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RESUMÉ

La caractérisation et la modélisation des réseaux neuronaux biologiques ont émergé comme un domaine permettant des avancées signicatives dans notre compréhension des fonctions cérébrales et des pathologies qui y sont liées.

À ce jour, les traitements pharmacologiques des troubles neurologiques restent limités, ce qui pousse à explorer des approches alternatives prometteuses telles que l'électroceutique. Les recherches récentes en bioélectronique et en ingénierie neuromorphique ont conduit à la conception d'une nouvelle génération de neuroprothèses pour la réhabilitation du cerveau.

Toutefois, leur développement complet nécessite une compréhension et une expertise plus approfondies de l'interaction biohybride. Ici, ce travail de thèse présente un nouveau réseau de neurones biomimétique temps réel à la fois abordable, exible et accessible pour la réalisation d'expériences bio-hybrides et l'émulation en temps réel.

Ce réseau biomimétique permet d'étudier et de reproduire la dynamique de réseaux de neurones détaillés sur le plan biophysique tout en promouvant une exibilité et facilité d'utilisation.

Il démontre la faisabilité d'expériences biohybrides utilisant des interfaces biophysiques standards et diverses cellules biologiques, ainsi que l'émulation en temps réel de modèles complexes.

Le système mis au point permet de réaliser des expériences biohybrides ainsi que l'émulation en temps réel de réseaux de neurones.

Le système développé constitue une étape essentielle vers le développement de neuroprothèses neuromorphiques pour les thérapies bioélectriques comme l'électroceutique. Elle permet également la communication avec des réseaux de neurones biologiques sur une échelle de temps similaire, facilitée par un système en temps réel embarqué, facile à utiliser et accessible. Le dispositif en temps réel développé démontre son potentiel dans des applications pratiques et expériences biohybrides.
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INTRODUCTION

Millions of people worldwide are aected by neurological disorders that strongly impair their cognitive and/or motor functions [START_REF] Organization | The top 10 causes of death[END_REF]]. An increasing number of technologies and solutions are currently proposed for the treatments of these diseases, whereas being limited to curbing the progress or managing symptoms in most cases [Chin andVora, 2014, French et al., 2016].

Aside from medical treatment through chemical processes, articial devices are developed to improve the quality of life of individuals. To bring neuroprosthesis into realization, the behavior of biological neurons as well as its connection and interaction with articial neural networks must be considered. To this end, investigation of the interaction of neuronal cell assemblies is required to understand and reproduce a specic behavior driven by intrinsic spontaneous activity. Additionally, long-term replacement of damaged brain areas with articial devices implies understanding of their neurophysiological behaviors.

In this context, new therapeutic approaches and technologies are needed both to promote cell survival and regeneration of local circuits [START_REF] Farina | Toward higher-performance bionic limbs for wider clinical use[END_REF] and restore long distance communication between disconnected brain regions and circuits [START_REF] Bouton | Restoring cortical control of functional movement in a human with quadriplegia[END_REF]. Thus, characterization and modeling of biological neural networks [START_REF] Panuccio | Progress in neuroengineering for brain repair: New challenges and open issues[END_REF], Semprini et al., 2018] is crucial to develop a new generation of neuroprostheses that mimics biological dynamics and provide adaptive stimulation at biological time scale based on the principle of electroceutics [START_REF] Famm | A jump-start for electroceuticals[END_REF], Reardon, 2014].

Thanks to the new neuromorphic platforms, performing bio-hybrid experiments is becoming more and more relevant not only for the development of neuromorphic biomedical devices [START_REF] Famm | A jump-start for electroceuticals[END_REF], Reardon, 2014], but also to elucidate the mechanisms of information processing in the nervous system. Recently, major progress has been made in the eld of neuroprostheses [START_REF] Panuccio | Progress in neuroengineering for brain repair: New challenges and open issues[END_REF], Semprini et al., 2018] so as neuromorphic devices are now capable of receiving and processing input while locally or remotely delivering their output either through electrical, chemical or optogenetic stimulation [START_REF] Christensen | roadmap on neuromorphic computing and engineering[END_REF]].

However, real-time stimulation and processing of biological data using biomimetic Spiking

Neural Network (SNN) is still quite rare [START_REF] Ambroise | Real-time biomimetic central pattern generators in an fpga for hybrid experiments[END_REF], Xu et al., 2018, Buccelli et al., 2019, Mosbacher et al., 2020]. Furthermore, to improve temporal accuracy of the stimulation, complex neuron model should be implemented in the SNN [START_REF] Sharifshazileh | An electronic neuromorphic system for real-time detection of high frequency oscillations (hfo) in intracranial eeg[END_REF].

To perform bi-directional bio-hybrid experiments and develop bioelectrical therapeutic solutions for health care like electroceutic [START_REF] Famm | A jump-start for electroceuticals[END_REF], Reardon, 2014, Di Florio et al., 2023], real-time bio-physics interface and SNN processing are mandatory to ensure interaction at biological time scale [Sharifshazileh et al., 2021, Corradi and[START_REF] Corradi | [END_REF]. Most of current solutions for biomimetic SNN simulations are software-based such as NEURON [START_REF] Hines | Neuron: a tool for neuroscientists[END_REF], NEST [START_REF] Gewaltig | Nest (neural simulation tool)[END_REF] or Brian2 [START_REF] Stimberg | Brian 2, an intuitive and ecient neural simulator[END_REF] tools and show signicantly high computation time, especially for complex neuron model with synaptic plasticity. Hence, these latter are not suited for real-time emulation at millisecond time step [Van Albada et al., 2018] contrary to hardware-based SNNs. Another benet of hardware-based SNNs is the ability to perform massive parallel simulations to explore space parameters of neuron models.

INTRODUCTION model. The latter uses complex neuron model operating at biological timescale to simulate neural network dynamics or/and performing bio-hybrid experiments.

Hardware-based SNNs are analog or digital. Analog SNN systems [START_REF] Donati | Discrimination of emg signals using a neuromorphic implementation of a spiking neural network[END_REF] show lower power consumption than digital SNNs [START_REF] Davidson | Comparison of articial and spiking neural networks on digital hardware[END_REF]. In contrast, digital SNNs are more exible thus more suited for prototyping while showing overall quicker design time hence constituting the best choice for preliminary experiments and design of new generation of neuroprosthetic. The prominent SNNs hardware platforms are Merolla [START_REF] Merolla | A million spiking-neuron integrated circuit with a scalable communication network and interface[END_REF], BrainScaleS-2 [START_REF] Pehle | The brainscales-2 accelerated neuromorphic system with hybrid plasticity[END_REF], SpiNNaker [START_REF] Painkras | Spinnaker: A 1-w 18-core system-on-chip for massively-parallel neural network simulation[END_REF] and Loihi [START_REF] Davies | Loihi: A neuromorphic manycore processor with on-chip learning[END_REF]. While some of these systems present mobile versions like [START_REF] Stradmann | Demonstrating analog inference on the brainscales-2 mobile system[END_REF] for BrainScaleS-2, they often are not suited for embedded applications.

This thesis focuses on the design of a real-time bio-hybrid platform capable of biomimetic Spiking Neural Network emulation for the study of neurological disorders through real-time emulation and hybridization. Beneting from a exible, real-time and biomimetic architecture, the system developed is intended to be used a tool for neuroscientists to predict and estimate biophysically detailed models eciently through emulation. More importantly, this system is intended easily integrate biohybrid closed-loop system to explore the electroceutic approach, and hopefully contribute to the development of neuroprostheses.

The BioElectronics group, aliated with the IMS Laboratory at CNRS UMR5218 and the University of Bordeaux, primarily specializes in the eld of analog neuromimetic integrated circuits and hybrid neural-silicon systems. One of the key research areas revolves around the creation of innovative instrumentation tools designed for the exploration of the central nervous system through model emulation and hybridization. The group has been working on articial modeling and hybridization using analog circuits for more than 20 years [Le Masson et al., 2002], then moved toward digital implementation for the past 10 years [START_REF] Ambroise | Real-time biomimetic central pattern generators in an fpga for hybrid experiments[END_REF].

This thesis marks the third iteration of the group's research on the digital implementation of neural networks on FPGA, building upon its latest work [START_REF] Khoyratee | Optimized real-time biomimetic neural network on fpga for bio-hybridization[END_REF].

Collaborations with other teams played a crucial role in the fulllment of this work, especially for successfully conducting the biohybrid experiments. The primary collaboration involved the Institute of Industrial Science (IIS) at The University of Tokyo in Japan, which included a one-year stay at the Ikeuchi Lab, also aliated with the LIMMS international research unit operating jointly with France and Japan. The Ikeuchi Lab has been collaborating

with the team since 2017 and is specialized in the creation of functional neuronal circuits using brain organoids generated from human iPS cells. Most notably, it developed a unique method to create connectoids, which are neural circuit tissues made of brain organoids connected together, allowing investigation of the interaction between distant regions of the brains. The second collaborator for this work was a team from the Istituto Italiano di Tecnologia (IIT) of Genoa in Italy as part of the of the "NEUROHYSTIM: A NEUROHYbrid system to drive intracortical microSTIMulation in neuronal networks in vivo" project. The Italian team has experience and expertise in in-vivo experiments, neurostimulation and analysis of electrophysiological signals [START_REF] Bologna | Investigating neuronal activity by spycode multi-channel data analyzer[END_REF], Bonifazi et al., 2013, Buccelli et al., 2019].

In this thesis manuscript organized in four chapters, the context and elementary knowledge required for a consistent understanding will be provided as well as the methods that led to the design of a real-time biohybrid system called Bi÷muS. The capabilities of the real-time biomimetic SNN Bi÷muS to emulate independent neurons and fully connected networks will then be presented, showcasing a system integration promoting versatility and ease of use high-
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lights by biohyrid experiments. Intermediate and alternative versions of the system, preliminary work, prototypes and ways of improvement will be shown.

The rst chapter aims to introduce the context of the thesis and highlight its relation to the problematic by introducing the notion of model and its importance in scientic studies.

Starting with a basic introduction to neurosciences, more specically to the nervous system morphology and the neurological disorders that can aect it, the use of a model will be justied. After presenting the biological and articial models along with their benets and limits, the implementation of articial models on numerical systems will be detailed.

The second chapter dives in the computer science domain by introducing the platform selected and its main characteristics. The technological context that supported the choice of the platform will be presented, followed by a basic introduction to the essential communication protocols and interfaces involved in the system. Then, a detailed explanation of the characteristics and processes operating in the two main parts of the platform will be given.

The third chapter is dedicated to the development steps of a exible real-time biomimetic design on the platform previously presented. Firstly, the hardware architecture of the system constituting the core of the real-time system will be described. Then, an explanation of the dierent software layers developed to interact with the hardware will be provided. Finally, the performances of the system will be discussed.

The fourth chapter focuses on the applications and experiments conducted with the system developed. To begin with, applications of the system a real-emulator targeting independents neurons to large network models will be presented. Afterward, biohybrid experiments conducted in international collaborations targeting various biological cultures will be showcased.

CAPTURING BIOLOGY IN FAITHFUL MODELS

1.1 Introduction Throughout history, Nature has been a major source of inspiration for solving the complex human problems. Bio-inspired inventions, literally inventions that were thought and inspired by nature, are all around us.

From the small things such as Velcro tape inspired by bur fruits hooks, to our greatest achievements as train and planes designs inspired by birds beak and wings, the constantly evolving and adapting nature always hinted us new solutions [START_REF] Shu | Biologically inspired design[END_REF]. Needless to say that one of its most mysterious creation that is human brain is no exception.

Human brain is estimated to show an enormous computation power of 1 exaFLOPS, a comparable specication to a supercomputer [START_REF] Smirnova | Organoid intelligence (oi): the new frontier in biocomputing and intelligence-in-a-dish[END_REF]. Its memory capacity is estimated to 2.5 petabytes. Extremely high specications powered by only about 20 W, making of human brain one of the most powerful computation unit in the world [START_REF] Smirnova | Organoid intelligence (oi): the new frontier in biocomputing and intelligence-in-a-dish[END_REF].

Highly complex and still partly understood, its tremendous computation power and low energy consumption inspired notably the now widely used articial neural networks found in AI and cryptocurrencies blockchains [Krogh, 2008].

Human brain and the nervous system are essential elements for communication and coordination in the human body through neurons and synapses. Hence, malfunction in these systems signicantly impacts on body functions. Unfortunately, diseases that target the nervous system and human brain are aecting millions of people worldwide [START_REF] Organization | The top 10 causes of death[END_REF] and show limited treatments that only manage the symptoms and attempt to curb the progression. Thus, it is essential to understand the mechanism governing human brain and nervous system [Chin andVora, 2014, French et al., 2016].

An important part of research relies on the use of models to predict and investigate processes, biology is no exception. Biological models that reproduce biological processes have been widely used to study human body. With the growth of computer power over the years, articial models that rely on computer simulations invested a large part of the studies.

This raises the question of faithfulness and utility of a model, in other words, how much a model can be trusted and what are the important criteria characterizing a faithful model. This section will elaborate that subject with the specic case of the modeling of human brain and its nervous system.

The following chapter aims to introduce the context of the thesis and highlight its relation to the problematic.

Nervous system morphology

The nervous system is an organ of the human being responsible for communication and coordination between the dierent regions of the body.

It is a complex structure that can be separated in two main parts: the central nervous system constituted of the brain and spinal cord and the peripheral nervous system including nerves that run throughout the whole body. The central nervous system allows reception, processing and sending of sensory information. It is also in charge of voluntary functions such as speaking, walking and breathing.

The peripheral nervous system, for its part, transmits the nervous impulsion generated by the central nervous system to the muscles and organs. It is also in charge of forwarding sensory information to the central nervous system.

It includes neurons that are cells specialized in electrical signal processing and from varying shapes and electrochemical properties depending on its role [Cooper, 2011] 

Neuron

Neurons are key elements of the communication in the nervous system by being responsible for the transmission of the electrical impulsion to the body. This electrical impulsion is called an action potential. Neurons are estimated to be about 120 billions in human brain [Herculano-Houzel, 2009] distributed in about 101 billions in the cerebellum [START_REF] Andersen | A quantitative study of the human cerebellum with unbiased stereological techniques[END_REF] and 21 to 26 billions in cerebral cortex [START_REF] Pelvig | Neocortical glial cell numbers in human brains[END_REF].

A neuron is composed of a cellular body (soma), axon and dendrites (see Figure 1.2).

Neurons average size is estimated to about 100 µm in diameter in humans [Cooper, 2011]. The cellular body is the command center that produces the energy needed for nervous impulsion transmission.

The axon is a long cable that propagates and regenerates the electrical impulsion (action potential), while the dendrites are short branches allowing reception of impulsion from other neurons and transmission of this impulsion towards the initial segment located on the axon.

The transmission between neurons is carried out by synapses that mainly connect axons to dendrites and to the soma.

dendrites soma axon

Figure 1.2: Simplied schematic of a neuron showing its main elements.

Soma

The soma (or cell body) of the neuron is the part where the DNA of the neuron is stored, and the proteins required for its functioning produced. Depending on its position in the body, its shape and size can vary. This is also one of the part of the cell where the neurotransmitters 1 CAPTURING BIOLOGY IN FAITHFUL MODELS released upon reception of an action potential are received, constituting a unit for processing neuronal information.

Dendrite

Dendrites are extensions organized in leaf-like structures connected to the soma that allow reception of nervous impulsion from other neurons. The diameter is not constant as it decreases from primary to secondary to tertiary dendrites. They have a similar behavior to antenna by receiving and transmitting the electrical impulsion from the others neuron to the cellular body of the neuron. The morphology of dendrites varies and is linked to mechanism of synaptic plasticity [START_REF] Forrest | Dendritic structural plasticity and neuropsychiatric disease[END_REF].

Axon

Axon is a thread-like extension of the neuron having a constant diameter that carries the action potential. Usually, each neuron grows only one axon that extent over a large distance compared to the soma [START_REF] Kandel | Principles of neural science[END_REF]. The electrical impulsion is then transmitted to other neurons or muscles or organs.

In an analogy to electrical circuits, the axon can be seen as a cable. Similar to dendrites, the morphology of the axon vary greatly in length from one another. However, all axons have main regions including the axon hillock, the Axon Initial Segment (AIS) that is around 30 µm long where the action potential originates and where voltage-dependent Na + and K + channels are concentrated to generate the action potential. It also includes the rest of the axon, the axon telodendria and the terminal part where synapses contain axon terminals going up in total to up to 1 meter.

To enhance the eciency and speed of signal transmission, some axons are enveloped by a protective sheath called myelin that is generated by oligodendrocytes in the central nervous system and Schwann cells in the periphery. Myelin acts as an insulating layer, allowing electrical impulses to propagate at signicantly higher speed in axons thanks to a saltatory conduction.

Plasma membrane

The plasma membrane is a thin layer that can be found in all cells that separates its interior from the outside environment. It is responsible for the regulation of the exchanges between a cell and its environment. Plasma membrane contains specic channels and transporters such as the Na/K/ATPase pump notably enables neurons to generate and propagate ion currents through ions channels that exchange ions between the extracellular and intracellular environments (see + in/out, constituting the basis of membrane potential maintenance.
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It is constituted of phospholipids, proteins and glycoproteins organized as a semi-permeable barrier allowing proteins to enter the cell while blocking other substances.

Synapses

A synapse is a structure allowing connection between neurons. It connects the axon of a neuron to either the dendrites, axon or soma of another neuron, muscles or organs depending on the type of neuron. It permits transmission of the signal from a neuron to another cell, thus enabling propagation of the signal in the whole body from neuron to its target. The neuron sending its axon is called the presynaptic neuron while the neuron receiving the signal is called postsynaptic neuron. Synapses can either be electrical or chemical based on the signal transmission method.

In a chemical synapse, the electrical impulsion of the presynaptic neuron is converted into the release of chemical called a neurotransmitter. The neurotransmitter binds to the specic receptors found in the plasma membrane of the postsynaptic cell. Synaptic receptors create signal transduction in the postsynaptic cell that can result in complex eects from inhibition (GABAAR, GlyR, ...) to excitation (NMDAR, AMPAR, ...).

Electrical synapses use a structure called gap junctions that are connected channels capable of passing electric current that induce a voltage change in the postsynaptic cell. While the electrical synapse has less amplitude eects on the post synaptic cell, transmission is much faster.

Another special feature of synapses is their plasticity that make a synapse more likely to trigger another action potential faster upon spike reception. The synapse is then said to possess a reinforcing weight. [Hebb, 2005] proposed a theory stating that "When an axon of cell A is close enough to excite B and repeatedly or persistently, a growth process or metabolic change occurs in one or both cells, so that the eectiveness of A, as the cell activating B, is enhanced".

Action potential

An action potential, or spike corresponds to an abrupt change of the membrane potential when the membrane potential of the neuron rapidly rises above 0 mV (change of membrane polarity) and falls, thus allowing the electrical message to propagate along the axon. The propagation is performed through a potential dierence between the extra and intracellular environments generated by ion channels that exchange Na + and K + ions between the environments then creating a potential dierence as shown in Figure 1.3. The generation of an action potential shows 4 states: resting, depolarization, repolarization and refractory period (see Figure 1.4).

Resting state. The resting state is characterized by a constant resting potential explained by a disparate distribution of charges and ionic species between the extracellular and intracellular media. The intracellular medium has an excess of K + ions and decit in Na + ions, compared to the extracellular medium (see Figure 1 .3,1.4). This state is maintained in the absence of Repolarization. The repolarization of the membrane is explained by the opening of the K + ion channels that repolarizes the membrane by exchanging ions with the extracellular. The membrane potential will then tend to the equilibrium potential of K + (∼ -75 mV). The absolute refractory period is due to the inactivation of voltage-dependent Na+ channels. The relative refractory period is linked to excess hyperpolarization of the membrane potential after an action potential, as the membrane voltage tends towards the equilibrium potential of potassium ions.

Refractory period. Once the membrane potential passed below the resting potential the refractory period starts. The opening of the K + ion channels hyperpolarizes the membrane before spontaneously closing. Excess ions are evacuated, thus allowing the potential to slowly recover to the resting potential. The hyperpolarization of the membrane prevents the neuron from ring during the refractory period hence preventing backward propagation along the axon and limiting the ring frequency of the neuron.

Neural coding

Neural coding is a fundamental concept in neurosciences that refers to the processes of communication happening in brain based on action potentials. Temporal coding. The concept of temporal coding that associate a concept of precise timing to spikes so that the timing at which the action potential occurs is important. It is supported by works like [START_REF] Abeles | Spatiotemporal ring patterns in the frontal cortex of behaving monkeys[END_REF], Thorpe et al., 1996, Abeles and Gat, 2001]. These studies claimed that the behavior of neurons in the visual cortex rely on precise spike timings. While the variability of neurons and the lack of experiment repeatability question this concept based on the timing of action potentials, many phenomena are based on temporal coding.

Rate coding. The concept of rate coding that explains the neural coding in quantity of spikes emerged from [Adrian, 1926] that performed experiments on the nerve receptors of frogs. It was observed that the spiking frequency was increasing along with the pressure applied on the muscle, highlighting that the stimulus has an important eect on the frequency of the action potentials. [Brette, 2015a] describes the concept of "rate" in neural coding as an abstract mathematical construct of calculations over an innite number of spikes for an averaged quantity dened by the timing of spikes.

These two theories raise the question of what is the most important characteristic of the action potential occurence in view of a communication with the living. Is the accurate reproduction of the biological shape of the action potential, guarantying a precise timing, the most important characteristic to capture? Or would a simpler model neglecting the shape of the action potential that relies on the frequency and average number of spikes be more appropriate?

Indeed, as previously mentioned, neurons are capable of generating an action potential from a stimulus as long as it enables the membrane potential to cross the threshold. Such a process would support the 'rate coding' that promote the frequency over the timing.

However, another line of thought on the same subject concerns the study of neurological diseases. Alterations of cells induced by neurological disorders in the nervous system aect the transmission of nerve impulses. This change not only aects the spiking frequency, it also aects the features of the action potential, thus supporting the consideration of the shape of the action potential as in 'temporal rate' theory.

Neurological disorders

Millions of people worldwide are aected by neurological disorders that strongly impair their cognitive and/or motor functions [START_REF] Organization | The top 10 causes of death[END_REF]. Globally, in 2019, there were nearly 10 million deaths and 349 million disability-adjusted life years (DALYs) due to neurological disorders [START_REF] Ding | Global, regional, and national burden and attributable risk factors of neurological disorders: The global burden of disease study 19902019[END_REF]. They are for now untreatable and strongly linked with age, becoming a considerable challenge in the next years because of its signicant cost in treatments that are limited to curbing the progress of the disease and managing the symptoms for a growing proportions of people aected. As the population is aging, the proportion of people aected by neurological disorders is expected to double in the next 20 years. [START_REF] Checkoway | Neurodegenerative diseases[END_REF]. Cognitive symptoms resulting from these diseases vary considerably but can also include problems with memory, speech, walking, coordination and vision. In order to better understand how models can help in the better understanding of the such diseases, the main diseases and their symptoms are briey introduced below.

Amyotrophic Lateral Sclerosis. ALS leads to dysfunction of motor neurons in the spinal cord, cerebral cortex and brain stem. Symptoms include muscular weakness leading to paralysis, breathing inability and death. Among changes occurring during ALS progression, the morphology of motor neuron dendrites may be aected [Fogarty et al., 2016a], pointing out their role in the study of this disease. The initial impact of ALS aects the largest motor neurons (MN), specically the fast-twitch ber-controlling motor neurons (FF MNs).

Alzheimer's disease. AD causes loss of neurons and synapses and aecting glial cells and vascular system, leading to dysfunctions in the amygdala, hippocampus and other cortical areas. AD progressively aects cognitive abilities and memory. Synaptic plasticity as well as cortical neurons appears as essential elements to model in order to characterize the disease.

Parkinson's disease PD aects particularly dopamine-producing neurons in the brain and is thought to aect the striatum. These neurons are essential for controlling voluntary movement and coordination. Symptoms include motor symptoms such as tremors or postural instability as well as non-motor symptoms such as depression or sleep disturbances. The dopaminergic neurons and their interaction appears as essential to capture in a model to study the disease.

Huntington's disease. HD aects the projection neurons in the striatum, a nerve structure below the cortex. Neurons in this region have longer-than-average axons, up to 1 meter in length, that extend from the neuronal cell body within the central nervous system to one or more of its distant regions similarly to the spinal cord and cortex. Symptoms include the progressive onset of involuntary spontaneous movements and the gradual loss of cognitive abilities.

HD has the particularity of aecting neurons with axons of a certain size, thus highlighting this parameter as essential in a model of study.

Other neurodegenerative diseases. Other disorders of the nervous system can be induced by abnormalities in specic ion channels morphology that exist in wide variety with specic functions and locations in the neuron [START_REF] Toledo-Rodriguez | Correlation maps allow neuronal electrical properties to be predicted from single-cell gene expression proles in rat neocortex[END_REF].

[ [START_REF] Lai | The distribution and targeting of neuronal voltage-gated ion channels[END_REF] claims that any alteration in the ion channel morphology or location could aect communication in a neuronal network. Congenital anomalies aecting the ion channels, known as genetic channelopathies, could occur throughout the nervous system and create neurodegenerative disorders [START_REF] Spillane | Genetic neurological channelopathies: molecular genetics and clinical phenotypes[END_REF]. The size of the neuron also constitutes a possible factor of nervous system disease.

[ [START_REF] Kernell | Input conductance, axonal conduction velocity and cell size among hindlimb motoneurones of the cat[END_REF] demonstrates the inuence of neuron size on the conduction, thus on the nerve impulses transmission speed in axons. Larger size of neuron is for example thought to be one of the symptoms of diseases such as Tuberous Sclerosis Complex (TSC) or

Bourneville Tuberous Sclerosis [Ess, 2010] that lead to dysfunction at the level of synapses 1 CAPTURING BIOLOGY IN FAITHFUL MODELS [START_REF] Bateup | Excitatory/inhibitory synaptic imbalance leads to hippocampal hyperexcitability in mouse models of tuberous sclerosis[END_REF], neurons or larger size also are known to be the rst aected in ALS.

All the neurodegenerative diseases presented highlight the importance of the morphology of neurons and its components in the study of neurodegenerative diseases. Therefore, consideration of the morphology of the neurons, dendrites, axons and ion channels is a mandatory criterion for an accurate model of neurodegenerative diseases.

Existing treatments

An increasing number of technologies and solutions are currently proposed for the treatments of neurodegenerative diseases, whereas being limited to curbing the progress or managing symptoms in most cases [Chin andVora, 2014, French et al., 2016]. This is notably the case for pharmacological treatments that are still limited and show slow progress in the discovery of truly innovative molecules in the recent years [START_REF] Rust | Nogo-a targeted therapy promotes vascular repair and functional recovery following stroke[END_REF]].

As for an example of pharmacological treatments, in Alzheimer's disease, they have shown eectiveness in improving cognitive symptoms [START_REF] Ballard | Atypical antipsychotics for aggression and psychosis in alzheimer's disease[END_REF] or managing moderate to severe Alzheimer's symptoms [START_REF] Tariot | Memantine treatment in patients with moderate to severe alzheimer disease already receiving donepezil: a randomized controlled trial[END_REF].

[ [START_REF] Gauthier | Ecacy and safety of tau-aggregation inhibitor therapy in patients with mild or REFERENCES moderate alzheimer's disease: a randomised, controlled, double-blind, parallel-arm, phase 3 trial[END_REF] demonstrates that a selective inhibitor of tau protein aggregation shows eciency in modifying disease progression in patients with mild to moderate Alzheimer's disease.

For ALS, the proposed treatment that helps to slow the disease progression is riluzole, which is intended to inhibit excess glutamate (excitotoxicity) and persistent Na+ current (INaP) [START_REF] Miller | Riluzole for amyotrophic lateral sclerosis (als)/motor neuron disease (mnd)[END_REF]. For Huntington's disease it is shown eective in managing chorea [Frank, 2014]. However, some of these treatments may have a risk of potentially serious adverse eects as in [Frank, 2014]. More recently, a new anti-oxydative molecule named edaravone has been approved by the FDA and is used to treat ALS patients.

As for alternative treatments, deep brain stimulation (DBS) is for example used to manage Parkinson's symptoms [START_REF] Deuschl | A Randomized Trial of Deep-Brain Stimulation for Parkinson's Disease[END_REF]. Supportive care and therapies such as physical therapy and occupational therapy also play an important role in managing symptoms and enhancing quality of life for individuals aected by neurodegenerative diseases [START_REF] Bennett | Occupational therapy for people with dementia and their family carers provided at home: a systematic review and meta-analysis[END_REF], And, 2018].

Another approach considered is gene therapy that proposed various strategies to alter the expression of defective genes through DNA [START_REF] Kolli | Application of the gene editing tool, crispr-cas9, for treating neurodegenerative diseases[END_REF], Cota-Coronado et al., 2019, Pahan, 2019].

