
HAL Id: tel-04398183
https://theses.hal.science/tel-04398183v1

Submitted on 16 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Connected car communication by DLT technologies :
mobility service implementation by adaptation of

consortium blockchain consensus algorithms
Cyril Naves Samuel

To cite this version:
Cyril Naves Samuel. Connected car communication by DLT technologies : mobility service implemen-
tation by adaptation of consortium blockchain consensus algorithms. Hardware Architecture [cs.AR].
Université Côte d’Azur, 2023. English. �NNT : 2023COAZ4103�. �tel-04398183�

https://theses.hal.science/tel-04398183v1
https://hal.archives-ouvertes.fr

Communications de la Voiture Connectée grâce aux

Technologies DLT : Implémentation d’un Service de Mobilité

par Adaptation des Algorithmes de Consensus de Blockchains

de Consortium

Cyril Naves Samuel
Laboratoire d’Électronique, Antennes et Télécommunications (LEAT)

Présentée en vue de l’obtention

du grade de Docteur en Informatique

d’Université Côte d’Azur

Dirigée par : François Verdier, Professeur des

universités, Université Côte d'Azur.

Co-encadrée par : Séverine Glock, Ingénieure,

Groupe Renault

Soutenue le : 7 Décembre 2023

Président Du Jury :

Aurélien Francillon, Professeur des

universités, EURECOM.

Devant le Jury, composé de :

Thi Mai Trang Nguyen, Professeur des

universités, Université Sorbonne Paris Nord.

Cyrille Bertelle, Professeur des universités,

Université - Le Havre Normandie.

Yves Roudier, Professeur des universités,

Université Côte d'Azur.

Christine Hennebert, Ingénieure de

Recherche, CEA LETI.

Séverine Glock, Ingénieure, Groupe Renault.

Patricia Guitton, Ingénieure, Groupe Renault.

François Verdier, Professeur des universités,

Université Côte d'Azur.

THÈSE DE DOCTORAT

2

Jury

Communications de la voiture connectée grâce aux technologies DLT : Implémen-
tation d’un service de mobilité par adaptation des algorithmes de consensus de
blockchains de consortium

ConnectedCarCommunication byDLTTechnologies: Mobility Service Implemen-
tation by Adaptation of Consortium Blockchain Consensus Algorithms

Président du jury

• Aurelien Francillon, Professeur des universités, EURECOM.

Rapporteurs

• Thi Mai Trang Nguyen, Professeur des universités, Université Sorbonne Paris Nord.

• Cyrille Bertelle, Professeur des universités, Université - Le Havre Normandie.

• Yves Roudier, Professeur des universités, Université Côte d’Azur.

Examinateurs

• Christine Hennebert, Ingénieure de Recherche, Commissariat à l’ Énergie Atomique
et aux Énergies Alternatives.

• Séverine Glock, Ingénieure, Groupe Renault.

Invités

• Patricia Guitton, Ingénieure, Groupe Renault

Direction de These

• François Verdier, Professeur des universités, Université Côte d’Azur.

i

ii

Abstract

Distributed Ledger Technology can be compared to a universe of galaxies that everyone can
witness, that works in perfect synchronization through consensus decision, secures the life
of biological species, exhibits transparency of scientific phenomena, and presents hidden
potential. Distributed Ledger can bridge between friendly or competing parties to create
a mutually beneficial and sustainable ecosystem for sharing data, monetary transactions,
digital objects, and assets while guaranteeing transparency, security, and privacy.

Mobility solutions have been embracing distributed ledger decentralized solutions as they
represent a perfect solution in the current age of multimodal transport-enabled smart cities.
Be it decentralized energy grids, big data-hungry artificial intelligence platforms, autonomous
vehicles, or drones they create an accountable and open society. This thesis presents two
insights into decentralized mobility solutions around the theme of data certification and
data monetisation.

The decentralized automotive-oriented service exploits the smart contract-empowered au-
tonomous applications by the frameworks of Ethereum and Substrate. Each platform di-
vulges contrasting features of consensus algorithms, smart contract construction, inter-
operability, external oracle communication, and data privacy. Our work evaluates these
two solutions from a functional perspective and throughput performance accompanied by
transaction finalization. It poses certain fascinating shortcomings around Byzantine Fault
Tolerant (BFT) Algorithms of Clique, Istanbul BFT, Quorum BFT, and Practical BFT, which
we understand and evaluate in our work.

We further ascertain these challenges in our conceived blockchain simulator for homoge-
neous and unbiased experimentation of BFT consensus algorithms. It exposes the chal-
lenges of scalability, communication complexity, failure tolerance issues, and protocol re-
silience. We treat these issues in our proposed consensus algorithm, Competing Utilitarian
Byzantine Agreement (CUBA), along with its implicit variant, which leverages pipelining,
quorum-based communication, network optimization, and utilitarian fairness to improve
the outcome of the protocol. Benchmark results show better performance, security, and
resilience than the BFT consensuses of PBFT, IBFT, and QBFT comparable to Clique. It
regulates the honesty of the participants without any extrinsic factors of computation, as-
sets, or trusted execution environment, achieving a truly democratic consortium byzantine
agreement of competing participants.

Keywords
Distributed Ledger Technology, Blockchain, Byzantine Fault Tolerance, Consensus, Dis-
tributed Algorithms, Mobility

iii

iv

Résumé

La technologie de Blockchain peut être comparée à un univers de galaxies dont tout le
monde peut être témoin, qui fonctionne en parfaite synchronisation grâce à une décision
consensuelle, assure la vie des espèces biologiques, montre la transparence des phénomènes
scientifiques et présente un potentiel caché. Le Blockchain peut servir de pont entre des
parties amies ou concurrentes pour créer un écosystème durable et mutuellement bénéfique
pour le partage de données, de transactions monétaires, d’objets numériques et d’actifs tout
en garantissant la transparence, la sécurité et la protection de la vie privée.

Les solutions de mobilité ont adopté les solutions décentralisées à registres distribués, car
elles représentent une solution parfaite à l’ère actuelle des villes intelligentes centrées sur
le transport modal. Qu’il s’agisse de réseaux énergétiques décentralisés, de plateformes
d’intelligence artificielle gourmandes en données, de véhicules autonomes, ou drones, ces
solutions créent une société responsable et ouverte. Cette thèse présente deux points de
vue sur les solutions de mobilité décentralisée autour du thème de la certification et de la
monétisation des données.

Le service décentralisé axé sur l’automobile exploite les applications autonomes dotées de
contrats intelligents établis sur les plateformes Ethereum et Substrate. Chaque plateforme
présente des caractéristiques contrastées en matière d’algorithmes de consensus, de con-
struction de contrats intelligents, d’interopérabilité, de communication avec des oracles
externes et de confidentialité des données. Notre travail évalue ces deux solutions d’un
point de vue fonctionnel et des performances de débit accompagnées de la finalisation des
transactions. Il pose certaines lacunes fascinantes autour des algorithmes de tolérance aux
fautes byzantines (BFT) de Clique, Istanbul BFT, Quorum BFT, et Practical BFT, que nous
comprenons et évaluons dans notre travail.

Nous vérifions ces défis dans notre simulateur de blockchain conçu pour une expérimen-
tation homogène et impartiale des algorithmes de consensus BFT. Il expose les défis de
l’évolutivité, de la complexité de la communication, des problèmes de tolérance aux pannes
et de la résilience du protocole. Nous traitons ces questions dans l’algorithme de consen-
sus que nous proposons, Competing Utilitarian Byzantine Agreement (CUBA), ainsi que
dans sa variante implicite, qui tire parti du pipelining, de la communication basée sur le
quorum, de l’optimisation du réseau et de l’équité utilitaire pour améliorer le résultat du
protocole. Les résultats de l’analyse comparativemontrent que les performances, la sécurité
et la résilience sont meilleures que les consensus BFT de PBFT, IBFT et QBFT comparables
à Clique. Le protocole régule l’honnêteté des participants sans aucun facteur extrinsèque
de calcul, d’actifs ou d’environnement d’exécution fiable, ce qui permet d’obtenir un accord
byzantin de consortium véritablement démocratique entre participants concurrents.

Mots Clés
Technologie des registres distribués, Blockchain, Tolérance aux Fautes Byzantines, consen-
sus, Algorithmes Distribués, Mobilité

v

vi

Nothing in life is to be feared, it is only
to be understood. Now is the time to
understand more, so that we may fear
less.

– Marie Curie

vii

viii

Acknowledgements

When we give cheerfully and accept
gratefully, everyone is blessed

– Maya Angelou

Gratitude is a simple word when I consider the amount of love and compassion I received
from all those who have been part of my work.
Prof. Francois Verdier has been the architect of this thesis work from its planning until its
finish. He has been more than a thesis director to me as he has never commanded; instead,
he gave me courage, liberty, and a profound scientific inclination to accomplish this work.
I am not sure If I would have a chance to meet someone as pleasant as him, and I offer my
big thanks.
Another vital and dynamic person whom I have watched closely and inspired by her ded-
ication to work and perfection is Severine Glock. She has guided me from the start of my
internship until now, making me comfortable at Renault. She has been a remarkable men-
tor complementing my inadequacies in automotive business knowledge. I am incredibly
grateful for her constant belief in me and her benevolence.
An ever-smiling and warm person is Patricia Guitton, who has been the bridge to transpose
me from Renault to University and vice versa. She has always been enthusiastic about my
work and trusted me greatly throughout this journey. I present my humble gratitude of
appreciation and thanks to her.
I would like to extend my heartfelt gratitude to my respected thesis Jury: (Professors) Thi
Mai Trang Nguyen, Cyrille Bertelle, Yves Roudier, Christine Hennebert, and Aurelien Fran-
cillon for having agreed to validate and review my work with patience and diligence.
Another important mentor during my internship was David Bercowitz, who guided me
to Blockchain and Automotive and helped me mature as a thesis candidate. I am deeply
obliged to him for his kindness and advice.
Feedback during any thesis work is vital, which I have regularly received from Christine
Hennebert and Prof. Frederic Mallet. They have always been constructive with a blend of
care and sympathy, for which I offer my thankful memories.
I would also like to place my profound sense of gratitude to my Renault managers Fran-
cois Amand, Frederic Turgis, Frederic Noraz, CTO-Katrin Matthes, and Engineers Gimeno
Ignacio, Eric Marchand, Denis Delaveau, Julien Aknine, Laurent Thiry, Nicole Chalhoub,
JP Larue, JP, Jean Yves Carre, Remi Laudebat, Pierre, Clement, Fred Joly, Cyril Bianconi,
Marc Peresse, Sebastien Griffoul, Thierry Tambay, Alexandre Lewicki, Fabrice Olivero,
Christophe Chauvin, Cedric Bondier, Laurent Bresciani, Cedric Vamour, Sally Alsayah, Gre-
gory Bayle, Yasmine Assioua, Joelle Abou Faysal, Berkay Koksal and Raj Patel.
I am grateful to Laboratory Researchers Robert Staraj, Benoit Miramond, Alain Pegato-
quet, Jean Yves Dauvignac, Laurent Rodriguez, Françoise Trucas, Lydie Nguyen, Sophie
Gaffe, Laurent Brochier, Eric, Rahman, and colleagues Jonathan, Thomas, Edgar, Julien,
Yann, Francesco, Walid, Andrea and Imourane.
Friends boost you always, and I was glad to have Luc Gerrits, Roland Kromes, Marino, Cris-
tian, and Vanjul, who have been my buddies whom I have always relied upon.
Lastly, I am always grateful for my mother Juliet’s unconditional love, and Buddy & Goofy.

ix

x

Thesis Publications

Published papers may omit important
steps and the memory of men of science,
even the greatest, is sadly fallible.

– John Desmond Bernal

Journal Publications

• CyrilNaves Samuel, François Verdier, SeverineGlock, and Patricia Guitton-Ouhamou,
"Can Byzantine Fault Tolerant Consensus Agreement be Utilitarian, Scalable and
Resilient? An Algorithm Proposition from a Consortium Blockchain Perspective:
CUBA", ACM Distributed Ledger Journal Publication 2024. Submitted

• CyrilNaves Samuel, François Verdier, SeverineGlock, and Patricia Guitton-Ouhamou,
"A Fair and Inclusive Crowd-Sourced Automotive Data Harvesting and Monetisation
Approach Using Substrate Hybrid Consensus Algorithms Blockchain", MDPI Future
Internet Journal- Security in the Internet of Things (IoT) Publication 2024. Submitted

International Conferences

• Cyril Naves Samuel, Severine Glock, David Bercowitz, François Verdier and Patri-
cia Guitton-Ouhamou, "Automotive Data Certification Problem: A View on Effective
Blockchain Architectural Solutions," 2020 11th IEEE Annual Information Technol-
ogy, Electronics and Mobile Communication Conference (IEMCON), Vancouver, BC,
Canada, 2020. Awarded Best Research Paper and Best Paper Presentation

• CyrilNaves Samuel, SeverineGlock, François Verdier, and Patricia Guitton-Ouhamou,
"Choice of Ethereum Clients for Private Blockchain: Assessment from Proof of Au-
thority Perspective," 2021 IEEE International Conference on Blockchain and Cryp-
tocurrency (ICBC), Sydney, Australia, 2021.

• Luc Gerrits, Cyril Naves Samuel, Roland Kromes, François Verdier, Severine Glock,
and Patricia Guitton-Ouhamou. 2021. Experimental Scalability Study of Consortium
Blockchains with BFT Consensus for IoT Automotive Use Case. In Proceedings of
the 19th ACM Conference on Embedded Networked Sensor Systems (SenSys ’21).
Association for Computing Machinery, New York, NY, USA, 492–498.

• CyrilNaves Samuel, François Verdier, SeverineGlock, and Patricia Guitton-Ouhamou,
"Virtuous Data Monetisation Cycle: A Hybrid Consensus Substrate Automotive Con-
sortium Blockchain Solution" 2023 5th International Congress on Blockchain and Ap-
plications (BLOCKCHAIN’23), Guimarães, Portugal, 2023.

• CyrilNaves Samuel, François Verdier, SeverineGlock, and Patricia Guitton-Ouhamou,
"CUBA: An Evolutionary Consortium Oriented Distributed Ledger Byzantine Con-
sensus Algorithm" 2023 20th International Conference onDistributed Computing and
Artificial Intelligence (DCAI 2023), Guimarães, Portugal, 2023.

xi

National Conferences

• Cyril Naves Samuel, François Verdier, Severine Glock, Patricia Guitton-Ouhamou.
Private Blockchain Assessment from Proof of Authority Perspective. 15ème Colloque
National du GDR SOC2, Jun 2021, France.

• LucGerrits,Cyril Naves Samuel, François Verdier. IoT-Blockchain Based Ecosystem
using Hyperledger Sawtooth. GDR SOC2, Jun 2022, Strasbourg, France.

xii

Code Repository Publications

An algorithm must be seen to be
believed.

– Donald Ervin Knuth

Thesis Public Code Repository Summary

• Data Certification Implementation on Ethereum:
https://github.com/scyrilnaves/these-datacertification

• Data Monetisation Implementation on Substrate:
https://github.com/scyrilnaves/these-datamonetisation

• Blockchain Simulator Implementation of PBFT, IBFT, QBFT and Clique with
Deployment:
https://github.com/scyrilnaves/these-blockchainconsensussimulator

• Blockchain Simulator Implementation of CUBA with Deployment:
https://github.com/scyrilnaves/these-cuba

• Results collation along with Rscript for plot generation:
https://github.com/scyrilnaves/these-resultscollated

xiii

https://github.com/scyrilnaves/these-datacertification
https://github.com/scyrilnaves/these-datamonetisation
https://github.com/scyrilnaves/these-blockchainconsensussimulator
https://github.com/scyrilnaves/these-cuba
https://github.com/scyrilnaves/these-resultscollated

xiv

Contents

Abstract iii

Résumé v

Acknowledgements ix

Thesis Publications xi

Code Repository Publications xiii

Table of Contents xix

List of Figures xxv

List of Tables xxvii

1 Introduction 1
1.1 Decentralization as Reaction to Dystopia 2
1.2 Mobility Utopia . 3
1.3 Sustainable Development Conundrum . 3
1.4 Distributed Ledger Chronicles . 3

1.4.1 Taxonomy of Distributed Ledger 4
1.5 Age of Autonomous Applications . 7

1.5.1 Decentralised Application (DAPP) 7
1.5.2 Decentralised Autonomous Organization (DAO) 7
1.5.3 Smart Contracts . 7
1.5.4 Privacy as a Commodity or Right? 8

1.6 Consensus as a Pace Maker . 9
1.7 Objectives . 10
1.8 Thesis Organisation . 11

2 State of Art 15
2.1 Mobility Services . 17

2.1.1 Distributed Ledger Technology (DLT) Enabled Mobility Services . 18
2.1.2 Mobility Data Certification Services 20
2.1.3 Mobility Data Monetization Services 23

2.2 Distributed Consensus . 26
2.2.1 Foundational Works . 26

2.2.1.1 Seminal Synchronous Solution: ByzantineGenerals Prob-
lem . 27

2.2.1.2 Seminal Impossibility Theorem with Fault Process: Fis-
cher, Lynch, and Paterson Theorem 30

2.2.1.3 Seminal Asynchronous Solution: Consensus in the pres-
ence of Partial Synchrony 30

xv

2.2.1.4 Seminal Practical Solution: Practical Byzantine Fault Tol-
erance (PBFT) . 32

2.2.1.5 Seminal Fast Track BFT Solution: Zyzzyva 33
2.2.1.6 Seminal Linear Communication and Simple Solution: Hot-

Stuff . 35
2.2.1.7 Seminal Fast Track BFT Solution: Tendermint 37
2.2.1.8 Seminal Safe Proof of Stake Solution: GASPER 38

2.2.2 Relevant Work . 40
2.2.2.1 Parallelization . 40
2.2.2.2 Quorum Based Protocols 42
2.2.2.3 Proof of Authority . 47
2.2.2.4 Reputation as an Asset 51
2.2.2.5 Byzantine Altruistic Rational (BAR) Fault Tolerance . . . 57

2.3 Conclusion . 61

3 Decentralized Mobility Services 63
3.1 Conception of Decentralized Mobility Service Architecture 65

3.1.1 Token Engineering . 65
3.1.2 Data Certification Service . 66

3.1.2.1 Use-Case Definition . 67
3.1.2.2 Architecture Solution . 67
3.1.2.3 Accidentology Usecase on PBFT Consensus 71
3.1.2.4 Evaluation . 73
3.1.2.5 Issues and Root Cause Analysis 80
3.1.2.6 Conclusion . 81

3.1.3 Data Monetisation Service . 83
3.1.3.1 Decentralised Data Monetisation Solutions 85
3.1.3.2 Decentralised Mobility Data Standards 86
3.1.3.3 Significance of Data Monetisation Architecture 87
3.1.3.4 Next Generation Distributed Ledger 87
3.1.3.5 Use-Case Definition . 92
3.1.3.6 Architecture Solution . 95
3.1.3.7 Implementation . 98
3.1.3.8 Evaluation . 100
3.1.3.9 Conclusion . 109

3.2 Decentralised Mobility Services Conclusion 110

4 Simulated Byzantine Fault Tolerant Consensus Algorithms For Normalised
Evaluation 113
4.1 Simulator Formulation . 115

4.1.1 Problem Ideation . 115
4.1.2 Simulator State of Art . 115
4.1.3 Simulator Methodology . 121

4.1.3.1 Design Goals . 122
4.1.3.2 Design Principles . 123

4.1.4 Technology Decisions . 128
4.1.4.1 Simulator . 128

xvi

4.1.4.2 Simulator-User-Interface 129
4.1.4.3 Infrastructure . 129
4.1.4.4 Simulator Deployment 130

4.1.5 Test Bed Architecture . 132
4.2 Simulator Validation . 133

4.2.1 Choice of BFT Algorithm Study . 133
4.2.2 Simulation Test Methodology . 133
4.2.3 Discussion on Results . 134

4.3 Conclusion . 139

5 CUBA: An Evolutionary ConsortiumDistributed Ledger Byzantine Consen-
sus Algorithm 141
5.1 Problem Statement . 143

5.1.1 Network Definition . 143
5.1.2 Information Broadcast . 143
5.1.3 Participant Behaviour: . 144
5.1.4 Consensus Finalisation . 144
5.1.5 Quality of Consensus Protocol: . 145

5.2 Cross-Section of Byzantine Fault Tolerance Consensus Problems and Ap-
proaches . 145

5.3 Contesting Utilitarian Byzantine Agreement (CUBA) 151
5.3.1 Philosophy . 151

5.3.1.1 Democracy Conundrum 152
5.3.1.2 Need for Utilitarianism 153
5.3.1.3 Panopticon Complement 154
5.3.1.4 Sisyphus Quotient . 156
5.3.1.5 Swarm Instinct . 158

5.3.2 CUBA Consensus Algorithm . 160
5.3.2.1 System Model . 160
5.3.2.2 Consensus Overview . 162
5.3.2.3 Detailed Protocol . 163

5.4 Conclusion . 181

6 CUBA Evaluation 183
6.1 Theoretical Evaluation . 185

6.1.1 Algorithm Complexity . 185
6.1.1.1 Intra-Quorum Message Exchange 185
6.1.1.2 Inter-Quorum Message Exchange 186
6.1.1.3 Round Change . 186
6.1.1.4 Utilitarian Message Exchange 186
6.1.1.5 Pipelining Effect on Protocol 187

6.1.2 Consistency, Availability, and Partition Tolerance Analysis 187
6.1.2.1 Misconception and CAP Revisited 188

6.1.3 Blockchain Scalability Trilemma Analysis 189
6.1.4 Utilitarian Fairness Evaluation . 190
6.1.5 Adverse Scenario Evaluation . 191

6.2 Experimental Evaluation . 192

xvii

6.2.1 CUBA Protocol Parameterisation 192
6.2.2 Methodology . 192
6.2.3 Infrastructure . 193
6.2.4 Result Discussions . 194

6.2.4.1 What can be the optimum epoch limit for network self-
optimization? . 194

6.2.4.2 What is the heuristic for choosing the number of quorums?195
6.2.4.3 Can the network topology have an effect on the CUBA

protocol? . 196
6.2.4.4 How effective is the protocol resistant to Node failures? . 196
6.2.4.5 How is the performance of CUBA Implicit Variant? . . . 206
6.2.4.6 Distributed Denial of Service 208

6.2.5 Overall Classical BFT Comparison 211
6.3 CUBA amongst recent BFT consensus protocols 215
6.4 Future Work . 217
6.5 Conclusion . 219

7 Conclusion and Perspectives 221
7.1 Conclusion . 222
7.2 Perspectives . 224
7.3 Overall Analysis . 225

8 Appendix 227
8.1 Data Certification Ethereum Discussion . 229

8.1.1 Analysis of Existing Testing Tools 229
8.1.1.1 ChainHammer . 229
8.1.1.2 Calliper . 229
8.1.1.3 BlockBench . 229

8.1.2 Proposed Testing Tool Architecture 229
8.1.3 Evaluation of Existing Testing Tools against Proposed Testing Tool 230
8.1.4 Stress Test with proposed tool . 231
8.1.5 Evaluation of Ethereum specific Performance and Behaviour Factors 232
8.1.6 Block Gas Limit . 232
8.1.7 Block Period . 233
8.1.8 Transaction Type . 234
8.1.9 Scalability . 235
8.1.10 Loadbalancer Middleware Integration with proposed tool 236

8.2 Data Monetisation Discussion . 238
8.3 Simulated Byzantine Fault Tolerant Consensus Algorithms For Normalised

Evaluation Discussion . 239
8.4 Data Monetisation Substrate Discussion . 245

8.4.1 BABE and GRANDPA . 245
8.5 CUBA Consensus Additional Discussion 246

8.5.1 Transaction Processing . 247
8.5.2 Intra-Quorum Consensus . 248
8.5.3 Inter-Quorum Consensus . 251
8.5.4 Round Change Algorithm . 253

xviii

8.5.5 Heart Beat Protocol . 254
8.5.6 Utilitarian Score Processing . 255
8.5.7 Quorum Reorganisation . 257
8.5.8 CUBA: Intra-Quorum Implicit Conensus 260

xix

xx

List of Figures

1.1 Thomas More’s Utopia . 2
1.2 DLT Taxonomy and Classification . 4
1.3 DLT Types: Blockchain, Directed Acyclic Graph & Hashgraph [12] 5
1.4 DLT Types: Holochain [14] . 5
1.5 Consensus Properties[24] . 9
1.6 Thesis Overview . 12

2.1 Relation with Mobility Stake Holders: With and Without MaaS Scheme [29] 17
2.2 Conceptual Design of P2P Car Sharing and Leasing Platform 18
2.3 Overview of Internet of Vehicle Architecture 20
2.4 Digitizing Vehicles Life-cycle over a Consortium Blockchain: Pain Points

and Benefits of the Framework [49] . 22
2.5 Decentralised Review system for Data Marketplaces [52] 23
2.6 Blockchain Based Data Marketplace [62] 26
2.7 Byzantine Generals Problem [68] . 28
2.8 Byzantine Generals Problem: Algorithm OM(1); Lieutenant 3 a traitor [68] 29
2.9 Byzantine Generals Problem: Algorithm OM(1); the commander a traitor [68] 29
2.10 PBFT: Normal Case Operation [73] . 32
2.11 Zyzzyva: Protocol communication pattern within a view for gracious exe-

cution [76] . 33
2.12 Zyzzyva: Protocol communication pattern within a view for faulty replicas

[76] . 34
2.13 Hot Stuff Protocol[83] . 35
2.14 Hot Stuff Protocol: Chained Version[83] . 36
2.15 Tendermint Protocol [87] . 37
2.16 LMD GHOST [90] . 39
2.17 Sorting of Request into Buckets [94] . 41
2.18 Balancing of proposal load among the 4 nodes for messages in an epoch [94] 41
2.19 Stellar Consensus Protocol [104] . 43
2.20 Delegated Byzantine Fault Tolerance Protocol [101] 44
2.21 EOS.IO Consensus Protocol [106] . 44
2.22 Publicly Verifiable Secret Sharing [110] . 46
2.23 Clique Consensus [117] . 48
2.24 Authority Round (Aura) Consensus [117] 48
2.25 Istanbul Byzantine Fault Tolerance (IBFT) Consensus [119] 49
2.26 Quorum Byzantine Fault Tolerance (QBFT) Consensus [120],[121] 50
2.27 Reputation System [130] . 53
2.28 Throughput of the Network [131] . 55
2.29 Proof of Reputation: Transaction Format [135] 56
2.30 Proof of Reputation: Throughput with different block sizes and participants

[135] . 57
2.31 BAR System Architecture [138] . 59
2.32 Terminating Reliable Broadcast Phases [138] 59

xxi

3.1 Data-Registry Data Certification Architecture 69
3.2 Non-Fungible Token Data Certification Architecture 70
3.3 Functional Evaluation of Data Certification Architecture 74
3.4 Ethereum network cloud deployment . 76
3.5 Hyperledger Sawtooth network cloud deployment 77
3.6 Hyperledger Sawtooth PBFT Consensus Performance 78
3.7 Ethereum Clique Consensus Performance 78
3.8 Ethereum IBFT Consensus Performance . 79
3.9 Ethereum QBFT Consensus Performance 79
3.10 Normalised Output TPS Behaviour of BFT Consensuses 82
3.11 Authority Round (AuRa) Consensus . 90
3.12 Blind Assignment for Blockchain Extension (BABE) Consensus 91
3.13 Greediest Heaviest Observed Sub Tree based Recursive Ancestor Deriving

Prefix Agreement (GRANDPA) Consensus 91
3.14 GRANDPA Consensus Finalised Chain [175] 92
3.15 Automotive Road RADAR Signature Use Case 92
3.16 Automotive Data Monetisation Architecture 94
3.17 Tokenized Asset & Asset Service Monetisation Architecture 96
3.18 OEM Middleware Data Monetisation UML Model 99
3.19 Data Monetisation Blockchain Cloud Architecture 100
3.20 Data Monetisation Functional Evaluation 101
3.21 AuRa Consensus Block Period Influence . 106
3.22 BABE Consensus Block Period Influence 107
3.23 AuRa and GRANDPA Consensus Scalability Performance 107
3.24 AuRa and GRANDPA Consensus Fork Study 108
3.25 BABE and GRANDPA Consensus Scalability Performance 108
3.26 BABE and GRANDPA Consensus Fork Study 109

4.1 Summary of Blockchain Simulators along with features [184] 117
4.2 Metrics of Blockchain Simulators [184] . 117
4.3 Average Confirmation Time for 1000 transactions [186] 118
4.4 Blockchain abstraction layer model and associated metrics in BlockPerf [188]119
4.5 BlockPerf Transaction Throughput [188] 119
4.6 ChainSim [189] . 120
4.7 BFT Simulator Tool Infrastructure [190] . 121
4.8 High-Level Architecture of Simulator . 123
4.9 Simulator Consensus Module Strategy Design Pattern 126
4.10 Simulator Explorer Dashboard User Interface Snapshot 1 130
4.11 Simulator Explorer Dashboard User Interface Snapshot 2 130
4.12 TAS Cloud Cluster Dashboard . 131
4.13 Simulator Cloud Test Deployment Workflow 132
4.14 Simulator Cloud Test-Bed Architecture . 132
4.15 Clique Consensus Algorithm Simulation Validation 134
4.16 PBFT Consensus Algorithm Simulation Validation 135
4.17 Improvised PBFT & Classical PBFT Algorithm Simulation Performance [198] 136
4.18 Grouped PBFT & Classical PBFT Algorithm Simulation Performance . . . 136

xxii

4.19 IBFT Consensus Algorithm Simulation Validation 137
4.20 QBFT Consensus Algorithm Simulation Validation 138

5.1 Death of Socrates by Jacques Louis David [235] 152
5.2 The Good Samaritan by Eugène Delacroix [237] 153
5.3 Panopticon Representation by Adam Simpson[238] 155
5.4 Sisyphus Myth illustrated by Tiziano Vecellio [240] 156
5.5 Starlings Swarm Behaviour photographed by Ashley Cooper [248] 158
5.6 CUBA Philosophical Skeleton . 160
5.7 CUBA Consensus overview explains the lifecycle of the consensus pro-

cess from transaction issue, Intra-Quorum, Inter-Quorum Phase, calculat-
ing each node’s utilitarian score based on previously finalized blocks pro-
ceeding with quorum reorganization. 164

5.8 CUBA Consensus Message Exchange Overview 164
5.9 Transaction Processing . 167
5.10 Partial Block Data Structure . 167
5.11 Block Data Structure . 168
5.13 Ephemeral Blockchain Structure . 169
5.12 Pipelined Consensus Protocol . 170
5.14 Finalised Blockchain Structure . 170
5.15 Intra-Quorum Consensus Protocol . 171
5.16 Inter-Quorum Consensus Protocol . 172
5.17 Round Change Protocol . 173
5.18 Heart Beat Message Protocol . 174
5.19 Quorum Message Phase Protocol . 177
5.20 Intra-Quorum Implicit Consensus Protocol 178
5.21 Simulator CUBA Consensus Package . 179
5.22 Simulator CUBA Chain Package . 180
5.23 Simulator CUBA Network Package . 181

6.1 CUBA CAP Analysis . 188
6.2 CUBA Scalability Trilemma Analysis . 190
6.3 CUBA Epoch Limit Analysis . 194
6.4 CUBA Quorum Member Limit Analysis . 195
6.5 CUBA Network Type Analysis . 197
6.6 Case1: CUBA Normal Benign Node Performance 198
6.7 Case1: CUBA Benign Effective Utilitarian 198
6.8 Case1: CUBA Benign Partial Block Utilitarian 199
6.9 Case1: CUBA Benign Missed Partial Block Utilitarian 199
6.10 Case1:CUBA Benign Commit Utilitarian 199
6.11 Case1: CUBA Benign Missed Commit Utilitarian 200
6.12 Case1: CUBA Benign Heart Beat Utilitarian 200
6.13 Case1: CUBA Normal Benign Node Utilitarian Classification 201
6.14 Case2: CUBA Normal Benign Latency Node Performance 201
6.15 Case2: CUBA Latency Effective Utilitarian 202
6.16 Case2: CUBA Latency Missed Partial Block 202
6.17 Case2: CUBA Latency Missed Commit Utilitarian 203

xxiii

6.18 Case3: CUBA Normal Benign Latency Node Utilitarian Classification . . . 203
6.19 Case3: CUBA Malicious Partial Block Latency Node Performance 204
6.20 Case3: CUBA Malicious Partial Block Latency Node Utilitarian Classification 204
6.21 Case3: CUBA Malicious Partial Block Effective Utilitarian 205
6.22 Case3: CUBA Malicious Partial Block Malicious Utilitarian 205
6.23 Case3: CUBA Malicious Missed Partial Block Utilitarian 206
6.24 Case3: CUBA Malicious Partial Block Missed Commit Utilitarian 206
6.25 Case4: CUBA Malicious Full Block Latency Node Performance 207
6.26 Case4: CUBA Malicious Full Block Latency Effective Utilitarian 207
6.27 Case4: CUBA Malicious Full Block Latency Missed Partial Block Utilitarian 208
6.28 Case4: CUBA Malicious Full Block Latency Missed Commit Utilitarian . . 208
6.29 Case4: CUBA Malicious Full Block Latency Malicious Utilitarian 209
6.30 Case4: CUBA Malicious Full Block Latency Node Utilitarian Classification 209
6.31 Case5: CUBA Malicious Full Block Berserk Behaviour 210
6.32 Case5: CUBA Malicious Full Block Berserk Behaviour Performance 210
6.33 Case5: CUBA Malicious Full Block Berserk Behaviour Effective Utilitarian 211
6.34 Case5: CUBA Malicious Full Block Berserk Behaviour Missed Partial Block

Utilitarian . 211
6.35 Case5: CUBAMalicious Full Block Berserk Behaviour Missed Commit Util-

itarian . 212
6.36 Case5: CUBA Malicious Full Block Berserk Behaviour Malicious Utilitarian 212
6.37 Case5: CUBAMalicious Full Block Berserk BehaviourNodeUtilitarian Clas-

sification . 213
6.38 CUBA Implicit Variant Analysis . 213
6.39 CUBA Distributed Denial of Service . 214
6.40 CUBA Overall Comparison Analysis . 214

8.1 Proposed Testing Tool Architecture . 229
8.2 Custom Client Test Tool Thread Variation Performance 232
8.3 Block Gas Limit Variation Testing . 233
8.4 Block Period Variation Testing . 233
8.5 Transaction Type Variation Testing . 234
8.6 Scalability Behavior Testing . 235
8.7 Ethereum Client Loadbalancer Middleware Architecture 236
8.8 Load Balanced Behavior Testing . 237
8.9 Tokenized Asset Data-Service Publish Monetisation Architecture 238
8.10 API Module Package Architecture of Simulator Exhibit 1 239
8.11 API Module Package Architecture of Simulator Exhibit 2 240
8.12 Chain Module Package Architecture of Simulator Exhibit 1 240
8.13 Chain Module Package Architecture of Simulator Exhibit 2 241
8.14 Consensus Module Package Architecture of Simulator Exhibit 1 241
8.15 Consensus Module Package Architecture of Simulator Exhibit 2 241
8.16 Cryptographic Module Package Architecture of Simulator 242
8.17 Network Module Package Architecture of Simulator 242
8.18 Fully Connected Mesh Network Topology of 10 Nodes 243
8.19 Lattice Network Topology of 10 Nodes . 243

xxiv

8.20 Watts Strogatz Network Topology of 10 Nodes 243
8.21 Node Module Package Architecture of Simulator 244
8.22 Simulation Property Module Package Architecture of Simulator 244
8.23 Data Monetisation Extrinsic Performance Calculation 245
8.24 BABE and GRANDPA Consensus Network Stalling 245
8.25 BABE and GRANDPA Consensus Network Stalling Epoch Error 246

xxv

xxvi

List of Tables

3.1 Comparison of Data-Registry & NFT approach 67
3.2 Comparison of BFT Consensus Consortium Blockchains 73
3.3 Issues observed in client and root cause . 80
3.4 CAP Analysis of BFT Consensus Algorithms 81
3.5 BFT Blockchain Applicability transactions 83

4.1 Differentiation Factors necessitating the Simulation 116
4.2 Simulator Technology Stack . 129
4.3 Simulator UI Technology Stack . 129
4.4 TAS Cloud IaaS Configuration . 131
4.5 Simulator Deployment Technology Stack 131

5.1 CUBA Protocol Notation Description . 162

6.1 CUBA Protocol Parameters . 193

7.1 Thesis Analysis . 225

xxvii

xxviii

Chapter 1

Introduction

All truths are easy to understand once
they are discovered; the point is to
discover them.

– Galileo Galilei

1.1 Decentralization as Reaction to Dystopia 2
1.2 Mobility Utopia . 3
1.3 Sustainable Development Conundrum 3
1.4 Distributed Ledger Chronicles . 3

1.4.1 Taxonomy of Distributed Ledger 4
1.5 Age of Autonomous Applications 7

1.5.1 Decentralised Application (DAPP) 7
1.5.2 Decentralised Autonomous Organization (DAO) 7
1.5.3 Smart Contracts . 7
1.5.4 Privacy as a Commodity or Right? 8

1.6 Consensus as a Pace Maker . 9
1.7 Objectives . 10
1.8 Thesis Organisation . 11

This chapter will inspire us to have a cursory overview of the concepts we will discuss and
approach in the forthcoming research work chapters.

1

Chapter 1

1.1 Decentralization as Reaction to Dystopia
Dystopia signifies an imaginary totalitarian state which was coined as an antonym to
Utopia [1] by Thomas More in the 15th century. On the contrary ’Utopian’ state, as the
portrayed map in Figure 1.1, represents a perfect state with no private ownership and an
egalitarian condition that is hard to imagine. It signifies an ideal solution to a surveillance
state where everyone is subjected to suffering and injustice. This was further fictionalized
in work by George Orwell in his work 1984 where the author of his age already coined
the words ’thoughtcrime’ and ’Big Brother’ in his imaginary repressive state of Oceania.
Another similar ideology fictional work is by Lewis, Michael in FlashBoys [2], where an
organized group compromises a centralized stock exchange during high-frequency trading
for performing preemptive transactions to gain an illegitimate monetary advantage. These
works expose the fallacy of centralization or represent the challenging times we are cur-
rently in where the sovereign state or actors exercise their absolutism, as evidenced by the
Snowden Whistleblowing Act or the Cambridge Analytica Scandal. Top companies like
Google, Amazon, Facebook, and Microsoft, collectively termed as GAFAM or FAANG or
’internet gatekeepers,’ have controlled the digital economy through their monopolistic ac-
tivities, manipulation of public opinion, and disregard of people’s privacy [3]. These issues
have forced society to move towards a decentralized, democratic web termed Web3, which
has given birth to a slew of solutions like Matrix (decentralized communication network),
DTube (decentralized Youtube), and Akasha (decentralized social network), to name a few.
This new movement has inspired the thesis to focus on a decentralized solution using a
Distributed Ledger of Blockchain where participatory, remunerative, and liberal systems
are constructed where people own, secure, monetize, and leverage the data they produce
without any influence.

Figure 1.1: Thomas More’s Utopia
[4]

2

Introduction

1.2 Mobility Utopia
In work [5], the authors discuss the future of Mobility, where Mobility as a Service with
community participation is the future utopia. It necessitates that each of the existing inde-
pendent systems cooperate at the infrastructure and communication level for a particular
transport zone. This aggregation will enable cities to be resilient and improve their social,
economic, and innovative capabilities. A recent planning transformation proposed for the
beautiful city of Paris is a 15-minute city where proximity and sustainability are prioritized.
Creating new mobility services enables the city to be sustainable, streamlined, and flexi-
ble. Other European cities of Milan, Amsterdam, and Copenhagen have imbibed this. It
aims to offer a multimodal solution comprising electric bikes, scooters, and vehicle shar-
ing, enabling a quick micro-mobility infrastructure. The decentralization community has
understood these synergies well, which has created standards for a decentralized cooper-
ative autonomous vehicle and infrastructure [6]. They have discussed the importance of
autonomous systems where machines can interact among themselves to negotiate a trans-
action in an ecosystem. Blockchains have been explored as a core technology forMobility as
a service in several works [7],[8]. They consider blockchain to create a neutral, common-
ground infrastructure where the interest of each stakeholder in a consortium network is
respected. Also, the possibility of shared Mobility is explored using blockchain [8], which
offers a platform for the car-sharing and leasing process in a consortium setting of car-
sharing providers, leasing companies, and insurance providers. They assure the user and
participant of security, privacy, authenticity, traceability, scalability, and interoperability,
which centralized systems lack. Our thesis will further explore these impressions as we ex-
periment with novel architectures around the current generation of mobility systems and
overcome their challenges.

1.3 Sustainable Development Conundrum
Economies worldwide are on the resurgence after the COVID-19 pandemic has struck
havoc, and they are embracing a green economy for sustainable and inclusive growth. This
aligns with the initiative of the United Nations and World Bank build back better consider-
ing Sustainable Development Goal 13 to ’Take Urgent Action to combat climate change and
its impacts.’ Distributed Ledger Technology has proved significant as a building block in
this sustainable green economic megapolis we envisage constructing. European Commis-
sion has recognized the blockchain-based solution for incentivizing actors to reduce carbon
footprint, crowd-based climate financing, and supply chain solutions. Also, the use-cases of
car-sharing solutions, electric charging, vehicle platoon management, and vehicle commu-
nication enabling a reduction in greenhouse gases have already adopted blockchain, which
expresses the affirmed belief in it for a sustainable technology adoption [9, 10]. In our thesis,
we explore creating a sustainable blockchain-based mobility solution and improvising the
blockchain consensus algorithm, which is usually energy-consuming, like Proof of Work.

1.4 Distributed Ledger Chronicles
Distributed Ledger (DLT) is a technology that enforces a synchronized distributed data
structure of transactions through consensus among a set of participants [11]. Distributed

3

Chapter 1

Ledger Technology process involves transaction validation, verification, and constructing
a unit data structure either in the form of blocks or vertices which is subjected to a con-
sensus process. The consensus process is where several nodes or processes agree on the
order, validity, and integrity of the data structure unit. There have been several contri-
butions around how this distributed ledger and consensus is designed, which has led to a
hierarchically organized structure of technologies that we explore here.

1.4.1 Taxonomy of Distributed Ledger

Figure 1.2: DLT Taxonomy and Classification

The taxonomy of Distributed Ledger is multifaceted as it can be studied frommultiple levels
of hierarchy as represented in Figure 1.2. It is explained as follows:

• Governance: Based on the type of organization and the openness of the network for
its participants to join and leave, it is classified as follows:

– Permissioned: Participants or Nodes are subjected to governance by a com-
mittee either for joining the network, authorization as consensus validators,
controlling staking or monetary conditions in the network. E.g., Hyperledger
Fabric, Quorum.

– Permissionless: Network is completely democratized with anyone participat-
ing or organizing themselves in groups with rights to validate, consensus par-
ticipation, and derive any monetary benefits. E.g., Ethereum, Bitcoin.

• Access: This is similar to governance but only constrained to viewing data, observ-
ing, and participating as a recognized account.

– Public: All the accounts can join and leave at will with all the data obvious for
audit.

4

Introduction

– Private: The account and data access is limited to a certain set of participants
by consensus or simple delegation approval.

• Structure: Based on the data structure of a DLT, it can be classified as represented

Figure 1.3: DLT Types: Blockchain, Directed Acyclic Graph & Hashgraph [12]

in Figure 1.3 and Figure 1.4 into the following:

– Blockchain: Its structure is similar to a linked list of blocks containing trans-
actions each. Each succeeding block is linked to its predecessor by its hash,
establishing a chain.

– HashGraph: Its data structure is composed of columns and vertices as repre-
sented in Figure 1.3 where a column represents the participant, and the trans-
action or events are represented as vertices [13].

– Directed Acyclic Graph: Here, the DLT is a directed graph where each vertex
represents a transaction. A vertex is linked to another vertex representing a
validation relationship, and it features scalability and faster finalization than
blockchains.

Figure 1.4: DLT Types: Holochain [14]

– Holochain [14]: This type of DLT is similar to blockchain, but each node stores
its own individual state instead of storing the common network state. It consists

5

Chapter 1

of three components of Shared Storage, Source Hash Chain, and Application
Nucleus (as in Figure 1.4). It is agent-centric, where each node or agent stores
its own data in a hashed form to the source chain and simultaneously to the
Distributed Hash Table shared storage. Then a distributed validation occurs on
the data where every user agrees to the given validation rules.

• Generation: Based on the evolution of Distributed Ledger Technology [15] each
major outcomes are chronicled as generations as follows:

– First Generation: It signifies the launch of blockchain crypto solutions similar
to Bitcoin, XRP, and Dogecoin. It involved the creation of decentralized cryp-
tocurrencies as an alternative to fiat currencies centered around Proof of Work.

– Second Generation: Improvising the first generation by including privacy and
smart contracts like Ethereum, Dash, Monero, IOTA, and Zcash is present in
the second generation. Many innovations centered around decentralized ap-
plications by the creation of Ethereum Virtual Machine and Solidity Language
resulted from this.

– Third Generation: There were several problems of scalability centered around
smart contracts, which were solved by this generation with the founding of
several projects such as Cardano, EOS, Hedera, and Polygon. They had proposed
innovations around consensus mechanisms like Proof of Stake, Delegated Proof
of Stake, or side chain solutions like Tron or Plasma Bridge.

– Fourth Generation: Features of blockchain to have inter-operability and be-
have application-oriented were addressed in Solana, Aptos, Cosmos, and Polka-
dot Blockchains. They exhibit a higher throughput of 70-100000 transactions
per second and enable the monolithic chains to communicate with other chains
through Inter-Blockchain CommunicationCosmos hubs and Polkadot Relay chains.

• Layer: To solve the scalability problems, the native blockchain is extended by creat-
ing several protocols and infrastructure. It is termed as layer solutions in the form of
side-chain, state-channel, and rollups which are discussed as follows:

– Layer 0: It is an infrastructure layer over the original blockchain that solves the
interoperability, scalability, and application orientation. It is similar to inter-
chain systems like Polkadot, Cosmos, and Avalanche.

– Layer 1: It refers to the underlying or base protocol that can be built over layer
0 using Software development Kits like Terra built on Cosmos or Moonbeam
built on Substrate Polkadot.

– Layer 2: It is a scaling solution built over layer 1 to economize gas or processing
complexity like Polygon, which comprises zkEVM based on Zero Knowledge-
rollups. It also comprises optimistic rollups like Arbitrum One, Boba Network,
and loopring.

– Layer 3: This includes an application layer comprisingDApps of games, wallets,
and privacy based on Zero-Knowledge techniques.

6

Introduction

In our thesis, wewill focusmore on native blockchain network solutions to have the flexibil-
ity of adding layered solutions later. We envisage a consortium setting and more primitive
consensus decision optimization, as we always have the flexibility to build protocols on top
of the solution we conceive.

1.5 Age of Autonomous Applications
Autonomous applications involving finance, automotive, health, or energy need enforced
rules and regulations to complete transactions. It also requires an auditable record that is
transparent, trustworthy, and resilient to fraud. Decentralized Apps and Decentralised Au-
tonomous Organisation is a brainchild of these necessities agglomerated into one solution
built on a blockchain network. It is made using a combination of blockchain (DLT) net-
work, smart contracts, front-end tools, and crypto-currency wallets as well [16, 17]. It is
classified as follows:

1.5.1 Decentralised Application (DAPP)

It is an application [18] which is built on distributed ledger and operates autonomously
where the community participants control the decisions. The application enforces the con-
dition using a cryptographic token which can be classified based on the underlying layer
as blockchain layer 0, layer 1, and layer 2. Examples are Uniswap for trading crypto tokens,
OpenSea for selling NFT, and Aave for crypto liquidity protocol.

1.5.2 Decentralised Autonomous Organization (DAO)

In the words of Vitalik Buterin, the founder of Ethereum, the subtle difference between a
DAPP and DAO is the difference between decision and autonomous levels. It is termed as
an organization which operates and takes decisions independently based on moral choices.
Examples are Aragon for hosting projects and BitDao for decentralized finance. Our thesis
focus is limited to DAPPS, where decisions are taken through consensus operations at the
transaction level of smart contracts aided by the token representation of the object we aim
to leverage through our architecture propositions.

1.5.3 Smart Contracts

Smart Contract goes back to 1996 when Nick Szabo conceptualized it [19],[20]. Distributed
Ledgers starting from the second generation, have created a massive economic space by
creating a program that is verified, validated, and replicated on a global state machine.
It establishes and enforces the necessary logic for the business system to run a blockchain
network through opcode execution on a virtual machine that interfaces with the distributed
ledger. All the transactions are interpreted using the virtual machine and verified using the
blockchain. It has the following properties:

• Composability: It is the ability of a smart contract to interact with other smart
contracts deployed in the network to inherit its functionality, data, and properties. It
enables the design of modular, autonomous, and discoverable smart contracts.

7

Chapter 1

• Oracle: These data feeds enable a decentralized blockchain smart contract to lis-
ten through an Application Programming Interface. The source for these oracles is
mostly centralized, aggregating data like price feed, weather, or insurance data. For
Example, Chainlink, Tellor, and Witnet.

• MultiSignature: Normal Smart Contracts require a single signature to execute a
transaction, while multi-signature needs multiple participants to agree and sign a
transaction. It is to avoid a single point of failure for enhanced security and gover-
nance consensus in a private network.

• Diamond Pattern: It enables a contract to be upgraded after deployment and or-
ganizes contract code and data. It modifies a contract to be multifunctional through
facets as well as immutable and reusable.

• Autonomous: Massa blockchain [21] has enabled smart contracts to listen to exter-
nal data, price feed, and execute autonomous functions like bots.

• Confidentiality: In this work [22], the confidentiality-preserving smart contract
is combined with Trusted Execution Environments (TEE) to separate the consensus
layer and execution layer. It enables high throughput and privacy for transactions,
improving conventional blockchain systems.

• Security: It aims at securing the smart contract from Oracle manipulation where it
could be affected by external data providers, reentrancy attack where exploiters call
the function repeatedly before the end, frontrunning attack where malicious trans-
actions are executed by bots to extract economic benefits or timestamp dependence
is exploited for monetary gains to list a few.

Throughout this thesis, we build our mobility solutions utilizing smart contracts and eval-
uate them from a functional and performance perspective.

1.5.4 Privacy as a Commodity or Right?

Privacy, where an individual’s data from a digital context point of view, is often regarded
as a commodity to extract the maximum possible economic advantage. But with specific
recent regulations like General Data Protection Regulation (GDPR) [23] and public sensiti-
zation of this issue, it has become necessary to consider it a right. With its assurance of data
transparency and being publicly verifiable, blockchain is a labyrinth that Distributed Ledger
organizations and enterprises should handle carefully. A spate of privacy-preserving solu-
tions has been proposed in the community, which involves the following:

• Compartmentalization of data: Decentralized Applications can store personal
data such as identifiers and metadata in a distributed database or file system such
as InterPlanetary File Storage, Swarm Protocol, or Bigchain DB. Blockchain can store
only the necessary data and its hashed versions to secure an individual’s privacy.

• Data Concealment: Data can be hidden using encryption, hashing, access control
techniques, or selective obfuscation to control data privacy.

• Cryptographic Techniques: In this mechanism, cryptography primitives are used

8

Introduction

to efficiently guarantee privacy as well as correctness and legitimacy of the data ex-
plained as follows:

– Commitments: It is a non-interactive scheme composed of a setup, commit and
open procedure. The setup phase gets an input security parameter, generating
a second set of public parameters. The commit phase takes this set of public
parameters, a message, and randomness to produce a final commitment. The
Open procedure takes this commitment as input and gets the commitment. It
satisfies two properties of hiding, which does not reveal any information, and
binding guarantees the integrity.

– Homomorphic Encryption : This mechanism comprises Keygen, which gen-
erates keys, message encryption, and decryption. The advantage of this scheme
is that the encrypted cipher text can be used to perform additional computation
and verification without the necessity of a security key.

– ZeroKnowledge Proofs: It is a technique that enables agreement between two
parties for data in the form of verification proof. Here the proof can be shared
with any transacting party without sharing data. It has three phases of Setup,
which generates public parameters for a given input, Prove generates a state-
ment, witness as well as proof, and Verify finally utilizes the public parameters,
statement, and proof to check its validity.

– Multiparty Computation: It allows a certain set of unreliable parties to guar-
antee and agree over data without revealing the input data. It has two ap-
proaches called secret sharing and garbled circuit. It satisfies the correctness
of the data shared, the privacy of the data, and the fairness of the process.

In this thesis, we experiment with decentralized mobility solutions, including certain pri-
vacy techniques of pseudonymization and cryptographic primitives. Privacy can introduce
certain computational effort, which needs an efficient consensus aligning with the objective
of the thesis.

1.6 Consensus as a Pace Maker

Figure 1.5: Consensus Properties[24]

9

Chapter 1

Consensus in the case of distributed systems is considered ’tricky’ [25] as by Fischer, Lynch,
and Paterson Theorem [26] in the case of an asynchronous system with one faulty process
where no consensus process can be developed to agree on a state of data. On the contrary,
consensus is possible even in malicious processes for a synchronous system but is quite
costly in processing complexity. This applies in the Distributed Ledger systems case, and
the expected properties are represented in Figure 1.5. As a consequence, a consensus needs
to have the following [27]:

1. High validation of transactions, construction of transactions into a block, and final-
ization of the block through a voting mechanism.

2. All the transaction interactions, as well as the data, should be integral, secured as
well as tamper-proof.

3. With the consensus involving the message exchange and agreement between the
participants, it should be able to make decisions faster or at least the same block
validation rate as the members increase in the network.

4. Genealogy of Blockchain consensus starting from Proof ofWork has an evident irony
of explosive energy consumption[28]. Bitcoin and Ethereum have an energy con-
sumption close to the entire country of Sweden and Romania, respectively. This has
expedited the necessity for innovation to create a sustainable future, as signified by
the recent report of the European Central Bank. Ethereum, due to this reason, has
already changed its consensus to Proof of Stake which is a little more economical,
sustainable, and scalable.

These factors testify that the consensus component is comparable to the pacemaker of a hu-
man heart system. It must be resistant to forks, avoid centralization issues, and be resilient
to byzantine actors. The consensus protocol decides the validation, security, throughput,
and scalability in a distributed ledger, which we discuss extensively in this thesis.

Having discussed the essential pillars of the blockchain and its significance, we elicit the
broader goal of our thesis from a bird’s view and the overall organization of the thesis
journey as we embark on this chapter.

1.7 Objectives
Our thesis revolves around the four fundamental questions that act as our holy grail through-
out our work as follows:

• Can Distributed Ledger Technologies (DLT) resolve pertinent Mobility chal-
lenges linked to cross-organization synergy, transparency, integrity, incen-
tivization, equity, fairness, security as well as privacy?
It aims to understand the current literature state of the art and nascent DLT technolo-
gies, which will help us track the evolution of technology from the age of distributed
systems until the recent Distributed Acyclic Graph Chains. Also, the various mobility
solutions based on DLT will be analyzed along with their advantages and disadvan-
tages for designing our automotive use case. This sets the essential foundation for
formulating our hypothesis, which will be explored in forthcoming steps.

10

Introduction

• Can we architect real automotive use-case solutions and, in turn, retrieve the
fundamental obstacles that the technology needs to overcome from enter-
prise or consortium-wide adoption?
We define our automotive use cases formally with the network definition, business
logic, interactions, value addition of data certification, and monetization. We propose
a solution to create newer economic models and solve the issues present in exist-
ing works. The architecture is tested on an existing blockchain framework, and the
performance is evaluated, especially from the Byzantine Fault Tolerance consensus
perspective.

• Can we identify, minimize, and solve the intrinsic problems present in the
current Byzantine Fault Tolerant consensus algorithms?
Byzantine Fault Tolerance Consensus algorithms problems are analyzed from the het-
erogeneous blockchain frameworks to be communication complex, poor scalability,
and fault-tolerant of benign and malicious failures. Using the developed simulator,
these aspects are further tested homogeneously to avoid bias due to implementation,
network, or database factors. The simulator helps to perform the consensus bench-
mark on a cloud infrastructure and compare them uniformly for further understand-
ing.

• How do we optimally balance these consensus problems and propose a so-
lution that satisfies mobility solution constraints as well as maturing into
real-life distributed ledger ecosystem?
The identified issues of BFT consensus are proposed to be solved in a novel developed
consensus CUBA, and it is evaluated from theoretical, implementation, and security
focal points. This consensus solution is identified to solve the problems and optimize
the algorithm’s message communication, security, scalability, and fault resilience.

1.8 Thesis Organisation
Our thesis work is organized as a Road Timeline (Figure 1.6), representing six major steps
discussed across seven chapters.

• Chapter 1: This contains an introduction to the basic concepts of the necessity of
decentralization, new generation mobility services, sustainability, distributed ledger
evolution, smart contract features, autonomous applications of DAPP and DAO, pri-
vacy constraints as well as the importance of consensus algorithm.

• Chapter 2: State of Art covers the literature and existing works across data certifica-
tion and mobility services. It also extensively discusses the foundations of distributed
consensus and improvements of parallelization, Quorum-based protocols, Proof of
Authority, Reputation as a measure in the consensus, and the Byzantine Altruistic
Rational Model.

• Chapter 3: It covers Decentralized Mobility Services implementations involving our
two central mobility use cases of data certification and monetization. It touches
upon subjects of token engineering, Proof of Authority consensus of Clique, PBFT
(Practical Byzantine Fault Tolerance), IBFT (Istanbul Byzantine Fault Tolerance), and

11

Chapter 1

Figure 1.6: Thesis Overview

QBFT (Quorum Byzantine Fault Tolerance). Evaluation of the functionality and per-
formance of the proposed architecture with a special investigation on consensus is
carried out here.

• Chapter 4: This chapter introduces the need for creating a homogeneous blockchain
simulator for evaluating the BFT algorithms. It details the design implementation and
evaluation of the simulator. The simulator is deployed on a cloud infrastructure and
tested for the classical blockchain consensus algorithms of Clique, IBFT, QBFT, and
PBFT for unbiased analysis.

• Chapter 5: CUBA - An Evolutionary ConsortiumDistributed Ledger Byzantine Con-
sensus Algorithm is proposed to minimize the drawbacks of Byzantine Fault Tol-
erant Algorithms from a consortium perspective which has the prominent features
of pipelining, Intra-Quorum, Inter-Quorum, Utilitarian score measure, Panopticon
Complement, Sisyphus Forgetting Coefficient, Swarm Utilitarian Classification and
finally network optimization.

• Chapter 6: The proposed CUBA Consensus protocol is evaluated theoretically from
Algorithm complexity, CAP Theorem, Blockchain Trilemma Analysis, Fairness, and
adverse scenarios. It is subjected to further experimental evaluation to benchmark
against existing consensus protocols, and security aspects of different scenarios are
profoundly analyzed.

• Chapter 7: The conclusion and perspectives chapter resumes the findings across the
entire breadth of our work and gives a final overview. It also offers future directions
to enrich our work further and add value. We evaluate our thesis work from the
strengths and opportunities perspective for further insight discussion.

12

Introduction

• Chapter 8: The appendix contains interesting results, algorithms, and analysis which
we displace here as we have a limited thesis presentation as well as to maintain the
brevity of the thesis.

13

Chapter 1

14

Chapter 2

State of Art

I have long felt that, because it was
posed as a cute problem about
philosophers seated around a table,
Dijkstra’s dining philosophers problem
received much more attention than it
deserves... The popularity of the dining
philosophers problem taught me that the
best way to attract attention to a
problem is to present in terms of a story

– Lamport

15

Chapter 2

2.1 Mobility Services . 17
2.1.1 Distributed Ledger Technology (DLT) Enabled Mobility

Services . 18
2.1.2 Mobility Data Certification Services 20
2.1.3 Mobility Data Monetization Services 23

2.2 Distributed Consensus . 26
2.2.1 Foundational Works . 26

2.2.1.1 Seminal Synchronous Solution: Byzantine Gen-
erals Problem 27

2.2.1.2 Seminal Impossibility Theorem with Fault Pro-
cess: Fischer, Lynch, and Paterson Theorem . . 30

2.2.1.3 Seminal Asynchronous Solution: Consensus in
the presence of Partial Synchrony 30

2.2.1.4 Seminal Practical Solution: Practical Byzantine
Fault Tolerance (PBFT) 32

2.2.1.5 Seminal Fast Track BFT Solution: Zyzzyva . . . 33
2.2.1.6 Seminal Linear Communication and Simple So-

lution: HotStuff 35
2.2.1.7 Seminal Fast Track BFT Solution: Tendermint . 37
2.2.1.8 Seminal Safe Proof of Stake Solution: GASPER . 38

2.2.2 Relevant Work . 40
2.2.2.1 Parallelization 40
2.2.2.2 Quorum Based Protocols 42
2.2.2.3 Proof of Authority 47
2.2.2.4 Reputation as an Asset 51
2.2.2.5 Byzantine Altruistic Rational (BAR) Fault Toler-

ance . 57
2.3 Conclusion . 61

This chapter traces the work in Blockchain-enabled Mobility Services for fully connected
vehicles. In close accordance is the study of distributed consensus algorithms that have
existed since the period of classical Distributed Systems until the present Distributed Ledger
era.

16

State of Art

2.1 Mobility Services

Figure 2.1: Relation with Mobility Stake Holders: With and Without MaaS Scheme [29]

A report by Bianchi Alves, Bianca and Wang, Winnie and Moody, Joanna and Waksberg
Guerrini, Ana and Peralta Quiros, Tatiana and Velez, Jean Paul and Ochoa Sepulveda,
Maria Catalina and Alonso Gonzalez, Maria Jesus of World Bank [29] on the adaptation
of Mobility-as-a-Service (MaaS) for Developing Cities defines the concept of Mobility-as-a-
Service as an integration of different modes of transport, including both informal modes
like public transport, taxis, biking, cycling and formal methods like ride-sharing, micro-
transit enabled with Information and Communication Technology (ICT) services. It also
highlights the importance of MaaS for cities in low and middle-income countries that ad-
vance sustainable mobility and development goals. It demonstrates the policy objectives of
Universal Access, Efficiency Safety, and Green Mobility under The Global Roadmap of Ac-
tion towards Sustainable Mobility. The importance of the MaaS provider is also highlighted
in this work as in Figure 2.1. MaaS provider is an intermediate layer between users like
the public and the transportation or mobility providers, on the other hand. They have two
beneficial critical roles:

1. Integrator Role among the Mobility service providers by creating an open platform
for the mobility service provider participation.

2. Interfacing Role for users in creating a unified platform for accessing and managing
trip information or booking and payment.

Apart from these two roles, the other benefits of having direct contact with the users are
creating a sense of loyalty, analyzing comprehensive insights into users’ preferences, needs,
and willingness to pay for different modes, as well as influencing the demand through pric-
ing and design strategies. The impediment in fully implementing theMaaS providers is that
traditional mobility service providers are unwilling to forego their direct relationship with
the users and instead rely on the MaaS provider for facilitation. This results in overcoming
the tensions between Mobility Service Providers and MaaS Providers by creating a better
value proposition than the existing [30].

Also, the study by de Wilde, Thijs [31] highlights the challenges in implementing MaaS
which needs a multistakeholder cooperation of profit-based private and service-based pub-
lic actors. The work highlights the risk of Brand Image, Operational Cost, Inclusion, Entry
barriers, and Data Ownership in traditional MaaS systems. It pictures the blockchain as
a facilitator for the MaaS platform as it promotes inclusivity, shared responsibility, incen-

17

Chapter 2

tivization, and collective ownership of data. We will further analyze the existing imple-
mentations around the Mobility Services involving Distributed Ledger, and Blockchain, to
understand their advantages and open questions.

2.1.1 Distributed Ledger Technology (DLT) Enabled Mobility Ser-
vices

Figure 2.2: Conceptual Design of P2P Car Sharing and Leasing Platform
[32]

In [32] by Auer, Sophia and Nagler, Sophia and Mazumdar, Somnath and Rao Mukkamala,
Raghava, a high-level architecture for blockchain-IoT-based platforms for shared mobility,
such as car-sharing and car-leasing, is presented. They demonstrate that an ecosystem of
actors such as Original Equipment Manufacturers (OEM), ride-sharing providers, insurance
providers, and public authorities can provide smart mobility via this platform. This work
aims to realize the six use cases represented in Figure 2.2 of P2P car-sharing, leasing man-
agement, vehicle management and monitoring, payment processing or automation, vehicle
safety, fraud prevention, and finally, insurance contracts. They also evaluate the platform’s
fundamental design principles of security, privacy, authenticity, reliability, scalability, and
interoperability. Their work involves the creation of a prototype for a keyless vehicle access
control for a car-sharing platform and a collection of Internet of Things (IoT) data from the
vehicles streamlining car sharing and leasing using Hyperledger Fabric Blockchain.

A Cyber-Security risk assessment framework [33] is designed by Mallah, Ranwa Al and
López, David and Farooq, Bilal for blockchain applications concerning SmartMobility Data-
markets. They analyze the impact of each risk from monetary, privacy, integrity, and trust
perspectives uncovering the security vulnerabilities in the ecosystem. Their study was

18

State of Art

performed on a Blockchain framework for Smart Mobility Data-markets providing Dis-
tributed Mobility Information Management System implemented using Hyperledger Iroha
Blockchain. They evaluate the system’s risk using three steps: Actor-based risk analysis to
extract the impact, Scenario-based risk analysis to extract the probability, and Combined
Risk assessment to quantify the risk. They classify False Data Injection, Infrastructure At-
tacks of the Blockchain, and Denial of Service as unacceptable risks that must be mitigated
with high priority.

Not limited to road or rail smart mobility, the work in [34] by de Oliveira, I. Romani and
Matsumoto, T. and Neto, E. C. Pinto presents blockchain-based traffic management for
advanced air mobility. The system enables distributed airspace allocation management and
conflict resolution through smart contracts. Existing centralized system risk of system out-
ages is avoided by peer-to-peer conflict resolution bringing more resilience to the ground
communication infrastructure. However, the system does not consider the actors’ uncoop-
erative behavior or malicious data broadcast in the centralized system, which is a security
concern for traffic management considering it to be high risk prone.

The backbone of Smart Mobility is the underlying communication system which has wit-
nessed an unprecedented surge in data traffic, causing security, privacy, and trust chal-
lenges in [35] by Ayaz, Ferheen and Sheng, Zhengguo and Tian, Daxin and Nekovee, Maziar
and Saeed, Nagham. Their work proposes integrating Federated Learning and blockchain,
where the onboard Unit in each vehicle of the ecosystem can collect, process, and train
a local prediction model. These models are then verified using a consensus mechanism
through blockchain and then agglomerated to create a unified model for detecting traffic
or road conditions, thereby rationalizing the network usage as well as decentralizing the
system.

A blockchain-based MaaS system improving trust and transparency by avoiding individ-
ual commercial agreements with multiple stakeholders with agents is presented in [36] by
Nguyen, Tri Hong and Partala, Juha and Pirttikangas, Susanna. The network of different
modal transportation providers creates transparency and flexibility for the users accessing
the system. The work evaluates more from a literature work and misses the protocol and
the implementation details, which opens specific questions.

A new approach to mobility of shared ownership is proposed by MobiToken [37] by Gong,
Shuangqing and Hossein Chinaei, Mohammad and Luo, Fengji and Hossein Rashidi, Taha,
where an eMarket (Electronic Market) is constructed for commuters, mobility service ven-
dors, and other stakeholders. The token’s price varies according to the demand and the
congestion of the mobility service. The solution is implemented using Raft [38] consen-
sus algorithm and evaluated using multiple test scenarios. The design of eMarket using
Hyperledger Fabric enables the creation, exchange, and utilization of MobiToken without
double-spending. The liquidation of tokens being tied proportionally to the current traffic
status improves the efficiency of the trafficmanagement system and reduces the congestion
of the traffic network system.

In the work of [39] López, David and Farooq, Bilal, a multi-layered Blockchain for the Smart
Mobility data market addresses privacy, security, management, and scalability challenges
in conventional centralized systems. They test the simulated data market in a 370-node

19

Chapter 2

blockchain hosted on heterogeneous, geographically separated devices communicating on
a physical network. The network comprises Individuals, Transport Agencies, Census Bu-
reaus, Planning and Development Agencies, Universities, and Private Enterprises to pool
their data and share it with each actor through a blockchain layer. The market is imple-
mented using Hyperledger Indy and deployed on Amazon Elastic Compute Cloud with
varied node sizes to test the scalability. The system is built on the principles of Data Own-
ership, Fine-Grained Access Control, Data Transparency, and auditability, ensuring privacy
and giving users the power to control and profit from their transportation data. The sys-
tem also ensures protection against Data Interception, Data Leaks, Unsolicited sharing of
information, and Unsolicited Requests of Information.

2.1.2 Mobility Data Certification Services
In this sub-section, we discuss the works of DLT-enabled data certification solutions for
mobility and other allied works.

Figure 2.3: Overview of Internet of Vehicle Architecture
[40]

A Blockchain Vehicle Certification Scheme in the Internet of Vehicles (IoV) using an identity
verification scheme is designed in [40] by Wu, Junhua and Jin, Zhenyu and Li, Guangshun
and Xu, Zhuqing and Fan, Cang and Zheng, Yuanwang. A blockchain-enabled framework
is utilized to store private vehicle data to overcome the safety and reliability issues with the
existing centralized systems. The resilience of the system against a single attack requiring
the attacker to control half of the network’s computing power is the key benefit of choos-
ing this framework. The public entities, as illustrated in Figure 2.3, are partitioned into the
Physical layer, Edge layer, and Certification Authority (CA) layer. The physical layer com-
prises connected vehicles, sensors, and pedestrians for receiving and submitting data. The

20

State of Art

Edge Layer comprises the server, which manages data transactions forwarding the infor-
mation from the physical layer to the CA layer, and finally, the CA layer, which provides
the registration service of the IoV, ensuring the verification of vehicles. The vehicle certifi-
cation process involves the Information Initialization phase, Internet of Vehicle Equipment
Registration phase, Vehicle Identification, and Regional Consensus. The data shared by the
vehicle is validated and thenwritten to the blockchain using a Practical Byzantine Fault Tol-
erance Algorithm. Also, a Multi-vehicle cooperation algorithm for task scheduling among
the idle vehicles in the ecosystem is proposed to utilize the shared vehicle resources. The
system is evaluated across confidentiality, anonymity, and traceability parameters.

A systematic literature review [41] of blockchain in the automotive industry for autonomous
vehicles, smart charging, smart manufacturing, automotive logistics, and counterfeiting
is discussed in this work by Gîrbacia, F and Voinea, Gheorghe and Boboc, Razvan and
Duguleană, M and Postelnicu, Cristian. The work discusses the problems faced in the case
of autonomous vehicle roll-out, including proof of liability and forensic data storage which
is solved by blockchain systems. Also, resilience against denial-of-service, Global Position-
ing System (GPS) spoofing, timing, or man-in-the-middle attacks by the blockchain solution
is discussed. The rise of electric vehicle adoption backed by the European Commission leg-
islation to end the sale of new Carbon dioxide emitting or ICE vehicles [42] has aggravated
the problem of a limited number of charging stations. To solve this issue, blockchain as a
solution is discussed. It motivates Electric Vehicle (EV) users to share their energy surplus
through trading and managing charging infrastructure by developing a Peer-to-Peer (P2P)
framework for private charging pile-sharing systems.

A blockchain-based middleware solution called Man4Ware [43] by Mohamed, Nader and
Al-Jaroodi, Jameela brings in the advantage of smart manufacturing by the integration of
Industry 4.0 concepts [44] [45]. The concepts are the Interconnection of machines via IoT,
Information Transparency for data collection, Technical Assistance for assisting humans,
and the last being Decentralized Decisions which allow the cyber-physical systems to make
autonomous decisions from gathered data.

A Blockchain-aided vehicle certification through a secured E-Governance framework was
proposed in [46]. The authors Das, Moonmoon and Azad, Rahat Uddin and Efat, Md.
Iftekharul Alam discuss the importance of Digital Certification for Digital Transformation
in every business infrastructure [47], ensuring security and traceability along with confi-
dential communication. This framework was proposed to streamline vehicle verification by
public officials and vehicle certification complexity enabling collaboration with all stake-
holders in a distributed nature. The framework involves the government, vehicle owners,
and other vendors for secured communication, data storage, and interoperability based on
the blockchain through block binding and digital ring signature techniques. A framework
prototype using Ethereum technology was developed with a pilot database to simulate ac-
tors’ interaction and functionality securely. The system is evaluated by load testing and re-
sponse time monitoring for robustness, scalability, and adaptability. They also understand
the security implication of the framework based on Spoofing, Tampering, Repudiation,
Information Disclosure, Denial of Service, and Elevation of Privilege [48] STRIDE classifi-
cation.

The authors Chanson, Mathieu and Bogner, Andreas and Wortmann, Felix and Fleisch,

21

Chapter 2

Elgar in [49] have proposed an Ethereum public blockchain solution using a database-
blockchain approach to certify the vehicle odometer data and prevent its fraud or manipu-
lation in used vehicles. After each trip, a vehicle transmits the following encrypted data to
the NoSQL database: Global Positioning System (GPS) trip co-ordinates, timestamp of the
trip, random nonce & odometer value; simultaneously, plain raw data is hashed and stored
in the blockchain. During the time of issuing mileage value certification, cross-verification
of the hash from the blockchain against the calculated hash from decrypted raw data in the
database is done. This verification of the data from the blockchain hash against the data
stored in traditional databases enables the certification process of the state of the data at a
certain timestamp.

Figure 2.4: Digitizing Vehicles Life-cycle over a Consortium Blockchain: Pain Points and
Benefits of the Framework [49]

The authors solve a slightly different use case in the following work, [50]. They proposed
a blockchain-backed vehicle data and process ledger framework to manage the vehicle life-
cycle history as represented in Figure 2.4. The framework records the new vehicle creation
by a maintenance book, the mileage automatic registration, the vehicle’s maintenance in-
side or outside the dealership network, and car resale, which utilizes the maintenance book
information already recorded, avoiding fraud. The accident case is covered by allowing
the insurance providers to access the vehicle data and evaluate the damages to award ad-
equate compensations using verified data. This system allows collaboration between mul-
tiple stakeholders in the network at a consortium level using Quorum, a fork of Ethereum.
Anonymous users are avoided as it is a permissioned blockchain network. However, their
consideration to use a centralized database managing the total blockchain keys and net-
work actors’ passwords sacrifices decentralization. Also, functionalities of the shared and
entity services are handled through a traditional web service-based system pattern which
can be modeled inside the blockchain. Using an asymmetric key, the authors proposed a
novel hybrid cryptographic protocol to solve data privacy issues. Distribution of the key in
a multi-participant scenario can be a problem for production scalability.

22

State of Art

A combination of distributed ledger technologies (DLT), such as Blockchain and InterPlan-
etary File Systems (IPFS), was presented in [51]. In this work, an accidentology use case
where the vehicle sends data to the DLT Layer in case of a mishap is considered. An IoT
authentication protocol is developed to identify the device and a Raspberry Pi 3B+ model
where the SHA function of the standard CryptoPP C++ library is optimized for the ARM
processor. Theworkwas implemented onHyperledger Sawtooth using the Practical Byzan-
tine Fault Tolerance consensus algorithm and the modified Broadcom BCM2837 Model to
reduce hash processing time. The systemwas further measured for transaction commit rate
and latency in the Internet of Things (IoT) communication as a variation of the payload.

2.1.3 Mobility Data Monetization Services
In this sub-section, we explore the literature around data trading services using blockchain,
which discusses data trading, and sharing data securely respecting the user’s privacy con-
cerns.

Figure 2.5: Decentralised Review system for Data Marketplaces [52]

A Decentralized Review System for Data Marketplaces [52] hosting urban quality of life
data, vehicle data, and other IoT data is designed to replace the conventional centralized
rating systems. The Decentralized Data Marketplace consists of the critical elements out-
lined in Figure 2.5 wherein the buyers and sellers of data interface through the marketplace
for data transfer, buying, querying the data, reviewing the data, and providing ratings to
the data. The system allocates pre-determined credible reviewers against a set of products
in a randomized and double-blinded method to minimize collusion of like actors. Review-
ers are incentivized through game theoretical modeling, where they identify the conditions
for Nash Equilibrium policy for the reviewers. Nash Equilibrium policy aims at finding
an optimal solution to a problem with competitive participants. The system is presented
as a general framework and analyzed theoretically with no decentralized platform imple-
mentation. The presented work is simulated using NashPy Library, where they identify
that as long as sufficient incentives increase the probability of a full review, it enhances the
review quality. But there are still some pertinent questions unanswered in their work: 1)
The Formation of a review committee when the platform is still new and the absence of
reviewers’ credentials, 2) The strategy to review a product continuously or at a determined

23

Chapter 2

time-frequency 3) How can the seller’s privacy be preserved behind the transaction pro-
cess and 4) The scalability potential of the system with increasing products, reviewers, and
sellers.

A credible data trading system for IoT data minimizing the risk of fraud and transactions is
proposed in [53] by Meijers, James and Dharma Putra, Guntur and Kotsialou, Grammateia
and Kanhere, Salil S. and Veneris, Andreas. The system permits the data producers and
consumers to agree on data and settle the payment on the chain. A credit mechanism is
developed to lower the fees incurred during the private Ethereum network implementation
participation process. This system’s objectives are Consumer Fairness, where customers
do not pay for data not received; Producer Fairness ensuring the minimal risk of data loss;
and Privacy, limiting data visibility at a minimal operational cost. The system is evaluated
regarding gas consumption and incurred blockchain transactions for the trading scheme,
as the idea is to minimize the transaction cost related to transaction gas complexity. They
estimate around 35000 units of gas for fund deposit transactions and higher for receipt
transactions as it needs data signature checking.

