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CNRS, Université Paris- Dauphine PSL Président

Mme. Raluca EFTIMIE
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CNRS, Université Grenoble-Alpes Examinatrice
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Résumé

Cette thèse est consacrée à l’étude de plusieurs problèmes issus de la modélisation mathématique des
tumeurs. Plus spécifiquement, l’intérêt principal est orienté vers les interactions ayant lieu au sein
de la tumeur et avec son environnement. Néanmoins, certains des modèles et méthodes présentés au
coeur de la thèse ont une portée bien plus générale que l’étude du cancer. Les principaux résultats sont
divisés en sept chapitres. Dans le premier chapitre, par une nouvelle analyse mathématique comparant
la taille des tumeurs entre traitements non pas en fonction du temps, mais en fonction de la taille de
la population résistante, nous établissons une comparaison entre les résultats de différentes stratégies
de traitement appliquées à une tumeur composée de deux sous-populations, une de cellules sensibles et
une autre de cellules résistantes. Dans le deuxième chapitre, nous dérivons l’expression asymptotique
d’un cycle limite apparaissant dans un modèle d’interaction tumeur-système immunitaire. Le troisième
chapitre est consacré à la modélisation du bet-hedging, une stratégie évolutive d’intérêt pour la théorie
atavique du cancer. L’existence et le caractère unique de la solution du modèle sont prouvés et deux
phénomènes d’intérêt biologique sont mis en évidence par des simulations. Le chapitre quatre est un
complément au troisième chapitre. On y développe une discussion philosophique sur la théorie atavique
du cancer et on esquisse deux modèles différents pour l’émergence de la coopération. Le chapitre cinq
concerne l’étude d’une méthode particulaire pour un modèle d’advection-réaction-diffusion non local
d’une grande importance dans le domaine de les dynamiques adaptatives. La conservation du com-
portement asymptotique est analysée pour le schéma numérique proposé. Les chapitres six et sept sont
consacrés à l’étude du système de Keller-Segel parabolique-parabolique où nous donnons respectivement
quelques estimations de la solution et déterminons le comportement asymptotique pour le cas non radial

Mots clés: Populations structurées; modélisation du cancer; confinement des tumeurs; méthodes
particulaires; théorie atavique; système de Keller-Segel parabolique-parabolique.



Abstract

This thesis is devoted to the study of several problems arising from the mathematical modelling of tu-
mours. More specifically, the main interest is oriented towards the interactions taking place within the
tumour and with its environment. Nevertheless, some of the models and methods presented at the core
of the thesis have a much more general scope than the study of cancer. The main results are divided
in seven chapters. In the first chapter, by a novel mathematical analysis comparing tumor sizes across
treatments not as a function of time, but as a function of the resistant population size, we establish a
comparison between the outcomes of different treatment strategies applied to a tumour composed of
two sub-populations, one of sensitive cells and another one of resistant cells. In the second chapter, we
derive the asymptotic expression of a limit cycle arising in a tumour-immune system interaction model.
The third chapter is devoted to the modeling of bet-hedging, an evolutionary strategy of interest for
the atavistic theory of cancer. The existence and uniqueness of solution for the model is proved and
two phenomena of biological interest are evidenced through simulations. Chapter four is a complement
for the third chapter. On it, a philosophical discussion about the atavistic theory of cancer is developed
and two different models for the emergence of cooperation are sketched. Chapter five is concerned with
the study of a particle method for non-local advection-reaction-diffusion model of great importance in
the area of adaptive dynamics. The conservation of asymptotic behaviour is analyzed for the proposed
numerical scheme. Chapters six and seven are devoted to the study of the fully parabolic Keller-Segel
system where we give some estimates over the solution and determine the asymptotic behaviour for the
non-radial case, respectively

Keywords: Structured populations; cancer modelling; tumour containment; particle methods;
atavistic theory; fully parabolic Keller-Segel system.
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Introduction

This thesis is devoted to the study of several problems arising from the mathematical modelling of
tumours. More specifically, the main interest is oriented towards the interactions taking place within
the tumour and with its environment. Nevertheless, it is worth mentioning that some of the models
and methods presented at the core of the thesis have a much more general scope than the study of
cancer.
We first present some of the mathematical tools used in the modelling of population dynamics. We
then expose different approaches for the study of tumour cells, and their evolution.
Finally, the main results obtained throughout the thesis will be summarized.

Some tools from differential equations theory for the mathe-

matical modelling of population dynamics

Simple species growth model

The simplest model of population dynamics only takes one variable into account: the population size
at time t > 0, usually denoted as N(t). Its growth is described by means of an ordinary differential
equation with an initial condition

dN(t)

dt
= G(N(t)), N(0) = N0,

where G(N) is a regular function and N0 ⩾ 0. Some examples are the linear growth (if G(N) is
constant), exponential growth (if G(N) is proportional to N), logistic growth (G(N) := rN(K −N)))
or Gompertz growth (G(N) := rN ln(K/N)), where r and K are the intrinsic growth rate of the
population and the carrying capacity of the environment, respectively.
If the population is homogeneous, and surrounded by a rather stable environment (which are two
very strong assumptions), simple species growth models are often enough to describe the population
dynamics. However, once heterogeneity within the population and a variable environment come into
play, the simplicity of these models does not allow for a sufficiently good representation of the population
evolution.

Multiple species growth model

Heterogeneity inside the population often allows for a clear classification of its individuals in a finite
amount of categories. Gender is the simplest example of such categories, but we could mention as

11



well resistance, or lack of it, towards a specific sickness or stimulation, or even dead or alive stages
(for tumour cell populations, for example). Furthermore, entirely different species might be considered
altogether.
These, and others, are all categories which directly affect the population dynamics. Therefore, it is of
interest to track the evolution of each sub-population independently. A system of ordinary differential
equations is then very well suited for its mathematical representation. Consider n ∈ N sub-populations,
and Ni(t), i ∈ {1, . . . , n} their sizes at time t > 0. We denote N(t) := (N1(t), · · · , Nn(t)). The
associated dynamic system then reads

dN(t)

dt
= G(N(t)), N(0) = N0,

with G : Rn → Rn a vector valued regular function and N0 ∈ Rn
+.

The study of several sub-populations allows for the inclusion of various mechanisms such as competition,
cooperation or mutations, that were not possible to describe with the simple species growth model.
Amid the most well known models we have Lotka-Volterra models for predator-prey interactions, and
SIR models for the spread of infectious diseases within a population. We present two models relying
on a system of two differential equations, and derive basic results that will be further developed in this
thesis.

Sensitive and resistant sub-populations on a tumour

Clinical and pre-clinical data suggests that treating some tumors at a mild, patient-specific dose might
delay resistance to treatment and increase survival time. In Viossat and Noble (2021) [1], conditions
under which a treatment aiming at tumor containment is indeed optimal were given for a recent
mathematical model with sensitive and resistant tumor cells. The equations associated to such model
are 

dS

dt
(t) = S(t)gS(S(t), R(t), L(t)),

dR

dt
(t) = R(t)gR(S(t), R(t)),

S(0) = S0 ⩾ 0, R(0) = R0 ⩾ 0,

(1)

where S(t) and R(t) are the total number of sensitive and resistant cells at time t, L(t) is the current
dose or treatment level, and gS and gR are per-cell growth-rate functions. The total tumor population
size is N(t) = S(t) + R(t), with initial value N0 = S0 + R0. We also fix the maximum tolerable level
for the total tumor size Ntol and the critical size Ncrit over which the patient cannot survive.
We set the following key assumptions

(a1) Resistant cells are fully resistant (∂LgR = 0).

(a2) The function gR is strictly decreasing in S (∂SgR < 0).

(a3) The function gS is non-increasing in R and strictly decreasing in L (∂RgS ⩽ 0 and ∂LgS < 0).

(a4) As long as the patient is alive (N < Ncrit), the size of an untreated or fully resistant tumor strictly
increases (gR > 0).
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(a5) For any treatment level L, the function

R → (Ntol −R)gS(Ntol −R,R,L) +RgR(Ntol −R,R),

is increasing on [0, Ntol].

Assumptions (a1) and (a2) imply that the only external factor influencing the evolution of the resistant
cells is the competition with the sensitive cells. Conversely, assumption (a3) ensures that the sensitive
population is affected by both the competition with resistant cells and the treatment. Assumption (a4)
reflects the fact that the tumour is not curable and finally the last assumption ensures that if a tumor
increases beyond the maximum tolerable level Ntol then it will never become smaller again. It also
implies that the treatment level required to stabilize a tumor of size Ntol increases with the frequency
of resistant cells.
A natural question is how outcomes related to different treatment levels compare. Consider two different
treatment levels L1(t) and L2(t) and their respective associated solutions for problem (1), denoted as
(S1(t), R1(t)) and (S2(t), R2(t)). In what follows, we assume that S1(0) ⩾ S2(0) and R1(0) ⩽ R2(0).
If over a certain interval [0, T ] the relation S1(t) ⩾ S2(t) holds true, the decreasing character of gR with
respect to S implies that

dR1

dt
(t) = R1(t)gR(S1(t), R1(t)) ⩽ R1(t)gR(S2(t), R1(t)),

which implies that R1(t) is a sub-solution of the equation satisfied by R2(t). The comparison principle
allows us to conclude then that R1(t) ⩽ R2(t) for all t ∈ [0, T ].
Similarly, under the relation N1(t) ⩾ N2(t) we have that

dR1

dt
(t) = R1(t)gR(N1(t) −R1(t), R1(t)) ⩽ R1(t)gR(N2(t) −R1(t), R1(t)),

which again implies that R1(t) ⩽ R2(t) for all t ∈ [0, T ] and additionally

S1(t) = N1(t) −R1(t) ⩾ N2(t) −R2(t) = S2(t).

In other words, as long as a treatment level keeps either the sensitive or the total population above the
one related to a second treatment level, it will keep the resistant population below its counterpart.
Finally, if L1(t) ⩽ L2(t) and the initial relations over (S1(0), R1(0)) and (S2(0), R2(0)) hold strictly,
the previous argument ensures that R1(t) < R2(t) and S1(t) > S2(t) for all t ∈ [0, T ]. Then, the
continuity of the solutions with respect to the initial data guarantees that, when the initial relations
are not strictly satisfied, then R1(t) ⩽ R2(t) and S1(t) ⩾ S2(t) for all t ∈ [0, T ], by using a perturbation
argument.
The previous results, allow us to conclude that not treating will always minimize the amount of resistant
cells while maximizing the sensitive ones. On the other hand, treating at the maximum tolerated dose
will have the opposite effect, which is not desirable, as a fully resistant tumour does not leave many
options for treatments. Furthermore, in [1] it was shown that containing the tumor at Ntol maximizes
the survival time of the patient, as this strategy allows to keep the total population below any other
outcome obtainable through any alternative treatment.
The literature regarding cancer containment includes Martin et al. (1992) [2], Monro-Gaffney (2009) [3],
Gatenby et al. (2009) [4], Silva et al. (2012) [5], Carrère (2017) [6], Zhang et al. (2017) [7], Bacevic-
Noble et al. (2017) [8], Hansen et al. (2017) [9], Gallaher et al. (2018) [10], Cunningham et al.
(2018) [11], Pouchol (2018) [12], Carrère and Zidani (2020) [13], Strobl et al. (2020) [14], Cunningham
et al. (2020) [15] and Viossat and Noble (2021) [1].
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Periodic dynamics and Hopf bifurcation

Following the model presented in [16] and [17], let us now consider a system of two interacting and
competing sub-populations with a different setting to the one presented on the previous section. The
first one will be composed of tumour cells and the second one will be conformed by lymphocytes.
The quantities c(t) and n(t) will represent the densities of tumour cell and lymphocytes at time t,
respectively. The dynamics of these two populations are described by the following system

d

dt
c(t) = a1cF (c) − a2µϕ(c)cn,

d

dt
n(t) = −a3nψ(c) + a4q(c),

(2)

where the function ψ(c) describes the stimulatory effect of the tumour cells on the immune cells. It
can be assumed that this function is positive (at least initially), ψ(0) > 0, and might be negative only
in a finite interval. It is reasonable to assume |ψ′(0)| ⩽ 1, so that, at least initially, the death rate of
lymphocytes is not greater than that in the linear model. The tumour growth rate F (c) is a positive
function which summarizes the carrying capacity (or malignancy) such that F (0) > 0, F ′(c) ⩽ 0 and
lim
c→∞

cF (c) = 0, with the additional assumption that initially it is F ′(0) = 0. The loss of tumour cells,

which depends on the competition with lymphocytes, is represented by the function ϕ(c) characterized
by ϕ(c) > 0, ϕ′(c) ⩽ 0 and lim

c→∞
cϕ(c) = l < ∞. In other words, if the tumour growth tends to infinity

the loss of tumour cells would tend to a constant rate. It can be also assumed that ϕ′(0) = 0. Regarding
the influx of immune cells q(c) can be taken q(0) = 1, |q′(0)| ⩽ 1, so that, at least initially, the influx
of effector cells is not greater than that in the linear model.
Through the change of variables

u = c, v =
n

a4
, τ = a3t,

and introducing the constants

a =
a1
a3
, b =

1

a3
, µ =

a2a4
a3

,

we get the non-dimensional model {
∂tu = auF (u) − µϕ(u)uv,

∂tv = −vψ(u) + bq(u).

Furthermore, the reaction term can be approximated using a second order Taylor expansion around
the steady state (0, b/ψ(0)), as done in [16], where, after assuming F ′(0) = 0, ϕ(0) = 1 and q′′(0) = 0,
and grouping similar terms, we obtain the system{

∂tu = αu− µuv,

∂tv = −β1uv − β2v + β3u+ β4 − β5vu
2,

(3)

where α = aF (0), β1 = ψ′(0), β2 = ψ(0), β3 = bq′(0), β4 = b and β5 = 1
2
ψ′′(0). Hence, the following

restrictions apply to the parameters:

α > 0, µ > 0, |β1| ⩽ 1, β2 > 0 and |β3| ⩽ β4. (4)
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On the model around resistant and sensitive tumor cells, one of the sub-populations was assumed to
be always increasing. This rules out the existence of a periodic solution for system (1). However, this
is not the case for model (3), where the conditions for the appearance of such periodic solutions were
already given in [16]. In fact, this is not a rare phenomenon in population dynamics. In particular, for
predator-prey models (or homologous ones) one can expect that the growth of the prey population will
imply an increase on the number of predators. In turns, this leads to the decay of the number of preys
and consequently, the amount of predators also dwindles, allowing once again for the prey population to
proliferate and triggering the whole process all over. This simple mechanism can be described through
the following system of ordinary differential equations

dx(t)

dt
= a− y(t),

dy(t)

dt
= x(t) − b,

where x(t) and y(t) represent the number of prey and predators respectively while a and b are the
intrinsic growth factors of each sub-population in the absence of the other one. A simple computation
shows that

d

dt

(
(x(t) − b)2 + (y(t) − a)2

)
= 0,

for all values of t, which imply that the orbits for the dynamical system are non other than the
circumferences

(x(t) − b)2 + (y(t) − a)2 = r, r ∈ R+.

Determining the existence of periodic orbits (and their stability) is generally a difficult problem, which
strongly depends on the parameters of the model. This type of studies usually falls under the theory
of bifurcations.
A bifurcation occurs when a small smooth change made to the parameter values (the bifurcation pa-
rameters) of a system causes a sudden “qualitative” or topological change in its behavior. In particular,
we are concerned with a Hopf bifurcation, which is a critical point where, as the parameter changes, the
system’s stability switches and a periodic solution arises. More accurately, it is a bifurcation in which
a steady state of a dynamical system loses stability, as a pair of complex conjugate eigenvalues (of
the linearization around the steady state) crosses the complex plane imaginary axis as the parameter
crosses a threshold value.
We show with a simple example the conditions for the appearance of a Hopf bifurcation. Due to its sim-
plicity and illustrative value, we consider the Liénard system, which is used while modelling oscillating
circuits rather than population dynamics,

du(t)

dt
= f(u(t), v(t)) := v(t),

dv(t)

dt
= g(u(t), v(t)) := −u(t) + (µ− u2(t))v(t).

Its only equilibrium point is the origin and the Jacobian matrix for the linearized system about the
origin is

Jµ =

(
0 1
−1 µ

)
.

In order to identify the occurrence of Hopf bifurcation with respect to µ, the following conditions need
to be fulfilled:
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(b1) tr(Jµ) = 0, tr(Jµ) is the trace of Jµ.

(b2) det(Jµ) > 0.

(b3) The derivative of tr(Jµ) with respect to µ, has to be different from 0.

(b4) The first Lyapunov coefficient l1 has to be different from 0 where

l1 =
1

16
(fuuu + guuv + fuvv + gvvv)

+
1

16 det(Jµ)
(fxy(fuu + fvv)) − guv(guu + gvv) − fuuguu + fvvgvv),

and

huivk−i :=
∂k

∂ui∂vk−i
h(0, 0), h ∈ {f, g}, k ∈ {2, 3}, 0 ⩽ i ⩽ k.

Condition (b1) and (b2) are necessary conditions related to the presence of imaginary eigenvalues
which cross the real axis of the complex plane. Conditions (b3) and (b4) are the transversality and
non-degeneracy conditions, respectively, which ensures the equivalence of the system to one of the
normal forms of the Hopf bifurcation.
Regarding the Liénard system, tr(Jµ) = µ, which is 0 if µ = 0. On the other hand

det(Jµ) =
d

dµ
tr(Jµ) = 1 > 0,

while l1 = −1
8
̸= 0. Hence, all the conditions of the Hopf Bifurcation Theorem are satisfied. Since the

origin is stable for µ < 0 and unstable for µ > 0, the system has a supercritical Hopf bifurcation at
µ = 0.
Due to the various parameters present in (3), a similar study becomes harder to perform. In such cases,
an alternative way of determining the appearance of a limit cycle is the Poincaré-Bendixon theorem.
This theorem states that if an invariant subset of the phase portrait does not contain critical points,
then there exists a periodic orbit. Indeed, this result was used in [16] to show that under certain
conditions, a limit cycle appears for system (3). Amid the biological implications of this result, we
have the fact that for a certain family of parameters, it is possible for the immune system to keep a
tumor under control, given that a periodic solution is always bounded. Of course, it remains to support
these theoretical results with biological and medical evidence.
Amid the most recent literature regarding the study of limit cycles we have Mittal et al. (2020) [18],
Li-Li (2023) [19], Bai et al. (2023 ) [20] and Zhang-Shateyi (2023) [21].

Continuous structure variables

A finite amount of classifications for the individuals is not always possible, or convenient. It is often
useful to relate the elements of a population with a continuously quantifiable property, such as position,
age, size or concentration of a certain chemical.
The quantity describing such property may be represented by x ∈ Ω ⊂ Rd and is referred to as a
continuous structure variable.
Position in space is, perhaps, the most widely known among the continuous structure variables, and
is of special interest in the study of cell populations. In such scenario, n(t, x) denotes the density of
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population at time t > 0 and point x ∈ Rd, d ∈ {1, 2, 3}. The total population size ρ(t) can be then
computed as

ρ(t) :=

∫
Ω

n(t, x)dx,

and the dynamics of n(t, x) can be described by the partial differential equation

∂tn(t, x) + ∇ · (a(t, x, n(t, x))n(t, x)) +D(t, x, n(t, x)) = R(t, x, n(t, x)), n(0, x) = n0(x), (5)

where a(t, x, n) is a regular, vector valued function, D(t, x, n(t, x)) is a diffusion operator, usually
an integral or a second order differential operator, and R(t, x, n) is a real valued regular function,
often called reaction term. In this context the divergence term usually represents transport in a
given direction, the diffusion term represents invasion and the reaction term describes the selection
mechanisms, which include those mentioned for the single and multiple species growth models. The
inclusion of space as a variable allows to track not only the size, but the geometry and/or spatial
distribution of the population, which sometimes hold important information.
Some of the non spatial variables are linked to a phenotype. In such cases, the interpretation of the terms
in equation (5) is slightly different. The reaction term still describes the selection mechanisms, however
the diffusion term stands for non-genetic epimutations, while the advection term models mutations
that are being prompted by the environment.
An important aspect to consider is the fact that a, D and R could depend on n(t, x) non-locally. This
is, using global information of the function n over the domain Ω. The non-locality of such functions
could be evidenced through a dependence on ρ(t) or a more general integral operator

In(t, x) :=

∫
Ω

φ(t, x, y)n(t, y)dy,

for some known function φ(t, x, y).
We present a simple example extracted from [22] where it is evidenced the concentration phenomena
arising from these non-local problems. Consider the equation{

∂tn(t, x) = (r(x) − ρ(t))n(t, x), x ∈ I ⊂ R, t > 0,

n(0, x) = n0(x), x ∈ I,
(6)

where r(x) > 0 is the reproduction rate of the elements of the population with trait x, I is a bounded
interval and n0(x) is a bounded and strictly positive function over I.
Notice that equation (6) has infinitely many steady states (in the sense of measures) given by the family
of Dirac deltas r(y)δ(x− y), y ∈ I. However, a deeper analysis is needed to determine the stability for
each of these solutions.
The function

N(t, x) := n(t, x)e
∫ t
0 ρ(s)ds

satisfies the equation {
∂tN(t, x) = r(x)N(t, x), x ∈ I ⊂ R, t > 0,

N(0, x) = n0(x), x ∈ I,

hence, it is given explicitly by the expression

N(t, x) = n0(x)er(x)t.
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Therefore
d

dt
e
∫ t
0 ρ(s)ds = ρ(t)e

∫ t
0 ρ(s)ds =

∫
I

N(t, x)dx =

∫
I

n0(x)er(x)tdx.

Integrating in t we obtain

e
∫ t
0 ρ(s)ds =

∫
I

n0(x)

r(x)
er(x)tdx+ 1 −

∫
I

n0(x)

r(x)
dx,

which allows to give an explicit expression for ρ(t)

ρ(t) =

∫
I

n0(x)er(x)tdx

(∫
I

n0(x)

r(x)
er(x)tdx+ 1 −

∫
I

n0(x)

r(x)
dx

)−1

.

Under the assumption that r(x) attains its maximum at a single value x̄, it is possible to compute the
limit of ρ(t) when t goes to infinity. Indeed, it is straightforward to obtain the bound

ρ(t) ⩽ r(x̄)

∫
I

n0(x)

r(x)
er(x)tdx

(∫
I

n0(x)

r(x)
er(x)tdx+ 1 −

∫
I

n0(x)

r(x)
dx

)−1

.

The right-hand side of this inequality converges towards r(x̄), since
∫
I
n0(x)
r(x)

er(x)tdx converges towards
+∞.
On the other hand, for any ε > 0, we define the set

Iε := {x ∈ I : r(x) ⩾ r(x̄) − ε}.

hence

ρ(t) ⩾ (r(x̄) − ε)

∫
Iε

n0(x)

r(x)
er(x)tdx

(∫
I

n0(x)

r(x)
er(x)tdx+ 1 −

∫
I

n0(x)

r(x)
dx

)−1

.

The right-hand side of this inequality converges towards r(x̄) − ε, for all ε > 0, which implies that the
limit of ρ(t) is precisely r(x̄).
Finally, recalling that

n(t, x) = n0(x)e
∫ t
0 (r(x)−ρ(s))ds,

we see that for all x ̸= x̄, n(t, x) converges to 0, which implies that the only stable steady state is
r(x̄)δ(x− x̄).
The selection of the trait which maximizes the reproductive rate makes perfect sense from a biological
perspective, and validates the modelling choice. It is important to remark the fact that, when second
order differential operators are considered in order to model mutations, the regularizing effect of such
operators does not allow for the formation of Dirac masses as a steady state. However, gaussian-like
functions can still be observed, and it has been proved in [23] that in some cases, the steady states for
problem (6) are the limit of similar problems where small mutations are considered.
The study of the dynamics of a structured population is a subject that has gained a lot of attention in
recent years. Some of the references regarding this subject include Desvillettes et al. (2008) [24], Bouin
et al. (2012) [25], Bouin-Calvez (2014) [26], Chisholm et al. (2016) [27], Pouchol et al. (2018) [12],
Pouchol-Trélat (2018) [28], Guilberteau et al. (2023) [29] and Guilberteau et al. (2023) [30].
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Angiogenesis and aggregation in tumours

Angiogenesis is a process whereby capillary sprouts are formed in response to a chemical stimuli which
is externally supplied. This process occurs during embryogenesis, wound healing, arthritis and during
the growth of solid tumors. Several mathematical models have been proposed and studied in order to
represent angiogenesis, or more generally, the aggregation and chemo-attractant processes that governs
it (see for example Anderson and Chaplain (1998) [31], Corrias et al. (2003) [32], Corrias et al.
(2004) [33] and Perthame-Vasseur (2012) [34]).
One of the most well known models for chemotaxis is the Keller-Segel (or Patlak-Keller-Segel) system.
A simplified version of this system is

∂tf =∆f −∇ · (f∇u),

ε∂tu =∆u+ f,

f(0, x) =f0(x), u(0, x) = u0(x),

t > 0, x ∈ Rd, (7)

where n(t, x) could represent the density of endothelial cells and c(t, x) the concentration of chemo-
attractant.
The global existence of solution for system (7), and its asymptotic behaviour is a question of interest
that strongly depends on the parameters ε, d and M :=

∫
Rd f0(x)dx.

For example, consider the parabolic-elliptic Keller-Segel equation on the plane (ε = 0, d = 2). A formal
computation shows that

d

dt

∫
R2

f(t, x)dx = 0,

hence, the mass M is conserved:∫
R2

f(t, x)dx =

∫
R2

f0(x)dx = M, ∀t > 0.

A similar computation shows that

d

dt

∫
R2

f(t, x)|x|2dx = 4M − M2

2π
.

This relation directly implies that, if M > 8π, then no global in time solutions can exist, because
the second order moment of a positive solution would become negative after a finite amount of time,
which is not possible. This is way the study of the parabolic-elliptic Keller-Segel equation on the plane
is usually divided in three cases: the sub-critical case (M < 8π) where global solutions in time exist
and converge towards a regular profile when t goes to +∞ (see Blanchet et al. (2006) [35], Campos,
Dolbeault (2014) [36] and Egaña-Mischler (2016) [37]), the critical case (M = 8π) where global solu-
tions in time exist, but blow up when t goes to +∞ (see Blanchet et al. (2008) [38], Ghoul-Masmoudi
(2018) [39] and Davila et al. (2023) [40]) and the super-critical case (M > 8π) where solutions blow
up in finite time (see Herrero-Velázquez (1997) [41] and Raphaël-Schweyer (2014) [42]).
The study of the fully parabolic Keller-Segel system is a much more complex problem, however, great
advances have been accomplished as well. For example, important results regarding existence of so-
lutions and their behaviour when d > 2 can be found in Corrias et al. (2004) [33], Corrias-Perthame
(2006) [43], Corrias-Perthame (2008) [44] and Calvez et al. (2012) [45]. On the other hand, when d = 2,
some advances have been made, (see, for example, Calvez-Corrias (2008) [46], Biler et al. (2011) [47]
and Carrapatoso-Mischler (2017) [48]) but many questions remain open.
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Two numerical methods for non-local partial differential equa-

tions

Numerical approximation plays a fundamental role while understanding the solutions for partial dif-
ferential equations. Not only serves as a way to illustrate qualitative and quantitative properties, but
paired with functional analysis it provides a whole set of tools for the theoretical study of such solutions.
We briefly describe the basis of two numerical methods which are well suited for the study of non-local
integro-differential equations.

Finite volume method

The finite volume method is a discretization method which is well adapted for heat or mass transfer
problems, among others. It may be used on arbitrary geometries and using structured or unstructured
meshes. Furthermore, it locally conserves the numerical fluxes.
To apply this method, the equation is integrated on each discretization cell (which is often called
“control volume”). Then, by the divergence formula, an integral formulation of the fluxes over the
boundary of the control volume is given. Finally, the fluxes on the boundary are discretized with
respect to the discrete unknowns.
Let us use the transport equation to showcase the method. Consider the equation

∂tn(t, x) + ∇ · (a(x)n(t, x)) = 0, x ∈ R2, t > 0,

n(0, x) = n0(x), x ∈ R2.

where a ∈ C1(R2,R2) and n0 ∈ L∞(R2). Let M be a mesh of R2 consisting of polygonal bounded
convex subsets of R2 and let Dj be an element of the mesh M. Integrating the transport equation over
Dj yields

ρ′j(t) +

∫
∂Dj

a(x) · nj(x)n(t, x)dS(x) = 0, (8)

where

ρj(t) :=

∫
Dj

n(t, x)dx,

is the discretized unknown, nj(x) is the outward pointing normal vector to ∂Dj and dS denotes the
one-dimensional Lebesgue measure on ∂Dj . The integral term in (8) may then be split as∫

∂Dj

a(x) · nj(x)n(t, x)dS(x) =
∑
l∈Nj

∫
Γjl

a(x) · njl(x)n(t, x)dS(x), (9)

where Nj is the set of indexes such that Dl is a neighbor of Dj, Γjl is the boundary between Dj and
Dl and njl(x) is the normal vector to Γjl pointing from Dj to Dl. Let

ajl := |Γjl|a(xjl) · njl(xjl),

where xjl is the center of mass of Γjl.By denoting as a+jl and a−jl the positive and negative part of ajl
respectively, each term of the sum in the right-hand-side of (9) is then discretized as

Fjl(t) = a+jlρk(t) + a−jlρl(t).
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This “upwind” choice is classical for transport equations. It is crucial in the mathematical analysis; it
ensures the stability properties of the finite volume scheme.
Therefore, we have derived the semi-discrete scheme

∂tρj(t) +
∑
l∈Nj

Fjl(t) = 0, j ∈ N, t > 0,

ρj(0) =
∫
Dj
n0(x)dx, j ∈ N,

which can be studied using classical ODE theory or further discretized in time.
This scheme is locally conservative in the sense that Fjl(t) = −Flj(t). This property makes the finite
volume method a suitable choice in problems where the flux plays an important roll.

Weighted particle method

The weighted particle method is specially suited to treat non local diffusion terms. Consider, for
example, the equation

∂tn(t, x) + ∇ · (a(x)n(t, x)) −D(n(t, x)) = 0, x ∈ R2, t > 0,

n(0, x) = n0(x), x ∈ R2.

where a ∈ C1(R2,R2) and D(n(t, x)) is the diffusion operator

D(n(t, x)) :=

∫
R2

σ(x, y)n(t, y)dy −
∫
R2

σ(y, x)n(t, x)dy,

for some regular function σ(x, y).
Multiplying the differential equation by φ ∈ C1

c (R2), integrating by parts the adjective term and
changing the order of integration on the diffusion term shows that

d

dt

(∫
R2

n(t, x)φ(x)dx

)
−
∫
R2

n(t, x)a(x) ·∇φ(x)dx−
∫
R2

∫
R2

σ(x, z)n(t, z)(φ(x)−φ(z))dxdz = 0, (10)

for all φ ∈ C1
c (R2). On the other hand, for all y ∈ R2, the characteristic curves for this problem are

given by the Cauchy problem 
d
dt
X(t, y) = a(X(t, y)), t > 0,

X(0, y) = y.

Denoting J(t, y) the determinant of Jacobian matrix of X(t, y), is a well established fact that

d

dt
J(t, y) = J(t, y)(∇ · a)(X(t, y)).

The map X(t, y) is a diffeomorphism of R2 into itself, for all values of t, hence, by making the change
of variables x = X(t, y), we get∫

R2

n(t, x)φ(x)dx =

∫
R2

n(t,X(t, y))φ(X(t, y))J(t, y)dy.
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We may approximate the integral on the right-hand side of this relation using the term∑
k∈K

ωkνk(t)φ(X(t, yk))J(t, yk),

for some known set (yk, ωk)k∈K of points yk ∈ R2 and weights ωk ∈ R+ and some unknown strength
values νk(t). Injecting this approximation and homologous ones for the other integral terms in (10),
we obtain the system to be solved:

ẋk(t) = a(xk),

ẇk(t) = ∇ · a(xk(t))wk(t),

ν̇k(t) = −∇ · a(xi(t))νi(t) +
∑
j∈K

wj(t) (σ(xk(t), xj(t))νj(t) − σ(xj(t), xk(t))νk(t)) ,

xk(0) = yk, wk(0) = ωk, νk(0) = n0(yk),

(11)

where we have adopted the notations xk(t) := X(t, yk) and wk(t) = J(t, yk).
In other words, the particle method amounts to approximate the solution n(t, x) by a sum of Dirac
delta’s centered at the points xk(t), with weights wk(t) and strengths νk(t).
As shown, this method is especially adapted for the linear advection equation, but has been generalised
to many other kinds of equations which mostly come from physics [49], such as diffusion equations
[50–54], advection-diffusion equations [55, 56], convection-diffusion equations [57], the Navier-Stokes
equation [58,59] or the Vlasov-Poisson equation [60,61].

Main results of the thesis

The work being presented here deepens on the models and methods showcased so far and generalizes
some of the already established results.

Cancer containment for Norton-Simons models

Model (1) does not take into consideration mutations from sensitive to resistant cells, and assumes that
the growth-rate of sensitive cells is non-increasing in the size of the resistant population (first part of
assumption (a3)). The latter is not true in standard models of chemotherapy.
In Chapter 1 we show how to dispense with this assumption and allow for mutations from sensitive
to resistant cells. This is achieved by a novel mathematical analysis comparing tumor sizes across
treatments not as a function of time, but as a function of the resistant population size.
As done previously, we consider a model with two types of tumors cells: sensitive to treatment, and
fully resistant. Their growth is described by differential equations of the form:

dS

dt
(t) = ϕS(S(t), R(t), L(t)), S(0) = S0 ≥ 0

dR

dt
(t) = ϕR(S(t), R(t)), R(0) = R0 > 0

(12)
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where ϕS and ϕr are continuously differentiable absolute growth-rate functions. The quantities ϕS(0, R, L)
and ϕR(S, 0) are assumed non-negative to ensure that population sizes cannot become negative. Let
N(t) = S(t) +R(t) and N0 = S0 +R0. We make the following assumptions:

� The patient dies when tumor size reaches a critical size Ncrit > N0.

� The size of an untreated tumor increases: ϕS(S,R, 0) + ϕR(S,R) > 0 if N ≤ Ncrit.

� The higher the treatment level, the lower the growth-rate of sensitive cells: ϕS is non-increasing
in L.

� The resistant population keeps growing: ϕR(S,R) > 0 whenever R > 0 and N ≤ Ncrit, so that
the tumor is incurable if, as we assume, resistant cells are initially present.

� If R ≥ R0 and N ≤ Ncrit, for a given number of resistant cells, the larger the sensitive population,
the lower the growth-rate of resistant cells: ϕR is non-increasing in S.

The difference with Viossat and Noble (2021) [1] (see assumptions (a1) through (a5)) is two-fold: first,
the model is formulated in terms of absolute growth-rates, allowing for mutations from sensitive to
resistant cells and back. Second, we make no assumption on how the growth-rate of sensitive cells
depends on the number of resistant cells. In particular, ϕS is not assumed non-increasing in R.
More specifically, we show that, up to natural additional assumptions for comparisons of sensitive cell
populations, all results of Viossat and Noble on (1) still hold on (12), in spite of our less restrictive
assumptions.

The key point is that if treatment level is never larger than a given constant for treatment 1, and
never smaller than the same constant for treatment 2, then the resistant population is never larger
under treatment 1 than under treatment 2.

Proposition 0.1. Consider solutions of (12) associated to two treatments L1(t) and L2(t). If there
exists a constant L̄ such that for all t ≥ 0, L1(t) ≤ L̄ ≤ L2(t), then R1(t) ≤ R2(t) for all t ≥ 0.

Proposition 0.1 is the key results which allow to compare the sizes of outcomes and survival times
related to some of the more well known strategies. Amid these strategies we may find

• Constant dose treatments, including No treatment (noTreat): L(t) = 0, and Maximal Tolerated
Dose (MTD): L(t) = Lmax throughout.

• Delayed MTD (del-MTD): do not treat until N = Ntol for the first time, then treat at Lmax for
ever.

• Containment at Ntol (Cont): do not treat until N = Ntol and then stabilize tumor size at Ntol,
as long as possible with a treatment level L(t) ≤ Lmax. Finally, treat at Lmax when N > Ntol.
Formally, during the stabilization phase, the treatment level is chosen so that dN/dt = 0. Containment
treatments are illustrated in Fig. 1

• Intermittent containment (Int), as in the prostate cancer clinical trial of Zhang et al. (2017): do
not treat until N = Ntol, then treat at Lmax until N = Nmin < Ntol, then interrupt treatment until
N = Ntol, and iterate as long as possible. Finally, treat at Lmax when N > Ntol. This is illustrated by
Fig. 2.

• An arbitrary treatment, called the alternative treatment (alt): we only assume that 0 ≤ L(t) ≤
Lmax for all t and L(t) = Lmax if N > Ntol.
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Figure 1: Number of resistant cells and number of tumor cells for different treatments. Top row: number of
resistant cells and number of tumor cells as a function of time under MTD (left), Containment at the initial
size N0 (center), and Containment at the maximal tolerable size Ntol (right). Bottom-row: number of tumor
cells under these three treatments as a function of time (left) or as a function of the number of resistant cells
(right).

Figure 2: Total size under Intermittent treatment.
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It follows that for constant dose treatments, lowering the dose or delaying treatment leads to a
lower resistant population:

Proposition 0.2. (Constant dose treatments)
a) Consider two constant dose treatments L1(t) = L1 and L2(t) = L2. If L2 ≥ L1, then R1(t) ≤ R2(t)
for all t ≥ 0.

b) Assume that L1(t) = L > 0 for all t ≥ 0, while L2(t) = 0 until N = Nstart ≥ N0, and then
L2(t) = L. Then R1(t) ≤ R2(t) for all t ≥ 0.

Proposition 0.1 also implies that not treating minimizes the resistant population while MTD max-
imizes it:

Proposition 0.3. (MTD maximizes resistance)
For all t ≥ 0, RnoTreat(t) ≤ Ralt(t) ≤ RMTD(t).

Of course, not treating is typically not an option, as the number of sensitive cells would explode,
but containment is. One of our main results is that containment minimizes the resistant population
among all treatments treating at Lmax after failing.

Proposition 0.4. (Containment minimizes resistance)
For all t ≥ 0, RCont(t) ≤ Ralt(t)

More precise statements will be made for idealized versions of containment and MTD, and a com-
parison between all reference treatments will be established. The exhaustive list of comparisons can be
found in section 1.3 while the proofs are in section 1.4.

Asymptotic expansion of the limit cycle for a tumour-immune system in-
teraction model

In Chapter 2 we retake the issue of appearance of periodic orbits on a tumour-immune system interaction
model. We provide an asymptotic expansion depending on the parameters of the problem for the limit
cycle, paving the way for future studies of propagation of instabilities and appearance of twinkling
patterns on an heterogeneous setting.

Bet-hedging and the atavistic theory of cancer

Inspired by the biological problem of managing plasticity in cell populations, which is in particular
responsible for transient and reversible drug resistance in cancer, in Chapter 3 we propose a model
consisting of an integro-differential reaction-advection-diffusion equation, the properties of which are
studied theoretically and numerically. By using a constructive finite volume method, we show the
existence and uniqueness of a weak solution and illustrate by numerical approximations and their sim-
ulations the capacity of the model to exhibit divergence of traits. This feature may be theoretically
interpreted as describing a physiological step towards multicellularity in animal evolution and, closer
to present-day clinical challenges in oncology, as a possible representation of bet hedging in cancer cell
populations.
The link between the origin of multicellularity and cancer is justified by the atavistic theory of cancer,
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states that the hallmark capabilities of cancer are based on latent functions already existing in the
genome of normal human cells, and that cancer represents a reversion to a less differentiated and less
cooperative cellular behavior. In the atavistic theory, accompanied or induced by blockade of differen-
tiation or reverse differentiation of normally maturing cells, societies of cells in a multicellular organism
(cancer is always a disease of multicellular organisms) somehow, in some location of the organism,
escape the fine control under which they are normally placed and revert to a previous, coarse and
disorganised state of multicellularity [62]. This may be understood as a process of “deDarwinisation”,
through which cancer cells gain a state of plasticity [63–66] representative of a former state in the
evolution of multicellularity.
The passage from unicellular organisms to multicellular ones led to the regulation of capabilities, re-
sulting in controlled proliferation and differentiation of cells leading to specialisation and cooperation
between specialised cells. The role of environment-driven cellular stress in this process of specialisation
has recently been stressed by various authors [67,68]. The new genes responsible for these regulations
became tumour suppressors. The atavistic theory states that if these new suppressors become damaged
for some reason, then latent genes, associated with functions from unicellular organisms, will reappear
and dominate the scenery, thus resulting in the unconstrained proliferation and the lack of cooperation
with the other cells of the host organism, as actually found in tumours.
One can reasonably assume that those primitive organisms adopted bet hedging strategies, i.e., com-
mon risk-diversifying strategies in unpredictably changing and often aggressive environments, in order
to maximise their phenotypic fitness [69,70].

Among such commonly described strategies of living organisms (unicellular or multicellular) meant
to ensure survival in changing environments have been classically described fright, fight and flight.
Fright (or freeze) is not likely to induce phenotype evolution. Fight (establishing barriers, secreting
poisons, gathering in colonies) and flight (motility to escape unbeatable predators) can. Differentiation
between somatic and germinal cells is also a major step in evolution. Bet hedging strategies were not
only present at elementary stages of evolution. They are a common adaptive tool that can still be found
in nature at different levels of complexity, from prokaryotic organisms to vertebrate ones. In between,
tumour cells, thanks to their high plasticity, in the presence of an aggressive environment provided
by immune response of the host body or of any anti-cancer treatment, may adopt bet hedging as a
strategy to guarantee a prolonged survival of their colony. The wide presence of bet hedging in nature
as an evolutionary mechanism, and its many links to the development of cancer is what motivates us
in the present attempt towards a mathematical model representing some of the factors that influence
this phenomenon (natural selection, epimutations and environmental stress).
For the model, we consider a population (not necessarily of tumour cells) in which each individual
has three defining traits: viability associated with the variable x ∈ [0, 1] which reflects the potential
to resist deadly insults, fecundity associated with the variable y ∈ [0, 1] representing the potential
to proliferate and plasticity associated with the variable θ ∈ [0, 1] which represents the potential to
continue to differentiate within a differentiation tree. We assume furthermore that for a certain regular
function C : R2 → R and a positive constant K, (x, y) ∈ Ω := {C(x, y) ⩽ K}, so z = (x, y, θ) ranges
over the set D := {Ω × [0, 1]}. We then consider the evolution problem (13), (14), (15) on the density
of population n = n(t, z) ⩾ 0.

∂tn+ ∇ ·
(
V n− A(θ)∇n

)
= (r(z) − d(z)ρ(t))n, (13)(

V n− A(θ)∇n
)
· n = 0, for all z ∈ ∂D, (14)

n(0, z) =n0(z), for all z ∈ D. (15)
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In the above equation, chosen for the sake of simplicity as diagonal, the matrix

A(θ) =

a11(θ) 0 0
0 a22(θ) 0
0 0 a33


gives the speed at which non-genetic epimutations occur, otherwise said it is a minimally simple rep-
resentation of how the internal plasticity trait θ affects the non-genetic instability of traits x and y, by
tuning the diffusion term; the function

V (t, z) = (V1(t, z), V2(t, z), V3(t, z))

represents the sensitivity of the population to abrupt changes in the environment;

ρ(t) =

∫
D

n(t, z)dz

stands for the total amount of individuals in the population at time t.
We introduce now the variational formulation of (13)-(15). Denote H = L2(D), with (·, ·)H the usual
scalar product in that space, and V = H1(D) with ⟨·, ·⟩ = ⟨·, ·⟩V′×V being the duality product in V.
For any given n0 ∈ H, T > 0, we say that

n := n(t) ∈ XT := C([0, T ], H) ∩ L2((0, T ),V) ∩H1([0, T ],V′),

is a variational solution of the problem (13)-(15) if it is a solution in the following weak sense

(n(t), φ(t))H =(n0, φ(0))H +

∫ t

0

(
⟨Q[n](s), φ(s)⟩ + ⟨∂sφ(s), n(s)⟩

)
ds, (16)

where

⟨Q[n], φ⟩ =

∫
D

(
− A∇n∇φ+ V n∇φ+ (r(z) − ρd(z))nφ

)
dz,

for any φ ∈ XT . We say that n is a global solution if it is a solution on [0, T ] for any T > 0.

Theorem 0.1. For all non-negative n0 ∈ Lp(D), p > 2, there exists a unique global non-negative weak
solution for problem (13)-(15) in the sense of (16).

We focus on giving a proof for this theorem using a discretized version of problem (13)-(15) after
applying the Finite Volume Method to it. For this purpose, we define a set Dh ⊃ D, that can be
covered by the union of N disjoint cubic cells, denoted as Dj, of side length h. After integrating the
equation (13) over each of the cells Dj we derive the system of first-order differential equations

d

dt
νj(t) =Mj(t, ν(t))νj(t) +

∑
l∈Nj

Bjl(t)νl(t), (17)

νj(0) =
1

h3

∫
Dj

n0(z)dz, (18)

where νj is an approximation of the average of the solution n(t, z) over Dj, Nj is the set of indexes
corresponding to the neighbours of Dj and the coefficients Mj and Bjl are functions of V (t, z), A(θ),
r(z) and d(z). A full detailed derivation of the scheme is given in Section (3.3). We can then introduce
the following result involving the solution for this system:
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Theorem 0.2. For all non-negative n0 ∈ Lp(D), p > 2, there exists a unique non-negative solution for
problem (17)-(18). Furthermore, the function ñh(t, z) defined by

ñh(t, z) =
∑
j

νj(t)1Dj∩D,

converges in L2(DT ) to the unique non-negative weak solution of (13)-(15) as h goes to zero.

Figure (3) illustrates the convergence result from Theorem 0.2 by showing the dependence between
the mesh size and the error with respect to a previously known solution.

Figure 3: The discrete L2(DT ) error for the semi-discrete scheme, for T = 10 and M ranging between 2 and
128.

In addition to the theoretic results exposed in Theorems 0.1 and 0.2, some phenomena of biological
interest are as well reproduced through simulations. The phenotype divergence due to the effect of the
environment is evidenced in Figure 4 through an specific choice of the function V (t, z) while the lost
of plasticity in favor of specialization can be observed in Figures 5 and 6.
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Figure 4: Evolution of a population under the effect of the environment.

Figure 5: Initial stages of the population density for different values of θ: The differentiation process starts.
At around t = 250 (bottom left) most of the population has already concentrated around the plasticity level
θ = 0.4375 and around t = 300 (bottom right) we observe that the migration towards a less plastic state
continues.
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Figure 6: Final stages of the population density for different values of θ: Around t = 900 (bottom left) the
differentiation process is over and most of the population has reached the plasticity level θ = 0.25. At t = 1000
(bottom right) we observe that the population concentrated around any other level of plasticity is almost
extinct, and only the one around θ = 0.25 survives.

Chapter 4 serves as a complement and an extension to Chapter 3. On it, we discuss the mathematical
modelling of two of the main mechanisms which pushed forward the emergence of multicellularity:
phenotype divergence in cell differentiation, which was already treated on Chapter 3 and between-cell
cooperation. In line with the atavistic theory of cancer, this disease being specific of multicellular
animals, we set special emphasis on how both mechanisms appear to be reversed, however not totally
impaired, rather hijacked, in tumour cell populations. Two settings are considered: the completely
innovating, tinkering, situation of the emergence of multicellularity in the evolution of species, which
we assume to be constrained by external pressure on the cell populations, and the completely planned
- in the body plan - situation of the physiological construction of a developing multicellular animal
from the zygote, or of bet hedging in tumours, assumed to be of clonal formation, although the body
plan is largely - but not completely - lost in its constituting cells. We show how cancer impacts these
two settings and we sketch mathematical models for them. We present there our contribution to the
question at stake with a background from biology, from mathematics, and from philosophy of science.

A particle method for non-local models from adaptive dynamics

In Chapter 5 the well-posedness of a non-local advection-selection-mutation problem deriving from
adaptive dynamics models is shown for a wide family of initial data. A particle method is then
developed, in order to approximate the solution of such problem by a regularised sum of weighted
Dirac masses whose characteristics solve a suitably defined ODE system. The convergence of the particle
method over any finite interval is shown and an explicit rate of convergence is given. Furthermore,
we investigate the asymptotic-preserving properties of the method in large times, providing sufficient
conditions for it to hold true as well as examples and counter-examples. Finally, we illustrate the
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method in two cases taken from the literature.
More specifically, the goal of this chapter is to develop a numerical method allowing to approximate
the solutions of equations of the form
∂tv(t, x) + ∇x · (a(t, x, Iav(t, x))v(t, x)) = R(t, x, Igv(t, x))v(t, x) +

∫
Rd

m(t, x, y, Idv(t, x))v(t, y)dy,

v ∈ C([0, T ], L1(Rd)),

v(0, ·) = v0(·) ∈ W 1,1(Rd),

(19)

where

(Ilu)(t, x) =

∫
Rd

ψl(t, x, y)u(t, y)dy, l = a, g, d

are non-local terms and a, R, m and ψl are smooth functions.
Upon establishing the well-posedness of (19), the chapter is concerned with the derivation of a particle
method inspired by [57], the analysis of its convergence and asymptotic-preserving properties. However,
we must emphasise the two main novelties with respect to that work: First, the use of non local terms,
which as we will show, poses technical difficulties and affects the existence of smooth solutions in certain
cases. Secondly, the study of the asymptotic preserving property, which guarantees that, under certain
hypotheses, the long time behaviour of the solution is conserved.
The first main result we derive, is the existence and uniqueness of solution for problem(19) when the
initial data is smooth

Theorem 0.3. Consider k ⩾ 1 and T > 0. For all non-negative functions v0 ∈ Ck
c (Rd), there exists

a unique non-negative classical solution v ∈ C1([0, T ],Ck
c (Rd)) to problem (19). Furthermore, such

solution satisfies

sup
t∈[0,T ]

∥v(t, ·)∥L1(Rd) ⩽ max{∥v0∥L1(Rd),
I∗

ψg
}, (20)

sup
t∈[0,T ]

∥v(t, ·)∥Wk,1(Rd) ⩽ CT∥v0∥Wk,1(Rd). (21)

However, if more general initial data are taken into consideration, the regularity of the solution
depends on the non-locality of the advective term. The following two theorems better explain this
statement.

Theorem 0.4. For all k ⩾ 1 and any non-negative functions v0 ∈ W k,∞(Rd) with compact support,
there exists a unique non-negative weak solution v ∈ C([0, T ],Ck−1

c (Rd)) to problem (19). Furthermore,
such solution satisfies

sup
t∈[0,T ]

∥v(t, ·)∥L1(Rd) ⩽ max{∥v0∥L1(Rd),
I∗

ψg
}, (22)

sup
t∈[0,T ]

∥v(t, ·)∥Wk−1,1(Rd) ⩽ CT∥v0∥Wk−1,1(Rd), (23)

and, for k ⩾ 2, v ∈ C1([0, T ],Ck−1
c (Rd)).
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Theorem 0.5. If ∂Ia = 0, for all non-negative functions v0 ∈ W k,1(Rd), there exists a unique non-
negative weak solution v ∈ C([0, T ],W k,1(Rd)) of problem (19). Furthermore, such a solution satisfies

sup
t∈[0,T ]

∥v∥L1(Rd) ⩽ max{∥v0∥L1(Rd),
I∗

ψg
}, (24)

sup
t∈[0,T ]

∥v∥Wk,∞(Rd) ⩽ CT∥v0∥Wk,1(Rd). (25)

In other words, if the function a depends on a non-local term, the solution may experience a loss
of regularity.
Once established the well posedness of the problem in question, the next step is to derive a semi-discrete
scheme in order to approximate its solutions. Following [57], for a given set of indexes Jh, the particle
method associated to (19) consists in looking for a measure νh of the form

νh(t) =
∑
i∈Jh

νi(t)wi(t)δxi(t),

where (ν := {vi(t)}i∈Jh
, w := {wi(t)}i∈Jh

, x := {xi(t)}i∈Jh
), is the solution of the following system

ẋi(t) =Aν,w(t, xi),

ẇi(t) =div Aν,w(t, xi(t))wi(t),

ν̇i(t) =
(
− div Aν,w(t, xi(t)) +R(t, xi(t), Ig(t, xi(t), ν, w))

)
νi(t)

+
∑
j∈Jh

wj(t)νj(t)m(t, xi(t), xj(t), Id(t, xi(t), ν, w)),

xi(0) =x0i , wi(0) = w0
i , νi(0) = v0(x0i ),

(26)

where
Aν,w(t, x) = a(t, x, Ia(t, x, ν, w)),

and

Il(t, x, ν, w) :=
∑
j∈Jh

νj(t)wj(t)ψl(t, x, xj(t)),

with l ∈ {a, g, d}.
Our next result ensures the existence of solution for this numerical scheme

Theorem 0.6. For all T > 0 and all non-negative initial data v0 ∈ l1(Jh,Ω
0) there exists a unique

solution xi ∈ C1([0, T ]), for all i ∈ Jh, w := {wi(·)}i∈Jh
∈ C([0, T ],l∞(Jh)) and 0 ⩽ ν := {νi(·)}i∈Jh

∈
C([0, T ],l1(Jh)) of problem (26). Furthermore, there exist positive constants cT and CT such that the
solution satisfies, for all t ∈ [0, T ]

cTh ⩽ |xi(t) − xj(t)| ⩽ CTh, ∀i, j ∈ Jh, i ̸= j, (27)

cTh
d ⩽ wi(t) ⩽ CTh

d, ∀i ∈ Jh, (28)

∥νw∥1,h ⩽ max{∥v0hd∥l1 ,
I∗

ψg
}. (29)

32



The final sections in Chapter 5 study the convergence of the particle method solution towards a
solution of (19). The first result states that up to any finite time T ,

Theorem 0.7. There exists C > 0 (which depends on T , a, R, m and ρ), and positive values r, κ and
µ such that

∥v − vhε ∥L1(Rd) ⩽ C
(
εr +

(h
ε

)κ
+ hκ

)
∥v0∥Wµ,1(Rd), ∀ 0 ⩽ t ⩽ T,

where vhε is a regularized version of the solution for (26).

In order to study the asymptotic behaviour of the solution for (19), convergence in finite time is not
enough. It is necessary to check that the numerical scheme conserves the asymptotic behaviour. The
last result in Chapter 5 identifies some conditions under which this property is satisfied.
Assume that there exists x̂ ∈ Rd an asymptotically stable equilibrium for the ODE ‘ẋ = a(x)’ and that
there exists C, δ > 0 such that

∀y ∈ supp(n0), t ≥ 0, ∥X(t, y) − x̂∥ ≤ Ce−δt. (30)

Moreover, let us assume that there exist positive values D, Im and IM such that

R(x, Im) ⩾ 0, R(x, IM) ⩽ 0 and ∂IR(x, I) ⩽ −D, ∀x ∈ supp(v0). (31)

Theorem 0.8. Let us assume that there exists x̂ ∈ Rd which is an asymptotically stable equilibrium
for the ODE ẋ = a(x) such that (30) holds. We assume as well that m ≡ 0 and that R satisfies (31).
Then, v converges to ρ̂ δx̂ in the weak sense in the space of Radon measures, where ρ̂ is the unique
solution of

R(x̂, ψg(x̂, x̂)ρ̂) = 0.

Consequently, vhε is an asymptotic preserving approximation of v.

The fully parabolic Keller-Segel system

Chapters 7 and 6 are devoted to the study of the re-scaled parabolic-parabolic Keller-Segel system{
∂tf = ∆f + div(µxf − f∇u)

∂tu =
1

ε
(∆u+ f) + µx · ∇u, (32)

We first introduce the perturbation (g, v) defined by

f = Q+ g, u = P + v,

where Q = Qµ
ε and P = P µ

ε is a steady state of (32). If (f, u) is a solution to (32) then (g, v) satisfies
the system ∂tg = ∆g + div(µxg − g∇P −Q∇v) − div(g∇v)

∂tv =
1

ε
(∆v + g) + µx · ∇v,

(33)

and reciprocally.

33



We are next interested on the linearized equation around a re-scaled self-similar profile{
∂tg = ∆g + div(µxg − g∇P −Q∇v)

∂tv =
1

ε
(∆v + g) + µx · ∇v.

Let us define the Laplace kernel in the plane

κ(z) := − 1

2π
log |z|, K(z) := ∇κ(z) = − 1

2π

z

|z|2
, (34)

so that ω := κ ∗ Ω is a solution to the Laplace equation

−∆ω = Ω in R2.

Next defining
w := v − κ ∗ g,

the equation on w is

∂tw =
1

ε
∆w + µx · ∇w + µx · ∇κ ∗ g −∇κ ∗ [∇g + µxg − g∇P −Q∇κ ∗ g −Q∇w].

In fact, by using that

x · ∇κ ∗ g −∇κ ∗ (xg) ≃
∫

(x− y)

|x− y|2
{
x g(y) − y g(y)

}
dy ≃ ⟨g⟩

and ⟨g⟩ = 0, the second equation simplifies. The system of equations on (g, w) becomes{
∂tg = ∆g + div(µxg − g∇P −Q∇κ ∗ g −Q∇w)

∂tw =
1

ε
∆w + µx · ∇w + g + ∇κ ∗ [g∇P +Q∇κ ∗ g +Q∇w],

(35)

and we will focus on the dissipativity properties of the associated operator. More precisely, defining

L(g, w) := (L1(g, v),L2(g, v))

with

L1(g, w) := ∆g + div(µxg − g∇P ) − div(Q∇κ ∗ g +Q∇w)

L2(g, w) :=
1

ε
∆w + µx · ∇w + g + ∇κ ∗ [g∇P +Q∇κ ∗ g +Q∇w],

In Chapter 6 we give a description of the longtime self-similar behavior of solution in the sub-critical
mass case without radially symmetric assumption in the spirit of what has been done in the radially
symmetric case in [48]. More specifically, we are able to prove the following theorem

Theorem 0.9. There exist functional spaces X and Y and there are ε0, η0 > 0 such that for any
ε ∈ (0, ε0) and any initial data (g0, v0) ∈ L1

m,0 × (Lp ∩ Ḣ1) with |||(g0, v0)|||X ≤ η0, there exists a unique
global solution (g, v) ∈ L∞

t (X) ∩ L2
t (Y ) to (33), which verifies

∥(g, v)∥L∞
t (X) + ∥(g, v)∥L2

t (Y ) ≲ |||(g0, v0)|||X . (36)

Moreover we have the decay estimate, for any λ ∈ (0, µ),

∥(g(t), v(t))∥X ≲ e−λt∥(g0, v0)∥X . (37)
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On the other hand, in Chapter 7, we will exhibit some scalar products (·, ·)H and associated norm
∥ · ∥H such that

(L(g, w), (g, w))H ≤ −λ∥(g, w)∥2H + . . . ,

with λ > 0 as large as possible and the remainder term “. . . ” is essentially negative. We attempt to give
an improved spectral analysis in the radially symmetric case in order to describe blowing up solutions
in the critical 8π mass case in the spirit of what has been done for the parabolic-elliptic Keller-Segel
equation in [39, 71, 72] (see also [40]). Although our project has been up to now unsuccessful, we are
able to present the following moderate dissipative estimate

Theorem 0.10. There exists a functional space H , where there holds

(L(g, w), (g, w))H ≤ −µ∥(g, w)∥2H − 1

2
∥∇g∥2L2

m
− 1

2ε
∥∇w∥2L2 + C∥g∥2L2(BR),

for any ε ∈ (0, ε0) and µ ∈ (0, 1], where C,R > 0 are some constants (independent of ε and µ) and
ε0 > 0 is small enough.

35



36



Chapter 1

Tumor containment: a more general
mathematical analysis

1.1 Introduction

The dominant paradigm in cancer therapy is to treat tumors aggressively. This makes sense if the
tumor is curable, but might be counter-productive otherwise. Indeed, tumors contain a large number
of cells, some of which may be resistant to treatment. By killing preferentially the most sensitive
cells, an aggressive treatment could free resistant cells from competition with sensitive cells, allowing
them to develop quickly: a phenomenon called competitive release in ecology (Gatenby 2009b [73],
Enriquez-Navas et al., 2016 [74], Cunningham et al. 2019 [75]).

This led researchers to suggest that, at least for some tumors, treating at, or close to, the maximal
tolerated dose should be replaced by treating at the minimal effective dose; that is, the minimal dose
that stabilizes tumor size, subject to a sufficient quality of life of the patient, and not putting her life at
risk in the short-run. The aim is to slow down the growth of resistant cells by maintaining competition
with sensitive cells.

This idea, which is part of the broader framework of cancer adaptive therapy (Gatenby 2009 [4]),
has been tested in vitro, in mice models and on human patients suffering from metastatic castrate-
resistant prostate cancer (Gatenby et al. 2009 [4], Silva et al. 2012 [5], Enriquez-Navas et al. 2016 [74],
Zhang et al. 2017 [7]: trial NCT02415621, Bacevic and Noble et al. 2017 [8], Smalley et al. 2019 [76],
Strobl et al. 2020 [14], Bondarenko et al. 2021 [77], Wang et al. 2021a, 2021b [78, 79], Farrokhian
et al. 2022 [80]). Other clinical trials are ongoing or starting in prostate cancer (NCT03511196,
NCT05393791), melanoma (NCT03543969), rhabdomyosarcoma (NCT04388839) and ovarian cancer
(ACTOv/NCT05080556)1.

On the theoretical side, several mathematical models of tumor containment have been studied (e.g.,
Martin et al. 1992 [2], Monro and Gaffney 2009 [3], Gatenby et al. 2009 [4], Silva et al. 2012 [5], Carrère
2017 [6], Zhang et al. 2017 [7], Bacevic and Noble et al. 2017 [8], Hansen et al. 2017 [9], Gallaher
et al. 2018 [10], Cunningham et al. 2018 [11], Pouchol 2018 [12], Carrère and Zidani 2020 [13],
Strobl et al. 2020 [14], Cunningham et al. 2020 [15]) leading to the first workshop on Cancer Adaptive
Therapy Models (CATMo; https://catmo2020.org/). However, many of these models make very specific
assumptions, e.g., logistic tumor growth with a specific effect of intra-tumor competition and a specific

1The initial prostate cancer trial has been debated (Mistry 2021 [81], Zhang et al. 2021 [82])
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treatment kill-rate (Zhang et al., 2017 [7], Cunningham et al. 2018 [11], Carrère 2017 [6], Strobl et al.
2020 [14]). This makes it difficult to generalize their conclusions.

Viossat and Noble (2021) [1] recently analysed a more general model with two types of tumor cells:
sensitive and fully resistant to treatment. The model takes the form:

dS

dt
(t) = S(t)gS(S(t), R(t), L(t))

dR

dt
(t) = R(t)gR(S(t), R(t))

(Model 1)

where S(t) and R(t) are the total number of sensitive and resistant cells at time t, L(t) is the current
dose or treatment level, and gS and gr are per-cell growth-rate functions. They identified qualitative
assumptions under which, among other results, containing the tumor at its initial size maximizes the
time at which the tumor becomes larger than at the beginning of treatment (for an idealized form of
containment) or is close to maximizing it (for a more realistic form). Similarly, an idealized form of
containment at a larger threshold size maximizes the time at which tumor size becomes larger than
this threshold. By contrast, eliminating all sensitive cells at treatment initiation - an idealized form of
an aggressive treatment - leads to the quickest time to progression beyond any threshold size, among
all treatments that eliminate sensitive cells before this threshold size is crossed.

Some of the assumptions of Viossat and Noble are however debatable. In particular, they assume
that the higher the number of resistant cells, the lower the growth rate of sensitive cells. Formally,
function gS is non-increasing in R. This assumption helps to compare the size of sensitive populations
across treatments. To see why, assume that sensitive cells hamper the growth of resistant cells (that
is, gR is non-increasing in S), and consider two constant dose treatments, with doses L1 and L2 > L1,
respectively, and the same initial conditions. Suppose that under the treatment with dose L1 the
solution (S1(t), R1(t)) is obtained, while (S2(t), R2(t)) follows from the treatment with dose L2. Since
treatment 2 is more aggressive, it initially leads to a smaller sensitive population, hence a larger resistant
population than treatment 1: for t > 0 small enough, S2(t) < S1(t) and R2(t) ≥ R1(t). If the growth-
rate of sensitive cells gS is non-increasing in R, the fact that treatment 2 is more aggressive and leads to
a larger resistant population both negatively affect the sensitive population under treatment 2, ensuring
that the sensitive population remains smaller under treatment 2 than under treatment 1: S2 < S1. This
itself ensures that R2 remains larger than R1. The inequalities S2 < S1 and R2 ≥ R1 thus propagate,
and hold for all times t > 0. By contrast, if the growth-rate of sensitive cells gS increases with R, the
fact that R2 ≥ R1 might boost the growth of sensitive cells under treatment 2, even though treatment
2 is more aggressive. But if the sensitive population becomes larger under treatment 2, the inequality
R2 ≥ R1 might also cease to hold, and the whole argument of Viossat and Noble seems to break.

Unfortunately, assuming gS non-increasing in R, which may seem a natural consequence of com-
petition between tumor cells, is actually problematic. Indeed, it is not satisfied in the Gompertzian
model from Monro and Gaffney (2009) [3] that Viossat and Noble use for simulations:

dS

dt
(t) = ρ ln(K/N(t)) (1 − L(t))S(t),

dR

dt
(t) = ρ ln(K/N(t))R(t),

(Model 2)

where N(t) = S(t)+R(t) is the total number of tumor cells. More precisely, in the absence of treatment
(L(t) = 0), the growth-rate of sensitive cells is decreasing in N , hence in R; however, if the treatment
level is high enough (L(t) > 1), the opposite happens, and a large resistant population slows down the
regression of the sensitive population.
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This reflects the fact that chemotherapy typically attacks cells that are actively dividing. For various
reasons (e.g., boundary growth), a larger tumor size is thought to be associated with a lower growth-
fraction, i.e., a lower proportion of cells actively dividing (Laird 1964 [83]; Norton and Simon 1977 [84];
Gerlee 2013 [85]). Thus the presence of additional resistant cells, by making the tumor larger, makes
more sensitive cells quiescent, and shields them against the effect of treatment. As a result, the growth
rate of sensitive cells is not always decreasing in R, and the assumptions of Viossat and Noble are not
satisfied. The problem occurs for all Norton-Simon models (Norton and Simon 1977 [84]), where the
growth of the sensitive population takes the form:

dS

dt
(t) = S(t)g(N(t))(1 − L(t))

for some per-cell growth rate function g. It also occurs for birth-death models with a Norton-Simon
treatment kill-rate (Strobl et al. 2020 [14]):

dS

dt
(t) = S(t) [b(N(t))(1 − L(t)) − d(N(t))]

where b(N) and d(N) are birth- and death-rates in the absence of treatment.

