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Chapter 1

Introduction

This thesis deals with the study and simulation of models for the adipose tissue. In particular
we are interested in the size distribution of adipose cells inside the adipose tissue. As such we
begin by presenting the biology of the adipose tissue as well as previous efforts at modeling. We
then present our models which are based on more general classes of models originally developed
for modeling polymers : the Lifshitz-Slyozov model and the Becker-Déring model.

1.1 Biological motivation : the adipose tissue

1.1.1 Generalities

The adipose tissue is part of the larger family of connective tissue. It is composed of various types
of cells, the main one being adipocytes or adipose cells. Its main role is the storage of energy in the
form of lipids but it also provides structures to neighboring organs as well as thermal insulation.
In most species, the adipose tissue splits into two kinds: the white adipose tissue (WAT) and the
brown adipose tissue (BAT). Depending on the type of tissue, different types of adipose cells are
observed: white adipose cells and brown adipose cells. Those cells differ in the way they store fat
and also in their role. White adipose cells (WAC), and in extent WAT), have a single lipid droplet
inside their cytoplasm and are a form of energy storage. These lipid droplets give the white color
to the tissue, thus its name. In contrast, brown adipose cells (BAC) can have multiple vesicles
of lipids as well as multiple mitochondria. Their role is to perform adaptive thermogenesis and
to release their energy content in the form of heat. BAT is present in great quantity in human
infants and later regresses in adults [83]. Although they fill different roles, WAC can still convert
themselves to BAC. This process is called ‘beiging’ or browning of WAC (from the french ‘beige’:
a color between white and brown), where WAC turn themselves into energy-releasing adipocytes.
This process has been observed to happen in response to cold exposure. This process is well
documented in [I14] and is reversible. In our modeling of the adipose tissue we will only consider
the WAT and WAC. However the data collection is not perfect and we may assume that some of
our data are actually BAC or preadipocytes or endothelial cells, ...although these additional cell
types would be present in a small percentage compared to WAC.

The life of a fatty acid : from the intestine to storage

Adipocytes store energy in the form of a single or multiple triglycerides vesicles inside their cyto-
plasm. Those molecules are created inside the cells from fatty acid by a process called lipogenesis.
However before fatty acids get inside the adipose cells they get ingested by the organism and end
up in the intestine. From inside the intestine, micelles containing fatty acids are transported to
enterocytes where they are assembled with glycerol to form triglycerides. They are then bundled
together with apolipoproteins, phospholipids and cholesterol to form chylomicrons also called ultra
low-density lipoproteins (ULDL). This complex protein structure allows the transport of triglyc-
erides inside the water-based blood stream toward storage tissues such as the adipose tissue. When
those chylomicrons reach the capillaries in the adipose tissue, the lipoprotein lipase dissolves the
triglycerides into free fatty acid which are transported inside adipocytes. Inside the cell they are
again transformed into triglycerides using glucose and acetyl-CoA. The formation of triglycerides
from fatty acids is called lipogenesis. Lipogenesis is heavily regulated by a common hormone :
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1.1.

BIOLOGICAL MOTIVATION : THE ADIPOSE TISSUE

Figure 1.1: Adipocytes of different size

insulin. Evidently this implies that diabetes and other insulin-related diseases have an influence
on the physiology of the adipose tissue.

The reversed biochemical reaction through which triglycerides are hydrolyzed into glycerol and
fatty acids and released into the surrounding capillaries is called lipolysis. Lipolysis is regulated
by two hormones : glucagon and norepinephrine. Both processes are illustrated in Figure [[.2]taken

from [108].

1.1.2 Morphology
Localization

Being a connective tissue, the adipose tissue is often localized together with its structured organs.
In humans, it is present in various places. Visceral fat is located around internal organs, and is
one of the indicator of health issues such as obesity. Subcutaneous fat is located widely bellow the
skin in humans where it provides minor thermal isolation as well as padding. Intermuscular fat
is located in the muscular system and provides a quick access to energy storage for surrounding
muscles. Marrow fat is present in bone marrow but its role beyond energy storage is not well
understood.

Adipose tissue and weight

There is an obvious correlation between the adipose tissue and the weight of an individual. Nowa-
days fat mass is used as an indicator of health together with the Body Mass Index (BMI), although
the use of BMI as a health indicator is often debated. Nonetheless with the recent surge of obesity
in the human population [3], the scientific community has started tackling the study of weight loss
by looking at adipose cell physiology. Many works have exposed what is usually called ‘rebound
weight gain’ where after a substantial weight loss, individuals would regain weight faster than
individuals of the same weight [89, [5]. This is explained by many factors often related to some
resistance of adipose cells once they get large enough. We should however distinguish between two
mechanisms that can happen during weight gain. First, hypertrophy is the increase in volume of
adipose cells. This is often the first physiological change implying weight gain. Second is hyperpla-
sia, which is the increase of the number of cells. Hypertrophy will happen until moderate obesity,
at which point hyperplasia appears and the number of cells increases, hence the available storage
space also increases [59]. In children, new adipose cells are created over the growth period until
adulthood. This often leads to the idea that adults have a ‘fixed” amount of adipose cells. However
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1.1. BIOLOGICAL MOTIVATION : THE ADIPOSE TISSUE
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Figure 1.2: An illustration of lipogenesis and lipolysis. This figure is taken from [108].

new cells are created through the adipose tissue turnover which happens to replace naturally dying
cells. Indeed a healthy individual,in regards to weight, will see small variations of its adipose cell
count, but as stated before hyperplasia occurs at the later stage of obesity. Studies have yet to be
performed to characterize the increase in cell count from leanness to obesity but there are many
results on the reverse process. Weight loss induced by dietary changes or surgery decreases the
size of cells but does not decrease the number of cells [6]. This leads to the assumption that the
adipose cell count increase is a one way, non-reversible process.

As such, ‘weight gain’ in the sense of gaining additional adipose cells past the original amount
is permanent. This implies that the most effective way to reduce fat mass in the overweight stage
is a surgical operation, either through installing a gastric band to reduce food intake or liposuction
to remove part of the fat mass. However, as we pointed out before, those are physical remediations
to the overweight condition and do not modify the physiology of remaining adipose cells.

When we will consider the modeling of the adipose tissue, we make the simplification that the
total number of cells is constant. Indeed this is not biologically relevant but this simplification is
a first step towards the modeling and computations of the adipose tissue dynamic.

Size heterogeneity

Many studies have shown that the adipose tissue is heavily heterogeneous, be it in cell types,
hormonal levels and cell sizes, which is our main interest [76], 65, O1]. As seen in Figures the
size of cells inside the adipose tissue follows a bimodal distribution : it has two local maxima,
called modes, separated by a local minimum called the nadir. However no biological explanation
has been coined down as to why adipose cells separate into two populations of small and large cells.
Interestingly this separation has been observed in many species but the position and relative height
of the modes are different from one species to another as well as from individual to individual.
Particularly the size distribution of adipose cells is an indicator of being overweight or obese, since
those individuals will tend to have a higher number of adipose cells and have larger cells.

1.1.3 Health issues

Obviously studying adipose cells involves studying related health issues. The main pathology re-
lated to the adipose tissue is obesity. This disease has seen a great increase in the human population,
having tripled since 1975, even being labelled an epidemic by the World Health Organization [3].
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1.2. MODELING THE ADIPOSE TISSUE

The main symptom is the excessive amount of body fat and is characterized by a BMI index
above 30. Many studies have shown that obesity has strong correlations with various afflictions,
such as cardiovascular diseases [76], type 2 diabetes [42], obstructive sleep apnea, cancers [37] and
osteoarthritis. The causes are various and often different from one individual to another. They
include excessive intake of food, sedentary lifestyle, lack of physical exercise, genetics, ...

Concerning medical treatment, they most often consist of changing life-habits : diets and/or
physical exercise, although the most efficient dietary change for long term weight loss is still
unknown. Additionally, medications can help weight loss but the most efficient way to treat
obesity is actually bariatric surgery. This includes gastric bypass and banding, gastrectomy or
pancreatic diversion.

1.1.4 Why do we want to study the size distribution of adipose cells ?

We can now get to why we are interested in the size distribution of adipose cells. First and
foremost we recall that the size distribution of adipose cells, that is to say the number of cells
per size, is bimodal : it has two local maxima. This can be seen in Figure for a rat. This
type of distribution is singular for specialized cells which more often display a standard unimodal
distribution centered around the mean size of a particular type of cell.

What do we mean behind ‘size’ of a cell 7 There are various ways to define the size of a cell.
We will firstly consider the radius as a way to define size. This means that we assume cells to be
spheres, whereas in the adipose tissue, and since cells are mainly composed of water, we expect
the cells to form a densely packed tissue, where cells will definitely not take the form of spheres.
Hence, cells as sphere is a modeling simplification, but also comes from the fact that to collect
data, biologists break the extra-cellular matrix that holds the tissue and cells are therefore freely
swimming inside a medium, where they should resemble spheres, as seen in Figure [I.1] Further
on, we will consider that the size of an adipose cell is determined by its lipid amount contained
inside its vesicle. We will relate radius to the lipid amount by considering the volume of the cell
compared to the volume of the vesicle, which allows us to relate both size definitions.

As stated before, there is still no biological explanation for this bimodal distribution. Moreover,
the bimodal feature seems to be universal among animal species but the height and position of
each maxima are individual dependent. Data collection comes with various pitfalls : the surgery
for biopsy is often invasive, lack of longitudinal data, ethical considerations, truncated data, not
exhaustive (no total cell counts), ...

1.1.5 What type of data do we have ?

Let us detail the type of data we have at our disposal. Mostly they come in the form of lists
containing the radius or diameter of a subset of cells obtained through a biopsy. The size of each
cell is measured using a Beckman Coulter Multisizer IV but due to to limitation in measurement
techniques, only cell radii larger than 7.5um or 10um depending on experiments are measured.
Hence our data may be incomplete and the chemical procedure that destroys the tissue before
using the multisizer may lead to some artifacts remaining in the solution and being counted by
the machine. Therefore among all the measurements, a small part may not be cells but remaining
components of the tissue and also other cells (BAC, preadipocytes, endothelial cells, .. .).

1.2 Modeling the adipose tissue

In this section, we go over various models for the adipose tissue. We shall see that many attempts
have been made at modeling various biological features of the adipose tissue. We first present
models in a wider perspective before diving in on models for the size dynamic of adipose cells and
in particular the models from Jo et al. [68] and Soula et al. [11§].

1.2.1 Various models for the adipose tissue

Many models have been developed to study the adipose tissue, each of them intending of capturing
a particular feature of this tissue.

A common question when studying specialized cells is how they are created. In the case of adi-
pose cells, mesenchymal stem cells, located in the bone marrow, differentiate into pre-adipocytes.
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1.2. MODELING THE ADIPOSE TISSUE

These pre-adipocytes are undifferentiated fibroblasts which can form adipose cells upon being
stimulated. The exact biochemical process of the fate determination of pre-adipocytes is yet to be
thoroughly described. Still some mathematical modeling was performed to capture this differen-
tiation process. In [46], authors developed a model for the differentiation process of mesenchymal
cells in adipose cells. The model introduced in [46] is composed of ODEs for the total population of
mesenchymal cells and pre-adipose cells, and a transport equation structured in size with a death
term for adipose cells. This model and its extension with a spatial component are able to replicate
bimodal distributions.

We previously highlighted the fact that the adipose tissue is a connective tissue and therefore
also provides structure to the surrounding organs or tissue, as in the visceral fat for example.
The interaction between extra-cellular matrix (ECM) and adipose cells is even correlated with
health issues such as obesity, as featured in [36]. The interaction between cells and their ECM
has been well studied by the mathematical community and some works looked at the particular
case of the adipose tissue. In [I00], authors developed a model of interaction between adipose cells
and collagen fibers. They are able to reproduce some features of the adipose tissue’s morphology
including the clustering of adipose cells and the formation of a network of fiber. They use an
Individual Based Model including the forces and interaction between the cells and fibers as well
as pre-adipocyte differentiation. This model was used again in [I01] to investigate injury to the
adipose tissue. In particular the model is able to replicate regeneration and scar formation.

Additionally biologists are interested in the biochemical processes happening inside the cell and
at the scale of the tissue. In [§], authors investigated the lipid turnover in human. They found that
the lipid release rate decreases with age while the intake rate is not reciprocally adjusted. They
also observed that major weight loss is driven by a decrease in the intake rate of lipids and that
individual with a low removal rate are more likely to keep a stable weight after weight loss. All these
findings further demonstrate the role of lipid intake and release in the adipose tissue morphology
and its relation to health issues. They also fitted their data with a PDE model structured in age
for the population of lipids inside an individual. The methodology for data collection in this article
is particularly interesting: they measure the age of lipids in an individual by looking at the ratio of
radioactive carbon coming from nuclear bomb test that are incorporated inside the carbon chain
of lipids.

In [71], the authors introduce a physiological based ODE model to illustrate intracellular com-
partmentalization of metabolic lipid processes and differential activation of lipases involved in these
processes. They show that the active metabolic subdomain has to be well calibrated because it
is critical for simulating data. Depending on the size of this subdomain the speed of cellular dy-
namic can change and thus modify the outcome of the model. A smaller domain produces faster
dynamic. The differential activation of lipases is due to their role in the metabolic processes of
different glycerides: tri-, di- and monoglycerides. They show that this differential activation allows
them to compare more accurately to experimental data. However some of their subsequent finding
has yet to be confirmed by experiments.

1.2.2 Models for the size dynamic of adipose cells

In this section we present the recent developments in modeling the distribution in size of adipose
cells. The main two articles were coincidentally published in 2013 by Jo et al. [68] and Soula et al.
[118]. The models introduced in this manuscript, to be described in the next section, are linked to
the models from these two papers but are more closely inspired by the one in [118].

Jo et al. [68]

In this article, the authors are interested in the inference of the adipose cell size distribution
dynamic using a PDE model and Bayesian inference. The model was first introduced in [66] but
instead of time, the distribution depended on the fat pad mass. They perform model fitting on
data from rat and are able to recover the bimodal distribution of adipose cells. Their PDE model
consists in a transport-diffusion equation for the distribution in size with a source terms for creation
of new cells and cell death. The size of a cell is assumed to be its radius and the distribution of
cells at time ¢t and radius r denoted f(¢t,r) is given by :

Ouf(t,r) = b(t)8(r — o) — O (v(r) f(t,7)) + DO f(t,7) — k(r) f(t,7),
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where b is the birth rate of new cells that appear with size rg, v is the velocity of transport,
D the rate of diffusion, k the death rate and ¢ the Dirac delta function. The velocity v takes the
form :

o(r) = ”7* (1 + tanh(~ _”)> - %* (1 + tanh(~ _r)) :

N+

The idea behind this choice for velocity is phenomenological : one may assume that lipid intake
and release by a cell are surface limited. Hence there are some critical sizes for intake and release,
denoted by r; and r_, which give the half-maximal intake/release rates, denoted by v; _. The
parameters 7, _ are included to describe the steepness of the rates. Observe that this velocity
does not depend on time, hence does not include potential rate change depending on the tissue
dynamic.

Soula et al. [118]

The model introduced in [I18] is the basis for all the models we later introduce in this manuscript.
The authors derive a model for the size distribution of adipose cells, where the distribution depends
on both the amount of lipids x inside the cell and the radius r of the cell. The same model was
used in [119] to estimate the surface rate of lipolysis. The PDE describing the dynamic of the
distribution is given by :

Ouf(t,x,1) = O (v(x,r, L) f) + Op(R(z,7)f), (1.1)
where L is the external amount of lipids, which also has its own dynamic given by :
dL d
- . 1.2
¥ gy // xf(t, z,r)dzdr (1.2)

This equation for L translates the assumption that the total amount of lipids is constant. The
velocity in the direction of the amount of lipids x takes the form :

v(z,r, L) = a(r) —b(x,r),

L+«k
The function a describes the rate of lipogenesis and b the rate of lipolysis. We go into further
details in Section [I.3.3] about their construction and the shape of this velocity.
And the velocity in the direction of the radius r is given by :
1 <V11pids33 +W T)

Rz,r) = - 4A7r? 3

. (1.3)

where 7 is the rate at which the radius of the cell slowly adapts to the changing amount of
intracellular lipids. Authors use Monte Carlo simulations to determine numerically stationary
solutions of the model. They are able to recover bimodal distributions in radius.

1.3 Adaptation of the Lifshitz-Slyozov and Becker-Doring mod-
els to adipocyte size dynamic modeling

Following the work in [I18], we present the main framework for the models we aim to build. First we
go into details about the goal of the mathematical modeling and the purpose of our approach. This
leads us to look at the Lifshitz-Slyozov model (LS). We present the model as well as various well
known results from the literature then we go into details about the construction of a Lifshitz-Slyozov
type model for a population of adipose cells undergoing lipogenesis and lipolysis. Unfortunately
this model is not able to reproduce the biological observations but a relatively simple extension
can be considered to improve it : the addition of a diffusion term. Motivated by the choice of such
a diffusion term, we look into the Becker-Doring model (BD) as a ‘microscopic’ equivalent of the
Lifshitz-Slyozov model. We also present well known results, in particular the convergence theory
from the Becker-Doring model to the Lifshitz-Slyozov model, which is the main motivation for
studying this model in the first place. Indeed, this convergence result provides insights into what a
diffusion term for the Lifshitz-Slyozov model may look like. In turn, we construct a Becker-Déring
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Figure 1.3: Example of collected data from a biopsy on a rat. The raw data are composed of the
size of each cell, which we plot here as a histogram for clarity

model for adipose cells. This model is considered purely for its mathematical insight and has no
biological assumptions in its construction other than the ones used in the Lifshitz-Slyozov model.

Next, in our approach of using the various convergence results to obtain a candidate for a
diffusion term, we were unable to prove convergence toward what could be a diffusive Lifshitz-
Slyozov model using the classical analytical tools. It would require to prove uniform bounds on
higher order derivatives on the densities, which we are not able to obtain. This motivated us to
look into stochastic equivalents to both our models. In the spirit of [74], we construct two new
models : a stochastic Becker-Doring model and a stochastic diffusive Lifshitz-Slyozov model. In
turn, we provide a result of convergence from one to another, with the assumption that the rates
of lipogenesis and lipolysis are bounded. We then extend this result to the case of sub-linear rates
which our model will verify.

1.3.1 Goals of mathematical modeling

We begin by detailing the intentions behind the modeling of the size dynamic of adipose cells as
well as the objectives of the models. As stated previously, the adipose tissue is heterogeneous,
particularly in cell size (radius). Nonetheless, when looking at the population of cells, the radii
of cells are not randomly distributed but follow a peculiar distribution : a bimodal distribution.
As seen on Figure 1.3, cell radii can take a large range of values but are concentrated around two
specific values : small radii close to 25 pm and large radii close to 60 pm. The relative height
and position of these modes can be different from species to species and between individuals as
well. Particularly, health issues such as obesity and diabetes have an influence on the typical size
of adipose cells. Hence, proper tools to study data such as the one in Figure are needed. Such
tools should be able to replicate the heterogeneity of data collected by biologists, and be based on
biological considerations as much as possible.

The models presented in this manuscript aim to fill such prerequisites. As is often the case in
mathematical modeling for biology, we want the models to follow a variety of simplifications of the
biological truth. Additionally the mathematical analysis leads to assumptions that such models
should verify.

With the intent to perform parameter estimation on the data, we first need to clarify what the
output of the model is and how it relates to the available data. The data at our disposition consist
of a series of measurement of cells coming from biopsy in rats. Hence the data are lists of radii
of cells. The models we will consider are dynamical systems that describe the evolution of the
size distribution of a population of adipose cells. We make a first simplification and consider that
the available data are a sample of the adipose tissue that is stationary in time. This means that
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we do not consider natural variations of the adipose tissue due to food consumption and various
metabolic changes. In a healthy individual, such changes should be negligible at the scale of the
whole tissue. Therefore the outputs of the model are the, eventually attractive, stationary states
of the dynamical system. We also make the simplification that the number of cell is constant in
time. As previously mentioned this is not true biologically but again, for a healthy individual,
the variation of cell count is negligible. Last but not least, we consider that the total amount of
lipids is constant in the model. This is again motivated by the idea that a healthy individual is at
equilibrium in regards to lipid intake from food and lipid consumption for energy. Finally, we will
make a few more simplifications in regards to biophysics, which we detail in Section when we
introduce the first model.

How do we build a dynamical system describing the size distribution of adipose cells 7 The most
natural object to consider is a partial differential equation (PDE) which describes the evolution of
the distribution. Since the data we have do not contain any information about the spatial distri-
bution, the distribution is a function depending on time and size of cells, either radius or amount
of lipids. We want the model to verify two constraints coming from the biological simplifications :
the total number of cells and the total amount of lipids are constant in time. The first constraint
can be verified by providing accurate boundary conditions to the PDE. The second constraint
leads to considering an additional unknown of the model : the external amount of lipids, available
in the medium. Here the medium is a network of blood vessels and capillaries. Again since we do
not have spatial data, we consider this external amount of lipids to be a common pool, available
to all the cells. This may be interpreted physically as considering the lipids to be fast diffusing in
the medium. Therefore the total amount of lipids is simply the sum between this external amount
of lipids and the amount of lipids contained in all the cells, which can be obtained through the
distribution.

We now need to choose the shape of the PDE. Continuity equations are a natural choice for
describing distributions with conserved quantity. We shall firstly describe how the size of a single
cell evolves based on lipogenesis and lipolysis. This in turns describes the flux of ‘size’ at the
population scale and leads us to write a transport equation on the distribution. This transport
equation is provided with boundary conditions that conserve the total number of cells as stated
before.

This is the core of our model : a conservative transport PDE based on single cell dynamic
and a conservation equation on the total amount of lipids in the model. This type of models fits
naturally into the Lifshitz-Slyozov model, which we introduce in the next section. Now what do
we expect this model to do 7 Our aim is that provided some initial distribution of cells and some
quantity of external lipids, the model describes the dynamic of the distribution as it stabilizes
toward a stationary distribution which should resemble the data in Figure 1.3. We point out
that this model does not represent what happens in vivo. We make various simplifications of the
biological truth, but the closest biological equivalent would be to consider an individual that does
not change its food intake, has a perfect balance of lipid intake and energy expenditure through
lipid consumption and has a one-to-one adipocyte turnover, which is not so far from the daily life
of a lab rat.

However as we shall see in the numerical simulations and by looking at previous theoretical
results [I8], this model has some flaws and one is especially troublesome. Its stationary solutions
are nowhere near the shape of the distributions in the data, see Figure 1.3. This leads us to consider
potential extensions of the model. In particular, a simple fix to our problem is to add a diffusive
term in the PDE, but we have no biological insights on how to choose or construct such a diffusive
term. As a first approach, we investigate simply adding a constant diffusion to the PDE. This
model is studied in chapter [5] where parameter estimations are made. A second approach which is
the main subject of this manuscript, is a non-constant diffusion term. To choose this term, we seek
information from another model : the Becker-Doéring model. This model has some close relation
to the Lifshitz-Slyozov model we are interested in, particularly because it converges to it in some
sense and this convergence provides a way to extend the usual Lifshitz-Slyozov model to a diffusive
Lifshitz-Slyozov model. We go into greater detail as to how this is done after presenting both the
Lifshitz-Slyozov and Becker-Doring models.
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1.3.2 The Lifshitz-Slyozov model

The Lifshitz-Slyozov model bears its name from its creators : Ilya M. Lifshitz and Vitaly V.
Slyozov. It was first introduced in [84], to study precipitation phenomena in supersaturated solid
solutions. The Lifshitz-Slyozov model was also largely used in modeling polymerization processes.
It describes the size dynamic of a population of clusters in a bounded domain. Those clusters are
described as an amalgamation of a smaller elementary particle present in quantity « inside the
medium. This elementary particle acts as the building block of the larger cluster in the model.

Considering a single cluster, let us denote x its size. The value of x can take different meanings
depending on context. For example it could simply be the amount of elementary particles consti-
tuting the cluster, or the volume occupied by the cluster, its length, etc ... This cluster either grows
or shrinks in size and we assume that these two phenomena depend on the size z of the cluster.
Henceforth we will denote a the function describing the growth rate and b the shrinking rate of
the cluster. We assume these rates to be positive. We will assume more constraining hypotheses
on those rates latter on. Now the size = of the cluster grows depending on the growth rate a(x)
and the amount of elementary particle « and shrinks depending on the shrinking rate b(x). This
leads to the single cluster dynamic equation :

de(t)
e a(z)u(t) — b(x) . (1.4)

Now we go from a single cluster description to the full population. We denote by t the time
variable, assumed to non-negative and f(¢,z) the amount of clusters of size x at time ¢. This
function f is the size distribution of the cluster population. Describing the dynamic of f is simply
using the continuity equation with the velocity field v(z,u) = dfi(tt) = a(z)u(t) — b(x) which we
henceforth call the velocity of the distribution. Naturally we are led to consider the following

partial differential equation :

O f(t,x) + Ox(v(z,u) f(t,z)) =0, t >0, z > 0. (1.5)

Now since clusters go through the process of growing and shrinking by ingesting or releasing
elementary particles, the amount of elementary particles u will change in time. As such we have to
provide an equation for the dynamic of u. We consider this whole process to happen in a bounded
domain, hence the total amount of elementary particles should not change in time. We denote
by k(x) the function describing the amount of elementary particles composing a cluster of size z.
Then fooo k(x)f(t,z)dz is the amount of elementary particle composing the cluster. This leads to
the conservation equation :

u(t) + /000 k(x)f(t,z)de =X, t >0, >0, (1.6)

where A is a constant in time parameter representing the total amount of elementary particles.
The function k can simply be k(z) = z if we consider the size to be the amount of elementary
particles, but we can also consider a measure of length k(z) = &, where C' is the length of an
elementary particle, or k(z) = Cz'/3 if x is the volume of the cluster. Both f and u need to be
provided with an initial condition, which we denote f° and u°. Equation and lead us

to the Lifshitz-Slyozov equations :

atf(ta .’E) + 8I<U($7u(t))f(ta {E)) =0,t>0,22>0, (173')

u(t) + /00 E(x)f(t,z)de =X, t >0, (1.7b)
0

£(0,2) = f°(x) and u(0) = u°, x > 0. (1.7¢)

Since the PDE is a transport equation, one may need a proper boundary condition at
x = 0 depending on the sign of v at the boundary x = 0. A sufficient condition for not needing
any boundary condition is a(0)A —b(0) < 0. This condition is not only technical but also describes
a modeling assumption in some cases : the clusters of ‘null’ size are removed from the system
and not considered. The Lifshitz-Slyozov model can be provided with various boundary conditions
depending on modeling assumptions. For the case of adipose cell modeling, we want the equation
to verify the constraint that the total number of cells is constant i.e. fooo f(t,x)de = m. Hence a
sufficient boundary condition is (v(x, u(t))f(t,x)) |z=0 = O.
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Lifshitz-Slyozov-Wagner model and Ostwald ripening

There exists another version of the Lifshitz-Slyozov model called the Lifshitz-Slyozov-Wagner
model. It was introduced in [I3I] and it is build upon the assumption that « is close to a critical
value M.t and describes the Lifshitz-Slyozov model in large time. This leads to re-writing the

conservation equation (|1.7b) as :

/ooxf(t,x)dx =\
0

The PDE stays the same and multiplying it by x and integrating we are led to the following
equation for wu:

u(t) /0 ” (@) f(t, 2)de = /0 " b@) £t 7).

In both versions of the model a peculiar phenomenon may occur : Ostwald ripening. Taking
the previous description of the Lifshitz-Slyozov model using clusters, this ripening translates to the
observation that large clusters will grow at the expense of small clusters. From a thermodynamics
stand point, this means that large clusters are energetically favored, and in the case of crystal
formation or atom clusters, it can be explained by the fact that the atoms at the center of the
cluster are more stable, hence favoring the formation of large clusters. Mathematically this may be
observed as a part of the distribution f ‘going to infinity’. The appearance of Ostwald ripening can

be characterized in the Lifshitz-Slyozov model depending on the rates a and b. Let Erf z((g =

Aerits which represent a critical value of A\. Then in Equation ([1.7)), Ostwald ripening may occur
when A\ > Agi.

Remark. We shall see in Section[I.3.3 that our model falls in the sub-critical case X < Aeriy since
Acrit = +00.

As we introduced before, the original paper [84] dates back to 1961, where the rates are ex-
pressed as a(z) = z'/% and b(z) = 1. From then numerous contributions to the study of the
Lifshitz-Slyozov model have been made, particularly since the year 2000. The existence and
uniqueness of solutions to the Lifshitz-Slyozov model have been studied in various cases. The
work of Collet and Goudon [33] presents existence and uniqueness in the case of C! rates with
bounded derivatives. The authors use the classical theory of characteristics to show existence of
mild solutions, see Definitions and and weak solutions, see Definition Similar
techniques have been used in [19], with rates that are non-Lipchitz at the boundary. Convergence
result toward stationary solutions has been described in [18], where authors assume that the ratio
3 is decreasing and using Wasserstein distances are able to show that the solution concentrates
toward a Dirac mass. A convergence result for the Lifshitz-SlyozovWagner model with self similar
solutions was also established in [94].

Naturally the Lifshitz-SlyozovWagner model has also seen developments in parallel to the theory
developed for the Lifshitz-Slyozov model. Existence and uniqueness of weak solutions have been
studied in [95] in the case of the classical rates a(z) = 2'/% and b(x) = 1 and have been extended
in [77] to rates that are Lipchitz continuous for large = but are are less regular near z = 0.

This model has been used in various contexts including biological phenomena, such as prions [79,
115], [54] or modeling in oceanography, see [62].

1.3.3 A Lifshitz-Slyozov type model for adipose cells

We now proceed with the construction of our main model, based on the Lifshitz-Slyozov model.
First and foremost we recall the biological simplifications we previously introduced as well as
introducing two new physical simplifications :

e The total number of cells, also called mass of the distribution is denoted by m and is a
constant of time.

e The total amount of lipids is denoted by A and is a constant of time.

e The amount of lipids in a cell (in nmol), denoted by =z, is linearly related to its volume.
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e Cells are spheres.

The fact that the amount of lipids in a cell is linearly related to its volume is a fair physical
assumption, but in reality this relation may not be exact, and the change in volume due to lipid
intake is probably delayed in time. We simplify the shape of a cell to be a sphere for two reasons :
the volume of a sphere is easy to compute and when collecting the data, cells are stripped from
the extracellular matrix and are therefore free moving inside the medium where they should take
a spherical shape and be measured as such.

We base our work on [I18] where the authors build a model in which the distribution depends
on both the radius and the lipid amount. Our third simplification allows us to relate radii to lipids
and therefore simplify the model. Going back to the model in [I18], it corresponds to taking the
limit 7 — 0 in Equation (L.3). This relation reads as :

4
Viipias® + Vo = gﬂ"l‘(l‘)g, (1.8)

where Wipias is the volume occupied by 1 nmol of lipids (in particular triglycerides), Vo is the
volume of an empty cell and r(x) is the radius of a cell containing x lipids. Do observe that this
simply reads as volume of the lipid vesicle + volume of the cytoplasm and organelles = volume of
the cell.

This relation is especially important because it allows us to relate lipid amount to radius in a
one to one manner, with :

3

r(z) = (f;(vlipidsfﬂ + Vo)> : (1.9)

From now on, when we refer to the size of a cell, we intent to look at the value of . Then, let
us consider a cell of size x and we begin by describing the evolution of its size. As we previously
mentioned two processes occur : intake of lipids, known as lipogenesis and release of lipids, known
as lipolysis. The change in z is therefore the difference between the rate of intake and the rate of
release. We construct these two rates based on biological and physical assumptions.

The intake rate is a product of three factors :

e a term for a surface limited flow ar(x)?, where the constant « is the rate of this flow,

e a term with a radius cutoff p such that for greater radius, the intake flow is greatly decreased
pTL
@)+
e a Michaelis-Menten term for the available amount of lipids in the medium T where « is
K
the value of L at which this term is a half.

And the release rate is a product of two terms :

e a term with a basal level of release 3 and a surface limited flow yr(z)?, where the constant
v is the release equivalent of the constant «,

X
e a Michaelis-Menten term for the available amount of lipids in the cell UYL where x is the
equivalent of x for the release.

We point out that the construction of the release rate are based on biological observations
detailed in [IT9]. In particular, the values of 8 and « have been experimentally estimated in [T19].

Remark. We make a slight change of notation from u to L to reflect the fact that L is the external
amount of lipids.

dz
The variation of the size x, which we denote T can therefore be expressed as the difference
between the intake and release rates as :

Ye3

dx

P — (B4 r(2)?)

— = 2 : 1.10
dt ar(z) r(z)»+p* L+ kK x+x (1.10)

intake release
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LIFSHITZ-SLYOZOV AND BECKER-DORING MODELS FOR ADIPOSE CELLS

For both rates we regroup the terms in x together as :
2 P
()" +pn

b(z) = (B+ W(x)2)m~

Now from a physical point of view, one may see the cells has particles moving in a state space
with vector field :

a(x) = ar(x) (1.11)

(1.12)

dz L
vz, L) = — =a(z
(@, L) dt ( )L +K
From the theory of continuity equations, this leads us to write a homogeneous transport equa-
tion for the distribution of cells f(¢,x), which gives the quantity of adipose cells with amount of

lipid z at time ¢ :

— b(z). (1.13)

O f(t,x) + Op(v(z, L) f(t,x)) = 0. (1.14)

As per our biological simplification, the total quantity of lipids in our system, denoted by A
should be constant. There are two types of lipids in the system : the ones contained in the cells,
and the lipids in the medium. This yields the following equality :

L(t) —|—/R xf(t,z)de = A, (1.15)

which is similar to Equation (1.6) with k(x) = .
In regards to boundary conditions, we want to preserve the mass of the distribution and there-
fore we need to impose that :

f(t,x)dz = [ f°(z)dz =m for all t > 0. (1.16)

This leads to having the boundary condition (v(z, L(t))f(t,z))|z=0 = 0 for all ¢ > 0. Hence,
because v(0, L) > 0, to conserve the mass, a Dirichlet boundary condition is sufficient :

f(t,x)|_r:O = 0.
This leads us to the Lifshitz-Slyozov model for adipose cells with initial conditions (f°, L°):

Ocf(t,x) + Op(v(x, L(2)) f(t,z)) =0, (1.17a)

L(t) —|—/ xf(t,x)dx = A, (1.17b)
Ry

ft,2)],_, =0, (1.17¢)

£(0,2) = f%x) and L(0) = L°. (1.17d)

Stationary solutions

Since we want to observe the bimodality on stationary solutions, we need to describe them. We
denote the stationary solutions by My and Ry = {# € Ry|v(x,L) = 0} the set of roots of the
velocity. Now the stationary solutions should verify 9, M = 0 and thus :

O (v(x, L)YM(z)) =0 for all z > 0, (1.18)
where L solves the conservation equation L + fR+ My (z)de = A. This with the boundary
conditions yields :
v(x, )My (x) =0 a.e in Ry.

As stated before, My, then takes the form of a linear combination of Dirac masses located at
the roots of the velocity. This gives us the expression :

Mp(z) =) ¢,0,(). (1.19)

yERL
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1.3. LIFSHITZ-SLYOZOV AND BECKER-DORING MODELS FOR ADIPOSE CELLS

Novelty of this model

The novelty of this model is the choice of the functions a and b as well as the saturation term

Ton Classical choices for a and b are constant or rational powers of x, which often yield the
K
existence of a single or two roots. But to obtain bimodality, we need a velocity with at least

three roots : two attractive roots, which shall give the local maxima, and one repulsive which will
give the nadir. In Chapter |3] we present a numerical scheme for the second order Lifshitz-Slyozov
model. Since the classical model yields stationary solutions as sums of Dirac masses, we would like
more continuous solutions and thus we use the second order model. However to obtain this second
order model, we need to study the first order model. Therefore we are interested in studying the
System . Precisely we are interested in constructing a Becker-Doring model able to reproduce
the convergence theorems from the Becker-Déring model to the Lifshitz-Slyozov model.

1.3.4 Why should we concern ourselves with the Becker-Doring model
and why is our first model flawed ?

Although we have tried to develop an appropriate model for the size distribution of adipose cells, the
Lifshitz-Slyozov model we derived is flawed. Even if all mathematical models are approximations
of reality and therefore are ‘wrong’ in some sense, our model also fails to fill its main mission : its
stationary solutions should replicate the data in Figure Indeed the PDE (1.17al) is a transport
equation with a velocity that alternates in sign. Hence we should expect and actually we observe
numerically, that this model concentrates the distribution towards Dirac masses in large times.
Therefore comparison between this type of stationary solutions and the data proves to be difficult.
As stated before we want to modify our initial model by adding a diffusive term. However, it is not
clear if we can construct such a diffusive term using biological and/or physical assumptions. As
such we turn ourselves to a model closely related to the Lifshitz-Slyozov model : the Becker-Déring
model. In particular, there exists convergence results that in some limit, show that the solution to
the Becker-Déring model converges in some sense toward a solution to the Lifshitz-Slyozov model.
We will give details about this convergence later on. Nonetheless this convergence proves useful
for choosing a diffusion for our model because terms of higher order in the convergence result take
the form of a diffusion.

1.3.5 The Becker-Doéring model

Becker and Déring introduced this model in 1935 [10] to study nucleation in supersaturated vapors
but the equations were later popularized among mathematicians by [98]. Let us describe the
Becker-Déring model for polymerization.

Let us consider a medium containing some elementary particle called monomers and these bound
together to form polymers. For each ¢ € N*, the amount of polymers containing ¢ monomers is
denoted by ¢;. Remark that ¢; denotes the amount of monomers. A polymer of size ¢ denoted by
p; can gain one monomer and grow to p;;1 with rate a; or loose one monomer and shrink to p;_1
with rate b; :

a;
D1+ pi == Pi+1-
41
Let ¢ = (¢;);>1 where ¢; is the amount of polymers of size i. For all i € N*, we denote J;(c)
the right going flux of the previous reaction, which yields, assuming mass-action laws, J;(¢) =
a;c1¢; — bir1¢;41. The evolution of ¢; is then given by :

dCi
dit

That is to say, the change of the quantity ¢; is simply governed by the difference between the
net amount of polymers coming in from the size i — 1 and the net amount growing from size 1.
The total amount of monomers, i.e free monomers and monomers within polymers, is assumed
constant, as in the Lifshitz-Slyozov model, which leads to :

= Ji_l(c) — Ji(c), Vi Z 2. (1.20)

cr(t)+ Y ici(t) = A, vt > 0. (1.21)

i>2
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We therefore consider the system :

icg = Ji—1(c) = Ji(e), Vi > 2,
er(t) + Y des(t) = A, Vit > 0, (1.22)

i>2
ci(0) =Y, Vi > 1.

This is the Becker-Doring model for polymerization.

Stationary solutions

Stationary solutions of the Becker-Déring equations are given by (see [9]):

; aias . ..a;_
S = Q,;2', where Q; = ——""""1 and Q, = 1.
bibs ... b;
The value of ¢; = z comes down to solving > iQ;2* = A\. We denote z, the convergence radius
i>1
of the previous sum. Since Y iQ;2% = A, might be finite, this leads to a notion of subcritical and

i>1
supercritical masses. We refer the reader to [9] for results in the supercritical case, since we will
only investigate subcritical masses our case.
Studying the convergence to the stationary solutions is done by using an entropy method where
the classical entropy is :

H(c) = Zci(ln c% - 1). (1.23)
i>1 v

Since its introduction in 1935 by Becker and Déring, the model has seen a few major evolutions.
Firstly the seminal paper [9] presents a general framework for solutions of the model as well as
the study of asymptotic behavior in the case of super-critical and sub-critical initial amount of
elementary particles A\. This paved the way for additional work and the characterization of Ostwald
ripening for this model. Moreover this work proves that for A < A, the stationary solution c**3t
minimizes the entropy and a solution c of the Becker-Doring model converges strongly toward c5tat,
A convergence result in the subcritical case for physically relevant rates was proved in [2I] and a
uniform propagation of algebraic and exponential moments was proved in [23].

In regards to the relation between the Lifshitz-Slyozov and Becker-Doéring models, first for-
mal observations were made in [98] and there the Lifshitz-Slyozov model can be obtained from
the Becker-Déring model in two ways : as a ‘macroscopic’ limit, which is how we see it in this
manuscript, or as a ‘large time’ limit for the supercritical case. A rigorous mathematical proof of
the ‘macroscopic’ limit, in the spirit of hydrodynamic limit, can be found in [129], while the case
of the ‘large time’ limit is treated in [97]. In 78], a similar result is proven for the Lifshitz-Slyozov-
Wagner model.

As for the Lifshitz-Slyozov model, the Becker-Doring model has been used in various contexts,
including biology, such as for prion dynamic [39} [106] or oceanography [132]. However up to our
knowledge, it has never been used for adipose cell dynamic. In the next section we present an
adaptation of the Becker-Doring model to the modeling of adipose cell. The purpose of this model
is to exploit convergence results from the Becker-Déring model to the Lifshitz-Slyozov model to
obtain a diffusive term to enrich our first model (3.11)).

1.3.6 A Becker-Doéring type model for adipose cells

In this subpart we will build an analog to the Becker-Doring equations with a speed adapted to the
modelling of adipocyte dynamic. The purpose of this construction is to investigate the classical
convergence theorems from Becker-Déring to Lifshitz-Slyozov and deduce the form of a diffusion
term to add in our model.

We shall now consider that an adipose cell is a bundle of smaller vesicles of typical size A.
Hence the size of a cell can be defined by the number of vesicles it contains. For all ¢ > 0, we
denote by ¢; the number of cells of size ¢ and [ the number of vesicles in the medium. Such a
cell will aggregate a new vesicle with speed aiﬁ and loose a vesicle at speed b;, following this
reaction :
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1A

Qi TAYr

L+iL (i+1)L.

bit1
Let ¢ = (¢;)i>0- The flow J;(c,1) of the previous reaction is then given by :
A
Qi ——C;
IAN+ K

Similarly, as the Lifshitz-Slyozov model, [ will satisfy an equation accounting for conservation
of the amount of lipids. We get the following ODE system :

Ji(C,Z) = - bi+10i+1; ) Z 0.

(ilctl = Ji_l(C,l) - ‘]i(cal)a V’L 2 17 (124&)
dCO
- = l 1.24b
dt JO(C7 )a ( )
A+ ihes(t) = A, ¥t >0, (1.24c)
=0
10) =1 ¢(0)=¢, Vi>1, (1.24d)

which is very similar to except for the definition of the flux J; and the difference of
definition of ¢;, which in the classical Becker-Doring model represented the amount of monomers
while in our model is the amount of cells of size one. In our model, it is [ that plays the role of the
amount of monomers since it is the amount of external available vesicles. Observe also that there
is no ’boundary’ flux, thus the quantity m = >,. ¢;(t) is constant in time. This is analogous to
the conservation of the zeroth order moment of f (1.16).

The study of convergence from the Becker-Déring model to the Lifshitz-Slyozov model, is
usually performed after rescaling the former, which we do in the next section. There are a variety
of theorems on this convergence [78, 129, 35} [34] [110], and we prove a version of such theorems for
our slightly modified Becker-Déring model fo adipose cells in appendix

1.3.7 Rescaled Becker-Do6ring model

To study convergence from the Becker-Doringmodel to the Lifshitz-Slyozov model, one needs to
introduce a rescaling quantity in the Becker-Déring model. This process can be done in a variety
of ways, and some may lead to different version of the Lifshitz-Slyozov model. Particularly, some
rescaling procedures are well tailored to study Ostwald ripening. However in our case, we know
that we are in the subcritical case, hence we perform a very simple rescaling, akin to the one
in [35], 129]. We introduce the following scaling constants :

e A rescaling value of (a;)i>o,

e B rescaling value of (b;)i>1,

e C rescaling value of (¢;);>o,

e T rescaling value of the time scale,
e )\ rescaling value of \.

We previously denoted by A the typical size of a vesicle. Hence it plays the role of a rescaling
value and should be treated as so. Now, we introduce the rescaled variables :

a@»—%, Vi >0,
oy,
bi = =, Vi > ]-7
B e
ot
==
i (tT)
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L(f) = I(T)A.

The quantity L therefore describes the total amount of lipids in the medium instead of the
number of lipid vesicles. To have the proper convergence for the functions a and b later on, we
relate the rescaling variables A and B with the constant in assumption (H4)) :

A=Aand B=B.
We compute from Equation (1.24) the derivative of ¢; for i > 1 :

dEi - T dCi

iV =ca
T I(IT)A _ I(iT)A - -
= 5 (ai_lmci_l(tT) - (alm + bi)Ci(tT) + bH_lCH_l(tT))
gl L® o LM N an(ran 7
— AT(aZ,l mcl,l(f) a; T+ Kcl(f)) BT(blcz(f) bl+1cz+1(f)>.

The derivative of ¢y writes as :

————¢y(t) + BTby& (1)
+ K
and the conservation equation for lipids as :
L(f) + CA ) iei(t) = A
i>1

We now relate all the rescaling constants to a single variable € > 0, such that :

_ 1 _
AT = BT = - and CA = &°.
€
Remark. Depending on the process we are trying to model, the interpretation of this rescaling may
vary. For adipose cells, this can be seen as if a lot of reactions are happening : AT = BT = =, but
_ €
each reaction step is relatively small : CA = 2. In other words, the size of the individual vesicle

is small.

At last, we drop the bar above the variables and replace it with € as superscript to show the
dependency of the solution on €.
We define ¢® = (¢§);>0 and J£(c®, L) the flow of the rescaled reaction given by :

£ g 13 1> LE £ £ £ N
Ji (¢, L ):aiLE—i—nCi —b; 11,1 >0. (1.25)
Similarly as before, see Eq. (1.17b)), L* will satisfy an equation accounting for conservation of
the amount of lipids and we get the following ODE system :

dc’f 1 € g g € g g N
dt = g( i—l(c aL )_ Ji (C aL ))a Vi > 17 (1263‘)
£ 1
ddio = —ng(cE,LE), (1.26b)
LE(t) + ) ig?ci(t) = A, VE > 0, (1.26¢)
=0
LE(0) = L0, &£(0) =0, Vi > 1. (1.26d)

Remark. The rescaled Becker-Déring model already bears strong resemblance to the Lifshitz-

Slyozov model. As a first observation, on may observe that Equation (1.26a) resembles a F'i-

nite Volume numerical scheme. Additionally, by looking at Equation (1.25)), and assuming that
ci(t) ~ c5,.1(t), one may observe that J;(c®,L°) ~ w(ie, L¥)ci(t) thus resembling the transport
term in Equation (1.17a). Moreover the conservation Equation (1.26c|) can be seen as an approxi-

mation of Equation (L.17b).
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1.3.8 Diffusive Lifshitz-Slyozov model or Second order Lifshitz-Slyozov
model

In the case of adipose cell modeling, by looking at Figure one can see that the cell population
does not concentrate on two points but instead cells take a large range of sizes centered around two
modes. Thus looking at stationary solutions of is not particularly relevant, especially if we
want to perform parameter estimation. Hence, we need a proper way to smooth those stationary
distributions. This can be done by adding a diffusive term to the PDE in (L.I7). In some cases,
one may make additional modeling assumptions motivated by the model to describe this diffusive
term. However in the case of adipose cells, there is no biological insights as to how such a term
should look like. Hence we use a convergence result from the Becker-Doring model, described
in Section [[.4:4] toward the Lifshitz-Slyozov model, where, by looking at higher order terms in
the convergence, one can get a sense of what type of diffusion to expect. Again this choice of
diffusive term is not supported by any modeling assumptions but simply by the intrinsic diffusive
properties of the microscopic model, which disappear at the macroscopic scale when we retain
only the first order term. Henceforth this new diffusive model shall be called the diffusive or
second-order Lifshitz-Slyozov model :

Ohg(t, ) + O (v(w, u(t))g(t, z)) = gai((a(ﬂi)u(t) +b(x))g(t @), t 20,2 >0, (1.27)
/ k(z)g(t,z)de =\, t > 0, (1.28)
g(0, ¢°(x) and u(0) = u°, = > 0. (1.29)

The notation f is changed to g to make a distinction between diffusive and non-diffusive Lifshitz-
Slyozov model. We retain the notation u for the general case, and will change back to L for the
case of modeling the adipose cells. Here ¢ is the scaling parameter in the convergence result, and
is assumed to be small and positive. We denote by d the diffusion rate :

d(z,u) = a(x)u + b(x).

For this equation to hold, we need d to remain strictly positive for all © and x. We will later
detail the minimal assumptions we make on a and b, but for the case of adipose cell modeling the
only case where the diffusion rate might equal zero is when L = 0 at the point x = 0. However, a
simple domain exit argument ensures that if L° > 0, this does not happen in finite time.

In this case, continuous stationary solutions can be computed explicitly by letting 9,9 = 0 for
all x > 0. We denote these stationary solutions M, (as in Maxwellians) and they verify :

My (z) = — 2% d ( d ) x>0, (1.30a)
u—l—/o k(x) M, (z)dz = A. (1.30Db)

The constant Cgc > 0 depends on the boundary condition imposed on the model, which the
stationary solutions verify.

Up to our knowledge, one of the first observation of a relation between birth and death processes
and Fokker-Planck dynamic is done in [49]. The correlation between the Becker-Déring model and
the Lifshitz-Slyozov model was later established formally in [I30] and [57] using Taylor expansion of
the flux to second order, hence the name of this modified Lifshitz-Slyozov model. Other derivations
in the spirit of diffusive numerical scheme were detailed in [129] and more in depth in [120], where
a proper correlation between the two models is derived via a purely diffusive equation.

Diffusive Lifshitz-Slyozov type model for adipose cells

We described the diffusive Lifshitz-Slyozov model in its generality previously. We go into a bit
more details for the case of adipose cells. The diffusion rate takes the form :

d(z,L) = a(x) + b(x).

L+k

17 of



1.3. LIFSHITZ-SLYOZOV AND BECKER-DORING MODELS FOR ADIPOSE CELLS

Concerning boundary conditions, we consider null-flux boundary conditions which ensures the
conservation of the total number of cells m = fooo g(t,z)dx. It goes :

(v(vaL(t))g(t ) — gaw(d(x,L(t))g(t,x))) o= (1.31)
This leads us to our second model for adipose cells size dynamic :
Og(t, x) + Op(v(z, L(t))g(t, z)) = gai(d(a:,L(t))g(t,x)), t>0,z>0, (1.32a)
L(t) + = zg(t,z)de =X, t >0, (1.32b)
0
( —v(, L(t))g(t,") + %%(d(-,L(t))g(t, -))) L:o =0,t>0, (1.32¢)
9(0,2) = ¢°(x) and L(0) = L°, = > 0. (1.32d)

All the models we have introduced in this section and the ones from the next section are
recapped in Figure [[.13]

1.3.9 Stochastic models

In the next chapter, we highlight the main results of this thesis, one of which deals with stochastic
equivalents of the Lifshitz-Slyozov and Becker-Déring models. This section describes the construc-
tion of such models. Henceforth all definitions hold on a given probabilistic space (2, F,IP). The
expectation on this probability space is denoted IE. We begin by a brief recollection of some results
on continuous-time Markov chains (CTMC) and stochastic differential equations (SDE).

The Poisson counting process on the real line : the most basic counting process

First and foremost we begin with a simple definition of a counting process :

Definition 1.3.1. A counting process is a nonnegative, integer-valued, increasing stochastic process
that is used to count the number of occurrences of some event as time goes by.

In the next part and in Chapter [} we make use of properties of the Poisson counting process.
We recall its definition here, as well as some well known facts for clarity.

Definition 1.3.2. Let A > 0 and consider a counting process (N (t))i>0. This counting process is
called a Poisson (counting) process or Poisson point process with rate X if the following
holds true:

e N(0)=0,
e N(t) has independent increments,
e the number of arrivals in any interval of length s > 0 has P(\s) distribution.

Another definition of a Poisson counting process can be written using the small o notation. Tt
is strictly equivalent to Definition 1.3.2.

Definition 1.3.3. Let A > 0 and consider a counting process (N (t))¢>o. This counting process is
called a Poisson (counting) process or Poisson point process with rate \ if the following
holds true:

e N(0)=0,
e N(t) has independent and stationary increments,

e let s > 0, we have
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Now in some cases, one may want to consider a Poisson counting process where the rate A
depends on time. This gives rise to the inhomogeneous Poisson counting process.

Definition 1.3.4. Let A : R — Ry locally integrable and consider a counting process (N(t))i>o0.
This counting process is called an inhomogeneous Poisson counting process or Poisson
point process with rate \ if the following holds true:

o N(0) =0,
e N(t) has independent increments,

e let s > 0, we have

One can show that by using a proper monotone transformation, a unit Poisson process, that
is to say a Poisson process with rate A = 1 can be transformed into an inhomogeneous Poisson
process with rate A : R — R, as shown in the following lemma.

Lemma 1.3.1. Let (N(t));>0 be a unit Poisson process, and A : R — Ry a locally integrable

function. We denote A(t) = fot A(s)ds. Then M(t) = N(A(t)) is an inhomogeneous Poisson
process with rate \.

Continuous time Markov chains

For clarity, let us consider a state space S = Z and a stochastic process (X;):>o evolving as follows.
Consider a time ¢t > 0 and a state ¢ € S such that X; = i. Additionally consider a holding time
as a random variable T; describing the length of time spent in state i by the stochastic process.
Then after T; time has passed, the stochastic process jumps from state ¢ to a state j € S with
probability P; ;. Then the stochastic process (X)¢>¢ is a Continuous Time Markov Chain (CTMC)
if it verifies the following property: the future given the present is independent of the past. Or in
mathematical terms:

Definition 1.3.5. A continuous-time Markov chain with finite or countable state space S is
a family {X; = X(t) }1>0 of S-valued random variables such that

(a) The paths t — X (t) are right-continuous step functions,
(b) For any set of times 0 =tg < t; <t9 < ... and for any i,j € S
P(X (tr41) = JIX () = i, {X (1) : L=< K}) = P(X(trsr) = JIX (1) =3)  (1.33)
Additionally let us denote P; ;(t) = P(X(t) = j|X(0) =1).

Naturally if (X;)¢>0 is a CTMC in the sense of Deﬁnitionit implies that the holding times
(T});cs have some good properties. In particular they should be independent of past times and
only depend on the state i. Hence the holding times (7});cs are memory-less and are exponentially
distributed. Then a CTMC is only described by a transition matrix P = (P; jcs), which describes
which jumps happen and a set of rates {y; : ¢ € S} and the holding times are independent

exponential random variables with E[T;] = — for all i € S.

By letting 7,, be the time of the n-th jumpu(;f the CTMC, we can construct an embedded Markov
chain. Let X,, = X(7,,+) be the state after the n-th jump. Then (X,,),en is the embedded Markov
Chain describing the state change of the CTMC and we have P, ; = P(X,,11 = j|X,, =14). Hence
to simulate the CTMC, one only needs to simulate the embedded Markov chain and the holding
times (7});es.

Remark. Beware of notations ! P is defined in Definition 1.3.5, and P, ;(t) is the probability of
the CTMC to be in state j after t amount of time knowing that it is in state i at the current time,
whereas P is the transition matriz of the embedded Markov chain which describes how the CTMC
changes from one state to another when a jump occurs.

19 of



1.3. LIFSHITZ-SLYOZOV AND BECKER-DORING MODELS FOR ADIPOSE CELLS

Similarly as other stochastic processes, a CTMC has an infinitesimal generator called the tran-
sition rate matrix ¢ which describes the CTMC. To construct this infinitesimal generator we
first consider a state i € S. Now the CTMC will leave this state in the next h amount of time
with probability u;h. Here h is to be understood as an ‘infinitesimal’ amount of time. Looking
at the evolution of P over an ‘infinitesimal’ amount of time amounts to computing its derivative
P} (0) = limyo M. First, we need a rigorous definition for ‘infinitesimal’ amount
of time. To do so we use the small o notation in Definition 1.3.3. From now on, we make the
assumption that P;; = 0 et P(0) = Id, which are usual assumptions.