Innovative alternative treatments

As the recovery of cognitive and motor functions of patients with disabilities is a global priority in healthcare and research [START_REF] Semprini | Technological approaches for neurorehabilitation: from robotic devices to brain stimulation and beyond[END_REF], the innovative treatments are favoring brain repair thus exploring brain rewiring to take better advantage of improved plasticity. In this context, new therapeutic approaches and technologies are needed both to promote cell survival and regeneration of local circuits [START_REF] Farina | Toward higher-performance bionic limbs for wider clinical use[END_REF] and restore long distance communication between disconnected brain regions and circuits [START_REF] Bouton | Restoring cortical control of functional movement in a human with quadriplegia[END_REF].

Recently, major progress has been made in the bioelectronics and neural engineering [START_REF] Panuccio | Progress in neuroengineering for brain repair: New challenges and open issues[END_REF], Semprini et al., 2018] allowing the development of electroceutical-based devices [START_REF] Famm | A jump-start for electroceuticals[END_REF], Reardon, 2014]. Neuromorphic devices such as neuroprostheses are now capable of receiving and processing input while locally or remotely delivering their output either 1 CAPTURING BIOLOGY IN FAITHFUL MODELS through electrical, chemical or optogenetic stimulation [START_REF] Christensen | roadmap on neuromorphic computing and engineering[END_REF]. Neuroprostheses are devices that allow direct interfacing of articial circuits with large neuronal networks system to external technology, aiming to restore or enhance neurological functions in individuals with impairments by providing adaptive stimulation. Its bidirectional communication between articial and biological is a promising feature that could make of it an interesting clinical solution for treating brain lesions [START_REF] Broccard | Neuromorphic neural interfaces: from neurophysiological inspiration to biohybrid coupling with nervous systems[END_REF].

[ [START_REF] Christensen | roadmap on neuromorphic computing and engineering[END_REF] presents a roadmap on neuromorphic computing demonstrating that current and future neuromorphic systems will show capability of dynamic processing and learning of signals at low-power. Hence, it will pave the way to the integration of complex biological signal processing embedded in the new types of neuroprostheses.

Many neuromorphic interfaces, such as BMIs or BCIs, indeed exist. BMIs are systems that establish direct connection between the human brain and an external device such as a computer or a robotic system exist. System as presented in [START_REF] Nicolelis | Principles of neural ensemble physiology underlying the operation of brainmachine interfaces[END_REF], Hochberg et al., 2012, Bonifazi et al., 2013] concentrated on the interactions between neural chips enabling reproduction of similar electrical activities to neural networks and biological cells. The goal was to replace damaged areas of the brain by these systems by achieving acquisition and processing of brain signal and provide a response interpreted by the nervous system. These systems are said to be closed-loop, a crucial feature for research on neuroprostheses [START_REF] Levi | editorial: closed-loop systems for next-generation neuroprostheses[END_REF], Buccelli et al., 2019]. The Figure 1.5 illustrates the principle of biohybrid closed-loop systems.
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Biological models

Modeling is a powerful tool for inquiry and discovery across numerous disciplines, it allows researchers to probe complex questions while avoiding constraints and outside inuence. Biological models are experimental systems used by biologists to recreate specic biological processes.

Modeling human body

Biological models used to study the human body can be broadly categorized into in-vitro (cellbased) models and in-vivo (animal-based) models. It is crucial for our understanding of human body functioning and the pathologies that can aect it. As an example of animal-based model, Alzheimer's disease and ALS may be modeled using an animal model of transgenic mice [Elder et al., 2010, Julien andKriz, 2006]. The main biological model categories are recapitulated in Figure 1.6.
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In-vitro 2D cultures

In-vitro two-dimensions cultures (2D) are cellular models widely used in biomedical research to study biological processes as well as human diseases. In-vitro 2D cultures are cultivated on at surfaces such as culture dishes or multi-well plates thus allowing a consistent control of the environment.
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The main benet of 2D culturing lies in the simplicity of its handling and experimental measurements processes while providing a large range of established cell lines available. They notably allow the investigation of cellular interactions as well as drug screening. For instance, [START_REF] Brewer | Nbactiv4 medium improvement to neurobasal/b27 increases neuron synapse densities and network spike rates on multielectrode arrays[END_REF] used a 2D culture of rat hippocampal neurons to investigate the mechanisms of synapse formation and maturation during early brain development. Another study utilized rat neuronal 2D cultures to investigate the underlying mechanisms of Amyloid β protein deposition, a hallmark of Alzheimer's disease [START_REF] Lorenzo | Amyloid β interacts with the amyloid precursor protein: a potential toxic mechanism in alzheimer's disease[END_REF].

[ [START_REF] Regnell | Hippocampal adult neurogenesis is maintained by neil3-dependent repair of oxidative dna lesions in neural progenitor cells[END_REF] studied the accumulation of oxidative DNA damages as a potential cause of age-related cognitive decline by studying neural progenitor cells cultures of dierent animals.

[ [START_REF] Kagan | In vitro neurons learn and exhibit sentience when embodied in a simulated game-world[END_REF] proposed an experiment where 2D neuron cultures where used to study their learning ability when embodied in a simulated game-world.

However, this model is often limited in terms of physiological coherence as they do not fully reproduce the complexity of tissues and organs.

In-vitro 3D cultures

In-vitro three-dimensions cultures (3D) are cellular models that reproduce the structure and cell interactions in three-dimension observed in tissues and organs. In 3D cell culturing, cells can be cultivated in a device allowing the cells to organize and interact in a more coherent way thus providing a model of greater coherence [START_REF] Pampaloni | The third dimension bridges the gap between cell culture and live tissue[END_REF], Breslin and O'Driscoll, 2013, Duval et al., 2017]. It notably presents better representation of cell and tissue physiology, better cell dierentiation, more realistic drug response and wider possibility of cell interactions.

In-vitro 3D cultures are for example widely used to study human brain through organoids cultures that can reproduce structures of certain brain area [START_REF] Kim | Human organoids: model systems for human biology and medicine[END_REF].

A more complete model comes with design of Organ-On-Chip (OOC)s that refers to microuidic platforms that aim to mimic the structure and function of human organs in vitro [START_REF] Huh | From 3d cell culture to organs-on-chips[END_REF]. These devices incorporate cells and tissues in a three-dimensional arrangement to replicate the complex architecture and interactions present in real organs [START_REF] Ma | Organ-on-a-chip: a new paradigm for drug development[END_REF].

In organ-on-chip systems, cells are cultured in a 3D environment that can mimic the tissuespecic characteristics of organs such as the liver, lung or heart. The 3D cell cultures in OOC devices enables various interactions such as for cell-cell and cell-matrix interactions thus providing better reproduction of the microenvironment of the organ. They allow study at organ-level thus improving physiological coherence for processes like drug responses or disease modeling.

As for instance, [START_REF] Choi | A three-dimensional human neural cell culture model of alzheimer's disease[END_REF] developed a three-dimensional (3D) cell culture model of Alzheimer's disease based on human neural progenitor cells (hNPCs), allowing to create a more physiologically relevant environment.

In-vivo experiments

In-vivo experiments refer to experiments or studies conducted on a living organism, usually an animal model or non-human organisms. A common animal model for human biology modeling being rodents [START_REF] Peters | The mouse as a model for human biology: a resource guide for complex trait analysis[END_REF]. In-vivo experiments also target the study of a variety of biological processes such as embryonic development, diseases modeling and drug responses. Invivo experiments involve the study of biological processes and physiological responses in their actual physiological context, thus showing less limitations than in-vitro cultures.
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The large benet of in-vivo models lies in accounting for the complex interactions in a living organism. In-vivo cultures provide a more comprehensive approach to the understanding of biological processes and assessing the ecacy and safety of therapeutic interventions [Norrby, 2006].

Whereas in-vivo experiments show greater coherence and eciency, they are often signicantly more complex to conduct compared to in-vitro 2D cultures. Especially as in-vivo studies require rigorous ethical protocols to guarantee both the animal welfare and the scientic integrity of the research performed.

An example of work targeting Alzheimer's disease corresponds to transplantation of human PSCs cultivated in-vitro into the brain of a murine AD model. [START_REF] Espuny-Camacho | Hallmarks of alzheimer's disease in stem-cell-derived human neurons transplanted into mouse brain[END_REF] taking advantage of 3D in-vitro cultures to control cell dierentiation processes and in-vivo studies to retrieve the natural environment required for the study.

Other examples include [START_REF] Nudo | Use-dependent alterations of movement representations in primary motor cortex of adult squirrel monkeys[END_REF] that investigated plasticity of movement representations in the primary motor cortex of adult squirrel monkeys. [START_REF] Garcia | Neurological decit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats: statistical validation[END_REF] used the rat middle cerebral artery occlusion model to simulate a stroke-like condition in rats by inducing a cerebral ischemia.

Data acquisition

Data acquisition and analysis of biological model varies greatly according due to the wide range of processes and models found in biology, especially when it comes to chemical or physical analysis. As this manuscript focuses on the neurodegenerative diseases and hybridization, therefore on a particular cell that is the neuron, only the relevant calcium-and voltage-imaging techniques will be presented.

The calcium-and voltage-techniques used to investigate neuronal activity can be divided in two categories: invasive or non-invasive. However, the invasiveness of techniques is directly linked with type of culture as for the in-vivo studies, physical constraints may prevent the use of certain non-invasive in-vitro techniques. Figure 1.7 recapitulates the techniques discussed in this section.

For in-vitro cultures, a widely used non-invasive technique relies on extracellular recording with voltage imaging through electrodes arrays ranging from tens of micrometers to the tens of nanometers depending on the technology.

The electrical activity captured by the electrodes is then sent to a recording unit that digitalizes the data to allow storage. The benet of this method lies in its ease of use and low-level of invasiveness so as cultures can be cultivated for a long time on these devices.

Example of devices using this technology are MEA that record from electrode at the micrometer scale [START_REF] Spira | Multi-electrode array technologies for neuroscience and cardiology[END_REF], NEA that shows greater resolution in signal-to-noise ratio [START_REF] Larrieu | Vertical nanowire array-based eld eect transistors for ultimate scaling[END_REF] and HD-MEA that allow greater spatial-resolution [START_REF] Müller | High-resolution cmos mea platform to study neurons at subcellular, cellular, and network levels[END_REF].

However, these techniques do not allow to directly capture action potentials.

Another technique is calcium imaging that uses microscopy technique to optically measure the calcium (Ca2 + ) status that corresponds to spiking activity in the neurons [START_REF] Grienberger | Imaging calcium in neurons[END_REF]. As calcium imaging requires the use of a binding protein, it can be considered in a way more intrusive than extracellular recording. For in-vivo experiments, some non-invasive imaging techniques exist but often limited to certain cultures only so as invasive techniques is often used [START_REF] Koo | Non-invasive in vivo imaging in small animal research[END_REF]. While non-invasive techniques can provide coherent signal, invasive techniques that are closer to neurons provide signal of higher delity. In-vitro invasive methods include sharp electrodes that record electrical activity thanks to electrode arrays [START_REF] Spira | Multi-electrode array technologies for neuroscience and cardiology[END_REF] and patch-clamp [START_REF] Neher | The patch clamp technique[END_REF] that captures ionic currents. The sharp electrodes exist in numerous conguration for recording neural signals from dierent regions at the cellular level. The patch-clamp technique provides high resolution current recording of a cell thanks to a pipette and electrode, allowing direct recording of action potentials and ionic currents.

However, these techniques are signicantly more dicult to set up and cultures suer from their invasiveness like neuron death in the case of patch clamp.

For in-vivo, patch clamp is doable [START_REF] Furue | Vivo Patch-Clamp Technique[END_REF]] but yet dicult so as sharp electrodes are widespread. Because of physical constraints imposed by in-vivo experiments, the calcium imaging technique is invasively performed in-vivo [START_REF] Gobel | In vivo calcium imaging of neural network function[END_REF].
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Model Interactions

A complex part of biological modeling lies in the interaction with the model. While the previous part was introducing methods and techniques to acquire data from the cultures, i.e. the output, a complex part of the model study corresponds to the choice of the input or stimulus.

In the case of the biological models introduced in this section, three techniques are possible to interact with the culture: electrical, optogenetic and chemical (see Figure 1.7).

The electrical technique consists in an electrical stimulation applied to cultures often shaped as a biphasic pulse. It shows capability to activate neurons thanks to the current injected [Tehovnik, 1996]. This stimulation suits well sharp electrodes and electrode arrays as the electrode recording are often able to source stimulation. However, electrical stimulation may create artifact in recordings thus complicating the analysis of the behavioral response [START_REF] Antal | Imaging artifacts induced by electrical stimulation during conventional fmri of the brain[END_REF]. Paired with electrode arrays, it also lacks spatial accuracy as the stimulation spreads all over the culture.

The optogenetic technique corresponds to the introduction of stimulation using light on cultures genetically modied to response to specic wavelength. By introducing a light-gated membrane channel in neurons, it allows activation of the neuron using light [START_REF] Nagel | Channelrhodopsin-2, a directly lightgated cation-selective membrane channel[END_REF], Mosbacher et al., 2020]. The advantage of this stimulation lies in a better control of the cell stimulated through the availability of markers to observe the cells excitable.

Another technique to interact with the culture is using the chemical approach through drug treatments that aect the culture. Some drug treatments like bicuculline "disable" the inhibitor receptors of synapses leading to signicantly higher activity that can lead to epilepsy [START_REF] Ben-Ari | Electrographic, clinical and pathological alterations following systemic administration of kainic acid, bicuculline or pentetrazole: metabolic mapping using the deoxyglucose method with special reference to the pathology of epilepsy[END_REF]. Introduction of chemical may also be used as a way to generate micro-stimulation as in [START_REF] Nishikawa | Biomimetic spike-timing based ionic microstimulation for neuron culture[END_REF].

The main challenges concerning the interaction with cultures lie in the assessment of its impact on the culture but mostly in its implementation that often require high cross-disciplinary skills and knowledge to obtain a satisfying setup in terms of coherency and noise robustness.

Articial modeling

The consistent growth in computer performances that happened over the past years [Nordhaus, 2007] pushed the development and generalized the usage of computer simulated models also known as articial models. An articial model is a simplied representation created by human beings that aims to imitate or simulate a specic aspect of a system.

Bio-inspired and biomimetic approaches

Biomimicry or biomimetics consists in drawing inspiration from nature to solve human technological challenges. It is based on the study of properties and processes of the nature then adapted to create more performant technology. It is an approach widely used in various domain such as engineering, materials and energy. Nonetheless, biomimicry actually fuels two distinct approaches: the bio-inspired and the biomimetic approaches. While the bio-inspired approach rely on the inspiration from Nature to develop novel materials and devices, the biomimetic approach focuses on the mere reproduction of Nature and its replacement. The complexity of physical, chemical and biological interactions of neurons led to numerous research works, a fair amount focusing on the interpretation and prediction of observations using so-called models. More specically, the description of nerve impulses in neuroscience has been a source of numerous models varying in terms of their usefulness, complexity, level of detail and the behavior described.

Neuron modeling is a good example of the bio-inspired and biomimetic approaches. Bioinspired neuron models inspired by biology enabling calculation such as image recognition, classication or data processing dier from biomimetic neurons that aim to reproduce faithfully phenomena happening in nature.

The rst biologically meaningful mathematical neuron model was proposed by [START_REF] Hodgkin | A quantitative description of membrane current and its application to conduction and excitation in nerve[END_REF] Examples of simplied derived models from HH model. The FitzHugh-Nagumo model [FitzHugh, 1955, FitzHugh, 1961, Nagumo et al., 1962] simplied the gating variables of slow kinetics based on observations while conserving many qualitative characteristics.

The Morris-Lecar model [START_REF] Morris | Voltage oscillations in the barnacle giant muscle ber[END_REF] that combine both HH model and FitzHugh-Nugamo model into a voltage-gated calcium channel model with a delayed-rectier potassium channel, thus describing complex relationship between membrane potential and the activation of ion channels within the membrane.

Examples of other widely used models of spiking neurons. The simplest bio-inspired model is the IF model [Abbott, 1999] that produces a spike when the membrane potential crosses the threshold then reset to the resting potential.

The LIF model [START_REF] Gerstner | Spiking neuron models: Single neurons, populations, plasticity[END_REF] introduces a leak term to the previous model, thus allowing time-dependent memory of the stimulus where the IF keeps stimulus forever until spiking.

These models can also be enriched to add more biological plausibility in EIF [START_REF] Fourcaud-Trocmé | How spike generation mechanisms determine the neuronal response to uctuating inputs[END_REF], Adex [START_REF] Gerstner | Adaptive exponential integrate-and-re model[END_REF]] models or quartic model [Touboul, 2008] that add terms allowing better reproduction of shape of the action potential.

The model allowing a signicantly better biological plausibility is the IZ model [Izhikevich, 2003] that allows reproduction of various neuronal activities as shown in Figure 1.11 based on the principle of threshold and reset mechanism paired with a membrane recovery variable.

While each one of these neuron models translates to a certain level of biological coherence thanks to the number of possible biological phenomena reproducible as classied by the Figure 1.9 from the work [Izhikevich, 2004], only few can be considered as truly biomimetic.

Considering the biophysical meaningfulness as an essential criterion for true biomimetic modeling [Brette, 2015b], the most biomimetic model is the conductance-based model HH [START_REF] Hodgkin | A quantitative description of membrane current and its application to conduction and excitation in nerve[END_REF].

However, for an implementation on a numeric platform and as demonstrated in Figure 1.9, the dilemma between biological coherence and implementation rises. Most certainly, the IZ model presents a very appealing compromise between implementation cost and biological coherence. Nonetheless, it lacks biological meaningfulness and the work [Brette, 2015b] claims that the model moves away from bio-realism and its ability to predict the behavior of neurons in certain conditions which contradicts the articles of Izhikevich.

As the manuscript focuses on biomimetic neuron models in view of biologically coherent emulation of neural network in the context of neurological disorders studies, biological meaningfulness is an essential criterion that strongly suggest the use of the HH model. Indeed, the shape of the action potential in such model allows a high coherence with biology emphasized by its biological meaningfulness.

Figure 1.9: Comparison of the neuro-computational properties of spiking and bursting models neuron model from [Izhikevich, 2004]. # of FLOPS is an approximate number of oating point operations (addition, multiplication, etc.) needed to simulate the model during a 1 ms time span. Each empty square indicates the property that the model should exhibit in principle (in theory) if the parameters are chosen appropriately, but the author failed to nd the parameters within a reasonable period of time.

Spontaneous activity

A fundamental property of nervous systems that is important to reproduce is the spontaneous activity of neurons that refers to the ring of neurons in the absence of sensory input. A common approach to describe this non-evoked or stimulus-independent activity is to use randomized laws to enable spontaneous activity through random spiking.

This random behavior can be modeled by injecting a noisy current into the neural network, usually based on a normal distribution. This noisy current will trigger spikes more or less frequently and on a random basis depending on its parameters like strength and deviation. A more biologically coherent noise than normally distributed can be generated by uctuating the conductances of ion channels [START_REF] Destexhe | Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons[END_REF], Tuckwell et al., 2002], creating a current similar to synaptic noise observed in biology. Thus, a biomimetic noise based on Ornstein-Uhlenbeck process correspond to Equation 1.2.

di noise (t) dt = θ(µ -i noise (t)) + σ dW (t) dt (1.2)
where, i noise is the noisy current, θ and σ are parameters of the noise tuning its amplitude and deviation, µ is a constant adding drift and W t denote the Wiener process. The most widespread representation of neurons in computing science is based on the representation of the neuron as a point in space, thus focusing on its temporal dimension. A common approach is to approximate the neuron as cylinder for which the membrane voltage is computer at the middle. The single compartment modeling of a neuron modeled using the HH paradigm [START_REF] Hodgkin | A quantitative description of membrane current and its application to conduction and excitation in nerve[END_REF]] can be equated as shown in Equation 1.1 to describe a simple FS. This basic neuron translates the essential dynamics of the Na + and K + channels.

The ionic currents are mimicked by using variable conductance representing the opening state of the ion channels and voltage generator to represent the equilibrium potential of the ions (see Figure 1.8).

I ion = g ion m n ion h k ion (v -E ion ) (1.3)
where, I ion is the ionic current, g ion the maximum conductance of the ion channel, m ion and h ion the probabilities between 0 and 1 respectively of ion channel activation and inactivation, v the membrane voltage and E ion the equilibrium potential of the ion.

More specically, the ionic currents allowing the reproduction of a FS neuron corresponds to the Equations 1.4,1.5,1.6.

I N a = g N a m 3 N a h N a (v -E N a )
(1.4)

I K = g K m 4 K (v -E K ) (1.5) I Leak = g Leak (v -E Leak ) (1.6)
The equations ruling the probabilities of the activation and inactivation of the voltage-gated ion channels take the form a sigmoid with dierent dynamics for each ion. The equations are often expressed using the two formalism shown of Equation 1.7 or Equation 1.8. V neuron is only depending on time t as shown on the graph representing spiking activity.

dx dt = α x (V )(1 -x) -β x (V )x (1.7) dx dt = x ∞ (V ) -x τ x (V )
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The dynamics of the neuron can be enriched from this basis to mimic other neuron families as shown in Figure 1.11. For example, adding slow potassium current [START_REF] Yamada | Methods in neuronal modeling[END_REF] creates the RS neuron. Incrementally adding a slow calcium current [START_REF] Reuveni | Stepwise repolarization from ca2+ plateaus in neocortical pyramidal cells: evidence for nonhomogeneous distribution of hva ca2+ channels in dendrites[END_REF] creates the IB neuron, while adding low-threshold calcium [Jahnsen andLlinás, 1984, Pospischil et al., 2008] creates the LTS neuron. This highlights the ability of the HH neuron model to link the action potential shape to accurate biological meaningfulness.

Figure 1.11: Simple model of spiking neuron from [Izhikevich, 2003]. Each neuron family is characterized by the evolution of its membrane voltage to a stimulation step.

Multicompartmental modeling

Single compartment models are the most widely used, as they are less resource-intensive and relatively ecient in most cases. Single compartment modeling, while demonstrating high prediction rates of action potentials and biophysical coherence especially in HH model, remains limited due to its inability to capture the complex spatial details and behaviors of neurons.

In contrast, multicompartmental models oer a more comprehensive and biologically realistic approach, thus providing deeper insights into neuronal function and information processing (see Figure 1.12).

It is particularly important as regions such as dendrites are the center of vital computations linked to their spatial morphology [START_REF] Forrest | Dendritic structural plasticity and neuropsychiatric disease[END_REF] and are aected by some neurodegenerative diseases like ALS [Fogarty et al., 2016a].

Moreover, studies like [Brette, 2015b] shows that there are phenomena such as frequencydependent attenuation of membrane as a function of frequency or the presence of wide variations in voltage which may be induced by the presence of active conductances distributed along the axon and dendrites.

Thus, important biophysical phenomena like spike initiation [START_REF] Naundorf | Unique features of action potential initiation in cortical neurons[END_REF] in the AIS [START_REF] Debanne | Axon physiology[END_REF] or in the dendrites [START_REF] Gasparini | On the initiation and propagation of dendritic spikes in ca1 pyramidal neurons[END_REF]] can be modeled. Phenomena like dendritic spikes are for example known to play a part in stimulus selectivity in cortical neurons [START_REF] Smith | Dendritic spikes enhance stimulus selectivity in cortical neurons in vivo[END_REF] shows the importance.

Multicompartmental modeling also allows the investigation of the role of dendrites in neurons, the role of dendrites being a source of much research. [Mel, 1999] suggests that dendrites exist to increase the surface area of neurons increasing the possible number of synaptic connections through extensions of 10 to 20 times the surface area of the soma. [START_REF] Chklovskii | Wiring optimization in cortical circuits[END_REF] 1
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Figure 1.12: Representation of multicompartmental modeling that shows the dierent parts of the neuron modeled as connected cylinders and the dierence in the signal waveforms depending on its location.

shows that the circuit connections in the cortical region are optimal and that the proportions are all more or less the same. Other studies like [START_REF] Mcbain | Interneurons unbound[END_REF] support the hypothesis that dendrites exist in order to have several possible and separate entries on the surface of nerve cells. Dendrites also allow a greater diversity of presynaptic terminal classes creating dierent learning laws [START_REF] Froemke | Spike-timingdependent synaptic plasticity depends on dendritic location[END_REF]. They are also known to display physiological and morphological abnormalities during postnatal development in motor neurons with ALS [START_REF] Martin | Embryonic alteration of motoneuronal morphology induces hyperexcitability in the mouse model of amyotrophic lateral sclerosis[END_REF].

The multicompartmental modeling applied to HH model is based on the one dimensional cable equation and corresponds to Equation 1.9, thus introduction spatial dimension x in the equation.

2πa

∂ ∂x πa 2 R a ∂V ∂x = C m ∂V ∂t + I HH (1.9)
where, a is the radius of the compartment, R a the resistance of the axon, C m the membrane capacitance, I HH the currents of the HH model and V the membrane potential in the middle of the compartment.

A common approach for discretization is compartmentalization that approximates the cable equations by a series of compartments connected by resistors (see Figure 1.12,1.13) [START_REF] Carnevale | The NEURON book[END_REF]]. An electrical equivalent circuit of this multicompartmental model using HH paradigm is shown in Figure 1.13. Using this approach, membrane voltage is evaluated at the middle of each compartment.The discretized model could also be seen as the computation of spatio-temporally continuous variables over a set of discrete points in space (grid of nodes) for a nite number of instants in time [START_REF] Carnevale | The NEURON book[END_REF].

As compartments now correspond to dierent elements of the neuron, their properties can be translated by the HH model as illustrated on Figure 1.13. The soma if for example implementing 3 ionic currents with certain properties where a dendrite for example implement only one ionic current with dierent properties. This is a crucial feature that allow to model changes aecting only certain elements of the neuron like dendrites on specic channels through corresponding parameters tuning. The spatial morphology of the dendrites and axons can also be reproduced by the length of the compartment. This characteristic is notably important in the impact on the morphology of dendrites in ALS [START_REF] Fogarty | Marked changes in dendritic structure and spine density precede significant neuronal death in vulnerable cortical pyramidal neuron populations in the sod1(g93a) mouse model of amyotrophic lateral sclerosis[END_REF] or neurodegenerative diseases like The multicompartmental modeling is undoubtedly crucial to the creation of faithful and reliable model providing enough biological meaningfulness to study neurological disorders through articial models.

Synapse models

The modeling of nerve impulses in neurons is not limited to neuron models, numerous synapse models that address the same problematics as neuron models are found in literature. A wide variety of synapse models with dierent level of biophysical coherence exists that translate different dynamics of the synapse from the excitation and inhibition to plasticity. [Izhikevich, 2003] presents a noise-injected synapse to reproducing the stochastic behavior of biological synapses, while [START_REF] Cassidy | Design of a one million neuron single fpga neuromorphic system for real-time multimodal scene analysis[END_REF] presents a synapse based on exponential current. [START_REF] Rice | Fpga implementation of izhikevich spiking neural networks for character recognition[END_REF] presents a synapse model that enables learning using long-term plasticity or short-term plasticity [START_REF] Izhikevich | Large-scale model of mammalian thalamocortical systems[END_REF].

CAPTURING BIOLOGY IN FAITHFUL MODELS

In the biophysically detailed models, a biomimetic and biologically meaningful model corresponds to [START_REF] Destexhe | Kinetic models of synaptic transmission: From ions to networks[END_REF], where four types of synaptic receptors were modeled: AMPAR, NMDAR, GABA A R and GABA B R. They correspond to synaptic receptors found in dendrites involved in chemical synapses that are responsible for fast and slow excitation (AMPAR and NMDAR) and fast and slow inhibition (GABA A R and GABA B R). The model translates the opening and closing states of the receptors based on a conductance-based model that provides biological meaningfulness (see Figure 1.14).

In this manuscript, the synapse model selected is [START_REF] Destexhe | Kinetic models of synaptic transmission: From ions to networks[END_REF] for its biological coherence and meaningfulness. As it is a conductance-based model, the equations of the currents are similar to the HH neuron model. Equations 1.10,1.11,1.12,1.13 correspond to the synaptic current generator by the receptors.

I AM P A = g AM P A × r × (V -E AM P A )
(1.10)

I N DM A = g N M DA × B(V ) × r × (V -E N DM A )
(1.11)

I GABAa = g GABAa × r × (V -E GABAa )
(1.12)

I GABAb = g GABAb × s n s n + K d × (V -E GABAb ) (1.13)
where, g AM P A , g N M DA , g GABAa , g GABAb are the maximum conductances of the receptors, E AM P A , E N M DA , E GABAa , E GABAb the equilibrium potentials, r and s the states variables for activation and inactivation of the receptors.

