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1 - Introduction

1.1 . General Context

The problem of the representation of numbers has ancient roots. Around
2000BC, the Babylonians used a number systembased on the number 60 [58].
That system allowed the Babylonians to perform arithmetic operations rela-
tively efficiently. Archimedes is attributed to inventing a system for naming ex-
tremely large numbers in his famous treatise Arenarius (The Sand Reckoner,
c. 287−212 BC) [42]. While it does not directly correspond to ourmodern con-
cept of exponents, it prefigures a form of exponential representation. Over
time, various civilizations introduced distinct numerical notations, including
the “Hindu-Arabic” numerals developed first in India within the Hindu culture,
followed by its adoption and refinement in the Arabic numeral system.

Not long after this, Al-Khwarizmi wrote his book “Al-Kitab al-Mukhtasar
fi Hisab al-Jabr wal-Muqabala,” which translates to “The Compendious Book
on Calculation by Completion and Balancing.” This work laid the foundation
for the field of algebra and introduced the “algorithm” notion. It also played
a crucial role in transferring the Greek and Hindu-Arabic numeral system to
Europe at the beginning of the 12th century, which was the groundwork for
modern mathematics and science development.

Over time, these developments set the stage for the scientific revolution in
the 16th and 17th centuries by luminaries like Johannes Kepler and Isaac New-
ton. In particular, Newton significantly contributed to the development of cal-
culus, a fundamental stepping stone for solving mathematical physics prob-
lems such as ordinary differential equations (ODEs). By introducing the con-
cept of derivatives and integrals, Newton provided a powerful mathematical
framework for understanding change and accumulation. Interestingly, it took
about 2000 years of migration of astronomical knowledge fromMesopotamia
via Greeks, Hindus, and Arabs to arrive at a truly numerical system. For more
detail, we refer to [58, 19].

In the 20th century, scientific development underwent a qualitative leap
thanks to Hilbert’s questions. In the domain of scientific computing, where
there was a growing need to automate solutions for scientific problems, re-
searchers confronted the challenge of developing a computer to expedite cal-
culations. Turing made important contributions to this development, mark-
ing a significant milestone in the history of science and technology. Turing
addressed Hilbert’s decidability question using the abstract device [66], now
known as a Turing machine. Furthermore, he participated in constructing the
first programmable general-purpose electronic digital computer, ENIAC, dur-
ing World War II in 1945, which was a groundbreaking achievement. ENIAC
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was used to calculate artillery firing tables and perform other complex math-
ematical operations.

ENIACwas the first computer to incorporate hardware support for floating-
point arithmetic, a method of representing and performing arithmetic opera-
tions on real numbers in a computer. Floating-point arithmetic is commonly
used in various scientific and engineering applications, including simulations
and scientific computing. It provides a compromise between precision and
range by allowing the representation of various types and sizes of numbers
while maintaining reasonable accuracy. This flexibility makes it essential for
solving complex scientific problems in fields such as physics, chemistry, biol-
ogy, and engineering. However, floating-point arithmetic is not exact and can
introduce rounding errors.

Rounding error is a phenomenon that can occur during the representa-
tion of numbers or elementary operations. It arises because not all real num-
bers can be accurately represented in floating-point format due to the limited
number of bits available. As a result, these numbers must be rounded to rep-
resentable floating-point numbers, leading to errors.

The limited precision may cause various types of numerical errors, such
as catastrophic cancellation, which occurs when subtracting two nearly equal
numbers (i.e., two numbers whose difference has a smaller exponent than
either number). Absorption occurs when adding a small value and a much
larger value (i.e., the exponent of the larger value is significantly greater than
that of the smaller value). Stagnation, an extreme case of absorption, occurs
when the result of a floating-point calculation is repeatedly rounded to the
same value, and then the information in the updates is lost.

Rounding errors can propagate through repeated operations using inac-
curate numbers. Therefore, the way we perform calculations can affect how
errors add up. This becomes especially important when we have long se-
quences of operations, as these errors can accumulate and make our final
outcome less accurate [60, p. 8]. This is relevant in various domains, such as
scientific and numerical computing, where precision and accuracy are crucial
for obtaining reliable results.

In the history of scientific computing, stochastic rounding [60], a comput-
ing paradigm developed as a model for performing computations using pre-
cise or imprecise data, has attracted a lot of attention. It can be used to esti-
mate empirically the numerical error of computer programs. Since the 1940s,
John von Neumann and Goldstine [68] first proposed modeling rounding er-
rors as random errors to obtain probabilistic error bounds. They suggested a
probabilistic analysis of rounding errors in elementary operations such as ad-
dition or division. Although they were unaware of the nature of these errors,
they treated them as random variables with a known maximum size, leading
to probabilistic investigations.
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AfterWorldWar II, there has been a rapid increase in computing resources
and simulation complexity. During the 1950s, 1960s, and 1970s, the field of
computing experienced significant growth and the development of various
computer systems. However, before the 1980s, the representation of floating-
point numbers was a complex and challenging issue for programmers work-
ing with different computers and systems, as described inWilliam Kahan’s pa-
per [48]. There was a need for a unique format to represent these numbers.
Therefore, the publication of the IEEE-754 standard [31] in 1985 established
a unified approach for floating-point arithmetic, making computations more
reliable and consistent across different computers. A significant revision was
published in 2008 [72], and a minor revision was released in 2019 [4].

The IEEE-754norm [4] defines five roundingmodes for floating-point arith-
metic: round to nearest ties to even (the default roundingmode and RN in the
following), round to nearest ties away, round to zero, round to+∞, and round
to−∞. Thesemodes are characterized by their deterministic nature, in which
the rounded value of a number x is determined by an exact value (depend-
ing on x), and an arbitrary sequence of rounded elementary operations will
always produce the same result.

Stochastic rounding [13] can also be used as a replacement for the default
deterministic rounding mode in numerical computations. SR is a probabilis-
tic rounding mode: an inexact computation is rounded to the next smaller
or larger floating-point number with probability depending on the distances
to those numbers. To the best of our knowledge, Forsythe first presented
the use of SR to reduce the accumulation of rounding errors. In 1949, at the
fifty-secondmeeting of the AmericanMathematical Society, he proposed [26],
a rounding mode called "random round-off " in the context of solving simple
ordinary differential equations. This rounding mode involves rounding up or
down with a certain probability.

1.2 . Problematic

The quality of a numerical computation is usually measured by its accu-
racy, and in general, finding good error bounds for numerical algorithms is
difficult. Probabilistic error bounds can be an alternative proposition to mea-
sure the numerical error of algorithms. The probabilistic analysis takes into
account the distribution of inputs and analyzes algorithm behavior on aver-
age. It provides error bounds valid from certain probability. Note that con-
sidering rounding errors as random variables to calculate probabilistic error
bounds is not new. It dates back to the work of von Neumann and Golds-
tine [69], Henrici [34, 35, 36], among others.

In the worst case, the error bound of a computation with n operations is
proportional to nu, where u is the maximal error of each operation. This sit-
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uation is attainable; for instance, consider the summation of n real numbers,
each affected by an error of the same sign with a maximal error. However,
Wilkinson [71, sec 1.33] had the intuition that the roundoff error accumulated
in n operations is typically proportional to√nu rather than nu. Von Neumann
and Goldstine [69] observed that assuming rounding errors as independent
random variables uniformly distributed in [−u;u], the dispersion of the sum is
given by√nu/√3, where n is the number of random variables. Furthermore,
the Central Limit Theorem (CLT) [15] aligns with this intuition in the context of
a sum of independent random variables. This creates a strong temptation to
use probabilistic analysis instead of deterministic analysis.

Several numerical analyses [13] have demonstrated higher accuracy when
using SR as a replacement for RN. However, the mathematical studies in this
area remain limited and do not align with the observed numerical advantages
of SR. In this dissertation, our primary focus is on conducting a theoretical
analysis of stochastic rounding as a rounding mode. Specifically, we address
the following questions:

• What precise meaning can we give to Wilkinson’s intuition in SR, and
to what extent does it hold? For some algorithms, under the indepen-
dence assumption, the rule of thumb that one can replace a nu error
boundwith√nu has been proven using probabilistic bounds. However,
using SR and without additional assumptions, demonstrating the valid-
ity of this property can be challenging.

• What can we infer about the variance of an algorithm under SR? The
variance analysis of a SR computation has yet to attract any attention
in the literature despite allowing the use of several probabilistic prop-
erties.

• How can we enhance existing probabilistic error bounds, and what is
the behavior of SR in low-precision? Current probabilistic bounds are
based on the Azuma-Hoeffding inequality, but other concentration in-
equalities can be employed to ensure tight error bounds.

• What impact does SR have on complex algorithms? For algorithms with
multi-linear error, SR is unbiased and provides tight probabilistic error
bounds. However, it is essential to investigate non-linear algorithms
under SR to confirm the extension of SR benefits to these problems.

1.3 . Motivation

Let us illustrate how SRworks through a simple example: let z = 1.2·100+
4.8 · 10−1 = 1.2 + 0.48 = 1.68. With RN, keeping two significant digits ẑ = 1.7.
While for SR, ẑ = 1.7 with probability 0.8 and ẑ = 1.6 with probability 0.2. The
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expected result is the exact value: 0.8 × 1.7 + 1.6 × 0.2 = 1.68. SR results
are concentrated around the exact result because its randomness breaks the
bias of RN [60], which in this case always rounds upwards.

Stochastic rounding has two main applications [13]. First, it can be used
to estimate empirically the numerical error of computer programs; SR intro-
duces a random noise in each floating-point operation, and then a statisti-
cal analysis of the set of sampled outputs can be applied to estimate the
effect of rounding errors. To make this simulation available, various tools
such as verificarlo [18], Verrou [25], and Cadna [47] have been developed.
Second, stochastic rounding can also be used as a replacement for the de-
fault deterministic rounding mode in numerical computations. It has been
demonstrated that in multiple domains such as neural networks, ODEs, and
PDEs [13], and in low-precision, SR provides better results compared to RN.

Studying algorithms under SR in low-precision, especially bfloat-16, is be-
coming increasingly attractive due to its higher speed and lower energy con-
sumption. In this regard, Artificial Intelligence (AI) has motivated research on
stochastic rounding due to its higher accuracy in various applications such as
deep learning and optimization. In AI, particularly deep learning, neural net-
work training involves the accumulation of gradients during backpropagation.
The deterministic rounding modes can introduce biases into these accumu-
lated gradients. At the same time, Gupta et al. [32] have shown that stochastic
rounding can be used as an alternative rounding mode, leveraging its ability
to reduce gradient biases in gradient updates.

Connolly et al. [12] have shown that SR successfully prevents the phe-
nomenon of stagnation that takes place in various applications such as neural
networks, ODEs, and PDEs. In particular, Gupta et al. show in [32] that deep
neural networks are prone to stagnation during the training phase. For PDEs,
solved via Runge-Kutta finite difference methods in low precision, SR avoids
stagnation in the computations of the heat equation solution as proved in [14].

Despite its potential advantages, hardware units implementing SR have
yet to be widely available in most computer systems. However, this rounding
mode has been successfully integrated into diverse specialized processors
such as Graphcore IPUs [1], which supports SR for 32 bits floating point, bi-
nary32, and 16 bits floating point, binary16, or Intel neuromorphic chip Loihi [16]
to improve the accuracy of biological neuron and synapsemodels. Also, AMD [2],
NVIDIA [5], IBM [9, 10], and other computing companies [37, 49, 52] own sev-
eral related patents. These developments support the idea of hardware im-
plementations using SR becoming more available in the future.

1.3.1 . Theoretical Framework of Stochastic Rounding

Numerical accuracy is usually measured through the error between the
actual computation and a reference value, such as the exact mathematical
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solution or a measure obtained by experimentation (often computed in high
precision compared to the precision used). In the literature and to investigate
the SR effect on algorithms, several probabilistic tools have been used, such
as the independence of random variables, the Central Limit Theorem [15], and
concentration inequalities [7].

Relying on the independence assumption of random errors, Higham and
Mary [40] have shown that in various linear algebra computations, such as the
inner product, a probabilistic bound of the error proportional to √n ln (n)u
can be achieved rather than the deterministic bound in O(nu). Their ap-
proach uses the Azuma-Hoeffding inequality for independent random vari-
ables, an inequality that provides a bound on how a sum of n independent
random variables deviates from its expected value [7]. Moreover, by employ-
ing the unbiased nature of SR [60], the expected value coincideswith the exact
value, which allows obtaining a probabilistic bound on the absolute error.

Although the independence assumption is not always true, errors can ac-
cumulate and propagate throughout the computation process, leading to cor-
related errors. Factors such as iterative algorithms and numerical approxima-
tions contribute to the dependence on randomerrors. This result was the first
that shows a probabilistic error bound valid for any n, unlike results obtained
by applying the central limit theorem, which applies only as n→ +∞.

In collaborationwith Connolly [12], they have demonstrated the samebounds
by proving the following result: since the mean of each rounding error is zero
regardless of the previous computation and assuming a perfect random gen-
erator, the randomerrors under SR-nearness satisfy themean independence,
a weaker property than the independence of random errors. Consequently,
using this tool, they constructed amartingale [15]. This development is partic-
ularly significant as it enables the retrieval of various probabilistic properties,
including concentration inequalities and CLT.

A martingale [15] is a sequence of random variables where the expected
value of the next variable, given all the previous ones, is equal to the current
value. In the context of the probabilistic error analysis with SR, various meth-
ods exist to construct the martingale, and the technique used impacts the
quality of the final result. For instance, in the case of the inner product, Ipsen,
and Zhou [46] form a martingale in a different way than Connelly et al. [12].
Their method demonstrates that the probabilistic bound of the forward error
is proportional to√nu rather than nu when nu≪ 1.

The martingale central limit theorem also implies that under certain con-
ditions, the error converges in distribution to a normal distribution that is
characterized by its mean and variance [15]. This behavior is often observed
in practice. In this case, the number of significant digits can be estimated by
− log( σ

|µ|) where σ is the standard deviation (the square root of the variance)and µ is the expected value [60]. Sohier et al. [63] have shown that this propo-
12



sition is valid but under normality assumption with a probability 0.68.

1.4 . Contributions

The recent theoretical developments presented in last section have shown
that when using SR, the probabilistic error bound of algorithms such as the
inner product is proportional to √nu instead of nu. The overall goal of this
thesiswas to pursue this intuition and generalize this benefit to other complex
algorithms.

The first research question was a study of the bias and a comparison of
two stochastic rounding modes (SR-nearness and SR-up-or-down) and RN-
nearest32 on rectangular integration, which is at the basis of Euler’s Method
for ODE. In Chapter 3, which is an extension of the paper “The Positive Effects
of Stochastic Rounding in Numerical Algorithms" In 29th IEEE Symposium on
Computer Arithmetic ARITH 2022, E-M. El Arar, D. Sohier, P. de Oliveira Castro,
and E. Petit (see [22]), we demonstrate through two examples (the constant
function and the cosine function) that bias can result in a loss of accuracy.

For the constant function, an exact expression and an estimation of the
bias are given for SR-up-or-down. We show how the accumulation of errors
with both SR-up-or-down and RN-nearest32 can significantly impact the accu-
racy of computations, even on simple algorithms, and that SR-nearness can
remain unbiased and provide the full expected precision on them.

We assume an error-free cosine function and only focus on the errors ac-
cumulated through elementary operations. In addition to the previous results
for the constant function, we also present an expression for themethod error
of the cosine function. We conclude with numerical experiments that validate
the theoretical research discussed in this chapter.

Since SR-nearness is unbiased and satisfies the mean independent prop-
erty, we thus decided to focus on this rounding mode and explore more find-
ings and insights that can contribute to enhancing SR as a rounding mode.
We analyzed several algorithms and demonstrated probabilistic bounds on
the error in O(√nu) instead of O(nu) for the deterministic bounds.

In chapter 4, which is an extension of the paper “Stochastic Rounding Vari-
ance and Probabilistic Bounds: A New Approach" SIAM Journal on Scientific
Computing 2022, E-M. El Arar, D. Sohier, P. de Oliveira Castro, and E. Petit
(see [23]), we apply the approach based on Azuma-Hoeffding inequality [53, p.
303] and martingales [53, p. 295] (AH method in the following) to the sequen-
tial summation (Sub-section 4.1.1) in which we explain how thismethod can be
used to establish probabilistic error bounds inO(√nu) for algorithmswith ex-
act inputs. We also extend this method to derive a new probabilistic bound
on the forward error of the Horner algorithm in O(√nu) (Sub-section 4.1.2).
The analysis of this algorithm differs from that of the summation or the inner
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product due to the presence of an error affecting one of the multiplication
operands. This extends the approach to a whole new class of algorithms, and
is a step towards its application to all numerical schemes.

Hallman and Ipsen [33] have studied pairwise summation in the context
of SR, showing that the forward error for a sum of n values has a probabilistic
bound inO(√log(n)u) insteadO(log(n)u) for RN. In Sub-section 4.1.3, we pro-
pose a more straightforward technique to show the martingale presence of
this algorithm, which improves Hallman and Ipsen pairwise summation error
bound [33].

To our knowledge, the variance analysis of a SR computation has not at-
tracted any attention in the literature. In Section 4.2, we have also introduced
a novel approach referred to as the BC method in the following. It exclusively
relies on error variance information and exhibits enhanced accuracy for a
large problem size n. This new method uses the Bienaymé–Chebyshev in-
equality [8, p. 19] to establish a probabilistic error bound. Based on the mean
independence property, we have presented Lemma 11, a general framework
applicable to a wide class of algorithms that allows to compute deterministic
bounds of the variance.

We have illustrated the applicability of this method to the previous algo-
rithms studied with the AH method. We demonstrated that the use of Bi-
enaymé–Chebyshev inequality combined with the previous variance bound
leads to probabilistic bound also inO(√nu). Note that both methods yield to
obtain probabilistic bounds depending on three parameters: the precision u,
the problem size n, and the probability λ that a SR-nearness computation has
an error greater than the bound.

In Section 4.3, we analyze these probabilistic bounds, and we show that
the one obtained by the BC method is tighter in many cases. We also demon-
strate superior accuracy with BC method in low-precision formats, which are
becoming critical in high-performance computing to reduce computation and
storage costs. In conclusion, in this chapter, we have demonstrated that any
multi-linear transformation of errors under SR-nearness forms a martingale.
We have shown that using the AHmethod ensures a tight probabilistic bound
in probability, while the BCmethod guarantees a tight probabilistic bound for
a large problem size n.

In previous theoretical investigations concerning SR error bounds, as dis-
cussed in Chapter 4, the focus has been on algorithms where the resulting
error is a multi-linear function of each operation rounding error. The martin-
gale directly stems from this error model without additional terms. In Chap-
ter 5, which is an extension of the paper “Bounds on Non-Linear Errors for
Variance Computation with Stochastic Rounding" preprint (submitted 2023),
E-M. El Arar, D. Sohier, P. de Oliveira Castro, and E. Petit (see [21]), we focus on
the probabilistic error analysis of algorithms under SR whatever the nature
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of errors. Using the Doob-Meyer decomposition [20], we introduce a general
framework that enables computing probabilistic error bounds for algorithms
involving both linear and non-linear sources of error under SR. To the best of
our knowledge, this represents the first theoretical exploration of non-linear
problems with SR.

Section 5.1 shows that under SR, the error of an algorithm can be decom-
posed into a martingale plus a drift. We demonstrate that the drift is zero
for algorithms with multi-linear error while using the AH or BC method to the
martingale term leads to probabilistic error bounds inO(√nu). Furthermore,
we have shown that in the general case, the drift is dominated by the mar-
tingale at the first order, which allows us to derive tight probabilistic error
bounds.

We apply this general framework to two algorithms that compute the vari-
ance: textbook-variance in Section 5.2, and two-pass-variance in Section 5.3.
In the case of the textbook-variance algorithm, we exploit the fact that one
part of the error constructs directly a martingale, and we use the generaliza-
tion to the remaining part of the error. We use the generalization to the entire
error for the two-pass-variance algorithm, and for both algorithms, we show
probabilistic error bounds in O(√nu). The applicability of this generalization
to these algorithms illustrates its flexibility and adaptability across various sit-
uations.

We also proposed an alternative approach based on similar techniques
to handle the variance computation problem. BC and AH methods in Sec-
tions 5.2, and 5.3 also show probabilistic error bounds in O(√nu) for both
algorithms. Moreover, Section 5.4 demonstrates that SR results extend to the
pairwise case, with probabilistic error bounds in O(√log(n)u).

No study to date has theoretically examined the division case under SR.
In this thesis, we have investigated the division problem through two exam-
ples: the computation of Møller-Plesset Perturbation Theory (MP2), a method
used to estimate the correlation energy of molecules. This problem was pro-
posed by Anthony Scemama from the "Laboratoire de Chimie et Physique
Quantiques (LCPQ)." The second example is the computation of the inverse
of the sum of n real numbers, for which we proposed a computationmodel to
estimate the error. For both problems, we demonstrated probabilistic error
bounds in O(√nu).

In conclusion, in this thesis we have demonstrated that using stochastic
rounding allows us to obtain probabilistic error bounds inO(√nu). Using the
BC method, we have established tight probabilistic bounds for large problem
size n, which gives an interest to use SR in low-precision. Moreover, the gen-
eralization presented in Section 5.1 provides a functional framework for the
probabilistic analysis of algorithms under SR.
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2 - Floating-pointArithmetic andStochastic Round-
ing

This chapter comprehensively overviews the floating-point background
used in this thesis. Section 2.4 presents a state of the art regarding error anal-
ysis with stochastic rounding and describes two stochastic rounding modes:
SR-nearness and SR-up-or-down. Sub-section 2.4.2 shows that SR-nearness
is unbiased and satisfies the mean independence property, an assumption
weaker than independence yet powerful enough to yield significant results
by martingale theory. We review the works proposed by Connelly et al. [12]
and Ipsen, and Zhou [46] that show probabilistic bounds on the forward error
for the inner product proportional respectively to√n ln(n)u and√nu rather
than to the deterministic bound that is proportional to nu. We point out the
differences in these two works and illustrate the advantages of each method.

2.1 . Floating-Point Representation

For a given basis β and a working precision p, a floating-point number (FP)
is a real number x characterized by (m, e) such that

x = m× βe−p, (2.1)
where

• m is an integer (the significand) such that βp−1 ≤ |m| < βp.
• e ∈ Z is the exponent.
The precision p in the representation (2.1) is the number of significant digits

or bits that can be used to represent the fractional and integral parts of x. The
exponent e belongs to a subset of Z defined by a specific range. This range is
determined by the standard or specification of the floating-point format being
used.

Modern computers use the IEEE-754 standard [4] for implementing floating-
point operations that define different formats, such as binary-32 (single pre-
cision) and binary-64 (double precision). These formats ensure consistent
representation and interoperability across different computer systems. How-
ever, some recent hardware has proposed other formats to improve numer-
ical precision, reduce memory storage, and consume less energy. One such
format is bfloat-16, originally proposed by Google and formalized by Intel [3].
The following table summarizes various binary floating point formats. The
precisions of FP numbers commonly used in numerical computations defined
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in the latest revision of the IEEE-754 standard are given by binary-k, where
k = 32, 64 or 128.

Precision Bits Sign Mantissa Exponent emin emax

binary-128 128 1 112 15 -16382 16383binary-64 64 1 52 11 -1022 1023binary-32 32 1 23 8 -126 127binary-16 16 1 11 4 -14 15bfloat-16 16 1 8 7 -126 127
Table 2.1: Binary floating-point formats

Table 2.1 presents a variety of binary floating-point formats. Because the
representation of numbers is finite, emin and emax are also finite, and their val-ues depend on the normalization used for the mantissa. Note that decimal
formats also exist, providing alternative representations for real numbers in
computer systems. Some values require special encoding and cannot be ex-
pressed using the representation (2.1) such as +0, −0, +∞, and −∞. We also
have

• NaN (not a number): Any invalid operation will return a NaN. For in-
stance√−2 or 0/0.

• subnormal numbers (also called denormalizednumbers) are represented
by setting the exponent bits to all 0s, i.e., e = emin, and using a non-zeromantissa.

In this dissertation, wedon’t take into account special FP values such as un-
derflow, overflow, denormals, andNaNs. Detailed informationon the floating-
point format most generally in use in current computer systems is defined in
the IEEE-754 standard. For a comprehensive understanding of floating-point
arithmetic, we highly recommend referring to [55] and [6] for further details.

2.2 . Rounding Error

Certain inputs are not exact representations in FP numbers. Additionally,
the results of elementary floating-point operations are typically not precisely
represented as FP numbers. This leads to a fundamental aspect of floating-
point arithmetic known as rounding error. In order to specify a floating-point
arithmetic system, it is necessary to establish a protocol for rounding the re-
sult of an operation to a representable FP number.

Denote F the set of normal floating-point numbers. For a real number x,
upward rounding ⌈x⌉ and downward rounding ⌊x⌋ are defined by:

⌈x⌉ = min{y ∈ F : y ≥ x}, ⌊x⌋ = max{y ∈ F : y ≤ x},
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and by definition, ⌊x⌋ ≤ x ≤ ⌈x⌉, with equalities if and only if x ∈ F . The
IEEE-754 standard defines five rounding modes.

• Round to nearest, ties to even: rounds x to the nearest FP number. If x
falls exactly halfway between two consecutive FP numbers, it is rounded
to the FP number whose least significant digit is even. This is the default
rounding mode in the IEEE-754 standard.

• Round to nearest, ties away from zero: rounds x to the nearest FP num-
ber. If x falls exactly halfway between two consecutive FP numbers, it
is rounded to the FP number with the larger magnitude.

• Round toward +∞: round x to ⌈x⌉.
• Round toward −∞: round x to ⌊x⌋.
• Round toward 0: rounding to the representable number closest to zero.
For a given rounding mode, denote fl(x) the floating-point approximation

of a real number x ̸= 0 that is one of ⌊x⌋ or ⌈x⌉. The relative error δ of this
approximation is given by:

δ =
fl(x)− x

x
. (2.2)

Thus fl(x) = x(1 + δ) ∈ F .
Definition 1. The unit roundoff u of a radix β, precision p, is defined as

u = β1−p.

Theorem 1. The relative error δ in the Equation (2.2) satisfies
|δ| ≤ u.

While the IEEE-754 mode RN (round to nearest, ties to even) has the stronger prop-
erty that |δ| ≤ 1

2u.
Proof. Since x = m× βe−p where βp−1 ≤ |m| < βp, we have βe−1 ≤ |x| < βe.
If |x| = βe−1 then x is a FP number and thus δ = 0. Otherwise, 1

|x| < β1−e and
the distance between two consecutive FP numbers is βe−p. So, for round to
nearest

|fl(x)− x| ≤ 1

2
βe−p,

Otherwise,
|fl(x)− x| ≤ βe−p.

Hence,
|δ| =

∣∣∣∣fl(x)− xx

∣∣∣∣ ≤ u.
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Let x, y ∈ F and op ∈ {+,−, ∗, /}. For IEEE-754 rounding modes [4]
and stochastic rounding [12], the standard model defines the approximation
fl(x op y) as:

fl(x op y) = (x op y)(1 + δ). (2.3)
Assume that x is a real number that is not representable: x ∈ R \ F . The

machine-epsilon or the distance between the two FP numbers enclosing x is
ϵ(x) = ⌈x⌉ − ⌊x⌋ = βe−p. Since βp−1 ≤ |m| < βp, then βe−1 ≤ |x| < βe and

|ϵ(x)| = βe−1u ≤ |x|u. (2.4)
The fraction of ϵ(x) rounded away, as shown in figure 2.1, is p(x) = x−⌊x⌋

⌈x⌉−⌊x⌋

⌊x⌋ ⌈x⌉x

1
2
ϵ(x)

p(x)ϵ(x)

Figure 2.1: p(x) is the fraction of ϵ(x) to be rounded away.
We note TxU, the greatest integer less than or equal to x. The following

lemma gives an important property of downward rounding.
Lemma 1. Let x ∈ R \ F . βp−e⌊x⌋ = Tβp−exU, where e is the exponent.
Proof. Weknow thatβp−e⌊x⌋, βp−e⌈x⌉ ∈ Z, and ⌊x⌋ < x < ⌈x⌉, thenβp−e⌊x⌋ <
βp−ex < βp−e⌈x⌉. We thus have

βp−e⌊x⌋ ≤ Tβp−exU < βp−e⌈x⌉.

Since ⌈x⌉ − ⌊x⌋ = βe−p, then βp−e⌈x⌉ − βp−e⌊x⌋ = 1 and
βp−e⌊x⌋ ≤ Tβp−exU < βp−e⌊x⌋+ 1.

2.3 . Deterministic Error Analysis

As stated previously in Section 2.2, rounding errors arise when represent-
ing a non-representable number as the nearest FP number. The accumulation
of these errors can significantly reduce the accuracy of the computed result.
In this section, we present some of the deterministic methods proposed to
investigate rounding errors.

20



2.3.1 . Forward and Backward Error
To the best of our knowledge, the earliest proposal of backward error

analysis was by Turing [65], and Von Neumann and Goldstine [69]. As sum-
marized by Higham [39]:
Backward error is a measure of error associated with an approximate solution to
a problem. Whereas the forward error is the distance between the approximate
and true solutions, the backward error is how much the data must be perturbed

to produce the approximate solution.
In other words, forward error is the error between a computed result ŷ

and the exact computation y, while backward error is the error in inputs that
allows to compute ŷ. The condition number seems first to have been used by
Turing [65] and is determined by the maximum value of the quotient:

relative forward error
relative backward error ,

it measures the sensitivity of the solution to small perturbations in the input
data [38].

One approach to evaluate computation accuracy is establishing an upper
bound on the forward error. Let us consider the computation

fl(x op y) = (x op y)(1 + δ),

where op ∈ {+,−, ∗, /}. So, the forward error δ satisfies |δ| ≤ u. In the fol-
lowing, we study the summation algorithm as an example, and we bound its
relative error. For real numbers a1, . . . , an, denote s =

∑n
i=1 ai. The com-

puted ŝ can be expressed as
ŝ = (((a1 + a2)(1 + δ2) + a3)(1 + δ3) . . .+ an) (1 + δn)

=
n∑

i=1

ai

n∏
k=max (2,i)

(1 + δk).

