊆ g. Let D(h) = h ⊕ h∗op be
the classical double of h, where h∗op has opposite Lie bracket. One can extend the Lie
algebra structures on h and h∗ to the double, such that the natural bilinear form on
D(h) is ad-invariant:

[hi, hj ] = fkijhk, [hi, η
j ] = −cjki hk − f

j
ikη

k, [ηi, ηj ] = −cijk η
k , (3.1)

where (hi)i∈I is a basis for h, (ηi)i∈I its dual basis. The double has a canonical quasi-
triangular r-matrix

rD(h) = (0, ηi)⊗ (hi, 0) ∈ D(h)⊗2 ,

where the summation over repeated indices is understood. The following definition is
from [DM05, Definition 3.14]:

Definition 3.1.1. Given a smooth algebraic variety L, we call L0 = O(L) a Poisson
h-base algebra if it is equipped with a left D(h)-action generated by the vector fields

D(h)→ X(L), X 7→
−→
X

such that the canonical invariant symmetric tensor −−→rD(h) +
−−−−−→
(rD(h))21 vanishes on L0. We

refer to L as Poisson h-base space.

The reason for the terminology is the following: L is a Poisson variety with Poisson
bivector

ΠL =
1

2

−→
ηi ∧

−→
hi =

1

2

(−−→rD(h) −
−−−−−−→
(rD(h))2,1

)
(3.2)

Moreover, ΠL is D(h)-invariant. As we will see later in § 3.4, h-base algebras have
natural quantum analogs: if Uq(h) is a quantized universal enveloping algebra for U(h),
a quantization of the h-base algebra L0 will be a commutative algebra in the Drinfeld
center of Uq(h)-Mod.

Example 3.1.2. Assume that h is a quasi-triangular Lie bialgebra with cobracket given
by a classical r-matrix r = ω + t ∈ h ⊗ h, where t is an invariant symmetric 2-tensor.
The r-matrix defines a linear map

r : h∗ → h, r(η) = rijη(hi)hj .

Furthermore, the maps r+ = ω + t and r− = ω − t are Lie-algebra morphisms h∗ → h.
Let H ⊂ G be a subgroup with Lie algebra h. Then, H has a left h-action induced by
conjugation

h→ X(H), h 7→
−→
h = hR − hL .

It also has a left h∗op-action:

h∗op → X(H), η 7→ −→η = r+(η)L − r−(η)R .

One can check that the induced action of the canonical symmetric tensor tD(h) vanishes
due to ad-invariance of t and that O(H) is a Poisson h-base space whose Poisson bivector
(3.2) agrees with the STS-Poisson structure [STS94].
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3. Dynamical character varieties

The following special case will be of particular interest to us: let h ⊂ g be a Cartan
subalgebra with invariant symmetric tensor t ∈ Sym2(h)h coming from the Killing form
and giving an identification h∗ ∼= h. In this case the left h-action is trivial and

h∗op → X(H), ηi 7→
−→
ηi = 2hRi .

In this case the h-base space H has trivial Poisson bracket. 4

Let Alt ∈ End(g⊗3) denote the linear map

x1 ⊗ x2 ⊗ x3 7→ x1 ⊗ x2 ⊗ x3 − x2 ⊗ x1 ⊗ x3 + x2 ⊗ x3 ⊗ x1

for all x1, x2, x3 ∈ g.

Definition 3.1.3 (Donin–Mudrov). Let L be a Poisson h-base space. A regular function

r(λ) : L→ g⊗ g

is called classical dynamical r-matrix over L if

� r(λ) is quasi h-invariant:

[h⊗ 1 + 1⊗ h, r(λ)] +
−→
h .r(λ) = δ(h)

for all h ∈ h

� the symmetric part t = 1
2(r(λ)1,2 + r(λ)2,1) is g-invariant and constant

� r(λ) satisfies the classical dynamical Yang–Baxter equation

Alt(hi ⊗
−→
ηi .r(λ)) = CYB(r(λ)) , (3.3)

where CYB(r(λ)) = [r(λ)12, r(λ)13] + [r(λ)12, r(λ)23] + [r(λ)13, r(λ)23] is the clas-
sical Yang–Baxter operator, (hi)i∈I is a basis for h, (ηi)i∈I is its dual basis and we
used implicit summation notation.

We will often use the notation r(λ) = r0 ⊗ r1 ⊗ r2 ∈ O(L) ⊗ g ⊗ g for dynamical
r-matrices and denote by t its symmetric part and by ω(λ) its antisymmetric part.

3.1.2. Poisson structures from dynamical r-matrices

Let Y be a left G-space, ρ : G×Y → Y , and let L be a Poisson h-base space. The action
ρ extends to a map

ρ∗ : O(L)⊗ g⊗ g→ O(L)⊗ X(Y )⊗ X(Y )

a⊗ x1 ⊗ x2 7→ a⊗ xρ1 ⊗ x
ρ
2 .

The following proposition shows how Lie algebra actions together with the data of a
dynamical r-matrix give rise to Poisson structures on L × Y . This can be understood
as an extension of Proposition 1.1.14 to the dynamical setting.

Proposition 3.1.4. Let r(λ) = ω(λ) + t be a dynamical r-matrix over the Poisson
h-base space (L,ΠL). If ρ∗(t) = 0 then

Πr(λ) = ρ∗r(λ) + (
−→
ηi , 0) ∧ (0, hρi ) + ΠL

is a Poisson bivector on L × Y . Moreover, if the h-action on O(L) comes from a left
H-action on L, the pair (L× Y,Πr(λ)) is a Poisson H-space for the diagonal H-action.
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3. Dynamical character varieties

Proof. Multi-vector fields on L × Y are bigraded: elements in X(L) are of degree (1,0)

and elements in X(Y ) of degree (0,1). Denote Θ = (
−→
ηi , 0) ∧ (0, hρi ). The Schouten

bracket then reads

JΠr(λ),Πr(λ)K

= JΠL,ΠLK + Jρ∗r(λ), ρ∗r(λ)K + JΘ,ΘK + 2Jρ∗r(λ),ΘK + 2JΠL, ρ∗r(λ)K + 2JΠL,ΘK

Clearly, the first term vanishes since ΠL is a Poisson bivector on L. We have

Jρ∗r(λ), ρ∗r(λ)K + 2JΘ, ρ∗r(λ)K(0,3) = 2ρ∗CYB(ω(λ))− 2ρ∗Alt(hi ⊗
−→
ηi .r(λ))

= −2ρ∗CYB(t) = 0

where in the last line we used the classical DYBE (3.3) and Proposition 1.1.14, where
we showed that if ρ∗(t) = 0, then also ρ∗CYB(t) = 0. Next, we compute

JΘ,ΘK(2,1) + 2JΠL,ΘK =
−→
ηi ∧

−→
ηk ∧ [hi, hk]

ρ +
−−−−→
[ηi, ηk] ∧

−→
hi ∧ hρk −

−−−−→
[hi, η

k] ∧
−→
ηi ∧ hρk

= 0 (3.4)

which is zero by Definition (3.1) of the Lie bracket on the double D(h). Lastly, we have

JΘ,ΘK(1,2) + 2JΠL, ρ∗r(λ)K + 2JΘ, ρ∗r(λ)K(1,2) (3.5)

=
−−−−→
[ηi, ηk] ∧ hρi ∧ h

ρ
k −

1

2
ιdω0(

−→
ηi ∧

−→
hi) ∧ (ω1)ρ ∧ (ω2)ρ + ω0 ∧

−→
ηi ∧ [hi, ω

1]ρ ∧ (ω2)ρ

+ ω0 ∧
−→
ηi ∧ (ω1)ρ ∧ [hi, ω

2]ρ

= −
−→
ηi ∧ cmni hρm ∧ hρn +

−→
ηi ∧

−→
hi .ω

0(ω1)ρ ∧ (ω2)ρ +
−→
ηi ∧ ω0

(
[hi, ω

1]ρ ∧ (ω2)ρ (3.6)

+ (ω1)ρ ∧ [hi, ω
2]ρ
)
.

In the above, the cmni denote the structure constants for the co-bracket of the Lie

bialgebra h and we identified the interior product ιdω0(
−→
ηi ∧
−→
hi) with −2(

−→
hi .ω

0)
−→
ηi using

that O(L) is an h-base algebra. We thus see that the term (3.5) vanishes due to quasi
h-invariance of the dynamical r-matrix.

Denote σ the diagonal H-action on L × Y . The induced action vector field is hσ =

(
−→
h , 0) + (0, hρ). For any basis element hk ∈ h we have

Jhσk , ρ∗r(λ)K = ρ∗
(−→
hk.r(λ) + [hk ⊗ 1 + 1⊗ hk, r(λ)]

)
= ρ∗δ(hk)

again by quasi h-invariance of r(λ). The Lie algebra structure (3.1) on the Drinfeld
double is such that

[hk, η
i] ∧ hi + ηi ∧ [hk, hi] = cijk hi ∧ hj .

Using the above, one can show that

J
−→
hk,ΠLK =

−−−→
δ(hk), Jhσk ,ΘK = cijk (

−→
hi , 0) ∧ (0, hρj ) .

By Proposition 1.1.10 this shows that the H-action is indeed Poisson.
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As a first application we will give a dynamical generalization of the Poisson structure
on G from Example 1.1.11. To that end, we consider the group G as a left G×G-space
via ρ : (G×G)×G→ G, ρ(g1, g2, h) = g1hg

−1
2 .

Proposition 3.1.5. Let h1, h2 ⊂ g be two Lie sub-bialgebras and let L1, L2 be Poisson
h1-, respectively h2-base spaces. Given two dynamical r-matrices r(λi) : Li → g ⊗ g
such that their symmetric parts agree, the following defines a Poisson structure on X =
L1 ×G× L2:

� For ϕ ∈ O(Lk) and ψ ∈ O(Lm):

{ϕ,ψ} = δkm{ϕ,ψ}Lk (3.7)

� For ϕ ∈ O(L1), ψ ∈ O(L2) and f ∈ O(G):

{ϕ, f} = (
−−−→
η(1)i.ϕ)(hi(1)R . f) {ψ, f} = −(

−−−→
η(2)i.ψ)(hi(2)L . f) (3.8)

where for k = 1, 2, (h(k)i)i∈I is a basis for hk and (η(k)i)i∈I its dual basis.

� For f, g ∈ O(G):

{f, g} = ω(λ1)0 ⊗
(
(ω(λ1)1)R . f

) (
(ω(λ1)2)R . g

)
⊗ 1 (3.9)

+ 1⊗
(
(ω(λ2)1)L . f

) (
(ω(λ2)2)L . g

)
⊗ ω(λ2)0

=
(
ω(λ1)R,R + ω(λ2)L,L

)
. (f ⊗ g)

Proof. The following is a dynamical r-matrix for (g⊕2, h1 ⊕ h2, L1 × L2):

r̃(λ) = (r(λ1)0 ⊗ 1)⊗ (r(λ1)1, 0)⊗ (r(λ1)2, 0)− (1⊗ r(λ2)0)⊗ (0, r(λ2)2)⊗ (0, r(λ2)1) .

The symmetric part of r̃(λ) is t̃ = (t, 0) − (0, t) and ρ∗(t̃) = 0 due to g-invariance of t.
So, by Proposition 3.1.4, Πr̃(λ) is a Poisson bivector, namely the one given in Equations
(3.7)–(3.9).

We will write (X,ΠL1,L2

dyn ) for the dynamical Poisson space defined by (3.7)–(3.9). For
linear Poisson h-base spaces given by the dual h∗, there are closely related examples
that are very well-known. Namely, the dynamical Poisson–Lie groupoids introduced by
Etingof–Varchenko [EV98a], which we will discuss next:

Example 3.1.6. Similarly to how Poisson–Lie groups are related to the classical YBE,
The classical DYBE admits a geometric interpretation in terms of Poisson–Lie groupoids
[Wei88]. In more details, let h ⊂ g be a Cartan subalgebra, H ⊂ G a subgroup with Lie
algebra h and U ⊂ h∗ an open subset. Etingof–Varchenko constructed a Poisson–Lie
groupoid structure on X = U ×G×U whose source and target maps are defined by the
two natural projections π1, π2 : U ×G× U → U and the multiplication comes from the
multiplication in G: m((u1, g, u), (u, g′, u2)) = (u1, gg

′, u2). The group H × H acts on
the groupoid via

(H ×H)×X → X, ((h1, h2), (u1, g, u2)) 7→ (u1, h1g(h2)−1, u2) .

Given a function r(λ) : U → g ⊗ g with ad-invariant and constant symmetric part t ∈
Sym2(g)g, r(λ) satisfies the classical DYBE if and only if the following defines a Poisson–
Lie groupoid structure on X:

{f, g} =
(
ω(λ1)L,L − ω(λ2)R,R

)
. (f ⊗ g)

72



3. Dynamical character varieties

{h(1)
i , f} = hLi . f, {h(2)

i , f} = hRi . f

for f, g ∈ O(G) and h
(1)
i = hi ∈ O(U(1)), h

(2)
i = hi ∈ O(U(2)), where U(1) denotes the

first copy of U in X and U(2) the second copy and (hi)i∈I is a basis of h. Note that
one may replace the Cartan subalgebra h by any Lie subalgebra in g by adding the
corresponding linear Poisson brackets between the functions on h∗. 4

3.1.3. Fusion

Let (M,ρ) be a G×n-space and let h1, . . . , hl ⊆ g be Lie sub-bialgebras with corre-
sponding Poisson base spaces L1, . . . , Ll for some l ≤ n. We will assume that the
hi-action on O(Li) comes from a left Hi-action on Li. We also fix dynamical r-matrices
r(λi) : Li → g ⊗ g together with a sign function ε : {1, . . . , n} → {−1, 1}. We define a
direct product dynamical r-matrix for g⊕n over L×c11 × · · · × L×cll , where

∑
i ci = n, as

follows:

r(n)(λ) =
l∑

i=1

( ci∑
a=1

ω(λi)
0(ω(λi)

1)(ai) ⊗ (ω(λi)
2)(ai) − ε(a)(t1)(ai) ⊗ (t2)(ai)

)
. (3.10)

The notation x(a) denotes the image of x ∈ g under the embedding g ↪→ g⊕n as a-
th summand and for lighter notation we introduced the notation ai for the integer
a+

∑i−1
j=1 cj .

We assume that the symmetric part of the direct product dynamical r-matrix in (3.10)
vanishes under the pushforward map ρ∗, so that ρ∗r

(n)(λ) defines a bivector field on M ,
and by Proposition 3.1.4 the following is a Poisson bivector on Πl

i=1L
ci
i ×M :

Πr(n)(λ) = ΠL
c1
1

+ ΘL
c1
1

+ · · ·+ ΠL
cl
l

+ ΘL
cl
l

+ ρ∗r
(n)(λ) , (3.11)

As an example, note that the Poisson spaces (L1 × L2 × G,Πdyn
L1,L2

) from Proposition
3.1.5 is of this type.

Given a Poisson structure as in (3.11), will now define an operation called the dynam-
ical fusion (

Lc11 × · · · × L
cl
l ×M,Πr(n)(λ)

)
 

(
L1 × · · · × Ll ×M,Πfus

)
,

which yields a new dynamical Poisson space which is such that the respective diagonal
Hi-actions are Poisson. Dynamical fusion gives a generalization of the fusion product
for Poisson spaces defined by classical r-matrices from [LM17] to Poisson spaces defined
via dynamical classical r-matrices.

Similarly to the non-dynamical case, we will need to modify the direct product dy-
namical r-matrix r(n)(λ) giving rise to the Poisson structure in (3.11) in order to define
a dynamical Poisson structure compatible with the diagonal Hi-actions. This is done as
follows:

Proposition 3.1.7. The bivector field

Πfus = ΠL1 + Θ
(c1)
L1

+ · · ·+ ΠLl + Θ
(cl)
Ll

+ ρ∗r
(n)(λ) + ρ∗Mixn(r(λ))

where

Mixn(r(λ)) =

l∑
i=1

( ∑
1≤a<b≤ci

r(λi)
0(r(λi)

1)(ai) ∧ (r(λi)
2)(bi)

)
,
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and Θ
(ci)
Li

=
∑ci

a=1

−→
ηj ∧ (hj,(ai))

ρ, where (hj) and (ηj) are dual bases for hi and h∗i ,
respectively, defines a Poisson structure on L1×· · ·×Ll×M which is such that for each
i = 1, . . . , l the diagonal Hi-action is Poisson.

Proof. We will consider the following bigrading for polyvector fields: elements in X(Lc11 ×
· · · × Lcll ) are of degree (1, 0) and elements in X(M) of degree (0, 1). Clearly, the de-
gree (3, 0)-part of the Schouten bracket JΠfus,ΠfusK vanishes since the ΠLi are Poisson
bivectors on the base spaces. The degree (2, 1)-part has contributions from the brackets

l∑
i=1

ci∑
a=1

2JΠLi ,
−→
ηj ∧ (hj,(ai))

ρK + J
−→
ηj ∧ (hj,(ai))

ρ,
−→
ηj ∧ (hj,(ai))

ρK .

The vanishing of the above is as detailed in Equation (3.4) of the proof to Proposition
3.1.4. The degree (1, 2)-part has the following contributions: for each 1 ≤ i ≤ l

ci∑
a,b=1

J
−→
ηj ∧ (hj,(ai))

ρ,
−→
ηj ∧ (hj,(bi))

ρK + 2J
−→
ηj ∧ (hj,(ai))

ρ + ΠLi , ρ∗(ω(λi)
1)(bi) ∧ (ω(λi)

2)(bi)K

+

ci∑
a=1

∑
1≤r<s≤ci

2J
−→
ηj ∧ (hj,(ai))

ρ + ΠLi , ρ∗(r(λi)
1)(ri) ∧ (r(λi)

2)(si)K

One then uses quasi hi-invariance as in (3.5) to show that the second term cancels the
(a = b)-part of the first term and the third term cancels the (a 6= b)-part. Lastly, the
degree (0, 3)-terms come from the brackets

Jρ∗r(n)(λ), ρ∗r
(n)(λ)K + Jρ∗Mixn(r(λ)), ρ∗Mixn(r(λ))K + 2Jρ∗r(n)(λ), ρ∗Mixn(r(λ))K

+
n∑
i=1

2JΘci , ρ∗r
(n)(λ) + ρ∗Mixn(r(λ))K

The above vanishes due to the classical DYBE.
For lighter notation, we assume that Πfus is the Poisson structure on L×M obtained

via dynamical fusion from Ln ×M . The more general case from the statement in the
Proposition can be worked out in complete analogy. Denote by σ the diagonal H-action

on L×M . The induced action vector field is hσ = (
−→
h , 0)+

(
0, (h(1))

ρ
)
+· · ·+

(
0, (h(n))

ρ
)
.

For any basis element hk ∈ h we find

Jhσk , ρ∗Mixn(r(λ))K

=
∑

1≤a<b≤n
(
−→
hk.r

0)(r1
(a))

ρ ∧ (r2
(b))

ρ + r0([hk, r
1](a))

ρ ∧ (r2
(b))

ρ + r0(r1
(a))

ρ([hk, r
2](b))

ρ

=
∑
a<b

cijk (0, (hi,(a))
ρ, 0) ∧ (0, 0, (hj,(b))

ρ) ,

where in the last line we used quasi h-invariance of r(λ). The other Schouten brackets
can be figured out along the same lines as in the proof of Proposition 3.1.4 and we find
that

Jhσk ,Π
fusK = σ∗δ(hk) ,

showing that the diagonal H-action is indeed Poisson.
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Remark 3.1.8. Let M be a Gn-space. In the special case that L = ∗ and h = 0, the
notion of a dynamical r-matrix coincides with that of an ordinary classical r-matrix.
When in this situation, the Poisson space from (3.11) takes the form (M,Π = ρ∗r

(n)),
where r(n) ∈ gn ⊗ gn is the direct product r-matrix described in [Mou17, Section 2].
The fusion procedure described above then turns M into the Poisson G-space (M,Πfus =
Π− ρ∗Mixn(r)), which coincides with the one in [Mou17].

We will now give an instructive example of fusion for dynamical Poisson spaces that
will be generalized in the upcoming section.

Example 3.1.9. Let X = L1×L2×G and X ′ = L′1×L′2×G be two dynamical Poisson

spaces as given in Proposition 3.1.5 with Poisson bivectors ΠL1,L2

dyn and Π
L′1,L

′
2

dyn . We shall
represent the dynamical Poisson spaces X and X ′ by the following two graphs:

X :
v1 v2α

X ′ :
v′1 v′2β

where the set of vertices (va)a∈{1,2} and (v′a)a∈{1,2} represent the Poisson ha-spaces
(La)a∈{1,2} and the Poisson h′a-spaces (L′a)a∈{1,2} respectively. Given the two graphs
X and X ′ we may obtain new graphs by identifying two of the vertices va and v′b as
illustrated in Figure 3.1, where the vertex v0 is now a stand-in for the common base
space L0 = La = L′b. On the level of algebraic varieties, fusion of the graphs X and X ′

corresponds to taking the pullback

X �fus
a,b X

′ X

X ′ L0

πa

π′b

where for a ∈ {1, 2}, πa : X = L1 × L2 ×G→ La are the natural projection maps.
Given a graph Γa,b as in Figure 3.1, we define the following bivector on the space

X �fus
a,b X

′:

Πfus
a,b =

∑
vk∈V

(
ΠLvk

+
∑
δ∈E,

s(δ)∨t(δ)=vk

−−−→
η(k)i ∧ y(k)i(δ) +

1

2
ω(λvk)ijxi(δ) ∧ xj(δ)

)
(3.12)

+ r(λv0)ijxi(α) ∧ xj(β)

where

y(k)i(δ) =

{
h(k)Ri (δ), δ is incoming at vk

−h(k)Li (δ), δ is outgoing at vk

and

xi(δ) =

{
eRi (δ), δ is incoming at vk

−eLi (δ), δ is outgoing at vk

for δ ∈ {α, β}, where the notation x(δ) means that x ∈ X(G) is embedded into the
δ-component of X(G × G). According to Proposition 3.1.7, this defines a dynamical
Poisson structure on the fusion product X �fus

a,b X
′, which is such that the diagonal

H0-action is Poisson.
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v2 v′2

α β

v0

v1 v′1

α β

v0

v1 v′2

α β

v0

v2 v′1

α β

v0

Figure 3.1.: Graphs Γa,b representing the fusion of va with v′b in the dynamical Poisson
spaces X = L1 × L2 ×G and X ′ = L′1 × L′2 ×G.

4

3.1.4. Dynamical Fock–Rosly Poisson structure

Let Γ = (E, V ) be a ciliated ribbon graph. We select a subset {v1, . . . , vk} ⊆ V of
vertices for which we fix Lie sub-bialgebras hi ⊆ g, i = 1, . . . , k, and corresponding
Poisson hi-base spaces Li. Let Hi be a group with Lie algebra hi. Throughout we will
assume that the hi-action on O(Li) comes from a left action of Hi on Li.

Given such a decorated ciliated ribbon graph Γ = (V,E, {Li, hi}i=1,...,k) we define a
smooth algebraic variety called the dynamical representation variety by

Repdyn(Γ, G) =
∏
vi

Li ×GE

Let V ′ = V \ {v1, . . . , vk}. There is a natural action of the group ΠviHi ×GV
′

on the
dynamical representation variety:

ρΓ
{v1,...,vk} :

(∏
vi

Hi ×GV
′
)
×
(∏

vi

Li ×GE
)
→
∏
vi

Li ×GE (3.13)(
(av)v∈V = ((hvi)vi , (gxi)xi∈V ′), (li)vi , (gγ)γ∈E

)
7→
(
(hvi . li)vi , (at(γ)ga

−1
s(γ))γ∈E

)
where s(γ) is the starting and t(γ) the target vertex of γ and . is the left Hi-action on
the hi-base spaces. Note that in the special case that V ′ = V , we recover the action of
the lattice gauge group GV on the ordinary representation variety Rep(Γ, G) ∼= GE .

Theorem 3.1.10. Given a decorated ciliated ribbon graph (Γ, {hi, Li}i=1,...,k), for each
m = 1, . . . , k fix a dynamical r-matrix r(λm) : Lm → g⊗g and for each undecorated vertex
xn ∈ V ′ an ordinary classical r-matrix rn ∈ g⊗g. We assume that all dynamical as well
as ordinary classical r-matrices have common invariant symmetric part t ∈ Sym2(g)g.
Then, the following defines a Poisson bracket on the dynamical representation variety:

� For ϕ ∈ O(Lm) and ψ ∈ O(Ln):

{ϕ,ψ} = δm,n{ϕ,ψ}Lm . (3.14)

� For ϕ ∈ O(Lm) and f ∈ O(GE):

{ϕ, f} =
∑

s(α)=vm

−(
−−−→
η(m)i.ϕ)(h(m)Li (α) . f) +

∑
t(α)=vm

(
−−−→
η(m)i.ϕ)(h(m)Ri (α) . f)

(3.15)
where for m = 1, . . . , k, (h(m)i)i∈I is a basis for hm and (η(m)i)i∈I its dual basis,
and for any x ∈ g the action of xR(α) and xL(α) on elements in O(GE) is as
defined in (1.4).
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3. Dynamical character varieties

� For f, g ∈ O(GE):

{f, g} = ΠFR(λ)(df ∧ dg) (3.16)

ΠFR(λ) =
∑
xn∈V ′

(∑
α≺β

rijn xi(α) ∧ xj(β) +
1

2

∑
α

rijn xi(α) ∧ xj(α)
)

+
∑

vm∈{v1,...,vk}

(∑
α≺β

r(λm)ijxi(α) ∧ xj(β) +
1

2

∑
α

r(λm)ijxi(α) ∧ xj(α)
)

where α, β run over the set of half-edges Ê based at the given vertex v ∈ V and

xi(α) =

{
eRi (α), α is incoming at v

−eLi (α), α is outgoing at v

Moreover, the ΠviHi×GV
′
-action on the dynamical representation variety Repdyn(Γ, G)

is Poisson.

Proof. We may consider the vertices xn ∈ V ′ as decorated by the trivial Lie sub-bialgebra
hn = 0 and base space Ln = ∗. Note that in this case the notion of a dynamical classical
r-matrix reduces to the one of an ordinary classical r-matrix. This observation allows
us to phrase everything in terms of dynamical Poisson structures.

Recall that the combinatorial data of the ciliated ribbon graph Γ allows to define a

GÊ-action on GE :

ρΓ : GÊ ×GE → GE

((hα)
α∈Êv , (gγ)γ∈E) 7→ (ht(γ)gγh

−1
s(γ))γ∈E .

We also use Γ to define a dynamical r-matrix for the direct product Lie bialgebra gÊ .
To that end, let Êvi be the ordered set of half-edges bases at vi ∈ V and define

rÊ(λ) =
∑
vi∈V

( ∑
α∈Êvi

ω(λi)
0(ω(λi)

1)(αi) ⊗ (ω2(λi))(αi) − ε(α)(t1)(αi) ⊗ (t2)(αi)

)
,

where x(αi) denotes the embedding of x ∈ g into gÊ at position αi = α +
∑i−1

j=1 cj for

cj = |Êvj | and the sign function is:

ε(α) =

{
1, α is outgoing at vi

−1, α is incoming at vi .

