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RESUMÉ

La caractérisation et la modélisation des réseaux neuronaux biologiques ont émergé comme
un domaine permettant des avancées signi�catives dans notre compréhension des fonctions
cérébrales et des pathologies qui y sont liées.

À ce jour, les traitements pharmacologiques des troubles neurologiques restent limités, ce
qui pousse à explorer des approches alternatives prometteuses telles que l'électroceutique. Les
recherches récentes en bioélectronique et en ingénierie neuromorphique ont conduit à la con-
ception d'une nouvelle génération de neuroprothèses pour la réhabilitation du cerveau.

Toutefois, leur développement complet nécessite une compréhension et une expertise plus
approfondies de l'interaction biohybride. Ici, ce travail de thèse présente un nouveau réseau de
neurones biomimétique temps réel à la fois abordable, �exible et accessible pour la réalisation
d'expériences bio-hybrides et l'émulation en temps réel.

Ce réseau biomimétique permet d'étudier et de reproduire la dynamique de réseaux de neu-
rones détaillés sur le plan biophysique tout en promouvant une �exibilité et facilité d'utilisation.
Il démontre la faisabilité d'expériences biohybrides utilisant des interfaces biophysiques stan-
dards et diverses cellules biologiques, ainsi que l'émulation en temps réel de modèles complexes.
Le système mis au point permet de réaliser des expériences biohybrides ainsi que l'émulation
en temps réel de réseaux de neurones.

Le système développé constitue une étape essentielle vers le développement de neuropro-
thèses neuromorphiques pour les thérapies bioélectriques comme l'électroceutique. Elle permet
également la communication avec des réseaux de neurones biologiques sur une échelle de temps
similaire, facilitée par un système en temps réel embarqué, facile à utiliser et accessible. Le
dispositif en temps réel développé démontre son potentiel dans des applications pratiques et
expériences biohybrides.

Mots clés: SoC FPGA, Réseau de neurones, Bio-hybride, Maladies neurodégénératives,
Ingénieurie neuromorphique
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ABSTRACT

Characterization and modeling of biological neural networks has emerged as a �eld driving
signi�cant advancements in our understanding of brain function and related pathologies.

As of today, pharmacological treatments for neurological disorders remain limited, pushing
the exploration of promising alternative approaches such as electroceutics. Recent research in
bioelectronics and neuromorphic engineering have led to the design of the new generation of
neuroprostheses for brain repair.

However, its complete development requires deeper understanding and expertise in biohy-
brid interaction. Here, this thesis work shows a novel real-time, biomimetic, cost-e�ective and
user-friendly neural network for bio-hybrid experiments and real-time emulation.

This thesis work allows investigation and reproduction of biophysically detailed neural net-
work dynamics while promoting cost-e�ciency, �exibility and ease of use. It showcases the
feasibility of conducting biohybrid experiments using standard biophysical interfaces and vari-
ous biological cells as well as real-time emulation of complex models.

The system developed in this work is anticipated to be a step towards developing neuromorphic-
based neuroprostheses for bioelectrical therapeutics by enabling communication with biological
networks on a similar timescale, facilitated by an easy-to-use and accessible embedded real-time
system. The real-time device developed further enhances its potential for practical applications
in biohybrid experiments.

Keywords: SoC FPGA, Spiking Neural Network, Biohybrid, Neurodegenerative diseases,
Neuromorphic engineering
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GLOSSARY - Common

GLOSSARY - Common

AD Alzheimer's Disease.

Adex Adaptive Exponential Integrate and Fire.

AIS Axon Initial Segment.

ALS Amyotrophic Lateral Sclerosis.

ANN Arti�cial Neural Network.

BCI Brain Computer Interface.

BMI Brain Machine Interface.

BNN Biological Neural Network.

CPG Central Pattern Generator.

EIF Exponential Integrate and Fire.

FS Fast Spiking.

HD Huntington's Disease.

HD-MEA High Density MicroElectrode Array.

HH Hodgkin-Huxley.

IB Intrinsic Bursting.

IBI InterBurst-Interval.

IF Integrate-and-Fire.

iPSCs Induced Pluripotent Stem Cells.

ISI InterSpike-Interval.

IZ Izhikevich.

LIF Leaky Integrate-and-Fire.

LTS Low-Threshold Spiking.

MEA MicroElectrode Array.

MFR Mean Firing Rate.

NEA NanoElectrode Array.

OOC Organ-On-Chip.

Romain Beaubois Page 11



GLOSSARY - Common

PD Parkinson's Disease.

PSCs Pluripotent Stem Cells.

RS Regular Spiking.

SNN Spiking Neural Network.

STDP Spike Timing Dependent Plasticity.

STP Short-Term synaptic plasticity.
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GLOSSARY - Computer science

GLOSSARY - Computer science

AMBA Advanced Microcontroller Bus Architecture.

APU Application Processing Unit.

ASIC Application-Speci�c Integrated Circuit.

AXI Advanced eXtensible Interface.

BD Bu�er Descriptor.

CPU Central Processing Unit.

DAC Digital-to-Analog Converter.

DMA Direct Memory Access.

DMD Digital Micromirror Device.

DSP Digital Signal Processor.

EMIO Extended Multiplexed Input/Output.

FF Flip-Flop.

FPGA Field Programmable Gate Array.

FSBL First Stage BootLoader.

GEM Gigabit Ethernet MAC.

GIC Generic Interrupt Controller.

GPIO General Purpose Input/Output.

GPU Graphics Processing Unit.

GUI Graphical User Interface.

HLS High Level Synthesis.

IOP Input Output Peripheral.

IR Infrared.

LUT Look Up Table.

MIO Multiplexed Input/Output.

PL Programmable Logic.

PMOD Peripheral MODule interface.

PS Processing System.
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GLOSSARY - Computer science

RPU Real-Time Processing Unit.

RTL Register Transfer Level.

SGMII Serial Gigabit Media-Independent Interface.

SIMD Single-Instruction Multiple-Data.

SoC System on Chip.

SOM System-on-Module.

SPI Serial Peripheral Interface.

UART Universal Asynchronous Receiver/Transmitter.

USB Universal Serial Bus.

VHDL VHSIC Hardware Description Language.
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INTRODUCTION

Millions of people worldwide are a�ected by neurological disorders that strongly impair
their cognitive and/or motor functions [Organization et al., 2020]. An increasing number of
technologies and solutions are currently proposed for the treatments of these diseases, whereas
being limited to curbing the progress or managing symptoms in most cases [Chin and Vora,
2014, French et al., 2016].

Aside from medical treatment through chemical processes, arti�cial devices are developed to
improve the quality of life of individuals. To bring neuroprosthesis into realization, the behavior
of biological neurons as well as its connection and interaction with arti�cial neural networks
must be considered. To this end, investigation of the interaction of neuronal cell assemblies
is required to understand and reproduce a speci�c behavior driven by intrinsic spontaneous
activity. Additionally, long-term replacement of damaged brain areas with arti�cial devices
implies understanding of their neurophysiological behaviors.

In this context, new therapeutic approaches and technologies are needed both to promote
cell survival and regeneration of local circuits [Farina et al., 2021] and restore long distance
communication between disconnected brain regions and circuits [Bouton et al., 2016]. Thus,
characterization and modeling of biological neural networks [Panuccio et al., 2018, Semprini
et al., 2018] is crucial to develop a new generation of neuroprostheses that mimics biological
dynamics and provide adaptive stimulation at biological time scale based on the principle of
electroceutics [Famm et al., 2013, Reardon, 2014].

Thanks to the new neuromorphic platforms, performing bio-hybrid experiments is becom-
ing more and more relevant not only for the development of neuromorphic biomedical devices
[Famm et al., 2013, Reardon, 2014], but also to elucidate the mechanisms of information pro-
cessing in the nervous system. Recently, major progress has been made in the �eld of neuro-
prostheses [Panuccio et al., 2018, Semprini et al., 2018] so as neuromorphic devices are now
capable of receiving and processing input while locally or remotely delivering their output either
through electrical, chemical or optogenetic stimulation [Christensen et al., 2022].

However, real-time stimulation and processing of biological data using biomimetic Spiking
Neural Network (SNN) is still quite rare [Ambroise et al., 2013, Xu et al., 2018, Buccelli et al.,
2019, Mosbacher et al., 2020]. Furthermore, to improve temporal accuracy of the stimulation,
complex neuron model should be implemented in the SNN [Sharifshazileh et al., 2021].

To perform bi-directional bio-hybrid experiments and develop bioelectrical therapeutic so-
lutions for health care like electroceutic [Famm et al., 2013, Reardon, 2014, Di Florio et al.,
2023], real-time bio-physics interface and SNN processing are mandatory to ensure interaction
at biological time scale [Sharifshazileh et al., 2021, Corradi and Indiveri, 2015]. Most of cur-
rent solutions for biomimetic SNN simulations are software-based such as NEURON [Hines
and Carnevale, 2001], NEST [Gewaltig and Diesmann, 2007] or Brian2 [Stimberg et al., 2019]
tools and show signi�cantly high computation time, especially for complex neuron model with
synaptic plasticity. Hence, these latter are not suited for real-time emulation at millisecond
time step [Van Albada et al., 2018] contrary to hardware-based SNNs. Another bene�t of
hardware-based SNNs is the ability to perform massive parallel simulations to explore space
parameters of neuron models.

In the neuromorphic engineering research, SNNs are designed using two distinct approaches:
bioinspired or biomimetic. The former is widely used for applications such as computation and
arti�cial intelligence [Tavanaei et al., 2019] using accelerated time simulation of simple neuron
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model. The latter uses complex neuron model operating at biological timescale to simulate
neural network dynamics or/and performing bio-hybrid experiments.

Hardware-based SNNs are analog or digital. Analog SNN systems [Donati et al., 2019] show
lower power consumption than digital SNNs [Davidson and Furber, 2021]. In contrast, digital
SNNs are more �exible thus more suited for prototyping while showing overall quicker design
time hence constituting the best choice for preliminary experiments and design of new genera-
tion of neuroprosthetic. The prominent SNNs hardware platforms are Merolla [Merolla et al.,
2014], BrainScaleS-2 [Pehle et al., 2022], SpiNNaker [Painkras et al., 2013] and Loihi [Davies
et al., 2018]. While some of these systems present mobile versions like [Stradmann et al., 2022]
for BrainScaleS-2, they often are not suited for embedded applications.

This thesis focuses on the design of a real-time bio-hybrid platform capable of biomimetic
Spiking Neural Network emulation for the study of neurological disorders through real-time
emulation and hybridization. Bene�ting from a �exible, real-time and biomimetic architecture,
the system developed is intended to be used a tool for neuroscientists to predict and estimate
biophysically detailed models e�ciently through emulation. More importantly, this system is
intended easily integrate biohybrid closed-loop system to explore the electroceutic approach,
and hopefully contribute to the development of neuroprostheses.

The BioElectronics group, a�liated with the IMS Laboratory at CNRS UMR5218 and the
University of Bordeaux, primarily specializes in the �eld of analog neuromimetic integrated
circuits and hybrid neural-silicon systems. One of the key research areas revolves around the
creation of innovative instrumentation tools designed for the exploration of the central nervous
system through model emulation and hybridization. The group has been working on arti�cial
modeling and hybridization using analog circuits for more than 20 years [Le Masson et al.,
2002], then moved toward digital implementation for the past 10 years [Ambroise et al., 2013].
This thesis marks the third iteration of the group's research on the digital implementation of
neural networks on FPGA, building upon its latest work [Khoyratee et al., 2019].

Collaborations with other teams played a crucial role in the ful�llment of this work, es-
pecially for successfully conducting the biohybrid experiments. The primary collaboration
involved the Institute of Industrial Science (IIS) at The University of Tokyo in Japan, which
included a one-year stay at the Ikeuchi Lab, also a�liated with the LIMMS international re-
search unit operating jointly with France and Japan. The Ikeuchi Lab has been collaborating
with the team since 2017 and is specialized in the creation of functional neuronal circuits using
brain organoids generated from human iPS cells. Most notably, it developed a unique method to
create connectoids, which are neural circuit tissues made of brain organoids connected together,
allowing investigation of the interaction between distant regions of the brains. The second col-
laborator for this work was a team from the Istituto Italiano di Tecnologia (IIT) of Genoa in
Italy as part of the of the "NEUROHYSTIM: A NEUROHYbrid system to drive intracortical
microSTIMulation in neuronal networks in vivo" project. The Italian team has experience and
expertise in in-vivo experiments, neurostimulation and analysis of electrophysiological signals
[Bologna et al., 2010, Bonifazi et al., 2013, Buccelli et al., 2019].

In this thesis manuscript organized in four chapters, the context and elementary knowledge
required for a consistent understanding will be provided as well as the methods that led to
the design of a real-time biohybrid system called Bi÷muS. The capabilities of the real-time
biomimetic SNN Bi÷muS to emulate independent neurons and fully connected networks will
then be presented, showcasing a system integration promoting versatility and ease of use high-
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lights by biohyrid experiments. Intermediate and alternative versions of the system, preliminary
work, prototypes and ways of improvement will be shown.

The �rst chapter aims to introduce the context of the thesis and highlight its relation to
the problematic by introducing the notion of model and its importance in scienti�c studies.
Starting with a basic introduction to neurosciences, more speci�cally to the nervous system
morphology and the neurological disorders that can a�ect it, the use of a model will be justi-
�ed. After presenting the biological and arti�cial models along with their bene�ts and limits,
the implementation of arti�cial models on numerical systems will be detailed.

The second chapter dives in the computer science domain by introducing the platform se-
lected and its main characteristics. The technological context that supported the choice of the
platform will be presented, followed by a basic introduction to the essential communication
protocols and interfaces involved in the system. Then, a detailed explanation of the character-
istics and processes operating in the two main parts of the platform will be given.

The third chapter is dedicated to the development steps of a �exible real-time biomimetic
design on the platform previously presented. Firstly, the hardware architecture of the system
constituting the core of the real-time system will be described. Then, an explanation of the
di�erent software layers developed to interact with the hardware will be provided. Finally, the
performances of the system will be discussed.

The fourth chapter focuses on the applications and experiments conducted with the system
developed. To begin with, applications of the system a real-emulator targeting independents
neurons to large network models will be presented. Afterward, biohybrid experiments conducted
in international collaborations targeting various biological cultures will be showcased.
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1 CAPTURING BIOLOGY IN FAITHFUL MODELS

1.1 Introduction

Throughout history, Nature has been a major source of inspiration for solving the complex
human problems. Bio-inspired inventions, literally inventions that were thought and inspired
by nature, are all around us.

From the small things such as Velcro tape inspired by bur fruits hooks, to our greatest
achievements as train and planes designs inspired by birds beak and wings, the constantly
evolving and adapting nature always hinted us new solutions [Shu et al., 2011]. Needless to say
that one of its most mysterious creation that is human brain is no exception.

Human brain is estimated to show an enormous computation power of 1 exaFLOPS, a
comparable speci�cation to a supercomputer [Smirnova et al., 2023]. Its memory capacity is
estimated to 2.5 petabytes. Extremely high speci�cations powered by only about 20 W, making
of human brain one of the most powerful computation unit in the world [Smirnova et al., 2023].
Highly complex and still partly understood, its tremendous computation power and low energy
consumption inspired notably the now widely used arti�cial neural networks found in AI and
cryptocurrencies blockchains [Krogh, 2008].

Human brain and the nervous system are essential elements for communication and coordi-
nation in the human body through neurons and synapses. Hence, malfunction in these systems
signi�cantly impacts on body functions. Unfortunately, diseases that target the nervous system
and human brain are a�ecting millions of people worldwide [Organization et al., 2020] and show
limited treatments that only manage the symptoms and attempt to curb the progression. Thus,
it is essential to understand the mechanism governing human brain and nervous system [Chin
and Vora, 2014, French et al., 2016].

An important part of research relies on the use of models to predict and investigate processes,
biology is no exception. Biological models that reproduce biological processes have been widely
used to study human body. With the growth of computer power over the years, arti�cial models
that rely on computer simulations invested a large part of the studies.

This raises the question of faithfulness and utility of a model, in other words, how much a
model can be trusted and what are the important criteria characterizing a faithful model. This
section will elaborate that subject with the speci�c case of the modeling of human brain and
its nervous system.

The following chapter aims to introduce the context of the thesis and highlight its relation
to the problematic.

1.2 Nervous system morphology

The nervous system is an organ of the human being responsible for communication and coor-
dination between the di�erent regions of the body.

It is a complex structure that can be separated in two main parts: the central nervous
system constituted of the brain and spinal cord and the peripheral nervous system including
nerves that run throughout the whole body. The central nervous system allows reception,
processing and sending of sensory information. It is also in charge of voluntary functions such
as speaking, walking and breathing.

The peripheral nervous system, for its part, transmits the nervous impulsion generated by
the central nervous system to the muscles and organs. It is also in charge of forwarding sensory
information to the central nervous system.

It includes neurons that are cells specialized in electrical signal processing and from varying
shapes and electrochemical properties depending on its role [Cooper, 2011] as well as other cells
like glial cells. Three types of neurons are shown in Figure 1.1.
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motor neuron

muscle skin

interneuron

sensory neuron

Figure 1.1: Types of neurons found in the nervous system. The interneurons connect neurons
together, the motor neurons connect to the muscle tissues and the sensory neurons convey the
sensory information coming from body organs.

1.2.1 Neuron

Neurons are key elements of the communication in the nervous system by being responsible for
the transmission of the electrical impulsion to the body. This electrical impulsion is called an
action potential. Neurons are estimated to be about 120 billions in human brain [Herculano-
Houzel, 2009] distributed in about 101 billions in the cerebellum [Andersen et al., 1992] and 21
to 26 billions in cerebral cortex [Pelvig et al., 2008].

A neuron is composed of a cellular body (soma), axon and dendrites (see Figure 1.2).
Neurons average size is estimated to about 100 µm in diameter in humans [Cooper, 2011]. The
cellular body is the command center that produces the energy needed for nervous impulsion
transmission.

The axon is a long cable that propagates and regenerates the electrical impulsion (action
potential), while the dendrites are short branches allowing reception of impulsion from other
neurons and transmission of this impulsion towards the initial segment located on the axon.
The transmission between neurons is carried out by synapses that mainly connect axons to
dendrites and to the soma.

dendrites
soma

axon

Figure 1.2: Simpli�ed schematic of a neuron showing its main elements.

1.2.2 Soma

The soma (or cell body) of the neuron is the part where the DNA of the neuron is stored, and
the proteins required for its functioning produced. Depending on its position in the body, its
shape and size can vary. This is also one of the part of the cell where the neurotransmitters
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released upon reception of an action potential are received, constituting a unit for processing
neuronal information.

1.2.3 Dendrite

Dendrites are extensions organized in leaf-like structures connected to the soma that allow
reception of nervous impulsion from other neurons. The diameter is not constant as it decreases
from primary to secondary to tertiary dendrites. They have a similar behavior to antenna by
receiving and transmitting the electrical impulsion from the others neuron to the cellular body
of the neuron. The morphology of dendrites varies and is linked to mechanism of synaptic
plasticity [Forrest et al., 2018].

1.2.4 Axon

Axon is a thread-like extension of the neuron having a constant diameter that carries the action
potential. Usually, each neuron grows only one axon that extent over a large distance compared
to the soma [Kandel et al., 2000]. The electrical impulsion is then transmitted to other neurons
or muscles or organs.

In an analogy to electrical circuits, the axon can be seen as a cable. Similar to dendrites,
the morphology of the axon vary greatly in length from one another. However, all axons have
main regions including the axon hillock, the Axon Initial Segment (AIS) that is around 30 µm
long where the action potential originates and where voltage-dependent Na+ and K+ channels
are concentrated to generate the action potential. It also includes the rest of the axon, the axon
telodendria and the terminal part where synapses contain axon terminals going up in total to
up to 1 meter.

To enhance the e�ciency and speed of signal transmission, some axons are enveloped by
a protective sheath called myelin that is generated by oligodendrocytes in the central nervous
system and Schwann cells in the periphery. Myelin acts as an insulating layer, allowing electrical
impulses to propagate at signi�cantly higher speed in axons thanks to a saltatory conduction.

1.2.5 Plasma membrane

The plasma membrane is a thin layer that can be found in all cells that separates its interior
from the outside environment. It is responsible for the regulation of the exchanges between a cell
and its environment. Plasma membrane contains speci�c channels and transporters such as the
Na/K/ATPase pump notably enables neurons to generate and propagate ion currents through
ions channels that exchange ions between the extracellular and intracellular environments (see
Figure 1.3 for the Na/K/ATPase pump).

Intracellular

Extracellular

Potassium

Sodium
-

+

Na+

K+

Figure 1.3: Ion channels Na/K/ATPase pump on the membrane axon. Pumps exchange
ions between the extracellular and intracellular to propagate the action potential. The
Na/K/ATPase pump hydrolyzes an ATP molecule to allow 3 Na+ ions (blue) to exit and
2 K+ ions (purple) to enter. This pump exerts an electrogenic e�ect by keeping fewer Na+

in/out and more K+ in/out, constituting the basis of membrane potential maintenance.
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It is constituted of phospholipids, proteins and glycoproteins organized as a semi-permeable
barrier allowing proteins to enter the cell while blocking other substances.

1.2.6 Synapses

A synapse is a structure allowing connection between neurons. It connects the axon of a neu-
ron to either the dendrites, axon or soma of another neuron, muscles or organs depending on
the type of neuron. It permits transmission of the signal from a neuron to another cell, thus
enabling propagation of the signal in the whole body from neuron to its target. The neuron
sending its axon is called the presynaptic neuron while the neuron receiving the signal is called
postsynaptic neuron. Synapses can either be electrical or chemical based on the signal trans-
mission method.

In a chemical synapse, the electrical impulsion of the presynaptic neuron is converted into
the release of chemical called a neurotransmitter. The neurotransmitter binds to the speci�c
receptors found in the plasma membrane of the postsynaptic cell. Synaptic receptors create
signal transduction in the postsynaptic cell that can result in complex e�ects from inhibition
(GABAAR, GlyR, ...) to excitation (NMDAR, AMPAR, ...).

Electrical synapses use a structure called gap junctions that are connected channels capable
of passing electric current that induce a voltage change in the postsynaptic cell. While the
electrical synapse has less amplitude e�ects on the post synaptic cell, transmission is much
faster.

Another special feature of synapses is their plasticity that make a synapse more likely to
trigger another action potential faster upon spike reception. The synapse is then said to possess
a reinforcing weight. [Hebb, 2005] proposed a theory stating that "When an axon of cell A is
close enough to excite B and repeatedly or persistently, a growth process or metabolic change
occurs in one or both cells, so that the e�ectiveness of A, as the cell activating B, is enhanced".

1.2.7 Action potential

An action potential, or spike corresponds to an abrupt change of the membrane potential when
the membrane potential of the neuron rapidly rises above 0 mV (change of membrane polarity)
and falls, thus allowing the electrical message to propagate along the axon. The propagation
is performed through a potential di�erence between the extra and intracellular environments
generated by ion channels that exchange Na+ and K+ ions between the environments then
creating a potential di�erence as shown in Figure 1.3. The generation of an action potential
shows 4 states: resting, depolarization, repolarization and refractory period (see Figure 1.4).

Resting state. The resting state is characterized by a constant resting potential explained by
a disparate distribution of charges and ionic species between the extracellular and intracellular
media. The intracellular medium has an excess of K+ ions and de�cit in Na+ ions, compared
to the extracellular medium (see Figure 1.3,1.4). This state is maintained in the absence of
stimulation of the cell. The value of the potential depends on the neuron family but often
corresponds to around -70 mV. It is explained by an equilibrium point between the equilibrium
potential of Na+ ions (∼ 55 mV) and the equilibrium potential of K+ ions (∼ -75 mV). These
two ionic species being the key players in the generation of action potentials that is closely
dependent on the Na/K ATPase pump.
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Figure 1.4: Di�erent phases of the action potential and its correlation with the state of ion
channels. The neuron emerges from the resting state upon reception of a stimulus that allows
crossing of the threshold, causing depolarization through the opening of the Na+ pump. The
closing of Na+ and the opening of the K+ cause repolarization until it reaches hyperpolarization
(refractory period) that ends with the closing of K+ pump.

Depolarization. Upon stimulation, the membrane potential of the neuron will rise. If the
stimulation stimulates the neuron enough for the membrane potential to cross the threshold of
around -45 mV, the depolarization phase starts. As neurons work on an all-or-nothing logic, the
neuron will return to its resting state if the threshold was not reached (see Figure 1.4). During
depolarization, the Na+ ion channels will open wider along with the rise of the potential, thus
highly positively polarize the intracellular thanks to the entrance of Na+ ions. The rise will stop
before reaching its equilibrium potential of around 55 mV as voltage-dependent K+ channels
open.

Repolarization. The repolarization of the membrane is explained by the opening of the
K+ ion channels that repolarizes the membrane by exchanging ions with the extracellular. The
membrane potential will then tend to the equilibrium potential of K+ (∼ -75 mV). The absolute
refractory period is due to the inactivation of voltage-dependent Na+ channels. The relative
refractory period is linked to excess hyperpolarization of the membrane potential after an action
potential, as the membrane voltage tends towards the equilibrium potential of potassium ions.

Refractory period. Once the membrane potential passed below the resting potential the
refractory period starts. The opening of the K+ ion channels hyperpolarizes the membrane
before spontaneously closing. Excess ions are evacuated, thus allowing the potential to slowly
recover to the resting potential. The hyperpolarization of the membrane prevents the neuron
from �ring during the refractory period hence preventing backward propagation along the axon
and limiting the �ring frequency of the neuron.

1.2.8 Neural coding

Neural coding is a fundamental concept in neurosciences that refers to the processes of commu-
nication happening in brain based on action potentials. The nervous system encodes various
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pattern from sensory inputs as well as motor output in patterns. The variability of neurons
and the lack of repeatability of experiments have given rise to two major theories to explain
the coding of patterns that either favors precise timing in the 'temporal coding' or the number
of spikes, i.e. frequency in the 'rate coding'. The spatial distribution of the neuron activate in
di�erent regions is also considered to be part of the neural coding. Through neural coding, the
brain transforms external stimuli into meaningful representations, enabling to process informa-
tion and generate appropriate behavioral responses.

Temporal coding. The concept of temporal coding that associate a concept of precise timing
to spikes so that the timing at which the action potential occurs is important. It is supported
by works like [Abeles et al., 1993, Thorpe et al., 1996, Abeles and Gat, 2001]. These studies
claimed that the behavior of neurons in the visual cortex rely on precise spike timings. While
the variability of neurons and the lack of experiment repeatability question this concept based
on the timing of action potentials, many phenomena are based on temporal coding.

Rate coding. The concept of rate coding that explains the neural coding in quantity of spikes
emerged from [Adrian, 1926] that performed experiments on the nerve receptors of frogs. It
was observed that the spiking frequency was increasing along with the pressure applied on the
muscle, highlighting that the stimulus has an important e�ect on the frequency of the action
potentials. [Brette, 2015a] describes the concept of "rate" in neural coding as an abstract math-
ematical construct of calculations over an in�nite number of spikes for an averaged quantity
de�ned by the timing of spikes.

These two theories raise the question of what is the most important characteristic of the
action potential occurence in view of a communication with the living. Is the accurate repro-
duction of the biological shape of the action potential, guarantying a precise timing, the most
important characteristic to capture? Or would a simpler model neglecting the shape of the
action potential that relies on the frequency and average number of spikes be more appropriate?

Indeed, as previously mentioned, neurons are capable of generating an action potential from
a stimulus as long as it enables the membrane potential to cross the threshold. Such a process
would support the 'rate coding' that promote the frequency over the timing.

However, another line of thought on the same subject concerns the study of neurological
diseases. Alterations of cells induced by neurological disorders in the nervous system a�ect
the transmission of nerve impulses. This change not only a�ects the spiking frequency, it also
a�ects the features of the action potential, thus supporting the consideration of the shape of
the action potential as in 'temporal rate' theory.

1.3 Neurological disorders

Millions of people worldwide are a�ected by neurological disorders that strongly impair their
cognitive and/or motor functions [Organization et al., 2020]. Globally, in 2019, there were
nearly 10 million deaths and 349 million disability-adjusted life years (DALYs) due to neuro-
logical disorders [Ding et al., 2022]. They are for now untreatable and strongly linked with
age, becoming a considerable challenge in the next years because of its signi�cant cost in treat-
ments that are limited to curbing the progress of the disease and managing the symptoms for
a growing proportions of people a�ected. As the population is aging, the proportion of people
a�ected by neurological disorders is expected to double in the next 20 years.
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1.3.1 Neurodegenerative diseases

Neurodegenerative diseases or neurological diseases induce a progressive degeneration leading
to the death/impairment of neuronal cells. They a�ect the central nervous system as well as
peripheral nervous system. Neurodegenerative diseases can be caused by various factors, in-
cluding brain lesions, tumors, infections or hereditary dysfunction. Some of the most common
neurodegenerative diseases include Amyotrophic Lateral Sclerosis (ALS), Alzheimer's Disease
(AD), Parkinson's Disease (PD) and Huntington's Disease (HD) [Checkoway et al., 2011]. Cog-
nitive symptoms resulting from these diseases vary considerably but can also include problems
with memory, speech, walking, coordination and vision. In order to better understand how
models can help in the better understanding of the such diseases, the main diseases and their
symptoms are brie�y introduced below.

Amyotrophic Lateral Sclerosis. ALS leads to dysfunction of motor neurons in the spinal
cord, cerebral cortex and brain stem. Symptoms include muscular weakness leading to paral-
ysis, breathing inability and death. Among changes occurring during ALS progression, the
morphology of motor neuron dendrites may be a�ected [Fogarty et al., 2016a], pointing out
their role in the study of this disease. The initial impact of ALS a�ects the largest motor
neurons (MN), speci�cally the fast-twitch �ber-controlling motor neurons (FF MNs).

Alzheimer's disease. AD causes loss of neurons and synapses and a�ecting glial cells and
vascular system, leading to dysfunctions in the amygdala, hippocampus and other cortical ar-
eas. AD progressively a�ects cognitive abilities and memory. Synaptic plasticity as well as
cortical neurons appears as essential elements to model in order to characterize the disease.

Parkinson's disease PD a�ects particularly dopamine-producing neurons in the brain and is
thought to a�ect the striatum. These neurons are essential for controlling voluntary movement
and coordination. Symptoms include motor symptoms such as tremors or postural instability
as well as non-motor symptoms such as depression or sleep disturbances. The dopaminergic
neurons and their interaction appears as essential to capture in a model to study the disease.

Huntington's disease. HD a�ects the projection neurons in the striatum, a nerve structure
below the cortex. Neurons in this region have longer-than-average axons, up to 1 meter in
length, that extend from the neuronal cell body within the central nervous system to one or
more of its distant regions similarly to the spinal cord and cortex. Symptoms include the pro-
gressive onset of involuntary spontaneous movements and the gradual loss of cognitive abilities.
HD has the particularity of a�ecting neurons with axons of a certain size, thus highlighting this
parameter as essential in a model of study.

Other neurodegenerative diseases. Other disorders of the nervous system can be induced
by abnormalities in speci�c ion channels morphology that exist in wide variety with speci�c
functions and locations in the neuron [Toledo-Rodriguez et al., 2004].

[Lai and Jan, 2006] claims that any alteration in the ion channel morphology or location
could a�ect communication in a neuronal network. Congenital anomalies a�ecting the ion
channels, known as genetic channelopathies, could occur throughout the nervous system and
create neurodegenerative disorders [Spillane et al., 2016]. The size of the neuron also constitutes
a possible factor of nervous system disease.