A consensus-based distributed auction scheme for data sharing is proposed in [54] for pri-
vacy preservation and avoiding malicious collusion of actors. The scheme allows the par-
ticipants to group into clusters for privacy and then reach a consensus. The mechanism is
further incentivized to share data without privacy leakages. Differential privacy, symmetric
encryption, and zero-knowledge proofs are incorporated to design the auction mechanism
for a trade-off between privacy preservation and social efficiency. The consensus algorithm
is constructed where different kinds of witnesses are selected using anonymous verifiable
random functions. It is performed without peer interactions and different parallel opera-
tions by varying witnesses to verify the proof and result, ensuring finalization. The eval-
uation of the system shows that the participants reach a consensus on the auction result
with low computation and communication costs.

A novel proposition of data marketplace design that satisfies all desirable properties in any
system of fairness, efficiency, security, privacy, and regulation adherence is proposed in
[55]. They implement the FairSwap [56] to guarantee fairness where the participants agree
on a value wherein a Proof of Misbehavior is generated to punish in case of wrongdoing.
They rely on any generic encryption and hash function, including Zero-Knowledge Proofs,
for transparency, security, and privacy. They mention using codified language, such as
smart contracts, for the regulation aspect. To maintain efficiency, they suggest the usage of
Zero-Knowledge Succinct Non-Interactive Argument of Knowledge (SNARKs) or Merkle
tree over boolean circuits to analyze encrypted data. The work is a more theoretical dis-
cussion rather than a concrete implementation with particular work on its challenges. The
uncovered inconveniences are global fairness issues where they cannot guarantee fairness
in a larger context if more participants of varying interests participate in the ecosystem. An-
other is the inefficiency of predicate checking in encrypted data for arbitrary logic. Their in-
centivization mechanism is not theoretically evaluated, and capturing practical constraints
in the framework is complicated. Also, data duplication is quite a problem, and they suggest
using convergent encryption without revealing any data information.

Since the blockchain system poses a problem of whether to be transparent and at the same
time not reveal data ensuring privacy, the work in [57] by Koutsos, Vlasis and Papadopou-

24

State of Art

los, Dimitrios and Chatzopoulos, Dimitris and Tarkoma, Sasu and Hui, Pan presents an
answer to this confusion by designing a Privacy-Aware Data Marketplace. They try to en-
sure: data privacy, atomicity of payments, where no entity can deny paying for services,
and output verifiability, where the data exchanged are verified before being sold to con-
sumers. They propose a functional encryption scheme with an additional public parameter
for data privacy and Zero-Knowledge Proof for output verifiability. The payment system
is facilitated by an implementation over Ethereum where data generation, collection, and
brokerage may happen sequentially and independently at any time. During the data gen-
eration phase, each producer creates data and further encrypts it into cipher text using the
Multi-client functional encryption [58], an adaptive, secure Functional Encryption scheme.
It enables multiple clients to produce cipher text individually and independently without
any interaction, which is a crucial criterion. Zero-Knowledge Protocol ensures data bro-
kerage and agreement of data correctness. The system does not allow for dynamic change
of data generators. Also, they acknowledge that there is certainly an overhead with their
Multi-client function encryption scheme, which needs to be improved.

A consortium Blockchain-based vehicle data marketplace, a data sharing scheme, and data-
owner-attribute-based encryption are proposed in [59]. They target data confidentiality, in-
tegrity, and privacy and securely handle large-capacity and privacy-sensitive vehicle data
by combining on-chain and off-chain methods. The metadata of the data exchanged is
stored on Blockchain, and encrypted data is stored on off-chain storage. Also, the data
owners can control their data by applying attributed-based encryption and owner-defined
access control lists (ACL). The idea behind attributed-based encryption allows message-
level granular control over the encrypted data. It is divided into fundamental policy and
cipher text policy, where the algorithm distributes a random value according to a linear
secret sharing scheme access matrix. The private keys are randomly assigned to avoid col-
lision attacks. The encryption algorithm [60] uses three parties: private key generator,
decryptor, and encryptor. According to the cipher policy, the private key generator is re-
sponsible for the secret key generation of the decrypter. The encryption scheme differs in
the generation of secret keys by the encrypter instead of the key generator. This allows
for achieving message-level-based fine-grained control, the key-escrow-free property, and
straightforward message recovery for the encrypter, which are desirable in cloud storage.
However, the proposition is not implemented and lacks concrete implementation evalua-
tion and test results.

A Big Data Value Chain framework [61] is proposed by Faroukhi, Abou Zakaria and El
Alaoui, Imane and Gahi, Youssef and Amine, Aouatif for data monetization to enable the
processes in the organization to be entirely data-driven, support decision-making, and facil-
itate value co-creation. They propose the value chain framework phases starting from data
generation, acquisition, and pre-processing, which involves filtration, extraction, transfor-
mation, validation, cleaning, fusion, reduction, linking, aggregation, denormalization, data
storage, data analysis, data visualization, and then finally data exposition. Their idea has
been to propose two data monetization models that can be integrated into the above phases
of the value chain process: the Reduced Big Data Monetization Model and the Full Big Data
Monetization Model. The former model is a reduced form to monetize data only for storage
and visualization phases. In contrast, the latter is more generic and monetizes the whole
value chain framework through data and insight sharing. This approach is evaluated us-

25

Chapter 2

ing a simulation of the geolocation data of the trucking company, such as location, event,
speed, and mileage. The value chain framework is implemented on Cloudera distribution
based on open-source Apache Hadoop.

Figure 2.6: Blockchain Based Data Marketplace [62]

An IoT data marketplace on Blockchain facilitating transparent data exchange and access to
consented data is modeled in [62]. The system is represented in Figure 2.6, which consists
of a data owner (DO), data consumer (DC), blockchain network, marketplace platform, and
external storage such as IPFS. The data owner provides the vehicle data, the consumer then
uses the data, and the service providers act as an interface between the data owner and con-
sumers. The implementation is made on the Ethereum blockchain and Swarm distributed
storage platform for data off-chain storage. The IoT devices can communicate through an
IoT Gateway device for registration to the Ethereum blockchain. Then it can store the en-
crypted data in the Swarm storage followed by pushing the metadata of IoT device type,
Swarm URL (Uniform Resource Locator) onto the blockchain. The Artificial Intelligence
(AI) Provider can query the blockchain for data, which notifies the IoT device to provide
key access for the concerned data. Upon the response of the IoT device with the key, the AI
provider can extract the data from the Swarm and decrypt it to use the data for prediction
algorithms. However, the marketplace is not proposed for time-critical services as well as
not privacy preserving nor General Data Protection Regulation [23] (GDPR)

2.2 Distributed Consensus
In this section, we discuss and understand specific relevant works behind the foundation of
distributed consensus from the 1970s until recent times. This exercise is motivated to show
the importance of each consensus and the scenarios of agreement and failures associated
with each work.

2.2.1 Foundational Works

Distributed systems have been built since the 1970s [63] ranging from Advanced Research
Projects Agency Network (ARPANET) [64] by the United States Department of Defense, the

26

State of Art

Society for Worldwide Interbank Financial Telecommunication (SWIFT) protocol as well as
the Software Implemented Fault Tolerance (SIFT) [65] project by National Aeronautics and
Space Administration (NASA) for a Fault-Tolerant Aircraft Control system. Distributed
systems have undergone extensive studies ranging from concurrency, failure recovery, and
naming but are pretty hard to design. There have been the famous eight fallacies of dis-
tributed computing defined [66] which are: 1) the network is reliable 2) Latency is zero 3)
Bandwidth is infinite 4) the network is secure 5) Topology doesn’t change 6) there is one admin-
istrator 7) transport cost is zero and 8) the network is homogenous. These mistaken reasonings
are impossible as 1) systems are prone to hardware failure, 2) bandwidth is always minimal
as even with new network technologies, applications are designed to be data hungry, 3) the
increase of malware and ransomware attacks by 358% and 435% in 2020 [67] as noted by
World Economic Forum supports that the above assumptions are indeed blunders to avoid.

The following subsections explain the seminal or classical foundations upon which the
current distributed system exists. In all these explanations, we consider a system of n
actors or replicas or nodes as in a blockchain system, out of which we have f malicious or
failing participants.

2.2.1.1 Seminal Synchronous Solution: Byzantine Generals Problem

The first seminal work [68] in distributed systems was done on a formal request by NASA
to build a robust avionics control system that needed formal guarantees as it was mission-
critical. They had to prove the correctness of a cockpit control scheme composed of three
computer systems that NASA had designed and their fault tolerance ability. This led to the
identification of robustness and coordination problems in any replicated set of systems re-
vealing the impossibility of a safe run for a mission-critical system. This led to two works
[68, 69] where they identified a vulnerability as "a failed component may exhibit a type
of behavior that is often overlooked –namely, sending conflicting information to differ-
ent parts of the system." This fault model coincided with the works presented in [70], [71]
coined as "The Two General Paradox," which led to the thinking by authors in [68] to per-
sonify a system of an avionic control system to an army of Byzantine Generals. The army
has to succeed in coordinating an attack despite the traitors’ malicious behavior represent-
ing the modern security flaws and failures that can occur in distributed systems.

The problem is represented in Figure 2.7 in which multiple army divisions are each headed
by an individual general camp outside an enemy city. All the n generals in the army should
either decide to attack a fort unanimously or retreat, abiding by the condition to commu-
nicate only by messenger. A general has the possibility of being a traitor as well. Each
general must pass orders to the remaining N-1 generals in respecting the two Interactive
Consistency conditions (IC) wherein the successor condition is derived from the previous
condition. These conditions are:

• All loyal lieutenants obey the same order
• If the commanding general is loyal, then every loyal lieutenant obeys the order he
sends.

The solution to this scenario would have 3m+1 honest general tolerating, at most m, traitor
generals, which are discussed as follows.

27

Chapter 2

Figure 2.7: Byzantine Generals Problem [68]

2.2.1.1.1 Oral Message Solution A solution by plain oral message communication is
proposed, which has three assumptions as follows:

1. A1 - Every message that is sent is delivered correctly.
2. A2 - The receiver of a message knows who sent it.
3. A3 - The absence of a message can be detected.

Assumptions A1, A2, and A3 prevent a traitor from interfering with the communication
between two other generals or simply cannot block any message. RETREAT is the default
order. The Oral Message Algorithms OM(m) for non-negative integers m are presented
here Algorithm 1 for 0 traitors and Algorithm 2 for m traitors.
The Algorithm 2 assumes a functioning majority of the values vi equal v otherwise, the

Algorithm 1: An algorithm OM(0) with no traitors, m=0
Data: m = 0

Result: ATTACK or RETREAT UNANIMOUSLY
1) The commander sends his value to every lieutenant.
2) Each lieutenant uses the value he receives from the commander or RETREAT if he
receives no value.

value RETREAT. Otherwise, the median of vi assumes they are from an ordered set.

28

State of Art

Algorithm 2: An algorithm OM(m) with m traitors
Data: m ≥ 0

Result: ATTACK or RETREAT UNANIMOUSLY
1) The commander sends his value to every lieutenant‘.
2) For each i, vi be the value lieutenant i receives from the commander or RETREAT if he
receives no value. Lieutenant i acts as the commander in Algorithm OM(m-1) to send the
value vi to each of the n-2 other lieutenants.

3) For each i, and each j ̸= i, let vj be the value Lieutenant i received from Lieutenant j in
step (2) (recursively using Algorithm OM(m-1)) or else RETREAT if he received no such
value. Lieutenant i uses the value majority(v1,..,v.n-1)

Figure 2.8: Byzantine Generals Problem: Algorithm OM(1); Lieutenant 3 a traitor [68]

In the case of one traitor, as in Figure 2.8, he can influence another lieutenant that the com-
mander has ordered to retreat, but since the other two lieutenants are honest, a consensus
of 2/3 is reached, ensuring that the attack is successful.

Figure 2.9: Byzantine Generals Problem: Algorithm OM(1); the commander a traitor [68]

29

Chapter 2

In the case of Figure 2.9, the commander is a traitor and plots to fail the mission of at-
tacking the fort. In this case, the commander sends a different message to each lieutenant,
completely foiling the plan. Each lieutenant receives the battle plan from the commander,
cross-communicates, and concludes that a treacherousmessage has been sent from the com-
mander and, finally, RETREAT as it is the default if the message is obfuscated. This work is
quite resilient to both the lieutenant and the commander’s malicious behavior, paving the
way for future works to be inspired by this allegory of an imaginary Byzantine empire. In
conclusion, the synchronous system can be resilient for f byzantine actors if more than 2f
honest nodes use digital signatures or more than 3f honest nodes for simple oral message
communication.

2.2.1.2 Seminal Impossibility Theorem with Fault Process: Fischer, Lynch, and
Paterson Theorem

This work in [26] answers the fundamental question of In a fully asynchronous system, is
there a deterministic consensus algorithm that can be safe, live, and fault-tolerant?

The impossibility in this theorem states that the consensus cannot be achieved even within
a malicious or faulty node. This theorem considers an asynchronous network setting where
the message delay is finite but unbounded. In this case, the fault cannot be detected as there
is a delay attribute for each message that can arrive within it, or it could have just crashed.
Here the authors assume that the message channels are reliable and there are no byzantine
actors in the system, meaning they can fail only by the crash but not due to malicious
behavior. The theorem states that:

• No consensus protocol is correct despite one fault.
• There is a partially correct consensus protocol in which all non-faulty processes al-
ways reach a decision, provided no processes die during its execution and a strict
majority of the processes are alive initially.

This enunciates that in the case of an asynchronous network model and even in the pres-
ence of one fault node, there can be no deterministic consensus protocol that satisfies the
property of termination, agreement, and validity. Termination means the liveness property
that all nodes that have not failed eventually decide on some value. The agreement is a
safety property that builds on the liveness property to ensure that all the non-failed nodes
decide on a common value. Validity signifies that if all non-faulty nodes have the same ini-
tial value, the final output should be the same upon agreement. Also, in this setting for the
asynchronous system but with digital signature communication, considering f Byzantine
or failure nodes, there should be n >3f honest nodes for the system to be safe.

2.2.1.3 Seminal Asynchronous Solution: Consensus in the presence of Partial
Synchrony

Here the authors Dwork, Cynthia and Lynch, Nancy and Stockmeyer, Larry in [72] address
the consensus for partial synchrony which lies between synchronous and asynchronous
systems. The distinction between synchronous, asynchronous, and partial synchronous
systems are:

30

State of Art

• Synchronous systems have a known fixed upped bound ∆ on time required for an
inter-processor message communication and a known fixed upper bound Θ on the
relative speeds of different processors.

• Whereas in asynchronous systems no fixed upper bounds ∆ and Θ exists.
• In a partial synchronous system the fixed upper bounds ∆ and Θ exist but are un-
known.

• There exists another version of partial synchrony; the bounds are unknown but guar-
anteed to hold starting at some unknown time T. In other words, at Time T, the value
of the bounds is clearly defined, but when it would occur is unknown.

Here the system model is based on the work of [26], where the communication system is
modeled as message buffers. Each processor in the system can either perform a send or
receive message of its protocol:

1. Send(m,pj): Places message m in pj’s buffer.
2. Receive(pi): Removes some (possibly empty) set S of messages from pi’s buffer and

delivers the messages to pi.

They study the problems of consensus for partial synchronous behavior in communication
or processors with four types of failures for a processor pi:

1. Fail-stop faults: Processor pi executes correctly but can stop anytime without any
recovery.

2. Omission faults: Faulty Processor pi follows protocol correctly, butwhen Send(m,pj)
is executed by pi, it might not place m in pj’s buffer and Receive(pi) might cause only
a subset of the delivered messages to be received by pi.

3. Authenticated Byzantine Faults: Erroneous Messages signed with the sending
processor’s name that cannot be forged.

4. Unauthenticated Byzantine Faults: Erroneous Messages without signatures, but
the sender’s identity is known.

There are also four degrees of communication synchrony where the communication bound
∆ varies:

1. ∆ is known
2. ∆ is unknown
3. ∆ hold eventually
4. ∆ holds sufficiently long

In this context, the correctness of a consensus protocol is defined by assumptions about
processor and communication synchrony, a fault type F, a number N of processors, an
integer t with 0 ≤ t ≤ N, and a set C containing at least N-t processors and any run R:

1. Consistency: No two different processors decide differently.
2. Termination: There is an eventual decision.
3. Strong Unanimity: If all initial values are v and if any processor in C decides a

value, then it decides v.

31

Chapter 2

4. Weak Unanimity: If all initial values are v, if C contains all processors, and if any
processor decides, it decides v.

This work discusses algorithms for partial synchronous communications and synchronous
processors for different scenarios of faults like Fail-stop and Omission, Byzantine Faults
with Authentication, and Byzantine Faults without Authentication with fewer processors
but an exponential amount of communication. Their algorithms work in the two models of
partially synchronous networks.

1. Period of Synchrony model: This considers that the consistency should hold re-
gardless of the network delay and liveness only during sufficient long periods of syn-
chrony.

2. Unknown Delay model: The delay∆ is not preconfigured. The idea is to develop a
protocol for the unknown delay and respects the consistency and liveness property,
but the confirmation delay Tconf may depend on the actual ∆.

These two models are interchangeable, meaning it is possible to construct one model from
another, and the unknown delay model is used in theory. Still, the period of the synchrony
model is practically considered while designing protocols.

2.2.1.4 Seminal Practical Solution: Practical Byzantine Fault Tolerance (PBFT)

Figure 2.10: PBFT: Normal Case Operation [73]

Thework of Castro and Liskov [73] is the first practical solution as it works in asynchronous
environments like the Internet and proposes several optimizations for faster response times.
The authors devised this algorithm for state machine replication to avoid the disruption in
the availability of services by replicating or duplicating the states over multiple machines.
The system considered here is asynchronous and can tolerate up to one-third of Byzantine
actors.

The network comprising n nodes moves through a series of views where each view is a state
or interval wherein a node is elected as a primary or leader. The selection of a primary is
based on the view number, and the ordering of the nodes is based on a modulus operation.
The operation of the consensus algorithm is explained in Figure 2.10.

32

State of Art

As in Figure 2.10, client C sends a request to Node 0, which receives a request and partici-
pates in the consensus. Since node 0 is selected as primary, it broadcasts the PRE-PREPARE
message, the starting point for the consensus. The message format can be considered a
tuple of <MessageType, View No, Message Digest, Sequence Number of Message>. The
consensus is a three-phase protocol of PRE-PREPARE, PREPARE, and COMMIT:

1. PRE-PREPARE: The selected primary 0 node broadcasts PRE-PREPARE message
to other replicas 1, 2, 3. The replicas verify the message’s signature and view number
v. Post verification, the replicas send PREPARE messages.

2. PREPARE: Each Node or replica receiving 2f+1 PREPARE messages, including its
own, verifies each and then sends the COMMIT message.

3. COMMIT: Similar to PREPARE phase, each node waits for 2f+1 messages and veri-
fies them. After that, each node commits them locally, ensuring a successful consen-
sus.

Post that, the nodes reply to client C who confirms the consensus on receiving 2f+1 replies.
Finally, the view-change phase is initiated, ensuring that the consensus is completed in
a defined time interval, and post that, a new primary is elected. The intuition to initiate
this process is that the earlier primary could have become faulty or unstable, rendering
the system unavailable. PBFT algorithm lowers the systematic complexity of BFT from
the exponential level to the polynomial level and achieves consistency but suffers complex
communication complexity of O(n2) and low scalability.

A more recent study [74] has been performed by Nguyen, Thanh Son Lam and Jourjon,
Guillaume and Potop-Butucaru, Maria and Thai, Kim Loan on PBFT applied to Hyperledger
Fabric and Sawtooth blockchain [75] in the context of a private permissioned network.
Their deployment and performance study of the PBFT network over a wide area extending
across France and Germany revealed that high periods of network delay after a height of
100 blocks slow the consensus time for adding each block by more than 134 seconds. They
have argued that although practical byzantine fault tolerance is fork-resistant but does not
provide sufficient consistency guarantees to be deployed in critical live environments.

2.2.1.5 Seminal Fast Track BFT Solution: Zyzzyva

Figure 2.11: Zyzzyva: Protocol communication patternwithin a view for gracious execution
[76]

A more fast-track consensus that is optimistic in a sense was presented in [76]. This work

33

Chapter 2

Figure 2.12: Zyzzyva: Protocol communication pattern within a view for faulty replicas
[76]

belongs to the family of protocols that aim to improve the performance of PBFT protocols. It
belongs to the optimistic branch of protocols like [77],[78, 79, 80, 81]. This work considers
a fast and optimistic case of no network or system failures and has a fallback protocol
with strong liveness guarantees. The reason for being optimistic is that there is a strong
assumption of transaction genuineness and order [82] as there is no ordering and consensus
initiated by the primary but a single phase protocol of message execution by the primary
is accepted by the replicas. But in case of failures, it follows a three-phase complexity.
On receiving a request from a primary or leader within the replicas, as in Figure 2.11, the
other replicas execute the request on a valid PRE-PREPARE message. Then all the replicas,
including the primary reply to clients for the final commit until the 3f+1majority is reached.
This execution, called the gracious execution as in Figure 2.11 follows the steps of:

1. Client sends a request to the primary.
2. Primary receives the request, assigns sequence number, and forwards ordered request

to replicas.
3. Replica receives ordered requests, speculatively executes them, and responds to the

client.
4. Client gathers speculative responses.

4A. Client receives 3f+1 matching responses and completes the request without faults.

Compared to the PBFT, the PREPARE and COMMIT Phases are reduced to a single phase.
So the message communication complexity is O(n). But if in case of faulty replicas, the
protocol needs to execute two more phases as in Figure 2.12. In this faulty case, after the
client receives less than 3f+1 messages, it waits for a certain time and sends a commit
message to the replicas. The replicas reply to the client and are finalized if at least 2f+1
replica messages are received.

Execution of additional steps for fault cases are:

4B. Client receives between 2f + 1 and 3f matching responses, assembles a commit cer-
tificate, and transmits the commit certificate to the replicas.

4B.1. Replica receives a commit message from a client containing a commit certificate and
acknowledges with a local-commit message.

4B.2. Client receives local-commit messages from 2f + 1 replicas and completes the request.

34

State of Art

4C. Client receives fewer than 2f + 1 matching SPECRESPONSE messages and resends
its request to all replicas, which forwards the request to the primary ensuring the
request is assigned a sequence number and eventually executed.

4D. The client receives responses indicating inconsistent ordering by the primary and
sends proof of misbehavior to the replicas, which initiates a view change to oust the
faulty primary.

This protocol is speculatively faster than PBFT considering the gracious execution case
but suffers from certain problems, as discussed in [77]. They highlight the problem of
safetywhere in a gracious execution phase, a byzantine primary can equivocate for different
values andmanipulate the consensus to decide amalicious value. They further in their work
[77] conclude that none of the fast Byzantine agreement works or optimistic Byzantine
agreement can simultaneously address the problems of:

1. Optimal step-complexity.
2. Optimal resilience.
3. Safety against failure of less than a third of the system.
4. Progress during periods of partial synchrony.

2.2.1.6 Seminal Linear Communication and Simple Solution: HotStuff

Figure 2.13: Hot Stuff Protocol[83]

A more recent protocol that works in partial synchrony [83] was proposed to be used in
Libra, a Facebook project, before it was shelved later [84]. It has a linear communication in
both cases of normal phase and leader selection phase, unlike Zyzzyva [76], which has O(n)
and O(n2) communication complexity. To reduce the complexity, unlike PBFT and Zyzzyva
[73, 76, 85], the protocol tries to reduce the communication messages by replying only
to a chosen leader instead of inter-peer communication messages like PBFT. The protocol
increases the phases compared to PBFT but simultaneously reduces the communication
message, which is a trade-off we must consider.

The protocol has the phases of Request, Prepare, Pre-Commit, Commit, Decide, and Reply
as in Figure 2.13[82, 85] where the communication is an N to a leader instead of an N to
N as in PBFT. The protocol works in a succession of views, each having a chosen leader.
The leader is rotated after every round of consensus, which is achieved by the inbuilt view

35

Chapter 2

change protocol, which is O(n) compared to O(n3). The leader uses the (k,n)-threshold
signature schema to prove the validity of received messages from other replicas.

The protocol works as follows in Figure 2.13, pictured analogous to PBFT but with more
phases under reduced communication messages. The message consists of a command to
execute by the replica, metadata, and a parent link. The protocol guarantees liveness if the
messages arrive with a ∆ time, and it always satisfies safety. It works as follows:

• The Client sends a Request message to the N nodes, and an elected Leader then for-
wards a Prepare message to the other replicas. The leader waits for new-view mes-
sages from n-f replicas to prepare a Quorum Certificate with the highest view.

• The leader then broadcasts the new proposal to all the replicas with the Highest Quo-
rum Certificate. A quorum Certificate (QC) is a collection of votes from the Quorum
of (n-f) replicas. The replicas acknowledge the leader with Prepare message by a
partial signature if they accept it.

• Leader, upon receiving (n-f) PREPARE votes, combines them in a quorum certificate
and broadcasts it in a PRE-COMMIT message. The replicas respond with votes for
the message.

• Leader, upon receiving (n-f) PRE-COMMIT votes, combines them in QC and broad-
casts them in a COMMIT message. The replicas reply with votes to the Commit
message.

• Finally, the leader receives (n-f) COMMIT votes, which are, in turn, combined in QC.
It then broadcasts it in a DECIDE message, which is finally executed by the replica.
The replicas increment the view number, and the next view is started choosing a new
leader.

To simplify further, that is, to reduce the number of messages and pipelining of decisions, a
chained version of this protocol is presented in Figure 2.14, which is similar to the CASPER
protocol of Ethereum [86]. A new view is proposed for each Prepare message resulting in
the simultaneous processing of different views.

Figure 2.14: Hot Stuff Protocol: Chained Version[83]

As in Figure 2.14, for view v1 a leader proposes command cmd1, then for view v2 a new
leader proposes cmd2 piggybacking the messages for view v1 and view v3, a new leader

36

State of Art

proposes cmd3 piggybacking the previous two views v2, v3. A single quorum certificate is
expected for a successful transition in all these phases. Thus, combining the different views
and further processing them, the chained version improves the performance compared to
the normal case of HotStuff protocol.

2.2.1.7 Seminal Fast Track BFT Solution: Tendermint

Figure 2.15: Tendermint Protocol [87]

Tendermint [87] is a weakly or partially synchronous protocol with a dynamic committee
based on Proof of Stake for its selection. It favors consistency over availability, meaning
the system can be prone to liveness issues. In case of benign failures or malicious attempts,
it has an additional stake-slashing layer to guarantee the liveness and finality of the chain.
Cosmos blockchain uses this protocol for its consensus and finality mechanism. It is an
interoperable blockchain communicating with other blockchains through inter-blockchain
communication (IBC) protocol, a networking layer for blockchains.

This protocol as illustrated in Figure 2.15, works as follows:

• At first, a committee among the validators is chosen based on the amount of stake in
the chain. Then among the validators in the committee, a proposer or block creator
is selected based on round robin and proportional stake in the network.

• Then the chosen proposer proposes a block that can either be attributed to a Prevote-
Block or Prevote-Nil by the other validators if they reject or accept the block. A 2/3
validator’s voting threshold is needed for the block to progress. If a validator doesn’t
respond, the stake is slashed, as it can be due to network failures or other malicious
attempts.

• On receiving 2/3 of the validator’s majority votes of Prevote-Block, it progresses to
the next phase of Precommit, which expects the Precommit-Block or Precommit-Nil
if valid or not.

• Then, in the final phase, the proposer receives the 2/3 Precommit-Block votes and
Commits the block. All these three phases have a ∆ timeout interval until they wait
for the votes from the validators as it is partially synchronous.

37

Chapter 2

This protocol is a more practical solution applicable to the real-world blockchain but, how-
ever, suffers from fairness issues in forming a committee based on the stakes of the indi-
vidual validators as discussed in [88], which is a drawback in general for Proof of Stake
protocols.

2.2.1.8 Seminal Safe Proof of Stake Solution: GASPER

This protocol [89] is used in Ethereum 2.0, a Proof of Stake protocol. GASPER is a com-
bination of two components that works along with Proof of Stake consensus, which is: 1)
Casper Friendly Finality Gadget (FFG) and 2) Latest Message Driven Greediest Heaviest Ob-
served SubTree (LMD GHOST). The authors define FFG as an algorithm that marks certain
blocks in a blockchain as finalized so that participants with partial information can be fully
confident that the blocks are indeed canonical. It is termed a gadget to signify a module
that adds to the proof of stake protocol to provide finality. The second component, LMD
GHOST, is a fork-choice rule where validators attest blocks they find valid.

In a proof of stake protocol, the validator’s vote is quantified in proportion to their stake in
the network. This migration by the Ethereum community from erstwhile Proof of Work to
Proof of Stake has multiple good reasons:

• Better Energy Efficiency as less energy is spent on calculation.
• More participants can join the network as the hardware requirement is avoided.
• Penalty mechanism for Byzantine behavior in the form of stake slashing helps in the
network’s resiliency.

In this protocol, the validators deposit a certain amount of tokens or crypto money, which
is Ether in the case of Ethereum, into a deposit contract and then join a queue to activate
its participation. Then the validators receive the blocks and then attest to them if they are
valid. Temporal division in this protocol consists of a slot which is 12 seconds, and 32 slots
amount to an epoch. For every slot among a committee of validators, a validator is chosen
randomly every slot to become a block proposer. The proposer creates the block, which is
then validated by the voting mechanism in the committee.

2.2.1.8.1 CASPER Friendly Finality Gadget: It is a mechanism that ensures the val-
idated blocks are not reverted unless there is a consensus failure leading to the destruction
of the staked tokens. The two procedures for a block to be finalized are:

• Justification: It is justified when a validated block is voted by 2/3rd of staked valida-
tors.

• Finalization: When the previous justified block is added in the next height with
another justified block, it is said to be finalized, enabling the block to be added to the
canonical chain.

This two-step process of block finalization happens every epoch until they are known as
checkpoints. The condition of 2/3rd votes for a canonical block makes it difficult to break
unless the staked ether is destroyed or manipulated. Additional security against Double
Voting, where a validator equivocates his votes, is by stake-slashing condition punishment.
In [90], they note that an attacker requires to lose $10 billion Ether which makes it eco-

38

State of Art

nomically disincentive.

Economic Model: In [91], Vitalik Buterin, one of the co-founders of Ethereum remarks
in his philosophy behind the Proof of Stake(PoS) that, the PoS is not "security comes from
burning energy" but rather "security comes from putting up economic value-at-loss." In line
with this, the validators get slightly rewarded for proposing and validating blocks honestly.
But if there is dishonesty either passively by being offline or failing to respond or actively
by being malicious, there is an economic loss. The loss for a passive activity is minimal,
but an active one attracts deep slashing of the stake. The protocol also provides "plausible
liveness" or reasonable liveness by reacting when a chain fails to finalize for more than
four epochs; the validators who have not participated will be slashed off their stake. So
there is a simultaneous incentivization and disincentivization of economic behavior for the
validators to secure the network.

2.2.1.8.2 LatestMessage-DrivenGreedyHeaviestObserved Sub-Tree (LMD-GHOST):
Normal fork resolutionmechanism calledGHOSTwas previously proposed as part of CASPER
in [92] had the mechanism of choosing the chain (fork-choice algorithm) that has the great-
est height. GHOST was defined for Bitcoin in [93] as a construction and re-organization
mechanism for blockchain which secures Bitcoin against double-spend attacks. Fork here
means an alternative chain that exists in addition to a canonical or true chain, which causes
divergence into two potential block paths. The fork-choice algorithm is used to identify the
head of the blockchain, which normally has more blocks or difficulty weightage, signifying
the greater computational effort.

But in GASPER, a more robust algorithm called LMD-GHOST selects the fork with more
attestations or votes. Also, in case of duplicate or multiple messages sent from a validator
for the fork-choice process, the latest message is considered.

Figure 2.16: LMD GHOST [90]

As illustrated in the [90] Figure 2.16, we decide the leaf block of the blue chain to be the
latest block, as we apply the heuristic of the weights of each subtree and compare them.
The attestations are marked as circles, and the blue chain has the highest attestation. The
weight of the stake signifies the number in each block, and the attestations are all assumed

39

Chapter 2

to be a weight of 1. By comparing the chains from the left, the blue chain has a total weight
of 27, whereas others have a lesser weight at the same height as the Genesis Block. So this
Proof of Stake protocol with an added gadget of Finality and LMD-GHOST proves safety,
plausible liveness, and consistency which accounts for both stakes weights and attestations.
However, the authors argue in [90] that their version of the Proof of Stake protocol is not
better than others. Still, if safety is preferred over liveness, they recommend Tendermint
as previously discussed in SubSection: 2.2.1.7 or HotStuff as there are arbitrary network
delays discussed in SubSection: 2.2.1.6.

2.2.2 Relevant Work

This section discusses more relevant works in Byzantine Fault Tolerance Consensus algo-
rithms, focusing on improving the throughput, parallelization of consensus, and Quorum-
based consensus for consortium networks. We discuss apart from the Proof of Stake pro-
tocols like Tendermint, Hotstuff, or GASPER, which stakes the real economic value as dis-
cussed earlier. We highlight the works on abstract economic values like Authority, Repu-
tation, and Altruism, which can be an alternate study to focus on as it is less penalizing.
Still, there is a social cost, and it is more democratic because there are no entry economic
barriers of huge monetary stakes, which can be interesting. We avoid Proof of Work in
our analysis as it is more calculation intensive, probabilistic finalization of blocks, and has
huge energy costs, which are unsuitable in our case as our focus is more on consortium
with closely verified participants.

2.2.2.1 Parallelization

In this section, we focus on works dedicated to improving the scalability issues that arise in
classical single leader BFT protocols such as PBFT [73], where communication and protocol
phases are costly in terms of computation. This reliance on a single leader for directing the
consensus has been dealt with earlier in the Hotstuff Algorithm by improving the commu-
nication from N-to-N validators to One-to-N validators explained in section 2.2.1.6. There
are various protocols following this idea of parallelization, like in [94],[95, 96, 97, 98, 99,
100], but we select a few recent works to elucidate here.

2.2.2.1.1 Mir-BFT In the work of [94], the authors Stathakopoulou, Chrysoula and
David, Tudor and Pavlovic, Matej andVukolić, Marko define amore robust and high through-
put protocol calledMir-BFT, amulti-leader protocol. They allowmultiple leaders to propose
batches of blocks independently and concurrently. The intuition behind these parallel lead-
ers is to distribute the CPU and bandwidth load more uniformly. At the same time, they
also handle the duplication of requests, which is a side effect of parallel leaders by a modu-
lar arithmetic operation. This prevents two types of attacks which one should consider in
multiple leader consensus protocols [94]:

• Request Censoring attack in which a leader can drop or delay a request.
• Request Duplication attack where a request can be executed multiple times.

The protocol that transitions for each epoch period works as follows in Figures 2.17,2.18:

40

State of Art

• For an epoch, primary and multiple leaders are selected, which can be proposed in
parallel.

• Then each leader, including the primary, is assigned a bucket as in Figure 2.17 where
each bucket has a certain hash space range to accept into its queue. If a request’s hash
falls into a particular hash space, it is accepted by the particular leader of a bucket.
This mechanism avoids request duplication; each leader proposes the request in their
buckets.

• Then, after the requests are filled in the hash space buckets, a primary initiates epoch
and assigns a sequence number to leaders. The primary proposes the first batch in the
epoch, and leaders take turns proposing the other batches sequentially as in Figure
2.18. Each leader proposes a batch with a PRE-PREPARE message with a sequence
number to its set of 2F+1 replicas. The replicas other than its own are called observers,
verifying themessage of its batch number, which should be unique. This phase is then
followed by the PREPARE and COMMIT message in parallel with multiple batches of
blocks to finalize the blocks.

So this protocol, with the proposition of multiple batches and the request duplication han-
dling, shows a higher throughput of 60000 transactions per second as claimed in the Go
language implementation with 100 nodes and 1 Gbps WAN setup, which is quite promising
in the BFT scenarios.

Figure 2.17: Sorting of Request into Buckets [94]

Figure 2.18: Balancing of proposal load among the 4 nodes for messages in an epoch [94]

41

Chapter 2

2.2.2.2 Quorum Based Protocols

In this section, we discuss themost relevant quorum-based consensus protocols that require
an effective subset S of participants from a universal set of N Nodes. These types of proto-
cols need a permission setup of the network where the nodes can join the network through
access to smart contracts, stake deposition, or other verification mechanisms. Authentica-
tion mechanism through public key infrastructure is enforced to avoid security violations
like Sybil attacks or to identify malicious behavior. In the analysis by [101]Rebello, Gabriel
Antonio F. and Camilo, Gustavo F. and Guimarães, Lucas C. B. and de Souza, Lucas Airam
C. and Duarte, Otto Carlos M. B., they classify the quorum-based protocols into three
classes:

• Practical Byzantine Fault Tolerant Protocol and its derivatives.
• Federated Byzantine Fault Tolerant Protocols.
• Delegated Byzantine Fault Tolerant Protocols.

2.2.2.2.1 Practical Byzantine Fault Tolerant Protocol They note themain limitation
of PBFT protocol already discussed in Section 2.2.1.4 as scalability concerning the number
of consensus participants. To tolerate malicious behavior, the participants require O(n2)
messages. The other limitation noted is the inability to add and remove the participants at
runtime in this protocol. Alternative protocols in PBFT have been proposed by [102] Aublin,
Pierre-Louis and Mokhtar, Sonia Ben and Quéma, Vivien to spin or change the leader every
round, avoiding centralization leading to malicious action and compromising the liveness.
Further, another alternative in PBFT is Redundant Byzantine Fault Tolerant Protocol by
[103] Chase, Brad and MacBrough, Ethan, which is robust in the sense of identifying the
leader who is malicious when a certain round exceeds a time threshold and a new leader is
elected to replace the latter.

2.2.2.2.2 Federated Byzantine Fault Tolerant Protocol: Next classification by the
authors in [101] is Federated Byzantine Agreement, where they partition the quorum into
slices managed by a Byzantine General, reducing the communication complexity. Here the
participant in the network can choose the quorum slice to trust, which makes a malicious
participant with duplicate identities very difficult to join the network and participate in
the quorum. They have discussed two prominent protocols of this genre: 1) Ripple or XRP
Ledger Consensus Protocol and 2) Stellar Consensus Protocol.

In Ripple or XRP Ledger Consensus Protocol by [103] Chase, Brad and MacBrough, Ethan,
they have a low latency compared to other BFT protocols as they introduce the concept
of subnets within the totality of the network. The protocol has a Unique Node List (UNL),
which acts as an Access Control List (ACL) to identify the eligible and reliable nodes. It
operates in two phases:

1. Consensus Phase: In this phase, each validator proposes a set of transactions and
simultaneously validates the proposal of other peer validators identified in the UNL.
The required majority for this phase is 80%

2. Validation Phase: Each validator calculates the block using the previously collected
transaction proposals and broadcasts the block’s hash in the network. When the

42

State of Art

required majority of 80% votes is achieved for the block, it is considered finalized.

Figure 2.19: Stellar Consensus Protocol [104]

The next discussion is on Stellar Consensus Protocol by [104] Kim, Minjeong and Kwon,
Yujin and Kim, Yongdae has the same low latency as XRP protocol but has flexible trust
and a Federated Byzantine Agreement model. In this, the protocol operates with an inter-
quorum-slice message passing where a single quorum is split into slices. The consensus
within these slices reduces the message complexity. It operates in two phases:

1. Nomination: Participants generate a set of transactions during this phase, and their
validation is complete as soon as a slice of the quorum is complete, as in Figure 2.19.
Here N1, N2 ...N6 are individual participants, and each participant is mapped to a
Quorum slice. N1 belongs to the quorum slice comprising N1, N2, N3, and the other
slices are represented in Figure 2.19. A complete consensus at the quorum level is
obtained once participant N traverses all the slices and returns to its position. As
each quorum slice validates a certain set of transactions, all these are merged deter-
ministically into a single set of transactions forming a block.

2. Balloting: Participants reach a consensus on the block between multiple quorum
slices based on federated voting. Here multiple ballots are created for the set of trans-
actions to vote on from the block and are voted on until an agreement is reached.

2.2.2.2.3 Delegated Byzantine Fault Tolerant Protocols Next classification by the
authors in [101] Rebello, Gabriel Antonio F. and Camilo, Gustavo F. and Guimarães, Lucas
C. B. and de Souza, Lucas Airam C. and Duarte, Otto Carlos M. B. is Delegated Byzantine
Fault Tolerant Protocol which is used in Neo Blockchain. It works through proxy voting,
where the holder of the tokens, by voting, supports a consensus node. The protocol con-
sists of three types of participants: 1) Clients who handle the send and receive of requests 2)
Speaker who perform the consensus and is selected by the delegates 3) Delegates also per-
form the consensus and help in choosing nodes. Then the set of consensus nodes undergoes
a PBFT style of consensus [105], which works as follows as in Figure 2.20:

1. Speaker broadcasts the Prepare Request message to the network’s nodes.
2. Delegates broadcast the Prepare Response message to the network
3. Then, the Speaker and Delegates broadcast the message until the block is confirmed

after reaching the threshold.

The final classification is the Byzantine Fault Tolerant and Delegated Proof of Stake Pro-

43

Chapter 2

Figure 2.20: Delegated Byzantine Fault Tolerance Protocol [101]

Figure 2.21: EOS.IO Consensus Protocol [106]

44

State of Art

tocol, developed in the EOSIO protocol. The protocol works as represented in Figure 2.21
with two phases:

1. Election of Delegates: In this phase, the users who hold tokens elect the block
producers through voting. Each token holder can vote for at most 30 block producers
who act as delegates.

2. Production of Blocks: Then, the delegates validate the transaction for a certain
time period. Then among the delegates, a block producer produces the block, which
is agreed upon until 2/3rd of the delegates confirm through signed messages.

In [101], Rebello, Gabriel Antonio F. and Camilo, Gustavo F. and Guimarães, Lucas C. B.
and de Souza, Lucas Airam C. and Duarte, Otto Carlos M. B. identify the vulnerabilities in
this protocol:

• The centralization of 21 delegates elected by voting undermines the decentralization
aspects.

• The voting process in this protocol is weighed proportionately to the held assets,
which can lead to collusion by the high token holders already identified by Zhao,
Yijing and Liu, Jieli and Han, Qing and Zheng, Weilin and Wu, Jiajing [107] through
the formation of voting gangs.

• After the election, the delegates have the same power regardless of votes received,
which can incentivize the token holders to collude and elect delegates with the least
votes.

More exhaustive work on a committee or quorum-based proof of stake (PoS) Protocol has
been done by [108]Zhao, Yijing and Liu, Jieli and Han, Qing and Zheng, Weilin andWu, Jia-
jing. Here they identify that a committee-based PoS helps maintain a more ordered process
in which a committee of stakeholders valued with their stakes can produce blocks. Based
on this committee-based PoS idea are the well-known protocols of Chain of Activity [109],
Ouroboros [110], Ouroboros Praos [111], and Snow White [112].

In Chain of Activity by Bentov, Iddo and Gabizon, Ariel and Mizrahi, Alex [109] works
in two phases: 1) Committee Selection and 2) Block Generation. Based on participants’
current blockchain state and stake information in the committee selection phase, a Multi-
Party Computation(MPC) is performed to select the block producer and its sequence for
block generation. MPC [113] is a subject within cryptography that allows the participants
to solve a function over their individual inputs without sharing with others. Then a block
sequence is generated using the Follow the Satoshi (FTS) algorithm.

Follow the Satshi (FTS) [114] is an algorithm for staking. It works in two phases: 1) First
Phase involves the randomized selection of tokens in the network by a pseudo-random
function. 2) The second phase gets the account (owner) of the particular associated to-
ken. Since the input of the random function is a sequence of seeds, the algorithm likewise
furnishes multiple output accounts, among which an account is elected based on the pro-
portion of tokens held by the node.

MPC computation from the previous involves this FTS algorithm to generate the block gen-
eration sequence. The participants use this sequence to know their turn and then propose

45

Chapter 2

a block according to it.

In the next work, we discussOuroboros protocol by Kiayias, Aggelos and Russell, Alexan-
der and David, Bernardo and Oliynykov, Roman [110], which is used in the blockchain
Cardano. The protocol considers time periods in epochs which in turn are divided into
fixed slots. A slot requires a leader to be elected among the electors. Eligible electors are
those with enough stakes for a particular epoch.

The election process of a leader for a slot involves an MPC procedure, more specifically
known as Publicly Verifiable Secret Sharing (PVSS).

Figure 2.22: Publicly Verifiable Secret Sharing [110]

PVSS is represented in [115] Figure 2.22, which has three phases of Commit, Reveal, and Re-
covery followed by the FTS algorithm previously discussed. Here we note that the electors
E1, E2... En generates a secret and broadcasts them via a COMMITMENT message. Then in
the next phase, they send an OPENINGmessage. Finally, they use both the COMMITMENT
and OPENING messages to form a seed verified to be uniform across the network. The net-
work is assumed to be synchronous, and then the seed is used to calculate the leaders for a
predefined sequence during the epoch by the FTS algorithm.

Another committee-based PoS, which is a security improvement over Ouroboros [110] pre-
viously discussed, is Ouroboros Praos [111] by David, Bernardo and Gaži, Peter and Ki-
ayias, Aggelos and Russell, Alexander. The strong considerations of synchronous networks
and the public exposition of elected leaders for a slot beforehand which can lead to targeted
attacks, are the major issues of Ouroboros that are solved in this protocol.

This protocol operates in partially synchronous networks assuming a Global Stabilisation
Time (GST) of ∆. They [111] David, Bernardo and Gaži, Peter and Kiayias, Aggelos and
Russell, Alexander modify the protocol by introducing empty slots in a particular epoch for
re-synchronization purposes and multiple leaders per slot to handle liveness issues in case
of failures or delays. The next concern regarding the knowledge of slot leaders beforehand,
which opens targeted security attacks, is solved by adding a Verifiable Random Function
(VRF). This function, upon solving, reveals the slot sequence only to the elected leaders,
and the VRF Proof is produced by the leader for verification, solving the second security

46

State of Art

issue as well.

The final work discussed in committee-based PoS SummaryWork by Xiao, Yang and Zhang,
Ning and Lou, Wenjing and Hou, Y. Thomas is Snow White [112] by Daian, Phil and Pass,
Rafael and Shi, Elaine. The protocol is designed to work asynchronously and is resilient
to network delays as it borrows some of its features from the Sleepy Model of Consensus
[116] by Pass, Rafael and Shi, Elaine. This Sleepy Model assumes high network delays.
They assume honest participation of the actors, which uses a Public-Key-Infrastructure
and a common random string to build the protocol.

Snow White [112] uses an MPC procedure to decide a block proposal committee who are
provided with an eligibility pass individually. As in the other previous committee-based
PoS protocols, the input for the calculation is the stakeholder information. This protocol is
resilient under benign network delays and uses a checkpointing scheme to finalize blocks
already committed.

The common drawback associated with committee-based PoS identified in [115] is the com-
mittee’s size, which can cause communication overhead to increase. Also, the network
synchrony assumption for these protocols of a ∆ GST and increasing committee members
can arbitrarily delay the block finalization process. The example of Cardano Blockchain,
which minimizes the participation size of the committee to 50, proves quite efficient for the
protocol to respect liveness, termination, and validity.

2.2.2.3 Proof of Authority

This set of protocols belongs to the permissioned blockchain wherein the nodes’ identities
are well-defined and traceable. These are purely based on identity as a resource and are
extremely relevant for consortium or federated blockchains. At first, we discuss the classical
algorithm variants of Proof of Authority and then the analysis based on this protocol.

2.2.2.3.1 Variants of Proof of Authority Proof of Authority (PoA) is based on the
identities of nodes called authorities. Authorities are assumed to be honest since they are a
closed network of well-known participants who always follow the protocol. The required
threshold for safety if we consider N Nodes is N/2+1. Block proposal is fair, with each
identity or node being given a chance. The different variants of this family of algorithms
will be discussed further as follows.

Clique : Clique [117] is a Proof of Authority Protocol proposed and implemented in Go-
Ethereum or Geth. This protocol was conceived to develop an Ethereum Virtual Machine
based on a Testnet called Rinkeby. This consensus of faster block proposal without any
major computational effort like PoW facilitates the test of the Ethereum Smart Contract
before deploying on a live network.

The algorithm consists of a set of authorities or proposers working in epochs where each
epoch consists of a certain block height or limit of blocks proposed. The protocol has a
single phase of BLOCK_PROPOSAL. All the block proposition happens for a pre-defined
block interval that can be configured. Then for a particular block height, a proposer is

47

Chapter 2

Figure 2.23: Clique Consensus [117]

selected based on a modular arithmetic operation among the authorities if it has not been
signed recently. The block proposition can happen either in two ways:

1. In-order: When the proposer of the block is legitimately selected, then he proposes
a block with weight 2 called in-order sealing.

2. Out-of-order: When the legitimate proposer does not propose the block, then any
other block proposer can propose with a weight of 1, called as out-of-order.

As in Figure 2.23, a single block proposer is selected who proposes an in-order or out-of-
order block containing the transactions. The protocol, although lightweight and simple in
terms of calculation, poses a problem in the finalization of the blockchain as it is prone
to many chain forks, as noted in [118]. This leads to another complementary protocol,
Greediest Heaviest Observed Sub Tree (GHOST), to be applied [93]. The GHOST protocol
calculates the cumulative weight of the chain based on the individual weight of each block,
as they can be of weight 1 or 2. The protocol arbitrarily chooses a chain with a heavier
cumulative weight or one with more in-order sealed blocks.

Figure 2.24: Authority Round (Aura) Consensus [117]

48

State of Art

AuthorityRound (Aura) This variant of PoA is implemented [117] in Parity, an Ethereum-
based binary and Substrate Blockchain platform. The network assumed here is synchronous
within aUNIX time t, with two phases of consensus: BLOCK_PROPOSAL and BLOCK_ACCEPTANCE.
The block proposition happens with a pre-defined step_duration [117]. Similarly to Clique,
a modular arithmetic operation over the total proposers is performed to identify the pro-
poser. Still, the condition of avoiding recently signed proposers is not used here.

The selected leader proposes a block and broadcasts to the other authorities as in Figure
2.24. On receiving the block proposal from the leader, the other authorities relay this pro-
posal to others for verification which is quite a heavy phase of message communication.
The block is accepted and added to the chain if it is valid. If it is invalid, the leader is voted
out for malicious behavior by the remaining authorities: 1) No block proposal for a round,
2) Proposed conflicting blocks. This algorithm is also subjected to forks similar to Clique,
as time drift can happen, and a perfectly synchronous network assumption is strong to
consider.

Figure 2.25: Istanbul Byzantine Fault Tolerance (IBFT) Consensus [119]

Istanbul Byzantine Fault Tolerance (IBFT) This protocol [119] inspired by Castro,
Miguel and Liskov, Barbara [73] with modifications is implemented in Ethereum Enter-
prise Blockchains: GoQuorum and Besu. The necessity of the client sending transaction is
replaced by Peer-to-Peer validators exchanging messages and reprising the same 3 Phases
of consensus: PRE-PREPARE, PREPARE and COMMIT. Assuming the network has F faulty
nodes in an N validator network, it needs 3F+1 honest or benign actors.

The algorithm which operates in rounds, works as follows represented in Figure 2.25:

• At the start of the round, a proposer is chosen from the set of validators in a round-
robin fashion. The proposer proposes a new block and broadcasts it with a PRE-
PREPARE message.

• The other validators, upon receiving the PRE-PREPARE message, then validate the
block and broadcast PREPARE message, ensuring that they work on the same block
sequence and round.

49

Chapter 2

• Upon receiving 2f+1 PREPARE messages by each validator, a COMMIT message is
broadcasted informing the other peers the block proposal is accepted.

• On reaching 2f+1 COMMIT messages, the block is added to the blockchain.
• In case of any network failure or invalid block, a ROUND CHANGE is initiated, and
a new proposer is selected, ensuring liveness.

The advantage of this protocol resembling close to PBFT [73] is that there are no forks,
unlike Clique and Aura, and the blocks are finalized.

Figure 2.26: Quorum Byzantine Fault Tolerance (QBFT) Consensus [120],[121]

Quorum Byzantine Fault Tolerance (QBFT) Quorum Byzantine Fault Tolerance Pro-
tocol is an algorithmwhose core design is from [121] by Henrique Moniz. It is implemented
by the Enterprise Blockchains of Besu byHyperledger andGoQuorum byConsensys, which
works with a verified set of participants. The network assumption made here is eventu-
ally synchronous with a convergence within Global Stabilisation Time which is finite but
unknown. The algorithm is non-randomized, with a set of N validator nodes allowed to
propose and verify blocks. The protocol can tolerate up to f faulty nodes where N ≥ 3f+1
The algorithm [120] works as represented in Figure 2.26:

• The protocol works in rounds with a time period frequency for block creation. Each
round consists of three phases: PROPOSE, PREPARE, and COMMIT.

• A proposer is chosen in round round-robin pattern among the set of validators and
can broadcast blocks to the remaining validators.

• The peer validators, on receiving the PROPOSE, then broadcast the PREPARE mes-
sage to all the validators. At a threshold of receiving 2N/3 votes, it passes to the
COMMIT phase ensuring the whole network has agreed on the block height and
validity.

• If 2N/3 COMMIT votes are received, the block is finalized and added to the chain.
• Then, a ROUND CHANGE phase is initiated to select the new validator eligible to
propose the next block.

50

State of Art

2.2.2.4 Reputation as an Asset

In this section, we analyze an alternate economic value system that can be used as a de-
terminant or a criterion to enforce honesty or regulation inside an artificial society such as
blockchain ecosystems. Proof-of-Stake blockchain has seen astronomical growthwith close
to 245 coins or assets, and Delegated Proof-of-Stake has around 31 assets. These systems
have seen at least an average of 5 Initial Coin Offerings (ICO) per day, which is surprising.
The Proof of Stake (POS) systems, even though are on the sunrise period they, have some
drawbacks as highlighted in [115] as below:

• Costless simulation: This means that instead of using the classical systems like
Proof of Work which are derivatives of works to handle Denial of Service Attacks
like [122] Pricing via Processing or Combatting Junk Mail via Hashcash - A Denial
of Service for enforcing the honesty in the system. This technique involves inten-
sive computation cost, but the PoS systems, on the other hand, use the stake and
MultiParty Computation (MPC)-based randomization mechanism to select the block
proposer, which does not involve any real cost. This convenience of costless security
attracts the following vulnerabilities, which will be discussed as follows.

– Nothing-at-stake: A major problem is double-spending attacks in blockchain
wherein a user with a 50% majority of either calculation or economic resources
in the network can create conflicting chain forks and make the desired fork
finalize, benefiting economically. This concern appears graver in the case of
PoS chains where a fork is created, the other nodes cannot decide which fork
will become canonical, and they will tend to multi-bet. Multi-bet is the process
of voting on both chain forks, risking the honest chain’s resolution impossible.
This can be solved by penalizing or the slashing process of stakes when someone
multi-bets, but this can be overcome if there is a significant majority of stakes.

– Posterior corruption: Another striking costless attack is posterior corruption
or bribing attack [114]. Here certain nodes can be convinced to collude and
attest a malicious chain fork which can be attractive as the participant will be
rewarded. This is possible for two reasons: 1) Publicly available data of nodes
allows to target nodes with low stakes. 2) Fixed Asymmetric Encryption Keys
throughout the lifetime of the participation by the nodes, which can allow this
type of collusion. A possible solution adopted is through 1) Key Evolving Cryp-
tography adopted in Ouroboros Praos [111] by David, Bernardo and Gaži, Peter
and Kiayias, Aggelos and Russell, Alexander as it protects from forging of the
past signature using future keys 2) Another protection adopted by SnowWhite
Protocol [112] and Casper FFG [123] is through checkpointing where a ledger
can be finalized to avoid corruption attacks.

– Long-range attack: This attack consists of forking amalicious chain and grow-
ing it faster to make it valid [124]. In the case of an incentivized network with
rewards, this chain can claim the reward by producing a much longer chain
faster. In the case of the PoS network, where the rewards are absent, the attack
is named a stake-bleeding attack [125] by claiming the transaction fees.

– Stake-grinding attack: The PoS uses pseudo-randomness to select the block
proposer instead of calculation-intensive hashing of Proof of Work. The latter

51

Chapter 2

uses an MPC with staking history as public input. The attacker in this scenario
manipulates the history to bias the randomness in their favor, as noted in Peer-
coin, a PoS blockchain.

– Centralization risk: The centralization risks with PoW and PoS are likely the
same. However, different quantitative computation and economic power factors
can lead to the famous Pareto Principle [126]. This principle states that "for
many outcomes, roughly 80% of consequences come from 20% of causes, which
means in this case that the more powerful in computation or stakes can have
more say in the network, which defeats the central idea of decentralization in
the blockchain.

So the inconveniences with PoW and PoS systems are leading to alternate consensus pro-
tocols such as:

• Proof of Elapsed Time: This consensus protocol [127] is used in a permissioned
network where the participants are given a fair chance to be a winner. Each node or
participant has a different timer, and theywait for a random time. The first participant
to finish waiting then proposes a block. All these executions happen in a trusted
execution environment which Intel has proposed. The advantage of the protocol is
energy efficiency, but this requires specialized hardware, which is a constraint for
this protocol

• Proof of Activity: This protocol [114] combines PoW and PoS, which operates in
two phases. In the first phase, the Miners or Nodes participate in puzzle-solving
and earn rewards. The block’s header mined is used as an input for pseudo-random
selection of validators for signing the block. The probability for a signer to be elected
for validation is based on the stakes held by the nodes. These protocols, however,
suffer from the same PoW and PoS disadvantages discussed earlier.

• Proof of Capacity: This protocol implemented in blockchain Signum uses Storage
space instead of calculation-intensive Proof of Work (PoW). In this protocol, each
Node uses a Hard Disk Drive (HDD) to generate data called plots necessary to gen-
erate blocks. Then they join a pool and use their forged blocks to decide if the value
found respects a constraint, as in PoW. During this process, they remain idle and use
pre-calculated data to perform this procedure. This protocol is similar to PoW but
a little lighter as computational energy is lost. However, disk space is cheaper than
Application-specific-integrated-circuit (ASIC) miners in PoW.

• Proof of Location: In this protocol, a device’s location coordinates are used to estab-
lish trust in the protocol. This protocol overcomes the conventional location services,
which are unsecured and hard to rely upon. Instead, this protocol uses a permis-
sionless and autonomous radio network that offers secure location services through
time synchronization. This protocol has been implemented by Foamspace blockchain,
which has deployed a secured network in the Brooklyn Navy Yard Zone. It consists
of specialized hardware called Zone Anchor or Nodes, which has the components of
a PCB stack, battery, LTE Modem, and two antennas. These zone anchors are used to
form a decentralized location network. This protocol has advantages such as being
open, trustless, and verified. But relies more on location and hardware specification,
making it less widely adopted.

52

State of Art

• Proof of Space: A dedicated memory or disk space is allocated to the node whose
voting rights in the network are equivalent to the allocated storage space. The hash
function of SHA256 is used along with ChaCha8 [128] and BLAKE3. This protocol is
used by the blockchain Chia, a more sustainable and secure blockchain. The disad-
vantage of this protocol is the same as Proof of Capacity which makes the disk space
cheaper but a not-so-straightforward consensus with hardware requirements.

These protocols presented alongwith earlier protocols require an extrinsic factor of calcula-
tion such as power, memory space in the form of HDD or RAM, location-enabled through
specialized devices, or the stake as an economic power, which is not straightforward or
less democratic with specific entry requirements in the network. This has led to certain
protocols using intrinsic values like, for example, Reputation.

As per Merriam-Webster, Reputation is defined as "overall quality as seen or judged by
people in general." Warren Buffett says, "It takes 20 years to build a reputation and five
minutes to ruin it. If you think about that, you’ll do things differently," which describes, in
a nutshell, the core principle of Reputation-based consensus. Proof of Reputation and Proof
of Authority are analogous, as the accounts known as validators are held accountable here.
This is quite suitable for consortiums where accounts are traceable among the consortium
members. This model uses Reputation, which can be diminished or incremented based on
their actions in the network affecting their brand as a consequence of their behavior.

The following section discusses some works that use this abstract and subjective quality of
Reputation in blockchain consensus.

In the work by Swamynathan, Gayatri and Almeroth, Kevin and Zhao, Ben [130], they at-
tempt to build a reputation system for distributed infrastructures. They define Reputation
as a statistical estimate of a user’s trustworthiness computed from feedback given by pre-
vious transaction partners to the user. As in Figure 2.27, a service Requester R uses the
reputation profile of provider P to determine whether to transact with P. Rating schemes
are binary ratings like 0 indicating bad, 1 indicating good or subjective ratings like Very
Good, Good, Ok, Bad and Very Bad. They outline the process of the reputation system

Figure 2.27: Reputation System [130]

through the process of:

53

Chapter 2

1. Collection: Ratings are generated by users undertaking transactions.
2. Aggregation: The user’s reputation from various sources is aggregated to form a

profile.
3. Storage and Communication of Reputation data: Constructed Reputation profiles

must be stored efficiently and securely without tampering.

They propose the solution using the Lorenz curve and Gini Coefficient to address the rea-
sons for erroneous andmisleading values produced by the reputation system: user collusion
and short-lived online identities.

The consensus protocol by Oladotun Aluko and Anton Kolonin [131] uses the interaction
between nodes in the network to determine the Reputation associated with each node. The
Reputation is used to determine the nodes which can perform the consensus and calcula-
tion of new reputation values. Their reputation-based protocol is based on the following
principles:

• Reputation is calculated recursively and progressively after each block proposition.
• Reputation calculated recently has more priority than the earlier calculated values.
• All the reputation values are visible to all the community members.

They discuss the work of RepuCoin [132] by Yu, Jiangshan and Kozhaya, David and De-
couchant, Jeremie and Esteves-Verissimo, Paulo where the authors discuss adding a hybrid
reputation mechanism over Proof of Work to subvert the 51% attack. The computation
mechanism, along with a reputation score, is taken into account for finalizing a block. But
in this work [131] by Oladotun Aluko and Anton Kolonin, they use a simple protocol con-
centrated only on Proof of Reputation without any hybrid nature. This protocol works in a
strong synchronization setting but considers benign failures through network delays. The
rating for a given transaction is given by node i to j, where i is considered the rate provider,
and j is the recipient. The total number of nodes in the network is N with at-most f faulty
nodes where 3f+1 ≤ N. They consider each node Pi, where i ∈ N. The transactions in the
network are denoted as

Transaction = Eski , pkj, r

where Eski is the encrypted message of i, pkj is the public key of node j being the recipient,
and r is the rating between 0 and 1. To be selected for participation in the consensus group,
the members belonging to high reputation values which is 50% of the total cumulative value
of the entire network.

Then a leader is randomly selected from the consensus group members from high-ranking
nodes. Leader performs the following functions:

1. Propose a block using the pending transactions, then calculate the new reputation
value for all nodes based on each transaction’s reputation values.

2. Broadcast the commit message to the consensus group.

The commit vote by each node is assigned a weight based on the Reputation of the nodes. A
minimum threshold of 2/3 of the total weight in the consensus group needs to be achieved
for successful consensus. The reputation calculation by the leader considers not only the
current transaction’s Reputation but also the earlier Reputation applied to a forgetting co-

54

State of Art

Figure 2.28: Throughput of the Network [131]

efficient prioritizing more current values.

In the implementation results as in Figure 2.28, they notice an increasing throughput with
increasing nodes due to a single leader. Still, the communication complexity proposed in
the protocol appears counter-intuitive to the results as it can diminish the throughput per-
formance. Although it uses group-based communication, the number of members in the
group is not fixed. It is a percentage of members who are selected based on reputation
distribution in the network.

In the following work by Kleinrock, Leonard and Ostrovsky, Rafail and Zikas, Vassilis [133],
a Proof of Reputation protocol with aNakomoto or Proof of Stake fallback is proposed. They
design a reputation systemwhere each node or party Pi has an associated reputation Ri from
[0,1]. Their understanding of Reputation is defined as the probability of a node behaving
honestly. The Reputation considered is uncorrelated, where a change in one’s Reputation
doesn’t change others. The protocol works as follows:

1. Each block is proposed and voted in rounds. Each round comprises a small com-
mittee sampled CBA, called endorsers, and a further sub-committee is sampled called
proposers. This sampling is called a Reputation-based Lotterywhichwill be discussed
later.

2. Proposers broadcast the transaction to endorsers.

3. Endorsers sign the received transaction and relay it to other endorsers.

4. When a threshold of |CBA|/2 that is half the endorser committee size is reached, it is
diffused to the other type of participants.

The communication complexity is reduced since the communication is committee-based or
quorum-based. The protocol assumption is a synchronous network.

Reputation-based Lottery: Considering each node or Party pi has a reputation Ri then a
small committee is selected using an algorithm for reputation systems by Asharov, Gilad
and Lindell, Yehuda and Zarosim, Hila [134]. This algorithm sorts the participants in de-
creasing reputations and selects the most reputable ones. For the system to be fair by giving

55

Chapter 2

a fair chance to everyone, they divide the set of nodes into 4 Tiers T1, T2, T3 and T4:

• T1 where Reputation Ri > 0.75
• T2 where Reputation 0.5 < Ri ≤0.75
• T3 where Reputation 0.25 < Ri ≤0.5
• T4 where Reputation 0 < Ri ≤0.25

The selection from the tier is based on the idea that a node from Ti is more likely to be
chosen than a node from Ti+1 and also in more numbers. Meanwhile, the parties from the
same tier have equal chances of selection. To circumvent the issues of a node behaving
maliciously upon reaching a high reputation, they propose a fallback hybrid consensus of
Proof of Reputation (PoR) and Proof of Stake(PoS) where the digest from the PoR is posted
in PoS and resolved if any discrepancy.

Another Proof of Reputation-based consensus protocol variant is proposed by Gai, Fangyu
andWang, Baosheng and Deng, Wenping and Peng, Wei [135]. They assume the protocol to
work in a permissioned blockchainwithwell-identified participants. The broadcast channel
is secure, avoiding any man-in-the-middle attack. They identify several attacks common in
reputation-based protocols:

• Bad-mouthing attack: This attack aims to give bad recommendations or mislead
while improving one’s trustworthiness.

• Replay attack: It reuses or replays the transactions that profit oneself or a group.

• On-off attack: It is a kind of stealth attack where they behave good and bad alter-
natively to avoid suspicion.

• Sybil attack: This attack identified by Anderson, Ross J. [63] is aimed at creating
multiple identifications (id) where a node can switch to a new id if its reputation is
marked as low.

Figure 2.29: Proof of Reputation: Transaction Format [135]

The protocol works by the following steps:

1. When a participant requests a service, the service provider replies with a signed rat-
ing message by another participant called a rater.

2. Each transaction is composed of the payload as in Figure 2.29, where there is a signa-
ture of the rater, provider of service, the rating message of the service payload, and
the signed message of the service.

56

State of Art

3. After the rating calculation, this transaction is broadcasted to the entire network,
relaying the information and cross-verification by others.

4. Reputation scores are represented as xij ∈ 0,1 where 1 means satisfied and 0 otherwise
or a real value xij ∈ [0,1].

Figure 2.30: Proof of Reputation: Throughput with different block sizes and participants
[135]

They devise algorithmic filters to test the message’s authenticity, self-rating attacks, or
bad-mouthing attacks to prevent malicious action. The set of verified transactions is used
to evaluate a node’s trustworthiness. Then based on that score, a ranking list is generated,
and the participant with the highest trust is allowed to propose a block. The implementation
results show that the throughput, as in Figure 2.30, increases with more participants as the
authors claim the production of more messages leads to faster consensus. But on the other
hand, it may be a bit contradicting as more messages can lead to more communication
overhead. Each set of normal service transactions produces a rating transaction that needs
to be broadcasted to the whole network. Also, choosing a single leader to propose a block
affects the liveness in case of failure, and no fallbacks are presented, which might be a
drawback. However, transaction filters like signature verification are an excellent technique
to avoid the earlier listed attacks but can introduce certain computational overhead.

2.2.2.5 Byzantine Altruistic Rational (BAR) Fault Tolerance

We have discussed protocols that operate in artificial societies or blockchains with sin-
gle administration or commonly motivated nodes. But if the network is deployed across
multi-administrative behavior, then each set of participants has a reason to deviate from
the expected behavior. The Byzantine Generals’ problem can be applied in the case of a sin-
gle administration, but multi-administration needs a new model. The Byzantine Model is
too general and cannot be applied in multiple-administrative domain deployment or multi-
chain or Interoperable chains as in a blockchain context. In the BAR model, Byzantine and
Rational failure are considered, where the Rational understanding is a self-interest behavior
from a particular node. We discuss certain BAR model consensus from a set of contribu-
tions. [136, 137, 138, 139].

57

Chapter 2

A Byzantine Altruistic Rational Modeled Fault Tolerance system for cooperative services
spanning Multiple Administrative Domains (MAD) as in Internet was developed by [138]
Aiyer, Amitanand S. and Alvisi, Lorenzo and Clement, Allen and Dahlin, Mike and Martin,
Jean-Philippe and Porth, Carl. They propose an approach for tolerating Byzantine actors
as in the classical BFT protocols and rational actors who are selfish nodes aimed at self-
improvement or benefiting oneself.

2.2.2.5.1 BAR Model: The Model has three sets of participants which are:

• Altruistic: They follow the suggested protocol exactly or behave correctly.
• Rational: Nodes are self-interested andmaximize following a utility function. Utility
function considers a node’s costs like computational cycles, storage, network band-
width, the overhead associated with message communication, power consumption,
or financial sanctions.

• Byzantine: These nodes show arbitrariness as they do not follow the protocol or
may malfunction due to hardware or network failure.

The BAR model aims to guarantee safety and liveness as in Byzantine Fault Tolerance for
"rational and altruistic nodes" contrary to "correct nodes," which is a broader definition.
They classify two types of protocols for the BAR model:

• Incentive-Compatible Byzantine Fault Tolerant Protocols (IC-BFT): It guaran-
tees the safety and liveness properties and incentivizes rational nodes to ensure they
follow the protocol.

• Byzantine Altruistic Rational Tolerant Protocols (BART): This is devoid of in-
centivization but guarantees safety and liveness even in the presence of rational (self-
ish) actors. IC-BFT protocols are a subset of BART protocols.

For liveness, under the BAR model, the system makes additional assumptions like:

• Incentivisation for the nodes to be synchronized as possible and penance or slashing
scheme if not.

• Second is node A sends a non-Byzantine message to node B at time t, then receives
the message at time t + max_response_time.

Rational nodes, in particular, have four further technical assumptions:

• Rational nodes receive long-term benefits from the protocol.
• They are conservative when computing the impact of Byzantine nodes.
• If a protocol follows a Nash Equilibrium, rational nodes will abide by it.
• Rational nodes do not collude, but if they collude, they are classified as Byzantine.

A three-level architecture for Byzantine Altruistic Rational Tolerant (BART) protocols is
proposed in Figure 2.31. In Level 1, the primitives level provides incentive compatible - BFT
versions of reliable distributed services like Terminating Reliable Broadcast (TRB) [68] as in
Figure 2.32. In TRB, only the sender proposes a value for a particular instance. Then it can be
accepted by the non-Byzantine nodes or rejected by obtaining a default value. Level 2 work
assignment, as in Figure 2.31, allows the building of a system where work is assigned to

58

State of Art

Figure 2.31: BAR System Architecture [138]

Figure 2.32: Terminating Reliable Broadcast Phases [138]

nodes instead of executed by all nodes. A guaranteed response protocol generates verifiable
proof that a node failed to respond to a request. In Level 3, the application level implements
the desired service using the levels underneath.

Accountability is mentioned in BART services by establishing a strong identity of nodes and
restricted membership to enforce meaningful incentives. Proof of Misbehaviour to detect
malicious activity is also put in place in the system.

The authors in [138] use the above BAR model along with PBFT consensus algorithm [73]
to design a replicated state machine called BART Asynchronous Replicated State Machine
(BART RSM). The BART RSM is based on four guiding principles:

• Ensuring long-term benefit to participants: Rational nodes must be incentivized to
guarantee honesty and due diligence by them. So the leadership role is rotated to all
participants to ensure every node has an equal chance.

• Limit non-determinism: Non-determinism can open the participant to multiple be-
haviors, such as normal behavior, abnormal behavior, or procrastination which needs
to be minimized to achieve optimal determinism. So choosing a Terminating Reliable
Broadcast instead of a plain consensus reduces the possible outcomes and gives ra-
tional nodes fewer choices.

• Mitigate the effects of residual non-determinism: Since non-determinism needs to be
minimized, they propose two techniques: 1) Cost Balancing where a rational node
would be indirectly motivated to follow the protocol by making the other choices to
be costly in term of utility. 2) Encouraging Timeliness: Since the system operates in an
asynchronous network, the peers of a node can judge whether the node’s behavior is

59

Chapter 2

early, on time, or late and then recommend sanctions or punishments.
• Enforce predictable communication patterns: The nodes are encouraged to partici-
pate in all the protocol steps and not selectively participate for self-profiting.

So this work presented the BAR approach to Multi-Administrative Domain systems, par-
ticularly for a replicated state machine.

A new Byzantine Altruistic Rational Gossip Model is proposed in [136] by H. Li and A.
Clement and E. Wong and J. Napper and I. Roy and L. Alvisi and M. Dahlin. The tradi-
tional gossip model data is disseminated with random peers, which is non-deterministic.
Still, in this proposed model, a pseudo-random node is selected, which is unpredictable and
achieves rapid convergence as the latter. The reason for defining this model is to be robust
against byzantine nodes or colluding nodes, which may not be the case in traditional mod-
els. The model here assumes a Peer-to-Peer network where a video stream is telecasted
using this network. The peers are of three types: 1) Altruistic, 2) Rational, and 3) Byzantine
Nodes. The broadcaster of this network is considered to be altruistic, meaning it follows the
specified protocol at all costs. On the other hand, Byzantine nodes do not gossip about the
information and discard it all the time. Non-Byzantine, unlike altruistic, does not deliver at
all times but only within a particular period after which it considers the message expired.
Finally, rational are the ones that maximize their utility. The utility here means the costs
and benefits. The costs incurred in this case are the communication costs versus the ability
to play the live stream. The protocol works in the following manner:

1. The model works in a sequence of rounds r where a node delivers the pending mes-
sage from round r-1. It then concurrently waits for new updates from the broadcaster
while exchanging the current non-expired information and is randomly called a Bal-
anced Exchange. Also, it performs an Optimistic Push Protocol of messages with
other nodes randomly.

2. In a message exchange, a sender S selects a receiver R. Both exchange their history
of messages, update messages, and then exchange keys for accessing the swapped
messages. However, a balanced exchange differs from an optimistic push in informa-
tion exchange. A balanced exchange of messages happens when it sends and receives
messages from peers in equal terms or the equivalent number of updates. However,
the optimistic push protocol works more to help peers who have expired messages
and need to update their current state.

The BAR gossip follows two principles of restricted choice and reward at the end to make it
robust against rational or selfish behavior. They determine choice within the two protocols
of balanced exchange and optimistic push. Restricted choice brings safety properties, which
means that if a rational node decides to participate in an exchange, it sends only messages
prescribed by the protocol and receives a reward after the final key exchange for data access.
Making the reward at the end of the key exchange ensures that the rational node completes
the agreed message exchange correctly.

The probable selfish behavior of the rational node is in selecting peers to communicate
with. In this, the BAR model uses a Pseudo Random Number Generator (PRNG) to choose
the random peer as in traditional gossip protocol but has control over the seed or initial
value of the PRNG. Controlling the PRNG with a seed is applied to the Balanced Exchange

60

State of Art

and Optimistic Push protocol. The seed value for sender S is <r, BAL>s where r is the
current round, and BAL is the message the sender signs. This way of controlling ensures
that no node can maximize one’s benefit during peer selection. Finally, they evaluate the
protocol and show that it is robust as long as not more than 20% of nodes are Byzantine,
and no more than 40% of nodes collude.

2.3 Conclusion
In this section, we discussed the current state of mobility services and their part in en-
abling the next generation of Mobility as a service where the different modes of transport
providers are integrated through a single unified platform allowing data exchange, trip in-
formation, and multi-stakeholder participation. The intervention of blockchain on various
MaaS mobility architectures was analyzed for car-sharing, data-market place, and air mo-
bility traffic management. The idea of tokenization to regulate vehicle mobility was also
discussed.

Further, the certification of mobility data, along with its provenance respecting the privacy
and security concerns in the age of GDPR, was discussed. Data Trading services encompass-
ing the production, storage, review, and monetizing of the data through blockchain were
explored, handling the system’s security and privacy. The system’s fairness gave the actors
an equilibrated reward and participation. The challenge of the blockchain-enabled market-
place in handling privacy is also discussed, where the Zero Knowledge proof, attributed-
based encryption schemes, and functional encryption schemes are invoked to handle the
data privacy concern.

Next, some classical works on the distributed system start from the Byzantine Generals
problem, Fischer, Lynch, and Paterson Impossibility Theorem, where a consensus cannot
be reached in case of even one faulty process. Building on these works, we discuss the most
practical approaches to consensus: Practical Byzantine Fault Tolerance, Zyzzyva, a faster
variant of BFT consensus, Hotstuff, a Linear and Simpler BFT consensus, and then a fast
track BFT protocol called Tendermint. The more recent works in the Proof of Stake con-
sensus family are analyzed from GASPER, a combination of CASPER as a friendly gadget,
and LMD-GHOST for fork resolution.