The forward error satisfies

|ŝ− s| =

∣∣∣∣∣∣
n∑

i=1

ai

 n∏
k=max (2,i)

(1 + δk)− 1

∣∣∣∣∣∣
≤

n∑
i=1

|ai|

∣∣∣∣∣∣
n∏

k=max (2,i)

(1 + δk)− 1

∣∣∣∣∣∣ by triangle inequality

≤
n∑

i=1

|ai|
(
(1 + u)n−1 − 1

)
.
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Finally, the relative error satisfies
|ŝ− s|
|s|

≤
∑n

i=1 |ai|
|
∑n

i=1 ai|
γn−1(u), (2.5)

where γn(u) = (1 + u)n − 1 = nu + O(u2) for nu ≪ 1. The forward error of
a summation of n floating point numbers is proportional to nu. The quantity∑n

i=1|ai|
|∑n

i=1 ai|
is the condition number of∑n

i=1 ai using the 1−norm.
In order to evaluate the accuracy of a calculation, we can also use inter-

val arithmetic that provides a systematic approach to handle uncertainty and
errors in numerical computations. In the next sub-section, we briefly explain
how interval arithmetic works.

2.3.2 . Interval Arithmetic
Interval arithmetic, as introduced by Moore in 1963 [54] and developed

in [59, 62], offers a systematic way to handle uncertainty and imprecision in
computations. It operates by representing a quantity as an interval, with lower
and upper bounds containing all the possible computation values. The ele-
mentary operations are redefined to handle intervals operands and guaran-
tee that the resulting interval provides rigorous bounds on the computation.
For instance, let x, y be such that x belongs to the interval [⌊x⌋; ⌈x⌉] and y be-
longs to the interval [⌊y⌋; ⌈y⌉]. Then, the addition [⌊x⌋; ⌈x⌉] + [⌊y⌋; ⌈y⌉] can be
implemented as follows

[⌊x⌋; ⌈x⌉] + [⌊y⌋; ⌈y⌉] = [⌊z⌋; ⌈z⌉],

where ⌊z⌋ = ⌊x⌋+⌊y⌋ and ⌈z⌉ = ⌈x⌉+⌈y⌉ are obtained with rounding toward
−∞ and +∞, respectively.

Interval arithmetic is a powerful tool that provides an interval (often with
the minimal range) that encompasses all possible exact results [6]. It is possi-
ble to refine the analysis by considering a sophisticated object such as zono-
topes [30]. However, its practical application is costly, as it requires abstract
approximation methods. Moreover, due to the conservative nature of inter-
vals, these methods tend to return intervals too large when the algorithm is
complex. The error bound can be achievable in these cases but often is not
significant and misrepresents experimental results. In these cases, statistic
techniques based on Monte Carlo arithmetic can help understand and opti-
mize complex HPC programs. Several extensions have been proposed to the
original model, including affine arithmetic [17] and Taylor models [56].

2.4 . State of the Art of Stochastic Rounding

Forsythe has presented the use of stochastic rounding to reduce the ac-
cumulation of rounding errors [26]. John von Neumann and Goldstine first
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proposed modeling rounding errors as random errors to obtain probabilistic
error bounds in the 1940s [68]. They treated rounding errors as random vari-
ables with known averages and maximum values of β−s/2, where β is the ba-
sis of the digital representation, and 2s is the number of places used. They ob-
served that if we assume m independent random variables equi-distributed
in [−β−s/2;β−s/2], the maximum of the sum of these random variables is
bounded by mβ−s/2, while the dispersion is given by √mβ−s/

√
12. This en-

couraged the consideration of probabilistic analysis instead of deterministic
analysis. This section provides a comprehensive overview of the research
done on estimating numerical errors using stochastic arithmetic.

2.4.1 . Stochastic Arithmetic
The Stochastic Arithmetic field proposes automatic methods for estimat-

ing the number of significant digits for complex programs. Twomainmethods
have been proposed: MCA "Monte Carlo Arithmetic" by Parker [60] (equivalent
to SR-nearness in the following), CESTAC "Contrôle et Estimation Stochastique
des Arrondis de Calculs" by Vignes [67] (equivalent to SR-up-or-down in the fol-
lowing). The idea is to substitute the error term δ within each operation with
a random variable that simulates the rounding error and to run the compu-
tation several times while storing the various outcomes. Then, a statistical
analysis is applied to the set of samples in order to assess the quality of the
result.

Throughout this dissertation, x̂ = fl(x) is the approximation of the real
number x under stochastic rounding.

SR-up-or-down involves rounding a floating-point number x up or down
with probability 1

2 .

x̂ =

{
⌈x⌉ with probability 1

2 ,
⌊x⌋ with probability 1

2 . ⌊x⌋ ⌈x⌉x

1
2

1
2

Figure 2.2: SR-up-or-down.This mode can be expressed [60, p. 34] in terms of p(x): since the two out-
comes of SR-up-or-down mode are equiprobable, we have E(x̂) = ⌈x⌉+⌊x⌋

2 ,
which allow us to write the bias as

E(x̂− x) = ⌈x⌉+ ⌊x⌋
2

− x,

because p(x) = x−⌊x⌋
⌈x⌉−⌊x⌋ ,

E(x̂− x) = (⌈x⌉ − ⌊x⌋)(1
2
− p(x))

= ϵ(x)(
1

2
− p(x)).
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Thus, we conclude that SR-up-or-down is biased and the expected value de-
pends on p(x) and ϵ(x).

SR-nearness involves rounding a FP number x up or downwith probability
depending on p(x) = x−⌊x⌋

⌈x⌉−⌊x⌋ .

x̂ =

{
⌈x⌉ with probability p(x),
⌊x⌋ with probability 1− p(x), ⌊x⌋ ⌈x⌉x

1− p(x)
p(x)

Figure 2.3: SR-nearness.
This definition does not include exceptional cases such as overflow, un-

derflow, and rounding of infinities and NaNs. A definition addressing these
limit cases can be found in [13, sec 5.a]. However, our analysis does not take
these special cases into account.

The rounding SR-nearness mode is unbiased
E(x̂) = p(x)⌈x⌉+ (1− p(x))⌊x⌋

= p(x)(⌈x⌉ − ⌊x⌋) + ⌊x⌋ = x.

Wehighlight that there exists an alternative expression to present stochas-
tic rounding. Consider a real number x such that x /∈ F . Let x̂ be the random
variable of the distribution of results after random rounding of x. Then

x̂ = random_round(x) = roundp(x+ βe−pξ), (2.6)
where ξ is a random variable that can be discrete or continuous and roundp isthe default IEEE-754 rounding mode to the nearest with p precision (for more
details, we refer to [17, sec 5.4.3]).

One way to evaluate the numerical accuracy of computation is the num-
ber of significant digits which measures the relative error. The key idea is to
count the number of accurate digits in the floating-point mantissa against a
reference. Stott Parker [60] proposed that the number of significant digits can
be defined as − log(

∣∣∣σµ ∣∣∣), where µ represents the mean and σ represents the
standard deviation. Sohier et al. [63] have demonstrated that this proposition
holds true but under the normality assumption with a probability 0.68. They
also introduce a new quantity of interest: the number of digits contributing
to the accuracy of the final result.

As mentioned in the introduction of this chapter, SR can be used as a
replacement for RN in numerical computation. The growing interest in SR
arises from its unbiased property and its positive effect in various domains,
such as neural networks and ODEs, especially in low-precision. In the next
sub-section, we will review the theoretical investigations proposed to analyze

24



errors with SR. We show that rounding errors under SR satisfy themean inde-
pendence property, an assumption weaker than independence yet powerful
enough to yield important results by martingale theory.

2.4.2 . Error Analysis via Martingales
Wilkinson [71, sec 1.33] had the intuition that the roundoff error accumu-

lated in n operations is typically proportional to√nu rather than nu. In order
to validate this intuition, several works have addressed the issue of estimating
the error of computation under stochastic rounding.

Motivated by the unbiased nature of SR-nearness and assuming indepen-
dent random errors, Higham and Mary [40] have shown that for the inner
product, a probabilistic bound of the error proportional to√n ln (n)u can be
achieved rather than the deterministic bound in nu. However, in general, and
under SR-nearness, the error terms in algorithms appear as a sequence of
random variables such that the independence property does not hold. How-
ever, a weaker yet fruitful assumption, called mean independence, does.
Definition 2. A random variable Y is said to be mean independent from ran-
dom variable X if its conditional mean E[Y/X] = E(Y ). The random sequence
(X1, X2, , . . . , ) is mean independent if E[Xk/X1, ..., Xk−1] = E(Xk) for all k.
Proposition 1. LetX and Y be two real random variables:

1. IfX and Y are independent thenX is mean independent from Y .
2. IfX is mean independent from Y thenX and Y are uncorrelated.

The reciprocals of these two implications are false.
Let a, b ∈ F and c ← a op b the exact result of an elementary opera-

tion op ∈ {+,−, ∗, /}. Under SR-nearness, the relative error δ, such that
ĉ = (a op b)(1 + δ), is a random variable satisfying E(δ) = 0 and |δ| ≤ u.

In the following, we recall [12, Lem 5.2] (and its proof by adapting the same
notations) which shows that SR-nearness errors satisfy the mean indepen-
dence property.
Lemma 2. Consider a sequence of elementary operations ck ← ak opk bk, with δkthe error of their kth operation, that is to say, ĉk = (âk opk b̂k)(1 + δk). Using SR-nearness, the δk are random variables such that E[δk/δ1, · · · , δk−1] = E(δk) = 0.

Proof. It suffices to consider quantities a and b resulting from
the computation of k − 1 scalar operations that have produced
rounding errors δ1, · · · , δk−1. Consider now the computation of
c ← a op b for any scalar operation op ∈ {+,−, ∗, /}, resulting in
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ĉ = fl(a op b) = (a op b)(1 + δk). The rounding error δk = (ĉ− c)/c
is a random variable that depends on δ1, · · · , δk−1 and is given by
δk =

{
(⌈c⌉ − c)/c with probability p = (c− ⌊c⌋)/(⌈c⌉ − ⌊c⌋),
(⌊c⌋ − c)/c with probability 1− p.

Moreover, (⌈c⌉−c)/c and (⌊c⌋−c)/c are themselves random vari-
ables that are entirely determined by δ1, · · · , δk−1, and so the con-ditional expectation of each given δ1, · · · , δk−1 is itself. Therefore,we obtain
E(δk|δ1, · · · , δk−1) =pE

(
⌈c⌉ − c
c

∣∣∣∣δ1, · · · , δk−1

)
+ (1− p)E

(
⌊c⌋ − c
c

∣∣∣∣δ1, · · · , δk−1

)
= p

(
⌈c⌉ − c
c

)
+ (1− p)

(
⌊c⌋ − c
c

)
= 0.

Lemma 2 (that has been proven in [12, Lem 5.2]) will be the fundamen-
tal tool for the theoretical analysis of algorithms under SR. It substitutes the
independence assumption used for the error analysis under SR by a weaker
property satisfied by SR-nearness. The mean independence property is suf-
ficient to improve the error analysis of algorithms with SR-nearness. It leads
to obtain a martingale (Definition 3), which is a sequence of random variables
such that the expected value of the next value in the sequence, given all the
past values, is equal to the current value. Using Azuma-Hoeffding inequal-
ity [53, p. 303], allows to obtain probabilistic bounds on the error in O(√nu).
The full process is detailed after Lemma 3 for the inner product.
Definition 3. A sequence of random variablesM1, · · · ,Mn is a martingale withrespect to the sequenceX1, · · · , Xn if, for all k,

• Mk is a function ofX1, · · · , Xk,
• E(|Mk|) <∞, and
• E[Mk/X1, · · · , Xk−1] =Mk−1.

If E[Mk/X1, . . . , Xk−1] ≥Mk−1,M1, . . . ,Mn is called sub-martingale.
Lemma 3. (Azuma-Hoeffding inequality). LetM0, · · · ,Mn be a martingale with
respect to a sequence X1, · · · , Xn. We assume that there exist ak < bk such that
ak ≤Mk −Mk−1 ≤ bk for k = 1 : n. Then, for any A > 0

P(|Mn −M0| ≥ A) ≤ 2 exp

(
− 2A2∑n

k=1(bk − ak)2

)
.
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In the particular case ak = −bk and λ = 2 exp
(
− A2

2
∑n

k=1 b
2
k

) we have
P

|Mn −M0| ≤

√√√√ n∑
k=1

b2k
√
2 ln(2/λ)

 ≥ 1− λ,

where 0 < λ < 1.
Remark 1. In Lemma 3, if bk is equal to a constant b,√√√√ n∑

k=1

b2k =

√√√√ n∑
k=1

b2 = |b|
√
n.

Interestingly, this inequality shows a √n in the final bound, similar to the re-
sults obtained by applying the Central Limit Theorem (CLT). While the CLT is
only applicable as n → ∞, this inequality establishes bounds valid for all fi-
nite values of n, which is of great interest since, in numerical computation, the
problem size is always a finite real number.

Under SR-nearness, the inner product y = a⊤b, where a, b ∈ Rn is de-
fined as ŷ =

∑n
i=1 aibi(1 + δ2(i−1))

∏n
k=i(1 + δ2k−1). Since each |δk| ≤ u, the

worst case of the forward error of the computed ŷ is in O(nu). Based on the
mean independence of errors established in Lemma 2, Connelly et al. [12] and
Ipsen, and Zhou [46] have investigated this problem for SR-nearness. Both
works build on the mean independence property of SR-nearness. This allows
them to form a martingale, and then to apply the Azuma-Hoeffding concen-
tration inequality. The difference between these two works is in the way they
form the martingale. In [12, sec 3], the martingale is built using the errors
accumulated in the whole process ψi = (1 + δ2(i−1))

∏n
k=i(1 + δ2k−1) for all

1 ≤ i ≤ n. This approach uses the inclusion-exclusion principle to generalize
the bound to the summationwhich results in a pessimisticn in the probability.
They prove

|ŷ − y|
|y|

≤ Kγ̃n(λ),

with probability at least 1 − 2n exp −λ2

2 , where K =
∑n

i=1|aibi|
|∑n

i=1 aibi|
and γ̃n(λ) =

exp λ
√
nu+nu2

1−u − 1. The factor n in the probability disrupts the √nu property.
δ = 2n exp −λ2

2 implies that λ =
√
2 ln (2n/δ) and

|ŷ − y|
|y|

≤ Kγ̃n
(√

2 ln (2n/δ)
)
, (AH1-IP)

with probability at least 1− δ. When nu≪ 1, we have
γ̃n(
√

2 ln (2n/δ)) = exp

√
2n ln (2n/δ)u+ nu2

1− u
− 1

= u
√

2n ln (2n/δ) +O(u2)

= u
√
2n ln 2n− 2n ln δ +O(u2) = O(u

√
n lnn).
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The probabilistic bound in O(u√n lnn) is better than the deterministic
bound inO(nu). But, it is possible to obtain a probabilistic bound inO(√nu).
In [46, sec 4], themartingale is formed by following step-by-step how the error
accumulates in the recursive summation of the inner product. In particular,
the authors distinguish between the multiplications and additions computed
at each step and carefully monitor their mean independences. This approach
leads to the following probabilistic bound

|ŷ − y|
|y|

≤ K
√
uγ2n(u)

√
ln(2/δ), (AH2-IP)

with probability at least 1 − δ. This technique avoids the inclusion-exclusion
principle and when nu≪ 1, it leads to√

uγ2n(u)
√

ln(2/δ) = u
√
2n ln 2− 2n ln δ +O(u2).

Note that when nu≪ 1, (AH1-IP) and (AH2-IP) differ only in the factor√lnn
that appears in (AH1-IP) due to the use of the martingale property on each
partial sumnecessitating to use the inclusion-exclusion principle. The effect of
this factor on the bound behavior is comprehensively illustrated in Section 4.4
through numerical experiments. All in all, (AH2-IP) is proportional to u√n,
while (AH1-IP) is proportional to u√n lnn.

2.4.3 . Stochastic Rounding and Applications
Recent theoretical/numerical developments have revealed that SR pro-

vides better results than the IEEE-754 default rounding mode in multiple do-
mains [13]. Connolly et al. [12] have shown that numerous numerical linear
algebra algorithms, including the inner product and the triangular system so-
lution, are unbiased when using SR. Moreover, the forward error of these al-
gorithms has a probabilistic bound in O(√nu) instead O(nu) for the deter-
ministic bound.

The positive effect of SR also extends to calculating the solution of or-
dinary differential equations in low-precision. Several studies [45, 24] have
shown that incorporating SR into numerical integration schemes forODE solvers
yields notable benefits. By introducing randomness into the rounding pro-
cess, SR reduces the accumulation of round-off errors and mitigates the nu-
merical instability that often arises in long-termsimulations. Hopkins et al. [45]
have demonstrated that fixed-point ODE solvers exhibit greater robustness
when using SR than other rounding algorithms. Furthermore, through ex-
perimental analysis, they have established that fixed-point ODE solvers with
stochastic rounding achieve higher accuracy compared to single-precision floating-
point ODE solvers. Their study also indicated that utilizing just 6 bits in the
residual is sufficient for a high-performance stochastic rounding algorithm
within an ODE solver.
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For partial differential equations (PDEs), Croci and Giles [14] have con-
ducted a study on the accumulation of rounding errors in the solution of the
heat equation in low-precision using Runge-Kutta finite difference methods
with RN and SR. They demonstrate the implementation of a scheme that ef-
fectively reduces rounding errors and derives a priori estimates for both local
and global rounding errors. While the worst-case scenario for local errors is
O(u) with respect to the discretization parameters (mesh size and timestep),
the RN solution always stagnates for small enough ∆t. Until stagnation oc-
curs, the global error grows at a rate of O(u∆t−1). In contrast, stagnation
and the accumulation of rounding errors can be avoided with SR. They prove
that the global rounding errors are only O(u∆t−1/4) in one dimension and
essentially bounded (up to logarithmic factors) in higher dimensions.

In the domain of neural networks, the utilization of SR is not a new con-
cept. It was initially introduced as probabilistic rounding byHöhfeld and Fahlman [44,
43] in 1992, specifically within the context of the Cascade-Correlation algo-
rithm. Gupta et al. [32] subsequently demonstrated that deep networks could
be successfully trained in half-precision fixed-point arithmetic by using SR,
with little or no degradation in the classification accuracy. Su et al. [64] have
shown that SR can be used for training deep neural networks in 8-bit fixed-
point arithmetic using SR andanalyzed the success of SR in this context through
simulation and experiments. Wang et al. [70] also employed SR for training
neural networks using 8-bit floating-point arithmetic, resulting in a reduction
of bit-precision for additions down to 16 bits instead 36 bits as well as speed
improvements of approximately 2− 4 times compared to 32-bit training.

Paxton et al. [61] study the effectiveness of low-precision arithmetic for
climate simulations, especially the effects of RN and SR in chaotic ODE and
PDE systems related to climate modeling: the Lorenz system, heat diffusion,
a nonlinear shallow water approximation for flow over a ridge, and a coarse
resolution global atmospheric model with simplified parametrizations. They
find that SR can effectively mitigate rounding errors across various applica-
tions, and the results also provide evidence that SR could be relevant to next-
generation climate models.

Kimpson et al. [50] have demonstrated thepossibility ofmodeling a chang-
ing climate system using SR in conjunction with reduced-precision FP num-
bers. Their study reveals that employing SR significantly improves the per-
formance of half-precision computations, making them comparable to the
solutions achieved with single-precision computations. Various applications,
including quantummechanics and quantum computing, utilize SR to enhance
their outcomes. For a comprehensive overview of several applications using
SR, we recommend [13, sec 7].

2.4.4 . Simulation of SR in Software
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One approach to implementing a mathematical operator with stochastic
rounding is to follow three key steps. First, the operator must be evaluated
using high-precision floating-point arithmetic to obtain a more accurate re-
sult. Second, drawing a pseudo-random number from some uniform distri-
bution to determine the rounding direction. Third, the high-precision result is
rounded to the desired precision level, ensuring that the final value alignswith
the intended level of precision required for the application. The availability of
arithmetic operations beyond the working precision simplifies the implemen-
tation of this approach. This can be achieved through hardware methods,
such as emulating binary32 using binary64 format or through software em-
ploying arbitrary precision libraries like the GNU Multiprecision Library (GNU
MPFR) [27].

Once the high-precision result is available, the rounding step can be per-
formed in several ways. In the case of the MATLAB function chop [41], the
random numbers are compared to a threshold value drawn from the uni-
form distribution over ]0; 1[, and the rounding operation is performed based
on this comparison. For instance, let x̂ = x(1 + δ) and p(x) = x−⌊x⌋

⌈x⌉−⌊x⌋ . If p(x)is greater than the threshold, x is rounded up; otherwise, it is rounded down.
In the case of verificarlo [18] that is built upon the LLVM compiler [51], the

random numbers are rounded by adding a random noise (SR-nearness: the
randomvariable ξ in the Equation (2.6) is uniformly distributed on ]− 1

2 ;
1
2 [) andusing the default roundingmode in the IEEE-754 standard. Three expressions

are possible: Random Rounding (RR) which introduces perturbation only on
the output, Precision Bounding (PB) which introduces perturbation only on
the input, and Full MCA (MCA) which introduces perturbation on operand(s)
and the result. We recommend referring to [17, sec 6] for a comprehensive
exploration and in-depth explication of the work process of SR-nearness in
Verificarlo.

Verrou [25] is built upon Valgrind [57]. Verrou intercepts floating point op-
erations at runtime and replaces them with their random rounding counter-
parts. It uses both SR-up-or-down (the random variable ξ in the Equation (2.6)
is uniformly distributed on ]− p(x); 1− p(x)[) and SR-nearness. The Interflop
project establishes a shared interface between Verrou and Verificarlo, facili-
tating tool interoperability. In both tools, the end-user performs a statistical
analysis to conclude the numerical quality of the results.

There are other tools available for simulating SR in software. Cadna [47]
computes three times the result with SR-up-or-down and estimates statisti-
cally the numerical error. Fasi and Mikaitis in [24] have proposed two algo-
rithms for emulating stochastic rounding for both square root and the ele-
mentary operations {+,−, ∗, /}. They showcase the value of these algorithms
through diverse applications where stochastic rounding is favorable. Klöwer’s
Julia software package StochasticRounding.jl [61] uses integer operations to
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perform the stochastic rounding. It exports three floating-point formats with
SR, Float32sr, Float16sr, and BFloat16sr.

Each of these tools uses a random number generator for simulation pur-
poses. The choice of the generator directly impacts the quality of the simula-
tion. Therefore, opting for a generator with a sufficiently large period that is
evenly distributed relative to the characteristics of floating-point numbers is
essential.

In this dissertation, weuse Verificarlo [18] to simulate the stochastic round-
ing errors. In the next chapter, we will focus on SR as a rounding mode. We
analyze the biases of the two stochastic rounding modes presented in Sub-
section 2.4.1: SR-nearness and SR-up-or-down. We demonstrate that IEEE-
754 default rounding modes and SR-up-or-down accumulate rounding errors
across iterations, while SR-nearness, being unbiased, does not.
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3 - Rectangular Rulewith Stochastic Rounding

This chapter presents our first contribution: we compare SR-nearness and
SR-up-or-down in the computation of integrals using rectangular integration,
which is the basis of Euler’s explicit method for ordinary differential equations
(ODEs). Our investigation focuses on the constant function and the cosine
function. We show that SR-nearness remains unbiased in these two exam-
ples. However, an exact expression and an estimation of the bias are given
for SR-up-or-down. We showhow the accumulation of errors with both SR-up-
or-down and IEEE-754 modes leads to results significantly less accurate than
with SR-nearness. Additionally, we provide an expression for the method er-
ror of the cosine function, which supports the numerical observations.

3.1 . Integrating a Constant Function

Rectangular integration rule is a classic approximation for performing nu-
merical integration: the area under a curve is approximated by a sum of N
rectangle areas.

∫ b

a
f(t)dt ≈

N−1∑
k=0

hf(a+ kh)

where h = b−a
N . In particular, using Euler’s forward method, the rectangular

rule is one of the resolution techniques for ODE.
Verrou’s tutorial [28] integrates the cosine function with the rectangular

rule; with deterministic round to nearest or SR-up-or-down modes, the so-
lution is biased. When the number of integration steps grows, this bias can
become high and degrade the quality of the solution. In this section, we show
whydeterministic and SR-up-or-downmodes canbebiasedwith the rectangu-
lar rule and how the accumulation of errors with both previous modes leads
to results significantly less accurate than the unbiased mode SR-nearness.

We perform the analysis on a constant function f(t) = 1 for all t ∈ [0; 1].
With f constant, the evaluation error is zero, making it clear how the numer-
ical error accumulates on the summation.

Denote x = 1 =
∑N−1

k=0 h, where h = 1/N . The distribution x̂ is produced
by summing N times the integration step h. We note ŝk the random variable
for the partial sum at step 0 ≤ k ≤ N − 1 and sk the exact expected result,
with ŝN−1 = x̂.

SR-up-or-down: As shown before, for each ŝk we introduce a bias corre-sponding to
E(ŝk − sk) = ϵ(sk)(

1

2
− p(sk)),
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from the definition of p(sk), we have 0 < p(sk) < 1, then −1
2 <

1
2 − p(sk) <

1
2and

|E(ŝk − sk)| <
1

2
ϵ(sk).

Table 3.1 shows these different values for N = 20.
k sk p(sk) E(ŝk − sk) ϵ(sk)

2 0.150... 0.7500 -3.725290e-09 1.490116e-083 0.200... 0.2500 3.725290e-09 1.490116e-08
4 0.250... 0.6250 -3.725290e-09 2.980232e-085 0.300... 0.6250 -3.725290e-09 2.980232e-086 0.350... 0.6250 -3.725290e-09 2.980232e-087 0.400... 0.6250 -3.725290e-09 2.980232e-088 0.450... 0.6250 -3.725290e-09 2.980232e-08
9 0.500... 0.3125 1.117587e-08 5.960464e-0810 0.550... 0.8125 -1.862645e-08 5.960464e-0811 0.600... 0.8125 -1.862645e-08 5.960464e-0812 0.650... 0.8125 -1.862645e-08 5.960464e-0813 0.700... 0.8125 -1.862645e-08 5.960464e-0814 0.749... 0.8125 -1.862645e-08 5.960464e-0815 0.799... 0.8125 -1.862645e-08 5.960464e-0816 0.849... 0.8125 -1.862645e-08 5.960464e-0817 0.899... 0.8125 -1.862645e-08 5.960464e-0818 0.949... 0.8125 -1.862645e-08 5.960464e-0819 0.999... 0.8125 -1.862645e-08 5.960464e-08

Table 3.1: sk, p(sk), bias and ϵ for N = 20 in single precision.
Interestingly, in this table, we note that p(sk) is constant between two

successive powers of the base except for the first value. For example for
9 < k < 20, sk stays within [2−1; 20) and both p(sk) and E(ŝk − sk) are con-stant. In the following, we show why that is always the case.

Suppose sk, sk+1 ∈ [βe;βe+1). Then ϵ(sk) = βe−p. At each step, the next
partial sum is computed as, sk+1 = ŝk+h. In that case, using the lemma 1, we
have

p(sk+1) = βp−e(sk+1 − ⌊sk+1⌋)
= βp−esk+1 − Tβp−esk+1U

= βp−eŝk + βp−eh− Tβp−eŝk + βp−ehU.
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Since ŝk ∈ F , we have βp−eŝk ∈ Z and
Tβp−eŝk + βp−ehU = βp−eŝk + Tβp−ehU.

Finally
p(sk+1) = βp−eh− Tβp−ehU.

Thus p(sk+1) depends only on h and e. Recursively for all l > 0 satisfying
sk+l ∈ [βe;βe+1), p(sk+l) = βp−eh− Tβp−ehU is constant. The bias

E(ŝk+l − sk+l) = ϵ(sk+l)(
1

2
− p(sk+l))

= βe−p(
1

2
− βp−eh− Tβp−ehU),

is also constant in this interval.
Between two successive powers of the base, p(s) remains constant, as

well as the bias. Because the bias is constant (and, consequently, its sign too),
it accumulates across iterations. The total bias can be written as

E(x̂− x) =
N−1∑
k=0

E(ŝk − sk) =
N−1∑
k=0

ϵ(sk)(
1

2
− p(sk)),

and
|E(x̂− x)| < 1

2

N−1∑
k=0

ϵ(sk).

For a large N , we can neglect the effect of the first partial sum in each
power-of-the-base interval. As we can observe in Table 3.1 the last power-of-
the-base interval, [12 ; 1[ contains more summation terms and has a larger ϵ.
Then, its bias usually dominates in the final result.

Numerical experiment. The computations were done thanks to Python
BigFloat arbitrary precision library. SR and RN values were computed in bi-
nary32 and the referencewas computed in binary64. We have verified numer-
ically that the above expression for the bias closely predicts the biasmeasured
with SR-up-or-down.

We consider a fixed number of iterations N. We ran one time the C pro-
gram in Listing 1 with each of the two previously defined stochastic rounding
modes as well as round to nearest.

The following figure plots the three distributions over N .
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float h = 1/N;

float s = 0.0;

for (int i=0 ; i < N ; i++) {

s += h*1;

}

return s;

Listing 1: Fixed-step rectangle integration of a constant
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Figure 3.1: Round to nearest (RN-binary32) vs stochastic rounding SR-up-or-down and SR-nearness for Listing 1.

Figure 3.1 illustrates that SR-nearness mode is unbiased regardless of the
number N of rectangles. The unbiased nature is unsurprising since the SR-
nearness mode is a sub-case of Monte Carlo Arithmetic (MCA). Stott Parker
proves [60, p. 46] that the expectation of a sum of terms withMCA is the exact
mathematical result.

On the other hand, SR-up-or-down mode and RN-binary-32 samples have
a bias, which confirms the previous results for SR-up-or-down mode. The
maximal amplitude of the bias for both SR-up-or-down and RN-binary-32 in-
creases withN because of errors accumulation. The bias is reproducible and
constant across different runs.

3.2 . Integrating the Cosine Function
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Another example that illustrates the effect of rounding errors in numerical
computations is the integral of the cosine function. In the following we con-
sider the evaluation of ∫ π

2
0 cos(t) dt = 1. We run one time the C program in

Listing 2 with each of the two previously defined stochastic rounding modes.
float dx = (pi/2)/N;

float s = 0.0;

float x = dx/2;

for (int i=0 ; i < N ; i++) {

s += dx*cos(x);

x += dx;

}

return s;

Listing 2: Rectangle integration of a cosine function.
It is important to emphasize that here we neglect the error of the cosine

function and only study the error accumulated during summation and multi-
plication. Figure 3.2 illustrates the two distributions across the variable N .
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Figure 3.2: Round to nearest (RN-binary32) vs stochastic rounding SR-up-or-down and SR-nearness for Listing 2.
Figure 3.2 shows that SR-nearness is unbiased, while SR-up-or-down is bi-

ased, and the bias magnitude increases with the number of rectangles N .
The C program in Listing 2 produces two errors. The first error, denoted by

e1, results from the instruction x += dx, while the second error, denoted by
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e2, results from the statement s += dx*cos(x). Thus, for all k ∈ J0 ; N − 1K,
it can be stated that:

ŝk = ŝk−1 + dx cos(xk + ek1) + ek2.