[Kernell and Zwaagstra, 1981] demonstrates the in�uence of neuron size on the conduction,
thus on the nerve impulses transmission speed in axons. Larger size of neuron is for example
thought to be one of the symptoms of diseases such as Tuberous Sclerosis Complex (TSC) or
Bourneville Tuberous Sclerosis [Ess, 2010] that lead to dysfunction at the level of synapses

Romain Beaubois Page 30



1 CAPTURING BIOLOGY IN FAITHFUL MODELS

[Bateup et al., 2013], neurons or larger size also are known to be the �rst a�ected in ALS.

All the neurodegenerative diseases presented highlight the importance of the morphology
of neurons and its components in the study of neurodegenerative diseases. Therefore, consid-
eration of the morphology of the neurons, dendrites, axons and ion channels is a mandatory
criterion for an accurate model of neurodegenerative diseases.

1.3.2 Existing treatments

An increasing number of technologies and solutions are currently proposed for the treatments of
neurodegenerative diseases, whereas being limited to curbing the progress or managing symp-
toms in most cases [Chin and Vora, 2014, French et al., 2016]. This is notably the case for
pharmacological treatments that are still limited and show slow progress in the discovery of
truly innovative molecules in the recent years [Rust et al., 2019].

As for an example of pharmacological treatments, in Alzheimer's disease, they have shown
e�ectiveness in improving cognitive symptoms [Ballard et al., 2006] or managing moderate to
severe Alzheimer's symptoms [Tariot et al., 2004].

[Gauthier et al., 2016] demonstrates that a selective inhibitor of tau protein aggregation
shows e�ciency in modifying disease progression in patients with mild to moderate Alzheimer's
disease.

For ALS, the proposed treatment that helps to slow the disease progression is riluzole, which
is intended to inhibit excess glutamate (excitotoxicity) and persistent Na+ current (INaP)
[Miller et al., 2012]. For Huntington's disease it is shown e�ective in managing chorea [Frank,
2014]. However, some of these treatments may have a risk of potentially serious adverse e�ects
as in [Frank, 2014]. More recently, a new anti-oxydative molecule named edaravone has been
approved by the FDA and is used to treat ALS patients.

As for alternative treatments, deep brain stimulation (DBS) is for example used to manage
Parkinson's symptoms [Deuschl et al., 2006]. Supportive care and therapies such as physical
therapy and occupational therapy also play an important role in managing symptoms and en-
hancing quality of life for individuals a�ected by neurodegenerative diseases [Bennett et al.,
2019, And, 2018].

Another approach considered is gene therapy that proposed various strategies to alter the
expression of defective genes through DNA [Kolli et al., 2018, Cota-Coronado et al., 2019,
Pahan, 2019].

1.3.3 Innovative alternative treatments

As the recovery of cognitive and motor functions of patients with disabilities is a global priority
in healthcare and research [Semprini et al., 2018], the innovative treatments are favoring brain
repair thus exploring brain rewiring to take better advantage of improved plasticity. In this
context, new therapeutic approaches and technologies are needed both to promote cell survival
and regeneration of local circuits [Farina et al., 2021] and restore long distance communication
between disconnected brain regions and circuits [Bouton et al., 2016].

Recently, major progress has been made in the bioelectronics and neural engineering [Panuc-
cio et al., 2018, Semprini et al., 2018] allowing the development of electroceutical-based devices
[Famm et al., 2013, Reardon, 2014]. Neuromorphic devices such as neuroprostheses are now
capable of receiving and processing input while locally or remotely delivering their output either
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through electrical, chemical or optogenetic stimulation [Christensen et al., 2022]. Neuropros-
theses are devices that allow direct interfacing of arti�cial circuits with large neuronal networks
system to external technology, aiming to restore or enhance neurological functions in individuals
with impairments by providing adaptive stimulation. Its bidirectional communication between
arti�cial and biological is a promising feature that could make of it an interesting clinical solu-
tion for treating brain lesions [Broccard et al., 2017].

[Christensen et al., 2022] presents a roadmap on neuromorphic computing demonstrating
that current and future neuromorphic systems will show capability of dynamic processing and
learning of signals at low-power. Hence, it will pave the way to the integration of complex
biological signal processing embedded in the new types of neuroprostheses.

Many neuromorphic interfaces, such as BMIs or BCIs, indeed exist. BMIs are systems that
establish direct connection between the human brain and an external device such as a computer
or a robotic system exist. System as presented in [Nicolelis and Lebedev, 2009, Hochberg et al.,
2012, Bonifazi et al., 2013] concentrated on the interactions between neural chips enabling
reproduction of similar electrical activities to neural networks and biological cells. The goal
was to replace damaged areas of the brain by these systems by achieving acquisition and
processing of brain signal and provide a response interpreted by the nervous system. These
systems are said to be closed-loop, a crucial feature for research on neuroprostheses [Levi et al.,
2018, Buccelli et al., 2019]. The Figure 1.5 illustrates the principle of biohybrid closed-loop
systems.

BNN ANN

Stimulation frontend

Current
source

Acquisition frontend

A
D Pre-Processing

Stimulus
generator

Digital Pre-Processing
Spike detection
Filtering
Spectral analysis

Electrodes
Recording electrodes
Stimulation electrodes Digital Post-Processing

Stimulus generation

Figure 1.5: Example of biohybrid closed-loop system. Biological Neural Network (BNN) and
Arti�cial Neural Network (ANN) are interfaced to allow bidirectional communication. The
activity of the BNN is recording through electrodes later digitalized and processed to be fed
to the ANN. A stimulation is generated from the activity of the ANN and sent as a current
stimulation in the BNN through the stimulation electrodes. The activity of the BNN in�uence
the activity of the ANN, this latter in�uencing back the BNN closing the loop.
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1.4 Biological models

Modeling is a powerful tool for inquiry and discovery across numerous disciplines, it allows re-
searchers to probe complex questions while avoiding constraints and outside in�uence. Biologi-
cal models are experimental systems used by biologists to recreate speci�c biological processes.

1.4.1 Modeling human body

Biological models used to study the human body can be broadly categorized into in-vitro (cell-
based) models and in-vivo (animal-based) models. It is crucial for our understanding of human
body functioning and the pathologies that can a�ect it. As an example of animal-based model,
Alzheimer's disease and ALS may be modeled using an animal model of transgenic mice [Elder
et al., 2010, Julien and Kriz, 2006]. The main biological model categories are recapitulated in
Figure 1.6.

In-vitro 2D cultures

Multiwell plates Culture dish

Spheroids Organ-On-Chip (OOC)

In-vitro 3D cultures

Animal studies

In-vivo

Figure 1.6: Main categories of biological modeling showing in-vitro culturing in two and three
dimensions as well as in-vivo modeling through animal studies.

1.4.2 In-vitro 2D cultures

In-vitro two-dimensions cultures (2D) are cellular models widely used in biomedical research
to study biological processes as well as human diseases. In-vitro 2D cultures are cultivated on
�at surfaces such as culture dishes or multi-well plates thus allowing a consistent control of the
environment.
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The main bene�t of 2D culturing lies in the simplicity of its handling and experimental
measurements processes while providing a large range of established cell lines available. They
notably allow the investigation of cellular interactions as well as drug screening. For instance,
[Brewer et al., 2008] used a 2D culture of rat hippocampal neurons to investigate the mech-
anisms of synapse formation and maturation during early brain development. Another study
utilized rat neuronal 2D cultures to investigate the underlying mechanisms of Amyloid β protein
deposition, a hallmark of Alzheimer's disease [Lorenzo et al., 2000].

[Regnell et al., 2012] studied the accumulation of oxidative DNA damages as a potential
cause of age-related cognitive decline by studying neural progenitor cells cultures of di�erent
animals.

[Kagan et al., 2022] proposed an experiment where 2D neuron cultures where used to study
their learning ability when embodied in a simulated game-world.

However, this model is often limited in terms of physiological coherence as they do not fully
reproduce the complexity of tissues and organs.

1.4.3 In-vitro 3D cultures

In-vitro three-dimensions cultures (3D) are cellular models that reproduce the structure and
cell interactions in three-dimension observed in tissues and organs. In 3D cell culturing, cells
can be cultivated in a device allowing the cells to organize and interact in a more coherent way
thus providing a model of greater coherence [Pampaloni et al., 2007, Breslin and O'Driscoll,
2013, Duval et al., 2017]. It notably presents better representation of cell and tissue physiology,
better cell di�erentiation, more realistic drug response and wider possibility of cell interactions.
In-vitro 3D cultures are for example widely used to study human brain through organoids cul-
tures that can reproduce structures of certain brain area [Kim et al., 2020].

A more complete model comes with design of Organ-On-Chip (OOC)s that refers to mi-
cro�uidic platforms that aim to mimic the structure and function of human organs in vitro [Huh
et al., 2011]. These devices incorporate cells and tissues in a three-dimensional arrangement to
replicate the complex architecture and interactions present in real organs [Ma et al., 2021].

In organ-on-chip systems, cells are cultured in a 3D environment that can mimic the tissue-
speci�c characteristics of organs such as the liver, lung or heart. The 3D cell cultures in OOC
devices enables various interactions such as for cell-cell and cell-matrix interactions thus provid-
ing better reproduction of the microenvironment of the organ. They allow study at organ-level
thus improving physiological coherence for processes like drug responses or disease modeling.

As for instance, [Choi et al., 2014] developed a three-dimensional (3D) cell culture model
of Alzheimer's disease based on human neural progenitor cells (hNPCs), allowing to create a
more physiologically relevant environment.

1.4.4 In-vivo experiments

In-vivo experiments refer to experiments or studies conducted on a living organism, usually an
animal model or non-human organisms. A common animal model for human biology modeling
being rodents [Peters et al., 2007]. In-vivo experiments also target the study of a variety of
biological processes such as embryonic development, diseases modeling and drug responses. In-
vivo experiments involve the study of biological processes and physiological responses in their
actual physiological context, thus showing less limitations than in-vitro cultures.
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The large bene�t of in-vivo models lies in accounting for the complex interactions in a liv-
ing organism. In-vivo cultures provide a more comprehensive approach to the understanding of
biological processes and assessing the e�cacy and safety of therapeutic interventions [Norrby,
2006].

Whereas in-vivo experiments show greater coherence and e�ciency, they are often signi�-
cantly more complex to conduct compared to in-vitro 2D cultures. Especially as in-vivo studies
require rigorous ethical protocols to guarantee both the animal welfare and the scienti�c in-
tegrity of the research performed.

An example of work targeting Alzheimer's disease corresponds to transplantation of human
PSCs cultivated in-vitro into the brain of a murine AD model. [Espuny-Camacho et al., 2017]
taking advantage of 3D in-vitro cultures to control cell di�erentiation processes and in-vivo
studies to retrieve the natural environment required for the study.

Other examples include [Nudo et al., 1996] that investigated plasticity of movement repre-
sentations in the primary motor cortex of adult squirrel monkeys. [Garcia et al., 1995] used
the rat middle cerebral artery occlusion model to simulate a stroke-like condition in rats by
inducing a cerebral ischemia.

1.4.5 Data acquisition

Data acquisition and analysis of biological model varies greatly according due to the wide range
of processes and models found in biology, especially when it comes to chemical or physical anal-
ysis. As this manuscript focuses on the neurodegenerative diseases and hybridization, therefore
on a particular cell that is the neuron, only the relevant calcium- and voltage- imaging tech-
niques will be presented.

The calcium- and voltage- techniques used to investigate neuronal activity can be divided
in two categories: invasive or non-invasive. However, the invasiveness of techniques is directly
linked with type of culture as for the in-vivo studies, physical constraints may prevent the use
of certain non-invasive in-vitro techniques. Figure 1.7 recapitulates the techniques discussed in
this section.

For in-vitro cultures, a widely used non-invasive technique relies on extracellular recording
with voltage imaging through electrodes arrays ranging from tens of micrometers to the tens
of nanometers depending on the technology.

The electrical activity captured by the electrodes is then sent to a recording unit that
digitalizes the data to allow storage. The bene�t of this method lies in its ease of use and
low-level of invasiveness so as cultures can be cultivated for a long time on these devices.

Example of devices using this technology are MEA that record from electrode at the mi-
crometer scale [Spira and Hai, 2020], NEA that shows greater resolution in signal-to-noise ratio
[Larrieu and Han, 2013] and HD-MEA that allow greater spatial-resolution [Müller et al., 2015].
However, these techniques do not allow to directly capture action potentials.

Another technique is calcium imaging that uses microscopy technique to optically measure
the calcium (Ca2+) status that corresponds to spiking activity in the neurons [Grienberger
and Konnerth, 2012]. As calcium imaging requires the use of a binding protein, it can be
considered in a way more intrusive than extracellular recording. For in-vivo experiments, some
non-invasive imaging techniques exist but often limited to certain cultures only so as invasive
techniques is often used [Koo et al., 2006].
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Invasive Non-invasive

MEA NEA
Patch-clamp

Sharp electrodes
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OptogeneticElectrical Chemical

Data acquisition

Interaction

Figure 1.7: Main techniques of calcium and voltage imaging in-vitro to capture neuronal
activity categorized by invasiveness and main interaction techniques. For in-vivo experiments,
calcium imaging is invasive and electrode array-based techniques are indirectly used via the
sharp electrodes.

While non-invasive techniques can provide coherent signal, invasive techniques that are
closer to neurons provide signal of higher �delity. In-vitro invasive methods include sharp
electrodes that record electrical activity thanks to electrode arrays [Spira and Hai, 2020] and
patch-clamp [Neher and Sakmann, 1992] that captures ionic currents. The sharp electrodes
exist in numerous con�guration for recording neural signals from di�erent regions at the cellular
level. The patch-clamp technique provides high resolution current recording of a cell thanks
to a pipette and electrode, allowing direct recording of action potentials and ionic currents.
However, these techniques are signi�cantly more di�cult to set up and cultures su�er from
their invasiveness like neuron death in the case of patch clamp.

For in-vivo, patch clamp is doable [Furue et al., 2007] but yet di�cult so as sharp electrodes
are widespread. Because of physical constraints imposed by in-vivo experiments, the calcium
imaging technique is invasively performed in-vivo [Gobel and Helmchen, 2007].
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1.4.6 Model Interactions

A complex part of biological modeling lies in the interaction with the model. While the pre-
vious part was introducing methods and techniques to acquire data from the cultures, i.e. the
output, a complex part of the model study corresponds to the choice of the input or stimulus.
In the case of the biological models introduced in this section, three techniques are possible to
interact with the culture: electrical, optogenetic and chemical (see Figure 1.7).

The electrical technique consists in an electrical stimulation applied to cultures often shaped
as a biphasic pulse. It shows capability to activate neurons thanks to the current injected
[Tehovnik, 1996]. This stimulation suits well sharp electrodes and electrode arrays as the elec-
trode recording are often able to source stimulation. However, electrical stimulation may create
artifact in recordings thus complicating the analysis of the behavioral response [Antal et al.,
2014]. Paired with electrode arrays, it also lacks spatial accuracy as the stimulation spreads all
over the culture.

The optogenetic technique corresponds to the introduction of stimulation using light on
cultures genetically modi�ed to response to speci�c wavelength. By introducing a light-gated
membrane channel in neurons, it allows activation of the neuron using light [Nagel et al.,
2003, Mosbacher et al., 2020]. The advantage of this stimulation lies in a better control of the
cell stimulated through the availability of markers to observe the cells excitable.

Another technique to interact with the culture is using the chemical approach through drug
treatments that a�ect the culture. Some drug treatments like bicuculline "disable" the inhibitor
receptors of synapses leading to signi�cantly higher activity that can lead to epilepsy [Ben-Ari
et al., 1981]. Introduction of chemical may also be used as a way to generate micro-stimulation
as in [Nishikawa et al., 2019].

The main challenges concerning the interaction with cultures lie in the assessment of its
impact on the culture but mostly in its implementation that often require high cross-disciplinary
skills and knowledge to obtain a satisfying setup in terms of coherency and noise robustness.

1.5 Arti�cial modeling

The consistent growth in computer performances that happened over the past years [Nordhaus,
2007] pushed the development and generalized the usage of computer simulated models also
known as arti�cial models. An arti�cial model is a simpli�ed representation created by human
beings that aims to imitate or simulate a speci�c aspect of a system.

1.5.1 Bio-inspired and biomimetic approaches

Biomimicry or biomimetics consists in drawing inspiration from nature to solve human tech-
nological challenges. It is based on the study of properties and processes of the nature then
adapted to create more performant technology. It is an approach widely used in various domain
such as engineering, materials and energy. Nonetheless, biomimicry actually fuels two distinct
approaches: the bio-inspired and the biomimetic approaches. While the bio-inspired approach
rely on the inspiration from Nature to develop novel materials and devices, the biomimetic
approach focuses on the mere reproduction of Nature and its replacement.

Romain Beaubois Page 37



1 CAPTURING BIOLOGY IN FAITHFUL MODELS

1.5.2 Neuron models

The complexity of physical, chemical and biological interactions of neurons led to numerous re-
search works, a fair amount focusing on the interpretation and prediction of observations using
so-called models. More speci�cally, the description of nerve impulses in neuroscience has been
a source of numerous models varying in terms of their usefulness, complexity, level of detail
and the behavior described.

Neuron modeling is a good example of the bio-inspired and biomimetic approaches. Bio-
inspired neuron models inspired by biology enabling calculation such as image recognition,
classi�cation or data processing di�er from biomimetic neurons that aim to reproduce faith-
fully phenomena happening in nature.

The �rst biologically meaningful mathematical neuron model was proposed by [Hodgkin and
Huxley, 1990] known as HH model. It was designed from experiments performed on the squid
giant axon that involved three currents: sodium, potassium and leak current. It was demon-
strated that the ionic permeability of the membrane was highly dependent on the membrane
potential, thus leading to a mathematical model based on the voltage-dependent properties of
the membrane to generate an action potential. The opening and closing of the ion channels are
then translated as a variable conductance depending on the voltage. The schematic diagram
of the Hodgkin-Huxley model is shown in Figure 1.8 where Vm is the membrane potential, Cm

is the membrane capacitance, gNa and gK the conductance of voltage-dependent ion channels,
ENa, EK and ELeak are the reversal potentials and gLeak a voltage independent conductance.

gNa gK gLeak

Extracellular

Intracellular

Cm Vm

ENa EK ELeak

Na+

K+
closed opened

Intracellular

Extracellular
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Sodium
-

+
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Figure 1.8: Electrical equivalent circuit of HH model representing Na+, K+ ionic currents and
leakage current as a basic neuron model.

Hence, from the schematic shown in Figure 1.8, the evolution of the membrane potential is
ruled by current �owing across the membrane integrated by the membrane capacitance accord-
ing to Equation 1.1:

Cm
dVm

dt
= −(INa + IK + ILeak) (1.1)

where, INa is the sodium current, IK the potassium current, ILeak the leakage current. The
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HH model will be further detailed in Section 1.5.4

As the HH model is based on high-dimensional nonlinear di�erential equations, it is consid-
ered as di�cult to analyze with commons studies such as phase plane analysis, various model
simpli�ed models of HH were introduced. On the contrary, other widely used models of spiking
neurons are based rather on a threshold and reset mechanism to produce action potentials.

Examples of simpli�ed derived models from HH model. The FitzHugh-Nagumo model
[FitzHugh, 1955, FitzHugh, 1961, Nagumo et al., 1962] simpli�ed the gating variables of slow
kinetics based on observations while conserving many qualitative characteristics.

The Morris-Lecar model [Morris and Lecar, 1981] that combine both HHmodel and FitzHugh-
Nugamo model into a voltage-gated calcium channel model with a delayed-recti�er potassium
channel, thus describing complex relationship between membrane potential and the activation
of ion channels within the membrane.

Examples of other widely used models of spiking neurons. The simplest bio-inspired model
is the IF model [Abbott, 1999] that produces a spike when the membrane potential crosses the
threshold then reset to the resting potential.

The LIF model [Gerstner and Kistler, 2002] introduces a leak term to the previous model,
thus allowing time-dependent memory of the stimulus where the IF keeps stimulus forever until
spiking.

These models can also be enriched to add more biological plausibility in EIF [Fourcaud-
Trocmé et al., 2003], Adex [Gerstner and Brette, 2009] models or quartic model [Touboul, 2008]
that add terms allowing better reproduction of shape of the action potential.

The model allowing a signi�cantly better biological plausibility is the IZ model [Izhikevich,
2003] that allows reproduction of various neuronal activities as shown in Figure 1.11 based on
the principle of threshold and reset mechanism paired with a membrane recovery variable.

While each one of these neuron models translates to a certain level of biological coher-
ence thanks to the number of possible biological phenomena reproducible as classi�ed by the
Figure 1.9 from the work [Izhikevich, 2004], only few can be considered as truly biomimetic.
Considering the biophysical meaningfulness as an essential criterion for true biomimetic model-
ing [Brette, 2015b], the most biomimetic model is the conductance-based model HH [Hodgkin
and Huxley, 1990].

However, for an implementation on a numeric platform and as demonstrated in Figure 1.9,
the dilemma between biological coherence and implementation rises. Most certainly, the IZ
model presents a very appealing compromise between implementation cost and biological co-
herence. Nonetheless, it lacks biological meaningfulness and the work [Brette, 2015b] claims
that the model moves away from bio-realism and its ability to predict the behavior of neurons
in certain conditions which contradicts the articles of Izhikevich.

As the manuscript focuses on biomimetic neuron models in view of biologically coherent
emulation of neural network in the context of neurological disorders studies, biological mean-
ingfulness is an essential criterion that strongly suggest the use of the HH model. Indeed, the
shape of the action potential in such model allows a high coherence with biology emphasized
by its biological meaningfulness.
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Figure 1.9: Comparison of the neuro-computational properties of spiking and bursting models
neuron model from [Izhikevich, 2004]. �# of FLOPS� is an approximate number of �oating point
operations (addition, multiplication, etc.) needed to simulate the model during a 1 ms time
span. Each empty square indicates the property that the model should exhibit in principle (in
theory) if the parameters are chosen appropriately, but the author failed to �nd the parameters
within a reasonable period of time.

1.5.3 Spontaneous activity

A fundamental property of nervous systems that is important to reproduce is the spontaneous
activity of neurons that refers to the �ring of neurons in the absence of sensory input. A common
approach to describe this non-evoked or stimulus-independent activity is to use randomized laws
to enable spontaneous activity through random spiking.

This random behavior can be modeled by injecting a noisy current into the neural network,
usually based on a normal distribution. This noisy current will trigger spikes more or less
frequently and on a random basis depending on its parameters like strength and deviation. A
more biologically coherent noise than normally distributed can be generated by �uctuating the
conductances of ion channels [Destexhe et al., 2001, Tuckwell et al., 2002], creating a current
similar to synaptic noise observed in biology. Thus, a biomimetic noise based on Ornstein-
Uhlenbeck process correspond to Equation 1.2.

dinoise(t)

dt
= θ(µ− inoise(t)) + σ

dW (t)

dt
(1.2)

where, inoise is the noisy current, θ and σ are parameters of the noise tuning its amplitude
and deviation, µ is a constant adding drift and Wt denote the Wiener process.
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1.5.4 Single compartment modeling

The most widespread representation of neurons in computing science is based on the represen-
tation of the neuron as a point in space, thus focusing on its temporal dimension. A common
approach is to approximate the neuron as cylinder for which the membrane voltage is computer
at the middle. The single compartment modeling of a neuron modeled using the HH paradigm
[Hodgkin and Huxley, 1990] can be equated as shown in Equation 1.1 to describe a simple FS.
This basic neuron translates the essential dynamics of the Na+ and K+ channels.

The ionic currents are mimicked by using variable conductance representing the opening
state of the ion channels and voltage generator to represent the equilibrium potential of the
ions (see Figure 1.8).

Iion = gionm
n
ionh

k
ion(v − Eion) (1.3)

where, Iion is the ionic current, gion the maximum conductance of the ion channel, mion and
hion the probabilities between 0 and 1 respectively of ion channel activation and inactivation,
v the membrane voltage and Eion the equilibrium potential of the ion.

More speci�cally, the ionic currents allowing the reproduction of a FS neuron corresponds
to the Equations 1.4,1.5,1.6.

INa = gNam
3
NahNa(v − ENa) (1.4)

IK = gKm
4
K(v − EK) (1.5)

ILeak = gLeak(v − ELeak) (1.6)

The equations ruling the probabilities of the activation and inactivation of the voltage-gated
ion channels take the form a sigmoid with di�erent dynamics for each ion. The equations are
often expressed using the two formalism shown of Equation 1.7 or Equation 1.8.

dx

dt
= αx(V )(1− x)− βx(V )x (1.7)

dx

dt
=

x∞(V )− x

τx(V )
(1.8)

t

Figure 1.10: Single compartment modeling of a neuron. The neuron is represented as a
cylinder in which membrane voltage is computed at one point in space. The membrane voltage
Vneuron is only depending on time t as shown on the graph representing spiking activity.
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The dynamics of the neuron can be enriched from this basis to mimic other neuron families as
shown in Figure 1.11. For example, adding slow potassium current [Yamada et al., 1989] creates
the RS neuron. Incrementally adding a slow calcium current [Reuveni et al., 1993] creates the
IB neuron, while adding low-threshold calcium [Jahnsen and Llinás, 1984, Pospischil et al.,
2008] creates the LTS neuron. This highlights the ability of the HH neuron model to link the
action potential shape to accurate biological meaningfulness.

Figure 1.11: Simple model of spiking neuron from [Izhikevich, 2003]. Each neuron family is
characterized by the evolution of its membrane voltage to a stimulation step.

1.5.5 Multicompartmental modeling

Single compartment models are the most widely used, as they are less resource-intensive and
relatively e�cient in most cases. Single compartment modeling, while demonstrating high pre-
diction rates of action potentials and biophysical coherence especially in HH model, remains
limited due to its inability to capture the complex spatial details and behaviors of neurons.

In contrast, multicompartmental models o�er a more comprehensive and biologically realis-
tic approach, thus providing deeper insights into neuronal function and information processing
(see Figure 1.12).

It is particularly important as regions such as dendrites are the center of vital computations
linked to their spatial morphology [Forrest et al., 2018] and are a�ected by some neurodegen-
erative diseases like ALS [Fogarty et al., 2016a].

Moreover, studies like [Brette, 2015b] shows that there are phenomena such as frequency-
dependent attenuation of membrane as a function of frequency or the presence of wide variations
in voltage which may be induced by the presence of active conductances distributed along the
axon and dendrites.

Thus, important biophysical phenomena like spike initiation [Naundorf et al., 2006] in the
AIS [Debanne et al., 2011] or in the dendrites [Gasparini et al., 2004] can be modeled. Phe-
nomena like dendritic spikes are for example known to play a part in stimulus selectivity in
cortical neurons [Smith et al., 2013] shows the importance.

Multicompartmental modeling also allows the investigation of the role of dendrites in neu-
rons, the role of dendrites being a source of much research. [Mel, 1999] suggests that dendrites
exist to increase the surface area of neurons increasing the possible number of synaptic connec-
tions through extensions of 10 to 20 times the surface area of the soma. [Chklovskii et al., 2002]
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Figure 1.12: Representation of multicompartmental modeling that shows the di�erent parts of
the neuron modeled as connected cylinders and the di�erence in the signal waveforms depending
on its location.

shows that the circuit connections in the cortical region are optimal and that the proportions
are all more or less the same. Other studies like [McBain and Fisahn, 2001] support the hypoth-
esis that dendrites exist in order to have several possible and separate entries on the surface
of nerve cells. Dendrites also allow a greater diversity of presynaptic terminal classes creating
di�erent learning laws [Froemke et al., 2005]. They are also known to display physiological and
morphological abnormalities during postnatal development in motor neurons with ALS [Martin
et al., 2013].

The multicompartmental modeling applied to HH model is based on the one dimensional
cable equation and corresponds to Equation 1.9, thus introduction spatial dimension x in the
equation.

1

2πa

∂

∂x

(
πa2

Ra

∂V

∂x

)
= Cm

∂V

∂t
+ IHH (1.9)

where, a is the radius of the compartment, Ra the resistance of the axon, Cm the membrane
capacitance, IHH the currents of the HH model and V the membrane potential in the middle
of the compartment.

A common approach for discretization is �compartmentalization� that approximates the
cable equations by a series of compartments connected by resistors (see Figure 1.12,1.13)
[Carnevale and Hines, 2006]. An electrical equivalent circuit of this multicompartmental model
using HH paradigm is shown in Figure 1.13. Using this approach, membrane voltage is eval-
uated at the middle of each compartment.The discretized model could also be seen as the
computation of spatio-temporally continuous variables over a set of discrete points in space
(�grid� of �nodes�) for a �nite number of instants in time [Carnevale and Hines, 2006].

As compartments now correspond to di�erent elements of the neuron, their properties can be
translated by the HH model as illustrated on Figure 1.13. The soma if for example implementing
3 ionic currents with certain properties where a dendrite for example implement only one ionic
current with di�erent properties. This is a crucial feature that allow to model changes a�ecting
only certain elements of the neuron like dendrites on speci�c channels through corresponding
parameters tuning. The spatial morphology of the dendrites and axons can also be reproduced
by the length of the compartment. This characteristic is notably important in the impact on
the morphology of dendrites in ALS [Fogarty et al., 2016b] or neurodegenerative diseases like
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Huntington's disease that a�ect neurons with long axons.

Multi-compartment neuron
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Figure 1.13: Electrical equivalent circuit of multicompartmental neuron model. The neuron is
compartmentalized in cylinder of various length and diameters representing di�erent elements
of the neuron and their properties. Iinj is the current injected.

The multicompartmental modeling is undoubtedly crucial to the creation of faithful and reli-
able model providing enough biological meaningfulness to study neurological disorders through
arti�cial models.

1.5.6 Synapse models

The modeling of nerve impulses in neurons is not limited to neuron models, numerous synapse
models that address the same problematics as neuron models are found in literature. A wide
variety of synapse models with di�erent level of biophysical coherence exists that translate dif-
ferent dynamics of the synapse from the excitation and inhibition to plasticity.

[Izhikevich, 2003] presents a noise-injected synapse to reproducing the stochastic behavior
of biological synapses, while [Cassidy et al., 2011] presents a synapse based on exponential
current. [Rice et al., 2009] presents a synapse model that enables learning using long-term
plasticity or short-term plasticity [Izhikevich and Edelman, 2008].
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In the biophysically detailed models, a biomimetic and biologically meaningful model corre-
sponds to [Destexhe et al., 1998], where four types of synaptic receptors were modeled: AMPAR,
NMDAR, GABAAR and GABABR. They correspond to synaptic receptors found in dendrites
involved in chemical synapses that are responsible for fast and slow excitation (AMPAR and
NMDAR) and fast and slow inhibition (GABAAR and GABABR). The model translates the
opening and closing states of the receptors based on a conductance-based model that provides
biological meaningfulness (see Figure 1.14).

In this manuscript, the synapse model selected is [Destexhe et al., 1998] for its biological
coherence and meaningfulness. As it is a conductance-based model, the equations of the currents
are similar to the HH neuron model. Equations 1.10,1.11,1.12,1.13 correspond to the synaptic
current generator by the receptors.

IAMPA = gAMPA × r × (V − EAMPA) (1.10)

INDMA = gNMDA ×B(V )× r × (V − ENDMA) (1.11)

IGABAa = gGABAa × r × (V − EGABAa) (1.12)

IGABAb = gGABAb ×
sn

sn +Kd

× (V − EGABAb) (1.13)

where, gAMPA, gNMDA, gGABAa, gGABAb are the maximum conductances of the receptors,
EAMPA, ENMDA, EGABAa, EGABAb the equilibrium potentials, r and s the states variables for
activation and inactivation of the receptors.