For all i € S, let us denote by N; a Poisson counting process with rate a;. Recall Definition 1.3.3

and that P; ; is the transition probability from state ¢ to state j. Then let j # ¢ and get

. Pij(h) . P(N;i(h)=1)
L 0) = lim —2d\ gy 2N = g b
P;;(0) = lim === = lim, o Pij = miPij. (1.34)
Similarly for j = i, we get
Pk -1 . —P(Ny(h)=1)
! — Z W T R\ =4
Pii(0) = Jim —= Jim, A - (1.35)

Definition 1.3.6. The matriz Q = P’'(0) given by (1.34) and (1.35)) is called the transition rate
matrixz or infinitesimal generator of the CTMC.

We now proceed with a few well known results of CTMCs. First the matrix family (P(t));er,
has the semi-group property.

Lemma 1.3.2 (Chapman-Kolmogorov equation for CTMCs). The matriz family (P(t))cr, ver-
ifies the following property for all t,s > 0 :

P(t+s)=Pt)P(s). (1.36)
To compute P(t) we can use the Kolmogorov equations :

Proposition 1.3.1 (Kolmogorov backward and forward equations). For a CTMC with infinitesi-
mal generator QQ, the following equations are satisfied by P :

Lﬂf) ) (1.37)
dP(t)
== =P()Q (1.38)

Equation (1.37) is called the Kolmogorov backward equation and Equation (1.38)) is called
the Kolmogorov forward equation.
Constructing a CTMC from the Becker-Déring model

Let us consider N adipose cells which size is described by a family of random variables X (t) =
(X5N(t))i=1....~ € NV that evolve over time. Our intent is to use the uniform propagation of
chaos and look at the limit of X' when N tends to co.

We assume that (X (¢));>¢ is a CTMC. The Markov property is fair : the evolution of the
size of a cell only depends on its current size and the current size of all other cells and not on what
happened in the past. Indeed the dynamic of L are provided by using the empirical mean :

N
1 .
X,N(p\ _ i,N
M (t) = N E_l XU (¢).
Then we define :

LN =X = M5N ().

Let i € N and assume that the k-th cell is in state i at time . Then X** jumps according to
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i—>i+1atratea(i)& i>0
LXN(t) + K’
1 — i — 1 at rate b(i), i > 1
This means that, given ¢, > 0, the following holds:
P(XPN(t+h) — XPN(#) =11 X5V (1) = a(Xk’N(t))&h + o(h)
LXN() + K ’

P(XEN(t+h) — XPN () = —1| XN (1)) = 0(XPN 1)k + o(h).

Hence, to describe X*¥ we only need to consider two counting processes Rﬁ and R*, where
R (t) counts the number of positive jumps up to time ¢ and R* (¢) counts the number of negative
jumps. Hence the intensity of each counting process is given by :

N R
P(R* (t + h) — R* (t) = 11X (t)) = b(X®N (£))h + o(h).

P(RY(t+h) — RE () = 11X (2)) = a(X"N (1)) h+o(h),

We write :
XPN () = X5N(0) + RE (t) — R* (¢).
In particular, we can write

R () = Yf(/ota(X’“’N(s))LXL;(N)()dS) and R (t) = Yk(/ot b(Xk,N(S))ds)

for some unit Poisson counting processes Y, and Y_, independent from each other. Observe
that Lemma [1.3.1|implies that R, and R_ are non-linear inhomogeneous Poisson processes with

rates a(X’“’N(t))L)L:jvi(t+N and b(X"®N(t)). This yields :

XEN (1) = X(0) +Yf(/ota(xkaN(s))mcis) - Y’C(/Ot b(Xk’N(s))ds>. (1.39)

Inspired by the uniform propagation of chaos, see theorem 1.2 in [122], we define the Becker-
Doéring non-linear CTMC X () by :

t X
X(t) :X(O)+Y+(/O a(X (s ))L)f( )( / b(X (1.40)

where LX (t) = A—E [X (t)]. In some sense the Becker-Déring non-linear CTMC X(t) describes
the evolution of a typical stochastic cell or polymer from the Becker-Déring model.

Rescaling

To be consistent with the rescaled Becker-Doring model (1.26]), we also rescale the Becker-Doring
non-linear CTMC. We consider that the size of the cell X (¢) makes jumps of size ¢ following :

X
ie — (i + 1)e at rate 5_1a(i€) (5)(_|)_ 12> 0,
ice — (i — 1)e at rate e~ 'b(ie), i > 1,

where LX(t) = A — E[X.(¢)]. This rescaled Becker-Déring non-linear CTMC verifies :

t X s t
X.(t) = X.(0) + Yy (e—l /O a(XE(s))LXL(gS)(_?_HdS) — Y. (5—1 /0 b(XE(s))ds), (1.41)
LX) =A-E[X.(t)]. (1.42)

Henceforth, we assume that a solution to Equation (1.41)) exists. Also observe that since
b(0) = 0 a solution to Equation (1.41) will remain non-negative at all time.
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The classical stochastic Becker-Doring model

Our version of the stochastic Becker-Doring model is a bit different from what exists in the litera-
ture. We present this model in the case of polymerization but its relation to the previous non-linear
Becker-Doring CTMC is actually quite simple and extending it to the case of adipose cells is trivial.
Again, the object of interest is a Markov chain in NN, C(¢) = (C;(t))sen, where each C; corresponds
to the amount of polymers of size i. Two types of reactions can occur : a polymer of size i grows
to size ¢ + 1 by aggregating a monomer or shrinks to size ¢ — 1 and releases a monomer.

The state space is given by X, = {C € NV| Zi\il iC; = M}, on which the following operators
are introduced. For i = 1, we define :

RTC:(01—2,02-1-17...,02‘7...),
RyC=(Cy+2,Co—1,....Ci...),

and for all ¢ > 2, we set :

RIC=(Cy—-1,...,Ci—1,Cit1 +1,...),

R;+1C:(Cl+1a-'-aci+lgci+1_1,...).

The reaction Rf is slightly different from other reactions since it corresponds to the polymer-
ization of two monomers together. Its rate is therefore different : a first monomer is chosen from
the C available and a second is chosen from the C; — 1 remaining. Then the transition rates of
the CTMC C(t) are given by :

Q(C,R{C) = a1C1(Cy — 1),
Q(Ca R:_C) = CLiClCi, l Z 2a
Q(C,R-C) = b,Ci, i >2.

We have an alternative representation of the CTMC as a solution to :

C1=CY —2J1(t) = Y _ Jilt),

i>2

CiZC?-FJZ‘_l(t)—Ji(t), > 2,

where C° € X is an initial condition, and the fluxes J; are defined using Y;" and Y7, two
independent standard Poisson processes :

Ji(t) =Y;" (/Ot a;C1(s)(Ci(s) — 5i)d8> -V, (/Ot bz‘+10i+1(8)d8) :

Various results have been shown about this model, in particular the existence of a stationary
probability distribution in product-form [70]

where Bjs is a normalizing constant defined recursively. Other interesting results include the
law of large numbers [64] which in itself provides an existence result for solutions of the deterministic
Becker-Doring model.

Remark. One may go from the Becker-Doring non-linear CTMC to the stochastic Becker-Déring
N

model by simply grouping together cells of the same size : Ci(t) = > 1;(X*N(¢t)).
k=1
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Fokker-Planck PDE and corresponding SDE

Again, let us consider N adipose cells whose size is described by a family of random variables
ZN(t) = (ZEN(t))k=1,..~v € NV that evolve over time. Our intent is to use the uniform propaga-
tion of chaos and look at the limit of Z*" when N tends to co.

We define the empirical mean :

MZN szl\’

Consider the k-th cell. The evolution of its size is given by :

LN (1)

—e AWtk Jeb(ZEN )aw, ok, ¢ >0,
TZN) 1 e (Z (t)dw; >

AZEN (1) = o( 25N (1), LZ (1)) i + \/sawf”(t))

(1.43)

where LZN (t) = A\ — M#%N(t) and Wti’k are standard Wiener processes independent from one

another. This definition is inspired by the fact that equation (1.32a)) is a non-linear Fokker-Planck

equation which stochastic differential equation is in the form 0. We split the stochastic part

into two terms depending on W+ and W~ to simplify the comparison with the Becker-Déring non-

linear CTMC. Again inspired by the propagation of chaos, we define the stochastic Lifshitz-Slyozov
model by :

dZ.(t) = v(Z.(t), LZ(t))dt + \/sa(Z (t ))LZ( )( ) AW +\/eb(Z:(t))dW, , t >0,  (1.44)

where LZ(t) = A — E [Z.(t)]. Under some technical assumptions a solution to Equation (1.44)
also verifies :

Z.(t) = Z.(0) + eBy (5—1 /Ot a(Z-(s ))LZL(Z)()dS) —eB_ (5—1 /Ot b(ZE(s))ds>7 (1.45)

where Bi(t) = t + W*(t) are drifted Wiener processes and W~ and W7 are independent
Wiener processes. This is the stochastic Lifshitz-Slyozov model. Equation (1.45)) is particularly
useful to compare Z. and X..

Remark. To ensure the well-posedness of equation , we need to define the functions a and
b onR. To do so we simply set b(x) =0 for x < 0 and we know that there exists some y < 0 such
that a(y) = 0, therefore we define a(x) = 0 for x < y and extend the definition of a from Ry to
ly, +00).

However the existence of a solution to equation that also verifies equation s not
guaranteed with our choice of a and b. Indeed following lemma 3.7 in [73], this can be achieved
with a and b such that \/a and Vb are Lipchitz functions. This is the case for our choice of a but
not for b. We shall see later on that for theorem[I.5.2 to hold we need b to be bounded which is also
not the case for our choice of b. Hence we will make an additional assumption that is not relevant
to adipocyte modeling but which allows for those results to hold.

Another possibility for the well-posedness of equation , would have been to include a
reflecting barrier condition that ensures that the process stays in Ry . Such a method can be found
in [87], with the main idea being to add the local-time term to equation . This local time
process tracks the cumulative amount of pushing at the boundary required to keep Z — € from
reaching negative values. Writing equation in its integral form this would look like :

N
I
N
S
+
o\

9 t LZ(s) t ]
v( <(s), LZ ds+0/\/ sZ(SH — 4w+ /«/eb(za(s))dws

+VeTe, (1.46)
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where Ty is the previously mentioned local-time. However using this method, it is unclear how a
solution to equation (|1.46) is related to the diffusive Lifshitz-Slyozov model (1.32)) and particularly
to its boundary condition.

Remark. The theoretical results concern X., Z. and Equations (1.41) and (1.43)). However we
are unable to directly simulate them. Hence we use Equations (1.39) and (1.43) for numerical
simulations, which are systems of mean-field particles, see for example the work in [15].

1.3.10 Constant diffusion model

In Chapter [5] we present a work where we perform parameter estimation on data from rats. We
consider a different model for this work, where we use a constant diffusion rate D > 0 and the
sizes of cells are radii instead of amounts of lipids :

Ouf(t,m) + 0 (v(r, L(1)) f(t, 7)) — DO2f(t,7) = 0, (1.47)
Tmax 7TT2

L(t)y= X —/ | (V(r)— Vem)4£2 (t,r)dr, (1.48)

'U(rmin; L(t))f(t, Tmin) - D@,.f(t, rmin) =0, (149)

V(Pmaz, L) f(t, Pmaz) — DO f(t, "maz) = 0, (1.50)

where v is defined by

w( L p (B+y?) V()= Vem ) (1.51)

L = — _
v(r, L) An aL+/€p3+r3 72 V(r) = Vem + Vox

This model is analogous to ((1.17) through the relation (1.8]).
In the last section of Chapter [5] we use the same tools to perform parameter estimation on the
diffusive Lifshitz-Slyozov model as well as its version with a constant diffusion given by :

0ug + 0x(vg) = DO;(g), (1.52a)
L(¢t) +/ zg(t,z)dz = A, (1.52b)
Ry

( —vg + Dg@m(g)) = 0, (1.52¢)
9(0,2) = ¢°(x) and L(0) = L°. (1.52d)

The stationary solutions are then given by :

My (z) = %exp <11) /OI v(y7L)dy> :

1.3.11 Recap of all the models

A visual representation of all the models is provided in Figure [[.13] We started from the classical
Lifshitz-Slyozov model to build a Lifshitz-Slyozov model for adipose cells. From the relation
between the classical Becker-Doring model and the classical Lifshitz-Slyozov model we introduced
a Becker-Doring model for adipose cells which retains the convergence property of the classical
models. From this convergence result we developed a diffusive Lifshitz-Slyozov model that more
accurately fits to data. We also investigate the relevance of a similar diffusive model with constant
diffusion. From the Becker-Doring model and diffusive Lifshitz-Slyozov model for adipose cells we
constructed two stochastic models to investigate the convergence of order two.

1.4 Some mathematical tools

In this part, we present most of the mathematical tools we use in the proofs of this manuscript. We
begin by introducing the various assumptions we use throughout this manuscript before defining
solutions to our models. We then introduce classical theorems we use and the proof techniques. We
then proceed with results on existence and uniqueness of those models, providing proofs in Chapter
3. We finish with the description of numerical schemes and tools for parameter estimation.
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1.4.1 Assumptions

We list the assumptions we make on the rates a and b, as well as on other objects of our models.

a7b € Cl(R+7R+)7 (H]')
a(0) > 0 and sup |a(z)| = Cq, (H2a)
rER L
, b(x)
|b(x)| < Cpx for all z € Ry and lim sup =0, (H2b)

R— o0 >R X

sup |a'(2)] = Ko and sup |¥(z)| = Ko, (H3)

zER reR
with C,, Cy, K4, Kp > 0.

These first four assumptions are the main ones for the following. Note that the choice of the
lipogenesis and lipolysis rates (1.11) and (1.12]), we chose when constructing our model verifies
those assumptions. Concerning the rates in the Becker-Doring models, the main assumptions we
make are :

a; < C, and b < Cyie, (H’1)

la§ —aj, | < Kqe and [bf — b, | < Kie. (H’2)

However the following assumption together with (H1))-(H3)) is sufficient for (H’1) and (H’2) to
hold :
a; = a(ie) and b5 = b(ie), for all i > 0 and € > 0. (H4)

We proceed with additional technical assumptions, which are useful in a variety of results :

sup |a”(z)] < +oc and sup |b"(z)] < +o0, (H5)
zER L reRL

D leily = ) < oo, (H6)

i>0
€ Z i\cffl — 0 < +oo0. (H7)

i>0
There exists some constant L > 0, such that ig% L% > L. (HS)

[

There exists some constant K > 0 such that sup cf)’o < K. (H9)

e>0
Comments on these assumptions will be made when useful.

1.4.2 Definition of solutions

In this section we present the definitions of solutions to the deterministic models (1.17) and (1.24)).

Lifshitz-Slyozov equations

The Lifshitz-Slyozov equations (1.17)) are the coupling of a conservation equation and a transport
equation. We give two definitions of solutions to this equation. The first is a definition of weak
solutions and the second is the definition of mild solutions using characteristic curves.

Definition 1.4.1. Given an initial condition (f°,L°) € C°(R.) N L*(Ry, (1 + x)dz) x Ry, a
measured-valued solution to system (1.17) is composed of two functions f € C(0,T; M*(0,00) —

weak —x) and L € C(0,T) such that for all0 < t < T and for all ¢ € C1([0,T] xR, the following
relations hold :

T
/ / (Brsplt, ) + (. L(t)Duip(t,2)) £ (1, ) + /
0o JRy

90(07 x)fo(ac)dx =0,
Ry

L(¥) +/]R xf(t,dx) = A

25 of



1.4. SOME MATHEMATICAL TOOLS

This definition is quite classic and is used in convergence results which we present in appendix[B]
As for the definition of mild solutions we first proceed with the definition of characteristic curves

of (LI7a).

Definition 1.4.2. Assume L € C°(R,) to be given. The characteristic curves associated to (1.17a))

are solutions to :
0s X (s;t,x) = v(X(s;t,x), L(s)), (1.53)
X(t;t,xz) = x. ’

Owing to assumption (HI) and the fact that y — ¥ is Lipchitz, the velocity v is C' in both
x and L. Hence the characterlstlcs are uniquely deﬁned and form an ordered family, which leads
us to consider X.(t) = X(¢;0,0) the characteristic curve that is equal to 0 at time 0. This curve is
key in looking at mild solutions since other characteristic curves cannot cross it and therefore stay
‘to the right’ of it. Then, a mild solution to system is given by the following definition :

Definition 1.4.3. Given a smooth initial condition f° and L € C°(Ry), a mild solution of (1.17)
is a couple (f, L), given by :
t
flt,z) = fO(X(O;t,a:))eXp (—/ 8wv(X(s;t,m),L(s))ds> Lix,(t),00) ().
and L : Ry — Ry solves L(t —|—fR zf(t,x)de = X for allt > 0.

Remark. Since we impose null-flux boundary conditions on this system : v(x, L(t)) f(t, 2)|z=0 = 0,
there is no term involving ‘incoming characteristics’ 1o x_ ) ().

Remark. One may relate the measured-valued solution to the mild solution with the following
relation : let ¢ € CJ(R,) the set of continuous functions vanishing at infinity, then

< f(tdy), d(y) >=< fO(dy), p(X (t:0,9) Lix. (1), +00) (¥) > -

Becker-Doring equations

First we define the state space of (|1.24) and the meaning of a solution to this system.

Definition 1.4.4. Let X := {z = (2;);>0 € R : Z ix; < 0o}, endorsed with the norm ||z| =

=0
+o00
>~ i|lz;|. Denote x >0 if x; >0 for alli >0, and X+ :={x € X :2>0}.
i=0

We continue with the definition of solutions to the Becker-Doring equations :

Definition 1.4.5. Let T > 0. A solution (c,1) of (1.24) in [0,T) is a couple of a function
1:[0,T) = R and a sequence of functions ¢ = (¢;)i>0, ¢ : [0,T) — Xsuch that :

(a) For allt €[0,T), l(t) >0 and c(t) > 0,
(b) For alli>1, ¢;:[0,T) — R is continuous and supco 1) llc(t)[| x < +oo,

(c) 1 :[0,T) — R is continuous and sup |l(t)] < +oo,
tel0,T)

+ +oo t +oo

(d) For allt €0,T), / z:azcz )ds < o0 and/ Zbici(s)ds < 00,
i=0

(e) For allt €[0,T), foralli>1 :
c+/ I(5)) — Ji(e(s), (s))]ds,

O

S;

=lo— /t S ,1(s))ds.

Remark. For a fized € > 0, solutions to the Becker-Déring model (1.26) also verify Defini-
tion 1.4.5, up to some rescaling by e.

N
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1.4.3 Existence and uniqueness of solutions

As previously mentioned, the existence and uniqueness of solutions to the Lifshitz-Slyozov model
have been shown in various cases. We recall here the main theorems as well as their sources. We
begin with solutions to the Lifshitz-Slyozov model :

Theorem 1.4.1. Let T > 0. Given an initial condition (f°,L°) € C°(Ry) N LY (R4, (1+ z)dz) x
Ry, (1.7) has a unique mild solution on the interval [0,T] in the sense of definition .

The idea of this proof is mainly the study of the characteristic curves defined in In the
case of C! rates, see [33], a simple Cauchy-Lipschitz argument guarantees global existence and
uniqueness of the characteristic curves for a given function L. Then, for each given function L, a
mild solution f is given by Equation . A solution in the sense of Definition is obtained
by using Schauder fixed-point theorem on L € C°(R,) : L(¢) < A, Vt € R,. Uniqueness is obtained
by looking at two different solutions L, and Ly and bounding |L; () — L2 (¢)|. We point out that the
use of a fixed point argument in proofs regarding the Lifshitz-Slyozov model are quite standard.
The result may be extended to rates that are non-Lipchitz at the boundary as done in [19].

In regards to the Becker-Déring model, we also have the same result of existence and uniqueness
of solutions :

Theorem 1.4.2. Let° € Ry and ® € X such that [°+ Z ic) = < oo. Assume that (H’1] - m

hold true Then there exists a unique solution (c,1) of (L.22)) in the sense of Deﬁmtwn_ with
c(0) = ¥ et 1(0) = 1°.

The proof of this theorem can be found in the seminal paper by Ball, Carr and Penrose [9]. It
goes as follows. We first consider a truncated model where we only consider the first n sizes. A
solution of this finite dimensional system is obtained trough Cauchy-Lipchitz theorem and shown
to have same properties as in Definition [[.4.5] The limit n — oo is obtained by extracting subse-
quences for the ¢;’s and a Cauchy sequence argument for L. Uniqueness is obtained by considering
two solutions ¢ and ¢’ and computing moments of the form > = 1°°¢7|¢; — ¢}| which are equal to

K3
zero and where the exponent v is chosen depending on assumptions on a and b

1.4.4 Classical convergence

Having defined solutions to both models, we investigate the convergence from the Becker-Ddring
equations to the Lifshitz-Slyozov equations. We prove a similar result as in [129] and use a similar
sketch of proof. The following result is proved in appendix [B]

We begin by recalling the theorem on a ‘weak’ formulation fo the Becker-Déring model from [9] :

Theorem 1.4.3. (Ball et al. [9], theorem 2.5) Let (g;)i>0 be a given sequence. Let (%, L) be the
solution of on [0,7), 0 < T < +o0.
Assume that for all 0 < t; <ty < T, /t2 i |gi+1 — gilaici (t)dt < oo and that either of the
following holds : o
(1) gi = O(i) and [} 72 |91 — gilbE 15y (D)l < o0
(b) 720 gici () < o0, for k=1,2 and g;41 > g; > 0 for i large enough
Then :

Zgz (t2) Z /Zgzﬂ gzbz+1cz+1()d

t1

to . .. LE(t
:/ ng 91 g - ®) c (t)dt.
t1 i=0 € L (t) + K

(1.54)

Now let us define the following step functions depending on both time and space, where f© is a
candidate for convergence to a solution of the Lifshitz-Slyozov system. Let I'¢ = [(i — 3)e, (i + 3 )¢
and we write :

27 of



1.4. SOME MATHEMATICAL TOOLS

fo(tw) =Y L ()5 (1),

i>0

Similarly we build the two space functions a® and b° as :

o (@) = 3 1p: (@)as,

i>0

b (x) = Lpe(a)b;.

i>1
From theorem we derive what could be considered to be a ‘weak’ equation for f€ :

Proposition 1.4.1. (Laurengot and Mischler [78],Lemma 4.1) Let ¢ € L>*(R,). Then for every
t > 0, we have the following equality :
%) t o] L5<t)
/ (@) (f5(t,2) — £(0,2))da = / / (Do) () D A ()b () £ (8, 2)dadt,
0 0 Jo Le(t) + K
(1.55)
where

T+e)—ox
Aoty = D =)

Finally we are led to the classical convergence theorem. One may find different versions of this
theorem in [129] [78].

Theorem 1.4.4 (Convergence towards a solution of the Lifshitz-Slyozov system). Assume the
following statements :

o there exists K > 0 such that a(x) < K and b°(z) < K(1+ x), for allx € Ry ;

DY cf’o < Cy where Cy > 0 is a constant independent of €,
i>0

o e Y (i)'t < Oy, Vs < 1.
i>0
Additionally, suppose there exist a € L°°(0,+00), b € L*(0,+00) such that {a®(.)}, respectively
{b°(.)}, converges uniformly on every compact of [0, +00) to a(.), respectively to b(.).
Then there ezists a sequence £,, and a solution (f,L) of (L.7) in the sense of deﬁm’tionm
such that :

fer = f, zfen — af in CO([0, +oof; M1(0, +00) — weak — x)
L — L uniformly in C°([0,T))

Remark. This result is also an existence result since it shows that the solution to the Becker-
Déring model (f¢,L%) converges to a couple of functions (f,L) that solves the Lifshitz-Slyozov
model.

The proof of this theorem relies mainly on Arzela-Ascoli theorem and density of functional
spaces.

1.4.5 Construction of the diffusive Lifshitz-Slyozov model

Correlation between a birth and death process such as the Becker-Déring model and Fokker-Planck
dynamic was first described in [49]. Heuristic relations to the Lifshitz-Slyozov model were derived
later on in [57], [129] and later in [120]. The original idea from [49], recalled in [57], is to use a
Taylor expansion of order two for the flux of the Becker-Doéring model, which leads to the name
second-order Lifshitz-Slyozov model. Mainly it consists in writing :

€

Jin (&, L7) = Ji (5, LF)

5 +b5)c5) + 0(62), 12> 0.

~ 0,055, LF) + S 02((af
*81‘]1(0 7L )+287'((QZLE—|—KJ

This expression has no real mathematical meaning and is more of a heuristic intuition as to
where the diffusion comes from.
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Then let f<(t,z) = »_ Lprs(x)ci(t), where I'; = [(i — 1/2)e, (i + 1/2)e). It is fair to consider
i>0
that f¢ is close to a solution of the non-linear Fokker-Planck equation :

Org + 0:(vg) — 50%(dg) = 0. (1.56)

A second approach to relate the Becker-Doring model to the diffusive Lifshitz-Slyozov model
is to observe that the Becker-Doring model is close to a numerical scheme and to add and remove
terms to obtain a ‘numerical’ diffusion. In particular looking at proposition [[.4.1] and denoting
A.p(x) = M and A2¢(z) = ‘z’(”E)’Zi(ﬁ)*‘f’(z%), we can rewrite (1.55) as :

/ S(2) (2 (t,z) — F£(0, 2))dz = / / t) b (@) f= (1, ) Ao () dardlt

+I<E

// tJ)rK b () f(t, 2) AZ¢(x)dadt.  (1.57)

Now formally taking the limit up to second-order term in ¢ leads again to the Fokker-Planck

equation (|1.56).

1.4.6 Strong approximation theorem for density dependent Markov chains

In this section, we detail the method we use for showing Theorems These theorems bounds
the L'-norm of the difference between X, and Z. by a decreasing function of €. The overall shape
of the proof is taken from [74]. Let us consider two stochastic processes X! € eNN, Z! € RN and a
family of jump directions J C NY. Then X/ () and Z.(t) are solutions to :

X/(t )+ > elvi(e / filX (1.58)

leJ

ZL(t)=Z(0)+ Y elBi(c” / fi(ZL(s))ds), (1.59)

leJ
where f; is the rate of the jump direction [. The Y; are independent Poisson processes and B;
are independent drifted Wiener processes. We recall the main theorem from [74] :

Theorem 1.4.5 (Kurtz [74], Theorem 3.3). Let T > 0. Assume that the jump rates are bounded
Lipchitz functions with | fi(x)| < C) for all x € Ry and all possible jump directions | and > 1f;(x)
1

is a Lipchitz function. Then if C; = 0 for all but finitely many | there exists a random variable BT
independent of € and with exponential moments such that :

sup| X (t) — ZL(t)| < BTeln(e™h), a.e. (1.60)
t<T

Remark. In the case of adipose modeling the only two possible directions are {—1,1}. Additionally,
X! and Z. are density dependent while X. and Z. are also non-linear. Thus obtaining an almost
sure convergence proves quite difficult and we are only able to obtain an L' convergence result.

1.4.7 Numerical schemes for PDEs

This section details the numerical schemes we use. We begin by describing the Finite Volume
Method (FVM) which we use for simulating the PDEs of both the Lifshitz-Slyozov and diffusive
Lifshitz-Slyozov models.

Finite Volume Method

Our main goal is to simulate (1.32) and its stationary solutions. Since Equation is a
conservative PDE, a natural direction for numerical scheme is the use of the Finite Volume Method.
The theoretical results we introduce consider x € R, for all models, but as is often the case when
performing numerical simulations, it is easier to work on a bounded domain with an appropriate
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boundary condition at z.x. Hence for all simulations of the Lifshitz-Slyozov models we will
restrict ourselves to a bounded domain denoted [0, zmax], and we provide an adequate boundary
condition at xn.x that preserves the total number of cells m. For the sake of completeness, we
recall the Finite Volume Method in the case of a 1D non-linear transport equation. Let us consider
some distribution f(¢,x) on a space domain [0, Zmax|, subjected to a flow F(f).

This writes as

Ouf + 0, F(f) =0. (1.61)

Now we subdivide the space domain into cells centered at points labelled x;, for ¢ =0,..., N,
which we denote C; = [7;_1/2,%i11/2], Where ;1 is the edge between cell C; and C;yq. For
simplicity let us assume that all cells are of similar size Ax = x;1/5 — x;_1/2. The idea of the
FVM is to approximate the volume average of f on each of these cells. Hence let us denote the
volume average over the cell ¢ as :

1
filt) = 5 /C (e )i
Then integrating (1.61)) over cell i, we are led to :

dfi(t) =1 _

Then let us denote Fji/, the evaluation of the flow at the edge ;415 of cell i and use the
divergence theorem to obtain the standard equation of the FVM :

df;(t 1
J;E ) + B(E‘H/Q —F;_1/2) = 0.

Up to this last equation, computations are exact. From a numerical standpoint, the approxi-
mation will come from the choice of reconstructing the terms Fj /. Many methods are available,
including interpolation, or sometimes exact computations. However the choice is obviously made
case by case. The FVM method is particularly useful in the case of PDE conserving the total
mass of the distributions, i.e. & [ f(¢,2)dz = 0. Indeed this conservation equation can simply
be transformed to

d B Fivip—Fic12  Fo12—=Fnia1p2
&Xi:fz(t) - _Z Az o Az ’

K3

Hence conserving the total mass of the distribution amounts to have the boundary conditions
F_1/3=Fni1/2=0.

We now have a semi-discrete numerical method for Equation and the time derivative
may be approximated using standard methods.

The time derivative is approximated using an Euler explicit scheme. Given a series of time

points t < ¢! < ... <" < ... we denote f! the approximation of f on cell i at time t". Then
forall i =0,..., N, the scheme reads :

finJrl — fzn 1 n n

TIS”—’_E(FiH/Q _Fi71/2) =0, (1.62)

where At™ = t"+! —¢" and the superscript n on the flux simply denotes that the FVM is taken
at time ¢ and the scheme is therefore explicit.

Well-balanced schemes

One of our main goals since the description of our model has been to look at stationary solutions.
Hence any numerical method we devise has to be able to compute stationary solutions effectively.
Looking at numerical schemes, this property is related to the scheme being well-balanced [53]
50]. In words, this means that given an approximated stationary solution, the scheme should no
deviate from this approximation. The scheme (|1.62) can be written formally as an application
® : RY — RY where ®(f") = f"*'. Now let us consider f**(z) a stationary solution to (1.61)),
i.e. 0, F(f5*2%) = 0. Then for the scheme to be well-balanced means that given an approximation
(f5%%),20.....n to f5%2% it holds that :
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S((f7"™)i=0,..n) = (fF™)i=0,...N-

Numerical scheme for Equation (|1.17a))

As an example to the Finite Volume method, let us detail the scheme we use to obtain numerical
simulations of solutions of Equation with a given L : R, — R,. Hence we need to provide a
way to approximate the value of this flux at the boundary of each cell. To do so we use the UpWind
method, which is quite standard for transport PDEs. The idea is to consider cases depending on
the sign of the velocity. If the velocity is positive, then the flux is going in a left to right manner
and in some sense ‘information’ is traveling from left to right. Hence we want to use the value
in the cell on the left of the boundary to make our approximation and vice versa for the case of
negative speed. Formally, this is done as follows.

Consider the approximation of the flux at the boundary ; /2, which we split into two terms :

Fiiijo = F (w(®@ig1y2, L), fi) + F~ (v(wig1y2, L), fig1)

where the positive and negative fluxes are defined as follows :

0 ifv<o,
Frwf) = {vf else,
0 ifv>0,
vf else.

]:_(U,f):{

Then using the usual notation for positive and negative parts : a* = max(a,0) and o~ =
min(a, 0), the scheme reads as :

finJrl - fzn 1 n n n — n n n —rmn
YN + Ix((vi+1/2)+fi+1 + ((Uz'+1/2) - (U¢71/2)+)f¢ - (1’1'71/2) fity) =0,

foralli=1,...,N—1. (1.63)

The scheme is provided with null-flux boundary conditions to conserve the total mass of the
distribution, i.e. the amount of cells :F_; /5 = Fy,1/o = 0. Hence the scheme may be written as :

At"
= (T4 ——A)f" 1.64
fr = (1 A (164
where A € Mpy«n(R) is a symmetric matrix with non-negative eigenvalues. Naturally this

scheme gives rise to a CFL condition of the form

A < Ax

i=0,...,

Now to simulate the evolution of L we need to discretize Equation ([1.17b)). To do so we use
the method introduced in [51], which we detail in the next section. This will notably give rise to
another condition on the time step At™ to preserve positivity of L.

Numerical scheme for Equation (|1.32))

We now proceed with describing the numerical scheme we use to simulate Equation (1.32). The
scheme is derived from [51] with some slight variations for boundary conditions. It uses the Finite
Volume method and a clever change of variable to ease computer simulations. First we need to
rewrite Equation (1.32a) in an appropriate form. Ideally we want to obtain dyg + 9, F(g) = 0 for
some flux term F. First let us recall that stationary solutions to are denoted by M. Once
again we denote [0, Zmax] the space domain. Then simple computations show that :

vg — 0, (dg) = dMLaz(MLL) = F(g).
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The idea behind the scheme is to first perform a change of variable in the PDE (1.32a]) such that
the flux operator F' becomes symmetric for the usual L? scalar product. This change of variable
is the following : h = \/JE\ITL' Then h verifies :

Oyh + 0 (AM LD ( ) = Oh + 8, F(h).

1 h 1
VMg, vVMrp, v My,
Observe that the correspondence between the two operators is simply F(h) = F(hy/ML) =
F(g). Moreover, the boundary condition in the model (1.32) may simply be rewritten as F'(g)|y=0 =
F(h)]zpa=0 = 0.

Remark. One may observe that another valid change of variable is h = MLL. However in this case
the operator ¥ is not symmetric.

We also need to provide a boundary condition at zpmax- Since we want to conserve the total
amount of cells m, and we have a null-flux boundary condition at zero, we impose a null-flux
boundary condition at z,.x. This yields the bounded domain diffusive Lifshitz-Slyozov model :

drg + 0:F(g) =0, (1.65a)

L(t) + / " gt p)dr = A, (1.65b)
0

F(9)2=0,2ma = 0, (1.65c¢)

9(0,z) = ¢°(z) and L(0) = L°. (1.65d)

We may now proceed with the discretization of the operator F. The change of variable at the
g;{L - . . . n :
N for all i = 1,..., N. The approximation of L at time t" is

discrete level is written as b} =

denoted L™. The time derivative is approximated with an Euler explicit scheme and the operator
F using the Finite Volume method. To prevent the need for a CFL condition, we take an implicit
method in h where the approximated flux F; /5 is taken at the next time step t"*1! and is denoted
by F?J:rll/Q A splitting is performed between "' and L"*! : we first compute h"*! using the
values of A" and L™ and then we find L™*! using values of h"*! and h™. This writes as :

prtt g1 FREL, - F
iy Vs +1/2Ax Y2 0, Vi=1,...,N. (1.66)

We are left with how to construct the approximated flux F! . We recall that F(h) =

i+1/2
aM LBI(\/%) and that we aim to approximate its value at the edge of a cell. Therefore the partial
derivative 81(\/%) may simply be approximated by finite difference between the two cells that
share the edge in consideration. This yields :

n+1 1
L i

M vV M1+1 V M:L

i+1/2 Az

n+1
F; ++1/2 - dz+1/2

Since d is a known function, we can simply evaluate d at the edge x;,1 /5 to get dz+1/2 However
with the intent that the stationary solution is discretized in the same way as g, we do not have

explicit values for My at the edges. Hence we need an approximation for M To do so we

+1/2
use the geometrical mean between the values of the two neighboring cells = M}, , ~ /M, M.
This finally gives us our approximation of the flux F at the cell’s edge :
h?:—ll hn+1
n+1 n nV i+l Vi l+1 v;’L
Fil e = diy1jon/ M M (1.67)

Hence the scheme can be written as :

h?—i_l—hn 1 7, +1 z 1 n+1
NG sz dz+1/2hz+1 - z+1/2 Mn +d;_ 1/2 Mn h +d71/2h1 1 =0,

N—1. (L68)
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Now since the boundary conditions we consider take the form F(¢)|z=0,4,.., = 0, and it implies
conservation of the mass of the distribution, we are led on the discrete level to set F_;,5 =
Fny1/2 =0, which is equivalent to F_; 5 = Fy /o = 0. Therefore the scheme is completed with
the boundary terms :

hg+1 — hg 1 n+1 M{L n4+1
N + N d1/2h1 — d1/2 mho =0,

W —ny 1 MY _
= T4 <dN—1/2 St 4 dN—1/2h71if+_11> =0.

Atn Az? My
Hence the scheme may be written as :

At n
I+ mA)h t=pn (1.69)

where A € M, (R) is a matrix defined as :

Dy dijs 0 0
dija D1 dsy ;
— 0
: dy_3/2 Dn-1 dn_1/2
0 ... 0 dn_12  Dn
where Dy = dy o ﬁ;: Dy = —dy_1/2 ]\ﬁ; and D; = d; 124 /Z‘f}; +di12 ]\]{;—Tf

foralli=1,...,N —1. Observe that A is indeed symmetric. In particular writing M the diagonal
matrix which coefficients are the M*’s we can write the scheme for g as :

A"

T —
(+A.T2

Ml/QAM71/2)gn+1 — gn

n
M
n

We point out that the terms taking the form are computed explicitly, using the definition

1
of M7, which might prove useful when M}, takes extreme values. We compute therefore :

ML'IL(xiJrl) d(l’Z,Ln) D (2 /wi+1 ’U(y,Ln)d >

Mpn(z:)  d@ips, Im) TP \E d(y, L)Y
and we set it = Mezlen),

Once we have obtained h"*! we reconstruct g by simply writing "™ = AT /M?. All we
are left to do is to describe the dynamic of L at the discrete level. To do so we go back to
N
Equation (1.7b)), and its discrete counterpart reads A = L™ + Az > x;97. Hence to keep the
i=0
constraint at the next time step we need :

N
L =L = Az (g — gp)
=0

N-1

= —A" Y w(F L, — FI,) = Aten Rt + AttagFyUH
i=1

N-1

= At"Ax Y

i+1/2
=0

N-1 gp:-ll gt
= At"Ax Ay oMl s | S — = ,
Z i+1/277i+1/ M, M}

i=0 i

which gives the update step for the dynamic of L :
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N—-1 grtl gt
+1 ;
L= L'+ A" Az Y dlyy MY s (Mn i ) . (1.70)
i—0 it+1 i
Although the scheme we use is implicit and does not yield a CFL condition, Equation ((1.70)
still imposes some condition on At" to preserve positivity. In particular, let us denote B® € RY
such that :

M), s
B —dyja——— My if 1 =0,

ﬁ(di+1/2Mi+1/2 — difl/QMi,1/2)7 otherwise.

Then the condition reads as :
Atnl(Bn)T(]I—I— ﬁMl/QAM—l/Q)gﬂ < L7
Az? -
Again following [51] we have that since M'/2AM~'/2 is symmetric and its eigenvalues are
non-negative, it is sufficient to have that, for some diagonal matrix P :

At"|P7'B"||Pg"| < L™.

1.4.8 Stochastic simulations

In this part, we detail the methods used to perform the numerical simulations of both stochastic
models. Simulations of the Becker-Doring CTMC are performed using the Gillespie algorithm and
simulations of the Lifshitz-Slyozov SDE are done using the Euleur-Muruyama method. Let us also
remark that we actually simulate the models with a number of cells N described by Equations ([1.39))
and (L.43). We point out that Equation is rescaled by ¢ to give :

LXN

XEN (1) = X(0) + Y, (5*1 / ta(Xf’N(s))[MU()ds>sY_ (51 /0 tb(Xf’N(s))ds). (1.71)

0

Gillespie algorithm

Let us describe the Gillespie algorithm. This algorithm was created by Doob [38] and popularized
by Gillespie in [47, [48]. The algorithm generates statistically correct trajectories of a system of
stochastic equations where the rates are known. It has shown great use for simulations of chemical
systems of reactions, and in computational biology to simulate biochemical reactions. Let us
consider a set of molecules labelled R = (Rg)g=1,.. k. The amount of each molecule is denoted
by X* and we suppose that these molecules interact with each other through reactions labelled by
i=1,...,I. The rate of reaction i is denoted a;(X), and its net change of molecule abundances is
denoted v;(X), where X = (X*)—1 k-

Now the algorithm goes as follows. First we give ourselves an initial state X (0) and set ¢t = 0.
Then we loop over the following steps :

I

(1) Compute a;(X(¢t)) foralli=1,...,I, and ag = > a;(X(¢)).
i=1

(2) Generate two unit-interval uniform random numbers r; and rq. Set 7 = é ln(r—ll) and find j

such that ;ai( () < rgap < Ji a;(X(t)).

(3) Update t «— t+ 7 and X < X + v;(X) according to reaction j chosen at step 2.
(4) Go to step 1

Step 2 is the crucial one. We begin by observing that 7 follows an exponential distribution
with parameter a¢ and it defines the next time a reaction occurs. Having found when a reaction
occurs we need to find which reaction occurs. Reaction 4 happens with probability &+, hence we
split the interval [0, 1] into partitions of size Z fori=1,...,I. Step 2 checks to Wthh partition

ro belongs to, and we choose the correspondlng reaction to occur.
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Next reaction method

Gillespie algorithm is often quite costly and there exist many optimization methods. We present
the one we use : the next reaction method [45]. First we introduce the dependency graph for
the set of reactions {1,...,I}. For example reaction 1 may be written as Ry + Ry — R3. Hence
reaction 1 only affects the values of X', X? and X3. Also, the value of a; only depends on the
value of X' and X2. The idea of the next reaction method is to use this fact and update only
appropriate time at each step : we only update the reaction on which the occurring reaction has
an effect. This leads us to the following definitions :

Definition 1.4.6. For a given reaction i the set of molecules that affect the value of a; is denoted
DependsOn(a;) and the set of molecules that i affects is denoted Af fects(i).

Definition 1.4.7. Let G(V, E) be a graph with V = {1,...,I}. Let E be such that the edge (i,7)
ezists iff Af fects(i) N DependsOn(a;) # 0. Then G is called the dependency graph for the set of
reactions {1,...,I}.

The idea of the next reaction method is to compute an activation time for each reaction. Then
at each step the smallest reaction time is picked and the reaction occurs. Only the times of reactions
adjacent to the active reaction in the dependency graph are updated.

The method goes as follows :

1 Initialize t =0 :

a Compute a;(X(0)) for each reaction ¢ and set a; o1q < a;(X(0)).
b For each i, generate a putative time 7; ~ £(a;(X(0))).

¢ Store the 7; in an indexed priority queue P.
2 Let p be the reaction with the smallest putative time 7, and update ¢ < 7,,.
3 Update X according to reaction p : X < X + v, (X).
4 For each edge (u, ) in the dependency graph G :

a Update a;(X(t)) and set a;new < a;j(X(2)).

b If j # p, set 7; + %(Tj —t) +t.

¢ If j = p, generate p ~ E(a;(X(t))) and set 7, < p+¢.

d Replace 7, in P and a; o1d < @jnew-

5 Go to step 2.

Here a; 14 corresponds to the rate before we update it and a;new to the rate after the update
at step 4.a. The step 4.b corresponds to transforming a Poisson random variable with parameter
@j.ola into a Poisson random variable with parameter a;new, on the condition that the first one
is greater than ¢t. This method is more efficient than the classical Gillespie algorithm because at
each step, it only computes the rates a; for the reactions that were modified by the update instead
of recomputing all the rates at each step. This proves particularly efficient as the set of reactions
gets bigger.

Euleur-Muruyama method for SDE

Simulations of Z. are done using the Euler-Muruyama method. It is an extension of the Euler
method for ODEs to SDEs. As an example let us consider the following SDE :

dZ(t) = p(Z(t), t)dt + o (Z(t), t)dW (t),

with some initial condition Z(0) = Z° and where W (t) is the usual Wiener process. Now we
consider that the simulation should run up to some time T' > 0. The interval [0, 7] is split into
I sub-intervals of width At%, and we denote tg = 0, t;41 = t; + At for ¢ = 1,...,1. Then the
approximation of Z at time ¢;;; denoted Z;,1, is given recursively by :

ZiJrl = Zz + LL(Zl,tZ)At + O'(Z“tZ)AW“
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where AW; = W (t;11) — W(t;). At each time step, we need to generate AW;, which we do
using the fact that W has Gaussian increments. This gives us AW; ~ N(0, At). Hence, given an
i.i.d. sequence of random variables (Y;);—1, .. such that Y3 ~ N(0,1), the method may be written
as :

Zi+1 = Zl + ‘LL(Z“ tz)At + (T(Zi, tl) V AtYPH_l.

Since we will make simulations on the half-line R}, we need to provide boundary conditions
at x = 0. We use a reflective boundary condition which translates to taking the absolute value on
the right hand side of the previous equation :

Zi+1 = |Zz + /L(ZZ, tl)At + U(Zi, tz) V AtY;;Jrl‘.

1.4.9 Parameter estimation

In Chapter [3] we present a submitted work where parameter estimation on data from rats was
performed. In this article, a slightly different model is used. The two differences are the fact that
the size of cells is defined as the radius and that we consider a constant diffusion rate D > 0.
The parameter estimation is performed on stationary solutions of this model. We will show that
under some re-parametrization, the model is identifiable using the Structural identifiability
Toolbox of Maple [2]. It is based on the Structural Identifiability ANalyser (SIAN) algorithm
which combines differential algebra and Taylor series approaches [60} [61].

Definition 1.4.8. Given a model M : © — A, it is globally identifiable in 0 € © if :

VO € ©, M(0) = M(0) = 0 = 0.

To find optimal parameter values, we use the Covariance Matrix Adaptation Estimation Strat-
egy (CMA-ES). Given a vector of measured radii (r;);=1,... n, we minimize the cost function which
is the opposite of the log-likelihood :

N
£(0) = =D _log(f*(r1,0)), (1.72)

where f°° is the stationary solution to the model in radii with the set of parameters 6. The
CMA-ES was developed with the goal of non-convex non-linear black-box optimization. This black-
box property allows it to perform well for optimization problems where we cannot compute the
gradient of the cost-function. We go into a bit of detail as to how the CMA-ES works.

CMA-ES

The CMA-ES falls in the class of genetic algorithms : from a pool of samples, the best samples
are kept and are called the parents, and from these samples a new pool is generated, called the
offsprings. The goal of such method is often to make sure that the offsprings are better than the
parents. In the CMA-ES, this is done by updating the covariance matrix of the last generation
using the best samples from the last generation.

Let us consider an objective function h : R™ — R which we want to minimize. The CMA-ES is
an iterative process. At step k, we have a sample of candidate solutions (xf)jzl A, and we go to
the next step by drawing :

.....

$ijk+O'kN(0,Ck), .j:la"'a)‘7

where my, is the distribution mean, oy the step-size and C} a symmetric and positive-definite
covariance matrix (with Cy = I). The offsprings (x;);=1.. » are independent and identically
distributed random variables. The next distribution mean my; is updated using a weighted sum
of the best drawn samples. Denote (z;.1);j=1,...x = (z;)j=1,.. . where h(z1.y) < -+ < h(z,n) <
h(z,41:2) < - -+, where typically 1 < A/2. Then :

m
Me4+1 = § WiTi,
i=1
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Figure 1.4: Comparison between the diffusive Lifshitz-Slyozov model and the usual
Lifshitz-Slyozov model : f0 is the initial condition for both models. ¢**** is the stationary
solution of Equation and f(tmax, ) the result of an UpWind scheme for the Lifshitz-Slyozov
model without diffusion stopped at time ¢,,,, before reaching a Dirac mass.

-1
nw
where the weights w; > wy > -+ > w,, sum to one and are defined such that 1, = (Z wf) ~

i=1
/4.
Then the step size is updated via the cumulative step-size adaptation. We introduce the
evolution path p{ of the step-size and define :

—1/2Mk+1 — Mg
Pl = (1= co)pf + V1= (1= )2/ Cy —

where c; 1 ~ n/3 and the step size is updated following :

Crit = op exXP (Ca ( prgall 1))
de \E[[|N(0,1)[]
where d,, is a damping parameter. Then we introduce the evolution path pkc of the covariance
matrix and define :

—my,

o karl
P = (1—co)pf + Lio,aym) (PR D)V — (1 = Co)2v#wT

Finally the covariance matrix is updated following :

o
Tix — Mg [ Tjp\ — My
Crp1 = (L—c1— ¢y + ¢5)Cr + epi 1 (D) + cu Zwi Z ok ( l Tk )
i=1

1.5 Main results

1.5.1 New models for the size distribution of adipose cells

We have introduced a variety of models for the size distribution of adipose cells. The main model
is the diffusive Lifshitz-Slyozov model where the diffusion term is derived from the discrete
Becker-Déring model which we study in chapter B We are particularly interested in the
stationary solutions of the diffusive Lifshitz-Slyozov model, which have an explicit formula
and can therefore be computed exactly. We have compared the stationary solutions to the station-
ary solutions of the other models when they are computable. This is not the case for the classical
Lifshitz-Slyozov model, but we can still study them numerically. In Figure we show that in
general the two stationary solutions are difficult to compare. For the case of adipose modeling, we
observe that the velocity has two attractive zeros hence we expect the stationary distribution to
divide between the two zeros. However how the solutions split between the two zeros is difficult to
predict. Let us illustrate this with some general considerations.
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Consider the transport PDE with a velocity v depending on x and ¢ that has three zeros for
all time ¢ > 0 which we denote by z;(t) < 2z2(t) < 23(t). We assume that these zeros have limits
when ¢t — oo and that, for all time, z; and 23 are attractive and z5 is to be repulsive such that
0,v(z1,3(t),t) < 0 and 9,v(z2(t),t) > 0. What we expect to happen is for the distribution to
concentrate around the points 27% = t1i>1£10 z1,3(t). Upon this assumption, there is no observation

that can be made on the relations between characteristic curves and zo(¢). In particular we do not
expect that if X (s;s,2) = x > z2(s) then X (t;s,2) > 22(¢t) for all ¢ > s. This means that zo(t)
does not split the ordered family of characteristics into two sub-families : the ones going to z{°
and the ones going to z3°. Hence characteristics may cross the ‘boundary’ z3(¢) at any time but
as times goes to infinity this ‘boundary’ gets harder to cross since if zo does not depend on time,
it would be a proper boundary for the characteristics. Now this is what happens in the case of the
usual Lifshitz-Slyozov model, the velocity may have up to three zeros which depend on time and
the repulsive zero does not split the family of characteristics. Describing the behavior of these zeros
in the case of our model is unfortunately quite difficult. Even if we are able to obtain numerical
approximation of the stationary solutions, comparing it to the stationary solution of the diffusive
Lifshitz-Slyozov model is difficult. Indeed for the diffusive model, the maxima of the stationary
solutions are zeros of tlgglo v(+, L(t)) —e0,d(-, L(t)). Hence the modes of the usual model and of the

diffusive model are not located at the same values of x and moreover the addition of the diffusion
in the model accentuates the fact that cells may cross the ‘boundary’ z5(t).

In Chapter 4} we study the non-linear Becker-Déring CTMC and its diffusion approx-
imation, the Lifshitz-Slyozov SDE (|1.45)). Both models are constructed from their deterministic
equivalent and both can exhibit bimodal stationary distributions.

In Chapter 5] we perform a sensitivity analysis and parameter estimation on the constant and
non-constant diffusive Lifshitz-Slyozov model, showing that in both cases we recover parameters
of similar order of magnitude.

1.5.2 Convergence result

We previously introduced the classical convergence result from the Becker-Doring model to the
Lifshitz-Slyozov model in Theorem In this section, we introduce a new result in this theory
of convergence. We make use of tails of distributions to compare the solutions of the Becker-
Do6ring model and the mild solutions of the Lifshitz-Slyozov model. This new method of proof is
different from the one used in the classical convergence. In particular, the use of tails of distribution
allows us to reduce the non-linearity of the transport PDE by pulling the speed out of the space
derivative. We point out that the study of the tails in the case of the Lifshitz-Slyozov model is
not new as it was used in [22] to obtain quasi comparison principle and in [77, 9] to get refined
uniqueness results. However its use in the theory of convergence from Becker-Déring to Lifshitz-
Slyozov is new, up to our knowledge. We now proceed with the result.

Let (f¢,L¢) be the solution of the Becker-Déring ODE system (1.24)), and let (f, L) the mild
solution of Lifshitz-Slyozov equations . We introduce notations for the tails of distributions :

Fto) = [ T idy, () = / " )y, (L.73)

and introduce their difference

E(t,z) = F¢(t,x) — F(t,z) . (1.74)

We now state our main theorem.
Theorem 1.5.1. Let T > 0. Suppose that there exists some constant Cinie > 0 such that for all
e >0, / |E(0,z)|dx < eCinit. Also assume that hypotheses (H1)-(H9) hold true. Then there
Ry
exists some constant C(T) > 0 such that for € > 0 small enough and for all t € [0,T] :
|LE(t) — L(t)] +/ |E(t,z)|dx < eC(T).
Ry

We give a few details as to how the proof works. We begin by a simple observation, taken
from [77, [19], which states that the difference between the external lipid amounts can be controlled
by the difference of the tails, |L°(t) — L(¢)| < fﬂh |E(t,2z)|dz. To have proper bounds on the tail,
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we use Gronwall’s lemma. This is done by deriving the equation for F'¢ and F' (Lemma (3.4.5).
To do so, we need to consider apart the case < /2 since it yields boundary terms that should
be treated differently. In turn, this allows for a first bound on the integral fR |E(t,z)|dz. Next

from the equation on F' we obtain the equation on F (Lemma [3.4.6). We proceed with bounding
the terms in the estimate of fR+|E t,z)|dz. In particular we are able to show that F* solves an
equation similar to F' up to some terms of order €. This argument relies on uniform control of the
solution of the rescaled Becker-Déring model and its increments cf, | — 5.

Hypotheses - are classical in the study of our model. However, other assumptions
are less common but arise naturally from the result. Since we work with mild solutions, we need
additional regularity on the rates. This is due to the fact that the higher order terms that appear,
which are the ones we want to look at for choosing a diffusion, are second order derivatives.
This entails assumption . Naturally, we require the initial condition to be well prepared. In
particular, some properties are propagated, hence hypotheses and . Additionally, the
assumption allows us to have strict positivity of L in finite time, uniformly in €. Considering
that if this was not the case, the second order diffusive term would be ill-posed, this assumption is
natural. The assumption @D on the initial condition c{’ Y is technical and ensures that the proper
boundary condition @ is satisfied for all times.