An essential property for synapses is its learning ability explained by synaptic plasticity.

While synaptic plasticity may be ruled by several laws [START_REF] Bono | Modeling somatic and dendritic spike mediated plasticity at the single neuron and network level[END_REF], the synaptic rules widely used are STP and STDP.

STP refers to the dynamic changes in synaptic strength that occur over short periods, typically ranging from milliseconds to seconds. It involves mechanisms like facilitation and depression which impact the ecacy of synaptic transmission. STP plays a crucial role in regulating the temporal dynamics of neural information processing. A biomimetic and biologically meaningful model of STP based on the synapses involved in CPG network is presented in [START_REF] Hill | A model of a segmental oscillator in the leech heartbeat neuronal network[END_REF]] using a conductance-based model.

On the other hand, STDP is a learning rule based on spike timing between neurons rather than a timing window. It correlates presynaptic spiking with postsynaptic neuron spiking, so as the synapse strength increase if the presynaptic spike consistently precedes the postsynaptic spike [START_REF] Song | Competitive hebbian learning through spike-timing-dependent synaptic plasticity[END_REF]. The opposite situation leads the synapse strength to weaken thus decreasing its eciency. STDP is rule widely used in articial neural networks to learn temporal patterns and associations that suits well tasks involving temporal data such as speech recognition or sequence learning [START_REF] Kheradpisheh | Stdp-based spiking deep convolutional neural networks for object recognition[END_REF].

Another concept that is the Hebbian plasticity relying on the rule "cells that re together, wire together" increase the synapse strength when two neurons are activated simultaneously or in close temporal proximity [START_REF] Abbott | Synaptic plasticity: taming the beast[END_REF]. While it is considered biologically plausible as it takes into account the activity patterns of neurons, it is considered to be a simplistic rule that does not account for certain aspects of learning, such as specicity and stability. 

Neural networks

Neural networks is a broad denition referring to either a neural circuit of biological or articial neurons. As for ANNs, numerous architectures serving dierent applications exist.

Bio-inspired ANNs that draw inspiration from human brain architecture to perform signal processing tasks are numerous. Tasks such as image recognition and classication or facial recognition often involve Feedforward Neural Network (FNN) [START_REF] Svozil | Introduction to multi-layer feed-forward neural networks[END_REF] or Convolutional Neural Network (CNN) [O' Shea and Nash, 2015] that rely on information processing by layers. As for instance, [START_REF] Kheradpisheh | Stdp-based spiking deep convolutional neural networks for object recognition[END_REF] demonstrates the use of STDP-based CNN for object recognition. Other tasks like natural language processing, speech recognition, and time-series prediction tasks often involve Recurrent Neural Network (RNN) [START_REF] Medsker | Recurrent neural networks[END_REF].

CAPTURING BIOLOGY IN FAITHFUL MODELS

In the biomimetic ANNs, SNN attempt to mimic the communication between neurons using action potentials or spikes [START_REF] Ghosh-Dastidar | Spiking neural networks[END_REF], thus being the closest to the behavior of biological neurons and their interactions. Liquid State Machines (LSMs) [START_REF] Maass | Real-time computing without stable states: A new framework for neural computation based on perturbations[END_REF] are a type of RNN inspired by the liquid state computation to replicate its computation with randomly connected neurons.

As research in this eld progresses, biomimetic neural networks hold promise for enhancing the performance and eciency of articial intelligence systems improving performances in applications across various domains.

1.6 Numerical system solving for articial neuron modeling A crucial step in the implementation of articial neuron models is the solving of the dierential equations ruling the evolution of the membrane potential using solver. As digital computing is inherently discrete, the use of numerical solver to nd numerical solutions to the equations of neurons that are continuous in time and space are required. Therefore, implementing a model of neuron on a digital platform raises many purely numerical issues not related to biological questions but of crucial importance to the coherence of the simulations. Dierent types of solver exist, each with its own advantages and limitations involving the notions of complexity, accuracy and stability.

Numeric solvers

Numerical solvers are computer algorithms that nd approximate solutions to complex mathematical equations. They are used to solve problems such as dierential equations, algebraic equations and optimizations. Numerical solvers can be based on analytical methods such as the Taylor series method or on numerical methods such as the nite dierence method. Numerical methods are often used when equations cannot be solved analytically or when accurate and reliable solutions are required. Contrary to analog solving that is highly resource-intensive on a digital platform, numeric solving suits better the architecture of digital platforms thanks to its discrete property. The solvers can be categorized in two categorized being the explicit and implicit solvers.

Explicit solvers. Explicit solvers are numerical algorithms relying on numerical schemes such as the Forward Euler method or the Runge-Kutta method to nd a numerical approximation to the exact solution. They are very ecient when used to solve short-time dierential equations but can be unstable for long time dierential equations due to the strong dependence on the time step size [START_REF] Courant | On the partial difference equations of mathematical physics[END_REF]. The smaller the time step compared to the dynamic of the system, the better the stability. Nonetheless, a small time step often correlates with higher implementation cost.

Implicit solvers. Unlike explicit solvers, implicit solvers require knowledge of the exact solution at a given time in order to nd the solution at a later time. Implicit solvers rely on numerical schemes such as the Backward Euler method or the Crank-Nicolson method to nd a numerical approximation to the exact solution. They are more stable than explicit solvers for long-term dierential equations but are often more expensive in terms of computation time.

Single compartment modeling

In the case of the single compartment modeling, the evolution of the membrane potential is ruled by a single ordinary dierential equation (see Equation 1.1). Thus, only the discretization with 1 CAPTURING BIOLOGY IN FAITHFUL MODELS respect to time is required. The numerical integration methods the most used in empiricallybased neuron modeling that will be discussed in this manuscript are Forward Euler, Backward Euler and Crank-Nicholson [START_REF] Carnevale | The NEURON book[END_REF]. These methods are based on the nite dierence expression as equated in Equation 1.14. However, other methods like CVODE or Runge-Kutta variants are also used.

dV dt ≈ V (t + ∆t) -V (t) ∆t (1.14)
Forward Euler. The Forward Euler is an explicit method characterized by [START_REF] Carnevale | The NEURON book[END_REF] as the simple, inaccurate and unstable method. It is based on a simple approximation that starts from something already known and projected into the future, thus calculating the future value entirely on the basis of past and present. This method approximates a solution by applying the Equation 1.15, that applied to the HH model can be equated as in Equation 1.16. Forward Euler has rst order accuracy that means that the local error is proportional to ∆t and can allow stable simulation of single compartment modeling if its value is small enough [START_REF] Khoyratee | Optimized real-time biomimetic neural network on fpga for bio-hybridization[END_REF].

V (t + ∆t) = V (t) + f (V (t), t)∆t (1.15) V n+1 = V n - ∆t C m I ion (t) (1.16)
Backward Euler. The Backward Euler is an implicit method characterized by [START_REF] Carnevale | The NEURON book[END_REF] as the inaccurate but stable method. As it is an implicit method, it involves the futures values in the calculation as shown in Equation 1.17 that involves f (V (t + ∆t), t + ∆t).

The great advantage of this method lies in its robust stability that prevent oscillations of the solution.

V (t + ∆t) = V (t) + f (V (t + ∆t), t + ∆t)∆t

(1.17)

Crank-Nicholson. The Crank-Nicholson is an implicit method combining both the Forward and Backward Euler and characterized by [START_REF] Carnevale | The NEURON book[END_REF] as stable and more accurate method. The expression of the Crank-Nicholson is shown in Equation 1.18.

V (t + ∆t) = 2V (t + ∆t 2 ) -V (t)
(1.18)

Among the three solvers, the most suitable for embedded platforms of single compartment neurons that features correct accuracy for a low implementation cost is the Forward Euler because of its simple explicit solving. It is also known to show satisfying stability for the emulation of single compartment neurons with a small time step [START_REF] Khoyratee | Optimized real-time biomimetic neural network on fpga for bio-hybridization[END_REF].

Multicompartmental modeling

Similarly to single compartment modeling, continuous solving is highly resource-intensive on a digital platform so as both spatial and temporal discretization are often required, especially as the equation now involves two independent variables. The most common spatial discretization involves the second order correct approximation of ∂ 2 V /∂x 2 (see Equation 1.9) shown in Equation 1.19. A representation is illustrated in Figure 1.15 where a cable also called section is discretized in compartments.

∂ 2 V ∂x 2 ≈ V (x + ∆x) -2V (x) + V (x -∆x) ∆x 2 (1.19) 1 CAPTURING BIOLOGY IN FAITHFUL MODELS
The discretized model can be seen as the computation of spatio-temporally continuous variables over a set of discrete points in space (grid of nodes) for a nite number of instants in time [START_REF] Carnevale | The NEURON book[END_REF]. Therefore, values of functions will refer at points on the grid function corresponding to the expression 1.20

G n i ≡ G (i∆x, n∆t) (1.20)
where, ∆t is the timestep and ∆x = L N the grid width computed from L the length of the cable and N the number of spatial grid points. The membrane potential is then evaluated at the middle of each compartment. The boundary condition that states that no axial current ows at the ends of the cable is respected by adding virtual points at the extremities of the cable.

While the use of explicit methods is suggested to be applicable for multicompartmental model solving according to [START_REF] Kobayashi | Testing an explicit method for multi-compartment neuron model simulation on a gpu[END_REF], explicit methods remain limited because of the signicant constraint imposed by a very small time step for real-time system. In [START_REF] Kobayashi | Testing an explicit method for multi-compartment neuron model simulation on a gpu[END_REF], the multicompartmental model is using a complex method of higher accuracy that is Runge-Kutta-Chebyshev method with a very small time step but simpler explicit solvers of lower accuracy as the Forward Euler used for the single compartment modeling is known unstable for multicompartmental model [START_REF] Carnevale | The NEURON book[END_REF].

A numerically stable solver appropriated for sti systems and widely used that will be detailed in this manuscript is the Crank-Nicholson method presented in previous subsection. It relies on an evaluation at half a time step using Backward Euler advanced over the full interval with Forward Euler and is known stable and accurate [Carnevale andHines, 2006, Hines, 1984].

The equation applied to the membrane potential is equated in Equation 1.21.

V n+1 i = 2V n+ 1 2 i -V n i (1.21)
The second order correct and numerically stable solution of the nite dierence form of Equation 1.21 is expressed in 1.22 as a tridiagonal linear system evaluated at half a time step.

L i V n+ 1 2 i-1 + D i V n+ 1 2 i + U i V n+ 1 2 i+1 = B i (1.22)
where, L is the lower diagonal, D is the main diagonal, U is the upper diagonal and B the right-hand side of the system dened in Equation 1.23.

L i = 1 2πa i ∆x πa 2 i-1 R a ∆x U i = 1 2πa i ∆x πa 2 i+1 R a ∆x D i = -L i + U i + 2C m ∆t + g n+ 1 2 tot B i = 2C m ∆t + g n+ 1 2 N a E N a + g n+ 1 2 K E K + g n+ 1 2 L E L + δ i0 I inj (t) 2πa∆x
(1.23)

with I inj the current injected and δ i0 the Kronecker delta. The complete structure of the neuron corresponds to a tree of unbranched cables (sections) divided in N compartments, thus adding o-diagonal coecients to the tridiagonal linear system [Hines, 1984]. Through wise numbering of the nodes in the tree, the tridiagonal matrix resulting is solvable thanks to Hines matrix solver. The introduction of the spatial dimension in the multicompartmental modeling is translated by a higher complexity requiring complex solver with higher implementation cost, making the implementation of this model more challenging on a digital platform.

Summary

This chapter introduced the basic notions of biology required to the understanding of the nervous system morphology and its main components. It granted the essential knowledge of how neurons process and send the information through the dierence parts like axons and dendrites through synapses. Nonetheless, this complex system may dysfunction because of neurodegenerative diseases already aecting a signicant part of the population and only expected to grow.

Hence, the treatment of these diseases represents a great challenge requiring joined eorts of various elds to nd ecient alternative treatments. This chapter also covers the role and methods of the use of models to study human body and its mechanism, presenting biological models and articial models both serving the purpose of investigate and understand the complex processes of human body. Particular attention was paid to the articial model of neurons and their formation in network in view of developing biomimetic system working toward the discovery of alternative treatments such as electroceuticals [Reardon, 2014, Famm et al., 2013].

To conclude, this chapter highlighted biomimetic articial neuron models and the importance of biological meaningfulness to study neurological disorders through biophysically detailed single compartment or multicompartmental modeling.

Introduction

As most of integrated circuits, FPGA have considerably evolved and improved by taking advantage of technological improvements in transistor scaling reduction [START_REF] Boutros | Fpga architecture: Principles and progression[END_REF].

One of the main benets of FPGA architecture lie in its exible conception of logical circuits and its highly parallel architecture allowing design of complex real-time applications.

However, the main drawback of the FPGA lied in the communication that often remained limited or complex because of its low-level of description not well suited to the implementation of communication protocols that usually include several complex or abstract layers. Along with the computer power growth [Nordhaus, 2007], other architectures like GPU also considerably improved and widely spreads in various elds [Dally et al., 2021, Nickolls andDally, 2010].

The co-design approach that existed for example between CPU and GPU also considerably strengthened for general purpose computation [Arora, 2012] and also explored various architecture with SoCs. A great example is the ARM architecture [Seal, 2000] that emerged from the transistor scaling reduction among many other architectures of CPU [START_REF] Patterson | Computer Organization and Design, Fifth Edition: The Hardware/Software Interface[END_REF]. The small size of the ARM cores made it a crucial element of the design of embedded system such as smartphones [START_REF] Pratapsingh | Evolution of processor architecture in mobile phones[END_REF].

The integration of processors together with a FPGA on a SoC was widely spread thanks to the ARM architecture has sparked the creation of SoC FPGA such as the Zynq for the manufacturer AMD Xilinx [START_REF] Crockett | The Zynq book: embedded processing with the ARM Cortex-A9 on the Xilinx Zynq-7000 all programmable SoC[END_REF]. It allowed compensating for the lack of versatile interfacing of FPGA and allowed the creation of completely embedded and exible designs thanks to the introduction processors.

This chapter explores the choice of the digital platform to develop a real-time biomimetic SNN on SoC FPGA that would provide exibility and versatility to adapt and interface various applications. It will also introduce the essential communication protocols and interface that are used in our system. First, the technological context that led to the choice of the selected SoC FPGA will be discussed. Then, the architecture and functionalities of an AMD Xilinx SoC FPGA that is the SOM K26 as well as its characteristics will be explained. Finally, the communication protocols used in the system will be detailed.

Technological context

To enable bidirectional biohybrid experiments and develop bioelectrical therapeutic solutions for health care like electroceutics [START_REF] Famm | A jump-start for electroceuticals[END_REF], Reardon, 2014, Di Florio et al., 2023], embedded real-time biophysical interfaces and SNN processing are mandatory to ensure interaction at biological timescale [START_REF] Sharifshazileh | An electronic neuromorphic system for real-time detection of high frequency oscillations (hfo) in intracranial eeg[END_REF], Corradi and Indiveri, 2015, Mosbacher et al., 2020, George et al., 2020].

A real-time system takes into account the temporal constraints of the system being studied, measured or simulated. Applied to neural networks, real-time behavior reproduces nerve impulses with respect to the biological time.

While the most used solutions for neuron emulation are software based did not show convincing results for real-time computing, other available systems include analog chips that propose optimal design for a very low power consumption. However, analog chips often suer from a lack of exibility because of the xed hardware. The digital platforms then remain a more appropriate platform for our applications making of GPU and FPGA promising choices. Especially, SoC FPGA combines the exibility, speed and low cost of the FPGA with the versatility and compatibility of the CPU. This section will present the technological context of the main neural modeling implementation and focusing on FPGA implementation to nally present the selected target for our system.

State of the art of biomimetic models

Most current solutions for biomimetic SNN simulations are software-based running on CPU such as NEURON [START_REF] Hines | Neuron: a tool for neuroscientists[END_REF], NEST [START_REF] Gewaltig | Nest (neural simulation tool)[END_REF] or Brian2 [START_REF] Stimberg | Brian 2, an intuitive and ecient neural simulator[END_REF] tools that show signicantly high computation time, especially for complex neuron model with synaptic plasticity.

The Brian software can run on GPU using CUDA, thus greatly improving the computation speed [START_REF] Stimberg | Brian 2 -the second coming: spiking neural network simulation in Python with code generation[END_REF]. Also running on GPU, [START_REF] Kobayashi | Testing an explicit method for multi-compartment neuron model simulation on a gpu[END_REF] presents the emulation of a HH-based multicompartmental model with 3074 neurons for an average of 674 compartments per neuron forming 780,404 synapses computed in 2.5h for 1 second.

As for Supercomputers as in [START_REF] Jordan | Extremely scalable spiking neuronal network simulation code: from laptops to exascale computers[END_REF], 18,000 neurons with 1,250 synapses each simulated over 1 second of biological time took 5 minutes of real time. The power consumption was estimated to about 60 to 70 kW per rack for a total of 28 racks. The Japanese supercomputer K was able to simulate 1.74 billion nerve cells and 10.4 trillion synapses in one second of biological time in 40 minutes. The power consumption of these machines remains high and their accessibility low.

In contrast, hardware implementations can perform real-time simulations with low power consumption. Moreover, software-based solutions are not suited for real-time emulation at millisecond time step [Van Albada et al., 2018] contrary to hardware-based SNNs. In the context of biohybrid experiments requiring real-time embedded system hardware implementations appear more relevant.

Hardware implementations of neural networks can be divided into two categories. On the one hand, mixed implementations based on integrated circuit designs; on the other, digital implementations based on FPGAs, microprocessors, microcontrollers or neurochips.

Analogic and mixed implementations. Most of these systems consist of an analog core that simulates the neuron and generally digital circuits for the synapses and plasticity. [START_REF] Hasler | Transistor channel dendrites implementing hmm classiers[END_REF] and [START_REF] George | Low power dendritic computation for wordspotting[END_REF]] implement a multicompartmental model including recongurable dendrites. [START_REF] Sorensen | Using a hybrid neural system to reveal regulation of neuronal network activity by an intrinsic current[END_REF], [START_REF] Binczak | Experimental study of electrical tzhughnagumo neurons with modied excitability[END_REF], [START_REF] Renaud | Neuromimetic ics with analog cores: an alternative for simulating spiking neural networks[END_REF], [START_REF] Levi | editorial: closed-loop systems for next-generation neuroprostheses[END_REF] and [START_REF] Natarajan | Hodgkinhuxley neuron and fpaa dynamics[END_REF] integrate conductance-based models. [START_REF] Liu | Temporal coding in a silicon network of integrate-and-re neurons[END_REF], [START_REF] Vogelstein | Silicon spike-based synaptic array and address-event transceiver[END_REF], [START_REF] Indiveri | Spike-based learning in vlsi networks of integrate-and-re neurons[END_REF], [START_REF] Schemmel | Modeling synaptic plasticity within networks of highly accelerated i&f neurons[END_REF], [START_REF] Qiao | A recongurable on-line learning spiking neuromorphic processor comprising 256 neurons and 128k synapses[END_REF], [START_REF] Kohno | Qualitative-modeling-based silicon neurons and their networks[END_REF] and [START_REF] Valentian | Fully integrated spiking neural network with analog neurons and rram synapses[END_REF] present threshold-based models.

Digital implementations. The majority of the digital implementations the majority are bioinspired models for computational purposes running on FPGA or neuromorphic chips. [START_REF] Nazari | A digital implementation of neuronastrocyte interaction for neuromorphic applications[END_REF] shows an application of [START_REF] Cassidy | Design of a one million neuron single fpga neuromorphic system for real-time multimodal scene analysis[END_REF] using one million of threshold-based neurons. [START_REF] Wang | An fpga implementation of a polychronous spiking neural network with delay adaptation[END_REF] implements 4,000 neurons connecting 1.15 million synapses. The prominent SNNs hardware platforms and major projects are Merolla [START_REF] Merolla | A million spiking-neuron integrated circuit with a scalable communication network and interface[END_REF], BrainScaleS-2 [START_REF] Pehle | The brainscales-2 accelerated neuromorphic system with hybrid plasticity[END_REF], SpiNNaker [START_REF] Painkras | Spinnaker: A 1-w 18-core system-on-chip for massively-parallel neural network simulation[END_REF], SpiNNaker 2 [START_REF] Mayr | Spinnaker 2: A 10 million core processor system for brain simulation and machine learning[END_REF] and Loihi [START_REF] Davies | Loihi: A neuromorphic manycore processor with on-chip learning[END_REF].

SpiNNaker was designed as a part of the neuromorphic computing platform for the Human Brain Project [START_REF] Amunts | The human brain project: Creating a european research infrastructure to decode the human brain[END_REF]. Its complete design includes ARM cores organised in 10 racks of 100,000 cores each with each core emulating 1,000 neurons, thus aiming to emulate a billion neurons in real time using LIF model [Van Albada et al., 2018].

BrainScaleS-2, that is also part of the Human Brain Project, implements multiples cores of 512 neurons to reach about 4 millions neurons for 880 millions synapses.

The Loihi chip is a neuromorphic chip implementing 130,000 spiking neurons and 130 million synapses.

While some of these systems present mobile versions like [START_REF] Stradmann | Demonstrating analog inference on the brainscales-2 mobile system[END_REF] for BrainScaleS-2, they often are not suited for embedded applications.

The state-of-the-art shows a large amount of digital implementations capable of running large number of neurons. However, only few implementations present HH model and fewer multicompartmental model of HH model. This justies the importance of this work to propose an accessible and exible HH model implementation.

Follow-up on HH FPGA implementations

As introduced previously, the complexity of analog circuits and the power consumption of supercomputers pushed the use of digital circuits for neural network implementation. Nonetheless, because of its high complexity and implementation cost, the HH model shows few digital implementations and even fewer implementations on FPGA. It is mostly explained by the mathematical operations required by the model such as exponential and divisions that are not suited for FPGA architecture and resource-intensive. The accuracy required also signicantly constrains the data coding as FPGA architecture shows resource-intensive oating-point operations. Also, the FPGA implementation of the multicompartmental HH model is rare because of the complexity of the solver required. Hence, the implementation of the HH model requires simplications.

Single compartment implementations. In the single compartment implementations, [Osorio, 2016] presents a time-and resource-intensive pipeline architecture using oating-point computations and complex methods explicit solving methods such as Runge-Kutta and Goldsmith algorithms paired with Taylor series expansion for complex operators.

[Yaghini Bonabi et al., 2014] shows good computational accuracies using fast and resourceecient algorithms such as the COordinate Rotation DIgital Computer (CORDIC) and explicit Forward Euler method enabling simulation of 120 neurons connected. [START_REF] Akbarzadeh-Sherbaf | A scalable fpga architecture for randomly connected networks of hodgkinhuxley neurons[END_REF] presented another way of calculating neurons increasing to 5,120 neurons computed in real-time.

While demonstrating numerical implementation techniques to improve the performances, these implementations presented only FS type neurons. Additionally, none of them presents a fast and ecient way to make the system exible, i.e. to modify biophysical parameters in real time.

A work proposed by our team proposes the implementation of FS, RS, IB and LTS neurons with dynamic parameters tuning and synaptic connection hardware-xed synapses [START_REF] Khoyratee | Optimized real-time biomimetic neural network on fpga for bio-hybridization[END_REF] for a total of 500 neurons per calculation core.

Multicompartmental implementations. Multicompartmental HH model implementation on

FPGA is almost non-existent, only some experimental results like [START_REF] Ding | Implementation of multi-compartment neuron model with synaptic plasticity using fpga[END_REF]] that shows two-compartment neurons and methodology like [Beaubois et al., 2022] exist. Thus making of the implementation presented in this manuscript the rst FPGA implementation of multicompartmental HH model on FPGA.

Selected Targets Overview

The main target selected is the Kria K26 SOM from AMD Xilinx embedded on the development platforms Kria KV260 Vision AI Starter Kit and Kria KR260 Robotics Starter Kit advertised as cost-optimized targets. This SoC FPGA is based on the Zynq UltraScale MPSoC architecture thus featuring processors and FPGA on the same chip. This choice of this target is justied by its capacity of running an operating system and oers good FPGA and processor performances, 

Communication Protocols and Interfaces

Communication protocols are rules and standards that dene how systems communicate with one another to transmit information. On the other hand, interfaces refer to physical or logical connections between two devices or systems that allows them to communicate with each other.

Communication protocols are key elements in most systems as they guarantee coherency and integrity of data with respect to the latency and throughput imposed by the application.

Most protocols comply with standards covering criteria such as service quality, security or data integrity. Standard also are applied to interface ruling the physical constraints of the connector or their logical connections.

There are numerous communication protocols, often designed to meet a specic need or optimized for certain applications. Hence, choosing a communication protocol requires an analysis of the needs and constraints of the system while also considering the target architecture.

This section aims to introduce a basic knowledge of the essential communication protocols and interfaces involved in the system developed.

AXI Protocol: Ecient SoC Interconnect Communication

The Advanced Microcontroller Bus Architecture (AMBA) is an open-standard, on-chip interconnect specication for the connection and management of functional blocks in SoCs designs.

Essentially, AMBA protocols dene how functional blocks communicate with each other that simplies the development of designs with multiple processors and large numbers of controllers and peripherals. It provides several benets including exibility to work with a wide range of SoCs, compatibility through standard interface specications, bandwidth that corresponds to the product of the clock speed and the width of the data bus and relatively low latency in burst-based sytem.

The Advanced eXtensible Interface (AXI) protocol comes with the third generation of AMBA interface dened in the AMBA 3 specication (see Figure 2.2). It is targeted at high performance, high clock frequency system designs and includes features that make it suitable for high-speed submicrometer interconnect.

The AXI4 protocol that comes with the AMBA 4 specications in 2010 introduced the AMBA 4 AXI4 along with the subsets AXI4-Stream and AXI4-Lite protocols (see Figure 2.2), all used in the system mainly for the interactions between the PS and PL.

The AXI4-Stream protocol is designed for unidirectional data transfers from with reduced signal routing, which is well suited for implementation in FPGAs.

The AXI4-Lite protocol is intended for communication with simpler, smaller control registerstyle interfaces in components.

The documentation of the manufacturer [START_REF] Xilinx | Vivado Design Suite User Guide: Release Notes, Installation, and Licensing[END_REF] describes the three types of AXI4 interfaces as:

AXI4: for high-performance memory-mapped requirements AXI4-Lite: for simple, low-throughput memory-mapped communication (for example, to and from control and status registers).

AXI4-Stream: for high-speed streaming data Both AXI4 and AXI4-Lite interfaces consist of ve dierent channels: read and write address channels, read and write data channel as well as write response channel. Data can be transferred in both directions between the master and slave simultaneously with varying data USB is based on two primary roles that devices can play when communicating over a USB connection. The host initiates and controls the communication on the USB bus. It is typically responsible for tasks such as managing the USB topology and addressing of devices, initiating communication sessions or sending and receiving data to and from devices. The device is a peripheral or a gadget that communicates with the host based on its specic class that denes its functionality and interactions. Typically, the device respond to commands and transfer data to and from the host as requested.

As the USB is a complex protocol, its implementation on the FPGA can be challenging and relies on the support available in terms of IP cores. USB has multiple layers and intricacies that involves low-level, thus implementing the entire USB protocol can be demanding and time-consuming forcing the use of dedicated IP cores. 

Ethernet: Connecting Devices in Networks

Ethernet protocol dictates the way devices communicate within local and wide area networks.

By utilizing a wired physical medium, typically Ethernet cables, it enables data exchange between computers, servers, and networking equipment. It is ubiquitously used in homes, businesses, data centers and the broader internet infrastructure.

Ethernet operates on the principle of packets, in other words, the data is broke down into packets for ecient transmission and routing. The protocol oers various speeds, ranging from 10 Mb/s Ethernet to modern variants like 1/10/100 Gigabit Ethernet (1 Gb/s, 10 Gb/s or 100 Gb/s). Ethernet has a deterministic nature that allow to predict or determine its behavior with certainty as well as low latency, thus making of Ethernet a solution suited for real-time applications such as streaming and online gaming. Ethernet is a complex protocol and interface that features several layers illustrated in Implementing Ethernet on FPGA involves challenges due to its complexity and multiple layers that are dicult to translate at the low-level of description proposed by FPGA, forcing the use of dedicated IP cores. FPGA implementations of the Ethernet protocol further enhance the development of real-time applications with high rates and low latency thanks to the FPGA architecture that does not include software that induces uctuating latency.

Nonetheless, its development is rather dicult and time-consuming without the use of dedicated IP cores. The use of the Ethernet protocol on a processor-based architecture also shows great performances thanks to the use of components that optimize data transfer like DMA that will be detailed in the next section.

The Ethernet communication is used in the system as the main data communication protocol thanks to its high throughput and low latency. It is handled on a software side by a generic operating system, thus greatly simplifying the implementation.

