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Abstract  

 

This thesis aims at developing a smart mobility solution to enhance the travel experience of 

individuals facing mobility restrictions due to the occupation in Palestine, West Bank. The 

research resulted in the Smart and Resilient Mobility Services Platform (SRMS), powered by 

spatial crowdsourcing technology to provide integrated mobility services. These services 

include real-time mapping of mobility restrictions, prompt notifications system, informal route 

mapping, and alternative path suggestions to optimize safety, travel time, and distance. The 

study begins by assessing the adverse impacts of traffic disruptions caused by mobility 

restrictions, considering socioeconomic and environmental sustainability in Palestine. 

Subsequently, the research explores existing strategies and smart technologies to address 

mobility disruptions, identifying gaps in the literature. The outcome is the development of the 

SRMS platform, addressing these gaps through a methodology that includes problem 

definition, conceptualization, and design based on a four-layer system, prototyping, ethical 

considerations, and testing. The SRMS is tailored to the Palestinian context, meeting user needs 

and aligning with available data sources and the local context.  

 

Keywords: Mobility, restrictions, traffic disruption, smart, crowdsourcing, GIS, machine 

learning, Palestine. 
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Résumé  

 

 

Cette thèse a porté sur le développement d’une solution de mobilité intelligente pour améliorer 

faire face aux restrictions de mobilité dues à l'occupation en Palestine. Elle a permis la création 

d’une plateforme de services de mobilité intelligente et résiliente (SRMS), alimentée par une 

technologie de crowdsourcing spatial fournissant des services de mobilité intégrés. Ces 

services comprennent une cartographie en temps réel des restrictions de mobilité, un système 

de notifications rapides, une cartographie informelle des itinéraires et des suggestions de 

chemins alternatifs pour optimiser la sécurité, le temps de trajet et la distance. La recherche 

commence par évaluer les impacts négatifs des perturbations de la circulation causées par les 

restrictions de mobilité, en tenant compte de la durabilité socio-économique et 

environnementale. Par la suite, la recherche explore les stratégies existantes et les technologies 

intelligentes pour faire face aux perturbations de la mobilité, en identifiant les lacunes dans la 

littérature. Le résultat est le développement de la plateforme SRMS, comblant ces lacunes grâce 

à une méthodologie qui comprend la définition du problème, la conceptualisation et la 

conception basée sur un système à quatre couches, le prototypage, les considérations éthiques 

et les tests. Le SRMS est adapté au contexte palestinien, répondant aux besoins des utilisateurs 

et s'alignant sur les sources de données disponibles et le contexte local. 

Mots-clés: Mobilité, restrictions, perturbations du trafic, smart, crowdsourcing, SIG, machine 

learning, Palestine. 
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General Introduction 

 

This Ph.D. thesis aims to develop a smart solution to enhance the traveling of people 

experiencing mobility restrictions related to occupation in the Palestinian territories, West 

Bank (WB). The primary objective is to create a comprehensive platform that offers integrated 

mobility services powered by smart technology, namely the Smart and Resilient Mobility 

Services Platform (SRMS). The SRMS’s services include (i) real-time mapping of mobility 

restrictions such as road closures, traffic congestion, checkpoints, and violent actions, (ii) 

restrictions notification system; (iii) mapping of informal routes; (iv) providing alternative path 

suggestions to optimize safety, travel time, and distance.  

Around 33% of WB residents are interurban commuting (PCBS, 2022b), experiencing daily or 

semi-daily long-term mobility restrictions related to the Israeli occupation. These restrictions 

started around thirty years ago with the installation of checkpoints (Habbas & Berda, 2021) 

(Griffiths & Repo, 2021), separation wall (Habbas & Berda, 2021), and settlers-related violent 

incidents (B’Tselem, 2022). These restrictions stand as obstacles for achieving the United 

Nations agendas for safe people mobility (Goal 11.2) and providing access to essential services, 

economic opportunities, and a better quality of life for individuals and communities facing 

mobility restrictions (Goal 10.2) (United Nations, 2023). 

Mobility restrictions have severe economic consequences, they increase costs, create 

uncertainty, and reduce employment opportunities, working days, and wages (Calì & Miaari, 

2018). These restrictions also lead to significant economic losses, estimated at around USD 1.7 

million per day for a 50-day increase in border closures (Adnan, 2015). Socially, they disrupt 

the social fabric of Palestinian communities, limiting cultural exchange (Boussauw & Vanin, 

2018). These restrictions lead to long queues, arbitrary rule implementation, and violence, 

negatively impacting daily life and well-being (Braverman, 2011) (Rijke & Minca, 2019). 

Also, incidents of violence from settlers against travelers have eroded the prospects for a 

peaceful and just society (Amira, 2021). 

Environmentally, mobility restrictions have significantly increased travel time, energy 

consumption, and CO2 emissions. This increase in travel time due to checkpoints can be up to 

27 times longer, resulting in time loss, anxiety, and additional expenses for the population. 

Additionally, they significantly increase energy consumption and CO2 emissions, which are 

estimated at 275% for gasoline vehicles, and 358% for diesel vehicles (Aburas & Shahrour, 

2021).  

While recent smart strategies have demonstrated efficiency in tackling specific mobility 

challenges such as event detection, optimizing routes, real-time monitoring, and alert 

notifications, they didn’t provide a comprehensive and integrated framework to address traffic 

disruption events holistically. Furthermore, these smart solutions present minimal engagement 

of citizens and heavily rely on the deployment of smart infrastructure in data capturing, which 

presents challenges when installing such infrastructure in complex governance urban 

environments with limited technological resources and unstable transportation ecosystems 

such as WB.  

Even when citizen engagement is considered in traffic disruption management, it often relies 

on crowdsourcing through direct reporting or mining social data from Twitter. There's a notable 
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gap in having a robust data quality strategy that integrates data from both sources and explores 

alternative social platforms since Twitter's suitability for event data collection varies across 

different environments. 

In response to these challenges and gaps in current smart mobility strategies, this research 

presents an innovative approach to holistically manage traffic disruptions. This approach 

includes; (i) developing a comprehensive platform that offers integrated mobility services, 

enabling effective incident management throughout all phases of disruption; (ii) enhancing 

citizens' engagements in the developed solution by utilizing the power of spatial crowdsourcing 

in the data collection process considering multi-source data integration; (iii) introducing a 

novel dimension by incorporating social data mining from Telegram, an alternative social 

media source for traffic event management.  

This research contributed to the scientific production of traffic disruption management by 

developing a holistic traffic disruption management approach, providing solutions to handle 

traffic incidents from detection to resolution. Also, it responds to the recommendations of the 

recent literature for the need to have citizen-centric smart solution perspectives (Paiva et al., 

2021a) (Clarinval & Dumas, 2023). Furthermore, it provides a novel contribution to the quality 

of the crowdsourced data by introducing diverse data sources, including user reporting and 

social data mining from telegram as promising potential data sources in the social sensing 

domain during emergencies and disruptions. Additionally, this research satisfies technological 

inclusivity by applying smart mobility solutions in areas with limited technological resources 

and complex urban environments, which corresponds to the Sendai Framework, and the UN 

report calls for investing in telecommunication and technological advances in managing 

disruption events (United Nations Economic Commission for Europe, 2020). 

Furthermore, the research findings provide a transformative humanitarian contribution to the 

travelers in the WB, by empowering them to make informed decisions that efficiently optimize 

their travel experiences under mobility restrictions while minimizing risk, travel distances, and 

waiting time. Also, these findings provide insights to Palestinian transportation authorities and 

policymakers on how to effectively leverage smart technology to address long-standing urban 

development barriers inherent in mobility restrictions, within the context of limited resources 

and complex governance regulations. This work can be considered the first empirical step 

towards implementing the ongoing smart transportation strategic framework for Palestine 

(2019-2024) as outlined by the Ministry of Transport (Ministry of Transport MOT, 2018). 

This thesis is structured in five chapters:  

Chapter 1 provides an overview of existing smart strategic approaches and enabling 

technologies used for managing traffic disruptions. It highlights the limitations and gaps in 

previous research and outlines the contributions of this study in addressing these gaps. 

Chapter 2 outlines the research methodology, introducing a novel smart solution aimed at 

filling the existing gaps by designing a smart and resilient platform to assist citizens in coping 

with mobility restrictions. It also discusses the implementation of this platform in the 

Palestinian territories, specifically the West Bank. Insights into mobility restrictions and their 

impacts on Palestinian life and sustainability are provided. 

Chapter 3 provides the comprehensive methodology used to develop the architecture of the 

proposed smart solution, the Smart and Resilient Mobility Services (SRMS) platform. It 
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presents the layered architecture of SRMS and describes the tools, processes, and techniques 

employed in its development. 

Chapter 4 details the specific methodology for creating the services offered by the SRMS 

platform. It explains the systematic approach used to develop each service, starting with an 

overview of state-of-the-art methods, service objectives, and requirements. It then discusses 

data collection, processing, analysis, and the final step of making the services available to the 

public. 

Chapter 5 presents the practical implementation of the SRMS platform in the Palestinian 

territories, with a focus on the West Bank. It assesses the capacity and potential of the 

Palestinian community to adopt and utilize the developed solution. Additionally, it offers an 

application and validation of each SRMS service considering human-centered design approach 

and includes the final layout of the SRMS web mobile application. 
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Chapter 1. State of the Art 

 

Introduction 

This chapter aims to explore the state of the art about the use of smart technology for the 

management of traffic disruptions to develop a framework and tools to help Palestinians deal 

with traffic restrictions related to the occupation. 

The management of traffic disruptions has become an increasingly critical concern in urban 

planning, transportation engineering, and disaster management realms due to the complex 

consequences it has on the individual and community as a whole. This chapter investigates the 

recent research contributions in this domain through subsequent sections.  

The first section discusses the adverse socioeconomic and societal impacts of disruption events. 

These events range from natural disasters to construction projects and mobility restrictions. 

The section offers tangible case studies along with statistical data to emphasize the severity of 

these disruptions, emphasizing their extensive impact that goes beyond immediate 

repercussions. 

The second section investigates the recent smart strategies to tackle the challenges of traffic 

disruptions. These strategies are observed from reviewing case studies and categorized into 

five key domains, each representing a pivotal aspect of disruption management: real-time 

traffic data monitoring, predictive modeling, traffic control optimization, dynamic route 

guidance, and communication and information dissemination. This section provides 

researchers' contributions in these domains in the form of platforms, applications, frameworks, 

and models to provide solutions for addressing the disruptive events' complexities. 

The third section concerns the role of Information and Communication Technologies (ICTs) in 

managing traffic disruptions. It presents the observed enabling technologies that effectively 

contribute to developing smart strategies for managing traffic disruptions. These technologies 

including the Internet of Things (IoT), Artificial Intelligence (AI), Big Data analysis, and 

Geospatial Technologies, offer novel solutions for data-driven decision-making and efficient 

responses to disruptions. This section provides the strengths of these technologies through 

successful empirical case studies and presents the challenges and limitations that should be 

considered in any future solution leveraging these technologies. 

In the final section, an in-depth analysis is conducted on the reviewed literature and case studies 

to assess the capabilities and constraints of the employed approaches in addressing the 

challenge of traffic disruptions. The primary objective of this section is to identify and extract 

the limitations and gaps observed within the literature. These identified shortcomings are 

intended to serve as a pivotal catalyst for developing innovative solutions that can effectively 

bridge the existing gaps and offer novel contributions to the field. 

 

1.1. Impacts of Manmade and Natural Traffic Disruptive Events  

Nonrecurrent events, including natural disasters like floods, earthquakes, wildfires, and debris 

falls, as well as man-made events such as traffic crashes, construction projects, checkpoints, 
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mobility restrictions policies, and violent actions, not only yield immediate consequences such 

as infrastructure damage and loss of human lives but also initiate cascading significant 

disruptive traffic effects (Gu et al., 2022) (Arrighi et al., 2021). 

One of these effects is the emergence of non-recurrent traffic congestion, leading to delays and 

longer waiting times for travelers (Arrighi et al., 2021). This, in turn, can result in higher travel 

costs as individuals spend more time and resources to reach their destinations (Karaer et al., 

2020). In most cases, the overall impact of traffic disruptions caused by nonrecurrent events 

can surpass the direct losses incurred (B. Liu et al., 2021). For example, data from the United 

States Department of Transportation indicates that 25% of the total traffic delay in the United 

States is attributed to traffic accidents (FHWA, 2019).  

(Harleman et al., 2023) examined the impacts of roadway construction on traffic congestion in 

Texas, the study revealed that over the period during construction, widening construction 

projects increases the delay by 42%. (Zhang & Chen, 2019) quantified the impact of weather 

events on travel time and general transportation reliability. It is observed that snow events 

impose a more significant impact on travel times than rain events. Rain affects travel time by 

4-14%, 15-35%, and 22.5% in free-flow, moderately congested, and heavily congested 

conditions, respectively. Snow has a more severe impact, resulting in a 14-20%, 20-40%, and 

over 40% increase in travel time for the same conditions. 

Studies have demonstrated that traffic disruptive events adversely impact the economic 

productivity of individuals and society as a whole. For example, the heavy rain disaster in 

Hiroshima in 2018 cost a monetary loss of 6 billion JPY due to an increase in travel time 

resulting from route detours (Safitri & Chikaraishi, 2022). (Kurth et al., 2020) highlighted the 

impact of random disruptive events on the road network on the GDP in different cities in the 

USA. The results show there is a direct correlation between travel time delay and a decline in 

GDP. For example, in San Francisco, when a traffic disruption occurred on just 3% of road 

segments, travel time increased by 34%, leading to a notable 6.64% decrease in GDP.  

Furthermore, in 2019, drivers in the U.S. collectively lost 99 hours due to congestion, resulting 

in costs exceeding $88 billion (Karaer et al., 2020). (Abrahams, 2021) (Fratto, 2019) declared 

that checkpoints affect employment opportunities, working days, and wages. For example, 

(Calì & Miaari, 2018) found that installing a checkpoint just ten minutes away from a 

Palestinian area reduced employment opportunities by 0.14 percentage points and working 

days by 0.22 percentage points. Furthermore, (Adnan, 2015) estimated that a 50-day increase 

in border closures per quarter results in an economic cost of around USD 1.7 million per day 

in the following quarter. 

In addition to their economic impact, traffic disruptions pose obstacles to long-term social 

sustainability. Waiting times and delays exert adverse effects on both drivers and passengers, 

presenting heightened stress and increased frustration (Yap & Cats, 2021) (R. I. Sarker et al., 

2019). The road closure occurred due to specific traffic events such as traffic crashes, 

earthquakes, debris falls, etc. undermines the humanitarian emergency supply and evacuation 

process (Anuar et al., 2021). 

The introduction of road barriers, including checkpoints, influences the social dynamics and 

fosters a prevailing sense of stigma within communities. An investigation carried out by 

(Martén & Boano, 2021) shed light on the consequences of installing official and criminal 

checkpoints in the Juárez border region between the United States and Mexico. The study 

disclosed that such installations not only resulted in instances of violence but also redefined 
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the notions of security and stability (Amira, 2021). This underscores how these measures can 

disrupt social cohesion and reshape perceptions of safety within communities. 

Similar findings were reported in (Boussauw & Vanin, 2018). The study noted that checkpoints 

in the Palestinian territories tend to create closed social systems, leading to adverse impacts on 

cultural exchange, and the long queues adversely impacted the quality of daily life and general 

well-being (Rijke & Minca, 2019). 

(O. J. Walther et al., 2020) investigated the effects of borders and checkpoint delays on the 

accessibility of West Africa. The study declared that eliminating waiting times at the borders 

in this region could result in a 14% increase in the accessibility of border cities. Moreover, in 

specific regions, this increase could be as high as one-third. Furthermore, the removal of 

roadside checkpoints could yield an average regional accessibility increase of 12% for border 

cities. In certain key centers situated along the Gulf of Guinea, the increase could even surpass 

50%. These insights highlight the profound influence that border delays and checkpoints can 

have on accessibility and regional connectivity. 

The delays in travel, waiting times, nonrecurrent congestion, and travel detours resulting from 

traffic disruptions lead to adverse environmental implications, primarily presented in increased 

fuel consumption and air pollution. A study by (X. Chen et al., 2022) sought to quantify on-

road vehicle emissions during traffic congestion using real-world traffic monitoring data in 

China.  

The study's findings revealed that typical traffic congestions, characterized by vehicle speeds 

below 5 km/h can lead to emissions that are 5 to 9 times higher than those observed on 

uncongested roads with vehicle speeds exceeding 50 km/h. In the absence of traffic congestion, 

emissions of CO, HC, and NOx were lowered by 12 to 28%. This shows how traffic disruptions 

can significantly exacerbate air pollution levels and contribute to increased fuel consumption, 

especially during congested conditions. 

Additionally, traffic congestion leads to inefficient fuel combustion in motor vehicle engines. 

When cars move at slower speeds, frequent starting and stopping not only increase fuel 

consumption and energy inefficiency but also generate heightened levels of automobile exhaust 

emissions, exacerbating air pollution. 

An experiment conducted by Beijing Jiaotong University in 2013 aimed to examine the impact 

of frequent starting and stopping on fuel consumption and vehicle exhaust emissions. The 

results demonstrated that PM2.5 emissions from idling cars were five times higher under 

congested conditions. Furthermore, investigations into pollution sources revealed that motor 

vehicle emissions contribute to 31% of the total local pollution emissions, with emissions under 

congested conditions being 50% higher compared to normal traffic scenarios (J. Lu et al., 

2021).  

 

1.2. Recent Smart Strategies for Managing Traffic Disruptions  

In recent years, the socio-economic and environmental consequences of traffic disruptions have 

intensified due to the expansion of the motor industry and urbanization (Lyons, 2018). The 

digital age has advanced rapidly over the past two decades, offering remarkable technological 
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potential. The digital connectivity of people, locations, and objects derived innovative solutions 

for traffic disruption management (Song et al., 2022). 

From the comprehensive literature review, five areas were identified for dealing with traffic 

disruptive events using the smart solutions illustrated in Figure 1.1. These areas include, (i) 

real-time traffic data monitoring and data collection, (ii) predictive modeling; (iii) traffic 

control and signal optimization; (iv) dynamic route guidance and navigation; and (v) 

communication and information dissemination.  

This section highlights these five domains, by providing a brief explanation of each application, 

their roles in addressing the traffic disruption events, and support the used case studies.   

 

Figure 1.1. Smart strategies for managing traffic disruptions  

 

1.2.1. Real-time road traffic data monitoring and data collection 

Real-time road traffic data monitoring and data collection refer to the tracking of traffic 

conditions on roadways using advanced technologies (Khazukov et al., 2020). This involves 

the deployment of sensors, cameras, GPS devices, connected vehicles, and other data-gathering 

instruments to capture real-time information about vehicle movement, speeds, congestion, and 

disruptions (Rathee et al., 2023).  

The collected data is then processed and analyzed to provide prompt insights into the current 

state of traffic, enabling authorities to swiftly respond to disruptions, implement dynamic 

traffic management strategies, and communicate relevant information to commuters. This 

approach serves as a foundation for informed decision-making and proactive measures in 

addressing traffic disruptive events (Gupta et al., 2023). 
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For example, analysis of real-time data using advanced algorithms and big data techniques 

helps in identifying abnormal events, enabling automated road defect and anomaly detection 

(ARDAD) that can disrupt traffic flow (Rathee et al., 2023). These events include accidents, 

road hazards (Y. Kong et al., 2022), road failure (Musa et al., 2022), or unexpected congestion 

(Chan et al., 2021).  

In these applications, images of road sections are taken and analyzed to detect anomalies using 

image processing (Bhatlawande et al., 2022). However, to infer meaningful information from 

the images and videos, computer vision with various AI approaches such as ML (Kim et al., 

2023), ensemble learning (Meena et al., 2019), and 3D imaging methods (Shankar et al., 2020) 

are utilized.  

According to (Rathee et al., 2023) comprehensive literature review, while the existing detection 

methods may efficiently identify anomalies in real-time traffic data, they often fail to provide 

clear insights into the potential safety risks posed to drivers on the road. 

Real-time monitoring of road traffic also contributes to the development of traffic simulation 

and visualization platforms. These platforms utilize data collected from various sources, such 

as vehicle GPS trajectories, loop detectors (C. Lee et al., 2020), or video detectors (S. Chen et 

al., 2019). By leveraging these datasets, simulation and visualization platforms offer a range of 

uses, including informing the general public and decision-making authorities about current 

road traffic conditions and future predictions. 

For example, (Jung et al., 2023) introduced an open-sourced real-time web-based platform that 

connects micro traffic simulation results to dashboards using VISSIM. This platform collects 

traffic flow data and individual vehicle locations from camera detectors and stores them in the 

cloud at regular intervals. In real-time, the data is presented based on temporal and spatial 

characteristics to create the dashboard layout. The results help in traffic management and 

making an informed decision.  

Other scholars extend the use of traffic simulation and visualization dashboards for traffic 

incidents and emergency response (Zhang et al., 2021). They developed an interactive Traffic 

Incident Management (TIM) dashboard using the Microsoft Power BI platform. This 

dashboard was specifically designed to enhance incident response in the Kentucky 

Transportation Cabinet (KYTC). By establishing TIM measures, the dashboard continuously 

tracks and analyzes these metrics. The purpose is to enable authorities to make timely decisions 

and optimize incident response strategies for improved traffic flow and safety. 

Similarly, (Zerafa et al., 2021) introduced ExTraVis, a unique visualization system tailored for 

exploring and analyzing incident data. This system targets traffic management controllers, 

providing them with valuable tools to make informed decisions and gain a deeper 

understanding of past incidents' impact on traffic patterns. Additionally, ExTraVis facilitates 

predictive analysis, empowering controllers to anticipate potential future incidents and plan 

proactive measures to mitigate their impact on traffic flow. 

 

1.2.2. Traffic predictive models  

Traffic predictive models involve the application of data-driven algorithms and historical 

traffic data to forecast potential disruptions and events that might impact traffic flow (Yap & 
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Cats, 2021). By analyzing patterns and trends from historical and real-time data, these models 

can anticipate occurrences such as accidents, road closures, and congestion points. These 

predictions enable authorities to proactively allocate resources, create contingency plans, and 

optimize traffic management strategies to mitigate the effects of disruptive events (Shetab-

Boushehri et al., 2022). Predictive models enhance decision-making by providing valuable 

insights into future traffic conditions, allowing for more effective and timely interventions (C. 

Chen et al., 2020).  

For example, (Aljuaydi et al., 2023) developed machine learning-based prediction models for 

freeway traffic flow under non-recurrent events. They employed various models including 

convolutional neural networks (CNN), long short-term memory (LSTM), CNN-LSTM, and 

Autoencoder LSTM networks to forecast traffic flow during road crashes and rainy conditions. 

(Nigam & Srivastava, 2023) examined the impact of adverse weather conditions, such as fog, 

rainfall, and snowfall, on traffic flow and how to accurately predict traffic variables like speed 

and flow in these conditions using deep learning models. 

Other scholars mined the traffic data from social network services, and with the help of 

Machine learning and Natural Language Processing (NLP), they built prediction models for 

traffic event detection (Kang et al., 2020), and traffic flow predictions (Essien et al., 2021). For 

example, (Salazar‐carrillo et al., 2021) proposed a methodology to geocode traffic-related 

events that are collected from Twitter and he built a model that produces spatiotemporal 

information regarding traffic congestions with a spatiotemporal analysis. These results are 

presented as a heat map using the Web-GIS application. (Capela et al., 2022) developed an AI 

model for identifying publications related to traffic events in a specific road, based on 

publications shared on social networks. A predictive model was obtained by training a deep 

learning model for the detection of publications related to road incidents.  

Existing prediction models focus on predicting traffic congestion resulting from non-recurrent 

events. This includes predicting post-accident congestion (Fukuda et al., 2020) or estimating 

the time for post-accident clearance (Y. Lin & Li, 2020). However, these studies often attribute 

non-recurring congestion mainly to traffic crashes, somewhat overlooking other disruptive 

events like road obstacles, weather conditions, disasters, or planned events, which according 

to (Kumar & Raubal, 2021), could be better explored through scenario-based studies.   

Some scholars focus on predicting event occurrences rather than traffic outcomes, using risk 

prediction methodologies encompassing severity, frequency, and duration. For example, (Ma 

et al., 2021) proposed a comprehensive analytic framework using deep learning to predict 

traffic accident injury severity based on contributing factors. Other studies extend beyond crash 

counts in their risk prediction models, incorporating human, vehicle, and environmental (road) 

factors. 

(Gu et al., 2022) presented a network-based risk prediction model to understand potential risk 

propagation and minimize the chances of cascade failures, considering local and global 

structural information along with attribute data. (Shaik et al., 2021) examined various neural 

network techniques and learning algorithms within the context of road crash injury severity 

prediction models. They also delved into the array of factors contributing to road accidents.  

Existing predictive models for disruptive events, whether concerning traffic congestion or the 

incidents themselves, predominantly focus on traffic crashes (J. Wang et al., 2022). 

Additionally, there is a notable limitation in their scope, as they predominantly overlook other 

disruptive occurrences, like forecasting travel delays arising from non-recurrent events or 
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estimating waiting durations at specific road obstacles. Although (M. Xu & Liu, 2021) have 

made some progress by introducing a flexible deep learning-aware framework for predicting 

travel times in the context of non-recurrent traffic events, there is still a noticeable gap in 

addressing these limitations comprehensively. 

 

1.2.3. Traffic control and signal optimization 

Traffic control and signal optimization refer to the application of smart technologies to manage 

traffic flow and alleviate congestion through real-time adjustments of traffic signals and control 

systems (Gupta et al., 2023). These systems use data from various sources, including real-time 

traffic monitoring, to dynamically alter signal timings and prioritize traffic movement based 

on current conditions (Qadri et al., 2020). By optimizing signal phasing and timing, authorities 

can reduce delays, minimize congestion, and respond effectively to disruptive events.  

Several studies have implemented real-time adaptive approaches for traffic control and 

adjustments to vehicle speed limits, which are activated in response to specific traffic events. 

These strategies serve to ensure dynamic traffic management and enhance emergency 

responsiveness. This concept is observed in (Espitia et al., 2020) work. They developed event-

triggered boundary control strategies for freeway segments with varying speed limits (VSL). 

The primary objective of their work is to mitigate the common occurrence of stop-and-go 

traffic oscillations. This is achieved by regulating the velocities of vehicles as they exit these 

freeway segments. Importantly, the regulated velocity signal is updated exclusively when 

predefined triggering conditions are satisfied.  

(Gupta et al., 2023) used real-time live video feeds from intersection cameras to promptly 

calculate traffic congestion levels through image processing and vehicle detection using the 

EfficientDet architecture and TensorFlow Lite. The main objective is to address traffic 

congestion and mitigate accidents by employing algorithms that adjust signal lights based on 

road vehicle density and priority for emergency vehicles. This approach enhances 

transportation safety, decreases fuel consumption, and minimizes waiting times.  

Concerning traffic signal management, (Z. Lu et al., 2019) examined the adaptation of pre-

timed traffic signal control parameters during adverse weather conditions to enhance traffic 

efficiency and road safety. The study investigated the advantages of employing weather-

specific signal control plans for both uncoordinated intersections and coordinated corridors. In 

related work, (Mao et al., 2022) developed an innovative approach to optimize traffic signal 

timings at urban intersections during non-recurrent traffic incidents. Their method combines 

fast-running machine learning algorithms with reliable Genetic Algorithms (GA), to enable 

efficient and reliable decision-making processes.  

The optimization studies related to traffic signal management during traffic events are limited 

by their reliance on fixed-time control mechanisms rather than real-time control, as highlighted 

in a thorough review by (Qadri et al., 2020). Furthermore, some of these studies depend on 

simulation-based optimization methods rather than real-world experimental investigations. 

 



 

11 

 

1.2.4. Dynamic route guidance and navigation  

Dynamic route guidance and navigation involve the use of real-time traffic data and advanced 

navigation technologies to provide commuters with optimal route choices, particularly during 

disruptive events. These systems consider current traffic conditions, road closures, and 

congestion to suggest alternative routes that help drivers avoid areas with disruptions, minimize 

travel time, and enhance user safety.  

The authors have made significant contributions in this field by developing intelligent 

platforms that assist individuals and authorities in route planning. For example, (Alkhabbas et 

al., 2022) introduced the ROUTE framework, which offers customizable smart mobility 

planning for diverse stakeholders within dynamic smart city ecosystems. The framework 

supports multimodal planning, considering traveler preferences and responding to city-specific 

constraints set by authorities. Similarly, (Al-Rahamneh et al., 2021) created an urban data 

platform that integrates data from sensors and various sources. This platform caters to 

multimodal smart mobility planning by incorporating context-awareness, user preferences, and 

environmental factors. 

Other efforts were directed toward developing vehicle routing algorithms for providing reliable 

navigation services during uncertain traffic environments. (D. Lee et al., 2022) introduced the 

RL-TPVR algorithm, a reinforcement learning-based approach for predictive vehicle routing. 

By utilizing predictive state representation and reward modeling, the algorithm aims to 

minimize travel time variability. In the context of emergencies, like medical emergencies, 

scholars such as (Shetab-Boushehri et al., 2022) proposed heuristic algorithms to model 

location allocation for emergency service stations and ambulance routing. These algorithms 

take into account event variability and recurrent traffic congestion. 

In the evacuation scenarios, (Tamakloe et al., 2021) proposed a vehicle evacuation algorithm 

that employs a link-based centrality metric. This metric identifies efficient evacuation routes 

by considering network link characteristics and spatio-temporal traffic congestion changes. 

Furthermore, these efforts extend to evacuation planning during disruptive events like 

hurricanes (K. Feng & Lin, 2022) (Kutela et al., 2023), wildfires (Melendez et al., 2021) 

(Rohaert et al., 2023), and flood hazards (Borowska-Stefańska et al., 2022). Collectively, these 

researches contribute to the development of innovative solutions for efficient and adaptable 

transportation and evacuation strategies under various challenging circumstances. 

A common theme observed in previous literature is that route planning algorithms typically 

focus on providing an optimal route for specific uncertain environments or humanitarian 

operations, resulting in single-objective route solutions. These objectives might involve 

ensuring smooth evacuation procedures, facilitating emergency supply distribution, or 

achieving other specific goals. However, this limitation narrows the use of these applications 

in particular situations (Anuar et al., 2021). To better deal with the complexities of decision-

making in routing problems, it is crucial to optimize for multiple objectives simultaneously 

(Zajac & Huber, 2021).  

Some researchers have taken steps to overcome this limitation by developing route planning 

models that consider multiple travel objectives. For example, (Venkatraman et al., 2021) 

conducted a study that examined the behavior of individual travelers within a simulated 

environment. They incorporated real-time local congestion information while considering 

various travel objectives. These objectives included scenarios such as shopping trips (with no 
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specific arrival time but penalties for lateness), work trips (with fixed arrival times and 

penalties for both early and late arrivals), social trips (with fixed arrival times and milder 

penalties), and airport trips (with strict penalties for lateness and fixed arrival times). 

 

1.2.5. Communication and information dissemination 

Communication and information dissemination involves effective sharing of relevant data, 

during disruptive events. Utilizing digital platforms, mobile apps, dynamic road signs, and 

social media, this approach provides real-time information about disruptions, alternate routes, 

and recommended actions. Keeping commuters and the community informed will promote 

informed decision-making and alleviate potential confusion and congestion.  

 

From the insights gathered in the literature, this domain predominantly comprises two key 

applications; (i) real-time traffic updates; and (ii) emergency alerting and notification systems. 

Real-time traffic updates involve delivering real-time traffic updates to users through various 

digital channels. These updates provide real-time information on traffic conditions, disruptions, 

road closures, and detours, enabling drivers to make informed decisions and adjust their routes 

accordingly.  

Scholars have introduced real-time traffic updates through the implementation of an advanced 

traveler information system (ATIS). This system utilizes information and communication 

technology (ICT) to disseminate traveler-related information to commuters, aiding them in 

planning their journeys and providing navigation guidance. The information offered by ATIS 

encompasses various aspects, such as road construction and demonstrations, traffic conditions 

(which may be presented in queue length, delay, or travel time) and, stormy weather which 

may disrupt traffic (Ackaah, 2019).  

Various smart simulation tools were developed to address the problem of providing users and 

authorities with recent traffic updates with the aid of ATIS. For example, Simulation of Urban 

Mobility (SUMO) (Behrisch et al., 2011) is an open-source microscopic simulator that is 

especially suitable for representing traffic road networks at the city level. It offers a wide range 

of features in traffic modeling, from route choice and traffic light management algorithms to 

simulating vehicular communication (Behrisch et al., 2011) (Cruz et al., 2019). HERMS is 

another tool to facilitate the evaluation of road networks through simulation with different 

ATIS and with different levels of information percolation among users to develop travel time 

and road utilization (Cruz et al., 2019). 

Other scholars developed a mapping-based platform for real-time traffic anomaly detection, as 

discussed earlier in the real-time road traffic data monitoring section, and incident mapping in 

real-time. For example, (D. Chen et al., 2022) developed real-time mapping for road potholes 

through vibration signals analysis and spatiotemporal trajectory fusion. (Chaudhuri et al., 2023) 

provided a study for traffic risk mapping on the road network through spatial and temporal 

variation in traffic crashes and related injuries. 

Another application that emerged in this domain is developing an alerting system to inform 

drivers or passengers about any detected traffic event observed in order to save people's lives. 

This approach is witnessed in (Indukuri & Kottursamy, 2021) (Chaudhari et al., 2021) (Patil et 
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al., 2020) works. (Indukuri & Kottursamy, 2021) developed a real-time system for monitoring 

and tracking the bus to ensure better safety of the public using IoT. The system is about 

providing passengers safety from fatal crashes in winter fog/smoke and providing information 

on emergency case such as accidents, breakdowns, and fire accidents by immediately sharing 

the location and images of the inside environment of the bus to the concerned authorities by 

email alert. 

Similarly, using a similar method, (Patil et al., 2020) and (Chaudhari et al., 2021) created a 

smart system that detects traffic accidents and alerts the user's emergency contacts. When an 

accident occurs, the vehicle's sensors quickly identify it and send an SMS to emergency 

contacts, family members, hospitals, or the rescue team, sharing the location where the accident 

happened. 

Different approaches were observed in (Najib et al., 2023) study. They developed a Motorcycle 

Object Detection (MOD) system using a pre-trained neural network model called EfficientNet-

Lite0. This system uses an 8MP camera to identify hazards like potholes and barriers 

approaching from the opposite direction within the motorcyclist's view. MOD focuses on a 

specific region, reducing false alerts and noise. It alerts motorcyclists with audible and visual 

warnings through a helmet speaker and handlebar light. 

 

1.3. Enabling Smart Technologies for Traffic Disruptions Management   

The rapid progress of Information and Communication Technologies (ICTs) and their 

synergistic integration paves the way for pioneering solutions that can create a transformative 

impact in the future. These solutions promise the introduction of novel services, advanced data 

processing algorithms, and techniques that yield valuable insights for citizens, ultimately 

enriching their quality of life. In the context of traffic events and disruptions to mobility, 

making decisions informed by data becomes evident, serving to optimize people traveling and 

provide a prompt and effective response. 

Based on the previous literature review of the recent strategies for addressing traffic disruption, 

the smart solutions can be summarized as follows (Figure 1.2): (i) Internet of Things (IoT); (ii) 

Artificial Intelligence (AI); (iii) Big Data analysis; and (iv) Geospatial Technologies.  
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Figure 1.2. Enabling technologies for traffic disruption management 

These technologies interact with each other to optimize delivering the mobility service, starting 

from the hardware-level gathering data based on an IoT layer composed of several traffic data 

capturing devices on multiple levels; next, an aggregation layer with Big Data and the creation 

of datasets with a huge amount of data; and the processing of the gathered information using 

AI that will also allow the prediction of trends, valuable information revealing to support 

decision making. Finally, these results will be visualized and mapped on a sharable map-based 

platform using geospatial technologies. Figure 1.3  provides an illustration of the smart 

technology interaction in the realm of traffic disruption management. 