We have that ρΓ
∗
(
rÊ1,2(λ) + rÊ2,1(λ)

)
= 0 due to ad-invariance of t, and so by Proposition

3.1.4 the following is a Poisson space(
Lc11 × · · · × L

cl
l ×G

E ,Π
rÊ(λ)

)
, Π

rÊ(λ)
= ΠL

c1
1

+ ΘL
c1
1
· · ·+ ΠL

cl
l

+ ΘL
cl
l

+ ρΓ
∗ r
Ê(λ) .

We may now apply dynamical fusion to the above Poisson space, where one more time
we use the linear ordering on Ê to define

Πfus = ΠL1 + Θ
(c1)
L1

+ · · ·+ ρΓ
∗ (r

Ê(λ)) + Mix(Ê,≺)r(λ)
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3. Dynamical character varieties

with
Mix(Ê,≺)r(λ) =

∑
vi∈V

( ∑
α≺β∈Êvi

r(λi)
0(r(λi)

1)αi ∧ (r(λi)
2)βi

)
One can check that the bivector obtained from dynamical fusion agrees with the dynam-
ical Fock–Rosly bivector in (3.14)–(3.16), which then by Proposition 3.1.7 is Poisson.
Moreover, it follows from the same proposition, together with the corresponding re-
sult from [FR99] for the undecorated vertices V ′, that the diagonal ΠviHi ×GV

′
-action

spelled out in (3.13) is Poisson.

Remark 3.1.11. It was brought to the author’s attention that the type of dynamical
Fock–Rosly spaces described in Theorem 3.1.10 have previously appeared in [Spi20, Sec-
tion 5.2] for Poisson base spaces given by open non-empty subsets U ⊆ h∗, for h ⊆ g.

Remark 3.1.12. For dynamical r-matrices over commutative base h, the dynamical
generalization of the Fock–Rosly Poisson structure has for instance appeared in the work
of Buffenoir–Roche [BR05] on Chern–Simons theory with sources, as we will recall in
§ 3.4.3. The commutative case is also discussed in [Meu21].

Dynamical character variety/stack For a lighter exposition we will now restrict
to graphs Γ = (E, V ) where all vertices {v1, . . . , vk} = V are decorated by a Lie sub-
bialgebras hi ⊆ g, i = 1, . . . , k, and corresponding Poisson hi-base spaces Li.

We have seen in § 1.1.2 that the Fock–Rosly Poisson structure on the (ordinary) repre-
sentation variety is compatible with the lattice gauge group action and thus descends to
the character variety, i.e. to the algebra of GV -invariant functions on Rep(Γ, G) ∼= GE .
In the previous section, we have reduced the lattice gauge group to the subgroup
ΠiHi ⊂ GV and defined a compatible Poisson structure on the dynamical represen-
tation variety. In this section we will define the corresponding dynamical character
varieties and dynamical character stacks.

Since the Poisson hi-base spaces Li are not necessarily affine, the algebra of ΠiHi-
invariants on the dynamical character variety might not capture accurately the geometry
of the quotient space Repdyn(Σ, G)/ΠiHi. We will thus take the following assumptions:
each Li admits a covering by affines (U ia)a∈J , such that each U ia is Hi-invariant. We
obtain an affine cover (ΠiU

i
ai)a1,...,ak for the product ΠiLi and thus for dynamical repre-

sentation variety. The cover is ΠiHi-invariant for the action (3.13). For each invariant
affine open we may form the affine quotient and then glue the resulting affines to form
the quotient

Chardyn(Γ, G) = Repdyn(Γ, G)/ΠiHi ,

which we will call the dynamical character variety.

Example 3.1.13. Let H ⊂ G be a maximal torus, and U ⊂ H an open subset considered
as a Poisson h-base space as in Example 3.1.2. Then, the conjugation action by H on
U is trivial, and any cover of U by affines will be invariant.

Second, we define the dynamical character stack to be the stacky quotient of the
dynamical representation variety by the reduced lattice gauge group:

Chardyn(Γ, G) =
[
Repdyn(Γ, G)

/
ΠiHi

]
.

Note that in this case we do not need to impose any assumptions on the Poisson base
spaces.
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3. Dynamical character varieties

Lastly, we will discuss under which circumstances the dynamical Fock–Rosly structure
induces a Poisson structure on the ΠiHi-invariant functions on GE . To that end, we
will need the following:

Proposition 3.1.14. [Donin–Mudrov] Let (M,ρ) be a left G-space and L ×M a dy-
namical Poisson space with Poisson bracket

Π = ΠL +
−→
ηi ∧ hρi + π(λ) , (3.17)

for π(λ) ∈ O(L) ⊗ ∧2TM , which is such that the diagonal H-action is Poisson. Let
λ0 ∈ L be a stable point for the H-action. Then π(λ0) induces a Poisson bracket on the
subalgebra of H-invariants in O(M).

Proof. Compatibility with the H-action implies:
−→
h . (π(λ)(f, g)) + hρ . (π(λ)(f, g))− π(λ)(hρ . f, g)− π(λ)(f, hρ . g) = ρ∗δ(h)(f, g)

for h ∈ h and f, g ∈ O(M). Thus, we see that at an h-stable point λ0, the bracket π
descends to the algebra of invariant functions, i.e. hρ . (π(λ0)(f, g)) = 0. Moreover, the
Schouten bracket of π(λ) is given by

Jπ(λ), π(λ)K = Alt(hρi ⊗
−→
ηiπ(λ))

and thus vanishes on elements of O(M)H .

Remark 3.1.15. The function π(λ) : L → ∧2TM , such that L ×M equipped with the
bivector (3.17) is a Poisson H-space, is called a Poisson dynamical bracket.

Example 3.1.16. Let H ⊂ G be a maximal torus and consider O(H) as an h-base
algebra with trivial Poisson bracket, as detailed in Example 3.1.2. Every point in H
is stable under the adjoint action and thus π(λ) induces a bracket on the algebra of
H-invariants in O(M).

Let’s return to the combinatorial Poisson structures of the previous section. Given a
decorated ribbon graph Γ = (V,E, {Li, hi}) and consider the coset space:

GE/ (ΠviHi) .

We can now apply Proposition 3.1.14 to the dynamical Poisson structure on the repre-
sentation variety from Theorem 3.1.10:

Corollary 3.1.17. Given a decorated ribbon graph model Γ = (V,E, {Li, hi}), assume
that λ0 ∈ ΠiLi is a stable point for the ΠiHi-action. Then, the dynamical Fock–Rosly
Poisson bivector ΠFR(λ0) from (3.9) descends to the coset space GE/

(
ΠviHi

)
.

Example 3.1.18. Consider a graph Γ: x1
α−→ x2 as in Example 3.1.9. We decorate the

vertex x1 with the Poisson h-base space L and fix a dynamical r-matrix r(λ) : L→ g⊗g
together with an ordinary classical r-matrix r for the non-decorated vertex x2. The
dynamical representation variety Repdyn(Γ, G) = L×G has left H ×G-action:

ρΓ : (H ×G)× (L×G)→ L×G, ((h, a), (l, g)) 7→ (h . l, agh−1)

By Theorem 3.1.10, the Poisson brackets on the dynamical representation variety are:

{ϕ, f} = −(
−→
ηi .ϕ)(hi,L . f), {f, g} = (ω(λ)L,L + ωR,R) . (f ⊗ g)

for ϕ ∈ O(L) and f, g ∈ O(G). Suppose that λ0 ∈ L is an h-stable point. Then, the
bivector field ω(λ0)L,L+ωR,R is a Poisson structure on the coset space G/H. Moreover,
the remaining G-action by right-invariant vector fields is Poisson. Thus, the Poisson
space (G/H,ΠFR(λ0)) is an example of a Poisson homogeneous space. 4
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3. Dynamical character varieties

3.2. Point defects and dynamical quantum groups

In this section we will specify the local categorical data coming from the theory of
dynamical quantum groups that will be used to compute factorization homology on
marked surfaces. To that end, we are going to present the categorical framework in which
notions such as dynamical twists and the quantum DYBE can be naturally formulated.

3.2.1. Base algebras

In the (semi-)classical setting we formulated the classical DYBE over Poisson h-base
algebras which were defined as module algebras over the Drinfeld double D(h). A
quantization of the Lie bialgebra h is a quantization of its universal enveloping algebra
to the Hopf algbera Uq(h). Accordingly, the quantum version of a Poisson h-base algebra
should be an algebra in the Drinfeld center of the category of modules over Uq(h). These
observations motivate the following definition taken from [DM05]:

Definition 3.2.1. Let C be a monoidal category. A base algebra L in C is a commutative
algebra in the Drinfeld center Z(C), that is an algebra object (L,mL) ∈ C together
with a family of natural isomorphisms (γX : L ⊗ X → X ⊗ L)X∈C such that γX⊗Y =
(id⊗ γY ) ◦ (γX ⊗ id) and the following diagrams are commutative

L ⊗ L⊗X X ⊗ L⊗ L

L⊗X L ⊗X

mL⊗id

(γX⊗id)◦(id⊗γX)

id⊗mL
γX

L ⊗ L L ⊗ L

L
mL

γL

mL
(3.18)

We now give some explicit examples for base algebras. Their role as quantizations of
Poisson base algebras will be discussed in more details later on in § 3.4.

Example 3.2.2. LetA be a rigid braided monoidal category and FRE =
∫ X∈cmp(A)

X∨⊗
X the reflection-equation (RE) algebra (see also Example 2.2.11). It is a commutative
algebra in the Drinfeld center Z(A) if endowed with the half-braiding given by the field
goal transformation:

γX : FRE ⊗X → X ⊗FRE, γX =

FRE X

X FRE

for all X ∈ A. 4

Example 3.2.3. Let B be a Hopf algebra. As was noticed in [DM05, Example 4.4], a
base algebra L for the category B-Mod can be described as follows. L is a left B-module
and left B-comodule algebra such that the coaction δ : L → B ⊗ L, λ 7→ λ(−1) ⊗ λ(0),
satisfies

δ(b . λ) = b(1)λ
(−1)S(b(3))⊗ b(2) . λ

(0) , (3.19)

where we wrote ∆(b) = b(1)⊗ b(2) for the coproduct in B, and the multiplication of L is
such that

mL(λ⊗ µ) = λµ = (λ(−1) . µ)λ(0) (3.20)
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3. Dynamical character varieties

for all λ, µ ∈ L. Note that a left B-module and comodule satisfying (3.19) is called a
Yetter–Drinfeld module. We call L a B-base algebra. The corresponding half-braiding
γX : L ⊗X → X ⊗ L is defined for every X ∈ B-Mod using the coaction

γX : λ⊗ x 7→ λ(−1) . x⊗ λ(0) .

Equation (3.19) guarantees that this is a B-module map, and Equation (3.20) that L is
commutative with respect to the half-braiding γL,L, i.e. that the diagram on the right in
(3.18) commutes. The diagram on the left in (3.18) is commutative since δ is an algebra
map. Lastly, note that the left B-comodule L admits also a right B-coaction defined
by:

δR : L → L⊗A, λ 7→ λ[0] ⊗ λ[1] = λ(0) ⊗ S−1(λ(−1)) . (3.21)

4

The following was one of the motivating examples for Donin–Mudrov to introduce the
notion of base algebras. As we will see later on, it is related to the formulation of the
quantum DYBE over non-abelian base spaces due to Xu [Xu02].

Example 3.2.4. [DM05, Example 3.5] Let l ⊆ g be a Lie subalgebra, U ⊂ l∗ an l-stable
open subset and let O(U) be the algebra of regular functions on U . The subset U ⊂ l∗

should be thought of as the open region where the dynamical r-matrices with base l∗

does not have poles. The linear Poisson structure on l∗ admits a quantization by the
PBW star-product (O(l∗)[[~]], ?) [Gut83]. The latter is a U(l)-module via the coadjoint
action, as well as a comodule via the map

δ : f(µ) 7→ f(µ+ ~h(1)), µ ∈ l∗

with f(µ+~h(1)) = f(µ)⊗1 +~
∑

i
∂f(µ)
∂µi
⊗ li+O(~2), where (li) is a basis for l and (µi)

the induced coordinate system on l∗. One can check that this turns O(U)[[~]] equipped
with the PBW star-product into a base algebra in the category U(l)-Mod[[~]]. 4

The main example for us will be the following:

Example 3.2.5. Let H ⊂ G be a maximal torus and h the Lie algebra of H. The
algebra O(H) is a U(h)[[~]]-comodule algebra

δ~ : O(H)→ U(h)⊗O(H)[[~]], δ~f(eλ) = f(eλ+~h(1)
), eλ ∈ H ,

where

f(eλ+~h(1)
) = 1⊗f(eλ)+~hi⊗

∑
i

hLi .f(eλ)+
~2

2

∑
i,j

hihj⊗hLi .hLj .f(eλ)+ . . . (3.22)

for (hi) a basis of h. The left U(h)[[~]]-module structure is the trivial one. The right
U~(h)-comodule structure is

δR~ f(eλ) = f(eλ−~h
(2)

) = f(eλ)⊗ 1− ~
∑
i

hLi . f(eλ)⊗ hi +O(~2) . (3.23)

For applications we may want to work with a localization of O(H). Let S ⊂ O(H) be
a multiplicative subset and denote by O(H)S the localization at S.
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Proposition 3.2.6. The localization L = O(H)S is a U(h)[[~]]-base algebra.

Proof. We will use the universal property of localizations to show that we can extend δ
to a comodule map

δR~,S : O(H)S → O(H)S ⊗ U(h)[[~]] .

To that end, consider the composition

O(H)
δR~−→ O(H)⊗ U(h)[[~]]→ O(H)S ⊗ U(h)[[~]] ,

where O(H)→ O(H)S is the map f 7→ f
1 . We claim that every element in S is mapped

to an invertible element in O(H)S ⊗ U(h)[[~]]. Indeed, we have δR~ (S) − S ⊗ 1 = 0
(mod ~) and we can thus write δR~ (S) = S ⊗ 1 +

∑
i xi ⊗ yi with yi ∈ U(h)≥1[[~]] with

respect to the ~-adic filtration. Now, we observe that δR~ (S)(S−1 ⊗ 1) is invertible in
O(H)S ⊗ U(h)[[~]] with inverse given by

1⊗ 1−
∑
i

xiS
−1 ⊗ yi +

∑
i,j

xiS
−1xjS

−1 ⊗ yiyj − . . . .

Hence, δR~ (S) is an invertible element and we get an extension δR~,S : O(H)S → O(H)S⊗
U(h)[[~]].

4

Quantum moment maps Let L be a base algebra in a monoidal category C and
(A,m) an algebra object in C. In § 2.5, we recalled the notion of quantum moment
maps for the RE-algebra FRE in a braided monoidal category A, following [Saf21a].
The definition naturally generalizes to base algebras in monoidal categories: a quantum
moment map is an algebra map µ : L → A, such that the following diagram commutes

L ⊗A A⊗A

A

A⊗ L A⊗A

µ⊗id

γA

m

id⊗µ

m

(3.24)

Proposition 3.2.7. An algebra in L-ModC is an algebra in C equipped with a quantum
moment map.

Proof. Let A ∈ L-ModC be an algebra with left L-action ., right action / = . ◦ γ−1
A and

multiplication m : A⊗L A→ A, a⊗ b 7→ ab. Define µ : L → A by µ(λ) = λ . 1A. This is
a quantum moment map since the multiplication m is balanced and a L-module map.
Conversely, let A be an algebra in C and µ : L → A a quantum moment map. This
defines an algebra in the category of (L,L)-bimodules via

λ . a = µ(λ)a, a / λ = aµ(λ)

for λ ∈ L and a ∈ B. Since µ makes Diagram (3.24) commute, we have (A,µ) ∈ CL ⊂
(L,L)-BimodC .
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3.2.2. Dynamical twists

From a categorical point of view, solutions to the quantum YBE can be understood as
monoidal functors from a rigid braided tensor category A to the category of K-vector
spaces: for a monoidal functor F : A → VectK we define linear maps RX,Y : F (X) ⊗
F (Y )

∼=−→ F (X)⊗ F (Y ) of vector spaces by the following commutative diagram

F (X)⊗ F (Y ) F (Y )⊗ F (X)

F (X ⊗ Y ) F (Y ⊗X) ,

∼=

τ◦RX,Y

F (σX,Y )

∼=

where τ is the permutation τ(v⊗w) = w⊗v. Intuitively, the linear map RX,Y measures
the failure of F to preserve the braiding. The natural isomorphism R : F (−)⊗F (−)⇒
F (−)⊗ F (−) satisfies the quantum Yang–Baxter equation

RX,YRX,ZRY,Z = RY,ZRX,ZRX,Y

in EndK(F (X)⊗ F (Y )⊗ F (Z)), which is a consequence of σ being a braiding in A. In
the case where A is the category of modules over some Hopf algebra H, the structure
induced on H by the monoidal functor is that of a quasi-triangular Hopf algebra.

Donin–Mudrov in [DM05], and Kalmykov–Safronov in [KS20], have extended this
categorical viewpoint to encompass solutions to the quantum DYBE. The latter no
longer takes place in the category of vector spaces, but in some dynamical extension of
a monoidal category. More precisely, for a cocomplete monoidal category C and a base
algebra L ∈ Z(C), we define the dynamical extension of C over L to be the category

CL = L-ModC

of L-modules internal to C.
The dynamical extension CL is a monoidal category under the relative tensor product

X ⊗L Y defined by the colimit of the diagram

X ⊗ L⊗ Y X ⊗ Y ,
.

/

where X is made into a right L-module via the half-braiding γX . If CL is equipped with
the relative tensor product monoidal structure, the free module functor free : C → CL is
monoidal:

(L ⊗X)⊗L (L ⊗ Y )
(.⊗idY )◦(γ−1

L⊗X⊗idY )
−−−−−−−−−−−−−→ L⊗X ⊗ Y .

Proposition 3.2.8. Let C ∈ PresK. Assume that C has a strong generator consisting of
compact-projective objects. Then, CL has a strong generator given by the free L-modules
L ⊗X for X ∈ Ccp. Moreover, the objects L ⊗X for X ∈ Ccp are compact-projective.

Proof. The dynamical extension is equivalent to the category of algebras over the monad
L⊗ (−) : C → C. This monad preserves colimits by the assumption that C is a monoidal
category in Pres. The forgetful functor U : CL → C is thus colimit preserving and L⊗X
for X ∈ Ccp is compact-projective. The forgetful functor is also conservative and thus
the {L ⊗X}X∈Ccp form a strong generator.
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Remark 3.2.9. In [KS20], the category CL is called the category of Harish-Chandra
bimodules. We will reserve this name for the case when we work with representation
categories of groups or quantum groups. In the original reference [DM05], the notion of
a dynamical extension of C refers only to the full subcategory of free L-modules. However,
motivated by the fact that CL is generated under colimits by the free modules, we will
stick to the same terminology.

Now, assume that C = B-Mod for a Hopf algebra B and let (A, σ) be a braided
monoidal category. Solutions to the quantum DYBE over the base algebra L are ob-
tained from monoidal functors:

A F−→ B-Mod
free−−→ B-ModL .

More precisely, define R(λ)X,Y ∈ L⊗End(F (X)⊗F (Y )) by the following commutative
diagram:

L ⊗ F (X)⊗ F (Y ) L ⊗ F (Y )⊗ F (X)

L ⊗ F (X ⊗ Y ) L ⊗ F (Y ⊗X)

(idL⊗τ)◦R(λ)X,Y

J (λ)X,Y

idL⊗F (σX,Y )

J (λ)−1
Y,X

(3.25)

Compatibility with the B-action implies that the elements R(λ)X,Y are B-equivariant.
Moreover, it follows from σ being a braiding in A that the collection of element

(R(λ)X,Y )X,Y ∈A

satisfies the quantum DYBE

R(λ)Y,Z R(λ)
[Y ]
X,Z R(λ)X,Y = R(λ)

[Z]
X,Y R(λ)X,Z R(λ)

[X]
Y,Z (3.26)

in L ⊗ End(F (X)⊗ F (Y )⊗ F (Z)), where we wrote for example R(λ)
[Y ]
X,Z to mean that

the B-component of the right coaction δR : L → L ⊗ B acts on F (Y ). We call R(λ) a
dynamical R-matrix and the monoidal structure

J (λ)X,Y ∈ L ⊗ Hom(F (X)⊗ F (Y ), F (X ⊗ Y ))

from Diagram (3.25) is called a dynamical twist.
In the case where A = H-Mod and C = B-Mod for a pair of Hopf algebras B ⊆ H,

the monoidal functor F is given by restricting an H-module to the Hopf subalgebra B
and the data of a dynamical twist can be expressed as follows:

Definition 3.2.10. A universal dynamical twist for the pair B ⊆ H over the base
algebra L is an invertible element J (λ) = J 0⊗J 1⊗J 2 ∈ L⊗H ⊗H that satisfies the
following equations:

� B-equivariance:

b(1) . J 0 ⊗ b(2)(1)J 1 ⊗ b(2)(2)J 2 = J 0 ⊗ J 1b(1) ⊗ J 2b(2) ,

for all b ∈ B.

� Dynamical cocycle equation:

((id⊗∆⊗ id)J (λ))J (λ)1,2 = ((id⊗ id⊗∆)J (λ))
(
δR ⊗ id⊗ id

)
J (λ) (3.27)

in Lop ⊗H ⊗H ⊗H.
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� Normalization: (id⊗ ε⊗ id)J (λ) = 1⊗ 1⊗ 1 = (id⊗ id⊗ ε)J (λ) .

Remark 3.2.11. In [DM05], Donin–Mudrov define a universal dynamical twist to be a
B-equivariant element K(λ) ∈ H ⊗H ⊗ L satisfying

(∆⊗ id)K(λ)(id⊗ id⊗ δ)K(λ) = (id⊗∆)K(λ)K(λ)2,3 (3.28)

in H⊗H⊗H⊗L. This differs from Definition 3.2.10 in the following way: an element
K(λ) satisfying Equation (3.28) is equivalent to the data of a monoidal structure on the
functor

A → C freeL−−−→ ModC-L, A = H-Mod, C = B-Mod ,

into the category of right L-modules internal to C, whereas we consider the case of
left L-modules. The two definitions are equivalent in the following way. There is a
commutative diagram

L-ModC

A C (L,L)-BimodC

ModC-L

γ

freeL

freeL

where γ : L ⊗ (−) ⇒ (−) ⊗ L is the half-braiding for the base algebra L ∈ C. Then,
the natural isomorphism γF (−) = γ ◦ F allows to transport a monoidal structure on the
functor A → L-ModC to one on A → ModC-L and vice versa.

Example 3.2.12. [DM05, Example 5.8] For a pair of Lie algebras ι : l ⊆ g, U ⊂ l∗

an l-stable open subset and the base algebra L = (O(U)[[~]], ?) from Example 3.2.4, a
dynamical twist is a monoidal structure on the functor

U(g)-Mod[[~]]
ι∗−→ U(l)-Mod[[~]]

freeL−−−→
(
U(l)-Mod[[~]]

)
L .

These dynamical twists have been explicitly constructed for various classes of Lie sub-
algebras l ⊆ g. For example, in [EV98b, EV99] Etingof–Varchenko constructed a dy-
namical twist for h ⊂ g being a Cartan subalgebra. Their construction was further
generalized in [DM05] to the case where h is replaced with a Levi subalgebra l ⊂ g.
More examples can be found in [EE05]. 4

The rest of this section concerns our main example for applications in factorization
homology, namely the universal fusion matrix of Etingof–Varchenko [EV99]. This is a
dynamical twist

(
J (λ)V,W ∈ End(V ⊗W )

)
V,W∈Repq(G)

depending rationally on a param-

eter λ ∈ H for H ⊂ G a maximal torus. More recently, a categorical construction of
J (λ) was done by Kalmykov–Safronov in [KS20], which we will briefly review in Exam-
ple 3.2.13 below. In § 3.2.3, we will give an interpretation of their construction in terms
of factorization homology on stratified annuli.

Example 3.2.13. [KS20] The dynamical twist J (λ) originates in a quantization of the
bimodule category

QCoh([G/G]) y QCoh([B/B]) x QCoh([H/H]) (3.29)
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3. Dynamical character varieties

induced by the correspondence [G/G] ← [B/B] → [H/H]. The categories of quasi-
coherent sheaves on [G/G] and [H/H] are quantized by the following categories of
quantum Harish-Chandra bimodules:

HCq(G) = Uq(g)lf -ModRepq(G), HCq(H) = Uq(h)-ModRepq(H) . (3.30)

In the above, Uq(g)lf is the locally-finite part of Uq(g) with respect to the adjoint action.
A quantization of the bimodule category QCoh([B/B]) is given by the universal quantum
category O, which is the full subcategory Ouniv

q of Uq(g)-modules internal to Repq(H)
whose Uq(n)-action is locally finite.

Acting on the distinguished object Muniv = Uq(g)⊗Uq(b) Uq(h) in Ouniv
q induces a lax

monoidal functor

res : HCq(G)
actMuniv−−−−−→ Ouniv

q

actR
Muniv−−−−−→ HCq(H), X 7→ (X⊗Oq(G)M

univ )Uq(n) , (3.31)

called quantum parabolic restriction. When restricting to the locus of generic weights2,
the induced functor resgen is strong monoidal and fits in the commutative square [KS20,
Theorem 4.35]:

Repq(G) HCq(G)

Repq(H) HCq(H)gen

freeOq(G)

resgen

freeO(H)gen

(3.32)

This has the following interpretation: the monoidal structure on resgen induces a dy-
namical twist

J (λ)V,W ∈ O(H)gen ⊗ HomRepq(H)(V ⊗W,V ⊗W ), V,W ∈ Repq(G) ,

which is a rational function on H which is regular on Hgen. The algebra O(H)gen is a

base algebra in Repq(H) with half-braiding
(
V ⊗ O(H)gen

∼=−→ O(H)gen ⊗ V
)
V ∈Repq(H)

defined by
v ⊗ f(λ) 7→ f(λq−µ)⊗ v

for any v ∈ V of weight µ and λ ∈ Hgen. 4

Remark 3.2.14. In Example 3.2.13, the dynamical twist J (λ) is defined for quantum
groups Uq(g) with generic parameter q ∈ C×, or more precisely for their integrable
representations. We have seen that the construction involves the localization of O(H)

at the multiplicative set generated by {q(λ,α)+
n(α,α)

2 − 1 | α ∈ ∆, n ∈ Z} for q(λ,−) ∈
Hom(Λ,C×) ∼= H. Since this is a set generated by infinitely many polynomials, the
resulting subset Hgen ⊂ H on which the dynamical twist is regular might not again be
an algebraic variety. In contrast, when working in the formal setting, i.e. in the case
q = e~ for ~ a formal parameter, the dynamical twist is a regular function on an open

2A weight for a Uq(g)-module is a character for the Cartan part Uq(h) of Uq(g). Since Uq(h) ∼= K[Λ],
the character group may be identified with Hom(Λ,K×) ∼= H. For an element λ ∈ h we write the
associated elements of Hom(Λ,K×) as q-exponentials:

Λ→ K
×, µ 7→ q(λ,µ) .

