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“I seem to have been only like a boy playing on the seashore, and diverting myself in

now and then finding a smoother pebble or a prettier shell than ordinary, whilst the

great ocean of truth lay all undiscovered before me.”

Sir Issac Newton
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Résumé

(French)

Le croissance de la population dans le monde a un impact significatif sur 

divers secteurs, notamment la main-d’œuvre, les soins de santé et l’économie 

mondiale. Le secteur de la santé est l’un des secteurs les plus touchés par 

le vieillissement de la population en raison de la demande croissante de 

ressources, notamment de médecins, d’infirmières, d’équipements et d’établ-

issements de santé. Pour résoudre ces problèmes et fournir de meilleurs 

soins de santé aux patients, la prise de décision, la gestion, le pronostic et 

le diagnostic fiables ont été complétés par des systèmes i ntelligents. Parmi 

ces systèmes, les systèmes basés sur l’apprentissage en profondeur (DL), une 

sous-classe de l’apprentissage automatique (ML), ont surpassé de nombreux 

systèmes statistiques et ML traditionnels en raison de leur capacité à décou-

vrir et à apprendre automatiquement les fonctionnalités associées pour une 

tâche donnée et leur robustesse. Par conséquent, l’utilisation de DL a connu 

une augmentation constante dans de nombreuses applications. Néanmoins, 

généralement, la formation des modèles DL repose sur un seul serveur cen-

tralisé, ce qui pose de nombreux défis :  (1) à l’exception de certaines grandes 

entreprises, la plupart des petites entreprises disposent de données de qual-

ité limitées, ce qui est insuffisant p our p rendre e n c harge l a f ormation de 

personnes avides de données. modèles DL, (2) l’accès aux données pose 

généralement des problèmes de confidentialité, (3) des coûts de communi-

cation élevés et des ressources de calcul requises, (4) un grand nombre de 

paramètres entraînables rendent le résultat de DL difficile à expliquer, ce qui
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est requis dans certaines applications, tels que les soins de santé. Par rap-

port au ML centralisé, l’apprentissage fédéré (FL) améliore à la fois la con-

fidentialité et les coûts de communication, où les clients forment en collab-

oration un modèle commun sans partager directement les données brutes.

Cependant, FL apporte ses propres défis. Par exemple, des données locales

hétérogènes parmi les clients rendent difficile la formation d’un ou plusieurs

modèles mondiaux performants et robustes. Le partage des mises à jour (des

centaines de milliers de paramètres) a encore des coûts de communication

élevés. De plus, la nature distribuée et le contrôle d’accès des données lo-

cales dans FL les rendent plus vulnérables aux attaques malveillantes. De

plus, le défi d’expliquer les résultats de DL reste encore difficile.

Par conséquent, l’objectif de cette thèse est de développer des cadres ro-

bustes, performants et respectueux de la vie privée dans des environnements

fédérés pour la classification de bout en bout dans les applications de soins de

santé en présence de données/mises à jour hétérogènes. De plus, les clients

de FL sont généralement limités en ressources avec des ressources de cal-

cul et de communication disponibles limitées. Par conséquent, pour prendre

en charge un calcul et une communication efficaces dans un cadre fédéré,

nous proposons un cadre léger (en termes de nombre de paramètres pou-

vant être entraînés). De plus, pour expliquer les résultats des modèles DL,

qui sont généralement difficiles à expliquer en raison du grand nombre de

paramètres, nous proposons des modules d’IA explicables indépendants du

modèle pour aider à expliquer les résultats. Pour protéger les cadres pro-

posés contre les cyberattaques, telles que les attaques par empoisonnement,

nous proposons un cadre dans des environnements fédérés, rendant les cap-

tures et analyses de données en santé plus sûrs et plus fiables. Enfin, avec une

analyse expérimentale utilisant des ensembles de données de base pour l’un

des problèmes de santé les plus courants, à savoir les maladies cardiovascu-

laires (détection d’arythmie, détection d’anomalies ECG) et la reconnaissance



ix

de l’activité humaine (utilisée pour compléter la détection des maladies car-

diovasculaires), nous montrons la supériorité de la solution proposée à la

pointe de la recherche en ce domaine (SOTA).

Mots clés: Sécurité, Informatique en périphérie, intimité, système de santé,

Intelligence artificielle explicable, détection d’anomalies explicables, intelli-

gence artificielle embarquée, Systèmes d’aide à la décision clinique, Sécurité

et fiabilité de l’intelligence artificielle, attaques par empoisonnement, empoi-

sonnement de données, empoisonnement de modèle, attaques byzantines.
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Abstract

The growing population around the globe has a significant impact on var-

ious sectors including the labor force, healthcare, and the global economy.

The healthcare sector is among the most affected sectors by the growing

population due to the increasing demand for resources including doctors,

nurses, equipment, and healthcare facilities. Intelligent systems have been

incorporated to enhance decision-making, management, prognosis, and di-

agnosis in order to tackle such issues and offer improved healthcare to pa-

tients. Among such systems, those based on deep learning (DL), a subclass

of machine learning (ML) have outperformed many traditional statistical and

ML systems owing to their capability of automatically discovering and learn-

ing related features for a given task and robustness. Therefore, the use of

DL has seen a steady increase in many applications. Nevertheless, usually,

the training of DL models relies on a single centralized server, which brings

many challenges: (1) except for some big enterprises most of the small enter-

prises have limited quality data, which is insufficient to support the training

of data-hungry DL models, (2) access to data, which is vital for these systems,

often raises privacy concerns. The collection and analysis of sensitive patient

information must be done in a secure and ethical manner to ensure the pro-

tection of individual privacy rights, (3) high communication cost and com-

putation resources required, (4) a large number of trainable parameters make

the outcome of DL hard to explain, which is required in some applications,

such as healthcare. Compared to centralized ML, federated learning (FL) im-

proves both privacy and communication costs, where clients collaboratively

train a joint model without sharing the raw data directly. FL minimizes pri-

vacy breaches and safeguards sensitive data by keeping it distributed locally.



xii

This enables collaborative model training while reducing the risk of unau-

thorized access and data breaches. Additionally, it promotes data diversity

and scalability by involving multiple sources in joint model training and de-

creases communication costs by sharing only model updates instead of the

entire dataset. However, FL brings its own challenges. For example, hetero-

geneous local data among the clients makes it challenging to train a high-

performing and robust global model. Sharing updates (hundreds of thou-

sands of parameters) still has high communication costs. Additionally, the

distributed nature and access control of local data in FL make it more vulner-

able to malicious attacks. Moreover, the challenge of explaining the results

of DL still remains challenging, and methods are needed to be developed to

bring trust, accountability, and transparency in sensitive applications, such

as healthcare.

Therefore, the aim of this thesis is to create robust frameworks that are se-

cure, high-performing, and privacy-friendly within federated settings. These

frameworks will be specifically designed for end-to-end (we train our frame-

works using raw data without any manual feature extraction) healthcare ap-

plications, considering the presence of non-identically distributed data among

clients in FL to bring robustness. By addressing these challenges, the ob-

jective is to enhance the overall system’s resilience and effectiveness. We

also propose a methodology for detecting anomalies within federated set-

tings, particularly in applications with limited available data for the abnor-

mal class. Furthermore, clients in FL are usually resource-constrained with

limited computation and communication resources available. Therefore, to

support efficient computation and communication in a federated setting we

propose a lightweight framework (in terms of the trainable number of pa-

rameters). Additionally, to provide explanations of the DL models’ outcomes,

which are usually hard to explain because of the large number of parameters,
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we propose model-agnostic explainable AI modules to help explain the re-

sults of DL models. Moreover, in order to protect the proposed frameworks

against cyber attacks, such as poisoning attacks, we propose a framework in

federated settings, which makes the proposed healthcare frameworks more

secure and trustworthy. Finally, with experimental analysis using baseline

datasets for one of the most common health conditions i.e., cardiovascular

diseases (arrhythmia detection, ECG anomaly detection) and human activity

recognition (used for supplementing cardiovascular diseases detection), we

show the superiority of the proposed frameworks over state-of-the-art work.

Keywords: Federated Learning, Edge Computing, Healthcare, privacy, secu-

rity, Explainable Artificial Intelligence, Explainable Anomaly Detection, Em-

bedded Artificial Intelligence, Clinical Decision Support Systems, Safety and

Reliability of Artificial Intelligence, poisoning attacks, data poisoning, model

poisoning, Byzantine attacks.
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Chapter 1

Introduction

1.1 Context

The increasing global population will soon present a significant challenge

for the global economy as it will require financial resources to cover ex-

penses such as salaries, social insurance, and healthcare. Especially, health-

care systems are increasingly being challenged due to this growing and ag-

ing population around the globe. The elderly healthcare sector will require

a substantial amount of valuable resources from society, including doctors,

nurses, healthcare facilities, rehabilitation centers, and new medicines [1],

[2]. Hence, it is crucial to develop advanced tools and systems that can sup-

port healthcare and enhance the quality of the healthcare system and reduce

the economic burden. To address such challenges and to provide better and

more reliable healthcare to patients, better decision-making in healthcare by

learning from the health data is being utilized. For example, cardiovascu-

lar diseases are one of the leading causes of death [3]. Various policies have

been introduced in recent years to provide tools and systems for reducing

human loss to such cardiovascular events. Electrocardiography (ECG) was

introduced to achieve such goals and it is the most commonly used physio-

logical signal used to detect various cardiovascular diseases. Various types

of intelligent systems have been developed to help ECG analysis, arrhyth-

mia detection, and classification. Such methods include wavelet coefficient
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and fuzzy c-means clustering for disease diagnosis and classification [4], [5].

However, traditional signal processing and statistical methods rely on strong

assumptions. For instance, assumptions about the distribution of the data

which is hard to estimate with heterogeneous data. One more drawback of

these methods is that the performance can be affected by slight changes in

the input caused by factors like random noise. Therefore, there is a need to

develop methods that can ensure improved resilience and accurate results.

In recent years, intelligent systems based on machine learning (ML) have

been studied in a wide range of applications. For example, applications of

ML have been studied for cyber security [6], economics and agriculture [7],

and in healthcare [8]. Traditional ML systems rely on feature engineering,

where human experts extract relevant features from the data and then use

these features to train ML models such as decision trees, support vector ma-

chines, and random forests. The models learn relationships and patterns be-

tween input features and target variables which allows them to make deci-

sions about new data. Nevertheless, traditional ML systems struggle with

large-scale complex data and the need for human experts for feature engi-

neering brings limitations to the use of ML. Hence, deep learning (DL), a

subclass of ML, has seen a rapid increase with the availability of high com-

putational resources and the massive amount of data being generated [9].