Innovation in consensus through parallelization and reducing consensus participation by
quorum formulation are also dissected for further in-depth understanding. As a consortium-
based network with limited participants is more focussed in this work, we examine the
Proof of Authority and reputation-based protocols where the abstract participants’ Repu-
tation is given weightage instead of the monetary aspect. Further extending the approach
of consortium-based participants with a different profile of participants being Byzantine
Altruistic or Rational is studied through the BAR approach, and specific architectures are
designed using an incentivization mechanism to ensure the consensus.

61

Chapter 2

62

Chapter 3

Decentralized Mobility Services

Negative results are just what I want.
They’re just as valuable to me as positive
results. I can never find the thing that
does the job best until I find the ones that
don’t.

– Thomas Edison

63

Chapter 3

3.1 Conception of Decentralized Mobility Service Architecture 65
3.1.1 Token Engineering . 65
3.1.2 Data Certification Service 66

3.1.2.1 Use-Case Definition 67
3.1.2.2 Architecture Solution 67
3.1.2.3 Accidentology Usecase on PBFT Consensus . . 71
3.1.2.4 Evaluation . 73
3.1.2.5 Issues and Root Cause Analysis 80
3.1.2.6 Conclusion . 81

3.1.3 Data Monetisation Service 83
3.1.3.1 Decentralised Data Monetisation Solutions . . . 85
3.1.3.2 Decentralised Mobility Data Standards 86
3.1.3.3 Significance of Data Monetisation Architecture 87
3.1.3.4 Next Generation Distributed Ledger 87
3.1.3.5 Use-Case Definition 92
3.1.3.6 Architecture Solution 95
3.1.3.7 Implementation 98
3.1.3.8 Evaluation . 100
3.1.3.9 Conclusion . 109

3.2 Decentralised Mobility Services Conclusion 110

This chapter conceptualizes mobility services using enterprise blockchain frameworks to
test their applicability, performance, and benefits. Through this study, we focalize the
state-of-the-art BFT consensus algorithms and test their actual implementation scalability.
We measure the implementation’s readiness and challenges for industrial adoption, espe-
cially from a consortium setting. We test two prominent mobility use cases with varied
blockchain frameworks and consensus algorithms implied with Group Renault’s ambition
to adopt blockchain as part of its digital transformation project [140, 141].

64

Decentralized Mobility Services

3.1 Conception ofDecentralizedMobility ServiceArchi-
tecture

Decentralized Mobility has been a long-drawn concept that has spiked recently with more
automotive and other transport partners embracing it tomakemobility sustainable, environment-
friendly, beneficial, and secure. In the wake of the recent trend of the "Software-Defined
Vehicle (SDV) Approach,” [142] software is used to model the behavior of the vehicle hard-
ware. The increasing complexity of vehicle infotainment systems (IVI) and advanced driver
assistant systems (ADAS) has enormous potential to convolute towards blockchain or dis-
tributed ledger. It helps gain data privacy, data sovereignty, and monetization of data
and services. It enables data standard compliance with European Telecommunications
Standards Institute (ETSI), Mobi, regulations like General Data Regulation and Protection
(GDPR), ISO/TC 307 Blockchain standard [143] and Health Insurance Portability and Ac-
countability Act (HIPAA). This has been the reason for automakers like Stellantis to adopt a
Responsible Sourcing Blockchain Network for tracing the supply chain of cobalt, mica, and
other minerals as part of its sourcing. It is part of its initiative to trace the material’s prove-
nance and help in the responsible and ethical procurement of raw materials. Not far behind
is Volkswagen Group [144, 145, 146], which has exploited blockchain for Vehicle-to-Vehicle
communication, Supply Chain transparency for sustainable mobility or Jaguar Land Rover
for sourcing its leather supply chain based on blockchain Traceability-as-a-Service.

In the following sections, we define the use-case problem identified by Renault Group and
evaluate it from the applicability perspective through the lens of the consensus algorithm
blockchain component.

3.1.1 Token Engineering
This section explains the concept of Tokenized economy, which is applied in the arts, fi-
nance, or currency basket and can be applied even in the automotive context to represent
any unique asset commonly called Non-Fungible Tokens or Utility Tokens. These tokens
may be used for incentivization, value exchange, or utility exchange identified in a de-
centralized platform as an Ethereum Request for Commons (ERC) standard. ERC specifies
the technical requirements for Ethereum improvements by a task force similar to Internet
Engineering Task Force. Tokens represent an individual state in a decentralized crypto-
economic system using smart contracts. These can be possessed by any autonomous actor
or human in the form of wallets secured by public key cryptographic systems. Tokens are
accompanied by a legal contract while engineering to make peer-to-peer settlement reg-
ulatory compliant. We discuss the token standards which are predominantly used in the
crypto-economic systems as below:

• ERC-20: This standard details the construction of API (Application Programming In-
terface) Tokens, which have an equivalent value representing any asset, virtual game
points, fiat, or stable currency. It outlines the construct of token creation, transfer,
token balance management, token validation, and its re-usability from one decentral-
ized network to another.

• ERC-721: This interface deals with creating Non-Fungible tokens (NFTs), which can

65

Chapter 3

be owned, transferred, and auctioned by the participants in a decentralized network.
This can represent digital, physical, or virtual assets that inherit the ERC-20 func-
tionalities but for tracking and managing unique or distinct assets.

• ERC-777: This specification is similar to ERC-20 discussed earlier but enabling the
feature of Hooks. Hooks are callbacks or functions executed when tokens are sent
and received from a particular account. This requirement of implementing hooks
during the tokens’ lifecycle ensures that tokens are not lost or stuck in the contract.
This specification is backward compatible with ERC-20 enabling the interoperability
between ERC-20 and ERC-777 tokens.

• ERC-1155: A standard for maintaining multiple token types like fungible (mutually
inter-changeable token), non-fungible, or semi-fungible is proposed here. This is a
hybrid standard deriving the characters of both ERC-20 and ERC-721, enabled with
Hooks for comprehensive functionality.

• ERC-4626: This Smart Contract token standard can enable yields or profits to be
accrued by staking or holding ERC-20 tokens. These tokens are designed for lending
purposes, aggregators, and interest-bearing tokens. Further, this contract standard
can be extended to implement the transfer of token shares through multi-signatures
enlisted in ERC-2612.

3.1.2 Data Certification Service

The automotive industry has made great strides in terms of connectivity in a car. This has
transformed it from a mechanical machine to a connected device on wheels, exchanging
data with any outside world entity. Mobility Open Blockchain Initiative (MOBI), a consor-
tium of major automotive industries like BMW, Ford, GM, Renault Group, and Honda, has
envisaged creating a Vehicle Identity Standard (VID) for building blockchain-based mo-
bility solutions. VID helps the vehicle be associated with all the autonomous actions in
the blockchain ledger, enabling transparency, certification, transportation services, traffic
tracking, and fleet maintenance throughout its life cycle. These new mobility standards
require the mobility data shared to be immutable, reliable, and traceable, which can be
attained by using blockchain technology. Additional privacy, security, and accountability
concerns make blockchain a rational choice by the industry [147].

In this work, we propose a consortium blockchain architecture to solve the relevant use
case of odometer fraud in the automotive industry. We designed the architecture from two
approaches: a Data-Registry and Non-Fungible Token (NFT) based vehicle data certifica-
tion, followed by its qualitative and quantitative evaluation. This work concentrates on
data certification methodology, its implementation, and evaluation, including privacy and
security. We don’t consider the interoperability concern of connecting the blockchain so-
lution with Layer 2 Solutions, Distributed Databases, or InterPlanetary File Storage, as we
can extend the present architecture later. This is essential for improving data exchange and
porting in the industry [148]. Still, we ignore them as we focus more on the blockchain
consensus and its related study. We formulate our solution to analyze the performance of
BFT family consensus algorithms of Clique, PBFT, IBFT, and QBFT. These algorithms are
discussed in detail in Chapter State of Art in section 2.2.

66

Decentralized Mobility Services

3.1.2.1 Use-Case Definition

In this Data Certification use-case, we propose a consortium blockchain of actors like orig-
inal equipment manufacturers (example: Renault, PSA, Ford, etc.), car resellers (example:
Argus), government agencies, and other players like insurance providers responsible for
the network creation. The reason for choosing consortium blockchain is that it offers the
advantage of faster consensus among verified participants, the privacy of the data stored,
and also no transaction costs, unlike in Ethereum or Bitcoin, while maintaining the decen-
tralized nature and transparency similar to public blockchains [149].

We work to satisfy the broader automotive industry goals of car data certification. We
propose a generic architecture focusing on odometer data that can be extended to multiple
car data types. For example, it can be the state of health of a car battery, mobility services
such as virtual keys, location services, or traffic data. The preferred approach of our study
is a consortium blockchain solution, as it can enable original equipment manufacturers
(OEM), government agencies, or car resellers to participate in odometer data certification.
We started with the Data-Registry approach and moved to the Non-fungible Token (NFT)
approach after an evaluation phase decision as in Table

Property Data-Registry Non-Fungible Token
Blockchain(BC) Ethereum Ethereum
BC Consensus BFT Family BFT Family
Internal Smart Contract
Consensus

No Vote based

Database used Yes No
Vehicle as actor No Yes
ECU embedded client Yes Yes
Key distribution Yes No
Smart Contracts Usage Hash storage Permission, Token

economy and Internal
consensus

BC data type Hash Token based
Validation Off-chain Off & On-Chain
Permission & Role based No Yes
Node type Full Full & light

Table 3.1: Comparison of Data-Registry & NFT approach

3.1.2.2 Architecture Solution

The architecture of the two proposed different systems Data-Registry & NFT approach,
along with the considered design decisions common to both systems, will be discussed in
the following sub-sections.

To evaluate the choice of blockchain technology, we initially constructed a proof of con-

67

Chapter 3

cept solution based on Ethereum [150], a public blockchain configured for a private envi-
ronment, and Multichain [151], a private enterprise blockchain solution. It is discussed as
follows:

• Ethereum [150]: It is one of the most popular public blockchain systems after Bit-
coin. Its suitability for our use-case is due to several reasons: It is a public blockchain,
but it is flexible to deploy a private network. Also, smart contracts can be deployed
in this blockchain, allowing us to build a decentralized system without third-party
interference. Vehicles are hosted as light nodes along with OEM admin full nodes to
avoid the necessity of having an extensive network of full nodes causing scalability
& data costs. It is based on the Proof of Authority consensus.

• Multichain [151]: It is an enterprise blockchain, a fork of Bitcoin binary develop-
ment. It has smart filters to implement certain logic transactions in the blockchain
network. The network participants configured as admin finalize the block consen-
sus using a Randomised Proof of Work. Here for each round, a validator is selected
in a randomized mode and allotted to construct a block by calculating a proof of
work hash. It was analyzed during our proof of concept realization to be comput-
ing expensive, and we did not proceed forward for the implementation stage. Our
proof of concept implementation, along with the deployment scripts and smart con-
tract filters, are available in our GitHub repository: https://github.com/scyrilnaves/
these-datacertification/tree/main/datacertification/multichain

We shortlist Ethereum Proof of Authority (PoA) BFT Type consensus for our blockchain
system instead of the conventional Proof of Work available with Ethereum or Multichain
for multiple reasons:

• Consensus process is lighter and faster regarding computation, speed, and energy.

• We deal with verified participants in a private network.

• Rate of block processing can be controlled in PoA in terms of the block period.

3.1.2.2.1 Data Registry Approach In the following subsections, we explain the Data
Registry architecture’s components and their communication along with illustration in Fig-
ure 3.1.

Blockchain Network Component The consortium network is private and permission-
less. It follows the PoA consensus with all the nodes as sealers. Sealers are nodes that
can validate the transactions and create blocks. Our smart contract, termed as "Contextual
Data Hash Registry Smart Contract", is deployed to the blockchain during its initialization.
It stores the calculated hash of the contextual data in a map data structure with the key as
the hashed value of the vehicle id, and the value is the contextual data hash as follows: Map
<Hash(VehicleId), Hash(contextual data)>

Contextual Database Component This database stores the encrypted vehicle contex-
tual data after each trip. The contextual data schema comprises vehicle id, timestamp,
nonce, GPS coordinates & odometer data. Data is encrypted using the vehicle’s private key

68

https://github.com/scyrilnaves/these-datacertification/tree/main/datacertification/multichain
https://github.com/scyrilnaves/these-datacertification/tree/main/datacertification/multichain

Decentralized Mobility Services

Figure 3.1: Data-Registry Data Certification Architecture

and then with the manufacturer’s public key to limit the read access only with it, mathe-
matically represented as:

FirstEnc = RSAEncrypt(RawData, PrivKeycar)

SecondEnc = RSAEncrypt(FirstEnc, PubKeyOEM)

KeyVault Component EachOEMmaintains its key vault. It stores all its vehicle’s public
keys as well as its private key in the vault. It uses the vehicle’s public and private keys to
decrypt its encrypted data.

Vehicle Component Vehicle component consists of a client that transmits data in two
steps via the application programming interface (API) calls. At first, the web service passes
encrypted contextual data to the contextual database. Secondly, by remote procedure call
(RPC), the hashed contextual data is stored in the smart contract within the blockchain.

Certification Component The certification component for each vehicle is limited to
each OEM as it holds the vehicle’s public key and private key to decrypt the data. It fetches
the latest hash value from the <key,value> pair of the map in the smart contract and verifies
the hash. Next, the contextual data with the GPS coordinates and the odometer value is
verified by contextual data validation process.

During contextual data validation, when a vehicle finishes its trip from Point A to Point B,
it traverses a certain distance termed as odometer kilometer. We cross-verify the calculated
distance from the recorded GPS coordinates with another data source to validate the data
and test its reliability. After these two validation checks, the mileage certification is issued.

3.1.2.2.2 Non-Fungible TokenisedApproach The architecture of the NFT odometer-
token economy will be explained in the following as highlighted in Figure 3.2.

69

Chapter 3

Figure 3.2: Non-Fungible Token Data Certification Architecture

NFT Based Token Economy Network We use the same Ethereum PoA consensus for
the network but transform it from permissionless into a permission-based hierarchical
mileage token economy. We induct a vehicle node as a light sync node in the network.
Light sync nodes are not embedded in a vehicle’s ECU but are hosted along with other full
admin nodes. The reasons for not embedding the Blockchain node in the vehicle’s ECU
are that Vehicles cannot afford the huge data storage, network connection, and computing
power necessary even for a light node. So, a hybrid of light vehicles and full admin nodes
is inducted into the network.

Transformation of this network to an odometer economy needs the enforcement of rules for
permission & role grant, consensus & workflow, token creation & transfer, which is accom-
plished by the smart contract. After acceptance by consortium members, deployment of
wallet, transaction, and main smart contract in succession creates the desired token econ-
omy. In the following, we explain each contract and its significance.

Wallet Contract: In this contract, we enforce permission and token-economy functions
along with their data storage. It deals with permission handling of admin or non-admin
nodes, token-economy operations like the initial token generation in the network, and the
criteria to distribute tokens to a non-admin node.

TransactionContract: Transaction contract handles the consensus termed as Inter-network
smart contract orchestrated consensus. This contract handles the voting for each operation
of ’permission’ or ’token transfer’ and fulfills it after the voting majority is obtained. At the
blockchain network level, we already have Proof of Authority consensus with only the ad-
mins (consortium admins) as sealers. But here we explain consensus with ’respect to token
economy’ realized through the smart contract.

During the network deployment phase, the admin and non-admin nodes are differentiated
based on their blockchain public key address stored in the smart contract. After this initial-

70

Decentralized Mobility Services

ization process, based on consensus, the following interactions are constrained in a token
economy: Permission to join or leave, Elevation of the role, Token request & reception, and
Destruction of the economy.

Any of the above-listed "message-request" can be initiated based on role-based permission.
Admin role can add or remove non-admin or admin nodes’ participation in the token econ-
omy, create and transfer tokens for its trade-in mileage among wallets, and vote in the
internal consensus for each "message request." Non-Admin role functions are limited to re-
quest tokens in terms of mileage completed. Each "message request" is fulfilled when most
votes are received. Vote majority is calculated for each "message request" depending on
its priority & agreed consensus percentage during the deployment phase. This percentage
can range from 51% (approval of token request) to 100% (addition of new participant). This
calculation is dynamic as we cannot expect all the admin nodes (100%) in the token econ-
omy to vote for each "message-request" considering 1000 - 10000 message-requests/min
by different actors in a production case. Dynamic vote majority calculation is represented
mathematically as:

V (O) = T ∗ A(O)/100

where O can be operation type (permission/token related); V is the voting majority for
operation; A is the agreed consensus percentage needed for an operation; T is the total
number of admin nodes.

Main Contract: This contract is an abstraction layer that inherits the previous two con-
tracts and orchestrates between them. It handles all the vehicle’s "message-request" and
redirects to the appropriate wallet or transaction smart contract for its processing.

Economy Orchestration After economy creation, a vehicle is inducted into the system
by an OEM granting permission with the main contract. It is then subjected to a consensus
from other OEMs. After the required vote majority is obtained, the transaction contract
forwards the request to the wallet contract. It is then finalized by initializing the vehicle
with a ’0’ odometer token balance in its wallet and attributing it non-admin role.

Then post the trip completion by a vehicle, its ECU client performs the contextual valida-
tion and transacts with the main contract for token requests in mileage equivalency. After
consensus, the transaction contract deposits the tokens in the vehicle’s wallet. The token
balance of the vehicle, which increases periodically after each trip, can be known by any
non-admin / admin node signifying the certified odometer mileage.

3.1.2.3 Accidentology Usecase on PBFT Consensus

In this work, we implement another varied but similar data certification use case of Re-
nault, an accidentology scenario where the blockchain network is defined as a consortium
network of partners involved in an accident claim and alert process. Our node participants
(i.e., validators) are Renault - Original Equipment Manufacturer (OEM), Accident Insurance
Providers, Medical Services, State Actors for legal and dispute resolution, Police, and other
emergency services. The novel concept of this use case is to enable the blockchain as a dis-
tributed ledger that stores the accident’s transactions. The accident’s transaction details are

71

Chapter 3

the latest vehicle speed, vehicle condition, radar information, driver condition, etc. These
are contextual data stored in a databasemaintained by the consortium partners. The hash of
this data is stored as proof of existence on the blockchain. We implement this architecture
in Hyperledger Sawtooth based on PBFT consensus. This use case has been developed as
part of the Smart IoT for Mobility project [152] initiated by Prof. Francois Verdier in 2017,
funded by the French National Research Agency. It is a collaborative project between Re-
search Groups of LEAT Electrical Engineers, INRIA Computer Science Engineers, GREDEG
Economists, Jurists, and companies like Renault Group and SYMAG group. The motivation
of this project is to create a blockchain-based mobility ecosystem ensuring a smart, secure,
and sustainable next-generation transport solution.

3.1.2.3.1 Significance of Ethereum Consensus In Ethereum, the client binaries cho-
sen for constructing the private consortium networks are Geth v1.10.7 for Clique and Besu
v21.7.2 for IBFT and QBFT consensus algorithms, respectively discussed in detail earlier in
Chapter State of Art in section 2.2.

Ethereum Geth (Clique) Ethereum, one of the most prominent public blockchains, has
a mechanism to build private networks with a proof-of-authority (PoA) algorithm named
Clique implemented in the Geth client. In the algorithm, the creation of a new block is
restricted to a fixed set of n nodes called sealers, in which a maximum of f < n/2 can be
faulty nodes or Byzantine. Every sealer can seal a block at a fixed time, but it has to wait
until it is not sealed recently for (n/2) + 1 blocks until its last block. If a designated sealer
signs a block for a particular sealing round, it is termed in-order sealing. On the other
hand, if the designated sealer is subject to byzantine conditions and cannot seal a block,
any other sealer may propose a block after waiting for the block period, termed as out-of-
order sealing. Out-of-order sealing can frequently occur in case of short block periods and
significant network time delays between nodes. If the conditions mentioned above are met,
it can eventually cause more forks in the network, which is an issue in Clique and lacks
chain finalization compared to other consensus algorithms.

EthereumHyperledgerBesu (IBFT) Hyperledger Foundation has created Besu, a client
who have implemented the IBFT [119] consensus algorithm, which has immediate chain fi-
nality. Creating a single block at a particular height avoids the problem of the forks. Also,
the need for n/3 majority for completing consensus makes a forked chain less probable.
In this algorithm, out of a set of n validators, an arbitrary node is selected to be a block
proposer. It is accepted if the other validators validate the proposer as a block creator. A
block-locking mechanism is introduced to avoid creating multiple blocks when a superma-
jority of validators accept the block proposition. Then a new round change is proposed
with a new validator for the next block creation.

EthereumHyperledger Besu (QBFT) QBFT algorithm was created to avoid safety and
liveness issues such as [153] [154] in IBFT protocol where two valid nodes can lock different
blocks at the same height. This can be attributed to transmission delay between the nodes,
and there is no provision to unlock the blocks in the consensus algorithm. Due to these
drawbacks, the Quorum blockchain has developed a variant of IBFT, termed QBFT algo-
rithm [154]. For each round, a block proposal phase broadcasts a pre-prepare message to

72

Decentralized Mobility Services

the rest of the validators. Other validators on receiving the pre-prepare message broadcast
a prepare message. On receiving a pre-prepare message, it then sends a commit message.
The majority for each state (pre-prepare, prepare, and commit) is thus 2N/3. Finally, the
proposer inserts a new block into the blockchain after 2N/3 commit messages. Then the
next round is invoked after 2N/3 round changes. Considering the above four BFT consen-
sus algorithms, we compare them across desirable properties in a distributed system as in
table 3.2.

Property Clique QBFT IBFT PBFT
Binary Geth Besu Besu Sawtooth
Chain-Finality Probabilistic Deterministic Deterministic Deterministic
Forks Yes No No No
Block-Locking No No Yes No
Chain-
Reorganisations

Yes No No No

Liveness Upto N/3 fail-
ures

Upto N/3 fail-
ures

Upto N/3

failures and
Prone to dead-
lock

Upto N/3 fail-
ures

Throughput High < Clique < QBFT < QBFT

Table 3.2: Comparison of BFT Consensus Consortium Blockchains

3.1.2.3.2 Significance of Hyperledger Sawtooth PBFT Consensus This blockchain
framework, created by the Linux Foundation Hyperledger, developed Sawtooth as a modu-
lar and enterprise-focused blockchain. Sawtooth blockchain consists of a validator, the core
of the blockchain peer, one ormultiple transaction processors handling transaction business
logic, and a REST API providing convenient HTTP communication with the peers. More-
over, Sawtooth supports two main consensus algorithms, Proof-of-Elapsed-Time (PoET)
and Practical-Byzantine-Fault-Tolerance (PBFT).

Practical Byzantine Fault Tolerance (PBFT) Practical Byzantine Fault Tolerance con-
sensus is a voting-based algorithmwhose implementation in Sawtooth is based on the work
of Barbara Liskov and Miguel Castro [155]. PBFT properties are Byzantine fault-tolerant,
non-forking, leader-based, and communication-intensive.

3.1.2.4 Evaluation

In this section, we evaluate our architecture from a functional perspective, theoretically
comparing the two architectures of Data-Registry and NFT and performing a real experi-
mental evaluation in a cloud environment.

3.1.2.4.1 Functional Evaluation We functionally evaluate our two architectures across
different properties to evaluate a decentralized blockchain architecture and a general dis-
tributed system as represented in Figure 3.3. The properties considered are:

73

Chapter 3

Figure 3.3: Functional Evaluation of Data Certification Architecture

1. Decentralization: This measures nodes’ participation with equal or rationed privi-
leges in a blockchain, making it entirely or partially decentralized.

2. Latency: Transaction emitted by each vehicle, depending on the architecture, needs
to be validated, encrypted & decrypted, consensus processed, and then finalized,
which needs to be measured on time consumption.

3. Security: Authentication andAuthorization levels are fundamental criteria for evalu-
ating a distributed system and, more importantly, in a private decentralized network.

4. Scalability: Since decentralized systems are more consensus-oriented, adding more
participants invariably adds more consistency and processing delay of the transac-
tions, which must be considered.

5. Governance: Consortium-based private network naturally invites a governance struc-
ture designed to control the network as it is limited to a set of valid participants. Both
architectures have a varied level of governance which affects the control and audit in
case of adverse issues.

6. Privacy: Data distribution needs to be controlled and checked since every vehicle
owner’s data can be subject to any compromise or can be used for tracking. Both
architectures address this issue where the wallet does it entirely, but in non-wallet,
there is a potential threat with data storage in traditional databases.

7. Validation: Data that enters the systemmust be genuine and source-tracked to check
its credibility. In wallet architecture, data is transformed into a token value which
needs to be earned by each vehicle after a consensus opinion. Also, we ensure the
cross-comparison of GPS and odometer data sources in both architectures.

8. Genericity: This is key to any architecture design as it must satisfy data certifi-
cation without significant modifications. Wallet architecture is more generic than
non-wallet, with the ability to certify any numerical data representation.

74

Decentralized Mobility Services

9. Infrastructure concern: Minimal infrastructure benefits cost as decentralized sys-
tems aim to share the hardware and profit mutually. Non-wallet architecture carries
more components like database and key storage than a wallet, which can incur main-
tenance and deployment costs.

3.1.2.4.2 Experimental Evaluation Performance measurements for our Sawtooth -
PBFT, Ethereum - Clique, IBFT, and QBFT are tested in the TAS Group cloud infrastructure
based in Sophia Antipolis, France. The underlying infrastructure hosts a Kubernetes cluster,
enabling us to create Kubernetes pods, each hosting a blockchain node. We monitor the
test performance using telemetry from the blockchain node on the Grafana dashboard and
MongoDB for test log maintenance.
We assume here a partially asynchronous network as there is a minute delay counting the
cloud virtualization, Kubernetes inter-pod routing, node computation load, and peer-to-
peer factor. We do not consider any threat model to be included in our test and assume a
mutually beneficial consortium. We vary the input transaction rate against the number of
nodes participating in the consensus. Here, we consider the output to be the transactions
validated and ordered successfully after the consensus. Code Implementation along with
smart contracts, cloud deployment of both Terraform and Kubernetes, transaction clients,
Ethereum network configuration files, and test results are released publicly in the GitHub
repository: https://github.com/scyrilnaves/these-datacertification

Ethereum The Ethereum implementation of the use case is designed as three layers. It
is deployed on the TAS cloud network as in Figure 3.4. They are:

1. ConsortiumNetworkLayer: Each consortiumparticipant is a sealer in the blockchain
private network. These sealers are considered validators who participate in consen-
sus to validate transactions and create blocks. A boot node is installed to connect the
other nodes in the blockchain peer-to-peer network. The network enables the smart
contract to be deployed via the Application programming interface. The private net-
work is configured to have a nominal gas price as we focus only on the enterprise
use case rather than cryptocurrency transactions.

2. Smart Contract: Smart Contract deployed on the Ethereum network executes on the
Ethereum Virtual Machine of each node. The smart contract is built using solidity.

3. Client Implementation: Next, a client based out of the web3 library is built to com-
municate with the blockchain network. This client will be embedded in the vehicle’s
Electronic Control Unit, sending the smart contract transaction to the network via
WebSocket API.

In an Ethereum context, themain factors that affect the processing apart from the consensus
mechanism for a PoA private chain are:

1. Block Size or Block Gas Limit: Transactions are collated into a block up to a fixed
size. Ethereum is measured by setting a block gas limit, as each transaction is mea-
sured not in terms of memory size but in terms of gas, as explained in the earlier
section 3.1.2.3.1. A higher block gas limit can accommodate more transactions in a
block, directly affecting the execution and validation time.

75

https://github.com/scyrilnaves/these-datacertification

Chapter 3

Figure 3.4: Ethereum network cloud deployment

2. Transaction Type: Since a transaction is calculated in terms of gas, the higher the
complexity of the transaction, the higher the gas for it. For example, adding two
numbers can attract lower gas than multiplication operations. The complexity delays
the execution speed of transactions on the EVM.

3. Block Period: Since all the PoA family algorithms seal a block every fixed time
interval, higher block periods can increase the latency in throughput. Lower block
periods can increase the throughput of transactions but can affect the consistency of
the chain leading to more forks, as we will see during our evaluation. A balanced and
short block period is also essential for the network to accommodate the consensus
time from validators.

In addition to the above conventional Ethereum-based factors, another factor to note is the
creation of forks. Forks due to consensus issues can impact the throughput as transactions
will likely get attached to an invalid fork chain and discarded eventually. We explain this
issue in section 3.1.2.5, which frequently occurs in the Clique algorithm.

Hyperledger Sawtooth In previous research, [156] showed the performance limits of
Hyperledger Sawtooth in the same car accident context as our work. The experiment setup
uses a cloud infrastructure, and a distant client sends transactions (i.e., input transaction
per second, TPS) according to the use case as in Figure 3.5. The input TPS and different
implementation configurations demonstrate the software and PBFT consensus limits. On
the other hand, Finalized Transaction Per Second or Throughput (TPS) is the number of
transactions that can be validated, executed, finalized, and confirmed in a network after
consensus.

3.1.2.4.3 Performance Study Format for the test performed in each blockchain varies
a bit since the implementation of Sawtooth-PBFT, Ethereum-Clique, IBFT, and QBFT have
completely different organizational and design structures. But the fundamental idea is to

76

Decentralized Mobility Services

Figure 3.5: Hyperledger Sawtooth network cloud deployment

test the blockchain’s performances by varying the number of nodes, also named scalabil-
ity. Performances are also tested by incrementally changing the input TPS (Transaction-
Per-Second) submitted to the blockchain node and pushing the maximum threshold it can
achieve. Our developed test suite for this work is available online at [157] for more infor-
mation about code, configuration, and further contributions.

Sawtooth performancemeasurement A previous in-depth study of Hyperledger Saw-
tooth revealed a substantial limitation of the blockchain transaction processing [156]. This
study demonstrates the same use case and smart contract business logic. The simulation
consists of sending car crashes using IoT devices.

Figure 3.6 shows the transaction processing speed of the blockchain by varying the input
transaction per second. We see a maximum of 25 finalized transactions per second using
the 4 nodes configuration. When the number of nodes increases, the transaction processing
speed decreases to 13 finalized transactions per second.

The study on Sawtooth also discusses the possible factors reducing the transaction speed.
The consensus and the software are the main factors reducing throughput. The results in
Figure 3.6 show the consensus network limitation with the number of node validators. The
software limitation is due to single-threaded and intrinsic language (Python) performance
issues.

Ethereum performance measurement In this section, we discuss the performance of
Ethereum transaction processing along with the Clique consensus algorithm.

In Ethereum, we perform the test for accident transactions totaling 30000 transactions for
each iteration in 3 iterations and measure the average throughput results. For Clique, as in
Figure 3.7, we see that the output TPS constantly increases for five nodes until it becomes a
plateau at input TPS of 2000, outputting 1500 finalized TPS due to EthereumEVM (Ethereum
Virtual Machine) computation overlead and a minute scalability factor. Minute scalability

77

Chapter 3

 0

 5

 10

 15

 20

 25

 5 10 15 20 25 30 35 40 45 50

O
u

tp
u

t
T

P
S

Input TPS

PBFT Consensus for 4 to 24 nodes

4 nodes
6 nodes
8 nodes

12 nodes
18 nodes
24 nodes

Figure 3.6: Hyperledger Sawtooth PBFT Consensus Performance

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 500 1000 1500 2000 2500 3000

O
u

tp
u

t
T

P
S

Input TPS

Clique Consensus for 5 to 25 nodes

5 nodes
10 nodes
20 nodes
25 nodes

Figure 3.7: Ethereum Clique Consensus Performance

here signifies that the consensus proportion is less at N/2 and the phase is less compared to
other consensus algorithms IBFT, QBFT where we see a significant drop with the number
of nodes as in Figures 3.8 and 3.9.

Compared to the work as in [158], where the test was performed on the Microsoft Azure
network, we noticed a similar performance for Clique and IBFT. Still, the test format varies
with no variation across input TPS. Also, the number of clients for IBFT is a single instance
that is multi-threaded. Still, in the latter, it was multiple instances that might improve the
API processing of transactions but not significantly as the transactions are stocked in the
queue immediately before validation and consensus.

In Clique, we can see the saturation arriving quickly at an input TPS (Transaction Per
Second)) of 1500 for more nodes as it has less message overhead. In IBFT and QBFT, we see

78

Decentralized Mobility Services

 150

 200

 250

 300

 350

 400

 450

 200 400 600 800 1000 1200 1400 1600

O
u

tp
u

t
T

P
S

Input TPS

IBFT Consensus for 5 to 25 nodes

4 nodes
5 nodes
7 nodes
8 nodes

10 nodes
20 nodes
25 nodes

Figure 3.8: Ethereum IBFT Consensus Performance

 150

 200

 250

 300

 350

 400

 450

 500

 200 400 600 800 1000 1200 1400 1600

O
u

tp
u

t
T

P
S

Input TPS

QBFT Consensus for 5 to 25 nodes

5 nodes
10 nodes
15 nodes
17 nodes
19 nodes
20 nodes
25 nodes

Figure 3.9: Ethereum QBFT Consensus Performance

a gradient increase up to an input of 500 TPS outputting 460 average finalized TPS. At this
step, it has a hash calculation load of the Bouncy Castle Library, which it uses in its Java
implementation. Aside from the computational hash overload, we see a drop as message
overload increases. Still, in IBFT, it is more significant as we have block-locking latency in
the consensus to consider here. We see a substantial drop for an input rate of 1000 TPS as
the consensus and implementation reasons discussed earlier cause it.

In Clique, we notice frequent forks and chain reorganization, which affects the performance
and stability of the chain. On the other hand, IBFT and QBFT have no forks in the chain,
which ensures the finalization of the chain. In IBFT, we encounter a stalling issue due to
the block locking mechanism. Block locking for each consensus round is implemented in
IBFT to improve consistency, but instead, it affects the liveness of the network. In QBFT,

79

Chapter 3

we did not notice any stalling of the network or the presence of forks in the chain.

3.1.2.5 Issues and Root Cause Analysis

In this section, we discuss in detail the bottleneck and stability issues and point out the root
causes, which we reported to the community for their attention [159] [160] [161].

3.1.2.5.1 Theoretical Ideal case We can theoretically calculate the throughput by con-
sidering the ideal case according to the Ethereum whitepaper [32] a synchronous network
with N participants. For example, consider an Ethereum network with a block gas limit of
572235000 and a block period of 2 seconds, and we submit a simple Addition transaction
incurring 38149 gas cost. Then the platform can include 15000 transactions in each block.
Then theoretically, we should achieve a throughput by:

[BlockGasLimit/TxGas]/BlockPeriod (3.1)

[572235000/38149]/2 (3.2)

Ideally, it should be 7200 transactions per second by calculation, but we get a much lesser

Issue Client Functional Level Rootcause
1 Higher Transaction

Rate stalls EVM
Geth CodeBitMap LRU Cache needs to be

improved for frequent
calls

2 Higher Block Gas Limit
/ Complex Transaction
slows throughput

Geth EIP 155 Signer Recovering Public key
from Signature

3 Short Block Period In-
consistency

Geth Fork in Clique Consen-
sus

Less Time between
peer update and block
creation

4 Fork Deadlock Geth Fork Deadlock unre-
solved in Clique Con-
sensus

Clique needs to be
modified at difficulty
calculation

7 Transaction API Fail-
ure

Besu HTTP Timeout Client encounters JVM
out of memory error

8 Lesser throughput than
Geth

Besu Bouncy Castle library
on Keccak Digest

Keccak Hash slows
down

Table 3.3: Issues observed in client and root cause

throughput in all the clients, which we discuss below. In table 3.3, we list the various
issues we encountered with our clients and our analysis of each. We debug each issue
using profiling tools, pprof for Geth implemented in Go language, and then Besu using
Java Flight Recorder.

80

Decentralized Mobility Services

1. Geth Issues: In Geth, when many transactions were received, the EVM layer wit-
nessed frequent smart contract calls to be executed. This execution of repeated smart
contract transactions was slowed due to ineffective LRU caching. When we reported
this to the Go-Ethereum community in Geth V1.9.12, it was subsequently fixed in
V1.9.18. The next issuewas a drop in throughput observed using pprof for higher than
6000 block gas limit and triple map smart contract transactions which were caused
due to the Ecrecover function of recovering a public key from an EIP155 signature
needing improvement. Also, in the case of a low block period of 1 second, we noticed
a higher number of forks in the chain which affected the throughput, attributed to
the short duration between the synchronization operation of receiving transactions
and the block creation process.

2. Besu Issues: Besu has a similar concern like Parity with lesser throughput and API
failure noted throughout the test. In Besu, Java Virtual Machine out-of-memory error
occurs as many processes are stuck on a Keccak hashing function. By noticing the
flight recorder profile, we observed the usage of a library from BouncyCastle for
Keccak hash which needs to be improved for better efficiency in throughput.

3. Clique Consensus Fork Issues in Geth: We noticed network fork issues and chain
re-organizations during our previous tests. In the case of Clique, the forks are re-
solved by following the heaviest difficulty chain, but some remain unresolved. A
node must choose between the chains of the greatest difficulty summed weight dur-
ing the fork. But consider a chain has a fork of chain A and B at block number N with
a total difficulty till N to be X. Chain A produces two consecutive blocks at height
N+1, N+2 with difficulty 1 and 2. Similarly, Chain B produces two consecutive blocks
at heights N+1 and N+2 with difficulties 2 and 1. A node not part of any fork at
height N cannot decide between the two forks, resulting in a deadlock. This is one of
the Clique issues that needs to be solved by modification of fork resolution through
dynamic difficulty value other than 1 or 2 [161].

CAP Clique IBFT QBFT PBFT
Consistency Low High Medium High
Availability High MediumMedium Low
Partition-
Tolerance

High MediumMediumMedium

Table 3.4: CAP Analysis of BFT Consensus Algorithms

3.1.2.6 Conclusion

Our analysis of the BFT family of consensus blockchains from the above results can be based
on three perspectives: 1) Consistency Availability and Partition Tolerance (CAP), 2) Perfor-
mance 3) Applicability to Industry. We apply the CAP Theorem perspective as in [117]
to our above blockchain implementations. We consider the consistency to be fork affinity,
ordering, and replicated transactions and messages. Availability means the blockchain can
respond and accept a valid transaction to be added to the chain. Partition tolerance is when

81

Chapter 3

the network partition or peering problem doesn’t impede the system, and it can recover
from it.

We notice, as listed in table 3.4, that the Clique suffers from consistency issues. Differ-
ent sealers can have different network views and create a fork, eventually leading to an
unresolved fork affecting partition tolerance. The chain may progress at N/2 participants
consensus, but it would not be easy to finalize as we cannot decide on the ephemeral chain.
IBFT, PBFT, and QBFT favor consistency and partition tolerance. As it is subject to multiple
phases at each block consensus, a fork is not created, reducing availability. Since it waits
for N/3 participant’s response at each round, it has to wait if a network or node fails. The
performance of BFT Blockchain in our results considers many factors, such as:

1. Number of Nodes

2. Message Communication

3. Leader Selection Phase

4. Consensus Phase Count

5. Implementation Bottleneck

The number of nodes augments the message communication overload. Also, the leader,
selection, and the number of consensus phases in each round are vital factors. The imple-
mentation bottlenecks like EVM processing for Geth, Sawtooth Transaction Processor, and
Besu Bouncy Castle Hash calculation also count for the drop in transaction processing. So
Clique performs better in this case as it has a predefined leader operation in a round-robin
mode, with fewer phases in each consensus and a minor EVM implementation problem.
IBFT and QBFT have an average impact on all the considered factors, with improvement
needed in hash calculation. Sawtooth PBFT has a massive drawback in the implementation
part compared to others, and its consensus has more phases and communication.

 0

 0.2

 0.4

 0.6

 0.8

 1

 4 5 6 7 8 10 12 15 17 18 19 20 24 25

O
u

tp
u

t
T

P
S

No of Nodes

BFT Consensus Behaviour

Clique (max=1500)
IBFT (max=450)

QBFT (max=465)
PBFT (max=25)

Figure 3.10: Normalised Output TPS Behaviour of BFT Consensuses

82

Decentralized Mobility Services

In our figure 3.10, we plot the best normalized over the maximum output TPS performance
of each variant of BFT blockchain at optimal input TPS to exclude the implementation
overload. We consider the Output TPS coefficient of 1 as the best TPS performance for
each blockchain and 0 as the lowest TPS. Output TPS Coefficient shows the performance
variation as the nodes increase in the consensus process and their behavior. Globally, in
the BFT consensus family, we note that the best performances are obtained using 4 to 6
nodes. Except for QBFT, the descent starts to arrive slowly at 12 nodes, but compared to
Clique, the processed transaction throughput is less. In this range of nodes, the transaction
processing performances of the entire blockchain are best. It lies in the range desired for
the number of validator participants for an accident use case. After we surpass 10 nodes,
all the BFT consensus blockchains decrease in performance until they reach a stable rate of
output TPS. This can be attributed to the fundamental reason behind all the BFT algorithms
of communication overhead to prevent byzantine faults. Even though each BFT consensus
algorithm varies in the number of phases and leader election, they have the same behavior.
We consider each blockchain consensus its best performance with optimum participants
and extrapolate the transaction supportable by the network for an entire day; we get the
table 3.5. It shows the applicability check of the consensus to the automotive use case in
general and the accident use case.

Applicability Clique IBFT QBFT PBFT
TPS per day 129600000 38880000 39744000 2160000
Ideal for Automotive
Use-Case

Medium Medium High Low

Table 3.5: BFT Blockchain Applicability transactions

As in the above table, we can conclude that Clique has high performance but suffers from
consistency issues. QBFT has an average performance with better scalability, and PBFT
has less performance but more consistency. Based on these results and conclusions, BFT
consensus is suitable for this automotive use case, with some improvements needed. Still,
it depends on the design choice factor to consider CAP, performance, or applicability prop-
erties. Further discussion on this data certification BFT consensus analysis is covered the-
matically under Ethereum Client Testing Architecture, BFT consensus experimental per-
formance, and behavior analysis in the Appendix Chapter, in Section 8.1.

3.1.3 Data Monetisation Service

"Data is the new oil" or "Information is the oil of the 21st century, and analytics is the
combustion engine" are breakthrough analogical phrase notions adopted by various orga-
nizations like Apple, Amazon, Facebook, Alphabet or automotive innovators like Waymo,
Tesla, Renault as they embark the digital age of autonomous driving (ADAS). ADAS systems
learn and predict using data generated from a fleet of vehicles where each autonomous ve-
hicle can generate up to 300 Terabytes of data per year comprising of different sensors like
Radar, Light Detection and Ranging (LIDAR), Camera, Ultrasonic, Vehicle motion, Global
Navigation Satellite System (GNSS) and Inertial Measurement Unit (IMU).

83

Chapter 3

These positive connotations require a certain prudence as data needs the five V’s of Volume,
Velocity, Variety, Veracity, and Value and the three A’s of Analytics, Algorithms, and Appli-
cations. These have been well argued, as with the explosion of data by vehicles, computing
devices, or the Internet of Things, the data needs to have practice. These data practices or
management needed are:

• Data Provenance: Knowledge of the origin of data to generate insights and void
bias.

• Data Privacy: Right to access, rectification, erasure, processing, and portability
guaranteed by General Data Protection and Regulation (GDPR) must be met while
handling data.

• Data Protection: Securing the data is essential as it comes at a high cost if avail-
ability is not maintained as earlier; even Toy Story Movie Franchise had the risk of
becoming obsolete when a technician accidentally deleted it.

• Data Preparation: It is necessary to clean insight extraction to make it AI usable as
data quality needs to be augmented.

To ensure the properties mentioned above and practices, the data needs to be incentivized
and adopt a decentralized technology like Blockchain where multiple stakeholders like data
creators, handlers, exploiters, and aggregators are involved. In our use case, we can con-
sider the data-creator to be vehicles or vehicle proprietors, data handlers to be Original
Equipment Manufacturers like Renault, data exploiters like Autonomous Driving Solution
Providers like Waymo, Wejo, Momenta, or Oxbotica, as well as mobility data aggregators
like DIMO a blockchain-based solution, Otonomo, Carscan.

Mckinsey has analyzed incentivization through data monetization, which states it is a dif-
ferentiator and is still nascent. They also explore that with the available data, it is necessary
to engage with other partners to create new business ecosystems, and it is essential to dis-
solve sectoral borders. This is one of the business models we would approach in our archi-
tecture to create an ecosystem of related businesses. Data Monetization defined by Gartner
as "using data for quantifiable economic benefit" can be one of the following strategies as
highlighted in [162] along with the adopted organizations:

• Asset Sale: Sale of Direct Data by Strava, Verizon Wireless.

• Business Process Improvement: Value is extracted from data for optimization of
one’s business process by Lufthansa, ThyssenKrupp, and Deutsche Bank.

• Product / Service Innovation: Offering new business services or processes based
on data by IBM, Rolls Royce.

• Product / Service Optimization: Optimize existing service based on data by Ford,
Zara, and Pirelli.

• Data Insights Sale: Selling derived knowledge by analytics, visualization by Olery,
Sendify, and DealAngel.

• Contextualization: Adding additional data over the existing for economic benefits

84

Decentralized Mobility Services

by Staples and Walmart.

• Individualization: Customer data is used to customize the product offering and
preferences, enhancing the value proposition by eBay, Daimler, or Netflix.

In our use case, we would adopt data bartering indirectly as the strategy process between
the different ecosystem actors. It is a simplified approach, not considering the capabilities
of Big Data or Artificial Intelligence Services, which can be very well included in future sce-
narios for enhanced returns. We concentrate on an extensible, generic architecture that can
be recast and shaped vertically, pipelining other technological services or products. Some
challenges in Data Monetisation are final data usage policy, legal liability, cross-border data
trade, security, and privacy challenges as uncovered in [163], which we will also analyze in
our architecture.

3.1.3.1 Decentralised Data Monetisation Solutions

In this section, we compare and contrast two decentralized Mobility Data solutions already
in production with a modest market share thriving in an ecosystem of partners for offering
"Return on Data" shared with these networks.

• Digital Infrastructure for Moving Objects (DIMO): It is a data-driven decentral-
ized public IoT platform that requires the vehicle owners to install an AutoPi telem-
atics unit in their vehicle, which then submits the data at frequent intervals to the
cloud infrastructure. Its infrastructure comprises Polygon Blockchain, Inter Plane-
tary File Storage (IPFS) decentralized storage, Helium decentralized LoRaWAN wire-
less network, and other additional protocols. Users can submit their data and can
gain DIMO tokens as rewards. The platform then utilizes the collected data for get-
ting recommendations on preventive vehicle maintenance, service history, and other
sensor records. The shared data is then sold to aggregators who reward and incen-
tivize the DIMO network and vehicle owners. The compromise we notice with this
system is that the data lifecycle is a question regarding its procuration, data destruc-
tion, data obfuscation by removing sensitive details, and the overhead of installing
a device for protocol communication. Also, a conflict of interest may arise with the
OEMs initially managing the generation of data, and its exploitation is not reaped by
them, posing a risk and a lost business opportunity. It was envisaged to solve the
problems of centralization and as an alternative to Otonomo and Wejo, as well as
privacy concerns that need more understanding as the data is ported to centralized
actors in the ecosystem.

• Ocean Protocol: Ocean Protocol is a data marketplace built on parity Ethereum
Proof of Authority blockchain protocol. It is a decentralized data exchange where
individuals or enterprises share the data shared as ERC721 data NFT tokens by the
Ocean smart contracts. Then the ERC20 data tokens are generated for data service
to access the published data for a dynamic or fixed price. The existing use cases
generated are for connected living, where the elderly patient’s data is shared for cus-
tomized insurance and medical assistance. Also, the health data for heart condition
patients is shared with Roche Diagnostics from a CoaguChek IN Range device to the
ocean protocol enabling data discovery to other third-party partners offering med-

85

Chapter 3

ical services. Also, a data NFT can be marked as purgatory or unusable if there is
an issue with data privacy, quality, or copyright infringement. To preserve the con-
fidentiality of the data, the marketplace offers the compute-to-data where instead of
the data transfer, the buyer of tokens can get the pre-computed trained data model
to be used, and the raw data stays in the storage of the data marketplace. This proto-
col is quite comprehensive with no additional hardware requirements, but there is a
problem with the data certification, as data shared can be tracked for its provenance.
Still, its quality and genuineness are pointers to be considered by them as anyone can
share data and earn tokens without pre-emptive checks.

Our data-monetization architecture would solve the above-mentioned concerns regarding
data provenance and certification using a streamlined data flow with no additional hard-
ware required. It will also ensure the privacy of the data within a consortium blockchain
of agreed and verified partners with mutual benefit for everyone in the network.

3.1.3.2 Decentralised Mobility Data Standards

This section explores the standards around the blockchain data market by different working
groups of consortiums and private and technical organizations.

3.1.3.2.1 Mobility Open Blockchain Initiative (MOBI): It is a global smart mobility
consortium [164] of mobility providers, technology companies, governments, and NGOs.
The consortium has working groups for Vehicle Identity, Usage Based Insurance, Electric
Vehicle Grid Integration, Supply Chain, Finance, Securitization, and Smart Contracts. They
define the Connected Mobility Data Marketplace (CMDM) standards for Vehicle-to-X (Ev-
erything including cloud, infrastructure, or vehicle). It enables vehicle or fleet owners to
monetize the data by selling to third-party providers like road conditions or algorithm de-
velopers, ensuring privacy and security. They aim to create a standard where infrastructure
like roads, bridges, vehicles, and other third-party intelligent transport providers intercon-
nect seamlessly. As data sets by an individual organization are incompatible with another,
this standard creates the interoperability for scalable data sharing ensuring efficient mon-
etization.

3.1.3.2.2 European Telecommunications Standards Institute (ETSI) It is a non-
profit standardization organization that has published a specification for Permissioned Dis-
tributed Ledger in supporting distributed data management. It defines the specification
for data discovery, collection, storage, sharing, and computation. It ensures the follow-
ing requirements: decentralization, trust, incentivization, data provenance, data privacy,
integrity, control, sovereignty, and data management automation, ensuring GDPR compli-
ance.

3.1.3.2.3 International Standards Organisation / TC 307 This standard [143] is for
blockchain and electronic distributed ledger systems and application, interoperability, and
data exchange between users. It prescribes the data flow model for DLT use cases and
decentralized identity standards. It also enlists smart contract security good practices and
a data interoperability framework.

86

Decentralized Mobility Services

3.1.3.2.4 European Union Blockchain Observatory & Forum In this report [165],
the relationship between blockchain and the automotive sector is discussed for commu-
nication and data transaction security. It speaks about the supply chain for components
and the introduction of new services which can be built upon. They discuss the necessity
of data privacy through zero-knowledge proof, privacy-preserving transaction settlement,
and data interoperability.

3.1.3.3 Significance of Data Monetisation Architecture

In line with the above concerns of standards and previous data monetization solutions, we
analyze here the necessity for building a new architecture, especially from the mobility
context, as follows:

• Vehicle OEMs are hit by the wave of Industry 4.0 with the advent of Digital Twin,
where all the configuration and data of a vehicle are stored in the cloud. In close ac-
cordance is the launch of Software DefinedVehicle (SDV) [166] allowing to "centralize
data with other components of ADAS, bodywork, chassis, and telematics in a Phys-
ical computer unit." Also, all the customization and upgrades are made over the FOTA
(FirmwareOver-The-Air), which is simplified by atmost twoHigh-Performance Com-
puters (HPC) for SDV in a vehicle. All these Vehicle-to-Cloud communications, as
well as the data that is shared, create the necessity of moving towards a decentral-
ized data monetization where each participant in the ecosystem of OEM like Renault,
Component Manufacturers like Qualcomm, Cloud Service providers like Google, and
the vehicle owner can own each a piece of the pie (service built on top of data and
rewards) offered by the data ensuring mutual benefit.

• Data which the vehicle owner engenders has to create a virtuous cycle where each
one starting from the sensor data, can be used by the equipment OEM for impro-
visation, Vehicle OEM can enable the provisioning of data, a vehicle owner can get
service benefits and up-gradation from the equipment OEM. All these actors will cre-
ate a virtuous cycle of fidelity and continuous improvement complemented by data
monetization.

• We design our architecture from a consortium point of view with benefits shared
with each actor and guarding data privacy, provenance, certification, accountability,
and validity with the closed set of participants, which is needed for an automotive
ecosystem.

3.1.3.4 Next Generation Distributed Ledger

Our architecture implementation consideration aims to solve the previously encountered
problems in our previous works [158, 167, 118] as well as previous discussions as follows:

• Consensus Scalability: As we had noticed in our previous works related to Byzan-
tine Fault Tolerance (BFT) blockchains except Clique and QBFT, other protocols’ per-
formancewas affected as nodes were increased even from a consortium setting of lim-
ited participants. Also, in Clique, the finalization of transactions was a questionable
aspect, and from an automotive context, we need finalized transactions as security

87

Chapter 3

cannot be compromised.

• Interoperability: Blockchain solutions we had earlier designed were not interop-
erable with other blockchains limiting their communication to receive external in-
formation and create new synergies and services, which is needed from the current
Web3 view standpoint.

• Embedded Smart Contract: Ethereum smart contract, which we had earlier used to
create ERC20 and ERC721 tokens, used an EVM (Ethereum Virtual Machine). It uses
EVM for the interpretation, execution, and finalization of smart contract transactions,
which adds additional processing bottlenecks apart from the transaction consensus
and processing. But we envisage building the smart contract and the blockchain node
binary to avoid separate execution in an EVM for faster and more secure processing.

• SecuredOracle andOff-ChainCommunication: Ethereum-based smart contracts
need a Third-party decentralized Ethereum-based Oracle for any external communi-
cation or knowledge feed to the smart contract decision logic. These are Chainlink,
Band protocol, Pyth Network, and others, which are third-party networks to be de-
pended upon, which defeats the purpose of a decentralized solution. So we need an
OffChain worker solution that can connect seamlessly to our internal and external
Application Programming Interfaces (APIs) or blockchain networks in the form of
Oracles, which we solve in our architecture.

• Mutual and Divisible Monetisation: Data that needs to be monetized has to be
beneficial and sustainable by attributing rewards for everyone in the ecosystem and
creating new services and enhanced customer experience, value addition, and product
evolution.

• Cycle of Data Certification and Provenance: Data that is shared has to be collated
from multiple actors or devices, processed, cleaned, obfuscated for privacy concerns,
and finally submitted via an API or data pool even for a simple raw data monetization
without any computation. These successive stages must be acknowledged from their
nascent stage until the end stage by certifying at each step as a Signature or Hash and
submitting to the decentralized protocol, ensuring a data certification and provenance
cycle.

• Privacy By Design: Our architecture is designed to follow the Article 25 of GDPR
principles of ’Privacy By Design’ rather than ’Privacy By Default’ [168, 169]. In our
earlierwork on data certification, we followed Privacy byDefault through pseudonymiza-
tion. In this work, we ensure that during data monetization we follow Privacy by
Design where the data can be read, accessed, and verified only by the necessary par-
ticipants without being public to anyone in the ecosystem.

3.1.3.4.1 Blockchain Framework by Design: Substrate In our earlier works, we
made the architectural decision of Ethereum Blockchain, a second-generation blockchain
comprised of smart contracts to build a distributed application. Meanwhile, Bitcoin is con-
sidered the first generation of blockchain as it was focused on the crypto-money transaction
with no additional mechanism to create an application or service [170]. But for this design,
we choose Substrate [171], which is a third-generation blockchain like Cosmos, Polkadot,

88

Decentralized Mobility Services

Cardano, or Avalanche. But to be precise, it is not a precompiled blockchain node but a
’modular, extensible framework’ that we can utilize to create our custom blockchain node
and generate its binary. It can be made interoperable with other chains and also scalable
by using the feature of para-chains. Further smart contracts are directly built onto the
blockchain node instead of external deployment on EVM. It is built using Rust language
and has a core library component called Framework for Runtime Aggregation of Modu-
larized Entities (FRAME), which can be used to inherit or build custom blockchain com-
ponents on top of it. Also, there is a separation of responsibility design by distinguishing
node usual activities of cryptography, network or consensus and custom logics of business
conditions, external communications like Oracles and other interfaces. All the signed trans-
actions executed in the smart contract pallets can be invariably called Extrinsic in Substrate
terminology. Many enterprise networks like Chainx utilize the Substrate framework based
on BABE and GRANDPA consensus, Aleph based on custom BFT algorithm, and Acala,
Plasm, Edgware, Moonbeam, and Darwinia based on either AuRa or Nominated Proof of
Stake customized with GRANDPA consensus algorithms on public networks.

3.1.3.4.2 Hybrid Consensus In this section, we explain the novel concept of Hybrid
Consensus proposed in Substrate, which is comprised of two consensus phases as follows:

• BlockAuthoring: It processes the transactions or extrinsic and constructs them into
blocks by the set of validators for each discrete time slot. This is usually performed by
a chosen validator in a round-robin selection by Authority Round (AuRa) consensus
or Blind Assignment for Blockchain Extension (BABE) scheme. These blocks are then
subjected to the addition as agreed chain storage where a block header contains a
reference to its parent or previous block.

• Block Finalization: Blockchain previously authored contains a chain of blocks and
can be subjected to forks where two blocks refer to a single parent block. So to resolve
the fork or finalize the chain, we need an additional algorithm to select the best chain,
which is the longest chain with higher weightage as in Greediest Heaviest Observed
Sub Tree based Recursive Ancestor Deriving Prefix Agreement (GRANDPA). This
ensures a deterministic finality where a chain can never be compromised, as only
block authoring offers a probabilistic finality.

Cross-Consensus Messaging (XCMP) The Substrate framework being inter-operable,
has amechanism for communicating between chains called Cross-ConsensusMessage Pass-
ing (XCMP), where any custommessage can be exchanged between the chains or parachains
as called in the Substrate terminology. They are classified into asynchronous, which is a
request-response without any time guarantees, absolute, where the message is exchanged
in order and efficiently, asymmetric, where there is no response back to the sender, and
agnostic which has no assumption about the message passed. In our architecture, we don’t
include these messaging systems as we construct a single unified chain focusing on con-
sensus performance with the capability of extending between chains or parachains in the
next version.

Authority Round (AuRa) This consensus algorithm [172] has a list of authorities or
validators where the block authorship happens at a time slot or step occurring every time

89

Chapter 3

interval. For each step s, a primary node is assigned in a round-robin methodology which
proposes a block as highlighted in Figure 3.11. The node selection is based on a modulus
operation of S mod N where each step is S and N is the number of nodes. The proposed
block is then accepted by the remaining validators, where only a single selected validator
can exist per slot. In case of time drift or network synchronicity, the node time slots can
overlap, which can cause multiple proposers per unique time slot. It can cause forks in the
chain that need to be resolved by an additional finalization mechanism without it offering
only probabilistic finality. The communication complexity for this protocol is O(n2) when
considering the block acceptance phase.

Figure 3.11: Authority Round (AuRa) Consensus

Blind Assignment for Blockchain Extension (BABE) This block production mech-
anism BABE [173, 174] is inspired by Ouroboros-Praos [111], a proof of stake consensus
algorithm. It is also a time slot-based algorithm, as highlighted in Figure 3.12, organized
as epochs. Each epoch comprises a set of successive time slots at pre-configured intervals.
It overcomes the security threat in AuRa protocol, where a validator at a particular block
height can be predicted and can be subjected to attacks as it is based on a modulus opera-
tion. The selection of the primary validator is based on a Verifiable Random Function (VRF)
with the input of a commonly agreed randomized seed, the current slot number, and the
validator’s private key. If the VRF output generated by a validator is below a commonly
agreed threshold δ, then it is chosen to be the primary validator for the slot. In parallel, a
secondary validator is selected as a fallback if the primary doesn’t respond for its eligible
time slot. The other validator nodes then agree upon this proposed block. But it has only a
probabilistic finality and needs to be added with Grandpa finality gadget as the algorithm
is termed to transcend as deterministic finality. The communication complexity is O(n) as
there is a block proposal phase to broadcast the block.

Greediest Heaviest Observed Sub Tree based Recursive Ancestor Deriving Prefix
Agreement (GRANDPA) This GRANDPA finality gadget [175] chain finalization proto-
col can be coupled with AURA or BABE consensus previously explained for rendering the
chain a deterministic finality in cases of forks due to network partition or malicious behav-
ior. As represented in Figure 3.13, it is a protocol where the validator agrees on the chain

90

Decentralized Mobility Services

Figure 3.12: Blind Assignment for Blockchain Extension (BABE) Consensus

and not blocks. They apply votes transitively until the block number with the highest votes
is chosen to be final. This, in turn, allows the chain of blocks, i.e., a chain, to be finalized at
once in a single round. In this protocol, a validator is selected to be the primary broadcast
of the highest block. Then during the "pre-vote" phase, each validator endorses a particular
block height, confirmed upon a supermajority (2/3) of validators. Then based on the "pre-
vote" previous round, each validator casts a "pre-commit" vote upon which they finalize
the chain. The communication complexity is O(n2) based on the messages exchanged in
the pre-vote or pre-commit phases.

Figure 3.13: Greediest Heaviest Observed Sub Tree based Recursive Ancestor Deriving Pre-
fix Agreement (GRANDPA) Consensus

GRANDPA protocol working is explained in Figure 3.14 where the encircled black block
represents the recently finalized chain. While considering the four forks signified by yellow
sub-chains, each block has either 2 or 1 as weightage, with fork described as fork 1, fork 2,
fork 3, and fork 4. The primary is signified as weightage 1, and the secondary is defined
as weightage 2, which indicates either the block proposition by a normal proposer or a
fallback proposer. Grandpa algorithm will choose Fork 2 as it has the longest chain with

91

Chapter 3

the highest primaries and is built on the last finalized block. So the factors of chain length,
the previous finalized block, and the most primaries will be chosen despite fork 4 having
the longest chain with the most primaries but not built on the finalized block.

Figure 3.14: GRANDPA Consensus Finalised Chain [175]

3.1.3.5 Use-Case Definition

Figure 3.15: Automotive Road RADAR Signature Use Case

In this section, we elucidate the use case of creating an automotive radar data value chain
by incentivization and fidelity mechanism. RADAR (Radio Detection and Ranging) data is
collected and consumed based on crowdsourcing from numerous vehicles. In the reverse
sense, it is offered as a radar data service by enhancing and building map road radar signa-
ture data service using it.

3.1.3.5.1 RADAR Significance Automotive RADAR furnishes the essential range and
speed data for driver assistance systems, including Long Range RADAR (LRR) adaptive
cruise control, automatic emergency braking, cross traffic alert, lane change assist, and

92

Decentralized Mobility Services

Short Range RADAR (SRR) parking aid, as well as pedestrian detection. The signal pro-
cessing function involved is Range estimation, Doppler Frequency Estimation, Direction of
arrival estimation, and tracking. In normal cases, multiple RADAR channels are required
for angular information or to compensate for any information loss. In our case, we adopt
a localization-based data collection from multiple vehicles for data fusion and extract any
valuable information. The significance of the automotive RADAR market is increasing at
40% Year-on-Year, especially in the premium or mid-segment vehicles. Prominent Auto-
motive RADAR Original Equipment manufacturers include Bosch [176], Continental, NXP
Semiconductors, or STMicroelectronics for object detection even at 200 kilometers/hour.
Also, for vehicle safety concerns, as we are evolving from L2 autonomous vehicles to fully
autonomous L5 vehicles, RADAR is necessary for safety optimization while driving.

3.1.3.5.2 Road RADAR Signature Road signature [176] is a crowd-sourced localiza-
tion service for autonomous vehicles to detect the relative position of other vehicles and
objects in their environment for accurate and reliable localization. As represented in Fig-
ure 3.15, the road signature is crowd-sourced or vehicle-sourced in the vehicle surrounding
comprising lane markings, gas stations, and guard rails within a decimeter range of the
vehicle. The vehicle generates RADAR and video sensor data while in motion, which will
be collated at determined intervals via the Telematics Control Unit of the vehicle to the
Cloud of RADAR OEM. Radar OEM observes all these received data of RADAR and video
to extract the object details and regenerate the environment based on the data. Video and
RADAR sensor data complement the rendering of a localization environment. As discussed
earlier, the RADAR OEM, e.g., Continental and Bosch, integrate this data with map data
to produce an updated and globally consistent map. The generated Road Radar Signature
high-definition resolution map, which will be offered as a subscription service back to the
vehicle user community, is compromised of three layers:

• Localization layer: Vehicles position is determined based on its driving lane and
merged with radar road signature, including the video localization map. Also, the
object information in the vicinity is compared with the information from the other
sensors to get the relative position.

• Planning Layer: This layer provides driving planning information comprising the
road course, traffic sign, and speed limit, including bends and gradients.

• Dynamic Layer: Traffic information, including deadlocks, construction work, main-
tenance, or parking space availability, is provided.

3.1.3.5.3 Virtuous Cycle of Road RADAR Signature Data As represented in Figure
3.16, the Road Radar signature workflow is facilitated and augmented with acknowledg-
ment, data certification, transparency, privacy, dynamic pricing mechanism accompanied
by fidelity and incentivization mechanism. Our data monetization use case will involve the
following components realized through the development of pallet smart contracts on the
Substrate blockchain framework.

• Asset Component: This component creates an asset for vehicle OEM as a Non-
Fungible ERC 721 token in the network. RADAR Data of the vehicles for a defined
condition of localization, time period, error tolerance, and other miscellaneous meta-

93

Chapter 3

Figure 3.16: Automotive Data Monetisation Architecture

data is represented as an asset along with its floor and ceiling price.

• Asset Service Component: The component is similar to the asset component but
consecrated towards the Road Radar Signature Map, which is offered by the RADAR
OEM to the vehicle users for enhanced safety, autonomicity, and optimized localiza-
tion information which is accompanied by a ceiling and floor price.

• Bidding Component: Each Asset or Asset Service created as an ERC 721 token has
its price determined based on a transparent bidding process between the RADAR
OEM, Vehicle OEM, and Vehicle Users consented to the transaction.

• OffChain Component: As soon as the Asset or Asset Service is sold, data must be
offloaded from each vehicle to the RADAR OEM via Vehicle OEM. Vehicle OEM acts
as a guarantor or mediator in the blockchain for initial data collation, data cleaning,
and obfuscating of any sensitive or private data. These data processing steps are done
off-chain in a cloud middleware but closely looped with the blockchain to certify the
process and the data.

• Asset DataCollation andCertification: Offloaded data to the RADAROEM is then
processed, analyzed, and interpolated with Map data to be offered as a service later
completing the asset finalization along with certification along its entire process.

• Asset Service Offering: Road RADAR Map signature is offered to the consenting
vehicle back in the blockchain ecosystem with an interest of subscriptions collated
in the ledger by the Vehicle OEM and transaction completion post the fund transfer.

• Incentivisation for Everyone: For each transaction of Asset or Asset Service in-

94

Decentralized Mobility Services

volving RADAR data monetization and Road Radar Signature Service, each actor in
the ecosystem is attributed an incentivization. The asset monetary transaction dis-
tributes the commission to the Vehicle OEM, the Vehicle Users, and the Radar OEM.
The necessary monetary benefit is given that the data certification, anonymity, and
quality are maintained. Moreover, the RADAR data or RADAR signature service rep-
resented as tokens ascend in higher price appreciation based on its usage review is
submitted to the smart contract.

This completes the explanation of the virtuous data cycle since its inception as an asset
from the vehicle to its collation in the RADAR cloud. Completing the closed loop back as
an asset service to the vehicle users based on the shared data imbibing fidelity and sustained
benefit for everyone in the monetization ecosystem.

3.1.3.6 Architecture Solution

This section looks at the architecture flow in terms of a smart contract transaction sequence
diagram for the Non-Fungible Token-based Asset and Asset Service proposition scenarios.
The Blockchain ecosystem network comprises nodes representing the Vehicle_OEM, and
Radar_OEM as validators with the possibility of extending the membership to other mem-
bers interested in data. For example, the map provider or the government service as it
deals with traffic, road, and toll maintenance. The blockchain network constructed is of a
private consortium type where each participant is aware of the public key of the other ac-
tors, as each one has a crypto wallet secured by a public cryptography system. In all these
explanations, we consider the following principal actors:

• DataMarket: Decentralised Smart Contract Pallet realized on Substrate blockchain
framework, which orchestrates the entire data monetization transaction subject to
hybrid consensus algorithms and its validation.

• Vehicle_OEM_A|B: Vehicle Original Equipment Manufacturers like Renault, Stel-
lantis, or Volkswagen, which provide the Offchain cloud infrastructure and partici-
pate as a validator in the blockchain consensus. Each participant installs and main-
tains the blockchain client for data transfer, transaction execution, and liaison of the
vehicles.

• Vehicle_A|B: Vehicle Users or Autonomous Fleet devices have a wallet-based ac-
count in the blockchain process and provide data necessary for monetization and
subscribe to the service offered for enhancing driving.

• Radar_OEM_A|B:RadarOriginal Equipmentmanufacturers like Continental, Bosch,
and NXP are interested in the generated RADAR data from the vehicles for enhancing
their product offering as well as creating additional business services for customers
like Road Radar Signature Map for their end users.

3.1.3.6.1 TokenizedNon-Fungible Asset Data-Set Component The Smart Contract
transactions involving theOffchain Sequence for theNFTAsset component involving RADAR
data transfer are represented in Figure 3.17 for the initial bidding process, and the asset fi-
nalization process is explained as follows:

95

Chapter 3

Figure 3.17: Tokenized Asset & Asset Service Monetisation Architecture

• Data Demand Phase: The initial phase when the Radar_OEM needs the Radar
data, it publishes the demand as an event notification transaction onto the network
with the location, vehicle speed, and acceptable price limit requirements. The Vehi-
cle_OEM can then respond to the event by broadcasting the demand to its vehicle
clients for its participation contentment.

• Data Asset Offering and Bid Phase: Vehicle_OEM_A|B responds individually by
creating an ERC 721 token as an Asset with the asset criteria, floor, and roof price.
Then to maintain the bid privacy, the Radar_OEM submits an encrypted bid with the
public key of Vehicle_OEM_A|B respectively. Then among the bids, one of RADAR_OEM_A
is accepted by the Vehicle_OEM_A as the bid of RADAR_OEM_B is not an acceptable
price. The fund of RADAR_OEM_A for the bid is transferred to the escrow account
as an intermediate transfer which will be transferred to the Vehicle_OEM_A when
the bid criteria and the asset are respected along with necessary certification proof
submissions.

• Data Aggregation and Certification: The Vehicle_OEM_A starts the data collec-
tion job from its set of vehicle clientswith the necessary criteria. Vehicles start record-
ing Radar data and submitting it with its signature hash as proof to the data pool and
smart contract. Then Vehicle_OEM_A processes the data removing the user’s sen-

96

Decentralized Mobility Services

sitive identification data, submits the final hash proof to the ledger, and generates a
data access token to a middleware service to be retrieved later.

• OffChain Data Transfer and OAuth Access: The blockchain Off-chain worker
component then retrieves the OAuth access token from the middleware and submits
it as an API POST request to the RADAR_OEM_A if the Vehicle_OEM_A submits all
the certification proofs to the blockchain.

• Fund Transfer including Finalisation of Asset Transfer: Then the bid amount
is transferred by the smart contract from the Escrow to the Vehicle_OEM_A account
and Vehicle_Accounts who participated in this monetization process such that the
above condition of the access token and proof are respected.

• Review of transferred Asset: The RADAR_OEM_A who retrieves the processed
data from the data pool utilizing the OAuth access token, reviews the data. The re-
sult of the review process is submitted to the blockchain against the Asset ERC721
token issued, which is a fidelity action to augment the price of the data issued by the
Vehicle_OEM_A in a later transaction or diminish if the review score is bad.

3.1.3.6.2 TokenizedNon-Fungible Asset Data-Service Component The smart con-
tract transaction sequence for the Asset Service token is represented in Figure 3.17 for
the bidding process similar to the asset component. For the sake of clarity, the Asset Ser-
vice finalization for the Radar Signature Map subscription service is described in Appendix
Chapter through Figure 8.9. This is similar to the earlier Asset Data transaction workflow
explained but is in the other sense where the vehicles subscribe to the service offered by
the Radar_OEM_A|B. It is explained as follows:

• RoadRadar SignatureAsset Service Interest Collation: Aparticular RADAR_OEM_A
who has to build the localization, additional, and planning layer of additional infor-
mation over the processed data as the Road Radar Signature Map service publishes
an event to the blockchain smart contract of its availability. This is then processed
by Vehicle_OEM_A|B, where each one gathers the interested vehicle clients for sub-
scribing to this service.

• RoadRadar SignatureAsset ServiceCreation andBidding: The RADAR_OEM_A
creates an Asset Service NFT ERC 721 Token and the characteristics of the service
with the acceptable price range limit.

• Asset Service Subscription and Proof Generation: Then each of Vehicle_OEM_A
or B expresses the interest in the subscription service on behalf of its clients as an
encrypted bid. The Radar_OEM_A accepts the bid of Vehicle_OEM_A along with its
vehicles, transferring funds from the vehicles consented to the escrow account.

• OffChain transfer of Asset Service OAuth API Access Token: RADAR_OEM_A
generates an OAuth access token for its Road Radar Signature Map service along
with the hash proof of the service including the raw data location, vehicle speed,
and quality. Off-chain Worker retrieves the encrypted OAuth access token from the
ledger and submits it to Vehicle_OEM_A.

97

Chapter 3

• Fund Transfer and Finalisation of Asset Service Transfer: In parallel, the Off-
Chain worker transfers the funds from the escrow for the bid to the Radar_OEM_A.
Also, the Asset Service Token ownership is transferred from the Radar_OEM_A to
the Vehicle_OEM_A and the interested vehicles.

• Review of TransferredAsset Service: The Vehicles or the Vehicle_OEM concerned
for the Asset Service token can review the improvement in vehicle driving as a result
of Road Radar Signature Map service positively or negatively connoting its price and
fidelity accordingly.

3.1.3.7 Implementation

This section discusses our decentralized data monetization solution’s development and in-
frastructure deployment operations.

3.1.3.7.1 Substrate Smart Contract Pallet The Substrate blockchain, as explained
earlier in this Section, is an extensible framework allowing the creation of a client node
embedded with smart contracts in the form of a pallet module. We designed this smart
contract pallet containing ERC 721 token creation logic, updation, ownership transfer, and
burn for both Asset Data and Asset Service Road Radar Signature representation. In our
case, the Offchain Worker component inside the pallet allows the smart contract to in-
terface with external API, either as Oracles or Token Transfers. Fund transfer operation
involving escrow and other actors is also defined with logic for proof and data certification
submission handled here. The pallet is included in node runtime for the execution of the
data monetization application along with the other default functionalities of transaction
validation, consensus process, and state storage. Our code implementation is realized in
4.0.0-dev with node customizations for testing the BABE and AURA consensus algorithm
whose code is published publicly.

3.1.3.7.2 Middleware Components The Vehicle_OEM and the Radar_OEM partici-
pate inside the blockchain as an actor in the smart contract and node validator. It also
participates in Offchain by providing the middleware required for collection, processing,
transfer, reception, and OAuth Access token both for raw Radar data and Road Radar Sig-
natures. These business services for Radar_OEM and Vehicle_OEM are implemented in
Java JDK (Java Development Kit) 8 language based on Spring Boot Framework. Its architec-
ture is a REST (Representational State Transfer) based Model View Controller middle-ware.
It deals with the authentification, authorization, OAuth Access token generation, verifi-
cation, management, Data Storage, Retrieval, and other API exposition necessary for the
blockchain OffChain worker to interact. It also has the API service to encrypt and decrypt
privacy bid payload for Asset or Asset Service, which is the Vehicle_OEM or Radar_OEM.
The Unified Modelling Language representation (UML) for the middleware is represented
in Figure 3.18, which comprises of the following:

• AuthController: It is the primary Class interface in the middleware which accepts
the Request and redirects to the necessary business service layer for storing assets,
asset service data, OAuth token generation, as well as encryption and decryption
process for the bidding procedure.

98

Decentralized Mobility Services

Figure 3.18: OEM Middleware Data Monetisation UML Model

• UserController: This Authentication service retrieves Radar and Radar Service sub-
scription data.

• Storage: This is the persistence layer for all the details regarding Asset, Asset Service,
Authentication, and OAuth Access Tokens.

• Asset / Asset Service Feedback: The Asset or Asset Service feedback in the form
of review is also stored Off-chain as additional storage.

• Radar Data: This contains the data payload representation generated by the vehicle
and transacted via the blockchain.

3.1.3.7.3 Infrastructure The decentralized data monetization implementation is de-
ployed in the cloud infrastructure represented in Figure 3.19. As performed earlier for
data certification Ethereum-based use-case, we utilize the same TAS cloud infrastructure.
The Substrate smart contract pallet containing data monetization logic and the developed
middleware are packaged as docker containers. These containers are then deployed on
the cloud infrastructure using the Kubernetes orchestration system as pods with neces-
sary extensible data volume, processing, and memory allocations. The client deployed on
a separate pod submits a transaction representing Vehicle_OEM or Radar_OEM to a Round

99

Chapter 3

Figure 3.19: Data Monetisation Blockchain Cloud Architecture

Robin-based Nginx load-balancer, which is then redistributed uniformly to the blockchain
nodes for validation and execution. The health metrics of the blockchain nodes regarding
processor and memory load are stored in the form of the time-series database Prometheus.
It is persisted at a pre-determined frequency, then represented graphically in the form of
Grafana dashboards deployed in separate pods. The middle-ware containers of Radar_OEM
and Vehicle_OEM are deployed running on an Apache Tomcat application server. All the
internal networking and forwarding among the pods is managed at the Kubernetes level,
along with service discovery and load balancing.

3.1.3.8 Evaluation

In this section, we evaluate the conceptualized data monetization solution from a dual per-
spective of functional and implementation performance.