The mean value theorem implies that there exist zk ∈ [xk;xk + ek1] such that:

− sin(zk) =
cos(xk + ek1)− cos(xk)

ek1
.

It follows that

ŝk = ŝk−1 + dx (cos(xk)− ek1 sin(zk)) + ek2

= ŝk−1 + dx cos(xk)− dx ek1 sin(zk) + ek2.

The Sub-section 3.1 demonstrates that the errors ek1 all have the same sign
in each interval [βe;βe+1) except the first, implying that the term ek1dx sin(zk)also shares the same sign. By replacing x += dx in Listing 2 with x = dx*k,
we observe numerically that the error is negligible, implying that the source
of error is ek1 . This suggests that the bias of e2 is insignificant compared to e1.These arguments explain the bias accumulation observed in Figure 3.2.

One key aspect in evaluating the accuracy of numerical computations is
the numerical error. It encompasses both the rounding error, arising from
the rounding function and computational limitations, and the method error,
arising from the inherent approximations made when applying a specific nu-
merical technique. The following lemma calculates the method error of the
previous program 2.

Lemma 4. The method error at each step k of this algorithm is given by:

ŝk − sk =
dx

2

[
sin (dx(k + 1))

sin(dx2 )

]
− sk.

In particular, for k = N − 1,

ŝN−1 − sN−1 =
π

4N

1

sin( π
4N )
− 1.
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Proof. At each step k, we have
ŝk =

k∑
p=0

dx cos((p+
1

2
)dx) =

dx

2

k∑
p=0

(eidx)p+
1
2 + (e−idx)p+

1
2

=
dx

2

[
ei

dx
2
1− (eidx)k+1

1− eidx
+ e−i dx

2
1− (e−idx)k+1

1− e−idx

]
=

dx

2

[
eidx(k+1) − 1

ei
dx
2 − e−i dx

2

+
1− e−idx(k+1)

ei
dx
2 − e−i dx

2

]

=
dx

2

[
eidx(k+1) − e−idx(k+1)

ei
dx
2 − e−i dx

2

]

=
dx

2

[
sin (dx(k + 1))

sin(dx2 )

]
.

In the particular case k = N − 1, sN−1 = 1 and since dx = π
2N we obtain :

ŝN−1 − sN−1 =
π

4N

sin(Ndx)

sin( π
4N )

− 1

=
π

4N

1

sin( π
4N )
− 1.

Remark 2. Since for large N , π
4N

1
sin( π

4N
) ≈ 1, the method error converge to 0.
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Figure 3.3: Absolute value of the error over the number of rectangles used tointegrate the cosine function between 0 and π/2 using the rectangular rule.
AsN increases, themethoderror decreases because themethodbecomes

more accurate with a larger rectangle number, which confirms Remark 2. On
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the other hand, the numerical error increases due to the accumulation of
rounding errors in numerical calculations. For large values ofN , the rounding
error dominates the method error, representing the overall numerical error
in the calculation.

In conclusion, the examples presented in this section demonstrate that
rounding errors can accumulate even through simple computations, such as
summation, and significantly impact the final result. The stochastic rounding
mode SR-nearness is unbiased not only for one elementary operation but,
even in other numerical methods such as rectangular integration, it is much
closer to the expected value than SR-up-or-down or RN-binary32, in particular
for large N . The remainder of this dissertation focuses on SR-nearness and
its potential applications in numerical computation. We analyze other algo-
rithms and demonstrate probabilistic bounds on the error inO(√nu) instead
of O(nu) for the deterministic bounds.

40



4 - Error Analysis for Algorithms with Multi-
Linear Error

Stochastic arithmetic has been used to empirically estimate the numer-
ical error in complex programs. Stochastic rounding (SR) introduces a ran-
dom perturbation in each floating-point operation, followed by a statistical
analysis of the sampled output set to estimate the impact of rounding errors.
Methods such as MCA [60] or CESTAC [67] have been introduced to simulate
this effect. However, recent theoretical findings like [22, 12] and numerical
simulations such as [61] demonstrate superior outcomes when utilizing SR as
a replacement for RN in numerical computations. Connolly et al. [12] have
shown that SR avoids the phenomenon of stagnation in sums, where small
values are ignored by RN when they are too small relative to the sum. This
phenomenon arises in various domains, such as neural networks and ODEs.
In the remainder of this thesis, we investigate the probabilistic properties of
SR as a rounding mode.

This chapter is structured around the theoretical analysis of algorithms
withmulti-linear errors under SR, i.e, algorithms linear separately in each ran-
dom error. By investigating this class of algorithms, we aim to understand the
effects and implications of SR on their overall accuracy. The theoretical analy-
sis demonstrates that they remain unbiased under SR. Furthermore, we prove
probabilistic error bounds in O(√nu): given a fixed probability q ∈]0; 1[, one
can obtain bounds (depending on q) in O(√nu).

We specifically focus on SR-nearness as a substitute for RN in numer-
ical computations. As shown in Chapter 3, this stochastic rounding mode
is unbiased for summation. Drawing upon the mean independence prop-
erty (Lemma 2), we prove that the unbiased characteristic extends to algo-
rithms with multi-linear errors. We also introduce and discuss two primary
approaches that aim to provide bounds for the forward error of computa-
tions under SR-nearness. To demonstrate the practical applicability of these
methods, we illustrate their benefits in algorithms such as sequential and
pairwise summations, inner product, and the Horner algorithm. In particular,
their forward errors have probabilistic bounds inO(√nu) versus determinis-
tic bounds in O(nu), which allows to apply them more easily in low-precision
formats: we only need to suppose that nu2 ≪ 1 to apply these results.

The first method AH is based on martingales and Azuma-Hoeffding in-
equality. To apply this technique, multiple approaches can be employed to
construct the martingale [46, 12], thereby influencing the accuracy of the for-
ward error bound [23]. We use the same method described in [46] for the
sequential summation and Horner algorithm. The analysis of the latest al-

41



gorithm differs from that of the inner product discussed in Sub-section 2.4.2
due to the presence of an error affecting one of the multiplication operands.
This extends the approach to a whole new class of algorithms, and is a step
towards its application to various numerical schemes. For pairwise summa-
tion, unlike the technique proposed in [33], we introduce a novel technique to
construct the martingale from the summation tree such that each level corre-
spond to a term of the martingale sequence. We show that both probabilistic
bounds of the error are in O(√nu) with an advantage to our approach.

In Section 4.1, we demonstrate that any computation tree can accumulate
a stochastic process given by ψK =

∏
k∈K(1 + δk) in each of its inputs, ac-

companied by a natural filtration F whereK ⊂ N, and certain δk can be zero.Additionally, variousmethods can be used to construct amartingale from this
stochastic process. We demonstrate in Sub-section 4.1.4 that the error of any
multi-linear algorithm achieves a probabilistic bound in O(√nu), where n is
the number of nodes.

For a fixed probability, the AH method exhibits rapid growth for large val-
ues of n, particularly the approach proposed by Ipsen and Zhou in [46] for the
inner product, which provides a probabilistic bound equivalent toO(exp(nu))
when nu≫ 1. Additionally, the approach proposed by Connolly et al. [12] for
the inner product yields a probabilistic bound equivalent toO(exp(nu))when
n log(n)u2 ≫ 1. Furthermore, applying the martingale theory may pose chal-
lenges for certain algorithms, as demonstrated in the case of Horner’s poly-
nomial evaluation.

The second method BC is based on a bound of the error variance and Bi-
enaymé–Chebyshev inequality. Based on the mean independence property,
we have presented Lemma 11, a general framework applicable to a wide class
of algorithms that allows to compute deterministic bound of the variance.
This new approach is simple since it requires only information on the error
variance. It demonstrates superior accuracy in low-precision formats, where
SR has shown favorable outcomes across various domains such as climate
modeling [50], deep neural networks [32], and PDEs [14].

We use the Bienaymé–Chebyshev inequality to establish a probabilistic er-
ror bound. Moreover, this method improves the accuracy of the probabilistic
bounds for large values of n, particularly when nu2 ≪ 1. Theoretical analysis
(Section 4.3) and numerical experiments (Section 4.4) illustrate the previous
results and compare the probabilistic bounds to deterministic ones through
two algorithms: the inner product and the Horner algorithm.

4.1 . AH Method

John vonNeumann andGoldstine [68] have demonstrated that form inde-
pendent random variables equi-distributed in [−β−s/2;β−s/2], themaximum
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of the sum of these random variables is bounded by mβ−s/2, while the dis-
persion is given by √mβ−s/

√
12. Also the Central Limit Theorem (CLT) [15],

which states that the summation or average of independent and identically
distributed random variables converges to a Gaussian (normal) distribution,
ensuring favorable asymptotic results. This alignswithWilkinson’s intuition [71],
which states that the accumulated roundoff error in n operations is usually
proportional to√nu rather than nu.

Based on the assumption of independent rounding errors, Higham and
Mary [40] have proposed probabilistic error bounds inO(√n log(n)u) for var-
ious linear algebra computations. However, achieving the characteristic of
independence is frequently unattainable. To overcome this hypothesis, with
Connelly, they show in [12] that this bound always holds for SR due to mean
independence (Lemma 2), a property that lies between independence and un-
correlatedness.

The mean independence of random errors is not an additional assump-
tion but a property satisfied by SR. The idea is to construct a martingale (Defi-
nition 3) from this property and then use Azuma-Hoeffding inequality formar-
tingales [53, p. 303] to establish probabilistic error bounds. This approach will
be referred to as the AH method throughout the remainder of this disserta-
tion.

4.1.1 . Sequential Summation
As discussed in Sub-section 2.3.1, the forward error of a summation of n

floating point numbers is proportional to nu. We investigate this error under
SR-nearness in the sequel using the method proposed by Ipsen, and Zhou
in [46] for the inner product. We show O(√nu) probabilistic bound on the
forward error.

Consider s =∑n
i=1 ai, we have

Stochastic rounding Exact computation
ŝ1 = a1 s1 = a1

ŝ2 = (ŝ1 + a2)(1 + δ2) s2 = s1 + a2

ŝk = (ŝk−1 + ak)(1 + δk) sk = sk−1 + ak

ŝn = ŝ sn = s

It follows that
ŝ =

n∑
i=1

ai

n∏
k=max (i,2)

(1 + δk) =
n∑

k=1

aiψi, (4.1)

where ψi =
∏n

k=max (i,2)(1 + δk) for all 1 ≤ i ≤ n.
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Theorem 2. For all 0 < λ < 1, the computed ŝ satisfies under SR-nearness
|ŝ− s|
|s|

≤ K
√
uγ2(n−1)(u)

√
ln(2/λ), (4.2)

with probability at least 1 − λ, where K =
∑n

i=1|ai|
|∑n

i=1 ai|
is the condition number of∑n

k=1 ai using the 1−norm and γ2(n−1)(u) = (1 + u)2(n−1) − 1.
Proof. Denote Fk = {δ1, , . . . , δk} and Zk = ŝk − sk for all 1 ≤ k ≤ n, with
Z1 = 0 and Zn = ŝ − s. Let us show that Z1, . . . , Zn form a martingale with
respect to Fn−1. It is straightforward thatZk is a function of δ1, . . . , δk. E(|Zk|)is finite because ak are finite and |δk| ≤ u for all 1 ≤ k ≤ n. Regarding the
third assumption in definition 3 (page 26) we have 1 ≤ k ≤ n

Zk = ŝk − sk = (ŝk−1 + ak)(1 + δk)− sk−1 − ak
= ŝk−1 − sk−1 + (ŝk−1 + ak)δk

= Zk−1 + (ŝk−1 + ak)δk.

It follows that
E[Zk/Fk−1] = E[(Zk−1 + (ŝk−1 + ak)δk)/Fk−1]

= Zk−1 + (ŝk−1 + ak)E[δk/Fk−1]

= Zk−1 by Lemma 2.
Therefore, the sequence Z1, . . . , Zn form a martingale with respect to Fn−1.Moreover,

|Zk − Zk−1| = |(ŝk−1 + ak)δk|
≤ u (|ak|+ |(ŝk−2 + ak−1)(1 + δk−1)|)
≤ u (|ak|+ (1 + u)(|ŝk−2|+ |ak−1|)) .

By induction we have
|Zk − Zk−1| ≤ u

[
|a1| (1 + u)k−2 +

k∑
i=2

|ai| (1 + u)k−i

]
= uCk,

whereCk = |a1| (1+u)k−2+
∑k

i=2 |ai| (1+u)k−i. Since Zn = ŝ−s and Z1 = 0,
Azuma-Hoeffding inequality (Lemma 3) yields

P

|ŝ− s| ≤
√√√√ n∑

k=2

u2C2
k

√
2 ln(2/λ)

 ≥ 1− λ,

where 0 < λ < 1. We have
C2
k ≤ (1 + u)2(k−2)

(
k∑

i=1

|ai|

)2

≤ (1 + u)2(k−2)

(
n∑

i=1

|ai|

)2

,
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and
n∑

k=2

C2
k ≤

(
n∑

i=1

|ai|

)2 n∑
k=2

(1 + u)2(k−2)

=

(
n∑

i=1

|ai|

)2
(1 + u)2(n−1) − 1

(1 + u)2 − 1

=

(
n∑

i=1

|ai|

)2
γ2(n−1)(u)

u2 + 2u
.

Since, u
u+2 ≤

u
2

n∑
k=2

u2C2
k ≤

(
n∑

i=1

|ai|

)2
uγ2(n−1)(u)

2
.

Il follows that
|ŝ− s| ≤

n∑
i=1

|ai|
√
uγ2(n−1)(u)

2

√
2 ln(2/λ).

with probability at least 1− λ. Finally
|ŝ− s|
|s|

≤ K
√
uγ2(n−1)(u)

√
ln(2/λ),

with probability at least 1− λ.
This example demonstrates the direct applicability of the AH method to

algorithms with exact inputs. Furthermore, this method is also valid for the
inner product [46, 12], where multiplication operands are exact (in the sense
of multiplying two inputs), and the errors are accumulated through summa-
tions. In the following, we analyze the Horner algorithm and show that the
AH method can still be used, even if the multiplication operand is affected by
an error.

4.1.2 . Horner Algorithm
Horner algorithm is an efficient way of evaluating polynomials. When

performed in floating-point arithmetic, this algorithm may suffer from catas-
trophic cancellations and yield a computed value less accurate than expected.

Let P (x) =∑n
i=0 aix

i, Horner rule consists in writing this polynomial as
P (x) = (((anx+ an−1)x+ an−2)x · · ·+ a1)x+ a0.

We define by induction the following sequence
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Operation Stochastic rounding Exact computation
r̂0 = an r0 = an

∗ r̂2k−1 = r̂2k−2x(1 + δ2k−1) r2k−1 = r2k−2x

+ r̂2k = (r̂2k−1 + an−k)(1 + δ2k) r2k = r2k−1 + an−k

Output r̂2n = P̂ (x) r2n = P (x)

for all 1 ≤ k ≤ n, with δ2k−1 and δ2k the rounding errors from the products
and the additions respectively. Let δ0 = 0, we have

r̂2n =

n∑
i=0

aix
i

2n∏
k=2(n−i)

(1 + δk). (4.3)
Let us denote Zi := r̂i − ri for all 0 ≤ i ≤ 2n. The total forward error is

|Z2n| = |r̂2n − r2n| = |P̂ (x)− P (x)| and

|P̂ (x)− P (x)| =

∣∣∣∣∣∣
n∑

i=0

aix
i

 2n∏
k=2(n−i)

(1 + δk)− 1

∣∣∣∣∣∣ ≤
n∑

i=0

|aixi|γ2n(u).

Finally,
|P̂ (x)− P (x)|
|P (x)|

≤ Kγ2n(u), (4.4)
where K =

∑n
i=0|aixi|
|P (x)| is the condition number of the polynomial evaluation.

The deterministic bound is proportional to nu. In the following, we prove a
probabilistic bound in O(√nu). The partial sum forward errors satisfy

Z2k−1 = r̂2k−1 − r2k−1

= r̂2k−2x(1 + δ2k−1)− r2k−2x

= xZ2k−2 + r̂2k−2xδ2k−1,

Z2k = r̂2k − r2k
= (r̂2k−1 + an−k)(1 + δ2k)− r2k−1 − an−k

= Z2k−1 + (r̂2k−1 + an−k)δ2k,

for all 1 ≤ k ≤ n. The sequence Z0, . . . , Z2n does not form a martingale with
respect to δ1, . . . , δ2n due to the multiplication in odd steps,

E[Z2k−1/δ1, . . . , δ2k−2] = xZ2k−2.

In order to form a martingale and use the Azuma-Hoeffding inequality, we
define the following variable change

Yi =
Zi

xT(i+1)/2U ,
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where T(i + 1)/2U is the greatest integer less than or equal to (i + 1)/2, we
thus have {

Y2k−1 = Y2k−2 +
1

xk−1 r̂2k−2δ2k−1,

Y2k = Y2k−1 +
1
xk (r̂2k−1 + an−k)δ2k,

(4.5)
for all 1 ≤ k ≤ n with Y0 = 0.
Theorem 3. The sequence of random variables Y0, · · · , Y2n is a martingale withrespect to δ1, · · · , δ2n.
Proof. Wecheck that the three conditions ofDefinition 3 are satisfied. Through-
out the proof, we note the set Fk = {δ1, · · · , δk}.

• The recursion of Zk shows that Yi is a function of δ1, · · · , δi for all 1 ≤
i ≤ 2n.

• E(|Yi|) is finite because x and ak are finite for all n − i ≤ k ≤ n and
|δj | ≤ u for all 1 ≤ j ≤ i.

• We prove that E[Yi/Fi−1] = Yi−1 by distinguishing the even and odd
cases. Firstly, using the mean independence of δ1, · · · , δ2k−1 and Equa-tion (4.5) we obtain

E[Y2k−1/F2k−2] = E[Y2k−2/F2k−2] + E[
1

xk−1
r̂2k−2δ2k−1/F2k−2]

= Y2k−2 +
1

xk−1
r̂2k−2E[δ2k−1/F2k−2] = Y2k−2.

Secondly, using the mean independence of δ1, · · · , δ2k and Equation (4.5)we obtain
E[Y2k/F2k−1] = E[Y2k−1/F2k−1] + E[

1

xk
(r̂2k−1 + an−k)δ2k/F2k−1]

= Y2k−1 +
1

xk
(r̂2k−1 + an−k)E[δ2k/F2k−1] = Y2k−1.

The martingale does not manifest explicitly, we need a change of vari-
able to exhibit it. To apply Azuma-Hoeffding inequality, we need to bound the
martingale steps. The following lemma presents bounds on the martingale
increments |Yi − Yi−1| for all 1 ≤ i ≤ 2n.
Lemma 5. The above martingale Y0, · · · , Y2n satisfies |Yi − Yi−1| ≤ Ciu, for all
1 ≤ i ≤ 2n, where{

C2k−1 = |an|(1 + u)2k−2 +
∑k−1

j=1 |an−j ||x|−j(1 + u)2(k−j)−1,

C2k = |an|(1 + u)2k−1 +
∑k

j=1|an−j ||x|−j(1 + u)2(k−j),

for all 1 ≤ k ≤ n.
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Proof. Note that Y0 = 0, then |Y1 − Y0| = |Y1| ≤ |an|u and the equality holdsfor C1. Using Equation (4.5)
|Y2k−1 − Y2k−2| ≤

1

|x|k−1
|r̂2k−2|u.

Moreover,
|r̂2k−2| ≤ |r̂2k−3|(1 + u) + |an−k+1|(1 + u)

≤ |r̂2k−4||x|(1 + u)2 + |an−k+1|(1 + u).

By induction we obtain
|r̂2k−2| ≤ |an||x|k−1(1 + u)2k−2 +

k−1∑
j=1

|an−j ||x|k−j−1(1 + u)2(k−j)−1. (4.6)
This completes the proof for C2k−1 for all 1 ≤ k ≤ n. For C2k for all 1 ≤ k ≤ n,using Equation (4.5)

|Y2k − Y2k−1| ≤
1

|x|k
|r̂2k−1 + an−k|u.

Moreover,
|r̂2k−1 + an−k| ≤ |r̂2k−1|+ |an−k|

≤ |r̂2k−2| |x| (1 + u) + |an−k| .

The inequality (4.6) implies

|x| (1 + u) |r̂2k−2| ≤

|an||x|k−1(1 + u)2k−2 +

k−1∑
j=1

|an−j ||x|k−j−1(1 + u)2(k−j)−1

 |x| (1 + u)

= |an||x|k(1 + u)2k−1 +
k−1∑
j=1

|an−j ||x|k−j(1 + u)2(k−j).

Finally,
|Y2k − Y2k−1| ≤

u

|x|k
|r̂2k−1 + an−k|

≤ u

|x|k

|an||x|k(1 + u)2k−1 +

k−1∑
j=1

|an−j ||x|k−j(1 + u)2(k−j) + |an−k|


= u

|an|(1 + u)2k−1 +
k∑

j=1

|an−j ||x|−j(1 + u)2(k−j)

 .

This completes the proof for C2k for all 1 ≤ k ≤ n.
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We now have all the tools to state and demonstrate themain result of this
sub-section:
Theorem 4. For all 0 < λ < 1, the computed P̂ (x) satisfies under SR-nearness

|P̂ (x)− P (x)|
|P (x)|

≤ K
√
uγ4n(u)

√
ln(2/λ), (4.7)

with probability at least 1 − λ, where K =
∑n

i=0|aixi|
|P (x)| is the condition number of

the polynomial evaluation.
Proof. Recall that |r̂2n − r2n| = |Z2n| = |xn||Y2n|. Therefore, Y0, . . . , Y2n is a
martingale with respect to δ1, ..., δ2n and Lemma 5 implies |Yi − Yi−1| ≤ Ciufor all 1 ≤ i ≤ 2n. Using the Azuma-Hoeffding inequality yields

P

|Y2n| ≤ u
√√√√ 2n∑

i=1

C2
i

√
2 ln(2/λ)

 ≥ 1− λ,

it follows that
|Z2n| ≤ u

√√√√ 2n∑
i=1

(|x|nCi)2
√

2 ln(2/λ),

with probability at least 1− λ, where

|x|nC2k = |an||x|n(1 + u)2k−1 +
k∑

j=1

|an−jx
n−j |(1 + u)2(k−j)

≤ (1 + u)2k−1
k∑

j=0

|an−jx
n−j |

≤ (1 + u)2k−1
n∑

j=0

|ajxj |,

for all 1 ≤ k ≤ n. Hence,

(|x|nC2k)
2 ≤ (1 + u)2(2k−1)

 n∑
j=0

|ajxj |

2

.

In a similar way,

(|x|nC2k−1)
2 ≤ (1 + u)2(2k−2)

 n∑
j=0

|ajxj |

2

.
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Thus,
2n∑
i=1

(|x|nCi)
2 ≤

 n∑
j=0

|ajxj |

2
2n−1∑
i=0

((1 + u)2)i

=

 n∑
j=0

|ajxj |

2

((1 + u)2)2n − 1

(1 + u)2 − 1

=

 n∑
j=0

|ajxj |

2

γ4n(u)

u2 + 2u
.

As a result,
|P̂ (x)− P (x)| = |Z2n| ≤

n∑
j=0

|ajxj |
√
uγ4n(u)

2 + u

√
2 ln(2/λ),

with probability at least 1− λ. Finally,
|P̂ (x)− P (x)|
|P (x)|

≤ K
√
uγ4n(u)

√
ln(2/λ),

with probability at least 1− λ.
We have extended the method proposed in [46] to derive a new proba-

bilistic bound on the forward error of the Horner algorithm. This illustrates
how the AH method can be applied (with some work) to any algorithm based
on a fixed sequence of sum and products. We now turn to the pairwise sum-
mation and show the benefits of AH method through this algorithm.

4.1.3 . Pairwise Summation
It is known [38] that the accumulator implementation of a sum of n num-

bers s =
∑n

i=1 xi using a binary tree leads to a deterministic error bound
in O(log2(n)u). Hallman and Ipsen in [33] have studied this problem under
stochastic rounding. Using theAHmethod (with an alternative formof Azuma-
Hoeffding inequality), they have shown probabilistic bound inO(√log2(n)u).The key idea of their approach involved constructing a martingale through a
systematic recurrence on the computational tree, incorporating two proba-
bility parameters.

In the following, we investigate the forward error made by the pairwise
summation under SR-nearness using the AH method. This approach’s fea-
ture lies in its flexibility for building the martingale. We construct a martin-
gale straight from the tree levels for the pairwise summation and then use
Azuma-Hoeffding inequality. This technique has the advantage of building a
martingale from the entire tree. We compare our probabilistic bound to the
bound proposed by Hallman and Ipsen in [33].

Let us assume the tree structure as follows:
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Sh
1

Sh−1
1

. . .

S1
1

x1 x2

S1
2

. . .

Sh−1
2

. . . . . .

S1
2h−2 S1

2h−1

x2h−1 x2h

Considering h the height of the summation tree, if 2h−1 < n < 2h, we set
the absent 2h−n inputs to zero. Without loss of generality, let us then assume
that n = 2h. Denote S0

i = xi and Sk
i = Sk−1

2i−1 + Sk−1
2i for all 1 ≤ i ≤ 2h−k and

1 ≤ k ≤ h. We have

Sk
l =

l2k∑
i=(l−1)2k+1

xi and Sh
1 =

2h∑
i=1

xi = s.

Let Ŝ0
i = S0

i and Ŝk
i = (Ŝk−1

2i−1+Ŝ
k−1
2i )(1+δki ) for all 1 ≤ i ≤ 2h−k and 1 ≤ k ≤ h.

We have
Ŝk
l =

l2k∑
i=(l−1)2k+1

xi

k∏
j=1

(1 + δj⌈ i

2j
⌉).

In particular
Ŝh
1 =

2h∑
i=1

xi

h∏
j=1

(1 + δj⌈ i

2j
⌉) =

2h∑
i=1

xiψi, (4.8)

where ψi =
∏h

j=1(1 + δj⌈ i

2j
⌉) for all 1 ≤ i ≤ 2h.

Theorem 5. For all k ≥ 1, let Fk = {δji , 1 ≤ i ≤ 2h−j , 1 ≤ j ≤ k}. Denote
M0 = 0 and for k > 0,

Mk =

2h−k∑
i=1

Ŝk
i − Sk

i .

Therefore, Mh = Ŝh
1 − Sh

1 and M0, . . . ,Mh form a martingale with respect to
Fh−1 = {δji , 1 ≤ i ≤ 2h−j , 1 ≤ j ≤ h− 1}.

51



Proof. The recursion of Ŝk
i shows thatMk is a function of Fk−1 for all 1 ≤ k ≤

h. Moreover, E(|Mk|) is finite because xi are finite for all 1 ≤ i ≤ 2h and the
relative errors |δij | ≤ u. Let us prove the third point:

Mk =
2h−k∑
i=1

Ŝk
i − Sk

i

=
2h−k∑
i=1

(Ŝk−1
2i−1 + Ŝk−1

2i )(1 + δki )− (Sk−1
2i−1 + Sk−1

2i )

=Mk−1 +

2h−k∑
i=1

(Ŝk−1
2i−1 + Ŝk−1

2i )δki .

By definition of Fk, we have for all 1 ≤ k ≤ h

E[Mk/Fk−1] = E

Mk−1 +
2h−k∑
i=1

(Ŝk−1
2i−1 + Ŝk−1

2i )δki /Fk−1


= E[Mk−1/Fk−1] + E

2h−k∑
i=1

(Ŝk−1
2i−1 + Ŝk−1

2i )δki /Fk−1

 by linearity

=Mk−1 +

2h−k∑
i=1

(Ŝk−1
2i−1 + Ŝk−1

2i )E[δki /Fk−1]

=Mk−1 by mean independence.
Therefore,M0, . . . ,Mh form a martingale with respect to Fh−1.

We now have all the tools to state and demonstrate themain result of this
sub-section:

Theorem 6. For all 0 < λ < 1, the computed Ŝh
1 satisfies under SR-nearness

∣∣∣Ŝh
1 − Sh

1

∣∣∣∣∣Sh
1

∣∣ ≤ κ
√
uγ2⌈log2(n)⌉(u)

√
ln(2/λ), (4.9)

with probability at least 1− λ, where κ =
∑n

i=1|xi|
|∑n

i=1 xi| is the condition number of thesummation of the xi.
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Proof. We need firstly to bound the martingale steps. Equation (4.8) yields

|Mk −Mk−1| ≤
2h−k∑
i=1

∣∣∣(Ŝk−1
2i−1 + Ŝk−1

2i )δki

∣∣∣ ≤ u 2h−k∑
i=1

∣∣∣Ŝk−1
2i−1 + Ŝk−1

2i

∣∣∣
≤ u(1 + u)k−1

2h−k∑
i=1

∣∣∣∣∣∣
2k−1(2i−1)∑

m=2k−1(2i−2)+1

xm +

2k−1(2i)∑
m=2k−1(2i−1)+1

xm

∣∣∣∣∣∣
≤ u(1 + u)k−1

2h−k∑
i=1

2ki∑
m=2k(i−1)+1

|xm| = u(1 + u)k−1
2h∑
i=1

|xm|

= u(1 + u)k−1 ∥x∥1 .

Denote Ck = u(1 + u)k−1 ∥x∥1, Azuma-Hoeffding inequality implies

|Mh| ≤

√√√√ h∑
k=1

C2
k

√
2 ln(2/λ),

with probability at least 1− λ. Now
h∑

k=1

C2
k = u2 ∥x∥21

h∑
k=1

(1 + u)2(k−1)

= u2 ∥x∥21
(1 + u)2h − 1

(1 + u)2 − 1

= u ∥x∥21
γ2h(u)

u+ 2
.

Since, u
u+2 ≤

u
2 and h = ⌈log2(n)⌉, we have

|Mh| ≤ ∥x∥1

√
u
γ2⌈log2(n)⌉(u)

2

√
2 ln(2/λ),

with probability at least 1− λ. Finally∣∣∣Ŝh
1 − Sh

1

∣∣∣∣∣Sh
1

∣∣ ≤ κ
√
uγ2⌈log2(n)⌉(u)

√
ln(2/λ),

with probability at least 1− λ.
Comparison with Hallman and Ipsen pairwise bound [33]. The probabilis-
tic bound proposed in [33, cor, 2.10] to the pairwise summation forward error
is ∣∣∣Ŝh

1 − Sh
1

∣∣∣∣∣Sh
1

∣∣ ≤ κu
√
h
√
2 ln(2/δ)(1 + ϕn,h,η), (4.10)
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with probability at least 1− (η+δ), where h is the height of the computational
tree, κ is the same condition number, and ϕn,h,η ≡ λn,η

√
2hu exp

(
λ2n,ηhu

2
)

with λn,η ≡√2 ln(2n/η).