UART: Basic Device Communication

The Universal Asynchronous Receiver/Transmitter (UART) protocol is a serial communication protocol that transmits data between peripherals such as computers and microcontrollers. It is widely used in numerous applications amongst communication with microcontrollers or data communication between peripherals in RFID based applications or GPS modules.

The UART protocol uses asynchronous serial communication with congurable speed. An asynchronous communication implies that no clock signal synchronize the output bits from the transmitting device going to the receiving end. The UART contains two signal: transmitter (TX) and receiver (RX). The data is transferred bit by bit as shown in Figure 2.6.

UART is a simple protocol that can easily implemented on FPGA with a low implementation cost, but that features low throughput and limited reliability in cables. The UART is used in almost all the versions of system in both hardware and software as a communication protocol forwarding debug data.

SPI: Simplied Device Connection

The The SPI protocol is widely used in the system for the interactions between the hardware and other external components connecting with the system.

Wi-Fi: Wireless Device Connectivity

The Wi-Fi (a brand name standing for Wireless Fidelity) protocol allows devices to connect and communicate wirelessly, eliminating the need for physical cables. Wi-Fi is widely used for creating wireless local area networks (LANs) that provide internet access to devices like smartphones, laptops and IoT gadgets.

Wi-Fi operates by transmitting data using radio waves in specic frequency bands, typically 2.4 GHz or 5 GHz. Devices equipped with Wi-Fi capability can establish connections to access points (routers) and communicate with each other. On the technical side, the IEEE 802.11 standard denes the protocols that enable communications with current Wi-Fi-enabled wireless devices. The standards operate on varying frequencies, deliver dierent bandwidth and support dierent numbers of channels. A Wi-Fi frame has a rather complex structure and multiple layers including various related to network with a maximum size of 2346 bytes. Typically, the latency observed with Wi-Fi is about 5 to 10 ms for a throughput that can reach a theoretical 10 Gb/s in its latest theory.

As Wi-Fi is a complex protocol composed of multiple layers, its implementation remains highly challenging on FPGA. Even with dedicated controller handling the physical layer (PHY), the entire protocol stack includes higher-level protocols that are not well-suited for FPGA that operates close to the hardware with a low level of description.

The Wi-Fi communication is used in the main system as well as in an alternative version as an optional communication protocol for the main data, thus providing an interesting solution for embedded applications thanks to its wireless nature.

PMOD: Standard Device Interfacing

The Peripheral MODule interface (PMOD) standard dened by Diligent is a versatile and widely adopted interface for seamlessly connecting peripheral modules to microcontroller and FPGA-based systems. PMOD oers a standardized approach to extending system functionality, allowing a diverse range of peripherals like sensors, actuators and communication modules to be easily integrated.

The PMOD connects peripheral modules to FPGA and microcontroller development boards The PMOD are largely used in the system through the interfaces available on all the targets to provide a generic utilization of various components such as DAC and Wi-Fi communications for the monitoring of the system.

Architecture and components of the SOM K26

The SOM K26 is a custom-built Zynq UltraScale MPSoC that is a family of integrated cir- cuits developed by AMD Xilinx which combines the processing capabilities of processors with programmable logic on a single chip. It is designed to provide a high level of processing performance, exibility, and integration for a wide range of applications, particularly in embedded systems and high-performance computing. The Figure 2.9 recapitulates the dierent blocks and components of the Zynq UltraScale MPSoC architecture.

The chip is then divided in two parts: Programmable Logic (PL) and Programmable Logic (PL). The PS part that is the ARM-based processing system consists of multiple cores, including Cortex-A53 application processors for general-purpose computing tasks and Cortex-R5 real-time processors for time-critical tasks. These cores can run dierent operating systems and handle various applications and operating modes. The PL is the programmable logic portion that consists of recongurable logic cells and resources, i.e. the FPGA. In the standard operation, it is designed to be used as hardware accelerator thanks to various components of the 

Application Processing Unit (APU)

The Application Processing Unit (APU) consists of four Cortex-A53 MPCore processors, L2 cache and related functionality designed for system control and compute-intensive applications that do not need real-time performance (see Figure 2.9). The Cortex-A53 MPCore processor is the one of the most power-ecient Arm v8 processor capable of seamless support for 32-bit and 64-bit code. It makes use of a highly ecient pipeline with advanced fetch and data access techniques for performance. It ts in a power and area footprint suitable for entry-level devices and is at the same time capable of delivering high performance in scalable enterprise systems by integrating several core thanks to a high core density.

The core includes advanced Single-Instruction Multiple-Data (SIMD) and oating-point extension tailored for media and signal processing applications thanks to instructions targeting tasks such as audio, video, 3D graphics, image and speech processing. It also implements the Arm generic timer architecture, debug architecture as well as an external generic interrupt controller.

To put it briey, the APU integrates powerful cores capable of performing eciently most calculations. While providing essential features to get closer to a real-time behavior like timers and interrupts, APU is not designed for real-time application and are oriented toward the execution of an operating system.

Real-Time Processing Unit (RPU)

The Real-Time Processing Unit (RPU) includes a pair of Cortex®-R5F processors for realtime processing that implements the Arm v7-R architecture and includes a oating-point unit (Arm VFPv3 instruction set) as shown in Figure 2.9. In the Cortex-R5F processor, the interrupt latency is kept low, achieved by having a dedicated peripheral port that provides low latency access to the interrupt controller and by low-latency memory (tightly-coupled memories). The Cortex-R5F processor is used for many safety-critical applications where the timing is important.

The Cortex-R5F processor is a mid-range CPU for use in deeply-embedded real-time systems. It includes a technology that optimizes the code density and processing throughput to maximize performances. The processor has tightly-coupled memory (TCM) ports for lowlatency and deterministic accesses to local RAM in addition to caches for higher performance to general memory. It also supports oating-point arithmetic as well as error checking and correction to provide improved reliability and safety.

To recapitulate, the RPU integrates a core slightly less powerful than the APU, but that is capable of performing ecient calculations at low-latency to guarantee real-time operation.

Hence, the use of the core are tailored for real-time applications where computations are to be performed in a given time.

Graphics Processing Unit (GPU)

The Graphics Processing Unit (GPU) is a 2D and 3D graphics subsystem based on the Arm Mali-400 MP2 hardware accelerator (see Figure 2.9). It contains components such as one geometry processor and two pixel processors that perform tasks such as scaling, rotating, and positioning the geometry of objects in the scene or rendering the pixels to produce an image.

The GPU can be congured using the software libraries such as openGLES 2.0 API.

Briey, the GPU embedded is mostly suited for 2D or 3D graphics rendering more than general purpose computation and more particularly in this case to handle the desktop interface of an operating system and its applications.

Memory

Memory is an essential component that involves the notion of access latency referring to the time it takes to retrieve or store data, throughput representing the rate of data transfer as well as size of the memory. Most systems integrate multiple memory types to fulll the dierent requirements of the system and serve dierent purposes by having memories with dierent size and access latencies.

The SOM K26 integrates various types of memory serving dierent purposes: the processors caches, the external high-speed dynamic random-access memory (DDR DRAM), internal onchip memory (OCM), tightly-coupled memory (TCM), eMMC, EEPROM, QSPI ash memory and the PL memory blocks.

Processor cache. Processor cache is a special high-speed memory from which processors access their instructions and data. They are small memories (1 MB for L2 cache memory of the APU) that are present close to each core to allow fast access to memory with low latency.

External DDR DRAM. The external memory corresponds to 4 GB 64-bit DDR4 memory that is high-speed dynamic random-access memory mostly accessed by the cores. The most common use is to act as a temporary memory bank for the operating system operation. It is a memory of a large size and high throughput but showing a high latency and that requires frequent refresh operations.

Internal on-chip memory. The on-chip memory corresponds to 256 KB of RAM divided in four banks of 64 KB that is designed to ensure low memory access latency for the RPU.

TCM. Tightly-coupled memory (TCM) is also a low-latency memory used by the RPU.

Each Cortex-R5F processor contains two 64-bit wide 64 KB memory banks of TCM memory for a total of 128 KB of memory.

eMMC. The Embedded MultiMediaCard (eMMC) is a 16 GB non-volatile memory integrated in the SOM that retains stored information even after power is removed. It is mostly designed to store the data necessary for the system to operate.

EEPROM. The electrically erasable programmable read-only memory (EEPROM) is a 64

Kb non-volatile memory pre-programmed during manufacturing and that provides device conguration, identication, and manufacturing data.

QSPI ash memory. The Quad SPI ash memory of 512 Mb (64 MB) is also a non-volatile memory that can be used to program the device on startup. Because of its smaller size, it is mostly used to contain the essential data necessary for the system to start.

PL on-chip memory. On the development boards KR260 and KV260, a SD card slot provides another memory through the SD card that provides non-volatile memory ranging in the tens of gigabytes. This memory can be used either to store data in les or to store the essential data required for the system to operate.

Connectivity

The connectivity on the SOM contains various interface controllers that can be congured for the applications. Among them can be found Serial Advanced Technology Attachment (SATA)

to connect storage devices, DisplayPort to connect display peripherals, PCIe an expansion bus standard for connecting to one or more peripheral devices like a computer and Ethernet SGMII to connect to a network. It also includes four 10/100/1000 tri-speed GEM peripherals that allow controlling Ethernet connection at dierent speeds. USB 3.0 and USB 2.0 controllers to connect to a wide range of devices and systems also are available as well as two UART (up to 1 Mb/s).

As for the interfaces available in the development boards selected shown in Figure 2.1, the KR260 is the most complete carrier board that integrates 4 Ethernet ports, 4 USB ports, 4

PMOD connectors, DisplayPort, HDMI and GPIO (organized in Raspberry Pi header). The KV260 features fewer connectors with only one Ethernet port and one PMOD connector but for a lower price. The ZyboZ7-20 features 6 PMOD connectors, one Ethernet port and one USB port as well as two HDMI ports while the CMOD A7 integrates only one PMOD connector and GPIOs.

System functions and management

The system functions and management of the SOM K26 include many components and processes that are not essentially necessary to the understanding of the system so as this section will focus on a crucial component that is the DMA. Other components for example include the system monitor that allows monitoring of the temperature of the cores, fundamentally a crucial element to ensure correct functioning of the system but not essential to the understanding of the system developed.

The Direct Memory Access (DMA) is a component tailored to perform memory to memory and memory to I/O buer transfers. It is for example used to perform data transfer between RAM and a peripheral device such as Ethernet controller. The benet of the DMA is to ooad the CPU and then allow high throughput data transfers without involving the CPU.

Without the DMA, the CPU would issue commands to read data, wait for the data to be fetched and then transfer the data by its self.

With DMA, the CPU sets up the parameters for the data transfer (source, destination, and size) and then hands control over to the DMA controller. The DMA controller directly accesses data and transfers it without the constant involvement of CPU. Once the transfer is complete, the DMA controller noties the CPU. Meanwhile, the CPU can continue executing other tasks, thus improving overall system performance.

The Figure 2.10 shows the block diagram of the DMA. The DMA is composed of 3 major blocks: the common buer, the arbiter (AXI write channel and AXI read channel) and the DMA engine channels.

Common buer. The common buer is shared between the DMA channels to hold the AXI read transaction data before it goes out on an AXI write channel and is sized to allow utilization of full AXI bandwidth.

Arbiter. Each DMA channel has two AXI read interfaces: one interface is used for reading data buers and the other interface is used for reading buer descriptors that contain information about the buer. The DMA channels share an AXI write channel. The DMA implements round-robin arbitration so as each channel is given an equal portions and in circular order without priority.

DMA engine channels. The DMA channel is responsible for the bulk of the DMA operation and management that are transfer execution, coordination of transfer parameters, monitoring progress and generating notications for the CPU. To put it briey, the DMA is a crucial component that allows large data transfers between various peripherals of the system with a limited involvement of the CPU, thus signicantly improving the performances of the system for data transfers. To illustrate this point with a practical example, the DMA can be used to move data eciently between the PL and PS part or between the external peripherals like Ethernet to either the PS or PL part.

2.5 Processing System (PS): Embedded Processors within SoC FPGA

The Processing System (PS) contains the Application Processing Unit (APU), Real-Time Processing Unit (RPU), and peripherals. It is often referred to as the software part of the design.

The software stacks available for Zynq UltraScale+ MPSoC devices are: bare-metal, Linux and FreeRTOS. Figure 2.11 recapitulates the three software development stacks. This section focuses on the dierent operating modes as well as the methods used to design each solution.

User Applications

Libraries (FreeRTOS, file system, OpenAmp, ...) Bare metal programming is suitable for applications that require maximum performance and minimal latency as the software layer is minimal and do not induce uctuating latencies as with an operating system. It is often used in scenarios such as real-time control, signal processing and custom accelerators using the FPGA fabric. However, this approach requires a solid understanding of the hardware architecture and low-level programming concepts. It is also complex, highly time-consuming and lack versatility because the code is specic to the application developed.

Drivers

In the process of designing a exible and user-friendly design, the lack of exibility and high development time make it less suitable for our application. Nonetheless, the high performances provided by a bare metal approach were explored in an intermediate version.

FreeRTOS: Real-time operating system

FreeRTOS is a real-time operating system (RTOS) that provides a layer of abstraction that enables ecient management of tasks and scheduling to create a multi-threaded environment.

AMD Xilinx includes FreeRTOS support as part of Vitis software platform, oering a similar development approach to bare metal but with the functionalities of a real-time operating system like multi-tasks processing. FreeRTOS is aimed to run the RPU of the SOM as shown in Figure 2.11.

FreeRTOS facilitates a multi-threaded environment, enabling to create tasks that run concurrently with specic priorities, manage communication between the tasks and shared access to resources using features like semaphores and mutexes. The layer of abstraction provided by RTOS reducing the complexity of hardware interaction and resource management.

Similarly to bare metal, it involves writing code in C or C++ that uses FreeRTOS libraries for task creation, synchronization, and memory management. The code is also compiled through the Vitis tool chain to generate the board conguration.

FreeRTOS oers a good compromise between performances and versatility as it allows maintaining real-time performances with a certain level of abstraction. However, even though FreeR-TOS provides a layer of abstraction, it is still considered as low-level and implies a solid understanding of the hardware architecture and low-level programming concepts.

While FreeRTOS is a solution perfectly suiting the needs of our application, it lacks of exibility and the low level of abstraction induces high development time. Hence, the sole use of FreeRTOS for the application would not be sucient. An optimized design, considered but not developed, would lie in both FreeRTOS running on the RPU and a Linux running on the APU.

Linux: Versatile Embedded System Platform

Linux is a well-known and widely used open-source operating system that provides a versatile environment that oers a wide range of features and capabilities for embedded systems with a higher level of abstraction than FreeRTOS. It oers a rich set of drivers, libraries and tools that facilitate ecient interaction with the hardware components including the APU cores and FPGA (see Figure 2.11). The Linux software stack can be leveraged by dierent tools:

PetaLinux Tools: The PetaLinux tools include tools (Linux source tree, U-Boot and Yocto-based tools) to easily build complete Linux images (kernel, root le system and device tree) and applications for AMD Xilinx devices.

Open Source Linux and U-Boot: The Linux Kernel sources needed for Zynq Ultra-Scale+ MPSoC are provided by AMD Xilinx then allowing the generation of linux images using the open source tools for Linux iamge creation.

Commercial Linux Distributions: Some commercial Linux distributions like Canonical Ubuntu feature support for Xilinx UltraScale+ MPSoC devices including advanced tools for Linux conguration, optimization, and debug.

Linux-based development for the Zynq MPSoC involves conguring and customizing the Linux kernel to match the hardware conguration. This notably includes selecting the necessary drivers, enabling specic features and tuning the kernel to optimize performance. Additionally, Linux oers a user-space environment that allows to create and manage user applications using familiar programming languages (Python, C, C++, ...) and development tools (SSH, ...).

The benets of Linux in embedded systems is the vast ecosystem of software packages and libraries, enabling rapid and versatile application development while reducing development time thanks the high level of abstraction. Moreover, Linux allows multitasking and multi-threading capabilities with high level of abstraction making it simple, along with a network stack facilitating connectivity.

However, while Linux oers versatility and convenience, it introduces a layer of complexity that impacts real-time performance. The scheduling and resource management of the operating system introduce uctuating latencies that makes it less suitable for applications requiring strict real-time behavior. While using a preemptive Linux kernel can mitigate scheduling latencies and enhance real-time capabilities, it remains less suitable than FreeRTOS for strict real-time behavior.

Because Linux brings a powerful and versatile environment and oers features and tools for fast and exible development, a commercial Linux distribution was used in the system. It allows a exible and user-friendly monitoring of the system with acceptable latencies, albeit uctuating.

2.6 Programmable Logic (PL): FPGA Technology within SoC FPGA

The Programmable Logic (PL) contains the Field Programmable Gate Array (FPGA) fabric.

It is often referred to as the hardware part of the design. This section aims to introduce the elements and processes that are specic to the FPGA technology to provide the basic knowledge necessary to the understanding of the hardware design of the system.

Data encoding

Data encoding is the process of encoding information or data into a certain format, representation or structure. It is an important element of a system as it directly impact the memory by its size, resource consumption and performances by the complexity of its handling and operations. In articial neuron modeling, the main data are variables relating to biological property and equation so as it is mainly decimal numbers. Various representation of decimal number exist, but they can be categorized in two categories: xed-point coding and oating-point.

Fixed-point coding and oating-point are both used in the system developed. The Figure 2.12 illustrates the two representations by showing the number of bits used and what they are coding.

Fixed-point coding. Fixed-point coding is an encoding for fractional numbers using a xed number of bits to code both integer and decimal part of the number additionally with a sign bit, but it basically remains an integer. This data encoding is widely to represent digital data in digital systems such as computers and embedded systems. Fixed-point coding xes the number of bits used to represent integer and decimal part of the number therefore impacting the accuracy, the more bits used the more accurate the coding is. The main benet of xed-point coding lies in low implementation cost and low complexity compared to coding such as oating-point.

Therefore, xed-point coding often suits well embedded systems where resources are limited thanks to its lower memory consumption, simpler and faster computation. Its limitation lies in the operations that imply high magnitude variations like in the case of an addition of very large number with a very small number, so as depending on the encoding size the small number impact might not be considered.

Floating-point coding. Floating-point coding is an encoding representing fractional numbers using a variable number of bits. Unlike xed-point coding, oating-point allows a better accuracy by allowing the decimal point to "oat". It is done by introducing an exponent part that represents the integer power by which the fraction will be multiplied by (see Figure 2.12). It is mostly used in scientic calculation or high performance applications where high accuracy is required. This representation is more exible than xed-point therefore allowing to represent a wider range of numbers with higher accuracy. Indeed, oating-point coding deals very well with high magnitudes variations in operations like multiplications and divisions but a bit less with additions and subtractions. Nevertheless, oating-point coding shows higher complexity and implementation cost on most architectures.
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Figure 2.12: Data representation for xed-point and oating point coding.

High Level Synthesis tools

High Level Synthesis (HLS) is a design process allowing to generate RTL code for FPGA from high-level description such as algorithms or models. As the FPGA development usually involves a low level and time-consuming description language, HLS is an ecient tool to design systems while allowing developers to concentrate more on algorithms and system functionalities rather than hardware related issues. Thus, it can allow a reduction development time and an expansion of the range of developers targeting FPGA architecture.

At the present time, notable supported languages include the widely used C/C++ and MATLAB. While being a recent tool, HLS has proven to be able to generate ecient and reliable implementations thanks to its ability to optimize the resources of the FPGA. BRAM. Block RAM (BRAM) stores up to 36 Kib of data (kibi bits (1K i = 2 10 = 1024))

and can be congured as either two independent 18 Kib RAMs or one 36 Kib RAM. Each block RAM has two write and two read ports that can be congured with independent port widths for each of those ports like for example 4Ki x 9, 2Ki x 18 or 1Ki x 36 as shown in Figure 2.14.

The conguration is nonetheless constrained by the operating mode of the BRAM. The benet of the BRAM over the distributed RAM is its size and its handling of multiple clocking. 

Arithmetical and mathematical operations

Due to the low-level hardware nature of FPGAs, the implementation of mathematical operations is dierent from software-based calculations on conventional processors that execute operations through sequences of instructions.

FPGAs directly generates a custom digital circuits to perform each computation so as this hardware-centric approach provides high eciency gains through true parallel computation. However, it can allow limit or complicate the implementation of mathematical operations, especially for operations on data with high level of abstraction like oating-point.

A crucial component for the implementations of mathematical operation on FPGA is the Digital Signal Processor (DSP). DSP is specically designed and optimized to carry out performant computation like multiplication or addition. Its architecture allows running computations at high clock frequencies and its placement on the FPGA close to the BRAM allows routing and interconnecting them eciently with the other elements of the system (see Figure 2.15).

It allows placed so as DSP can be cascaded implement large pipelined operations. In the SOM K26, the DSP are DSP48E2 that output the result P on 48 bits and can accept up to 4 inputs: A on 30 bits, B on 18 bits, C on 48 bits and D on 27 bits as shown in Figure 2 the documentation [START_REF] Xilinx | UltraScale Architecture DSP Slice User Guide[END_REF]. DSP are placed closed to the BRAM to allow ecient routing that ensures functioning at high clock frequencies.

Addition (add) and Subtraction (sub). Additions (add) and subtractions (sub) of integers, including xed-point coding as its coding is essentially the same, is a simple operation in FPGA.

In can eciently be implemented with combinatory logic to perform like operations in one clock cycle, but they can also be implemented using DSP. The implementation of these operations for oating-point coding (fadd and fsub) shows considerably higher implementation cost and latency, but can still be implemented with relative ease. Multiplication (mul). Multiplications of integers or xed-point numbers (mul) can be performed easily and eciently by DSP, striking a balance between latency and operating frequency. Adding more registers increases latency while also raising the operating frequency.

Multiplication of oating-point numbers (fmul) is similarly performed by DSP with a slightly higher latency and implementation cost. A common optimization to replace multiplications in FPGA is to replace the multiplication of power of two by left shifts.

Divisions (div). Division of integers or xed-point numbers (div) is a rather dicult oper-ation to implement that requires algorithms such as Restoring Division algorithm or multiplication by the inverse. A compromise can usually be found between the hardware usage and the latency. The unbounded nature of division that can lead numbers to tend towards innity can also be challenging to handle with integers. On the contrary, divisions of oating-point numbers can be implemented in fabric for a very low implementation cost and a fair latency.

As for multiplications, a common optimization relies on a shift to the right to replace divisions by power of two.

Others. The intricacy of implementing other complex mathematical functions varies significantly based on the specic functions involved. While some IP cores or libraries may exist to implement the functions, some very specic operations require developing custom hardware or nding optimizations that will allow the use of the elementary operations available. A common example is the implementation of trigonometric functions by implementing a CORDIC (COordinate Rotation DIgital Computer) as performed by the team in [START_REF] Khoyratee | Optimized real-time biomimetic neural network on fpga for bio-hybridization[END_REF]]. An approach used in the system also relies on the use of pre-computed calculations stored in RAM to implement complex mathematical functions.

Summary

In this section, we explained the choice of the digital platform selection for the development of a real-time biomimetic SNN development on a SoC FPGA. It granted knowledge of the already existing system and technological landscape that inuenced and supported the choice of the targets selected. Additionally, it introduced the communication protocols and interfaces inherent to our system that are essential in the design of a system that aims to interface with biology. It also presented and detailed the dierent elements and characteristics of the SOM K26 with particular attention given to its two dierent parts PS and PL. To conclude, this chapter furnished the essential knowledge necessary to grasp a good understanding of the software and hardware design development within this specic target context.

3 Toward a exible real-time biomimetic SNN on SOM K26

Introduction

With a deeper understanding of the articial neural networks and the platform used for its implementation, the focus shifts on the design of the system. Given that the system developed is intended to be used by biologists for either real-time emulation of biophysically detailed networks or hybridization purposes, it is crucial to consider key features such as exibility and user-friendliness. In this way, non-specialists users could easily use and tune the system to suit their needs and adapt to their experimental setup.

Another important aspect of the system lies its capability to interface with other systems or components so as it must be able to interface with most standards of biophysical interfaces.

The system also requires performances to be capable of emulating a satisfying number of neurons and synapses to create a network, while ensuring its real-time behavior.

Considering the target selected, an ecient design will then involve the use of dierent level of abstraction, translated by dierent programming languages, to provide the best compromise between performances, ease of use and exibility.

This chapter will explore the dierent part of the design and explain the design methods applied, starting with the hardware component operating in the PL part of the SOM. Then, the dierent layers of software developed responsible for the user interface, monitoring and communication will be explained. Finally, the performances of the system will be presented.

Overview

The system developed was named Bi÷muS standing for "BIOmimetic EMUlation Single compartment". It corresponds to the design that is capable of running up to 1,024 single compartment neurons fully connected, supporting a total of 2 20 synapses. It includes on-board monitoring and oers versatile external communication options such as Ethernet or WiFi.

A prototype version sharing the same base and integrating multicompartmental neurons was also developed as Bi÷muM for "BIOmimetic EMUlation Multicompartmental".

The system is developed using 3 dierent languages that corresponds to 3 distinct parts.

Python language is used for the conguration scripts and monitoring to provide user-friendly and rapid-prototyping as it is aimed to be used by non-specialists. The C++ language is used to develop the application responsible for setup and control running on the SOM in the PS part to provide better performances and proximity with hardware. VHDL was used to describe the hardware circuit in the PL part of the SOM that implements the calculation core of the neural network. Some C++ description was used to generate the HLS IP used in the calculation core.

The Figure 3.1 illustrates the dierent parts of the system and indicates their hardware or software nature for a conguration and monitoring on an external computer. The conguration of the network in Python can also be executed on the SOM thanks to the Canonical Ubuntu.

The neurons constituting the SNN are modeled with high biological plausibility using the 

Hardware: Computation Core

This section will detail the hardware design corresponding to the computation part of the system. The computation core corresponds to the main part responsible for the emulation of the neurons. It includes the calculation of ion channels states, ion currents, noise and stimulation currents as well as synaptic current.

The hardware computation core for single compartment neurons in its latest version allows emulating 1,024 fully connected neurons for a total of 2 20 synapses. The prototype computation core for multicompartmental neurons allows the computation of 16 neurons with 64 compartments without synapses.

The neurons composing the network are modeled with high biological plausibility using the HH paradigm [START_REF] Hodgkin | A quantitative description of membrane current and its application to conduction and excitation in nerve[END_REF]] in the Pospichil model [START_REF] Pospischil | Minimal hodgkin-huxley type models for dierent classes of cortical and thalamic neurons[END_REF] implementing 6 conductance-based currents. An injected current mimicking synaptic noise following an OrnsteinUhlenbeck process [START_REF] Destexhe | Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons[END_REF], Grassia et al., 2016] reproduces spontaneous activity by triggering action potentials on a random basis.

The computation core is clocked at 400 MHz that represents 80% of the maximum operating clocking frequency of the components used (URAM 500 MHz).

The hardware design also implements mixed data coding using both oating-point and xedpoint to provide a good balance between latency and resource-usage that directly correlates to performances.

This section presents the hardware design of the system that describe the calculation core implementing neurons and synapses to create a network. The Figure 3.2 shows the architecture of the calculation core running on the FPGA part that will be detailed in this section. 

Ion channels states

The ion channels states in the HH model correspond to the variable responsible for the activation and inactivation of the ion channel ruled by equations of the form of Equation 1.7 or Equation 1.8 previously introduced in chapter 1 (section 1.5.4). The ion channel states are sigmoid functions evolving between 0 and 1 and varying depending on the ion channels.

The arithmetical functions ruling the ion channel states usually involve division and exponential, two operations that does not suit well the FPGA architecture.

The approach previously used in the team relied on the use of a CORDIC (COordinate Rotation DIgital Computer) and tted equations to describe all ion channels states dynamics as hyperbolic tangents or hyperbolic cosinus [START_REF] Khoyratee | Optimized real-time biomimetic neural network on fpga for bio-hybridization[END_REF].

However, this approach shows limitations in terms of the equations that can be implemented so as it enforces to perform a tting of the equations and limits the dynamics that can be encoded.

Another approach explored in this system was the use of pre-computed tables stored in RAM to reduce the calculations of the ionic channel states as proposed in [Hines, 1984]. The calculation of the ion channel states based on a restated equation of the forward Euler solving then corresponds to a simpler equation that relies on two pre-computed tables stored in RAM that corresponds as equated in Equation 3.1.

x n+1 = r 1 (V n ) × x n + r 2 (V n ) (3.1)
where, x n+1 and x n are respectively the new and current value of the ionic channel states, V n is the membrane voltage at previous time step, r 1 and r 2 are the ion rate tables decoded from membrane voltage.