Then, the weight λ is called generic if q(λ,α) /∈ ±qZα. We will write Hgen ⊂ H for the subset of generic
weights and O(H)gen for the rational functions that are regular on Hgen.
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3. Dynamical character varieties

subset H reg ⊂ H. More precisely, it was shown in [EEM04, Proposition 5.1] that the
functional part of the dynamical twist lives in a localization O(H)S [[~]], where S is the
multiplicative set generated by the finite set of polynomials {k2

β−1 | β ∈ ∆+}, where for

any positive root β =
∑r

i=1 niαi we have set kβ =
∏r
i=1 e

~nihαi . This observation will
allow us to carry out certain constructions locally on an affine cover for H reg, which will
for instance prove useful when defining quantum dynamical character stacks in § 3.4.2.

3.2.3. Digression - Dynamical twist from factorization homology on
stratified annulus

This section is concerned with topological aspects of constructing dynamical twists.
More precisely, we will use factorization homology on annuli with circular line defects to
quantize the bimodule (3.29) which gives rise to the dynamical twist J (λ) constructed
by Kalmykov–Safronov. The content of this section is still work in progress and may be
read independently from the rest of this chapter.

Line defects and decorated surfaces A surface with one-dimensional defects is an
oriented surface Σ together with an oriented one-dimensional submanifold Υ, such that
∂Υ ⊂ ∂Σ and Υ \ ∂Υ ∩ ∂Σ = ∅. We may decorate the stratified surface Σ as follows:
each connected component of the bulk Σ \ Υ carries a label from the set {G,H}. The
labeling is such that two bulk regions meeting at a connected component Υi ⊂ Υ have
to carry distinct labels. One could of course label each connected component of Υ by
different defect data, however we only consider the case where all Υi carry the same
data.

Definition 3.2.15. Manor,str
2 is the (2, 1)-category whose

� objects are oriented surfaces with one-dimensional defects and a {H,G}-labeling of
the bulk

� 1-morphisms are embeddings respecting the decorations and stratification

� 2-morphisms are stratified isotopies

The full symmetric monoidal subcategory Diskor,str
2 of decorated oriented disks with

one-dimensional defects and disjoint unions thereof has three generating objects, the
decorated disks DG and DH and the stratified disk DG|H:

DG = G DH = H DG|H = G H

The local categorical data governing algebras on the decorated, stratified disk category
Diskor,str

2 are so-called central algebras over braided categories [BJS21]:

Definition 3.2.16. Let A and B be braided tensor categories and C a tensor category.
A (A,B)-central algebra structure on C is a braided functor

F : A� Bσop → Z(C) ,

into the Drinfeld center of C, where Bσop is the category B with the opposite braiding.
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3. Dynamical character varieties

Following [AFT17], stratified factorization homology with coefficients in a given Diskor,str
2 -

algebra F is the functor ∫
(−)
F : Manor,str

2 → PresK

defined as the left Kan extension of F along the inclusion Diskor,str
2 ↪→ Manor,str

2 .
We will use the following local categorical data, coming from the Hopf algebra maps

j : Uq(b) ↪→ Uq(g), p : Uq(b) ∼= Uq(n)⊗ Uq(h)
ε⊗id−−−→ Uq(h) ,

where ε is the counit map. More precisely, we have tensor functors

j∗ : Repq(G)→ Repq(B), p∗ : Repq(H)→ Repq(B)

on the corresponding representation categories. The maps j∗ and p∗ induce a (Repq(G),
Repq(H))-central structure on Repq(B) as follows: for each V ∈ Repq(G) and U ∈
Repq(H) define a half-braiding in Repq(B) by

γj∗(V )⊗p∗(U),X(v ⊗ u⊗ x) = (σRepq(G)id) ◦ (id⊗ σRepq(H))(v ⊗ u⊗ x) ,

where σRepq(G) and σRepq(H) denote the braiding in Repq(G) and Repq(H) respectively.

The half-braiding is well-defined since σRepq(G) comes from the action of the (quasi) R-

matrix of Uq(g) which lives in a completion of Uq(b
−)⊗Uq(b). Also, one can easily check

that the half-braiding γ is compatible with the Uq(b)-action. We will write Repq(G y
B x H) for the data of the (Repq(G),Repq(H))-central algebra Repq(B).

Remark 3.2.17. The Diskor,str
2 -algebra Repq(Gy B x H) recently featured in [JLSS21]

in the construction of quantum decorated character stacks via stratified factorization ho-
mology, thereby generalizing the cluster quantization approach due to Fock–Goncharov.

Factorization homology on annuli with circular Repq(Gy B x H)-defects We
will work with the following decorated surface. The annulus with a circular defect line,
with the inside of the defect labeled by Repq(H), the outside of the defect labeled by
Repq(G), and the defect line by Repq(B). We also consider the two Repq(G)-, respectively
Repq(H)-labeled annuli without line defects:

AnnG = AnnH = AnnB =

Factorization homology on the stratified annulus with coefficients in the E1-algebra
B = Repq(B) admits the following descriptions:∫

AnnB
B ∼= Tr(Repq(B)) ∼= EndBop�B(1B)-ModB . (3.33)

We recall that Tr(B) = B �Bop�B B and the internal endomorphism algebra of the
monoidal unit is the canonical coend algebra:

EndBop�B(1B) ∼=
∫ V ∈Repq(B)fd

V ∨ � V

= FB .
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The first equivalence in (3.33) is due to the excision property of factorization homology,
whereas the second equivalence is due to monadic reconstruction for relative tensor
products in PresK [BZBJ18a, Theorem 4.12], where one uses that Repq(B) is rigid and
1B is a progenerator for the natural Bop � B-action

/ : B � (Bop � B)→ B, c� (b1 � b2) 7→ c / (b1 � b2) = b1 ⊗ c⊗ b2 ,

and similarly for the left Bop�B-action .. Via excision and base-change, we further get
the following equivalences for the factorization homologies on the unstratified annuli:∫

AnnG
Repq(G) ∼= Oq(G)-ModRepq(G),

∫
AnnH

Repq(H) ∼= O(H)-ModRepq(H) (3.34)

These are equivalences of Repq(G), respectively Repq(H)-module categories. To establish
the equivalences (3.34), one uses the fact that both Repq(G) and Repq(H) are rigid
balanced braided tensor categories. In particular, we use the following: there is a
Repq(G)op�Repq(G)-module equivalence between Repq(G) with the canonical left action
(we will abbreviate G = Repq(G))

(Gop � G)� G → G, (x1 � x2)� y 7→ x2 ⊗ y ⊗ x1

and G with left Gop � G-action defined by

(Gop � G)� G (id,σ)�id�id−−−−−−−→ (G � G)� G T 3

−→ G, (x1 � x2)� y 7→ x1 ⊗ x2 ⊗ y

where (id, σ) is the identity functor with monoidal structure given by the braiding σ of
G. The module equivalence is established using the braiding σ. The case of Repq(H)
follows along the same lines.

The algebra Oq(G) ∼=
⊕

λ∈P+ V (λ)∨⊗V (λ) in (3.34) is the reflection equation algebra.
Note that for G semi-simple and simply-connected this algebra is isomorphic, as a left
Uq(g)-module algebra, to the locally finite part Uq(g)lf of the quantum group [Jos95,
Proposition 7.1.23], see also [VY20, Theorem 2.113]. Moreover, our conventions (see
§ 1.2.2) are such that O(H) = Uq(h). We thus get the following identifications∫

AnnG
Repq(G) ∼= HCq(G),

∫
AnnH

Repq(H) ∼= HCq(H) , (3.35)

where HCq(G) and HCq(H) are the quantum Harish-Chandra bimodules from (3.30)
considered in [KS20].

Notation 3.2.18. To ease notation we write G = Repq(G), H = Repq(H) and B =
Repq(B).

We have embeddings AnnH ↪→ AnnB and AnnG ↪→ AnnB, which on the level of factor-
ization homology give rise to the following diagram of categories

∫
AnnG G

∫
AnnB B

∫
AnnH H ,

actGDist actHDist

in PresK, where Dist ∈
∫
AnnB B is the distinguished objects coming from the inclusion

of the empty set into the B-decorated annulus and the dashed arrows denote the right
adjoints to the functors induced by the embeddings. We will now provide explicit de-
scriptions of these functors.
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Figure 3.2.: Embeddings of colored annuli AnnG and AnnH into the colored annulus AnnB

and their pullbacks along the disk embeddings DG ↪→ DB and DH ↪→ DB.

Consider the embeddings in Figure 3.2, which constitute two weakly commuting di-
agrams. On the level of factorization homology, they induce the following diagram in
PresK with commuting left and right square:

∫
AnnG G

∫
AnnB B

∫
AnnH H

G B H

actGDist

(actHDist)
R(actGDist)

R

actHDist

j∗ p∗

(3.36)

Using (3.33) and (3.34), we may identify the vertical maps with the free module func-
tors for the corresponding monads. For instance, the functor G →

∫
Ann G ∼= Oq(G)-ModG

is naturally isomorphic to the free Oq(G)-module functor freeOq(G)(V ) = Oq(G) ⊗ V .
Similarly, B →

∫
Ann B ∼= FB-ModB is naturally isomorphic to freeFB(X) = FB . X. By

abuse of notation, we will denote the composition

Oq(G)-ModG ∼=
∫
AnnG

G
actGDist−−−→

∫
AnnB

B ∼= FB-ModB

again by actGDist and similarly for actHDist. These functors admit the following explicit
description:

Proposition 3.2.19. We have the following identifications

actGDist
∼= FB⊗(j∗�j∗)EndGop�G(1) j

∗(−), actHDist
∼= FB⊗(p∗�p∗)EndHop�H(1) p

∗(−) . (3.37)

Proof. We will only discuss the first identification, the second one can be worked out
analogously. Let U(G) = Gop � G and U(B) = Bop � B. We first note that we have an
algebra homomorphism (j∗ � j∗)EndU(G)(1) → EndU(B)(1) = FB, given by the adjoint
to the natural algebra map

actR1Gact1G (1U(G))
ηj∗−−→ actR1G ◦ (j∗)R ◦ j∗ ◦ act1G (1U(G)) ∼= (j∗ � j∗)RactR1Bact1B(1U(B)) ,

coming from the commuting diagram (see also [BZBJ18a, Theorem 4.10])

G B

G � Gop B � Bop

j∗

act1G

j∗�j∗

act1B
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By Proposition 3.2.8, the category Oq(G)-ModRepq(G) is generated under colimits by free

Oq(G)-modules. Since all functors involved are colimit-preserving, it is enough to prove
the claim for free modules. We have

FB ⊗(j∗�j∗)EndU(G)
j∗freeOq(G)(M) ∼= FB ⊗(j∗�j∗)EndU(G)

(j∗ � j∗)EndU(G) . j
∗M

∼= FB . j∗M ,

where we used that j∗ is a tensor functor. Finally, commutativity of the left square in
Diagram (3.36) implies that also actGDist ◦ freeOq(G)

∼= freeFB ◦ j∗(−), which shows the
claim.

The right adjoints to the functors in (3.37) are

(actGDist)
R ∼= HomUq(b)(Uq(g), (−)), (actHDist)

R ∼= HomUq(b)(Uq(h), (−)) ∼= (−)Uq(n) ,

where we suppressed the restriction functors along the algebra maps (j∗�j∗)EndU(G)(1)→
FB and (p∗�p∗)EndU(H)(1)→ FB. In summary, we find that the embeddings depicted in
Figure 3.2 into the Repq(Gy B x H)-decorated annulus induce the following functor

(actHDist)
R ◦ actGDist : Oq(G)-ModRepq(G) → O(H)-ModRepq(H)

X 7→
(
FB ⊗(j∗�j∗)EndU(G)(1) j

∗X
)Uq(n)

.

which we will denote by FGyBxH . In particular, on free modules we have

FGyBxH(freeOq(G)(M)) = (FB . j∗M)Uq(n) ∼= (j∗M ⊗Oq(B))Uq(n) , (3.38)

where Oq(B) =
∫ V ∈Repq(B)fd

V ⊗ V ∨, and the second identification is established using
the half-braiding in Repq(G).

In the next paragraph we will show (for the case of G = SL2) that when restricted to
the subcategory of free Oq(G)-modules in Repq(G), the functor FGyBxH agrees with
the parabolic restriction functor (3.31) from [KS20]. This provides a first step towards
establishing a topological picture for the construction of the universal fusion matrix
J (λ).

Equivalence with parabolic restriction functor Making use of the equivalences
(3.35), FGyBxH induces a functor HCq(G) → HCq(H) between the respective cate-
gories of quantum Harish-Chandra bimodules. We expect the resulting functor to be
isomorphic to the parabolic restriction functor res from (3.31), constructed in purely
categorical terms by Kalmykov–Safronov. A detailed proof of the equivalence between
the two functors and their monoidal structure will be content of future work. For the
time being, we will just give some first results for the case G = SL2.

For Uq(g) = Uq(sl2), let Uq(b) and Uq(b
−) be the positive and negative quantum Borel

subalgebras generated by {(Kλ)λ∈Z, E} and {(Kλ)λ∈Z, F}, respectively. Also let Uq(n)
and Uq(n

−) be the subalgebras of Uq(g) generated by E and F , respectively. We recall
that there exist a unique skew-pairing of Hopf algebras (in the conventions of [KS97,
Section 6.3.1])

τ : Uq(b)⊗ Uq(b−)→ K

which for the case g = sl2 is determined by:

τ(Kα,Kβ) = q−(α,β), τ(E,F ) = − 1

q − q−1
, τ(F,Kα) = 0 = τ(Kβ, E) . (3.39)

See also [VY20, Section 2.8] for more details.
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Proposition 3.2.20. The pairing (3.39) induces an isomorphism ι : Uq(b
−)

∼=−→ Oq(B) ⊂
Uq(b)∗ of K-vector spaces.

Proof. Let ϕ = ι(Y Ks) ∈ Uq(b)∗ for some Y ∈ Uq(b−)−b, b ∈ N0 and s ∈ Z. Then, the
pairing (3.39) is such that for any X ∈ Uq(b)a, a ∈ N0, we have

ϕ(XKr) = q−rsτ(X,Y )

= δabq
−rsϕ(X) (3.40)

since τ(Y,X) = 0 for a 6= b. We have to show that the set of functionals ϕ ∈ Uq(b)∗ satis-
fying (3.40) agrees with the algebra of matrix coefficients of integrable finite-dimensional
Uq(b)-representations. To that end, we note that the category Repq(B) is generated by
the finite-dimensional Uq(b)-modules V (m,n) with m,n ∈ Z and m ≤ n, where V (m,n)
has a basis {vm, vm+2, . . . , vn} of weight vectors, i.e. K.vi = qivi, such that E.vi = vi+2.
Then, Oq(B) is the algebra of matrix coefficients of the representations V (m,n). In more
details, the matrix coefficients cij = cviv∗−j

, m ≤ i, j ≤ n, are of the following form

cii+2b(XK
r) =

{
qricii+2b(X), if X ∈ Uq(b)b

0, else
, b ∈ N0, r ∈ Z

and cij = 0 if j < i. Therefore, cii+2b = ι(Y K−i) for some Y ∈ Uq(b−)−b. Conversely, for

any ϕ satisfying (3.40) there exists a representation V (m,n) so that ϕ = αc−s−s+2b for
some α ∈ K× and m ≤ −s < −s+ 2b ≤ n.

Remark 3.2.21. Let Fq(G) be the Hopf algebra of matrix coefficients of finite-dimensional
integrable Uq(g)-representations (i.e. Fq(G) is the FRT-algebra). Let Fq(B) be the im-
age of Fq(G) under the natural projection Uq(g)∗ → Uq(b)∗. In more details, Fq(B) =⊕

a∈N0,j∈ZBa,j with Ba,j = {cwϕ | w ∈ V (λ)−j , ϕ ∈ V (λ)∗j−2a}, where V (λ) is some inte-
grable Uq(g)-module of highest weight λ ∈ N0. Note that up to rescaling, a given matrix

coefficients cwϕ ∈ Ba,j agrees with c−j−j+2a as defined above in the proof of Proposition
3.2.20, for some integrable Uq(b)-module V (m,n) with m ≤ −j < −j + 2a ≤ n.

For g any finite-dimensional semi-simple Lie algebra over C, it was shown in [Jos95,
Section 9.2.12], see also [VY20, Proposition 2.106], that the Drinfeld pairing τ : Uq(b)⊗
Uq(b

−)→ K induces a Hopf algebra isomorphism Uq(b
−) ∼= Fq(B). Thus, we may expect

the result in Proposition 3.2.20 to hold as well in this more general context.

In [KS20], the parabolic restriction functor is defined using the left- and right action of
the quantum Harish-Chandra bimodules on the distinguished objectMuniv ∈ Ouniv

q given

by the universal Verma module Muniv = Uq(g)⊗Uq(b)Uq(h). By the PBW-isomorphism,

we have an identification Muniv ∼= Uq(b
−), and by Proposition 3.2.20 we thus have an

isomorphism between the distinguished objects Muniv and Oq(B) on the level of vector
spaces.

The map Uq(b
−)→Muniv, X 7→ X ⊗ 1, is also an isomorphism of left Uq(n)-modules

if we endow Uq(b
−) with the following Uq(n)-module structure

. : Uq(n)⊗ Uq(b−)
m−→ Uq(g)

PBW−−−→ Uq(b
−)⊗ Uq(n)

id⊗ε−−→ Uq(b
−) .

The Uq(n)-action onMuniv is given by left multiplication. We will also need the following:

Proposition 3.2.22. The pairing (3.39) induces an isomorphism

(Uq(b
−))Uq(n) ∼= (Oq(B))Uq(n) .
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Proof. In Uq(b
−) we have for any b ∈ N0 and r ∈ Z:

E . F bKs = [b]F b−1

(
q−(b−1)K − qb−1K−1

q − q−1

)
Ks .

Using again that τ(EiKm, F jKn) = q−mnτ(Ei, F j) and τ(Ei, F j) = 0 if i 6= j, we

find that ι(E . F bKs) has kernel {EaKr}a6=b−1
r∈Z . On the other hand, recall that the left

Uq(n)-action on Oq(B) is given

I : Uq(n)⊗Oq(B)→ Oq(B), X ⊗ f 7→ f(S(X(1))(−)X(2)) .

The Hopf algebra structure on Uq(sl2) is such that ∆(E) = E ⊗K + 1⊗E and S(E) =
−EK−1, and we have for any b ∈ N0 and s ∈ Z:

E I ι(F bKs) = −τ(EK−1(−)K,F bKs) .

Thus, E I ι(F bKs) also has kernel {EaKr}a6=b−1
r∈Z and ι(E . F bKs) = αE I ι(F bKs)

for some α ∈ K×. Similarly, one can show that En . F bKs = αEn I ι(F bKs) for some
α ∈ K×, and in particular the subspaces of Uq(n)-invariants agree.

Next, recall that Muniv has a left and right Uq(h)-action defined by left and right
multiplication, giving rise to an integrable diagonal Uq(h)-action. Similarly, Uq(b

−) may
be considered as an object in HCq(H) with actions

K ⇀ X = KX, and K .X = KXS(K)

for any X ∈ Uq(b−). We also recall that Oq(B) is an object in HCq(H) with an integrable
left Uq(h)-action

K I ϕ = ϕ(S(K)(−)K)

for any ϕ ∈ Oq(B), and a left O(H)-action

f ⇀ ϕ = (f ◦ p) ∗ ϕ,

for any f ∈ O(H), where p : Uq(b)� Uq(h) and ∗ denotes multiplication in the algebra
of matrix coefficients Oq(B).

Proposition 3.2.23. The isomorphism ι : Uq(b
−)

∼=−→ Oq(B) from Proposition 3.2.20 is
a map in HCq(H).

Proof. We have on the one hand

ι(K . F bKr)(X) = τ(X,K(F bKr)K−1)

=

{
q−bq−srτ(Eb, F b), if X = EbKs

0, else

for any s ∈ Z. On the other hand we have

K I ι(F bKr)(X) = τ(K−1XK,F bKr)

=

{
q−bq−srτ(Eb, F b), if X = EbKs

0, else

For the other action we find

ι(K ⇀ X) = τ(−,KX) = τ(−,K) ∗ τ(−, X) .

which is precisely K ⇀ ι(X).
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Propositions 3.2.20, 3.2.22 and 3.2.23 together imply that for any X ∈ Repq(G) we
have an isomorphism

(X ⊗Muniv)Uq(n) ∼= (X ⊗Oq(B))Uq(n)

in HCq(H) establishing the equivalence between the parabolic restriction functor (3.31)
and FGyBxH from (3.38) when restricted to the subcategory of free modules in HCq(G).
A more in depth comparison of the two functors, as well as their (lax) monoidal struc-
tures, will be content of future work.

3.2.4. Braided modules and quasi-reflection data

In § 1.3.1 we saw that point defects in categorical factorization homology are defined
as symmetric monoidal functors Diskor

2,∗ → Pres from the category of marked disks to
the category of locally presentable categories. The categorical data required to extend
factorization homology for oriented surfaces to oriented surfaces with marked point is
given by E2-modules over braided monoidal categories:

Definition 3.2.24. [Gin15] An E2-module for a braided monoidal category A is a right
module over the annulus category

∫
AnnA, where the latter is equipped with the tensor

structure induced by stacking annuli.

In [BZBJ18b, Theorem 3.11] it was shown that the E2-modules classifying point de-
fects in categorical factorization homology admit a more algebraic description in terms
of braided module categories with a balancing. Braided module categories were first
introduced in [Enr08, Bro12, Bro13] and their definition is recalled below. Through-
out A is a balanced braided tensor category with braiding σ and balancing θ. For
a right A-module category M, we will write ⊗̄ : M � A → M for the action and

ηM,X,Y : (M⊗̄X)⊗̄Y
∼=−→M⊗̄(X ⊗ Y ) for the module associativity constraint.

Definition 3.2.25. A balanced braided module category over A is an A-module cate-
gory M equipped with an automorphism

E : − ⊗̄− ⇒ −⊗̄−

of the action bifunctor which is such that EM,1 = idM for all M ∈ M, together with
an automorphism ϕ : idM ⇒ idM of the identity functor on M, called the balancing on
(M, E), satisfying

ϕM⊗X = EM,X ◦ (ϕM⊗θX) . (3.41)

The automorphism E has to satisfy the following two relations

EM⊗̄X,Y = η−1
M,X,Y (id⊗̄σ−1

X,Y )ηM,Y,X(EM,Y ⊗̄id)η−1
M,Y,X(id⊗̄σ−1

Y,X)ηM,X,Y (3.42)

and

EM,X⊗Y = ηM,X,Y (EM,X⊗̄id)η−1
M,X,Y (id⊗̄σ−1

X,Y )ηM,Y,X(EM,Y ⊗̄id)η−1
M,Y,X(id⊗̄σX,Y )

(3.43)

Topologically, the automorphism E is induced by the loop in the space of embeddings
Emb(D∗ t D,D∗) coming from moving the disk around the marked point, while the
balancing onM is induced by the isotopy rotating a marked disk about 2π, as illustrated
in Figure 3.3. Similarly to the unmarked case, the balancing ensures that we can compute
factorization homology on oriented surfaces.
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(3.42)
=

(3.43)
=

(3.41)
=

Figure 3.3.: Top row: Topological operations inducing the automorphism E (on the left)
and the two balancings ϕ and θ (on the right) in a balanced braided module category
together with the corresponding string diagrams. Bottom row: Relations in a balanced
braided module category.

Remark 3.2.26. As was noted in [BZBJ18b, Theorem 3.12], if A is a balanced braided
tensor category and M a module category for A satisfying Relations (3.42) and (3.43),
then M admits a canonical balancing automorphism coming from the loop in the space
of oriented embeddings given by rotating the annulus about 2π, together with the factor-
ization A →

∫
AnnA → End(M) of the A-module structure on M.

Before we describe the algebraic structures relating the quantum DYBE and to braided
module categories, we can already give a first example:

Example 3.2.27. Let l ⊆ g be a pair of finite-dimensional complex Lie algebras and
U ⊂ l∗ an l-stable open subset. The dynamical twists from Example 3.2.12 turns
the dynamical extension U(l)-Mod[[~]]O(U)[[~]] into a braided module category over the
symmetric monoidal category U(g)-Mod[[~]] with the identity natural transformation as
automorphism E . Note however that this example is not in Pres. 4

Point defects from quasi-reflection data Throughout we fix the data of a quasi-
triangular Hopf algebra H with universal R-matrix R, a Hopf subalgebra B ⊆ H to-
gether with a B-base algebra L as defined in Example 3.2.3 of the previous section.
In the following we introduce the notion of a quasi-reflection datum, which is closely
related to that of a quasi-reflection algebra from [Enr08], see Remark 3.2.29 below.

Definition 3.2.28. A quasi-reflection datum is a tuple (B ⊆ H,L,J (λ), E(λ)), where
J (λ) is universal dynamical twist for the pair B ⊆ H over the base algebra L and
E(λ) ∈ L ⊗H is an invertible element satisfying the following equations:

� Octagon equation:

(δR ⊗ id)E(λ) = J (λ)−1R2,1J (λ)2,1E(λ)2J (λ)−1
2,1RJ (λ) . (3.44)

� Pentagon equation:

(id⊗∆)E(λ) = J (λ)
(
(δR ⊗ id)E(λ)

)
E(λ)1J (λ)−1 . (3.45)

� B-equivariance:
b(1) . E

0 ⊗ b(2)E
1 = E0 ⊗ E1b ,

for all b ∈ B.
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Both the octagon and pentagon equations take place in Lop ⊗H ⊗H.

Remark 3.2.29. A quasi-reflection algebra, as defined in [Enr08, Definition 4.1], is
a comodule algebra B over a quasi-triangular bialgebra H, together with invertible B-
invariant elements Ψ ∈ B ⊗ H ⊗ H and E ∈ B ⊗ H subjected to a cocycle equation
for Ψ and an octagon relation for E. Our definition of a quasi-reflection datum almost
recovers that of a quasi-reflection algebra in the special case that L = B considered as
a base algebra over itself with coaction given by the coproduct ∆B, and the H-comodule
structure on B comes from the inclusion B ⊆ H. The difference is in that equation
(3.44) holds in Bop ⊗ H ⊗ H, whereas the octagon equation in [Enr08] takes place in
B⊗H ⊗H (see Remark 3.2.30 below). Note that the pentagon equation is missing from
the definition of a quasi-reflection algebra.

As explained in § 3.2.2, the data of a dynamical twist gives rise to a monoidal structure
on the functor H-Mod→ B-Mod→ B-ModL, turning the dynamical extension B-ModL
into a right module category over H-Mod:

⊗̄ : B-ModL �H-Mod→ B-ModL, M⊗̄X = M ⊗L freeL(X) .

The associator ηM,X,Y : (M⊗̄X)⊗̄Y
∼=−→ M⊗̄(X ⊗ Y ) is defined by the dynamical twist

J (λ):

M ⊗L freeL(X)⊗L freeL(Y ) ∼= M ⊗L L ⊗X ⊗ Y (3.46)

id⊗LJ (λ)X,Y−−−−−−−−→M ⊗L L ⊗X ⊗ Y = M ⊗L freeL(X ⊗ Y )

m⊗L λ⊗ x⊗ y 7−→ m⊗L λJ 0 ⊗ J 1 . x⊗ J 2 . y

Remark 3.2.30. The appearance of the opposite base algebra Lop in the Dynamical Co-
cycle Equation (B.10) has to do with the fact that the dynamical extension CL is defined
as the category of left L-modules in C. More precisely, when defining the associator η
in terms of the universal dynamical twist as in (3.46), we have to multiply with J 0 from
the right to get an L-module map.