3.1.3.8.1 Functional Evaluation Our virtuous cycle of data monetization since the
generation from the vehicle traversing Vehicle_OEM to the Radar_OEM and offering a close
loop Road Radar Signature service based on the received data improvisation has the func-
tional properties as represented in Figure 3.20. In this discussion, we consider the following
representations below for the different types of participants in the ecosystem :

• Set of Vehicle_OEM is represented as Vo = { Vo1, Vo2 VoN } for N participants.

• Set of Radar_OEM is represented as set of Ro = { Ro1, Ro2 RoK } for K participants.

• Set of Vehicles are represented as V= { V1, V2 VM } for M participants.

• Processed Radar Data which is monetized by each vehicle belonging to a Vo repre-
sented as {D1, D2 DL } for L successive data assets which to be exchanged over the
data market.

• Processed Road Radar Signature Map (RRS) which a Radar OEM Ro monetizes repre-
sented as {Rs1, Rs2 RsP} for P successive RRS asset service which is to be exchanged
as a virtuous cycle in the data market.

100

Decentralized Mobility Services

Figure 3.20: Data Monetisation Functional Evaluation

• Bid either for Asset Data or Asset Data Service is represented as {Bx,y,1, Bx,y,2 Bx,y, S}
where x signifies the bidder and y signify the asset or asset service tendered.

• Certification for any Asset Data DL, CD is defined as the set of hash signatures derived
at each stage of processing like individual vehicle data generation, collated raw data
in the pool before processing, collated raw data after processing in Vo cloud and then
including OAuth Access Token.

• Certification for any Asset Service RSS RsP, CRs is defined as the set of hash signatures
derived at each stage of signature formation like Initial Data State, Augmented Data
after collation, improvised radar data with signature along with subscription access
token.

• Review for any Asset or Asset Service is defined as a score 0...1 where 0 represents
the lowest and 1 represents the highest with any median value also possible. This is
represented as Ri,j where i represents the reviewer and j represents the asset or asset
service transferred and reviewed. Based on the review accumulated for Asset Data
DL or Asset Service RSS RsP, its future issued Asset or Asset Service can have higher
or lesser pricing based on its reputation score mean RSMRadar_OEM | Vehicle_OEM. The
reputation score for the asset is proportional to the number of certifications received
for the asset or asset service.

• Reputation ScoreMean RSMRadar_OEM | Vehicle_OEM for either Vehicle_OEMor Radar_OEM
is the arithmetic mean of historical reviews accumulated. For example Reputation
score mean for Radar_OEM or Vehicle_OEM is represented as:

RMj = mean(Ri-2,j, Ri-1,j,Ri,j)

RSMRadar_OEM | Vehicle_OEM = mean(RM j-2, RM j-1,RM j)

101

Chapter 3

0 ≤ i ≤ N , i represents the index of the reviewers of either asset or asset service

0 ≤ j ≤ N , j represents the index of asset or asset service exchanged

RMj , represents the Mean review attained for a particular asset or asset service j

RSMRadar_OEM | Vehicle_OEM , represents the Reputation Score Mean of a Radar or Vehicle OEM.

Its properties are discussed below:

• Global Fairness: Fairness in the case of any application is defined by the work of
FairSwap [56] "A fair exchange protocol allows a seller S to sell a digital commodity D
for a fixed price p to a buyer B. The protocol is secure if B only pays if he receives the
correct D." We extend this work in our above design as in [55] for a Global Fairness
where every participant in our ecosystem will have the following guarantees:

– Each Participant is ensured that fund transfer for any D happens only when the
certification conditions is satisfied for CD.

– Fund transfer is not fulfilled immediately as it is placed in an escrow account ϵ
and then, on verification, transferred to the destined participant account.

– In either case of the virtuous cycle from Radar Data conversion to Road Radar
Signature, the facilitators who provision the cloud infrastructure or other value
adders can benefit from the commission or fidelity rewards.

– The Asset or Asset Service Token exchanged results in the influence of a trans-
parent reputation accumulated by either honest or dishonest activity. This is
publicly verifiable and can result in the augmenting or decrease of a reputation
participant.

– To ensure fair pricing, the sealed bid mechanism is encrypted with the bid re-
ceiver’s public key, which results in a competitive remuneration for either the
asset or asset service. Also, an asset or asset service issuer’s reputation organi-
cally influences the probability of data or data signature pricing.

• Full Interoperability: Our solution achieves two levels of interoperability which
are intra-chain as well as inter-chain, as follows:

– Intra-Chain: The above monetization solution can integrate with external ag-
nostic (centralized or decentralized) systems through OffChain workers for API
requests or responses. Also, as we utilize a balanced mix of events, signed and
unsigned transactions (extrinsic) to differentiate the priority of message pass-
ing between each actor in the system, it avoids unnecessary overhead in the
distributed system, especially of consensus.

– Inter-Chain: As it is based on the Substrate framework, this implementation
can be extended as a para-chain to integrate with other blockchains or para-
chains through Polkadot.

• Chained Data Certification: As mentioned earlier either for Asset Radar data or
Asset Service Road Radar Signature, we ensure the maintenance of the history of

102

Decentralized Mobility Services

the data provenance along with its hash signature-based certification to avoid any
counterfeit and validate the health of the data as well as the service.

• Privacy By Design: The solution has granularised the privacy at each level by the
following mechanisms:

– Account Pseudonymization: All the accounts are pseudonymized concern-
ing vehicle participants as it is necessary to identify Radar_OEM’s and Vehi-
cle_OEM’s. A vehicle’s original identity is another intermediate identity that
can be dissociated in case of necessity. This is to respect the forgetting right of
GDPR [23] if the vehicle owner decides to remove his information.

– Bid Sealing: All the bids for either Asset or Asset Service are sealed using
encryption, which can be decrypted only by the bid receiver, ensuring compet-
itiveness, transparency, and privacy.

– Privacy Data Concealment: Radar Data from the origin in the vehicle until
the data reception by the Radar_OEM is privacy treated with the making of
sensitive data, and the hash signature generated is added with controlled noise
like location, time, etc. to ensure the authenticity.

• Dynamic Pricing: As discussed earlier, pricing is based on a sealed bid oriented
proportionally to the participant’s reputation and review of the exchanged asset as
well as asset service data tokens to avoid any price manipulation. This ensures a
reputation-based adjustment of the asset pricing, creating a virtuous cycle in fidelity
and incentivization.

• Accountable Reputation: Reputation, based on the arithmetic mean of reviewing
individual assets transferred as extrinsic transactions diffused through the distributed
ledger, is verifiable and transparent for all the ecosystem participants.

3.1.3.8.2 Security In this section, we analyze our solution for some security concerns
based on the amalgamated work of OWASP Top Ten (OpenWorldwide Application Security
Project) security threats for web applications and Blockchain [177] [178]. Also, from the
perspective of a smart contract, which, in our case, is an application-oriented blockchain
based on a compiled substrate pallet, we analyze its concerns. Their analysis is as follows:

• Injection: The blockchain systems can be compromised by using malicious data,
which can be in the form of Integer Overflow, Batch Overflow [178]. We ensure
adequate checks and balances in the system where external parameterized signed
extrinsic are minimized except for encrypted bids.

• Access Control: Each participant of Vehicle_OEM, Radar_OEM, Vehicle, and Escrow
is based on access control ensured through permission pallets and privileged calls as
they are consortium-based, limiting risk exposure.

• OffChain Manipulation: Our solution communicates with the OffChain only for
retrieval and data job scheduling, not as an oracle for knowledge-based decisions that
shield against manipulation attacks.

103

Chapter 3

• Sensitive Data Exposure: Data on the blockchain are only related to the original
blockchain accounts and their pseudonymized transactions. All the data are man-
aged OffChain, which ensures that sensitive data is hidden and only managed by the
blockchain trust mechanism.

• Smart Contract Security: In this application, our decision of smart contract deploy-
ment is not external and is compiled along with the node and executed along with its
runtime. Further, the ERC 721 token specification of Ethereum is adapted for the Sub-
strate FRAME library, and each logic is separated for token creation, OffChain data
orchestration, as well as certification validation, which is tested for performance.

The functional evaluation by comparing with earlier mentioned works of Ocean Proto-
col and Digital Infrastructure for Moving Objects (DIMO) in Section 3.1.3.1. We have a
consortium where data is exploited to create a mutual benefit among the ecosystem with
a measure of balanced privacy, dynamic pricing, fidelity, transparency, certification, and
value addition for the vehicle. It has no external dependency in the form of trusted com-
puting or hardware wallets with integrated OffChain seamless interaction for managing
and retrieving from external systems.

3.1.3.8.3 Experimental Evaluation In this section, we experimentally evaluate the
monetization architecture implementation as explained earlier in Section 3.1.3.7.2 deployed
in the cloud infrastructure. The study is based on the following dimensions:

• Performance Evaluation of the data monetization solution by submitting extrinsic
(transactions) and measuring the throughput of finalized and valid transactions.

• Understanding the Hybrid Consensus Algorithm of Aura with GRANDPA or BABE
with GRANDPA regarding its parameters and deriving an optimum setting for exam-
ple: Block Period.

• Analysing the scalability and fork occurrence in the consensus protocol and evaluat-
ing its suitability for enterprise mobility solutions.

3.1.3.8.4 Performance Study This section discusses the performance results of the
data monetization cloud architecture we have explained. Cloud configuration specifica-
tion at Kubernetes level is enlisted in Section 4.1.4.3. The Substrate network is tested
with a different configuration of 5, 10, 15, 20, and 25 validator nodes that participate in
the variations of 1) AuRa and GRANDPA and 2) BABE and GRANDPA. Code Implemen-
tation of Substrate pallet along with smart contracts, cloud deployment of Kubernetes,
transaction clients, Substrate network configuration files, Radar and Vehicle Middleware
Java implementation as well as test results are released publicly in the GitHub repository:
https://github.com/scyrilnaves/these-datamonetisation. We organize the test as follows:

• A client that submits the transaction to the load balancer offloads the transaction to
a node chosen based on the round-robin algorithm. The client is based on Javascript,
which uses the library Polkadot.js for the following purposes:

1. EstablishingWebSocket communication to the Substrate node and retrieving the
meta details of the network like pallet information, account details like a nonce,

104

https://github.com/scyrilnaves/these-datamonetisation

Decentralized Mobility Services

public key identifier, and other miscellaneous details like chain information,
fork information, block details, and transaction details.

2. Transaction (Extrinsic) construction with the signature using the private key
of an account, encoding and decoding transaction payload, submission of the
transaction, and retrieving its status in the network as finalized or processing.

• For the test, the client submits the transaction of CreateAsset, which creates an Asset
NFT ERC 721 token in the network. Each transaction has a unique processing com-
plexity based on its purpose logic, affecting its finalization rate or throughput in the
network. The test transaction is comprised of the following complexity:

1. Calculation of Hash for generating a unique Asset Id. Counted as 1 operation.

2. Storage operation of Asset details in Asset Storage, Storing Asset Count, Asset
Index, and ownership details in separate runtime storage structure either as a
Storage Map, Storage Double Map, or Storage Value. They are counted as 10
operations.

3. Read operation from storage to retrieve the existing details before any update.
They are counted as 5 operations.

• Transactions (Extrinsic) are submitted by the multithreaded client of 1000 threads
signed by 2000 pre-generated accounts.

• Then the transaction is submitted asynchronously at an input rate of 1000 Transac-
tions per second with 50000 total transactions repeated in 3 iterations to avoid any
bias in the result. The Block size comprising of extrinsic is maintained at 5MegaBytes
which is optimal as low size can induce message overload and higher can delay by
processing bottleneck.

• Signed transactions submitted are checked for finalization, and based on block num-
ber, the time difference is calculated for estimating the finalized throughput of the
network. Further explanations are provided in Appendix Section 8.4.

In the future section, we will discuss the different test formats across the two consensus al-
gorithm choice variations for the Block proposer: AuRa (Authority Round) or BABE (Blind
Assignment for Blockchain Extension) and Block finalization based on chain level agree-
ment: GRANDPA (GHOST based Recursive Ancestor Deriving Prefix Agreement).

3.1.3.8.5 Hybrid Consensus Parameter Analysis: Block Period In this Section, we
vary the Block period in the slot-based block proposition consensus algorithm of either
AuRa or BABE. The block authoring or proposition happens at fixed customizable inter-
vals termed the Block period. The results of AuRA and BABE block authoring are repre-
sented in Figure 3.21 and Figure 3.22, respectively. The inference is based on the following
explanations:

• Higher interval of block period directly increases the time associated with block pro-
duction

• Lower orminimal block period decreases the turn around time for block creation time.

105

Chapter 3

Still, it results in a race condition between transaction verification and consensus
operation which overflows the consensus slot time.

AuRA consensus, as represented in the results, is tested across 3, 6, and 12 seconds, exhibit-
ing an ideal throughput of 380 transactions per second for 6 seconds block period time. The
input transactions are around 1000 transactions per second against the output of 380 trans-
actions per second as the transaction processing and consensus factor is to be considered.
Meanwhile, the throughput ideal for BABE is around 277 transactions per second. BABE
has a high block period time of 60, 90, and 120 seconds due to the consensus constraints.
Lesser Block time periods of 3,6 and 12 applied for BABE result in a higher amount of forks
as a consistency drift is observed in the network. So even though the BABE offers privacy
and better security due to its choice of Verifiable Random computation function based se-
lection of proposer, it has a lesser throughput than AuRa due to its computation. Another
issue noted here is that there is a GRANDPA level stalling in the network due to the miss-
ing pre-commit votes, which occurs in the case of lesser block periods, which signifies the
inconsistency of validators assuring the earlier results experienced in works[179, 180].

Figure 3.21: AuRa Consensus Block Period Influence

3.1.3.8.6 HybridConsensus ScalabilityAnalysis In this section, we analyze the scal-
ability of AuRa and BABE consensus along with the GRANDPA finalization algorithm. The
scalability results for AuRA and BABE are represented in Figures 3.23 and 3.25, respectively.
The results of AuRa are explained by the O(n2) message complexity which shows a decreas-
ing throughput in proportion to the number of nodes. In addition, the GRANDPA finaliza-
tion message complexity bottleneck of O(n2) further augments the decrease in throughput.
Still, the difference in the GRANDPA algorithm is that finalization is performed on the chain
of blocks rather than individual blocks of AuRa. Also, another inference based on the result
is that higher input Transaction per second (TPS) greater than the optimum 1000 increases
the forks in the network as well, which in turn decreases the throughput as represented

106

Decentralized Mobility Services

Figure 3.22: BABE Consensus Block Period Influence

in Figure 3.24. This fork is explained by the processing and consensus-induced bottleneck
affecting the liveness and consistency of chains but resolved by GRANDPA through addi-
tional computation.

Figure 3.23: AuRa and GRANDPA Consensus Scalability Performance

BABE consensus has an algorithmic complexity of O(n) but suffers a decrease in scalabil-
ity throughput due to the occurrence of forks in the system, given the susceptibility of the
consensus algorithm to elect multiple validators for a single block height. This results in a
larger number of secondary blocks rather than primaries which are attributed to the nature

107

Chapter 3

of the algorithm. Accompanied by the computational effort of Verifiable Random Func-
tion it affects the throughput of BABE, which is absent in the AuRa algorithm. The fork
occurrence increases with higher input transactions per second, as represented in Figure
3.26 augmented by increased transaction processing, message communication overhead,
and consistency issues.

Figure 3.24: AuRa and GRANDPA Consensus Fork Study

Figure 3.25: BABE and GRANDPA Consensus Scalability Performance

In summary, for the implementation evaluation of Data Monetization architecture, we re-
alize that the BFT algorithms of Aura and BABE have a scalability issue. On a positive

108

Decentralized Mobility Services

Figure 3.26: BABE and GRANDPA Consensus Fork Study

note due to its hybrid nature with GRANDPA, it offers finalization and better protocol se-
curity but at the cost of additional computation. Both protocols are affected by scalability
issues where the AuRa consensus is more stable than the BABE protocol. BABE, along with
GRANDPA protocol, suffers from consistency issues [179, 180] as explained earlier. It offers
a higher degree of security in the form of an impossibility of predicting the next successive
block proposer using a verifiable random function. GRANDPA BFT offers the finalization
of chains in the presence of forks, a hybrid protocol to work with AuRa and BABE in the
substrate framework. It is destined to resolve the forks, but its liveness can be affected if
most validators are affected by chain consistency issues. The results can be slightly higher if
a more straightforward transaction payload is considered. Still, the throughput of around
300 transactions per second in this data monetization implementation signifies that this
architecture is acceptable and can be extended to enterprise mobility use cases.

3.1.3.9 Conclusion

In this work, we analyzed the datamonetization use case by creating a virtuous cycle of data
flow incentivizing the Vehicle_OEM’s, Radar_OEM’s, and Vehicles who share the data. We
exhibit the extensibility of the architecture to external systems and provide Radar Signature
Services offering global fairness, interoperability, privacy by design, asset data reputation,
and a secure network. We further evaluate the cloud-based implementation and understand
the Substrate Hybrid Consensus from an application-based blockchain with an embedded
smart contract, including its BFT family consensus scalability limitations.

3.1.3.9.1 Future work: In this section, we discuss some improvements that can further
enhance the data monetization protocol as below:

• Auction: Auctions can be made more transparent by a commit reveal scheme where

109

Chapter 3

there are no time-bound constraints and hidden bids are eventually public when all
the bids are received and committed.

• Privacy: Differential Privacy [181] can be applied for more granular privacy control
on the data ensuring more concealment than the masking techniques. Also, account
abstraction based on ERC 4337 [182] protocol can be considered for anonymizing
network participants as an alternative to pseudonymization in our protocol.

• Smart Contract: Smart Contract embedded along with client runtime in our Sub-
strate blockchain has better security than by deployment. But it has not been audited
using tools like MythX [177], or legal aspects are offloaded, which can be considered
in the future.

• Interoperability: Substrate has both Intra-Chain and Inter-Chain communication
extensibility. The inter-chain exchange in the form of Parachains has several lim-
itations discussed in [183]. They are due to being monetary-based Proof of Stake
Polkadot network for parachain slots, validator election transparency issues and gov-
ernance problems due to the "prime voter" as well as 13 member council governance
affecting decentralization. Also, there are liquidity issues with the Polkadot network
due to economic reasons, and many parachains like Lido have ceased their operation.

• Certification Proof: Hash-based chained certification can be replaced with Merkle
proofs or Zero Knowledge proofs where any user can verify the proof without actual
data revealed.

• Consensus: Our implementation analyzes the Hybrid Consensus of AuRa, BABE,
and GRANDPA available in Substrate necessary for our data monetization use case.
Another consensus of Nominated Proof of Stake can be tested, available in Substrate
Polkadot based on monetary conditions of currency called DOT’S. It can be applied
to our use case but needs monetary-based staking and slashing constraints [183].

3.2 Decentralised Mobility Services Conclusion
In the above twomobility use-case of data certification andmonetization, we have discussed
the evaluation functionally and through benchmark of cloud implementation. We have
analyzed the algorithms of PBFT, Clique, IBFT, and QBFT of Ethereum, and the Hybrid
Consensus of AuRa with GRANDPA and BABE with GRANDPA present specific similar
challenges. These are the following questions:

• Scalability: All the BFT algorithms present a drastic fall in scalability due to com-
munication complexity except Clique. However, we cannot confirm this issue since
we notice a bottleneck at the client binary level in the blockchain.

• Security: All the testing is performed considering the security of data or assets in the
form of tokens which we discussed in the functional evaluation and confirmed. On
the contrary, security at the level of blockchain framework in the form of malicious
nodes or different network topologies is still not benchmarked, which can impact the
consensus messages’ finalization throughput and stability.

110

Decentralized Mobility Services

• Fault Tolerance: A pertinent scenario noticed while Ethereum and Substrate is the
possibility of the node being stalled in the case of network issues, database corruption,
memory issues, as well as virtualized Kubernetes pod issues which can occur and
risk the network health. We have not considered these scenarios, as the worst case
of recovery would be to restart the nodes affecting the consensus algorithm without
any test on the tolerance mechanism.

• Finalisation or Fork Issues: All the consensus algorithms exhibit finalization issues
with a high presence of forks in the case of Clique. As noted in the above discussions,
Aura and BABE are also highly prone to forks resolved by GRANDPA.

The evaluated consensus algorithms of Clique, PBFT, IBFT, and QBFT present an overall
scalability issue with the augmentation of the nodes in the blockchain network. Also, we
notice issues of chain consistency, deadlock, and liveness problems in the network. An-
other problem we notice apart from the consensus algorithms mechanism is the binary
implementation issues of Geth, Besu, or Substrate, which has limited performance due to
technology or database choice.

All these issues are derived from heterogeneous blockchain platforms of Ethereum: Geth,
Besu, and Substrate, which present different design considerations as noted by the dif-
ference in smart contract construction and processing, database choice, memory man-
agement, network management, data structure implementations as well as programming
frameworks. So we continue this aspect to further test the BFT consensus algorithms in a
homogeneous platform by taking the outcomes of these two use-case implementations as
a hypothesis to be confirmed and studied.

So this motivates us in two ways creating a simulator to test the BFT consensus algorithms
homogeneously and extending the same simulator to conceive a novel BFT consensus al-
gorithm to solve the earlier uncovered issues.

111

Chapter 3

112

Chapter 4

SimulatedByzantine Fault TolerantCon-
sensusAlgorithms ForNormalised Eval-
uation

Our brain simulates reality. So, our
everyday experiences are a form of
dreaming, which is to say, they are
mental models, simulations, not the
things they appear to be.

– Stephen LaBerge

113

Chapter 4

4.1 Simulator Formulation . 115
4.1.1 Problem Ideation . 115
4.1.2 Simulator State of Art . 115
4.1.3 Simulator Methodology 121

4.1.3.1 Design Goals . 122
4.1.3.2 Design Principles 123

4.1.4 Technology Decisions . 128
4.1.4.1 Simulator . 128
4.1.4.2 Simulator-User-Interface 129
4.1.4.3 Infrastructure 129
4.1.4.4 Simulator Deployment 130

4.1.5 Test Bed Architecture . 132
4.2 Simulator Validation . 133

4.2.1 Choice of BFT Algorithm Study 133
4.2.2 Simulation Test Methodology 133
4.2.3 Discussion on Results . 134

4.3 Conclusion . 139

The previous chapter evaluated the two mobility use case implementations through dif-
ferent blockchain architectures across a family of simple and hybrid BFT family consen-
sus algorithms. We had arrived at an intermediate conclusion which presented challenges
or bottlenecks with the performance degradation of the system. They were due to the
application-level issues like the complexity of the smart contract or at the blockchain plat-
form level due to the implementation design of the binary. The choice of programming
stack or the actual consensus algorithm affected the throughput performance. This prob-
lem dissection across multiple layers makes it a bit indistinguishable, further aggravated
by different blockchain platforms’ design and development by varied open-source commu-
nities. So to address this heterogeneity of issues and to concentrate on pure consensus
algorithm design issues, we had to conceive a simulator test-bed. It could homogenize the
test efforts and help in understanding as well as building a hypothesis around the consensus
algorithms of the Byzantine Fault Tolerant family.

114

Simulated Byzantine Fault Tolerant Consensus Algorithms For Normalised
Evaluation

4.1 Simulator Formulation
Building a simulator for problem-solving involves the following process:

1. Problem Formulation: To define the problem accurately and concisely with all the
required assumptions.

2. Simulation Model Building: To capture the basic aspects and behaviors of the sys-
tem where the problem is picturized, which should align with the quality of available
data and the degree of validation needed.

3. Experimental Design and Analysis: After the model definition and its validation,
it can be used to perform experiments that investigate the goals and objectives of the
problem.

4. Evaluate and Iterate: If the simulation has achieved the objectives, then it should
be documented, and recommended solutions should be implemented. Otherwise, it
should be iterated further, and other additional data, modeling, or experimentation
should be added to solve the desired problem.

We follow the above process in describing our simulation and performance evaluation of
BFT consensus algorithms. The idea is to identify and assure ourselves of the real bottleneck
at the performance or at the scalability level.

4.1.1 Problem Ideation
The fundamental challenges we overcame in designing the simulator versus the usage of
multiple blockchain binaries like Clique of Ethereum, Practical Byzantine Fault Tolerance
of Hyperledger Sawtooth, Istanbul Byzantine Fault Tolerance / Quorum Byzantine Fault
Tolerance of Hyperledger Besu, Aura, and GRANDPA of Substrate are given by the Ta-
ble 4.1. Our problem definition in building this simulator would be understanding any
consensus algorithm behavior and testing its performance mimicking the real world by ab-
stracting the blockchain platform. It will manage the data creation, validation, verification,
and distribution after the agreement among the consenting peers. Since the abstraction is
standard across the different algorithms and the evaluation is homogeneous, the simulator
framework should enable testing any distributed consensus algorithm by plugging into a
module.

4.1.2 Simulator State of Art
In this section, we explore the different works related to the simulation of blockchain plat-
forms. We understand their implementations to analyze if they can be reused to simulate
and study the BFT consensus algorithms. We gain inference on the existing works to build
motivation and design a new simulator solving our problem objectives.

In the work by A. Albshri and A. Alzubaidi and B. Awaji and E. Solaiman [184], they at-
tempt to capture the available state-of-the-art Blockchain simulators by accounting for their
quality factors such as usability, reliability, provided capabilities, and supported features.
Figure 4.1 excerpted from their work shows the array of simulators they have analyzed
along with their major properties. It represents all the stochastic dynamic simulators that

115

Chapter 4

Property Blockchain Binary Homogeneous Simulator

Database

Separated Database Layer us-
ing a library like LevelDB for
Ethereum-Geth, RocksDB for
Substrate

Run Time Memory of Simula-
tion Platform

Transaction Pay-
load

Smart Contract or Crypto Asset
Payload Simplified Message Payload

State Maintenance
Overhead

Account or Unspent Trans-
action Output (UTXO) based
maintenance

Simple Account State Mainte-
nance

Encoding / Decod-
ing Payload

Recursive-Length Prefix (RLP)
Data Encoding for Ethereum
or Simple Concatenated Aggre-
gate Little-Endian Data Encod-
ing (SCALE) and SS58 Public
Address Encoding for Substrate

No Special Encoding

Encryption / De-
cryption

Elliptic Curve Cryptography
(ECC) for Ethereum, Elliptic
Curve Digital Signature Algo-
rithm (ECDSA), Edwards Curve
Digital Signature Algorithm
(Ed25519) and Schnorr Signa-
ture (SR25519) for Substrate

Simple Encryption like RSA

Hashing Function
KECCAK256 for Ethereum and
BLAKE for Substrate Hash func-
tion

Simplified SHA256 Hash func-
tion

Development Plat-
form

Golang for Ethereum Clique,
Java for Ethereum IBFT, QBFT;
Python for Hyperledger Saw-
tooth and Rust for Substrate

Single Platform / Language for
normalized testing using Java

Network Layer

Networking Libraries like
DevP2P for Ethereum, libP2P
for Substrate including varied
routing algorithm

Standard Multithreaded Client
and Server based on Socket Li-
brary tested with Mesh Type
routing

Additional Virtual
Machine Processing

Ethereum Virtual Machine
(EVM) for Ethereum, Web
Assembly (WASM) runtime
for Substrate or Transaction
Processor for Hyperledger
Sawtooth

No Additional Virtual layer as
all code packaged into a single
JAVA archive for execution

Block Transmission
Diffusion of Blocks with all
transactions redundantly

Diffusion of blocks with trans-
actions in initial validation and
a hash of the same in further
steps.

Table 4.1: Differentiation Factors necessitating the Simulation

116

Simulated Byzantine Fault Tolerant Consensus Algorithms For Normalised
Evaluation

are discrete event-based. The three simulators of Modeling by Queuing Theory, DAGsim,
and Local Bitcoin are virtualization-based. Concerning our core interest in consensus algo-
rithms, themost analyzed algorithm is Proof ofWorkwhich is implemented in almost all the
simulators leaving Proof of Authority and Proof of Stake to just a single simulator. Bitcoin
is the most simulated, with 15 of 21 works based on it. The major metrics being measured
by each of the simulators are represented in Figure 4.2 with the consensus layer measuring
the amount of generated and mined blocks. Also block verification time, fork resolution,
pending transactions, and mining difficulty, are measured in this work. Our focus while an-
alyzing the simulator is to get the metrics of consensus communication overhead, network
partition tolerance, scalability, and finalized transaction rate.

Figure 4.1: Summary of Blockchain Simulators along with features [184]

Figure 4.2: Metrics of Blockchain Simulators [184]

117

Chapter 4

In work by Faria, Carlos and Correia, Miguel [185], they design a discrete-event simulator
called BlockSim to evaluate different blockchain implementations. They used the existing
Python framework of SimPy andmade their work public. The simulator comprises the node,
consensus, ledger, transaction, block, network, and cryptographic layers. The node layer
resembles the node initialization in a P2P network, the ledger layer defines the structure
of the ledger, the transaction and block layer simulates the transmission and reception
of transactions, the network layer defines the communication protocol, and finally, the
cryptographic layer manages the encryption functions used. The consensus layer adds a
delay in the network instead of block and transaction validation. It also has a block difficulty
calculation functionwhere the difficulty in hash calculation increases with the block height,
similar to the Ethereum and Bitcoin Proof of Work protocols. The two blockchain networks
of Bitcoin and Ethereum are simulated, both Proof ofWork protocols. They further evaluate
these models with the real-world Ethereum and Bitcoin Networks. They measure the block
or transaction propagation times with varied gas limits or block sizes as well as different
block encryption and decryption delays. They state in their work that it is an open challenge
to adapt BlockSim for Byzantine Fault Tolerant Consensus algorithms.

Figure 4.3: Average Confirmation Time for 1000 transactions [186]

The next work is a blockchain simulator for evaluating consensus algorithms by Foytik, Pe-
ter and Shetty, Sachin and Gochhayat, Sarada Prasad and Herath, Eranga and Tosh, Deepak
and Njilla, Laurent [186] proposing a generalized representation for consensus. They use
a discrete event simulation engine to test the scalability and the number of messages ex-
changed during the consensus mechanism, focusing on the network and consensus layers.
The key metrics considered in the simulator are the throughput concerning the number of
successful transactions, latency in transactions, network fault tolerance, and checking its
behavior with heterogeneous devices and network conditions. They utilize the Network
Simulator-3 (NS3) to simulate this blockchain system. The consensus mechanism imple-
mented is Raft [187], which is a simple protocol to understand. They test it with different
numbers of messages like 1, 4, and 10 with an increasing number of peers starting from 3

118

Simulated Byzantine Fault Tolerant Consensus Algorithms For Normalised
Evaluation

until 16 as represented in Figure 4.3. The results shown there depict the increasing time to
process the message with more peers, but at the same time, the gap between the different
sizes of messages decreases with increasing peers. This reveals that the number of peers
affects the scalability more than the number of messages transmitted.

Figure 4.4: Blockchain abstraction layer model and associated metrics in BlockPerf [188]

Figure 4.5: BlockPerf Transaction Throughput [188]

The next work to be discussed is an improvement over the previously discussed work of
BlockSim [185] called BlockPerf [188] by Polge, Julien and Ghatpande, Sankalp and Kubler,
Sylvain and Robert, Jérémy and Le Traon, Yves wherein a real network infrastructure layer

119

Chapter 4

is used albeit a simulated layer. They have modeled the blockchain as a six-layer model rep-
resented in Figure 4.4, which shows the metrics that can be derived from each blockchain
layer. It emulates the network layer while simulating the node, consensus, incentive, and
application layer based on statistical data modeling, which is different from BlockSim [185]
approach. The consensus mechanism tested is Proof ofWork, similar to the BlockSim [185].
Still, the implementation differs wherein instead of simulating the behavior of the consen-
sus algorithm, each of the mining nodes selects a random number, the pending transac-
tions in the queue, and the previous block hash to calculate the next block hash resembling
the Proof of Work algorithm. The improvised BlockPerf[188] is tested over the BlockSim
and the real-world Bitcoin test bed implementation bitcoind. The evaluation of Block-
Perf’s throughput compared to BlockSim shows that it is better in simulating the real-world
testbed of blockchain setup with less relative absolute error, as shown in Figure 4.5.

Figure 4.6: ChainSim [189]

Following is a simpler blockchain simulator framework called ChainSim [189] proposed by
Wang, Bozhi and Chen, Shiping and Yao, Lina and Wang, Qin, which can simulate mul-
tiple nodes in a single computer using lightweight threads. The module structure of the
simulator is shown in Figure 4.6 with the application layer consisting of transaction gen-
eration and programmable applications, the data layer consisting of a consensus protocol,
and the network layer consisting of different information transmission methods such as
unicast, broadcast, multicast or gossip. The three different protocols implemented are Bit-
coin, Ethereum, and IOTA. The consensus algorithm simulated is Proof of Work, an older
version of the algorithm not used by the actual community of Ethereum and IOTA anymore.
The simulation results are comparedwith the actual public network data of the latter, which
denotes that the error is within the acceptable range. Still, the actual implementation details
are missing, which poses some challenges regarding the ability to reuse this simulator.

In the next work by Wang, Ping-Lun and Chao, Tzu-Wei and Wu, Chia-Chien and Hsiao,
Hsu-Chun, we look at a proposition of a simulator for plain BFT consensus Protocols [190]
without the structure of a blockchain. The simulator’s design is implemented in JavaScript
as represented in Figure 4.7, where a controller launches a test specified in a configura-
tion file in the form of events. These events are then sent to a consensus module where
the node participation as either honest or malicious can be modified to test the protocol’s

120

Simulated Byzantine Fault Tolerant Consensus Algorithms For Normalised
Evaluation

resilience. Then the consensus module forwards the message via the network module to
the attacker Module and, finally, the controller. The simulation can deploy network mod-
els of Synchronous, partially synchronous, and Asynchronous networks accompanied by
attacks of network delay, dropping, and inserting new messages. They simulate the pro-
tocols of ADD+ BA [191], Algorand [192], Async BA [193], PBFT [73], HotStuff [83] and
LibraBFT [84]. They analyze that these BFT protocols suffer from view synchronization
and network stability issues when the latency is high. The above-discussed selected state

Figure 4.7: BFT Simulator Tool Infrastructure [190]

of works presents the following general observations from the perspective of reusability to
test consensus algorithms:

1. Simulations are coupled to a framework like SimPy or NS3 with artificial estimated
delays, which can present a bias that varies drastically compared to a blockchain
binary.

2. Works discussed above lack modularity, open-source availability, and documentation
necessary to test new consensus algorithms.

3. Network, cryptographic, and node layers are abstracted to perform predefined func-
tions with no implementation to test their performance with real message payload.

4. The control of network conditions in the simulator for capturing asynchronous, par-
tially synchronous, and synchronous networks with varying latency is not available.

5. Ability to simulate different types of adversaries in a BFT setting is not followed in
the blockchain-based simulator, which might help us validate the resilience of any
algorithm.

These challenges inspire us to develop our simulator to test the consensus algorithm with a
controlled, homogeneous implementation similar to a real-time binary, avoiding the above-
mentioned issues.

4.1.3 Simulator Methodology
Simulation of a blockchain should start from the communication layer enabling the actors
or nodes to pass and receive messages between them in a peer-to-peer network. The shared

121

Chapter 4

messages must be cryptographically modified, ensuring security and privacy through en-
cryption and hashing techniques. Themessages herein, called transactions, are then stocked
in a data structure resembling a queue, a temporary buffer. The transactions are then packed
into a block structure, including the cryptographic digest, which is then proposed and dis-
tributed by a node or participant to other peers. The next step is the consensus process
on the block message, which can be of different types like Practical Byzantine Fault Toler-
ance, Clique, Istanbul Byzantine Fault Tolerance, or Quorum Byzantine Fault Tolerance as
explained in earlier Chapter 2. Finally, after the consensus process, the finalized block is
stored in a chain of blocks structure where the finalized block is linked with the hash of the
previous finalized block.

4.1.3.1 Design Goals

In line with the above skeletal explanation, we outline certain design goals to be followed
in a distributed system simulator similar to SimGrid Design Goals [194] like reproducibility
to re-execute the simulation, ensuring the same outcome, speed ensuring a fast simulation,
versatility to simulate any distributed systems and scalability to deal with large simula-
tions. We extend these design goals in our blockchain simulator construction by setting
the following properties to be imbibed in our proposal.

1. Modularity: Simulator should delineate the different components, each having a
separate logic like networking, cryptographic, transaction production, consensus de-
cision layer, blockchain ledger storage, and node account maintenance. Our orga-
nization of the simulator into separate packages based on logic differentiation will
achieve this property.

2. Don’t Repeat Yourself (DRY): This software design principle will be kept in mind
to avoid any repetition of configuration or code and make abstractions as much as
possible to get a generic functional code with minimal or no duplication.

3. Separation of Concern: As the Turing Award computer scientist Edsger Dijkstra
quotes "It is what I sometimes have called "the separation of concerns," which, even if
not perfectly possible, is yet the only available technique for effective ordering of one’s
thoughts, that I know of".
This software development principle is a logical successor of the previous DRY prin-
ciple, which will be used for our simulator. Here the division of the software is into
separate logic modules and further into Classes, Interface, and Abstract Classes to en-
able polymorphism. It avoids duplicity and is essential for maintaining the coherence
and reusability of the deliverable code.

4. Extensibility: Architecture should allow other modules to be added to the existing
ones to add more logic. Each package or module we build will be loosely coupled
with abstractions avoiding concrete implementations, allowing future extension of
classes either by inheritance.

5. Replicability: Simulation should be platform agnostic and easily archived to run
as an executable or application server, generating results that should be the same at
each run for a given configuration of infrastructure and simulation. The final simu-
lation code base will be containerized to be run on any cloud infrastructure with a
predefined set of configurations allowing the easy re-run of the simulation test.

122

Simulated Byzantine Fault Tolerant Consensus Algorithms For Normalised
Evaluation

6. Elasticity: Simulation should allow for an extensible workload regarding node par-
ticipation, network topology variance, and message payload size for varied perfor-
mance testing, including scalability. The container running on an application server
will be cloned in as many pods or deployments to scale the test. It is ensured as we
focus on testing the algorithm performance with a variable number of node partici-
pation, message payload, or network topology change.

Figure 4.8: High-Level Architecture of Simulator

4.1.3.2 Design Principles

Following the above properties, we conceptualize the simulator architecture as represented
in Figure 4.8. It is organized as packageswith the JAVAnaming convention of org.renaultleat.*
considering this thesis project is a partnership between the laboratory LEAT and Renault.
The overall structure of the architecture is as follows:

1. org.renaultleat.api: This Application Programming Interface (API) package encap-
sulates all the interactions with the simulated blockchain node enabling it to set or
retrieve its configuration, start the simulation, or retrieve the results.

2. org.renaultleat.node: It is used to maintain the account of the participating node,
including its cryptographic keys, sign the data, and create the payload of a signed
transaction.

3. org.renaultleat.chain: The chain package is more like a storage data-structure part
organized into a blockchain data structure, transaction queuing, block queuing before
finalization, and block payload creation.

4. org.renaultleat.crypto: A cryptographic package is more like a utility that deals
with cryptographic operations of encryption, decryption, hashing, signature cre-
ation, and verification. It includes the node authorization checks to participate as
a consensus validator or not.

5. org.renaultleat.network: This package handles the transmission and reception of
any message payload between the node participants. It is established by peer-to-peer
networking with the flexible topology change of either fully connected mesh, lattice,
or Watts-Strogatz.

123

Chapter 4

6. org.renaultleat.consensus: The consensus package layer is split across storage for
synchronization in a multi-threaded environment, temporary message storage, mes-
sage payload protocol, and the consensus algorithm logic handler.

7. org.renaultleat.properties: Configuration of the nodes, network, simulation, and
performance workload are defined through this package.

The idea behind this concept is the clear modular division of the simulator with separate
blockchain working parts to work in harmony. It enables us to plug and test the core of the
simulation, which is the consensus layer ensuring a homogeneous testing condition for all
the algorithms. In the following explanation, we will divulge more about each component
in each package and its organization.

4.1.3.2.1 Application Programming Interface Package: This package component is
illustrated in Appendix Chapter 8 through Figure 8.10 and Figure 8.11, which highlights the
pivot from where we can derive information related to the blockchain simulation. The total
validator’s participation, node behavior type asmalicious or benign, transactions processed,
blockchain storage, and rate of transaction confirmed or processed are specified here. The
consensus properties like round change timeout, sending of messages to Peers, and the
switch to start and stop the simulation are managed in this package.

4.1.3.2.2 Model ViewController (MVC) Pattern: This package follows theMVC pat-
tern comprising of Simulator_controller, Simulator_service and Simulator_result classes.
This is an architectural pattern where the control for deriving information through stan-
dard Hypertext Transfer Protocol (HTTP) GET, POST, and PUT methods is delegated from
the Simulator_controller to Simulator_service. This service, in turn, derives or stores the
information with the HashMap data structure storage of Simulator_result class and from
other storage structures of packages such as chain and node. The delegation is not limited
to the configuration of simulation data but other functionalities such as sending messages
through the network package, starting the simulation, or initializing cryptographic keys.

4.1.3.2.3 Chain Package: This package is more of a storage entity comprising the four
classes represented in Appendix Chapter 8 through Figure 8.12 and Figure 8.13 whose ex-
planation is as follows:

1. Transaction Pool: This contains the ArrayList data structure for storing the verified
transactions after the node participants receive the transaction from other peers be-
fore converting them to blocks. This class handles transaction validation, maintaining
the block size, evading duplicate transactions, and round progression or block-height
increment.

2. Block: The structure of a fundamental block data is defined here with the essential
details of block number, timestamp, consensus messages relating to the block, the
signature, transaction details, and validation rules.

3. Block Pool: Similar to the transaction pool, this stores the proposed block in a queue
before being finalized by consensus protocol. It is more like an intermediate class be-
fore confirming the blocks in the blockchain principal storage. The logic for avoiding

124

Simulated Byzantine Fault Tolerant Consensus Algorithms For Normalised
Evaluation

duplicates, invalid blocks, and periodic cleaning of the finalized blocks for memory
management is inserted here.

4. Blockchain: This is the principal data structure that maintains the ’chain of blocks’
in a CopyOnWriteArraylist. It is a thread-safe synchronized ArrayList used in our
consensus layer to be multi-threaded for optimized transaction and block processing.
The operations of adding a new finalized block, block validation, and storage for
identity management of the validator or non-validator participants are defined here.

4.1.3.2.4 Consensus Package: This core package comprises classes as illustrated in
Appendix Chapter 8 through Figure 8.14 and Figure 8.15 that define the consensus message
protocol, message pool construction, and consensus message handler whose explanation is
as follows:

1. Message: This defines the consensus message payload structure with consensus
round properties of the actual block height, block hash, message sender’s public key,
message sender’s signature, and message type. For example, PRE-PREPARE, PRE-
PARE, and COMMIT messages for PBFT of the current round are subject to consen-
sus. Round here means the latest height or position of the blockchain for which a
block needs consensus to be enchained on the existing blockchain structure.

2. BFTMessagePool: Being similar to the classes of TransactionPool and BlockPool, it
acts as the storage with a structure of HashMap embedded with block hash as key
and CopyOnWriteArraylist as value to store the different consensus messages. This
representation can be extended to any consensus message storage and manipulated.
The operations built into this class are adding, removing, getting the size of messages
accumulated, and clearing messages for memory management.

3. BFTMessageHandler: This is more like a sentry with the principal method or func-
tion handleMessage(), which looks at the consensus message being received. De-
pending on the algorithm, it ensures that the messages are sorted, received, and pro-
ceeding to the next round if consensus is completed. The check of themessage thresh-
old for each consensus phase is applied, and relaying the unique consensus messages
to the peers. Since this is the core class of the consensus algorithm, we followed a
more abstract or generic design to accommodate any BFT family algorithm by fol-
lowing the Strategy Design Pattern, which will be discussed next.

4.1.3.2.5 Strategy Design Pattern: This behavioral design pattern is oriented
towards designing a family of algorithms and plugging one instead of the other mak-
ing it interchangeable. This is represented in Figure 4.9, where the Simulator Con-
troller Class is the deciding place to replace one algorithm with another. All the BFT
family algorithms we have implemented are concretized versions of the principal in-
terface BFTMessageHandler. The concretized versions of this interface implemented
as PBFTMessageHandler for PBFT Algorithm [73], CliqueMessageHandler for Clique
Algorithm, IBFTMessageHandler for IBFT Algorithm, and QBFTMessageHandler for
QBFT Algorithm [121]. Each implementation overrides or implements the method
signature HandleMessage() where the logic for each of them is defined.

125

Chapter 4

Figure 4.9: Simulator Consensus Module Strategy Design Pattern

4. Synchronizer: Since BFTMessageHandler ismulti-threaded, synchronized data struc-
tures are utilized to maintain the thread safety and concurrent operation of the con-
sensus phases, which is ensured by a boolean for completion.

4.1.3.2.6 CryptographyPackage: This utility package is organized intoNodeKeyGen-
erator and CryptoUtil classes. It comprises cryptographic functions that generate Rivest-
Shamir-Adleman (RSA) keys, Secure Hashing Algorithm (SHA-256) bits hashing, encryp-
tion, decryption, hash verification, and generation of signatures. This package is utilized
while sending a transaction, block, or consensus operation during the message’s genera-
tion, transmission, validation, and reception.

4.1.3.2.7 Network Package: This module establishes all the network functions that
bind the entire Peer-to-Peer network. All the nodes are connected by the socket communication-
based multi-threaded channel to pass and receive messages simultaneously. The module is
split into three components:

1. NetworkTopologyGenerator: This class generates the participating nodes’ net-
work topology or routing details. The topology generated is a triplet <0,1, true>,
which signifies that node 0will be connected to node 1 depending on the next boolean,
connected if true or ignored. The following part will explain the different topologies
we have limited to our simulation.

4.1.3.2.8 DynamicNetworkTopology: Different DynamicNetwork Topologies
need to be tested in any simulation ranging from an optimistic to a realistic scenario.
The node topologies we generate for the test are:

(a) Fully Connected Mesh Topology: This is an ideal network but expensive in

126

Simulated Byzantine Fault Tolerant Consensus Algorithms For Normalised
Evaluation

terms of communication as represented in Appendix Chapter 8 through Figure
8.18. Each node is inter-connected, directly opening a socket communication,
one for transmission and the other for reception. This ideal scenario helps us
test a network’s upper bound or max performance and the consensus algorithm.
We focus on consortium networks with limited participation, so this topology
choice will be close to our envisaged production network.

(b) Ring Lattice Topology: This is a limited connection model as represented in
Appendix Chapter 8 through Figure 8.19. It has a high clustering coefficient and
path length if we consider a big network but less than a fully connected mesh
network. Clustering means that nodes with more connections will be more fea-
sible to connect further while other nodes are more likely to be deserted. The
path length is defined as the average distance between any two nodes in the
network.

(c) Watts Strogatz Topology: This topology can be termed a model with high
clustering and short average path length. As explained earlier, it is built on
top of a lattice network where the node connection is rewired randomly with
a probability. In our representation as in Appendix Chapter 8 through Figure:
8.20, we have a degree of 4 with a rewiring probability of 0.05, ranging from 0
signifying regular to 1 for complete randomness. This topology is not a realistic
model but a generative model of a social network where nodes are connected
randomly with distant nodes, making it a small world network reducing the
path length.

2. P2PServer: (P2P: Peer-to-Peer) This class is a networking class with logic embed-
ded in NodeCommunicator and NodeCommunicatorThread classes to open socket
communication, sends messages via the opened socket, and finally listens to the in-
coming socket communication messages. This class then passes the information to
other logical instances of Blockchain storage, Transaction Pool, Block Pool, BFTMes-
sage Pool, and QueueResource, which will be discussed next. Multiple Channels of
NodeCommunicator and NodeCommunicatorThread are opened parallel to increase
the bandwidth of message communication transmitted among the peers.

3. QueueResource: As our simulator is multithreaded, multiple threads will likely read
the same message in parallel if it is broadcasted directly and received by another lis-
tening thread. To overcome this problem, this resource class stocks all the messages
from the P2P server class socket connection in a Blocking Queue data structure, en-
suring thread safety operation. All operations are atomic and utilize an internal lock.

All the other logic threads of consensus, transaction pooling, and block pooling look
at this queue for new messages. It will be allowed to pick a unique message despite
multiple threads reading on the same queue. The queue resources created are separate
for each concern, like one for general messages, one for consensus, and the other for
transaction queues. Like NodeCommunicator and NodeCommunicatorThread hav-
ing multiple channels, we maintain the same resource queues in this module.

127

Chapter 4

4.1.3.2.9 NodePackage: This package is for Node Identification and participation com-
posed into four classes as represented in Appendix Chapter 8 through Figure:8.21. The
explanation of each is as follows:

1. Wallet: As signified by its nomenclature, it holds a node’s cryptographic keys for
signing a message, a unique node identifier, an instance of node property, and the
function of creating a signed transaction for publishing in the network.

2. Validator: This class holds the verification logic if a message from a validator or
block proposer is eligible to participate in consensus.

3. NonValidator: This class holds the verification logic if a message from a validator
or block proposer is ineligible to participate in consensus but participates as a trans-
action issuer in the network.

4. Transaction: This is more like a factory class for transactions where the transaction
payload is prepared by a node starting with a transaction identifier, message hash,
timestamp, message signature, and node identifier.

4.1.3.2.10 Property Package: This module is used to set the behavior of a Node and
the Blockchain network in general as illustrated in Appendix Chapter 8 through Figure 8.22.
The node property of being a validator or not, socket communication port, the block size
in terms of the number of transactions, network type, consensus message majority thresh-
old, and peer information are all stored in this static class for a single one-time property
definition here.

4.1.4 Technology Decisions

In the earlier section, we explained the different classes’ architectural decisions, module
design, and organization, giving us a comprehensive overview of the simulator. In this
section, we present the technology stack utilized in our simulator, the user interface of our
simulator, the infrastructure we exploit for our test bed, and the deployment process.

4.1.4.1 Simulator

The technologies used in the simulator are represented in Table 4.2, where an object-
oriented language, JAVA, is chosen to suit our abstraction, polymorphism, and strategy
design pattern. To build the REST API layer, we build the controller using the Jersey JAX-
RS library. We utilize the default available library from the JAVA security package for se-
curity aspects and the Google Guava library for hashing functions. The entire source code
is built using the Maven dependency management tool, generating a Java Archive. The
Archive can be run on any Java Runtime Engine (JRE)-based environment. During the sim-
ulator development, the IDE used was visual studio and Git for the source code repository
management.

128

Simulated Byzantine Fault Tolerant Consensus Algorithms For Normalised
Evaluation

Module Technology/Platform/Library
Version

Core Development Oracle Java Development Kit 8
Application Programming Inter-
face

Representational State Transfer
(REST) Jersey JAX-RS 2.19

Encryption/Decryption Java Security 8
Hashing Google Guava 20.0
Executable Java Archive on Apache Tomcat 8
Build Tool Maven 3.5
Integrated Development Envi-
ronment

Visual Studio Code 1.74

Source Code Management BitBucket / Git 2.3

Table 4.2: Simulator Technology Stack

4.1.4.2 Simulator-User-Interface

The simulation is rendered with a modest UI developed to visualize the test’s key vitals at
first sight. Its snapshot for 5 nodes cloud deployed configuration is represented in Figure
4.10 and Figure 4.11. It is built using Javascript libraries which interact with the API layer
to get the desired properties or simulation results as a Javascript Object Notation (JSON)
data and render it on the User Interface (UI). The technology used in the Simulator UI is
represented in Table 4.3.

Module Technology/Library
Version

Core Page Javascript ES2022
Visualization Chart.js 2.19
Cascading Style Sheets Bootstrap 3.3
RunTime Environment Node.js 16
Integrated Development Envi-
ronment

Visual Studio Code 1.74

Table 4.3: Simulator UI Technology Stack

4.1.4.3 Infrastructure

All our simulator tests were performed on the TAS Cloud, whose data centers are in Sophia
Antipolis, France. As a partner of the Smart IoT for Mobility (SIM) project, where this
thesis is supported, TAS offers Infrastructure as a Service (IaaS). The resource available for
the simulator test is represented in the following Table 4.4. The dashboard of the Rancher
management tool is illustrated in Figure 4.12.

129

Chapter 4

Figure 4.10: Simulator Explorer Dashboard User Interface Snapshot 1

Figure 4.11: Simulator Explorer Dashboard User Interface Snapshot 2

4.1.4.4 Simulator Deployment

The test deployment workflow of the simulator on the infrastructure is represented in Fig-
ure 4.13. The technology used for deployment is listed in Table 4.5. All this workflow is
automated by shell scripts, starting with the building of a simulator into a JAVA archive.
The archive and dependencies are ported to an Apache Tomcat Docker Container Image,
which is pushed to DockerHub. Then the Kubernetes YAML script is generated to deploy
pods containing the earlier pushed docker containers. Then the launch script for the test
starting the transmission of the transactions is launched from the test orchestratormachine.

130

Simulated Byzantine Fault Tolerant Consensus Algorithms For Normalised
Evaluation

Figure 4.12: TAS Cloud Cluster Dashboard

Configuration Value

Total Worker Nodes 3
Worker Node OS Linux Ubuntu 20.4
Memory per Worker Node 94 GB
CPU per Worker Node 64 Cores
Pods per Worker Node 110
Container Orchestration Layer Kubernetes 1.24
Container Orchestration Man-
agement Layer

Rancher 2.5.6

Table 4.4: TAS Cloud IaaS Configuration

Deploy Scripts Technology/Platform

Binary Java Archive
Containerization Docker
Container Repository Docker Hub
Deployment Scripts Kubernetes YAML

Table 4.5: Simulator Deployment Technology Stack

The simulator user interface, as well as the Rancher dashboard, is verified to assure us of
the health and statistics of the network, including infrastructure usage at the time of the
test.

131

Chapter 4

Figure 4.13: Simulator Cloud Test Deployment Workflow

4.1.5 Test Bed Architecture

The Cloud architecture of the simulator test is illustrated in Figure 4.14, which consists of
a sample configuration for 5 simulator nodes. The master orchestrator node represented
here signifies the Linux machine inside the cloud network, which can be used to configure
the other different nodes along with their properties and network topology. It can be used
to launch the test for transaction transmission and retrieve the results as Javascript Object
Notation (JSON) data for analysis later using Rscripts.

Figure 4.14: Simulator Cloud Test-Bed Architecture

132

Simulated Byzantine Fault Tolerant Consensus Algorithms For Normalised
Evaluation

4.2 Simulator Validation
Having discussed the simulator exigence, design principle, architecture, technology stack,
and cloud testbed infrastructure, we proceed to validate the same by simulating the BFT
consensus algorithms of Clique, PBFT, IBFT, and QBFT. We then validate these results
against the real blockchain implementations of data certification and monetization results.

4.2.1 Choice of BFT Algorithm Study
We select certain algorithms to validate if our simulator behaves similarly or at least close
to the actual binary implementation, enabling us to study the BFT algorithms profoundly.
The following are the justifications for selecting Clique, IBFT, PBFT, and QBFT consensus
algorithms for our simulation validation.

1. All these algorithms belong to the BFT consensus family, which is well implemented
and maintained by prominent blockchain frameworks of Ethereum Geth, Hyper-
ledger Sawtooth [75], and Ethereum Besu.

2. All these sets of algorithms belong to the variant of Proof of Authority wherein a set
of well-identified limited participants is chosen to participate in the consensus and
create a private consortium network that interests us.

3. We don’t consider the AURA algorithm for our simulation, which is implemented as
a standalone consensus algorithm by Ethereum Parity or as a Hybrid format along
with GRANDPA [195] or BABE [196] finalization algorithm by Substrate Blockchain
Framework. The reason is that AURA consensus by itself has two pitfalls in either
standalone or hybrid as follows:

(a) In the work by Shi, Elaine [197], they analyze the algorithm mathematically
where it cannot tolerate up to 1/3 resilience parameters and suffers from con-
sistency issues in the case of forks. They point out that 1/3 adversary resilience
is tight when resolving forks of the same length, leading to consistency issues
instead of recommending a tolerance level between 1/6 and 3/8. They have dis-
closed this recommendation to the Parity Team as well.

(b) This work byDeAngelis, Stefano andAniello, Leonardo and Lombardi, Federico
andMargheri, Andrea and Sassone, V. [117] analyses the AURA consensus based
on the Consistency, Availability, and Partition (CAP) Tolerance Theorem. Any
distributed system satisfies at most two CAP properties, CA, CP, or AP. Since
AURA is based on epoch time for round progression and clock skews can affect
the node synchronization, it can lead to inconsistency. In the case of inconsis-
tency for blockchain leads to unresolved forks, and the transaction or blocks are
bound to be unfinalized at any time.

4.2.2 Simulation Test Methodology
As explained in the earlier section 4.1.4.4, we vary our network configuration concerning
the number of nodes for each consensus algorithm to test its performance and scalabil-
ity. We maintain an optimistic, Fully Connected Mesh Network Topology scenario with

133

Chapter 4

a block size containing 2000 transactions across all the tests. The simulation starts with
firing the transactions from each multi-thread node and then forwarding them to the con-
sensus layer for finalization into blocks constructed on the blockchain. We measure the
performance in terms of transaction per second (TPS), where we calculate the time lapse
between the launch of the transaction and its finalization onto a blockchain divided by
the total finalized transactions. In the next section, we discuss the simulation results for
each algorithm. Code Implementation of the java blockchain simulator for Clique, IBFT,
PBFT, and QBFT, along with Kubernetes cloud deployment files, transaction clients, docker
configuration files, simulation result visualizer, and test results are released publicly in the
GitHub repository: https://github.com/scyrilnaves/these-blockchainconsensussimulator

4.2.3 Discussion on Results

Figure 4.15: Clique Consensus Algorithm Simulation Validation

The simulation results of the consensus algorithms Clique, PBFT, IBFT, and QBFT are repre-
sented in Figures 4.15, 4.16, 4.19 and 4.20. The results of implementing different consensus
algorithms are re-visualized and compared as discussed in Chapter 3.

In the case of the Clique Algorithm, the simulation results and the actual implementation
results from Geth Binary are represented in Figure 4.15. It shows a decreasing trend in
transaction throughput as the number of node participants increases. The scalability prob-
lem is attributed to communication cost but in the case of Clique, it is less compared to
other consensus algorithms discussed here. Instead in this consensus protocol, it is just
the propagation of the proposed block to the other node participants. The performance of
the actual Geth implementation is less drastic than the simulation’s gradual drop because
there is an additional bottleneck problem at the level of Ethereum Virtual Machine, which

134

https://github.com/scyrilnaves/these-blockchainconsensussimulator

Simulated Byzantine Fault Tolerant Consensus Algorithms For Normalised
Evaluation

Figure 4.16: PBFT Consensus Algorithm Simulation Validation

is already discussed in Chapter 3. This limitation prevents the actual Geth implementa-
tion from having a higher transaction rate and shows minimal change with the scalability
factor. In terms of the real transaction rate, the difference between the simulation and the
actual is due to transaction type being EVM smart contracts, Go implementation, encoding
methodology, data type, encryption technique, and other factors discussed earlier in Table
4.1.

Next to look closer is the PBFT algorithm results as in Figure 4.16, where there is a huge dif-
ference in the actual Hyperledger Sawtooth versus simulation transaction rate and a drop
in scalability. The vast difference in transaction performance is due to the Hyperledger
Sawtooth implementation having a collective drawback of choosing Python, which is an
interpreter language, docker containerization of the binary, and intra-communication bot-
tleneck between the REST API module, consensus engine, and transaction processing. The
algorithm, in general, has a steep drop attributed to its costly communication complexity
of O(N2) and O(N4) in normal and view change cases. To cross-verify our simulation result
due to the high range of performance difference, we study an external work on PBFT con-
sensus by Tang, Song and Wang, Zhiqiang and Jiang, Jian and Ge, Suli and Tan, GaiFang
and Wang, Yong and Zhong, Meiling and Cheng, Tong [198, 199].

In this work, [198], the authors improvise the version of the classical PBFT [73] algorithm
by introducing a trust equity scoring mechanism between the nodes to increase the per-
formance safely and efficiently. Based on this score, they adjust the list of consensus nodes
that can or cannot participate in block finalization. By increasing the number of nodes,
they compare the performance and scalability between the existing and improvised as il-
lustrated in Figure 4.17. These results corroborate with our simulation results as repre-
sented in Figure 4.16 but differentiate directly from the actual Hyperledger Sawtooth re-

135

Chapter 4

Figure 4.17: Improvised PBFT & Classical PBFT Algorithm Simulation Performance [198]

sults, which validate our argument of programming language choice, binary development,
and containerization problem of Sawtooth.

Figure 4.18: Grouped PBFT & Classical PBFT Algorithm Simulation Performance
of Wang, Yong and Zhong, Meiling and Cheng, Tong in [199]

In their article [199], Wang, Yong and Zhong, Meiling and Cheng, Tong have proposed a

136

Simulated Byzantine Fault Tolerant Consensus Algorithms For Normalised
Evaluation

Grouped PBFT algorithm (GPBFT) in which the node’s trust degree is evaluated based on an
Eigen Trust Model. The trust degree of nodes is used as the basis for the election of nodes
divided into several groups to form a consensus opinion. The group formation reduces the
communication overhead, leading to better throughput as represented in Figure 4.18. On
the other hand, the results presented for the classical PBFT algorithm represent a scalability
drop similar to our obtained simulation results in Figure 4.16. These two comparisons of
our simulation with the works of Tang, Song and Wang, Zhiqiang and Jiang, Jian and Ge,
Suli and Tan, GaiFang, Wang, Yong and Zhong, Meiling and Cheng, Tong [198, 199] validate
our simulation procedure behavior.

Figure 4.19: IBFT Consensus Algorithm Simulation Validation

The next validation is the Istanbul Byzantine Fault Tolerance Algorithm as represented in
Figure 4.19. The Hyperledger Besu Binary, which implements IBFT consensus, has a hash-
ing bottleneck, already discussed extensively in Chapter 3. Due to this identified issue, the
Besu implementation performance gradually drops between 5 and 10 nodes, aggravating
further with more nodes and then settling with a horizontal plot. The simulation has a
drop in performance with increasing nodes which is explained by the increased consen-
sus phases of Prepare, Commit, and Round Change. As the phases are reduced compared to
PBFT, it introduces the problem of forks where multiple blocks can be proposed at the same
block height, which is solved by its block-locking mechanism. These factors slow the per-
formance, and the augmenting communication complexity with increased peers explains
this observed behaviour.

Similar to IBFT, the following analysis on QBFT [121] is built on the same Hyperledger
Besu code base and inherits the same hashing problem discussed earlier. The performance
results of the simulation and actual as represented in Figure 4.20 show a better perfor-
mance algorithmic-wise as it is an improvement over IBFT. It has a lesser communication

137

Chapter 4

Figure 4.20: QBFT Consensus Algorithm Simulation Validation

phase with Prepare, Commit, and a scheduled timer-based round change. The implemen-
tation performs better than IBFT and has a lower scalability drop but suffers from the same
plateaued throughput effect discussed earlier. The simulation also shows a decline with
increasing nodes, but QBFT simulation has a higher performance and scalability tolerance
than IBFT, similar to the actual. The higher throughout observed compared to Besu is due
to the homogeneous streamlining of simulator decisions avoiding bottlenecks of binary
implementation or hashing functions.

All the BFT algorithms discussed earlier are simulated and verified with the actual imple-
mentation. It shows a similar and valid performance drop in scalability and consistency
due to the following factors by utilizing a homogeneous test bed:

1. Communication Complexity: BFT algorithms of PBFT, IBFT, QBFT, except for
Clique, always operate in phases (like Pre-Prepare, Prepare, Commit, and Round
Change) and suffer from communication problems, augmentedwith increasing nodes.
However, even proposed consensus improvisations like reducing the phases can lead
to consistency and liveness issues.

2. Fork Issues: On the other hand, the Clique algorithm has a single phase of block
proposal that alleviates the communication problem but introduces fork consistency
issues, leading to deadlock or liveness problems in the network.

3. ViewChangeComplexity: All the algorithms except Clique have nodes that progress
through views or state transitions. However due to asynchronicity or failure of the
network, each node or set of nodes can have a different view or state of the network.
If there is no synchronicity in terms of view, then it leads to varying perceptions of
the network or blockchain, leading to forks and entailing deadlock.

138

Simulated Byzantine Fault Tolerant Consensus Algorithms For Normalised
Evaluation

4. Strong Ideal Case Assumption: Degraded performance, even in case of benign
nodes or perfect synchronous network assumption, can further deteriorate the con-
sensus algorithm in case of malicious nodes or network latency as well as failures
which needs to be pre-emptively resilient.

4.3 Conclusion
In this chapter, we have introduced the necessity of building a simulator that arises due to
homogenous blockchain binaries available in the community. We then discuss the related
state of the art on blockchain simulators and their shortcomings in reusing or adapting them
for our needs. Following this, we ideate our simulator design principles, architecture, and
design pattern for conceiving our DLT simulator to deploy on any cloud-agnostic platform.
We then test the simulator against the real blockchain binaries of Hyperledger Sawtooth,
Ethereum Geth, and Besu to validate our simulator. This verification enables us to embark
on the next step of developing our own consensus. The result discussions on the simulator
shed light on the actual core problem we encounter in this family of BFT algorithms with
the suitability for consortium networks.

The analysis motivate us to design our consensus algorithm to address the issues discussed
and be resilient to attacks or benign failures. The various literature around the scope of
improvement in BFT consensus algorithms deliberate the ideas of reducing communica-
tion bottleneck, pipelining across nodes [85] or better view synchronization [190]. A node
scoring mechanism [198], Hardware improvements of utilizing Trusted Execution Technol-
ogy [200], or even adopting SmartNICs (Network Interface Controller) and deploying the
protocol on FPGA (Field-Programmable Gate Array) [201] inspires us to approach these
shortcomings. In the next chapter, we solve the BFT consensus problems from a consor-
tium blockchain perspective and try to improve the algorithm’s performance, scalability,
reliability, and resilience.

139

Chapter 4

140

Chapter 5

CUBA:AnEvolutionaryConsortiumDis-
tributed Ledger ByzantineConsensusAl-
gorithm

The said truth is that it is the greatest
happiness of the greatest number that is
the measure of right and wrong

– Jeremy Bentham

141

Chapter 5

5.1 Problem Statement . 143
5.1.1 Network Definition . 143
5.1.2 Information Broadcast . 143
5.1.3 Participant Behaviour: . 144
5.1.4 Consensus Finalisation . 144
5.1.5 Quality of Consensus Protocol: 145

5.2 Cross-Section of Byzantine Fault Tolerance Consensus Problems
and Approaches . 145

5.3 Contesting Utilitarian Byzantine Agreement (CUBA) 151
5.3.1 Philosophy . 151

5.3.1.1 Democracy Conundrum 152
5.3.1.2 Need for Utilitarianism 153
5.3.1.3 Panopticon Complement 154
5.3.1.4 Sisyphus Quotient 156
5.3.1.5 Swarm Instinct 158

5.3.2 CUBA Consensus Algorithm 160
5.3.2.1 System Model 160
5.3.2.2 Consensus Overview 162
5.3.2.3 Detailed Protocol 163

5.4 Conclusion . 181

In the previous Chapter 4, we identify and list the issues in the set of BFT algorithms tested.
Now we would like to discuss our problem statement and the various approaches we can
follow to solve the problems of scalability, performance, failure, and security resistance
in the BFT protocols. Then we look profoundly into these approaches and identify that
there are still some challenges to be answered comprehensively. These factors inspire us
to conceive our novel consensus algorithm CUBA. CUBA expands to Contesting Utilitarian
Byzantine Agreement which evaluates and valorizes the actions as metrics of the gami-
fied participants in the network. The obtained metrics are used as feedback to reorganize
the network either for faster performance of the network consensus or to be resilient to
the malicious activity noticed. This consensus protocol is designed to both sustain or in-
crease the Utilitarian happiness in a Byzantine environment of identified participants for
the "Liveness, Safety, Security, Performance and Scalability" of the network.

142

CUBA: An Evolutionary Consortium Distributed Ledger Byzantine Consensus
Algorithm

5.1 Problem Statement
Here, we define our problem statement concerning our Byzantine Fault Tolerant Consensus
notion. We set the conditions and interests under which the network participants would
behave. In addition to the Byzantine Agreement among the peers, which is the expected
convergence in the network for data or transaction finalization, we expect certain other
challenges to be resolved as part of it. We define each of them in the following subsections.

5.1.1 Network Definition

The distributed or Peer-to-Peer network which we assume is a consortium blockchain net-
work. This type of network is chosen because private enterprises like Renault, Mercedes-
Benz, Porsche, IBM, or other Original Equipment Manufacturers prefer consortium net-
works to balance transparency and privacy while creating inter-organizational synergies.
This, in turn, makes the network to be formed of a limited count and well-identified par-
ticipants with an established reputation.

We consider K-designated Node participants in the consortium network identified by N0
.... NK-1. The participants send and receive transactions that need a common agreement on
the transaction order, validity, and immutability. The transactions agreed upon are, in turn,
to be stored as a block structure. We consider a Transaction represented by T and a Block
B of size M containing a set of transactions {T0 ... TM-1}. The Blocks are enchained as a
blockchain structure of height S represented as { B0, B1{H(B0)} ... BS{H(BS-1)} }. H is the hash
function digest of the block data, which is usually the previous block’s hash to be included
in the current block.

Next is the network assumption concerning synchrony. We consider the model by Dwork,
Cynthia and Lynch, Nancy and Stockmeyer, Larry [72], the eventual synchrony model. It
is an asynchronous network where the messages may be delayed but eventually turn syn-
chronous, delivering them in a Global Stabilisation Time δ (GST). GST is an unknown but
finite time interval bound. This model respects the safety and liveness properties as the net-
work can eventually stabilize within a limited number of byzantine nodes. The downside
is that during a sustained asynchronous period, the protocol may default the liveness prop-
erty known as FLP Impossibility by Fischer, Michael J. and Lynch, Nancy A. and Paterson,
Michael S. [26] in case of a node failure. But we also welcome other extraneous compo-
nents, like fixed communication timeout for failure detection or randomized election, to
overcome this impossibility.

5.1.2 Information Broadcast

The nodes broadcast the transaction, including signature and other application data, through
a reliable channel that tries to rebroadcast the transactions unless delivered successfully.
The nodes need to follow the Atomic broadcast protocol, which satisfies the property of
Atomicity, Total Order, and Termination [202], which was defined for a physical time U.
We extend this protocol to the consensus mechanism by the following properties [203, 204,
205] of all eventually delivering within a GST δ :

143

Chapter 5

1. Validity: If an honest node broadcasts a Transaction Ti then it is eventually delivered.
2. Agreement: If an honest node broadcasts a Transaction Ti then all the nodes deliver

the transaction.
3. Total Order: If two honest nodes Ni and Nj deliver Transactions Ta and Tb, then

Ni delivers the transaction Ta before Tb if and only if Nj delivers the transaction Ta
before Tb.

4. Integrity: A honest node Ni delivers the transaction Ta at most once if it was previ-
ously broadcast by another Node Nj.

5. Resilience: If a transaction Ta is broadcasted to honest nodes, it is eventually re-
broadcasted by all other honest nodes except the malicious or faulty nodes. Also, It
implies that an honest node or network of honest participants should be able to iden-
tify the malicious or faulty nodes and either suspend their action or remove them
from the network based on consensus. This retrospective adaptation or reorganiza-
tion of the network is based on benign or non-benign failures to render the network
consensus performance, consistency, partition tolerance, and liveness as usual.

5.1.3 Participant Behaviour:

Even though the consortium blockchain network is an ideal case of benign reputed partic-
ipants with no malicious intent, but its quite a strong assumption. As noted by Ariely, Dan
and Davis, Michael, Buterin, Vitalik [206, 207] who are behavioral economists stating that
even within well-reputed organizations, dishonesty is common. We can notice the exam-
ples of Volkswagen, Meta, and Vodoo, which attracted several million dollars in sanctions
due to human error. They argue that human psychology justifies cheating actions if its
minute and not in an aggrandized form. This attitude is more of a starting point for the
bigger ones to arrive, ransacking the whole organization, which might be true in our case
despite reputed consortium members. They state that "everyone cheats a little from time
to time. But most major betrayals within organizations – from accounting fraud to doping
in sports – start with a first step that crosses the line" [207].

So our consortium network for a byzantine agreement needs proper reinforcement through
economic or other means to handle this adverse behavior. On the other hand, the obvious
benign network failures and delays are considered in our system or problem statement
definition. If there are f dishonest or faulty nodes in a network of N nodes, the consensus
protocol must be tolerant for the condition f≤ (N − 1)/3.

5.1.4 Consensus Finalisation

If an honest node or participant NA adds a block Bm containing a set of valid transactions
{T1 . . . TK} after approval from other participants. The block is placed at a particular index
M in the blockchain then no other node NB can add another block Bn to the same index at
any point of time [208] even in the presence of forks subject to eventual resolution.

144

CUBA: An Evolutionary Consortium Distributed Ledger Byzantine Consensus
Algorithm

5.1.5 Quality of Consensus Protocol:

In addition to the basic requirement of Consistency, Availability, and Partition Tolerance
in any distributed consensus protocol, we add other desirable properties similar to qual-
ity of service in physical networks. These are from the blockchain perspective [209] like
transaction finalization time, scalability, consensus decentralizationmeasure, and resilience
capacity of the protocol against impending malicious attacks.

Scalability in the blockchain is of two types: Vertical scaling and Horizontal scaling [210].
Vertical scaling involves augmenting the processing power of the overall chain by increas-
ing the computation power of individual nodes or participants. On the other hand, Hori-
zontal scalability magnifies the blockchain throughput by accommodating more nodes in
the network at the expense of communication and consensus bottleneck. In our evalua-
tion, we would measure the two aspects to improve individual node participation and, at
the same time, consider the openness to add more nodes in the private consortium network
for democracy and resilience.

And the last but not the least goal is the understandability of the protocol in similar terms
to RAFT Protocol [38], where we try to measure the algorithm’s simplicity in solving a
complex problem. The idea should be clear and compartmentalized for easier understanding
and verification of the protocol opening further intuitions.

5.2 Cross-Section of Byzantine Fault Tolerance Consen-
sus Problems and Approaches

This section discusses the methodologies or propositions to improve the Byzantine Fault
Tolerant consensus protocols’ scalability, performance, and resilience in line with the Con-
sistency, Availability, and Partition Tolerance Theorem. We further evaluate them to as-
certain whether they can be a probable solution to our problem statement discussed earlier
(in Section 5.1) or inspire us to continue. The probable solutions are posed as a suitability
question to understand and evaluate their relevance as below.

1. Can we reduce communication complexity?
This methodology aims to reduce the communication bottleneck through various
methodologies but introduces additional problems. Single Phase Protocol and Linear
Communication protocols like Zyzzyva [76] have a single phase of PRE-PREPARE
message from a primary. Then it expects the replicas to acknowledge the message. It
counts the protocol to work based on speculation that the replicas have no failures or
communication loss. But this assumption is strong and has liveness and consistency
issues as the network is always unpredictable. The work by [211] feature a BFT pro-
tocol with linear communication in the normal case and change to O(n2) [208] in the
case of network problems.

Similar work to Zyzzyva is SBFT [212], which follows a linear communication cost
in the normal mode. However, in the case of faults, it adopts a linear PBFT utiliz-
ing threshold signatures, achieving linear cost. However, these protocols are more
optimistic as normal case operations are ideal to consider and can suffer communi-

145

Chapter 5

cation overhead in fallback cases of view change necessitating leadership selection.
Also, the protocol of Clique and Aura [213] follow the same pattern of a single chosen
leader. It assumes the replicas or followers function without any issue but in reality,
is prone to chain fork problems or network deadlock if two leaders propose a block
at the same height.

2. Can we parallelize transaction processing through multiple chains or shard-
ing?
To achieve better scalability and throughput, the single blockchain is split into multi-
ple shards or chains [214]. Then in each shard, the node participants are split through
voting participation. BFT protocol is applied for unique or non-conflicting transac-
tions distributed in either shard through a four-phase protocol like PBFT. Then a
2-phase protocol is performed to merge the data across the shards. This approach is
not only limited to blockchains, but parallelized state replication execution [208, 215,
216] has already been attempted, which might be a leeway for us to take inspiration
from. It has better throughput, but the time to synchronize between the shards is
not instantaneous, and the finalization time is comparatively higher. Also, network
failure or delays can affect the consistency and availability of the protocol.

The assignment of small sets of nodes to a particular shard can affect the resiliency
as launching an attack in a small network occupied with a shard is easier. In the case
of Elastico [217, 218], the sharding technology is used to parallelize the consensus
network into smaller committees, each processing a disjoint set of transactions. It
performs an intra-committee consensus to agree on a single set of transactions. It
is a probabilistic consensus where each participant solves the Proof of Work hash
based on epoch randomness. A relay is established to synchronize the transactions
among the shards, which is reconfigured every epoch. However it suffers from the
small committee problem due to multiple shards as it can reduce fault tolerance to
1/4 participants rendering risk for liveness property.

3. Can we reduce the effective participants from the global set of participants
limiting the consensus communication?
In this methodology, as proposed in Algorand Blockchain [219] from a universal set
of validators in the network, a block proposer and an associated committee is chosen
at random. It is chosen using a verifiable random function based on the individual
economic stake as input. A similar approach is followed in Proteus Protocol [220]
by Jalalzai, Mohammad M. and Busch, Costas and Richard, Golden G., where a set
of committees is chosen randomly from the total validator set and is allowed to par-
ticipate in the consensus. This minimizes communication to a randomized set of
participants, ensuring higher throughput. But the protocol is based on the stake and
incentive mechanism, without which it can lead to centralization and liveness issues
[221, 222]. This economy-based protocol to select the proposer or committee will be
irrelevant in the case of non-stake networks.