DL employs multi-layer artificial neural networks which automatically learn

hierarchical representations of the training data through a process known as

representation/feature learning. Therefore, allowing the DL model to learn

directly from the data such as images, time-series, and audio without heav-

ily relying on manual feature engineering. While ML is effective for certain

tasks, DL outperforms in dealing with large-scale datasets and complex data

representations.

Internet of Things (IoT) devices are capable of collecting an enormous
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amount of data each day [9], [10]. This collection of data and the exponen-

tially increasing computational resources have unlocked new dimensions in

the information technology sector, especially in DL [11]. Although DL is

quite an old concept [12] owing to limited data and computational resources

available in the past its use was limited. However, thanks to the internet,

IoT devices, and increasing computational power, nowadays we can see DL

revolutionizing nearly every field, including healthcare [13], economics [14],

manufacturing [15], agriculture [16], and military [17]. In regards to health-

care applications, a lot of data have been generated across the globe and

they have quite unique properties. Most of the data related to healthcare

are multi-dimensional and complex, which makes the use of classical ML

models, for example, decision trees and random forests, quite challenging

and complex. However, the new generation machine learning models, espe-

cially the DL-based ones, can solve issues related to multi-dimensional data

due to their capability of learning complex trends and patterns in data [18].

In the healthcare sector, DL has played a critical role, e.g., to help diagnose

life-threatening diseases [19]. Given the right architecture and sufficient rep-

resentative data, DL has the capability to find patterns in data when trained

either in supervised or unsupervised settings, which are otherwise difficult

for humans to find. For example, to monitor the heart condition of patients,

clinical practitioners often have to go through an ECG recorded over long

periods of time (hours to days). Finding patterns that could result in heart

conditions in such long ECG usually becomes a hectic and time-consuming

task for humans. ML algorithms could be used in such scenarios to help

clinical practitioners reach quick and reliable results. Although DL can pro-

vide state-of-the-art (SOTA) performance and outperform traditional statis-

tical methods in most of the applications, it brings its own challenges and

limitations [20].
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1.1.1 Limitation and Challenges of Deep Learning

DL requires a large amount of good-quality training data to be trained on

to achieve desired utility. However, individual data sources like hospitals,

clinics, smart devices, and smart wearables can have a minimal amount of

data, so data from a single silo can be insufficient to train a high-performing

DL model [21]. A solution to this is to collect data from multiple sources

and then train the model on the collected data. One major issue of this ap-

proach is privacy concerns [22]. As some data (e.g., healthcare ) are highly

sensitive and private, some individual sources may not be willing to share

their data with a central data collector, due to privacy concerns and market

competition [23], [24]. Hence, it is crucial to safeguard data and comply with

legal and ethical requirements. Secondly, data sources can distribute glob-

ally, and collecting such data into a central repository is a huge challenge.

For example, communication cost is one of the challenges for collecting data

from geographically distributed data sources. Furthermore, there exists the

problem of explainability in DL. DL models are generally black box models

(complex to interpret with hundreds of thousands of parameters), with no

reasonable explanations for the outcomes. This ambiguity causes a limitation

of DL in sensitive applications, such as healthcare. In healthcare, stakehold-

ers such as clinical practitioners and patients should know the reason for a

prediction by a DL model [25], without proper explanations of the results

the application of DL in healthcare becomes limited. Explainability is impor-

tant in healthcare because to convince clinical healthcare practitioners and

patients we need to give them the reason behind a certain prediction for a

given input. The performance of the model and explainability both are very

important in healthcare applications. Explainability can also help to address

the biases present in the DL model, i.e., DL can provide the right outcomes
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for the wrong reasons. Therefore, in clinical healthcare, practitioners and pa-

tients are unlikely to adopt ML systems without understanding the models

and the reasons behind their outcomes. Hence, the explainability of the re-

sults obtained from DL model(s) to make them more understandable is of ut-

most importance for building trustworthy and reliable systems. In addition,

explainability also brings trust and helps debug any unintended bias present

in the model by allowing researchers to get insights and identify any biases

in the model which can be used to refine the model to improve performance

and mitigate biases.

Furthermore, the increasing adoption of DL in many applications has at-

tracted attackers’ attention. Research has shown that ML/DL models are

vulnerable to advanced and sophisticated attacks [26]. Attacks such as poi-

soning attacks [27] attempt to achieve adversarial benefits, i.e., disabling the

DL system’s functionality and inferencing attacks [28]. For instance, an AI

system training can be subjected to incorrectly labeled data with the aim

of causing the model to be unreliable or inconsistent in the target applica-

tion. Consequently, in order for DL systems to be more reliable and secure,

research is needed to address security issues faced by DL systems. Addi-

tionally, inferencing attacks can be used to extract sensitive or private infor-

mation from models or systems by making targeted queries or observations

thereafter violating the privacy of data owners and security risks. In other

words, it is vital to address the security issues of DL and such issues need

much more attention with the widespread applications of DL.

1.1.2 Distributed Machine Learning and Federated Learning

Distributed machine learning (DML) trains a given ML model in multiple

nodes to improve the performance and scale to large data. Nowadays, DML
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is an integral part of large-scale ML models to enable faster learning algo-

rithms by utilizing a single server of the cluster in a single region that belongs

to a given organization [29]. However, DML pays less focus on privacy and

gives a centralized server access to raw data. Therefore, with the increase in

privacy concerns over the transmission of local raw data and market com-

petition, the use of federated learning (FL) [30], a subclass of DML, which

explores the idea of training ML/DL models on the remote device has seen

a growing interest. We use the term edge device/client to denote the entities

such as nodes and edge devices and clients in the network. The basic idea

behind FL is to collaboratively train a machine learning model without cen-

tralized training data. The clients/edge devices train a local model locally

and exchange the updates (model parameters or gradients depending on the

federated algorithm, we will discuss each algorithm in chapter 2). The ag-

gregation/global serve aggregates the received updates according to a given

aggregation method (mean, median, trimmed mean, etc) and exchanges the

updates with the clients. FL enables devices with sufficient computational

power (e.g., home computers, mobile phones, wearables, and other IoT de-

vices) to collaboratively learn a shared machine-learning model while keep-

ing all the training data on local devices, decoupling the ability to applying

ML/DL from the need to store the data centrally at a single server or in the

cloud. FL has been used in practice by many organisations [31] and it has a

significant role in supporting privacy-sensitive applications by enabling the

training of statistical models at the edge/client [32]. An overview of the fed-

erated setting for healthcare applications is shown in Figure 1.1.

Although FL enhances privacy, it faces many challenges to achieving high

performance of jointly trained models and security. For instance, the sta-

tistical heterogeneity among the participating edge devices i.e., the device

generates and collects data in a highly non-identically distributed manner.
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Achieving SOTA performance and making FL robust against statistical het-

erogeneity is still challenging, especially when the data distribution among

the clients is non-independently and identically distributed (non-IID), such

as distribution skew, feature distribution skew, and quantity skew [33]. Here,

robustness refers to the ability of the systems to perform consistently and ef-

fectively in the presence of various challenges, such as varying noise, non-IID

data distribution, and different security attacks. Similarly, local clients in FL

usually contain varying and unavoidable noise present in the data because

of the experimental design and various other reasons, and training a robust

global model under such conditions is highly challenging [34]. Such data

distributions can lead to challenges in the aggregation of updates because

models trained on non-IID may have divergent knowledge and trained pa-

rameters making it difficult to aggregate them in order to achieve desired

performance. Furthermore, the problem of explanations still remains one of

the main limitations. Additionally, communication of model updates while

training is still vulnerable to privacy and security attack [35]–[37]. Although

methods, such as encryption, and secure multiparty computation, can be

leveraged to enhance security and privacy, such methods often bring reduced

model performance and higher computational costs [38]. Hence, achieving a

balance between performance, security, and privacy in FL is challenging.

1.2 Motivation and Problem Statement

Based on our discussion above, it can be concluded that DL has shown SOTA

performance and robustness in different applications, such as healthcare.

Some of the challenges faced by centralized DL can be addressed using FL,

which has the potential to bring promising solutions by addressing some lim-

itations of centralized DL. For example, it can enhance privacy and can help

achieve high-performing DL models by jointly training a global model using
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care

the updates of clients in the network. FL has seen growing interest where dis-

tributed parties can jointly train a global model without the need to directly

share raw data with other parties. As discussed before, FL reduces communi-

cation costs and increases data diversity by allowing different data sources to

jointly train a model. However, FL brings its own limitations and challenges.

A key challenge in FL is the non-IID data among the participating devices

in the network. When devices with heterogeneous data distribution train a

joint model the model’s performance is usually degraded. For example, if

the amount of noise present in the raw data of each device/client is different

then training a global model to achieve SOTA performance and robustness

on such distribution is challenging [33]. Moreover, the distributed nature of

FL makes it vulnerable to various security and privacy issues, for instance,

poisoning and membership inference attacks [35]–[37]. Furthermore, in addi-

tion to achieving robust SOTA performance in privacy friendly environment,
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applications such as healthcare need explanations of the model’s outcomes.

Another challenge with FL is computation costs. Since DL usually involves

higher computation and edge devices are usually more resource constrained

compared to a central server, achieving both SOTA performance and low

computation costs is challenging.

Hence, motivated by the promising outcomes of FL for privacy-friendly

and robust DL, the aim of this thesis is to design and evaluate robust, high-

performing, security and privacy-enhanced frameworks in federated settings

for healthcare applications.

To achieve our goal, we have devised a strategy that involves dividing it

into the following set of objectives:

1. The first objective is to develop high-performing, and privacy-friendly

frameworks for end-to-end healthcare applications in federated settings

that are robust enough to effectively handle non-IID data, ensuring that

the models trained on diverse data sources can effectively generalize

and perform well across different distributions and maintain their per-

formance even when the input data contains unprecedented variations.

In other words, we propose to make the framework robust when the

data is non-IID and contains varying noise. Moreover, we emphasize

the importance of computational efficiency, ensuring that the frame-

work remains lightweight and suitable for edge devices with limited

resources in a federated learning environment.

2. Furthermore, providing explanations for the outcomes is crucial, partic-

ularly in healthcare applications where explanations are highly valued.

Hence, our second objective aims to ensure transparency by offering

explanations that help understand the reasoning behind the model’s

decisions. This objective also addresses the need to mitigate any biases

that may arise within the model, enhancing its fairness and reliability.
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3. Finally, in order to protect the proposed frameworks against security

attacks, such as poisoning attacks ( we focus on poisoning attacks, see

Chapter 2 for more details about poisoning attacks), our objective is to

design frameworks that are robust against various poisoning attacks,

such as the injection of malicious data or labels, enabling the models

to maintain their integrity and accuracy even in the presence of such

attacks.

1.3 Contributions

In this thesis, we propose high-performing, robust, privacy-enhanced, and

secure frameworks with added explanations in federated settings for health-

care applications. We fine-tune the proposed frameworks for specific exam-

ple applications for higher performance and compare them with SOTA in

that application. The details of each contribution are discussed in the up-

coming Chapters. Here we provide a brief overview of our contributions,

which are given as follows.