An essential property for synapses is its learning ability explained by synaptic plasticity.
While synaptic plasticity may be ruled by several laws [Bono and Clopath, 2017], the synaptic
rules widely used are STP and STDP.

STP refers to the dynamic changes in synaptic strength that occur over short periods,
typically ranging from milliseconds to seconds. It involves mechanisms like facilitation and
depression which impact the e�cacy of synaptic transmission. STP plays a crucial role in regu-
lating the temporal dynamics of neural information processing. A biomimetic and biologically
meaningful model of STP based on the synapses involved in CPG network is presented in [Hill
et al., 2001] using a conductance-based model.

On the other hand, STDP is a learning rule based on spike timing between neurons rather
than a timing window. It correlates presynaptic spiking with postsynaptic neuron spiking, so
as the synapse strength increase if the presynaptic spike consistently precedes the postsynaptic
spike [Song et al., 2000]. The opposite situation leads the synapse strength to weaken thus
decreasing its e�ciency. STDP is rule widely used in arti�cial neural networks to learn tem-
poral patterns and associations that suits well tasks involving temporal data such as speech
recognition or sequence learning [Kheradpisheh et al., 2018].

Another concept that is the Hebbian plasticity relying on the rule "cells that �re together,
wire together" increase the synapse strength when two neurons are activated simultaneously
or in close temporal proximity [Abbott and Nelson, 2000]. While it is considered biologically
plausible as it takes into account the activity patterns of neurons, it is considered to be a sim-
plistic rule that does not account for certain aspects of learning, such as speci�city and stability.
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Figure 1.14: Post-synaptic currents graph from [Destexhe et al., 1998]. The curves represent
the best �ts of detailed kinetic models to averaged biological postsynaptic current signals ob-
tained from patch clamp recording. (A) AMPAR current (B) NMDA current (C) GABAAR
(D) GABABR.

In order to create a truly biologically coherent neural network, multiple synapses models
should be used to reproduce biology. The implementation of both STP and STDP would allow
mimicking learning behavior. A synapse model with high biological coherence like Destexhe is
also important to reproduce the various dynamics based on the ratio and speed of inhibition and
excitation in the network as well as emulating interventions such as drug treatments targeting
speci�c synaptic receptors. Hence, the organization of neurons into a network also introduces
the notion of biological coherence through the synapse model used to allow reproduction of
various mechanism of the biology (plasticity, synaptic transmission, inhibition and excitation
ratio, ...).

1.5.7 Neural networks

Neural networks is a broad de�nition referring to either a neural circuit of biological or arti�cial
neurons. As for ANNs, numerous architectures serving di�erent applications exist.

Bio-inspired ANNs that draw inspiration from human brain architecture to perform signal
processing tasks are numerous. Tasks such as image recognition and classi�cation or facial
recognition often involve Feedforward Neural Network (FNN) [Svozil et al., 1997] or Convolu-
tional Neural Network (CNN) [O'Shea and Nash, 2015] that rely on information processing by
layers. As for instance, [Kheradpisheh et al., 2018] demonstrates the use of STDP-based CNN
for object recognition. Other tasks like natural language processing, speech recognition, and
time-series prediction tasks often involve Recurrent Neural Network (RNN) [Medsker and Jain,
2001].
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In the biomimetic ANNs, SNN attempt to mimic the communication between neurons using
action potentials or spikes [Ghosh-Dastidar and Adeli, 2009], thus being the closest to the be-
havior of biological neurons and their interactions. Liquid State Machines (LSMs) [Maass et al.,
2002] are a type of RNN inspired by the liquid state computation to replicate its computation
with randomly connected neurons.

As research in this �eld progresses, biomimetic neural networks hold promise for enhanc-
ing the performance and e�ciency of arti�cial intelligence systems improving performances in
applications across various domains.

1.6 Numerical system solving for arti�cial neuron modeling

A crucial step in the implementation of arti�cial neuron models is the solving of the di�erential
equations ruling the evolution of the membrane potential using solver. As digital computing is
inherently discrete, the use of numerical solver to �nd numerical solutions to the equations of
neurons that are continuous in time and space are required. Therefore, implementing a model
of neuron on a digital platform raises many purely numerical issues not related to biological
questions but of crucial importance to the coherence of the simulations. Di�erent types of
solver exist, each with its own advantages and limitations involving the notions of complexity,
accuracy and stability.

1.6.1 Numeric solvers

Numerical solvers are computer algorithms that �nd approximate solutions to complex math-
ematical equations. They are used to solve problems such as di�erential equations, algebraic
equations and optimizations. Numerical solvers can be based on analytical methods such as the
Taylor series method or on numerical methods such as the �nite di�erence method. Numerical
methods are often used when equations cannot be solved analytically or when accurate and
reliable solutions are required. Contrary to analog solving that is highly resource-intensive on
a digital platform, numeric solving suits better the architecture of digital platforms thanks to
its discrete property. The solvers can be categorized in two categorized being the explicit and
implicit solvers.

Explicit solvers. Explicit solvers are numerical algorithms relying on numerical schemes such
as the Forward Euler method or the Runge-Kutta method to �nd a numerical approximation to
the exact solution. They are very e�cient when used to solve short-time di�erential equations
but can be unstable for long time di�erential equations due to the strong dependence on the
time step size [Courant et al., 1967]. The smaller the time step compared to the dynamic of
the system, the better the stability. Nonetheless, a small time step often correlates with higher
implementation cost.

Implicit solvers. Unlike explicit solvers, implicit solvers require knowledge of the exact
solution at a given time in order to �nd the solution at a later time. Implicit solvers rely on
numerical schemes such as the Backward Euler method or the Crank-Nicolson method to �nd
a numerical approximation to the exact solution. They are more stable than explicit solvers for
long-term di�erential equations but are often more expensive in terms of computation time.

1.6.2 Single compartment modeling

In the case of the single compartment modeling, the evolution of the membrane potential is ruled
by a single ordinary di�erential equation (see Equation 1.1). Thus, only the discretization with
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respect to time is required. The numerical integration methods the most used in empirically-
based neuron modeling that will be discussed in this manuscript are Forward Euler, Backward
Euler and Crank-Nicholson [Carnevale and Hines, 2006]. These methods are based on the �nite
di�erence expression as equated in Equation 1.14. However, other methods like CVODE or
Runge-Kutta variants are also used.

dV

dt
≈ V (t+∆t)− V (t)

∆t
(1.14)

Forward Euler. The Forward Euler is an explicit method characterized by [Carnevale and
Hines, 2006] as the simple, inaccurate and unstable method. It is based on a simple approxima-
tion that starts from something already known and projected into the future, thus calculating
the future value entirely on the basis of past and present. This method approximates a so-
lution by applying the Equation 1.15, that applied to the HH model can be equated as in
Equation 1.16. Forward Euler has �rst order accuracy that means that the local error is pro-
portional to ∆t and can allow stable simulation of single compartment modeling if its value is
small enough [Khoyratee et al., 2019].

V (t+∆t) = V (t) + f(V (t), t)∆t (1.15)

V n+1 = V n − ∆t

Cm

∑
Iion(t) (1.16)

Backward Euler. The Backward Euler is an implicit method characterized by [Carnevale and
Hines, 2006] as the inaccurate but stable method. As it is an implicit method, it involves the
futures values in the calculation as shown in Equation 1.17 that involves f(V (t+∆t), t+∆t).
The great advantage of this method lies in its robust stability that prevent oscillations of the
solution.

V (t+∆t) = V (t) + f(V (t+∆t), t+∆t)∆t (1.17)

Crank-Nicholson. The Crank-Nicholson is an implicit method combining both the Forward
and Backward Euler and characterized by [Carnevale and Hines, 2006] as stable and more
accurate method. The expression of the Crank-Nicholson is shown in Equation 1.18.

V (t+∆t) = 2V (t+
∆t

2
)− V (t) (1.18)

Among the three solvers, the most suitable for embedded platforms of single compartment
neurons that features correct accuracy for a low implementation cost is the Forward Euler
because of its simple explicit solving. It is also known to show satisfying stability for the
emulation of single compartment neurons with a small time step [Khoyratee et al., 2019].

1.6.3 Multicompartmental modeling

Similarly to single compartment modeling, continuous solving is highly resource-intensive on
a digital platform so as both spatial and temporal discretization are often required, especially
as the equation now involves two independent variables. The most common spatial discretiza-
tion involves the second order correct approximation of ∂2V/∂x2 (see Equation 1.9) shown in
Equation 1.19. A representation is illustrated in Figure 1.15 where a cable also called section
is discretized in compartments.

∂2V

∂x2
≈ V (x+∆x)− 2V (x) + V (x−∆x)

∆x2
(1.19)
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The discretized model can be seen as the computation of spatio-temporally continuous
variables over a set of discrete points in space (�grid� of �nodes�) for a �nite number of instants
in time [Carnevale and Hines, 2006]. Therefore, values of functions will refer at points on the
grid function corresponding to the expression 1.20

Gn
i ≡ G (i∆x, n∆t) (1.20)

where, ∆t is the timestep and ∆x = L
N
the grid width computed from L the length of the

cable and N the number of spatial grid points.

0 L
x

Spatial discretization
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Virtual point

2 3 4 N
-1 N+1
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 Location of voltage computation

N = 5

L : cable/section length i

Figure 1.15: Spatial discretization of a section where a cable is approximated as a series of
connected cylinders called segments. Virtual points are added at the extremities of the section
to verify the no current leak condition.

The membrane potential is then evaluated at the middle of each compartment. The bound-
ary condition that states that no axial current �ows at the ends of the cable is respected by
adding virtual points at the extremities of the cable.

While the use of explicit methods is suggested to be applicable for multicompartmental
model solving according to [Kobayashi et al., 2021], explicit methods remain limited because of
the signi�cant constraint imposed by a very small time step for real-time system. In [Kobayashi
et al., 2021], the multicompartmental model is using a complex method of higher accuracy that
is Runge-Kutta-Chebyshev method with a very small time step but simpler explicit solvers
of lower accuracy as the Forward Euler used for the single compartment modeling is known
unstable for multicompartmental model [Carnevale and Hines, 2006].

A numerically stable solver appropriated for sti� systems and widely used that will be
detailed in this manuscript is the Crank-Nicholson method presented in previous subsection. It
relies on an evaluation at half a time step using Backward Euler advanced over the full interval
with Forward Euler and is known stable and accurate [Carnevale and Hines, 2006, Hines, 1984].
The equation applied to the membrane potential is equated in Equation 1.21.

V n+1
i = 2V

n+ 1
2

i − V n
i (1.21)

The second order correct and numerically stable solution of the �nite di�erence form of
Equation 1.21 is expressed in 1.22 as a tridiagonal linear system evaluated at half a time step.

LiV
n+ 1

2
i−1 +DiV

n+ 1
2

i + UiV
n+ 1

2
i+1 = Bi (1.22)

where, L is the lower diagonal, D is the main diagonal, U is the upper diagonal and B the
right-hand side of the system de�ned in Equation 1.23.
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2
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2πa∆x

(1.23)

with Iinj the current injected and δi0 the Kronecker delta.

i

Figure 1.16: Illustration of the tridiagonal systems of equations corresponding to the compu-
tation of the membrane potential in a section of a multicompartmental neuron.

The complete structure of the neuron corresponds to a tree of unbranched cables (sections)
divided in N compartments, thus adding o�-diagonal coe�cients to the tridiagonal linear sys-
tem [Hines, 1984]. Through wise numbering of the nodes in the tree, the tridiagonal matrix
resulting is solvable thanks to Hines matrix solver.
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Figure 1.17: Illustration of mainly tridiagonal matrix with sparse coe�cients (Hines matrix)
at branches points generated by the multicompartmental neuron structure.

The introduction of the spatial dimension in the multicompartmental modeling is translated
by a higher complexity requiring complex solver with higher implementation cost, making the
implementation of this model more challenging on a digital platform.
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1.7 Summary

This chapter introduced the basic notions of biology required to the understanding of the ner-
vous system morphology and its main components. It granted the essential knowledge of how
neurons process and send the information through the di�erence parts like axons and dendrites
through synapses. Nonetheless, this complex system may dysfunction because of neurodegener-
ative diseases already a�ecting a signi�cant part of the population and only expected to grow.
Hence, the treatment of these diseases represents a great challenge requiring joined e�orts of
various �elds to �nd e�cient alternative treatments. This chapter also covers the role and
methods of the use of models to study human body and its mechanism, presenting biological
models and arti�cial models both serving the purpose of investigate and understand the com-
plex processes of human body. Particular attention was paid to the arti�cial model of neurons
and their formation in network in view of developing biomimetic system working toward the
discovery of alternative treatments such as electroceuticals [Reardon, 2014, Famm et al., 2013].
To conclude, this chapter highlighted biomimetic arti�cial neuron models and the importance of
biological meaningfulness to study neurological disorders through biophysically detailed single
compartment or multicompartmental modeling.
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2.1 Introduction

As most of integrated circuits, FPGA have considerably evolved and improved by taking ad-
vantage of technological improvements in transistor scaling reduction [Boutros and Betz, 2021].
One of the main bene�ts of FPGA architecture lie in its �exible conception of logical circuits
and its highly parallel architecture allowing design of complex real-time applications.

However, the main drawback of the FPGA lied in the communication that often remained
limited or complex because of its low-level of description not well suited to the implementation
of communication protocols that usually include several complex or abstract layers. Along with
the computer power growth [Nordhaus, 2007], other architectures like GPU also considerably
improved and widely spreads in various �elds [Dally et al., 2021, Nickolls and Dally, 2010].

The co-design approach that existed for example between CPU and GPU also considerably
strengthened for general purpose computation [Arora, 2012] and also explored various architec-
ture with SoCs. A great example is the ARM architecture [Seal, 2000] that emerged from the
transistor scaling reduction among many other architectures of CPU [Patterson and Hennessy,
2013]. The small size of the ARM cores made it a crucial element of the design of embedded
system such as smartphones [PratapSingh and Kumar, 2014].

The integration of processors together with a FPGA on a SoC was widely spread thanks
to the ARM architecture has sparked the creation of SoC FPGA such as the Zynq for the
manufacturer AMD Xilinx [Crockett et al., 2014]. It allowed compensating for the lack of
versatile interfacing of FPGA and allowed the creation of completely embedded and �exible
designs thanks to the introduction processors.

This chapter explores the choice of the digital platform to develop a real-time biomimetic
SNN on SoC FPGA that would provide �exibility and versatility to adapt and interface various
applications. It will also introduce the essential communication protocols and interface that
are used in our system. First, the technological context that led to the choice of the selected
SoC FPGA will be discussed. Then, the architecture and functionalities of an AMD Xilinx
SoC FPGA that is the SOM K26 as well as its characteristics will be explained. Finally, the
communication protocols used in the system will be detailed.

2.2 Technological context

To enable bidirectional biohybrid experiments and develop bioelectrical therapeutic solutions
for health care like electroceutics [Famm et al., 2013, Reardon, 2014, Di Florio et al., 2023],
embedded real-time biophysical interfaces and SNN processing are mandatory to ensure inter-
action at biological timescale [Sharifshazileh et al., 2021, Corradi and Indiveri, 2015, Mosbacher
et al., 2020, George et al., 2020].

A real-time system takes into account the temporal constraints of the system being stud-
ied, measured or simulated. Applied to neural networks, real-time behavior reproduces nerve
impulses with respect to the biological time.

While the most used solutions for neuron emulation are software based did not show convinc-
ing results for real-time computing, other available systems include analog chips that propose
optimal design for a very low power consumption. However, analog chips often su�er from a
lack of �exibility because of the �xed hardware. The digital platforms then remain a more
appropriate platform for our applications making of GPU and FPGA promising choices. Espe-
cially, SoC FPGA combines the �exibility, speed and low cost of the FPGA with the versatility
and compatibility of the CPU.

This section will present the technological context of the main neural modeling implemen-
tation and focusing on FPGA implementation to �nally present the selected target for our
system.
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2.2.1 State of the art of biomimetic models

Most current solutions for biomimetic SNN simulations are software-based running on CPU
such as NEURON [Hines and Carnevale, 2001], NEST [Gewaltig and Diesmann, 2007] or Brian2
[Stimberg et al., 2019] tools that show signi�cantly high computation time, especially for com-
plex neuron model with synaptic plasticity.

The Brian software can run on GPU using CUDA, thus greatly improving the computation
speed [Stimberg et al., 2013]. Also running on GPU, [Kobayashi et al., 2021] presents the
emulation of a HH-based multicompartmental model with 3074 neurons for an average of 674
compartments per neuron forming 780,404 synapses computed in 2.5h for 1 second.

As for Supercomputers as in [Jordan et al., 2018], 18,000 neurons with 1,250 synapses each
simulated over 1 second of biological time took 5 minutes of real time. The power consumption
was estimated to about 60 to 70 kW per rack for a total of 28 racks. The Japanese supercom-
puter K was able to simulate 1.74 billion nerve cells and 10.4 trillion synapses in one second
of biological time in 40 minutes. The power consumption of these machines remains high and
their accessibility low.

In contrast, hardware implementations can perform real-time simulations with low power
consumption. Moreover, software-based solutions are not suited for real-time emulation at mil-
lisecond time step [Van Albada et al., 2018] contrary to hardware-based SNNs. In the context of
biohybrid experiments requiring real-time embedded system hardware implementations appear
more relevant.

Hardware implementations of neural networks can be divided into two categories. On the
one hand, mixed implementations based on integrated circuit designs; on the other, digital
implementations based on FPGAs, microprocessors, microcontrollers or neurochips.

Analogic and mixed implementations. Most of these systems consist of an analog core that
simulates the neuron and generally digital circuits for the synapses and plasticity. [Hasler et al.,
2007] and [George et al., 2013] implement a multicompartmental model including recon�gurable
dendrites. [Sorensen et al., 2004], [Binczak et al., 2006], [Renaud et al., 2007], [Levi et al., 2018]
and [Natarajan and Hasler, 2018] integrate conductance-based models. [Liu and Douglas, 2004],
[Vogelstein et al., 2004], [Indiveri and Fusi, 2007], [Schemmel et al., 2007], [Qiao et al., 2015],
[Kohno et al., 2016] and [Valentian et al., 2019] present threshold-based models.

Digital implementations. The majority of the digital implementations the majority are bioin-
spired models for computational purposes running on FPGA or neuromorphic chips. [Nazari
et al., 2015] shows an application of [Cassidy et al., 2011] using one million of threshold-based
neurons. [Wang et al., 2013] implements 4,000 neurons connecting 1.15 million synapses. The
prominent SNNs hardware platforms and major projects are Merolla [Merolla et al., 2014],
BrainScaleS-2 [Pehle et al., 2022], SpiNNaker [Painkras et al., 2013], SpiNNaker 2 [Mayr et al.,
2019] and Loihi [Davies et al., 2018].

SpiNNaker was designed as a part of the neuromorphic computing platform for the Human
Brain Project [Amunts et al., 2016]. Its complete design includes ARM cores organised in 10
racks of 100,000 cores each with each core emulating 1,000 neurons, thus aiming to emulate a
billion neurons in real time using LIF model [Van Albada et al., 2018].

BrainScaleS-2, that is also part of the Human Brain Project, implements multiples cores of
512 neurons to reach about 4 millions neurons for 880 millions synapses.

The Loihi chip is a neuromorphic chip implementing 130,000 spiking neurons and 130 million
synapses.

Romain Beaubois Page 54



2 INTRODUCING THE AMD XILINX SOM K26

While some of these systems present mobile versions like [Stradmann et al., 2022] for
BrainScaleS-2, they often are not suited for embedded applications.

The state-of-the-art shows a large amount of digital implementations capable of running
large number of neurons. However, only few implementations present HH model and fewer
multicompartmental model of HH model. This justi�es the importance of this work to propose
an accessible and �exible HH model implementation.

2.2.2 Follow-up on HH FPGA implementations

As introduced previously, the complexity of analog circuits and the power consumption of
supercomputers pushed the use of digital circuits for neural network implementation. Nonethe-
less, because of its high complexity and implementation cost, the HH model shows few digital
implementations and even fewer implementations on FPGA. It is mostly explained by the
mathematical operations required by the model such as exponential and divisions that are not
suited for FPGA architecture and resource-intensive. The accuracy required also signi�cantly
constrains the data coding as FPGA architecture shows resource-intensive �oating-point oper-
ations. Also, the FPGA implementation of the multicompartmental HH model is rare because
of the complexity of the solver required. Hence, the implementation of the HH model requires
simpli�cations.

Single compartment implementations. In the single compartment implementations, [Osorio,
2016] presents a time- and resource-intensive pipeline architecture using �oating-point compu-
tations and complex methods explicit solving methods such as Runge-Kutta and Goldsmith
algorithms paired with Taylor series expansion for complex operators.

[Yaghini Bonabi et al., 2014] shows good computational accuracies using fast and resource-
e�cient algorithms such as the COordinate Rotation DIgital Computer (CORDIC) and explicit
Forward Euler method enabling simulation of 120 neurons connected. [Akbarzadeh-Sherbaf
et al., 2018] presented another way of calculating neurons increasing to 5,120 neurons computed
in real-time.

While demonstrating numerical implementation techniques to improve the performances,
these implementations presented only FS type neurons. Additionally, none of them presents a
fast and e�cient way to make the system �exible, i.e. to modify biophysical parameters in real
time.

A work proposed by our team proposes the implementation of FS, RS, IB and LTS neurons
with dynamic parameters tuning and synaptic connection hardware-�xed synapses [Khoyratee
et al., 2019] for a total of 500 neurons per calculation core.

Multicompartmental implementations. Multicompartmental HH model implementation on
FPGA is almost non-existent, only some experimental results like [Ding et al., 2021] that
shows two-compartment neurons and methodology like [Beaubois et al., 2022] exist. Thus
making of the implementation presented in this manuscript the �rst FPGA implementation of
multicompartmental HH model on FPGA.

2.2.3 Selected Targets Overview

The main target selected is the Kria K26 SOM from AMD Xilinx embedded on the development
platforms Kria KV260 Vision AI Starter Kit and Kria KR260 Robotics Starter Kit advertised as
cost-optimized targets. This SoC FPGA is based on the Zynq� UltraScale� MPSoC architecture
thus featuring processors and FPGA on the same chip. This choice of this target is justi�ed by
its capacity of running an operating system and o�ers good FPGA and processor performances,

Romain Beaubois Page 55



2 INTRODUCING THE AMD XILINX SOM K26

versatility and �exibility thanks to its architecture and various interfaces all for an optimized
cost. The compact size of the carrier boards also constitutes a considerable bene�t to include
in a biohybrid experimental setup.

In total the chip incorporates 6 cores with Quad-core Arm® Cortex®-A53 MPCore� up to
1.5GHz and Dual-core Arm Cortex-R5F MPCore up to 533MHz. It also includes a graphics
chipset with the Mali�-400 MP2 up to 667MHz and on-SOM memory with 4 GB of DDR4
memory 16 GB of �ash. The FPGA contains 256,000 system logic cells, 26.6 Mb of on-chip
SRAM and 1,248 DSP slices. The development boards present various communication interfaces
such as USB3.0, SATA 3.1, DisplayPort, Gigabit Ethernet as shown in Figure 2.1.

Figure 2.1: Selected development platforms and their main interfaces as well as alternative
targets for lower consumption applications.

In order to explore energy-e�cient and compact solutions, two others targets were used to
implement intermediate or alternative reduced versions of the system: Digilent Zybo Z7-20 and
Digilent CMOD A7 presented in Figure 2.1. The Digilent Zybo Z7-20 is also based on a smaller
Zynq architecture that features Dual-core Arm® Cortex®-A9 MPCore� up to 866 MHz with
no graphic chipset. The Digilent CMOD A7 is a small target embedding only a FPGA. The
Figure 2.1 summarizes the targets selected and the Table 2.1.

Development board KR260/KV260 ZyboZ7-20 CMOD A7
Target XCK26 XC7Z020 XC7A35T

Processor
4x ARM Cortex A53
2x ARM Cortex R5F

2x ARM Cortex A9 -

System logic cell 256,000 85,000 33,280
DSP slice 1,248 220 90
On-chip memory (Mb) 26.6 4.9 1.8
Fmax BRAM (MHz) 585 388.2 200
Fmax URAM (MHz) 500 - -
Fmax DSP (MHz) 644 464.25 464.25

Table 2.1: Comparison of the main characteristics of the selected targets. The maximum
frequencies correspond to the maximum frequencies of components in the best case scenario
from the datasheet. BRAM corresponds to the on-chip memory blocks.
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2.3 Communication Protocols and Interfaces

Communication protocols are rules and standards that de�ne how systems communicate with
one another to transmit information. On the other hand, interfaces refer to physical or logical
connections between two devices or systems that allows them to communicate with each other.

Communication protocols are key elements in most systems as they guarantee coherency
and integrity of data with respect to the latency and throughput imposed by the application.

Most protocols comply with standards covering criteria such as service quality, security or
data integrity. Standard also are applied to interface ruling the physical constraints of the
connector or their logical connections.

There are numerous communication protocols, often designed to meet a speci�c need or
optimized for certain applications. Hence, choosing a communication protocol requires an
analysis of the needs and constraints of the system while also considering the target architecture.

This section aims to introduce a basic knowledge of the essential communication protocols
and interfaces involved in the system developed.

2.3.1 AXI Protocol: E�cient SoC Interconnect Communication

The Advanced Microcontroller Bus Architecture (AMBA) is an open-standard, on-chip inter-
connect speci�cation for the connection and management of functional blocks in SoCs designs.
Essentially, AMBA protocols de�ne how functional blocks communicate with each other that
simpli�es the development of designs with multiple processors and large numbers of controllers
and peripherals. It provides several bene�ts including �exibility to work with a wide range
of SoCs, compatibility through standard interface speci�cations, bandwidth that corresponds
to the product of the clock speed and the width of the data bus and relatively low latency in
burst-based sytem.

The Advanced eXtensible Interface (AXI) protocol comes with the third generation of
AMBA interface de�ned in the AMBA 3 speci�cation (see Figure 2.2). It is targeted at high
performance, high clock frequency system designs and includes features that make it suitable
for high-speed submicrometer interconnect.

The AXI4 protocol that comes with the AMBA 4 speci�cations in 2010 introduced the
AMBA 4 AXI4 along with the subsets AXI4-Stream and AXI4-Lite protocols (see Figure 2.2),
all used in the system mainly for the interactions between the PS and PL.

The AXI4-Stream protocol is designed for unidirectional data transfers from with reduced
signal routing, which is well suited for implementation in FPGAs.

The AXI4-Lite protocol is intended for communication with simpler, smaller control register-
style interfaces in components.

The documentation of the manufacturer [Xilinx, 2017] describes the three types of AXI4
interfaces as:

� AXI4: for high-performance memory-mapped requirements

� AXI4-Lite: for simple, low-throughput memory-mapped communication (for example,
to and from control and status registers).

� AXI4-Stream: for high-speed streaming data

Both AXI4 and AXI4-Lite interfaces consist of �ve di�erent channels: read and write ad-
dress channels, read and write data channel as well as write response channel. Data can be
transferred in both directions between the master and slave simultaneously with varying data
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Figure 2.2: Evolution of Advanced Microcontroller Bus Architecture (AMBA) speci�cations
to meet the demands of processors and new technologies. The yellow rectangle shows the AXI4
standard used in the system.

transfer sizes. The AXI4 is limited to burst transactions of up to 256 data transfers where the
AXI4-Lite does not allow burst and only allows one data transfer per transaction. At a hard-
ware level, AXI4 allows systems to be built with a di�erent clock for each AXI master-slave
pair, a convenient feature for FPGA implementation. The Figure 2.3 shows write and read
transactions using the AXI protocol that provides separate data and address connections for
reads and writes, which allows simultaneous and bidirectional data transfer.

Read transaction. The master initiates a read through the read address channel by speci-
fying the size of the transfer and the address. The slave transfers the data using the read data
channel.

Write transaction. The master initiates a write through the write address channel by spec-
ifying the size of the transfer and the address, then transfers data through the write data
channel. The slave indicates the status of the write transaction on the write response channel.

Master
interface

Read address channel
Address

and
control

Read data channel

Read
data

Read
data

Read
data

Read
data

Slave
interface

X-Ref Target - Figure 1-2

Master
interface

Write address channel
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and
control

Write data channel

Write
data

Write
data

Write
data

Write
data

Write
response

Write response channel

Slave
interface

Channel architecture of reads Channel architecture of writes

Figure 2.3: Architecture of read and write channels in AXI protocol that shows AXI4 read
and write transactions.
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2.3.2 USB: The Universal Standard for Device Integration

The Universal Serial Bus (USB) protocol is a standard communication protocol enabling devices
to connect and communicate with each other. USB is widely used for connecting peripherals
such as mouses, keyboards, printers, etc. It is a standard yet �exible protocol allowing com-
munication with a wide range of devices through the use classes adapting to the size and
functionalities of the device as shown in Figure 2.4. In addition, it shows high transmission
speed up to 10 Gb/s in its latest standards while also providing other features such as power
supply or error detection. The USB interface have many connector types (type A, type B,
micro, mini, ...) as well as cables. USB 2.0 and USB 3.0 are two di�erent generations of USB
speci�cation o�ering di�erent capabilities and improvements on performances such as through-
put.

USB is based on two primary roles that devices can play when communicating over a USB
connection. The host initiates and controls the communication on the USB bus. It is typically
responsible for tasks such as managing the USB topology and addressing of devices, initiating
communication sessions or sending and receiving data to and from devices. The device is a
peripheral or a gadget that communicates with the host based on its speci�c class that de�nes
its functionality and interactions. Typically, the device respond to commands and transfer data
to and from the host as requested.

As the USB is a complex protocol, its implementation on the FPGA can be challenging and
relies on the support available in terms of IP cores. USB has multiple layers and intricacies
that involves low-level, thus implementing the entire USB protocol can be demanding and
time-consuming forcing the use of dedicated IP cores.

Figure 2.4: Structure of the Universal Serial Bus (USB) that shows the device classes as well
as the host and device roles.

The USB protocols is used including various classes in the system as it is handled by a
generic operating system. Nonetheless, an intermediate version of the system explored com-
munication through USB2.0 using the Communication Class Device (CDC) as the main data
communication protocol.

2.3.3 Ethernet: Connecting Devices in Networks

Ethernet protocol dictates the way devices communicate within local and wide area networks.
By utilizing a wired physical medium, typically Ethernet cables, it enables data exchange
between computers, servers, and networking equipment. It is ubiquitously used in homes,
businesses, data centers and the broader internet infrastructure.
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Ethernet operates on the principle of packets, in other words, the data is broke down into
packets for e�cient transmission and routing. The protocol o�ers various speeds, ranging from
10 Mb/s Ethernet to modern variants like 1/10/100 Gigabit Ethernet (1 Gb/s, 10 Gb/s or 100
Gb/s). Ethernet has a deterministic nature that allow to predict or determine its behavior
with certainty as well as low latency, thus making of Ethernet a solution suited for real-time
applications such as streaming and online gaming. Ethernet is a complex protocol and interface
that features several layers illustrated in Figure 2.5.

1 Physical layer

2 Data link layer

3 Network layer

4 Transport layer

5 Session layer

6 Presentation layer

7 Application layer
ISO/OSI

Ethernet
Application

Transport (TCP, UDP)
Internet (IP)

Driver
Logical Link Control (LLC)

Media Access Control (MAC)
PHY

Ethernet (hardware)

Figure 2.5: Open Systems Interconnection model (OSI model) is a conceptual model from
the International Organization for Standardization (ISO).