4. Can we adopt a randomized BFT approach?
Protocols based on a randomized approach can be either through a randomized selec-
tion of transactions as in HoneyBadger BFT protocol [220] or randomized selection
of validator committee from a total set of validators [220] in the case of Proteus BFT.
These randomization protocols offer better performance and scalability for 100-200

146

CUBA: An Evolutionary Consortium Distributed Ledger Byzantine Consensus
Algorithm

nodes, but simultaneously, they question the efficiency and decentralization of the
randomization process.

A random generation system should respect fault tolerance, unbiasedness, reliability,
verifiability, unpredictability, and decentralization properties. A public centralized
random generation system called Randomness Beacon by NIST (National Institute of
Standards and Technology) exists. However, a decentralized system can be compro-
mised if it relies on a centralized actor. Also, the factor of randomness in the sense
of BFT Protocols cannot guarantee deterministic termination. It can only achieve a
termination with a high probability, like in the case of Ben-Or’s protocol; it achieves
consensus only with high probability termination in a crash failure model [217, 223].

5. Can we choose to run our consensus protocol on specialized hardware for
efficiency?
In the case of István, Zsolt and Sidler, David and Alonso, Gustavo and Vukolic, Marko
[224], they propose a consensus mechanism for maintaining a consistent and efficient
data center. They move the Zookeeper consensus at the network level to run on a
Field Programmable Gate Array (FPGA). They demonstrate the practical case of a
hardware consensus and a main-memory key-value data store on FPGAmicroservers
to perform better.

In the next by Poke, Marius and Hoefler, Torsten [225], we explore the idea of improv-
ing traditional Replicated State Machine (RSM) protocols using Remote Direct Mem-
ory Access (RDMA) Primitives. They evaluate this concept on a strongly consistent
key-value store and obtain a performance improvement along with log access man-
agement. We maintain the cloud-based infrastructure resources we had previously
simulated and experimented with in Chapter 4. We want a simplified architecture
and a symmetry between cost and efficiency, which might be disrupted as FPGA or
dedicated hardware can be quite monetarily demanding with scaling participants.

6. Can we choose a rotating leadership to improve faulty leader issues?
As discussed earlier in the case of PBFT type protocols [73, 76], the performance
already degrades due to communication complexity. Further, it deteriorates if a fault
is detected due to the leader’s failure. To resolve reliance on a designated primary
or leader and reacting a posteriori, the protocol by Veronese, Giuliana Santos and
Correia, Miguel and Bessani, Alysson Neves and Lung, Lau Cheuk [226] rotates or
spins the leader for each round. Faulty leaders are recorded and blacklisted to avoid
future obvious failures. In our analysis, the protocol is robust against attacks on the
leader or avoiding monopolistic tendencies of the single primary. However, choosing
a leader per round is quite heavy on message-passing, even in benign cases, and
impacts performance.

7. Can we inspire ourselves to follow leaderless BFT protocols?
Leader-based algorithms create a single point of failure, leading to invoking the view
change case, as we noticed in PBFT Leader-based Type algorithms. Also, the leader
acts as a co-ordinator communicating to all the nodes back and forth for an agree-
ment which is quite consuming in terms of communication and computation. In the
work of ezBFT [227] Arun, Balaji and Peluso, Sebastiano and Ravindran, Binoy, they
propose a leaderless protocol to minimize the client-side latency in WAN networks.

147

Chapter 5

There is no primary replica that orders the requests, and instead, all the participating
replicas can equally order any incoming message. Like PBFT-type protocols, they
propose two variants called fast path and slow path for optimistic case and failure
scenarios, respectively. This protocol forwards the request from a client to the clos-
est primary by latency which then broadcasts to its peers. Each primary performs
the individual ordering and then sends the results to the client. Upon attaining the
threshold of messages, the client replies to the replicas with a commit message. This
protocol is 40% latency efficient compared to PBFT [73], or Zyzzyva [76].

In the next seminal leaderless cryptocurrency protocol, Avalanche by Rocket, Team
and Yin, Maofan and Sekniqi, Kevin and van Renesse, Robbert and Sirer, Emin Gün
[228], they propose Snow protocol. It achieves high throughput by a sub-sampling
approach where a node interrogates only a random subset of nodes for the opinion
of a message lightening the communication. The other key factors are metastability
which tilts the blockchain towards an agreement without any leader. It works by a
node performing repeated sub-sampling to influence its decision about data, either
augmenting or decreasing the data score. If there is a satisfactory confident score
about the data, then it is finalized. The same behavior is propagated as an epidemic
to the entirety of the network, thereby tilting the network towards the data being
accepted or not.

These protocols are efficient as they are both leaderless and phaseless, but the uncer-
tainty of the opinion in case of malicious nodes can lead to failure. As these protocols
in production are added with the staking protocol to enable slashing of the funds in
case of dishonesty, it presents a protocol based on economic concerns. Another ob-
servation is that although the communication is phaseless, repeated subsampling for
each data among the peers as it scales can dampen and affect the network’s perfor-
mance.

8. Canwe improve the communication topology to diffuse themessage and im-
prove throughput?
As we had noticed in PBFT [73], the scalability is an issue due to a single leader being
occupied with the direction of the consensus [229]. Although certain algorithms im-
prove by leader collecting the message and later broadcasting it to others, reducing
the communication complexity to linear O(n) [208, 230].

The next innovation is in the arrangement of nodes in a hierarchical manner such as
a Tree structure [229, 230, 230]. In this, multiple signatures are merged into a single
collective signature and disseminated top-down from the leader node in the root level
to the children, the intermediate node, and finally, the leaf nodes. The response from
the leaf is then sent back in the bottom-up approach from the leaf node to the apex
root node, thereby economizing on the message traversal cost. Here the complexity
is O(1) as only the collective signature is transferred and received.

Next, we understand the more natural approach of Gossip by the protocols of Al-
gorand [192] and Gosig [231] where a node passes the message to N other random
nodes. This is done in epidemic-type dissemination, where the virus carrier or mes-
sage propagates the disease. In the case of topologies discussed, the rigidity in the
topology can affect liveness, at least in the case of a tree. Consider a malicious actor

148

CUBA: An Evolutionary Consortium Distributed Ledger Byzantine Consensus
Algorithm

in the leaf or root that can affect the entire structure, which needs additional redun-
dancy as fallbacks. In the case of Gossip, the same malicious factor is considered, and
also, the message transmission is to random neighbors, which makes the protocol
probabilistic lacking finality.

9. Can we use cryptographic primitives to improve the signature or crypto-
graphic techniques?
Themost prominent improvisations [229] in the BFT protocol can be listed as follows:

(a) Threshold Signature: This technique merges several message signatures into
a single entity where the communication is drastically reduced [83, 212]. It holds
the condition that the threshold signature (t,n) [229] has at least t participants
of total n which produce the signature.

(b) Collective Signatures: In this protocol [232] the scalability is achieved by con-
structing Schnorrmulti-signature [233]. The signature uses a tree topology from
the top-down and bottom-up approaches. The improvement is the ability to
combine the signatures reducing payload and communication. Also, signature
verification is easier as a single combined signature is enough to be verified
rather than n different signature.

(c) Threshold Encryption: In this encryption scheme, similar to the threshold
signature (t,n), at least t participants must decrypt a message from a total of
n participants. This ingenuity is implemented in HoneyBadger Protocol [99]
to improve the Asynchronous Common Subset (ACS) primitive as the Honey-
badger transmits a unique or disjoint set of random transactions between the
peers. This set of transactions is encrypted using a threshold scheme, and then
an agreement is made on the cipher without revealing the transactions to avoid
censorship. So the communication is optimized with less payload and also linear
transmission.

(d) Verifiable Random Function (VRF): This function chooses a subset of nodes
without any interaction between the nodes. This protocol is used for privacy
protection through blind auctions or in blockchain for cryptographic sortition to
choose actors secretly and Domain Name System Security Extensions. Protocols
like Algorand [192] use this function to check a node’s eligibility to participate
in the consensus committee by including one’s private key and a common seed
shared with all participants. After the eligibility is checked, the proof is gener-
ated and shared for verification without sharing the private key or performing
any additional interaction.

The cryptographic protocols discussed offer lighter or linear message communica-
tion, decreased payload, and even privacy at minimal interaction in the case of VRF.
But the idea to minimize the message is justified, but the cost of higher complex cryp-
tographic calculation needs to be considered. The VRF offers privacy which can solve
many security issues as well. Still, the lack of standardization in the protocol leads to
key disclosure, falsified proofs, digest collisions, or unacceptable randomness.

10. Can we adopt technical improvements in BFT protocols for scalability and
performance?
Along with the intrinsic factors in the protocol, as discussed in the above points, we

149

Chapter 5

now explore the idea of parameterized factors in any blockchain. Some of the factors
are as follows:

(a) Block Size: ABFT consensus’s performance is directly proportional to the mes-
sage payload involved. In the case of blockchain protocols, each block contain-
ing transactions plays a critical role in the message size. With the block size
increase accommodating more transactions, there is a performance drop. It is
due to higher network communication and increased signature or transaction
verification, affecting per-unit block finalization through consensus. It would be
ideal to parameterize an optimal block size by testing the protocol implementa-
tion.

(b) Block Frequency: Certain BFT protocols perform consensus at pre-defined in-
tervals for a harmonious output of blocks like Clique, Aura [213], IBFT [119] and
QBFT [121]. These fixed time intervals for each block round can be either ele-
vated or lowered depending on the implementation, as we also need to consider
transaction processing and verification. A shorter frequency will be inadequate
to perform the initial transaction processing, construction of blocks, and then
performing the consensus. A balanced time interval frequency should be deter-
mined, avoiding the race condition between consensus and block creation.

(c) Transaction Processing: The transactions submitted to the blockchain via
a client’s Application Programming Interface (API) are normally through Re-
mote Procedure calls. To rationalize these calls, a client can submit transactions
in a batch format, optimizing the requests. In another pattern, the client can
be multithreaded, allowing multiple sockets or web service connections to the
blockchain node, enabling faster transaction submission for better throughput.

(d) Number of Validators: This is an obvious parameter as the number of partic-
ipants increases in the BFT consensus participation, the message communica-
tion, signature verification, and consensus participant threshold also increases.
So an ideal level of participation is to be chosen considering the democratic
nature of the network and also the resilience of the protocol against attacks.
Although a less number of participants can offer high performance, the idea of
a distributed protocol ensuring transparency, validation, security, and audit by
all the participants is the goal of the distributed system.

(e) Layer 2 Solutions: These are secondary solutions built on top of primary
blockchain networks to offload the computation from the main chain, ensuring
faster finalization of the transactions and lesser computational resource con-
sumption. The following are the solutions created for established cryptocur-
rency blockchain networks such as Ethereum and Bitcoin. The former uses the
Proof of Stake, and the latter uses the Proof Work BFT protocols.

i. Off-chain: In this technique, the transactions are completely obscured
from the main blockchain. It can be the transfer of private keys to a desig-
nated wallet instead of the actual cryptocurrency transfer, thereby avoid-
ing the cost of transfer and transaction finalization time. These are imple-
mented for Bitcoin-based blockchains involving crypto-money transfers.
Another protocol variant involves transmitting information through push

150

CUBA: An Evolutionary Consortium Distributed Ledger Byzantine Consensus
Algorithm

notifications between multiple chains for cross-chain messaging between
Ethereum, Polygon, and BNB Chain. For example, Lightning Network and
Liquid Network.

ii. Side Chains: These chains seamlessly integrate with another chain type
with different consensus mechanisms and account management. These are
interplayed to maintain transaction efficiency on one chain and then trans-
fer the final outcome transaction to the main chain. Examples of these side
chain frameworks are Plasma and Polygon.

iii. State Channels: These are similar to off-chain, but in this case, a state
channel is created for a particular state of the blockchain network and
agreed upon using a smart contract on the main chain. Then a set of trans-
actions are performed in the state channel, which is faster as there is no
consensus, and then upon finalization, the state is updated on the main
chain smart contract. Examples of these state channels are Trinity Network
and Raiden Network.

The above set of techniques or parameterization discussed, impacts the Byzantine Consen-
sus Protocols’ performance, computation resource, and scalability [208, 234]. The parame-
ter improvisation, like block size and frequency, are minor value additions to the protocol
improvement. However, a more comprehensive study is needed on the heart of the con-
sensus protocol to improvise and adapt to our problem statement. Likewise, in the case
of Layer 2 scaling solutions, it is more oriented towards masking the transaction from the
main blockchain risking the transparency, consensus, validation, and democratic nature of
the BFT protocols, which cannot be suitable to our perspective of the problem.

5.3 ContestingUtilitarianByzantineAgreement (CUBA)
In the previous chapters on the State of Art (Section 2.2), Use Case Oriented BFT Evalua-
tion (Chapter 3), Simulator Applied BFT Evaluations (Chapter 4) and in the previous BFT
cross section (Section 5.2) we have been able to understand the various consensus protocol
innovations, successes, and drawbacks. This has enabled us to sieve our focus towards the
core of our previously explained problem statement. We are motivated to propose our own
consensus algorithm philosophy, which can hypothetically answer our challenges. This
philosophy will be further concretized into algorithmic operation and evaluated if it can
respond to our problem statement.

5.3.1 Philosophy
In this section, we construct the metaphorical aspect of our consensus by imbibing various
well-established philosophies. This construct will act as the guiding beaconwhile we design
our consensus protocol to solve the problem stated earlier. We consider the earlier definition
of the network in subsection 5.1.1.

It assumes a K designated Node participants in the consortium network identified by N0
NK. The participants send and receive transactions that need a common agreement on the
transaction order, validity, and immutability. The transactions agreed upon are, in turn, to

151

Chapter 5

be stored as a block structure. The blocks are enchained in a blockchain structure according
to a well-agreed order of precedence.

5.3.1.1 Democracy Conundrum

During 507 BC in Ancient Greece, Cleisthenes introduced the concept of democracy in
the aftermath of End of Thirty Tyrants, who were an oligarchy terrorizing their citizens.
Although he belonged to an aristocratic family, he despised the idea of his heritage. He
wanted to absolve the power of the aristocrats and hand them over to the common people
or Demos, which we enjoy now. But the other side of the coin has to be analyzed as well.

A great Greek philosopher, Socrates, was skeptical about democracy. He attributes his
decision to the process of election, which without an understanding, can wreck anarchy in
the state. An election process must be intellectually driven rather than an adult franchise.
Although he doesn’t undermine the idea of having a democratic electorate, the wisdom of
the people is still doubtful. A tragic incident in his life is illustrated in Figure 5.1 where
Socrates is condemned to death in 399 BC by handing over a cup of poison hemlock. He
was tried for corrupting the youth, and the jury comprised 500 Athenians. After the voting
process on his trial by the jury, the verdict was directed against him as he lost by a narrow
margin of votes. Athenian concept of democracy by itself was short-lived and insidious.
With a selected few of 30000 male citizens to make decisions on political issues, the rule
was very oppressive. This enunciates that democracy needs other friends in its circle, such
as education, intellect, and self-regulation, to prevent itself from falling back to anarchy or
autocracy.

Figure 5.1: Death of Socrates by Jacques Louis David [235]

Consensus Intuition
Similarly, our consensus protocol formed by the participants N0, N1..... NK-1 in consortium
C needs a mechanism for informed decisions based on intellect. Intellect needs to be trans-
lated from an abstract point of view to computing space which will be a node’s knowledge
about other nodes in its universal set C. Knowledge will contain attributes about the behav-
ior of the nodes concerning their transaction signature, validation, block proposal, block

152

CUBA: An Evolutionary Consortium Distributed Ledger Byzantine Consensus
Algorithm

acceptance, and maintaining honesty in the network. Knowledge of a Node NK can be rep-
resented as πK, which will be a set of individual behavioral perceptions on other nodes in
C represented as {B0, B1......BK-1}

Similarly, each node will know about other nodes based on their past actions or behaviors
in the network. This helps each node to make an informed consensus and modify the
participant list if necessary. Using an informed decision, the democratic equilibrium is
sustained and ensures the network is always secure, valid, and robust against incoherent
behaviors.

5.3.1.2 Need for Utilitarianism

Utilitarianism was popularized by Philosophers Jeremy Bentham and John Stuart Mill in
the 19th century, although its roots go back to ancient Greece like Aristippus and Epicurus
[236]. The modern interpretation of it states its fundamental axiom as "the greatest amount
of good for the greatest number." It is a moral theory that aims to maximize the happiness of
society at all costs. Its limitations sometimes conflict with ethics, as happiness for most of
society cannot be achieved by exploiting a poor few. But its proposition still holds in deter-
mining the right and wrong decisions for the ulterior motive of "happiness." As illustrated
in Figure 5.2, the Good Samaritan is a Biblical parable of a man who cares for a wounded
and robbed stranger despite his own mission in the journey as other passersby ignore the
suffering person. He takes the wounded person to a shelter and pays for his expenses,
which detracts from his own activity. This can be viewed as a utilitarian act that brings out
a sense of pleasure for all at his own expense. We try to imbibe this same allegory in our
consensus objective. It will be in coordination with a competition mechanism that enforces
a sense of discipline and motivation between people in maintaining utilitarianism in the
network.

Figure 5.2: The Good Samaritan by Eugène Delacroix [237]

Consensus Intuition
In the consortium network C, each Node NK has an intellectual knowledge πK about its peer
nodes in the form of an effective utilitarian score. This score represents the cumulative ef-
fort of each node, along with others, in maintaining the utilitarianism of the network. Util-

153

Chapter 5

itarianism is referred to metaphorically as honesty in the network to ensure the network’s
liveness, availability, partial tolerance, and resilience. This can be ensured by attributing
an effective score to each node based on his knowledge and actions of the node in the past.

Consider a Block Bi at index i which contains a set of N transactions {T0, T1....TN-1} proposed
by a Node NJ where J is an individual node identity. The Block contains a set of transaction
emitters Te who have signed and issued it represented as set {Te0, Te1... Ten-1}. The block
has to be validated for consensus, taking into account the following example:

• If there is only a unique block at the destined index i.
• If the block is proposed by a valid node and provided a signed hash digest.
• If the block upon consensus attracts the necessary votes or approvals from other
benign nodes.

• If the block is propagated and added to the index by all the nodes without any conflict
or forks, ensuring a single persistent blockchain.

• If all the above actions are performed, i.e., communication or response in an expected
time interval δ individually to ensure the stability and liveness of the network.

All these individual actions can be attributed to a utilitarian score Ua, Ub, Uc where a, b, c are
considered actions, for example, enumerated above. These actions are then cumulatively
managed in the network for each node as it performs according to the enumeration. Then,
wemeasure each node’s individual utilitarian UTi score. This score is also maintained in the
negative sense as ameasure of the above-expected actions that are not performed or ignored
by an expected node. It is represented as Ma, Mb, Mc where M represents misbehavior and
a, b, c reprises the former notation significance. The negative scoring mechanism ensures a
sense of discipline and competition as it can reduce the score of any supposedly utilitarian
node. The Effective Utilitarian Score EUn, n indicates the block height or index level in the
chain measured as

k∑
n=0

EUn = U a
n + U b

n + U c
n −M a

n −M b
n −M c

n

Here the effective utilitarian score EUn consolidates the positive actions score subtracted
from the negative actions score. An effective utilitarian score signifies the utilitarian health
in the network, a higher one signifies positive utilitarianism and a lower score signifies the
presence of malicious participants hampering the network. In addition, the competition
through disincentivization of benign and malicious bad actions motivates each node for
proper behavior.

5.3.1.3 Panopticon Complement

Panopticon was introduced by French Philosopher Michel Foucault in his book "Discipline
and Punish: The Birth of the Prison” where he introduced the concept of surveillance. He
states that "Visibility is a trap," which underlines the concept of invisible surveillance. It
means that a single security guard can surveil prisoners around him where he is invisible
to others, but others are visible among themselves. It is more of a conscious visibility of the
subjects to be monitored without knowing who, where, and how they are being monitored.

154

CUBA: An Evolutionary Consortium Distributed Ledger Byzantine Consensus
Algorithm

This was further widened by the work of Jeremy Bentham, who architected a prison as
represented in Figure 5.3 based on the former’s work. It consists of a central tower that
is dark and invisible, where the security guard is positioned, but others cannot predict his
sight view. On the other hand, surrounding are the prisoner cellars who cannot discuss
among themselves and are not aware of anything happening inside the central tower. This
organically develops a conscious behavior of the prisoner to behave properly as he can at
all times be watched by the invisible guard. This is a self-induced correction mechanism for
the fear of being constantly watched or surveilled. A practical example of this surveillance
is the Sovereign States monitoring their citizens. This is the case of the National Security
Agency of the United States Government surveilling its own citizens reported in 2013.

Figure 5.3: Panopticon Representation by Adam Simpson[238]

Consensus Intuition
We consider the previous intuition of Effective Utilitarian score EUn of each node being
calculated at each block height level consensus. The score is accumulated at the end for
measuring each one’s contribution to network-level utilitarianism or ’proper finalization
of blocks.’ This score calculation is decentralized as and when upon block propagation,
each node can recalculate the utilitarian score attributed to each node due to a particular
block creation. So each node maintains knowledge of other nodes in terms of the Utilitarian
Score and can surveil each other, which induces the necessity of conscious self-correction
among nodes if they behave maliciously.

Let us assume that the Total or Net Effective Utilitarian Score NEUi of a Node Ni at the
latest block height H is given as

NEU i =
H∑
b=0

EU b

where b signifies the block height starting from genesis at 0 to the latest height H and EU
represent the Effective Utilitarian Score measured for a Node at each block height b. This
score about all the node participants is maintained by each node once when it receives a
valid or invalid block. Let us consider a Node N i maintains a set of Net Effective Util-
itarian Score about all the K nodes in the network as {NEU0, NEU1, NEU2......NEUK-1}. All

155

Chapter 5

nodes maintain this set of scores, and when they need to reorganize their network, they can
unanimously consider their individual score. This reorganization or self-correction is the
invisible guard, and the NEUn Effective Utilitarian Score of the Nodes are the visible ones
that need to be maintained positively for most cases to render the blockchain consensus
protocol correct.

5.3.1.4 Sisyphus Quotient

French Philosopher Albert Camus, in his book "The Myth of Sisyphus," quotes "A man
wants to earn money to be happy, and his whole effort and the best of a life are devoted to
the earning of that money. Happiness is forgotten; the means are taken for the end." This
explains the absurdity of human life, where the action is often repeated, resulting in the
relentless pursuit of material or immaterial happiness. This action is absurd as it has no
meaning, as we are all subjected to the same kind of monotony.

In Greek Mythology, Sisyphus was a king and tyrant subject to a rigorous punishment by
the God Zeus. The punishment represented in Figure 5.4 is for him to push the boulder up
a mountain. But the gods decide to punish him severely by making the boulder roll back
to its original position when Sisyphus has reached the summit. This makes him repeat the
task to complete it, falling into a forever loop without realizing it is absurd. This can be
applied to human life, where we try to achieve something greater in our lives even after
repeated attempts to ignore or learn from the previous failures or achievements of the past.
This allegorical understanding will be applied to our consensus protocol for it to consider
the more recent actions, learning from the recent past and ignoring or forgetting gradu-
ally our very old actions. It also avoids the trap of affluence influencing democracy and
skewing the governance in their favor [239] as noted in public policy democracy research.
In our consensus approach, we entertain this Sisyphus quotient to limit the influence of
the historically honest nodes with higher utilitarian scores in the recent block consensus
approach and bring in a level playing field with lesser score utilitarians.

Figure 5.4: Sisyphus Myth illustrated by Tiziano Vecellio [240]

Consensus Intuition
We consider for the blockchain network of consortium C where each node has the same set

156

CUBA: An Evolutionary Consortium Distributed Ledger Byzantine Consensus
Algorithm

of Net Effective Utilitarian Scores of the K nodes at the latest block height H represented
as {NEU0, NEU1, NEU2......NEUK-1}. Here we would like to apply the concept of Sisyphus
to our Net Effective Utilitarian Score, where we apply the principle of weightage for each
Effective Score EU for a Node Ni attributed to a certain block height H. This is to give more
weightage to the recent block height EU scores, lesser weight to less recent block height
EU scores, and least weightage to the relatively ancient block height EU scores. This is in
the sense of introducing absurdity to past actions and making them relevant to our current
position. This makes the consensus protocol consider a Node Ni with more of its recent
activity in the network rather than the history. This is considered as there is a fair chance
of a node turning from benign to malicious and vice versa at any point in time.

We consider the total block interval from Genesis or the first block at height 0 to the latest
block height H. We divide this interval into interleaving block heights to apply the weigh-
tage principle. Each interval of block heights is to be IK where K≥ 0, and with an increase of
K value, it gains more relevant weightage. It is to follow the Sisyphus principle of assigning
more weightage to the recent blocks. Each Block B is to be at a certain height J (BJ) up to
the latest block height H (BH) for J≥ 0.

I0 = Consider Block BJ if J ≤ H/3

IK-1 = Consider Block BJ if H/3 ≤J≤ 2H/3

IK = Consider Block BJ if 2H/3 ≤J≤ H

In this case, for each of the above intervals, we apply the degree of weightage principle
as follows with the base multiplication factor called Sisyphus Forgetting Quotient S where
S≥0. S increases gradually for more recent block Effective Utilitarian calculations making
the old blocks less relevant. Here EUb is the Effective Utilitarian of block B, whose height
starts from genesis at height 0 to latest height H, * is the multiplication operator.

If Block BJ in I0 =⇒ EU J ∗ S/3

If Block BJ in IK-1 =⇒ EU J ∗ S/2

If Block BJ in IK =⇒ EU J ∗ S

This necessitates reformulating the equation of Net Effective Utilitarian Score NEUi includ-
ing the Sisyphus Forgetting Coefficient. For a Node Ni at the latest block height H, this
equation becomes:

NEUi=
H∑
b=0

EU b ∗ (S ∗ b/H))

This multiplicative factor Sisyphus Quotient of S * b/H will place more relevance on the
recent blocks and force the older blocks or actions to have less relevance. At the same time,
we harvest the knowledge of each node in the consortium network.

157

Chapter 5

5.3.1.5 Swarm Instinct

Starlings are medium-sized birds appreciated by the science fraternity for their amazing
flocking skills. In Figure 5.5, we see a thousand starlings undergoingMurmuration, a "scale-
free correlation" or, in other words, self-organizing themselves [241]. This has been applied
in the research of hidden climate patterns, awarded the Nobel Prize for Physics in 2021.
Each bird interacts with a chosen set of its bird peers to adapt its own perception for per-
fect consensus among the whole flock [242]. These biologically inspired behaviors have
been studied and applied to various computing problems of Artificial Intelligence or Swarm
Robotics. This is not only limited to birds but can be observed in the case of fishes, ants,
or even spiders, where they adapt in the form of closed-loop feedback for faster and more
efficient synchronization of groups. Even viruses communicate and cooperate for the util-
itarian or altruistic benefit of infecting or influencing the host better, which was reported
in the Nature journal [243]. This is more efficient than voting based approach in humans
as it is a static approach on a given set of options [244, 245]. This form of rapid feedback
dynamic mechanism observed in this starling is better and applied in many problems [246,
247]. We take this behavior of convergence by learning from the peers in our consensus
algorithm protocol to evolve our blockchain network. In a sense, this evolution maintains
robustness against any faults or attacks and ensures the increase of Utilitarianism or higher
finalization throughput of blocks.

Figure 5.5: Starlings Swarm Behaviour photographed by Ashley Cooper [248]

Consensus Intuition
Our consensus protocol applies the Swarm principle to our consortium network C com-
posed of K nodes or participants. Ni signifies the individual identity of the node in the
consortium network where 0< i ≤ K. At the start of the network or genesis phase, we or-
ganize these individual participants into committees or Quorums. Assuming M Quorums
are in the network, each is represented as QJ where J≤M. So it implies the organization of
the entire consortium ledger network would be a set of Quorums, each containing a set of
chosen nodes as represented in the following equations.

C={QM-n......QM-2, QM-1, QM| n is any positive value}

158

CUBA: An Evolutionary Consortium Distributed Ledger Byzantine Consensus
Algorithm

The selection of the nodes for any Quorum during the initial genesis phase would be based
on a randomized selection as we don’t have any initial knowledge of the node’s behavior
as represented below QJ.

QJ={N i-3, N i-2, N i-1, N i}

where i is selected based on a controlled randomness algorithm, J is any quorum identifier.

Each Quorum is occupied with the block proposal through intra-quorum communication
followed by an inter-quorum consensus mechanism to finalize a block. In future block
rounds, as the nodes’ knowledge is obtained, successive organization of the node member-
ship to a quorum will be based on its Net Effective Utilitarian Score.

.

First, this involves the classification of the nodes into a set of different classes represented
by { L1, L2.... } where each class represents a quality of the Node’s Utilitarianism achieved
in the network. For a concrete and simplified adoption, we assume the following classes:
Ideal Utilitarian class, Utilitarian class, Fair Utilitarian class, and Weak Utilitarian class.
This is a necessary classification performed at a given frequency of block height or epochs
for understanding and organizing the network for efficient finalization. Based on the Net
Effective Utilitarian Score NEUi, where i ≤K, K Nodes in the consortium network can be
sorted in descending order. As we need 4 different classes of Ideal Utilitarian class, Utili-
tarian class, Fair Utilitarian class, and Weak Utilitarian class to be formed, we assign each
sorted node from the highest to the lowest based on the sorted rank. If we assume the node
ranks from highest to lowest, represented as

C={R0,i......RK-2,i, RK-1,i, RK,i}

where R is the rank of any node (rank, node identifier) identified by node i preceded by its
rank in descending order of their Net Effective Utilitarian Score.

Rank_Split_Index (RSI) = K/5

Ideal Utilitarian Class (IU) = Consider Node Ni if 0 ≤ Rank ≤ RSI

Utilitarian Class(U) = Consider Node Ni if RSI ≤ Rank ≤ RSI ∗ 2

Fair Utilitarian Class (FU) = Consider Node Ni if RSI ∗ 2 ≤ Rank ≤ RSI ∗ 3

Weak Utilitarian Class (WU) = Consider Node Ni if RSI ∗ 3 ≤ Rank ≤ RSI ∗ 4

Very Weak Utilitarian Nodes* (VWU) = Consider Node Ni if RSI ∗ 4 ≤ Rank ≤ RSI ∗ 5

After this classification into different utilitarian quality classes of Nodes, they are used to
form the M Quorums. Each Quorum QM for any positive value M has to be filled with
Nodes belonging to the same class. This ensures that a major quality of IU, U, FU, or WU
represents each Quorum. This is basically to judge the perception of the node based on
their classification. Then nodes depending on their honesty and active participation in the
network, can move from a weak utilitarian to an ideal or any other class. If a node is in

159

Chapter 5

the WU class for successive epochs, it will be suspended from the consortium network.
This reorganizes the network based on healthy participants for maximum finalization and
robustness.

The VeryWeak Utilitarian nodes classification identifies faulty nodes (benign or malicious)
without improving utilitarian scores for each successive epoch. These very weak utilitarian
nodes are intermittently suspended from the network for certain epochs as they degrade
the network. If these very weak utilitarian nodes improve their behavior, they are added
to the weak utilitarian class. So the organization of the network also evolves dynamically
based on the node’s behavior calculated for improving or sustaining the Utilitarianism in
the network.

Figure 5.6: CUBA Philosophical Skeleton

As represented in the Venn Diagram 5.6, our CUBA consensus protocol lies at the intersec-
tion of Intellectual Democracy, Utilitarianism, Panopticon Complement, Sisyphus Quotient,
and Swarm Instinct values. These philosophical attributes act as guidelines in the protocol
for ensuring a better, scalable, and fault-tolerant Byzantine agreement between the consor-
tium nodes.

5.3.2 CUBA Consensus Algorithm
In this section, we describe our concrete implementation of the ContestingUtilitarian Byzan-
tine Agreement Protocol by inheriting the earlier philosophical considerations we have ex-
plained. First, we explain the system model we assume for our protocol concerning the
network and nature of participants. Then we explain the protocol’s overall working, ab-
stracting the finer details for a basic understanding. Finally, we explain the detailed fabri-
cation of the protocol to solve the problem from our perspective.

5.3.2.1 System Model

We reprise the System Model definition from the section on Problem Statement (Section
5.1) explained before. It defines the Network Construction, Information or Message Broad-
cast, Participant Behaviour, the Notion of consensus Finalisation, and the expected quality

160

CUBA: An Evolutionary Consortium Distributed Ledger Byzantine Consensus
Algorithm

metric in the protocol. In addition, we consider that each node Ni where i ≤K for K par-
ticipants in the consortium network has a private and public key. The system has a public
key infrastructure, and we consider that no adversary can exploit the classic cryptographic
methods of hashing, encryption, and signatures to one’s advantage. We define certain basic
terms or principles that would be frequently utilized in this section as follows:

1. Node: A participant or Node Ni in the consortium network can be identified as one
with its own proper identification, which cannot be duplicated or cloned.

2. Block Height: A Block Height or number n is the index at which the block Bn is
finalized or to be finalized where n is any index in the blockchain

3. Round: A Round is the process of a consensus for a certain upcoming block height
position in which all the nodes undergo agreement if they are synchronized or within
a timeout δ.

4. Epoch: An epoch in the blockchain refers to a period or frequency of blocks, during
which a fresh set of quorums is constructed and rearranged. This process involves
the selection of a controlled, randomly chosen group of participants based on their
utilitarian score.

5. Network Organisation: Consortium Network C of K participants is organized as a
set of R Quorums {Q1, Q2,....QR,}.

6. Quorum: A Quorum is a set of participants who belong to a closed unit of partic-
ipants chosen based on their utilitarian classification and score. Each Quorum Qp
where p ≤R consists of at most T Nodes.

7. Block : A Block Bn in the blockchain at any index n comprises several partial block
units corresponding to the number of Quorums in the network. So it is identified as
Bn={PBn,1,PBn,2....PBn, R} for R Quorums.

8. Partial Block: A partial block is identified as PBn,o, the smallest unit for storing
unique transactions. Here n is the major Block Number, and o is the minor Partial
Block Number or index. Each Quorum QR proposes a particular partial block at the
major Block Number and minor Block Number. A partial block is composed of a
unique set of transactions as PBn,o = T1, T2.....TS where T is the transaction and S is
the maximum partial block size. So a Blockchain A is given by A ◦ {B...} where each
Block B ◦ {PB...}, ... represents a set in any given order by agreement and ◦ represents
the comprises of relation.

9. Ephemeral Chain: A blockchain that contains the set of blocks, which in turn con-
tains a set of partial blocks that is agreed only at the intra-quorum level but needs to
be further finalized at the inter-quorum level is termed Ephemeral.

10. FinalizedChain: Ablockchain that contains the set of blocks, which in turn contains
the set of partial blocks with a byzantine agreement both at the Intra-Quorum and
the Inter-Quorum level, is termed as finalized.

11. Heart Beat: Each Node communicates at a given frequency T its availability mes-
sage to all other nodes in the network. This is ensured to distinguish a node between

161

Chapter 5

benign network failures and malicious behavior, which is counted during network
reorganization. Although we consider an eventual synchrony model [72] within δ
Global Stabilisation Time, we consider the extreme factors of high periods of asyn-
chronicity. So, we place this mechanism to solve the impossibility problem in reach-
ing the consensus in this case as in [26].

12. Vote: This is a message protocol to participate in the consensus mechanism, which
a node attests for acceptance by a valid message signature. The required threshold
of vote messages is necessary for a consensus on a particular block to be considered
finished.

5.3.2.2 Consensus Overview

Notation Description

ζ Consortium Blockchain Network of K Nodes
Cg Client who submit transactions where g ∈ N
Ni Node i identification where i ∈ {1...K} for K Nodes
Qr Quorum r identification where r ∈ {1...S} for S Quorum
ρ Total number of Quorums in the Consortium Network ζ
σ Size of each Quorum up to which it can accommodate Node or participant.
K Total Number of Members in the Network.
Tχ Unique Transaction issued by a client Cg where χ ∈ N
πr Transaction Pool to stock a relevant transaction by a Quorum Participant in Qr

Pk,l
Partial Block unit where k is the Block Height, and l is the index position within a
block or Quorum Index in the Blockchain (Ephemeral or Finalised)

Bk Block unit where k is the Block Height in the Blockchain (Ephemeral or Finalised)
κ Partial Block size upto which transaction can be packaged
αψ Ephemeral Blockchain having a size or latest block height of ψ
βω Finalised Blockchain having a size or latest block height of ω
ϵ Epoch Identification
ϵO Genesis Epoch Identification or Initial Epoch
ΥI Ideal Utilitarian
Υ Utilitarian
ΥF Fair Utilitarian
ΥW Weak Utilitarian
T Heart Beat Message Time Frequency
Mι Intra-Quorum Message
MI Inter-Quorum Message

Table 5.1: CUBA Protocol Notation Description

CUBA protocol overall working is represented in Figures 5.7 and 5.8. This is more a bird’s
view of its working with certain details to be explained in later sections. Its working is

162

CUBA: An Evolutionary Consortium Distributed Ledger Byzantine Consensus
Algorithm

represented as the sequence of steps as follows:

1. The protocol starts with the emission of a set of transactions by a client, which is
validated and then distributed uniformly to quorums based on the modulo operation
of the transaction hash Unicode.

2. For a new block round, each quorum receives a unique set of transactions distributed
from the previous step in its queue and then forms a partial block based on partial
block size. This is then subjected to a consensus agreement within its quorum mem-
bers. The networkwill pipeline the partial blocks and blocks, including the ephemeral
and the final chains, for faster processing.

3. The partial block confirmed from each quorum is placed in an Ephemeral Blockchain
at the index of block number round and its quorum index. Its index is a tuple <Block
Number, Quorum Index>. This block is placed in the Ephemeral chain and transmit-
ted between all the participants.

4. The Ephemeral Block is then subjected to the intra-quorum consensus proposed by
a Block proposer among the set of participants and transmitted.

5. The transmitted block containing all the partial blocks is verified, and a utilitarian
score is calculated based on the signature and vote accumulated in the blocks. If a new
epoch is reached at the end of the current round, the nodes are sorted in descending
order based on their utilitarian score.

6. The sorted nodes are then classified based on their score. The first range of nodes
will be accommodated in Ideal Utilitarian and the rest of the ranges in Utilitarian,
Fair Utilitarian, and Weak Utilitarian in descending order.

7. Then, a new set of quorums is proposed based on the classification for the new epoch,
and the nodes with the very lowest scores are temporarily suspended from the net-
work. This is to optimize the network with the most utilitarian participants for a
faster and more efficient blockchain network.

5.3.2.3 Detailed Protocol

In this section, we dive deeper across the breadth of the CUBA consensus protocol, starting
from the transaction processing until the network evolution for self-optimization based on
the utilitarian behavior of each node in the network. The working of the protocol should
be read with Table 5.1 for notational descriptions.

5.3.2.3.1 Transaction Processing In this section, we look at the starting point of the
protocol, which is transaction processing by the blockchain network. As represented in
Figure 5.9, each of the client Cg where g ∈ N submits a transaction Tχ where χ ∈ N to
the network which is forwarded to the nodes. Each node rebroadcasts the transaction to
the whole network in the desired network topology. Network Topology can be Fully Con-
nected, Ring Lattice, orWatts Strogatz, as explained in Simulation Chapter 4. To understand
how the transaction is further handled, we need to understand the organization in the pro-
tocol.

163

Chapter 5

Figure 5.7: CUBA Consensus overview explains the lifecycle of the consensus process from
transaction issue, Intra-Quorum, Inter-Quorum Phase, calculating each node’s utilitarian
score based on previously finalized blocks proceeding with quorum reorganization.

Figure 5.8: CUBA Consensus Message Exchange Overview

Protocol Network Organisation In the Consortium Network C of K participants, who
are organized as a set of S Quorums {Q1, Q2,....Qs,}. Each Quorum comprises a set of partic-

164

CUBA: An Evolutionary Consortium Distributed Ledger Byzantine Consensus
Algorithm

ipants who belong to a closed unit of nodes chosen based on their utilitarian classification
and score. Each Quorum Qr where r ≤s consists of at most σ Nodes. The Quorums can be
explained by three characteristics in the CUBA protocol as follows:

1. Quorum Membership: Each quorum can accommodate members Ni belonging to
more or less similar Net Effective Utilitarian Score at the end of each epoch. Quorum
Membership changes for every epoch to optimize the network in removing malicious
or faulty nodes. Each quorum can accommodate until a quorum Size σ up to the total
number of quorums in the network ρ.

In order to award a node Ni where i≤K, membership for a new Epoch ϵ, then it needs
to be classified into Ideal Utilitarian ΥI, Utilitarian Υ, Fair Utilitarian ΥF and Weak
Utilitarian ΥW. For the Genesis Epoch ϵO, the classification would be a randomized
sortition of nodes Ni as we don’t have any prior evaluation or utilitarian state to con-
sider. Subsequent epochs ϵ would be evaluated based on the Net Effective Utilitarian
score for the preceding epoch, which will be discussed in detail in the next section.

2. Quorum Communication: Quorum can communicate or pass messages in two
ways through Inter-Quorum Message MI and Intra-Quorum Message Mι. This sec-
tionwill explain its detailed phases for Intra-Quorum and Inter-Quorum, respectively.
Its overall function is as follows:

(a) Intra-Quorum Message Mι: This is the preliminary level of consensus mes-
sage passing where the primary data structure unit is Partial Block Pk,l k being
the Block Height, and l is the index position of a block or quorum as agreed upon
by the quorum members of l. Pk,l comprises verified transactions belonging to
quorum l for the round or block height k.

(b) Inter-Quorum Message MI : This is the agreement message on the whole
block Bk which is composed of several finalised partial blocks. The participants
across the quorum attest to this message, and they accept the block if it com-
prises all the partial blocks from all the quorums and is finalized by a valid
proposer.

Idea of having an organization ofNodesNi under each quorumand the significance
of the network organization in the protocol is based on the following reasons:

1. Reduced Communication Complexity: In this protocol, the consensus is reduced
in two phases where Intra-Quorum has a message complexity of O(σ2), and Inter-
Quorum has a complexity of O(1). Here σ is the quorum Size of participants it can
accommodate, significantly less than the total K participants.

2. Parallelization and Pipelining: Each quorum verifies its set of transactions and
creates a particular partial block Pk,l for its index without waiting for the other quo-
rums. This makes the processing faster as two chains of ephemeral and finalized
ensures the pipelining of multiple blocks easier without any bottleneck. It removes
the issue of relative dependence on the previous blocks for the consensus operation
on the current block round, which will be discussed in detail.

3. Utilitarian Classification and Optimisation: Quorum enables clustering of clas-

165

Chapter 5

sified participants as ΥI, Υ, ΥF and ΥW. This clustering enables us to identify the
participant’s Utilitarian behavior and witness their evolution in the network. It also
gives the scope for fairness in motivating Ni to move from a lower to a higher classi-
fication by attributing extra improvement quotients in the utilitarian score. Also, on
the contrary, it enables the suspension of nodes who always are in the lower classi-
fication successively with no improvement affecting the network optimization.

Having understood the network organization as represented in Figure 5.9, we then continue
with the transaction processing from the client’s Cg origin to each of quorum Qr in ζ . A
node that forms part of a particular Qr can gossip or broadcast any transaction Tχ. But for
Qr to consider Tχ as part of Pk,r for round k and index r, it has to follow the two conditions
as follows:

1. Each Tχ must be unique and original with HTχ = Hash(Tχ) /∈ βω,αψ.
2. For considering in its partial block Pk,r its quorum index should match with the value

on modulus operation based on the codepoint of HTχ over the total quorummembers.

The algorithm pseudocode for transaction processing is detailed in Appendix chapter 8,
Section Algorithm3 for brevity.

Transaction FloodingAttack This section highlights the limitation or scope of our pro-
tocol’s transaction processing, as explained earlier. The most simplistic attack in any dis-
tributed or centralized system is Distributed Denial of Service [249]. Each transaction Tχ
is checked for authenticity and duplicity before being rebroadcasted to other nodes in the
consortium network ζ . In addition, a more straightforward mechanism would be to limit
the transactions received through the Remote Procedure Call Application Programming In-
terface per time period. This limits the possibility of the transaction rate emitted, avoiding
the DDoS attack vector as a whole. This section is more on the implementation aspect, and
we keep it aside in our protocol explanation to focus more on consensus protocol.

Data Structure Definitions This section examines the various data structure definitions
necessary to understand our protocol.

The fundamental unit in our protocol is Partial Block Pk,l where k is the Block height and l is
the index position within a block or quorum index. The data structure of Pk,l is represented
in Figure 5.10. Each Pk,l is proposed by a quorum l after the intra-quorum consensus for a
given round k. It consists of a set of transactions self-assigned as part of its quorum mem-
bership. It also has the other identifiers of timestamp, previous block state hash, current
partial block hash, and proposer’s signature. After the Intra-Quorum consensus, it will be
placed inside a block container Bk of Ephemeral Blockchain αψ for the k,l index and broad-
casted to the consortium network. Bk is represented as in Figure 5.11 where each quorum
needs the partial blocks to be proposed. As the partial blocks are received for the block
structure, then the Temporal Hashing is updated incrementally. This will be explained in
detail in the upcoming section. It is more to ascertain the state of an unfinalized container
block containing a set of partial blocks before being updated with another partial block.
This is done to maintain a history of state progression, as we always need non-repudiation
in the network. After all the partial blocks are received for a Block k, it undergoes the

166

CUBA: An Evolutionary Consortium Distributed Ledger Byzantine Consensus
Algorithm

Figure 5.9: Transaction Processing

secondary consensus of Intra-Quorum finalizing the block on the finalized blockchain βω.

Figure 5.10: Partial Block Data Structure

CUBA Data Structure Significance The idea to have two units of structure as Partial
Block and Block is given by the following reasons:

1. Faster Processing: By splitting the transaction processing into the units of partial
blocks Pk,l which are coalesced to form a block Bk among multiple quorums fastens
the process. The effort to finalize a block by this modification has a better approach
in two ways:

(a) Reducing the task through ρ lighter partial block units instead of a single block
Bk.

167

Chapter 5

Figure 5.11: Block Data Structure

(b) Distributing the task among ρ Quorums with each Quorum having σ members.

EffortNormal=|B| ÷K

EffortCUBA=((|P | × ρ)÷ (σ × ρ))

Effort_SimplifiedCUBA=((|P |)÷ (σ))

GainCUBA=((|B| × σ)÷ (K × ρ))

|B|=> Size of data structure unit of Block

|P|=> Size of data structure unit of Partial Block

The GainCUBA is significant as the partial block size is less than a block data structure.

2. Partitioned Failure Risks: Since we have multiple ρ quorums in the protocol, the
risk for liveness in terms of failure tolerance and network failures gets redistributed
among them. The redistribution is due to the sub-network of quorums with a reduced
majority threshold compared to the large K network members.

Pipelining In this section, we explain the pipelining aspects of our protocol with the
modified data structure presented earlier. The pipeline decomposes a repeated sequen-
tial process into subprocesses, each of which can be executed efficiently on a special ded-
icated autonomous module that operates concurrently with the others. In the domain of
distributed or blockchain systems, the block and partial block can be considered analogous
to the process and subprocess as in the definition before.

As represented in Figure 5.12, the pipelining in CUBA protocol can be applied in two phases
as follows:

1. Intra-Quorum Phase: This operates on finalizing a partial block structure within
the quorum members. As in Figure 5.12, each quorum creates the partial blocks as
and when proposed. For example, each partial block at multiple Rounds of 4 and 5

168

CUBA: An Evolutionary Consortium Distributed Ledger Byzantine Consensus
Algorithm

is being processed. In addition, each is processed by different quorums; in this case,
we consider 3 Quorums to be parallelized. The partial block finalized can be in any
temporal order, and storage in block structure does not guarantee temporal order to
match the index order. Figure 5.13 represents an ephemeral or intermediary chain.
This represents an intermediate chain structure for finalizing the partial block before
being finalized in the finalized blockchain structure as in Figure 5.14. To guarantee
non-repudiation by hash, an integral property of any blockchain protocol, we main-
tain the temporal hashing data in each block. As represented in the following temporal
hashing for Round R, we store it as a partial block index I mapping structure against
the hashing state. The hashing state is given for a time T, block container hash at T
(BC), node identity who updates the state (N), and list of partial blocks added (L).

Temporal HashingR= Mapping<Partial Block Index I, Hashing StateR,I>

Hashing StateR,I= [T, BC, N, L]

For each Round R, an intermediate ephemeral block has indexes to be filled by par-
tial blocks after their individual intra-quorum consensus. As we note in Figure ??
for round 1, all the partial blocks are filled, and the state 0,1,2,3 hash is updated ac-
cordingly as and when it is appended to the block structure. Similarly, for Round 2,
we have the state 0,1 hash filled representing the completion of inter-quorum con-
sensus for Quorum 1 and 3, not necessarily in order awaiting the Quorum 2 and 4
partial blocks. So the inter-dependence between the partial blocks across rounds and
quorum indexes is relaxed, enabling individual quorums to process in parallel.

2. Inter-Quorum Phase: Following completing all the quorum indexes in any block,
we undergo a consensus protocol across quorum members to finalize a total block.
Here the finalized block is proposed, signed by a proposer, and transmitted to all
the participants. This phase is partly parallelized as the block container formation is
pipelined with no relative dependence. But in the case of a finalized block for a final-
ized chain, we have a strong chained previous index to the current index hashing as
exhibited in any standard blockchain structure. However, since it is a lighter message
exchange of O(1), the relative dependence bottleneck on the blocks is not penalizing.

Figure 5.13: Ephemeral Blockchain Structure

169

Chapter 5

Figure 5.12: Pipelined Consensus Protocol

Figure 5.14: Finalised Blockchain Structure

170

CUBA: An Evolutionary Consortium Distributed Ledger Byzantine Consensus
Algorithm

Figure 5.15: Intra-Quorum Consensus Protocol

Intra-Quorum Consensus After the initial discussion around transaction processing,
network organization, and pipelining aspects, we explain the next important section of our
consensus in detail for finalizing a partial block. The Intra-Quorum consensus operates in
sub-phases of PREPARE, COMMIT, and FINALISE as illustrated in Figure 5.15. The algo-
rithm for Intra-Quorum protocol is listed in Appendix chapter 8, the section of Algorithm
5, 6 and 7. Its working is as follows:

1. Each Quorum Qr upon receiving the transactions in its pool up to a partial block size
κ proposes a partial block Pk,l. Suppose the node is a partial block proposer based on
the codepoint of block height K’s hash. To create a gamified protocol, a competitor
partial block proposer is also chosen among the quorummembers to propose a similar
partial block P’k,l.

2. During the PROPOSE sub-phase, the block proposed by the proposer or competitor
is propagated in the quorum network. Pk,l, which achieves the threshold of 2/3 votes
in the COMMIT phase, is confirmed.

3. During the FINALISE sub-phase, the finalized proposer is chosen to add the partial
block to a block container and then broadcast it to the quorum network. If the final-
ized block is not achieved within a timeout ∆, then a Fulfiller is selected to finalize
the block.

4. In all the cases of Intra-Quorum and Inter-Quorum phases, when there is a blockchain
state deadlock either in the ephemeral or finalized chain, a ROUNDCHANGE phase
is initiated. This will be explained in the later section of Round Change 5.3.2.3.1, at
which point of the consensus, a Quorum Reorganisation takes place, and the nodes
that have failed or are malicious are removed for optimization in the subsequent
round.

Intra-Quorum Competition Significance

1. The idea of having two proposers: partial block proposer and competitor, during the

171

Chapter 5

PROPOSE and COMMIT phase, is to increase the liveness of the network. Although
the blocks Pk,l and P’k,l are conflicting introducing forks, they are limited to just two
phases of COMMIT and PROPOSE.

2. Even when there is a failure due to network tolerance, the partial block that propa-
gates faster in the network and achieves the threshold votes among the quorummem-
bers is considered to be finalized. The partial block proposer or competitor which
wins the votes has an increase in utilitarian score and a decrease for the loser as
explained in Appendix chapter 8, section of Inter-Quorum Algorithms 8 and 9.

3. The idea of having to PREPARE, COMMIT, and followed by FINALISE is based on the
concept introduced by PBFT [155, 250]. The PREPARE phase ensures the ordering of
the transactions for a single view, but the COMMIT phase provides a unique Partial
Block Pk,l is selected at the index k,l. This is necessary when there is a view or round
change detected, and the reorganization of the quorum is undertaken. The COMMIT
phase maintains the same state when there is a round change.

Figure 5.16: Inter-Quorum Consensus Protocol

Inter-QuorumConsensus This section focuses on the following important phases across
the different quorum members. A block BK is finalized among the effective K members
across the quorum. The protocols work as follows:

1. In the previous phase of Intra-Quorum consensus in section ??, we understood the
partial block proposal between the participants of each quorum. Each partial block
is filled for a whole block where individual partial blocks are placed in the block
container Bc,k. Then the temporal hash is updated in the container as and when all the
indexes of a partial block in the block BK are fulfilled after respective intra-quorum
consensus. When a total number of ρ partial blocks equivalent to the number of
quorums in the network are received in the ephemeral chain αψ k, then a full block
proposer is chosen to propose the finalized block BK.

172

CUBA: An Evolutionary Consortium Distributed Ledger Byzantine Consensus
Algorithm

2. Block BK is formed considering the last temporal hashing state as indicated by the
block proposer. In case the proposer fails to complete the block, then after a timeout
of η a fulfiller is chosen. Fulfiller proposes the block B’

K, which is updated. In case
of conflict between the blocks BK and B’

K, then the time is compared to resolve the
conflict. The block confirmed is stored in the finalized blockchain βω.

3. In case of non-fulfillment of blocks, a RoundChange phase is initiated as a default
view change for Quorum Reorganisation, which will be explained a little later.

The algorithms pseudocode for Inter-Quorum consensus are detailed in the Appendix chap-
ter 8, Section of Algorithms 8 and 9.

Figure 5.17: Round Change Protocol

Round Change Protocol The Round Change protocol is applicable during the entire
transaction lifecycle, either in the inter-quorum or intra-quorumwhen the blockchain state
is stalled or unprogressive. The state considered here is of the Ephemeral chain αψ or the
finalized chain βω which is checked by the function IsRoundChangeNeeded() in Algorithm
10 detailed in Appendix chapter 8, section 8.5. The timeout ξ is tolerated until the round-
change function is invoked and the consensus phase starts.

1. A round change proposer is chosen if the condition is satisfied when there is no state
progression and initiates the round change message as illustrated in Figure 5.17.

2. The rest of the validators can consent to the round change if everyone agrees to
progress for a new epoch E. The round change is finalized if a threshold greater than
1/2(K)+1 is reached.

3. Once the new epoch is finalized, a new quorum is formed considering the latest heart-
beat received and the past utilitarian score of the nodes. The nodes are then reorga-
nized to form new quorums for epoch E, which will be explained later in the section
5.3.2.3.2 on Network Evolution.

173

Chapter 5

Heart Beat Exchange Protocol An integral part of the protocol is this heartbeat ex-
change which can maintain the liveness of the blockchain consortium network. As illus-
trated in Figure 5.18 with a Node Ni at a defined interval of frequency t. As explained in
Appendix chapter 8, section 8.5 in the Algorithm 11, the nodes exchange HEART_BEAT
message every t interval, propagating throughout the network. This message is used as
a metric during quorum reorganization for node classification and formation. In case of
a failure of a node, then it can be detected easily as it can fail to exchange the heartbeat
and be utilized as a deciding factor to prove its adverse condition. Eliminating the failure
or misbehaving nodes by this mechanism can lead to the optimization necessary in the
network.

Figure 5.18: Heart Beat Message Protocol

5.3.2.3.2 NetworkEvolution This section explains the reorganization necessary in the
network at the end of each epoch E to form the nodes in each quorum for better optimiza-
tion. This can be at the end of each epoch for a gradual increase in block height or due
to round change, which can invite an extraordinary shift in node participation. This is ex-
plained through different components whose functioning will be described as it aims to
reach an optimized blockchain network for better throughput, scalability, and resiliency.

Utilitarian Inference Continuing the section from Inter-Quorum where a Block BK is
either formed by the block proposer or fulfilled and propagated throughout the network.
Each Node Ni maintains an internal register of the utilitarian score derived for each Block.
The post-mortem on the Block can be used to attribute the utilitarian score as explained in
Appendix chapter 8, section 8.5 through the algorithms 12 and 13. Its overall working is as
follows:

1. Each block is composed of partial blocks wherein each partial block has several at-
tributes for differentiating its utilitarian score among all nodes. First, the Inter-Block
time coefficient is calculated concerning the previous block as it measures the real
effort maintained in the network. Then this coefficient is utilized as a multiplication
factor for each positive or negative score.

174

CUBA: An Evolutionary Consortium Distributed Ledger Byzantine Consensus
Algorithm

2. The positive score in block BK can be attributed to an action if it improves the utili-
tarian score as the following:

(a) Partial block proposal winner if a proposer succeeds in the PROPOSE and COM-
MIT sub-phase for the concerned quorum.

(b) Commit win for those who participated by votes in reaching the desired thresh-
old faster than the competitor partial block.

(c) Heart beat score for those who have sent their ping message to all the nodes to
establish their liveness metric.

3. The negative score for BK can be derived as the actions in the opposite sense as listed
below:

(a) Partial Block Proposal Loser if a proposer loses in the competition race against
a peer inside its quorum as a penalization score.

(b) Commit Loser for those expected to endorse a winning partial block but failed,
as noted by their vote signatures.

(c) Heart Beat Missed score for those who failed benignly or malicious behavior to
cascade their liveness message for fixed frequency interval.

(d) Malicious score if the block or partial block propagated is invalid with forged
signatures, hash, or votes.

4. Each score is consolidated at the block level multiplied by the inter-block time coeffi-
cient. Each score is based on the node’s previous disposition as either Ideal Utilitarian,
Utilitarian, Fair Utilitarian, or Weak Utilitarian and a fairness score is added and ex-
plained in the next section. Then the net score is calculated as a difference between
the positive and negative scores.

Fairness Component This component is explained by the algorithm 13 in the function
getFairnessScore() listed in Appendix chapter 8, section 8.5 for detailed working. In this
component, a variable attribute is added when a node is attributed a utilitarian score in the
positive connotation for partial block proposal, heartbeat win, or commit win. This compo-
nent attributes a quotient in inverse to the node’s utilitarian classification in the previous
epoch. In the case of the Ideal Utilitarian, a minimum score is added, and Utilitarians are
awarded a little higher for a fair and weak utilitarian, respectively. This is based on the
philosophy of avoiding the scenario similar to the Pareto 80-20 rule, where we want weak
utilitarians to move up the ladder if they exhibit positive behavior and do not remain for-
ever weak. The final scores are then stored for each epoch concerning each node in the
EffectiveScore storage.

Swarm Optimisation In this section, we explain how we utilize each node’s previously
accumulated utilitarian score knowledge for each subsequent epoch in evolving our net-
work. The evolution targets identifying the node’s behavioral change or more of the con-
sensus actions it has performed in the past and in recent times. Weak or malicious nodes
are suspended temporarily as a penalization and included after the interim suspension pe-

175

Chapter 5

riod. This helps optimize the network performance due to any failures or attacks. Attacks
like Distributed Denial of Service where a network as a whole or a particular node can be
targeted to compromise the network can be identified based on individual utilitarian scores.
This limits either in suspension of malicious or affected nodes that can join in later epochs
on restoration.

Sisyphus Quotient As explained earlier in this section, our earlier achievements are
absurd in life, and we strive for the future, as noticed in the life of Sisyphus. So we imbibe
the same notion in the Utilitarian Score detailed through theAppendix chapter 8, the section
in Algorithms 14, 15 and 16. In particular, the two functions of FormForgettingCoefficient()
and UpdateForgettingCoefficient() hold this logic. It works as follows:

1. For a current epoch E, before forming the next epoch E+1, we need an effective un-
derstanding of the Utilitarian Score across nodes with varying epochs.

2. The essence of this component is to give more weightage to recent epochs and lesser
weightage to past epochs. This will gradually descend if we move from the recent
epoch to the genesis epoch.

3. In the function FormForgettingCoefficient(), the values of the forgetting coefficient
are calculated concerning the current epoch. This calculated coefficient is stored in
the storage Forgetting_Coefficient. It is calculated as follows by iterating for each
previous epoch since the current epoch:

Forgetting_CoefficientPreviousEpoch

= 1-((CurrentEpoch-PreviousEpoch) / CurrentEpoch)

4. Next, in the function UpdateForgettingCoefficient(), the calculated forgetting coeffi-
cient for each previous epoch is applied by multiplying each with EffectiveScore ob-
tained in the previous section. This reduces or augments the relevance based on the
score obtained in earlier or recent epochs.

Panopticon Complement and Classification This section works on the inter-block
time coefficient plus fairness normalized score applied with forgetting quotient to classify
the nodes. The Appendix chapter 8, section Algorithm 16 has the function ClassifyandReor-
ganiseQuorum(), which performs this logic and is detailed over there. It works as follows:

1. The Nodes are first sorted in descending order based on the Utilitarian Score, which
is then split into 4 equal intervals of nodes based on their rank.

2. The First interval of nodes is marked and placed into the Ideal Utilitarian List, the Sec-
ond Interval into Fair Utilitarian, the Third into Utilitarian, and the fourth into Weak
Utilitarian. The lowest scorers are marked as Very Weak Utilitarians but not classi-
fied. As obvious by their nomenclature, the Weak Utilitarians, especially Very Weak
Utilitarians, are the nodes susceptible to failures and have continuously degraded the
network’s performance.

176

CUBA: An Evolutionary Consortium Distributed Ledger Byzantine Consensus
Algorithm

3. In case a node has been in the Very Weak Utilitarian list for Z previous epochs, then
it is suspended for an epoch as a kind of penalization and remediation at the same
time.

4. Heart_Message is expected of a node every θ frequency for inclusion in the classifi-
cation and the proposition of the new quorum. The node is suspended for the epoch
in progress if a heartbeat message is not received.

5. The suspension factor, which completes the panopticon complement, works on the
transparent Utilitarian Score and Heart Beat Message to enforce the vitality of the
blockchain network.

Figure 5.19: Quorum Message Phase Protocol

Quorum Proposition This is the final action to be performed as part of every epoch’s
quorum reorganization. Its detailed working is listed in Appendix chapter 8, section 8.5 of
Algorithm 16 for the last part of the function ClassifyandReorganiseQuorum(). This works
as follows:

1. For each new epoch E based on a selected quorum proposer on past epochs of per-
forming Intra-Quorum, Inter-Quorum consensus, Utilitarian Calculation, Fairness
and Inter-Block Coefficient Application, Sisyphus Quotient, and finally Panopticon
Complement, we sort each classified node into its own quorum.

2. Blockchain network requires ρ quorums wherein each quorum needs to be filled with
nodes.

3. The Quorums are filled with each up to σ number of nodes in their order of ascending
ranks. This will roughly organize the Ideal Utilitarian, Utilitarian, Fair Utilitarian, and
Weak Utilitarian in homogenous groups of each quorum.

4. The very weak utilitarians are marked in the network for later suspension if they
show sustained failures. A minute heterogeneity can be observed since there cannot

177

Chapter 5

be a perfect sortition of quorums of nodes of the same utilitarian classification due to
suspension or failure of nodes.

5. The newly formed QUORUM_MESSAGE<Eε> with quorum reorganizations for the
new Epoch is proposed by the quorum proposer as in Figure 5.19 to the other peers
in the network for evolution improving optimization and resilience.

CUBA Protocol Variants After discussing the CUBA protocol with its standard defi-
nitions and their evolution in the network, we notice that most message exchanges are
PROPOSE, COMMIT, and FINALISE within the Intra-Quorum level. In this section, we
propose an alternative design of the CUBA protocol for faster processing of transactions
and blocks by having certain strong assumptions.

Figure 5.20: Intra-Quorum Implicit Consensus Protocol

Implicit Agreement In this, the vanilla CUBA protocol component at the Intra-Quorum
level for finalizing a partial block is lightened as in Figure 5.20 with one sub-phase of FI-
NALISE instead of the PREPARE, COMMIT, and FINALISE sub-phases. Here we assume
implicitly that a node being honest in a consortium setting will propose a valid partial block
avoiding the extra agreement sub-phases. It is detailed in Appendix chapter 8, section 8.5
of Algorithm 18, which works as follows:

1. Each Quorum Qr, upon receiving the transactions in its pool up to a partial block size
κ finalizes a partial block Pk,l.

2. A quorum member is chosen to be a partial block proposer finalizer. It proposes the
partial block Pk,l, which is then propagated to the network.

3. In case the proposer finalizer fails to respond within a timeout, the block fulfiller is
chosen to finalize the partial block at the same index.

Implicit Agreement Limitation CUBA - Implicit has a message complexity of O(n)
for n nodes inside a quorum compared to O(n2) of the vanilla variant, but it has certain

178

CUBA: An Evolutionary Consortium Distributed Ledger Byzantine Consensus
Algorithm

limitations as follows:

1. The choice of a single proposer finalizer at a round can affect liveness as it is a single
point of failure. Although there is a partial block fulfiller, the eventual recovery of
the original proposer at a given time t can introduce two conflicting blocks for the
same index. This can lead to frequent forks as common in single proposer algorithms
like Clique [118]

2. The reduction from a 3 sub-phase to a single phase can affect the consistency of
the protocol, with each node having different views. For the same reason of state
consistency, PBFT had to include COMMIT phase [155] for a uniform state. We can
proceed with this consensus agreement if a protocol considers availability and partial
tolerance over consistency.

5.3.2.3.3 Implementation In the previous sections, we discussed the CUBA Vanilla
protocol and its variant with a detailed algorithm and description. We implement these
consensus protocol designs into our simulator discussed in the previous Chapter 4. We
re-utilize the existing simulator architecture (in Section 4.1.3) for plugging our CUBA pro-
tocol and its variant. In the following subsections, we explain the modified packages in the
simulator to incorporate the CUBA protocol and its variants.

Figure 5.21: Simulator CUBA Consensus Package

Simulator CUBA Consensus Package In this consensus package, we have the follow-
ing modifications or additions concerning the CUBA protocol classes as follows:

1. UtilitarianBlockScore: It is the data structure that holds the utilitarian score of the
block according to its PROPOSAL, COMMIT, and FINALIZE votes, either gained or
lost, including the malicious score.

2. UtilitarianCalculator: This class consolidates the score for each node for every
epoch and then applies the normalization in items of inter-block time, fairness, Sisy-
phus coefficient, fairness, sorting, and classification of nodes into individual quorums.

179

Chapter 5

3. QuorumMessage: This is the integral data structure necessary for performing the
reorganization at the start of each epoch which has the classification, mapping of
node index to its quorum indexes, and quorum metadata.

4. FinaliseMessage: This message differs from the conventional message of only votes
and signatures like PREPARE and COMMIT as it holds the block container, hashing
state, partial block, and votes.

5. MessagePool: This is the storage for all the message pools exchanged during the
consensus agreement for PROPOSE, COMMIT, FINALISE, BLOCK,QUORUM,HEART-
BEAT, and ROUND CHANGE.

6. ConsensusMessageHandler: It handles the different consensus messages for intra-
quorum and inter-quorum phases, maintaining its threshold votes, consensus condi-
tions, and validation check.

Figure 5.22: Simulator CUBA Chain Package

Simulator CUBA Chain Package: Similar to the consensus package, we explain the
class additions for the chain package due to CUBA on our simulator as follows:

1. PartialBlock: This is the fundamental data unit in our blockchain protocol which
agglomerates to form a block. It has the transaction list, proposer’s data, and signa-
ture details, including the competitor proposer’s data.

2. Block: The data structure change due to CUBA is implemented here as a Map of Par-
tial Blocks is maintained with their index positions. Also, the hashing state instance
is updated for the block when a partial block is appended.

3. HashingState: This structure intervenes with the block structure to maintain the
temporal hashing during the ephemeral chain state. Also, the partial block state is
recorded and updated simultaneously to have proof of addition.

4. Blockchain: It has the Ephemeral and Finalised blockchain state maintained by an

180

CUBA: An Evolutionary Consortium Distributed Ledger Byzantine Consensus
Algorithm

individual node. The epoch increments, quorum updates, round change necessity
checks, and block round increments are performed here and synchronized between
different processes accessing it.

Figure 5.23: Simulator CUBA Network Package

Simulator CUBA Network Package: The network package for CUBA has certain up-
dates concerning the storage as follows:

1. HeartBeatStorage: Heartbeat messages exchanged across the different nodes are
stored here by each node queried during the quorum formation.

2. QueueResource: Themessages exchanged across intra-quorum, inter-quorum, heart-
beat, and quorum messages are received into a blocking queue for maintaining syn-
chronicity and thread safety as our simulator is multi-threaded.

3. UtilitarianScoreStorage: All the Utilitarian scores, both normalized and raw, are
stored and mapped to each node. It is stored at the end of each epoch based on the
node’s participant behavior in the blockchain consensus.

4. QuorumStorage: Similar to Utilitarian storage across Epochs, each epoch’s quorum
formation is stored here and is a historical reference for each node’s quorum mem-
bership.

5.4 Conclusion
This chapter introduces the overall working of the Competing Utilitarian Byzantine Agree-
ment protocol by explaining its problem statement and detailing its different phases. The
protocol is conceptualized by considering the various alternatives in the literature, which
is gradually forged philosophically. Democracy, Utilitarianism, Panopticon, Fairness, Sisy-
phus, and Swarm are applied to our problem statement and its justifications. Then the
protocol is explained algorithmically through its intra-quorum consensus, inter-quorum
consensus, and utilitarian score calculation, followed by the quorum formation. Also, the

181

Chapter 5

variant of CUBA implicit is discussed with its limitations, and then finally, the implemen-
tation on the simulator is detailed. In the next section, we evaluate our CUBA across the
spectrum theoretically and experimentally to understand its robustness and alignment with
network throughput, scalability, security, and resiliency parameters.

182

Chapter 6

CUBA Evaluation

Evaluation is creation: hear it, you
creators! Evaluating is itself the most
valuable treasure of all that we value. It
is only through evaluation that value
exists: and without evaluation, the nut
of existence would be hollow. Hear it,
you creators!

– Friedrich Nietzsche

183

Chapter 6

6.1 Theoretical Evaluation . 185
6.1.1 Algorithm Complexity . 185

6.1.1.1 Intra-Quorum Message Exchange 185
6.1.1.2 Inter-Quorum Message Exchange 186
6.1.1.3 Round Change 186
6.1.1.4 Utilitarian Message Exchange 186
6.1.1.5 Pipelining Effect on Protocol 187

6.1.2 Consistency, Availability, and Partition Tolerance Analysis 187
6.1.2.1 Misconception and CAP Revisited 188

6.1.3 Blockchain Scalability Trilemma Analysis 189
6.1.4 Utilitarian Fairness Evaluation 190
6.1.5 Adverse Scenario Evaluation 191

6.2 Experimental Evaluation . 192
6.2.1 CUBA Protocol Parameterisation 192
6.2.2 Methodology . 192
6.2.3 Infrastructure . 193
6.2.4 Result Discussions . 194

6.2.4.1 What can be the optimum epoch limit for net-
work self-optimization? 194

6.2.4.2 What is the heuristic for choosing the number
of quorums? . 195

6.2.4.3 Can the network topology have an effect on the
CUBA protocol? 196

6.2.4.4 How effective is the protocol resistant to Node
failures? . 196

6.2.4.5 How is the performance of CUBA Implicit Variant?206
6.2.4.6 Distributed Denial of Service 208

6.2.5 Overall Classical BFT Comparison 211
6.3 CUBA amongst recent BFT consensus protocols 215
6.4 Future Work . 217
6.5 Conclusion . 219

In this chapter, we look at our designed protocol CUBA and understand its complexity
from the perspective of theoretical assessment covering the aspects of its message com-
plexity and CAP theorem-based analysis. Also, we evaluate its real implementation on our
simulator discussed previously across different scenarios to understand its performance,
security, resilience, and adaptability metric using terms of utilitarian score in response to
threats.

184

CUBA Evaluation

6.1 Theoretical Evaluation
In this section, we assess the Intra-Quorum, Inter-Quorum, Utilitarian Evolution protocol
phases, and the adverse scenarios inviting round change. This is extended to the quorum re-
organization for each epoch and heartbeatmessage exchange. It is further analyzed through
the lens of CAP theorem and Blockchain Trilemma to discover its limitations, especially in
an eventual synchrony model.

6.1.1 Algorithm Complexity

This section considers the CUBA protocol’s critical path, and then we dissect each phase
by looking at its algorithmic design and complexity. We analyze the complexity from two
perspectives in our blockchain, aka "Distributed systems," as follows [251, 252]:

1. Message Passing or Communication Complexity: The message complexity of
an algorithm for either a synchronous or an asynchronous message-passing system
is the maximum overall execution of the total number of messages sent.

2. TimeComplexity: The time complexity of an algorithm for a synchronousmessage-
passing system is the maximum number of rounds in any execution until it has ter-
minated.

In this analysis, we consider the following notation reprisals from the previous chapter:

1. K - Total Members in the network ζ .

2. ρ - Total number of Quorums in the network

3. σ - Total allowed member participation in each Quorum

4. Pk,l - Partial Block unit where k is the Block Height, and l is the index

5. Bk - Block unit where k is the Block Height in the Blockchain (Ephemeral or Finalised)

6. ξ - Round Change Timeout

7. Γ - Block Height for progression to new Epoch

8. ε - Latest Epoch Height for which we consider since the Genesis Epoch

6.1.1.1 Intra-Quorum Message Exchange

This first phase of CUBA protocol has message sub-phases of PREPARE, COMMIT, and FI-
NALISE. When we consider this protocol asymptotically for message communication, we
observe that the COMMIT protocol involves quadratic complexity O(σ2) while the PRE-
PARE and FINALISE are in the order of O(σ). We consider the dominant overhead of the
COMMIT sub-phase rather than the PREPARE or FINALISE.

In COMMIT, a partial block proposer expects a commit message for the proposed partial
block from other quorum members to finalize the partial block Pk,l. Another point to con-
sider is the competitive partial block proposed, which produces O(σ2) in addition. Summing

185

Chapter 6

up we obtain O(2σ2) which we normalise to O(σ2).

Next is the time complexity for the algorithm. It is oriented around message passing and
validation until the majority threshold is reached. Considering the validation effort on each
partial block received for the ephemeral chain, we can represent it as O(ρ). We exclude
round change from intra-quorum and inter-quorum analysis as it needs to be dealt with
separately in the worst-case scenario of the liveness problem in the network.

6.1.1.2 Inter-Quorum Message Exchange

Next is the secondary phase of the protocol, where the full block Bk is finalized by the
block proposer and broadcasted to the entire network at scale. So the asymptotic message
complexity is O(K). The time complexity is O(ρ) as it is more of a validation effort to be
performed by the nodes on each partial block component of the block which is computa-
tionally costly.

6.1.1.3 Round Change

The Round Change message exchange happens in the case of blockchain ephemeral or
finalized remaining unprogressive until ξ timeout. In the round change finalize sub-phase,
there is a one-to-one communication between all the network members K for revising
the quorum organization. So the complexity is quadratic and quite expensive with O(K2).
Time complexity is more of O(1) since there is no heavy computation except for message
accumulation until the threshold is reached. A point to note is that the round change entails
a utilitarian message exchange which normally happens at the start of a new epoch.

6.1.1.4 Utilitarian Message Exchange

In contrast to earlier phases or sub-phases, the quorum message exchange or proposition
phase happening at the start or end of each epoch has a time complexity higher than the
message complexity. The heartbeat message exchange has an O(1) time complexity as it
is a simple message payload and O(K) communication complexity for delivering the mes-
sage to the consortium network. Message complexity for quorum proposition is O(K). To
understand the time complexity of the quorum proposition phase, we organize it as below
code steps, each with its time complexity as follows:

1. Calculation of Effective Utilitarian Score for recent epoch iterating Γ blocks where
each has ρ partial blocks in turn - O(Γρ)

2. Calculation of Active Peers calculated by interrogating the heart-beat storage for each
node - O(K)

3. Calculate the forgetting coefficient for each previous epoch concerning the current
epoch and apply it to the effective score for each node - O(ε)

4. Apply the fairness coefficient to each of the nodes based on its historical classification
- O(K)

5. Sorting of nodes based on Effective Score in descending order by iterating each node.

186

CUBA Evaluation

This is based on the adaptive merge sort algorithm available in the collections library
of Java - O(KlogK)

6. Classification of nodes based on Utilitarian score and rank - O(K)

7. Form Blacklist and suspend the malicious node if it is in very weak utilitarian list for
Z previous consecutive epochs - O(Z)

8. Form the ρ quorums with the classified nodes - O(K)

In the above list of steps, the dominant time complexity element we consider asymptotically
is O(KlogK).

6.1.1.5 Pipelining Effect on Protocol

In this section, we analyze the pipelining by changing our data structure of a Block Bk as
a set of {Pk,l...Pk,ρ} partial blocks. Also, having a differentiated ephemeral chain from the
finalized chain, we can progress to a round i+1 even if round i, i-1... is still being processed.
In avoiding the sequential execution of block processing, we can achieve an amortized set
of blocks in the queue to be eventually finalized without having a waiting time. But at
the end of an epoch, the progression of the round can only be possible if the last epoch is
filled up to the latest finalized block height. This is necessary as a quorum reorganization
is multidimensional based on the recent epoch, heartbeat, and a gradual view of historical
epochs. A finalized consistent state is necessary for quorum reorganization, but this is a
parameterized factor of deciding the frequency of epoch, which will be studied in detail
during experimental evaluation.