1. First, we design a novel end-to-end privacy-friendly framework in a

federated setting using explainable artificial intelligence (XAI) and deep

convolutional neural networks (CNN). In this framework, we propose

a novel two-step approach of using autoencoder and classifiers with

transfer learning to achieve robustness and high performance against

heterogeneous data. Additionally, we introduce an XAI-based module

on top of the proposed classifier to improve explanations of the classi-

fication results, helping clinical practitioners make informed decisions.

2. In order to support lightweight computation for privacy-friendly FL

and to achieve SOTA performance, we propose a transformer-based
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approach for classification in federated settings, while being more com-

putationally efficient for use on mobile devices.

3. We present a novel concept of unsupervised two-stage adaptive anomaly

detection in the presence of heterogeneous data distribution in feder-

ated settings to enhance privacy protection, improve the explainability

of results and support unsupervised learning in case of limited data

availability.

4. We further introduce a novel framework for efficient and effective de-

tection of poisoning attacks in federated settings.

1.4 Thesis Roadmap

An overview of the thesis roadmap is given in Figure 1.2, and the outline of

the rest of the thesis is given as follows:

• Chapter 2 presents the background studies and literature review about

deep neural networks, FL, XAI, and privacy and security challenges.

Furthermore, we review SOTA works and identify their limitations,

which we aim to address in the upcoming chapters.

• In Chapter 3, we report a novel end-to-end framework in a federated

setting using XAI and deep convolutional neural networks (CNN). The

federated setting is used to solve challenges such as data availability

and privacy concerns. With ECG classification as an example applica-

tion, we show that the proposed framework effectively classifies dif-

ferent arrhythmias using an autoencoder and a classifier, both based

on a CNN. Additionally, we propose an XAI-based module on top of

the proposed classifier for interpretability of the classification results,

which helps clinical practitioners to interpret the predictions of the clas-

sifier and to make quick and reliable decisions. We train and test the
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proposed framework using the baseline Massachusetts Institute of Tech-

nology - Boston’s Beth Israel Hospital (MIT-BIH) Arrhythmia database.

We show that the trained classifier outperformed existing work by achiev-

ing accuracy up to 94.5% and 98.9% for arrhythmia detection using

noisy and clean data, respectively, with five-fold cross-validation show-

ing its robustness against heterogeneous data distribution. We also pro-

pose a new communication cost-reduction method to reduce commu-

nication costs and to enhance the privacy of users’ data in the federated

setting.

• In Chapter 4, we propose a novel lightweight (in terms of the number of

parameters) transformer, which can combine the advantages of RNNs

and CNNs without their major limitations (discussed in section 2.3),

and also TransFed, a more privacy-friendly, federated learning-based
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human activity recognition (HAR), using our proposed lightweight trans-

former. We designed a testbed to construct a new HAR dataset from

five recruited human participants and used the new dataset to evalu-

ate the performance of the proposed HAR classifier in both federated

and centralized settings. Additionally, we use another public dataset to

evaluate the performance of the proposed HAR classifier in centralized

setting to compare it with existing HAR classifiers. With the experi-

mental results show that our proposed new solution outperforms SOTA

HAR classifiers based on CNNs and RNNs, while being more compu-

tationally efficient to be used on mobile computing resource constraint

devices.

• Chapter 5 describes AnoFed, a novel framework for combining the

transformer-based AE and VAE with the Support Vector Data Descrip-

tion (SVDD) (see Chapter 2 for more details) in a federated setting. It

can enhance privacy protection, improve the explainability of results

and support unsupervised learning (adaptive anomaly detection). Us-

ing ECG anomaly detection as a typical application of the framework

in healthcare, we conducted experiments to show that the proposed

framework is not only effective (in terms of the detection performance)

but also efficient (in terms of computational costs), compared with a

number of state-of-the-art methods in the literature. AnoFed is very

lightweight in terms of the number of parameters and computation,

hence it can be used in applications with resource-constrained edge de-

vices.

• To address the challenges related to security in FL, in Chapter 6 we pro-

pose a novel framework for detecting poisoning attacks in FL, which

employs a reference model based on a public dataset and an auditor

model to detect malicious updates. We implemented a detector based
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on the proposed framework and using a one-class support vector ma-

chine (OC-SVM), which reaches the lowest possible computational com-

plexity O(K) where K is the number of clients. We evaluate our de-

tector’s performance against SOTA poisoning attacks for two typical

applications of FL: ECG classification and human activity recognition.

With experimental results, we validate the performance of the proposed

framework.

• Finally, Chapter 7 concludes the thesis and presents limitations and fu-

ture research directions.

8



15

Chapter 2

Background and Literature Review

In this chapter, we provide background and literature review. In particular,

we provide preliminaries and review current work and identify their limita-

tions.

2.1 Introduction to Machine Learning

We begin with the definition and basic types of ML and then proceed towards

more complex ML/DL algorithms, such as support vector data description,

and multi-layer networks (convolutional neural networks, transformers, and

autoencoders).

2.1.1 Machine Learning

An ML algorithm is an algorithm that is able to learn from the data. Accord-

ing to the definition presented in [39], an ML algorithm is said to learn if

given an experience E to the algorithm with respect to a task T, and perfor-

mance measure P, the performance P for task T improves with experience E.

The learning algorithm can be supervised, as well as unsupervised. In unsu-

pervised learning, the aim of the ML algorithm is to learn features and useful

properties of the dataset related to a given task, for example, clustering [40].

Generally speaking, the ML algorithm learns the probability distribution for
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a given task. In supervised learning, the ML algorithm learns features and

useful features from the dataset where each data sample is associated target

or label.

Many types of tasks can be solved using ML. Some of the most common

are given as follows:

Classification: In classification, the ML algorithm specifies the output cat-

egory/class of a given input. To accomplish such tasks the learning algo-

rithm learns a function f : Rd → {1, . . . , n}. If x is a vector input and y is the

corresponding output, the model f assigns the input to the output y = f (x).

When the number of output classes is two then it is called binary classifica-

tion and when it is greater than two it is called multiclass classification. We

will see some examples of applications of classification in section 2.2.2.

Anomaly detection: In this type of task, the ML algorithm searches for

events that deviate from the normal events and flags the events which devi-

ate from the normal as anomalies. A typical example of anomaly detection

is spam email detection. We will see some example applications of anomaly

detection in section 2.2.2.

Denoising: In this type of task, given a noisy/corrupt input x
′ ∈ Rd of

a clean sample x ∈ Rd obtain via an unknown process, the ML algorithm

learns to reconstruct x from x
′
. In other words, the ML algorithm learns the

conditional probability distribution p(x|x′). We will provide more details

about denoising and example applications in section 2.1.5.

2.1.2 Performance Measures

Some of the performance measures that we will be using in this thesis are

given as follow:
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Classification Performance: Four standard metrics found in the litera-

ture [41] are accuracy, precision, recall and F1-score. While accuracy mea-

sures the overall system performance over all classes in the dataset, the other

metrics are specific to each class, and they measure the ability of the classifi-

cation algorithm to distinguish certain events. For a binary classifier, each of

the metrics is defined as follows:

1. Accuracy is the most intuitive performance measure and it is simply

a ratio of correctly predicted observations to the total observations, as

defined below:

Accuracy =
TP + TN

TP + FP + FN + TN
, (2.1)

where TP, TN, FP and FN refer to the numbers of true positives, true

negatives, false positives, and false negatives, respectively.

2. Precision is the ratio of correctly predicted positive observations to the

total predicted positive observations, as defined below:

Precision =
TP

TP + FP
. (2.2)

3. Recall is the ratio of correctly predicted positive observations to all the

observations in actual positive class, as defined below:

Recall =
TP

TP + FN
. (2.3)

4. F1-score is the harmonic mean of precision and recall, as defined below:

F1-Score =
2× Recall× Precision

Recall + Precision
. (2.4)
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The above definitions can be easily extended to multi-class classifiers with

m > 2 classes. For instance, accuracy is defined as the ratio between the

number of total correct predictions and the total number of samples. For

other metrics, i.e., precision, recall, and F1-score, we can derive m binary

classifiers, one for each given class versus all remaining classes (one-vs-rest),

and then use the above definitions of the three metrics as usual for each of

the m binary classifiers.

Mean Squared Error: Mean squared error (MSE) is a method used to

measure the amount of difference between an observed and predicted value

in statistical modeling. When the observed and predicted values are the same

the MSE is zero, and as the difference between them increases, the MSE also

increases. Let’s suppose that yi presents the observed value and y
′
i presents

the predicted value and n represents the total number of samples (observa-

tions), then MSE is given as follows.

MSE =
∑n

i=1(yi − y
′
i)

2

n
(2.5)

Kullback-Leibler Divergence: is an asymmetric metric to measure or

quantify the difference between a given sample probability distribution to

a reference probability distribution. Let us suppose that p(x) presents the

reference probability distribution and q(x) presents the sample probability

distribution. Then the discrete form of KL-divergence is given as follows:

KL(p(x)||q(x)) = ∑
x∈X

p(x) ln
p(x)
q(x)

(2.6)

2.1.3 Support Vector Data Description (SVDD)

The Support Vector Data Description (SVDD) [42] leverages a support vector

classifier [43] to construct a spherical boundary around a given distribution

of a dataset, with a minimum volume containing as much as possible data
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samples from the given data distribution. Let us suppose that {Xi ∈ Rd}N
i=1

are a set of N d-dimensional training samples, a and R denote the center and

the radius of a sphere covering the training set, respectively. Huang, Chen,

Zhou, et al. [44] formulated this goal as a constrained convex optimization

problem, given as follows:

minR,a,ξi F(R, a, ξi) = R2 + C ∑i ξi, s.t.
||Xi − a||2 ≤ R2 + ξi,

ξi ≥ 0,
i = 1, . . . , N, (2.7)

where, the slack variable ξi defines the possibility of anomalous (outliers)

data in the given training data. The parameter C is used to balance the trade-

off between the volume inside the boundary and the errors. The Lagrangian

function with Lagrange multipliers αi and γ gives

L(R, a, ξi, αi, γi) = R2 + c ∑
i

ξi

−∑
i

α[R2 + ξi − (Xi − a)2]−∑
i

γiξi.
(2.8)

By setting the partial derivatives of a, R, and ξi to zero, we can achieve the

following constraints:

∑
i

αi = 1, A = ∑
i

αiXi (2.9)

C− γi − αi = 0 =⇒ 0 ≥ αi ≥ C. (2.10)
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From the above equations, we can get

maxL = ∑
i

αi(Xi · Xi)−∑
i,j

αiαj(Xi · Xj), s.t.
∑i αi = 1,

0 ≤ αi ≤ C,
i = 1, . . . , N, (2.11)

where, · operator denotes the inner product between two vectors. A train-

ing sample Xi and its corresponding αi should follow one of the following

conditions:

• ||Xi − a||2 < R2 =⇒ αi = 0;

• ||Xi − a||2 < R2 =⇒ 0 < αi < C;

• ||Xi − a||2 < R2 =⇒ αi = C.