104 105 106 107 108

n

1.1 × 10 6

1.2 × 10 6

1.3 × 10 6

1.4 × 10 6

1.5 × 10 6

1.6 × 10 6

1.7 × 10 6

(4.9) bound
(4.10) bound

1 -  = 1 - ( + ) = 0.9 

Figure 4.1: (4.9) and (4.10) bounds with λ = 0.1, η = 0.05, δ = 0.05, κ = 1 and
u = 2−23.

The figure 4.1 compares the probabilistic bounds (4.9) and (4.10) with prob-
ability 0.9, using identical values for the two probabilistic parameters of the
bound (4.10). Although both are in O(√log2(n)u), the figure clearly shows
that in this case, the bound obtained from the AH method consistently yields
lower values for all n and u. Note that we observe numerically convergence
of the bound (4.10) to the bound (4.9) when η approaches 0 and δ approaches
λ. Nevertheless, the AH method remains simple and intuitive.

4.1.4 . Generalization
This section illustrates that for a computation tree with additions/subtrac-

tions, the error has a probabilistic bound inO(√h) under SR-nearness, where
h = ⌈log2(n)⌉ is the tree height and n is the number of nodes. In the case of
multiplication of n numbers, this result remains valid but with a probabilis-
tic error bound inO(√n), where n is the number of nodes. This result can be
generalized to any complete computation tree with a sequence of elementary
operations {+,−, ∗} and multi-linear errors.

Let A,Ax and Ay algorithms based on elementary operations {+,−, ∗}.
Suppose that last operation in A is:
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z← x op y

x y

Figure 4.2: Last operation in A.
with
• x corresponds to the outcome of the algorithm Ax (the left sub-tree
computation).

• y corresponds to the outcome of the algorithm Ay (the right sub-treecomputation).
• op ∈ {+,−, ∗}

Note that the errors of A,Ax and Ay are multi-linear, i.e, in the multipli-
cation case, Ax and Ay do not share any instructions. In other words, the
degree of each error is one throughout the entire computation.

Our goal is to build by induction a martingale from the computation of A
by taking into account the last operation in use. Suppose that the last oper-
ation in A is an addition, i.e, z ← x + y. Consider the relative errors Φ, X
and Ψ associated respectively to x, y, and z. Note x, y, and z their respective
theoretical values, and x̂, ŷ and ẑ their computed values. Therefore:

x̂ = x(1 + Φ),

ŷ = y(1 + X),

ẑ = z(1 + Ψ).

We have z = x+ y, then, there exists δ such that ẑ = (x̂+ ŷ)(1 + δ). Hence,
Ψ =

ẑ − z
z

=
x̂+ ŷ

x+ y
(1 + δ)− 1

=

(
1 +

x

x+ y
Φ+

y

x+ y
X

)
(1 + δ)− 1.

Sincewe assume the inputs are exact, the relative error associatedwith an
input is zero. The(0)0i=0 forms a martingale. Suppose by induction that there
exist constantsKx ≥ 1 andKy ≥ 1, and martingales (Φi)

k−1
i=0 and (Xi)

l−1
i=0 withtheir ith step |Φi − Φi−1| and |Xi −Xi−1| bounded respectively by Kxu(1 +

u)i−1 and Kyu(1 + u)i−1, such that Φ0 = 0, X0 = 0, Φ = Φk−1 and X = Xl−1.Note that Φ0 = 0, X0 = 0 are martingales.
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Lemma 6. Let m = max{k, l} + 1. The stochastic process (Ψi)
m−1
i=0 such that

Ψm−1 = Ψ, and for all 0 ≤ i < m− 1,
Ψi =

x

x+ y
Φmin{i,k} +

y

x+ y
Xmin{i,l},

forms a martingale.
Proof. Without loss of generality, let us assume that k ≤ l. Then, m = l + 1

and {
Ψi = x

x+yΦi +
y

x+yXi for all 0 ≤ i ≤ k − 2

Ψi = x
x+yΦ+ y

x+yXi for all k − 1 ≤ i ≤ l − 1.

Note that (Φi)
m−2
i=0 with Φi = Φ for all k− 1 ≤ i ≤ m− 2 and (Xi)

m−2
i=0 are mar-

tingales by induction hypothesis. Since the martingale set is a vector space,
as a linear combination of them, (Ψi)

m−2
i=0 is a martingale. Moreover, by mean

independence of δ from Φ and X we have
E[Ψm−1/Ψm−2] = E

[(
1 +

x

x+ y
Φ+

y

x+ y
X

)
(1 + δ)− 1/Ψm−2

]
=

(
1 +

x

x+ y
Φ+

y

x+ y
X

)
E[(1 + δ)/Ψm−2]− 1

= Ψm−2.

Thus, (Ψ)m−1
i=0 is a martingale and Ψm−1 = Ψ.

In this lemma, we have shown a martingale by induction when the last
operation of the algorithmA is an addition. In order to use Azuma-Hoeffding
inequality (Lemma 3), we have to bound the martingale increments.
Lemma 7. LetKz =

|x|
|x+y|Kx +

|y|
|x+y|Ky. The martingale (Ψi)

m−1
i=0 satisfies

|Ψi −Ψi−1| ≤ uCi,

where Ci = Kz(1 + u)i−1 for all 1 ≤ i ≤ m− 1.
Proof. For all 0 ≤ i < m− 1, by induction hypothesis we have
|Ψi −Ψi−1| =

∣∣∣∣ x

x+ y
(Φmin{i,k−1} − Φmin{i−1,k−1}) +

y

x+ y
(Xmin{i,l−1} −Xmin{i−1,l−1})

∣∣∣∣
≤
∣∣∣∣ x

x+ y

∣∣∣∣ ∣∣Φmin{i,k−1} − Φmin{i−1,k−1}
∣∣+ ∣∣∣∣ y

x+ y

∣∣∣∣ ∣∣Xmin{i,l−1} −Xmin{i−1,l−1}
∣∣

≤ |x|
|x+ y|

Kxu(1 + u)min{i−1,k−1} +
|y|
|x+ y|

Kyu(1 + u)min{i−1,l−1}

≤ Kzu(1 + u)i−1.
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Moreover,
|Ψm−1 −Ψm−2| =

∣∣∣∣(1 + x

x+ y
Φ+

y

x+ y
X

)
δ

∣∣∣∣
≤ u

∣∣∣∣ x

x+ y
(Φ + 1) +

y

x+ y
(X + 1)

∣∣∣∣ .
Since Φ0 = 0,

|Φ+ 1| = |Φk−1 + 1| =

∣∣∣∣∣∣1 +
k−1∑
j=1

(Φj − Φj−1)

∣∣∣∣∣∣
≤ 1 +

k−1∑
j=1

|Φj − Φj−1|

≤ 1 +
k−1∑
j=1

uKx(1 + u)j−1

= 1 + uKx
(1 + u)k−1 − 1

u

= 1 +Kx(1 + u)k−1 −Kx

≤ Kx(1 + u)k−1.

The same method shows that |X + 1| ≤ Ky(1 + u)l−1. It follows that
|Ψm−1 −Ψm−2| ≤ u

(
|x|
|x+ y|

Kx(1 + u)k−1 +
|y|
|x+ y|

Ky(1 + u)l−1

)
≤ Kzu(1 + u)m−2.

Corollary 1. For all 0 < λ < 1, the computed ẑ satisfies under SR-nearness
|ẑ − z|
|z|

≤ Kz

√
uγ2(m−1)(u)

√
ln(2/λ), (4.11)

with probability at least 1− λ.
Proof. Using Azuma-Hoeffding inequality we have

|ẑ − z|
|z|

= |Ψm−1| ≤

√√√√m−1∑
i=1

u2C2
i

√
2 ln(2/λ),

with probability at least 1− λ. Moreover,
m−1∑
i=1

u2C2
i = u2K2

z

m−1∑
i=1

(1 + u)2(i−1)

= u2K2
z

(1 + u)2(m−1) − 1

u2 + 2u

≤ uK2
z

γ2(m−1)(u)

2
.
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Finally,
|ẑ − z|
|z|

≤ Kz

√
uγ2(m−1)(u)

√
ln(2/λ),

with probability at least 1− λ.
Suppose now that the last operation inA is a multiplication, i.e, z← x×y.

Consider the relative errors Φ, X, and Ψ associated respectively to x, y, and
z. Note x, y, and z their respective theoretical values, and x̂, ŷ and ẑ their
computed values, with x̂ = x(1 + Φ), ŷ = y(1 + X), and ẑ = z(1 + Ψ).

We have z = x× y, then there exists δ such that ẑ = x̂× ŷ(1 + δ). Hence,
Ψ =

ẑ − z
z

=
x̂× ŷ
x× y

(1 + δ)− 1

= (1 + Φ)(1 + X)(1 + δ)− 1.

We know by induction that Φ andX are the last terms of two martingales.
At the same time, themultiplication of twomartingales is not necessary amar-
tingale. Consequently, in contrast to the addition case, we have to establish
an order of operations in the construction of themartingaleΨ. Note that they
are all equivalent and leads asymptotically to obtain the same result.

In figure 4.2, we assume that the left sub-tree is computed before the right
sub tree, which means that in the computation of x, we assume that we don’t
have any operation on y. This choice, leads to built two martingales (Φi)

k−1
i=0and (Xi)

m−2
i=0 such that Φ0 = 0, Φ = Φk−1, Xj = 0 for all 0 ≤ j ≤ k − 1,

X = Xm−2, and random errors in Φ are different from those of X (thanks to
the multi-linearity of errors in the computation of z). The following lemma
shows that Ψ is the last term of a martingale built from (Φi)

k−1
i=0 and (Xi)

m−2
i=0 .

Lemma 8. The stochastic process (Ψi)
m−1
i=0 such that

Ψi =


Φi = (1 + Φi)(1 + 0)− 1 for all 0 ≤ i ≤ k − 1

(1 + Φ)(1 + Xi)− 1 for all k ≤ i ≤ m− 2

(1 + Φ)(1 + X)(1 + δ)− 1 for i = m− 1,

forms a martingale.
Proof. For all 0 ≤ i ≤ k − 1, by construction of Ψ, we have Ψi = Φi. Since
(Φi)

k−1
i=0 is a martingale, we have

E[Ψi/Ψi−1] = E[Φi/Ψi−1] = Φi−1 = Ψi−1.
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Moreover,
E[Ψk/Ψk−1] = E[(1 + Φ)(1 + Xk)− 1/Ψk−1]

= (1 + Φ)E[(1 + Xk)/Ψk−1]− 1

= (1 + Φ)− 1 by Lemma 2
= Φ.

Since (Xi)
m−2
i=0 is a martingale, for all k < i ≤ m− 2,

E[Ψi/Ψi−1] = E[(1 + Φ)(1 + Xi)− 1/Ψi−1]

= (1 + Φ)E[(1 + Xi)/Ψi−1]− 1

= (1 + Φ)(1 + Xi−1)− 1 = Ψi−1.

By the mean independence of δ and Ψm−2,
E[Ψm−1/Ψm−2] = E[(1 + Φ)(1 + Xm−2)(1 + δ)− 1/Ψm−2]

= (1 + Φ)(1 + Xm−2)E[(1 + δ)/Ψm−2]− 1

= Ψm−2.

In order to use Azuma-Hoeffding inequality (Lemma 3), we have to bound
the martingale increments. We can show by induction that there exist con-
stants Kx ≥ 1 and Ky ≥ 1, such that the ith step |Φi − Φi−1| and |Xi −Xi−1|are bounded respectively byKxu(1+u)

i−1 andKyu(1+u)
i−k (becauseXj = 0

for all 0 ≤ j ≤ k − 1).
Lemma 9. LetKz = KxKy. The martingale (Ψi)

m−1
i=0 satisfies

|Ψi −Ψi−1| ≤ uCi,

where Ci = Kz(1 + u)i−1 for all 1 ≤ i ≤ m− 1.
Proof. For all 1 ≤ i ≤ k − 1, |Ψi −Ψi−1| = |Φi − Φi−1| ≤ Kxu(1 + u)i−1.
Moreover, for all k ≤ i ≤ m− 2,

|Ψi −Ψi−1| = |(1 + Φ)(1 + Xi)− (1 + Φ)(1 + Xi−1)|
= |(1 + Φ)(Xi −Xi−1)|
≤ |1 + Φi|Kyu(1 + u)i−k.

As for the summation case, |1 + Φi| ≤ Kx(1+u)
k−1. Then, for all k ≤ i ≤ m−2,

|Ψi −Ψi−1| ≤ Kx(1 + u)k−1Kyu(1 + u)i−k = Kzu(1 + u)i−1.
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Finally,
|Ψm−1 −Ψm−2| = |(1 + Φ)(1 + X)δ|

≤ uKx(1 + u)k−1Ky(1 + u)m−k−1

≤ uKz(1 + u)m−2.

.
Corollary 2. For all 0 < λ < 1, the computed ẑ satisfies under SR-nearness

|ẑ − z|
|z|

≤ Kz

√
uγ2(m−1)(u)

√
ln(2/λ), (4.12)

with probability at least 1− λ.
Proof. Using Azuma-Hoeffding inequality we have

|ẑ − z|
|z|

= |Ψm−1| ≤

√√√√m−1∑
i=1

u2C2
i

√
2 ln(2/λ),

with probability at least 1− λ. Moreover,
m−1∑
i=1

u2C2
i = u2K2

z

m−1∑
i=1

(1 + u)2(i−1)

= u2K2
z

(1 + u)2(m−1) − 1

u2 + 2u

≤ uK2
z

γ2(m−1)(u)

2
.

Finally,
|ẑ − z|
|z|

≤ Kz

√
uγ2(m−1)(u)

√
ln(2/λ),

with probability at least 1− λ.
Interestingly, Corollaries 1 and 2 show that the error of any algorithm A

with elementary operations {+,−, ∗} andmulti-linear errors has a probabilis-
tic bound in O(√nu), where n is the number of operations.

Discussion: The Azuma-Hoeffding inequality is commonly used inmathe-
matical analysis to establish an upper bound on the deviation of the sum of a
sequence of independent and bounded random variables, martingales in the
previous studies. This inequality is particularly useful in the AHmethod, which
provides more precise bounds for higher probabilities. However, Azuma-
Hoeffding inequality assumes that the martingale steps are bounded by their
worst-case scenario, which may lead to less accuracy in certain cases.
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In numerical analysis, where problem sizes are often large in domains
like numerical simulation and data analysis, ensuring high-quality results can
be challenging under stochastic rounding, especially for tight probabilistic
bounds of the errorwith a fixed probability and for a largen. To overcome this
problem, in the next section, we present a new method based on a bound of
the error variance and Bienaymé–Chebyshev inequality. The latter provides a
general upper bound on the probability that a random variable deviates from
its mean by a certain amount.

4.2 . BC Method

Built upon themean independence property, we propose a new approach
to characterize SR errors based on the variance computation. We pinpoint
commonerror patterns in a set of numerical algorithms and introduce Lemma 11,
which presents a general framework applicable to a wide range of algorithms.
This framework enables the computation of a deterministic upper bound on
the variance of the accumulated error in a computation under SR-nearness.
This newmethod employs the Bienaymé–Chebyshev inequality to establish a
probabilistic error bound.

Interestingly, this approach also gives probabilistic error bounds inO(√nu)
and leads to better asymptotic behavior than the AH method in several sit-
uations. Our method has the advantage of providing a tighter probabilistic
bound for all algorithms fitting our model. We show that this method is al-
ways better with probability at most 0.7678. Otherwise, for a fixed probability
and with respect to the unit roundoff u, the bound proposed by this method
remains tight from a certain problem size n. This approach will be referred to
as the BC method throughout the remainder of this dissertation. Now, let us
recall the Bienaymé–Chebyshev inequality [8, p. 19].
Lemma 10. (Bienaymé–Chebyshev inequality) Let X be a random variable with
finite expected value E(X) and finite non-zero variance V (X). For any real num-
ber α > 0,

P
(
|X − E(X)| ≤ α

√
V (X)

)
≥ 1− 1

α2
.

We now turn to bound the variance of the error in computation. If x̂ =

x(1 + δ) is the result of an elementary operation rounded with SR-nearness,
then E(x̂) = x and

V (x̂) = E(x̂2)− x2 = ⌈x⌉2p(x) + ⌊x⌋2(1− p(x))− x2

= p(x)(⌈x⌉2 − ⌊x⌋2)− (x2 − ⌊x⌋2)
= p(x)ϵ(x)(⌈x⌉+ ⌊x⌋)− p(x)ϵ(x)(x+ ⌊x⌋)
= p(x)ϵ(x)(⌈x⌉ − x)
= ϵ(x)2p(x)(1− p(x)).

61



Using (2.4) leads to V (x̂) ≤ x2 u
2

4 , in particular V (x̂) ≤ x2u2. Lemma 11 below
allows to estimate the variance of the accumulated errors in a sequence of
additions and multiplications. This accumulation manifests as a product of
errors, a phenomenon that naturally arises when defining the relative error
in relation to the standard model (2.3).

LetK a subset ofN of cardinality n. Assume that δ1, δ2, ... in that order arerandom errors on elementary operations obtained from SR-nearness. Let us
denote

ψK =
∏
k∈K

(1 + δk).

Since |δk| ≤ u for all k ∈ K we have |ψK | ≤ (1 + u)n. Let K△K ′ = (K ∪
K ′) \ (K ∩K ′). The following lemma gives some properties of ψ that allow to
bound the variance of errors in an algorithm consisting of a fixed sequence
of sums and products.
Lemma 11. Under SR-nearness ψK satisfies

1. E(ψK) = 1.
2. LetK ′ ⊂ N such that |K∩K ′| = m, under the assumption that∀ j ∈ K△K ′,
k ∈ K ∩K ′, with j < k we have

0 ≤ Cov(ψK , ψK′) ≤ γm(u2).

3. V (ψK) ≤ γn(u2),
where γn(u2) = (1 + u2)n − 1 ≈ exp (nu2)− 1 = nu2 +O(u4).

Remark 3. To compute a bound on Cov(ψK , ψK′), we assume that common
errors in inputs tend to appear toward the end of the computation. This hap-
pens when errors accumulate while evaluating algorithms based on elemen-
tary operations. However, for the bound on the variance, we have K = K ′;
therefore, this assumption remains irrelevant.
Proof. The first point is an immediate consequence of [12, lem 6.1]. The third
point is a particular case of the second withK = K ′. Let us prove point 2.

Cov(ψK , ψK′) = E(ψKψK′)− E(ψK)E(ψK′) = E(ψKψK′)− 1.

Assume thatK ∩K ′ = {k1, . . . , km}. Let us denote

Qm := ψKψK′ =
∏

j∈K△K′

(1 + δj)

km∏
l=k1

(1 + δl)
2,

such that j < ki for all j ∈ K△K ′ and i ∈ {1, . . . ,m}.
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We prove by induction overm that 1 ≤ E(Qm) ≤ (1+u2)m. Form = 0, we
haveK ∩K ′ = ∅ and Q0 =

∏
j∈K△K′(1 + δj), from the first point E(Q0) = 1.

Assume that the inequality holds for Qm−1.
Qm = (1 + δkm)

2

km−1∏
l=k1

(1 + δl)
2
∏

j∈K△K′

(1 + δj) = (1 + δkm)
2Qm−1.

Let us denote SK△K′ = {δj , j ∈ K△K ′}, using the law of total expectation
E(X) = E(E[X/Y ]) and lemma 2 we have

E(Qm) = E
(
(1 + δkm)

2Qm−1

)
= E

(
E[(1 + δkm)

2Qm−1/SK△K′ , δk1 , . . . , δkm−1 ]
)

= E
(
Qm−1E[(1 + δkm)

2/SK△K′ , δk1 , . . . , δkm−1 ]
)

= E
(
Qm−1E[1 + δ2km/SK△K′ , δk1 , . . . , δkm−1 ]

)
.

Since |δkm | ≤ u, we have by induction
1 ≤ E(Qm−1) ≤ E

(
Qm−1E[1 + δ2km/SK△K′ , δk1 , . . . , δkm−1 ]

)
≤ E

(
Qm−1(1 + u2)

)
.

Thus, 1 ≤ E (Qm) ≤ (1 + u2)m. Finally, by induction, the claim is proven
0 ≤ E (Qm)− 1 = Cov(ψK , ψK′) ≤ γm(u2).

Under SR-nearness, Lemma 11 can nowbe used to derive a variance bound
for many algorithms, such as summation, inner products, matrix-vector and
matrix-matrix products, solutions of triangular systems, and the Horner algo-
rithm.

4.2.1 . Sequential Summation
Recall that from Sub-section 4.1.1, the computed ŝ satisfies:

ŝ =

n∑
i=1

ai

n∏
k=max (i,2)

(1 + δk) =

n∑
k=1

aiψKi ,

whereKi = {max (i, 2), . . . , n} andψKi =
∏n

k=max (i,2)(1+δk) for all 1 ≤ i ≤ n.
Theorem 7. For all 0 < λ < 1, the computed ŝ in the Equation (4.1) satisfies
under SR-nearness E(ŝ) = s and

|ŝ− s|
|s|

≤ K
√
γn−1(u2)/λ, (4.13)

with probability at least 1− λ, where K =
∑n

i=1|ai|
|∑n

i=1 ai|
is the condition number.
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Proof. By expectation of linearity, E(ŝ) =
∑n

i=1 aiE(ψKi). Lemma 11 shows
that for all 1 ≤ i ≤ n, E(ψKi) = 1 and V (ψKi) ≤ γni(u

2), where ni is thecardinality ofKi. It follows that E(ŝ) = s and

V (ŝ) = V

(
n∑

i=1

aiψKi

)
= σ

(
n∑

i=1

aiψKi

)2

≤

(
n∑

i=1

σ(aiψKi)

)2

since σ(X + Y ) ≤ σ(X) + σ(Y )

=

(
n∑

i=1

|ai|
√
V (ψKi)

)2

≤

(
n∑

i=1

|ai|
√
γni(u

2)

)2

by Lemma 11.

Since γni(u
2) ≤ γn−1(u

2),

V (ŝ) ≤ γn−1(u
2)

(
n∑

i=1

|ai|

)2

. (4.14)

Bienaymé–Chebyshev inequality implies
P
(
|ŝ− E(ŝ)| ≤

√
V (ŝ)/λ

)
≥ 1− λ.

Thus
|ŝ− s|
|s|

≤ 1

|s|
√
V (ŝ)/λ

≤
∑n

i=1 |ai|
|s|

√
γn−1(u2)/λ

= K
√
γn−1(u2)/λ,

with probability at least 1− λ.
Remark 4. Because E(ŝ) = s, under a normality assumption of ŝ, the number
of significant bits can be lower-bounded by

− log2

(
σ(ŝ)

|E(ŝ)|

)
≥ − log2

(
K
√
γn−1(u2)

)
≈ − log2(K)− log2(u)−

1

2
log2(n− 1).

With K is the condition number and σ(ŝ) is the standard deviation of ŝ.
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4.2.2 . Inner Product
In this sub-section, we bound the forward error of the inner product using

the BC method. Consider the inner product sn = y = a1b1 + · · · + anbn,evaluated from left to right, i.e, si = si−1 + aibi, starting with s1 = a1b1. Let
δ0 = 0, the computed ŝi satisfies ŝ1 = a1b1(1 + δ1) and

ŝi = (ŝi−1 + aibi(1 + δ2i−2))(1 + δ2i−1), |δ2i−2|, |δ2i−1| ≤ u,

for all 2 ≤ i ≤ n, where δ2i−2 and δ2i−1 represent the rounding errors fromthe products and additions, respectively. We thus have
ŷ = ŝn =

n∑
i=1

aibi(1 + δ2i−2)

n∏
k=i

(1 + δ2k−1).

Theorem 8. For all 0 < λ < 1, the computed ŷ satisfies under SR-nearness
E(ŷ) = y and

|ŷ − y|
|y|

≤ K
√
γn(u2)/λ, (4.15)

with probability at least 1−λ, whereK =
∑n

i=1|aibi|
|
∑n

i=1 aibi|
is the condition number using

the 1-norm for the computed y =
∑n

i=1 aibi.
Proof. For all 1 ≤ i ≤ n, we have

ŷ =
n∑

i=1

aibi(1 + δ2i−2)
n∏

k=i

(1 + δ2k−1) =
n∑

i=1

aibiψKi ,

with K1 = {1, 3, . . . , 2n − 1} and Ki = {2i − 2, 2i − 1, 2i + 1, . . . , 2n − 1}
for all 2 ≤ i ≤ n. Lemma 11 shows that for all 1 ≤ i ≤ n, E(ψKi) = 1 and
V (ψKi) ≤ γni(u

2), where ni is the cardinality ofKi. Hence
E(ŷ) = E

(
n∑

i=1

aibiψKi

)
=

n∑
i=1

aibiE(ψKi) = y.

And
V (ŷ) = V

(
n∑

i=1

aibiψKi

)

≤

(
n∑

i=1

|aibi|
√
V (ψKi)

)2

since σ(X + Y ) ≤ σ(X) + σ(Y )

≤

(
n∑

i=1

|aibi|
√
γni(u

2)

)2

by Lemma 11

≤ γn(u2)(
n∑

i=1

|aibi|)2 since γni(u
2) ≤ γn(u2)

= y2K2γn(u
2).
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Thus, Bienaymé–Chebyshev inequality implies
|ŷ − y|
|y|

≤
√
V (ŷ)/λ

|y|
≤ K

√
γn(u2)/λ,

with probability at least 1− λ.

Remark 5. BecauseE(ŷ) = y, under a normality assumption of ŷ, the number
of significant bits can be lower-bounded by

− log2

(
σ(ŷ)

|E(ŷ)|

)
≥ − log2

(
K
√
γn(u2)

)
≈ − log2(K)− log2(u)−

1

2
log2(n).

With K is the condition number and σ(ŷ) is the standard deviation of ŷ.
4.2.3 . Horner Algorithm

In this sub-section, we bound the forward error of the Horner algorithm
using the BCmethod. Recall that for the Horner algorithm , the computed r̂2nsatisfies

r̂2n =

n∑
i=0

aix
i

2n∏
k=2(n−i)

(1 + δk),

Theorem 9. For all 0 < λ < 1, the computed r̂2n in the Equation (4.3) satisfies
under SR-nearness E(r̂2n) = r2n and

|r̂2n − r2n|
|r2n|

≤ K
√
γ2n(u2)/λ, (4.16)

with probability at least 1−λ, whereK =
∑n

i=0|aixi|
|
∑n

i=0 aix
i| is the condition number usingthe 1-norm for the computed P (x) =∑n

i=0 aix
i.

Proof. We have

r̂2n =
n∑

i=0

aix
i

2n∏
k=2(n−i)

(1 + δk) =

n∑
i=0

aix
iψKi ,

with δ0 = 0, Ki = {2(n − i), 2(n − i) + 1, . . . , 2n} for all 0 ≤ i ≤ n − 1, and
Kn = {1, . . . , 2n}. Lemma 11 implies that for all 0 ≤ i ≤ n, E(ψKi) = 1 and
V (ψKi) ≤ γni(u

2), where ni is the cardinality ofKi. Then
E(r̂2n) = E

(
n∑

i=0

aix
iψKi

)
=

n∑
i=0

aix
iE(ψKi) = r2n.
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And
V (r̂2n) = V

(
n∑

i=0

aix
iψKi

)

≤

(
n∑

i=0

|aixi|
√
V (ψKi)

)2

since σ(X + Y ) ≤ σ(X) + σ(Y )

≤

(
n∑

i=0

|aixi|
√
γni(u

2)

)2

by Lemma 11

≤ γ2n(u2)(
n∑

i=0

|aixi|)2 since γni(u
2) ≤ γ2n(u2)

= r22nK2γ2n(u
2).

Thus, Bienaymé–Chebyshev inequality implies
|r̂2n − r2n|
|r2n|

≤
√
V (r̂2n)/λ

|r2n|
≤ K

√
γ2n(u2)/λ,

with probability at least 1− λ.
Remark 6. Because E(r̂2n) = r2n, under a normality assumption of r̂2n, thenumber of significant bits can be lower-bounded by

− log2

(
σ(r̂2n)

|E(r̂2n)|

)
≥ − log2

(
K
√
γ2n(u2)

)
≈ − log2(K)− log2(u)−

1

2
log2(2n).

4.2.4 . Pairwise Summation
In this sub-section, webound the forward error of the pairwise summation

using the BC method. Recall that for the pairwise summation, the computed
Ŝh
1 satisfies

Ŝh
1 =

2h∑
i=1

xi

h∏
j=1

(1 + δj⌈ i

2j
⌉) =

2h∑
i=1

xiψKi ,

where ψKi =
∏h

j=1(1 + δj⌈ i

2j
⌉) and the cardinality ofKi is h for all 1 ≤ i ≤ 2h.

Theorem 10. For all 0 < λ < 1, the computed Ŝh
1 in the Equation (4.8) satisfies

under SR-nearness E(Ŝh
1 ) = Sh

1 and∣∣∣Ŝh
1 − Sh

1

∣∣∣∣∣Sh
1

∣∣ ≤ κ
√
γlog2(n)(u

2)/λ, (4.17)
with probability at least 1− λ, where κ =

∑n
i=1|xi|
|∑n

i=1 xi| is the condition number of thesummation of the xi.
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Proof. By expectation linearity, E(Ŝh
1 ) =

∑2h

i=1 xiE(ψKi). Lemma 11 shows
that for all 1 ≤ i ≤ 2h,

E(ψi) = 1 and V (ψKi) ≤ γh(u2).

It follows that E(Ŝh
1 ) = Sh

1 and
V (Ŝh

1 ) = V

 2h∑
i=1

xiψKi


≤

 2h∑
i=1

|xi|
√
V (ψKi)

2

since σ(X + Y ) ≤ σ(X) + σ(Y )

≤

 2h∑
i=1

|xi|
√
γh(u2)

2

by Lemma 11

≤ γh(u2)(
2h∑
i=1

|xi|)2

= ∥x∥21 γh(u
2).

Bienaymé–Chebyshev inequality implies
P
(∣∣∣Ŝh

1 − E(Ŝh
1 )
∣∣∣ ≤√V (Ŝh

1 )/λ

)
≥ 1− λ.