Another issue is that Model 1 does not consider mutations from sensitive to resistant cells. This is
problematic because one of the theoretical motivations for aggressive treatments is to decrease tumor
size in order to limit the number of reproduction events, hence of possible appearance of resistant cells
by mutation. Key-contributions to the tumor containment literature analyzed the trade-off between
increasing competition (by allowing many sensitive cells to survive) and decreasing the number of
mutations from sensitive to resistant cells (Martin et al. 1992 [2], Hansen et al. 2017 [9])

The purpose of our work is to generalize the results of Viossat and Noble to models that encompass
Norton and Simon models, and, at least to a certain extent, allow for mutations from sensitive to
resistant cells. Mathematically, this is achieved by formulating the model in terms of absolute growth-
rates and, more importantly, by replacing a direct analysis of the evolution through time of the number
of sensitive and resistant cells, S(t) and R(t), by an analysis of the induced trajectory in what we call
the R − N plane, where N = S + R describes the total tumor size. These trajectories describe the
evolution of the total size N of the tumor as a function of the size R of the resistant population. This
turns out to be an efficient technique, allowing to generalize essentially all results of Viossat and Noble,
including the optimality or near-optimality of containment treatments.

The remainder of this chapter is organized as follows: the model is described in the next section.
Results are presented in Section 1.3, proved in Section 1.4 and discussed in Section 1.5. The Appendix
elaborates on the extent to which our model allows for mutations from sensitive to resistant cells, and
derives the comparison principle on which our results are based.

1.2 Model

We consider a model with two types of tumors cells: sensitive to treatment, and fully resistant. Their
growth is described by differential equations of the form:

dS

dt
(t) = ϕS(S(t), R(t), L(t)), S(0) = S0 ≥ 0

dR

dt
(t) = ϕR(S(t), R(t)), R(0) = R0 > 0

(Model 3)
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where ϕS and ϕr are continuously differentiable absolute growth-rate functions. The quantities ϕS(0, R, L)
and ϕR(S, 0, L) are assumed non-negative to ensure that population sizes cannot become negative. Let
N(t) = S(t) +R(t) and N0 = S0 +R0. We make the following assumptions:

� The patient dies when tumor size reaches a critical size Ncrit > N0.
2

� The size of an untreated tumor increases: ϕS(S,R, 0) + ϕR(S,R) > 0 if N ≤ Ncrit.

� The higher the treatment level, the lower the growth-rate of sensitive cells: ϕS is non-increasing
in L.

� The resistant population keeps growing: ϕR(S,R) > 0 whenever R > 0 and N ≤ Ncrit, so that
the tumor is incurable if, as we assume, resistant cells are initially present.

� If R ≥ R0 and N ≤ Ncrit, for a given number of resistant cells, the larger the sensitive population,
the lower the growth-rate of resistant cells: ϕR is non-increasing in S.

The assumption that the resistant population keeps growing is technical: it ensures that the tra-
jectory of the tumor in the R − N plane (defined formally later on) is the graph of a function. It
is no stronger than assuming that the tumor cannot be stabilized for ever. Indeed, if there exists a
tumor state (S,R) with S + R < Ncrit and ϕR(S,R) ≤ 0, then from such a state, applying a dose
that stabilizes the sensitive population size leads to a regression of the resistant population while the
sensitive population stays constant, and so to permanent tumor control. In verbal descriptions, some of
the early literature imagined that in an on-off treatment, the resistant population would decline during
treatment holidays. This idea, however, was typically inconsistent with the mathematical models used
(e.g. Zhang et al. 2017 [7]), and, as explained above, would imply that the tumor could be stabilized
for ever. This is not the situation we study here.

The assumption that ϕR is non-increasing in S models competition for resources (space, glucose,
oxygen) or some other form of inhibition of resistant cells by sensitive cells (Bondarenko et al, 2021 [77]).
It neither forbids nor implies a cost of resistance, i.e., that in the absence of treatment, resistant cells
grow slower than sensitive cells. In particular, we do not specify whether resistant cells compete more
strongly with sensitive cells or with other resistant cells.

The difference with Viossat and Noble (2021) [1] is two-fold: first, the model is formulated in terms
of absolute growth-rates, allowing for mutations from sensitive to resistant cells and back. Second,
we make no assumption on how the growth-rate of sensitive cells depends on the number of resistant
cells. In particular, ϕS is not assumed non-increasing in R. This model encompasses many previous
models (Silva et al. 2012 [5], Carrère, 2017 [6], Bacevic and Noble et al. 2017 [8], Hansen et al. 2017 [9],
Strobl et al. 2020 [14]), including Model 2, its original formulation with mutations (Monro and Gaffney,
2009 [3]), or explicit birth-death models with or without a Norton and Simon treatment effect (Strobl
et al. 2020 [14]). Note that while one of our motivations is to include Norton and Simon models as
Model 2, our assumptions are actually more general. In particular, sensitive cells may benefit from the
presence of resistant cells even in the absence of treatment.

2This assumption is standard but debatable (Mistry, 2020). Technically, it ensures that properties of functions ϕS
and ϕR when tumor size is unrealistically large are irrelevant. Conceptually, it could be replaced by the assumption that
the treatment goal is to maintain tumor size below a given threshold as long as possible.
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To analyse Model 3, it is useful to rewrite it in the equivalent form:

dN

dt
(t) = fN(N(t), R(t), L(t))

dR

dt
(t) = fR(N(t), R(t))

(Model 4)

where fN(N,R,L) = ϕS(N − R,R,L) + ϕR(N − R,R) and fR(N,R) = ϕR(N − R,R). Our main
assumptions are then that, on the domain R0 ≤ R ≤ N ≤ Ncrit, fN is non-increasing in L, positive if
L = 0, and fR is positive and non-increasing in N . We also assume that the treatment level cannot be
larger than a constant Lmax (the treatment level corresponding to the maximal tolerated dose). Other
assumptions are technical:

� fN and fR are continuously differentiable (on a neighborhood of the relevant domain: R0 ≤ R ≤
N ≤ Ncrit and 0 ≤ L ≤ Lmax).

� R(t) remains smaller than N(t) (this must be biologically, and follows from our assumption on
Model 3 that ϕS(0, R, L) is nonnegative).

� The treatment function L(·) is strongly piecewise continuously differentiable (our vocabulary) in
the following sense: there exists a positive integer m and times t0 = 0 < t1 < ... < tm such that,
on each interval [tk, tk+1), k ∈ {0, ...,m − 1}, and on [tm,+∞), L coincides with a continuously
differentiable function defined on a neighborhood of this interval.

This ensures among other things that, for a given initial condition and treatment, there is a unique
solution to Model 4. To fix ideas, we assume that the solutions R(t) and N(t) are defined for all times
(though they have no clear interpretation once N(t) > Ncrit), and that they remain bounded. Both
properties can be ensured by modifying growth-rate functions fN and fR on the domain N > Ncrit.
This is without loss of generality since patients are then assumed already deceased.

Outcomes and treatments. We compare the effect of various treatments on the time at which
tumor size becomes larger than a given threshold. Depending on this threshold, this may correspond
to:

� time to progression, defined as the time at which tumor size progresses beyond its initial size N0.
3

� time to treatment failure: the time at which tumor size progresses beyond an hypothetical max-
imal tolerable tumor size Ntol ≥ N0, after which the life of the patient is considered at risk or
side-effects of the disease are too strong.4

� survival time, defined as the time at which tumor size becomes larger than a critical size Ncrit ≥
Ntol.

3In the response evaluation criteria in solid tumors (RECIST), progressive disease is defined by a 20% increase in the
sum of the largest diameters (LD) of target lesions, compared to the smallest LD sum recorded since the beginning of
treatment. However, comparing to the smallest LD sum recorded would not be fair to aggressive treatments, and the 20%
margin makes sense in medical practice, to take into account imperfect monitoring and imperfect forecast of treatment
effect, but not for our deterministic mathematical model.

4The assumption Ntol ≥ N0 in without loss of generality in the following sense: if the initial size is larger than
the maximal tolerable size, then all treatments we consider would treat at Lmax until tumor size becomes tolerable
(N = Ntol), and we could apply our analysis from that point on.
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Mathematically, results on time to progression and survival time may be obtained through results on
time to treatment failure by taking Ntol = N0, or Ntol = Ncrit, respectively. For this reason, we focus
on time to treatment failure.

We consider the following treatments:

• Constant dose treatments, including No treatment (noTreat): L(t) = 0, and Maximal Tolerated
Dose (MTD): L(t) = Lmax throughout.

• Delayed MTD (del-MTD): do not treat until N = Ntol for the first time, then treat at Lmax for
ever.

• Containment at Ntol (Cont): do not treat until N = Ntol and then stabilize tumor size at Ntol, as
long as possible with a treatment level L(t) ≤ Lmax. Finally, treat at Lmax when N > Ntol. Formally,
during the stabilization phase, the treatment level is chosen so that dN/dt = 0 (e.g., L(t) = N(t)/S(t)
in Model 2). Containment treatments are illustrated in Fig. 1.1, see also Fig. 1 of Viossat and Noble.5

Figure 1.1: Number of resistant cells and number of tumor cells for different treatments. Top row: number of
resistant cells and number of tumor cells as a function of time under MTD (left), Containment at the initial
size N0 (center), and Containment at the maximal tolerable size Ntol (right). Bottom-row: number of tumor
cells under these three treatments as a function of time (left) or as a function of the number of resistant cells
(right).

• Intermittent containment (Int), as in the prostate cancer clinical trial of Zhang et al. (2017): do
not treat until N = Ntol, then treat at Lmax until N = Nmin < Ntol, then interrupt treatment until
N = Ntol, and iterate as long as possible. Finally, treat at Lmax when N > Ntol. This is illustrated by
Fig. 1.2.6

5If, after crossing Ntol, tumor size comes back to Ntol, then the containment treatment stabilizes tumor size at Ntol

again, as long as possible. Similar remarks apply to intermittent containment or other variants of containment.
6The above description is to fix ideas: our results are still valid for any other way of maintaining tumor size between

Nmin and Ntol, as long as this may be done with a dose L(t) ≤ Lmax.
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Figure 1.2: Total size under Intermittent treatment.

• An arbitrary treatment, called the alternative treatment (alt): we only assume that 0 ≤ L(t) ≤
Lmax for all t and L(t) = Lmax if N > Ntol.

The times to treatment failure under these treatments will be denoted by tnoTreat, tMTD, tdelMTD,
tCont, tInt, and talt, respectively.

Following Martin et al. (2012) [86], Hansen et al. (2017) [9], and Viossat and Noble (2021) [1], we
also consider idealized treatments, which assume that the sensitive population may be reduced arbitrar-
ily quickly. These treatments are not realistic but are useful theoretical references. Ideal MTD (idMTD)
eliminates all sensitive cells instantaneously at the beginning of treatment. Delayed ideal MTD (del-
idMTD) lets tumor grow to Ntol and then eliminates all sensitive cells. Ideal containment (idCont)
lets tumor size grow to Ntol, and then stabilizes it as long as some sensitive cells remain. Finally, Ideal
intermittent containment (idInt) lets tumor size grow to Ntol and then maintains it between Nmin ≤ Ntol

and Ntol as long as some sensitive cells remain.7

Under these idealized treatments, treatment fails (i.e. tumor size progresses beyond Ntol) when
the resistant population reaches size Ntol. Sensitive cells have then been fully eliminated. Times to
treatment failure are denoted by tidMTD, tdel−idMTD, tidCont, and tidInt, respectively.8

To make our life easy, we assume that all treatments we consider may be implemented through
a piecewise continuously differentiable treatment level function L(t) (up to possible downward jumps
in the sensitive population for idealized treatments), instead of deriving this result from the implicit
function theorem and appropriate regularity assumptions.

1.3 Results

We show that, up to natural additional assumptions for comparisons of sensitive cell populations, all
results of Viossat and Noble on Model 1 still hold on Model 3 (or equivalently Model 4), in spite of our
less restrictive assumptions. The results are described below and proved in the next section.

7Viossat and Noble assumed to fixed ideas and for simulations that, each time tumor size reaches Ntol, it drops
instantaneously to Nmin, or to R(t) if R(t) > Nmin, but this is not needed.

8When comparing idealized treatments to an alternative treatment, for the comparison to be fair, we do not restrict
treatment level under the alternative treatment either, and allow it to eliminate sensitive cells arbitrarily quickly.
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The key point is that if treatment level is never larger than a given constant for treatment 1, and
never smaller than the same constant for treatment 2, then the resistant population is never larger
under treatment 1 than under treatment 2.

Proposition 1.1. Consider solutions of Model 4 associated to two treatments L1(t) and L2(t).
9 If

there exists a constant L̄ such that for all t ≥ 0, L1(t) ≤ L̄ ≤ L2(t), then R1(t) ≤ R2(t) for all t ≥ 0.

It follows that for constant dose treatments, lowering the dose or delaying treatment leads to a
lower resistant population:

Proposition 1.2. (constant dose treatments)
a) Consider two constant dose treatments L1(t) = L1 and L2(t) = L2. If L2 ≥ L1, then R1(t) ≤ R2(t)
for all t ≥ 0.10

b) Assume that L1(t) = L > 0 for all t ≥ 0, while L2(t) = 0 until N = Nstart ≥ N0, and then
L2(t) = L. Then R1(t) ≤ R2(t) for all t ≥ 0.

Proposition 1.1 also implies that not treating minimizes the resistant population while MTD max-
imizes it:

Proposition 1.3. (MTD maximizes resistance)
For all t ≥ 0, RnoTreat(t) ≤ Ralt(t) ≤ RMTD(t).

Of course, not treating is typically not an option, as the number of sensitive cells would explode,
but containment is. One of our main results is that containment minimizes the resistant population
among all treatments treating at Lmax after failing.

Proposition 1.4. (containment minimizes resistance)
For all t ≥ 0, RCont(t) ≤ Ralt(t)

It follows that NCont ≤ Nalt + (SCont − Salt). Thus, assuming that the tumor is eventually mostly
resistant under the containment treatment, tumor size should eventually be smaller, or at least not
substantially larger under the containment treatment than under any alternative one. This suggests
that, under our assumptions, among treatments that treat at Lmax when N > Ntol, containment should
be close to maximizing survival time. Similarly, the fact that the resistant population is larger under
MTD that under any alternative treatment suggests that most alternative treatments should eventually
lead to a lower tumor size and a longer survival time than MTD.

More precise statements may be made for idealized versions of containment and MTD: ideal con-
tainment maximizes time to treatment failure, while ideal MTD minimizes it among all treatments
eliminating sensitive cells before failing. Moreover, ideal containment eventually leads to a lower tumor
size and ideal MTD to a larger tumor size than any such alternative treatment.

Proposition 1.5. (comparison with ideal MTD and ideal containment)
a) talt ≤ tidCont.

9Unless mentioned otherwise, when comparing two treatments, we assume the same initial conditions: R1(0) = R2(0)
and N1(0) = N2(0).

10Exceptionally, we assume that even when Ni > Ntol, the dose stays equal to Li and is not increased to Lmax. A
similar remark applies to b)
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b) Consider an alternative treatment eliminating sensitive cells before failing, that is, such that Salt(talt) =
0. Then:

b1) talt ≥ tidMTD;

b2) for all t ≥ 0, RidCont(t) ≤ Ralt(t) ≤ RidMTD(t);

b3) for all t ≥ talt, NidCont(t) ≤ Nalt(t) ≤ NidMTD(t).

In particular, survival time is larger with ideal containment and lower with ideal MTD than with
any alternative treatment such that Salt(talt) = 0.

The next result shows that intermittent containment between Nmin and Ntol > Nmin leads to
outcomes that are intermediate between those of containment at the larger threshold Ntol and those of
containment at the lower threshold Nmin (ContNmin). The latter lets tumor size grow until N = Nmin

(or treats at Lmax until N = Nmin if N0 > Nmin), and then stabilizes tumor size at Nmin as long as
possible with a treatment level L(t) ≤ Lmax. In the idealized form, ideal containment at Nmin, tumor
size is stabilized at Nmin as long as some sensitive cells remain (and initially instantly reduced to the
maximum of Nmin and R0, if Nmin > N0).

Proposition 1.6. (dose modulation versus treatment vacation)
a) For all t ≥ 0, RCont(t) ≤ RInt(t) ≤ RContNmin(t), and similarly, RidCont(t) ≤ RidInt(t) ≤
RidContNmin(t).
b) tidContNmin ≤ tidInt ≤ tidCont
c) For all t ≥ tidInt, NidCont(t) ≤ NidInt(t) ≤ NidContNmin(t).

This result suggests that, if the lower threshold Nmin is close to the larger threshold Ntol, there
should be little difference between outcomes of containment and intermittent containment, that is,
between a continuous low dose treatment based on dose modulation and an intermittent high dose
treatment based on treatment vacation. Of course, this disregards many possible differences between
these two approaches. For instance, dose-modulation might lead to a more regular vascularization of
the tumor, which might be key for an efficient drug delivery (Enriquez-Navas et al., 2016 [74]).

We now compare all reference treatments.

Proposition 1.7. (comparison between all reference treatments)
a) For all t ≥ 0:
a1) RnoTreat(t) ≤ RCont(t) ≤ RInt(t) ≤ Rdel−MTD(t) ≤ RMTD(t) ≤ RidMTD(t)
and a2) RnoTreat(t) ≤ RidCont(t) ≤ RidInt(t) ≤ Rdel−idMTD(t) ≤ RidMTD(t)
b) tidMTD ≤ tdel−idMTD ≤ tidInt ≤ tidCont
c) For all t ≥ tidCont, NidCont(t) ≤ NidInt(t) ≤ Ndel−idMTD(t) ≤ NidMTD(t).

Sensitive population sizes may also be compared under two mild additional assumptions:

(A1) Not treating maximizes the sensitive population.

(A2) The sensitive population decreases if the tumor is treated at Lmax.

These assumptions hold for Model 2, assuming Lmax ≥ 1, and for most models we are aware of.
They lead to the same comparison for sensitive population sizes as in Viossat and Noble, that is, the
opposite as for resistant population sizes.11

11For Model 2, (A2) holds obviously if Lmax ≥ 1. To see that (A1) holds, note that dN/dt = ρ ln(K/N)N −
ρ ln(K/N)LS ≥ ρ ln(K/N)N with equality for L = 0. The comparison principle thus implies that not treating maximizes
tumor size. Since not treating also minimizes the resistant population size (Proposition 1.3), it follows that it maximizes
the sensitive population size.
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Proposition 1.8. (comparison of sensitive populations)
Assume that (A1) and (A2) hold. Then for all t ≥ 0:12

a) SidMTD(t) ≤ SMTD(t) ≤ Salt(t) ≤ SCont(t) ≤ SnoTreat(t)
b) SContNmin(t) ≤ SInt(t) ≤ SCont(t) and Sdel−MTD(t) ≤ SInt(t)
c) SidContNmin(t) ≤ SidInt(t) ≤ SidCont(t)
d) SidMTD(t) ≤ Sdel−idMTD(t) ≤ SidInt(t) ≤ SidCont(t) ≤ SnoTreat(t)

1.4 Proofs

Viossat and Noble’s proofs build on their Proposition 1, which gives conditions allowing them to
compare the resistant populations or the sensitive populations under two different treatments. The
following part of this result is still true in our framework, with the same proof:

Lemma 1.1. Let 0 ≤ t0 ≤ t1. Consider two solutions (S1, R1) and (S2, R2) of Model 3, associated to
treatment functions L1 and L2, respectively. Assume that: i) R1(t0) ≤ R2(t0), and ii) S1(t0) ≥ S2(t0).
If: iiia) S1(t) ≥ S2(t) on [t0, t1], or: iiib) N1(t) ≥ N2(t) on [t0, t1], then R1(t) ≤ R2(t) and S1(t) ≥ S2(t)
on [t0, t1].

What is no longer true is that the same conclusions hold if iiia) or iiib) is replaced by iiic): L1(t) ≤
L2(t) for all t. For instance, in Model 2, if L1(t0) = L2(t0) > 1, R1(t0) < R2(t0) and S1(t0) = S2(t0),
then S2 becomes immediately larger than S1. This will slow down the growth of the resistant population
under treatment 2. Thus, conceivably, R2 could later on become smaller than R1.

We thus use a new proof technique. Instead of studying directly the evolution of the resistant
population R, the sensitive population S, or the total tumor size N as a function of time, we first
study, and compare across treatments, the evolution of tumor size N as a function of the number of
resistant cells. In other words, we compare trajectories in the R −N plane, that is, the sets of points
(R(t), N(t)) for all t ≥ 0.

To be more formal, fix a treatment L, and let R∞ = limt→+∞R(t). Since the resistant population
increases continuously, for any r ∈ [R0, R

∞), there exists a unique time t(r) at which the resistant
population has size r, that it, R(t(r)) = r. Denote by S̃(r), Ñ(r) = S̃(r) + r, and L̃(r), the number
of sensitive cells, the total number of tumor cells, and the treatment level at time t(r), that is, when
the resistant population reaches size r. All these functions may be shown to be piecewise continuously
differentiable, and S̃ and Ñ are also continuous. The graph of function Ñ coincides with the trajectory
of the solution in the R−N plane. It may be analyzed by noting that function Ñ satisfies the differential
equation:

dÑ

dr
= G(Ñ , r) where G(Ñ , r) =

fN(Ñ , r, L̃(r))

fR(Ñ , r)
.

Trajectories in the R−N plane, and their connections to the evolution of tumor size and of the resistant
population as a function of time are illustrated in Figure 1.1.

1.4.1 Key lemmata

Our first result shows that if, for any resistant population level r, tumor size is larger under treatment
1 than under treatment 2, then at any time t, the resistant population is smaller under treatment 1

12The only inequality that uses (A1) is Salt ≤ SCont.
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than under treatment 2. The intuition is the following: at the time ti(r) when the resistant population
reaches size r under treatment i, the speed at which the resistant population increases is given by:

dRi

dt
(ti(r)) = fR(Ni(ti(r)), Ri(ti(r)) = fR(Ñi(r), r).

Since fR is non-increasing in N , it follows that if N1(r) ≥ N2(r), the resistant population will increase
quicker from r to r + dr under treatment 2 than under treatment 1 (dr is a small positive increment).
If this holds for all resistant population sizes r, then R2 will remain no-smaller than R1 at all times
t ≥ 0.

Lemma 1.2. Let L1(t) and L2(t) be two different treatments. Consider solutions (N1, R1) and (N2, R2)
of Model 4 associated to these treatments such that R1(0) = R2(0) = R0. If Ñ1(r) ≥ Ñ2(r) for all r in
[R0,min{R∞

1 , R
∞
2 }), then R∞

1 ≤ R∞
2 and R1(t) ≤ R2(t) for all t ≥ 0.

Moreover, if on an interval [r1, r2], S̃1(r) is non-increasing or S̃2(r) is non-increasing, then S1(t) ≥
S2(t) for all t in [t1(r1), t2(r2)].

Proof. Consider a time t ≥ 0 such that R1(t) < R∞
2 , so that Ñ2(R1(t)) is well defined. Since N(t) =

Ñ(R(t)), Ñ1 ≥ Ñ2 and fN is non-increasing in N , we obtain:

dR1

dt
(t) = fR(N1(t), R1(t)) = fR(Ñ1(R1(t)), R1(t)) ≤fR(Ñ2(R1(t)), R1(t))

=:F (R1(t))

while
dR2

dt
(t) = fR(Ñ2(R2(t)), R2(t)) = F (R2(t)).

Since R1(0) = R2(0), the comparison principle (Proposition 1.10, item b), in Appendix 1.6.2) implies
that for all times t ≥ 0 such that R1(t) < R∞

2 , we have R1(t) ≤ R2(t) (See Figure 1.3).

We now show that the inequality R1(t) < R∞
2 , hence the conclusion R1(t) ≤ R2(t), holds at all

times t ≥ 0. Indeed, otherwise there is a first time t∗ ≥ 0 such that R1(t
∗) = R∞

2 , and t∗ > 0. Since Ri

is increasing, it follows that on [0, t∗), R1(t) ≤ R2(t) ≤ R2(t
∗) < R∞

2 . By continuity of R1, this implies
that R1(t

∗) ≤ R2(t
∗) < R∞

2 , a contradiction.

We now prove the result on sensitive cells. Assume that on [r1, r2], S̃1(r) is non-increasing (which
implicitly requires r2 < R∞

1 , so that S̃1(r) is well-defined on [r1, r2]). For all t in [t1(r1), t2(r2)],
r1 ≤ R1(t) ≤ R2(t) ≤ r2. Moreover, the assumption Ñ1(r) ≥ Ñ2(r) is equivalent to S̃1(r) ≥ S̃2(r).
Thus we obtain:

S1(t) = S̃1(R1(t)) ≥ S̃1(R2(t)) ≥ S̃2(R2(t)) = S2(t).

The first inequality follows from the fact that S̃1 is non-increasing on [r1, r2], the second from the fact
that S̃1 ≥ S̃2. If it is S̃2 which is non-increasing (which implicitly requires r2 < R∞

2 , so that S̃2 is
well-defined on [r1, r2]), then:

S1(t) = S̃1(R1(t)) ≥ S̃2(R1(t)) ≥ S̃2(R2(t)) = S2(t).

The first inequality follows from the fact that S̃1 ≥ S̃2, the second from the fact that S̃2 is non-increasing
on [r1, r2].
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Figure 1.3: Using two different constant treatment levels on the Gompertzian model as an example, this figure
illustrates that the relation Ñ1 ≥ Ñ2 over the interval [R0, r∗), r∗ = 4 × 109 (Left panel), translates into
R1(t) ≤ R2(t) over the interval [0,min{t1(r∗), t2(r∗)}] (Right panel). The same behavior will be observed for
an arbitrary choice of r∗.

Assume now that for any resistant population level r, the treatment level when the resistant pop-
ulation reaches size r is lower for treatment 1 than for treatment 2. Our second result shows that the
tumor size when the resistant population reaches size r is then always larger for treatment 1 than for
treatment 2. By the previous lemma, this implies that the resistant population is always smaller under
treatment 1 than under treatment 2.

Lemma 1.3. Let L1(t) and L2(t) be two different treatments such that

L1(t) ≤ L ≤ L2(t),

for a certain positive number L, or more generally such that L̃1(r) ≤ L̃2(r) for all r in [R0, R
∗)

where R∗ = min{R∞
1 , R

∞
2 }. Consider solutions of Model 4 associated to these treatments such that

R1(0) = R2(0) and N1(0) ≥ N2(0). Then Ñ1(r) ≥ Ñ2(r) for all r in [R0, R
∗). Therefore by Lemma

1.2, R∞
1 ≤ R∞

2 and R1(t) ≤ R2(t) for all t ≥ 0.

Proof. Since fN is non-increasing in L, and for all r in [R0, R
∗), L̃1(r) ≤ L̃2(r), we get:

dÑ1

dr
=
fN(Ñ1, r, L̃1(r))

fR(Ñ1, r)
≥ fN(Ñ1, r, L̃2(r))

fR(Ñ1, r)
=: G2(Ñ1, r)

while
dÑ2

dr
= G2(Ñ2, r). Moreover, Ñ2(R0) = N2(0) ≤ N1(0) = Ñ1(R0). Therefore, by the comparison

principle (Proposition 1.10, item a), in Appendix 1.6.2), Ñ1(r) ≥ Ñ2(r) for all r in [R0, R
∗). Then

apply Lemma 1.2.

1.4.2 Proof of propositions 1.1 to 1.8

Proposition 1.1 follows from Lemma 1.3, and Propositions 1.2 and 1.3 from Proposition 1.1.
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Proof of Proposition 1.4. For later purposes, let us prove a more general result: For all t ≥ 0,

RnoTreat(t) ≤ RCont(t) ≤ Ralt(t) ≤ RMTD(t) ≤ RidMTD(t). (1.1)

This follows from Lemma 1.2 and the fact that, whenever these comparisons make sense:

ÑidMTD(r) ≤ ÑMTD(r) ≤ Ñalt(r) ≤ ÑCont(r) ≤ ÑnoTreat(r) (1.2)

To prove (1.2), note that for any alternative treatment, ÑidMTD(r) = r ≤ Ñalt(r), in particular,
ÑidMTD(r) ≤ ÑMTD(r), and by Lemma 1.3 with L̄ = 0, Ñalt(r) ≤ ÑnoTreat(r), in particular ÑCont(r) ≤
ÑnoTreat(r). Moreover, under the constraint Lalt(t) ≤ Lmax, it follows from Lemma 1.3 with L̄ = Lmax
that ÑMTD(r) ≤ Ñalt(r).

It remains to prove that Ñalt(r) ≤ ÑCont(r) for all r ∈ [R0, R
∗), where R∗ = min{R∞

alt, R
∞
Cont}. The

notation we introduce is illustrated in Fig. 1.4. Let r1 = min{r ≥ R0, ÑCont(r) = Ntol}. When r ≤ r1,
ÑCont(r) = ÑnoTreat(r) ≥ Ñalt(r) as explained above. Moreover, for all r ≥ r1, ÑCont(r) ≥ Ntol. Thus,
assuming by contradiction that there exists r2 ≥ r1 such that ÑCont(r2) < Ñalt(r2), it follows that
Ñalt(r2) > Ntol. Let

rmax = max{r ≤ r2, Ñalt(r) ≤ Ntol}.
Note that since Ñalt(r1) < ÑCont(r1) = Ntol, we must have rmax ≥ r1. Therefore, Ñalt(rmax) = Ntol ≤
ÑCont(rmax). Moreover, on (rmax, r2), Ñalt(r) > Ntol, hence L̃alt(r) = Lmax ≥ L̃Cont(r). By a variant
of Lemma 1.3 (comparing treatments starting when the initial resistant population size is rmax rather
than R0), it follows that Ñalt(r2) ≤ ÑCont(r2), a contradiction.

Figure 1.4: Comparison of NCont(r) with an hypothetical curve which satisfies Nalt(r2) > NCont(r2) for some
point r2 ≥ r1.

Proof of Proposition 1.5. Proof of a): Let t1 = min{t ≥ 0, NCont(t) = Ntol}. For t ≤ t1, RidCont(t) =
RnoTreat(t) ≤ Ralt(t) (the inequality follows from Proposition 1.3). If talt ≥ t1 then, as in Viossat
and Noble, on [t1, talt], NidCont(t) ≥ Ntol ≥ Nalt(t) so RidCont(t) ≤ Ralt(t) by Lemma 1.1. Thus,
RidCont(talt) ≤ Ralt(talt) ≤ Nalt(talt) = Ntol. It follows that tidCont ≥ talt, since ideal containment fails
when RidCont = Ntol.

Proof of b): assume now that Salt(talt) = 0 (which only makes sense for idealized alternative
treatments).

Then Ralt(talt) = Nalt(talt) = Ntol. Thus, as in Viossat and Noble:

Ntol = Nalt(talt) = Ralt(talt) ≤ RidMTD(talt),
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so tidMTD ≤ talt. This proves b1).

Let us prove the remaining results on ideal MTD. The inequality Ralt ≤ RidMTD was shown in the
proof of Proposition 1.4 (see Eq. 1.1). Moreover, on [tidMTD, talt], NidMTD = RidMTD ≥ Ntol ≥ Nalt,
and for t ≥ talt, NidMTD = RidMTD ≥ Ralt = Nalt. This proves parts of b2) and b3).

We now prove the results on ideal containment. On [talt, tidCont],

RidCont(t) ≤ NidCont(t) ≤ Ntol = Nalt(talt) = Ralt(talt) ≤ Ralt(t) = Nalt(t)

where the last inequality comes from the fact that for all t ≥ talt, Salt(t) = 0. Moreover, af-
ter treatment failure, Ralt and RidCont both satisfy the autonomous equation dR/dt = fR(0, R).
By invariance of solutions of autonomous equations through translation in time, this implies that
for all t ≥ tidCont, RidCont(t) = Ralt(t − [tidCont − talt]) ≤ Ralt. For t ≤ tidCont, the inequality
RidCont(t) ≤ Ralt(t) was derived in the proof of a). Therefore, RidCont(t) ≤ Ralt(t) for all t ≥ 0. Finally,
for all t in [talt, tidCont], NidCont(t) ≤ Ntol = Ralt(talt) ≤ Ralt(t) = Nalt(t), while for all t ≥ tidCont,
NidCont(t) = RidCont(t) ≤ Ralt(t) = Nalt(t). This completes the proof.

Proof of Proposition 1.6. Proof of a): The inequalities RCont ≤ RInt and RidCont ≤ RidInt follow from
the proof of Proposition 1.4 (see Eq. (1.1)) and from Proposition 1.5. The fact that RInt ≤ RContNmin

follows from Lemma 1.2 and the fact that, as shown below: for all r, ÑContNmin(r) ≤ ÑInt(r). To
prove this, note that for r ≤ rmin := min{r ≥ R0, ÑnoTreat(r) = Ntol}, both treatments coincide so
ÑContNmin(r) = ÑInt(r). For r ≥ rmin, the argument is as in the proof of ÑCont(r) ≥ Ñalt(r) for
r ≥ r1 in Proposition 1.4. Similarly, it is easily seen that ÑidContNmin(r) ≤ ÑidInt(r) for all r, so
RidInt ≤ RidContNmin by Lemma 1.2.

Proof of b): Ntol = NidInt(tidInt) = RidInt(tidInt) ≤ RidContNmin(tidInt) by a), hence tidContNmin ≤
tidInt. The second inequality follows from item a) of Proposition 1.5.

Proof of c): Using a), for t ≥ tidInt, NidInt = RidInt ≤ RidContMin = NidContMin, and the first in-
equality follows from item b3) of Proposition 1.5.

Proof of Proposition 1.7. Proof of a1): to see that RInt(t) ≤ Rdel−MTD(t), note that as long as tumor
size is lower than Ntol, both treatments coincide, then apply Proposition 1.3 from that point on. The
other inequalities have already been proved. The proof of a2) is similar.

Proofs of b) and c): in b), the inequality tdel−idMTD ≤ tidInt follows from item b1) of Proposition
1.5, applied from the (common) time when tumor size reaches Ntol under both treatments, other in-
equalities were shown already. The proof of c) is as in Viossat and Noble.

Proof of Proposition 1.8. We first need a lemma.

Lemma 1.4. a) Let N∗ ≥ 0. Consider a solution (N,R) of Model 4 under a treatment such that
L(t) = Lmax whenever N(t) > N∗. Let t̄ ≥ 0 be such that N(t̄) ≥ Ntol. If the sensitive population
decreases when treated at Lmax, then for all t ≥ t̄, S(t) ≤ S(t̄). If moreover N(t) ≥ N∗ for all t ≥ t̄,
then S is non-increasing on [t̄,+∞).

b) Under containment (respectively, containment at Nmin), once tumor size reaches Ntol for the first
time (respectively, Nmin), the sensitive population is non-increasing.
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Proof. a) The idea is that when N > N∗, S is non-increasing by assumption, and when N(t) ≤ N∗

for t > t̄, the sensitive population must have decreased since time t̄ because the resistant population
increased (by assumption) and total tumor size did not. Formally, let t ≥ t̄. If for all τ in (t̄, t),
N(τ) > N∗, hence L(τ) = Lmax, then S is non-increasing on [t̄, t] by assumption, therefore S(t) ≤ S(t̄).
Otherwise, let tmax = max{τ ≤ t, N(τ) ≤ N∗}. The previous argument implies that S(t) ≤ S(tmax).
Moreover, since R is increasing,

S(tmax) = N(tmax) −R(tmax) ≤ Ntol −R(tmax) ≤ N(t̄) −R(t̄) = S(t̄)

Therefore, S(t) ≤ S(t̄). Finally, if for any t1 ≥ t̄, N(t1) ≥ N∗, then the previous result applied from t1
on shows that for any t2 ≥ t1, S(t2) ≤ S(t1), hence S is non-increasing on [t̄,∞).

b) For containment, this follows from a) with N∗ = Ntol and the fact that once tumor size reaches
Ntol under containment, it never becomes smaller. The proof for containment at Nmin is the same with
Nmin replacing Ntol.

We now prove Proposition 1.8. Proof of a): the first inequality is trivial since SidMTD = 0 (we
only mentioned it to show that all inequalities from Eq. 1.1 are reversed). The inequality SMTD(t) ≤
Salt(t) follows from Lemma 1.2, the fact that ÑMTD(r) ≤ Ñalt(r) (see Eq. (1.2)), and the fact that
S̃MTD(r) is non-increasing by Assumption (A2). The last inequality follows from Assumption (A1), or,
independently of (A1), from Lemma 1.2, the fact that ÑCont(r) ≤ ÑnoTreat(r) (see Eq. (1.2)), and that
once Containment starts treating, SCont is non-increasing (Lemma 1.4, item b)).

Let us now prove that Salt(t) ≤ SCont(t). Let r1 = min{r ≥ R0, ÑCont(r) = Ntol}. For t ≤ tCont(r1),
containment does not treat so SCont(t) = SnoTreat(t) ≥ Salt(t) by Assumption (A1). Moreover, on
[r1, R

∞
Cont), ÑCont(r) ≥ Ñalt(r) and ÑCont(r) ≥ Ntol, therefore S̃Cont(r) is non-increasing by Lemma 1.4.

Thus, by Lemma 1.2, SCont(t) ≥ Salt(t) for any t in [tCont(r1), talt(R
∞
Cont) ).

Finally, let t ≥ max(tCont(r1), talt(R
∞
Cont)), that is, such that RCont(t) ≥ r1 and Ralt(t) ≥ R∞

Cont.
Since NCont(t) ≥ Ntol for all t ≥ t(r1), it follows from Lemma 1.4 that SCont is non-increasing on
[t(r1),+∞[, so SCont(t) ≥ S∞

Cont. Thus, it suffices to show that Salt(t) ≤ S∞
Cont. There are two cases.

Case 1: If Ñalt(R
∞
Cont) ≥ Ntol, then by Lemma 1.4, for all t ≥ talt(R

∞
Cont),

Salt(t) ≤ Salt(talt(R
∞
Cont)) = S̃alt(R

∞
Cont) ≤ S∞

Cont

where the last inequality follows from the fact that for r < R∞
Cont, S̃alt(r) ≤ S̃Cont(r) due to Eq. (1), so

that
S̃alt(R

∞
Cont) = lim

r→R∞
Cont

S̃alt(r) ≤ lim
r→R∞

Cont

S̃Cont(r) = lim
t→+∞

SCont(t) = S∞
Cont

Case 2: If Ñalt(R
∞
Cont) < Ntol, then as long as Nalt(t) ≤ Ntol,

Salt(t) ≤ Ntol −Ralt(t) ≤ Ntol −R∞
Cont ≤ S∞

Cont

Moreover, if at some time t̄, Nalt(t̄) = Ntol (which must indeed happen), then Salt(t̄) ≤ S∞
Cont by the

previous argument, and for all t ≥ t̄, by Lemma 1.4, Salt(t) ≤ Salt(t̄) ≤ S∞
Cont. This concludes the proof

of a).

Proof of b): The inequality SContNmin(t) ≤ SInt(t) follows from Lemma 1.2, the fact that ÑcontNmin(r) ≤
ÑInt(r), and the fact that once tumor size reaches Nmin, SContNmin is non-increasing (Lemma 1.4, item
b)). The proof of SInt(t) ≤ SCont(t) is as the proof of Salt(t) ≤ SCont(t) (except that Assumption (A1)
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is not needed). Finally, the inequality Sdel−MTD ≤ SInt follows from SMTD ≤ Salt applied from the
time at which tumor size reaches Ntol.

Proof of c): we first prove SidContNmin ≤ SidInt. Before tumor size reaches Nmin, both treat-
ments coincide, then until tidContNmin, NidContNmin = Nmin ≤ NidInt while RidContNmin ≥ RidInt,
so SidContNmin ≤ SidInt. Finally, for t ≥ tidContNmin, SidContNmin(t) = 0 ≤ SidInt(t). The proof of
SidInt ≤ SidCont is similar.

Proof of d): the first two inequalities are trivial, the third one was proved in c). The last inequality
follows from (A1) but also, independently of (A1), from the following argument: for t ≤ tidCont,
NidCont ≤ NnoTreat while RidCont ≥ RnoTreat by Proposition 1.7, so SidCont ≤ SnoTreat, and for t ≥ tidCont,
SidCont = 0.

1.5 Discussion

Viossat and Noble [1] provided qualitative conditions ensuring that a strategy aiming at containment,
not elimination, minimizes resistance to treatment and is close to maximizing time to treatment failure.
Some of these conditions were however debatable. In particular, their analysis did not allow for muta-
tions from sensitive to resistant cells, a major concern of some key contributions to the field (Martin
et al. 1992 [2], Hansen et al. 2017 [9]), and did not apply to Norton-Simon models [84], which are
standard to model chemotherapy. We showed how a refined analysis allows to handle these two issues.
This suggests that containment strategies are likely to perform well in more general situations than
was previously known.

While Viossat and Noble compared across treatments the values of resistant and sensitive popula-
tions as a function of time, we first compare the induced trajectories in the R-N plane, that is, tumor
sizes not at a given time, but when the resistant population reaches a given size. We made the addi-
tional assumption that the resistant population keeps increasing. This is no stronger than assuming
that the tumor cannot be stabilized for ever, and is technically helpful (as the trajectory in the R-N
plane is then the graph of a function), but we conjecture that our results hold without this assumption.

What is crucial is that, all else being equal, a larger sensitive population leads to a lower resistant
population growth-rate. For this reason, our analysis only allows for mutations from sensitive to
resistant cells if an increase in the sensitive population size is more detrimental to the growth of the
resistant population (through competition, or some other form of inhibition of resistant cells by sensitive
cells) than it is beneficial (through mutations from sensitive to resistant cells). We show in Appendix
1.6.1 that this is typically the case for Gompertzian growth, or power-law models, at least in the absence
of a strong resistance cost.13

There are however many other concerns with containment. Mutations, or phenotypic switching,
could be modeled in other ways, and the fact that maintaining a relatively large tumor burden may
lead to an accumulation of driver mutations remains a concern. Modeling patient death as occurring
when the tumor reaches a critical size favors containment, and models in which the probability of
death increases continuously with tumor size may lead to the conclusion that the expected survival
time is lower under containment strategies than under more aggressive treatments (Mistry 2020 [87]).
Considering only two types of tumors cells is restrictive, and even with only two types, if resistant

13For logistic growth, our assumptions are likely to be valid if the variables N , R, S are interpreted as densities, as in
Strobl et al. 2020 [14], but not necessarily if they are interpreted as numbers of cells in the whole tumor, see Appendix
1.6.1.
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cells are only partially resistant, the logic changes, as the growth of resistant cells may be slowed
down not only indirectly, through competition with sensitive cells, but also directly, through treatment
effect. The impact of a containment strategy on the development of new metastases is also unclear.
On the other hand, we did not consider additional benefits of containment, such as reduced treatment
toxicity, less drug-induced mutations (Kuosmanen et al. 2021 [88]) or a possible stabilization of tumor
vasculature that could increase the efficiency of drug delivery (Enriquez-Navas et al. 2016 [74]).

This chapter should not be seen as providing unambiguous support for containment strategies, but
as part of a wider research program aiming at clarifying the conditions under which a strategy aiming
at tumor stabilization is likely to perform better than a more aggressive treatment. Data allowing to
fine-tune models is still scarce, but as new competition experiments are run, and new clinical trials open
(NCT05393791, ACTOv/NCT05080556), more data should become available, allowing the community
to reach more definite conclusions.

1.6 Appendices

1.6.1 Mutations from sensitive to resistant cells

The analysis in this appendix is related to the work of Martin et al. (1992) [2] and Hansen et al.
(2017) [9]. Consider a basic Norton-Simon model with mutations (Norton and Simon 1977 [84], Goldie
and Coldman 1979 [89], Monro and Gaffney 2009 [3]):

dS

dt
= g(N) (1 − L)S − τ1g(N)S + τ2g(N)R,

dR

dt
= g(N)R + τ1g(N)S − τ2g(N)R,

(Model 5)

where τ1 and τ2 are mutation and backmutation rates. Taking g(N) = ρ ln(K/N) leads to a version of
Model 2 with mutations: the original Monro and Gaffney model (Monro and Gaffney, 2009 [3]).

If the growth-rate function g is decreasing in N , an increase in the size of the sensitive population
leads to two opposite effects: it slows down the development of existing resistant cells (the competition
effect), but usually increases the number of mutations from sensitive to resistant cells (the mutation
effect). This trade-off has been studied by Martin et al. (1992 [2]) and Hansen et al. (2017 [9]). Here,
we study whether such a model is compatible with our assumption that, during treatment, a larger
sensitive population leads globally to a lower growth-rate of resistant cells. To do so, let ϕR denote the
growth-rate function of resistant cells:

ϕR(S,R) = g(N)R + τ1g(N)S − τ2g(N)R.

Denoting by xr = R/N the resistant fraction, it is easily checked that ∂ϕR/∂S ≤ 0 if and only if:

xr
τ1

(1 − τ1 − τ2) + 1 ≥ − g(N)

Ng′(N)
. (1.3)

Since the resistant fraction increases during treatment, this condition is bound to be hardest to satisfy
at treatment initiation.

The resistant fraction obtained from Model 5 for the initial condition S = 1, R = 0 is then (Goldie
and Coldman, 1979 [89]):

xr =
τ1

τ1 + τ2
(1 −N−τ1−τ2

0 ) ≃ τ1 lnN0, (1.4)
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where we used the approximation N−τ ≃ 1 − τ lnN for τ small. Injecting (1.4) into (1.3) and using
that τ1 and τ2 are much smaller than 1 leads to:

lnN0 + 1 ≥ − g(N0)

N0g′(N0)
. (1.5)

Let us now consider various growth-models.

Case 1 (power-law model): g(N) = ρN−γ with 0 < γ < 1. Eq. (1.5) becomes:

lnN0 + 1 ≥ 1/γ.

Typical choices for γ are γ = 1/3 or γ = 1/4 (Gerlee, 2013 [85]; Benzekry et al., 2014 [90]; our γ
corresponds to 1−γ in these references). The condition then holds by a huge margin for any detectable
tumor size.

Case 2 (Gompertzian growth): g(N) = ρ ln(K/N). Eq (1.5) becomes:

lnN0 + 1 ≥ ln(K/N0),

which is satisfied if K ≤ eN2. Standard values of the carrying capacity in Gompertzian models are in
the range 1012 − 1013 (e.g., K = 2 × 1012 in Monro and Gaffney (2009) [3]). Eq. (1.5) is then satisfied
for any detectable tumor size.

Case 3 (logistic growth) : g(N) = ρ(1 −K/N). Eq (1.5) becomes:

lnN0 + 1 ≥ K

N0

− 1.

This condition need not be satisfied, depending on the interpretation of the model and parameter
choices. For instance, Monro and Gaffney (2009) [3] take N0 = 1010. Then lnN0 ≃ 23 and the condition
is roughly K ≤ 2.5 × 1011, which is not satisfied for standard values of the carrying capacity K.14 The
condition would however be satisfied for larger initial tumor sizes, modeling late-stage treatments.
Actually, when logistic growth models are used in the adaptive therapy literature, the initial tumor size
is often assumed to be a large fraction of the carrying capacity (e.g., Zhang et al. 2017 [7], Strobl et al.
2020 [14], Mistry 2020 [87]). This may be interpreted as modeling late-stage treatments, or as a model
of local growth. In the latter case, the carrying capacity should be seen as the maximal number of
cells for the current tumor volume (or equivalently, the variables N , S, R, K should be interpreted as
densities). Assuming 1010 tumor cells at tumor initiation, the estimate xr/τ1 ≃ 23 would still be valid,
and Eq. (1.3) would become K/N ≤ 25, which is bound to be satisfied in a model of local growth.

Let us now consider three variants of Model 5.

Variant 1: birth-death model. In Model 5, the number of mutations is assumed proportional to
the net growth-rate of the tumor. It would be natural to assume that the number of mutations is
proportional to the net birth-rate. This would increase the effective mutation rate (that is, the average
number of mutations relative to a given increase of tumor size).15 However, since the condition we found
is insensitive to the precise mutation rates τ1 and τ2, this is unlikely to affect the previous analysis.

14The choice of carrying capacity may differ for a Gompertz or a logistic growth model. However, in Monro and
Gaffney (2009) [3], the lethal tumor size is taken to be 5× 1011 so in a logistic growth version of their model, K would
have to be at least that large and Eq. (1.5) would not be satisfied.

15This is the exact effect when the turnover rate b(N)/(b(N)− d(N)) is constant, where b(N) and d(N) are the birth
and death rates.
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Variant 2: late-stage treatment. The previous analysis is better suited for a first line treatment than
a second or third line treatment, especially if resistance to the first treatment may be associated with
resistance to ulterior ones. However, in such a situation (late-stage treatment), the initial resistant
population is likely to be larger than the one given by (1.4), and so condition (1.3) is more likely to be
satisfied.

Variant 3: cost of resistance in the baseline growth-rate. Consider the following variant of Model
5, with a different growth-rate parameter for sensitive cells and for resistant cells:

dS

dt
= ρsg(N) (1 − L)S − τ1ρsg(N)S + τ2ρrg(N)R,

dR

dt
= ρrg(N)R + τ1ρrg(N)S − τ2ρrg(N)R.

(Model 6)

(the terms g(N) in Model 5 correspond here to terms of the form ρg(N), with ρ = ρs or ρ = ρr.) The
absolute growth-rate of resistant cells is now

ϕR(S,R) = ρrg(N)R + τ1ρsg(N)S − τ2ρrg(N)R.

The condition for ∂ϕR/∂S to be nonpositive becomes:

xr
τ1

(ρr/ρs − τ2ρr/ρs − τ1) + 1 ≥ − g(N)

Ng′(N)
. (1.6)

Moreover, if ρr is substantially smaller than ρs, then the resistant fraction at treatment initiation is no
longer given by (1.4) but approximately by (see Viossat and Noble, 2020 [91], Section 7):

xr =
τ1

1 − ρr/ρs
. (1.7)

Injecting (1.7) into (1.6) and using that τ1 and τ2 are much smaller than 1 leads to the condition:

1

1 − ρr/ρs
≥ − g(N)

Ng′(N)
. (1.8)

For a Power-law model, the condition becomes ρr/ρs ≥ 1 − γ. For γ = 1/3, this is satisfied if and only
if ρr/ρs ≥ 2/3. that is, if and only if the resistance cost is not too large.

For a Gompertzian model, the right-hand side is ln(K/N) and Eq. (1.8) may be written: ρr/ρs ≥
1− 1/ ln(K/N). With Monro and Gaffney’s (2009) [3] values: N0 = 1010, K = 2× 1012, this is satisfied
if ρr/ρs ≥ 0.81.

With logistic growth, the right-hand side is K/N − 1 and the condition may be written as ρr/ρs ≥
(K − 2N)/(K − N).16 Assuming for instance ρr/ρs = 4/5, this boils down to K ≤ 6N . This would
not be satisfied at treatment initiation if N and K represent total numbers of cells in the whole tumor
(except possibly for a late-stage treatment), but seems likely to be satisfied in a model of local growth.

We conclude that in the absence of resistance costs, our analysis applies to several standard models
of tumor growth with mutations, such as Power-law models or Gompertzian growth, and possibly to
logistic growth, at least when it models local growth. However, if the baseline growth-rate of resistant
cells is substantially smaller than the baseline growth-rate of sensitive cells, our assumptions become

16This condition is approximately correct only if ρr/ρs is substantially different from 1, which explains that taking the
limit ρr/ρs → 1 does not lead to the condition obtained in the absence of a resistance cost.

55



more restrictive and might fail even for Gompertzian growth. This is in line with Hansen et al.’s
(2017) [9] finding that, contrary to common wisdom, a resistance cost in the baseline growth rate may
make it less likely that containment strategies outperform more aggressive treatments. Note however
that the fact that we can no longer prove that containment outperforms MTD does not mean that it
would not do so. Moreover, the analysis of Viossat and Noble (2020) [91], Section 7 of the supplementary
material, suggests that the mutation effect could only make MTD marginally superior to containment.

1.6.2 Comparison principles

The following comparison principle is standard:

Proposition 1.9. Let Ω be a nonempty open subset of R2. Let f : Ω → R be continuously differentiable.
Consider the ordinary differential equation x′(t) = f(t, x(t)). Let t1 ≥ t0. Let u : [t0, t1] → R be solution
of this ODE and let v : [t0, t1] → R be a subsolution. That is, v is continuous, almost everywhere
differentiable, (t, v(t)) ∈ Ω on [t0, t1], and, almost everywhere, v′(t) ≤ f(t, v(t)). If furthermore v(t0) ≤
u(t0), then v(t) ≤ u(t) for all t ∈ [t0, t1].

We want to apply a variant of this result to two equations: first,

dÑ

dr
= G(r, Ñ(r)) where G(r, Ñ) =

fN(Ñ , r, L̃2(r))

fR(Ñ , r)
,

(here Ñ(r) plays the role of u(t), and G the role of f in Proposition 1.9). Second,

dR

dt
= H(R(t)) where H(R) = fR(Ñ2(R), R),

where L̃2 and Ñ2 are not continuously differentiable (otherwise Proposition 1.9 would directly apply),
but piecewise C1 in the strong sense we defined in Section 1.2. For instance, for L̃2, which is defined
on [R0, R

∞
2 ), there exist values r0 = R0 < r1 < ... < rn = R∞

2 such that for each i in {1, .., n − 1},
L̃2 coincides on [ri, ri+1) with a continuously differentiable function L̃i2 defined on a neighborhood of
[ri, ri+1).

We thus need variants of Proposition 1.9 where f is slightly less regular. The proof of these variants
consists in repeated applications of Proposition 1.9.

Proposition 1.10. The conclusion u(t) ≤ v(t) on [t0, t1] of Proposition 1.9 still holds in the following
cases:

a) if f takes the form f(t, x) = ψ(t, x, ϕ(t)), where ψ is continuously differentiable and ϕ is strongly
piecewise C1.

b) if f is a function of x only (f : I → R, where I is a nonempty interval) which is strongly
piecewise C1, and u and v are strictly increasing.

Proof. Proof of a): by assumption, there exists an integer n and real numbers (τk)0≤k≤n satisfying
t0 = τ0 < τ1 < ... < τn = t1 such that on Ak = [tk, tk+1) × R, f coincides with a continuously
differentiable function fk defined on a neighborhood of Ak. Assuming u(τk) ≤ v(τk), Proposition 1.9
implies that u(t) ≤ v(t) on [tk, tk+1) and this is also true at time tk+1 by continuity of u and v. An
induction argument then gives the result.
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Proof of b): By assumption, there exist a finite number of values x0,...,xn such that f coincides on
[xk, xk+1) with a continuously differentiable function ϕk defined on a neighborhood of [xk, xk+1), and
we may assume (up to adding an artificial point) that x0 ≤ u(t0). Since u and v are strictly increasing,
there exists an integer q ≤ 2(n + 1) and a sequence of times τ0 = t0 < τ1 < ... < τq = t1 such that
on (τj, τj+1), u(t) and v(t) are never equal to one of the xk. Assuming u(τj) ≤ v(τj), then either: for
all t in [τj, τj+1), u(t) and v(t) belong to the same interval [xk, xk+1) and Proposition 1.9 implies that
u(t) ≤ v(t) on [τj, τj+1); or there exists k such that for all t in [τj, τj+1), u(t) ≤ xk ≤ v(t) and the same
inequality holds trivially. In both cases, u(τk+1) ≤ v(τk+1) by continuity of u and v. An induction
argument then gives the result.
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Chapter 2

Asymptotic expansion of a limit cycle
arising from a tumour-immune system
interaction model

2.1 Introduction

The appearance of Hopf bifurcations is a relevant subject when studying tumor-immune system in-
teraction models, as it can provide insights into the complex dynamics that are involved. A Hopf
bifurcation indicates the emergence of oscillations or periodic behavior in the model. In the con-
text of tumor-immune system interactions, this could represent cyclical fluctuations in tumor size and
immune response strength. A deep understanding of this phenomena can be crucial for designing
effective immunotherapy strategies. The timing and periodicity of immune system responses could
impact treatment effectiveness (see [92, 93]). More specifically, the oscillatory behavior could lead to
resonance phenomena. This means that interventions or treatments applied at specific frequencies may
have enhanced effects on tumor control or immune system modulation. Another potential advantage
is the identification of critical parameters within the model that drive the oscillatory behavior (tumour
growth and death rates, influx of effector cells, among others).
It could be argued that the previously discussed reasons are motivation enough in order to further
explore the results presented in [16]. On the first section of said reference, were given the conditions
for the appearance of a periodic orbit on a system proposed in [94]. Said system describes, with great
generality, the interactions between tumour cells and immune system cells. The work presented in [94]
has sparked wide interest amid the researchers of the area. It has been referenced in several reviews
of mathematical models such as [95,96], where some positive points and shortcomings have been high-
lighted.
To perform their analysis, the authors from [16] first derive a second order approximation of the original
system and then, by means of the Poincaré-Bendixon theorem, they conclude the existence of a limit
cycle. Other references which perform qualitative studies of models directly based on the one proposed
in [94] include [97,98], but up to our knowledge, an expression for the limit cycle has not been derived
yet. In this chapter, we provide an asymptotic expansion for the limit cycle by following the method
described in [99]. We propose as well a way to extend our results for a model where spatial homogeneity
is not taken into consideration.
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2.2 The model

We briefly describe the model presented in [94] and [16]. The quantities c(t) and n(t) will represent the
amount of tumour cell and lymphocytes at time t respectively. They evolve according to the system

d

dt
c(t) = a1c(t)F (c(t)) − a2µϕ(c(t))c(t)n(t),

d

dt
n(t) = −a3n(t)ψ(c(t)) + a4q(c(t)),

(2.1)

where the function ψ(c) describes the stimulatory effect of the tumour cells on the immune cells. It
can be assumed that this function is positive (at least initially), ψ(0) > 0, and might be negative only
in a finite interval. It is reasonable to assume |ψ′(0)| ⩽ 1, so that, at least initially, the death rate of
lymphocytes is not greater than that in the linear model. The tumour growth rate F (c) is a positive
function which summarizes the carrying capacity (or malignancy) such that F (0) > 0, F ′(c) ⩽ 0 and
lim
c→∞

cF (c) = 0, with the additional assumption that initially it is F ′(0) = 0. The loss of tumour cells,

which depends on the competition with lymphocytes, is represented by the function ϕ(c) characterized
by ϕ(c) > 0, ϕ′(c) ⩽ 0 and lim

c→∞
cϕ(c) = l < ∞. In other words, if the tumour growth tends to infinity

the loss of tumour cells would tend to a constant rate. It can be also assumed that ϕ′(0) = 0. Regarding
the influx of immune cells q(c) can be taken q(0) = 1, |q′(0)| ⩽ 1, so that, at least initially, the influx
of effector cells is not greater than that in the linear model.
By assuming

u = c, v =
n

a4
, τ = a3t,

and introducing

a =
a1
a3
, b =

1

a3
, µ =

a2a4
a3

,

we get the non-dimensional model
d

dt
u(t) = au(t)F (u(t)) − µϕ(u(t))u(t)v(t),

d

dt
v(t) = −v(t)ψ(u(t)) + bq(u(t)).

The reaction term can be approximated using a second order Taylor expansion around the steady state
(0, b/ψ(0)), as done in [16], where, after assuming F ′(0) = 0, ϕ(0) = 1 and q′′(0) = 0, and grouping
similar terms, we obtain the system

d

dt
u(t) = αu(t) − µu(t)v(t),

d

dt
v(t) = −β1u(t)v(t) − β2v(t) + β3u(t) + β4 − β5v(t)u2(t),

(2.2)

where α = aF (0), β1 = ψ′(0), β2 = ψ(0), β3 = bq′(0), β4 = b and β5 = 1
2
ψ′′(0). Hence, the following

restrictions apply to the parameters:

α > 0, µ > 0, |β1| ⩽ 1, β2 > 0 and |β3| ⩽ β4. (2.3)
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The system (2.2) presents 3 spatially homogeneous steady states. These were computed in [16] and
they are

P0 = (0,
β4
β2

),

P1 = (p1, q1) = (
1

2αβ5

[
b0 −

√
D
]
,
α

µ
),

P2 = (p2, q2) = (
1

2αβ5

[
b0 +

√
D
]
,
α

µ
).

where

b0 = −αβ1 + β3µ,

D = (αβ1 − β3µ)2 − 4αβ5(αβ2 − β4µ).

It is withing our interest to study the existence of oscillating solutions around any of these steady
states. However, an oscillating solution around P0 would inevitably attain negative values, which lacks
biological sense, and therefore we restrict our analysis to P1 and P2.
We start by imposing conditions which guarantee that such steady states are well defined and positive.
The steady states P1 and P2 are well defined if and only if

β5 ̸= 0 and D ⩾ 0. (2.4)

Furthermore, the components of P1 are positive if and only if either

b0 ⩽ 0 and β5 < 0,

or
b0 > 0 and αβ2 − β4µ > 0.

Similarly, the components of P2 are non-negative if and only if either

b0 ⩾ 0 and β5 > 0,

or
b0 < 0 and αβ2 − β4µ < 0.

Knowing this, let us make a change of variables in such a way that (0, 0) becomes the steady state, this
is

U = u− pi, V = v − α

µ
, (2.5)

with i = 1, 2. This way, system (2.2) can be written as

∂tU = −µpiU − µUV

∂tV = k1U + k2V + k3UV + k4U
2 + k5V U

2 (2.6)

where

k1 = −αβ1
µ

+ β3 −
2αpiβ5
µ

=
±
√
D

µ
,

k2 = −β1pi − β2 − β5p
2
i ,

k3 = −β1 − 2β5pi,

k4 = −β5
α

µ
,

k5 = −β5.
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2.3 Derivation of the expression for the limit cycle

In this section we briefly explain the algorithm for obtaining the limit cycle exposed in [99] and then
proceed to apply it to system (2.6).

2.3.1 Algorithm for obtaining the limit cycle

Adopting the same notations as in [99], a non-linear system near the steady state such as (2.6) takes
the form

Ẋ = F(X) = JaX + Ψ(X), (2.7)

where X is the two dimensional unknown, Ja is the parameter dependent Jacobian matrix at the origin
and Ψ(X) is the non linear term.
First, it is considered an invertible analytical transform of coordinates of a neighborhood of the origin
onto another

Y = H(X) = ΓX +G(X), (2.8)

driven by a non-singular matrix Γ , and the analytic vector function:

G(X) =

(
φ(U, V )

ψ(U, V )

)
=


∞∑
n=2

∑
i+j=n

φijU
iV j

∞∑
n=2

∑
i+j=n

ψijU
iV j

 (2.9)

which is assumed to have a positive radius of convergence.
We shall denote the inverse of H(X) as

X = H−1(Y ) = Γ−1Y + K(Y ), (2.10)

where

K(Y ) =

(
φ(y1, y2)
ψ(y1, y2)

)
=


∞∑
n=2

∑
i+j=n

φ
ij
yi1y

j
2

∞∑
n=2

∑
i+j=n

ψ
ij
yi1y

j
2

 . (2.11)

If H over the orbits of system (2.7) is such that

Y =

(
z
ż

)
(2.12)

being z(t) an unknown function, the integration of the system can be reduced to the integration of a
second order differential equation in the variable z.
The change of variables H verifies (2.12) if and only if

d

dt
(Π1H(X)) = Π2H(X). (2.13)

Equation (2.13) implies that the components γij of Γ verify the following concordance condition with
the Jacobian of the system at the steady state

JTa

(
γ11
γ12

)
=

(
γ21
γ22

)
. (2.14)
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Developing the left hand side term in (2.13) we get

d

dt
(Π1H(X)) = Π1

˙H(X)

= Π1(ΓẊ + ∇G(X) · Ẋ)

= Π1(Γ (JaX + Ψ(X))) + ∇φ(X) · Ẋ
= Π1(ΓJaX) +Π1(ΓΨ(X)) + ∇φ · Ẋ.

On the other hand, the right term on (2.13) is equal to

Π2H(X) = Π2ΓX + ψ(X). (2.15)

Thanks to (2.14), we know that Π1(ΓJaX) = Π2ΓX, therefore we get the relation

ψ(X) = Π1(ΓΨ(X)) + ∇φ · Ẋ = Π1(ΓΨ(X)) + ∇φ ·F(X). (2.16)

Hence, determining the suitable change of variables H is reduced to appropriately fix the values of
Γ and φ. Deriving (2.15) with respect to t and using the expression for H−1(Y ), we obtain the
aforementioned second order differential equation

z̈(t) =
d

dt
(Π2H(X))

=Π2ΓẊ + ∇ψ(X) ·F(X)

=Π2Γ (JaX + Ψ(X)) + ∇ψ(X) ·F(X)

=Π2ΓJaΓ
−1Y +Π2ΓK(Y ) +Π2ΓJaΨ(H−1(Y )) + ∇ψ(H−1(Y )) ·F(H−1(Y )),

or equivalently
z̈(t) −Π2ΓJaΓ

−1Y = G(Y ), (2.17)

where
G(Y ) = Π2ΓK(Y ) +Π2ΓΨ(H−1(Y )) + ∇ψ(H−1(Y )) ·F(H−1(Y )).

Once the system (2.7) is reduced to the second order differential equation (2.17), an approximation
for the limit cycle can be obtained by applying the Krylov–Bogoliubov–Mitropolski averaging method
(see [100]).

2.3.2 Expression for the limit cycle

Let us apply the previously described method to system (2.6). The Jacobian matrix at the steady state
has coefficients

J =

(
0 −µpi
k1 k2

)
. (2.18)

for i = 1, 2. Note that, for i = 2, det(J) = −
√
Dp2, which is negative under the assumption that

p2 > 0, hence, no Hopf bifurcation occurs unless p2 < 0. Again, due to the lack of biological sense for
negative values of the solution, we discard the steady state P2 and only perform our analysis over P1.
For all vectors X = (x, y)T we define the function

G(X) = x2
(
g1
1

)
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for some g1 to be fixed later and we consider the change of variables

Y = H(X) = ΓX +G(X), (2.19)

where Γ = aΓ1 + bΓ2 is a linear combination of

Γ1 =

(
1 0
j11 j12

)
and Γ2 =

(
0 1
j21 j22

)
,

which will be determined later. This choice of Γ ensures that the concordance condition (2.14) is
satisfied. We will fix the values of a, b and g1 in such a way that, after denoting X(t) = (U(t), V (t))T ,
we get H(X(t)) = (z(t), ż(t))T for some function z(t). It is simple to check that the appropriate values
are those obtained after solving the linear system

−aµ+ bk3 + 2g1j12 = 0,

bk5 − 2g1µ = 0

bk4 + 2g1j11 = 1.