More concretely, this method applied to the Equation 1.7 and Equation 1.8 gives respectively the Equation 3.2 and Equation 3.3.

r 1 (V ) = 1 -dt × (α x (V ) + β x (V )) r 2 (V ) = dt × α x (V ) (3.2) r 1 (V ) = 1 - dt tau x (V ) r 2 (V ) = dt × x ∞ (V ) tau x (V ) (3.3)
where, r 1 and r 2 are the pre-computed rate table for ionic channel states decoded from the membrane voltage, dt the time step in ms, tau x (V ), x ∞ , α x and β x the equation of the ionic channel state depending on the formalism used.

The Equation 3.1 can be easily implemented on FPGA using DSP connected directly to memories, thus providing good performances in terms of latency, operating frequency and resources usage.

Nonetheless, this method introduces a balance between the implementation cost and accuracy through the size of the pre-computed RAM, larger RAM would provide better accuracy but consumes more memory. The Figure 3.3 demonstrates that principle by comparing the membrane potentials with and without the method for 4 types of neurons FS, RS, IB and LTS depending on 3 sizes of pre-computed RAMs. It points out that for some type of neurons that have fast dynamics like FS or RS neurons, small tables are sucient to obtain satisfying tting. On the other hand, slow dynamics like in LTS neuron require larger tables to t the original behavior.

Depending on the size of the tables, dierent memory types can be used. For 256-element table, the implementation in distributed RAM is the most suitable as it shows good performances for a little resource usage. The use of BRAM for small tables is not optimized and would constitute a waste of resources since the table would not be completely lled. An optimized use of the BRAM would be to have 1024 or 2048 points so as the RAM would be fully lled for BRAM 18Ki and 36Ki.

As the dynamics of the ion channels may vary greatly as for example in LTS where the Sodium current is signicantly stronger than the Calcium current, the data encoding required high accuracy. Thus, all ion channel states were encoded using single oating-point (32 bits).

Fixed-point coding would have required signals as large as 32 bits, thus representing the same memory footprint as single oating-point and relatively close implementation cost for multiplications and additions performed by DSP. The aim of providing a exible platform also pushed the use of oating-point that allow ner tuning of the parameters of the system without limitations in ranges imposed by xed-point representation.

The design of the module that perform the calculation of Equation 3.1 was designed using

Vitis HLS (see Figure 3.2) to develop in a faster way the implementation of oating-point coding that is less straightforward in VHDL with IP cores.

The previous values of the ion channel states were stored in BRAM to allow a good scaling in terms of number of neurons (1152 neurons per 36 Kib BRAM) and performances with DSP calculations.

The setup of the pre-computed memory by the software part of the system through AXI-Lite will be further detailed in the setup part in this section.

Single compartment neurons

The equation of the HH neuron model were slightly modied for the implementation on the FPGA to save resources and better takign advantage of the FPGA architecture. As equated in Equation 1.16 previously detailed in chapter 1 (section 1.5.4), the sum of the ion currents is multiplied by ∆t Cm . In order to save memory resources, all conductances were pre-multiplied by that coecient, thus saving the use of a memory to store C m for each neuron, a division and a multiplication by dt.

The parameters of the neuron model are summarized in the Table 3.1 as well as the preset values for FS, RS, IB and LTS neuron types. The parameters of the model for each neuron are stored in BRAMs so as each parameter is allocated 1 BRAM, thus allowing up to 1152 neurons per parameter. The setup of the parameters is done the software part through AXI-Lite and will be further detailed in another section.

The data encoding of the neuron computation block features both xed-point and single oating-point coding to obtain a good compromise between performances and accuracy.

The computations of ion currents are performed using single oating-point 32 bits as the operations are essentially multiplications with only one addition/subtraction eciently performed by DSP and some combinatory logic. The other currents that require less accuracy such as stimulation, noise and synapses are performed using xed-point coding (mostly 18 and 25 bits) as shown in Figure 3.2.

The addition using large xed-point signals can show better accuracy than oating-point and do show signicantly better performances in terms of implementation cost and latency.

Thus, the all currents are transcoded from single oating-point 32 bits to xed-point 32 bits, then summed to obtain the new membrane potential (see Figure 3.2). The membrane voltage is then transcoded back to oating-point to be stored in the RAM for previous state.

While most of the dynamics can be encoded using less resources with large xed-point coding (32 bits), the memory footprint is similar to single precision oating-point (32 bits).

Following the aim of exibility of the system, oating-point coding shown acceptable increase of latency and resources usage for the exibility gain brought to the system by oating-point coding.

Similarly to ion channels states, the computation of the ion currents computation were performed using Vitis HLS, thus providing an extensive gain of development time and genericity as a new current can be easily added to the module from C/C++ language. 
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The time step selected for the computation of the neuron was 2 -5 ms, as in [START_REF] Khoyratee | Optimized real-time biomimetic neural network on fpga for bio-hybridization[END_REF], to ensure a satisfying stability and accuracy for the system solving with Forward Euler solving. The Figure 3.4 shows the membrane potential corresponding to the implementation of FS, RS, IB and LTS neurons using the parameters of Table 3.1 and 2048-element ion channel states tables in response to a 10 ms stimulation.

The Figure 3.4 shows a good tting for each type of neuron in response of a short stimulation time. However, the LTS neuron can show less accurate tting for longer stimulation as highlighted by Figure 3.3 in the case of a 50 ms stimulation in software.

The computation latency of the calculation core for only neurons without synapses is of 96 clock cycles. At the current clock of 400 MHz and time step of 31.25 µs (2 -5 ms), the calculation core would allow the computation of at least 11,000 independent neurons.

The implementation of the neurons mainly uses DSP, LUT and BRAM. The detailed re-source utilization associated with the implementation of neurons in the computation core will be presented further. Threshold Spiking (LTS) neurons. Waveforms were captured using the on-board saving of the system. Emulation corresponds to the software emulation of the system through the Python scripts and implementation to the waveforms monitored on the system.

Multicompartmental neurons

The computation core emulating multicompartmental neurons in Bi÷muM presents a dierent architecture mostly explained by the use of a dierent solver. As presented in the chapter 1 section 1.6.3, the Crank-Nicholson solver is used thus equating the evolution of the membrane potential in a mainly tridiagonal system of equations.

As explained in [Hines, 1984], using matrix inversion to solve the system is a resourceintensive approach so as a wise numbering of the compartments would allow ecient solving using the Hines algorithm.

However, this algorithm was tailored for CPU architecture so as variant of the algorithm suiting better the GPU architecture are used [START_REF] Valero-Lara | Simulating the behavior of the human brain on gpus[END_REF]. This is notably the case of a GPU-based simulator Arbor developed by the Human Brain Project community [Akar et al., 2023].

The algorithm uses a parent node vector p so as the matrix can simply be stored using two vectors corresponding to the main diagonal D and upper diagonal U. Branching points are then reconstructed thanks to the parent node vector. The Algorithm 2 generates the main diagonal for i ← nseg -1 to 0 step -1 do 3: for s ← 0 to nseg -1 do 3:

f actor ← u[i]/d[i] 4: d[p[i]] ← d[p[i]] -f actor • u[i] 5: b[p[i]] ← b[p[i]] -f actor • b[i] 6: end for // Forward sweep 7: b[0] ← b[0]/d[0] 8: for i ← 1 to nseg step 1 do 9: b[i] ← b[i] -u[i] • b[p[i]] 10: b[i] ← b[i]/d[i]
d[s] ← d[s] -u[s] 4: if p[s] ̸ = -1 then 5: d[p[s]] ← d[p[s]] -u[s] 6: end if 7:
end for 8: end function

The updates of the computation core for the handling of multicompartmental neurons are summarized in Figure 3.5. While the main changes concern the computation core, other miscellaneous changes are required in the architecture to allow multicompartmental modeling.

As the solving algorithm of the matrix includes sequential divisions and multiplications, the stability of the solving requires high accuracy that is better translated by oating-point. Indeed, the coecients greatly vary with the geometrical dimensions of the neurons that may create larger order of magnitude delicate to handle with xed-point.

A compromise can be found in the design to either favor a scaling in neurons or segments.

The current implementation corresponds to a naive approach where each segment corresponds to a backward and forward cell that allow a better scaling in neurons as all neuron solving operate concurrently. However, the resource utilization will greatly limit the number of segments that can be implemented.

Another approach would rely on the use of only one backward cell and one forward cell shared between neurons using a FIFO that memorizes the operations to be computed in a queue. This approach would allow minimal resource utilization thus a good scaling in segments but might limit the number of neurons and segments because of the computation time. Indeed, as the latency of the backward and forward cell is not negligible, a bottleneck would be formed by the number of computations one cell can accept in the pipeline.

The best solution would be a compromise of these two approach by implementing a limited number of backward and forward cells shared between neurons. Hence, a balance between the resource utilization and performances can be found. The Figure 3.5 presents the architecture corresponding to the architecture described. Similarly to the computation core for single compartment neurons, a software emulation model in Python was developed to ease the FPGA development by providing an emulation of the hardware architecture to predict the implemented behavior. The Figure 3.6 presents a comparison with the NEURON software [START_REF] Carnevale | The NEURON book[END_REF] targeting the emulation of a motor neuron at early stage that will be further detailed in Chapter 4.

Calculate

In Figure 3.6, the soma of a motor neuron including only sodium, potassium and leak currents is modeled using 5 segments of identical length, diameter and properties. A stimulation current is inserted at 1 ms in the rst segment for 10 ms and propagated in the others segments of the section, thus validating model thanks to the propagation of the stimulation to adjacent segments. As the segments are of identical and relatively small length and properties, the signal propagated is identical and almost instantly propagated.

The dierences observed between the emulation and the NEURON software are explained by the dierence of solver that is CVODE for NEURON and Crank-Nicholson for the software emulation, but mostly by the hardware architecture constraints in terms of data coding and operations. Indeed, the hardware is operating on mixed xed-point / 32-bit oating-point operated on hardware by a FPGA instead of 64-bit oating-point on software with a CPU for NEURON.

In conclusion, the computation core for multicompartmental model features an architecture of higher complexity and resource utilization than the single compartment core. It also introduces a compromise in the architecture designed that could either favor the scaling in neurons or in segments. In this manuscript, the prototyped core designed is promoting the scaling in segments rather than neurons as the emphasized is put on the morphology of neurons so as the more compartments, the better. 

Synapses

The synapses implemented follows the Destexhe model [START_REF] Destexhe | Kinetic models of synaptic transmission: From ions to networks[END_REF]] that models four receptors AMPAR, NMDAR, GABA A R and GABA B R. Similarly to the ion channel states, the sigmoid functions in synapses such as T syn or B syn were pre-computed and stored in memory similarly to ion channel states. The calculation then corresponds to Equation 3.4 and Equation 3.5.

T syn (V pre ) = T max 1 + e -(Vpre-Vp) Kp = T rate (V pre ) (3.4)
where, T rate is the pre-computed memory decoded from the value of the previous membrane voltage V pre and K p (5 mV), V p (2 mV) and T max are constants.

B syn (V ) = 1

1 + e -0.062×V ×M g2+

3.57

= B rate (V pre ) (3.5)
where, B rate is the pre-computed memory decoded from the value of the previous membrane voltage V pre , M g2+ (1 to 2 mM) is a constant.

The synaptic conductances were computed in nS to allow calculation of variables in the same order of magnitude, then the current is multiplied at the end by a coecient p mul that for unit consistency of units. This coecient also allow to create a scaling factor of the network by assigning a stronger weights to synapses, hence corresponding to the inuence of more synapses and mimicking a larger network. The Figure 3.7 shows the architecture of the calculation core for the synapses. The calculations of the synaptic currents are essentially based on a sequential multiplication and additions that can eciently be performed by DSP, providing high operating frequency as well as limited resource usage.

AMPA p mul . I syn I syn FIFO

I syn NMDA GABAa T(V pre ) V post FIFO V mem FIFO V mem V pre
In order to eciently interface the DSP with the memory, the principle of virtual RAM was applied so as the weights were distributed over several RAMs to be interpreted dierently from their hardware structure.

The Figure 3.8 illustrates the basic calculation used in the synapse module as well as how it is implemented in hardware using URAM memory. The parameters of the synapses are shared by all the neurons so as are stored in registers setup by AXI-Lite, allowing to change the parameters of the dierent types of receptors of the network. The parameters of the synapses correspond to the Table 3.2 corresponding to the equations of the synapses from [START_REF] Destexhe | Kinetic models of synaptic transmission: From ions to networks[END_REF]].

Concept design

Table 3.2: Preset parameters of the synapses using Destexhe model from [START_REF] Destexhe | Kinetic models of synaptic transmission: From ions to networks[END_REF]] tunable from the Python scripts.

Parameter AMPAR NMDAR GABA A R GABA B R Unit g 0.35 0.3 0.25 1.0 nS E 0 0 -80 -95 mV α 1.1 × 10 6 7.2 × 10 6 5 × 10 6 - M -1 sec -1 β 190 6.6 180 - sec -1 K 1 - - - 9 × 10 4 M -1 sec -1 K 2 - - - 1.2 sec -1 K 3 - - - 180 sec -1 K 4 - - - 34 sec -1 K d - - - 100 µM 4 n - - - 4 1 TOWARD A FLEXIBLE REAL-TIME BIOMIMETIC SNN ON SOM K26
The Figure 3.9 shows a validation of the behavior of each synaptic receptor using the parameters presented in 3.2.

The excitatory synapses mimicked by AMPAR and NMDAR are tested by connecting a stimulated spiking neuron connected to non spiking neurons.

The inhibitory synapses mimicked by GABA A R and GABA B R are tested by connected together stimulated neurons so as the inhibitory synapses would prevent neurons from spiking.

The Figure 3. 

Setup

The hardware design setup for Bi÷muS and Bi÷muM corresponds to the hardware locked properties of the system and to the dynamic setup.

The hardware locked properties correspond to settings like the clock frequency, maximum memory sizes or PMOD ports. They are initialized from the VHDL package le to allow generic design and easier maintenance and update for future developers.

The dynamic setup corresponds to the articial model parameters, synaptic connections and monitoring parameters via AXI-Lite.

The AXI-Lite setup of RAMs is done using a loopback register the writing address is written back in another register. The variables are simply set up by latching the value of the AXI-Lite registers. Since the AXI-Lite is in a dierent clock domain, in most cases the parameters are set on dual-port RAMs with a write port with the same clock as the AXI-Lite. In other cases, parameters are synchronized in the other faster clock domain using double ip-ops.

The dynamic setup of the dierent parameters of the system is essential to the exibility of the system by allowing online tuning. The AXI-Lite protocol is the most suited for such task and allows setting multiple registers associated to parameters. It can be simply interface with the computation core through an AXI port and shows low resource utilization. It is also well suited for the instantiation of multiple cores by adding another AXI port and setup module.

Hardware: Monitoring

The hardware design responsible for the monitoring corresponds to the components and processes that allow the monitoring of the spikes and membrane potentials waveforms of the neurons. The monitoring can be handled through three dierent ways operating concurrently: AXI-Stream to DMA, SPI to the DAC on PMOD DA4 and SPI to the ESP32 processor on PMOD ESP32. This section details the hardware design that allows communication between the computation core and the dierent monitoring elements.

Spikes and waves via DMA

The spikes and membrane potential waveforms of the neurons can be monitored in PS using the DMA interfaced with the system using the AXI-Stream protocol and a FIFO in packet mode.

The stream of spikes and waves are stored in a FIFO in PL connected to a DMA for each stream (spikes and waves). A FIFO in packet mode starts transferring to the DMA only if its full or reached the programmable threshold. This allows to set dierent data collection interval for each stream by having a dynamic programmable threshold set by AXI-Lite.

As the data collection intervals for spikes and waves are largely dierent in most cases (tens or hundreds of milliseconds for spikes and tens of milliseconds or less for waves), two independents DMA were implemented instead of a Multichannel DMA (MCDMA) that would struggle switching streams.

The FIFO also implements independent clocking so as the data in the clock domain of the computation core can be moved to the clock domain of the AXI protocol used for the DMA.

Both spikes and waves are organized in frames starting with time stamp or time step followed by data in a stream using 32-bit signals.

Spikes frame. The spikes are compressed over a time stamp of 1 ms that is sent with each frame followed by the spike activity coded with 0 for no activity and 1 for spiking. The spiking activity of all neurons are sent in a frame. tstamp

N 0 → N 31 N 31 → N 63 N max-32 → N max
Waves frame. The membrane potential waveforms corresponds to the values at each time step for a given number of neurons. The maximum number of neuron selected is xed in hardware to 16 but could be increased to t specic needs for a slight increase of resources used. The frame is constituted of a time step index and the membrane potential of all selected neurons coded in 32-bit oating-point.

tstep

N 0 (sel 0) N 109 (sel 1) N 511 (sel 15)
The monitoring of spikes and waves are then running concurrently in hardware so as the data collection interval for both channels have no impact on each other at the hardware level.

As for the limits of the data collection interval, the lower bound is limited to 1 time step (waves)

or 1 time stamp (spikes) and the higher bound depends on the size of the FIFO. The bigger the FIFO, the higher the data collection interval.

The setup of the DMA interfaces like memory map width or stream width can also be tuned to maximize the performances. The current method uses a stream width of 32 bits that ts single oating-point coding and memory map width of 64 bits that suits better the PS handling.

Spikes via PMOD ESP32

The PMOD ESP32 features a radio with support for 802.11 b/g/n Wi and dual-mode Bluetooth as well as Tensilica Xtensa microprocessor, usually referred to as ESP32.

This main benets oered by this solution is exible approach for interconnection of the system that suit well in-vivo applications where cables are a concern, while maintaining a low latency and acceptable throughput. In addition, this constitutes a reusable element to build a reduced and minimal embedded version of the system targeting a smaller programmable logic only target to create an energy-ecient solution for embedded applications.

The stream of spikes is sent to the microcontroller using SPI protocol so as the implementation cost of this solution on the PL part is very low. Thus, using multiple PMOD to monitor multiple cores would come at a very low-cost for the PL design.

The microcontroller is programmed to execute two tasks running concurrently using FreeR-TOS so as a task constantly poll the SPI until it gets all the frame that is then passed to another tasks that is responsible for sending the frame through UDP Wi-Fi.

The PMOD is simply plugged on one of the PMOD header present on the KR260 board.

The PMOD is xed by hardware but can easily be modied by modifying the pins to obtain a dierent physical conguration of the system.

Waves via PMOD DA4

The PMOD DA4 features eight 12-bit channels allowing to output up to 8 membrane potentials that allows a quick real-time visualization of the waveforms. The ESP32 is a versatile microcontroller widely used for various applications like IoT, embedded systems and wireless communication projects thanks to its Wi-Fi and Bluetooth capabilities. The main benet of this solution is to propose a wireless.

The maximum operating clock frequency of the PMOD DA4 is 50 MHz thus requiring a dierent clock domain. The stream of membrane potentials is synchronized from the faster clock domain to this slower clock domain using extension and latch of the data for each channel. Each channel selects the neuron waveform to display by comparing the neuron index to the value of set by the AXI-Lite. The hardware design makes it so as the neuron select can be changed online and be eective as long as the AXI-Lite register value is updated.

Similarly to the PMOD ESP32, the PMOD is simply plugged on one of the PMOD header present on the KR260 board xed by hardware that can be easily modied by modifying the pins to obtain a dierent physical conguration of the system.

External stimulation

An external stimulation slot is available in hardware to trigger stimulation in each neuron for a given time interfaced with the read channel DMA also used for spikes monitoring. This allows ecient and versatile interconnection of the system with PL through the PS.

A stream of data containing the stimulation period for each neuron is sent to the PL using AXI-Stream protocol from the DMA. The stimulation period in multiple of the time step is then written in the BRAM that stores the stimulation counters if the value is not zero.

Thus, all neurons can be stimulated independently with an independent period of time for a very low resource consumption and almost and no impact on the computation core performances. The timing diagram below shows the fram structure with stimulation duration noted as stim dur.

stim dur N 0 (10) stim dur N 1 (5) stim dur N 2 (0) stim dur N max (1)

The stimulation duration for each neuron is stored in a BRAM that is read at each time step to detect if a stimulation is triggered in each neuron. Then, the stimulation duration is The software setup and control on the SOM are carried out by a C++ application operating in the user space of the Canonical Ubuntu 22.04 for Bi÷muS. Using C++ allows a good compromise between performances and level of abstraction that can operate either with an operating system or in bare-metal using the Vitis tool chain, promoting versatility of the application to operate in dierent modes or on dierent targets. Additionally, the low-level of C++ suits well the proximity with hardware implied by FPGA. This section presents the organization and main features of the C++ application that controls and set the network running in the PL part.

Structure and organization

The C++ application is operating in the user space of the Canonical Ubuntu 22.04 and uses the dma_proxy driver provided by AMD Xilinx to interact with the DMA s in PL. The application is responsible for the initialization, software and hardware conguration as well as monitoring.

It can be executed either remotely via SSH or directly on the Ubuntu Desktop. The Figure 3.11 summarizes the dierent functions of the application.

Software conguration. The software conguration is performed from the software conguration le tuned by user in the JSON format that can also be generated by the Python scripts.

It notably allows to enable the dierent monitoring channels as well as the main parameters of the application such as saving path or data collection intervals.

Hardware conguration. The hardware conguration uses the hardware conguration le generated by the Python scripts that contains all the parameters of the network. The hardware conguration set the parameters of the neurons, synapses, monitoring and ll the memory necessary for the network to operate. 

Software conguration

The software conguration is performed from the software conguration le in the JSON format that can be generated from the Python scripts or edited manually by the user. It participates in the exibility of the system by allowing the user to adapt the system to the application by tuning data collection intervals or the monitoring channels to forward it to another system.

The parameters include the path to the hardware conguration le, emulation time, the conguration of the dierent monitoring channels as well as the stimulation step settings.

The selection of the dierent neurons to monitor on the DAC and DMA are set from a vector specifying their index. The DAC monitoring can monitor up to 8 waveforms while the DMA can monitor up to 16 waveforms. The saving path of both the waves and spikes monitored by DMA can be set to allow local storage on either the SD card or on any external device connected to board like a SSD drive connected via USB. The dierent monitoring channels can be enabled or disabled to ooad the processors by allowing more CPU time to the other monitoring threads.

A stimulation step occurring once can also be setup to specifying its duration and delay.

The parameters are parsed from the JSON le using a header only library "JSON for Modern C++" by nlohmann to simplify compatibility. The parameters allowing the conguration of the application are listed in Table 3.3. The AXI-Lite communication is accessed using /dev/mem that allows to control the registers as an array starting at the memory address of the AXI-Lite through a virtual pointer. The xed-point and oating-point conversions are done using the custom functions.

Memories are initialized using the loopback register. The data, address and write enable are sequentially written. Then, the software waits for the loopback register to be equal to the address written to set the write enable low before moving on to the next address. This method is longer than a setup by AXI bursts but allows a simpler handling and resource utilization in hardware.

The hardware conguration also includes sourcing the seeds for the four noise generators in hardware to allow a good randomization of the noise in all runs.

Monitoring

The application handles the monitoring of spikes and waves using DMA and the external ZeroMQ is an open-source universal messaging library widely used and embedded system to build ecient communication between applications. It oers dierent messaging patterns, networking functions and supports various programming languages and is often used for highperformance, low-latency communication in real-time applications. The choice of this library serves the purpose of versatility and performances of this application by providing performances, various programming languages as well as standardized communication.

Local le saving. The local le saving of spikes and waves corresponds directly to the data transferred by the DMA stored as binary without treatment to limit CPU involvement. This method guaranties a xed latency independent of the network activity that suits better realtime behaviors. While saving les with large buers exhibits negligible latency compared to the time represented by the stored data, repeated writing of smaller buers shows lower performance. Thus, larger data collection intervals show better performance for le saving and also reduce CPU involvement by limiting the frequency of le writing. Spikes can also be decoded and stored in csv format but shows uctuating computation time depending on the network activity.

Ethernet forwarding. The Ethernet forwarding over ZeroMQ sends directly the data transferred by the DMA and can also operate with le saving. The communication pattern is PUSH/PULL that facilitates one-to-many distribution of messages so as the monitoring can be forwarded to many other systems.

External stimulation. The external stimulation also uses ZeroMQ to receive the stimulation frame in a PUSH/PULL pattern. It allows a standardized and easy interconnection with Bi÷-muS through the C++ application.

The performances of the monitoring can be improved by disabling local le saving or one of the threads to give more CPU time to the threads. Using the application remotely without the graphical interface of the desktop can allow more CPU time. A compromise can be found between the data collection interval and monitoring enabled so as multiple threads can operate concurrently eciently if the data collection interval is large enough.

Software: conguration and monitoring by Python scripts

The Python scripts developed allow conguration and monitoring of the system. Python is a

high-level open-source programming language known accessible and user-friendly that allows fast prototyping. Hence, it suits well the need for a exible and user-friendly way to congure and monitor the system.

The Python scripts include the conguration scripts that generate the conguration les and emulate the conguration and the monitoring scripts that allow visualization of spikes or waves and send external stimulation.

The scripts can be executed either directly on-board or on another target, but the emulation may be slow and resource-intensive so better suited for powerful computers.

This section presents the functions and features of the Python scripts generating the hardware conguration le and software conguration le used to congure the system as well as monitoring.

Conguration

The conguration of the system through the Python scripts include all the parameters of the HH model, synaptic weights and types, ion table rates as well as various elements of the system.

The scripts implement preset types for neurons (FS, RS, IB, LTS) and synapses (AMPAR, NMDAR, GABA A R, GABA B R) using the parameters of [Pospischil et al., 2008] and [Destexhe et al., 1998].

The scripts are organized in classes that include NeuronHH for the HH neurons, Synapses for the dierent synapses and HwCongFile that translates the conguration into the conguration le shown in Figure 3.13.

NeuronHH. The class NeuronHH set the parameters of the HH neuron model organized in types that are preset or can be created by the user. It includes the parameters of ion currents as well as generating the ion channel states tables from the functions and tune the size of the table. It also set other parameters such as the value of the stimulation current.

Synapses. The class Synapses set the parameters of the synapses model organized similarly to neurons. It includes the parameters of the synapses as well as other parameters such as pre-computed synaptic rates.

HwCongFile. The class HwCongFile converts the dierent parameters set by the user into the hardware conguration le that is used to set the system. This class is not intended to be modied by the user as it is linked with application.

The scripts can be executed either directly on-board or on another target. The Figure 3.13 

Emulation

Along with the conguration scripts, comes a class allowing the emulation of the conguration le generated to assess the behavior of the network beforehand as shown in Figure 3.13. It allows emulation of the network using the Forward Euler, solver, ion channel states pre-computed tables as well as xed-point coding.

SnnEmulator. The class SnnEmulator allows the emulation of the conguration le generated by running a simulation using the parameters from the le. It allows visualization of the internal variables of the simulation like ion channel states tables, currents or membrane potentials. It features dierent plotting types like raster or membrane potentials subplots to verify the behavior congured.

The emulation is based on commonly used libraries like the numpy library for calculation, Fxpmath library for xed-point coding and matplotlib for graphics to provide good performances while keeping the code accessible. Nonetheless, the emulation is not optimized so as the computation time is quite high for large network or long emulation times.

Monitoring

The monitoring scripts correspond to graphic user interfaces that allow to monitor spikes or waves using Qt library with Python. PyQt is a set of Python bindings for the Qt application framework enabling cross-platform Graphical User Interface (GUI) and applications using Python.

It provides easy integration of Python with the rich features of Qt, allowing interactive interfaces that can handle events. GUI development is notably fast to develop and show satisfying speed and responsiveness as Qt has an optimized underlying C++ architecture. An example of spike monitoring interface is shown in Figure 3.14. The monitoring interfaces are based on Qthread that creates and manages threads in a Qt application to perform tasks concurrently without blocking the main user interface thread. The dierent threads communicate with each other using pyqtsignal that can notify a thread and carry the data to the function connected to the signal. These classes allow facilitated handling of usually complex processes in C/C++ while maintaining correct performances, making it more accessible for users to add features to the interface.

Examples of features added to the monitoring interfaces will be presented in the next chapter that focuses on applications.

Performances

The system designed is operating on a small and cost-optimized target so that it is important to assess the eciency of the solution by analyzing the performances of the system in various aspects such as the resource utilization, power consumption and latency. These metrics will allow comparison with the existing system in literature, localize bottlenecks, nd optimizations and consider using a smaller target for an alternative version. This section presents the performances of Bi÷muS in terms of resource utilization, power consumption and latency.

Resource utilization

The resource utilization presented correspond to the implementation of BioemuS on the AMD Xilinx KR260 Robotic Starter Kit featuring 1,024 neurons with 6 conductance-based currents and a total of up to 2 20 conductance-based synapses for a time step of 31.25 µs. The resource utilization report associated with this implementation is shown in Figure 3 The part of the system that consumes the most resources corresponds to the synapse block.