Implementing Ethernet on FPGA involves challenges due to its complexity and multiple
layers that are di�cult to translate at the low-level of description proposed by FPGA, forcing
the use of dedicated IP cores. FPGA implementations of the Ethernet protocol further enhance
the development of real-time applications with high rates and low latency thanks to the FPGA
architecture that does not include software that induces �uctuating latency.

Nonetheless, its development is rather di�cult and time-consuming without the use of ded-
icated IP cores. The use of the Ethernet protocol on a processor-based architecture also shows
great performances thanks to the use of components that optimize data transfer like DMA that
will be detailed in the next section.

The Ethernet communication is used in the system as the main data communication protocol
thanks to its high throughput and low latency. It is handled on a software side by a generic
operating system, thus greatly simplifying the implementation.

2.3.4 UART: Basic Device Communication

The Universal Asynchronous Receiver/Transmitter (UART) protocol is a serial communication
protocol that transmits data between peripherals such as computers and microcontrollers. It
is widely used in numerous applications amongst communication with microcontrollers or data
communication between peripherals in RFID based applications or GPS modules.

The UART protocol uses asynchronous serial communication with con�gurable speed. An
asynchronous communication implies that no clock signal synchronize the output bits from the
transmitting device going to the receiving end. The UART contains two signal: transmitter
(TX) and receiver (RX). The data is transferred bit by bit as shown in Figure 2.6.

UART is a simple protocol that can easily implemented on FPGA with a low implementation
cost, but that features low throughput and limited reliability in cables.
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Start D0 D1 D2 D3 D4 D5* D6* D7* D8* P* StopIdle Idle

UART frame

*

Bit Time = 1 / Baud Rate

Stop

*  optional

Figure 2.6: Elements of a UART frame showing start, stop, parity (P) and data bits (D).

The UART is used in almost all the versions of system in both hardware and software as a
communication protocol forwarding debug data.

2.3.5 SPI: Simpli�ed Device Connection

The Serial Peripheral Interface (SPI) protocol is a serial communication protocol usually used to
connect microcontrollers and peripherals. Just like the UART protocol, SPI is widely employed
in a diverse range of applications including interfacing with microcontrollers.

Unlike UART, the SPI protocol is a synchronous serial communication that shares the
clock signal between devices for synchronization. The SPI interface uses multiple lines for
communication: Master Out Slave In (MOSI), Master In Slave Out (MISO), Serial Clock
(SCK) and Chip Select (CS). The data is transferred bit by bit when the chip select signal
(CS) is set low as depicted in Figure 2.7.

SPI allows transfers at higher speed than UART and simultaneous communication with
multiple devices. While it requires more wiring compared to UART, SPI is a protocol easily
and e�ciently implementable on FPGA that comes at a low implementation cost.

SCK
CS

MISO 1 2 3 4 5 6 7 8 zz

1 2 3 4 5 6 7 8 zzMOSI
Figure 2.7: Elements of a SPI frame showing the di�erent signals involved.

The SPI protocol is widely used in the system for the interactions between the hardware
and other external components connecting with the system.

2.3.6 Wi-Fi: Wireless Device Connectivity

The Wi-Fi (a brand name standing for Wireless Fidelity) protocol allows devices to connect
and communicate wirelessly, eliminating the need for physical cables. Wi-Fi is widely used
for creating wireless local area networks (LANs) that provide internet access to devices like
smartphones, laptops and IoT gadgets.

Wi-Fi operates by transmitting data using radio waves in speci�c frequency bands, typically
2.4 GHz or 5 GHz. Devices equipped with Wi-Fi capability can establish connections to access
points (routers) and communicate with each other. On the technical side, the IEEE 802.11
standard de�nes the protocols that enable communications with current Wi-Fi-enabled wireless
devices. The standards operate on varying frequencies, deliver di�erent bandwidth and support
di�erent numbers of channels. AWi-Fi frame has a rather complex structure and multiple layers
including various related to network with a maximum size of 2346 bytes. Typically, the latency
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observed with Wi-Fi is about 5 to 10 ms for a throughput that can reach a theoretical 10 Gb/s
in its latest theory.

As Wi-Fi is a complex protocol composed of multiple layers, its implementation remains
highly challenging on FPGA. Even with dedicated controller handling the physical layer (PHY),
the entire protocol stack includes higher-level protocols that are not well-suited for FPGA that
operates close to the hardware with a low level of description.

The Wi-Fi communication is used in the main system as well as in an alternative version as
an optional communication protocol for the main data, thus providing an interesting solution
for embedded applications thanks to its wireless nature.

2.3.7 PMOD: Standard Device Interfacing

The Peripheral MODule interface (PMOD) standard de�ned by Diligent is a versatile and
widely adopted interface for seamlessly connecting peripheral modules to microcontroller and
FPGA-based systems. PMOD o�ers a standardized approach to extending system functionality,
allowing a diverse range of peripherals like sensors, actuators and communication modules to
be easily integrated.

The PMOD connects peripheral modules to FPGA and microcontroller development boards
using either 6 pins (power, ground and 4 signals) or 12 pins (2 powers, 2 grounds and 8 signals)
as illustrated in Figure 2.8. PMOD may also refer to modules compatible with the PMOD
interface.

Thanks to its recon�gurable nature, FPGA are very �exible system that can adapt to a
wide range of hardware and allow the design of custom interfaces. Using a standard inter-
facing through PMOD allows facilitated communication between PMOD modules integrating
peripherals and FPGA. Thanks to their plug-and-play nature, PMODs allow rapid prototyping
and embedded systems development, thus enabling adaptable expansion of FPGA capabilities
across a wide range of applications. The PMODs largely used by the team include the PMOD
DA4 that integrates a 12-bit digital to analog converter to display analog waves and the PMOD
ESP32 that integrates an ESP32 microcontroller featuring Wi-Fi and Bluetooth.

B

C D

A

1
2
3
4
5
6

1
2
3
4
5
6

7
8
9

10
11
12

1
2
3
4
5
6

1
2
3
4
5
6

7
8
9

10
11
12

Spec A Spec B

Spec C Spec D

Figure 2.8: Peripheral MODule interface (PMOD) speci�cations.

The PMOD are largely used in the system through the interfaces available on all the targets
to provide a generic utilization of various components such as DAC and Wi-Fi communications
for the monitoring of the system.
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2.4 Architecture and components of the SOM K26

The SOM K26 is a custom-built Zynq� UltraScale� MPSoC that is a family of integrated cir-
cuits developed by AMD Xilinx which combines the processing capabilities of processors with
programmable logic on a single chip. It is designed to provide a high level of processing per-
formance, �exibility, and integration for a wide range of applications, particularly in embedded
systems and high-performance computing. The Figure 2.9 recapitulates the di�erent blocks
and components of the Zynq� UltraScale� MPSoC architecture.

The chip is then divided in two parts: Programmable Logic (PL) and Programmable Logic
(PL). The PS part that is the ARM-based processing system consists of multiple cores, in-
cluding Cortex-A53 application processors for general-purpose computing tasks and Cortex-R5
real-time processors for time-critical tasks. These cores can run di�erent operating systems and
handle various applications and operating modes. The PL is the programmable logic portion
that consists of recon�gurable logic cells and resources, i.e. the FPGA. In the standard oper-
ation, it is designed to be used as hardware accelerator thanks to various components of the
FPGA like Digital Signal Processor (DSP) slices.

The on-chip interconnect allows e�cient communication between the PS and PL to allow
data exchange the software and hardware components through various methods.

It features various memory components including DDR4 memory controllers and on-chip
memory as well as various cache levels. It also features various interfaces such as PCIe, USB,
Ethernet, and various other standard I/O interfaces to connect with external devices and net-
works. This section aims to provide basic understanding of the di�erent parts and components.

Figure 2.9: Architecture block diagram of the Zynq� UltraScale� MPSoC devices of EV
variant adapted to create the SOM K26 that features quad application processor and GPU.
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2.4.1 Application Processing Unit (APU)

The Application Processing Unit (APU) consists of four Cortex-A53 MPCore processors, L2
cache and related functionality designed for system control and compute-intensive applications
that do not need real-time performance (see Figure 2.9). The Cortex-A53 MPCore processor
is the one of the most power-e�cient Arm v8 processor capable of seamless support for 32-bit
and 64-bit code. It makes use of a highly e�cient pipeline with advanced fetch and data access
techniques for performance. It �ts in a power and area footprint suitable for entry-level devices
and is at the same time capable of delivering high performance in scalable enterprise systems
by integrating several core thanks to a high core density.

The core includes advanced Single-Instruction Multiple-Data (SIMD) and �oating-point
extension tailored for media and signal processing applications thanks to instructions targeting
tasks such as audio, video, 3D graphics, image and speech processing. It also implements the
Arm generic timer architecture, debug architecture as well as an external generic interrupt
controller.

To put it brie�y, the APU integrates powerful cores capable of performing e�ciently most
calculations. While providing essential features to get closer to a real-time behavior like timers
and interrupts, APU is not designed for real-time application and are oriented toward the
execution of an operating system.

2.4.2 Real-Time Processing Unit (RPU)

The Real-Time Processing Unit (RPU) includes a pair of Cortex®-R5F processors for real-
time processing that implements the Arm v7-R architecture and includes a �oating-point unit
(Arm VFPv3 instruction set) as shown in Figure 2.9. In the Cortex-R5F processor, the in-
terrupt latency is kept low, achieved by having a dedicated peripheral port that provides low
latency access to the interrupt controller and by low-latency memory (tightly-coupled memo-
ries). The Cortex-R5F processor is used for many safety-critical applications where the timing
is important.

The Cortex-R5F processor is a mid-range CPU for use in deeply-embedded real-time sys-
tems. It includes a technology that optimizes the code density and processing throughput
to maximize performances. The processor has tightly-coupled memory (TCM) ports for low-
latency and deterministic accesses to local RAM in addition to caches for higher performance
to general memory. It also supports �oating-point arithmetic as well as error checking and
correction to provide improved reliability and safety.

To recapitulate, the RPU integrates a core slightly less powerful than the APU, but that
is capable of performing e�cient calculations at low-latency to guarantee real-time operation.
Hence, the use of the core are tailored for real-time applications where computations are to be
performed in a given time.

2.4.3 Graphics Processing Unit (GPU)

The Graphics Processing Unit (GPU) is a 2D and 3D graphics subsystem based on the Arm
Mali-400 MP2 hardware accelerator (see Figure 2.9). It contains components such as one
geometry processor and two pixel processors that perform tasks such as scaling, rotating, and
positioning the geometry of objects in the scene or rendering the pixels to produce an image.
The GPU can be con�gured using the software libraries such as openGLES 2.0 API.

Brie�y, the GPU embedded is mostly suited for 2D or 3D graphics rendering more than
general purpose computation and more particularly in this case to handle the desktop interface
of an operating system and its applications.
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2.4.4 Memory

Memory is an essential component that involves the notion of access latency �referring to the
time it takes to retrieve or store data, throughput �representing the rate of data transfer as
well as size of the memory. Most systems integrate multiple memory types to ful�ll the di�erent
requirements of the system and serve di�erent purposes by having memories with di�erent size
and access latencies.

The SOM K26 integrates various types of memory serving di�erent purposes: the processors
caches, the external high-speed dynamic random-access memory (DDR DRAM), internal on-
chip memory (OCM), tightly-coupled memory (TCM), eMMC, EEPROM, QSPI �ash memory
and the PL memory blocks.

Processor cache. Processor cache is a special high-speed memory from which processors
access their instructions and data. They are small memories (1 MB for L2 cache memory of
the APU) that are present close to each core to allow fast access to memory with low latency.

External DDR DRAM. The external memory corresponds to 4 GB 64-bit DDR4 memory
that is high-speed dynamic random-access memory mostly accessed by the cores. The most
common use is to act as a temporary memory bank for the operating system operation. It is
a memory of a large size and high throughput but showing a high latency and that requires
frequent refresh operations.

Internal on-chip memory. The on-chip memory corresponds to 256 KB of RAM divided in
four banks of 64 KB that is designed to ensure low memory access latency for the RPU.

TCM. Tightly-coupled memory (TCM) is also a low-latency memory used by the RPU.
Each Cortex-R5F processor contains two 64-bit wide 64 KB memory banks of TCM memory
for a total of 128 KB of memory.

eMMC. The Embedded MultiMediaCard (eMMC) is a 16 GB non-volatile memory inte-
grated in the SOM that retains stored information even after power is removed. It is mostly
designed to store the data necessary for the system to operate.

EEPROM. The electrically erasable programmable read-only memory (EEPROM) is a 64
Kb non-volatile memory pre-programmed during manufacturing and that provides device con-
�guration, identi�cation, and manufacturing data.

QSPI �ash memory. The Quad SPI �ash memory of 512 Mb (64 MB) is also a non-volatile
memory that can be used to program the device on startup. Because of its smaller size, it is
mostly used to contain the essential data necessary for the system to start.

PL on-chip memory. The on-chip memory in the PL part corresponds to 26.6 Mb of memory
organized in block of RAM (BRAM 36 Kb and URAM 288 Kb). As this memory is accessed
in hardware at the lowest level by the FPGA, it shows an extremely low latency of one or two
clock cycles.

On the development boards KR260 and KV260, a SD card slot provides another memory
through the SD card that provides non-volatile memory ranging in the tens of gigabytes. This
memory can be used either to store data in �les or to store the essential data required for the
system to operate.
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2.4.5 Connectivity

The connectivity on the SOM contains various interface controllers that can be con�gured for
the applications. Among them can be found Serial Advanced Technology Attachment (SATA)
to connect storage devices, DisplayPort to connect display peripherals, PCIe an expansion bus
standard for connecting to one or more peripheral devices like a computer and Ethernet SGMII
to connect to a network. It also includes four 10/100/1000 tri-speed GEM peripherals that
allow controlling Ethernet connection at di�erent speeds. USB 3.0 and USB 2.0 controllers to
connect to a wide range of devices and systems also are available as well as two UART (up to
1 Mb/s).

As for the interfaces available in the development boards selected shown in Figure 2.1, the
KR260 is the most complete carrier board that integrates 4 Ethernet ports, 4 USB ports, 4
PMOD connectors, DisplayPort, HDMI and GPIO (organized in Raspberry Pi header). The
KV260 features fewer connectors with only one Ethernet port and one PMOD connector but
for a lower price. The ZyboZ7-20 features 6 PMOD connectors, one Ethernet port and one USB
port as well as two HDMI ports while the CMOD A7 integrates only one PMOD connector and
GPIOs.

2.4.6 System functions and management

The system functions and management of the SOM K26 include many components and pro-
cesses that are not essentially necessary to the understanding of the system so as this section
will focus on a crucial component that is the DMA. Other components for example include the
system monitor that allows monitoring of the temperature of the cores, fundamentally a crucial
element to ensure correct functioning of the system but not essential to the understanding of
the system developed.

The Direct Memory Access (DMA) is a component tailored to perform memory to memory
and memory to I/O bu�er transfers. It is for example used to perform data transfer between
RAM and a peripheral device such as Ethernet controller. The bene�t of the DMA is to o�oad
the CPU and then allow high throughput data transfers without involving the CPU.

Without the DMA, the CPU would issue commands to read data, wait for the data to be
fetched and then transfer the data by its self.

With DMA, the CPU sets up the parameters for the data transfer (source, destination, and
size) and then hands control over to the DMA controller. The DMA controller directly accesses
data and transfers it without the constant involvement of CPU. Once the transfer is complete,
the DMA controller noti�es the CPU. Meanwhile, the CPU can continue executing other tasks,
thus improving overall system performance.

The Figure 2.10 shows the block diagram of the DMA. The DMA is composed of 3 major
blocks: the common bu�er, the arbiter (AXI write channel and AXI read channel) and the
DMA engine channels.

Common bu�er. The common bu�er is shared between the DMA channels to hold the AXI
read transaction data before it goes out on an AXI write channel and is sized to allow utilization
of full AXI bandwidth.

Arbiter. Each DMA channel has two AXI read interfaces: one interface is used for reading
data bu�ers and the other interface is used for reading bu�er descriptors that contain informa-
tion about the bu�er. The DMA channels share an AXI write channel. The DMA implements
round-robin arbitration so as each channel is given an equal portions and in circular order
without priority.
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DMA engine channels. The DMA channel is responsible for the bulk of the DMA operation
and management that are transfer execution, coordination of transfer parameters, monitoring
progress and generating noti�cations for the CPU.

Figure 2.10: Block diagram of the Direct Memory Access (DMA) in Zynq UltraScale+ devices
showing the three major blocks: common bu�er, arbiter and DMA engine channels.

To put it brie�y, the DMA is a crucial component that allows large data transfers between
various peripherals of the system with a limited involvement of the CPU, thus signi�cantly
improving the performances of the system for data transfers. To illustrate this point with a
practical example, the DMA can be used to move data e�ciently between the PL and PS part
or between the external peripherals like Ethernet to either the PS or PL part.
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2.5 Processing System (PS): Embedded Processors within SoC FPGA

The Processing System (PS) contains the Application Processing Unit (APU), Real-Time Pro-
cessing Unit (RPU), and peripherals. It is often referred to as the software part of the design.
The software stacks available for Zynq UltraScale+ MPSoC devices are: bare-metal, Linux
and FreeRTOS. Figure 2.11 recapitulates the three software development stacks. This section
focuses on the di�erent operating modes as well as the methods used to design each solution.

User Applications

Libraries
(FreeRTOS, file system, OpenAmp, ...)

Drivers
(Ethernet, USB, UART, ...)

Real-time Processing Unit (RPU)
(ARM Cortex-R5 cores)

User Applications

Libraries
(XilFPGA, XilFlash, lwIP 211, ...)

Standalone drivers
(Ethernet, USB, UART, ...)

Zynq Ultrascale+ MPSoC Hardware

Board Support Package (BSP)

User space

User Applications

Libraries
(libxrt_core, xbutil, xmutil, ...)

Linux drivers
(zocl, dma_proxy, ...)

Kernel space

Application Processing Unit (APU)
(ARM Cortex-A53 cores)

Linux
Bare metal FreeRTOS Linux

Figure 2.11: Software development stack for bare metal, FreeRTOS and Linux on Zynq
MPSoC architecture.

2.5.1 Bare Metal: Low-Level Hardware Programming

Bare metal refers to a software development approach where the code runs directly on the hard-
ware without any underlying operating system (OS), thus directly controlling and utilizing the
hardware resources such as the APU or RPU processors, memory and FPGA in the particular
case of the Zynq MPSoC architecture. AMD Xilinx provides a bare metal software stack called
the standalone board support package (BSP) as part of the Vitis� software platform (see Fig-
ure 2.11). The Standalone BSP gives simple single-threaded environment that provides basic
features such as standard input/output and access to processor hardware features.

The bare metal development for Zynq MPSoC consists of code in languages C or C++ com-
piled through the Vitis tool chain to generate a .bin �le containing all the components necessary
for the system to operate (software executable, fpga con�guration, ...). It involves setting up
the initialization functions, managing interrupts and interfacing directly with peripherals and
memory through low-level functions.

Bare metal programming is suitable for applications that require maximum performance
and minimal latency as the software layer is minimal and do not induce �uctuating latencies
as with an operating system. It is often used in scenarios such as real-time control, signal
processing and custom accelerators using the FPGA fabric. However, this approach requires
a solid understanding of the hardware architecture and low-level programming concepts. It is
also complex, highly time-consuming and lack versatility because the code is speci�c to the
application developed.

In the process of designing a �exible and user-friendly design, the lack of �exibility and high
development time make it less suitable for our application. Nonetheless, the high performances
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provided by a bare metal approach were explored in an intermediate version.

2.5.2 FreeRTOS: Real-time operating system

FreeRTOS is a real-time operating system (RTOS) that provides a layer of abstraction that
enables e�cient management of tasks and scheduling to create a multi-threaded environment.
AMD Xilinx includes FreeRTOS support as part of Vitis� software platform, o�ering a similar
development approach to bare metal but with the functionalities of a real-time operating sys-
tem like multi-tasks processing. FreeRTOS is aimed to run the RPU of the SOM as shown in
Figure 2.11.

FreeRTOS facilitates a multi-threaded environment, enabling to create tasks that run con-
currently with speci�c priorities, manage communication between the tasks and shared access
to resources using features like semaphores and mutexes. The layer of abstraction provided by
RTOS reducing the complexity of hardware interaction and resource management.

Similarly to bare metal, it involves writing code in C or C++ that uses FreeRTOS libraries
for task creation, synchronization, and memory management. The code is also compiled through
the Vitis tool chain to generate the board con�guration.

FreeRTOS o�ers a good compromise between performances and versatility as it allows main-
taining real-time performances with a certain level of abstraction. However, even though FreeR-
TOS provides a layer of abstraction, it is still considered as low-level and implies a solid under-
standing of the hardware architecture and low-level programming concepts.

While FreeRTOS is a solution perfectly suiting the needs of our application, it lacks of
�exibility and the low level of abstraction induces high development time. Hence, the sole use
of FreeRTOS for the application would not be su�cient. An optimized design, considered but
not developed, would lie in both FreeRTOS running on the RPU and a Linux running on the
APU.

2.5.3 Linux: Versatile Embedded System Platform

Linux is a well-known and widely used open-source operating system that provides a versatile
environment that o�ers a wide range of features and capabilities for embedded systems with
a higher level of abstraction than FreeRTOS. It o�ers a rich set of drivers, libraries and tools
that facilitate e�cient interaction with the hardware components including the APU cores and
FPGA (see Figure 2.11). The Linux software stack can be leveraged by di�erent tools:

� PetaLinux Tools: The PetaLinux tools include tools (Linux source tree, U-Boot and
Yocto-based tools) to easily build complete Linux images (kernel, root �le system and
device tree) and applications for AMD Xilinx devices.

� Open Source Linux and U-Boot: The Linux Kernel sources needed for Zynq Ultra-
Scale+ MPSoC are provided by AMD Xilinx then allowing the generation of linux images
using the open source tools for Linux iamge creation.

� Commercial Linux Distributions: Some commercial Linux distributions like Canon-
ical Ubuntu feature support for Xilinx UltraScale+ MPSoC devices including advanced
tools for Linux con�guration, optimization, and debug.

Linux-based development for the Zynq MPSoC involves con�guring and customizing the
Linux kernel to match the hardware con�guration. This notably includes selecting the necessary
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drivers, enabling speci�c features and tuning the kernel to optimize performance. Additionally,
Linux o�ers a user-space environment that allows to create and manage user applications using
familiar programming languages (Python, C, C++, ...) and development tools (SSH, ...).

The bene�ts of Linux in embedded systems is the vast ecosystem of software packages and
libraries, enabling rapid and versatile application development while reducing development time
thanks the high level of abstraction. Moreover, Linux allows multitasking and multi-threading
capabilities with high level of abstraction making it simple, along with a network stack facili-
tating connectivity.

However, while Linux o�ers versatility and convenience, it introduces a layer of complexity
that impacts real-time performance. The scheduling and resource management of the operating
system introduce �uctuating latencies that makes it less suitable for applications requiring strict
real-time behavior. While using a preemptive Linux kernel can mitigate scheduling latencies
and enhance real-time capabilities, it remains less suitable than FreeRTOS for strict real-time
behavior.

Because Linux brings a powerful and versatile environment and o�ers features and tools
for fast and �exible development, a commercial Linux distribution was used in the system. It
allows a �exible and user-friendly monitoring of the system with acceptable latencies, albeit
�uctuating.

2.6 Programmable Logic (PL): FPGA Technology within SoC FPGA

The Programmable Logic (PL) contains the Field Programmable Gate Array (FPGA) fabric.
It is often referred to as the hardware part of the design. This section aims to introduce the
elements and processes that are speci�c to the FPGA technology to provide the basic knowledge
necessary to the understanding of the hardware design of the system.

2.6.1 Data encoding

Data encoding is the process of encoding information or data into a certain format, representa-
tion or structure. It is an important element of a system as it directly impact the memory by
its size, resource consumption and performances by the complexity of its handling and opera-
tions. In arti�cial neuron modeling, the main data are variables relating to biological property
and equation so as it is mainly decimal numbers. Various representation of decimal number
exist, but they can be categorized in two categories: �xed-point coding and �oating-point.
Fixed-point coding and �oating-point are both used in the system developed. The Figure 2.12
illustrates the two representations by showing the number of bits used and what they are coding.

Fixed-point coding. Fixed-point coding is an encoding for fractional numbers using a �xed
number of bits to code both integer and decimal part of the number additionally with a sign
bit, but it basically remains an integer. This data encoding is widely to represent digital data in
digital systems such as computers and embedded systems. Fixed-point coding �xes the number
of bits used to represent integer and decimal part of the number therefore impacting the accu-
racy, the more bits used the more accurate the coding is. The main bene�t of �xed-point coding
lies in low implementation cost and low complexity compared to coding such as �oating-point.
Therefore, �xed-point coding often suits well embedded systems where resources are limited
thanks to its lower memory consumption, simpler and faster computation. Its limitation lies
in the operations that imply high magnitude variations like in the case of an addition of very
large number with a very small number, so as depending on the encoding size the small number
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impact might not be considered.

Floating-point coding. Floating-point coding is an encoding representing fractional numbers
using a variable number of bits. Unlike �xed-point coding, �oating-point allows a better accu-
racy by allowing the decimal point to "�oat". It is done by introducing an exponent part that
represents the integer power by which the fraction will be multiplied by (see Figure 2.12). It
is mostly used in scienti�c calculation or high performance applications where high accuracy is
required. This representation is more �exible than �xed-point therefore allowing to represent
a wider range of numbers with higher accuracy. Indeed, �oating-point coding deals very well
with high magnitudes variations in operations like multiplications and divisions but a bit less
with additions and subtractions. Nevertheless, �oating-point coding shows higher complexity
and implementation cost on most architectures.

0 0 1 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

sign exponent (8-bit) fraction (23-bit)

float32

0 0 0 0 1 0 1 0 1 0 00 1 0 0 0 1 0

sign  fraction (10-bit)integer (7-bit)

sfixed<18,10>

0 0 0 1 0 1 0 1 0 000 1 0 0 0 1 0

  fraction (10-bit)integer (8-bit)

ufixed<18,10>

0 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0

1  5  10

float16

Figure 2.12: Data representation for �xed-point and �oating point coding.

2.6.2 High Level Synthesis tools

High Level Synthesis (HLS) is a design process allowing to generate RTL code for FPGA from
high-level description such as algorithms or models. As the FPGA development usually in-
volves a low level and time-consuming description language, HLS is an e�cient tool to design
systems while allowing developers to concentrate more on algorithms and system functionalities
rather than hardware related issues. Thus, it can allow a reduction development time and an
expansion of the range of developers targeting FPGA architecture.

At the present time, notable supported languages include the widely used C/C++ and
MATLAB. While being a recent tool, HLS has proven to be able to generate e�cient and reli-
able implementations thanks to its ability to optimize the resources of the FPGA.

AMD Xilinx proposes the Vitis� HLS software that is designed to work along with the tool
chain of FPGA development provided by AMD Xlinx as illustrated in Figure 2.13. In recent
AMD Xilinx targets, HLS is gaining a larger role, especially because of the increasing size of
the target that make it more and more di�cult for a human to optimize designs. Still in recent
versions of AMD Xilinx softwares, a new compiler emerged, v++, that can compile HLS module
into PL kernel objects to link with Linux.
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Figure 2.13: AMD Xilinx High Level Synthesis (HLS) tool chain diagram showing how
C/C++ can be translated and simulated to Register Transfer Level (RTL) for FPGA design.

2.6.3 Memory

As for PS part, memory in FPGA exists in various types varying in size, properties and avail-
ability, allowing to suit best the needs of the design in throughput, memory capacity or spatial
placement. The main memory elements in AMD Xilinx FPGA are: distributed RAM, BRAM
and URAM as depicted in Figure 2.14. The availability of the di�erent RAM as well as their
operating frequencies depend on the architecture of the targets, so as for example URAM are
only available in UltraScale+� devices (see Table 2.1). At the hardware level, memories intro-
duce the notion of ports that gives read and/or write access to a memory address.

Distributed RAM. Distributed RAM corresponds to combinatory logic implemented as syn-
chronous RAM. As it names suggests, its main feature its spatial distribution so as distributed
RAM are sparse small memory blocks that take advantage of a high level of ports. Using
LUTRAM, 32-bit or 64-bit single or dual ports RAM can be implemented, where function
generators in SLICEM can implement 512-bit single- to quad-port distributed RAM or 64-bit
octal-port distributed RAM (see Figure 2.14). The main limits of distributed RAM are their
size and extra consumption of resources in case of multiple clocking.

BRAM. Block RAM (BRAM) stores up to 36 Kib of data (kibi bits (1Ki = 210 = 1024))
and can be con�gured as either two independent 18 Kib RAMs or one 36 Kib RAM. Each block
RAM has two write and two read ports that can be con�gured with independent port widths
for each of those ports like for example 4Ki x 9, 2Ki x 18 or 1Ki x 36 as shown in Figure 2.14.
The con�guration is nonetheless constrained by the operating mode of the BRAM. The bene�t
of the BRAM over the distributed RAM is its size and its handling of multiple clocking. Even if
they are less numerous compared to distributed RAM, they feature a good spatial distribution
all over the chip.

URAM. Ultra RAM (URAM) is a single-clocked, two port memory available in UltraScale+�

devices. URAM are large RAM usually available in a fewer quantity compared to BRAM but
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that shows a capacity of 8 36 Kib-BRAM (see Figure 2.14). The URAM is placed in the device
to allow cascading URAM column for the entire height of the device, thus forming a signi�cantly
large memory. While URAM provides signi�cantly large memories, they also show constraints
such as �xed width, single-clock only and the inability of �le initialization.

Others. Other components in the FPGA can be used to memorize data in smaller sized
bu�er, this is notable the case of Look Up Table (LUT) or Flip-Flop (FF). FF (or registers) are
synchronous elements allowing the storage of one bit available in a large quantity, allowing the
use of multiple FF to memorize a data. FF are widely to bu�er signals in order to maximize
the operating frequency of a system as well as synchronizing signal in a pipeline architecture.

Distributed RAM BRAM URAM

288 Kib

72

4096

36 Kib 18 Kib

36189

1024
2048
4096

32-bit LUTRAM
64-bit LUTRAM

512-bit SLICEM

D
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 / 

Si
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Width
projected URAM

Figure 2.14: Main memory elements of Zynq UltraScale+ MPSoC PL architecture. Dis-
tributed RAM is combinatory logic implemented as synchronous RAM, BRAM are memory
blocks of con�gurable width and URAM memory blocks of �xed width. Kib stands for kibi bits
(1Ki = 210 = 1024)

.

2.6.4 Arithmetical and mathematical operations

Due to the low-level hardware nature of FPGAs, the implementation of mathematical operations
is di�erent from software-based calculations on conventional processors that execute operations
through sequences of instructions.

FPGAs directly generates a custom digital circuits to perform each computation so as this
hardware-centric approach provides high e�ciency gains through true parallel computation.

However, it can allow limit or complicate the implementation of mathematical operations,
especially for operations on data with high level of abstraction like �oating-point.