This section discusses how advanced smart technologies contribute to the development of 

smart mobility services and the enhancement of strategies for managing disruptive traffic 

events. Our focus will primarily revolve around three key areas: (i) smart sensors and IoT, (ii) 

artificial intelligence (AI), and (iii) geospatial technologies. Notably, we won't address big data 

analysis techniques as a separate technology, as they are inherently integrated with most IoT 

and AI-based solutions. This approach allows us to delve into the selected technologies in depth 

while acknowledging the underlying significance of big data analysis within the context of IoT. 
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Figure 1.3. The interaction of the technologies for delivering optimal mobility service 

 

1.3.1. Smart Sensors and IoT for Traffic Disruptive Management  

The deployment of intelligent and energy-efficient sensor technology proves highly effective 

in sensing and gathering real-time data regarding traffic and mobility patterns for both vehicles 

and people. Recent research efforts in intelligent transport systems show that the IoT paradigm 

can play an important role in traffic management by connecting physical devices over the 

internet to exchange information, track, and monitor traffic movement (Qian et al., 2019) 

(Sarrab et al., 2020). 

Based on the literature review, this technology significantly contributes to real-time traffic 

monitoring applications. For example, (C. Lee et al., 2020) (S. Chen et al., 2019) utilized global 

positioning systems, sensors, probe vehicles, and vehicle-to-infrastructure communication to 

collect real-time traffic data. These datasets are gathered and processed using big data analysis 

techniques. Additionally, AI-powered analysis expanded the technology's capabilities beyond 

monitoring, aiding traffic management and control (Gupta et al., 2023) (Espitia et al., 2020), 

and creating prediction models (Najib et al., 2023).  

Sensors designed for traffic and event monitoring and detection, such as acoustic and magnetic 

sensors, stand out for their affordability, low power consumption, and widespread usage in 

contemporary vehicle monitoring solutions (Niture et al., 2021). These sensors have been 

applied in various contexts, including developing alerting systems for passengers (Indukuri & 

Kottursamy, 2021), drivers (Najib et al., 2023), and medical emergencies (Patil et al., 2020) 

(Chaudhari et al., 2021).   

Regardless of the diverse applications of IoT in traffic disruption management, a shared 

architecture with four distinct layers has been identified (Naghib et al., 2023). This architecture 

comprises four layers, including (i) a sensing layer with active things and sensors, (ii) a network 

layer that represents the mode of communication and protocols, (iii) a service layer that 
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indicates the data analysis and storage, and (iv) application layer describe the end-user 

applications. 

The sensing layer is established through the deployment of data collection devices, including 

Radio-Frequency Identification (RFID) tags, sensors, Global Positioning Systems (GPS), 

Geographic Information Systems (GIS), drives, actuators, and mobile phones. These devices 

gather real-time traffic data and related traffic incident information. The network layer, 

encompassing protocols and gateways, facilitates communication within the IoT ecosystem 

among intelligent devices, gateways, and the cloud. 

The service layer is situated within the IoT cloud, taking charge of tasks like data storage, 

processing, analysis, and decision-making. The application layer, residing in end-user devices 

and services, delivers desired mobility services. These services encompass functions such as 

roadside traffic information (Sarrab et al., 2020), and notifications on mobile devices (Sanislav 

et al., 2021).  

 

IoT Challenges and Open Issues  

Although IoT technology is widely recognized for its effectiveness in managing traffic in usual 

scenarios and during emergencies, there remain certain challenges and unresolved issues in its 

application for traffic disruption management. Multiple sources of literature have discussed 

these challenges. As highlighted by (Romero et al., 2016), these challenges primarily revolve 

around security and privacy concerns. The large amount of data collected through IoT devices 

and sensors might contain sensitive information about individuals' travel patterns and 

behaviors. Ensuring the privacy and security of this data is essential to prevent unauthorized 

access, data breaches, and misuse of personal information. 

(Santana et al., 2017) focused on the IoT challenges related to data volume and scalability. The 

massive amount of data generated by IoT devices can overwhelm existing infrastructure and 

storage systems. Handling and processing this high volume of data in real-time while 

maintaining system performance can be a significant technical challenge. He added that 

infrastructure and connectivity are another challenge. IoT devices and sensors depend on 

reliable network connectivity to transmit data. In areas with poor connectivity or network 

congestion, data transmission delays can impact the timeliness of information, affecting the 

effectiveness of disruption management. 

(E. Ahmed et al., 2017) explained the regulatory and legal challenges associated with the 

implementation of IoT technology. The regulatory requirements and legal frameworks 

regarding data collection, storage, and usage can be complex, especially when dealing with 

sensitive data.  

 

1.3.2. Artificial Intelligence AI for Traffic Disruptive Management 

Artificial Intelligence (AI) has emerged as a cutting-edge technology, harnessed in recent years 

to deliver advanced mobility solutions. It achieves this by facilitating instant analysis of vast 

amounts of data received from various sources, including sensors, cameras, and IoT devices. 

Based on the review of the smart strategies to manage disruptive traffic using AI, we can state 
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that there is no specific number of AI algorithms that can be used in this scope domain. 

However, the choice of the algorithm depends on the specific use cases and requirements (Alahi 

et al., 2023). 

Nevertheless, the prevailing AI algorithms extensively explored for addressing traffic 

disruption events can be categorized into five primary groups, encompassing: (i) Machine 

Learning (ML); (ii) Deep Learning (DL); (iii) Natural Language Processing (NLP); (iv) 

Reinforcement Learning (RL); (v) Genetic Algorithms (GA); and (vi) Computer Vision (CV). 

This section will discuss these AI algorithms in the realm of traffic disruptive management.  

i. Machine Learning (ML) 

Machine Learning (ML) algorithms are employed based on mathematical principles that enable 

machines to learn and improve their performance in specific tasks using data, without needing 

explicit programming. A range of ML algorithms has been applied to various aspects of traffic 

management, such as traffic flow prediction during normal conditions (Fukuda et al., 2020), 

event prediction (Shaik et al., 2021), and abnormal event detection (Kim et al., 2023) (Meena 

et al., 2019). ML is notably popular for traffic flow prediction due to its ability to build models 

with less prior knowledge about different traffic patterns' relationships, flexibility in prediction 

tasks, and capability to capture nonlinear features (Barredo Arrieta et al., 2020).  

ii. Deep Learning (DL) 

Deep Learning (DL) is a subset of Machine Learning that utilizes artificial neural networks to 

tackle complex problems by extracting insights from data (Alahi et al., 2023). DL models 

consist of interconnected layers of nodes that process different aspects of input data and pass 

the results to subsequent layers (Sree et al., 2019). This hierarchical structure enables them to 

capture intricate patterns and attributes within the data. Prominent DL architectures include 

Convolutional Neural Networks (CNNs), Deep Belief Networks (DBNs), and Recurrent Neural 

Networks (RNNs). DL finds application in smart city contexts, optimizing traffic flow by 

predicting traffic patterns (Aljuaydi et al., 2023) (Nigam & Srivastava, 2023), developing 

network-based risk prediction models (Shaik et al., 2021) (Gu et al., 2022), estimating travel 

time during the nonrecurrent event (M. Xu & Liu, 2021), and managing traffic congestion due 

to traffic events (Gupta et al., 2023).  

iii. Natural Language Processing (NLP) 

Natural Language Processing (NLP) is a branch of AI that concentrates on using human 

language for seamless communication and interaction between computers and people (Tyagi 

& Bhushan, 2023). NLP algorithms are designed to process and examine extensive amounts of 

natural language data, encompassing text, speech, and even emojis. They possess the capability 

to perform diverse tasks like sentiment analysis, language translation, speech recognition, and 

text summarization (Tyagi & Bhushan, 2023). In recent times, NLP has been harnessed to 

analyze data from social networks and other text-based sources to identify traffic safety 

concerns and issues, such as events leading to traffic congestion (Salazar‐carrillo et al., 2021) 

and traffic flow (Essien et al., 2021).   

The investigated studies focused on using NLP algorithms for managing traffic disruptions 

primarily relying on geo-tagged content, often sourced from Twitter's social network. 

Moreover, many of the event detection solutions built using NLP remain disconnected from 
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comprehensive platforms that could optimize their findings for broader mobility services. 

These services could encompass event mapping, alerting messages, and route planning that 

takes into account the identified events. Additionally, predictive models developed using NLP 

often rely on historical datasets for analyzing specific traffic events, rather than utilizing real-

time data for enabling swift responses. 

iv. Reinforcement Learning (RL) 

Reinforcement learning (RL), is a type of ML that involves an agent learning through trial-and-

error interactions with its environment to maximize a cumulative reward signal (D. Lee et al., 

2022). The agent takes action in the background, and the environment responds with a positive 

or negative reward signal, and the agent learns from this feedback. Most of the observed RL 

application in traffic disruption management was in the route planning studies (Yao et al., 

2018), and emergency response (Elfahim et al., 2021).  

v. Genetic Algorithms (GA)  

Genetic Algorithms (GAs) are optimization techniques inspired by the principles of natural 

selection. These algorithms are frequently employed in AI and ML to tackle complex 

optimization challenges that traditional methods cannot address (Katoch et al., 2021). GA is 

used in traffic flow optimization to find the best timing for traffic lights (Mao et al., 2022). 

However, a potential challenge when using GAs in smart mobility applications is the 

computational complexity of the optimization task(Reddy et al., 2020). The scale of the 

problem and the complexity of the function can make finding an optimal solution within a 

reasonable timeframe quite demanding.  

vi. Computer Vision (CV) 

Computer vision (CV),  is a field within AI that involves a variety of mathematical and 

computational methods to enable machines to analyze and understand visual data from their 

environment (Kothadiya et al., 2021). These algorithms have the capability to identify patterns 

and characteristics within images, videos, and other visual data, and utilize this knowledge to 

make informed decisions and predictions. CV finds substantial application in detecting 

abnormal traffic events (Bhatlawande et al., 2022), and real-time traffic monitoring. 

 

AI Challenges and Open Issues  

While AI algorithms have brought advancements to traffic disruption management and their 

incorporation into diverse smart mobility services, they also pose challenges and unresolved 

issues. One major concern stems from the expansion of big data resulting from the IoT's 

advancement in traffic monitoring. Despite the potential benefits that deep neural networks can 

gain from this data influx, it concurrently presents challenges for machine learning 

applications. Dealing with the substantial volume, speed, diversity, and accuracy of big data 

becomes a crucial task that requires resolution (Gures et al., 2022). 

Furthermore, challenges related to the robustness, security, and privacy of AI and ML models. 

Adversarial attacks, like data poisoning, evasion attacks, and model extraction, can weaken 

ML algorithms. Data poisoning adds corrupted data to databases, leading to inaccurate 
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outcomes. Evasion attacks mask harmful content to penetrate systems, while model extraction 

aims to form concealed models. These attacks bring different risks to various ML types, 

especially reinforcement learning. Agents in reinforcement learning could perform 

inadequately under tough conditions or adversarial attacks, influencing immediate decision-

making (Yazici et al., 2023). 

Moreover, there is a challenge tied to energy consumption and computation costs. Particularly, 

machine learning algorithms, deep learning, and deep reinforcement learning algorithms 

necessitate extensive data and high-capacity models, thus requiring substantial hardware 

capacity. Additionally, the challenge of security and privacy is pivotal. The use of corrupt or 

insecure data in ML and AI processes could lead to catastrophic outcomes across various traffic 

management applications. 

Furthermore, the hurdle of real-time or near-real-time decision-making is significant in 

numerous machine learning and AI applications. Examples such as dynamic routing guidance, 

traffic signal optimization, or V2I/V2V communications in intelligent transportation systems 

demand rapid decision-making capabilities. 

 

1.3.3. Geospatial Technologies for Traffic Disruptive Management 

Geospatial technology refers to a set of advanced tools, techniques, and methodologies that 

collect, process, analyze, map, and deploy geolocated information (Paiva et al., 2021b). This 

technology encompasses various components, including geographic information systems 

(GIS), global positioning systems (GPS), remote sensing, and location-based services.  

Geospatial technologies have played a significant role in disaster risk management, particularly 

in addressing natural hazards (Kumsa & Feyisso, 2022) such as earthquakes (Wahid et al., 

2018), landslides (B. Ahmed et al., 2018), floods (Y. Feng et al., 2020) (Borowska-Stefańska 

et al., 2022), fires (Forkuo & Quaye-ballard, 2014), tsunami (Ashar et al., 2018), etc. 

Geographic Information Systems (GIS) and Remote Sensing (RS) have emerged as dominant 

tools in this field. They are employed to assess the severity and impact of damage caused by 

these disasters. In rescue and evacuation operations, GIS in combination with GPS plays a 

pivotal role. Additionally, geospatial technology enables the creation of disaster maps, offering 

critical insights into the spatial distribution of disaster-related phenomena (Gutierrez, 2019). 

Inspired by the successful applications of geospatial technologies in addressing natural hazards, 

scholars have adapted these tools to tackle man-made disruptions, particularly in the domain 

of traffic disruption events and traffic management. For example, (Partheeban et al., 2022) used 

historical census data to develop a prediction model for road traffic noise. This model was 

developed using ArcGIS 10.3, and the collected data includes traffic volume, speed, and noise 

level in lateral and vertical directions in Chennai, India.  

 

Other scholars used geospatial technologies in traffic risk mapping, hotspot analysis 

(S.Lakshmi et al., 2019), and emergency route planning (Almoshaogeh et al., 2021). For 

example, (Audu et al., 2021) established a digital road network database to facilitate rapid 

emergency responses to road traffic accidents in Nigeria. The development of this database 

involved the utilization of ArcGIS 10.3, encompassing database creation, data analysis, and 



 

20 

 

result visualization. To map high-risk areas, a kernel density estimation tool was employed to 

perform spatial search and network analysis. Furthermore, within the ArcGIS Network 

Analysis framework, Dijkstra's shortest path algorithm was applied to determine the nearest 

health facility relative to the scene of the road traffic crash.  

Geospatial technologies have other applications in creating spatially informative dashboards 

designed for traffic management. A prime example is the work of (Van Gheluwe et al., 2020), 

who developed a framework for geospatial dashboards tailored for Traffic Management as a 

Service (TMaaS) in Ghent, Belgium. TMaaS stands as a pioneering web platform offering a 

multi-modal traffic management solution for smaller urban centers. Through this platform, 

diverse urban mobility data is aggregated from multiple stakeholders and public service 

providers and subsequently presented in an intuitive and customizable interface. This interface 

caters to both traffic operators and citizens, facilitating effective visualization and 

understanding of traffic patterns and disruptions. 

Another significant spatial technology with transformative potential in traffic disruption 

management, not covered in the geospatial technologies review publications (Paiva et al., 

2021b), is spatial crowdsourcing (SC). SC revolutionizes the acquisition of spatial data by 

harnessing the presence of individuals during events (Lizut et al., 2019) (Tong, Zhou, et al., 

2019). 

Spatial crowdsourcing empowers people to contribute real-time spatial data from any location 

at any given time (Helmrich et al., 2021). This paradigm shift in data collection opens up new 

opportunities for enhancing traffic disruption management. Through the collective input of 

individuals using smartphones (Aljoufie & Tiwari, 2022), wearable devices (Bandeira et al., 

2020), and online platforms (Biljecki et al., 2023), a wealth of data can be rapidly gathered and 

utilized for real-time analysis and decision-making.  

This innovative approach contributed to traffic disruption management through various 

applications, including quick detection of traffic disruptions, accidents, road closures, and 

congestion by benefitting from the immediate observations of people on the ground. This can 

be observed in the Waze application (Waze, 2023). A navigation application that leverages 

crowdsourced user reports for providing service. Users can report traffic crashes, congestion, 

hazards, or police traps on the road (Amin-Naseri et al., 2018). Another popular application 

follows the same approach found in the FixMyStreet Platform. It is an open-source platform 

for reporting common road problems such as potholes and broken street lights to an appropriate 

authority (Fujihara, 2019).  

Supplementing traditional geospatial technologies with spatial crowdsourcing enables 

authorities to obtain real-time insights, improving the accuracy and timeliness of their 

responses to traffic disruptions and emergencies (Amin-Naseri et al., 2018). Many 

crowdsourcing platforms have become the main data source for conducting different traffic 

studies. One popular example is the OpenStreetMap (OSM) platform (Biljecki et al., 2023), 

which is used in traffic flow analysis (Po et al., 2019), and traffic disruption pattern prediction 

(Camargo et al., 2020). Registered users in OSM can input spatial content in an open-access 

database, building a free editable map of the world. Spatial content can comprise nodes, ways, 

or relations. Nodes refer to points of interest, ways refer to routes, and relations refer to the 

grouping of objects together. OpenStreetMap digital road maps can be imported into traffic 

simulation packages.  
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In the study conducted by (Camargo et al., 2020), OSM was employed as the primary data 

source to estimate traffic disruption patterns. The study utilized OSM features as predictors in 

linear regression models to analyze traffic disruption counts and traffic volume at 6,500 points 

within the road network across 112 regions in Oxfordshire, UK. Another crowdsourced data 

source used is Google Popular Times (GPT). (Bandeira et al., 2020) utilized GPT to explore 

the correlations between traffic volume, travel times, pollutant emissions, and noise levels 

across different regions and time periods. 

The advancement of data mining techniques and natural language processing has introduced a 

new emerging spatial data source within spatial crowdsourcing, which involves social network 

services and social media (Y. Feng et al., 2020) (Z. Xu et al., 2020). Geolocated data shared 

on social media platforms like Twitter offers valuable opportunities for various studies in traffic 

disruption management, particularly during emergencies (Paule et al., 2019). This encompasses 

tasks such as traffic congestion prediction (Salazar‐carrillo et al., 2021), traffic event detection 

(Kang et al., 2020) (Alkhatib et al., 2019), traffic flow predictions (Essien et al., 2021), 

managing emergency situations (Zuo et al., 2018) (Z. Xu et al., 2020). 

(Alkhatib et al., 2019) introduced a framework designed for monitoring incidents and events 

within smart cities. This framework utilizes techniques like text mining, text classification, and 

named entity recognition, employing a mixed corpus of Modern Standard Arabic and Dialect 

Arabic. The framework focuses on extracting, processing, and analyzing Arabic Twitter feeds 

related to specific topics, producing real-time city intelligence reports about events. These 

reports encompass details such as event type, scope, impact level, and environmental 

conditions at the incident site. On the other hand, (Paule et al., 2019) used Twitter's social 

media platform to propose a real-time traffic incident detection method. Their approach 

involves fine-grained geolocation using geotagged tweets from two cities, Chicago and New 

York. 

 

Geospatial Technologies Challenges and Open Issues  

The effectiveness of geospatial technologies relies on their capacity to seamlessly integrate 

data from various sources, process and analyze it, and then present the valuable insights derived 

from this data promptly. However, effectively visualizing and analyzing massive amounts of 

data in the context of big data presents a challenge. It involves determining how to extract 

relevant knowledge by merging geospatial and numerical data, as well as how to enhance 

decision-making efficiency for smart mobility services through geospatial insights (Jing et al., 

2019). 

Moreover, achieving efficient decision-making requires the utilization of geospatial knowledge 

and the ability to present results in an adaptable manner to different stakeholders, including 

citizens, authorities, transport service providers, and rescue teams. This involves balancing 

between providing detailed insights and presenting information in a user-friendly and 

understandable manner, which is critical for informed decision-making in traffic disruption 

management and smart mobility services (Clarinval & Dumas, 2023) (Sobral et al., 2019).  

Another challenge related to the reliability of the collected data from geospatial technologies 

encompasses factors such as accuracy, scalability, and timely availability. Geospatial data, 

acquired through GPS and crowdsourcing, can potentially carry inherent inaccuracies and 
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errors. These inaccuracies could lead to misinformed decision-making and service provision, 

undermining the effectiveness of traffic disruption management strategies (Kitchin & 

McArdle, 2017) (Tong, Zhou, et al., 2019).  

Additionally, issues concerning data privacy and security are prominent in the geospatial 

domain. Geospatial data often contains sensitive details about individuals' locations and 

movements. Balancing the utilization of this data for traffic management while upholding 

privacy and security standards is a critical concern (Tong, Zhou, et al., 2019) (H. Lin et al., 

2021).  

 

1.4. Research Analysis and Research Gap  

The significant socio-economic and social consequences resulting from traffic disruptive 

events, whether caused by natural or human factors, have catalyzed various scholars to develop 

innovative strategies for managing these disruptions. These strategies harness smart enabling 

technologies and advancements in information and communication technology (ICT). 

One fundamental approach observed in the literature involves real-time monitoring and data 

collection for road traffic. This method provides up-to-date insights into the current state of 

traffic and enables rapid response to disruption detection. Furthermore, the development of 

predictive models for both traffic patterns and potential traffic events contributes to proactive 

resource allocation and optimized traffic management plans. By predicting traffic flows and 

events such as crashes, authorities can allocate resources strategically, optimizing the 

deployment of personnel and infrastructure to mitigate the effects of disruptive incidents. 

Other scholars considered another crucial aspect of these strategies, which is dynamic traffic 

control and signal optimization. By adjusting traffic signals and control systems in real time 

based on the prevailing conditions, authorities can prioritize traffic movement, minimize 

delays, and alleviate congestion. Additionally, dynamic route guidance and navigation systems 

play a pivotal role in managing traffic disruptions. These systems provide travelers with real-

time information about optimal route choices during disruptive events. By suggesting 

alternative routes that minimize travel time and enhance safety, these systems help individuals 

navigate through disruptions more efficiently. 

Effective communication and information dissemination are also central to these strategies. 

Platforms such as dashboards, mobile apps, social media channels, and dynamic road signs 

facilitate the spread of crucial information to both travelers and decision-makers. This 

empowers individuals to make informed choices, take appropriate actions, and contribute to 

the alleviation of potential congestion or disruptions. 

These strategies have leveraged advancements in data capture devices, big data analysis 

techniques, and other enabling smart technologies such as IoT and AI, which have evolved 

alongside the development of ICTs and the complexity of the challenge. The smart 

technologies employed to address traffic disruption management play integrated roles in an 

optimized scenario. It begins with the collection of traffic and event data using IoT devices, 

sensors, and actuators. The massive data is gathered and processed using big data analysis 

techniques and then analyzed using AI algorithms to extract valuable insights and facilitate 

information-driven decision-making. Finally, geospatial visualization and mapping 
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technologies like GIS are employed to present this information in an intuitive and tailored 

manner. 

Table 1.1 summarizes the observed smart mobility platforms and applications for addressing 

traffic disruption issue, categorizing each smart application or platform based on their 

architectures, target users, data sources, type of data availability (real-time or static), the 

concerned mobility issues, followed smart strategies, and whether the application is 

accompanied by a real-world implementation.  
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Table 1.1. Summary of the observed smart mobility platforms/ application for traffic disruption management 

Smart Mobility 

App/Platform 

Architecture Target 

users 

Data source Data 

Availability 

Mobility Issue Smart 

Strategy  

Real-

Application 

Reference 

TMaaS 4 layers: 

licensing 

check, 

standardization

, integration, 

visualization 

data. 

Traffic 

operators. 

Citizens. 

National and 

local public 

transport 

providers. 

Navigation and 

traffic 

information 

providers. 

 

Real-time. Multi-modal 

traffic 

management 

solution. 

Information 

dissemination. 

Not provided. (Van 

Gheluwe et 

al., 2020) 

ROUTE Multi-tier 

architecture. 

Local 

authorities. 

Traffic 

operators. 

Travelers. 

 

IoT: Camera 

surveillance, 

sensors, 

actuators. 

Real-time. Multimodal 

Travel planning 

Route 

guidance. 

Not provided. (Alkhabbas 

et al., 2022) 

City Platform Five layers 

perception, 

communicatio

n, acquisition, 

management, 

application 

layer. 

 

Travelers. IoT: sensors, 

actuators. 

Real-time. Multimodal travel 

planning 

Real-time 

traffic 

monitoring/inf

ormation 

dissemination.  

Based on a 

case study. 

(Al-

Rahamneh 

et al., 2021) 

 

 

 

 

 



 

25 

 

 

 

 

 

Waze Not Provided. Travelers. Users 

reporting data. 

Historical data. 

Governmental 

data. 

Real-time. Navigation and 

traffic 

information 

Route 

guidance/ 

Information 

dissemination. 

Provided. (Waze, 

2023) 

SMART 

JEDDH 

Not Provided. Local 

authorities. 

Citizens. 

 

Citizen’s 

smartphones. 

Static. Parking 

availability, and 

PM2.5 emissions. 

Information 

dissemination. 

Provided. (Aljoufie & 

Tiwari, 

2022) 

S2-Move Three layers: 

Presenttion 

layer, core 

layer, and data 

layer.  

 

Citizens. Citizen’s 

smartphones. 

Vehicles 

probes.  

Real-time Traffic 

monitoring, Smart 

parking, Warning 

and fleet 

management. 

Real-time 

traffic 

monitoring. 

Simulation 

provided.  

(Marchetta 

et al., 2016) 

Framework for 

incidents and 

events 

monitoring in 

smart cities 

Text analysis 

process: 

Automatic data 

extraction, text 

mining, text 

classification, 

named entity 

recognition, 

Rescue 

services. 

Arabic Social 

media feeds: 

Twitter. 

Real-time. Incidents and 

emergency 

management in 

smart city. 

Event 

prediction 

model/ 

Information 

dissemination. 

Provided. (Alkhatib et 

al., 2019) 
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stemming, and 

data analysis 

rules. 

Application 

framework for 

emergency 

reporting 

system 

 

Three layers: 

Data layer, 

application 

layer, and 

client layer. 

Rescue 

services. 

Citizen’s 

smartphones. 

Real-time. Emergency 

management. 

Information 

dissemination. 

Provided. (Jilani et al., 

2019) 

Open-sourced 

real-time 

visualization 

Simulation 

environment, 

visualization 

environment.  

Public 

users. 

Camera 

detectors. 

Real-time. Traffic simulation 

at intersections 

Real-time 

traffic 

monitoring/inf

ormation 

dissemination.  

 

Based on a 

case study. 

(Jung et al., 

2023) 

TIM Not provided. Transport 

operators. 

Historical 

crash data 

records. 

Static. Highway traffic 

crashes 

management 

Event 

prediction 

model/ 

Information 

dissemination. 

 

Based on a 

case study. 

(Zhang et 

al., 2021) 

ExTraVis Three parts: 

back-end, 

gateway and 

front-end. 

Local 

authorities.  

Historical 

crash data 

records. 

Static. Traffic crashes 

management 

Event 

prediction 

model/ 

Information 

dissemination. 

Based on a 

case study. 

(Zerafa et 

al., 2021) 
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Research Limitations and Gaps 

While smart technology has proven to be efficient in addressing traffic disruptions, several 

challenges and open issues still need consideration. These challenges revolve around the 

dependence on smart technology's efficiency in capturing the sheer volume of data. This data 

collection enhances the accuracy of AI-developed models and subsequently provides high-

quality services.  

Another limitation is related to the heavy reliance on capturing devices, which are often 

considered the primary data source in many observed studies, encompassing devices such as 

cameras, loop detectors, traffic sensors, and smart street furniture. However, this approach 

introduces challenges associated with hardware defects, potential damage, and the need for 

continuous maintenance, especially within dynamic urban mobility systems. Moreover, 

regulatory and legal challenges pose additional hurdles. The deployment of such devices often 

requires adherence to a legal framework governing data collection, sharing, storage, and usage. 

This becomes particularly complex in environments with poor urban governance and unclear 

institutional hierarchies.  

Existing strategies for managing disruptive events often address specific challenges in 

isolation, leading to fragmented approaches. For example, certain researchers concentrate on 

creating systems to detect events and send out early notifications. Meanwhile, others develop 

route guidance and travel planning platforms that take context into account, aiding users in 

discovering alternate routes during or after such events. Additionally, some scholars employ 

geospatial technologies and map-based platforms to map and visualize data. This disjointed 

approach can result in suboptimal solutions that fail to comprehensively address the complex 

nature of traffic disruption management. 

Another observation is the limited involvement of citizens in the development of smart 

solutions, which has the potential to enhance the acceptance and effectiveness of these 

solutions (X. Kong et al., 2019). To bridge this gap, some researchers have proposed integrating 

crowdsourcing technology as a supplementary data collection method for traffic management. 

For example, the concept of Crowd-IoT combines crowdsourced data with the Internet of 

Things (IoT) (Ang et al., 2022), while others explore the combination of deep learning and 

blockchain to empower spatial crowdsourcing, known as DB-SCS (H. Lin et al., 2021). Despite 

these efforts, there remains a limitation in developing comprehensive smart mobility solutions 

for traffic disruption management that effectively leverage spatial crowdsourcing as a primary 

data source. 

Spatial crowdsourcing, when carefully designed with considerations for data quality and 

privacy protocols, has the potential to address certain challenges associated with the use of IoT 

in customized environments with complex regulations and limited resources. Numerous studies 

have leveraged spatial crowdsourcing in their smart mobility solutions, focusing either on 

direct citizen observations through mobile app reporting or mining data shared on social media 

platforms, which is Twitter as the dominant platform.  
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Interestingly, the combination of both approaches to tackle traffic management issues was not 

commonly observed in the reviewed studies. Incorporating both direct citizen observations and 

social media data could significantly enhance the quality and accuracy of the collected data, 

leading to more effective traffic management solutions. 

Based on the previous research synthesis, several gaps and areas for future investigation within 

the realm of traffic disruption management can be identified. Firstly, there is a need for a more 

comprehensive and integrated approach to addressing traffic disruptions, Figure 1.4. While 

current solutions often target isolated challenges, such as event detection, predictive modeling, 

route guidance, and communication strategies, there is a lack of cohesive strategies that bring 

these elements together.  

 

 

Figure 1.4. Observed research gap 

Developing a holistic approach that combines real-time monitoring, predictive modeling, route 

guidance, and effective communication could lead to effective and efficient traffic disruption 

management solutions. This integration could potentially lead to better coordination, resource 

allocation, and decision-making, ultimately enhancing the overall response to disruptive 

events. 

Furthermore, there is a need to enhance travelers' and citizens' engagement in this process by 

adopting a spatial crowdsourcing approach as the main data source for traffic conditions and 

potential events. While spatial crowdsourcing holds promise, it should also address existing 

limitations associated with relying solely on a single data source. Presently, this commonly 

entails direct reporting via mobile smartphones or extracting geolocated data from the Twitter 

platform. 

To overcome these constraints, a novel approach should merge these two methods to augment 

the quality of shared data. Moreover, consideration should be given to establishing a universal 
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data mining approach applicable to various social platforms, extending beyond the confines of 

Twitter. Such an enhancement in data collection and analysis methods could significantly 

elevate the efficacy of traffic disruption management strategies. 

 

1.5. Conclusion 

This chapter presented the state of the art about the use of smart technology for the management 

of traffic disruptions to use this analysis to develop a framework and tools to help Palestinians 

deal with traffic restrictions related to the occupation. 

The state of the art highlighted main approaches used in managing traffic disruptions including 

real-time monitoring and data collection, predictive modeling, traffic control, routing guidance, 

and information dissemination emerge as fundamental techniques for addressing traffic 

disruptions. By anticipating traffic patterns and potential events, authorities can allocate 

resources and optimize traffic management plans, ultimately mitigating the impact of 

disruptions. 

The chapter emphasized the importance of combining real-time monitoring, predictive 

modeling, route guidance, and communication strategies into comprehensive approaches. 

Involving travelers through spatial crowdsourcing is crucial, though existing limitations need 

to be addressed. The combination of direct citizen observations and social media data could 

improve the quality of collected information. 

Finally, the chapter concluded by identifying key research gaps for our research concerning 

helping Palestinians deal with traffic restrictions related to the occupation. The call for a 

holistic approach, bridging various elements of disruption management, remains essential. 

Likewise, enhancing travelers' engagement through spatial crowdsourcing and developing 

universal data mining approaches are vital steps forward. Implementing these suggestions 

could significantly enhance the effectiveness of traffic disruption management strategies, 

contributing to more resilient and responsive urban mobility systems 

The following chapters will successively present our general research methodology, the 

development of smart and resilient mobility services (SRMS), and the application of the SRMS 

to the Palestinian context in the West Bank. 
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Chapter 2. Research Methodology 

 

Introduction  

This chapter presents the methodology followed in this research, which aims to develop a smart 

solution to help citizens’ mobility under severe restrictions or disruptive events. The solution 

is based on smart technology because this technology offers a high capacity to (i) collect data 

from both citizens and sensors, (ii) analyze these data in real-time using artificial intelligence 

to understand the disruptive event and its impact, and (iii) to propose the best scenario to help 

citizens to overcome the disruptive event. This solution is used to help Palestinians face the 

mobility restrictions related to the occupation. 

The chapter discusses first the mobility restrictions in Palestine and their impact on the 

Palestinians’ lives and sustainability. Then it presents the methodology used in this research, 

including the outcome of the literature review, the design of a smart and resilient platform to 

help citizens face mobility restrictions, and the implementation of this platform to help 

Palestinians in the West Bank. 

 

2.1. Mobility Restrictions in West Bank 

The West Bank, a small region situated in the Middle East, is nestled between coastal Israel on 

its northern, southern, and western borders, with Jordan to its east, Figure 2.1. Its width spans 

approximately 56 km, while its length stretches around 133 km (Abrahams, 2021). According 

to the Palestinian Central Bureau of Statistics (PCBS, 2022a), the West Bank has a total 

population of approximately 3.2 million people residing in 11 governorates.  

WB is experiencing long-term mobility restrictions related to the Israeli occupation; these 

restrictions started around thirty years ago with the installation of permanent or temporary 

checkpoints (Weizman, 2007) (Braverman, 2011) (Vermote et al., 2014) (Rijke & Minca, 

2019) (Habbas & Berda, 2021) (Calì & Miaari, 2018) (Griffiths & Repo, 2021), the 

construction of a separation wall (Weizman, 2007) (Habbas & Berda, 2021) (Gugerell & 

Netsch, 2017), and settlers-related violent incidents.  

This section provides a historical overview of the state of mobility in the WB under the 

development of mobility restrictions, divided into two temporal periods, (i) The period from 

the Oslo Accords to the Second Intifada (1993-1999); (ii) The period from the Second Intifada 

to the present day (2000-Present). This section aims to understand the causes of erecting these 

restrictions and identify their types and severity. 

2.1.1. Mobility in the West Bank: Oslo Accords to the Second Intifada (1993-1999) 

This phase witnessed a notable decrease in violence between Israelis and Palestinians, as the 

Oslo Accords promised a political resolution to the long-standing conflict (Abrahams, 2021). 

These accords were designed as an interim agreement to gradually transfer authority from the 

Israeli Civil Administration to the newly established Palestinian Authority (PA) (ARIJ, 2019b). 
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Simultaneously, the Israeli Defense Forces (IDF) were to redeploy to areas surrounding the 

semi-autonomous regions, which would eventually come under PA control. In order to 

implement the Oslo Accords effectively, the West Bank (WB) was divided into three distinct 

areas, each with varying levels of control (Singer, 2021). These areas, depicted in Figure 2.1, 

are delineated as follows: 

Area A: This region constitutes 17.5% of the WB and is under the full civil and security control 

of the PA.  

Area B: Covering 18.5% of the WB, Area B is under the civil control of the PA, while security 

control remains with the IDF.  

Area C: The largest portion, comprising 61% of the West Bank. In this area, both civil and 

security control remain firmly under the jurisdiction of Israel.  

Contrary to expectations, Palestinian movement restrictions intensified during the Oslo 

Accords. In March 1993, Israel introduced access restrictions to "East Jerusalem"; this was the 

first instance of such restrictions being imposed (ARIJ, 2019b). Israel employed a combination 

of checkpoints and a permit system to gradually hinder Palestinian access to their significant 

hub, encompassing their cultural, religious, institutional, economic, and commercial activities 

throughout history.   

In 1995, Israel erected 30 permanent checkpoints across the WB (ARIJ, 2019b). These 

checkpoints served as physical barriers and limited the freedom of movement for Palestinians 

in the WB. They caused severe disturbances in the daily life of the population, with such 

adverse effects as anxiety, increased physical risk, time losses, and decreased employment 

opportunities. 

 

Figure 2.1. Area A, B, and C according to Oslo Accords 
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2.1.2. Mobility in the West Bank: From the Second Intifada to the Present Day (2000-

Present) 

In September 2000, a mass Palestinian uprising known as the Second Intifada erupted 

following the breakdown of the Camp David talks. During this period, movement restrictions 

within the West Bank intensified (Weizman, 2007) (ARIJ, 2019b), as depicted in Figure 2.2. 

The Israeli military implemented a range of measures, including checkpoints, road gates, 

roadblocks, and earthmounds, which significantly curtailed the freedom of movement for 

Palestinians. This comprehensive system, referred to by Jeff Halper as the Matrix of Control 

(Halper, 2000), composes a network of interconnected mechanisms that enable Israel to 

dominate various aspects of Palestinian life in the WB with a minimal physical presence. 