For the steady state P1, we have j11 = 0, which implies that

a =
j12k5 + µk3

µ2k5
=
β1 + p2β5
αβ5

,

b = 1/k4 = − µ

αβ5
,

g1 = − k5
2(−µ))k4

=
1

2α
,

and consequently

Γ =

(
Γ11 Γ12

Γ21 Γ22

)
:=

(
β1+p1β5
αβ5

− µ
αβ5

−
√
D

αβ5

µβ2
αβ5

)
.

The change of variables (2.19) accepts an explicit inverse which we proceed to derive. Given two pairs
of vectors X = (x1, x2)

T and Y = (y1, y2)
T satisfying Y = H(X), we see that

Γ−1Y = Γ−1H(X) = X + x21Γ
−1

(
g1
1

)
. (2.20)

We define the quantities

L1 = L1(y1, y2) := |Γ|−1(Γ22y1 − Γ12y2), (2.21)

L2 = L2(y1, y2) := −|Γ|−1(Γ21y1 − Γ11y2), (2.22)

satisfying (
L1

L2

)
= Γ−1Y,

so the system of equations (2.20) can be written as

L1 = x1 + |Γ|−1(Γ22g1 − Γ12)x
2
1,

L2 = x2 − |Γ|−1(Γ21g1 − Γ11)x
2
1.

(2.23)
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The value of Γ22g1−Γ12 = µ
αβ5

(1+ β2
2α

) is always different from 0, and after solving the algebraic system

(2.23) we obtain

X = H−1(Y ) =

(
L1 + χ(y1, y2)
L2 − g∗χ(y1, y2)

)
= Γ−1Y + χ

(
1

−g∗
)
. (2.24)

where

g∗ =
Γ11 − g1Γ21

Γ12 − g1Γ22

, (2.25)

χ(y1, y2) =
−1 − 2|Γ|−1(g1Γ22 − Γ12)L1 +

√
1 + 4|Γ|−1(g1Γ22 − Γ12)L1

2|Γ|−1(g1Γ22 − Γ12)
. (2.26)

With H(X) and its inverse being well defined, we have all of the necessary elements to state the main
result of the current chapter.

Theorem 2.1. Let τJ and δJ be the trace and the determinant of J respectively and define the quantities

an =


(Γ12−g1Γ22)

|Γ| , if n = 2,

(4n−6)
n

(Γ12−g1Γ22)
|Γ| an−1, if n > 2,

G̃1 = |Γ|−3
√
δJ(−δJ(Γ11 − g∗Γ12) + τJ(Γ21 − g∗Γ22)),

G̃2 = |Γ|−3
√
δJ(Γ22k4 + 2j11),

G̃3 = |Γ|−3
√
δJ(−Γ21µ+ Γ22k3 + 2j12),

G̃4 = |Γ|−3
√
δJ(Γ22k5 − 2µ)

and

π0 = − 3

4

(
a3G̃1 + 2a2G̃2 − a2g

∗G̃3

)(
Γ2
22Γ12 + Γ3

12δJ

)
+

1

4

(
a2G̃3 + G̃4

)(
Γ2
22Γ11 + 2Γ22Γ12Γ21 + 3Γ2

12Γ11δJ

)
,

q0 = − 3

8

(
a3G̃1 + 2a2G̃2 − a2g

∗G̃3

)(
Γ3
22 + Γ2

12Γ22δJ

)
+

1

8

(
a2G̃3 + G̃4

)(
3Γ2

22Γ21 + (Γ2
12Γ21 − 2Γ12Γ11Γ22)δJ

)
.

System (2.6) admits a limit cycle if and only if τJπ0 > 0 which admits the following asymptotic expan-
sion with respect to τJ (

U(t)
V (t)

)
= Γ−1

(
z(t)
ż(t)

)
+ χ(z(t), ż(t))

(
1
g∗

)
+O(

|τJ |√
δJ

), (2.27)

where

z(t) =

√
|τJ |

|π0|
√
δJ

sin((
√
δJ +

q0|τJ |
|π0|

)t).
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Proof. Noticing that
Π2ΓJΓ−1Y = τJ ż − δJz,

then, according to (2.17), the function z(t) = Π1Y is the solution of the second order equation

z̈ − τJ ż + δJz = G(z, ż),

where G(z, ż) is defined as

G(z, ż) = Π2{Γ(JK(Y ) + Ψ(H−1Y )) + ⟨gradXG,F)⟩(H−1Y },

Computing G we get

G(z, ż) =(−δJ(Γ11 − g∗Γ12) + τJ(Γ21 − g∗Γ22))χ

+ (Γ22k4 + 2j11)(L1 + χ)2

+ (−Γ21µ+ Γ22k3 + 2j12)(L1 + χ)(L2 − g∗χ)

+ (Γ22k5 − 2µ)(L1 + χ)2(L2 − g∗χ).

where we have omitted the dependence on z and ż for the functions L1, L2 and χ.
We are looking for oscillations with small amplitude ε, so after making the change of variables

z(t) = ες(
√
δJt),

we get that ς satisfies the equation

ς̈ − τJ√
δJ
ς̇ + ς = εG1(ς, ς̇; ε).

where
G1(ς, ς̇; ε) = δ−1

J ε−2G(ες,
√
δJες̇).

Let us introduce the new variables r(t) and θ(t) defined as

ς = r sin (t+ θ),

ς̇ = r cos (t+ θ).

Aand after applying the Krylov–Bogoliubov–Mitropolski averaging method, we get the equations for r
and θ

ṙ =
r

2

( τJ√
δJ

+ p(r; ε)
)
, (2.28)

θ̇ = q(r; ε), (2.29)

where

p(r; ε) =
ε

πr

2π∫
0

cosϕG1(r sinϕ, r cosϕ; ε)dϕ,

q(r; ε) = − ε

2πr

2π∫
0

sinϕG1(r sinϕ, r cosϕ; ε)dϕ.

66



It is likely not possible to give an explicit expression for p(r; ϵ) and q(r; ε), however, using the Taylor
expansion of χ(z, ż) given by

χ(z, ż) =
∞∑
n=2

anL
n
1 (z, ż),

with

an =


(Γ12−g1Γ22)

|Γ| , if n = 2,

(4n−6)
n

(Γ12−g1Γ22)
|Γ| an−1, if n > 2,

we can find the Taylor expansion in powers of r for both p(r; ε) and q(r; ε)

p(r; ε) = π0ε
2r2 +O(ε4r4),

q(r; ε) = q0ε
2r2 +O(ε4r4),

where

π0 = − 3

4

(
a3G̃1 + 2a2G̃2 − a2g

∗G̃3

)(
Γ2
22Γ12 + Γ3

12δJ

)
+

1

4

(
a2G̃3 + G̃4

)(
Γ2
22Γ11 + 2Γ22Γ12Γ21 + 3Γ2

12Γ11δJ

)
,

q0 = − 3

8

(
a3G̃1 + 2a2G̃2 − a2g

∗G̃3

)(
Γ3
22 + Γ2

12Γ22δJ

)
+

1

8

(
a2G̃3 + G̃4

)(
3Γ2

22Γ21 + (Γ2
12Γ21 − 2Γ12Γ11Γ22)δJ

)
.

and

G̃1 = |Γ|−3
√
δJ(−δJ(Γ11 − g∗Γ12) + τJ(Γ21 − g∗Γ22)),

G̃2 = |Γ|−3
√
δJ(Γ22k4 + 2j11),

G̃3 = |Γ|−3
√
δJ(−Γ21µ+ Γ22k3 + 2j12),

G̃4 = |Γ|−3
√
δJ(Γ22k5 − 2µ).

There will be a root for the right hand side of (2.28) if and only if

τJπ0 > 0.

Assuming that this condition holds and choosing ε2 = τJ√
δJ

, the root for the right hand side of (2.28) is

r0 =
1√
|π0|

.

Substituting in the expression for ς(t) and then for z(t), we get

z(t) =

√
|τJ |

|π0|
√
δJ

sin((
√
δJ +

q0|τJ |
|π0|

)t),

and finally using (2.19) we obtain the expression for an approximation of the limit cycle for system 2.6(
U(t)
V (t)

)
= Γ−1

(
z(t)
ż(t)

)
+ χ(z(t), ż(t))

(
1
g∗

)
+O(

|τJ |√
δJ

). (2.30)
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2.4 Discussion and perspectives

Knowing the expression for the limit cycle paves the way for two problems associated with a version
of system (2.1) which is non homogeneous in space. Said problem is modeled through the system of
partial differential equations {

∂tc− d1∆(cm1) = a1cF (c) − a2µϕ(c)cn,

∂tn− d2∆(n) = −a3nψ(c) + a4q(c),
(2.31)

where the quantities c(t, x) and n(t, x) will represent the densities of tumour cell and lymphocytes at
time t and at point x. It was assumed that cancer cell proliferation increases the local tissue pressure
thus creating a velocity field, which justifies the diffusive term on the first equation while the lympho-
cytes will diffuse following its own concentration gradient.
The first question of interest related to system (2.31) is how do the strong instabilities propagate in
the presence of of an spatially homogeneous limit cycle. The second problem to be tackled is the
identification of conditions over the parameters that may lead to the appearance of twinkling pat-
terns associated to Turing-Hopf instabilities. Similar questions for other various models have been
approached in [101–105] and the references within.
Spatial heterogeneity and pattern formations are two phenomena which are present on the develop-
ment of tumours, as observed in [106–108]. This is why, understanding the link between the parameters
directing the evolution of cancer, and said heterogeneity, is vital when aiming for a stronger compre-
hension of this disease.
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Chapter 3

Evolution of a structured cell population
endowed with plasticity of traits under
constraints on and between the traits

3.1 Introduction: biological background

One of the main theories explaining the origins of cancer states that the hallmark capabilities of cancer
are based on latent functions already existing in the genome of normal human cells, and that cancer
represents a reversion to a less differentiated and less cooperative cellular behavior. This theory is
usually called the atavistic model of cancer [62]. It is opposed to the more commonly admitted so-
matic mutation theory [109], that states that cancer originated in a single cell, following a catastrophic
sequence of stochastic tumorigenic mutations, and from which Darwinian selection produced by di-
visions from this unicellular basis a more or less organised society of cheating cells, more and more
escaping controls by the host organism, i.e., a cancer. In the atavistic theory, accompanied or induced
by blockade of differentiation or reverse differentiation of normally maturing cells, societies of cells
in a multicellular organism (cancer is always a disease of multicellular organisms) somehow, in some
location of the organism, escape the fine control under which they are normally placed and revert to a
previous, coarse and disorganised state of multicellularity [62]. This may be understood as a process
of “deDarwinisation”, through which cancer cells gain a state of plasticity [63–66] representative of a
former state in the evolution of multicellularity.

The atavistic theory has thus deep connections with the theory of evolution to multicellularity. The
passage from unicellular organisms to multicellular ones led to the regulation of capabilities, resulting
in controlled proliferation and differentiation of cells leading to specialisation and cooperation between
specialised cells. The role of environment-driven cellular stress in this process of specialisation has
recently been stressed by various authors [67, 68]. The new genes responsible for these regulations be-
came tumour suppressors. The atavistic theory states that if these new suppressors become damaged
for some reason, then latent genes, associated with functions from unicellular organisms, will reappear
and dominate the scenery, thus resulting in the unconstrained proliferation and the lack of cooperation
with the other cells of the host organism, as actually found in tumours.

Understanding how evolution led to the emergence of multicellularity then becomes a problem closely

69



related to that of understanding cancer. Firstly because unravelling in detail what is lost (cohesion)
and what is gained (plasticity) in this reverse evolutionary process may help understand the nature of
cancer from a functional point of view. Secondly because it is reasonable to assume that Darwinian
selection in tumours starts from a primitive state of multicellularity in which cells are very plastic with
respect to their phenotypes, which sends us back to states in evolution close to the emergence of multi-
cellularity. The division of work through cell differentiation achieved by coherent multicellularity (i.e.,
designing a stable, cohesive multicellular organism) [110] was of vital importance in order to evolve
into more complex and more functionally efficient organisms. In a first stage, this differentiation was
very likely reversible, due to the high plasticity that cells were endowed with in a primitive state of
multicellularity. Under these conditions, one can reasonably assume that these primitive organisms
adopted bet hedging strategies, i.e., common risk-diversifying strategies in unpredictably changing and
often aggressive environments, in order to maximise their phenotypic fitness [69,70].

In more detail, bet hedging in cell populations may be defined as a diversification of phenotypes in
a cohesive (or at least bound by a common fate community, usually of genetic nature) cell population
to optimise its fitness, in particular a minima to ensure its survival in a life-threatening environment,
in other words to design a fail-safe strategy for the preservation of a propagating element; one cell may
be enough to achieve this goal. Enhancing the ability to (quickly) diversify phenotypes by changing
differentiation paths (by reversal, i.e., vertical de-differentiation, or by horizontal trandsdifferentiation
in a differentiation tree) may in particular be achieved at the chromatin level by means of epigenetic
enzymes, molecular instances of cell plasticity at work [64].

Among such commonly described strategies of living organisms (unicellular or multicellular) meant
to ensure survival in changing environments have been classically described fright, fight and flight.
Fright (or freeze) is not likely to induce phenotype evolution. Fight (establishing barriers, secreting
poisons, gathering in colonies) and flight (motility to escape unbeatable predators) can. Differentiation
between somatic and germinal cells is also a major step in evolution. Bet hedging strategies were not
only present at elementary stages of evolution. They are a common adaptive tool that can still be found
in nature at different levels of complexity, from prokaryotic organisms to vertebrate ones. In between,
tumour cells, thanks to their high plasticity, in the presence of an aggressive environment provided
by immune response of the host body or of any anti-cancer treatment, may adopt bet hedging as a
strategy to guarantee a prolonged survival of their colony. The wide presence of bet hedging in nature
as an evolutionary mechanism, and its many links to the development of cancer is what motivates us
in the present attempt towards a mathematical model representing some of the factors that influence
this phenomenon (natural selection, epimutations and environmental stress).

In our modelling choices, we have privileged, for the sake of biological interpretation, as in [111], two
phenotypes that are often identified as such in theoretical ecology: viability (potential to resist a deadly
insult: the elephant strategy) and fecundity (potential to proliferate, or in a way, surviving by numbers,
even under hard environmental conditions: the rat strategy). They may influence cell behaviour in
opposed directions, as two different choices, incompatible for the same cell, in the same way as fecundity
and motility are notably incompatible (cells that divide do not move, and vice versa). To take into
account the faculty of rapidly changing phenotypes in case of a life-threatening insult, a capacity
reported about many cancer cells (e.g., epithelial to mesenchymal transition or drug-induced drug
persistence) [64], here we have added plasticity as a complementary structuring phenotype (or trait) of
cells. Among questions at stake we will in particular deal with is the optimisation of fitness strategy
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by concentration of phenotypes, either in two or more ranges surrounding fixed points (multimodality
of traits, i.e., bet hedging) or around a central optimal point (unimodality of trait, i.e. no bet hedging
when it is not favourable).

3.2 The model

We consider a population (not necessarily of tumour cells) in which each individual has three defining
traits: viability associated with the variable x ∈ [0, 1] which reflects the potential to resist deadly insults,
fecundity associated with the variable y ∈ [0, 1] representing the potential to proliferate and plasticity
associated with the variable θ ∈ [0, 1] which represents the potential to continue to differentiate (or
de-differentiate, or transdifferentiate, as long as it has not been fixed at its lower bound θ=0) within
a differentiation tree. We assume furthermore that for a certain regular function C : R2 → R and a
positive constant K, (x, y) ∈ Ω := {C(x, y) ⩽ K}, so z = (x, y, θ) ranges over the set D := {Ω× [0, 1]}.
We then consider the evolution problem (3.1), (3.2), (3.3) on the density of population n = n(t, z) ⩾ 0.

∂tn+ ∇ ·
(
V n− A(θ)∇n

)
= (r(z) − d(z)ρ(t))n, (3.1)(

V n− A(θ)∇n
)
· n = 0, for all z ∈ ∂D, (3.2)

n(0, z) =n0(z), for all z ∈ D. (3.3)

In the above equation, chosen for the sake of simplicity as diagonal, the matrix

A(θ) =

a11(θ) 0 0
0 a22(θ) 0
0 0 a33


gives the speed at which non-genetic epimutations occur, otherwise said it is a minimally simple rep-
resentation of how the internal plasticity trait θ affects the non-genetic instability of traits x and y, by
tuning the diffusion term; the function

V (t, z) = (V1(t, z), V2(t, z), V3(t, z))

represents the sensitivity, meant here as the force of external evolutionary pressure, of the population
to abrupt changes in the environment;

ρ(t) =

∫
D

n(t, z)dz

stands for the total amount of individuals in the population at time t.
From a biological point of view, the matrix A(θ) represents random epimutations leading to non genetic
changes, increasing with plasticity θ, in the traits viability x and fecundity y, while V stands for an
external factor (abrupt biophysical changes in the ecosystem, exposure to life-threatening drugs in the
case of cancer cell populations) inducing cellular stress in the population. Throughout the chapter, we
refer to ∇ · (V n) as advection term, or drift term, indistinctly.
We chose the term d(z)ρ(t) here as the simplest way to represent a death term in the evolution of
the population. This multiplicative representation is classic, but most of the results we show in what
follows can be extended to more general reaction terms.
Throughout our work we assume

71



(H1) For some p > 2, the initial population density n0(z) belongs to Lp(D).

(H2) The intrinsic growth rate in absence of competition r(z) and the death rate d(z) due to competition
for individuals with trait z are positive bounded functions that satisfy 0 < r− ⩽ r(z) ⩽ r+ and
0 < d− ⩽ d(z) ⩽ d+.

(H3) The diffusion parameters a11(θ), a22(θ) and a33 are strictly positive, with a11(θ) and a22(θ) being
non decreasing with respect to θ. Hence, the matrix A(θ) is elliptic for all values of θ.

(H4) The function V (t, z) is continuously differentiable for all values of t > 0 and z ∈ D.

Under these hypotheses we are able to prove the existence and uniqueness of a solution for the prob-
lem (3.1)-(3.3) using the Finite Volume method in order to obtain a convergent semi-discrete scheme.

The problem (3.1)-(3.3) underlying hypotheses (H1) to (H4) sets a structured population model
of evolution that, as mentioned before, takes into account some of the factors that might lead to the
occurrence of “bet hedging”. Amongst the first works in this topic, we can find [112], where is studied
the fraction of seeds that germinate and the fraction that remains dormant, in order to maximise the
long term expectation of growth. In the same work, the similarities of this phenomenon with economic
decision making under risk (so-called “fail-safe strategies”) are noted. Other early works on the subject
are [69] and [70]. The reaction term in (3.1) is a simple way of modelling the selection principle. This
term and more general ones are used in [22] in order to study some basic properties of structured
populations undergoing this type of behaviour. The same reaction term is also used in [28], where are
analysed the global asymptotic stability properties for integro-differential systems of N species struc-
tured by different sets of traits. A similar competition term is used in [24] to provide results about the
long time behaviour of such reaction models. The diffusion term here models non-genetic instabilities
(also known as epimutations), which constitute the drift of phenotype without alteration of the geno-
type. In [22] an integral operator in order to model mutations arising during reproduction is used, and
something similar could be done for the epimutations. The second order operator used in (3.1) can be
obtained then after re-scaling the time variable. The effect of this phenomenon in cancer development
is discussed in [113] from a biological point of view. Epimutations can also occur because of external
stress, and this is represented in (3.1) by means of the advection terms. A biological example for a
population changing phenotype due to external stress can be found in [114], where the effect of physical
stress on the shape and the cell wall thickness of E.coli bacterias is discussed. Two different models
are used in [111] to conclude that the three mechanisms described above might reversibly push an
actively-proliferating, and drug-sensitive, cell population to transition into a weakly-proliferative and
drug-tolerant state, which will eventually facilitate the emergence of more potent, proliferating and
drug-tolerant cells. One of such models is an integro-differential model very similar to (3.1)-(3.3), but
without including the effect of plasticity on the evolution of the population and without assuming the
existence of a constraint between the traits x and y.

The main results of this chapter involve the variational formulation of (3.1)-(3.3), which we now
introduce. Denote H = L2(D), with (·, ·)H the usual scalar product in that space, and V = H1(D)
with ⟨·, ·⟩ = ⟨·, ·⟩V′×V being the duality product in V.
For any given n0 ∈ H, T > 0, we say that

n := n(t) ∈ XT := C([0, T ], H) ∩ L2((0, T ),V) ∩H1([0, T ],V′),
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is a variational solution of the problem (3.1)-(3.3) if it is a solution in the following weak sense

(n(t), φ(t))H =(n0, φ(0))H +

∫ t

0

(
⟨Q[n](s), φ(s)⟩ + ⟨∂sφ(s), n(s)⟩

)
ds, (3.4)

where

⟨Q[n], φ⟩ =

∫
D

(
− A∇n∇φ+ V n∇φ+ (r(z) − ρd(z))nφ

)
dz,

for any φ ∈ XT . We say that n is a global solution if it is a solution on [0, T ] for any T > 0.

Theorem 3.1. For all non-negative n0 ∈ Lp(D), p > 2, there exists a unique global non-negative weak
solution for problem (3.1)-(3.3) in the sense of (3.4).

We focus on giving a proof for this theorem using a discretised version of problem (3.1)-(3.3) after
applying the Finite Volume Method to it. For this purpose, we define a set Dh ⊃ D, that can be
covered by the union of N disjoint cubic cells, denoted as Dj, of side length h. After integrating the
equation (3.1) over each of the cells Dj we derive the system of first-order differential equations

d

dt
νj(t) =Mj(t, ν(t))νj(t) +

∑
l∈Nj

Bjl(t)νl(t), (3.5)

νj(0) =
1

h3

∫
Dj

n0(z)dz, (3.6)

where νj is an approximation of the average of the solution n(t, z) over Dj, Nj is the set of indexes
corresponding to the neighbours of Dj and the coefficients Mj and Bjl are functions of V (t, z), A(θ),
r(z) and d(z). A full detailed derivation of the scheme is given in Section (3.3). We can then introduce
the following result involving the solution for this system:

Theorem 3.2. For all non-negative n0 ∈ Lp(D), p > 2, there exists a unique non-negative solution for
problem (3.5)-(3.6). Furthermore, the function ñh(t, z) defined by

ñh(t, z) =
∑
j

νj(t)1Dj∩D,

converges in L2(DT ) to the unique non-negative weak solution of (3.1)-(3.3) as h goes to zero.

The existence and non-negativity of the solution for (3.5)-(3.6) results from the Cauchy-Lipschitz
theorem, while the convergence of ñh(t, z) is the consequence of the compactness of the sequence.

The existence result in Theorem (3.1) will be treated in Section (3.3), but the uniqueness can be
directly obtained from the variational formulation with the help of some a posteriori estimates. Let
us proceed then to prove the uniqueness before addressing the existence. Assume that there exists
a non-negative weak solution n for (3.1)-(3.3). Assume as well that there exist 0 ⩽ t0 < t1 such
that ρ(t) ⩽ max{ρ(0), r

+

d−
} for t ∈ [0, t0], and ρ(t) > max{ρ(0), r

+

d−
} for t ∈ (t0, t1). We may take on

the variational formulation φ(t, z) = χε(t), where χε(t) is a sequence satisfying χε(t) → 1t>t0(t) and

χ′
ε(t) → δt0(t). For example, we could consider χε(t) = 1

2
(1 − cos(π(t−t0+ε)

2ε
))1t∈[t0,t0+ε] + 1t>t0+ε. This

leads to the equality

(n(t), χε(t))H =

∫ t

0

∫
D

(r(z) − d(z)ρ(t))n(t, z)dzχε(s) + ⟨χ′
ε(s), n(s)⟩

)
ds.
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Taking the limit when ε goes to 0, we obtain that, for all t > t0

ρ(t) = ρ(t0) +

∫ t

t0

∫
D

(r(z) − d(z)ρ(s))n(s, z)dzds,

where ρ(t) =
∫
D

n(t, z)dz is a continuous function due to the fact that n(t, z) ∈ C([0, T ], H). We can

write the previous relation as

ρ(t) = ρ(t0) +

∫ t

t0

∫
D

d(z)

(
r(z)

d(z)
− r+

d−
+
r+

d−
− ρ(s)

)
n(s, z)dzds,

which, thanks to the hypothesis on ρ(t) over (t0, t1), leads to

ρ(t) ⩽ ρ(t0) ⩽ max

{
ρ(0),

r+

d−

}
for all t ∈ (t0, t1). This represents a contradiction, and implies that

ρ(t) ⩽ max

{
ρ(0),

r+

d−

}
(3.7)

for all values of t.
Taking now φ = n on the variational formulation, using standard arguments to bound the linear terms
from Q[n] and the estimate (3.7) for the non-linear part together with the Gronwall Lemma, we obtain
the relation

1

2
∥n(t)∥2H ⩽

1

2
∥n(0)∥2H + a

t∫
0

1

2
∥n(s)∥2Hds,

for some real positive number a. Using Gronwall’s lemma, this relation implies that

∥n(t)∥2H ⩽ ∥n0∥2He2at,

for all values of t. Finally assume the existence of two non-negative weak solutions n1 and n2 for the
same initial data n0. Taking the difference between their respective variational formulations, choosing
φ = n1 − n2, we get the equality

1

2
∥n1 − n2∥2H =

t∫
0

⟨Q[n1] −Q[n2], n1 − n2⟩ds.

Once again, the linear part of Q[n1]−Q[n2] can be easily bounded using standard methods, leading to

1

2
∥n1 − n2∥2H ⩽a

t∫
0

∥n1 − n2∥2Hds−
t∫

0

ρ1(s)

∫
D

d(z)(n1 − n2)
2dzds

−
t∫

0

(ρ1(t) − ρ2(t))

∫
D

n2d(z)(n1 − n2)dzds

⩽

t∫
0

(a+ d+∥n0∥Heas)∥n1 − n2∥2Hds
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Consequently, thanks to Gronwall’s lemma, ∥n1 − n2∥2H = 0 for all t, therefore, the solution is unique.

As stated before, the proof of existence of a weak solution will be carried on in Section (3.3). Following
the ideas from [115], the semi-discrete numerical scheme (3.5)-(3.6) is developed and the convergence
of its solution to the solution of (3.1)-(3.3) is demonstrated. A fully discrete numerical scheme is ob-
tained starting from the semi-discrete one and its convergence is also proved. Section 4 is devoted to
the numerical simulations, starting with some numerical computations of the approximation error by
comparing the results with an exact solution. Finally, the solutions of some examples with biological
meaning is presented.

3.3 Existence of a weak solution and numerical approxima-

tion

We aim to use the Finite Volume method in order to find a sequence of problems whose solutions
converge to the solution of (3.4).

3.3.1 Preliminaries on the finite volume method

Consider h = 1/M where M is a natural number and define the mesh

Cijk = [
i

M
,
i+ 1

M
] × [

j

M
,
j + 1

M
] × [

k

M
,
k + 1

M
],

with i, j, k = 0, . . . ,M − 1, such that
⋃
i,j,k

Cijk = [0, 1]3.

Now introduce the sets
M = {Cijk : Cijk ∩D ̸= ∅}

and
Dh =

⋃
M

Cijk.

For simplicity, we define N := |M| as the amount of elements in M, and denote each of its elements
as Dj, for j = 1, . . . , N . For each Dj, we denote its centre of mass as zj := (xj, yj, θj). For each j,
define Nj as the set of indexes l such that Dl and Dj share a common boundary. Denote such common
boundary as Γjl, its centre of mass as zjl and njl the outer normal vector of Dj, in the direction of Dl.
We remark that the distance between the centres of two neighbouring cells Dj and Dl will be equal to
|zl − zj|. Having cubes as the mesh cells guarantees that the condition

njl =
zl − zj
|zl − zj|

, (3.8)

is fulfilled.

It is important to remark that if D has a regular enough boundary (for example: smooth or
polygonal), then the area of Dh \D, which we denote as |Dh \D|, will converge to zero as h vanishes.
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The approximated problem (3.1)-(3.3) is then given by

∂tñh + ∇ ·
(
V ñh − A(θ)∇ñh

)
= (r(z) − d(z)ρ̃h(t))ñh, in Dh (3.9)(

V ñh − A(θ)∇ñh
)
· n = 0, for all z ∈ ∂Dh, (3.10)

ñh(0, z) =n0(z), for all z ∈ Dh, (3.11)

where ρ̃h(t) =
∫
Dh

ñh(t, z)dz. We propose a classical finite volume method based on local averages of

the unknown density over cell grids defined by

νj(t) :=
1

h3

∫
Dj

ñh(t, z)dz = n(t, zj) +O(h2). (3.12)

Assume that the coefficients and the solution from equation (3.9) are smooth. Then, integrating it over
a cell Dj yields the equality

d

dt

∫
Dj

ñhdz = −
∫
Dj

∇ ·
(
V ñh − A∇ñh

)
dz +

∫
Dj

r(z)ñhdz − ρ̃h(t)

∫
Dj

d(z)ñhdz.

After integrating by parts and using the boundary conditions (3.10), we get

−
∫
Dj

∇ ·
(
V ñh − A∇ñh

)
dz = −

∑
l∈Nj

∫
Γjl

(
V ñh − A∇ñh

)
· njldS.

For a real function f(t), define the positive and negative part of f as

f+(t) =


f(t), if f(t) ⩾ 0,

0, if f(t) < 0,

and

f−(t) =


0, if f(t) ⩾ 0,

f(t), if f(t) < 0,

respectively. Using an upwind approximation technique for the advection term, we conclude∫
Γjl

V ñh · njldS = |Γjl|
(
νj(t)u

+
jl(t) + νl(t)u

−
jl(t)

)
+O(h2), (3.13)

where ujl(t) = V (t, zjl) · n⃗jl. On the other hand, we have

−
∫
Γjl

(
A∇ñh

)
· njldS = −|Γjl|

(
A(θjl)∇ñh(zjl)

)
· njl = −|Γjl|∇ñh(zjl) · A(θjl)njl.

As A(θ) is a diagonal matrix and njl is either one of the vectors from the euclidean canonical base, or
one of their opposites, we have the relation

A(θjl)njl = Ajlnjl,
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where Ajl = (A(θjl)njl · njl). Notice that, thanks to hypothesis (H3), there exists α > 0 such that
Ajl ⩾ α, for all j and l. So that, together with the expression of the normal vectors, (3.8) this implies

−
∫
Γjl

(
A∇ñh

)
· njldS = − Ajl|Γjl|

|zl − zj|

(
∇ñh(zjl)

)
·
(
zl − zj

)
.

Due to the approximation of the gradient(
∇ñh(zjl)

)
·
(
zj − zl

)
= ñh(zl) − ñh(zj) +O(h2),

we can finally write

−
∫
Γjl

(
A∇ñh

)
· njldS = − Ajl|Γjl|

|zl − zj|

(
ñh(zj) − ñh(zl)

)
+O(h2)

= − Ajl|Γjl|
|zl − zj|

(
νl(t) − νj(t)

)
+O(h2). (3.14)

Taking into account that

ρh(t) =

∫
Dh

ñh(t, z)dz =
N∑
l=1

∫
Dl

ñh(t, z)dz =
N∑
l=1

h3νl(t),

the reaction terms can be easily approximated∫
Dj

r(z)ñhdz − ρ̃h(t)

∫
Dj

d(z)ñhdz = h3
(
r(zj) − ρh(t)d(zj)

)
ñh(t, zj) +O(h5)

= h3
(
rj − ρ̃h(t)dj

)
νj(t) +O(h5)

= h3
(
rj − dj

N∑
l=1

h3νl(t)
)
νj(t) +O(h5), (3.15)

where we have adopted the notation rj := r(zj) and dj := d(zj). Finally, using again (3.12), we get

d

dt

∫
Dj

ñh(z)dz = h3ν ′j(t).

Consequently, collecting (3.13), (3.14) and (3.15), and getting rid of the approximation orders we obtain
the semi-discrete scheme

d

dt
νj(t) = Mj(t, ρ̃h(t))νj(t) +

∑
l∈Nj

Bjl(t)νl(t), (3.16)

where

Mj(t, ρ̃h(t)) = −
∑
l∈Nj

|Γjl|
h3

(
u+jl(t) +

Ajl
|zl − zj|

)
+
(
rj − dj ρ̃h(t)

)
,

Bjl =
|Γjl|
h3

(
− u−jl(t) +

Ajl
|zl − zj|

)
.
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This system of equations can be complemented with the set of initial data

νj(0) = ν0j :=
1

h3

∫
Dj

n0(z)dz, (3.17)

where n0(z) is the extension by 0 of n0(z) to all of R3.

3.3.2 Global existence, uniqueness, positivity and boundedness of the so-
lution for the semi-discrete scheme

We prove the local existence and uniqueness of the solution for the problem (3.16)-(3.17), by using the
Cauchy-Lipschitz theorem. Then, such solution is proved to be non-negative and, as a consequence,
bounded independently of t. Finally the boundedness property is used to prove the global existence of
the solution.

Proposition 3.1 (Local existence of solution). For all sets of initial data {ν0j }, there exists 0 < T ∗ <∞
such that the problem (3.16)-(3.17) has an unique solution over [0, T ∗). Furthermore, if ν0j ⩾ 0 for all
j, then νj(t) ⩾ 0 for all time t ∈ [0, T ∗) and all j.

Proof. The RHS term in (3.16) is Lipschitz continuous for all values of t and νj, therefore the existence
and uniqueness of solution over a certain interval [0, T ∗) is a direct consequence of the Cauchy-Lipschitz
theorem.
On the other hand, consider a strictly positive set of initial values ν0j and define the continuous function
f(t) = min

j
νj(t). If f(t) ⩾ 0 for all t < T ∗, then the solution remains positive at all times. If f(t) < 0

for some t ∈ (0, T ∗), then there exists t0 > 0 such that f(t0) = 0 and f(t) ⩾ 0 for t < t0. This implies
the existence of j0 such that νj0(t0) = 0 with ν ′j0(t0) ⩽ 0. If νl(t0) > 0 for some l ∈ Nj0 , then, thanks
to (3.16) we have

ν ′j0(t0) =
∑
l∈Nj

Bjl(t0)νl(t0)

=
∑
l∈Nj

|Γjl|
h3

(
− u−jl(t0) +

Ajl
|zl − zj|

)
νl(t0) > 0,

which is a contradiction with the previously established fact that ν ′j0(t0) ⩽ 0. Consequently νl(t0) = 0
for all l ∈ Nj0 . Furthermore, from the definitions of f(t) and t0, we also have that ν ′l(t0) ⩽ 0 for all l ∈
Nj0 . We can iterate the previous argument in order to obtain that νj(t0) = 0 for all j and consequently,
thanks to the uniqueness of the solution, νj(t) ≡ 0 for all j and all t. This is a contradiction with the
assumption that f(t) is negative for some value of t and consequently f(t) ⩾ 0 for all t.
Finally, for non-negative initial values ν0j and ε small enough, we define νεj as

νεj =


ν0j if ν0j > 0,

ε if ν0j = 0.

Thanks to the previous step, the solution of (3.16) associated to νεj remains non-negative for all t and
all ε. Hence, thanks to the continuous dependence of the solution of a system with respect to its initial
data, we conclude that ν0j ⩾ 0 implies νj(t) ⩾ 0 for all t ∈ [0, T ∗).
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Proposition 3.2 (Discrete L1 bound). The L1 norm ρ̃h(t) :=
∑
l

h3νl(t) satisfies the bounds

ρ := min{ρ̃h(0),
r−

d+
} ⩽ ρ̃h(t) ⩽ max{ρ̃h(0),

r+

d−
} =: ρ, ∀t ⩾ 0, (3.18)

where r−, r+, d− and d+ are the bounds given in (H1) for r(z) and d(z) respectively.

Proof. Multiplying (3.16) by h3 for each j, adding up all the equations, recalling that |Γjl| = |Γlj|,
u+jl = −u−lj , Ajl = Alj and |zl − zj| = |zj − zl| we obtain that

ρ̃′h(t) =
N∑
j=1

(
rj − dj ρ̃h(t)

)
h3νj(t).

The non-negativity of the solution implies then(
r− − d+ρ̃h(t)

)
ρ̃h(t) ⩽ ρ̃′h(t) ⩽

(
r+ − d−ρ̃h(t)

)
ρ̃h(t).

These differential inequalities directly imply the bounds over ρ̃h(t).

Notice that the L1 bounds are independent of t. Additionally, the upper bound also implies that

h3νj(t) ⩽ ρ̃h(t) ⩽ ρ, for all t ∈ [0, T ∗), for all j,

So that in general νj(t) ⩽ ρ
h3

, which is the key estimate in order to prove global existence of solution
for (3.16)-(3.17).

Proposition 3.3 (Global existence of solution). For all sets of initial data {ν0j }, there exists a unique
solution of problem (3.16)-(3.17) for all t > 0. Such solution is non-negative and satisfies the estimate
(3.18).

Proof. For each h, assume that there exists a finite maximal time of existence Th. However, the
estimate (3.18) on ρ̃h(t) implies that for all j, νj(Th) ⩽ ρ

h3
< ∞, which, thanks to the Lipschitz

continuity of the right hand side of (3.16) allows to extend to solution to a certain interval [Th, T
∗
h ),

contradicting this way the maximality of Th.

3.3.3 Discrete gradient, L2 norm estimate and compactness result

In this section we introduce some piecewise constant functions depending on the solution of (3.16)-
(3.17) together with some estimates related to such functions. Then, some compactness properties will
be proved in order to ensure that such functions converge to some function that will be proved to be a
weak solution of (3.1)-(3.2), and their derivatives, respectively.

We first introduce nh(t, z) defined as

nh(t, z) =
N∑
j=1

νj(t)1Dj
(z).

79



Notice that ∥nh∥L1 = ρ̃h(t). Now, for each l ∈ Nj, define the polygonal subsets of Dj, denoted
Djl, having Γjl as the common side and zj as a vertex. The subsets Djl are pyramids of area sjl =
|Γjl|d(zj,Γjl)

3
= h3

6
. Let us define the piecewise constant function

vh(t, z) =
N∑
j=1

∑
l∈Nj

|Γjl|
|zl − zj|

(
(zjl − zj)

νl(t) − νj(t)

sjl
1Djl

(z)
)
.

This function can be regarded as a discrete gradient for nh(t).

Proposition 3.4 (L2 bound). For each value of h, define the space Hh := L2(Dh). Then, there exists
positive constants a and b, independent of h, such that the functions nh(t, z) and vh(t, z) satisfy the
following estimate

∥nh∥2Hh
+ a

T∫
0

∥vh∥2Hh
⩽ ebT∥n0∥2Hh

, for all T > 0. (3.19)

Proof. Multiplying equation (3.16) by h3νj(t) for each j, and adding them up, we obtain the relation

N∑
j=1

h3νj(t)ν
′
j(t) = A(t) +D(t) +R(t), (3.20)

where

A(t) = −
N∑
j=1

νj(t)
∑
l∈Nj

|Γjl|
(
νj(t)u

+
jl(t) + νl(t)u

−
jl(t)

)
,

D(t) =
N∑
j=1

νj(t)
∑
l∈Nj

Ajl|Γjl|
|zl − zj|

(
νl(t) − νj(t)

)
,

R(t) =
N∑
j=1

h3
(
rj − dj

∑
l

h3νl(t)
)
ν2j (t).

Let us proceed to estimate each of these terms. In order to simplify the notation, we define

µjl(t) = |Γjl|(νj(t)u+jl(t) + νl(t)u
−
jl(t)),

and write

A(t) = −1

2

N∑
j=1

∑
l∈Nj

(
νj(t)µjl(t) + νl(t)µlj(t)

)
.
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Consequently, knowing that −u+jl = u−lj ⩽ 0, we have

A(t) =
1

2

N∑
j=1

∑
l∈Nj

|Γjl|
(
νl(t) − νj(t)

)(
u+jl(t)νj(t) + u−jl(t)νl(t)

)

=
1

2

N∑
j=1

∑
l∈Nj

|Γjl|
(
νl(t) − νj(t)

)(
ujl(t)νj(t) + u−jl(t)(νl(t) − νj(t))

)

⩽
1

2

N∑
j=1

∑
l∈Nj

|Γjl|
(
νl(t) − νj(t)

)(
ujl(t)νj(t)

)

=
N∑
j=1

∑
l∈Nj

|Γjl|
|zl − zj|

|zjl − zj|
(
νl(t) − νj(t)

)(
ujl(t)νj(t)

)
,

where we used that |zl − zj| = 2|zjl − zj|. From the definition of ujl, we conclude that

|ujl| ⩽ |V (t, zjl) · n⃗jl| ⩽ V ,

where V := max
z,t

|V (t, z)|. This implies

|A(t)| ⩽ V
N∑
j=1

∑
l∈Nj

|Γjl|
|zl − zj|

|zjl − zj|
(
|νl(t) − νj(t)|

)
νj(t)

= V
N∑
j=1

∑
l∈Nj

|Γjl|
|zl − zj|

|zjl − zj|

(
|νl(t) − νj(t)|

)
sjl

νj(t)sjl

= V

∫
D

|vh(t, z)||nh(t, z)|dz.

Then, for all ε > 0, Young’s inequality implies

|A(t)| ⩽ V
(ε

2
∥vh∥2Hh

+ 2ε−1∥nh∥2Hh

)
. (3.21)

On the other hand

D(t) =
1

2

N∑
j=1

∑
l∈Nj

Ajl|Γjl|
|zl − zj|

(
νj(t)

(
νl(t) − νj(t)

)
+ νl(t)

(
νj(t) − νl(t)

))

= −1

2

N∑
j=1

∑
l∈Nj

Ajl|Γjl|
|zl − zj|

(
νl(t) − νj(t)

)2

= −1

2

N∑
j=1

∑
l∈Nj

Ajlsjl|zl − zj|
|Γjl||zjl − zj|2

|Γjl|2|zjl − zj|2

d2jl

(
νl(t) − νj(t)

)2
s2jl

sjl.

The ellipticity and boundedness of the matrix A(θ) imply that there exist positive constants α, α such
that α ⩽ Ajl ⩽ α for all j and l. From this and the value of sjl we deduce that

Ajlsjl|zl − zj|
|Γjl||zjl − zj|2

=
4Ajlh

4

6h4
⩾

2α

3
,
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and consequently

D(t) ⩽ −α
3

N∑
j=1

∑
l∈Nj

|Γjl|2|zjl − zj|2

d2jl

(
νl(t) − νj(t)

)2
s2jl

sjl

= −α
3
∥vh∥2Hh

, (3.22)

notice that the last identity is true since vh is a piecewise constant function. Using the bounds over
r(z) and the positiveness of d(z) and ρ̃h(t) we see that

R(t) :=
N∑
j=1

h3
(
rj − dj

∑
l

h3νl(t)
)
ν2j (t) =

N∑
j=1

h3
(
rj − dj ρ̃h(t)

)
ν2j (t)

⩽ r+
N∑
j=1

h3ν2j (t) = r+∥nh∥2Hh
. (3.23)

Using (3.21), (3.22) and (3.23) in (3.20), with the relation

N∑
j=1

h3νj(t)ν
′
j(t) =

1

2

( N∑
j=1

h3ν2j (t)
)′

=
1

2

(
∥nh∥2Hh

)′
,

yields the differential inequality

1

2

(
∥nh∥2Hh

)′
+
(α

3
− εV

2

)
∥vh∥2Hh

⩽
(ε−1V

2
+ r+

)
∥nh∥2Hh

, (3.24)

which, after taking ε = α

3V
and using Gronwall’s lemma, leads to the estimate (3.19).

The result of Proposition (3.4) can be easily generalised if instead of multiplying each equation
(3.16) by h3νj(t), we multiply by h3νp−1

j (t), for any p > 1, which would lead to the following uniform
Lp bound:

Proposition 3.5 (Lp bound). There exists positive constants ap and bp, independents of h, such that
the functions nph(t, z) and vph(t, z) defined as

nph(t, z) =
N∑
j=1

ν
p/2
j (t)1Dj

(z)

vph(t, z) =
N∑
j=1

∑
l∈Nj

|Γjl|
|zl − zj|

(
(zjl − zj)

ν
p/2
l (t) − ν

p/2
j (t)

sjl
1Djl

(z)
)
.

satisfy the following estimate

∥nph∥
2
Hh

+ ap

T∫
0

∥vph∥
2
Hh

⩽ ebpT∥n0∥2Lp(D), for all T > 0. (3.25)

Before stating the compactness result that will allow us to extract a convergent subsequence from
nh we give two important results that are a consequence from estimate (3.19).
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Proposition 3.6. For all vectors η ∈ R3 define the translation operator πη : L2(R3) → L2(R3) as
πη(u)(z) = u(z + η). Then

lim
η→0

∥πηnh − nh∥L2(R3×(0,T )) = 0,

uniformly in h, where nh represents the extension by 0 of nh to all of R3.

Proof. The proof of this proposition follows the same steps as Lemma 18.3 and Remark 18.8 in [116]. In
particular, thanks to the discrete trace inequality given in the Lemma 10.5 within the same reference,
we can prove the existence of a constant C, independent of h and η, such that

∥πηnh − nh∥2L2(R3×(0,T )) ⩽ |η|C

 T∫
0

(
∥vh∥2Hh

+ ∥nh∥2Hh

)
dt

 ,

and we get the result from Proposition (3.6) thanks to (3.19).

From now on we introduce the notation DT := (0, T ) ×D.

Proposition 3.7. There exists a constant C1, independent of h, such that for all ψ ∈ D(DT ),∣∣∣∣∣∣
T∫

0

⟨dnh
dt

, ψ⟩H−3×H3dt

∣∣∣∣∣∣ ⩽ C1

∑
|k|⩽3

∥∂kzψ∥L2(DT ).

Proof. Using the scheme (3.16), we have that, for all ψ ∈ D(D)

⟨dnh
dt

, ψ⟩H−3×H3 =
∑
j

dνj(t)

dt

∫
Dj

ψdz

=
∑
j

h3
(
Mj(t, ρ̃h(t))νj(t) +

∑
l∈Nj

Bjl(t)νl(t)
)
ψj,

where ψj = h−3
∫
Dj

ψdz is the mean value of ψ over Dj. Reordering the terms in this equality we have

⟨dnh
dt

, ψ⟩H−3×H3 =
1

2

N∑
j=1

∑
l∈Nj

|Γjl|
(
ψl − ψj

)(
u+jl(t)νj(t) + u−jl(t)νl(t)

)

− 1

2

N∑
j=1

∑
l∈Nj

Ajl|Γjl|
|zl − zj|

(
νl(t) − νj(t)

)(
ψl − ψj

)

+
N∑
j=1

h3
(
rj − dj ρ̃h(t)

)
νjψj
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We can bound each term on this equality as follows: From the definition of ujl(t) we get that |u±jl| ⩽
∥V ∥L∞(DT ) and consequently

∣∣∣1
2

N∑
j=1

∑
l∈Nj

|Γjl|
(
ψl − ψj

)(
u+jl(t)νj(t) + u−jl(t)νl(t)

)∣∣∣
=
∣∣∣1
2

N∑
j=1

∑
l∈Nj

h3
(
ψl − ψj

h

)(
u+jl(t)νj(t) + u−jl(t)νl(t)

)∣∣∣
⩽

1

2
∥ψ∥C1(D)∥V ∥L∞(DT )

N∑
j=1

∑
l∈Nj

h3
(
νj(t) + νl(t)

)
⩽3∥ψ∥C1(D)∥V ∥L∞(DT )∥n∥Hh

.

Using the previously established relation Ajl ⩽ α we get

∣∣∣1
2

N∑
j=1

∑
l∈Nj

Ajl|Γjl|
|zl − zj|

(
νl(t) − νj(t)

)(
ψl − ψj

)∣∣∣
=
∣∣∣1
2

N∑
j=1

∑
l∈Nj

Ajlh
3
(νl(t) − νj(t)

h

)(ψl − ψj
h

)∣∣∣
⩽α∥ψ∥C1(D)

N∑
j=1

∑
l∈Nj

h3

2

∣∣∣νl(t) − νj(t)

h

∣∣∣
⩽α∥ψ∥C1(D)

N∑
j=1

∥vh∥Hh
.

Finally, using the boundedness of r(z), d(z) and ρ̃h we see that∣∣∣ N∑
j=1

h3
(
rj − dj ρ̃h(t)

)
νjψj

∣∣∣ ⩽ N∑
j=1

h3|rj − dj ρ̃h(t)||ψj|νj

⩽ (r+ + d+ρ)∥ψ∥C1(D)

N∑
j=1

h3νj

⩽ (r+ + d+ρ)∥ψ∥C1(D)∥n∥Hh
.

Putting everything together, we obtain the existence of a constant C independent of h, such that

|⟨dn
dt
, ψ⟩H−3×H3| ⩽ C∥ψ∥C1(D)

(
∥n∥Hh

+ ∥vh∥Hh

)
, for all t ∈ (0, T ).

Finally, using the inclusions H3(D) ⊂ C1, 1
2 (D) ⊂ C1(D) that hold true in any open subset of R3

with smooth enough boundary thanks to the Sobolev inequalities, integrating over (0, T ), using the
Cauchy-Schwartz inequality and estimate (3.19), we get to the result stated in the proposition.

Proposition 3.8. If n0 ∈ Lp(D) for some p > 2, then there exists a function n ∈ L2(0, T ;V) such
that, up to the extraction of a sub-sequence, the sequence of functions nh strongly converges to n in
L2(DT ) and vh weakly converges to ∇n in L2(DT ).
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Proof. Propositions (3.6) and (3.7) give all the necessary tools in order to ensure the relative compact-
ness of the set of functions {nh}h in L2(DT ). In order to prove that such set is indeed compact, we
will use a variant adapted to our purposes of the proof of [117, Theorem 3] to show that {nh}h is a
Cauchy sequence in L2(DT ). We consider a sequence of mollifiers Φε(z) = ε−3Φ(ε−1z) for a positive,
symmetric function Φ ∈ D(B(0, 1)) satisfying

∫
R3 Φ(z)dz = 1.

Step 1: We claim that
lim
ε→0

∥Φε ∗ nh − nh∥L2((0,T )×R3) = 0,

uniformly on h.
We have

|Φε ∗ nh(z) − nh(z)| ⩽
∫
R3

|nh(z − y) − nh(z)|Φε(y)dy

⩽

∫
R3

|nh(z − y) − nh(z)|2Φε(y)dy

1/2

,

thanks to the Cauchy-Schwarz inequality and the value of the integral of Φε(y). Consequently

∥Φε ∗ nh − nh∥L2((0,T )×R3) ⩽

T∫
0

∫
R3

∫
R3

|nh(z − y) − nh(z)|2Φε(y)dydzdt

=

∫
B(0,ε)

Φε(y)∥π−ynh − nh∥2L2((0,T )×R3)dy,

and due to Proposition (3.6), we obtain the strong convergence of Φε ∗ nh to nh in L2((0, T ) × R3),
uniformly in h.

Step 2: We prove that for every fixed ε and any compact ω ⊂ D, the sequence Φε ∗ nh is uniformly
bounded in H1((0, T ) × ω).
Thanks to Young’s inequality, for a fixed ε,

∥∇(Φε ∗ nh)∥L2(DT ) ⩽ ∥∇Φε∥L2(D)∥nh∥L1(DT ) ⩽ CερT.

Furthermore, for any compact ω ⊂ D, ψ ∈ D((0, T )×ω) and ε small enough, we have Φε ∗ψ ∈ D(DT )
and consequently, using Proposition (3.7) and Young’s inequality for the convolution product, we get∣∣∣∣∣∣

T∫
0

⟨ d
dt

Φε ∗ nh, ψ⟩dt

∣∣∣∣∣∣ ⩽
T∫

0

∣∣∣∣⟨dnhdt ,Φε ∗ ψ⟩
∣∣∣∣ dt

⩽ C
∑
|k|⩽3

∥∂kzΦε ∗ ψ∥L2(DT )

⩽ Cε∥ψ∥L1(DT ).

Then, by duality, for a fixed ε, d
dt

Φε ∗ nh is uniformly bounded in L∞((0, T )×ω) and we conclude that
for each fixed ε, Φε ∗ nh is uniformly bounded in H1((0, T ) × ω).
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Step 3: We claim that, for all compacts ω ⊂ D, the sequence nh is a Cauchy sequence in L2((0, T )×ω).
Write

nh1 − nh2 = (nh1 − Φε ∗ nh1) + (Φε ∗ nh1 − Φε ∗ nh2) + (Φε ∗ nh2 − nh2).

Thanks to Step 1, for all η > 0, we can fix ε in such a way that

∥nh1 − Φε ∗ nh1∥L2((0,T )×ω) < η/3,

∥Φε ∗ nh2 − nh2∥L2((0,T )×ω) < η/3.

Thanks to Step 2 and Rellich-Kondrachov’s theorem, we know that for a fixed ε, Φε ∗ nh is a Cauchy
sequence in L2((0, T ) × ω), hence, for h1 and h2 close enough

∥Φε ∗ nh1 − Φε ∗ nh2∥L2((0,T )×ω) < η/3

Consequently, for all positive η > 0, there exists h1 and h2 such that

∥nh1 − nh2∥L2((0,T )×ω) < η,

which proves that nh is a Cauchy sequence.

Step 4: The sequence nh is a Cauchy sequence in L2(DT ).
Fix a natural number m, define ωm := {z ∈ D : d(z, ∂D) ⩾ 1/m}, ωTm := (0, T ) × ωm and write

∥nh1 − nh2∥L2(DT ) = ∥nh1 − nh2∥L2(ωT
m) + ∥nh1 − nh2∥L2((0,T )×(D\ωm))

⩽ ∥nh1 − nh2∥L2(ωT
m) + 2 sup

h
∥nh∥L2((0,T )×(D\ωm)) (3.26)

Taking q > 1 and using Hölder’s inequality we have

∥nh∥2L2((0,T )×(D\ωm)) =

T∫
0

∫
D\ωm

n2
hdzdt

⩽

T∫
0

∥(nh)
q∥L2(D)dt|D \ ωm|1/q

∗
.

Hence, for q = p/2, thanks to (3.25), we can conclude that sup
h

∥nh∥L2((0,T )×(D\ωm)) goes to 0 when m

goes to infinity. Consequently, for all η > 0, we can fix m big enough so that the second term in (3.26)
is smaller than η/2 and then, thanks to Step 3, we can choose h1 and h2 in such a way that the first
term is also smaller than η/2, which proves that {nh}h is a Cauchy sequence in L2(DT ).

Step 5: Let n be the limit of a suitable subsequence of nh and v := (v1, v2, v3) the weak limit of
vh (such limit exists due to the fact that vh is bounded in (L2(DT ))3). We claim that n ∈ L2(0, T ;V)
and v = ∇n.
For all ϕ(t, z) ∈ C([0, T ];D(D)), the convergence of nh to n implies that

T∫
0

∫
D

n(t, z)∂iϕ(t, z)dzdt = lim
h→0

T∫
0

∫
D

nh(t, z)∂iϕ(t, z)dzdt, (3.27)
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where ∂1ϕ(z) = ∂xϕ(z), ∂2ϕ(z) = ∂yϕ(z) and ∂3ϕ(z) = ∂θϕ(z). Writing ∂iϕ(z) = ∇ · (ϕ(t, z)ei), where
{ei} is the eucledian canonical basis, we have that∫

D

nh(t, z)∂iϕ(t, z)dz =
N∑
j=1

νj(t)

∫
Dj

∇ · (ϕ(t, z)ei)dz

=
N∑
j=1

νj(t)
∑
l∈Nj

∫
Γjl

ϕ(t, z)ei · njldS

=
N∑
j=1

∑
l∈Nj

νj(t)

∫
Γjl

ϕ(t, z)nijldS.

Therefore, we obtain ∫
D

nh(t, z)∇ϕ(t, z)dz =
N∑
j=1

∑
l∈Nj

νj(t)

∫
Γjl

ϕ(t, z)njldS.

Recalling that zjl is the center of mass of Γjl, we may estimate the integral over Γjl as∫
Γjl

ϕ(t, z)njldS = ϕ(t, zjl)njl +O(|Γjl|),

as done in (3.12) with the integral over Dj. Using the fact that |Γjl| = h2 and the amount of cells on
the mesh is O(h−3), we have∫

D

nh(t, z)∇ϕ(t, z)dz =
N∑
j=1

∑
l∈Nj

νj(t)|Γjl|ϕ(t, zjl)njl +O(h). (3.28)

Reordering the terms of this last sum, we have

N∑
j=1

∑
l∈Nj

νj(t)|Γjl|ϕ(t, zjl)njl =
1

2

N∑
j=1

∑
l∈Nj

(
νj(t)|Γjl|ϕ(t, zjl)njl + νl(t)|Γlj|ϕ(t, zlj)nlj

)

= −1

2

N∑
j=1

∑
l∈Nj

|Γjl|njl

(
νl(t) − νj(t)

)
ϕ(t, zjl)

= −
N∑
j=1

∑
l∈Nj

|Γjl|
|zl − zj|

(zjl − zj)

(
νl(t) − νj(t)

)
sjl

ϕ(t, zjl)sjl

= −
∫
D

vh(z)ϕh(t, z)dz, (3.29)

where

ϕh(t, z) =
N∑
j=1

∑
l∈Nj

ϕ(t, zjl)1Djl
(z).
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This function strongly converges in L2(DT ) to ϕ. Substituting (3.29) in (3.28) and then in (3.27), and
using the weak convergence of vh to v, we obtain that, for all ϕ ∈ C([0, T ];D(D))

T∫
0

∫
D

n(t, z)∂iϕ(t, z)dzdt = −
T∫

0

∫
D

vi(t, z)ϕ(t, z)dzdt.

Taking ϕ(t, z) = φ(z)χ(t), with φ ∈ D(D) and χ(t) ∈ C([0, T ]), this last equality becomes

T∫
0

∫
D

n(t, z)∂iφ(z)dzχ(t)dt = −
T∫

0

∫
D

vi(t, z)φ(z)dzχ(t)dt,

for all φ ∈ D(D) and χ(t) ∈ C([0, T ]), which implies that for each φ ∈ D(D)∫
D

n(t, z)∂iφ(z)dz = −
∫
D

vi(t, z)φ(z)dz, a.e. [0, T ].

The separability of D(D) finally implies that∫
D

n(t, z)∂iφ(z)dz = −
∫
D

vi(t, z)φ(z)dz, ∀φ ∈ D(D), a.e. [0, T ].

As v(t, z) ∈ L2(D) for almost all t ∈ [0, T ], n(t, z) belongs to V for almost all t ∈ [0, T ], which proves
the statements of the Proposition.

An immediate consequence of Proposition (3.8), together with estimate (3.19) is that

∥n∥2H + a

T∫
0

∥v∥2H ⩽ ebT∥n0∥2H , for all T > 0. (3.30)

Noticing that

T∫
0

(ρh(t) − ρ(t))2dt =

T∫
0

∫
Dh

nh(t, z)dz −
∫
D

n(t, z)dz

2

dt

=

T∫
0

 ∫
Dh\D

nh(t, z)dz +

∫
D

(nh(t, z) − n(t, z)dz


2

dt

⩽

T∫
0

(|Dh \D|1/2∥nh∥Hh
+ |D|1/2∥nh − n∥L2(D))

2dt

⩽ 2(|Dh \D|∥nh∥2L2((0,T )×Dh
+ |D|∥nh − n∥2L2(DT )),

the definition of Dh and Proposition (3.8) implies that the sequence of functions ρh(t) strongly converges
to ρ(t) :=

∫
D

n(t, z)dz in L2((0, T )).
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3.3.4 Existence of weak solution

This section is devoted to prove that the function n is a weak solution of problem (3.1)-(3.2).

Proposition 3.9. The function n satisfies

−⟨n0, φ(0)⟩ =

T∫
0

⟨Q[n], φ⟩ + ⟨∂tφ(t), n⟩dt, (3.31)

for all φ ∈ C1
c ([0, T ),V).

Proof. First consider φ ∈ C1
c ([0, T ),C∞

c (R3)), and for each j, multiply equation (3.16) by h3φj(t) :=
h3φ(t, zj), and add them up for all j, obtaining the relation

N∑
j=1

h3ν ′j(t)φj(t) = Aφ(t) +Dφ(t) +Rφ(t),

where

Aφ(t) = −
N∑
j=1

φj(t)
∑
l∈Nj

|Γjl|
(
νj(t)u

+
jl(t) + νl(t)u

−
jl(t)

)
,

Dφ(t) =
N∑
j=1

φj(t)
∑
l∈Nj

Ajl|Γjl|
|zl − zj|

(
νl(t) − νj(t)

)
,

Rφ(t) =
N∑
j=1

h3
(
rj − dj

∑
l

h3νl(t)
)
νj(t)φj(t).

Reordering the terms from Aφ(t), we get

Aφ(t) =
1

2

N∑
j=1

∑
l∈Nj

|Γjl|
(
φl(t) − φj(t)

)(
u+jl(t)νj(t) + u−jl(t)νl(t)

)

=
1

2

N∑
j=1

∑
l∈Nj

|Γjl|
(
φl(t) − φj(t)

)(
ujl(t)νj(t) + u−jl(t)(νl(t) − νj(t))

)

=
1

2

N∑
j=1

∑
l∈Nj

|Γjl|
(
φl(t) − φj(t)

)
ujl(t)νj(t) + A1

φ(t), (3.32)

where

A1
φ(t) =

1

2

N∑
j=1

∑
l∈Nj

u−jl(t)|Γjl|
(
φl(t) − φj(t)

)(
νl(t) − νj(t)

)
.

Thanks to the boundedness of ujl and the regularity of φ, this term satisfies

|A1
φ(t)| ⩽ V

2
∥∇φ∥L∞(R3)h

N∑
j=1

∑
l∈Nj

|Γjl||νl(t) − νj(t)|

=
h

6
V ∥∇φ∥L∞(R3)∥vh∥L1(Dh)

⩽
h

6
|Dh|1/2V ∥∇φ∥L∞(R3)∥vh∥L2(Dh). (3.33)
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Recalling the definition of ujl and the property (3.8), we get from (3.32)

Aφ(t) =
1

2

N∑
j=1

∑
l∈Nj

|Γjl|

(
φl(t) − φj(t)

)
|zl − zj|

Vjl(t) · (zl − zj)νj(t) + A1
φ(t),

=
N∑
j=1

∑
l∈Nj

|Γjl|

(
φl(t) − φj(t)

)
|zl − zj|

Vjl(t) · (zjl − zj)νj(t) + A1
φ(t),

Defining Vj(t) := V (t, zj) allows us to write

Aφ(t) =
N∑
j=1

∑
l∈Nj

|Γjl|

(
φl(t) − φj(t)

)
|zl − zj|

Vj(t) · (zjl − zj)νj(t) + A1
φ + A2

φ(t),

with

A2
φ(t) =

N∑
j=1

∑
l∈Nj

|Γjl|

(
φl(t) − φj(t)

)
|zl − zj|

(Vjl(t) − Vj(t)) · (zjl − zj)νj(t).

Thanks to the regularity of φ and V , we have

|A2
φ(t)| ⩽ h

4
∥∇φ∥L∞(R3)∥∇V ∥L∞(R3)

N∑
j=1

∑
l∈Nj

h3νj(t)

⩽
h

4
|Dh|1/2∥∇φ∥L∞(R3)∥∇V ∥L∞(R3)∥nh∥L2(Dh). (3.34)

Finally, we write

Aφ(t) =
N∑
j=1

∑
l∈Nj

|Γjl|
(
∇φ(zj) · njl

)
Vj(t) · (zjl − zj)νj(t)

+ A1
φ(t) + A2

φ(t) + A3
φ(t)

:=A0
φ(t) + A1

φ(t) + A2
φ(t) + A3

φ(t),

where

A3
φ(t) =

N∑
j=1

∑
l∈Nj

|Γjl|


(
φl(t) − φj(t)

)
|zl − zj|

− ∇φ(zj) · njl

Vj(t) · (zjl − zj)νj(t).

Again, the regularity of φ and the boundedness of V imply

|A3
φ| ⩽

h

4
V |Dh|1/2∥∇2φ∥L∞(R3)∥nh∥L2(Dh).

And this together with (3.33), (3.34) and estimate (3.19) ensures that there exists a constant CA
independent of h such that

T∫
0

|A1
φ(t) + A2

φ(t) + A3
φ(t)|dt ⩽ CAh.

90



On the other hand, we can rewrite the remaining term as

A0
φ(t) =

N∑
j=1

∑
l∈Nj

|Γjl|
(
∇φ(zj) · njl

)
Vj(t) · (zjl − zj)νj(t)

=
N∑
j=1

νj(t)Vj(t) ·
∑
l∈Nj

|Γjl|
(
∇φ(zj) · njl

)
(zjl − zj).

In [118], it was proven that ∑
l∈Nj

|Γjl|
(
∇φ(zj) · njl

)
(zjl − zj) = h3∇φ(zj),

consequently

A0
φ(t) =

N∑
j=1

νj(t)Vj(t) · ∇φ(zj)h
3 =

∫
D

nh(t)
(
V · ∇φ

)
h
(t),

where (
V · ∇φ

)
h
(t) :=

N∑
j=1

Vj(t) · ∇φ(zj)1Dj
(z).

Moreover, the sequence
(
V · ∇φ

)
h
(t) strongly converges to V · ∇φ in L2(DT ), which implies that

T∫
0

Aφ(t)dt −→
T∫

0

∫
D

nV · ∇φdzdt, for all φ ∈ C1
c ([0, T ),C∞

c (R3)). (3.35)

Reordering as well the terms from Dφ, we get

Dφ(t) = −1

2

N∑
j=1

∑
l∈Nj

Ajl|Γjl|
|zl − zj|

(
νl(t) − νj(t)

)(
φl(t) − φj(t)

)

= −1

2

N∑
j=1

∑
l∈Nj

Ajl|Γjl|
|zl − zj|

(
νl(t) − νj(t)

)(
∇φ(zjl) · (zl − zj)

)
+D1

φ(t)

= −
N∑
j=1

∑
l∈Nj

Ajl|Γjl|
|zl − zj|

(
νl(t) − νj(t)

)(
∇φ(zjl) · (zjl − zj)

)
+D1

φ(t)

where

D1
φ(t) = −1

2

N∑
j=1

∑
l∈Nj

Ajl|Γjl|
|zl − zj|

(
νl(t) − νj(t)

)(
φl(t) − φj(t) −∇φ(zjl) · (zl − zj)

)
.