Thus ∣∣∣Ŝh
1 − Sh

1

∣∣∣∣∣Sh
1

∣∣ ≤ 1∣∣Sh
1

∣∣√V (Ŝh
1 )/λ

≤
∥x∥1∣∣Sh

1

∣∣√γh(u2)/λ
= κ

√
γh(u2)/λ,

with probability at least 1− λ. Since h = log2(n)∣∣∣Ŝh
1 − Sh

1

∣∣∣∣∣Sh
1

∣∣ ≤ κ
√
γlog2(n)(u

2)/λ,

with probability at least 1− λ.
Remark 7. Because E(Ŝh

1 ) = Sh
1 , under a normality assumption of Ŝh

1 , thenumber of significant bits can be lower-bounded by
− log2

(
σ(Ŝh

1 )

|E(Ŝh
1 )|

)
≥ − log2

(
K
√
γh(u2)

)
≈ − log2(K)− log2(u)−

1

2
log2(h).
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4.2.5 . Generalization
This method can also be generalized to any complete computation tree

with a multi-linear sequence of elementary operations {+,−, ∗}. Using the
same notations of Sub-section 4.1.4, in the case of the last operation of A is
z← x+ y. We have z = x+ y, then there exists δ such that ẑ = (x̂+ ŷ)(1+ δ),
with x̂ = x(1 + Φ) and ŷ = y(1 + X).

Lemma 11 shows that we can assume by induction that
V (x̂(1 + δ)) ≤ K2

xx
2γk(u

2), and V (ŷ(1 + δ)) ≤ K2
yy

2γl(u
2).

The following two theoremsallowus to compute aprobabilistic error bound
in O(√nu) of the algorithm A using the BC method.
Theorem 11. For all 0 < λ < 1, the computed ẑ satisfies under SR-nearness
E(ẑ) = z, and

|ẑ − z|
|z|

≤ Kz

√
γm−1(u2)/λ, (4.18)

with probability at least 1− λ, whereKz = Kx
|x|

|x+y| +Ky
|y|

|x+y| .
Proof. By construction of A, Lemma 11 shows that E(ẑ) = z. Note that

V (ẑ) = V ((x̂+ ŷ)(1 + δ))

= V (x̂(1 + δ) + ŷ(1 + δ))

≤
(√

V (x̂(1 + δ)) +
√
V (ŷ(1 + δ))

)2
.

Lemma 11 shows that
V (x̂(1 + δ)) ≤ K2

xx
2γk(u

2), and V (ŷ(1 + δ)) ≤ K2
yy

2γl(u
2).

Then, form = max{k, l}

V (ẑ) ≤
(
Kx |x|

√
γk(u2) +Ky |y|

√
γl(u2)

)2
≤ γm−1(u

2)(Kx |x|+Ky |y|)2.

Bienaymé–Chebyshev inequality implies
P
(
|ẑ − E(ẑ)| ≤

√
V (ẑ) /λ

)
≥ 1− λ.

Thus,
|ẑ − z|
|z|

≤ 1

|z|
√
V (ẑ)/λ

≤ Kx |x|+Ky |y|
|x+ y|

√
γm−1(u2)/λ

= Kz

√
γm−1(u2)/λ,

with probability at least 1− λ.
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In the case of the last operation of A is z ← x × y. We have z = xy, then
there exists δ such that ẑ = x̂ŷ(1 + δ), with x̂ = x(1 + Φ) and ŷ = y(1 +X).
Theorem 12. For all 0 < λ < 1, the computed ẑ satisfies under SR-nearness
E(ẑ) = z, and

|ẑ − z|
|z|

≤ Kz

√
γm−1(u2)/λ, (4.19)

with probability at least 1− λ, whereKz = KxKy.
Proof. By construction of A, Lemma 11 shows that E(ẑ) = z. Note that

V (ẑ) = V (x̂ŷ(1 + δ))

= V (xy(1 + Φ)(1 +X)(1 + δ))

≤ K2
xx

2K2
yy

2γm−1(u
2) by Lemma 11.

Because theworst error accumulation is of degreem−1. Bienaymé–Chebyshev
inequality implies

|ẑ − z|
|z|

≤ 1

|z|
√
V (ẑ)/λ

≤ Kx |x|Ky |y|
|xy|

√
γm−1(u2)/λ

= Kz

√
γm−1(u2)/λ,

with probability at least 1− λ.

Discussion: TheBCmethod is a less restrictive result, as it requires few as-
sumptions and is simple to apply. The Bienaymé–Chebyshev inequality yields
an upper bound (variance) on the probability of deviation between the mean
of a distribution and a specific value. In the case of SR-nearness, due to the
unbiased nature of this stochastic rounding mode, a bound of the variance is
sufficient to bound the error. Although thismethod is less accurate asymptot-
ically in probability, in the next section, we showcase that the skillful handling
of the variance bound outweighs this limitation and effectively governs the
accuracy of the ultimate bound.

4.3 . Error Bounds Analysis

In this section, on the one hand, we compare the deterministic bound ver-
sus the probabilistic bounds. On the other hand, we undertake a comparative
analysis of the two precedingmethods, evaluating the tightness of their prob-
abilistic bounds based on the precision used, the target probability, and the
number of operations. We illustrate this analysis through the inner product
as an example, but it also applies to the other algorithms. The advantage of
the BC method in low-precision is clearly presented in Table 4.1.
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4.3.1 . Inner Product
In the beginning, let us recall all bounds obtained for the inner product

y = a⊤b, where a, b ∈ Rn

|ŷ − y|
|y|

≤ Kγn(u), (Det-IP)
|ŷ − y|
|y|

≤ Kγ̃n(
√
2 ln (2n/λ)) with probability at least 1− λ, (AH1-IP)

|ŷ − y|
|y|

≤ K
√
uγ2n(u)

√
ln(2/λ) with probability at least 1− λ, (AH2-IP)

|ŷ − y|
|y|

≤ K
√
γn(u2)

√
1/λ with probability at least 1− λ, (BC-IP)

where K =
∑n

i=1|aibi|
|
∑n

i=1 aibi|
is the condition number and

γ̃n(
√
2 ln (2n/λ)) = exp

(√
2n ln (2n/λ)u+ nu2

1− u

)
− 1.

Note that (AH1-IP) is the bound obtained by Connelly et al. [12, thm 4.8], (AH2-
IP) is the bound obtained by Ipsen, and Zhou [46, cor 4.7], and (BC-IP) is the
bound obtained in Theorem 8.

All bounds have the same condition number K, but differ in the others
factor: γn(u) for (Det-IP), γ̃n(√2 ln (2n/λ)) for (AH1-IP), √uγ2n(u)√ln(2/λ)

for (AH2-IP), and √γn(u2)√1/λ for (BC-IP). In the following, for a constant
λ, we investigate three cases: nu ≪ 1, nu ≫ 1 and n ln(n)u2 ≪ 1, and
n ln(n)u2 ≫ 1 and nu2 ≪ 1.

For n and u such that nu≪ 1, we have
exp

√
2n ln (2n/λ)u+ nu2

1− u
− 1 =

√
2n ln (2n/λ)u+O(u2).

Moreover, [38, Lemma 3.1] implies
γn(u) ≤

nu

1− nu
,

it follows that for 2nu < 1,√
uγ2n(u) ≤

√
2nu2

1− 2nu
= u
√
n

√
2

1− 2nu
,

and for nu2 < 1 √
γn(u2) ≤

√
nu2

1− nu2
= u
√
n

1√
1− nu2

.

Interestingly, for the inner product, at any fixed probability, when nu ≪
1, (AH2-IP) and (BC-IP) bounds are proportional to √nu unlike √n lnnu for
the (AH1-IP) bound. Note that the deterministic bound is in O(nu).
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For n and u such that nu≫ 1 and n ln(n)u2 ≪ 1, we have

exp

√
2n ln (2n/λ)u+ nu2

1− u
− 1 =

√
2n ln (2n/λ)u+O(u2).

Furthermore,
√
uγ2n(u) ≈

√
u (exp (2nu)− 1) ≈

√
u exp (nu), (4.20)

and √
γn(u2) ≈

√
exp (nu2)− 1 =

√
nu+O(u2).

For n and u such that n ln(n)u2 ≫ 1 and nu2 ≪ 1, we have

exp

√
2n ln (2n/λ)u+ nu2

1− u
− 1 ≈ exp

√
2n ln (2n/λ)u+ nu2

1− u
≈ exp

(√
2n ln (2n/λ)u

)
,

then
γ̃n(
√

2 ln (2n/λ)) ≈ exp
(√

2n ln (2n/λ)u
)
. (4.21)

However, √
γn(u2) ≈

√
exp (nu2)− 1 =

√
nu+O(u2). (4.22)

Therefore, the previous analysis and in particular (4.20), (4.21), and (4.22)
show that asymptotically (BC-IP) ≤ (AH1-IP) ≤ (AH2-IP) when nu ≫ 1 and
nu2 ≪ 1. In conclusion, these probabilistic bounds show that the roundoff
error accumulated in n operations is proportional to √nu rather than nu. In
the next sub-section, we analyze these two probabilistic methods.

4.3.2 . BC Method vs AH Method

In the following, we compare the three probabilistic bounds (AH1-IP), (AH2-
IP) and (BC-IP) on the inner product forward error (similar reasoning can be
applied to the other algorithms with the same result). When nu ≪ 1, at any
fixed probability, (AH2-IP) and (BC-IP) are proportional to O(√nu). First, we
focus on this case. The two probabilistic bounds have the same condition
number K. Thus, it is enough to compare

√
u

2
γ2n(u)

√
2 ln(2/λ) and √

γn(u2)
√
1/λ.
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These two bounds depend on n and λ. Firstly, using the binomial theorem,
we have

u

2
γ2n(u)− γn(u2) =

u

2

(
(1 + u2 + 2u)n − 1

)
−
(
(1 + u2)n − 1

)
=
u

2

n∑
k=1

(
n

k

)
(u2 + 2u)k −

n∑
k=1

(
n

k

)
(u2)k

=
n∑

k=1

(
n

k

)[u
2
(u2 + 2u)k − (u2)k

]
≥

2∑
k=1

(
n

k

)[u
2
(u2 + 2u)k − (u2)k

]
≥ n(n− 1

2
)u3.

We can conclude that
√
γn(u2) ≤

√
u

2
γ2n(u) for all n ≥ 1. (4.23)

Now, let us compare√1/λ and√2 ln(2/λ) for λ ∈]0; 1[.

0.0 0.2 0.4 0.6 0.8 1.0
1

100

2 × 100

3 × 100

4 × 100

f(
)

2ln(2/(1 ))
1/(1 )

Figure 4.3: Illustration of√1/λ and√2 ln(2/λ) behaviour for all λ ∈]0; 1[.

Figure 4.3 and the inequality (4.23) show that whatever the problem size
n and for a probability at most ≈ 0.7678, the BC method gives a tighter prob-
abilistic bound than the AH2 method.
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Figure 4.4: AH1, AH2 and BC bounds with probability 0.9 and u = 2−23 for theinner product.
Figure 4.4 confirms the discussion of Sub-section 4.3.1 and shows that with

a probability 0.9, when nu ≫ 1, AH2 bound grows rapidly compared to AH1
and BC bounds. Regarding BC bound, the variance calculation and the mean
independence allow to bound the error terms (1+δ)2 by (1+u2) and avoid all δ
terms of degree one becauseE(δ) = 0. In contrast, the AH1 and AH2methods
require bounded increments leading to terms (1 + u)2. As n increases, the
advantage of Azuma-Hoeffding inequality for a probability near 1 becomes
negligible.

For all asymptotic comparisons between the bounds in this chapter, we
have chosen to work with u → 0, n → ∞ and fixed probability λ, which we
think adapted tomany if notmost current practical use cases. A situation with
λ → 0 and fixed n gives the advantage to the Azuma-Hoeffding bounds over
the Bienaymé-Chebyshev one.

Table 4.1 illustrates howBCbound is tighter thanAH2boundwhenn grows.
The n threshold above which BC bound is preferable to AH2 bound depends
on the format precision. The lower the precision, the lower the threshold be-
comes. Using SR in low-precision is of high interest in the areas of machine
learning [32], PDEs [14], and ODEs [45], motivating the use of our improved
BC method.

4.4 . Numerical Experiments

This section presents numerical experiments that support and complete
the theory presented previously. The various bounds are compared on two
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Probability u Precision format n ≳

1− λ = 0.95 2−7 bfloat-16 110

2−10 binary-16 890

2−23 binary-32 7.3 e06
2−52 binary-64 3.9 e15

1− λ = 0.99 2−7 bfloat-16 220

2−10 binary-16 1810

2−23 binary-32 1.48 e07
2−52 binary-64 8 e15

Table 4.1: The smallest n such that BC method gives a tighter proba-bilistic bound than AH2 method for the inner product.

numerical applications: the inner product and the evaluation of the Cheby-
shev polynomial.

We show that the probabilistic bounds are tighter than the determinis-
tic bound and faithfully capture the behavior of SR-nearness forward error.
For an inner product of large vectors, we show that BC bound is smaller than
AH1 and AH2 bounds. All SR computations are repeated 30 times with verifi-
carlo [18]; we plot all samples and the forward error of the average of the 30
SR instances.

4.4.1 . Horner Algorithm

Let us firstly recall the previous error bounds obtained for this algorithm
under SR-nearness:
|P̂ (x)− P (x)|
|P (x)|

≤ Kγ2n(u), (Det-H)
|P̂ (x)− P (x)|
|P (x)|

≤ K
√
uγ4n(u)

√
ln

2

λ
with probability ≥ 1− λ, (AH-H)

|P̂ (x)− P (x)|
|P (x)|

≤ K
√
γ2n(u2)

√
1

λ
with probability ≥ 1− λ. (BC-H)

Note that (Det-H) is the bound from Inequality (4.4), (AH-H) is the bound in
Theorem 4, and (BC-H) is the bound in Theorem 9. We use Horner’s method
to evaluate the polynomial P (x) = TN (x) =

∑TN
2

U
i=0 ai(x

2)i where TN is the
Chebyshev polynomial of even degree N = 2n.
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Figure 4.5: Probabilistic error bounds with probability 1 − λ = 0.5 (left) and
1−λ = 0.9 (right) vs deterministic bound for the Horner’s evaluation of T20(x)and u = 2−23. Triangles mark 30 instances of the SR-nearness relative errorsevaluation in binary32 precision, a circle marks the relative errors of the 30instances average, and a star represents the IEEE RN-binary32 value.

Chebyshev polynomial is ill-conditioned near 1 as shown in Figure 4.5,
which evaluates T20(x) for x ∈ [ 8

128 ; 1] with a step size of 2/128. Due to catas-trophic cancellations among the polynomial terms, the condition number in-
creases from 100 to 107 in the chosen x interval, resulting in an increasing
numerical error for both RN-binary32 and SR-nearness computations.

The left plot confirms that the Bienaymé–Chebyshev bound (BC-H) ismore
accurate than the Azuma-Hoeffding bound (AH-H) for probability 1 − λ =

0.5. With a higher probability 1 − λ = 0.9 (right plot), since N = 20 and
u = 2−23 Azuma-Hoeffding bound (AH-H) is tighter, as predicted in Figure 4.4.
Both probabilistic bounds are tighter than the deterministic bound. For N =

20, there is no significant difference between SR-nearness and RN-binary32.
However, as expected, the average of the SR-nearness computations is more
precise than the nearest round evaluation for almost all values of x.
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Figure 4.6: Normalized forward error (error/K) with probability 1 − λ = 0.5(left) and 1−λ = 0.9 (right) for Horner’s evaluation of TN (24/26) and u = 2−23.

In Figure 4.6, the three previous bounds and the forward error are normal-
ized by the condition number K =

∑n
i=0|aixi|

|
∑n

i=0 aix
i| . The evaluation in x = 24/26 ≈

0.923 is plotted for various polynomial degrees N. As expected, when N in-
creases, the deterministic bound grows faster than the probabilistic bounds.
The right plot shows that Azuma-Hoeffding bound is tighter for a high prob-
ability and a small n. Overall, Chebyshev polynomial numerical experiment
illustrates the advantage of the probabilistic error bounds over the determin-
istic error bound. However, for most of the evaluations in this experiment,
RN-binary32 is more accurate than one instance of SR-nearness. This result is
unsurprising because the degree n is small. To illustrate the behavior of these
errors with a large n, we now turn to the inner product.

4.4.2 . Inner Product

To showcase the advantage of using BC method for large n, we present a
numerical application of the inner product for vectors with positive floating-
point numbers chosen uniformly at random between 0 and 1.
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Figure 4.7: Probabilistic bounds with probability 1 − λ = 0.9 vs deterministicbound of the computed forward errors of the inner product with u = 2−23.

For small n, AH1, AH2, and BC bounds are comparable with a slight advan-
tage for (AH2-IP). However, as shown in Sub-section 4.3.1, when nu ≫ 1, the
AH2 bound grows exponentially faster than AH1 and BC bounds. Asymptoti-
cally, the AH1 and BC bounds are therefore much tighter.

Interestingly, when n increases, a single instance of SR-nearness in bi-
nary32 precision is more accurate than RN-binary32. This is because the sum-
mation terms are chosen uniformly between 0 and 1. The terms closest to zero
are absorbed. With RN-binary32 the absorption errors are biased andwill add
up, while SR avoids stagnation and mitigates absorption errors. If we choose
the terms in [−1; 1], SR and RN-binary32 have the same behavior. In this case,
the absorption errors for RN-binary32 compensate because positive and neg-
ative errors are uniformly distributed. If we choose the terms in [1/2; 1], no
absorption occurs for n < 223, and on this domain, SR and RN-binary32 be-
have similarly.
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Figure 4.8: AH1 bound vs BC bound with probability 1− λ = 0.9 and u = 2−23

for the inner product.

Figure 4.8 illustrates the advantage of using (BC-IP) and shows that for a
large n ≥ 1013 and u = 2−23, the AH1 bound increases faster than the BC
bound. This unsurprising result confirms the previous theoretical analysis in
Section 4.3.

For many applications, SR results in a smaller accumulated error, for ex-
ample, by avoiding stagnation effects. It satisfies the mean independence
property, allowing tight probabilistic error bounds derived from our variance
bound or the martingale theory. In the AH method, the martingale is readily
apparent for computations such as summation or inner product. However,
revealing the presence of the martingale can be difficult in some situations,
as we have shown in our analysis of the Horner algorithm. This method uses
the Azuma-Hoeffding inequality, which establishes a probabilistic bound and
provides exponential tail bounds, making it a powerful tool for achieving ex-
cellent results asymptotically in probability.

For the BC method, the utilization of Lemma 11 dramatically simplifies the
application of this approach. The Bienaymé-Chebyshev inequality often of-
fers looser bounds on the tails of random variables, making it less accurate
asymptotically in probability. Nevertheless, the quality of our bound on the
variance dominates, leading to a final bound in O(√nu). In several domains,
the problem size n of computation is generally very large, as well as proba-
bilistic investigationswith a probability of 0.95 or 0.99 are frequently accepted.
Table 4.1 shows the advantage of the BC method in low-precision with these
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probabilities.
Thanks to stochastic rounding and the previous two methods, we have

been able to establish probabilistic bounds in O(√nu) for algorithms with
multi-linear errors based on {+,−, ∗}. It has been observed that any multi-
linear transformation of errors under SR-nearness forms a martingale: when
errors result from elementary operations on exact inputs or affine functions
of other errors or previous computations, they forma stochastic process given
by (∏k∈K(1 + δk)− 1) with a natural filtration F, whereK ⊂ N and certain δkcan be zero.

In order to effectively manage this stochastic process and achieve the de-
sired F-martingale (martingale with respect to F), several techniques have
been proposed depending on the algorithm employed. The Sub-section 2.4.2
summarizes the techniques proposed by Connelly et al. [12] and Ipsen, and
Zhou [46] for the inner product. The Sub-section 4.1.3 compares our tech-
nique to the Hallman and Ipsen [33] method for the pairwise summation. In
these two problems, we have shown that the method used to construct the
martingale is crucial in enhancing the quality of the probabilistic error analy-
sis.

The shared property of the algorithms studied in this section is that the
martingale emerges from the previous stochastic process without supple-
mentary terms (bias or drift). This characteristic allows the direct applica-
tion of probabilistic inequalities, such as the Azuma-Hoeffding inequality with
bounded steps, enabling tight probabilistic bounds for higher probabilities.
We have also demonstrated an alternative method based on a bound of the
variance and Bienaymé-Chebyshev that ensures tight probabilistic bounds as
the problem size increases and for a fixed probability.

Motivated by the applicability of this general framework to any numerical
scheme featuring multi-linear errors, our goal in the next chapter is to extend
its scope to encompass more complex situations: algorithms with errors that
are not necessarily linear. The presence of non-linear errors will inevitably
alter the form of the previous stochastic process. Hence, it is crucial to care-
fully handle this alteration and present a strategy to show the existence of
the martingale. Moreover, it is necessary to control the effect of the non-
linear nature on the entire computation process and the quality of the final
probabilistic bound. The main objective is to establish a general framework
covering the probabilistic error analysis of a wide range of algorithms.

The scripts for reproducing the numerical experiments of this chapter are
published in the repository: https://github.com/verificarlo/sr-variance-bounds/.
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5 - ErrorAnalysis forAlgorithmswithNon-linear
Errors

Previous theoretical studies of SR error bounds have only considered al-
gorithms based on sums, and sometimes products of uncorrelated random
errors (i.e, ) in which the resulting error is a multi-linear function of each oper-
ation rounding error. As shown in Chapter 4, SR error analysis of these algo-
rithms demonstrates the existence of a stochastic process (∏k∈K(1+δk)−1),associated with a natural filtration F, whereK ⊂ N and certain δk can be zero.Twomainmethods have been proposed to investigate this stochastic process
and bound the forward error of algorithms: AH and BC. For the AH method,
the technique used to construct themartingale impacts the quality of the final
bound. For the BC method, effectively managing the bound of the variance
allows us to obtain tight probabilistic error bounds.

To the best of our knowledge, there is no previous theoretical research
on studying non-linear problems with SR. This chapter introduces a general
framework that allows the probabilistic error analysis of algorithms with lin-
ear and non-linear errors under SR. In Section 5.1, and using the Doob-Meyer
decomposition [20], we demonstrate how the error of an algorithm can be
decomposed in a martingale and a drift. Whatever the studied algorithm,
this decomposition illustrates how to separate the errors that can be com-
pensated with SR, corresponding to the martingale term, from the remaining
errors, corresponding to the drift.

Our analysis shows that the drift of any computation tree (algorithms with
multi-linear errors) is zero, indicating that its average error contribution re-
mains consistent over time. Conversely, the probabilistic error analysis of
algorithms with non-linear errors demonstrates a non-zero drift, suggesting
that their error average contributions are subject to variations over time.

The study of this decomposition consists in probabilistically bounding the
martingale term using the BC or AH method. However, a deterministic drift
analysis reveals that it is negligible at the first order. Consequently, the mar-
tingale term dominates the entire investigation, and effective management
of this component allows the derivation of tight probabilistic bounds. In the
following, this approach will be called DM bound.

We show how this general framework can be applied to give SR error
bounds for algorithms that compute the variance, called: “textbook-variance”
and “two-pass-variance”. In 1983, Chan, Golub, and LeVeque proved deter-
ministic error bounds [11] for different algorithms computing the variance of
a sample of n data points. These algorithms have non-linear errors due to the
presence of squaring in the computation.
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Our probabilistic error analysis demonstrates a non-zero drift for both al-
gorithms and proves their SR forward error bounds in the recursive and pair-
wise cases. For the textbook-variance algorithm (Section 5.2), a part of the
error forms a martingale directly, so we apply this decomposition to the re-
maining part of the error. Since the set of martingales forms a vector space,
we canpresent the error as amartingale and adrift. For the two-pass-variance
algorithm (Section 5.3), we apply the decomposition to the entire error. We
illustrate how this decomposition separates the errors that can be compen-
sated with SR, which corresponds to the martingale term, from the remain-
der. For both algorithms, we show probabilistic bounds inO(√nu) instead of
O(nu) for the deterministic bounds.

Although the DM method provides probabilistic bounds in O(√nu), we
have proposed an approach for the variance computation without the utiliza-
tion of Doob-Meyer decomposition. We have introduced analogous concepts
aligned with the general framework. Using simple yet effective techniques,
we have successfully managed the non-linearity present in these algorithms,
resulting in the use of BC and AH methods to obtain probabilistic bounds in
O(
√
nu).

5.1 . General Framework

The goal of this section is to present a general framework for probabilistic
error analysis with stochastic rounding. Given a dataset X , we represent the
application of an algorithm to this data byH(X, 0), and the SR computation is
represented byH(X, δ). For instance, in the case of a summation of n values
x1, . . . , xn, the exact computation is given by H(X, 0) = ∑n

i=1 xi, and the SR
computation is given by

H(X, δ) =
n∑

i=1

xi

n∏
k=max i,2

(1 + δk).

To establish a comprehensive framework, we use theDoob-Meyer decom-
position, a fundamental theorem in stochastic analysis [20, p. 296]. The Doob-
Meyer decomposition separates a stochastic process into two distinct compo-
nents: a martingale part and a predictable process. This decomposition pro-
vides valuable insights into the behavior and characteristics of the process
under consideration. Let us first define a predictable stochastic process [p.
65][15].
Definition 4. Given a filtration (Fn)n≥0, a stochastic processXn is predictable if
X0 is F0-measurable, andXn is Fn−1-measurable for all n ≥ 1.

This means that the value ofXn is known at the previous time step. Now,
let us state the Doob–Meyer decomposition.
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Theorem 13 (Doob–Meyer decomposition). Let (Fk)0≤k≤n and X0, . . . , Xn anadapted stochastic process locally integrable, meaning that E(|Xk|) < ∞ for all
0 ≤ k ≤ n. There exists a martingale M0, . . . ,Mn and a predictable integrable
sequence A0, . . . , An starting with A0 = 0 for which we have:


Xn =Mn +An,

An =
∑n

k=1E[Xk −Xk−1/Fk−1],

E(Mn) = 0.

This decomposition is almost surely unique.

Proof. Let us show that An is predictable:

E[An/Fn−1] = E

[
n∑

k=1

E[Xk −Xk−1/Fk−1]/Fn−1

]

=

n∑
k=1

E [E[Xk −Xk−1/Fk−1]/Fn−1] by linearity

=

n∑
k=1

E[Xk −Xk−1/Fk−1] = An.

The last equality is because E[Xk − Xk−1/Fk−1] is Fk−1-measurable, then
Fn−1-measurable. Let us show that Mn forms a martingale. The first two
points of the definition 3 are evident. Let us check the point three:

E[Mn/Fn−1] = E[Xn −An/Fn−1]

= E[Xn/Fn−1]− E[An/Fn−1]

= E[Xn/Fn−1]−An since An is predictable
= E[Xn/Fn−1]−

n∑
k=1

E[Xk −Xk−1/Fk−1]

= E[Xn/Fn−1]− E[Xn −Xn−1/Fn−1]−An−1

= E[Xn−1/Fn−1]−An−1

= Xn−1 −An−1 =Mn−1.

Thus, Mn forms a martingale with respect to (Fk)0≤k≤n, and the decompo-
sition is valid. Moreover, using the expectation linearity and the law of total
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expectation, we have
E(Mn) = E (Xn −An)

= E(Xn)− E

(
n∑

k=1

E[Xk −Xk−1/Fk−1]

)

= E(Xn)−
n∑

k=1

E (E[Xk −Xk−1/Fk−1])

= E(Xn)−
n∑

k=1

E(Xk −Xk−1)

= E(Xn)− E(Xn) since E(X0) = 0

= 0.

Remark 8. X0, . . . , Xn is a sub-martingale if and only if the predictable process
A0, . . . , An is an increasing process.

The martingale component does not exhibit any systematic drift or trend.
It captures the random behavior of the stochastic processXn and reflects theinformation available up to time n. While the sequence An represents the
cumulative effect of the predictable part of the stochastic process Xn. It canbe interpreted as the drift ofXn.Our investigation aims to examine the error |H(X, δ)−H(X, 0)| under SR-
nearness using Doob–Meyer decomposition (DM method). The key idea is to
represent any error under SR-nearness as a decomposition of a martingale
and a drift:

H(X, δ)−H(X, 0) =M +A. (5.1)
Since each random error δ satisfies |δ| ≤ u, the assumption of locally inte-
grable in Theorem 13 is always valid in the context of the error analysis under
SR-nearness. Therefore, this decomposition is valid whatever the nature of
the algorithmH and the datasetX .

Themartingale component in Equation (5.1) represents the inherent stochas-
tic behavior captured by the decomposition; in other words, the errors that
can be compensated with SR. Hence, we conduct a probabilistic analysis of
this component using AH or BC methods. Our analysis shows probabilistic
bounds in O(√nu) for this decomposition part instead of the deterministic
bounds in O(nu). If the drift is non-zero, we deterministically bound its influ-
ence and establish its negligible effect at the first order, which shows that its
impact is insignificant compared to the martingale factor.

Interestingly, the use of Equation (5.1) is found to be straightforward when
applied to the problems discussed in Chapter 4. In the case of multi-linear
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errors, the drift component becomes zero owing to the unbiased nature of
SR-nearness, resulting in the direct acquisition of the martingale.
Theorem 14. Let H an algorithm with multi-linear error and X a dataset. The
Equation (5.1) is given by:

H(X, δ)−H(X, 0) =M,

whereM is the martingale.
Proof. We associate the proof to the sequential summation, but is remains
valid for all algorithms with multi-linear error. We have H(X, δ) = ŝ and
H(X, 0) = s. In the proof of Theorem 2, we have shown that ŝ − s = Zn,where Zn is a martingale. Then

H(X, δ)−H(X, 0) = ŝ− s = Zn =M,

and A = 0.
This observationhighlights using Equation (5.1) in the context of algorithms

with multi-linear error, where the decomposition simplifies to a single term.
In the following, we examine SR for non-linear computations via two algo-

rithms that compute the variance: textbook-variance and two-pass-variance.
Through the previous general framework, especially, Equation (5.1), we intro-
duce a new approach to establish probabilistic bounds on the forward error
(DM method). We also use the BC and AH methods discussed in Chapter 4,
and we show probabilistic error bounds in O(√nu).

5.2 . Error Analysis for Textbook-Variance Algorithm

For x ∈ Rn, let s =∑n
i=1 xi. For the textbook-variance algorithm, we have

the following:
H(X, 0) =

n∑
i=1

x2i −
1

n
s2.

The condition number using the 2-norm for the variance computation is de-
fined in [11] as

K2 =
∥x∥2√
H(X, 0)

.