The samples whose coefficients follow αi > 0 are known as support vec-

tors. The center of the sphere can be obtained by Eq. (2.9). The radius R

can be obtained by calculating the distance from any support vector with

0 < αi < C to the center. In order to test if a given sample Z is inside or out-

side of the defined boundary of a sphere, the distance from the center to Z is

calculated. If the distance is smaller than the radius R, then Z is considered

inside and not an outlier, given as follows.

||Z− A||2 = (Z · Z)− 2 ∑
i

αi(Z · Xi) + ∑
i,j

αiαj(Xi · Xj) ≤ R2. (2.12)

The method can be made more flexible [42], [45] by employing new in-

ner products satisfying Mercer’s theorem. Moreover, a polynomial kernel

and the Gaussian kernel can also be employed to achieve more flexibility as

discussed in [42], [46].
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2.1.4 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are feed-forward networks usually

used to analyze images using grid-like topology. A CNN usually consists of

convolutional layers that help to extract features of a given input. Convolu-

tional layers comprise filter(s) to perform the convolution operation. Other

than convolutional layers, CNN consists of ReLU (rectified linear unit) layer

and pooling layers. ReLU layers take in the feature maps from the convo-

lutional layers and apply ReLU activations which map the negative values

in the feature map to 0 to produce a rectified feature map. The ReLU layer

introduces non-linearity in the network which helps the network learn non-

linear decision boundaries. Other activation functions such as sigmoid can

also be used instead of ReLU, however, ReLU provides sparsity and reduced

likelihood of vanishing gradient. Furthermore, pooling layers are used for

up/down-sampling the dimensionality of the rectified feature map. Pooling

layers help to detect different parts like edges, corners, etc. For classification,

task CNNs consist of a fully connected neural network that takes in the fea-

tures extracted by the convolutional layers and helps achieve a given task

(e.g., classification). Figure 2.1 presents a typical CNN architecture.
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256 256 256 I/
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100 2

FC(sigmoid)

FIGURE 2.1: Architecture of Convolutional Neural Networks



22 Chapter 2. Background and Literature Review

2.1.5 Autoencoders and Variational Autoencoders

Autoencoders (AEs) [47] are neural networks trained mainly using unsuper-

vised learning. They have been extensively used for data denoising and com-

pression [48], [49]. An AE usually consists of two main components: an en-

coder and a decoder. The encoder learns a latent space vector representations

during the training phase, while the decoder learns do reconstruct the orig-

inal input given the latent vectors. We depict an AE with a single hidden

layer [50] in Figure 2.2.

Latent Space (z)

Input (x) output (x')

Encoder Decoder

Autoencoder

FIGURE 2.2: An AE with a single hidden layer.

The mathematical formulation of an encoder is given by the equation be-

low:

Z = φ1(W1X + B1), (2.13)

where X ∈ Rk is a k-dimensional input vector, z is a latent space vector, φ1 is

an activation function and W1 represents the weights matrix of the encoder
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and B1 is the bias vector. The parameters W1 and B1 are randomly initial-

ized at the start and updated during the training phase. For the decoder, the

following equation shows how it works:

X′ = φ2(W2Z + B2), (2.14)

where X′ ∈ Rk is a k-dimensional output vector obtained using the latent

representation given by the encoder, φ2 is an activation function, W2 and B2

are weights matrix and the bias vector of the decoder, respectively. Each

input X of the encoder part of an AE is mapped into a latent space vector.

This latent space vector is used as the input of the decoder that produces X′

(a reconstructed version of X) as the output. The model’s internal parameters

are trained by minimizing the reconstruction loss L with a suitable optimizer,

given by the following equation:

L(θ) =
1
N

N

∑
i=1
||Xi − X′i ||2, (2.15)

where N is the total number of input vectors, θ denotes the model’s param-

eters, and Xi and X′i are the i-th input and output vectors, respectively. Gen-

erally, the latent representations have a lower dimensionality than the input

vector, let’s say k, so that the AE will keep the important and relevant infor-

mation necessary to reconstruct the input [51]. When a trained AE is used

for anomaly detection, the reconstruction loss is normally used to detect the

anomalies [52], [53].

Variational autoencoders (VAEs) [54], [55] are structurally similar to AEs,

with the only difference being that the VAEs learn a latent distribution while

the AE learns a point in the latent space. This latent distribution is regular-

ized to be close to a standard normal distribution [56]. For a given input data

X, let us assume that X is computed using its corresponding latent variable
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Z that cannot be observed directly. If we denote the prior distribution of Z

as p(Z), and consider that the input Z is sampled from the conditional like-

lihood p(X|Z), then Bayes theorem gives the link between the prior p(Z),

likelihood p(X|Z), posterior distribution p(Z|X), as shown in the following

equation:

p(Z|X) =
p(X|Z)p(z)

p(X)
. (2.16)

Given an input dataset X defined by an unknown probability function p(X)

and a latent vector Z, a VAE learns from the input to get a distribution pθ(X),

where θ is the set of the network parameters. Equation (2.17) represents the

mathematical formulation of an unknown probability function.

p(X) =
∫

p(X, Z)dz. (2.17)

Unfortunately, p(X) is intractable distribution and hence we cannot com-

pute it directly. However, by leveraging variational inference the problem

of intractable distribution can be solved. If we consider p(Z|X) to be ap-

proximated by another tractable distribution q(Z|X), then the parameters of

q(Z|X) can be defined to be very similar to p(Z|X) to infer the intractable

distribution. By minimizing the KL-divergence (a metric describing the dif-

ference between two probability distributions), we can ensure that q(Z|X) is

similar to p(Z|X),

minKL(q(Z|X)||p(Z|X)), (2.18)

We can minimize the KL-divergence by minimizing the following:

Eq(Z|X) log p(X|Z)−KL(q(Z|X)||p(Z|X)). (2.19)

The above equation ensures that the learned distribution q is similar to the

prior distribution p. A VAE mapping X to Z and reconstructing X from Z is

shown in Figure 2.3.
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FIGURE 2.3: The general structure of a VAE.

The decoder learns to reconstruct the input from the latent space vec-

tor. Furthermore, re-parameterization is used to calculate the relationship

between the model’s internal parameters and the loss using backpropaga-

tion. Re-parameterization randomly samples ε from a standard normal dis-

tribution, and then shifts the random sample ε with mean µ and scales it by

the variance σ of the latent distribution, given by the following equation:

Z = µ + σ× ε. (2.20)

The loss function for a VAE consists of two different losses (as shown in the

equation below): one is used to penalize the reconstruction loss, and the sec-

ond (KL-loss) is used to ensure that the learned distribution q(Z|X) is similar

to the true prior distribution p(Z), which follows a unit normal distribution,

across each dimension j of the latent space.

L(X, X′) + ∑
j

KL(qj(Z|X)||p(Z)). (2.21)

Since being proposed, many researchers have proposed many optimized ap-

proaches of autoencoder, such as sparse autoencoder, denoising autoencoder,

contractive autoencoder, and convolutional autoencoder [57]. We can achieve

two main tasks from autoencoders: denoising and dimensionality reduction.

In this study, we build a denoising autoencoder, which is an extension of

simple autoencoders. It is worth noting that denoising autoencoders were
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not originally meant to automatically denoise an input. Instead, the denois-

ing autoencoder procedure was invented to help:

1. the hidden layers of the autoencoder learn more robust filters,

2. reduce the risk of overfitting in the autoencoder, and

3. prevent the autoencoder from learning a simple identity function.

In denoising autoencoders noise is stochastically (i.e., randomly) added

to the input data, and then the autoencoder is trained to recover the original,

non-perturbed signal.

2.1.6 Transformers

MatMul

Scale

Mask(opt.)

Softmax

MatMul

Q    K   V

linear linear linear

Scaled Dot-Product
Attention

linear
linear linear

linear
linear

linear

Scaled Dot-Product
Attention

Scaled Dot-Product
Attention

Q    K   V

Concat

linear

Scaled Dot-Product
Attention

Multi-Head Attention

h

FIGURE 2.4: An illustrative diagram of the attention mecha-
nism and its parallelization, regenerated from [58]. Left: the
attention mechanism, Right: parallelization of the attention

mechanism.

Vaswani et al. [58] introduced a novel architecture called Transformer for

sequence-to-sequence learning. One of the key components of transform-

ers is the attention mechanism. The attention mechanism looks at an input
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sequence and decides at each step which other parts of the sequence are im-

portant. Similar to LSTMs, a transformer basically transforms one sequence

to another one with the help of two parts: an encoder and a decoder, but it

differs from existing sequence-to-sequence methods in that it does not imply

any recurrent networks (GRU, LSTM, etc.). The encoder and decoder con-

sist of modules that can be stacked on top of each other multiple times. Each

module mainly consists of multi-head attention and feed-forward layers. The

input and output are first embedded into an n-dimensional space since they

cannot be used directly. Another part of the model is a positional encoding

of different words. Since there are no recurrent networks that can remember

how a sequence is fed into the model, a relative position is encoded for ev-

ery part of the input sequence. These positions are added to the embedded

n-dimensional vector of each input sub-sequence.

The attention mechanism used in transformers can be described by the

following equation:

Attention(Q, K, V) = Softmax
(

QKT
√

dk

)
V, (2.22)

where Q is the query matrix (vector representation of input sub-sequence), K

are all the keys (vector representations of all the sequences) and V are the val-

ues (vector representations of all the sequences). For the encoder and the de-

coder, multi-head attention modules, V consists of the same word sequence

as Q. However, for the attention module that is taking in the encoder and

the decoder sequences, V is different from the sequence represented by Q.

In other words, V is multiplied and summed with the attention weights γ,

defined by the following equation:

γ = Softmax
(

QKT
√

dk

)
. (2.23)
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The self-attention mechanism is applied multiple times in parallel along with

the linear projections of Q, K, and V. It helps the system to learn from differ-

ent representations of Q, K, and V. The weight matrices W that are learned

during the training are multiplied by Q, K, and V to learn the linear repre-

sentations. Figure 2.4 gives an illustrative diagram of the attention mecha-

nism and its parallelization, where Matmul stands for matrix multiplication

and Mask (opt.) is an optional operation in the self-attention mechanism that

controls which positions in the input sequence can attend to which other po-

sitions.

Moreover, positional encoding is used to keep track of the input and out-

put sequence. Finally, transformers employ feed-forward networks. These

feed-forward networks have identical parameters for each position of the

input sequence, which describes each element from a given sequence as a

separate but identical linear transformation.