Thanks to the boundedness of the coefficients Ajl and the regularity of φ we get

|D1
φ| ⩽ h|Dh|1/2

α

4
∥∇2φ∥L∞(R3)∥vh∥L2(Dh). (3.36)
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Recalling the definition of Ajl, the fact that A(θ) is a diagonal matrix and the normal vectors to the
boundary of Dj are elements of the canonical euclidean basis or their opposites, we have that, for all j
and l

Ajl

(
∇φ(zjl) · (zjl − zj)

)
=
(
A(θjl)∇φ(zjl)

)
· (zjl − zj).

Consequently, we infer that

Dφ(t) = −
∫
D

vh ·
(
A(θ)∇φ(z)

)
h
dz +D1

φ(t),

where (
A(θ)∇φ(z)

)
h
(t) :=

N∑
j=1

∑
l∈Nj

A(θjl)∇φ(zjl)1Djl
(z)

strongly converges to A(θ)∇φ(z) in
(
L2(DT )

)3
. The regularity of φ, the boundedness of vh in L2(DT )

and (3.36) guarantee the existence of CD such that

T∫
0

|D1
φ(t)|dt ⩽ CDh,

so that, consequently,

T∫
0

D(t)dt −→
T∫

0

∫
D

A(θ)∇n∇φdzdt, for all φ ∈ C1
c ([0, T ),C∞

c (R3)). (3.37)

The sequence of functions

Rh(t, z) =
N∑
j=1

(
rj − djρh(t)

)
1Dj

(z),

belongs to L∞(DT ) and strongly converges in L2(DT ) to r(z) − d(z)ρ(t), which implies that

∫ T

0

Rφ(t)dt −→
T∫

0

∫
D

(
r(z) − d(z)ρ(t)

)
nφdt, for all φ ∈ C1

c ([0, T ),C∞
c (R3)). (3.38)

Finally, we conclude that

T∫
0

N∑
j=1

h3ν ′j(t)φj(t)dt =
N∑
j=1

h3
T∫

0

ν ′j(t)φj(t)dt

= −
N∑
j=1

h3

νj(0)φj(0) +

T∫
0

νj(t)φ
′
j(t)dt

 ,

which converges to

−
∫
D

n0φ(0)dz −
T∫

0

∫
D

n(t, z)∂tφ(t, z)dzdt.
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Putting this result together with (3.35), (3.37) and (3.38), we get that, for all φ ∈ C1
c ([0, T ),C∞

c (R3))

−⟨n0, φ(0)⟩ =

T∫
0

⟨Q[n], φ⟩ + ⟨∂tφ(t), n⟩dt. (3.39)

As C1
c ([0, T ),C∞

c (R3)) is dense in C1
c ([0, T ), H1(ω)) for all compacts ω ⊂ D, and the functions n and

∇n belong to L2(DT ), (3.39) also holds for all φ ∈ C1
c ([0, T ),V).

Proposition 3.10. The function n belongs to H1((0, T );V′).

Proof: Taking φ := χ(t)ψ(z) with χ ∈ D((0, T )) and ψ ∈ V in equation (3.31), we get

〈 T∫
0

nχ′dt, ψ
〉

=

T∫
0

⟨ψχ′, n⟩dt =

T∫
0

⟨∂tφ, n⟩dt

= −
T∫

0

⟨Q[n], φ⟩dt = −⟨
T∫

0

Q[n]χdt, ψ⟩.

As this holds true for all ψ ∈ V, this equation is equivalent with

T∫
0

nχ′dt = −
T∫

0

Q[n]χdt in V′ for any χ ∈ D((0, T )).

or in other words
∂tn = Q[n] in the sense of distributions in V′.

The estimate (3.30) implies that Q[n] ∈ L2((0, T );V′), consequently, n belongs to H1((0, T );V′). □

Proposition 3.11. The function n belongs to C([0, T ], L2(D)).

Proof. From Proposition (3.6) we have that n ∈ L2((0, T ),V). Define n(t, z) = n(t, z)1[0,T ](t) and the
approximation to the identity sequence

Φε(t) := ε−1Φ(ε−1t),

where Φ(t) is a mollifier with compact support included in (−1,−1/2). The sequence nε(t) := n ∗t Φε

belongs to C1(R,V), nε → n a.e. on [0, T ] and in L2((0, T ),V). For a fixed τ ∈ (0, T ) and for any
t ∈ (0, τ) and any 0 < ε < T−τ , we have s→ Φε(t−s) ∈ D(0, T ), since suppΦε(t−·) ⊂ [t+ε/2, t+ε] ⊂
[ε/2, τ + ε]. Therefore, we get

n′
ε =

∫
R

∂tΦε(t− s)n(s)ds

= −
T∫

0

∂sΦε(t− s)n(s)ds =

T∫
0

Φε(t− s)n′(s)ds = Φε ∗t n′.
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As a consequence n′
ε → n′ a.e. and in L2((0, τ),V′). Now fix τ ∈ (0, T ) and ε, ε′ ∈ (0, T − τ), and

compute
d

dt
∥nε(t) − nε′(t)∥2H = 2⟨n′

ε − n′
ε′ , nε − nε′⟩V′×V,

so that for any t1, t2 ∈ [0, τ ]

∥nε(t2) − nε′(t1)∥2H = ∥nε(t1) − nε′(t1)∥2H + 2

t2∫
t1

⟨n′
ε − n′

ε′ , nε − nε′⟩dt.

Since nε → n a.e. in [0, τ ] in V , fix t1 such that nε(t1) → n(t1) in V , so as a consequence of nε → n in
L2((0, T ),V) and n′

ε → n′ in L2((0, τ),V′) we have

lim sup
ε,ε′→0

sup
[0,τ ]

∥nε − nε′∥2H ⩽ lim
ε,ε′→0

τ∫
0

∥n′
ε − n′

ε′∥V′∥nε − nε′∥Vddt = 0.

So that nε is a Cauchy sequence in C([0, τ ], L2(D)), and then nε converges in C([0, τ ], L2(D)) to a
limit ñ ∈ C([0, τ ], L2(D)). That proves n = ñ a.e. and n ∈ C([0, τ ], L2(D)). By taking Φ(−t) as
the mollifier function in the previous proof, and choosing τ ∈ (0, T ) and ε ∈ (0, τ) can be proven that
n ∈ C([τ, T ], L2(D)), and consequently n ∈ C([0, T ], L2(D)).

Proposition 3.12. The function n is a weak solution of problem (3.1)-(3.2).

Proof. Assume first φ ∈ Cc([0, T ), H) ∩ L2((0, T ),V) ∩ H1([0, T ],V′). We define φε(t) = φ ∗t Φε for
a mollifier Φε with compact support included in (0,∞) so that φε ∈ C1

c ([0, T );V) for any ε > 0 small
enough and

φε → φ in C([0, T ], H) ∩ L2((0, T ),V) ∩H1([0, T ],V′).

Writing the equation (3.31) for φε and passing to the limit ε→ 0 we get that (3.31) also holds true for
φ.
Assume now φ ∈ XT = C([0, T ], H) ∩ L2((0, T ),V) ∩ H1([0, T ],V′). Fix χ ∈ C1(R), such that
suppχ ⊂ (−∞, 0), χ′ ⩽ 0, χ′ ∈ Cc((−1, 0)), and such that the integral of χ′ is −1. For example, fix
δ < 1/2 and define

χ(s) =


1 if s ⩽ −1 + δ

1
2
(1 + cos(π(t+1−δ)

1−2δ
)) if −1 + δ ⩽ s ⩽ −δ

0 if s ⩾ −δ

Now define χtε = χ( s−t
ε

), so that φε := φχtε ∈ Cc([0, T );H) and χtε → 1[0,t], (χtε)
′ → −δt as ε → 0.

Equation (3.31) for the function φε writes

−(n0, φ(0)) −
T∫

0

(n, φ(s))(χtε)
′ds =

T∫
0

χtε

(
⟨Q[n](s), φ(s)⟩ + ⟨φ′(s), n⟩

)
ds.

Passing to the limit when ε goes to 0 we obtain that n is a solution for the variational formulation.
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3.3.5 A discrete implicit scheme

Once we have established the proof of existence of a solution for problem (3.16)-(3.17), together with
the obtention of a semi-discrete scheme in order to approximate such solution, we proceed to derive an
implicit discrete scheme starting from problem (3.16)-(3.17), and to prove its convergence.
Consider a natural number K and define ∆t = T

K
and tk = k∆t, νkj := νj(tk), k = 1, . . . , K. Using a

forward difference approximation for the time derivative in (3.16) we get the implicit scheme

νk+1
j − νkj

∆t
= Mk+1

j νk+1
j +

∑
l∈Nj

Bk+1
jl νk+1

l , (3.40)

where

Mk+1
j := Mj(tk+1) = −|Γjl|

h3

∑
l∈Nj

(
u+jl(tk+1) +

Ajl
|zl − zj|

)
+
(
rj − dj

N∑
l=1

h3νk+1
l

)
,

Bk+1
jl := Bjl(tk+1) =

|Γjl|
h3

(
− u−jl(tk+1) +

Ajl
|zl − zj|

)
.

Theorem 3.3. Let ν0j be non-negative initial data with mass ρ0 =
N∑
j=1

h3ν0j and assume that

∆t <
1(√

r+ + d+ρ+
√
d+ρ

)2 , (3.41)

then there exists a unique non-negative solution νkj , k = 1, . . . , N to scheme (3.40). Furthermore, for
each h, the sequence of piecewise constant functions

νj∆t(t) =
K∑
k=0

νkj 1(tk,tk+1),

strongly converges to the solution of (3.16)-(3.17) in (L2((0, T )))N when ∆t goes to 0.

Proof. For all ∆t satisfying (3.41), there exists λ < 1 such that

∆t(r+ + d+ρλ) < λ, (3.42)

where ρλ = ρ
1−λ . Consider the set

X = {η ∈ RM : ηj ⩾ 0 ∀j, ∥η∥1 =
∑
j

h3ηj ⩽ ρλ},

and assume νk ∈ RM to be the solution of (3.40) for a previous iteration, having all non-negative
components and satisfying

∑
j

h3νnj ⩽ ρ. Define the operator ν = F (η) : X → RM as the solution of

the linear system
P (η)ν = νk, (3.43)
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where the components of matrix M(η) are defined as

Pjl(η) =


−∆tBn+1

jl , if l ∈ Nj,

1 + ∆t
(

|Γjl|
h3

∑
l∈Nj

(
u+jl(tn+1) +

Ajl

|zl−zj|

)
−
(
rj − dj∥η∥1

))
if j = l.

From the definition of X and the choice of ∆t we have that Pjl(η) is positive for all η if j = l, and
non-positive if j ̸= l. Furthermore P (η) is a column-dominant matrix, so that we may conclude that
P (η) is an M -matrix, which implies that its inverse exists and has only non-negative entries. As νk

has all non-negative components, then ν = F (η) also has non-negative components for all η ∈ X.
Multiplying system (3.43) by h3 and adding up all equations, thanks to (3.42) we obtain

N∑
j=1

h3νj =
N∑
j=1

h3νkj + ∆t
N∑
j=1

h3
(
rj − dj∥η∥1

)
νj

⩽ ρ+ ∆t(r+ + d+ρλ)
N∑
j=1

h3νj

< ρ+ λ
N∑
j=1

h3νj.

This implies that
N∑
j=1

h3νj < ρλ and consequently, F (η) is a continuous application going from X to

itself, and thanks to Brouwer’s fixed point theorem, F (η) has at least a fixed point on X. Furthermore,
a fixed point of F (η) will satisfy

N∑
j=1

h3νj =
N∑
j=1

h3νkj + ∆t
N∑
j=1

h3
(
rj − dj∥ν∥1

)
νj

which in turn implies ∥ν∥1 ⩽ ρ. As a consequence, the implicit Euler scheme satisfies

∥νk∥1 ⩽ ρ for all k. (3.44)

For the uniqueness, assume there exists two different solutions ν and µ to scheme (3.40). Let
us denote the sign of β ∈ R as sign(β). Taking the difference for each equation, multiplying by
h3sign(νj − µj), adding up all the equations and recalling that∑

l∈Nj

Bn+1
jl =

|Γjl|
h3

∑
l∈Nj

(
u+jl(tn+1) +

Ajl
|zl − zj|

)
,

we obtain that ∑
j

h3|νj − µj| =∆t
∑
j

h3
(

(rj − dj∥ν∥1)|νj − µj|

+ djsign(νj − µj)(∥ν∥1 − ∥µ∥1)µj
)

⩽ ∆t(r+ + d+ρ)
∑
j

h3|νj − µj|.
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The condition over ∆t then implies that ∥ν − µ∥1 = 0 and consequently ν = µ.
To prove the convergence of νj∆t to νj, we define the sequences of continuous functions

µj∆t(t) =
K∑
k=1

(t− tk)ν
k+1
j + (tk+1 − t)νkj

∆t
1(tk,tk+1).

These sequences are in C([0, T ]) and are uniformly bounded because for all values of j and k, νkj ⩽ ρ
h3

due to (3.44). Furthermore, thanks to (3.40)

|µj∆t − νj∆t| ⩽ max
k

|νk+1
j − νkj | = ∆tmax

k
|Mk+1

j νk+1
j +

∑
l∈Nj

Bk+1
jl νk+1

l | ⩽ C∆t,

where C is independent of ∆t. Consequently, for each j, when ∆t goes to 0 both sequences νj∆t and
µj∆t strongly converge in L2((0, T )) to a certain continuous functions ν∗j (t).

We consider now a function φ ∈ C1
0 ((0, T )) and we define φk := φ(tk). For all k, multiply (3.40)

by ∆tφk and add over k in order to obtain

K∑
k=1

(νkj − νk−1
j )φk =

K∑
k=1

∆t
(
Mk

j ν
k
j +

∑
l∈Nj

Bk
jlν

k
l

)
φk,

or, after reordering the sum on the left side

K∑
k=1

∆tνkj
φk − φk−1

∆t
=

K∑
k=1

∆t
(
Mk

j ν
k
j +

∑
l∈Nj

Bk
jlν

k
l

)
φk. (3.45)

For all φ in C1
0 ((0, T )), the sequence

K∑
k=1

φk − φk−1

∆t
1(tk,tk+1),

strongly converges in L2((0, T )) to φ′. The boundedness of the coefficients Mk
j and Bk

jl together with

strong convergence of νj∆t imply that

K∑
k=1

(
Mk

j ν
k
j +

∑
l∈Nj

Bk
jlν

k
l

)
1(tk,tk+1),

strongly converges to Mj(t, ρh(t))ν
∗
j +

∑
l∈Nj

Bjl(t)ν
∗
l , so, taking the limit in (3.45), we get

T∫
0

ν∗jφ
′(t)dt =

T∫
0

(
Mj(t, ν

∗
j )ν∗j +

∑
l∈Nj

Bjl(t)ν
∗
l

)
φ(t)dt,

which implies that ν∗j is in C1 and is a solution for (3.16). Furthermore, as ν∗j is the point-wise limit

of µj∆t, it also satisfies the initial conditions (3.17).
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3.4 Simulations

The first part of this section is devoted to the numerical analysis of the approximation error. For
certain values of the coefficients of problem (3.1)-(3.3), it is possible to obtain an analytical solution,
which we will use in order to compare with our numerical approximation.
Assume that r(x, y, θ) and d(x, y, θ) are constants, that V (t, x, y, θ) is independent of t and that exists
W (x, y, θ) such that

V (z) = A(θ)∇W (z).

Assume as well that

n0(z) = C
eW (z)∫

D

eW (z)dz
.

Then, the solution for problem (3.1)-(3.3) is

n(t, z) =
eW (z)∫

D

eW (z)dz

rert

d(K + ert)
,

where

K =
r − Cd

Cd
.

The existence of an analytic solution allows us to compare its values with those obtained from solving
(3.16) for different values of h, and this way, numerically establish the error order of the method.
Choosing

D := {(x, y, θ) ∈ [0, 1]3 : x2 + y2 ⩽ 1},

V (t, z) =

−(θ + 1)x
−(θ + 1)y

1

 , A(θ) =

θ + 1 0 0
0 θ + 1 0
0 0 1

 ,

r = d = 1 and n0 =
(
π(1 − e−1/2)(e− 1)

)−1

e−
x2

2
− y2

2
+θ, the exact solution for (3.1)-(3.3) is

n(t, z) =
(π

2
(1 − e−1/2)(e− 1)

)−1

e−
x2

2
− y2

2
+θ et

1 + et
.

For a grid of points {(tk, zj)} with tk = k∆t, k = 1, . . . , K, ∆t > 0 and j = 1, . . . , N , we define the
discrete L2(DT ) error for the semi-discrete scheme (3.16) as

E1(∆t, h) =

(
K∑
k=1

N∑
j=1

(n(tk, zj) − νj(tk))
2h3∆tk

)1/2

,

where ν(t) is the solution of the scheme for the functions introduced above. We set ∆t = 0.01 and in
Figure (3.1) we show the dependence in log-log scale of Eh = E(0.01, h) with respect to the inverse of
the cell size M = 1/h.
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Figure 3.1: The discrete L2(DT ) error for the semi-discrete scheme, for T = 10 and M ranging between 2 and
128.

In the same way, we define the discrete L2(DT ) error for the discrete scheme (3.40) as

E2(∆t, h) =

(
K∑
k=1

N∑
j=1

(n(tk, zj) − νkj )2h3∆tk

)1/2

,

where νkj is the solution of (3.40). We set h = 1/50 and plot the dependence of E2
∆t := E2(∆t, 0.02)

with respect to ∆t = 1/M1, again in log-log scale.
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Figure 3.2: The discrete L2(DT ) error for the discrete scheme, for T = 10 and M1 ranging between 2 and 256.

3.4.1 Phenotypic Dimorphism

We present now several examples illustrating the effect of the environment on a population and how
the plasticity trait plays a role in surviving effects.

Monomorphic Population

On the first place, we show the evolution of a population which is under the effects of natural selec-
tion and non-genetic epimuations, but without considering plasticity as a trait nor accounting for the
environmental pressure. Specifically, we solve the problem (3.1)-(3.2) over the domain

Ω = {(x, y) ∈ [0, 1]2 : (x− 1)2 + (y − 1)2 > 1}.

This choice of domain represents the existence of a trade-off between traits and it is evidenced here
by noticing that the individuals of the population which are close to the maximal value of one of the
traits (x = 1 or y = 1), must forcibly be close as well to the minimal value of the other trait (y = 0 or
x = 0). We take the growth rate as r(x, y) = e−(x−0.1)2−(y−0.1)2 , the death rate as d(x, y) = 0.5, the
diffusion parameters a11(θ) = a22(θ) = 10−6, and the drift terms V (t, x, y) = (0, 0). We take an initial
condition (3.3) given by the expression

n0(x, y) = a1{f(x,y)<1}e
− 1

1−f(x,y) ,

with f(x, y) = (x−0.25)2+(y−0.25)2

(0.025)2
. We choose the value of a in such a way that ρ0 =

∫
Ω
n0(x, y)dxdy = 1.

With this choice of n0 we intend to represent a “strongly” monomorphic population. This is, a popu-
lation where most of the individuals are concentrated around a single set of traits.
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Figure 3.3: Evolution of a population only subjected to natural selection and non-genetic epimutations.

We observe in figure (3.3) that the dominant phenotype slowly converges to the point which max-
imises the fitness, in this case, the point (0.1, 0.1), which maximises the growth rate r(x, y).

Dimorphism due to the effect of the environment

For a second example we keep the same parameters, but add a drift term accounting for the effect of
the environment (biologically, a “cellular stress”). Specifically we choose

V (t, x, y) = 10−3

(
1(y>x)

(
−1
1

)
+ 1(y<x)

(
1
−1

))
.

Notice that we still are not including plasticity as a trait in our analysis. Also notice that the function
V (t, x, y) is not continuous, while the results presented in previous sections needed V (t, z) to be smooth
in order to ensure the existence and uniqueness of solution for the problem, as well as the convergence
of the finite volume method. This is not a big issue, because the conditions of our problem allow us
to use a density argument in order to extend our results to any V (t, z) ∈ C([0, T ), L2(D)), and in any
case all numerical approximations are smoothing approximations of the drift V .
The choice of V can be seen (and experimentally replicated) as a certain type of “training”: all the
individuals of the population are “pushed” in the direction where they show their largest potential.
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Figure 3.4: Evolution of a population under the effect of the environment.

We can appreciate in figure (3.4) that adding a drift term resulted in the appearance of dimorphism:
the final population is concentrated around two different trait configurations. This evolution into
dimorphism due the action of environment, contrasts with the results obtained in [23], where it was
proved that dimorphism can occur in the absence of a drift term, given that the growth rate r(x, y)
has several maximum point satisfying certain conditions.

Plasticity, environmental effect and dimorphism

We will now consider plasticity as a trait and modify the parameters from the previous examples
accordingly. We first consider the growth rate as

r(x, y, θ) = e−(x−0.1)2−(y−0.1)2 + e−(z−0.8)2 ,

and keep the constant death rate d(x, y, θ) = 0.5. We consider the diffusion matrix

A(θ) =

(θ + 1)10−6 0 0
0 (θ + 1)10−6 0
0 0 10−6

 ,

and the drift term

V (t, z) = 10−3θ

1(y>x)

 −1
1

−x2 − y2

+ 1(y<x)

 1
−1

−x2 − y2

 .

This choice of V is similar to the one shown before, only that now differentiation imposes a cost on
adaptability: the more specialised you are, the harder it gets to adapt to new situations. Notice that
a higher plasticity increases the effect of non-genetic epimutations (given by the diffusion term) and
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stress induced mutations (given by the drift term). For the initial data (3.3) we take a function of the
form

n0(z) = a
(
1{f1(z)<1}e

− 1
1−f1(z) + 1{f2(z)<1}e

− 1
1−f2(z)

)
,

with fi(z) = ∥z−zi∥2
(0.025)2

, i = 1, 2, z1 = (0.25, 0.25, 0.25) and z1 = (0.25, 0.25, 0.75). The value of a is again

chosen in a way that the total population size over D = Ω × [0, 1] is equal 1.

Figure 3.5: Evolution of two sub-populations with different levels of plasticity: Initial stages.

We observe in figure (3.5) that for this set of parameters, the sub-population with the lowest
plasticity quickly gets extinct (notice the scale of the density values), while the emergence of dimorphism
can be appreciated for the one with higher plasticity.
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Figure 3.6: Evolution of two sub-populations with different levels of plasticity: Final stages.

This kind of behaviour persists up to the final stages of the evolution, when we can observe in
Figure (3.6) that the low plasticity sub-population is completely extinct while the high plasticity one
has completed the differentiation process.

Another example of emergence of dimorphism

We present now a different example of emergence of dimorphism, but this time, not as a result of
a response to the effect of the environment, but as a consequence of the existence of two maximum
points for the growth rate. We will observe how a population initially concentrated around a single
phenotype configuration, will evolve with time into a dimorphic population, in which each upcoming
sub-population is more specialised and less plastic that in the initial configuration. For this purpose,
over the domain D = Ω × [0, 1] we consider an initial density given by the expression

n0(z) = a1{f(z)<1}e
− 1

1−f(z) ,

with f(z) = ∥z−z0∥2
(0.025)2

, where z0 = (0.25, 0.25, 0.5) and ∥ · ∥ is the euclidean norm. We choose the value

of a in such a way that ρ0 =
∫
D
n0(z) = 1.

We set the growth rate and the death rate as

r(x, y, θ) = 1{y>x}e
−(0.1−x)2−(0.9−y)2 + 1{x⩾y}e

−(0.1−y)2−(0.9−x)2 ,

d(x, y, θ) =
1

2
.

We choose the diffusion matrix

A(θ) =

(θ + 1)10−6 0 0
0 (θ + 1)10−6 0
0 0 10−6

 ,

104



and finally the drift term

V (t, z) = 10−3θ

 −y
−x

−(x+ y)

 .

This time, the “push” towards specialisation imposed by V is inversely proportional to the current
set of traits (individuals with traits (x, y) are specialising with a rate proportional to (−y,−x). The
growth rate was chosen in such a way that it satisfies the sufficient conditions given in [23] in order to
guarantee the appearance of phenotypic polymorphism.

We show in Figure (3.7) that initially the population is concentrated around the phenotype z0 =
(0.25, 0.25, 0.5), and gradually starts differentiating while loosing plasticity.

Figure 3.7: Initial stages of the population density for different values of θ: The differentiation process starts.
At around t = 250 (bottom left) most of the population has already concentrated around the plasticity level
θ = 0.4375 and around t = 300 (bottom right) we observe that the migration towards a less plastic state
continues.

As the two new sub-populations become more and more differentiated, the loss in plasticity becomes
more evident, and we see in Figure (3.8) that most of the mass is migrating towards less plastic states,
while the differentiation process continues.
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Figure 3.8: Intermediate stages of the population density for different values of θ: While the differentiation
process continues, we observe further loss in plasticity. Around t = 500 (top right) most of the population has
reached θ = 0.375 and at subsequent times the migration continues.

Finally we observe in Figure (3.9) that once the sub-populations are fully specialised, the concen-
tration process continues and at the final stage t = 1000 we have a dimorphic population which is more
specialised but less plastic that the initial one.
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Figure 3.9: Final stages of the population density for different values of θ: Around t = 900 (bottom left)
the differentiation process is over and most of the population has reached the plasticity level θ = 0.25. At
t = 1000 (bottom right) we observe that the population concentrated around any other level of plasticity is
almost extinct, and only the one around θ = 0.25 survives.

Overall, in the absence of a drift term, the effects of the growth and death rate, with small (or
zero) diffusion has been widely studied, for example, see [22, 23, 28]. In general, the points where the
population concentrates are entirely determined by the reaction part, while the diffusion coefficients
determine how concentrated the population is.
The shape of the domain Ω directly affects where the fitness function (which depends on the birth and
death rates) attains its maxima, therefore, affecting as well where the concentration phenomena occurs.
The choice of initial state does not appear to affect the final configuration, but rather the dynamics
of the population during the evolution in time. We have shown that if we start with an already
concentrated population, we witness the continuous “migration” of the the population towards the
fittest state.
Finally, if we consider the presence of the advection term, we observe that it may affect not only the
amount of selected sets of traits, but their positions and the dynamics of convergence towards them as
well.

3.5 Concluding remarks

The validity of the model we constructed is strengthened by the different evolutionary mechanisms de-
scribed in [68], where the authors focus their attention on Stress-Induced Evolutionary Innovation, and
compare it to plasticity-based models, in particular the Plasticity First Hypothesis. Quoting the au-
thors: “SIEI and PFH are not competing models but explain different kinds of evolutionary processes
that are sometimes distinct and sometimes combined over evolutionary time”. Similar mechanisms



were taken into consideration in the construction of our model, environmental stress (aka environmen-
tal pressure, biologically, at the single-cell level, “cellular stress”) in the form of an advection term
and and mutations thanks to plasticity in the form of a diffusion term, both accompanied by natural
selection in the form of reaction term.

It is important to highlight the novelty that represents the inclusion of plasticity as a trait, which
has not been considered before (with the exception of [25, 26] and the subsequent works on the cane
toad spreading rate, where a similar structural variable is used, but to denote spatial diffusivity, and
not adaptability potential, as in our case). Another novelty is the inclusion of constraints between
traits modelled through a certain relation between the structural variables. Most of the previous work,
and in particular [111], have considered the variable space as the entire unit square, or all of Rd, d ∈ N,
disregarding the existence of constraints between different traits, and the possible effects on the dy-
namics of the population this might have.

The finite volume method offers a powerful tool in order to numerically approximate the solution
of integro-differential or reaction-diffusion equations, such as the one treated in the present chapter.
The preservation of the structure of the original problem at a semi-discrete level and the excellent
approximation for the non-local terms are just two of the reasons why we chose this method. This way,
we were able to obtain two numerical schemes in order to approximate the solution for an evolution
problem modelling bet hedging strategies.

We proved the existence and uniqueness of solutions for such schemes, and constructed sequences
of functions converging to the solution of the original problem. We approximated the convergence
error by establishing a comparison with an exact solution. It is worth mentioning that the constructive
character of the proofs may provide new and interesting tools in order to obtain further theoretical
results.

After simulating various situations, we observed different ways in which a population can respond
to external stress, depending on the plasticity levels of its individuals. A highly plastic sub-population
can quickly adapt to its surrounding environment, guaranteeing this way its survival, while a less plastic
sub-population might go extinct under the same external factor. Another strategy consists in “trading”
some of the plasticity by a higher differentiation level.

Furthermore, the emergence of dimorphism as a consequence of external stress, not only is an in-
teresting alternative to the previously established results from [23], but also shows that bet-hedging
strategies are a suitable response to (abrupt) external changes in the environment, and, at the same
time, a possible way to survive them. It is fair mentioning that, throughout all the simulations, the
symmetry hypothesis required in the reference [23] in order to observe dimorphism were respected. It
remains to establish what are the essential conditions that will lead to the appearance of dimorphism
when an advection term is present.

We thus provided here a rigorous model for the study of the emergence of dimorphism, an event
that is likely to have been at the evolutionary origin of multicellularity by divergence of phenotypes
and may thus provide a rationale for a renewed conception of animal evolution towards multicellular
organisms, and, more pragmatically and consistently with the atavistic theory of cancer, for a possible
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origin of phenotype bet hedging in cancer cell populations.

Bet hedging in cancer cell populations is indeed a strategy susceptible to yield maximal probabilities
of survival to a plastic cell population exposed to life-threatening insults such as by drugs or other deadly
therapies. The modelling setting presented here may thus help in the future to test and optimise
combined anticancer therapies involving chemotherapies, targeted therapies, and - what is likely still
ahead of us for the present time - possible control of cell plasticity by epigenetic drugs.
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Chapter 4

Phenotype divergence and cooperation in
isogenic multicellularity and in cancer

4.1 Biological and evolutionary-developmental background

4.1.1 Being or not teleological: the two settings considered

Although this may seem completely trivial to state, let us emphasise that for us there is no such thing
as teleology, i.e., orientation in a given direction or towards a given goal, in the general evolution of
multicellular animals, which is constituted of a succession of haphazard strategic choices of adaptation
to changing environments in existing evolutionary units, at one stage of evolution towards an identified
next one. Such adaptations, often resulting in branchings of clades, as solutions to existential problems,
imposed by external constraints as stresses [119, 120] induced by changes in the environment, are by
no means unique, admitting that evolution proceeds by trials and errors, and by tinkering [121] from
available material to solve such problems. We proposed in Chapter 3 a mathematical scheme to model
the phenotypic divergence that may be a basis for such environmental stress-induced evolutionary steps.

Conversely, teleology is of course present in the embryonic development of multicellular animals,
which, according to Haeckel’s formula “Ontogeny recapitulates phylogeny” [122, 123], follows in each
species the evolutionary choices made at each branching step of the evolution of species, leading from
the fecundated egg (most frequent form of elementary material evolutionary unit in multicellular an-
imals [124], those who are subject to cancer [125, 126]) to adult animals with their completely differ-
entiated cell types, following the body plan [127, 128] characteristic of the species. From this holistic
point of view, evolution of species is nothing but evolution of the body plan, evolution of genes and
of gene regulatory networks being completely dependent upon this master regulator. We suggest here
that understanding the cooperation principles that have been optimised (noting that an optimisation
problem may have diverse solutions) at each developmental step may benefit from a close look at
the mechanisms of the evolutionary steps that have determined the species body plan, and we sketch
mathematical ways to achieve this task.

One of the main difficulties in understanding and representing the design of the body plan is how
to introduce mechanisms of coherence (for signals) and cohesion (for tissues) that make a multicellular
organism stable and functional, with compatibility and cooperation between tissues and organs, and we
are aware of the fact that such complete understanding still lies ahead of us. However, localised absence
of coherence between tissues of an organism by lack of control on differentiations is precisely the main
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characteristic of cancer, the second and in our opinion resulting from the first one, being absence of
control on proliferation [129]. We propose that evolution of cooperation between cells, that has been
identified in tumours [130–132], is a reactivation of mechanisms present in the body plan that are still
present, although chaotic, uncontrolled and doomed to fail at the level of the organism, in tumour cells,
may rely on elementary evolutionary mechanisms that have been designed in the evolutionary past of
their body plan, so that this point should be better understood to efficiently represent cooperation in
tumours.

4.1.2 The atavistic theory of cancer

Recently popularised by physicists Paul Davies and Charles Lineweaver, together with oncologist Mark
Vincent, the atavistic theory of cancer [62, 133–136], had in fact been envisioned already in 1996 by
oncologist Lucien Israel [137], and likely as early as 1914 by biologist Theodor Boveri [138], although
none of these scientists seem to have been initially aware of the works of their predecessors. It helps us
understand tumour progression and intratumoral organisation from a long-term evolutionary viewpoint.
Briefly, it relies on the ideas that 1) all cancer cells are multicellular animal cells, results of a billion
year-old evolution from unicellular organisms, and as such keep in their genomes powerful remnants
of the organismic defence and construction mechanisms borne in their body plans (even if this term
is not used by Davies and Lineweaver, they only mention their genomes); 2) tumours are results of
a regression in the development of the organism, corresponding to early, incoherent versions of “an
ancient genetic toolkit of pre-programmed behaviors”, which we may freely identify as an unachieved
evolutionary version of the species body plan, and which they name “Metazoa 1.0”. The atavistic theory
thus clearly states that a tumour is not just the result of some aberrant stochastic mutation in somatic
cells (the somatic mutation theory, SMT, recently reviewed and compared to the atavistic theory
in [134]), but that it rather follows predictable paths in such regression towards a poorly organised,
incoherent population of cells, nevertheless constituted of animal cells that are highly plastic (and thus
resistant to external therapeutic pressure by anticancer drugs), as they have the power to differentiate
and de-differentiate, and also to loosely cooperate between them in tumours. The works of David
Goode and colleagues [139–142] have evidenced in cancer samples silencing of genes of multicellularity
and compatibility between expression of genes of multicellularity and of unicellularity, resulting in
escaping organismic control on cell differentiation (in other words, developing cell plasticity) and on
proliferation, tending to a widely autonomic behaviour which is a characteristic of cells in tumour
tissues.

The atavistic theory of cancer is little by little, as more evidence in the study of ancient genes
becomes known and published [139–142], gaining recognition among theorists of cancer biology, however
still quite limited in the field of oncology, where people question its amenability to produce innovations
in the therapeutics of cancer. Innovating theories may take a long time to reverse the argument of
“authority of tradition” [143]. The present situation may remind us, mutatis mutandis, of the way
geographers received in 1912 with much skepticism Alfred Wegener’s theory of continental drift [144],
until it was completely justified fifty years later by the theory of plate tectonics and progressively
admitted by all geophysicists. A limitation to a wider acceptance of the atavistic theory is the present
lack of sufficient evidence susceptible to convince biologists and philosophers of cancer, who prefer to
keep on the “safe” side of science under development and, at least temporarily, reject it as not sufficiently
relying on facts. Indeed, when it is mentioned in recent texts of philosophy of science - by authors
who nevertheless must be commended for at least mentioning it -, the atavistic theory of cancer is not
always correctly summed up, sometimes even presented in an off-hand way with arguments against it
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that show but partial understanding, as in [145]. A mere hypothesis, really? At least a uniting one
in understanding cancer, fully compatible with the holistic point of view on evolution that we have
mentioned above.

4.1.3 Why and how does multicellularity fail in cancer?

Cancer is thus, taking the atavistic theory of cancer for granted - although it tells us nothing about
the very origin of the disease -, the progressive result of a failed maintenance of the teleological (or
teleonomical, if one wants to explicitly exclude any intentionality, which is our position) construction of
an animal. It may be described as essentially “a deunification of the individual” [146]. In the perspective
of evolved multicellularity, it is tempting to describe - an epistemological position we assume - such
material construction at the level of genes and gene regulatory networks, initially not from the zygote,
but from nonclonal colonies of cells (i.e., before the invention of the egg [124] and of the body plan
contained in it) in three successive steps.

At the first step, the colony level, exist only genes of the cell division cycle and cell death, likely
by quorum sensing. At the second step are introduced genes coding for transcription factors and
(unregulated) differentiation. At the third step appear genes coding for epigenetic regulations, the
top level of fine local regulations, that are themselves subject to central regulations in higher-level
animals such as bilaterians. Such hierarchy is remarkably found, in a reverse order, in the evolution
in malignancy found in fresh blood samples of patients with acute myelogenous leukaemia [147], which
induces us to propose a scenario for cancer progression as relying firstly on epigenetic gene alterations
(which includes differentiation control), secondly on alterations in differentiation, and only very late on
alterations in cell cycle regulations, which are the strongest basis of proliferation. Unfortunately so far,
with the remarkable and recent exception of the successes of immunotherapy, cancer therapies target
mainly this strength [133].

4.1.4 A narrative of long-term evolution and cancer, freely exposed to the
fire of philosophy of science

We need not justify any given evolutionary path that led to such and such animal, and rather see
paths followed in evolution as diverse evolutionary strategies adapted to external constraints that
imposed changes on the behaviour of the actors of the evolutionary paths at stake. Let us mention
here that we hold, from our point of view, which resorts to functional, physiological and anatomical
evolution, these actors, or evolutionary units, to be the body plans [127, 128] of multicellular animals,
and not the individual genes, nor the gene regulatory networks that are mere effectors of evolutionary
strategies, not determinants, and are only secondarily affected by them, as reflected in observations. A
paleoanthropological analogy in evolution, mutatis mutandis, of such strategies at the level of divergence
from a common ancestor in the Hominin lineage between Paranthropus and early Homo, relying on
different dietary choices, may be found in [148]. Such haphazard strategical choices in long-term,
Darwinian, evolution, that have become fixed in the body plan of animal species by genetic mutations
and success in species fitness, may fail in cancer, as described in the previous section.

These firstly non determined (tinkered [121]) strategies led to epigenetic modifications (aka epimu-
tations), later to fixed mutations of the genes coding for the epigenetic enzymes that determine these
epigenetically defined strategies yielding functional body plans, that are the bases of physiology and
anatomy construction in multicellular animals. Cancer cannot change the body plan of an animal in
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that of another animal, and it is certainly not a new form of life. However, by loss of organismic control
on differentiations, it can reverse a cohesive body plan in a given species to some intermediate, poorly
defined, unachieved form of the body plan of this species, yielding a collection of still very plastic cells,
in other words a tumour, or a Metazoan 1.0 in the words of the atavistic theory of cancer [62]. The
causes of such loss of control on differentiations are unknown, and the atavistic theory tells us nothing
about them. However they may consist of an abrupt change in the environmental pressure on the
tissue at stake, but also may be identified as due to a mutation in the genes responsible for epigenetic
control [147].

4.2 Cell differentiation and phenotype divergence

4.2.1 Heterogeneity and plasticity with respect to what?

Cell populations, healthy and cancer, are heterogeneous w.r.t. various continuous traits under study,
that are used to describe their biological variability, such as cell size, age in the cell division cycle,
expression of genes of drug resistance, or more functional and abstract traits determining cell popula-
tion fate such as viability, fecundity, motility, plasticity, according to the biological question at stake.
Plasticity [149,150] in a given trait is its capacity to change under the pressure of external constraints,
such as drugs, and it has long been recognised as as relying on epigenetic factors [151]. Plasticity may
be considered as a speed of evolution from one trait distribution to another one when the surrounding
environment of the cell population changes, slowly or abruptly. Such evolution may be accelerated
in equations by terms of advection (especially when abrupt changes in the environment force the cell
population to adapt quickly) and diffusion (representing uncertainty in phenotype determination).

Differentiation in cell lineages, such as the ones constituting the paths of haematopoiesis, may
consist either of simple maturation, following the same line towards a terminally differentiated cell type,
such as the different granulocytes (neutrophils, eosinophils, and basophils) among white blood cells,
or of branching, e.g., in haematopoiesis from pluripotent haematopoietic stem cells to myeloid versus
lymphoid progenitors. Phenotype divergence is the biological phenomenon by which branching occurs
between precursors of terminally differentiated cell types. The first identified phenomenon relying on
phenotype divergence in evolution from unicellularity towards multicellularity was likely the separation
between germinal cells (the germen) and germen-supporting somatic cells (the soma), proposed in 1892
by August Weismann [152] and later mentioned by John Maynard Smith and Eörs Szathmáry as the
first step from unicellularity towards multicellularity, one of the major transitions in evolution [153].
Basis of heterogeneity in cell populations within a cohesive multicellular individual, or within a tumour,
phenotype divergence necessarily relies on phenotype plasticity, and it is the phenomenon we here tackle
to represent in phenotype-structured equations.

4.2.2 Long-term evolution as genetic adaptation of the body plan in ani-
mals

As mentioned in the introduction, we consider that the fundamental evolutionary unit in the great
Darwinian evolution of animals is the body plan [127,128], which is virtually (as it is abstract, indeed
as a plan, self-developing, written as a self-extracting archive in genetic code, its dynamic extraction
occurring continuously during the process of animal development) present in every physiologically
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complete nucleated animal cell, starting from the zygote, i.e., the initial fecundated egg. The genes and
gene regulatory networks that materially proceed from it and serve to design and cohesively maintain
the construction of the animal when it is achieved, are its observable materialisation.

Anatomically in 3D observations, physiologically by the observation of the great functions of the
organism, and genetically by investigation the genes that have been identified (e.g., by KO experi-
ments) in different species to correspond to anatomic structures and physiological functions, and their
expression, we may have access to material reflections of the body plan, and thus partially reconstitute
its evolution across species. This is precisely what has been investigated about the genes at the origin
of multicellularity and their correspondence with the genes that are altered in cancer by Domazet-Lošo
and Tautz [154,155], and later by Trigos et al. [139–142] in David Goode’s team, giving rise and genetic
arguments to the atavistic theory of cancer [62,133,134].

4.2.3 A nonlocal phenotype-structured cell population model

The reaction-diffusion-advection model proposed in Chapter 3 to exemplify bet hedging as a ‘tumour
strategy’ to diversify its phenotypes in response to deadly stress (e.g., by cytotoxic drugs), but also to
represent phenotypic divergence in evolution towards multicellularity, runs as follows.

Let D = Ω× [0, 1], where Ω := {C(x, y) ⩽ K} (a constraint between competing traits x and y) and
θ ∈ [0, 1]. The evolution with time t of a plastic cell population of density n(z, t) structured in a 3D
phenotype z = (x, y, θ), where x=viability, y=fecundity, θ=plasticity, with r(z) and d(z) growth and
death rates, is given by

∂tn+ ∇ ·
(
V n− A(θ)∇n

)
= (r(z) − d(z)ρ(t))n, (4.1)

with (V n−A(θ)∇n
)
·n = 0 for all z ∈ ∂D (n is a normal vector to ∂D), n(0, z) = n0(z) for all z ∈ D,

where Ω = {(x, y) ∈ [0, 1]2 : (x− 1)2 + (y − 1)2 > 1}, and the diffusion matrix is

A(θ) =

a11(θ) 0 0
0 a22(θ) 0
0 0 a33

 , with a11 and a22 non-decreasing functions of θ, influencing the speed

at which non-genetic epimutations occur, otherwise said, it is a representation of how the internal
plasticity trait θ affects the non-genetic instability of traits x and y, by tuning the diffusion term
∇ · {A(θ)∇n}; the advection term

∇ · {V (t, z)n} = ∇ · {(V1(t, z), V2(t, z), V3(t, z))n}

represents the cellular stress exerted on the population by external evolutionary pressure, i.e., by
changes in the cell population environment, here chosen as tearing apart the cell population between

competing traits x (viability) and y (fecundity); and ρ(t) =

∫
D

n(t, z)dz stands for the total mass of

individuals in the cell population at time t.
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The existence and uniqueness of solutions is obtained in finite time in a constructive way by using
the compactness of a sequence of numerical solutions, which are the result of the algorithms used to
discretise the model. Simulations may be obtained with instances of the functions used in the equations.
For instance, to obtain phenotypic divergence (which we take as the basis of both bet hedging in cancer
and of emergence of multicellularity in evolution), we consider over the domain D = Ω× [0, 1] an initial
density given by

n0(z) = a1{f(z)<1}e
− 1

1−f(z) ,

with f(z) = ∥z−z0∥2
(0.025)2

, where z0 = (0.25, 0.25, 0.5) and ∥ · ∥ is the euclidean norm. We choose the value

of a in such a way that ρ0 =
∫
D
n0(z) = 1.

We set the growth rate and the death rate as

r(x, y, θ) = 1{y>x}e
−(0.1−x)2−(0.9−y)2 + 1{x⩾y}e

−(0.1−y)2−(0.9−x)2 , d(x, y, θ) =
1

2
.

We choose the diffusion matrix

A(θ) =

(θ + 1)10−6 0 0
0 (θ + 1)10−6 0
0 0 10−6

 ,

and the advection term, tearing apart traits x and y, is chosen as V (t, z)=10−3(−y,−x,−(x+ y)), or
10−3θ(−y,−x,−(x+ y)) if we want plasticity θ to impinge also on the advection term, representing in
all cases the influence of the tumour ecosystem on the tumour cell population.
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Figure 4.1: Phenotype divergence and loss of plasticity. On these cartoon-like figures, one can follow the
progressive distancing of an initial cell population arbitrarily set at z = (0.25, 0.25, 0.5), submitted to an
advection gradient that tends to split the cell population into two subpopulations migrating towards the two
extreme points (0, 1) and (1, 0) of the domain Ω, while the plasticity variable θ decreases towards 0.

The reader is sent to Chapter 3 for more detailed explanations and illustrations.

4.2.4 What this model tackles and what it leaves unexplained

Our reaction-diffusion-advection equations give the most important part in modelling phenotype diver-
gence to the drift (advection) term representing environmental pressure from the ecosystem towards
separation of phenotypes. Plasticity is naturally already present in the reaction term of this contin-
uous phenotype-structured cell population model of adaptive dynamics, and the diffusion term adds
to phenotype adaptability by uncertainty in its determination. Nevertheless, the sensitivity of pheno-
type adaptation and the trade-off we set between the supposed contradictory 1D phenotypes is mainly
represented by the advection term and the bounded region within which the phenotypes evolve, that
together represent constraints and offer possibilities of trade-offs between the phenotypes.

This model is clearly a mathematical abstraction that may be applied as such to every possible
branching situation in the physiological development of multicellular animals or in bet hedging of phe-
notypes in tumours. For instance, one could model more precisely in glioblastoma cells such branching
situations as the “go-or-grow” alternative between enhancing a proliferation potential (fecundity) and
a motion potential (motility) [156], which would need to represent in the same kind of model the biolog-
ical mechanisms that account for them, and about the constraints (likely of energetic nature) between



them. This would help us design more precisely the advection term and the domain in phenotype space
within which phenotypes evolve. It would imply efficient transdisciplinary collaboration on this subject
between mathematicians and biologists of cancer, which we hope to develop in the future.

4.3 Cooperation

4.3.1 Tinkered cooperation in the emergence of multicellularity vs. di-
rected cooperation in constituted multicellular animals

Noting that the question of cooperation and of division of labour has been considered by many authors
at different stages of associations between individuals, including animal societies [153]. To follow again
the metaphor of the separation in evolution between Paranthropus and early Homo, the situation
with respect to phenotype divergence between body plans of animals is as if, mutatis mutandis, in
evolution from their common hominin ancestor, Paranthropus and early Homo, after their genetic
separation starting by fixation of initial epigenetic haphazard strategic adaptive choices (since evolution
under changes in environmental pressure proceeds by tinkering [121]), had found interest in developing
mutualistic interactions, living in symbiosis, less and less independently of one another. However, since
the Paranthropus species eventually became extinct, likely due to climate changes incompatible with
his too specialised vegetalian diet, whereas Homo survived, having adapted his diet to meat eating,
this was actually not the case, or not in a permanent way, in the evolution of hominins.

We are aware of the fact that this metaphor is by no means perfect, and that reversible development,
of epigenetic nature, within an isogenic individual (or a tumour) is not the same process as evolution
of species, which is based on fixed, irreversible, genetic separations by branchings. Nevertheless, hy-
pothesising that genetic specialisation is likely to begin with reversible epigenetic phenotype divergence
before being fixed by gene mutations, we hope that it sheds some light on the processes that are at
work in elementary steps in the evolution towards multicellularity and in bet hedging in tumours.

Cooperation between populations of cells resulting from such phenotype divergence may be consid-
ered as the glue that holds together all cell subpopulations in an isogenic multicellular organism. It
may occur when mutualistic interactions are beneficial for all the interacting cell populations, provided
that none of them becomes extinct. And it may also not occur, in which case no trace of such missed
mutualism is found in the evolution of body plans. It is indeed, in our representation, the body plan
that has kept memory, in each species, in constitutive intercellular gene regulatory networks, of the
proper strategic choices w.r.t. phenotype divergences that lead to the design of an anatomically and
physiologically cohesive animal. No tinkering is present anymore in these programmed choices designed
in the body plan, and this is what we would like to represent now.

We will present two different possible approaches to the study of evolution of cooperation. The first
one takes the prisoner’s dilemma as a starting point, and considers reciprocity as a factor influencing
the strategies of both players. The possible outcomes for a long running game are studied, and finally, a
way to model a scenario with n players is described. The second modelling choice is through an integro-
differential system structured according to the probability of cooperation. In this case, reciprocity is
represented by an advective term. For a simple set of hypotheses we show that cooperation might mark
the difference between extinction or proliferation for two interacting populations.
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4.3.2 Prisoner’s dilemma and reciprocity

According to [157], an initial intention for cooperation and the existence of reciprocity are crucial for
the evolution of cooperation, even in an environment composed of egoistic individuals. However, one
may wonder what are the conditions that guarantee this to be true; after all, it can be expected that,
if reciprocity is stronger in the absence of cooperation, then cooperation becomes less usual. In other
words: when is reciprocity a catalyst for cooperation? The following (very simple) model tackles this
question.
Consider two players (that can range from cells to entire groups of individuals, such as governments)
involved in the repeated prisoner’s dilemma game. Player A will initially cooperate with probability
p0 > 0 while player B will do so with probability q0 > 0. We assume both values to be strictly positive
to account for the initial intention of cooperation described in [157]. Both players will modify their
probabilities of cooperation at turn k+ 1 (denoted as pk+1 and qk+1 respectively) by following the rule:

pk+1 =


pk + ε11(1 − pk), if player B cooperated in turn k,

pk(1 − ε12), if not,

and

qk+1 =


qk + ε21(1 − qk), if player A cooperated in turn k,

qk(1 − ε22), if not,

where 0 < εij < 1 for i, j ∈ {1, 2}. According to this model, both players modify their strategy by
“learning” from each other. A different strategy was already studied in [158], where players could
modify their strategy by imitation.
We recall that the payoff matrix of the prisoner’s dilemma game is given by(

b− c −c
b 0

)
,

where b is the benefit and c is the cost of cooperation (b > c). Hence, the expected gain for players A
and B at turn k are given by

Ek
A = (b− c)pkqk + b(1 − pk)qk − cpk(1 − qk) = bqk − cpk and Ek

B = bpk − cqk,

respectively. Therefore, the average expected gain at turn k is given by the relation

Ek =
(b− c)

2
(pk + qk).

Given that the probability of both players cooperating at turn k is equal to pkqk, our interest falls
then on the question: What are the conditions over the values εij, i, j ∈ {1, 2}, such that the sequence
(pk, qk) converges towards a non trivial limit ? In such cases, when does the average expected gain can
be expected to increase ?

In order to answer these questions we first explicitly give the values of pk+1 and qk+1 as functions
of pk and qk. Thanks to the law of total probability, we get the relations

pk+1 = qk(pk + ε11(1 − pk)) + (1 − qk)pk(1 − ε12)

= (1 − ε12)pk + ε11qk + (ε12 − ε11)pkqk =: f1(pk, qk),

qk+1 = pk(qk + ε21(1 − qk)) + (1 − pk)qk(1 − ε22)

= (1 − ε22)qk + ε21pk + (ε22 − ε21)pkqk =: f2(pk, qk).
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If this sequence has a limit (p∗, q∗), it must satisfy the relation
p∗ = f1(p

∗, q∗),

q∗ = f2(p
∗, q∗).

(4.2)

In the following proposition we will identify the possible values for (p∗, q∗) and determine their stability.

Proposition 4.1. Consider a couple (p0, q0) and the value e = ε11ε21 − ε12ε22.

i) If e < 0, then the only possible values for (p∗, q∗) are (0, 0) and (1, 1). The first one is a stable
fixed point and the second one is an unstable fixed point.

ii) If e > 0, then the only possible values for (p∗, q∗) are (0, 0) and (1, 1). The first one is an unstable
fixed point and the second one is an stable fixed point.

iii) If e = 0 then (p∗, q∗) is the unique solution of

ε22p0 + ε11q0 = ε22p
∗ + ε11q

∗,

q∗ =
ε12p

∗

ε11 + (ε12 − ε11)p∗
,

and it is a stable fixed point.

Proof. Notice that the values (0, 0) and (1, 1) are always a solution of (4.2). The stability of said fixed
points (and others we wil determine) can be study by means of the eigenvalues of the Jacobian matrix.

First case: The unbalanced scenario: (ε11ε21 ̸= ε12ε22) If this condition is satisfied, a simple
computation shows that there are not non-trivial solutions for (4.2). Hence, if a limit exists, it has to
be either the (0, 0) or the (1, 1). The Jacobian matrix of the system at each of these points is equal to

J0 := J(0, 0) =

(
1 − ε12 ε11
ε21 1 − ε22

)
and J1 := J(1, 1) =

(
1 − ε11 ε12
ε22 1 − ε21

)
.

The eigenvalues of J0 are then

λ01 =
2 − (ε12 + ε22) −

√
(ε12 + ε22)2 + 4e

2
and λ02 =

2 − (ε12 + ε22) +
√

(ε12 + ε22)2 + 4e

2
,

while those of J1 are

λ11 =
2 − (ε11 + ε21) −

√
(ε11 + ε21)2 − 4e

2
and λ12 =

2 − (ε11 + ε21) +
√

(ε11 + ε21)2 − 4e

2
.

If e < 0, then −1 < 1 − (ε12 + ε22) < λ01 < λ02 < 1 and λ12 > 1, hence (0, 0) is stable and (1, 1) is
unstable. On the other hand, if e > 0, then λ02 > 1 and −1 < 1 − (ε11 + ε21) < λ11 < λ12 < 1, hence
(0, 0) is unstable and (1, 1) is stable.
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Second case: The balanced scenario (ε11ε21 = ε12ε22) Under this condition, it is straightforward
to notice the relation

ε22pk+1 + ε11qk+1 = ε22pk + ε11qk, for all k ∈ N,
hence, if a limit (p∗, q∗) exists, it satisfies

r∗ := ε22p
∗ + ε11q

∗ = ε22p0 + ε11q0 =: r0.

Furthermore, directly from the relation f1(p
∗, q∗) = p∗ we get the equality

q∗ =
ε12p

∗

ε11 + (ε12 − ε11)p∗
.

Hence, the value of (p∗, q∗) is given by the unique solution of the system
r0 = ε22p

∗ + ε11q
∗,

q∗ =
ε12p

∗

ε11 + (ε12 − ε11)p∗
.

(4.3)

Computing the Jacobian matrix at (p∗, q∗) gives

J∗ := J(p∗, q∗) =

(
1 − ε11

q∗

p∗
ε12

p∗

q∗

ε22
q∗

p∗
1 − ε21

p∗

q∗

)
.

The eigenvalues of J∗ are

λ∗1 = 1 − (ε11
q∗

p∗
+ ε21

p∗

q∗
) and λ∗2 = 1.

Given that the second eigenvalue is equal to 1, we cannot immediately give a conclusion to the stability
of (p∗, q∗). However, we can proceed as follows: for a fixed (p0, q0), p

∗ is solution of the equation

p∗ =f1(p
∗,
r∗ − ε22p

∗

ε11
)

=(1 − ε12)p
∗ + (r∗ − ε22p

∗) + (ε12 − ε11)p
∗ r

∗ − ε22p
∗

ε11

=r∗ + (1 − (ε12 + ε22) + (ε12 − ε11)
r0

ε11
)p∗ + (ε22 − ε21)(p

∗)2

=:f(p∗).

This is, p∗ is a fixed point of f(p). Therefore, in order to determine the stability of (p∗, q∗), it suffices
to study the value of

f ′(p∗) = (1 − (ε12 + ε22) + (ε12 − ε11)
r0

ε11
) + 2(ε22 − ε21)p

∗

= 1 − (ε11
q∗

p∗
+ ε21

p∗

q∗
),

which is precisely the first eigenvalue of J∗. Since λ∗1 < 1, (p∗, q∗) will be a stable fixed point if and
only if λ∗1 > −1, or equivalently, if and only if

g(p∗) :=
ε11ε12

ε11 + (ε12 − ε11)p∗
+
ε21
ε12

(ε11 + (ε12 − ε11)p
∗) = ε11

q∗

p∗
+ ε21

p∗

q∗
< 2.

Since g(p) is a convex function over [0, 1], which satisfies g(0) = ε12 + ε22 < 2 and g(1) = ε11 + ε21 < 2,
we conclude g(p∗) < 2 for all possible values of p∗. Therefore (p∗, q∗) is a stable fixed point.
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Let us discuss the results from Proposition 4.1. There are two scenarios for the unbalanced case. If
the players reaction to the lack of cooperation is stronger than the reaction to the presence of it (e < 0),
then both players will eventually adopt the no cooperation strategy, making the average expected gain
equal to 0. On the other hand, two players that are highly responsive to cooperation, and not to the
lack of it (e > 0), will eventually always cooperate, maximising this way the average expected gain.
We observe a far more complicated outcome when the responses of both players are balanced (e = 0).
Given that (p∗, q∗) satisfies system (4.3), then the average expected gain will increase if ε11 < ε22 and
the initial values p0 and q0 satisfy

q0 >
ε12p0

ε11 + (ε12 − ε11)p0
,

or if ε11 > ε22 and

q0 <
ε12p0

ε11 + (ε12 − ε11)p0
.

Thanks to the balance condition, ε11 < ε22 implies that ε12 < ε21. This is, in a way, player A has more
shy responses than player B. According to the previously established conditions, interactions between
these two players will lead to an increase in the average expected gain only if the initial probability of
cooperation for player B is sufficiently big. An analogous interpretation can be given when ε11 > ε22.
Figure 4.2 shows several initial configurations for (p0, q0) and their respective limiting values satisfying
the relation.

q∗ =
ε12p

∗

ε11 + (ε12 − ε11)p∗
.

Figure 4.2: Left panel: Several initial configurations of cooperation probabilities. Right panel: Limiting values
of the sequences (pk, qk) associated to initial values showcased on the previous figure.

Assume now the presence of n players, each one with an initial probability of cooperation pi0 and
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reciprocity constants (εi1, εi2), for i ∈ {1, . . . , n}. The previous model can be adapted in such a way
that each player modifies its strategy by taking into account the global cooperation level. This is, pik
satisfies the relation

pik+1 = qik(pk + εi1(1 − pik)) + (1 − qik)p
i
k(1 − εi2)

= (1 − εi2)p
i
k + εi1q

i
k + (εi2 − εi1)p

i
kq
i
k,

with

qik :=
1

n− 1

∑
j ̸=i

pjk,

being the average probability of cooperation from the co-players of player i. As in the previous case, it
can be expected that the amount of fixed points for this recurrence, and its stability will depend on a
family of conditions over the values of (εi1, εi2), however, for the moment being, we will not study this
case any further.
An element that was not considered in these models was the effect of the average expected gain on
the relation between (pk, qk) and (pk+1, qk+1). For example, considering variable reciprocity coefficients
which directly depend on the average expected gain would create a mutual feedback between the
cooperation probabilities and the gain, resulting this way in a far more complex, interesting and realistic
model.

4.3.3 A continuously structured population model for the evolution of
cooperation

Take p ∈ [0, 1] to be a continuous structure variable representing a probability of cooperation. Consider
two populations A and B, each one composed by individuals with different probabilities of cooperation
with the elements on the other population. Let nA(t, p) and nB(t, p) be their respective population
densities of individuals with probability of cooperation equal to p at time t. The total populations at
time t are given by

ρA(t) :=

∫ 1

0

nA(t, p)dp and ρB(t) :=

∫ 1

0

nB(t, p)dp,

and the mean cooperation probabilities by

p̃A(t) :=

∫ 1

0
pnA(t, p)dp

ρA(t)
and p̃B(t) :=

∫ 1

0
pnB(t, p)dp

ρB(t)
.

These choices allow to define the global expected gain for each population. For the first population its
global expected gain is defined then as

EA(t) := (b− c)p̃A(t)p̃B(t) + b(1 − p̃A(t))p̃B(t) − cp̃A(t)(1 − p̃B(t)) = bp̃B(t) − cp̃A(t),

where b and c are the benefit and cost, respectively, of cooperation in the prisoner’s dilemma setting1.
Similarly, the expected gain for population B is given by

EB(t) := bp̃A(t) − cp̃B(t).

1For a more general model,the values of b and c could be dependent on p, this is, the cost and benefit of cooperation
might depend on the probability of cooperation itself
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This way, we may consider that the population densities evolve following the system of equations
∂tnA(t, p) + εA∂p ((p̃B(t) − p)nA(t, p)) = gA(p, EA(t))nA(t, p),

∂tnB(t, p) + εB∂p ((p̃A(t) − p)nB(t, p)) = gB(p, EB(t))nB(t, p),

nA(0, p) = n0
A(p), nB(0, p) = n0

B(p),

(4.4)

where εA and εB are reciprocity coefficients and gA, gB are continuous and increasing functions of EA
and EB respectively, while the elements of both populations modify their probabilities of cooperation,
depending on the global probability of cooperation of their counterpart.

Cooperation or extinction, an easy choice From model (4.4), we will illustrate, for an specific
choice of gA and gB, how cooperation may make a difference between extinction or persistence. Consider

gA(p, EA(t)) := rA(p) + γA(p)EA(t) = rA(p) + γA(p)(bp̃B(t) − cp̃A(t)),
gB(p, EB(t)) := rB(p) + γB(p)EB(t) = rB(p) + γB(p)(bp̃A(t) − cp̃B(t)),

(4.5)

where rA(p), rB(p) are the respective intrinsic growth rates of populations A and B and the non-negative
functions γA(p), γB(p) represent the effect of the expected gain on the growth rate of each population.
This choice of gA and gB makes system (4.4) bear a striking resemblance to the model studied in [28],
where conditions under which there is persistence of all species are given. Nevertheless, there are
several differences: In our case the non local terms are given by the mean cooperation probabilities,
the functions γA and γB are non-negative and we consider no restrictions over the signs of rA(p) and
rB(p). Despite these differences, we do not rule out the fact that the tools and techniques used within
the cited reference may be useful for the study of problem (4.4) as well. For specific choices of εA,
εB, γA and γB it is possible to identify the conditions over rA, rB, b and c which guarantee that one
or both populations will either go extinct or proliferate. Such conditions are stated on the following
proposition:

Proposition 4.2. Consider εA = εB = 0, γA(p) ≡ γA and γB(p) ≡ γB, with γA, γB non negative
constants. Suppose rA(p), rB(p), n0

A(p) and n0
B(p) to be continuous functions such that the maximum

value of rA(p) over the support of n0
A(p) is attained at a single point p∗A, and the maximum value of

rB(p) over the support of n0
B(p) is attained at a single point p∗A. Then

i) If rA(p∗A) + γA(bp∗B − cp∗A) < 0, population A will go extinct.

ii) If rA(p∗A) + γA(bp∗B − cp∗A) > 0, there exists and interval I satisfying p∗A ∈ I ⊂ [0, 1] such that
population A will blow up for all p ∈ I.

iii) The same is true for population B, depending on the sign of rB(p∗B) + γB(bp∗A − cp∗B).

Proof. Under these hypotheses, the expression for nA(p) and nB(p) are implicitly given by the expres-
sions

nA(t, p) = nA0 (p)erA(p)t+γA
∫ t
0 EA(s)ds and nB(t, p) = nB0 (p)erB(p)t+γB

∫ t
0 EB(s)ds,

respectively. This allows to explicitly compute the values of p̃A(t) and p̃B(t):

p̃A(t) =

∫ 1

0
pn0

A(p)erA(p)tdp∫ 1

0
n0
A(p)erA(p)tdp

and p̃B(t) =

∫ 1

0
pn0

A(p)erB(p)tdp∫ 1

0
n0
A(p)erB(p)tdp

.

124



From here, it is not hard to prove that, under the hypotheses of Proposition 4.2, p̃A(t) and p̃B(t)
converge towards p∗A and p∗B respectively. This implies that, for all positive ε there exists T > 0 such
that r(p) + γA(bp̃B(t)− cp̃A(t)) ⩽ rA(p∗A) + γA(bp∗B − cp∗A) + ε for all t > T . If ε is chosen small enough,
then r(p) + γA(bp̃∗B(t) − cp̃∗A(t)) < 0 for all t > T which gives the convergence to 0 of the population.

Conversely, if rA(p∗A) + γA(bp∗B − cp∗A) > 0, we set δ :=
rA(p∗A)+γA(bp∗B−cp∗A)

2
, and define

I = {p ∈ [0, 1] : rA(p) > rA(p∗A) − δ}.

Hence, for all p ∈ I there exists T > 0 such that

r(p) + γA(bp̃B(t) − cp̃A(t)) ⩾ rA(p∗A) − δ + γA(bp̃B(t) − cp̃A(t)) − ε = δ − ε,

for all t > T . Once again, by choosing ε small enough we obtain the strictly positive growth rate for
all values of p ∈ I, which implies the blow up of the population for all such values of p.
The proof for population B is analogous.

Let us illustrate the result of Proposition 4.2 with an example. Consider

rA(p) = rB(p) = p(1 − p) − 1

2
< 0.

It is straightforward to conclude that, if there is no cooperation (γA(p) = γB(p) = 0 or nA0 (p) = nB0 (p) =
ρ0δ0(p)) then both populations will go extinct, at an exponential rate. On the other hand, consider
γA(p) = γB(p) = 1, nA0 (p) ≡ nA0 and nB0 (p) ≡ nB0 . Under these assumptions, we have

nA(t, p) = nA0 e
rA(p)t+

∫ t
0 EA(s)ds and nB(t, p) = nB0 e

rB(p)t+
∫ t
0 EB(s)ds,

and consequently we get

p̃A(t) =

∫ 1

0
perA(p)tdp∫ 1

0
erA(p)tdp

=
1

2
and p̃B(t) =

∫ 1

0
perB(p)tdp∫ 1

0
erB(p)tdp

=
1

2
,

after integrating by means of a substitution. This way, the equations for nA(t, p) and nB(t, p) are
reduced to 

∂tnA(t, p) = (rA(p) + (b−c)
2

)nA(t, p),

∂tnB(t, p) = (rB(p) + (b−c)
2

)nB(t, p),

nA(0, p) = n0
A, nB(0, p) = n0

B.