 

Figure 2.2. Time series of mobility restrictions erection and restriction types (ARIJ, 2019b) 

According to a recent survey conducted by OCHA, there are approximately 593 movement 

obstacles in the West Bank. Among these obstacles, 26% are road gates, 30% are checkpoints, 

and the remaining 54% are earthmounds, roadblocks, road barriers, and other types of barriers 

(OCHA, 2020a), as illustrated in        Figure 2.3. BTSELEM further classified these checkpoints 

based on their staffing status. They can be permanently staffed, intermittently, or unstaffed 

(BTSELEM, 2019). They are also classified according to their location, distinguishing between 

internal checkpoints along the West Bank's internal roads and checkpoints at the Separation 

Wall, serving as the final checkpoint link between the West Bank and Israel.  

In addition to movement restrictions, the construction of the Israeli separation wall, initiated in 

2002, has significantly hindered mobility within the West Bank, Figure 2.4. The International 

Court of Justice has declared this wall illegal (International Court of Justic, 2003), as it cuts 

through nine out of the West Bank's 11 governorates, isolating an area of 705 km2, which 

accounts for 12.7% of its territory. Moreover, the wall separates over 90 communities (Isaac et 
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al., 2015), leading to significant disruptions in travel and trade routes (Gugerell & Netsch, 

2017).  

Once the Wall is fully completed, its total length will be 771 km, with 82.5% of it situated 

within the West Bank rather than on Israeli territory. The most affected roads will be the main 

roads, with a percentage of 54%, regional roads at 45%, and local roads at 43%. This means 

the separation wall will severely affect interurban commuting in WB (Abu-Eisheh, 2004). As 

of June 2018, approximately 63% of the barrier has already been constructed, 3.5% is currently 

under construction, and 33.5% remains in the planning stage (ARIJ, 2019b).  

 

       Figure 2.3. Movement obstacles by type (OCHA, 2020a) 

Another mobility restriction that emerged after the Intifada was the regime of Forbidden 

Roads (B’tselem, 2004), specifically affecting particular roads in Area C and preventing 

Palestinian travelers from using them. While these measures are implemented for security 

reasons, they have profoundly impacted the daily lives of Palestinians, impeding their access 

to work, education, healthcare, and other essential services (Sletten & Pedersen, 2003) (UN, 

2003). According to the last updated data published by B’tselem (B’tselem, 2017), the total 

length of the completely prohibited roads from crossing Palestinian vehicles is 46.94 km 

distributed in the North WB, East Jerusalem, and South WB. The partially prohibited roads 

have a 19 km distance distributed in the central WB and East Jerusalem. 

In recent years, a new form of mobility restriction has emerged that poses a safety threat to 

travelers in the West Bank. This is known as settlers-related violent incidents, which involve 

acts of violence or aggression performed by Israeli settlers living in Israeli settlements within 

the West Bank against Palestinian travelers. These violent actions range from road blockages 

and stone-throwing at vehicles to physical attacks on travelers and even the use of live 

ammunition. According to a report by OCHA, the year 2022 witnessed an unusual increase in 

settlers' violence, with an average of 6.6 injuries occurring daily (OCHA, 2023). 

Approximately 21% of all settlers-related incidents were related to violence targeting vehicles, 

drivers, passengers, and road blockages (B’Tselem, 2022). This settlers' violence represents a 



 

34 

 

 

dynamic risk that threatens Palestinian mobility and can potentially cause physical harm and 

loss of life (UNHRC, 2021).  

 

 

       Figure 2.4. Distribution of mobility restrictions (Separation Wall and Checkpoints) 

 

2.1.3. Impact of Mobility Restrictions on the Population and Sustainability in WB 

The impact of mobility restrictions on the population and sustainability in WB was analyzed 

by (Aburas & Shahrour, 2021) according to a methodology including three phases, as depicted 

in Figure 2.5. The first phase concerned data collection about the inter-urban mobility 

infrastructure and restrictions. Data was collected from different sources, mainly governmental 

authorities and non-governmental organizations (NGOs).  

The second phase used network analysis to determine the best route (Al Shammas et al., 2023) 

under two conditions: the absence of mobility restrictions and the presence of those restrictions. 

The last phase analyzed the impact of the mobility restrictions on (i) the population, with a 

focus on increases in route length and travel time, and (ii) the environment, with emphasis on 

the additional energy consumption and CO2 emissions.  
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This study showed the adverse impact of mobility restrictions on travel time, energy 

consumption, and CO2 emissions. This impact was assessed for the Qalqilya Governorate, 

Figure 2.6. For this governorate, the ratio between travel time with and without mobility 

restrictions ranged from 5.93 to 27.01, with an average of 14.08. This increased travel time 

results in time loss, anxiety, and additional expenses for the population. Additionally, mobility 

restrictions significantly increase energy consumption, with gasoline vehicles experiencing an 

average of 275%. Similarly, CO2 emissions follow a similar increasing trend. The impact on 

diesel vehicles is even more pronounced, with CO2 emissions increasing with an average rise 

of 358%.  

 

Figure 2.5. General methodology of evaluating the environmental impacts of mobility 

restrictions 
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Figure 2.6. Distribution of checkpoints in Qalqilya Governorate 

2.2. Research Methodology  

2.2.1. Overview  

This research aims at creating a smart and resilient solution to help Palestinians face the 

mobility restrictions imposed by the occupation. Figure 2.7 illustrates the steps followed for 

the creation of this solution. They include three phases: 

The first step concerns a literature review to explore previous research on using smart 

technology to improve mobility under restrictions or disruptive events. This literature review 

aims at (i) understanding the current state, (ii) identifying existing strategies, applications, 

frameworks, and architectures, (iii) and exploring their strengths, limitations, and gaps. 

The second phase is dedicated to developing a smart solution that addresses the identified gap 

in the literature. It includes designing and implementing a novel approach or system to tackle 

the specific challenges or limitations identified during the literature review. It introduces the 

Smart and Resilient Mobility Services (SRMS) Platform, which provides innovative features 

and functionalities for resilient mobility.   

The third phase concerns implementing and deploying the developed smart solution in a real-

world Palestinian context, specifically the West Bank.  
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Figure 2.7. General Research Methodology 

2.2.2. The outcome of the literature review  

An extensive review of the existing literature shows that scholars have widely embraced smart 

solutions and harnessed various enabling technologies for disruptive traffic event management. 

The forefront of these technologies includes the Internet of Things (IoT), Artificial Intelligence 

(AI), Geospatial Technologies, and Big Data. The applications of these technologies play a 

significant role in addressing the challenges of disruptive traffic events.   

One primary application is real-time data collection, where IoT devices and sensors gather data 

on traffic flow, road conditions, and environmental factors. This data is processed through big 

data analysis techniques for traffic monitoring and anomaly detection, allowing authorities to 

identify abnormal incidents that may disrupt the traffic flow. 

Traffic and events predictive models were developed using Machine Learning (ML) techniques 

to analyze historical and real-time data to predict traffic disruptions and identify potential 

hotspots for incidents. These models help proactive planning and resource allocation to 

mitigate the impact of disruptive events. 
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Furthermore, early detection and alerting systems are being developed to notify users and 

authorities instantly about potential disruptions. These systems use the IoT and AI algorithms 

to identify abnormal events, such as accidents or road closures, and alert relevant stakeholders, 

permitting immediate response. Another significant application is the development of decision 

support systems, such as route guidance systems, which utilize geospatial technologies, deep 

learning, and big data to optimize traffic routing during disruptive events. These systems 

provide alternative routes and suggestions to drivers, minimizing congestion and facilitating 

traffic flow. 

Current solutions for managing disruptive events usually target isolated challenges, resulting 

in fragmented approaches. For example, some scholars focused on developing travel planner 

platforms that incorporate context awareness to assist users in finding alternative routes during 

or after the events (Jevinger & Persson, 2019) (Alkhabbas et al., 2022). These platforms aim 

to provide personalized suggestions and optimize travel plans based on real-time data and user 

preferences. 

On the other hand, efforts were directed toward event detection and early notification systems. 

These applications utilize various data sources, such as traffic sensors, social media, and 

crowdsourced information, to detect and instantly alert users or authorities about disruptive 

events (Ur Rehman et al., 2021) (Sathya et al., 2023). The goal is to enable quick response to 

minimize the impact of such events on traffic flow. Geospatial technology applications are also 

utilized to map events on shareable base maps, facilitating better visualization and 

understanding (Tavra et al., 2021). 

However, there is a notable gap in comprehensive solutions that integrate and combine 

different features to address disruptive events holistically. While individual solutions may 

effectively tackle specific aspects, there is a need for more integrated approaches that consider 

multiple dimensions of the problem. A comprehensive solution should contain real-time event 

detection, early notification and alerting, routing guidance, geospatial mapping, and other 

features to manage disruptive events. 

Despite the significant advancements in information and communication technology (ICT) in 

addressing disruptive traffic, there are limitations in recent smart solutions when involving 

citizens in the process. Citizen engagement is crucial for accepting innovative solutions, but 

limited participation exists. In response to this gap, recent calls have highlighted the potential 

of integrating the (IoT) and Machine Learning (ML) with crowdsourcing or crowdsensing in 

smart mobility applications (Ang et al., 2022). 

However, the contribution of crowdsourcing in disruptive traffic management is still in its 

infancy. Some crowdsourcing applications enhanced commuter safety, facilitated event 

evacuation, determined traffic patterns, and detected events. These applications rely on 

participatory or opportunistic reporting via mobile devices and analyze text data from social 

media platforms. However, it is important to note that most existing studies on crowdsourcing 

and disruptive traffic events predominantly rely on Twitter as the primary source of 

information.  

This assumption is based on the widespread use of Twitter. However, it should be 

acknowledged that this may not be the case in all environments, and other social media 

platforms may be more prevalent in certain regions or communities. Therefore, it is essential 
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for future research to explore and incorporate a broader range of social media platforms to 

ensure a comprehensive understanding of disruptive traffic events across various contexts. 

Therefore, this research aims to address the identified gaps in the literature on managing 

disruptive traffic events by pursuing the following contributions:  

● Develop a platform that provides comprehensive mobility services to effectively 

manage incidents during all disruptive phases: Platform services include real-time 

mapping of mobility restrictions and traffic events, a notification system for 

personalized alerts based on user interests, and a route planning service that includes 

multiple categories of alternative routes.  

● Utilize crowdsourcing for enhanced data collection: The research aims to leverage the 

power of crowdsourcing by actively involving citizens in the data collection process of 

traffic events. This approach aims to improve the accuracy and comprehensiveness of 

the gathered data, providing more reliable and insightful information for managing 

disruptive events. 

● Explore alternative social data sources for traffic event management: The research 

seeks to explore and utilize alternative data sources beyond the common use of Twitter 

in social sensing studies.  

● Enable informed decision-making for authorities: The SRMS aims to not only provide 

direct mobility services to individuals but also support authorities in making informed 

decisions. By providing historical data on mobility restrictions and traffic congestion, 

the research aims to assist authorities in understanding past events and trends, enabling 

them to implement effective strategies for managing future disruptive events. 

This research focuses on developing a Smart and Resilient Mobility Service (SRMS) Platform 

to achieve the stated objectives. The SRMS is designed to offer a range of mobility services to 

facilitate and optimize users' travel experiences while minimizing socioeconomic costs. 

2.2.3. Developing a Smart and Resilient Mobility Services (SRMS) Platform  

This section presents the methodology for creating the SRMS Platform, which consists of a 

series of sequential steps, including (i) identifying the problem that the platform is designed to 

address; (ii) developing the conceptual design for the SRMS platform; (iii) prototyping and 

development; (iv) ethical consideration related to data privacy and quality; (v) testing and 

evaluation to ensure its functionality. Figure 2.8 depicts the steps of creating the SRMS 

platform.  
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Figure 2.8. Methodology for creating the SRMS Platform 

i. Problem Definition 

This phase focuses on developing the SRMS Platform as a smart solution to address the 

identified gap in the previous literature. The platform aims to provide comprehensive services 

facilitating travel for individuals in communities affected by disruptive traffic events. This 

includes real-time event mapping, prompt notification and alert messages to users, and 

proposing alternative routes aware of context and user preferences. 

Additionally, the SRMS platform aims to advance knowledge of crowdsourcing for traffic 

disruptive event management. It relies on the community as the primary data source, using 

spatial participatory crowdsourcing and social data mining to provide real-time and near-real-

time data.   

ii.  Conceptualizing and Design  

The second phase of the research focuses on conceptualization and design to generate ideas 

and concepts for the structure and services of the SRMS platform. This phase comprehensively 

reviews approaches, architectures, and frameworks in other semi-similar smart mobility and 

smart city platforms. A framework for the SRMS platform is developed by analyzing and 

synthesizing these existing solutions. The architecture of the SRMS platform consists of four 

layers that interact with each other to provide the final services, including (i) the urban mobility 

infrastructure layer; (ii) data collection and transmission; (iii) data processing and analysis; and 

(iv) service layer. Figure 2.9 illustrates the four layers of SRMS platform.  

• Urban Mobility Infrastructure Layer 

This layer is the data source for creating the SRMS Platform services. It includes formal 

interurban routes, informal routes, mobility risk as a type of mobility disruptive vent, and 

stakeholder involvement. By incorporating these elements, the SRMS can proactively manage 

disruptions and enhance resilience with the wide engagement of the community.  
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Figure 2.9. Layers of SRMS Platform 

• Data Collection and Transmission Layer 

This section is designed to answer the following questions; (i) what are the available data 

sources that are needed to provide SRMS services, (ii) what are the types of obtained data; (iii) 

what are the data formats; (iv) what are the methods observed for capturing and gathering these 

data; and (v) how the captured data will be transmitted to the SRMS processing layer.  

Data in the SRMS is captured from various sources, including high governmental authorities, 

local authorities, NGOs, and the community. These sources can be classified into three 
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categories, including (i) open sources accessible by the public, (ii) authorized database that is 

only available for authorized people, and (iii) crowdsourcing data, which is generated by the 

people (crowd) through participatory reporting via mobile devices and sharing road 

information on social media, such as Telegram social platform.  

The selection of Telegram as a data source for social data related to mobility restrictions is 

justified by several factors. Firstly, Telegram has a large user base of around 550 million active 

monthly users, surpassing the number of Twitter users, which stands at approximately 436 

million (Statista, 2022). This indicates the popularity and widespread adoption of Telegram as 

a messaging platform. Secondly, Telegram offers the feature of pure instant messaging, 

enabling real-time communication and updates. This attribute makes it an ideal source for 

obtaining accurate and timely data on mobility restrictions, which can be fed into the SRMS 

system to provide up-to-date information to users. 

Additionally, mining Telegram data for mobility restrictions represents a novel approach 

within social media mining studies (Khaund et al., 2021). By leveraging the unique 

characteristics of Telegram channels and public groups, this research has explored the 

extraction of mobility restrictions and road traffic data using the Telegram API (Anand et al., 

2022) (Dongo et al., 2020). This demonstrates the innovative use of Telegram as a valuable 

data source in the context of mobility-related studies. 

• Data Processing and Analysis 

This layer concerns processing and storing the collected data to generate a mobility service 

decision based on evidence. The data processing layer uses the development of cloud 

computing as a next-generation computing infrastructure (Phuttharak & Loke, 2019). The 

advantages of using cloud computing are the ability of the system to deal with large-scale 

spatial data, improve data storage and computational pressure effectively, ability to integrate 

and process real-time data and social network data, support real-time inquiries, and support the 

filtering data to preserve the data quality (X. Kong et al., 2019).  

This research employed the Software as a Service (SaaS) cloud computing model to develop 

the SRMS platform. The use of SaaS was recommended by (Chnar & Subhi, 2021), who 

compared SaaS with other cloud computing services such as Infrastructure as a Service (IaaS) 

and Platform as a Service (PaaS). SaaS enables users to run software programs over the internet 

without installing them on their devices, simplifying operations and reducing maintenance 

costs. 

Hence, this study utilizes ArcGIS Online as a cloud-based Software as a Service (SaaS) 

platform. Choosing ArcGIS Online as a platform service stands for several factors, including 

(i) providing scalable and flexible computing resources (Esri, 2023h); (ii) users can access their 

maps and data from anywhere with an internet connection, which can help facilitate remote 

work and collaboration (Esri, 2021b); (iii) ArcGIS Online provides the capability of 

streamlining the application development and deployment; (iv) it allows utilizing application 

templates, access hosted APIs and software development kit components, and connect to 

shared widgets and add-ins (Esri, 2023h). 

The data analysis in the processing layer follows a mixed methods approach, combining 

qualitative and quantitative techniques. This approach allows for a comprehensive 
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understanding of the research topic and facilitates the integration of different data types, 

perspectives, and research techniques (Timans et al., 2019). The qualitative approach involves 

mining the Telegram data for thematic analysis and topic identification to identify various 

mobility restrictions. This method provides insights into the qualitative aspects of the data and 

helps understand the nature and context of the mobility restrictions. 

On the other hand, quantitative techniques are employed to analyze crowdsourced data, such 

as GPS data and geotrace lines, using geospatial analysis. Also, quantitative methods using 

machine learning techniques are applied to develop predictive models, ensuring data and user 

quality and quantifying risks on the road network. Furthermore, they contribute to developing 

route planning models that optimize travel routes based on the available data. 

• Service Layer 

This layer represents the interface through which the SRMS platform interacts with users and 

provides services. The services of the SRMS platform were identified from the research 

problems and observed gaps. It includes functionalities such as real-time mapping of mobility 

restrictions, notification, and alerting systems, mapping the informal route, personalized 

routing alternatives based on user preferences, and an informative dashboard on the recent 

current events and time series of traffic congestion reports.  

The application layer provides users with up-to-date information about mobility restrictions, 

such as road closures, traffic congestion, checkpoints, and violent actions. Users can view this 

information on a map interface and stay informed about any updates or changes to the 

restrictions. Another essential service the application layer provides is the mapping of informal 

routes. These routes, which may not be included in traditional navigation systems, offer 

alternative paths and shortcuts based on user-reported information. Users can explore different 

routes and optimize their travel experience by incorporating informal routes into their 

navigation options. 

The application layer also plays a crucial role in providing alternative path suggestions to 

optimize safety, travel time, and distance. The platform can recommend alternative routes that 

suit individual user preferences and priorities by leveraging previous layers' available data and 

analysis. The SRMS platform's application layer also generates informative reports and 

statistics related to restrictions activation and traffic congestions in a time series. These reports 

offer valuable insights into mobility restrictions and conditions during the time of the day and 

day of the week. This will help users and stakeholders make informed decisions.  

iii. Prototyping and Development  

This phase concerns creating a prototype of the SRMS platform. It involves developing a 

software application and designing the interface. The SRMS platform was initially developed 

as a mobile web application that can be accessed through a mobile web browser. One of the 

key advantages of using a mobile web app is its compatibility across different devices and 

operating systems, making it a flexible and cost-effective choice for developers aiming to reach 

a wide user base (Rochim et al., 2023) (Tandel & Jamadar, 2018). In contrast, native apps are 

typically coded in device-specific programming languages for specific devices or operating 

systems.  
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The decision to develop the SRMS platform as a mobile web app was made after considering 

various factors, such as the current state of mobile app development, available resources, time 

constraints, and technical and non-technical considerations. This choice was informed by a 

review of different comparison studies that assessed mobile web apps with native apps, hybrid 

apps, interpreted apps, and widget-based apps (Tandel & Jamadar, 2018) (Shah et al., 2019) 

(Rochim et al., 2023). Considered factors included installation process, updates, app size, 

offline access, user experience, push notifications, development cost, security, ease of updates, 

implementation complexity, licensing, programming language, and discoverability. The 

comprehensive evaluation of these factors ultimately led to the selection of a mobile web app 

as the most suitable solution for the SRMS platform.  

The SRMS platform can benefit from being a mobile web app in several ways. Firstly, it offers 

enhanced accessibility to a wider user base, as it can be accessed on various devices without 

platform restrictions. Secondly, it is a cost-effective solution as it utilizes standard web 

technologies that are widely available such as HTML, CSS, and JavaScript, and can be used 

across multiple platforms. Hence, reducing the need for specialized resources (Tandel & 

Jamadar, 2018). Thirdly, it allows for responsive development, enabling developers to quickly 

address user feedback and make necessary updates. This responsiveness is crucial for spatial 

crowdsourcing projects that require frequent modifications to meet evolving user needs (Shah 

et al., 2019).  

However, it is important to note that when comparing web apps to other types, there may be 

challenges related to limited user interface and experience. To tackle these challenges, the 

design of the SRMS mobile web app was partially inspired by the principles of Progressive 

Web Apps (PWA) as outlined by (Fauzan et al., 2022).  

PWAs combine the strengths of both web and mobile apps, providing a rich user experience 

close to native apps. Several PWA principles were applied in the design of the SRMS web app. 

Firstly, responsiveness: The design of the SRMS web app is adaptive and responsive, catering 

to various screen sizes, orientations, and resolutions. Using cascading style sheets (CSS), 

different styles are rendered based on the device, ensuring a user-friendly experience across 

various devices (Serrano et al., 2013). This adaptability enhances usability, allowing users to 

comfortably interact with the app regardless of their device (Jobe, 2013). 

Secondly, app-like experience: The SRMS web app aims to provide a modern interface and a 

flexible design framework to deliver an ultimate user experience and interaction (Esri, 2023a). 

By incorporating contemporary design principles, the app aims to emulate the feel and 

functionality of native apps, offering users a seamless and immersive experience. Additionally, 

the SRMS web app incorporates a push notification system to inform users about updates 

related to specific mobility restrictions.  

During the design phase of the SRMS mobile web app, the User-Centered Design (UCD) 

approach was adopted to ensure high user interaction and increase acceptance among users. 

The UCD approach focuses on prioritizing the needs and limitations of end-users in the design 

process (Blackett, 2021) (Vallet et al., 2020). In software engineering, UCD involves deeply 

understanding the users' goals, motivations, and frustrations. This understanding helps inform 

the design of intuitive and user-friendly applications that effectively meet their needs (Lopes 

et al., 2018).  
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This involved qualitative methods, including conducting investigative surveys among potential 

SRMS users. The survey aims to gather information from different perspectives, such as 

personal profiles, commuting modes, and traveling costs. The goal was to understand users' 

needs, preparedness, and interests related to their interurban mobility. The survey also gathered 

insights into users' preferences for the listed application features. By understanding users' 

preferences, the design phase could prioritize the most desired features and ensure they align 

with users' expectations. Simultaneously, the survey assessed the users' willingness to interact 

with the proposed features, providing valuable feedback on the potential usage and acceptance 

of the app. 

iv. Ethical Considerations 

This section addresses the ethical considerations of the developed SRMS platform, specifically 

focusing on data privacy, security, and user trust. To address these concerns, the SRMS 

platform incorporates a Data Privacy and Quality Control Module during the data processing 

and analysis phase. The platform implements data quality protocols and measures to ensure the 

validity and accuracy of user-submitted data. These measures help assess the quality of the data 

and identify any potential issues. Reputation models and other quality assurance techniques are 

employed to establish the trustworthiness of users and their contributions to the platform. 

Regarding privacy, the SRMS platform adopts privacy-preserving techniques to protect user 

data and respect their privacy preferences. This includes implementing measures such as data 

anonymization and access controls to safeguard sensitive information. The platform considers 

available privacy methods applied in crowdsourcing applications and considers their 

limitations, advantages, and relevance to the context of this research. 

v. Testing and Evaluation 

The developed SRMS web mobile application was tested by users regularly encountering 

mobility restrictions. This testing phase aimed to evaluate the application's performance, 

functionality, and user interface experience. The primary goal was to gather user feedback to 

identify areas that require improvement and refinement. 

During the testing process, users interacted with the application and performed various tasks 

related to reporting and navigating through disruptive traffic events. Their experiences and 

feedback were collected, allowing for an assessment of the application's usability, 

responsiveness, and effectiveness in addressing their needs. 

The feedback obtained from the users played a crucial role in identifying any issues or 

challenges they encountered while using the application. This feedback was valuable input for 

further enhancing the application's performance, functionality, and user interface. By 

incorporating the users' perspectives and addressing their concerns, the final version of the 

SRMS application is prepared and ready for deployment.   
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2.2.4. Implementation SRMS platform in the Palestinian Context, West Bank  

This phase concerns the implementation and deployment phase of the SRMS application in the 

West Bank context. WB environment is particularly suitable due to the frequent exposure to 

mobility restrictions. Additionally, there are facilitating factors such as widespread internet and 

smartphone access and the common use of social media for sharing road network information. 

Further, the absence of existing applications addressing real-time data on mobility restrictions 

highlights the need for such a solution. 

This phase encompasses identifying the target group and customizing the mobility services 

platform to align with the specific environment. Also, integrate the platform with relevant data 

sources, such as road network physical data from the Ministry of Transport. Finally, launch the 

application among the target groups, monitor the system performance, and collect relevant data 

concerning user interaction and service performance.  

 

2.3. Conclusion  

This chapter highlighted the research methodology which aims to develop a smart solution to 

help citizens’ mobility under severe restrictions or disruptive events. The chapter started by 

highlighting the impact of mobility restrictions on the Palestinians due to the Israeli occupation. 

The studies revealed that these restrictions significantly impact the daily lives of Palestinians, 

restricting their freedom of movement, longer travel distances, travel time, access to essential 

services, economic opportunities, and social interactions. These mobility restrictions have 

profound socio-economic and environmental effects, undermining the region's sustainability 

pillars. 

To address these challenges and promote sustainability in the West Bank, the chapter outlined 

a comprehensive approach that embraced smart solutions to mitigate the adverse impacts of 

mobility restrictions. It provided a literature review that served as a foundation for 

understanding existing research and identifying gaps in the field of using smart technologies to 

manage traffic disruption. Then, it introduced the SRMS Platform as a novel and 

comprehensive solution to bridge the identified gaps. It aims to provide integrated services, 

including real-time event mapping, personalized alerts, and alternative route suggestions. 

SRMS platform based on crowdsourcing to enhance data collection and explores alternative 

social data sources, such as Telegram, to improve the accuracy of information. The 

methodology described the technical aspects of creating the SRMS Platform, from problem 

definition to conceptualization, design, prototyping, development, and ethical considerations. 

Finally, the methodology addressed the implementation of the SRMS Platform in the West 

Bank context, emphasizing the suitability of the environment and the need for such a solution. 

It involves customizing the platform to align with the specific needs of the region, integrating 

relevant data sources, and launching the application among the target user groups. 
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Chapter 3. Methodology for Developing the Architecture of Smart 

and Resilient Mobility Services (SRMS) Platform 

  

Introduction 

Developing and designing a Smart and Resilient Mobility Services (SRMS) requires a 

systematic approach to ensure its effectiveness in addressing mobility restrictions issues, 

particularly in constrained environments. This chapter introduces a comprehensive 

methodology that outlines the tools, processes, and techniques used during the development of 

the SRMS. The research methodology is based on the smart system approach.  

The methodology includes four parts. The first part provides a general method for developing 

the SRMS platform. It provides a roadmap, guiding the development process and ensuring the 

successful creation of smart mobility services that embrace the community as a primary data 

source and deliver these services to the users. 

The second part highlights protocols and measures to assess the validity and accuracy of user-

submitted data, user trustworthiness techniques, and privacy-preserving techniques to protect 

users’ privacy. The third part presents developing a mobile web app considering the user-

centered design principles to offer mobility service attractively and ensure high user 

engagement. The last part provides a general overview of the developed framework by 

providing the operating system of the SRMS platform.   

 

3.1. Layers of the SRMS System 

Defining the architectural model is essential for any technology, it will have a standard to 

follow. SRMS, as a novel smart solution to address the mobility restrictions challenges, follows 

the concept of smart city architecture layers (Shahrour & Xie, 2021) (Haque et al., 2022). 

SRMS is composed of four layers: urban mobility infrastructure, data collection and 

transmission, data processing layer, and services layers, as depicted in    Figure 3.1. 
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   Figure 3.1. Architecture of smart and resilient mobility services platform (SRMS) 

3.1.1. First Layer: Urban Mobility Infrastructure   

The first layer in the SRMS system is the infrastructure of the urban mobility system. It is the 

foundation for designing a resilient and smart mobility service. It constitutes the data source in 

the smart system (Shahrour & Xie, 2021). This layer includes (i) formal interurban routes, (ii) 

informal routes, (iii) mobility risk, and (iv) stakeholders involved in the SRMS.   

i. Formal Interurban Routes 

The formal interurban routes concern routes used by interurban travelers. They are 

characterized by short travel time and high speed, making them suitable for interurban mobility. 

Formal interurban routes are mainly composed of roads and could be connected to tunnels or 

bridges. The roads in the formal routes are highly hierarchal road classifications, with different 

names and descriptions according to the road classification system of the country and its 

national urban context (Paraphantakul, 2014). For example, the high level of road classification 

in Toronto is an expressway, major arterials, and minor arterials (City of Toronto, 2013). In 

comparison, road classification in South Africa is principal urban arterial, major urban arterial, 

and minor urban arterial (Committee of Transport Officials-COTO, 2012).  

Regardless of the difference in the names of road classifications, they share common 

characteristics, including (i) primary function is mobility; (ii) high-speed limits (more than 50 

km/h); (ii) high traffic volume; (iv) intended to uninterrupted traffic except at signals or 

crosswalks, (v) limited property access; (vi) limited transit facilities; (vii) limited regulations 

on heavy traffic, etc. (City of Toronto, 2013). Due to high traffic volume and high traveling 
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speed, formal routes have increased exposure to disruptive risks such as traffic crashes (Al-

Sahili & Dwaikat, 2019), hazardous material accidents (Huang et al., 2018), and natural 

disaster consequences (Arrighi et al., 2021). Hence, the formal routes require regular 

monitoring and maintenance to avoid failure in providing mobility service, which entails 

massive traffic interruption, traffic congestion, and physical and human loss (B. Liu et al., 

2016). 

The formal route plays a significant role in creating a smart and resilient mobility system. The 

role of the formal route includes (i) the backbone of the mobility system; it is considered the 

main infrastructure for transportation. It forms the base map of the SRMS and acts as a 

reference for all SRMS services, including real-time reports and data collection related to 

informal routes; (ii) crucial input for creating routing planning models and conducting network 

analysis within the SRMS. These models utilize information about the formal route network to 

generate alternative routes based on different criteria, such as safety, speed, and distance. By 

considering the characteristics of the formal route, the SRMS can offer users categorized 

alternative routes, including the safest route, fastest route, and shortest route; (iii) publishing 

and updating the formal routes database via the SRMS platform helps transport authorities in 

infrastructure management and minimize failures and prevent disruptions that could lead to 

traffic interruptions and congestion. 

ii. Informal Routes 

The informal routs emerge in mobility systems subjected to physical or natural hazards, leading 

to blockage in the main roads and traffic congestion. Informal routes have a significant role in 

the SRMS platform, including (i) providing flexible and adaptable mobility patterns. Unlike 

formal routes, informal routes may consist of various paths and passages that are not officially 

designated for transportation purposes. They emerge based on local knowledge, community 

preferences, and evolving transportation patterns; (ii) enhancing the community resilience 

(Bishara, 2015), which takes different shapes depending on the community context and 

available resources (Lwanga-Ntale & Owino, 2020) (Sajjad, 2021); (iii) enhancing the routing 

planning model, since it will expand the available alternative routes to manage specific traffic 

disruptions; (iv) providing a contemporary perspective of resilient urban mobility.  

While existing literature on urban mobility resilience focused on engineering perspectives 

(Sohouenou et al., 2021) (Arrighi et al., 2021) (Leobons et al., 2019), the experience of travelers 

dealing with road restrictions and traffic interruptions, especially in conflict areas, has not been 

widely addressed (Samper, 2012) (Dunckel Graglia, 2016). Introducing informal routes into 

the urban mobility system offers a novel perspective for enhancing resilience. It recognizes the 

dynamic nature of informal routes and allows new strategies to cope with traffic interruptions 

based on the specific risks and socio-economic context. 

iii. Mobility Risk 

The mobility risk could be predictable or non-predictable events that induce traffic disruption. 

In this research, the mobility risk is related to the mobility restrictions that could be physical 

or intangible restrictions that impede people's movement. Physical mobility restrictions have 

different shapes, such as checkpoints, roadblocks, road gates, and violent actions. Intangible 

mobility restrictions could be policies prohibiting the use of certain roads. By integrating 
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mobility risk considerations into the system, the SRMS becomes better prepared to handle 

disruptions and ensure the efficient and resilient operation of the urban mobility network. 

Considering mobility risks in the infrastructure of urban mobility has different advantages. 

Firstly, risk management and informed decision-making. By recognizing and understanding 

potential mobility restrictions and disruptions, the system can proactively plan and implement 

measures to mitigate risks and minimize their impact on the overall mobility network. This 

includes establishing alternative routes and implementing real-time reporting and notification 

systems. 

Secondly, resilience enhancement is achieved by identifying the timeline of the operation 

mechanism of the mobility restrictions, whether they are planned, random, or conditional. This 

will provide insights into their predictability and managing potential disruptions. Thirdly, 

assessing the socio-economic and environmental impacts involves understanding these 

restrictions' broader effects on individuals, communities, and the environment. Lastly, provide 

visual presentation and mapping within the urban mobility system. This allows for a better 

understanding of the spatial distribution of these restrictions and aids in decision-making 

processes. 

iv. Stakeholders 

Stakeholders include the formal and informal groups involved in a resilient mobility system. 

They include individuals, governmental authorities, and non-governmental organizations 

(NGOs). Stakeholders' involvement in developing the smart and resilient system is crucial for 

the success of the system (Jayasena et al., 2019) (Lindenau & Böhler-Baedeker, 2014). 

Each stakeholder is a potential source of static and dynamic data (Shahrour & Xie, 2021). 

Hence, it is necessary to ensure a well-organized data collection and sharing procedure among 

stakeholders and ensure data security, integrity, and access rights protection. Figure 3.2. shows 

the power-interest graph for the SRMS stakeholder. It is a common tool to map the stakeholders 

according to their power and interest (Lindenau & Böhler-Baedeker, 2014). According to          

Figure 3.2, SRMS stakeholders could be classified into three groups, including (i) high power-

high interest group, (ii) high power-low interest group, and (iii) medium power-medium 

interest group.  

The high power-high interest group includes drivers and passengers who use the interurban 

mobility network. They are considered mobile sensors on the road network (Phuttharak & 

Loke, 2019). They capture and feed the system with real-time localized data about traffic 

conditions and mobility restrictions, and share their experience in informal traveling using 

spatial crowdsourcing technology. Also, they are the primary users and beneficiaries of SRMS 

who will be able to plan their interurban traveling with minimum risk and cost.  

The high power-lower interest group includes the governmental organizations who have power 

in the SRMS through providing transportation infrastructure data but do not directly benefit 

from the SRMS compared with the first group. The higher governmental authority, such as the 

Ministry of Transport, is the source of high-classified roads, including road characteristics, 

maintenance needs, physical condition, mapping, etc. The local governmental authority, such 

as the municipality, is a source for low-classified roads inside the locality. To maintain an 
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inclusive, updated transportation database, we need coordination to share data between two 

hierarchal levels.  

The medium power-medium interest group includes residents of localities adjacent to formal 

roads and non-governmental organizations (NGOs). They play the role of observers in the 

SRMS by reporting traffic data and mobility restrictions on the nearby formal roads. They do 

not have high benefits compared with the first group. Residents can provide data in the areas 

not accessible by travelers in the usual situation, such as alternative routes or paths linked with 

the formal routes, so they could be considered sources for informal routes. NGOs play different 

roles in urban mobility according to the urban community context. However, NGOs in SRMS 

play the role of monitoring the risk on the interurban road network by describing the tangible 

and intangible mobility restrictions, their categories and functioning mechanism, mapping, etc.  

 

 

         Figure 3.2. Power-Interest graph for SRMS stakeholders 

 

3.1.2. Second Layer: Data Collection and Transmission 

This section concerns the following questions, (i) what are the available data sources for the 

SRMS services, (ii) what are the types of obtained data, (iii) what are the data formats, (iv) 

what are the methods observed for capturing and gathering these data, and (v) how the captured 

data will be transmitted to the SRMS processing layer.  

Data is the core of the SRMS, as all the decisions are based on the analysis of the collected and 

captured data from the mobility infrastructure (Haque et al., 2022). According to (Shahrour & 

Xie, 2021), the data sources of the smart urban system are classified into (i) IoT data, including 

sensors, cameras, RFID, GPS, etc.; (ii) authorized data from public authorities such as traffic 
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information; (iii) open data, which is generally shared by public authorities and NGOs; and (iv) 

crowdsourcing, which includes people's active and passive data. 