Transformers have various applications because they use attention mech-

anisms, which can help the machine learning models to learn from data more

effectively to improve the performance of many machine learning tasks such

as natural language processing ones [59]. For example, a hybrid HAR clas-

sifier using CNNs and transformers was introduced in [60], which utilizes a

two-streamed structure to capture both time-over-channel and channel-over-

time features and use the multi-scale convolution augmented transformer to

capture range-based patterns.

So far we have introduced different DL models. How each model is used

and trained is slightly different and depends on the use case. However, how

each DL model learns is similar. Hence, understanding what each model

learns and how the learned patterns/ trends are distributed across multiple

layers is important to enhance the performance and utility in real-world ap-

plications. Concepts such as stitching connectivity [61], and memorization

capability [61], [62] are being used to understand the learned representations
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of DL models.

2.1.7 Stitching Connectivity

Stitching connectivity [61] is a method to measure the similarity of internal

representations of different models trained using different but similar data.

Consider two models A and B, which have the same architecture. For A and

B to be stitched connected, they can be stitched at all the layers to each other.

In other words, two models, let’s say A and B with identical architecture but

trained using stochastic gradient descent( or its variants) using independent

random seeds and independent training sets taken from the same distribu-

tion. Then the two trained models are stitched and connected for natural

architectures and data distributions. Hence, we expect the models trained on

similar but different training sets of the same distribution will behave simi-

larly.

DL models learn from the training data and the trained models can mem-

orize patterns and trends in data which is important for their utility in real-

world applications. In some cases, they can even memorize the data without

learning trends and key patterns (over-fitting) which is not desired. More-

over, different layers in the model learn different patterns and trends in data.

Hence, understanding how and what type of information each layer learns

is of utmost significance in order to improve the utility of DL models and to

understand if the patterns and trends learned by the model are aligned with

the domain knowledge. Moreover, stitching connectivity helps understand

how the internal representation is affected by noisy data. Such understand-

ing can be used to address model and data poisoning attacks and the effect

of noise in federated learning.
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2.1.8 Memorization in Deep Neural Networks

Deep neural networks are capable of memorizing the training data in a fash-

ion such that they prioritize learning simple patterns first [62] using the lower-

level layers in the model, while the higher-level layers tend to learn more

specific data characteristics. Furthermore, when a model is trained on noisy

data, the first half of the layers are similar to a model trained on good-quality

data [61].

Understanding the memorization patterns in DL models can help explain

complex models. For example, by analyzing the activation of higher-level

layers we can explain which patterns and trends in the data are significant

for the mode to make predictions. In the next section, we will explain how

memorization in deep learning can be used to explain the results of complex

DL models.

2.1.9 Explainable Artificial Intelligence

Explainable Artificial Intelligence (XAI) [25] lets humans understand and ar-

ticulate how an AI system made a decision. XAI encompasses a range of pro-

cedures and techniques enabling human users to grasp and understand the

outcomes and outputs generated by machine learning algorithms. It serves

as a means to elucidate an AI model, its projected influence, and possible

biases. XAI aids in assessing model precision, equity, openness, and the con-

sequences of AI-driven decision-making. For an organization, XAI plays a

pivotal role in instilling trust and assurance when implementing AI mod-

els. Additionally, explainability in AI supports responsible AI development

practices, while comprehending the process behind a particular output of

an AI-powered system offers numerous benefits. Explainability can help re-

searchers ensure that the is model working as expected and meets regula-

tory standards. I can also help the end users affected by the decisions of
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any model to challenge an outcome. Recent research suggests that it will be

of key importance in marketing [63], healthcare, manufacturing, insurance,

and automobiles [64].

To address the problem of explainability in DL models, researchers have

proposed different solutions [65]–[67]. For instance, Selvaraju proposed a

method called Gradient-weighted Class Activation Mapping (Grad-CAM) [68]

to visualize input regions that are important for predictions. From such val-

ues, we can have an idea about where exactly the machine learning model

is focusing while making a prediction and thus the reason. Explainability is

important in healthcare because to convince a clinical healthcare practitioner

and a patient we need to give them the reason behind a certain prediction for

sample input.

Shapley additive explanations (SHAP)[69] are also widely used to explain

how each feature contributes to and affects the output of each model. SHAP

is based on cooperative game theory and can increase the explainability of

ML models. However, SHAP is more suitable for tabular data, in this the-

sis our focus is more on time-series data and SHAP values are not suitable

for time-series data. In addition, SHAP values are computationally expen-

sive because of the exponentially increasing number of coalitions with the

increase in the number of features which limits its use in resource-constraint

devices [70]. In comparison to SHAP, Grad-CAM-based explanations are

more suitable for data such as time-series and images and are computation-

ally less expensive. Hence, in this thesis, we adopt Grad-CAM-based expla-

nations.

2.2 Machine Learning in Healthcare

In this section, first, we provide a general overview of ML applications in

healthcare and then discuss some example applications and recent work.
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2.2.1 Overview

The use of machine learning in healthcare has been widely studied ranging

from detection and diagnosis of different diseases, such as melanoma [71],

[72] and cancer [73], [74]. Owing to the importance of machine learning in

healthcare-related applications, in this section we review the literature on

machine learning with a special focus on arrhythmia detection, human ac-

tivity recognition, and ECG anomaly detection as well will be using them as

example healthcare applications in upcoming chapters.

Certain activities in our body are governed by signals of some cognitive

diseases [75]. For example, a changing gait may result from a stroke. A

number of researchers proposed to monitor users’ activities using wearable

sensors, with the help of which different human body activities can be rec-

ognized [76]–[78]. Based on the monitoring of such activities, the early prog-

nosis of health issues can be identified. In this regard, there has been signifi-

cant development in the utilization of ML and DL technologies in healthcare.

While such technologies will probably never completely replace clinical prac-

titioners, they can transform the healthcare sector, benefiting both patients

and providers [19], [79]–[81].

Since the applications of ML in healthcare are a vast topic and covering

all of them in this thesis is not possible. Therefore, in this thesis owing to the

impact of cardiovascular diseases on humans we use and review time-series

data-based ECG classification/arrhythmia detection as an example health-

care application. Moreover, we also use and review human activity recogni-

tion using time-series data as it supplements ECG analysis i.e., ECG can vary

depending on human activity [82].
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2.2.2 Deep Learning-based Healthcare

In regard to healthcare, ML and DL play a vital role. Researchers have pro-

posed many methods for different healthcare applications using time-series

data, such as methods to address cardiovascular diseases, some of which are

given as follows.

1. Electrocardiograph (ECG) classification: ECG classification into ar-

rhythmia types [83]–[87] is one of the most important routine tasks.

Rubin et al. [88] applied deep learning to the task of automated car-

diac auscultation, i.e., recognizing abnormalities in heart sounds. They

described an automated heart sound classification algorithm that com-

bines the use of time-frequency heat map representations with a deep

CNN. Their CNN architecture is trained using a modified loss function

that directly optimizes the trade-off between sensitivity and specificity.

Gjoreski et al. [89] presented a method for chronic heart failure (CHF)

detection based on heart sounds. The method combines classic ML and

end-to-end DL models. The classic ML model learns from expert fea-

tures, and the DL model learns from a spectro-temporal representation

of the signal. Moreover, in order to enable the intelligent classification

of arrhythmias with high accuracy, Huang et al. [90] presented an intel-

ligent ECG classifier using the fast compression residual convolutional

neural networks (FCResNet).

2. Human activity recognition (HAR): Based on data from one or more

body sensors, HAR classification uses a classifier to predict human ac-

tivities. HAR can be used along with ECG classification as ECG can

significantly vary depending on human activity. Generally, the data

contains tri-axial data from different sensors like accelerometers, gy-

roscopes, and magnetometers. Most modern smart devices such as
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smartphones and wearables have such sensors. Initially, researchers

used various hand-crafted features for training HAR classifiers.

Generally speaking, hand-crafted features can be divided into three

main types: frequency domain, time domain, and time-frequency anal-

ysis. Classical machine learning models like k-means, probabilistic meth-

ods (naive Bayes), and support vector machines have been proposed for

HAR classification [91].

Deep learning exploits the benefits of having a huge amount of data

and highly non-linear deep models, to outperform classical models. Us-

ing deep learning, the feature extraction simply can be omitted which

in the case of classical machine learning is a hectic and important task.

Raw data in the form of sliding windows or simple windows can be

directly fed into deep learning-based classifiers. CNNs, long short-

term memory (LTSM) RNNs, and hybrid models combining RNNs and

CNNs are dominating approaches proposed for HAR [92]–[99]. Fig-

ure 2.5 shows the pipeline of a typical HAR classification process.

Generally in HAR, the raw data from sensors is transformed into win-

dows of a fixed-length size, which are fed directly to the classifier. While

prediction, data is collected using the same window length and then,

again depending on the model selected for a HAR classifier, features

are extracted, or raw windowed data is fed into the classifier that pre-

dicts the target human activity, such as walking, sitting, etc.

3. Anomaly Detection The use of ML and DL for anomaly detection has

been steadily growing in academia as well as in industry due to its

proven performance. It finds its application in many domains such

as cyber security [100], telecommunication and networking [101], and
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healthcare [102]. An extensive survey of such anomaly detection meth-

ods can be found in [103], which gives a board review of different meth-

ods including those based on machine learning as well as those that do

not use machine learning. Moreover, the survey also discusses appli-

cations of anomaly detection in cyber security, medical image analysis,

natural language processing, wireless sensing, etc. In the cyber security

research literature, intrusion detection has been the topic of many re-

searchers. For example, a comprehensive study on anomaly detection-

based intrusion detection techniques was presented in [104], covering

statistical and machine learning-based techniques. Kwon, Kim, Kim,

et al. [101] presented network anomaly detection based on restricted

Boltzmann machine-based deep belief networks and deep recurrent neu-

ral networks, as well as other methods based on more traditional ma-

chine learning algorithms. Durga, Nag, and Daniel [105] presented

anomaly detection using machine learning (including deep learning)

algorithms in the context of the Internet of Things (IoT) based health-

care. Also focusing on healthcare-related applications, Wang, Zhao,

Xiong, et al. [106] applied deep learning to analyze physiological sig-

nals that allow doctors to identify latent health risks. Similarly, some

researchers have investigated the potential of using smartphones and

wearable devices to capture data in this regard, and the latter is seen as

a promising solution for healthcare [107], [108].

Although the aforementioned work seems promising, they may find limited

applicability in the real world because they use centralized data collection

and training techniques. A centralized approach may cause privacy concerns

among users and data owners. Thereafter, traditional centralized healthcare

applications find limited applicability due to privacy concerns [109]–[111].