It is then evident that, as long as (b− c) > 1 there will be values of p for which rA(p) + (b−c)
2

> 0 and

rB(p)+ (b−c)
2

> 0, hence, the population densities nA(t, p) and nB(t, p) will be proliferating exponentially.
An interesting question left unanswered is the case rA(p∗A) + γA(bp∗B − cp∗A) = 0. In this scenario,
additional conditions over the parameters of the problem might be needed in the general case in order
to determine the behaviour of the solution. For the previous illustrative example, this condition is
equivalent to choosing b − c = 1

2
, which leads to a solution which decreases for all p ̸= 1/2 and that

remains constant for p = 1/2. It is also of interest to identify whether the effect of cooperation on the
populations dynamics proved in Proposition 4.2 can be observed for a more general family of conditions,
and choices of gA and gB. As mentioned before, the tools presented in [28] might be of use in order to
better understand the long time dynamics of both populations, and identify concentration phenomena,
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stable steady states and rates of convergence or explosion.
The study of the effect of the advection term, representing reciprocity adds a layer of complexity to the
study of the problem. We refer to [30] and the references therein, where similar non local advection-
reaction problems have been studied, but for a single population. A diffusion term can be considered
as well in both equations of system (4.4) in order to model random instabilities of the probabilities of
cooperation. This term may be a second order differential operator and suitable boundary conditions,
or an integral term with a mutation kernel. A similar model, for only one population, excluding the
advection term and depending on the population size as the non-local term was already studied in [23].
Finally, if all three terms are considered, the resulting model will follow the same principles as in
model (4.1), where the diffusion term represents the non-genetic instability of trait p, the advection
term represents the external stress exerted over each population as in Chapter 3 or the existence of
a bias in the direction of epimutations, as in [27] (in our case such stress or bias is prompted by the
global cooperation probability of the other population) and the reaction term accounts for selection
mechanisms.

4.4 Conclusion

We have sketched in this short essay, relying on concepts of philosophy of science and on mathematical
models under development, the two settings of evolution in which phenotype divergence and cooperation
between phenotypes in the constitution of animal multicellularity should be considered from our point of
view. They are the billion-year Darwinian evolution of species - which we assimilate with the evolution
of body plans - and the short-term construction, in embryogenesis and development, of an isogenic
animal from the zygote to the constituted, terminally differentiated multicellular organism.

In the first case, phenotype divergence is considered to be determined by changes in the environment,
and it is represented by an advection term in a PDE, yielding different optimal adaptive strategies that
are chosen randomly in the initial body plan and resulting in (at least) two different body plans, that
in the first place should be reversible, before being fixed by stabilising mutations.

In the second case, the body plan of a given coherent multicellular animal, that has been established
in Darwinian evolution in a deterministic machinery of embryogenesis and organism maintenance, gov-
erns the process of development from the zygote of the animal individual on principles of compatibility
and cooperativity between physiological functions, organs and tissues, that relies on cell differentia-
tions. Of note, cellular stress-induced genes might evolve into developmental organisers, according to a
mechanism proposed in the Chlamydomonas/Volvox lineage [159]. Such differentiations are by nature
theoretically reversible, relying on epigenetic enzyme activities which graft methyl or acetyl radicals on
the DNA or on the histones that constitute the genome on animal, and dedifferentiations indeed have
been shown to be experimentally possible in 2006 by Takahashi and Yamanaka [160]. However, they
are physiologically excluded, except in particular situations such as wound healing, by a strict control
of the expression of these epigenetic enzymes. Plasticity in cancer cells alters such normal organismic
control.

In cancer, which is a disease characteristic of multicellular animals, differentiations are (locally, in
the tissue from which it originates) out of organismic control, so that tumours, as poorly organised cell
colonies that nevertheless are made of cells bearing in each one of them the body plan of a multicel-
lular organism, can reactivate a process of phenotype divergence in response to a deadly insult (such
as a chemotherapy at high doses), resulting in cancer bet hedging, i.e., developing diverse transient
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(reversible) phenotypes without organised control, with the goal to preserve the proliferation potential
of their cells.

We are aware that the mathematical models presented here are sketches that need refinement, and
that in particular the cooperativity part should be oriented towards defining a compulsory common gain
(likely represented by, again, an advection term in a PDE) that determines the precise construction of an
individual animal organism designed by its body plan. Much still remains to be done towards this goal,
and in particular the body plan - whose effects are patent in embryogenesis and development, but is
still not properly defined as a programme - needs to be better defined in a mathematical representation.
It is likely made of an organised ensemble of gene regulatory networks, as evidenced in the works of
Eric Davidson [127] and his colleagues, and systematically described in the diversity of its functions in
hypothetical Urmetazoa by W.E.G. Muller and his colleagues [128]. A mathematical representation of
the body plan, as a programme of construction of the individual and as the evolutionary unit on which
relies Darwinian evolution and the design of animal anatomy and physiology, is a challenge that awaits
philosophers, evolutionary biologists, and mathematical modellers and analysts, a challenge we have
merely sketched in this short essay.
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Chapter 5

A particle method for non-local
advection-selection-mutation equations

5.1 Introduction

Presentation of the model

The goal of this chapter is to develop a numerical method allowing to approximate the solutions of
equations of the form
∂tv(t, x) + ∇x · (a(t, x, Iav(t, x))v(t, x)) = R(t, x, Igv(t, x))v(t, x) +

∫
Rd

m(t, x, y, Idv(t, x))v(t, y)dy,

v ∈ C([0, T ], L1(Rd)),

v(0, ·) = v0(·) ∈ W 1,1(Rd),

(5.1)

where

(Ilu)(t, x) =

∫
Rd

ψl(t, x, y)u(t, y)dy, l = a, g, d

are non-local terms and a, R, m and ψl are smooth functions.

This general formulation aims to bring together a wide family of PDE models typically used in
the field of adaptive dynamics. In this context, x represents a phenotypic trait (usually simply called
‘phenotype’ or ‘trait’) which is a characteristic inherent to individuals, and x 7→ v(t, x) represents the
density of the studied population at time t ≥ 0. One purpose of adaptive dynamics is to understand the
combined effect of selection and mutations (which are usually assumed to be rare and small [161–163])
on living populations [164]. The literature concerning phenotype-structured equations is abundant
[22,165–170]. The model proposed in this chapter (which includes, among others, the equations studied
in [24,30,171–174]) takes into account

� Selection and growth, via the term ‘R(t, x, Igv(t, x))v(t, x)’, where R can be interpreted as the
instantaneous growth rate, which depends on the trait x and the whole population.
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� Mutation, via the term ‘
∫
Rd m(t, x, y, Idv(t, x))v(t, y)dy’, where the function m can be seen as the

probability density for a cell of trait y to mutate into a cell of trait x.

� Advection, via the term ‘∇x · (a(t, x, Iav(t, x))v(t, x))’. This term models how the environment
drives the individuals towards specific regions, as opposed to random mutations. Among others,
this term can be used in order to model a cell differentiation phenomenon.

Mutations can also be modelled through a second order differential operator such as in [111] and
Chapter 3. Laplacian-like terms can be approximated by integral operators, as shown in [57], which
means that, after choosing an appropriate integral approximation, our analysis could be extended
to deal with second order equations. The other two non local-terms (Ia and Ig) allow to take into
account the influence of the environment, created by the whole population, over the behaviour of the
individuals [174,175], or competition between individuals [22].

The long time behaviour of models considering only one phenomenon among selection, advection
and mutation is well-known: broadly speaking, it has been shown that considering selection alone, or
advection alone, leads to concentration phenomena (towards a finite number of traits) [22, 171, 176],
meaning that the density converges to a sum of Dirac masses, while mutations by themselves have a
smoothing effect [177]. Nevertheless, the combined effects of these terms remains unclear, and may lead
to different and non-intuitive behaviours. As an example, considering both selection and advection can
lead to convergence either to a Dirac mass or to a continuous function [30,178], and considering mutation
and selection leads either to convergence to a non-smooth measure or to a continuous function [173].
Note that this model also includes the equation studied in [179], which was also approximated with a
particle method.

Upon establishing the well-posedness of (5.1), this chapter is concerned with the derivation of a
particle method inspired by [57], the analysis of its convergence and asymptotic-preserving properties.
However, we must emphasise the two main novelties with respect to that work: First, the use of non
local terms, which as we will show, poses technical difficulties and affects the existence of smooth
solutions in certain cases. Secondly, the study of the asymptotic preserving property, which guarantees
that, under certain hypotheses, the long time behaviour of the solution is conserved. As will be seen,
these equations are naturally posed in the space of Radon measures, making particle methods a natural
tool to approximate then. Compared to finite volume or finite element methods, they are more easily
implemented. Furthermore, a change in model leads to very few changes in the corresponding code, a
clear advantage over other methods.

Particle method

Particle methods use ODE resolution in order to approximate the solution of PDEs. This makes them
particularly easy to implement, as they only require a classical ODE solver. The main idea is to seek
a sum of weighted Dirac masses, called particle solution, which is denoted

vN(t) =
N∑
i=1

αi(t)δxi(t), (5.2)

where the weights αi and the points xi are solutions of a suitable ODE system.

In order to recover a smooth function close to the solution of the studied PDE, the particle solution
needs to be regularised: this is usually done by means of a convolution with a so-called ‘cut-off function’
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φε which must satisfy some specific properties. We denote this regular solution

vNε (t, x) =
N∑
i=1

αi(t)φε(x− xi(t)), (5.3)

where the scaling parameter ε is a function of N .

This method is especially adapted for the linear advection equation ‘∂tv(t, x)+∇·(a(x)v(t, x)) = 0’,
but has been generalised to many other kinds of equations which mostly come from physics [49], such
as diffuson equations [50–54], advection-diffusion equations [55,56], convection-diffusion equations [57],
the Navier-Stokes equation [58,59] or the Vlasov-Poisson equation [60,61].

We apply the particle method by following its main three steps, as described in [180]:

1. Particle approximation of the initial data. This first step consists of approaching the initial
condition of v0 with a sum of weighted Dirac masses, i.e. choosing N ∈ N, x01, ..., x

0
N ∈ Rd,

α0
1, ..., α

0
N ∈ R such that

vN0 :=
N∑
i=1

α0
i δx0i ∼ v0,

in the sense of Radon measures, which means that, for any ϕ ∈ C0
c (Rd),

N∑
i=1

α0
iϕ(x0i ) −→

N→+∞

∫
Rd

ϕ(x)v0(x)dx.

Assuming that v0 has a compact support, a canonical way of choosing these values is to choose
a finite collection of subsets Ω0

i ⊂ supp (v0) satisfying

Ω0
i ∩ Ω0

j = ∅, if i ̸= j, and
⋃

i∈{1,...,N}

Ω0
i = supp

(
v0
)
,

and to take, for any i ∈ {1, ..., N}

x0i ∈ Ω0
i , w0

i = |Ω0
i |, ν0i = v0(x0i ) αi = νiwi.

2. Time-evolution of the particles. By using a weak formulation of the PDE, we determine the
ODE satisfied by the positions (denoted xi), the volumes (denoted wi) and the weights (denoted
νi) associated to each of the N particles, with initial conditions (x0i , w

0
i , ν

0
i ) given at the previous

step. The exact ODE, and the way the particles are correlated with each other depends on the
complexity of the PDE. In the case where the advection term is local (a(t, x, I) = a(t, x)), the
positions and the volumes satisfy

ẋi(t) = a(t, xi(t)), ẇi(t) = ∇x · (a(t, xi(t)))wi(t) (5.4)

and the formula for the νi depends on the selection and the mutation terms. The method described
in the core of this chapter also allows to use this method in the case of a non-local advection,
which modifies the ODE satisfied by the positions of the particles. Full formulas are given in
Section 5.3.
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Rewriting αi = νiwi, with the volumes wi which satisfy (5.4) is required for the approximation of
the different integral terms. Indeed, by Liouville’s formula [181], for any f smooth enough,∫

Rd

f(x)dx ∼
N∑
i=1

f(xi(t))wi(t).

Formally, v and vN (as defined by (5.2)) are both solution of (5.1) in the weak sense, with
vN(0) ∼ v0, which implies that, assuming that the parameters of the PDE are smooth enough,
for any given time T > 0, vN(T ) ∼ v(T, ·).

3. Regularisation. In order to transform the discrete measure vN into a smooth function, we use
a regularisation process based on convolution, which writes as a sum, shown in (5.3), since the
convoluted measure is a sum of Dirac masses. The function

φε :=
1

ε
φ
( ·
ε

)
,

depending on a parameter ε > 0, is a scaling of the so-called cut-off function φ, which must
satisfy some regularity and symmetry properties (which we specify in Section 5.4.1). The choice
of ε, which intimately depends on the choice of N , is intricate: if ε is too large, then the solution
is ‘over-regularised’, and the scheme loses its accuracy. Conversely, if ε is to small, then some of
the particles will be neglected, and the scheme does not converge towards the solution. Choosing
the optimal ε as a function of N is thus not a trivial question, and it is possible in some cases to
optimise the convergence rate by improving this regularisation step [182,183].

Main results

Well-posedness. We first prove that problem (5.1) is well-posed, i.e. that for any family of param-
eters satisfying some regularity properties, defined in C([0,+∞), L1(Rd)). The proof heavily relies on
the use of the characteristic curves Xu(t, y), solution to the equation{

Ẋu(t, y) = a(t,Xu(t, y), (Iau)(t,Xu(t, y))) =: Au(t,Xu(t, y)), t ∈ [0, T ],

Xu(0, y) = y,

for y ∈ Rd and u ∈ C([0, T ], L1(Rd)). The main difference with respect to the approach taken for
similar problems, as in [57], is the need for continuity results for Xu(t, y), not only with respect to the
trait variable y, but with respect to u as well. The required results are stated in Section 5.2.1 and
proved in Appendix 5.6.1.

The well posedness of the problem for smooth initial data is proved in Section 5.2.2 using a standard
fixed point argument. Moreover, in Section 5.2.3, we consider a more general family of initial conditions
and we prove that the regularity of v(t, ·) is linked to that of v0: more precisely, if v0 ∈ W k,∞(Rd) with
compact support, then v ∈ C([0,+∞),W k−1,1(Rd)). This result can be improved if the advection is
local, i.e. a(t, x, I) = a(t, x): In this case, for any initial condition in W k,1(Rd), the solution v is in
C([0,+∞),W k,1(Rd)).
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Particle method: definition and well-posedness. In Section 5.3, we define the particle method
corresponding to this PDE, by deriving the ODE system satisfied by the particles (xi, wi and νi). For
the non-local case, the equation we obtain is a coupled system with infinitely many equations and
unknowns. We generalise some classical results from the Cauchy-Lipschitz theory in order to deal with
this problem, and prove that the ODE system is well posed.

Convergence of the particle method. Section 5.4 is structured as follows: in Section 5.4.1 we
prove the following estimate, detailed in Theorem 5.5:

∥v − vhε ∥L1(Rd) ⩽ C
(
εr +

(h
ε

)κ
+ hκ

)
∥v0∥Wµ,1(Rd), for all 0 ⩽ t ⩽ T,

))Nevertheless, in general this scheme is not asymptotic preserving. Therefore, in subsection 5.4.2, we
show examples for which the scheme is asymptotic preserving, and others for which it is not. In general,
the asymptotic behaviour of a solution is preserved when it converges to a sum of Dirac masses, and is
not when it converges to a smooth solution.

Perspectives and open problems

Although a loss of regularity appears to be taking place when advection is non local, we do not know
whether such a loss of regularity does happen in certain cases. The construction of such an example
or, on the contrary, the improvement of our results in order to prove that, in fact, no regularity is lost
could be a first way to extend our work.
Another open problem is the optimisation of the order of convergence for the numerical solution,
improving upon the order κr

κ+r
obtained in the present work. The approach from [182], where the local

averages are viewed as point values of an approximation of the solution, and the regularisation of the
solution at time t > 0 is performed by interpolation rather than convolution, could be a suitable choice.
Lastly, as mentioned before, another direction could be the extension of our results in order to deal
with second order equations, as done in [57], where the Laplacian operator is approximated by an
appropriate sequence of mutation kernels.

5.2 The problem

For T > 0 and k ∈ N we consider the functions

(t, x, I) 7→ a(t, x, I) ∈ W 1,∞ ([0, T ], (W k+1,∞(Rd+1))d
)
, (5.5)

(t, x, I) 7→ R(t, x, I) ∈ C
(

[0, T ] × Rd
x,W

k+1,∞
loc (RI)

)
∩C

(
[0, T ] × RI ,W

k+1,∞(Rd
x)
)
. (5.6)

We consider as well (t, x, y, I) 7→ m(t, x, y, I) such that

0 ⩽ m ∈ C
(
[0, T ] × Rd

x × Rd
y,W

k+1,∞(RI)
)
∩C

(
[0, T ] × Rd

x × RI , L
∞(Rd

y)
)
∩C

(
[0, T ] × Rd

y × RI ,C
k
c (Rd

x)
)
,

which is globally Lipschitz with respect to the non local variables and uniformly compactly supported
with respect to the x variable. That is, we suppose m to satisfy the following hypotheses:
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� There exists µ > 0 such that

sup
t,x,y

k∑
i=1

∑
|α|=i

k∑
j=1

|∂αx∂
j
Im(t, x, y, I) − ∂αx∂

j
Im(t, x, y, J)| ⩽ µ|I − J |. (5.7)

� There exists a compact set K such that the function

M(x) := sup
t,y,I

k∑
i=1

∑
|α|=i

k∑
j=1

|∂αx∂
j
Im(t, x, y, I)|, (5.8)

satisfies
supp M(x) ⊂ K. (5.9)

Furthermore, we assume that

∥M∥L∞(Rd) ⩽M <∞. (5.10)

From a modelling point of view, assuming m to be uniformly compactly supported reflects the
fact that some traits are realistically out of reach for a given population, and that, in general,
mutations are rare and small.

We remark that hypotheses (5.9) and (5.10) imply that

∥M∥L1(Rd) ⩽ |K|M =: K <∞. (5.11)

For all functions u ∈ C([0, T ], L1(Rd)) we consider the linear mappings Ia, Ig and Id which satisfy, for
all t ∈ [0, T ], x ∈ Rd,

(Iau)(t, x) :=

∫
Rd

ψa(t, x, y)u(t, y)dy, (5.12)

(Igu)(t, x) :=

∫
Rd

ψg(t, x, y)u(t, y)dy, (5.13)

(Idu)(t, x) :=

∫
Rd

ψd(t, x, y)u(t, y)dy, (5.14)

where

ψa ∈ W 1,∞ ([0, T ] × Rd
x, L

∞(Rd
y)
)
∩C

(
[0, T ] × Rd

y,W
k+1,∞(Rd

x)
)
, (5.15)

0 < ψg ⩽ ψg ∈ C
(
[0, T ] × Rd

x, L
∞(Rd

y)
)
∩C

(
[0, T ] × Rd

y,W
k+1,∞(Rd)

)
, (5.16)

ψd ∈ C
(
[0, T ] × Rd

x, L
∞(Rd

y)
)
∩C

(
[0, T ] × Rd

y,W
k+1,∞(Rd)

)
, (5.17)

for a certain ψg > 0. We remark that Iau, Igu, Idu ∈ C([0, T ], L∞(Rd)). The functions ψa and ψd do

not need to be positive, reflecting this way how different traits have different impacts (which are not
always beneficial) on the environment, and ultimately on the population itself. On the other hand, ψg
has to be bounded away from zero. This hypothesis reflects the fact that, at least for the growth term,
all interactions between individuals are of the same type. These interactions may be interpreted as
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either strictly competitive or strictly cooperative. In particular, this means that only “very” non-local
dependence with respect to u are allowed. This excludes partial densities, for instance on part of the
traits.
Lastly, we assume that there exist non-negative constants I∗ and r∗ such that, for all t ∈ [0, T ], x ∈ Rd,
and I ⩾ I∗,

R(t, x, I) +K < −r∗, (5.18)

uniformly on t and x. It is somewhat natural to assume that R is negative for a large population:
for example, if a carrying capacity is assumed to exist, and the population size is approaching such
value, then the growth rate will inevitably drop to levels where no amount of mutations will be able to
compensate for it.
For a given function v0 ∈ L1(Rd), we will study the existence and uniqueness of solution for the problem
∂tv(t, x) + ∇x · (a(t, x, Iav(t, x))v(t, x)) = R(t, x, Igv(t, x))v(t, x) +

∫
Rd

m(t, x, y, Idv(t, x))v(t, y)dy,

v ∈ C([0, T ), L1(Rd)),

v(0, ·) = v0(·).
(5.19)

We will show that, under additional hypotheses, either over a or v0, we can guarantee the well-posedness
of this problem. In particular, we provide the results regarding the cases of local advection (∂Ia = 0)
and non-local advection (∂Ia ̸= 0). We will see that this distinction directly affects the set of initial
data v0 for which the existence of solutions is guaranteed.

5.2.1 Some bounds over the characteristics

Consider a satisfying (5.5) and ψa satisfying (5.15) for some k ⩾ 1. For all y ∈ Rd and u ∈
C([0, T ], L1(Rd)) we define the characteristic curve t 7→ Xu(t, y) as the unique solution the follow-
ing ODE {

Ẋu(t, y) = a(t,Xu(t, y), (Iau)(t,Xu(t, y))) =: Au(t,Xu(t, y)), t ∈ [0, T ],

Xu(0, y) = y,
(5.20)

where (Iau)(t, x) is defined in (5.12). Since the function ψa belongs to W 1,∞ ([0, T ] × Rd
x, L

∞(Rd
y)
)
,

then (Iau)(t, x) belongs to W 1,∞ ([0, T ] × Rd
x

)
⊂ C0,1([0, T ]×Rd

x). The regularity of a then implies that
Au(t, x) is a Lipschitz function with respect to the x variable, uniformly with respect to t, guaranteeing
this way the global existence of solution for (5.20).

For all u ∈ C([0, T ], L1(Rd)), we define the norms

∥u∥1 := ∥u∥L1([0,T ]×Rd) =

T∫
0

∫
Rd

|u(t, x)|dxdt and ∥u∥ := sup
t∈[0,T ]

∥u(t, ·)∥L1(Rd).

We present some results involving the characteristics. The proofs for such results are given in Appendix
5.6.1.

The first property we describe is the continuity of the family of characteristics with respect to the
spatial variables and the function u.
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Lemma 5.1. Let ψa satisfy (5.15) and a satisfy (5.5) for k = 0. Consider y1, y2 ∈ Rd and u1, u2 ∈
C([0, T ], L1(Rd)). Then there exists a positive constant C(T, ∥u1∥, ∥u2∥), such that the solutions Xu1

and Xu2 of (5.20) satisfy for any t ∈ [0, T ],

d∑
j=1

|Xj
u1

(t, y1) −Xj
u2

(t, y2)| ⩽ C(T, ∥u1∥, ∥u2∥) (|y1 − y2| + ∥u1 − u2∥1) .

Secondly, we claim that the spatial derivatives of the characteristics remain bounded by a constant
only depending on T and ∥u∥. We also claim that the spatial derivatives are continuous with respect
to the spatial variables and the function u.

Lemma 5.2. Let a satisfy (5.5) and ψa satisfy (5.15) for some k ⩾ 1. Consider u ∈ C([0, T ], L1(Rd)).
Then there exists a positive constant C(T, ∥u∥), such that the solution Xu(t, y) of (5.20) satisfies, for
all t ∈ [0, T ] and y ∈ Rd,

k∑
i=1

∑
|α|⩽i

d∑
j=1

|∂αyXj
u(t, y)| ⩽ C(T, ∥u∥). (5.21)

Furthermore, for any two points y1, y2 ∈ Rd, and any two functions u1, u2 ∈ C([0, T ], L1(Rd)), there
exists a positive constant C2(T, ∥u1∥, ∥u2∥), such that the solutions Xu1 and Xu2 of (5.20) satisfy for
any t ∈ [0, T ]

k∑
i=0

∑
|α|⩽i

d∑
j=1

|∂αyXj
u1

(t, y1) − ∂αyX
j
u2

(t, y2)| ⩽ C(T, ∥u1∥, ∥u2∥)(|y1 − y2| + ∥u1 − u2∥1). (5.22)

Since for all t ∈ [0, T ], y 7→ Xu(t, y) is a C1-diffeomorphism from Rd onto itself, we may define its
inverse as the function satisfying Xu(t,X

−1
u (t, x)) = x for all (t, x) ∈ [0, T ]×Rd. We have the following

results for X−1
u .

Lemma 5.3. Let a satisfy (5.5) and ψa satisfy (5.15) for some k ⩾ 1. Consider u ∈ C([0, T ], L1(Rd)).

Then there exists a positive constant C̃(T, ∥u∥), such that the inverse of the solution Xu(t, y) of (5.20)
satisfies, for all t ∈ [0, T ], x ∈ Rd

k∑
i=1

∑
|α|⩽i

d∑
j=1

|∂αx
(
X−1
u

)j
(t, x)| ⩽ C̃(T, ∥u∥). (5.23)

Lemma 5.4. Let a satisfy (5.5) and ψa satisfy (5.15) for some k ⩾ 1. Consider any two func-

tions u1, u2 ∈ C([0, T ], L1(Rd)). Then there exists a positive constant C̃(T, ∥u1∥, ∥u2∥), which satisfies

lim
T→0

C̃(T, ∥u1∥, ∥u2∥) = 0 and such that the inverses of the solutions Xu1 and Xu2 of (5.20) satisfy, for

all t ∈ [0, T ] and x ∈ Rd

k−1∑
i=0

∑
|α|⩽i

d∑
j=1

|
(
∂αxX

−1
u1

)j
(t, x) − ∂αx

(
X−1
u2

)j
(t, x)| ⩽ C̃(T, ∥u1∥, ∥u2∥)∥u1 − u2∥1. (5.24)

We remark that thanks to the relation ∥u∥1 ⩽ T∥u∥, the relations (5.22) and (5.24) also hold true
when replacing ∥u1 − u2∥1 by ∥u1 − u2∥. Lastly, we give a result regarding the regularity of Xu(t, x)
with respect to t.
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Lemma 5.5. Let a satisfy (5.5) and ψa satisfy (5.15) for some k ⩾ 1. Consider u ∈ C1([0, T1) × Rd)
such that sup

t∈[0,T1)
(∥u(t, ·)∥L1(Rd) + ∥∂tu(t, ·)∥L1(Rd)) < +∞. Then Xu(t, y) ∈ C1([0, T1],C

k(Rd)). As a

consequence, X−1
u (t, x) ∈ C1([0, T1],C

k(Rd)).

Proof. Thanks to Lemma 5.2, we know that under these hypotheses, for all T < T1, Xu(t, y) exists and
belongs to C1([0, T ],Ck(Rd)). Consider 0 < t1, t2 < T1, then

k∑
i=0

∑
|α|⩽i

d∑
j=1

|∂αyXj
u(t1, y) − ∂αyX

j
u(t2, y)| =

k∑
i=0

∑
|α|⩽i

d∑
j=1

|
∫ t2

t1

∂αy Ẋ
j
u(s, y)ds|

=
k∑
i=0

∑
|α|⩽i

d∑
j=1

|
∫ t2

t1

∂αy aj(s,Xu(s, y), (Iau)(s,Xu(s, y)))ds|.

Thanks to the regularity of a and ψa, the bounds given in Lemma 5.2 for the derivatives of Xu(t, y)
and the uniform bound for ∥u∥L1(Rd) we conclude that there exists a positive constant such that

k∑
i=0

∑
|α|⩽i

d∑
j=1

|∂αyXj
u(t1, y) − ∂αyX

j
u(t2, y)| ⩽ C|t1 − t2|.

Similarly, we have

k∑
i=0

∑
|α|⩽i

d∑
j=1

|∂αy Ẋj
u(t1, y) − ∂αy Ẋ

j
u(t2, y)| =

k∑
i=0

∑
|α|⩽i

d∑
j=1

|∂αy (Au)j(t1, y) − ∂αy (Au)j(t2, y)|,

where
(Au)j(t, y) := aj(t,Xu(t, y), (Iau)(t1, Xu(t, y))).

Again, the regularity up to order k + 1 of the involved coefficients allow us to conclude that

k∑
i=0

∑
|α|⩽i

d∑
j=1

|∂αy Ẋj
u(t1, y) − Ẋj

u(t1, y)| ⩽ C|t1 − t2|.

We have shown that Xu(t, ·) is a Cauchy sequence in Ck(Rd) when t goes to TM , therefore, there exists
X∗(x) ∈ Ck(Rd) and Y ∗(x) ∈ Ck(Rd) such that

lim
t→TM

∥Xu(t, ·) −X∗∥Ck(Rd) + ∥Ẋu(t, ·) − Y ∗∥Ck(Rd),

which is the desired result.

5.2.2 Existence of solution for smooth initial data

We first provide the proof of existence and uniqueness of solution for problem (5.19) when the initial
condition v0 is a smooth enough function. We still assume hypotheses (5.5) through (5.18) hold. For
a smooth initial condition v0 we denote by classical solution any function v ∈ C1([0, T ] × Rd) which
satisfies problem (5.19).
The following a priori estimate will allow us to guarantee the global existence of a classical solution
given that such solution exists over a certain interval [0, T1].
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Lemma 5.6. Let v0 ∈ C1
c (Rd) and T1 > 0 be such that a classical solution v ∈ C1([0, T ]×Rd) exists for

problem (5.19) for all T < T1, which is positive and has compact support with respect to the x variable.
Then, such solution satisfies the estimate

sup
t∈[0,T1]

∥v(t, ·)∥L1(Rd) ⩽ max{∥v0∥L1(Rd),
I∗

ψg
}. (5.25)

Proof. Let v be the aforementioned positive solution. Denoting ρ(t) := ∥v(t, ·)∥L1(Rd), we see directly
from equation (5.19) that

ρ̇(t) =

∫
Rd

(
R(t, y, (Igv)(t, y)) +

∫
Rd

m(t, x, y, (Idv)(t, x))dx

)
v(t, y)dy.

If there exists t such that ρ(t) > I∗

ψg
, then (Igv)(t, y) ⩾ ψgρ(t) > I∗, which allows us to use hypothesis

(5.18) in order to conclude
ρ̇(t) < −r∗ρ(t) < 0.

This way, we see that either ρ(t) is smaller than I∗

ψg
or ρ(t) is decreasing, which in turn implies the

bound (5.25).

A fixed point argument together with estimate (5.25) will allow us to conclude the existence of
solution for problem (5.19) for smooth initial conditions.

Theorem 5.1. Consider k ⩾ 1 and T > 0. Under hypotheses (5.15) through (5.18), for all non-negative
functions v0 ∈ Ck

c (Rd), there exists a unique non-negative classical solution v ∈ C1([0, T ],Ck
c (Rd)) to

problem (5.19). Furthermore, such solution satisfies

sup
t∈[0,T ]

∥v(t, ·)∥L1(Rd) ⩽ max{∥v0∥L1(Rd),
I∗

ψg
}, (5.26)

sup
t∈[0,T ]

∥v(t, ·)∥Wk,1(Rd) ⩽ CT∥v0∥Wk,1(Rd). (5.27)

Proof. Consider v0 ∈ Ck
c (Rd). For t ≥ 0 and the functionM introduced in (5.8) we define rt := 2∥a∥L∞t,

Brt the open ball centred at 0 and of radius rt,

Ot := supp (v0) ∪ supp (M) +Brt ,

and for α > 1 we define ρα := max{α∥v0∥L1(Rd),
I∗

ψg
}. We consider

u ∈ DT
α :=

{
u ∈ C([0, T ] × Rd) : u ⩾ 0, supp (u(t, ·)) ⊂ Ot,

∫
Rd

u(t, x)dx ⩽ ρα, ∀t ∈ [0, T ]

}
.

We denote as Φu the mapping defined by v = Φu, where v is the solution of{
∂tv(t, x) + ∇x · (a(t, x, (Iau)(t, x))v(t, x)) −R(t, x, (Igu)(t, x))v(t, x) =

∫
Rd m(t, x, y, (Idu)(t, x))u(t, y)dy

v(0, ·) = v0(·).
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Let us denote, for any y ∈ Rd, as Xu(·, y) the unique solution of{
Ẋu(t, y) = a(t,Xu(t, y), (Iau)(t,Xu(t, y))) =: Au(t,Xu(t, y)) t ≥ 0,

X(0, y) = y.

As stated before, for any t ∈ [0, T ], x 7→ Xu(t, x) is a C1-diffeomorphism, therefore, for all t ≥ 0 and
all x ∈ Rd there exists a unique y ∈ Rd such that x = Xu(t, y), which we denote y = X−1

u (t, x).
We see that,

d

dt
v(t,Xu(t, y)) =

[
R(t,Xu(t, y), (Igu)(t,Xu(t, y))) − div Au(t,Xu(t, y))

]
v(t,Xu(t, y))

+

∫
Rd

m(t,Xu(t, y), z, (Idu)(t,Xu(t, y)))u(t, z)dz,

and thus, denoting

Gu(t, y) := R(t,Xu(t, y), (Igu)(t,Xu(t, y))) − div Au(t,Xu(t, y)),

we get

Φu(t,Xu(t, y)) =v(t,Xu(t, y))

=v0(y) exp

(∫ t

0

Gu(s, y)ds

)
+

∫ t

0

∫
Rd

m(s,Xu(s, y), z, (Idu)(s,Xu(s, y)))u(s, z)dz exp

(∫ t

s

Gu(τ, y)dτ

)
ds

or, equivalently

Φu(t, x) =v(t, x)

=v0(X−1
u (t, x)) exp

(∫ t

0

Gu(s,X
−1
u (t, x))ds

)
+

∫ t

0

∫
Rd

m(s,Xu(s,X
−1
u (t, x)), z, (Idu)(s,Xu(s,X

−1
u (t, x))))u(s, z)dz exp

(∫ t

s

Gu(τ,X
−1
u (t, x))dτ

)
ds.

The solution v is thus non-negative, according to the non-negativity of v0, u and m. Thanks to Lemma
5.3, v belongs to C1([0, T ],Cκ(Rd)) ⊂ C([0, T ] × Rd). Furthermore, the fact that for all t ∈ [0, T ],
|X(t, y) − y| ⩽ ∥a∥L∞t implies that supp (v(t, ·)) ⊂ Ot.
Additionally, directly from its definition, we see that

Gu(s,X
−1
u (t, x)) ⩽ γ := ∥R∥L∞

t,x,I
+ ∥a∥W 1,∞

x L∞
t,I

+ ∥a∥W 1,∞
I L∞

t,x
∥ψa∥W 1,∞

x L∞
y
ρα,

and consequently, for all u ∈ DT
α , we have

∥Φu(t, ·))∥L1(Rd) ⩽e
γT

∫
Rd

v0(X−1
u (t, x))dx

+

∫ t

0

∫
Rd

∫
Rd

m(s,Xu(s,X
−1
u (t, x)), z, (Idu)(s,Xu(s,X

−1
u (t, x))))u(s, z)dzdxds

)

⩽eγT

∫
Rd

v0(X−1
u (t, x))dx+

∫ t

0

∫
Rd

M(s,Xu(s,X
−1
u (t, x)))dx

∫
Rd

u(s, z)dzds

 .
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Making the changes of variables y = X−1
u (t, x) and y = Xu(s,X

−1
u (t, x)) respectively on each of the

integrals on the last expression, recalling that, according to Liouville’s formula

|JXu(t,y)| = e
∫ t
0 div Au(s,Xu(t,y))ds,

|JXu(t,X
−1
u (s,y))| = e

∫ t
0 div Au(τ,Xu(t,X

−1
u (s,y)))dτ−

∫ s
0 div Au(τ,y)dτ ,

and using the hypotheses over a and m we obtain that for all t ∈ [0, T ],

∥Φu(t, ·)∥L1(Rd) ⩽ e(γ+2ã)T
(
∥v0∥L1(Rd) +KT∥u∥L1(Rd)

)
,

where ã := ∥a∥W 1,∞
x L∞

t,I
+ ∥a∥W 1,∞

I L∞
t,x
∥ψa∥W 1,∞

x L∞
y
ρα. Finally, using the hypothesis over v0 and u we see

that

∥Φu(t, ·)∥L1(Rd) ⩽ e(γ+2ã)T

(
1

α
+KT

)
ρα.

Thanks to the condition α > 1 there exists Tα (only depending on α and on the coefficients of the
problem) such that ∥Φu∥L1(Rd) ⩽ ρα for all t ∈ [0, Tα]. In other words, Φ : DTα

α → DTα
α .

We now claim that the mapping Φu is a contraction on some DT1
α , 0 < T1 ⩽ Tα, with respect to the

usual norm in C([0, T ]×Rd). For two functions u1, u2 ∈ DTα
α and any t ∈ [0, Tα], thanks to Lemma 5.1

and Lemma 5.4, we have

|Φu1 − Φu2| ⩽Ceγt|X−1
u1

(t, x) −X−1
u2

(t, x)|
⩽Ceγt∥u1 − u2∥1
⩽Ceγt|Ot|t∥u1 − u2∥C([0,t]×Rd).

Clearly, for t = T1 small enough, Φu is a contraction, and therefore, thanks to the Banach fixed point
theorem, there exists a unique v ∈ DT1

α such that Φv = v. Such v is a solution of (5.19) over [0, T1].
Furthermore, directly from the relation v = Φv we see that v ∈ C1([0, T ],Cκ

c (Rd)).

Let us now assume that there exists TM , a finite maximal time such that a solution exists in BT
α

for all T < TM , and let v be such solution. Directly from Lemma 5.6, the solution v satisfies estimate
(5.25) over [0, TM). Furthermore, thanks to the relation v = Φv, we are able to show that

sup
[0,TM )

(∥v(t, ·)∥L1(Rd) + ∥v̇(t, ·)∥L1(Rd)) < +∞.

From Lemma 5.5 we get then that X−1
v (t, x) ∈ C1([0, TM ],Ck(Rd)), and by composition of functions,

so is v = Φv. We can then iterate the previous ideas using v(TM) ∈ Ck(Rd) as a starting point in
order to obtain the existence of solution over a certain interval [TM , TM + δ), contradicting this way
the maximal character of TM . Hence, there exists a classical solution of (5.19) for all t > 0.

The uniqueness on C([0, T ],Cκ
c (Rd)) comes from the fact that every other solution on D∞

α will
coincide with v at least over a small interval (0, t0) and then, by continuity, the same would hold for
all t.
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To obtain the W k,1(Rd) estimates, we differentiate the relation v = Φv and notice that for all
multi-index β such that |β| ⩽ k

∂βxv = exp

(∫ t

0

Gv(s,X
−1
v (t, x))ds

) ∑
|γ|⩽|β|

∂γxv
0(X−1

v (t, x))F γ
1 (t, x)

+

∫ t

0

∫
Rd

F2(s, x, y)v(s, y)dy exp

(∫ t

s

Gv(τ, x)dτ

)
ds

where the functions F γ
1 and F2 are combinations of sums and multiplications of the derivatives up

to order |β| of X−1
v , R, m, Ig and Id. Taking absolute values, integrating over Rd and using the

boundedness of all the involved coefficients we arrive at

∥v(t, ·)∥Wk,1(Rd) ⩽ C1
T∥v0∥Wk,1(Rd) + C2

T

∫ t

0

∥v(s, ·)∥Wk,1(Rd)ds

and thanks to Grönwall’s lemma we get (5.27).

5.2.3 Existence of solution for more general initial data

Depending on whether ∂Ia = 0 or ∂Ia ̸= 0, we will have a different class of initial data for which we are
able to guarantee existence of solution for problem (5.19). Furthermore, the regularity of such solution
might also be affected.
We first prove that, when ∂Ia ̸= 0, a solution exists (in a sense that will be defined below) for any
initial condition v0 ∈ W k,∞(Rd), with compact support. However, we do not prove that the regularity
of the solution is preserved over time, even if we did not manage to highlight the existence of cases
where a loss of regularity is observed. Secondly, we will show that, when ∂Ia = 0, not only the set of
initial conditions for which we can claim existence of solution is more general (v0 ∈ W k,1(Rd)), but the
regularity of such solution is preserved for all t > 0.
We introduce the definition of weak solution for problem (5.19). We say that v is a weak solution of
problem (5.19) associated to v0 ∈ Lp(Rd) if

v ∈ L∞([0, T ], Lp(Rd)),

and it satisfies the equation in the following weak sense∫ T

0

∫
Rd

vL∗
vφdxdt =

∫
Rd

v0φdx,

for any φ ∈ C1
c ([0, T ) × Rd), where we define the operator L∗

v by

L∗
vφ(t, x) = −∂tφ(t, x)−a(t, x, (Iav)(t, x))·∇φ(t, x)−R(t, x, (Igv)(t, x))φ(t, x)−

∫
Rd

m(t, y, x, (Idv)(t, y))φ(t, y)dy,

for all t ∈ [0, T ], y ∈ Rd. We remark that a classical solution is always a weak solution.

Theorem 5.2. Under hypotheses (5.5) through (5.18), for all k ⩾ 1 and any non-negative func-
tions v0 ∈ W k,∞(Rd) with compact support, there exists a unique non-negative weak solution v ∈
C([0, T ],Ck−1

c (Rd)) to problem (5.19). Furthermore, such solution satisfies

sup
t∈[0,T ]

∥v(t, ·)∥L1(Rd) ⩽ max{∥v0∥L1(Rd),
I∗

ψg
}, (5.28)

sup
t∈[0,T ]

∥v(t, ·)∥Wk−1,1(Rd) ⩽ CT∥v0∥Wk−1,1(Rd), (5.29)

and, for k ⩾ 2, v ∈ C1([0, T ],Ck−1
c (Rd)).
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Proof. Directly from Morrey’s inequality, we get the relation v0 ∈ W k,∞(Rd) ⊂ Ck−1,1(Rd). If k ⩾ 2,
we are able to apply Theorem 5.1 in order to get the desired result.
Consider now k = 1. The compact support of v0 and the W 1,∞(Rd) regularity imply that v0 ∈ W k,1(Rd).
This means that, there exists a sequence of compactly supported functions v0ε ∈ C1

c (Rd) such that

supp (v0)ε ⊂ supp (v0),

∥v0ε∥W 1,∞(Rd) ⩽ ∥v0∥W 1,∞(Rd),

lim
ε→0

∥v0 − v0ε∥W 1,1(Rd) = 0.

We denote as vε the solution of problem (5.19) associated to v0ε , and we claim that vε is a Cauchy
sequence in C([0, T ], L1(Rd)).
We recall that for all ε,

sup
t∈[0,T ]

∥vε∥L1(Rd) ⩽ ρε := max{∥v0ε∥L1(Rd),
I∗

ψg
}.

Furthermore, the equality vε = Φvε holds true, where Φ was defined on the proof of Theorem 5.1.
Consequently, for ε1, ε2 > 0 we have the relation

∆Vε1ε2 :=vε1 − vε2
=Φvε1 − Φvε2

=

(
v0ε1(X

−1
vε1

(t, x)) − v0ε2(X
−1
vε2

(t, x))

)
exp

(∫ t

0

G1(τ, t, x)dτ

)
− v0ε2(X

−1
vε2

(t, x))

(
∆E(0, t, x)

)
+

∫ t

0

∫
Rd

(
M1(s, t, x, z) −M2(s, t, x, z)

)
vε1(s, z)dz exp

(∫ t

s

G1(τ, t, x)dτ

)
ds

+

∫ t

0

∫
Rd

M2(s, t, x, z)

(
∆Vε1ε2(s, z)

)
dz exp

(∫ t

s

G1(τ, t, x)dτ

)
ds

+

∫ t

0

∫
Rd

M2(s, t, x, z)vεj(s, z)dz

(
∆E(s, t, x)

)
ds,

where

Gi(τ, t, x) = Gvεi (τ,X
−1
vεi

(t, x)),

∆E(s, t, x) := exp

(∫ t

s

G1(τ, t, x)dτ

)
− exp

(∫ t

s

G2(τ, t, x)dτ

)
,

Mi(s, t, x, z) := m(s,Xvεi
(s,X−1

vεi
(t, x)), z, (Idvεi)(s,Xvεi

(s,X−1
vεi

(t, x)))).

We write
v0ε1(X

−1
vε1

(t, x)) − v0ε2(X
−1
vε2

(t, x)) = v0ε1(X
−1
vε1

(t, x)) − v0ε2(X
−1
vε1

(t, x))

+v0ε2(X
−1
vε1

(t, x)) − v0ε2(X
−1
vε2

(t, x)).
(5.30)

Thanks to the change of variables y = X−1
vε1

(t, x) and the relations

|JXvε1
(t,y)| =e

∫ t
0 div Avε1

(s,Xvε1
(t,y))ds,

G(s,X−1
vε1

(t, x)) ⩽γ := ∥R∥L∞
t,x,I

+ ∥a∥W 1,∞
x L∞

t,I
+ ∥a∥W 1,∞

I L∞
t,x
∥ψa∥W 1,∞

x L∞
y
ρ,

div Avε1
(s,Xvε1

(t, y)) ⩽ã := ∥a∥W 1,∞
x L∞

t,I
+ ∥a∥W 1,∞

I L∞
t,x
∥ψa∥W 1,∞

x L∞
y
ρ,
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we conclude that ∫
Rd

(
v0ε1(X

−1
vε1

(t, x)) − v0ε2(X
−1
vε1

(t, x))

)
exp

(∫ t

0

G1(τ, t, x)dτ

)
dx

=

∫
Rd

(
v0ε1(y) − v0ε2(y)

)
exp

(∫ t

0

Gvεi (τ, y)dτ

)
|J−1
Xvε1

(t,y)|dy

⩽e(γ+α̃)T∥v0ε1 − v0ε2∥L1(R). (5.31)

On the other hand, the compactness of the support of v0ε2 , together with the relation

|Xvε(t, y) − y| ⩽ ∥a∥L∞t,

implies that
v0ε2(X

−1
vε1

(t, x)) − v0ε2(X
−1
vε2

(t, x)) = 0, for all x ̸∈ Ot := supp v0 +Brt ,

where Brt is the ball of radius ∥a∥L∞t. Hence, we obtain∫
Rd

(
v0ε2(X

−1
vε1

(t, x)) − v0ε2(X
−1
vε2

(t, x))

)
exp

(∫ t

0

G1(τ, t, x)dτ

)
dx

⩽|Ot|∥v0ε2∥W 1,∞(Rd)e
γT |X−1

vε1
(t, x) −X−1

vε2
(t, x)|

⩽C̃T∥vε1 − vε2∥1, (5.32)

where we have used (5.24) on the second line1.
From the definition of Gu(t, x), we observe that

|∆E(s, t, x)| ⩽eγT
∫ t

s

|G1(τ, t, x) −G2(τ, t, x)|dτ

⩽C̃T∥vε1 − vε2∥1, (5.33)

where C̃T depends on ρ, T , the derivatives of R, a and ψa, and on the constant appearing in (5.24).
Using the change of variables y = Xvε2

(s,X−1
vε2

(t, x)) and recalling that

|JXvε2
(t,X−1

vε2
(s,x))| = e

∫ t
0 div Au(τ,Xvε2

(t,X−1
vε2

(s,x)))dτ−
∫ s
0 div Avε2

(τ,x)dτ ,

we see that ∫
Rd

M2(s, t, x, z)dx =

∫
Rd

m(s, y, z, (Idvε2)(s, y))|JXvε2
(t,X−1

vε2
(s,y))|

−1dy

⩽ e2ãT
∫
Rd

sup
s,z,I

mεi(s, y, z, I)dy ⩽ e2ãT |K|M.

1This term is responsible for the possible loss of regularity for t > 0: In order to prove that vε is a Cauchy sequence
in C([0, T ],W 1,1(Rd)), we would need a W 2,∞(Rd) estimate over v0ε , which we do not have.
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Therefore, we have the bounds ∫
Rd

v0(X−1
vε2

(t, x))|∆E(0, t, x)|dx ⩽ eα̃T∥v0∥L1(Rd)C̃T∥vε1 − vε2∥1,

(5.34)
t∫

0

∫
Rd

∫
Rd

M2(s, t, x, z)

(
∆Vε1ε2(s, z)

)
dz exp

 t∫
s

G1(τ, t, x)dτ

 dxds ⩽ e(γ+2ã)T |K|M∥vε1 − vε2∥1,

(5.35)
t∫

0

∫
Rd

∫
Rd

M2(t, x, z)vεj(s, z)dz

(
|∆E(s, t, x)|

)
dxds ⩽ e2ãT |K|MρTC̃T∥vε1 − vε2∥1.

(5.36)

The function m(t, x, z, I) having a compact support on the x variable, leads to

M1(s, t, x, z) −M2(s, t, x, z) = 0, for all x ̸∈ K +B2rt .

On the other hand, the function m being differentiable and Lipschitz, implies that, for all x ∈ K+B2rt

|M1(s, t, x, z) −M2(s, t, x, z)| ⩽∥m∥W 1,∞
x

|Xvε1
(s,X−1

vε1
(t, x)) −Xvε2

(s,X−1
vε2

(t, x))|
+ µ|(Idvε1)(s,Xvε1

(s,X−1
vε1

(t, x))) − (Idvε2)(s,Xvε2
(s,X−1

vε2
(t, x)))|

⩽(∥m∥W 1,∞
x

+ ∥ψd∥W 1,∞
x

ρ)|Xvε1
(s,X−1

vε1
(t, x)) −Xvε2

(s,X−1
vε2

(t, x))|
+ ∥ψd∥L∞∥vε1 − vε2∥L1(Rd).

Using first Lemma 5.1 and then Lemma 5.4, we conclude that there exists a constant C̃T such that

|M1(s, t, x, z) −M2(s, t, x, z)| ⩽C̃T
(
|X−1

vε1
(t, x) −X−1

vε2
(t, x)| + ∥vε1 − vε2∥1 + ∥vε1 − vε2∥L1(Rd)

)
⩽C̃T

(
∥vε1 − vε2∥1 + ∥vε1 − vε2∥L1(Rd)

)
.

Therefore, we have the bound

t∫
0

∫
Rd

∫
Rd

(
M1(s, t, x, z) −M2(s, t, x, z)

)
vε1(s, z)dz exp

(∫ t

s

G1(τ, t, x)dτ

)
dxds

⩽|K +B2rT |ρC̃T eγT∥vε1 − vε2∥1. (5.37)

Putting together the bounds (5.31) through (5.37), we get

∥vε1 − vε2∥L1(Rd) ⩽ C̃T

(
∥v0ε1 − v0ε2∥L1(R) +

∫ T

0

∥vε1 − vε2∥L1(Rd)ds

)
.

Thanks to Grönwall’s lemma, we have then the relation

sup
t∈[0,T ]

∥vε1 − vε2∥L1(Rd) ⩽ C̃T∥v0ε1 − v0ε2∥L1(Rd)
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for some C̃T independent of ε1 and ε2, which proves that, up to the extraction of a sub-sequence, vε is
a Cauchy sequence in C([0, T ], L1(Rd)). Therefore, there exists v ∈ C([0, T ], L1(Rd)) such that

lim
ε→0

sup
t∈[0,T ]

∥vε − v∥L1(Rd) = 0.

Furthermore, such function satisfies the bounds (5.25) and (5.27).
We claim now that the sequence L∗

vεφ converges to L∗
vφ in L∞([0, T ]×Rd) for all φ ∈ C1

c ([0, T )×Rd).
This is a direct consequence of the relation

|L∗vεφ− L∗vεφ| ⩽ (Lr∥ψg∥L∞ + µ∥ψd∥L∞)∥φ∥L∞(Rd)∥vε − v∥L1(Rd).

In order to conclude, we recall that all classical solutions are weak solutions, and therefore, for all ε > 0∫ T

0

∫
Rd

vεL
∗
vεφdxdt =

∫
Rd

v0εφdx,

and taking the limit when ε goes to 0 we see that v is a weak solution of problem (5.19).

Considering initial data with compact support might be enough in order to model most of the
biological scenarios found in nature. However, the hypothesis v0 ∈ W k,∞(Rd) might be too restrictive
for some real life scenarios. Furthermore, the study of the problem when more general initial conditions
are present, is of theoretical interest. We show below that, when ∂Ia = 0, a solution exists for any
initial data v0 ∈ W k,1(Rd), k ⩾ 1.

Theorem 5.3. Under hypothesis (5.15) through (5.18), if ∂Ia = 0, for all non-negative functions
v0 ∈ W k,1(Rd), there exists a unique non-negative weak solution v ∈ C([0, T ],W k,1(Rd)) of problem
(5.19). Furthermore, such a solution satisfies

sup
t∈[0,T ]

∥v∥L1(Rd) ⩽ max{∥v0∥L1(Rd),
I∗

ψg
}, (5.38)

sup
t∈[0,T ]

∥v∥Wk,∞(Rd) ⩽ CT∥v0∥Wk,1(Rd). (5.39)

Proof. As in the proof for k = 1 when ∂Ia ̸= 0, we can approximate any function v0 ∈ W k,1 by a smooth,
compactly supported sequence of functions v0ε . The same arguments as in the previous proof will show
that vε, the sequence of solutions associated to v0ε , is a Cauchy sequence in C([0, T ], L1(Rd)). Further-
more, given that the second term in (5.30), which is responsible for the possible loss of regularity in the
previous case, is equal 0 when ∂Ia = 0, we show that vε is a Cauchy sequence in C([0, T ],W k,1(Rd)) as
well. We prove as in Theorem 5.2 that the limit of vε is the required weak solution.

Given that the regularity of the solution varies depending on whether ∂Ia = 0 or ∂Ia ̸= 0, and that
such regularity will be of importance in the upcoming sections, we define the parameter

κ :=


k − 1, if ∂Ia ̸= 0,

k, if ∂Ia = 0,

which encompasses the information over said regularity.

We remark that if we had ∂Im = 0, we might obtain existence for a larger class of mutation functions
m. For conciseness, we will however not consider such cases in the present work.
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5.3 Particle Method

The particle method basically consists in searching for an approximate solution of problem (5.19) which
is a sum of weighted Dirac masses.
Throughout the following section we suppose

ψa ∈ C
(
[0, T ] × Rd

x,W
1,∞(Rd)

)
∩C

(
[0, T ] × Ry,C

2(Rd
x) ∩W 2,∞(Rd

x)
)
, (5.40)

0 < ψg ⩽ ψg ∈ C
(
[0, T ] × Rd

x,W
1,∞(Rd

y)
)
∩C

(
[0, T ] × Rd

y,C
1(Rd

x) ∩W 1,∞(Rd
x)
)

(5.41)

ψd ∈ C
(
[0, T ] × Rd

x,W
1,∞(Rd

y)
)
∩C

(
[0, T ] × Rd

y,C
1(Rd

x) ∩W 1,∞(Rd
x).
)

(5.42)

Notice that, unlike the set of hypotheses (5.15)-(5.17), we have imposed W 1,∞(Rd) regularity for the y
variable, which is needed in order to approximate the integral terms by sums over a countable set.
Consider as well

0 ⩽ m ∈ C
(
[0, T ] × Rd

x × Rd
y,W

1,∞(RI)
)
∩C

(
[0, T ] × Rd

x × RI ,W
1,∞(Rd

y)
)
∩C

(
[0, T ] × Rd

y × RI ,C
1
c (Rd

x)
)

(5.43)
satisfying hypotheses (5.7) through (5.18).
For h > 0, consider a countable set of indices Jh ∈ Zd, points x0i ∈ Rd and weights w0

i for i ∈ Jh. The
weights w0

i can be regarded as the respective masses of a collection of subsets Ω0
i ⊂ Rd satisfying

Ω0
i ∩ Ω0

j = ∅, if i ̸= j, and
⋃
i∈Jh

Ω0
i = Rd. (5.44)

For example, we may choose the Ω0
i as the set of all non intersecting cubes of side length equal h having

the points hi as centers , i ∈ Zd. This way, w0
i = hd, with each of the x0i being a point in Ω0

j . In general
we assume that there exist positive constants c and C such that

ch ⩽ |x0i − x0j | ⩽ Ch, ∀i ̸= j, (5.45)

chd ⩽ w0
i ⩽ Chd, ∀i ∈ Jh. (5.46)

Following [57], the particle method then consists in looking for a measure νh of the form

νh(t) =
∑
i∈Jh

νi(t)wi(t)δxi(t),

where (ν := {vi(t)}i∈Jh
, w := {wi(t)}i∈Jh

, x := {xi(t)}i∈Jh
), is the solution of the following system

ẋi(t) =Aν,w(t, xi),

ẇi(t) =div Aν,w(t, xi(t))wi(t),

ν̇i(t) =
(
− div Aν,w(t, xi(t)) +R(t, xi(t), Ig(t, xi(t), ν, w))

)
νi(t)

+
∑
j∈Jh

wj(t)νj(t)m(t, xi(t), xj(t), Id(t, xi(t), ν, w)),

xi(0) =x0i , wi(0) = w0
i , νi(0) = v0(x0i ),

(5.47)
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where
Aν,w(t, x) = a(t, x, Ia(t, x, ν, w)),

and

Il(t, x, ν, w) :=
∑
j∈Jh

νj(t)wj(t)ψl(t, x, xj(t)),

with l ∈ {a, g, d}.
In what follows we assume that h and x0k are chosen in such a way that

∥v0∥1,h :=
∑
i∈Jh

v0(x0i )w
0
i <∞. (5.48)

We define the subset of indices

Jm
h := {i ∈ Jh : x0i ∈ supp m+B∥a∥L∞T},

where B∥a∥L∞T is the ball of radius ∥a∥L∞T . The compact support of m implies that |Jm
h | <∞.

For a positive value of h and a set of indexes Jh we define the functional spaces

l1(Jh) :=
{
u = {ui}i∈Jh

:
∑
i∈Jh

|ui| < +∞
}
,

l∞(Jh) :=
{
w = {wi}i∈Jh

: sup
i∈Jh

|wi| < +∞
}
.

We equip these spaces with the norms

∥u∥l1 :=
∑
i∈Jh

|ui| and ∥w∥l∞ := sup
i∈Jh

|wi|

respectively. It is clear that for all u ∈ l1(Jh) and v ∈ l∞(Jh), then uv ∈ l1(Jh). For T > 0 we define
as well the spaces

XT
h := C([0, T ],l1(Jh)) and Y T

h := C([0, T ],l∞(Jh)),

equipped with the norms

∥u∥1,h := sup
t∈[0,T ]

∥u(t)∥l1 and ∥w∥∞,h := sup
t∈[0,T ]

∥w(t)∥l∞ .

Problem (5.47) is a strongly coupled system of ODEs, with an infinite number of unknowns and
equations. In some cases the system becomes uncoupled (for example if ∂Ia = 0) or with a finite
number of equations and unknowns (for example if v0, a and m have compact support), however, for
the sake of generality, we present below the proof of existence of solution in the general case, and later
discuss briefly these particular scenarios.
We start by giving two results that will be of great use for the proof of existence for problem (5.47).
First, we deal with the existence of solution for a simpler system of infinite equations with infinitely
many unknowns:

Lemma 5.7. Consider a ∈ C([0, T ], (W 1,∞(Rd+1)))d, u ∈ XT
h , w ∈ Y T

h and ψa satisfying hypothesis
(5.40). Then there exists a unique family of functions x := {xi}i∈Jh

, xi ∈ C1([0, T ]) for all i ∈ Jh
which is solution of the system of equations

ẋi(t) = Au,w(t, xi), t ∈ [0, T ], xi(0) = x0i . (5.49)
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When ∂Ia = 0, system (5.49) becomes uncoupled, each individual equation has a solution, thanks
to the classic Cauchy-Lipschitz theory. The proof of the general case is given in Appendix 5.6.2.
The second auxiliary result comes from approximation theory, and it will also be of great use in Section
5.4:

Lemma 5.8.

∀φ ∈ W k,1(Rd),

∣∣∣∣ ∫
Rd

φ(x)dx−
∑
i∈Jh

wi(t)φ(xi(t))

∣∣∣∣ ⩽ Chk∥φ∥k,1,

where C is a constant which depends on a, ψa, ∥vw∥1,h and T .

This result is a direct corollary of Lemma 8 in [184]. More details regarding its proof are given in
Appendix 5.6.3.
From now on, we suppose h to be small enough so that for any t ∈ [0, T ],∑

i∈Jh

wi(t)m(t, xi(t), y, Id(t, xi(t), ν, w)) < K +
r∗

2
, (5.50)

where the values of K and r∗ are given in (5.11) and (5.18) respectively. Such a choice is always possible
thanks to Lemma 5.8.

Theorem 5.4. Under hypothesis (5.5) through (5.18) and (5.40) through (5.46), for all T > 0 and all
non-negative initial data v0 ∈ l1(Jh,Ω

0) there exists a unique solution xi ∈ C1([0, T ]), for all i ∈ Jh,
w := {wi(·)}i∈Jh

∈ C([0, T ],l∞(Jh)) and 0 ⩽ ν := {νi(·)}i∈Jh
∈ C([0, T ],l1(Jh)) of problem (5.47).

Furthermore, there exist positive constants cT and CT such that the solution satisfies, for all t ∈ [0, T ]

cTh ⩽ |xi(t) − xj(t)| ⩽ CTh, ∀i, j ∈ Jh, i ̸= j, (5.51)

cTh
d ⩽ wi(t) ⩽ CTh

d, ∀i ∈ Jh, (5.52)

∥νw∥1,h ⩽ max{∥v0hd∥l1 ,
I∗

ψg
}. (5.53)

Proof. Consider v0 ∈ l1(Jh,Ω
0), satisfying v0 ⩾ 0. Consider as well α > 1, and define

ρα := max{αhd∥v0∥l1 ,
I∗

ψg
},

ã := ∥a∥W 1,∞
x L∞

I,t
+ ∥a∥W 1,∞

I L∞
t,x
∥ψa∥W 1,∞

x
Cα.

For T > 0 we define the set

DT
α := {(u,w) ∈ XT

h × Y T
h : ∥uw∥1,h ⩽ ρα,∀t ∈ [0, T ], u(t) ⩾ 0, w(t) ⩾ 0, hde−ãt ⩽ wk(t) ⩽ hdeãt}.
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For any (u,w) ∈ DT
α we introduce the problem, for t ∈ [0, T ],

ẋi(t) =Au,w(t, xi),

ω̇i(t) =div Au,w(t, xi(t))ωi(t),

ν̇i(t) =
(
− div Au,w(t, xi(t)) +R(t, xi(t), Ig(t, xi(t), u, w))

)
νi(t)

+
∑
j∈Jh

ωj(t)uj(t)m(t, xi(t), xj(t), Id(t, xi(t), u, w)),

xi(0) =x0i , ωi(0) = w0
i , νi(0) = v0(x0i ).

(5.54)

We denote (ν, ω) = Φ(u,w).

For each pair (u,w), the existence and uniqueness of xi is immediate from Lemma 5.7. Furthermore,
for all values of i, we have the following explicit expression for ωi

ωi(t) = w0
i e

∫ t
0 div Au,w(s,xi(s))ds,

which satisfies, for any t ∈ [0, T ]
hde−ãt ⩽ ωi(t) ⩽ hdeãt.

On the other hand, for all (u,w) ∈ DT
α and all values of i, the right-hand side of the differential equation

in (5.54) is well defined, as we have for all t ∈ [0, T ]∑
j∈Jh

wj(t)uj(t)m(t, xi(t), xj(t), Id(t, xi(t), u, w)) ⩽M
∑
j∈Jh

wj(t)uj(t) ⩽Mρα.

Therefore, the expression for νi is given by

νi(t) = v0(x0i )e
∫ t
0 Gi(s)ds +

t∫
0

∑
j∈Jh

wj(s)uj(s)m(s, xi(s), xj(s), Id(s, xi(s), u, w))e
∫ t
s Gi(τ)dτds, (5.55)

where
Gi(t) := −div Au,w(s, xi(s)) +R(s, xi(s), Ig(s, xi(s), u(s), w(s))),

satisfies
sup
t∈[0,T ]

|Gi(t)| ⩽ γ := ∥R∥L∞
t,x,I

+ ∥a∥W 1,∞
x L∞

t,I
+ ∥a∥W 1,∞

I L∞
t,x
∥ψa∥W 1,∞

x L∞
y
ρα.

The positiveness of ν is immediate from the positiveness of v0 and m.

Furthermore, given that |xi(t) − x0i | ⩽ ∥a∥L∞T , for all k ∈ Jh and t ∈ [0, T ], we have

m(t, xi(s), y, I) = 0,
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for all i ̸∈ Jm
h , t ∈ [0, T ], y ∈ Rd and I ∈ R. As a result, multiplying (5.55) by ωi(t) for each i and

adding for all values of i, we obtain

∑
i∈Jh

νi(t)ωi(t) ⩽ e(γ+α̃)T

∑
i∈Jh

v0(x0i )h
d + hd

t∫
0

∑
i∈Jh

∑
j∈Jh

wj(s)uj(s)m(s, xi(s), xj(s), Id(s, xi(s), u, w))ds


= e(γ+α̃)T

∑
i∈Jh

v0(x0i )h
d + hd

t∫
0

∑
i∈Jm

h

∑
j∈Jh

wj(s)uj(s)m(s, xi(s), xj(s), Id(s, xi(s), u, w))ds


⩽ e(γ+α̃)T

∑
i∈Jh

v0(x0i )h
d + hd|Jm

h |M
t∫

0

∑
j∈Jh

wj(s)uj(s)ds


⩽ e(γ+α̃)T (

1

α
+ TKh)ρα,

where Kh := hd|Jm
h |M2. Thanks to the condition α > 1 there exists Tα (only depending on α and on

the coefficients of the problem) such that Φ : DT
α → DT

α , for all T ⩽ Tα.
We now prove that there exists T ∈ (0, Tα) such that Φ is a contraction over DT

α .
Step 1: Bounds over x = {xi}i∈Jh

Let (u1, w1) and (u2, w2) be two pairs in DT
α , and let x1, x2 be the respective solutions of

ẋji = Auj ,wj(t, xji ).

By following the same ideas as in the proof of Lemma 5.1 (see Appendix 5.6.1), we obtain that for all
t ∈ [0, T ],

∥x1(t) − x2(t)∥∞,h ⩽ C(T, h)
(
∥w1 − w2∥∞,h + ∥u1 − u2∥1,h

)
,

where the constant C(T, h) satisfies lim
T→0

C(T, h) = 0.