We define the condition number using the 1-norm by
K1 =

∥x∥1√
nH(X, 0)

.

Using Cauchy-Schwarz inequality,
K1 ≤ K2.
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K1 can be lower than 1 (for instance, consider n = 4 and x1 = 1/2, x2 = 1/4,
x3 = −x1 and x4 = −x2).

On the one hand, we consider that the computation of s and ŝ is as follows:

Stochastic rounding Exact computation
ŝ1 = x1 s1 = x1

ŝ2 = (ŝ1 + x2)(1 + δ1) s2 = s1 + x2

ŝk = (ŝk−1 + xk)(1 + δk−1) sk = sk−1 + xk

ŝn = ŝ sn = s

It follows that
ŝn =

n∑
i=1

xi

n∏
k=max(2,i)

(1 + δk−1) =

n∑
i=1

xiϕi,

with ϕi =∏n
k=max(2,i)(1 + δk−1) for all 1 ≤ i ≤ n. On the other hand,

H(X, δ) =
n∑

i=1

x2iψi −
1

n
ŝ2ψn+1,

where ψi = (1+ϵi)
∏n+1

k=max(2,i)(1+ηk) and ψn+1 = (1+ϵn+1)(1+ηn+1)(1+θ).For all 1 ≤ i ≤ n, ϵi and ηi represent the rounding errors from the products
and additions, respectively. ϵn+1 represents the error of the square of ŝ, ηn+1represents the error of the subtraction, and θ represents the error of the di-
vision of ŝ2 by n.

Denote Zk = ŝk − sk = Zk−1 + (ŝk−1 + xk)δk−1. Then, Zn = ŝn − sn.As we have demonstrated in Sub-section 4.1.1 Z1, . . . , Zn form a martingale
with respect to δ1, . . . , δn−1. Since the set of martingales forms a vector space,
Z1 + s, . . . , Zn + s is also a martingale. Denote:

• Fk = {δ1, . . . , δk}.
• Yk−1 = Zk − Zk−1 = (ŝk−1 + xk)δk−1 for all 2 ≤ k ≤ n. Then Zn =∑n

k=2 Yk−1.
• σ2k−1 = E[Y 2

k−1/Fk−2].
• An =

∑n
k=2 σ

2
k−1 with A1 = 0.

Lemma 12. The stochastic process An is predictable.
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Proof.
E[An/Fn−1] = E

[
n∑

k=2

σ2k−1/Fn−1

]

= E

[
n∑

k=2

E
[
Y 2
k−1/Fk−2

]
/Fn−1

]

=

n∑
k=2

E[E[Y 2
k−1/Fk−2]/Fn−1].

Since E[Y 2
k−1/Fk−2] is Fk−2-measurable, so it is Fn−1-measurable, and for all

2 ≤ k ≤ n, we have E[E[Y 2
k−1/Fk−2]/Fn−1] = E[Y 2

k−1/Fk−2] . Then
E[An/Fn−1] =

n∑
k=2

E[Y 2
k−1/Fk−2] = An.

Lemma 13. The stochastic processXn = (Zn+s)
2−An−s2 forms a martingalewith respect to Fn.

Proof.
E[Xn/Fn−1] = E[(Zn + s)2 −An − s2/Fn−1]

= E[(Zn−1 + s+ Yn−1)
2/Fn−1]−An − s2

= (Zn−1 + s)2 + 2(Zn−1 + s)E[Yn−1/Fn−1] + E[Y 2
n−1/Fn−1]−An − s2

= Xn−1 because E[Yn−1/Fn−1] = 0.

Then,Xn forms a martingale with respect to Fn.
Note that (Zn+ s)

2 is a sub-martingale, and the expression of (Zn+ s)
2 =

Xn + s2 +An is a Doob-Meyer decomposition. Moreover, since Zn = ŝn − sn

H(X, δ)−H(X, 0) =
n∑

i=1

x2iψi −
1

n
ŝ2ψn+1 −

n∑
i=1

x2i +
1

n
s2

=

n∑
i=1

x2i (ψi − 1)− 1

n
(Zn + s)2ψn+1 +

1

n
s2

=

n∑
i=1

x2i (ψi − 1)− 1

n
ψn+1(Xn + s2 +An) +

1

n
s2

=

n∑
i=1

x2i (ψi − 1)− 1

n
ψn+1Xn −

1

n
s2(ψn+1 − 1)− 1

n
ψn+1An

=M +A.
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Finally,
H(X, δ)−H(X, 0) =M +A, (5.2)

where

M =
n∑

i=1

x2i (ψi − 1)− 1

n
ψn+1Xn −

1

n
s2(ψn+1 − 1), and A = − 1

n
ψn+1An.

Interestingly,M constructs a martingale as the summation of three mar-
tingales. In fact, we have shown amartingale from the inner product, which is
the case for∑n

i=1 x
2
i (ψi− 1). Clearly, 1

ns
2(ψn+1− 1) forms a martingale. Since

the set of martingales is a vector space,M is a martingale.
5.2.1 . Bias Analysis

The unbiased nature of SR-nearness extends to various algorithms such
as the inner product [12] and Horner’s rule [22]. However, it fails to hold in
the general case. In the sequel, we compute the bias of the textbook-variance
algorithm.

Theorem 15. For the textbook-variance algorithm, the bias is given by

E (H(X, δ)−H(X, 0)) = − 1

n
V (ŝ).

Proof. We know that

E (H(X, δ)−H(X, 0)) = E(M +A) = E(M) + E(A).

SinceXn is a martingale, we have E(Xn) = E(X0) and

X0 = (Z0 + s)2 − s2 −A0 = s2 − s2 = 0.

Then E(Xn) = 0. Lemma 11 shows that E(ψi) = 1 for all 1 ≤ i ≤ n+ 1. Then,

E

(
n∑

i=1

x2i (ψi − 1)

)
= 0, and E

(
1

n
s2(ψn+1 − 1)

)
= 0.
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It follows that E(M) = 0. Moreover, the law of total expectation yields
E(A) = − 1

n
E(ψn+1An)

= − 1

n
E (E[ψn+1An/Fn−1])

= − 1

n
E (AnE[ψn+1/Fn−1]) since An is predictable

= − 1

n
E(An) by Lemma 2

= − 1

n
E

(
n∑

k=2

E[Y 2
k−1/Fk−2]

)

= − 1

n

n∑
k=2

E
(
E[Y 2

k−1/Fk−2]
)

= − 1

n

n∑
k=2

E
(
Y 2
k−1

)
.

Recall that Yk−1 = Zk − Zk−1. Then
E
(
Y 2
k−1

)
= E

(
(Zk − Zk−1)

2
)

= E(Z2
k) + E(Z2

k−1)− 2E(ZkZk−1)

= E(Z2
k) + E(Z2

k−1)− 2E (E[ZkZk−1/Fk−1])

= E(Z2
k) + E(Z2

k−1)− 2E (Zk−1E[Zk/Fk−1])

= E(Z2
k) + E(Z2

k−1)− 2E(Z2
k−1) since Zk is a martingale

= E(Z2
k)− E(Z2

k−1).

Because Z1 = 0 and E(Zn) = E(ŝ− s) = 0, we have
E(A) = − 1

n

n∑
k=2

E
(
Y 2
k−1

)
= − 1

n

n∑
k=2

(
E(Z2

k)− E(Z2
k−1)

)
= − 1

n
E(Z2

n) = −
1

n
V (Zn)

= − 1

n
V (ŝ− s) = − 1

n
V (ŝ).

Finally,
E (H(X, δ)−H(X, 0)) = E(M) + E(A) = − 1

n
V (ŝ).
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Remark 9. The inequality (4.14) gives V (ŝ) ≤ ∥x∥21 γn−1(u
2). Then, the bias

satisfies
1

n
V (ŝ) ≤ 1

n
∥x∥21 γn−1(u

2) = H(X, 0)K2
1γn−1(u

2),

where K1 =
∥x∥1√
nH(X,0)

. Thus
E (H(X, δ)) ≥ H(X, 0)

(
1−K2

1γn−1(u
2)
)
.

We now turn to bound the forward error of this algorithm. We employ
threemethods to establish probabilistic bounds on the error: theDMmethod,
which uses Equation (5.1), and the BC and AHmethods, which use similar tech-
niques to the previous general framework.

5.2.2 . DM Method
This sub-section uses amethod based on the Doob-Meyer decomposition

to provide a probabilistic bound on the forward error of the textbook-variance
algorithm under SR-nearness. We need before to demonstrate the following
lemma:
Lemma 14. LetX and Y two random variables, a, b ∈ R∗

+, and λ, µ ∈]0; 1[ suchthat: P(|X| ≤ a) ≥ 1− λ and P(|Y | ≤ b) ≥ 1− µ. Then
• P(|XY | ≤ ab) ≥ 1− (λ+ µ),
• P(|X|+ |Y | ≤ a+ b) ≥ 1− (λ+ µ).

Proof.
P(|X| |Y | ≤ ab) ≥ P({|X| ≤ a} ∩ {|Y | ≤ b})

= P(|X| ≤ a) + P(|Y | ≤ b)− P({|X| ≤ a} ∪ {|Y | ≤ b})
≥ 1− λ+ 1− µ− 1 = 1− (λ+ µ).

The proof of the second item uses the first point and the following property
log(ab) = log(a) + log(b).

We have demonstrated in Equation (5.2) that the error of the textbook-
variance algorithm under SR-nearness can be written as:

H(X, δ)−H(X, 0) =M +A,

where
M =

n∑
i=1

x2i (ψi − 1)− 1

n
ψn+1Xn −

1

n
s2(ψn+1 − 1) and A = − 1

n
ψn+1An.

For the martingales∑n
i=1 x

2
i (ψi− 1) and 1

ns
2(ψn+1− 1), we will apply the pre-

vious result on the inner product and summation. Let us examine the mar-
tingaleX1, . . . , Xn.
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Lemma 15. The martingaleX1, . . . , Xn satisfies |Xk −Xk−1| ≤ uCk, for all 2 ≤
k ≤ n, where

Ck = ∥x∥21 (1 + u)2(k−2)(2 + u).

Proof. Note that by definition of Fk−2

σ2k−1 = E[Y 2
k−1/Fk−2] = E[(ŝk−1 + xk)

2δ2k−1/Fk−2]

= (ŝk−1 + xk)
2E[δ2k−1/Fk−2].

Because Zk = Zk−1 + (ŝk−1 + xk)δk−1 and Ak = Ak−1 + σ2k−1, we have
Xk −Xk−1 = (Zk + s)2 −Ak − (Zk−1 + s)2 +Ak−1

= (Zk−1 + s+ (ŝk−1 + xk)δk−1)
2 −Ak − (Zk−1 + s)2 +Ak−1

= 2(Zk−1 + s)(ŝk−1 + xk)δk−1 + (ŝk−1 + xk)
2δ2k−1 − σ2k−1

= 2(Zk−1 + s)(ŝk−1 + xk)δk−1 + (ŝk−1 + xk)
2
(
δ2k−1 − E[δ2k−1/Fk−2]

)
.

Since |δk−1| ≤ u and 0 ≤ δ2k−1 ≤ u2, we have ∣∣δ2k−1 − E[δ2k−1/Fk−2]
∣∣ ≤ u2 and

|ŝk−1 + xk| ≤ (1 + u)k−2
k∑

i=1

|xi| ≤ (1 + u)k−2 ∥x∥1 .

It follows that
|Zk−1 + s| ≤ |Zk−1|+ |s|

≤ ((1 + u)k−2 − 1)

k−1∑
i=1

|xi|+ |s|

≤ ∥x∥1 (1 + u)k−2.

Thus
|Xk −Xk−1| =

∣∣2δk−1(Zk−1 + s)(ŝk−1 + xk) + (ŝk−1 + xk)
2
(
δ2k−1 − E[δ2k−1/Fk−2]

)∣∣
≤ 2u |Zk−1 + s| |ŝk−1 + xk|+ u2 |ŝk−1 + xk|2

≤ 2u(1 + u)2(k−2) ∥x∥21 + u2(1 + u)2(k−2) ∥x∥21
= u ∥x∥21 (1 + u)2(k−2)(2 + u).

Theorem 16. For 0 < λ < 1, the martingale X1, . . . , Xn satisfies under SR-
nearness

|Xn| ≤ ∥x∥21
√
2uγ4(n−1)(u)

√
ln(2/λ), (5.3)

with probability at least 1− λ.
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Proof. SinceX1 = 0, Lemma 3 and Lemma 15 yield

|Xn| ≤

√√√√ n∑
k=2

u2C2
k

√
2 ln(2/λ),

with probability at least 1− λ. Furthermore
n∑

k=2

u2C2
k = u2

n∑
k=2

∥x∥41 (1 + u)4(k−2)(2 + u)2

= u2 ∥x∥41 (2 + u)2
γ4(n−1)(u)

(1 + u)4 − 1

= u ∥x∥41
4 + 4u+ u2

4 + 6u+ 4u2 + u3
γ4(n−1)(u)

≤ u ∥x∥41 γ4(n−1)(u).

Finally,
|Xn| ≤ ∥x∥21

√
2uγ4(n−1)(u)

√
ln(2/λ).

We are now in a position to state the main result of this sub-section.
Theorem 17. For all 0 < λ < 1, the computed H(X, δ) satisfies under SR-
nearness
|H(X, δ)−H(X, 0)|

|H(X, 0)|
≤K2

1(1 + u)3

(√
2uγ4(n−1)(u)

√
ln(4/λ) + u

γ2(n−1)(u)

2
+ 1

)
+K2

2

√
uγ2(n+1)(u)

√
ln(4/λ)−K2

1,

with probability at least 1− λ, where K1 =
∥x∥1√
nH(X,0)

and K2 =
∥x∥2√
H(X,0)

.
Proof. Recall that |H(X, δ)−H(X, 0)| = |M +A| ≤ |M |+ |A| , where
M =

n∑
i=1

x2i (ψi − 1)− 1

n
ψn+1Xn −

1

n
s2(ψn+1 − 1) and A = − 1

n
ψn+1An.

Because |ψn+1| ≤ (1 + u)3 and |s| ≤ ∥x∥1, we firstly deduce that
|M | ≤

∣∣∣∣∣
n∑

i=1

x2i (ψi − 1)

∣∣∣∣∣+ 1

n
(1 + u)3 |Xn|+

1

n
∥x∥21 γ3(u).

Theorem 16 states that
|Xn| ≤ ∥x∥21

√
2uγ4(n−1)(u)

√
ln(4/λ),
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with probability at least 1− λ
2 . Moreover [46, cor 4.7] yields:∣∣∣∣∣

n∑
i=1

x2i (ψi − 1)

∣∣∣∣∣ ≤ ∥x∥22√uγ2(n+1)(u)
√
ln(4/λ),

with probability at least 1− λ
2 . Lemma 14 implies

|M | ≤ ∥x∥22
√
uγ2(n+1)(u)

√
ln(4/λ) +

1

n
(1 + u)3 ∥x∥21

√
2uγ4(n−1)(u)

√
ln(4/λ) +

1

n
∥x∥21 γ3(u)

= ∥x∥22
√
uγ2(n+1)(u)

√
ln(4/λ) +

1

n
(1 + u)3 ∥x∥21

(√
2uγ4(n−1)(u)

√
ln(4/λ) + 1

)
− 1

n
∥x∥21 ,

with probability at least 1− λ.
Secondly, An =

∑n
k=2E[Y 2

k−1/Fk−2] =
∑n

k=2(ŝk−1 + xk)
2E[δ2k−1/Fk−2],then

|An| ≤ u2
n∑

k=2

|ŝk−1 + xk|2

≤ u2
n∑

k=2

(
(1 + u)k−2

k∑
i=1

|xi|

)2

≤ u2 ∥x∥21
n∑

k=2

(1 + u)2(k−2)

≤ u2 ∥x∥21
γ2(n−1)(u)

2u+ u2

≤ u ∥x∥21
γ2(n−1)(u)

2
.

Finally,
|H(X, δ)−H(X, 0)|

|H(X, 0)|
≤ |M |
|H(X, 0)|

+
|A|

|H(X, 0)|

≤
∥x∥21

n |H(X, 0)|
(1 + u)3

(√
2uγ4(n−1)(u)

√
ln(4/λ) + u

γ2(n−1)(u)

2
+ 1

)

+
∥x∥22
|H(X, 0)|

√
uγ2(n+1)(u)

√
ln(4/λ)−

∥x∥21
n |H(X, 0)|

=K2
1(1 + u)3

(√
2uγ4(n−1)(u)

√
ln(4/λ) + u

γ2(n−1)(u)

2
+ 1

)
+K2

2

√
uγ2(n+1)(u)

√
ln(4/λ)−K2

1,

with probability at least 1− λ.
Discussion The DM method contributes to the probabilistic error analy-

sis of algorithms under SR. It allows the decomposition of the error of any
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algorithm into two parts: a martingale and a drift. The study of this decom-
position shows probabilistic error bounds inO(√nu) instead ofO(nu) for the
deterministic bounds. However, we will propose similar ideas to the general
framework with simple techniques for the variance computation.

5.2.3 . BC Method
This sub-section uses the BC method and Lemma 14 to provide a proba-

bilistic bound on the forward error of the textbook-variance algorithm under
SR-nearness. Let us computeH(X, δ)−H(X, 0) from another angle:
|H(X, δ)−H(X, 0)| =

∣∣∣∣∣
n∑

i=1

x2i (ψi − 1)− 1

n
(ŝ2ψn+1 − s2)

∣∣∣∣∣
≤

∣∣∣∣∣
n∑

i=1

x2i (ψi − 1)

∣∣∣∣∣+ 1

n

∣∣ŝ2ψn+1 − s2
∣∣

=

∣∣∣∣∣
n∑

i=1

x2i (ψi − 1)

∣∣∣∣∣+ 1

n

∣∣∣((ŝ− s) + s)2 ψn+1 − s2
∣∣∣

≤

∣∣∣∣∣
n∑

i=1

x2i (ψi − 1)

∣∣∣∣∣+ 1

n
B,

where B =
∣∣(ŝ− s)2ψn+1

∣∣ + 2 |s(ŝ− s)ψn+1| +
∣∣s2(ψn+1 − 1)

∣∣. The following
inequality will be used in the proofs of the textbook-variance forward errors
by BC and AH methods:

|H(X, δ)−H(X, 0)| ≤

∣∣∣∣∣
n∑

i=1

x2i (ψi − 1)

∣∣∣∣∣+ 1

n
B. (5.4)

Remark 10. To handle the non-linearity of errors, the key idea of this approach
is to isolate terms of order 1 in errors and then use the previous results on
the inner product or summation. Other decompositions could be used. For
instance,
1

n
(ŝ2ψn+1 − s2) =

1

n
(ŝ2ψn+1 − ŝs+ ŝs− s2) = 1

n
(ŝ(ŝψn+1 − s) + s(ŝ− s)) .

Then, we can apply the sameproperties on (ŝψn+1−s) and (ŝ−s). The boundsare different but asymptotically equivalent when nu≪ 1.
The rounding errors accumulated in the whole process of this algorithm

ϕi and ψi satisfy for all 1 ≤ i ≤ n,
|ϕi| ≤ (1 + u)n+1−max(2,i), |ψi| ≤ (1 + u)n+3−max(2,i) and |ψn+1| ≤ (1 + u)3.

Let us compute the deterministic bound of this algorithm. We have∣∣∣∣∣
n∑

i=1

x2i (ψi − 1)

∣∣∣∣∣ ≤ ∥x∥22 γn+1(u).
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Since |s| ≤ ∥x∥1 and |ŝ− s| = |∑n
i=1 xi(ϕi − 1)| ≤ ∥x∥1 γn−1(u),

B ≤ (1 + u)3 ∥x∥21
(
γ2n−1(u) + 2γn−1(u)

)
+ ∥x∥21 ((1 + u)3 − 1)

= (1 + u)3 ∥x∥21
(
γ2n−1(u) + 2γn−1(u) + 1

)
− ∥x∥21

= (1 + u)3 ∥x∥21 (γn−1(u) + 1)2 − ∥x∥21
= ∥x∥21 (1 + u)2n+1 − ∥x∥21
= ∥x∥21 γ2n+1(u).

Finally
|H(X, δ)−H(X, 0)|

|H(X, 0)|
≤ K2

2γn+1(u) +K2
1γ2n+1(u), (5.5)

where K1 =
∥x∥1√
nH(X,0)

and K2 =
∥x∥2√
H(X,0)

.
The following theorempresents a probabilistic bound of the forward error

of this algorithm through the BC method.
Theorem 18. For all 0 < λ < 1, the computed H(X, δ) satisfies under SR-
nearness
|H(X, δ)−H(X, 0)|

|H(X, 0)|
≤ K2

2

√
2γn+1(u2)/λ+K2

1

(
(1 + u)3

(√
2γn−1(u2)/λ+ 1

)2 − 1
)
,

with probability at least 1− λ, where K1 =
∥x∥1√
nH(X,0)

and K2 =
∥x∥2√
H(X,0)

.
Proof. Equation (5.4) states that

|H(X, δ)−H(X, 0)| ≤

∣∣∣∣∣
n∑

i=1

x2i (ψi − 1)

∣∣∣∣∣+ 1

n
B.

The quantities ∣∣∑n
i=1 x

2
i (ψi − 1)

∣∣ and |ŝ− s| represent the absolute errors of
the inner product ∑n

i=1 x
2
i and the summation s =

∑n
i=1 xi, respectively.Then [23, sec 5.1] proves that∣∣∣∣∣

n∑
i=1

x2i (ψi − 1)

∣∣∣∣∣ ≤ ∥x∥22√2γn+1(u2)/λ with probability at least 1− λ

2
,

|ŝ− s| ≤ ∥x∥1
√

2γn−1(u2)/λ with probability at least 1− λ

2
.

Since, |ψn+1| ≤ (1 + u)3 and |s| ≤ ∥x∥1,
B ≤ (1 + u)3 ∥x∥21

(
2γn−1(u

2)/λ+ 2
√

2γn−1(u2)/λ
)
+ ∥x∥21

(
(1 + u)3 − 1

)
= (1 + u)3 ∥x∥21

(
2γn−1(u

2)/λ+ 2
√
2γn−1(u2)/λ+ 1

)
− ∥x∥21

= (1 + u)3 ∥x∥21
(√

2γn−1(u2)/λ+ 1
)2
− ∥x∥21 ,
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with probability at least 1− λ
2 . Finally, Lemma 14 shows that

|H(X, δ)−H(X, 0)|
|H(X, 0)|

≤ 1

|H(X, 0)|

∣∣∣∣∣
n∑

i=1

x2i (ψi − 1)

∣∣∣∣∣+ 1

n |H(X, 0)|
B

≤ K2
2

√
2γn+1(u2)/λ+K2

1

(
(1 + u)3

(√
2γn−1(u2)/λ+ 1

)2 − 1
)
,

with probability at least 1− λ.
5.2.4 . AH Method

This sub-section uses the AH method and Lemma 14 to provide a proba-
bilistic bound of the forward error of the textbook-variance algorithm under
SR-nearness.
Theorem 19. For all 0 < λ < 1, the computed H(X, δ) satisfies under SR-
nearness
|H(X, δ)−H(X, 0)|

|H(X, 0)|
≤K2

2

√
uγ2(n+1)(u)

√
ln(4/λ)

+K2
1

(
(1 + u)3

(√
uγ2(n−1)(u)

√
ln(4/λ) + 1

)2 − 1
)
,

with probability at least 1− λ. Where K1 =
∥x∥1√
nH(X,0)

and K2 =
∥x∥2√
H(X,0)

.
Proof. Equation (5.4) states that

|H(X, δ)−H(X, 0)| ≤

∣∣∣∣∣
n∑

i=1

x2i (ψi − 1)

∣∣∣∣∣+ 1

n
B.

Moreover, [46, cor 4.7] shows that∣∣∣∣∣
n∑

i=1

x2i (ψi − 1)

∣∣∣∣∣ ≤ ∥x∥22√uγ2(n+1)(u)
√
ln(4/λ) with probability at least 1− λ

2
,

|ŝ− s| ≤ ∥x∥1
√
uγ2(n−1)(u)

√
ln(4/λ) with probability at least 1− λ

2
.

Since, |ψn+1| ≤ (1 + u)3 and |s| ≤ ∥x∥1,
B ≤(1 + u)3 ∥x∥21

(
uγ2(n−1)(u) ln(4/λ) + 2

√
uγ2(n−1)(u)

√
ln(4/λ)

)
+ ∥x∥21

(
(1 + u)3 − 1

)
=(1 + u)3 ∥x∥21

(
uγ2(n−1)(u) ln(4/λ) + 2

√
uγ2(n−1)(u)

√
ln(4/λ) + 1

)
− ∥x∥21

=(1 + u)3 ∥x∥21
(√

uγ2(n−1)(u)
√
ln(4/λ) + 1

)2
− ∥x∥21 ,
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with probability at least 1− λ
2 . Finally, Lemma 14 shows that

|H(X, δ)−H(X, 0)|
|H(X, 0)|

≤K2
2

√
uγ2(n+1)(u)

√
ln(4/λ)

+K2
1

(
(1 + u)3

(√
uγ2(n−1)(u)

√
ln(4/λ) + 1

)2
− 1

)
,

with probability at least 1− λ.

5.3 . Error Analysis for the Two-pass-Variance Algorithm

This section aims to analyze the error of the two-pass-variance algorithm
under SR-nearness. We employ the DM, BC, and AH methods to probabilis-
tically bound the forward error of this algorithm. In Section 5.1, we demon-
strated that for any computational tree withmulti-linear errors, Equation (5.1)
results in a single term: martingale. Additionally, in Section 5.2, we showed
how this Equation can be applied to a part of the error for the textbook-
variance algorithmwhile the remaining part forms amartingale. However, we
apply this Equation to the entire error and show probabilistic error bounds of
O(
√
nu) for the two-pass-variance algorithm.
For x ∈ Rn, let m = 1

n

∑n
i=1 xi. For the two-pass-variance algorithm we

have:
H(X, 0) =

n∑
i=1

(xi −m)2.

As for the computation of the summation s in Equation (4.1), the computed m̂
satisfies m̂ = 1

n

∑n
i=1 xi

∏n+1
k=max(2,i)(1+δk−1), where δn represents the round-ing error of the division by n. Hence,H(X, δ) satisfy
H(X, δ) =

n∑
i=1

(xi − m̂)2ψi,

where ψi = (1 + ϵi)
2(1 + ηi)

∏n
k=max(2,i)(1 + θk). For all 1 ≤ i ≤ n, ϵi, ηi and

θi represent the rounding errors of subtraction, square, and addition, respec-tively. In the following table, we don’t take into account the errors accumu-
lated in the computation of m̂, and we consider the following table:
Stochastic rounding Exact computation
ŝ1 = (x1 − m̂)2(1 + ϵ1)

2(1 + η1) s1 = (x1 −m)2

ŝ2 = ŝ1 + (x2 − m̂)2(1 + ϵ2)
2(1 + η2) s2 = s1 + (x2 −m)2

ŝ3 = ŝ2(1 + θ2) s3 = s2

ŝ2k−2 = ŝ2k−3 + (xk − m̂)2(1 + ϵk)
2(1 + ηk) s2k−2 = s2k−3 + (xk −m)2

ŝ2k−1 = ŝ2k−2(1 + θk) s2k−1 = s2k−2

ŝ2n−1 = H(X, δ) s2n−1 = H(X, 0)
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Let us denote
• Xk = ŝk − sk for all 0 ≤ k ≤ 2n − 1 with X0 = 0. Then, H(X, δ) −
H(X, 0) = ŝ2n−1 − s2n−1 = X2n−1.

• F0 = {δi, ϵ1, i ∈ [1;n]}.
• F2k−3 = {δi, ϵj , ηl, θl, i ∈ [1;n], j ∈ [1; k], and l ∈ [1; k − 1]}.

• F2k−2 = {δi, ϵj , ηj , θl, i ∈ [1;n], j ∈ [1; k], and l ∈ [1; k − 1]}.

• A2k−1 =
∑2k−1

i=1 E[Xi −Xi−1/Fk−1] for all 1 ≤ k ≤ 2n− 1 with A0 = 0.
Note that X1 − X0 = (x1 − m̂)2(1 + ϵ1)

2(1 + η1) − (x1 −m)2 and for all
2 ≤ k ≤ n{

X2k−1 = X2k−2 + ŝ2k−2θk,
X2k−2 = X2k−3 + (xk − m̂)2(1 + ϵk)

2(1 + ηk)− (xk −m)2.
(5.6)

By construction and from Theorem 13, Ak is a predictable process and
Mk = Xk −Ak forms a martingale for all 0 ≤ k ≤ 2n− 1. Moreover,

H(X, δ)−H(X, 0) = X2n−1 =M2n−1 +A2n−1

=M2n−1 +

2n−1∑
k=1

E[Xk −Xk−1/Fk−1]

=M2n−1 + E[X2n−1/F2n−2].

Finally,
H(X, δ)−H(X, 0) =M +A, (5.7)

where {
M = X2n−1 −A2n−1,

A = E[X2n−1/F2n−2].

5.3.1 . Bias Analysis
In the following we compute the bias of the two-pass-variance algorithm

using the Equation (5.7).
Theorem 20. For the two-pass-variance algorithm, we have

E (H(X, δ)−H(X, 0)) = 1

n
V (ŝ) +O(u2),

where 1
ns = m.

Proof. From Theorem 13, we know that E(M) = 0. Then
E (H(X, δ)−H(X, 0)) = E(M +A) = E(M) + E(A) = E(A).
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SinceX0 = 0 we have
E(A) = E

(
2n−1∑
k=1

E[Xk −Xk−1/Fk−1]

)

= E (E[X1/F0]) +
n∑

k=2

E (E[X2k−1 −X2k−2/F2k−2]) + E (E[X2k−2 −X2k−3/F2k−3])

= E (E[X1/F0]) +
n∑

k=2

E (E[θkŝ2k−2/F2k−2]) + E (E[X2k−2 −X2k−3/F2k−3]) .

Therefore, by mean independence property and law of total expectation, we
have

E (E[X1/F0]) = E
(
E[(x1 − m̂)2(1 + ϵ1)

2(1 + η1)/F0]
)
− (x1 −m)2

= E
(
(x1 − m̂)2(1 + ϵ1)

2E[(1 + η1)/F0]
)
− (x1 −m)2

= E
(
(x1 − m̂)2(1 + ϵ1)

2
)
− (x1 −m)2

= E
(
(x1 − m̂)2(1 + ϵ21)

)
− (x1 −m)2.