Furthermore, since most of the real-time data, such as ECG data and HAR

data are noisy, existing approaches cannot perform well in real time because
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FIGURE 2.5: Overview of the HAR classification pipeline.

they are being trained on preprocessed (cleaner) data. Furthermore, they

do not provide explainability, which is one of the key requirements in deep

learning-based clinical healthcare [64]. Moreover, the communication cost of

large datasets is also a challenge in centralized settings. Hence, this limits

their real-time application.

In the next section, we will review FL, which was introduced to solve

some of the key challenges in centralized ML.

2.3 Federated Learning

To address the privacy issues in centralized ML, researchers have been work-

ing on Federated learning (FL) and Transfer learning (TF). Federated ma-

chine (FL) learning was first proposed by Google [30], an overview of FL

is shown in Figure 2.6. In FL settings machine learning models are trained
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based on distributed edge devices. The key idea is to protect user data dur-

ing the process. It works like this: an edge (client) device downloads the

current model, improves it by learning from data on its local data, and then

summarizes the changes as a small focused update. Only this update to the

model is sent to the aggregation/global server, using encrypted communica-

tion (optionally), where it is aggregated with other user updates to improve

the global shared model. All the training data remains on local devices. FL

allows for smarter models, lower latency, and less power consumption while

ensuring privacy. This approach has another benefit: in addition to provid-

ing an update to the global shared model, the improved model on the local

edge device can also be used immediately, powering experiences personal-

ized by the use of IoT devices.

There are mainly two different approaches for making global updates: i)

federated averaging where clients send the updates (learned parameters) to

the global server after training the local model for multiple training epochs,

and ii) federated stochastic gradient descent (SGD) where clients send up-

dates (gradients) to the global server after each local training batch. McMa-

han et al. [112] compared the two approaches and showed that federated

averaging can reduce communication costs by a factor of 10 to 100 times,

compared to federated SGD. The merits of federated averaging make it pop-

ular in many applications [113]. There are various types of FL depending

upon how the updates and collaboration are managed [32]. For example, in

horizontal FL each client contains subsets of the overall data distribution. In

vertical FL each client contains different sets of features but shares a common

set of data samples. Another type of FL is transfer FL, which combines FL

with transfer learning. In this technique, a pre-trained model trained on a

large public dataset is distributed among the clients and the clients fine-tune

it using their local data. There are various other types of federated learn-

ing [32]. In this thesis, we focus more on horizontal FL as it is commonly in
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different applications.

Global Server

 Edge

 Edge

Edge

 Edge

Weights Weights

WeightsWeights

Model Mo
de
l

ModelMo
de
l

FIGURE 2.6: Architecture of Federated Learning

Federated learning has many advantages over the centralized approach.

For instance, one of its advantages over the centralized approach is that it

can provide more privacy protection for sensitive data. This is because the

global model is trained without requiring clients to share their local (often

sensitive) data directly. Moreover, it reduces communication costs because

only trained parameters are shared, instead of the often large amount of data

from all clients. Furthermore, FL has the ability to resolve the data islanding

problems by privacy-preserving model training in the network. Due to its

privacy-friendly and efficient communication constraints, FL finds a num-

ber of applications in healthcare [113]. Xu et al. [114] summarized the gen-

eral solutions to the statistical challenges, system challenges, and privacy,
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and point out the implications and potentials of FL’s application in health-

care. They show that training the model in the federated learning framework

leads to comparable performance to the traditional centralized learning set-

ting. Transfer learning (TF) aims at transferring knowledge from an existing

trained model to a new model. The key idea is to reduce the distribution di-

vergence between different models. To this end, there are mainly two general

approaches: instance reweighting [115] and feature matching [116]. Recently,

deep transfer learning methods have made considerable success in many ap-

plication fields. Chen et al. [117] proposed FedHealth, the first federated

transfer learning framework for wearable healthcare to tackle privacy and

security challenges. FedHealth performs data aggregation through federated

learning and then builds relatively personalized models by transfer learning.

FedHealth makes it possible to do deep transfer learning in the federated

learning framework without accessing the raw user data. However, there

are certain limitations to it. Firstly, it does not provide the explainability of

the predictions, which is often required in sensitive domains like healthcare.

Secondly, it does not accommodate any mechanism to denoise the raw sig-

nals, which often contain random noise, and dealing with the random noise

is quite challenging in a federated setting.

In other words, regarding the application of ML and DL healthcare, a

lot of promising work has been done as discussed above both in central-

ized settings [67], [86], [87], [118]–[122] and in federated settings [117], [123].

However, centralized approaches are vulnerable to privacy issues. Research

work like FedHealth tries to address the issues of privacy concerns using

FL and TL architecture. Nevertheless, works like FedHealth have the limi-

tation of explainability, and adaptive anomaly detection with evolving data.

Furthermore, most of the existing work is based on RNNs and CNN-based

models. However, RNNs are costly because of their serial computation and

they generally require more computational time. CNNs reduce the cost of



40 Chapter 2. Background and Literature Review

sequence-to-sequence modeling because they are easy to parallelize, which

is not possible in RNNs. However, one disadvantage of CNNs is that they

require a very large number of layers to capture the long-term dependencies

(in applications, such as anomaly detection and HAR) in the sequential data,

eventually making the model so large that would be impractical to use in

resource-constraint devices.

In addition to the challenges mentioned above most of the existing work

relies on the assumption that the clients have independent and identically

distributed data which is a strong assumption for practical applications. In

practical applications, clients contain noisy data samples and existing FL

techniques are not robust enough to eliminate the effect of noisy data (vary-

ing across clients) resulting in significant performance reduction [124]. Since

FL contains a large number of clients, the local data of each client has varying

noise present in it due to various reasons, such as the different data collection

setup, availability of different data handling, and preprocessing techniques.

In addition, the distribution of data from each client can vary from one client

to another i.e., unbalanced class skew distribution, feature skew distribution,

etc. For example, in case one client can have more data samples of a partic-

ular disease class that is common in a particular geographical region com-

pared to other clients in different geographical regions with a lesser number

of cases of that particular disease class. Hence, it is challenging to achieve

a robust global model in a federated setting when is local data of clients is

non-IID. To achieve robust global models and reduce the impact of non-IID

data on the global model, methods are needed to develop which can provide

robustness against non-IID data of the federated clients.

Furthermore from a security perspective, in FL the global model can be

easily manipulated, even if a single-edge device is compromised [35]–[37].
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The attack surface of FL is growing due to its distributed nature. For exam-

ple, malicious peers can launch data poisoning [125], [126] or model poison-

ing [127] attacks, in which one or more malicious edge devices manipulate

their local training data or the local model trained on benign data, to impair

the performance of the updated global model. Moreover, an attacker can

launch inference attacks to compromise the data owner’s privacy. We will

discuss some SOTA security and privacy attacks later.

FL can be divided into three phases: data and behavior auditing, training,

and testing. FL faces different kinds of security threats in each phase [128].

Hence, establishing secure FL needs to take effective measures at each phase

to mitigate such threats. A solution before integrating a local model into the

global model is to audit the local before training the local model(s). How-

ever, due to the privacy concerns and the architecture of FL, it is challenging

to achieve such audits [128]. A trivial method to address model poisoning

attacks could be using accuracy, i.e., using accuracy as a measure to access

the quality of data being used to train the local model. Nevertheless, such

methods can not be generalized as accuracy solely cannot reveal information

about the underlying data. Just looking at the accuracy it cannot be claimed

that the model is trained on benign or malicious data. Furthermore, models

can be designed to have high accuracy for the testing samples by includ-

ing them in the training dataset. A model can have low accuracy even if it

has been trained on benign data depending on the amount of training data,

training epochs, hyper-parameters tuning, optimization, etc. Hence, new so-

lutions are required to detect such models and data poisoning attacks. Meth-

ods should be developed to verify that the shared local model gradients are

not trained on anomalous or malicious (e.g., noisy, featured poisoning, label

poisoning) data. In other words, malicious behaviors of the locally trained

models should be detected before considering them in the global aggregation
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process in order to prevent malicious peers from compromising and manip-

ulating the global model. Therefore, many researchers have proposed ad-

vanced poisoning attack detection methods for FL [129]–[131], which unfor-

tunately all suffer from various weaknesses, e.g., the number of attackers has

to be known or not high enough, working with non-independent and identi-

cally distributed (non-IID) data only, and high computational complexity.

In the next section, we will discuss some of the security and privacy chal-

lenges (our focus will be poisoning attacks) in FL and will review SOTA work

related to the security issues in FL.

2.4 Poisoning Attacks in Federated Learning

In this section, first, we provide an overview of the poisoning attacks in FL

and then discuss SOTA approaches in an attempt to address such issues.

2.4.1 Byzantine attacks

Byzantine attacks are a type of attack where a trusted device or a set of de-

vices turn rogue and try to compromise the overall system. Such attacks can

significantly reduce the performance of the global model in federated learn-

ing [132]. Researchers have shown that in the case of some aggregation algo-

rithms, even the presence of a single malicious node can significantly reduce

the performance of the global model [35]–[37]. Byzantine attacks, such as

poisoning attacks [27], [133], can substantially reduce the performance (clas-

sification accuracy, precision, and recall) of FedAvg, even in the presence of

a very small percentage of adversarial participants in the network. Such at-

tacks can be classified as targeted attacks that negatively impact only one

or more target (but not all) classes under attack and untargeted attacks that

impact all the classes negatively. Furthermore, poisoning attacks are mainly
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classified into two main categories: data poisoning [27] and model poison-

ing [35] attacks depending on the phase where the attacks are executed. If

the attacker manipulates the training data then this is called data poisoning

attacks and if the attacker manipulates the trained model’s parameters then

such attacks are called model poisoning attacks. Further details of each type

of poisoning are given as follows:

Data poisoning attacks:

Data poisoning attacks [27], [132] are those attacks in which the attacker

manipulates the training data directly according to a given strategy and then

trains the model using the manipulated dataset. In this study, we consider

the following four types of SOTA data poisoning attacks:

1. Random label flipping poisoning attacks: In such attacks the attacker

flips the true labels of the training instance randomly.

2. Random label and feature poisoning attacks: In such attacks, in addi-

tion to flipping the label randomly, the attacker adds noise to the input

features of the training instances.

3. Label swapping poisoning attacks: In such attacks the attacker swaps

the labels of selected samples of a given class with those of another

class.

4. Feature poisoning attacks: In such attacks the attacker adds noise (enough

to manipulate the global model) to the features of the training data.

Model poisoning attacks:

In the model poisoning attacks [35], the attacker trains the model using le-

gitimate datasets and then manipulates the learned parameters before send-

ing it to the global server. In this study, we consider the following four types

of SOTA model poisoning attacks:
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1. Sign flipping attacks: In such attacks the attacker trains the model us-

ing legitimate data and then flips the sign of trained parameters and

enlarges their magnitude.