Data in the SRMS is captured from various sources, including high governmental authorities, 

local authorities, NGOs, and the community. The data could be obtained from (i) open sources 

accessible by the public, (ii) authorized database that is only available for authorized people, 

and (iii) crowdsourcing data, which is generated by the people (crowd) through the SRMS 

platform and social media. The obtained data has different types, such as spatial data in the 

form of Esri vector data storage format (Shapefile), which is common spatial data storage that 

stores the location, shape, and attributes (Esri, 2023g), feature service, mobile device GPS 

sensing data, tabular data, and text data. Table 3.1 presents the data used in the SRMS for each 

infrastructure category and describes the data sources, types, and formats. 

Table 3.1. SRMS's data sources, types, and format 

Infrastructure 

Category 

Data Source Source 

description 

Data type Data Format 

Formal routes High 

governmental 

authority: 

Ministries. 

 

Authorized 

transportation 

database. 

GIS spatial 

database. 

 

Spatial data  

Esri Shapefile: 

SHP, .DBF, .SHX, 

etc. 

 

Informal 

routes 

Community 

experience and 

observations. 

Spatial 

crowdsourcing. 

Crowdsourcing 

data using the 

GPS of mobile 

device. 

 

Spatial data  

Hosted feature layer 

(Feature service). 

Mobility 

restrictions 

NGOs. Open source. Descriptive 

textual data. 

Tabular data. 

Text. Image. Excel 

file (.xlsx). 

Community 

observations. 

Spatial 

crowdsourcing. 

Crowdsourcing 

data using the 

GPS of mobile 

device. 

Spatial data  

Hosted feature layer 

(Feature service).  

 Social media. Crowdsourcing 

data: processed 

text data. 

Text. 

 

Methods used to obtain the above-mentioned data are summarized in Figure 3.3. The 

authorized data is obtained through formal communication with related authorities to provide 

access to their GIS services using login data (ID and password). Open-source data, such as 

those published by NGOs, is gathered through public data repositories. These repositories often 

provide direct download links or APIs to access the data. The authorized and open-source data 

will be processed, filtered, and stored in a cloud external spatial database (ESDB). 

The community provides the SRMS platform with real-time spatial data about traffic 

conditions, mobility restrictions, and informal routes using participatory spatial crowdsourcing 
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SC (Phuttharak & Loke, 2019) (X. Kong et al., 2019) (Helmrich et al., 2021), where users 

directly report on the SRMS platform. SRMS platform is designed using Web GIS, ensuring 

interactive public access to geospatial data, real-time data integration and transmission, and 

platform-independent GIS analysis (Agrawal & Gupta, 2017). For collecting the community 

data, SRMS deployed the Survey123 data collection tool (Jordan et al., 2019) using automatic 

pre-filed location, date, and time data. So, once the users access the reporting section in the 

SRMS platform, they are asked to permit the activation of their location detection using the 

GPS data of the mobile device.  

The second method for collecting data from the community is using social media (Salazar‐

carrillo et al., 2021). The community provides near real-time data regarding traffic conditions 

and restrictions through instant messaging on social media applications such as WhatsApp and 

Telegram. SRMS applies social media mining techniques to gather people's observations at 

each specific time interval, and using natural language techniques, the insights, and useful 

information will be extracted (R. Q. Wang et al., 2018) (Kang et al., 2020). 

 

        Figure 3.3. Data sources and collection methods 

Following capturing data from its sources, data will be transferred to the processing cloud 

ArcGIS server through the transmission layer. Data transmission from the community is based 

mainly on a mobile connection. Data transmission from other sources will be based on the 

internet connection. 

 

3.1.3. Third Layer: Data Processing  

This layer concerns processing and storing the collected data to generate a mobility service 

decision. The data processing layer uses cloud computing (Phuttharak & Loke, 2019). Data 
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processing was applied using one of the Web-GIS advancements, ArcGIS Online. Web-GIS 

integrates the capability of GIS in capturing, storing, analyzing, flexible retrieving, attractive 

presentation, and interactive data display with internet (Budi Sunaryo et al., 2019) (Agrawal & 

Gupta, 2017) (Karnatak, 2012).  

Web-GIS advancements resolved the issue of traditional GIS, a complex and costly system 

requiring specialized skills and heavy investment in setup (Agrawal & Gupta, 2017), by making 

it available to the common public easily and efficiently (Green & Bossomaier, 2002). It 

overcomes the shortcomings related to gathering a sheer volume of data, such as lack of 

communication and duplication of efforts (Green & Bossomaier, 2002) by providing the 

analysis and manipulation capabilities of a large amount of data in real-time.  

The processing layer is composed of four components that communicate with each other to 

provide a suitable mobility service including (i) data pre-processing; (ii) data processing; (iii) 

crowd-context database; and (iv) privacy and security control as illustrated in Figure 3.4.  

 

         Figure 3.4. Data processing components in SRMS 
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i. Data Pre-processing 

This phase concerns data cleaning. One of the SRMS platform challenges is the heterogeneity 

of data sources. The system relies on various data sources (social media, mobile devices, open 

sources, etc.), which could include noises (duplicate data, data with transmission errors, 

incomplete data, etc.). For data homogenization, it is proposed to remove data noises through 

a middleware platform between the transmission and processing layer (X. Kong et al., 2019) 

that maintains the collaboration among different data sources (Ang et al., 2022) (X. Kong et 

al., 2019) (Corral-Plaza et al., 2020). The Pre-processing phase uses a combination of 

automated and manual methods to clean and filter the data. For example, it removes outliers, 

detects and corrects errors in GPS coordinates, and removes duplicate reports. 

ii. Data Processing  

This concerns processing and analyzing the pre-processed data through various mathematical 

analyses and machine learning algorithms to provide mobility services. The data processing 

includes; data integration, data analysis, and results diffusion.  

a. Data integration  

This phase concerns extracting and transforming the pre-processed data from a large crowd 

into an internal data structure as raw data stored in a conventional database. For example, the 

social media content will be processed using Natural Language Processing (NLP) and text 

analysis (R. Q. Wang et al., 2018) (Zou et al., 2018) to integrate with the data reported via 

SRMS; this will reinforce the data quality.  

b. Data analysis  

This component plays a significant role in providing SRMS mobility services through 

conducting mathematical and artificial intelligence tools to extract the main features of 

collected data, ensure data quality, and develop predictive models and alternative routes in 

response to the mobility system's real-time context. For example, real-time mapping of 

mobility restrictions will be provided by analyzing the crowdsourced GPS data to extract 

insights about mobility restrictions and traffic conditions. The data is then aggregated and 

updated in real-time, allowing SRMS to provide its users with the most up-to-date information 

(Sattar et al., 2018) (R. A. Sarker et al., 2021).  

Moreover, the data analysis applies machine learning techniques and shortest path algorithms 

to offer alternative routes, taking into account the gathered data. By leveraging historical data, 

real-time reports, and factors like time of day and day of the week, the system can predict 

waiting times at mobility restrictions. When the SRMS detects significant delays at a particular 

restriction, it could suggest alternative routes to users, helping them avoid congested areas. 

Additionally, the application employs shortest-path algorithms to determine the optimal route 

based on criteria such as time, distance, or safety. 

Within the data analysis process, an essential aspect involves collaborating with the data quality 

manager to manage the quality of reported data. Since SRMS relies on user-reported data, there 

is a possibility of encountering low-quality data due to intentional or unintentional system 
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misuse. Detecting such low-quality data can be challenging during the pre-processing and 

processing phases. To address this issue, data analysis conducts a final quality check on the 

reported data before storing it in the crowd context database. This is achieved by implementing 

data quality management protocols, which will be elaborated upon in a subsequent section. 

c. Results diffusion  

This component concerns preparing the processed results of previously explained 

computational analysis to be classified and stored in the crowd context database. Integrating 

the results with the crowd context database will facilitate their transmission to the service layer. 

iii. Crowd-Context Database (CCDB)  

CCDB plays a crucial role in delivering various SRMS services. The data within CCDB is 

securely stored and processed to ensure the privacy, accuracy, and reliability of information 

provided to users. (Y. Zhao et al., 2022).  

Data stored in the crowd-context database contains both structured and unstructured data, as 

illustrated in Figure 3.4. Structured data, originating from user-generated content, includes 

information such as the location of informal routes and mobility restrictions, the type of 

restriction, the time of reporting, the user’s login credentials, emails, etc. User-generated data 

is stored in the Observation Dataset and the User Dataset (Figure 3.5), which consists of 

different tables representing specific types of information, with each field holding relevant 

data  (Phuttharak & Loke, 2019). 

The observation dataset contains two tables: The Event table and the Informal Route table. The 

event table has a set of fields that describe the event reported by the platform’s users, such as 

the location of an incident, the type of incident, and the time it was reported. The informal route 

table has fields describing the observed route, such as route location, comments about the route, 

and the reporting time. These structured data help in data filtering, searching, statistical 

analysis, and applying machine learning algorithms to extract insights and identify trends. 

The User dataset stores user information like login credentials (username and password), user 

ID, email addresses, the historical reported events and informal routes, and subscribed mobility 

restrictions. The user dataset plays a crucial role in ensuring the accuracy and reliability of 

shared data (Tong, Zhou, et al., 2019) and providing a personalized experience for users of 

SRMS. It enables customized features and tailored services based on individual preferences 

and subscribed restrictions. 

Another structure data that the CCDB has is the External Spatial Database (ESDB). ESDB is 

the repository of processing and storing open source and authorized data. It contains tables 

describing the external environmental context, such as road networks, built-up areas, and 

permanent mobility restrictions. It forms the base map of the SRMS platform. The external 

spatial database independently processed the spatial data using GIS capabilities, including 

georeferencing, digitizing, classifying, converting, geoprocessing, and removing duplication 

and missing data. Then, the data is tabulated for fast and efficient querying and analysis. Figure 

3.5 presents the structured data and their connections within the crowd-context database. 
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Figure 3.5. The structured data and their corresponding schema within the crowd-context 

database 

The unstructured data in the crowd-context database is presented in the data generated from 

the algorithm and models such as restriction-waiting time predictions models, social media 

data processed using natural language processing, and other text analysis techniques to extract 

valuable information about road conditions and stored in text files. The unstructured data 

includes the inference results from machine learning models, such as users’ behavior and 

reliability. This data is used to improve the quality, accuracy, and performance of the SRMS 

services. The unstructured data will be stored in the Knowledge dataset, which is crucial in the 

crowd context; it is the repository for long-term data in the SRMS.  

iv. Privacy and Security Control 

The Data Privacy and Quality Control module integrated into the processing unit includes 

measures for assessing the validity and accuracy of user-submitted data. Its objective is to 

ensure the trustworthiness of user information by implementing a reputation model and other 
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quality assurance mechanisms. Also, the module employs protective techniques to preserve 

user privacy. More details about this will be discussed in the following section. 

 

3.1.4. Fourth Layer: Service/Application 

The application layer plays a crucial role in providing services to users (Haque et al., 2022). 

This layer presents the analyzed data from the previous layers as user-friendly and ensures the 

use of attractive tools to enhance user interactivity with the provided services (Shahrour & Xie, 

2021). The SRMS service layer encompasses various services that aim to ease people's mobility 

during disruptive events to minimize the adverse socioeconomic impacts and save lives.  

These services include (i) real-time mapping of mobility restrictions and traffic conditions; (ii) 

mapping of informal routes; (iii) providing alternative path suggestions to optimize safety, 

travel time, and distance; (iv) generating informative reports and statistics related to restrictions 

activation and traffic congestions in a time series. These reports offer valuable insights into 

mobility restrictions and conditions during the time of the day and day of the week.  

 

3.2. Data Quality and Privacy 

The SRMS platform depends on people's observations and reports. Ensuring the quality of 

these shared data constitutes a big challenge for crowdsourcing applications (Y. Zheng et al., 

2016) (Tong, Zhou, et al., 2019). Since the users in the SRMS are not trusted equally, this will 

affect the quality of the reported data, in sequence, undermine the accuracy of provided 

services, and cause a failure in the smart system as a whole. For example, false submissions, 

inaccurate data due to the failure of networks (or devices), or users reporting incorrect data 

generate misleading results (X. Kong et al., 2019).  

Quality-aware crowdsourcing has been studied from different perspectives. Some studied the 

truthful inference mechanism for quality the crowdsourced data where users have private 

participation (H. Jin et al., 2015) (H. Jin et al., 2016). Others focused on learning the data 

quality from the users' data (D. Lee et al., 2015). However, the quality of both users and data 

is significant to ensure the accuracy of any crowdsourcing platform (Moayedikia et al., 2019). 

Another challenge for the spatial crowdsourcing application is protecting the privacy of users' 

data from any breach or abuse. The collection of geolocated data raises serious privacy 

concerns (Alatrista-Salas et al., 2022). Any leakage in this data leads to the loss of the users' 

trust in the crowdsourcing application (W. Feng et al., 2022).  

The Data Privacy and Quality Control module incorporates quality control measures to assess 

the validity and accuracy of the data users submit (      Figure 3.6). It ensures the quality and 

trustworthiness of users by implementing a reputation model and other quality assurance 

measures. The data privacy and quality module employs preservative techniques to safeguard 

user privacy. This ensures that user data is protected and handled in a manner that respects 

privacy preferences. 
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      Figure 3.6. SRMS’s methods of ensuring data, user quality and data privacy 

 

3.2.1. User Quality 

SRMS, like any crowdsourcing application, could be threatened by malicious users who report 

false data to mislead the system and other users (Y. Zheng et al., 2016). False data could also 

happen due to accidental errors without malicious agendas, called spammers users (Y. Zheng 

et al., 2016). Different scholars discussed the methods used to assess user quality. For example, 

(Tong, Chen, et al., 2019) use the single-value user probability (u) model. In the user 

probability approach, the value is a single real number (between 0 and 1) to model the user 

quality (qu) ∈ [0, 1]. The single value could be the user’s confidence (Li et al., 2014), 

experience, reputation, and accuracy. A large value of (qu) means a high user quality (Y. Zheng 

et al., 2016).  

The user probability value was determined using user historical accuracy, which indicates the 

history of users in reporting actual and accurate events (Olsson et al., 2017). Another approach 

used to calculate the user probability value is the qualification test, either through a direct task 

assigned to the user (golden task) or a hidden test. The quality will be measured based on the 

user's answer. However, (Y. Zheng et al., 2016) revealed that the user qualification test is time 

and money-consuming and may not reveal users' quality. (Tong, Zhou, et al., 2019) declared 

that the single-valued quality may not characterize the users' quality sufficiently. 

Other scholars covered the shortcomings of the single value quality approach by proposing a 

multi-dimensional approach, such as the confusion matrix (Xin et al., 2023), confidence model 
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(Y. Zheng et al., 2016), and the diverse skills approach (Z. Zhao et al., 2015). These approaches 

are compatible with tasking crowdsourcing platforms designed to assign oriented tasks to 

different users, such as Amazon's Mechanical Turk (Phuttharak & Loke, 2019).  

These approaches consider multiple variables in defining the quality of users' such as accuracy, 

precision, time response, etc. For example, in the confusion matrix approach, users' reported 

data are compared with the true data to measure the quality of users. The diverse skills approach 

considers the differentiation in the users' skills in task completion. The confidence model 

effectively measures user trust by answering plenty of tasks, and the high number of tasks 

accomplished indicates high user quality (Y. Jin et al., 2020).  

It is worth noting that while these approaches are applicable to tasking crowdsourcing 

platforms, they may not be directly suitable for SRMS. Unlike tasking platforms, SRMS does 

not assign specific tasks to users based on their location. Instead, any registered user from any 

location can report any listed event. Therefore, task-answer approaches like the confidence 

model and confusion matrix are not well-suited for ensuring user quality in the SRMS platform. 

Instead, SRMS adopts hybrid quality measures, including user verification to ensure 

authenticity and the accuracy and frequency of users' historical data (Tong, Zhou, et al., 2019).  

SRMS employs user verification during the registration process, requiring an email address 

and activation to confirm that accounts belong to real users. This helps ensure that all users on 

the platform are real users. Additionally, SRMS utilizes machine learning to create a reputation 

model based on user behavior (Bang et al., 2012), analyzing the quality and quantity of user 

interactions with the platform. Users with higher accuracy and frequency in their historical data 

have a higher reputation score compared to those with lower accuracy and frequency 

(Bhattacharjee et al., 2017) (Xia et al., 2020). Furthermore, SRMS opportunistically collects 

information about users' mobile devices, such as time zones, to detect malicious users operating 

outside the designated areas. 

 

3.2.2. Data Quality 

The quality of received data significantly affects the performance of the platform and the 

quality of the provided services (X. Kong et al., 2019). Different approaches have been 

proposed to improve the data quality submitted by the participants. Most researchers use user 

incentive mechanisms to ensure the quality of submitted data (Y. Zhao et al., 2022) (X. Kong 

et al., 2019). Other scholars introduced the redundancy-based strategy (Y. Zheng et al., 2016), 

which aggregates the data from all users. The most redundant data is considered high quality 

or through the Majority Voting approach (MV) (Cao et al., 2012), which takes the answer given 

by the majority of users as the truth. (Sumner et al., 2020) validates the crowdsourced data via 

institutional honest-third party or other data from the surrounding environment (R. Q. Wang et 

al., 2018).  

However, these methods have limitations. For example, incentive or reward approaches can be 

costly and may introduce unintended consequences in specific crowdsourcing applications. In 

the case of SRMS, the platform aims to provide traffic information to the entire community 

without needing dedicated incentives based on user interaction with the service. The 

redundancy-based strategy and majority voting (MV) methods assume all users have the same 
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level of reliability, which may not accurately reflect the actual quality of the data. To address 

these limitations, SRMS combines multiple mechanisms to ensure inclusive data quality 

assurance. 

The SRMS platform adopts an approach that considers the quality of individual users when 

evaluating the reported data. This means that the data quality is closely tied to the quality of 

the users, and a mutual relationship exists between them. By considering the reliability and 

accuracy of the users, a more precise assessment of the data quality can be achieved (Y. Jin et 

al., 2020). 

Additionally, SRMS incorporates a spatiotemporal event clustering approach, which leverages 

unsupervised analysis in machine learning to group large datasets based on spatial and temporal 

similarities. These groupings allow for a more structured representation of the data (Ansari et 

al., 2020), as depicted in Figure 3.7. Each event in SRMS is stored as a triplet consisting of 

longitude, latitude, and timestamp, providing information about the location and time 

associated with the recording. The clustering of events reveals the truth of the data.   

 

Figure 3.7. Event clustering (Ansari et al., 2020) 

The third approach for data quality consists of using the high-quality user voting technique. 

This method develops the majority voting technique (Cao et al., 2012). Still, instead of 

depending on the majority voting, it relies on the votes of high-quality users to confirm the 

accuracy and reliability of the reported data. By incorporating the input of trusted and reliable 

users, the SRMS platform can enhance the overall data quality.  

Another method the SRMS platform employs is using a spatial third party to verify the accuracy 

of reports inspired by the (H. Hu et al., 2016) method. In this approach, the external spatial 

database (ESDB), which contains spatial data related to the surrounding environment and 

serves as the base map of the platform, can act as a third-party checker. By leveraging the 

information stored in the ESDB, potential areas of reporting, such as permanent checkpoints, 

road gates, and other vulnerable locations, can be identified and verified. 

 

3.2.3. Data Privacy 

SRMS collects and processes the user's location and the real-time reported data about mobility 

restrictions, traffic conditions, and informal paths. Leakage in the users' location and the 

content of reported data are common challenges in spatial crowdsourcing (Yuan et al., 2020). 

Disclosing individual locations has profound privacy implications. For example, the leaked 
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locations of other users could be collected and shared without users' consent (Ansari et al., 

2020) leading to a breach of sensitive information such as health information, lifestyle, and 

political and religious preferences (To & Shahabi, 2018).  

However, knowing users' location can stage attacks such as physical surveillance, stalking, and 

identity theft. (G. Wang et al., 2016) show that Sybil's attacks on Waze could lead to stalking 

other users by creating fake events or traffic congestion. Hence, users may not agree to engage 

in spatial crowdsourcing and lose the users' trust in the provided services (Haque et al., 2022); 

thus, ensuring location privacy is an immediate success for any spatial crowdsourcing 

application (G. Wang et al., 2016). In this study, the privacy measures hypothesize that privacy 

leakage could happen due to untrustworthy mobile crowdsourcing participants or 

unreliable/curious crowdsourcing servers. 

Privacy leakage in the SC platform could happen due to malicious or untrusted participants. 

This threat could come in different shapes, including (i) identity forging by some users; (ii) 

gaining undesired access to data; (iii) conflicting behavior attacks; and (iv) collusion attacks. 

In the conflicting behavior attack, malicious participants provide partially correct and partially 

false information to deceive the crowdsourcing system. In a collision attack, malicious users 

collude to provide completely false information (J. Hu et al., 2018) (Sodagari, 2022).  

The user's privacy is at risk when the server cannot be trusted (internal attack) or is vulnerable 

to cyber-attacks and hacking, especially in real-time crowdsourcing (Z. Wang et al., 2019). In 

such cases, servers can abuse sensitive information for profit by selling data to advertisers and 

private investigators (Z. Wang et al., 2019). Sometimes the server is trusted and provides 

accurate data but has the curiosity to discover the users' private information (Jiang et al., 2021). 

In both cases, the server should neither gain access to the raw private data of participants nor 

use it for data aggregation. 

SRMS is a centralized crowdsourcing platform where the data aggregation, processing, and 

preparation occur in a cloud server. The centralized platform is subjective to a single point of 

failure or internal attack (Yuan et al., 2020) (Z. Wang et al., 2019) (Sodagari, 2022). Since 

users' location is the most sensitive data, (Jiang et al., 2021) provided a general survey on 

popular methods to preserve users' location data privacy. They include (i) privacy policy–based 

mechanisms, (ii) obfuscation-based mechanisms, (iii) cryptography-based mechanisms, and 

(iv) cooperation and Caching-based mechanisms. 

Privacy policy–based mechanisms use common privacy management rules and trusted privacy 

agreements, constraining the service provider and the third party to fairly and securely access, 

store, and use the location information submitted by users. The obfuscation-based mechanism 

depends on distorting the users' information, such as (i) performing location generalization 

using the cloaking technique (Tong, Zhou, et al., 2019). For example (Galdames et al., 2019) 

proposed a cloaking regions approach to preserve location privacy and safety requirement; (ii) 

location perturbation using differential privacy (J. Xu et al., 2013) (Dwork, 2006) (Z. Wang et 

al., 2019). Differential privacy (DP) was introduced in (Dwork, 2006). DP is a semantic model 

based on noise injection in the dataset to protect against realistic adversaries with access to 

background information (To et al., 2014); (iii) location spoofing using dummy locations; (iv) 

anonymization using path confusion and mix zones. In such methods, anonymization prevents 

an attacker from tracking the user's trajectory.  
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DP requires a large dataset to make the noise injection more effective, while this approach will 

not work properly in the tiny dataset. (Xiao et al., 2011), (J. Xu et al., 2013), (Z. Wang et al., 

2019), and (Yuan et al., 2020) show that DP provides a guarantee of privacy for one-time data 

more than real-time data.  

The cryptography-based mechanism makes the sensitive information invisible to the server by 

using encryption techniques instead of distorting data directly. For example, (Yuan et al., 2020) 

proposed a grid-based location protection that protects users' locations while keeping distance-

aware information on the protected locations so that the between reports and users can be 

quantified. Cooperation and caching-based mechanisms aim to decrease the probability of 

exposure to untrusted servers, where users cache historical service data locally and use their 

own or a neighbor’s cached data to answer future queries (Jiang et al., 2021). 

SRMS platform ensures preservative privacy measures through the following: Firstly, It is 

hosted on the ArcGIS Online cloud server trusted server (Yuan et al., 2020) (Z. Wang et al., 

2019), a certified trusted server. According to the ArcGIS Trust Center documentation (Esri, 

2023b), ArcGIS Online privacy assurance is boosted by the Products and Services Privacy 

Statement Supplement. It uses other additional items such as ISO 27018 cloud infrastructure 

privacy, security, and the privacy assurance of FedRAMP third-party validation (Esri, 2023b). 

Also, ArcGIS Online utilizes the cloud infrastructure of Microsoft Azure and Amazon Web 

Services (AWS); therefore, users' data may flow through these systems or be stored within 

them. Secondly, SRMS has developed a privacy-based policy (SRMS, 2023a), that explains 

the rules for using the users' data and sharing information and security. 

The third data privacy measure is tightening the accessibility of sensitive user data, such as 

users' location, for reporting purposes only, so the live location of the users is not necessary for 

the platform's operation. Hence, prevents an attacker from tracking the user's trajectory. The 

reported data will be presented as anonymous users with random IDs without revealing the 

users' identities. 

In future work, a new approach could be considered to preserve data privacy and address the 

single point of failure (server). (Ibba et al., 2017) (Turkanović et al., 2018) (H. Lin et al., 2021) 

(Kamali et al., 2021) proposed a decentralized operation framework for crowdsourcing called 

blockchain, which ensures a high level of security for the system. Blockchain nodes can rent 

their computing resources to crowdsensing applications for information integrity against 

misbehaving participants and data aggregation verification. Integration of SRMS with 

blockchains for data storage and sharing provides higher security and reduces the cost of a 

server authority to manage the communications between the users, minimizes the vulnerability 

to a single point of failure (caused by a centralized server), and vulnerability to external attacks 

and device failure. 

 

3.3. SRMS Web App Mobile  

The SRMS platform was initially developed as a mobile web application, which can be 

accessed through a mobile web browser without needing installation. (Tandel & Jamadar, 

2018) compared the mobile web app method with the native app, considering factors such as 

installation, updates, size, offline access, user experience, push notifications, and 
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discoverability. The findings revealed that native apps necessitate downloading and installation 

from app stores, while web apps can be directly accessed through web browsers without 

installation requirements. 

Regarding updates, native apps must be submitted to app stores for approval and subsequent 

downloads, whereas web apps and their updates are instantly accessible through the web 

browser. Regarding size, native apps tend to be larger and may take longer to download, 

whereas web apps are lightweight and load quickly. Native apps offer a seamless user 

experience and support push notifications for user engagement. However, native apps 

necessitate optimization for discoverability within app stores. Contrarily, web apps rely on 

search engine optimization (SEO) to improve discoverability and can provide a satisfactory 

user experience if designed effectively. 

(Shah et al., 2019) and (Rochim et al., 2023) compared web apps with other cross-platform 

mobile app types, including hybrid, interpreted, and widget-based apps. The comparison 

involved evaluating technical and non-technical aspects such as user interface and experience 

(UI/UX), potential user base, development cost, security, ease of updates, implementation 

complexity, required development environment, licensing, programming language, and 

publishing to marketplaces. This analysis aimed to thoroughly assess the strengths and 

limitations of each type of cross-platform mobile app, enabling a better understanding of their 

respective capabilities and considerations. 

Hybrid apps are mobile web applications packaged and presented as native apps. Users can 

install them from a web store and access native app capabilities, yet they are developed using 

the same tools and technologies as web applications (Serrano et al., 2013). On the other hand, 

interpreted apps replicate the user interface and interaction of native apps but differ in their 

execution method. They employ an interpreter to execute the source code at runtime, 

eliminating the need for pre-compilation into machine code. This interpretation process occurs 

directly on the mobile device (Shah et al., 2019). In widget-based apps, the user interface is 

constructed entirely using widgets as building blocks. These widgets offer specific 

functionality, provide information, or grant users quick access to app features without 

necessitating the opening of the complete application (Wu, 2018). 

The comparison of different mobile app types revealed that web apps are a convenient option 

when the app does not require extensive resources or complexity but still needs user interaction. 

Web apps are particularly suitable if the developer's primary concerns are ease of 

implementation and development time. Based on the literature sources (Jobe, 2013) (Wu, 2018) 

(Shah et al., 2019) (Tandel & Jamadar, 2018) (Rochim et al., 2023), a comprehensive summary 

of the technical and non-technical considerations for native, hybrid, and web apps is presented 

in Table 3.2. This table provides valuable insights into the different aspects to be considered 

when deciding on the suitable app type for a particular project or purpose. 

Table 3.2. Comparison of native, hybrid, and web apps based on technical and non-technical 

consideration 

Considerations Native Web Hybrid 

Effort of supporting 

platforms and versions. 

High Low Moderate 

UI/UX. Excellent Moderate Moderate 



 

65 

 

 

Potential Users. Limited Maximum Large 

Development Cost. High Low Low 

Ease of Update. Low High Varying 

Implementation 

Complexity. 

High Low Moderate 

Device capabilities 

access. 

Full Partial Full 

Performance. High High High 

Approval cycle. Mandatory Not required Varying 

Monetization in app 

store. 

Available Not available Available 

 

The SRMS platform can benefit from being a mobile web app in several ways. Firstly, it offers 

enhanced accessibility as it can be accessed on various devices without platform restrictions. 

Secondly, it is a cost-effective solution that utilizes widely available web technologies, 

reducing the need for specialized resources. Thirdly, the responsive development allows for 

quick updates and addressing user feedback, which is crucial for spatial crowdsourcing 

projects. 

To overcome limited user interface and experience in web apps, the SRMS mobile web app 

design draws inspiration from Progressive Web Apps (PWA) principles. The app is adaptive 

and responsive, catering to different screen sizes and orientations. Cascading style sheets (CSS) 

are used to render different styles based on the device, ensuring a user-friendly experience. The 

app also aims to provide a modern interface and a flexible design framework, emulating the 

feel and functionality of native apps. It incorporates a push notification system to inform users 

about specific mobility restrictions updates. 

Regarding the challenge of device capability access, the SRMS mobile web app only requires 

access to the device's microphone for recording audio reports and the GPS sensor. By limiting 

the app's access to these specific functionalities, the SRMS platform maintains a streamlined 

approach while still fulfilling the necessary requirements for spatial crowdsourcing activities.  

 

3.3.1. SRMS User-Centered Design  

Accepting crowdsourcing applications and user interaction depends on considering the users’ 

needs (Rahmanian & Davis, 2014).  This approach was addressed in the term User-Centered 

Design (UCD) (Blackett, 2021) (Vallet et al., 2020) (Bano & Zowghi, 2015). UCD, in the 

context of software engineering, is an approach to designing applications that prioritizes the 

end-users needs and limitations (Lopes et al., 2018). It involves understanding who the users 

are, their goals, motivations, and frustrations, and designing intuitive, easy-to-use applications 

that meet their needs. 

The user-centered design was applied in SRMS using the Scenario Personarrative method 

(Vallet et al., 2020) (Lopes et al., 2018). Personas techniques presented initially by Alan 

Cooper (Cooper, 1999) were used to create fictitious representations of target users based on 

the real data gathered from research. Scenarios describing interactions between systems and 
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users were first discussed by (Carroll & Rosson, 1992). They can be employed to illustrate how 

a user might accomplish particular tasks with the system. Scenarios aim to create a realistic 

and relatable story that captures the user's needs, motivations, and behaviors in a specific 

context. 

The personas techniques were applied by designing an online survey aimed to investigate 

information about the SRMS potential users from different perspectives (Sim & Brouse, 2015), 

including; (i) personal profile (age, education, profession, living and working place, etc.), (ii) 

commuting mode and traveling cost (travel time, travel cost, commuting frequency, mode of 

transport, etc.); (iii) understand their need, preparedness, and interests concerning their 

interurban mobility (level of interest in application’s topic compared to other topics, internet 

access, needs, and concerns).  

Scenario techniques were applied using the same method of personas, an online survey method. 

The scenario techniques were developed using a set of scenario questions to measure the users’ 

preferences for listed application features and, simultaneously, the level of the users’ 

willingness to interact with the proposed feature. This will indicate a preference-behavior gap 

for the application features; the minimum gap shows high user interaction. Figure 3.8 depicts 

the methodology of applying UCD in designing the SRMS platform.  

Following an understanding of the users' background, potentials, needs, concerns, and 

interaction scenarios with the application features, the interaction model for the SRMS design 

was created. The interaction model is a design model that defines how all objects and actions 

of an application interrelate in ways that mirror and support real-life user interactions 

(Fernandes et al., 2021) (Marques et al., 2016). Interaction models aim to create a clear and 

intuitive design that allows users to accomplish their goals efficiently and effectively. 

 

                 Figure 3.8. Methodology of creating SRMS platform design using UCD 

Interaction models can take various forms, including flowcharts, wireframes, and diagrams. 

They typically include information about the user's goals, the actions they can take, and the 

feedback they receive from the system. An interaction model was developed for the SRMS 

platform using Modeling Language for Interaction as a Conversation (MoLIC) (Fernandes et 

al., 2021) (Lopes et al., 2018). MoLIC is a language to model the interaction between the user 

and the designer proposed by (Barbosa & De Paula, 2003). It represents all interaction paths, 

including alternative paths for the user to reach the same goal (Lopes et al., 2015). Figure 3.9 
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illustrates the MoLIC diagram for reporting checkpoint events for an SRMS-registered user. 

The basic elements of the presented MoLIC diagram are the following: 

a. The opening point in the interaction is represented by a filled black circle, indicating 

where the user accesses the system. 

b. The scene, depicted as a rounded rectangle, represents the moment in the interaction 

where the user decides how the conversation should proceed. The top compartment 

contains the topic and the user's goal, while the second compartment contains the 

dialogue details, specifying whether the user (u) or the designer's deputy (d) is emitting 

the sign.  

c. User transition utterance is indicated by an arrow labeled with a user utterance indicator 

(u:), representing the user's intent to continue the conversation in a certain direction. 

d. Designer transition utterance is the response to a user utterance, typically provided after 

a system process. It is depicted by an arrow labeled with a designer utterance indicator 

(d:). 

e. The system process is represented by a black box and signifies the internal processing 

of a user request, which generates feedback to the user when different outcomes are 

possible. 

f. Breakdown recovery utterance is used to assist the user in recovering from a 

communication breakdown. It is depicted by a dashed directed line in the diagram, 

accompanied by the corresponding utterance, such as "invalid credentials" in Figure 

3.9. 

 

The MoLIC model was utilized to design the user's interaction with various SRMS services. 

Based on this model, a beta version of the SRMS mobile web app was developed and tested by 

a sample of users. Their feedback regarding their experience, comments, suggestions, and 

issues related to omissions, ambiguity, and unclear presentation was collected.  
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Figure 3.9. A MoLIC diagram for event reporting service in SRMS platform 

3.4. General Framework for the Platform Operating System  

The SRMS platform aims to facilitate people's traveling along interurban roads during mobility 

restrictions. To achieve this, the platform maps out real-time data on mobility restrictions. It 

offers alternative routes that prioritize safety and travel time, ultimately reducing delay and 

minimizing the environmental and socioeconomic costs of travel. SRMS platform offers three 

primary services, including (i) publicly accessible real-time information on mobility 

restrictions and traffic conditions on interurban roads, (ii) allowing the public to create and 

share the informal alternative routes; (iii) providing alternative routes upon request, categorized 

by safety, emergency, and speed; and (iv) providing informative reports about the mobility 

restrictions operation and traffic congestion. 

The SRMS platform considers the community as a principal dynamic data source, that can 

share travelers’ observations on the roads and knowledge of the informal routes with other 

travelers using spatial crowdsourcing (SC). The community’s interaction with the SRMS 

platform could be direct through reporting on the platform or indirect through publishing the 

road information on social media.  
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The community-data-driven will interact with other SRMS layers to provide the optimal 

mobility service. To illustrate the interaction between different layers of SRMS, a diagram of 

the SRMS operating system was created. It shows the community data flow within other layers. 

The operating system for the SRMS platform is given in Figure 3.10. It consists of the 

community as input, the data processing unit performing processing and analysis, and the 

service as output. 

 

Figure 3.10. SRMS Operating system 

The community (Input) provides the necessary inputs for the system operation. The data 

analysis and services are provided according to the provided inputs. These inputs include user 

information profiles such as username, ID, login credentials, subscribed restriction, etc. 

Community reporting data include mobility restriction reports, traffic congestion reports, and 

informal route data. Request a particular service, such as querying for the safest, fastest, or 

shortest route to a destination, and request a time series report. These reports provide historical 

data on past restrictions and their durations. These requests trigger specific data analysis 

processes to provide the desired service.  

The Data Processing Unit is considered the backbone of the SRMS, where all the computational 

and inference analysis occurs in the cloud. Data processing includes applying real-time 

processing for the events reported via the platform, quality control techniques, and artificial 

intelligence to extract the distinct features in the reported events. Also, it applies the optimal 

path algorithms to find the best alternative that optimizes the safety, time, or length. Processing 

and analysis of the data is tailored based on the input data, and the processing results are 

classified and stored in the crowd context database, which includes three primary datasets.  