If the dynamical twist is part of a quasi-reflection datum (J (λ), E(λ)), the invertible
element

E(λ) = E(λ)−1(1⊗ θ−1)

defines an automorphism E of the action functor −⊗̄− via

M⊗̄X
EM,X−−−→M⊗̄X (3.47)

m⊗L λ⊗ x 7→ m⊗L λE0 ⊗ E1 . x

where we used the notation E(λ) = E0 ⊗ E1 ∈ L ⊗ H. This is well-defined due to
B-equivariance of E.

Proposition 3.2.31. The automorphism E from (3.47) endows the dynamical extension
B-ModL with the structure of a braided module category over H-Mod.

Proof. We have to check that Relations (3.42) and (3.43) hold. For the former, we have
that

EM⊗X,Y (m⊗L λ⊗ x⊗L µ⊗ y) = m⊗L λ⊗ x⊗L µE0 ⊗ E1 . y

∼= m⊗L λ(µE0)[0] ⊗ (µE0)[1] . x⊗ E1 . y .
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Thus, in order for Relation (3.42) to hold, E(λ) has to satisfy the following equation:

(δR ⊗ id)E(λ) = J (λ)−1R−1J (λ)2,1E(λ)2J (λ)−1
2,1R

−1
2,1J (λ) .

But this is the case since E(λ) = E(λ)−1(1⊗θ−1), and E(λ) satisfies Equation 3.44. For
the second relation, we compute

(id⊗∆)(E(λ)−1(1⊗ θ−1))

(3.45)
= J (λ)E(λ)−1

1 J (λ)−1R−1J (λ)2,1E(λ)−1
2 J (λ)−1

2,1R
−1
2,1(1⊗∆(θ)−1)

and the result follows since θ is a ribbon element, in particular ∆(θ) = (R2,1R)−1(θ ⊗
θ).

Quasi-reflection datum and the ABRR-equation In [ABRR98], Arnaudon–Buffenoir–
Ragoucy–Roche introduce a dynamical twist J (λ) living in a completion of Uq(g)⊗2 and
depending rationally on a dynamical parameter eλ ∈ H. It is the unique solution of the
form 1 + Uq(n)⊗ Uq(n−) to the equation

J (λ)B(λ)2 = R−1ΩB(λ)2J (λ) (ABRR)

with B(λ) = q2λ+
∑
i(C
−1)ijHiHj , where (Hi)αi are the simple coroots, (Cij) is the sym-

metrized Cartan matrix and Ω = q
∑
i(C
−1)i,jHi⊗Hj is the Cartan part of the universal

R-matrix R. The dynamical twist satisfying the linear ABRR-equation agrees with the
universal fusion matrix of Etingof–Varchenko, see for example [ES02b, Theorem 8.1].

We now set q = e~ and make a change of variable λ 7→ λ/~.

Proposition 3.2.32. Solutions to the ABRR-equation give rise to a quasi-reflection
datum (J (λ)2,1, B(λ)) for the pair U~(h) ⊂ U~(g)op.

Proof. By Example 3.2.5, we have (δR⊗ id)(B(λ)) = B(λ+ ~h(1))2. Hence, the element
B(λ) satisfies the relation

(id⊗∆)(B(λ)) = Ω2B(λ)1B(λ)2

= B(λ)1(δR ⊗ id)(B(λ)) ,

which agrees with Equation 3.45 due to h-invariance of the dynamical twist. Moreover,
we have

J (λ)−1
2,1RJ (λ)B(λ)2J (λ)−1R2,1J (λ)2,1

ABRR
= J (λ)−1

21 RR
−1ΩB(λ)2J (λ)J (λ)−1R2,1J (λ)2,1

= J (λ)−1
21 ΩB(λ)2R2,1J (λ)2,1

ABRR
= J (λ)−1

2,1ΩB(λ)2ΩB(λ)1J (λ)2,1B(λ)−1
1

= J (λ)−1
2,1∆(B(λ))J (λ)2,1B(λ)−1

1

= Ω2B(λ)2

where the last equality is again by h-invariance of the dynamical twist. This shows
that the pair (J (λ)2,1, B(λ)) is a quasi-reflection datum for U~(h) ⊂ U~(g)op over the
base algebra O(H reg)[[~]] and U~(g)op is the quantum universal enveloping algebra with
opposite coproduct and universal R-matrix R2,1.
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The element B(λ) featuring in the ABRR-equation thus corresponds in the topological
picture (Figure 3.3) to the loop in the space of disk embeddings Emb(D∗tD,D∗) coming
from moving the unmarked disk around the marked point.

Conversely, one can recover an ABRR-type equation from the categorical construction
of the dynamical twist J (λ) due to Kalmykov–Safronov, as we will show in Proposi-
tion 3.2.33 below. First, we note that the commutativity of Diagram (3.32) gives a
factorization

Repq(G) HCq(H)gen

HCq(G)
free

(free◦i∗,J (λ))

resgen
(3.48)

turning HCq(H)gen into an E2-module over Repq(G). The characterization of E2-modules
in terms of braided module categories implies that there is an automorphism of the action
bifunctor, that is, for any M ∈ HCq(H)gen and X ∈ Repq(G) an isomorphism

EM,X : M ⊗L freeL(X)
∼=−→M ⊗L freeL(X), L = O(H)gen ,

natural in M and X, satisfying Relation (3.42) and (3.43).

Proposition 3.2.33. The dynamical twist from Example 3.2.13 satisfies the ABRR-type
equation

J (λ)W,VE(λ)−1
W = R−1

W,V ΩW,VE(λ)−1
W J (λ)W,V ,

in O(H)gen ⊗ End(V ⊗ W ), where E(λ)W = EL,W ∈ O(H)gen ⊗ End(W ) for V,W ∈
Repq(G).

Proof. First, we rewrite Equation (3.42) in the following form

(id⊗̄σ−1
X,Y )ηM,X,Y EM⊗̄X,Y η−1

M,X,Y = ηM,Y,X(EM,Y ⊗̄id)η−1
M,Y,X(id⊗̄σ−1

Y,X) , (3.49)

where M⊗̄X = M ⊗L freeL(X), the associator η is defined by the dynamical twist J (λ)
as in (3.46) and the braiding σ is defined by the quantum R-matrix σX,Y = τ ◦R.X⊗Y .

In [KS20, Proposition 4.37] it is shown that the dynamical twist J (λ) is related to
the universal fusion matrix JEV (λ) of Etingof–Varchenko via J (λ) = JEV (λ)2,1. The
universal fusion matrix is of the form

JEV (λ)X,Y (x⊗ y) = x⊗ y +
∑
i

ai ⊗ bi

where wt(ai) < wt(x) and wt(bi) > wt(y) for all x, y in X,Y ∈ Repq(G). Since the quasi
R-matrix of Repq(G) (in the conventions of [KS20]) lives in a completion of Uq(b) ⊗
Uq(b−), we see that in order for Equation (3.49) to hold, the left- and right-hand side
have to agree with their respective weight zero parts. This yields in particular the
following equation

ηM,Y,X(EM,Y ⊗̄id)η−1
M,Y,X(id⊗̄σ−1

Y,X) = (EM,Y ⊗̄id)Ω−1
Y,X , (3.50)

where Ω denotes the Cartan part of the quantum R-matrix R. We now specialize to the
case M = L. Equation (3.50) then implies the following:

J (λ)Y,XE(λ)Y J (λ)−1
Y,XR

−1
Y,X = E(λ)Y Ω−1

Y,X

m
J (λ)Y,XE(λ)−1

Y = R−1
Y,XΩE(λ)−1

Y J (λ)Y,X .

Thus, we recover an ABRR-type equation for the dynamical twist from the braided
module structure on HCq(H)gen.
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Remark 3.2.34. The relationship between the ABRR-equation and braided module cat-
egories has already appeared in [Bro12], where an algebraic analog of the ABRR-equation
was used to construct a quasi-reflection algebra (Ψ~, E~), where Ψ~ ∈ U~(h) ⊗ U~(g)⊗2

is an algebraic dynamical twist (called pseudo-twist in [Enr08]), giving rise to a braided
module structure on U~(h)-Mod over U~(g)-Mod.

Dynamical point defects We will use the following terminology:

Definition 3.2.35. Let L be a base algebra in a monoidal category C and let A be a
balanced braided category. A dynamical point defect for oriented factorization homology

is the data of a functor A F−→ C freeL−−−→ CL and a dynamical twist

J (λ)X,Y ∈ L ⊗ Hom(F (X)⊗ F (Y ), F (X ⊗ Y )), X, Y ∈ A

together with a factorization

A C CL∫
AnnA

F freeL

In the K-linear setting, we have the following examples.

Example 3.2.36. Let H ⊂ G be a maximal torus. Let Repq(G) and Repq(H) the
representation categories of Uq(g) and Uq(h) respectively as defined in § 1.2.2. Then, the
dynamical twist J (λ)V,W ∈ O(H)gen ∈ End(V ⊗W ), for V,W ∈ Repq(G), constructed
by Kalmykov–Safronov makes Diagram (3.48) commute and thus defines a dynamical
point defect for factorization homology with values in PresK. 4

Example 3.2.37. Let G be a finite group and A ⊂ G an abelian subgroup. Let A∗

be the abelian group of characters, that is, A∗ = Map(A,K×). In [EN01], Etingof–
Nikshych construct dynamical twists J (λ) ∈ Fun(A∗)⊗ K[G]⊗ K[G] with values in the
group algebra of G. The algebra Fun(A∗) is a base algebra in Rep(A) with half-braiding
defined by

γV : f(λ)⊗ v 7→ v ⊗ f(λ+ µ), V ∈ Rep(A)

for v ∈ V of weight µ and λ ∈ A∗. Since the group algebra K[G] is trivially quasi-
triangular, the module category defined by the functor

Rep(G)→ Rep(A)
freeFun(A∗)−−−−−−→ Rep(A)Fun(A∗) ,

with monoidal structure J (λ) is trivially a braided module category and thus defines a
dynamical point defect for factorization homology in PresK. 4

In the V = ̂C[[~]]-Mod-enriched setting we have the following example.

Example 3.2.38. Let Rep~(G)fd be the category of topologically-free U~(g)-modules
of finite rank and let Rep~(H)fd be the category of topologically-free, finite rank U~(h)-

modules with integral weights. LetA = ̂Rep~(G)fd and C = ̂Rep~(H)fd be their respective
free cocompletions. These are monoidal categories under the Day convolution product,
see § A.2.2. We will denote by ι : Rep~(H)fd → Rep~(H)lf the inclusion into the category
of locally-finite, topologically-free modules. Then, the presheaf

L = MapRep~(H)lf (ι(−),O(H reg)[[~]])
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is an algebra in C. Indeed, O(H reg)[[~]] is trivial as a U~(h)-module, i.e. the action
is induced by pulling back along ε : U~(h) → K[[~]]. We can thus write the U~(h)-
module O(H reg)[[~]] as a filtered colimit colimiVi[[~]] of the finite dimensional subspaces
Vi ⊂ O(H reg). With this observation we have the following

L ⊗Day L

=

∫ X,Y ∈Rep~(H)fd

MapRep~(H)fd(−, X ⊗ Y ) ⊗̂ L(X) ⊗̂ L(Y )

∼=
∫ X,Y ∈Rep~(H)fd

MapRep~(H)fd(−, X ⊗ Y ) ⊗̂ MapU(h)-Modlf (X0, colimiVi)[[~]]

⊗̂ MapU(h)-Modlf (Y0, colimjVj)[[~]]

∼= colim(i,j)

∫ X,Y ∈Rep~(H)fd

MapRep~(H)fd(−, X ⊗ Y ) ⊗̂ MapRep~(H)fd(X,Vi[[~]])

⊗̂ MapRep~(H)fd(Y, Vj [[~]])

∼= MapRep~(H)lf (ι(−),O(H reg)[[~]] ⊗̂ O(H reg)[[~]])

(mO(Hreg)[[~]])∗−−−−−−−−−→ L

where we used that X ∼= X0[[~]] in Rep~(H)fd and we find that the algebra structure
is the one induced by the multiplication in O(H reg). Similarly, we find that for any
V ∈ Rep~(H)fd

L ⊗Day YV ∼= MapRep~(H)lf (ι(−),O(H reg)[[~]]⊗ V ) ∈ C .

Using the above, one can show that L is a base algebra in C through the U~(h)-base
algebra structure on O(H reg)[[~]] from Example 3.2.5. By abuse of notation we will
sometimes simply write O(H reg)[[~]] for the base algebra L. The braided module struc-
ture of CL over A comes from the dynamical twist J (λ) being a solution to the ABRR-
equation and the corresponding quasi-reflection datum (J (λ)2,1, B~(λ)) from Proposi-
tion 3.2.32. 4

3.3. Factorization homology on surfaces with dynamical point
defects

In this section we compute factorization homology for surfaces with marked points and
coefficients given by dynamical point defects. We show that one can identify the re-
sulting categories with modules over algebras aΓ

λ1,...,λk
defined in combinatorial terms

from certain decorated ribbon graph models (Γ, {v1, . . . , vk}). We will see that the al-
gebras aΓ

λ1,...,λk
give rise to examples of so-called dynamical associative algebras, which

are quantum analogs of the Poisson dynamical bracket from § 3.1.4 (see Remark 3.1.15).
In particular, we recover a dynamical version of the FRT-algebra via factorization ho-
mology. Lastly, we show that for certain coefficients the algebras aΓ

λ1,...,λk
are examples

of module algebras over so-called twisted quantum groupoids from [DM06].

3.3.1. Combinatorial algebras

Let Σ = Σg,r be a connected oriented surface of genus g with r boundary components,
r > 0, together with k marked points {v1, . . . , vk} ⊂ Σ. We will distinguish two cases: Σ
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P(i')1 = xj = vj-1 xm = vk

 i  n i' n'

(xj,1) (xm,1)(x1,2n-m+1)

 1  1'

(x1,1) (x1,P(i)2) (x1,P(1')2)

x1 = 

(a) Surface Σ with marked interval in its
boundary. In the above, n = 2g+ r+ k− 1
and m = k + 1.

P(i')1 = xj = vj xm = vk

 i  n i' n'

(xj,1) (xm,1)(x1,2n-m+1)

 1  1'

(x1,1) (x1,P(i)2) (x1,P(1')2)

x1 = v1 

(b) Surface Σ without marked interval in its
boundary. In the above, n = 2g+ r+ k− 2
and m = k.

Figure 3.4.: Surface Σ with k marked points {v1, . . . , vk} ⊂ Σ constructed from a given
gluing pattern.

has either one or zero marked intervals in its boundary. It will be convenient to describe
such surfaces combinatorially in terms of gluing patterns with multiple basepoints in-
troduced in what follows. Note that these gluing patterns will be particular instances
of ciliated ribbon graph models for surfaces with markings.

A gluing pattern (P, {x1, . . . , xm}) with m basepoints is a bijections of sets

P : {1, 1′, 2, 2′, . . . , n, n′}
∼=−→ {(x1, 1), (x1, 2), . . . , (x1, 2n−m+ 1), (x2, 1), (x3, 1), . . . , (xm, 1)} ,

such that, writing P (i) = (P (i)1, P (i)2), the following holds:

� P (i)1 = x1 for all 1 ≤ i ≤ n,

� if P (i)1 = P (i′)1 = x1 then P (i)2 < P (i′)2.

We will let P(i) and P(i′) denote the position of P (i) and P (i′) in the set {(x1, 1), (x1, 2),
. . . , (xm, 1)}. We also introduce the notation (P,�, {v1, . . . , vk}) for a gluing pattern with
m = k + 1 basepoints, with distinguished first basepoint.

A given gluing pattern (P,�, {v1, . . . , vk}), or (P, {v1, . . . , vk}), determines a marked
surface Σ(P ) with or without marked interval in the boundary. For the former, consider
n = 2g + r + k − 1 disks D�,� with two marked intervals i and i′ each, and a disjoint
union �2n−kD� t �D∗ t · · · t �D∗, where the first disk has 2n − k + 1 marked intervals
labeled (x1, 0), (x1, 1), . . . , (x1, 2n − k) and the others are once-marked disks D∗ with
one labeled interval (xj , 1) each. Then, glue the interval i to the interval P (i) and i′ to
P (i′), respectively. A sketch of this procedure is given in Figure 3.4a. For the case of the
gluing pattern (P, {v1, . . . , vk}) without the distinguished first basepoint, the procedure
is similar, except that we glue the n = 2g + r + k − 2 handles D�,� to a disjoint union
of once-marked disks �2n−k+1D∗ t �D∗ t · · · t �D∗, see Figure 3.4b.

Throughout, let A ∈ Pres be a rigid balanced braided category with a strong generator
consisting of compact-projective objects. Let T : A � A → A be the tensor product
functor. We have the following two canonical algebras. First, the algebra F = TR(1A),
which admits the following colimit formula:

F =

∫ X∈Acp

X∨ �X ∈ A�A ,

with multiplication

(X∨ �X)⊗ (Y ∨ � Y ) = X∨ ⊗ Y ∨ �X ⊗ Y σ�id−−−→ Y ∨ ⊗X∨ �X ⊗ Y ιX⊗Y−−−→ F .
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3. Dynamical character varieties

Note that the algebra F is the image of the FRT-algebra FFRT =
∫ X

X∨�X ∈ Aop�A
under the tensor functor (id, σ) : Aop → A which is the identity on objects with tensor
structure given by the braiding in A. We will denote by FP (i′) the image under the
embedding

A�A ↪→ A�m, a� b 7→ a� 1 · · ·� b︸︷︷︸
P (i′)1

� · · ·� 1 .

Second, the reflection equation (RE) algebra

FRE =

∫ X∈Acp

X∨ ⊗X ∈ A ,

which was already introduced in Example 2.2.11. We will also denote by FRE the image
of the RE-algebra under the embedding A ↪→ A�m, a⊗ b 7→ a⊗ b� 1 · · ·� 1.

Now, given a gluing pattern P with multiple basepoints {v1, . . . , vm}, we will define
an algebra object aP in A�m. As an object in A�m, aP is defined by the tensor product

aP =

n⊗
i=1

FP (i,i′), FP (i,i′) =

F
P (i′), if P (i)1 6= P (i′)1

FRE, else
(3.51)

Similarly to the case of gluing patterns with only one basepoint [BZBJ18a, Section 5],
the algebra structure on aP is specified in terms of crossing morphisms Cji : FP (j,j′) ⊗
FP (i,i′) → FP (i,i′)⊗FP (j,j′) for each pair i < j, such that the multiplicationm|FP (i,i′)⊗FP (j,j′)

is given by:

FP (i,i′) ⊗FP (j,j′) ⊗FP (i,i′) ⊗FP (j,j′) id⊗Cji⊗id−−−−−−→
(
FP (i,i′)

)⊗2 ⊗
(
FP (j,j′)

)⊗2

m
FP (i,i′)⊗mFP (j,j′)−−−−−−−−−−−−−→ FP (i,i′) ⊗FP (j,j′)

For each pair 1 ≤ i < j ≤ n, we have to distinguish the following cases:

 i  i'j j'

x1 xa

(1,P(i)2) (1,P(j)2) (1,P(i')2) (a,1)< <

x1

 i  i' j j'

(1,P(i)2) (1,P(i')2) (1,P(j)2)< <

(1,P(j)2) (1,P(i)2) (1,P(i')2)< <

j i i' j'

x1 x1 xa xb

 i  j i' j'

(1,P(i)2) (1,P(j)2) (a,1) (b,1)<

x1

(1,P(i)2) (1,P(i')2) (1,P(j)2)< < (1,P(j')2)

 i  i'  j  j'

<

x1

(1,P(i)2) (1,P(j)2) (1,P(i')2)< < (1,P(j')2)<

x1

(1,P(i)2) (1,P(j)2) (1,P(j')2)< < (1,P(i')2)

 i  j  j'  i'

<

 i  i'j j'

(a,1)

xa

(a,1)

xa

(a) (b) (c)

(d) (e)

(f) (g)

Figure 3.5.: List of gluing patterns for 1 ≤ i < j ≤ n, together with the cases one obtains
by exchanging i↔ j in the pictures above.
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3. Dynamical character varieties

The crossing morphisms for cases (a)–(c) in Figure 3.5 were already defined in Figure
2.7 if one specializes to the case of trivial bundles decoration. The crossing morphisms
for the remaining cases are

(e)(d) (f)

V ∨ ⊗ V ⊗W∨ �W

W∨ ⊗ V ∨ ⊗ V �W

↑
FRE ⊗FP (j′)

W∨ ⊗ V ∨ ⊗ V �W

V ∨ ⊗ V ⊗W∨ �W
↑

FRE ⊗FP (j′)

W∨ ⊗ V ∨ ⊗ V �W

↑
FRE ⊗FP (j′)

V ∨ ⊗ V ⊗W∨ �W

W∨ ⊗ V ∨ � W︸︷︷︸
n

� V︸︷︷︸
m

↑
FP (i′) ⊗FP (j′)

V ∨ ⊗W∨ �W � V

(g)

Figure 3.6.: Definition of crossing morphisms.

To each basepoint xi in the gluing pattern (P, {x1, . . . , xm}) we assign the categorical
data of a dynamical extension (Ci)Li ∈ Pres together with a monoidal functor

Fλi : A
Fi−→ C

freeLi−−−→ (Ci)Li , L ⊗ Fi(X)⊗C Fi(Y )
J (λi)−−−→ L⊗ Fi(X ⊗A Y ) ,

given by means of a dynamical twist J (λi), defining a dynamical point defect. We then
define the tensor functor

Fλ1,...,λm = Fλ1 � · · ·� Fλm : A�m → (C1)L1 � · · ·� (Cm)Lm , (3.52)

and the corresponding algebra object

aPλ1,...,λm = Fλ1,...,λm(aP ) . (3.53)

in (C1)L1 � · · ·� (Cm)Lm . The algebras aPλ1,...,λk
∈ C1 � · · ·� Ck have quantum moment

maps

µ(i) : Li ∼= 1� · · ·� Li ⊗ 1� · · ·� 1
ι1�···�1−−−−→ aPλ1,...,λk

(3.54)

Example 3.3.1. Consider a gluing pattern with two basepoints given by P (1, 1′) =
((�, 1), (v, 1)). In this case we have that aP = F . To the basepoint � we attach the
trivial dynamical extension id : A → A, i.e. the base algebra L = 1A is given by the
monoidal unit in A. Let Fλ : A → CL be the dynamical data for the second basepoint
v. Then, we have:

aP�,λ =

∫ X∈Acp

X∨ � L ⊗ F (X) ,

with multiplication:(
X∨ � L ⊗ F (X)

)
⊗
(
Y ∨ � L ⊗ F (Y )

)
= X∨ ⊗ Y ∨ � (L ⊗ F (X)⊗L L ⊗ F (Y ))

∼=−→ X∨ ⊗ Y ∨ � L ⊗ F (X)⊗ F (Y )
id�J (λ)X,Y−−−−−−−→ X∨ ⊗ Y ∨ � L ⊗ F (X ⊗ Y )

σX∨,Y ∨�id−−−−−−−→ (X ⊗ Y )∨ � L ⊗ F (X ⊗ Y )
ιX⊗Y−−−→ aP�,λ ,

where for the purpose of lighter notation we wrote ⊗ for both the monoidal product in
A and C. 4
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3. Dynamical character varieties

3.3.2. Computations on surfaces with point defects

In this section we will assume that the local categorical data to compute factorization
homology in PresK on a surface with marked points {v1, . . . , vk} is given by

� A balanced braided abelian categoryA which is equivalent to the free cocompletion
of a small K-linear category.

� A collection {(C1)L1 , . . . , (Ck)Lk} of abelian braided A-module categories, each
given by the dynamical extension of a category Ci ∈ PresK over a base algebra Li,
where Ci is equivalent to the free cocompletion of a small K-linear category.

Example 3.3.2. The category A = Repq(G) of integrable Uq(g)-modules and C =
Repq(H) the category of Λ-graded vector spaces are both of the above form. 4

We will comment on factorization homology on marked surfaces with coefficients in
̂C[[~]]-Mod-enriched categories in Remark 3.3.4.

Theorem 3.3.3. Given an oriented surface Σ = Σg,r, r > 0, with marked points
{v1, . . . vk} ⊂ Σ together with a marked interval � ∈ ∂Σ. Let (P,�, {v1, . . . , vk}) be
a gluing pattern with multiple basepoints for Σ. We have an equivalence of categories∫

Σ(P,�,{v1,...,vk})

(
A, {(C1)L1 , . . . , (Ck)Lk}

) ∼= aP�,λ1,...,λk
-ModA�C1�···�Ck .

If the surface Σ has no marked interval in its boundary, and is described by the gluing
pattern (P, {v1, . . . , vk}), then we have an equivalence of categories∫

Σ(P,{v1,...,vk})

(
A, {(C1)L1 , . . . , (Ck)Lk}

) ∼= aPλ1,...,λk
-ModC1�···�Ck .

Proof. Given a gluing pattern P with m basepoints, we have a right A�2n-action on
A�n:

regP : (b1� · · ·�bn)�(a1� · · ·�a2n) 7→ (b1⊗aP(1)⊗aP(1′))� · · ·�(bn⊗aP(n)⊗aP(n′)) ,

and we denote the resulting right module category byMP . On the other hand, we have
a left A�2n-module A�m:

regx1,...,xm : (a1� · · ·� a2n)� (b1 � · · ·� bm)

7→ (a1 ⊗ · · · ⊗ a2n−m+1 ⊗ b1)� (a2n−m+2 ⊗ b2)� · · ·� (a2n ⊗ bm) .

Composition of the resulting tensor functor T x1,...,xm = regx1,...,xm
1A�···�1A

with the monoidal

functor Fλ1,...,λm from (3.52) yields a left A�2n-module category which we denote by NP .
If P = (P,�, {v1, . . . , vk}), we have NP = A�(C1)L1�· · ·�(Ck)Lk , whereas for the gluing
pattern without distinguished basepoint we have NP = (C1)L1 � · · · � (Ck)Lk . In the
following we will simply stick to working with a general gluing pattern (P, {x1, . . . , xm})
from which we can deduce the two cases of the theorem.

Using�-excision for the collar-gluing described by the gluing pattern (P, {x1, . . . , xm})
(Figure 3.4a and Figure 3.4b), we find that∫

Σ
A ∼=MP �

A�2n
NP . (3.55)
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3. Dynamical character varieties

Let τP : {1, 2, . . . , 2n} → {(x1, 1), (x1, 2) . . . , (xm, 1)} be the bijection given by post-
composing the map defined by 2k + 1 7→ k, 2k 7→ k′ with P . Since the monoidal unit is
a progenerator for the regular action ([BZBJ18a, Proposition 4.15]), we may now apply
monadic reconstruction to identifyMP with modules over an algebra EndA�2n(1A�n)P ∈
A�2n, obtained from F�n by acting with τP .