While the mean independence property implies
n∑

k=2

E (E[θkŝ2k−2/F2k−2]) =
n∑

k=2

E (ŝ2k−2E[θk/F2k−2]) = 0.

For all 2 ≤ k ≤ n, we have
E (E[X2k−2 −X2k−3/F2k−3]) =E

(
E[(xk − m̂)2(1 + ϵk)

2(1 + ηk)/F2k−3]
)

− (xk −m)2

=E
(
(xk − m̂)2(1 + ϵ2k)

)
− (xk −m)2.

Because E(m̂) = m, we have
E(A) =

n∑
k=1

(
E
(
(xk − m̂)2(1 + ϵ2k)

)
− (xk −m)2

)
=

n∑
k=1

(
E
(
(xk − m̂)2

)
− (xk −m)2 + E

(
(xk − m̂)2ϵ2k

))
=

n∑
k=1

(
V (m̂) + E

(
(xk − m̂)2ϵ2k

))
= nV (m̂) +

n∑
k=1

E
(
(xk − m̂)2ϵ2k

)
.

Since m̂ = 1
n(1 + δn)ŝ and ϵ2k ≤ u2 for all 1 ≤ k ≤ n,

n∑
k=1

E
(
(xk − m̂)2ϵ2k

)
= O(u2).
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Moreover, δ2n ≤ u2, then
V (m̂) =

1

n2
V (ŝ(1 + δn))

=
1

n2
E
(
ŝ2(1 + δn)

2
)
− 1

n2
E (ŝ(1 + δn))

2

=
1

n2
E
(
ŝ2(1 + δ2n)

)
− 1

n2
E (ŝ)2 by Lemma 2

=
1

n2
V (ŝ) +

1

n2
E
(
ŝ2δ2n

)
=

1

n2
V (ŝ) +O(u2)

Therefore E(A) = 1
nV (ŝ) +O(u2). Finally,

E (H(X, δ)−H(X, 0)) = E(A) =
1

n
V (ŝ) +O(u2).

Interestingly, the textbook-variance and two-pass-variance algorithms un-
der SR have an opposed bias at the first order over u.
Remark 11. Lemma 11 shows that

V (m̂) = V

 1

n

n∑
i=1

xi

n+1∏
k=max(2,i)

(1 + δk−1)

 ≤ 1

n2
∥x∥21 γn(u

2).

Therefore,
E(H(X, δ)) = H(X, 0) + nV (m̂) +

n∑
k=1

E
(
(xk − m̂)2ϵ2k

)
≤ H(X, 0) + nV (m̂) + u2

n∑
k=1

E
(
(xk − m̂)2

)
= H(X, 0) + nV (m̂) + u2

(
H(X, 0) +

n∑
k=1

V (xk − m̂)

)
= H(X, 0) + nV (m̂) + u2(H(X, 0) + nV (m̂))

≤ (1 + u2)

(
H(X, 0) + 1

n
∥x∥21 γn(u

2)

)
= (1 + u2)H(X, 0)

(
1 +K2

1γn(u
2)
)
.

where K1 =
∥x∥1√
nH(X,0)

.
We now turn to bound the forward error of this algorithm. We use the

same three methods used for the textbook-variance algorithm to establish
probabilistic bounds on the error: DM, BC and AH methods.
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5.3.2 . DM Method
This sub-section uses DM method to provide a probabilistic bound on

the forward error of the two-pass-variance algorithm under SR-nearness. We
have demonstrated in Equation (5.7) that

H(X, δ)−H(X, 0) =M +A,

where {
M =M2n−1 = X2n−1 −A2n−1,

A = A2n−1 = E[X2n−1/F2n−2].
(5.8)

Note that |H(X, δ)−H(X, 0)| = |M +A| ≤ |M | + |A|. To bound the mar-
tingaleM by Azuma-Hoeffding inequality, we need to bound the martingale
steps.
Lemma 16. The martingaleM0, . . . ,M2n−1 satisfies |Mi −Mi−1| ≤ Ciu, for all
1 ≤ i ≤ 2n− 1, where{

C2k−1 =
∑k

i=1(xi − m̂)2(1 + u)k+1, for all 1 ≤ k ≤ n
C2k−2 = (xk − m̂)2(1 + ϵk)

2, for all 2 ≤ k ≤ n.
Proof. Firstly,

|M2k−1 −M2k−2| = |X2k−1 −X2k−2 − (A2k−1 −A2k−2)|
= |X2k−1 −X2k−2 − E[X2k−1 −X2k−2/F2k−2]|
= |ŝ2k−2θk − E[ŝ2k−2θk/F2k−2]|
= |ŝ2k−2θk − ŝ2k−2E[θk/F2k−2]|
= |ŝ2k−2θk| by Lemma 2
≤ u

k∑
i=1

(xi − m̂)2(1 + u)k+1

= uC2k−1.

Secondly,
|M2k−2 −M2k−3| = |X2k−2 −X2k−3 − (A2k−2 −A2k−3)|

= |X2k−2 −X2k−3 − E[X2k−2 −X2k−3/F2k−3]|
=
∣∣(xk − m̂)2(1 + ϵk)

2(1 + ηk)− E[(xk − m̂)2(1 + ϵk)
2(1 + ηk)/F2k−3]

∣∣
=
∣∣(xk − m̂)2(1 + ϵk)

2(1 + ηk)− (xk − m̂)2(1 + ϵk)
2E[(1 + ηk)/F2k−3]

∣∣
=
∣∣(xk − m̂)2(1 + ϵk)

2(1 + ηk)− (xk − m̂)2(1 + ϵk)
2
∣∣ by Lemma 2

=
∣∣(xk − m̂)2(1 + ϵk)

2ηk
∣∣

≤ u(xk − m̂)2(1 + ϵk)
2

= uC2k−2.
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Theorem 21. The martingaleM0, · · · ,M2n−1 from System (5.8) satisfies

|M | ≤ (1 + u)2
√
uγ2n(u)

√
ln(2/λ)

(
H(X, 0) +

∥x∥21
n

γn(u)
2

)
, (5.9)

with probability at least 1− λ.

Proof. Lemma 16 implies that |Mk−Mk−1| ≤ Cku. Then, usingAzuma-Hoeffding
inequality yields

P

|M | ≤
√√√√u2

2n−1∑
k=1

C2
k

√
2 ln(2/λ)

 ≥ 1− λ.

Partition
2n−1∑
k=1

C2
k =

n∑
k=1

C2
2k−1 +

n∑
k=2

C2
2k−2

= C2
1 +

n∑
k=2

C2
2k−1 +

n∑
k=2

C2
2k−2.

We have C2
1 = (x1 − m̂)4(1 + u)4 and

n∑
k=2

C2
2k−1 =

n∑
k=2

(
k∑

i=1

(xi − m̂)2

)2

(1 + u)2(k+1)

≤

(
n∑

i=1

(xi − m̂)2

)2 n∑
k=2

(1 + u)2(k+1).

We also have
n∑

k=2

C2
2k−2 =

n∑
k=2

(xk − m̂)4(1 + ϵk)
4

≤ (1 + u)4
n∑

k=2

(xk − m̂)4.
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Furthermore, since∑n
i=1(xi − m̂)4 ≤

(∑n
i=1(xi − m̂)2

)2 we have
2n−1∑
k=1

C2
k =

n∑
k=2

C2
2k−1 + C2

1 +
n∑

k=2

C2
2k−2

≤

(
n∑

i=1

(xi − m̂)2

)2 n∑
k=2

(1 + u)2(k+1) + (x1 − m̂)4(1 + u)4 + (1 + u)4
n∑

i=2

(xi − m̂)4

=

(
n∑

i=1

(xi − m̂)2

)2 n∑
k=2

(1 + u)2(k+1) + (1 + u)4
n∑

i=1

(xi − m̂)4

≤

(
n∑

i=1

(xi − m̂)2

)2 n∑
k=1

(1 + u)2(k+1)

=

(
n∑

i=1

(xi − m̂)2

)2

(1 + u)4
(1 + u)2n − 1

(1 + u)2 − 1

=

(
n∑

i=1

(xi − m̂)2

)2

(1 + u)4
γ2n(u)

u2 + 2u
.

It follows that√√√√u2
2n−1∑
k=1

C2
k ≤

√√√√u2

(
n∑

i=1

(xi − m̂)2

)2

(1 + u)4
γ2n(u)

u2 + 2u

=
n∑

i=1

(xi − m̂)2(1 + u)2
√
u2γ2n(u)

u2 + 2u

≤
n∑

i=1

(xi − m̂)2(1 + u)2
√
uγ2n(u)

2
because u

2 + u
≤ u

2
.

Since (xk − m̂) = (xk −m) + (m− m̂) and∑n
k=1(xk −m) = 0, we have

n∑
k=1

(xk − m̂)2 =

n∑
k=1

(xk −m)2 + n(m− m̂)2

= H(X, 0) + n(m− m̂)2.

Note that
|m̂−m| =

∣∣∣∣∣∣ 1n
n∑

i=1

xi

 n+1∏
k=max(2,i)

(1 + δk−1)− 1

∣∣∣∣∣∣
≤
∥x∥1
n

γn(u).

Then,
n∑

k=1

(xk − m̂)2 ≤ H(X, 0) +
∥x∥21
n

γn(u)
2. (5.10)
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Finally,
|M | ≤ (1 + u)2

√
uγ2n(u)

√
ln(2/λ)

(
H(X, 0) +

∥x∥21
n

γn(u)
2

)
,

with probability at least 1− λ.
Let us focus now on A.

Theorem 22. The drift A satisfies
|A| ≤ (1 + u)2

∥x∥21
n

γn(u)
2 +H(X, 0)γ2(u). (5.11)

Proof. Since E[θk/F2k−2] = 0 for all 1 ≤ k ≤ n, and E[ηk/F2k−3] = 0 for all
2 ≤ k ≤ n, we have
A =

2n−1∑
k=1

E[Xk −Xk−1/Fk−1]

=
n∑

k=1

E[X2k−1 −X2k−2/F2k−2] +
n∑

k=2

E[X2k−2 −X2k−3/F2k−3]

=
n∑

k=1

E[ŝ2k−2θk/F2k−2] +
n∑

k=2

(
E[(xk − m̂)2(1 + ϵk)

2(1 + ηk)/F2k−3]− (xk −m)2
)

=
n∑

k=1

ŝ2k−2E[θk/F2k−2] +
n∑

k=2

(
(xk − m̂)2(1 + ϵk)

2E[(1 + ηk)/F2k−3]− (xk −m)2
)

=
n∑

k=1

(xk − m̂)2(1 + ϵk)
2 − (xk −m)2.

It follows that
|A| =

∣∣∣∣∣
n∑

k=1

(xk − m̂)2(1 + ϵk)
2 − (xk −m)2

∣∣∣∣∣
≤

∣∣∣∣∣
n∑

k=1

(xk − m̂)2 − (xk −m)2

∣∣∣∣∣+
∣∣∣∣∣

n∑
k=1

(xk − m̂)2(2ϵk + ϵ2k)

∣∣∣∣∣
≤

∣∣∣∣∣
n∑

k=1

(xk − m̂)2 − (xk −m)2

∣∣∣∣∣+ (2u+ u2)
n∑

k=1

(xk − m̂)2.

The inequality (5.10) implies that∑n
k=1(xk−m̂)2 ≤ H(X, 0)+ ∥x∥21

n γn(u)
2, then∣∣∣∣∣

n∑
k=1

(xk − m̂)2 − (xk −m)2

∣∣∣∣∣ ≤ ∥x∥21n γn(u)
2.
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Therefore,
|A| ≤

∥x∥21
n

γn(u)
2 + (2u+ u2)

(
H(X, 0) +

∥x∥21
n

γn(u)
2

)
.

Finally,
|A| ≤ (1 + u)2

∥x∥21
n

γn(u)
2 +H(X, 0)γ2(u).

We now have all the tools to state and demonstrate themain result of this
sub-section:
Theorem 23. For all 0 < λ < 1, the computed H(X, δ) satisfies under SR-
nearness
|H(X, δ)−H(X, 0)|

|H(X, 0)|
≤(1 + u)2

(√
uγ2n(u)

√
ln(2/λ)

(
1 +K2

1γn(u)
2
)
+K2

1γn(u)
2 + 1

)
− 1,

with probability at least 1− λ, where K1 =
∥x∥1√
nH(X,0)

.
Proof. From the Inequalities (5.9) and (5.11) we have
|H(X, δ)−H(X, 0)| ≤ |M |+ |A|

≤(1 + u)2
√
uγ2n(u)

√
ln(2/λ)

(
H(X, 0) +

∥x∥21
n

γn(u)
2

)

+ (1 + u)2
∥x∥21
n

γn(u)
2 +H(X, 0)γ2(u)

=(1 + u)2
(√

uγ2n(u)
√
ln(2/λ)

(
H(X, 0) +

∥x∥21
n

γn(u)
2
)

+
∥x∥21
n

γn(u)
2 +H(X, 0)

)
−H(X, 0),

with probability at least 1− λ. Consequently,
|H(X, δ)−H(X, 0)|

|H(X, 0)|
≤(1 + u)2

(√
uγ2n(u)

√
ln(2/λ)

(
1 +K2

1γn(u)
2
)
+K2

1γn(u)
2 + 1

)
− 1,

with probability at least 1− λ.
Discussion: Interestingly, this application illustrates the power and rich-

ness of this method, showing that it can be applied to any algorithm. For
the two-pass-variance algorithm, we did not consider the errors made in the
computation of m̂ but instead constructed our stochastic process from the
random errors generated during the remaining elementary operations. This
choice sufficed to establish a probabilistic bound of (√nu). Note that the gen-
eralization 5.1 can be applied to the entire algorithm, allowing us to construct
a stochastic process that depends on all random errors in the computation.
In some applications, studying this stochastic process can be challenging to
investigate.
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5.3.3 . BC Method
Wepresent a computational scheme for the proofs of the two-pass-variance

algorithm errors in this sub-section. This computational scheme allows to use
both BC and AH methods. Recall thatH(X, δ) satisfy

H(X, δ) =
n∑

i=1

(xi − m̂)2ψi,

where ψi = (1 + ϵi)
2(1 + ηi)

∏n
k=max(2,i)(1 + θk). Let us denote φi = (1 +

ϵi)(1+ηi)
∏n

k=max(2,i)(1+θk). Then ψi = (1+ ϵi)φi. Therefore, one needs firstto separate the errors of order two.
|H(X, δ)−H(X, 0)| =

∣∣∣∣∣
n∑

i=1

(xi − m̂)2ψi − (xi −m)2

∣∣∣∣∣
=

∣∣∣∣∣
n∑

i=1

(
(xi − m̂)2φi − (xi −m)2

)
+

n∑
i=1

(xi − m̂)2ϵiφi

∣∣∣∣∣
≤

∣∣∣∣∣
n∑

i=1

(
(xi − m̂)2φi − (xi −m)2

)∣∣∣∣∣+ u

∣∣∣∣∣
n∑

i=1

(xi − m̂)2φi

∣∣∣∣∣
≤

∣∣∣∣∣
n∑

i=1

(
(xi − m̂)2φi − (xi −m)2

)∣∣∣∣∣+ u

∣∣∣∣∣
n∑

i=1

(
(xi − m̂)2φi − (xi −m)2

)∣∣∣∣∣
+ u |H(X, 0)|

=(1 + u)

∣∣∣∣∣
n∑

i=1

(
(xi − m̂)2φi − (xi −m)2

)∣∣∣∣∣+ u |H(X, 0)| .

Since (xi − m̂) = (xi −m) + (m− m̂),∣∣∣∣∣
n∑

i=1

(xi − m̂)2φi − (xi −m)2

∣∣∣∣∣ ≤
∣∣∣∣∣

n∑
i=1

(xi −m)2(φi − 1)

∣∣∣∣∣+
∣∣∣∣∣(m− m̂)2

n∑
i=1

φi

∣∣∣∣∣
+ 2

∣∣∣∣∣(m− m̂)
n∑

i=1

(xi −m)(φi − 1)

∣∣∣∣∣ ,
because∑n

i=1(xi −m) = 0. Denote
C =

∣∣∣∣∣
n∑

i=1

(xi −m)2(φi − 1)

∣∣∣∣∣+2

∣∣∣∣∣(m− m̂)
n∑

i=1

(xi −m)(φi − 1)

∣∣∣∣∣+
∣∣∣∣∣(m− m̂)2

n∑
i=1

φi

∣∣∣∣∣ .
The following equation will be used to compute a probabilistic bound on the
two-pass-variance forward error by the BC and AH method:

|H(X, δ)−H(X, 0)| ≤ (1 + u)C + u |H(X, 0)| . (5.12)
The following theorempresents a probabilistic bound of the forward error

of this algorithm through the BC method.
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Theorem 24. For all 0 < λ < 1, the computed H(X, δ) satisfies under SR-
nearness
|H(X, δ)−H(X, 0)|

|H(X, 0)|
≤(1 + u)

(√
4γn+1(u2)

λ
+

4γn+1(u
2)

λ

(
2K1 +K2

1

(√
4γn+1(u2)

λ
+ 1

)))
+ u,

with probability at least 1− λ. Where K1 =
∥x∥1√
nH(X,0)

.
Proof. Equation (5.12) states that

|H(X, δ)−H(X, 0)| ≤ (1 + u)C + u |H(X, 0)| .

Note that |∑n
i=1 φi| ≤ |

∑n
i=1(φi − 1)|+ n. The following quantities
∣∣∑n

i=1(xi −m)2(φi − 1)
∣∣ ,

|m̂−m| ,
|
∑n

i=1(xi −m)(φi − 1)| ,
|
∑n

i=1(φi − 1)|

represent the absolute errors of the inner product∑n
i=1(xi−m)2, the average

m = 1
n

∑n
i=1 xi, the summations s =

∑n
i=1(xi −m) and∑n

i=1 1 respectively.Then [23, sec 5.1] proves that∣∣∣∣∣
n∑

i=1

(xi −m)2(φi − 1)

∣∣∣∣∣ ≤ |H(X, 0)|
√

4γn+1(u2)

λ
with probability at least 1− λ

4
,

|m̂−m| ≤ 1

n
∥x∥1

√
4γn(u2)

λ
with probability at least 1− λ

4
,∣∣∣∣∣

n∑
i=1

(xi −m)(φi − 1)

∣∣∣∣∣ ≤
n∑

i=1

|xi −m|
√

4γn+1(u2)

λ
with probability at least 1− λ

4
,∣∣∣∣∣

n∑
i=1

(φi − 1)

∣∣∣∣∣ ≤ n
√

4γn+1(u2)

λ
with probability at least 1− λ

4
.

Using Cauchy–Schwarz inequality, we obtain
n∑

i=1

|xi −m| ≤

√√√√n
n∑

i=1

(xi −m)2 =
√
nH(X, 0).

Since γn(u2) ≤ γn+1(u
2), Lemma 14 implies

C ≤ |H(X, 0)|
√

4γn+1(u2)

λ
+ 2
∥x∥1
n

4γn+1(u
2)

λ

√
nH(X, 0) +

∥x∥21
n

4γn+1(u
2)

λ

(√
4γn+1(u2)

λ
+ 1

)

= |H(X, 0)|
√

4γn+1(u2)

λ
+

4γn+1(u
2)

λ

(
2 |H(X, 0)|

∥x∥1√
nH(X, 0)

+
∥x∥21
n

(√
4γn+1(u2)

λ
+ 1

))
,
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with probability at least 1− λ. Finally
|H(X, δ)−H(X, 0)|

|H(X, 0)|
≤(1 + u)

(√
4γn+1(u2)

λ
+

4γn+1(u
2)

λ

(
2K1 +K2

1

(√
4γn+1(u2)

λ
+ 1

)))
+ u,

with probability at least 1− λ.
5.3.4 . AH Method

Theorem 25. For all 0 < λ < 1, the computed H(X, δ) satisfies under SR-
nearness
|H(X, δ)−H(X, 0)|

|H(X, 0)|
≤(1 + u)

(√
uγ2(n+1)(u)

√
ln(8/λ)

+ uγ2(n+1)(u) ln(8/λ)
(
2K1 +K2

1

(√
uγ2(n+1)(u)

√
ln(8/λ) + 1

)))
+ u,

with probability at least 1− λ. Where K1 =
∥x∥1√
nH(X,0)

.
Proof. Equation (5.12) states that

|H(X, δ)−H(X, 0)| ≤ (1 + u)C + u |H(X, 0)| .

We have |∑n
i=1 φi| ≤ |

∑n
i=1(φi − 1)|+ n, and [46, cor 4.7] shows that each of

the following inequalities holds with probability at least 1− λ
4 :∣∣∣∣∣

n∑
i=1

(xi −m)2(φi − 1)

∣∣∣∣∣ ≤ |H(X, 0)|√uγ2(n+1)(u)
√
ln(8/λ),

|m̂−m| ≤ 1

n
∥x∥1

√
uγ2n(u)

√
ln(8/λ),∣∣∣∣∣

n∑
i=1

(xi −m)(φi − 1)

∣∣∣∣∣ ≤
n∑

i=1

|xi −m|
√
uγ2(n+1)(u)

√
ln(8/λ),∣∣∣∣∣

n∑
i=1

(φi − 1)

∣∣∣∣∣ ≤ n√uγ2(n+1)(u)
√
ln(8/λ).

By Cauchy–Schwarz inequality,
n∑

i=1

|xi −m| ≤

√√√√n
n∑

i=1

(xi −m)2 =
√
nH(X, 0).
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Since γ2n(u) ≤ γ2(n+1)(u), Lemma 14 implies
C ≤ |H(X, 0)|

√
uγ2(n+1)(u)

√
ln(8/λ) + 2

∥x∥1
n

uγ2(n+1)(u) ln(8/λ)
√
nH(X, 0)

+
∥x∥21
n2

uγ2(n+1)(u) ln(8/λ)
(
n
√
uγ2(n+1)(u)

√
ln(8/λ) + n

)
= |H(X, 0)|

√
uγ2(n+1)(u)

√
ln(8/λ) + uγ2(n+1)(u) ln(8/λ)

(
2 |H(X, 0)|

∥x∥1√
nH(X, 0)

+
∥x∥21
n

(√
uγ2(n+1)(u)

√
ln(8/λ) + 1

))
,

with probability at least 1− λ. Finally
|H(X, δ)−H(X, 0)|

|H(X, 0)|
≤(1 + u)

(√
uγ2(n+1)(u)

√
ln(8/λ)

+ uγ2(n+1)(u) ln(8/λ)
(
2K1 +K2

1

(√
uγ2(n+1)(u)

√
ln(8/λ) + 1

)))
+ u,

with probability at least 1− λ.

5.4 . Pairwise Textbook-VarianceandPairwise Two-pass-Variance

In this section, we illustrate the continued applicability of SR results on
the forward error of the pairwise summation to the forward error of both
two-pass-variance and textbook-variance algorithms. We refer to "pairwise
two-pass-variance," the algorithm that computes the variance using a pair-
wise method to compute the summation and the average m, and "pairwise
textbook-variance," the algorithm that computes the variance using a pair-
wise method to compute the summations. The following theorem derives a
probabilistic bound for the pairwise textbook-variance using the BC method.
Theorem26. For the pairwise textbook-variance, for all 0 < λ < 1, the computed
H(X, δ) satisfies under SR-nearness
|H(X, δ)−H(X, 0)|

|H(X, 0)|
≤ K2

2

√
2γlog(n)+1(u2)/λ+K2

1

(
(1 + u)3

(√
2γlog(n)(u2)/λ+ 1

)2 − 1
)
,

with probability at least 1− λ, where K1 =
∥x∥1√
nH(X,0)

and K2 =
∥x∥2√
H(X,0)

.
Proof. Equation (5.4) states that

|H(X, δ)−H(X, 0)| ≤

∣∣∣∣∣
n∑

i=1

x2i (ψi − 1)

∣∣∣∣∣+ 1

n
B,
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whereB =
∣∣(ŝ− s)2ψn+1

∣∣+2 |s(ŝ− s)ψn+1|+
∣∣s2(ψn+1 − 1)

∣∣. Moreover, using
a pairwise method to compute s and∑n

i=1 x
2
i , Sub-section 4.2.4 impliesŝ =

∑n
i=1 xi

∏log2(n)
j=1 (1 + δj⌈ i

2j
⌉)

ψi = (1 + ϵi)
∏

j∈Ki
(1 + ηj) for all 1 ≤ i ≤ n,

where the cardinality of |Ki| = log2(n) for all 1 ≤ i ≤ n. Note that the square
s2, the division s2

n , and the subtraction ∑2h

i=1 x
2
i − 1

ns
2 are computed in the

standard case (without a pairwise method). Then, ψn+1 ≤ (1+u)3 as in Equa-
tion (5.4). Lemma 11 implies∣∣∣∣∣

n∑
i=1

x2i (ψi − 1)

∣∣∣∣∣ ≤ ∥x∥22√2γlog2(n)+1(u2)/λ with probability at least 1− λ

2
,

|ŝ− s| ≤ ∥x∥1
√
2γlog2(n)(u

2)/λ with probability at least 1− λ

2
.

Since, |ψn+1| ≤ (1 + u)3 and |s| ≤ ∥x∥1, we have
B ≤ (1 + u)3 ∥x∥21

(
2γlog(n)(u

2)/λ+ 2
√

2γlog(n)(u2)/λ
)
+ ∥x∥21

(
(1 + u)3 − 1

)
= (1 + u)3 ∥x∥21

(
2γlog(n)(u

2)/λ+ 2
√

2γlog(n)(u2)/λ+ 1
)
− ∥x∥21

= (1 + u)3 ∥x∥21
(√

2γlog(n)(u2)/λ+ 1
)2
− ∥x∥21 .

with probability at least 1− λ
2 . Finally, Lemma 14 implies

|H(X, δ)−H(X, 0)|
|H(X, 0)|

≤ 1

|H(X, 0)|

∣∣∣∣∣
n∑

i=1

x2i (ψi − 1)

∣∣∣∣∣+ 1

n |H(X, 0)|
B

≤ K2
2

√
2γlog(n)+1(u2)/λ+K2

1

(
(1 + u)3

(√
2γlog(n)(u2)/λ+ 1

)2 − 1
)
,

with probability at least 1− λ.
The following theoremshows theprobabilistic bound for the pairwise textbook-

variance using the AH method.
Theorem27. For the pairwise textbook-variance, for all 0 < λ < 1, the computed
H(X, δ) satisfies under SR-nearness
|H(X, δ)−H(X, 0)|

|H(X, 0)|
≤K2

2

√
uγ2(log(n)+1)(u)

√
ln(4/λ)

+K2
1

(
(1 + u)3

(√
uγ2 log(n)(u)

√
ln(4/λ) + 1

)2 − 1
)
,

with probability at least 1− λ, where K1 =
∥x∥1√
nH(X,0)

and K2 =
∥x∥2√
H(X,0)

.
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Proof. Equation (5.4) states that
|H(X, δ)−H(X, 0)| ≤

∣∣∣∣∣
n∑

i=1

x2i (ψi − 1)

∣∣∣∣∣+ 1

n
B,

whereB =
∣∣(ŝ− s)2ψn+1

∣∣+2 |s(ŝ− s)ψn+1|+
∣∣s2(ψn+1 − 1)

∣∣. Moreover, using
a pairwise method to compute s and∑n

i=1 x
2
i , Sub-section 4.2.4 impliesŝ =

∑n
i=1 xi

∏log2(n)
j=1 (1 + δj⌈ i

2j
⌉)

ψi = (1 + ϵi)
∏

j∈Ki
(1 + ηj) for all 1 ≤ i ≤ n,

where the cardinality of |Ki| = log2(n) for all 1 ≤ i ≤ n. Note that the square
s2, the division s2

n , and the subtraction ∑2h

i=1 x
2
i − 1

ns
2 are computed in the

standard case (without a pairwise method). Then, ψn+1 ≤ (1+u)3 as in Equa-
tion (5.4). Sub-section 4.1.3 shows∣∣∣∣∣

n∑
i=1

x2i (ψi − 1)

∣∣∣∣∣ ≤ ∥x∥22√uγ2(log(n)+1)(u)
√
ln(4/λ) with probability at least 1− λ

2
,

|ŝ− s| ≤ ∥x∥1
√
uγ2 log(n)(u)

√
ln(4/λ) with probability at least 1− λ

2
.

As the previous proof, we can show that
B ≤ (1 + u)3 ∥x∥21

(√
uγ2 log(n)(u)

√
ln(4/λ) + 1

)2
− ∥x∥21 ,

with probability at least 1− λ
2 , Finally, Lemma 14 implies

|H(X, δ)−H(X, 0)|
|H(X, 0)|

≤K2
2

√
uγ2(log(n)+1)(u)

√
ln(4/λ)

+K2
1

(
(1 + u)3

(√
uγ2 log(n)(u)

√
ln(4/λ) + 1

)2 − 1
)
,

with probability at least 1− λ.
Similar bounds are reached for the pairwise two-pass-variance algorithm

using the same methods.

5.5 . Error Bound Analysis

Table 5.1 shows the asymptotic forward error bounds for the textbook-
variance. Higher order terms in u have been dropped when nu ≪ 1 and
uniquely for the BC when nu≫ 1 and nu2 ≪ 1, and only dominant terms are
shown. For H(X, 0) =∑n

i=1 x
2
i − 1

ns
2, K1 =

∥x∥1√
nH(X,0)

, and K2 =
∥x∥2√
H(X,0)

, we
have

The results in the table are based on:
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nu≪ 1 nu≫ 1 and nu2 ≪ 1

Det (K2
2 + 2K2

1)nu (K2
2 +K2

1)e
(2n+1)u

BC (K2
2 + 2K2

1)
√

2/λ
√
nu (K2

2 + 2K2
1)
√
2/λ
√
nu

AH (K2
2+2K2

1)
√

2 ln(4/λ)
√
nu

(
(K2

2 +K2
1

√
u ln(4/λ)

)√
u ln(4/λ)e(2n+1)u

DM (K2
2+2K2

1)
√

2 ln(4/λ)
√
nu

(√
u ln(4/λ)(K2

2 +
√
2K2

1) +K2
1
u
2

)
e(2n+1)u

Table 5.1: The asymptotic behavior of the textbook-variance forwarderror bounds for a fixed probability λ and over n up to a constant. Detrefers to the bound (5.5), BC refers to the bound in Theorem 18, AHrefers to the bound in Theorem 19, and DM refers to the bound in The-orem 17.

• γn(u) ≈ nu+O(u2) when nu≪ 1.
• √uγn(u) ≈√γn(u2) ≈ √nu+O(u2) when nu≪ 1.
• γn(u) ≈ enu, then√uγn(u) ≈ √uen

2
u when nu≫ 1 and nu2 ≪ 1.