Finally the assumption on fR+|E(O,$)|dx is made to conclude after using Grénwall’s lemma

at the very end of the proof. This assumption relates both initial conditions (cf’o)izg and f0. A
fair choice for the initial condition (¢5"°);50 is ¢ = fO(ie) for all i > 0. Then we assume f© to
decrease exponentially toward 0 at infinity and (f°)’ € L*(R,xdz). This yields :

/R+E(O’x)|dx - /R+/;O FO(y) = fO(y)dy|da

< [ el - (1.7
/2
<3 [ ol - e s [ a0 - i

i>1

Now the assumption for f° to decrease exponentially toward 0 at infinity allows us to cut the
previous integral in two parts. Hence there exists some constant p > 0 such that

oo

/I TPy < | vepl-may = o+ %)exm—m (1.76)

T
Then taking x = — In(e) gives us that there exists some constant C' such that fﬁn(s) yfO(y)dy <
eC'. Now we know there exists some i € N such that —In(e) € I'S which we denote I.. In particular,

I. = L%(E)W This allows us to split the sum in ([1.75)). For i < Ie + 1 we use Taylor’s expansion
and the fact that (f°)" € L'(Ry,xzdz) while the terms above I. + 1 are bounded using the choice
of I :

I.+1

/2
/ B0, 2 |dx—Z/ 2|f2(ie) — f(a )|dx+/ 212(0) — °(a)|de
+ Z /x|f0 (i) — fO(x)|dz

i>1.4+2
I.+1

e/2
<Z/ |dx+2/0 2](f°) (@)]dz

I.+1

Z / xder/ xdz) 4+ 2Ce

S*H(f )Nl s zdz) + o(e?In(e)) + 2¢C.

Therefore if we construct ¢;° = f°(ie), sufficient conditions on f° for (H8) to hold are : f°
decreases exponentially toward 0 at infinity and (f°)" € L'(R,, zdx).
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Finally we point out that our result uses the fact that there exists a solution to both models
and proves convergence to one another, whereas the classical results only use the existence of
solutions to Becker-Déring and show convergence to a measured-valued function that is a weak
solution of Lifshitz-Slyozov. Hence the classical result is also an existence result for weak solutions
to Lifshitz-Slyozov.

1.5.3 Stochastic convergence

Our motivation to study the Becker-Doring model and to construct a similar model for adipose
cells is to get an intuition as to what form could a diffusive Lifshitz-Slyozov model take. Moreover
we are particularly interested in showing some bounds on the distance between solutions of the
Becker-Doring model and solutions of the diffusive Lifshitz-Slyozov model (L.32). This proved
particularly difficult by using the ideas from the classical convergence and the convergence result
we presented before was a first step in another direction but has not yet been fruitful. Nonetheless
there also exists some results on the convergence from Becker-Doring to Lifshitz-Slyozov but in
a probabilistic sense. In the spirit of these results, we look into two stochastic models for the
dynamic of the size of an adipose cells, based on the Becker-Doring and Lifshitz-Slyozov models
which we introduced in section This leads to the following results, inspired from the classical
result by Kurtz in [74]. We make the additional assumption :

a and b are bounded continuous functions. (H10)

We state our result :

Theorem 1.5.2. Assume X. and Z. to be solutions of Equations (1.41) and (1.45) and assump-
tions (H1), (H3) and (HI1O0) to hold. Then for ¢ small enough and for some T > 0, there exists a
constant BT only dependent on T, a and b such that :

sup E[|X.(t) — Z.(t)]] < BT« 1n(1). (1.77)
te[0,T] €

We make a few comments about this result. Firstly the initial result in [74] involves particles
whose jump rates depend on the position of the particle itself. In our case, this is also true but
additionally, through LX and L, it also depends on its expectation and therefore its law. This is
the main difficulty in the proof. In particular, this prevents us to obtain almost sure convergence
as in [74] and instead we obtain L' convergence.

We provide a few details as to how the proof works. The general outline is very similar to [74].
We first make use of a result from [72], where we bound the difference between a compensated
Poisson process and a Wiener process and Levy’s modulus of continuity of the Wiener process [81].
The final result is obtained by appropriate use of Jensen’s inequality and Gronwall’s lemma.

Then we relax assumption , and consider sub-linear rates :

There exists two positive constants C, and C} such that
for all > 0, a(z) < Co(1 + z) and b(z) < Cp(1 + ). (HI11)

1.5.4 Numerical results

In addition to the previous theoretical results, we use the previously described numerical schemes
and to investigate the properties of our models. Firstly we recover convergence toward a
stationary state numerically. Secondly we show that our model can recover the bimodality prop-
erty of distributions of adipose cells. However this property is highly dependent on parameter and
we show that depending on the parameter A there is a whole continuum of stationary solutions
which exhibit different types of modality. For low amounts of total lipids, only small cells are
present and the distribution has a global maximum at @ = 0. For high amounts of external lipids,
the stationary solution is composed of only large cells and resembles to a Gaussian distribution
centered on a large value of x. In between, we recover the bimodal property. Values of lambda
that are taken to obtain these behaviors range from 0 to 15, but the associated values of LSt3t
only range from 0 to 0.1. This should be coherent with the fact that in an individual, the blood
lipid amount should remain at a constant non-toxic level and that excessive lipid intake is stored
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in the adipose tissue. An example of the result of the scheme is given in Figure[I.5]and the various
behaviours of the stationary solutions is illustrated in Figure [1.6]
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Figure 1.5: Result of the numerical scheme : a bimodal distribution obtained by the scheme
and computed explicitly. The result of the scheme ¢2Y™ and the stationary solution computed
explicitly ¢%** are superimposed.
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Figure 1.6: Different types of stationary solutions : on the left we plot the inverse of the func-
tion ¢ : L — L—i—fooo oMy (x)dx. The inverse ¢! is plotted because the actual value we can change
in the model is A and not L***. Some points are highlighted which corresponds to four different
types of stationary solutions : left unimodal (green), bimodal (red), central unimodal(yellow) and
right unimodal(black). For each color a stationary solution is plotted on the right in the same
color, with its velocity below it. One may observe that for each type of stationary solutions the
modes are located close to the zeros of the velocity as expected, expect for the right unimodal case,
where the velocity is positive on the whole domain and therefore the distribution is transported
toward the boundary x,.x of the domain.

We are also interested in comparing the usual Lifshitz-Slyozov model to the diffusive Lifshitz-
Slyozov model numerically. However this proves difficult for a few reasons. Firstly we observe that
for similar parameters the stationary solution of the diffusive model does not corelate with the
asymptotical approximation of an UpWind scheme for the usual Lifshitz-Slyozov model. We are
unfortunately unable to compute explicitly stationary solutions to the Lifshitz-Slyozov model with
our choices of rates and therefore rely on the asymptotical numerical approximation to make our
comparison. We observe that the diffusive model may exhibit bimodality whereas the usual model
only shows unimodality for similar parameters. This may be explained by looking at the positions
of the zeros of the velocity v. Indeed looking at the characteristic curves , one can see that
they reach a stationary state iff v(X(s;¢, ), L(s)) = 0. Hence for the Lifshitz-Slyozov model, we
expect the distribution to concentrate at zeros of the velocity. The case where the velocity has one
zero has been investigated in [18] where they show concentration toward a Dirac mass located at
the zero of the velocity. The case of multiple zeros is up to our knowledge an open question for
the Lifshitz-Slyozov model. For the case of adipose modeling, we observe that the velocity has two
attractive zeros hence we expect the distribution to divide between the two zeros in large time.

In regards to the stochastic simulations, we show that the stochastic models are both able
to recover the different types of stationary distributions, see Figure In the spirit of Theo-
rem we obtain a bound of order ¢ In(¢) for the empirical L'-norm between the two solutions
of Equations and , illustrated in Figure The empirical L'-norm is computed as
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Figure 1.7: Two types of modality for both stochastic models with the dynamic of L. We obtain
convergence toward the corresponding stationary solution of the diffusive Lifshitz-Slyozov model.
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Figure 1.8: Numerical illustration of Theorem m : empirical L'-norm between two solu-

tions of Equations (1.71)) and (1.43)

1.5.5 Parameter estimation

In Chapter [5] we present a submitted work on the parameter estimation of the constant diffusive
Lifshitz-Slyozov model in collaboration with Chloé Audebert, Anne-Sophie Giacobbi, Magali Ribot,
Hédi Soula and Romain Yvinec, as well as further estimations for the diffusive Lifshitz-Slyozov
model.

We previously tried very basic estimation methods such as gradient descent and least square
methods. These methods were often unconclusive and we seeked a more robuste method that
is capable of tackling harder problems. A first method we used was the Approximate Bayesian
Computation (ABC). This method uses an a priori law for each parameter and generates an
a posterio law using bayesian probability. The results from the ABC were however difficult to
interpret without a proper sensitivity and identifiability analysis of the model. This is done in
Chapter [3]

Hence we choose to use the CMA-ES method. This method is robust in regards to non-convex,
non-linear problems and does not need to compute any gradients. Since we lack theoretical results
on our minimizing problem, this method is well suited because it can be used in a very general
case.
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The constant diffusive Lifshitz-Slyozov model is written in radii for this work instead of lipids
but the overall shape of the model remains the same :

Buf(t.r) + B, (u(r, L) (£.7)) = DO(F(t. 7)), (1.78a)
4mr?
L(t) + / VO) = Vo) (e = (1.78b)

where V(r) = 37r® and the velocity is defined as v(r, L) = a(r)ﬁm — b(r), which is similar to

the velocity of Lifshitz-Slyozov model (1.17)). The function a and r are given by :

aWVipias ~ p° L

alr) = dr 3+ p3 L+ kK’

r2  V(r) — Vo + VipidsX

Remark. One may go from Equation (1.17a)) to Equation (1.78a]) without the diffusion term, and
2

vice versa via the diffeomorphism x — r(x)*.

The unknowns of the model are o, L, k, p, x and D. We first perform an identifiability analysis
of the parameters.

The model is re-parametrized with 6, = 2. Using the Structural identifiability
Toolbox of Maple [2], we show that the model is indentifiable under this re-parametrization. Then
we use the CMA-ES method on synthetic data generated using stationary solutions of . We
show that the method performs well even when censoring the small data points, where three out
of four parameters are well estimated, see Table Small data points censoring is investigated
because depending on the machine setup during data collection the minimal radius measured is
different, hence some of the data need to be censored. Then the method is used on data from
32 rats, where we show the ability of the model to recover the particular bimodal shape of the
distributions and an estimation for the identifiable parameters, see Table However the nadir,
the minimum between the two modes, is not perfectly reproduced, see Figure[T.9] This is supported
by the sensitivity analysis, that shows that none of the parameters has a significant influence on
the nadir. Nonetheless we obtain an estimation for the surface rate of lipogenesis which is of similar
order of magnitude to the surface rate of lipolysis. Additionally we show that for radii larger than
20 pm lipolysis is mainly a surface based mechanism, as in [119].

The last part of Chapter [5] is dedicated to applying the CMA-ES method to the diffusive
Lifshitz-Slyozov model .

We use the same re-parametrization as in the first part, but we were unable to show that this
re-parametrization is identifiable for this model. Nonetheless we recover values of parameters in
the same order of magnitude as in the first part, see Table [[.3] with a slight improvement to the
fitting of the nadir by censoring large data points, see Figure [[.10]

1.5.6 Recap of the main results

Let us briefly recap the main results of this manuscript chapter by chapter. Chapter [6]is dedicated
to a work done during the summer school CEMRACS 2022, and does not relate to adipose cell
modeling. Therefore it is presented independently in Section [1.6

Chapter [3|: [A Lifschitz-Slyozov type model for adipocyte size dynamics : imit from|
[Becker-Doring system and numerical simulation|

e a new second order Lifshitz-Slyozov model (1.32)) for adipocyte size distribution with a
diffusion term derived from a discrete model,

e Becker-Doring and Lifshitz-Slyozov systems with an unusual velocity (1.11)) -(1.13)) with three
zeros and a saturation term in L, which leads to different types of stationary solutions,

e an additional conservation law (1.16)) with respect to classical systems, enforcing uncommon
boundary conditions, see Eq. (2.15]),
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synthetic data set 1 10,000 samples samples > 10um
parameter order true | esti. value esti. £20% select. values | esti. value esti. £20% select. values
01 1073 9.60 | 9.61 7.69 - 11.53 9.58 - 9.63 | 9.62 7.70 - 11.54 9.59 - 9.65
P 102 1.50 | 1.50 1.20 - 1.80 1.47 - 1.53 | 1.49 1.19 - 1.79 1.46 - 1.52
03 103 2.18 | 2.17 1.74 - 2.60 2.05-2.29 | 2.09 1.67 - 2.51 1.91 - 2.29
04 1073 7.37 | 7.20 5.76 - 8.64 6.54 - 8.02 | 7.35 5.88 - 8.82 6.58 - 8.32
synthetic data set 2 10,000 samples samples > 10um
parameter order true | esti. value esti. £20% select. values | esti. value esti. £20% select. values
0, 1073 9.92 | 9.92 7.94 - 11.90 9.90 - 9.95 | 9.91 7.92-11.89 9.86 - 9.95
P 102 2.00 | 2.00 1.60 - 2.40 1.97 - 2.03 | 2.01 1.61 - 241 1.99 - 2.05
03 10 3.27 | 3.12 2.49 - 3.74 2.69 - 3.58 | 5.39 4.31 - 6.47 4.32 - 6.47
0,4 1072 1.11 | 1.12 0.90 - 1.34 1.05-1.21 | 1.12 0.90 - 1.34 0.98 - 1.28

Table 1.1: Range of selected values for the parameters. The first three columns show the
parameter names, order and true value and 6, = B(giiw)’ 03 = Viipidsx and 84 = Mﬁli 5- For each
data set, the estimated parameter value (column “esti. value”) with CMA-ES method is subject
to a maximum of 20% variation (column “esti. +20%”). From this variation, a range of values is
selected for each parameter (column “selec. values”) allowing a maximum error rate of 0.1% on the

value of the estimated cost function £. For each parameter 1,000 samples are generated

parameters | mean std RSD
01 9.610°3 2.810%  0.03
P 1.57 102 0.2510%2  0.16
03 2.24103 1.0710°  0.47
0,4 8.2110~% 2.5810% 0.31

Table 1.2: Parameter estimation with adipocyte size distributions measured in rats.
The first column is the parameter names. Over 32 estimations with the different animal cell size
distributions, the mean is presented in the second column, the standard deviation in the third
column and the fourth column is the relative standard deviation i.e the ratio of standard deviation
over mean. The parameters are estimated with CMA-ES algorithm of fmin2 function from cma
Python package (with 100 initial guesses).

parameters | mean std RSD
6.8 2.9010~t 5.0010~% 0.02

P 1.97 102 29710  0.15

X 8.4510~* 1.5310~% 1.81

€ 9.95107% 4.111073 0.41

Table 1.3: Results on large size censored data. Parameter estimation with adipocyte size
distributions measured in rats : mean, standard variation and relative standard variation. To
compare the order of magnitude to Table we have that 3, the basal lipolysis rate, is of order
102 and 6‘3 = X‘/lipids where Viipids is of order 106.
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Figure 1.9: Comparison model-data. Four examples (over 32) of adipocyte radius distributions
(in um) as histograms in rat in normal physiological conditions and model output computed (dash
lines) with estimated parameters (see Section [5.1.4). The parameter estimations are performed
with CMA-ES algorithm of cma Python package by minimizing the function £ eq.
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Figure 1.10: Comparison model-data. example of size distributions in lipids as histograms and
model outputs (dash-lined) computed from the results of the CMA-ES method censoring the last
20% of the data.
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e a new proof of convergence result from Becker-Doring solutions to Lifshitz-Slyozov solutions,
using tails of distributions, that provides an upper bound on the speed of convergence,

e numerical results showing that bimodal distributions, as well as unimodal profiles, can be
obtained asymptotically with system ([1.32), according to the parameters,

e numerical results exploring the influence of parameter € and comparing the diffusion term of
system (1.32) with a time and space constant coefficient,

e numerical results showing that the second order system (1.32)) provides universal asymptotic
profile that does not depend on initial condition (but only on A\, m), contrary to first order

system (1.17).

Chapter |Z| : [A stochastic approach to adipose cell modeling|

e two stochastic models : the non-linear Becker-Déring CTMC (1.41)) and the Lifshitz-Slyozov
SDE (|1.45). Both models are inspired by the deterministic Becker-Doring and Lifshitz-
Slyozov models for the modeling of adipose cells,

e a new convergence result for the stochastic models, based on the work from [74], for bounded
rates of lipogenesis and lipolysis,

e an extension of this convergence result to the case of sub-linear rates.

Chapter |§| : [Parameter estimation and some additional numerical results|

¢ astructural identifiability analysis on the constant diffusive Lifshitz-Slyozov model in radii (|1.78)
that shows that under a re-parametrization, the model is identifiable,

e a parameter estimation on the constant diffusive Lifshitz-Slyozov model (1.52)) using the
CMA-ES method. We are able to estimate the surface rate of lipogenesis and show that it is
of similar order of magnitude as the surface rate of lipolysis.

e a parameter estimation on the diffusive Lifshitz-Slyozov model (1.32) using the CMA-ES
method. We recover parameters of similar order of magnitude as in the constant diffusion
case and show that this model better captures the nadir of the distribution.

In Chapter [7] we present some of the ongoing work for the modeling of adipose cells as well as
perspectives of this work.

1.6 CEMRACS

Over the month of August 2022, T had the opportunity to participate in the CEMRACS Summer
School. This came with the opportunity to work on a project over the course of 5 weeks. This
work was done in collaboration with Olivier Bernard, Mickael Bestard, Thierry Goudon, Sebastian
Minjeaud, Florent Noisette and Bastien Polizzi. We present here briefly the goals and method
of this work since it is out of the scope of the modeling of adipose cells. We refer the reader to
Chapter [6] for details. The objective of this work was to perform numerical simulations for a model
of biofilms. Biofilms are a consortium of single cell organisms embedded in an extra-cellular matrix
that proliferate on a surface. Examples of biofilms range from the microbiota inside the intestine
to micro-algae on the surface or rocks. This model describes the interaction of the cells inside the
biofilm with its extra-cellular matrix and a liquid medium. This three components are described
by their volumic fraction and velocity. As such the volumic fractions sum to one. One of the goal
of this project was to adapt a numerical scheme from [I3] that is able to preserve the constraint on
the sum of the volumic fraction at the numerical level. This scheme was developped for multifluid
flows : different types of liquids that are in the same phase. We show that the numerical scheme
we use is able to maintain the constraint at the numerical level, see Figure We obtain the
expected traveling wave pattern, see Figure and add various substrates that potentially play
a role in the growth of the biofilm.
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Figure 1.11: Time evolution for the maximal error within the domain on the sum of volume
fractions: F = max, [, ¢a — 1|.

(a) Volume fractions at ¢t = 120h (b) Volume fractions at ¢ = 240h (c) Volume fractions at ¢ = 360h

1.00 1.00 1.00
c - ~ / - {
S 0.75 S 0.75 S 0.75
=1 p=1 =
%3 o =
£ —e| £ | & —ie
() 0.50 [— Liquid Q 0.50 —Liquid (] 0.50 —Liquid
IS Biofilm £ Biofilm IS Biofilm
2 =l 2
<} o o
L 025 So2s Qo025

0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10

X in mm X in mm X in mm

Figure 1.12: Mixture components volume fractions for different times.
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Figure 1.13: Recap of all the introduced models as well as their relations. The Becker-Doring models are in red and the
Lifshitz-Slyozov models are in blue
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Chapter 2

Introduction en francais

Cette thése porte sur ’étude et la simulation de modéles pour le tissu adipeux. En particulier,
nous nous intéressons a la distribution en taille des cellules adipeuses & l'intérieur du tissu
adipeux. A ce titre, nous commencons par présenter la biologie du tissu adipeux ainsi que
les efforts antérieurs de modélisation. Nous présentons ensuite nos modéles qui sont basés sur
des classes plus générales de modéles développés a l'origine pour la modélisation des polymeéres :
le modéle de Lifshitz-Slyozov et le modéle de Becker-Déring.

2.1 Motivation biologique : le tissu adipeux

2.1.1 Généralités

Le tissu adipeux fait partie de la grande famille des tissus conjonctifs. Il est composé de différents
types de cellules, dont les majoritaires sont les adipocytes ou cellules adipeuses. Son réle principal
est le stockage de 1’énergie sous forme de lipides, mais il fournit également des structures aux
organes voisins ainsi qu’une isolation thermique. Chez la plupart des espéces, le tissu adipeux
se divise en deux types : le tissu adipeux blanc (WAT) et le tissu adipeux brun (BAT). Selon le
type de tissu, on observe différents types de cellules adipeuses : les cellules adipeuses blanches
et les cellules adipeuses brunes. Ces cellules se distinguent par la maniére dont elles stockent
les graisses et par leur role. Les cellules adipeuses blanches (WAC), et en particulier les WAT,
possédent une seule gouttelette lipidique & ’'intérieur de leur cytoplasme et constituent une forme
de stockage de ’énergie. Ces gouttelettes lipidiques donnent la couleur blanche au tissu, d’ou
son nom. En revanche, les cellules adipeuses brunes (BAC) peuvent avoir plusieurs vésicules de
lipides ainsi que plusieurs mitochondries. Leur role est d’effectuer une thermogenése adaptative
et de libérer leur contenu énergétique sous forme de chaleur. Le BAT est présent en grande
quantité chez les nourrissons humains et régresse ensuite chez les adultes [83]. Bien qu’elles
remplissent des roles différents, les WAC peuvent toujours se convertir en BAC. Ce processus
est appelé "beiging" ou "browning" des WAC (du francgais "beige" : une couleur entre le blanc
et le brun), ot les WAC se transforment en adipocytes libérant de ’énergie. Ce processus a été
observé en réponse 4 une exposition au froid et est bien documenté dans [114] et est réversible.
Dans notre modélisation du tissu adipeux, nous ne prendrons en compte que le WAT et les WAC.
Cependant, la collecte de données n’est pas parfaite et nous pouvons supposer que certaines de
nos données sont en fait des BAC, des préadipocytes ou des cellules endothéliales, bien que ces
types de cellules supplémentaires ne soient présents qu’en faible pourcentage par rapport aux
WAC.
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Figure 2.1: Adipocytes of different size

La vie d’un acide gras : de l’intestin au stockage

Les adipocytes stockent I’énergie sous la forme d’une ou plusieurs vésicules de triglycérides a
Iintérieur de leur cytoplasme. Ces molécules sont créées a 'intérieur des cellules & partir d’acides
gras par un processus appelé lipogenése. Cependant, avant que les acides gras ne pénétrent dans
les cellules adipeuses, ils sont ingérés par ’organisme et aboutissent dans l'intestin. De l’intérieur
de l'intestin, les micelles contenant les acides gras sont transportées vers les entérocytes ot elles
sont assemblées avec du glycérol pour former des triglycérides. Ils sont ensuite regroupés avec des
apolipoprotéines, des phospholipides et du cholestérol pour former des chylomicrons, également
appelés lipoprotéines de trés basse densité (ULDL). Cette structure protéique complexe permet
le transport des triglycérides & l'intérieur du flux sanguin aqueux vers les tissus de stockage
tels que le tissu adipeux. Lorsque ces chylomicrons atteignent les capillaires du tissu adipeux,
la lipoprotéine lipase dissout les triglycérides en acides gras libres qui sont transportés dans
les adipocytes. A Dintérieur de la cellule, ils sont & nouveau transformés en triglycérides a
I’aide de glucose et d’acétyl-CoA. La formation de triglycérides & partir d’acides gras est appelée
lipogenése. La lipogenése est fortement régulée par une hormone commune : l'insuline. Cela
implique évidemment que le diabéte et les autres maladies liées & I'insuline ont une influence sur
la physiologie du tissu adipeux.

La réaction biochimique inversée par laquelle les triglycérides sont hydrolysés en glycérol et
en acides gras et libérés dans les capillaires environnants est appelée lipolyse. La lipolyse est
régulée par deux hormones : le glucagon et la norépinéphrine. Ces deux processus sont illustrés

dans la figure [2.2] tirée de [108].
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Figure 2.2: An illustration of lipogenesis and lipolysis. This figure is taken from [108].

2.1.2 Morphologie
Localisation

En tant que tissu conjonctif, le tissu adipeux est souvent localisé avec ses organes structurés.
Chez I’homme, il est présent & différents endroits. La graisse viscérale est située autour des
organes internes et est I'un des indicateurs de problémes de santé tels que ’obésité. La graisse
sous-cutanée est située largement sous la peau chez I’homme, ot elle fournit une isolation ther-
mique mineure ainsi qu’un rembourrage. La graisse intramusculaire est située dans le systéme
musculaire et permet un acces rapide au stockage de 1’énergie pour les muscles environnants.
La graisse médullaire est présente dans la moelle osseuse, mais son role au-dela du stockage de
I’énergie n’est pas bien compris.

Tissu adipeux et poids

Il existe une corrélation évidente entre le tissu adipeux et le poids d’un individu. De nos jours, la
masse grasse est utilisée comme indicateur de santé avec 'indice de masse corporelle (IMC), bien
que 'utilisation de 'IMC en tant qu’indicateur de santé soit souvent débattue. Néanmoins, avec
Paugmentation récente de 'obésité dans la population humaine [3], la communauté scientifique
a commencé & s’attaquer & ’étude de la perte de poids en se penchant sur la physiologie des
cellules adipeuses. De nombreux travaux ont mis en évidence ce que ’on appelle généralement la
"reprise de poids", c’est-a-dire qu’aprés une perte de poids importante, les individus reprennent
du poids plus rapidement que les individus de méme poids [89, B5]. Ce phénoméne s’explique par
de nombreux facteurs souvent liés & une certaine résistance des cellules adipeuses une fois qu’elles
ont atteint une taille suffisante. Il convient toutefois de distinguer deux mécanismes susceptibles
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de se produire lors d’une prise de poids. Tout d’abord, 'hypertrophie est ’augmentation du
volume des cellules adipeuses. C’est souvent le premier changement physiologique impliquant
une prise de poids. Le second est ’hyperplasie, c’est-a-dire 'augmentation du nombre de cellules.
L’hypertrophie se produit jusqu’a I'obésité modérée, moment ou I’hyperplasie apparait et ou le
nombre de cellules augmente, d’ot une augmentation de l’espace de stockage disponible [59].
Chez les enfants, de nouvelles cellules adipeuses sont créées au cours de la période de croissance
jusqu’a l'age adulte. Cela conduit souvent a l'idée que les adultes ont une quantité "fixe" de
cellules adipeuses. Or, de nouvelles cellules sont créées par le renouvellement du tissu adipeux,
qui remplace les cellules qui meurent naturellement. En effet, un individu en bonne santé,
en ce qui concerne son poids, verra de petites variations de son nombre de cellules adipeuses,
mais comme indiqué précédemment, I’hyperplasie se produit & un stade plus avancé de 'obésité.
Aucune étude n’a encore été réalisée pour caractériser 'augmentation du nombre de cellules entre
la maigreur et ’obésité, mais de nombreux résultats ont été obtenus sur le processus inverse. La
perte de poids induite par des changements alimentaires ou par la chirurgie diminue la taille des
cellules mais n’en diminue pas le nombre [6]. Cela conduit & ’hypothése que ’augmentation du
nombre de cellules adipeuses est un processus a sens unique et non réversible.

En tant que telle, la "prise de poids", c’est-a-dire l'augmentation du nombre de cellules
adipeuses au-deld de la quantité initiale, est permanente. Cela implique que le moyen le plus
efficace de réduire la masse graisseuse au stade de la surcharge pondérale est une opération
chirurgicale, soit par 'installation d’un anneau gastrique pour réduire 'apport alimentaire, soit
par une liposuccion pour éliminer une partie de la masse graisseuse. Toutefois, comme nous
I’avons souligné précédemment, il s’agit de remédes physiques & la surcharge pondérale, qui ne
modifient pas la physiologie des cellules adipeuses restantes.

Lorsque nous examinerons la modélisation du tissu adipeux, nous simplifierons en considérant
que le nombre total de cellules est constant. En effet, cela n’est pas biologiquement pertinent,
mais cette simplification est un premier pas vers la modélisation et le calcul de la dynamique du
tissu adipeux.

Hétérogénéité de taille

De nombreuses études ont montré que le tissu adipeux est fortement hétérogéne, que ce soit au
niveau des types de cellules, des niveaux hormonaux et de la taille des cellules, ce qui est notre
principal intérét [[76], [65], 91]. Comme le montrent les figures la taille des cellules & I'intérieur
du tissu adipeux suit une distribution bimodale : elle présente deux maxima locaux, appelés
modes, séparés par un minimum local appelé nadir. Cependant, aucune explication biologique
n’a été avancée pour expliquer pourquoi les cellules adipeuses se séparent en deux populations
de petites et de grandes cellules. Il est intéressant de noter que cette séparation a été observée
chez de nombreuses espéces, mais que la position et la hauteur relative des modes différent d’une
espéce a lautre et d’un individu & lautre. La distribution en taille des cellules adipeuses est
notamment un indicateur de surpoids ou d’obésité, puisque ces individus auront tendance & avoir
un plus grand nombre de cellules adipeuses et & avoir des cellules plus grandes.

2.1.3 Questions de santé

1l est évident que ’étude des cellules adipeuses implique I’étude des problémes de santé qui y sont
liés. La principale pathologie liée au tissu adipeux est ’obésité. Cette maladie a connu une forte
augmentation dans la population humaine, ayant triplé depuis 1975, et a méme été qualifiée
d’épidémie par 1’Organisation mondiale de la santé [3]. Le principal symptome est lexcés de
graisse corporelle, qui se caractérise par un indice de masse corporelle (IMC) supérieur & 30.
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De nombreuses études ont montré que 1'obésité est étroitement liée & diverses afflictions, telles
que les maladies cardiovasculaires [76], le diabéte de type 2 [42], ’apnée obstructive du sommeil,
les cancers [37] et 'arthrose. Les causes sont diverses et souvent différentes d’un individu a
I’autre. Elles comprennent ’excés de nourriture, la sédentarité, le manque d’exercice physique,
la génétique, etc.

En ce qui concerne le traitement médical, il consiste le plus souvent & modifier les habitudes de
vie : régime alimentaire et/ou exercice physique, bien que le changement de régime alimentaire le
plus efficace pour une perte de poids a long terme soit encore inconnu. En outre, des médicaments
peuvent aider a la perte de poids, mais la fagon la plus efficace de traiter 'obésité est en fait la
chirurgie bariatrique. Celle-ci comprend le pontage et 'anneau gastriques, la gastrectomie ou la
dérivation pancréatique.

2.1.4 Pourquoi voulons-nous étudier la distribution en taille des cel-
lules adipeuses ?

Nous pouvons maintenant expliquer pourquoi nous nous intéressons 4 la distribution en taille des
cellules adipeuses. Avant tout, nous rappelons que la distribution en taille des cellules adipeuses,
c’est-a-dire le nombre de cellules par taille, est bimodale : elle présente deux maxima locaux.
C’est ce que montre la Figure [[.3] pour un rat. Ce type de distribution est inhabituel pour les
cellules spécialisées, qui présentent plus souvent une distribution unimodale standard centrée sur
la taille moyenne d’un type particulier de cellule.

Qu’entend-on par "taille" d’une cellule ? Il existe plusieurs fagons de définir la taille d’une
cellule. Nous allons tout d’abord considérer le rayon comme un moyen de définir la taille. Cela
signifie que nous supposons que les cellules sont des sphéres, alors que dans le tissu adipeux, et
puisque les cellules sont principalement composées d’eau, nous nous attendons a ce que les cellules
forment un tissu trés dense, ou les cellules ne prendront certainement pas la forme de sphéres.
Le fait que les cellules soient des sphéres est donc une simplification, mais vient aussi du fait
que pour collecter des données, les biologistes brisent la matrice extracellulaire qui maintient le
tissu et que les cellules nagent donc librement dans un milieu, ou elles devraient ressembler a des
sphéres, comme le montre la Figure Plus loin, nous considérerons que la taille d’'une cellule
adipeuse est déterminée par la quantité de lipides contenue dans sa vésicule. Nous relierons le
rayon & la quantité de lipides en considérant le volume de la cellule par rapport au volume de la
vésicule, ce qui nous permettra de relier les deux définitions de la taille.

Comme indiqué précédemment, il n’y a toujours pas d’explication biologique & cette distri-
bution bimodale. De plus, la caractéristique bimodale semble étre universelle parmi les espéces
animales, mais la hauteur et la position de chaque maxima dépendent de I’individu. La collecte
de données s’accompagne de divers écueils : la chirurgie pour la biopsie est souvent invasive,
manque de données longitudinales, considérations éthiques, données tronquées, non exhaustives
(pas de comptage total des cellules), ... .

2.1.5 Quel type de données avons-nous ?

Détaillons le type de données dont nous disposons. Elles se présentent le plus souvent sous la
forme de listes contenant le rayon ou le diamétre d’un sous-ensemble de cellules obtenues par
biopsie. La taille de chaque cellule est mesurée & ’aide d’un Multisizer IV de Beckman Coulter,
mais en raison des limitations des techniques de mesure, seuls les rayons cellulaires supérieurs a
7,5um ou 10um selon les expériences sont mesurés. Par conséquent, nos données peuvent étre
incomplétes et la procédure chimique qui détruit le tissu avant 'utilisation du multisizer peut
conduire & ce que certains artefacts restent dans la solution et soient comptés par la machine.
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Par conséquent, parmi toutes les mesures, une petite partie peut ne pas étre constituée de cellules
mais de composants restants du tissu et également d’autres cellules (BAC, préadipocytes, cellules
endothéliales, . ..).

2.2 Modélisation du tissu adipeux

Dans cette section, nous examinons différents modéles pour le tissu adipeux. Nous verrons que
de nombreuses tentatives ont été faites pour modéliser diverses caractéristiques biologiques du
tissu adipeux. Nous présentons d’abord les modéles dans une perspective plus large avant de
nous plonger dans les modéles de la dynamique en taille des cellules adipeuses et en particulier
les modeles de Jo et al. [68] et Soula et al. [II8].

2.2.1 Divers modéles pour le tissu adipeux

De nombreux modéles ont été développés pour étudier le tissu adipeux, chacun d’entre eux visant
A capturer une caractéristique particuliére de ce tissu.

Lorsqu’on étudie des cellules spécialisées, on se demande souvent comment elles sont créées.
Dans le cas des cellules adipeuses, les cellules souches mésenchymateuses, situées dans la moelle
osseuse, se différencient en préadipocytes. Ces préadipocytes sont des fibroblastes indifféren-
ciés qui peuvent former des cellules adipeuses lorsqu’ils sont stimulés. Le processus biochimique
exact de la détermination du destin des préadipocytes n’a pas encore été entiérement décrit.
Une modélisation mathématique a tout de méme été réalisée pour appréhender ce processus de
différenciation. Dans [46], les auteurs ont développé un modéle pour le processus de différenci-
ation des cellules mésenchymateuses dans les cellules adipeuses. Le modéle introduit dans [46]
est composé d’EDO pour la population totale de cellules mésenchymateuses et de cellules pré-
adipeuses, et d’'une équation de transport structurée en taille avec un terme de mort pour les
cellules adipeuses. Ce modeéle et son extension avec une composante spatiale sont capables de
reproduire des distributions bimodales.

Nous avons précédemment souligné le fait que le tissu adipeux est un tissu conjonctif et
qu’il fournit donc également une structure aux organes ou tissus environnants, comme dans la
graisse viscérale par exemple. L’interaction entre la matrice extracellulaire (MEC) et les cellules
adipeuses est méme corrélée & des problémes de santé tels que I'obésité, comme indiqué dans [36].
L’interaction entre les cellules et leur matrice extracellulaire a été bien étudiée par la commu-
nauté mathématique et certains travaux se sont penchés sur le cas particulier du tissu adipeux.
Dans [100], les auteurs ont développé un modéle d’interaction entre les cellules adipeuses et les
fibres de collagéne. Ils sont capables de reproduire certaines caractéristiques de la morpholo-
gie du tissu adipeux, notamment le regroupement des cellules adipeuses et la formation d’un
réseau de fibres. Ils utilisent un modéle individu-centré comprenant les forces et l'interaction
entre les cellules et les fibres ainsi que la différenciation pré-adipocytaire. Ce modéle a été réu-
tilisé dans [I0I] pour étudier les lésions du tissu adipeux. Le modéle est notamment capable de
reproduire la régénération et la formation de cicatrices.

En outre, les biologistes s’intéressent aux processus biochimiques qui se déroulent & I’intérieur
de la cellule et a ’échelle du tissu. Dans [§], les auteurs ont étudié le renouvellement des lipides
chez ’homme. Ils ont constaté que le taux de libération des lipides diminue avec 1’age alors
que le taux d’ingestion n’est pas ajusté réciproquement. Ils ont également observé qu’une perte
de poids importante est corrélée & une diminution du taux d’absorption des lipides et que les
personnes ayant un faible taux d’élimination sont plus susceptibles de conserver un poids stable
aprés une perte de poids. Tous ces résultats démontrent le role de la consommation et de la
libération des lipides dans la morphologie du tissu adipeux et sa relation avec les problémes de
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santé. Les chercheurs ont également adapté leurs données & un modéle PDE structuré en fonction
de I’age pour la population de lipides a 'intérieur d’un individu. La méthodologie de collecte des
données dans cet article est particuliérement intéressante : ils mesurent I’age des lipides dans un
individu en examinant le ratio de carbone radioactif provenant des essais de bombes nucléaires
qui sont incorporés dans la chaine de carbone des lipides.

Dans [71], les auteurs introduisent un modéle ODE basé sur la physiologie pour illustrer la
compartimentation intracellulaire des processus métaboliques des lipides et ’activation différen-
tielle des lipases impliquées dans ces processus. Ils montrent que le sous-domaine métabolique
actif doit étre bien calibré car il est essentiel pour la simulation des données. Selon la taille de ce
sous-domaine, la vitesse de la dynamique cellulaire peut changer et donc modifier le résultat du
modéle. Un domaine plus petit produit une dynamique plus rapide. L’activation différentielle
des lipases est due a leur role dans les processus métaboliques des différents glycérides : tri-,
di- et monoglycérides. Ils montrent que cette activation différentielle leur permet de comparer
plus précisément les données expérimentales. Cependant, certaines de leurs conclusions doivent
encore étre confirmées par des expériences.

2.2.2 Modéles pour la dynamique de la taille des cellules adipeuses

Dans cette section, nous présentons les développements récents en matiére de modélisation de la
distribution en taille des cellules adipeuses. Les deux principaux articles ont été publiés en 2013
par Jo et al. [68] et Soula et al. [I18]. Les modéles introduits dans ce manuscrit, qui seront décrits
dans la section suivante, sont liés aux modéles de ces deux articles, mais sont plus étroitement
inspirés par celui de [I18].

Jo et al. [68]

Dans cet article, les auteurs s’intéressent & 'inférence de la dynamique de distribution en taille
des cellules adipeuses a ’aide d’'un modéle PDE et de 'inférence bayésienne. Le modéle a été
introduit pour la premiére fois dans [66] mais au lieu du temps, la distribution dépendait de la
masse totale du tissu adipeux. Ils effectuent un ajustement de modéle sur des données provenant
de rats et sont en mesure de retrouver la distribution bimodale des cellules adipeuses. Leur
modéle PDE consiste en une équation de transport-diffusion pour la distribution en taille avec
un terme source pour la création de nouvelles cellules et la mort cellulaire. La taille d’une cellule
est supposée &tre son rayon et la distribution des cellules au temps ¢ et au rayon r noté f(t,r)
est donnée par :

Oef(t,r) = b(t)d(r — o) = Op(v(r) f(t,7)) + DO f(t, 1) — k(r) f(t,7),

ou b est le taux de naissance des nouvelles cellules qui apparaissent avec une taille rq, v est
la vitesse de transport, D le taux de diffusion, k£ le taux de mortalité et § la fonction delta de
Dirac. La vitesse v prend la forme :

o(r) = %* (1 +tanh(r_T+)) - %‘ <1 + tanh(*— 7“‘)) .

1+

L’idée derriére ce choix de vitesse est phénoménologique : on peut supposer que ’absorption
et la libération de lipides par une cellule sont limitées par la surface. Il existe donc des tailles cri-
tiques pour ’absorption et la libération, désignées par x4 et x_, qui donnent les taux d’absorption
et libération semi-maximaux, désignés par vy _. Les parameétres ny _ sont inclus pour décrire la
pente des taux. Il convient de noter que cette vitesse ne dépend pas du temps et ne tient donc
pas compte des variations potentielles du taux en fonction de la dynamique du tissu.
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Soula et al. [118]

Le modéle introduit dans [I18] est la base de tous les modéles que nous introduisons par la suite
dans ce manuscrit. Les auteurs dérivent un modéle pour la distribution en taille des cellules
adipeuses, ou la distribution dépend & la fois de la quantité de lipides = & 'intérieur de la cellule
et du rayon r de la cellule. Le méme modéle a été utilisé dans [119] pour estimer le taux de
surface de la lipolyse. L’EDP décrivant la dynamique de la distribution est donnée par :

O f(t,x,r) = Op(v(w,r, L) f) + Or(R(z,7) f), (2.1)

ou L est la quantité externe de lipides, qui a aussi sa propre dynamique donnée par :

dL d

pTiy // zf(t,z,r)dxdr. (2.2)

Cette équation pour L traduit I’hypothése que la quantité totale de lipides est constante. La
vitesse dans la direction de la quantité de lipides = prend la forme :

v(z,r, L) = a(r)

)
L+k (@,7),

La fonction a décrit le taux de lipogenése et b le taux de lipolyse. Nous détaillons dans la
Section 23] leur construction et la forme de cette vitesse.
La vitesse dans la direction du rayon r est donnée par :

1 [ Viipides
R(w,r) = - (Vhpldebw O r) : (2.3)

T 47r? 3

ou 7 est le taux auquel le rayon de la cellule s’adapte lentement & la quantité changeante de
lipides intracellulaires. Les auteurs utilisent des simulations de Monte Carlo pour déterminer les
solutions numériques stationnaires du modéle. Ils sont en mesure de récupérer des distributions
bimodales du rayon.

2.3 Modéles de Lifshitz-Slyozov et Becker-Doring pour le
tissu adipeux

2.3.1 Un modéle de Lifshitz-Slyozov pour les adipocytes

Nous allons maintenant procéder a la construction de notre modéle principal, basé sur le modéle
de Lifshitz-Slyozov. Avant tout, nous rappelons les simplifications biologiques que nous avons
introduites précédemment et nous introduisons deux nouvelles simplifications physiques :

e Le nombre total de cellules, également appelé masse de la distribution est noté m et est
une constante du temps.

e La quantité totale de lipides est notée A et est une constante du temps.

e La quantité de lipides dans une cellule (en nmol), notée z, est linéairement liée & son
volume.

e Les cellules sont des sphéres.
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Le fait que la quantité de lipides dans une cellule soit linéairement liée & son volume est une
hypothése physique, mais dans la réalité cette relation peut ne pas étre exacte, et le changement
de volume da & 'apport de lipides est probablement retardé dans le temps. Nous simplifions la
forme d’une cellule en sphére pour deux raisons : le volume d’une sphére est facile & calculer et,
lors de la collecte des données, les cellules sont débarrassées de la matrice extracellulaire et se
déplacent donc librement & l'intérieur du milieu ou elles devraient prendre une forme sphérique
et étre mesurées comme telles.

Nous basons notre travail sur [118] ou les auteurs construisent un modéle dans lequel la
distribution dépend & la fois du rayon et de la quantité de lipides. Notre troisiéme simplification
nous permet de relier les rayons aux lipides et donc de simplifier le modéle. Pour revenir au
modele de [I18], cela correspond & prendre la limite 7 — 0 dans 1’équation . Cette relation
se lit comme :

4 .
Viipids® + Vo = gwr(x)3, (2.4)

ol Wipias est le volume occupé par 1 nmol de lipides (en particulier des triglycérides), V; est
le volume d’une cellule vide et r(z) est le rayon d’une cellule contenant x lipides. Cela se lit
simplement comme volume de la vésicule lipidique 4+ volume du cytoplasme et des organites =
volume de la cellule.

Cette relation est particuliérement importante car elle nous permet de relier la quantité de
lipides au rayon d’une maniére bijective, avec :

r(z) = (;(Viipidsm + Vo)>é . (2.5)

Dorénavant, lorsque nous ferons référence a la taille d’une cellule, nous considérons la valeur
de z. Considérons donc une cellule de taille x et commencons par décrire ’évolution de sa taille.
Comme nous 'avons mentionné précédemment, deux processus se produisent : ’absorption de
lipides, appelée lipogenése, et la libération de lipides, appelée lipolyse. La variation de = est donc
la différence entre le taux d’absorption et le taux de libération. Nous construisons ces deux taux
sur la base d’hypothéses biologiques et physiques.

Le taux d’ingestion est le produit de trois facteurs :

e un terme pour un écoulement limité en surface ar(z)?, ot la constante « est la vitesse de
cet écoulement,

e un terme avec un rayon de coupure p tel que pour un plus grand rayon, le taux d’absorption
.

est fortement diminué

r(z)" + pn’
e un terme de Michaelis-Menten pour la quantité de lipides disponibles dans le milieu e
K
ol « est la valeur de L a laquelle ce terme est égale & %
Et le taux de libération est le produit de deux termes :
e un terme avec un niveau basal de libération 8 et un taux limité en surface yr(z)?, ot la

constante y est I’équivalent de la constante a,

T
e un terme de Michaelis-Menten pour la quantité disponible de lipides dans la cellule n

X
ou x est ’équivalent de x pour ’absorption.
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Nous soulignons que la construction du taux de libération est basée sur des observations
biologiques détaillées dans [I19]. En particulier, les valeurs de /3 et v ont été estimées expéri-
mentalement dans [I119].

dx
La variation de la taille , que nous notons TR peut donc étre exprimée comme la différence

entre les taux d’absorption et de libération :

n

dz 2 14 2y_ T

== - = 2.6

T o e e — (B ) (26)
intake release

Pour les deux taux, nous regroupons les termes en = selon :

_ P L
a(z) = ar(z)Qr(x)n el (2.7)
b(x) = (B +~r(x)?) (2.8)

erX'

Maintenant, d’'un point de vue physique, on peut voir que les cellules ont des particules se
déplacant dans un espace d’état avec un champ vectoriel :

dx L

v(z,L)=— = a(x)m

= = — b(). (2.9)

A partir de la théorie des équations de continuité, cela nous améne & écrire une équation de
transport homogéne pour la distribution des cellules f(¢,z), qui donne la quantité de cellules
adipeuses avec la quantité de lipide x au temps ¢ :

O f(t, x) + Ou(v(z, L) f(t,2)) = 0. (2.10)

Selon notre simplification biologique, la quantité totale de lipides dans notre systéme, notée
A, devrait étre constante. Il existe deux types de lipides dans le systéme : ceux contenus dans
les cellules et les lipides du milieu. Cela donne ’égalité suivante :

L(¥) Jr/R xf(t,z)de = A. (2.11)

En ce qui concerne les conditions aux bords, nous voulons conserver la masse de la distribution
et nous devons donc imposer que :

f(t,z)de = fO(z)dx = m for all t > 0. (2.12)
Ry Ry

Cela conduit & avoir la condition aux bords (v(x, L(t)) f(¢,x))|z=0 = 0 pour tout ¢ > 0. Ainsi,
puisque v(0, L) > 0, pour conserver la masse, une condition aux bords de Dirichlet suffit :

flt,x) ‘a::O =0.

Cela nous améne au modéle de Lifshitz-Slyozov pour les cellules adipeuses avec des conditions
initiales (f°, L°) :
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O f(t,z) + O (v(z, L(t)) f(t, z)) = 0, (2.13a)

L(¢t) —|—/ xf(t,x)dz = A, (2.13b)
Ry

ft,2)],_, =0, (2.13c)

f(0,2) = fO(x) and L(0) = L°. (2.13d)

2.3.2 Un modéle de Becker-Doring pour les adipocytes

Dans cette sous-partie nous allons construire un analogue aux équations de Becker-Doring avec
une vitesse adaptée a la modélisation de la dynamique des adipocytes. Le but de cette construc-
tion est d’étudier les théorémes de convergence classiques de Becker-Doring & Lifshitz- Slyozov
et en déduire la forme d’un terme de diffusion & ajouter dans notre modéle.

Nous allons maintenant considérer qu’une cellule adipeuse est un regroupement de vésicules
de taille typique A. Ainsi, la taille d’une cellule peut étre définie par le nombre de vésicules
qu’elle contient. Pour tout ¢ > 0, on note ¢; le nombre de cellules de taille ¢ et [ le nombre de
vésicules dans le milieu. Une telle cellule va agréger une nouvelle vésicule & la vitesse a;; [(f\m et
perdre une vésicule a la vitesse b;, suivant cette réaction :

Ay wn

L+iL (i+1)L.

bit1

Soit ¢ = (¢;)i>0- Le flux J;(c, 1) de la réaction précédente est alors donné par :

A

i(el) =ai——q
Ji(c,1) G C

—biy1cit1, 12> 0.

De méme, comme le modéle de Lifshitz-Slyozov, [ satisfait une équation tenant compte de la
conservation de la quantité de lipides. Nous obtenons le systéme ODE suivant :

Ci;i = Ji—1(e,l) = Ji(e,1), Vi > 1, (2.14a)
dCO
= ! 2.14b
dt ‘]O(Cv )7 ( )
A+ iAei(t) = A, ¥t >0, (2.14c)
=0
10)=1° ¢(0)=¢}, Vix>1, (2.14d)

L’étude de la convergence du modéle de Becker-Doring vers le modéle de Lifshitz-Slyozov est
généralement effectuée aprés remise a ’échelle du premier. Il existe une variété de théorémes
sur cette convergence [78), 129, [35, [34], 110], et nous prouvons une version de ces théorémes pour
notre modeéle de Becker-Déring légérement modifié pour les cellules adipeuses en annexe [B]

2.3.3 Modéle de Lifshitz-Slyozov diffusif pour les adipocytes

Nous introduisons un modéle de Lifshitz-Slyozov diffusif pour les adipocytes, motivé par les
résultats de convergence de Becker-Doring vers Lifshitz-Slyozov. On note le taux de diffusion d
donné par :
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L
L+k
Concernant les conditions aux bords, on considére des conditions & flux nul qui assure la
conservation du nombre total de cellules m = fooo g(t,x)dz. Cela donne :

d(z,L) = a(x) + b(x).

€

(v, LO)g(t.2) = Sou(d(a, LWg(ta))) | _ =0. (2.15)

Cela nous améne a notre deuxiéme modéle de dynamique de la taille des cellules adipeuses :
dg(t, ) + Oz (v(x, L(1))g(t, x)) = gaﬁ(d(% L(t))g(t,x)), t 20,z =0, (2.16a)

—+o0
L(t) + xzg(t,x)dz =\, t >0, (2.16b)
0
€
(= o L@)g(t )+ 50:dl, LENg(t. D)| _ =0.t>0, (2.16¢)
g(0,2) = ¢°(z) and L(0) = L°, 2 > 0. (2.16d)

Tous les modéles que nous avons introduits dans cette section et ceux de la section suivante
sont récapitulés dans la figure[1.13

2.3.4 Modéle a diffusion constante

Dans le Chapitre |5, nous présentons un travail ol nous effectuons une estimation de paramétres
sur des données provenant de rats. Nous considérons un modéle différent pour ce travail, ot nous
utilisons un taux de diffusion constant D > 0 et les tailles des cellules sont des rayons au lieu de
quantités de lipides :

Orf(t, 1) + 0p(v(r, L(t)) f(t,7)) — DO f(t,r) = 0, (2.17)
Tmaw dgr?

L(t)y=X— /Tmm V(r)— Vem)v—ff(t,r)dr, (2.18)

U(Tmina L(t))f(t, T'min) - Da7f(t7 Tmin) - 07 (219)

V(Pmaz, L) f(t, Tmaz) — DO f(t, maz) = 0, (2.20)

ol v est défini par

v(r,L) = Ve a -
Y 4 \ L+ kp3 43 r2 V(r) = Vem + Vix
Ce modele est analogue & (2.13) par la relation (2.4).

Dans la derniére section du Chapitre[5] nous utilisons les mémes outils pour effectuer estimation
des paramétres sur le modeéle diffusif Lifshitz-Slyozov ainsi que sa version & diffusion constante
donnée par :

L p B+r?) V()= Vem ) (2.21)

0rg + 0z (vg) = Daz(g)a (2.22a)
L(¥) +/ zg(t,x)de = A, (2.22D)
Ry

( —vg+ D%@m(g)) T 0, (2.22¢)

9(0,z) = ¢°(z) and L(0) = L°. (2.22d)
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Les solutions stationnaires sont alors données par :
C 1 [
Mp(x) = D &P (D/o U(yaL)dy> :

2.4 Modéles stochastiques pour les adipocytes

2.4.1 Construction d’une chaine de Markov en temps continue a partir
du modéle de Becker-Doring

Considérons N cellules adipeuses dont la taille est décrite par une famille de variables aléatoires
XN(t) = (XN (t))iz1,.. v € NV qui évoluent dans le temps. Notre intention est d’utiliser la
propagation uniforme du chaos et de regarder la limite de X'V lorsque N tend vers -+oc.

Nous supposons que (X (t));>0 est une chaine de Markov en temps continue (CTMC). La
propriété de Markov est alors : 1’évolution de la taille d’'une cellule ne dépend que de sa taille
actuelle et de la taille actuelle de toutes les autres cellules et non de ce qui s’est passé dans le
passé. La dynamique de L est fournie en utilisant la moyenne empirique :

N
1 X
X,N iIN
M (t) = = Eﬂ XN ().
Puis nous definissons :

LNy = X = M5N(1).

Soit i € N et supposons que la k-iéme cellule est dans I’état 7 au temps ¢. Alors X*% saute
selon

i — i+ 14 taux a(i) L) sy
- =\
i—i u a’LLX’N(t)+/€7Z_
i —i—1ataux b(i), i > 1
Cela signifie que, étant donné ¢,h > 0, ce qui suit est vrai :
PN (14 h) — XN () = 11X (1) = a(x0N (1) 24 o)
LXN(t) + K ’

P(XEN (£ 4 h) — XPN () = —1|X5N (1)) = b(XEN (£)h + o(h).

Ainsi, pour décrire X*V, il suffit de considérer deux processus de comptage indépendants R*.
et R*, ot R% (t) compte le nombre de sauts positifs jusqu’au temps t et R* (¢) compte le nombre
de sauts négatifs. Par conséquent, l'intensité de chaque processus de comptage est donnée par :

P(R (t + h) — BE (1) = 1|X (1)) = a(XFN (1)) LY o(h)
+ +\) = = K )

LXN(t) + K
P(R* (t 4+ h) — R* (t) = 1|1 X (1)) = b(X"N (t))h + o(h).
Nous écrivons :
XPN () = XEN(0) + RE(t) — RR (1).

En particulier, nous pouvons écrire
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ler(t) _ Yf(/ot a(Xk’N(S))Im{dS) and RF (t) = Yk(/ot b(Xk’N(S))dS)

pour certains processus unitaires de comptage de Poisson Y, et Y_, indépendants I'un de

lautre. Observez que le lemme [1.3.1] implique que R, et R_ sont des processus de Poisson
X,N
inhomogénes non linéaires de taux a(Xk*N(t))L}L(,Nia()ZZK et b(X*N(t)). Cela donne :

XEN (1) = X(0) + Yf(/ota(X’“’N(s))mm) - Yf(/otb(Xk’N(s))ds). (2.23)

Inspiré par la propagation uniforme du chaos, voir théoréme 1.2 dans [122], on définit la
CTMC non linéaire de Becker-Déring X (t) par :

X(t) = X(0) + Y+(/Ot a(X(s))%ds) - Y(/Ot b(X(s))ds), (2.24)

ot LX(t) = A — E[X(¢)]. Dans un certain sens, la CTMC non linéaire de Becker-Déring
X (t) décrit 1’évolution d’une cellule ou d’un polymeére stochastique typique a partir du modéle
de Becker-Doring.