We can apply the base-change formula from Theorem 1.3.22 to the relative tensor
product in (3.55) to get an equivalence∫

Σ
A ∼= Fλ1,...,λm

(
T x1,...,xm

(
EndA�2n(1A�n)P

)︸ ︷︷ ︸
=B

)
-Mod(C1)L1

�···�(Cm)Lm
, (3.56)

of categories.
Next, we have to show that B and aP are isomorphic as algebras in A�m. To that

end, we follow the strategy presented in the proof of [BZBJ18a, Theorem 5.14]. First,
we define algebras F (i,i′) = EndA(P(i))�A(P(i′))(1A) in A�2n, where we denote by A(j)

the image under the embedding A ↪→ A�2n into the j-th tensor factor. Define F (i) =
T x1,...,xm

(
F (i,i′)

)
. Clearly, as objects in A�m we have F (i) ∼= FP (i,i′) as defined in (3.51).

Consider the map
m̃ : F (1) ⊗ · · · ⊗ F (m) ↪→ B⊗m

mB−−→ B

wheremB is the multiplication in the algebraB. The map m̃ establishes the isomorphism
aP ∼= B on the level of objects. In order to show that it is in isomorphism of algebras
in A�m, one needs to show that m̃|F(j)⊗F(i) = m̃|F(i)⊗F(j) ◦ Cji. To that end, note that
the tensor structure on T x1,...,xm is

a
(1)
1 ⊗ · · · ⊗ a

(1)
2n−m+1 ⊗ b

(1)
1 ⊗ · · · ⊗ b

(1)
2n−m+1 � a

(2) ⊗ b(2) � · · ·� a(m) ⊗ b(m)

S−→ a
(1)
1 ⊗ b

(1)
1 ⊗ · · · ⊗ a

(1)
2n−m+1 ⊗ b

(1)
2n−m+1 � · · ·� a

(m) ⊗ b(m)

where S is the shuffle braiding given by S = σa2n−m+1,b2n−m ◦ · · · ◦ σa3⊗···⊗a2n−m+1,b2 ◦
σa2⊗···⊗a2n−m+1,b1 , where σ is the braiding of A. Then we consider the commutative
diagram

T x1,...,xm(F (i,i′) ⊗F (j,j′)) = T x1,...,xm(F (j,j′) ⊗F (i,i′))

F (i) ⊗F (j) B F (j) ⊗F (i) ,

Tx1,...,xm (m)
Sij

m̃ m̃

Sji

where the dashed arrows are the natural isomorphisms encoding the tensor structure
on T x1,...,xm and the label T x1,...,xm(m) on the vertical arrow means applying the tensor
functor to the multiplication in EndA�2n(1A�n)P . As an example, consider the gluing
pattern P (1, 1′, 2, 2′) = ((x1, 1), (x2, 1), (x1, 2), (x3, 1)) as in Figure 3.5 (g). We have

F (1) =

∫ V ∈Acp

(V ∨ ⊗ 1)� V � 1, F (2) =

∫ W∈Acp

(1⊗W∨)� 1�W

and the corresponding shuffle braiding on components of the coend is

S1,2 = id� id� id, S2,1 = σW∨,V ∨ � id� id,
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3. Dynamical character varieties

and we observe that the composition S−1
12 ◦ S21 agrees with the crossing morphism

in Figure 3.6 (g). As a second example, consider the gluing pattern P (1, 1′, 2, 2′) =
((x1, 1), (x1, 2), (x1, 3), (x2, 1)) from Figure 3.5 (e). In this case we have

F (1) =

∫ V ∈Acp

V ∨ ⊗ V ⊗ 1� 1, F (2) =

∫ W∈Acp

1⊗ 1⊗W∨ �W

and
S12 = id� id, S21 = (idV ∨ ⊗ σW∨,V ) ◦ (σW∨,V ∨ ⊗ idV )� id

so that S−1
12 ◦ S21 indeed agrees with the crossing morphism from Figure 3.6 (e). The

other cases can be worked out analogously.
Lastly, for each i = 1, . . . ,m we have a monoidal functor freeLi : Ci → (Ci)Li with

right adjoint given by the forgetful functor, which is colimit preserving. We then recall
that the equivalence in (3.56) is established by the monadicity theorem for the monad
defined through the adjunction

(
�i (Ci)Li

)
�MP �A�2n

(
�i (Ci)Li

)
. Since (C1)L1 �

· · ·� (Cm)Lm
∼= (C1 � · · ·� Cm)L1�···�Lm , composition with the adjunction free�iLi a U ,

where U is the forgetful functor, results in a new monadic adjunction establishing the
equivalences stated in the theorem.

Remark 3.3.4. As was already noted in Remark 2.3.3, we are still missing monadic

reconstruction results for V = ̂C[[~]]-Mod-enriched locally presentable categories that
would allow us to give an analog to Theorem 3.3.3 in this setting. Nevertheless, given
a marked surface Σ with boundary described by a gluing pattern (P, {v1, . . . , vk}) and
dynamical point defects (A, CL) in VPres, we can still extract algebraic data as will be
described in what follows. For an example of a dynamical point defect in the formal
setting see Example 3.2.38.

To ease notation we consider the case where all marked points are described by the
same categorical data (A, CL). Let OΣ be the image of L�k under the map induced by the
embedding of k marked disks Dtk∗ into (Σ, {v1, . . . , vk}). We can compute the following
algebras

End∫
Σ(P,{v1,...,vk})

(A,CL)(OΣ) ∼= EndA�n �
A�2n

(CL)�k

(
1A�n �

A�2n
L�k

)
∼= Hom(CL)�k

(
L�k,EndA�2n(1A)P . L�k

)
∼= Hom(CL)�k

(
L�k, Fλ1,...,λk (T v1,...,vk (EndA�2n(1A)P ))

)
∼= Hom(CL)�k

(
L�k, aPλ1,...,λk

(V)
)

∼= HomC�k
(

1�kC , aPλ1,...,λk
(V)
)

where aPλ1,...,λk
(V) is the combinatorial algebra defined in (3.53). In the above we used

that the right adjoint to the iterated tensor product functor is monadic (see § A.2.3 of
the appendix). The proof that

Fλ1,...,λk (T v1,...,vk (EndA�2n(1A)P )) ∼= aPλ1,...,λk
(V)

as algebras in (CL)�k is analogous to the one given as part of the proof of Theorem 3.3.3.
We thus get a ‘global section functor’

Hom(OΣ,−) :

∫
Σ(P,{v1,...,vk})

(A, CL)→ HomC�k
(

1�kC , aPλ1,...,λk
(V)
)

-Mod .
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3.3.3. Dynamical algebras

Let B ⊆ H be a pair of Hopf algebras over K and let L be a B-base algebra. Following
[DM05], we call a left B-module Adyn a dynamical associative algebra over the base
algebra L if it is equipped with a B-equivariant map � : Adyn ⊗Adyn → L⊗Adyn such
that the following diagram is commutative

Adyn ⊗ L⊗Adyn L ⊗Adyn ⊗Adyn L ⊗ L⊗Adyn

L ⊗Adyn

Adyn ⊗Adyn ⊗Adyn L ⊗Adyn ⊗Adyn L ⊗ L⊗Adyn

γ−1

Adyn⊗id id⊗�
mL⊗id

id⊗�

�⊗id id⊗� mL⊗id

where γAdyn : L ⊗Adyn → Adyn ⊗ L is the half-braiding of the B-base algebra L.

Let Fλ : H-Mod
F−→ B-Mod

freeL−−−→ B-ModL be a functor with monoidal structure
given by a dynamical twist J (λ). If A is an associative algebra in H-Mod, then
Fλ(A) = L ⊗ F (A) is an associative algebra in the dynamical extension. In particu-
lar, the multiplication in the dynamical extension restricts to a dynamical associative
algebra structure on Adyn = F (A) ⊂ L⊗ F (A). Following [DM06], we will say that the
dynamical algebra Adyn over L is obtained from A by the dynamical twist J (λ).

We now give two examples of dynamical algebras obtained via Theorem 3.3.3 from
factorization homology on surfaces with dynamical point defects.

Example 3.3.5. Consider the disk with two marked points {v1, v2} described by the
gluing pattern P (1, 1′) = ((v1, 1), (v2, 1)). Applying Theorem 3.3.3, we get an equiva-
lence

∫
D∗,∗

(A, CL) ∼= Fλ1,λ2-ModCL�CL identifying factorization homology on the marked

disk with modules over the following algebra:

Fλ1,λ2 =

∫ X∈H-Modfd

L ⊗ F (X∨)� L ⊗ F (X) ∈ CL � CL .

By Proposition 3.2.7, Fλ1,λ2 is an algebra in C � C with quantum moment maps

µ1 � µ2 : L� L ∼= L ⊗ 1� L ⊗ 1→ Fλ1,λ2 .

Multiplication in Fλ1,λ2 is given by(
L ⊗ F (X∨)� L⊗F (X)

)
⊗L
(
L ⊗ F (Y ∨)� L ⊗ F (Y )

)
(3.57)

∼= L ⊗ F (X∨)⊗ F (Y ∨)� L ⊗ F (X)⊗ F (Y )

J (λ)X∨,Y ∨�J (λ)X,Y−−−−−−−−−−−−−−→ L⊗ F ((Y ⊗X)∨)� L ⊗ F (X ⊗ Y )

Fλ(σX,Y )�id
−−−−−−−−→ L⊗ F ((X ⊗ Y )∨)� L ⊗ F (X ⊗ Y )→ Fλ1,λ2 .

Note that as a (B,B)-bimodule we may identify Fλ1,λ2 with the tensor product L⊗L⊗F ,
where F = H◦ as (H,H)-bimodules. Recall that we denote by H◦ the restricted dual
of the Hopf algebra H given by matrix coefficients of finite-dimensional representations
endowed with the left- and right-coregular H-action. In the language of [DM06], the
multiplication (3.57) turns F into a dynamical associative algebra Fdyn over the base
L ⊗ L obtained from F by the dynamical twist J (λ1)⊗ J (λ2).
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(a) (b)

Figure 3.7.: Framed surfaces which give rise to (a) the algebra Fλ1,λ2 , (b) the dynamical
FRT-algebra FFRT

λ1,λ2
, upon applying factorization homology.

The algebra Fλ1,λ2 is closely related to the so-called dynamical FRT-algebra, or dual
quantum groupoid, which is a dynamical analog to the FRT-algebra H◦ and was pre-
viously defined in [DM06, Section 8]. Since our conventions for the dynamical twist
differ from the one in [DM06] (see Remark 3.2.11), we give a detailed definition of the
dynamical FRT-algebra in § B.1.1 of the appendix, matching our conventions. We may
present the dynamical FRT-algebra via the following coend:

FFRT
λ1,λ2

=

∫ X∈H-Modfd

L ⊗ F (X∨)� L ⊗ F (X) ∈ (CL)op � CL .

Note that (CL)op ∼= Cop
Lop

, where Cop = Bop-Mod and Bop is the Hopf algebra B with

opposite coproduct. The multiplication in FFRT
λ1,λ2

is such that it turns the (ordinary)

FRT-algebra H◦ into a dynamical associative algebra (H◦)dyn via the twist K(λ1) ⊗
J (λ2), where K(λ) = J̄ 0 ⊗ S−1(J̄ 1) ⊗ S−1(J̄ 2) ∈ Lop ⊗ Hop ⊗ Hop is a universal
dynamical twist for (CL)op. The following is proven in § B.1.1 of the appendix:

Proposition 3.3.6. The dynamical FRT-algebra FFRT
λ1,λ2

is a left bialgebroid over the
base algebra L.

We may interpret a dynamical FRT-algebra as the quantum analog of a Poisson–Lie
groupoid (see Example 3.1.6).

From a topological viewpoint, the category

Fλ1,λ2-ModCL�CL

computes factorization homomology on the framed surface in Figure 3.7 (a), whereas
the category

FFRT
λ1,λ2

-Mod(CL)op�CL

comes from a surface with framing as sketched in Figure 3.7 (b). Note however that for
local coefficients given by oriented marked disk-algebras their factorization homologies
are, up to equivalence, independent of the framing and the two categories will in fact be
equivalent. 4

Example 3.3.7. Let D�,v be the disk with one marked point v and a marked interval
in its boundary described by the gluing pattern P (1, 1′) = ((�, 1), (v, 1)). By Theorem
3.3.3, we have an identification∫

D�,v

(A, CL) ∼= aP�,λ-ModA�CL ,

where aP�,λ is the algebra from Example 3.3.1. In this case, we get a dynamical associative

algebra Fdyn over L, obtained from F via the dynamical twist 1⊗J (λ). We will come
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back to this example in the next section when discussing deformation quantization of
dynamical Poisson spaces, in particular we will see that the algebra plays a role in the
quantization of Poisson homogeneous spaces. 4

3.3.4. Module algebras over twisted bialgebroids

We will use the following algebraic setup. Let B ⊂ H be a pair of finite-dimensional
Hopf algebras over K. We assume that H-Mod is braided and that L is a base algebra in
B-Mod. Let DB = B ./ B∗op be the double cross product as defined in [Maj95, Section
7], where B∗op is the dual of B with opposite multiplication. The category of modules
over the double DB is braided: the braiding is given by acting with the universal R-
matrix Θ = ei ⊗ ei, where (ei)i∈I is a basis of B and (ei)i∈I its dual in B∗op. The
algebra L has a natural DB-base algebra structure, see § B.2.1 for details. In [DM06],
Donin–Mudrov establish a connection between twists for the tensor product bialgebroid
H ⊗DBL and solutions of the dynamical Yang–Baxter equation. The bialgebroid DBL
is a quantum groupoid, that is a quasi-triangular bialgebroid, defined by a quotient of
the smash product LoDB, see § B.1. In Proposition B.2.5 of the appendix we give the
analogous results for the dynamical twists from Definition 3.2.10. In more details, we
show that

Ψ =
(
1⊗ 1⊗ J 1S−1(Θ2)

)
⊗L
(
J 0 ⊗Θ1 ⊗ J 2

)
∈ B⊗L B (3.58)

is a twist for the tensor product bialgebroid

BB
L =

(
DBop

Lop
⊗Hop

)op
.

The bialgebroid twist defines an automorphism of the monoidal category of BB
L -modules

and thus transforms a B-module algebra into another algebra, with respect to the new
coproduct. More explicitly, in Proposition B.2.6 we show that for an H-module algebra
A, the tensor product L⊗A is a module algebra over the bialgebroid B. The dynamical
twist J (λ) then induces a new multiplication ∗ on L ⊗A (Proposition B.2.7):

a ∗ b = J 0 ⊗mA

((
J 1.a

)
⊗
(
J 2.b

))
, λ ∗ µ = mL(λ⊗ µ) (3.59)

a ∗ λ = Θ1 I λ⊗ S−1(Θ2).a, λ ∗ a = λ⊗ a

for all a, b ∈ A and λ, µ ∈ L, making (L ⊗ A, ∗) a module algebra over the twisted
bialgebroid B̃.

We now apply the previous discussion to the algebras obtained in Theorem 3.3.3. Let
A = H-Mod, Ci = Bi-Mod for i = 1, . . . , k and let Li ∈ Z(Bi-Mod) be base algebras
with corresponding dynamical twists J (λi) defining dynamical point defects, see for
Example 3.2.37. In the language of module algebras over bialgebroids, we then have the
following:

Proposition 3.3.8. The algebras aPλ1,...,λk
from Theorem 3.3.3 are module algebras over

the twisted L1 ⊗ · · · ⊗ Lk-bialgebroid B̃ with

B = BB1
L1
⊗ · · · ⊗BBk

Lk

and twist defined by

Ψ =
((

1⊗ 1⊗ J 1(λ1)S−1(Θ2
B1

)
)
⊗ · · · ⊗

(
1⊗ 1⊗ J 1(λk)S

−1(Θ2
Bk

)
))

⊗L1⊗···⊗Lk
((
J 0(λ1)⊗Θ1

B1
⊗ J 2(λ1)

)
⊗ · · · ⊗

(
J 0(λk)⊗Θ1

Bk
⊗ J 2(λk)

))
where ΘBi is the universal R-matrix of the double DBi.

109



3. Dynamical character varieties

Proof. The algebras aPλ1,...,λk
are defined as the image of the algebra aP from (3.51) under

the monoidal functor Fλ1,...,λm from (3.52). In the proof of Theorem 3.3.3 we show that
aP is an algebra object in A�k ∼=

(
H⊗k

)
-Mod. By Proposition B.2.6, Fλ1,...,λm(aP ) is

thus a module algebra over B. The multiplication in the algebra aPλ1,...,λk
is of the form

(3.59) and thus a module algebra over the twisted bialgebroid B̃.

Remark 3.3.9. We expect the above result to hold true even in the infinite dimensional
case when working over the ring C[[~]] of formal power series.

3.4. Quantization of dynamical Poisson spaces

We will now show that the algebras we obtained in the previous section via factorization
homology on surfaces with dynamical point defects quantize the dynamical character
varieties from § 3.1.4. To that end, we will first make precise what it means for a base
algebra L~ to deformation quantize a Poisson base space and recall how dynamical twists
over such base algebras give rise to quantum dynamical R-matrices R(λ) ∈ L~⊗U~(g)⊗
U~(g).

Let h be a Lie bialgebra and U~(h) a quantum universal enveloping algebra that
quantizes h [CP95, Section 6.2]. We will say that a U~(h)-base algebra (L~, ?) (see
Example 3.2.3 for the definition of a base algebra over a Hopf algebra) is a quantization
of the Poisson h-base algebra L0 (Definition 3.1.1) if it is a U~(h)-equivariant deformation
quantization of L0 with multiplication

λ ? µ = λµ+O(~), λ ? µ− µ ? λ = ~(
−→
ηj .λ)(

−→
hj .µ) +O(~2) , (3.60)

where (hj)j∈I is a basis for h and (ηj)j∈I its dual basis, and left coaction L~ → U~(h)⊗L~
of the form

δ(λ) = 1⊗ λ+ ~hj ⊗
−→
ηj .λ+O(~2) (3.61)

for λ, µ ∈ L~.
Assume that h ⊂ g is a Lie sub-bialgebra of a quasi-triangular Lie bialgebra g with

classical r-matrix r ∈ g ⊗ g. Given a universal dynamical twist J (λ) over L~, we have
seen that the element R(λ) = J (λ)−1

2,1RJ (λ) ∈ L~ ⊗ U~(g)⊗2 is a quantum dynamical
R-matrix satisfying the quantum dynamical Yang–Baxter equation

R(λ)0,1,2R(λ)02,1,3R(λ)0,2,3 = R(λ)01,2,3R(λ)0,1,3R(λ)03,1,2 , (3.62)

where for example R(λ)02,1,3 = (R(λ)0)[0] ⊗R(λ)1 ⊗ (R(λ)0)[1] ⊗R(λ)2.

Proposition 3.4.1. Let the base algebra L~ be a quantization of a Poisson h-base algebra
L0. Assume that R(λ) is of the form R(λ) = 1 +~r(λ) +O(~2). Then its semi-classical
limit r(λ) is a classical dynamical r-matrix over L0.

Proof. To first order in ~, the U~(h)-invariance of R(λ) reads:

−→
h .r(λ) + [h⊗ 1 + 1⊗ h, r(λ)] =

1

~
(∆~(h)−∆op

~ ) mod(~) .

for all h ∈ h. Sine U~(h) is a quantization of the Lie bialgebra (h, δ) we have that
the right hand side agrees with δ(h) and we recover the quasi h-equivariance for r(λ).
Expanding the quantum DYBE to second order in ~, together with Equation (3.61) for
the coaction, implies the classical DYBE for r(λ).
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3. Dynamical character varieties

Example 3.4.2. Let’s revisit the dynamical base algebra O(H)S [[~]] from Example
3.2.5. To that end, let U~(h) ∼= U(h)[[~]] be the Cartan part of the formal quantum
group. The algebra O(H)[[~]] is a right U~(h)-comodule:

δR~ : O(H)[[~]]→ O(H)[[~]]⊗ U~(h), δ~(f)(eλ ⊗ 1) = f(eλ−~h
(2)

) . (3.63)

We have seen that the comodule structure also extends to the localized algebraO(H)S [[~]].

Recalling the expansion of f(eλ−~h
(2)

) from Equation (3.23), together with the definition
of the h∗-action from Example 3.1.2, we find that

f(eλ−~h
(2)

) = f(eλ)− ~
∑
i

−→
ηi .f(eλ)⊗ hi +O(~2) .

Using Relation (3.21) between left and right comodule structure, we find that the U~(h)-
coaction of O(H)S [[~]] is of the form (3.61). 4

3.4.1. Deformation quantization

Let g be a quasi-triangular Lie bialgebra with classical r-matrix r ∈ g ⊗ g. For each
i = 1, . . . , k, let hi ⊂ g be a Lie sub-bialgebra and U~(hi) a quantum universal enveloping
algebra that quantizes hi. Let Rep~(H1× · · · ×Hk) be the category of topologically-free
modules over ⊗ki=1U~(hi). Throughout, all U~(hi)-base algebras Li,~ are assumed to be
quantizations of Poisson hi-base spaces Li. We will consider the algebras aPλ1,...,λk

from
§ 3.3, Equation (3.53), as algebra objects

aP~,λ1,...,λk
∈ Rep~(H1 × · · · ×Hk) .

As C[[~]]-modules we have

aP~,λ1,...,λk
∼=

k⊗
i=1

L~,i ⊗O~(G)⊗n, n = 2g + r + k − 1 .

We let F : Rep~(G) → Rep~(Hi) be the forgetful functor coming from the inclusion
U~(hi) ↪→ U~(g). To ease notation, we will assume that for all i = 1, . . . , k we have
hi = h ⊆ g and that all base algebras agree; L~,i = L~. The general case can be worked
out in complete analogy.

Theorem 3.4.3. The algebra aP~,λ1,...,λk
is a U~(h)⊗k-equivariant deformation quantiza-

tion of the dynamical representation variety Repdyn

(
(P, {v1, . . . , vk}), G

)
in the direction

of the dynamical Fock–Rosly Poisson bracket.

Proof. We first settle some notation. We will denote L(m)
~ the image of L~ under the

quantum moment map µ(m) from (3.54). By abuse of notation we will again write FP (i)
~

for the image of the algebra defined in (3.51) under the embedding into aP~,λ1,...,λk
. We

will denote by(
L ⊗ F (V ∨ ⊗ V )

)(i)
= L ⊗ F (1⊗ · · · ⊗ V ∨ ⊗ V︸ ︷︷ ︸

i

⊗1 · · · ⊗ 1)� 1� · · ·� 1

the components of the coend algebra F (i)
RE,~ ⊂ a

P
~,λ1,...,λk

and write(
L ⊗ F (W∨)�L ⊗ F (W )

)(i,i′)
= L ⊗ F (1⊗ · · · ⊗ W∨︸︷︷︸

i

⊗ · · · ⊗ 1)� 1� · · ·� L ⊗ F (W )︸ ︷︷ ︸
P (i′)1

� · · ·� 1
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for the components of F (i,i′)
~ ⊂ aP~,λ1,...,λk

. Also, note that both coend algebras F~ and
FRE,~ (defined in § 3.3.1) are identified as C[[~]]-modules with the quantized algebra
O~(G) of functions on G, however their respective multiplications differ and thus they
quantize two different Poisson structures.

We now compute the semi-classical limit of the commutator bracket [X~, Y~] for
X~, Y~ ∈ aP~,λ1,...,λk

and show that it coincides with the dynamical Fock–Rosly Pois-
son structure from Theorem 3.1.10. To that end, we have to distinguish the following
cases:

Case 1: X~ ∈ F
P (i)
~ , Y~ ∈ F

P (j)
~ . For a fixed pair of indices 2 ≤ i < j ≤ n we consider:

� X~ ∈ F
(i)
RE,~, Y~ ∈ F

(j)
RE,~ with P (i)2 < P (i′)2 < P (j)2 < P (j′)2 (Figure 3.5 (a)):

On the one hand we have(
1⊗ F (V ∨ ⊗ V )

)(i) ⊗L (1⊗ F (W∨ ⊗W )
)(j) ∼= 1⊗ F ((V ∨ ⊗ V )(i))⊗ F ((W∨ ⊗W )(j))

J (λ)V ∨⊗V,W∨⊗W−−−−−−−−−−−→ L⊗ F (V ∨ ⊗ V ⊗W∨ ⊗W )→ aP~,λ1,...,λk

and on the other hand(
1⊗ F (W∨ ⊗W )

)(j) ⊗L (1⊗ F (V ∨ ⊗ V )
)(i) ∼= 1⊗ F ((W∨ ⊗W )(j))⊗ F ((V ∨ ⊗ V )(i))

J (λ)W∨⊗W,V ∨⊗V−−−−−−−−−−−→ L⊗ F ((W∨ ⊗W )(j) ⊗ (V ∨ ⊗ V )(i))

F (Cj,i)=F (RW∨⊗W,V ∨⊗V )
−−−−−−−−−−−−−−−−−→ L⊗ F (V ∨ ⊗ V ⊗W∨ ⊗W )→ aP~,λ1,...,λk

,

where Cj,i is the crossing morphism for the positively unlinked case from Figure 2.7.
Hence, the semi-classical limit of the commutator is given

[X~, Y~]

~
mod(~) = r(λ1)ad,ad2,1 . (X ⊗ Y )

where r(λ) = −j(λ)2,1 + r + j(λ) and X = X~/(~) ∈ O(G), Y = Y~/(~) ∈ O(G). This
agrees with the dynamical FR-bracket from Theorem 3.1.10.

� X~ ∈ F
(i)
RE,~, Y~ ∈ F

(j,j′)
~ with P (i)2 < P (j)2 < P (i′)2 (Figure 3.5 (d)):

Similarly to the previous case, we can compute the commutator by acting with

J (λ)V ∨⊗V,W∨ − F (R−1)V,W∨ ◦ F (R2,1)V ∨,W∨ ◦ (J (λ)2,1)V ∨⊗V,W∨

on the components
(
1 ⊗ F (V ∨ ⊗ V )

)(i) ⊗L (1 ⊗ F (W∨) � 1 ⊗ F (W )
)(j,j′)

of the two
coend algebras. Note that F (R−1)V,W∨ ◦ F (R2,1)V ∨,W∨ = F (Cj,i), where Cj,i is the
crossing morphism from Figure 3.6 (d), and we find that the semi-classical limit of the
commutator is

[X~, Y~]

~
mod(~) = −(r(λ1)R,R2,1 + r(λ1)L,R) . (X ⊗ Y ) .

� X~ ∈ F
(i,i′)
~ , Y~ ∈ F

(j,j′)
~ with P (i)2 < P (j)2 (Figure 3.5 (g)):
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In this case, we can compute the commutator by acting with

J (λ)V ∨,W∨ − (F (R2,1) ◦ J (λ)2,1)V ∨,W∨

on the components
(
1 ⊗ F (V ∨) � 1 ⊗ F (V )

)(i,i′) ⊗L (1 ⊗ F (W∨) � 1 ⊗ F (W )
)(j,j′)

of
the two coend algebras. In the above F (R2,1)V ∨,W∨ = F (Cj,i) with Cj,i the crossing
morphism from Figure 3.6 (g). The semi-classical limit of the commutator is

[X~, Y~]

~
mod(~) = −r(λ1)R,R . (X ⊗ Y ) .

The remaining cases can be worked out analogously.