6.1.2 Consistency, Availability, and Partition Tolerance Analysis

This section applies the CUBA analysis through the Consistency, Availability, and Partition
Tolerance Theorem (CAP Theorem). The three fundamental properties to be respected by
any distributed system are discussed as follows:

• Network Partition Tolerance: It is a communication problem caused by message
delay or loss within a distributed system, and the system should continue to be func-
tional despite the issue.

• Consistency: All nodes in a distributed system should be synchronized, and data
should be replicated uniformly where a client should access the data from any node
as if it were a centralized system. In the case of blockchain, it should be resilient to
forks achieving total order and agreement.

• Availability: This property should ensure that if several nodes are faulty or down,
the client can retrieve the data without any issue, as the other nodes should act as
backup.

CAP Theorem states that the distributed system can achieve only two properties out of
these three. This can be explained by:

• No Availability (CP): In this case, the system favors consistency and partition tol-
erance over availability. When a partition occurs, the inconsistent node will be shut

187

Chapter 6

down, and the system will be unavailable.
• No Consistency (AP): Availability and Partition Tolerance are prioritized over con-
sistency here. When a partition occurs, the system is available, but the unsynchro-
nized slice of the system will reply with a stale version of the data.

• No Partition Tolerance (CA): As the previous two here, partition tolerance is com-
promised as the system favors consistency and availability, which cannot be achieved
in a partitioned network and cannot tolerate faults.

6.1.2.1 Misconception and CAP Revisited

There is a misconception with the CAP theorem as stated by Brewer, Eric [253] that the
system choice of CP, AP, and CA is not a binary choice of 2 out of 3. Still, it only limits cer-
tain aspects. It instead prohibits only "perfect availability" and consistency in the presence
of partitions. This implies the following:

• AP relax consistency but are not completely inconsistent.

• CP sacrifice has a tolerable availability and is not completely unavailable.

• So, it reveals that AP and CP systems can offer an acceptable level of consistency and
availability in the presence of partition tolerance.

An AP system can achieve best-effort consistency by adopting web caching or DNS to have
an intermediate consistency offering. Or, in the case of the CP system, it can be a best-effort
availability like Google Chubby service. So organizations like Facebook and DropBox adopt
eventual consistency instead of the strong consistency model to have a tradeoff between
Consistency, Availability, and Partition Tolerance. Strong Consistency ensures that the
same updated value is returned across the system after a state update. Eventual Consistency
guarantees that if no new updates are made to the state, then eventually, after a time δ we
can get the updated value.

Figure 6.1: CUBA CAP Analysis

We analyze the CUBA protocol to understand its limitations in line with the above per-
spective. CUBA works in an eventual synchrony model by progressing the epochs where

188

CUBA Evaluation

a new set of ρ quorums, each having σ members inside a quorum. As the progression of
the finalized chain is based on the block height and epoch, it is resistant to clock skew-
ness to an extent. But in case of unexpected anomalies of partial block fulfillment timeout,
full block fulfillment timeout, and round change timeout, the protocol depends on clock
synchronizations. This can lead to an intermittent liveness issue until the node recovers
within a global timeout δ. So essentially, our protocol cannot offer strong consistency but
an eventual consistency model. Also, in case of an extended liveness issue, a round change
is invoked where the quorums are reorganized, and failure nodes can be suspended for cer-
tain epochs rendering the network resilient. It is evident by the heart-beat message and the
inter-block time coefficient the utilitarian score can diminish the overall score of a failure
node. As Figure 6.1 shows, our protocol offers normal availability, eventual consistency,
and partition tolerance. Let us understand the protocol by the following questions:

• Why not high availability?
In the protocol, we can sustain until 2f + 1 node for f failure nodes in the overall
network as we need benign nodes to progress, or we would repeatedly fall to the
round-change phase. This makes the system reliant on the minimum 2f + 1 nodes
for safety and liveness to render the blockchain available normally. A highly available
system would be immune against any threshold of bad actors, which CUBA cannot
offer in our byzantine setting.

• Howdoes CUBA trade between partition tolerance and eventual consistency?
A blockchain protocol should mandatorily be partition tolerant either a priori like
PBFT [73] protocol where there is no possibility of forks. Or be tolerant aposteriori
like Clique, Aura protocol [213] which uses a fork resolution algorithm like GHOST
in addition to resolving the blockchain partitions. In CUBA, we avoid the presence
of forks as there is a checkpoint mechanism of quorum reorganization every epoch
interval, which detects the drift and auto-corrects to avoid the adverse scenario. Also,
in terms of multiple quorums, each limited to a particular index of the partial block,
the organization cannot create a long chain to produce a fork without consensus from
the benign participants. In addition, The intra-quorum phase has three sub-phases,
making it eventually consistent with an acceptable timeout. The corner case of more
than 2f + 1 malicious nodes can create a partition that renders the system prone to
byzantine failure, an acceptable limitation within the threshold.

6.1.3 Blockchain Scalability Trilemma Analysis

This principle states that any blockchain system can have at most two properties of the
following:

• Decentralization: All the nodes participating in the network will have the same
resource possession or authority level, such as validator.

• Scalability: It refers to the maximum participant in the network who are involved
in the consensus of transactions and their ability to scale in transaction processing.

• Security: It refers to the resistance of the node against attacks which depends on the
consensus protocol and majority threshold to control the network.

189

Chapter 6

To cite an example of Proof of Work, blockchains like Bitcoin or Ethereum [254] have scal-
ability and security properties but lack decentralization as nodes hold block mining with
high computational power. But layer 2 or sharding solutions can overcome this trilemma

Figure 6.2: CUBA Scalability Trilemma Analysis

limitation, which has all three properties. In our case for CUBA protocol, as represented in
Figure 6.2, we can arrive at a median satisfying the three concerns as follows:

• Scalability: CUBA protocol tackles scalability by the trilogy of pipelining, of the
blockchain data-structure change, and reduced communication complexity through
the quorum mechanism.

• Decentralisation: All the nodes can participate if it respects the utilitarian notion
through intra-quorum and inter-quorum consensus. Also, fairness to improve the
utilitarian score of a node is embedded in the protocol design and ensures the con-
sortium network of egalitarian participation.

• Security: As the quorum organization is revised at an interval of each epoch based
on a node’s contribution to the previous epochs, the mechanism of heart-beat, for-
getting coefficient, and fairness help in identifying the failure or malicious node in
the network. This is similar to a feedback loop system where the current or past state
determines future actions.

In summary, our CUBA consensus achieves a middle ground among the three vital metrics
of a blockchain protocol. This theoretical understanding will be further verified in the
future section during the experimental section discussion.

6.1.4 Utilitarian Fairness Evaluation
Fairness from the point of computer science was first studied by Francez, Nissim in the
context of concurrent or parallel systems, which can be extended to our blockchain protocol
similarly. CUBA protocol ensures fairness in its approach by the following mechanism:

• Fairness of Participation: Any node Ni where i ∈ {1...K} belonging to consortium
ζ can join the network and is not limited to any set of actions like the proposal of the
partial block, full block, quorum or validation. But it has diverse roles based on their
utilitarian score and probability of being selected based on the codepoint mechanism.
This ensures a fair decentralization with a uniform probability of occupying varied
roles and utilitarian levels at any block height of an epoch.

190

CUBA Evaluation

• Fairness of Resource: Any node has to keep a check on its virtual resource of util-
itarianism rather than any external asset-based resource like in Proof of Stake or
hardware dependence in case of Proof of Work. This directly influences the opti-
mization of the network, and no node is limited to giving its honest participation in
the network without any resource or asset-based biases.

• Fairness of Utilitarian Mechanism: All the nodes can achieve an egalitarian, util-
itarian score if it respects the voting conditions, signature, and heart-beat. Any node
cannot selfishly accumulate a utilitarian score and improve its position. Further, the
calculation of this score is decentralized and transparent, and each participant can
verify with the historical finalized blocks. Also, the Sisyphus forgetting coefficient
makes the system converge more towards recent actions with less influence on the
earlier disposition making it completely evolutionary and fair.

• Fairness of Classification and Recovery: Utilitarian classification mechanism as
Ideal Utilitarian, Utilitarian, Fair Utilitarian, and Weak Utilitarian is to enhance the
score of participants. Those with a relatively lower score are attributed a fairness
coefficient inversely to their rank and classification for each epoch. It helps the par-
ticipants in the lower range of Fair and Weak Utilitarians to gradually reach the level
of Ideal Utilitarianism if and only if they align with the optimization of the network.

6.1.5 Adverse Scenario Evaluation
In this section, we evaluate CUBA across broad contours of the system’s resilience against
probable adverse mechanisms. Our considerations for this section are:

1) We constrain ourselves to attacks intrinsic to blockchain and assume attacks at the
network level, infrastructure like DDoS, phishing, security key theft, and key cloning
to be solved by other standard mechanisms available.

2) We focus on the working of the consensus protocol abstracting the choice of signa-
tures, smart contracts, wallets, and other extraneous scenarios.

3) The threshold of honest nodes we assume is 2f + 1 for f dishonest nodes.

It is analyzed by considering the following cases:

• Case 1: Ineffective Participation In this attack, a certain set of nodes can abstain
from sending or passing messages or voting in intra-quorum or inter-quorum phases.
This can be detected based on the score calculation post the block finalization and
can lead to penalization of commit, heart-beat, and proposal, reducing the node’s
utilitarian rank. This leads to further node suspension, making the network resilient
at the start of the next epoch.

• Case 2: Berserk Nodes These nodes send different messages to different nodes,
which will be conflicting. This equivocation can be detected as we have a closed set
of quorum participants with a verification mechanism of the message received from
other nodes. Also, our protocol is not based on gossip or opinions about information,
but it’s a binary vote of acceptance or refusal for a particular block, making it resilient.
Reiterating the mechanism of the utilitarianism score augments the protocol to evade

191

Chapter 6

this case.

• Case 3: Partition Attack If we assume an intermittent partition less than the global
stabilization time of δ for an eventually synchronous network, then liveness can be
affected during that period. It leads to the exceptional scenario of round change if
the round timeout is exhausted and leads to a protocol operating within a set of live-
connected participants.

• Case 4: Threshold Breach In the case of more than 1/3 and less than 2/3 adverse
nodes, round changewill be initiated to reorganize the network. In the worst scenario
of more than 2/3 nodes, consensus will be impacted. The obtained quorum organiza-
tion will be ineffective and make the round change recursive, or the malicious blocks
will be finalized in the network.

• Case 5: Fork Handling The presence of forks can be handled with a partition of
fewer than 1/3 participants. It is the maximum threshold where a new Round Change
can proceed to reorganize the quorum or the protocol is stalled until the partition is
reinstated. In the case of an acceptable fork within a range of 1/3 participants, then
we assume two partitions created as P1 and P2. P1 partition is assumed to contain
2/3 members, and P2 will have the remaining participants. P1 will proceed with a
round change and new quorum evolution. P2 will not be able to proceed as it lacks
the minimum threshold of participants to proceed and will join the network in the
future epoch if the partition is resolved by that time.

We extend the study on the security of CUBA protocol by implementing them in the sim-
ulator. We perform the empirical analysis to ascertain the immunity level of the protocol
and test its optimization through network evolution.

6.2 Experimental Evaluation
In this section, we investigate the CUBA protocol across a broad spectrum of scenarios
which we discuss utilizing simulation results. We analyze the protocol in each situation
and derive its key metrics regarding performance, quorum organization, node evolution,
and utilitarian score impact.

6.2.1 CUBA Protocol Parameterisation
This section involves the list of CUBA protocol parameters that we set by default in our
simulation analysis as listed in Table:6.1.

6.2.2 Methodology
We inherit the same methodology to test our simulator concerning classical algorithms of
Clique, PBFT, IBFT, and QBFT as explained earlier in Chapter 4. We test the performance
of the CUBA protocol by scaling the participating node count in a pattern of 5, 10, 15, 20,
and 25 by measuring its throughput in transactions per second. We also observe the other
metrics of the utilitarian score during the test to gauge the evolutionary aspects of the
consensus. Code Implementation of the blockchain simulator for CUBA and CUBA Implicit,

192

CUBA Evaluation

Notation Parameter Value

PB_Proposal_win PartialBlock_Proposal_Win_ScoreUnit 0.5
PB_Commit_win PartialBlock_Commit_Win_ScoreUnit 0.3
HB_Score_win HeartBeat_Win_ScoreUnit 0.1
PB_Proposal_loss PartialBlock_Proposal_Loss_ScoreUnit 0.3
PB_Commit_loss PartialBlock_Commit_Loss_ScoreUnit 0.3
M_Score Malicious_ScoreUnit 0.5
HB_Score_loss HeartBeat_Loss_ScoreUnit 0.1
IUsc Ideal_Utilitarians_ScoreFairnessCoefficient 0
Usc Utilitarians_ScoreFairnessCoefficient 0.05
FUsc Fair_Utilitarians_ScoreFairnessCoefficient 0.1
WUsc Weak_Utilitarians_ScoreFairnessCoefficient 0.15
Full_κ Full_Block_Size 2000
ξ Round_Change_TimeOut 60 seconds
∆ Ephemeral_State_TimeOut 5 seconds
η Finalised_State_TimeOut 5 seconds
θ HeartBeat_Frequency 5 seconds
Z SuspensionEpoch_Depth 5
c Assign Transaction to a Quorum Codepoint position 5
c1 Partial Block Proposer Codepoint position 2
c2 Partial Block Competitor Codepoint position 6
c3 Partial Block Finaliser Codepoint position 3
c4 Partial Block Fulfiller Codepoint position 8
c5 Block Proposer Codepoint position 6
c6 Block Fulfiller Codepoint position 5
c7 Quorum Proposer Codepoint position 4
c8 Round Change Proposer Codepoint position 7

Table 6.1: CUBA Protocol Parameters

along with cloud deployment of Kubernetes, transaction clients, docker configuration files,
simulation result visualizer, and test results, are released publicly in the GitHub repository:
https://github.com/scyrilnaves/these-cuba

6.2.3 Infrastructure

The CUBA simulation test infrastructure is identical to the previous simulation test of clas-
sical consensus protocols, as explained in Chapter 4. We use the CUBA docker image of the
implementation discussed in the previous chapter 5 for our container.

193

https://github.com/scyrilnaves/these-cuba

Chapter 6

6.2.4 Result Discussions

In this section, we focus on the experimental evaluation through varied scenarios. These
scenarios are chosen to interrogate the CUBA system and understand its improvements and
limitations.

6.2.4.1 What can be the optimum epoch limit for network self-optimization?

Figure 6.3: CUBA Epoch Limit Analysis

In this scenario, we vary the epoch duration of the CUBA protocol, which in turn affects
the quorum reorganization frequency, a quite heavy operation in terms of time complexity
for a chosen node to be the quorum proposer. Meanwhile, node scalability is increased
gradually from 5 nodes to 25 nodes across the epoch change, and throughput is measured.
The number of quorums is maintained at a minimum of 2 uniformly throughout the test.
This is chosen because it is the best communication configuration when considering inter-
quorum consensus messages. The remaining CUBA network configurations are marked as
annotations in Figure 6.3 representing the results obtained during this test scenario. The
epoch variations performance are analyzed as follows:

• No Epoch Change: This has the least performance as the quorum optimization does
not take place, and if the node fails, it can lead to an unstable network without scope
for the evolution of the network for good.

• 10 Block Epoch Change: This test has an epoch change every 10 blocks, which is
computationally expensive as discussed in 6.1.1.4. So the gain due to optimization is

194

CUBA Evaluation

neutralized by the equally high computation cost, which is not a wise choice. More-
over, the nodes are fairly honest and don’t have a short frequency of epoch evolution.

• 25 Block Epoch Change: In this analysis, a 25-block epoch change is more optimal
than the former.

All nodes experience a drop due to increasing nodes which is more drastic after 15 nodes
due to increasing message complexity. But this scalability drop will be further optimized
as we are in the exploratory phase to choose the right configuration.

6.2.4.2 What is the heuristic for choosing the number of quorums?

Figure 6.4: CUBA Quorum Member Limit Analysis

The next important configuration choice we need to understand is the heuristic of the num-
ber of quorums ρ, which is inversely proportional to each quorum size σ. We maintain the
configuration as represented in Figure 6.4. The Epoch limit Γ is set to 25 blocks, as we have
noticed it is an optimal configuration from the previous results. Quorum choice is based on
two factors as below:

• Similar to the consensus protocol related to quorums [95, 256] when the number of
quorum members increases, it increases the failure tolerance or liveness.

• In our CUBA protocol, the intra-quorum phase has a relatively higher communication
complexity sub-phases than the inter-quorum. Increasing the quorum size, on the one
hand, can increase the resilience of the protocol but can degrade the much-needed
lighter communication.

195

Chapter 6

As represented in Figure 6.4 we notice that we test the different number of quorum patterns
across increasing nodes to evaluate their performance. In the case of fewer nodes, the
number of quorums being 2& 3 has higher performance as it is a small network such that the
intra-quorum phase has less impact. But in case of a higher number of nodes starting from
15 nodes, the Number of Quorums = 4 & 5 has higher performance than others. For large
participation configurations like 20 & 25 nodes, the scalability is optimized by choosing a
relatively equivalent value of Quorum = 7 & 8 configurations. So based on these results, we
infer the following:

Number of Quorums 1/ ∝ Quorum Size
Quorum Size ∝ Liveness or Fault Tolerance in Network

Quorum Size ∝ Size of Network
Quorum Size 1/ ∝ Communication Complexity

6.2.4.3 Can the network topology have an effect on the CUBA protocol?

As explained earlier in Chapter 4, we have built our simulator to construct different topolo-
gies of peer-to-peer networks like Mesh, Lattice, or Watts-Strogatz model. The commu-
nication influence for these different topologies and their configuration parameters are
presented in Figure 6.5. The epoch change is maintained at 25 blocks, and the number
of Quorums is chosen to be 5, an acceptable figure between liveness and communication
complexity. Its results are discussed as follows:

• Mesh Topology is relatively better than lattice in the case of 10 and 15 nodes and
scales down from 20 nodes. The initial gain is due to direct connection, but when the
network size increases, the gain is minimized due to socket connection overload for
receiving and sending messages.

• Between Lattice and Watts-Strogatz, the latter performs better due to the shorter
average distance between nodes.

• For comparing a large network size homogeneously, we notice that Watts-Strogatz
is better than mesh or lattice as the distance is shortened due to the lesser load on
socket communication.

Although Watts-Strogatz represents an ideal picturization of any blockchain network, we
will maintain ourselves to mesh topology for further evaluation. Our protocol is designed
for a consortiumnetworkwithmore or less optimized network communicationmesh ensur-
ing that the nodes are closely connected. An additional reason for mesh is the introduction
of fault nodes advertently during our evaluation which might hamper the communication
and bring in a cascading effect of latency to other nodes.

6.2.4.4 How effective is the protocol resistant to Node failures?

In the previous section, we were able to decide the fundamental factors in the CUBA pro-
tocol of Epoch Limit, Number of Quorums, and the Network Topology. In this section, we
perform the empirical analysis more profoundly on how our network is resilient to attack
scenarios, tolerant levels, utilitarian score evolution, and how it performs the much-needed
network evolution for optimization.

196

CUBA Evaluation

Figure 6.5: CUBA Network Type Analysis

6.2.4.4.1 Case1: Benign Normal Scenario In this scenario, we have a network that is
comprised of only honest nodes, but they can be prone to benign or unconscious failure.
As represented in Figure 6.6 we test a network of 10 nodes with 2 Quorums. There is an
observable ascent in terms of throughput until 60 seconds, and then we notice a drop and
stabilization. The reason for the intermittent drop can be explained with Figure 6.7, which
denotes the actual effective utilitarian score calculated by the CUBA protocol during the
test run. We notice that the least performing nodes are node 3 and node 8. This can be
further drilled down in Figures 6.8 and 6.9, which present the partial block score win and
loss utilitarian score, respectively. As noticed, their scores have deteriorated as they have
missed proposing partial blocks in several consensus rounds. This is similar to the case of
missed commit votes for the partial blocks relatively higher than others as in Figure 6.13.
While the heart-beat score representation in Figure 6.12 for all the nodes is more or less
equivalent with no major incident. As represented in the utilitarian classification of Figure
6.13, we notice the genuine failure of nodes 3 and 8 due to their partial block competition
loss.

In the utilitarian classification of Figure 6.13, we analyze that node 0 is in the initial Weak
Utilitarian phase. Still, due to sustained recovery, it can achieve utilitarian classification at
the end of Epoch 10. On the contrary, node 3 descends from utilitarian to weak utilitarian,
which is explained by the reason for the missed partial block and commit score. As ob-
served in Figures 6.10 and 6.11 for commit utilitarian and missed commit utilitarian, node
3 has a low score in the positive sense and high in the negative sense which explains its
faulty nature. Nodes 4, 7, and 8 have relatively balanced progress between Ideal Utilitarian,

197

Chapter 6

Figure 6.6: Case1: CUBA Normal Benign Node Performance

Figure 6.7: Case1: CUBA Benign Effective Utilitarian

Fair Utilitarian, and Weak Utilitarian levels, representing a constant evolution in propor-
tion to their positive or negative actions. In conclusion, we can verify during the test that
every utilitarian action missed or performed has a direct reflection on the network and its
individual score.

6.2.4.4.2 Case2: Benign Latency Scenario In this scenario, we introduce the honest
node network, but we introduce communication latency of 100 milliseconds for 3 Nodes
of Node 7, 8, and 9, both in their send and receive functions. This delays their consensus

198

CUBA Evaluation

Figure 6.8: Case1: CUBA Benign Partial Block Utilitarian

Figure 6.9: Case1: CUBA Benign Missed Partial Block Utilitarian

Figure 6.10: Case1:CUBA Benign Commit Utilitarian

199

Chapter 6

Figure 6.11: Case1: CUBA Benign Missed Commit Utilitarian

Figure 6.12: Case1: CUBA Benign Heart Beat Utilitarian

messages and the message it relays to other nodes in the peer-to-peer network of 10 nodes.
We do not picture this as an adverse scenario. Still, the CUBA protocol will identify and
classify the nodes inflicting this delay as in their performance represented in Figure 6.14,
which degrades the throughput more than the former test result on total benign nodes.
The plot shows a relatively slower ascent until 2900 transactions per second and stabilizes
around 2200.

This network performance can be explained by the Figures 6.15 on Effective Utilitarian,
which demarcates the Node 7,8,9 due to their latency introduction in the network. Com-
plementary evidence is produced by Figure 6.16 on missed partial block and by Figure 6.17
on missed commit utilitarian score respectively. Failure to respond to the message in time,
delays the consecutive actions for the nodes, in turn delaying the consensus. The Utilitar-
ian classification as in Figure 6.18 marks these nodes between theWeak and Fair Utilitarian
levels prone to network suspension. In an ideal case, we keep the epoch suspension period
to 1 epoch as we assume it is a friendly consortium network. Still, we can increase it to
higher periods of suspension if needed, as it is parameterizable.

200

CUBA Evaluation

Figure 6.13: Case1: CUBA Normal Benign Node Utilitarian Classification

Figure 6.14: Case2: CUBA Normal Benign Latency Node Performance

6.2.4.4.3 Case3: Malicious Partial Block Latency Scenario In this scenario, we ana-
lyzed the CUBA protocol for malicious partial block proposal during the finalized sub-phase
of intra-quorum consensus formed out of compromised signatures by Nodes 7, 8, and 9 and
an additional latency of 200 milliseconds individually. Its performance is represented in
Figure 6.19 where there is a slower rise to the plateau, around 1500 - 1600 transactions
per second. This is a more perilous behavior as it severely degrades the system due to the
unfilled ephemeral chain impacting the finalized chain. As this is a voluntary sustained
malicious action, it is delineated clearly in Figure 6.21 on Effective Utilitarian and Figure
6.23 on Missed Partial Block. The Malicious Utilitarian score marks the action of Nodes 7,8,
and 9 in Figure 6.22. Only Nodes 7, 8, and 9 have their malicious score filled due to their

201

Chapter 6

Figure 6.15: Case2: CUBA Latency Effective Utilitarian

Figure 6.16: Case2: CUBA Latency Missed Partial Block

solo action of producing malicious partial blocks, while other nodes are honest. This is also
further evidenced in the case of Figure 6.24 where Nodes 7, 8, and 9 have a high negative
score of missed commit utilitarian by their conscious malicious behavior. This purported
behavior affects their classification as they are suspended for 1 epoch and continuously
hover between weak and fair utilitarian. Apart from these nodes, Node 4 progresses from
a Weak Utilitarian to an Ideal Utilitarian and Node 0 from a Fair to an Ideal Utilitarian due
to the fairness in the CUBA protocol.

6.2.4.4.4 Case4: Malicious Full Block Latency Scenario Next is a lighter but rela-
tively impacting adverse action by the proposal of malicious Full Block during the inter-
quorum phase by Node 7, 8, and 9 and a communication latency of 200 milliseconds. Its
performance is represented in Figure 6.25 where a V-shaped recovery of around 2000 trans-

202

CUBA Evaluation

Figure 6.17: Case2: CUBA Latency Missed Commit Utilitarian

Figure 6.18: Case3: CUBA Normal Benign Latency Node Utilitarian Classification

actions per second is noticed due to the counterbalancing action by the Block fulfilled,
which is chosen to replace a full block index at fixed intervals. Similar to the previous
adverse scenarios, the Nodes 7, 8, and 9 are affected in their Figure 6.26 on Effective Utili-
tarian, Figures 6.27 and 6.28 by due to their malicious as well as latency behavior. Malicious
action is represented in Figure 6.29 for Nodes 7, 8, and 9 by their dual negative actions of
malicious full block and latency.

Regarding Utilitarian classification represented in Figure 6.30, the nodes 7, 8, and 9 lie in
their least range of Weak Utilitarian and get suspended for 1 Epoch. In contrast, Nodes 0
and 4 can progress from Fair Utilitarian to Utilitarian level, which is a positive factor. In
the result comparison of both the malicious scenarios of partial block during Intra-Quorum
consensus in Figure 6.14 versus Full block during Inter-Quorum phase in Figure 6.19, we

203

Chapter 6

Figure 6.19: Case3: CUBA Malicious Partial Block Latency Node Performance

Figure 6.20: Case3: CUBA Malicious Partial Block Latency Node Utilitarian Classification

observe the influence of failure of partial blocks degrading the performance to be more.
The higher penalization of the consensus throughput is more in the former as it is a vital
unit in the blockchain that can break the ephemeral chain. The proposal of a finalized ma-
licious partial block at the end of 3 sub-phases makes the previous 2 sub-phases of Propose
and Commit with 2/3rd of quorum votes received for the partial block round consensus
futile. But in the case of a full block, it is a single sub-phase of the proposition that can be
compensated discreetly by a block fulfiller.

6.2.4.4.5 Case5: Berserk Malicious Full Block Latency Scenario Next, we measure
the resilience of CUBA for the Berserk node behavior of Nodes 7, 8, and 9. We design
the berserk malicious behavior in the form of sinusoidal frequency where they propose a
malicious full block and add latency of 200 milliseconds in the range of 50-100 and 150-200

204

CUBA Evaluation

Figure 6.21: Case3: CUBA Malicious Partial Block Effective Utilitarian

Figure 6.22: Case3: CUBA Malicious Partial Block Malicious Utilitarian

block heights, and for the remaining intervals of 0-50, 100-150, 200-250 they remain honest
as represented in Figure 6.31.

As noted in their throughput performance in Figure 6.31, we have a period of crests and
troughs indicated by the period of honesty and dishonesty. As expected, we have a sinu-
soidal effect of Nodes 7, 8 and 9 on their utilitarian score as represented in Figure 6.33 for
Effective Utilitarian, Figure 6.34 for missed partial block, Figure 6.35 for missed commit and
Figure 6.36 for a malicious full block.

In the representation of Utilitarian classification as in Figure 6.37, we see that despite other
scores having a sine wave effect, the Nodes 7, 8, and 9 are always in the lower Weak or Fair
Utilitarian and are unable to conceal their activity easily despite their intermittentmalicious
action. This points out the resilience of the protocol and the capability of it to identify

205

Chapter 6

Figure 6.23: Case3: CUBA Malicious Missed Partial Block Utilitarian

Figure 6.24: Case3: CUBA Malicious Partial Block Missed Commit Utilitarian

and suspend a bad actor. In comparison to the continuous malicious behavior throughput
performance as in Figure 6.25 versus the berserk or sine behavior performance in Figure
6.32, the latter has a slightly higher performance as dishonesty is intermittent. Still, the
CUBA identifies the weak utilitarians to optimize the network.

6.2.4.5 How is the performance of CUBA Implicit Variant?

This section tests the alternative variant we proposed in the previous chapter as part of our
protocol definition of CUBA Implicit in Section 5.3.2.3.2. Its performance is identified in
Figure 6.38, where we compare the vanilla CUBA protocol against the implicit variant of
fully honest nodes.

As implied by the throughput performance analysis in Figure 6.38 we notice a slight per-

206

CUBA Evaluation

Figure 6.25: Case4: CUBA Malicious Full Block Latency Node Performance

Figure 6.26: Case4: CUBA Malicious Full Block Latency Effective Utilitarian

formance improvement in the variant. The following factors can explain this:

• Implicit Variant reduces the Intra-Quorum communication sub-phases from PRO-
POSE, COMMIT, and FINALISE to a single FINALISE sub-phase broadcasted to the
Intra-Quorum members. This implicit enveloping of the three sub-phases by a single
sub-phase reduces communication complexity to O(K).

• Advantage of lesser communication bottleneck affects the synchronization and live-
ness as discussed earlier in Section 5.3.2.3.2, which is a tradeoff factor.

• As noticed in Figure 6.38, the difference in performance gain widens as we measure it

207

Chapter 6

Figure 6.27: Case4: CUBA Malicious Full Block Latency Missed Partial Block Utilitarian

Figure 6.28: Case4: CUBA Malicious Full Block Latency Missed Commit Utilitarian

relative to the scalability of nodes which increases the magnitude of communication
bottleneck higher for CUBA vanilla compared to the Implicit variant.

6.2.4.6 Distributed Denial of Service

Distributed Denial of Service (DDOS) Attacks are considered in this work at all levels from
the network level implementation to the CUBA consensus level. CUBA can be resistant to
this attack by adopting an intrinsic solution based on the Utilitarian score to identify the
compromised node participant. Also since our transaction processing involves codepoint
operation to assign transactions to a particular Quorum it acts as a limiting factor to the
incoming transaction messages. Further, our consortium network of verified participants
acts as an authentication mechanism to avoid any anonymous unverified transactions. A

208

CUBA Evaluation

Figure 6.29: Case4: CUBA Malicious Full Block Latency Malicious Utilitarian

Figure 6.30: Case4: CUBA Malicious Full Block Latency Node Utilitarian Classification

more extrinsic solution can be extended at the network level [257] like traffic filtering, rate
limiting, or Anycast technologies. The following techniques can be adapted to be DDOS
resilient:

• Rate Limiting: to restrict the number of requests a user or IP address can request.

• Traffic Filtering: Firewall, Intrusion prevention system.

• Loadbalancing / Anycast DNS: Distribute incoming traffic across multiple servers or
nodes

• Utilitarian tracking: Based on individual identification can be disincentivized from

209

Chapter 6

Figure 6.31: Case5: CUBA Malicious Full Block Berserk Behaviour

Figure 6.32: Case5: CUBA Malicious Full Block Berserk Behaviour Performance

issuing transactions

• Smart Contract Based systems: To blacklist IPs which aim to sabotage the network
by emission of transactions

The processing of transactions is based on Mempool as represented in Figure: 6.39 where
multiple threads in parallel are created for Transaction Message Pool, Commit, Propose,
Finalise, and Full Block Message Pool. It aims to utilize the memory pool for faster and in-
dependent processing of different consensus message transactions. Also, the check for du-
plicate messages when processing the transaction in the data structure volatile Map<String,
CopyOnWriteArrayList<String» proposeMessagePool corresponding to the block or mes-
sage hash avoids the creation of transaction bottleneck and transaction queue overflow.

210

CUBA Evaluation

Figure 6.33: Case5: CUBA Malicious Full Block Berserk Behaviour Effective Utilitarian

Figure 6.34: Case5: CUBA Malicious Full Block Berserk Behaviour Missed Partial Block
Utilitarian

6.2.5 Overall Classical BFT Comparison

We compare the CUBA protocol’s throughput performance, utilitarian evolution, and re-
silience of the protocol through our previous experimental evaluations against the classical
consensus simulation performed in Chapter 4 and Section 4.2.3. We represent the results in
a consolidated Figure 6.40, which compares CUBA along with its implicit variant and other
classical BFT algorithms simulated of Clique, IBFT, PBFT, and QBFT. The analysis can be
discussed as follows:

• Clique shows a relatively smooth drop in scalability but not a steep drop, as it’s more
of a proposed block propagated to the entire network. But this single phase can
introduce the presence of forks if there is a noticeable latency in the network [258,

211

Chapter 6

Figure 6.35: Case5: CUBAMalicious Full Block Berserk Behaviour Missed Commit Utilitar-
ian

Figure 6.36: Case5: CUBA Malicious Full Block Berserk Behaviour Malicious Utilitarian

158].

• PBFT with 4 phases of PRE-PREPARE, PREPARE, COMMIT, and ROUND CHANGE
augments the message complexity proportional to the number of nodes.

• IBFT is a phase-reduced version of PBFT with PREPARE, COMMIT, and ROUND
CHANGE. Round change occurs only in case of a liveness issue, which is better than
PBFT but can be prone to duplicate block propositions at the same height. This issue
is already acknowledged [259] and needs to be solved by block locking.

• QBFT is similar to IBFT but scales better as the block-locking mechanism is removed
and replaced by selective round change.

212

CUBA Evaluation

Figure 6.37: Case5: CUBA Malicious Full Block Berserk Behaviour Node Utilitarian Classi-
fication

Figure 6.38: CUBA Implicit Variant Analysis

• CUBA Vanilla performs more than its BFT protocol peers except for Clique. Clique
is a single-phase consensus algorithm that has the problems of Forks, Chain Incon-
sistency, lacks chain finality, and is prone to network deadlock, as we noticed in our
previous tests of the Data certification use-case as well as through simulation.

Moreover, the idea of designing Clique as specified by the Geth Ethereum Team is
towards Kovan or Rinkeby test-net for faster block processing and testing the smart
contracts faster before deploying in main-net Ethereum networks. It doesn’t assure
the same properties of a classical BFT algorithm of Consistency, Availability, or Par-
tition Tolerance.

CUBA protocol offers security and resilience against malicious actors by evolving

213

Chapter 6

Figure 6.39: CUBA Distributed Denial of Service

Figure 6.40: CUBA Overall Comparison Analysis

214

CUBA Evaluation

its network, which is not the same case for Clique as it cannot handle attacks. So a
direct comparison between CUBA, CUBA Implicit versus Clique cannot be done only
in terms of performance throughput. As noticed, CUBA for 15 Nodes, sustains the
throughput performance for 6 Quorums but slips around 2000 at the same setting.
This is relatively better than PBFT, IBFT, and QBFT.

• CUBA implicit variant performs close to Clique and can offer finality but can suffer
synchronization issues which we discussed earlier, but still considerable if we can
guarantee network performance, especially for fiable consortium networks, as this is
more of an intrinsic requirement and can be obtained rather than protocols dependent
on extrinsic Token Assets or Hardware requirements.

6.3 CUBA amongst recent BFT consensus protocols
In this section, we compare how CUBA fares in the universe of BFT consensus protocols
where there is no shortage of contributions by the computing sorority or fraternity. In
the earlier section on Overall comparison 6.2, we considered the classical BFT protocols of
PBFT, IBFT, QBFT, and Clique. We conclude by comparing the recent works in the field of
BFT consensus protocol innovation to understand the position of CUBA in the landscape.
We analyze and compare our work’s results against the results of recent works. It may
not be an ideal comparison, but we would like to acknowledge the recent innovations to
improve our observations. It is discussed as follows:

• HotStuff [83] is well known for its linear message communication using a thresh-
old signature scheme and solves the hidden lock problem. Hidden lock is a liveness
problem where a leader doesn’t wait for all honest nodes’ responses to get the proper
highest lock. It is solved by adding a precursor round to the view change. It operates
in phases of Prepare, Prepare-Commit, Commit, and Decide with a view change. Its
view change is linear, but in the case of adverse conditions, it needs extra rounds to
finalize the correct value, which makes it quadratic.

In comparison to CUBA, HotStuff has a higher throughput and scalability perfor-
mance. Still, the test results seem to be Kops /sec, translating to operations per sec-
ond as per our assumption. This differentiates how we measure our performance as
transactions per second finalized by block construction. The idea of linear communi-
cation through threshold signature is also a step we have placed in our future works.
However adopting threshold signatures can add a bottleneck, as decoding the signa-
ture message for each individual node is expensive. This protocol doesn’t address the
resilience against malicious attacks as experimented in our CUBA consensus.

• MirBFT [94] is another innovation in the case of BFT protocols which allows parallel
leaders simultaneously and avoids duplicate transactions through hash space division
buckets. It gives an intuition for parallelizing the block creation, which is otherwise
sequential with monolithic processing. CUBA handles the acceleration of the trans-
action processing differently: pipelining, hash codepoint sortition of a transaction,
and multiple quorums. It has a throughput of 60000+ req/secs, similar to Bitcoin-like
transactions, which is quite appreciable.

215

Chapter 6

But when we reflected on CUBA for change in the data structure as partial blocks
agglomerated to blocks divided into an ephemeral and finalized chain, we stumbled
the chain creation as the primary bottleneck in parallelization. As the chain of the
previous block is necessary to form the interconnection for future blocks, it cannot
be finalized until its precedent is finalized. We are not sure if the implementation and
evaluation of this protocol were considered during their design with the inclusion of
adversarial resilience. It is always the case for Chained-BFT protocols like HotStuff
or Streamlet, which is somewhat relaxed in the case of Directed Acyclic Graph (DAG)
based Distributed Ledgers [260] to be discussed in the next section.

• GOSIG [231] is a scalable BFT protocol that capitalizes on a gossiping network to
broadcast the block in each round. Multiple blocks are passed by gossiping onto the
network for a round, and the block accumulating the required signature is deemed
finalized. This is an alternative way to lighten the communication in BFT protocol
which depends on a single leader to collate the votes and perform the consensus or-
chestration, causing a bottleneck. They use the Verifiable Random function to choose
the block proposer, making it unpredictable for an attacker to target a node. They rely
on signature aggregation for vote collection during consensus like earlier protocols
which can be a cryptographic overhead we need to evaluate before considering for
CUBA. They apply a version of transmission pipelining to gather signatures or votes
on the block headers before even receiving the actual blocks. They have an impressive
throughput of 3000 transactions per second for 5000 nodes.

It relies on gossip, which we can consider for CUBA but can lead to two pitfalls as
conflicting blocks can be finalized for a single round, especially in the case of their
pipelining feature. Also, gossiping can lead to redundancy of message communica-
tion which might impact the throughput, which we try to solve by displacing leader-
based protocols. Another observation in the case of a network partition is what would
be the fallback of gossip protocols for eclipse attacks when attackers mask a node’s
view for selfish benefits.

• Round-based DAG BFT Protocols: Directed Acyclic Graph-based consensus has
been chosen to replace the fundamental blockchain-based consensus for faster through-
put and finality of transactions. We consider several protocols closely related to each
other as they all operate in round-based DAG. These are Aleph [261], DAG-Rider,
Narwhal, and Tusk [262], Bullshark [263].

In the case of Narwhal and Tusk [262], a mempool structure seeks to parallelize the
transaction processing. Each node has a set of workers and primary. Each worker has
a unique transaction to process and communicates with a similar worker from other
nodes for consensus. If there are n workers in a single node, it communicates with
n workers for different nodes to perform a parallelized consensus. Each worker, in
parallel, transmits its data digest to the primary, which interacts with the primary of
other nodes. The primary broadcasts the final digest and collects its certificate from
other primaries, leading to construction in the form of DAG. Then a leader is elected
based on a random coin for a round and interprets the causal order locally. A block
is considered finalized if it has 2f + 1 certificates and all the other associated blocks
are also completed. All this is done locally for zero message communication which is

216

CUBA Evaluation

quite efficient. Aleph and Bullshark perform this local interpretation as well.

Narhwal achieves a throughput of 130000 transactions per second, Bullshark around
125000 transactions per second, which is relatively high but has some drawbacks,
as acknowledged by the protocol developers. It cannot distinguish between honest
and dishonest who delay the system by adding latency inadvertently, which is a pit-
fall. Also, a client needs to resubmit the transaction as in DAG there is a high risk
of losing if the transaction processed does not fall in a data unit that has high cer-
tificate attestations. Narhwal relies on inter-process communication between worker
threads, which makes retrieving transaction data in case they are lost cumbersome
and expensive. Lastly, these protocols require a transaction engine as efficient as the
protocol to be developed in the future. DAG system also has a problem with account
maintenance of nodes, and conflicting transactions are difficult to counter and costly
as we need to traverse the entire graph again.

• CAROUSEL [264] is a BFT protocol with about 70000 transactions per second, im-
proving the leader selection process during the consensus. It tends to avoid crashed
leaders in a crash-only execution system. Assuming the protocol operates in round
r− 1, r, and so forth, selecting a leader for round r should be based on the condition
they should have endorsed in the preceding round r − 1. But among this selection,
they remove f latest leaders of the committed blocks to avoid the byzantine actors.
This achieves leader utilization, which limits fault leaders being chosen in the net-
work and improves the chain quality, which minimizes the byzantine blocks on the
chain.

CUBA has a different methodology to reach the goal of leader utilization and chain
quality by measuring the utilitarian score from all distinct actions in the previous
round and throughout the chain’s history with a Sisyphus forgetting and fairness
coefficient.

6.4 Future Work
We propose in this section certain skeletal mutations for CUBA in the future, which we
have considered for now. They are listed as follows:

• Dynamic Quorum Size: BFT protocol literature community constantly desires to
improve the overhead of message communication [265]. In line with this, CUBA is no
exception which can be achieved by having active quorum participation. Assuming
that our network has ρ quorums in the network at any given Epoch E, then at any
time during the epoch, we can allot ρ/A where A ∈ N which is a set of natural
numbers. This allows a sub-sample quorum out of ρ quorum members to participate
for certain block intervals and then choose a new set of active quorums. This is quite
intuitive in lessening message communication as it can randomize selection while
having the inherent BFT properties of CUBA.

• Utilitarian Weightage Assignation: Each finalized block carries an effective utili-
tarian score attributed to the participant after the finalization. This effective score can
be accumulated to calculate the total effective utilitarian of the chain. It can help in

217

Chapter 6

resolving forks similar to GHOST [89] protocol where arbitrary weights are applied.
Also, the utilitarian score can add weight or credibility to a consensus message for
a lighter verification system, bypassing the mandatory checks that are repetitive for
faster processing.

• Optimised Selection of Proposers: Since, in CUBA, each participant has a utili-
tarian score which one gains during the consensus process and the choice of partial
block proposer, competitive partial block proposer, quorum proposer, fulfiller is inde-
pendent of one’s score. It is based on the codepoint of hash in the current proposition,
which can be combined with the utilitarian score to choose from certain whitelisted
members with a higher network score. It is to be at the cost of fairness but can be an
optimization factor.

• Linear Authenticator Complexity: In a work by Zhang, Yupu and Dragga, Chris
and Arpaci-Dusseau, Andrea and Arpaci-Dusseau, Remzi [267] they propose the no-
tion of no commit proofs. This improves the Authenticator Complexity, which cal-
culates the number of signatures or votes needed for single-phase finalization. They
apply this to the view change phase of their consensus protocol Wendy and on Hot-
Stuff, making it linear. In the normal case of HotStuff [83], the view change is linear,
assuming non-byzantine actors who do not consider false positive Quorum Certifi-
cates (QC) and choose the highest value arbitrarily. But this is an ideal case, and it
falls back to quadratic complexity, which the authors improve by encoding the QC
as a single data structure that needs a linear authenticator for a phase. It is done by
performing a BLS Multi-Signature [268] on the difference of QC. Since in CUBA, we
perform parallel finalization of multiple blocks, and we can combine different mes-
sages across different block heights from a single validator to lighten the message
payload in the network. Any validator can then decode this to retrieve the unit of
messages to apply each in their particular block height.

• Fairness of Ordering: In BFT protocols like PBFT or CUBA, we have a receive or-
der fairness which does not apply any specific ordering protocol on the transactions.
This usually depends on the leader who receives the transaction, and the network
assumes it to be the order. In the work of Kelkar et al. [269], the authors propose a
partial synchronous leader-based BFT protocol that performs order agreement on the
transactions. It consists of the Gossip, Agreement, and Finalisation stage in ordering
the transaction. It is done by each node broadcasting a partial graph of its own causal
view on transaction order to a leader. The leader then receives the partial graph from
a unified transaction order graph. In the case of cyclicity or Condorcet paradox [270]
in the graph, the strongly connected components are separated, and it is resolved.
We can apply the same construct to the CUBA protocol to order the transaction in
the partial block among the quorum members by the partial block proposer or final-
izer. This can bring a canonical order to the transaction, rendering it more robust for
financial applications.

218

CUBA Evaluation

6.5 Conclusion
This chapter evaluated the Contesting Utilitarian Byzantine Agreement (CUBA) protocol
from a multi-dimensional theoretical and experimental metrics perspective. We analyze
each phase of the algorithm based on the CAP theorem, Scalability Trilemma, Fairness,
and adverse scenarios. We further investigated the experimental implementation in a pub-
lic cloud environment and measured its scalability and resilience with simulated adverse
conditions. We compared the results bench-marked against classical protocols and the re-
cent state-of-the-art BFT protocols with promising results and improvisations. The CUBA
protocol can be concluded that in an ideal quorum-to-member ratio, it shows a more ac-
ceptable scalability condition with the recovery due to quorum optimization at the end of
each epoch. In the case of advertent behavior, as discussed earlier, the nodes can ensure
resilience by ensuing suspension, reorganizing the network, and ensuring the liveness as
well as the performance of the network.

219

Chapter 6

220

Chapter 7

Conclusion and Perspectives

The beginning of wisdom is found in
doubting; by doubting, we come to the
question, and by seeking, we may come
upon the truth.

– Pierre Abélard

7.1 Conclusion . 222
7.2 Perspectives . 224
7.3 Overall Analysis . 225

In this chapter, we analyze our thesis work from the perspective of strengths and oppor-
tunities to conclude our work and suggest future directions that might enrich the work
further.

221

Chapter 7

7.1 Conclusion
In our thesis work, we traversed the following iterative pathway where a question from the
genesis of the work leads until the modest conclusion of our work with space for improve-
ments as follows:

How do we develop a scalable and optimized Mobility Service Implementation us-
ing DLT? Is the choice of the BFT Consensus Algorithm from a consortium per-
spective suitable for our solution?
This has been the principal question of the thesis. It led us to formulate our initial hypoth-
esis by studying the various techniques and architecture available in the literature as a first
step to analyzing its positives and negatives. We further designed a mobility solution based
on data certification and monetization. They were individually implemented and evaluated
using the Ethereum and Substrate platforms. The BFT consensus algorithms of Clique,
PBFT, IBFT, and QBFT were studied in the process. In order to evaluate them uniformly, a
blockchain simulator was developed, and the algorithms were studied on a homogeneous
platform. They exhibit scalability issues due to the inherent nature of message communi-
cation bottleneck in BFT protocols and consistency issues. This led us to develop the CUBA
consensus protocol which solves the issue by pipelining and reducing message communi-
cation through intra-quorum and inter-quorum phases. The node participant’s behavior
in CUBA is evaluated using a utilitarian mechanism and adapted based on its positive or
negative behavior in the previous epochs.

What is the current landscape ofDLT-enabledMobility Services and theDistributed
Consensus State of Art?
This chapter on the State of Art 2 explored the architectures of Mobility as a Service (MaaS)
complemented by DLT technology, use-case on vehicle sharing, data-market strategies,
and tokenization-enabled mobility economy. Challenges to these solutions in security, pri-
vacy, fairness, encryption schemes, and incentivization mechanisms were also studied. In
a deeper dive into DLT technologies, we backtracked the consensus algorithms since the
age of distributed systems. From Byzantine General’s Problem and Practical Byzantine
Fault tolerance until more recent works dedicated to blockchain protocols like Hotstuff,
and Tendermint were explored in this study. We analyze the problems solved by each of
the protocols as well as the bottlenecks and network suitability of each of these protocols
to get a fundamental overview before we start the construction of our mobility solution.

How do we build a Mobility Data Certification Service in a consortium network?
In this work on Chapter 3, Section 3.1.2, we built a solution to certify the data by proposing
two architectures of Data-Registry and a Non-Fungible Token approach. We implement a
cloud-based solidity smart contract solution in the Ethereum technology from a consortium
perspective. Evaluation from the functional and performance was carried out where we
demarcated the problems concerning client binary of Geth, Besu, OpenEthereum, and con-
sensus issues. The consensus algorithms studied are BFT Proof of Authority Algorithms of
Clique, Istanbul Byzantine Fault Tolerance (IBFT), and Quorum Byzantine Fault Tolerance
(QBFT). We responsibly report the binary client problems to the open-source community
for further improvements. We extend the work to accidentology use-case on Hyperledger
Sawtooth based solution for analyzing Practical Byzantine Fault Tolerance (PBFT) consen-

222

Conclusion and Perspectives

sus and study it in detail. We ascertain that the algorithms degrade in their scalability
performance, fork issues, and message complexity, leading to finding an alternative solu-
tion.

Is there any alternative to classical BFT consensus algorithms-based DLT plat-
forms?
In this part of Chapter 3, Section 3.1.3, we confront the problem further by solving a virtuous
data monetization problem based on Substrate technology. Substrate enables us to imple-
ment the smart contract directly in the client binary without needing deployment post the
network launch like in Ethereum base networks. Here the solutions revolve around the Hy-
brid consensus split into Block authoring and Block finalization. We test the Non-Fungible
Tokenised economy smart contract pallet cloud solution across the pair of consensus algo-
rithms: 1) Authority Round (AuRa) and GRANDPA (Greediest Heaviest Observed Sub Tree
based Recursive Ancestor Deriving Prefix Agreement) 2) Blind Assignment for Blockchain
Extension (BaBe) and GRANDPA. We notice that BABE solves the security and privacy
problems by masking the block proposer beforehand, but along with AuRa, it descends
gracefully in scalability performance. Although the chain forks emanating from AuRa and
BABE are successively resolved by GRANDPA, its throughput scales down, further moti-
vating us to scale up our thesis to a detailed homogenous study of BFT algorithms.

Howdowehomogenize our study onBFTalgorithms by being blockchain platform
agnostic?
In Chapter 4, To answer the above question, we developed a blockchain simulator in Java
which is constructed generically, allowing plug and play of any consensus algorithm by
inheriting a common interface. The motivation is to test all the BFT algorithms in a cloud-
based infrastructure and dissect their work and bottlenecks. We design and construct our
simulator to test Clique, IBFT, QBFT, and PBFT. It independently derives its statistics and
pinpoints its multifaceted problems to communication complexity, fork issues, view change
complexity, and resilience to malicious and benign failures.

How do we solve the classical BFT consensus problems uncovered?
To reply to this challenge, in Chapter 5, we propose our consensus algorithm Compet-
ing Utilitarian Byzantine Agreement (CUBA) and its implicit variant. CUBA expands to
Contesting Utilitarian Byzantine Agreement which evaluates and valorizes each consensus
action as a Utilitarian metric of the gamified participants in the network. The obtained
utilitarian metrics are used as feedback to reorganize the network for faster performance
of the network consensus or for being resilient to the malicious activity noticed. This con-
sensus protocol is designed to sustain or increase the Utilitarian happiness in a Byzantine
environment of identified participants for the network’s liveness, safety, performance, and
scalability. We evaluate its algorithmic complexity comprising message complexity across
the three phases in intra-quorum, inter-quorum, and Network Evolution. We identify that
the algorithm has an expected availability, eventual consistency, and partition tolerance
from the CAP theorem perspective. We study the protocol’s fairness, blockchain trilemma,
and failure resilience from a theoretical perspective.

How does CUBA protocol fare in cloud implementation benchmarks, honest or
malicious failures, and against its peer BFT protocols?
We test the implementation of CUBA in Chapter 6 through our simulator, erstwhile devel-

223

Chapter 7

oped and deployed to the cloud infrastructure for different network participation config-
urations. We test the benign cases, malicious scenarios comprising a partial or full block,
and berserk adversarial scenarios. We track the utilitarian score evolution and throughput
performance. Evaluation results show an improved throughput, scalability, and malicious
resilience compared to Proof of Authority protocols like PBFT, IBFT, and QBFT, as well as
comparable to Clique for consortium Distributed Ledger networks. The implicit variant is
closer to clique performance but has certain assumptions of strong network performance
and is less prone to failures. In our work, we discuss the comparison of CUBA to recent
prominent blockchain protocols of HotStuff, MirBFT, and Round-Based DAGBFT protocols,
which present a slight upper hand for the latter.

7.2 Perspectives
In this section, we discuss the future direction which help us in evolving this thesis for
further enrichment and contribution to the community. These perspectives are to be read
in conjunction with the sectional future works proposed at the end of each major work
of Data Certification 3.1.2.6, Data Monetisation 3.1.3.9.1, and CUBA Consensus 6.4. These
are highlighted with a certain level of modesty and yearning as we are bound by the time
constraints of the thesis as follows:

• Privacy: To further increase the level of privacy, multiple solutions like ZkSnarks,
Homomorphic Encryption, as well as Multiparty Computation can be embedded in
our mobility solutions to achieve different means of verification and proving of data.
While we have discussed extensively Non Fungible Tokens in our Data Monetisation
and Certification solutions we need to further explore them along with selective data
sharing and pseudonymity concerns [271]. Accounts in the blockchain can be ab-
stracted as proposed in ERC 4337, and alternatives like Biometrics can be considered
for account authentication in the blockchain network [272].

• Layer Solutions: CUBA protocol aims to accelerate and increase the resilience of the
native blockchain network. But specific network layers over the blockchain can be
conceptualized like Offchain State Channels and Layer 2, which can perform trans-
actions faster conducted offline, and the final proof can be recorded in state channel
[273].

• Sharding Scaling: Sharding is the recently adopted technique of creating a shared
state of the primary network called shards. Consensus is performed in parallel at each
shard level and then accumulated at the whole network level, which enables faster
processing of the transactions in the network. CUBA can be further extended at the
level of individual shards consensus and at the global level for combining the results.

• Open Source Adoption: CUBA consensus is evaluated through the blockchain sim-
ulator, which can be proposed to the open-source community for further develop-
ments and implementation in a consortium or enterprise blockchain platform.

224

Conclusion and Perspectives

7.3 Overall Analysis

Strengths Opportunities

Tokenized and Privacy By Design Mobil-
ity Data Certification Ethereum study.

Development of the mobility solution to a
production enterprise architecture.

Hybrid Consensus: Grandpa, AuRa and
BABE, along with run-time Smart Con-
tract for Virtuous Data Monetisation Sub-
strate study.

Benchmarking of Mobility Solution for
wider network participants and vehicle
fleet.

Study of BFT Algorithms and its char-
acteristics: PBFT, IBFT, QBFT, and
Clique.

Data space complexity of the CUBA con-
sensus algorithm to be understood.

Conception of Blockchain Consensus
Simulator platform for homogenized
cloud testing.

Collaboration with Open Source Commu-
nity for enhancement and adoption of
CUBA protocol.

Proposition and benchmarking of Com-
peting Utilitarian Byzantine Agree-
ment (CUBA) consensus for scalability
and resiliency.

Enhance privacy in the network at the
level of transactions as well as consensus
messages.

Table 7.1: Thesis Analysis

In this section, we identify the strengths and opportunities of our work as represented in
Table: 7.1. We discuss them as follows:

• Strengths:

– Thesis extensively discusses state-of-the-art. It proposes new mobility business
models around tokenized data certification and monetization, which can be ex-
trapolated to similar use cases.

– Consensus of Ethereum Proof of Authority basket and Hyperledger Sawtooth
are studied. The hybrid consensus of Substrate and embedded smart contract
pallets are analyzed extensively, dealing separately with the block proposal and
finalization.

– Blockchain simulator platform for testing and analyzing frommultiple scenarios
of consensus protocols is designed and implemented.

– CUBA consensus protocol aiming to solve the inherent problems is proposed
and tested from multiple security and network configuration perspectives, con-
tributing to a novel BFT consortium consensus algorithm. It is adequately ana-
lyzed from the theoretical viewpoint as well.

• Opportunities:

225

Chapter 7

– Ourmobility solutions andCUBA consensus proposals can be tested in enterprise-
grade adaptation to demarcate infrastructure, energy consumption, network
load, data storage, and legal liabilities risks.

– Wehave benchmarked our solutions from a consortiumperspectivewhich presents
a limited scope but our security and privacy propositions are directed towards
wide public network exercise.

– We can propose these solutions to the open-source community for greater par-
ticipation and brainstorming to modulate for a community-grade software re-
lease.

– Since our work is scoped to Group Renault and its partners of Universite Cote
D’Azur, LEAT Laboratory it will be of increasing interest to pitch this solution
to the internal product team for consideration in their timeline to onboard this
as a real-world solution.

– Blockchain has been transforming through parachains, cosmos hubs, or shards
which might slightly contrast our solutions. Nevertheless, all our solutions can
be very well integrated into the future course as these are classical contributions
either of the Ethereum smart contract, Substrate pallets, or CUBA distributed
ledger consensus.

– One thought that we anticipate as a nice-to-have feature would be to mutate the
CUBA protocol from a normally distributed consensus to a privacy consensus
protocol. It will be to perform agreement on the distributed ledger, only sharing
proof and verifications instead of conventional consensus messages. This might
be a distant aspiration but a research axe on it would be interesting.

226

Chapter 8

Appendix

The more I learn, the more I realize how
much I don’t know

– Albert Einstein

227

Chapter 8

8.1 Data Certification Ethereum Discussion 229
8.1.1 Analysis of Existing Testing Tools 229

8.1.1.1 ChainHammer 229
8.1.1.2 Calliper . 229
8.1.1.3 BlockBench . 229

8.1.2 Proposed Testing Tool Architecture 229
8.1.3 Evaluation of Existing Testing Tools against Proposed

Testing Tool . 230
8.1.4 Stress Test with proposed tool 231
8.1.5 Evaluation of Ethereum specific Performance and Be-

haviour Factors . 232
8.1.6 Block Gas Limit . 232
8.1.7 Block Period . 233
8.1.8 Transaction Type . 234
8.1.9 Scalability . 235
8.1.10 Loadbalancer Middleware Integration with proposed tool 236

8.2 Data Monetisation Discussion . 238
8.3 Simulated Byzantine Fault Tolerant Consensus Algorithms For

Normalised Evaluation Discussion 239
8.4 Data Monetisation Substrate Discussion 245

8.4.1 BABE and GRANDPA . 245
8.5 CUBA Consensus Additional Discussion 246

8.5.1 Transaction Processing . 247
8.5.2 Intra-Quorum Consensus 248
8.5.3 Inter-Quorum Consensus 251
8.5.4 Round Change Algorithm 253
8.5.5 Heart Beat Protocol . 254
8.5.6 Utilitarian Score Processing 255
8.5.7 Quorum Reorganisation 257
8.5.8 CUBA: Intra-Quorum Implicit Conensus 260

This chapter contains additional explanation and essential algorithms, which is necessary
to read in line with the main chapters of the thesis.

228

Appendix

8.1 Data Certification Ethereum Discussion

8.1.1 Analysis of Existing Testing Tools
This section discusses the existingwell-known frameworks or tools for testing the Ethereum
network from a performance perspective.

8.1.1.1 ChainHammer

It is a test suite developed in Python for creating a blockchain network, deploying smart
contracts, and testing the transaction load with varied types of synchronous and asyn-
chronous methods. It is primarily developed for PoA network clients like Geth, Parity, and
Quorum.

8.1.1.2 Calliper

It is a tool developed by the Hyperledger Linux foundation with varied workloads and
adapters for blockchain networks such as Geth, Besu, and Fabric. It is developed in Node.js
with rate controllers for sending the transactions to the network and then observing the
throughput of the blockchain network.

8.1.1.3 BlockBench

In this work [274], the authors have contributed to a framework for analyzing private
blockchain via APIs against varied workloads for Geth, Parity, and Fabric. It is developed
in C++ and Node.js with macro and micro smart contract benchmark mechanisms.

8.1.2 Proposed Testing Tool Architecture

Figure 8.1: Proposed Testing Tool Architecture

Having studied the above various works, we wanted to remove the drawbacks and perform
a comprehensive and uniform performance test. The main issues noticed with the earlier

229

Chapter 8

tools are solved in our proposed tool as in Figure 8.1. Features of our tool are:

1. TransactionEmitter Pattern: TheAsynchronousMultithreaded Producer-Consumer
pattern of sending transactions is better than other tools as it effectively controls the
client load. Each client has an RPC API interface for sending transactions. To test
the load limit of each client binary, it was necessary to be fired as fast as possible
in the multithreaded version. To control the rate of transaction firing and reliability,
we placed the request in the queue to be worked upon by processes in a producer-
consumer model.

2. NonceManagement: As per Ethereum Improvement Proposal 155, each transaction
must have incremental nonce to avoid a replay attack. The nonce for each transaction
is managed by the tool in incremental order, which is not the case for other tools
or works. Proactively sending in the transaction payload speeds up the transaction
processing and avoids duplicate nonce transactions or unordered or gapped invalid
transactions. The tool effectively calculates the valid nonce bymutually excluding the
nonce increment process, even when multiple transactions send instances attached
to a single blockchain node to avoid duplication.

3. Choice of Communication Protocol: The third most important factor to consider
was the protocol choice for RPC API, where raw web socket performs much better
than raw HTTP or commonly used web3 libraries. Each HTTP request opens a new
connection, whereas, in a web socket, the connection is maintained until explicitly
closed with only a handshake at the beginning to open a new connection. Also, the
raw web-socket connection used in our tool is more efficient than the web3 library
wrapper used by other means to avoid bottlenecks.

The proposed tool consists of a monitoring layer for our testbed comprising of pprof for
Go (Geth), Perf for Linux (OpenEthereum), and Flight Recorder for Java (Besu). Above this
layer, we have the cloud network configuration layer developed using Terraform to deploy
Azure VMs and connect them through an overlay network. The next layer is the blockchain
part using shell script and Python to configure the network and genesis block to deploy the
required nodes in the network. In the next layer, we developed a load-balancer middleware
in the tool for uniform and reliable transaction distribution, which will be explained in
section 8.1.10. We have a smart contract deployment layer depending on the load needed
and the client layer for sending transactions.

8.1.3 Evaluation of Existing Testing Tools against Proposed Testing
Tool

We evaluate the existing testing tools against our proposed tool to understand their per-
formance on an Ethereum network with 3 Nodes. The blockchain network is set up on the
Microsoft Azure cloud platform with 3 Nodes of B2ms Ubuntu-18 virtual machines, each
having 2 VCPUs and 8GB RAM. The reason for choosing a cloud network compared to a
local one aligns with production scenarios, where most deployments occur on the standard
cloud. Although the RTT of a cloud network is 5 times more than the local network noticed
in our earlier work, we choose it to mimic a real enterprise scenario. We test each of the
tools by deploying a smart contract function of simple addition like the below:

230

Appendix

f u n c t i o n addTes t () {
−> Three v a r i a b l e inc rement = 38149 Gas
ma i n t x s e t c oun t e r = ma i n t x s e t c oun t e r +1 ;
s e c o n d t x s e t c o un t e r = s e c on d t x s e t c o un t e r +1 ;
t h i r d t x s e t c o u n t e r = t h i r d t x s e t c o u n t e r +1 ;
}

Even though the function chosen is simple and superficial, it can be intuitively extrapo-
lated to other functions for tokens like balance increment or automotive use cases like car
odometer data storage. The above function incurs 38149 gas at the EVM level. At the con-
sensus level, we configure 2 seconds as the Block period, Block Gas Limit to 228894000, to
get a block size of 6000 transactions and a transaction pool queue size of 10000000. The
versions of Linux 64-bit blockchain clients tested are: i) Geth - 1.9.18 ii) OpenEthereum -
V3.0.1 ii) Besu 1.5.0. The performance of existing tools evaluated are i) ChainHammer-V59
ii) Calliper 0.4.0, iii) Blockbench (Source code at July 2020)

We launch the testing tools in an asynchronous multithreading mode with 100 threads
from another Ubuntu machine in a similar configuration as blockchain nodes. The reason
for 100 threads is due to RPC API limitation, as we faced issues in the existing tools either
by nonce or HTTP timeout errors. None of the current testing tools manages the nonce a
priori by sending it to the transaction’s payload. Instead, they leave it to the client binary
to calculate, which slows the transaction processing. We perform the test of each tool for
600000 transactions in 3 iterations. The Blockbench tool could not be tested as the tool suite
ran into web3 library errors. Calliper could not be used to test Parity as it did not have an
adapter implemented. Also, the ChainHammer tool is not developed for Besu clients, so the
results do not include them.

8.1.4 Stress Test with proposed tool

In this section, we vary the thread count incrementally in the proposed tool from 10 up to
10000, with the rest of the configuration being the same to stress test further. We see an
incremental improvement in performance with the number of threads for Geth and compa-
rably for other clients in Figure 8.2. This is because the multithreading in the tool fills the
nodes with more transactions to process. This shows a linear growth in the performance
of Geth and Parity, with the former being steeper due to its better design implementation
as well as the consensus efficiency of the Clique. In Clique or IBFT 2.0 implementation
of Besu, there is no visible difference with thread variation as there is a bottleneck in the
implementation of the client itself and not at the consensus level, which is discussed in sec-
tion 3.1.2.5. In the case of 10000 threads, Geth and Parity seem to be stable, but Besu fails
due to design and implementation limitations. Geth performs well compared to others due
to better cache and EVM implementation. Also, the other reason for better performance
with Geth is the Clique consensus which has better message communication complexity
and immediate sealing compared to Aura or IBFT 2.0.

231

Chapter 8

Figure 8.2: Custom Client Test Tool Thread Variation Performance

We infer 100 threads as the best configuration for all clients to test as we notice that Besu
runs into stability issues for higher threads like 10000. We could not test beyond 10000
threads which is considerably large for all clients as the Ulimit of the Linux system limits
us. With more than 10000 threads as a trial, we noticed an upper bound performance of
Geth at 2300 transactions per second(tps) by profiling using pprof. We noticed it inflated
the transaction pool and consumed time on the EIP155 signer at the functional level, which
is the root cause of several other issues. We discuss the bottleneck issues and root causes
we noticed between the clients in the following section 3.1.2.5, which we have reported
responsibly to the community as well [159] [160] [161].

8.1.5 Evaluation of Ethereum specific Performance and Behaviour
Factors

In this section, we vary the different Ethereum-specific performance parameters of the
client binaries and study their behavior. We test the same Add smart contract transaction
and retain blockchain network configuration as in the previous section 8.1.3.

8.1.6 Block Gas Limit

Block Gas Limit is a critical performance factor in analyzing by varying its ratio based on
the transaction’s gas. We set the block period as 2 seconds and tool threads as 100 for now
as we focus on the block gas limit’s impact on the network. The test was done on different
ratios of block gas limit from 1000 up to 15000 incrementally. Consider an Add transaction
for 3000 ratio, then the block gas limit is 38149 * 3000 = 114447000, enforcing a block size of
3000 transactions. A higher block gas limit accommodates more transactions to be included
in a block but at the same time increases the transaction execution time on the EVM as well.
In the results as in Figure 8.3, we notice that at block gas ratio of 6000, Geth achieves the
best performance with 1196 transactions per second. Parity and Besu’s performance under
the same block gas limit is less than Geth’s since the implementation of their EVM and
transaction pool are less efficient than the former.

232

Appendix

Figure 8.3: Block Gas Limit Variation Testing

In the case of higher block gas limits like 9000 and above, all the client binaries drop per-
formance due to more transactions being executed concurrently. The bottleneck is noticed
at the client’s EVM level and the transaction pool, which impacts block processing. In the
earlier version of Geth V1.9.12, for block gas ratio greater than 10000, we found stalling of
transaction execution at the EVM layer, and we reported this as an issue to the Go Ethereum
team. The team subsequently solved it, which we noticed while testing the new version
mentioned in this article. So, we identify a block gas ratio 6000 as the best parameter for
testing. We discuss the behavior issue of dropped throughput due to higher gas limit in
section 3.1.2.5.

8.1.7 Block Period

Figure 8.4: Block Period Variation Testing

In this test, we evaluate varied block periods from 1 to 15 seconds for the block-sealing
consensus mechanism of the clients. We retain the same configuration and Add transac-
tions as the previous tests, and the block gas ratio is fixed at 6000. We notice from our

233

Chapter 8

results in Figure 8.4 that at 1 second block period, the time window is too short, and the
(Geth) Clique consensus faces stability issues. We reported this stability issue at extremely
lower block periods [160] to the Go Ethereum team, which is discussed in section 3.1.2.5.
Instability means many forks and reorganizations were noticed in the chain as nodes could
not synchronize and process consensus in this short period. But at block period 2 seconds,
it stabilizes for all the different client binaries at the consensus level. So the block period of
2 seconds is the fastest and most stable, as higher block periods can delay block sealing.

8.1.8 Transaction Type

Figure 8.5: Transaction Type Variation Testing

In this test, we understand the impact of varied transaction types based on complexity or
gas cost. The significance of smart contract transactions chosen is a simple Map operation
that performs key, value-based functions. Still, the reason we include in our test reflects
that these operations are the most invoked in smart contracts by enterprises as a common
data storage structure. Another transaction is the Add operation which holds significance
as explained in the earlier section 8.1.3. Types of transactions are: 1) Add Test as in the
previous section. 2) Map test, which functions like a hash map operation to store <key,
value> pairs in the smart contract with increasing complexity sub-tests like a) single, b)
double, and c) triple map operations like in the below snippet. 3) Read operation, which
does not cost gas or complexity. For this test, we retain the best parameters of block period
2 seconds and block gas limit ratio 6000.
f u n c t i o n MapTest () {
−> S i n g l e Map Opera t i on = 47239 Gas
f i r s tmap [f i r s t c o u n t e r] = f i r s t _ v a l u e ;
f i r s t c o u n t e r = f i r s t c o u n t e r +1 ;

−> Double Map Opera t i on = 72880 Gas
secondmap [s e condcoun t e r] = se cond_va lue ;
s e condcoun t e r = se condcoun t e r +1 ;

−> T r i p l e Map Opera t i on = 99916 Gas

234

Appendix

th i rdmap [t h i r d c o u n t e r] = t h i r d _ v a l u e ;
t h i r d c o u n t e r = t h i r d c o u n t e r +1 ;
}

Inference from the test results in Figure 8.5 shows that the performance decreases propor-
tionately in all the clients with increasing levels of complexity. Geth has a visible impact on
transaction variation. Still, it is more gradual for other clients as they are already limited at
the implementation level, with a lesser throttle on transactions processed. Read operation,
which has nothing to do with transaction processing and no gas cost, has quite the same
performance across clients, with Geth performing better than others. As a result of this
test, we have finalized the best performance parameters for the block period at 2 seconds,
block gas limit ratio at 6000, and behavior with transaction types. We then proceed with
these parameters to test the scalability of the network with different clients. We discuss
further the behavior in section 3.1.2.5

8.1.9 Scalability

Figure 8.6: Scalability Behavior Testing

In this section, we retain the Add operation, the block period of 2 seconds, and the block
gas ratio of 6000 and understand performance concerning the scalability of nodes from 3
up to 15. From results in Figure 8.6, Geth’s Clique performance decreases with increasing
nodes as more validators per block are eligible to validate, increasing the probability of
forks. Except for Geth, whose throughput decreases with more than 3 nodes, Parity and
Besu have an improvement in scalability initially. In Parity, up to 11 nodes, and Besu, up to
7 nodes, we notice an increase and then a drop. This is attributed to the increase of nodes,
which increases the reception of more transactions as it avoids the bottleneck in the API
layer noticed in previous tests. But even though this is solved, it has an internal processing
bottleneck, andmore nodes augment the communication complexity at the consensus level,
which results in a downfall after an increase.

Clique has a single message round compared to two for Aura, making it lighter. But in
Clique, more validators per round can create forks in case of out-of-order sealing. In Par-

235

Chapter 8

ity’s Aura, just one elected validator per block makes it less susceptible to forks but also
scales down. For Besu, Clique’s performance is better than IBFT 2.0 due to the efficiency
of the algorithm, but still, Besu overall faces a bottleneck at the implementation level as in
previous sections, which gets further aggravated for scalability test, making it lesser than
Geth and Parity, which will be discussed in section 3.1.2.5

8.1.10 Loadbalancer Middleware Integration with proposed tool

In Ethereum, there is a particularity in load-balancing of transactions which is different
from the classical ones as certain design decisions in the clients limit them. The requirement
of nonce increment, effective load calculation by monitoring the transaction queue, and
also effectively handling a node failure were the ones that led to developing our novel
middleware and integration with our testing tool explained earlier in section 8.1.2. In this
section, we describe the load-balanced distribution of transaction firing among the nodes in
the blockchain network. This architecture will interest enterprises more as the transaction
firing would be more reliable and evenly distributed. Even though the nodes might fail or
crash, the queue stores the incoming requests and can be processed on eventual recovery.

Figure 8.7: Ethereum Client Loadbalancer Middleware Architecture

As in figure 8.7, we create a middleware layer for each node with a web service endpoint.
This layer will comprise workers acting on a FIFO queue of message requests forwarded by
a round-robin-based load balancer. All workers manage nonce by incrementing in a mutu-
ally exclusive cache between them to avoid duplication errors. We test for Add transaction
and best parameters of block period 2 seconds, block gas limit ratio 6000, and by a vary-
ing number of balanced nodes from 3 up to 15. Figure 8.8 highlights test results for this
architecture.

236

Appendix

Figure 8.8: Load Balanced Behavior Testing

We notice a lesser throughput in general than previous non-balanced tests as we have limi-
tations in this architecture to work upon in the future. Its queue model and nonce manage-
ment design limit the transactions reaching the network. So, in general, the nodes receive
a lesser rate than earlier ones which suits better for Parity and Besu. It matches their API
level bottleneck in the negative sense. Geth has maximum performance on 7 nodes while
Parity’s performance increases with more nodes up to 11, a similar behavior explained in
earlier test on 8.1.9.