The synapse block is the most challenging part of the system as it represents a signicant part of the computation and storage. To obtain the best performances in this critical part, it is required to provide sucient throughput that imply high parallelization of the computation and storage elements, thus highly impacting the resource utilization. As this implementation is fully connected, the resource consumption is then at a maximum.

The resource utilization footprint of neurons is corresponds mostly to the BRAM used for the parameters storage as well ion channel states memories. Using smaller ion channel states table could allow the implementation in LUTRAM, thus highly reducing the number of BRAM used.

The FF and LUT usage corresponds mostly to the logic implemented parts of oating-point calculation like additions and subtractions, pipeline registers and control. The higher resource utilization of the oating-point coding is compensated by the greater exibility brought to the system.

The resource utilization can vary depending on the size of the monitoring elements so as modifying the size of the monitoring FIFO or number of neurons to monitor can increase the resource utilization. Especially, the FIFO in packet mode for spikes and waves monitoring as well as DMA are using a quantity of BRAM depending on the size of the tranfers.

While most of the memory available is used, less than 50% of the computing capacity (Logic and DSP) of the board is used by the system (see Figure 3.15). As the design is implemented on an entry level target, the projection of the resource utilization on larger targets suggests the possibility to run several calculation cores in parallel (see Figure 3.16) as well as allowing faster emulation. An important element to consider is that the recent architecture such as Versal Adaptive SoC by AMD Xilinx shows signicantly better support for oating point calculation such as native support in DSP for most operations. Hence, the implementation of the system on such target is most likely to reduce considerably the resource utilization and optimize the performances.

Power

The power consumption is an important metric of the system for embedded systems, especially in our applications that are in the end aiming to be embedded in neuroprostheses or other electroceutic devices.

The overall system power consumption is 6.50W with 3.42W associated with the calculation core as shown in Figure 3.17. Considering only the calculation core that is running on PL part, Bi÷muS consumes 3.42 times more than SpiNNaker [START_REF] Painkras | Spinnaker: A 1-w 18-core system-on-chip for massively-parallel neural network simulation[END_REF] or BrainScaleS-2 [START_REF] Pehle | The brainscales-2 accelerated neuromorphic system with hybrid plasticity[END_REF] that run on ASIC.

While it is known that Application-Specic Integrated Circuit (ASIC) usually consumes less power that FPGA, it is more likely that our system consumes more power as the design prioritized exibility over power eciency. The power consumption could be optimized by updating the system with power eciency in mind. Adding control design disabling the BRAM or URAM when not used or accurate estimation of the monitoring size needed could reduce the power consumption, but it could also translate in more constraints on the routing that could aect the timing and resource utilization.

The development of a truly power-ecient system would rather rely on the choice of a smaller target and using a reduced version of the system prioritizing power consumption over exibility and performances. 

Latency

Latency is crucial information in real-time system. Applied to the computation core, the latency for the calculation of all the membrane potentials, the latency has to be inferior to the time step of 31.25 µs to maintain real-time behavior.

As for monitoring, it has to be kept as low as possible to obtain coherent interfacing with biology. Bi÷muS allows dierent monitoring solutions in order to cover many interfaces and compromises between throughput and latency to better suit the applications.

Local saving DMA. The on-board saving in le allows obtaining relatively low latency as the latency roughly corresponds to the DMA read and write operations through the dma_proxy driver.

The latency observed to save spikes in le using binary format is displayed in Figures 3.18A1,A2.

As for instance from Figures 3.18A2, in most cases the latency to save 100 ms of spikes is between 69 and 125 µs. The main drawback of this monitoring is that it enforces oine analysis.

Ethernet ZeroMQ. The monitoring using Ethernet over ZeroMQ shows a good compromise between throughput and latency. The latency of the Ethernet communication is low so as the average latency observed to send spikes through ZeroMQ (UDP) is evaluated to 240 µs for 100 ms of spiking activity based on ZeroMQ latency tests, thus showing a good ratio between the latency and the amount of data transferred.

The complete latency of this monitoring channel includes the uctuating latency read and write operations of the DMA using the dma_proxy driver.

The latency observed for the application to send the data over ZeroMQ is displayed in Figures 3.18B1,B2. From the chart presetend in Figure 3.18B2, the latency evaluated to send 10 ms of spikes is between 10 and 25.75 µs in most cases and between 18 and 43 µs for 100 ms of spikes.

Analog waves using DAC. The monitoring of analog waves using the DAC is the monitoring channel with the smallest latency as it purely hardware. The latency to update the value of all channels of the DAC is about 6 µs.

Nonetheless, the accuracy of this monitoring is limited as it is only 12-bits DAC and the throughput is quite low as it can only output 8 neurons.

Wi-Fi using ESP32. The monitoring Wi-Fi includes the latency of the SPI transfer to the microcontroller that is very low as the DMA of the microcontroller with a very light software layer and the latency of the Wi-Fi that is quite high. Indeed, the latency of the Wi-Fi protocol is known to be quite high and in the millisecond range. The main benet of this monitoring is the wireless nature that suits well embedded system, but that comes with the drawback of higher latency compared to the other solutions.

To put if briey, the monitoring latency is an essential element of the system as it monitors the computation core that operates real-time. The monitoring developed show compromises bases on the monitoring channel used.

TOWARD A FLEXIBLE REAL-TIME BIOMIMETIC SNN ON SOM K26

Summary

This section detailed the complete design of the system developed while supporting the choices made to build a exible real-time biomimetic SNN with accessible control and monitoring. It detailed the dierent hardware components responsible for computation of the articial neural network and its monitoring while explaining the main limits and strength of the design. It also introduced the software developed to control, setup and monitor the system through a C++ application that provide performances and exibility. Finally, it introduced the Python scripts developed to generate the conguration les as well as monitoring the system using Python in a user-friendly way. In conclusion, this chapter introduced the system designed as well as its strength and limits that will be exploited in the next section treating about the applications of Bi÷muS.

Introduction

Having meticulously introducing the basic knowledge in biology, presented the target used and detailed the architecture of the system, the applications enabled by the system as well as the results obtained can be demonstrated.

The Bi÷muS system enhances its potential from practical applications such as real-time emulation and biohybrid experiments as a tool for neuroscientists to study neurological disorders. The applications also showcase how the system integration promotes versatility and ease of use so as it is accessible among biologists. The prototype Bi÷muM also demonstrates its capacity to perform real-time emulation of multicompartment neurons.

This chapter demonstrates applications that use Bi÷muS as a real-time emulator of biomimetic networks to create a fast emulation setup for large biophysically detailed network. Then, it presents the biohybrid experiments conducted using the system that shows how dierent net- 

Real-time emulation of biophysically detailed neurons

To begin with, real-time emulation of independent neurons emphasizing biophysical detail will be presented. This section presents real-time emulation of biomimetic single compartment neurons capable of generating spontaneous activity using Bi÷muS as well as multicompartmental modeling of motor neuron using Bi÷muM.

Spontaneously spiking single compartment neurons

The spontaneous activity of neurons is an essential property of neural networks. This ability to generate action potentials without external stimuli is modeled in the system by the introduction of a current that mimics synaptic noise [START_REF] Destexhe | Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons[END_REF], Khoyratee et al., 2019]. By modifying the parameters of the equation ruling the synaptic noise, dierent level of spontaneous activity can be reproduced. As for instance, it allows to match the dynamics of biological culture of neurons to obtain a coherent model.

In the main version of Bi÷muS that emulates single compartment modeling in real-time, the activity of neurons can be monitored online through waveforms or spiking activity. The In Figure 4.2C, the membrane potential of the 16 neurons monitored using the DMA is presented, validating the independent noise generation as the independents neurons show dierent spiking activity while being modeled with the same parameters. This monitoring channel is the most reliable for the Waveforms as the membrane potential monitored is captured at each step on 32 bits.

Another possible monitoring of the membrane voltage that is less accurate is the DAC output as shown in Figure 4.2B. The DAC allows visualization of the membrane potential of neurons at the maximum sampling frequency of system (2 -5 ms, i.e. 32 kHz), but only in a 12-bit coding translated in a voltage between 0 and 2.5 V. Up to 8 neurons can be monitored per DAC PMOD, but only 4 are displayed in Figure 4.2C as the recording oscilloscope only featured 4 channels.

Multicompartmental motor neurons to study ALS

Amyotrophic Lateral Sclerosis (ALS) is a rapidly progressive neurodegenerative disease that targets motor neurons. It is one of the most common and devastating neurodegenerative disease.

In order to study the disease, one of our collaborating team developed models of motor neurons aected by ALS, specically motor neurons of SOD1 mice at embryonic state [START_REF] Branchereau | Depolarizing gaba/glycine synaptic events switch from excitation to inhibition during frequency increases[END_REF], Branchereau et al., 2019, Martin et al., 2020]. The models were developed with a high level of biological meaningfulness. The dynamics of the neurons were reproduced accurately thanks to a modeling based on patch clamp recording of each ion channels. Most notably, the model include a highly detailed modeling of the morphology of the neuron, thus enforcing the use of a multicompartmental modeling.

The models were developed using the NEURON software so as a real-time emulation of a network is less likely to be possible, hence prompting the development of Bi÷muM. Bi÷muM is a prototype version based on Bi÷muS developed in this work aiming to emulate multicompartmental neurons.

The model used for this application is the motor neuron at day E13 presented in [START_REF] Branchereau | Depolarizing gaba/glycine synaptic events switch from excitation to inhibition during frequency increases[END_REF] As the rst iteration of Bi÷muM is capable of emulating up to 64 segments, the model was reduced to a total of 64 segments while preserving the sections and their interconnections. The simplied model was compared to the original model in the NEURON software in response to a stimulation of 15 ms inserted in the soma to assess the coherence of the simplied model as shown in Figure 4.3C. While the simplied model is not capable of accurately reproducing the spatial morphology of the neuron, its accuracy remains satisfying in this application aiming to validate the prototype system Bi÷muM. Indeed, the membrane potential of the simplied model is closed to the original at two distant points being the soma, where the stimulation is inserted and at the end of the axon. This rst iteration of the Bi÷muM system shows promising results supported by the capability of emulating up to 16 neurons of 64 segments each parallelly in real-time where current solutions are showing much higher computation times. As for example, the software emulation of 1 second of the simplied model in NEURON takes an average 3.5 seconds for 1 neuron on an Intel i7-10875H. Nonetheless, as multicompartmental modeling is getting a growing interest in recent years, more and more GPU implementations of signicantly larger size and improved computation time are released [START_REF] Stimberg | Brian 2, an intuitive and ecient neural simulator[END_REF], Kobayashi et al., 2021, Zhang et al., 2023]. The Table 4.1 presents a brief comparison of the performances of the system to two implementation that represents well the order of magnitudes found in GPU and CPU implementations. The Table 4.1 clearly highlights the main drawbacks of the current prototype of the system that are the absence of synapses and the relatively low number of segments. However, as

Bi÷muM shares the same base as Bi÷muS, fully connected conductance-based synapses could be implemented while preserving the real-time operation of the computation core. As for the low number of neurons and segments, it could be largely increased by porting the system on a larger target with a more recent architecture like AMD Versal Adaptive SoCs that provide better oating-point support and larger resources available. Additionally, Versal architecture would allow to greatly improve the number of segments through faster clocking and optimized oating-operations, the main bottleneck of the system being the computation latency induced by the solver iterations equated in Equation 4.1.

max nb segments = dt × f clk lat load context + lat backward sweep + lat f orward sweep (4.1)
where, max nb segments is the maximum number of segments that can be implemented for one neuron, dt the time step, f clk the clock frequency, lat load context the latency to load the solver context, lat backward sweep and lat f orward sweep the latencies to compute one operation of the backward and forward sweep.

Nonetheless, the strength of the system relies on its real-time computation and versatile interaction as it shares the same integration as Bi÷muS. As for example, the waveform monitoring using the DAC would allow monitoring up to 8 membrane potentials in real-time. Furthermore, considering the aordable price of the target along with the performances obtained for an entry-level FPGA, the prototype version shows promising preliminary results. Finally, the most important point of the system is the real-time emulation that is a crucial requirement for the realization of electroceutic therapies, making of this system a novel tool to drive stimulation at a higher level of biological meaningfulness though the use of multicompartmental model.

Real-time emulation of complex neuronal structures

This section presents an application of the system to perform real-time emulation of complex network model representing three-dimensional tissue cultures that are derived from stem cells, human cerebral organoids, that are biological models of human brain. This application demonstrates an example of real-time emulation of a model to provide a tool enabling fast emulation to predict and investigate the behavior of biology.

As such cultures are known costly and time-consuming, having such a tool could help neuroscientists to better orientate their experiments based on simulations.

Interconnection of human cerebral organoids

As a biological model to study human brain and the interaction between the dierent regions of the brain, three structures of interconnected human cerebral organoids were designed.

Human cerebral organoids are widely used to study human brain by reproducing structures of certain brain area [START_REF] Kim | Human organoids: model systems for human biology and medicine[END_REF]. The cortical organoids were generating using the reported protocol [START_REF] Osaki | Advanced complexity and plasticity of neural activity in reciprocally connected human cerebral organoids[END_REF]. Briey, hiPSCs are dissociated then seeded into well plates until complete formation of the organoids thanks to induction of various media based on the culture time.

The three structures introduced by the model are single, assembloid (or fused) and connectoid that each promote dierent synaptic connections between the organoids so as the connectoid is aimed to show stronger activity than the assembloid. Single. The single physically separates the organoids to prevent connection between organoids.

It acts as a reference model showing activity of independents organoids.

Assembloid. The assembloid structure, or fused, places organoids close to each other thus favouring connection of neurons based on proximity [Pa³ca, 2019], so as connections are mostly formed at the interface between organoids.

Connectoid. The connectoid structure places organoids centimeters apart while constraining the interconnection to form an axon bundle connecting mostly neurons on the surface of the organoids [START_REF] Kirihara | A human induced pluripotent stem cell-derived tissue model of a cerebral tract connecting two cortical regions[END_REF], Kawada et al., 2017], thus creating the strongest connection amongst the three structures.

Articial modeling

In order to articially model the three structures, it is rst necessary to accurately model a cerebral organoid. Suitable types of neurons include FS and RS neurons that actually model cortical neurons. As for synapses, excitation and inhibition are both necessary to replicate the network activity. AMPAR and GABA A R are synaptic receptors found in cerebral organoids respectively responsible for fast excitation and fast inhibition.

The second step of the modeling concerns the reproduction of the dierent interconnection properties based on the spatial distribution of synaptic connections. In order to introduce a spatial dimension for the neurons in the network, neurons were assigned XY coordinates normally distributed. Then, the synaptic connections between neurons were generated based on probabilities following dierent functions based on the biological observations. The synaptic connection rules for the synaptic connections inside organoids are ruled by Equation 4.2 that favors connection to neurons close to each other normalized by the diameter of the organoid. The connections between organoids are ruled by Equation 4.3 for assembloid and by Equation 4.4 for connectoid. The former favors connection to neurons close to each other normalised by the maximum distance possible between neurons, while the connectoid rule is promoting connection based on the location of neuron in the organoid that promotes connection on the exterior ring. The parameters of the SNN were tuned to match the electrical activity in terms of mean ring, synchronicity and burst activity of each structure obtained from MEA recordings. This was performed by tuning the synaptic noise to obtain a similar spontaneous activity, then improved by modifying the weight of synapses, percentage of connection as well as the inhibition/excitation ratio.

p single = p max × (1 - d npre,npost r org ) (4.2) p assembloid = p max × (1 - d npre,npost d orgpre,orgpost + r orgpre + r orgpost ) (4.3) p connectoid = p max × 1 2 × ( d npre,orgpre r orgpre + d npost,orgpost r 

Real-time emulation

The three structures were emulated using 1,024 neurons distributed equally between the two organoids with a similar inhibitory/excitatory ratio to biology (20% inhibitory and 80% excitatory).

Inhibition is modeled using FS neurons connecting by GABA A R and excitation by RS neu- rons connecting by AMPAR. The synaptic noise was set to obtain spontaneous activity for neurons of about 1 Hz as observed in biological cultures [START_REF] Kirihara | A human induced pluripotent stem cell-derived tissue model of a cerebral tract connecting two cortical regions[END_REF]. The spiking activity of the network was captured using the on-board saving in le, then linking with the neuron types using the information of the conguration le.

The emulation of the three structures is shown in Figure 4.8 that shows the synaptic connection of the dierent structures as well as their spiking activity emulated by the system. The emulation time was set to 10 seconds to allow clearer visualization in gures but was emulated for larger periods as shown in the biohybrid experiments detailed in further sections. The benet of real-time emulation in this specic application corresponds to the time saved compared to software emulation that ran 30 minutes to emulate 5 seconds.

The emulations presented in Figure 4.8 shows the capability to reproduce from network bursts to burst synchronization between organoids in the assembloid and connectoid structures as shown in Figure 4.8.

The burst synchronization between the organoids is notably demonstrated by comparing the activity of the assembloid and connectoid with the single, where the burst of the organoids are not synchronized in single that does not implement synaptic connections between organoids.

The initial burst at the beginning of the emulation can be explained by identical initial parameters for the neurons and synapses that could be xed by adding a small uctuations in initial parameters when generating the conguration. Where the spiking activity of the two organoids in the single are dierent, the spiking activity of the connectoid and assembloid are much more similar thanks to stronger synaptic connection providing higher synchronicity. Most notably, the connectoid structure that shows the strongest synaptic connection demonstrates the higher synchronicity among the three structures.

The burst analysis presented in The strongest synchronization of the network is also demonstrated by the burst lengths presented in Figure 4.9D that shows longer bursts in assembloid and connectoid structures.

While the organoid modeling demonstrated in this section shows consistent results supported by the spike and burst analysis, the modeling could be improved by introducing more synaptic and neurons types. Additionally, the main drawback of this model is the poor modeling of the dynamics induced by the axon bundle of the connectoid that is responsible for a signicant delay not complementary described by the current model.

Mimic drug treatments

An example of complementary application designed using the organoid modeling is the emulation of drug treatments targeting synaptic receptors in the organoid. Two emulations were performed to reproduce a drug treatment by full antagonist of AMPAR (CNQX) and a treatment by full antagonist to GABA A R (Bicuculine) that deactivate the receptors targeted.

An organoid of similar structure as previously presented is modeled using 1,024 FS and RS neurons connecting with AMPAR and GABA A R is emulated for 60 seconds in Bi÷muS. The inhibition/excitation ratio is set to 20% inhibition and 80% excitation and synaptic connection inside the organoid is set to a maximum of 10%.

During emulation, a trigger is sent to Bi÷muS at 20 seconds to disable a given receptor thus mimicking the drug treatment by full antagonist and a second trigger is sent at 40 seconds to reactivate the receptor (see Figure 4.10). The trigger is sent using the same slot as the external stimulation (Ethernet via ZeroMQ) that has been modied to allow synaptic deactivation. The results of the emulation shown in Figure 4.10 demonstrate coherent results in both cases. In the case full antagonist to AMPAR introduction, the excitatory synaptic receptors are blocked so as the bursting activity is prevented and activity is desynchronized. For the full antagonist to GABA A R, the inhibitory synaptic receptors are blocked so as the network is con- tinuously spiking activity similarly to an epilepsy, a reaction often observed after introduction of bicuculine [START_REF] Meldrum | Cerebral blood ow and metabolic rate early and late in prolonged epileptic seizures induced in rats by bicuculline[END_REF]. studies through electroceutic therapy [START_REF] Panuccio | Progress in neuroengineering for brain repair: New challenges and open issues[END_REF], Semprini et al., 2018]. This section presents the setup, protocol and results of the open-loop in-vivo stimulation driven by the SNN of Bi÷muS performed. The Figure 4.11 illustrates the biohybrid conducted in collaboration with the research team from the University of Genoa and that has been published in [Di Florio et al., 2023].
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In-vivo stimulation 4.4.1 Electroceutical approach for post-stroke rehabilitation

As introduced in the rst chapter, neurological disorders are a great burden and especially stroke that represents one of the leading causes of long-term disability and death worldwide.

About 87% of stroke cases are ischemic strokes [Di Florio et al., 2023]. Ischemic strokes are caused by inadequate oxygen and nutrients to the brain tissue that causes rapid structural damage leading to sensorimotor and cognitive impairment.

Generally happening in the primary motor cortex, ischemic events induce a progressive loss of information transmission to the spinal cord, thus causing motor dysfunctions.

Hence, leakage in communication throughout sensorimotor regions (e.g. primary somatosensory cortex (S1)) is noticed to contribute to the severity of symptoms [START_REF] Carè | The impact of closed-loop intracortical stimulation on neural activity in brain-injured, anesthetized animals[END_REF].

Similarly to neurodegenerative diseases, treatments are limited. Physical therapy is a standard treatment to recover sensorimotor functions, however it often shows limited or incomplete ecacy to promote spared regions reorganization [START_REF] Chiappalone | Using robots to advance clinical translation in neurorehabilitation[END_REF].

Electroceutical therapy through open-loop and closed-loop electrical stimulation [START_REF] Averna | Dierential eects of open-and closed-loop intracortical microstimulation on ring patterns of neurons in distant cortical areas[END_REF] thus appears as a promising treatment, especially activity-dependent stimulation (ADS).

Activity-dependent stimulation consists in the detection of action potentials in a region to apply a stimulation in a dierent region following the principle of Hebbian plasticity [START_REF] Guggenmos | Restoration of function after brain damage using a neural prosthesis[END_REF], Jackson et al., 2006].

This biohybrid experiment constitutes a preliminary study of electroceutical therapy to restore sensory motor function in post-stroke rehabilitation, thus constituting a step toward neuromorphic-driven stimulation.

Intermediate version of Bi÷muS

The version of the system used in this section corresponds to a former version of Bi÷muS that explore a dierent system integration, architecture and target.

In this version, the target was the ZyboZ7-20 that features the Zynq architecture. Briey, the target still has a Zynq architecture that includes PS and PL parts, but with overall lower performances. Notably, no commercial Linux distribution supports this architecture so as only a less generic Linux provided by AMD Xilinx is available. The bare-metal approach is then used in this version of the system for faster development.

The main data communication protocol used in the system is the USB2.0 in Communication Class Device (CCD) with the board as the device and a computer as a host. It is implemented in the PS part of the ZyboZ7-20 in bare-metal using the sources provided by AMD Xilinx and using Python on the host computer.

Contrary to the current version that uses a conguration le, the conguration is directly set in the Python application and sent over USB for the C++ application on the target to set the SNN. The spikes were monitored by polling constantly AXI-Lite registers storing the states of all neurons.

Debug information that include status and errors is sent by the target using UART congured at 115,200 bauds.

The Figure 4.12 presents the global system architecture of this version of the system.

The hardware design is based on the work [START_REF] Khoyratee | Optimized real-time biomimetic neural network on fpga for bio-hybridization[END_REF]] so as independent neurons using exclusively xed point coding and tted equations for ionic channel states are used.

The parameters of the FS and RS neurons used are the identical to [START_REF] Khoyratee | Optimized real-time biomimetic neural network on fpga for bio-hybridization[END_REF].

Spikes were considered in hardware when the membrane potential of a neuron crossed 0 mV and generated a pulse on a 3.3V digital output of the PMODs.

Zybo Z7-20

Programmable logic (PL)

Processing system (PS) 
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Experimental setup and protocol

The animals employed were healthy adult Long-Evans rats. All the rats were treated with the SNN-based stimulation while they were deeply anesthetized. The experimental procedures were performed with the collaborating team in the Animal Facility of the Italian Institute of Technology (IIT), Genoa, Italy and were previously approved by the Italian Ministry of Health and Animal Care (Italy: authorization n. 509/2020-PR).

After a surgical procedure, sharp electrodes were inserted in the primary somatosensory area (S1) and rostral forelimb area (RFA) (see Figure 4.11). The MicroElectrode Array (MEA) inserted were NeuroNexus probes (A4x4-5 mm-100-125-703-A16). The detailed surgical procedure is detailed in [Di Florio et al., 2023].

The acquisition and stimulation from and to the MEA were performed through the INTAN RHS2116 head stage, a bidirectional electrophysiology interface system consisting of 16 or 32 stimulation/amplier channels connected to the electrodes. The headstage communicates using SPI protocol to communicate with the Intan Technologies RHS Stim/Recording controller, an FPGA-based electrophysiology data acquisition system (see Figure 4.11).

The spikes from neurons emulated by Bi÷muS are output as 0-3.3V pulses connected to the INTAN RHS recording/stimulation unit to trigger stimulation upon spike reception.

The spontaneous activity of the Fast Spiking (FS) and Regular Spiking (RS) neurons emulated are tuned to obtain slow and fast activities between 1 Hz and 10 Hz by tuning the parameters the synaptic noise. In this setup, the latency between spike detection and stimulation is less than a millisecond as the INTAN stimulation unit is FPGA based.

The stimulation electrode was chosen for the lower impedance found in channels in S1 based on impedance analysis. The stimulation applied by the headstage was a single biphasic pulse of 60 µA of 200 µs positive and 200 µs negative [START_REF] Averna | Dierential eects of open-and closed-loop intracortical microstimulation on ring patterns of neurons in distant cortical areas[END_REF].

The experimental protocol consisted of 20 minutes of pre-stimulation (PreS) recording, 60 minutes of stimulation via SNN-driven stimulation and 20 minutes of post-stimulation (PoS) recording. Extracellular signals were continuously sampled at 25 kHz on 16 bits and stored on the computer connected to the INTAN recording unit.

Results

The data were analyzed oine by the collaborating team using a custom Matlab script performing band-pass ltering as in [START_REF] Carè | The impact of closed-loop intracortical stimulation on neural activity in brain-injured, anesthetized animals[END_REF], followed by spike detection employing precision timing spike detection (PTSD) algorithm [START_REF] Maccione | A novel algorithm for precise identication of spikes in extracellularly recorded neuronal signals[END_REF]. Specically, the stimulation induced a signicant rise of the MFR from PreS to the PoS phase in both RFA (32.12 spikes/s for PreS against 40.49 spikes/s in PoS, *p < 9 × 10 -4 ) and S1 (44.09 spikes/s for PreS against 50.42 spikes/s for PoS, *p < 2 × 10 -2 ).

To conclude, this preliminary experience shown that stimulation pattern generated by means of the biomimetic SNN shows eciency to increase the ring activity of both RFA and S1 compared to the pre-stimulation condition.

Discussion

The results obtained are consistent with the previous ndings of the collaborating team that showed that the absence of stimulation does not aect the level of ring in both healthy and lesioned animals [START_REF] Carè | The impact of closed-loop intracortical stimulation on neural activity in brain-injured, anesthetized animals[END_REF], Averna et al., 2020] as well as the eectiveness of a closedloop stimulation (i.e. ADS) in increasing the level of ring.

These results support the hypothesis of the collaborating team, which suggests that a neural biomimetic pattern more eectively entrains the network in response to stereotyped stimulation, making the population tend to be more responsive to incoming electrical stimuli. This is in line with recent human studies [START_REF] Cottone | A new, high-ecacy, noninvasive transcranial electric stimulation tuned to local neurodynamics[END_REF].

Hence, the next step would to drive the stimulation from a complete network instead of a single stochastic neuron, constituting a step toward the realization of neuroprostheses and promoting the use of Bi÷muS as a tool to investigate stroke rehabilitation in an electroceutic approach by providing activity-dependent stimulation.

Closed-loop biohybrid spinal cord-brain interaction

Another application designed explores the real-time emulation of a smaller network targeting a smaller embedded target controlling a robot and its interaction with the living. The hardware implemented corresponds to a reduced version of Bi÷muS modeling a small network that reproduces a Central Pattern Generator (CPG), an essential network responsible for locomotion found in the spinal cord and characterized by alternating bursts [Marder andBucher, 2001, Brown, 1914]. This articial network is then interfaced with a biological neural network embodied by cerebral organoids in a closed-loop fashion to study the biohybrid interactions as a step toward neuroprostheses.

This section presents the articial modeling of the CPG and its implementation on a robot to mimic snake motion, the details of this dierent version of the system and nally shows a prototype experiment of biohybrid closed-loop.

Snake robot controlled by biomimetic Central Pattern Generators

Locomotion is one of the most basic abilities in animals that is known to be created by Central

Pattern Generator (CPG) activity as observed in swimming for salamanders [START_REF] Ijspeert | From swimming to walking with a salamander robot driven by a spinal cord model[END_REF] and lamprey [START_REF] Cohen | Modelling of intersegmental coordination in the lamprey central pattern generator for locomotion[END_REF]. The activity of CPGs is characterized by alternating bursts [Brown, 1914] that are capable of producing rhythmic patterned outputs without sensorial input.