First is the Observation dataset, a repository for short-term analysis results such as reports of 

mobility restriction data and traffic conditions. Second, the user profile dataset includes user 

information and behavior. Third, the knowledge dataset is the core of data processing where 

all the inference analysis results triggered by users’ requests, and long-term data are stored, 

such as best route alternatives and knowledge related to user reliability, including the accuracy 

and frequency of users' historical data and data quality assurance protocols. The data processing 
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unit includes an external, continuously updated spatial database ESDB that forms the SRMS 

platform's base map. It contains data obtained by connecting to authorized and public sources.  

The services (Output) serve travelers (drivers, passengers, decision makers) who commonly 

deal with the interurban network under the threat of restrictions. It ensures accessible real-time 

data about mobility restrictions updates and traffic conditions and sends alert messages to the 

users regarding any changes detected in a particular restriction type. Also, SRMS publishes a 

dataset of informal routes based on user experience and provides various categorized 

alternative routes, in light of real-time mobility restrictions and traffic conditions, with a 

minimum risk, time, or length cost. The system will monitor the behavior of users regarding 

the provided results to evaluate the quality level of provided services.  

 

3.5. Conclusion 

This chapter provided a general methodology for developing the Smart and Resilient Mobility 

Services Platform (SRMS) based on the smart layering system. The first layer is the urban 

mobility infrastructure, which includes formal interurban routes, informal routes, mobility risk 

considerations, and stakeholder involvement. It describes the potential data sources for 

developing the SRMS services. The second layer ensures the availability of diverse and reliable 

data for real-time decision-making. It involves identifying data sources, capturing different 

types of data from authorities, open sources, and the community, and transferring the collected 

data to the processing cloud. 

Cloud computing, specifically ArcGIS Online, is used in the third layer for data processing. It 

encompasses pre-processing, processing, and analyzing the data using mathematical and 

artificial intelligence tools to extract valuable information, develop predictive models, and 

provide real-time mapping of mobility restrictions and alternative routes. 

The fourth layer, the application layer, offers various services including real-time mapping of 

mobility restrictions and traffic conditions, mapping of informal routes, providing alternative 

path suggestions, and historical data and reports about mobility restrictions and traffic 

conditions. The application layer presents the analyzed data from previous layers, ensuring 

interactivity and attractive user tools. 

The data quality and privacy control unit employs data quality protocols to assess the validity 

and accuracy of user-submitted data. Reputation models and other quality assurance measures 

are implemented to ensure the trustworthiness of users. Privacy-preserving techniques are used 

to protect user data and respect their privacy preferences. 

SRMS platform is presented as a mobile web application that ensures accessibility, cost-

effectiveness, and user experience over other types of applications. User-centered design 

(UCD) principles are applied to ensure that the SRMS platform meets the needs and 

preferences of its users. The SRMS platform operating system is illustrated emphasizing the 

role of the community as a dynamic data source through spatial crowdsourcing. 

The following chapter will provide a detailed methodology for delivering SRMS mobility 

services. 
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Chapter 4. Methodology for Developing SRMS Services 

 

Introduction  

This section provides a detailed methodology for creating the services of the SRMS platform. 

A systematic approach is followed to develop each service, ensuring its effectiveness and 

reproducibility. The methodology begins with the state-of-the-art methods used to create the 

service, objectives, and requirements of the specific service being developed. Following this, 

the data collection process is initiated. This includes gathering historical and real-time data on 

mobility restrictions, users, and surrounding environments. 

The next step involves data processing and analysis. It aims to generate reliable results that can 

provide optimal services to users. After the data analysis, the service publishing begins. It 

involves deploying the service on the SRMS platform, making it accessible to users. The 

deployment process involves integrating the service with the platform's architecture, 

configuring the necessary settings, and ensuring seamless interaction. 

 

4.1. Real-time Mapping of Mobility Restrictions and Traffic Conditions 

Service 

4.1.1. Overview  

Real-time mapping applications have emerged in urban emergency events for human safety, 

such as health emergency services (Hamrouni et al., 2019), explosions evacuation (Zuo et al., 

2018), flood mapping (Castro et al., 2019) (Y. Feng et al., 2020) (Helmrich et al., 2021), fire 

evacuation (Tavra et al., 2021) (Oliveira et al., 2019), and traffic congestion (Salazar‐carrillo 

et al., 2021) (X. Kong et al., 2019).  

Most services provided during urban emergency events depend on crowdsourced data. 

Crowdsourcing is a powerful approach for collecting data from the crowd. It incorporates 

people's wisdom using their mobile devices to solve a problem (Phuttharak & Loke, 2019). 

Sometimes, people's wisdom evolves from their vicinity to a specific urban event, which is 

called Spatial Crowdsourcing SC (Tong, Zhou, et al., 2019) (To & Shahabi, 2018) (Kazemi & 

Shahabi, 2012). The knowledge of people that evolved due to their spatiotemporal data is 

valuable for other decision-making. 

In the context of smart cities, mobile users or crowds (Hamrouni et al., 2019) can provide a 

vast amount of opportunistic or participatory data that can contribute to problem-solving 

(Phuttharak & Loke, 2019). In the opportunistic approach, users are not aware of the data 

collection process (Phuttharak & Loke, 2019) (X. Kong et al., 2019), which can involve 

gathering data from mobile device sensors such as GPS, Accelerometer, and Gyroscope to map 

the motion of the vehicle (R. A. Sarker et al., 2021). For example, during the 2011 East Japan 

Earthquake, real-time traffic data was collected using the GPS sensor from moving vehicles to 



 

72 

 

 

create high-fidelity road passage maps to identify the blocked roads, facilitating disaster 

recovery activities (Song et al., 2022).  

In the participatory approach, users are actively involved in data collection, such as capturing 

photos of a flood event in specific areas to identify the flood severity (Y. Feng et al., 2020) 

(Castro et al., 2019), or reporting road closure using a mobile application (Phuttharak & Loke, 

2019). For example, (Hamrouni et al., 2019) used the participatory approach to develop a real-

time health emergency response framework. They incorporate the volunteer’s vicinity of an 

incident to trigger an alert notification to the rescue services with crucial information such as 

location coordinates, type of incident, and the number of victims. Following the same approach, 

(Castro et al., 2019) have developed a flood alerting system that enables people to map and 

receive alerts of nearby flooding events.  

Recently, with the rapid development of mobile internet, social network services like Facebook 

and Twitter are another participatory sensing mode (Zuo et al., 2018) (Phuttharak & Loke, 

2019) (Heinzelman & Waters, 2010) to form a collective intelligence through analyzing and 

integrating the data from a large crowd (Castillo, 2018). In this case, users become social 

sensors whose postings react to the conditions they are experiencing as the crisis evolves.  

Several applications were found in using social media data as a participatory approach. For the 

sample, (Salazar‐carrillo et al., 2021) proposed a methodology to geocode traffic-related events 

collected from Twitter and create a model for spatial-temporal traffic congestion. (Z. Xu et al., 

2020) created a flood alerting system using social media mining. They adopted the 5W 

communication model (What, Where, When, Who, and Why) on the Weibo platform, which 

enables people to report and receive alerts of nearby flooding events. 

Both approaches of spatial crowdsourcing enable real-time mapping of emergency events and 

support data-driven emergency response, which improves community resilience through 

visualization and GIS mapping (Rahman et al., 2017). However, most real-time mapping 

applications based on spatial crowdsourcing are focused on urban challenges related to natural 

hazards, such as flooding, earthquakes, and wildfires. The use of spatial crowdsourcing 

technology for real-time mapping in mobility is still relatively new, and few studies have 

explored mapping traffic hazards using this approach. (Y. Lin & Li, 2020) used crowdsourcing 

data for developing real-time traffic accident predictions using machine learning algorithms.  

The SRMS platform contributes to the advancement of research on utilizing spatial 

crowdsourcing (SC) by implementing this approach in real-time mapping mobility restrictions. 

It will enhance urban mobility performance and promote community resilience in the face of 

disruptive events on the road network. It aims to ensure equal cognitive distribution for the 

mobility restrictions updates to all platform users, thereby increasing their response efficiency 

and optimizing their traveling safety and cost.  

Providing real-time information is crucial (Arbib et al., 2019) (Hamrouni et al., 2019) as it can 

reduce environmental, physical, and human costs (Aburas, 2020). For example, mapping the 

closure or congestion in a specified location will lead people to take an alternative route, 

optimizing traveling time and reducing energy. Similarly, mapping violent incidents in a 

specific section of the road can minimize travelers' exposure to danger, potentially saving lives. 
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Furthermore, mapping the mobility restrictions will enrich the mobility infrastructure spatial 

database by creating a database of mobility restrictions and traffic conditions. This database is 

beneficial when traffic data is limited or inaccessible (T. Wang et al., 2021). It will help 

transport authorities make informed decisions and traffic risk mitigation strategies.  

This section outlines the methodology used to create the real-time mapping of mobility 

restrictions and traffic information, which includes three main steps: (i) identifying the data 

sources and collection methods; (ii) processing and analyzing the data; and (iii) publishing the 

service. The service also includes a restriction-notification system (RNS) that can be delivered 

to subscribed users interested in a specific type of restriction. For example, daily commuters 

concerned about checkpoint restrictions can receive regular updates through the RNS. 

 

4.1.2. Data Sources and Collection   

Real-time mapping of mobility restriction requires event description, location, and time. Hence, 

the system relies on two sources to gather this dynamic data: SRMS mobile application data 

and social media data, as shown in Figure 4.1. The two data sources play a mutual role in 

reinforcing the quality of the reported event through the redundancy of reported events 

simultaneously, called spatiotemporal-based strategy (Y. Zheng et al., 2016).  

SRMS mobile application data is generated by using the embedded crowdsourcing tool in the 

SRMS platform. Due to the massive growth in IT, several options have come into existence for 

crowdsourcing tools, along with a variety of software, mobile applications, and cloud-based 

data collection tools (Bokonda et al., 2020) (Lakshminarasimhappa, 2021). Crowdsourcing 

platform has increasingly been used to report traffic accidents, natural disasters, and other 

incidents. These platforms allow users to report real-time events using their mobile devices. 

The reports can include text descriptions, localized data, photos, videos, etc. (Hamrouni et al., 

2020).  

One famous example of a crowdsourcing platform is Ushahidi, created in 2008 in Kenya, which 

employs digital cartography and often crowdsourced data to provide alternative narratives and 

spaces for communication and action (Gutierrez, 2019). It was embraced in several 

humanitarian initiatives. For example, during the Haiti Earthquake, the International Network 

of Crisis Mappers launched a map visualizing tweets and Facebook comments using Ushahidi 

(Norheim-Hagtun & Meier, 2010). Also, Ushahidi has contributed to developing vehicular 

mobility (Guillén et al., 2011). They developed a crowdsourcing platform that received the 

participation of Mexico City’s society in traffic congestion on the road.  

While Ushahidi can map a large volume of geo-reports, it has limitations when it comes to 

reporting real-time data (Ushahidi, 2022). This is because Ushahidi requires administrator 

approval to publish the data, which can cause a delay in the reporting process.  

This research adopted a crowdsourcing platform that addresses the shortcomings of the 

Ushahidi platform by using ArcGIS Survey123. Survey123 was developed by Esri in 2015 

(Esri, 2023c), released in 2016, and has been used sparingly as a GIS data collection tool ever 

since (Jordan et al., 2019) (Esri, 2023c). It is a simple and intuitive form-centric data-gathering 

tool with the power of publishing results in real-time through the Web Feature Service (WFS) 
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in the web GIS. Survey123 contributed to the participatory crowdsourcing approach in various 

domains, including health and wellness (Fornace et al., 2018), urban development (S. C. 

Walther & Gurung, 2019), and tourist planning (Jordan et al., 2019). However, this study 

proposes a novel application of Survey123 by integrating it with the SRMS platform to share 

traffic data and enhance community resilience during mobility incidents. 

ArcGIS Survey123 has confirmed its efficiency and capability in data collection, analysis, and 

visualization compared with other crowdsourcing applications. (Jay et al., 2019) compared 

map-based crowdsourced applications, including Ushahidi, Maptionnaire, Survey123, Open 

Data Kit, and GIS Cloud, considering categories such as data input, management, analysis, 

visualization, and costs. The study revealed that Survey123 is the only platform offering web 

and mobile applications that support Android and IOS devices. From a data management 

perspective, Survey123 has superiority over other applications in providing a built-in database, 

supports the removal and editing of single data entries, mass deletions, sorting and filtering, 

and many supported format options. Also, Survey123 offers data analysis and provides high 

visualization options compared with other crowdsourced applications. 

The users report the data via an embedded crowdsourcing platform in the SRMS platform and 

permit the system to access their location data (GPS sensor on their mobile devices) 

(Phuttharak & Loke, 2019) (X. Kong et al., 2019). Hence, when the user participatory reports 

an event, the event's location is inherently known to the SRMS platform, and the time of the 

event is considered the time of reporting.  

 

Figure 4.1. Data sources of mapping mobility restrictions service 

The second data source is mining social media data. Social media is an effective source for 

providing and disseminating information referencing mobility restrictions occurring at or 

affecting specific locations. Most social media data mining research relies on Twitter as a data 

source due to the advantages of being GPS-enabled, real-time publishing, and broad audience 

(Zou et al., 2018). Sometimes Twitter isn’t a suitable data source for observing particular urban 

issues that need direct messaging (Martí et al., 2019). 

Twitter isn’t popular in the MENA region (Statista, 2022). Statistics conducted by (Statista, 

2022) for the leading countries in the usage of Twitter show that the USA, Japan, and India, 

with percentages of 76.9%, 58.9%, and 23.6%, respectively, are the leading countries in the 
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use of Twitter, while in other countries such as Egypt, only 5% of social media users use 

Twitter. Facebook and YouTube are the most popular social network platforms worldwide, 

while Twitter has the third lowest ranking of the 17 social networks listed (Statista, 2022).  

SRMS platform needs a source of instant messaging information that ensures near-real-time 

road information updates. Hence, the methodology of this study depends on the Telegram 

platform as a source of mobility restriction data. Telegram has around 550 million active 

monthly users compared with 436 million Twitter users (Statista, 2022). Also, Telegram 

provides the feature of pure instant messaging, which will feed the SRMS system with accurate 

update data. Furthermore, mining the Telegram data as a source of mobility restrictions data is 

a novel approach in social media mining studies (Khaund et al., 2021). So, the mobility 

restrictions and road traffic data were extracted from Telegram channels and public groups 

using Telegram API (Anand et al., 2022) (Dongo et al., 2020). Telegram API allows 

programmatically interacting with Telegram data and services and benefits from many 

functionalities. 

Besides the dynamic data source needed to deliver event real-time mapping, the system relies 

on static data to (i) verify the crowdsourced data, (ii) and form the base map for the SRMS 

User Interface UI. Hence, the platform depends on the External Spatial Database ESDB. ESDB 

is a repository for the processing and storing of open-source and authoritative data. The open-

source data is presented in the monitoring information provided by NGOs to describe the 

mobility restrictions. The monitoring reports describe fixed mobility restrictions, locations, 

photos, and operation mechanisms. 

The authoritative data is presented mainly in the spatial data that forms the base map of SRMS, 

including inter-urban road networks and population communities. The authoritative data is 

obtained from a higher governmental transportation body, such as the Ministry of Transport 

(MoT) and the Ministry of Public Work and Housing (MPWH). The open-source and 

authoritative data was obtained in the Shapefile format. Table 4.1 shows the datasets used in 

the real-time mapping of mobility restriction.   

Table 4.1. Sources of data for mapping the mobility restrictions in real-time 

Dataset Source Data type Description Dataset 

purpose 

Crowd-SRMS 

data 

SRMS 

Application 

Crowdsourcing Citizen’s entries with 

time, location, and 

description. 

 

Mapping 

Social media 

data 

Telegram Crowdsourcing Messages contain selected 

keywords related to the 

event, location, and time. 

 

Mapping 

Mobility 

restriction 

reports 

NGOs Open-source 

data 

Textual and spatial data 

contains a description for 

fixed restrictions, photos, 

location, operation 

mechanism. 

Mapping, 

verification 
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Mobility 

infrastructure 

High 

governmental 

transportation 

bodies 

Authoritative 

data 

Spatial data of the 

transportation 

infrastructure and the built 

environment. 

Mapping, 

verification 

 

4.1.3. Data Processing and Analysis 

This phase concerns processing the captured restriction events from Telegram and the SRMS 

application. It involves preparing the data in ArcGIS Online to be mapped and published to the 

SRMS users. Processing the captured data varies depending on the type of data source. 

Telegram data processing involves using natural language processing libraries and text analysis 

techniques. The reported data via SRMS requires instant processing and visualization on the 

platform. 

4.1.3.1. Telegram data processing 

The methodology of processing Telegram data in the SRMS adopts the “3W” communication 

model, as illustrated in Figure 4.2. It concerns capturing the spatiotemporal event data through 

three main questions (what, where, when) from road traffic news Telegram channels and public 

groups. The first use of a communication model was presented in Lasswell's "5W" model in 

1948, which depends on the main five questions "Who (says) What (to) Whom (in) Which 

channel (with) What effect (Wenxiu, 2015). The "5W" communication model in 

crowdsourcing has been customized to meet real-time data needs. For example, (Z. Xu et al., 

2020) used the communication model "5W" methodology: what, where, when, who, and why 

to describe the urban emergency event from social media.  

The "5W" model of (Z. Xu et al., 2020) obtains spatial and temporal information from social 

media and investigates the actors and reasons causing the emergency event. However, this 

model has some limitations; for example, the methodology was exclusively applied to the 

Weibo Chinese application. Weibo application provides prepared real-time information for 

urban events and localized data, which is not the case in most social media platforms. Also, the 

data of the (Who) element could undermine the privacy of the system's users. 

Compared to the 5W model (Z. Xu et al., 2020), this methodology preserves user privacy by 

adopting only three questions (What, Where, When), which are sufficient to provide accurate 

actual time data about mobility restrictions and traffic conditions without revealing the identity 

of the users and the reasons behind that event. Also, this methodology could be reproduced on 

any social media platform. It is composed of the following:  

i. Text preprocessing  

This phase involves processing the retrieved messages using the Natural Language Toolkit 

(NLTK) modules for Arabic text processing. NLTK is a prominent Python package designed 
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for working with human language data (Kang et al., 2020). This phase encompasses the 

development of a text processing function that performs the following tasks: (a) removing 

numbers and special characters using a regular expression module; (b) tokenizing the text into 

individual words; (c) eliminating stopwords from the list using Arabic stopwords. It is 

important to note that the removal of special characters excludes the question mark to preserve 

the integrity of questions. 

ii. Data processing and analysis 

This phase involves further textual analysis to extract valuable information from the Telegram 

pre-processed text. To do this, the Telegram data are analyzed using the "3W" communication 

model, which concerns extracting useful information from the text based on three main 

questions (what, where, when) to capture the spatiotemporal data event from textual data.  

Based on the "3W" communication model, the relevant keywords will be identified using one 

of the most important NLP disciplines (Chiche & Yitagesu, 2022), regular expression module. 

As demonstrated by (Z. Xu et al., 2020) (Zou et al., 2018), regular expression (regex or regexp) 

are powerful tools for extracting information from text, as they can search for one or more 

matches of a specific search pattern (L.-X. Zheng et al., 2021). 

The components of the 3W communication model used in the SRMS will be processed as 

follows:  

What: This element concerns detecting the general status of the mobility restriction. The status 

information includes expressions that present the adjectives of a restriction, such as (open, 

closed, and congested) and their related synonyms. To do so, regular expressions techniques 

will be used to extract the name and status of the restriction discussed in the conversation, as 

demonstrated by (Z. Xu et al., 2020) (Zou et al., 2018). Regular expression (regex or regexp) 

are powerful tools for extracting information from text, as they can search for one or more 

matches of a specific search pattern (L.-X. Zheng et al., 2021).  

Where: Concerns about revealing the location information of that event. The location data in 

social media comes in different forms, including check-ins, geolocation information, and 

textual location information (Stefanidis et al., 2013). However, despite the novelty of using 

Telegram as a data source, limited geolocalized data is challenging. Hence, the textual 

information related to traffic restrictions should be geocoded to its identified coordinates. 

The Geocoding process aims to convert human-readable location names into latitude and 

longitude value pairs. This transformation is crucial for visually mapping the restrictions 

observed earlier and conducting efficient spatial analysis (Serere et al., 2023). The geocoding 

process relies on a reference list of community and location names where restrictions are likely 

to be situated. This reference data was obtained from the governmental authorities in the form 

of a CSV file, serving as a gazetteer for deducing restriction locations. The geocoding process 

entails matching the location names with the detected restrictions, thereby assigning 

geographical coordinates to them. 

 

For geocoding, we employed the Nominatim geocoding service, an open-source software 

developed by the OpenStreetMap (OSM) project. Nominatim is available in the 'geopy' Python 
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package, which offers compatibility with several popular geocoding services. It includes 

training data for OSM Nominatim, Google Geocoding API, and various other geocoding 

services (Verma, 2022). Nominatim utilizes data from OSM for geocoding operations. 

In a study by (Serere et al., 2021), a comparison of Nominatim with other geocoding services 

demonstrated that the method using the Nominatim geocoding service identified a greater 

number of locations. Furthermore, Nominatim is widely recognized and commonly used for 

geocoding services (Serere et al., 2023).  

When: The value of the extracted data is increased by obtaining near real-time data (Kang et 

al., 2020). Therefore, when obtaining Telegram data, it is essential to include a timestamp for 

each written piece of information and ensure that the timestamps are relatively recent. In 

addition to providing valuable information about the timing of a restriction, the 'When' data is 

also useful in creating a timeline of the restriction event. By analyzing the volume of near-

timestamp messages regarding the same event, it is possible to estimate the duration of the 

event. Furthermore, the clearance time of a restriction can be identified by the emergence of a 

new status for the same restriction at the same location. Figure 4.2 summarizes the 

methodology of retrieving and processing the Telegram data. 

 

            Figure 4.2. Methodology of processing Telegram data in the SRMS 

Telegram's obtained (what, where, when) data will be integrated with the reported data from 

the SRMS platform (event type, location, time) to reinforce the reported event quality using 

the event's spatiotemporal redundancy. ST redundancy-based strategy is a data quality protocol 

applied by the Data Privacy and Quality unit to ensure high data quality. The data will be stored 

as temporary data in the Observation dataset, a temporary data storage in the Crowd Context 

database (CCDB) (Phuttharak & Loke, 2019). 
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The Observation dataset will collaborate with the data privacy and quality unit to create an 

Event table that stores truth events related to traffic conditions and mobility restrictions inferred 

from spatiotemporal redundancy reports with similar types, locations, and timestamps. The 

data within the Observation dataset will consist of a quadruplet of information, which includes 

the type of event, longitude and latitude coordinates, and timestamp, as described by (Ansari 

et al., 2020). 

4.1.3.2. SRMS data processing and analysis 

The reports submitted by the SRMS users trigger mapping the restriction event; hence, 

processing, analyzing, and visualizing the captured data in real-time is necessary. Real-time 

processing is applied to deal with data with minimal latency to generate real-time (or near-real-

time) reports (X. Liu et al., 2014). The architecture of real-time processing of SRMS is 

composed of the components; (i) real-time data ingestion; (ii) real-time analysis; (iii) real-time 

visualization; and (iv) real-time alerting (Microsoft, 2023), as depicted in Figure 4.3.   

Users of SRMS will ingest the real-time spatial data to ArcGIS Online using the embedded 

Survey123 crowdsourcing platform. Survey123 allows users to report real-time events using 

their mobile devices easily. The reports can include autogenerated timestamps, localized 

mobility restriction type, and recorded voice. The architecture of the reporting form was 

designed considering the quick and easy report aspects. 

The data submitted via Survey123 will be stored in a point-hosted feature layer, which is ideal 

for storing event information data because it enables adding, editing, and deleting data in real 

time. The hosted feature service will process the reported data in real-time through configuring 

the instant filtering and validation rules (Esri, 2023e). For example, the reports with missing or 

manipulated or those transmitted from malicious users will be detected and ignored by the 

service. Validated reports from authenticated users will be visualized on the SRMS base map 

(Esri, 2021a) with specific symbology based on the type of mobility restriction, and each report 

will include event type, time stamp, and audio data for further description. Figure 4.3 illustrates 

the processing of SRMS data in ArcGIS Online. 

Additionally, SRMS has developed the Restriction Notification System (RNS), which enables 

the application to send email notifications to subscribed SRMS users, informing them about 

restriction incidents or event updates. 
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         Figure 4.3. Data storage and real-time processing in ArcGIS Online 

 

4.1.3.3. Restriction Notification System (RNS) 

The service of mapping restrictions is optimized by developing the Restriction Notification 

System (RNS). RNS aims to inform SRMS users of updates regarding one or multiple 

restriction types they have subscribed to. The RNS service sends email notifications to users 

when new reports related to mobility restrictions are added, deleted, or modified. To do so, the 

Observation dataset interacts with the user dataset to retrieve relevant user information, 

including their email addresses and the type of mobility restrictions they are interested in. This 

information is used to tailor user notifications based on their preferences. 

Following this, the RNS service will be developed using a Python script and a JSON 

configuration file (Esri, 2017). The script uses the Requests Python module to send HTTP 

requests (python, 2023) to a feature service endpoint and retrieves the maximum date and time 

of edits in the feature service. It compares this with the last edit detected by the script and sends 

email notifications to recipients listed in the configuration file if there are any new edits. 

The configuration file is a JSON object that contains information related to an email, a service, 

and a filename. The email section includes; (i) the list of subscribed suers’ emails that will be 

notified; (ii) the email of the sender, which could be a person or organization; (iii) the server, 

which contains settings for configuring the email server connection, including the host of email 

server which can be specified by hostname or IP address, port of the server; (iv) the mail text 

and subject. The service section includes the feature service URL, the service username and 

password, the layer number, and the viewer URL and level. Filename contains the name of a 

JSON file that contains the layer information. The development methodology for the RNS 

service is depicted in Figure 4.4.  
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Figure 4.4. Method of developing RNS service 

 

4.1.4. Service Publishing   

This section concerns disseminating and visualizing the processed data stored in the hosted 

feature layer for public use. This phase will enable users to access information about mobility 

restrictions and adjust their travel plans accordingly. The hosted feature service configuration 

is required for sharing the reported data with the public. It includes configuring the accessibility 

of the users to the data by assigning the feature service to support public data collection, which 

enables users to add or modify their data.  

The real-time mapping service will be published as a reporting widget on the SRMS web 

mobile application. The published data includes information about the location, time, 

descriptive audio, and type of mobility restriction or traffic congestion. Users can access this 

information through the SRMS mobile application, which displays an interactive map with 

icons representing reported incidents. Users can access detailed information about the incident 

by clicking on these icons. 

The Restricted Notification Service (RNS) is a button in the SRMS application. When clicked, 

it opens a subscription form where users can choose the types of mobility restrictions they are 

interested in and provide their email address to receive notifications regarding those 

restrictions. 
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4.2. Mapping Informal Routes  

4.2.1. Overview  

Mapping the informal route is a novel approach to developing an urban mobility system in the 

communities, especially those subjected to continuous natural hazards or physical stress 

(Davis, 2012). It aims to harness the people’s experience in traveling through the landscape or 

the unknown route and share it with the public community. Mapping the individuals traveling 

through the landscape, which is called ‘Wayfaring’ according to (Tim Ingold, 2007) is an action 

of resilience (Bishara, 2015) that aims to convert the individual experience in maneuvering 

mobility obstacles into sharable knowledge to maintain community-level activities (Ribeiro & 

Pena Jardim Gonçalves, 2019). 

The concept of free people’s mobility is closely associated with the idea of urban resilience, 

which has received attention from researchers and local authorities (Ribeiro & Pena Jardim 

Gonçalves, 2019). To address physical, social, and economic challenges faced by cities, The 

Rockefeller Foundation launched the 100 Resilient Cities initiative, which aims to build 

resilience by ensuring the free flow of people, information, and goods (Admiraal & Cornaro, 

2020). This initiative is one of the most popular urban resilience initiatives in the world, and it 

has helped many cities around the globe to become more resilient by addressing mobility-

related issues and creating a more interconnected, accessible, and sustainable urban 

environment (100 Resilient Cities, 2013). 

In the context of resilience studies in conflict-prone communities, limited research has been 

found to address the challenge of people's mobility under conflict circumstances.  However, 

(Bryson, 2011) highlights, among other aspects, the dangerous commuting in peripheral areas 

in Bogota, Colombia. She introduced spatial, sociopolitical, and economic security strategies 

followed by residents to avoid violence and insecurity areas. As a community adaptation 

technique to mitigate the risk in the community, the residents use the strategy of alteration and 

limitation of transport patterns. For example, all residents rely on public and private buses to 

travel to locations throughout the city and sometimes use multi-vehicle modes during one trip. 

In a related study, (Dunckel Graglia, 2016) discussed building capacity for women commuters 

in Mexico City. He ended up with a solution of women-only transportation as a resilience 

action to avoid fear and violence. (Davis, 2012) in his book highlights the resilience measures 

to increase the resilience in violent cities and conflict areas, including Medellin, Johnsburg, 

and Mexico City. He stated that the spatial fabric and built environment are highly related to 

the resilience of the communities. Also, he added that institutional foundations and capacity 

building play a leading role in increasing the community's resilience.  

The challenge of safe mobility in conflict-prone communities has not yet fully utilized 

technological advances and data generated by commuters. While some previous studies, such 

as (Bryson, 2011), used cognitive maps to map informal travel patterns, these methods were 

limited by manual mapping and a lack of sharing among the community. However, recent 

advancements in smartphone technology and embedded sensors have allowed for the 

development of applications, such as the one by (R. A. Sarker et al., 2021), that utilize mobile 

sensors like GPS, Accelerometer, Gyroscope, and Magnetometer to map routes in unreachable 

areas and share them with the community. However, this study is limited by its focus on 
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pedestrian users and the application is only available for the Android operating system. 

Additionally, there is a lack of experimental data obtained from drivers' mobile devices. 

In this study, a novel contribution is made toward developing urban resilience mobility for 

stress-exposure communities. Utilizing the SRMS platform, enables drivers and passengers to 

map alternative routes in case of failure in the main road network. This service leverages 

crowdsourcing to transform individual experiences into collective community knowledge. This 

study addresses gaps in previous literature by (i) promoting mobility resilience in risk-exposure 

communities through IT advancement and smartphone capabilities, which has yet to be 

addressed in studies on conflict areas and colonial studies (Samper, 2012) (Dunckel Graglia, 

2016); (ii) demonstrating the use of human mobility data in strengthening urban resilience, an 

area that has been poorly understood (Haraguchi et al., 2022); (iii) ensuring accessibility to the 

service regardless of the type of smartphone operating system; (iv) implementing quality 

control on reported routes before publication; and (v) focusing on data generated by motorized 

travelers instead of active users. 

The mapping of informal routes is a crucial component of the SRMS platform, as it provides 

additional data for updating and expanding the urban mobility infrastructure beyond the 

primary road network and mobility restrictions. This, in turn, improves the efficiency of the 

SRMS platform by suggesting alternative routes where there may be limited infrastructural 

solutions available. 

The emerging informal route could take different shapes depending on the community context 

and available resources (Lwanga-Ntale & Owino, 2020) (Sajjad, 2021) such as a path through 

the mountains, hills, fields, dirt route, agricultural route, or a combination of these four types 

(Bishara, 2015). The informal route component is a dynamic element. So, there will be room 

for new synergies strategies to cope with traffic interruption depending on the risk and the 

socio-economic context. This section will provide an overview of the mapping informal route 

service in the SRMS platform, including the identification of data sources and collection 

techniques, the methodology for processing and storing the data, and the publication of the 

service to users. 

 

4.2.2. Data Sources and Collection  

Rapid advances in information technology and mobile devices enable us to capture, integrate, 

and store data associated with any event, making human mobility an essential data source. For 

example, smartphone sensing technologies, such as the global navigation satellite system, 

enable us to monitor human movement at high temporal and spatial resolutions (Haraguchi et 

al., 2022) (Nishino et al., 2016). Analyzing people's mobility during any emergency was 

introduced in a research branch called Human Mobility Data Analysis (HMDA) (Haraguchi et 

al., 2022).  

HMDA was widely integrated to address various urban challenges, including public health 

(Oliver et al., 2015), transportation management (Ilbeigi, 2019), evacuation modeling (J. Chen 

et al., 2020) (Oliveira et al., 2019), and other applications. The role of HMDA has become 

increasingly important during the COVID-19 pandemic. (Chang et al., 2021) conducted 

research using human mobility data in the U.S. during COVID-19. He has predicted higher 
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infection rates among disadvantaged racial and socioeconomic groups solely due to differences 

in mobility. From the literature, we can conclude that HMDA intersects with the technique of 

Spatial Crowdsourcing (SC), where the spatial data of the Crowd (human) are valuable and 

considered a main data source for decision-making (Y. Zhao & Han, 2016).  

The mapping of informal routes relies on the mobility of motorized travelers who share GPS 

data from their mobile devices while traveling along the observed routes. The SRMS platform 

will embed the ArcGIS Survey123 form to collect GPS participatory data. Using Survey123 

for data collection ensures consistency in the captured data, facilitating processing and analysis. 

This tool is particularly suitable for harsh environments (Esri, 2023c); it allows capturing data 

offline and syncing it back to the collection server, making it ideal for collecting informal route 

data. 

The SRMS platform will request users' permission to collect GPS data from their mobile 

devices to create a geotrace, a type of geometry data representing a connected sequence of lines 

or paths traveled by a user or vehicle (Buthpitiya et al., 2011). To enhance the information 

obtained from GPS data, the SRMS platform may also utilize voice documentation to capture 

additional details about the observed route, such as the route's slope level (plain, moderate, or 

steep). This information can help drivers make informed decisions about their travel route, 

considering their vehicle's capabilities. Figure 4.5 shows the framework for mapping informal 

routes in the SRMS platform.  

Various literature suggests using mobile device sensors to determine road surface conditions, 

such as accelerometer sensors for pavement condition diagnosis. (R. A. Sarker et al., 2021) 

introduced a system that uses smartphone sensors (including accelerometer, gyroscope, 

magnetometer, and GPS) to create route maps for unreached areas; this study collects route 

surface information from recorded voices submitted by travelers. Additionally, SRMS displays 

a topographic base map on the user interface, providing an indication of the area's topography 

and slope.  

Future work could expand the mapping of informal routes to include other motion sensors, 

such as the accelerometer and gyroscope, available in low-end smartphone devices and are 

commonly used to measure vehicle acceleration, speed, and surface condition (Staniek, 2021) 

(R. A. Sarker et al., 2021). However, considering the research's scope, the surface topographic 

map and user-submitted data are adequate to provide information about the route surface, 

avoiding complex calculations. 
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Figure 4.5. Workflow of mapping the informal route on the SRMS platform 

 

4.2.3. Data Processing and Analysis 

The methodology of processing and analyzing the collected informal route data follows a 

general structure that is commonly used in processing other services of the SRMS platform. 

This structure includes three main stages: data preprocessing, data processing, and data 

publishing and visualization. The first stage is data preprocessing, which involves cleaning and 

filtering the collected data to remove any noise or incomplete data that may affect the quality 

of the analysis. Once the data is collected from the Survey123, SRMS processing unit will 

process the geotrace data. To ensure the accuracy and completeness of the data, it undergoes 

validation to detect and correct any errors such as missing points and incorrect coordinates. 

The second stage is data processing, which involves integrating, analyzing, and preparing the 

cleaned data for further use. After validation, the processed geotrace data is stored as a line 

feature layer in the Observation dataset. A line feature layer effectively manages and stores 

linear spatial data, such as road networks, rivers, pipelines, etc. (Esri, 2023e). It serves as the 

primary storage mechanism for geotrace data in the SRMS platform. This stage involves using 

spatial analysis tools to identify patterns in the reported data and extract information about the 

routes, such as their length, surface type, and connections to other routes. In this phase, the 

observation dataset will collaborate with the Data Privacy and Quality unit and Knowledge 
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dataset to create an informal route table that stores truth data inferred from the analysis of the 

received records.  

The third stage is preparing the analyzed data for publishing as a service in the SRMS platform; 

it involves storing the informal route data as a sub-dataset in the Observation dataset in the 

Crowd context database. The informal route table includes (route location (latitudes, 

longitude), route length, surface type, community name, user ID, route ID, time stamp, and 

voice data). 