Rescaling

Pour étre cohérent avec le modéle de Becker-Déring redimensionné ([1.26)), nous redimensionnons
également la CTMC non linéaire de Becker-Doring. Nous considérons que la taille de la cellule
X (t) fait des sauts de taille € suivant :

LX
13 (t) , Z 2 0’
LX(t) +k
ie — (i — 1)e at rate e 'b(ie), i > 1,

ott LX(t) = A — E[X.(t)]. Cette CTMC non linéaire de Becker-Déring remis & ’échelle
vérifie :

ie — (i + 1)e at rate e~ a(ic)

X.(t) = X.(0) + Yy (5*1 /0 t a(XE(s))I;(i)(S_i)_de) —eY. (sfl /0 t b(Xe(s))ds) (2.25)

Dorénavant, nous supposons qu’il existe une solution & ’équation (2.25)).

2.4.2 Modéle stochastique de Lifshitz-Slyozov

Considérons a nouveau NV cellules adipeuses dont la taille est décrite par une famille de variables

aléatoires ZN (t) = (ZFN(t))k=1,.. n € NV qui évoluent dans le temps. Notre intention est
d’utiliser la propagation uniforme du chaos et de regarder la limite de Z*V lorsque N tend vers
00.

Nous définissons la moyenne empirique :
1N
ZN(y .+ k,N
MEN() = 5 32V
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Considérons la k-iéme cellule. L’évolution de sa taille est donnée par :

LZ’N
AdZFEN (t) = (28N (1), LZ (t))dt+\/5a(Zf’N(t))Lva(t)th+’k+ eb(ZEN @)dw,F, ¢ >0,

(t)+k
(2.26)

ou LZN(t) = X — MZN(t) et W sont des processus de Wiener standard indépendants
les uns des autres. Cette définition est inspirée du fait que I’équation est une équation
de Fokker-Planck non linéaire dont ’équation différentielle stochastique est sous la forme ([2.26)).
Nous avons scindé la partie stochastique en deux termes dépendant de W+ et W~ pour simplifier
la comparaison avec la CTMC non linéaire de Becker-Doring. Encore une fois inspirés par la
propagation du chaos, nous définissons le modéle stochastique de Lifshitz-Slyozov par :

Z(t)
dZ.(t) = v(Z.(t), LZ(t))dt + \/ea(Z (t ))LZ( D+ th +/eb(Z:(t)dW, , t >0, (2.27)
ot LZ(t) = A—E [Z.(t)]. Sous certaines hypothéses techniques, une solution & ’équation (2.27)
vérifie également :

t z t
_ L _
Z.(t) = Z.(0) + B4 (s 1/0 a(Z(s ))LZ()(_')_Hd5> —eB_ (g 1/0 b(ZE(s))ds), (2.28)

ot By (t) = t+W=(t) sont des processus de Wiener dérivés et W~ et W sont des processus
de Wiener indépendants. C’est le modéle stochastique Lifshitz-Slyozov. L’équation (2.28]) est
particuliérement utile pour comparer Z. et X.. Comme pour I’Equation (2.25)), nous supposons
désormais qu’une solution & I'Equation ([2.28) existe.

Remark. Les résultats théoriques concernent X., Z. et les équations et - Cepen-
dant, nous ne sommes pas en mesure de les simuler directement. Nous utzlzsons donc les équa-

tions (2.23)) et (2.26) pour les simulations numériques.

2.4.3 Récapitulatif des modéles

Une représentation visuelle de tous les modéles est fournie dans la Figure Nous sommes
partis du modéle de Lifshitz-Slyozov classique pour construire un modéle de Lifshitz-Slyozov
pour les cellules adipeuses. A partir de la relation entre le modéle de Becker-Doring classique
et le modeéle de Lifshitz-Slyozov classique, nous avons introduit un modeéle de Becker-Déring
pour les cellules adipeuses qui conserve la propriété de convergence des modéles classiques. A
partir de ce résultat de convergence, nous avons développé un modéle de Lifshitz-Slyozov diffusif
qui s’adapte plus précisément aux données. Nous étudions également la pertinence d’un modéle
diffusif similaire & diffusion constante. A partir du modeéle de Becker-Déring et du modéle diffusif
Lifshitz-Slyozov pour les cellules adipeuses, nous avons construit deux modéles stochastiques pour
étudier la convergence d’ordre deux.

2.5 Reésultats principaux

2.5.1 Nouveaux modéles pour la distribution en taille des adipocytes

Nous avons introduit une variété de modeéles pour la distribution en taille des cellules adipeuses.
Le modéle principal est le modéle de Lifshitz-Slyozov diffusif (2.16]) ou le terme de diffusion
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Figure 2.3: Comparaison entre le modéle diffusif Lifshitz-Slyozov et le modéle de Lifshitz-Slyozov
sans diffusion.

est dérivé du modéle de Becker-Déring discret que nous étudions au chapitre [3] Nous
nous intéressons particuliérement aux solutions stationnaires du modéle diffusif Lifshitz-Slyozov
qui ont une formule explicite et peuvent donc étre calculées exactement. Nous avons
comparé les solutions stationnaires aux solutions stationnaires des autres modéles lorsqu’elles sont
calculables. Ce n’est pas le cas pour le modéle de Lifshitz-Slyozov classique, mais on peut quand
méme les étudier numériquement. Dans la Figure nous montrons qu’en général les deux
solutions stationnaires sont difficiles & comparer. Pour le cas de la modélisation adipeuse, nous
observons que la vitesse a deux zéros attractifs, nous nous attendons donc a ce que la distribution
stationnaire se divise entre les deux zéros. Cependant, il est difficile de prédire comment les
solutions se répartissent entre les deux zéros. Illustrons cela par quelques considérations générales.

Considérons 'EDP de transport avec une vitesse v dépendant de x et t qui a trois zéros pour
tout temps ¢ > 0 que nous notons z1(t) < 2z2(t) < z3(t). Nous supposons que ces zéros ont des
limites lorsque t — oo et que, pour tous les temps, z; et z3 sont attractifs et zo doit étre répulsif
tel que 0,v(z1,3(t),t) < 0 et O,v(z2(t),t) > 0. Nous nous attendons & ce que la distribution se
concentre autour des points 27% = tlggo z1,3(t). Dans cette hypothése, aucune observation ne

peut étre faite sur les relations entre les courbes caractéristiques et zo(¢). En particulier, nous
ne nous attendons pas a ce que si X (s;,2) = > 22(s) alors X (t;s,x) > 2z2(t) pour tout ¢ > s.
Cela signifie que 25 (t) ne divise pas la famille ordonnée de caractéristiques en deux sous-familles :
celles allant & 2{° et celles allant & 25°. Par conséquent, les caractéristiques peuvent franchir la
‘frontiére’ zo(¢) & tout moment, mais & mesure que le temps tend vers linfini, cette ‘frontiére’
devient plus difficile & franchir car si zo ne dépend pas du temps, ce serait une frontiére appropriée
pour les caractéristiques. Or c’est ce qui se passe dans le cas du modéle de Lifshitz-Slyozov pour
les adipocytes, la vitesse peut avoir jusqu’a trois zéros qui dépendent du temps et le zéro répulsif
ne sépare pas la famille des caractéristiques. Décrire le comportement de ces zéros dans le cas
de notre modéle est malheureusement assez difficile. Méme si nous sommes capables d’obtenir
une approximation numérique des solutions stationnaires, la comparer & la solution stationnaire
du modéle diffusif Lifshitz-Slyozov est difficile. En effet pour le modéle diffusif, les maxima des
solutions stationnaires sont des zéros de tlggo v(+, L(t)) —€0,d(-, L(t)). Ainsi les modes du modéle

sans diffusion et du modéle diffusif ne se situent pas aux mémes valeurs de z et de plus ’ajout
de la diffusion dans le modéle accentue le fait que les cellules peuvent franchir la *frontiére’ z5(t)

Dans Chapitre [4] nous étudions la CTMC de Becker-Déring (2.25)) non-linéaire et son ap-
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proximation de diffusion, la SDE de Lifshitz-Slyozov (2.28). Les deux modéles sont construits &
partir de leur équivalent déterministe et les deux peuvent présenter des distributions stationnaires
bimodales.

Dans le Chapitre[5], nous effectuons une analyse de sensibilité et une estimation des paramétres
sur le modéle de Lifshitz-Slyozov diffusif constant et non constant, montrant que dans les deux
cas nous récupérons des parameétres d’ordre de grandeur similaire.

2.5.2 Reésultat de convergence

Nous avons précédemment introduit le résultat de convergence classique du modéle de Becker-
Déring vers le modele de Lifshitz-Slyozov dans le théoréme Dans cette section, nous
introduisons un nouveau résultat dans cette théorie de la convergence. Nous utilisons des queues
de distributions pour comparer les solutions du modéle de Becker-Déring et les solutions ‘mild’
du modéle de Lifshitz-Slyozov. Cette nouvelle méthode de preuve est différente de celle utilisée
dans la convergence classique. En particulier, I'utilisation de queues de distribution nous permet
de réduire la non-linéarité de 'EDP de transport en tirant la vitesse hors de la dérivée spatiale.
Précisons que 1’étude des queues dans le cas du modéle de Lifshitz-Slyozov n’est pas nouvelle
puisqu’elle a été utilisée dans [22] pour obtenir le principe de quasi comparaison et in [77) [19]
pour affiner résultats d’unicité. Cependant son utilisation dans la théorie de la convergence de
Becker-Doring vers Lifshitz-Slyozov est nouvelle, & notre connaissance. Passons maintenant au
résultat.

Soit (f¢, L) la solution du systéme Becker-Doring ODE ([2.14), et soit (f, L) la solution
‘mild’ du modéle de Lifshitz-Slyozov . Nous introduisons des notations pour les queues de
distributions :

Flta) = [ s Fta) = [ Faa, (2.29)
et nous introduisons leur différelﬁce :
E(t,x) = F(t,x) — F(t,x). (2.30)
Nous énongons maintenant notre théoréme principal :

Theorem 2.5.1. Soit T > 0. Supposons qu’il existe une constante Cinix > 0 telle que pour tout
e>0, / |E(0,z)|dx < eChinit. Supposons également que les hypothéses (H1)-(H9) soient vraies.
Ry

Alors il existe une constante C(T) > 0 telle que pour € > 0 assez petit et pour tout t € [0,T] :

|L5(t) — L(t)] +/ |E(t, z)|dz < eC(T).
Ry

Nous donnons quelques détails sur le fonctionnement de la preuve. Nous commencgons par
une observation simple, tirée de [77},[19], qui stipule que la différence entre les quantités de lipides
externes peut étre controlée par la différence des queues, |L=(t) — L(t)| < fRJr\E(t,x)\dx. Pour
avoir des limites appropriées sur la queue, nous utilisons le lemme de Gronwall. Ceci est fait en
dérivant I’équation pour F*¢ et F (Lemma. Pour ce faire, nous devons considérer a part le
cas & < £/2 car il donne des termes aux bords qui doivent étre traités differemment. Cela permet
a son tour une premiére borne sur 'intégrale fR+ |E(t, z)|dz. Ensuite a partir de I’équation sur F'
on obtient 1’équation sur E (Lemme . On procéde en bornant les termes dans I’estimation
de fR+ |E(t,x)|dz. En particulier, nous pouvons montrer que F° résout une équation similaire a
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F a quelques termes d’ordre € prés. Cet argument repose sur un controle uniforme de la solution

=

du modeéle de Becker-Doring redimensionné et de ses incréments cf, | — 5.

Les hypothéses - sont classiques dans ’étude de notre modeéle. Cependant, d’autres
hypothéses sont moins courantes mais découlent naturellement du résultat. Comme nous tra-
vaillons avec des solutions ‘mild’, nous avons besoin d’une régularité supplémentaire sur les taux
de lipogéneése et lipolyse. Cela est da au fait que les termes d’ordre supérieur qui apparaissent,
qui sont ceux que nous voulons regarder pour choisir une diffusion, sont des dérivées du second
ordre. Cela implique ’hypothése . Naturellement, nous exigeons que la condition initiale
soit bien préparée. En particulier, certaines propriétés sont propagées, d’ot les hypothéses
et . De plus, 'hypothése nous permet d’avoir la positivité stricte de L® en temps fini,
uniformément en e. Considérant que si ce n’était pas le cas, le terme diffusif du second ordre
serait mal posé, cette hypothése est naturelle. L’hypothése (H9) sur la condition initiale cg’o est
technique et garantit que la bonne condition aux bords est satisfaite & tout moment.

Enfin I’hypothése sur fR+\E(O,x)|dx est faite pour conclure aprés avoir utilisé le lemme de

Gronwall & la toute fin de la preuve. Cette hypothése relie les conditions (c‘f’o)izo et fV. Un
choix logique pour la condition initiale (¢;"%);>¢ est ¢&'° = f9(ie) pour tout i > 0. Afin de vérifier
I’hypothése sur la condition initiale, nous supposons que f° diminue exponentiellement vers 0 &

linfini et (f°) € L*(Ry,xzdz). Cela donne :

/RJE(O’@"W = /R+I / () - )yl

< /]R+ 2| fO¢ (z) — fO(z)|dx o)
€/2
§Z£§x|f0(i5)—f0(x)|dx+/() 21 £900) — £0(2)|dz.

Maintenant, ’hypothése que f° diminue exponentiellement vers 0 & l'infini nous permet de
couper l'intégrale précédente en deux parties. Il existe donc une constante p > 0 telle que

L TP )y < / " yexp(—puy)dy = ) exp(-pu) (2.32)

xT

Alors prendre = — In(e) nous donne qu’il existe une constante C telle que fixin(e) yfO(y)dy <
eC. Nous savons maintenant qu’il existe des i € N tels que —In(g) € I'Y que nous notons I.

En particulier, I, = L%(E)W Cela nous permet de diviser la somme (2.31)). Pour ¢ < I, +1
on utilise le développement de Taylor et le fait que (f°) € L'(Ry,xdx) alors que les termes
au-dessus de I. + 1 sont bornés en utilisant le choix de I, :
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I.+1

€/2
z)|de = z|fO(ie) — fO(z)|dz z|f(0) — fO(z)|dx
[ ez =3 [ a1 = @t [ al0) - @l
+ Z/ax|f0 ie) — fO(x)|da

i>I+2

s+1 e/2
S [ o5y @lan s 5 [y @ar
I.+1

Z/ xda:+/ xzdz) + 2Ce

s§||<f Yl ) + 02 In(e)) +22C

Donc si on construit ¢ = fO(ie), les conditions suffisantes sur f0 pour sont : f0
diminue exponentiellement vers 0 & linfini et (f°) € L*(Ry, xzdz).

Enfin, nous soulignons que notre résultat utilise le fait qu’il existe une solution aux deux
modéles et prouve la convergence de I'un vers ’autre, alors que les résultats classiques n’utilisent
que lexistence de solutions & BD et montrent la convergence vers une fonction a valeurs mesure
qui est une solution faible de Lifshitz-Slyozov. Donc le résultat classique est aussi un résultat
d’existence pour les solutions faibles de Lifshitz-Slyozov.

2.5.3 Convergence stochastique

Notre motivation pour étudier le modeéle de Becker-Déring et construire un modéle similaire pour
les cellules adipeuses est d’avoir une intuition sur la forme que pourrait prendre un modéle diffusif
Lifshitz-Slyozov. De plus, nous nous intéressons particuliérement & montrer certaines bornes sur
la distance entre les solutions du modéle de Becker-Déring et les solutions du modéle diffusif
de Lifshitz-Slyozov (2 Cela s’est avéré particulierement difficile en utilisant les idées de la
convergence classique et le résultat de convergence que nous avons présenté précédemment était
un premier pas dans une autre direction mais n’a pas encore été fructueux. Néanmoins il existe
aussi des résultats sur la convergence de Becker-Doring vers Lifshitz-Slyozov mais dans un sens
probabiliste. Dans I’esprit de ces résultats, nous nous intéressons a deux modéles stochastiques de
la dynamique de la taille d’une cellule adipeuse, basés sur les modéles Becker-Doring et Lifshitz-
Slyozov que nous avons introduits dans la section 2.4 Ceci conduit aux résultats suivants,
inspirés du résultat classique de Kurtz in [74]. Nous faisons ’hypothése supplémentaire :

a et b sont des fonctions continues bornées. (H10)

Nous énongons notre résultat :

Theorem 2.5.2. Supposons que X et Z. soient les solutions des équations (2.25) et ( - et

que les hypotheéses (H , et (| soient vérifiées. Alors pour ¢ assez petzt et pour T > 0,
il existe une constante 57 dépendant uniquement de T, a et b telle que :

sup E[1X.(0) — Z.(t)]] < 87 ln(L). (2.33)
te[0,T) €

Nous faisons quelques commentaires sur ce résultat. Premiérement, le résultat initial dans [74]
implique des particules dont les taux de saut dépendent de la position de la particule elle-méme.
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Dans notre cas, c’est aussi vrai mais en plus, & travers L~ et LZ, cela dépend aussi de son
espérance et donc de sa loi. C’est la principale difficulté de la preuve. En particulier, cela nous
empéche d’obtenir une convergence presque sire comme dans [74] et nous obtenons a la place
une convergence L',

Nous donnons quelques détails sur le fonctionnement de la preuve. Le schéma général est
trés similaire & [74]. Nous utilisons d’abord un résultat de [72], ou nous bornons la différence
entre un processus de Poisson compensé et un processus de Wiener et le module de continuité
de Levy du processus de Wiener [87]. Le résultat final est obtenu par une utilisation appropriée
de l'inégalité de Jensen et du lemme de Gronwall.

Ensuite, nous assouplissons I’hypothése et considérons les taux sous-linéaires :

1l existe deux constantes positives C, et Cj telles que
pour tout > 0, a(x) < Co(1+ ) et b(z) < Cp(1+z). (HI11)

Ensuite, nous montrons le résultat suivant :

Theorem 2.5.3. Supposons que X, et Z. soient des solutions des équations (2.25) et (2.28) et
des hypotheses (H1), (H3) et (H11) pour tenir. Alors pour ¢ assez petit et pour certains T > 0,
il existe une constante 87 dépendant uniquement de T, a et b telle que :

sup E[| X () — Z:(1)]] < ﬁTsln(l). (2.34)
t€[0,T] €

La preuve de ce résultat est trés similaire & celle du théoréme La principale différence
est de diviser ’étude de la norme L' en fonction d’un temps d’atteinte d’une grande taille x :
T, = inf{t > 0|X.(t) > x ou Z.(t) > x}. Le cas t < 7, est traité de la méme maniére que le
premier résultat, puisque dans ce cas les taux peuvent étre bornés en utilisant ’hypothése (H11)).
Pour le cas ¢ > 7,, nous utilisons des bornes brutes qui sont ensuite raffinées par un choix
approprié de la taille  qui dépend de e.

2.5.4 Reésultats numériques

En plus des résultats théoriques précédents, nous utilisons les schémas numériques et
décrits précédemment pour étudier les propriétés de nos modéles. Dans un premier temps on
retrouve numériquement la convergence vers un état stationnaire. Dans un deuxiéme temps,
nous montrons que notre modéle peut récupérer la propriété de bimodalité des distributions des
cellules adipeuses. Cependant cette propriété est fortement dépendante des paramétres et nous
montrons qu’en fonction du parameétre \ il existe tout un continuum de solutions stationnaires
qui présentent différents types de modalité. Pour de faibles quantités de lipides totaux, seules de
petites cellules sont présentes et la distribution a un maximum global & z = 0. Pour de grandes
quantités de lipides externes, la solution stationnaire est composée uniquement de grandes cel-
lules et ressemble & une distribution gaussienne centrée sur une grande valeur de x. Entre les
deux, nous récupérons la propriété bimodale. Les valeurs de lambda prises pour obtenir ces com-
portements vont de 0 & 15, mais les valeurs associées de L' ne vont que de 0 & 0, 1. Ceci doit
étre cohérent avec le fait que chez un individu, la quantité de lipides sanguins doit rester & un
niveau constant non toxique et qu’un apport excessif de lipides est stocké dans le tissu adipeux.
Un exemple du résultat du schéma est donné sur la Figure et les différents comportements
des solutions stationnaires sont illustrés sur la Figure 2.5

Nous nous intéressons également & comparer numériquement le modéle de Lifshitz-Slyozov
usuel au modeéle diffusif Lifshitz-Slyozov. Cependant, cela s’avére difficile pour plusieurs raisons.
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Figure 2.4: Résultat du schéma numérique : une distribution bimodale obtenue par le
schéma. et calculée explicitement. Le résultat du schéma ¢*Y™P! et la solution stationnaire
calculée explicitement ¢%'3* sont superposés.

Premiérement, nous observons que pour des paramétres similaires, la solution stationnaire du
modéle diffusif ne correspond pas & 'approximation asymptotique d’un schéma UpWind pour
le modéle de Lifshitz-Slyozov usuel. Nous sommes malheureusement incapables de calculer ex-
plicitement des solutions stationnaires au modéle de Lifshitz-Slyozov avec nos choix de taux et
nous nous appuyons donc sur ’approximation numérique asymptotique pour faire notre com-
paraison. Nous observons que le modéle diffusif peut présenter une bimodalité alors que le
modéle habituel montre une unimodalité pour des paramétres similaires. Cela peut s’expliquer
en regardant les positions des zéros de la vitesse v. En effet en regardant les courbes caractéris-
tiques , on peut voir qu’elles atteignent un état stationnaire ssi v(X(s;¢, ), L(s)) = 0. Par
conséquent, pour le modéle de Lifshitz-Slyozov , nous nous attendons & ce que la distribution
se concentre sur les zéros de la vitesse. Le cas ou la vitesse a un zéro a été étudié dans [18] ou
ils montrent une concentration vers une masse de Dirac située au zéro de la vitesse. Le cas des
zéros multiples est & notre connaissance une question ouverte pour le modéle de Lifshitz-Slyozov.
Pour le cas de la modélisation adipeuse, nous observons que la vitesse a deux zéros attractifs,
nous nous attendons donc a ce que la distribution se divise entre les deux zéros dans un temps
long.

En ce qui concerne les simulations stochastiques, nous montrons que les modéles stochastiques
sont tous deux capables de récupérer les différents types de distributions stationnaires, voir
Figure Dans l'esprit du Théoréme on obtient une borne d’ordre €1n(e) pour la norme

empirique L' entre les deux solutions des Equations (1.71)) et (2.26)), illustrés dans la Figure
La norme empirique L' est calculée comme sup > Zij=0|X§’N(t) — ZEN ().
t<T ’

2.5.5 Estimation de paramétres

Dans le Chapitre[5] nous présentons un travail soumis sur estimation des paramétres du modéle
diffusif constant Lifshitz-Slyozov en collaboration avec Chloé Audebert, Anne-Sophie Giacobbi,
Magali Ribot, Hédi Soula et Romain Yvinec, ainsi comme estimations supplémentaires pour le
modeéle diffusif Lifshitz-Slyozov.

Nous avons précédemment essayé des méthodes d’estimation trés basiques telles que la de-
scente de gradient et les méthodes des moindres carrés. Ces méthodes n’étaient souvent pas
concluantes et nous avons cherché une méthode plus robuste capable de résoudre des problémes
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Figure 2.5: Différents types de solutions stationnaires : & gauche on trace l'inverse de
la fonction ¢ : L — L+ [~ aMp(x)de. L'inverse ¢! est tracé car la valeur réelle que nous
pouvons modifier dans le modéle est A et non LS. Certains points sont mis en évidence qui
correspondent & quatre types différents de solutions stationnaires : unimodal gauche (vert),
bimodal (rouge), unimodal central (jaune) et unimodal droit (noir). Pour chaque couleur, une
solution stationnaire est tracée a droite dans la méme couleur, avec sa vitesse en dessous. On
peut observer que pour chaque type de solutions stationnaires les modes sont situés prés des
zéros de la vitesse comme attendu, sauf pour le cas unimodal droit, ou la vitesse est positive sur
tout le domaine et donc la distribution est transportée vers la frontiére x,,, du domaine.

plus difficiles. Une premiére méthode que nous avons utilisée était le calcul bayésien approximatif
(ABC). Cette méthode utilise une loi a priori pour chaque paramétre et génére une loi a poste-
riori en utilisant la probabilité bayésienne. Les résultats de PABC étaient cependant difficiles &
interpréter sans une analyse appropriée de sensibilité et d’identifiabilité du modéle. Ceci est fait
dans Chapter [5

Nous avons donc choisi d’utiliser la méthode CMA-ES. Cette méthode est robuste en ce qui
concerne les problémes non convexes et non linéaires et n’a pas besoin de calculer de gradi-
ents. Comme nous manquons de résultats théoriques sur notre probléme de minimisation, cette
méthode est bien adaptée car elle peut étre utilisée dans un cas trés général.

Le modeéle diffusif constant Lifshitz-Slyozov est écrit en rayons pour ce travail au lieu de
lipides mais la forme générale du modéle reste la méme :

f(t7) + 0. (u(r, L) f(t,7)) = DO2(F (2, 7)), (2.35)
2
L(t) + / (V) = Vo) o2 f(t, r)dr = A, (2.35D)
Ry Viipids
ou V(r) = 3mr3 et la vitesse est définie comme v(r, L) = a(r) Lim — b(r), qui est similaire &

la vitesse de Lifshitz-Slyozov model (2.13]). Les fonctions a et r sont données par :

AVipias ~ p° L

a(r) = 47 34+ p3 L4k’

B+ yr? V(r) -V
2 V(r) = Vo + VipidsX

Remark. On peut passer de I’Equation (2.13a) & I’Equation (2.35a) sans le terme de diffusion,
et inversement via le difféomorphisme x — r(x)? a constante multiplicative prés.

b(r)

Les inconnues du modéle sont «, L, k, p, x et D. Nous effectuons d’abord une analyse d’identifiabilité
des paramétres.
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Figure 2.6: Deux types de modalité pour les deux modéles stochastiques avec la dynamique de
L. On obtient une convergence vers la solution stationnaire correspondante du modéle diffusif
de Lifshitz-Slyozov.

Le modéle ([2.35)) est reparamétré avec 6, = L%Ln En utilisant la Structural identifiability
Toolbox de Maple [2], nous montrons que le modéle est identifiable sous cette reparamétrisa-
tion. Ensuite, nous utilisons la méthode CMA-ES sur des données synthétiques générées a ’aide
de solutions stationnaires de . Nous montrons que la méthode fonctionne bien méme en
censurant les petits points de données, ol trois paramétres sur quatre sont bien estimés, voir
Table La censure des petits points de données est étudiée car, selon la configuration de la
machine lors de la collecte des données, le rayon minimal mesuré est différent, d’ou la nécessité
de censurer certaines données. Ensuite, la méthode est utilisée sur des données de 32 rats, ou
nous montrons la capacité du modeéle & récupérer la forme bimodale particuliére des distributions
et une estimation des parametres identifiables, voir Table 2.2l Cependant le nadir, le minimum
entre les deux modes, n’est pas parfaitement reproduit, voir Figure Ceci est étayé par
I’analyse de sensibilité, qui montre qu’aucun des paramétres n’a d’influence significative sur le
nadir. Néanmoins, nous obtenons une estimation du taux de surface de lipogenése qui est d’un
ordre de grandeur similaire au taux de surface de lipolyse. De plus, nous montrons que pour
des rayons supérieurs a 20 um, la lipolyse est principalement un mécanisme basé sur la surface,
comme in [119].

La derniére partie du Chapitre [5] est consacrée a I'application de la méthode CMA-ES au
modeéle diffusif Lifshitz-Slyozov (2.35).

Nous utilisons la méme re-paramétrisation que dans la premiére partie, mais nous n’avons
pas pu montrer que cette re-paramétrisation est identifiable pour ce modéle. Néanmoins, nous
récupérons des valeurs de paramétres dans le méme ordre de grandeur que dans la premiére
partie, voir Table 2.3] avec une légére amélioration de l'ajustement du nadir en censurant les
grands points de données, voir Figure [2.9]

2.5.6 Résumé des résultats principaux

Résumons briévement les principaux résultats de ce manuscrit chapitre par chapitre. Le chapitre[6]
est consacré a un travail réalisé lors de ’école d’été CEMRACS 2022, et ne concerne pas la mod-
¢élisation des cellules adipeuses. Il est donc présenté indépendamment dans la Section [2.6
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synthetic data set 1 10,000 samples samples > 10um
parameter order true | esti. value esti. £20% select. values | esti. value esti. £20% select. values
01 1072 9.60 | 9.61 7.69 - 11.53 9.58 - 9.63 | 9.62 7.70 - 11.54 9.59 - 9.65
p 102 1.50 | 1.50 1.20 - 1.80 1.47-1.53 | 1.49 1.19 - 1.79 1.46 - 1.52
03 103 2.18 | 2.17 1.74 - 2.60 2.05-2.29 | 2.09 1.67 - 2.51 1.91-2.29
04 1073 7.37 | 7.20 5.76 - 8.64 6.54 - 8.02 | 7.35 5.88 - 8.82 6.58 - 8.32
synthetic data set 2 10,000 samples samples > 10um
parameter order true | esti. value esti. £20%  select. values | esti. value esti. £20% select. values
01 1072 9.92 | 9.92 7.94 - 11.90 9.90-9.95 | 9.91 7.92 - 11.89 9.86 - 9.95
p 102 2.00 | 2.00 1.60 - 2.40 1.97-2.03 | 2.01 1.61 - 2.41 1.99 - 2.05
03 103 3.27 | 3.12 2.49 - 3.74 2.69 - 3.58 | 5.39 4.31 - 6.47 4.32 - 6.47
04 1072 1.11 | 1.12 0.90 - 1.34 1.05-1.21 | 1.12 0.90 - 1.34 0.98 - 1.28

Table 2.1: Plage de valeurs sélectionnées pour les paramétres. Les trois premiéres
colonnes indiquent les noms des paramétres, 'ordre et la valeur vraie. Pour chaque ensem-
ble de données, la valeur estimée du paramétre (colonne “esti. value’) avec la méthode CMA-ES
est sujette & une variation maximale de 20% (colonne “esti. =20%" ). A partir de cette variation,
une plage de valeurs est sélectionnée pour chaque paramétre (colonne “select. values”) permet-
tant un taux d’erreur maximum de 0.1% sur la valeur de la fonction de cotit estimée £. Pour
chaque paramétre, 1000 d’échantillons sont générés

parameters | mean std RSD
0, 9.610=2  2.810~*% 0.03
) 1.57102 0.2510%  0.16
05 2.24103 1.0710%  0.47
04 8211072 2581072 0.31

Table 2.2: Estimation des paramétres avec les distributions de taille des adipocytes
mesurées chez le rat. La premiére colonne contient les noms des paramétres. Sur 32 estima-
tions avec les différentes distributions de taille des cellules animales, la moyenne est présentée
dans la deuxiéme colonne, 1’écart-type dans la troisiéme colonne et la quatriéme colonne est
Iécart-type relatif c’est-a-dire le rapport de l’écart-type sur la moyenne. Les paramétres sont
estimés avec ’algorithme CMA-ES de la fonction fmin2 du package Python cma (avec 100 esti-
mations initiales).

parameters | mean std RSD
0./ 2.9010~T 5.0010~3  0.02

) 1.97102 297101 0.15

X 84510~* 1.53107% 1.81

€ 9.951073 4.111073 0.41

Table 2.3: Résultats sur des données censurées de grande taille. Estimation des
parameétres avec les distributions de taille des adipocytes mesurées chez le rat : moyenne, vari-
ation standard et variation standard relative. Pour comparer l'ordre de grandeur a Table 2:2]
nous avons que 3 est d’ordre 102 et 63 = XVipids 01l Viipides st de I’ordre de 109,

72 of



2.5. RESULTATS PRINCIPAUX

N =1000, A =3.5

Empirical L'-norm
= N I g ot y
(S [=} wt [=} (S (=}
A ! ) A ) A

—_
(=]
L

T T T
0.05 0.10 0.15 0.20 0.25 0.30 0.35
—eln(e)

Figure 2.7: Illustration numérique du théoréme [2.5.3| : norme L' empirique entre deux

solutions d’équations (1.71)) et (2.26)

Chapter [3]: [A Lifschitz-Slyozov type model for adipocyte size dynamics : limit from|
|Becker-Doring system and numerical simulation|

e un nouveau modeéle de Lifshitz-Slyozov du second ordre (2.16]) pour la distribution en taille
des adipocytes avec un terme de diffusion dérivé d’un modéle discret,

¢ deux modéles Becker-Doring et Lifshitz-Slyozov avec une vitesse inhabituelle (2.7)) -(2.9)
avec trois zéros et un terme de saturation en L, ce qui conduit & différents types de solutions
stationnaires,

¢ une loi de conservation supplémentaire (2.12)) par rapport aux systémes classiques, imposant
des conditions aux bords inhabituelles, voir Eq. (2.15)),

e un nouveau résultat de preuve de convergence de solutions de Becker-Doéring vers des
solutions de Lifshitz-Slyozov, en utilisant des queues de distributions, qui fournit une borne
supérieure sur la vitesse de convergence,

e des résultats numériques montrant que des distributions bimodales, ainsi que des profils uni-
modaux, peuvent étre obtenus asymptotiquement avec system (2.16)), selon les paramétres,

e résultats numériques explorant I'influence du paramétre € et comparant le terme de diffusion
du systéme (2.16) avec un coefficient constant de temps et d’espace,

e résultats numériques montrant que le systéme du second ordre (2.16) fournit un profil
asymptotique universel qui ne dépend pas de la condition initiale (mais seulement de A, m),
contrairement au systéme du premier ordre (2.13).

Chapter [4] : [A stochastic approach to adipose cell modeling]

e deux modéles stochastiques : la CTMC deBecker-Déring (2.25) non linéaire et la SDE de
Lifshitz-Slyozov (2.28]). Les deux modéles sont inspirés des modéles déterministes Becker-
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Figure 2.8: Comparaison des données du modéle. Quatre exemples (sur 32) de distributions
de rayons d’adipocytes (en pm) sous forme d’histogrammes chez le rat dans des conditions
physiologiques normales et la sortie du modéle calculée (lignes pointillées) avec des parameétres
estimeés (voir Section . Les estimations des paramétres sont effectuées avec ’algorithme
CMA-ES du package Python cma en minimisant la fonction £ eq.
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Figure 2.9: Comparison model-data. exemple de distributions de taille dans les lipides sous
forme d’histogrammes et de sorties de modeéle (lignes pointillées) calculées a partir des résultats
de la méthode CMA-ES censurant les derniers 20 % des données.

Doring et Lifshitz-Slyozov pour la modélisation des cellules adipeuses,

e un nouveau résultat de convergence pour les modéles stochastiques, basé sur les travaux
de [74], pour des taux bornés de lipogenése et de lipolyse,

e une extension de ce résultat de convergence au cas des taux sous-linéaires.

Chapter [5] : [Parameter estimation and some additional numerical results|

e une analyse d’identifiabilité structurale sur le modéle de Lifshitz-Slyozov diffusif constant
en rayons ([2.35) qui montre que sous une re-paramétrisation, le modeéle est identifiable,

e une estimation de parameétre sur le modéle diffusif constant Lifshitz-Slyozov (2.22)) a I’aide
de la méthode CMA-ES. Nous sommes en mesure d’estimer le taux de surface de la li-
pogenése et de montrer qu’il est d’'un ordre de grandeur similaire au taux de surface de la
lipolyse.

e une estimation de paramétre sur le modéle diffusif Lifshitz-Slyozov en utilisant la
méthode CMA-ES. Nous récupérons des paramétres du méme ordre de grandeur que dans
le cas de la diffusion constante et montrons que ce modéle capture mieux le nadir de la
distribution.

Dans le Chapitre[7 nous présentons une partie des travaux en cours pour la modélisation des
cellules adipeuses ainsi que les perspectives de ces travaux.

2.6 CEMRACS

Au cours du mois d’aofit 2022, j’ai eu 'opportunité de participer & la Summer School du CEM-
RACS. Cela s’est accompagné de 'opportunité de travailler sur un projet pendant 5 semaines.
Ce travail a été réalisé en collaboration avec Olivier Bernard, Mickael Bestard, Thierry Goudon,
Sébastien Minjeaud, Florent Noisette et Bastien Polizzi. Nous présentons ici succinctement
les objectifs et la méthode de ce travail puisqu’il sort du cadre de la modélisation des cellules
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adipeuses. Nous renvoyons le lecteur au chapitre [6] pour plus de détails. L’objectif de ce travail
était de réaliser des simulations numériques pour un modéle de biofilms. Les biofilms sont un
consortium d’organismes unicellulaires intégrés dans une matrice extracellulaire qui proliférent
sur une surface. Les exemples de biofilms vont du microbiote & 'intérieur de I'intestin aux micro-
algues a la surface ou sur les rochers. Ce modéle décrit I'interaction des cellules & 'intérieur du
biofilm avec sa matrice extra-cellulaire et un milieu liquide. Ces trois composants sont décrits
par leur fraction volumique et leur vitesse. Ainsi, les fractions volumiques totalisent un. L’un
des objectifs de ce projet était d’adapter un schéma numérique de [I3] capable de préserver
la contrainte sur la somme de la fraction volumique au niveau numérique. Ce schéma a été
développé pour des écoulements multifluides : différents types de liquides qui sont dans la méme
phase. Nous montrons que le schéma numérique que nous utilisons est capable de maintenir la
contrainte au niveau numérique, voir Figure Nous obtenons le modéle d’onde progressive
attendu, voir Figure [1.12] et ajoutons divers substrats qui jouent potentiellement un role dans
la croissance du biofilm.
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Figure 2.11: Fractions volumiques des composants du mélange pour différents temps.
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Chapter 3

A Lifschitz-Slyozov type model for
adipocyte size dynamics : limit from
Becker-Doring system and
numerical simulation

3.1 Brief introduction

In this chapter we introduce the work titled “A Lifschitz-Slyozov type model for adipocyte size
dynamics : limit from Becker-Déring system and numerical simulation”[90]. We briefly go over
what the article contains. The main theoretical result is the proof of theorem 1.5.1. We also
present some numerical result using the well-balanced scheme introduced in section The
article is slightly edited for ease of reading and continuity within the manuscript. This work is
submitted and small editions were made for ease of reading in the manuscript.

Abstract

Biological data show that the size distribution of adipose cells follows a bimodal distribution. In
this work, we introduce a Lifshitz-Slyozov type model, based on a transport partial differential
equation, for the dynamics of the size distribution of adipose cells. We prove a new convergence
result from the related Becker-Doring model, a system composed of several ordinary differential
equations, toward mild solutions of the Lifshitz-Slyozov model using distribution tail techniques.
Then, this result allows us to propose a new advective-diffusive model, the second-order diffusive
Lifshitz-Slyozov model, which is expected to better fit the experimental data. Numerical simula-
tions of the solutions to the diffusive Lifshitz-Slyozov model are performed using a well-balanced
scheme and compared to solutions to the transport model. Those simulations show that both
bimodal and unimodal profiles can be reached asymptotically depending on several parameters.
We put in evidence that the asymptotic profile for the second-order system does not depend on
initial conditions, unlike for the transport Lifshitz-Slyozov model.
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Figure 3.1: Example of the distribution of adipocytes in a rat biopsy. Credits : H. Soula

3.2 Introduction

White adipose tissue is mainly composed of cells, called adipocytes, which store lipids in the
body under the form of triglyceride droplets. Experiments in most animals [66} [67, 118] show
that the size distribution of adipocytes follows a striking bimodal distribution with a large peak
for small adipocytes around the minimal radius, see Fig. [B:] The changes in volume of an
adipocyte are governed by two opposite phenomena : lipogenesis, that is to say size increase by
triglyceride intake, and lipolysis, that is to say size decrease through the hydrolyze of triglycerides
and the excretion of fatty acids. Modeling the dynamics of size evolution of adipocytes is of great
interest in order to study metabolic disorders, such as obesity or type 2 diabetes. Correlation
between such diseases and the size and metabolism of adipose cells has been well established in
the biological literature. Indeed, in [128], authors show that the size of an adipose cell has a
strong correlation with its insulin sensitivity. As such, large cells are less sensitive, therefore a
higher body weight leads to greater risks of type 2 diabetes. This study also shows that adipose
tissue are very heterogeneous in terms of size of cells. Those findings have also been described in
[80], where the authors show that the adipose tissue is composed of cells that are different both
molecularly and phenotypically.

Some computational models have also been used to provide insights into the adipose tissue
physiology. In [71], the authors use an ODE model to investigate the role of lipases in the
biochemistry of lipids. They are able to show that determining the active metabolic subdomain
in the tissue is the key for accurate simulations, as well as the different activation rates of lipases
for diglyceride and triglyceride breakdown. The rate of lipid turnover has also been studied in
[8], where a decrease of the lipid release rate is correlated with the age of the individual. Finally,
there are strong links between the adipose tissue and its extracellular matrix, and in case of
obesity, one may observe tissue fibrosis such as described in [36]. In [I00] 10T], adipose tissue
is modeled by a 2D agent-based model which takes into account the mechanical interactions
between adipose cells and fibers forming the extra-cellular matrix. The authors study the spatial
distribution of adipocytes under the form of lobules or in the case of tissue regeneration.

However, only a few mathematical models have been proposed in order to describe the size
dynamics of adipose cells and no previous work has tackled a mechanistic understanding of the
bimodal feature of adipocyte size distribution.

A first model has been derived by Jo, Periwal et al. in [68][67] using a PDE for the adipose cell
growth with a phenomenological cell growth rate. They are able to recover the bimodal feature
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of distributions as well as to perform some curve fitting on biological data. In [118] and later in
[119], the authors describe the velocity of size change of adipocytes by biological considerations
for lipogenesis and lipolysis, leading thus to some transport PDE models. They obtain bimodal
distributions by using stochastic variations of the parameters. In [46], the authors perform the
analysis and numerical simulations for a size-structured model describing the evolution of a set
of adipocytes, including the creation of new adipocytes through differentiation processes from
mesenchymal cells and preadipocytes, and accounting for a size velocity inversely proportional to
the total surface of adipocytes. Finally, in [104], authors use an ODE model to investigate inter-
play and feedback loop between inflammatory response of bigger adipose cells and the immune
system, which may lead to type 2 diabetes. The size of adipocytes is updated at each time step
according to some probability of swelling and by a factor depending on the surplus of calories
intake. However they do not concern themselves with the size distribution but with the whole
tissue inflammation and the body weight dynamic.

3.2.1 Transport equation for adipocyte size evolution

Following the work in [II8], we first describe intake and release of lipids trough the cellular
membrane, thus describing how the size of an adipose cell evolves. This will in turn allow us to
build a model based on continuity equations.

Our first assumption will be the correlation between the amount of storage in an adipose cell
and its radius. Cells shall be considered as spheres of a certain radius r, and the amount of lipids
in the cell is denoted by x. Let us denote by r(z) the radius of a cell containing « amount of
lipids, by Vg the volume of an empty cell and by Vj;piqs the molar volume of triglycerides.

We express the total volume of the cell in two different ways and we obtain the following
relation:

4
Wipiasz + Vo = 57”"(95)3,

which leads to :

3

@) = (Vi 4 V3)) 1)

We also denote by L the amount of external lipids in the medium.

Henceforth, x will be considered as the size of our cell. Its variation ﬁ—f depends on two flows
: the intake of lipids by the cell from the medium and the release of lipids in the medium. As
those two flows go through the membrane of the cell, they should be surface limited. We will
also consider fast diffusion of the lipids in the medium so that the amount of lipids available for
each cell is the same.

The intake term is a product of three factors :

e a term for a surface limited flow ar(x)?, where the constant « is the rate of this flow ;

e a Hill-like term with a radius cutoff p to describe resistance toward indefinite intake of
. p"
lipids ——— ;
P @y
e a term that accounts for the available amount of lipids in the medium, in the form of a
L
Michaelis-Menten term T x with a saturation effect when the amount of external lipids

K
L is large, with x giving the order of magnitude of the threshold.
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The release is a product of two terms :

e a term with a basal level of release 3 and a surface limited flow yr(z)?, where the constant
v is the release equivalent of the constant « ;

e a Michaelis-Menten term for the available amount of lipids in the cell %, where  is
T X

the equivalent of k for the release.

dz
The variation T can therefore be expressed as the difference between intake and release as :

dz 2 P 2y L

— = — _— 3.2

i el S CRR LR Py (32)
intake release

We can now build a transport equation for the distribution f(t, z) of adipose cells by amount
of lipids « > 0 at time ¢. According to Eq. (3.2)), the transport velocity will be given by :

v(z, L) = a(x)L i i b(x), (3.3)
where
a(z) = ozr(x)zr(x)in_'_ T (3.4)
and
bo) = (5 -+ () (3.5)

Consequently, the function f satisfies the following transport equation :

O f(t,x) 4+ Oy (v(x, L) f(t,2)) =0, x>0, t>0. (3.6)

We now need to describe the behaviour of the available amount of lipids in the medium L. As
per our assumption, the total quantity of lipids in our system, denoted by A, should be constant.
There are two types of lipids in the system : the ones contained in the cells, and the lipids in
the medium and we therefore have the following equality :

L(¥) Jr/R xf(t,z)de = A. (3.7

Another hypothesis is that the number of adipocytes does not change in time. Thus, in
regards to boundary conditions, we want to preserve the total population number and therefore
we impose that :

f(t,x)de = fO(z)dx = m for all t > 0. (3.8)
Ry Ry

This leads for Eq. (3.6) to boundary condition
(v(z, L(t))f(t,x))‘xzo =0, forallt>0. (3.9

Notice that by Eqgs. (3.4)-(3.5), we have (0) = 0 and «(0) > 0. Hence, the boundary conditions
(3.9) is equivalent to the Dirichlet boundary condition :

ft,x)|,_, =0 forall t>0. (3.10)
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To sum up, the transport model for adipose cells with initial conditions (f°, L?), that will be
called first-order Lifshitz-Slyozov model in the following, reads as:

atf ) ( ( (t))f(t,.%‘)) =0, (3-113)

—I-/ ft,z)de = A, (3.11Db)
(v(z, L) f(t,2))],_y = O, (3.11¢)
f(0,z) = fO(x) and L(0) = L°. (3.11d)

3.2.2 New models for adipose tissue dynamics

In this subsection, we present the various models under consideration in this article. Starting
from the description of lipogenesis and lipolysis as done in Eq. and following [118§],
we build size-structured PDE model following the framework of Becker-Déring system [10] and
Lifshitz-Slyozov equations [84] initially derived for polymerization.

The aim of this model is to reproduce the adipocyte size distributions observed experimen-
tally and their bimodal structure. However, the transport equation possesses asymptotic
solutions as a linear combination of Dirac masses centered on the zeros of the asymptotic speed.
To recover the bimodality, we are therefore lead to introduce a diffusion term in the equation :
we can either add a diffusion term with a constant rate with no real biological meaning, or we can
compute a time and space dependent diffusion term coming from the discrete nature behind the
Lifshitz-Slyozov formalism [57, [129]. For that purpose, we come back to a Becker-Doring system
of ODEs giving the evolution with respect to time of the number of adipocytes with discrete
sizes and from this, we derive a second order Lifshitz-Slyozov equation with a diffusion term.

Therefore, in the following, we will consider three different models for the size distribution of
an adipocyte population, namely

e the ODE system (3.13) with discrete sizes, a variant of the Becker-Doring model.

e the previously published transport equation (3.11)), also called first order Lifshitz-Slyozov
equation,

e the transport-diffusion equation (3.17)), the second order Lifshitz-Slyozov equation.

In all three models, the lipogenesis and lipolysis rate will be given by Eq. and (B.3),
respectively.

Note that we impose in all three models two conservation laws: (i) the conservation of the
total amount of lipids and (ii) the conservation of the total number of adipocytes. Therefore,
all these models have a constant population number and are coupled with a lipid conservation
equation which ensures that the sum of the lipids in the external medium and the lipids inside
the cells is constant.

A brief insight in Becker-Doring and Lifshitz-Slyozov equations

Becker-Doring equations have been introduced in [I0] to model polymers undergoing aggregation
and fragmentation. The Lifshitz-Slyozov model was introduced in [84] and first used for nucle-
ation in super-saturated solid solutions and polymerisation processes. A rigourous treatment
of the mathematical properties of the Becker-Doring equations was given by [9]. The relation
between Becker-Déring equations and Lifshitz-Slyozov model goes back to [98]. For a detailed
review of both models, see [58] and references therein.
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Let us explain briefly the idea of these models for polymers. We denote by ¢;, the amount of
polymers containing ¢ monomers for ¢ € N* and hence ¢; stands for the amount of monomers.
A polymer of size ¢ denoted p; can gain one monomer and grow to p;+1 with rate a; or lose
one monomer and shrink to p;_; with rate b;. We may write as a system of ODEs for the time
evolution of the number of polymers ¢;, one for each size 7. Furthermore, the total amount of
monomers, i.e free monomers and monomers within polymers, is assumed constant, which leads
to a conservation equation. Stationary solutions of the Becker-Déring equations can be easily
computed, and long time behavior has been characterized by [9].

Another possibility for the modeling of polymerisation-fragmentation processes is to describe
continuously the size of polymers through a variable x € R. The distribution of polymers of size x
at time ¢ is therefore denoted by f(¢, ) and the quantity of monomers at time ¢ is denoted by L(t).
The distribution is classically transported as in Eq.(3.6) with speed v(z, L) = a(z)L(t) — b(z)
where a(z) is the rate of polymerisation for size & and b(x) is the rate of depolymerisation for
size x. As previously, the total amount of monomers is conserved. Depending on the sign of
a(0)L(¢t) — b(0), boundary conditions should be provided for the system, see [35] for example.

After an adapted rescaling, it has been shown in various papers [34] 135, [78, [92], 110, 129] that
the solutions to Becker-Déring system tend to the solutions to Lifshitz-Slyozov model. Formally,
the limit up to second order can be considered and gives rise to an advection-diffusion equation
as computed in [57,[129]. Existence of solutions is widely known for both models, see the seminal
paper [9] for the Becker-Déring model and [19] B3] for the Lifshitz-Slyozov model.

Remark that Becker-Doring and Lifshitz-Slyozov equations have already been used in various
contexts, for example modeling of biological phenomena, such as prions [39, [79] [115], [106], [54]
or modeling in oceanography, see [132] 62].

A Becker-Doéring model for adipose cells

Now, let us explain how we adapt this formalism to derive new models for adipocyte size dynam-
ics. The purpose of this construction is to investigate the classical convergence theorems from
Becker-Doring to Lifshitz-Slyozov and deduce the form of a diffusion term to add in our model.

We mention the main differences with the classical Becker-Déring and Lifshitz-Slyozov sys-
tems for polymerisation. First, velocity , arising from biological considerations, possesses
three zeros for a well-chosen range of parameters which leads to bimodal asymptotic distributions,
whereas classical choices for ¢ and b are constant or power laws of x, which yields the existence of
a single positive root. See also [I7] for a polymerisation-fragmentation model without diffusion
giving rise to bimodal asymptotics. Second, in our model, external lipids L cannot be assimilated
to monomers ¢y and the conservation law is therefore not the same as in the usual polymeri-

sation models. Moreover, the saturation term is not common in polymerisation modeling.

K
Finally, our model conserves the total population number due to the boundary condition (3.11c)),
which adds an additional conservation law compared to the classical Becker-Déring model.

We shall now consider that an adipose cell is a bundle of smaller vesicles of typical size A.
Hence the size of a cell can be defined by the number of vesicles it contains. We denote by ¢;
the number of cells of size i and by [ the number of vesicles in the medium. A cell will aggregate
a new vesicle with speed a; M (l),where M(l) = 2= following Eq. (8.2), and loose a vesicle at
speed b;, following this reaction :

A +iA (i + 1)A.

bit1

Following the rescaling procedure described in the introduction, we define ¢ = (¢§);>0 and
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JE (%, L?) the flow of the previous reaction given by :
L .
JE (5, L) :aiLs—l—/{C? —bj 111,120, (3.12)
where af (resp. bf) are discrete counterpart of the continous function a defined at Eq.(3.4)) (resp.

b defined at Eq.(3.5))), see Sec|3.3|for more details.

Similarly as before, see Eq. (3.7)), L will satisfy an equation accounting for conservation of
the amount of lipids and we get the following ODE system :

de; 1

5 = S (L) = (e, ), Vi > 1, (3.13a)

Cff = L o), (3.13b)

LE(t) + iie%f(t) =\, Vt >0, (3.13¢)
1=0

LF(0) = L7°, &(0) =0, Vi > 1, (3.13d)

which is similar to Becker-Doring equations except for the definition of the flux Jf (saturing
fluxes of monomers), and the minimal size is 0 and not 1. Observe also that there is no ’boundary’
flux, thus the quantity

m=e Z 5 (t) is constant in time. (3.14)
i>0

This is the discrete analogous to the previous conservation of the zeroth order moment of
I

A solution to the previous system exists according to Theorem [3.3.1| recalled in Sec[3.3] Now
let us define the following step functions depending on both time and space :

Fo(ta) = 3 Lr (0)e5 (1),

i>0

where IS = [(i — )¢, (i + 3)e[, and (cf);>0 is a solution to (3.13).

Convergence of function f¢ when € — 0 towards a solution f of the Lifshitz-Slyozov equation
(3-11)) is a classical result, see Theorem recalled in Sec[3:3] In the present work, we prove
that a similar convergence result hold in a stronger topology, and with a control of the speed of
convergence, of order at least «.

To that, we introduce the tail distributions :

Fta) = [ T iy, F(ta) = / " )y

The main analytical result of this article is the following theorem, whose more rigorous
statement will be specified later in Theorem [3.4.1}

Theorem (Convergence of tails of distributions). Under some hypotheses detailed in Sec[3.5 and
there exists some constant K > 0 and some time T > 0 such that for all t € (0,T) and for
e small enough :
|LE(t) — L(t)] +/ |Fe(t,z) — F(t,z)|dx <eK.
Ry

This result provides a new approach for looking into convergence from Becker-Doring to
Lifshitz-Slyozov. Contrary to more classical results where convergence towards a weak solution
is achieved using Ascoli-Arzela’s Theorem, this theorem yields convergence towards mild solutions
and gives a bound of order € on the speed of this convergence.
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A second order Lifshitz-Slyozov model

Another goal in this article is to derive a new model with a diffusive term from Becker-Doring
system . One can see this diffusive term as a second order term emerging from the conver-
gence theorem There are various ways to yield this term, see for example [129], [110], [33].
The derivation of the diffusive term will be detailed in Section but we present the model
here for the sake of completeness.

The so-called second order Lifshitz-Slyozov model therefore takes the form of a transport-
diffusion equation, with a diffusive term which depends both on x and L(t), i.e. :

8hg + Oy (vg) = gag(dg), Vo >0,

where

d:(x,L) e Ry xRy = d(z,L) = a(zx) + b(x). (3.15)

L+k
We need to complement this PDE with adapted boundary conditions. Since we want the

conservation of the zeroth order moment denoted by / g(t,z)dx = m, we need to impose the
Ry
following null-flux boundary condition :

(—vg + %8w(dg))‘ =0 (3.16)

o=
Therefore, we consider the following system, which consists of the previous PDE and boundary
conditions, complemented by previous constraint (3.7)) and initial conditions for g and L :

Oug + 0 (vg) = S02(dg), (3.17a)
L(t) + /]R+ xg(t,z)de = A, (3.17Db)
( —vg + gax(dg)) ‘z:O =0, (3.17¢)
g(0,2) = ¢°(x) and L(0) = L°. (3.17d)

We provide interesting numerical evidence of stationary solutions of the advection-diffusion
model following a bimodal distribution. The numerical simulations are performed using
a well-balanced scheme developped in [51]. We also demonstrate that to observe a bimodal
asymptotics, parameters should be taken into an adapted parameter range.