In the realm of robotics, CPGs are generally made from simple neuron models [Amari, 1972] or simple oscillators [START_REF] Van Der | Lxxii. the heartbeat considered as a relaxation oscillation, and an electrical model of the heart[END_REF] that does not operate on biological timescale, thus constituting bio-inspired systems rather than biomimetic systems. In order to provide an articial CPG capable of reproducing biomimetic CPGs, the team developed a digital neuromorphic system using the Izhikevich model [START_REF] Blanchard | Snake robot controlled by biomimetic cpgs[END_REF]. The CPG were derived from the neural network controlling the heartbeat of leeches [START_REF] Hill | A model of a segmental oscillator in the leech heartbeat neuronal network[END_REF] and was tuned to obtain a delay between the CPGs to obtain a snake-alike motion on 8 CPGs distributed over 8 wagons thus having 1 neuron per motor. The robot acts as a visual control of the behavior to ease the identication of dysfunctions in the CPGs.

In this work, the existing Izhikevich model was replaced by a more biologically coherent that is the HH model and added Wi-Fi monitoring. The 

Alternative version of Bi÷muS

The alternative version of Bi÷muS presented in this application is based on a previous work of the team [START_REF] Khoyratee | Optimized real-time biomimetic neural network on fpga for bio-hybridization[END_REF]. This reduced version implements xed point coding for all operations and xed conguration of the network set directly in hardware (see Figure 4.15).

The equations of ion channel states are simplied and tted to be equated as operations that can be eciently implemented on FPGA [START_REF] Khoyratee | Optimized real-time biomimetic neural network on fpga for bio-hybridization[END_REF]. The pattern were switched using the trigger in input of the DMD Polygon1000 that moves to next pattern upon reception of a pulse. The pattern was projected on the left organoid.

Starting from the biological network, the spiking activity from left and right organoids stimulates the rst CPG of the snake robot.

MEA signals are recorded by the AlphaMED64 system and forwarded to an FPGA (Red-Pitaya STEMlab125-1) that performed digitalization and threshold based spike detection.

Spiking information is then sent through Wi-Fi to the snake robot. The CPG is congured on the snake robot [START_REF] Blanchard | Snake robot controlled by biomimetic cpgs[END_REF] to provide a stimulation based on the spike activity of the biological culture received via the Wi-Fi module (PMOD ESP32).

Sensory feedback is introduced through optogenetic stimulation of the left organoid triggered accordingly to the infrared sensors present in the front of the robot. The information of each sensor is mapped as a square area for each sensor as illustrated in Figure 4.16B.

The optogenetic stimulation is performed using a Digital Micromirror Device (DMD) and made possible by a genetic alteration of the organoids. The sequence of illumination patterns was designed using Polygon software provided by the manufacturer of the DMD.

On reception of the information of sensors, the RedPitaya selects the corresponding pattern on the DMD. The selection of the pattern is done using the trigger in input that allows to switch patterns from pulses (see Figure 4.16A). Hence, the appropriate number of pulses were sent based on IR sensor information to select the matching pattern.

The cortical organoids used in this experiment were cultivated using the procedure described in [START_REF] Kirihara | A human induced pluripotent stem cell-derived tissue model of a cerebral tract connecting two cortical regions[END_REF], Kawada et al., 2017].

The connected organoids were plated on MEA and infected with Channelrhodopsin-2 to allow optogenetic stimulation. More specically, 1 µl of AAV-CAG-hCHR2-tdTomato (Vector-Builder Inc.) was added to the culture media at day 60 experiment for optogenetic interventions as in [START_REF] Osaki | Advanced complexity and plasticity of neural activity in reciprocally connected human cerebral organoids[END_REF]. The infection rate was conrmed through imaging at day 100 as depicted in The activity of the organoids was recorded using the AlphaMED64 system and checked regularly to ensure that the cultures were still alive, active and shown spiking activity as presented at day 92 in Figure 4.17B. The experiment was performed at day 110.

The feasibility of the system was demonstrated qualitatively by running the system for 10 minutes and lming the behavior of the robot as well as visualizing the stimulation triggers of the DMD and spiking activity of the cultures.

Results

The Figure 4.18 presents shots extracted from the video of the experiment that shows an example of optogenetic stimulation.

As the robot gets closer to the obstacle, the IR sensor is set high and select the appropriate pattern to illuminate on the culture (Frames 2,3 in Figure 4.18). When the robot moves away, the sensors are low and the associated pattern is selected (Frames 4,5 in Figure 4.18). While the experiment certainly cannot prove that the robot dodges the obstacle, it can be conrmed that the spiking activity of the CPG is modied by the spiking activity of the culture. Indeed, the robot does not move following a straight line in a snake-like motion but rather moves in a disorganized way because of the spiking activity of the culture. In this setup, the latency between spike detection from the organoids and stimulation on the snake robot is between 5-10 ms and about the same from the CPG to the organoids that corresponds to Wi-Fi latency.

The power consumption as well as the resource utilization of this version are signicantly lower than for the main versions as shown in Figures 4.19A,B.

The dierence in power consumption is explained by the operating clock frequency, the resources used by the calculation core as well as the PS part in the case of the main version.

As for the resource utilization, the dierence is explained by the higher exibility and performances of the main version, especially the oating point coding and the fully connected exible synaptic connections.
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Discussion

Although promising, the experiment conducted shows multiple limitations as it was thought as a prototype. Indeed, it focuses more on the feasibility than on the reliability so as validations were kept to a minimum.

The next step would be to conduct complex validations of the system to estimate the reliability of the experiment and to design a protocol that would allow to assess the ecacy of the closed-loop.

Nonetheless, this complex experiment requires a considerable amount of preparation to cultivate the organoids as well as to prepare the setup. Additionally, cross-disciplinary skills are mandatory to ensure the good operation of the experiments as electronics and biology are deeply intricate. Moreover, the eects of the electrical stimulation on human cerebral organoids

is not yet completely identied [START_REF] Osaki | Advanced complexity and plasticity of neural activity in reciprocally connected human cerebral organoids[END_REF], thus requiring additional studies.

To conclude, this experiment constitutes a preliminary work toward the realization of neuroprostheses and points out the challenges it involves. While a signicant amount of points needs to be validated and claried, it has been demonstrated that biohybrid closed-loop interaction remains feasible.

4.6 Closed-loop biomimetic in-vitro stimulation on high resolution MEA

In line with the biohybrid experiments exploring hybridization in the context of the realization of neuroprostheses, this experiment shows integration with an existing biophysical acquisition system in a closed-loop fashion. Additionally, this application promotes the ease of integration of the system with existing solutions for biological interfacing as well as its versatility, here integrated with the new generation of High Density MicroElectrode Array (HD-MEA) [START_REF] Ballini | A 1024-channel cmos microelectrode array with 26,400 electrodes for recording and stimulation of electrogenic cells in vitro[END_REF]. This section introduces the purpose of the experiment, presents the experimental setup. Then, the results obtained are presented and discussed.

Toward biological intelligence using cortical connectoid

Cortical connectoids are neural circuit tissues made of cortical organoids connected together, focusing on the importance of connections between regions in the brain for brain function [Kirihara et al., 2019, Osaki and[START_REF] Osaki | [END_REF]. Connectoids are active and complex structures that respond to external stimuli.

They constitute the main focus of our collaborating team at the University of Tokyo that is aiming to build an ecient system for training neural tissue, and eventually to make neural tissue spontaneously possess higher-order functions similar to what could be called intelligence.

Therefore, the biohybrid closed-loop constitutes an interesting approach to study the interaction between articial and biological as well as explore new training system based on biomimetic and adaptive stimulation. As a biologically coherent model, the organoids emulated articially on Bi÷muS constitute a way to deliver biomimetic stimulation.

This would allow investigation of new training methods that could participate in the creation to biological intelligence, in this specic case here organoid intelligence, an emerging and promising eld [START_REF] Smirnova | Organoid intelligence (oi): the new frontier in biocomputing and intelligence-in-a-dish[END_REF].

More in line with the study of the neurological disorders, as cortical connectoids model the connection between regions of the brain, the interconnection with a biologically coherent articial neural network that could also mimic dierent region of the brain would allow predicting and studying the dierent interactions.

For instance, it would rely on the emulation a model of mid-brain organoid that interacts with a biological cortical organoid to compare to its activity to a completely biological model.

To go further, tuning the parameters of the articial organoid to mimic the activity of a neurodegenerative disease could help study its impact on healthy cultures. The other way around would allow to investigate the impact of a healthy articial organoid on an aected culture similarly to the adaptive simulation presented in the experiment of Section 4.4. Biological Neural Network (BNN) on HD-MEA Starting from the biological neural network, the cortical connectoid was generated using the previously reported protocol [START_REF] Osaki | Advanced complexity and plasticity of neural activity in reciprocally connected human cerebral organoids[END_REF] and plated on the HD-MEA Max-One chip of MaxWell Biosystems AG. at d60. This part corresponds to the left part of the 

Articial Neural Network (ANN) on Bi÷muS

This part corresponds to right part of Figure 4.20 that corresponds to the Articial Neural Network (ANN). A single 1,024-neuron organoid was emulated on Bi÷muS congured using the Python scripts presented in Section 4.3. Hence, the organoid is constituted of FS and RS neurons connecting with AMPAR and GABA a R. The inhibitory/excitatory ratio was set to 20/80 and the synaptic connection was set to 10 % to t biological activity. In order to reproduce coherent synaptic connection in a connectoid, only the neurons on the exterior ring of the organoid were receiving external stimulation. This was performed by adding a function that extracted the index of neurons that were located at normalized distance to the center larger than 0.85.

Spiking activity of Bi÷muS was forwarded to the computer controlling the HD-MEA system using the ZeroMQ spike monitoring channel over Ethernet. The stimulation of Bi÷muS neurons was triggered by the external stimulation port of Bi÷muS that uses ZeroMQ over Ethernet. The data collection interval for spikes was set to 100 ms to prioritize reliability over reactivity as lower data collection interval would represent higher loads on both the CPU of the system and the computer that have not been tested yet. The spiking of activity of Bi÷muS was recorded on-board in binary format with each bits corresponding to the spiking status of each neuron, thus ensuring a constant amount of data to store.

Interconnection between ANN and BNN

The bidirectional communication between Bi÷muS and the HD-MEA system is ensured by Python scripts running on a gateway computer that receive all data and control stimulation triggers. The spikes received from Bi÷muS on the host computer are analyzed to detect the presence of a burst in the 100 ms of activity sent. A burst is dened as more than 64 neurons spiking at least 15 times in the last 100 ms of activity received. Upon burst detection, a stimulation corresponding to one period of a 100 Hz sinus wave of amplitude 40 mV is sent to the HD-MEA using custom Python script designed from the scripts provided by the manufacturer.

Stimulation was chosen of an amplitude high enough to allow visualization of the stimulation on the MaxLab Live Software.

The spikes received from the HD-MEA triggered stimulation on Bi÷muS if at least 1 spike was detected on at least 2 channels in the last 100 ms of activity collected. The stimulation was sent through Ethernet over ZeroMQ to the external stimulation port of Bi÷muS to trigger a stimulation of 6.250 ms of 0.03 mA/cm 2 on the neurons on the exterior rings of the organoid to trigger a spike in stimulated neurons.

The Python script implemented a thread for each task of receiving spikes from HD-MEA, receiving spikes from Bi÷muS, sending stimulation to HD-MEA and sending stimulation to Bi÷muS. Hence, all the tasks could operate concurrently to obtain a consistent bidirectional communication.

Results

As a reference, the spontaneous activity of both networks were recorded the day before the experiment as displayed in While synchronization of the stimulation trigger with spiking activity was set manually for this experiment, it appears that the stimulation triggers and the respective spiking activities are more likely to be correlated according to the denition set in the experimental setup.

Regarding the stimulation trigger applied to HD-MEA (red triangles in Figure 4.24), all triggers are preceded by a network burst.

As for the stimulation triggers to the ANN on Bi÷muS (blue triangles in Figure 4.24) that are more numerous, the absence of stimulation triggers always correspond to a period of low activity of the BNN.

In this experiment, the activity of the BNN shows fewer bursts than the spontaneous activity recorded the day before (see Figure 4.22) because of an infection started to occur in the culture and reduced the Spontaneous activity.

This preliminary experiment validated the feasibility of a biohybrid closed-loop integrating the system developed. The spiking activity of the ANN was successfully modied by the stimulation driven by the activity of the BNN on the HD-MEA identied by the occurrence of network bursts. Reciprocally, a stimulation was successfully applied to the BNN depending on the activity of the ANN, conrmed by the appearance of stimulation artifacts after a stimulation trigger following a burst detection from the ANN. While the impact of the electrical stimulation on the BNN is not evaluated here, it is known to have an eect on the biological in-vitro cultures [START_REF] Levi | editorial: closed-loop systems for next-generation neuroprostheses[END_REF].

Discussion

While this preliminary experiment most certainly demonstrated the feasibility of an interaction between ANN and BNN, it only validates the concept and enforce the need to conduct further validations and characterization of the system, especially in terms of timing and stimulation eects. Nonetheless, it points out the benets and challenges of the interaction of Bi÷muS with the HD-MEA device.

It emphasized the benet of the user-dened model through customizable Python scripts to adapt to a specic application, showcased here by the association of XY coordinates to neurons to take advantage of the spatial resolution provided by the HD-MEA and add more coherence to the model. The spatial resolution of the HD-MEA also constitute a considerable benet in view of an interaction with articial multicompartment neurons.

The main challenges raised by this experiment with the MaxOne HD-MEA concern essentially the timing, characterization of the stimulation eect and handling of stimulation artifacts.

Indeed, a more reliable tracking and characterization of the latencies involved in the system are required to obtain a more reliable system. As both the HD-MEA through the gateway computer and the Bi÷muS are integrating non-real-time operating system, a uctuating latency is involved. Additionally, the communication and processing latencies are also to be considered as the MaxOne is specied to observe a latency around 100 ms to process data and detect spikes and the Bi÷muS monitoring shows limitation on the data collection interval of spikes.

Not to mention the manual synchronization that signicantly impact the reliability. A viable alternative to manual synchronization would rely on the use of the GPIO featured on the MaxOne chip that would allow capturing triggers along with the recorded data.

Another challenge lies in the processing of the data itself and more specically in the handling of stimulation artifact. In the experiment conducted, the stimulation artifacts were detected as spikes in the MaxLab software. To obtain a reliable closed-loop, it is essential that the detection of the spiking activity corresponds strictly to spikes and not to stimulation artifacts. Hence, the spike detection of the MaxLab software should be updated to ensure that the activity observed is coherent, not a trivial to perform online.

In line with the challenges associated with the stimulation, electrical stimulation is kwown to have an eect on the culture [START_REF] Levi | editorial: closed-loop systems for next-generation neuroprostheses[END_REF], but the actual ecacy of the electrical stimulation for training purposes on organoids remains to be further characterized. As of right now, the eect of electrical stimulation on organoid is not fully understood. Thus, electrical stimulation can not be identied with certainty as the best stimulation method to interact with organoids, thus pushing the consideration of others methods [START_REF] Smirnova | Organoid intelligence (oi): the new frontier in biocomputing and intelligence-in-a-dish[END_REF].

To conclude, this experiment presents preliminary results demonstrating the feasibility of a biohybrid closed-loop integrating the system developed and a new generation of standard biophysical interface that is the HD-MEA. This experiment notably showcases the potential of Bi÷muS to operate as a tool to study the impact of adaptive stimulation on a culture following the principles of electroceutics while highlighting its ability to adapt to a standard biophysical interface. In the end, this experiment also tackles essential challenges also found in the realization of neuroprostheses.

Summary

This section presented applications and experiments conducted with the system developed showcasing its potential for both real-time emulation and biohybrid experiments. It presented how the Bi÷muS is capable of emulating biophysically detailed models from single neurons to complex networks. It presented the dierent versions of the system developed tackling the intermediate and alternative versions as well as future improved versions with Bi÷muM.

Additionally, this section promotes the versatility of Bi÷muS to integrate biohybrid closed-loop experiments and shows promising preliminary results for its capacity to embody the role of a main component in an electroceutical device.

CONCLUSION

The central theme addressed in this thesis was the design of a real-time biohybrid system based on a Spiking Neural network for biomedical applications targeting neurological disorders studies through real-time emulation and hybridization. The real-time emulation of biophysically detailed models comes as a viable alternative to existing emulation software thanks to an accessible software acquaintance, aordable price, exibility and fast emulation. The hybridization served a signicant purpose by contributing to the development of neuroprostheses, primarily through its ability to integrate biohybrid closed-loop systems based on the electroceutic approach, thus enhancing the interaction between articial and biological neural networks.

This manuscript was structured into four chapters, sequentially presenting the biological and technological background, the methods employed to develop the system and concluding with the integration of the system into applications and biohybrid experiments.

The starting point corresponded to a basic introduction of the functions, roles and characteristics of the dierent cells involved in the nervous system. The exploration of essential elements such as neurons and synapses, along with an understanding of their properties, has contributed to provide a good understanding of neurological disorders, which were subsequently introduced. Starting from their growing societal impact, the eect of neurological disorders at human scale and the cellular level as well as their insucient management were detailed, emphasizing the need for ecient treatments. Alternative treatments introduced the electroceutical approach and neuroprostheses, emphasizing the signicance of models, notably in the form of biomimetic neural networks. The concept of modeling raises questions about coherence, that translate in numeric systems in a trade-o between detail level and implementation cost. With regard to the level of detail, it allowed for the introduction of various models, each characterized by its inherent complexity and biological meaningfulness. This notably promoted the multicompartmental model as the most suitable for biomimetic purposes, this latter allowing an accurate modeling of both the electrophysiological and the geometrical properties of the neuron.

Stepping into the realm of numeric systems, as enforced by the concept of articial modeling, an introduction to the numerical platform hosting the system was outlined. Following an overview of the technological context that supported the choice of a platform integrating a mixed architecture of CPU and FPGA, the main platform selected as well as its development methods were presented. Supplementary platforms used either in intermediate or alternative versions were also introduced. In line with the development of embedded systems, especially in the case of a exible, accessible, and versatile system, its interconnection justied the need for an introduction to communication protocols and interfaces that play a crucial role. From the overview of the selected platform, two main parts stood out promoting the strength and weaknesses embodied by the two parts of the platform that can be roughly summed up as software for the PS and hardware for the PL.

As the groundwork for both the biological and technological background was established, the methods leading to the development of the dierent versions of the system developed were presented. The methods were dividing into two main categories being hardware and software that tackled the development of the computation core, monitoring and conguration of the system. The architecture of the computation core was described by addressing the implementation of the ion channels using pre-computed tables stored in memory. Then, it mostly focused on the architecture of the single compartment neurons computation that implements a mixed xed-point and oating-point data coding to obtain a satisfying trade-o between resource utilization, performances and accuracy. An improved version of the computation core allowing the modeling of multicompartmental neurons was also presented along with optimization leads.

Afterwards, the critical part of the computation core embodied by synapses was detailed, thus

showing the approach adopted to obtain satisfying performances. Next, the software presented responsible for the monitoring and conguration of the system was introduced, supporting the choices made to obtain a compromise between exibility, accessibility and performances.

The structure of the performant monitoring, control and conguration performed by the C++ application as well as the operating system running on the platform is notably introduced.

Thereafter, the user-specic interfaces and scripts developed in Python were presented, promoting the accessibility of the system. Finally, the performances obtained were stated and compared to the others platforms, thus showing that the system developed shows promising performances. Most notably, the resource utilization is shown signicantly low when projected on larger boards and the latency on a consistent timescale for the online monitoring of articial neural networks.

With all the keys in hand, the full potential of the system was showcased through applications and biohybrid experiments, making a valuable contribution to the scientic community.

Starting from the real-time emulation of independent biophysically detailed neuron to complex neural networks, the system demonstrated its capacity and potential to emulate biomimetic From a boarder perspective, the thesis contributed to the exploration of the applications of FPGA and more specically to mixed architecture integrating FPGA. Certainly, similarly to GPU, FPGA are signicantly beneting from the technological advances, further enhanced by recent architectures such as the adaptive SoCs proposed by AMD Xilinx, which integrate substantially higher computational power. Hence, as showcased by this work, FPGA-based architectures constitute valuable asset for real-time embedded systems.

In line with the discussion of recent architectures, leads of improvements would rely on the migration of the system on a more recent architecture that allow ecient oating-point handling in hardware. More importantly, great improvements would include the optimization on the software side such as the utilization of the real-time processors concurrently to the main cores running the operating system. Moreover, the implementation of a customized operating system enabling preemptive capabilities would represent a signicant enhancement for the sys-tem. A key area for improvement lies in optimizing synapses with a more ecient memory architecture like HBM, which can alleviate the current system bottleneck.

In conclusion, this thesis represents a promising preliminary work aligned with our team's primary objective, which is to advance towards the development of neuroprostheses as an eective treatment for neurological disorders. Ultimately, it is my aspiration that this work will become a valuable contribution to the scientic community, encouraging further enhancements and advancements.
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 11 Figure1.1: Types of neurons found in the nervous system. The interneurons connect neurons together, the motor neurons connect to the muscle tissues and the sensory neurons convey the sensory information coming from body organs.
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 1 Figure 1.3 for the Na/K/ATPase pump).
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 1 Figure 1.4: Dierent phases of the action potential and its correlation with the state of ion channels. The neuron emerges from the resting state upon reception of a stimulus that allows crossing of the threshold, causing depolarization through the opening of the Na + pump. The closing of Na + and the opening of the K + cause repolarization until it reaches hyperpolarization (refractory period) that ends with the closing of K + pump.
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 15 Figure 1.5: Example of biohybrid closed-loop system. Biological Neural Network (BNN) and Articial Neural Network (ANN) are interfaced to allow bidirectional communication. The activity of the BNN is recording through electrodes later digitalized and processed to be fed to the ANN. A stimulation is generated from the activity of the ANN and sent as a current stimulation in the BNN through the stimulation electrodes. The activity of the BNN inuence the activity of the ANN, this latter inuencing back the BNN closing the loop.
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 16 Figure 1.6: Main categories of biological modeling showing in-vitro culturing in two and three dimensions as well as in-vivo modeling through animal studies.
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 17 Figure 1.7: Main techniques of calcium and voltage imaging in-vitro to capture neuronal activity categorized by invasiveness and main interaction techniques. For in-vivo experiments, calcium imaging is invasive and electrode array-based techniques are indirectly used via the sharp electrodes.
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 1 Figure 1.10: Single compartment modeling of a neuron. The neuron is represented as a cylinder in which membrane voltage is computed at one point in space. The membrane voltage
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 1 Figure 1.13: Electrical equivalent circuit of multicompartmental neuron model. The neuron is compartmentalized in cylinder of various length and diameters representing dierent elements of the neuron and their properties. I inj is the current injected.
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 1 Figure 1.14: Post-synaptic currents graph from [Destexhe et al., 1998]. The curves represent the best ts of detailed kinetic models to averaged biological postsynaptic current signals obtained from patch clamp recording. (A) AMPAR current (B) NMDA current (C) GABA A R (D) GABA B R.
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 1 Figure1.15: Spatial discretization of a section where a cable is approximated as a series of connected cylinders called segments. Virtual points are added at the extremities of the section to verify the no current leak condition.
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 1 Figure 1.16: Illustration of the tridiagonal systems of equations corresponding to the computation of the membrane potential in a section of a multicompartmental neuron.
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 1 Figure1.17: Illustration of mainly tridiagonal matrix with sparse coecients(Hines matrix) at branches points generated by the multicompartmental neuron structure.

  versatility and exibility thanks to its architecture and various interfaces all for an optimized cost. The compact size of the carrier boards also constitutes a considerable benet to include in a biohybrid experimental setup.In total the chip incorporates 6 cores with Quad-core Arm ® Cortex ® -A53 MPCore up to 1.5GHz and Dual-core Arm Cortex-R5F MPCore up to 533MHz. It also includes a graphics chipset with the Mali -400 MP2 up to 667MHz and on-SOM memory with 4 GB of DDR4 memory 16 GB of ash. The FPGA contains 256,000 system logic cells, 26.6 Mb of on-chip SRAM and 1,248 DSP slices. The development boards present various communication interfaces such as USB3.0, SATA 3.1, DisplayPort, Gigabit Ethernet as shown in Figure 2.1.
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 2 Figure 2.1: Selected development platforms and their main interfaces as well as alternative targets for lower consumption applications.
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 22 Figure 2.2: Evolution of Advanced Microcontroller Bus Architecture (AMBA) specications to meet the demands of processors and new technologies. The yellow rectangle shows the AXI4 standard used in the system.

  2.3.2 USB: The Universal Standard for Device IntegrationThe Universal Serial Bus (USB) protocol is a standard communication protocol enabling devices to connect and communicate with each other. USB is widely used for connecting peripherals such as mouses, keyboards, printers, etc. It is a standard yet exible protocol allowing communication with a wide range of devices through the use classes adapting to the size and functionalities of the device as shown in Figure2.4. In addition, it shows high transmission speed up to 10 Gb/s in its latest standards while also providing other features such as power supply or error detection. The USB interface have many connector types (type A, type B, micro, mini, ...) as well as cables. USB 2.0 and USB 3.0 are two dierent generations of USB specication oering dierent capabilities and improvements on performances such as throughput.
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 2 Figure 2.4: Structure of the Universal Serial Bus (USB) that shows the device classes as well as the host and device roles.
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 2 Figure 2.5: Open Systems Interconnection model (OSI model) is a conceptual model from the International Organization for Standardization (ISO).
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 2 Figure 2.6: Elements of a UART frame showing start, stop, parity (P) and data bits (D).
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 2 Figure 2.8: Peripheral MODule interface (PMOD) specications.

  FPGA like Digital Signal Processor (DSP) slices. The on-chip interconnect allows ecient communication between the PS and PL to allow data exchange the software and hardware components through various methods. It features various memory components including DDR4 memory controllers and on-chip memory as well as various cache levels. It also features various interfaces such as PCIe, USB, Ethernet, and various other standard I/O interfaces to connect with external devices and networks. This section aims to provide basic understanding of the dierent parts and components.
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 2 Figure 2.9: Architecture block diagram of the Zynq UltraScale MPSoC devices of EV variant adapted to create the SOM K26 that features quad application processor and GPU.
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 2 Figure 2.10: Block diagram of the Direct Memory Access (DMA) in Zynq UltraScale+ devices showing the three major blocks: common buer, arbiter and DMA engine channels.
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 2 Figure 2.11: Software development stack for bare metal, FreeRTOS and Linux on Zynq MPSoC architecture.

AMDFigure 2

 2 Figure 2.13: AMD Xilinx High Level Synthesis (HLS) tool chain diagram showing how C/C++ can be translated and simulated to Register Transfer Level (RTL) for FPGA design.
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 2 Figure 2.14: Main memory elements of Zynq UltraScale+ MPSoC PL architecture. Distributed RAM is combinatory logic implemented as synchronous RAM, BRAM are memory blocks of congurable width and URAM memory blocks of xed width. Kib stands for kibi bits (1K i = 2 10 = 1024)

  Figure 2.15: Basic DSP48E2 functionality and DSP tile interconnect in columns based from

Hodgkin-

  Figure 3.1: Block diagram of the global architecture of Bi÷muS. The nature of each part of the system (software or hardware design) is identied by red and pink symbols. The on-board conguration and monitoring are also available but not displayed on the gure.
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 3 Figure 3.2: Block diagram of the calculation core architecture for single compartment neurons (Bi÷muS). Green blocks and lines correspond to modules operating on xed-point coding and blue blocks and lines to oating-point.
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 33 Figure 3.3: Comparison of the balance between the size of the pre-computed RAM (16, 256 and 2048) and its accuracy on the emulation of FS, RS, IB and LTS neurons in response to a 50 ms stimulation step. The simulation was performed in software with for sole dierence the use of the pre-computed RAM.
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 34 Figure 3.4: Comparison of membrane voltage response in implementation to a 10 ms current injection for Fast Spiking (FS), Regular Spiking (RS), Intrinsic Bursting (IB) and Low-

D

  and the Algorithm 1 solves the matrix. The computation core for multicompartmental neurons thus requires to update the ion currents computation to output two separate coecients D and B. It also requires two computation blocks that perform the backward and forward sweep of the Algorithm 1.The coecients for each segment are then stored in one dual-port RAM (lower addresses is D and upper addresses are B ) with one BRAM per neuron. These BRAM act as buer memory for the operations of the forward and backward sweep by loading and storing the values of the segments at each iteration until the matrix is completely solved.Algorithm 1 Hines algorithm used in Arbor simulator 1: function solve(d, u, p, b, nseg) 

  Figure 3.5: Block diagram of the dierence for multicompartmental computation core. The ion currents are split into two coecients D and B. Dual-port buer RAM for D and B of each neuron loads and stores with the forward and backward sweep cells.
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 3 Figure 3.6: Software emulation of the hardware architecture for the soma of a motor neuron section in response to a 10 ms stimulation in the rst segment. (A) Software emulation of the hardware architecture for a section of 5 segments. (B) Comparison of the software emulation with similar emulation using NEURON software.
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 3 Figure 3.7: Block diagram of the synaptic current calculation module using xed point coding.The type of memory implemented is shown for blocks integrating FIFOs, ROM or rate tables.The p mul ROM corresponds to pre-multiplied coecients including a scale factor to mimic larger network through stronger synaptic current.