Figure 4.6 illustrates the processing phase of the informal route; it shows that the Observation 

dataset interacts vertically and horizontally. Horizontally, it interacts with the Knowledge 

dataset in the CCDB to ensure the quality of the reported data. Vertically, it interacts with the 

ESDB, considered a base map in the SRMS. So, it is the reference for mapping any new 

informal route. As a result of interaction, the Observation dataset will generate attributes of the 

informal route shapefile, including (informal route ID, user ID, community, surface type, and 

submission date).  

 

 

      Figure 4.6. Components of informal route processing 
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4.2.4. Service Publishing   

This section concerns disseminating and visualizing the processed data stored in the hosted 

feature layer for public use. This phase will enable users to access information about informal 

routes and adjust their travel plans accordingly. The hosted feature service configuration is 

required for sharing the reported data with the public. It includes configuring the accessibility 

of the users to the data by assigning the feature service to support public data collection, which 

enables users to add or modify their data.  

The informal route mapping service will be published as a widget on the SRMS web mobile 

application. The published data includes information about the route surface type, submission 

time and date, and voice records. Users can access this information through the SRMS mobile 

application, which displays an interactive map as lines representing the drawn routes. Users 

can access detailed information about the route by clicking on these lines. 

4.3. Route Planning Service  

4.3.1. Overview  

Route planning received its significance from the people’s need to optimize their traveling 

socio-economic or environmental costs (Aburas & Shahrour, 2021) and from complex traffic 

environment characterized by imprecise future information (Pamucar & Cirovic, 2018), 

making the routing decision-making problem need to be solved urgently (Peng et al., 2022).   

Several applications were developed to cover the need of planning users' routes, such as Google 

Map, Apple Map, Waze, Doroob, and MapQuest. These navigation applications suggest 

multiple alternative paths from a source to a given destination based on travel time and distance. 

The dominance of these two parameters in most commercial route planning applications is 

because route choice is typically related to the people's desire to minimize travel distance and 

time or to maximize route reliability (Lam & Small, 2001).  

Recent studies reported that drivers prefer a daily commute path that is not necessarily the 

shortest or fastest route. The preferred path is typically chosen due to the driver's familiarity 

with the area's traffic and physical road conditions (Sarraf & McGuire, 2020). (Papinski & 

Scott, 2011) tested around 237 home-to-work trips based on real-world GPS data in Halifax, 

Canada. The study revealed that the paths taken by drivers are significantly longer than the 

shortest distance and fastest path alternatives. Hence, considering the conventional parameters 

of route planning under certain circumstances is not the preferable criterion for travelers.  

Recent studies introduced the safety factor as a significant parameter in route planning. (Sarraf 

& McGuire, 2020) and (Liao et al., 2022) developed a navigation system that considers the 

road segment's safety level while suggesting the path. These studies rely on historical traffic 

crash data and a real-time monitoring system. (Ikeda & Inoue, 2016) proposed route guidance 

system for post-natural disasters that uses participatory sensing to estimate safe routes and 

generate an evacuation map by collecting GPS and accelerometer data from pedestrians' 

smartphones. (Domínguez & Sanguino, 2021) developed an app tracing and guiding safe routes 

in pedestrian areas using an optimization algorithm. (Mehdi Shah et al., 2020) developed a safe 

routing system for urban cycling. (Noureddine & Ristic, 2019) developed a methodology for 
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finding the optimal route for transporting hazardous materials based on multi-criteria decision-

making. 

In addition to safety considerations, other scholars have also integrated sustainability 

parameters into route planning. For example, (Kırdar & Ardıç, 2020) promoted people's 

behavior toward sustainable mobility by designing a platform that suggests alternative paths 

considering sustainability parameters, including environmental quality, personal health status, 

commuting duration, and travel modes. Furthermore, in 2021, Google Map App launched the 

feature of eco-friendly routing to minimize CO2 emissions, although this feature is currently 

only available in limited countries (Google, 2021).   

Based on the previous literature, recent approaches to route planning have increasingly 

considered sustainability and safety considerations. Safety consideration is crucial in the 

complex urban mobility system. It has been introduced in route planning studies from different 

perspectives, such as the routing evacuation model (Ikeda & Inoue, 2016), safe active mode 

traveling (Mehdi Shah et al., 2020) (Domínguez & Sanguino, 2021), safe route for hazardous 

material transportation (Noureddine & Ristic, 2019), and route planning considering traffic 

crashes (Sarraf & McGuire, 2020) (Liao et al., 2022). However, there are limitations to these 

previous studies. For example, most safe route planning for motorized vehicles tends to 

consider traffic crashes the only traffic risk while ignoring other risk factors. Furthermore, the 

planning solutions often propose a single optimal route, which may lead to congestion drift 

from the original route to the newly planned route (Arnott et al., 1991).  

Safety is a crucial factor that guides our daily lives, yet individuals often lack sufficient 

information about the safety level of certain roads, particularly when traveling to unfamiliar 

areas. Unfortunately, most commercial routing products prioritize optimizing distance, time or, 

cost without considering the critical safety criterion. As urban mobility becomes increasingly 

complex, citizens urgently require a service prioritizing safe routing. While some cities, such 

as New York City, provide a rough safety heat map by pinning occurs crimes in a city map, 

such a map only offers a limited safety score for a district.  

This study adds to the existing research on route planning by introducing new safety parameters 

beyond traffic crashes, such as mobility restrictions, violence directed toward travelers, and the 

physical environment. These factors pose significant risks to travelers' lives and safety, and 

their inclusion in route planning can help mitigate them. The study also developed a risk 

quantification model that could be applied to any road network exposed to risk events, allowing 

for more effective and efficient route planning considering a wider range of safety 

considerations. 

The model considers multiple safety factors, including mobility restriction risk, violence 

directed towards travelers, and the physical environment, to evaluate road safety 

comprehensively. The model considers the spatial and temporal distribution of road risk to 

generate a risk score for each road segment. It allows for the identification of high-risk areas 

and the recommendation of safer routes. By integrating the risk score into route planning, the 

model can suggest a safer route for travelers, potentially reducing the risk of violence and other 

safety-related incidents. 

Designing the risk quantification model to consider violent actions against travelers is a novel 

contribution to safe route planning. Unfortunately, violent incidents while using the 
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transportation system are common and can occur in public and private transport settings (Couto 

et al., 2011). Scholars have been paying increasing attention to crime and safety perception in 

transit environments since 2010 (Ceccato et al., 2022).  

Reports from developed countries indicate that between 19-70% of taxi drivers experience 

verbal and physical violence. In Turkey, for example, physical violence against Taxi drivers 

reaches 35.2% (Aytac, 2017). In Australia, taxi driving was considered one of the highest-risk 

jobs, with at least one taxi driver murdered yearly (Mayhew & Graycar, 2000). In the US, 2019 

has recorded more than 1500 crime events in the transportation sector (Statista, 2019). 

Additionally, the route planning model proposed in this study stands out from other models by 

offering users multiple route options categorized according to specific features such as safety, 

speed, and emergency. While recent studies have considered different objectives in route 

planning, they typically provide a single optimal route for users, a relative definition based on 

their preferences. This study aims to respect user preferences by providing multiple alternatives 

that do not compromise their safety. The following are the definitions for each route alternative: 

The safest route prioritizes safety as the primary objective and avoids high-risk areas or roads 

with a history of violence. It is designated to the route free from mobility restrictions, including 

checkpoints, road gates, and violence. This route entails a high travel time or long distance. 

This route is optimal for non-daily travelers interested in safely arriving regardless of traveling 

time, travelers with anxiety-related restrictions, and drivers with limited experience traveling 

under restrictions. 

The fastest route is designed to minimize travel time while still ensuring the direct safety of 

the user. This route is optimal for daily commuters concerned about arriving at work or home 

without significant delay. It is also helpful for travelers familiar with the mobility restrictions 

and can navigate them safely. 

The emergency route is the shortest route without considering the risk of mobility restrictions. 

It is intended for emergency or evacuation situations where humanitarian needs precede 

mobility restrictions or waiting time risks. This route is ideal for emergency service providers, 

such as ambulances, civil defense units, and others. 

Table 4.2 provides a comparison between the available route planning applications and SRMS 

application. It is considered various criteria and technical considerations make the RPS in 

SRMS a novel contribution to the route planning studies.  

Table 4.2. Comparison between the common route planning applications and RPS in SRMS  

 Criteria Waze Google 

Map 

Doroob Apple 

Map 

SRMS 

1 Real-time Traffic 

Information 
✓ ✓ ✓ ✓ ✓ 

2 Mobility 

Restriction 

Notifications 

✗ ✗ ✗ ✗ ✓ 

3 User-Centered 

Design 
✗ ✓ ✗ ✓ ✓ 
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4 Spatial 

crowdsourcing 
✓ Limited ✓ Limited ✓ 

5 Social Media as 

data source 
✗ ✗ ✗ ✗ ✓ 

6 Privacy Protection ✓ ✓ ✓ ✓ ✓ 

 Data Accuracy User 

contributed 

Reliable User 

contributed 

Reliable User 

contributed 

7 Offline Navigation ✓ ✓ ✓ ✓ ✗ 

8 Safety Factors Traffic 

crashes  

Traffic 

crashes  

Traffic 

crashes  

No factors Restriction, 

violence, 

physical 

environment 

9 Routing Options Fastest, 

shortest, 

ecofriendly 

Fastest, 

shortest, 

eco 

friendly 

Fast Fastest, 

shortest 

Safest, 

Fastest, 

Emergency 

10 Informal Route 

Mapping 
✗ ✗ ✗ ✗ ✓ 

11 Cross-Platform 

Availability 
✓ ✓ ✓ ✓ ✓ 

 

The SRMS platform will provide various route options using its routing planning service 

(RPS). The RPS relies on the route planning model (RPM) incorporated in its knowledge 

dataset, which acts as an expert in identifying the fastest, safest, and emergency routes. The 

RPM collects historical and real-time data from different sources to generate three route 

alternatives. To determine the least costly path, the RPM uses Dijkstra's algorithm on three 

weighted graphs. Each graph's weight represents the risk, travel time, and travel distance costs 

of delivering the least-risk, time, and distance paths, respectively. This study's graph model 

depicts the road network's edges and nodes and is integrated with a validated informal route to 

provide multiple options under limited transportation infrastructure conditions. 

The process of developing the routing planning service in the SRMS platform begins by 

identifying the necessary data and their sources, then data processing and analysis to create the 

route planning model based on the risk quantification model, following the results will be 

published as a routing layer in the SRMS platform. Figure 4.7 illustrates the overall 

methodology for creating a routing planning service within the SRMS platform. 
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         Figure 4.7. The general methodology of route planning service in SRMS Platform 

4.3.2. Data Sources and Collection 

The required data for the routing planning service will be collected from two main sources: the 

crowd context CCDB and external spatial databases ESDB. The CCDB will supply real-time 

and permanent data, including the Observation, and Knowledge datasets. The Observation 

dataset will offer event-based real-time data that will be incorporated as a restriction in the 

route planning model and provide data on the informal route, which will be considered a 

component of the routing model. The knowledge dataset will be utilized to get inference data, 

such as inferred-user feedback, which presents deviations from the advised route and indicates 

the quality of provided services.  

In addition to the CCDB, the external spatial database (ESDB) will be used to obtain various 

data related to the physical environment, such as road network geometry, prohibited roads, 

speed limits, road quality, historical mobility restrictions, and historical violent actions toward 

drivers. This data will play a crucial role in quantifying the risk on different road segments.  

Table 4.3 provides a comprehensive overview of the different datasets, sources, data types, 

descriptions, and purposes within each alternative route category, including the safest, fastest, 

and emergency Routes. The table includes general data applicable to all routing models, such 

as road network geometry data obtained from an authoritative source and the informal path 

geometry dataset collected through crowdsourcing from SRMS users. 

Table 4.3. Data categories and sources in terms of each alternative route category 

Dataset Source in 

SRMS 

Data type Description Dataset purpose 

General Data common in three routing models  
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Road 

network 

geometry 

ESDB 

 

Authoritative 

data 

Road network 

representation/quality 

Risk quantification 

model, Route 

planning model  

Informal path 

geometry 

Observation 

dataset 

Crowdsourcing Informal paths 

reported by SRMS 

users. 

Route planning 

model 

Safest Route 

Restrictions-

related 

waiting 

Observation 

dataset 

 

 

ESDB 

Real-time 

crowdsourcing 

 

 

Authoritative 

data 

 

GPS data of traffic 

restrictions caused 

waiting 

 

           GIS data 

Identified as 

prohibited 

restriction  

 

 

Risk quantification 

model, Route 

planning model 

 

Restrictions -

related 

violence 

Observation 

dataset 

 

ESDB 

Real-time 

crowdsourcing 

 

Authoritative 

data 

GPS data of violence 

locations 

 

GPS data of violence 

locations 

Identified as 

prohibited 

restriction 

 

Risk quantification 

model, Route 

planning model  

Fastest Route 

Speed limits ESDB 

 

Open-Source The maximum 

travelling speed on 

the roads 

Calculating 

travelling time, 

Route planning 

model 

Restrictions-

related 

waiting 

Observation 

dataset 

 

 

ESDB 

Real-time 

crowdsourcing 

 

 

Authoritative 

data 

GPS data of traffic 

restrictions caused 

waiting 

 

Historical average 

waiting time at the 

restrictions 

Route planning 

model 

 

 

 

Calculating 

weighted waiting 

time at restrictions 

Restrictions -

related 

violence 

Observation 

dataset 

Real-time 

crowdsourcing 

GPS data of violence 

locations 

Identified as 

prohibited 

restriction 

Emergency Route: Shortest Path 

Speed limits ESDB 

 

Open-Source The maximum 

travelling speed on 

the roads 

Calculating 

travelling time 
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4.3.3. Data Processing and Analysis 

This phase consists of three arranged steps to process and analyze the collected data to construct 

the route planning model. It starts with creating the risk quantification model by creating and 

weighting risk indices and then calculating the travel time by considering the waiting time 

prediction at mobility restrictions. The last phase concerns creating the routing planning model 

to find multi-categorized routes. 

4.3.3.1. Risk Quantification Model  

This phase composes of the following; (i) creating a list of risk criteria; (ii) using the entropy 

weight method to establish a quantitative risk cost model and calculate index weights; (iii) 

determination of a comprehensive risk score for each road segment (Ri). Each phase is detailed 

in the following: 

i. Creating Risk Indices 

The safety evaluation value entails considering different criteria based on the purpose of the 

route planning model. For example (Ikeda & Inoue, 2016) developed an evacuation route 

planning model after a natural disaster. He used the safety evaluation method, which considered 

mainly the average walking speed, pedestrian traffic per hour, and the distance between two 

nodes. (Domínguez & Sanguino, 2021) developed a mobile app based on integrating 

smartphone sensors and a fuzzy logic strategy for finding a safe route for pedestrians 

considering the elements of zebra crossings, pedestrian streets, and walkways. 

(Liao et al., 2022) (Sarraf & McGuire, 2020) quantified the risk on the road section considering 

historical and real-time data of traffic crashes. (Sarraf & McGuire, 2020) calculated the road 

segment safety weight in terms of travel time and weighted crash rate, which considers the 

crash severity presented in the number of fatalities, injuries, and property damage. 

(Liao et al., 2022) extended the severity of traffic crashes to include other parameters related 

to the driver, vehicle, road, and the environment. (Noureddine & Ristic, 2019) performed a 

study about route planning for hazardous material, he used multi-criteria decision-making 

evaluation criterion. Then he calculated the weighting coefficient using the Full Consistency 

Method (FUCOM) subjective method. 

The previous literature has quantified the safety value in the real world using single or multi-

criteria methods. Finding the optimal safe route considers traffic crashes a primary threat to 

people's safety, and road quality comes in the second level. Restraining road safety in traffic 

crashes undermines the comprehensiveness of the road safety evaluation model. This study 

expands the perspective of safety on the road network by considering new risk criteria, 

including (i) mobility restrictions; (ii) violent events that threaten travelers' lives; (iii) the built 

environment; and (iv) the physical characteristics of the road.  

(Essenberg, 2003) declared that violent actions against private or public motorized vehicles are 

determined by the presence of opportunities for violence related to the quality of the built 

environment, the political situation, and other sociodemographic factors. For example, the lack 

of formal and informal surveillance allows violent action (Essenberg, 2003). (Couto et al., 
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2011) declared that there is a significant correlation between violent action on the road and the 

incapability of the driver to access the information.  

The literature shows that the root causes of violent actions refer to different aspects, including 

a gender perspective, such as abusive practices against women (Borker, 2021), the violence of 

workplace perspective, which is related to socioeconomic factors  (Richardson & Windau, 

2003), and the geopolitical perspective, which presented in the violent practices against the 

civilians, especially in the armed conflict areas (Balcells & Stanton, 2021).   

In this study, the operation definition of violence is the physical threat involving actual physical 

violence, such as using an object (stones, bottles, sticks, etc.) or a weapon against travelers 

(Couto et al., 2011). This type of violence is prevalent in unstable geopolitical environments 

where there is a constant threat to people's lives (Balcells & Stanton, 2021). For example, 

(Essenberg, 2003) showed that most road passenger transport sector workers in several 

conflict-prone countries have reported experiencing violence from armed forces, police 

officials, and customs agents at roadblocks or border posts. 

The evaluation indices are selected based on the literature review and report discussing the 

severity of the violent action on the travelers on the road. The index used to evaluate the 

severity of violent action against travelers on the route includes the number of previous violent 

acts against the travelers (Couto et al., 2011), the time the violence occurred (Mayhew & 

Graycar, 2000), the category of the adjacent built-up area to the road section (Dunckel Graglia, 

2016). The index used to evaluate the physical road characteristics are the physical road 

condition and the road segment's lighting condition (Essenberg, 2003). The number of mobility 

restrictions on the road section was used as an index for the mobility restriction criteria. Table 

4.4 shows the evaluation criteria and the derived index for the risk on the road section.  

Table 4.4. The evaluation criteria and the derived index for evaluating the risk on the road 

section 

No. Index Definition Description 

1 NO_RIST No. of permanent 

mobility restrictions  

No. of permanent restrictions = 1, 2, 

3, no mobility restriction = 0 

 

2 NO_VIO No. of historical 

violence actions 

against vehicles  

No. of violent actions against the 

drivers = 1, 2, 3, no record = 0 

 

3 TOD Time of day Daytime = 1, night time = 2 

 

4 DOW Day of week Weekday = 1, weekend = 2 

 

5 LGT_CON Light condition Available = 1, not available = 0  

 

6 ROAD_CON Roadway surface 

condition 

Quality of road surface: good=1, 

moderate=2, bad=3 
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7 ADJ_BUILTUP Type of the 

adjacent built-up 

area 

Rural = 1, Urban = 2 

 

ii. Index weight calculation 

The pre-identified indices' contribution determines the comprehensive cost on the road section, 

which is called the comprehensive risk score Ri (Liao et al., 2022), Equation (4.1). However, 

these identified risk indices have different weights on the comprehensive risk level Ri, so the 

weight of each index was calculated using the objective weight entropy method (WEM). 

 
𝑹𝒊 =∑𝒅𝒊𝒋𝒘𝒋

𝒎

𝒋=𝟏

 
 

(4.1) 

 

Where Ri is the comprehensive risk score of the ith road section (i = 1,2,3,….n); dij is the actual 

data of the jth index corresponding to the ith road section; wj is the weight of the jth index.  

Several methods can be used to calculate index weights, including subjective, objective, and 

combined methods (Ding et al., 2017) (Zhu et al., 2020). In the subjective method, the weight 

is based on the opinion of experts or expert groups representing the views of various 

stakeholders such as AHP, SWARA, etc. The main problem with the subjective weighting 

method is the consistency of expert opinions (Zhu et al., 2020). Hence, to avoid the interference 

of human factors, the objective method was used: The entropy weight method (EWM) ) (Ding 

et al., 2017). (Liao et al., 2022) declared that EWM has higher reliability and accuracy than 

subjective weighting, and it can deeply reflect the distinguishing ability of indicators and 

determine better weights. 

EWM is an important weight model that has been extensively practiced (Liao et al., 2022) (Zhu 

et al., 2020), and recently used in decision-making (Yan et al., 2016). The EWM evaluates 

value by measuring the degree of differentiation. The higher the degree of dispersion of the 

measured value, the higher the degree of differentiation of the index, and more information can 

be derived. Moreover, a higher weight should be given to the index and vice versa (Zhu et al., 

2020). This method is more suitable for describing the impact of abnormal values in 

restrictions, violence, and physical environment indicators on the severity of the risk on the 

road section. For example, for several risk indexes, if the value of one index changes greatly 

while the value of other indexes does not change, it indicates that the index has led to a 

difference in risk severity, and a greater weight can be taken. 

In this method, m indexes and n samples are set in the evaluation, and the measured value of 

the jth index in the ith sample is recorded as Xij. It includes the following steps:   

(1) Normalize indexes for the homogenization of heterogeneous indexes: 

Positive index: 

 𝑥𝑖𝑗

=
𝑥𝑖𝑗 −min{𝑥1𝑗 , … . , 𝑥𝑛𝑗}

max{𝑥1𝑗 , … . , 𝑥𝑛𝑗} − min{𝑥1𝑗, … . , 𝑥𝑛𝑗}
 

 

(4.2) 
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Negative index: 

 𝑥𝑖𝑗

=
max{𝑥1𝑗, … . , 𝑥𝑛𝑗} − 𝑥𝑖𝑗

max{𝑥1𝑗 , … . , 𝑥𝑛𝑗} − min{𝑥1𝑗, … . , 𝑥𝑛𝑗}
 

 

 

(4.3) 

 

 

(2) Calculate the proportion of the ith sample value under the jth index (Liao et al., 2022) 

(Zhu et al., 2020) : 

 Pij =
xij

∑ xij
n

i=1

 
 

(4.4) 

  

i = 1, · · ·, n,                                                    

j = 1, . . ., m. 

 

 

(3) Calculate the entropy of the jth index (Liao et al., 2022) (Zhu et al., 2020): 

 

 
ej = −k∑Pij

n

i=1

ln(Pij) 
 

(4.5) 

  

j = 1, . . ., m. 

 

 

Where K = 1/ln(n)>0, meeting ej ≥ 0. The range of entropy value ei is [0, 1]. The larger the ei 

is, the greater the dispersion degree of index j is, and more information can be derived. Hence, 

a higher weight should be given to the index (Zhu et al., 2020).  

(4) Calculate information entropy redundancy (difference): 

 

 dj= 1- ej (4.6) 

  

j = 1, . . ., m. 

 

 

(5) Calculate the weight of each index:  

 

 
Wj =

dj

∑ dj
m

i=1

 
(4.7) 

  

j = 1, . . ., m. 

 

 

It should be noted that the entropy value of a zero index cannot be calculated in practical 

application. So, when an index value was zero, a value of 0.00001 was added to the evaluation 



 

97 

 

 

index data of this group; adding such a small increment not only enabled the data group to be 

valid but also ensured a small impact on the difference of each index (Cai et al., 2020). 

 

4.3.3.2. Travel Time  

In the single-objective route planning models, most developed algorithms find the optimal 

routes considering the commonly used metric, travel time (Du & Ding, 2021) (Peng et al., 

2022). The primary goal in the single objective route planning model is the fastest route. It is 

calculated by the given distance between two nodes (Yao et al., 2018). The travel time presents 

the actual weight of the road segment (AW) as in Equation (4.8) (Sarraf & McGuire, 2020).  

  

 
AW(ni,nj) =

Dist(ni, nj) × 3600

S(ni, nj)
 

(4.8) 

 

Where n is the node, S is the maximum speed in km/hour, and 3600 is the number of seconds 

in an hour.  

Having access to sufficient information regarding travel time is of utmost importance for 

enabling informed decision-making by road users and traffic authorities before and during their 

journeys. The determination of travel time has been advanced through various data-driven 

models. For example, (H. Wang et al., 2019) introduced a method known as the neighbor-based 

approach, fwhich estimates travel time between two points by leveraging historical trajectories 

of neighboring trips with similar origins and destinations. 

Other developed travel time prediction models, including parametric methods such as linear 

regression (Laoide-Kemp & O’Mahony, 2020), Bayesian Nets (Prokhorchuk et al., 2020), and 

Time Series models (Serin et al., 2021). Additionally, non-parametric models like Artificial 

Neural Network models (Mokhtarimousavi et al., 2020) and machine learning methods like K-

Nearest Neighbors (J. Zhao et al., 2018), Support Vector Regression (Bachu et al., 2021), and 

Random Forest regression (Taghipour et al., 2020).  

One of the most important factors in choosing a method for estimating or predicting travel time 

is the available data. Most commonly observed travel time prediction models rely on traffic-

related variables to construct their predictive models. These models gather real-time traffic data 

through various data-capturing devices such as probe vehicles, loop detectors, video cameras, 

etc. However, some models incorporate additional environmental variables when determining 

travel time. For example, (Taghipour et al., 2020) introduced factors like weather conditions, 

road accidents, roadwork, special events, and sun glare into the travel time estimation process. 

Nevertheless, when access to real-time and historical traffic data is limited, and mobility 

restrictions exist, predicting travel time becomes a challenging task. However, this study offers 

a novel perspective on addressing travel time estimation with limited data availability. It 

achieves this by determining the travel time by introducing the prediction of waiting times at 

mobility restrictions (Tw) Equation Error! Reference source not found. as an innovative a

pproach to overcome these limitations.  



 

98 

 

 

 

AW(ni,nj) =
Dist(ni, nj) × 3600

S(ni, nj)
⁺∑Tw

b

r=1

 
(4.9) 

 

The problem of predicting waiting times has been widely studied in queueing theory, which 

considers customers' waiting times before receiving service in contexts such as banks (Kyritsis 

& Deriaz, 2019) and health clinic services (Curtis et al., 2017). However, it hasn’t been 

observed in the route planning or in the transportation studies. Various methods have been 

developed for predicting wait times, including average wait time, queueing theory, and 

machine learning (ML) models.  

(Sanit-in & Saikaew, 2019) conducted a comparative study for the waiting time prediction 

approaches, including Queueing Theory, Average time, and Random Forest on two ear nose 

and throat clinic dataset and the Khon Kaen University post office datasets. The experimental 

results indicated that the supervised learning algorithm, Random Forest, achieved the highest 

accuracy at 85.76% of the ear, nose, and throat clinic dataset and 81.7% of the Khon Kaen 

University post office dataset compared with the other two approaches. 

ML prediction models have approved its efficiency and accuracy in dealing with the extreme 

complexity and randomness of waiting time patterns (Curtis et al., 2017). ML provides efficient 

data mining and modeling tools, especially for large and imperfect data sets. This study used a 

random forest regression (RF) machine learning model to predict the waiting time at a 

restriction using real-time and historical data.  

Predicting waiting time at mobility restrictions using Random Forest Regression  

Random forest regression is a supervised learning algorithm used for regression or 

classification prediction (Anand et al., 2022). The random forest algorithm takes a dataset with 

input features and corresponding labels or outcomes, and then it creates a large number of 

decision trees, each using a random subset of the data and a random subset of the input features. 

Each decision tree independently makes a prediction based on its subset of data and features. 

When a new data point needs to be predicted, it passes through each decision tree, and each 

tree provides its prediction. The final prediction is determined by combining the predictions 

from all the decision trees, usually through voting or averaging (Sipper & Moore, 2021). Figure 

4.8 illustrates the workflow of the Random Forest Algorithm. 

RF regression method performs better than other machine learning methods, especially when 

predicting short-period congestion due to an event (Y. Lin & Li, 2020). RF Regression is a 

suitable algorithm for the border crossing time case and for developing the short-term 

prediction algorithm (Sharma et al., 2021). (Taghipour et al., 2020) conducted short-term travel 

time prediction using an Artificial Neural Network, K-Nearest Neighbors, and Random Forest, 

the results show that RF presents satisfying results compared with other ML models. 

Randomness in the algorithm helps to prevent overfitting and ensures diversity among the 

decision trees, leading to more accurate and robust predictions. Also, It has the feature 

importance technique, using mean decreasing accuracy to evaluate the predictive error and 

feature significance (Sanit-in & Saikaew, 2019).  
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Figure 4.8. The random forest models 

Hence, this study applied RF regression using historical records obtained from an extensive 

field survey to determine the waiting time at different mobility restrictions. The methodology 

of creating the RF waiting time prediction model is composed of the following; (i) data cleaning 

and preparation, (ii) applying correlation coefficient analysis to identify the input variables 

(model features) based on correlation with the output variable (time to cross the checkpoint); 

the input variables are the vehicle waiting time at the queue, vehicle speed near 750 m of the 

checkpoint, and day of the week (iii) building the predictive model by splitting the dataset 

randomly into a training dataset and testing dataset, RF uses the training dataset to build the 

predictive model while the testing datasets used predicting the waiting time, and finally (iii) 

evaluation the predicted outcomes and testing the accuracy of the model. Figure 4.9  illustrates 

the methodology of creating a waiting time prediction model using RF. 



 

100 

 

 

 

       Figure 4.9. Methodology of creating waiting time prediction model using RF  

 

4.3.3.3. Construction of Route Planning Model 

This section describes the methodology of applying the routing planning model to find multi-

categorized routes, Figure 4.10. It includes (i) preparing the road network as a major input in 

the route planning model; (ii) validating the prepared road network using network topology 

technique; (iii) loading risk, travel time, and distance parameters to the road network; (iv) 

building the graph model and applying the Dijkstra's algorithm to find the least risk, travel 

time, and distance route separately.  
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          Figure 4.10. Methodology of building the route planning model 

 

i. Road Network Preparation  

The routing planning model includes (i) integrating the informal route; (ii) validating and 

verifying the road network; and (iii) loading the risk and travel time to the road network. Unlike 

most traditional routing models with a static road network architecture (Noureddine & Ristic, 

2019), the road network in this study is updated continuously as it includes the validated 

informal routes, along with the formal road network. The segments of informal routes will be 

integrated into the road network to optimize the route planning service by continuously 

expanding alternative routes that meet user preferences. 

ii. Road Network Validation  

This phase comprises two steps: (i) identifying the permanent prohibited roads and inaccessible 

due to permanently blockades and prohibition policies, these roads will be excluded from the 

route planning model to enhance high accessibility and usability to the road networks; (ii) 

utilizing network topology to ensure the connectivity of network elements, which include nodes 

and edges essential for the route planning model (S. Ahmed et al., 2017). Network topology 

serves as a fundamental quality assurance technique (Esri, 2023f) used to identify and rectify 

errors within network connections. These errors may include dangling edges, overlapping 

edges, and inaccuracies within the road network. 
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iii. Loading Risk, Travel Time, and Distance  

After verifying the road network, the road segments will be fed by the evaluation parameters 

used in the route planning model. These evaluation parameters are: (i) the comprehensive score 

of the risk quantification model (Ri), (ii) the determined weighted travel time (AW), (iii) the 

length of the road section (Dist); (iv) speed limit for each road section (S). 

Each evaluation parameter (Ri, AW, Dist) is considered an impedance in the routing planning 

model. Impedance definition, according to the GIS dictionary (Esri, 2023d) is “a measure of 

the cost required to traverse a network path or move from one element in the network to 

another”. Higher impedance values indicate more resistance to movement, and a value of zero 

indicates no resistance. The optimal path in a network is the path with the lowest impedance, 

also known as the least-cost path. For instance, Ri is considered an impedance in determining 

the safest route, which is the least-cost risk path; Dist is an impedance in identifying the shortest 

route, which is the least-cost travel distance path (emergency route); and AW is an impedance 

in finding the fastest route, which is the least-cost travel time path.  

iv. Building the Graph Model and Applying Route Analysis using Dijkstra’s Algorithm 

The research methodology was applied to the road graph represented by G = (V, E), where V 

is the set of nodes, and E is the set of edges. The graph model was created using the capabilities 

of ArcGIS Pro 3.1 by creating a network dataset from the previously prepared road network. 

This step includes assigning the attribute cost (impedance) that will be used in evaluating the 

most suitable path. However, three network data sets will be created to provide the three 

categories of alternatives (safest, shortest, and fastest); each network has risk, distance, and 

travel time costs, separately.  

After completing the three network datasets, a suitable path will be found using a modified 

Dijkstra algorithm to find the least-cost route. Dijkstra’s algorithm was applied using ArcGIS 

Network Analyst (NA) module (ArcGIS Pro 3.1). The ArcGIS NA module has been widely 

used to derive optimal routes in different studies (Peng et al., 2022) (S. Ahmed et al., 2017) 

(Sanjeevi & Shahabudeen, 2016).  

The Dijkstra algorithm is a widely used algorithm for finding the shortest path from the origin 

to all other nodes on a weighted graph  (E. W. Dijkstra, 1959). Different algorithms have been 

proposed since Dijkstra such as A∗ (Peter E. Hart, Nils J. Nilsson, 1968), D∗ (Stentz, 1995), 

D∗ Lite (Koenig & Likhachev, 2002), ant colony optimization (ACO) (Dorigo & Gianni, 

1992), Dijkstra's algorithm remains an efficient and effective algorithm for reducing 

computational time and power needed to find the shortest path (Peng et al., 2022) (Karadimas 

et al., 2007).  

Choosing Dijkstra's algorithm to find routes is justified by its reputation as the most famous 

algorithm used for this purpose and its deterministic method, which can provide reliable results 

in a fully observed environment (Peng et al., 2022). It is also suitable for simple route planning 

objectives such as safety, travel time, and distance. Moreover, recent modifications have been 

made to the algorithm to improve performance and respect user settings, such as one-way 

restrictions, restrictions, and barriers, which aligns with the purposes of this study (esri, 2023). 
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To find the shortest path from a starting location, s, to a destination location, t, Dijkstra's 

algorithm maintains a set of nodes, V, whose final shortest path from s has already been 

computed. The algorithm repeatedly finds a junction in the set of junctions that has the 

minimum shortest-path estimate, adds it to the set of junctions V, and updates the shortest-path 

estimates of all neighbors of this junction that are not in V. The algorithm continues until the 

destination junction is added to V (Rachmawati & Gustin, 2020).  

 

4.3.4. Service Publishing 

This section explains the final step of making the route planning service (RPS) available to 

users on the SRMS platform. After creating the route planning model, it can be published as a 

web service on ArcGIS Online. The Share Web Layer tool in ArcGIS Pro facilitates this process 

by converting the model into a web service that can be accessed over the internet by other 

applications and users. Once the web service is created, it can be published on ArcGIS Online 

for integration into the SRMS platform. 

Next, the service is configured for public use within the SRMS application. This involves 

establishing a connection between the SRMS platform application and the web service. The 

connection requires specifying the web service's URL and adding the necessary authentication 

settings. Once the service is configured, users of the SRMS platform application can input their 

starting and ending points, and the application will utilize the service to calculate the optimal 

route based on predefined criteria in the route planning model. The results are then displayed 

in the SRMS platform application, alongside other data layers and analysis outcomes, assisting 

users in making well-informed travel decisions. 

 

4.4. Conclusion 

This chapter presented the methodology for developing the services of the Smart and Resilient 

Mobility Services platform (SRMS), focusing on three key services: real-time mapping of 

mobility restrictions and traffic conditions with a notification system, mapping of informal 

routes, and route planning service. These services are designed to enhance urban mobility 

performance and safety, promote community resilience and support data-driven decision-

making for individuals and transport authorities.  

The methodology adopted a systematic approach to address the identified gaps in the literature 

and introduce novel techniques for developing each service. It began with identifying the data 

sources and collection methods, which involved real-time crowd-sourced data using the 

Survey123 crowdsourcing platform, near real-time social media data through the Telegram 

API, and historical spatial data. These data sources provide information on mobility 

restrictions, traffic conditions, and the built environment. 

The data processing phase involved preprocessing and analyzing the collected data to extract 

valuable information for delivering optimal services. This included applying various analysis 

techniques, including machine learning algorithms such as natural language processing and 

prediction models, routing algorithms, and quantification models. These techniques enable the 
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extraction of insights from the data and support the development of accurate and effective 

services. 

The last phase of the methodology focused on publishing the services for public use. This 

involved configuring the accessibility of the services to users by assigning the feature service 

to support public data collection. This enables users to add or modify their data, contributing 

to a dynamic and collaborative platform. 
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Chapter 5. Application the Smart and Resilient Mobility 

Services (SRMS) Platform to the Palestinian 

Context, West Bank 

 

Introduction  

This chapter shows the practical implementation of the Smart and Resilient Mobility Services 

(SRMS) platform in the Palestinian territories, specifically in the West Bank. It starts with 

highlighting the Palestinian coping strategies related to the status de facto of mobility 

restrictions at national, local, and community scales. 