Case 2: X~, Y~ ∈ F (i,i′). First, note that in F~ the following commutation relations
hold. For two elements ϕ,ψ ∈ O~(G) ∼= F~ we have

mF~(ϕ⊗ ψ) = mF~(ψ(S(R′2)(−)(R1)−1)⊗ ϕ(S(R′1)(−)(R2)−1) .

Then, we can compute the commutator of X~ and Y~ on components of the coend
algebras as follows:

1⊗ F (V ∨)⊗ F (W∨)�
(
1⊗ F (V )⊗ F (W )

)(n)

(J (λ1)−J (λ1)2,1)V ∨,W∨�(J (λm)−J (λm)2,1)V,W−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ L⊗ F (V ∨ ⊗W∨)�
(
L ⊗ F (V ⊗W )

)(n)

idL⊗F ((1−R2,1)V ∨,W∨ )�idL⊗F ((1−R−1)V,W )
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ L⊗ F ((W ⊗ V )∨)�

(
L ⊗ F (V ⊗W )

)(n)

mF~−mF~−−−−−−−→ aP~,λ1,...,λk

where n = P (i′)1. The semi-classical limit of this expression is:

[X~, Y~]

~
mod(~) =

(
− r(λ1)R,R2,1 + r(λm)L,L

)
. (X ⊗ Y )

=
(
ω(λ1)R,R + ω(λm)L,L

)
. (X ⊗ Y ) ,

where X = X~/(~) ∈ O(G) and Y = Y~/(~) ∈ O(G). This agrees with the bracket (3.9)
from Proposition 3.1.5, and thus also with the Poisson bracket of Theorem 3.1.10.

Case 3: X~, Y~ ∈ F
(i)
RE,~. This can be worked out in the same way as Case 2, using the

commutation relations in the RE-algebra:

mRE(ϕ(R2(−)R′1)⊗ ψ(R1R′2(−))) = mRE(ψ((−)R2R′1)⊗ ϕ((R′2(−)R1)) .

Case 4: X~ ∈ L
(m)
~ , Y~ ∈ F

P (i)
~ .

� X~ ∈ L
(m)
~ , Y~ ∈ F

(i,i′)
~ with m = P (i′)1:

On the one hand we have

X
(m)
~ ⊗L

(
1⊗ F (V ∨)� 1⊗ F (V )

)(i,i′) ∼= 1⊗ F ((V ∨)(i))�
(
(X~ ⊗ 1)⊗L (1⊗ F (V ))

)(m)

∼= 1⊗ F (V ∨)�
(
X~ ⊗ F (V )

)(m) → aP~,λ1,...,λk
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and on the other hand(
1⊗ F (V ∨)� 1⊗ F (V )

)(i,i′) ⊗L X(m)
~
∼= 1⊗ F ((V ∨)(i))�

(
(1⊗ F (V ))⊗L (X~ ⊗ 1)

)(m)

id�γ−−−→ 1⊗ F (V ∨)�
(
L ⊗ F (V )

)(m) → aP~,λ1,...,λk

where γ(1 ⊗ F (V ) ⊗L X~ ⊗ 1) = X
[0]
~ ⊗ X

[1]
~ . F (V ) ⊗ 1 is the tensor structure on

the free L-module functor. By taking the semi-classical limit of the right coaction
δR : L~ → L~⊗U~(h) on the quantized base algebra as given in (3.61) we thus find that

[X~, Y~]

~
mod(~) = (

−→
ηj .X)(hLj . Y )

where X = X~/(~) ∈ L0 and Y = Y~/(~) ∈ O(G). This agrees with the second bracket
in (3.8) from Proposition 3.1.5, and thus with the Poisson bracket of Theorem 3.1.10.

� X~ ∈ L
(1)
~ , Y~ ∈ F

(i,i′)
~ :

Similarly to the previous case, we compute the commmutator by acting with

X~ ⊗L id−X
[0]
~ ⊗L F ((X

[1]
~ )V ∨)

on the components L(1)
~ ⊗L (1⊗ F (V ∨)� 1⊗ F (V )) of the coend algebras resulting in:

[X~, Y~]

~
mod(~) = −(

−→
ηj .X)(hRj . Y ) ,

which agrees with the first bracket in (3.8) from Proposition 3.1.5, and thus with the
Poisson bracket of Theorem 3.1.10.

� X~ ∈ L
(1)
~ , Y~ ∈ F

(i)
RE,~:

Similarly to the previous case, the commutator is given by the action of

X~ ⊗L id−X
[0]
~ ⊗L F ((X

[1]
~ )V ∨⊗V )

on L(1)
~ ⊗L (1⊗ F (V ∨ ⊗ V )) resulting in the semi-classical limit:

[X~, Y~]

~
mod(~) = (

−→
ηj .X)(hLj . Y )− (

−→
ηj .X)(hRj . Y ) .

Case 5: X~, Y~ ∈ L
(m)
~ . In this case we have

X
(m)
~ ⊗ Y (m)

~ =
(
(X~ ⊗ 1)⊗L (Y~ ⊗ 1)

)(m)
and Y

(m)
~ ⊗X(m)

~ =
(
(Y~ ⊗ 1)⊗L (X~ ⊗ 1)

)(m)

∼=
(
X~ ∗ Y~ ⊗ 1

)(m) → aP~,λ1,...,λk
∼=
(
Y~ ∗X~ ⊗ 1

)(m) → aP~,λ1,...,λk

Since L~ is a deformation quantization of L0 we find by (3.60):

[X~, Y~]

~
mod(~) = (

−→
ηj .X)(

−→
hj .Y ) ,

where X~/(~) = X ∈ L0 and Y~/(~) = Y ∈ L0, which agrees with the Poisson bracket
on the base algebra L0.
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Corollary 3.4.4. The sub-algebra of invariants HomU~(h)⊗k(1, aP~,λ1,...,λk
) is a deforma-

tion quantization of the dynamical character variety.

We now discuss in more details the two examples from § 3.3.3:

Example 3.4.5. The algebra F~,λ1,λ2 from Example 3.3.5 quantizes the dynamical

Poisson structure ΠL,L
dyn on L×G× L from Proposition 3.1.5. 4

Example 3.4.6. The algebra aP~,�,λ from Example 3.3.1 is a U~(g)⊗ U~(h)-equivariant
quantization of the Poisson structure Π(λ) on L × G from Example 3.1.18. On the
semi-classical level we have seen that for h-stable points λ0 ∈ L, the bivector field Π(λ0)
induces a Poisson G-space structure on the quotient G/H. The quantum analog to
an h-stable point λ0 is a U~(h)-invariant character χλ0 on L~. Existence of invariant
characters for a given stable point is proven in [DM05]. Explicitly, every h-stable point
λ0 defines an invariant character by χλ0(ϕ) = ϕ(λ0) for ϕ ∈ L~.

Given the dynamical associative algebra Fdyn
~ = (O~(G),�) ⊂ aP~,�,λ from Example

3.3.7, we thus obtain a new algebra

Fdyn
~ ⊗Fdyn

~
�−→ L~ ⊗Fdyn

~
χλ0⊗id−−−−→ Fdyn

~ ,

quantizing the Poisson structure Π(λ0) on G/H. 4

3.4.2. Classical and quantum dynamical character stacks

Let G be a semi-simple algebraic group and H ⊂ G a subgroup. We have a commuting
diagram

[H/H] [G/G]

BH BG

where BG = [pt/G] and BH = [pt/H], the horizontal arrows are induced by the
inclusions ι : H ⊂ G and the vertical arrows by the projections G → pt and H → pt .
Consider the induced diagram

Rep(G) O(H)-ModRep(H) ,

O(G)-ModRep(G)

freeO(G)

freeO(H)◦ι∗

(3.64)

where Rep(G) ∼= QCoh(BG), O(G)-ModRep(G)
∼= QCoh([G/G]) and O(H)-ModRep(H)

∼=
QCoh([H/H]).

For any H-invariant open subset V ⊂ H we may further compose the above with
the colimit preserving and monoidal functor O(H)-ModRep(H) → O(V )-ModRep(H). In
summary, we obtain the following point defects for computing factorization homology

Rep(G)
i∗−→ Rep(H)

freeO(V )−−−−−→ Rep(H)O(V ) .

Given a surface Σ = Σg,r with r > 0 boundary components and {v1, . . . , vk} ⊂
Σ a collection of marked points, we may pick a decorated ribbon graph model Γ =
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(E, V, {Vi, hi}i=1,...,k) for Σ whose set of vertices is V = {v1, . . . , vk}. The corresponding
dynamical character stack is:

Chardyn(Γ, G) =

[∏
i

Vi ×GE/
∏
i

Hi

]
. (3.65)

We will make the following assumptions: each Vi admits an Hi-invariant étale cover
by affines. By the latter we mean a family {U ia ↪→ Vi}a∈J of affine Hi-invariant open
subsets covering Vi, such that

f :
∐
a

U ia → Vi

is an Hi-equivariant étale morphism. We shall write U i =
∐
a U

i
a and denote by U i• the

simplicial diagram given by the Čech nerve of the cover f . We will write an for a tuple
of element a1, . . . , an ∈ J and Uan = Ua1 ∩ · · · ∩ Uan .

Proposition 3.4.7. For the situation described above, the category of quasi-coherent
sheaves on the dynamical character stack (3.65) is equivalent to

QCoh(Chardyn(Γ, G)) (3.66)

∼= lim
[n]∈∆

Πa1
n,...,a

k
n

∫
(Σ,{v1,...,vk})

(
Rep(G), {O(U iain

)-ModRep(Hi)}i=1,...,k

)
,

where the bilimit is computed in PresK over the cosimplicial diagram coming from the
Čech nerve of the cover U1 × · · · × Uk → V1 × · · · × Vk.

Proof. We will need the following. Given a linear algebraic group H, a smooth variety
X with H-action and an H-invariant étale cover U = taUa → X, consider the diagram

U X

[U/H] [X/H] .

f

f̄

The map f and the vertical maps are effective epimorphisms, and therefore so is f̄ .
The vertical maps are flat and locally of finite presentation (lfp). Indeed, the projection
pr : H ×X → X is flat and lfp since it is obtained by base change from the morphism
H → Spec(K) having these properties. Moreover, the action act : H ×X → X fits into
a commutative diagram

H ×X H ×X

X
act

u

pr

where u(h, x) = (h, act(h, x)), which has an inverse u−1(h, x) = (h, act(h−1, x)). It
follows that the action morphism is flat and lfp since the projection is so. Then, by
[Sta21, Tag 06FH], X → [X/H] is flat and lfp and similarly for U → [U/H]. From the
above observations and [Sta21, Tag 0CIQ] we deduce that f̄ is étale.

Given the étale cover [U•/H] → [X/H], by descent for categories of quasi-coherent
sheaves on algebraic stacks [Hol07], we have:

QCoh([X/H]) ∼= lim
∆

QCoh([U•/H]) .
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On the right, the bilimit is computed in PresK over the cosimplicial diagram coming
from the Čech nerve of the cover. Moreover, we have:

QCoh([U/H]) ∼=
∏
a

O(Ua)-ModRep(H) .

Let’s now specialize to the case where X = V1 × · · · × Vk ×GE , H = H1 × · · · ×Hk and
U = U1 × · · · × Uk ×GE . By Theorem 3.3.3 we find that for any element ΠiU

i
ain

in the

nerve of the cover we have an equivalence∫
Σ(Γ,{v1,...,vk})

(
Rep(G), {O(U iain

)-ModRep(Hi)}i=1,...,k

)
∼=

k⊗
i=1

O(U iain
)⊗O(G)⊗E-ModRep(H1×···×Hk) ,

from which Equation (3.66) follows. In the above we used that Rep(Hi) ∼= O(Hi)-Comod
and O(H1)-Comod� · · ·�O(Hk)-Comod ∼= O(H1× · · · ×Hk)-Comod [EGNO15, Propo-
sition 1.11.2].

Quantum dynamical character stack Let us now restrict to the special case where
H ⊂ G is a maximal torus. Let H reg ⊂ H be the open subset where the dynamical
twist J~(λ) is regular. Note for every open subset V ⊂ H reg, the algebra O(V )[[~]] is
again a U~(h)-base algebra with the U~(h)-comodule structure from Example 3.2.5. The
following composition

̂Rep~(G)fd −→ ̂Rep~(H)fd
freeO(V )[[~]]−−−−−−−→ O(V )[[~]]-Mod ̂Rep~(H)fd

with monoidal structure coming from the dynamical twist J~(λ) ∈ O(V )[[~]]⊗ U~(g)⊗2

is thus a dynamical point defect (see Example 3.2.38). Keeping the same notation as in
the previous section, we define the quantum dynamical character stack by:

QCoh~(Chardyn(Γ, G))

= lim
[n]∈∆

Πa1
n,...,a

k
n

∫
(Σ,{v1,...,vk})

(
̂Rep~(G), {O(U iain

)[[~]]-Mod ̂Rep~(H)
}i=1,...,k

)
.

Going forward, we would like to characterize the quantum character stack in terms of
categories of modules over the algebras aPλ1,...,λk

defined on a cover of H reg. To that end,
we will have to develop monadic reconstruction techniques for factorization homology
in the C[[~]]-linear setting.

3.4.3. Chern–Simons theory with sources

In [BR05], Buffenoir–Roche study the quantization of Chern–Simons (CS) theory cou-
pled to dynamical sources. By carrying out a Hamiltonian analysis for the classical
CS-action functional coupled to a source term, Buffenoir–Roche find Poisson algebras of
dynamical holonomies expressed in terms of classical dynamical r-matrices of trigono-
metric type, leading to the appearance of dynamical quantum groups upon quantization
of the theory. The resulting quantum algebras and their representations were indepen-
dently studied in [BF96]. The goal of this section is to understand the Poisson algebras
found by Buffenoir–Roche and their quantization from a factorization homology point
of view.
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CS-action functional with sources Let Σ = Σ0,k be the sphere with k punctures
v1, . . . , vk. The latter represent point-like sources in the spatial slice Σ. Let h ⊂ g be
a Cartan subalgebra of a semi-simple Lie algebra. To each vi, one assigns a regular
semi-simple element χi ∈ h. Let M ∼= Σ × [0, 1], so that the mapping vi : [0, 1] → M
may be interpreted as the world-line of the i-th particle. The action for the point-like
sources coupled to Chern–Simons theory with symmetry group G is given by

S[A,M1, . . . ,Mr] = θ

∫
M
〈A ∧ dA+

2

3
A ∧A ∧A〉+

p∑
i=1

∫ t2

t1

〈χi,M−1
i (

d

dt
+A|xi)Mi〉dt ,

where 〈−,−〉 is the Killing form of g, θ ∈ R is the coupling constant, A ∈ Ω1(M, g) is the
connection 1-form and the Mi : [0, 1]→ G are the dynamical variables. Buffenoir–Roche
regularize the action functional S at the location of the sources, which involves removing
a small disk Di containing the puncture vi for each i = 1, . . . , k. We will write Σ for
the resulting surface. We refer to [BR05, Section 3.1] for details on the regularization
procedure. Subsequently, a Hamiltonian analysis of the regularized action functional is
carried out, leading to the Poisson algebras described in what follows.

Dynamical boundary-boundary holonomies Adopting the notation of [BR05], let (λj)j∈I
be a basis of h and (hαj )j∈I its dual with respect to the Killing form 〈−,−〉. For each

i = 1, . . . , k, let xi be a marked point on the boundary component ∂iΣ ∼= S1 and fix
(k−1) paths γi going from x1 to xi. Then, Σ

◦
= Σ\D is the punctured disk as pictured

in Figure 3.8a. The orientation of Σ
◦

induces a linear ordering ≺ on the set of curves.
After relabeling of the marked points, one can assume that γ2 ≺ · · · ≺ γk. Let Ui ⊂ h
be a neighborhood of χi ∈ h. Buffenoir–Roche compute the Poisson brackets for the
algebra of matrix coefficients of the holonomies along the curves γi and the coordinate
functions

〈hαj ,−〉i : Ui → C, χ̃i 7→ 〈hαj , (χ̃i)αlλ
l〉 = (χ̃i)αj ,

on the Ui ⊂ h assigned to the sources. The Poisson algebra of dynamical boundary-
boundary holonomies from [BR05, Section 3.2] is (the notation is adapted to match our
conventions)

{V (l), 〈hαj ,−〉1} = hLαj . V (l), {V (l), 〈hαj ,−〉i} = −δi,l
(
hRαj . V (l)

)
{V (i), V (j)} = −rθ2,1(χ̃1)L,L . V (j)⊗ V (j), for i < j (3.67)

{V (i), V ′(i)} =
(
ωθ(χ̃1)L,L + ωθ(χ̃i)

R,R
)
. V (i)⊗ V ′(i)

where V (i), V ′(i) ∈ O(G) are matrix coefficients for the holonomies along γi and ωθ(χ̃)
is the anti-symmetric part of the trigonometric solution

rθ(χ̃) =
1

4θ

t+
∑
α∈∆+

eα ∧ e−α

(
2

e
χ̃(α)
2θ − 1

+ 1

) (3.68)

to the classical DYBE over the commutative base h with coupling constant ε = 1
2θ . In the

above, 1
4θ t is the symmetric part of the standard solution of the ordinary Yang–Baxter

equation. Note that for each i = 1, . . . , k the dynamical r-matrix r(χ̃i) is considered as a
holomorphic function on the open subsets Ui ⊂ h containing the fixed elements χi ∈ Ui.
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3. Dynamical character varieties

We may regard the algebra of dynamical boundary-boundary holonomies as the algebra
of functions on the following dynamical representation variety

Repdyn(G,S2 \ D, {v1, . . . , vk}) =

k∏
i=1

Ui ×G×k−1 ,

equipped with the Poisson bracket (3.67). We want to stress that in the work of
Buffenoir–Roche, the classical dynamical r-matrices were not part of the input data,
but appear naturally when carrying out the Hamiltonian analysis.

Dynamical bulk-boundary holonomies As before, let Σ
◦

= Σ\D and let x0 ∈ ∂Σ
◦

be a
marked interval in the new boundary component. The surface Σ

◦
may be described by a

ciliated ribbon graph with edges given by k paths γ̃i running from xi to the distinguished
vertex x0, see Figure 3.8b. Up to relabeling of the marked points, we may assume that
the linear ordering is γ̃1 ≺ · · · ≺ γ̃k. Buffenoir–Roche compute the Poisson brackets for
the resulting algebra of dynamical bulk-boundary holonomies given by matrix coefficients
of the holonomies along the paths γ̃i and the coordinate functions on the {Ui}i=1,...,k

assigned to the sources. The resulting brackets are

{W (l), 〈hαj ,−〉i} = δl,i

(
hLαj . W (l)

)
{W (i),W (j)} = −(rθ2,1)R,R . W (i)⊗W (j), for i < j (3.69)

{W (i),W ′(i)} =
(
ωθ(χ̃i)

L,L + (ωθ)R,R
)
. W (i)⊗W ′(i)

where W (i),W ′(i) ∈ O(G) are matrix coefficients for the holonomies along γ̃i and rθ =
ωθ + 1

4θ t is the standard solution to the ordinary Yang–Baxter equation, again with
coupling constant ε = 1

2θ .

Flatness In order to obtain the algebra Hol(S2, {v1, . . . , vk}) of dynamical holonomies
on the punctured sphere (S2, {v1, . . . , vk}), an additional flatness condition has to be
imposed. This is done in [BR05] by taking the Poisson algebra of dynamical boundary-
boundary holonomies (3.67) and modding out the Poisson ideal generated by (Υ − 1),

x1

x2

xkγ2
γk

χ̃1

χ̃2

χ̃k

(a) Combinatorial presentation of Σ̄ \ D
used to compute the algebra of dynamical
boundary-boundary holonomies.

x2

x1

xk

x0

χ̃1

χ̃2
χ̃k

γ̃1

γ̃2

γ̃k

(b) Combinatorial presentation of Σ̄\D used
to compute the algebra of dynamical bulk-
boundary holonomies.

Figure 3.8.
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3. Dynamical character varieties

where

Υ = e
−χ̃1
2θ

2∏
j=k

V (j)−1e
−χ̃j
2θ V (j), χ̃i ∈ Ui .

The second approach laid out in [BR05] is to start from the Poisson algebra of dynamical
bulk-boundary holonomies (3.69). To that end, it will be convenient to use the following
presentation for the dynamical bulk-boundary holonomies:

x2

x1

xk

x0

χ̃1

χ̃2
χ̃k

γ̃1

γ′2 γ′k

There is a natural G-action on the holonomies along γ̃1 by left multiplication. Tak-
ing invariants with respect to this action, one obtains the algebra (3.67) of dynamical
boundary-boundary holonomies. Subsequently, one imposes the flatness constraint to
recover the algebra Hol(S2, {v1, . . . , vk}).

Quantum algebras In [BR05], a quantization of the Poisson algebras (3.67) and (3.69)
is obtained by means of a quantization of the classical dynamical r-matrix defining the
Poisson brackets. Such a quantization is provided by the dynamical twist J (λ) from
[ABRR98, EV99], or more precisely by the dynamical quantum R-matrix defined by it

R(λ) = J (λ)−1
2,1RJ (λ), R(λ) = 1 + ~r(λ) +O(~2) .

In a first step, Buffenoir–Roche quantize the algebra of dynamical boundary-boundary
and bulk-boundary holonomies and in a second step implement the conditions of flatness
of the connection. With the framework established in this chapter, quantization of
the dynamical algebras of boundary-boundary and bulk-boundary holonomies (before
implementing the flatness constraint) can also be understood via factorization homology
on a marked surface, as stated in Proposition 3.4.8 below. Implementing the flatness
constraint will be content of future work.

Let (Σ◦, {�, v1, . . . , vk}) be the surface Σ◦ = S2 \D with k marked points vi ∈ Σ◦ and
a marked interval � ∈ ∂Σ◦ in its boundary. We choose a gluing pattern as sketched in
Figure 3.10 as a combinatorial model for the marked surface.

Categorically, we describe the marked points vi by the dynamical point defects from
Example 3.2.38, that is, to the bulk we assign the free-cocompletion of Rep~(G)fd, and
the defects are governed by the quasi-reflection datum3 (J (λ)2,1, B(λ)) for the pair
U~(h) ⊂ U~(g)op. Let aP�,λ1,...,λk

be the algebra computed via factorization homology on
(Σ◦, {�, v1, . . . , vk}) as in Remark 3.3.4. We have

aP�,λ1,...,λk
∼= O(H reg)[[~]]⊗k ⊗O~(G)⊗k+1

where the right hand-side should be understood as the image under the restricted Yoneda
embedding of topologically-free and locally-finite U~(h)⊗k ⊗ U~(g)-modules. For each

3For the quasi-reflection datum to define a dynamical point defect, we have to define Rep~(G)fd to be
the category of U~(g)-modules with opposite coproduct ∆op and universal R-matrix (R~)2,1
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P(1')1 = v1 P(k')1 = vk

(v1,1) (vk,1)

 k 1' 1 k'

(   ,1) (   ,k)

Figure 3.9.: Gluing pattern for surface S2 \ D with marked points {v1, . . . , vk}.

i = 1, . . . , k, let Ui ⊂ h be a neighborhood of χi chosen such that the exponential map
exp: Ui → exp(Ui) is an isomorphism. In order to relate the formalism established in
this chapter to the quantization of the Poisson algebras described in [BR05], we have to
work in the complex analytic setting. To that end, we consider the algebra morphisms

fUi : O(H reg)[[~]]→ O(H reg)an[[~]]
(ι◦exp)∗−−−−−→ O(Ui)

an[[~]], i = 1, . . . , k

where ι : exp(Ui) ⊂ H reg. The algebraO(Ui)
an[[~]] is again a U~(h)-algebra with coaction

δR~ : f(eλ) 7→
∞∑
n=0

(−~)n

n!

∂nf(eλ)

∂λi1 · · · ∂λin
⊗ hαi1 · · ·hαin

where (λi)i∈I is a basis for h and (hαi)i∈I its dual with respect to the Killing form 〈−,−〉.
We define the algebras

aP,an~,�,U1,...,Uk
=

k⊗
i=1

O(Ui)
an[[~]]⊗O~(G)⊗k+1

as the image of aP~,�,λ1,...,λk
under the induction functor along the fUi . With this setup,

we find the following:

Proposition 3.4.8. The algebra aP,an~,�,U1,...,Uk
is a quantization of the Poisson algebra

(3.69) of bulk-boundary holonomies.

Proof. By Theorem 3.4.3, we have that aP~,�,λ1,...,λk
is a deformation quantization of

the dynamical Fock–Rosly Poisson structure ΠFR from Theorem 3.1.10 on (H reg)×k ×
G×k. Let J (λ) be the dynamical twist used to defined the dynamical point defects.
When pulled-back along the composition ι ◦ exp, its semi-classical limit is J (χ̃i) =
1 + ~r(χ̃i) + O(~2), with classical dynamical r-matrix as defined in (3.68). We claim

that the isomorphism exp−1×id :
(
Πi exp(Ui)×Gk,ΠFR

) ∼=−→ (
ΠiUi ×Gk, (3.69)

)
is one

of Poisson algebras. To that end, we have to consider the following three cases.

� 〈hαj ,−〉i ∈ O(Ui) and W (i) ∈ O(G):

By Theorem 3.1.10 we have (see (3.15)):

{W (i), 〈hαj ,−〉i ◦ exp−1}Πi exp(Ui)×Gk = −
∑
l

(−→
ηl .〈hαj ,−〉i ◦ exp−1

)(
hLαl . W (i)

)
= −

∑
l

(
(λl)L . 〈hαj ,−〉i ◦ exp−1

) (
hLαl . W (i)

)
= δljh

L
αl
. W (i) ,
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3. Dynamical character varieties

where we took into account that here we consider the algebra aP�,λ1,...,λk
defined in terms

of the opposite coproduct for U~(g). The above agrees with the pullback of the bracket
{W (l), 〈hαj ,−〉i} from (3.69).

� W (i),W (j) ∈ O(G) with i < j:

For the linear ordering γ̃i ≺ γ̃j we find (see (3.16)):

{W (i),W (j)} = −rR,R2,1 . (W (i)⊗W (j))

which agrees with the bracket from (3.69).

� W (i),W ′(i) ∈ O(G):

We have (see (3.16)):

{W (i),W ′(i)} =
(
ω(χ̃i)

L,L + ω(χ̃i)
R,R
)
. (W (i)⊗W ′(i))

where ω(χ̃i) is the antisymmetric part of the dynamical r-matrix (3.68), and therefore
agrees with the bracket defined in (3.69).

Remark 3.4.9. The case of the dynamical boundary-boundary holonomies can be worked
out analogously, starting from a marked surface (Σ◦, {v1, . . . , vk}) without marked point
in the boundary.

Outlook In this chapter, we have computed factorization homology with dynamical
point defects on surfaces having at least one boundary component. If we want to imple-
ment the flatness constraint for the quantum algebras of dynamical holonomies described
in this section, we will have to extend our framework to include marked surfaces without
boundary. Most of the tools to do so have been previously developed in [BZBJ18b]. For
example, for an unmarked closed surface Σ it was shown in [BZBJ18b, Theorem 5.4]
that there is an isomorphism

End(OΣ) ∼= HomRepq(G)(1, AΣ◦ ⊗Oq(G) 1)

between the endomorphism algebra of the distinguished object OΣ of the surface and the
quantum Hamiltonian reduction of the algebra AΣ◦ associated to the surface Σ◦ = Σ\D
along the canonical quantum moment map µ : Oq(G)→ AΣ◦ (see also § 2.5).