237

Chapter 8

8.2 Data Monetisation Discussion

Figure 8.9: Tokenized Asset Data-Service Publish Monetisation Architecture

238

Appendix

8.3 Simulated Byzantine Fault Tolerant Consensus Al-
gorithms For Normalised Evaluation Discussion

Figure 8.10: API Module Package Architecture of Simulator Exhibit 1

239

Chapter 8

Figure 8.11: API Module Package Architecture of Simulator Exhibit 2

Figure 8.12: Chain Module Package Architecture of Simulator Exhibit 1

240

Appendix

Figure 8.13: Chain Module Package Architecture of Simulator Exhibit 2

Figure 8.14: Consensus Module Package Architecture of Simulator Exhibit 1

Figure 8.15: Consensus Module Package Architecture of Simulator Exhibit 2

241

Chapter 8

Figure 8.16: Cryptographic Module Package Architecture of Simulator

Figure 8.17: Network Module Package Architecture of Simulator

242

Appendix

Figure 8.18: Fully Connected Mesh Network Topology of 10 Nodes

Figure 8.19: Lattice Network Topology of 10 Nodes

Figure 8.20: Watts Strogatz Network Topology of 10 Nodes

243

Chapter 8

Figure 8.21: Node Module Package Architecture of Simulator

Figure 8.22: Simulation Property Module Package Architecture of Simulator

244

Appendix

8.4 Data Monetisation Substrate Discussion

Figure 8.23: Data Monetisation Extrinsic Performance Calculation

8.4.1 BABE and GRANDPA

Block Period Influence RPC Response for stalled GRANDPA state. Votes for Pre-Commit is
missing from the 5 validators which stalls the system for lesser block period times. It means
there is no synchronicity between the decision of the final block for the 5 validators

Figure 8.24: BABE and GRANDPA Consensus Network Stalling

245

Chapter 8

Figure 8.25: BABE and GRANDPA Consensus Network Stalling Epoch Error

8.5 CUBA Consensus Additional Discussion
In this section, we enlist the various algorithms which part of the Competing Utilitarian
Byzantine Agreement

246

Appendix

8.5.1 Transaction Processing

Algorithm 3: Transaction Processing and Partial Block Proposal
Data:
ζ ← Consortium Blockchain Network of K Nodes;
N i,r ← Node i which belongs to a Quorum r;
Qr ← Identifier for Quorum r containing its members;
ρ← Total Number of Quorums in the network;
R← Index of Quorum r among the ρ Quorums ;
σ← Total Number of Members inside a Quorum;
µ← Index of Ni,r within Quorum r;
αψ ← Ephemeral Blockchain State;
βω ← Finalised Blockchain State;
∆← Ephemeral State Timeout;
η← Finalised State Timeout;
ξ← Round Change Timeout;
θ← HeartBeat Frequency;
Tχ ← Incoming Transaction;
HTχ ← Hash of the Transaction;
P k,l ← New Partial Block to Form for k is the Block Height and l is the Quorum Index;
πr←
Transaction Pool to stock a valid and eligible transaction by a Quorum Participant in Qr;

κ← Partial Block Size;
λ← Current Ephemeral Block Round;
Γ← Epoch Block Limit;
k← Current Block Round;
K← Total number of members in the Network;
c← Codepoint position for Transaction Assignation to a Quorum;
c1← Codepoint position for Partial Block Proposer;
c2← Codepoint position for Partial Block Competitor;
Result: Ni,r adds Tχ to its pool if condition satisfied and proposes Partial Block if eligible
while Tχ ̸= 0 and HTχ /∈ βω ,αψ do

// Modulus Operation on Total Number of Quorums
if Modulus(CodePointc(HTχ),ρ) is R then

πr←πr + Tχ;
// Form partial block of pooled transactions if proposer or competitor and if size
reached

if Ni,r is [IsPartialBlockProposer(Ni,r,k) or IsPartialBlockCompetitor(Ni,r,k)] and [|πr|
is κ] then

P k,l ←πr;
// Reinitialise the Transaction Pool
πr← 0 ;
Broadcast PROPOSE_MESSAGE<Pk,l> to other Nodes inside Quorum r;

end
end
Broadcast Tχ to other Nodes in Consortium ζ ;

end 247

Chapter 8

Algorithm 4: Macro Functions of Algorithm:3 for Transaction Processing and
Partial Block Proposal
// Input: Node Identifier, Current Ephemeral Block Round
Function IsPartialBlockProposer(N i,r, λ):

if Modulus(Codepoint(Hash(λ),c1,σ))) is µ then
return true;

end
return false;

// Input: Node Identifier, Current Ephemeral Block Round
Function IsPartialBlockCompetitor(N i,r, λ):

if Modulus(Codepoint(Hash(λ),c2,σ))) is µ then
return true;

end
return false;

8.5.2 Intra-Quorum Consensus

Algorithm 5: Intra-Quorum Consensus
Data: Reference inherited from Algorithm:3
c3← Codepoint position for Partial Block Finaliser;
c4← Codepoint position for Partial Block Fulfiller;
Bc,k ← Intermediate Block or Container to accommodate Partial Block Pk,l ;
T B,k ← Temporal Hash State of the Block Container for round k ;
P k,l ←
New Partial Block to finalise for k is the Block Height or round and l is the Quorum Index;

PROPOSE_MESSAGES← Mapping<Pk,l,PROPOSE_MSG>;
COMMIT_MESSAGES← Mapping<Pk,l,COMMIT_MSG>;
FINALISE_MESSAGES← Mapping<Pk,l,FINALISE_MSG>;
Result: Finalise a Partial Block Pk,l where k is the Block Height and l is the Quorum Index

upon receiving PROPOSE_MESSAGE<Pk,l>do if [IsValidPartialBlock(Pk,l) and
IsValidMessage(PROPOSE_MESSAGE<Pk,l>) is true] then

PROPOSE_MESSAGES = PROPOSE_MESSAGES + PROPOSE_MESSAGE<Pk,l>;
Broadcast PROPOSE_MESSAGE<Pk,l> to other Nodes inside Quorum r;
Broadcast COMMIT_MESSAGE<Pk,l> to other Nodes inside Quorum r;

end

248

Appendix

Algorithm 6: Algorithm continuation of 5
upon receiving COMMIT_MESSAGE<Pk,l> do if [IsValidPartialBlock(Pk,l) and
IsValidMessage(COMMIT_MESSAGE<Pk,l>)] is true then

// If two commits are received by PROPOSER AND COMPETITOR for same Partial
Block

if COMMIT_MESSAGES.contains(COMMIT_MESSAGE<Pk,l>) is true then
// Comparing the timestamp of incoming message and the existing message
if COMMIT_MESSAGE<Pk,l,incoming>.time < COMMIT_MESSAGE<Pk,l,existing>.time is
true then

COMMIT_MESSAGES = COMMIT_MESSAGES + COMMIT_MESSAGE<Pk,l>;
Broadcast COMMIT_MESSAGE<Pk,l> to other Nodes inside Quorum r;

end
end
COMMIT_MESSAGES = COMMIT_MESSAGES + COMMIT_MESSAGE<Pk,l>;
Broadcast COMMIT_MESSAGE<Pk,l> to other Nodes inside Quorum r;
if [COMMIT_MESSAGES.SIZE ≥ 2/3(σ)+1 and IsPartialBlockFinaliser(Ni,r,k)] is true then

Broadcast FINALISE_MESSAGE<Pk,l> to other Nodes inside Quorum r;
end
// In case of State Stalled and Timeout Tolerance attained
if [COMMIT_MESSAGES.SIZE ≥ 2/3(σ)+1 and IsPartialBlockFulFiller(Ni,r,k) and
IsFulfillmentNeeded(αψ ,∆)] is true then

Broadcast FINALISE_MESSAGE<Pk,l> to other Nodes inside Quorum r;
end

end
upon receiving FINALISE_MESSAGE<Pk,l>do if [IsValidPartialBlock(Pk,l) and

IsValidMessage(FINALISE_MESSAGE<Pk,l>)] is true then
FINALISE_MESSAGES = FINALISE_MESSAGES + FINALISE_MESSAGE<Pk,l>;
if αψ .notcontains(k) then

αψ .[K].BlockContainer = αψ .[K].BlockContainer + Pk,l;
αψ .[K].BlockContainer.TemporalHashing.Time← Current Time;

αψ .[K].BlockContainer.TemporalHashing.StateHash[l]← Hash(αψ .[K].BlockContainer);
else

Bc,k ← {};
Bc,k ← BlockContainerK;
Bc,k ← BK.BlockContainer+ Pk,l;
αψ[K].BlockContainer.TemporalHashing.Time← Current Time;
αψ[K].BlockContainer.TemporalHashing.StateHash[l]← Hash(αψ[K].BlockContainer);

end
Broadcast FINALISE_MESSAGE<Pk,l> to other Nodes inside Quorum r;

end

249

Chapter 8

Algorithm 7:Macro Functions for Algorithm:5 of Intra-Quorum
// Input: PartialBlock Pk,l

Function IsValidPartialBlock(P k,l):
if Signature(Pk,l)) is Valid and [IsPartialBlockProposer(Pk,l) or
IsPartialBlockCompetitor(Pk,l)] then

return true;
end
return false;
// Input: Consensus Message MSG{k,l

// Checks Message Signature’s validity and sender is part of its Quorum
Function IsValidMessage(MSGk,l):

if MSG.Signature(Pk,l)) is Valid and [Qr.contains(MSG.sender)] then
return true;

end
return false;
// Input: PartialBlock Pk,l

Function IsPartialBlockProposer(P k,l):
if Modulus(Codepoint(Hash(Pk,l.BlockRound),c1),σ) is Pk,l.N i,r then

return true;
end
return false;
// Input: PartialBlock Pk,l

Function IsPartialBlockCompetitor(P k,l):
if Modulus(Codepoint(Hash(Pk,l.BlockRound),c2),σ) is Pk,l.N i,r then

return true;
end
return false;
// Input: Node Identifier, Current Ephemeral Block Round

Function IsPartialBlockFinaliser(N i,r, λ):
if Modulus(Codepoint(Hash(λ),c3),σ) is µ then

return true;
end
return false;
// Input: Node Identifier, Current Ephemeral Block Round

Function IsPartialBlockFulfiller(N i,r, λ):
if Modulus(Codepoint(Hash(λ),c4),σ) is µ then

return true;
end
return false;

// Checks if state of ephemeral blockchain is stalled and timeout tolerance reached
// Input:Ephemeral Blockchain State, Ephemeral State Timeout
Function IsFulfillmentNeeded(αψ ,∆):

if ∆ is reached and αψ t-1 == αψ t then
return true;

end
return false;

250

Appendix

8.5.3 Inter-Quorum Consensus

Algorithm 8: Inter-Quorum Consensus
Data: Reference Data and Macros inherited from Algorithms:3 and 5
c5← Codepoint position for Block Proposer;
c6← Codepoint position for Block Fulfiller;
c7← Codepoint position for Quorum Proposer;
Bc,k ← Intermediate Block or Container to accommodate Partial Block Pk,l ;
Bk ← To be finalised Block for round k;
FINALISE_MESSAGES← Mapping<Pk,l,FINALISE_MSG>;
BLOCK_MESSAGES← Mapping<Pk,l,BLOCK_MSG>;
Result: Finalise a Block Bk where k is the Block Height

upon receiving FINALISE_MESSAGE<Pk,l>do if [IsValidPartialBlock(Pk,l) and
IsValidMessage(FINALISE_MESSAGE<Pk,l>) is true] then

FINALISE_MESSAGES = FINALISE_MESSAGES + FINALISE_MESSAGE<Pk,l>;
if αψ .notContains(k) then

αψ .[K].BlockContainer = αψ .[K].BlockContainer + Pk,l;
αψ .[K].BlockContainer.TemporalHashing.Time = Current Time;
αψ .[K].BlockContainer.TemporalHashing.StateHash[l] = Hash(αψ .[K].BlockContainer)

else
BK ← {};
BK ← BlockContainerK;
BK = BK.BlockContainer + P k,l;
αψ = αψ+BK; αψ .[K].BlockContainer.TemporalHashing.Time = Current Time;
αψ .[K].BlockContainer.TemporalHashing.StateHash[l] = Hash(αψ .[K].BlockContainer);

end
Broadcast FINALISE_MESSAGE<Pk,l> to other Nodes inside Quorum r;
if IsBlockProposer(BK) or IsBlockFulfiller(BK) then

BK = BK + Hash(BK.contents)+ Signature(BK); // Calculate Utilitarian Score of Block and
store

UtilitarianScoreUpdate(Bk);
Broadcast BLOCK_MESSAGE<BK> to other Nodes inside Consortium ζ ;

end
end
upon receiving BLOCK_MESSAGE<Bk>do
if [IsValidBlock(Bk) and IsValidMessage(BLOCK_MESSAGE<Bk>) is true] then

βω = βω + Bk; // Calculate Utilitarian Score of Block and store
UtilitarianScoreUpdate(Bk);
Broadcast BLOCK_MESSAGE<Bk> to other Nodes inside Consortium ζ ;

end
// In case of Finalised Blockchain State Stalled and Timeout Tolerance attained

if [IsBlockFulFiller(Ni,r,k) and IsBlockFulfillmentNeeded(βω , η)] is true then
BK = BK + Hash(BK.contents)+ Signature(BK); // Calculate Utilitarian Score of Block
and store

UtilitarianScoreUpdate(BK);
Broadcast BLOCK_MESSAGE<BK> to other Nodes inside Consortium ζ ; if
[IsNewQuorumNeeded(βω) and IsQuorumProposer(Ni,r) is true] then

// Re-Organise the Quorum based on Utilitarian Score
QUORUM_MESSAGE<Eε>← FormNewQuorum(NewEpochEε);
Broadcast QUORUM_MESSAGE<Eε> to Nodes in Consortium ζ for Epoch E ε;

end
end

251

Chapter 8

Algorithm 9:Macro Functions for Algorithm:8 of Inter-Quorum

// Input: Block BK
Function IsBlockProposer(BK):

if Modulus(Codepoint(Hash(BK.BlockRound),c5),K)) is N i,r then
return true;

end
return false;

// Input: Block BK
Function IsBlockFulfiller(BK):

if [Modulus(Codepoint(Hash(BK.BlockRound),c6),K)) is N i,r and
IsBlockFulfillmentNeeded(BLOCK_MESSAGE<Bk>) is true] then

return true;
end
return false;

// Input: Proposed Epoch Eε
Function IsQuorumProposer(Eε):

if [Modulus(Codepoint(Hash(Eε),c7),K)) is N i,r] then
return true;

end
return false;

// Input: Block Bk
Function IsValidBlock(Bk):

if Signature(Bk)) is Valid and [IsBlockProposer(Bk) or IsBlockFulfiller(Bk)] then
return true;

end
return false;

// Checks if state of finalised blockchain is stalled and timeout tolerance reached
// Input:Ephemeral Blockchain State,Finalised Blockchain State, Finalised State Timeout
Function IsBlockFulfillmentNeeded(αψ , βω , η):

if αψ .[K].Bc,k.SIZE == ρ and η is reached and βω t-1 == βω t then
return true;

end
return false;

// Checks if a new epoch is reached
// Input:Finalised Blockchain State
Function IsNewQuorumNeeded(βω):

if MODULUS(βω .SIZE,Γ) == 0 then
return true;

end
return false;

252

Appendix

8.5.4 Round Change Algorithm

Algorithm 10: Round-Change Consensus
Data: Reference Data and Macros inherited from Algorithms:3, 5,8,10
ROUND_CHANGE_MESSAGES←
Mapping<BLOCK HEIGHT K,ROUND_CHANGE_MSG>;

c8← Codepoint position for Quorum Fulfiller in case of RoundChange;
Result: Propose a Round Change at K which is the Block Height

while IsRoundChangeNeeded(K) is true do
Broadcast ROUND_CHANGE_MESSAGE<K> to other Nodes inside Consortium ζ ;

end
upon receiving ROUND_CHANGE_MESSAGE<K>do
if [IsRoundChangeNeeded(K) and IsValidMessage(ROUND_CHANGE_MESSAGE<K>)
is true] then

ROUND_CHANGE_MESSAGES = ROUND_CHANGE_MESSAGES +
ROUND_CHANGE_MESSAGE<K>;
Broadcast ROUND_CHANGE_MESSAGE<K> to other Nodes inside Consortium ζ ;
if [ROUND_CHANGE_MESSAGES.SIZE
≥ 1/2(K) + 1 and IsQuorumFullF iller(Eε)]is true then

Broadcast QUORUM_MESSAGE<Eε> to other Nodes inside Consortium ζ for Epoch ε;
Broadcast ROUND_CHANGE_MESSAGE<K> to other Nodes inside Consortium ζ ;

end
end

// Checks if state of ephemeral,finalised blockchain is stalled and timeout tolerance
reached

// Input:Ephemeral,Finalised Blockchain State, Roundchange State Timeout
Function IsRoundChangeNeeded(αψ , βω , ξ):

if αψ t-1 == αψ t and βω t-1 == βω t and ξ is reached then
return true;

end
return false;

// Input: Proposed Epoch Eε
Function IsQuorumFullFiller(Eε):

if [Modulus(Codepoint(Hash(Eε),c8),K)) is N i,r] then
return true;

end
return false;

253

Chapter 8

8.5.5 Heart Beat Protocol

Algorithm 11: Heart Beat Message Exchange
Data: Reference Data and Macros inherited from Algorithms:3, 5,8,10
HEART_BEAT_MESSAGES← Mapping<TIME t ,HEART_BEAT_MSG>;
Result: Broadcast a HEART_BEAT message at time frequency t

while IsHeartBeatNeeded() is true] do
Broadcast HEART_BEAT_MESSAGE<t> to other Nodes inside Consortium ζ at time t;

end
upon receiving HEART_BEAT_MESSAGE<t>do
if [IsValidMessage(HEART_BEAT_MESSAGE<t>) is true] then

HEART_BEAT_MESSAGES = HEART_BEAT_MESSAGES + HEART_BEAT_MESSAGE<t>;
Broadcast HEART_BEAT_MESSAGE<t> to other Nodes inside Consortium ζ ;

end
// Checks if frequency to broadcast Heart Beat is reached

// Input:HeartBeat Frequency
Function IsHeartBeatNeeded(θ):

if θ is reached then
return true;

end
return false;

254

Appendix

8.5.6 Utilitarian Score Processing

Algorithm 12: Macro Functions for UTILITARIAN SCORE UPDATE of Algo-
rithm:8 of Inter-Quorum
Data: Reference Data and Macros inherited from Algorithms:3 and 5,8 10 11
// Utilitarian Unit Score
// Positive Unit Score
PartialBlock_Proposal_Win_ScoreUnit← PB_Proposal_win;
PartialBlock_Commit_Win_ScoreUnit← PB_Commit_win;
HeartBeat_Win_ScoreUnit← HB_Score_win;
// Negative Unit Score
PartialBlock_Proposal_Loss_ScoreUnit← PB_Proposal_loss;
PartialBlock_Commit_Loss_ScoreUnit← PB_Commit_loss;
Malicious_ScoreUnit← M_Score;
HeartBeat_Loss_ScoreUnit← HB_Score_loss;
// Utilitarian Storage
Utilitarian_Proposal_Win← Mapping<BK,<Node Identity Ni,Score»;
Utilitarian_Proposal_Loss← Mapping<BK,<Node Identity Ni,Score»;
Utilitarian_Commit_Win← Mapping<BK,<Node Identity Ni,Score»;
Utilitarian_Commit_Loss← Mapping<BK,<Node Identity Ni,Score»;
Utilitarian_HeartBeat← Mapping<BK,<Node Identity Ni,Score»;
Utilitarian_HeartBeat_Missed← Mapping<BK,<Node Identity Ni,Score»;
Utilitarian_Malicious← Mapping<BK,<Node Identity Ni,Score»;

// Input: New Block BK
Function UtilitarianScoreUpdate(BK):

// Inter-Block Time Coefficient
Inter_Block_Time_Coefficient← BK.blocktime - BK-1.blocktime;
// Normalising to milliseconds
Time_Coefficient← Time_Coefficient/100000;
for EachPartialBlock In BK.PartialBlocks do

Utilitarian_Proposal_Win← Utilitarian_Proposal_Win+

Mapping<BK,<EachPartialBlock.PartialBlockProposer , PB_Proposal_win ∗
Time_Coefficient+ getFairnessScore(CurrentEpoch,Node Identifier) >>;

Utilitarian_Proposal_Loss← Utilitarian_Proposal_Loss+
Mapping<BK,<EachPartialBlock.PartialBlockCompetitor , PB_Proposal_loss ∗
Time_Coefficient >>;

Utilitarian_Commit_Win← Utilitarian_Commit_Win+

Mapping<BK,<EachPartialBlock.PartialBlockCommiter , PB_Commit_win ∗
Time_Coefficient+ getFairnessScore(CurrentEpoch,Node Identifier) >>;

Utilitarian_Commit_Loss← Utilitarian_Commit_loss+
Mapping<BK,<EachPartialBlock.PartialBlockCommitLoser , PB_Commit_loss ∗
Time_Coefficient >>;

end

255

Chapter 8

Algorithm13:Macro Functions for UTILITARIAN SCOREUPDATE continuation
of Algorithm:12 for Inter-Quorum
Data: Reference Data and Macros inherited from Algorithms:3 and 5,8, 10, 11, 12
// Utilitarian Members Storage
Ideal_Utilitarians_Storage← Mapping<Epoch E,List<Node Identity Ni»;
Utilitarians_Storage← Mapping<Epoch E,List<Node Identity Ni»;
Fair_Utilitarians_Storage← Mapping<Epoch E,List<Node Identity Ni»;
Weak_Utilitarians_Storage← Mapping<Epoch E,List<Node Identity Ni»;
// Utilitarian Score Storage
Ideal_Utilitarians_ScoreFairnessCoefficient← IUsc;
Utilitarians_ScoreFairnessCoefficient← Usc;
Fair_Utilitarians_ScoreFairnessCoefficient← FUsc;
Weak_Utilitarians_ScoreFairnessCoefficient←WUsc;
for EachPartialBlock In BK.PartialBlocks do

// If heartbeat sent by the node recently within frequency
if HEART_BEAT_MESSAGES.contains(EachPartialBlock.PartialBlockProposer) then

Utilitarian_HeartBeat← Utilitarian_HeartBeat+
Mapping<BK,<EachPartialBlock.PartialBlockProposer ,HB_Score_win ∗
Time_Coefficient+ getFairnessScore(CurrentEpoch,Node Identifier) >>;

else
Utilitarian_HeartBeat_Missed← Utilitarian_HeartBeat_Missed+
Mapping<BK,<EachPartialBlock.PartialBlockProposer ,HB_Score_loss ∗
Time_Coefficient >>;

end
if IsInvalid(EachPartialBlock) then

Utilitarian_Malicious← Utilitarian_Malicious+
Mapping<BK,<EachPartialBlock.PartialBlockProposer ,M_Score ∗
Time_Coefficient >>;

end
end
// Input: Current Epoch Eε, Node Ni
Function getFairnessScore(Eε):

// If an Ideal Utilitarian add inversely less coefficient
if Ideal_Utilitarians_Storage.contains(Ni) then

return Ideal_Utilitarians_ScoreCoefficient;
end
// If an Utilitarian add inversely less coefficient
if Utilitarians_Storage.contains(Ni) then

return Utilitarians_ScoreCoefficient;
end
// If a Fair Utilitarian add inversely less coefficient
if Fair_Utilitarians_Storage.contains(Ni) then

return Fair_Utilitarians_ScoreCoefficient;
end
// If a Weak Utilitarian add inversely less coefficient
if Weak_Utilitarians_Storage.contains(Ni) then

return Weak_Utilitarians_ScoreCoefficient;
end

256

Appendix

8.5.7 Quorum Reorganisation

Algorithm 14:Macro Functions for Quorum Preparation of Algorithm:8 of Inter-
Quorum
Data: Reference Data and Macros inherited from Algorithms:3 and 5,8, 10, 11, 12

Effective_Score← Mapping<Epoch E, <Node Identity Ni,EffectiveScoreNi»;
Forgetting_Coefficient← Mapping<Epoch E, ForgettingCoefficientE>;
Final_Score← Mapping<Epoch E, <Node Identity Ni,FinalScoreNi»;
Final_Rank← Mapping<Node Rank, Node Identity Ni>;
// Input: New Epoch Eε
Function FormNewQuorum(Eε):

for EachEpoch← 0 to [CurrentEpoch− 1] do
for EachMemberN i In Consortium ζ do

Utilitarian_Proposal_WinNi ← Utilitarian_Proposal_Win.get[N i];
Utilitarian_Proposal_LossNi ← Utilitarian_Proposal_Loss.get[N i];
Utilitarian_Commit_WinNi ← Utilitarian_Commit_Win.get[N i];
Utilitarian_Commit_LossNi ← Utilitarian_Commit_Loss.get[N i];
Utilitarian_HeartBeatNi ← Utilitarian_HeartBeat.get[N i];
Utilitarian_HeartBeat_MissedNi ← Utilitarian_HeartBeat_Missed.get[N i];
Utilitarian_MaliciousNi ← Utilitarian_Malicious.get[N i];
// Positive Score Aggregation
Positive_ScoreNi ← Utilitarian_Proposal_WinNi + Utilitarian_Commit_WinNi +

Utilitarian_HeartBeatNi ;
// Negative Score Aggregation
Negative_ScoreNi ← Utilitarian_Proposal_LossNi + Utilitarian_Commit_LossNi +

Utilitarian_HeartBeat_MissedNi + Utilitarian_MaliciousNi ;
// Effective Score Aggregation
Effective_ScoreNi ← Positive_ScoreNi − Negative_ScoreNi ;
Effective_Score← Effective_Score+ <EachEpoch,<Ni,Effective_ScoreNi»;

end
end
FormForgettingCoefficient(Eε);
// Apply the Forgetting Coefficient on the Final Score for previous epochs based on
current epoch

Final_Score← UpdateForgettingCoefficient(Eε);
// Classify the nodes based on Utilitarian Score and form the new Quorum
QUORUM_MESSAGE<Eε>← ClassifyandReorganiseQuorum(Eε);
return QUORUM_MESSAGE<Eε>;

257

Chapter 8

Algorithm 15:Macro Functions for Quorum Preparation of Algorithm:8 of Inter-
Quorum Continuation
Data: Reference Data and Macros inherited from Algorithms:3 and 5,8, 10, 11, 12
// Input: New Epoch Eε
Function FormForgettingCoefficient(Eε):

for EachEpoch← [CurrentEpoch-1]to0 by −1 do
// Calculate Forgetting Coefficient
Forgetting_CoefficientEachEpoch ← (1-(CurrentEpoch-EachEpoch)/CurrentEpoch);
Forgetting_Coefficient← Forgetting_Coefficient+ Forgetting_CoefficientEachEpoch;

end
// Input: New Epoch Eε
Function UpdateForgettingCoefficient(Eε):

for EachEpoch← 0 to [CurrentEpoch− 1] do
for EachMemberN i In Consortium ζ do

EachEpoch_Forgetting_Coefficient← Forgetting_Coefficient.get[EachEpoch];
// Apply the Forgetting Coefficient on Effective Score
Final_Score← Final_Score+
<EachEpoch,<Ni,EffectiveScore.get(Ni)*EachEpoch_Forgetting_Coefficient»;

end
end

258

Appendix

Algorithm 16:Macro Functions for Quorum Preparation of Algorithm:8 of Inter-
Quorum Continuation
Data: Reference Data and Macros inherited from Algorithms:3 and 5,8, 10, 11, 12
Ideal_Utilitarian← Mapping<Epoch E,List<Node Identity Ni»;
Utilitarian← Mapping<Epoch E,List<Node Identity Ni»;
Fair_Utilitarian← Mapping<Epoch E,List<Node Identity Ni»;
Weak_Utilitarian← Mapping<Epoch E,List<Node Identity Ni»;
PotentialSuspended_Utilitarian← Mapping<Epoch E,List<Node Identity Ni»;
Suspended_Utilitarian← Mapping<Epoch E,List<Node Identity Ni»;
Z ← Epoch Suspension Threshold for Weak Utilitarians;
Quorum_Storage← Mapping<Epoch E, <Quorum Index Q i,Node Identity Ni»;
// Input: New Epoch Eε, Final_Score Mapping<Epoch E, <Node Identity Ni,FinalScoreNi»
Function ClassifyandReorganiseQuorum(Eε):

Final_RankMapping<Node Rank, Node Identity Ni>←
SortByFinalScore(Final_Score);

Index_Split←K/5;
for IdealUtilitarianIndex← 0 to [Index_Split] do

Ideal_Utilitarian← Ideal_Utilitarian+Mapping <

NewEpoch, Final_Rank.get(IdealUtilitarianIndex) >;
// Reorganise Nodes to the Quorum_n
Quorum_n← Mapping <Quorum Index Q i,Final_Rank.get(IdealUtilitarianIndex)>;

end
QUORUM_MESSAGE<Eε>← QUORUM_MESSAGE<Eε>+ Quorum_n;
Quorum_Storage← Quorum_Storage+Mapping<CurrentEpoch, Quorum_n>;
for UtilitarianIndex← Index_Split to [Index_Split ∗ 2] do

Utilitarian← Utilitarian+Mapping <

NewEpoch, Final_Rank.get(UtilitarianIndex) >;
// Reorganise Nodes to the Quorum_n+1
Quorum_n+1← Mapping <Quorum Index Q i,Final_Rank.get(UtilitarianIndex)>;

end
QUORUM_MESSAGE<Eε>← QUORUM_MESSAGE<Eε>+ Quorum_n+1;
Quorum_Storage← Quorum_Storage+Mapping<CurrentEpoch, Quorum_n+1>;
for FairUtilitarianIndex← Index_Split ∗ 2 to [Index_Split ∗ 3] do

Fair_Utilitarian← Fair_Utilitarian+Mapping <

NewEpoch, Final_Rank.get(FairUtilitarianIndex) >;
// Reorganise Nodes to the Quorum_n+2
Quorum_n+2← Mapping <Quorum Index Q i,Final_Rank.get(FairUtilitarianIndex)>;

end
QUORUM_MESSAGE<Eε>← QUORUM_MESSAGE<Eε>+ Quorum_n+2;
Quorum_Storage← Quorum_Storage+Mapping<CurrentEpoch, Quorum_n+2>;

259

Chapter 8

Algorithm 17:Macro Functions for Quorum Preparation of Algorithm:8 of Inter-
Quorum Continuation
for WeakUtilitarianIndex← Index_Split ∗ 3 to [Index_Split ∗ 4] do

Weak_Utilitarian← Weak_Utilitarian+Mapping <

NewEpoch, Final_Rank.get(WeakUtilitarianIndex) >;
// Reorganise Nodes to the Quorum_n+3
Quorum_n+3← Mapping <Quorum Index Q i,Final_Rank.get(WeakUtilitarianIndex)>;

end
QUORUM_MESSAGE<Eε>← QUORUM_MESSAGE<Eε>+ Quorum_n+3;
Quorum_Storage← Quorum_Storage+Mapping<CurrentEpoch, Quorum_n+3>;
for V eryWeakUtilitarianIndex← Index_Split ∗ 4 to [Index_Split ∗ 5] do

// Allow weak utilitarian nodes if not present successively in this range for Z previous epochs
for PreviousEpoch← [CurrentEpoch−Z]to CurrentEpoch− 1 do

if
[Weak_Utilitarian.get(PreviousEpoch).notContains(Final_Rank.get(VeryWeakUtilitarianIndex))
and HEART_BEAT_MESSAGES.contains(VeryWeakUtilitarianIndex)] or
Suspended_Utilitarian.get(PreviousEpoch).Contains(Final_Rank.get(VeryWeakUtilitarianIndex)
) then

Weak_Utilitarian← Weak_Utilitarian+Mapping <

NewEpoch, Final_Rank.get(WeakUtilitarianIndex) >;
// Reorganise Nodes to the Quorum_n+3

Quorum_n+3← Mapping <Quorum Index Q i,Final_Rank.get(WeakUtilitarianIndex)>;
else

Suspended_Utilitarian← Suspended_Utilitarian+Mapping <

NewEpoch, Final_Rank.get(V eryWeakUtilitarianIndex) >;
PotentialSuspended_Utilitarian← PotentialSuspended_Utilitarian+Mapping <

NewEpoch, Final_Rank.get(V eryWeakUtilitarianIndex) >;
Weak_Utilitarian← Weak_Utilitarian+Mapping <

NewEpoch, Final_Rank.get(V eryWeakUtilitarianIndex) >;
end

end
QUORUM_MESSAGE<Eε>← QUORUM_MESSAGE<Eε>+ Quorum_n+3;
Quorum_Storage← Quorum_Storage+Mapping<CurrentEpoch, Quorum_n+3>;

end
return QUORUM_MESSAGE<Eε>;

8.5.8 CUBA: Intra-Quorum Implicit Conensus

260

Appendix

Algorithm 18: Intra-Quorum Implicit Consensus
Data: Reference inherited from Algorithm:3
c3← Codepoint position for Partial Block Finaliser;
c4← Codepoint position for Partial Block Fulfiller;
Bc,k ← Intermediate Block or Container to accommodate Partial Block Pk,l ;
T B,k ← Temporal Hash State of the Block Container for round k ;
P k,l ←
New Partial Block to finalize for k is the Block Height or round and l is the Quorum Index;

FINALISE_MESSAGES← Mapping<Pk,l,FINALISE_MSG>;
Result: Finalise a Partial Block Pk,l where k is the Block Height, and l is the Quorum Index

if [IsPartialBlockFinaliser(Ni,r,k) or IsPartialBlockFulfiller(Ni,r,k)] is true then
Broadcast FINALISE_MESSAGE<Pk,l> to other Nodes inside Quorum r;

end
upon receiving FINALISE_MESSAGE<Pk,l>do

if [IsValidPartialBlock(Pk,l) and IsValidMessage(FINALISE_MESSAGE<Pk,l>)] is true then
FINALISE_MESSAGES = FINALISE_MESSAGES + FINALISE_MESSAGE<Pk,l>;
if αψ .notcontains(k) then

αψ .[K].BlockContainer = αψ .[K].BlockContainer + Pk,l;
αψ .[K].BlockContainer.TemporalHashing.Time← Current Time;

αψ .[K].BlockContainer.TemporalHashing.StateHash[l]← Hash(αψ .[K].BlockContainer);
else

Bc,k ← {};
Bc,k ← BlockContainerK;
Bc,k ← BK.BlockContainer+ Pk,l;
αψ[K].BlockContainer.TemporalHashing.Time← Current Time;
αψ[K].BlockContainer.TemporalHashing.StateHash[l]← Hash(αψ[K].BlockContainer);

end
Broadcast FINALISE_MESSAGE<Pk,l> to other Nodes inside Quorum r;

end

261

Chapter 8

262

Bibliography

[1] Robert Paul Resch.Utopia, Dystopia, and theMiddle Class in George Orwell’s Nineteen
Eighty-Four. Vol. 24. 1. Duke University Press, 1997, 137–176. url: http://www.jstor.
org/stable/303755 (visited on 04/26/2023) (page 2).

[2] Lewis, Michael. Flash Boys: A Wall Street Revolt. W. W. Norton Company, 2014.
isbn: 9780393244663. url: https : / / www. simonandschuster . com / books / Flash -
Boys/Michael-Lewis/9781442370289. (accessed: 20.04.2023) (page 2).

[3] Fontanel, Jacques.GAFAM, a progress and a danger for civilization. Saint-Petersbourg,
Russia, Apr. 2019. url: https://hal.univ-grenoble-alpes.fr/hal-02102188. (accessed:
20.04.2023) (page 2).

[4] "Holbein, Ambrosius and More, Thomas". "Utopia". url: https://library.princeton.
edu/visual\%5Fmaterials/maps/websites/thematic-maps/theme-maps/utopia.html.
(accessed: 26.05.2023) (page 2).

[5] Brown, Clare and Hardman, Michael and Davies, Nick and Armitage, Richard. “Mo-
bility as a Service: Defining a Transport Utopia”. In: Future Transportation 2.1 (2022),
300–309. issn: 2673-7590. doi: 10 . 3390 / futuretransp2010016. url: https : / /www.
mdpi.com/2673-7590/2/1/16. (accessed: 02.05.2023) (page 3).

[6] Wunderlich, Karl.Operational and Financial Implications of TransactionalizingMulti-
MachineManeuvers in Self-OrganizingAutonomous Systems. Ed. byVolodymyr Babich,
John R. Birge, and Gilles Hilary. Cham: Springer International Publishing, 2022,
23–42. isbn: 978-3-030-75729-8. doi: 10 .1007/978- 3- 030- 75729- 8_2. url: https :
//doi.org/10.1007/978-3-030-75729-8\%5F2. (accessed: 03.05.2023) (page 3).

[7] "EITUrbanMobility". "Mobility DataDecentralisation leveragingGalileo and Blockchain".
url: https : / /www.eiturbanmobility. eu /wp- content /uploads /2022 /11 /Factual \
%5Fleaflet.pdf. (accessed: 26.05.2023) (page 3).

[8] Sophia Auer and Sophia Nagler and Somnath Mazumdar and Raghava Rao Mukka-
mala. “Towards blockchain-IoT based shared mobility: Car-sharing and leasing as a
case study”. In: Journal of Network and Computer Applications 200 (2022), p. 103316.
issn: 1084-8045. doi: https://doi.org/10.1016/j.jnca.2021.103316. url: https://www.
sciencedirect . com/science /article /pii / S1084804521003015. (accessed: 03.05.2023)
(page 3).

[9] T. Donna Chen and Kara M. Kockelman. “Carsharing’s life-cycle impacts on en-
ergy use and greenhouse gas emissions”. In: Transportation Research Part D: Trans-
port and Environment 47 (2016), 276–284. issn: 1361-9209. doi: https://doi.org/10.
1016/j.trd.2016.05.012. url: https://www.sciencedirect.com/science/article/pii/
S1361920916303030. (accessed: 04.05.2023) (page 3).

263

http://www.jstor.org/stable/303755
http://www.jstor.org/stable/303755
https://www.simonandschuster.com/books/Flash-Boys/Michael-Lewis/9781442370289
https://www.simonandschuster.com/books/Flash-Boys/Michael-Lewis/9781442370289
https://hal.univ-grenoble-alpes.fr/hal-02102188
https://library.princeton.edu/visual\%5Fmaterials/maps/websites/thematic-maps/theme-maps/utopia.html
https://library.princeton.edu/visual\%5Fmaterials/maps/websites/thematic-maps/theme-maps/utopia.html
https://doi.org/10.3390/futuretransp2010016
https://www.mdpi.com/2673-7590/2/1/16
https://www.mdpi.com/2673-7590/2/1/16
https://doi.org/10.1007/978-3-030-75729-8_2
https://doi.org/10.1007/978-3-030-75729-8\%5F2
https://doi.org/10.1007/978-3-030-75729-8\%5F2
https://www.eiturbanmobility.eu/wp-content/uploads/2022/11/Factual\%5Fleaflet.pdf
https://www.eiturbanmobility.eu/wp-content/uploads/2022/11/Factual\%5Fleaflet.pdf
https://doi.org/https://doi.org/10.1016/j.jnca.2021.103316
https://www.sciencedirect.com/science/article/pii/S1084804521003015
https://www.sciencedirect.com/science/article/pii/S1084804521003015
https://doi.org/https://doi.org/10.1016/j.trd.2016.05.012
https://doi.org/https://doi.org/10.1016/j.trd.2016.05.012
https://www.sciencedirect.com/science/article/pii/S1361920916303030
https://www.sciencedirect.com/science/article/pii/S1361920916303030

Chapter 8

[10] Karger, Erik and Jagals, Marvin and Ahlemann, Frederik. “Blockchain for Smart Mo-
bility—Literature Review and Future Research Agenda”. In: Sustainability 13 (Nov.
2021), p. 13268. doi: 10.3390/su132313268. (accessed: 04.05.2023) (page 3).

[11] Ballandies, Mark and Dapp, Marcus and Pournaras, Evangelos. “Decrypting dis-
tributed ledger design—taxonomy, classification and blockchain community eval-
uation”. In: Cluster Computing 25 (2022), 1–22. doi: 10.1007/s10586-021-03256-w.
(accessed: 06.05.2023) (page 3).

[12] Lopez Vivar, Antonio and Castedo, Alberto and Sandoval Orozco, Ana and Villalba,
García. “Smart Contracts: A Review of Security Threats Alongside an Analysis of
Existing Solutions”. In: Entropy 22 (2020), p. 203. doi: 10.3390/e22020203. (accessed:
07.05.2023) (page 5).

[13] El Ioini, Nabil and Pahl, Claus. “A Review of Distributed Ledger Technologies: Con-
federated International Conferences: CoopIS, CTC, andODBASE 2018, Valletta,Malta,
October 22-26, 2018, Proceedings, Part II”. In: (Oct. 2018), 277–288. doi: 10.1007/978-
3-030-02671-4_16. (accessed: 08.05.2023) (page 5).

[14] "Holochain". "Holochain Architecture".url: https://github.com/Holochain/holochain-
proto/wiki. (accessed: 27.05.2023) (page 5).

[15] Thuat Do. SoK on Blockchain Evolution and a Taxonomy for Public Blockchain Gener-
ations. Cryptology ePrint Archive, Paper 2023/315. https://eprint.iacr.org/2023/315.
2023. url: https://eprint.iacr.org/2023/315. (accessed: 09.05.2023) (page 6).

[16] Cai, Wei and Wang, Zehua and Ernst, Jason B. and Hong, Zhen and Feng, Chen
and Leung, Victor C. M. “Decentralized Applications: The Blockchain-Empowered
Software System”. In: IEEE Access 6 (2018), 53019–53033. doi: 10 . 1109 /ACCESS .
2018.2870644. (accessed: 09.05.2023) (page 7).

[17] Leiponen, Aija and Thomas, Llewellyn and Wang, Qian. “The dApp economy: A
new platform for distributed innovation?” In: Innovation: Organization Management
(2021), doi: 10.1080/14479338.2021.1965887. (accessed: 09.05.2023) (page 7).

[18] Zheng, Peilin and Jiang, Zigui andWu, Jiajing and Zheng, Zibin. “Blockchain-based
Decentralized Application: A Survey”. In: IEEE Open Journal of the Computer Society
PP (2023), 1–12. doi: 10.1109/OJCS.2023.3251854. (accessed: 09.05.2023) (page 7).

[19] Delmolino, Kevin and Arnett, Mitchell and Kosba, Ahmed and Miller, Andrew and
Shi, Elaine. Step by Step Towards Creating a Safe Smart Contract: Lessons and Insights
from a Cryptocurrency Lab. 2016. doi: 10 .1007/978- 3- 662- 53357- 4_6. (accessed:
10.05.2023) (page 7).

[20] "Szabo, Nick". "Smart Contracts: Building Blocks for Digital Markets". url: https://
www. fon .hum.uva .nl / rob /Courses / InformationInSpeech /CDROM/Literature /
LOTwinterschool2006 /szabo .best .vwh .net / smart \%5Fcontracts \%5F2 .html. (ac-
cessed: 27.05.2023) (page 7).

264

https://doi.org/10.3390/su132313268
https://doi.org/10.1007/s10586-021-03256-w
https://doi.org/10.3390/e22020203
https://doi.org/10.1007/978-3-030-02671-4_16
https://doi.org/10.1007/978-3-030-02671-4_16
https://github.com/Holochain/holochain-proto/wiki
https://github.com/Holochain/holochain-proto/wiki
https://eprint.iacr.org/2023/315
https://eprint.iacr.org/2023/315
https://doi.org/10.1109/ACCESS.2018.2870644
https://doi.org/10.1109/ACCESS.2018.2870644
https://doi.org/10.1080/14479338.2021.1965887
https://doi.org/10.1109/OJCS.2023.3251854
https://doi.org/10.1007/978-3-662-53357-4_6
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart\%5Fcontracts\%5F2.html
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart\%5Fcontracts\%5F2.html
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart\%5Fcontracts\%5F2.html

BIBLIOGRAPHY

[21] "Massa Blockchain". "Autonomous Smart Contracts (ASC)". url: https://massa.net/
autonomous-sc/. (accessed: 27.05.2023) (page 8).

[22] Cheng, Raymond andZhang, Fan andKos, Jernej andHe,Warren andHynes, Nicholas
and Johnson, Noah and Juels, Ari and Miller, Andrew and Song, Dawn. “Ekiden: A
Platform for Confidentiality-Preserving, Trustworthy, and Performant Smart Con-
tracts”. In: (2019), 185–200. doi: 10.1109/EuroSP.2019.00023 (page 8).

[23] 2018 reform of EU data protection rules. European Commission. May 25, 2018. url:
http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679&
from=EN (visited on 06/17/2019). (accessed: 09.11.2022) (pages 8, 26, 103).

[24] Oyinloye, Damilare Peter and Teh, Je Sen and Jamil, Norziana and Alawida, Moat-
sum. “Blockchain Consensus: An Overview of Alternative Protocols”. In: Symmetry
13.8 (2021). issn: 2073-8994. doi: 10.3390/sym13081363. url: https://www.mdpi.
com/2073-8994/13/8/1363. (accessed: 14.05.2023) (page 9).

[25] Lampson, Butler W. “How to Build a Highly Available System Using Consensus”.
In: WDAG ’96 (1996), 1–17. (accessed: 13.05.2023) (page 10).

[26] Fischer, Michael J. and Lynch, Nancy A. and Paterson, Michael S. “Impossibility of
Distributed Consensus with One Faulty Process”. In: J. ACM 32.2 (1985), 374–382.
issn: 0004-5411. doi: 10.1145/3149.214121. url: https://doi.org/10.1145/3149.214121.
(accessed: 11.11.2022) (pages 10, 30, 31, 143, 162).

[27] Verma, Neetu and Jain, Saurabh and Doriya, Rajesh. “Review on Consensus Proto-
cols for Blockchain”. In: (2021), 281–286. doi: 10.1109/ICCCIS51004.2021.9397089.
(accessed: 15.05.2023) (page 10).

[28] Varun Kohli and Sombuddha Chakravarty and Vinay Chamola and Kuldip Singh
Sangwan and Sherali Zeadally. “An analysis of energy consumption and carbon
footprints of cryptocurrencies and possible solutions”. In: Digital Communications
and Networks 9.1 (2023), 79–89. issn: 2352-8648. doi: https : / / doi . org / 10 . 1016 /
j . dcan . 2022 . 06 . 017. url: https : / /www. sciencedirect . com/ science / article / pii /
S2352864822001390. (accessed: 15.05.2023) (page 10).

[29] Bianchi Alves, Bianca and Wang, Winnie and Moody, Joanna and Waksberg Guer-
rini, Ana and Peralta Quiros, Tatiana and Velez, Jean Paul and Ochoa Sepulveda,
Maria Catalina and Alonso Gonzalez, Maria Jesus. “Adapting Mobility-as-a-Service
for Developing Cities : A Context-Sensitive Approach. Mobility and Transport Con-
nectivity”. In: (2021). doi: https://openknowledge.worldbank.org/handle/10986/
36787. (accessed: 05.11.2022) (page 17).

[30] Merkert, Rico and Bushell, James and Beck, Matthew. “Collaboration as a service
(CaaS) to fully integrate public transportation – Lessons from long distance travel
to reimagine mobility as a service”. In: Transportation Research Part A: Policy and
Practice 131 (2020). Developments in Mobility as a Service (MaaS) and Intelligent
Mobility, 267–282. issn: 0965-8564. doi: https : / /doi .org /10 .1016 / j . tra . 2019 .09 .

265

https://massa.net/autonomous-sc/
https://massa.net/autonomous-sc/
https://doi.org/10.1109/EuroSP.2019.00023
http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX: 32016R0679&from=EN
http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX: 32016R0679&from=EN
https://doi.org/10.3390/sym13081363
https://www.mdpi.com/2073-8994/13/8/1363
https://www.mdpi.com/2073-8994/13/8/1363
https://doi.org/10.1145/3149.214121
https://doi.org/10.1145/3149.214121
https://doi.org/10.1109/ICCCIS51004.2021.9397089
https://doi.org/https://doi.org/10.1016/j.dcan.2022.06.017
https://doi.org/https://doi.org/10.1016/j.dcan.2022.06.017
https://www.sciencedirect.com/science/article/pii/S2352864822001390
https://www.sciencedirect.com/science/article/pii/S2352864822001390
https://doi.org/https://openknowledge.worldbank.org/handle/10986/36787
https://doi.org/https://openknowledge.worldbank.org/handle/10986/36787
https://doi.org/https://doi.org/10.1016/j.tra.2019.09.025
https://doi.org/https://doi.org/10.1016/j.tra.2019.09.025
https://doi.org/https://doi.org/10.1016/j.tra.2019.09.025

Chapter 8

025. url: https://www.sciencedirect.com/science/article/pii/S0965856418309716.
(accessed: 14.12.2022) (page 17).

[31] deWilde, Thijs. “Thesis Mobility as a Service (MaaS) meets Blockchain”. PhD thesis.
2019, doi: 10.13140/RG.2.2.25503.61608. (accessed: 05.11.2022) (page 17).

[32] Auer, Sophia and Nagler, Sophia and Mazumdar, Somnath and Rao Mukkamala,
Raghava. “Towards blockchain-IoT based shared mobility: Car-sharing and leas-
ing as a case study”. In: Journal of Network and Computer Applications 200 (2022),
p. 103316. issn: 1084-8045. doi: https://doi.org/10.1016/j.jnca.2021.103316. url:
https://www.sciencedirect.com/science/article/pii/S1084804521003015. (accessed:
05.11.2022) (pages 18, 80).

[33] Mallah, Ranwa Al and López, David and Farooq, Bilal. “Cyber-Security Risk Assess-
ment Framework for Blockchains in Smart Mobility”. In: IEEE Open Journal of Intel-
ligent Transportation Systems 2 (2021), 294–311. doi: 10.1109/OJITS.2021.3106863.
(accessed: 05.11.2022) (page 18).

[34] de Oliveira, I. Romani and Matsumoto, T. and Neto, E. C. Pinto. “Blockchain-based
traffic management for Advanced Air Mobility”. In: (2022). doi: 10.48550/ARXIV.
2208.09312. url: https://arxiv.org/abs/2208.09312. (accessed: 05.11.2022) (page 19).

[35] Ayaz, Ferheen and Sheng, Zhengguo and Tian, Daxin and Nekovee, Maziar and
Saeed, Nagham. “Blockchain-Empowered AI for 6G-Enabled Internet of Vehicles”.
In: Electronics 11.20 (2022). issn: 2079-9292. doi: 10.3390/electronics11203339. url:
https://www.mdpi.com/2079-9292/11/20/3339. (accessed: 05.11.2022) (page 19).

[36] Nguyen, Tri Hong and Partala, Juha and Pirttikangas, Susanna. “Blockchain-Based
Mobility-as-a-Service”. In: (2019), 1–6. doi: 10.1109/ICCCN.2019.8847027. (accessed:
05.11.2022) (page 19).

[37] Gong, Shuangqing and Hossein Chinaei, Mohammad and Luo, Fengji and Hossein
Rashidi, Taha. “The distributed ownership of on-demand mobility service”. In: In-
ternational Journal of Transportation Science and Technology (2022). issn: 2046-0430.
doi: https://doi.org/10.1016/j.ijtst.2022.06.003. url: https://www.sciencedirect.com/
science/article/pii/S2046043022000569. (accessed: 05.11.2022) (page 19).

[38] Ongaro, Diego and Ousterhout, John. “In Search of an Understandable Consensus
Algorithm”. In: USENIX ATC’14 (2014), 305–320. (accessed: 13.12.2022) (pages 19,
145).

[39] López, David and Farooq, Bilal. “A multi-layered blockchain framework for smart
mobility data-markets”. In: Transportation Research Part C: Emerging Technologies
111 (2020), 588–615. issn: 0968-090X. doi: https://doi.org/10.1016/j.trc.2020.01.
002. url: https://www.sciencedirect.com/science/article/pii/S0968090X19300361.
(accessed: 05.11.2022) (page 19).

266

https://doi.org/https://doi.org/10.1016/j.tra.2019.09.025
https://doi.org/https://doi.org/10.1016/j.tra.2019.09.025
https://doi.org/https://doi.org/10.1016/j.tra.2019.09.025
https://doi.org/https://doi.org/10.1016/j.tra.2019.09.025
https://www.sciencedirect.com/science/article/pii/S0965856418309716
https://doi.org/10.13140/RG.2.2.25503.61608
https://doi.org/https://doi.org/10.1016/j.jnca.2021.103316
https://www.sciencedirect.com/science/article/pii/S1084804521003015
https://doi.org/10.1109/OJITS.2021.3106863
https://doi.org/10.48550/ARXIV.2208.09312
https://doi.org/10.48550/ARXIV.2208.09312
https://arxiv.org/abs/2208.09312
https://doi.org/10.3390/electronics11203339
https://www.mdpi.com/2079-9292/11/20/3339
https://doi.org/10.1109/ICCCN.2019.8847027
https://doi.org/https://doi.org/10.1016/j.ijtst.2022.06.003
https://www.sciencedirect.com/science/article/pii/S2046043022000569
https://www.sciencedirect.com/science/article/pii/S2046043022000569
https://doi.org/https://doi.org/10.1016/j.trc.2020.01.002
https://doi.org/https://doi.org/10.1016/j.trc.2020.01.002
https://www.sciencedirect.com/science/article/pii/S0968090X19300361

BIBLIOGRAPHY

[40] Wu, Junhua and Jin, Zhenyu and Li, Guangshun and Xu, Zhuqing and Fan, Cang
and Zheng, Yuanwang. “Design of Vehicle Certification Schemes in IoV Based on
Blockchain”. In: World Wide Web 25.5 (2022), 2241–2263. issn: 1386-145X. doi: 10.
1007 / s11280- 022- 01078- 3. url: https : / /doi .org /10 .1007 / s11280- 022- 01078- 3.
(accessed: 05.11.2022) (page 20).

[41] Gîrbacia, F and Voinea, Gheorghe and Boboc, Razvan and Duguleană, M and Postel-
nicu, Cristian. “Toward blockchain adoption for the automotive industry”. In: IOP
Conference Series: Materials Science and Engineering 1220 (2022), 012026. doi: 10 .
1088/1757-899X/1220/1/012026. (accessed: 05.11.2022) (page 21).

[42] McPhie, Tim and Crespo-Parrondo, Ana. Zero emission vehicles: first ‘Fit for 55’ deal
will end the sale of new CO2 emitting cars in Europe by 2035. Oct. 2022. (accessed:
05.11.2022) (page 21).

[43] Mohamed, Nader and Al-Jaroodi, Jameela. “Applying Blockchain in Industry 4.0
Applications”. In: (2019), 0852–0858. doi: 10.1109/CCWC.2019.8666558. (accessed:
06.11.2022) (page 21).

[44] Jadoon, Gullelala and Ud Din, Ikram and Almogren, Ahmad and Almajed, Hisham.
“Smart and Agile Manufacturing Framework, A Case Study for Automotive Indus-
try”. In: Energies 13.21 (2020). issn: 1996-1073. doi: 10.3390/en13215766. url: https:
//www.mdpi.com/1996-1073/13/21/5766. (accessed: 06.11.2022) (page 21).

[45] F Gîrbacia and D Voinea and R Boboc and M Duguleană and C C Postelnicu. “To-
ward blockchain adoption for the automotive industry”. In: IOP Conference Series:
Materials Science and Engineering 1220.1 (2022), 012026. doi: 10.1088/1757-899X/
1220/1/012026. url: https://dx.doi.org/10.1088/1757-899X/1220/1/012026 (page 21).

[46] Das, Moonmoon and Azad, Rahat Uddin and Efat, Md. Iftekharul Alam. “Blockchain
aided Vehicle Certification (BVC): A Secured E-Governance Framework for Trans-
port Stakeholders”. In: (2020), 1–6. doi: 10 . 1109 / ICCIT51783 . 2020 . 9392725. (ac-
cessed: 06.11.2022) (page 21).

[47] Bannister, Frank and Connolly, Regina. “The future ain’t what it used to be: Fore-
casting the impact of ICT on the public sphere”. In: Government Information Quar-
terly 37.1 (2020), p. 101410. issn: 0740-624X. doi: https://doi.org/10.1016/j.giq.2019.
101410.url: https://www.sciencedirect.com/science/article/pii/S0740624X19301248.
(accessed: 06.11.2022) (page 21).

[48] Swiderski, Frank and Snyder,Window. Threat Modeling. USA: Microsoft Press, 2004.
isbn: 0735619913. (accessed: 06.11.2022) (page 21).

[49] Chanson, Mathieu and Bogner, Andreas and Wortmann, Felix and Fleisch, Elgar.
“Blockchain As a Privacy Enabler: An Odometer Fraud Prevention System”. In: Ubi-
Comp ’17 (2017), 13–16. doi: 10.1145/3123024.3123078. url: http://doi.acm.org/10.
1145/3123024.3123078. (accessed: 06.11.2022) (pages 21, 22).

267

https://doi.org/10.1007/s11280-022-01078-3
https://doi.org/10.1007/s11280-022-01078-3
https://doi.org/10.1007/s11280-022-01078-3
https://doi.org/10.1088/1757-899X/1220/1/012026
https://doi.org/10.1088/1757-899X/1220/1/012026
https://doi.org/10.1109/CCWC.2019.8666558
https://doi.org/10.3390/en13215766
https://www.mdpi.com/1996-1073/13/21/5766
https://www.mdpi.com/1996-1073/13/21/5766
https://doi.org/10.1088/1757-899X/1220/1/012026
https://doi.org/10.1088/1757-899X/1220/1/012026
https://dx.doi.org/10.1088/1757-899X/1220/1/012026
https://doi.org/10.1109/ICCIT51783.2020.9392725
https://doi.org/https://doi.org/10.1016/j.giq.2019.101410
https://doi.org/https://doi.org/10.1016/j.giq.2019.101410
https://www.sciencedirect.com/science/article/pii/S0740624X19301248
https://doi.org/10.1145/3123024.3123078
http://doi.acm.org/10.1145/3123024.3123078
http://doi.acm.org/10.1145/3123024.3123078

Chapter 8

[50] Brousmiche, Kei-Léo and Heno, Thomas and Poulain, Christian and Dalmieres, An-
toine and Ben Hamida, Elyes. “Digitizing, Securing and Sharing Vehicles Life-cycle
over a Consortium Blockchain: Lessons Learned”. In: (2018), 1–5. doi: 10 . 1109 /
NTMS.2018.8328733. (accessed: 06.11.2022) (page 22).

[51] Gerrits, Luc and Kromes, Roland and Verdier, François. “A True Decentralized Im-
plementation Based on IoT and Blockchain: a Vehicle Accident Use Case”. In: (2020),
1–6. doi: 10.1109/COINS49042.2020.9191405. (accessed: 06.11.2022) (page 23).

[52] Avyukt, Anusha and Ramachandran, Gowri and Krishnamachari, Bhaskar. “A De-
centralized Review System for Data Marketplaces”. In: (2021), 1–9. doi: 10 .1109/
ICBC51069.2021.9461149. (accessed: 06.11.2022) (page 23).

[53] Meijers, James and Dharma Putra, Guntur and Kotsialou, Grammateia and Kan-
here, Salil S. and Veneris, Andreas. “Cost-Effective Blockchain-based IoT Data Mar-
ketplaces with a Credit Invariant”. In: (2021), 1–9. doi: 10.1109/ICBC51069.2021.
9461127. (accessed: 07.11.2022) (page 24).

[54] Al-Sada, Bader and Lasla, Noureddine and Abdallah, Mohamed. “Secure Scalable
Blockchain for Sealed-Bid Auction in Energy Trading”. In: (2021), 1–3. doi: 10.1109/
ICBC51069.2021.9461071. (accessed: 07.11.2022) (page 24).

[55] Banerjee, Prabal and Ruj, Sushmita. “Blockchain Enabled Data Marketplace – De-
sign andChallenges”. In: arXiv e-prints, arXiv:1811.11462 (Nov. 2018), arXiv:1811.11462.
arXiv: 1811.11462. (accessed: 07.11.2022) (pages 24, 102).

[56] Dziembowski, Stefan and Eckey, Lisa and Faust, Sebastian. “FairSwap: HowTo Fairly
ExchangeDigital Goods”. In: CCS ’18 (2018), 967–984.doi: 10.1145/3243734.3243857.
url: https://doi.org/10.1145/3243734.3243857. (accessed: 07.11.2022) (pages 24, 102).

[57] Koutsos, Vlasis and Papadopoulos, Dimitrios andChatzopoulos, Dimitris and Tarkoma,
Sasu and Hui, Pan. “Agora: A Privacy-aware Data Marketplace”. In: (2020), 1211–
1212. doi: 10.1109/ICDCS47774.2020.00156. (accessed: 07.11.2022) (page 24).

[58] Chotard, Jérémy et al. “Decentralized Multi-Client Functional Encryption for Inner
Product”. In: () (page 25).

[59] Jeong, Byeong-Gyu and Youn, Taek-Young and Jho, Nam-Su and Shin, Sang Uk.
“Blockchain-Based Data Sharing and Trading Model for the Connected Car”. In:
Sensors 20.11 (2020). issn: 1424-8220. doi: 10.3390/s20113141. url: https://www.
mdpi.com/1424-8220/20/11/3141. (accessed: 08.11.2022) (page 25).

[60] Zhang, Jindan and Wang, Xu An and Ma, Jianfeng. “Data Owner Based Attribute
Based Encryption”. In: (2015), 144–148. doi: 10 . 1109 / INCoS . 2015 . 42. (accessed:
08.11.2022) (page 25).

268

https://doi.org/10.1109/NTMS.2018.8328733
https://doi.org/10.1109/NTMS.2018.8328733
https://doi.org/10.1109/COINS49042.2020.9191405
https://doi.org/10.1109/ICBC51069.2021.9461149
https://doi.org/10.1109/ICBC51069.2021.9461149
https://doi.org/10.1109/ICBC51069.2021.9461127
https://doi.org/10.1109/ICBC51069.2021.9461127
https://doi.org/10.1109/ICBC51069.2021.9461071
https://doi.org/10.1109/ICBC51069.2021.9461071
https://arxiv.org/abs/1811.11462
https://doi.org/10.1145/3243734.3243857
https://doi.org/10.1145/3243734.3243857
https://doi.org/10.1109/ICDCS47774.2020.00156
https://doi.org/10.3390/s20113141
https://www.mdpi.com/1424-8220/20/11/3141
https://www.mdpi.com/1424-8220/20/11/3141
https://doi.org/10.1109/INCoS.2015.42

BIBLIOGRAPHY

[61] Faroukhi, Abou Zakaria and El Alaoui, Imane andGahi, Youssef andAmine, Aouatif.
“An Adaptable Big Data Value Chain Framework for End-to-End Big Data Mon-
etization”. In: Big Data and Cognitive Computing 4.4 (2020). issn: 2504-2289. doi:
10.3390/bdcc4040034. url: https://www.mdpi.com/2504-2289/4/4/34. (accessed:
09.11.2022) (page 25).

[62] K. Ozyilmaz and M. Dogan and A. Yurdakul. “IDMoB: IoT Data Marketplace on
Blockchain”. In: (2018), 11–19. doi: 10 . 1109 / CVCBT. 2018 . 00007. url: https : / /
doi . ieeecomputersociety.org/10 .1109/CVCBT.2018 .00007. (accessed: 09.11.2022)
(page 26).

[63] Anderson, Ross J. Security Engineering: A Guide to Building Dependable Distributed
Systems. 2nd ed.Wiley Publishing, 2008. isbn: 9780470068526. (accessed: 09.11.2022)
(pages 26, 56).

[64] Schwartz, Mischa and Kleinrock, L. “An early history of the internet [History of
Communications”. In: IEEE Communications Magazine 48 (2010), 26–36. doi: 10 .
1109/MCOM.2010.5534584. (accessed: 09.11.2022) (page 26).

[65] Wensley, J.H. and Lamport, L. and Goldberg, J. and Green, M.W. and Levitt, K.N. and
Melliar-Smith, P.M. and Shostak, R.E. and Weinstock, C.B. “SIFT: Design and analy-
sis of a fault-tolerant computer for aircraft control”. In: Proceedings of the IEEE 66.10
(1978), 1240–1255. doi: 10.1109/PROC.1978.11114. (accessed: 09.11.2022) (page 27).

[66] Rotem-Gal-Oz, Arnon. Fallacies of Distributed Computing Explained. 2008. (accessed:
09.11.2022) (page 27).

[67] World Economic Forum and Marsh McLennan and SK Group and Zurich Insurance
Group. The Global Risks Report. Jan. 2022. (accessed: 09.11.2022) (page 27).

[68] Lamport, Leslie and Shostak, Robert and Pease, Marshall. “The Byzantine Generals
Problem”. In: ACM Trans. Program. Lang. Syst. 4.3 (1982), 382–401. issn: 0164-0925.
doi: 10.1145/357172.357176. url: https://doi.org/10.1145/357172.357176. (accessed:
10.11.2022) (pages 27–29, 58).

[69] Pease, M. and Shostak, R. and Lamport, L. “Reaching Agreement in the Presence
of Faults”. In: J. ACM 27.2 (1980), 228–234. issn: 0004-5411. doi: 10.1145/322186.
322188. url: https://doi.org/10.1145/322186.322188. (accessed: 10.11.2022) (page 27).

[70] Akkoyunlu, E. A. and Ekanadham, K. andHuber, R. V. “Some Constraints and Trade-
offs in the Design of Network Communications”. In: SIGOPS Oper. Syst. Rev. 9.5
(1975), 67–74. issn: 0163-5980. doi: 10.1145/1067629.806523. url: https://doi.org/
10.1145/1067629.806523. (accessed: 11.11.2022) (page 27).

[71] Bayer, Rudolf and Graham, Robert M. and Saltzer, Jerome H. and Seegmüller, Ger-
hard. Operating Systems, An Advanced Course - Introduction. Berlin, Heidelberg:
Springer-Verlag, 1978, 1–6. isbn: 3540087559. (accessed: 11.11.2022) (page 27).

269

https://doi.org/10.3390/bdcc4040034
https://www.mdpi.com/2504-2289/4/4/34
https://doi.org/10.1109/CVCBT.2018.00007
https://doi.ieeecomputersociety.org/10.1109/CVCBT.2018.00007
https://doi.ieeecomputersociety.org/10.1109/CVCBT.2018.00007
https://doi.org/10.1109/MCOM.2010.5534584
https://doi.org/10.1109/MCOM.2010.5534584
https://doi.org/10.1109/PROC.1978.11114
https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/322186.322188
https://doi.org/10.1145/322186.322188
https://doi.org/10.1145/322186.322188
https://doi.org/10.1145/1067629.806523
https://doi.org/10.1145/1067629.806523
https://doi.org/10.1145/1067629.806523

Chapter 8

[72] Dwork, Cynthia and Lynch, Nancy and Stockmeyer, Larry. “Consensus in the Pres-
ence of Partial Synchrony”. In: J. ACM 35.2 (1988), 288–323. issn: 0004-5411. doi: 10.
1145/42282.42283. url: https://doi.org/10.1145/42282.42283. (accessed: 11.11.2022)
(pages 30, 143, 162).

[73] Castro, Miguel and Liskov, Barbara. “Practical Byzantine Fault Tolerance”. In: OSDI
’99 (1999), 173–186. (accessed: 12.11.2022) (pages 32, 35, 40, 49, 50, 59, 121, 125, 135,
147, 148, 189).

[74] Nguyen, Thanh Son Lam and Jourjon, Guillaume and Potop-Butucaru, Maria and
Thai, Kim Loan. “Impact of network delays on Hyperledger Fabric”. In: (2019), 222–
227. doi: 10.1109/INFCOMW.2019.8845168. (accessed: 12.11.2022) (page 33).

[75] Hyperledger Foundation. Sawtooth PBFT Request for Comments. url: https://github.
com/hyperledger/sawtooth- rfcs/blob/main/text/0019- pbft- consensus .md. (ac-
cessed: 08.11.2022) (pages 33, 133).

[76] Kotla, Ramakrishna and Alvisi, Lorenzo and Dahlin, Mike and Clement, Allen and
Wong, Edmund. “Zyzzyva: Speculative Byzantine Fault Tolerance”. In: ACM Trans.
Comput. Syst. 27.4 (2010). issn: 0734-2071. doi: 10.1145/1658357.1658358. url: https:
//doi.org/10.1145/1658357.1658358. (accessed: 12.11.2022) (pages 33–35, 145, 147,
148).

[77] Abraham, Ittai and Gueta, Guy and Malkhi, Dahlia and Alvisi, Lorenzo and Kotla,
Rama and Martin, Jean-Philippe. “Revisiting Fast Practical Byzantine Fault Toler-
ance”. In: (2017). doi: 10.48550/ARXIV.1712.01367. url: https://arxiv.org/abs/1712.
01367. (accessed: 14.11.2022) (pages 34, 35).

[78] Clement, Allen and Kapritsos, Manos and Lee, Sangmin andWang, Yang and Alvisi,
Lorenzo and Dahlin, Mike and Riche, Taylor. “Upright Cluster Services”. In: SOSP
’09 (2009), 277–290. doi: 10.1145/1629575.1629602. url: https://doi.org/10.1145/
1629575.1629602. (accessed: 14.11.2022) (page 34).

[79] Kursawe, K. “Optimistic Byzantine agreement”. In: (2002), 262–267. doi: 10.1109/
RELDIS.2002.1180196. (accessed: 14.11.2022) (page 34).

[80] Martin, Jean-Philippe and Alvisi, Lorenzo. “Fast Byzantine Consensus”. In: IEEE
Trans. Dependable Secur. Comput. 3.3 (2006), 202–215. issn: 1545-5971. doi: 10.1109/
TDSC.2006.35. url: https://doi.org/10.1109/TDSC.2006.35. (accessed: 16.11.2022)
(page 34).

[81] Aublin, Pierre-Louis andGuerraoui, Rachid andKnežević, Nikola andQuéma, Vivien
and Vukolić, Marko. “The Next 700 BFT Protocols”. In: ACM Trans. Comput. Syst.
32.4 (2015). issn: 0734-2071. doi: 10.1145/2658994. url: https://doi.org/10.1145/
2658994. (accessed: 16.11.2022) (page 34).

[82] Amiri, Mohammad Javad and Agrawal, Divyakant and Abbadi, Amr El. “Modern
Large-Scale Data Management Systems after 40 Years of Consensus”. In: (2020),
1794–1797. doi: 10.1109/ICDE48307.2020.00172. (accessed: 13.11.2022) (pages 34,
35).

270

https://doi.org/10.1145/42282.42283
https://doi.org/10.1145/42282.42283
https://doi.org/10.1145/42282.42283
https://doi.org/10.1109/INFCOMW.2019.8845168
https://github.com/hyperledger/sawtooth-rfcs/blob/main/text/0019-pbft-consensus.md
https://github.com/hyperledger/sawtooth-rfcs/blob/main/text/0019-pbft-consensus.md
https://doi.org/10.1145/1658357.1658358
https://doi.org/10.1145/1658357.1658358
https://doi.org/10.1145/1658357.1658358
https://doi.org/10.48550/ARXIV.1712.01367
https://arxiv.org/abs/1712.01367
https://arxiv.org/abs/1712.01367
https://doi.org/10.1145/1629575.1629602
https://doi.org/10.1145/1629575.1629602
https://doi.org/10.1145/1629575.1629602
https://doi.org/10.1109/RELDIS.2002.1180196
https://doi.org/10.1109/RELDIS.2002.1180196
https://doi.org/10.1109/TDSC.2006.35
https://doi.org/10.1109/TDSC.2006.35
https://doi.org/10.1109/TDSC.2006.35
https://doi.org/10.1145/2658994
https://doi.org/10.1145/2658994
https://doi.org/10.1145/2658994
https://doi.org/10.1109/ICDE48307.2020.00172

BIBLIOGRAPHY

[83] Yin, Maofan and Malkhi, Dahlia and Reiter, Michael K. and Gueta, Guy Golan and
Abraham, Ittai. “HotStuff: BFT Consensus with Linearity and Responsiveness”. In:
PODC ’19 (2019), 347–356. doi: 10.1145/3293611.3331591. url: https://doi.org/10.
1145/3293611.3331591. (accessed: 17.11.2022) (pages 35, 36, 121, 149, 215, 218).

[84] Diem Team. DiemBFT v4: State Machine Replication in the Diem Blockchain. Diem
(Libra,Novi a Facebook Project. 2021. url: https://developers.diem.com/papers/
diem- consensus- state-machine- replication- in- the- diem- blockchain/2021- 08-
17.pdf. (accessed: 18.11.2022) (pages 35, 121).

[85] Alqahtani, Salem and Demirbas, Murat. “Bottlenecks in Blockchain Consensus Pro-
tocols”. In: (2021), 1–8.doi: 10.1109/COINS51742.2021.9524210. (accessed: 18.11.2022)
(pages 35, 139).

[86] Vitalik Buterin. Casper FFG with one message type, and simpler fork choice rule.
Ethereum Research. 2017. url: https://ethresear.ch/t/casper-ffg-with-one-message-
type-and-simpler-fork-choice-rule/103. (accessed: 18.11.2022) (page 36).

[87] Buchman, Ethan and Kwon, Jae and Milosevic, Zarko. “The latest gossip on BFT
consensus”. In: (2018). doi: 10.48550/ARXIV.1807.04938. url: https://arxiv.org/abs/
1807.04938. (accessed: 18.11.2022) (page 37).

[88] Lagaillardie, Nicolas and Djari, Mohamed Aimen and Gürcan, Önder. “A Compu-
tational Study on Fairness of the Tendermint Blockchain Protocol”. In: Information
10.12 (2019). issn: 2078-2489. doi: 10.3390/info10120378. url: https://www.mdpi.
com/2078-2489/10/12/378. (accessed: 18.11.2022) (page 38).

[89] Buterin, Vitalik and Hernandez, Diego and Kamphefner, Thor and Pham, Khiem
and Qiao, Zhi and Ryan, Danny and Sin, Juhyeok and Wang, Ying and Zhang, Yan
X. Combining GHOST and Casper. 2020. doi: 10 . 48550 /ARXIV. 2003 . 03052. url:
https://arxiv.org/abs/2003.03052. (accessed: 19.11.2022) (pages 38, 218).

[90] Wackerow, Paul. Gasper. Ethereum Foundation. 2022. url: https://ethereum.org/
en/developers /docs /consensus -mechanisms/pos /gasper/. (accessed: 20.11.2022)
(pages 38–40).

[91] Buterin, Vitalik. A Proof of Stake Design Philosophy. Ethereum Foundation. 2016.
url: https://medium.com/@VitalikButerin/a-proof-of-stake-design-philosophy-
506585978d51. (accessed: 20.11.2022) (page 39).

[92] Buterin, Vitalik and Griffith, Virgil. Casper the Friendly Finality Gadget. 2017. doi:
10 .48550/ARXIV.1710 .09437. url: https : / /arxiv.org/abs/1710 .09437. (accessed:
20.11.2022) (page 39).

[93] Sompolinsky, Yonatan and Zohar, Aviv. “Secure High-Rate Transaction Processing
in Bitcoin”. In: (2015). (accessed: 21.11.2022) (pages 39, 48).

271

https://doi.org/10.1145/3293611.3331591
https://doi.org/10.1145/3293611.3331591
https://doi.org/10.1145/3293611.3331591
https://developers.diem.com/papers/diem-consensus-state-machine-replication-in-the-diem-blockchain/2021-08-17.pdf
https://developers.diem.com/papers/diem-consensus-state-machine-replication-in-the-diem-blockchain/2021-08-17.pdf
https://developers.diem.com/papers/diem-consensus-state-machine-replication-in-the-diem-blockchain/2021-08-17.pdf
https://doi.org/10.1109/COINS51742.2021.9524210
https://ethresear.ch/t/casper-ffg-with-one-message-type-and-simpler-fork-choice-rule/103
https://ethresear.ch/t/casper-ffg-with-one-message-type-and-simpler-fork-choice-rule/103
https://doi.org/10.48550/ARXIV.1807.04938
https://arxiv.org/abs/1807.04938
https://arxiv.org/abs/1807.04938
https://doi.org/10.3390/info10120378
https://www.mdpi.com/2078-2489/10/12/378
https://www.mdpi.com/2078-2489/10/12/378
https://doi.org/10.48550/ARXIV.2003.03052
https://arxiv.org/abs/2003.03052
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/gasper/
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/gasper/
https://medium.com/@VitalikButerin/a-proof-of-stake-design-philosophy-506585978d51
https://medium.com/@VitalikButerin/a-proof-of-stake-design-philosophy-506585978d51
https://doi.org/10.48550/ARXIV.1710.09437
https://arxiv.org/abs/1710.09437

Chapter 8

[94] Stathakopoulou, Chrysoula andDavid, Tudor and Pavlovic,Matej andVukolić,Marko.
Mir-BFT: High-Throughput Robust BFT for Decentralized Networks. 2019. doi: 10 .
48550 / ARXIV. 1906 . 05552. url: https : / / arxiv . org / abs / 1906 . 05552. (accessed:
21.11.2022) (pages 40, 41, 215).

[95] Neiheiser, Ray and Matos, Miguel and Rodrigues, Luís. “Kauri: Scalable BFT Con-
sensus with Pipelined Tree-Based Dissemination and Aggregation”. In: () (pages 40,
195).

[96] Milosevic, Zarko and Biely,Martin and Schiper, André. “BoundedDelay in Byzantine-
Tolerant State Machine Replication”. In: (2013), 61–70. doi: 10.1109/SRDS.2013.15.
(accessed: 21.11.2022) (page 40).

[97] Crain, Tyler and Natoli, Christopher and Gramoli, Vincent. “Red Belly: A Secure,
Fair and Scalable Open Blockchain”. In: (2021), 466–483. doi: 10.1109/SP40001.2021.
00087. (accessed: 22.11.2022) (page 40).

[98] Baird, Leemon and Luykx, Atul. “The Hashgraph Protocol: Efficient Asynchronous
BFT forHigh-ThroughputDistributed Ledgers”. In: (2020), 1–7.doi: 10.1109/COINS49042.
2020.9191430. (accessed: 22.11.2022) (page 40).

[99] Miller, Andrew and Xia, Yu and Croman, Kyle and Shi, Elaine and Song, Dawn. “The
Honey Badger of BFT Protocols”. In: CCS ’16 (2016), 31–42. doi: 10.1145/2976749.
2978399. url: https : / / doi . org / 10 . 1145 / 2976749 . 2978399. (accessed: 22.11.2022)
(pages 40, 149).

[100] Duan, Sisi and Reiter, Michael K. and Zhang, Haibin. “BEAT: Asynchronous BFT
Made Practical”. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security. CCS ’18. Toronto, Canada: Association for Comput-
ingMachinery, 2018, 2028–2041. isbn: 9781450356930.doi: 10.1145/3243734.3243812.
url: https://doi.org/10.1145/3243734.3243812. (accessed: 22.11.2022) (page 40).

[101] Rebello, Gabriel Antonio F. and Camilo, Gustavo F. and Guimarães, Lucas C. B. and
de Souza, Lucas Airam C. and Duarte, Otto Carlos M. B. “Security and Performance
Analysis of Quorum-based Blockchain Consensus Protocols”. In: (2022), 1–7. doi:
10.1109/CSNet56116.2022.9955597. (accessed: 23.11.2022) (pages 42–45).

[102] Aublin, Pierre-Louis and Mokhtar, Sonia Ben and Quéma, Vivien. “RBFT: Redun-
dant Byzantine Fault Tolerance”. In: (2013), 297–306. doi: 10.1109/ICDCS.2013.53.
(accessed: 23.11.2022) (page 42).

[103] Chase, Brad and MacBrough, Ethan. Analysis of the XRP Ledger Consensus Protocol.
2018. doi: 10 .48550/ARXIV.1802 .07242. url: https : / /arxiv.org/abs/1802 .07242.
(accessed: 23.11.2022) (page 42).

[104] Kim, Minjeong and Kwon, Yujin and Kim, Yongdae. “Is Stellar As Secure As You
Think?” In: (2019), 377–385.doi: 10.1109/EuroSPW.2019.00048. (accessed: 23.11.2022)
(page 43).

272

https://doi.org/10.48550/ARXIV.1906.05552
https://doi.org/10.48550/ARXIV.1906.05552
https://arxiv.org/abs/1906.05552
https://doi.org/10.1109/SRDS.2013.15
https://doi.org/10.1109/SP40001.2021.00087
https://doi.org/10.1109/SP40001.2021.00087
https://doi.org/10.1109/COINS49042.2020.9191430
https://doi.org/10.1109/COINS49042.2020.9191430
https://doi.org/10.1145/2976749.2978399
https://doi.org/10.1145/2976749.2978399
https://doi.org/10.1145/2976749.2978399
https://doi.org/10.1145/3243734.3243812
https://doi.org/10.1145/3243734.3243812
https://doi.org/10.1109/CSNet56116.2022.9955597
https://doi.org/10.1109/ICDCS.2013.53
https://doi.org/10.48550/ARXIV.1802.07242
https://arxiv.org/abs/1802.07242
https://doi.org/10.1109/EuroSPW.2019.00048

BIBLIOGRAPHY

[105] Wang, Qin and Li, Rujia and Chen, Shiping and Xiang, Yang. “Formal Security Anal-
ysis on DBFT Protocol of NEO”. In: Distrib. Ledger Technol. (2022). issn: 2769-6472.
doi: 10.1145/3568314. url: https://doi.org/10.1145/3568314. (accessed: 24.11.2022)
(page 43).