The chapter introduces the application of SRMS in the West Bank, exploring a user-centered 

design approach using personas and scenario techniques to tailor the platform to the 

characteristics and users’ needs. An online survey targeting Palestinian travelers in the West 

Bank was conducted to gain insights into their preferences, interests, and willingness to engage 

with the proposed smart solution. The survey sample provided valuable information about the 

profiles and travel characteristics of the participants, helping shape the design and features of 

the SRMS platform. 

Furthermore, the chapter highlights the SRMS web mobile app, designed using ArcGIS 

Experience Builder. It offers services, including real-time mapping of mobility restrictions, and 

presents data on checkpoints, road gates, settlers' violence, and traffic congestion. Users can 

report mobility restrictions through the app, providing essential information for visualizing and 

addressing restrictions in the area. The application of real-time mapping using Telegram data 

is also explored, demonstrating the utilization of the Telegram Public group as a data source 

for sharing mobility restrictions and road information. 

Furthermore, the SRMS app offers mapping services for informal routes, allowing users to 

report explored routes directly on the app. The route planning service is another feature of the 

SRMS app, designed to optimize users' travel with minimal risk, time, and distance cost. It 

employs a route planning model considering real-time information, historical data, and an 

external spatial database. The model incorporates a Risk Quantification Model and Weighted 

Travel Time to find multi-categorized routes based on risk, travel time, and distance factors. 

The model accurately predicts waiting times and offers efficient routes for travelers in the study 

area. 

 

5.1. Mitigating the Impacts of Mobility Restrictions  

The long-term experience of hard traveling and disruptive traffic due to mobility restrictions 

has catalyzed various national, local, and individual practices that enhance the resilience of the 

mobility system. This section discusses these practices to establish strategies that address 

mobility restrictions. 

 



 

106 

 

 

5.1.1. National Level 

The Ministry of Transport (MOT) has prepared the National Road and Transportation Master 

Plan (NTMP), which aims to develop a vision for the future of the transportation sector in 

Palestine. The plan addresses economic growth and meets the increasing travel demand by 

considering spatial, operational, legal, regulatory, and financial aspects (Abu-Eisheh et al., 

2020). 

The NTMP can potentially address and mitigate the adverse impact of mobility restrictions. It 

reduces road-based travel time by improving existing roads and introducing new ones where 

needed, enhancing regional accessibility and alleviating congestion caused by mobility 

restrictions. It also highlights the importance of separating local and regional traffic to 

minimize interference and congestion, leading to more efficient transportation flows and 

reduced delays. Additionally, the plan includes implementing rest areas along major roads, 

providing necessary amenities, and ensuring traveler comfort and convenience despite the 

challenges posed by mobility restrictions (Ministry of Transport MOT, 2016b). 

In 2018, the Ministry of Transport (MOT), in collaboration with other ministries such as the 

Ministry of Telecom and Information Technology (MTIT), Local Government (MoLG), Public 

Works and Housing (MPWH), etc., established a council to develop a strategic framework for 

Intelligent Transportation Systems (ITS) (Ministry of Transport MOT, 2018). The ITS strategic 

framework aims to harness technological advancements to address urban mobility challenges 

such as road safety, traffic congestion, public transport utilization, and pollutant emissions. 

Although the framework does not directly address mobility restrictions in the West Bank, it 

recognizes these restrictions as a significant challenge to implementing the framework.  

However, some of the strategies proposed in the ITS framework for 2019-2024 will partially 

contribute to mitigating the adverse impacts of mobility restrictions. These strategies 

encompass: (i) using advanced systems for public transportation information management to 

enhance traffic safety, manage traffic congestion, and facilitate passenger mobility, (ii) 

developing emergency management systems to better respond to events related to 

transportation and mobility; (iii) encouraging the use of electric and hybrid vehicles as a means 

to reduce environmental pollution. 

Based on previous projects, the proposed national initiatives could mitigate the impact of 

mobility restrictions in the West Bank. These initiatives encompass national policies to reduce 

pollutant emissions, develop transportation infrastructure, and improve traffic management. 

However, these initiatives do not explicitly consider mobility restrictions as a primary 

challenge. This can be seen as a root for other challenges, such as traffic congestion, pollutant 

emissions, and safety concerns. To achieve more effective and comprehensive solutions, it is 

crucial to prioritize the challenges of mobility restrictions within the framework of national 

transportation strategies. 

 

5.1.2. Local Level 

NGOs have played a crucial role in addressing the challenges of mobility restrictions at the 

local level. They took proactive measures to cope with restrictions and mitigate their impact, 
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including (i) establishing spatial and statistical databases based on the daily monitoring reports 

and fieldwork. The databases document the distribution and operation of mobility restrictions, 

such as checkpoints and road gates, as well as incidents of settlers' violence (B’Tselem, 2022) 

(OCHA, 2020b); (ii) preparing impact assessment studies to evaluate the consequences of 

mobility restrictions (ARIJ, 2019a); (iii) advocacy and awareness for the rights of affected 

communities and raise awareness about the challenges posed by mobility restrictions; (iv) 

collaborative partnership with local authorities; and (v) international support and funding. 

Private sectors and local authorities have also contributed to addressing the challenge of 

mobility restrictions by collaborating with the Ministry of Local Government (MoLG) to 

prepare strategic and master plans to develop the transportation infrastructure in the 

restrictions-affected areas. Palestinian startups have also ventured into developing their 

applications to share road traffic data, such as Doroob (Doroob, 2019). This location-based 

application provides navigation services based on reporting road traffic information, such as 

traffic crashes and police activity. However, this application is not suitable to be used in the 

context of sharing mobility restrictions information since it does not explicitly address the 

reporting of incidents related to mobility restrictions, such as checkpoints, road gates, or settler 

violence. 

The local initiatives show efforts in creating spatial and statistical databases documenting the 

distribution and operation of restrictions and tailored applications for road traffic data. 

However, there is a lack of a comprehensive platform or application that addresses and provides 

real-time reporting and information on mobility restrictions. 

 

5.1.3. Community and Individual Level 

This section highlights initiatives to overcome mobility restrictions at the community and 

individual levels. These initiatives can be classified into two categories. The first focuses on 

resilience strategies adopted by the community, such as utilizing alternative routes and shared 

traveling. The second category encompasses innovative solutions driven by advancements in 

information and communication technology, which is presented mainly in the use of social 

media. 

5.1.3.1. Resilience Strategies: Alternative Routes and Shared Travelling 

Since the Second Intifada, WB witnessed high exposure to interurban mobility interruption due 

to mobility restrictions, which evoked various shapes of self and collective coping mechanisms 

to alleviate the severity of restrictions (Wick, 2011). 

The collective and individual resilience actions include; (i) alternative routes, where travelers 

utilize the internal roads within villages and towns to bypass specific checkpoints and reach 

their desired destinations; (ii) multimodal shift, where individuals switch between different 

modes of transportation during their journey. This can involve transitioning between public 

transport, private vehicles, and active modes such as walking, cycling, or animal 

transportation(UN, 2003). 
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The third shape of resilience action is (iii) wayfaring, a mode of travel that emphasizes active 

engagement with the surrounding landscape. It involves traversing informal routes and 

pathways, including dirt roads, abandoned agricultural routes, hills, fields, and mountains 

(Bishara, 2015). Wayfaring is contrasted with a purely destination-oriented approach to 

transportation and emphasizes a more exploratory experience of the territory (Tim Ingold, 

2007).  

During the Second Intifada, Palestinian travelers experienced severe road closure due to the 

fixed and flying checkpoints (UN, 2003). So, they must often use informal routes over hills 

(Bishara, 2015), fields, or dirt routes (Sletten & Pedersen, 2003). The United Nations Office 

for the Coordination of Humanitarian Affairs (OCHA) documented various case studies 

highlighting these three coping mechanisms during the Second Intifada (OCHA, 2003), 

including the journey from Salfit to Nablus. 

Before the Second Intifada, the Salfit-Nablus trip could be completed in 25 minutes along Road 

60. However, with the implementation of mobility restrictions, the journey time increased to 

one and a half hours. The new route begins with a 30-minute taxi trip from Salfit to Yasouf 

earthmound near Tappuah junction. At the earth mound, permit-holders continue to Tappuah, 

wait 20 minutes at the checkpoint, then take another taxi to Huwwara; this takes 10 min. 

Travelers without permits take a 40-minute trip along the Jamma’in dirt road to the Huwwara 

checkpoint (hashed green line). After the checkpoint, they take a 15-minute taxi journey to 

Nablus or take the 8-kilometer hike through the hills, followed by a 15-minute taxi journey 

from Sara Road to Nablus. Figure 5.1 illustrates the journey including the three coping 

mechanisms.  

Another resilience action observed among Palestinians was the adoption of shared traveling 

mode and carpooling to overcome mobility restrictions (Wick, 2011). In response to the 

challenges posed by mobility restrictions, commuters organized themselves into groups to 

share a vehicle and reach their destinations collectively rather than individually driving their 

private vehicles. This approach provided several advantages, including heightened safety and 

exchanging road knowledge and experiences during road closures.  

Shared traveling commonly involves shared taxis, the most frequently utilized mode of public 

transportation in the West Bank (Ministry of Transport MOT, 2016a). Alternatively, 

individuals with similar starting points and destinations coordinated their journeys by sharing 

private vehicles. This enabled convenient planning and coordination while navigating road 

closures and checkpoints. By traveling together in groups, Palestinians were better equipped to 

handle the challenges they encountered, offering support and assistance to one another during 

difficult situations. 

While there may not have been an official representative for carpooling or private shared 

traveling mode in the WB, the practice itself had significant positive impacts. Beyond offering 

a practical solution to the challenges of individual mobility, it fostered a sense of community 

and solidarity among travelers. By sharing vehicles and traveling together, Palestinians could 

establish connections and build relationships with fellow commuters (Bishara, 2015). 

Commuters shared insights about the best routes, alternative paths to bypass obstacles, and 

current road conditions. This information sharing enabled individuals to stay informed about 

potential obstacles and plan their journeys more effectively. 
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Figure 5.1. The route from Salfit to Nablus using an alternative route, multimodal shift, and 

wayfaring 

 

5.1.3.2. Smart Strategies: Using Social Media Platforms  

The advancements in ICT, including the availability of 2G and 3G networks, the rise of social 

media platforms, and the widespread use of smartphones, have enabled the near real-time 

dissemination of valuable information that can be shared publicly among travelers. In the West 

Bank (WB), social media has emerged as a recent and effective approach for promptly 

obtaining road traffic updates and information Champ (youth Media Center, 2023) about 

mobility restrictions.  

Social network sites (SNS) such as Facebook, WhatsApp, and Telegram have become common 

tools for sharing road traffic and restrictions information in the WB. These platforms allow 

users to share updates, images, videos, and other relevant content related to road conditions 

and mobility issues. By leveraging the power of social media and the widespread use of 

smartphones, travelers can access this information conveniently and stay informed about the 

current state of the roads. According to (IPOKE, 2022), 74.6% of WB users use social media 

to be informed about news and recent updates. 
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In 2019, internet usage in the WB was approximately 2.08 million people, representing around 

91.1% of the population aged ten years and above (PCBS, 2020). The widespread accessibility 

of smartphones is notable, with 72% of the WB population aged ten and above owning 

smartphones and around 69.3% of households in the WB having internet access through 

cellular phones (PCBS, 2019). This high level of smartphone usage and internet accessibility 

creates a significant opportunity for Palestinian travelers to become a valuable source of 

volunteered geographic information (Tavra et al., 2021) by sharing road traffic and mobility 

restrictions information through social media platforms like Facebook, WhatsApp, Telegram, 

and Twitter. 

According to (IPOKE, 2022), Facebook and WhatsApp are WB's most popular social media 

platforms regarding user engagement, with approximately 92% of internet users utilizing 

Facebook and 90% using WhatsApp. Regarding sharing information about road traffic and 

mobility restrictions, Palestinian social media users have gradually shifted their preferences 

based on the recent updates and features offered by different platforms. Several key principles 

contribute to achieving users' trust and satisfaction, including: 

• Privacy, since sharing road traffic and mobility restrictions information can sometimes 

involve sensitive details; users seek platforms ensuring that their shared information 

remains secure and accessible only to the intended audience.  

• Organized Architecture. The ease of finding recent updates becomes essential for users 

seeking real-time information about road conditions and mobility restrictions.  

•  Wide Reachability. The ability to reach a broad audience is crucial for disseminating 

information on road traffic and mobility restrictions.  

 

In the case of Facebook, users find that Facebook becomes an unsuitable platform for sharing 

road traffic and mobility restrictions information for several reasons. Firstly, the reach of shared 

information on Facebook is subject to algorithms that control visibility (Bucher, 2012). This 

means that the reach of shared content, including sensitive information, can be restricted, 

resulting in reduced effectiveness in disseminating information. Palestinian content has 

experienced numerous violations, with 52% occurring on Youth (youth Media Center, 2023). 

Additionally, Facebook's features, such as public and private groups, may not be optimal for 

sharing real-time updates, including information on mobility restrictions. Users may need to 

refresh their news feeds manually or rely on notifications, potentially causing delays in 

accessing critical information. Moreover, Facebook's privacy settings and restrictions can limit 

the accessibility of road traffic updates. Also, information shared within closed or private 

groups may not reach a wider audience or individuals who could benefit from the updates 

(Facebook Help Center, 2023). 

Given the limitations of Facebook, alternative social media platforms such as WhatsApp have 

become famous for sharing information about road traffic and mobility restrictions. WhatsApp 

offers features that prioritize privacy, including end-to-end encryption of messages and calls 

and a message disappearing feature (WhatsApp, 2022). It also provides real-time updates 

through instant messaging (Purkayastha & Chanda, 2018), allowing users to share text, photos, 

videos, and voice messages. As a result, Palestinian small groups are formed among frequent 

commuters, sometimes dedicated to sharing traffic information for specific origin-destination 

routes or roads. 
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While WhatsApp offers instant and private traffic data-sharing advantages, it is also subject to 

certain limitations. These include a group size limitation, with a maximum limit of 1024 

members per group (Schroeder, 2022). This constraint can pose challenges when attempting to 

reach a wider audience. Additionally, WhatsApp's search capabilities are limited, making it 

difficult to find specific information within large group conversations quickly. Retrieving past 

updates or obtaining specific details about road closures or alternative routes may be time-

consuming and inefficient. 

In late 2013, the Telegram App was officially launched for public use, and simultaneously, a 

new public channel dedicated to sharing road traffic information and mobility restrictions 

emerged in WB. This led to a collective migration from WhatsApp to Telegram; the interaction 

rate with the Telegram application reached 37.3% of the total internet users in Palestine 

(IPOKE, 2022), indicating a significant adoption compared to other social media platforms. 

For example, in the public Telegram group, the members reached 81,000 users quickly. Figure 

5.2 shows the statistics of a public Telegram group for sharing road traffic and mobility 

restrictions. 

 

Figure 5.2. Increase in the Telegram group membership for sharing road traffic news and 

mobility restrictions, (Ahwaltareq, 2022) adapted by the author 

Telegram's popularity in Palestine is attributed to its capacity to address the shortcomings of 

other platforms. Unlike Facebook, Telegram provides better privacy protection, minimizing 

concerns about information leakage and content restrictions. Additionally, Telegram 

overcomes WhatsApp's limited group size limitation, allowing for better organization and 

larger-scale information sharing. Moreover, Telegram offers improved search capabilities, 

making it easier to locate and retrieve specific information within conversations (Khaund et 

al., 2021). Therefore, using Telegram for sharing road traffic information is marked as the most 

organized and effective action to cope with mobility restrictions in the West Bank.  
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Generally, using social media to share road traffic and mobility restrictions has limitations, 

including limited access to geolocated data as most of the transmitted data is textual or image-

based, limited coverage as the data is limited to users who actively participate in the groups 

and chats, lack of structure, which makes it challenging to gather and analyze data consistently, 

and limited data analysis since social media groups and chats do not provide transportation 

authorities with a centralized platform to collect and analyze road traffic data. This makes it 

challenging to monitor traffic patterns and make informed decisions about traffic management. 

The previous discussion revealed that despite the technological capacity of individuals and 

communities in the Palestinian territories, humble efforts were dedicated to using smart 

technologies to tackle the challenge of mobility restrictions. No platform or application was 

developed to comprehensively address this issue, which could provide mobility services during 

the restrictions event. Hence, the methodology of developing smart solutions presented in the 

smart and resilient mobility service (SRMS) platform will be applied in the Palestinian 

territories, West Bank, as will be elaborated in the following section. 

 

5.2. Application of SRMS in West Bank, Palestine  

 

5.2.1. Overview 

The application of the Smart and Resilient Mobility Services (SRMS) platform in the West 

Bank's mobility system is driven by the ongoing high mobility restrictions and their significant 

impact on the population's lives. These restrictions result in long travel distances, delays, safety 

concerns, and adverse socioeconomic and environmental consequences. By implementing 

SRMS, the aim is to alleviate the negative effects of mobility restrictions and enhance the 

resilience and well-being of interurban mobility in the region. 

The West Bank possesses several factors that make it suitable for successfully implementing a 

spatial crowdsourcing application like SRMS. Firstly, there is high accessibility to smartphones, 

with approximately 72% of the West Bank population aged 10 and above owning smartphones 

equipped with GPS sensors (PCBS, 2019). Secondly, there is a significant level of digital 

knowledge, with 51.4% of the population capable of sending photos and videos via the Internet. 

Thirdly, there is high accessibility to the Internet, around 91.1% of West Bank residents aged 

10 and above use the Internet at least once a day, with approximately 98% accessing the Internet 

through smartphones. Fourthly, cellular internet access is widely available, with around 35.4% 

of WB residents connected to Third-generation mobile phone networks (3G), and 34% 

connected through Israeli cellular companies (PCBS, 2019). 

 

5.2.2. SRMS User-Centered Design  

This section highlights the application of the user-centered design (UCD) approach using 

personas and scenario techniques. An online survey was conducted in early 2021 to implement 

this approach, targeting Palestinian travelers in the West Bank. The decision to use an online 



 

113 

 

 

survey was driven by several factors, including the physical distance of the researcher from the 

study area, cost-effectiveness, convenience, high accessibility, and the ability to ensure data 

accuracy (Braun et al., 2021). 

This survey aimed to investigate information about the SRMS potential users from different 

perspectives (Sim & Brouse, 2015), including; (i) personal profile (age, education, profession, 

etc.), (ii) traveling characteristics including (cost, frequency, time, and mode); (iii) travelers 

need and preparedness, this includes (traffic information sources, cellular internet access, main 

mobility issues, interests in smart solutions to overcome these issues, willingness to engage 

with the proposed solutions). This will tailor the design and features of the proposed smart 

solution.  

The survey sample size was determined based on the population size, expected proportion, and 

desired confidence level to achieve a representative sample that can generalize the findings to 

the larger population. For this study, the population for this survey consists of Palestinian 

interurban travelers experiencing mobility restrictions while traveling for working or studying 

purposes in the West Bank.  

Finding the proportion of commuters in the WB excludes travelers from Jericho and Jerusalem 

due to limitations in obtaining information. In addition, it excludes the commuters to the 

settlement and Israel since the study focused on interurban mobility in the WB. Hence, the 

population size was reported to be 592,966, which formed a proportion of 9% according to 

statistics obtained from the Palestinian Central Bureau of Statistics (PCBS, 2022b). Based on 

these parameters, the survey sample size was calculated to be 126 to ensure a 95% confidence 

level. This means that if the survey was repeated multiple times, 95% of the time the results 

would fall within a certain margin of error, providing reasonable confidence in the findings. 

Around 185 responses were collected and preprocessed. Preprocessing involved eliminating 

incomplete and inconsistent responses. By removing these responses, the dataset was refined 

to include only valid and reliable data, 129 responses. 

 

5.2.2.1. Travelers profile 

The survey sample is classified into three age groups, including (i) young adults aged 20-35, 

accounting for 84.4%, (ii) middle-aged adults aged 36-55, make up 8.5% of the sample, while 

(iii) older adults aged 56 and above comprise 6.9%. Regarding the educational level, the 

majority of the sample, 93%, have a university education, while 7% have finished secondary 

school. The professional status could be summarized as more than half are full-time, 54.2%, 

6.2% are part-time, and 12.4% are unemployed. Around 26.3% of the sample consists of 

students. Figure 5.3 shows the travelers' profile information.   

From the general profile, the sample comprises mainly active young adults, well-educated and 

working professionals. This means that this category has specific preferences and expectations 

compared with other age groups when tailoring the design and features of the SRMS platform. 

They are typically enthusiastic, familiar with smart technology, and comfortable with digital 

platforms. These characteristics refined the design and features of the proposed SRMS 

platform. It should include intuitive user interfaces, interactive elements, mobile compatibility, 
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social sharing capabilities, and easy navigation and access to its features even with limited 

time. 

 

Figure 5.3. Participants personal profile 

 

5.2.2.2. Traveling characteristics 

Figure 5.4 shows the traveling characteristics, including traveling cost, time, frequency, and 

mode of transportation. Most of the sample, 62.9%, commute at least once per week: 39.6% 

traveling daily and 23.3% traveling weekly. 14% of the sample reported traveling monthly, 

while 23.1% traveled less frequently than that. 

Regarding traveling time during weekdays, 44% of the sample reported traveling for less than 

an hour. This percentage decreases to 27% during weekends. Approximately 34% of the 

respondents spend 1-2 hours traveling on weekdays, which increases to 42.6% during the 

weekend. For 12.4% of the sample, weekday traveling time exceeded 3 hours, while it reached 

21% during weekends. Around 9.2% traveled more than 3 hours, with a similar percentage on 

weekends. 

The traveling cost could be classified into four categories, including (i) majority spending 

range, forms 35% who are spending between 200-400 ILS, which could be considered 

moderate travel cost; (ii) higher spending range, around 24% of the sample spends more than 

600 ILS, which is considered expensive commute, (iii) intermediate spending range, around 

18.6% spend between 400-600 ILS; (iv) lower spending range, forms 21.6% of the sample 

spend less than 200 ILS. Overall, these findings indicate that the survey sample exhibits 

varying traveling costs. 

Regarding the traveling mode, around 36.4% used public transportation only, including (bus, 

shared taxi, and cab taxis), while the majority used multi-modes, including private cars, 
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carpooling, public transport, and active modes with variate percentages 44.8%, 28.7%, and, 

15.1%, and 11.4% respectively. These findings indicate that the survey participants utilize 

diverse transportation modes, with multi-modal travel being the most common approach. 

These findings indicate that most participants regularly travel either daily or weekly. Also, 

results show that the commuting times differ between weekdays and weekends, with longer 

commutes during weekends. This suggests that the platform features should provide continuous 

information for travelers, such as real-time information on traffic conditions and route 

planning, which helps optimize traveling time effectively. Additionally, when designing the 

SRMS platform, it's important to consider the needs of users who engage in multi-modal travel, 

providing features that facilitate planning and coordination across different modes. 

 

Figure 5.4. Participants traveling characteristics 

 

5.2.2.3. Travelers' interests and willingness 

This section investigates participants' interest in urban mobility issues and the proposed 

solutions. Some of these are related to the SRMS objectives This will provide insight into the 

participants’ expectations. Also, this section investigates the participants' willingness to 

interact with the proposed solution. The platform features were included among these solutions, 

such as using the mobile app for real-time information about mobility restrictions. 

The survey used a significance ranking approach, ranging from 1 (less significance) to 5 (high 

significance). However, considering the frequency of responses and the proximity of results, 

the maximum-to-minimum value ratio was considered. The outcomes are depicted in Figure 

5.5. The participants' viewpoint reveals that the most mobility concerns are efficient public 

transport and comfort, traveling safety, traveling time, and waiting time at transit public 
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stations. Subsequently, there is a notable emphasis on the importance of real-time information 

about traffic and public transport. 

Based on the ranking of significance solutions, the notable solution identified by participants 

is the need for a mobile app that can provide real-time information about traffic and public 

transport. Approximately 73% of the participants rated this solution highly significant, with 

ratings of 4 and 5. Regarding the participants' preparedness for these proposed solutions, more 

than half (59%) own smartphones, indicating a high level of technological readiness to utilize 

mobile apps for urban mobility purposes. 

Furthermore, 62% expressed willingness to share real-time traffic information, while 59% were 

willing to share traveling safety information. This indicates a positive attitude towards actively 

participating in providing and receiving relevant information to improve the overall urban 

mobility experience. 

Additionally, the study found that no common mobile app is used for providing real-time 

information. Instead, approximately 60% of participants rely on social media platforms for 

accessing such information. 

 

Figure 5.5. Significance of mobility issues and proposed solutions from participants' points 

of view 

          

5.2.3. SRMS Mobile Web App  

The SRMS was designed using ArcGIS Experience Builder. This user-friendly web 

development platform allows users to create and share web applications, maps, and dashboards 

without extensive coding knowledge (Esri, 2023a). While there exist alternative solutions for 

crafting web applications for data visualization, such as Google Data Studio, Bubble, and 
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Mapbox, these options do come with certain limitations. They may lack the capability to 

perform geospatial analysis tasks and efficiently retrieve and integrate GIS data. On the other 

hand, Esri's ArcGIS Online offers several web application builders, including Web 

AppBuilder, as well as other configurable applications. However, it's worth noting that ArcGIS 

Experience Builder stands out in its ability to efficiently create customized widgets and 

seamlessly integrate with ArcGIS Survey123. 

ArcGIS Experience Builder is a compatible design solution due to the following capabilities; 

(i) providing the principles of Progressive Web Apps (PWA), including flexible, responsive 

design framework and modern interactive interface based on widgets, (ii) providing mobile 

optimization with the mobile adaptive design; (iii)  easily integrated with the GIS data to 

provide location-based services; (iv) engage user in real-time through configurable widgets 

that can interact with data and content to optimize the end-user experience.  

The design of the SRMS web mobile app was based on the user-centered design (UCD) 

approach and interaction model (MoLIC) that was previously explained in the methodology. 

The first version of the web mobile app was created and shared with a sub-group of potential 

users to receive their comments and recommendations. Considering their feedback, the final 

version of SRMS was designed. The architecture of the SRMS UI design is depicted in Figure 

5.6 The user interface was designed as a foldable template featuring a simple interface focused 

on the map.  

Using the ArcGIS Experience builder, the architecture of SRMS UI was converted into a real-

web mobile application, as illustrated in Figure 5.6. The main components and features of the 

application are the following: 

 

Figure 5.6. The final version of SRMS UI architecture and the real application 
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• The anchored welcoming window provides the users with a summary of the SRMs platform 

and its objectives, and it includes the terms of use (SRMS, 2023b) and privacy policy 

(SRMS, 2023a) as a privacy and quality protocol in the SRMS app, Figure 5.7. 

 

• Base Map: SRMS basemap is a web map with various geographical elements sourced from 

an external spatial database. These elements include a topographic map of Wet Bank (WB), 

Palestinian communities, WB road networks, Israeli settlements, prohibited roads (Israeli 

roads), fixed mobility restrictions, tunnels, and the separation wall, as illustrated in Figure 

5.8. 

The sources of these elements were obtained from open and authoritative sources. Open 

sources such as the Israeli Information Center for Human Rights in the Occupied Territories 

(B'TSELEM) and The United Nations Office for the Coordination of Humanitarian Affairs 

(OCHA) both sources are non-profit organizations for monitoring the violation of human rights 

in the WB. The authoritative sources are presented in the Ministry of Transport (MoT), 

Ministry of Public Work and Housing (MPWH), and the Geospatial web mapping application 

of the Ministry of Local Government (Geomolg) (Geomolg, 2012).  

The basemap provides an informative environment and acts as a repository for the spatial 

database, with updated attributes (back to the year 2018) for each element that can assist 

decision-makers in planning development. Table 5.1 shows the data of the SRMS base map, 

source attributes, and formats.   

Table 5.1. Basemap data, sources, attributes, and formats 

Geographic 

element 

Data Source Attributes Data Format 

WB Road MoT, 

MPWH 

Name, start and end, 

classification (local, regional, 

main), length, width, 

governorate, technical 

specification (expansion, 

maintenance, pavement, 

lighting, traffic signal, 

painting, notes), detection date. 

Esri linear 

Shapefile: 

SHP. 

 

Palestinian 

Communities 

GeoMoLG Name, governorate, area. 

 

Esri polygon 

Shapefile: 

SHP. 

Israeli 

Settlement 

GeoMoLG Name, governorate, 

population, establishment year, 

area. 

Esri polygon 

Shapefile: 

SHP. 

 

Mobility 

Restriction 

OCHA, 

B’Tselem 

Name, type (checkpoint, flying 

checkpoint, road gate), 

governorate. 

Esri point 

Shapefile: 

SHP. 
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Separation Wall OCHA Status, type (fence, concrete), 

length. 

Esri linear 

Shapefile: 

SHP. 

Tunnel MoT Name, description, status. Esri point 

Shapefile: 

SHP. 

 

• Reporting Features: Widgets designated for reporting different types of mobility 

restrictions, including checkpoints, road gates, settlers’ violence, and traffic 

congestion. It also allows reporting of informal routes. These reporting widgets are 

linked to the spatial crowdsourcing tool, ArcGIS Survey123, enabling the mapping 

of reported mobility restrictions and informal routes. 

 

• Maps widgets: Widgets used for interacting with the map, such as a legend, basemap 

layers, search functionality, and a direction widget. The direction widget enables 

route planning with three different categories: safest, fastest, and emergency routes. 

 

• Subscription and dashboard buttons: Located in the upper panel, the subscription 

button allows users to subscribe to the Restriction Notification System (RNS). The 

RNS is connected to a form-centric data system that collects users' information, such 

as their interest restrictions and email addresses. The dashboard button leads to an 

informative web page displaying a summary of the reported data during the day and 

the temporal distribution of traffic congestion. 

 

• Map elements: Necessary map tools for facilitating the navigation with the basemap, 

including zooming in and out and detecting the user's current location. 
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Figure 5.7. SRMS terms of use and privacy policy 

 

 

Figure 5.8. Basemap data attributes 
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5.2.4. SRMS Services  

This section focuses on SRMS services, including (i) real-time mapping of mobility restriction 

and notification system; (ii) mapping the informal routes; (iii) route planning service.  

5.2.4.1. Real-Time Mapping of Mobility Restriction and Restriction Notification System 

(RNS) 

The real-time mapping of mobility restrictions relies on collecting event descriptions, locations, 

and times from data obtained through the SRMS mobile application and Telegram data. The 

first subsection of this chapter demonstrates the real-time mapping of restrictions using the 

SRMS platform. The second part presents the application of real-time mapping of mobility 

restrictions using Telegram data. The third subsection introduces a validation technique for 

real-time mapping using Telegram data. The final subsection discusses the implementation of 

the Restriction Notification System (RNS).  

i. Real-Time Mapping of Mobility Restriction Using SRMS web mobile app 

Users can access the mapping service by visiting the SRMS, where reported data is visualized 

with custom colors based on the event types (checkpoint: red, road gate: green, settlers’ 

violence: blue, traffic congestion: purple) as shown in Figure 5.9. The map displays real-time 

events reported by users and remains visible for 24 hours before being removed. Users can 

zoom in and out of the map to view events at different scales and filter events by type using 

the interactive layer widget on the right side of the screen.  

 

Figure 5.9. Reported mobility restrictions 
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To report a mobility restriction, users can select one of the restriction-type icons provided in 

the reporting features of the SRMS platform. This action will redirect them to a reporting page 

developed using ArcGIS Survey123. The reporting page captures essential information about 

the mobility restrictions, including the restrictions' description, location, and time.  

The reporting page is designed to minimize user intervention. The date and time fields are auto-

filled with read-only features to ensure the accuracy of timestamp data. This reduces the 

chances of user error or manipulation. Additionally, with the user's permission, the location 

field is auto-detected based on the GPS mobile data. This feature saves users from manually 

inputting their location and helps ensure the accuracy of the reported event's location 

information. Figure 5.10 visualizes this reporting page and its features. Additionally, users can 

record a voice note to provide additional details about the reported event. 

 

Figure 5.10. Reporting page, submission confirmation message, and reporting results in 

SRMS application 

ii. Validation of Real-Time Mapping of Mobility Restriction Using SRMS Data  

Although the SRMS platform has not been officially released to the public, it was shared with 

a group of daily commuters experiencing various mobility restrictions for a two-week for 

service validation purposes. During this time, the platform received 35 reports related to 

checkpoints, settlement violence, road gates, and traffic congestion. The distribution of these 

reports is depicted in Figure 5.11. 
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Figure 5.11. Restriction reports submitted to the SRMS platform 

The validation of these reports involved the application of two data quality assurance methods: 

the spatial clustering method and the third-party database method. The spatial clustering 

method was used for reports related to traffic congestion, while the third-party database method 

was applied to reports related to checkpoints, road gates, and settler violence. Both methods 

were implemented using the geoprocessing capabilities of ArcGIS Pro 3.1. 

For the spatial clustering of traffic congestion reports, the HDBSCAN (Hierarchical Density-

Based Spatial Clustering of Applications with Noise) algorithm was employed (Ye et al., 

2021). This method constructs a hierarchy of clusters with varying levels of granularity, 

ranging from fine-grained to coarse-grained clusters. HDBSCAN utilizes a cluster stability 

measure to determine the optimal number of clusters within the data. This measure assists in 

identifying clusters that are robust and well-defined, while clusters that fail to meet the stability 

criteria are classified as noise (L. Wang et al., 2021). 

The analysis results indicated the presence of two main clusters and one noise. The first cluster, 

characterized by a high stability value of 0.64, comprised 10 submitted reports, accounting for 

67% of the total reports. The second cluster, with a stability value of 0.11, consisted of 4 

reports, representing 27% of the submitted reports. The remaining 6% of the submitted reports 

were classified as noise, as depicted in Figure 5.12, and visualized in Figure 5.13. It is worth 

noting that while the analysis focused on spatial clustering, the inclusion of temporal aspects 

in the analysis was limited due to the availability of data. In future work, once the platform is 

launched for public use, the spatiotemporal analysis will be conducted. 
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Figure 5.12. Distribution of stability of observed clusters 

 

Figure 5.13. Spatial clustering of traffic congestion reports 

For the third-party spatial database method, the spatial distribution of fixed and temporary 

checkpoints, road gates, and settlement polygons served as the spatial reference for validating 

SRMS reports related to checkpoints, road gates, and settler violence. Given the available 

SRMS data, this method was deemed sufficient for validating the real-time mapping of 

mobility restrictions. 

The validation process began by creating a buffer zone around each type of referencing 

mobility restriction and Israeli settlements, as depicted in Figure 5.14. The purpose of this 

buffer was to define an acceptable spatial distance within which each report should fall to be 

considered valid. This distance depends on various factors, including stopping distance and 
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visibility conditions that influence drivers' or passengers' perceptions. In this particular study, 

the buffer distance was set to 250 meters from both the mobility restrictions and settlements. 

As a result, reports located within this buffer zone or touching its boundaries in relation to the 

mobility restrictions were deemed validated reports, Figure 5.15. 

The analysis results for the 20 submitted reports reveal that (i) for checkpoint reports, 11 out 

of 13 reports were located within the accepted buffer distance, representing an 85% validation 

rate; (ii) for road gate reports, all three submitted reports were located within the accepted 

buffer distance, resulting in a 100% validation rate, (iii) regarding settler violence reports, only 

one out of four reports were located within the buffer distance, accounting for a 25% validation 

rate. 

It's worth noting that the lower validation rate for settler violence reports may be attributed to 

the nature of the restriction being assessed, as settlers typically have a mobile nature, which 

differs from the fixed and stationary nature of road gates or checkpoints. This mobility can 

make it more challenging to accurately capture and validate reports related to settler violence. 

 

Figure 5.14. Buffer area with radius 250 around the reference mobility restrictions 
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Figure 5.15. Results of the validation process for checkpoint, and road gate reports 

iii. Real-Time Mapping of Mobility Restriction Using Telegram Data  

The application of real-time mapping of mobility restrictions using Telegram data involves 

using the Telegram Public group "Ahwaltareq" (Ahwaltareq, 2022) for sharing mobility 

restrictions and road information. This group has a significant number of members, reaching 

around 100,000, making it a valuable data source. 