For the situation at hand, we can present the closed marked surface {v1, . . . , vk} ⊂ S2

by the collar-gluing depicted in Figure 3.10. Describing the quantum algebra of dynam-
ical holonomies for the marked sphere via factorization homology will involve finding an
explicit quantum moment map µ : Oq(G) → A(S2)◦v1,...,vk

induced by the embedding of

the annulus into the marked boundary component.

v1

v2
vk

Figure 3.10.: Collar-gluing for marked surface (S2, {v1, . . . , vk}).
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A. Background material on enriched
presentable categories

The material presented in this appendix is part of joint work in progress with Eilind
Karlsson, Lukas Müller and Jan Pulmann on categorical deformation quantization via
factorization homology [KKMP].

A.1. The 2-category V-Cat
Throughout V is a complete and cocomplete closed symmetric monoidal category. For
a V-enriched category C we write MapC(c, c

′) ∈ V for the V-object of morphisms from
c to c′. Given a morphism f : 1V → MapC(c, c

′) precomposition with f is the map
f∗ : MapC(c

′, d)→ MapC(c, d) in V defined by

MapC(c
′, d)

∼=−→ 1V ⊗MapC(c
′, d)

f⊗id−−−→ MapC(c, c
′)⊗MapC(c

′, d)
comp−−−→ MapC(c, d) .

Postcomposition f∗ is defined in a similar way.
We denote by V-Cat the 2-category of V-enriched categories whose

� objects are V-categories

� 1-morphisms are V-functors F : C → D consisting of a function Ob(C) → Ob(D)
together with morphisms

Fc,c′ : MapC(c, c
′) −→ MapD(F (c), F (c′))

in V, satisfying the obvious compatibility with composition and units.

� 2-morphisms are V-natural transformations α : F ⇒ G between F,G : C → D, with
components αc : 1V → MapD(F (c), G(c)), for every c ∈ C, making the following
diagram commute

MapC(c, c
′) MapD(F (c), F (c′))

MapD(G(c), G(c′)) MapD(F (c), G(c′))

Fc,c′

Gc,c′ (αc′ )∗

α∗c

The set of V-natural transformations α : F ⇒ G will be denoted by V-Nat(F,G).

The 2-category V-Cat admits a natural tensor product: for two V-categories C,D
define C × D to be the V-category whose

� objects are pairs (c, d) ∈ Ob(C)×Ob(D)

� morphisms are defined to be the following objects in V:

MapC×D((c, d), (c′, d′)) = MapC(c, c
′)⊗MapD(d, d′) .
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In [Kel05, Section 2.3] it is shown that the 2-category V-Cat is closed under the tensor
product ×, i.e. there is an equivalence of categories

HomV-Cat(C × D, E) ∼= HomV-Cat(C, [D, E ]) ,

2-natural in the V-categories C,D, E . In the above, [D, E ] is the V-category whose

� objects are V-functors F : D → E

� morphisms are defined by the objects

V-Nat(F,G) =

∫
d∈D

MapD(F (d), G(d)) ∈ V ,

where the right hand side is a V-enriched end.

Note that the set of V-natural transformations F ⇒ G is HomV(1V ,V-Nat(F,G)).

A.1.1. Example of enriching category: complete C[[~]]-modules

Let M be a left module over C[[~]]. Consider the submodules (~nM)n∈N and denote
Mn = M/~nM . There are canonical projections

pn : Mn −→Mn−1 ,

and (Mn, pn)n∈N is an inverse system of C[[~]]-modules. Hence, we can consider the
inverse limit

M̂ = lim←−
n

Mn =
{

(xn) ∈
∏
n

Mn | pn(xn) = xn−1

}
.

The left C[[~]]-module M̂ is called the ~-adic completion of M .

Definition A.1.1. The C[[~]]-module M is complete if the canonical map M → M̂ is
an isomorphism.

For lighter notation, denote K = C[[~]]. Let K̂-Mod be the category of ~-adically

complete K-modules and (̂−) the completion functor, sending an K-module to M̂ =
lim←−nM/~nM .

Proposition A.1.2. [Pos17, Theorem 5.8] ι : K̂-Mod ↪→ K-Mod is a reflective subcat-

egory, where the left adjoint to the inclusion1 ι is given by the completion functor (̂−).

In particular, K̂-Mod is complete and cocomplete. Limits are calculated in K-Mod, and
colimits are calculated by completing the colimits in K-Mod.

Proof. Let M ∈ K-Mod and C ∈ K̂-Mod. We have the following sequence of bijections

HomK-Mod(M,C) ∼= {HomK-Mod(M/~nM,C/~nC)}n≥1

(∗)∼= {HomK-Mod(M̂/~nM̂, C/~nC)}n≥1

∼= Hom
K̂-Mod

(M̂, C) .

The first equivalence is due to the fact that giving a map M → C is equivalent to
specifying a family of maps {M → C/~nC}n≥1, since C ∼= Ĉ. For each n, the C[[~]]-
module map M → C/~nC factors through M → M/~nM . For (∗) one uses that

~nM̂ = Ker(M̂ →M/~nM) [Sta21, Lemma 10.96.3, Tag 00M9].

1In what follows, we will usually suppress ι from the notation.
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Write ⊗ = ⊗K . Let M and N be two K-modules. We define their tensor product as
the ~-adic completion of M ⊗N :

M⊗̂N = M̂ ⊗N
= lim←−

n>0

(M ⊗N)/~n(M ⊗N) .

Proposition A.1.3. (K̂-Mod, ⊗̂) is a symmetric monoidal closed category.

Proof. We will first show that if C is a ~-adically complete module then HomK-Mod(M,C)
is ~-adically complete. To that end, first assume thatM is a finitely presentedK-module.
Choose a representation Km → Kn → M → 0, applying HomK-Mod(−, C) we get an
exact sequence

0 −→ HomK-Mod(M,C) −→ Cn −→ Cm .

Since K̂-Mod is closed under products and kernels, HomK-Mod(M,C) is complete. More-
over, every module is a colimit over its finitely presented submodules, and so we have
that

HomK-Mod(N,C) = HomK-Mod(colimiNi, C) = lim
i
HomK-Mod(Ni, C)

is complete.

By Proposition A.1.2 we then have for M,N,C ∈ K̂-Mod

Hom
K̂-Mod

(M⊗̂N,C) ∼= HomK-Mod(M ⊗N,C)

∼= HomK-Mod(M,HomK-Mod(N,C))
∼= Hom

K̂-Mod
(M,HomK-Mod(N,C)) .

A.2. Locally presentable enriched categories

The definition of locally presentable categories dates back to the work of Gabriel and
Ulmer [GU71]. Its generalization to the enriched world was done in [Kel82] and further
developed in [BQR98]. Here, we will recall some of the main definitions that allow
generalizations of fundamental results for locally presentable categories to the enriched
context.

A.2.1. Basic definitions

Let α0 be a regular cardinal. A symmetric monoidal closed category V is said to be a
locally α0-presentable base category if V is locally α0-presentable as an ordinary category
and the full subcategory of α0-compact objects is closed under the monoidal product
and must contain the monoidal unit. When working over such V, there is a good theory
of locally α-presentable enriched categories for any α ≥ α0.

Throughout we fix a locally α0-presentable base V and a regular cardinal α ≥ α0.
Recall that in the unenriched setting, an object c ∈ C is called α-compact if HomC(c,−)
preserves α-filtered colimits. In order to define the notion of an α-compact object in the
enriched world, we will use the following:

Definition A.2.1. [BQR98, Definition 2.1] A weight W : D → V for a V-limit or
V-colimit is α-small when
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� D has strictly less than α objects

� for all objects c, d ∈ D, the object MapD(c, d) ∈ V is α-compact

� for every object d ∈ D, the object W (d) ∈ V is α-compact

Definition A.2.2. [BQR98, Definition 2.3] A α-filtered V-colimit is one that is in-
dexed by a weight W : D → V whose left Kan extension along the Yoneda embedding
LanYW : [Dop,V]→ V preserves α-small V-limits, that is, limits indexed by an α-small
weight.

Let C ∈ V-Cat and let I : D → C be a diagram. For a weight W : Dop → V we
will write W ∗ I for the W -weighted colimit of I. Similarly, for a weight W ′ : D → V
we write {W ′, I} for the W ′-weighted limit of I. For a diagram J : D′ × D → V let
JD : D → [D′,V] and JD′ : D′ → [D,V] be its adjoints. We say that W -weighted colimits
in V commute with W ′-weighted limits if the comparison morphism

W ∗ {W ′, JD′} −→ {W ′,W ∗ JD}

is an isomorphism.

Proposition A.2.3. In analogy to the unenriched case, α-filtered V-colimits commute
with α-small V-limits in V.

Proof. Let W be an α-filtered weight and W ′ an α-small weight. We have

W ∗ {W ′, JD′} ∼= LanYW
(
{W ′, JD′}

)
∼= {W ′, LanYW ◦ JD′}
∼= {W ′,W ∗ JD}

where we used that W ∗ (−) ∼= LanYW (−) [Kel05, Section 4.1].

Definition A.2.4. An object c ∈ C is called α-compact (in the enriched sense) if the
functor

MapC(c,−) : C −→ V

preserves α-filtered V-colimits. We say that c ∈ C is α-compact projective if MapC(c,−)
preserves all colimits.

We will also need the notion of a strong V-generator as defined in [Kel05, Section 3.6]:

Definition A.2.5. Let C be a small V-category and F : A → B a V-functor. Define

F̃ : B −→ [Aop,V], F̃ (b) = MapB(F (−), b)

We say that F is strongly generating if F̃ is conservative2.

Now, the main definition in this section is the following [Kel82, BQR98]:

Definition A.2.6. A V-category C is locally α-presentable (as an enriched category)
if it has all V-colimits and admits a strongly V-generating family (Xi)i∈I of α-compact
objects.

2A V-functor is said to be conservative if the underlying ordinary functor is conservative
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The main example for us will be the following: set K = C[[~]] and let K̂-Mod be the
category of ~-adically complete modules from the previous section.

Proposition A.2.7. The category K̂-Mod is locally finitely (α = ℵ0) presentable as a

category enriched over itself. As an ordinary category, K̂-Mod is locally α-presentable
for α > ℵ0.

Proof. By Proposition A.1.3 we have that the adjunction (̂−) a ι is K̂-Mod-enriched.

Since K̂-Mod ↪→ K-Mod is a reflective subcategory, weighted colimits in K̂-Mod are
computed by completing the ones in K-Mod.

The functor HomK-Mod(K,−) is conservative since an isomorphism in K-Mod is an
isomorphism of the underlying vector space which is compatible with the K-action. By
Proposition A.1.2 we have that Hom

K̂-Mod
(K,−) ∼= HomK-Mod(K,−) ◦ ι. Since ι is fully

faithful the composite is conservative and K is a strong generator in K̂-Mod.
Finally we need to show that K is ℵ0-compact in the enriched sense. Let W : Dop →

K̂-Mod be a filtered weight and F : D → K̂-Mod a diagram and write Ŵ ∗ F for its

colimit in K̂-Mod. We have

Map
K̂-Mod

(K, Ŵ ∗ F ) ∼= MapK-Mod(K, Ŵ ∗ F )

∼= Ŵ ∗ F
∼=
(
W ∗Map

K̂-Mod
(K,F )

)̂
showing that the unit K is compact in the enriched sense. However, K is only (α > ℵ0)-

compact if we consider K̂-Mod as an ordinary category. Indeed, for any α-filtered

diagram F : D → K̂-Mod of complete K-modules the following holds in K-Mod:

̂colimF ∼= lim
n∈N

colimF/~ncolimF

∼= colim lim
n∈N

F/~nF

∼= colimF .

We used that the completion functor is idempotent and that α-filtered colimits commute
with finite limits. Hence for α > ℵ0 we have

Map
K̂-Mod

(K, ̂colimF ) ∼= MapK-Mod(K, colimF )

∼= colimF
∼= colimMap

K̂-Mod
(K,F )

showing that K is α-compact.

We recall that for C,D ∈ V-Cat, an adjoint pair F a G is a pair F : C → D, G : D → C
of V-enriched functors, such that there is a V-natural isomorphism

MapD(F (−),−) ∼= MapC(−, G(−)) .

One important feature of working with locally presentable V-categories is the following:

Proposition A.2.8. A cocontinuous V-functor F : C → D between locally presentable
V-categories admits a right adjoint.
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Proof. A locally α-presentable V-category C is equivalent to the V-category

Lexα(Cop
α ,V) ⊂ [Cop

α ,V]

of presheaves on the subcategory Cα ⊆ C of α-compact objects, preserving α-small limits
[BQR98, Theorem 6.3]. We thus have the following commuting triangle

C D

Lexα(Cop
α ,V)

F

∼= F̃

where the V-equivalence is induced by the restricted Yoneda embedding

C → [Cop
α ,V], c 7→ MapC((−)|Cα , c) .

It is shown in [Kel05, Theorem 4.51] that a cocontinuous functor F̃ : [Cop
α ,V]→ D has a

right adjoint defined by
F̃R(d) = MapD(F̃ ◦ Y (−), d) ,

where Y : Cα → [Cop
α ,V] is the Yoneda embedding. The image of F̃R preserve α-small

limits because F is cocontinuous, thus factoring through Lexα(Cop
α ,V) as desired.

Assume that C is tensored over V. In this case, we will often make use of the following
coend formula for the right adjoint to a cocontinuous functor F : C → D between locally
presentable V-categories:

FR(d) ∼=
∫ c∈Cα

MapD(F (c), d)⊗ c . (A.1)

The above formula follows from the V-natural Yoneda isomorphism [Kel05, Section 3.1]
together with Proposition A.2.8.

A.2.2. Free cocompletion

Many of the locally presentable V-categories that we will encounter in this thesis are
obtained from small V-enriched categories via free cocompletion, which is defined as
follows:

Definition A.2.9. Let C be a small V-enriched category. The free cocompletion Ĉ is
the enriched functor category

Ĉ = [Cop,V] . (A.2)

The free cocompletion has the following universal property:

Proposition A.2.10. [Kel05, Theorem 4.51] Let C be a small V-enriched category and
D a cocomplete V-category. There is an equivalence of V-categories

Cocont[Ĉ,D] ∼= [C,D] ,

where Cocont[Ĉ,D] ⊂ [Ĉ,D] is the full subcategory of colimit-preserving functors. The
equivalence sends F ∈ Cocont[Ĉ,D] to F ◦ Y , where Y : C → Ĉ is the enriched Yoneda
embedding. The inverse sends G : C → D to the left Kan extension LanYG of G along
Y .
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In the following we will denote the enriched Yoneda embedding by

Y : C −→ [Cop,V], c 7−→ Yc = MapC(−, c) .

Proposition A.2.11. The free cocompletion Ĉ is locally presentable as a V-enriched
category.

Proof. Colimits in presheaf categories are computed pointwise, thus [Cop,V] has all V-
colimits. By the enriched Yoneda lemma [Kel05, Section 2.3] we have V-Nat(Yc, F ) ∼=
F (c). So for any colimit W ∗ F in Ĉ we have

V-Nat(Yc,W ∗ F ) ∼= (W ∗ F )(c)
∼= W ∗ F (c)
∼= W ∗ V-Nat(Yc, F )

showing that the representable V-functors are compact in [Cop,V]3. The enriched Yoneda
embedding is strongly V-generating in [Cop,V] and therefore we conclude that [Cop,V]
is a locally presentable in the enriched sense.

If (C,⊗) is a monoidal V-category, there exist a tensor product on Ĉ given by Day
convolution: for any F,G ∈ Ĉ their tensor product is defined by

(F ⊗Day G)(c) =

∫ c1,c2∈C
MapC(c, c1 ⊗ c2)⊗V F (c1)⊗V G(c2) ,

where ⊗V is the tensor product in V. Then, the Yoneda embedding is a strong monoidal
functor Y : (C,⊗)→ (Ĉ,⊗Day).

Dualizability Not all objects in the free cocompletion Ĉ are dualizable. However, the
compact projective generators {Yc}c∈C are dualizable if all objects in C are dualizable.
This follows from Y : C → Ĉ being a strong monoidal functor.

Let (C,⊗, σ) be a small braided monoidal V-category whose objects are dualizable
and let

T : Ĉ � Ĉ −→ Ĉ, (F,G) 7−→ F ⊗Day G (A.3)

be the monoidal functor given by the Day convolution product in Ĉ, where � is the
tensor product of locally V-presentable categories defined in § 1.3.2. By Proposition
A.2.8 the functor T admits a right adjoint which has the following explicit formula.

Proposition A.2.12. Let Ĉ the free cocompletion of a small V-enriched braided monoidal
category C whose objects are dualizable. Then, the right adjoint to the tensor product
functor (A.3) admits the following coend formula

TR(F ) ∼=
∫ c∈C

(F ⊗Day Yc∨)� Yc

and in particular

TR(1) ∼=
∫ c∈C

Yc∨ � Yc

3Since V-Nat(Yc,−) actually preserves all weighted colimit, the representable V-functors are compact
projective in [Cop,V]
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Proof. Since the representables are compact projective generators, Equation (A.1) for
the right adjoint reads

TR(F ) ∼=
∫ (c,d)∈C×C

MapĈ(Yc ⊗Day Yd, F )⊗ Yc � Yd

∼=
∫ (c,d)∈C×C

MapĈ(Yc, F ⊗Day Yd∨)⊗ Yc � Yd

∼=
∫ d∈C

(F ⊗Day Yd∨)� Yd .

Remark A.2.13. We often drop the Yoneda embedding in our notation and simply
write

TR(1) ∼=
∫ c∈C

c∨ � c ∈ Ĉ � Ĉ .

The above coend is naturally an algebra since TR is lax monoidal. Taking the image
under the tensor functor T we obtain Lyubashenko’s coend algebra [Lyu95b, Lyu95a]:

TTR(1) ∼=
∫ c∈C

c∨ ⊗ c ∈ Ĉ .

A.2.3. Enriched monadicity theorem

Let F : A →M be a colimit preserving functor between locally presentable V-categories
with right adjoint FR. The adjoint pair induces a V-monad T = FR ◦ F on A. The
right adjoint FR is called monadic if the V-comparison functor

F̃R : M−→ T -ModA

m 7−→ (FR(m), ε) ,

is an equivalence of V-categories, where ε is the counit of the adjunction F a FR.
Monadic functors are characterized by Beck’s monadicity theorem, formulated in the
V-enriched context by Dubuc [Dub70, Theorem II.2.1]. In the presentable setting, the
monadicity theorem guarantees that if FR : M→A is conservative and preserves certain
colimits then it is monadic.

Let (C,⊗) be a small V-enriched category whose objects are dualizable, Ĉ its free
cocompletion and T : Ĉ � Ĉ → Ĉ the tensor product functor from (A.3). We then have
the following:

Proposition A.2.14. The right adjoint TR is monadic.

Proof. For a weighted colimit W ? F in Ĉ we have

TR(W ? F ) ∼=
∫ c∈C

(W ? F )⊗Day Yc∨ � Yc

∼= W ?

∫ c∈C
(F ⊗Day Yc∨)� Yc

∼= W ? TR(F ) .
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This is due to Proposition A.2.12 and ⊗Day preserving weighted colimits in each variable.

Next, we show that TR is conservative. Let Y : Ĉ × C → [Ĉ × C,V], F 7→ MapĈ×C(−, F ).
Then, consider the composition

Y ◦ TR = MapĈ�Ĉ((−), TR(−))
∼= MapĈ((−)⊗Day (−), (−)) .

The composition is conservative since Yc ⊗Day Yd ∼= Yc⊗d, where we recall that Yc =
MapC(−, c), together with the fact that the tensor product functor (− ⊗ −) is essen-
tially surjective. It follows that TR is conservative, since conservative functors reflect
conservativity.

The tensor product functor T has a natural structure of a Ĉ � Ĉ-module functor

T ((c1� c2)/ (d1�d2)) = T (c1⊗d1� c2⊗d2)
∼=−→ T (c1� c2)/ (d1�d2) = c1⊗ c2⊗d1⊗d2

defined by the braiding. The same is true for the right adjoint, which follows from the
next proposition.

Proposition A.2.15. Assume A, C,D ∈ V-Pres are free cocompletions of V-enriched
categories whose objects are dualizable. Let F : C → D be an A-module functor in V-Pres
which preserves compact projective objects and has a colimit-preserving right adjoint
FR : D → C. Then FR has a canonical structure of an A-module functor.

Proof. We want to show that Map(c, FR(d / a)) ∼= Map(c, FR(d) J a) for any c ∈ C,
d ∈ D and a ∈ A. We may write any c = colimici, where each ci is compact projective,
and similarly a = colimiai. It then follows from the assumptions in the proposition that:

Map(c, FR(d / a)) = Map(colimici, F
R(d / colimjaj))

∼= colimj lim
i
Map(ci, F

R(d / aj))

∼= colimj lim
i
Map(F (ci), d / aj)

∼= colimj lim
i
Map(F (ci) / a

∨
j , d)

∼= colimj lim
i
Map(F (ci J a

∨
j ), d)

∼= colimj lim
i
Map(ci J a

∨
j , F

R(d))

∼= colimj lim
i
Map(ci, F

R(d) J aj)

∼= Map(lim
i
ci, F

R(d) J colimjaj)

= Map(c, FR(d) J a)
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In this appendix we recollect basics about bialgebroids. We will mainly focus on the rela-
tion between bialgebroids over base algebras (as defined in Example 3.2.3) and solutions
to the quantum DYBE, which was established in [DM06].

B.1. Definitions and examples

Throughout, k denotes either a field K of characteristic zero or a ring K[[~]] of formal
power series.

Definition B.1.1. [Lu96] Let L be a k-algebra. A bialgebroid over base L is an asso-
ciative k-algebra B together with the following data:

� Source map: an algebra morphism s : L → B ,

� Target map: an algebra morphism t : Lop → B ,

turning B into a L-bimodule with actions λ . b = s(λ)b and b / λ = t(λ)b, for all λ ∈ L
and b ∈ B.

� Coproduct: a coassociative (L,L)-bimodule map ∆: B→ B⊗LB. Here, B⊗LB =
B⊗B/I, where I is the left ideal generated by t(λ)⊗ 1− 1⊗ s(λ) for λ ∈ L. We
require that

– ∆ factors through N(I)/I, where N(I) = {a ∈ B⊗B | [a, I] ⊂ I},
– ∆: B→ N(I)/I is an algebra morphism.

� Counit: a (L,L)-bimodule map ε : B→ L such that ε(1B) = 1L and

(ε⊗L idB) ◦∆ = idB = (idB ⊗L ε) ◦∆ . (B.1)

and
ε(a(s ◦ ε)b) = ε(ab) = ε(a(t ◦ ε)b) (B.2)

for all a, b ∈ B.

We will use the notation ∆(a) = a(1) ⊗ a(2) for the coproduct. The following are
examples of bialgebroids that will play a role later on:

Example B.1.2 (Tensor product bialgebroid). For i = 1, 2, let Bi be a bialgebroid
over base Li. Then, the tensor product B1 ⊗ B2 is a bialgebroid over base L1 ⊗ L2.
The source, target, and counit maps are s1 ⊗ s2, t1 ⊗ t2, and ε1 ⊗ ε2, respectively. The
coproduct for the tensor product bialgebroid is defined by

∆(a⊗ b) = (a(1) ⊗ b(1))⊗L1⊗L2 (a(2) ⊗ b(2)) .

4
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Example B.1.3 (Bialgebras). A bialgebra over k is a bialgebroid over base k. 4

Example B.1.4 (Coopposite bialgebroid). Let (B, s, t,∆, ε) be a bialgebroid over L.
Then, there is a bialgebroid Bop over Lop with the same multiplication but opposite
coproduct ∆op(b) = b(2) ⊗ b(1) and counit ι ◦ ε : Bop → Lop, where ι : L → Lop is the
anti-homomorphism given by the identity map. The source and target maps are sop = t
and top = s, respectively. 4

Let H be a Hopf algebra over k. In what follows, we will assume that L is an H-base
algebra. This means that L is an H-module algebra H ⊗L .−→ L and a left H-comodule
algebra δ : L → H ⊗ L, λ 7→ λ(−1) ⊗ λ(0), making L a Yetter–Drinfeld module over H,
that is

δ(h . λ) = h(1)λ
(−1)S(h(3))⊗ h(2) . λ

(0) (B.3)

for all h ∈ H and λ ∈ L. Moreover, L is assumed to be a commutative algebra in the
category of Yetter–Drinfeld modules over H, that is

λµ = (λ(−1) . µ)λ(0) (B.4)

for all λ, µ ∈ L. If H is quasi-triangular with universal R-matrix R, we will assume that
the H-comodule structure on L is of the form

δ(λ) = λ(−1) ⊗ λ(0) = R2 ⊗R1 . λ

for all λ ∈ L.

Example B.1.5 (Smash product bialgebroid). Let L and H be as above. Consider
the associative algebra LoH, which is L⊗H as a k-module, endowed with the smash
product multiplication

(λ⊗ h)(µ⊗ k) = λh(1) . µ⊗ h(2)k .

The source and target maps are defined by

s(λ) = λ⊗ 1, t(λ) = R̄1 . λ⊗ R̄2 , (B.5)

where R̄ = R−1. The coproduct is

∆(λ⊗ h) = (λ⊗ h(1))⊗L (1⊗ h(2)) ,

where ∆H(h) = h(1) ⊗ h(2) is the coproduct for the Hopf algebra H, and the counit is

ε(λ⊗ h) = λεH(h) .

4

Example B.1.6 (Quantum groupoid). Let H be a quasi-triangular Hopf algebra and
L o H the smash-product bialgebroid from Example B.1.5. Note that there are two
target maps for the bialgebroid L oH: one was defined in (B.5), and is related to the
coproduct δ(λ) = λ(−1) ⊗ λ(0) = R2 ⊗R1 . λ by

t(λ) = λ(0) ⊗ S−1(λ(−1)) = R̄1 . λ⊗ R̄2 .
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But ifR is a quasi-triangular structure for H, then so is τ◦R̄, giving rise to an alternative
H-base algebra structure on L with coaction δ′(λ) = R̄1 ⊗ R̄2 . λ. The corresponding
target map is:

t′(λ) = R2 . λ⊗R1 .

We will write (LoH)′ for the bialgebroid with target map t′.
In [DM06], Donin–Mudrov introduce a bialgebroid HL which is defined as a quotient

of LoH, or equivalently of (LoH)′, which eliminates the distinction between the two
bialgebroid structures on the smash product. In more details, the bialgebroid HL is
defined as the quotient

HL = (LoH)/J = (LoH)′/J

by the biideal1 J generated by R̄1 . λ⊗ R̄2 −R2 . λ⊗R1 for all λ ∈ L. The resulting
bialgebroid HL is called quantum groupoid since it has a quasi-triangular structure
induced from the one on H (we refer to [DM06, Definition 3.12] for the definition of a
quasi-triangular structure on a bialgebroid). 4

We will also need the following:

Proposition B.1.7. If L is an H-base algebra with left H-action . and left H-coaction
δ. Then, Lop is an Hop-base algebra with the same action .Hop = . and Hop-comodule
structure

δHop(λ) = S−1(λ(−1))⊗ λ(0) ,

where we used the notation δ(λ) = λ(−1) ⊗ λ(0).