A crucial component for the implementations of mathematical operation on FPGA is the
Digital Signal Processor (DSP). DSP is speci�cally designed and optimized to carry out perfor-
mant computation like multiplication or addition. Its architecture allows running computations
at high clock frequencies and its placement on the FPGA close to the BRAM allows routing
and interconnecting them e�ciently with the other elements of the system (see Figure 2.15).
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It allows placed so as DSP can be cascaded implement large pipelined operations. In the SOM
K26, the DSP are DSP48E2 that output the result P on 48 bits and can accept up to 4 inputs:
A on 30 bits, B on 18 bits, C on 48 bits and D on 27 bits as shown in Figure 2.15. Exam-
ples of operations that can be performed by the DSP using the IP core include A × B + C,
(A+D)× (A+D) + C + C or A×B + P − C.
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Figure 2.15: Basic DSP48E2 functionality and DSP tile interconnect in columns based from
the documentation [Xilinx, 2021]. DSP are placed closed to the BRAM to allow e�cient routing
that ensures functioning at high clock frequencies.

Addition (add) and Subtraction (sub). Additions (add) and subtractions (sub) of integers,
including �xed-point coding as its coding is essentially the same, is a simple operation in FPGA.
In can e�ciently be implemented with combinatory logic to perform like operations in one clock
cycle, but they can also be implemented using DSP. The implementation of these operations
for �oating-point coding (fadd and fsub) shows considerably higher implementation cost and
latency, but can still be implemented with relative ease.

Multiplication (mul). Multiplications of integers or �xed-point numbers (mul) can be per-
formed easily and e�ciently by DSP, striking a balance between latency and operating fre-
quency. Adding more registers increases latency while also raising the operating frequency.
Multiplication of �oating-point numbers (fmul) is similarly performed by DSP with a slightly
higher latency and implementation cost. A common optimization to replace multiplications in
FPGA is to replace the multiplication of power of two by left shifts.

Divisions (div). Division of integers or �xed-point numbers (div) is a rather di�cult oper-
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ation to implement that requires algorithms such as Restoring Division algorithm or multipli-
cation by the inverse. A compromise can usually be found between the hardware usage and
the latency. The unbounded nature of division that can lead numbers to tend towards in�nity
can also be challenging to handle with integers. On the contrary, divisions of �oating-point
numbers can be implemented in fabric for a very low implementation cost and a fair latency.
As for multiplications, a common optimization relies on a shift to the right to replace divisions
by power of two.

Others. The intricacy of implementing other complex mathematical functions varies signif-
icantly based on the speci�c functions involved. While some IP cores or libraries may exist to
implement the functions, some very speci�c operations require developing custom hardware or
�nding optimizations that will allow the use of the elementary operations available. A common
example is the implementation of trigonometric functions by implementing a CORDIC (COor-
dinate Rotation DIgital Computer) as performed by the team in [Khoyratee et al., 2019]. An
approach used in the system also relies on the use of pre-computed calculations stored in RAM
to implement complex mathematical functions.

2.7 Summary

In this section, we explained the choice of the digital platform selection for the development
of a real-time biomimetic SNN development on a SoC FPGA. It granted knowledge of the
already existing system and technological landscape that in�uenced and supported the choice
of the targets selected. Additionally, it introduced the communication protocols and interfaces
inherent to our system that are essential in the design of a system that aims to interface with
biology. It also presented and detailed the di�erent elements and characteristics of the SOMK26
with particular attention given to its two di�erent parts PS and PL. To conclude, this chapter
furnished the essential knowledge necessary to grasp a good understanding of the software and
hardware design development within this speci�c target context.
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3.1 Introduction

With a deeper understanding of the arti�cial neural networks and the platform used for its
implementation, the focus shifts on the design of the system.

Given that the system developed is intended to be used by biologists for either real-time
emulation of biophysically detailed networks or hybridization purposes, it is crucial to consider
key features such as �exibility and user-friendliness. In this way, non-specialists users could
easily use and tune the system to suit their needs and adapt to their experimental setup.

Another important aspect of the system lies its capability to interface with other systems
or components so as it must be able to interface with most standards of biophysical interfaces.

The system also requires performances to be capable of emulating a satisfying number of
neurons and synapses to create a network, while ensuring its real-time behavior.

Considering the target selected, an e�cient design will then involve the use of di�erent level
of abstraction, translated by di�erent programming languages, to provide the best compromise
between performances, ease of use and �exibility.

This chapter will explore the di�erent part of the design and explain the design methods
applied, starting with the hardware component operating in the PL part of the SOM. Then,
the di�erent layers of software developed responsible for the user interface, monitoring and
communication will be explained. Finally, the performances of the system will be presented.

3.2 Overview

The system developed was named Bi÷muS standing for "BIOmimetic EMUlation Single com-
partment". It corresponds to the design that is capable of running up to 1,024 single com-
partment neurons fully connected, supporting a total of 220 synapses. It includes on-board
monitoring and o�ers versatile external communication options such as Ethernet or WiFi.

A prototype version sharing the same base and integrating multicompartmental neurons
was also developed as Bi÷muM for "BIOmimetic EMUlation Multicompartmental".

The system is developed using 3 di�erent languages that corresponds to 3 distinct parts.
Python language is used for the con�guration scripts and monitoring to provide user-friendly
and rapid-prototyping as it is aimed to be used by non-specialists. The C++ language is used
to develop the application responsible for setup and control running on the SOM in the PS part
to provide better performances and proximity with hardware. VHDL was used to describe the
hardware circuit in the PL part of the SOM that implements the calculation core of the neural
network. Some C++ description was used to generate the HLS IP used in the calculation core.
The Figure 3.1 illustrates the di�erent parts of the system and indicates their hardware or
software nature for a con�guration and monitoring on an external computer. The con�gura-
tion of the network in Python can also be executed on the SOM thanks to the Canonical Ubuntu.

The neurons constituting the SNN are modeled with high biological plausibility using the
Hodgkin-Huxley (HH) paradigm and a current mimicking synaptic noise to reproduce sponta-
neous activity. Neurons are connected using biomimetic synapses mimicking AMPA, NMDA,
GABAA and GABAB receptors to allow fast and slow synaptic excitation or inhibition. All pa-
rameters of the HH model, synaptic noise and synapses parameters are con�gured from Python
scripts.

Alternative prototype versions running on di�erent target notably include a reduced version
on CMOD A7, an early version on Zybo Z7-20 that implements USB communication and a
multicompartmental calculation core in development that works in speci�c context on SOM
K26.
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Figure 3.1: Block diagram of the global architecture of Bi÷muS. The nature of each part of
the system (software or hardware design) is identi�ed by red and pink symbols. The on-board
con�guration and monitoring are also available but not displayed on the �gure.

3.3 Hardware: Computation Core

This section will detail the hardware design corresponding to the computation part of the sys-
tem. The computation core corresponds to the main part responsible for the emulation of the
neurons. It includes the calculation of ion channels states, ion currents, noise and stimulation
currents as well as synaptic current.

The hardware computation core for single compartment neurons in its latest version allows
emulating 1,024 fully connected neurons for a total of 220 synapses. The prototype computation
core for multicompartmental neurons allows the computation of 16 neurons with 64 compart-
ments without synapses.

The neurons composing the network are modeled with high biological plausibility using
the HH paradigm [Hodgkin and Huxley, 1990] in the Pospichil model [Pospischil et al., 2008]
implementing 6 conductance-based currents. An injected current mimicking synaptic noise fol-
lowing an Ornstein�Uhlenbeck process [Destexhe et al., 2001, Grassia et al., 2016] reproduces
spontaneous activity by triggering action potentials on a random basis.

The computation core is clocked at 400 MHz that represents 80% of the maximum operating
clocking frequency of the components used (URAM 500 MHz).

The hardware design also implements mixed data coding using both �oating-point and �xed-
point to provide a good balance between latency and resource-usage that directly correlates to
performances.

This section presents the hardware design of the system that describe the calculation core
implementing neurons and synapses to create a network. The Figure 3.2 shows the architecture
of the calculation core running on the FPGA part that will be detailed in this section.
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Figure 3.2: Block diagram of the calculation core architecture for single compartment neurons
(Bi÷muS). Green blocks and lines correspond to modules operating on �xed-point coding and
blue blocks and lines to �oating-point.

3.3.1 Ion channels states

The ion channels states in the HH model correspond to the variable responsible for the acti-
vation and inactivation of the ion channel ruled by equations of the form of Equation 1.7 or
Equation 1.8 previously introduced in chapter 1 (section 1.5.4). The ion channel states are
sigmoid functions evolving between 0 and 1 and varying depending on the ion channels.

The arithmetical functions ruling the ion channel states usually involve division and expo-
nential, two operations that does not suit well the FPGA architecture.

The approach previously used in the team relied on the use of a CORDIC (COordinate
Rotation DIgital Computer) and �tted equations to describe all ion channels states dynamics
as hyperbolic tangents or hyperbolic cosinus [Khoyratee et al., 2019].

However, this approach shows limitations in terms of the equations that can be implemented
so as it enforces to perform a �tting of the equations and limits the dynamics that can be en-
coded.

Another approach explored in this system was the use of pre-computed tables stored in
RAM to reduce the calculations of the ionic channel states as proposed in [Hines, 1984]. The
calculation of the ion channel states based on a restated equation of the forward Euler solving
then corresponds to a simpler equation that relies on two pre-computed tables stored in RAM
that corresponds as equated in Equation 3.1.

xn+1 = r1(Vn)× xn + r2(Vn) (3.1)

where, xn+1 and xn are respectively the new and current value of the ionic channel states,
Vn is the membrane voltage at previous time step, r1 and r2 are the ion rate tables decoded
from membrane voltage.
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More concretely, this method applied to the Equation 1.7 and Equation 1.8 gives respectively
the Equation 3.2 and Equation 3.3.

r1(V ) = 1− dt× (αx(V ) + βx(V ))

r2(V ) = dt× αx(V )
(3.2)

r1(V ) = 1− dt

taux(V )

r2(V ) =
dt× x∞(V )

taux(V )

(3.3)

where, r1 and r2 are the pre-computed rate table for ionic channel states decoded from the
membrane voltage, dt the time step in ms, taux(V ), x∞, αx and βx the equation of the ionic
channel state depending on the formalism used.

The Equation 3.1 can be easily implemented on FPGA using DSP connected directly to
memories, thus providing good performances in terms of latency, operating frequency and
resources usage.

Nonetheless, this method introduces a balance between the implementation cost and accu-
racy through the size of the pre-computed RAM, larger RAM would provide better accuracy
but consumes more memory. The Figure 3.3 demonstrates that principle by comparing the
membrane potentials with and without the method for 4 types of neurons FS, RS, IB and LTS
depending on 3 sizes of pre-computed RAMs.
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Figure 3.3: Comparison of the balance between the size of the pre-computed RAM (16, 256
and 2048) and its accuracy on the emulation of FS, RS, IB and LTS neurons in response to a
50 ms stimulation step. The simulation was performed in software with for sole di�erence the
use of the pre-computed RAM.

It points out that for some type of neurons that have fast dynamics like FS or RS neurons,
small tables are su�cient to obtain satisfying �tting. On the other hand, slow dynamics like in
LTS neuron require larger tables to �t the original behavior.
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Depending on the size of the tables, di�erent memory types can be used. For 256-element
table, the implementation in distributed RAM is the most suitable as it shows good perfor-
mances for a little resource usage. The use of BRAM for small tables is not optimized and
would constitute a waste of resources since the table would not be completely �lled. An opti-
mized use of the BRAM would be to have 1024 or 2048 points so as the RAM would be fully
�lled for BRAM 18Ki and 36Ki.

As the dynamics of the ion channels may vary greatly as for example in LTS where the
Sodium current is signi�cantly stronger than the Calcium current, the data encoding required
high accuracy. Thus, all ion channel states were encoded using single �oating-point (32 bits).
Fixed-point coding would have required signals as large as 32 bits, thus representing the same
memory footprint as single �oating-point and relatively close implementation cost for multipli-
cations and additions performed by DSP. The aim of providing a �exible platform also pushed
the use of �oating-point that allow �ner tuning of the parameters of the system without limi-
tations in ranges imposed by �xed-point representation.

The design of the module that perform the calculation of Equation 3.1 was designed using
Vitis HLS (see Figure 3.2) to develop in a faster way the implementation of �oating-point
coding that is less straightforward in VHDL with IP cores.

The previous values of the ion channel states were stored in BRAM to allow a good scaling
in terms of number of neurons (1152 neurons per 36 Kib BRAM) and performances with DSP
calculations.

The setup of the pre-computed memory by the software part of the system through AXI-Lite
will be further detailed in the setup part in this section.

3.3.2 Single compartment neurons

The equation of the HH neuron model were slightly modi�ed for the implementation on the
FPGA to save resources and better takign advantage of the FPGA architecture. As equated
in Equation 1.16 previously detailed in chapter 1 (section 1.5.4), the sum of the ion currents is
multiplied by ∆t

Cm
. In order to save memory resources, all conductances were pre-multiplied by

that coe�cient, thus saving the use of a memory to store Cm for each neuron, a division and a
multiplication by dt.

The parameters of the neuron model are summarized in the Table 3.1 as well as the preset
values for FS, RS, IB and LTS neuron types. The parameters of the model for each neuron are
stored in BRAMs so as each parameter is allocated 1 BRAM, thus allowing up to 1152 neurons
per parameter. The setup of the parameters is done the software part through AXI-Lite and
will be further detailed in another section.

The data encoding of the neuron computation block features both �xed-point and single
�oating-point coding to obtain a good compromise between performances and accuracy.

The computations of ion currents are performed using single �oating-point 32 bits as the op-
erations are essentially multiplications with only one addition/subtraction e�ciently performed
by DSP and some combinatory logic. The other currents that require less accuracy such as
stimulation, noise and synapses are performed using �xed-point coding (mostly 18 and 25 bits)
as shown in Figure 3.2.

The addition using large �xed-point signals can show better accuracy than �oating-point
and do show signi�cantly better performances in terms of implementation cost and latency.
Thus, the all currents are transcoded from single �oating-point 32 bits to �xed-point 32 bits,
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then summed to obtain the new membrane potential (see Figure 3.2). The membrane voltage
is then transcoded back to �oating-point to be stored in the RAM for previous state.

While most of the dynamics can be encoded using less resources with large �xed-point
coding (32 bits), the memory footprint is similar to single precision �oating-point (32 bits).
Following the aim of �exibility of the system, �oating-point coding shown acceptable increase
of latency and resources usage for the �exibility gain brought to the system by �oating-point
coding.

Similarly to ion channels states, the computation of the ion currents computation were
performed using Vitis HLS, thus providing an extensive gain of development time and genericity
as a new current can be easily added to the module from C/C++ language.

Table 3.1: Parameters of the Hodgkin-Huxley model for the 4 preset types of neuron tunable
from the Python scripts.

Parameter FS RS IB LTS Unit

gNa 0.05 0.05 0.05 0.05 S/cm2

gK 0.01 0.005 0.005 0.005 S/cm2

gM 0.0 7× 10−5 3× 10−5 3× 10−5 S/cm2

gL 0.0 0.0 1× 10−4 0.0 S/cm2

gT 0.0 0.0 0.0 4× 10−4 S/cm2

gLeak 0.00015 0.0001 1× 10−5 1× 10−5 S/cm2

ENa 50.0 50.0 50.0 50.0 mV
EK -100.0 -100.0 -90.0 -100.0 mV
ECa 0.0 0.0 120.0 120.0 mV
ELeak -70.0 -70.0 -70.0 -75.0 mV
vinit -70.0 -70.0 -70.0 -75.0 mV
µnoise 0.048 0.042 0.042 0.042 1
θnoise 8.0 8.0 8.0 8.0 1
σnoise 0.11 0.09 0.09 0.09 1
Istim 0.03 0.03 0.03 0.03 mA/cm2

area (67× 10−4)2 (96× 10−4)2 (96× 10−4)2 (96× 10−4)2 cm2

cmem 1.0 1.0 1.0 1.0 µF/cm2

The time step selected for the computation of the neuron was 2−5 ms, as in [Khoyratee et al.,
2019], to ensure a satisfying stability and accuracy for the system solving with Forward Euler
solving. The Figure 3.4 shows the membrane potential corresponding to the implementation of
FS, RS, IB and LTS neurons using the parameters of Table 3.1 and 2048-element ion channel
states tables in response to a 10 ms stimulation.

The Figure 3.4 shows a good �tting for each type of neuron in response of a short stimu-
lation time. However, the LTS neuron can show less accurate �tting for longer stimulation as
highlighted by Figure 3.3 in the case of a 50 ms stimulation in software.

The computation latency of the calculation core for only neurons without synapses is of 96
clock cycles. At the current clock of 400 MHz and time step of 31.25 µs (2-5 ms), the calculation
core would allow the computation of at least 11,000 independent neurons.

The implementation of the neurons mainly uses DSP, LUT and BRAM. The detailed re-

Romain Beaubois Page 82



3 TOWARD A FLEXIBLE REAL-TIME BIOMIMETIC SNN ON SOM K26

source utilization associated with the implementation of neurons in the computation core will
be presented further.

50 mV FS

RS

IB

LTS

Stimulation trigger

10 ms

emulation
implementation

Figure 3.4: Comparison of membrane voltage response in implementation to a 10 ms cur-
rent injection for Fast Spiking (FS), Regular Spiking (RS), Intrinsic Bursting (IB) and Low-
Threshold Spiking (LTS) neurons. Waveforms were captured using the on-board saving of the
system. Emulation corresponds to the software emulation of the system through the Python
scripts and implementation to the waveforms monitored on the system.

3.3.3 Multicompartmental neurons

The computation core emulating multicompartmental neurons in Bi÷muM presents a di�erent
architecture mostly explained by the use of a di�erent solver. As presented in the chapter 1
section 1.6.3, the Crank-Nicholson solver is used thus equating the evolution of the membrane
potential in a mainly tridiagonal system of equations.

As explained in [Hines, 1984], using matrix inversion to solve the system is a resource-
intensive approach so as a wise numbering of the compartments would allow e�cient solving
using the Hines algorithm.

However, this algorithm was tailored for CPU architecture so as variant of the algorithm
suiting better the GPU architecture are used [Valero-Lara et al., 2018]. This is notably the
case of a GPU-based simulator Arbor developed by the Human Brain Project community [Akar
et al., 2023].

The algorithm uses a parent node vector p so as the matrix can simply be stored using two
vectors corresponding to the main diagonal D and upper diagonal U. Branching points are then
reconstructed thanks to the parent node vector. The Algorithm 2 generates the main diagonal
D and the Algorithm 1 solves the matrix.

The computation core for multicompartmental neurons thus requires to update the ion cur-
rents computation to output two separate coe�cients D and B. It also requires two computation
blocks that perform the backward and forward sweep of the Algorithm 1.
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The coe�cients for each segment are then stored in one dual-port RAM (lower addresses is
D and upper addresses are B) with one BRAM per neuron. These BRAM act as bu�er memory
for the operations of the forward and backward sweep by loading and storing the values of the
segments at each iteration until the matrix is completely solved.

Algorithm 1 Hines algorithm used in Arbor simulator

1: function solve(d, u, p, b, nseg)
// Backward sweep

2: for i← nseg − 1 to 0 step −1 do
3: factor ← u[i]/d[i]
4: d[p[i]]← d[p[i]]− factor · u[i]
5: b[p[i]]← b[p[i]]− factor · b[i]
6: end for

// Forward sweep
7: b[0]← b[0]/d[0]
8: for i← 1 to nseg step 1 do
9: b[i]← b[i]− u[i] · b[p[i]]

10: b[i]← b[i]/d[i]
11: end for
12: return b
13: end function

Algorithm 2 Initialize format main diagonal

1: function formatD(d, u, p, nseg)
2: for s← 0 to nseg − 1 do
3: d[s]← d[s]− u[s]
4: if p[s] ̸= −1 then
5: d[p[s]]← d[p[s]]− u[s]
6: end if
7: end for
8: end function

The updates of the computation core for the handling of multicompartmental neurons are
summarized in Figure 3.5. While the main changes concern the computation core, other mis-
cellaneous changes are required in the architecture to allow multicompartmental modeling.

As the solving algorithm of the matrix includes sequential divisions and multiplications,
the stability of the solving requires high accuracy that is better translated by �oating-point.
Indeed, the coe�cients greatly vary with the geometrical dimensions of the neurons that may
create larger order of magnitude delicate to handle with �xed-point.

A compromise can be found in the design to either favor a scaling in neurons or segments.
The current implementation corresponds to a naive approach where each segment corresponds to
a backward and forward cell that allow a better scaling in neurons as all neuron solving operate
concurrently. However, the resource utilization will greatly limit the number of segments that
can be implemented.

Another approach would rely on the use of only one backward cell and one forward cell
shared between neurons using a FIFO that memorizes the operations to be computed in a
queue. This approach would allow minimal resource utilization thus a good scaling in segments
but might limit the number of neurons and segments because of the computation time. Indeed,
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as the latency of the backward and forward cell is not negligible, a bottleneck would be formed
by the number of computations one cell can accept in the pipeline.

The best solution would be a compromise of these two approach by implementing a limited
number of backward and forward cells shared between neurons. Hence, a balance between the
resource utilization and performances can be found. The Figure 3.5 presents the architecture
corresponding to the architecture described.
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Figure 3.5: Block diagram of the di�erence for multicompartmental computation core. The
ion currents are split into two coe�cients D and B. Dual-port bu�er RAM for D and B of each
neuron loads and stores with the forward and backward sweep cells.

Similarly to the computation core for single compartment neurons, a software emulation
model in Python was developed to ease the FPGA development by providing an emulation
of the hardware architecture to predict the implemented behavior. The Figure 3.6 presents a
comparison with the NEURON software [Carnevale and Hines, 2006] targeting the emulation
of a motor neuron at early stage that will be further detailed in Chapter 4.

In Figure 3.6, the soma of a motor neuron including only sodium, potassium and leak
currents is modeled using 5 segments of identical length, diameter and properties. A stimulation
current is inserted at 1 ms in the �rst segment for 10 ms and propagated in the others segments
of the section, thus validating model thanks to the propagation of the stimulation to adjacent
segments. As the segments are of identical and relatively small length and properties, the signal
propagated is identical and almost instantly propagated.

The di�erences observed between the emulation and the NEURON software are explained
by the di�erence of solver that is CVODE for NEURON and Crank-Nicholson for the software
emulation, but mostly by the hardware architecture constraints in terms of data coding and
operations. Indeed, the hardware is operating on mixed �xed-point / 32-bit �oating-point op-
erated on hardware by a FPGA instead of 64-bit �oating-point on software with a CPU for
NEURON.

In conclusion, the computation core for multicompartmental model features an architecture
of higher complexity and resource utilization than the single compartment core. It also intro-
duces a compromise in the architecture designed that could either favor the scaling in neurons
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or in segments. In this manuscript, the prototyped core designed is promoting the scaling in
segments rather than neurons as the emphasized is put on the morphology of neurons so as the
more compartments, the better.
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Figure 3.6: Software emulation of the hardware architecture for the soma of a motor neuron
section in response to a 10 ms stimulation in the �rst segment. (A) Software emulation of the
hardware architecture for a section of 5 segments. (B) Comparison of the software emulation
with similar emulation using NEURON software.

3.3.4 Synapses

The synapses implemented follows the Destexhe model [Destexhe et al., 1998] that models four
receptors AMPAR, NMDAR, GABAAR and GABABR. Similarly to the ion channel states,
the sigmoid functions in synapses such as Tsyn or Bsyn were pre-computed and stored in mem-
ory similarly to ion channel states. The calculation then corresponds to Equation 3.4 and
Equation 3.5.

Tsyn(Vpre) =
Tmax

1 + e
−(Vpre−Vp)

Kp

= Trate(Vpre) (3.4)

where, Trate is the pre-computed memory decoded from the value of the previous membrane
voltage Vpre and Kp (5 mV), Vp (2 mV) and Tmax are constants.

Bsyn(V ) =
1

1 + e−0.062×V ×Mg2+
3.57

= Brate(Vpre) (3.5)
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where, Brate is the pre-computed memory decoded from the value of the previous membrane
voltage Vpre, Mg2+ (1 to 2 mM) is a constant.

The synaptic conductances were computed in nS to allow calculation of variables in the
same order of magnitude, then the current is multiplied at the end by a coe�cient pmul that for
unit consistency of units. This coe�cient also allow to create a scaling factor of the network by
assigning a stronger weights to synapses, hence corresponding to the in�uence of more synapses
and mimicking a larger network. The Figure 3.7 shows the architecture of the calculation core
for the synapses.
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ROM
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Figure 3.7: Block diagram of the synaptic current calculation module using �xed point coding.
The type of memory implemented is shown for blocks integrating FIFOs, ROM or rate tables.
The pmul ROM corresponds to pre-multiplied coe�cients including a scale factor to mimic larger
network through stronger synaptic current.

Calculations in the synapse module are carried out using �xed-point coding to optimize
resource utilization while maintaining accuracy by choosing signals of width corresponding to
the maximum range of the DSP. The weight and types of the synapses are coded using 16 bits
to simplify the memory �lling and decoding, thus allocating 14 bits to weight. The current
architecture stores the types and weights of the synapses in the URAM memories to allow the
largest storage size.

The calculations of the synaptic currents are essentially based on a sequential multiplication
and additions that can e�ciently be performed by DSP, providing high operating frequency as
well as limited resource usage.

In order to e�ciently interface the DSP with the memory, the principle of virtual RAM was
applied so as the weights were distributed over several RAMs to be interpreted di�erently from
their hardware structure.

The Figure 3.8 illustrates the basic calculation used in the synapse module as well as how
it is implemented in hardware using URAM memory.
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Figure 3.8: Concept and implemented block diagrams of calculations and memory orga-
nization for the synaptic current calculations. (A) Concept design of the synaptic current
calculation where a DSP is con�gured in multiply-accumulate mode and connected to a RAM
storing the weights. (B) Hardware implementation of (A) using URAM to store the synaptic
weights (C) Virtual design of synaptic weights RAM that shows how RAM are interpreted for
calculations. (D) Hardware implementation of (C) that presents the actual hardware storage
of the weights distributed in multiple URAM.

The parameters of the synapses are shared by all the neurons so as are stored in registers
setup by AXI-Lite, allowing to change the parameters of the di�erent types of receptors of the
network. The parameters of the synapses correspond to the Table 3.2 corresponding to the
equations of the synapses from [Destexhe et al., 1998].

Table 3.2: Preset parameters of the synapses using Destexhe model from [Destexhe et al.,
1998] tunable from the Python scripts.

Parameter AMPAR NMDAR GABAAR GABABR Unit

g 0.35 0.3 0.25 1.0 nS
E 0 0 −80 −95 mV
α 1.1× 106 7.2× 106 5× 106 − M−1sec−1

β 190 6.6 180 − sec−1

K1 − − − 9× 104 M−1sec−1

K2 − − − 1.2 sec−1

K3 − − − 180 sec−1

K4 − − − 34 sec−1

Kd − − − 100 µM4

n − − − 4 1
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The Figure 3.9 shows a validation of the behavior of each synaptic receptor using the
parameters presented in 3.2.

The excitatory synapses mimicked by AMPAR and NMDAR are tested by connecting a
stimulated spiking neuron connected to non spiking neurons.

The inhibitory synapses mimicked by GABAAR and GABABR are tested by connected
together stimulated neurons so as the inhibitory synapses would prevent neurons from spiking.

The Figure 3.9 validates this behavior by showing the fast and slow excitation and inhibition
of synapses in implementation.
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Figure 3.9: Behavior of a network of 4 identical neurons where only the type of synapses
changes. The network connectivity is a chaser: neurons are interconnected with a single synapse,
from N0 to N1, N1 to N2 and N2 to N3. A factor is applied to synaptic weights in order to
see an excitation or an inhibition despite having only one incoming synapse on each neuron.
(A) Only N0 is stimulated: AMPAR shows a faster response of excitation than NMDAR,
synaptic weight of N2 to N3 is too small resulting in a lack of excitation of N3 thus preventing
spiking. (B) All 4 neurons are stimulated: GABAAR shows a faster response of inhibition than
GABABR.

3.3.5 Setup

The hardware design setup for Bi÷muS and Bi÷muM corresponds to the hardware locked
properties of the system and to the dynamic setup.

The hardware locked properties correspond to settings like the clock frequency, maximum
memory sizes or PMOD ports. They are initialized from the VHDL package �le to allow generic
design and easier maintenance and update for future developers.

The dynamic setup corresponds to the arti�cial model parameters, synaptic connections
and monitoring parameters via AXI-Lite.

The AXI-Lite setup of RAMs is done using a loopback register �the writing address is
written back in another register. The variables are simply set up by latching the value of the
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AXI-Lite registers. Since the AXI-Lite is in a di�erent clock domain, in most cases the param-
eters are set on dual-port RAMs with a write port with the same clock as the AXI-Lite. In
other cases, parameters are synchronized in the other faster clock domain using double �ip-�ops.

The dynamic setup of the di�erent parameters of the system is essential to the �exibility of
the system by allowing online tuning. The AXI-Lite protocol is the most suited for such task
and allows setting multiple registers associated to parameters. It can be simply interface with
the computation core through an AXI port and shows low resource utilization. It is also well
suited for the instantiation of multiple cores by adding another AXI port and setup module.

3.4 Hardware: Monitoring

The hardware design responsible for the monitoring corresponds to the components and pro-
cesses that allow the monitoring of the spikes and membrane potentials waveforms of the
neurons. The monitoring can be handled through three di�erent ways operating concurrently:
AXI-Stream to DMA, SPI to the DAC on PMOD DA4 and SPI to the ESP32 processor on
PMOD ESP32.

This section details the hardware design that allows communication between the computa-
tion core and the di�erent monitoring elements.

3.4.1 Spikes and waves via DMA

The spikes and membrane potential waveforms of the neurons can be monitored in PS using the
DMA interfaced with the system using the AXI-Stream protocol and a FIFO in packet mode.

The stream of spikes and waves are stored in a FIFO in PL connected to a DMA for each
stream (spikes and waves). A FIFO in packet mode starts transferring to the DMA only if its
full or reached the programmable threshold. This allows to set di�erent data collection interval
for each stream by having a dynamic programmable threshold set by AXI-Lite.

As the data collection intervals for spikes and waves are largely di�erent in most cases
(tens or hundreds of milliseconds for spikes and tens of milliseconds or less for waves), two
independents DMA were implemented instead of a Multichannel DMA (MCDMA) that would
struggle switching streams.

The FIFO also implements independent clocking so as the data in the clock domain of the
computation core can be moved to the clock domain of the AXI protocol used for the DMA.
Both spikes and waves are organized in frames starting with time stamp or time step followed
by data in a stream using 32-bit signals.

Spikes frame. The spikes are compressed over a time stamp of 1 ms that is sent with each
frame followed by the spike activity coded with 0 for no activity and 1 for spiking. The spiking
activity of all neurons are sent in a frame.

tstamp N0 → N31 N31 → N63 Nmax−32 → Nmax

Waves frame. The membrane potential waveforms corresponds to the values at each time
step for a given number of neurons. The maximum number of neuron selected is �xed in hard-
ware to 16 but could be increased to �t speci�c needs for a slight increase of resources used. The
frame is constituted of a time step index and the membrane potential of all selected neurons
coded in 32-bit �oating-point.

tstep N0 (sel 0) N109 (sel 1) N511 (sel 15)
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The monitoring of spikes and waves are then running concurrently in hardware so as the
data collection interval for both channels have no impact on each other at the hardware level.
As for the limits of the data collection interval, the lower bound is limited to 1 time step (waves)
or 1 time stamp (spikes) and the higher bound depends on the size of the FIFO. The bigger
the FIFO, the higher the data collection interval.