• √γn(u2) ≈ √nu+O(u2) when nu≫ 1 and nu2 ≪ 1.
This table displays the advantage of the probabilistic bounds of the textbook-
variance forward error in terms of O(√nu) compared to the deterministic
bounds in O(nu), when nu ≪ 1. Additionally, the BC method is far better
when nu ≫ 1 and nu2 ≪ 1. The previous discussion also holds for the two-
pass-variance forward error bounds.

5.5.1 . Numerical Experiments

We performed a series of numerical experiments comparing these new
probabilistic bounds to the deterministic ones. We show that probabilistic
bounds are tighter and accurately reflect the behavior of SR-nearness forward
errors. Two types of plots are presented. Firstly, the plots are displayed over
n, and show that for large values of n, BC bounds provide significant bene-
fits compared to AH or DM bounds for the textbook-variance. Secondly, the
plots are shown over λ, and show that AH bound holds a significant advan-
tage for higher probabilities. All SR computations are repeated 30 times with
verificarlo [18]. All samples and the forward error of the average of the 30 SR
instances are plotted.
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Textbook-Variance Algorithm

We present a numerical application of the textbook-variance algorithm for
floating-point numbers chosen uniformly at random between 0 and 1.

105 106 107 108

n

10 6

10 4
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AH-Text
BC-Text
SR-nearness
RN-binary32
SR-average

1 -  = 0.9 

Figure 5.1: Probabilistic error bounds over n with probability 1 − λ = 0.9 vsdeterministic bound for the textbook-variance algorithm and u = 2−23.
In figure 5.1, triangles represent instances of the SR-nearness relative er-

rors evaluation in binary32 precision, a circle marks the relative errors of the
30 instances average, and a star represents the IEEE RN-binary32 value. Inter-
estingly, for small n, the figure shows that AH, DM, and BC bounds are com-
parable with a slight advantage for AH-Text and DM-Text. However, as shown
in Table 5.1, when nu≫ 1, AH and DM bounds grow exponentially faster than
BC bound.
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Figure 5.2: Probabilistic error bounds over n with n = 106 and over λ vs de-terministic bound for the textbook-variance algorithm and u = 2−23.
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As expected, for a fixed n, figure 5.2 shows that the three bounds are close
for a probability around 0.9. Nevertheless, AH and DM bounds are more ac-
curate for higher probabilities than BC bound. The result is unsurprising be-
cause, generally, Azuma-Hoeffding inequality provides a bound for the devia-
tion of the sumof a sequence of independent and bounded randomvariables,
martingales in this instance, which gives tighter bounds for higher probabil-
ities. In contrast, Bienaymé–Chebyshev inequality is a less restrictive result
that provides an upper bound for the probability of deviation between the
mean of a distribution and a particular value. The two-pass-variance algo-
rithm exhibits analogous boundary behavior.
Textbook-Variance Against Two-pass-Variance

We now compare the forward errors of both algorithms under SR through
two experiences.

0.008 0.016 0.031 0.062 0.125 0.250 0.500 1.000 2.000 4.000 8.000
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Figure 5.3: The forward errors of textbook-variance and two-pass-variancealgorithms in binary32 precision for floating-points chosen uniformly at ran-dom in [−1; 1].
In figure 5.3, when the floating-point numbers are randomly chosen with

zero mean distribution, the absorption errors cancel each other out because
both positive and negative errors are uniformly distributed. Therefore, the
computed mean is close to zero with low absolute error, and the two-pass-
variance algorithm degenerates into the textbook-variance algorithm. Inter-
estingly, this effect is captured by the theoretical bounds because the con-
dition term K2

2 + 2K2
1 becomes smaller for zero-mean distributions. This is

confirmed by the experiment of this figure, which shows a similar forward
error for the two algorithms, whether for SR or RN.
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Figure 5.4: The forward errors of textbook-variance and two-pass-variancealgorithms in binary32 precision for floating-points chosen uniformly at ran-dom in [1024; 1025].

As expected, figure 5.4 illustrates that when random floating-point num-
bers are uniformly selected from the interval [1024, 1025], the two-pass-variance
algorithm outperforms the textbook-variance algorithm using SR or RN. The
mean centering in the two-pass-variance algorithm avoids cancellations and
increases its accuracy. While the quantities ∑n

i=1 x
2
i and 1

ns
2 are inevitably

very large and have the same order of magnitude, their subtraction yields a
loss of significant digits in the result, which can compromise the accuracy of
the textbook-variance outcome. It is evident from this figure that the use of
SR avoids stagnation for n ≥ 104.

Many computations are non-linear in various fields, such as numerical
analysis. In this chapter, we have proposed a general framework that allows
us to analyze problems under SR. We have demonstrated how an algorithm
can be expressed as a martingale plus a drift. On the one hand, our general-
ization shows that the drift is zero for algorithms with multi-linear error, and
the error can be described by a martingale for which we use AH or BC meth-
ods to bound it. On the other hand, for algorithms with non-linear error, the
drift is non-zero. Regardless of the problem under study, we have proposed
an expression for the bias and demonstrated that it is negligible at the first
order over u.

In 1983, Chan, Golub, and LeVeque investigated the forward error of vari-
ance computation algorithms using RN. To the best of our knowledge, this
is the first theoretical study of this problem using SR as well as of any al-
gorithm with non-linear errors. In this chapter, we have investigated two
variance computation algorithms that exhibit non-linear errors under SR. The
study demonstrates that they are biased and using SR results in probabilistic
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bounds on the forward error proportional to √nu, which is better than the
deterministic bounds in O(nu).

While introducing pairwise algorithm in textbook-variance and two-pass-
variance algorithms, SR leads to probabilistic bounds proportional to√log(n)u,
instead ofO(log(n)u) for deterministic bounds. We also demonstrate that the
two-pass-variance algorithm performs better than the textbook-variance al-
gorithm under SR, as it does under RN.

The generalization in Section 5.1 completes the scope of the probabilistic
analysis of problems under SR. With Equation (5.1), and under SR, we can de-
compose any algorithm into two parts: a martingale to which we apply AH or
BCmethods and a drift for which we provide the exact expression and bound
it deterministically.

The two examples treated in this chapter demonstrate the flexibility of
this generalization in obtaining the desired decomposition. When a part of
the error directly provides a martingale, the focus can be on the remaining
part, as illustrated in the textbook-variance algorithm. When the algorithm is
more complex, we have shown, as demonstrated in the two-pass-variance
algorithm, that we can construct a stochastic process without considering
the previous errors in the average computation and ensure tight probabilistic
bounds.

The generalization can be applied to the entire algorithm, and the stochas-
tic process should be chosen carefully. Equation (5.1) ensures the exact ex-
pression of the drift and, consequently, themartingale term. However, study-
ing the martingale to obtain a probabilistic bound can be challenging in some
complex situations.

The scripts for reproducing the numerical experiments of this chapter are
published in the repository: https://github.com/verificarlo/sr-non-linear-bounds.
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6 - Industrial Example

In the previous two chapters, we have demonstrated that SR has several
advantages and positive effects on computations. For algorithms with multi-
linear error, SR is unbiased. Moreover, Chapter 5 demonstrates that when
using SR, the forward error has a probabilistic bound in O(√nu) instead of
O(nu). To the best of our knowledge, previous SR theoretical studies have
only considered algorithms with elementary operations, such as additions/-
subtractions or multiplications, while no study has explored the division.

In this chapter, we examine the division case with SR through two exam-
ples. First, an industrial application proposed by Anthony Scemama (“Labora-
toire de Chimie et Physique Quantiques (LCPQ)”) from the Quantum Package [29],
an open-source program designed for quantum chemistry. This example,
MP2, involves calculating the Møller-Plesset Perturbation Theory, a method
used to estimate the correlation energy of molecules.

TheMP2 example is of great interest since it computes a summation of di-
visions such that each division involves a denominator with three operations.
We have shown that their error impact is negligible compared to the summa-
tion errors under SR, and the probabilistic error bound is proportional to√nu.
Table 6.1 illustrates the previous results and shows the SR benefit through an
industrial code with two applications.

Second, in the MP2 example, there are only three elementary operations
involved in the denominator in each division. To analyze the SR effect in the di-
vision computation, we have examined a more complex problem, the inverse
of a summation of n numbers. We have introduced a computational model
for computing the error of the division in the context of SR. Using BC or AH
methods, we have demonstrated probabilistic error bounds in O(√nu).

6.1 . Møller-Plesset Perturbation Theory

For a, b, i, j ∈ N and ϵi, ϵj , ϵa, ϵb ∈ R, the MP2 method involves the compu-
tation of

E =

nvirt∑
a,b=0

nocc∑
i,j=0

2a(a− b)
ϵijab

, (6.1)
where ϵijab = ϵi+ϵj−ϵa−ϵb with ϵi, ϵj ≤ 0, and ϵa, ϵb ≥ 0. Then, the condition
number cond(ϵijab) = |ϵi|+|ϵj |+|ϵa|+|ϵb|

|ϵijab| = 1.
For a fixed i, j, a, b, we have
ϵ̂ijab =

((
(ϵi + ϵj)(1 + θijab1 )− ϵa

)
(1 + θijab2 )− ϵb

)
(1 + θijab3 ). (6.2)

117



Therefore,
Ê =

nvirt∑
a,b

nocc∑
i,j

2a(a− b)
ϵ̂ijab

∏
k∈Kijab

(1 + αk)(1 + βk)(1 + δk)(1 + ηk)(1 + µk)

=

nvirt∑
a,b

nocc∑
i,j

2a(a− b)
ϵ̂ijab

ψijab.

where ψijab =
∏

k∈Kijab
(1 + αk)(1 + βk)(1 + δk)(1 + ηk)(1 + µk) and Kijabis a subset of N that depends on nvirt and nocc. For all k ∈ Kijab, αk,βk, δk,

ηk, and µk represent the rounding errors from the subtractions a − b, the
multiplications by a, the multiplications by 2, the divisions by ϵ̂ijab, and the
summations, respectively.

Using the BC method, the following theorem computes a probabilistic
bound of the forward error of the computation of E.
Theorem 28. DenoteN = nvirtnocc. For all 0 < λ < 1, the computed Ê satisfies
under SR-nearness∣∣∣∣∣Ê − EE

∣∣∣∣∣ ≤ K
(
(1 + u)N

f(u)

1− f(u)
+

√
γN (u2)

λ

)
, (6.3)

with probability at least 1 − λ. With K =

∑nvirt
a,b

∑nocc
i,j

∣∣∣∣ 2a(a−b)
ϵijab

∣∣∣∣∣∣∣∣∑nvirt
a,b

∑nocc
i,j

2a(a−b)
ϵijab

∣∣∣∣ is the condition
number of E using the 1-norm, and f(u) = 3u+ 3u2 + u3.
Proof. For all 0 ≤ a, b ≤ nvirt and 0 ≤ i, j ≤ nocc, denote θl = θijabl where
l = 1, 2, and 3. Then, Equation (6.2) yields
ϵ̂ijab =

((
(ϵi + ϵj)(1 + θ1)− ϵa

)
(1 + θ2)− ϵb

)
(1 + θ3)

=
((
ϵi + ϵj − ϵa + (ϵi + ϵj)θ1

)
(1 + θ2)− ϵb

)
(1 + θ3)

=
(
ϵijab + (ϵi + ϵj)θ1 +

(
ϵi + ϵj − ϵa

)
θ2 + (ϵi + ϵj)θ1θ2

)
(1 + θ3)

=ϵijab + (ϵi + ϵj)θ1 +
(
ϵi + ϵj − ϵa

)
θ2 + (ϵi + ϵj)θ1θ2 + ϵijabθ3 + (ϵi + ϵj)θ1θ3

+
(
ϵi + ϵj − ϵa

)
θ2θ3 + (ϵi + ϵj)θ1θ2θ3

=ϵijab

(
1 +

ϵi + ϵj
ϵijab

θ1 +
ϵi + ϵj − ϵa

ϵijab
θ2 + θ3 +

ϵi + ϵj
ϵijab

θ1θ2 +
ϵi + ϵj
ϵijab

θ1θ3

+
ϵi + ϵj − ϵa

ϵijab
θ2θ3 +

ϵi + ϵj
ϵijab

θ1θ2θ3

)
=ϵijab(1 + χijab),

where
χijab =

ϵi + ϵj
ϵijab

θ1 +
ϵi + ϵj − ϵa

ϵijab
θ2 + θ3 +

ϵi + ϵj
ϵijab

θ1θ2 +
ϵi + ϵj
ϵijab

θ1θ3

+
ϵi + ϵj − ϵa

ϵijab
θ2θ3 +

ϵi + ϵj
ϵijab

θ1θ2θ3.
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Since the rounding errors satisfy |θk| ≤ u for k = 1, 2 and 3, and the quotients
ϵi+ϵj
ϵijab

and ϵi+ϵj−ϵa
ϵijab

are between −1 and 1, we have
−f(u) ≤ χijab ≤ f(u), (6.4)

with f(u) = 3u+ 3u2 + u3 = 3u+O(u2). It follows that
1

1 + f(u)
≤ 1

1 + χijab
≤ 1

1− f(u)
. (6.5)

Using SR-nearness and the mean independence, we have E(θk) = 0 and
E(θkθl) = 0 for k, l = 1, 2 or 3. Then, E(χijab) = 0, and E(ϵ̂ijab) = ϵijab.Moreover,
∣∣∣Ê − E∣∣∣ =

∣∣∣∣∣∣
nvirt∑
a,b

nocc∑
i,j

2a(a− b)
ϵ̂ijab

ψijab −
2a(a− b)
ϵijab

∣∣∣∣∣∣
=

∣∣∣∣∣∣
nvirt∑
a,b

nocc∑
i,j

2a(a− b)
ϵijab(1 + χijab)

ψijab −
2a(a− b)
ϵijab

∣∣∣∣∣∣
=

∣∣∣∣∣∣
nvirt∑
a,b

nocc∑
i,j

2a(a− b)
ϵijab(1 + χijab)

ψijab −
2a(a− b)
ϵijab

ψijab +
2a(a− b)
ϵijab

ψijab −
2a(a− b)
ϵijab

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
nvirt∑
a,b

nocc∑
i,j

2a(a− b)
ϵijab

ψijab

(
1

1 + χijab
− 1

)∣∣∣∣∣∣+
∣∣∣∣∣∣
nvirt∑
a,b

nocc∑
i,j

2a(a− b)
ϵijab

(ψijab − 1)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
nvirt∑
a,b

nocc∑
i,j

2a(a− b)
ϵijab

ψijab
χijab

1 + χijab

∣∣∣∣∣∣+
∣∣∣∣∣∣
nvirt∑
a,b

nocc∑
i,j

2a(a− b)
ϵijab

(ψijab − 1)

∣∣∣∣∣∣
≤ (1 + u)N

nvirt∑
a,b

nocc∑
i,j

∣∣∣∣2a(a− b)ϵijab

χijab

1 + χijab

∣∣∣∣+
∣∣∣∣∣∣
nvirt∑
a,b

nocc∑
i,j

2a(a− b)
ϵijab

(ψijab − 1)

∣∣∣∣∣∣ .
Firstly, Inequalities (6.4) and (6.5) imply
(1+u)N

nvirt∑
a,b

nocc∑
i,j

∣∣∣∣2a(a− b)ϵijab

χijab

1 + χijab

∣∣∣∣ ≤ (1+u)N
f(u)

1− f(u)

nvirt∑
a,b

nocc∑
i,j

∣∣∣∣2a(a− b)ϵijab

∣∣∣∣ .
Secondly, Lemma 11 implies that E(ψijab) = 1 and V (ψijab) ≤ γN (u2), where
N = nvirtnocc. Therefore, Bienaymé–Chebyshev inequality yields

|ψijab − 1| ≤
√
V (ψijab)

λ

≤
√
γN (u2)

λ
,
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with probability at least 1− λ. Thus∣∣∣∣∣∣
nvirt∑
a,b

nocc∑
i,j

2a(a− b)
ϵijab

(ψijab − 1)

∣∣∣∣∣∣ ≤
nvirt∑
a,b

nocc∑
i,j

∣∣∣∣2a(a− b)ϵijab

∣∣∣∣ |ψijab − 1|

≤
√
γN (u2)

λ

nvirt∑
a,b

nocc∑
i,j

∣∣∣∣2a(a− b)ϵijab

∣∣∣∣ ,
with probability at least 1− λ. Finally∣∣∣∣∣Ê − EE

∣∣∣∣∣ ≤ K(1 + u)N
f(u)

1− f(u)
+K

√
γN (u2)

λ

= K

(
(1 + u)N

f(u)

1− f(u)
+

√
γN (u2)

λ

)
.

Remark 12. When Nu≪ 1,
• (1 + u)N = 1 +Nu+O(u2).
• √γN (u2) =

√
Nu+O(u2).

• f(u) = 3u+O(u2).
• 1

1−f(u) = 1 + f(u) +O(u2) = 1 + 3u+O(u2).
It follows that

(1 + u)N
f(u)

1− f(u)
+

√
γN (u2)

λ
= (1 +Nu)(1 + 3u)3u+

√
N/λu+O(u2)

= (3 +
√
N/λ)u+O(u2).

In conclusion, the forward error of E has a probabilistic bound propor-
tional to √Nu. Note that the deterministic bound of this forward error is
given by

A = K
(
(1 + u)N

1− f(u)
− 1

)
.

Remark 12 implies
(1 + u)N

1− f(u)
− 1 = (1 +Nu)(1 + 3u)− 1 +O(u2)

= (3 +N)u+O(u2).

Denote the probabilistic bound of the forward error of E by
B = K

(
(1 + u)N

f(u)

1− f(u)
+

√
γN (u2)

λ

)
.
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In the following, we compare the number of significant digits of RN and
SR for the computation ofE in single and double precision through two input
datasets: "benzene-dz" and "benzene-tz".

benzene-dz benzene-tz
float-128 reference −0.7976444307327275 −1.042761195909342

RN-binary-64 value −0.7976444307326664 −1.0427611959001142

significantdigits 12 12

− log(A) 9.056238195176203 8.223554405475818

SR-binary-64 value −0.7976444307327221 −1.0427611959093024

significantdigits 14 14

− log(B) 11.84672986989858 11.431299294226122

RN-binary-32 value −0.797374963760376 −1.037820816040039

significantdigits 3 2

− log(A) 0.22389907562738373 −1.3425955561986505

SR-binary-32 value −0.7976271510124207 −1.0426925420761108

significantdigits 4 4

− log(B) 3.1167386181505985 2.6997139118096576

Figure 6.1: SR versus RN in single and double precision. The probabilisticbound B is given with probability at least 0.9.
Note that
• The red numbers correspond to the digits lost compared to the refer-
ence.
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• − log(A) represents the minimum of significant digits possible with RN.
• − log(B) represents the minimum of significant digits possible with SR.
In binary-32, SR is more favorable as it guarantees at least three signifi-

cant digits even in the worst-case scenario, whereas RN can potentially lose
all significance. These findings align with previous research on SR, empha-
sizing its advantage in low-precision. However, In binary-64, SR and RN are
comparable.

Interestingly, wehavedemonstrated in this section that SR ensures a prob-
abilistic error bound of O(√nu) in the division case. Since each term in the
denominator involves three elementary operations, we have shown that its
effect is negligible compared to the overall summation. In the next section,
we will examine the computation of the inverse of a summation, where the
denominator involves a large number of operations.

6.2 . Inverse of Summation

Let s =∑n
i=1 xi and y = 1

s . Theorem 2 implies that
ŝ =

n∑
i=1

xi

n∏
k=max (i,2)

(1 + δk) =
n∑

k=1

xiψ,

where ψi =
∏n

k=max (i,2)(1 + δk). Denote Φ = ŝ−s
s and Ψ = ŷ−y

y the relative
errors of ŝ and ŷ, respectively. We have ŷ = 1

ŝ (1 + θ), where θ represents the
rounding error of the division. Our goal is to compute a probabilistic bound
for the relative error Ψ. Let us first present a model of computation for this
problem. Note that ŝ = s(1 + Φ) and ŷ = y(1 + Ψ). Then

ŷ =
1 + θ

s(1 + Φ)
= y

1 + θ

1 + Φ
= y(1 + Ψ).

The Taylor series of 1
1+Φ around 0 yields

Ψ =
1 + θ

1 + Φ
− 1 =

θ − Φ

1 + Φ

= (θ − Φ)(1− Φ+ Φ2) +O(Φ3)

= θ − θΦ+ θΦ2 − Φ+ Φ2 +O(Φ3)

= θ − Φ(θ + 1) + Φ2(θ + 1) +O(Φ3)

= θ +Φ(θ + 1)(Φ− 1) +O(Φ3).

Note that this development fails to hold when s is near 0 and then the error
Φ will be away from 0. Finally,

|Ψ| =
∣∣∣∣ ŷ − yy

∣∣∣∣ = ∣∣θ +Φ(θ + 1)(Φ− 1) +O(Φ3)
∣∣ . (6.6)
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The following theorem computes a deterministic bound of the relative er-
ror Ψ when nu≪ 1.
Theorem 29. The computed Ψ satisfies

|Ψ| ≤ (K(n− 1) + 1)u+O(u2),

where K =
∑n

i=1|xi|
|∑n

i=1 xi| .
Proof. We have shown in Equation (2.5) that |Φ| ≤ Kγn−1(u). Because |θ| ≤ u,using Equation (6.6) yields

|Ψ| ≤ |θ|+ |Φ| |θ + 1| (|Φ|+ 1) +O(Φ3)

≤ u+Kγn−1(u)(1 + u)(Kγn−1(u) + 1) +O
(
(Kγn−1(u))

3
)

= (K(n− 1) + 1)u+O(u2).

The following theorem computes a probabilistic bound of the relative er-
ror Ψ using the BC method and when nu2 ≪ 1.
Theorem 30. For all 0 < λ < 1, the computed Ψ satisfies under SR-nearness

|Ψ| ≤
(
K
√

2(n− 1)
√
1/λ+ 1

)
u+O(u2),

with probability at least 1− λ, where K =
∑n

i=1|xi|
|∑n

i=1 xi| .
Proof. We have shown in Theorem 7 that |Φ| ≤ K√γn−1(u2)/λ with proba-
bility at least 1− λ. Because |θ| ≤ u, using Equation (6.6) yields
|Ψ| ≤ |θ|+ |Φ| |θ + 1| (|Φ|+ 1) +O(Φ3)

≤ u+K
√
γn−1(u2)/λ(1 + u)(K

√
γn−1(u2)/λ+ 1) +O

(
(K
√
2(n− 1)

√
ln(2/λ))3

)
=
(
K
√

2(n− 1)
√
1/λ+ 1

)
u+O(u2),

with probability at least 1− λ.
The following theorem compute a probabilistic bound of the relative error

Ψ using the AH method and when nu≪ 1.
Theorem 31. For all 0 < λ < 1, the computed Ψ satisfies under SR-nearness

|Ψ| ≤
(
K
√

2(n− 1)
√

ln(2/λ) + 1
)
u+O(u2),

with probability at least 1− λ, where K =
∑n

i=1|xi|
|∑n

i=1 xi| .
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Proof. We have shown in Theorem 2 that |Φ| ≤ K√uγ2(n−1)(u)
√
ln(2/λ)with

probability at least 1− λ. Because |θ| ≤ u, using Equation (6.6) yields
|Ψ| ≤ |θ|+ |Φ| |θ + 1| (|Φ|+ 1) +O(Φ3)

≤ u+K
√
uγ2(n−1)(u)

√
ln(2/λ)(1 + u)(K

√
uγ2(n−1)(u)

√
ln(2/λ) + 1)

+O
(
(K
√
uγ2(n−1)(u)

√
ln(2/λ))3

)
=
(
K
√

2(n− 1)
√
ln(2/λ) + 1

)
u+O(u2),

with probability at least 1− λ.
Note that the probabilistic analysis in Section 4.3 remains valid for the

previous three bounds.
In this chapter, our contribution is twofold: We have investigated an in-

dustrial application with SR that involves divisions, and we have studied the
error of the inverse of a summation with SR. For the MP2 computation, we
have shown an interest in using SR with low-precision and demonstrated a
probabilistic error bound in O(√nu). We have proposed a model for the in-
verse summation that enables the computation of probabilistic error bounds
in O(√nu).

124



7 - Conclusion

Stochastic rounding has drawn a lot of attention in various domains [13]
due to its efficiency compared to the deterministic IEEE-754 [4] default round-
ing mode. The numerical applications in domains such as machine learn-
ing [32], or climate modeling [61] have shown that SR provides positive effects
in computation, especially in low-precision formats, for example, by avoiding
stagnation effects.

7.1 . Findings from Our Research

It is well known that the worst-case bound of a computation involving n
elementary operations is given by O(nu). However, Wilkinson had the intu-
ition that the error bound for this computation is typically proportional to
O(
√
nu). In this thesis, we proved the validity of this intuition in the context

of SR through probabilistic error bounds. But, the intuition is not yet fully
verified for RN.

SR errors satisfy the mean independence property, allowing us to derive
tight probabilistic error bounds using twomethods: AH or BC. The AHmethod
is based on the martingale theory and Azuma-Hoeffding inequality, which is
preferable for higher probabilities (1 − λ near 1). We have demonstrated in
Section 4.1 the applicability of this method to several algorithms that exhibit
multi-linear error. The BCmethod is based on Bienaymé–Chebyshev inequal-
ity and a bound of the variance, which is suitable for large problem sizes n.
We have demonstrated Lemma 11, a general framework applicable to a wide
class of algorithms that allows to compute a variance bound. We have shown
in Section 4.2 the strength of this new approach to the same previous algo-
rithms studied by the AH method.

In Sub-sections 4.1.4 and 4.2.5, we have shown that the twopreviousmeth-
ods can be generalized to any complete computation tree with a multi-linear
sequence of elementary operations {+,−, ∗}. In the case of only additions/-
subtractions, the probabilistic error boundobtained is proportional to√log(n)

(Pairwise summation). At the same time, the presence ofmultiplications leads
to a probabilistic error bound in O(√n).

In this thesis, we have proposed a general framework for the probabilistic
analysis of algorithms under SR. Using the Doob-Meyer decomposition, we
have demonstrated in Chapter 5 that the error of any algorithm can be de-
composed into a martingale plus a drift. It is essential to note that the choice
of the stochastic process is crucial in the use of this generalization, as well as
the quality of the final bound. The generalization suggests an analysis scheme
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for the error of any algorithm, but calculations can sometimes prove complex,
as demonstrated for the two-pass-variance algorithm in Section 5.3.

We have shown that this generalization is highly flexible: the drift is zero
for problems exhibiting multi-linear error, a characteristic applicable to all al-
gorithms analyzed in Chapter 4. Subsequently, we use the AH or BC method
to establish probabilistic bounds for the martingale term. For the textbook-
variance algorithm in Section 5.2, a part of the error is similar to an inner prod-
uct, which directly forms a martingale. Consequently, we apply the general-
ization to address the remaining part of the error. For the two-pass-variance
algorithm in Section 5.3, we have considered the errors in the computation of
m̂ as inputs and formed the stochastic process from the remaining errors.

In general, once the stochastic process is determined, the applicability of
this generalization is direct. We have demonstrated that the drift is negligible
at the first order over u for the two variance computation algorithms. While
for the martingale term, we have used the AH method to obtain probabilistic
bounds proportional to √nu. We also have shown that the previous results
under SR remain valid in the pairwise case.

We have extended the properties of SR to the division problem in Chap-
ter 6. We have demonstrated probabilistic error bounds in O(√nu) for the
MP2 computation and the summation inversion. This is of great interest be-
cause it illustrates the advantage of SR in all elementary operations.

7.2 . Perspectives

Artificial intelligence has motivated the use of SR in various applications,
and the theoretical analysis in this thesis has confirmed the interest of using
SR in computations. For an algorithm with a large problem size, using SR in-
stead of RN improves the computation accuracy of this algorithm. However, it
is known that SR is relatively expensive [13]. This thesis did not address the im-
plementation challenges, particularly in assessing the trade-off between the
accuracy gained and the potential energy/time overhead when opting for SR
over RN.

Moreover, the numerical experiments in Chapter 4 raise concerns regard-
ing the use of SR as a model to estimate RN rounding errors [18, 63], in par-
ticular for the inner product and a large number of operations. Further stud-
ies are required to assess precisely the limits of this model and possibly give
criteria to detect them. Furthermore, in the context of RN, the necessary as-
sumptions on errors to validate Wilkinson’s intuition require exploration.

In this thesis, wehave demonstrated probabilistic error bounds inO(√nu)
through two methods based on a common tool: concentration inequalities.
The AH method uses Azuma-Hoeffding inequality, which is particularly effec-
tive when nu ≪ 1 and for higher probabilities. The BC method uses Bien-
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aymé–Chebyshev inequality and a bound on the variance, which is useful for
large problem sizes n, particularly when nu2 ≪ 1. Further research is needed
to establish a connection between AH and BC methods, possibly through a
unifying tool such as the Central Limit Theorem for instance. The idea is to
ensure tight probabilistic bounds for higher probabilities and large problem
sizes n.

Furthermore, using SR in low-precision formats, especially bfloat-16 is be-
coming increasingly attractive due to its higher speed and lower energy con-
sumption. TheBCmethodensures tight probabilistic error boundwhennu2 ≪
1. However, in low-precision, the firstn values greater than u2 can be relatively
small, which can make the bound less significant in these formats when n is
large and the condition nu2 ≪ 1 does not hold. Therefore, further studies
are required to examine other properties, such as higher-order moments, to
ensure more general probabilistic bounds.

The generalization in Section 5.1 decomposes the error of an algorithm
into a martingale plus a drift. For the martingale term, the concentration in-
equalities allow us to obtain probabilistic bounds in O(√nu). Nevertheless,
we are not quite there yet regarding the drift part. For the variance computa-
tion, we have demonstrated that at the first order over u, it is negligible com-
pared to the martingale term. Furthermore, by construction, the drift corre-
sponds to the summation biases accumulated in the computation. Since the
martingale term captures the compensated errors (the errors of degree one)
under SR, and the remaining errors (the errors of degree higher than one) are
in the drift term, we believe that the drift is almost negligible compared to the
martingale term at the first order.

The results of this thesis have considered algorithms based on elemen-
tary operations and a fixed number of iterations. One numerical scheme is to
investigate other situations, such as conditional statements, algorithms with
while loop, and iterative methods such as Newton’s method, which is a sub-
stantial concern, necessitating a thorough analysis under SR. We expect that
the stopping condition can bemodeled using a stopping time, which allows us
to recover all the probabilistic properties used in this thesis. The challenge is
to verify whether previous properties proved for SR hold in these situations.
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