3.2.3 Outline of the article

In Section we will give some preliminary results on the existence of solutions to systems
and . In Section we will show the convergence theorem thanks to the tail of distributions
technique. Then, in Section [3.5] we derive formally the second-order Lifshitz-Slyozov model, that
is to say system and we give the expression for its stationary solutions. In Section we
display some numerical results and we show that bimodality of the stationary solution can be
observed in well-chosen parameter range. Finally, we discuss our results in Section [3.7]

3.3 Preliminary results

In this section, we give the main already-known results of existence of solutions to systems (3.13])

and (3.11)) and convergence of solutions to system (3.13)) towards (3.11). Proofs have been easily
adapted to our framework.
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3.3.1 Existence results on Becker-Do6ring system

We consider first the Becker-Doring system (3.13)) for fixed e.
We assume that there exist some strictly positive constants A, B, C,, Cy, K., K; and
that for all ¢ > 0 :

a; < C, and b; < Cyie,

lai — aj ] < Kqe and |b; — b7, | < Kpe.
We define the state space for Eq. (3.13) by

“+oo

X = {z=(z:)iz0 €RY : szz < o0},

1=0

“+oo

endorsed with the norm |z|y = ) i|z;|. We denote > 0 if 2; > 0 for all ¢« > 0,
i=0

Xt :={z € X :2 >0} We give the following definition of solution to Eq. (3.13):

such

(H'1)

(H2)

and

Definition 3.3.1. Let T > 0 and ¢ > 0. A solution ( ¢, LF) of in [0,T) is a couple of a

unction : — R and a sequence of functions c® = (c§);>0, C;
function L€ : [0,T) — R and f f c
(i) For allt € [0,T), L*(t) > 0 and c°(t) € X,

(i) For alli>1, c; : [0,T) — R is continuous and supyc(o 1y [[¢*(t)| x < +o0,

(111) L¢ :[0,T) — R is continuous and sup |L°(t)| < +oo,
tel0,T[

t +oo t +oc
(iv) For allt € [0,T) / 5 (s)ds < o0 and/ becf(s)ds < 00,

(v) Forallt €[0,T), for alli>1:
i () = +1/0 [Ji1(c"(5), L7(s)) — Ji (¢ (s), L (s))]ds,

co<t>fc8°—1/ JE((s), L°(s))ds,
t +00
L LsO /ZJE 5 Le ))d

[0 T) — X such that :

Well-posedness of solutions to (3.13)) as defined at Def can be shown by finite dimensional

approximation, using the method developped in [9] :

—+oo
Theorem 3.3.1. Let T > 0 and e > 0. Let L*° € Ry et &0 € X such that L*° 4 Y. ie?c;” =

=0

A < oo. Assume that (H'1)), (H’2) hold true. Then there ezists a unique solution (¢, L) to
(3.13

Becker-Doring system
&9 and L#(0) = L=0.

85 of

in the sense of Def]3.5.1 which satisfies initial conditions ¢*(0) =



3.3. PRELIMINARY RESULTS

The uniqueness and conservation properties of the solution are obtained using the following
proposition that will be needed later on, see Sec[3.5] In particular, the following proposition
states that any solution of the Becker-Doring system preserves the first two moments for
all times, and provides the starting point to compute any admissible moments for the solution
of the Becker-Déring system. In [9], we can find the following Theorem 2.5 that we reproduce
here for the reader’s convenience :

Proposition 3.3.1. Let (¢;)i>0 be a given sequence. Let (c*,L%) be the solution of (3.13) on
0,7), 0< T < +cc.

ty OO
Assume that for all 0 <t <t2 < T, Z |pit1 — pilaici (t)dt < oo and that either of the
t1 =0
following holds :
to OO0
(a) ¢; = O(i) and / Z |pit1 — dilbf 1 ciyq ()dt < 00 or
t =0
(b) Zgﬁicf(tk) < oo, fork=1,2 and ¢;41 > ¢; > 0 for i large enough.
i=0
Then :

() [e'e) ty OO d)z . (ZSZ 5 E
Z pici(t2) — Z dic; (t1)+/ Z %bi-&-lci-&-l(t)dt
i=0 i=0 R

to OO
(P i —9 o L) .
= /t1 122; c a/i Le(t)+/§;ci (t)dt

3.3.2 Lifschitz-Slyozov system and classical convergence result

Even though we have precise forms for the intake and release functions, for the sake of generality
we make the following assumptions on functions a and b occurring in Eq. (3.3)) :

CL,b € Cl(R+aR+)v (H]-)
a(0) > 0 and sup |a(x)| = Cy, (H2a)
zeER4
, b(x)
[b(z)| < Cpx for all z € Ry and lim sup —= =0, (H2Db)
R— o0 >R

sup |d’(z)| = K, and sup |V (z)| = Ky, (H3)

TER TERL

with Cy,Cy, K4, K > 0. We first define measured-valued solutions to the Lifschitz-Slyozov

system (3.11)), following [33]

Definition 3.3.2. Given an initial condition (f°,L°) € C°(Ry) N LY(Ry, (1 + x)dx) x Ry, a
measured-valued solution to system is composed of two functions f € C(0,T; M*(0,0) —
weak — *) and L € C(0,T) such that for all 0 < t < T and for all ¢ € C*([0,T] x Ry) the
following relations hold:

T
/ / (Brsplt, ) + vl L(1))Duip(t,2)) £ (1, da) + / (0,2)1(z)dz = 0,
0o JRy

®
R
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L(t) +/R xf(t,dz) = \.

Now, let us state the convergence of solutions to Becker-Déring system towards solutions to
Lifschitz-Slyozov system. In order to compare solutions to Becker-Doring system to solutions
to Lifschitz-Slyozov system, we need to define the following piecewise constant functions. Let
I5 = [(i — 1)e, (i + $)e) and ¢§ be solutions to (3.13)), then we define

fota) =Y e (2)c (1), (3.18a)

i>0
a®(z) = Z e (z)ag , (3.18Db)

i>0
b(x) = Lre ()b, (3.18¢)

i>1

where we assume that :

a; = a(ie) and b = b(ig), for all ¢ > 0 and € > 0. (H4)

Given our definitions in Eq. (3.18)), from Proposition and with ¢; = [... ¢(x)dz, we de-
duce the following proposition, that is the starting point to study the convergence of the solution
of the Becker-Doring system (3.13)) towards solution of the Lifshitz-Slyozov equation (3.11).

Proposition 3.3.2. Let ¢ € L°(R). Then for every t > 0, we have the following equality :

h € —Exx:too xaexL(t)— )b (z)) f(t, z)dx
| o@a) - ro.ma = [ Ao e) 25 - Aottt @) () daar,

where
¢z +e) —d(z)

€

Acp(z) = (3.19)

Finally, we obtain the following convergence theorem from the Becker-Doring equations to
the Lifshitz-Slyozov equations, as in [129]:

Theorem 3.3.2. Consider an initial condition (L, (c5°)i>0) and the corresponding solution

(L, (c§)i>0) in the sense of Definition[3.3.1 We assume that there ezists a constant K > 0 and
0 < s <1 such that :

€,0 2 : g0
o L5V 42y ic; = A,
i>0

0
e s> " <K,
i>0

o Y (ie)' 5 < K.
i>0

We also assume hypotheses [HI] - [H] to hold. Then there exists a sequence £, and a solution
(f,L) to (3.11)) in the sense of Def. such that :

fer— f, xfer — af in C°(]0, +o00[; M0, +00) — weak — *),
L#» — L uniformly in C°([0,T)).
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Now, let us consider the existence of mild solutions to (3.11)). For that purpose, we first define
the characteristic curves.
Assume L € C°(R,) to be given. The characteristic curves associated to (3.11)) are solutions

to :
{8SX(3;L‘, x) = v(X(s;t,2), L(s)),
X(t;t,z) = .

Since v is C' in both z and L, the characteristics are uniquely defined and form an ordered
family. We denote I; , their maximal time interval and by X.(¢t) = X (¢;0,0) the characteristic
curve that is equal to 0 at time 0. Then, a mild solution to system (3.11)) is given by the following
definition :

Definition 3.3.3. Given a smooth initial condition f° and L € C°(R,), a mild solution of

O f + 9 (v(z, L(1))f) =0,
(v(@, L(t)f(t,2))| o = O,
£(0,2) = (=),

s given by :

F(te) = P(X(0s1,2)) exp (— / axv<X<s;t,a:>7L<s>>ds) Lix. .00 (3):

A couple (f,L) is said to be a solution of - iff f is a mild solution associated to L and
L :Ry — R, solves L(t —|—fR xf(t,x)dz = X for all t > 0.

Remark. Since we impose null-flux boundary conditions on this system : v(x, L(t)) f(t, 2)|z=0 =
0, there is no term involving ‘incoming characteristics’ 1o x 1)) (z).

We follow the proofs in [33] and [19] and we obtain in a straightforward way the expected
existence and uniqueness result :

Theorem 3.3.3. Given an initial condition (f°,L°%) € C°(R.) N LY (R4, (1 + x)dx) x Ry and

assuming hypotheses (H1|)-(H3)), Lifschitz-Slyozov system (3.11)) has a unique solution on the
interval [0, T] in the sense of Defl5.5.3

Note that the mild solution given by Theorem [3.3.3]is also a weak solution in the sense of
Definition [3.3.2 see [19], and under hypotheses (H1)-(H3)) both definitions coincide.

3.4 A new convergence result from Becker-Doring to Lifschitz-
Slyozov equations

In this part of our work we introduce a different way to see the convergence from the Becker-
Doring equations to the Lifschitz-Slyozov equations. Using tail distributions allows to reduce the
non linearity of our system by pulling the speed of advection outside of the space derivative. Tail
distributions were also found to be useful to obtain a quasi comparison principle in [22] and to
obtain refined uniqueness properties in [77, [I9]. The main idea is to use results on the tail of the
distributions to show convergence. Finally, we note that out result uses the fact that a solution

to system ((3.11) exists while the previous result also shows existence of solution of (3.11]), by
(3-11)

showing a convergence to a measure valued function which turns out to be a solution of (3.11
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Let (f¢,L?) be the solution of the Becker-Déring ODE system (3.13) and Eq. (3.18]), and
let (f, L) the mild solution of Lifshitz-Slyozov equations (3.11). We recall the tail distribution
definition,

Fita)= [ ftoddy.  Fta) = [ Fto, (3.20)
and introduce their difference
E(t,xz) = F¢(t,x) — F(t,x). (3.21)

We introduce the following additional hypotheses to use in our main theorem :

sup |a” (z)] < +oo and sup |V (z)| < +o0, (H5)
ceER 4 zER
Sl = 6 < oo, (H6)
>0
€ Zi|cffl — & < +o0. (H7)
i>0
There exists some constant L > 0, such that iI>1f(; LY > L. (H8)
€
There exists some constant K > 0 such that sup cg’o < K. (H9)
e>0

We now state our main theorem.

Theorem 3.4.1. Let T > 0. Suppose that there exists some constant Ci,iy > 0 such that for all

e >0, |E(0, z)|dz < eClinit. Also assume that hypotheses (H1)-(H9) hold true. Then there
Ry

exists some constant C(T) > 0 such that for € > 0 small enough and for all t € [0,T] :

LE(t) — L) + /}R \B(t,2)|dz < =C(T).

The proof proceeds as follows. Taking inspiration from [77, 19], we first note that owing
to the total population number conservation, the lipid terms can be controlled by the tail,
|LE(t) — L(t)] < fR+ |E(t,z)|dz. The control on the tail relies on a Gronwall’s lemma argument.
For that purpose, we derive the equation followed by F¢(¢,z) (Lemma . We point out
that the case © < /2 has to be treated separately due to remaining boundary terms. This
allows us to give a first estimate on the integral fR+ |E(t,z)|dz. We then make use of the mild
solution formulation to derive the partial differential equation followed by F' and in turn the
one followed by E (Lemma [3.4.6). The proof follows by bounding the terms in the estimate
on fR+|E(t,x)|dx, and in particular we show that F°(t,x) satisfies the same equation as F' up
to an order £ (Lemma . To this end, the key argument relies on refined estimates of the
difference between the first order derivative of F*°(t,x) and its discrete analog. This estimate
needs uniform control on the solutions c¢; of the Becker-Déring system and their increments
¢541 — ¢§ (Subsection [3.4.1} Lemmas to , which is new, up to our knowledge.

Hypotheses - (H4)) are classical in the study of our model. However, other assumptions
are less common but arise naturally from the result. Contrary to the classical convergence result,
we work with mild solutions of the Lifshitz-Slyozov system. Hence, we need proper bounds on
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second order terms. We shall see in Section 3.5 that those terms lead us to the second order
Lifshitz-Syozov model. Nonetheless, those terms involve second order derivatives of both a and
b which leads us to hypothesis (H5). Hypotheses and simply tell us that the initial
condition for the Becker-Doring system must have finite zeroth order moment and first moment
increments. Lemma [3.4.4] shows that this property propagates in time. Additional assumptions
have to be made to obtain our main theorem. The assumption on the initial condition
L#0 is necessary since it leads to strict positivity of L® in finite time, uniformly in e. The
assumption on the initial condition cg’o is technical and ensures that the proper boundary

condition (3.11c) is satisfied for all times. Finally the assumption on / |E(0,z)|dx is made to
Ry

conclude after using Gronwall’s lemma at the very end of the proof. This assumption relates both

initial conditions (¢;*);> and f°. A fair choice for the initial condition (¢;"*);>g is ¢ = fO(ie)

for all i > 0. Then the assumption is verified as long as (f°) € L}(R,, zdz).
In all this section, we assume that hypotheses (H1) - (H9) hold true.

3.4.1 Preliminary results on Becker-Doéring system

We start with a lemma that allows to control the lipid term away from 0, in the lines of previous
results from [19].

Lemma 3.4.1. A solution (L®,c%) of (3.13) with A > 0 verifies that there exists C > 0 such
that for all t > 0,
inf Lf(t) > Lexp(—Ct). (3.22)
€

Proof. For all t > 0, we have, using the three first equations of system (3.13]) :

deft(t) =) J(EW, L) =—) (aflf(;(iﬁcf(t) — b5 e +15(t)>

i>0 i>0

L= (t)
> 27 E et
- Ls(t) +H€i>0 a’lcz (t)7

and thus, because sup |a(z)| = C,, and - < L[ :

oER, Le+k — K
dL=(t . teo
®) > —C—LE/ fe(t, x)dx
dt K —e/2
+oo
and by conservation of the moment (3.14), fet,x)de =¢ Z ¢ (t) = m,
—</2 i>0
dLe(t) C’amLE
dt  — K ’
We conclude by Gronwall’s lemma and using Hypothesis (HS). O

We next state a lemma adapted from [35] that allows to obtain pointwise estimates of the
density f¢ near the boundary, through the uniform propagation of exponential moments. For
x €Ry and t > 0, let

He(t,x) = ci(t)e ™ .

i>0
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Lemma 3.4.2. Let v € RY. Then there exist some constants K >0 and €* > 0 such that for
all) <e<e*:

He(t,z) < H5(0,z) + K for all t > 0,
and in particular :

foralli>0, sup sup c(t) <& < +oo. (3.23)
0<e<e* t€[0,T]

Proof. Using Lemma [3.4.1} and the assumption (H8) on L(0), we have that 1I>1% 1(nfT] LE(t) >
e>0te(0

Lexp(—CT). Thus we can find a constant ¢ > 0 such that :
g
inf inf Li(t) >
e>0te(0,T] LE(t) + K

Now we choose 6 > 0 such that ¢ > 24. Us1ng Taylor s expansion, we have a(ie) = a(0) +
(0
€)

ica’(0) + O((i€)?). Then with hypotheses (H2b) and ( and for € small enough, we find that
a(ie) > 2 (a(0) — ieK,) > 0. Therefore we have that for e small enough :

1 0
Vi< 2 alie) 2 % (3.24)
In turn, by hypotheses (H2a)), (H2b|) and (H4), we have that for £ small enough and for all
1
P < —
< ﬁ
b b
-+ = (ie )§20b\@ — 0.
a: ~a(ie) = "a(0) o

Let z € R% . Hence, one can find €* > 0 such that :
bZ

sup sup || <de
e<er i< a;

This gives us that for £* small enough, € < ¢* and 7 < %:

Le(t b5
G R Y S S | (3.25)
Le(t) + Kk af
Now we proceed with the bound on H¢ using Eq.(3.13)) and (3.12) :

COH (1) = (7" —1) Y} JE(c) e

i>0

=(e""-1) szz;(t) —ageg(t) + ;“ LsL(E)(t) - dew)cf(t) e '

Now we split the sum on the right depending on ﬁ with ¢ small enough as before. Note
that since x > 0, we have that (e7” —1) < 0. The first sum is treated using (3.25) and the

bound :
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e0 H (t,x) < (e7% —1) [2dagcq(t) + —6 Z e i e Z bics(t)e ™

2>Lﬁj+1

The term in ¢{j and the first sum are combined and using our choice of 4, it yields :

0) & )
25aoco()+“7azc§(t)e—“z“75 He(to)— Y (e ™
i=1 i>[ = ]+1
Hence :
€O H (t,x) < (1—e™%) %0)5 —H(ta)+ > Et)e ™ | 4ot Y bie(t)e ™

i>| 2= ]+1 i>[ = |+1

Observe that for € small enough depending on z, for all ¢ > Lﬁj, we have :

(5@ +e"b)e ™ < K(Cy + Cp)(1 +ie) e ™ < Ke,
which leads to :
e HE (t,x) < % (e =1)H®(t,z) + (1 —e ")Km.

We conclude by using Grénwall’s lemma and K = 21{(8”)” and (3.23) follows immediately. [

A direct consequence of Lemma [3.4.2] is the following refined estimate on ¢j which shows
that at the limit € — 0, the density f¢ vanishes at the boundary, in agreement with the limiting

boundary condition (3.11c):
Lemma 3.4.3. There exist constants Cy,Cy > 0 such that for € small enough and for all
€ (0,77 :
£ —%1t £,0
cg(t) <e =ty +eCs. (3.26)

Proof. As in the proof of Lemma [3:4.2] there exists ¢ small enough such that :

deg(t) _
dt

thanks to hypothesis (H’1). Now applying Grénwall’s lemma, we obtain :

SO0 — a5y 46 (0) < G — “acie)

_a()st _ € _ a0
cgt) <e "= ¢5(0)+ C’bclm c 5t)

which gives the desired result. O

b

~

We end this section by a last lemma that will be useful to control the first spatial derivative
of F=.
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Lemma 3.4.4. We have, for all T > 0, and for £ small enough,

supZ|chrl —cE|(t) < oo, (3.27)
t<T >0
supeZi\c?_H — () < 0. (3.28)
t<T

Proof. Let u; = c;; —c; and let’s estimate its time derivative. Then, for all ¢ > 1, we have from

Ba.(8.13) and Eq.(3.12):

%: LE(t) af_lu_ _af_l—afcé_aiu__afﬂ—afcg
dt L) +r\ e £ Lot € G
be be,y + bS b,y b5pq — bEys
B (!“i B Bt B
:qu(ua Lf) — Ji (u, L7) Le(t) aj_1 — a?u- (% I Aiy1 — a5 &
£ Le(t) + K € ’ € € i+l
BE. . _bE BE . b bEL. —bE
+ 71“6 “Uip1 + < 1+1€ Lo Al - 1+2) Cita-

We multiply the previous expression for ¢ > 1 by sign(u;) on both sides, which gives :

laj_y —2aj +ai 4| .

dlu| _ Jii(lu], L7) — Ji(Jul, L7) . a7 — 4f]
9

= 6 |uil + - i1
b, — b b5, o —2b5 1 + b5
+ | z+18 7 | |Ui+1| + | i+2 Ez+1 7 | Cf+2-

Hence, thanks to hypotheses (H3) and (H5) and Lemma [3.4.2] there exists ¢ small enough such
that for 7 > 1:

dlu| _ Jizi(lul, L7) = Ji(Jul, L7)
dte — €

Hlla' ool il +ella” oo pr + 16 llsc i1 [+ [[b[looci 2. (3-29)

Now, for i = 0, we obtain :

duo:_ljg(uLE)—ai_ag L°®) e, a5 L°() . 507

by
dt € € Lf(t)+ncl ?Lf(t)JrncO €

€ £
2 — —C1-
€

Since b§ = b(0) = 0, we can treat the remaining terms in b as before by adding and removing
the right terms for free. The terms with ¢f are bounded using Lemma [3.4.2] and the one with c§
using Lemma Hence, there exists ¢ small enough such that :

1 € 5 - a(0) _c =
I T N e ) A I A 1

d|uo|
dt

We sum the previous estimates for all ¢ > 0 and we get :

d _ o a(0) _a
= Juil < (0 [lso IV ]ls0) ZIW|+(||a”||oo+||b”||oo)626f+lla’llw01+ﬁe =t 5" +a(0)Co.

dt 4 ‘ X €
>0 >0 >0
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We integrate the previous inequality over [0,¢], for 0 <t < T :

S hul() < 31l + (e + 19c) [ Sl

i>0 i>0 i>0

0
+(Ja e+ 10 Joo)nT + 5250 + (@(O)Ca + e T

And finally Gronwall’s lemma yields :

Slual(t) < Culr)
i>0
with
0) . )
= | S hd )+ (oo 10T+ 5+ (a(0)C + o o) T)

>0

x exp(([la’lloo + [16'[lc) T,

which gives Eq. (3.27).
Using the definition (3.13c)) of A, estimate (3.29)) and hypothesis (H’1]), we obtain the following

inequalities :
< |U| zs(|u‘) / b . " X 2 . £
Z i EZ +e(ld oo + 16'1lo0) D dluil + (0" [lo + [0 ]ls0)e® > ic
1>1 i>1 i>1 >0
< TE(ul) + (e lloo + 16 s0)e > dluil + (la” oo + 16 [loe) A
i>0 i>1
< Ca D Juil + (lla' oo + 1V [lse)e Y ilus] + (la” oo + 15" [loo) A-
i>0 i>1

Integrating over [0,¢] and using the previous bound on Y |u;|, we conclude using Gronwall’s
i>0
lemma :

e iuil(t) < | €D iuil(0) + CaCul )T + ([la” lloo + 16" llo)AT | exp((lla’lloo + [18'l|)T),

i>1 i>1
which yields Eq. (3.28). O

3.4.2 Proof of theorem 3.4.1]

In this section, we make use of the lemmas from the previous section. As such, from then on, ¢
is taken small enough to apply those lemmas. We first derive the equation satisfied by the tail
distribution F*© defined at Eq.(3.20). Recall that operator A, is defined at Eq.(3.19).

Lemma 3.4.5. For all x > % andt>0 :
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L(t) c
mA_EF (t,x)

x+e
F2 [ 0FW) ~ H)F ()dy + (o) AF (1) (330)

o(tr) =~ [ (0" i o — ) gy e ) o)

andforallx<%andt20:

c I A L ()
O F (t,f)—g/ a (y)m

—£
2

x+e
Flww-2 [ Fertoy 6

2

Remark. The function f is defined on [—5,+oco whereas f is defined on R . However we will
only concern ourselves with x € Ry in the following subsections. Hence we will treat the case
x < &/2 independently to accommodate for boundary terms that might be left off from f€. We
also point out that :

+oo
/ Fo(t,2)de = m — (%) (3.32)
0 2

Owing to Lemma|[3.4.3, the right hand side is bounded and tends to m as e — 0.And for the
first order we have an exact computation :

Le(t) + /0+<>° zfe(t,x)dx = A (3.33)

Proof. For all x € R and ¢ € [0, 7], it comes directly from the definitions (3.19) and (3.20) that
the following equations hold true :

for all x > 0 and ¢t > 0,

x+e
1
and for all z > % and t > 0,
1 xr
APt =2 [ ity (3.35)

Denote H, = 1[; ;o). First observe that :

1
Aan<y) = (]l[z,+oo) (y + 5) - ]l[a:,Jroo) (y)) = g]l[:rfe,x) (y)a

1
A_.H, (y) = - l[ar,x-&-s) (y)

Then we use Proposition for the Heaviside function. It yields that for all x >
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:/ﬂh (AEHAy)aE(y)W—A ()b <>) F2(ty)dy

* € T+e
- [ g e [ e

t)
_ é / we(ae(w Lfgﬁ —T L(f)@i ) F )y - a(x)m ALF ()
x+e
’%/ (b°(y) — b)) f*(t, y)dy + b(x) A F* (¢, z)

+oo
The case for x < § follows from simple computation, using that / fe(t,x)de = m by
—e/2
conservation of the moment (3.14)) :

+oo d

@F@mzéﬁif @——/ff y)dy = —(@+ 2) (0

=2 e v [ rwreow

2

O

We then derive an upper bound for the time derivative of fR+ |E(t, z)|dz, where E is defined
at Eq.(3.21).

Lemma 3.4.6. For allt > 0, we have :

G [ 1PN < (el 4 1) [ 1B+ [ 105 ) ol OO (2
+5a(0)2 (’;)(ﬁ)r (1)

(3.36)

Proof. From the definitions of the tail distributions in Eq. (3.20), the following equations hold
true :

0. F(t,x)=—f(t,x),
0. F°(t,x) = —f°(t,x), a.e. in R .
By Def[3.3.3] we have :

—+o0
+o0 [ Py)dy if 2 < X,(t),
Feo= [ P00 X0ty = |
max(z,X.(t)) X(O‘.f; 2 f (y)dy if x Z Xc(t)
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Therefore if © < X.(¢), then 0,F(t,z) = 0 = 0, F(¢t,x). And if x > X.(t), the following
expressions hold :

atF(t?x) = 7fO(X(07t7I))6tX(07t7x)v

0. F(t,x) = —fO(X(0;t,2))0, X (0;t, ) = — f(t, ).
By properties of characteristics we have : 9; X (0;t,x) + v(x, L)9, X (0;¢,2) = 0 and thus :

O F(t,x) +v(z, L(t))0, F(t,2) = —f°(X(0;t,2))(0; X (0;t, 2) + v(zx, L)0, X (0;t,z)) = 0.
We then compute :

8tE(t,$) = 3tFE(t,x) - 3tF(t,x)
= —v(x, L(t))0:(F° — F)(t,x) + 0 F° (t,x) + v(x, L(t)) 0, F(t, x).

We integrate the previous equality, we use the definition (3.3]) of v with hypothesis (H3) and we
find :

4 |E\da::—/ U&E\E|dx—|—/ sign(E)(0:F° + v(x, L(t)) 0, F®)dx
dt Jg, R Ry

= —[v(z, LO))|E(, 2)|]d>° + 0,v|E|dz + / sign(E)(0:F° + v0, F*®)dx

< 00, LB 0)| + (o'l + V1) [ [Blde+ [ (0P + 00, 5z
R, R,

L(#)

_ ’ ’ € € € o\
= (el + W) [ 1B+ [ 100 00, P+ Sa(0) 2

Ry Ry

co(t)-

The last equality is obtained since b(0) = 0 and |E(t,0)| = |/ (ff = Ht,z)dx| = gcg(t), see
Ry
Eq.(3:32). O

Thanks to the equation on F*¢ given by Lemma|3.4.5] we control the second term in Eq. (3.36))
in the next lemma.

Lemma 3.4.7. There ezist some constants C1,Co > 0 independent of € such that for all t €
[0,T]:

[(OLF® + v0, F®)(t,x)|de < eCy + Co|L°(t) — L(t)|. (3.37)
R
Proof. First by construction of both a® and b, and the fact that a and b are lipshitz continuous,
one has for all z,y € Ry such that |y — x| < e:

LEORLICIFPIN

and similarly for b°.
Then using equation (3.30) and definition (3.3)) of v, we find the following estimate for all
r >

oo
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€ € / v £ 1 a(x) £ * £ / vre £
|0:F° +v0, F°| < 2]la’|| oo fe+ i |LE(t) — L(t)] 426 | f
L(t) € 13 g 13

Using equation (3.31)), hypotheses (H’1) and (H2b) and Lemma (3.4.2, we find for all 2 < § :

o + oo, < | [ a2 yay - ale) e, )

LYW T +
r+e
HZ [ W - b (o)
< 15 200) i 0 = o) g b0 + 12 () - bl 0)
r+351

T+ 5

< a0 T2 L @) — L)+ late) — T 2a0)les (1) + ek () + Oy i)

1
< a(0)o~|L*(t) = L(1)| + (a(0) + S |’ll )6 + Cocie + Cu o

Now we can integrate |0, F¢ + v0, F¢| over Ry using the two previous estimates. Note that
using Fubini’s theorem and Eq.(3.32)), we have

a [ rwane= | Trew [ way= [T remas Sao

~% max(y.e/2) 2

—+o0
=/ et y)dy < em.
0

Therefore, we get :

/ |0:F° + v, F*|dx < e(2||a’]| o0 + 2||b'||oc])m + %Ms(t) — L(t)|m
Ry

+ ML”& /JFOQ|8IF6 — A_F¢ldz + /+Oo b(z)|0, FC — A FF|dx
L(t) +I€ % £

2

+

| ™

1 € €
(a(0)co—|L%(8) = L(#)] + (a(0) + S [lallc )0 + Cocre + Cy5c0)-
(3.38)
We now compute the difference between the continuous and discrete derivatives on F¢. We

denote by |z] the nearest integer function with the upper-rounding convention : [0.5] = 1.

Figure shows a representation of the cells I';_;, I'{ and I';,; as well as an example of the
result of [Z] for » € T§.

Let us first compute the integral of |0, F¢ — A_.F*¢|, using Eq.(3.35) and the fact that f€ is
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el2]
| SOV o T . |
ic | (i +1)e |
(i—3)e (i—3)e (i+3)e (i+3)e

Figure 3.2: Representation of the cells T';_;, I'; and I';, | and of the value | £] .

constant equal to ¢5(t) on the cells T'S :

“+oco “+o00 1 x
[ o - s [ |f€<t,x>—g | raags

£

oo q
- /g 7| (fa(t,{L‘) — f'f(t’y»dy'dx
+o0 «(l21-3)
o)L e - re
+o00 o e
:/5 |C€L§](t) _CT%]il(t”E('_a] )—(z—¢)

€
Now, observe that for all # € I'; one has ¢z () — ¢{=y_,(t) = ¢§(t) — ¢j_1(t), which gives :

=

dzx.

l _
/ |0, F¢ — A_€F5|dx—Z|c —c_q( |/ G 5)dyc
3 i>1
= 3l i ()
i>1

Hence, according to Lemma there exists a constant C(7') > 0 independent of & such
that :

+oo
/ 8, F° — A_ F¥|dz < eC(T). (3.39)

2

We proceed similarly for the term fRJr b(z)|0, Fe — A Fe|dx:

[e'e) x+e [e'e) T x+e
[ s -1 [ senaia= [T [T e - el

2

00 T T+e
:/ b()|/( (fe(t,x) — fo(t,y))dy|dx

5 & Jelzl+d)

= Z\CZ_H — ()] b(x)wdx.

i>1 rs

Owing to hypothesis (H2b|), we simply bound the last integral as follows :
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- -1 1
b(@wd <S ( L
e 6
Hence, according to Lemma [3.4.4] there exists a constant C(7") > 0 independent of £ such
that :
+oo € €
/ ()|, F — A Feldz < SO(T)(1+ ). (3.40)
We conclude from Egs. (3.38])-(3.39)-(3.40) by regrouping together terms not depending on e.
O

We now proceed with the proof of Theorem [3.4.1

Proof of Theorem[3.].1 Let T > 0 and consider ¢ € (0,7]. We begin by integrating (3.36) over
[0,], using Lemma :

t
Bt olde < [ [BO.0de + (@l + V1) [ [ 1BGs,2)ldads
R, o Jr,

R+

t
+ / |0:F® (s, 2) + v(xz, L(8)) 0, F* (s, x)|dzds + ga(O)TEO
o Jry

t
< / B0, 2)[dz + (|a oo + [¥']1o0) / / |E(s, 2)|dads
R, 0 JR,

t
+eTCy + 02/ |L5(s) — L(s)|ds + %a(O)Tc‘o.
0

Then observe that :

/]R+ afS(t,x)dx = /]R+ 2y e (2)cf (t)dw = Z/ wdacf (t) = Y iec (#).

i>0 i>0 >o

Using conservation equations (3.13c) and (3.7 and Fubini’s theorem, this leads to the bound :

IL°() — L(t)| = | Ooox<f€<t,x>—f<t,x>>dx| —| 0°°<Ff<t,x>—F<t,z>>dz| < [ 1B,

which finally yields :

L5(1) |+/ Bt 2 \dx<2/ B0, 2)|dz + 2([|a’ oo + [¥']]o0) / / (s, 2)|dzds

+2eTCy + 205 / ILE(s) — L(s)|ds + 2a(0) T,
0

By the assumption on E(0,z) and Grénwall’s lemma, we finally conclude that :

ILE(t) — L) + [ |E(t,2)|dz < 5(2qnit +20,T + a(O)Tc-O) exp(2(]|a||oo + [V [loe + C2)T).
Ry

O
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3.5 Derivation of second order model and stationary solu-
tions

3.5.1 A second-order Lifshitz-Slyozov model with diffusion

Up to this point we have studied a Lifshitz-Slyozov model, that is to say a transport PDE. How-
ever, this model leads to stationary solutions which are combinations of Dirac masses centered at
the zeros of velocity v. Hence, since we aim at obtaining asymptotically bimodal distributions,
we would like to add a diffusion term to our model in order to smooth the stationary solutions.
Unfortunately and up to our knowledge, no biological argument can be found to explain such a
diffusive term or to give a proper way of deriving it from biological considerations. Nonetheless,
one can see this diffusive term as a second order term emerging from the preceding convergence
result, see for example [129], [110], [35].

We follow here the derivation of the diffusive term presented in [129] and we use the notation
introduced at Section [3.4}

Now, from Proposition [3.3.2] we can add and subtract the appropriate terms in ¢ to get :

Oosx—‘gx T = L*(t) )b (x)) fé(t, x)dx
| ) = .00 // (Beo(x)a(2) D A o(@ () £ (. ) daat

Le(t) + 1
/ / ¢ +E ¢($—5)( 5( )[f(t)(il{_bs(x))fs(t’x)dxdt
+f// ¢x+€ —2¢(2 )+¢($_5)as(x)mf5(t,x)dxdt

/ / Po(z+¢) —2¢( )+¢(x_6)b€(x)f5(t,x)dxdt

L) o (e e
= [ [ Bstora @ s vt

// AZp(e)(a(x) L(;(t) +b%(2)) f° (¢, x)dwdt

where Ap¢(z) = LEHOE@N) anq A2 p(z) = St =200 to(z—h)
This leads us to study the PDE (3.17).

3.5.2 Stationary solutions for the second-order Lifshitz-Slyozov model

In this section, we present the stationary solutions of system without diffusion and sys-
tem with diffusion. We notice that stationary solutions are very different in nature from
one model to the other. Eq. does not yield nontrivial smooth stationary functions, and we
rather expect stationary solutions to be linear combinations of Dirac masses, located at roots of
the asymptotic velocity.

We can compute explicitly stationary solutions of system , namely :

Together with boundary conditions (3.16]) this leads to stationary solutions denoted by M7,
depending on stationary L.y € Ry under the form :
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C(ma Lstat) 2 /w U(y, Lstat)
Mg, () = ——""Sexp (f 7dy>, 3.41
Lo () d(, Lstat) e Jo d(y, Lstat) ( )
where the constant C(m, Lgtat) is determined in order to satisfy My, (t,z)dz = m, that is
R
to say ’
m

C(m, Lstat) =

1 2 * v(y, Lstat)
- 7 & - ————2dy |dzx
/]R+ d(fﬂ, Lstat) P (5 A d(ya Lstat) y)

and Lgi,¢ solves the constraint equation
Ltat + / Mg, (x)dz =\ (3.42)
Ry

Note that function & : L — L + / xMj (z)dx is continuous on R,. Moreover, straight-
Ry
forward computations show that thanks to expression (3.41) and expressions for a and b that

®(0)=0and ® et +00. Therefore, for all A > 0, there exists at least one value for L which
)

satisfies Eq.(3.42). Regarding uniqueness of stationary solutions, it would need to prove strict
monotonicity of ®, which is so far an open question. However, we may observe numerically that

the application & : L — L + foxma" x My (z)dx seems strictly non-decreasing, see Figure

15 4

0.00 0.25 0.50 0.75 1.00
L

Figure 3.3: Plot of function L — ®(L) for L € [107!2,1] with functions a and b defined at
Eq.(3.4) and (3.5) and parameters given at Table

Remark. In other modeling contexts, one may choose different functions a and b such that

existence of stationary solutions may not be true for all value of \. For example, a(x) =1 and

b(x) = z° with s < 1 implies lim+ ®(L) = Ao > 0. Hence for values of X\ such that A\ < Ao, the
L—0

system might not have smooth stationary solutions, see section[3.6.4 and Figures|[3.1]] and[3.15

In the following section, we will present some numerical simulations for system (3.17) and
control that stationary solutions My, . follow a bimodal distribution for well-chosen parameters.
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3.6 Numerical simulations

In this part, we use a finite volume well-balanced scheme introduced in [51] to approximate
time dependent solutions to Eq. (3.17). Afterwards, we explore numerically the solutions to
system for various sets of parameters. We also compare the Lifshitz-Slyozov diffusive
equation with the transport equation and with the transport equation with a con-
stant diffusive term. We will finally explore the case when 0 < XA < Ao = LILHOlJr ®(L) mentioned

previously in the remark of Sec[3.5.2]
Note that in this section, unlike the previous ones, we are working on a bounded domain
x € [0, Tmax] rather than on RT.

3.6.1 A well-balanced numerical scheme for system (3.17)

In the following, we will need to compute some approximations for the stationary solutions
Mrp.,.. since we need them in the well-balanced scheme, see later on. Moreover, it will enable us
to compare the asymptotic profiles with the stationary solutions in the numerical tests.

Let us recall that stationary solutions My, . are defined by an explicit expression given at
Eq. with Lgat satisfying constraint equation (3.42). Therefore, to compute this stationary
solution, a simple dichotomy method is implemented to find the solution to ®(L) = A, since
the application @ is increasing in the range of L that interests us, see Figure We use the
trapezoidal rule for the computation of the integrals.

Since we are interested in a conservative PDE, we use a finite volume scheme. We also aim
at capturing correctly stationary solutions and for that purpose, we implement a well-balanced
scheme introduced in [5I]. Let us detail the scheme here.

The scheme is based on a change of variables in the PDE to obtain a symmetric
operator. This will allow simpler calculations down the line. Denote Dy, the spatial operator in
the PDE, ie. :

Drg=0,F(g;z,L) = 893( —v(z,L)g + 0, (d(z, L)g)).
We recall that the stationary solution associated with the value L is given by :
C(m,L) “oy, L)
M = —— dy). 343
0= ey (/0 T D)) 349

This stationary solution satisfies Dy M; = 0 and we can rewrite the operator Dy in the
following way :

Drg =0, (d(x, L)MLax(MLL)).

Then we perform the change of variable h = \/J%TL and introduce the new operator Dy, which

is symmetric for the L? inner product :

1 1 h
ﬁDL(hM) = \/V—Lax (d(fﬂv L)MLaz(ﬁ))'

Note that we use an implicit discretization in time in order to avoid a constraining time step
for the diffusion operator.

Given a mesh of size Az > 0 in space, we discretize the interval [0, zmax] and consider
N cells C; = [x;_12,2j41/2], 1 < j < N centered at point z;, with z; = jAz and x4,/ =
(j+1/2)Az. We also introduce a time step At > 0 and the discretization times ¢, = nAt, n € N.
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We denote by i} an approximation of the average of function % on cell C; at time ¢, that is

to say hl ~ h(t,,z)dz. We also define M~ ; as an approximation of stationary solution

1
AJL‘ C;
My~ defined at Eq. (3.43) at point z; with L = L”, and D;L_H/Q as an approximation of diffusion
coefficient d(2;41/2, L™) at point 2,4/, with L = L™, see expression ([3.15).

We denote by F7',, , an approximation of flux d(z, L)Mp0,(

of cell C; at time ¢,,.
We therefore discretize Eq.(3.17a)) as follows :

) at the boundary ;12

h
VM

n n
i+~ N 1

_ noo_pn
I VN T P A C T
L (e YT
Ax\/m j+1/2 L j+14WLm 5 Az

. WA /M — B3 [/ Mpn
7D \/ML':LJML'!LJ'_l )

Jj—1/2 Azx

Tmax
Regarding boundary conditions, we want to preserve the zeroth-order moment / g(t, z)dx
0

/ ¢°(x)dx, which implies to use the following null-flux boundary conditions :
0

—v(a, L®)g(t,2) + S0u(d(z, L(B)g(t,2))lo=0.0p0c = 0.

In practice, those boundary conditions are implemented using ghost cells centered at points
—Azx and xyax + Az, and by setting the null-flux conditions Ffl/Q = FJ’\LH_l/2 =0.

In order to update the value of L, we differentiate Eq.(3.17b) with respect to time and we

discretize the equation 0;L = —/ x0g(t, x)dz, which gives:
Ry

N
L =L — Az ai(gf Tt — gi).
=1

This update leads to a restriction on the time step At to preserve positivity of L™*! as seen
in [51].

3.6.2 Numerical results

The previous numerical scheme enables us to explore the properties of system as a model
for adipocyte distribution evolution in time. Table presents the value of most parameters
for the simulations. Unless stated otherwise, these parameters shall be fixed for this section.
Concerning values of parameters, a few of them are chosen in accordance with biological ob-
servations. Viipias and ro have fixed given values. The value of v and § are taken from [I19].
Values of other parameters are chosen as to observe bimodal distributions. We refer the reader
to chapter [5] for further investigation into the values of those parameters.
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Parameter | Value Unit Description Related equation

o 0.7 | nmol h=1 ym~1! Lipogenesis surface limited flow rate Eq.(3.4
P 200 pm Lipogenesis saturation in radius cutoff Eq.(3.4
n 3 0 Lipogenesis saturation in radius power Eq.(3.4
K 0.01 1) Lipogenesis saturation in external lipid constant Eq.(3.4
I} 1 nmol h—! Lipolysis basal flow rate Eq.(3.5
vy 0.27 | nmol h™! ym~! Lipolysis surface limited flow rate Eq.(3.5!
X 0.01 0 Lipolysis saturation in internal lipid constant Eq.(3.5

Viipids 106 ﬂm3 Molar volume of triglycerides Eq.(3.1
70 6 pm Radius of an adipocyte without lipid Eq.(31]
€ 0.05 0 Diffusion scaling parameter Eq.(3.17a

Tmax 15 nmol Maximal lipid size of an adipocyte Sec.[3.6.1
N 10% 0 Number of discretization points Sec. [3.6.1

Table 3.1: Values of parameters for the model

Asymptotic behaviour of the second order Lifshitz-Slyozov system (3.17)

To begin with, we check that the asymptotic profile obtained with the time evolution of the solu-
tion thanks to the previous described scheme coincides with the stationary solution of Sec[3:5.2]

First, one may assume that given an initial condition (¢°, L°), the asymptotic behaviour of the
system is governed by the two parameters m and A. This means that given two initial conditions
(¢9,L9) and (g9, LY) such that m; = ma and A\; = )g, the stationary solutions are equal. In
Figure both initial conditions are Gaussian functions centered at z; = 1 and x5 = 3 with
my = mo and initial values L} and LY are chosen so that A\; = \y. We indeed observe that the
asymptotic profile is the same for these two initial conditions.

0841 A o
= ' \ g1
LSRN —= g
L‘a . gstat
,E) 04 T ., \_ gasympt
8 .’ ‘ almsympt
Z: 0.2 1 / I\ saaas 5
0.0 7 T \._'|_. T T
0 5 10 15
x
asympt asympt

Figure 3.4: Asymptotic profiles g{ and g5 , from two initial conditions (¢?,LY) and
(99, LY) such that m; = mg and A\; = \y. Parameters of the system are given at Table Note
that the stationary solution and the two asymptotic distributions are superimposed.

Bimodality vs unimodality

Since the main aim of the model we develop and study in this paper is to represent bimodality
of the distribution on the stationary solution, we check if we effectively find some parameter
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ranges for which we observe this behaviour. In particular, we investigate the dependency with
respect to A. Note that, since A is defined by expression , we change A by changing the
initial conditions L° and ¢°, in the case of time evolution of the system, or by changing the value
of L*2* when considering stationary solutions.

0.8 g
' —_—= 0
2 E ’\ I
748 0.6 1 ! , \ — gstat
- i , ‘ gasympt
M)
20241 22N
Z ’ : ,'r p \\‘
:-—"'/. \ ‘s~
0.0 =- e :
0 5 10 15
X

Figure 3.5: Distributions of adipocytes with respect to size, i.e. amount of lipids, starting

2\ 05

asymptotic profile (dotted yellow line) and stationary solution (black full line) both present
bimodality. Parameters of the system are given at Table

2
1 -3
with A = 3.5 and initial distribution ¢°(z) = Cexp [ —= (q: ) (in dashed blue line) :

0.8 1 t = 0.001 0.5 1
t = 0.00464
t = 0.0215 0.4 1
= 0.6 t=0.1
jﬁj . gstat
© < 0.3 1
%; 0.4 - q° 3
=
Z. 0.9 0.2 4
0.1
0.0 A
0 5 10 15 0.000 0.005 0.010
x t

Figure 3.6: On the left : time evolution of the size distribution with respect to size in the
bimodal case; on the right : time evolution of the external lipid concentration. We observe
that the asymptotic profile coincides with the computed stationary solution. Parameters of the
system are given at Table

In Figure [3.5] we plot densities of adipocytes as a function of size . It shows the result of
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2
the scheme starting from a Gaussian initial condition ¢°(z) = Cexp <—; (x();)> ) plotted
in dashed blue line and L° such that A = 3.5. The value of C is determined such that m = 1.
The stationary solution is denoted ¢**** = My __ - in black full line - and the final result of
the scheme at time ¢ = tyax is denoted g(fmax, ) and represented in dotted yellow line. tmax
is determined such that the relative difference between the size distribution g(¢max,-) and the
stationary solution M, is less than 5 x 1075. We can observe that bimodality is obtained for
the stationary solution as well as for the asymptotic profile of the adipocyte size distribution and
that there is a good correspondence between the two functions. Up to some numerical error of

Tmax

order 10712, both the initial number of cells m = / ¢°(z)dx and the initial amount of lipids

A are conserved, as expected. In Fig[3.6] we plot tl?e time evolution of the solution : on the left,
adipocyte density is displayed as a function of x for various times and on the right, the evolution
with respect to time of external lipid concentration L is plotted. We observe that L tends to a
stationary value and g to a stationary profile with bimodality as expected.

087 — t=0001 L0
t = 0.005
0.6 t=0.02 0.8
= — t=0.1
% gstat - 0.6 -
E 044 =- gO 3
g | / i \
E | 0.4
0.2 - 1y
) | ,l
0.0 ‘-
0 5 10 15 0.000 0.005 0.010
x t

Figure 3.7: On the left : distributions of adipocytes with respect to size, i.e. amount of lipids,

2
1 -6
starting with A = 7 and initial distribution ¢°(z) = C'exp —3 (xo 3 ) (in dashed blue line).

On the right : time evolution of the external lipid concentration. Asymptotic profile (dotted

yellow line) and stationary solution (black full line) both present unimodality. Parameters of the
system are given at Table

Now we may investigate the behaviour of the stationary solutions and the asymptotic profiles
with respect to A. A first crucial information is that depending on A, different types of modality
can be observed. Figure [3.7] presents a case where the stationary solution is unimodal, obtained

1 /2—-6
with initial conditions ¢°(x) = C exp <2 (05
L° such that A = 7. We remark that L also tends to a stationary value and densities converge
towards a stationary distribution with unimodality. Biologically, we can relate this to the fact
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3.6. NUMERICAL SIMULATIONS

that if the amount of lipids in the system is higher, cells have a tendency to put into storage
the maximum amount of lipids and thus cells are bigger in average. From a mathematical point
of view, since the optima can be linked to the velocity zeros, this means that for bigger A, two
of the zeros of speed V - and therefore two optima - disappear and thus only one zero remains
giving rise to a unimodal profile.

1.0 4

— ')
0.8 Yy left unimodal
’ e bimodal
central unimodal

= 0-6 7 X right unimodal
3

0.4

0.2

0.0 §

10.0 12.5 15.0

10 4 10 4
U.s- |; ) \s/\
0.0 4 - - : 0.0 418 )

~2500

1.0 A 1.0

0.0 44 - . t 0.0 -

0 1000 /
—=500 4
001 . . s 04 ;
5 5 5

x z

Figure 3.8: On top : plot of function A\ — ®~1()), the inverse function of the one displayed
at Fig[3:3] and type of modality of the stationary solution with respect to the value of A\. On
bottom : Normalized stationary solutions for different values of A, the stationary velocity as a
function of x is represented bellow each solution. Top left : left unimodal; top right : bimodal ;
bottom left : central unimodal ; bottom right : left unimodal.

More generally, we can investigate the profile modality with respect to the value of A\ using
the computation of stationary solutions. In Figure 3.8 on top, we present the type of modality
of the stationary solutions as a function of A. Left (resp. right) unimodality is labeled in green
Y (resp. in black x) when a single mode concentrated on the left (resp. right) of the domain is
observed. Central unimodal stationary solution is labeled in yellow + when the unique mode is
concentrated inside the domain. Bimodality is labeled in red dot.

In Fig[3:§ on bottom, a plot for each of the 4 types of modality is presented. On the top,
we represent the stationary solution My, with respect to x and on the bottom, we plot the
stationary velocities with respect to x. Four different values of Lgi,t corresponding to various A
are considered, namely L,y = 0.05 and A = 0.191 for the left unimodality (top left, in blue),
Lgtar = 0.075 and A = 3.52 for the left bimodality (top right, in green), Lgat = 0.1 and A = 9.96
for the central unimodality (bottom left, in yellow) and Ly = 0.2 and A = 14.9 for the left
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unimodality (bottom right, in black). For a biological interpretation, left modality is observed
when the amount of lipids is too low and thus cells are of relative small sizes. Right modality is
a consequence of the amount of lipids being too large and represents the whole cell population
approaching its maximal volume. A mathematical interpretation is given by again considering the
zeros of the velocity with an influence on the optima of the profile. Left (resp. right) modality is
reached when zeros disappear and/or go outside the domain from the left (resp. from the right).
The first mode in the bimodal case can also be localized at 0, the smallest zero of the velocity
being outside the domain (on the left).

Influence of ¢ and comparison with a constant diffusion rate D

1.0
----- e=0.05

= 0841t c = 0.0833
o
<064}t e=0.117
5 ---- ¢=0.15
<2 0.4 1
=
=
Z 0.2 1

0.0 T

Figure 3.9: Different stationary solutions depending on the value of . We observe that bimodality
holds for values of € small enough. Parameters of the system are given at Table

In this part, we explore the influence of parameter € on the shape of stationary solutions. We
can observe in Figure [3.9] that higher values of ¢ smoothen the two maxima of the solution, as
expected. For smaller values of €, the nadir (i.e. the local minimum between the two maxima)
gets sharper and for very small € this may result numerically in taking very small time and
space steps. This is easily interpreted as the fact that when ¢ = 0, we consider the classical
Lifshitz-Slyozov system where stationary solutions are sums of Dirac masses which is difficult to
obtain numerically without a dedicated scheme.

The choice we made for the diffusion rate is supported by the convergence results from the
Becker-Doring to Lifshitz-Syozov model and the behaviour of second order terms. However this
choice is not motivated by biological observation. Hence one may make the assumption that the
diffusion rate is constant in both time and space. This unfortunately results in quite different
results as shown in Figure We point out that to obtain bimodality some parameters need
to be readjusted in this case. Hence comparing the solutions of the system under consideration
and the solutions with constant diffusion rate proves to be difficult because the behaviour
of stationary solutions is heavily dependent on the choice of parameters.

We still can make a few comments about the resulting solutions. The constant diffusion
rate tends to smoothen the first maximum whereas in the non-constant case, the diffusion is
relatively close to zero, leading to a sharper maximum. Our investigation of the available data
for adipose cell distribution leads us to believe that non-constant diffusion rates have better
chances of making the model fit with the data. We also point out that in the case of constant
diffusion, each type of modality, as previously described, is obtainable.
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Figure 3.10: Different stationary solutions depending on the value of diffusion rate D taken as
constant in space and time. Parameters of the system are given at Table

Comparison with the first order model

—_—— {0
2 d ot
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1 H
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0 - __-'/ ‘\ ....................................
0 5 10 15

Figure 3.11: Numerical solution for the first order Lifshitz-Slyozov model (in dotted blue
line) compared to the stationary solution of the Lifshitz-Slyozov diffusive model (in orange
plain line) with the same parameters and same initial condition (displayed in black dashed -dotted
line). The solution to the first order Lifshitz-Slyozov model is expected to converge to a Dirac
mass and is displayed for a time before reaching the asymptotic profile.

Stationary solutions for the first order Lifshitz-Slyozov model are not so easily computed
theoretically. Nonetheless we can explore these solutions numerically as asymptotic profiles of
the solutions of system . For that purpose, we use a standard upwind scheme for transport
equations, since the velocity is known. Figure [B.I1] presents the result of an upwind scheme
for the Lifshitz-Slyozov model with the same initial conditions and parameters as in Fig. [3.6
We expect singular stationary state for the first order Lifshitz-Slyozov model. We may interpret
stationary state that concentrates at two points as a degenerate bimodal solution. Using the same
parameters as in Fig. [3.6] we can see on Fig. that the solution concentrates to a singular
Dirac mass and that in this case we cannot recover bimodality, unlike the case of second-order
Lifshitz-Slyozov model, see Fig[3.11] We also point out that the asymptotic values of L are
different in both cases.
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Figure 3.12: Numerical solution for the first order Lifshitz-Slyozov model with same
parameters and initial data as in Fig. On the left : time evolution of the size distribution
with respect to size; on the right : time evolution of the external lipid concentration. The solution
to the first order Lifshitz-Slyozov model is expected to converge to a Dirac mass and is displayed
for a time before reaching the asymptotic profile.
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Figure 3.13: Asymptotic profiles for the first order Lifshitz-Slyozov model (3.11)) with m = 1 and
A =2 Left : fO(x) = Cljazj(z). Right : f(z) = Clys,y(2). The difference in the initial
conditions leads to different profiles. To observe bimodality the parameter S was changed to

£ =100 in both cases.

111 of



3.7. CONCLUSION

By changing initial conditions and the parameter § to 8 = 100, we can nonetheless obtain a
bimodal solution for the first order Lifshitz-Slyozov model as seen in Fig. [3.13|on the left.
However, by changing the initial condition f°, we can see on Fig. on the right that we do
not obtain the same asymptotic solutions. This leads us to believe that in the case of the first
order Lifshitz-Slyozov model the asymptotic solutions depend on the initial condition ¢° and not
only on m and A, unlike for second order Lifshitz-Slyozov model .

The case A < ®(0)

0.175 A

0.150 A

0.125 A

0.100 A

o(L)

0.075 A

0.050 A

0.025 A

0.000 T T T T T T
0.00 0.02 0.04 0.06 0.08 0.10

L

Figure 3.14: Plot of function L — ®(L) with a(z) = 1 and b(x) = (x 4+ 1)?/3. In that case,

Llim+ ®(L) ~ 0.025 > 0 and the existence of smooth stationary solutions for values of A such
—0

that A < Ag is not guaranteed.

As explained in the remark of Sec|3.5.2] for different choices of functions a and b than those
of the adipocyte model, we may find situations where Llim+ ®(L) = Ao > 0. In this subsection,
=0

we explore the evolution of a solution for a value of A such that 0 < A < Ag, that is to say in a
case when no smooth stationary solution exists. An example of choice for ¢ and b is a(z) = 1
and b(z) = (z +1)*?3 and in Figl3.14] the function L — ®(L) is displayed in that case.