Step 2: Bounds over ω = {ωi}i∈Jh

From the expression for ω, we get, for all t ∈ [0, T ]

|ω1
i (t) − ω2

i (t)| ⩽hdTeãT
(
∥a∥W 2,∞

x,I
(1 + |∂xIa(t, x2i , u2, w2)|)∥x1 − x2∥∞,h

+ ∥a∥W 2,∞
x,I

(1 + |∂xIa(t, x2i , u2, w2)|)|Ia(t, x1i , u1, w1) − Ia(t, x
2
i , u

2, w2)|

+∥a∥W 1,∞
I

|∂xIa(t, x1i , u1, w1) − ∂xIa(t, x
2
i , u

2, w2)|
)
.

On the other hand we have

|∂xIa(t, x2i , u2, w2)| ⩽∥ψa∥W 1,∞
x

ρα,

|Ia(t, x1i , u1, w1) − Ia(t, x
2
i , u

2, w2)| ⩽ρα∥ψa∥W 1,∞
x,y

∥x1 − x2∥∞,h,

+ ∥ψa∥L∞
x,y
eãT (hd∥u1 − u2∥1,∞ +

ρα
hd

∥w1 − w2∥∞,h),

and

|∂xIa(t, x1i , u1, w1) − ∂xIa(t, x
2
i , u

2, w2)| ⩽ρα∥ψa∥W 2,∞
x,y

∥x1 − x2∥∞,h

+ ∥ψa∥W 1,∞
x

eãT (hd∥u1 − u2∥1,∞ +
ρα
hd

∥w1 − w2∥∞,h).

2Notice that hd|Jm
h | ≈ |supp m+B∥a∥L∞T |



In conclusion, there exists a constant C(T, h), satisfying lim
T→0

C(T, h) = 0 such that

∥ω1 − ω2∥∞,h ⩽ C(T, h)
(
∥w1 − w2∥∞,h + ∥u1 − u2∥1,h

)
.

Step 3: Bounds over ν = {νi}i∈Jh

Using the expression for ν, the regularity of m and bounds similar to those used for ω, we see that
there exists a constant C(T, h) satisfying lim

T→0
C(T, h) = 0 such that

∥ν1 − ν2∥1,h ⩽ C(T, h)
(
∥w1 − w2∥∞,h + ∥u1 − u2∥1,h

)
.

Consequently, there exists a constant C(T, h) satisfying lim
T→0

C(T, h) = 0, such that

∥ω1 − ω2∥∞,h + ∥ν1 − ν2∥1,h ⩽ C(T, h)
(
∥w1 − w2∥∞,h + ∥u1 − u2∥1,h

)
,

which implies that, for 0 < T1 ⩽ Tα small enough, Φ is a contraction over DT1
α , and therefore it has a

unique fixed point. Such fixed point is a solution of problem (5.47) over [0, T1).
We now claim that the solution exists for T arbitrary, and furthermore, it satisfies the relation (5.53).
Let Tf be the maximal time of existence of solution. Suppose that there exists t0 ∈ (0, Tf ] such that
∥νw∥1,h > ρα. This implies that there exist δ ⩾ 0 and t∗ > 0 such that for a certain finite subset of Jh,
that we denote as Kh, the following statements are true:∑

i∈Kh

νi(t)wi(t) ⩽ ρα, ∀ t ∈ [t∗ − δ, t∗],∑
i∈Kh

νi(t)wi(t) > ρα, ∀ t ∈ (t∗, t∗ + δ].

This implies the existence of t1 ∈ [t∗, t∗+δ] such that the following properties are satisfied simultaneously

∑
i∈Kh

νi(t1)wi(t1) ⩾ ρα and

(∑
i∈Kh

νiwi

)′

(t1) ⩾ 0. (5.56)

Multiplying the equation satisfied by νi(t) by wi(t) we get the relation

ν̇i(t)wi(t) =
(
− div Aν,w(t, xi(t)) +R(t, xi(t), Ig(t, xi(t), ν, w))

)
νi(t)wi(t)

+ wi(t)
∑
j∈Jh

wj(t)νj(t)m(t, xi(t), xj(t), Ig(t, xi(t), ν, w)),

while, directly from the equation for wi(t) we deduce

νi(t)ẇi(t) = div Aν,w(t, xi(t))νi(t)wi(t).

Therefore, adding both relations for i ∈ Kh and using (5.50), we get(∑
i∈Kh

νiwi

)′

(t) =

(∑
i∈Kh

R(t, xi(t), Ig(t, xi(t), ν, w))νi(t)wi(t)

)
+
∑
j∈J

wj(t)νj(t)
∑

i∈Kh∩Jm
h

m(t, xi(t), xj(t), Id(t, xi(t), ν, w))wi(t)

⩽

(∑
i∈Kh

R(t, xi(t), Ig(t, xi(t)))νi(t)wi(t)

)
+ (K +

r∗

2
)
∑
j∈Kh

wj(t)νj(t).
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Given that ∥ν(t1)w(t1)∥l1 ⩾ ρα ⩾ I∗

ψ
g

, then Ig(t1, xi(t1), ν(t1), w(t1)) ⩾ I∗, and consequently

R(t1, xi(t1), Ig(t1, xi(t1), ν(t1), w(t1))) < −r∗ −K,

for all values of i, which in turn implies that(∑
i∈Kh

νiwi

)′

(t1) ⩽ −r
2

2

∑
i∈Kh

νi(t1)wi(t1) < 0,

which contradicts (5.56). Therefore, ∥νw∥1,h ⩽ ρα for all values of α > 1 and for all t ∈ (0, Tf ). We
can then iterate the arguments used to prove existence of a solution, and conclude that the solution
can be extended to any interval [0, T ]. As ∥νw∥1,h ⩽ ρα for all t, independently of α, taking the limit
when α goes to 1, we obtain (5.53).

5.4 Convergence of the numerical solution towards a weak

solution

We study now the conditions under which a solution of problem (5.54) converges towards a solution of
problem (5.19), in a certain sense that will be defined later. We split our analysis in two cases: first,
the study of convergence on a finite interval of time [0, T ]. We will see that for any T > 0, the solution
obtained through the particle method converges towards the solution of the PDE (5.19). However, the
speed of convergence might be affected by the value of T . The second case we study is the asymptotic
proximity of both solutions when t goes to ∞. This is a far more complex and interesting issue, and
we show different examples exposing some of the behaviours that can be observed.

Directly from the study of existence of solutions for each problem, we notice that the sets of
hypotheses we have used, do not coincide. We give a set of hypotheses which simultaneously guarantees
the existence of solution for both problems, while taking into account the distinction of cases involved
in the definition of κ.
For a certain T > 0 and k > 0, we consider the functions

ψa ∈ C([0, T ] × Rd
x,W

1,∞(Rd
y)) ∩C

(
[0, T ] × Rd

y,C
k+1(Rd

x) ∩W k+1,∞(Rd
x)
)
, (5.57)

0 < ψg ⩽ ψg ∈ C
(
[0, T ] × Rx,W

1,∞(Rd
y)
)
∩C

(
[0, T ] × Ry,C

κ(Rd
x) ∩W κ,∞(Rd

x)
)
, (5.58)

ψd ∈ C
(
[0, T ] × Rd

x,W
1,∞(Rd

y)
)
∩C

(
[0, T ] × Rd

y,C
κ(Rd

x) ∩W κ,∞(Rd
x)
)
. (5.59)

As in Section 5.2 we introduce

a ∈ C([0, T ],W k+1,∞(Rd+1)), (5.60)

R ∈ C
(
[0, T ] × Rx,W

κ,∞
loc (Rd

y)
)
∩C

(
[0, T ] × Ry,C

κ(Rd
x) ∩W κ,∞(Rd

x))
)

(5.61)

We consider as well

0 ⩽ m ∈ C
(
[0, T ] × Rd

x × Rd
y,W

κ,∞(RI)
)
∩C

(
[0, T ] × Rd

x × Rd
I ,W

κ,∞(Rd
y)
)
∩C

(
[0, T ] × Rd

y × Rd
I ,C

κ
c (Rd

x)
)
.

(5.62)
satisfying hypothesis (5.7) through (5.18).
Finally, we consider v0 ∈ W k,1(Rd) if ∂Ia = 0 and v0 ∈ W k,1(Rd) ∩W k,∞(Rd) with compact support
otherwise.



5.4.1 Convergence on a finite time interval

We recall that the function v represents the solution of problem (5.19) while xi, wi and νi, i ∈ Jh
represents that of problem (5.54). We recall as well that

max{∥v∥, ∥νw∥1,h} ⩽ max{∥v0∥L1(Rd), ∥v0hd∥l1 ,
I∗

ψg
} =: ρ.

Let ε > 0, r ∈ R and φ ∈ Cc(Rd) satisfy the following conditions∫
Rd

φ(x)dx = 1, (5.63)∫
Rd

xαφ(x)dx = 0, ∀ α ∈ Nn, |α| ⩽ r − 1. (5.64)

. We define, for all t ∈ [0, T ], x ∈ Rd

i)

vh(t, x) =
∑
i∈Jh

νi(t)wi(t)δ(x− xi(t)), (5.65)

a time dependent measure obtained as a sum of weighted Dirac deltas at xi(t),

ii)

vhε (t, x) = (vh(t) ∗ φε)(x) =
∑
i∈Jh

νi(t)wi(t)φε(x− xi(t)), (5.66)

a regular function obtained as the space convolution of vh(t, x) and φε(x), where

φε :=
1

εd
φ(

·
ε

).

We also introduce the following operator, for any function v ∈ L∞(0, T ;L1(Rd)):(
Πh
ε (t)v

)
(x) =

∑
i∈Jh

wi(t)v(t, xi(t))φε(x− xi(t)).

We recall a direct corollary of the Theorem 3 in [184]:

Proposition 5.1. Let k, r be two integers, with k > d, and let us assume that a ∈ L∞ (0, T ;W k+1,∞(Rd)d
)
,

and that φ ∈ C1
c (Rd) ∩W k+1,1(Rd) satisfies conditions (5.63) and (5.64). Then, for any p ∈ [1,+∞],

there exists C = C(T ) > 0 such that, for any u ∈ W µ,1(Rd) (µ = max(r, k)),

∥u− Πh
ε (t)u∥Lp(Rd) ⩽ C

(
εr∥u∥W r,p(Rd) +

( ε
h

)k∥u∥Wk,p(Rd)

)
.

We seek to prove the following approximation result between vhε and v, the solution of problem
(5.19).
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Theorem 5.5. Assume that hypotheses (5.57) through (5.62) are satisfied, and that φ ∈ C1
c (Rd) ∩

W k+1,1(Rd) satisfies (5.63) and (5.64). Then, there exists C = C(T, a,R,m, ρ) > 0, a positive constant
which depends on T , a, R, m and ρ such that

∥v − vhε ∥L1(Rd) ⩽ C
(
εr +

(h
ε

)κ
+ hκ

)
∥v0∥Wµ,1(Rd), ∀ 0 ⩽ t ⩽ T,

where µ = max(r, κ).

The proof of Theorem 5.5 strongly relies on Proposition 5.1 and the following result:

Proposition 5.2. Under hypotheses (5.57) through (5.62), there exists a constant CT > 0, depending
only on T and on the parameters of problems (5.19) and (5.54), such that their respective solutions
satisfy, for all t ∈ [0, T ], ∑

i∈Jh

|v(t, xi(t)) − νi(t)|wi(t) ⩽ CTh
k−1∥v0∥Wµ,1(Rd). (5.67)

Proof. Consider βε as in (5.88). We define e = {ei(·)}i∈J where for all i ∈ J and t ∈ [0, T ],

ei(t) := v(t, xi(t)) − νi(t),

eε,i(t) := βε(ei(t))wi(t),

and compute
ėε,i(t) = β′

ε(ei(t))ėi(t)wi(t) + βε(ei(t))ẇi(t). (5.68)

We recall that

ėi(t) =

(
Gν,w(t, xi(t)) −Gv(t, xi(t))

)
νi(t) +

(
Aν,w(t, xi(t)) −Av(t, xi(t))

)
∇v(t, xi(t))

−Gv(t, xi(t))ei(t) + ∆M(t, xi(t)),

where

Gν,w(t, xi(t)) := div Aν,w(t, xi(t)) −R(t, xi(t), Ig(t, xi(t), ν, w)),

Gv(t, xi(t)) := div Av(t, xi(t)) +R(t, xi(t), (Igv)(t, xi(t))),

∆M(t, xi(t)) :=

∫
Rd

m(t, xi(t), y, (Idv)(t, xi))v(t, y)dy −
∑
j∈Jh

wj(t)νj(t)m(t, xi(t), xj(t), Id(t, xi(t), ν, w)).

The functions a and R being Lipschitz, there exists a constant C depending on the parameters of the
problem and the value ρ, such that∣∣∣∣Gν,w(t, xi(t)) −Gv(t, xi(t))

∣∣∣∣ ⩽C(|(Iav)(t, xi(t)) − Ia(t, xi(t), ν, w)|

+ |∂x(Iav)(t, xi(t)) − ∂xIa(t, xi(t), ν, w)|

+ |(Igv)(t, xi(t)) − Ig(t, xi(t), ν, w)|
)
.
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Notice that

|(Iav)(t, xi(t)) − Ia(t, xi(t), ν, w)| =

∣∣∣∣∫
Rd

ψa(t, xi(t), y)v(y)dy −
∑
j∈Jh

ψa(t, xi(t), xj(t))νj(t)wj(t)

∣∣∣∣
⩽

∣∣∣∣∫
Rd

ψa(t, xi(t), y)v(y)dy −
∑
j∈Jh

ψa(t, xi(t), xj(t))v(t, xj(t))wj(t)

∣∣∣∣
+

∣∣∣∣∑
j∈Jh

ψa(t, xi(t), xj(t))

(
v(t, xj(t) − νj(t))

)
wj(t)

∣∣∣∣
⩽C

(
hκ∥v∥Wκ,1(Rd) +

∑
j∈Jh

|ej(t)|wj(t)
)
,

where in the last line we have used Lemma 5.8 and the W κ,1(Rd) regularity of v. Similar results are true
for |∂x(Iav)(t, xi(t))−∂xIa(t, xi(t), ν, w)| and |(Igv)(t, xi(t))−Ig(t, xi(t), ν, w)|. In conclusion, thanks to
(5.27), there exists a constant CT , only depending on T , the parameters of the problem and the value
ρ, such that ∣∣∣∣Gν,w(t, xi(t)) −Gv(t, xi(t))

∣∣∣∣ ⩽ CT

(
hκ∥v0∥Wκ,1(Rd) +

∑
j∈Jh

|ej(t)|wj(t)
)
. (5.69)

Again, using the Lipschitz regularity of a, we see that∣∣∣∣Aν,w(t, xi(t)) −Av(t, xi(t))

∣∣∣∣ ⩽C|(Iav)(t, xi(t)) − Ia(t, xi(t), ν, w)|

⩽CT

(
hκ∥v0∥Wκ,1(Rd) +

∑
j∈Jh

|ej(t)|wj(t)
)
. (5.70)

The boundedness of a and R implies the existence of a constant G such that for all i ∈ J and t ∈ [0, T ],

|Gv(t, xi(t))| ⩽ G. (5.71)

We recall from the previous section that

∆M(t, xi(t)) = 0, ∀i ̸∈ Jm
h ,

where the set of indexes Jm
h has a finite number of elements, which depends on T . On the other hand,

for those i ∈ Jm
h , we have

|∆M(t, xi(t))|

⩽

∣∣∣∣∫
Rd

m(t, xi(t), y, (Idv)(t, xi(t)))v(t, y)dy −
∑
j∈Jh

wj(t)v(t, xj(t))m(t, xi(t), xj(t), (Idv)(t, xi(t)))

∣∣∣∣
+
∑
j∈Jh

wj(t)v(t, xj(t))

∣∣∣∣m(t, xi(t), xj(t), (Idv)(t, xi(t))) −m(t, xi(t), xj(t), Id(t, xi(t), ν, w))

∣∣∣∣
+
∑
j∈Jh

wj(t)|ej(t)|m(t, xi(t), xj(t), (Idv)(t, xi(t)))

⩽C

(
hκ∥v∥Wκ,1(Rd) + µ|(Idv)(t, xi(t)) − Id(t, xi(t), ν, w)|

∑
j∈Jh

wj(t)v(t, xj(t)) +M
∑
j∈Jh

|ej(t)|wj(t)
)
,
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where we have used again Lemma 5.8, the W κ,1(Rd) regularity of m(t, x, y, I)v(t, y) with respect to the
y variable, and the Lipschitz regularity of m. Furthermore, Lemma 5.8 gives us the bound∑

j∈Jh

wj(t)v(t, xj(t)) ⩽ ∥v∥L1(Rd) + Chκ∥v∥Wκ,1(Rd),

which together with manipulations similar to those made for |(Iav)(t, xi(t))− Ia(t, xi(t), ν, w)|, and the
bound (5.27), gives

|∆M(t, xi(t))| ⩽ CT

(
hκ∥v0∥Wκ,1(Rd) +

∑
j∈Jh

|ej(t)|wj(t)
)
. (5.72)

We denote as K an arbitrary finite subset of Jh. If we add (5.68) for all values of i ∈ K, and use
bounds (5.69) through (5.72), together with the equation for wi, we get(∑

i∈K

eε,i(t)

)′

⩽CTB(t)

(
hκ∥v0∥Wκ,1(Rd) +

∑
j∈Jh

|ej(t)|wj(t)
)
,

where
B(t) :=

∑
i∈K

(νi(t) + |∇v(t, xi(t))|)wi(t) +G+ |K ∩ Jm
h |hdeãT + ã.

Given that ∑
i∈K

νi(t)wi(t) ⩽ ρ,

and ∑
i∈K

wj(t)|∇v(t, xj(t))| ⩽ ∥∇v∥L1(Rd) + Chκ−1∥∇v∥Wκ−1,1(Rd),

thanks to (5.27), we conclude that there exists a constant BT , independent of the choice of K and h,
such that B(t) ⩽ BT . Consequently, for all values of t ∈ [0, T ], h small enough and any finite subset of
Jh, we have the relation (∑

i∈K

eε,i(t)

)′

⩽ CT

(
hκ +

∑
j∈Jh

|ej(t)|wj(t)
)
.

Integrating between 0 and t, taking the limit when ε goes to zero, and using Grönwall’s lemma, we
obtain that there exists a constant CT , independent of K such that∑

i∈K

|ei(t)|wi(t) ⩽ CTh
κ∥v0∥Wκ,1(Rd).

Being CT independent of K and h, (5.67) is immediate.

In other words, we proved in Proposition 5.2 that the piece-wise constant functions that take values
v(t, xk(t)) and vk(t) respectively over the intervals Ωk(t) are close in L1(Rd).

Proof of Theorem 5.5. According to the triangle inequality,

∥v − vhε ∥L1(Rd) ⩽ ∥v − Πh
ε (t)v∥L1(Rd) + ∥Πh

ε (t)v − vhε ∥L1(Rd), (5.73)

it only remains to bound both terms on the right hand side.
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i) According to Proposition 5.1 with p = 1, and bound (5.27)

∥v − Πh
ε (t)v∥L1(Rd) ⩽ C(εr +

( ε
h

)κ
)∥v∥µ,p ⩽ CT (εr +

( ε
h

)κ
)∥v0∥µ,p.

ii) On the other hand, one computes

∥Πh
ε (t)v − vhε ∥L1(Rd) =

∫
Rd

∣∣∑
i∈Jh

wi(t)φε(x− xi(t))
(
v(t, xi(t)) − νi(t)

)∣∣dx
⩽
∑
i∈Jh

(
wi(t)|v(t, xi(t)) − νi(t)|

∫
Rd

|φε(x− xi(t))|dx
)
.

According to the definition of φε, with the change of variable x′ = x−xk(t)
ε

, we note that∫
Rd

|φε(x− xk(t))|dx =

∫
Rd

|φ(x)|dx < +∞,

by hypothesis on φ. We have then, according to Proposition 5.2, that

∥Πh
ε (t)v − vhε ∥L1(Rd) ⩽ CTh

κ∥v0∥κ,1 ⩽ Chκ∥v0∥µ,1,

which concludes the proof of Theorem 5.5.

5.4.2 Asymptotic preserving properties

The study of the asymptotic behaviour of the solution for adaptive dynamics models, such as (5.19),
is one of the main interests often treated in the literature (see [24, 30, 165, 166, 170–174, 178]). For
this reason, the design of numerical methods which preserve the asymptotic behaviour, or at least,
the identification of the problems for which the asymptotics are preserved under a certain numerical
scheme, is a priority. In other words, given that v(t, ·) converges to a measure µ when t goes to
infinity, we expect to identify the conditions under which lim

h→0
lim
t→+∞

vhε(h)(t, ·) = µ, that is, ensuring the

commutativity of diagram (5.74):

v(t, ·)
t→∞

// µ

h→0

x xh→0

vhε(h)(t) t→∞
// µh

(5.74)

In what follows, we formally define the concept of an asymptotic preserving approximation, and give
examples and counter-examples of this concept.

We recall that, according to the Riesz representation theorem, the space of finite Radon measures
can be identified with the topological dual space of Cc(Rd). Hence, we say that a sequence of finite

157



Radon measures {µn}n∈N converges weakly to a finite Radon measure µ (denoted µn ⇀
n→+∞

µ) if for all

ϕ ∈ Cc(Rd), ∫
Rd

ϕ(x)dµn(x) −→
n→+∞

∫
Rd

ϕ(x)dµ(x).

This leads us to introduce the following definition:

Definition 5.1. We say that the particle solution vhε defined in (5.66) is an asymptotic preserving
approximation of v, the solution to (5.19), if for all ε : (0, 1] → R∗

+ which converges to 0 when h goes
to 0, and all ϕ ∈ Cc(Rd),

lim sup
t→+∞

∣∣∣∣∫
Rd

ϕ(x)vhε(h)(t, x)dx−
∫
Rd

ϕ(x)v(t, x)dx

∣∣∣∣ −→h→0
0.

The following lemma ensures that, in the previous definition, vhε(h), introduced in (5.66), can be

replaced by vh, introduced in (5.65).

Lemma 5.9. The function vhε is an asymptotic preserving approximation of v if and only if

lim sup
t→+∞

∣∣∣∣∫
Rd

ϕ(x)dvh(t, x) −
∫
Rd

ϕ(x)v(t, x)dx

∣∣∣∣ −→h→0
0.

Proof. Let us prove that for all ε : (0, 1] → R∗
+ which converges to 0 as h goes to 0, and all ϕ ∈ Cc(Rd),

lim sup
t→+∞

∣∣∣∣∫
Rd

ϕ(x)vhε(h)(t, x)dx−
∫
Rd

ϕ(x)dvh(t, x)

∣∣∣∣ −→h→0
0.

Let h > 0. According to the definitions of vh and vhε , and since
∫
Rd φε(h)(x− xi(t))dx = 1 for all

i ∈ Jh we get, for all t ⩾ 0,∣∣∣∣∫
Rd

ϕ(x)vhε(h)(t, x)dx−
∫
Rd

ϕ(x)dvh(t, x)

∣∣∣∣ =

∣∣∣∣∣
∫
Rd

∑
i∈Jh

νi(t)wi(t)
(
ϕ(x) − ϕ(xi(t))

)
φε(h)(x− xi(t))dx

∣∣∣∣∣
⩽
∑
i∈Jh

|νi(t)wi(t)|
∫
Rd

∣∣(ϕ(x) − ϕ(xi(t))
)
φε(h)(x− xi(t))

∣∣dx.
With the change of variable ‘y = x−xi(t)

ε(h)
’, we get, for all i ∈ Jh,∫

Rd

∣∣(ϕ(x) − ϕ(xi(t))
)
φε(h)(x− xi(t))

∣∣dx =

∫
K

∣∣(ϕ(ε(h)y + xi(t)) − ϕ(xi(t))
)
φ(y)

∣∣dy,
where K is the support of φ. Let η > 0. Since ϕ is continuous with a compact support, and thus
uniformly continuous, then |ϕ(ε(h)x + xi(t)) − ϕ(xi(t))| ⩽ η for all i ∈ Jh, x ∈ K, t ⩾ 0 and any h
small enough. Therefore, for any h small enough,∣∣∣∣∫

Rd

ϕ(x)vhε(h)(t, x)dx−
∫
Rd

ϕ(x)dvh(t, x)

∣∣∣∣ ⩽ η
∑
i∈Jh

νi(t)wi(t),

which concludes the proof, since there exists ρ > 0 such that 0 ⩽
∑
i∈Jh

νi(t)wi(t) ⩽ ρ for all h > 0, t ⩾ 0,

as proved in Theorem 5.4.
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The problem of determining if vhε is an asymptotic preserving approximation of v is generally a
difficult question. In what follows, we deal with cases where we are able to determine the asymptotic
behaviour of both v and vh, and we check if the necessary and sufficient condition from Lemma 5.9 holds.
From now on, we assume that a is local and not time dependent, i.e. a(t, x, I) = a(x) and that that the
functions m, R, ψg and ψd are not time-dependent. We assume as well that the function (x, y, I) 7→
m(x, y, I) is not only uniformly compactly supported as a function of the x variable, but relative to the
y variable as well. That is, there exist two compact sets Kx and Ky such that sup

y,I
m(x, y, I) = 0 for all

y outside of Kx and sup
x,I

m(x, y, I) = 0 for all x outside of Ky. We denote Kxy := Kx ∪Ky. Finally, we

assume ψg and ψd to be compactly supported as functions of the y variable.

Necessary conditions of convergence towards a Radon measure

With the help of necessary conditions, we would be able to rule out those cases where v does not
converge towards certain types of Radon measures, which are the object of our interest. We start by
giving a general result, involving the necessary conditions of convergence towards any Radon measure.

Lemma 5.10. Let us assume that v(t, ·) ⇀
t→+∞

µ in the weak sense in the space of finite Radon measures.

Then, for γ ∈ {g, d},

Iα(t, x) −→
t→+∞

∫
Rd

ψα(x, y)dµ(y) =: Iα(x) ∀x ∈ Rd,

and for all ϕ ∈ C1
0 (Rd),

∫
Rd

(
a(x) · ∇ϕ(x) +R

(
x, Ig(x)

)
ϕ(x)

)
dµ(x) +

∫
Rd

(∫
Rd

m
(
x, y, Id(x)

)
ϕ(x)dx

)
dµ(y) = 0.

Proof. Let us assume that v(t, ·) ⇀
t→+∞

µ. By definition of the weak convergence in the space of finite

Radon measure, for any ϕ ∈ C1
c (Rd),∫

Rd

ϕ(x)v(t, x)dx →
t→+∞

∫
Rd

ϕ(x)dµ(x).

The first identity is thus a direct consequence of the definition of the weak convergence, applied with
ϕ = ψγ(x, ·), γ ∈ {g, d}.

Let ϕ ∈ Cc(Rd). One computes
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d

dt

∫
Rd

ϕ(x)v(t, x)dx = −
∫
Rd

ϕ(x)∇ · (a(x)v(t, x)) +

∫
Rd

R(x, Ig(t, x))ϕ(x)v(t, x)dx

+

∫
Rd

(∫
Rd

m(x, y, Id(t, x))v(t, y)

)
ϕ(x)dx

=

∫
Rd

(
a(x) · ∇ϕ(x) +R(x, Ig(t, x))ϕ(x)

)
v(t, x)dx

+

∫
Rd

(∫
Rd

m(x, y, Id(t, x))ϕ(x)dx

)
v(t, y)dy

−→
t→+∞

∫
Rd

(
a(x) · ∇ϕ(x) +R

(
x, Ig(x)

)
ϕ(x)

)
dµ(x)

+

∫
Rd

(∫
Rd

m
(
x, y, Id(x)

)
ϕ(x)dx

)
dµ(y).

Thus, t 7→
∫
Rd ϕ(x)v(t, x)dx is a convergent function with a convergent derivative, which ensures that

the limit of its derivative is zero, which concludes the proof.

The following proposition provides a necessary condition for the convergence to a sum of Dirac
masses.

Proposition 5.3. Let us assume that v(t, ·) ⇀
t→+∞

N∑
i=1

Ciδxi, with x1, . . . , xN ∈ Rd, C1, . . . , CN > 0.

Then, for α = g, d, Iα(t, x) →
t→+∞

N∑
i=1

Ciψα(x, xi) =: Iα(x). Moreover, for all i ∈ {1, . . . , N}, a(xi) = 0,

R
(
xi, Ig(xi)

)
= 0, and for all x ∈ Rd, m(x, xi, Id(x)) = 0.

Proof. According to the previous lemma, for all ϕ ∈ C1
c (Rd),

N∑
i=1

Cia(xi) · ∇ϕ(xi) +
N∑
i=1

CiR
(
xi, Ig(xi)

)
ϕ(xi) +

N∑
i=1

Ci

∫
Rd

m
(
x, xi, Id(x)

)
ϕ(x)dx = 0.

Let ε > 0. For any non-negative function ϕε ∈ C1
c (Rd) with a support on Rd\

⋃N
i=1B(xi, ε), we

have that ∫
Rd

N∑
i=1

Cim
(
x, xi, Id(x)

)
ϕε(x)dx = 0,

which proves that x 7→
N∑
i=1

Cim
(
x, xi, Id(x)

)
is 0 on Rd\

⋃N
i=1B(xi, ε). Since m is a non-negative

function, for all i ∈ {1, ...N}, x 7→ m
(
x, xi, Id(x)

)
is 0 as well on Rd\

⋃N
i=1B(xi, ε), and therefore on

Rd, since the result holds for any ε > 0. Hence,

N∑
i=1

Cia(xi) · ∇ϕ(xi) +
N∑
i=1

CiR
(
xi, Ig(xi)

)
ϕ(xi) = 0,

for any ϕ ∈ C1
c (Rd). By choosing ϕ1

j such that

ϕ1
j(xi) = δij and ∇ϕ1

j(xi) = 0, i, j ∈ {1, ...N},
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where δij represents the Kronecker delta, one proves that R
(
xi, Ig(xi)

)
= 0 for all i ∈ {1, ...N}.

Finally, by choosing ϕ2
ij such that

∇ϕ2
jl(xi) = δijel, i, j ∈ {1, ...N}, l ∈ {1, ...d},

where {el}dl=1 represents the euclidean basis in Rd, one proves that a(xi) = 0, for any i ∈ {1, . . . , N}.

Limit identification and asymptotic preserving approximations

In some cases, it is possible to guarantee the existence of a limit for vh and identify it.
Assume that there exists x̂ ∈ Rd an asymptotically stable equilibrium for the ODE ‘ẋ = a(x)’ and that
there exists C, δ > 0 such that

∀y ∈ supp(n0), t ≥ 0, ∥X(t, y) − x̂∥ ≤ Ce−δt. (5.75)

Moreover, let us assume that there exist positive values D, Im and IM such that

R(x, Im) ⩾ 0, R(x, IM) ⩽ 0 and ∂IR(x, I) ⩽ −D, ∀x ∈ supp(v0). (5.76)

Then, we can compute the limit of vh when t goes to +∞, whatever the value of m, as stated in the
following proposition.

Proposition 5.4. Let us assume that supp (v0) is a compact set such that hypotheses (5.75) and (5.76)
hold. Then, vh converges to ρ̂h δx̂ in the weak sense in the space of Radon measures, where ρ̂h is the
unique solution of

R(x̂, ψg(x̂, x̂)ρ̂h) = 0.

The following lemma, proved in Appendix 5.6.4, is required in the proof of this result.

Lemma 5.11. Let u ∈ C2 (R+,R) be a bounded function, and let us assume that there exist p0 > 0,
p : R+ → R+ a function which satisfies p ⩾ p0 and B ∈ L1(R+) an integrable function such that

ü(t) ⩾ −p(t)u̇(t) +B(t).

Then, there exists u∞ ∈ R such that lim
t→+∞

u(t) = u∞.

Proof of Proposition 5.4. Given that supp (v0)∪Kxy is a compact set which is strictly contained in the
basin of attraction of x̂ we will have the existence of J0

h ⊂ Jh, with |J0
h | < +∞ such that νh(t) ̸≡ 0

only for i ∈ J0
h .

Let us denote, for all i ∈ J0
h , αi(t) := νi(t)wi(t), and

ρh(t) :=
∑
i∈Jh

αi(t) =
∑
i∈J0

h

αi(t).

Let us note that, according to the hypotheses on a, for all i ∈ J0
h , xi(t) converges to x̂. Thus,

vh(t) − ρh(t)δx̂ ⇀
t→+∞

0.
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Hence, it only remains to prove that ρh converges to the expected limit. According to the definition of
ρh,

ρ̇h(t) =
∑
i∈J0

h

R(xi(t), Ig(t, xi(t)))αi(t) +
∑
i,j∈J0

h

wi(t)m(xi(t), xj(t), Id(t, xi(t)))αj(t)︸ ︷︷ ︸
:=ε(t)

. (5.77)

According to hypothesis 5.75, there exist C, δ > 0 such that

∥xi(t) − x̂∥ ⩽ Ce−δt, ∀i ∈ J0
h , ∀t ⩾ 0.

Thus, for all i ∈ J0
h ,

wi(t) = e
∫ t
0 div a(xi(s))dswi(0) ⩽ e

∫ t
0 div a(xi(s))−div a(x̂)ds︸ ︷︷ ︸

⩽C̃

ediv a(x̂)twi(0),

which proves, since div a(x̂) < 0, that there exist C ′, δ′ such that for all t ⩾ 0,

0 ⩽ max
i∈J0

h

wi(t) ⩽ C ′e−δ
′t. (5.78)

In particular, it proves that t 7→ ε(t) defined in (5.77), converges to zero with an exponential speed,
since

|ε(t)| ⩽ max
i∈Jh

wi(t)|J0
h |∥m∥L∞ρh(t),

and ρh is bounded, according to Theorem 5.4.

Moreover, according to the hypothesis on ψg, ψg ρ(t) ⩽ Ig(t, xi(t)) ⩽ ∥ψg∥∞ ρ(t). Thus, according

to the hypotheses (5.76) on R, the relation

ρ̇h(t) ⩾

(
min
i∈J0

h

(R(xi(t), Ig(t, xi(t))))

)
ρh(t)

implies that, as soon as ρh becomes small, and so does Ig, ρh becomes increasing, which proves that ρh
is lower bounded by a positive constant. Moreover, since ρh and ε are bounded, and

∥α̇∥l1 =
∑
i∈J0

h

|α̇(t)| ⩽
∑
i∈J0

h

(2|div a(xi(t))| + |R(xi(t), Ig(t, xi(t)))|)αi(t) + ε(t)

⩽
(
2∥a∥W 1,∞(Rd) +R

)
ρh(t) + ε(t),

where
R := max

t∈R,i∈J0
h

|R(xi(t), Ig(t, xi(t)))|,

then ∥α̇∥l1 is also bounded.

Now, let us prove that ρh satisfies the equality of Lemma 5.11. First, for γ ∈ {g, d}, we compute∣∣∣∣ ddtIγ(t, xi(t)) − ψγ(x̂, x̂)ρ̇h(t)

∣∣∣∣ ⩽
∣∣∣∣∣∣
∑
j∈J0

h

(
a(xi(t))∂xψγ(xi(t), xj(t)) + a(xj(t))∂yψγ(xi(t), xj(t))

)
αj(t)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑
j∈J0

h

(
ψγ(xi(t), xj(t)) − ψγ(x̂, x̂)

)
α̇j(t)

∣∣∣∣∣∣
⩽2 max

i∈J0
h

|a(xi(t))|∥ψγ∥W 1,∞(Rd)ρh(t) + max
i,j∈J0

h

|ψγ(xi(t), xj(t)) − ψγ(x̂, x̂)|∥α̇∥l1 .



Since hypothesis (5.75), is satisfied, the functions t 7→ max
i∈J0

h

|a(xi(t))| and t 7→ max
i,j∈J0

h

|ψγ(xi(t), xj(t)) −

ψγ(x̂, x̂)| converge to zero with an exponential speed. Since |J0
h | < +∞, this proves that, for γ ∈ {g, d},∑

i∈J0
h

∣∣∣∣ ddtIγ(t, xi(t)) − ψγ(x̂, x̂)ρ̇h(t)

∣∣∣∣ = O(e−δt), (5.79)

for a certain δ > 0.

Thus, by differentiating (5.77), we get

ρ̈h(t) =
∑
i∈J0

h

a(xi(t))∂xR(xi(t), Ig(t, xi(t)))αi(t) +
∑
i∈J0

h

(
d

dt
Ig(t, xi(t))

)
∂IR(xi(t), Ig(t, xi(t)))αi(t)

+
∑
i∈J0

h

α̇i(t)R(xi(t), Ig(t, xi(t))) +
∑
i,j∈J0

h

wi(t)m(xi(t), xj(t), Id(t, xi(t)))α̇j(t)

+
∑
i,j∈J0

h

ẇi(t)m(xi(t), xj(t), Id(t, xi(t)))αj(t) +
∑
i,j∈J0

h

wi(t)
d

dt
m(xi(t), xj(t), Id(t, xi(t)))αj(t),

where

i)
∑
i∈J0

h

a(xi(t))∂xR(xi(t), Ig(t, xi(t)))αi(t) = O(e−δt), since max
i∈Jh

|a(xi(t))| converges to zero with ex-

ponential speed, and ∂xR and ρh are bounded,

ii) according to (5.79),
∑
i∈J0

h

(
d
dt
Ig(t, xi(t))

)
∂IR(xi(t), Ig(t, xi(t)))αi(t) = −p(t)ρ̇h(t) +O(e−δt), where

p(t) = −ψg(x̂, x̂)
∑
i∈J0

h

∂IR(xi(t), Ig(t, xi(t)))αi(t) ⩾ Dψg min
t⩾0

ρh(t) > 0,

iii) ∑
i∈J0

h

α̇i(t)R(xi(t), Ig(t, xi(t))) =
∑
i∈J0

h

R(xi(t), Ig(t, xi(t)))
2αi(t)︸ ︷︷ ︸

:=P (t)⩾0

+
∑
i,j∈J0

h

wi(t)R(xi(t), Ig(t, xi(t)))αj(t)m(t, xi(t), xj(t), Id(t, xi(t)))︸ ︷︷ ︸
=O(e−δt)

,

where the relation for the second term was proved thanks to the bound∣∣∣∣∣∣
∑
i,j∈J0

h

wi(t)R(xi(t), Ig(t, xi(t)))αj(t)m(t, xi(t), xj(t), Id(t, xi(t)))

∣∣∣∣∣∣ ⩽M Rρh(t)|J0
h |max

i∈Jh

wi(t),

the boundedness of ρh and inequality (5.78),



iv) ∑
i,j∈J0

h

wi(t)m(xi(t), xj(t), Id(t, xi(t)))α̇j(t) +
∑
i,j∈J0

h

ẇi(t)m(xi(t), xj(t), Id(t, xi(t)))αj(t)

+
∑
i,j∈J0

h

wi(t)
d

dt
m(xi(t), xj(t), Id(t, xi(t)))αj(t) = O(e−δt),

since for all t ≥ 0,∣∣∣∣∣∣
∑
i,j∈J0

h

wi(t)m(xi(t), xj(t), Id(t, xi(t)))α̇j(t)

∣∣∣∣∣∣ ⩽M |J0
h |∥α̇∥l1 max

i∈J0
h

wi(t),

∣∣∣∣∣ ∑
i,j∈Jh

ẇi(t)m(xi(t), xj(t), Id(t, xi(t)))αj(t)

∣∣∣∣∣ ⩽Mρh(t)|J0
h |∥a∥W 1,∞(Rd) max

i∈J0
h

wi(t),

and∣∣∣∣∣ ∑
i,j∈Jh

wi(t)
d

dt
m(xi(t), xj(t), Id(t, xi(t)))αj(t)

∣∣∣∣∣ ⩽M

(
∥a∥L∞(R) +

∣∣ d
dt
Ig(t, xi(t))

∣∣) ρh(t)|J0
h |max

i∈J0
h

wi(t),

where d
dt
Id(t, xi(t)) is bounded thanks to (5.79). For these three inequalities, we conclude with

(5.78).

Hence, ρ̈h(t) ⩾ −p(t)ρ̇h(t) + O(e−δt). According to Lemma 5.11, ρh has a limit when t goes
to ∞, which we denote ρ̂h. Since ρ̇h(t) =

∑
i∈J0

h

R(xi(t), Ig(t, xi(t)))αi(t) + ε(t), which converges to

R(x̂, ψg(x̂, x̂)ρ̂h)ρ̂h, we deduce that R(x̂, ψg(x̂, x̂)ρ̂h) = 0, since ρ̂h > 0.

When m ≡ 0 and under the same assumptions for the remaining coefficients of the problem as in
Proposition 5.4, we are able to identify the limit of v and prove that it coincides with the limit of vh.
According to Lemma 5.9, this ensures that vhε is an asymptotic preserving approximation of v.

Theorem 5.6. Let us assume that there exists x̂ ∈ Rd which is an asymptotically stable equilibrium
for the ODE ẋ = a(x) such that hypothesis (5.75) holds. We assume as well that m ≡ 0 and that
hypotheses (5.76) hold. Then, v converges to ρ̂ δx̂ in the weak sense in the space of Radon measures,
where ρ̂ is the unique solution of

R(x̂, ψg(x̂, x̂)ρ̂) = 0.

Consequently, vhε is an asymptotic preserving approximation of v.

Proof. Let us recall that

ρ(t) =

∫
Rd

v(t, x)dx.

We recall as well that, the function a being only dependent of x, the characteristic lines Xt(x) := X(t, x)
satisfy X−1

t (x) := X−1(t, x) = X−t(x) and Xt(Xs(x)) = Xt+s(x). By using the fact that, for any x ∈ Rd,

v(t, x) = v0(X−t(x))eG(0,t,x),
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where

G(s, t, x) :=

∫ t

s

R(Xτ−t(x), (Igv)(τ,Xτ−t(x))) − div a(Xτ−t(x))dτ ,

and that, by hypothesis, K := supp(v0) is a compact set included in the basin of attraction of x̂,
one proves that supp(v(t, ·)) is the image of supp(v0) by Xt(·). Since Xt(y) converges to x̂ for all
y ∈ supp(v0), we prove that Kt := supp(v(t, ·)) = Xt(supp(v0)) = Xt(K) is a compact set included in
the basin of attraction of x̂, for all t ⩾ 0. By (5.75), there exist C > 0 and δ > 0 such that

∥Xt(y) − x̂∥ ⩽ Ce−δt, ∀y ∈ K, ∀t ⩾ 0.

Let ϕ ∈ Cc(Rd). By definition of ρ and by using the change of variable ‘x = Xt(y)’ we get∣∣∣∣ ∫
Rd

ϕ(x)v(t, x) − ρ(t)ϕ(x̂)

∣∣∣∣ ⩽ ∫
Kt

|ϕ(x) − ϕ(x̂)|v(t, x)dx

=

∫
K

|ϕ(Xt(y)) − ϕ(x̂)|v(t,Xt(y))e
∫ t
0 div a(Xt(y))dy

⩽ max
y∈K

|ϕ(Xt(y)) − ϕ(x̂)|
∫
K

v(t,Xt(y))e
∫ t
0 div a(Xt(y))dy

= max
y∈K

|ϕ(Xt(y)) − ϕ(x̂)|ρ(t).

Since ρ is bounded, this proves that

v(t, ·) − ρ(t)δx̂ ⇀
t→+∞

0. (5.80)

Hence, it only remains to prove that ρ converges to the expected limit. We see that

ρ̇(t) =

∫
Rd

R(x, (Igv)(t, x))v(t, x)dx. (5.81)

First, let us note that ρ has a positive lower bound. Indeed, according to the hypothesis on ψg, for all
x ∈ Rd, ψg ρ(t) ⩽ (Igv)(t, x) ⩽ ∥ψg∥L∞ ρ(t). Thus,

ρ̇(t) ⩾

(
min
x∈Kt

(R(x, (Igv)(t, x))

)
ρ(t).

Hence, as soon as ρ(t) becomes small, and so does Ig(t, x), ρ becomes increasing, which proves that ρ
is lower bounded by a positive constant. We get an upper bound for |ρ̇(t)| from the relation

|ρ̇(t)| ⩽
(

max
x∈Kt

(R(x, (Igv)(t, x))

)
ρ(t),

and the boundedness of ρ(t).
We introduce now the function

ṽ(t, y) = v(t,Xt(y))e
∫ t
0 div a(Xs(y))ds,

which satisfies ∫
K

ṽ(t, y)dy =

∫
Kt

v(t, x)dx = ρ(t).



Moreover,

∂tṽ(t, y) =R(Xt(y), (Igv)(t,Xt(y)))ṽ(t, y). (5.82)

Before proving that ρ satisfies the equality of Lemma 5.11, we observe that the following relation holds
for all y ∈ K:∣∣∣∣ ddt(Igv)(t,Xt(y)) − ψg(x̂, x̂)ρ̇(t)

∣∣∣∣ ⩽ ∣∣∣∣∫
Kt

a(Xt(y)) · ∇xψg(Xt(y), z)v(t, z)dz

∣∣∣∣
+

∣∣∣∣∫
Kt

(
ψg(Xt(y), z) − ψg(x̂, x̂)

)
∂tv(t, z)dz

∣∣∣∣ . (5.83)

From the equation satisfied by v, we see that∫
Kt

(
ψg(Xt(y), z) − ψg(x̂, x̂)

)
∂tv(t, z)dz

=

∫
Kt

∇zψg(Xt(y), z)a(z)v(t, z)dz

+

∫
Kt

(
ψg(Xt(y), z) − ψg(x̂, x̂)

)
R(z, (Igv)(t, z))v(t, z)dz

=

∫
K

∇zψg(Xt(y), Xt(z̄))a(Xt(z̄))ṽ(t, z̄)dz̄

+

∫
K

(
ψg(Xt(y), Xt(z̄)) − ψg(x̂, x̂)

)
R(Xt(z̄), (Igv)(t,Xt(z̄)))ṽ(t, z̄)dz̄

which allows us to conclude that∣∣∣∣∫
Kt

(
ψg(Xt(y), z) − ψg(x̂, x̂)

)
∂tv(t, z)dz

∣∣∣∣ ⩽max
z̄∈K

∥a(Xt(z̄))∥∥ψg∥W 1,∞(Rd)ρ(t)

+ max
y,z̄∈K

|ψg(Xt(y), Xt(z̄)) − ψg(x̂, x̂)|Rρ(t).

Using this relation in (5.83) gives∣∣∣∣ ddt(Iγv)(t,Xt(y)) − ψγ(x̂, x̂)ρ̇(t)

∣∣∣∣ ⩽2 max
z̄∈K

∥a(Xt(z̄))∥∥ψγ∥W 1,∞(Rd)ρ(t)

+ max
y,z̄∈K

|ψγ(Xt(y), Xt(z̄)) − ψγ(x̂, x̂)|Rρ(t),

which proves, according to hypothesis (5.75), that for all y ∈ K

d

dt
Ig(t,X(t, y)) = ψg(x̂, x̂)ρ̇(t) +O(e−δt)), (5.84)

for a certain δ > 0.
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Differentiating (5.81) we get

ρ̈(t) =
d

dt

(∫
Kt

R(x, (Igv)(t, x))v(t, x)dx

)
=
d

dt

(∫
K

R(Xt(y), (Igv)(t,Xt(y)))ṽ(t, y)dy

)
=

∫
K

a(Xt(y)) · ∇xR(Xt(y), (Igv)(t,Xt(y)))ṽ(t, y)dy

+

∫
K

d

dt
(Igv)(t,Xt(y))∂IR(Xt(y), (Igv)(t,Xt(y)))ṽ(t, y)dy

+

∫
K

R(Xt(y), (Igv)(t,Xt(y)))∂tṽ(t, y)dy.

Let us note that

i) Since a(Xt(y)) converges uniformly to zero with an exponential speed, then∫
Rd

a(Xt(y)) · ∇xR (Xt(y), (Igv)(t,Xt(y))) ṽ(t, y))dy = O(e−δt),

thanks to the boundedness of ∇xR and ρ(t).

ii) According to (5.84),∫
K

d

dt
(Igv)(t,Xt(y))∂IR(Xt(y), (Igv)(t,Xt(y)))ṽ(t, y)dy = −p(t)ρ̇(t) +O(e−δt),

with

p(t) := −ψg(x̂, x̂)

∫
K

∂IR(Xt(y), (Igv)(t,Xt(y)))ṽ(t, y)dy ⩾ ψg(x̂, x̂)Dmin
t⩾0

ρ(t) > 0.

iii) Directly from (5.82),∫
K

R(Xt(y), (Igv)(t,Xt(y)))∂tṽ(t, y)dy =

∫
K

(
R(Xt(y), (Igv)(t,Xt(y)))

)2
ṽ(t, y)dy

=: P (t) ⩾ 0.

Thus, ρ̈(t) ⩾ −p(t)ρ̇(t) +O(e−δt), hence, ρ converges, thanks to Lemma 5.11.

Recalling (5.80), v(t, ·) thus converges to ρ̂δx̂, where ρ̂ is the limit of ρ. We conclude, according to
Proposition 5.3, that ρ̂ satisfies the expected equality.
Having proved that v and vh share the same limit is enough then to conclude, thanks to Lemma 5.9,
that vhε is an asymptotic preserving approximation.

If m is not 0, under very specific hypotheses over its support, we can extend the result of Theorem
5.6. The explanation behind this is simple: as long as the population is composed of traits that are
not prone to mutatations, it will evolve as in the case where mutations are not possible at all.
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Theorem 5.7. Let us assume that there exists x̂ ∈ Rd which is an asymptotically stable equilibrium
for the ODE ẋ = a(x) such that (5.75) holds. Moreover, let us assume that supp (v0)∪Kx is a compact
set such that there exist C ′, δ′ > 0 such that

∀y ∈ supp
(
v0
)
∪Kx, t ≥ 0, ∥X(t, y) − x̂∥ ≤ C ′e−δ

′t,

that
⋃
s⩾0

(Xs(supp(v0) ∪Kx)) ∩Ky = ∅ and that hypothesis (5.76) holds. Then, v converges to ρ̂ δx̂ in

the weak sense in the space of Radon measures, where ρ̂ is the unique solution of

R(x̂, ψg(x̂, x̂)ρ̂) = 0.

Consequently, vhε is an asymptotic preserving approximation of v.

Proof. By using the fact that, for any x ∈ Rd,

v(t, x) = v0(X−t(x))eG(0,t,x) +

∫ t

0

∫
Rd

m(Xs−t(x), z, (Idv)(s,Xs−t(x)))v(s, z)dzeG(s,t,x)ds,

where

G(s, t, x) :=

∫ t

s

R(Xτ−t(x), (Igv)(τ,Xτ−t(x))) − div a(Xτ−t(x))dτ ,

we observe that supp(v(t, x)) ⊂ Xt(supp(v0)) ∪
⋃

0⩽s⩽t
Xs(Kx) ⊂

⋃
s⩾0

(Xs(supp(v0) ∪Kx)), therefore

v(t, x) =v0(X−t(x))eG(0,t,x) +

∫ t

0

∫
Rd

m(Xs−t(x), z, (Idv)(s,Xs−t(x)))v(s, z)dzeG(s,t,x)ds

=v0(X−t(x))eG(0,t,x) +

∫ t

0

∫
supp(v(t,x))∩Ky

m(Xs−t(x), z, (Idv)(s,Xs−t(x)))v(s, z)dzeG(s,t,x)ds

=v0(X−t(x))eG(0,t,x).

Therefore, we can replicate the proof for the case m ≡ 0.

The result of Theorem 5.6 does not generalize when supp (v0) is not strictly contained in the basin
of attraction of xs, as shown in the following result:

Proposition 5.5. Let us consider the one-dimensional PDE
∂tv(t, x) + ∇x · (a(x)v(t, x)) = (r(x) − ρ(t))v(t, x),

ρ(t) =
∫
R v(t, x)dx,

n(0, ·) = n0(·),
(5.85)

which is a particular case of (5.19), and let us assume that there exist xu < xs such that a(xu) =
a(xs) = 0, a′(xu) > 0, a′(xs) < 0, supp(n0) ⊂ [xu, xs], n

0(xu) = 0, and that there exists α > 0 such
that n0′(x) = O

x→x+u

((x − xu)
α) and that r(xu) − (1 + α)f ′(xu) > r(xs). Then, vhε is not an asymptotic

preserving approximation of v.

Proof. The long-time behaviour of the solution of (5.85) has been studied in detail in [30], and it has
been proved, under the hypotheses of Proposition 5.5, that v converges to a function in L1. Let us
now compute the limit of vh. Since n0(xu) = 0, we can assume, without loss of generality, that for
all i ∈ Jh, x

0
i ∈ (0, 1]. Thus, since a > 0 on (xu, xs), for all t ⩾ 0, xi(t) converges to xs. As seen in

the proof of Proposition 5.4, vh therefore converges to r(xs)δxs , and vhε is therefore not a asymptotic
preserving approximation of v.
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5.5 Simulations

In this section, we present some simulations obtained with the particle method developed throughout
the chapter. In Figure 5.1, we deal with the non-local advection equation presented in [174], which
writes

∂tv(t, x) + ∇x (a(t, I1v(t, x), I2v(t, x)) = 0, x ∈ Rd, t ≥ 0, (5.86)

with Ijv(t, x) =
∫
R2 xjv(t, x)dx, for j ∈ {1, 2}. Note that this equation is not exactly a particular

case of (5.1), since there are two non-local terms involved for advection, but the particle method
can straightforwardly be adapted to this case. As in this chapter, we show that, depending on the
parameters, the solution of this PDE can converge to a single Dirac mass, to a sum of two Dirac
masses, or to the sum of four Dirac masses. The parameters used for the simulations are the same as
the one detailed in Figures 9, 10 and 11 of [174].

Figure 5.2 illustrates different scenarios for the equation
∂tv(t, x) + ∇x (a(x)v(t, x)) = (r(x) − ρ(t))n(t, x),

ρ(t) =
∫
R v(t, x)dx,

n(0, x) = n0(x),

(5.87)

with a(x) = x(1−x), and an initial solution supported in [0, 1]. This equation has been studied in [30]
where it has been proved that its solution can either converge to a function in L1, (which depends on
the initial condition), or to a Dirac mass on 1, depending on the functions r and n0.
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(a) Monostability

(b) Bistability

(c) Quadstability

Figure 5.1: The three possible regimes of convergence for equation (5.86), obtained with the particle method.
The lines (a), (b) and (c) respectively show the convergence to a single Dirac mass, two Dirac masses and four
Dirac masses, and have been obtained by choosing the parameters of Figures 9, 10 and 11 of [174]. In the
three cases, we have chosen N = 100, h = 2./100, ε = h0.8, and the cut off function φ is a Gaussian.
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(a) Solution of (5.87) at different time steps, with n0(x) = 1− x, r(x) = 6− 4x.

(b) Solution of (5.87) at different time steps, with n0(x) = x(1− x), r(x) = 6− 4x.

(c) Solution of (5.87) at different time steps, with n0(x) = x2, r(x) = 6− 4x.

(d) Solution of (5.87) at different time steps, with n0(x) = 6, r(x) = 6− 0.5x.

Figure 5.2: Different possible regimes of convergence for the solution of (5.87). The first three lines (green,
blue and orange curves), show the convergence to a function in L1, which can be explicitly computed (see [30]),
and is represented by a black dashed line. Note that the limit function is different when the initial condition
changes. The last line (red curves) shows the convergence to a Dirac mass in 1. In the four cases, we have
chosen a(x) = x(1− x), N = 5000, h = 1

N , ε =
√
h and the cut-off function φ is a Gaussian.
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5.6 Appendices

5.6.1 Proof of the results over the characteristics

In order to prove results which involve the use of absolute values, we introduce a smooth re-normalizing
sequence of functions. Consider a sequence of smooth positive functions βε satisfying βε(0) = 0,
βε(s) > 0 for all s ̸= 0, βε(s) ⩽ |s|, βε(s) → |s| almost everywhere, |β̇ε(s)| ⩽ 1 and sβ̇ε(s) → |s| almost
everywhere. For example we may choose

βε(s) =


−s− ε(1 − 2

π
) if s ⩽ −ε,

2ε
π

(
1 − cos( π

2ε
s)
)

if −ε < s < ε,

s− ε(1 − 2
π
) if s ⩾ ε.

(5.88)

Proof of Lemma 5.1. We introduce the notation

∆Xj(t) := Xj
u1

(t, y1) −Xj
u2

(t, y2).

For all t ∈ [0, T ], the function

Uε(t) :=
d∑
j=1

βε(∆Xj(t))

satisfies then the relation

U̇ε(t) =
d∑
j=1

β̇ε(∆Xj(t)) (aj(t,Xu1(t, y1), (Iau1)(t,Xu1(t, y1))) − aj(t,Xu2(t, y2), (Iau2)(t,Xu2(t, y2))))

⩽
d∑
j=1

(
∥aj∥W 1,∞

x

d∑
i=1

|∆Xi(t)| + ∥aj∥W 1,∞
I

|(Iau1)(t,Xu1(t, y1)) − (Iau2)(t,Xu2(t, y2))|

)

⩽d∥a∥W 1,∞
x,I

(
d∑
i=1

|∆Xi(t)| + |(Iau1)(t,Xu1(t, y1)) − (Iau2)(t,Xu2(t, y2))|

)

⩽d∥a∥W 1,∞
x,I

(
(1 + ∥ψa∥W 1,∞

x L∞
y
∥u1∥)

d∑
i=1

|∆Xi(t)| + ∥ψa∥L∞∥u1 − u2∥L1(Rd)

)
.

Integrating between 0 and t we get

Uε(t, y) − Uε(0, y)

⩽ d∥a∥L∞
t W 1,∞

x,I

(
(1 + ∥ψa∥L∞

t,yW
1,∞
x

∥u1∥)

∫ t

0

d∑
i=1

|∆Xi(t)|ds+ ∥ψa∥L∞

∫ t

0

∥u1 − u2∥L1(Rd)ds

)
.

Taking the limit when ε goes to 0 and applying Grönwall’s lemma we get the desired result.

Proof of Lemma 5.2. We explicitly give the proof for k = 1. The proof for higher values of k follows
the same ideas.

172



Thanks to the hypothesis over a, the function Xu is one time differentiable with respect to y, and
directly from (5.20) we get the system of equations{

˙∂yiXu(t, y) = Ja(t,Xu(t, y))∂yiXu(t, y), t ∈ [0, T ],

∂yiXu(0, y) = ei,
(5.89)

for all values of i ∈ {1, . . . , d}, where

[Ja(t, x)]ij := ∂xiaj(t, x, (Iau)(t, x)) + ∂Iaj(t, x, (Iau)(t, x))

∫
Rd

∂xiψa(t, x, y)u(t, y)dy, (5.90)

is the Jacobian matrix of the function a(t, x, (Iau)(t, x)) and the ei represent the canonical basis of Rd.
The function

Vε(t, y) :=
n∑

i,j=1

βε(∂yiX
j
u(t, y))

satisfies then

V̇ε(t, y) =
n∑

i,j=1

β̇ε(∂yiX
j
u(t, y))

d∑
k=1

[Ja(t,Xu(t, y))]kj ∂yiX
k
u(t, y)

and consequently

V̇ε(t, y) ⩽ d∥a∥W 1,∞
x,I

(1 + ∥ψa∥W 1,∞
x L∞

y
∥u∥)

n∑
i,j=1

|∂yiXj
u(t, y)|.

Integrating between 0 and t, we obtain the relation

Vε(t, y) − Vε(0, y) ⩽ d α̃1

∫ t

0

n∑
i,j=1

|∂yiXj
u(s, y)|ds

with α̃1 := sup
t∈[0,T ]

∥a∥W 1,∞
x,I

(1 + ∥ψa∥W 1,∞
x L∞

y
∥u∥), which after taking the limit when ε goes to 0 leads to

n∑
i,j=1

|∂yiXj
u(t, y)| ⩽ d+ dα̃1

∫ t

0

n∑
i,j=1

|∂yiXj
u(s, y)|ds.

We obtain (5.21) thanks to Grönwall’s lemma.
In order to prove (5.22) we adopt the notation

∆∂ykX
j(t) := ∂ykX

j
u1

(t, y1) − ∂ykX
j
u2

(t, y2)

and define
[JXu(t, y)]jk := ∂ykX

j
u(t, y),

which satisfies the relation

˙JXu(t, y) = Ja(t,Xu(t, y))JXu(t, y), JXu(0, y) = Id,

with Ja(t, x) as defined on (5.90). Consequently, we have that

Dε(t) :=
d∑
j=1

d∑
k=1

βε
(
∆∂ykX

j(t)
)
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satisfies for all t ∈ [0, T ]

Ḋε(t) =
d∑
j=1

d∑
k=1

β̇ε
(
∆∂ykX

j(t)
) d∑
i=1

(
[Ja(t,Xu1(t, y1))]ij∂ykX

i
u1

(t, y1) − [Ja(t,Xu2(t, y2))]ij∂ykX
i
u2

(t, y2)
)

⩽
d∑
j=1

d∑
k=1

d∑
i=1

∣∣[Ja(t,Xu1(t, y1))]ij∂ykX
i
u1

(t, y1) − [Ja(t,Xu2(t, y2))]ij∂ykX
i
u2

(t, y2)
∣∣

⩽
d∑
j=1

d∑
k=1

d∑
i=1

|[Ja(t,Xu1(t, y1))]ij|
∣∣∆∂ykX i(t)

∣∣
+

d∑
j=1

d∑
k=1

d∑
i=1

|[Ja(t,Xu1(t, y1))]ij − [Ja(t,Xu2(t, y2))]ij|
∣∣∂ykX i

u2
(t, y2)

∣∣ .
From the hypothesis over a and ψa we see that

|[Ja(t,Xu1(t, y1))]ij| ⩽ ∥a∥W 1,∞
x,I

(1 + ∥ψa∥W 1,∞
x L∞

y
∥u1∥).

Furthermore, from the definition of Ja(t, x) we conclude that there exists a constant C, depending only
on ∥a∥W 2,∞

x,I
, ∥ψa∥W 2,∞

x L∞
y

and ∥ui∥ such that

|[Ja(t,Xu1(t, y1))]ij − [Ja(t,Xu2(t, y2))]ij| ⩽ C(
d∑
j=1

|Xj
u1

(t, y1) −Xj
u2

(t, y2)| + ∥u1 − u2∥L1(Rd))

⩽ C(|y1 − y2| + ∥u1 − u2∥1 + ∥u1 − u2∥L1(Rd)),

where we have used the results from Lemma 5.1 on the second line.
Putting all estimates together, we conclude that there exist constants C1 and C2 only depending on
∥a∥W 2,∞

x,I
, ∥ψa∥W 2,∞

x L∞
y

and ∥ui∥, such that

Ḋε(t) ⩽ C1

d∑
j=1

d∑
k=1

|∂ykXj
u1

(t, y1) − ∂ykX
j
u2

(t, y2)| + C2(|y1 − y2| + ∥u1 − u2∥1 + ∥u1 − u2∥L1(Rd)).

Integrating in time, using Grönwall’s lemma and taking the limit when ε goes to zero, we obtain
(5.22).

Proof of Lemma 5.3. We explicitly give the proof for k = 1. The proof for higher values of k follows
the same ideas.
Differentiating once each component of the equality Xu(t,X

−1
u (t, x)) = x with respect to each of the

variables xk, we obtain the family of relations

d∑
i=1

∂yiX
j
u(t,X

−1
u (t, x))∂xk

(
X−1
u

)i
(t, x) = δjk, j, k = 1, . . . , d,

where δjk represents the Kronecker’s delta. Written in matrix form, this equality reads

JXu(t,X−1
u (t, x))JX−1

u
(t, x) = Id.
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It is known that the matrix JXu(t, y) is invertible for all values of x, furthermore, its determinant is
given by the expression

det(JXu(t, y)) = e

∫ t
0 ∇x·a(s,y,(Iau)(s,y))+∂Ia(s,y,(Iau)(s,y))·

∫
Rd

∇xψa(s,y,z)u(s,z)dzds

⩾ cT > 0

for all values of t ∈ [0, T ] and y ∈ Rd.
We conclude by writing

JX−1
u

(t, x) = J−1
Xu

(t,X−1
u (t, x)),

and noticing that all of the components of J−1
Xu

(t,X−1
u (t, x)) are a combination of sums and multiplica-

tions of the components of JXu(t,X−1
u (t, x)), divided by det(JXu(t, y)). The bound (5.21) from Lemma

5.2, together with the lower bound for the determinant of JXu(t, y) gives the bound (5.23) over the
components of JX−1

u
(t, x).

Proof of Lemma 5.4. We explicitly give the proof for k = 1. The proof for higher values of k follows
the same ideas.
Differentiating with respect to t the relation Xui(t,X

−1
ui

(t, x)) = x, for i = 1, 2, we see that

a(t, x, (Iaui)(t, x)) + JXui
(t,X−1

ui
(t, x))Ẋ−1

ui
(t, x) = 0,

which gives
Ẋ−1
ui

(t, x) = −J−1
Xui

(t,X−1
ui

(t, x))a(t, x, (Iaui)(t, x)). (5.91)

From now on we adopt the notations

Ai(t, x) := a(t, x, (Iaui)(t, x)),

Ki(t, x) := −J−1
Xui

(t,X−1
ui

(t, x)),

∆X−1
j (t, x) :=

(
X−1
u1

)j
(t, x) −

(
X−1
u2

)j
(t, x).

The function

Wε(t, x) :=
d∑
j=1

βε(∆X
−1
j (t, x))

satisfies the relation

Ẇε(t, x) =
d∑
j=1

d∑
k=1

β̇ε(∆X
−1
j (t, x))

(
K1
jk(t, x)A1

k(t, x) −K2
jk(t, x)A2

k(t, x)
)

⩽
d∑
j=1

d∑
k=1

|K1
jk(t, x)A1

k(t, x) −K2
jk(t, x)A2

k(t, x)|.

From Lemma 5.3 we know that all components of Ki are uniformly bounded by a constant only
depending on T and ∥ui∥. We deduce from the hypothesis over a that the components of Ai are
uniformly bounded by ã := ∥a∥L∞ . Therefore

Ẇε(t, x) ⩽ dC̃(T, ∥u1∥)
d∑

k=1

|A1
k(t, x) − A2

k(t, x)| + ã
d∑
j=1

d∑
k=1

|K1
jk(t, x) −K2

jk(t, x)|.
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The function a being L-Lipschitz with respect to the I variable, we have that, for all values of k

|A1
k(t, x) − A2

k(t, x)| ⩽ L∥ψa∥L∞∥u1 − u2∥L1(Rd).