2. Same value attacks: In such attacks the attacker sets the parameter val-

ues as C, where C corresponds to a vector whose elements have an

identical value C, which is a constant set to a value such as 100, 200,

300, etc.

3. Additive Gaussian noise attacks: In such attacks the attacker trains the

model as expected with legitimate data but adds Gaussian noise before

sharing the updates with the global server.

4. Gradient ascent attacks: In such attacks the attacker trains the models

using a gradient ascent instead of a gradient descent optimizer.

2.4.2 Existing defense mechanisms

In order to address the above-mentioned attacks, many defense methods

have been proposed. Hu et al. [132] conducted a survey of the state-of-the-art

defensive methods against byzantine attacks in FL. They show that byzan-

tine attacks by malicious clients can significantly reduce the accuracy of the

global model. Moreover, their results show that existing defense solutions

cannot fully be protecting FL against such attacks. In [131] Xia et al. sum-

marized poisoning attacks and defense strategies according to their methods

and targets. In this section, we discuss some of the existing SOTA defense

mechanisms below.

Distance-Based Mechanisms

Such mechanisms detect malicious updates by calculating the distance be-

tween updates. Updates with a larger distance from others are discarded
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from global aggregation. For example, Blanchard et al. [36] proposed Krum,

where the central server selects updates with minimum distance from the

neighbors. Similarly, Xia et al. [134] proposed a method to discard the shared

parameters with a large distance from the mean of shared parameters. Bo

et al. [135] proposed FedInv, which inverses the updates from each client to

generate a dummy dataset. The server then calculates Wasserstein distances

for each client and removes the update(s) with exceptional Wasserstein dis-

tances from others. Gupta et al. [136] proposed a method called MUD-HoG,

a method to address poisoning attacks in federated learning using long-short

history of gradients of clients. Nevertheless, for such methods to work the

number of attackers is needed to be known in advance or needs to be less

than a certain percentage of total clients in the network.

Performance-Based Mechanisms

Methods in this category evaluate updates based on a clean dataset that is

contained by the server. Updates that underperform are either assigned low

weights or removed from the global aggregation. For example, Li et al. [137]

proposed using a pre-trained autoencoder to evaluate the performance of an

update. The performance of malicious updates will be lower as compared to

that of benign updates. Nevertheless, training an autoencoder needs suffi-

cient benign model updates which are hard to get. Xie et al. [138] proposed

Zeno, which requires a small dataset on the server side. It computes the score

for each update using the validation dataset server-side. A higher score im-

plies a higher probability of the respective update being benign and vice-

versa. However, Zeno requires knowledge about the number of attackers in

advance to work properly.
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Statistical Mechanisms

A method in this category use statistical features of the shared gradients or

updates. Commonly used features are mean or median. Such features can

circumvent benign updates and help to achieve a robust and probably more

benign gradient. For example, a coordinate-wise median and a coordinate-

wise median-based solution are provided by Yin et al. [139], which aggre-

gates the parameters of local models independently, i.e., for the i-th model

parameter the global server sorts the i-th parameter of the m other local mod-

els. Removes the largest and smallest parameters and computes the mean of

the remaining parameters as the i-th parameter of the global model. Sim-

ilarly, El Mhamdi et al. [140] proposed to combine Krum and a variant of

trimmed mean [139]. However, these approaches are vulnerable to poisoning

attacks even using robust aggregation [128]. Additionally, for such methods

to work, the number of attackers should be limited by an upper bound (e.g.,

50%) or should be known prior.

Target Optimization-Based Mechanisms

Target optimization-based methods optimize an objective function to im-

prove the robustness of the global model. For example, Li et al. [141] RSA

which regularizes the objective in such a way that it forces each local model

in federated learning to be close to the global model. However, such methods

only address data poisoning attacks and fail to eliminate model poisoning at-

tacks.
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2.5 Inference Attacks and potential solutions in

Machine Learning

As discussed earlier, FL can enhance the privacy of users and it has been

successfully applied to many applications as discussed above. However, FL

has certain limitations: models trained in federated settings can still leak

information about the local training data because machine learning mod-

els inherit properties of data or can memorize the training data in case of

over-fitting. Such properties can be exploited by malicious or untrusted ac-

tors in an attempt to steal information from the shared parameters of the

locally trained models [142]. For example, inferring attacks are mainly used

to identify training data in a white box or a black box model. Such attacks

can be divided further into two main types: membership inference attacks

(MIAs) [28] and reconstruction attacks [143]. MIAs attempt to find out if a

given data sample has been used to train a target model or not. For example,

Nasr et al. [144] designed an MIA in a white-box setting against both central-

ized machine learning and FL systems. Later they successfully applied the

proposed attack in a federated setting to infer training data and information

via a curious but honest aggregation server or any other participating client

in a federated setting. Therefore, in this section, we review MIAs attacks and

their potential solutions.

2.5.1 Membership Inference Attacks

Most research on MIAs is based on the fundamental idea proposed by Shokri

et al. [145], where a binary attack classifier model Mattack given a target model

M and a data sample xi, gives a decision if xi has been used in the training

of M, i.e., a member or a non-member of the training dataset. Figure 2.7

presents an overview of MIAs.
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FIGURE 2.7: Overview of MIAs: Given a trained model and a
data sample an attacker attempts to identify if the data sample

was included in the training dataset to train the model.

We can divide MIAs into two major types: threshold-based attacks and

training-based attacks, which are described as follows.

Threshold-based attacks: In a threshold-based attack [146], a threshold

value is used to count the number of training and testing samples with mem-

bership probabilities larger than the given threshold. The threshold value is

usually chosen to be between 0.5 (random guessing) and 1 (100% accuracy).

Furthermore, the receiver operating curve is also utilized in such attacks to

determine how accurately an attacker can determine a member and a non-

member data sample [147].

Training-based attacks: Training-based attacks usually involve training a

number of shadow attack models. The aim of the shadow models is to mimic

the behavior of the target model M. To train Mattack a number of shadow

models are developed to imitate M, where the training data of shadow mod-

els is known to the attacker. The attacker constructs training data using the

training input and output pairs of shadow models, which is further used to

train the Mattack in order to distinguish members and non-members of train-

ing data of M. Shokri et al. [145] proposed that using a higher number of

shadow models can improve the performance of Mattack. There are a number
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of methods to create the training data of shadow models. For example, it can

be created using noisy-real world data which is similar to training data of M,

or synthetic data can be created with the help of M.

Training several shadow models is computationally insufficient. To ad-

dress this issue, Salem et al. [148] proposed a method that uses M’s predic-

tion on the target points to deduce its membership status, where M itself acts

as a shadow model. Therefore avoiding training of shadow models to imitate

M.

2.5.2 Differential Privacy as a Solution to MIA

As discussed in the previous section, privacy threats from attacks like MIAs

pose serious challenges in the development of FL-based applications. In or-

der to address such challenges, a promising method called differentially pri-

vate stochastic gradient descent (DP-SGD) [149] was introduced. The basic

idea of DP-SGD is to add noise into the clipped gradients computed using

stochastic gradient descent which is widely used in machine learning al-

gorithms. The two main modifications made to SGD are: random noise is

added to clipped gradients in order to make it hard for the attackers to know

whether or not a particular training sample was used in the training of the

model or not, and secondly, the sensitivity of each gradient is bounded. It

was claimed that DP-SGD can provide provable DP guarantees. Very re-

cently (since 2022), a few other methods have been proposed as new variants

of DP-SGD [150]–[152]. However, such new variants are still too new to be

widely used before they are further validated. Therefore, it remains the most

studied method of applying DP to FL [153].
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2.6 Summary

In this chapter, we have examined various applications of DL in healthcare

and the challenges associated with it. Additionally, we have explored the

concept of FL and its potential to address some of the challenges faced by

centralized machine learning (ML) approaches. We have highlighted how FL

can enhance user privacy by enabling collaborative learning without direct

access to local data. Furthermore, we have emphasized the importance of

XAI in sensitive applications, as it can assist users and help researchers in

mitigating potential biases in DL models.

Moreover, we have discussed the limitations of FL, including security at-

tacks, inference attacks, and difficulties in handling non-IID data distribu-

tion. In conclusion, FL shows promise in creating privacy-preserving DL

systems, but it confronts several obstacles, such as poisoning attacks, infer-

ence attacks, and suboptimal performance with non-IID data. Additionally,

the need for explanations, inherent to DL itself, is also crucial. To fully unlock

the potential of FL-based DL systems, it is imperative to develop frameworks

that are secure, privacy-preserving, robust against non-IID data, and provide

transparency in the decision-making process. Table 2.1 presents a summary

of the literature review.

8
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TABLE 2.1: Summary of Cited Literature

Topic Citation(s)

Machine Learning in
Healthcare

melanoma [71], [72] ; cancer detection [73],
[74]; Arrhythmia detection [67], [83]–[87],
[89], [90], [118]–[122]; Human activity
recognition [91]–[99]

Anomaly detection cyber security [100], telecommunication
and networking [101], [105], and health-
care [102], [105], [106]

FL for enhanced privacy Image classification [30]; healthcare [113],
[117], [123]

Issues in FL Varying Noise across clients [34], [124];
identically distributed (non-IID) and het-
erogeneous data [33] ; security and pri-
vacy [27], [35]–[37], [125]–[127], [132],
[145]–[148]; computational costs [38]

Poisoning attacks detec-
tion in FL

Distance-Based Mechanisms [36], [134]–
[136]; Performance-Based Mecha-
nisms [137], [138]; Statistical Mech-
anisms [128], [139], [140]; Target
Optimization-Based Mechanisms [141]

Explainable AI Shapley additive explanations [69], [70]; Vi-
sual explanations [65]–[68]

Privacy enhancement in
FL

differentially private stochastic gradient
descent (DP-SGD) [149]–[152]
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Chapter 3

Privacy Enhanced Robust

End-to-End Classification with

Federated Learning and

Model-Agnostic Explanations

3.1 Introduction

In recent years DL has been applied for many applications. For example, so-

lutions have been proposed for analyzing and classifying time-series health-

related data: ECG data [67], [86], [87], [117]–[122], [154]–[156]. However, as

we argued in Chapter 1 most of these works are based on a centralized ML

architecture, thereafter they are prone to issues like privacy concerns and

data availability. Moreover, since most of the real-time time-series data is

noisy, they cannot perform well in real time because they are being trained

on preprocessed ( usually cleaner) data. Furthermore, they do not provide

explainability, which is one of the key requirements in DL-based clinical

healthcare. Hence, this limits their real-time application. To address all of

the above-mentioned challenges, in this chapter, we propose an end-to-end

privacy-friendly explainable framework in a federated setting. The proposed
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framework consists of three main parts: an autoencoder, a classifier, and an

XAI module. Firstly, we propose a novel deep convolutional neural network

(CNN) based autoencoder, which is used to denoise the raw time-series sig-

nals from the subject directly. Secondly, we propose a novel CNN-based

classifier, which uses transfer learning to classify the raw time-series data.