The setup of the DMA interfaces like memory map width or stream width can also be tuned
to maximize the performances. The current method uses a stream width of 32 bits that �ts
single �oating-point coding and memory map width of 64 bits that suits better the PS handling.

3.4.2 Spikes via PMOD ESP32

The PMOD ESP32 features a radio with support for 802.11 b/g/n Wi� and dual-mode Blue-
tooth as well as Tensilica Xtensa microprocessor, usually referred to as ESP32.

This main bene�ts o�ered by this solution is �exible approach for interconnection of the
system that suit well in-vivo applications where cables are a concern, while maintaining a low
latency and acceptable throughput. In addition, this constitutes a reusable element to build a
reduced and minimal embedded version of the system targeting a smaller programmable logic
only target to create an energy-e�cient solution for embedded applications.

The stream of spikes is sent to the microcontroller using SPI protocol so as the implemen-
tation cost of this solution on the PL part is very low. Thus, using multiple PMOD to monitor
multiple cores would come at a very low-cost for the PL design.

The microcontroller is programmed to execute two tasks running concurrently using FreeR-
TOS so as a task constantly poll the SPI until it gets all the frame that is then passed to
another tasks that is responsible for sending the frame through UDP Wi-Fi.

The PMOD is simply plugged on one of the PMOD header present on the KR260 board.
The PMOD is �xed by hardware but can easily be modi�ed by modifying the pins to obtain a
di�erent physical con�guration of the system.

3.4.3 Waves via PMOD DA4

The PMOD DA4 features eight 12-bit channels allowing to output up to 8 membrane poten-
tials that allows a quick real-time visualization of the waveforms. The ESP32 is a versatile
microcontroller widely used for various applications like IoT, embedded systems and wireless
communication projects thanks to its Wi-Fi and Bluetooth capabilities. The main bene�t of
this solution is to propose a wireless.

The maximum operating clock frequency of the PMOD DA4 is 50 MHz thus requiring a
di�erent clock domain. The stream of membrane potentials is synchronized from the faster
clock domain to this slower clock domain using extension and latch of the data for each chan-
nel. Each channel selects the neuron waveform to display by comparing the neuron index to
the value of set by the AXI-Lite. The hardware design makes it so as the neuron select can be
changed online and be e�ective as long as the AXI-Lite register value is updated.

Similarly to the PMOD ESP32, the PMOD is simply plugged on one of the PMOD header
present on the KR260 board �xed by hardware that can be easily modi�ed by modifying the
pins to obtain a di�erent physical con�guration of the system.
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3.4.4 External stimulation

An external stimulation slot is available in hardware to trigger stimulation in each neuron for a
given time interfaced with the read channel DMA also used for spikes monitoring. This allows
e�cient and versatile interconnection of the system with PL through the PS.

A stream of data containing the stimulation period for each neuron is sent to the PL using
AXI-Stream protocol from the DMA. The stimulation period in multiple of the time step is
then written in the BRAM that stores the stimulation counters if the value is not zero.

Thus, all neurons can be stimulated independently with an independent period of time for
a very low resource consumption and almost and no impact on the computation core perfor-
mances. The timing diagram below shows the fram structure with stimulation duration noted
as stim dur.

stim dur N0 (10) stim dur N1 (5) stim dur N2 (0) stim dur Nmax (1)

The stimulation duration for each neuron is stored in a BRAM that is read at each time
step to detect if a stimulation is triggered in each neuron. Then, the stimulation duration is
decremented by 1 and the updated value is stored in the BRAM. When, all the values were
updated the module allows the update of the stimulation duration BRAM by the DMA from
the PS. The Figure 3.10 illustrates the design of the external stimulation module in hardware.

stim dur N0
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stim dur N3

stim dur Nmax
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Figure 3.10: Block diagram of the external stimulation module in hardware. A stimulation
trigger is applied to neurons for a stimulation duration given in number of time steps. The
stimulation duration is set by stream received from DMA

3.5 Software: setup, control and monitoring by C++ application

The software setup and control on the SOM are carried out by a C++ application operating in
the user space of the Canonical Ubuntu 22.04 for Bi÷muS. Using C++ allows a good compro-
mise between performances and level of abstraction that can operate either with an operating
system or in bare-metal using the Vitis tool chain, promoting versatility of the application to
operate in di�erent modes or on di�erent targets. Additionally, the low-level of C++ suits well
the proximity with hardware implied by FPGA.

This section presents the organization and main features of the C++ application that con-
trols and set the network running in the PL part.
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3.5.1 Structure and organization

The C++ application is operating in the user space of the Canonical Ubuntu 22.04 and uses the
dma_proxy driver provided by AMD Xilinx to interact with the DMA s in PL. The application
is responsible for the initialization, software and hardware con�guration as well as monitoring.
It can be executed either remotely via SSH or directly on the Ubuntu Desktop. The Figure 3.11
summarizes the di�erent functions of the application.

Software con�guration. The software con�guration is performed from the software con�gu-
ration �le tuned by user in the JSON format that can also be generated by the Python scripts.
It notably allows to enable the di�erent monitoring channels as well as the main parameters of
the application such as saving path or data collection intervals.

Hardware con�guration. The hardware con�guration uses the hardware con�guration �le
generated by the Python scripts that contains all the parameters of the network. The hardware
con�guration set the parameters of the neurons, synapses, monitoring and �ll the memory nec-
essary for the network to operate.

Monitoring. The monitoring corresponds to 3 threads responsible for the waves and spikes
monitoring as well as the external stimulation. The spikes and waves monitoring threads
have similar architectures that start with a reading of the DMA data, then the frames are
optionally saved locally in a �le or sent via Ethernet. The external simulation wait for the
stimulation trigger and data from Ethernet, then forward the stimulation information to the
PL (see Figure 3.11).

Initialization

Apply software configuration

Apply hardware configuration

Start monitoring

Stop monitoring

Read DMA
spikes

Save
frame in file

Send frame
via Ethernet

Read DMA
waves

Save
frame file

Send frame
via Ethernet

Wait external
stimulation

Write DMA
stimulation

threads

Figure 3.11: High-Level work�ow of the C++ application showing the main functions. Mon-
itoring of spikes and waves as well as external stimulation are operating in threads.
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3.5.2 Software con�guration

The software con�guration is performed from the software con�guration �le in the JSON format
that can be generated from the Python scripts or edited manually by the user. It participates
in the �exibility of the system by allowing the user to adapt the system to the application by
tuning data collection intervals or the monitoring channels to forward it to another system.

The parameters include the path to the hardware con�guration �le, emulation time, the
con�guration of the di�erent monitoring channels as well as the stimulation step settings.

The selection of the di�erent neurons to monitor on the DAC and DMA are set from a vector
specifying their index. The DAC monitoring can monitor up to 8 waveforms while the DMA can
monitor up to 16 waveforms. The saving path of both the waves and spikes monitored by DMA
can be set to allow local storage on either the SD card or on any external device connected to
board like a SSD drive connected via USB. The di�erent monitoring channels can be enabled or
disabled to o�oad the processors by allowing more CPU time to the other monitoring threads.
A stimulation step occurring once can also be setup to specifying its duration and delay.

The parameters are parsed from the JSON �le using a header only library "JSON for Modern
C++" by nlohmann to simplify compatibility. The parameters allowing the con�guration of
the application are listed in Table 3.3.

Table 3.3: Con�guration parameters of the C++ application setup from the JSON con�gu-
ration �le.

Key Description

fpath_hwcon�g Path to hardware con�guration �le
emulation_time_s Emulation time from 1 to 232 s by 1 s
sel_nrn_vmem_dac List of 8 neuron waveforms to select on DAC
sel_nrn_vmem_dma List of 16 neuron waveforms to select on DMA
save_local_spikes Enable/disable spike local saving
save_local_vmem Enable/disable waveform local saving
save_path Path to local saving �le
en_zmq_spikes Enable/disable ZeroMQ spike sending
en_zmq_vmem Enable/disable ZeroMQ waveforms sending
en_zmq_stim Enable/disable ZeroMQ external stimulation
en_WiFi_spikes Enable/disable WiFi spike sending
ip_zmq_spikes IP address ZeroMQ spike sending
ip_zmq_vmem IP address ZeroMQ waveform sending
ip_zmq_stim IP address ZeroMQ external stimulation
nb_tstamp_per_spk_transfer Time stamps to wait for spike collection (x1 ms)
nb_tstep_per_vmem_transfer Time steps to wait for waveform collection (x31.25 µs)
en_stim Enable/Disable simulation step
stim_delay_ms Stimulation step delay in ms
stim_duration_ms Stimulation step duration in ms

3.5.3 Hardware con�guration

The hardware con�guration corresponds to the setup of the di�erent properties of the network
such as the HH neuron model, synaptic connections and weights, ion rate tables as well as the
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monitoring properties. The setup is performed from the hardware con�guration �le generated
by the Python scripts, then parsed by a custom parser.

The AXI-Lite communication is accessed using /dev/mem that allows to control the registers
as an array starting at the memory address of the AXI-Lite through a virtual pointer. The
�xed-point and �oating-point conversions are done using the custom functions.

Memories are initialized using the loopback register. The data, address and write enable
are sequentially written. Then, the software waits for the loopback register to be equal to the
address written to set the write enable low before moving on to the next address. This method
is longer than a setup by AXI bursts but allows a simpler handling and resource utilization in
hardware.

The hardware con�guration also includes sourcing the seeds for the four noise generators in
hardware to allow a good randomization of the noise in all runs.

3.5.4 Monitoring

The application handles the monitoring of spikes and waves using DMA and the external
stimulation. The control of the DMA is performed by the dma_proxy driver provided by AMD
Xilinx. Each monitoring channel runs in a thread to allow parallel monitoring with di�erent
options like on-board local saving as well as forwarding through Ethernet over ZeroMQ. The
Figure 3.11 and Figure 3.12 summarizes the di�erent monitoring options of the system.

KR260 Carrier board

Programmable logic (PL)

Processing system (PS)
K26 SOM

SNN HH
Calculation core

Spike monitoring
Waves monitoring

AXI DMA

dma proxy driver
Kernel

Userspace
C++ Application

Canonical Ubuntu 22.04

Scope

DAC
Waves

ESP32
Spikes

Ethernet

Waves
Spikes
SSH

Host computer

Monitoring

Setup

Wi-Fi

Figure 3.12: Overview of system setup highlighting the monitoring available and showing the
setup from the con�guration �le generated by Python scripts.

ZeroMQ is an open-source universal messaging library widely used and embedded system
to build e�cient communication between applications. It o�ers di�erent messaging patterns,
networking functions and supports various programming languages and is often used for high-
performance, low-latency communication in real-time applications. The choice of this library
serves the purpose of versatility and performances of this application by providing performances,
various programming languages as well as standardized communication.

Local �le saving. The local �le saving of spikes and waves corresponds directly to the data
transferred by the DMA stored as binary without treatment to limit CPU involvement. This
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method guaranties a �xed latency independent of the network activity that suits better real-
time behaviors. While saving �les with large bu�ers exhibits negligible latency compared to
the time represented by the stored data, repeated writing of smaller bu�ers shows lower perfor-
mance. Thus, larger data collection intervals show better performance for �le saving and also
reduce CPU involvement by limiting the frequency of �le writing. Spikes can also be decoded
and stored in csv format but shows �uctuating computation time depending on the network
activity.

Ethernet forwarding. The Ethernet forwarding over ZeroMQ sends directly the data trans-
ferred by the DMA and can also operate with �le saving. The communication pattern is
PUSH/PULL that facilitates one-to-many distribution of messages so as the monitoring can be
forwarded to many other systems.

External stimulation. The external stimulation also uses ZeroMQ to receive the stimulation
frame in a PUSH/PULL pattern. It allows a standardized and easy interconnection with Bi÷-
muS through the C++ application.

The performances of the monitoring can be improved by disabling local �le saving or one
of the threads to give more CPU time to the threads. Using the application remotely without
the graphical interface of the desktop can allow more CPU time. A compromise can be found
between the data collection interval and monitoring enabled so as multiple threads can operate
concurrently e�ciently if the data collection interval is large enough.

3.6 Software: con�guration and monitoring by Python scripts

The Python scripts developed allow con�guration and monitoring of the system. Python is a
high-level open-source programming language known accessible and user-friendly that allows
fast prototyping. Hence, it suits well the need for a �exible and user-friendly way to con�gure
and monitor the system.

The Python scripts include the con�guration scripts that generate the con�guration �les
and emulate the con�guration and the monitoring scripts that allow visualization of spikes or
waves and send external stimulation.

The scripts can be executed either directly on-board or on another target, but the emulation
may be slow and resource-intensive so better suited for powerful computers.

This section presents the functions and features of the Python scripts generating the hard-
ware con�guration �le and software con�guration �le used to con�gure the system as well as
monitoring.

3.6.1 Con�guration

The con�guration of the system through the Python scripts include all the parameters of the
HH model, synaptic weights and types, ion table rates as well as various elements of the system.

The scripts implement preset types for neurons (FS, RS, IB, LTS) and synapses (AMPAR,
NMDAR, GABAAR, GABABR) using the parameters of [Pospischil et al., 2008] and [Destexhe
et al., 1998].

The scripts are organized in classes that include NeuronHH for the HH neurons, Synapses
for the di�erent synapses and HwCon�gFile that translates the con�guration into the con�gu-
ration �le shown in Figure 3.13.
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NeuronHH. The class NeuronHH set the parameters of the HH neuron model organized in
types that are preset or can be created by the user. It includes the parameters of ion currents
as well as generating the ion channel states tables from the functions and tune the size of the
table. It also set other parameters such as the value of the stimulation current.

Synapses. The class Synapses set the parameters of the synapses model organized similarly
to neurons. It includes the parameters of the synapses as well as other parameters such as
pre-computed synaptic rates.

HwCon�gFile. The class HwCon�gFile converts the di�erent parameters set by the user
into the hardware con�guration �le that is used to set the system. This class is not intended
to be modi�ed by the user as it is linked with application.

The scripts can be executed either directly on-board or on another target. The Figure 3.13
shows the con�guration scripts executed to generate the con�guration �les either on a computer
or directly on-board.

Host computer

SNN-HH.py

NeuronHH.py Synapses.py

HwConfigFile.py

SnnEmulator.py

Emulate FPGA behavior

KR260 Carrier board

Programmable logic (PL)

Processing system (PS)
K26 SOM

Canonical Ubuntu 22.04

• Configure SNN from configuration file
• Control SNN
• Collect and export data

C++ Application

SNN HH

SNN-HH.py

Figure 3.13: Overview of system setup from the con�guration �le generated by Python
scripts ran either on-board or on another computer. The con�guration �le is then read by a
C++ application running on Canonical Ubuntu operating system in the PS part to set up the
SNN in PL part.

3.6.2 Emulation

Along with the con�guration scripts, comes a class allowing the emulation of the con�guration
�le generated to assess the behavior of the network beforehand as shown in Figure 3.13. It al-
lows emulation of the network using the Forward Euler, solver, ion channel states pre-computed
tables as well as �xed-point coding.

SnnEmulator. The class SnnEmulator allows the emulation of the con�guration �le gen-
erated by running a simulation using the parameters from the �le. It allows visualization of
the internal variables of the simulation like ion channel states tables, currents or membrane
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potentials. It features di�erent plotting types like raster or membrane potentials subplots to
verify the behavior con�gured.

The emulation is based on commonly used libraries like the numpy library for calculation,
Fxpmath library for �xed-point coding and matplotlib for graphics to provide good perfor-
mances while keeping the code accessible. Nonetheless, the emulation is not optimized so as
the computation time is quite high for large network or long emulation times.

3.6.3 Monitoring

The monitoring scripts correspond to graphic user interfaces that allow to monitor spikes or
waves using Qt library with Python. PyQt is a set of Python bindings for the Qt applica-
tion framework enabling cross-platform Graphical User Interface (GUI) and applications using
Python.

It provides easy integration of Python with the rich features of Qt, allowing interactive in-
terfaces that can handle events. GUI development is notably fast to develop and show satisfying
speed and responsiveness as Qt has an optimized underlying C++ architecture. An example
of spike monitoring interface is shown in Figure 3.14.

Figure 3.14: Qt-based Graphical User Interface (GUI) developed for spikes or waves moni-
toring.

The monitoring interfaces are based on Qthread that creates and manages threads in a Qt
application to perform tasks concurrently without blocking the main user interface thread. The
di�erent threads communicate with each other using pyqtsignal that can notify a thread and
carry the data to the function connected to the signal.

These classes allow facilitated handling of usually complex processes in C/C++ while main-
taining correct performances, making it more accessible for users to add features to the interface.
Examples of features added to the monitoring interfaces will be presented in the next chapter
that focuses on applications.

3.7 Performances

The system designed is operating on a small and cost-optimized target so that it is important
to assess the e�ciency of the solution by analyzing the performances of the system in various
aspects such as the resource utilization, power consumption and latency. These metrics will
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allow comparison with the existing system in literature, localize bottlenecks, �nd optimizations
and consider using a smaller target for an alternative version.

This section presents the performances of Bi÷muS in terms of resource utilization, power
consumption and latency.

3.7.1 Resource utilization

The resource utilization presented correspond to the implementation of BioemuS on the AMD
Xilinx KR260 Robotic Starter Kit featuring 1,024 neurons with 6 conductance-based currents
and a total of up to 220 conductance-based synapses for a time step of 31.25 µs. The resource
utilization report associated with this implementation is shown in Figure 3.15.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Synapses Neurons Monitoring

LUT
FF

BRAM
URAM

DSP

Figure 3.15: Distributed resource utilization of Bi÷muS for implementation on AMD Xilinx
KR260 Robotic Starter Kit exported from Vivado 2022.2.

The part of the system that consumes the most resources corresponds to the synapse block.
The synapse block is the most challenging part of the system as it represents a signi�cant part
of the computation and storage. To obtain the best performances in this critical part, it is
required to provide su�cient throughput that imply high parallelization of the computation
and storage elements, thus highly impacting the resource utilization. As this implementation
is fully connected, the resource consumption is then at a maximum.

The resource utilization footprint of neurons is corresponds mostly to the BRAM used for the
parameters storage as well ion channel states memories. Using smaller ion channel states table
could allow the implementation in LUTRAM, thus highly reducing the number of BRAM used.
The FF and LUT usage corresponds mostly to the logic implemented parts of �oating-point
calculation like additions and subtractions, pipeline registers and control. The higher resource
utilization of the �oating-point coding is compensated by the greater �exibility brought to the
system.

The resource utilization can vary depending on the size of the monitoring elements so as
modifying the size of the monitoring FIFO or number of neurons to monitor can increase the
resource utilization. Especially, the FIFO in packet mode for spikes and waves monitoring as
well as DMA are using a quantity of BRAM depending on the size of the tranfers.

While most of the memory available is used, less than 50% of the computing capacity (Logic
and DSP) of the board is used by the system (see Figure 3.15). As the design is implemented
on an entry level target, the projection of the resource utilization on larger targets suggests the
possibility to run several calculation cores in parallel (see Figure 3.16) as well as allowing faster
emulation.
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Figure 3.16: Resources utilization of Bi÷muS. Utilization for main modules implemented on
AMD Xilinx KR260 Robotic Starter Kit and projected on high-end evaluation boards from
AMD Xilinx (Versal Premium Series VPK120 and VPK180 Evaluation Kits and Virtex Ultra-
Scale+ VCU118 Evaluation Kit). Logic corresponds to LUT and Flip-Flops, memory to the
total memory implemented as BRAM and URAM, DSP to the number of DSP slices.

An important element to consider is that the recent architecture such as Versal Adaptive SoC
by AMD Xilinx shows signi�cantly better support for �oating point calculation such as native
support in DSP for most operations. Hence, the implementation of the system on such target
is most likely to reduce considerably the resource utilization and optimize the performances.

3.7.2 Power

The power consumption is an important metric of the system for embedded systems, especially
in our applications that are in the end aiming to be embedded in neuroprostheses or other
electroceutic devices.

The overall system power consumption is 6.50W with 3.42W associated with the calculation
core as shown in Figure 3.17. Considering only the calculation core that is running on PL part,
Bi÷muS consumes 3.42 times more than SpiNNaker [Painkras et al., 2013] or BrainScaleS-2
[Pehle et al., 2022] that run on ASIC.

While it is known that Application-Speci�c Integrated Circuit (ASIC) usually consumes
less power that FPGA, it is more likely that our system consumes more power as the design
prioritized �exibility over power e�ciency. The power consumption could be optimized by up-
dating the system with power e�ciency in mind. Adding control design disabling the BRAM
or URAM when not used or accurate estimation of the monitoring size needed could reduce the
power consumption, but it could also translate in more constraints on the routing that could
a�ect the timing and resource utilization.

The development of a truly power-e�cient system would rather rely on the choice of a
smaller target and using a reduced version of the system prioritizing power consumption over
�exibility and performances.
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Figure 3.17: Distributed power consumption for implementation on AMD Xilinx KR260
Robotic Starter Kit exported from Vivado 2022.2.

3.7.3 Latency

Latency is crucial information in real-time system. Applied to the computation core, the latency
for the calculation of all the membrane potentials, the latency has to be inferior to the time
step of 31.25 µs to maintain real-time behavior.

As for monitoring, it has to be kept as low as possible to obtain coherent interfacing with
biology. Bi÷muS allows di�erent monitoring solutions in order to cover many interfaces and
compromises between throughput and latency to better suit the applications.

Local saving DMA. The on-board saving in �le allows obtaining relatively low latency as the
latency roughly corresponds to the DMA read and write operations through the dma_proxy
driver.

The latency observed to save spikes in �le using binary format is displayed in Figures 3.18A1,A2.
As for instance from Figures 3.18A2, in most cases the latency to save 100 ms of spikes is be-
tween 69 and 125 µs. The main drawback of this monitoring is that it enforces o�ine analysis.

Ethernet ZeroMQ. The monitoring using Ethernet over ZeroMQ shows a good compromise
between throughput and latency. The latency of the Ethernet communication is low so as the
average latency observed to send spikes through ZeroMQ (UDP) is evaluated to 240 µs for 100
ms of spiking activity based on ZeroMQ latency tests, thus showing a good ratio between the
latency and the amount of data transferred.

The complete latency of this monitoring channel includes the �uctuating latency read and
write operations of the DMA using the dma_proxy driver.

The latency observed for the application to send the data over ZeroMQ is displayed in
Figures 3.18B1,B2. From the chart presetend in Figure 3.18B2, the latency evaluated to send
10 ms of spikes is between 10 and 25.75 µs in most cases and between 18 and 43 µs for 100 ms
of spikes.

Analog waves using DAC. The monitoring of analog waves using the DAC is the monitoring
channel with the smallest latency as it purely hardware. The latency to update the value of all
channels of the DAC is about 6 µs.

Nonetheless, the accuracy of this monitoring is limited as it is only 12-bits DAC and the
throughput is quite low as it can only output 8 neurons.

Wi-Fi using ESP32. The monitoring Wi-Fi includes the latency of the SPI transfer to the
microcontroller that is very low as the DMA of the microcontroller with a very light software
layer and the latency of the Wi-Fi that is quite high. Indeed, the latency of the Wi-Fi protocol
is known to be quite high and in the millisecond range.
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Figure 3.18: Latency charts for spike monitoring for 100 data collections at di�erent inter-
vals. (A1,A2) On-board �le saving latency for spikes coded in binary based on 100 samples
at di�erent data collection intervals represented sequentially and in Pareto charts. (B1,B2)
Latency in application to send spikes with ZeroMQ over Ethernet for spikes coded in binary
based on 100 samples at di�erent data collection intervals represented sequentially and in Pareto
charts. (C1,C2) Latency to send spikes over Wi-Fi between two ESP32 for spikes coded in
binary based on 100 samples at di�erent data collection intervals represented sequentially and
in Pareto charts.

The latency between two ESP32 was evaluated over 100 data collection and di�erent data
collection interval and is summarized in Figures 3.18C1,C2. From Figure 3.18C2, the average
latency observed for spike monitoring through Wi-Fi (UDP) between two ESP32 is about
0.792 ms to 2.098 ms depending on the data collection interval ranging from 3 ms to 10 ms.

The main bene�t of this monitoring is the wireless nature that suits well embedded system,
but that comes with the drawback of higher latency compared to the other solutions.

To put if brie�y, the monitoring latency is an essential element of the system as it monitors
the computation core that operates real-time. The monitoring developed show compromises
bases on the monitoring channel used.
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3.8 Summary

This section detailed the complete design of the system developed while supporting the choices
made to build a �exible real-time biomimetic SNN with accessible control and monitoring. It
detailed the di�erent hardware components responsible for computation of the arti�cial neural
network and its monitoring while explaining the main limits and strength of the design. It also
introduced the software developed to control, setup and monitor the system through a C++
application that provide performances and �exibility. Finally, it introduced the Python scripts
developed to generate the con�guration �les as well as monitoring the system using Python in
a user-friendly way. In conclusion, this chapter introduced the system designed as well as its
strength and limits that will be exploited in the next section treating about the applications of
Bi÷muS.
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4.1 Introduction

Having meticulously introducing the basic knowledge in biology, presented the target used and
detailed the architecture of the system, the applications enabled by the system as well as the
results obtained can be demonstrated.

The Bi÷muS system enhances its potential from practical applications such as real-time
emulation and biohybrid experiments as a tool for neuroscientists to study neurological disor-
ders. The applications also showcase how the system integration promotes versatility and ease
of use so as it is accessible among biologists. The prototype Bi÷muM also demonstrates its
capacity to perform real-time emulation of multicompartment neurons.

This chapter demonstrates applications that use Bi÷muS as a real-time emulator of biomimetic
networks to create a fast emulation setup for large biophysically detailed network. Then, it
presents the biohybrid experiments conducted using the system that shows how di�erent net-
work implementation from single neuron to larger network can interact with biology through
various interfaces. Additionally, the alternative versions of the system showing di�erent com-
promises in terms of energy and embedding considerations. The Figure 4.1 illustrates the
possible applications of the system.

Figure 4.1: Overview of system applications. The real-time biomimetic SNN (Bi÷muS) im-
plemented in hardware is monitored through the Qt-based GUI and setup by Python scripts
ran either on-board or on another computer. The SNN is used either as a real-time emulator
for biophysically realistic models or integrated in a biohybrid experiment setup. In a real-time
emulation setup, it runs fast simulations of biophysically detailed models suited for large pa-
rameters sweeps. Integrated in a biohybrid experimental setup, it acts as a versatile biomimetic
arti�cial neural network easily interfaced with standard biological recording units.
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4.2 Real-time emulation of biophysically detailed neurons

To begin with, real-time emulation of independent neurons emphasizing biophysical detail will
be presented. This section presents real-time emulation of biomimetic single compartment neu-
rons capable of generating spontaneous activity using Bi÷muS as well as multicompartmental
modeling of motor neuron using Bi÷muM.

4.2.1 Spontaneously spiking single compartment neurons

The spontaneous activity of neurons is an essential property of neural networks. This ability to
generate action potentials without external stimuli is modeled in the system by the introduc-
tion of a current that mimics synaptic noise [Destexhe et al., 2001, Khoyratee et al., 2019]. By
modifying the parameters of the equation ruling the synaptic noise, di�erent level of sponta-
neous activity can be reproduced. As for instance, it allows to match the dynamics of biological
culture of neurons to obtain a coherent model.

In the main version of Bi÷muS that emulates single compartment modeling in real-time,
the activity of neurons can be monitored online through waveforms or spiking activity. The
Figure 4.2 shows an example of a con�guration implementing 1,024 spontaneously spiking FS
neurons.
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Figure 4.2: Emulation of independents FS neurons with synaptic noise monitored with the
on-board saving and DAC output. (A) Spiking activity of 1,024 FS neurons monitored using
the local-saving of data transferred with DMA. (B) Waveforms of the membrane voltage of 4
FS neurons captured using a 4-channel oscilloscope from the output of the DAC PMOD. (C)
Waveforms of the membrane voltage of 16 FS neurons monitored using the local-saving of data
transferred with DMA.
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The most e�cient way to monitor the activity of the spontaneously spiking neuron is shown
in Figure 4.2A that displays the raster plot of the 1,024 neurons emulated. This representa-
tion allows validating the spontaneously spiking ability of the neurons emulated based on the
observation of independently spiking neurons that does not show synchronized activity. Hence,
the synaptic noise injected successfully created di�erent spontaneous activity for each neuron
emulated.

Along with the spiking activity, the membrane potential of neurons showing the noisy
dynamics of the neurons are shown in Figures 4.2B,C.

In Figure 4.2C, the membrane potential of the 16 neurons monitored using the DMA is pre-
sented, validating the independent noise generation as the independents neurons show di�erent
spiking activity while being modeled with the same parameters. This monitoring channel is
the most reliable for the Waveforms as the membrane potential monitored is captured at each
step on 32 bits.

Another possible monitoring of the membrane voltage that is less accurate is the DAC
output as shown in Figure 4.2B. The DAC allows visualization of the membrane potential of
neurons at the maximum sampling frequency of system (2-5 ms, i.e. 32 kHz), but only in a
12-bit coding translated in a voltage between 0 and 2.5 V. Up to 8 neurons can be monitored
per DAC PMOD, but only 4 are displayed in Figure 4.2C as the recording oscilloscope only
featured 4 channels.

4.2.2 Multicompartmental motor neurons to study ALS

Amyotrophic Lateral Sclerosis (ALS) is a rapidly progressive neurodegenerative disease that
targets motor neurons. It is one of the most common and devastating neurodegenerative disease.

In order to study the disease, one of our collaborating team developed models of motor neu-
rons a�ected by ALS, speci�cally motor neurons of SOD1 mice at embryonic state [Branchereau
et al., 2016, Branchereau et al., 2019, Martin et al., 2020]. The models were developed with
a high level of biological meaningfulness. The dynamics of the neurons were reproduced accu-
rately thanks to a modeling based on patch clamp recording of each ion channels. Most notably,
the model include a highly detailed modeling of the morphology of the neuron, thus enforcing
the use of a multicompartmental modeling.

The models were developed using the NEURON software so as a real-time emulation of a
network is less likely to be possible, hence prompting the development of Bi÷muM. Bi÷muM
is a prototype version based on Bi÷muS developed in this work aiming to emulate multicom-
partmental neurons.

The model used for this application is the motor neuron at day E13 presented in [Branchereau
et al., 2016] that implements 133 segments (or compartments) distributed in soma, axons and
dendrites sections based on patch-clamp recordings. The morphology of the neuron generated
from the NEURON model is presented in Figure 4.3A. The currents involved in the model are
the potassium, sodium and leakage currents that show di�erent conductances depending on the
section. As for instance, only the active axon and the rest of the axon integrate sodium current.
The Figure 4.3B recapitulates the morphology of the neuron and shows how the sections are
connected.

As the �rst iteration of Bi÷muM is capable of emulating up to 64 segments, the model was
reduced to a total of 64 segments while preserving the sections and their interconnections. The
simpli�ed model was compared to the original model in the NEURON software in response to
a stimulation of 15 ms inserted in the soma to assess the coherence of the simpli�ed model as
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shown in Figure 4.3C. While the simpli�ed model is not capable of accurately reproducing the
spatial morphology of the neuron, its accuracy remains satisfying in this application aiming
to validate the prototype system Bi÷muM. Indeed, the membrane potential of the simpli�ed
model is closed to the original at two distant points being the soma, where the stimulation is
inserted and at the end of the axon.
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dendx1b4
dendx1b3

dendx1b2
dendx1b1
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[Branchereau 2019]: 133
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Figure 4.3: Simpli�cation of the multicompartmental model of motor neuron at day E13 from
[Branchereau et al., 2019] using NEURON software. (A) Morphology schematic of the motor
neuron at day E13 showing. (B) Morphology of the neuron decomposed in sections of varying
geometrical and electrical properties (length, diameter, ion and leakage currents). Sections are
decomposed in fewer segments (or compartments) in the simpli�ed modeling. (C) Comparison
of the evolution of the membrane potential in response to a 15 ms stimulation pulse inserted
in the soma. Membrane potentials are recorded in the soma and at the end of the axon.