On the other hand, from the definition of Ki and Lemma 5.2 we conclude that there exists C, depending
on T , ∥a∥W 2,∞

x,I
, ∥ψa∥W 2,∞

x L∞
y

and ∥ui∥ such that

|K1
jk(t, x) −K2

jk(t, x)| ⩽


0, if ∂Ia = 0,

C

(
d∑
j=1

|
(
X−1
u1

)j
(t, x) −

(
X−1
u2

)j
(t, x)| + ∥u1 − u2∥1

)
, if ∂Ia ̸= 0.

Putting everything together, integrating between 0 and t, taking the limit when ε goes to 0 and applying
Grönwall’s lemma we get (5.24).

5.6.2 Existence of solution for a system of ODEs with infinitely many
unknowns and equations

Proof of Lemma 5.7. For all u ∈ XT
h , there exists a sequence of elements uδ ∈ XT

h such that:

1) Kδ
h := {k ∈ Jh : uδk ̸= 0} has a finite number of elements.

2)
lim
δ→0

∥u− uδ∥1,h = 0.

We denote Kδ := |Kδ
h | and notice that the system

ẋδk(t) = Auδ,w(t, xδk), x
δ
k(0) = x0k, (5.92)

is composed of a coupled system of Kδ equations and unknowns (corresponding to those k ∈ Kδ
h ), and

an uncoupled infinite number of equations, corresponding to those k ̸∈ Kδ
h . Therefore, thanks to the

classic Cauchy-Lipschitz theory, the system (5.92) has a unique solution xδk ∈ C1([0, T ]), k ∈ Jh.
We claim that for all values of k, the sequence xδ1k − xδ2k is a Cauchy sequence in C1([0, T ]), therefore
is has a limit that we will call xk(t), which is solution to (5.49).
We first remark that xδ1 − xδ2 ∈ Y T

h due to the fact that |xδk(t) − x0k| ⩽ ∥a∥L∞T for all values of k and
δ.
Consider now βε as defined in (5.88), then

β̇ε(x
δ1
k − xδ2k ) ⩽ |Auδ1 ,w(t, xδ1k ) − Auδ2 ,w(t, xδ2k )|

∥a∥W 1,∞
x

|xδ1k − xδ2k | + ∥a∥W 1,∞
I

|Ia(t, xδ1k , u
δ1 , w) − Ia(t, x

δ1
k , u

δ2 , w)|.

Noticing that

|Ia(t, xδ1k , u
δ1 , w) − Ia(t, x

δ1
k , u

δ2 , w)| = |
∑
j∈Jh

(
uδ1j (t)ψa(t, x

δ1
k , x

δ1
j (t)) − uδ2j (t)ψa(t, x

δ2
k , x

δ2
j (t))

)
wj(t)|

⩽ (∥ψa∥L∞∥uδ1 − uδ2∥1,h + ∥uδ2∥1,h∥ψa∥W 1,∞
x,y

∥xδ1 − xδ2∥∞,h)∥w∥∞,h,
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we deduce the existence of two constants3, C1 and C2, only depending on a, ψa, u and w, such that

β̇ε(x
δ1
k − xδ2k ) ⩽ C1∥xδ1 − xδ2∥∞,h + C2∥uδ1 − uδ2∥1,h.

Integrating between 0 and t, taking the maximum over k and t and using Grönwall’s lemma, we conclude
that there exists a constant CT , only depending on T and the coefficients of the problem, such that

∥xδ1 − xδ2∥∞,h ⩽ CT∥uδ1 − uδ2∥1,h.

Proceeding in a similar way with the absolute value of ẋδ1 − ẋδ2 we obtain that

∥ẋδ1 − ẋδ2∥∞,h ⩽ CT∥uδ1 − uδ2∥1,h.

Recalling that uδ is a Cauchy sequence on XT
h , then so it is xδk on C1([0, T ]), for each k.

Let x := {xk}k∈Jh
be the limit of xδ when δ goes to 0. With a simple continuity argument we conclude

that x is a solution of (5.49) over [0, T ]. The uniqueness can be obtained by assuming the existence of
two solutions, deriving the equation satisfied by the difference and using Grönwall’s lemma to conclude
that they have to be equal.

5.6.3 A result from approximation theory

As mentioned before, Lemma 5.8 is a direct corollary of Lemma 8 in [184], that we recall here

Lemma 5.12. Let k > d an integer. Assume that

a ∈ (L∞(0, T ;W k+1,∞(Rd)))d.

Then, there exists a constant C > 0 such that for all functions φ ∈ W k,p(Rd), 1 ⩽ p ⩽ +∞, and
t ∈ [0, T ],

∥φ−
∑
i∈Jh

wi(t)φ(xi(t))δ(· − xi(t))∥W−k,p(Rd) ⩽ Chk∥φ∥Wk,p(Rd).

Given that for fixed functions ν ∈ XT
h and w ∈ Y T

h we have the inclusion

Aν,w : (t, x) 7→ a(t, x, Ia(t, x, ν, w)) ∈ (L∞(0, T ;W k+1,∞(Rd)))d,

then Lemma 5.12 holds true as well for the values of xi obtained in Section 5.3.

Proof of Lemma 5.8. We recall that W−k,1(Rd) is the dual space of W k,∞(Rd). Thus, for any ψ ∈
W−k,1(Rd) we have

∥ψ∥−k,1 = sup
f∈Wk,∞(Rd)

|⟨ψ, f⟩|
∥f∥k,∞

.

3Notice that in order to obtain the estimate over Ia, we used the hypothesis of differentiability over both variables on
ψa
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Since the function f ≡ 1 belongs to W k,∞(Rd), and has norm equal to 1 in this space, we get for all
φ ∈ W k,p(Rd) ∣∣∣∣ ∫

Rd

φ(x)dx−
∑
i∈Jh

wi(t)φ(xi(t))

∣∣∣∣ =

∣∣∣∣⟨φ−
∑
i∈Jh

wi(t)φ(xi(t))δ(· − xi(t)), 1⟩
∣∣∣∣

⩽ ∥φ−
∑
i∈Jh

wi(t)φ(xi(t))δ(· − xi(t))∥−k,1.

We conclude by applying Lemma 5.12 with p = 1.

5.6.4 Proofs of convergence results from ODE theory

This appendix is dedicated to the proofs of lemma 5.11, used in subsection 5.4.2. In order to prove this
lemma, we use the following result:

Lemma 5.13. Let α > 0 and B ∈ L1(R+). Then, all the solutions of the ODE

u̇(t) = −αu(t) +B(t)

are in L1(R+).

Proof of lemma 5.13. The solution of this ODE is explicitly given by

u(t) = u(0)e−αt +

∫ t

0

e−α(t−s)B(s)ds.

Hence, ∫ +∞

0

|u(t)|dt ⩽ |u(0)|
∫ +∞

0

e−αtdt+

∫∫
R2
+

e−α(t−s)|B(s)|1{s⩽t}dsdt.

With the change of variables y = s, z = t− s, we get∫∫
R2
+

e−α(t−s)|B(s)|1{s⩽t}dsdt ⩽
∫ +∞

0

|B(y)|dy
∫ +∞

0

e−αzdz,

which concludes the proof.

Proof of Lemma 5.11. First, let us note that if u̇ is a BV function, i.e. if
∫ +∞
0

|u̇(t)|dt < +∞, then u
is a Cauchy function, and thus converges. Let us denote v := u̇. Since u is assumed to be bounded,
and |v| = v + 2v−, where v− denotes the negative part of v, it is enough to prove that v− ∈ L1(Rd).
By hypothesis,

v̇(t) = −p(t)v(t) + P (t) +B(t),

which implies that
˙v−(t) ⩽ −p0 v−(t) +B(t).

We conclude, according to lemma 5.13, that v− ∈ L1(Rd), which implies that u converges.
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Chapter 6

On the self-similar stability of the
parabolic-parabolic Keller-Segel equation

6.1 Introduction

In this Chapter, we are concerned with the parabolic-parabolic Keller-Segel equation in self-similar
variables: ∂tf = ∆f + div(µxf − f∇u)

∂tu =
1

ε
(∆u+ f) + µx · ∇u,

(6.1)

with fixed drift parameter µ > 0 and ε > 0. We establish a polynomial weighted H1 ×H2 exponential
stability of the self-similar profile with sub-critical mass (

∫
R2 f(0, x)dx =: M < 8π) in the quasi

parabolic-elliptic regime, that is for small values of the time scale ε > 0, without assuming any radial
symmetry property on the initial datum. This extends a previous analysis performed in Carrapatoso-
Mischler [48] in a radially symmetric framework. As in this last reference, the proof of the stability is
based on a perturbation argument which takes advantage of the exponential stability of the self-similar
profile for the parabolic-elliptic Keller-Segel equation established by Campos-Dolbeault [36] and Egaña-
Mischler [37]. The proof however differs from [48] because it uses among other things (1) a different,
and somehow more standard, perturbation argument performed at the level of the main part of the
first component of the linearized operator instead of at the level of the whole linearized system and (2)
a purely semigroup analysis of the linear and nonlinear stability of the system.

Our result implies that in a quasi-parabolic-elliptic regime and for some class of initial data with
sub-critical mass but without assuming any radial symmetry property, the associated solution to the
parabolic-parabolic KS system in standard variables (corresponding to µ = 0) has a self-similar longtime
behaviour, which in particular means that no concentration occurs in large time and thus the diffusion
mechanism is really the dominant phenomenon all along the time evolution. It is worth mentioning
that, although we work in a strongly perturbative regime, where existence of solutions is guaranteed
only for a very restricted set of initial data, which allows us to determine their behaviour for all times,
an alternative approach has been developed where weak solutions are guaranteed to exist for very
general initial values (see for example Blanchet et al. (2006) [35] and Calvez-Corrias (2008) [46]).

We denote by Q = Qµ
ε and P = P µ

ε the associated self-similar profiles defined as the stationary
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solutions to the Keller-Segel system (6.1), that is{
0 = ∆Q+ div(µxQ−Q∇P )

0 = ∆P +Q+ εµx · ∇P,
(6.2)

which existence, uniqueness, radially symmetric property and smoothness have been established in
[47,185,186]. We introduce the perturbation (g, v) defined by

f = Q+ g, u = P + v,

where Q = Qµ
ε and P = P µ

ε verify (6.2). If (f, u) is a solution to (6.1) then (g, v) satisfies the system∂tg = ∆g + div(µxg − g∇P −Q∇v) − div(g∇v)

∂tv =
1

ε
(∆v + g) + µx · ∇v,

(6.3)

and reciprocally.
For the spaces X := L2

k × (Lp ∩ Ḣ1) and Y = H1
k × (Lp ∩ Ḣ2) we define the norms

|||(g, v)|||X := ∥g∥L2
k

+ ∥v − κ ∗ g∥Lp + ∥v − κ ∗ g∥Ḣ1 ,

|||(g, v)|||Y := ∥g∥H1
k

+ ∥v − κ ∗ g∥Lp + ∥v − κ ∗ g∥Ḣ2 ,
k > 3,

where κ(x) := − 1
2π

ln |x| is the Laplace kernel, the weighted Lebesgue space Lpk(R2), for 1 ≤ p ≤ ∞,
k ≥ 0, with weight

m(x) := ⟨x⟩k := (1 + |x|2)k/2

is defined by
Lpk(R

2) := {f ∈ L1
loc(R2); ∥f∥Lp

k
:= ∥f ⟨x⟩k∥Lp <∞},

and the norm of the higher-order Sobolev spaces W ℓ,p
k (R2) is defined by

∥f∥p
W ℓ,p

k

:=
∑
|α|≤ℓ

∥⟨x⟩k ∂αf∥pLp .

We also denote by H−1
k the duality space of H1

k for the scalar product ⟨·, ·⟩L2
k
, namely

∥ϕ∥H−1
k

= sup
∥f∥

H1
k
≤1

⟨ϕ, f⟩L2
k

= sup
∥g∥H1≤1

⟨mϕ, g⟩L2 = ∥mϕ∥H−1 ,

so that we may identify

H−1
k =

{
F0 + divF1; Fi ∈ L2

k

}
.

For k > 1, so that L2
k ⊂ L1, we denote

L2
k,0 :=

{
f ∈ L2

k;

∫
R2

f dx = 0
}
.

Theorem 6.1. There are ε0, η0 > 0 and p > 2 such that for any ε ∈ (0, ε0) and any initial data (g0, v0) ∈
L1
k,0 × (Lp ∩ Ḣ1), with |||(g0, v0)|||X ≤ η0, there exists a unique global solution (g, v) ∈ L∞

t (X) ∩ L2
t (Y )

to (6.3), which verifies
∥(g, v)∥L∞

t (X) + ∥(g, v)∥L2
t (Y ) ≲ |||(g0, v0)|||X . (6.4)

Moreover we have the decay estimate, for any λ ∈ (0, µ),

∥(g(t), v(t))∥X ≲ e−λt∥(g0, v0)∥X , t > 0. (6.5)
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This result improves [48, Theorem 1.4] where similar estimates are established with the restriction
that the initial datum is radially symmetric.
In what follows, we denote w := v − κ ∗ g so that (g, w) satisfies the modified system ∂tg = ∆g + div(µxg − g∇P −Q∇κ ∗ g −Q∇w) − div(g∇κ ∗ g) − div(g∇w)

∂tw =
1

ε
∆w + µx · ∇w + g + ∇κ ∗ [g∇P +Q∇κ ∗ g +Q∇w] + ∇κ ∗ [g∇w + g∇κ ∗ g] .

(6.6)

Equivalently, defining the operator

L(g, w) = (L1(g, w),L2(g, w))

by
Li(g, w) = Li,1g + Li,2w, i = 1, 2,

with L1,1g = ∆g + div(µxg − g∇P −Q∇κ ∗ g), L1,2w = −div(Q∇w),

L2,1g = g + ∇κ ∗ [g∇P +Q∇κ ∗ g] , L2,2w =
1

ε
∆w + µx · ∇w + ∇κ ∗ [Q∇w] ,

(6.7)

the system (6.6) rewrites as{
∂t(g, w) = L(g, w) + (−div(g∇κ ∗ g) − div(g∇w),∇κ ∗ [g∇w + g∇κ ∗ g])

(g, w)|t=0 = (g0, w0),
(6.8)

with w0 = v0 − κ ∗ g0.
In the initial sections, we present some estimates over the steady state (Q,P ), in addition to some
functional inequalities that will be used throughout the chapter. Then, we establish the dissipativity
of the operator L1,1 for small enough values of ε > 0 thanks to a perturbation argument and by taking
advantage of the dissipativity of the limit operator for ε = 0 corresponding to the usual linearized
parabolic-elliptic Keller-Segel operator. Afterwards, we prove in a more direct way the dissipativity of
the operator L2,2. We deduce then the decay of the semigroup SL associated to L by writing in a
proper accurate enough semigroup way the two decay estimates of SLii

and by showing that both out
of the diagonal contribution Li,j, i ̸= j, are small enough. The above two arguments significantly differ
from those used in the proof of [48, Theorem 1.4]. We conclude the proof of Theorem 6.1 by a classical
nonlinear stability trick.

In the sequel, for two functions S and T defined on R+, we define the convolution S ∗ T by

(S ∗ T )(t) =

∫ t

0

S(t− s)T (s) ds, for all t ≥ 0,

so that in particular the Duhamel formula associated to an evolution equation

∂tg = Λg +G, g(0) = g0,

writes
g = SΛg0 + SΛ ∗G.

Moreover, for λ ∈ R, we denote eλ : t 7→ eλt.
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6.2 Estimates over Q and P

We denote by Q = Qµ
ε and P = P µ

ε the associated self-similar profiles defined as the stationary solutions
to the Keller-Segel system (6.1), that is{

0 = ∆Q+ div(µxQ−Q∇P )

0 = ∆P +Q+ εµx · ∇P.
(6.9)

It is worth noticing here that whatever is the value of ε ∈ [0, ε0), we may establish that

Qµ
ε → Q0, P µ

ε → P 0, as µ→ 0,

where (Q0, P 0) is defined by

Q0(x) :=
8

(1 + |x|2)2
, ∆P 0 = −Q0

Proposition 6.1. There exists ε0 > 0, such that, for all ε ∈ (0, ε0), Q(x) converges uniformly to Q0(x)
in R2. Furthermore, there exists α∗ ∈ (0, 1) independent of µ and ε, such that for all ε ∈ (0, ε∗) there
exists α := α(ε) ∈ (α∗, 1) such that the following inequalities hold true:

i) (Bounds over P ) For all x ∈ R2 there holds

P 0(x) − µα|x|2

2
< P (x) − µα|x|2

2
< P 0(x) < P (x) < 0, (6.10)

ii) (Bounds over x · ∇P ) For all x ∈ R2 there holds

x · ∇P (x) − µα|x|2 < x · ∇P 0(x) < x · ∇P (x) < 0. (6.11)

iii) (Bounds over Q) For all x ∈ R2, there holds

Q0(x)e−µ
|x|2
2 < Q(x) < Q0(x)e−µ(1−α)

|x|2
2 . (6.12)

Some immediate consequence of Proposition 6.1 are established on the following Lemmas.

Lemma 6.1. There exist constants C > 0 and ϑ ∈ (0, 1) independent of µ and ε such that for any
ε ∈ (0, ε0)

0 ≤ Q(x) ≤ C e−µϑ|x|
2/2⟨x⟩−4, (6.13)

sup
x∈R2

(
1

|x|
+ ⟨x⟩) |∇P (x)| ≤ C, (6.14)

and
sup
x∈R2

|∆P (x)| ≤ C. (6.15)

Lemma 6.2. For all k > 3 there exists C depending on µ and k such that

∥Q(x)⟨x⟩k∥L∞(R2) ⩽ C(µ, k). (6.16)

Furthermore, C(µ, k) ⩽ Cµ−max{0,( k
2
−2)} for some C independent of µ and ε.
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Lemma 6.3. There exist constants C1 > 0 and C2 > 0 independent of µ and ε such that for any
ε ∈ (0, ε∗/2]

∥∇2P∥L∞(R2) ⩽ C1 (6.17)

and
∥∇Qm2∥L∞(R2) ≤ C2. (6.18)

Finally, we include a convergence result between (P,Q) and (Q0, P0) ( a solution to (6.2) with
ε = 0).

Lemma 6.4. There exist constants ϑ ∈ (0, 1), Ci > 0, i = 1, . . . , 4, independent of µ and ε such that
for all x ∈ R2

|P − Pµ| ⩽µεC1|x|2, (6.19)

|∇P −∇Pµ| ⩽µεC2|x|, (6.20)

|Q−Qµ| ⩽µεC3|x|2Q0(x)e−
ϑµ|x|2

2 . (6.21)

|∇Q−∇Qµ| ⩽µεC4|x|3Q0(x)e−
ϑµ|x|2

2 . (6.22)

Proofs for Proposition 6.1 and Lemmas 6.1, 6.2, 6.3 and 6.4 will be given in Chapter 7.
The bound for the difference between ∇P and ∇Pµ can be further improved

Lemma 6.5. There exists a C > 0, independent of µ and ε such that for all x ∈ R2

|∇P −∇Pµ| ⩽ C
√
µε.

Proof. We write δ∇P := |∇P −∇Pµ, hence

δ∇P = (δ∇P )1/2(δ∇P )1/2 ⩽
C

⟨x⟩1/2
√
µε|x|1/2 ⩽ C

√
µε,

where we have used (6.14) for the first (δ∇P )1/2 factor and (6.20) for the second one.

6.3 Functional inequalities

We gather in this section some functional inequalities that we shall use through the paper. First, we
provide some estimates over the solution for the Poisson problem.

Lemma 6.6. For any g ∈ L2
k,0 with k > 3 there holds

∥∇κ ∗ g∥L2 ≲ ∥g∥L2
k
. (6.23)

Proof. We observe that
∥∇κ ∗ g∥L2 ≈ ∥ξ(κ̂ ∗ g)∥L2

and that ̂−∆(κ ∗ g) = ĝ implies κ̂ ∗ g(ξ) = |ξ|−2ĝ(ξ). Therefore

∥∇κ ∗ g∥2L2 ≈
∫

|ĝ(ξ)|2

|ξ|2
dξ =

∫
1|ξ|≤1

|ĝ(ξ)|2

|ξ|2
dξ +

∫
1|ξ|>1

|ĝ(ξ)|2

|ξ|2
dξ =: I1 + I2.
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For the second term we have

I2 ≲
∫

|ĝ(ξ)|2 dξ ≲ ∥g∥L2 .

For the first term we use that ĝ(0) = 0, since ⟨g⟩ = 0, to write

ĝ(ξ) = ξ ·
∫ 1

0

Dξĝ(θξ) dθ,

and thus we obtain

I1 ≲

(
sup
|ξ|≤1

|Dξĝ(ξ)|

)∫
1|ξ|≤1 dξ ≲ sup

|ξ|≤1

|Dξĝ(ξ)| ≲ ∥xg∥L1 ≲ ∥g∥L2
k
.

Lemma 6.7. For k > 1 and p > 2, 2 ≤ q ≤ p, we have

∥∇κ ∗ g∥Lp ≲ ∥g∥Lq
k
, ∀ g ∈ Lqk. (6.24)

Proof. We split |K| := |∇κ| := K1 +K2, with

K1 :=
1

|x|
1|x|≤1 ∈ Lr, ∀ r < 2, K2 :=

1

|x|
1|x|≥1 ∈ Lr, ∀ r > 2.

We have

∥K ∗ g∥Lp ≤ ∥K1 ∗ f∥Lp + ∥K2 ∗ g∥Lp

≤ ∥K1∥
L

1

1+ 1
p− 1

q

∥g∥Lq + ∥K2∥Lp∥g∥L1

≲ ∥g∥Lq
k
,

where we have used the convolution embeddings L
1

1+ 1
p− 1

q ∗Lq ⊂ Lp and L1 ∗Lp ⊂ Lp in the second line,
and the Cauchy-Schwarz inequality in the last line in order to prove Lqk ⊂ L1 with q ≥ 2.

We recall the following two particular cases of the Gagliardo-Nirenberg interpolation Theorem in
dimension 2:

Lemma 6.8. 1. For any p > 2 we have

∥∇f∥Lp ≲ ∥f∥1−θLp ∥∇2f∥θL2 , θ =
p

2 + p
. (6.25)

2. We have the Ladyzhenskaya inequality

∥f∥L4 ≲ ∥f∥1/2L2 ∥∇f∥1/2L2 . (6.26)

We also have:

Lemma 6.9. Let p ∈ (2,∞). For any β > 0 there is Cβ > 0 such that

∥∇f∥2L2 ≤ β∥f∥2Lp + Cβ∥∇2f∥2L2 . (6.27)
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Proof. We write, using Hölder’s inequality,

∥∇f∥2L2 ≲
∫
|ξ|≤1

|ξ|2|f̂ |2 +

∫
|ξ|>1

|ξ|2|f̂ |2

≲
∫
|ξ|≤1

(⟨ξ⟩−1|f̂ |)(|ξ|2|f̂ |) +

∫
|ξ|>1

(⟨ξ⟩−2/3|f̂ |2/3)(|ξ|8/3|f̂ |4/3)

≲ ∥⟨ξ⟩−1f̂∥L2∥|ξ|2f̂∥L2 + ∥⟨ξ⟩−1f̂∥2/3L2 ∥|ξ|2f̂∥4/3L2

≲ ∥f∥H−1∥∇2f∥L2 + ∥f∥2/3H−1∥∇2f∥4/3L2

≲ ∥f∥Lp∥∇2f∥L2 + ∥f∥2/3Lp ∥∇2f∥4/3L2 ,

where we haved the continuous embedding Lp(R2) ⊂ H−1(R2) (consequence of the embeddingH1(R2) ⊂
Lp

′
(R2)). We then conclude by applying Young’s inequality.

6.4 Estimates for L1,1

In this section, we establish some dissipativity estimates and related semigroup decay estimates suc-
cessively on the operators L1,1 and related operators.

6.4.1 Dissipativity estimates related to L1,1.

In order to keep track of the ε ≥ 0 dependence, let us denote

Λε := L1,1.

We start with a first fundamental dissipativity estimate.

Lemma 6.10. There is ε0 > 0 small enough such that for any ε ∈ (0, ε0) the following holds: For any
m = ⟨x⟩k with k > 3 there are constants C0, ϱ0 > 0 such that

⟨Λεg, g⟩L2
m
≤ −µ(k − 2)∥g∥2L2

m
− 1

2
∥∇g∥2L2

m
+ C0∥g∥2L2(Bϱ0 )

. (6.28)

Proof. We briefly repeat the proof of [48, Lemma 4.4].

We compute

⟨Λεg, g⟩L2
m

=

∫
∆ggm2 +

∫
div(µxg)gm2 −

∫
div(g∇P )gm2 −

∫
div(Q∇κ ∗ g)gm2

= I1 + I2 + I3 + I4,

and estimate each term separately.

For the two first terms we have

I1 + I2 = −
∫

|∇g|2m2 +

∫
ψ1g

2m2
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where

ψ1 =
|∇m|2

m2
+

∆m

m
+ µ− µx · ∇m

m
= k(2k + µ)⟨x⟩−2 − µ(k − 1) − 2k⟨x⟩−4.

Moreover, for the third term we compute

I3 =

∫
g∇P · ∇gm2 + 2

∫
g2m2∇P · ∇m

m

= −1

2

∫
∆Pg2m2 +

∫
∇P · ∇m

m
g2m2.

Thanks to the properties of P established in Proposition 6.1, we observe that∣∣∣∣∇P · ∇m
m

∣∣∣∣ ≤ ∥x · ∇P∥L∞⟨x⟩−1 ≤ C1⟨x⟩−1

for some constant C1 > 0, and also that

∆P = −Q− εµx · ∇P

with
|x · ∇P | ≤ C2, Q ≤ C3⟨x⟩−1,

for constants C2, C3 > 0, which implies

I3 ≤
εµC2

2
∥g∥2L2

m
+

(
C1 +

C3

2

)
∥⟨x⟩−

1
2 g∥2L2

m
.

For the last term we write

I4 =

∫
Q(∇κ ∗ g)∇gm2 + 2

∫
Q(∇κ ∗ g)

∇m
m

gm2.

Since ∥Qm2∥L∞ ≤ C4 and ∥Qm∇m∥L∞ ≤ C4 thanks to Lemma 6.2, we obtain

I4 ≤ C4∥∇κ ∗ g∥L2∥∇g∥L2 + 2C4∥∇κ ∗ g∥L2∥g∥L2

≤ C ′
4∥∇κ ∗ g∥2L2 +

1

2
∥∇g∥2L2 + C ′

4∥g∥2L2

≤ C ′′
4∥⟨x⟩−1g∥2L2

m
+

1

2
∥∇g∥2L2 ,

where we have used Lemma 6.6 and Young’s inequality.
Gathering previous estimates yields

⟨Λεg, g⟩L2
m
≤ −1

2

∫
|∇g|2m2 +

∫
ψ̄1g

2m2

with

ψ̄1 = −µ
(
k − 1 − εC2

2

)
+

(
C ′′

4 + C1 +
C3

2

)
⟨x⟩−1 + k(2k + µ)⟨x⟩−2 − k2⟨x⟩−4

≤ −µ
(
k − 1 − εC2

2

)
+ C5⟨x⟩−1.
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We remark that, for any ϱ0 ≥ 1, we have

⟨x⟩−1m2 ≤ ϱ2k−1
0 1⟨x⟩≤ϱ0 +

1

ϱ0
m2,

thus we obtain

⟨Λεg, g⟩L2
m
≤ −1

2
∥∇g∥2L2

m
− µ

(
k − 1 − εC2

2
− C5

µϱ0

)
∥g∥2L2

m
+ C0∥g∥2L2(Bϱ0 )

(6.29)

where C0 = C5ϱ
2k−1
0 .

We therefore choose ε0 > 0 small enough such that ε0C2 ≤ 1 and ϱ0 ≥ 1 large enough such that
C5

µϱ0
≤ 1/2, which concludes the proof.

6.4.2 Splitting of the operator L1,1

We introduce the splitting

Λε = A + Bε, A := Mχϱ, Bε := Λε −A,

with χϱ(x) := χ(x/ϱ), χ ∈ D(R2), 1B(0,1) ≤ χ ≤ 1B(0,2), and constants M,ϱ > 0. We immediately
deduce from Lemma 6.10 that Bε is dissipative, more precisely:

Corollary 6.2. For any ε ∈ (0, ε0), any m = ⟨x⟩k with k > 3, any constants M ≥ C0 and ϱ ≥ ϱ0 there
holds

⟨Bεg, g⟩L2
m
≤ −µ(k − 2)∥g∥2L2

m
− 1

2
∥∇g∥2L2

m
≤ −λ∥g∥2L2

m
− σ∥g∥2H1

m
(6.30)

for any 0 ≤ λ < µ(k − 2) with σ = min(1/2, µ− λ), and where ε0, C0, ϱ0 > 0 are from Lemma 6.10.

Remark 1. We shall fix hereafter the parameters M ≥ C0 and ϱ ≥ ϱ0 in the definition of Bε such that
Lemma 6.10 holds.

In order to work at the level of the semigroup, we reformulate (6.30) in the following way.

Lemma 6.11. For any ε ∈ (0, ε0), any m = ⟨x⟩k with k > 3, any constants M ≥ C0 and ϱ ≥ ϱ0 there
holds

1. For all 0 ≤ λ < µ(k − 2) and all g ∈ L2
m, we have

∥eλSBε(·)g∥L∞
t L2

m
+ ∥eλSBε(·)g∥L2

tH
1
m
≲ ∥g∥L2

m
.

2. For all 0 ≤ λ < µ(k − 2) and all eλR ∈ L2
tH

−1
m , we have

∥eλ(SBε ∗R)∥L∞
t L2

m
+ ∥eλ(SBε ∗R)∥L2

tH
1
m
≲ ∥eλR∥L2

tH
−1
m
.

Proof. Let 0 ≤ λ < µ(k − 2). We first consider f := eλSBε(·)g which is a solution to the evolution
equation

∂tf = Bεf + λf, f(0) = g.
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Because of (6.30), we have

1

2

d

dt
∥f∥2L2

m
= ⟨Bεf, f⟩L2

m
+ λ∥f∥2L2

m
≤ −σ∥f∥2H1

m

from which we deduce (1) thanks to the Grönwall’s lemma.

We next consider f := eλ(SBε ∗R) which is a solution to the evolution equation

∂tf = Bεf + λf + eλR, f(0) = 0.

Because of (6.30) and the Young inequality, we have

1

2

d

dt
∥f∥2L2

m
= ⟨Bεf, f⟩L2

m
+ λ∥f∥2L2

m
+ ⟨eλR, f⟩L2

m

≤ −σ∥f∥2H1
m

+ ∥eλR∥H−1
m
∥f∥H1

m

≤ −σ
2
∥f∥2H1

m
+ C∥eλR∥2H−1

m
,

for some constant C = C(µ, λ) > 0. We deduce (2) thanks to the Grönwall’s lemma again.

6.4.3 Spectral analysis of L1,1

We deduce a nice localization of the spectrum of L1,1 from the previous estimates and a perturbation
argument. Let us denote by Λ0 the linearized operator of the parabolic-elliptic Keller-Segel equation
which given by

Λ0g = ∆g + div(µxg − g∇P0 −Q0∇κ ∗ g)

where (Q0, P0) is a solution to (6.2) with ε = 0. From [36, 37], we know that for any weight function
m = ⟨x⟩k with k > 3 there holds: For all 0 < λ < µ there exists a constant C = C(λ, µ, k) ≥ 1 such
that

∥SΛ0(t)f∥L2
m
⩽ Ce−λt∥f∥L2

m
, ∀ f ∈ L2

m,0,

and the spectrum verifies
Σ(Λ0) ∩ ∆−µ = {0} (6.31)

where ∆−µ := {z ∈ C : ℜez > −µ}.

By a perturbation argument similar to the one used in [187] (see also [188, 189]) we are able to
obtain a similar picture for the operator L1,1 = Λε.

Proposition 6.2. Let m = ⟨x⟩k with k > 3. For any 0 < λ < µ, there is ε∗ > 0 small enough, such
that

Σ(Λε) ∩ ∆−µ = {0}, ∀ ε ∈ (0, ε∗).

Proof. We split the proof into several steps.

Step 1. We claim that
Uε(z) := RBε(z) −RΛ0(z)ARBε(z)

is uniformly bounded in B(L2
m) and B(H−1

m , H1
m) for any z ∈ Ω := ∆−λ\B(0, r/2) any ε ≥ 0 and

0 < r < λ < µ. On the one hand, RBε(z) ∈ B(L2
m) is just an immediate consequence of the growth
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estimate on SBε established in Lemma 6.11-(1). For proving RBε(z) ∈ B(H−1
m , H1

m), we consider first
g ∈ L2

m, z ∈ ∆−µ and we define f := RBε(z)g, so that (z −Bε)f = g. Using (6.30) and the fact that
µ(k − 2) ≥ µ, we deduce

1

2
∥∇f∥2L2

m
+ (ℜez + µ)∥f∥2L2

m
≤ ⟨(z −Bε)f, f⟩L2

m
= ⟨f, g⟩L2

m
≤ ∥f∥H1

m
∥g∥H−1

m

and thus
∥∇f∥L2

m
≤ max

(
2, µ−1

)
∥g∥H−1

m
. (6.32)

By a density argument, the same holds for any g ∈ H−1
m . From (6.31), we also have RΛ0(z) ∈ B(L2

m)
uniformly bounded in B(L2

m) for any z ∈ Ω := ∆−λ\B(0, r/2). Moreover, the proof of the bound in
B(L2

m, H
1
m) is exactly the same as for RBε(z): Indeed arguing as in Lemma 6.10 we first obtain

⟨Λ0f, f⟩L2
m
≤ −µ∥f∥2L2

m
− 1

2
∥∇f∥2L2

m
+ C0∥f∥2L2(Bϱ0 )

,

thus defining f := RΛ0(z)g we deduce

(ℜez + µ)∥f∥2L2
m

+
1

2
∥∇f∥2L2

m
− C0∥f∥2L2(Bϱ0 )

≤ ⟨(z − Λ0)f, f⟩L2
m

= ⟨g, f⟩L2
m
≤ C∥g∥2L2

m
.

Step 2. We claim that the operators converge in the sense

∥Λε − Λ0∥B(H1
k ,L

2
k)
≤ η1(ε) → 0.

We indeed write

(Λε − Λ0)g = (Bε −B0)g

= −div(g∇(Pε − P0)) − div((Qε −Q0)∇κ ∗ g)

= −∇g · ∇(Pε − P0) + g∆(Pε − P0)

+∇(Qε −Q0) · ∇κ ∗ g − (Qε −Q0)g,

so that

∥(Λε − Λ0)g∥L2
m

≤ ∥∇(Pε − P0)∥L∞∥∇g∥L2
m

+ ∥∆(Pε − P0)∥L∞∥g∥L2
m

+∥m∇(Qε −Q0)∥L∞∥g∥L2
1+0

+ ∥Qε −Q0∥L∞∥g∥L2
m
.

We immediately conclude since we are able to prove (see Lemma 6.4 and Lemma 6.5)

∇(Pε − P0) → 0, ∆(Pε − P0) → 0, m∇(Qε −Q0) → 0, Qε −Q0 → 0

uniformly in L∞(R2) and we take m = ⟨x⟩k with k > 1.

Step 3. We claim that Σ(Λε) ∩ ∆a ⊂ B(0, r/2) for any ε ∈ (0, ε0), choosing ε0 > 0 small enough. On
the one hand, we write the two resolvent equations

RΛε = RBε −RΛεARBε ,

RΛε = RΛ0 −RΛε(Λε − Λ0)RΛ0 ,

from what we deduce

RΛε = RBε −RΛ0ARBε + RΛε(Λε − Λ0)RΛ0ARBε ,
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or equivalently
RΛε(I + Kε) = Uε,

with
Kε := (Λ0 − Λε)RΛ0ARBε .

On the other hand, from Step 1, we have RΛ0(z)ARBε(z) is bounded in B(L2
m, H

1
m) unifomly in

z ∈ Ω := ∆−λ\B(0, r/2) and Λ0 − Λε is small in B(H1
m, L

2
m) for ε > 0 small, so that both estimates

together imply
sup

z∈∆−λ\B(0,r/2)

∥Kε(z)∥B(L2) < 1

for any 0 < r < λ < µ and ε ∈ (0, ε0), with ε0 = ε0(r, λ) > 0 small enough. This implies that I + Kε

is inversible on Ω := ∆−λ\B(0, r/2) so that

RΛε = Uε(I + Kε)
−1

is bounded on Ω, which ends the proof.

Step 4. We define now

Πε :=
i

2π

∫
Γ

RΛε(z) dz, Γ := {z ∈ C; |z| = r},

the Dunford projector on the eigenspace associated to eigenvalues of Λε which belong to the ball B(0, r).
We write

Πε =
i

2π

∫
Γ

Uε (I + Kε)
−1 dz

=
i

2π

∫
Γ

RBε {I −Kε (I + Kε)
−1} dz − i

2π

∫
Γ

RΛ0 ARBε (I + Kε)
−1 dz

= − i

2π

∫
Γ

RBεKε (I + Kε)
−1 dz − i

2π

∫
Γ

RΛ0 ARBε (I + Kε)
−1 dz,

and

Π0 =
i

2π

∫
Γ

{RB0 −RΛ0ARB0} dz

= − i

2π

∫
Γ

RΛ0ARB0{(I + Kε)
−1 + Kε(I + Kε)

−1} dz.

We deduce

Πε − Π0 =
i

2π

∫
Γ

(RΛ0ARB0 −RBε)Kε (I + Kε)
−1 dz

+
i

2π

∫
Γ

RΛ0A{RB0 −RBε}(I + Kε)
−1 dz

= − i

2π

∫
Γ

UεKε (I + Kε)
−1 dz

+
i

2π

∫
Γ

RΛ0ARB0{B0 −Bε}RBε(I + Kε)
−1 dz.

From what we get ∥Πε − Π0∥B(L2) = O(ε) < 1 for ε > 0 small enough by taking adavantage of the
estimates established in Step 1 and Step 2. By classical operator theory (see for instance the arguments
presented in [189] in order to prove [189, Chap 1, (4.43)]) one deduces that dim Πε = dim Π0 = 1. On
the other hand, at first glance we have Λ∗

ε1 = 0 and 1 ∈ (L2
m)′ so that 0 ∈ Σ(Λ∗

ε) = Σ(Λε), and 0 is the
only spectral value of Λε in the ball B(0, r).
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6.4.4 Semigroup decay estimates for L1,1

We are now able to deduce a nice semigroup decay estimate on SL1,1 from the previous estimates on
the resolvent.

Proposition 6.3. With the notation of Proposition 6.2, for all 0 < λ < µ and all ε ∈ (0, ε∗) there
holds, for any g ∈ L2

m,0,

∥SΛε(t)g∥L2
m
≲ e−λt∥g∥L2

m
.

Proof. It is a consequence of Proposition 6.2 and of the splitting structure of the operator Λε. More
precisely, we may for instance apply the quantitative mapping theorem [190, Theorem 2.1], where

it is worth emphasizing that RBε(z) : L2
m → H1

m ⊂ D(Λ
1/2
ε ) with uniformly bound in z ∈ ∆−λ,

which is a strong enough information in order to establish [190, (2.23)] without checking [190, (H2)].
Alternatively, one can use the Gearhart-Prüss-Greiner theorem [191–193] in order to get the same
conclusion.

Thanks to the previous estimate for SΛε and the estimates for SBε in Lemma 6.11, we are able to
deduce semigroup estimates for SΛε (in Propositions 6.4 below) similar to those satisfied by SBε .

We start by observing that, thanks to Duhamel’s formula, we have

SΛε = SBε + SBεA ∗ SΛε and SΛε = SBε + SΛε ∗ASBε .

Denoting Π⊥g = g − Πg where Π is the projection onto Ker(Λε), we obtain

SΛεΠ
⊥ = SBεΠ

⊥ + (SBεA ∗ SΛεΠ
⊥) and SΛεΠ

⊥ = Π⊥SBε + (SΛεΠ
⊥ ∗ASBε),

using that SΛεΠ
⊥ = Π⊥SΛε , and iterating this formula also yields

SΛεΠ
⊥ = SBεΠ

⊥ + SBεA ∗ Π⊥SBε + SBεA ∗ SΛεΠ
⊥ ∗ASBε

and
SΛεΠ

⊥ = Π⊥SBε + SBεΠ
⊥ ∗ASBε + SBεA ∗ SΛεΠ

⊥ ∗ASBε

Proposition 6.4. Let 0 ≤ λ < µ. There is ε∗ > 0 small enough such that for any ε ∈ (0, ε∗) and any
m = ⟨x⟩k with k > 3 the following holds:

1. For all g ∈ L2
m,0 we have

∥eλSΛε(·)g∥L∞
t L2

m
+ ∥eλSΛε(·)g∥L2

tH
1
m
≲ ∥g∥L2

m
.

2. For all eλR ∈ L2
tH

−1
m with ΠR = 0, we have

∥eλ(SΛε ∗R)∥L∞
t L2

m
+ ∥eλ(SΛε ∗R)∥L2

tH
1
m
≲ ∥eλR∥L2

tH
−1
m
.

Proof. Step 1: Proof of (1). Remark that g = Π⊥g since g ∈ L2
m,0. The first estimate is nothing but

Proposition 6.3. We in particular deduce from this one that

∥eλSΛεΠ
⊥∥L1

tB(L2
m) ≲ ∥eλ′SΛεΠ

⊥∥L∞
t B(L2

m) ≲ 1, (6.33)
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by choosing λ < λ′ < 1. For the second one, we write

SΛε(·)g = SBε(·)g + (SBε ∗ASΛεg)(·).

Thanks to Lemma 6.11 and the first estimate, we have

∥eλSBε(·)g∥L2
tH

1
m
≲ ∥g∥L2

m

and
∥eλ(SBε ∗ASΛε)(·)g∥L2

tH
1
m
≲ ∥eλASΛε(·)g∥L2

tH
−1
m

≲ ∥eλSΛε(·)g∥L2
tL

2
m

≲ ∥g∥L2
m
,

from what we immediately obtain the second estimate.

Step 2: Proof of (2). We remark that R(t) = Π⊥R(t) for all t ≥ 0. For the first term we write

SΛε ∗R = SΛεΠ
⊥ ∗R = Π⊥(SBε ∗R) + SΛεΠ

⊥ ∗ASBε ∗R,

and thus
eλ(SΛε ∗R) = eλΠ⊥(SBε ∗R) + (eλSΛεΠ

⊥) ∗A[eλ(SBε ∗R)].

Therefore we get

∥eλ(SΛε ∗R)∥L∞
t L2

m
≲∥eλ(SBε ∗R)∥L∞

t L2
m

+ ∥(eλSΛεΠ
⊥) ∗A[eλ(SBε ∗R)]∥L∞

t L2
m

≲∥eλ(SBε ∗R)∥L∞
t L2

m

+ ∥eλSΛεΠ
⊥∥L1

t (B(L2
m))∥A∥B(L2

m)∥eλ(SBε ∗R)∥L∞
t L2

m

≲∥eλR∥L2
tH

−1
m
,

where we have used Lemma 6.11 and (6.33) in last line.

For the second term we write

SΛε ∗R = SΛεΠ
⊥ ∗R = Π⊥(SBε ∗R) + SBεΠ

⊥ ∗ASBε ∗R + SBεA ∗ SΛεΠ
⊥ ∗ASBε ∗R

thus

eλ(SΛε ∗R) = Π⊥eλ(SBε ∗R) + eλ[SBε ∗ (Π⊥ASBε ∗R)] + eλ[(SBεA) ∗ (SΛεΠ
⊥ ∗ASBε ∗R)].

From Lemma 6.11 we have
∥eλ(SBε ∗R)∥L2

tH
1
m
≲ ∥eλR∥L2

tH
−1
m
,

and
∥eλ[SBε ∗ (Π⊥ASBε ∗R)]∥L2

tH
1
m
≲ ∥eλ(Π⊥ASBε ∗R)∥L2

tH
−1
m
,

thus we deduce
∥eλ[SBε ∗ (Π⊥ASBε ∗R)]∥L2

tH
1
m
≲ ∥eλ(Π⊥ASBε ∗R)∥L2

tL
2
m

≲ ∥eλ(SBε ∗R)∥L2
tL

2
m

≲ ∥eλR∥L2
tH

−1
m
.

192



Moreover, we also have

∥eλ[(SBεA) ∗ (SΛεΠ
⊥ ∗ASBε ∗R)]∥L2

tH
1
m

≲∥(eλSΛεΠ
⊥) ∗ [Aeλ(SBε ∗R)]∥L2

tH
−1
m

≲∥(eλSΛεΠ
⊥) ∗ [Aeλ(SBε ∗R)]∥L2

tL
2
m

≲∥eλSΛεΠ
⊥∥L1

t (B(L2
m))∥A∥B(L2

m)∥[eλ(SBε ∗R)]∥L2
tL

2
m

≲∥eλR∥L2
tH

−1
m
.

6.5 Estimates for L2,2

Recall that

L2,2w =
1

ε
∆w + µx · ∇w + ∇κ ∗ [Q∇w].

Lemma 6.12. Let p > 2, then there holds∫
(L2,2w)wp−1 ≤ −cp

ε
∥∇wp/2∥2L2 −

2µ

p
∥w∥pLp + C∥w∥p/p

′

Lp ∥∇w∥Lp .

Proof. We compute∫
(L2,2w)wp−1 = −cp

ε

∫
|∇wp/2|2 − 2

µ

p

∫
wp +

∫
wp−1∇κ ∗ (Q∇w),

then we remark that we have∫
wp−1∇κ ∗ (Q∇w) ≤ ∥w∥p/p

′

Lp ∥∇κ ∗ (Q∇w)∥Lp

≲ ∥w∥p/p
′

Lp ∥Q∇w∥Lp
2

≲ ∥w∥p/p
′

Lp ∥∇w∥Lp ,

where we have used Hölder’s inequality in the first line, Lemma 6.7 in the third line, and Lemma 6.1
in the fourth one.

We observe that we have

∇L2,2w =
1

ε
∆(∇w) + µx · ∇(∇w) + µ∇w + ∇2κ ∗ [Q∇w],

where we denote

(x · ∇Φ)i =
2∑
ℓ=1

xℓ∂ℓΦi, (∇2κ ∗ Φ)i =
2∑
ℓ=1

∂iℓκ ∗ Φℓ

for any vector Φ.

Lemma 6.13. There holds

⟨L2,2w,w⟩Ḣ1 = −1

ε
∥∇2w∥2L2 − ∥Q1/2∇w∥2L2 .
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Proof. A straightforward computation gives

⟨∇L2,2w,∇w⟩L2 =

∫
(
1

ε
∆∇w + µ∇w + µx · ∇2w + ∇2κ ∗ [Q∇w])∇w

= −1

ε

∫
|∇2w|2 −

∫
Q|∇w|2,

where we have performed two integrations by parts for the last term and we have used the identity
∆κ = −δ.

As a consequence of previous estimates, we obtain decay and regularization estimates for the semi-
group SL2,2 in the following result.

Lemma 6.14. Let p ∈ (2,∞) and 0 ≤ ϑ < 2µ
p
. There is ε2 > 0 small enough such that for any

ε ∈ (0, ε2) the following holds:

1. For all w ∈ Lp ∩ Ḣ1 we have

∥eϑSL2,2(·)w∥L∞
t (Lp∩Ḣ1) + ∥eϑSL2,2(·)w∥L2

tL
p +

1√
ε
∥eϑSL2,2(·)w∥L2

t Ḣ
2 ≲ ∥w∥Lp∩Ḣ1 .

2. For all eϑS ∈ L2
t (L

p ∩ Ḣ1) we have∥∥eϑ(SL2,2 ∗ S)
∥∥
L∞
t (Lp∩Ḣ1)

+
∥∥eϑ(SL2,2 ∗ S)

∥∥
L2
tL

p +
1√
ε

∥∥eϑ(SL2,2 ∗ S)
∥∥
L2
t Ḣ

2

≲ ∥eϑS∥L2
tL

p + ∥eϑS∥L2
t Ḣ

1 .

Proof. Consider ϕ = eϑSL2,2(·)w which is a solution to the evolution equation

∂tϕ = L2,2ϕ+ ϑϕ, ϕ(0) = w.

Thanks to Lemma 6.12 we have

1

p

d

dt
∥ϕ∥pLp ≤

(
ϑ− 2µ

p

)
∥ϕ∥pLp + C∥ϕ∥p/p

′

Lp ∥∇ϕ∥Lp ,

therefore, using also that
1

2

d

dt
∥ϕ∥2Lp = ∥ϕ∥2−pLp

(
1

p

d

dt
∥ϕ∥pLp

)
,

we get
1

2

d

dt
∥ϕ∥2Lp ≤

(
ϑ− 2µ

p

)
∥ϕ∥2Lp + C∥ϕ∥Lp∥∇ϕ∥Lp .

Combining this with Lemma 6.13 yields

1

2

d

dt

{
∥ϕ∥2Lp + ∥∇ϕ∥2L2

}
≤
(
ϑ− 2µ

p

)
∥ϕ∥2Lp + ϑ∥∇ϕ∥2L2 −

1

ε
∥∇2ϕ∥2L2

+ C∥ϕ∥Lp∥∇ϕ∥Lp .

Using (6.25) and Young’s inequality we get

C∥ϕ∥Lp∥∇ϕ∥Lp ≤ C∥ϕ∥2−θLp ∥∇2ϕ∥θL2 ≤ Cε
θ

2−θ ∥ϕ∥2Lp +
1

2ε
∥∇2ϕ∥2L2
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with θ = p/(2 + p), thus we obtain

1

2

d

dt

{
∥ϕ∥2Lp + ∥∇ϕ∥2L2

}
≤ −

(
2µ

p
− ϑ− Cε

θ
2−θ

)
∥ϕ∥2Lp + ϑ∥∇ϕ∥2L2 −

1

2ε
∥∇2ϕ∥2L2 .

Finally, taking ε > 0 small enough and using Lemma 6.9 we hence deduce

1

2

d

dt

{
∥ϕ∥2Lp + ∥∇ϕ∥2L2

}
≤ −σ∥ϕ∥2Lp −

1

4ε
∥∇2ϕ∥2L2

for some σ > 0, from which (1) follows by integrating in time.

We now consider ϕ = eϑ(SL2,2 ∗ S) which is a solution to the evolution equation

∂tϕ = L2,2ϕ+ ϑϕ+ eϑS, ϕ(0) = 0.

Arguing as above we have

1

2

d

dt

{
∥ϕ∥2Lp + ∥∇ϕ∥2L2

}
≤ −

(
2µ

p
− ϑ− Cε

θ
2−θ

)
∥ϕ∥2Lp + ϑ∥∇ϕ∥2L2 −

1

2ε
∥∇2ϕ∥2L2

+ C∥ϕ∥Lp∥eϑS∥Lp + C∥∇ϕ∥L2∥eϑ∇S∥L2 .

By Young’s inequality we get, for any β > 0 and some Cβ > 0,

1

2

d

dt

{
∥ϕ∥2Lp + ∥∇ϕ∥2L2

}
≤ −

(
2µ

p
− ϑ− Cε

θ
2−θ − β

)
∥ϕ∥2Lp + (ϑ+ β)∥∇ϕ∥2L2 −

1

2ε
∥∇2ϕ∥2L2

+ Cβ∥eϑS∥2Lp + Cβ∥eϑ∇S∥2L2 .

We then conclude to (2) arguing as before by taking ε, β > 0 small enough, using Lemma 6.9 and
applying Grönwall’s lemma again.

6.6 Semigroup estimates for the linearized system

We start with some estimates on the out of the diagonal operators L1,2 and L2,1.

Lemma 6.15. Let m = ⟨x⟩k with k > 3 and p > 2. For any w ∈ Lp ∩ Ḣ2 and g ∈ H1
m, there holds:

∥L1,2w∥H−1
m

≲ ∥w∥1−θLp ∥∇2w∥θL2 with θ =
p

2 + p
,

and
∥L2,1g∥Lp + ∥L2,1g∥Ḣ1 ≲ ∥g∥H1

m
.

Proof. For the first estimate we obtain

∥div(∇Q · ∇w)∥H−1
m

≲ ∥∇Q · ∇w∥L2
m

≲ ∥∇w∥Lp

≲ ∥w∥1−θLp ∥∇2w∥θL2

where we haved used the exponential decay of Q (see Lemma 6.1) in the third line together with
Hölder’s inequality, and also (6.25) in the last one.
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For the second estimate we first compute

∥L2,1g∥Lp ≤ ∥g∥Lp + ∥∇κ ∗ [g∇P ]∥Lp + ∥∇κ ∗ [Q∇κ ∗ g]∥Lp .

On the one hand we have
∥∇κ ∗ [g∇P ]∥Lp ≲ ∥g∇P∥Lp

2

≲ ∥g∥Lp
1

where we have used Lemma 6.7 in the second line and Lemma 6.1 in the third one. Similarly, we also
obtain

∥∇κ ∗ [Q∇κ ∗ g]∥Lp ≲ ∥Q∇κ ∗ g∥Lp
2

≲ ∥∇κ ∗ g∥Lp

≲ ∥g∥Lp
2

by using sucessively Lemma 6.7, Lemma 6.1 and Lemma 6.7 again. Therefore we get

∥L2,1g∥Lp ≲ ∥g∥Lp
2
≲ ∥g∥H1

m

thanks to the Sobolev embedding H2(R2) ⊂ Lp(R2).

For the third estimate we have

∥L2,1g∥Ḣ1 ≤ ∥∇g∥L2 + ∥∇2κ ∗ [g∇P ]∥L2 + ∥∇2κ ∗ [Q∇κ ∗ g]∥L2

≲ ∥∇g∥L2 + ∥g∇P∥L2 + ∥Q∇κ ∗ g∥L2 .

Thanks to Lemma 6.1 we get
∥g∇P∥L2 ≲ ∥g∥L2

and also
∥Q∇κ ∗ g∥L2 ≲ ∥κ ∗ g∥Lp ≲ ∥g∥L2

2

where we have used Hölder’s inequality and then Lemma 6.7. This implies

∥L2,1g∥Ḣ1 ≤ ∥g∥H1
m
.

As a consequence of Proposition 6.4 and Lemmas 6.14 and 6.15, and recalling the definition of the
spaces X := L2

m × (Lp ∩ Ḣ1) and Y = H1
m × (Lp ∩ Ḣ2), we obtain:

Proposition 6.5. Let 0 ≤ λ < µ. There is ε∗ > 0 small enough such that for any ε ∈ (0, ε∗) there
holds:

1. For any (g0, w0) ∈ L2
m,0 × (Lp ∩ Ḣ1) with 2 < p < 2µ

λ
we have

∥eλSL(·)(g0, w0)∥L∞
t (X) + ∥eλSL(·)(g0, w0)∥L2

t (Y ) ≲ ∥(g0, w0)∥X .

2. For any eλR = eλ(R1,R2) ∈ L2
t (H

−1
m × (Lp ∩ Ḣ1)) with ΠR1 = 0 we have

∥eλ(SL ∗R)∥L∞
t (X) + ∥eλ(SL ∗R)∥L2

t (Y ) ≲ ∥eλR∥L2
t (H

−1
m ×(Lp∩Ḣ1)).
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Proof. We split the proof into two steps.

Step 1. We write
(g(t), w(t)) = SL(t)(g0, w0)

so that
g(t) = SL1,1(t)g0 + (SL1,1 ∗L1,2w)(t)

and
w(t) = SL2,2(t)w0 + (SL2,2 ∗L2,1g)(t).

We observe that ⟨L1,2w⟩ = 0 so that Π(L1,2w) = 0 and then we can hereafter apply the results of
Proposition 6.4 to SL1,1 ∗L1,2w.

From Proposition 6.4, we have

∥eλSL1,1(·)g0∥L∞
t L2

m
+ ∥eλSL1,1(·)g0∥L2

tH
1
m
≲ ∥g0∥L2

m
,

and using also Lemma 6.15, we have

∥eλ(SL1,1 ∗L1,2w)∥L∞
t L2

m
+ ∥eλ(SL1,1 ∗L1,2w)∥L2

tH
1
m
≲ ∥eλL1,2w∥L2

tH
−1
m

≲ ∥eλw∥1−θL2
tL

p∥eλw∥θL2
t Ḣ

2

with θ = p/(2 + p). This implies

∥eλg∥L∞
t L2

m
+ ∥eλg∥L2

tH
1
m
≤ C1∥g0∥L2

m
+ C2∥eλw∥1−θL2

tL
p∥eλw∥θL2

t Ḣ
2 , (6.34)

for some constant C1, C2 > 0.

Furthermore from Lemma 6.14, we have

∥eλSL2,2(·)w0∥L∞
t (Lp∩Ḣ1) + ∥eλSL2,2(·)w0∥L2

tL
p +

1√
ε
∥eλSL2,2(·)w0∥L2

t Ḣ
2 ≲ ∥w0∥Lp∩Ḣ1 ,

and using also Lemma 6.15, we have

∥eλ(SL2,2 ∗L2,1g)∥L∞
t (Lp∩Ḣ1) + ∥eλ(SL2,2 ∗L2,1g)∥L2

tL
p +

1√
ε
∥eλ(SL2,2 ∗L2,1g)∥L2

t Ḣ
2

≲ ∥eλL2,1g∥L2
tL

p + ∥eλL2,1g∥L2
t Ḣ

1

≲ ∥eλg∥L2
tH

1
m

which gives,

∥eλw∥L∞
t (Lp∩Ḣ1) + ∥eλw∥L2

tL
p +

1√
ε
∥eλw∥L2

t Ḣ
2 ≤ C3∥w0∥L2

m
+ C4∥eλg∥L2

tH
1
m
, (6.35)

for some constants C3, C4 > 0.

Thanks to Young’s inequality, we deduce from (6.34) that for any β > 0 there is some Cβ > 0 such
that

∥eλg∥L∞
t L2

m
+ ∥eλg∥L2

tH
1
m
≤ C1∥g0∥L2

m
+ β∥eλw∥L2

tL
p + Cβ∥eλw∥L2

t Ḣ
2 ,

which combining with (6.35) yields

∥eλg∥L∞
t L2

m
+ ∥eλg∥L2

tH
1
m
≤ C1∥g0∥L2

m
+ βC3∥w0∥L2

m
+ βC4∥eλg∥L2

tH
1
m

+
√
εCβC3∥w0∥L2

m
+
√
εCβC4∥eλg∥L2

tH
1
m
.
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Therefore choosing first β > 0 small enough and then ε > 0 small enough gives

∥eλg∥L∞
t L2

m
+ ∥eλg∥L2

tH
1
m
≤ C5∥g0∥L2

m
+ C6∥w0∥L2

m

for some constants C5, C6 > 0. We then conclude part (1) by gathering this last estimate with (6.35).

Step 2. We argue similarly as for part (1) by using the estimates of Proposition 6.4–(2) and Lemma 6.14–
(2).

6.7 Stability for the nonlinear equation

We come back to the nonlinear system (6.6) given by
∂tg = L1(g, w) − div(g∇w) − div(g∇κ ∗ g)

∂tw = L2(g, w) + ∇κ ∗ [g∇w + g∇κ ∗ g]

(g, w)|t=0 = (g0, w0),

(6.36)

that we rewrite{
∂t(g, w) = L(g, w) + (−div(g∇w) − div(g∇κ ∗ g),∇κ ∗ [g∇w + g∇κ ∗ g])

(g, w)|t=0 = (g0, w0).
(6.37)

Theorem 6.3. There are ε0, η0 > 0 such that for any ε ∈ (0, ε0) and any initial data (g0, w0) ∈
L1
m,0×(Lp∩Ḣ1) with ∥(g0, w0)∥L2

m×(Lp∩Ḣ1) ≤ η0, there exists a unique global solution (g, w) ∈ L∞
t (L2

m×
(Lp ∩ Ḣ1)) ∩ L2

t (H
1
m × (Lp ∩ Ḣ2)) to (6.37), which verifies

∥(g, w)∥L∞
t (L2

m×(Lp∩Ḣ1)) + ∥(g, w)∥L2
t (H

1
m×(Lp∩Ḣ2)) ≲ ∥(g0, w0)∥L2

m×(Lp∩Ḣ1). (6.38)

Moreover we have the decay estimate, for any λ ∈ (0, µ),

∥eλ(g, w)∥L∞
t (L2

m×(Lp∩Ḣ1)) + ∥eλ(g, w)∥L2
t (H

1
m×(Lp∩Ḣ2)) ≲ ∥(g0, w0)∥L2

m×(Lp∩Ḣ1). (6.39)

Proof. We fix 0 < λ < µ.

Step 1: Existence. Consider the space

X =
{

(g, w) ∈ L∞
t (L1

m,0 × (Lp ∩ Ḣ1)) ∩ L2
t (H

1
m × (Lp ∩ Ḣ2))

∣∣∣ ∥(g, w)∥X <∞
}

where
∥(g, w)∥X = ∥eλ(g, w)∥L∞

t (L2
m×(Lp∩Ḣ1)) + ∥eλ(g, w)∥L2

t (H
1
m×(Lp∩Ḣ2)).

Define the map Φ : X → X, (g, w) 7→ Φ[g, w] given by, for all t ≥ 0,

Φ[g, w](t) = SL(t)(g0, w0) + (SL ∗R[(g, w), (g, w)])(t),

where

R[(g, w), (g, w)] = (R1[(g, w), (g, w)] + S1[(g, w), (g, w)], R2[(g, w), (g, w)] + S2[(g, w), (g, w)]) ,
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with
R1[(g, w), (ḡ, w̄)] = −div(g∇w̄)

S1[(g, w), (ḡ, w̄)] = −div(g∇κ ∗ ḡ)

R2[(g, w), (ḡ, w̄)] = ∇κ ∗ [g∇w̄]

S2[(g, w), (ḡ, w̄)] = ∇κ ∗ [g∇κ ∗ ḡ].

We observe here that the first component of Φ[g, w](t) belongs to L2
m,0 since

ΠR1[(g, w), (g, w)] = ΠS1[(g, w), (g, w)] = 0,

thus in the sequel we can apply the results of Proposition 6.5.

Thanks to Proposition 6.5 we have on the one hand

∥SL(·)(g0, w0)∥X ≲ ∥(g0, w0)∥L2
m×(Lp∩Ḣ1),

and on the other hand

∥SL ∗R∥X ≲ ∥eλR1[(g, w), (g, w)]∥L2
tH

−1
m

+ ∥eλS1[(g, w), (g, w)]∥L2
tH

−1
m

+ ∥eλR2[(g, w), (g, w)]∥L2
tL

p + ∥eλR2[(g, w), (g, w)]∥L2
t Ḣ

1

+ ∥eλS2[(g, w), (g, w)]∥L2
tL

p + ∥eλS2[(g, w), (g, w)]∥L2
t Ḣ

1 ,

and we now estimate each term separately.

For the term associated to R1, we first write

∥div(g∇w)∥H−1
m

≲ ∥g∇w∥L2
m

≲ ∥g∥L4
m
∥∇w∥L4

≲ ∥g∥1/2L2
m
∥g∥1/2H1

m
∥∇w∥1/2L2 ∥∇2w∥1/2L2 ,

where we have used Hölder’s inequality in the second line, and Ladyzhenskaya inequality (6.26) in the
last one. Therefore we obtain

∥eλR1[(g, w), (g, w)]∥L2
tH

−1
m

≲ ∥eλg∥1/2L∞
t L2

m
∥∇w∥1/2L∞

t L2∥eλg∥1/2L2
tH

1
m
∥∇2w∥1/2

L2
tL

2

≲ ∥(g, w)∥2X.
(6.40)

For the term associated to S1, arguing similarly as above with Hölder’s inequality and (6.26) we get

∥div(g∇κ ∗ g)∥H−1
m

≲ ∥g∇κ ∗ g∥L2
m

≲ ∥g∥L4
m
∥∇κ ∗ g∥L4

≲ ∥g∥1/2L2
m
∥g∥1/2H1

m
∥∇κ ∗ g∥1/2L2 ∥∇2κ ∗ g∥1/2L2

≲ ∥g∥L2
m
∥g∥H1

m
,

where in the last line we have also used Lemma 6.6. We hence obtain

∥eλS1[(g, w), (g, w)]∥L2
tH

−1
m

≲ ∥eλg∥L∞
t L2

m
∥g∥L2

tH
1
m

≲ ∥(g, w)∥2X.
(6.41)

For the term associated to R2 we have thanks to Lemma 6.7

∥∇κ ∗ (g∇w)∥Lp ≲ ∥g∇w∥L2
m
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and also
∥∇κ ∗ (g∇w)∥Ḣ1 ≲ ∥g∇w∥L2 ,

thus we can argue as above for obtaining (6.40) to deduce

∥eλR2[(g, w), (g, w)]∥L2
tL

p + ∥eλR2[(g, w), (g, w)]∥L2
t Ḣ

1 ≲ ∥(g, w)∥2X.

Finally, for the term associated to S2, we write thanks to Lemma 6.7

∥∇κ ∗ (g∇κ ∗ g)∥Lp ≲ ∥g∇κ ∗ g∥L2
m

and also
∥∇κ ∗ (g∇κ ∗ g)∥Ḣ1 ≲ ∥g∇κ ∗ g∥L2 ,

therefore arguing as for obtaining (6.41) yields

∥eλS2[(g, w), (g, w)]∥L2
tL

p + ∥eλS2[(g, w), (g, w)]∥L2
t Ḣ

1 ≲ ∥(g, w)∥2X.

We have hence obtained a first estimate

∥Φ[g, w]∥X ≤ C0∥(g0, w0)∥H1
m×H2 + C1∥(g, w)∥2X. (6.42)

For (g, w), (ḡ, w̄) ∈ X, we remark that

Φ[g, w] − Φ[ḡ, w̄] = SL ∗ (R∗
1 + S∗

1 , R
∗
2 + S∗

2)

with
R∗

1 = R1[(g, w), (g, w)] −R1[(ḡ, w̄), (ḡ, w̄)]

= R1[(g, w), (g, w) − (ḡ, w̄)] +R1[(g, w) − (ḡ, w̄), (ḡ, w̄)]

S∗
1 = S1[(g, w), (g, w)] − S1[(ḡ, w̄), (ḡ, w̄)]

= S1[(g, w), (g, w) − (ḡ, w̄)] + S1[(g, w) − (ḡ, w̄), (ḡ, w̄)]

R∗
2 = R2[(g, w), (g, w)] −R2[(ḡ, w̄), (ḡ, w̄)]

= R2[(g, w), (g, w) − (ḡ, w̄)] +R2[(g, w) − (ḡ, w̄), (ḡ, w̄)]

S∗
2 = S2[(g, w), (g, w)] − S2[(ḡ, w̄), (ḡ, w̄)]

= S2[(g, w), (g, w) − (ḡ, w̄)] + S2[(g, w) − (ḡ, w̄), (ḡ, w̄)].