We show in Figure the time evolution of the density profile (on the left) and of the
external lipid concentration L (on the right) computed numerically in a case where A < Ag. We
observe that, as expected, L tend to 0 asymptotically and that the adipocyte density seems to
converge towards a Dirac mass centered at 0. Numerical simulations prove difficult because of the
constraint on At to enforce the stability of the numerical scheme. More precisely, this constraint
induces that At should be bounded above by L™. Hence as the computation time increases, we
observe that the value of L™ tends to zero, as the solution gets closer to the asymptotic profile
and therefore that the time step eventually gets smaller than machine precision. In this case,
the scheme fails to conserve both A and m.

3.7 Conclusion

Our work provides a new approach for looking into convergence from Becker-Doring to Lifshitz-
Slyozov, and numerical results indicating that the second order Lifshitz-Slyozov model is better
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Figure 3.15: Case when a(x) = 1 and b(z) = (x4 1)%/3 and A < Ag. On the left : time evolution
of the size distribution with respect to size; on the right : time evolution of the external lipid
concentration.

suited to model adipocyte size distribution than previous approach relying on first order Lifshitz-
Slyozov model.
The originality of this study lies in the following points :

e a new second order Lifshitz-Slyozov model (3.17) for adipocyte size distribution with a
diffusion term derived from a discrete model,

e Becker-Doring and Lifshitz-Slyozov systems with an unusual velocity (3.3]) -(3.5) with three
zeros and a saturation term in L, which leads to different types of stationary solutions,

e an additional conservation law (3.8]) with respect to classical systems, enforcing uncommon
boundary conditions, see Eq. (3.10) and (3.16),

e a new proof of convergence result from Becker-Doring solutions to Lifshitz-Slyozov solu-
tions, using tails of distributions, that provides an upper bound on the speed of convergence.

e numerical results showing that bimodal distributions, as well as unimodal profiles, can be
obtained asymptotically with system (3.17)), according to the parameters,

e numerical results exploring the influence of parameter € and comparing the diffusion term
of system (3.17) with a time and space constant coefficient.

e numerical results shows that the second order system (3.17) provides universal asymptotic
profile that does not depend on initial condition (but only on A, m), contrary to first order

system ((3.11)).

We believe that the distribution tail approach could be further investigated to show con-
vergence towards the solutions to the second order Lifshitz-Slyozov equation. The asymptotic
behavior of solutions to the second order Lifshitz-Slyozov model will be investigated in future
works.
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Data availability

The datasets generated during and/or analysed during the current study are available from the
corresponding author on reasonable request.
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Chapter 4

A stochastic approach to adipose
cell modeling

This chapter is dedicated to the study of the two stochastic models : the non-linear Becker-Doring
CTMC and the Lifshitz-Slyozov SDE . In this chapter we assume that solutions to
both stochastic models exist. We begin by recalling these two equations and we provide some
insight on their relation to the deterministic Becker-Déring model and diffusive Lifshitz-Slyozov
model. This is done by using Kolmogorov backward equation for the Becker-Doring model and
showing that the the law of X, is a solution of the Becker-Doring model. Showing a rigorous
relation between the Lifshitz-Slyozov SDE and the diffusive Lifshitz-Slyozov SDE is an ongoing
work but we detail some heuristic that support this relation. let us also mentioned [53], where
mean-field equations are derived for systems of stochastic particles.

Then we prove theorem [1.5.2] where we assume that the rates are bounded. The proof follows
the method in [74], but we obtain a bound in L'-norm which involves additional steps. We then
extend this results to the case of sub-linear rates which our initial choice of a and b verifies. The
proof involves splitting the L'-norm depending on the hitting time of some size x. Before this
hitting time we proceed exactly as in the bounded case and we use crude bounds for times larger
than the hitting time. Then the proof concludes with choosing the size = depending on ¢ to
obtain the final bound.

As mentioned before a different approach for extending the first theorem would be to consider
a bounded domain, where cells have a maximal size .. This is actually what we do in the
numerical schemes for the deterministic Lifshitz-Slyozov models. However for stochastic models,
if we consider a bounded domain the diffusion process Z. is not a good approximation of X¢.
Indeed given a density-dependent Markov chain that visits the boundary with non-negligible
probability, then the diffusion approximation is valid only up to the first visit of the boundary,
and is ill-posed afterwards. In [14], the authors show that a good approximation of a density-
dependent Markov chain for the case of a bounded domain is a jump-diffusion process. This
jump-diffusion process is build such that there is a correction of the trajectory when the process
hits the boundary and leaves it. However our aim when constructing these stochastic models
is that they retain some relation to the deterministic models. By considering a bounded model
and the jump-diffusion process from [14], it is unclear how this process relates to the diffusive
Lifshitz-Slyozov model.

In the last section of this chapter, we present some numerical simulations of the stochastic

models (1.71) and (1.43). As we mentioned in section [1.3.9) we make an heuristic assumption
that when N gets large, the uniform propagation of chaos ensures that in some sense X'V — X,
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and Z}N — Z.. We recall the results from [122] that establishes this convergence for birth and
death processes. An analogous result for our non-linear models is an ongoing work.

4.1 Stochastic models

We recall that the Becker-Doring CTMC X, (¢) is given by a solution to :

X.(1) X5(0)+5Y+(s1/()2()(@))%@) Ey_<€1/0t b(X(t))ds), (4.1)

where Y, and Y_ are independent unit Poisson processes and LX (t) = A — E [X.(¢)].
The Lifshitz-Slyozov diffusion approximation Z.(t) is given by a solution to :

Z.(t) = Z.(0) + B, (51 /O ta(Zs(s))LEZLé)(S_?_de) —eB_ (51 /O t b(ZE(s))ds). (4.2)

where B and b_ are independent Brownian motions with IE [B ()] = Var(B4(t)) = ¢ and
LZ(t) = A - E[Z.(0)].

Remark. In this chapter, we assume that there exists a solution to both equations (4.1) and (4.2).

4.1.1 Relation with the deterministic models
Becker-Doring CTMC and deterministic Becker-Doring model

How do we relate equation (4.1) to the deterministic Becker-Doéring model ? The first thing is
to construct the transition rate matrix ). In our case this matrix depends on time and is given
by :

+06(i)), Qiir1(t) =0(i+1),

i=1,...,400 (4.3)

Qi,ifl(t) = a(z — 1)674_

Qo,o(t) = _a(O)LX(Et)j—A’ Qo,1(t) = b(1). (4.4)

+oo
Now the law of X is given by the probabilities P;(t) = > P; ;(t), where P; ;(t) = P(X.(¢) =
i=0

j|X(0) = i). Denoting P = (Pj)j=1,.... 400 and 1 the infinite dimensional vector filled with 1, we

get that P = P - 1. Hence with Kolmogorov backward equation we get an ODE on
APt
"0 amBo). (45)

And finally we obtain the system :
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d%f):““_”Lgﬁf ’%1&”‘““h§@$iﬁ+“mPAﬂ+bu+nPHmwmm>1
X
deOt(t) = —a(0) L;(et)(t Po(t) + b(1)Py(t)
LE(t) + iiPz(t) =\ V>0
1=0
Y Pit)=1
i >0

Hence the law of X (¢) given by F(t) solves the Becker-Doring equations with the number of
cells rescaled to 1 (this is simply done by dividing each equation by the number of cells).

Lifshitz-Slyozov SDE and deterministic Lifshitz-Slyozov model

How do we relate equation [£:2] to the diffusive Lifshitz-Slyozov model ? First a comment on the
choice of By and B_. The splitting of the stochastic part into two terms is purely technical
and with the aim of comparing X. to Z.. Intuitively we split the stochastic part, in two parts :
the diffusion coming from positive jumps and the diffusion coming from negative jumps. The
relation between the stochastic Lifshitz-Slyozov model and the deterministic Lifshitz-Slyozov
model is a heuritic : consider g(t, z) the probability density of Z.. This density solves the Fokker-
Planck equation and the conservation equation. Obviously the total amount of
cells is rescaled to equal 1. Here we assume existence of a solution to both the stochastic
and deterministic diffusive Lifshitz-Slyozov models. A rigorous correspondence between the two
models and an existence result are ongoing works.

4.2 A convergence result for the stochastic models

We begin by recalling the assumptions that hold for this chapter :

a,b S Cl(R+,R+), (Hl)
sup |a/(z)] = Ko and sup [¥(z)| = Ky, (H3)
reR zER4

a and b are bounded functions. (H10)

We denote ||-||s the norm in L*°(R4, Ry) and ||alcc = Cy and ||b||cc = Cp. Also observe
that p: 2z — -2 is a bounded C* function and |1/ ||ec = +.

T+kK K

4.2.1 Preliminary results

The proof of theorem [I.5.2] involves the use of various result from probability which we recap
here. The overall shape of the proof is similar to the one found in [73] although we obtain an L*
bound which involves additional steps.

117 of



4.2. A CONVERGENCE RESULT FOR THE STOCHASTIC MODELS

Lemma 4.2.1. Let W(t) be a Wiener process. Then a unit Poisson process Y (t) can be con-
structed on the same probability space as W (t) such that :

o YO = 1= (D)
>0 In(maz(2,1))

and E [exp(AK)] < oo for A > 0.

=K < oo, (4.6)

Proof. This lemma is a direct implication of the Komlés—Major—Tusnady approximation found
in [72]. O

Lemma 4.2.2. Let W (t) be a Wiener process and define :
W(u) — W(v)

w = sup . (4.7)
u,v<1 |u—v|1n(ﬁ)

Then w is almost surely finite and IE [exp(Aw)] < oo for A > 0.

Proof. The finiteness of w is derived from the definition of the Levy modulus of continuity and
proved in [81]. The bounded exponential moments is proved in [43]. O

4.2.2 Introductory lemmas

We assume for simplicity that X.(0) = Z.(0).
Now we compare X, (t) and Z.(t) using (4.1) and (4.2) and by adding and removing appro-
priate terms in their difference :

Xo(t) - 2 =eva (= (X (L (o)ds) — e (=71 / bx(s))ds)

0

~eB ([ azomaZanas) + B (= [ ozas)
(= (X (DL (5))ds) — B (= / (X ()L (5))ds)

+eB (e / t B(X.(s))ds) — eV~ (= / t b(X.(s))ds)

vem (= oKL ($))ds) e (=71 / ' a(Z(s)u(LZ (1)ds5)

cen (= f HZ()ds) - eB_ (=7 / bX(s))ds)

(4.8)

The terms of the form Y — B will be bounded using lemma To deal with the term of
the form B — B, we recall that W, _(¢) = B4 _(t) — t are standard Brownian motions. Hence
we need to bound the terms in W — W using lemma and the remaining terms are easily
bounded by using assumptions on both a and b.

Let T > 0. For the sake of clarity, we make use of the following notations :

Ye(t) = sfl\Xg(t) —Z.(t)] and 7. = sup ~.(¢) (4.9)
t€[0,T]
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o = suwp Vs (= / X (s)(LX (s))ds) — B+ (54 / X (s)(LX (s))ds)|
+O§ET|B /b —1/ b(X, ds (4.10)

Furthermore the terms not depending on Y, _ and W, _ are easily bounded using assump-

tion (H3) :

—1\/ <>>ds—/ta<Z<>>< Z(s))ds|
<K, / Ye(s)ds + — Ca *1/|LX (s)|ds (4.11)

< K, / e+ & [ B (oas

_1\/ ))ds — /Ot b(Z:(s))ds| < Kp /Ot 7=(s)ds. (4.12)

This leads us to:

2o (t) <0T + K, /01t ~o(s)ds + % /Ot Efy(s)]ds + Ko /Ot 7e(s)ds
+ sup W (<! / (X (s)) (LY (s))ds) = Wy (=7 / t a(Z.(s)u(LZ (5))ds)| (4.13)

0<t<T 0

+ sup [W_ (5_1/ub(XE(s))ds) W (5_1/ub(ZE(s))ds)|

0<t<T 0 0
We proceed with the bounds for the terms of the form W — W.
Lemma 4.2.3. Let T >0 and 0 <t <T. Define

xln(i) if0<x<C,

vo(x) = (4.14)

— else.
e

Then there exists two independent random variable wy > 0 and w_ > 0 also independent of
such that :

wi(= | (X (L (5))ds) W (7 / ' a(Z(s)(LE (5)ds)|

Cy
< W \/1/4510@ (Ka'YS + ? E [7])7 (415)

W (5—1 /0 t b(XE(s))ds) + W (5—1 /0 t b(ZE(s))ds)| < w_\[themrc, (Kpye). (4.16)
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Proof. First we can bound the difference between the two amount of external lipids by the
expected value of 7, :

ILE(t) - LZ(1)] = | E[X(t) - Z:(t)]] < e E[r]-

Also observe that assumption (H10)), all the time integrals are bounded by e 1C, T or e ~*C,T.
We introduce the two following constants (derived from the modulus of continuity of the
Wiener process).

Wy = sup (W (u) — W, (v))]
u,v<e~1C,T *10 T
|u — v|In
u— v
o @ -W)

u,w<e~1C,T gflch .
|u — v|ln
lu—v

From lemma [£.2.2] w; and w_ are finite and have finite exponential moments i.e.

E [exp(Aw_ 1)] < o0,

for some A\ > 0. Moreover there laws are independent of . Indeed let

b W) = W)

u,v<C
\/u—v|ln |u vl)

with C' > 0. Now changing the notation with v’ = & and v' = &, one has :

(Wi (w) =Wy Wy (Cu') — W (CV))|

. :
lu —v|ln _c Clu' —v'|In | ———
lu — | |u/ — ']

Using the self similarity of the Wiener process W (u') ~ W\(/Cg/) we obtained that

Wi (u) —W.
by W) = W)

u,w<1 \/|u_fu1n ‘u v‘)

Hence w is independent of the choice of C' and we also have independence of wy _ and e.
We proceed with the bound on W, . Let u,v > 0 such that u,v < e~ 1C,T. In our case, we
also expect u and v to verify |u — v| < K,Tv. + “»TE[y]. However this bound may not be

C
smaller than ¢e~1C,T, which would allow us to use the fact that the function z — [z In (m) is

increasing on [0, C]. Nonetheless we proceed as follow. We have that the function x — /9¢c(x)
is non-decreasing and xIn (%) < 9Yo(x) for all z > 0. Hence for u,v < e 1C,T such that

lu—v| < K,T7. + =T E [y] one has :
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(W, (u) = Wy (v)]

_10 T
lu —v|ln
u— v

Co
< MWE_W(KGT% + 7B

Cq
= w+\/T\/'(/JEICa (Ka'ye + ? E [7])

Note that in the case u = v the bound i 1s 51mp1y 0.

This yields (£.15) by letting u = e~ [ a(X.(s))u(LX (s))ds and v = £ fo Z(8))u(LZ (s))ds.
We proceed exactly in the same way for W_ to get (4.16 -

W (u)

Terms of the form Y — B are treated with lemma[4.2.1]in the following lemma :

Lemma 4.2.4. Assume the processes Yy and Y_ to be constructed as in lemmal[{.2.1 LetT > 0.
Then there exists some random variable K > 0 with exponential moments such that :

(= (X (DL ($))ds) - By (= / oKX ()L (5))ds)|
< Kln(e'C,TV2) (4.17)

t t
1B_ (g—l/ b(XE(s))ds) ~Y (5—1 / b(XE(s))ds)| < Kln(e 10T v 2) (4.18)
0 0
Proof. Following lemma we introduce the random variable :
Y(t)— B
K = aup IV = B

¢>0 In(max(t,2))
Let T > 0 and u > 0 such that u < e 1C,T. Then

Vi)~ By )] <= B0y v, 2)

£
sl
+

£

§m In(max(e'C,T,2))

<K In(max(¢~'C,T,?2)).
We proceed similarly for Y_ and B_ to get (4.18]). O

We apply the bounds (4.15)) and (4.16]) to (4.13) :

Ye(t) <6 + % Ey.(s)]ds + (K, +Kb)/ Ve (s)ds
0 0

b VT, €+ 2B ) (419)

+ w—\/T wsfle (Kb’)/)
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4.2.3 Proof of theorem [1.5.2]

We can proceed with the proof of theorem [1.5.2] which we recall :

Theorem 4.2.1. Assume X, and Z. to be solutions of Equations (4.1) and (4.2) and for as-
sumptions (H1)), (H3) and (H10) to hold. Then for ¢ small enough and for some T > 0, there
exists a constant BT only dependant on T, a and b such that :

S BX.0) - 2] < 5" In(2) (4:20)

Proof. We begin from (4.19) by taking the expected value and applying the Cauchy-Schwartz
inequality and Fubini theorem :

B ()] <E [57]+ (52 + Ku+ o) [ Bhu(o)lds

+ m\/ﬂ; [welca (Kot B M)}

+ B [02] T\/E [pesc, (Ko))-

Again we use a key property of the functions ¢ () : it is concave on R . This allows us to
apply Jensen’s lemma. Then :

E (0] B [57]+ (5 + Kut o) [ Bbe(o)lds

BRI T b, (e + B )

+ \/IE [w? ] T\/weflcb (Kb E[y]).

We know need a proper bound on #¢(z). Since it is a concave function, it is bellow its
tangent functions. This yields that for all z,y > 0 :

Ye(y) <In (S) Y+

In particular, in our case, we have that for € small enough e ~'7(C, + C3) > 1. Hence we can
choose x =1 in the previous bound, which leads to, for all y > 0 :

Y10, (y) <l (5_1Ca) y+1,

and similarly :

Ye-ic,(y) < (e7'Cy) y + 1.

And when taking the square root : /Cy + 1 <1+ +/Cy. Finally this yields :
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E ()] SE 7] + (52 + Ko+ K) [ Elre(ollds

w s G ] + KTE 2]
<\/(K +C—T1E[ 2] /(e 1Cy) +W\/lnalcb>\/E%

We make use of Gronwall’s lemma to get:

E [ ()] < ol FHEHEOT [ [5]]

o+ e )+ RTE L
<\/(K +(i JTE [w2]VinE1C0) + /KT E [2] Vin(e 1Cb>\/E%]

This leads us to investigate solutions to the inequality with z = /IE [v]:

z? < c+ bz,

where b,c > 0. Hence x lies between the roots of the polynomial ¢ + by — y? and its square
is bounded by the square of the biggest root in absolute value. Simple computations show that
then 22 < b% + 2¢. To tidy up some of the notation let us denote :

Cqa
CIT _ e(T+KQ+Kb)T’

cy = \/(Ka + %)TE [w2] +/K,TE [w?],

Cg == max(Ca, Cb)

This leads to :

Efy] <207 (B[] + CF) + (CTC)? (e Cy). (4.21)

According to lemma[d:2:4] there exists a random variable K > 0 such that for € small enough
67 < Kln(e™'). Furthermore K has exponential moments which means E [67] < E[K]In(e™})
for € small enough. The expected values of K, w_ and w, are bounded. This yields :

E[4y] <2CTCT + (CTCT)? In(Cs) + (2CT E[K] + (C{ C3)?) In(e™1). (4.22)

Finally, we regroup all terms not depending on ¢ under the notation 37 to conclude the proof
and get for e small enough :

E[y] < g7 In(e™").
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4.3 Simulations

We perform simulations of both stochastic models, using the methods introduced in We
recall that the Next reaction method is an exact simulation while the Euler-Muruyama method
is an approximation. We also recall that the models we simulate are and , whose
solutions are a set of particles (Xf)N)k:L,__,N or (Zf’N)k:L”_,N

In both cases, the choice of a stopping time for the method is tricky. Indeed even if we
have reached a stationary distribution, the set of particles may still change. With the intent of
comparing the simulation of both stochastic model to the stationary solutions of the diffusive
Lifshitz-Slyozov model, we fixed a final time equivalent to the one reached by the numerical
scheme used to simulate the diffusive Lifshitz-Slyozov model.

4.3.1 A first basic simulation and choosing an initial condition

We begin by a simple simulation with NV = 10000 and € = 0.05. We expected the approximation
to get better as N — oo but increasing the number of particles greatly increases the run time of
the program. The choice of N is made as a tradeoff between good approximation and run time.
This simulation is presented in figure We also need to choose an initial condition for both
models. For simplicity we choose the same initial condition (X,876)k=1,...,N = (Z,S’g)k:L___,N. The

N
choice of this initial condition is non-trivial since it needs to verify that LX:0 4+ % > X _ = A,
k=1
Moreover we have that X,ga € eN for all £k = 1,...,N. Hence this amounts to generating a
random set, of integers nj such that :

LX,O

N
A\ —

E ng=N—"=—=05.
€

k=1

One also needs to choose LX¥ which we do in such a way that S is also an integer - this
means ¢ divides A — LX0. Since some n; may be equal to 0, generating an initial condition
comes down to choosing a random partition of S. Choosing uniformly a partition of S gets very

costly as IV gets bigger thus we use a simpler method, which does not yield a uniform draw of a
X,0
partition but is skewed toward the average /\_if

1 Initialization : let ny =0 for all k=1,..., N.

N
2 While > n; < S, do:
k=1

a Generate i ~U([1,...,N]).
b Update n; < n; + 1.

Looking at figure we observe that for both model we recover a bimodal distribution
that is overall correlated with the stationary distribution of the diffusive Lifshitz-Slyozov model.
However, it seams that the first maxima, located at or close to zero, is underestimated. This
may be explained by a simple fact : the stationary solution for the diffusive Lifshitz-Slyozov
model is continuous whereas the set of particles for both stochastic models are in some sense
discrete. The stochastic Becker-Doring model lives on eN hence depending on the choice of ¢ the
approximation close to zero may get better as € tends to zero.
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e =0.05, N =10000, A\ =3.5 Dynamics of the external lipid amount
1.0 —— Initial Distribution 0.5 Lf‘N(t)
BD CTMC XX — LZN()
— LSSDEZY | |l e L(t)
0.84 1 —-—- gtat 0.4 - oo [stat
i
i
o
g 0.6
s 0.3 1
)
<
E
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Figure 4.1: Simulation of both stochastic models, with N = 10000, ¢ = 0.05 and A = 3.5.
On the left side, we compare the stationary distribution of both stochastic model with the
explicit stationary solution of the diffusive Lifshitz-Slyozov model. On the right, we compare the
dynamics of the external amount of lipids for both stochastic models as well as the result obtained
with the scheme described in section The green and orange lines are superimposed on the
right side.

4.3.2 Can we recover the whole range of stationary distribution ?

As we have seen in the previous chapter, there exists a whole range of stationary solutions
(at least numerically) to the diffusive Lifshitz-Slyozov model. We show in figure that both
stochastic models are able to capture this range of stationary distributions. We also show that
the shape of the initial condition has no influence on the stationary distribution, as is the case
for the diffusive Lifshitz-Slyozov model.

4.3.3 Influence of N and ¢ and a numerical proof of theorem [1.5.2

In this section, we investigate the relation between the number of particles N and ¢ and their
common influence on the distribution of particles. We are also interested in seeing if we can
recover the theoretical result from theorem [[.5.2] at the numerical level. Since we use models
with a fixed number of particles NV, we need a way to compare two population of particles. This
can be done in a variety of ways, but since the theoretical result involves the L'-norm, we need
an empirical approximation of this norm for two set of particles. We do so with the formula :

N N
1
A(Xre () r=1,... 85 (Zie(O)i=1,...N) = 375 DD IXic(t) = Zie (1) (4.23)
i=1 j=1

For clarity we abbreviate d((Xk,c(t))k=1,...N, (Zk,e(t))k=1,..n) = d(X(t), Z-(t)). Our hope
is that there is some constant 3 such that as ¢ — 0 we have d(X.(t), Z-(t)) < Beln(e~!). This
result is presented in figure [4.3] We choose a set of time points ¢1,...,tx and we compute
,max d(X.(ty), Z:(ty)) for different values of ¢ > 0. Observe that even for small amounts
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e =0.05, N =10000, A\ =6.5 Dynamics of the external lipid amount
0.5 4 Li(‘N )
0.7 — LZN(1)
........ L<t>
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Figure 4.2: A simulation of both models with a unimodal stationary solution

of particles we have similar values of d(X.(t), Z-(t)). However for small values of N the ap-
proximation of the diffusive Lifshitz-Slyozov model by both stochastic model is worse as seen in

figure [£.4]
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N =1000, A =3.5

Empirical L'-norm
= N I it oo ~
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—eln(e)

Figure 4.3: Maximum empirical L'-norm of the two stochastic model. We obtain that this norm
is of magnitude €1n(e) at least for small €.

e =0.05, N =100, A =3.5 Dynamics of the external lipid amount
L6 —— Initial Distribution 0.5 1 LEN (1)
' BD CTMC XN — LN
14 — LSSDEZNY | |} L(t)
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Figure 4.4: Simulation of both stochastic model for N = 100.
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Chapter 5

Parameter estimation and some
additional numerical results

In this chapter, we present the work done in collaboration with Chloé Audebert, Anne-Sophie
Giacobbi, Magali Ribot, Hédi Soula and Romain Yvinec with the model in radii (1.78). This
work is submitted under the title “Mathematical modeling of adipocyte size distributions: identi-
fiability and parameter estimation from rat data” [44].In the second section, we introduce similar
results for the model in lipids which as a non-constant rate of diffusion. The work presented in
the first section is submitted and small editions were made for ease of reading in the manuscript.

5.1 Mathematical modeling of adipocyte size distributions:
identifiability and parameter estimation from rat data

5.1.1 Introduction

Pathologies related to obesity are characterized by an important accretion of adipose tissue
which is mainly composed of adipose cells, called adipocytes. The adipocytes are designed to
regulate energy homeostasis by storing energy in form of lipids. During an excess of energy,
adipocytes compensate with two mechanisms: hypertrophy (increase in size) and hyperplasia
(increase in number)[40]. Adipocyte size variations are very large with radii ranging from 10um
to more than 100um, corresponding to 3 orders of magnitude in volume. In addition, cell size
distribution among a tissue is not unimodal but presents two peaks: one for small adipocytes
(radius below 30um) and one for large adipocytes (above 80um) [88]. A bimodal distribution
of cell sizes is striking. Indeed, most cells in the population are small adipocytes, which do not
contribute significantly to the storing capacity. There is no scientific consensus on the functional
importance of this bimodality. However, cell size has been associated with metabolic properties
dysfunction that may be linked to obesity-related pathologies [127, 116, [88, [85] or to play a role
in the development of those diseases [30].

Few mathematical models have been proposed for adipocyte size dynamics in various health
conditions. In [66] 67, 68 [82], the authors consider partial differential equation models that de-
scribe adipocyte size distribution dynamics. They have assumed a size-dependent rate described
by an imposed function where the associated parameters are difficult to relate to physiological
processes. The adipocyte modeling in [86] is based on three compartments and has been devel-
oped to describe small, medium and large adipocytes. The cell size evolution depends on lipid
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fluxes that are related to protein concentration controlling lipotoxicity — a cellular dysfunction
due to lipid accumulation in non-adipose tissue. All these models provide studies of the adipose
tissue growth dynamic and its bimodality through cell hyperplasia and/or hypertrophy, but the
mechanisms governing lipid fluxes involved in adipocyte hypertrophy have not been considered.
Furthermore, model parameters lack biological meaning.

A detailed model of cell hypertrophy based on lipid exchanges has been proposed in [118§].
Adipocyte bimodal distributions have been explained based on mathematical analyses. Individual-
based Monte Carlo techniques were performed to solve the model. However, this approach is
computationnally costly so parameter estimation using biological measurements is very diffi-
cult. A similar simplified model, accounting only for lipolysis (deflation), compares well with
distributions obtained from fasting rats [119].

The paper is organized as follows. Based on [118] [119], we formulate the mathematical model
in section It is based on partial differential equations, to describe stationary adipocyte size
distribution. The contribution of our work is to have a diffusion term in the partial differential
equation describing the cell size fluctuations like in [67]. Through parameter estimation, we
aim at comparing the distribution obtained with the model to cell size distribution measured
in rats before any manipulation [119] [63]. To perform parameter estimation, we first conduct
an identifiability analysis in order to select model parameters that can be uniquely estimated
with the available data. Using these selected parameters, we carry out a study on synthetic data
(generated with model equations). The model identifiability and the parameter estimation on
synthetic data are presented in section [5.1.3] Once the parameter estimation problem is verified,
in section [5.1.4] we perform parameter estimation using adipocyte size distributions measured in
32 healthy rats [119][63]. The estimated parameters are presented and then commented through
a sensitivity analysis. We conclude this paper with some discussions in section [5.1.5

5.1.2 Mathematical model for adipocyte size distributions
Model construction

Based on Soula et al. [T18] work, we introduce a new model for adipocyte size distribution that
we aim at fitting on experimental measurements. We first briefly recall the main hypotheses of
the model in [II8]. To represent adipocyte size density, the variation of the content of lipids ¢
and variation of radius r to adapt to lipid content are described by,

dl
% = T(Ta g? L(t))v (51)
dr
E = 'R(T, 8)7 (52)

where the term L(t) represents the extracellular amount of lipids at time ¢. These two equations
refer to evolution with different characteristic times: the first equation is a rapid evolution of
fatty acid content whereas the second is a slower variation of radius to adapt to cell lipid content.

We first assume a quasi steady state for equation to describe a faster adaptation to
lipid content. The relation between the lipid content ¢ and the radius r of a cell is then given by
R(r,¢) =0, leading to

V(r)=-mr, (5.3)
with V., the volume of the cell with no lipid, V; the conversion constant: the volume taken by

1 nmol of triglyceride, and the cell volume V' (r) is assumed to be spherical. Second, similarly
to [67], we introduce a constant diffusion term D to represent cell size fluctuations.
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With the above mentioned assumptions, we can re-write the main equation in [I18§], replacing
¢ by (5.3)) and keeping only the radius variable. We then consider the cell size density f expressed
as a function of time ¢t € Ry and radius r € [Fmin, "'maz], and we introduce the following system:

0uf (1) + 01 (u(r, LIS (t.17)) — DS (t,7) =, (.4)
L0 =2 [ W) Vo) T fte (5
V(Tmin, L)) f (&, Pomin) — DOy f(E, Tmin) = 0, (5.6)
V(rmazs L) f (& Tmaz) — DOrf(t, "maz) = 0, (5.7)

where v is defined by

U(T, L) = E

Ve (a L p (B+9r%)  V(r) = Vem ) (5.8)

L+rp+1r3 2 V()= Vem +Vix /)’ '
The total amount of lipids A is assumed to be constant over time and the second term of the
right-hand side of describes the intracellular amount of lipids at time ¢ contained within
all cells. The transport function v describes the exchange of lipids within the population of
cells [118]. The lipid exchanges are based on two biochemical processes: lipogenesis — cell store
lipids — and lipolysis — release of lipids in the extracellular environment. Lipogenesis depends
on a surface-limited rate «, and it increases with the extracellular amount of lipids L with a
saturation effect depending on the value of k. The parameter p is a cell size threshold above
which lipogenesis slows down. Lipolysis activity includes a basal rate § and a surface-limited
rate 7. The term % = ﬁ is small when cells contain few lipids and becomes close
to one for larger lipid content through parameter Y.

We assume that in the measurements at the time of the biopsy the adipose tissue is at
equilibrium, thus we neglect the recruitment of new cells. In addition, it has been shown that
the life time of a human adipocyte is around 10 years [7], so the cell death is not taken into
account. It gives the boundary conditions (5.6)-(5.7). The total number of cells is then constant

and we assume the density integral is 1 between 7,,;, and 7,4, which leads to

vt >0, / ft,rydr =1. (5.9)
Table reports the details on model variables and parameters. The parameter values of

Vem, Vi, B and « are known from literature [118] [119] and will be fixed. We choose the values of

Tmin and T, as the boundary values of the measured radii in the considered adipose tissue.

Stationary solution

In model —, the number of adipocytes is fixed and the total amount of lipids is constant,
thus we expect the size distribution to reach a steady state [I11]. The mathematical study of
the asymptotic behavior is not the purpose of this work.

We denote by f°° and L a stationary density of cell size and the extracellular amount of
lipids respectively. A stationary solution verifies 0;f>°(r) = 0. With the boundary condi-
tions (5.6)-(5.7) and assuming D # 0, we obtain the following system:

0,5(r) = S50l I)f (1), (5.10)
=\ o r) — ﬁ ®(r)dr
L% =\ /m (V1) = Vo) S 5= (1) (5.11)
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Table 5.1: Description of model variables and parameters. Parameter units and known
values are summed up in the second column and a description of each variable is given in the
third column.

name value (unit) description
t - (h) time
r € [7.5,150] (um) adipocyte radius [119] 63]
L(t) - (nmol) extracellular amount of lipids at time ¢
f(t,r) - cell density at time ¢ with respect to radius r
Vem 4—7T63 (um3) volume of an empty adipocyte (zero lipid) [4]
Ve 1.091 108 (um3.nmol=1)  volume taken by 1 nmol of triglyceride [118]
a - (nmol.um=2.h~1) surface-limited rate in lipogenesis
K - (nmol) constant of the limiting term in lipogenesis
p - (um) cell size threshold of the Hill function in lipogenesis
B 31.25 (nmol.h™1) basal lipolysis rate [119]
v 0.27 (nmol.um=2.h~1)  surface-limited rate in lipolysis [119]
X - (nmol) constant of the limiting term in lipolysis
D - (um2.h71) diffusion coefficient for size fluctuations
A - (nmol) total amount of lipids

We note that assuming f°°(r) is known for all 7 € [rmin, Tmaz), then L is determined by
the equation and only depends on the unknown parameter \. In parameter identifiability
analysis and parameter estimation we assume that the cell size distribution is observed. So to
simplify the dependency on parameters we consider L to be a parameter instead of A\. We thus
replace L™ by a parameter L, and it leads to the following simplified model,

() (r) = 0(r) (), (5.12)

/ e r)dr = 1, (5.13)
UV L P (D) V() Vew

ol(r) = ar (aL—&—/{p3+r3 2 V() —Vem+VzX> ’ (5.14)

where the unknown parameters to be estimated are «, L, &, p, x and D.
Given those parameters, we can compute a stationnary solution of model (5.12)-(5.14) and

we have for r € [T'rni’ru rm(w:]a
[ ptu
exp —v(s)ds
Tmin D

Tmazx T 1 :
/ exp (/ DU(S)dS) dr

‘min min

f(r) = (5.15)

This solution can be computed numerically and when possible, the integrals are computed ex-
plicitly otherwise a trapezoid rule is used. Typically, in the computation, a radius step of 0.1 ym
is considered and an interpolation is applied to compute f at any radius.
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The model can represent a bimodal distribution of cell size

We first study the impact of the diffusion parameter that is the main change with respect to
model in [118]. Figure shows solutions computed numerically with the equation for a
given set of parameters. The model is able to qualitatively reproduce a bimodal distribution of
cell size as measured in rats. Upon investigation of equations —, it is immediate that
the number of extremal points of f, and their locations, will depend only on the parameters that
appear in the velocity v . However, variations in the value of the diffusion parameter also
impact the size distribution: increasing the diffusion reduces the difference between the height of
the two peaks and the density value at the nadir (lowest point between the two peaks) increases
with diffusion.

In the model of Soula et al. [118], an individual-based Monte Carlo technique (20,000 cells)
has been performed leading to a large computational time. It was then very hard to perform
quantitative comparison with measurements. The proposed model enables a fast computation of
the cell size distribution by computing directly a stationary solution with equation . It is
now possible to perform quantitative comparison with measured size distribution and estimate
parameters.

Prior to this parameter estimation, we study which parameters are likely to be estimated with
the available data through model parameter identifiability analysis and parameter estimation on
synthetic data.

—— D=2e4
D=3e4
0.025 A D=6e4
0.020
>
£ 0.015 1
c
()
el
0.010 A\
\\// \
0.005
0.000
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radius (um)
Figure 5.1: Computed stationary solutions from eq. with three values for diffusion

parameter. The other parameters are fixed to values reported in Table and L = 3nmol,
a = 0.29nmol.um=2.h~", k = 0.001 nmol, p = 200 um, x = 0.0035 nmol.
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5.1.3 Model identifiability and parameter estimation
Parameter identifiability analysis

We perform an identifiability analysis of the unknown parameters of the model: «, L, &, p, x
and D. We define a parameterized model M (#) derived from equations — and study
its parameter identifiability which is an intrinsic property: from [32], the model M is said to be
globally identifiable in 6 € © if

V€ ©,M(0) = M(H) = 6 =6.

The parametric structure of model — is complex in the sense that it includes non-
linear functions in which some parameters are combined in a product. This might result in
redundancies in the model — only a smaller set of unknown parameters can be estimated — or in
a non-identifiable model [24].

To study the parametric structure of the model, we first set the observed outputs,

vy =f" xp =71
and we introduce the following quantities to re-parameterize the model:

alL
B(L+ k)

4D
Vi~

We obtain the system parameterized by 6 = (61, 602,05,04) the vector of unknown quantities
(assumed to be strictly positive),

0, = 0 =p>, 05 =Vyx and 04 = (5.16)

3 2 4 ’
dr 04 14+ ;% x5 gﬂxg — Vem + 03 (5.17)
drz
dr

We recall that the values of Vg,,, 8 and v are known (see Table .

We investigate the identifiability of unknown parameters using the Structural identi-
fiability Toolbox of Maple [2]. It is based on the Structural Identifiability ANalyser (SIAN)
algorithm which combines differential algebra and Taylor series approaches [60, [6I]. From an
input ODE model, a polynomial equations system is generated and the associated Grobner basis
is computed to assess the identifiability. This method ranks parameters in three categories:
globally identifiable, locally but not globally identifiable and non-identifiable. A parameter 6y is
said to be locally identifiable if there is a finite set of possible values for 6, given the observation.
When a parameter is neither locally nor globally identifiable, it is called non-identifiable.

Applied to the system , STAN algorithm returns that all the quantities 0,k € {1,...,4}
are globally identifiable. Going back to the model parameters in equations (5.12)-(5.14), the
parameters Vz, B are known and the function p — p? is bijective so assuming the cell size
distribution is observed, the set of identifiable quantities is

al
—_— D5,
{ L T+ s Py X }
We notice that we need at least the values of (L, k), (L, «) or (a, k) to uniquely estimate «,

k or L respectively. Only a combination of these values can be uniquely retrieved when a size
distribution f(r) is given for all » € [rmin, F'maz)-
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Parameter estimation procedure

Thanks to the parameter identifiability analysis, we know which parameters or parameter com-
binations we can expect to estimate from size distribution. We now need a procedure to estimate
these parameters and we want to verify this procedure on a benchmark case: synthetic data.

Minimization algorithm To define a procedure to estimate model parameters, we first in-
troduce a cost function. We want to minimize this function to compare the model output and
the measurements. Then, we choose an algorithm to minimize this function.

Let 6 be the parameter vector to be estimated. We denote by N the number of measured
radii for the considered observation. Given the vector of measured radii, (r;);=1,... n, We estimate
0 by minimizing the cost function defined as follows,

N
L£(0) == _log(f(ri,0) (5.18)

where f(r;,0) is the value of a density f, solution of the model, computed at (measured) radius
r; with the parameter vector 6.

To find the optimal parameter values, we use the Covariance Matrix Adaptation Estimation
Strategy (CMA-ES) algorithm [56]. In this algorithm, from initial parameters, new possible so-
lutions are sampled with a multivariate normal distribution. The covariance matrix depends on
a step-size control introduced to enhance the exploration of parameter space. A weighted com-
bination of the best candidates is then selected according to the value of the cost function
and it is updated with the covariance matrix. These steps are repeated until termination criteria
are reached. At each generation, this method takes into account recombination, mutation and
selection of the possible candidates as an evolution algorithm.

Estimation of (61, p,03,04) is performed with CMA-ES using cell size distribution as obser-
vation (we replace 0 = p® by p). The vector of parameters is also scaled to have components of
similar order of magnitude (scaling factors are [; 102, p1073, §310~*, 64 102]). Finally, to test
the impact of the initial guess on the algorithm results, we perform 100 runs of CMA-ES with
different initial parameters, we report the mean and standard deviation of these runs.

In order to run the CMA-ES algorithm, we used cma Python package [I]. The fmin2 function
of this package is used with default parameters and an initial standard deviation of 0.05 (in each
coordinate). The files to run parameter estimation are available on https://plmlab.math.
cnrs.fr/audebert/adipocyte_size_modeling,

Parameter estimation on synthetic data We first estimate parameters with data generated
with the model (synthetic data). To generate such data, we compute the solution of the model
for chosen parameters with equation (5.15)). Then, from the obtained density, 10,000 samples
are drawn leading to a first synthetic data set. To mimic the true measurements we also consider
a second type of synthetic data where on the 10,000 samples only radii greater than 10um are
observed. With this procedure, we want to assess the impact of missing data on the parameter
estimation. To quantify the precision of the parameter estimation we compute a relative error
defined by € = |p — pe|/p, with p, the parameter estimated value and p the true value of the
parameter (chosen to generate synthetic data).

Two different parameter vectors are used to obtain synthetic data sets (synthetic data set 1
and synthetic data set 2). The second column of Table sums up the chosen parameter values
(true). The parameter estimation is performed for both synthetic data sets without and with
missing observations (Table columuns 3 to 8).
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Table 5.2: Results of parameter estimation procedure performed on synthetic data
sets without and with missing data. First two columns display the parameter names and
true values for both synthetic data sets. Columns 3 and 4 present the estimated parameters for
complete data sets (10,000 samples), it shows the average over 100 estimations with different
initial guesses and standard deviations. The fifth column sums up the difference between true
parameter and its estimation with a relative error in percentage. The three last columns present
the same values for the same data sets with missing observations: only radii over 10um are
observed (samples > 10pm). All estimations are performed with CMA-ES algorithm of fmin2
function from cma Python package. We choose the default parameters and an initial standard
deviation of 0.05 (in each coordinate). The parameters are scaled to have similar sensitivity
([61.10%, p.1073,05.107%, 0, .10%)).

synthetic data set 1

10,000 samples

samples > 10um

parameter true esti. value std rel. err. | esti. value std rel. err.
6, 9.6010°3 [ 9.6110~2 110" 02% | 9.6210~3 210 T 0.3%
) 1.5010% | 1.50102 11076 0.2% | 1.49102 21076 0.8%
05 2.1810% | 2.17103 5107° 0.6% | 2.09103 21074 4.2%
04 7.371073 | 7.21073 210710 23% | 7.351073 410710 0.3%
synthetic data set 2 10,000 samples samples > 10um
parameter true esti. value std rel. err. | esti. value std rel. err.
01 9.9210°% [ 9.92107% 110~ 0.04% | 9.9110=2 11010 0.1%
) 2.0010% | 2102 1106 0.2% | 2.01102 510 0.6%
05 3.2710% | 3.1210? 210°° 4.8% | 5.39102 41074 65%
04 1.111072 | 1.121072 210710 1.7% | 1.121072 1107° 1.2%

Columns 3 and 4 in Table[5.2|display the average and the standard deviation of the estimated
parameter values over the 100 runs. We note that the differences between the 100 estimations
can be neglected, showing that the initial guess has no impact on the estimation.

In both synthetic data cases, when the estimation is performed with the complete data set,
the estimated parameter values are similar to the true values with relative errors smaller than

5% (Table [5.2] column 5).

One can notice a difference between the two data sets when the estimation is performed with
missing observations in the data. The last three columns of Table|5.2| show that depending on the
considered data set more or less information is lost when we observe only cells with radii larger
than a threshold. In synthetic data set 1, the impact on the parameter estimation is relatively
small and relative errors remain below 5%. In synthetic data set 2, we are able to correctly
estimate the values of 01, p and 64 but the information about parameter 63 seems lost, and the
relative error increases to 65%.

The number of observed cells is reduced in these data sets and not in the same way in each set.
On synthetic data we know exactly the percentage of information that is missing. In synthetic
data set 1 when we remove samples larger than 10 um, 15% of the observation is missing, whereas
in synthetic data set 2 we remove 28% of the initial distribution. This difference may explain
the poor estimation of 05 in synthetic data set 2 with missing observations.

The parameter 03 is related to parameter y that drives the lipolysis mechanism in the model
(size reduction). If limited observations exist on small radius, we can expect that this parameter
is difficult to estimate.
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Table 5.3: Range of selected values for the parameters. The first three columns show
the parameter names, order and true value. For each data set, the estimated parameter value
(column “esti. value”) with CMA-ES method is subject to a maximum of 20% variation (column
“esti. +20%”). From this variation, a range of values is selected for each parameter (column “selec.
values”) allowing a maximum error rate of 0.1% on the value of the estimated cost function L.
For each parameter 1,000 samples are generated

synthetic data set 1 10,000 samples samples > 10um
parameter order true | esti. value esti. £20% select. values | esti. value esti. £20% select. values
01 1073 9.60 | 9.61 7.69 - 11.53 9.58 - 9.63 | 9.62 7.70 - 11.54 9.59 - 9.65
p 102 1.50 | 1.50 1.20 - 1.80 1.47 - 1.53 | 1.49 1.19 - 1.79 1.46 - 1.52
03 108 218 | 2.17 1.74 - 2.60 2.05 -2.29 | 2.09 1.67 - 2.51 1.91 - 2.29
04 1073 7.37 | 7.20 5.76 - 8.64 6.54 - 8.02 | 7.35 5.88 - 8.82 6.58 - 8.32
synthetic data set 2 10,000 samples samples > 10um
parameter order true | esti. value esti. £20% select. values | esti. value esti. £20% select. values
01 1073 9.92 [ 9.92 7.94 - 11.90 9.90 - 9.95 | 9.91 7.92 - 11.89 9.86 - 9.95
p 102 2.00 | 2.00 1.60 - 2.40 1.97 - 2.03 | 2.01 1.61 - 2.41 1.99 - 2.05
03 108 3.27 | 3.12 2.49 - 3.74 2.69 - 3.58 | 5.39 4.31 - 6.47 4.32 - 6.47
04 1072 1.11 | 1.12 0.90 - 1.34 1.05 - 1.21 | 1.12 0.90 - 1.34 0.98 - 1.28

From estimated parameter values to parameter intervals The identifiability analysis
ensures that the minimization problem should have only one solution and the estimation proce-
dure computes this solution. Here, we want to compute intervals of parameter values for which
the cost function remains close to its minimum. Our approach follows the strategy of ABC
method where parameters are sampled from a prior distribution and are then selected according
to a criterion based on the evaluation of the model output [123].

To sample a parameter 6;, a new parameter 6; is first generated uniformly in [0.801-, 1.291—]
where 6; is the estimated parameter value obtained with the CMA-ES algorithm. Then, the cost
function is computed with parameter #; while the other parameters are fixed at their estimated
values. The parameter is selected if the cost function is below 0.1% of £(6). This threshold was
set to investigate the parameter space with small changes on cell size distribution. Note that the
parameter sampling is performed one at a time. This strategy is repeated until 1,000 replicates
are selected per parameter.

Table shows for each parameter the considered range of values and the selected intervals
for each synthetic data set. For synthetic data sets without missing observations, the range of
values selected by the procedure is reduced in comparison with the initial one and contains the
true parameter. This analysis gives an information on the range of accepted values for each
parameter. We note that, in synthetic data set 1, the model output seems less sensitive to
parameter 64 that has the largest range of selected values. In synthetic data set 2 the largest
range of selected values is for parameter 03.

In data sets with missing observations, the selected ranges are not impacted for synthetic
data set 1 (small difference for 63). In synthetic data set 2, the loss of information about small
cells leads to the selection of the total initial interval for parameter 65 (+20% of the estimated
value) and an important increase of the selected range for 6, (almost twice the length) compared
to the case without missing observations. As observed in section parameter D (hence 6,)
controls the relative heights of both modes in the cell size distribution. This can explains that
data sets with missing observations on small sizes lead to higher uncertainty on 64. These results
are in agreement with the computed relative errors of the previous paragraph (Table .
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Table 5.4: Parameter estimation with adipocyte size distributions measured in rats.
The first column is the parameter names. Over 32 estimations with the different animal cell
size distributions, the mean is presented in the second column, the standard deviation in the
third column and the fourth column is the relative standard deviation i.e the ratio of standard
deviation over mean. The parameters are estimated with CMA-ES algorithm of fmin2 function
from cma Python package (with 100 initial guesses).

parameters | mean std RSD
01 9.610~3 2.810°%  0.03
p 1.5710? 0.25102  0.16
05 2.2410% 1.0710° 047
6, 8211073 2581073 0.31

5.1.4 Application to adipocyte size distribution measured in rats
Measurements of adipocyte size distribution

The measured cell size distributions used to perform parameter estimation come from previous
experiments [119] and data from [63], but this part of the experiment has not been published.
Here, only adipocyte size distributions of animals in normal physiological conditions are consid-
ered.

We use two data sets of size distribution in retroperitoneal adipose tissue for a total of 32 male
Wistar rats (20 rats METAJ, aged between 20 and 24 months, Charles River, L’Arbresle, France
and, 12 rats EMPA, 12-week-old, Le Genest-Saint-Isle, France). Cell size distributions were
measured with Beckman Coulter Multisizer IV (Beckman Coulter, Villepinte, France) [88]. Due
to limitation in measurement techniques, only cell radii larger than 7.5um for the first experiment
and 10pm in the second were measured. Each animal cell size distribution is composed of a
minimum of 6,000 cell radii.

Parameter estimation with measured data

The estimation procedure validated on synthetic data is now applied to measured size distri-
butions. Parameter estimation is performed with CMA-ES algorithm with radius distribu-
tions measured for 32 rats in the same experimental conditions. Figure [5.2] shows four ex-
amples of model-data fitting (the model fitting results of the 32 rats are available on https:
//plmlab.math.cnrs.fr/audebert/adipocyte_size_modeling). These results show the abil-
ity of the model to reproduce different types of cell size distribution. The height of each peak is
not always correctly captured. This could be related to the loss of information due to missing
observation for small cells in experimental data. In addition, the nadir is always underestimated
by the model. We hypothesize that we are missing a process in the model to properly capture
this point. However, the overall size distribution obtained with the model is in good agreement
with the measured one.

Table shows the mean, standard deviation and relative standard deviation (RSD) of the
estimated parameter values obtained in the 32 rats. The RSD are relatively small for ; and p,
showing that the size distribution of adipocytes for rats in the same experimental conditions can
be characterized with parameters in the same value ranges. The variability in the population is
larger for parameter 65 and 6, (larger RSD). However, the previous analysis on synthetic data
showed that less confidence in the estimation is expected for these parameters, especially 63.

For each animal, accepted parameter ranges are also computed following the procedure de-
scribed in section (Table [5.5). Figure [5.3] displays for each parameter the estimated value
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(a) Animal A1. (b) Animal B1.

0.074 0.08

20 40 60 80 100 120 20 40 60 80 100 120

(c) Animal C1. (d) Animal C5.

Figure 5.2: Comparison model-data. Four examples (over 32) of adipocyte radius distribu-
tions (in pm) as histograms in rat in normal physiological conditions and model output computed
(dash lines) with estimated parameters (see section [5.1.4). The parameter estimations are per-
formed with CMA-ES algorithm of cma Python package by minimizing the function £ eq. @

for each animal with the range of selected values (dots and bars). As expected, the parameter
ranges are larger for parameters f3 and 6, compared to parameters 6, and p. Figure also
shows the mean (dash red line) and the standard deviation (gray area) over the rat population
for each estimated parameter. It enables to compare the amplitude of the range of accepted
values for each parameter for each animal with the variability within the population. We can
see that for each parameter the range of accepted values is always smaller than the standard
deviation in the population. It shows that the largest standard deviation within the population
obtained for 03 and 6, (Table should not be attributed to less confidence in the estimations.

The range of selected values of parameter 65 in rats population is between 1070 and 4429 pm?3.
From this range of values, we can compute a range of radii for which the lipolysis term becomes
mainly a surface based mechanism (i.e. (V(r) — Ver)/(V(r) — Vem + 03) > 0.95). We find radii
in the range 17.2 — 27.3 um.

Similarly, for lipogenesis, the parameter 0; is estimated within the rats population between
0.0092 and 0.010pm~2. We remind that this quantity is a combination of parameters : 6; =

alL al

BL+w) and parameter § is known [I19]. We then obtain an estimation of T between 0.29 and

0.31 nmol.um~2.h~1. In the case of high available lipids, L is large and we can assume —2— ~ 1.

L+k
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Figure 5.3: Group variability and range of selected values. Upper left and right figures
display the results for parameters #; and p. Lower left and right figures show the results for
parameters 03 and 6. For each estimated parameter the average over the population is shown
with dash red line and the gray area is one standard deviation around the average computed
over the population (values are reported in Table . For each parameter, the estimated value
for each animal is displayed with dots and the bar represents the range of selected values. These
ranges consist in values of the parameter (assuming the 3 others are fixed) for which the maximal
cost function is 0.1% of the obtained cost function with the estimation (see section [5.1.3). All
numerical values are reported in Table

Under this assumption, the parameter « is estimated between 0.29 and 0.31nmol.um=2.h~ 1.
An alternative case is for low L, then we can assume L%m ~ L and the estimated values of 6
provide an estimation for aL.

The cell size threshold p of the Hill function in lipogenesis term is estimated in the range
115 — 204pum. Above this threshold, the term p®/(p® + r3) is smaller than 0.5 and limits the
growth of the cell.

Sensitivity analysis

In order to investigate the differences between model output and measured cell size distribution,
a sensitivity analysis is performed. Sensitivity analysis is a local analysis and quantifies how
sensitive the model output is to parameter changes. We choose to apply the Sobol’ method [117].
The sensitivity indices are based on the decomposition of the output variance at each cell size
point.