The simpli�ed model was then translated to the Bi÷muM python scripts that allows to
emulate in software the behavior of the con�guration �le generated. The con�guration �le
generated was then ran using Bi÷muM and the membrane potentials of the 64 segments were
monitored using the local �le saving through DMA.

The membrane potentials obtained were then compared to the software emulation as shown
in Figures 4.4A,B. The Figure 4.4A presents the 64 segments of a neuron overlapped, showing
that the action potential is almost identical in all compartments except for the �rst segments
of the axon and that software and hardware emulation match. The Figure 4.4B shows the
membrane potentials arranged by segment index for both software emulation and hardware
emulation, allowing visualization of all membrane voltages and the �tting of the hardware em-
ulation with the reference. Hence, these results validate the implementation of the prototype
system Bi÷muM and demonstrate its ability to emulate multicompartmental neurons in real-
time.

The resource utilization of Bi÷muM for an implementation on the AMD Xilinx KR260
Robotic Starter Kit is shown in Figure 4.5. The main di�erences in the resource utilization of
Bi÷muM compared to Bi÷muS are explained by the absence of synapses, full �oating-point
coding, di�erent solver and waveform oriented monitoring.

Since Bi÷muM focuses more on the membrane potential of the neuron, it enforces the need
of larger monitoring of the membrane potential, translated here by a larger amount of BRAM
used for the monitoring of the waveforms. Additionally, the multicompartmental model involves
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more parameters to store for each neuron that is translated in more BRAM used for the HH
coe�cients storage. Also, as Bi÷muM is operating completely in single �oating-point coding,
the implementation cost for the HH coe�cients is signi�cantly higher in DSP, FF and LUT.
Moreover, the matrix solver, enforced by the use of the multicompartmental model, requires
a large amount of BRAM used as bu�er and context memory, increasing with the number of
neurons (Matrix Solver part in Figure 4.5).

Figure 4.4: Comparison of membrane potentials in software emulation through the Python
scripts and hardware implementation. Membrane potentials in implementation were recorded
using the on-board �le saving through DMA. (A) All 64 segments overlapped in both emula-
tion using the Python scripts of Bi÷muM and implementation on KR260. (B) All 64 segments
sorted by segment index for both emulation using the Python scripts of Bi÷muM and imple-
mentation on KR260.
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Figure 4.5: Distributed resource utilization of Bi÷muM for implementation on AMD Xilinx
KR260 Robotic Starter Kit exported from Vivado 2023.1 for 16 neurons of 64 segments. HH
coe�cients corresponds to the computation of the ion currents of the HH model and the storage
of its parameters, Matrix solver to the solver computation paired with the context and bu�er
memory and Monitoring to the DMAs and bu�er memories related.

This �rst iteration of the Bi÷muM system shows promising results supported by the capa-
bility of emulating up to 16 neurons of 64 segments each parallelly in real-time where current
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solutions are showing much higher computation times. As for example, the software emulation
of 1 second of the simpli�ed model in NEURON takes an average 3.5 seconds for 1 neuron
on an Intel i7-10875H. Nonetheless, as multicompartmental modeling is getting a growing in-
terest in recent years, more and more GPU implementations of signi�cantly larger size and
improved computation time are released [Stimberg et al., 2019, Kobayashi et al., 2021, Zhang
et al., 2023]. The Table 4.1 presents a brief comparison of the performances of the system
to two implementation that represents well the order of magnitudes found in GPU and CPU
implementations.

Table 4.1: Comparison of some recent multicompartmental implementations of HH neurons
on GPU and CPU.

Bi÷muM [Kobayashi et al., 2021] [Mäki-M et al., 2018]

Architecture FPGA GPU CPU
Model HH HH HH
Neurons 16 3072 150
Segments 64 674 80
Synapses / 780,404 ∼2500
Computation time (ratio) 1 9000 (1 s for 2.5 h) 828 (10 s for 2.3 h)
Target SOM K26 Tesla V100 1 core

The Table 4.1 clearly highlights the main drawbacks of the current prototype of the system
that are the absence of synapses and the relatively low number of segments. However, as
Bi÷muM shares the same base as Bi÷muS, fully connected conductance-based synapses could
be implemented while preserving the real-time operation of the computation core. As for the
low number of neurons and segments, it could be largely increased by porting the system on
a larger target with a more recent architecture like AMD Versal Adaptive SoCs that provide
better �oating-point support and larger resources available. Additionally, Versal architecture
would allow to greatly improve the number of segments through faster clocking and optimized
�oating-operations, the main bottleneck of the system being the computation latency induced
by the solver iterations equated in Equation 4.1.

maxnb segments =
dt× fclk

latload context + latbackward sweep + latforward sweep

(4.1)

where, maxnb segments is the maximum number of segments that can be implemented for
one neuron, dt the time step, fclk the clock frequency, latload context the latency to load the
solver context, latbackward sweep and latforward sweep the latencies to compute one operation of
the backward and forward sweep.

Nonetheless, the strength of the system relies on its real-time computation and versatile
interaction as it shares the same integration as Bi÷muS. As for example, the waveform moni-
toring using the DAC would allow monitoring up to 8 membrane potentials in real-time. Fur-
thermore, considering the a�ordable price of the target along with the performances obtained
for an entry-level FPGA, the prototype version shows promising preliminary results. Finally,
the most important point of the system is the real-time emulation that is a crucial requirement
for the realization of electroceutic therapies, making of this system a novel tool to drive stim-
ulation at a higher level of biological meaningfulness though the use of multicompartmental
model.
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4.3 Real-time emulation of complex neuronal structures

This section presents an application of the system to perform real-time emulation of complex
network model representing three-dimensional tissue cultures that are derived from stem cells,
human cerebral organoids, that are biological models of human brain.

This application demonstrates an example of real-time emulation of a model to provide a
tool enabling fast emulation to predict and investigate the behavior of biology.

As such cultures are known costly and time-consuming, having such a tool could help
neuroscientists to better orientate their experiments based on simulations.

4.3.1 Interconnection of human cerebral organoids

As a biological model to study human brain and the interaction between the di�erent regions
of the brain, three structures of interconnected human cerebral organoids were designed.

Human cerebral organoids are widely used to study human brain by reproducing structures
of certain brain area [Kim et al., 2020]. The cortical organoids were generating using the re-
ported protocol [Osaki and Ikeuchi, 2021]. Brie�y, hiPSCs are dissociated then seeded into well
plates until complete formation of the organoids thanks to induction of various media based on
the culture time.

The three structures introduced by the model are single, assembloid (or fused) and connec-
toid that each promote di�erent synaptic connections between the organoids so as the connectoid
is aimed to show stronger activity than the assembloid. The di�erent structures are illustrated
in Figure 4.6.

single

connectoid

assembloid
organoid

neuron
axon

Figure 4.6: Illustration of the three interconnection structures of human cerebral organoids
interconnections.

Single. The single physically separates the organoids to prevent connection between organoids.
It acts as a reference model showing activity of independents organoids.

Assembloid. The assembloid structure, or fused, places organoids close to each other thus
favouring connection of neurons based on proximity [Pa³ca, 2019], so as connections are mostly
formed at the interface between organoids.

Connectoid. The connectoid structure places organoids centimeters apart while constraining
the interconnection to form an axon bundle connecting mostly neurons on the surface of the
organoids [Kirihara et al., 2019, Kawada et al., 2017], thus creating the strongest connection
amongst the three structures.
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4.3.2 Arti�cial modeling

In order to arti�cially model the three structures, it is �rst necessary to accurately model a
cerebral organoid. Suitable types of neurons include FS and RS neurons that actually model
cortical neurons. As for synapses, excitation and inhibition are both necessary to replicate the
network activity. AMPAR and GABAAR are synaptic receptors found in cerebral organoids
respectively responsible for fast excitation and fast inhibition.

The second step of the modeling concerns the reproduction of the di�erent interconnection
properties based on the spatial distribution of synaptic connections. In order to introduce
a spatial dimension for the neurons in the network, neurons were assigned XY coordinates
normally distributed. Then, the synaptic connections between neurons were generated based
on probabilities following di�erent functions based on the biological observations.

The synaptic connection rules for the synaptic connections inside organoids are ruled by
Equation 4.2 that favors connection to neurons close to each other normalized by the diameter
of the organoid. The connections between organoids are ruled by Equation 4.3 for assembloid
and by Equation 4.4 for connectoid. The former favors connection to neurons close to each
other normalised by the maximum distance possible between neurons, while the connectoid
rule is promoting connection based on the location of neuron in the organoid that promotes
connection on the exterior ring.

psingle = pmax × (1−
dnpre,npost

rorg
) (4.2)

passembloid = pmax × (1−
dnpre,npost

dorgpre,orgpost + rorgpre + rorgpost
) (4.3)

pconnectoid = pmax ×
1

2
× (

dnpre,orgpre

rorgpre
+

dnpost,orgpost

rorgpost
) (4.4)

where pmax is the maximum probability of connection, d is the distance, diamorg the diameter
of the organoid, r the radius, npre and npost the pre-synaptic and post-synaptic neurons, orgpre
and orgpost the pre-synaptic and post-synaptic organoids and the distance calculated from the
center of the organoids.

The Figure 4.7 presents heatmaps of the number of synaptic connections per number asso-
ciated with their XY coordinates based on the average of 40 random distributions.

0

20
30
40
50

10
0

20
30
40

10
0

20
30

10

Single Assembloid Connectoid

Figure 4.7: Heatmap of the number of connection per neuron for the three structure of
organoid interconnections. Single corresponds to the synaptic connection inside both organoids.
Assembloid corresponds to a higher synaptic connection at the interface between the organoids.
Connectoid favors synaptic connection on the exterior ring of the organoid. Heatmap are based
on an average of 40 random generation of synapses for a given XY mapping.

The heatmaps presented in Figure 4.7 shows higher connection at the interface between
the organoids for the assembloid and on the surface of the organoids for the connectoid. The

Romain Beaubois Page 112



4 APPLICATIONS AND BIOHYBRID EXPERIMENTS

synaptic connections inside the organoids, represented by the single structure, shows an almost
uniform distribution except for the edge explained by fewer surrounding neurons. Hence, these
results validates the rules synaptic connection rules.

The generation of the con�guration �le for this model was performed by adding a new
Python class that simply assign normally distributed XY coordinates to neurons and generate
synaptic connections based on speci�c rules for each structure. The class implemented handles
neurons and synapses simply as excitatory or inhibitory and organizes them in list and ma-
trix. The matrix of connection and list of neurons generated is then translated to hardware
SNN con�guration using the available types of excitatory and inhibitory neurons and synapses
de�ned in the existing software, showcasing a case of custom user script to generate a given
network structure.

The parameters of the SNN were tuned to match the electrical activity in terms of mean
�ring, synchronicity and burst activity of each structure obtained from MEA recordings. This
was performed by tuning the synaptic noise to obtain a similar spontaneous activity, then
improved by modifying the weight of synapses, percentage of connection as well as the inhibi-
tion/excitation ratio.

4.3.3 Real-time emulation

The three structures were emulated using 1,024 neurons distributed equally between the two
organoids with a similar inhibitory/excitatory ratio to biology (20% inhibitory and 80% exci-
tatory).

Inhibition is modeled using FS neurons connecting by GABAAR and excitation by RS neu-
rons connecting by AMPAR. The synaptic noise was set to obtain spontaneous activity for
neurons of about 1 Hz as observed in biological cultures [Kirihara et al., 2019]. The spiking
activity of the network was captured using the on-board saving in �le, then linking with the
neuron types using the information of the con�guration �le.

The emulation of the three structures is shown in Figure 4.8 that shows the synaptic con-
nection of the di�erent structures as well as their spiking activity emulated by the system. The
emulation time was set to 10 seconds to allow clearer visualization in �gures but was emulated
for larger periods as shown in the biohybrid experiments detailed in further sections. The ben-
e�t of real-time emulation in this speci�c application corresponds to the time saved compared
to software emulation that ran 30 minutes to emulate 5 seconds.

The emulations presented in Figure 4.8 shows the capability to reproduce from network
bursts to burst synchronization between organoids in the assembloid and connectoid structures
as shown in Figure 4.8.

The burst synchronization between the organoids is notably demonstrated by comparing the
activity of the assembloid and connectoid with the single, where the burst of the organoids are
not synchronized in single that does not implement synaptic connections between organoids.

The initial burst at the beginning of the emulation can be explained by identical initial
parameters for the neurons and synapses that could be �xed by adding a small �uctuations in
initial parameters when generating the con�guration.
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Figure 4.8: Three structures of cortical organoids modeled using FS and RS neurons connected
with excitatory and inhibitory synaptic connection (AMPAR and GABAAR) based on biological
culture observations and their spiking activity. Synaptic connections are promoted according
to rules depending on the structure to reproduce, spatial placement of neurons and the ratio
of inhibition/excitation connection observed. The spiking activity emulated corresponds to a
10% maximum probability for each neuron to connect to a neuron inside the organoid and 2%
outside. Each organoid is composed of 512 neurons showing a ratio of 20% inhibition/excitatory
neuron ratio.

Spiking activity of 5-minute emulations were analyzed for each structure and presented in
Figure 4.9. Through the analysis of bursts and spikes, the activity of the single is shown sig-
ni�cantly di�erent to the two others interconnected structures.

More speci�cally, Figures 4.9A,B that shows the MFR and ISI of organoids independently
demonstrates the di�erent level of synchronization of the spiking activity.

Where the spiking activity of the two organoids in the single are di�erent, the spiking ac-
tivity of the connectoid and assembloid are much more similar thanks to stronger synaptic
connection providing higher synchronicity. Most notably, the connectoid structure that shows
the strongest synaptic connection demonstrates the higher synchronicity among the three struc-
tures.

The burst analysis presented in Figures 4.9C,D also support the coherence of the model by
showing the highest activity for the connectoid structure.
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Figure 4.9: Spiking activity analysis of the single (S), assembloid (A) and connectoid (C)
structures emulated with Bi÷muS for 5 minutes. The maximum synaptic connection probability
inside the organoids is set to 10% and to 3% between the organoids. The organoids constituting
the structures are abbreviated as O1 and O2. (A) Boxplot of the Mean Firing Rate (MFR)
for each organoids in the three structures. (B) Boxplot of the InterSpike-Interval (ISI) for
each organoids in the structures. (C) Histogram of the InterBurst-Interval (IBI) in the three
structures. (D) Histogram of the burst length in the three structures.

The Figure 4.9C highlights a major di�erence in the bursting dynamics of the structures
so as the assembloid and connectoid structures present two modes in the IBI histogram where
single only shows one.

The strongest synchronization of the network is also demonstrated by the burst lengths
presented in Figure 4.9D that shows longer bursts in assembloid and connectoid structures.

While the organoid modeling demonstrated in this section shows consistent results supported
by the spike and burst analysis, the modeling could be improved by introducing more synaptic
and neurons types. Additionally, the main drawback of this model is the poor modeling of the
dynamics induced by the axon bundle of the connectoid that is responsible for a signi�cant
delay not complementary described by the current model.

4.3.4 Mimic drug treatments

An example of complementary application designed using the organoid modeling is the emu-
lation of drug treatments targeting synaptic receptors in the organoid. Two emulations were
performed to reproduce a drug treatment by full antagonist of AMPAR (CNQX) and a treat-
ment by full antagonist to GABAAR (Bicuculine) that deactivate the receptors targeted.

An organoid of similar structure as previously presented is modeled using 1,024 FS and RS
neurons connecting with AMPAR and GABAAR is emulated for 60 seconds in Bi÷muS. The
inhibition/excitation ratio is set to 20% inhibition and 80% excitation and synaptic connection
inside the organoid is set to a maximum of 10%.

During emulation, a trigger is sent to Bi÷muS at 20 seconds to disable a given receptor thus
mimicking the drug treatment by full antagonist and a second trigger is sent at 40 seconds to
reactivate the receptor (see Figure 4.10). The trigger is sent using the same slot as the external
stimulation (Ethernet via ZeroMQ) that has been modi�ed to allow synaptic deactivation.
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Figure 4.10: Emulation of drug treatment in a single organoid through AMPAR and GABAAR
full antagonists from 20 seconds to 40 seconds.

The results of the emulation shown in Figure 4.10 demonstrate coherent results in both
cases. In the case full antagonist to AMPAR introduction, the excitatory synaptic receptors
are blocked so as the bursting activity is prevented and activity is desynchronized. For the full
antagonist to GABAAR, the inhibitory synaptic receptors are blocked so as the network is con-
tinuously spiking activity similarly to an epilepsy, a reaction often observed after introduction
of bicuculine [Meldrum and Nilsson, 1976].

4.4 Open-loop biomimetic in-vivo stimulation

A simple case of interaction with the living is to perform a unidirectional stimulation, or
open-loop stimulation, from the Arti�cial Neural Network (ANN) to the Biological Neural
Network (BNN). This open-loop stimulation was applied to rat brains as a neuromorphic-
based open-loop set-up for neuroprosthetic applications targeting post-stroke rehabilitation
studies through electroceutic therapy [Panuccio et al., 2018, Semprini et al., 2018]. This section
presents the setup, protocol and results of the open-loop in-vivo stimulation driven by the SNN
of Bi÷muS performed. The Figure 4.11 illustrates the biohybrid conducted in collaboration
with the research team from the University of Genoa and that has been published in [Di Florio
et al., 2023].

BioemuS

RFA
S1

In-vivo stimulation
INTAN RHS

Figure 4.11: In-vivo stimulation driven by Bi÷muS spiking activity as a model of post stroke
rehabilitation via adaptive stimulation. The spiking activity of the SNN triggers stimulation
in-vivo using the INTAN RHS2116 headstage. Electrode arrays were placed in the rostral
forelimb area (RFA) and in the primary somatosensory area (S1) in the brain of adult rats.
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4.4.1 Electroceutical approach for post-stroke rehabilitation

As introduced in the �rst chapter, neurological disorders are a great burden and especially
stroke that represents one of the leading causes of long-term disability and death worldwide.

About 87% of stroke cases are ischemic strokes [Di Florio et al., 2023]. Ischemic strokes
are caused by inadequate oxygen and nutrients to the brain tissue that causes rapid structural
damage leading to sensorimotor and cognitive impairment.

Generally happening in the primary motor cortex, ischemic events induce a progressive loss
of information transmission to the spinal cord, thus causing motor dysfunctions.

Hence, leakage in communication throughout sensorimotor regions (e.g. primary somatosen-
sory cortex (S1)) is noticed to contribute to the severity of symptoms [Carè et al., 2022].

Similarly to neurodegenerative diseases, treatments are limited. Physical therapy is a stan-
dard treatment to recover sensorimotor functions, however it often shows limited or incomplete
e�cacy to promote spared regions reorganization [Chiappalone and Semprini, 2022].

Electroceutical therapy through open-loop and closed-loop electrical stimulation [Averna
et al., 2020] thus appears as a promising treatment, especially activity-dependent stimulation
(ADS).

Activity-dependent stimulation consists in the detection of action potentials in a region to
apply a stimulation in a di�erent region following the principle of Hebbian plasticity [Guggen-
mos et al., 2013, Jackson et al., 2006].

This biohybrid experiment constitutes a preliminary study of electroceutical therapy to
restore sensory motor function in post-stroke rehabilitation, thus constituting a step toward
neuromorphic-driven stimulation.

4.4.2 Intermediate version of Bi÷muS

The version of the system used in this section corresponds to a former version of Bi÷muS that
explore a di�erent system integration, architecture and target.

In this version, the target was the ZyboZ7-20 that features the Zynq architecture. Brie�y,
the target still has a Zynq architecture that includes PS and PL parts, but with overall lower
performances. Notably, no commercial Linux distribution supports this architecture so as only
a less generic Linux provided by AMD Xilinx is available. The bare-metal approach is then
used in this version of the system for faster development.

The main data communication protocol used in the system is the USB2.0 in Communication
Class Device (CCD) with the board as the device and a computer as a host. It is implemented
in the PS part of the ZyboZ7-20 in bare-metal using the sources provided by AMD Xilinx and
using Python on the host computer.

Contrary to the current version that uses a con�guration �le, the con�guration is directly
set in the Python application and sent over USB for the C++ application on the target to set
the SNN. The spikes were monitored by polling constantly AXI-Lite registers storing the states
of all neurons.

Debug information that include status and errors is sent by the target using UART con�g-
ured at 115,200 bauds.

The Figure 4.12 presents the global system architecture of this version of the system.
The hardware design is based on the work [Khoyratee et al., 2019] so as independent neurons

using exclusively �xed point coding and �tted equations for ionic channel states are used.
The parameters of the FS and RS neurons used are the identical to [Khoyratee et al., 2019].

Spikes were considered in hardware when the membrane potential of a neuron crossed 0 mV
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and generated a pulse on a 3.3V digital output of the PMODs.

Zybo Z7-20

Programmable logic (PL)

Processing system (PS)
Zynq Z7020

SNN HH
Calculation core

Spike monitoring
Waves monitoring

AXI LITE

Bare metal C++ application
• Receive configuration (USB2.0)
• Apply configuration
• Poll and send spikes (USB2.0)
• Send debug (UART)

Scope
0 - 3.3 V

PMOD
Spikes

DAC
Waves

USB2.0

Spikes
Config

UART
Debug

Host computer

Python application
• Set configuration
• Send configuration (USB2.0)
• Receive spikes (USB2.0)
• Receive debug (UART)
• Display spikes (Qt GUI)

Figure 4.12: Architecture of the intermediate version of Bi÷muS using bare-metal C++
application to interact with the system and USB2.0 CDC as the data communication protocol.

4.4.3 Experimental setup and protocol

The animals employed were healthy adult Long-Evans rats. All the rats were treated with
the SNN-based stimulation while they were deeply anesthetized. The experimental procedures
were performed with the collaborating team in the Animal Facility of the Italian Institute of
Technology (IIT), Genoa, Italy and were previously approved by the Italian Ministry of Health
and Animal Care (Italy: authorization n. 509/2020-PR).

After a surgical procedure, sharp electrodes were inserted in the primary somatosensory
area (S1) and rostral forelimb area (RFA) (see Figure 4.11). The MicroElectrode Array (MEA)
inserted were NeuroNexus probes (A4x4-5 mm-100-125-703-A16). The detailed surgical proce-
dure is detailed in [Di Florio et al., 2023].

The acquisition and stimulation from and to the MEA were performed through the INTAN
RHS2116 head stage, a bidirectional electrophysiology interface system consisting of 16 or 32
stimulation/ampli�er channels connected to the electrodes. The headstage communicates using
SPI protocol to communicate with the Intan Technologies RHS Stim/Recording controller, an
FPGA-based electrophysiology data acquisition system (see Figure 4.11).

The spikes from neurons emulated by Bi÷muS are output as 0-3.3V pulses connected to the
INTAN RHS recording/stimulation unit to trigger stimulation upon spike reception.

The spontaneous activity of the Fast Spiking (FS) and Regular Spiking (RS) neurons em-
ulated are tuned to obtain slow and fast activities between 1 Hz and 10 Hz by tuning the
parameters the synaptic noise. In this setup, the latency between spike detection and stimula-
tion is less than a millisecond as the INTAN stimulation unit is FPGA based.
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The stimulation electrode was chosen for the lower impedance found in channels in S1 based
on impedance analysis. The stimulation applied by the headstage was a single biphasic pulse
of 60 µA of 200 µs positive and 200 µs negative [Averna et al., 2020].

The experimental protocol consisted of 20 minutes of pre-stimulation (PreS) recording, 60
minutes of stimulation via SNN-driven stimulation and 20 minutes of post-stimulation (PoS)
recording. Extracellular signals were continuously sampled at 25 kHz on 16 bits and stored on
the computer connected to the INTAN recording unit.

4.4.4 Results

The data were analyzed o�ine by the collaborating team using a custom Matlab script perform-
ing band-pass �ltering as in [Carè et al., 2022], followed by spike detection employing precision
timing spike detection (PTSD) algorithm [Maccione et al., 2009].

The neuronal activity was evaluated by computing the Mean Firing Rate (MFR) (spikes/s)
in the PreS and PoS recordings for all animals as presented in Figure 4.13.

Statistical analysis were also performed in Matlab using non-parametric tests as data failed
the Kolmogorov-Smirnov normality test. The Mann-Whitney U-test was performed to identify
di�erences in the MFR on pre- and post-stimulation data and P-values < 0.05 were considered
statistically signi�cant. The Mann-Whitney notably allowing to verify the hypothesis that two
groups are independent of each other.

A1

C

E F

D

B2

B1

A2

RFA S1

Figure 4.13: E�ect of biomimetic open-loop stimulation in RFA and S1. The statistical
analysis has been performed considering each channel singularly. (A1,B1): Raster plot of
recorded activity in RFA and S1 during pre-stimulation phase. (A2,B2): Raster plot of
recorded activity in RFA and S1 during the post-stimulation phase. (C, D): Comparison of
the mean �ring rate (MFR, spikes/s) between pre- and post-stimulation in RFA and S1 by
animals. (E, F): Boxplot of the mean �ring rate (MFR, spikes/s) by animals for RFA and S1
regions. The entire dataset has been analyzed with no discrimination among animals to obtain
an overall understanding of the stimulation e�cacy. Solid line *: p<5.10-2, Mann-Whitney
U-test.

From the analysis of the spiking activity observed both in RFA and S1 for the PreS and PoS
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phases, the potential variations in the MFR introduced by the SNN-based stimulation allow to
evaluate its e�cacy to induce an increase of the spiking activity.

The raster plot of a representative animal is reported for both RFA (Figure 4.13A1,A2) and
S1 (Figure 4.13B1,B2).

The �ring rate appears less synchronous and more intense in the post stimulation compared
to the pre stimulation condition. Moreover, the MFR increases in post stimulation phases for
all animals except for #1 in S1 area (Figures 4.13C,D).

The quantitative analysis (Figures 4.13E,F) con�rmed the observations qualitatively by
means of the raster plots.

Speci�cally, the stimulation induced a signi�cant rise of the MFR from PreS to the PoS
phase in both RFA (32.12 spikes/s for PreS against 40.49 spikes/s in PoS, *p < 9× 10−4) and
S1 (44.09 spikes/s for PreS against 50.42 spikes/s for PoS, *p < 2× 10−2).

To conclude, this preliminary experience shown that stimulation pattern generated by means
of the biomimetic SNN shows e�ciency to increase the �ring activity of both RFA and S1
compared to the pre-stimulation condition.

4.4.5 Discussion

The results obtained are consistent with the previous �ndings of the collaborating team that
showed that the absence of stimulation does not a�ect the level of �ring in both healthy and
lesioned animals [Carè et al., 2022, Averna et al., 2020] as well as the e�ectiveness of a closed-
loop stimulation (i.e. ADS) in increasing the level of �ring.

These results support the hypothesis of the collaborating team, which suggests that a neural
biomimetic pattern more e�ectively entrains the network in response to stereotyped stimulation,
making the population tend to be more responsive to incoming electrical stimuli. This is in
line with recent human studies [Cottone et al., 2018].

Hence, the next step would to drive the stimulation from a complete network instead of
a single stochastic neuron, constituting a step toward the realization of neuroprostheses and
promoting the use of Bi÷muS as a tool to investigate stroke rehabilitation in an electroceutic
approach by providing activity-dependent stimulation.

4.5 Closed-loop biohybrid spinal cord-brain interaction

Another application designed explores the real-time emulation of a smaller network targeting
a smaller embedded target controlling a robot and its interaction with the living. The hard-
ware implemented corresponds to a reduced version of Bi÷muS modeling a small network that
reproduces a Central Pattern Generator (CPG), an essential network responsible for locomo-
tion found in the spinal cord and characterized by alternating bursts [Marder and Bucher,
2001, Brown, 1914]. This arti�cial network is then interfaced with a biological neural network
embodied by cerebral organoids in a closed-loop fashion to study the biohybrid interactions as
a step toward neuroprostheses.

This section presents the arti�cial modeling of the CPG and its implementation on a robot
to mimic snake motion, the details of this di�erent version of the system and �nally shows a
prototype experiment of biohybrid closed-loop.

4.5.1 Snake robot controlled by biomimetic Central Pattern Generators

Locomotion is one of the most basic abilities in animals that is known to be created by Central
Pattern Generator (CPG) activity as observed in swimming for salamanders [Ijspeert et al.,
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2007] and lamprey [Cohen et al., 1992]. The activity of CPGs is characterized by alternating
bursts [Brown, 1914] that are capable of producing rhythmic patterned outputs without senso-
rial input.

In the realm of robotics, CPGs are generally made from simple neuron models [Amari, 1972]
or simple oscillators [Van Der Pol and Van Der Mark, 1928] that does not operate on biologi-
cal timescale, thus constituting bio-inspired systems rather than biomimetic systems. In order
to provide an arti�cial CPG capable of reproducing biomimetic CPGs, the team developed a
digital neuromorphic system using the Izhikevich model [Blanchard et al., 2019]. The CPG
were derived from the neural network controlling the heartbeat of leeches [Hill et al., 2001]
and was tuned to obtain a delay between the CPGs to obtain a snake-alike motion on 8 CPGs
distributed over 8 wagons thus having 1 neuron per motor. The robot acts as a visual control
of the behavior to ease the identi�cation of dysfunctions in the CPGs.

In this work, the existing Izhikevich model was replaced by a more biologically coherent
that is the HH model and added Wi-Fi monitoring. The Figure 4.14 illustrates the system
updated and shows the spiking activity of the HH CPG controlling the robot.

Excitatory neuron

Inhibitory synapse
Excitatory synapse FPGA

Robot mimicking snake motion using CPG

Spiking activity

CPG

Figure 4.14: Example of reduced version of Bi÷muS applied to a smaller target implementing
Hodgkin-Huxley (HH) Central Pattern Generator (CPG)s. The small network is reproducing
Central Pattern Generator (CPG) network from [Hill et al., 2001] implemented to reproduce
snake motion on a robot. CPGs are interconnected by excitatory synapses introducing delay
and generate the locomotion. The spiking activity was recorded from the waves monitoring
output by the DAC.

Incorporating a more biologically coherent model such as the HH model allows a more ac-
curate modeling of the neural network, hence better suiting the aim of creating an arti�cial
biomimetic spinal cord model. Jointly, it aims to allow investigation the e�ect of ion conduc-
tances through parameters sweeps, ion conductances being usually a�ected by the neurological
disorders.

4.5.2 Alternative version of Bi÷muS

The alternative version of Bi÷muS presented in this application is based on a previous work
of the team [Khoyratee et al., 2019]. This reduced version implements �xed point coding for
all operations and �xed con�guration of the network set directly in hardware (see Figure 4.15).
The equations of ion channel states are simpli�ed and �tted to be equated as operations that
can be e�ciently implemented on FPGA [Khoyratee et al., 2019].
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The platform for this reduced version is the Digilent CMOD A7 that integrates a small
target incorporating only programmable logic, i.e. FPGA. As the capacity of the FPGA is
limited, the clocking frequency is reduced to 25 MHz and the number of neurons is set to 16.