[106] EOS.IO Team. EOS.IO Technical White Paper. Block.One. 2018. url: https://github.
com /EOSIO /Documentation / blob /master / TechnicalWhitePaper.md. (accessed:
24.11.2022) (page 44).

[107] Zhao, Yijing and Liu, Jieli and Han, Qing and Zheng, Weilin and Wu, Jiajing. “Ex-
ploring EOSIO via Graph Characterization”. In: (2020). Ed. by Zibin Zheng et al.,
475–488. (accessed: 24.11.2022) (page 45).

[108] Veronese, Giuliana Santos and Correia, Miguel and Bessani, Alysson Neves and
Lung, Lau Cheuk. “Spin One’s Wheels? Byzantine Fault Tolerance with a Spinning
Primary”. In: (2009), 135–144. doi: 10 .1109/SRDS.2009 .36. (accessed: 23.11.2022)
(page 45).

[109] Bentov, Iddo andGabizon, Ariel andMizrahi, Alex. “CryptocurrenciesWithout Proof
of Work”. In: (2016). Ed. by Jeremy Clark et al., 142–157. (accessed: 25.11.2022)
(page 45).

[110] Kiayias, Aggelos and Russell, Alexander and David, Bernardo and Oliynykov, Ro-
man. “Ouroboros: A Provably Secure Proof-of-Stake Blockchain Protocol”. In: (2017).
Ed. by Jonathan Katz andHovav Shacham, 357–388. (accessed: 25.11.2022) (pages 45,
46).

[111] David, Bernardo andGaži, Peter andKiayias, Aggelos and Russell, Alexander. “Ouroboros
Praos: AnAdaptively-Secure, Semi-synchronous Proof-of-Stake Blockchain”. In: (2018).
Ed. by Jesper BuusNielsen andVincent Rijmen, 66–98. (accessed: 25.11.2022) (pages 45,
46, 51, 90).

[112] Daian, Phil and Pass, Rafael and Shi, Elaine. “SnowWhite: Robustly Reconfigurable
Consensus and Applications to Provably Secure Proof of Stake”. In: (2019). Ed. by
Ian Goldberg and Tyler Moore, 23–41. (accessed: 26.11.2022) (pages 45, 47, 51).

[113] Rabin, T. and Ben-Or, M. “Verifiable Secret Sharing and Multiparty Protocols with
Honest Majority”. In: STOC ’89 (1989), 73–85. doi: 10.1145/73007.73014. url: https:
//doi.org/10.1145/73007.73014. (accessed: 25.11.2022) (page 45).

[114] Bentov, Iddo and Lee, Charles and Mizrahi, Alex and Rosenfeld, Meni. “Proof of Ac-
tivity: Extending Bitcoin’s Proof of Work via Proof of Stake [Extended Abstract]y”.
In: SIGMETRICS Perform. Eval. Rev. 42.3 (2014), 34–37. issn: 0163-5999. doi: 10 .
1145/2695533.2695545. url: https://doi.org/10.1145/2695533.2695545. (accessed:
26.11.2022) (pages 45, 51, 52).

[115] Xiao, Yang and Zhang, Ning and Lou, Wenjing and Hou, Y. Thomas. “A Survey of
Distributed Consensus Protocols for Blockchain Networks”. In: IEEE Communica-
tions Surveys Tutorials 22.2 (2020), 1432–1465. doi: 10.1109/COMST.2020.2969706.
(accessed: 24.11.2022) (pages 46, 47, 51).

273

https://doi.org/10.1145/3568314
https://doi.org/10.1145/3568314
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md
https://doi.org/10.1109/SRDS.2009.36
https://doi.org/10.1145/73007.73014
https://doi.org/10.1145/73007.73014
https://doi.org/10.1145/73007.73014
https://doi.org/10.1145/2695533.2695545
https://doi.org/10.1145/2695533.2695545
https://doi.org/10.1145/2695533.2695545
https://doi.org/10.1109/COMST.2020.2969706

Chapter 8

[116] Pass, Rafael and Shi, Elaine. “The Sleepy Model of Consensus”. In: (2017). Ed. by
Tsuyoshi Takagi and Thomas Peyrin, 380–409. (accessed: 26.11.2022) (page 47).

[117] De Angelis, Stefano and Aniello, Leonardo and Lombardi, Federico and Margheri,
Andrea and Sassone, V. “PBFT vs Proof-of-Authority: Applying the CAP Theorem to
Permissioned Blockchain”. In: (2018). (accessed: 09.12.2022) (pages 47–49, 81, 133).

[118] Gerrits, Luc and Samuel, Cyril Naves and Kromes, Roland and Verdier, François and
Glock, Severine and Guitton-Ouhamou, Patricia. “Experimental Scalability Study of
Consortium Blockchains with BFT Consensus for IoT Automotive Use Case”. In:
SenSys ’21 (2021), 492–498. doi: 10.1145/3485730.3493374. url: https://doi.org/10.
1145/3485730.3493374. (accessed: 12.12.2022) (pages 48, 87, 179).

[119] Yu-Te Lin. Istanbul Byzantine Fault Tolerance. url: https://github.com/ethereum/
EIPs/issues/650. (accessed: 01.11.2022) (pages 49, 72, 150).

[120] Saltini, Roberto. Formal Verification of the safety of QBFT. url: https://drive.google.
com/file/d/1KmDrqxxFlbQGjyzsD\%5FQTTPgONDtg7euB/view. (accessed: 01.11.2022)
(page 50).

[121] Henrique Moniz. The Istanbul BFT Consensus Algorithm. 2020. arXiv: 2002 .03613.
url: https://arxiv.org/abs/2002.03613. (accessed: 11.12.2022) (pages 50, 125, 137,
150).

[122] Dwork, Cynthia and Naor, Moni. “Pricing via Processing or Combatting Junk Mail”.
In: (1993). Ed. by Ernest F. Brickell, 139–147. (accessed: 27.11.2022) (page 51).

[123] Buterin, Vitalik and Griffith, Virgil. Casper the Friendly Finality Gadget. 2017. arXiv:
1710.09437. url: http://arxiv.org/abs/1710.09437. (accessed: 29.11.2022) (page 51).

[124] Buterin, Vitalik. Long-Range Attacks: The Serious Problem With Adaptive Proof of
Work. 2014. url: https://blog.ethereum.org/2014/05/15/long-range-attacks-the-
serious-problem-with-adaptive-proof-of-work. (accessed: 29.11.2022) (page 51).

[125] Gaži, Peter and Kiayias, Aggelos and Russell, Alexander. “Stake-Bleeding Attacks
on Proof-of-Stake Blockchains”. In: (2018), 85–92. doi: 10.1109/CVCBT.2018.00015.
(accessed: 30.11.2022) (page 51).

[126] Dunford, Rosie and Su, Quanrong and Tamang, Ekraj. “The Pareto Principle”. In:
The Plymouth Student Scientist 7 (2014), 140–148. (accessed: 01.12.2022) (page 52).

[127] Chen, Lin and Xu, Lei and Shah, Nolan and Gao, Zhimin and Lu, Yang and Shi,
Weidong. “On Security Analysis of Proof-of-Elapsed-Time (PoET)”. In: (2017). Ed.
by Paul Spirakis and Philippas Tsigas, 282–297. (accessed: 01.12.2022) (page 52).

[128] Bernstein, Daniel J. The Salsa20 Family of Stream Ciphers. Ed. by Matthew Robshaw
and Olivier Billet. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, 84–97. isbn:
978-3-540-68351-3. doi: 10.1007/978-3-540-68351-3_8. url: https://doi.org/10.1007/
978-3-540-68351-3\%5F8. (accessed: 03.12.2022) (page 53).

274

https://doi.org/10.1145/3485730.3493374
https://doi.org/10.1145/3485730.3493374
https://doi.org/10.1145/3485730.3493374
https://github.com/ethereum/EIPs/issues/650
https://github.com/ethereum/EIPs/issues/650
https://drive.google.com/file/d/1KmDrqxxFlbQGjyzsD\%5FQTTPgONDtg7euB/view
https://drive.google.com/file/d/1KmDrqxxFlbQGjyzsD\%5FQTTPgONDtg7euB/view
https://arxiv.org/abs/2002.03613
https://arxiv.org/abs/2002.03613
https://arxiv.org/abs/1710.09437
http://arxiv.org/abs/1710.09437
https://blog.ethereum.org/2014/05/15/long-range-attacks-the-serious-problem-with-adaptive-proof-of-work
https://blog.ethereum.org/2014/05/15/long-range-attacks-the-serious-problem-with-adaptive-proof-of-work
https://doi.org/10.1109/CVCBT.2018.00015
https://doi.org/10.1007/978-3-540-68351-3_8
https://doi.org/10.1007/978-3-540-68351-3\%5F8
https://doi.org/10.1007/978-3-540-68351-3\%5F8

BIBLIOGRAPHY

[129] Swamynathan, Gayatri andAlmeroth, Kevin and Zhao, Ben. “The design of a reliable
reputation system”. In: Electronic Commerce Research 10 (Dec. 2010), 239–270. doi:
10.1007/s10660-010-9064-y. (accessed: 03.12.2022) (page 53).

[130] Anton Kolonin and Ben Goertzel and Deborah Duong and Matt Ikle. A Reputa-
tion System for Artificial Societies. 2018. arXiv: 1806 . 07342 [cs.AI]. (accessed:
04.12.2022) (page 53).

[131] Oladotun Aluko and Anton Kolonin. “Proof-of-Reputation: An Alternative Con-
sensus Mechanism for Blockchain Systems”. In: CoRR abs/2108.03542 (2021). arXiv:
2108.03542. url: https://arxiv.org/abs/2108.03542. (accessed: 06.12.2022) (pages 54,
55).

[132] Yu, Jiangshan and Kozhaya, David and Decouchant, Jeremie and Esteves-Verissimo,
Paulo. “RepuCoin: Your Reputation Is Your Power”. In: IEEE Transactions on Com-
puters 68.8 (2019), 1225–1237. doi: 10.1109/TC.2019.2900648. (accessed: 06.12.2022)
(page 54).

[133] Kleinrock, Leonard and Ostrovsky, Rafail and Zikas, Vassilis. “Proof-of-Reputation
Blockchain with Nakamoto Fallback”. In: (2020), 16–38. doi: 10.1007/978-3-030-
65277- 7_2. url: https : / /doi .org/10 .1007/978- 3- 030- 65277- 7 \%5F2. (accessed:
06.12.2022) (page 55).

[134] Asharov, Gilad and Lindell, Yehuda and Zarosim, Hila. “Fair and Efficient Secure
Multiparty Computation with Reputation Systems”. In: (2013). Ed. by Kazue Sako
and Palash Sarkar, 201–220. (accessed: 06.12.2022) (page 55).

[135] Gai, Fangyu and Wang, Baosheng and Deng, Wenping and Peng, Wei. “Proof of
Reputation: A Reputation-Based Consensus Protocol for Peer-to-Peer Network”. In:
(2018). Ed. by Jian Pei et al., 666–681. (accessed: 06.12.2022) (pages 56, 57).

[136] H. Li and A. Clement and E. Wong and J. Napper and I. Roy and L. Alvisi and M.
Dahlin. “BAR Gossip”. In: (Nov. 2006). (accessed: 08.12.2022) (pages 57, 60).

[137] Wong, Edmund L. and Leners, Joshua B. andAlvisi, Lorenzo. “It’s onMe! The Benefit
of Altruism in BAREnvironment”. In: DISC’10 (2010), 406–420. (accessed: 08.12.2022)
(page 57).

[138] Aiyer, Amitanand S. and Alvisi, Lorenzo and Clement, Allen and Dahlin, Mike and
Martin, Jean-Philippe and Porth, Carl. “BAR Fault Tolerance for Cooperative Ser-
vices”. In: SOSP ’05 (2005), 45–58. doi: 10.1145/1095810.1095816. url: https://doi.
org/10.1145/1095810.1095816. (accessed: 08.12.2022) (pages 57–59).

[139] Joã Vilaça, Xavier and Leitão. “N-party BAR Transfer”. In: () (page 57).

[140] Groupe Renault. The blockchain, transformation vector for the future of the automo-
tive industry. url: https : / /www.renaultgroup.com/en/news- on- air/news/the-
blockchain- transformation-vector- for- the- future-of- the-automotive- industry/.
(accessed: 24.03.2023) (page 64).

275

https://doi.org/10.1007/s10660-010-9064-y
https://arxiv.org/abs/1806.07342
https://arxiv.org/abs/2108.03542
https://arxiv.org/abs/2108.03542
https://doi.org/10.1109/TC.2019.2900648
https://doi.org/10.1007/978-3-030-65277-7_2
https://doi.org/10.1007/978-3-030-65277-7_2
https://doi.org/10.1007/978-3-030-65277-7\%5F2
https://doi.org/10.1145/1095810.1095816
https://doi.org/10.1145/1095810.1095816
https://doi.org/10.1145/1095810.1095816
https://www.renaultgroup.com/en/news-on-air/news/the-blockchain-transformation-vector-for-the-future-of-the-automotive-industry/
https://www.renaultgroup.com/en/news-on-air/news/the-blockchain-transformation-vector-for-the-future-of-the-automotive-industry/

Chapter 8

[141] Groupe Renault. XCEED: a new blockchain solution for Renault plants in Europe. url:
https://www.renaultgroup.com/en/news-on-air/news/xceed-a-new-blockchain-
solution-for-renault-plants-in-europe/. (accessed: 24.03.2023) (page 64).

[142] Bernhart, Wolfgang and Baum, Markus and Meissner, Falk and Shirokinskiy, Kon-
stantin. Roland Berger Report: The future of the automotive software industry: Spend,
trends and how to transform. url: https : / / content . rolandberger. com/hubfs / 07 \
%5Fpresse/Roland\%5FBerger\%5FArticle\%5FComputer\%5Fon\%5FWheels\%5F4\
%5F2022.pdf. (accessed: 24.03.2023) (page 65).

[143] International Standards Organization. ISO/TC 307 Blockchain and distributed ledger
technologies. url: https : / /www. iso . org / home . isoDocumentsDownload . do ? t =
FfjDIuj1cCQFy5qRq3trl4VYO8gQI5az388\%5FAqybXhJIImrBTF0-C5uxwIJQtjT7&
CSRFTOKEN=QUFB - 08O4 - 7YSX - 540R - QUCP - FQ86 - Q47Q - CS25. (accessed:
27.03.2023) (pages 65, 86).

[144] VolkwsagenGroup. Protecting people and the environment with blockchain.url: https:
//www.volkswagenag.com/en/news/stories/2019/04/protecting-people-and-the-
environment-with-blockchain.html#. (accessed: 27.03.2023) (page 65).

[145] Volkwsagen Group. From mine to factory: Volkswagen makes supply chain transpar-
ent with blockchain. url: https : / /www.volkswagenag . com/ en /news / 2019 / 04 /
volkswagen\%5Fblockchain\%5Fminespider.html. (accessed: 27.03.2023) (page 65).

[146] Dargahi, Tooska andAhmadvand, Hossein andAlraja, Mansour Naser and Yu, Chia-
Mu. “Integration of Blockchain with Connected and Autonomous Vehicles: Vision
and Challenge”. In: J. Data and Information Quality 14.1 (2021). issn: 1936-1955.
doi: 10.1145/3460003. url: https://doi.org/10.1145/3460003. (accessed: 28.03.2023)
(page 65).

[147] Fraga-Lamas, Paula and Fernández-Caramés, Tiago. “A Review on Blockchain Tech-
nologies for anAdvanced and Cyber-Resilient Automotive Industry”. In: IEEEAccess
7 (2019), 17578–17598. doi: 10.1109/ACCESS.2019.2895302. (accessed: 29.03.2023)
(page 66).

[148] Besançon, Léo and Silva, Catarina Ferreira Da andGhodous, Parisa. “Towards Blockchain
Interoperability: Improving Video Games Data Exchange”. In: (2019), 81–85. doi:
10.1109/BLOC.2019.8751347. (accessed: 29.03.2023) (page 66).

[149] Dib, Omar and Brousmiche, Kei-Léo et al. “Consortium blockchains: Overview, ap-
plications and challenges”. In: () (page 67).

[150] Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger EIP-150
REVISION (759dccd - 2017-08-07). 2017.url: https://ethereum.github.io/yellowpaper/
paper.pdf. (accessed: 29.03.2023) (page 68).

[151] "Multichain Coin Sciences Limited". "Multichain Permissions consensus". url: https:
//www.multichain.com/developers/permissions-consensus/. (accessed: 20.05.2023)
(page 68).

276

https://www.renaultgroup.com/en/news-on-air/news/xceed-a-new-blockchain-solution-for-renault-plants-in-europe/
https://www.renaultgroup.com/en/news-on-air/news/xceed-a-new-blockchain-solution-for-renault-plants-in-europe/
https://content.rolandberger.com/hubfs/07\%5Fpresse/Roland\%5FBerger\%5FArticle\%5FComputer\%5Fon\%5FWheels\%5F4\%5F2022.pdf
https://content.rolandberger.com/hubfs/07\%5Fpresse/Roland\%5FBerger\%5FArticle\%5FComputer\%5Fon\%5FWheels\%5F4\%5F2022.pdf
https://content.rolandberger.com/hubfs/07\%5Fpresse/Roland\%5FBerger\%5FArticle\%5FComputer\%5Fon\%5FWheels\%5F4\%5F2022.pdf
https://www.iso.org/home.isoDocumentsDownload.do?t=FfjDIuj1cCQFy5qRq3trl4VYO8gQI5az388\%5FAqybXhJIImrBTF0-C5uxwIJQtjT7&CSRFTOKEN=QUFB-08O4-7YSX-540R-QUCP-FQ86-Q47Q-CS25
https://www.iso.org/home.isoDocumentsDownload.do?t=FfjDIuj1cCQFy5qRq3trl4VYO8gQI5az388\%5FAqybXhJIImrBTF0-C5uxwIJQtjT7&CSRFTOKEN=QUFB-08O4-7YSX-540R-QUCP-FQ86-Q47Q-CS25
https://www.iso.org/home.isoDocumentsDownload.do?t=FfjDIuj1cCQFy5qRq3trl4VYO8gQI5az388\%5FAqybXhJIImrBTF0-C5uxwIJQtjT7&CSRFTOKEN=QUFB-08O4-7YSX-540R-QUCP-FQ86-Q47Q-CS25
https://www.volkswagenag.com/en/news/stories/2019/04/protecting-people-and-the-environment-with-blockchain.html#
https://www.volkswagenag.com/en/news/stories/2019/04/protecting-people-and-the-environment-with-blockchain.html#
https://www.volkswagenag.com/en/news/stories/2019/04/protecting-people-and-the-environment-with-blockchain.html#
https://www.volkswagenag.com/en/news/2019/04/volkswagen\%5Fblockchain\%5Fminespider.html
https://www.volkswagenag.com/en/news/2019/04/volkswagen\%5Fblockchain\%5Fminespider.html
https://doi.org/10.1145/3460003
https://doi.org/10.1145/3460003
https://doi.org/10.1109/ACCESS.2019.2895302
https://doi.org/10.1109/BLOC.2019.8751347
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://www.multichain.com/developers/permissions-consensus/
https://www.multichain.com/developers/permissions-consensus/

BIBLIOGRAPHY

[152] Universite Cote D’Azur. SIM - Smart IoT for Mobility. url: https://univ-cotedazur.
eu/sim. (accessed: 20.01.2023) (page 72).

[153] M. Chuan. Istanbul BFT’s design cannot successfully tolerate fail-stop failures. url:
https://github.com/ConsenSys/quorum/issues/305. (accessed: 30.03.2023) (page 72).

[154] Roberto Saltini. Correctness Analysis of IBFT. 2019. arXiv: 1901 . 07160. url: http :
//arxiv.org/abs/1901.07160. (accessed: 31.03.2023) (page 72).

[155] Castro, Miguel and Liskov, Barbara. “Practical Byzantine Fault Tolerance and Proac-
tive Recovery”. In: ACM Trans. Comput. Syst. 20.4 (2002), 398–461. issn: 0734-2071.
doi: 10.1145/571637.571640. url: https://doi.org/10.1145/571637.571640. (accessed:
26.02.2023) (pages 73, 172, 179).

[156] Gerrits, Luc andKilimou, Edouard andKromes, Roland and Faure, Lionel andVerdier,
François. “A Blockchain cloud architecture deployment for an industrial IoT use
case”. In: (2021), 1–6. doi: 10.1109/COINS51742.2021.9524264. (accessed: 01.04.2023)
(pages 76, 77).

[157] Gerrits, Luc and Samuel, Cyril Naves. Experimental Scalability Study of Consortium
Blockchains with BFT Consensus for IoT Automotive Use Case. Sept. 2021. url: https:
//github.com/projet-SIM/acm-blocksys-2021. (accessed: 30.03.2023) (page 77).

[158] Samuel, Cyril Naves andGlock, Severine andVerdier, François andGuitton-Ouhamou,
Patricia. “Choice of EthereumClients for Private Blockchain: Assessment fromProof
of Authority Perspective”. In: (2021), 1–5. doi: 10.1109/ICBC51069.2021.9461085.
(accessed: 06.03.2023) (pages 78, 87, 212).

[159] Samuel, Cyril Naves. Geth-Node Stalled at EVM Layer. 2020. url: https : / /github.
com/ethereum/go-ethereum/issues/21158. (accessed: 01.04.2023) (pages 80, 232).

[160] Samuel, Cyril Naves. Geth-Block Period 1 Fork. 2020. url: https : / / github . com /
ethereum/go-ethereum/issues/21191. (accessed: 01.04.2023) (pages 80, 232, 234).

[161] Samuel, Cyril Naves.Geth-Clique PoA Issues. 2020.url: https://github.com/ethereum/
go-ethereum/issues/18402#issuecomment-637328489. (accessed: 02.04.2023) (pages 80,
81, 232).

[162] Baecker, Julius and Engert, Martin and Pfaff, Matthias and Krcmar, Helmut. “Busi-
ness Strategies for Data Monetization: Deriving Insights from Practice”. In: (Mar.
2020). doi: https://doi.org/10.30844/wi_2020_j3-baecker. url: https://library.gito.
de/oa\%5Fwi2020-j3.html. (accessed: 05.04.2023) (page 84).

[163] Ofulue, Joan and Benyoucef,Morad. “Datamonetization: insights from a technology-
enabled literature review and research agenda”. In: Management Review Quarterly
(Nov. 2022), doi: 10.1007/s11301-022-00309-1. (accessed: 05.04.2023) (page 85).

[164] "MHP and Riddle&CODE". "The Automotive Sector and Blockchain". url: "https://
uploads-ssl.webflow.com/612c9eb00ca5ae6d6482c315/62097b9e82558919ad527e77\
%5FRIDDLE%26CODE-MHP-The-Automotive-Sector-Blockchain.pdf". (accessed:
04.04.2023) (page 86).

277

https://univ-cotedazur.eu/sim
https://univ-cotedazur.eu/sim
https://github.com/ConsenSys/quorum/issues/305
https://arxiv.org/abs/1901.07160
http://arxiv.org/abs/1901.07160
http://arxiv.org/abs/1901.07160
https://doi.org/10.1145/571637.571640
https://doi.org/10.1145/571637.571640
https://doi.org/10.1109/COINS51742.2021.9524264
https://github.com/projet-SIM/acm-blocksys-2021
https://github.com/projet-SIM/acm-blocksys-2021
https://doi.org/10.1109/ICBC51069.2021.9461085
https://github.com/ethereum/go-ethereum/issues/21158
https://github.com/ethereum/go-ethereum/issues/21158
https://github.com/ethereum/go-ethereum/issues/21191
https://github.com/ethereum/go-ethereum/issues/21191
https://github.com/ethereum/go-ethereum/issues/18402#issuecomment-637328489
https://github.com/ethereum/go-ethereum/issues/18402#issuecomment-637328489
https://doi.org/https://doi.org/10.30844/wi_2020_j3-baecker
https://library.gito.de/oa\%5Fwi2020-j3.html
https://library.gito.de/oa\%5Fwi2020-j3.html
https://doi.org/10.1007/s11301-022-00309-1
"https://uploads-ssl.webflow.com/612c9eb00ca5ae6d6482c315/62097b9e82558919ad527e77\%5FRIDDLE%26CODE-MHP-The-Automotive-Sector-Blockchain.pdf"
"https://uploads-ssl.webflow.com/612c9eb00ca5ae6d6482c315/62097b9e82558919ad527e77\%5FRIDDLE%26CODE-MHP-The-Automotive-Sector-Blockchain.pdf"
"https://uploads-ssl.webflow.com/612c9eb00ca5ae6d6482c315/62097b9e82558919ad527e77\%5FRIDDLE%26CODE-MHP-The-Automotive-Sector-Blockchain.pdf"

Chapter 8

[165] European Union Blockchain Observatory Forum. Blockchain Applications in the Au-
tomotive Sector. url: https://www.eublockchainforum.eu/sites/default/files/reports/
eubof\%5Fautomotive\%5F2022\%5FFINAL.pdf. (accessed: 27.03.2023) (page 87).

[166] "Continental Automotive". "Software-Defined Vehicle".url: "https://www.continental-
automotive.com/en- gl /Passenger-Cars/Technology-Trends/software- defined-
vehicles". (accessed: 04.04.2023) (page 87).

[167] Samuel, Cyril Naves and Severine, Glock and David, Bercovitz and Verdier, François
and Patricia, Guitton-Ouhamou. “Automotive Data Certification Problem: A View
on Effective Blockchain Architectural Solutions”. In: (2020), 0167–0173. doi: 10 .
1109/IEMCON51383.2020.9284886. (accessed: 10.03.2023) (page 87).

[168] "Blair, Tesler (Insight)". "What is Privacy by Design and by Default?". url: https :
//www.morganlewis.com/pubs/2019/03/the-edata-guide-to-gdpr-what-is-privacy-
by-design-and-by-default. (accessed: 07.04.2023) (page 88).

[169] "European Commission". "What does data protection ‘by design’ and ‘by default’
mean?". url: https : / / commission . europa . eu / law / law - topic / data - protection /
reform/rules-business-and-organisations/obligations/what-does-data-protection-
design-and-default-mean\%5Fen. (accessed: 07.04.2023) (page 88).

[170] Khizar Hameed and Mutaz Barika and Saurabh Garg and Muhammad Bilal Amin
and Byeong Kang. “A taxonomy study on securing Blockchain-based Industrial
applications: An overview, application perspectives, requirements, attacks, coun-
termeasures, and open issues”. In: Journal of Industrial Information Integration 26
(2022), p. 100312. issn: 2452-414X. doi: https://doi.org/10.1016/j.jii.2021.100312.
url: https://www.sciencedirect.com/science/article/pii/S2452414X21001060. (ac-
cessed: 08.04.2023) (page 88).

[171] "Parity Technologies". "Substrate Technology". url: https://substrate.io/technology/.
(accessed: 07.04.2023) (page 88).

[172] "Parity Technologies". "Authority Round".url: https://paritytech.github.io/substrate/
master/sc\%5Fconsensus\%5Faura/index.html. (accessed: 07.04.2023) (page 89).

[173] "Kilinc Alper, Handan". "Blind Assignment for Blockchain Extension (BABE)". url:
https://research.web3.foundation/en/latest/polkadot/block-production/Babe.html.
(accessed: 07.04.2023) (page 90).

[174] "Petrowski,Joe (Parity Technologies)". "Blind Assignment for Blockchain Extension
(BABE)". url: https://polkadot.network/blog/polkadot-consensus-part-3-babe?
ref=cms.polkadot.network. (accessed: 07.04.2023) (page 90).

[175] "Stewart, Alistair". "GRANDPA FINALITY". url: https://research.web3.foundation/
en/latest/polkadot/finality.html. (accessed: 07.04.2023) (pages 90, 92).

[176] "Bosch". "Road Signature". url: https : / /www.bosch-mobility.com/en/solutions/
automated-driving/road-signature/. (accessed: 07.04.2023) (page 93).

278

https://www.eublockchainforum.eu/sites/default/files/reports/eubof\%5Fautomotive\%5F2022\%5FFINAL.pdf
https://www.eublockchainforum.eu/sites/default/files/reports/eubof\%5Fautomotive\%5F2022\%5FFINAL.pdf
"https://www.continental-automotive.com/en-gl/Passenger-Cars/Technology-Trends/software-defined-vehicles"
"https://www.continental-automotive.com/en-gl/Passenger-Cars/Technology-Trends/software-defined-vehicles"
"https://www.continental-automotive.com/en-gl/Passenger-Cars/Technology-Trends/software-defined-vehicles"
https://doi.org/10.1109/IEMCON51383.2020.9284886
https://doi.org/10.1109/IEMCON51383.2020.9284886
https://www.morganlewis.com/pubs/2019/03/the-edata-guide-to-gdpr-what-is-privacy-by-design-and-by-default
https://www.morganlewis.com/pubs/2019/03/the-edata-guide-to-gdpr-what-is-privacy-by-design-and-by-default
https://www.morganlewis.com/pubs/2019/03/the-edata-guide-to-gdpr-what-is-privacy-by-design-and-by-default
https://commission.europa.eu/law/law-topic/data-protection/reform/rules-business-and-organisations/obligations/what-does-data-protection-design-and-default-mean\%5Fen
https://commission.europa.eu/law/law-topic/data-protection/reform/rules-business-and-organisations/obligations/what-does-data-protection-design-and-default-mean\%5Fen
https://commission.europa.eu/law/law-topic/data-protection/reform/rules-business-and-organisations/obligations/what-does-data-protection-design-and-default-mean\%5Fen
https://doi.org/https://doi.org/10.1016/j.jii.2021.100312
https://www.sciencedirect.com/science/article/pii/S2452414X21001060
https://substrate.io/technology/
https://paritytech.github.io/substrate/master/sc\%5Fconsensus\%5Faura/index.html
https://paritytech.github.io/substrate/master/sc\%5Fconsensus\%5Faura/index.html
https://research.web3.foundation/en/latest/polkadot/block-production/Babe.html
https://polkadot.network/blog/polkadot-consensus-part-3-babe?ref=cms.polkadot.network
https://polkadot.network/blog/polkadot-consensus-part-3-babe?ref=cms.polkadot.network
https://research.web3.foundation/en/latest/polkadot/finality.html
https://research.web3.foundation/en/latest/polkadot/finality.html
https://www.bosch-mobility.com/en/solutions/automated-driving/road-signature/
https://www.bosch-mobility.com/en/solutions/automated-driving/road-signature/

BIBLIOGRAPHY

[177] “Blockchain pour l’Internet des véhicules : une solution IoT dé”. PhD thesis (pages 103,
110).

[178] Jabbar, Rateb and Kharbeche, Mohamed and Al-Khalifa, Khalifa and Krichen, Moez
and Barkaoui, Kamel. “Blockchain for the Internet of Vehicles: A Decentralized IoT
Solution for Vehicles Communication Using Ethereum”. In: Sensors 20.14 (2020).
issn: 1424-8220. doi: 10 . 3390 / s20143928. url: https : / / www.mdpi . com / 1424 -
8220/20/14/3928 (page 103).

[179] "Stack Exchange". "BABE GRANDPA Stalled". url: https://substrate.stackexchange.
com/questions / 214 / recovering - from- stalled - finality - babe - grandpa. (accessed:
17.04.2023) (pages 106, 109).

[180] Wang, Yongge. “The Adversary Capabilities Innbsp;Practical Byzantine Fault Tol-
erance”. In: (2021), 20–39. doi: 10.1007/978-3-030-91859-0_2. url: https://doi.org/
10.1007/978-3-030-91859-0\%5F2. (accessed: 18.04.2023) (pages 106, 109).

[181] Damien Desfontaines and Balázs Pejó. “SoK: Differential privacies”. In: () (page 110).

[182] Buterin, Vitalik and Weiss, Yoav and Gazso, Kristof and Patel, Namra and Tirosh,
Dror and Nacson, Shahaf and Hess, Tjaden. ERC-4337: Account Abstraction Using
Alt Mempool. url: https://eips.ethereum.org/EIPS/eip-4337. (accessed: 17.03.2023)
(page 110).

[183] H. Abbas and M. Caprolu and R. Di Pietro. “Analysis of Polkadot: Architecture,
Internals, and Contradictions”. In: (2022), 61–70. doi: 10 . 1109 /Blockchain55522 .
2022.00019. url: https://doi . ieeecomputersociety.org/10.1109/Blockchain55522.
2022.00019. (accessed: 18.04.2023) (page 110).

[184] A. Albshri andA. Alzubaidi and B. Awaji and E. Solaiman. “Blockchain Simulators: A
Systematic Mapping Study”. In: (2022), 284–294. doi: 10.1109/SCC55611.2022.00049.
url: https://doi.ieeecomputersociety.org/10.1109/SCC55611.2022.00049. (accessed:
14.12.2022) (pages 115, 117).

[185] Faria, Carlos and Correia, Miguel. “BlockSim: Blockchain Simulator”. In: (2019),
439–446. doi: 10 .1109/Blockchain.2019.00067. (accessed: 15.12.2022) (pages 118–
120).

[186] Foytik, Peter and Shetty, Sachin and Gochhayat, Sarada Prasad and Herath, Eranga
and Tosh, Deepak and Njilla, Laurent. “A Blockchain Simulator for Evaluating Con-
sensus Algorithms in Diverse Networking Environments”. In: (2020), 1–12. doi: 10.
22360/SpringSim.2020.CSE.003. (accessed: 15.12.2022) (page 118).

[187] Ongaro, Diego and Ousterhout, John. “In Search of an Understandable Consensus
Algorithm”. In: USENIX ATC’14 (2014), 305–320. (accessed: 15.12.2022) (page 118).

[188] Polge, Julien andGhatpande, Sankalp and Kubler, Sylvain and Robert, Jérémy and Le
Traon, Yves. “BlockPerf: A Hybrid Blockchain Emulator/Simulator Framework”. In:
IEEE Access 9 (2021), 107858–107872. doi: 10.1109/ACCESS.2021.3101044. (accessed:
16.12.2022) (pages 119, 120).

279

https://doi.org/10.3390/s20143928
https://www.mdpi.com/1424-8220/20/14/3928
https://www.mdpi.com/1424-8220/20/14/3928
https://substrate.stackexchange.com/questions/214/recovering-from-stalled-finality-babe-grandpa
https://substrate.stackexchange.com/questions/214/recovering-from-stalled-finality-babe-grandpa
https://doi.org/10.1007/978-3-030-91859-0_2
https://doi.org/10.1007/978-3-030-91859-0\%5F2
https://doi.org/10.1007/978-3-030-91859-0\%5F2
https://eips.ethereum.org/EIPS/eip-4337
https://doi.org/10.1109/Blockchain55522.2022.00019
https://doi.org/10.1109/Blockchain55522.2022.00019
https://doi.ieeecomputersociety.org/10.1109/Blockchain55522.2022.00019
https://doi.ieeecomputersociety.org/10.1109/Blockchain55522.2022.00019
https://doi.org/10.1109/SCC55611.2022.00049
https://doi.ieeecomputersociety.org/10.1109/SCC55611.2022.00049
https://doi.org/10.1109/Blockchain.2019.00067
https://doi.org/10.22360/SpringSim.2020.CSE.003
https://doi.org/10.22360/SpringSim.2020.CSE.003
https://doi.org/10.1109/ACCESS.2021.3101044

Chapter 8

[189] Wang, Bozhi and Chen, Shiping and Yao, Lina and Wang, Qin. “ChainSim: A P2P
Blockchain Simulation Framework”. In: (2021). Ed. by Ke Xu et al., 1–16. (accessed:
16.12.2022) (page 120).

[190] Wang, Ping-Lun and Chao, Tzu-Wei and Wu, Chia-Chien and Hsiao, Hsu-Chun.
“Tool: An Efficient and Flexible Simulator for Byzantine Fault-Tolerant Protocols”.
In: (2022), 287–294. doi: 10 . 1109 / DSN53405 . 2022 . 00038. (accessed: 22.01.2023)
(pages 120, 121, 139).

[191] Abraham, Ittai and Devadas, Srinivas and Dolev, Danny and Nayak, Kartik and Ren,
Ling. “Synchronous Byzantine Agreement with Expected O(1) Rounds, Expected
Communication, and Optimal Resilience”. In: (2019), 320–334. doi: 10.1007/978-3-
030-32101-7_20. url: https://doi.org/10.1007/978-3-030-32101-7\%5F20. (accessed:
22.01.2023) (page 121).

[192] Chen, Jing and Gorbunov, Sergey and Micali, Silvio and Vlachos, Georgios. ALGO-
RAND AGREEMENT: Super Fast and Partition Resilient Byzantine Agreement. Cryp-
tology ePrint Archive, Paper 2018/377. https://eprint.iacr.org/2018/377. 2018. url:
https://eprint.iacr.org/2018/377. (accessed: 23.01.2023) (pages 121, 148, 149).

[193] Bracha, Gabriel. “Asynchronous Byzantine Agreement Protocols”. In: Inf. Comput.
75.2 (1987), 130–143. issn: 0890-5401. doi: 10 . 1016 /0890 - 5401(87)90054 - X. url:
https://doi.org/10.1016/0890-5401(87)90054-X. (accessed: 22.01.2023) (page 121).

[194] Casanova, Henri and Giersch, Arnaud and Legrand, Arnaud and Quinson, Martin
and Suter, Frédéric. “Versatile, Scalable, and Accurate Simulation of Distributed Ap-
plications and Platforms”. In: () (page 122).

[195] Stewart, Alistair. “Poster: GRANDPAFinality Gadget”. In: CCS ’19 (2019), 2649–2651.
doi: 10.1145/3319535.3363278. url: https://doi.org/10.1145/3319535.3363278. (ac-
cessed: 23.01.2023) (page 133).

[196] Alper, Handan Kılınç. BABE Consensus. url: https://research.web3.foundation/en/
latest/polkadot/block-production/Babe.html#. (accessed: 20.01.2023) (page 133).

[197] Shi, Elaine. “Analysis of Deterministic Longest-Chain Protocols”. In: (2019), 122–
12213. doi: 10.1109/CSF.2019.00016. (accessed: 24.01.2023) (page 133).

[198] Tang, Song and Wang, Zhiqiang and Jiang, Jian and Ge, Suli and Tan, GaiFang. “Im-
proved PBFT algorithm for high-frequency trading scenarios of alliance blockchain”.
In: Scientific Reports 12.1 (2022), p. 4426. issn: 2045-2322. doi: 10.1038/s41598-022-
08587-1. url: https://doi.org/10.1038/s41598-022-08587-1. (accessed: 24.01.2023)
(pages 135–137, 139).

[199] Wang, Yong and Zhong, Meiling and Cheng, Tong. “Research on PBFT consensus al-
gorithm for grouping based on feature trust”. In: Scientific Reports 12 (2022), p. 12515.
doi: 10.1038/s41598-022-15282-8. (accessed: 12.03.2023) (pages 135–137).

280

https://doi.org/10.1109/DSN53405.2022.00038
https://doi.org/10.1007/978-3-030-32101-7_20
https://doi.org/10.1007/978-3-030-32101-7_20
https://doi.org/10.1007/978-3-030-32101-7\%5F20
https://eprint.iacr.org/2018/377
https://eprint.iacr.org/2018/377
https://doi.org/10.1016/0890-5401(87)90054-X
https://doi.org/10.1016/0890-5401(87)90054-X
https://doi.org/10.1145/3319535.3363278
https://doi.org/10.1145/3319535.3363278
https://research.web3.foundation/en/latest/polkadot/block-production/Babe.html#
https://research.web3.foundation/en/latest/polkadot/block-production/Babe.html#
https://doi.org/10.1109/CSF.2019.00016
https://doi.org/10.1038/s41598-022-08587-1
https://doi.org/10.1038/s41598-022-08587-1
https://doi.org/10.1038/s41598-022-08587-1
https://doi.org/10.1038/s41598-022-15282-8

BIBLIOGRAPHY

[200] Messadi, Ines and Becker, Markus Horst and Bleeke, Kai and Jehl, Leander and
Mokhtar, Sonia Ben and Kapitza, Rüdiger. “SplitBFT: Improving Byzantine Fault Tol-
erance Safety Using Trusted Compartments”. In: Middleware ’22 (2022), 56–68. doi:
10.1145/3528535.3531516. url: https://doi.org/10.1145/3528535.3531516. (accessed:
26.01.2023) (page 139).

[201] Sit, Man-Kit and Bravo, Manuel and István, Zsolt. “An Experimental Framework for
Improving the Performance of BFTConsensus for Future Permissioned Blockchains”.
In: DEBS ’21 (2021), 55–65. doi: 10.1145/3465480.3466922. url: https://doi.org/10.
1145/3465480.3466922. (accessed: 25.01.2023) (page 139).

[202] Cristian, F. and Aghili, H. and Strong, R. and Volev, D. “ATOMIC BROADCAST:
FROM SIMPLE MESSAGE DIFFUSION TO BYZANTINE AGREEMENT”. In: (1995),
431–. doi: 10.1109/FTCSH.1995.532668. (accessed: 12.03.2023) (page 143).

[203] Sedlmeier, Philipp and Schleger,Johannes and Helm, Max. “Atomic Broadcasts and
Consensus: A Survey”. In: 12 (Nov. 2020).url: https://www.net.in.tum.de/fileadmin/
TUM/NET/NET- 2020- 11- 1 /NET- 2020- 11- 1 \%5F19 .pdf. (accessed: 12.03.2023)
(page 143).

[204] Cachin, Christian and Kursawe, Klaus and Petzold, Frank and Shoup, Victor. “Secure
and Efficient Asynchronous Broadcast Protocols”. In: CRYPTO ’01 (2001), 524–541.
(accessed: 12.03.2023) (page 143).

[205] Miller, Andrew and Xia, Yu and Croman, Kyle and Shi, Elaine and Song, Dawn. “The
Honey Badger of BFT Protocols”. In: CCS ’16 (2016), 31–42. doi: 10.1145/2976749.
2978399. url: https : / / doi . org / 10 . 1145 / 2976749 . 2978399. (accessed: 11.03.2023)
(page 143).

[206] Ariely, Dan and Davis, Michael. The (honest) truth about dishonesty : how we lie to
everyone–especially ourselves. Vol. 6. 2012. (accessed: 07.02.2023) (page 144).

[207] Buterin, Vitalik. A Proof of Stake Design Philosophy. url: https : / /medium . com /
@VitalikButerin/a- proof- of- stake- design-philosophy- 506585978d51. (accessed:
06.02.2023) (page 144).

[208] Vukolić, Marko. “The Quest for Scalable Blockchain Fabric: Proof-of-Work vs. BFT
Replication”. In: (2015), 112–125. doi: 10.1007/978-3-319-39028-4_9. url: https:
//doi.org/10.1007/978-3-319-39028-4\%5F9. (accessed: 09.03.2023) (pages 144–146,
148, 151).

[209] Lone, Auqib and Mir, Roohie. “Evaluating Quality-of-Service in Blockchains Using
Modelling and Simulation Tools”. In: International Journal of Computing and Digital
Systems 10 (2020), doi: 10.12785/ijcds/100103. (accessed: 07.02.2023) (page 145).

[210] Hafid, Abdelatif and Hafid, Abdelhakim Senhaji and Samih, Mustapha. “Scaling
Blockchains: A Comprehensive Survey”. In: IEEE Access 8 (2020), 125244–125262.
doi: 10.1109/ACCESS.2020.3007251. (accessed: 20.02.2023) (page 145).

281

https://doi.org/10.1145/3528535.3531516
https://doi.org/10.1145/3528535.3531516
https://doi.org/10.1145/3465480.3466922
https://doi.org/10.1145/3465480.3466922
https://doi.org/10.1145/3465480.3466922
https://doi.org/10.1109/FTCSH.1995.532668
https://www.net.in.tum.de/fileadmin/TUM/NET/NET-2020-11-1/NET-2020-11-1\%5F19.pdf
https://www.net.in.tum.de/fileadmin/TUM/NET/NET-2020-11-1/NET-2020-11-1\%5F19.pdf
https://doi.org/10.1145/2976749.2978399
https://doi.org/10.1145/2976749.2978399
https://doi.org/10.1145/2976749.2978399
https://medium.com/@VitalikButerin/a-proof-of-stake-design-philosophy-506585978d51
https://medium.com/@VitalikButerin/a-proof-of-stake-design-philosophy-506585978d51
https://doi.org/10.1007/978-3-319-39028-4_9
https://doi.org/10.1007/978-3-319-39028-4\%5F9
https://doi.org/10.1007/978-3-319-39028-4\%5F9
https://doi.org/10.12785/ijcds/100103
https://doi.org/10.1109/ACCESS.2020.3007251

Chapter 8

[211] Aublin, Pierre-Louis andGuerraoui, Rachid andKnežević, Nikola andQuéma, Vivien
and Vukolić, Marko. “The Next 700 BFT Protocols”. In: ACM Trans. Comput. Syst.
32.4 (2015). issn: 0734-2071. doi: 10.1145/2658994. url: https://doi.org/10.1145/
2658994. (accessed: 09.03.2023) (page 145).

[212] Golan Gueta, Guy and Abraham, Ittai and Grossman, Shelly and Malkhi, Dahlia and
Pinkas, Benny and Reiter, Michael and Seredinschi, Dragos-Adrian and Tamir, Orr
and Tomescu, Alin. “SBFT: A Scalable and Decentralized Trust Infrastructure”. In:
(2019), 568–580. doi: 10.1109/DSN.2019.00063. (accessed: 17.03.2023) (pages 145,
149).

[213] OpenEthereum. Aura - Authority Round. url: https://openethereum.github.io/Aura.
(accessed: 06.03.2023) (pages 146, 150, 189).

[214] Dang, Hung and Dinh, Tien Tuan Anh and Loghin, Dumitrel and Chang, Ee-Chien
and Lin, Qian and Ooi, Beng Chin. “Towards Scaling Blockchain Systems via Shard-
ing”. In: SIGMOD ’19 (2019), 123–140. doi: 10.1145/3299869.3319889. url: https:
//doi.org/10.1145/3299869.3319889. (accessed: 07.03.2023) (page 146).

[215] Jalili Marandi,Parisa and Eduardo Benevides Bezerra, Carlos and Pedone, Fernando.
“Rethinking State-Machine Replication for Parallelism”. In: 2014 IEEE 34th Inter-
national Conference on Distributed Computing Systems (2013), 368–377. (accessed:
10.03.2023) (page 146).

[216] Kapritsos,Manos andWang, Yang andQuema, Vivien andClement, Allen andAlvisi,
Lorenzo and Dahlin, Mike. “All about Eve: Execute-Verify Replication for Multi-
Core Servers”. In: OSDI’12 (2012), 237–250. (accessed: 09.03.2023) (page 146).

[217] Bano, Shehar and Sonnino, Alberto and Al-Bassam, Mustafa and Azouvi, Sarah and
McCorry, Patrick and Meiklejohn, Sarah and Danezis, George. “SoK: Consensus in
the Age of Blockchains”. In: AFT ’19 (2019), 183–198. doi: 10.1145/3318041.3355458.
url: https://doi.org/10.1145/3318041.3355458. (accessed: 19.03.2023) (pages 146,
147).

[218] Luu, Loi and Narayanan, Viswesh and Zheng, Chaodong and Baweja, Kunal and
Gilbert, Seth and Saxena, Prateek. “A Secure Sharding Protocol ForOpen Blockchains”.
In: CCS ’16 (2016), 17–30. doi: 10.1145/2976749.2978389. url: https://doi.org/10.
1145/2976749.2978389. (accessed: 19.03.2023) (page 146).

[219] Gilad, Yossi and Hemo, Rotem and Micali, Silvio and Vlachos, Georgios and Zel-
dovich, Nickolai. “Algorand: Scaling Byzantine Agreements for Cryptocurrencies”.
In: SOSP ’17 (2017), 51–68. doi: 10.1145/3132747.3132757. url: https://doi.org/10.
1145/3132747.3132757. (accessed: 08.03.2023) (page 146).

[220] Jalalzai, Mohammad M. and Busch, Costas and Richard, Golden G. “Proteus: A Scal-
able BFT Consensus Protocol for Blockchains”. In: (2019), 308–313. doi: 10 .1109/
Blockchain.2019.00048. (accessed: 11.03.2023) (page 146).

282

https://doi.org/10.1145/2658994
https://doi.org/10.1145/2658994
https://doi.org/10.1145/2658994
https://doi.org/10.1109/DSN.2019.00063
https://openethereum.github.io/Aura
https://doi.org/10.1145/3299869.3319889
https://doi.org/10.1145/3299869.3319889
https://doi.org/10.1145/3299869.3319889
https://doi.org/10.1145/3318041.3355458
https://doi.org/10.1145/3318041.3355458
https://doi.org/10.1145/2976749.2978389
https://doi.org/10.1145/2976749.2978389
https://doi.org/10.1145/2976749.2978389
https://doi.org/10.1145/3132747.3132757
https://doi.org/10.1145/3132747.3132757
https://doi.org/10.1145/3132747.3132757
https://doi.org/10.1109/Blockchain.2019.00048
https://doi.org/10.1109/Blockchain.2019.00048

BIBLIOGRAPHY

[221] Conti,Mauro andGangwal, Ankit and Todero,Michele. “Blockchain Trilemma Solver
Algorand Has Dilemma over Undecidable Messages”. In: ARES ’19 (2019). doi: 10.
1145/3339252.3339255. url: https://doi.org/10.1145/3339252.3339255. (accessed:
08.03.2023) (page 146).

[222] Liu, Yu. Investigating Byzantine Agreement Consensus Algorithm of Algorand. 2020.
url: https://opus.lib.uts.edu.au/bitstream/10453/140228/2/02whole.pdf. (accessed:
09.03.2023) (page 146).

[223] Ben-Or, Michael. “Another Advantage of Free Choice (Extended Abstract): Com-
pletely Asynchronous Agreement Protocols”. In: PODC ’83 (1983), 27–30. doi: 10.
1145 / 800221 . 806707. url: https : / / doi . org / 10 . 1145 / 800221 . 806707. (accessed:
19.03.2023) (page 147).

[224] István, Zsolt and Sidler, David and Alonso, Gustavo and Vukolic, Marko. “Consen-
sus in a Box: Inexpensive Coordination in Hardware”. In: NSDI’16 (2016), 425–438.
(accessed: 16.03.2023) (page 147).

[225] Poke, Marius and Hoefler, Torsten. “DARE: High-Performance State Machine Repli-
cation on RDMA Networks”. In: HPDC ’15 (2015), 107–118. doi: 10.1145/2749246.
2749267. url: https : / / doi . org / 10 . 1145 / 2749246 . 2749267. (accessed: 16.03.2023)
(page 147).

[226] Veronese, Giuliana Santos and Correia, Miguel and Bessani, Alysson Neves and
Lung, Lau Cheuk. “Spin One’s Wheels? Byzantine Fault Tolerance with a Spinning
Primary”. In: (2009), 135–144. doi: 10 .1109/SRDS.2009 .36. (accessed: 17.03.2023)
(page 147).

[227] Arun, Balaji and Peluso, Sebastiano and Ravindran, Binoy. “ezBFT: Decentralizing
Byzantine Fault-Tolerant State Machine Replication”. In: (2019), 565–577. doi: 10.
1109/ICDCS.2019.00063. (accessed: 17.03.2023) (page 147).

[228] Rocket, Team and Yin, Maofan and Sekniqi, Kevin and van Renesse, Robbert and
Sirer, EminGün. Scalable and Probabilistic Leaderless BFTConsensus throughMetasta-
bility. 2019. doi: 10.48550/ARXIV.1906.08936. url: https://arxiv.org/abs/1906.08936.
(accessed: 18.03.2023) (page 148).

[229] Berger, Christian and Reiser, Hans P. “Scaling Byzantine Consensus: A Broad Anal-
ysis”. In: SERIAL’18 (2018), 13–18. doi: 10.1145/3284764.3284767. url: https://doi.
org/10.1145/3284764.3284767. (accessed: 18.03.2023) (pages 148, 149).

[230] Kokoris-Kogias, Eleftherios and Jovanovic, Philipp and Gailly, Nicolas and Khoffi,
Ismail and Gasser, Linus and Ford, Bryan. “Enhancing Bitcoin Security and Perfor-
mance with Strong Consistency via Collective Signing”. In: SEC’16 (2016), 279–296.
(accessed: 18.03.2023) (page 148).

[231] Li, Peilun andWang, Guosai and Chen, Xiaoqi and Long, Fan and Xu,Wei. “Gosig: A
Scalable andHigh-Performance Byzantine Consensus for ConsortiumBlockchains”.
In: SoCC ’20 (2020), 223–237. doi: 10.1145/3419111.3421272. url: https://doi.org/10.
1145/3419111.3421272. (accessed: 19.03.2023) (pages 148, 216).

283

https://doi.org/10.1145/3339252.3339255
https://doi.org/10.1145/3339252.3339255
https://doi.org/10.1145/3339252.3339255
https://opus.lib.uts.edu.au/bitstream/10453/140228/2/02whole.pdf
https://doi.org/10.1145/800221.806707
https://doi.org/10.1145/800221.806707
https://doi.org/10.1145/800221.806707
https://doi.org/10.1145/2749246.2749267
https://doi.org/10.1145/2749246.2749267
https://doi.org/10.1145/2749246.2749267
https://doi.org/10.1109/SRDS.2009.36
https://doi.org/10.1109/ICDCS.2019.00063
https://doi.org/10.1109/ICDCS.2019.00063
https://doi.org/10.48550/ARXIV.1906.08936
https://arxiv.org/abs/1906.08936
https://doi.org/10.1145/3284764.3284767
https://doi.org/10.1145/3284764.3284767
https://doi.org/10.1145/3284764.3284767
https://doi.org/10.1145/3419111.3421272
https://doi.org/10.1145/3419111.3421272
https://doi.org/10.1145/3419111.3421272

Chapter 8

[232] E. Syta and I. Tamas and D. Visher and D. Wolinsky and P. Jovanovic and L. Gasser
andN. Gailly and I. KhoffiandB. Ford. “KeepingAuthorities quot;Honest or Bustquot;
with Decentralized Witness Cosigning”. In: (2016), 526–545. issn: 2375-1207. doi:
10.1109/SP.2016.38. url: https://doi.ieeecomputersociety.org/10.1109/SP.2016.38.
(accessed: 18.03.2023) (page 149).

[233] Schnorr, C. P. “Efficient Signature Generation by Smart Cards”. In: J. Cryptol. 4.3
(1991), 161–174. issn: 0933-2790. doi: 10.1007/BF00196725. url: https://doi.org/10.
1007/BF00196725. (accessed: 19.03.2023) (page 149).

[234] Emin Croman, Kyle and Decker, Christian and Eyal, Ittay and Gencer, Adem Efe
and Juels, Ari and Kosba, Ahmed and Miller, Andrew and Saxena, Prateek and Shi,
Elaine and Gün Sirer, Dawn Song, and Roger Wattenhofer. “On Scaling Decentral-
ized Blockchains”. In: () (page 151).

[235] David, Jacques Louis. The Death of Socrates. url: https://www.metmuseum.org/art/
collection/search/436105. (accessed: 16.02.2023) (page 152).

[236] Koneru, Anuradha. A brief notes on Utilitarianism: A study on Bentham and J.S.Mill
views. url: https://www.legalserviceindia.com/legal/article-3093-a-brief-notes-on-
utilitarianism-a-study-on-bentham-and-j-s-mill-views.html. (accessed: 20.02.2023)
(page 153).

[237] Delacroix, Eugène. The Good Samaritan. url: https://commons.wikimedia.org/wiki/
File :The\%5FGood\%5FSamaritan\%5F%28Delacroix\%5F1849%29. jpg. (accessed:
16.02.2023) (page 153).

[238] Simpson, Adam. Surveillance State. url: https : / / www. nytimes . com / 2013 / 07 /
21 / books / review / the - panopticon - by - jenni - fagan . html. (accessed: 16.02.2023)
(page 155).

[239] Mathisen, Ruben B. “Affluence and Influence in a Social Democracy”. In: American
Political Science Review 117.2 (2023), 751–758. doi: 10.1017/S0003055422000739. (ac-
cessed: 12.04.2023) (page 156).

[240] Vecellio, Tiziano. Sisyphus. url: https://www.museodelprado.es/coleccion/obra-
de - arte / sisifo / bb56eb47 - 052f - 4e15 - 8e46 - 75a3f18b13ad. (accessed: 16.02.2023)
(page 156).

[241] Caredda, Sergio. The Magic of Murmuration and Self-Management in Organizations.
url: https : / / sergiocaredda . eu / organisation / organisation - design / the - magic -
of-murmuration-and-self-management- in-organizations/. (accessed: 21.02.2023)
(page 158).

[242] Young, George and Scardovi, Luca and Cavagna, Andrea and Giardina, Irene and
Leonard, Naomi. “Starling Flock Networks Manage Uncertainty in Consensus at
Low Cost”. In: PLoS computational biology 9 (2013), e1002894. doi: 10.1371/journal.
pcbi.1002894. (accessed: 23.02.2023) (page 158).

284

https://doi.org/10.1109/SP.2016.38
https://doi.ieeecomputersociety.org/10.1109/SP.2016.38
https://doi.org/10.1007/BF00196725
https://doi.org/10.1007/BF00196725
https://doi.org/10.1007/BF00196725
https://www.metmuseum.org/art/collection/search/436105
https://www.metmuseum.org/art/collection/search/436105
https://www.legalserviceindia.com/legal/article-3093-a-brief-notes-on-utilitarianism-a-study-on-bentham-and-j-s-mill-views.html
https://www.legalserviceindia.com/legal/article-3093-a-brief-notes-on-utilitarianism-a-study-on-bentham-and-j-s-mill-views.html
https://commons.wikimedia.org/wiki/File:The\%5FGood\%5FSamaritan\%5F%28Delacroix\%5F1849%29.jpg
https://commons.wikimedia.org/wiki/File:The\%5FGood\%5FSamaritan\%5F%28Delacroix\%5F1849%29.jpg
https://www.nytimes.com/2013/07/21/books/review/the-panopticon-by-jenni-fagan.html
https://www.nytimes.com/2013/07/21/books/review/the-panopticon-by-jenni-fagan.html
https://doi.org/10.1017/S0003055422000739
https://www.museodelprado.es/coleccion/obra-de-arte/sisifo/bb56eb47-052f-4e15-8e46-75a3f18b13ad
https://www.museodelprado.es/coleccion/obra-de-arte/sisifo/bb56eb47-052f-4e15-8e46-75a3f18b13ad
https://sergiocaredda.eu/organisation/organisation-design/the-magic-of-murmuration-and-self-management-in-organizations/
https://sergiocaredda.eu/organisation/organisation-design/the-magic-of-murmuration-and-self-management-in-organizations/
https://doi.org/10.1371/journal.pcbi.1002894
https://doi.org/10.1371/journal.pcbi.1002894

BIBLIOGRAPHY

[243] Dolgin, Elie. The secret social lives of viruses. 2019. doi: 10.1038/d41586-019-01880-6.
(accessed: 26.03.2023) (page 158).

[244] Rosenberg, Louis and Willcox, Gregg. “Artificial Swarms find Social Optima : (Late
Breaking Report)”. In: (2018), 174–178. doi: 10.1109/COGSIMA.2018.8423987. (ac-
cessed: 23.02.2023) (page 158).

[245] Rosenberg, Louis and Baltaxe, David. “Setting group priorities — Swarms vs votes”.
In: (2016), 1–4. doi: 10.1109/SHBI.2016.7780279. (accessed: 23.02.2023) (page 158).

[246] Kaur, Komalpreet and Kumar, Yogesh. “Swarm Intelligence and its applications to-
wards Various Computing: A Systematic Review”. In: (2020), 57–62. doi: 10.1109/
ICIEM48762.2020.9160177. (accessed: 23.02.2023) (page 158).

[247] Hildenbrandt, H. and Carere, C. and Hemelrijk, C.K. “Self-organized aerial displays
of thousands of starlings: a model”. In: Behavioral Ecology 21.6 (Oct. 2010), 1349–
1359. issn: 1045-2249. doi: 10.1093/beheco/arq149. eprint: https://academic.oup.
com/beheco/article-pdf/21/6/1349/13894081/arq149.pdf. url: https://doi.org/10.
1093/beheco/arq149. (accessed: 23.02.2023) (page 158).

[248] Cooper, Ashley. Starlings flying to roost near Kendal in Cumbria.url: https://cosmosmagazine.
com/nature/modelling-birds-flock-speed/. (accessed: 16.02.2023) (page 158).

[249] Elleithy, Khaled and Blagovic, Drazen and Cheng, Wang and Sideleau, Paul. “Denial
of Service Attack Techniques: Analysis, Implementation and Comparison”. In: Jour-
nal of Systemics, Cybernetics and Informatics 3 (2006), 66–71. (accessed: 25.02.2023)
(page 166).

[250] StackOverflow. PBFT: Why cant the replicas perform the request after 2/3 have pre-
pared? why do we need commit phase? 2018. url: https : / / stackoverflow . com /
questions/51125238/pbft-why-cant- the- replicas-perform- the- request- after- 2-
3-have-prepared-why-do. (accessed: 26.02.2023) (page 172).

[251] Attiya, Hagit and Welch, Jennifer. Distributed Computing: Fundamentals, Simula-
tions and Advanced Topics. Hoboken, NJ, USA: John Wiley amp; Sons, Inc., 2004.
isbn: 0471453242. (accessed: 27.02.2023) (page 185).

[252] Lynch, Nancy A. Distributed Algorithms. San Francisco, CA, USA: Morgan Kauf-
mann Publishers Inc., 1996. isbn: 9780080504704. (accessed: 27.02.2023) (page 185).

[253] Brewer, Eric. CAP twelve years later: How the "rules" have changed. 2012. doi: 10 .
1109/MC.2012.37. (accessed: 13.12.2022) (page 188).

[254] Longchamp, Yves andDeshpande, Saurabh andMehra, Ujjwal. The Blockchain Trilemma.
2020. url: https://theblockchaintest.com/uploads/resources/SEBA%20-%20The%
20Blockchain % 20Trilema% 20 - %202020 % 20 - %20Oct . pdf. (accessed: 04.03.2023)
(page 190).

[255] Francez, Nissim. Fairness by Nissim Francez. eng. Texts and Monographs in Com-
puter Science. New York, NY: Springer US, 1986. isbn: 1-4612-9347-2. (accessed:
05.03.2023) (page 190).

285

https://doi.org/10.1038/d41586-019-01880-6
https://doi.org/10.1109/COGSIMA.2018.8423987
https://doi.org/10.1109/SHBI.2016.7780279
https://doi.org/10.1109/ICIEM48762.2020.9160177
https://doi.org/10.1109/ICIEM48762.2020.9160177
https://doi.org/10.1093/beheco/arq149
https://academic.oup.com/beheco/article-pdf/21/6/1349/13894081/arq149.pdf
https://academic.oup.com/beheco/article-pdf/21/6/1349/13894081/arq149.pdf
https://doi.org/10.1093/beheco/arq149
https://doi.org/10.1093/beheco/arq149
https://cosmosmagazine.com/nature/modelling-birds-flock-speed/
https://cosmosmagazine.com/nature/modelling-birds-flock-speed/
https://stackoverflow.com/questions/51125238/pbft-why-cant-the-replicas-perform-the-request-after-2-3-have-prepared-why-do
https://stackoverflow.com/questions/51125238/pbft-why-cant-the-replicas-perform-the-request-after-2-3-have-prepared-why-do
https://stackoverflow.com/questions/51125238/pbft-why-cant-the-replicas-perform-the-request-after-2-3-have-prepared-why-do
https://doi.org/10.1109/MC.2012.37
https://doi.org/10.1109/MC.2012.37
https://theblockchaintest.com/uploads/resources/SEBA%20-%20The%20Blockchain%20Trilema%20-%202020%20-%20Oct.pdf
https://theblockchaintest.com/uploads/resources/SEBA%20-%20The%20Blockchain%20Trilema%20-%202020%20-%20Oct.pdf

Chapter 8

[256] Sebastian Müller et al. “Fast Probabilistic Consensus with Weighted Votes”. In: ()
(page 195).

[257] Rajasekhar Chaganti and Bharat Bhushan and Vinayakumar Ravi. “A survey on
Blockchain solutions in DDoS attacks mitigation: Techniques, open challenges and
future directions”. In: Computer Communications 197 (2023), pp. 96–112. issn: 0140-
3664. doi: https : / /doi .org/10 .1016/ j . comcom.2022 .10 .026. url: {https : / /www.
sciencedirect.com/science/article/pii/S0140366422004145} (page 209).

[258] Ekparinya, Parinya and Gramoli, Vincent and Jourjon, Guillaume. “The Attack of
the Clones against Proof-of-Authority”. In: CoRR abs/1902.10244 (2019). arXiv: 1902.
10244. url: http://arxiv.org/abs/1902.10244. (accessed: 09.12.2022) (page 211).

[259] Saltini, Roberto and Hyland-Wood, David. IBFT 2.0: A Safe and Live Variation of
the IBFT Blockchain Consensus Protocol for Eventually Synchronous Networks. 2019.
arXiv: 1909.10194 [cs.DC]. (accessed: 06.03.2023) (page 212).

[260] Gai, Fangyu and Farahbakhsh,Ali andNiu, Jianyu and Feng, Chen and Beschastnikh,
Ivan and Duan, Hao. “Dissecting the Performance of Chained-BFT”. In: 2021 IEEE
41st International Conference on Distributed Computing Systems (ICDCS) (2021), 595–
606. (accessed: 08.03.2023) (page 216).

[261] Gągol, Adam and Leundefinedniak, Damian and Straszak, Damian and undefined-
wiundefinedtek, Michał. “Aleph: Efficient Atomic Broadcast in Asynchronous Net-
works with Byzantine Nodes”. In: AFT ’19 (2019), 214–228. doi: 10.1145/3318041.
3355467. url: https : / / doi . org / 10 . 1145 / 3318041 . 3355467. (accessed: 08.03.2023)
(page 216).

[262] Danezis, George and Kokoris-Kogias, Lefteris and Sonnino, Alberto and Spiegel-
man, Alexander. “Narwhal and Tusk: A DAG-Based Mempool and Efficient BFT
Consensus”. In: EuroSys ’22 (2022), 34–50. doi: 10.1145/3492321.3519594. url: https:
//doi.org/10.1145/3492321.3519594. (accessed: 09.03.2023) (page 216).

[263] Spiegelman, Alexander and Giridharan, Neil and Sonnino, Alberto and Kokoris-
Kogias, Lefteris. “Bullshark: DAG BFT Protocols Made Practical”. In: CCS ’22 (2022),
2705–2718. doi: 10.1145/3548606.3559361. url: https://doi.org/10.1145/3548606.
3559361. (accessed: 09.03.2023) (page 216).

[264] Cohen, Shir and Gelashvili, Rati and Kogias, Lefteris Kokoris and Li, Zekun and
Malkhi, Dahlia and Sonnino, Alberto and Spiegelman, Alexander. “Be Aware of Your
Leaders”. In: (2022). Ed. by Ittay Eyal and JuanGaray, 279–295. (accessed: 09.03.2023)
(page 217).

[265] Cohen, Shir and Keidar, Idit and Naor, Oded. “Byzantine Agreement with Less Com-
munication: Recent Advances”. In: SIGACT News 52.1 (2021), 71–80. issn: 0163-5700.
doi: 10.1145/3457588.3457600. url: https://doi.org/10.1145/3457588.3457600. (ac-
cessed: 08.03.2023) (page 217).

286

https://doi.org/https://doi.org/10.1016/j.comcom.2022.10.026
{https://www.sciencedirect.com/science/article/pii/S0140366422004145}
{https://www.sciencedirect.com/science/article/pii/S0140366422004145}
https://arxiv.org/abs/1902.10244
https://arxiv.org/abs/1902.10244
http://arxiv.org/abs/1902.10244
https://arxiv.org/abs/1909.10194
https://doi.org/10.1145/3318041.3355467
https://doi.org/10.1145/3318041.3355467
https://doi.org/10.1145/3318041.3355467
https://doi.org/10.1145/3492321.3519594
https://doi.org/10.1145/3492321.3519594
https://doi.org/10.1145/3492321.3519594
https://doi.org/10.1145/3548606.3559361
https://doi.org/10.1145/3548606.3559361
https://doi.org/10.1145/3548606.3559361
https://doi.org/10.1145/3457588.3457600
https://doi.org/10.1145/3457588.3457600

BIBLIOGRAPHY

[266] Zhang, Yupu and Dragga, Chris and Arpaci-Dusseau, Andrea and Arpaci-Dusseau,
Remzi. “*-Box: Towards Reliability and Consistency in Dropbox-like File Synchro-
nization Services”. In: HotStorage’13 (2013), p. 2. (accessed: 04.03.2023) (page 218).

[267] Giridharan, Neil and Howard, Heidi and Abraham, Ittai and Crooks, Natacha and
Tomescu, Alin.No-Commit Proofs: Defeating Livelock in BFT. Cryptology ePrint Archive,
Paper 2021/1308. https://eprint.iacr.org/2021/1308. 2021. url: https://eprint.iacr.
org/2021/1308. (accessed: 06.03.2023) (page 218).

[268] Boneh, Dan and Drijvers, Manu and Neven, Gregory. “Compact Multi-Signatures
for Smaller Blockchains”. In: (2018), 435–464. doi: 10.1007/978-3-030-03329-3_15.
url: https : / /doi .org/10 .1007/978- 3- 030- 03329- 3 \%5F15. (accessed: 06.03.2023)
(page 218).

[269] Kelkar, Mahimna and Deb, Soubhik and Long, Sishan and Juels, Ari and Kannan,
Sreeram. Themis: Fast, Strong Order-Fairness in Byzantine Consensus. Cryptology
ePrint Archive, Paper 2021/1465. https : / / eprint . iacr . org / 2021 / 1465. 2021. url:
https://eprint.iacr.org/2021/1465. (accessed: 07.03.2023) (page 218).

[270] Peter Kurrild-Klitgaard. “An Empirical Example of the Condorcet Paradox of Vot-
ing in a Large Electorate”. In: Public Choice 107.1/2 (2001), 135–145. issn: 00485829,
15737101. url: http : / / www . jstor . org / stable / 30026259. (accessed: 07.03.2023)
(page 218).

[271] Xiao, Yao andXu, Lei and Zhang, Can andZhu, Liehuang and Zhang, Yan. “Blockchain-
Empowered Privacy-Preserving Digital Object Trading in the Metaverse”. In: IEEE
MultiMedia 30.2 (2023), pp. 81–90. doi: 10.1109/MMUL.2023.3246528 (page 224).

[272] "Radix DLT". "Why ERC-4337 “Account Abstraction” Falls Short of Radix Smart Ac-
counts". url: https://www.radixdlt.com/blog/comparing-account-abstraction-and-
radix-smart-accounts. (accessed: 29.05.2023) (page 224).

[273] "Radix DLT". "Why DAGs Don’t Scale Without Centralization". url: https://www.
radixdlt.com/blog/dags-dont-scale-without-centralization. (accessed: 29.05.2023)
(page 224).

[274] Dinh, Tien Tuan Anh andWang, Ji and Chen, Gang and Liu, Rui and Ooi, Beng Chin
and Tan, Kian-Lee. “Blockbench: A framework for analyzing private blockchains”.
In: (2017), 1085–1100. (accessed: 04.04.2023) (page 229).

287

https://eprint.iacr.org/2021/1308
https://eprint.iacr.org/2021/1308
https://eprint.iacr.org/2021/1308
https://doi.org/10.1007/978-3-030-03329-3_15
https://doi.org/10.1007/978-3-030-03329-3\%5F15
https://eprint.iacr.org/2021/1465
https://eprint.iacr.org/2021/1465
http://www.jstor.org/stable/30026259
https://doi.org/10.1109/MMUL.2023.3246528
https://www.radixdlt.com/blog/comparing-account-abstraction-and-radix-smart-accounts
https://www.radixdlt.com/blog/comparing-account-abstraction-and-radix-smart-accounts
https://www.radixdlt.com/blog/dags-dont-scale-without-centralization
https://www.radixdlt.com/blog/dags-dont-scale-without-centralization

	Abstract
	Résumé
	Acknowledgements
	Thesis Publications
	Code Repository Publications
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Decentralization as Reaction to Dystopia
	Mobility Utopia
	Sustainable Development Conundrum
	Distributed Ledger Chronicles
	Taxonomy of Distributed Ledger

	Age of Autonomous Applications
	Decentralised Application (DAPP)
	Decentralised Autonomous Organization (DAO)
	Smart Contracts
	Privacy as a Commodity or Right?

	Consensus as a Pace Maker
	Objectives
	Thesis Organisation

	State of Art
	Mobility Services
	 Distributed Ledger Technology (DLT) Enabled Mobility Services
	Mobility Data Certification Services
	Mobility Data Monetization Services

	Distributed Consensus
	Foundational Works
	Seminal Synchronous Solution: Byzantine Generals Problem
	Seminal Impossibility Theorem with Fault Process: Fischer, Lynch, and Paterson Theorem
	Seminal Asynchronous Solution: Consensus in the presence of Partial Synchrony
	Seminal Practical Solution: Practical Byzantine Fault Tolerance (PBFT)
	Seminal Fast Track BFT Solution: Zyzzyva
	Seminal Linear Communication and Simple Solution: HotStuff
	Seminal Fast Track BFT Solution: Tendermint
	Seminal Safe Proof of Stake Solution: GASPER

	Relevant Work
	Parallelization
	Quorum Based Protocols
	Proof of Authority
	Reputation as an Asset
	Byzantine Altruistic Rational (BAR) Fault Tolerance

	Conclusion

	Decentralized Mobility Services
	Conception of Decentralized Mobility Service Architecture
	Token Engineering
	Data Certification Service
	Use-Case Definition
	Architecture Solution
	Accidentology Usecase on PBFT Consensus
	Evaluation
	Issues and Root Cause Analysis
	Conclusion

	Data Monetisation Service
	Decentralised Data Monetisation Solutions
	Decentralised Mobility Data Standards
	Significance of Data Monetisation Architecture
	Next Generation Distributed Ledger
	Use-Case Definition
	Architecture Solution
	Implementation
	Evaluation
	Conclusion

	Decentralised Mobility Services Conclusion

	Simulated Byzantine Fault Tolerant Consensus Algorithms For Normalised Evaluation
	Simulator Formulation
	Problem Ideation
	Simulator State of Art
	Simulator Methodology
	Design Goals
	Design Principles

	Technology Decisions
	Simulator
	Simulator-User-Interface
	Infrastructure
	Simulator Deployment

	Test Bed Architecture

	Simulator Validation
	Choice of BFT Algorithm Study
	Simulation Test Methodology
	Discussion on Results

	Conclusion

	CUBA: An Evolutionary Consortium Distributed Ledger Byzantine Consensus Algorithm
	Problem Statement
	Network Definition
	Information Broadcast
	Participant Behaviour:
	Consensus Finalisation
	Quality of Consensus Protocol:

	Cross-Section of Byzantine Fault Tolerance Consensus Problems and Approaches
	Contesting Utilitarian Byzantine Agreement (CUBA)
	Philosophy
	Democracy Conundrum
	Need for Utilitarianism
	Panopticon Complement
	Sisyphus Quotient
	Swarm Instinct

	CUBA Consensus Algorithm
	System Model
	Consensus Overview
	Detailed Protocol

	Conclusion

	CUBA Evaluation
	Theoretical Evaluation
	Algorithm Complexity
	Intra-Quorum Message Exchange
	Inter-Quorum Message Exchange
	Round Change
	Utilitarian Message Exchange
	Pipelining Effect on Protocol

	Consistency, Availability, and Partition Tolerance Analysis
	Misconception and CAP Revisited

	Blockchain Scalability Trilemma Analysis
	Utilitarian Fairness Evaluation
	Adverse Scenario Evaluation

	Experimental Evaluation
	CUBA Protocol Parameterisation
	Methodology
	Infrastructure
	Result Discussions
	What can be the optimum epoch limit for network self-optimization?
	What is the heuristic for choosing the number of quorums?
	Can the network topology have an effect on the CUBA protocol?
	How effective is the protocol resistant to Node failures?
	How is the performance of CUBA Implicit Variant?
	Distributed Denial of Service

	Overall Classical BFT Comparison

	CUBA amongst recent BFT consensus protocols
	Future Work
	Conclusion

	Conclusion and Perspectives
	Conclusion
	Perspectives
	Overall Analysis

	Appendix
	Data Certification Ethereum Discussion
	Analysis of Existing Testing Tools
	ChainHammer
	Calliper
	BlockBench

	Proposed Testing Tool Architecture
	Evaluation of Existing Testing Tools against Proposed Testing Tool
	Stress Test with proposed tool
	Evaluation of Ethereum specific Performance and Behaviour Factors
	Block Gas Limit
	Block Period
	Transaction Type
	Scalability
	Loadbalancer Middleware Integration with proposed tool

	Data Monetisation Discussion
	Simulated Byzantine Fault Tolerant Consensus Algorithms For Normalised Evaluation Discussion
	Data Monetisation Substrate Discussion
	BABE and GRANDPA

	CUBA Consensus Additional Discussion
	Transaction Processing
	Intra-Quorum Consensus
	Inter-Quorum Consensus
	Round Change Algorithm
	Heart Beat Protocol
	Utilitarian Score Processing
	Quorum Reorganisation
	 CUBA: Intra-Quorum Implicit Conensus