The first order index measures the singular effect of a parameter on the model output. It
represents the contribution part of the parameter alone in the variability of model output. A
high value of this index indicates a high contribution of the parameter, which means that the
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Table 5.5: Parameter estimation results on measured adipocyte radius distribution
in 32 rats. First column is the animal identification. Estimation is performed with CMA-ES
algorithm of fmin2 function from cma Python package by minimizing the cost function L, see
eq- . The second to fourth columns show each parameter estimated value for each rat
averaged over 100 runs with different initial guesses and the standard deviations are in brackets.
For each estimated parameter, considering a maximum change of 20% of its estimated value,
1,000 samples are selected with a maximal error rate of 0.1% of the cost function value. The
range of selected values of each parameter is given in the last four columns. These ranges consist
in values of the parameter (assuming the other are fixed) for which the maximal cost function
is 0.1% of the obtained cost function with the estimation. One can note that animals B3 and
B9 have a value of 5 that is estimated to be zero (10712/10713). Indeed, these animals show
particular cell size distributions with a very large number of small cells which can be due to a
measurement artifact.

estimated values selected ranges
animal | 6;107° (std 107'Y)  p10? (std 1079) 05 10° (std 107%) 0,107 (std 10719) 60,1073 p10? 05 10° 041072
C1 9.52 (3.12) 1.60 (2.94) 1.89 (2.31) 11.8 (7.95) 9.49 - 9.56 1.56 - 1.64 1.59 - 2.21 10.5 - 13.5
C2 9.19 (1.05) 1.85 (2.16) 3.92 (1.07) 7.31 (3.43) 9.17-921 1.79-1.90 3.70 - 4.16 6.67 - 8.10
C3 9.23 (1.33) 1.84 (2.54) 3.40 (1.50) 8.10 (4.82) 9.21-926 1.79-1.89 3.17 - 3.65 7.40 - 8.99
C4 9.63 (2.27) 1.19 (1.63) 1.92 (1.52) 10.8 (5.75) 9.59 - 968 1.15-1.22 1.70 - 2.16 9.88 - 11.9
C5 9.43 (1.75) 1.71 (1.99) 3.08 (1.34) 6.43 (3.25) 9.41-945 1.68-1.74 2.90 - 3.27 5.75 - 7.31
C6 9.34 (1.41) 1.86 (1.92) 4.04 (1.13) 4.39 (2.33) 9.32-935 1.83-1.89 3.89 - 4.19 3.88 - 5.08
Cc7 9.26 (1.02) 2,01 (1.89) 4.26 (0.91) 4.26 (2.02) 9.25-927 1.98-2.04 4.12 - 4.42 3.80 - 4.86
C8 9.53 (2.15) 1.47 (1.86) 3.22 (1.36) 6.09 (3.29) 9.50 - 9.55 1.45 - 1.50 3.04 - 3.41 5.42-7.01
C9 9.42 (1.9) 1.76 (2.25) 2.87 (1.49) 7.24 (3.65) 9.39-944 1.73-1.80 2.68 - 3.08 6.52 - 8.20
C10 9.37 (1.81) 1.86 (2.19) 3.95 (1.35) 3.97 (2.25) 9.36-9.39 1.83-1.88 3.81-4.10 3.50 - 4.58
C11 9.34 (1.69) 1.76 (2.46) 2.51 (1.81) 8.90 (5.35) 9.31-9.36 1.71-1.80 2.30 - 2.73 8.19 - 9.76
C12 9.27 (0.95) 2.00 (1.80) 4.00 (0.83) 4.37 (1.78) 9.26- 929 1.96 - 2.03 3.87-4.14 3.98 - 4.89
Al 9.73 (1.5) 1.48 (1.04) 2.14 (0.60) 6.06 (1.77) 9.71-9.74 146 - 1.50 2.05 - 2.23 5.55 - 6.67
A2 9.93 (2.23) 1.27 (1.12) 1.75 (0.74) 7.65 (2.87) 9.90-996 1.25-1.29 1.65 - 1.85 6.98 - 8.50
A3 10.1 (2.76) 1.17 (1.01) 2.02 (0.79) 6.01 (2.48) 10.1-10.1 1.15- 1.18 1.92 - 2.13 5.35 - 6.86
A4 9.94 (2.01) 1.27 (1.03) 1.79 (0.60) 6.74 (2.17) 9.92-997 1.25-1.29 1.70 - 1.88 6.18 - 7.44
A5 9.93 (1.91) 1.30 (1.05) 1.68 (0.63) 7.62 (2.58) 9.90-995 1.28-1.32 1.59 - 1.79 6.98 - 8.42
A6 9.68 (1.44) 1.43 (1.15) 1.85 (0.62) 9.11 (2.70) 9.65-9.71 140 - 1.46 1.73 - 1.98 8.41 - 9.97
AT 9.70 (1.81) 1.50 (1.38) 1.93 (0.75) 8.72 (3.22) 9.67-9.72 1.47-1.53 1.81 - 2.07 7.92 - 9.68
A8 9.55 (0.98) 1.72 (1.07) 2.23 (0.49) 5.53 (1.43) 9.54 - 957 1.69-1.74 2.16 - 2.30 5.20 - 5.94
A9 9.55 (1.54) 1.65 (1.66) 1.83 (0.78) 9.70 (3.63) 9.53 - 9.58 1.62 - 1.69 1.71-1.97 8.98 - 10.1
Al0 9.70 (1.71) 1.54 (1.35) 1.3 (0.77) 11.5 (4.09) 9.67-9.74 1.51-1.58 117 - 1.44 10.5 - 12.6
B1 9.83 (2.16) 1.22 (1.36) 1.24 (0.94) 13.8 (6.65) 9.78-9.88 1.19-1.25 1.09 - 1.40 12.7 - 15.2
B2 10.0 (2.31) 1.22 (1.06) 1.67 (0.70) 8.42 (2.80) 9.97-10.0 1.20-1.24 1.56 - 1.79 7.61-9.45
B3 10.3 (1.42) 1.20 (0.74) 9.2410716 (1.52107%) 10.1 (9.13) 10.3-10.3 1.18-1.22 0.76-1.09 1071 9.83 - 10.5
B4 9.44 (1.04) 1.84 (1.43) 1.85 (0.62) 9.14 (2.53) 9.41-946 1.80-1.88 1.74 - 1.97 8.60 - 9.81
B5 9.61 (1.16) 1.62 (1.06) 1.97 (0.61) 7.54 (2.35) 9.59 - 9.63 1.59 - 1.65 1.87 - 2.07 7.02 - 8.19
B6 9.26 (2.11) 1.59 (2.15) 1.34 (0.87) 13.7 (6.14) 9.22-931 1.52-1.67 1.21-1.49 13.0 - 14.5
B7 9.44 (0.93) 1.77 (1.2) 2.22 (0.55) 7.76 (2.44) 9.42-946 1.73-1.81 2.11-2.33 7.27-8.34
B8 9.73 (1.69) 1.57 (1.22) 1.28 (0.73) 9.07 (3.23) 9.71-9.76  1.54 - 1.59 1.19 - 1.37 8.51 - 9.72
B9 10 (1.1710°) 1.43 (1.2510°) 174107 (17.4) 115 (8.2210%) | 9.97-10.0 1.40-145 1.43-2.0510" 11.1-11.9
B10 9.38 (1.52) 1.67 (1.98) 2.39 (0.81) 9.17 (3.68) 9.36 - 941 1.63 - 1.72 2.25 - 2.53 8.55 - 9.93

model output is highly sensitive to this parameter. The total order index enables to include the
effects depending on parameter interactions (higher order indices).

The model output is the cell size distribution f computed with equation for radii
from 7.5um to 140um. To study the influence of the estimated parameters, each parameter
f; is uniformly distributed in a range of +1% of estimated mean over the population of rats
(Table . The change of +1% in parameters values is chosen such that the adipocyte size
distributions computed with these parameters are bimodal. Then, Saltelli algorithm is performed
to explore the parameter space leading to the generation of n(2d + 2) parameter samples with
a Monte-Carlo approach [109] 117]. We choose n = 2048 and d = 4 the number of parameters.
The sensitivity analysis is performed using the SALib Python Library [117] 109} 20] 96].

Figure (a) shows cell size distributions ranges computed with parameters from the sam-
pling design. With these small perturbations, a large variability is found between the cell size
distributions around the two modes. The first mode of the adipocyte size density is represented
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by cells with radii from 7.5 to 10um. Regarding large adipocytes, the higher densities present
a high variability and correspond to adipocyte size values from 50 to 120um. These results
illustrate the heterogeneity of cell sizes that can be obtained with the model with small changes
in parameters.

Then, Sobol’ indices are computed to determine which parameters are most influential on
the cell size dynamic. The first-order indices are displayed for several radii and each parameter
in Figure b). The results indicate that parameter 6, explains the most the variations of cell
sizes with a first-order sensitivity index between 0.6 and 1 for all radii. Interestingly, for the cells
with radii around 40um, the index of #; decreases and we notice that p index increases (index
equals 0.36). It shows that parameter p around this point explains the variability of the model
output up to 36%. The impacts of 5 and 6, are almost negligible on cells size distribution.
From r = 90um, the results show that the influence of 6; decreases whereas p becomes more
influential and explains up to 18% of the output variability. The total-order sensitivity indices
are also computed (not shown) and are similar to first-order indices, revealing that parameter
interactions have a negligible influence on the adipocyte size distributions.

The sensitivity analysis suggests that the cell size dynamics in rats is mainly driven by the
parameters depending on lipogenesis, and especially by 6; which represents the combination of
the unknown parameters (o, , L).

Parameters 03 and 64, associated with lipolysis (through x) and diffusion (D) respectively,
have a negligible impact on the cell size dynamic along all cell sizes. This result confirms the
difficulty to identify these parameters in practice and are in agreement with the largest ranges
of selected parameter values. In addition, this study highlights the fact that the nadir is difficult
to capture since we observe an opposite change in the parameter sensitivity around this radius.
With this study we are able to explain the results of parameter estimation on the measured data.

5.1.5 Discussion

We presented a mathematical model to describe adipocytes cell size distribution, based on a
partial differential equation and including lipid exchanges. With the formulation of a stationary
solution we were able to solve numerically and efficiently this model. Prior to the estimation of
parameter with measurements we analyzed which parameter can be identifiable and how reliable
are the estimations.

The identifiability of unknown parameters was studied with a re-parameterized form of the
model. We showed that only four quantities can be uniquely identified and that three of our
parameters of interest are related. These three parameters cannot be identified separately with
an observation of the cell size distribution only. However, we can identify the threshold radius
p involved in lipogenesis, the lipolysis threshold y as well as the diffusion coefficient D that
describes cell size fluctuations.

The model calibration on synthetic data sets showed, in practice, an accurate estimation
of the parameters. When we considered data sets with missing observations (similar to the
measurements) we found that three over the four quantities can be correctly estimated.

The model parameters were estimated on 32 adipocyte size distributions measured in rats.
With these estimated parameters, the overall distribution of cell size was captured. However, the
nadir part of the distribution as well as the height of the modes were not perfectly reproduced.
It is possible that the model is missing some aspect of the adipocyte size dynamics that would
help to better capture the nadir. This is supported by the sensitivity analysis, that showed that
the nadir part was not sensitive specifically to one of the four considered parameters. Therefore,
it makes this part of the distribution difficult to fit. In addition, in the presented model, the
diffusion parameter D via 6, affects linearly both lipogenesis and lipolysis. It would be interesting
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Figure 5.4: (a) A sample of cell size distributions. The parameter sampling design is con-
structed using Saltelli algorithm where each parameter is uniformly distributed in a range of
values corresponding to 1% of the mean of its estimated value in rats (Table . A num-
ber of 20,480 samples giving bimodal distributions are generated to estimate the Sobol’ indices.
(b) Estimation of first-order Sobol’ indices for 61, p, 63 and 6, using a Monte-Carlo based ap-

proach [LI7, 109, 20, [96].

to change this modeling assumption with a more complex diffusion process, impacting differently
lipogenesis and lipolysis. For instance, considering a size dependent diffusion coefficient could
improve the agreement between the model outputs and the observations.

We also think that our assumption regarding the normalization of the cell size distribution
(it integrates to 1 between 7., and 7,4, ) affects the fits (especially the height of the 2 modes).
However, we have no background knowledge about the total number of adipocytes in the distri-
bution. In addition, we know that the data collection does not include cells with a radius below a
certain threshold. In [66], a formulation has been proposed to approximate the total cell number
in a fat pad but to do this estimation, we need to have the fat pad mass which is not the case
in our experimental data. An other way to solve this issue would be to introduce a parameter
that quantifies the total number of cells. However with an additional parameter, we will lose
parameter identifiability. Then, we might need to fix other unknown quantities, so this solution
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only shifts the problem.

Nevertheless, we have estimated parameter values for 32 rats. We found a larger variability
between rats in the estimated values of 5 and 6, (Figure . However, the sensitivity analysis
showed that the model is less sensitive to these parameters (Figure . For 6, and p, the
estimated values were more robust within the population leading us to believe that 6, p are less
individual-specific parameters. However they could change if the estimation is performed with
another species. This result suggests lipolysis (driven by x) is more an individual-dependent
process than lipogenesis (driven by 67 and p) that is more constant within the population.

Recruitment of new cells via adipogenesis was not included in our model. Since we were
looking at the distribution of size at one specific time, this mechanism can be neglected. However,
if one wants to represent longitudinal adipocyte size distributions specially in case of diet changes,
this process should be considered. This will have an impact on the cell size distribution, especially
for small cells, as suggested in [I19]. Moreover, it is known that past diets affect the adipocyte
size regulation and may be irreversible [66, 118]. Indeed, past diets could lead to a larger
number of cells in the tissue. However, in the presented model, the number of cells is not
explicitly considered. This assumption should be modified to take into account longitudinal size
distributions and to be able to compare animals with different diets. In past works [66] 67,
68, [82], the authors have considered partial differential equation models that take into account a
recruitment rate of new cells. Our model could be extended with this extra term for adipogenesis
modeling.

We believe that the presented framework can be adapted to estimate model parameters with
adipocyte size distribution in other species than rats and in different health conditions. It may
enable to establish links between the mathematical model parameters and health conditions
based on adipocyte size distribution observations. The final purpose is to be able to characterize
and potentially classify the different obesity-related pathologies.

5.2 Similar methods for the diffusive Lifshitz-Slyozov model

In this section we perform similar parameter estimation from our diffusive Lifshitz-Slyozov
model to the same data. Since our model is in lipids, we use equation to trans-
form the data from radii to lipids. Given a vector of measured lipid amounts (z;);=1,.. N, we
estimate a set of parameters # by minimizing the cost function :

N
L) = - Z log(M (x,6)), (5.19)

where M (x,0) is the stationary solution of the diffusive Lifshitz-Slyozov model, in the form of
equation ([1.30a). The dependency on L is ‘lost’ in some sense because we see L as a parameter.
Similarly, as in the previous study, the set of parameters to estimate is given by 6 = (61, 02, 03,04)
where :

L
=«
L+k’

91 92 =pP, 03 =X, 6‘4 =¢&. (520)

This set of parameters is slightly different from the one used in the previous section. This is

due in part to the model being written in lipids and to the fact that the stationary solutions are
different when considering a model with non-constant rate of diffusion.
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Figure 5.5: Examples of fitted models on synthetic data.

5.2.1 Estimations on synthetic data

In the same spirit as the previous study, we begin by studying how the CMA-ES method behaves
on synthetic data. First we fix a set of target parameters 0y.rger for which we generate a stationary
distribution. Then we take 10000 samples from this distribution to create a synthetic data
set. Then we use the CMA-ES method to estimate the parameters of this synthetic data set.
We perform 100 runs with different initial parameter sets and take the mean. Our choice of
parameters is up to some rescaling similar to the one in the previous work, however we are
unable to show that this set of parameters is identifiable. We also perform the estimation on
censored data, meaning that in lipids we only consider data above 0.03 nmol. Both results are
displayed in Table

We can see that when considering the whole sample, the CMA-ES method is able to recover
both 6; and p with acceptable errors. However the values of y and ¢ are more difficult to
estimate. This further supports the assumption that the set of parameters 61, p, x,€ may not
be identifiable. Examples of fitted models for the whole sample are presented in Figure [5.5
However when considering censored samples with only lipid amounts above 0.003 nmol, the
method performs poorly. From our observations, it seems that the first mode of the distribution
is actually critical to the parameter estimation. For this reason, we choose not to censor small
sizes when fitting with real data.

5.2.2 Estimations on biological data

From the study we previously made on synthetic data, it seems that for the diffusive Lifshitz-
Slyozov model the set of identifiable parameters is either different from the one for the constant
diffusive model or empty. Nonetheless we proceed with the method and compare it with the
constant diffusion model (5.21). Since the model in the previous work is in radii, it can be tricky
to compare stationary solutions and results from parameter estimation. Hence we compare our
results for the diffusive Lifshitz-Slyozov model to a similar model in lipids, with a constant
diffusion rate :

Oth + 0, (vh) = DO?h, (5.21a)

L(t) +/R zh(t,z)dz = . (5.21b)

For this version of the model the stationary solutions are given by :
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synthetic data set 1

10, 000 samples

samples > 0.003 nmol

parameter true esti. value std rel. err. | esti. value std rel. err.
0, 3.010~T [3.0210°%  3107° 0.6% | 3.2810°"  8.701073 9.4%
) 1.5010% | 1.44102 8106 4% | 1.1110? 0.2310? 25.6%
X 2.051073 | 1.6410=3 710710 20% | 1.341072  4.841072  >100%
€ 501072 | 5.4810=2 1108 10% | 1.4110~Y 5581072  >100%
synthetic data set 2 10,000 samples samples > 0.003 nmol
parameter true esti. value std rel. err. | esti. value std rel. err.
0, 3.10107T [ 3.0410°T 51077 2% | 3.6410°1  2.871078 17.3%
) 2.0010% | 2.1010? 9106 5% | 1.49102 1.50107° 25.0%
X 3.00107% | 3.03107* 510710 1% | 6.41107'% 4.87107'®  >100%
€ 1.010~' |8.011072 21078 20% | 2.56310~!  8.04107%  >100%

Table 5.6: Results of parameter estimation procedure performed on synthetic data
sets without and with missing data. First two columns display the parameter names and
true values for both synthetic data sets. Columns 3 and 4 present the estimated parameters for
complete data sets (10,000 samples), it shows the average over 100 estimations with different
initial guesses and standard deviations. The fifth column sums up the difference between true
parameter and its estimation with a relative error in percentage. The three last columns present
the same values for the same data sets with missing observations: only lipid amounts over 0.003
nmol are observed (samples 0.003 nmol).

parameters | mean std RSD
6, 2.8310~1 3.95107% 0.014
p 2.51102 0.40102  0.15
X 3.89107% 1.7510=% 0.45
€ 8.68107% 2.71107% 0.31
Table 5.7: Parameter estimation with adipocyte size distributions measured in rats : mean,
standard variation and relative standard variation.
M()*ge (l m( L)dy) (5.22a)
L\T) = D Xp D 0 vy, Y), .
L+ / My (z)dx = A, (5.22b)
Ry

where C is a constant that ensures fR+ My (z)dz = m. In practice, we take m = 1.

Censoring the large data points

We begin by fitting the model on the whole set of data points for an individual. Unfortunately
when looking at the histograms of the data in lipids, the bimodal feature of the distribution is
less visible than when plotting in radii. The mean over all 32 animals is presented in Table

From what we observe on Figure [5.6] we often recover the shape of data for small cells and
large cells but we are not able to recover the nadir, the local minimum between the two maxima.

To compensate for this, we choose to censor the data and remove the larger size in the
data that corresponds to 20% of the total weight. The goal of this censoring is to concentrate
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(a) Animal C1 (b) Animal CA12

Figure 5.6: Comparison model-data : 2 examples of size distributions in lipids as histograms
and model outputs (dash-lined) computed from the results of the CMA-ES method. On the left
the fit reproduces the whole distribution. On the right the method does not reproduce the nadir
and the position of the second mode.

the estimation method on data points that are important to the feature we want to recover :
bimodality.

Values for the estimated parameters are presented in Table[5.8] We recover values of similar
order of magnitude for 67, p and €. However the value of x is different in this case, and has a
very large standard deviation. This is due to the fact that the result of the estimation of x is
very different from individual to individual and is either of the same order of the not-censored
case or of order 1071° which can be considered to be a numerical zero. Data for which we obtain
X to be a numerical zero are the ones that do not display a ‘strong’ bimodality, in the sense that
they are almost strictly decreasing. Examples of both cases are presented in Figure [5.7]

Hence we believe the model presents some troubles to capture the heterogeneity of biological
data. However, with some data preparation and appropriate estimation method, one may recover
good fitting between the model and the data.

parameters | mean std RSD
0, 290101 5.00102 0.02
p 1.97 102 2.9710'  0.15
X 8.4510~* 1.5310~% 1.81
€ 9.95107% 4.1110~% 0.41

Table 5.8: Results on large size-censored data. Parameter estimation with adipocyte size
distributions measured in rats : mean, standard variation and relative standard variation.

Comparison with the constant diffusion Lifshitz-Slyozov model (5.21)

The results of the CMA-ES method with the constant diffusion model are presented in
Table 5.9 We use the CMA-ES method on the whole data set or as before with a censored data
set where we remove points above 80% of the total mass. The orders of magnitude between the
two choices are the same but the model fits are not comparable as presented in Figure In
average, the fitted models are better for the censored data sample. Nonetheless, when compared
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0.‘0 0.‘2 0.‘4 0.‘6 0.‘8 1.‘0 112 1:4 0.‘0 0.‘5 l.‘ﬂ l.l5 2.‘0 2.‘5
(a) Animal A3 (b) Animal C2

Figure 5.7: Comparison model-data. 2 examples of size distributions in lipids as histograms
and model outputs (dash-lined) computed from the results of the CMA-ES method censoring the
last 20% of the data. The left figure exhibits a ‘strong’ bimodality and we are able to properly
reproduce the nadir, while on the right, the bimodality is harder to see and parameter y is
estimated to be zero.

with Figure the non-constant diffusive Lifshitz-Slyozov model has a better reproducibility of
data.

However the fitting of the constant diffusive model for the censored sample is relatively better
in average than its non-censored version, but not as good as the non-constant diffusive Lifshitz-
Slyozov model.

whole data set data < 80%
parameters | mean std RSD | mean std RSD
0, 2.79107 1 9.9010~* 0.035 | 2.8310~T 2481073  0.008
p 3.31102 3.22101  0.097 | 2.53102 346100  0.14
X 5.3610717  3.3710717 1 45410717 28110717  0.62
D 3.86 1.23 0.32 | 1.68 5.321071 0.32

Table 5.9: Results for the constant diffusive Lifshitz-Slyozov model. Parameter estima-
tion with adipocyte size distributions measured in rats for the constant diffusive Lifshitz-Slyozov

model (5.21)).

Conclusion

In the submitted work presented in Section 5.1} we introduced a version of the Lifshitz-Slyozov
model for adipose cells in radii with constant diffusion. We investigate the parameter identifia-
bility and estimate parameter values with CMA-ES method. We identified a set of 4 parameters
that are identifiable and validate the method on synthetic data. We obtained an estimate for
the surface rate of lipogenesis in line with the literature.

In Section we use the same method on the diffusive Lifshitz-Slyozov model . We
show that the model still performs well on synthetic data. However when applied to the data from
rats, we obtained that censoring large sizes actually increases the fit between model and data.
We recover values of parameters in the same order of magnitude as the first study. To be able
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(a) Animal A3 (b) Animal A3 with censored data points

Figure 5.8: Comparison model-data for the constant diffusive model. 2 examples of size
distribution in lipids as histograms and model output (dash-lined) computed from the results of
the CMA-ES method. The left figure is the result for the whole data sample while the right is
the result with data points larger than 80% of the total mass censored.

to compare with the constant diffusion model, we introduce a constant diffusive Lifshitz-Slyozov
model in lipids and performer parameter estimation with this model. We obtained that the

non-constant diffusive Lifshitz-Slyozov model performs better overall than the constant diffusive
model.
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Chapter 6

Numerical schemes for mixture
theory models with filling
constraint: application to biofilm
ecosystems

6.1 Abstract

This work was done during the summer school CEMRACS 2022 on Transport in Physic, Biology
and Urban traffic. The goal of this project was to apply a numerical scheme from mixture theory
to a biofilm model. This models describes a biofilm as three phase system: cells, extra-cellular
matrix and liquid, where equation for volume part and velocity is provided for each phase.
Obviously the three volume parts should sum to one, which leads to a constraint equation on
the system. Validating this constraint at the numerical level proves difficult which is why we
introduce the use of numerical schemes from mixture theory that were developed with this
numerical constraint in mind. We show that we are able to recover the typical behavior of an
algae biofilm while validating the constraint at all time point. We also introduce the inclusion
of substrates to the system which complicates numerical computations but still validates the
constraint. This work is submitted [12] and small editions were made for ease of reading in the
manuscript.
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6.2 Introduction

There are many physical cases of flows composed of different gas or liquids interacting together.
For example, tissue bodies and tumors can be described as a set of interacting viscoelastic
materials. Powder-snow avalanches can be described as a mixture of fluid phases. Similarly, the
rheology of the gut microbiota and its interactions with chyme (a mixture of partially digested
food and water) and the host can be modeled using mixture theory [75]. Complex flows can also
be found in many engineering applications involving multiphase systems such as boiling water
in nuclear reactors. Therefore, the framework of mixture theory is a common tool to model and
study complex flows.

Mathematical models based on mixture theory take the form of systems of partial derivative
equations, coupled with algebraic constraints. The theoretical analysis of such systems and
the characterization of the qualitative properties of the solutions are extremely complicated
11l 52, 69, 113]. Thus, it is important to develop efficient numerical methods able to accurately
capture the solutions [16] 28] [29], 4T].

In this article, we are interested in applying mixture models to describe biofilm dynamics.
Indeed, mixture theory revealed a powerful approach to represent microbial biofilms where a
consortium of cells is embedded in a polymeric structure [29, [102] [103].

In mixture theory, the unknowns of the model are requested to satisfy certain constraints. As
far as the continuous equations are considered, several equivalent formulations of these constraints
can be derived and used to bring out the properties of the model. However, the preservation
of these constraints by a numerical scheme is a challenge and, once a discretization setup has
been adopted, it is not clear that all the formulations of the constraints remain equivalent. This
issue can induce a loss of stability and accuracy, and eventually a dramatic loss of key physical
properties of the simulated flows. Thus, we adapt and extend the numerical scheme proposed in
[13] in order to preserve these constraints. The numerical scheme will be tested and illustrated
with a multiphasic model representing the development of a photosynthetic biofilm, with the
application for biofuel, protein, or drug production.

The paper is organized as follows. The first section is dedicated to the mixture theory
framework with a presentation of the simplified model used to test our numerical scheme. The
second section details the numerical scheme and its properties. The third section presents the
results and comparison with standard numerical schemes.

6.3 Mixture theory framework: application to biofilms

6.3.1 Mixture theory framework

The mixture theory framework [I07], also known as mixture mechanics or continuum mechanics
for fluid dynamics, enables describing multi-phasic systems at the mesoscopic scale which is an
intermediary scale between microscopic and macroscopic scales. It was introduced in the 1960s
by Truesdell [124, 126, 125] and generalizes Navier-Stokes equations to multi-phasic systems.
The mixture theory framework assumes that each component of the mixture might be present at
every point in space and at any time. Moreover, the system’s physical properties (ex. viscosity,
incompressibility, ...) are naturally included.

Consider a mixture of k& components indexed by « € [1,k]. Each component is locally
described by its volumetric mass density p,, its volume fraction ¢, and its local velocity vy.
The volume fraction represents the relative volume occupied by a component in an elementary
normalized piece of volume. Thus, assuming that there is no vacuum they satisfy the algebraic
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constraint

k
> o =1 (6.1)

The mixture dynamic depends on mass transfers which are modeled through mass balance equa-
tions ([6.2a)) and the local forces applied to the system which are accounted for through momentum
balance equations (6.2b)). Thus, for each component the state variables satisfy the equations:

81‘,([)04(775(1) + V- (Poz(bava) = Fom (62&)
8t(pa¢oﬂ}a) +Vy - (pa¢ava & Ua) + Voo + ¢ava =V ((baTa) + Fo + ¢apag + Tava,
(6.2b)

where I'; is the mass exchange term, 7, is the elastic tensor, P is the common pressure, 7, the
viscous stress tensor, F, the friction forces, and g the gravity force. Depending on the considered
application some forces can be neglected and some others might be added.

Depending on the targeted application one can add for each component an extra equation
for the evolution of the density p,. Nevertheless, liquids are weakly compressible, especially
when pressure variations are small. Therefore, in most cases, for liquids the component densities
Po can be assumed constant. When all the component volumetric mass densities are assumed
constant, the mass balance equations are equivalent to 9;(¢a) + Va + (dava) = La/pa-
Then summing these equations for each phase leads to the pseudo incompressibility constraint:

\PE <Z ¢ava> = Z %' (63)

This means that the local divergence of the averaged mixture velocity is equal to the local volume
variation induced by mass exchanges.

The elastic tensor m, can be interpreted as the internal pressure of the component. There
are several ways to model this term depending on the nature of the component. When the
component « represents particles, as in [I3], there is a close-packing limit. This property can be
enforced by using an appropriate expression for 7, as

oir
¢Z - ¢a 7
where 0 < ¢ < 1 is the so-called close-packing volume fraction limit. When the component «
represents softer material like living tissues it can take the form of standard pressure law:

Ta = Ya with v, >0, and B, >1, (6.4)

Ba
To = Ya (Zf) ,  with ~v4,>0, and S, >1, (6.5)

where 0 < ¢% < 1 is a threshold, see [29, [105]. More complex laws, based on the Flory—Huggins
theory:

To = —Ya(In(l — ¢a) + ¢ +¢2), with 7, >0, (6.6)

enable accounting for colligative properties at low concentrations, see [31].
The viscous stress tensor 7, is defined by

Ta = paBa (Ve + Vg — 2(V - v,)1d), (6.7)
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where the constant p > 0 stands for the component dynamic viscosity and Vv, stands for the
transpose of the velocity differential matrix.

The friction force F,, is induced by the difference in the relative speed of the mixture com-
ponents:

Fa - Z fa,a’(va’ - Uoc) (68)

a'#a

with f o the friction force law between the components pair o and «’. As a first approximation,
it can be assumed that f, o is a strictly positive constant. However, the friction between two
components should vanish when one of them disappears. Thus, a more realistic alternative is
to consider that friction depends on the local composition and use instead fu o/ (Ga®ar) .
Nevertheless, the total momentum conservation principle enforces that

ZFa:O.

Dissolved components, like substrate, can be included. A dissolved component p within a
phase «a is described through its concentration 6,. In addition to the transport by the phase, it
can also diffuse within the phase at a rate D). Thus, the mass balance equations for a dissolved
component within the phase o writes:

at<pa¢a9p) + Vg - (pa¢a€pva) — Vg (pa¢aDpv19p) =T). (6'9)

where again the source term I',, represents the mass exchange associated to component p.

6.3.2 Mixture model for biofilm

We focus on a simplified 1D model for biofilms. Biofilms are made of microorganisms A (microal-
gae, bacteria, or a consortium of both) and an extra-cellular matrix £. The biofilm is usually
immersed in water £. Therefore, according to mixture theory framework, see section [6.3.1] each
component « € {A, &, L} is described through three macroscopic variables: the mass density pq,
the volume fraction ¢, and the velocity v,. By definition, the volume fractions satisfy at any
time the algebraic volume-filling constraint which reads in this case: ¢4 + ¢+ ¢ =1. In
the one-dimensional case, the mass balance equations writes:

Oipada + OxpaPava =Ta, ac{ACg L} (6.10)

In this context, the volumetric mass densities p, can be assumed to be constant. Thus, the
mixture averaged velocity satisfies the pseudo incompressibility constraint (6.11) which writes
here:

TA TE TL
e e it

Ox(davA + Peve + drvr) = A (6.11)

pe Pr

For biofilms, there are various biological processes to be taken into account. The main pro-
cesses are growth, extra-cellular matrix excretion, and death. These reactions are schematically
represented in Table [6.1] The parameters 7, are pseudo-stoichiometric coefficients that quantify
how much a reactant (ex. liquid, algae, substrate, ...) or a product (ex. algae, extra-cellular
matrix, ...) is consumed or produced when a reaction occurs. The functions v; are the reaction
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Biological reaction representation

Name Reactant(s) Rate Product(s)
Growth nel +nsS d)—g) A
Excretion A SELTEEN &

Death A s e+ (1—ne)L

Table 6.1: Schematic representation of the biochemical reactions considered in the model.

rates. They describe the speed at which reactions take place as a function of the local composition
of the mixture. The source terms read as follows:

FA:%*%*%, I'E = e + neiba, rc= (1*775)7/%1*%%-

The growth is mainly induced by substrate (S) assimilation and liquid (£) absorption. How-
ever, as a first approximation, we assume that the substrate is in excess. Thus, the growth rate
14 takes the form v, = pugpadadr, where py is the maximal growth rate. The extra-cellular
matrix excretion ¢, and the death rate 14 are assumed to be proportional to the quantity of
microalgae, thus ¥, = pepada and g = pgpada respectively. Nevertheless, biofilms are very
complex ecosystems and the biological processes are very simplified here. Thus, a model exten-
sion accounting for substrate and oxygen is presented in section [6.6.3]

In the one-dimensional case and neglecting the gravity, for « € {A4,&, L} the momentum
balance equations simplify into:

4
at(pa¢ava) + O (pad)avi) + 03T = _(baawp + gaw(ﬂa(baamva) + Fo +Tov,.

To keep the model as simple as possible, let us assume that the elastic tensor takes the form of
a pressure law, see equation , for the tissues (ie. algae and extra-cellular matrix). Since the
liquid phase is not elastic this term is null for the liquid, namely 7 = 0. Similarly, let us assume
that the friction forces are constant and symmetric. Thus, in the expression for F,, the
term fy o for (a,a’) € {A,8,£}2 and « # o are constant and such that fu o = for.a-

The model is supplemented by boundary conditions. Let Q = [0, L] be the domain and 92
its boundary. In 1D, the domain should correspond to a biofilm core drilling in the orthogonal
axis of the support where the biofilm develops. The velocities at the bottom of the domain,
which corresponds to the surface on which the biofilm develops, vanish v,(0) =0, « € {A,&, L}.
However, the velocity on the top must satisfy a constraint induced by the incompressibility
constraint . Indeed, the integration over the whole domain of equation combined with
the null velocity at the bottom leads to

Fa Te Iy

L
<¢AUA + peve + </>5vg)(:n =L)= /0 (PA + /Tg + /)L)dx

To enforce this condition, let assume that on the top, the velocities are given by v,y =
I (F—A 4+ Le 4 LL)dx.
Pe PL

PA

Remark. Although there is no biophysical reason to impose the equality between the top veloc-
ities, this assumption remains acceptable in this context. Indeed, our focus concerns the biofilm
development and the final time considered prevents the biofilm to reach the top of the domain.
Therefore, in our context, the hypothesis that all top velocity are equals should not affect the
dynamics of the biofilm growth.
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6.3.3 Synthesis of model equations

According to the previous section the PDE system under consideration writes:

da+ b+ oL =1, (6.12a)
rA
oA+ Ox(Pava) = —, (6.12b)
pA
re
Orpe + 0z(peve) = P (6.12¢)
rc
Opr + 0u(drve) = o (6.12d)
4
O (padava) + Ou(padavy) + Ouma = —pa0: P + 30: (MA¢>A5'm’UA) + Fa+TAva,  (6.12e)
4
Oi(pedeve) + Op (pedevd) + Opme = —pe0, P + gam’ (usfi)eam?fg) + Fg +T'€ug, (6.12f)
4
O(prdcve) + 0u(procvy) = —pL0, P + ga:v <N£¢£azv£) + Fr +TLug, (6.12g)

where the sources terms (I'y),, the elastic tensors (7, ), and the drag forces (F, ), are given by:

TA =4y =Y — tha, & =ve + neia, L = (1—ne)a — ncibg, (6.13a)
g = lgpAdAPL, Ve = lePAPA,s Ya = HdpAPA, (6.13b)
Ba
Ta = Ya <¢3> P [eAS {A7g}, (613C)
Pa
Fo = Z foc,a’(va’ - Ua)v foc,a’ = fo/,a a € {_A,E’ﬁ}, (6.13d)
a'#a
The system ((6.12) is supplemented with the boundary conditions
L
r r r
va(z = 0) =0, and va(sz)Z/ <A+f+£> dz,
0 \PA pPe PrL

for all o € {A, €&, L}.

The initial data for the volume fraction can be chosen arbitrarily provided they are biologi-
cally relevant. However, to enforce the algebraic constraint on the sum over all the volume frac-
tions (6.1), the velocities have to satisfy the incompressibility constraint at all times and
therefore the initial velocities must verify this constraint as well. Thus, the initial velocities are
defined through a pressure P computed using the incompressibility constraint, see section [6.4.3}

by v = 30 — %P where 79 is the initial desired velocity. Here, the system is assumed to be

Pa
initially at rest so 92 = 0 for all the phases.

Most of the parameters come from [13] or [102] 103]. The viscosity coefficient for microalgae
and the extra-cellular-matrix are taken from [99]. All the parameter values are gathered in

table [6.21
6.4 Numerical scheme

In this section, we are interested in the numerical approximation of the PDE system ([6.12].
Nevertheless, the general principles and in particular the treatment of the pseudo incompress-
ibility constraint remain valid in a more general context. In such PDE systems, the pressure is
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Symbol Name Value Unit

Ky Microalgae maximal growth rate 2 1/day

Le Microalgae maximal ECM excretion rate 0.4 1/day
L Microalgae maximal death rate rate 0.2 1/day
Lo Microalgae maximal respiration rate rate 0.2 1/day
nA Microalgae pseudo-stoichiometric coefficient 1.0 1%}
ne Liquid pseudo-stoichiometric coefficient 0.96 1%}
ns Substrate pseudo-stoichiometric coefficient 8.67 - 102 1%}

Ne Inorganic carbon pseudo-stoichiometric coefficient 0.146 1%}
no Oxygen pseudo-stoichiometric coefficient 0.106 1%}

Ne Liquid pseudo-stoichiometric coefficient for death 0.90 1%}

Kz Light parameter 0.1 1%}

T Light absorption coefficient for the biofilm 2.5-104 m~!
Tt Light intensity at the surface 100 pmol m~2s~1
Topt Optimal light intensity 100 pmol m~—2s7!
Ks Substrate half saturation coefficient 6.2-1078 kg/L
K¢ Inorganic carbon half saturation coefficient 4.4-107¢ kg/L
Ko Oxygen threshold for growth 3.2-107° keg/L
no Oxygen exponent for growth 14 @

Kz Light coefficient for Haldane law 0.1 1%}

K, Oxygen half saturation coefficient 1.0-107° kg/L
Oin,s Input concentration for substrate 4.107° keg/L
Oinc Input concentration for inorganic carbon 10-107° keg/L
0in,o  Input concentration for oxygen 7.2-107° keg/L
Dg Diffusion coefficient for substrate 1.47-107% m?/day

De Diffusion coefficient for inorganic carbon 1.80- 1074 m?/day
Do Diffusion coefficient for oxygen 1.98-107% m?/day

PA Microalgae volumetric mass density 1050 kg/m?

PA Extra-cellular matrix volumetric mass density 1050 kg/m?3

or Liquid volumetric mass density 1025 kg/m?
oy Microalgae close packing threshold 0.75 1%}

YA Microalgae viscoelastic tensor coefficient 1.2-107%  kgm 'day~!

Ba Microalgae viscoelastic tensor exponent 1 1%}

t Extra-cellular matrix close packing threshold 0.75 1%}

Ye Extra-cellular matrix viscoelastic tensor coefficient 1.2-107% kgm™'day—!

B¢ Extra-cellular matrix viscoelastic tensor exponent 1 %)
pr Liquid viscosity 1073 Pas
BA Microalgae viscosity 0.25 Pas
e Extra-cellular matrix viscosity 0.75 Pas
fae  Friction coefficient between A and € 20 kg m—3day~!
farc  Friction coefficient between A and £ 20 kg m~3day~!
fer  Friction coefficient between £ and £ 20 kg m~3day !

Table 6.2: Model parameters. The parameters come from [13], 102, [99].
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defined through the volume filling constraint (6.1), namely ¢4 + ¢¢ + ¢ =1 for the considered
model. The treatment of this constraint and thus the definition of the pressure is always an issue
and requires specific treatment. To this end, the momentum equations are treated using a pro-
jection correction method inspired by the numerical method introduced by Chorin [25] [26], [27]
and Temam [I21] for incompressible viscous flows. In a nutshell, the momentum equation is
decomposed using a time splitting to separate the contribution of the pressure as follows:

4
8t(pa¢ozva) + 0, (pa¢avi) + 0yTo = gaw (Na(baawva) + Fo +Tqva, (6.14&)
8t(pa¢ozva) + ¢04893P = 0. (614b)

for a € {A, &, L}.

6.4.1 Projection correction method

Let us start with the presentation of the time discretization. Let T € RT be the final time and
(tn)n>o @ subdivision of [0, 7] such that t, = Y7, Aty. Consider o € {A, €, L} a phase and
its associated volume fraction ¢, and velocity v,. Then, ¢7(x) and v?(x) denote, respectively,
their approximation at time ¢,,. To shorten the notations, let us drop the space variable z and
denote 0t = At,11. Assuming that all the quantities are known at time ¢,,, the approximated
solution at time t,1 = t,, + Jt is computed using the following steps:

(a) Update the volume fractions according to the mass balance equations (6.12b])-(6.12d]):
ot ot
¢Z+1 = ¢n — —0z(dpvy) + —Ta.
Pa Pa
(b) Update the momentum equations without the contribution of the pressure term by solving
the following system:

1
n+l nt+s n_n
¢a Vo — PaVq

:ﬁ (—81 (¢Z(u§)2> — 0,7l + %81 (Na¢g+lazv;b+%) oy (¢n+1’ 1}"""%) N I‘ng)

P
(6.15)

(c) Compute the pressure using the incompressibility constraint (6.3). This step is detailed in
subsection [6.4.3]

(d) Update the velocity using the pressure with:

s Oty prt,

n+1 = vn
Po

Vo

6.4.2 1D space discretization

Following [I3], the space is discretized using staggered grids. This enables avoidance of any
odd/even decoupling in the stencil of the discrete version of the system. Moreover, the use of
staggered grids also allows to have or deduce naturally the quantity of interest (e. g. deduce
the pressure gradient on the velocity mesh grid). Let (xi)ie[[o, 7 be a regular subdivision of the

domain €2 such that z; = iAz with Az = % the mesh step. Let also define the mesh cell centers:
211 = (i+3)Ax for i € [0,1 —1]. The model variables are located:
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e at the mesh cell centers for the volume fraction and the pressure: ¢, ;, 1, P 1 for 0 <i <
I-1

e at the mesh cell edges for the velocities: v, ; for 0 <4 < 1.

Figure gives an example of the staggered grids with the localization of model variables.

e
e

} 3 Py gt
Vg b1 U1 o V2 ?s v3 ¢z Uy o Us
l | | | | |
[ I [ I [ I [ I [ I \
i) JZ% T Qf% T2 xg T3 JZ% T4 .73% Iy
— 0
Ax

Figure 6.1: Regular staggered grid in one dimension for 5 mesh cells with the volume fractions
and the velocities locations. The pressure P and the phase volume fractions (¢, ), are located
at the mesh cell centers <xi+;> .

2/ 0gig4

Model unknowns are discretized using a finite volume scheme. The transport terms in the

mass balance equations (6.12b))-(6.12d)) are written:

ot ot

1

Oty = ey~ 5pg (Frra (00 00) = Fil0ho ) + - Taisy (6.16)
where F; represents the numerical mass flux at the interface x;, which is a function of the
neighboring cells. There are multiple relevant choices for the definition of the numerical flux.
For the sake of simplicity, to ensure stability and since it is well adapted to staggered grids, it is
convenient to use upwind numerical flux. Thus, the discrete mass flux is defined by F;(¢,v) =

Ft (@—% ) vi) + F <¢i+% , vi) with

0 ifv <0,
ov if v >0,

v ifv <O,
0 ifv>0.

.7:+(¢,v):{ and .7-'_(¢,v)={

All the volume fractions are updated using equation (6.16]). Thus, the volume-filling constraint
enforcement is not guaranteed and depends on the strategy used to compute the pressure, see
sections [6.4.3] and [6.5.2]

Remark. To update the volume fractions and ensure volume-filling constraint enforcement an-
other strategy consists to use equation for all the components except one (usually the liquid)
which is computed using the algebraic volume-filling constraint : G = 1 — Za#a, P QS
done in [28, (29, (102, [103].

For the momentum balance equation, following [13], the transport term is also discretized
using an upwind strategy based on the material velocity v, that is the momentum flux is defined
by

The other terms of equation (6.15) are discretized using standard approximations. Remark that
interpolation on the dual mesh is required only for the zeroth order terms like the momentum
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supply induced by mass exchanges or friction forces. For these terms, the approximation of the
volume fraction on the dual mesh is obtained by approximating the volume fractions using the

values in the neighboring cells: ¢; = % <¢i_% + ¢i+%>. Therefore, dropping the « for readability,
equation (6.15) is discretized as follows:

n n+i 46t n n+i n n n+ n n—+ n n+i
P et (] e o) —p o)
ot

= o1l = m (Gury T (00y) =Gy —m(01,)) + 0T (0T

Remark. In this projection step, the viscosity and the friction are treated implicitly. For the
viscosity, this treatment enables the relaxation of the CFL constraint and avoids numerical in-
stabilities.

Remark. Like in [29, [102, [103] the computation of friction forces requires a specific treatment.
Indeed, the friction forces depend on the difference between the phase velocities, and when a
phase vanishes the velocity can not be deduced from the momentum (ie. ¢v). In the considered
applications, areas of pure liquid or biofilm are important so the adaptation of the initial data to
avoid phase vanishing is irrelevant. To overcome this difficulty, a strategy consists to treat these
terms implicitly so the velocity can be directly computed using the above equation. However,
this is costly because it imposes to solve at each time step a linear system of size: number of
phasesxmesh grid size.

1
Finally, the space discretization of the correction step is given by: v7+1 = va+ 2— ; Ag: (P;fl Pi”t1>
o 3 3

6.4.3 Pressure approximation

Let us detail the third step of the projection correction method. This is the key step to enforce
the algebraic constraint on the sum over all the volume fractions (6.1). The standard strategy

1
consists in plugging the time discrete version of equation (6.14B): ¢ntlyntl = ¢ntiylts _
g—i¢g+18mP”+1 into the incompressibility constraint (6.11]) to obtain the following equation on
the pressure:

n+l Ot T,
o, (Zsbz“va“ pcbz*laxP"“) =y (6.17)

@

Thus the pressure can be obtained by solving a non-linear and inhomogeneous Poisson equation.
As mentioned above, this strategy relies on the use of the continuous version of the incompress-
ibility constraint. Therefore, there is no guarantee that the algebraic volume-filling constraint
will be fulfilled at the discrete level.

To enforce the algebraic volume filling constraint, we adapt the strategy proposed in [I3],
which consists in using the fully discretized mass balance equations to deduce the appropriate dis-
crete incompressibility constraint. To this end, let us assume that the constraint ) ¢Z7i 41 = lis

satisfied for all times (¢, )n>0 and in all the grid mesh cells. Thus, the sum of the equations (6.16)
over the phases leads to

3 (Funr (@) = Filood)) = Ard ““- (6.18)

«
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Then, as in the standard strategy, an equation on the pressure or its gradient can be deduced
by using the time discrete version of equation (6.14b]). Since in the correction step, the volume
fractions remain unchanged, the time discrete version of equation ([6.14b)) simplifies into v+ =

1
veE jfazpnﬂ. Injecting this relation into equation (6.18]) gives:

1 ntl Ot ntl Ot Loivt
Z(fm( noyntd 8IP"+1> —E( oot BIP"“)) =AY Tz
o Pa Pa Pa o Pa
(6.19)

Consequently, to ensure that the algebraic volume-filling constraint is met, the pressure must be
the solution of the non-linear equation . The solution can be approximated using Newton’s
methods. In practice, although this method is more expensive than the standard approach its
cost remains reasonable. Indeed, the Jacobian matrix is explicitly known and the solution at the
previous time step reveals to be a good initial guess so only very few iterations are necessary to
converge. Both strategies are compared in subsection [6.5.2}

6.5 Numerical results

The aim of the paper is to present and test a numerical method able to simulate mixture models
for biofilms by guaranteeing the preservation of the algebraic volume filling constraint. Another
challenge when one wants to go towards the applications, relies on the difficulty to calibrate
the parameters of the model. Many parameters are, up to our knowledge, not available in
the current literature and very difficult to extrapolate from experimental data. For example, in
[28], 29,102} 03] the elastic tensor (ie. m,) settings are calibrated so that the biofilm front velocity
matches observations. Consequently, any modification of the model requires recalibration. To
avoid such difficulties, subsection presents numerical simulations based on the numerical
scheme presented in section [6.4] but assumes that the viscosity can be neglected, which enables
reusing parameters from [28] 29, [102] T03] for the elastic tensors. Secondly, subsection m
presents comparisons between the two strategies to approximate the pressure, still neglecting the
viscosity. Finally, subsection presents the dynamic of the full model including viscosity and
recalibration of the elastic tensors.

Initially, the mixture is only made of microalgae and liquid and the volume fractions are set
by

% (z) = max{0,0.05(x — 0.1)(z + 0.1)}, ¢2 =0, and ¢%2=1—¢4. (6.20)
As mentioned in subsection [6.3.3] the system is assumed to be at rest. Thus, the initial velocities
are defined by v0 = —&CP where the pressure P is determined according to the strategy

presented in subsection to enforce the algebraic constraint on the sum over all the volume
fractions (6.1]).

6.5.1 Biofilm dynamic without viscosity

Figure presents the numerical results for different times of system where the viscous
terms are neglected, namely pu, = 0 for a € {A4,&,L}. The simulation is made using the
numerical scheme presented in section and using the strategy based on the adaptation of
[13] for the computation of the pressure, see subsection In these figures, the left side
corresponds to the surface where the biofilm sticks and develops and the right side corresponds
to the side covered by the liquid, where nutrients are brought.
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(a) Volume fractions at ¢ = 120h (b) Volume fractions at ¢ = 240h (c) Volume fractions at ¢ = 360h
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Figure 6.2: Mixture components volume fractions (first row) and velocities (second row) for
different times.

According to Figures [6.2a] [6.2b] and [6.2c, there is front propagation corresponding to the
biofilm (dashed orange curve) development within the liquid. As in [102], two areas can be
distinguished within the biofilm. For example in Figure on the left side, namely for = €
[0, ~ 6]pm, the biofilm is mainly made of extra-cellular matrix (ie. &), whereas on the biofilm
front, namely for 2 € [~ 6,7.6]um, the biofilm is mainly made of microalgae. On the opposite,
the right side, namely for > 7.6, is made of pure water.

For the biofilm components, the velocities are positive near the front, which is expected and
explains the biofilm expansion. Otherwise, the liquid velocity is negative in the biofilm region,
which means that the liquid is drained into the biofilm due to its consumption for the biofilm
growth.

6.5.2 Volume filling constraint validation

Let us compare the two strategies presented in subsection to enforce the algebraic volume-
filling constraint, that is computing the pressure P either as the solution of discretization the
linear equation (standard strategy), or as the solution of the non-linear equation
(adapted strategy). To this aim, as in subsection the system without the viscous
terms is simulated, but using the standard strategy to enforce the volume filling constraint. The
results for the mixture components volume fractions at ¢ = 360h are presented in Figure
and can be compared to Figure According to these plots, the results are comparable. Sim-
ilarly, the shape of the pressure gradients curves are also similar, see Figure Nevertheless,
according to the dotted purple curve in Figure there is a significant discrepancy close to the
biofilm front (ie. at x = 7.6mm) in the pressure gradients between the two correction strategies.
Note that the front is the active part of the biofilm. Namely, it is in this area that the source
terms are the largest and lead to significant changes in mixture composition. Therefore, it is

162 of



6.6. MODEL EXTENSIONS

expected that the effect of the pressure gradient is observable notably there.

Besides, the pressure can be interpreted as the Lagrange multiplier associated with the
volume-filling constraint. Thus, it is important to compare how these strategies enable enforcing
at the discrete level the volume filling constraint . To this end, Figurerepresents the sum
of the volume fractions within the domain a time ¢ = 360h. According to this plot, the strategy
adapted from [I3] enables ensuring the volume filling constraint, whereas the standard strategy
does not. Numerically, the maximal error on the volume-filling constraint for the standard strat-
egy is 1.007 - 1073, whereas with the adapted strategy, it is 5.107 - 1071%, namely the order of
magnitude of the precision used in Newton’s method. Moreover, with this adapted method, the
error remains negligible throughout the simulation whereas, with the standard strategy, it varies

over time, see Figure in Appendix

(a) Phases volume fraction (b) Pressure gradients (¢) Sum of volume fractions
100 250
T e A e
Disteeon r 1.010 Newton
Sos 200} |---- Difference
ﬁ s / 1.005
o — Algae =150 / .
P e | / <
g Biofilm A, 100 / [ 1.000
2 > /
S 025 50 / 0.995
- -
0 = 0.990
0.00 S
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
xin mm X in mm X in mm

Figure 6.3: Mixture components volume fractions (left), pressure gradients (center) and the sum
of the volume fractions (right) at time ¢t = 360h. In figures and the blue curve rep-
resents correspond to a simulation made using the standard strategy for the pressure gradient
computation (ie. solving a Poisson equation) and the dashed orange curve represents the results
obtained using the strategy adapted from [I3] which require the resolution of a non-linear equa-
tion (ie. Newthon’s method).

6.6 Model extensions

Following insights coming from [I02], this section presents various relevant extensions of the
model and their numerical simulations.

6.6.1 Including the viscosity

Adding the viscous terms for the components requires recalibrating the model parameters. In-
deed, the viscosity is a measure of the component’s resistance to deformation. Therefore, when
accounting for the viscosity, the parameters associated with the component’s ability to deform
must be adapted. In particular, the elastic tensors for the microalgae and the extra-cellular
matrix must be recalibrated. Moreover, up to our knowledge, there is no direct measurement
of the parameters and they are calibrated, see [28] 29, [102], such that the biofilm front velocity
matches experimental measurements, see [I12]. However, such calibration is extremely com-
plex because the biofilmm front velocity depends also on many other parameters like the growth
or death rate. Nevertheless, to get the right order of magnitude of the biofilm front velocity
the elastic tensor coefficients must be significantly increased: multiplied by 9 - 107 so is set to

YA =g = 4.5-10~%kg/m/day.
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(a) Volume fractions at ¢ = 120h (b) Volume fractions at ¢ = 240h (c) Volume fractions at ¢ = 360h
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Figure 6.4: Mixture components volume fractions (first row) and velocities (second row) for dif-
ferent times. In this simulation, the viscosity is included and the elastic tensors for the biological
phases are multiplied 9 - 107 so the biofilm front velocity matches experimental measurements.
The simulation is made using 2048 mesh cells for the space grid.

Figure represents the time dynamic of mixture components when accounting for the
contribution of viscosity. The global dynamic remains comparable to the dynamic observed in
Figure In particular, there is still a biofilm traveling front. Again, there are two areas
within the biofilm: the back which is mainly made of an extra-cellular matrix (for z € [0, 5]
in subfigure [6.4c), and the front which is mainly made of microalgae (for z € [3.97,6.7]um in
subfigure evertheless, a major discrepancy is that the microalgae remain more located at
the front when including the viscosity. This is particularly visible at ¢ = 240h when comparing
Figure and Figure In addition, at ¢ = 240h, the velocities order of magnitude close to
the front is larger when including the viscosity. However, the interpretation of this observation
is tricky. Indeed, the shift in the elastic tensors for the biological phases imposes the use of very
refined mesh grids to properly capture the biofilm dynamic. Thus, it would be of particular
interest to design and use well-balanced numerical scheme able to preserve the biofilm front
structure. For more details about the numerical convergence of the scheme, see appendix [6.8.3]

6.6.2 Including light intensity

A microalga is a photosynthetic organism. Thus, microalgae require light to grow. When microal-
gae develop within a biofilm, the upper layers overshadow the lower layers. Following [28] 29, [102]
to account for these mechanisms, the microalgae growth rate becomes g = pgpad4¢. f1, where
fr accounts for the effect of light on growth. This term depends on the rescaled received light
intensity I and takes the form of the Haldane law:

204+ Kq)I
TI2 42K T+ 17

164 of

1 (6.21)



6.6. MODEL EXTENSIONS

The rescaled light intensity is the ratio between the received light and the optimal light intensity
Zopt, namely:

L
I(t,x) = % exp (/ T(l — ¢r(t, y))dy), (6.22)

where Iq,¢ is the light intensity at the surface of the tank (ie. = L) and 7 the attenuation
coefficient of the biofilm, assuming that microalgae and extra-cellular matrix have the same
attenuation rate. The parameter values associated to the light are gathered in Table

(a) Volume fractions at ¢ = 120h (b) Volume fractions at ¢ = 240h (c) Volume fractions at ¢ = 360h
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Figure 6.5: Mixture components volume fractions for different times. In this simulation, the
effective microalgae growth rate (ie. v4) accounts for the contribution of light intensity through
Haldane’s law (6.21) and light attenuation induced by biofilm layers, see equation (6.22)

Figure [6.5| represents the time dynamic of mixture components when accounting for the
contribution of light. The global dynamic is comparable to the dynamic observed in Figure [6.2
In particular, the biofilm front position travels at the same speed, and, again, there are two areas
within the biofilm: the back which is mainly made of an extra-cellular matrix (for =z € [0, 6]
in subfigure [6.5¢) and the front which is mainly made of microalgae (for z € [6,7.6]um in
subfigure owever, as expected, the volume fraction of biofilm is lower. Indeed, taking
into account the effect of light reduces the growth in the shadowed areas and thus the biomass of
microalgae. The extra-cellular matrix is also reduced since it is made from microalgae excretion
and dead organisms.