Arguing as above, we also deduce a second estimate

∥Φ(g, w) − Φ(ḡ, w̄)∥X ≤ C2 (∥(g, w)∥X + ∥(ḡ, w̄)∥X) ∥(g, w) − (ḡ, w̄)∥X. (6.43)

As a consequence of the estimates (6.42) and (6.43), one can construct a global mild solution
(g, w) ∈ X to (6.37) by a standard fixed-point argument, which verifies moreover estimates (6.38) and
(6.39).

Step 2: Uniqueness. Let (g, w) and (ḡ, w̄) be two solutions to (6.37) in L∞
t (X) ∩ L2

t (Y ) associated to
the same initial data (g0, w0) such that ∥(g0, w0)∥L2

m×(Lp∩Ḣ1) ≤ η0 and verifying estimate (6.38).

Arguing as in the previous step, we obtain that

∥(g, w) − (ḡ, w̄)∥L∞
t (X)∩L2

t (Y ) ≲
(
∥(g, w)∥L∞

t (X)∩L2
t (Y ) + ∥(ḡ, w̄)∥L∞

t (X)∩L2
t (Y )

)
× ∥(g, w) − (ḡ, w̄)∥L∞

t (X)∩L2
t (Y ),

and we conclude using (6.38) and the fact that η0 > 0 is small enough.
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Chapter 7

The parabolic-parabolic Keller-Segel
equation with variable rescaling parameter

In this chapter we present some estimates on the parabolic-parabolic Keller-Segel equation which has
been developed in order to tackle two problems:

(1) an improved spectral analysis in the radially symmetric case in order to describe blowing up
solutions in the critical 8π mass case in the spirit of what has been done for the parabolic-elliptic
Keller-Segel equation in [39,71,72] (see also [40]);

(2) a description of the longtime self-similar behavior of solution in the sub-critical mass case
without radially symmetric assumption in the spirit of what has been done in the radially symmetric
case in [48].

Although the first project has been up to now unsuccessful, we believe that the material we have
developed can be useful for future works. A series of obtained intermediate estimates are thus presented
below. The solution to the second problem was presented in details in the previous chapter.

7.1 The parabolic-parabolic Keller-Segel equation and re-scaling

parameters

7.1.1 The PPKS equation and the re-scaling parameters

The original parabolic-parabolic Keller-Segel (PPKS in short) equation in the plane writes{
∂tF = ∆F + div(−F∇U) in (0,∞) × R2

ε ∂tU = ∆U + F in (0,∞) × R2,
(7.1)

complemented with the initial condition

F (0, ·) = F0 ≥ 0 and U(0, ·) = U0 ≥ 0 in R2. (7.2)

Here t ≥ 0 is the time variable, x ∈ R2 is the space variable, F = F (t, x) ≥ 0 stands for the mass
density of cells while U = U(t, x) ≥ 0 is the chemo-attractant concentration and ε > 0 is a constant.
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We refer to the work [46] as well as to the reviews [194, 195] and the references quoted therein for
biological motivation and mathematical introduction.

In short, the KS equation models a cells population which is subject to two inverse mechanisms:

- a brownian motion (responsible to the diffusion term ∆F in the first equation of (7.1)) modeling
the fact that any cell change of direction and move in a completely erratic way and which global effect
is to spread out the population all over the plane R2;

- an aggregation mechanism (responsible to the drift term ∇(−F∇U) in the first equation of (7.1))
modeling the fact that cells have a tendency to follow the gradient lines of the chemo-attractant,
which is itself produced and diffused according to the second equation in (7.1). That mechanism has
a concentration effect, which is quite strong due to the fact that the associated interaction kernel is
singular.

From a mathematical point of view, both mechanisms are almost at the same order, and that makes
the rigorous analysis of the model particularly difficult and interesting.

When assuming the initial mass sub-critical, namely

ϱ := ⟨F0⟩ :=

∫
R2

F0(x)dx < 8π,

one can show that the solution (F,U) to (7.1) is global in time and mass preserving

⟨F (t, ·)⟩ ≡ ϱ < 8π, ∀ t ≥ 0.

We introduce the self similar variables (f, u) through the change of variables

F (t, x) = R(t)−2F(logR(t), R(t)−1x) and U(t, x) = U(logR(t), R(t)−1x),

where R(t) =
√

1 + 2t. This re-scaled functions solve the system{
∂tF = ∆F + div(xF −F∇U)

∂tU =
1

ε
(∆U + F) + x · ∇U,

(7.3)

with
⟨F(t, ·)⟩ = ⟨F0⟩ = ϱ < 8π.

It is shown in [47,185,186] the existence, uniqueness (up to a constant for the second unknown), radially
symmetric property and smoothness of an associated steady state (Gε,ϱ,Vε,ϱ) for a given sub-critical
mass, so that {

0 = ∆Gε,ϱ + div(xGε,ϱ −Gε,ϱ∇Vε,ϱ), ⟨Gε,ϱ⟩ = ϱ,

0 =
1

ε
(∆Vε,ϱ +Gε,ϱ) + x · ∇Vε,ϱ,

(7.4)

for any ϱ ∈ (0, 8π) and ε > 0. Such steady states are parameterized according to the mass ϱ. This
implies that there exists a one to one relation between ϱ and, for example, the value Gε,ϱ(0), which
allows us to redefine the aforementioned parameterization. Let us set

µ =
8

Gε,ϱ(0)
, f(t, x) = µF(µt,

√
µx), u(t, x) := U(µt,

√
µx). (7.5)
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An easy computation shows that (f, u) is solution to the rescaled parabolic-parabolic Keller-Segel
equation in self-similar variables {

∂tf = ∆f + div(µxf − f∇u)

∂tu =
1

ε
(∆u+ f) + µx · ∇u, (7.6)

and in the sequel we will focus on this problem. In fact, regardless of the value of µ, such a re-scaling
will always yield a solution for (7.6). The motivation behind this specific choice for the parameter can
be found in [39] where the same choice allows for a refined study of the steady states for the sub-critical
parabolic-elliptic case, see also [40,42,71,72].

7.1.2 Self-similar profiles

We denote by Q = Qµ
ε and P = P µ

ε the associated self-similar profiles defined as the stationary
solutions to the Keller-Segel system (7.6), that is{

0 = ∆Q+ div(µxQ−Q∇P )

0 = ∆P +Q+ εµx · ∇P.
(7.7)

The functions Q and P can be equivalently defined by Q(x) := µGε,ϱ(
√
µx) and P (x) := Vε,ϱ(

√
µx),

where µ is still defined by the first equation in (7.5). It is worth noticing here that whatever is the
value of ε ∈ [0, ε∗), we are able to establish that

Qµ
ε → Q0, P µ

ε → P0, as µ→ 0,

where (Q0, P0) is defined by

Q0(x) :=
8

(1 + |x|2)2
, ∆P0 = −Q0

and it is a stationary solution to parabolic-elliptic Keller-Segel system (7.1) (corresponding to the case
ε = 0) and mass ⟨Q0⟩ = 8π (and with infinite second moment). The relevancy of the choice of µ in (7.5)
comes from the fact that ⟨Qµ

ε ⟩ → 8π, the critical mass as µ → 0. In some sense the system (7.6) with
sub-critical mass ⟨Qµ

ε ⟩ is asymptotically close to the system (7.1) with parameter ε = 0 and critical
mass 8π. It turns out that an accurate analysis of the first sub-critical problem may be helpful for the
analysis of the second critical one and such an idea is developed in [39] when ε = 0. That is also the
strategy we try to follow here in order to understand the possible infinite time blow up behaviour of
solutions of the Parabolic-Parabolic Keller-Segel system (7.6) (when thus ε > 0) for the critical mass.
We have not been able to perform the complete analogical work when ε > 0 as what is known when
ε = 0. Nevertheless, we present in the sequel of this note the very first steps of such an analysis which
we believe can be interesting for their own and for the realization of the full program. In particular in
section 7.2 and as a first step, we establish families of estimates on the profiles functions (Qµ

ε , P
µ
ε ) with

quantitative dependence on the parameters µ, ε ≥ 0.

7.1.3 The linearized self-similar PPKS equation

We introduce the perturbation (g, v) defined by

f = Q+ g, u = P + v,
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where Q = Qµ
ε and P = P µ

ε verify (7.7). If (f, u) is a solution to (7.6) then (g, v) satisfies the system∂tg = ∆g + div(µxg − g∇P −Q∇v) − div(g∇v)

∂tv =
1

ε
(∆v + g) + µx · ∇v,

(7.8)

and reciprocally.

We are next interested on the linearized equation around a re-scaled self-similar profile{
∂tg = ∆g + div(µxg − g∇P −Q∇v)

∂tv =
1

ε
(∆v + g) + µx · ∇v.

Let us define the Laplace kernel in the plane

κ(z) := − 1

2π
log |z|, K(z) := ∇κ(z) = − 1

2π

z

|z|2
, (7.9)

so that ω := κ ∗ Ω is a solution to the Laplace equation

−∆ω = Ω in R2.

Next defining
w := v − κ ∗ g,

the equation on w is

∂tw =
1

ε
∆w + µx · ∇w + µx · ∇κ ∗ g −∇κ ∗ [∇g + µxg − g∇P −Q∇κ ∗ g −Q∇w].

In fact, by using that

x · ∇κ ∗ g −∇κ ∗ (xg) ≃
∫

(x− y)

|x− y|2
{
x g(y) − y g(y)

}
dy = ⟨g⟩

and ⟨g⟩ = 0, the second equation simplifies. The system of equations on (g, w) becomes{
∂tg = ∆g + div(µxg − g∇P −Q∇κ ∗ g −Q∇w)

∂tw =
1

ε
∆w + µx · ∇w + g + ∇κ ∗ [g∇P +Q∇κ ∗ g +Q∇w],

(7.10)

and we will focus on the dissipativity properties of the associated operator. More precisely, defining

L(g, w) := (L1(g, v),L2(g, v))

with

L1(g, w) := ∆g + div(µxg − g∇P ) − div(Q∇κ ∗ g +Q∇w)

L2(g, w) :=
1

ε
∆w + µx · ∇w + g + ∇κ ∗ [g∇P +Q∇κ ∗ g +Q∇w],

we want to exhibit some scalar products (·, ·)H and associated norm ∥ · ∥H such that

(L(g, w), (g, w))H ≤ −λ∥(g, w)∥2H + . . . ,

with λ > 0 as large as possible for each scalar product, and the remainder term “. . . ” is essentially
negative.
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7.1.4 Functional spaces and dissipativity estimate

In order to obtain the dissipativity property of the operator, we will introduce several Hilbert spaces
which, more or less conveniently, reveal the dissipativity mechanism.

For the first component g, we will work in weighted Lebesgue spaces. For a weight function m :
R2 → [1,∞), the weighted Lebesgue space Lpm(R2), for 1 ≤ p ≤ ∞, is defined by

Lpm(R2) := {f ∈ L1
loc(R2); ∥f∥Lp

m
:= ∥f m∥Lp <∞},

and the norm of the higher-order Sobolev spaces W ℓ,p
m (R2) is defined by

∥f∥p
W ℓ,p

m
:=
∑
|α|≤ℓ

∥m∂αf∥pLp ,

with the usual shorthand Hℓ
m := W ℓ,2

m . For the weight function m, we take

m2 := eϑ
µ
2
|x|2+4 log⟨x⟩, ϑ ∈ (0, 1), and ⟨x⟩ = (1 + |x|2)1/2, (7.11)

because it conveniently behaves as µ→ 0.

For the second component w, we will work in several different spaces. The simplest one is to consider
the Lebesgue space L2, so that H = L2

m × L2 and more precisely

∥(g, w)∥2H := ∥g∥2L2
m

+ η∥w∥2L2 , η > 0, (7.12)

but this choice leads to a moderate dissipative estimate.

Theorem 7.1. With the choice (7.12) for the norm of H , there holds

(L(g, w), (g, w))H ≤ −µ∥(g, w)∥2H − 1

2
∥∇g∥2L2

m
− 1

2ε
∥∇w∥2L2 + C∥g∥2L2(BR),

for any ε ∈ (0, ε0) and µ ∈ (0, 1], where C,R > 0 are some constants (independent of ε and µ) and
ε0 > 0 is small enough.

In a radially symmetric framework, we define the cumulant function W of the radially symmetric
function w by

W (s) = (Cw)(s) :=

∫ ∞

√
s

w(r)rdr, s > 0, (7.13)

where we abuse notation by writing w(|x|) = w(x) for any x ∈ R2, so that

W (s) =

∫ √
s

0

w(r)rdr, if w ∈ L1, ⟨w⟩ = 0. (7.14)

In that situation, we may choose H = (L2
rad ∩ L2

m) × L2
rad, where L2

rad := {f ∈ L2 : f is radial}, and
more precisely

∥(g, w)∥2H := ∥g∥2L2
m

+ η ∥w∥2L2 + η∥s−αW∥2L2 , η > 0, α ∈ (0, 1). (7.15)

That choice leads to a stronger dissipative estimate at least for the principal partL2,2 of the operator L2.
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Remark 2. With the choice (7.15) for the norm of H , there holds

(L(g, w), (g, w))H ≤ −3(1 − α)µ∥(g, w)∥2H − 1

2
∥∇g∥2L2

m
− 1

2ε
Dα(w) + C∥g∥2L2(BR),

for any ε ∈ (0, ε0), µ ∈ (0, 1], (g, w) ∈ H , w ∈ L1 such that ⟨w⟩ = 0, where C,R > 0 are some
constants (independent of ε and µ) and ε0 > 0 is small enough, and where we define

Dα(w) := ∥∇w∥2L2 + 4

∫
s1−α(∂sW )2 + 2α(1 − α)

∫
W 2s−1−α.

It is however worth emphasizing that s−αW ∈ L2 does not ensure that w ∈ L1 and thus the property
(7.14) is not continuous for the topology associated to that norm. That can be an issue when performing
an abstract spectral analysis of L.

A last possibility will be briefly considered. For the second component, one can take the space Hεµ

associated to the Lebesgue norm

∥w∥2Hεµ
:=

∫
w2eεµ

|x|2
2 ,

in which the principal part of the operator L2 has a similar dissipativity property as in the space
considered in the previous example. The issue is the strong dependency on the parameters ε, µ > 0.

These dissipativity estimates will be discussed in Sections 7.4 and 7.5.

7.1.5 Weyl’s type theorem

Weyl’s theorem provides useful information about the essential spectrum of an operator (see [196]).
From the previous analysis and because we are able to exhibit some explicit eigenfunctions, the following
information on the principal part of the spectrum of L can be established.

Theorem 7.2. In the space H defined by the norm (7.12), there holds

Σ(L) ∩ ∆−µ = Σd(L) ∩ ∆−µ

ΣP (L) ⊃ {−2µ,−µ, 0}.

The first main issue is the possibility to improve the above result by choosing adequately the space
H and then to establish

Σ(L) ∩ ∆−λ = Σd(L) ∩ ∆−λ = {−2µ,−µ, 0},

for some λ ∈ (2µ, 3µ).

7.2 Estimates on the self-similar profile

In this section, we present an accurate estimate on the self-similar profile (P µ
ε , Q

µ
ε ) =: (P,Q).
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Proposition 7.1. There exists ε∗ > 0, such that, for all ε ∈ (0, ε∗), Qµ
ε (x) converges uniformly to

Q0(x) in R2 as µ goes to 0. Furthermore, there exists α∗ ∈ (0, 1) independent of µ and ε, such that for
all ε ∈ (0, ε∗) there exists α := α(ε) ∈ (α∗, 1) such that the following inequalities hold true:

i) (Bounds over P µ
ε ) For all x ∈ R2 there holds

P0(x) − µα|x|2

2
< P (x) − µα|x|2

2
< P0(x) < P (x) < 0, (7.16)

ii) (Bounds over x · ∇P ) For all x ∈ R2 there holds

x · ∇P (x) − µα|x|2 < x · ∇P0(x) < x · ∇P (x) < 0. (7.17)

iii) (Bounds over Q) For all x ∈ R2, there holds

Q0(x)e−µ
|x|2
2 < Q(x) < Q0(x)e−µ(1−α)

|x|2
2 . (7.18)

Proof. In order to prove (7.16) and (7.17), we follow the same ideas as the proof for Proposition 4.1
in [39], but including the necessary modifications to handle the terms depending on ε that appear for
this new problem.
First notice that P0(x) and P (x) are radial functions solving the equations

∆P0(x) = −Q0(x) = −8eP0(x)

∆P + µεx · ∇P = −Q(x) = −8eP (x)−µ |x|2
2 ,

respectively, with P0(0) = P (0) = 0. When translated to polar variables, these equations read as

P ′′
0 (r) +

1

r
P ′
0(r) = −8eP0(r)

(P )′′(r) +

(
1

r
+ µεr

)
(P )′(r) = −8eP (r)−µ |r|2

2 , (7.19)

with P0(0) = P ′
0(0) = 0 = P (0) = P ′(0). After solving we get

P0(r) = −8

∫ r

0

1

ρ

∫ ρ

0

τeP0(τ)dτdρ, (7.20)

P (r) = −8

∫ r

0

e−µε
ρ2

2

ρ

∫ ρ

0

τeP (τ)−µ(1−ε) τ
2

2 dτdρ. (7.21)

Plugging an expansion in powers of r up to order 4 for P µ
ε (r) in (7.19), the coefficients of such expansion

can be computed, which gives

P (r) − µα
r2

2
= −(2 +

µα

2
)r2 + (1 +

µ

4
(1 + ε))r4 + o(r4), (7.22)

P0(r) = −2r2 + r4 + o(r4), (7.23)

P (r) = −2r2 + (1 +
µ

4
(1 + ε))r4 + o(r4), (7.24)
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for all α ∈ (0, 1). This implies that there exists r0 > 0 (which depends on α) such that for all r ∈ (0, r0)
the relation

P0(r) −
µα|r|2

2
< P (r) − µα|r|2

2
< P0(r) < P (r) < 0

holds true.
Set α = 1 − ε with ε ∈ (0, 1) and assume now that there exists r1 > 0 such that P0(r1) = P (r1) and

P (r) − µ(1 − ε)|r|2

2
< P0(r) < P (r)

for all r ∈ (0, r1). Using (7.20) and (7.21) we get,

0 = P0(r1) − P (r1)

= −8

∫ r1

0

1

ρ

∫ ρ

0

τ

(
eP0(τ) − eP (τ)−µ(1−ε) τ

2

2
−µε ρ

2

2

)
dτdρ

⩽ −8

∫ r1

0

1

ρ

∫ ρ

0

τ
(
eP0(τ) − eP (τ)−µ(1−ε) τ

2

2

)
dτdρ

< 0

due to the fact that P (r) − µ(1−ε)|r|2
2

< P0(r) for all r ∈ (0, r1). This is a contradiction and therefore
P0(r) < P (r) for all r > 0.
We consider again α ∈ (0, 1). Suppose now that there exists rα such that

Ψµ
ε (α, rα) := P (rα) − µα|rα|2

2
= P0(rα)

and

P (r) − µα|r|2

2
< P0(r) < P (r)

for all r ∈ (0, rα). Using again (7.21) we have

Ψµ
ε (α, rα) = −8

∫ rα

0

1

ρ

∫ ρ

0

τeP (τ)−µ(1−ε) τ
2

2
−µε ρ

2

2 dτdρ− µα|rα|2

2

< −8

∫ rα

0

1

ρ

∫ ρ

0

τeP0(τ)−µ(1−ε) τ
2

2
−µε ρ

2

2 dτdρ− µα|rα|2

2
=: Ψ̃(α, rα, µ).

Notice that Ψ̃(α, rα, 0) = P0(rα). If we prove that there exist values of α such that ∂µΨ̃(α, rα, 0) < 0
then, in a neighbourhood of µ = 0 we have Ψµ

ε (α, rα) < Ψ̃(α, rα, µ) < Ψ̃(α, rα, 0) = P0(rα) which is a
contradiction. Since, by a continuity argument and numerical estimates, we are able to establish that
the function

∂r∂µΨ̃(α, r, 0) =
4(1 − ε)

r

∫ r

0

τ 3eP0(τ)dτ + 4εr

∫ r

0

τeP0(τ)dτ − αr

=
2(1 − ε)

r

(
ln(1 + r2) +

1

1 + r2
− 1

)
+ 4εr

(
1 − 1

1 + r2

)
− αr

is smaller than 0 for all r > 0 if (ε, α) ∈ (0, ε∗) × (α∗(ε), 1)n, with ε∗ > 0, 206 and α∗(ε) an increasing
function such that α∗(0) < 0, 45 and α∗(ε∗) = 1, we have that

∂µΨ̃(α, rα, 0) =

∫ rα

0

∂r∂µΨ̃(α, r, 0)dr < 0,
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which leads to the desired contradiction. This finishes the proof of (7.16). We arrive to (7.17) in a
similar way, but using the expressions for x · ∇P0 and x · ∇P .
To prove (7.18), it suffices to take the exponential on the relation

P0(x) − µ|x|2

2
< P (x) − µα|x|2

2
< P0(x)

which leads to

Q0(x)e−
µ|x|2

2 < Q(x) < Q0(x)e−
µ(1−α)|x|2

2

for all α ∈ (α∗(ε), 1).

As an immediate consequence of Proposition 7.1 we have

Lemma 7.1. There exist constants C > 0 and ϑ ∈ (0, 1) independent of µ and ε such that for any
ε ∈ (0, ε∗/2]

0 ≤ Q(x) ≤ C e−µϑ|x|
2/2⟨x⟩−4, (7.25)

sup
x∈R2

(
1

|x|
+ ⟨x⟩) |∇P (x)| ≤ C, (7.26)

and
sup
x∈R2

|∆P (x)| ≤ C. (7.27)

Proof. Fix ᾱ := sup
ε∈(0,ε∗/2)

α∗(ε). We know from the proof of Proposition 7.1 that ϑ := (1 − ᾱ) ∈ (0, 1)

is independent from µ and ε. Furthermore, choosing α = ᾱ in (7.18) directly gives (7.25).
Computing the explicit expression for ∇P gives

∇P = −e−µε
|x|2
2

x

|x|2

∫ |x|

0

Q(r)eµε
r2

2 rdr,

hence

|∇P | ⩽ 1

|x|

∫ |x|

0

Q(r)eµε
r2

2 rdr ≲
1

|x|

∫ |x|

0

⟨r⟩−4e−µ(ϑ−ε)
r2

2 rdr.

Given that ϑ is independent from ε, then, at least for ε small enough, we get

|∇P | ≲ 1

|x|

∫ |x|

0

⟨r⟩−4rdr ⩽ |x|⟨x⟩−2,

which directly implies (7.26).
Finally

∆P = −µεx · ∇P −Q,

and we conclude (7.27) thanks to (7.17) and (7.18).

We recall the definition (7.11) for the value of ϑ given in Lemma 7.1, this is

m2 := e
ϑµ
2
|x|2⟨x⟩4, (7.28)
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Corollary 7.3. There exists ϑ > 0, ε∗ > 0 and Ci > 0 such that

0 ≤ Qm ≤ C1, Q|∇m|⟨x⟩ ≤ C2, (7.29)

for any ε ∈ (0, ε∗).

Proof. For the first relation in (7.29) we use

Qm =
Qm2

m
⩽ CQm2,

followed by (7.25).
Next, given that ∇m = x(ϑµ

2
+ 4⟨x⟩−2)m, we have that

Q|∇m|⟨x⟩ ⩽ (Qm2)(m−1|x|⟨x⟩)(ϑµ
2

+ 4⟨x⟩−2) ⩽ Cm−1|x|⟨x⟩.

We conclude thanks to the fact that m−1 ⩽ C⟨x⟩−2, where all constant are independent from ε and
µ.

We recall now the functions Qµ and Pµ studied in [39], which with our notations can be defined as
Qµ := Qµ

0 and Pµ = P µ
0 . We have that (Qµ, Pµ) is the solution of the system

∆Qµ −∇ · (Qµ∇Pµ − µxQµ) = 0, (7.30)

∆Pµ +Qµ = 0, (7.31)

Proposition 7.2. There exist constants ϑ ∈ (0, 1), Ci > 0, i = 1, . . . , 4, independent of µ and ε such
that for all x ∈ Rd

|P − Pµ| ⩽ µεC1|x|2, (7.32)

|∇P −∇Pµ| ⩽ µεC2|x|, (7.33)

|Q−Qµ| ⩽ µεC3|x|2Q(x)e−
ϑµ|x|2

2 , (7.34)

|∇Q−∇Qµ| ⩽ µεC4|x|3Q(x)e−
ϑµ|x|2

2 . (7.35)

Proof. We recall that in radial variables, we have the expressions

Pµ(r) = − 8

∫ r

0

1

ρ

∫ ρ

0

ePµ−µ |τ |2
2 τdτdρ,

P (r) = − 8

∫ r

0

e−µε
ρ2

2

ρ

∫ ρ

0

eP−µ(1−ε) |τ |
2

2 τdτdρ

which imply

P − Pµ =

(
P −

∫ r

0

P ′eµε
|τ |2
2 dτ

)
+

(∫ r

0

P ′eµε
|τ |2
2 dτ − Pµ

)
= −

∫ r

0

e−µε
ρ2

2 − 1

ρ

∫ ρ

0

Q(τ)eµε
τ2

2 τdτdρ

− 8

∫ r

0

1

ρ

∫ ρ

0

(eP−µ(1−ε) |τ |
2

2 − ePµ−µ |τ |2
2 )τdτ,
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after having conveniently factored each term.

Directly from Proposition 7.1 we know that
∫ ρ
0
Q(τ)eµε

τ2

2 τdτ ⩽
∫ ρ
0
Q0(τ)τdτ ⩽ 8π, and the mean value

theorem gives us the relation

eP−µ(1−ε) |τ |
2

2 − ePµ−µ |τ |2
2 = (P − Pµ + µε

τ 2

2
)eh(τ)

with h(τ) satisfying

h(τ) ⩽ max{P − µ(1 − ε)
|τ |2

2
, Pµ − µ

|τ |2

2
} ⩽ P0(x) − ϑµ|x|2

2
,

thanks to estimate (7.16).
Proposition 7.1 then gives

8eh(τ) ⩽ Q0(τ)e−
ϑµ|x|2

2 .

Putting everything together we get

|P − Pµ| ⩽8π

∫ r

0

1 − e−µερ
2

ρ
dρ+

∫ r

0

1

ρ

∫ ρ

0

|P − Pµ + µε
τ 2

2
|Q0(τ)τdτ

⩽µεKr2 +

∫ r

0

∫ ρ

0

|P − Pµ|Q0(τ)dτ,

where K is a constant independent of µ and ε. Integrating by parts the integral term we get

|P − Pµ| ⩽ µεKr2 + r

∫ r

0

|P − Pµ|Q0(τ)dτ,

which thanks to Gronwall’s Lemma gives (7.32). Using the explicit expression for the gradients of P
and Pµ and following the same steps as for P − Pµ give (7.33).
On the other hand, we have

|Q−Qµ| =8|eP
µ
ε −µ(1−ε) |τ |

2

2 − ePµ−µ |τ |2
2 |

=|P − Pµ + µε
τ 2

2
)|8eh(τ)

⩽µεC2|r|2Q0(r)e
−ϑµr2

2 .

Repeating the process for ∇(Q−Qµ) gives (7.35).

Corollary 7.4. There exists C > 0 such that

|∆(P − Pµ)| ≤ µεC, (7.36)

for any ε ∈ (0, ε∗) and x ∈ R2.

Proof. Using the equations for P and Pµ, we have

∆(P − Pµ) = −(Q−Qµ) − µεx · ∇P.

We conclude thanks to (7.34) for the first term and thanks to (7.17) for the second one.

211



7.3 Some functional inequalities

We present in this section a series of estimates for functions defined in the plane and which will be
useful in the sequel. Thanks to [48, Lemma B.2], which uses Fourier arguments, we have

∥∇κ ∗ f∥L2 = ∥K ∗ f∥L2 ≤ C∥f∥L2
ℓ
, ∀ ℓ > 2, ∀ f ∈ L2

ℓ,0 (7.37)

and
∥∇κ ∗ f∥L2

1
= ∥K ∗ f∥L2

1
≤ C∥f∥L2

ℓ
, ∀ ℓ > 3, ∀ f ∈ L2

ℓ,1

where we recall that κ and K = ∇κ are defined in (7.9). We sometime use the shorthand Lrℓ+0 = Lrℓ+
for saying that an estimate is true in Lrℓ+ε whatever is ε > 0 (small enough).

The above estimates are quite sharp as we can figure out from the following series of estimates.

Lemma 7.2. For any ε > 0 small enough, we have

∥∇κ ∗ g∥L2
−ε

≲ ∥g∥L2
1+ε
, ∀ g ∈ L2

1+ε. (7.38)

In the radially symmetric case, we may slightly improve (7.37) by

∥∇κ ∗ g∥L2 ≲ ∥g∥L2
1+0
, ∀ g ∈ L2

rad ∩ L2
1+0,0. (7.39)

In general, the estimate
∥∇κ ∗ g∥L2 ≲ ∥g∥L2

ℓ
, ∀ g ∈ L2

ℓ , (7.40)

is not true whatever is ℓ > 0 and even in the radially symmetric case.

Proof of Lemma 7.2. Step 1. We prove (7.38). We split |K| := K1 +K2, with

K1 :=
1

|x|
1|x|≤1 ∈ Lr, ∀ r < 2, K1 :=

1

|x|
1|x|≥1 ∈ Lr, ∀ r > 2.

We have

∥K ∗ f∥L2
−ε

≤ ∥K1 ∗ f∥L2 + ∥K2 ∗ f∥Lr

≤ ∥K1∥L1∥f∥L2 + ∥K2∥Lr∥f∥L1

≲ ∥f∥L2
1+0

where for ε > 0 fixed, we have chosen r > 2, r − 2 > 0 small enough (take 2 < r < 2/(1 − ε)), and we
have used the Holder inequality in the first line, where we have used twice the convolution embedding
L1 ∗ Lq ⊂ Lq in the second line and where finally we have used the Cauchy-Schwarz inequality in the
last line in order to prove L2

1+0 ⊂ L1.

Step 2. We prove (7.39). In the radially symmetric case, we define u := κ ∗ g in the sense

u′′ +
1

r
u′ = ∆u = g, u′(0) = 0, (7.41)

so that u′ = ∇κ ∗ g. We deduce (ru′)′ = rg and thus

u′ =
1

r

∫ r

0

g(s)sds.
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Assuming that g ∈ L1(R2) and ⟨g⟩ = 0, we deduce that u′ satisfies (7.41) associated to the limit
conditions u′(0) = u′(∞) = 0. We finally observe that∫

(u′)2rdr =

∫ 1

0

(1

r

∫ r

0

g(s)sds
)2
rdr +

∫ ∞

1

(1

r

∫ ∞

r

g(s)sds
)2
rdr

≤
∫ 1

0

1

r

∫ r

0

g(s)2sds

∫ r

0

sdsdr +

∫ ∞

1

1

r

∫ ∞

r

g(s)2s3+εds

∫ ∞

r

s−1−εdsdr

≤
∫ 1

0

g(s)2s

∫ 1

s

r

2
drds+

1

ε

∫ ∞

1

dr

r1+ε

∫ ∞

0

g(s)2s3+εds

≤
(1

2
+

1

ε2

)∫ ∞

0

g(s)2(1 + s2+ε)sds,

where we have used the condition ⟨g⟩ = 0 at the first line, the Cauchy-Schwarz inequality at the second
line and next elementary arguments. In other words, we have established (7.39).

Step 3. We prove that (7.40) is not true in general. We may indeed fix g := e−r
2/2 ∈

⋂
ℓ L

2
ℓ so that

u′ =
1

r

∫ r

0

e−s
2/2sds ∼

r→∞

1

r
∈ L2

−ε(R2)\L2(R2).

The condition ⟨g⟩ = 0 is necessary in (7.39) and we cannot improve (7.38) in general.

A variant of Lemma 7.2 in Lp spaces.

Lemma 7.3. For any p > 2 and q ≥ 2 (with q > 2 if p = ∞), there exists k ∈ (1, 2 + 0) and
C = C(p, q, k) such that

∥∇κ ∗ g∥Lp ≤ C∥g∥Lq
k
, ∀ g ∈ Lqk. (7.42)

Proof of Lemma 7.3. We only consider the case p < ∞, the case p = ∞ may be handled in a very
similar way. With the same notations as in Lemma 7.2, we have

∥K ∗ f∥Lp ≤ ∥K1 ∗ f∥Lp + ∥K2 ∗ f∥Lp

≲ ∥K1∥Lr∥f∥L2 + ∥K2∥Lp∥f∥L1

≲ ∥f∥Lq
k
,

where we have used the convolution embedding L1 ∗ Lq ⊂ Lq and the Young convolution embedding
Lr ∗ L2 ⊂ Lp with r := (1/2 + 1/p)−1 ∈ (1, 2) in the second line and where finally we have used the
Holder inequality in the last line in order to prove Lqk ⊂ L1 ∩ L2.

We establish now several elementary estimates on the norm on the cumulant as defined in (7.13).

Lemma 7.4. We have
∥W∥L2

ℓ
≲ ∥w∥L2

2+2ℓ
, (7.43)

for any w ∈ L2
rad ∩ L2

2ℓ+2,0, ℓ ≥ 0. We also have

∥W∥L2
−ℓ

≲ ∥w∥L2
2−2ℓ

, (7.44)

for any w ∈ L2
rad ∩ L2

2−2ℓ, ℓ > 1/2. By interpolation, we deduce

∥W∥L2
−ℓ

≲ ∥w∥L2
2−2ℓ

, (7.45)

for any w ∈ L2
rad ∩ L2

2−2ℓ,0, θ ∈ (0, 1/2).
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Proof of Lemma 7.4. Step 1. Because ⟨w⟩ = 0, we may write

W (s)2 =
(∫ √

s

0

wrdr
)2

=
(∫ ∞

√
s

wrdr
)2

≤
∫ ∞

√
s

r2α+1w2dr

∫ ∞

√
s

r1−2αdr

≲
∫ ∞

√
s

r2α+1w2dr s1−α

for any s > 0, thanks to the Cauchy-Schwarz inequality by choosing α > 1. We deduce

∥W∥2L2
ℓ

:=

∫ ∞

0

W 2⟨s⟩2ℓ ds

≲
∫ ∞

0

∫ ∞

√
s

r2α+1w2dr ⟨s⟩2ℓs1−αds

≲
∫ ∞

0

r2α+1w2

∫ r2

0

s1−α⟨s⟩2ℓdsdr

≲
∫ ∞

0

r5⟨r⟩4ℓw2

≲ ∥w∥2L2
2ℓ+2

by choosing α ∈ (1, 2).

Step 2. We now write

W (s)2 =
(∫ √

s

0

wrdr
)2

≤
∫ √

s

0

w2r1+2αdr

∫ √
s

0

r1−2αdr

≲ s1−α
∫ √

s

0

w2r1+2αdr,

thanks to the Cauchy-Schwarz inequality when α < 1. We deduce

∥W∥2L2
ℓ

:=

∫ ∞

0

W 2⟨s⟩−2ℓ ds

≲
∫ ∞

0

s1−α⟨s⟩−2ℓ

∫ √
s

0

w2r1+2αdr ds

≲
∫ ∞

0

r1+2αw2

∫ ∞

r2
s1−α⟨s⟩−2ℓdsdr

≲
∫ ∞

0

r⟨r⟩4−4ℓw2 dr

≲ ∥w∥2L2
2−2ℓ

by choosing α ≥ 0 such that α > 2−2ℓ so that 1−α−2ℓ < −1 (remind that ℓ > 1/2 so that 2−2ℓ < 1).
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Step 2. The estimate (7.45) with ℓ := 1 − θ, θ ∈ (1/2, 1), follows the interpolation between the
estimate (7.43) with ℓ = 0 and the estimate (7.44) with ℓ = −1.

The cumulant function may be useful for controlling the original one as we establish now.

Lemma 7.5. We have
∥w∥L2

1
≲ ∥∇w∥L2 + ∥s1/2W ′∥L2 , (7.46)

for any w ∈ L2
rad such that ∇w ∈ L2 and s1/2W ′ ∈ L2.

Proof of Lemma 7.5. From the very definition, we have

w(
√
s) = 2W ′(s),

so that (7.46) is equivalent to∫ ∞

0

w2(1 + r2)rdr ≲
∫ ∞

0

(w′)2rdr +

∫ ∞

0

w2r3dr. (7.47)

On the one hand, we write

w(r) =

∫ 2

1

w(ρ)dρ+

∫ 2

1

∫ ρ

r

w′(σ)dσdρ, for 0 < r < 1,

and thanks to the Cauchy-Schwarz inequality, we deduce∫ 1

0

w2rdr ≲
∫ 2

1

w2dρ+

∫ 2

0

(w′)2σdσ.

The other part of the domain of integration is trivially handled.

We are now interested in controlling the norm of a function by a norm of its gradient. A first
possible result writes as follows.

Lemma 7.6. We have
∥f∥L2(R2) ≲ ∥∇f∥L2

1(R2), (7.48)

for any radially symmetric measurable function f : R2 → R such that f(x) → 0 as |x| → ∞ and
∇f ∈ L2

1. Similarly, we have
∥G∥L2 ≲ ∥G′∥L2

1
, (7.49)

for any measurable function G : (0,∞) → R such that G(s) → 0 as s→ ∞ and G′ ∈ L2
1.

Proof of Lemma 7.6. Writing

f(r) = −
∫ ∞

r

f ′(s)ds, ∀ r > 0,

we have ∫
R2

f 2dx ≃
∫ ∞

0

(∫ ∞

r

f ′(s)ds
)2
rdr

≲
∫ ∞

0

∫ ∞

r

(f ′(s))2(1 + s)1+εds r−ε rdr

≲
∫ ∞

0

(f ′(s))2(1 + s)1+εs2−εds

≲
∫ ∞

0

|∇f |2⟨x⟩2 dx

by using the Cauchy-Schwarz inequality and the Fubini theorem.
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Remark 3. We may observe that the function

f(x) := log log⟨r⟩, ⟨r⟩ := e+ r,

satisfies

∥∇f∥2L2(R2) ≃
∫

1

(⟨r⟩ log⟨r⟩)2
rdr <∞

∥f∥2L2
−k(R2) ≃

∫
(log log⟨r⟩)2

⟨r⟩2k−1
dr <∞, if k > 1,

∥f∥2L2
−1(R2) ≃

∫
(log log⟨r⟩)2

⟨r⟩
dr = ∞.

As a consequence, we cannot hope for the estimate

∥f∥L2
−1

≲ ∥∇f∥L2

because it fails on f, nor for the estimate

∥f∥L2
−k

≲ ∥∇f∥L2 , k > 1, (7.50)

because it fails on the constants.

We give a second estimate of the norm of a function by a norm of its gradient where the weighted
Lebesgue norm concerns the function (instead of its gradient).

Lemma 7.7. We have ∫
gw ≲ ∥∇w∥L2∥g∥L2

k
(7.51)

for any g ∈ L2
rad ∩ L2

k,0, k > 1, and any radially symmetric measurable function w : R2 → R such that

∇w ∈ L2, we note w ∈ Ḣ1
rad(R2). As a consequence, we have

∥w∥L2
−k/R ≲ ∥∇w∥L2 , ∀w ∈ Ḣ1

rad(R2), ∀ k > 1, (7.52)

which is a convenient alternative to (7.50), and

∥g∥Ḣ1 ≲ ∥g∥L2
k
, ∀ g ∈ L2

rad ∩ L2
k,0, ∀ k > 1. (7.53)

Proof of Lemma 7.7. We start writing∫
gw =

∫ ∞

0

g(s)w(s)sds

= −
∫ ∞

0

g(s)

∫ ∞

s

w′(σ)dσsds

= −
∫ ∞

0

w′(σ)

∫ σ

0

g(s)sdsdσ

≤
(∫ ∞

0

w′(σ)2σdσ
)1/2

I1/2,
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with

I :=

∫ ∞

0

1

σ

(∫ σ

0

g(s)sds
)2
dσ,

where we have used Fubini and Cauchy-Schwarz inequality. On the one hand, we have

I1 :=

∫ 1

0

1

σ

(∫ σ

0

g(s)sds
)2
dσ

≤
∫ 1

0

1

σ

∫ σ

0

g(s)2sds
σ2

2
dσ

≤ 1

4

∫ 1

0

g(s)2sds,

where we have used the Cauchy-Schwarz inequality in the second line. On the other hand, we have

I2 :=

∫ ∞

1

1

σ

(∫ σ

0

g(s)sds
)2
dσ

≲
∫ ∞

1

1

σ

∫ ∞

1

g(s)2⟨s⟩2ksds⟨σ⟩2−2kdσ

≲
∫ ∞

1

g(s)2⟨s⟩2ksds,

where we have used the zero mean condition on g, the Cauchy-Schwarz inequality and twice the fact
that 2k − 1 > 1. Observing that

I = I1 + I2 ≲ ∥g∥2L2
k
,

we immediately conclude.

We now give two last estimates of the same kind where the radial symmetric property is removed.

Lemma 7.8. We have ∣∣∣∫
R2

gw
∣∣∣ ≲ ∥g∥L2

k
∥∇w∥L2 (7.54)

for any g ∈ L2
k,0(R2), k > 2, and any measurable function w : R2 → R such that ∇w ∈ L2, we note

w ∈ Ḣ1(R2). As a consequence, we have

∥w∥L2
−k/R ≲ ∥∇w∥L2 , ∀w ∈ Ḣ1(R2), ∀ k > 2, (7.55)

∥g∥Ḣ1 ≲ ∥g∥L2
k
, ∀ g ∈ L2

k,0, ∀ k > 2. (7.56)

Proof of Lemma 7.8. We only have to prove (7.54) what we do by adapting a standard proof of the
Poincaré inequality. Observing that∫

ck
⟨x⟩2k

dx = 1, k > 2, ck > 0,

for g ∈ L2
k,0 and w ∈ C1

c (Rd), we may write∫
gw =

∫
g(w −M [w]) ≤ ∥g∥L2

k
Iw
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with

Iw := ∥w −M [w]∥L2
−k
, M [w] :=

∫
w(y)

ck
⟨y⟩2k

dy.

We next write

w(x) −M [w] = ck

∫
(w(x) − w(y))

dy

⟨y⟩2k

= ck

∫
R2

∫ 1

0

(∇w)(zt) · (x− y)
dy

⟨y⟩2k
dt, zt := (1 − t)x+ ty.

We then split
Iw = I0 + I1,

with

I20 := c2k

∫
R2

(∫
R2

∫ 1/2

0

(∇w)(zt) · (x− y)
dy

⟨y⟩2k
dt
)2 dx

⟨x⟩2k

and

I21 := c2k

∫
R2

(∫
R2

∫ 1

1/2

(∇w)(zt) · (x− y)
dy

⟨y⟩2k
dt
)2 dx

⟨x⟩2k
.

We compute for instance

I20 ≤ ck
2

∫ 1/2

0

∫
R2

∫
R2

|∇w(zt)|2|x− y|2 dy

⟨y⟩2k
dx

⟨x⟩2k
dt

≤ ck
2

∫ 1/2

0

∫
R2

∫
R2

|∇w(zt)|2
dx

⟨x⟩2k−2

dy

⟨y⟩2k−2
dt

≤ ck
2

∫ 1/2

0

∫
R2

∫
R2

|∇w(z)|2 dz

(1 − t)2
dy

⟨y⟩2k−2
dt

=
ck

2ck−1

∫
R2

|∇w(z)|2dz,

where we have used twice the Cauchy-Schwarz inequality in the first line, the elementary estimate
|x− y| ≤ ⟨x⟩⟨y⟩ in the second line and the change of variable x 7→ z in the third line. With the same
computation for the I21 term, we obtain

I2w ≤ ck
ck−1

∫
R2

|∇w(z)|2dz,

and the conclusion.

We give a variant of the last estimate.

Lemma 7.9. For any u ∈ L2
loc(R2), ∇u ∈ H1(R2), we have u ∈ L∞

−1(R2) and more precisely

sup
|u(x)|
⟨x⟩

≲ ∥u∥L2(B1(0)) + ∥∇u∥H1(R2).

Proof of Lemma 7.8. Step 1. We may classically write

u(x) −N [u] =

∫
B1(0)

∫ 1

0

(∇w)(zt) · (x− y)dydt, zt := (1 − t)x+ ty,

218



with

N [u] :=

∫
Bϱ(0)

udx, |Bϱ| = πϱ2 = 1.

For a given a ∈ R2\B3ϱ(0), we aim to estimate

I =

∫
Bϱ(a)

(u−N [u])2dx = I0 + I1,

where we define

I0 :=

∫
Bϱ(a)

(∫
Bϱ(0)

∫ 1/2

0

(∇u)(zt) · (x− y)dydt
)2
dx

and

I1 :=

∫
Bϱ(a)

(∫
Bϱ(0)

∫ 1

1/2

(∇u)(zt) · (x− y)dydt
)2
dx.

We compute first

I0 ≤ 1

2

∫ 1/2

0

∫
Bϱ(a)

∫
Bϱ(0)

|∇u(zt)|2|x− y|2dydxdt

≲ |a|2
∫ 1/2

0

∫
Bϱ(0)

∫
Bϱ(a)

|∇u(zt)|2dydxdt

≲ |a|2
∫ 1/2

0

∫
Bϱ(0)

∫
Bϱ((1−t)a)

|∇u(z)|2 dz

(1 − t)2
dydt

≲ |a|2
∫
R2

|∇u(z)|2dz,

where we have used twice the Cauchy-Schwarz inequality in the first line, the elementary estimate
|x − y| ≲ |a| in the second line and the change of variable x 7→ z in the third line. Similarly, we
compute

I21 ≤ 1

2

∫ 1

1/2

∫
Bϱ(a)

∫
Bϱ(0)

|∇u(zt)|2|x− y|2dydxdt

≲ |a|2
∫ 1

1/2

∫
Bϱ(a)

∫
Bϱ(0)

|∇u(zt)|2dydxdt

≲ |a|2
∫ 1

1/2

∫
Bϱ(a)

∫
Bϱ((1−t)a)

|∇u(z)|2dz
t2
dxdt

≲ |a|2
∫
R2

|∇u(z)|2dz,

where we have rather used the change of variable y 7→ z in the third line. Both estimates together,
implies ∫

Bϱ(a)

(u−N [u])2dx ≲ |a|2
∫
R2

|∇u(z)|2dz,

from what we deduce ∫
Bϱ(a)

|u|2dx ≲ |a|2
∫
R2

|∇u(z)|2dz +

∫
Bϱ(0)

|u|2dx.
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Step 2. We know from Sobolev and Morrey inequality that

∥u∥L∞(B) ≲ ∥u∥H2(B),

so that

|u(x)| ≤ ∥u∥L∞(Bϱ(x))

≲ ∥u∥L2(Bϱ(x)) + ∥Du∥L2(Bϱ(x)) + ∥D2u∥L2(Bϱ(x))

≲ ∥u∥L2(Bϱ(0)) + ⟨x⟩∥Du∥L2 + ∥D2u∥L2 ,

and the conclusion.

7.4 Estimates on the first equation

In this section, we set

L1(g, w) := L1,1g + L1,2(g, w),

L1,1g := ∆g + div(µxg − g∇P ), L1,2(g, w) := −div(Q∇κ ∗ g +Q∇w).

Defining m by (7.28) and setting m0 := m/⟨x⟩, we aim to establish the following result. We use here
the shorthand Q = Qµ

ε and P = P µ
ε .

Proposition 7.3. There holds

(L1(g, w), g)L2
m
≤ −1

2
∥∇g∥2L2

m
− 3µ∥g∥2L2

m
− C0

2
∥g∥2L2

m0
+ ∥∇w∥2L2 + C1∥g∥2L2(BR), (7.57)

for some constants Ci, R > 0 and uniformly in µ and ε small enough.

7.4.1 Step 1. The principal term of classical Fokker-Planck type.

We recall that for
Lf := ∆f + div(Ff),

there holds

(Lf, f)L2
m

=

∫
R2

(Lf)fm2 = −
∫
R2

|∇f |2m2 +

∫
R2

|f |2m2ψ1

= −
∫
R2

|∇(fm)|2 +

∫
R2

|f |2m2ψ2

= −
∫
R2

|∇(fm2)|2m−2 +

∫
R2

f 2m2ψ3,

with

ψ1 :=
|∇m|2

m2
+

∆m

m
+

1

2
divF − F · ∇m

m
, (7.58)

ψ2 :=
|∇m|2

m2
+

1

2
divF − F · ∇m

m
(7.59)
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and

ψ3 := 3
|∇m|2

m2
− ∆m

m
+

1

2
divF − F · ∇m

m
. (7.60)

We take

F = ∇W, W = µ
|x|2

2
+ V, V = log⟨x⟩4, m = Q−1/2, Q = e−W ,

so that first
∇m
m

= 1
2
∇W, ∆m

m
= 1

2
∆W + 1

4
|∇W |2,

∇W = µx+ ∇V = µx+ 4
x

⟨x⟩2
,

∆W = 2µ+ ∆V = 2µ+
8

⟨x⟩4

and then

ψ2 = 1
2
∆W − 1

4
|∇W |2

= 1
2

(
2µ+

8

⟨x⟩4
)
− 1

4

∣∣µx+ 4
x

⟨x⟩2
∣∣2

= µ+
4

⟨x⟩4
− 1

4
µ2|x|2 − 2µ

|x|2

⟨x⟩2
− 4

|x|2

⟨x⟩4

=
µ

⟨x⟩2
(1 − |x|2) +

4

⟨x⟩4
(1 − |x|2) − 1

4
µ2|x|2

We observe that

lim inf
x∈R2

1
4

∣∣µx+ 4
x

⟨x⟩2
∣∣2 = min

y>0

1
4

(
µy +

4

y

)2
= 4µ.

We thus have that ∃M,R > 1 large enough such that∫
(Lf −MχRf)fm2 ≤ −3µ

∫
f 2m2,

with χR(x) := χ(x/R), χ ∈ D(R2), 1B(0,1) ≤ χ ≤ 1B(0,2).

We get then that the

T1 :=

∫
(∆g + div(µxg − g∇P ))gm2 = (L1,1g, g)L2

m

is fine thanks to the proximity between V and P .

7.4.2 Step 2. The remainder term.

We define κg := κ ∗ g and consider the remainder term

T2 := (L1,2(g, w), g)L2
m

=

∫
div(−Q∇κg −Q∇w)gm2

=

∫
Q(∇κg + ∇w) · ∇(gm2)

=

∫
(∇κg + ∇w) · [(m∇g)Qm+ (Q⟨x⟩∇m)(m0g)].
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We have then

|T2| ≲ ∥∇κg + ∇w∥L2(∥m∇g∥L2 + ∥m0g∥L2)

by using the Cauchy-Scwharz inequality and Corollary 7.3. We deduce

|T2| ≲ (∥g∥L2
1+0

+ ∥∇w∥L2)(∥∇g∥L2
m

+ ∥g∥L2
m0

)

by using Lemma 7.2. Thanks to the Young inequality we have the following estimate on the remainder
term

|T2| ≲ (δ∥g∥L2
m0

+ Cδ∥g∥L2(B(0,δ−1)) + ∥∇w∥L2)(∥∇g∥L2
m

+ ∥g∥L2
m0

).

Gathering this estimate with the one obtained on T1, we get (7.57).

7.5 Estimates on the second equation

In this part we are concerned with the second equation

∂tw = L2(g, w) :=
1

ε
∆w + µx · ∇w + g + ∇κ ∗ [g∇P +Q∇κ ∗ g +Q∇w]. (7.61)

We introduce the splitting

L2(g, w) := L2,1(g, w) + L2,2w,

L2,1(g, w) := g + ∇κ ∗ [g∇P +Q∇κ ∗ g] + ∇κ ∗ [Q∇w], L2,2w :=
1

ε
∆w + µx · ∇w,

and we first investigate the dissipativity property of L2,2 in several spaces. In a second time, we
investigate the dissipativity property of L2 by adding the contribution of the remainder terms.

7.5.1 Step 1. The principal part in L2.

We consider here the first part of the equation, namely

∂tw = L2,2w =
1

ε
∆w + µx · ∇w, (7.62)

for which we investigate the dissipativity for several Hilbert norms.

• For the L2 norm, we observe that

1

2

d

dt

∫
w2 = −1

ε

∫
|∇w|2 − µ

∫
w2,

or in other words

⟨L2,2w,w⟩L2 = −1

ε
∥∇w∥2L2 − µ∥w∥2L2 . (7.63)

Also observe that a solution w to equation (7.62) satisfies the conservation property

d

dt

∫
w = −2µ

∫
w,

which is a sharper estimate than for the L2 norm and suggests that we may improve the dissipativity
property by working on the cumulant.

222



7.5.2 The principal part for other norms.

We investigate the dissipativity property of the operator L2,2 in other spaces.

• We estimate the cumulant. In a radial symmetric framework, equation (7.62) writes

∂tw =
1

ε

1

r
(rw′)′ + µrw′.

We deduce

∂twr =
1

ε
(rw′)′ + µr2w′.

We assume w0 ∈ L1 ∩ L2 and ⟨w0⟩ = 0 so that the cumulant W of w satisfies

W (t, s) :=

∫ √
s

0

rw(t, r)dr = −
∫ ∞

√
s

rw(t, r)dr

because of (7.13), (7.14) and the mass conservation ⟨w⟩ = 0. Observing that

w(
√
s) = 2W ′(s), w′(

√
s) = 4

√
sW ′′(s),

we get

∂tW =
1

ε
(r∂rw)(

√
s) + µ

∫ √
s

0

r2∂rwdr

=
1

ε
4s∂ssW + µ[r2w]

√
s

0 − 2µ

∫ √
s

0

rwdr.

That gives the following equation on the cumulant

∂tW =
1

ε
4s∂ssW + 2µs∂sW − 2µW. (7.64)

We may improve the previous L2 estimate by considering (7.64) and writing

1

2

d

dt

∫
W 2 = −4

ε

∫
{s(∂sW )2 +W∂sW} + µ

∫
s∂sW

2 − 2µ

∫
W 2

= −4

ε

∫
s(∂sW )2 +

2

ε
W (0)2 − 3µ

∫
W 2

= −4

ε

∫
s(∂sW )2 − 3µ

∫
W 2,

because W (0) = ⟨w⟩ = 0.

Defining now ||| · ||| by
|||w|||2 := ∥w∥2L2 + ∥W∥2L2 ,

and gathering the two previous identities, we compute

1

2

d

dt
|||w|||2 = −1

ε

∫
R2

|∇w|2 − µ

∫
R2

w2 − 4

ε

∫ ∞

0

s(∂sW )2 − 3µ

∫ ∞

0

W 2

≤ − 1

2ε

∫
R2

|∇w|2 − 2

ε

∫ ∞

0

s(∂sW )2 − 3µ|||w|||2,
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for ε > 0 small enough, thanks to Lemma 7.5.

More generally, for α ∈ (0, 1), we alternatively compute

1

2

d

dt

∫
W 2s−α = −4

ε

∫
{s1−α(∂sW )2 + (1 − α)s−αW∂sW} + µ

∫
s1−α∂sW

2 − 2µ

∫
W 2s−α

= −4

ε

∫
s1−α(∂sW )2 − 2

ε
α(1 − α)

∫
W 2s−1−α − (3 − α)µ

∫
W 2s−α

becauseW (s) = o(s1/2) when s ∼ 0. An issue is the fact that ⟨w⟩ = 0 in order to justify the computation
on the cumulant, so that we need w ∈ L1 and the L1 does not enjoy sharper dissipativity property
than −2µ.

• Because the solution w to (7.62) also satisfies

∂tw =
1

ε
div(∇w + εµxw) − 2µw,

the classical computation leads to

1

2

d

dt

∫
w2eεµ

|x|2
2 = −1

ε

∫
|∇(weεµ

|x|2
2 )|2e−εµ

|x|2
2 − 2µ

∫
w2eεµ

|x|2
2 .

From the classical Poincaré inequality∫
|∇h|2e

|x|2
2 ≥

∫
h2e

|x|2
2 , if

∫
he

−|x|2
2 = 0,

applied to h(x) := w(x/
√
µε)e

−|x|2
2 , we get∫

|∇(weεµ
|x|2
2 )|2e−εµ

|x|2
2 ≥ εµ

∫
w2eεµ

|x|2
2 , if ⟨w⟩ = 0.

We thus conclude to
1

2

d

dt

∫
w2eεµ

|x|2
2 ≤ −3µ

∫
w2eεµ

|x|2
2 ,

if ⟨w0⟩ = 0. Denoting by Hε the associated Hilbert space, we have equivalently

1

2

d

dt
∥w∥2Hε

≤ −3µ∥w∥2Hε
.

7.5.3 Step 2. The remainder part in L2 and proof of Theorem 7.1

We are concerned with the second part of the operator in (7.61), namely

L2,1(g, w) := g + ∇κ ∗ [g∇P +Q∇κg +Q∇w].

• We start with

I1 :=

∫
wg ≲ ∥∇w∥L2∥g∥L2

1+
≲ ∥∇w∥L2∥g∥L2

m0
,
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thanks to Lemma 7.7.

• Next, we have

I2 :=

∫
w(∇κ ∗ (g∇P ))

≤ ∥w∥L2∥∇κ ∗ (g∇P )∥L2

≲ ∥w∥L2∥g∇P∥L2
2+0

≲ ∥∇w∥L2∥g∥L2
m0
,

where we have used the Cauchy-Schwarz inequality in the second line, the fact that g∇P ∈ L2
2+0,0 and

(7.37) in the third line and the estimate (7.26) on ∇P in the last line.

• Similarly, we have

I3 :=

∫
w(∇κ ∗ (Q∇κ ∗ g))

≤ ∥w∥L2∥∇κ ∗ (Q∇κ ∗ g)∥L2

≲ ∥w∥L2∥Q∇κ ∗ g∥L2
2+0

≲ ∥w∥L2∥∇κ ∗ g∥L3

≲ ∥∇w∥L2∥g∥L2
m0
,

where we have used the Cauchy-Schwarz inequality in the second line, the fact that Q∇κ ∗ g ∈ L2
2+0,0

and (7.37) in the third line, the Holder inequality and the estimate (7.18) on Q in the fourth line and
Lemma 7.3 in the last line.

• For the last term, we have

I4 :=

∫
w(∇κ ∗ (Q∇w))

≤ ∥w∥L2∥∇κ ∗ (Q∇w)∥L2

≲ ∥w∥L2∥Q∇w∥L2
2+0

≲ ∥w∥L2∥∇w∥L2 ,

where we have used the Cauchy-Schwarz inequality in the second line, the fact that Q∇w ∈ L2
2+0,0 and

(7.37) in the third line and the estimate (7.18) on Q again in the last line.

We are now in position to end the

Proof of Theorem 7.1. Summing the four above contributions Ii, we find

(L2,1(w, g), w)L2 =

∫
R2

wL2,1(w, g) ≲ ∥∇w∥L2(∥g∥L2
m0

+ ∥w∥L2)

Together with (7.63) and using the Young inequality, we have

⟨L2(g, w), w⟩L2 ≤ (1 +
1

η
− 1

ε
)∥∇w∥2L2 +

η

4
∥g∥2L2

m0
− µ∥w∥2L2 .
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Combining that last estimate with (7.57) and recalling the notation H := L2
m × L2, we have

⟨L(g, w), (g, w)⟩H ≤ −µ∥(g, w)∥2H − 1

2
∥∇g∥2L2

m
+
(
2 +

1

η
− 1

ε

)
∥∇w∥2L2

+
(η

4
− C0

2

)
∥g∥2L2

m0
+ C1∥g∥2L2(BR),

and we conclude by choosing first η > 0 small and next ε0 > 0 small enough.

7.6 Weyl’s type result on the principal spectrum

In the space L2
k we have

Σ(Λε) ∩ ∆−3µ ⊃ {0,−µ,−2µ}.

We recall that {
0 = ∆Q+ div(µxQ−Q∇P ),
0 = ∆P +Q+ εµx · ∇P.

We set

f1 := ∂µQ− div(xQ)

2µ
, v1 := ∂µP − x · ∇P

2µ
,

f i2 := ∂xiQ, vi2 := ∂xiP, i ∈ {1, 2},
f3 := div(xQ), v3 := x · P.

We define D := x · ∇ and we observe that

D(∇ · a) = ∇ · (Da) −∇ · a, D(∇b) = ∇(Db) −∇b, D(xb) = xDb+ xb,

for a vector field a and a function b, so that

D∆b = ∇[D∇b− ∆b] = ∆Db− 2∆b.

We compute

0 = D∇ · (∇Q+ µxQ−Q∇P )

= ∇ ·D(∇Q+ µxQ−Q∇P )

= ∆(DQ−Q) + div(µxDQ+ µxQ) − div(DQ∇P +Q[∇(DP ) −∇P ]),

where we have used the first identity and once the stationary state equation in the first line and we have
used the second identity and the third identity in the second line. Adding 3 times the first stationary
state equation, we get

0 = ∆div(xQ) + div(µxdiv(xQ)) − div(div(xQ)∇P +Q∇DP ) + 2µdiv(xQ),

or equivalently
L1(div(xQ), DP ) = −2µdiv(xQ).
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On the other hand, we compute

0 = D(∆P +Q+ εµDP )

= ∆DP − 2∆P +DQ+ εµx · ∇DP

and adding twice the second equation, we find

0 = ∆DP + εµx · ∇DP + div(xQ) + 2εµx · ∇P,

or equivalently
L2(div(xQ), DP ) = −2µDP.

We define
G3 := f3, W3 := v3 − κ ∗ (f3) = x · ∇P −∇κ ∗ (xQ),

and we observe that
L(G3,W3) = −2µ(G3,W3).

Deriving the stationary state equations with respect to µ yields

L1(∂µQ, ∂µP ) = −div(xQ) =
L1(f3, v3)

2µ
,

L2(∂µQ, ∂µP ) = −x · ∇P =
L2(f3, v3)

2µ

which thanks to the linearity of L1 and L2, gives

L1(f1, v1) = 0 and L2(f1, v1) = 0.

Hence, defining
G1 := f1, W1 := v1 − κ ∗ (f1),

gives
L(G3,W3) = 0.

Finally, deriving with respect to xi the steady state equations directly gives,

L1(f
i
2, v

i
2) = −µf i2 and L2(f

i
2, v

i
2) = −µvi2.

which implies that
Gi

2 := f i2, W i
2 := vi2 − κ ∗ (f i2),

satisfies
L(Gi

3,W
i
3) = −2µ(Gi

3,W
i
3).

7.7 Conclusions

Although several spaces with their associated scalr products and norms appear to be addecuated in
order to obtain uniform dissipativity estimates of various orders, some estimates still need to be further
developped in order to pass from the partial results here presented to a final result which would allow
to conclude the linear stability of the Keller-Segel system, unifromly in µ.
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MOTS CLÉS

Populations structurées; modélisation du cancer; confinement des tumeurs; méthodes particulaires; théorie
atavique; système de Keller-Segel parabolique-parabolique.

RÉSUMÉ

Cette thèse est consacrée à l’étude de plusieurs problèmes issus de la modélisation mathématique des tumeurs. Plus
spécifiquement, l’intérêt principal est orienté vers les interactions ayant lieu au sein de la tumeur et avec son environnement.
Néanmoins, certains des modèles et méthodes présentés au coeur de la thèse ont une portée bien plus générale que
l’étude du cancer. Les principaux résultats sont divisés en sept chapitres. Dans le premier chapitre, par une nouvelle
analyse mathématique comparant la taille des tumeurs entre traitements non pas en fonction du temps, mais en fonction
de la taille de la population résistante, nous établissons une comparaison entre les résultats de différentes stratégies de
traitement appliquées à une tumeur composée de deux sous-populations, une de cellules sensibles et une autre de cellules
résistantes. Dans le deuxième chapitre, nous dérivons l’expression asymptotique d’un cycle limite apparaissant dans un
modèle d’interaction tumeur-système immunitaire. Le troisième chapitre est consacré à la modélisation du bet-hedging,
une stratégie évolutive d’intérêt pour la théorie atavique du cancer. L’existence et le caractère unique de la solution du
modèle sont prouvés et deux phénomènes d’intérêt biologique sont mis en évidence par des simulations. Le chapitre
quatre est un complément au troisième chapitre. On y développe une discussion philosophique sur la théorie atavique du
cancer et on esquisse deux modèles différents pour l’émergence de la coopération. Le chapitre cinq concerne l’étude d’une
méthode particulaire pour un modèle d’advection-réaction-diffusion non local d’une grande importance dans le domaine
de les dynamiques adaptatives. La conservation du comportement asymptotique est analysée pour le schéma numérique
proposé. Les chapitres six et sept sont consacrés à l’étude du système de Keller-Segel parabolique-parabolique où nous
donnons respectivement quelques estimations de la solution et déterminons le comportement asymptotique pour le cas non
radial.

ABSTRACT

This thesis is devoted to the study of several problems arising from the mathematical modelling of tumours. More specifically,
the main interest is oriented towards the interactions taking place within the tumour and with its environment. Nevertheless,
some of the models and methods presented at the core of the thesis have a much more general scope than the study of
cancer. The main results are divided in seven chapters. In the first chapter, by a novel mathematical analysis comparing
tumor sizes across treatments not as a function of time, but as a function of the resistant population size, we establish a
comparison between the outcomes of different treatment strategies applied to a tumour composed of two sub-populations,
one of sensitive cells and another one of resistant cells. In the second chapter, we derive the asymptotic expression of a limit
cycle arising in a tumour-immune system interaction model. The third chapter is devoted to the modeling of bet-hedging, an
evolutionary strategy of interest for the atavistic theory of cancer. The existence and uniqueness of solution for the model is
proved and two phenomena of biological interest are evidenced through simulations. Chapter four is a complement for the
third chapter. On it, a philosophical discussion about the atavistic theory of cancer is developed and two different models
for the emergence of cooperation are sketched. Chapter five is concerned with the study of a particle method for non-local
advection-reaction-diffusion model of great importance in the area of adaptive dynamics. The conservation of asymptotic
behaviour is analyzed for the proposed numerical scheme. Chapters six and seven are devoted to the study of the fully
parabolic Keller-Segel system where we give some estimates over the solution and determine the asymptotic behaviour for
the non-radial case, respectively.

KEYWORDS

Structured populations; cancer modelling; tumour containment; particle methods; atavistic theory; fully parabolic
Keller-Segel system.
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