Proof. Lop is an Hop-module algebra:

h . (λ ·op µ) = h . (µλ)

= (h(1) . µ)(h(2) . λ)

= (h(2) . λ) ·op (h(1) . µ) .

It is also an Hop-comodule algebra:

δHop(λ ·op µ) = S−1((µλ)(−1))⊗ (µλ)(0)

= S−1(λ(−1))S−1(µ(−1))⊗ λ(0) ·op µ(0) .

Next, we have to show that Lop is a Yetter–Drinfeld module with respect to . and δHop ,
which will amount to show that δHop(h . λ) = h(3)S

−1(λ(−1))S−1(h(1))⊗ h(2) . λ
(0). We

have

δHop(h . λ) = S−1((h . λ)(−1))⊗ (h . λ)(0)

= (S−1 ⊗ id)(h(1)λ
(−1)S(h(3))⊗ h(2) . λ

(0))

= h(3)S
−1(λ(−1))S−1(h(1))⊗ h(2) . λ

(0) ,

1A L-bimodule J ⊂ B is called biideal if it is a two-sided ideal in the algebra B and ∆(J) ⊂ J ⊗LB+
B⊗L J and ε(J) = 0.
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where we used Equation (B.3) for the Yetter–Drinfeld module L over H. Lastly, we
have

(S−1(λ(−1)) . µ) ·op λ(0) = λ(0)(S−1(λ(−1)) . µ)

= (λ(0)(−1)S−1(λ(−1)) . µ)λ(0)(0)

= (λ
(−1)
(2) S−1(λ

(−1)
(1) ) . µ)λ(0)

= (ε(λ(−1)) . µ)λ(0)

= λ ·op µ ,

where we used Equation (B.4) for the base algebra L, making Lop a Hop-base algebra.

B.1.1. Dynamical FRT-algebra

In [DM06, Section 8], Donin–Mudrov introduce a bialgebroid which may be interpreted
as a dynamical version of the FRT-algebra and is constructed using dynamical twists.
Since our conventions for dynamical twists differ from the one in [DM06], we will here
redo the construction due to Donin–Mudrov using our conventions and also fill in some
details that are omitted in the original reference (see Remark 3.2.11 for how our definition
of a dynamical twist compares to the one of Donin–Mudrov).

The restricted dual H◦ is a left Hop ⊗H-module via

(h′ ⊗ h) . ϕ = h ⇀ ϕ ↼ S(h′) ,

where
h ⇀ ϕ = 〈h, ϕ(2)〉ϕ(1), ϕ ↼ h = 〈h, ϕ(1)〉ϕ(2) ,

for all h ∈ H. We endow H◦ with a multiplication defined via duality with H, that is

〈ϕ · ψ, h〉 = 〈ϕ, h(1)〉〈ψ, h(2)〉

for all ϕ,ψ ∈ H◦ and h ∈ H. The resulting algebra is called FRT-algebra [DM03]. We
are now going to define a dynamical version of the FRT-algebra.

LetB ⊆ H a Hopf subalgebra and L aB-base algebra. The underlying k-module of the
dynamical FRT-algebra is the tensor product Lop⊗L⊗H◦. Let J (λ) = J 0⊗J 1⊗J 2 ∈
L ⊗H ⊗H be a dynamical twist for the pair B ⊆ H over base L, as defined in § 3.2.2.
One can check that the following is a dynamical twist over the Bop-base algebra Lop:

K(λ) = J̄ 0 ⊗ S−1(J̄ 1)⊗ S−1(J̄ 2) ∈ Lop ⊗Hop ⊗Hop, J̄ (λ) = J (λ)−1 .

Then, we endow Lop ⊗ L⊗H◦ with the following multiplication

(λ⊗ µ⊗ ϕ) ∗ (ν ⊗ ρ⊗ ψ) (B.6)

= λ ·op ν[0] ·op K0 ⊗ µρ[0]J 0 ⊗ (K1S−1(ν[1])⊗ J 1ρ[1]) . ϕ · (K2 ⊗ J 2) . ψ ,

where the map λ 7→ λ[0]⊗ λ[1] is the right H-comodule structure on the base algebra L.
The above defines an associative product on Lop ⊗ L ⊗H◦, which is a consequence of
J (λ) and K(λ) being dynamical twists.
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Proposition B.1.8. The algebra Lop⊗L⊗H◦ with multiplication (B.6) is a bialgebroid
over base L with source and target maps defined by

s : λ 7→ 1⊗ λ⊗ 1, t : λ 7→ λ⊗ 1⊗ 1 .

The coproduct is defined by

∆(λ⊗ µ⊗ ϕ) = (1⊗ µ⊗ ϕ(2))⊗L (λ⊗ 1⊗ ϕ(1))

and the counit by ε(λ⊗ µ⊗ ϕ) = ε(ϕ)λ ·op µ.

Proof. We first show that the coproduct is compatible with the multiplication. On the
one hand we have

∆ ((λ⊗ µ⊗ ϕ) ∗ (ν ⊗ ρ⊗ ψ))

=

(
1⊗ µρ[0]J 0 ⊗

((
K1S−1(ν[1])⊗ J 1ρ[1]

)
. ϕ
)

(2)
·
((
K2 ⊗ J 2

)
. ψ
)

(2)

)
⊗L
(
λ ·op ν[0] ·op K0 ⊗ 1⊗

((
K1S−1(ν[1])⊗ J 1ρ[1]

)
. ϕ
)

(1)
·
((
K2 ⊗ J 2

)
. ψ
)

(1)

)
=
(

1⊗ µρ[0]J 0 ⊗
(

1⊗ J 1ρ[1]
)
. ϕ(2) ·

(
1⊗ J 2

)
. ψ(2)

)
⊗L
(
λ ·op ν[0] ·op K0 ⊗ 1⊗

(
K1S−1(ν[1])⊗ 1

)
. ϕ(1) ·

(
K2 ⊗ 1

)
. ψ(1)

)
In the above we used that for all a⊗ b ∈ Hop ⊗H and ϕ ∈ H◦ we have

∆((a⊗ b) . ϕ) = 〈S(a), ϕ(1)〉〈b, ϕ(4)〉ϕ(2) ⊗ ϕ(3)

= (a⊗ 1) . ϕ(1) ⊗ (1⊗ b) . ϕ(2) .

On the other hand we find((
1⊗ µ⊗ ϕ(2)

)
∗
(
1⊗ ρ⊗ ψ(2)

))
⊗L
((
λ⊗ 1⊗ ϕ(1)

)
∗
(
ν ⊗ 1⊗ ψ(1)

))
=
(
K0 ⊗ µρ[0]J 0 ⊗

(
K1 ⊗ J 1ρ[1]

)
. ϕ(2) ·

(
K2 ⊗ J 2

)
. ψ(2)

)
⊗L
(
λ ·op ν[0] ·op K′0 ⊗ J ′0 ⊗

(
K′1S−1(ν[1])⊗ J ′1

)
. ϕ(1) ·

(
K′2 ⊗ J ′2

)
. ψ(1)

)
=
(
J ′0 ·op J̄ 0 ⊗ µρ[0]J 0 ⊗

(
S−1(J̄ 1)⊗ J 1ρ[1]

)
. ϕ(2) ·

(
S−1(J̄ 2)⊗ J 2

)
. ψ(2)

)
⊗L
(
λ ·op ν[0] ·op K′0 ⊗ 1⊗

(
K′1S−1(ν[1])⊗ J ′1

)
. ϕ(1) ·

(
K′2 ⊗ J ′2

)
. ψ(1)

)
But for any invertible element a ∈ H and any ϕ ∈ H◦ we have

(1⊗ a) . ϕ(1) ⊗
(
S−1(ā)⊗ 1

)
. ϕ(2) =

〈
a, ϕ(2)

〉
ϕ(1) ⊗

〈
ā, ϕ(3)

〉
ϕ(4)

=
〈
aā, ϕ(2)

〉
ϕ(1) ⊗ ϕ(3)

= ϕ(1) ⊗ ϕ(2) ,

where we wrote ā = a−1 and used that 〈1, ϕ〉 = ε(ϕ), showing compatibility of the
multiplication and the coproduct.

Next we have to show that Equations (B.1) and (B.2) hold. For the former, we
compute

(ε⊗L id) ◦∆ (λ⊗ µ⊗ ϕ) = ε
(
1⊗ µ⊗ ϕ(2)

)
⊗L
(
λ⊗ 1⊗ ϕ(1)

)
= ε(ϕ(2))µ⊗L

(
λ⊗ 1⊗ ϕ(1)

)
= λ⊗ µ⊗ ϕ ,
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where in the last step we used the source map s(µ) = 1⊗ µ⊗ 1. The other equality in
(B.1) can be checked along the same lines. In order to verify Equation (B.2) we first
compute

ε ((λ⊗ µ⊗ ϕ) ∗ (s ◦ ε) (ν ⊗ ρ⊗ ψ)) = ε(ψ)
(
λ⊗ µ(ρν)[0] ⊗

(
1⊗ (ρν)[1]

)
. ϕ
)

= ε(ψ)ε
(

(ρν)[1] . ϕ
)
λ ·op (ρν)[0] ·op µ .

Similarly we find

ε ((λ⊗ µ⊗ ϕ) ∗ (t ◦ ε) (ν ⊗ ρ⊗ ψ)) = ε(ψ)ε
(
ϕ / (ρν)[1]

)
λ ·op (ρν)[0] ·op µ

The two agree since (
(ρν)[1] . ϕ

)
(1) =

〈
(ρν)[1], ϕ(2)

〉
ε(ϕ(1))

=
〈

(ρν)[1], ϕ
〉

=
〈

(ρν)[1], ϕ(1)

〉
ε(ϕ(2))

=
(
ϕ / (ρν)[1]

)
(1)

Lastly, we compute

ε ((λ⊗ µ⊗ ϕ) ∗ (ν ⊗ ρ⊗ ψ))

=
(
λ ·op ν[0] ·op ρ[0] ·op µ

)
ε
((
K1S−1(ν[1])⊗ J 1ρ[1]

)
. ϕ
)
ε
((
K2 ⊗ J 2

)
. ψ
)

but

ε
((
K2 ⊗ J 2

)
. ψ
)

=
〈
J 2, ψ(3)

〉 〈
J̄ 2, ψ(2)

〉
ε(ψ(2))

= ε(ψ)

and

ε
((
K1S−1(ν[1])⊗ J 1ρ[1]

)
. ϕ
)

=
〈
ν[1]J̄ 1, ϕ(1)

〉〈
J 1ρ[1], ϕ(3)

〉
ε(ϕ(2))

=
〈
ν[1]J̄ 1J 1ρ[1], ϕ

〉
=
〈

(ρν)[1], ϕ
〉

,

and thus Equation (B.2) holds.

B.2. Twists of bialgebroids

Let (B, s, t,∆, ε) be a bialgebroid over L.

Definition B.2.1. [Xu01] An element Ψ = Ψ1 ⊗Ψ2 ∈ B⊗L B is called a bialgebroid
twist, or twisting cocycle, if it satisfies

∆(Ψ1)Ψ⊗L Ψ2 = Ψ1 ⊗L ∆(Ψ2)Ψ (B.7)

and (ε⊗L id)Ψ = 1⊗L 1 = (id⊗L ε)Ψ.
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Let Ψ be a bialgebroid twist. One may equip L with a new multiplication defined in
terms of Ψ by

λ ∗Ψ µ = (Ψ1 ` λ) ∗ (Ψ2 ` µ) ,

where ` is the B-module structure on L defined in terms of the counit and source or
target map:

b ` λ = ε(bs(λ)) = ε(bt(λ))

for all b ∈ B and λ ∈ L. Let LΨ be the resulting algebra. Using the twist, one can
further define the following algebra morphisms

sΨ : LΨ → B, tΨ : Lop
Ψ → B

λ 7→ s(Ψ1 ` λ)Ψ2 λ 7→ t(Ψ2 ` λ)Ψ1

The twist Ψ defines a linear map

B⊗LΨ
B→ B⊗L B, a⊗ b 7→ Ψ1a⊗Ψ2b . (B.8)

Definition B.2.2. A bialgebroid twist Ψ is called invertible if the map (B.8) is an
isomorphism.

Theorem B.2.3. [Xu01] Let B be a bialgebroid over base L and Ψ ∈ B ⊗L B an
invertible bialgebroid twist. Define

∆Ψ : B→ B⊗LΨ
B, a 7→ Ψ−1∆(a)Ψ . (B.9)

Then, the tuple B̃ = (B, sΨ, tΨ,∆Ψ, ε) is a bialgebroid over base LΨ.

Let (A, ·) be a module algebra over the bialgebroid B. Then, a twist of the bialgebroid
induces a twist of its module algebra:

Proposition B.2.4. The algebra AΨ with multiplication defined by

x ·Ψ y = (Ψ1 . x) · (Ψ2 . y)

is a module algebra over the twisted bialgebroid B̃.

Proof. Since A is a B-module algebra we have b . (x · y) = (b(1) . x) · (b(2) ⊗ y) for all
b ∈ B and x, y ∈ A. Thus, we have

b . (x ·Ψ y) = b . ((Ψ1 . x) · (Ψ2 . y))

= (b(1)Ψ
1 . x) · (b(2)Ψ

2 . y)

= (Ψ̄1b(1)Ψ
1 . x) ·Ψ (Ψ̄2b(2)Ψ

2 . y) ,

where Ψ̄ = Ψ−1.

B.2.1. Bialgebroid twists from dynamical twists

The relation between bialgebroid twists and dynamical ones, i.e. solutions to the quan-
tum DYBE, was previously established in [Xu01] for dynamical twists over commutative
base and in [DM06] for dynamical twists over more general base algebras. In more de-
tails, given a pair of Hopf algebras B ⊆ H and a B-base algebra L, Donin–Mudrov

show that one can construct a twisted L-bialgebroid ˜H ⊗DBL by means of a dynamical
twist, where DB is the double and DBL the quantum groupoid from Example B.1.6.
Here, we will mimic the construction of Donin–Mudrov to construct bialgebroid twists
in terms of the dynamical twists defined in § 3.2.2.
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The double Let B be a finite-dimensional2 K-algebra. Assume L is a B-base algebra
with left B-action . and left B-coaction δ. Let DB = B ./ B∗op be the double cross
product [Maj95, Section 7], where B∗op is the dual of B with opposite multiplication.
The double is quasi-triangular with universal R-matrix Θ =

∑
ei ⊗ ei ∈ DB ⊗ DB,

where (ei)i∈I is a basis in B and (ei)i∈I its dual in B∗op.
With the above assumptions, one can check that the algebra L is also a DB-base

algebra with left B∗op-module structure defined by

ϕ I λ = 〈λ(−1), ϕ〉λ(0)

and with DB-coaction given by δ, expressed through the universal R-matrix:

δ : λ 7→ Θ2 ⊗Θ1 I λ .

The bialgebroid In § 3.2.2 we have defined a dynamical twist as a B-equivariant
element J (λ) ∈ L ⊗H ⊗H satisfying the dynamical cocycle equation

(id⊗∆⊗ id)J (λ)J (λ)1,2 = (id⊗ id⊗∆)J (λ)
(
δR ⊗ id⊗ id

)
J (λ) (B.10)

in Lop ⊗ H ⊗ H ⊗ H. The appearance of opposite base algebra Lop in the dynamical
cocycle equation leads us to establish a connection between J (λ) and a twist in the

tensor bialgebroid B =
(
DBop

Lop
⊗Hop

)op
.

It will be convenient to first spell out the bialgebroid structure on (Lop oDBop ⊗Hop)op,
which follows from combining Proposition B.1.7 with Examples B.1.2, B.1.3, B.1.4 and
B.1.5. Namely, the source and target maps are

s(λ) = tLopoDBop(λ)⊗ 1H t(λ) = sLopoDBop(λ)⊗ 1H

= Θ2 . λ⊗ S(Θ1)⊗ 1H = λ⊗ 1DBop ⊗ 1H .

and the coproduct is

∆(λ⊗ β ⊗ h) = (1⊗ β(1) ⊗ h(1))⊗L (λ⊗ β(2) ⊗ h(2)) ,

for λ ∈ Lop, β ∈ DBop and h ∈ Hop. The bialgebroid B is then defined as the quotient
of this bialgebroid by the biideal generated by Θ̄2 . λ⊗ Θ̄1−Θ1 . λ⊗Θ2 for all λ ∈ Lop

as in Example B.1.6.

The bialgebroid twist

Proposition B.2.5. Let B ⊆ H be a Hopf subalgebra and L a B-base algebra. Let
J (λ) = J 0 ⊗ J 1 ⊗ J 2 ∈ L ⊗ H ⊗ H be a dynamical twist over L satisfying Equation
(B.10). The element

Ψ =
(
1⊗ 1⊗ J 1S−1(Θ2)

)
⊗L
(
J 0 ⊗Θ1 ⊗ J 2

)
(B.11)

is a bialgebroid twist for (Lop oDBop ⊗Hop)op.

2The case for an infinite dimensional algebra B can be worked out analogously if one works over a ring
K[[~]] of formal power series and replaces duals with the restricted Hopf dual.
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Proof. The left hand side of Equation (B.9) reads

∆
(
Ψ1
)

Ψ⊗L Ψ2

=
((

1⊗ 1⊗ J 1
(1)Θ

2
(1)

)
⊗L
(

1⊗ 1⊗ J 1
(2)Θ

2
(2)

))
Ψ⊗L

(
J 0 ⊗ S(Θ1)⊗ J 2

)
=
(

1⊗ 1⊗ J 1
(1)Θ

2
(1)J

′1Θ′2
)
⊗L
(
J ′0 ⊗ S(Θ′1)⊗ J 1

(2)Θ
2
(2)J

′2
)
⊗L
(
J 0 ⊗ S(Θ1)⊗ J 2

)
where here and in what follows primes are used to distinguish different copies of the
dynamical twist or the R-matrix Θ. The right hand side of Equation (B.9) is

Ψ1 ⊗L ∆
(
Ψ2
)

Ψ

=
(
1⊗ 1⊗ J 1S−1(Θ2)

)
⊗L
((

1⊗Θ1
(1) ⊗ J

2
(1)

)
⊗L
(
J 0 ⊗Θ1

(2) ⊗ J
2
(2)

))
Ψ

=
(
1⊗ 1⊗ J 1S−1(Θ2)

)
⊗L
(

1⊗Θ1
(1) ⊗ J

2
(1)J

′1S−1(Θ′2)
)

⊗L
(
J 0 ·op Θ1

(2)(2) . J
′0 ⊗Θ1

(2)(1)Θ
′1 ⊗ J 2

(2)J
′2
)

=
(
1⊗ 1⊗ J 1S−1(Θ′2)S−1(Θ′′2)S−1(Θ2)

)
⊗L
(

1⊗Θ1 ⊗ J 2
(1)J

′1S−1(Θ′′′2)
)

⊗L
(
J 0 ·op Θ′1 . J ′0 ⊗Θ′′1Θ′′′1 ⊗ J 2

(2)J
′2
)

where we used that

Θ1
(1) ⊗Θ1

(2) ⊗Θ1
(3) ⊗Θ2 = Θ1 ⊗Θ′′1 ⊗Θ′1 ⊗Θ2Θ′′2Θ′2

since Θ is a universal R-matrix. Now, we use the dynamical cocycle equation to rewrite
the above as

Ψ1 ⊗L ∆
(
Ψ2
)

Ψ

=
(

1⊗ 1⊗ J 1S−1(Θ′2)S−1(Θ′′2)S−1(Θ2)
)
⊗L
(

1⊗Θ1 ⊗ J 2
(1)J

′1S−1(Θ′′′2)
)

⊗L
(
J 0 ·op Θ′1 . J ′0 ⊗Θ′′1Θ′′′1 ⊗ J 2

(2)J
′2
)

=
(

1⊗ 1⊗ J 1
(1)J

′1S−1(Θ′′2)S−1(Θ2)
)
⊗L
(

1⊗Θ1 ⊗ J 1
(2)J

′2S−1(Θ′2)
)

⊗L
(
J 0 ·op J ′0 ⊗Θ′′1Θ′1 ⊗ J 2

)
=
(

1⊗ 1⊗ J 1
(1)J

′1Θ′′2Θ2
)
⊗L
(

1⊗ S(Θ1)⊗ J 1
(2)J

′2Θ′2
)

⊗L
(
J 0 ·op J ′0 ⊗ S(Θ′1Θ′′1)⊗ J 2

)
=
(

1⊗ 1⊗ J 1
(1)J

′1Θ′2(1)Θ
2
)
⊗L
(

1⊗ S(Θ1)⊗ J 1
(2)J

′2Θ′2(2)

)
⊗L
(
J 0 ·op J ′0 ⊗ S(Θ′1)⊗ J 2

)
=
(

1⊗ 1⊗ J 1
(1)Θ

′2
(2)J

′1Θ2
)
⊗L
(

1⊗ S(Θ1)⊗ J 1
(2)Θ

′2
(3)J

′2
)

⊗L
(
J 0 ·op Θ′2(1) . J

′0 ⊗ S(Θ′1)⊗ J 2
)

where in the second to last line we used that

Θ1 ⊗Θ2
(1) ⊗Θ2

(2) = Θ1Θ′1 ⊗Θ′2 ⊗Θ2 .
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and in the last line we used B-equivariance of the dynamical twist. Next, we will use
one more time that Θ is a universal R-matrix to obtain

Ψ1 ⊗L ∆(Ψ2)Ψ =
(

1⊗ 1⊗ J 1
(1)Θ

′2
(1)J

′1Θ2
)
⊗L
(

1⊗ S(Θ1)⊗ J 1
(2)Θ

′2
(2)J

′2
)

⊗L
(
J 0 ·op Θ′′2 . J ′0 ⊗ S(Θ′′1)S(Θ′1)⊗ J 2

)︸ ︷︷ ︸
=t(J 0)s(J ′0)(1⊗S(Θ′1)⊗J 2)

Since the images of the source and target maps commute, we find:

Ψ1 ⊗L ∆
(
Ψ2
)

Ψ

=
(

1⊗ 1⊗ J 1
(1)Θ

′2
(1)J

′1Θ2
)
⊗L
(

1⊗ S(Θ1)⊗ J 1
(2)Θ

′2
(2)J

′2
)

⊗Ls(J ′0)t(J 0)
(
1⊗ S(Θ′1)⊗ J 2

)
=
(

1⊗ 1⊗ J 1
(1)Θ

′2
(1)J

′1Θ2
)
⊗L t(J ′0)

(
1⊗ S(Θ1)⊗ J 1

(2)Θ
′2
(2)J

′2
)

⊗L
(
J 0 ⊗ S(Θ′1)⊗ J 2

)
= ∆

(
Ψ1
)

Ψ⊗L Ψ2 .

The bialgebroid morphism (Lop oDBop ⊗Hop)op π−→
(
DBop

Lop
⊗Hop

)op
induces a

bialgebroid twist (π ⊗L π) Ψ on the quotient B [DM06, Remark 3.18]. In the following
we will be suppressing the projection π from the notation. In other words, we will
understand calculations in B as those in (Lop oDBop ⊗Hop)op done modulo the biideal
J defining DBop

Lop
.

Module algebras Let A be an H-module algebra. For any a ∈ A and h ∈ H we
will write h ⊗ a 7→ h.a for the H-action. We equip the tensor product L ⊗ A with the
multiplication

mL⊗A ((λ⊗ a)⊗ (µ⊗ b)) = mL (λ⊗ µ)⊗mA (λ⊗ µ) ,

for all λ, µ ∈ L and a, b ∈ A. As above, let L be a B-base algebra. We will write B for
the induced left DB-action.

Proposition B.2.6. L ⊗ A is a module algebra over B =
(
DBop

Lop
⊗Hop

)op
for the

action defined by
(λ⊗ α⊗ h) ⇀ (µ⊗ a) = λ ·op (α B µ)⊗ h.a

for any λ⊗ α ∈ DBop
Lop

, h ∈ Hop and µ⊗ a ∈ L ⊗A.

Proof. On the one hand we have

(λ⊗ α⊗ h) ⇀ (µν ⊗ ab) = λ ·op (α B µν)⊗ h.ab
= λ ·op α(2) B ν ·op α(1) B µ⊗

(
h(1).a

) (
h(2).b

)
and on the other hand we have

mL⊗A (∆B (λ⊗ α⊗ h) ⇀ (µ⊗ a)⊗ (ν ⊗ b))
= mL⊗A

((
1⊗ α(1) ⊗ h(1)

)
⊗L
(
λ⊗ α(2) ⊗ h(2)

)
⇀ (µ⊗ a)⊗ (ν ⊗ b)

)
= mL⊗A

((
α(1) B µ⊗ h(1).a

)
⊗
(
λ ·op α(2) B ν ⊗ h(2).b

))
=
(
α(1) B µ

) (
λ ·op α(2) B ν

)
⊗
(
h(1).a

) (
h(2).b

)
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Proposition B.2.7. Let Ψ be the bialgebroid twist from (B.11). Then, L ⊗ A with
multiplication

a ∗ b = J 0 ⊗mA

(
J 1.a⊗ J 2.b

)
λ ∗ µ = mL (λ⊗ µ) (B.12)

a ∗ λ = Θ1 B λ⊗ S−1
(
Θ2
)
.a λ ∗ a = λ⊗ a

for a, b ∈ A, λ, µ ∈ L, is a module algebra over the twisted bialgebroid B̃

Proof. By Propositions B.2.6 we know that L⊗A is a module algebra over the untwisted
bialgebroid B. Then, it follows from Proposition B.2.4 that L ⊗ A with the Ψ-twisted
multiplication is a module algebra over the Ψ-twisted bialgebroid. Explicitly, for any
a, b ∈ A, the twisted multiplication is

a ∗ b = mL⊗A
(
Ψ1 ⇀ (1⊗ a)⊗Ψ2 ⇀ (1⊗ b)

)
= mL⊗A

((
1⊗ J 1S−1

(
Θ2
)
.a
)
⊗
((

Θ1 B 1
)
J 0 ⊗ J 2.b

))
= mL

(
1⊗ J 0

)
⊗mA

(
J 1.a⊗ J 2.b

)
where we used that Θ1 . 1 = ε

(
Θ1
)
. This agrees with the formula in (B.12). For a ∈ A

and λ ∈ L we have

a ∗ λ = mL⊗A
(
Ψ1 ⇀ (1⊗ a)⊗Ψ2 ⇀ (λ⊗ 1)

)
= mL⊗A

((
1⊗ J 1S−1(Θ2).a

)
⊗
((

Θ1 B λ
)
J 0 ⊗ J 2.1

))
= mL

(
1⊗Θ1 B λ

)
⊗mA

(
S−1(Θ2).a⊗ 1

)
,

where this time we used that A is an H-module algebra and therefore J 2.1 = ε
(
J 2
)
,

together with J 0 ⊗ J 1 ⊗ ε
(
J 2
)

= 1⊗ 1⊗ 1 which holds for any dynamical twist. The
other cases can be worked out similarly.
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