6.6.3 Including light intensity and solutes

Following [102], let us now include three dissolved components: the substrate (S), the inorganic
carbon (C), and the oxygen (O). As mentioned in subsection the dynamic for dissolved
components is modeled using a convection-diffusion reaction equation .

In a nutshell, the substrate represents the nitrate which is a nutrient of primary importance for
the growth of autotrophic organisms like microalgae. Besides, roughly speaking, photosynthesis is
the assimilation of inorganic carbon using light energy by autotrophic organisms. Photosynthesis
releases oxygen. Thus, including these components is of primary interest. Taking into account
these compounds also allows us to include the process of respiration. Basically, respiration is
the opposite mechanism of photosynthesis and its consideration allows us to better describe
the dynamic of thick biofilms. Indeed, the process of respiration becomes non-negligible in the
absence of light, namely in the biofilm’s inner layers.

As for the light, the contributions of the dissolved components to the photosynthesis process
are accounted for in the growth through the multiplication by functions f,, p € {S,C, O} which
represent how the growth is modified by the local concentration of these components. On the
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one hand, limited contribution in high concentration regimes of the substrate and the inorganic

carbon is modeled using Monod’s law: f, = Keﬁ. On the other hand, the inhibition induced
P P
by high oxygen concentration is modeled by the sigmoidal function fo = W Thus,
Ko

including the contribution of the dissolved components and the light intensity, the algae growth
rate becomes: Vg = pypadade f1fsfefo.

The respiration process is modeled by ¢, = ¢ A#—g@o where (i, is the maximal respiration
rate and K, the half-saturation constant for the oxygen.

The modification of the microalgae growth rate and the inclusion of the respiration process
requires to adapt the source terms for the phases as follows:

FA:wQ_d}E_wd_wra F5:¢€+n5wd7 Ic = (1—775)wd+?7£(¢r—¢g)

As for a phase, the source terms for a dissolved component is the sum of the pseudo-stoichiometric
coefficients multiplied by the reaction rates. Thus, for the dissolved components, the source terms
are

I'S = —nsiy, IC = =15ty + 1l ¢y, TO =nS1g — 0ot

The external supply for the dissolved components is modeled through Dirichlet boundary
conditions at the top of the bioreactor, namely at x = L. Otherwise, the no flux boundary
condition at the bottom of the bioreactor is modeled using the Neumann boundary condition:
Opbplu=0 = 0 for p € {S,C, O}.

(a) Volume fractions at ¢ = 120h (b) Volume fractions at ¢ = 240h (c¢) Volume fractions at ¢ = 360h
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Figure 6.6: Mixture components volume fractions (first row) and velocities (second row) for
different times.

The parameter values associated with the inclusion of the dissolved components are gathered

in Table 6.2
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Numerically, the transport and reaction terms in the mass balance equations for the solutes
are treated similarly to the other components. The diffusion terms are treated implicitly to
ensure stability without constraining the CFL condition.

Figure represents the time dynamic of mixture components when accounting for the
contribution of light and solutes. The global dynamic is comparable to the dynamic observed
in Figure In particular, the biofilm front position travels at a comparable speed. Again
there are two areas within the biofilm: the back which is mainly made of an extra-cellular
matrix (for z € [0,6.5] in subfigure [6.6c)), and the front which is mainly made of microalgae (for
x € [5.5,6.6]um in subfigure . However, the biofilm front velocity is slightly slower here.
This can be explained by the fact that the lack or excess of solutes in the active part of the
biofilm slightly reduces its growth. Indeed, for example, at ¢ = 360h, within the biofilm area,
the concentration of substrate is reduced by 12.4% and the concentration of inorganic carbon is
reduced by 5.1% relatively to the input values (ie. 0;,). Besides, the concentration of oxygen is
increased by 46.3% relatively to 6;, ¢. These discrepancies are larger at the beginning and tend
to decrease over time, see Figure in the supplementary material. These results are in good
agreement with the results presented in [102] 103].

6.7 Conclusions and perspectives

This article proposes an adaptation of the numerical scheme presented in [I3] able to enforce the
volume filling constraint in mixture models including mass exchanges. As in [13] the strategy
consists in deducing the discrete version of the incompressibility constraint from the discretized
mass balance equations. Numerical simulations show that this method enables the enforcement
of the total volume filling constraint at the discrete level.

In addition, on the modeling side, previous models from the literature are enriched by the
inclusion of viscous terms. These terms are essential to properly model biofilms in their fluidic
environment especially when there is a mixing of the surrounding fluid. In this context, this
work has allowed us to highlight the importance of designing well-balanced numerical scheme
able to efficiently capture the biofilm dynamic when including the viscosity. Indeed, including
the viscosity requires to recalibrate model parameters; in particular the elastic tensors need to
be strongly rescaled in order to recover realistic front features. However, with these parameters,
the numerical set up is more demanding to reach convergence. This difficulty leads to consider
further the design of a specific well-balanced scheme for the problem. To this end, the use of
well-balanced numerical schemes able to preserve the equilibrium at the biofilm front can be
considered.

Finally, in further works, it would be interesting to include additional biological features.
Among others, biofilms are generally multi-species. The framework of mixture theory is well
adapted to incorporate different species and such extensions are affordable if the interaction
between the species and their metabolisms is known. To make the model even more realistic
and predictive its calibration on experimental data is also particularly interesting. In conclusion,
real-life biofilms are 3D and therefore the extension and implementation of the numerical method
in 2D and 3D should be considered.
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6.8 Appendix

6.8.1 Spatiotemporal equilibrium

The spatiotemporal equilibrium states for the system correspond to the state solution
where the source terms of all phases vanish, namely: T'; = 0 for ¢ € {A,&,L}. In particular,
I'e = 0 induces 9. + ngvg = 0 which lead to ¢4 = 0. Thus, the only spatiotemporal stationary
state is the null state, namely ¢; = 0 for i € {4, &, L}.

6.8.2 Time dynamic of the volume fraction sum

0.015
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——Poisson
Newton

max(| X6,

0.005

0.000
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Figure 6.7: Time evolution for the maximal error within the domain on the sum of volume
fractions: F = max, [, ¢a — 1|.

6.8.3 Numerical convergence analysis for the model including viscosity

Numerical experiments have shown that numerical parameters need to be significantly reduced to
reach convergence when the viscosity is included, and re-estimating the elastic tensor accordingly.
Indeed, as mentioned in section when including the viscosity, the elastic tensor coefficients
must be rescaled and multiplied by 9 - 107 to obtain realistic front velocities for the biofilm.
Figure [6.8 shows the convergences of the numerical scheme in both cases: with and without the
viscous term. As expected, numerical convergence is obtained in both cases. Nevertheless, as
presented in Figure the convergences rate is lower when the viscous term is included. This
explains at least partially why the numerical parameters need to be significantly reduced to reach
acceptable precision for the application considered when the viscosity is included

6.8.4 Relative variation of solutes concentration

Figure [6.9] shows the relative variation of solutes concentration for different times associated
to the simulation presented in subsection In this figure, we observe that the variations
relatively to the input concentration are larger at the beginning (ie. ¢ = 120h) than at the end
(ie. t = 360h).
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(a) Numerical convergence for the (b) Numerical convergence for the
model without the viscous term. model incluging the viscous term.
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Figure 6.8: Numerical analysis of the convergence of the scheme. The left side correspond to the
case without the viscous term, namely u, = 0 for a € {A,€, L} and the right side correspond
to the case with the viscous term and using very large values for the elastic tensor coefficients.
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Figure 6.9: Solutes relative concentration for different times
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Chapter 7

Perspectives

In this chapter, we lay down a few perspectives of the work described in this manuscript. Some
of these perspectives are ongoing works while others are yet to be explored.

7.1 Uniqueness of stationary solutions

We are interested in showing that the diffusive Lifshitz-Slyozov model has a unique stationary
solutions, given by the values of A and m = fR+ f°(z)dz. We previously introduced the map

¢:L— L+ fR+ xMp, (x)dz, which we use to find stationary solutions by solving ¢(L) = A. Let
us recall that My (-) is the stationary distribution associated to L defined by :

_C 2 [“o(y,L)
Me(n) = 40, 1) exp(é/o a(y, )"

where C > 0 is a re-normalizing constant defined by : (E

C:

xv(yL

- )
fnh d(z.1) eXp 0 a1y dy)dz

Existence of a solution to ¢(L) = A is obtained by first noting that ¢ is a continuous function
and limy,_, o ¢(L) = +00 and at L = 0 we have that :

c

Mofa) = 5 exp(~2)

b(x

where the constant C' is actually zero since b(x) < Cpz and, letting § > 0, we have :

ex !
/ ) exp )dx > péb 2 /5 %dx m +00

Therefore My(-) = 0. Hence ¢ : Ry — Ry is continuous surjective and there exists a solution
to ¢(L) = A for all A > 0.

However uniqueness is harder to prove. The case for Dirichlet boundary conditions was
treated in [57], however in our case, with null-flux boundary conditions their method is unsuc-
cessful. Other methods were looked into such as showing monotony or fixed point methods, all
without success. Thus we turn ourselves to a relatively novel mathematical idea : computer
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AND DETERMINISTIC MODELS

assisted proof. This work is currently underway with Maxime Breden (CMAP, Ecole Polytech-
nique). The key point is we want to apply Banach fixed-point theorem, and thus we want to show
that |%(LL)| < ¢ < 1. We use methods coming from interval arithmetic that are able to perform
exact computation and for a range of values of L will give us bounds on the value of |d‘fi(LL) |. Let
us describe briefly what interval arithmetic entails and how we apply it to our problem.

Consider the numbers 7 and e. Both are transcendental numbers and their numerical evalua-
tion is therefore an approximation. The idea behind interval arithmetic is to replace numbers with
intervals that contain them. Hence let us denote 7 € [3.14,3.15] and e € [2.71,2.72]. Now imag-
ine one wants to compute m2+e2. Hence we need to define the square function on intervals as well
as the sum. This is done easily : ([a,b])? = [1,>0a?, max(a?, b?)] and [a, b] + [c,d] = [a+ ¢, b+d].
Observe that we have taken two decimal digit as precision for our intervals, thus when comput-
ing the upper bound max(a?,b?) we need to use an upper approximation while using a lower
approximation for lower bounds.

Which finally yields :

72 +e? € ([3.14,3.15))% + ([2.71,2.72])% = [9.85,9.93] + [7.34,7.40] = [17.19,17.33)].

An evaluation using Python gives 72 + e? ~ 17.26 which is in our interval. These interval
arithmetic can be used for numerical computations which will give theoretical bounds on a
computed object. Hence our method works as follow : we use interval arithmetic to show that
for a bounded range L € [Lmin, Lmax] there exists some constant 0 < ¢ < 1 such that \%(LL” <ec.
A problem arises when L — 0 and L — oo due to numerical computation of diverging integrals.
Hence we need to show uniqueness of a solution to ¢(L) = A on [0, Ly;,| with the hope that Ly,
is not too small, as well as on [Lyax, +00). Progress have been made in both directions and we
have already observe that the numerical results hold for a wide range of L, particularly close to
Zero.

7.2 Additional theoretical results and connection between
stochastic and deterministic models

On a more theoretical side, an interesting research direction would be to properly study solutions
of the diffusive Lifshitz-Slyozov model. A first approach has been derived in [34], where the
authors derive a different version of the diffusive Lifshitz-Slyozov model. Particularly, they
obtain a diffusion rate that is constant in time but not in space. This allows them to transform
the diffusion term to a constant rate diffusion via a change of variable. However in our case,
this method does not seem to work. Hence showing existence and uniqueness of solutions to the
diffusive Lifshitz-Slyozov model is tricky and still an open question.

Another parallel direction would be to provide both stochastic models with an existence and
uniqueness result. Our hope is that in both cases the sketch of the proof would not be far from
the deterministic approach : fix L and show that both X. and Z. exists, then use Schauder
fixed-point theorem on L to show uniqueness. Uniqueness could be obtained in a similar way as
in the deterministic case.

We previously mentioned the uniform propagation of chaos that leads us to writing Equa-
tions and . Such a result is prove in [I122] for birth and death processes. We recall
here the theorem from [122] adapted to our modeling of adipose cells :

Theorem 7.2.1 (Uniform propagation of chaos). Let T' > 0. Assume that the rates a and b are
Lipchitz functions as well as some additional technical assumptions. Then there exists a coupling
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and a constant K > 0 such that :

K

LNy n
sup B [|X2%(1) - Xe(0)]] < - (7.1)
A rigorous proof of this theorem for the stochastic models of adipose cells is currently in the
work and the technical assumptions are omitted for ease of reading. Nonetheless we refer the
reader to [122] for a rigorous proof for birth and death processes which is out of the scope of
this manuscript. The proof for adipose cell stochastic models should not deviate too far from

the proof in [122].

Concerning equation and (T.43), a result in the spirit of the Law of Large Numbers

(LLN) on the empirical measure py (¢, dz) = +; Z dx,.(t)(dx) could be a direction to show exis-
=1
tence of a solution to the diffusive Lifshitz- Slyozov model by looking at the limit hm N (t, dz).

In [I8], the author show that in under the asumption that the ratio & is C’1 and strictly
decreasing, the mild-solution to the Lifshitz-Slyozov model convergences exponentially in time
toward a Dirac mass located at the unique solution of A\ = mz + % They use an entropy

method and Wasserstien distances to obtain this results. The assumption that g is strictly
decreasing is key in their argument. This result could be extend to the case of a non-monotonous
ratio of rate, but this involves an appropriate choice of an entropy function which is still an open
question.

Additionally, the gradient-flow structure of both the Becker-Doéring and Lifshitz-Slyozov
model has been well established [92, 93] [T11]. This structure may be a starting point for new
theoretical results, including the ones we previously mentioned.

7.3 Model extensions

On the side of modeling, various extensions can be made to the model. Their pertinence is
obviously relative to our ability to collect and study biological data that would support these
extensions.

In the spirit of [46], the addition to the model of the dynamics of pre-adipocytes is an
interesting research direction particularly for modeling the effect of weight gain on the total
amount of cells. Let us denote by s(t) the amount of stem cells at time ¢ and p(t) the amount of
pre-adipocytes at time ¢t. We consider two functions ¢, and ¢, that describe the dynamics of m
and p respectively, which leads to the system :

O — (). p(0). (1. ) (7.20)
dp—” — G (m(0),p(1), 9(t, ) (7.2)
3tg + 0 (vg) = §3x(dg) -9, (7.2¢)
L(t) + /R glt )z = (7.2d)

The functions g and L are the distribution of cells and the external lipid amount respectively.
The constant + is the death rate of adipose cells. A possible choice for ¢,, and ¢, is described
in [46]. As mentioned in the introduction, the rate of differentiation of stem cells into pre-
adipocytes and then adipose cells is comparable to the death rate + in a healthy individual.
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However as an individual gains weight, we expect the body to adapt and to increase the count
of adipose cells. This raises a modeling question as to how to model this change in behavior.
Pre-adipocytes differentiate and become adipose cells of size zero, thus the boundary condition at
x = 0 should take this into account. This extended model is more complicated from a theoretical
point of view, and stationary solutions may not be as specific as in our case. Additionally since
the numerical scheme we used for the diffusive Lifshitz-Slyozov model is well-balanced and uses
the exact formula of stationary solutions, we may need to developed new numerical methods for
this extended model.

Another direction is to consider that the total amount of lipids changes over time A : Ry —
R,. An obvious choice would be a periodic function to simulate food intake at specific time
points. In this case, depending on the limit t_lgnoo A(t), stationary solutions may not have an

explicit formula. As in the previous extension, this would mean introducing new numerical
methods for simulations. New theoretical results are also obviously needed. Additionally, in [I00]
and [I01] authors developed an agent based model of adipose cells to study tissue morphology.
This agent based model could yield an additional way of looking at size distributions of adipose
cells and an explicit connection between this model and our Lifshitz-Slyozov model has yet to be
investigated. A possible approach would be to add a spacial position in the tissue to the model.
This increases the complexity of the model and poses new modeling questions on the spacial
distribution of adipose cells inside the tissue.

In regards to parameter estimation, possible extensions often come with the need for addi-
tional data : comparison between different species, temporal analysis of weight gain and weight
loss from longitudinal data, etc ... Moreover, the various extensions proposed for our model may
be able to better reproduce the data.
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Appendix A

Existence and uniqueness of
solutions

A.1 The Becker-Doring model

In this part, we prove theorem The proof follows the method developped in [9]. We begin
the proof by introducing the following truncated system where we only consider the first n sizes.
We show global existence and uniqueness of solutions to this system and their positiveness. Then
we take the limit as n — oo.

dcj = Ji—1(c™1") — Ji(™ ™), V1<i<n
dt
dcg _ n jn
at = JO(C ,l )
(A1)
dt - nfl(c al )
e =
E - - Z; Jz(c 7l )

Lemma A.1.1. For anyly € Ry and ® € R, the system has a unique solution (c™,I™) €
CHR?) x CY(Ry) , such that for all 0 < i < n, c(t) > 0, ["(t) > 0 and I"(t) + > icP(t) =
i=1
lo + Z ZC?
i=1

Proof of Lemma[A-1.1 By Cauchy-Lipshitz’s theorem, we know that has a unique maxi-
mal solution.

We simply need to show that the solution stays positive for all time ¢. To do so we introduce
the following system, where we add € > 0 to each ODE :

e
C; _ Jiil(ca,n’le,n) _ Ji(ce,n’le,n) +e (AQ)

dt
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deg™
- _ e.n jE,m A
5T (e 1) +e (43)

For (5™ the derivative takes the form :

lE’I’L

Z‘] enlen

By Cauchy-Lipshitz, we also now that this system has a unique maximal solution (¢=™, ™) €
C([0, 7)) x C*([0,T))

Let 7 = inf{t > 0|3i,¢;""(t) = 0}. 7 is the first hitting time of {0} of the solution (c¢*™, ™).
First consider that this time is reached for one of the ¢;"", where ¢ > 1. Then :

dC?n la7n(7—)A £,n
F(T) = aiflmc V(T) +biprciy (1) e

e,n

Zt (1) > 0. Similarly in the case i = 0 :

By positivity of a;

deg™
dt

(1) =b1c?"(7) + ¢

e,n
Co

Hence (r) > 0. Now if 7 = 0 then the solution is positive in some neighborhood of 0.

Otherwise if 7 > 0, this contradicts the fact that ¢ (7) = 0.
We have shown that at leat one of the ¢;"" is strictly positive. As such if there exists a time
7 such that [™(7) = 0 then one has :

lE’I’L

Z bl+1cz+1 >0

Then either 7 = 0 and the solution is posmve on some neighborhood of 0 or 7 > 0 and this
contradicts (™ (7) = 0.

Using Arzela-Ascoli’s theorem, we show that there exists a sub-sequence of (¢, [=™) which
converges unlformly toward a solutlon (c™,1™) of (A.1). Bounds on the solution itself are simple

using [57(t) + Ezcgn( ) =1lo+ ch

Let ¢ > 2. We choose n large enough so that ¢ < n.
de;™ | G, =" A
ar | Tl et~ et aie

Qi— a; bz bl‘
<<.1+.+.+.“)mﬂx+m+e

)C?n + bi+1c§f1 + €|

i—1 7 ) i+ 1

§0i+6<(3§a

)l lx +1o) + ¢
For i =1, we get :

e B A

= b =
| at | |OlE”A+ (1+allE"A—|—

)"+ bacy™ + €

<agm+ (a; + by + )(||co||X+lo)+5
<Cj+e¢
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And finally for ¢ =0 :

dcg’" [EMA
_ B e Em
‘ dt | | OlenA+ 1¢1 +5|
< aom+b1(|\00||x +1lo) +e
<Cy+e

For [*™ we have the following inequality :

n—1

dlanﬂ

n—1 [EMA .
<Co+z ey - oy > +biyicy)

<Co+ (Ca + Cy)m + Cyd (||l x + o)

Thus assuming £ << 1, one has sufficient conditions to apply Arzela-Ascoli’s theorem. Having
found a solution to (A.1), we now show it is a global solution by using simple bounds in time.
Fori>1:

>_|

0< M t) < = —i—chz

Z

For ¢ = 0, we have the conservation of the number of cells :

Q—“Q‘

Z ;(t) = 0. Hence :
And finally for " :

Therefore the solution (¢™,1") is global. The last part is a straightforward computation :

d n . n—1 n—1 .
= (l”(t) n chy(t)) = ST+ S (i (€0 = (1) = (€)= 0
=0 i=0 =1

O

Proof of theorem [1..3 The proof goes as follows : we show that the series of functions (cf'),,>1
are equicontinuous, then we use Arzela-Ascoli’s theorem to get uniform convergence on a compact
subset of Ry. We proceed similarly for {".

Let ¢® € X, Iy € Ry and note ¢ = (¢, ...,c%). Denote (c", ™) the solution of (A.1), such
that ¢}'(0) = ¢}, for i > 0. For j > n, we note ¢} = 0, and as such (¢}')i>0 € X;.

The bounds on ¢ and ™ are straightforward, as seen in the previous proof.
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dc? dim
We need to bound uniformly in n the derivatives % and &~ The cases for i = 1,0 are

dt
treated separatly because the bounds are slightly different.
Let ¢ > 2. We choose n large enough so that ¢ < n.

ImA A .
kgt b ap el b
a; b lerl 0
< —
< (H+ L H)(Ilc 1 +1o)
3C,
<Ci<(5 )1l + o)
For : =1, we get :
der A A
5= |OlnA+f~cC° (1+all”A+n)cl+ 25 |

b
<agm+ (a1 + b1 + 52)(||COHX +1lo)

<C;
And finally for ¢ =0 :
dcf I"A
5 1= la Ty — bict|
S agm —+ b1(||C ||X + lo)

<y

For [™ we have the following inequality :
n—1
dl"
ol =12

<00+Z lA+ bl )

<Co+ (Ca + Co)m + Cod([|°||x + lo)

Hence the sequence of functions (¢}'),>1 are equicontinuous on [0,4o00) for each i > 0 as
well as (I"),>1. We can apply Arzela-Ascoli theorem : by a Cantor diagonalization argument,
we can extract a subsequence ny such that for every i > 0 there exists a continuous function
¢ : [0, +00[— R with ¢* — ¢; as k — 400, uniformly on every compact of [0, +00) and extract
a subsequence ["* — [ as k — oo uniformly on every compact of [0, 00).

We can now pass to the limit in :

=+ [ (ema (P81, 74 () — e (5), 7))}

And by uniform convergence of ¢;* and I"* :
t
cilt) = + / (Ji,l(c(s),l(s)) — Ji(e(s), l(s)))ds (A.4)
0
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For [+, we have :

t nk 1
’ﬂk [ (S)A Nk Nk
l = lO / mci k (5) — bl'_t'_lci_:il(S))dS (A5)

To obtain convergence, the sum is split in two parts : Y20 = S22 +Z?:k;1+1. The first
converges since we have already shown convergence of the ¢;’s. Convergence of the second sum
is obtain with the following bound :

ne— 1 lnk Nk — 1 b lefl
um .
E la; s A 0" (8) — big1cif,(5)] < Cy E ¢i(8) + sup — E ici(s)
1=P+1 +rK i=P+1 i>P i 1=P+1

Both terms on the right go to zero as P — oo thanks to the fact that the zeroth and first
order moments of a solution are bounded and the hypothesis on b.
Then by the dominated convergence theorem :

t):lo+/0 > Jile(s),1(s))ds (A.6)
=0

We have shown that (c,1) is a solution of (1.24) and (iv) is a direct consequence of the use
of the dominated convergence theorem. O

A.2 Lifshitz-Slyozov model

The goal of this section is to prove theorem|[I:4.1] The proof in itself relies on the description of the
characteristic curves for the transport equation and a fixed point argument for the conservation
equation. We refer the viewer to [33] for the proof in the case of the classical Lifshitz-Slyozov
equations.

We consider the following system of equations :

{&f+@@@iﬁ7=0

t)+ [, af(t,x)dz = p (A7)

where v is of the form : v(z, L) = a(z) —b(x). We impose null-flux boundary conditions

and thus :

L+k

ft,z=0)=0,forall ¢t >0 (A.8)
Let us recall the definition of characteristic curves :

Definition A.2.1 (Characteristic curves). The characteristics associated to (A.7)) are solutions
to :

{&X@ﬁ@)ﬂX@ﬁwhuﬁ) (A9)

X(t;t,x)=x

We denote I, . its mazimal interval. Here we assume L € C°(R,) to be given. Since v is C!
in both x and L the characteristics are uniquely defined.

Property A.2.1. By simple calculations we have the following formulas :
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o X(t;8,X(s;t,x)) =z
o J(s;t,x) = . X (55t ) = exp( [ —0,v(X (0;t,x), L(0))do)
o O X (s;t,x) = —v(x,L(t))J(s;t,x)

To use the characteristics formulation for a solution to the Lifshotz-Slyozov model, we need
to describe the life-time of these characteristics. Therefore we consider the entry-time of those
characteristics in Qp:

oi(x) = infli, (A.10)

Now two cases arise : either a characteristic goes back to a positive = at time s = 0 or they
go back to the boundary z = 0 in positive time s > 0. Since the family of characteristics is an
ordered family, we can split them according to the characteristic that reachs the boundary x = 0
at time s =0

X (t) = inf{x > 0|oy(x) = 0} = X(¢;0,0) (A.11)
Lemma A.2.1. Let (t,z) € Q5. Then if oy(x) =0, X(s;t,z) >0 for all 0 < s < t.

Proof. The proof is a direct consequence of the definitions of I; ,, o4(x) and the fact that solutions
are defined on R7 . O

Lemma A.2.2. There exists some constant K > 0 such that for all s > t, X(s;t,z) <
xexp(K (s —t)).

Proof of the preceding lemma.
S
X(s;t,x) =X (t;t,x) +/ v(X(o;t,x), L(o))do
S i S
<z —|—/ a(X(o;t,z))do < x+ C’a/ X(o;t,x)do
t t

We conclude by Gronwall’s lemma :
X(sit,2) < wexp(Ca(s —t))
O

Lemma A.2.3. For allt € (0,T), and s € [0,t), the map x — X(t;s,x) is a strictly increasing
Cl-diffeomorphism from (0,+o00) to (X(t;s,0)),+00)

Proof. Since the vector field v is C! on R, in both variable, the associated flow x — X (t;s, )
is a O''-diffeomorphism onto its image, by Cauchy-Lipshitz theory. Since its derivative is strictly
positive it is also strictly increasing. We conclude by showing that lim,_, . X (¢; s, 2) = +00. By

lemma we have :

x=X(s;t,X(t;8,2)) < X(t;8,2) exp(Co(s — 1)) < X(t;5,2)C(T)

Taking the limit on both sides as x — +o0 yields the result. O
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Definition A.2.2 (Mild solution). Given a smooth initial condition f° and L € C°(R.) a mild
solutions of

8tf + ar(v(xv L(t))f) =0
£(0,2) = f(x)

is given by :
F(t,x) = fO(X(05,2)) T (05, ) L(x. (1),00) (€) (A.12)

Definition A.2.3 (Solutions to (A.7)). A couple (f,L) is said to be a solution of (A.7) iif

f is a mild solution in the sense of associated to L and L : Ry — Ry solves L(t) +
fR+ xf(t,z)dx = p.

Remark. Since we impose null-flux boundary conditions on this system : v(xz, L(t)) f(t,x)|z=0 =
0, there is no term involving 1o x_ 1)) ().

Lemma A.2.4 (Conservation of moments).

sup / (I+2)f(t,z)de < +o00 (A.13)
tel0,T) JRy

Proof. The proof relies on lemma For ¢t € [0,T), one has :

flt,x)dz = fo(X(O;t,x))J(O;t, 2)1L(x,(t),00)(x)d
Ry R,

= fO(z)dx

Ry

Similarly :

/xf(t,x)dx:/ zfO(X(03t,2))J (03¢, 2) Lix,(1),00) (z)da
Ry

Ry

= X(T;0,2)f%(z)dx
Ry

§exp(KT)/ zfO(x)dx

Ry

In both cases, f° € L*(R,, (1 + z)dx) which concludes the proof.

Definition A.2.4 (Fixed-point map). We denote T the following map :

T:Lec®(0,T]) — TLE#) = [p —/ of(t,2)da]s

Ry

where f is a solution to (A.2.2) associated with L, and [.]1 simply denotes the positive part. We
also denote B the set of eligible L functions :

B={LecC"0,T]) s.t. ¥t >0, 0 < L(t) < p}

Property A.2.2. T is continuous
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We will need the following lemmas for the proof.

Lemma A.2.5. Let Li,Ls € B and X1, Xy their respective characteristics. Let us denote

z = X9 — X1. Then there exists some constants K1, Ko > 0 such that fort <t; <ty :

|2(t2; 8, )| < [2(ta;t, )| exp(Ky(t2 — t1))

+ Ko / ’ (1+ zexp(K(o —t)))|La(o) — L1(0)| exp(K1(t2 — 0))do

ty

And in particular, there exists C, K > 0 such that :
|2(5;0,2)| < Cexp(KT)T|| Ly — Ll co(o,r)) (1 + )

Also there exists some constants K1, Ko > 0 such that for to <t; <t :

|z(ta; t, x)| < |2(t1;t, )| exp(K7(t1 — t2))

b Ko(1+ 3) exp(Kt — Kits) / Lo (o) — L1(0)| exp((K1 — K)o)do

ta

And in particular, there exists C, K > 0 such that :

12(0;¢,0)| < Cexp(KT)T|| Ly — Lu|co(po,17)

Proof of the preceding lemma. Consider the times ¢t < t; < t5. Let t; < o < s. Then :

[v(X2(05t, ), La(0)) — v(X1(o5t, @), L1 (0))]
< |o(Xa(o3t,2), La(0)) — v(X1(05t, 2), L2(0))|
+ [v(X1(03t,2), La(0)) — v(Xi (o3, x), L1(0))|
< Kilz(ost,2)| + Ko (1 + X1(05t, 7)) | La(0) — L1(0)]

We have the following equality :

z(tost, x) = z(t1;t, x) —|—/ 2(1)(X2(0;t7:c), Ly(0)) —v(X1(ost,x), L1(0)))do

ty

Then by Gronwall’s lemma:
to
\=(ta £, 2)| <|2(ta: )] +/ Ki|2(0:t,2)|do
ty

+/t2K2(1+X1(a;t,:z:))|Lg(a)—L1(0)|da
<|z(ti;t, )] exp(Ki(ta — t1))
—|—K2/ 2(1—|—X1(o;t,a:))|Lg(cr) — Li(0)|exp(Ky(ta — 0))do

ty

<|z(t1;t,z)| exp(K1(ta — t1))

e / (14 zexp(K(o — )| La(o) — L1(0)| exp(Ky (ts — o))do

t1
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Then, let t = t1 = 0.
S
|2(s;0,2)| <|2(0;0,z)|exp(K1s) + Kg/ (1+ zexp(Ko))|La(0) — Li(0)| exp(K1(s — 0))do
0

<zexp(Kis)+ Koexp(Kis)(l+x) /OS|L2(0) — Lqi(o)|do

SC exp(KlT)THLg — Ll”CO([O,T])(l + I)

The proof of (A.15) is done similarly but applied tp z(t—s;t, ). (A.16) follows from previous
bounds. 0

Proof. Consider a sequence (L, )nen in B such that it converges to L € C°([0,77]) for the uniform
norm. We want to show that :

lim sup | a:fn(t,x)da:—/ xf(t,z)dz| =0

N0 ¢e(0,T] JRy Ry
| xfn(t,x)dxf/ xf(t, x)dz|
.y xfO(Xn(O;t,:v))Jn(O;t,x)dx—/ 22X (0:t,2))J(0; £, 2)dz|
Ry Ry

-1/ T X (0,9) )y / T X0,/ (y)dy]

X, (05t,0) X (0;t,0)
00 X(05¢,0)

< / |20 (£ 0, 9) |/ (y)dy + | X (t;0,9) f°(y)dy|
X (0;¢,0) X (03¢,0)

The first integral is treated using (A.15)) and thus converges toward 0 uniformly in ¢ as n — oo.
For the second integral, we proceed as follow. Let y lie between X,,(0;¢,0) and X (0;¢,0). Then

‘Xn(t;ovy” = |Xn(t;07y) - Xn(t;OvXn(O;tvo)”

X1, (05¢,0)
-y / 0, X, (£:0,O)d(]

y
X (05¢,0) t

|/ exp(/0 0,0(Xp(0;0,C), Ly (0))do)d¢
y

< exp((K1 + K2)T)|y — Xn(0;¢,0)]

< exp((Ky + K2)T)|X(0;¢,0) — X,,(0;¢,0)]
=exp((K;1 + K2)T)|2,(0;¢,0)|

< exp((K1 + K2)T)Cexp(KT)T|| Ly, — ullcoo,y

Hence for y belonging to the segment between X, (0;¢,0) and X (0;¢,0), | X, (¢;0,y)| converges
uniformly in ¢ and y towards 0 as n — co. This concludes the proof of the required convergence.
O

Lemma A.2.6. The image of B through T is a precompact subset of C°([0,T)).
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In order to prove this lemma, we need to control the derivability of the first moment of f. This
is done using a weak formulation of the transport problem and showing the following property :

Property A.2.3. Let f be the mild solution to (A.7). Then f belongs to C1([0, T); weak-*-L* (0, oo; (1+
x)dx)) and for every h locally bounded such that h' € L>°(0,00) :

W) fta)de = | (@) fO(x)de + / / o(@, L(s))H () f (5, o) dwds (A.18)
R, 0o Jry

Ry

Proof. Let ¢ € C1([0,T) x [0,00)). Denote ¥ = — (9 +v,p). Then by the definition of a mild
solution, Fubini theorem and lemma [A72.3] one has :

T T 00
/ / (Orp + v0,0) (8, x)dads = — / / (s, z)fY(X(0;s,))J(0; s, x)dxds
0 R4 0 Xc(s)

T
= —/ (/ (s, X(5;0,2)))f"(z)dx
Ry Jo
And by the definition of characteristic curves, for all s € (o¢(z),T) :

Osp(s, X (s:,2)) = —W(s, X(s;1, 7))

Hence ¢(0,z) = fOT (s, X(s;t,x))ds. And thus :

/OT /R+ (Orp + 00, 0) f (5, x)dxds = /R+ 0(0,2) f(2)de

We conclude using a series of regularizaton argument. First the previous equality can be ex-
tend to functions p(t,z) = g(t)h(z) with g € CL(0,T) and h € CY(]0,00)) with &’ € L>([0,00))
using f € L*([0,T),L*(R,)), lemma and the fact that the velocity is locally bounded.
Again the result can be extended to function h locally bounded such that h' € L>([0, 00)) using
f e L>(0,T),L (R, (1 + x)dz)) and the sublinearity of the velocity :

/0 70 /]R h(z) f(t, 2)dadt + /O 70 /]R o(z, LW (2) £ (t, )dzdt = 0

Hence the map ¢t — fR+ h(z)f(t,z)dx has a bounded time derivative, which leads to (A.18).
This also implies that the first moment of f as a time derivative by choosing h(z) = .
O

Proof of lemma[A.2.6 Let v € B. Then applying Stampacchia’s theorem to []4 and p —
fR+ xf(t,z)dx allows us to write :

0 if fR+ zf(t,x)dz > p

_%(IR+ zf(t,x)dz) else (4.19)

d
ST()(t) =

d
Then by proposition |A.2.3[ and lemma |A.2.3| the derivative aT(u)(t) is uniformly bounded

independently of u. As such the image of B through 7 is a compact for the uniform topology. [
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We are know ready to apply Schauder’s fixed point theorem and proof the following theorem

Theorem A.2.1. Under the previous assumptions, (A.7) has a solution on the interval [0,T].

Proof. By Schauder’s fixed point theorem, we have a fixed point v € B. The only thing left is to
prove that u satisfies the relation in (A.7)) instead of the one involving [.]+.
Assume there exists a time ¢, such that :

/ zf(ty,x)dz = p and / xf(t,z)dz = p for t < t, (A.20)
0 0
Since T (¢) = ¢, this implies that ¢(t.) = 0. Then
d o0 o0 oo
G [ erteato= [ v L) st ade = - [ b, o
0 0 0

which is non-positive since b(x)f(t«,x) > 0. Since it cannot vanish without contradicting

(A.20), we have
4 [ xf(te,x)dx <0
dt Jo *’

Now if t, = 0, then fooo zf(t,x)dz < p on a neighborhood of 0. Else if ¢, > 0, then in some
neighborhood of t., t — fooo xf(t,x)dz is non-increasing which contradicts (A.20). Hence we
obtain fooo xf(t,x)dx < p for al time ¢ > 0. Thus completing the proof.

O

Lemma A.2.7 (Uniqueness). Let (f1,L1) and (f2, L2) be two solutions of (A.7) in the sense of
definition with initial conditions (fY,LY) and (f3,LY). Then :

L2 — Lillcoqo,ry < Cllpz — prl + 13 — Ll (Rs wda))
Proof. Using the mild solution expression and the conservation equation, one gets :

o0

ILo(t) — Lo(8)] <Ip2 — pa| + /IM&M%@@
Xl(O;t,O)
+ / X1(t:0,9)[ 1%, 2(y) — 7 (y)|dy (A.21)
Xl(O;t,O)
Xl(O;t,O)
y / Xo(10,9) £ (y)dy|
XQ(O;t,O)

In the first integral on the right, we first use (A.14) to get :

Awwwhﬂﬁmem0+MAUMQ—M@WMMK—KwMS

hence
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o] t

/ 1210, £2(y)dy < K exp((Ky + K)T)( / (1+9)£2(y)dy) / ILa(s) — La(s)lds
X1(0;t,0) + 0

Using [A22.2) we boudn the second integral on the right :

(o) (o)
/ X1(0,9)1°,2(£:0,y) — f1(t:0,y)|dy < exp(KT) /ylfo,Q(y) — fi(y)ldy
X1(0;t,0) 0
The last integral is bounded using a method used previously :
X1 (0;t,0) X1(0;t,0)
[ oo =] [ (0. - Xa(t0, Xa(0:6,0) B
X4(0;t,0) X2(0;t,0)

X1(0;t,0) Y
00X,

<t [ ] ZRwooswisy

X2(05t,0) X2(0;t,0)

oo

< exp(E,1)]=(0:,0)| / £2(y)dy
0

We have the final bound using (A.16) :
X1(05t,0)
| / Xa(t;0,y)./2 (y)dy]

X2(05t,0)
t

< exp((K1 + K)O) K| 3 11 (v, ) /|L2(8) — Ly(s)| exp((K1 — K)s)ds|| f3 || L1 (=, da)

0
t
< (1) [ |L2(s) - La(o) exp((Kr ~ K)s)ds
0
Henc we can write :

|La(t) = Li(8)] < lp2 — p1| + K(T) /le(S) — Lis)lds + (D3 = fllor @, wan)  (A22)
0

The proof ends using Grénwall’s lemma.
O
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Appendix B

Classical convergence result

In appendix we showed that the Becker-Doring system has a unique continuous solution
(¢,1) in C([0,T], X+) x C([0,T],R;). We will now show that after some rescaling procedures,
this solution can be related to the solution of the Lifshitz-Slyozov equations. A classical proof
can be found in [129]. We will use similar techniques,the main difference lying in the definition
of the speed and the hypotheses on functions a and b.

B.1 Classical technique

From then on, we assume hypothesisto hold for (a;);>o0 and (b;);>1. Let us recall the rescaled
Becker-Doring model div

‘fff = é( e (5, LF) — JE(¢E, L9)), Vi > 1, (B.1a)

‘gcf = —%JS(CE,LE), (B.1b)

Le(t) + iia%j(t) =\ Vt>0, (B.1c)
1=0

LE(0) = L&°,  £(0) =0, Wi > 1. (B.1d)

We define the following step functions depending on both time and space, where f¢ is a
candidate for convergence to a solution of the Lifshitz-Slyozov system. Let I' = [(i—1)e, (i+3)e]
and we write :

fo(tx) = 1re(z)c(t)
i>0
Similarly we build the two space functions a® and b° as :

a“(x) =) 1r:(w)a;

i>0

b (z) = Z Lre (2)b;

i>1

We begin by proving the following theorem :
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Theorem B.1.1. Let (g;);>0 be a given sequence. Let (c%,L?) be the solution of (B.1) on
0,7), 0< T < +00.

o0

ta
Assume that for all 0 <t; <ty <T, / Z |gi+1 — gila; 5 (t)dt < oo and that either of the

1 =0
following holds :

(a) gi = O(i) and [;> 272 |gis1 — gilbfy 16541 (DA < oo
(b) 3020 9icE (ty) < 0o, for k=1,2 and g;41 > g; > 0 for i large enough
Then :

St = Yoty [ B
i=0 i=

¢
s (B.2)
2 % i Le(t
:/ ZQH 9i a5 — (t) ¢ (t)dt
t1 i=0 L ( )+
Proof. First, since (¢, L¢) is a solution of (B.1)), we have for all m > 1:
" Q- git1
S gics(ta) = 3 gt (1) :/ g (na
fi=m (B.3)
Im In+1
+2 [T e -2 [
g t1 L g t1
By reorganizing some terms we get :
n n g g
1—
IFTIBIED ST A S e IO
i=m i=m o j=m
to to
- gﬂ/ s (bdt — 9”—“/ T (t)dt (B.4)
e Jy, e Jy
"o g1 — 9 . LE(1)
s S(t)dt
+/tl ; EE O FTL
tog OO
By properties of a solution of (B.1) we know that L°(t2) — L=(t1) = / Z J;(s)ds. Thus
to
we have that lim Jo(t)dt = 0. Let g; = 1 and take the limit as n — oo in (B.4)), we obtain :
n—oo tl
00 to
> (eflta) ~ 0 = [T (0
i=m t1

Replacing m by n + 1 we have the following limits in the case[l|for k = 1,2 :

\%H\Z (th) <C(n+1) > c(ty) <C Z

1=n+1 1=n—+1

188 of



B.1. CLASSICAL TECHNIQUE

Or in the case 2t

gnst] S Gt <C Y gici ()

i=n+1 i=n+1

o0
Both inequalities lead to hm \9n+1\ > (tg) = 0 and consequently to :

i=n+1
to
Jim gl [ Jr(t)dE =0 (B.5)
t1
Since _L is bounded and [ 3% |g; 11 — gilascE(t)dt < oo, we have :
Ls(t)+lﬁl t1 1=m (e ?
: L) . > Le(t )
Jim Z |gi+1 — gz\%m (t)d /t Z |9i+1 — gilai ——~—— T+ ci(t)dt < oo (B.6)

o i=m 1 i=m

Convergence is obtained using (B.4), (B.5), and the monotone or domianted convergence
theorem based on the choise of (g;):

o0 (o)
D gici(ta) = Y gici(t)+ / Z ng a TARIONY

t

1 4= TrLt2 La(t) (B7)
9m € gH‘l gi at 5
=70 t)dt S (t)dt
=y Tl e [2 S EOET

1 i=m

We conclude by letting m = 1 and adding the terms for cj.

Using the previous theorem, we show the following proposition :

Proposition B.1.1. Let ¢ € WLT®(R,), positive such that d,¢ € LT>®°(Ry). We denote

Apgp(x) = M Then for every t > 0, we have the following equality :

h € fgxx:too xaexL@)f x)b(x)) fe(t, x)dx
| etas ) = rro.onte = [ [T (a0t @) i 1~ Ao @) ><;1Bd8t)

Proof. We use the previous theorem with the choice g; = fri x)dx. Since d,¢p € LT°(R, ), w
are using case [I] :

> [ etontatei) - &)+ / / o) =0 = 9) e ez, (1)t
=0 i
(B.9)
¢>x+s> ola) . L),
/ dz a5 o) + e (t)dt

We conclude using Fubini’s theorem :
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s — (0,2 xx:too xasxiLE(t)— )b () f° (¢, x)dx
| ) = rroonss = [ [ (@ole)er o) 2 - Aol (@) £t a)dad

O

We now show convergence of (f¢, L¢) towards a solution of the Lifshitz-Slyozov system. The
proof of the following theorem is based on compacity argument of the sequence of (f€, L¢) and
bounded estimates on moments of order greater than one of f¢.

First we prove the following lemma :

Lemma B.1.1. Assume the same statements of the preceding theorem. Then :

sup sup / (1+x +2') fo(t, x)dx < o0 (B.10)
e>01¢€[0,7] J0

Proof. We use theorem (B.1.1) with ¢g; = € and obtain :

/oo Flta)de=ed )= & < C
0

i>0 i>0

For the first moment we use the conservation of the quantity of lipids :

/OO xfe(t,x)de < A
0

For the moments of order 1 4 s where s < 1, we proceed as follows.
Let e*(x) = Y 1[ic (i+1)c[(w)ic. Hence for all r > 0, we have :
i>0

/0 (§)rf€(t,x)dz§/0 (ee(x))rfe(t,x)dxg/o " f¢(t, x)dx

As previously we use theorem (B.1.1))) with g; = e(e(ie))!** :

/0 (@)t a)de = e 3 (i) e (1)

i>0

t o
—e3tiey e = [ S o((ei 4 e (e (e
=1

i>0

t e .
+/O ;((ez‘+s)1+s(si)1+s)a§LE(T§TL€c§(7)dT/O EUH T G (1) dr

(B.11)

The first term on the right is less than C by the assumption and the second term is negative.
Since we want to pass to the limit on £ \, 0 we can assume € < 1. Then for e < 1 and s < 1 we
have :

(gi + &)1 — (i)' < (1 +5)(1 + ie)

We can now give a proper estimate on the last term :
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B gi 4+ )1 — (e8)T%)as L (7) T s 1€
) e et = e i d</;1+ (1+ ie)aicf (r)ar
<K(l1+s) 1+de)c; (1)dr
IS

:K(l—l—s)/o/o (14 e°(x))f(r,x)dxdr

< K(1+s) /Ot /Ooo(lJr:c)fE(T,x)dxdT

< 0o
(B.12)
O
Since sup sup L°(t) < 400 we know that L® converges to u in L°([0,T]). We will know
e>0te[0,T)

show that convergence is also true in C°([0, T7).

Lemma B.1.2. Assume the same statements of the preceding theorem. Then (L) ¢ is equicon-
tinuous.

Proof. First let ¢ = z in proposition :

Le(t+ h) /t+h /+O<> EETJ)F i be(x)> fe(r, x)dadr (B.13)

We have an easy bound for the integral on the rlght :

‘ /tt+h /O+OO aE(I)LEI(f-gT—i)—/Q _ be(x)) Fe(r, $)dxd7"

t+h +oo t+h +oo
< K/ / fe(r, iL’)dCUdT+/ / |0 (x) f€ (1, z)|dxdT
t 0 t 0

By conservation of the moment of order 0, the first integral is bounded by const. x Kh. We
treat the second integral as follows :

t+h 400 t+h p+oo
/ / b (2) 2 (7, ) |dwdr < / / (B + br(2)2)|f*(r, 2)|dudr
t 0 t 0
t+h —+oo
<[ [ Irroldr
t 0

(B.14)
t+h “+o0 5
+ const. / / (Vix + Vo) 3| f&(7, z)|dxdT
0
< C(T)h
The last inequality uses the preceding lemma and the bound on the first moment.
Hence |L°(t + h) — L*(t)| = 0 uniformly in € et ¢ € [0,T].
—
O
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Proof of theorem [1.4-]] Firstly by Arzela-Ascoli’s theorem and the lemma [B:1.2] the sequence of
functions (LE)E>0 converges uniformly to u in C°([0,T7).

We will now show convergence of the sequence (f€).>0-

Let ¢ € C§°(]0,+00[) such that supp(y) C [0, R] where 0 < R < 4o0. Denote ¢°(z) =

> 1[1e,(i+1)e[($)90(i5)-
i>0

Hence |¢®(x) — p(x)| < g||¢’||L=, s0 ¢° converges uniformly to .
We can us ¢° in property and we choose € < d, such that ¢°(z) = 0 on [0,2]. We then
get :

/Ooo (ps(x)(.fs(tvx) - fE(O,x))dJ; =
> LE( ) £ £ £
/ / fo(r ) (0 (@) 3 e )+KA590 (z) — b () A_cp (x))dxdT (B.15)

First observe that A.p® - ¢’ uniformly. By using this in conjonction with lemma
E—r

and the equation (B.15), the sequence ([, ¢ () (¢, z)dz).>0 is equicontinuous on [0, T]. Again

by Arzela-Ascoli’s theorem it belongs to a compact subset of C°([0, T]). Moreover since ¢° -
E—r

¢ uniformly on R, the sequence ([, ¢ () f(t, 2)dz)e0 is also in a compact subset of C°([0, 7).
By density, it stays true for every p € CJ(R%).

Therefore by separability of CJ(RR% ) and Cantor’s diagonal argument we can extract a sub-
squence (still denoted €) such that for every ¢ € CJ(R%) and for every T we have :

/ o(z) fe(t, z)dx —)/ f(t,dx) (B.16)
0
uniformly on [0,7], where f € C°([0, +oc[; M!(0,400) — weak — x). Moreover by lemma
[B11l we have :
(L4 |z|"*)f € L%([0,7); M* (0, +00)) (B.17)

We can now pass to the limit in (B.15]) and get the main result of the theorem :

| eastan = [ ptso.0

/ / L(7) +)H b@))w’(w)f(f,dx)dr

We conclude by showing that the conservation equation also passes to the limit. We have that
ef(x) — uniformly and by existence of moments of order strictly less than two we obtain :
E—r

(B.18)

lim (Lf(t) + /Ooo xfs(t,x)dx) =A=L(t) + /O e f(t,dz) (B.19)

e—0

Hence we have shown that (f, L) is a measure-valued solution of the Lifshitz-Slyozov system.
O
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Léo MEYER
Modélisation et analyse des modéles pour la distribution en taille des adipocytes

Résumeé :

Le tissu adipeux est un tissu conjonctif responsable du stockage de 1’énergie sous forme de gouttelettes lipidiques a 'intérieur
des cellules adipeuses. Ces cellules, également appelées adipocytes, changent de taille de facon dynamique en fonction de
deux processus : le stockage des acides gras du sang & l’intérieur de la cellule, appelé lipogenése, et la libération active
des acides gras dans le sang pour une utilisation énergétique, appelée lipolyse. Cette thése porte sur la modélisation de la
dynamique de ces changements de taille pour une population de cellules adipeuses.

Une caractéristique frappante des données de distribution de taille des adipocytes, recueillies sur diverses espéces animales,
est leur bimodalité bien conservée : les distributions ont deux maxima locaux. Nous partons d’une loi de conservation scalaire
non linéaire qui décrit la dynamique des échanges de masse entre les cellules (macroparticules) et les lipides (monoméres),
inspirée du systéme de Lifschitz-Slyozov dans la théorie du grossissement. Ce premier modéle est exclu pour expliquer les
données, car son état stationnaire ne peut pas étre une distribution bimodale lisse. Deux extensions diffusives sont alors
envisagées. La premiére est heuristique et consiste & ajouter un opérateur de diffusion constant. La seconde, appelée modéle
de Lifshitz-Slyozov de second ordre, implique un opérateur de diffusion dépendant du temps et de la taille qui est motivé par
la version discréte du modéle de Lifshitz-Slyozov, & savoir le systéme ODE infini donné par les équations de Becker-Doring.
Nous prouvons un nouveau résultat de convergence des équations de Becker-Doring vers les équations de Lifshitz-Slyozov
qui soutient ’extension du second ordre. Nous introduisons également deux modéles stochastiques non linéaires équivalents
respectivement aux équations de Becker-Doring et aux équations de Lifshitz-Slyozov diffusives du second ordre, qui nous
permettent de montrer un résultat de convergence du premier modéle vers le second. La simulation numérique de tous ces
modéles est réalisée grace & des méthodes numériques adaptées, notamment un schéma ‘well-balanced’ et ’algorithme de
Gillespie. Les deux extensions diffusives du modéle de Lifshitz-Slyozov sont capables de retrouver la bimodalité a partir de
leurs solutions stationnaires, et dans les deux cas, en effectuant une estimation des paramétres sur des données provenant
de rats, nous retrouvons les paramétres impliqués dans la lipogenése et la lipolyse avec des ordres de grandeur similaires.
Cette thése contient également un travail réalisé lors de 1’école d’été CEMRACS 2022. Nous avons utilis¢é un schéma
numérique issu de la cinétique des écoulements multifluides pour étudier la croissance d’un biofilm. Le biofilm est vu
comme trois composants interagissant ensemble : les cellules, la matrice extracellulaire, et le milieu environnant. Chaque
composant est décrit par sa fraction volumique et sa vitesse, ce qui conduit & la contrainte naturelle que la somme des
trois fractions volumiques soit égale & un. Ce nouveau schéma permet de valider cette contrainte sur le systéme au niveau
numérique. Nous obtenons le phénoméne d’onde progressive attendu et ajoutons divers substrats qui jouent potentiellement
un réle dans la croissance du biofilm.

Mots clefs : modélisation mathématique, équations aux dérivées partielles, modéles stochastiques, estimation de paramétres

Modeling and model analysis for the size distribution of adipocytes

Abstract :

The adipose tissue is a connective tissue responsible for the storage of energy in the form of lipid droplets inside the adipose
cells. These cells, also called adipocytes, change size dynamically depending on two processes : the storageof fatty acids
from the blood inside the cell, called lipogenesis, and the active release of the fatty acids into the blood for energy usage,
called lipolysis. This thesis deals with the modeling of the dynamics of these size changes for a population of adipose cells.
A striking feature of the adipocyte size distribution data, collected on various animal species, is their well conserved bi-
modality : the distributions always have two local maxima. We start from a nonlinear scalar conservation law that describes
the dynamics of mass exchange between cells (macro—particles) and lipids (monomers), inspired by the Lifschitz—Slyozov
system in the theory of coarsening. This first model is ruled-out to explain the data, because its stationary state cannot
be a smooth bimodal distribution. Two diffusive extensions are then considered. The first one is heuristic and consider
adding a constant diffusion operator. The second one, called second-order Lifshitz-Slyozov model, involves a time and size-
dependent diffusion operator that is motivated from the discrete version of the Lifshitz-Slyozov model, namely the infinite
ODE system given by the Becker-Déring equations. We prove a new convergence result from the Becker-Déring equations to
the Lifshitz-Slyozov equations that supports the second-order extension. We also introduce two nonlinear stochastic models
equivalent to respectively the Becker-Doring equations and the second-order diffusive Lifshitz-Slyozov equation, that allow
us to show a convergence result from the former model to the latter model. Numerical simulation of all these models is
performed thanks to adapted numerical methods, including a well-balanced scheme and Gillespie algorithm. Both diffusive
extensions of the Lifshitz-Slyozov model are able to reproduce bimodality from their stationary solutions, and in both cases,
performing parameters estimation on data from rats, we recover parameters involved in lipogenesis and lipolysis with similar
orders of magnitudes.

This thesis also contains a work done during the summer school CEMRACS 2022. We used a numerical scheme from
multifluid flow kinetics to study the growth of a biofilm. The biofilm is seen as three components ineteracting together :
the cells, the extra-cellular matrix, and the surrounding medium. Each components is described by its volumic fraction and
its velocity, which leads to the natural constraint that the three volume fraction sum to one. This new scheme allows the
validation of this constraint on the system at the numerical level. We obtain the expected traveling wave pattern and add
various substrate that potentially play a role in the growth of the biofilm.

Keywords : mathematical modeling, partial differential equations, stochastic models, parameters estimation
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