Figure 3 . 8 :

 38 Figure 3.8: Concept and implemented block diagrams of calculations and memory organization for the synaptic current calculations. (A) Concept design of the synaptic current calculation where a DSP is congured in multiply-accumulate mode and connected to a RAM storing the weights. (B) Hardware implementation of (A) using URAM to store the synaptic weights (C) Virtual design of synaptic weights RAM that shows how RAM are interpreted for calculations. (D) Hardware implementation of (C) that presents the actual hardware storage of the weights distributed in multiple URAM.

Figure 3

 3 Figure 3.9: Behavior of a network of 4 identical neurons where only the type of synapses changes. The network connectivity is a chaser: neurons are interconnected with a single synapse, from N0 to N1, N1 to N2 and N2 to N3. A factor is applied to synaptic weights in order to see an excitation or an inhibition despite having only one incoming synapse on each neuron. (A) Only N0 is stimulated: AMPAR shows a faster response of excitation than NMDAR, synaptic weight of N2 to N3 is too small resulting in a lack of excitation of N3 thus preventing spiking. (B) All 4 neurons are stimulated: GABA A R shows a faster response of inhibition than GABA B R.

Figure 3

 3 Figure 3.10: Block diagram of the external stimulation module in hardware. A stimulation trigger is applied to neurons for a stimulation duration given in number of time steps. The stimulation duration is set by stream received from DMA

Figure 3

 3 Figure 3.11: High-Level workow of the C++ application showing the main functions. Monitoring of spikes and waves as well as external stimulation are operating in threads.

Figure 3

 3 Figure 3.11 and Figure 3.12 summarizes the dierent monitoring options of the system.

Figure 3

 3 Figure 3.13: Overview of system setup from the conguration le generated by Python scripts ran either on-board or on another computer. The conguration le is then read by a C++ application running on Canonical Ubuntu operating system in the PS part to set up the SNN in PL part.

Figure 3 .

 3 Figure 3.14: Qt-based Graphical User Interface (GUI) developed for spikes or waves monitoring.

Figure 3

 3 Figure 3.17: Distributed power consumption for implementation on AMD Xilinx KR260 Robotic Starter Kit exported from Vivado 2022.2.

Figure 3

 3 Figure 3.18: Latency charts for spike monitoring for 100 data collections at dierent intervals. (A1,A2) On-board le saving latency for spikes coded in binary based on 100 samples at dierent data collection intervals represented sequentially and in Pareto charts. (B1,B2) Latency in application to send spikes with ZeroMQ over Ethernet for spikes coded in binary based on 100 samples at dierent data collection intervals represented sequentially and in Pareto charts. (C1,C2) Latency to send spikes over Wi-Fi between two ESP32 for spikes coded in binary based on 100 samples at dierent data collection intervals represented sequentially and in Pareto charts.

  work implementation from single neuron to larger network can interact with biology through various interfaces. Additionally, the alternative versions of the system showing dierent compromises in terms of energy and embedding considerations. The Figure4.1 illustrates the possible applications of the system.

Figure 4 . 1 :

 41 Figure 4.1: Overview of system applications. The real-time biomimetic SNN (Bi÷muS) implemented in hardware is monitored through the Qt-based GUI and setup by Python scripts ran either on-board or on another computer. The SNN is used either as a real-time emulator for biophysically realistic models or integrated in a biohybrid experiment setup. In a real-time emulation setup, it runs fast simulations of biophysically detailed models suited for large parameters sweeps. Integrated in a biohybrid experimental setup, it acts as a versatile biomimetic articial neural network easily interfaced with standard biological recording units.

Figure 4 .Figure 4

 44 Figure 4.2 shows an example of a conguration implementing 1,024 spontaneously spiking FS neurons.

  that implements 133 segments (or compartments) distributed in soma, axons and dendrites sections based on patch-clamp recordings. The morphology of the neuron generated from the NEURON model is presented in Figure 4.3A. The currents involved in the model are the potassium, sodium and leakage currents that show dierent conductances depending on the section. As for instance, only the active axon and the rest of the axon integrate sodium current. The Figure 4.3B recapitulates the morphology of the neuron and shows how the sections are connected.

Figure 4

 4 Figure 4.3: Simplication of the multicompartmental model of motor neuron at day E13 from [Branchereau et al., 2019] using NEURON software. (A) Morphology schematic of the motor neuron at day E13 showing. (B) Morphology of the neuron decomposed in sections of varying geometrical and electrical properties (length, diameter, ion and leakage currents). Sections are decomposed in fewer segments (or compartments) in the simplied modeling. (C) Comparison of the evolution of the membrane potential in response to a 15 ms stimulation pulse inserted in the soma. Membrane potentials are recorded in the soma and at the end of the axon.

Figure 4

 4 Figure 4.4: Comparison of membrane potentials in software emulation through the Python scripts and hardware implementation. Membrane potentials in implementation were recorded using the on-board le saving through DMA. (A) All 64 segments overlapped in both emulation using the Python scripts of Bi÷muM and implementation on KR260. (B) All 64 segments sorted by segment index for both emulation using the Python scripts of Bi÷muM and implementation on KR260.

Figure 4 . 5 :

 45 Figure 4.5: Distributed resource utilization of Bi÷muM for implementation on AMD Xilinx KR260 Robotic Starter Kit exported from Vivado 2023.1 for 16 neurons of 64 segments. HH coecients corresponds to the computation of the ion currents of the HH model and the storage of its parameters, Matrix solver to the solver computation paired with the context and buer memory and Monitoring to the DMAs and buer memories related.

  Figure 4.6: Illustration of the three interconnection structures of human cerebral organoids interconnections.

  p max is the maximum probability of connection, d is the distance, diam org the diameter of the organoid, r the radius, n pre and n post the pre-synaptic and post-synaptic neurons, org pre and org post the pre-synaptic and post-synaptic organoids and the distance calculated from the center of the organoids.The Figure4.7 presents heatmaps of the number of synaptic connections per number associated with their XY coordinates based on the average of 40 random distributions.

Figure 4 . 7 :

 47 Figure 4.7: Heatmap of the number of connection per neuron for the three structure of organoid interconnections. Single corresponds to the synaptic connection inside both organoids. Assembloid corresponds to a higher synaptic connection at the interface between the organoids. Connectoid favors synaptic connection on the exterior ring of the organoid. Heatmap are based on an average of 40 random generation of synapses for a given XY mapping.

Figure 4 . 8 :

 48 Figure 4.8: Three structures of cortical organoids modeled using FS and RS neurons connected with excitatory and inhibitory synaptic connection (AMPAR and GABA A R) based on biological culture observations and their spiking activity. Synaptic connections are promoted according to rules depending on the structure to reproduce, spatial placement of neurons and the ratio of inhibition/excitation connection observed. The spiking activity emulated corresponds to a 10% maximum probability for each neuron to connect to a neuron inside the organoid and 2% outside. Each organoid is composed of 512 neurons showing a ratio of 20% inhibition/excitatory neuron ratio.

Figure 4 . 9 :

 49 Figure 4.9: Spiking activity analysis of the single (S), assembloid (A) and connectoid (C) structures emulated with Bi÷muS for 5 minutes. The maximum synaptic connection probability inside the organoids is set to 10% and to 3% between the organoids. The organoids constituting the structures are abbreviated as O1 and O2. (A) Boxplot of the Mean Firing Rate (MFR) for each organoids in the three structures. (B) Boxplot of the InterSpike-Interval (ISI) for each organoids in the structures. (C) Histogram of the InterBurst-Interval (IBI) in the three structures. (D) Histogram of the burst length in the three structures.

Figure 4 .

 4 Figure 4.10: Emulation of drug treatment in a single organoid through AMPAR and GABA A R full antagonists from 20 seconds to 40 seconds.

4. 4

 4 Open-loop biomimetic in-vivo stimulation A simple case of interaction with the living is to perform a unidirectional stimulation, or open-loop stimulation, from the Articial Neural Network (ANN) to the Biological Neural Network (BNN). This open-loop stimulation was applied to rat brains as a neuromorphicbased open-loop set-up for neuroprosthetic applications targeting post-stroke rehabilitation

Figure 4

 4 Figure 4.11: In-vivo stimulation driven by Bi÷muS spiking activity as a model of post stroke rehabilitation via adaptive stimulation. The spiking activity of the SNN triggers stimulation in-vivo using the INTAN RHS2116 headstage. Electrode arrays were placed in the rostral forelimb area (RFA) and in the primary somatosensory area (S1) in the brain of adult rats.

Figure 4

 4 Figure 4.12: Architecture of the intermediate version of Bi÷muS using bare-metal C++ application to interact with the system and USB2.0 CDC as the data communication protocol.

Figure 4

 4 Figure 4.13: Eect of biomimetic open-loop stimulation in RFA and S1. The statistical analysis has been performed considering each channel singularly. (A1,B1): Raster plot of recorded activity in RFA and S1 during pre-stimulation phase. (A2,B2): Raster plot of recorded activity in RFA and S1 during the post-stimulation phase. (C, D): Comparison of the mean ring rate (MFR, spikes/s) between pre-and post-stimulation in RFA and S1 by animals. (E, F): Boxplot of the mean ring rate (MFR, spikes/s) by animals for RFA and S1 regions. The entire dataset has been analyzed with no discrimination among animals to obtain an overall understanding of the stimulation ecacy. Solid line *: p<5.10-2, Mann-Whitney U-test.

  Figure 4.14: Example of reduced version of Bi÷muS applied to a smaller target implementing Hodgkin-Huxley (HH) Central Pattern Generator (CPG)s. The small network is reproducingCentral Pattern Generator (CPG) network from[START_REF] Hill | A model of a segmental oscillator in the leech heartbeat neuronal network[END_REF] implemented to reproduce snake motion on a robot. CPGs are interconnected by excitatory synapses introducing delay and generate the locomotion. The spiking activity was recorded from the waves monitoring output by the DAC.

Figure 4 .

 4 Figure 4.16: Closed-loop biohybrid experiment integrating an embedded version of Bi÷muS. (A) Closed loop interaction between biological connected cortical organoids and articial CPG as a model of brain to spinal cord interaction. Spiking activity detected on the left and right organoids is forwarded through Wi-Fi to the rst neurons of the articial CPG implemented on the robot shown from [Blanchard et al., 2019]. Three Infrared (IR) sensors located at the front of the robot (purple, green and orange rectangles) trigger localized optogenetic stimulation on the left organoids using Digital Micromirror Device (DMD) based on the data transmitted by Wi-Fi. (B) Sequence of DMD patterns selected based on information of the infrared sensors.

  Figure 4.17A.

Figure 4 .

 4 Figure 4.17: Connected human cerebral organoids used in the closed-loop biohybrid experiment. (A) Band pass ltered electrical activity of left and right organoids on day 92 recording on MEA (low-cut 300 Hz, high-cut 3 kHz). (B) Raw electrical activity of left and right organoids on day 92 recording on MEA (low-cut 300 Hz, high-cut 3 kHz). (C) Connectoid organoids expression of ChR2 imaged at day 100. Infection and plating at day 60. Scale bar is 500 µm.

Figure 4 .

 4 Figure 4.18: Images extracted from the video of the biohybrid experiment conducted showing the trigger of the DMD stimulation based on IR sensors. The illumination of the corresponding pattern on the DMD is selected based on the information of the infrared sensors. The illuminated pattern is visualized on the interface provided by the software controlling the DMD. Only the rst wagon was used in this experiment to facilitate the movement as space was limited.

Figure 4 .

 4 Figure 4.19: Comparison of the resource utilization and power consumption between the main and alternative versions of Bi÷muS for the calculation core only. (A) Resource utilization projected on the target KR260. The calculation core includes the synapses that are hardware locked for the CPG and exible in the main version. (B) Power consumption on the respective targets. The power consumption of the ESP32 was estimated here as the peak consumption of 300 mW.

4. 6 . 2

 62 Experimental setup and protocolConnected organoids were plated on HD-MEA. Electrodes were congured to allow activity recording on left and right organoids while allowing stimulation of the right organoid. A single organoid was modeled using Bi÷muS on a network of 1,024 neurons and emulating for 180 seconds. Spiking activity of Bi÷muS was forwarded to the computer hosting the controlling the HD-MEA system using ZeroMQ over Ethernet and stimulation was sent using ZeroMQ on the external stimulation port of Bi÷muS. A Python script executed on that same computer sent stimulation to the HD-MEA upon receipt of a burst from Bi÷muS. The Figure4.20 illustrates the experimental setup described.

Figure 4 .

 4 Figure 4.20: Closed-loop interaction between connected organoids plated on High Density Mi-croElectrode Array (HD-MEA) system and single organoid emulated on Bi÷muS. The spiking activity detected in the left organoid of the connectoid in the last 100ms triggers stimulation on exterior neurons of the emulated single organoid on Bi÷muS. The bursting activity detected on Bi÷muS triggers stimulation on the right organoid of the connectoid. Detection and stimulation commands are carried out by Python scripts using. Stimulation on the SNN is performed using the external stimulation slot.

Figure 4 .

 4 Figure 4.20. The Figure 4.21A shows the connectoid on HD-MEA after 2 weeks in device (d84).

Figure 4 .

 4 Figure 4.21: Conguration of electrodes of the HD-MEA for closed-loop stimulation on cortical connectoid. (A) Connectoid organoids on MaxOne HD-MEA at day 84 in device. (B) Electrode conguration of the HD-MEA chip for the experiments showing the 1,024 recording channels including 32 stimulation channels. Electrodes conguration is based on an activity scan carried out with MaxLab Live Software. (C) Firing rate map of the connectoid showing higher activity in the left organoid one day before the experiment. (D) Spike amplitude map of the connectoid one day before the experiment.

  Figure 4.23B. Upon detection of a network burst from Bi÷muS, a stimulation is applied to the HD-MEA as highlighted by the red triangles as it is the case in Figure 4.23C, the red triangles representing here stimulation artifacts rather than spikes. The Figure 4.23D shows the case of a low spiking activity in both networks that does not lead to stimulation triggers.

Figure 4 .

 4 Figure 4.22: Spontaneous activity of the ANN and BNN one day before the experiment. (A) Spontaneous activity of the emulated single organoid emulated by Bi÷muS. Green dots represent excitatory neurons (RS) and orange dots the inhibitory neurons (FS). Burst occurs only at initialization due to identical initial values for the parameters of the neurons. (B) Spontaneous activity of the connectoid on HD-MEA chip one day before the experiment. Green dots correspond to the channels recording from the right organoid that receives the stimulation. Purple dots correspond to the activity of the left organoid that triggers stimulation to Bi÷muS based on spiking activity.

Figure 4 .

 4 Figure 4.23: Extracted shots from the screen recording of the experiment on the gateway computer showing the monitoring. Spike detected on electrodes of the HD-MEA are shown by red triangles in the MaxLab software. Blue arrows show the current time on the spike monitoring window. (A) Sending stimulation to Bi÷muS thanks spike detection threshold crossed on HD-MEA (top). (B) Stimulation applied to Bi÷muS leading to a network burst (bottom). (C) Detection of a network burst (top) and stimulation applied to the HD-MEA (top). (D) End of stimulation and low spiking activity unable to trigger stimulation.

Figure 4 .

 4 Figure 4.24: Raster plot of the spiking activity for the biological (bottom) and articial networks (top) for 180 seconds of closed-loop interaction. Bi÷muS stimulation triggers are shown by blue triangle and stimulation triggers to HD-MEA by red triangles. Bi÷muS is running for 180 seconds starting from 10 seconds and synchronize manually with HD-MEA activity based on the rst stimulation trigger ± 300 ms. The activity of Bi÷muS was recorded using on-board le saving and the activity of the HD-MEA from the MaxLab software.

  models. Especially, the preliminary version of the multicompartmental modeling in real-time on FPGA constitutes a promising contribution thanks to the ecient trade-o demonstrated between performances and resource utilization. Above all, the system best stood out when integrated in closed-loop and open-loop biohybrid experiments setup. It particularly demonstrated a great utility in the post-stroke rehabilitation through electroceutical therapy where it drove an adaptive stimulation that was capable of impacting the network activity. On a dierent level, it allowed the design of preliminary experiments demonstrating the feasibility of articial synapses through optogenetic, thus constituting a great contribution to the development of neuroprostheses. Lastly, but not insignicantly, it showcases a highly promising interconnection with recent biophysical interfaces to obtain a biohybrid closed-loop targeting large articial and biological neural networks, leading the way to greater investigation such as organoid intelligence.Although the results presented in this thesis are promising, they represent preliminary work based mostly on the feasibility of the solutions and bridging the "hardware" gap between hybridization. Indeed, unraveling the mechanisms of learning in biological neural networks remains a signicant challenge, requiring extensive investigation into communication with these networks, especially in the context of training in view of biological computing. Nonetheless, the ndings discussed in this manuscript are essential to the establishment of a bidirectional communication with biological neural network, a crucial step in the realization of neuroprostheses.
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	3.7

  inputs as well as motor output in patterns. The variability of neurons and the lack of repeatability of experiments have given rise to two major theories to explain the coding of patterns that either favors precise timing in the 'temporal coding' or the number of spikes, i.e. frequency in the 'rate coding'. The spatial distribution of the neuron activate in dierent regions is also considered to be part of the neural coding. Through neural coding, the brain transforms external stimuli into meaningful representations, enabling to process information and generate appropriate behavioral responses.

The nervous system encodes various 1 CAPTURING BIOLOGY IN FAITHFUL MODELS pattern from sensory

  Neurodegenerative diseases or neurological diseases induce a progressive degeneration leading to the death/impairment of neuronal cells. They aect the central nervous system as well as peripheral nervous system. Neurodegenerative diseases can be caused by various factors, including brain lesions, tumors, infections or hereditary dysfunction. Some of the most common

	1	CAPTURING BIOLOGY IN FAITHFUL MODELS
	1.3.1 Neurodegenerative diseases
	neurodegenerative diseases include Amyotrophic Lateral Sclerosis (ALS), Alzheimer's Disease
	(AD), Parkinson's Disease (PD) and Huntington's Disease (HD)

  Huxley model is shown in Figure1.8 where V m is the membrane potential, C m is the membrane capacitance, g N a and g K the conductance of voltage-dependent ion channels, E N a , E K and E Leak are the reversal potentials and g Leak a voltage independent conductance.

	1	CAPTURING BIOLOGY IN FAITHFUL MODELS
	HH model will be further detailed in Section 1.5.4
		As the HH model is based on high-dimensional nonlinear dierential equations, it is consid-
	ered as dicult to analyze with commons studies such as phase plane analysis, various model
	simplied models of HH were introduced. On the contrary, other widely used models of spiking
	neurons are based rather on a threshold and reset mechanism to produce action potentials.
			known as HH model. It was designed from experiments performed on the squid
	giant axon that involved three currents: sodium, potassium and leak current. It was demon-
	strated that the ionic permeability of the membrane was highly dependent on the membrane
	potential, thus leading to a mathematical model based on the voltage-dependent properties of
	the membrane to generate an action potential. The opening and closing of the ion channels are
	then translated as a variable conductance depending on the voltage. The schematic diagram
	Na + of the Hodgkin-g Na K + closed opened	g K	g Leak Extracellular	C m	V m
						E Na	E K	E Leak
				+	Extracellular
						Intracellular
		K +	Potassium	-	Intracellular
		Na +	Sodium		
	Figure 1.8: Electrical equivalent circuit of HH model representing Na + , K + ionic currents and
	leakage current as a basic neuron model.
		Hence, from the schematic shown in Figure 1.8, the evolution of the membrane potential is
	ruled by current owing across the membrane integrated by the membrane capacitance accord-
	ing to Equation 1.1:		
					C m	dV m dt	= -(I N a + I K + I Leak )	(1.1)

where, I N a is the sodium current, I K the potassium current, I Leak the leakage current. The

  Table 2.1.

	Development board Target	KR260/KV260 XCK26	ZyboZ7-20 XC7Z020	CMOD A7 XC7A35T
	Processor	4x ARM Cortex A53 2x ARM Cortex R5F	2x ARM Cortex A9	-
	System logic cell DSP slice On-chip memory (Mb) Fmax BRAM (MHz) Fmax URAM (MHz) Fmax DSP (MHz)	256,000 1,248 26.6 585 500 644	85,000 220 4.9 388.2 -464.25	33,280 90 1.8 200 -464.25

Table

2

.1: Comparison of the main characteristics of the selected targets. The maximum frequencies correspond to the maximum frequencies of components in the best case scenario from the datasheet. BRAM corresponds to the on-chip memory blocks.

  Serial Peripheral Interface (SPI) protocol is a serial communication protocol usually used to connect microcontrollers and peripherals. Just like the UART protocol, SPI is widely employed in a diverse range of applications including interfacing with microcontrollers. Elements of a SPI frame showing the dierent signals involved.

	SCK										
	CS										
	MISO	z	1	2	3	4	5	6	7	8	z
		z	1	2	3	4	5	6	7	8	z
	MOSI										
	Figure 2.7:										

Unlike UART, the SPI protocol is a synchronous serial communication that shares the clock signal between devices for synchronization. The SPI interface uses multiple lines for communication: Master Out Slave In (MOSI), Master In Slave Out (MISO), Serial Clock (SCK) and Chip Select (CS). The data is transferred bit by bit when the chip select signal (CS) is set low as depicted in Figure

2

.7.

SPI allows transfers at higher speed than UART and simultaneous communication with multiple devices. While it requires more wiring compared to UART, SPI is a protocol easily and eciently implementable on FPGA that comes at a low implementation cost.

  The on-chip memory in the PL part corresponds to 26.6 Mb of memory organized in block of RAM (BRAM 36 Kb and URAM 288 Kb). As this memory is accessed in hardware at the lowest level by the FPGA, it shows an extremely low latency of one or two clock cycles.

Table 2

 2 

.1). At the hardware level, memories intro- duce the notion of ports that gives read and/or write access to a memory address.

Distributed RAM. Distributed RAM corresponds to combinatory logic implemented as synchronous RAM. As it names suggests, its main feature its spatial distribution so as distributed RAM are sparse small memory blocks that take advantage of a high level of ports. Using LUTRAM, 32-bit or 64-bit single or dual ports RAM can be implemented, where function generators in SLICEM can implement 512-bit single-to quad-port distributed RAM or 64-bit octal-port distributed RAM (see Figure

2

.14). The main limits of distributed RAM are their size and extra consumption of resources in case of multiple clocking.

  capacity of 8 36 Kib-BRAM (see Figure2.14). The URAM is placed in the device to allow cascading URAM column for the entire height of the device, thus forming a signicantly large memory. While URAM provides signicantly large memories, they also show constraints such as xed width, single-clock only and the inability of le initialization.Others. Other components in the FPGA can be used to memorize data in smaller sized buer, this is notable the case of Look Up Table(LUT) or Flip-Flop (FF). FF (or registers) are synchronous elements allowing the storage of one bit available in a large quantity, allowing the use of multiple FF to memorize a data. FF are widely to buer signals in order to maximize the operating frequency of a system as well as synchronizing signal in a pipeline architecture.

	Distributed RAM	BRAM 36 18 9	URAM 72
	32-bit LUTRAM 64-bit LUTRAM	1024 2048		
	512-bit SLICEM	4096		
	Depth / Size			4096
	projected URAM			
	Width	36 Kib	18 Kib	288 Kib

Even if they are less numerous compared to distributed RAM, they feature a good spatial distribution all over the chip. URAM. Ultra RAM (URAM) is a single-clocked, two port memory available in UltraScale+ devices. URAM are large RAM usually available in a fewer quantity compared to BRAM but that shows a

Table 3

 3 

	.1: Parameters of the Hodgkin-Huxley model for the 4 preset types of neuron tunable
	from the Python scripts.				
	Parameter	FS	RS	IB	LTS	Unit
	g N a	0.05	0.05	0.05	0.05	S/cm 2
	g K	0.01	0.005	0.005	0.005	

Table 3 .

 3 3: Conguration parameters of the C++ application setup from the JSON congu-FLEXIBLE REAL-TIME BIOMIMETIC SNN ON SOM K26 monitoring properties. The setup is performed from the hardware conguration le generated by the Python scripts, then parsed by a custom parser.

	ration le.	
	Key	Description
	fpath_hwcong	Path to hardware conguration le
	emulation_time_s	Emulation time from 1 to 2 32 s by 1 s
	sel_nrn_vmem_dac	List of 8 neuron waveforms to select on DAC
	sel_nrn_vmem_dma	List of 16 neuron waveforms to select on DMA
	save_local_spikes	Enable/disable spike local saving
	save_local_vmem	Enable/disable waveform local saving
	save_path	Path to local saving le
	en_zmq_spikes	Enable/disable ZeroMQ spike sending
	en_zmq_vmem	Enable/disable ZeroMQ waveforms sending
	en_zmq_stim	Enable/disable ZeroMQ external stimulation
	en_WiFi_spikes	Enable/disable WiFi spike sending
	ip_zmq_spikes	IP address ZeroMQ spike sending
	ip_zmq_vmem	IP address ZeroMQ waveform sending
	ip_zmq_stim	IP address ZeroMQ external stimulation
	nb_tstamp_per_spk_transfer	Time stamps to wait for spike collection (x1 ms)
	nb_tstep_per_vmem_transfer	Time steps to wait for waveform collection (x31.25 µs)
	en_stim	Enable/Disable simulation step
	stim_delay_ms	Stimulation step delay in ms
	stim_duration_ms	Stimulation step duration in ms
	3.5.3 Hardware conguration	

The hardware conguration corresponds to the setup of the dierent properties of the network such as the HH neuron model, synaptic connections and weights, ion rate tables as well as the TOWARD A

  .15.
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	FF									
	LUT									
	0%	10%	20%	30%	40%	50%	60%	70%	80%	90% 100%
				Synapses	Neurons		Monitoring		
	Figure 3.15: Distributed resource utilization of Bi÷muS for implementation on AMD Xilinx
	KR260 Robotic Starter Kit exported from Vivado 2022.2.			

  Resources utilization of Bi÷muS. Utilization for main modules implemented on AMD Xilinx KR260 Robotic Starter Kit and projected on high-end evaluation boards from AMD Xilinx (Versal Premium Series VPK120 and VPK180 Evaluation Kits and Virtex Ultra-Scale+ VCU118 Evaluation Kit). Logic corresponds to LUT and Flip-Flops, memory to the total memory implemented as BRAM and URAM, DSP to the number of DSP slices.

	Logic									
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	Figure 3.16:									
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	.1: Comparison of some recent multicompartmental implementations of HH neurons
	on GPU and CPU.			
		Bi÷muM	[Kobayashi et al., 2021]	[Mäki-M et al., 2018]
	Architecture	FPGA	GPU	CPU
	Model	HH	HH	HH
	Neurons	16	3072	150
	Segments	64	674	80
	Synapses	/	780,404	∼2500
	Computation time (ratio)	1	9000 (1 s for 2.5 h)	828 (10 s for 2.3 h)
	Target	SOM K26	Tesla V100	1 core

Capturing biology in faithful models

Introducing the AMD Xilinx SOM K26

Applications and biohybrid experiments
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Abstract

The platform for this reduced version is the Digilent CMOD A7 that integrates a small target incorporating only programmable logic, i.e. FPGA. As the capacity of the FPGA is limited, the clocking frequency is reduced to 25 MHz and the number of neurons is set to 16.

The monitoring channels available in this version allow both spike and waves monitoring as shown in Figure 4.15. The waves are not necessarily used in this application presented, but they can be visualized using a DAC similarly to the main version. The spikes can be monitored either from the GPIO that controls the motors of the robot or through Wi-Fi via the PMOD ESP32. The visualization of the spiking activity over Wi-Fi is performed by Python scripts using Qt-based GUI running on a computer as shown in Figure 4.15.

CMOD A7

Programmable logic (PL) In this version, the power consumption of this system is signicantly lower as the target is smaller, operating at a lower frequency and with smaller processors as the ESP32 is designed to allow small power consumption.

To put if briey, this solution proposes a version suited for embedded applications where the energy eciency as well as physical constraints are a concern. The main drawback is notably the lack of exibility and the limited performances.

Experimental setup and protocol

As a preliminary experiment to the development of neuroprostheses, a biohybrid experiment in a closed-loop fashion was conducted to explore the interaction between an articial model of spinal cord embodied by the snake robot and human cerebral organoids as a brain model. In other words, it aims to mimic articially the interaction between the brain and spinal cord. This prototype experiment was conducted once as a proof of feasibility and in collaboration with the team from the University of Tokyo. The experimental setup is illustrated in Figure 4.16.
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