The application involves developing a Python script using libraries and modules, including 

language processing, Telethon, geocoding, and mapping services. The script, which performs 

Telegram text analysis and mapping, can be found on GitHub in the repository by the author 

(Aburas, 2023a). The developed Python script comprises five sequential steps, including (i) 

message retrieving; (ii) text processing; (iii) text analysis and truth revealing; (iv) geocoding 

the extracted checkpoints; (v) mapping of geocoded checkpoints.   

a. Message Retrieving 

 

This is the initial step to retrieve the messages from the Telegram public group. It used the 

Telethon library (Telethon’s Documentation, 2023), which allows interaction with the 

Telegram API to get messages from the group. The code uses a specific time range, which is 

one hour, to get the relevant data to get the near-real-time messages and avoid unnecessary 

computational processing, the messages will be retrieved with their time stamp, and then they 

will be stored in a dictionary for further processing and analysis, as illustrated in Figure 5.16. 
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Figure 5.16. Message retrieving phase and its application 

b. Text Processing  

 

This phase concerns processing and analyzing the retrieved messages using Natural Language 

Toolkit (NLTK) modules for Arabic text processing. NLTK is a leading Python package for 

working with human language data (Kang et al., 2020). This phase includes developing a 

function for text processing, which does the following (a) removing the numbers and special 

characters using a regular expression module; (b) tokenizing the text into individual words, (c) 

removing stopwords from the list of words. It is worth mentioning that removing the special 

characters excludes the question mark to conserve the integrity of the question. Figure 5.17 

illustrates the message processing phase and its outputs. 

 

Figure 5.17. Message processing phase and its application 

c. Text Analysis 

 

Text analysis extracts valuable information from the processed text. It uses regular expressions 

to detect patterns in the Arabic text, specifically those with a checkpoint name followed by its 

status (e.g., open, closed, congested, etc.). this phase involves creation keywords to be used in 

the regular expressions. A list of keywords was subsequently compiled, containing the top 

words used to describe status and its synonyms. These words comprise a mix of both Modern 

Standard Arabic (MSA), the official Arabic language used in literature (such as books, 

newspapers, and magazines), and Dialectal Arabic (DA), which represents the spoken language 

used by Arabs in their informal daily communications. It's worth noting that DA varies from 

one community to another (Alkhatib et al., 2019). 
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For example, the word 'open' may appear in messages under different synonyms, combining 

MSA and PA (Palestinian Arabic) words, such as 'salik,' 'salkeh,' and 'maftouh,' all of which 

mean 'open' in MSA and Palestinian DA. Similarly, the closed status includes terms like 

'mughlaq,' 'mughlaqa,' 'ighlaq,' 'msakkar,' 'msakkreh,' and others. Congestion status is 

represented by words like 'azmeh,' 'ma’azem,' 'mazem,' 'sayie',' 'sayie'a,' and more. In cases of 

violence incidents, words like 'muwajahat' and 'mustawtineen' are identified. The list of 

keywords will be continually updated and expanded as new words come into use. 

After creating the keywords, a dictionary is established to store the latest status for each unique 

restriction name. To achieve this, regular expressions are employed to detect patterns in Arabic 

text, specifically those indicating a mobility restriction followed by its status. In this phase, the 

code runs a loop over all the processed text's listed rows to search for patterns in the text data. 

When a match is found, it captures both the restriction's name (via 'match.group(1)'), which 

can include one, two, or three words, and the restriction's status (via 'match.group(2)'). 

The extracted restriction names are checked for repetition, and if duplicates are found, the 

timestamps are compared to ensure that the most recent timestamp is added to the dictionary. 

Based on the data in the dictionary, three lists are created: 'checkpoints,' 'statuses,' and 'times'. 

Figure 5.18 provides a visual representation of this process. 

 

Figure 5.18. Text analysis phase and its application 

d. Geocoding Checkpoint Names  

 

After extracting the information from the text, the code proceeds to geocode the extracted 

restriction names, which converts textual location information into geographic coordinates 

(latitude and longitude) (Salazar‐carrillo et al., 2021). This step is necessary for accurately 

mapping the extracted checkpoints onto a geographical map. However, it is important to note 

that due to limitations in the availability of data within geocoding services, certain geographic 

locations, particularly checkpoints and road gates in the Palestinian territories, may not be 

found in the service database. 

To address this challenge, the methodology leverages the characteristics of restriction names 

in the Palestinian territories, where most restrictions are typically named based on their 

proximity to adjacent communities. For instance, you have checkpoints like the Huwara 

checkpoint near the Huwara town, the Za'tara checkpoint near the Za'tara village, the Azzoun 
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gate near Azzoun village, and so forth. This naming convention greatly assists in identifying 

the locations of these restrictions. 

As a result, the geocoding process relies on a reference list of community and location names 

where these restrictions might be situated. This reference data has been extracted from the 

Ministry of Local Government (MoLG) in the form of a CSV file, which serves as a gazetteer 

for deducing restriction locations. The process involves matching the location names to the 

detected restrictions, thereby geolocating them. The code has been developed to search for 

matches between the names in the CSV file and the previously generated list. For each matched 

checkpoint name, the most recent status is determined by sorting the associated timestamps in 

descending order. 

For geocoding, we utilized the Nominatim geocoding service, an open-source software 

developed by the OpenStreetMap (OSM) project. Nominatim is available in the 'geopy' Python 

package and supports several popular geocoding services. It includes geocoded training data 

for OSM Nominatim, Google Geocoding API, and various other geocoding services (Verma, 

2022). Nominatim is available in the 'geopy' Python package and supports several popular 

geocoding services.  

To ensure the accuracy of geocoded points, the geocoding process was bounding with lower 

latitudes and longitude and upper longitude and latitude of the West Bank region, which are 

(34.925884, 31.343141, 35.554562, 32.549246). The restriction name, matched restriction 

name, status, timestamp, latitude, and longitude.  

 

Figure 5.19. Geocoding checkpoint names 

e. Checkpoint Mapping 

 

The last phase focuses on mapping the results obtained from the previous steps to ArcGIS 

Online using the ArcGIS API. The code is designed to create a web map and add the geocoded 

results as points on the map. The geocoded results are transformed into a dictionary format 

with the required geometry (latitude and longitude) and attributes. The geometry dictionary 

utilizes the spatial reference system Palestine1923 (WKID:4281) to ensure accurate positioning 

of the points on the map. 
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The dictionary format is then converted into a feature that serves as a web map layer. The 

feature contains the geometry and attributes of each geocoded point. Adding the feature layer 

to the web map makes the geocoded checkpoints visualized on a map within ArcGIS Online. 

Once the geocoded checkpoints are visualized on ArcGIS Online, they will be linked to the 

SRMS application on the ArcGIS Experience Builder. Figure 5.20 illustrates the process and 

application of checkpoint mapping. Figure 5.21 visualizes the final layout of geocoded 

checkpoints on SRMS application.  

 

Figure 5.20. Checkpoints mapping on ArcGIS Online 

 

Figure 5.21. Geocoded checkpoints on SRMS application 
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iv. Validation of Real-Time Mapping of Mobility Restriction Using Telegram Data  

Validation of the service of real-time mapping using Telegram data was conducted in two 

phases; (i) validation of the Telegram data analysis; and (ii) validation of the geocoding 

processing. Validation of the performance of the developed Telegram data analysis code was 

applied by preparing the test dataset as cross-reference data, which contains the sample of 

Telegram messages returned for the time 14:39-15:39 on 15th of July, 2023. The Telegram test 

dataset included 27 messages with different checkpoint names, statutes, and time stamps, as 

illustrated in Figure 5.22. 

According to the developed code, the shaded rows are expected to be detected by the script 

since these 11 rows of data present unique checkpoint names (not duplicated) with the most 

recent time stamp and its status. After running the code on the test dataset, each message was 

processed to extract the checkpoint information. The results are illustrated in Figure 5.22, 

which shows that the code detected eight checkpoints with their status and time stamps. By 

comparing the detected results with the expected results, the accuracy of the code could be 

assessed, which is 73%. 

Regarding the validation of the geocoding process, it is expected that the detected checkpoints 

listed on the right of Figure 5.22 will be geocoded to their coordinates (latitude, longitude). 

However, the geocoding process assigns coordinates to only five out of eight locations, 

resulting in an accuracy rate of 62.5%, as illustrated in Figure 5.23. The challenge in the 

geocoding process arises from using names familiar among Palestinian travelers. Still, it cannot 

be found in the geocoding service, such as abbreviations for Israeli settlements or checkpoints. 

This difficulty in geocoding such names impacts the overall accuracy of the geocoding process. 

 

Figure 5.22. Telegram test dataset and data analysis results 
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To address this challenge and improve geocoding accuracy, it is proposed to create a dictionary 

or lookup table for commonly used geographic names by travelers. This dictionary can include 

mappings between the familiar names in the text data and the corresponding official names or 

geographic coordinates. By incorporating this additional reference information, the geocoding 

process can achieve a higher level of accuracy by properly identifying and mapping these 

commonly used locations. 

 

Figure 5.23. Geocoding process results 

v. Restriction Notification System (RNS) 

The RNS service was created using Python 3.11. The Python script and configuration file are 

hosted on a Desktop computer that runs continuously. To maintain the continuous operation of 

the RNS service, it is necessary to host both the Python script and the configuration file on a 

machine that is constantly connected to the internet. To automate the execution of the script, 

the Windows operating system's Task Scheduler runs the script automatically every 5 minutes. 

This ensures that the script is regularly executed to check for updates in subscribed restrictions.  

To subscribe to the RNS service, users can select the icon on the UI (Notify Me) in Figure 5.24 

and choose one or more restriction types. Whenever a change occurs in the subscribed 

restrictions, an email will be sent to the subscribed users, showing the type of updated 

restriction and its location, as illustrated in Figure 5.24. 
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Figure 5.24. RNS subscription system and the email body sent to RNS subscribers 

 

5.2.4.2. Mapping of Informal Routes  

Mapping informal routes is closely similar to mapping mobility restrictions in the SRMS. To 

access the mapping informal route service, users can visit the SRMS platform to visualize the 

pre-drawn routes, as shown in Figure 5.25. These routes are accompanied by relevant 

information, such as the report type (new or modified), device ID, timestamp, and reporting 

date. This service is designed to function offline, allowing users to save the routes within the 

application. Later, when internet connectivity becomes available, the saved routes can be easily 

submitted. 

To start the route mapping process, users must select the informal route icon within the 

reporting features of the SRMS platform. This action will redirect them to a dedicated drawing 

page created using ArcGIS Survey123. Users can input essential information about the 

informal route on this page, including the auto-filled detailed reporting description and the 

observation time. Additionally, users can record a voice note or write comments, providing 

further context and details about the reported event. Figure 5.25 illustrates the layout of this 

drawing page and its various features. 
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Figure 5.25. Mapping informal route service 

 

5.2.4.3. Route Planning Service  

This section focuses on applying the SRMS's third service, the route planning service, which 

aims to optimize users' travel by minimizing risk, time, and distance costs. The section begins 

by introducing the application area of this service and outlining the necessary data along with 

their respective sources. Following, it presents the data processing and analysis phase, which 

concerns the construction of the route planning model to determine three categorized routes: 

the emergency route, the safest route, and the fastest route. 

i. Application Area 

 

This study concerned the network of Nablus Governorate, Figure 5.26. This part of the road 

network witnesses a high-risk rate presented in the risk of settlers-related violent incidents and 

mobility restrictions. According to the OCHA report (OCHA, 2023), the Nablus governorate 

witnessed the highest risk of settlers-related incidents against Palestinian civilians. From 2021 

till early 2023, Nablus governorate forms around 30% of Palestinian fatalities from settlers-

related incidents. The severity of this risk became more significant with the heavy traffic 

volume (Al-Sahili & Dwaikat, 2019) since it includes part of Road 60, a main road connecting 

the north of the WB with the south (black line) in Figure 5.26.  

Besides the risk-related settler violence, this area is exposed to risk-related mobility restrictions 

related to three permanent checkpoints (Yizhar-Huwwara, Yitzhar-Jit, and Beita Junction), as 

illustrated in Figure 5.26. Also, the study area is exposed to various movement restrictions, 
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such as flying checkpoints, road gates, roadblocks, and earth mounds. So, this part of the road 

is a representative sample study of mobility along the road network in the WB. 

 

Figure 5.26. Route planning service application area 

For facilitating further processing and analysis, the road sample was converted into a graph 

model G = (V, E), where V is the set of nodes, and E is the set of edges. The graph model was 

created using the capabilities of ArcGIS Pro 3.1, as illustrated in Figure 5.27. The graph 

composes of 16 edges (a1, a2, a3, a4,…, a16) and 13 nodes (v1, v2, v3, v4,…, v13). 
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Figure 5.27. Graph model of road sample study 

ii. Data Sources and Collection 

 

The route planning service relies on various data sources. Firstly, the Observation dataset 

supplies real-time reported information, including checkpoints, road gates, settlers’ violence, 

and traffic congestion. This data is used to identify restrictions as obstacles in the route 

planning model. Additionally, the dataset includes permanent data related to informal routes, 

which becomes an essential component of the routing model. Secondly, the knowledge dataset 

provides the users' feedback to indicate the quality of the provided services through the 

deviation from the advised routes. 

Thirdly, the service depends on the external spatial database (ESDB) to obtain data from open 

and authoritative sources. ESDB includes physical and environmental road data, historical 

mobility restrictions, and settler-related violence. This data will be crucial in quantifying the 

risk on different road segments. Table 5.2 provides the needed data and sources for applying 

the route planning service. Table 5.2 provides the needed data and sources for applying the 

route planning service. 

Table 5.2. Data sources of route planning service 

Data Storage Data Description Data Source Data Format 

CCDB: 

Observation 

Dataset 

Real-time reported 

mobility restrictions: 

Checkpoints, settlers’ 

violence, road gate, traffic 

congestion. 

SRMS’s User Point feature layer 
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Informal route. SRMS’s User Linear feature layer 

CCDB: 

Knowledge 

Dataset 

 

Users feedback SRMS’s User GPS points data 

ESDB WB road network 

geometry 

MoT Esri linear Shapefile: 

SHP. 

Settler-related violence B'TSELEM Textual descriptive 

data 

Mobility restrictions OCHA Esri linear Shapefile: 

SHP. 

Waiting time at 

restriction. 

ARIJ GPS records in Excel 

sheets 

Physical and 

environmental road 

characteristics 

MoT Tabulated data in a 

linear shapefile. 

 

It is worth mentioning that the route planning service was implemented without running the 

SRMS platform since the SRMS platform is relatively new. Hence, there is no data available 

in the knowledge and observation datasets. As a result, the route planning service primarily 

relies on the data from the external spatial database (ESDB). 

The physical and environmental data, such as road geometry, condition, light condition, road 

type, road lengths, speed limit, and type of adjacent built-up area, was obtained from the 

Palestinian Ministry of Transport (MOT) database as shapefile data. The settler-related 

violence data was obtained from B'TSELEM. In early 2021, B'TSELEM created an open-

source database for monitoring different settler-related incidents, such as house attacks, 

damage to agricultural and non-agricultural properties, attacks on travelers and vehicles, etc. 

However, for this study, the focus is specifically on incidents involving travelers, vehicles, and 

road closures. As a result, data for the years 2021 and 2022 were gathered for analysis and 

examination.  

The acquired settler-related data was descriptive textual data containing (incident description, 

location, time, date, and photo), as illustrated in Figure 5.28. To use this data for spatial 

analysis, geolocation was performed based on the provided incident locations using ArcGIS 

Pro 3.1, then stored in a shapefile.  

Data regarding mobility restrictions were obtained from OCHA's recently updated spatial 

database for 2020 in a shapefile format containing attributes, including the name of the 

restriction and types. The average waiting time at restriction was obtained from the Applied 

Research Institute-Jerusalem (ARIJ) database. ARIJ has applied a field study to calculate the 

average waiting times at permanent checkpoints in the WB using a record reading of GPS 

points (ARIJ, 2019a).  

Arij installed 70 vehicle tracking devices on cars, taxis, buses, and trucks, which collected data 

for six months (January – July 2018) (ARIJ, 2019a). These vehicles used all major transport 
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routes in the West Bank that were obstructed by checkpoints, flying checkpoints, and physical 

barriers. More than 18.5 million records were registered and stored in a Microsoft SQL 

database. Due to a massive amount of data, the institute has faced difficulty retrieving the data 

for the researcher from the server for six months. However, they provided detailed CSV files 

for June, with 20233 GPS records, illustrated in Figure 5.29. 

 

Figure 5.28. Example on the descriptive data from B'TSELEM database, (B’Tselem, 2022) 

Each raw presents the GPS record, and the columns are the captured data, including vehicle 

location (x,y), average speed, the creation date, the average number of vehicles in the queue, 

and the average waiting time in the queue, and total waiting time (ARIJ, 2019a). 

 

Figure 5.29. Arij field survey for checkpoint waiting time (ARIJ, 2019a) 
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iii. Data processing and analysis  

 

This phase applies three arranged steps to process and analyze the collected data to construct 

the route planning model. It starts with creating the risk quantification model for the road edges 

of the study area by creating and weighting risk indices and then calculating the travel time by 

considering the waiting time prediction at mobility restrictions located at road edges. The last 

phase concerns creating the routing planning model to find multi-categorized routes. 

a. Risk Quantification Model  

 

This phase is composed of the following; (i) creating a list of risk criteria; (ii) using the entropy 

weight method to establish a quantitative risk cost model and calculate index weights; (iii) 

determining a comprehensive risk score for each road segment (Ri). Each phase is detailed in 

the following: 

• Creating Risk Indices 

 

In this section, the application of a list of seven indexes is discussed to evaluate the risk on 

each edge in G and determine the risk comprehensive score (Ri). The evaluation criteria 

considered for calculating Ri include (i) mobility restrictions; (ii) settlers-related violence; (iii) 

the built environment; and (iv) the physical characteristics of the road edges. The previously 

developed evaluation criteria and indices in Table 4.4 are utilized to find the statistical value 

of each index in the graph model edges (E), as illustrated in Table 5.3. 

Table 5.3 describes the proportion of each index value on the graph model. Around 37.5% of 

edges have mobility restrictions, and there is variation in the violent incidents that could reach 

five incidents in a specific area. The violent incidents occurred in an equal ratio in the daytime 

and nighttime. However, around 67% of violent incidents occurred during the week of the day 

and 33.3% during the weekend. The variation in the violent incident rate during the week could 

be interpreted by the change in the daily average traffic volume, which reached 27.2 thousand 

on a weekday and 15.2 thousand on the weekend on a section of Road 60, which part intersects 

the study area, for the year 2020 (Statistics, 2022). 

The general physical characteristics of the E present acceptable conditions; half of the road 

edges have moderate status, 67% of edges are lightened, and around 69% of road edges are 

located in urban areas and passing near the Palestinian built-up urban areas. Table 5.3 shows 

the statistical value of each index. 

Table 5.3. Descriptive Statistics 

No. Index Statical Value (Proportion) 

1 NO_RIST 1= 37.5%, 0= 62.5% 

2 NO_VIO 1= 18.6%, 3= 6.3%, 4= 6.3%, 5= 6.3%, 0= 

62.5% 

3 TOD 1= 50%, 2= 50% 
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4 DOW 1= 66.7%, 2= 33.3% 

5 LGT_CON 1= 56.2%, 0= 43.8% 

6 ROAD_CON 1= 3%, 2= 56.2%, 3= 18.8% 

7 ADJ_BUILTUP 1= 31.2%, 2= 68.8% 

 

• Index weight calculation  

 

The pre-identified indices were used to determine the comprehensive cost on each road edge, 

which is called the comprehensive risk score Ri, Equation (4.1). However, these identified risk 

indices have different weights on the comprehensive risk level Ri, so the weight of each index 

was calculated using the objective weight entropy method (WEM). 

 
𝑹𝒊 =∑𝒅𝒊𝒋𝒘𝒋

𝒎

𝒋=𝟏

 
 

(5.1) 

 

Where Ri is the comprehensive risk score of the ith road section (i = 1,2, 3….16); dij is the actual 

data of the jth index corresponding to the ith road section; wj is the weight of the jth index.  

Using Equations (4.4)-(4.7), the entropy weighting method (EWM) was applied to determine 

the weight of each index. The index entropy and weights were calculated using historical 

accident data to realize the objective weighting. As mentioned earlier, the smaller the entropy 

of the index, the greater the weight. Table 5.4 shows that the indicator of NO_VIO (number of 

previous violence) has the smallest entropy and the largest weight. Therefore, the road edges 

witnessed violent settler incidents will significantly impact the road risk. In contrast, the 

indicators of road physical conditions have the lowest weights. 

Table 5.4. Weights of cost risk index 

No. Index ej Wj 

1 NO_RIST 0.646 0.148 

2 NO_VIO 0.570 0.180 

3 TOD 0.625 0.157 

4 DOW 0.625 0.158 

5 LGT_CON 0.701 0.125 

6 ROAD_CON 0.876 0.051 

7 ADJ_BUILTUP 0.580 0.176 

 

• Determination of a comprehensive risk score (Ri) 

 

Following determining the weight of each index, Equation (4.1) was applied to calculate the 

Ri for each road edge, as illustrated in Table 5.5.  
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Table 5.5. Risk values of the graph edges 

Road 

Edge 

NO_RIS

T 

NO_VI

O 

TOD DOW LGT_C

ON 

ROA

D_C

ON 

ADJ_

BUIL

TUP 

Ri 

a1 0.00001 0.00001 0.00001 0.00001 0.00001 1 1 0.229 

a2 1 1 1 2 1 1 1 1.158 

a3 1 3 2 1 1 1 2 1.696 

a4 1 0.00001 0.00001 0.00001 1 3 1 0.607 

a5 0.00001 0.00001 0.00001 0.00001 0.00001 2 1 0.281 

a6 1 1 2 1 1 1 2 1.334 

a7 0.00001 1 1 1 0.00001 2 1 0.777 

a8 0.00001 0.00001 0.00001 0.00001 0.00001 2 2 0.458 

a9 0.00001 0.00001 0.00001 0.00001 0.00001 2 1 0.281 

a10 0.00001 0.00001 0.00001 0.00001 0.00001 3 1 0.333 

a11 0.00001 0.00001 0.00001 0.00001 1 2 1 0.406 

a12 1 4 2 2 1 3 1 1.962 

a13 0.00001 0.00001 0.00001 0.00001 0.00001 2 2 0.458 

a14 0.00001 0.00001 0.00001 0.00001 1 2 2 0.583 

a15 0.00001 0.00001 0.00001 0.00001 1 2 1 0.406 

a16 1 5 1 1 1 2 1 1.776 

 

b. Travel Time 

 

This section concerns determining the weighted travel time (AW) along the study area road 

edges (n1, n16) considering the factors affecting the travel time, including traveling distance 

(Dist), the posted speed limits (S), and the predicted waiting time at restriction (Tw), Equation 

(4.9). Dist and S data are already known based on the MOT database. However, the predicted 

waiting time (Tw) is determined by applying the RF prediction model methodology. The 

waiting time prediction model was applied for each mobility restriction in the study area 

separately to enhance the accuracy of the prediction results. This application includes applying 

the RF prediction model on the Yizhar-Huwara checkpoint, this methodology could be applied 

to the other two checkpoints on the road sample study; Yitzhar-Jit and Beita Junction. 

The dataset of the Yizhar-Huwara checkpoint has 2275 records, including the waiting time in 

the queue in minutes (Time_queue), the average speed within 750 m distance from the Yizhar-
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Huwara checkpoint (km per hour), the total waiting time in minutes to cross the Yizhar-Huwara 

checkpoint (Time), and the day of the week (DOW). Table 5.6 provides the descriptive 

statistics of the numerical variables of the dataset. The total waiting time to cross the checkpoint 

Tw is the output variable the machine learning model is trained to predict. The dataset has a 

mean waiting time value to cross the Yizhar-Huwara checkpoint of 1.8, a median of 1.6, and a 

standard deviation of 1 minute. The box plot of time variables (total waiting time to cross 

checkpoint and queue waiting time) is presented in Figure 5.30. 

Table 5.6. Descriptive statistics of dataset 

 Time Speed Time_queue 

mean 1.8 51.8 0.1 

std 1.0 14.4 0.5 

min 0.3 0.0 0.0 

50% 1.6 53.0 0.0 

max 15.3 101.0 8.2 

 

 

Figure 5.30. Total waiting time and queue time at Yizhar-Huwara Checkpoint 

The Random Forest regression applied the waiting time prediction model using Python 3.9.13 

and the Scikit-learn software library, which contains various classification, clustering, and 

regression algorithms (Sharma et al., 2021). The developed code can be found on the GitHub 

repository (Aburas, 2023b). This prediction model incorporates several variables, including 

waiting time in the queue, vehicle speed, and the day of the week (DOW). The real-time data 

on traffic flow can significantly influence waiting time predictions (Sharma et al., 2021). 

However, due to the unavailability of real-time data about the traffic flow, the initial step 

involves constructing the prediction model using historical data. 
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To avoid overfitting or reduced model performance caused by including numerous variables, a 

correlation coefficient analysis was performed (Mour et al., 2017). The purpose was to identify 

the most relevant variables significantly affecting waiting time to construct an optimized 

waiting time prediction model for the checkpoint. Table 5.7 shows the correlation coefficient 

of variables with the waiting time. The time the vehicle spends in the queue has a high positive 

correlation with the waiting time to cross the checkpoint, and the vehicle speed has a strong 

negative correlation with the waiting time. The day of the week variable has a very weak 

correlation with the waiting time, so it will not be used for training the model.  

Table 5.7. Correlation of waiting time at the checkpoint and other variables to develop 

predictive models 

Correlation 

Coefficient 

Time in the 

queue 

Vehicle Speed DOW 

Waiting Time at 

checkpoint 

0.85 -0.74 -0.13 

 

Following this, the RF regression model was created by identifying the time in the queue and 

vehicle speed as model features. The dataset was split into a training set (80%) and a testing 

set (20%) to evaluate the model's performance. The waiting time of the Yizhar-Huwara 

checkpoint has a training dataset of 1820 records and a testing dataset of 455 records. The 

model was created using the default Scikit Learn 100 decision trees (estimators) and random 

states of 42 (Pedregosa et al., 2011). The scatter plot was used to show the tested and predicted 

values. It presented a linear pattern indicating convergent values between the predicted and 

actual data, as illustrated in Figure 5.31. 

For evaluating the model performance, Mean Squared Error (MSE) and R-squared (R2) were 

used. The results show an MSE of 0.25, which is a relatively low value that indicates that the 

model's predictions are quite close to the actual values. R2 score which measures the proportion 

of the variance in the dependent variable (waiting time) that is predictable from the independent 

variables (speed and time queue). The results show that R2 is 0.80, which means that about 

80% of the variance in the waiting time can be explained by the model. These metrics provide 

a good indication theta the developed prediction model has successfully predicted and 

explained the waiting time at the checkpoint. 

For understanding the variables' participation in the model accuracy, the Scikit Learn library 

provides the features' relevance. It shows that the speed of the vehicles in the queue has a higher 

relevance in predicting the waiting time, as illustrated in Figure 5.31. The analysis proposes 

that if the model was recreated, considering the vehicle speed as the only parameter would lead 

to higher accuracy. This is because vehicle speed is a strong indicator of traffic flow and 

congestion, and it can be easily captured or measured from various sources like GPS sensors 

on the driver's mobile devices. 

Figure 5.31. presents the application of the RF waiting time prediction model on the Yizhar-

Huwara, Beita junction, and Yitzhar Jit checkpoints, which show good performance where 
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92% and 83% of the variance in the waiting time at Beit junction, and Yizhar-Jit can be 

explained by the model, respectively.   

 

Figure 5.31. RF waiting time prediction model at the checkpoints in the study area and the 

related feature importance ranking 

c. Construction of Route Planning Model  

 

This section applies the routing planning model to find multi-categorized routes. It includes (i) 

preparing the road network study area using ArcGIS Pro 3.1; (ii) filtering the road network by 

removing the prohibited road, which is the road where Palestinian drivers are forbidden to 

travel along including settlement roads, and roads located behind the separation wall (ARIJ, 

2019a); (iii) validating the prepared road network using network topology technique provided 

by ArcGIS Network Analyst (NA) module (Peng et al., 2022); (iv) loading Ri, travel time, and 

distance parameters to the graph edges; and (iv) applying the Dijkstra's algorithm to find the 

least risk, travel time, and distance route separately.  

Figure 5.32 illustrates the filtered validated road network results from applying network 

analysis techniques, and it shows the Ri values for each edge of the graph model.  
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Figure 5.32. Loading risk values for each edge 

The application of the route planning model involves proposing a scenario where there is a 

vehicle queue near the Yizhar-Huwara checkpoint with an average speed limit of 10 km/h. 

Additionally, there is a risk of settlers' violence near the Yitzhar-Huwwara checkpoint that was 

reported in real-time using the SRMS platform, as illustrated in Figure 5.33. 

 

Figure 5.33. Illustration of the proposed Scenario 

Considering the proposed scenario, the waiting time at the Yizhar-Huwara checkpoint has been 

forecasted to be 9.5 minutes. Subsequently, the travel time for each edge was loaded in 

accordance with the Equation (4.9), as depicted in Figure 5.34. Following loading the risk, 

travel time, and distance values on the graph edges, Dijkstra’s algorithm between the starting 

point s and ending point t to find the three categorized routes is applied. Figure 5.35 presents 

the results of the NA analysis.  



 

146 

 

 

 

Figure 5.34. Loading travel time values for each edge 

 

 

Figure 5.35. Results of NA analysis, the shortest, safest, and fastest routes 

The observed routes are categorized and presented in Table 5.8. It is worth noting that the 

emergency route exhibits the shortest distances, making it the most efficient in terms of 

distance. On the other hand, the safest route is characterized by minimal risk factors, ensuring 

a secure journey. Meanwhile, the fastest route boasts the lowest travel time, offering the 

quickest arrival at the destination. 
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Table 5.8. Costs of categorised observed routes 

 

iv. Service Publishing to SRMS Platform 

 

The final step concerns publishing the prepared route planning model to be publicly used via 

the SRMS platform. This includes publishing the prepared network analysis layer presented in 

the route planning model from ArcGIS Pro to ArcGIS Online as a web map service and then 

integrating this service to the SRMS platform as a route planning service, illustrated in Figure 

5.36. 

 

Figure 5.36. Route Planning Service in SRMS platform 

5.3. Conclusion  

This chapter focuses on the practical implementation of the SRMS (Smart and Resilient 

Mobility Services) platform in the West Bank. It explores historical and recent coping 

strategies employed by Palestinians to address mobility restrictions, emphasizing the evolving 

 Time Cost  

(min) 

Risk Cost  Length Cost 

(m) 

Emergency  10.6 3.58 6689 

Safest 13.5 1.74 9412 

Fastest 13.1 3.95 9782 
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use of communication tools. Telegram emerged as a key tool for sharing traffic and mobility 

restriction information due to its privacy features and effectiveness.  

The chapter discusses the operational aspects of SRMS implementation, presenting statistics 

that highlight Palestinian travelers' engagement capacity. It also describes a user-centered 

design approach using surveys to understand traveler preferences and needs, leading to tailored 

SRMS services. 

The chapter further described the design of the SRMS web mobile app, which was developed 

using ArcGIS Experience Builder and followed a User-Centered Design (UCD) approach and 

the MoLIC interaction model. It detailed the application of the offered services, which 

encompassed real-time mapping of mobility restrictions, a restriction notification system, and 

mapping of informal routes using tools such as ArcGIS Survey123, ArcGIS Online, ArcGIS 

Experience Builder, ArcGIS Pro 3.1, and Python 3.11. The service's reliability was validated 

through spatial clustering, third-party spatial DB, and data cross-referencing from multiple 

sources.  

Additionally, the chapter provided insights into the application of a route planning service in a 

sample study area with a high exposure to mobility risks related to checkpoints and settler 

violence. It presented the necessary data, their descriptions, sources, types, and formats. The 

data processing and analysis steps, including risk quantification, travel time estimation, and 

route planning model construction, were discussed. The chapter concluded by detailing the 

publishing of the developed service to the SRMS platform. 
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General Conclusion 

 

This doctoral thesis addressed the pressing issue of disruptive traffic events and their significant 

impact on the social well-being of individuals and the overall prosperity of communities, 

particularly in complex urban environments subjected to various mobility restrictions. The 

research has contributed to this challenge by developing a comprehensive smart platform 

known as the Smart and Resilient Mobility Services (SRMS) platform, specifically designed 

to manage mobility restrictions associated with occupation in the West Bank. 

This contribution was originated by identified gaps in the existing literature regarding smart 

approaches and technologies for managing traffic disruptions, particularly the absence of 

comprehensive strategies and meaningful engagement of travelers in the management process. 

The study developed the architectural framework of the SRMS platform, employing a layered 

system providing integrated services and enhancing the citizen's engagement.  

The research implemented the proposed SRMS architecture in the Palestinian territories, where 

mobility restrictions related to occupation are a daily challenge. It assessed the feasibility of 

the Palestinian community adopting SRMS as an innovative solution through investigative 

survey studies targeting potential users. These surveys explored citizens needs and preferences, 

shaping the design of the SRMS web mobile application from a human-centered design 

perspective. The provided services were customized accordingly using the capabilities of Web-

GIS, ArcGIS Pro, and machine learning.  

The research findings indicate that the SRMS platform is well adapted to the West Bank (WB) 

because of several factors, including (i) widespread smartphone accessibility among 

Palestinian residents; (ii) high level of digital knowledge and familiarity with digital tools; (iii) 

cellular internet access is widely available; (iv) wide usage of internet while traveling; (v) the 

absence of existing mobility services applications providing real-time data on traffic and 

mobility restrictions; (vi) high demand for customized optimal route suggestions that consider 

the context and unique circumstances.  

The final layout of the SRMS web mobile app has received the acceptance of the potential 

users and the offered services have demonstrated their capacity to efficiently manage mobility 

restrictions. The validation process of the SRMS platform revealed promising results in terms 

of report accuracy. While traffic congestion reports showed a 67% accuracy rate using spatial 

clustering, checkpoint and road gate reports achieved higher validation rates, at 85% and 100% 

respectively. However, settler violence reports had a lower validation rate of 25%, likely due 

to the mobile nature of this restriction. 

The real-time mapping of mobility restriction using Telegram data had an accuracy rate of up 

to 73%. Furthermore, the SRMS reporting features and its associated restriction notification 

system facilitated efficient and prompt information visualization and dissemination. Also, the 

route planning service delivers efficient route suggestions, especially when validating under 

specific closure scenarios. 

This research faced some limitations concerning the limited dissemination of the platform 

among the public hindered its widespread usage and interaction. This limitation impacted the 
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volume of data received, which, in turn, constrained further validation, and data and user 

quality analysis. Another limitation concerns time, which restricted the ability to investigate 

the long-term impacts of the SRMS platform on mobility patterns in the Palestinian territories. 

Additionally, it limited the development of more robust temporal prediction models. 

To ensure the continuous improvement of the developed SRMS solution, the following 

recommendations have been identified to enhance the value and impact of the achieved work:  

Partnership and Collaboration: It is recommended to establish cooperation with key 

governmental entities in Palestine, such as the Ministry of Transport (MoT) and the Ministry 

of Telecom and Information Technology (MTIT). These partnerships can facilitate the 

adoption and promotion of the SRMS platform through hosting the platform on their servers, 

data privacy and accuracy can be ensured. This collaboration can also make the SRMS platform 

as a valuable data source for national transportation and traffic disruption management plans. 

Furthermore, collaboration with academic institutions and private companies is essential for 

the continued development of the platform. For example, creating a mobile application that 

functions offline and implementing a feedback mechanism allowing users to report issues and 

suggest improvements can significantly enhance the platform's functionality.  

Community Awareness: Increasing awareness within the Palestinian community regarding 

the valuable usage of SRMS as a spatial crowdsourcing application in their daily travel. 

Initiatives should be taken to inform and educate individuals about the benefits of actively 

using the platform.  

Integration with Local Services: To maximize the benefits of SRMS, consider integrating the 

platform with other local services such as health services, civil defense agencies, and 

transportation authorities, to create a more efficient and responsive services.  

This thesis paves the way for diverse avenues of future research to develop and extend the 

benefits of the SRMS platform. This includes applying the spatiotemporal clustering methods 

to ensure the quality of the shared data and exploring the integration of blockchain technology 

to enhance the application of spatial crowdsourcing by ensuring the quality and privacy of 

shared sensitive data, especially in the Palestinian context. Also, developing a specialized 

dictionary for the Palestinian dialect and geographic names to improve geocoding services and 

support future Arabic language-based sensing studies. Furthermore, research and developing 

machine learning models for converting vocal messages shared on platforms like Telegram 

into text to expand the platform's data sources and accessibility. Additionally, comprehensive 

impact assessment studies evaluate the effects of SRMS on Palestinian well-being, the 

environment, and the economy. Finally, it is interesting to apply the SRMS platform in different 

urban contexts that may have unique types of mobility restrictions.  
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