The monitoring channels available in this version allow both spike and waves monitoring
as shown in Figure 4.15. The waves are not necessarily used in this application presented, but
they can be visualized using a DAC similarly to the main version. The spikes can be monitored
either from the GPIO that controls the motors of the robot or through Wi-Fi via the PMOD
ESP32. The visualization of the spiking activity over Wi-Fi is performed by Python scripts
using Qt-based GUI running on a computer as shown in Figure 4.15.

CMOD A7

Programmable logic (PL)

Artix 7 35T

SNN HH
Calculation core

Spike monitoring
Waves monitoring

Configuration package

Scope
0 - 3.3 V

GPIO
Spikes

DAC
Waves

Host computer

Python application
• Receive spikes (Wi-Fi)
• Display spikes (Qt GUI)

ESP32
Spikes

Wi-Fi

Figure 4.15: Architecture of the alternative version of Bi÷muS using only programmable
logic on a smaller target communicating through Wi-Fi.

In this version, the power consumption of this system is signi�cantly lower as the target is
smaller, operating at a lower frequency and with smaller processors as the ESP32 is designed
to allow small power consumption.

To put if brie�y, this solution proposes a version suited for embedded applications where the
energy e�ciency as well as physical constraints are a concern. The main drawback is notably
the lack of �exibility and the limited performances.

4.5.3 Experimental setup and protocol

As a preliminary experiment to the development of neuroprostheses, a biohybrid experiment in
a closed-loop fashion was conducted to explore the interaction between an arti�cial model of
spinal cord embodied by the snake robot and human cerebral organoids as a brain model. In
other words, it aims to mimic arti�cially the interaction between the brain and spinal cord. This
prototype experiment was conducted once as a proof of feasibility and in collaboration with the
team from the University of Tokyo. The experimental setup is illustrated in Figure 4.16.
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Figure 4.16: Closed-loop biohybrid experiment integrating an embedded version of Bi÷muS.
(A) Closed loop interaction between biological connected cortical organoids and arti�cial CPG
as a model of brain to spinal cord interaction. Spiking activity detected on the left and right
organoids is forwarded through Wi-Fi to the �rst neurons of the arti�cial CPG implemented on
the robot shown from [Blanchard et al., 2019]. Three Infrared (IR) sensors located at the front
of the robot (purple, green and orange rectangles) trigger localized optogenetic stimulation on
the left organoids using Digital Micromirror Device (DMD) based on the data transmitted by
Wi-Fi. (B) Sequence of DMD patterns selected based on information of the infrared sensors.
The pattern were switched using the trigger in input of the DMD Polygon1000 that moves to
next pattern upon reception of a pulse. The pattern was projected on the left organoid.

Starting from the biological network, the spiking activity from left and right organoids
stimulates the �rst CPG of the snake robot.

MEA signals are recorded by the AlphaMED64 system and forwarded to an FPGA (Red-
Pitaya STEMlab125-1) that performed digitalization and threshold based spike detection.

Spiking information is then sent through Wi-Fi to the snake robot. The CPG is con�gured
on the snake robot [Blanchard et al., 2019] to provide a stimulation based on the spike activity
of the biological culture received via the Wi-Fi module (PMOD ESP32).

Sensory feedback is introduced through optogenetic stimulation of the left organoid triggered
accordingly to the infrared sensors present in the front of the robot. The information of each
sensor is mapped as a square area for each sensor as illustrated in Figure 4.16B.

The optogenetic stimulation is performed using a Digital Micromirror Device (DMD) and
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made possible by a genetic alteration of the organoids. The sequence of illumination patterns
was designed using Polygon software provided by the manufacturer of the DMD.

On reception of the information of sensors, the RedPitaya selects the corresponding pattern
on the DMD. The selection of the pattern is done using the trigger in input that allows to
switch patterns from pulses (see Figure 4.16A). Hence, the appropriate number of pulses were
sent based on IR sensor information to select the matching pattern.

The cortical organoids used in this experiment were cultivated using the procedure described
in [Kirihara et al., 2019, Kawada et al., 2017].

The connected organoids were plated on MEA and infected with Channelrhodopsin-2 to
allow optogenetic stimulation. More speci�cally, 1 µl of AAV-CAG-hCHR2-tdTomato (Vector-
Builder Inc.) was added to the culture media at day 60 experiment for optogenetic interventions
as in [Osaki and Ikeuchi, 2021]. The infection rate was con�rmed through imaging at day 100
as depicted in Figure 4.17A.

Figure 4.17: Connected human cerebral organoids used in the closed-loop biohybrid experi-
ment. (A) Band pass �ltered electrical activity of left and right organoids on day 92 recording
on MEA (low-cut 300 Hz, high-cut 3 kHz). (B) Raw electrical activity of left and right
organoids on day 92 recording on MEA (low-cut 300 Hz, high-cut 3 kHz). (C) Connectoid
organoids expression of ChR2 imaged at day 100. Infection and plating at day 60. Scale bar is
500 µm.
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The activity of the organoids was recorded using the AlphaMED64 system and checked
regularly to ensure that the cultures were still alive, active and shown spiking activity as
presented at day 92 in Figure 4.17B. The experiment was performed at day 110.

The feasibility of the system was demonstrated qualitatively by running the system for 10
minutes and �lming the behavior of the robot as well as visualizing the stimulation triggers of
the DMD and spiking activity of the cultures.

4.5.4 Results

The Figure 4.18 presents shots extracted from the video of the experiment that shows an
example of optogenetic stimulation.

As the robot gets closer to the obstacle, the IR sensor is set high and select the appropriate
pattern to illuminate on the culture (Frames 2,3 in Figure 4.18). When the robot moves away,
the sensors are low and the associated pattern is selected (Frames 4,5 in Figure 4.18). While
the experiment certainly cannot prove that the robot dodges the obstacle, it can be con�rmed
that the spiking activity of the CPG is modi�ed by the spiking activity of the culture. Indeed,
the robot does not move following a straight line in a snake-like motion but rather moves in a
disorganized way because of the spiking activity of the culture.

Figure 4.18: Images extracted from the video of the biohybrid experiment conducted showing
the trigger of the DMD stimulation based on IR sensors. The illumination of the corresponding
pattern on the DMD is selected based on the information of the infrared sensors. The illumi-
nated pattern is visualized on the interface provided by the software controlling the DMD. Only
the �rst wagon was used in this experiment to facilitate the movement as space was limited.

In this setup, the latency between spike detection from the organoids and stimulation on
the snake robot is between 5-10 ms and about the same from the CPG to the organoids that
corresponds to Wi-Fi latency.

The power consumption as well as the resource utilization of this version are signi�cantly
lower than for the main versions as shown in Figures 4.19A,B.

The di�erence in power consumption is explained by the operating clock frequency, the
resources used by the calculation core as well as the PS part in the case of the main version.

As for the resource utilization, the di�erence is explained by the higher �exibility and
performances of the main version, especially the �oating point coding and the fully connected
�exible synaptic connections.
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Figure 4.19: Comparison of the resource utilization and power consumption between the main
and alternative versions of Bi÷muS for the calculation core only. (A) Resource utilization
projected on the target KR260. The calculation core includes the synapses that are hardware
locked for the CPG and �exible in the main version. (B) Power consumption on the respective
targets. The power consumption of the ESP32 was estimated here as the peak consumption of
300 mW.

4.5.5 Discussion

Although promising, the experiment conducted shows multiple limitations as it was thought as
a prototype. Indeed, it focuses more on the feasibility than on the reliability so as validations
were kept to a minimum.

The next step would be to conduct complex validations of the system to estimate the
reliability of the experiment and to design a protocol that would allow to assess the e�cacy of
the closed-loop.

Nonetheless, this complex experiment requires a considerable amount of preparation to
cultivate the organoids as well as to prepare the setup. Additionally, cross-disciplinary skills
are mandatory to ensure the good operation of the experiments as electronics and biology are
deeply intricate. Moreover, the e�ects of the electrical stimulation on human cerebral organoids
is not yet completely identi�ed [Osaki and Ikeuchi, 2021], thus requiring additional studies.

To conclude, this experiment constitutes a preliminary work toward the realization of neuro-
prostheses and points out the challenges it involves. While a signi�cant amount of points needs
to be validated and clari�ed, it has been demonstrated that biohybrid closed-loop interaction
remains feasible.
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4.6 Closed-loop biomimetic in-vitro stimulation on high resolution
MEA

In line with the biohybrid experiments exploring hybridization in the context of the realization
of neuroprostheses, this experiment shows integration with an existing biophysical acquisition
system in a closed-loop fashion. Additionally, this application promotes the ease of integration
of the system with existing solutions for biological interfacing as well as its versatility, here
integrated with the new generation of High Density MicroElectrode Array (HD-MEA)[Ballini
et al., 2014]. This section introduces the purpose of the experiment, presents the experimental
setup. Then, the results obtained are presented and discussed.

4.6.1 Toward biological intelligence using cortical connectoid

Cortical connectoids are neural circuit tissues made of cortical organoids connected together,
focusing on the importance of connections between regions in the brain for brain function
[Kirihara et al., 2019, Osaki and Ikeuchi, 2021]. Connectoids are active and complex structures
that respond to external stimuli.

They constitute the main focus of our collaborating team at the University of Tokyo that
is aiming to build an e�cient system for training neural tissue, and eventually to make neural
tissue spontaneously possess higher-order functions similar to what could be called intelligence.

Therefore, the biohybrid closed-loop constitutes an interesting approach to study the in-
teraction between arti�cial and biological as well as explore new training system based on
biomimetic and adaptive stimulation. As a biologically coherent model, the organoids emu-
lated arti�cially on Bi÷muS constitute a way to deliver biomimetic stimulation.

This would allow investigation of new training methods that could participate in the cre-
ation to biological intelligence, in this speci�c case here organoid intelligence, an emerging and
promising �eld [Smirnova et al., 2023].

More in line with the study of the neurological disorders, as cortical connectoids model the
connection between regions of the brain, the interconnection with a biologically coherent arti-
�cial neural network that could also mimic di�erent region of the brain would allow predicting
and studying the di�erent interactions.

For instance, it would rely on the emulation a model of mid-brain organoid that interacts
with a biological cortical organoid to compare to its activity to a completely biological model.

To go further, tuning the parameters of the arti�cial organoid to mimic the activity of a
neurodegenerative disease could help study its impact on healthy cultures. The other way
around would allow to investigate the impact of a healthy arti�cial organoid on an a�ected
culture similarly to the adaptive simulation presented in the experiment of Section 4.4.

4.6.2 Experimental setup and protocol

Connected organoids were plated on HD-MEA. Electrodes were con�gured to allow activity
recording on left and right organoids while allowing stimulation of the right organoid. A single
organoid was modeled using Bi÷muS on a network of 1,024 neurons and emulating for 180
seconds. Spiking activity of Bi÷muS was forwarded to the computer hosting the controlling
the HD-MEA system using ZeroMQ over Ethernet and stimulation was sent using ZeroMQ on
the external stimulation port of Bi÷muS. A Python script executed on that same computer sent
stimulation to the HD-MEA upon receipt of a burst from Bi÷muS. The Figure 4.20 illustrates
the experimental setup described.
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Figure 4.20: Closed-loop interaction between connected organoids plated on High Density Mi-
croElectrode Array (HD-MEA) system and single organoid emulated on Bi÷muS. The spiking
activity detected in the left organoid of the connectoid in the last 100ms triggers stimulation on
exterior neurons of the emulated single organoid on Bi÷muS. The bursting activity detected on
Bi÷muS triggers stimulation on the right organoid of the connectoid. Detection and stimula-
tion commands are carried out by Python scripts using. Stimulation on the SNN is performed
using the external stimulation slot.

Biological Neural Network (BNN) on HD-MEA

Starting from the biological neural network, the cortical connectoid was generated using
the previously reported protocol [Osaki and Ikeuchi, 2021] and plated on the HD-MEA Max-
One chip of MaxWell Biosystems AG. at d60. This part corresponds to the left part of the
Figure 4.20. The Figure 4.21A shows the connectoid on HD-MEA after 2 weeks in device (d84).

The HD-MEA was con�gured to record from 1,024 channels both from left and right
organoid based on an activity scan and to select random stimulation electrodes on the right
organoids. The Figure 4.21B shows the electrode con�guration selected for the experiment
based on the activity scan performed for which analysis is shown in Figures 4.21C,D. The
high �ring rate observed for the left organoid supported the choice of this latter to trigger the
stimulation to Bi÷muS as presented in Figure 4.21C. The con�guration of the electrodes was
extracted to associate the channel numbers to the left and right organoids.

The activity of the biological neural network on the HD-MEA was recording using the
MaxLab Live Software started manually before starting Bi÷muS. The activity was analyzed
using the scripts provided by the manufacturer. The experiment was performed at after 3 weeks
in device (d92).
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Figure 4.21: Con�guration of electrodes of the HD-MEA for closed-loop stimulation on cor-
tical connectoid. (A) Connectoid organoids on MaxOne HD-MEA at day 84 in device. (B)
Electrode con�guration of the HD-MEA chip for the experiments showing the 1,024 recording
channels including 32 stimulation channels. Electrodes con�guration is based on an activity
scan carried out with MaxLab Live Software. (C) Firing rate map of the connectoid showing
higher activity in the left organoid one day before the experiment. (D) Spike amplitude map
of the connectoid one day before the experiment.

Arti�cial Neural Network (ANN) on Bi÷muS

This part corresponds to right part of Figure 4.20 that corresponds to the Arti�cial Neural
Network (ANN). A single 1,024-neuron organoid was emulated on Bi÷muS con�gured using
the Python scripts presented in Section 4.3. Hence, the organoid is constituted of FS and RS
neurons connecting with AMPAR and GABAaR. The inhibitory/excitatory ratio was set to
20/80 and the synaptic connection was set to 10 % to �t biological activity. In order to repro-
duce coherent synaptic connection in a connectoid, only the neurons on the exterior ring of the
organoid were receiving external stimulation. This was performed by adding a function that
extracted the index of neurons that were located at normalized distance to the center larger
than 0.85.

Spiking activity of Bi÷muS was forwarded to the computer controlling the HD-MEA sys-
tem using the ZeroMQ spike monitoring channel over Ethernet. The stimulation of Bi÷muS
neurons was triggered by the external stimulation port of Bi÷muS that uses ZeroMQ over
Ethernet. The data collection interval for spikes was set to 100 ms to prioritize reliability over
reactivity as lower data collection interval would represent higher loads on both the CPU of
the system and the computer that have not been tested yet. The spiking of activity of Bi÷muS
was recorded on-board in binary format with each bits corresponding to the spiking status of
each neuron, thus ensuring a constant amount of data to store.
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Interconnection between ANN and BNN

The bidirectional communication between Bi÷muS and the HD-MEA system is ensured by
Python scripts running on a gateway computer that receive all data and control stimulation
triggers. The spikes received from Bi÷muS on the host computer are analyzed to detect the
presence of a burst in the 100 ms of activity sent. A burst is de�ned as more than 64 neurons
spiking at least 15 times in the last 100 ms of activity received. Upon burst detection, a stim-
ulation corresponding to one period of a 100 Hz sinus wave of amplitude 40 mV is sent to the
HD-MEA using custom Python script designed from the scripts provided by the manufacturer.
Stimulation was chosen of an amplitude high enough to allow visualization of the stimulation
on the MaxLab Live Software.

The spikes received from the HD-MEA triggered stimulation on Bi÷muS if at least 1 spike
was detected on at least 2 channels in the last 100 ms of activity collected. The stimulation
was sent through Ethernet over ZeroMQ to the external stimulation port of Bi÷muS to trigger
a stimulation of 6.250 ms of 0.03 mA/cm2 on the neurons on the exterior rings of the organoid
to trigger a spike in stimulated neurons.

The Python script implemented a thread for each task of receiving spikes from HD-MEA,
receiving spikes from Bi÷muS, sending stimulation to HD-MEA and sending stimulation to
Bi÷muS. Hence, all the tasks could operate concurrently to obtain a consistent bidirectional
communication.

4.6.3 Results

As a reference, the spontaneous activity of both networks were recorded the day before the
experiment as displayed in Figure 4.22.

The activity of the ANN was con�gured to have synaptic connections that are not strong
enough to spontaneously induce network burst. The Figure 4.22A validates the con�guration
by observing some synchronized activity but no network burst, except at the initialization as a
result of identical initial parameters. The spontaneous spiking activity of the BNN was active
with sparse activity as well as synchronized bursts for both the left and right organoids as
observed in Figure 4.22B.

Consequently, the requirements in terms of spontaneous activity for the closed-loop experi-
ment were met.

The monitoring of the spiking activity for the ANN and BNN is performed using the MaxLab
software for the BNN on HD-MEA that displays the recording activity for each electrode
according to its location and marks spike detected with a red triangle (upper part of Fig-
ures 4.23A,B,C,D). On the other hand, the spiking activity of Bi÷muS is monitored using the
Qt GUI (lower part of Figures 4.23A,B,C,D). The Python application responsible for the in-
terconnection of the two systems displays logs in the terminal.

The Figures 4.23A,B,C,D illustrate the functioning of the closed-loop based on the visual-
ization of the activity of the BNN on MaxLab software and of the ANN on the GUI.

In Figure 4.23A, the activity of the BNN on HD-MEA is high enough to send a stimulation
trigger to Bi÷muS. Once the stimulation is applied on Bi÷muS, a network occurs as shown in
Figure 4.23B. Upon detection of a network burst from Bi÷muS, a stimulation is applied to the
HD-MEA as highlighted by the red triangles as it is the case in Figure 4.23C, the red triangles
representing here stimulation artifacts rather than spikes. The Figure 4.23D shows the case of
a low spiking activity in both networks that does not lead to stimulation triggers.
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Figure 4.22: Spontaneous activity of the ANN and BNN one day before the experiment.
(A) Spontaneous activity of the emulated single organoid emulated by Bi÷muS. Green dots
represent excitatory neurons (RS) and orange dots the inhibitory neurons (FS). Burst occurs
only at initialization due to identical initial values for the parameters of the neurons. (B)
Spontaneous activity of the connectoid on HD-MEA chip one day before the experiment. Green
dots correspond to the channels recording from the right organoid that receives the stimulation.
Purple dots correspond to the activity of the left organoid that triggers stimulation to Bi÷muS
based on spiking activity.

Figure 4.23: Extracted shots from the screen recording of the experiment on the gateway
computer showing the monitoring. Spike detected on electrodes of the HD-MEA are shown
by red triangles in the MaxLab software. Blue arrows show the current time on the spike
monitoring window. (A) Sending stimulation to Bi÷muS thanks spike detection threshold
crossed on HD-MEA (top). (B) Stimulation applied to Bi÷muS leading to a network burst
(bottom). (C) Detection of a network burst (top) and stimulation applied to the HD-MEA
(top). (D) End of stimulation and low spiking activity unable to trigger stimulation.
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The Figure 4.24 presents the spiking activity recorded on the HD-MEA and emulated by
Bi÷muS during the closed-loop experiment. The con�guration of electrodes of the HD-MEA
was exported from the software. The XY con�guration of neurons, network con�guration and
stimulated neurons of Bi÷muS were exported from the Python scripts. Detection of burst
and spikes triggering stimulation for both HD-MEA and Bi÷muS were reconstructed from the
recorded data. The synchronization of both activities was done manually based on the trigger
of the �rst stimulation considering an approximation of 100 to 300 ms based on the latency
of the HD-MEA communication and the �uctuating latency induced by the Ubuntu operating
system.

The spiking activity of the ANN presented in Figure 4.24 (top) di�ers from the sponta-
neous activity previously recorded through the occurrence of network bursts induced by the
stimulation from the HD-MEA.

As for the spiking activity of the BNN on the HD-MEA displayed in Figure 4.24 (bottom),
stimulation artifacts are interpreted as spikes by the software, thus translating the occurrence
of stimulation triggers as "network bursts" on the raster plot. The ANN directly emulating
the membrane potential of neurons to detect spikes, the phenomena of stimulation artifacts
observed in biological recording is not modeled.

Figure 4.24: Raster plot of the spiking activity for the biological (bottom) and arti�cial
networks (top) for 180 seconds of closed-loop interaction. Bi÷muS stimulation triggers are
shown by blue triangle and stimulation triggers to HD-MEA by red triangles. Bi÷muS is
running for 180 seconds starting from 10 seconds and synchronize manually with HD-MEA
activity based on the �rst stimulation trigger ± 300 ms. The activity of Bi÷muS was recorded
using on-board �le saving and the activity of the HD-MEA from the MaxLab software.

While synchronization of the stimulation trigger with spiking activity was set manually for
this experiment, it appears that the stimulation triggers and the respective spiking activities
are more likely to be correlated according to the de�nition set in the experimental setup.

Regarding the stimulation trigger applied to HD-MEA (red triangles in Figure 4.24), all
triggers are preceded by a network burst.

As for the stimulation triggers to the ANN on Bi÷muS (blue triangles in Figure 4.24) that
are more numerous, the absence of stimulation triggers always correspond to a period of low
activity of the BNN.
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In this experiment, the activity of the BNN shows fewer bursts than the spontaneous ac-
tivity recorded the day before (see Figure 4.22) because of an infection started to occur in the
culture and reduced the Spontaneous activity.

This preliminary experiment validated the feasibility of a biohybrid closed-loop integrating
the system developed. The spiking activity of the ANN was successfully modi�ed by the
stimulation driven by the activity of the BNN on the HD-MEA identi�ed by the occurrence of
network bursts. Reciprocally, a stimulation was successfully applied to the BNN depending on
the activity of the ANN, con�rmed by the appearance of stimulation artifacts after a stimulation
trigger following a burst detection from the ANN. While the impact of the electrical stimulation
on the BNN is not evaluated here, it is known to have an e�ect on the biological in-vitro cultures
[Levi et al., 2018].

4.6.4 Discussion

While this preliminary experiment most certainly demonstrated the feasibility of an interaction
between ANN and BNN, it only validates the concept and enforce the need to conduct further
validations and characterization of the system, especially in terms of timing and stimulation
e�ects. Nonetheless, it points out the bene�ts and challenges of the interaction of Bi÷muS
with the HD-MEA device.

It emphasized the bene�t of the user-de�ned model through customizable Python scripts to
adapt to a speci�c application, showcased here by the association of XY coordinates to neurons
to take advantage of the spatial resolution provided by the HD-MEA and add more coherence
to the model. The spatial resolution of the HD-MEA also constitute a considerable bene�t in
view of an interaction with arti�cial multicompartment neurons.

The main challenges raised by this experiment with the MaxOne HD-MEA concern essen-
tially the timing, characterization of the stimulation e�ect and handling of stimulation artifacts.

Indeed, a more reliable tracking and characterization of the latencies involved in the system
are required to obtain a more reliable system. As both the HD-MEA through the gateway
computer and the Bi÷muS are integrating non-real-time operating system, a �uctuating latency
is involved. Additionally, the communication and processing latencies are also to be considered
as the MaxOne is speci�ed to observe a latency around 100 ms to process data and detect
spikes and the Bi÷muS monitoring shows limitation on the data collection interval of spikes.
Not to mention the manual synchronization that signi�cantly impact the reliability. A viable
alternative to manual synchronization would rely on the use of the GPIO featured on the
MaxOne chip that would allow capturing triggers along with the recorded data.

Another challenge lies in the processing of the data itself and more speci�cally in the han-
dling of stimulation artifact. In the experiment conducted, the stimulation artifacts were de-
tected as spikes in the MaxLab software. To obtain a reliable closed-loop, it is essential that
the detection of the spiking activity corresponds strictly to spikes and not to stimulation arti-
facts. Hence, the spike detection of the MaxLab software should be updated to ensure that the
activity observed is coherent, not a trivial to perform online.

In line with the challenges associated with the stimulation, electrical stimulation is kwown
to have an e�ect on the culture [Levi et al., 2018], but the actual e�cacy of the electrical
stimulation for training purposes on organoids remains to be further characterized. As of right
now, the e�ect of electrical stimulation on organoid is not fully understood. Thus, electrical
stimulation can not be identi�ed with certainty as the best stimulation method to interact with
organoids, thus pushing the consideration of others methods [Smirnova et al., 2023].
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To conclude, this experiment presents preliminary results demonstrating the feasibility of
a biohybrid closed-loop integrating the system developed and a new generation of standard
biophysical interface that is the HD-MEA. This experiment notably showcases the potential
of Bi÷muS to operate as a tool to study the impact of adaptive stimulation on a culture
following the principles of electroceutics while highlighting its ability to adapt to a standard
biophysical interface. In the end, this experiment also tackles essential challenges also found in
the realization of neuroprostheses.

4.7 Summary

This section presented applications and experiments conducted with the system developed
showcasing its potential for both real-time emulation and biohybrid experiments. It presented
how the Bi÷muS is capable of emulating biophysically detailed models from single neurons
to complex networks. It presented the di�erent versions of the system developed tackling
the intermediate and alternative versions as well as future improved versions with Bi÷muM.
Additionally, this section promotes the versatility of Bi÷muS to integrate biohybrid closed-loop
experiments and shows promising preliminary results for its capacity to embody the role of a
main component in an electroceutical device.
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The central theme addressed in this thesis was the design of a real-time biohybrid system
based on a Spiking Neural network for biomedical applications targeting neurological disorders
studies through real-time emulation and hybridization. The real-time emulation of biophysi-
cally detailed models comes as a viable alternative to existing emulation software thanks to
an accessible software acquaintance, a�ordable price, �exibility and fast emulation. The hy-
bridization served a signi�cant purpose by contributing to the development of neuroprostheses,
primarily through its ability to integrate biohybrid closed-loop systems based on the electroceu-
tic approach, thus enhancing the interaction between arti�cial and biological neural networks.
This manuscript was structured into four chapters, sequentially presenting the biological and
technological background, the methods employed to develop the system and concluding with
the integration of the system into applications and biohybrid experiments.

The starting point corresponded to a basic introduction of the functions, roles and char-
acteristics of the di�erent cells involved in the nervous system. The exploration of essential
elements such as neurons and synapses, along with an understanding of their properties, has
contributed to provide a good understanding of neurological disorders, which were subsequently
introduced. Starting from their growing societal impact, the e�ect of neurological disorders at
human scale and the cellular level as well as their insu�cient management were detailed, empha-
sizing the need for e�cient treatments. Alternative treatments introduced the electroceutical
approach and neuroprostheses, emphasizing the signi�cance of models, notably in the form of
biomimetic neural networks. The concept of modeling raises questions about coherence, that
translate in numeric systems in a trade-o� between detail level and implementation cost. With
regard to the level of detail, it allowed for the introduction of various models, each charac-
terized by its inherent complexity and biological meaningfulness. This notably promoted the
multicompartmental model as the most suitable for biomimetic purposes, this latter allowing an
accurate modeling of both the electrophysiological and the geometrical properties of the neuron.

Stepping into the realm of numeric systems, as enforced by the concept of arti�cial mod-
eling, an introduction to the numerical platform hosting the system was outlined. Following
an overview of the technological context that supported the choice of a platform integrating a
mixed architecture of CPU and FPGA, the main platform selected as well as its development
methods were presented. Supplementary platforms used either in intermediate or alternative
versions were also introduced. In line with the development of embedded systems, especially
in the case of a �exible, accessible, and versatile system, its interconnection justi�ed the need
for an introduction to communication protocols and interfaces that play a crucial role. From
the overview of the selected platform, two main parts stood out promoting the strength and
weaknesses embodied by the two parts of the platform that can be roughly summed up as
software for the PS and hardware for the PL.

As the groundwork for both the biological and technological background was established,
the methods leading to the development of the di�erent versions of the system developed were
presented. The methods were dividing into two main categories being hardware and software
that tackled the development of the computation core, monitoring and con�guration of the
system. The architecture of the computation core was described by addressing the implemen-
tation of the ion channels using pre-computed tables stored in memory. Then, it mostly focused
on the architecture of the single compartment neurons computation that implements a mixed
�xed-point and �oating-point data coding to obtain a satisfying trade-o� between resource uti-
lization, performances and accuracy. An improved version of the computation core allowing
the modeling of multicompartmental neurons was also presented along with optimization leads.
Afterwards, the critical part of the computation core embodied by synapses was detailed, thus
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showing the approach adopted to obtain satisfying performances. Next, the software presented
responsible for the monitoring and con�guration of the system was introduced, supporting
the choices made to obtain a compromise between �exibility, accessibility and performances.
The structure of the performant monitoring, control and con�guration performed by the C++
application as well as the operating system running on the platform is notably introduced.
Thereafter, the user-speci�c interfaces and scripts developed in Python were presented, pro-
moting the accessibility of the system. Finally, the performances obtained were stated and
compared to the others platforms, thus showing that the system developed shows promising
performances. Most notably, the resource utilization is shown signi�cantly low when projected
on larger boards and the latency on a consistent timescale for the online monitoring of arti�cial
neural networks.

With all the keys in hand, the full potential of the system was showcased through applica-
tions and biohybrid experiments, making a valuable contribution to the scienti�c community.
Starting from the real-time emulation of independent biophysically detailed neuron to complex
neural networks, the system demonstrated its capacity and potential to emulate biomimetic
models. Especially, the preliminary version of the multicompartmental modeling in real-time
on FPGA constitutes a promising contribution thanks to the e�cient trade-o� demonstrated
between performances and resource utilization. Above all, the system best stood out when inte-
grated in closed-loop and open-loop biohybrid experiments setup. It particularly demonstrated
a great utility in the post-stroke rehabilitation through electroceutical therapy where it drove
an adaptive stimulation that was capable of impacting the network activity. On a di�erent
level, it allowed the design of preliminary experiments demonstrating the feasibility of arti�-
cial synapses through optogenetic, thus constituting a great contribution to the development of
neuroprostheses. Lastly, but not insigni�cantly, it showcases a highly promising interconnection
with recent biophysical interfaces to obtain a biohybrid closed-loop targeting large arti�cial and
biological neural networks, leading the way to greater investigation such as organoid intelligence.

Although the results presented in this thesis are promising, they represent preliminary work
based mostly on the feasibility of the solutions and bridging the "hardware" gap between
hybridization. Indeed, unraveling the mechanisms of learning in biological neural networks re-
mains a signi�cant challenge, requiring extensive investigation into communication with these
networks, especially in the context of training in view of biological computing. Nonetheless,
the �ndings discussed in this manuscript are essential to the establishment of a bidirectional
communication with biological neural network, a crucial step in the realization of neuropros-
theses.

From a boarder perspective, the thesis contributed to the exploration of the applications
of FPGA and more speci�cally to mixed architecture integrating FPGA. Certainly, similarly
to GPU, FPGA are signi�cantly bene�ting from the technological advances, further enhanced
by recent architectures such as the adaptive SoCs proposed by AMD Xilinx, which integrate
substantially higher computational power. Hence, as showcased by this work, FPGA-based
architectures constitute valuable asset for real-time embedded systems.

In line with the discussion of recent architectures, leads of improvements would rely on
the migration of the system on a more recent architecture that allow e�cient �oating-point
handling in hardware. More importantly, great improvements would include the optimization
on the software side such as the utilization of the real-time processors concurrently to the main
cores running the operating system. Moreover, the implementation of a customized operating
system enabling preemptive capabilities would represent a signi�cant enhancement for the sys-
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tem. A key area for improvement lies in optimizing synapses with a more e�cient memory
architecture like HBM, which can alleviate the current system bottleneck.

In conclusion, this thesis represents a promising preliminary work aligned with our team's
primary objective, which is to advance towards the development of neuroprostheses as an
e�ective treatment for neurological disorders. Ultimately, it is my aspiration that this work will
become a valuable contribution to the scienti�c community, encouraging further enhancements
and advancements.
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