Thirdly, we adopt the Grad-CAM model [68] in the framework to explain the

classification results in a novel and reliable pattern. Additionally, we propose

a custom communication cost reduction approach that reduces the commu-

nication cost and increases the privacy protection of the framework.

3.1.1 Contributions

The main contributions of this chapter are as follows:

1. We propose an end-to-end framework which is the first federated trans-

fer learning and explainable-AI-based framework for healthcare. It ag-

gregates the data from different edge devices (hospitals, users) without

compromising privacy and security, provides relatively personalized

model learning through knowledge transfer, and provides explanations

of the results, which is one of the key requirements in applications like

healthcare. In addition to explanations, the proposed XAI module can

be used to recognize new potential patterns leading to trigger heart ar-

rhythmias.

2. We propose a novel 1-dimensional CNN-based autoencoder in a fed-

erated setting to efficiently denoise the raw time series data collected

data from patients. The autoencoder provides a denoised version of

the input, which we use for further classification and explanation of

the predictions.
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3. With the help of transfer learning, we use the encoder part of the pro-

posed autoencoder to make a novel 1-Dimensional CNN-based classi-

fier to classify given time-series data into respective classes.

4. We propose a novel module, called the XAI module for explanations

of predictions of the proposed classifier. The proposed XAI module is

combined with the proposed classifier to explain the decision-making

process of the classifier. The XAI module can be used with every up-

dated classier locally at the edge devices in the federated setting, and it

does not need any pre-training.

5. We propose a new communication cost reduction method for federated

learning in the proposed framework, which not only reduces the com-

munication costs but also increases the privacy of the classical federated

learning method. Furthermore, the proposed method can be integrated

into existing cost optimization algorithms to enhance their cost effec-

tiveness and privacy protection level.

6. We used the MIT-BIH Arrhythmia Database [157] to train our proposed

framework. It is important to note that to make the data more realistic,

we first upsample the data to create more data samples, and then add

10-30% random noise. The proposed framework shows excellent per-

formance by providing an overall accuracy of 94.5% using noisy data

and overall accuracy of 98.9% on the clean data in the original MIT-BIH

database. Moreover, we evaluated the performance of the proposed

framework using four standard metrics: classification accuracy, preci-

sion, recall, and F1-score.

7. The proposed framework additionally boasts desirable features: expla-

nations of the results by using the proposed XAI module, and efficient

classification of the ECG. Additionally, it provides an enhanced level
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of privacy protection to users because of the federated setting and the

proposed communication cost-reduction method.

The rest of the chapter is organized as follows. Section 3.2 discusses a

detailed description of the proposed framework. Sections 3.3 and 3.4 present

the experimental setup and performance evaluation, respectively. Section 3.5

summarizes the chapter.

3.2 The Proposed Framework

Before describing our proposed framework in detail, let us explain the re-

search problem first. Given data on N different edge nodes (since we are

using cross-silo federated learning, each edge node can represent a different

organization, i.e., hospital) represented by E = {E1, E2, . . . , EN} and the data

of each Ei (here i = 1, 2, . . . , N) is given by {D1, D2, . . . , Di}, respectively. A

conventional ML model, denoted by ConMOD, can be trained by combining

all the data D = {D1, D2, . . . , Di}. The data from different edge nodes have

different distributions. However, in our problem, we want to collaborate all

the data to train a federated transfer learning model, denoted by FedMOD,

where any user Ei does not expose its data Di to others. Assume that AccFed

represents the accuracy of FedMOD and AccConi represents the accuracy of

each locally trained model of Ei, then one of the objectives of our proposed

method is to ensure that the accuracy of AccFed is close to or superior to each

AccConi.

The proposed framework aims to achieve accurate and efficient personal

healthcare through federated transfer learning and XAI without compromis-

ing privacy. Figure 3.1 gives an overview of the proposed method. The pro-

posed method consists of three major parts, the autoencoder, the classifier

and the XAI module, which are discussed below in the following three sub-

sections. The final sub-section discusses the learning process.
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FIGURE 3.1: An overview of the proposed framework

3.2.1 CNN-based Autoencoder

In order to denoise the raw input signal from ECG devices, we proposed an

autoencoder. The proposed autoencoder is shown in Figure 3.2. It consists

of an input layer, an output layer, and 12 hidden layers. Among the hidden

layers, there are 6 convolutional layers, 3 maxpooling layers, and 3 upsam-

pling layers. Furthermore, the CNN-autoencoder is virtually divided into

two parts: Encoder and Decoder. The encoder consists of the input layer, 3

maxpooling layers, and 3 convolutional layers in an alternate fashion. On the
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other hand, the decoder consists of 3 upsampling layers, 3 convolutional lay-

ers, and a convolutional output layer. In the proposed autoencoder, we use

a varying learning rate lr to keep the training process efficient while keep-

ing the reconstruction loss L as small as possible i.e., if the lr is too small the

model converges very slowly, and if the lr is too large the model struggles

to converges near global minima. Hence the evolving lr enables big steps at

earlier epochs and after a certain epoch the lr rates become small which helps

the model converge to global minima. Equation (3.1) gives the mathematical

representation of the learning rate (lr) used.

lr =


0.01, if epoch ≤ 40,

lr× e−0.1, otherwise.
(3.1)

FIGURE 3.2: The architecture of the proposed denoising au-
toencoder
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3.2.2 CNN-based Classifier

The proposed classifier is composed of 4 convolution layers, 3 max pool-

ing layers, 2 fully connected layer,s and 1 softmax layer for classification, as

shown in Figure 3.3. The classifier is designed for classifying an input ECG

signal into one of the five classes, as shown in Table 3.1. We use transfer learn-

ing to transfer the encoder part of the trained autoencoder into the proposed

classifier because these convolution layers aim at removing the noise from

raw input data and the next layers in the classifier aim to classify the input

ECG signal. Hence, the first 3 convolutional layers do not need to be trained

while training the individual local classifiers. In other words, we keep the

first 3 convolutional layers static during the classifier training phase, which

means that no parameters are updated during backpropagation in the first

3 convolutional layers. This provides each local node Ei with the trained

parameters for denoising the signal while training the classifier, which in-

creases the performance of the classier. As for the last 2 convolution layers

and the fully connected layers, since they are at a higher level, they focus

on learning specific features for the classification task. Therefore, we update

their parameters during the classifier training phase. The softmax serves as

the classification function, and is given by the following equation:

yi =
expzc

∑C
c=1 expzc

, (3.2)

where C is the total number of classes, zc denotes the learned probability for

a specific class c, and yi is the final classification result for a sample i. A

Sigmoid can also be used for binary classification which marks one class to

0 if output of sigmoid is <=0.5 and other to 1 if output of sigmoid is >0.5.

Our classifier uses categorical cross-entropy (CE) as the loss function. This

gives probability over the C classes for each input sample, given by Eq. (3.3).
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Where tc is the ground truth for each class c.

CE = −
C

∑
c

tclog(yi) (3.3)

TABLE 3.1: The five classes of ECG signals

Class description Single-letter symbol

Non-ecotic beats (normal beat) N
Supraventricular ectopic beats S

Ventricular ectopic beats V
Fusion Beats F

Unknown Beats Q

FIGURE 3.3: The proposed CNN-based classifier

3.2.3 XAI with Grad-CAM

As mentioned in 2 Grad-CAM explanations are computationally efficient and

are suitable for data such as images and time-series. Hence, inspired by the

work in [68] and [158], we decided to use Gradient-weighted Class Activa-

tion Mapping (Grad-CAM) and modified it for time series data on top of our
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classifier, which uses class-specific gradient information to localize impor-

tant regions. We combine these localized regions with an existing time-series

visualization map to create a high-resolution heatmap visualization. Using

this visualization, practitioners can understand the reason for a certain pre-

diction given by the classifier. The XAI with GRAD-CAM module is shown

in Figure 3.4.

The creation of this heatmap visualization consists of the following steps:

1. In the first step, we compute the gradient of yc (where yc is the score for

any class c) with respect to the feature map activations Ak for kernel k

of the last convolution layer. If Gc represents the gradients for any class

c, it can be represented as follow:

Gc =
∂yc

∂Ak . (3.4)

Any particular value calculated in this step depends on the input ECG

signal (sample input). The weights of the classifier are fixed at this

stage. We first reshape an input sample into the batch size and feed

it into the classifier, since the input determines the feature maps Ak as

well as yc.

2. The second step consists of global average pooling of the gradients

Gc, both along height h and width w to obtain the neuron importance

weights αc
k also called alpha values, given by Eq. (3.5).

αc
k =

1
Z ∑

h
∑
w

∂yc

∂Ak (3.5)

These alpha values for class c and feature map k will be used later as a

weight applied to the feature map Ak.
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3. The third step consists of a weighted linear combination of the feature

map activations Ak and αc
k is calculated using the alpha values, given

by Eq. (3.6).

Grad_CAMc = ReLU(∑
k

αc
k Ak) (3.6)

This gives us the final Grad-CAM heatmap. A rectifier linear Unit

(ReLU) function is applied to emphasize only the positive values and

turn all the negative values into 0.

4. The classifier’s last convolutional layer’s features are quite small, and

it is difficult to visualize them for analysis. To address this problem,

we upsample the heatmap to the size of the input sample in width.

Moreover, we feed the input sample to the autoencoder and receive a

denoised version of the input sample, and overlap it on the heatmap. In

the resulting heatmap, regions overlapping between the heatmap and

the ECG signal show the point of focus during prediction. This gives a

detailed picture to the practitioners to understand which region of the

ECG input signal the classifier is looking at while making a prediction.

3.2.4 Learning Process

The learning process of the proposed method has been depicted in Figure 3.1.

For a clearer explanation, we present the learning procedure in Algorithm 3.1.

It should be noted that the algorithm works continuously with new emerging

data. Optionally, if an Ei wants to personalize the classifier C, it can be done

by keeping all the convolution layers of the final updated classifier static and

by training the dense layers for personalization. This is because the convolu-

tion layers aim at extracting low-level features and for the densely connected
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FIGURE 3.4: Overview of the proposed XAI module in our
framework

layers since they are at a higher level, they focus on learning specific features

for the task and the user.

The global server Gs (Aggregation Server) creates an autoencoder AE

with predefined hyper-parameters. It should be noted that we use Keras

auto-tuner to get the best possible hyper-parameters. Keras auto-tuner em-

pirically tries to find the best possible hyper-parameters. After creating the

AE, Gs waits for the client’s requests. When clients request Gs, it sends the

AE to the client. It is worth noting that, each global round is divided into two

tiers, for the first tier Gs sends the AE, and for the second tier Gs sends the

classifier C. Hence while requesting, each client mentions the tier as well. On
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Algorithm 3.1: Training procedure of Proposed method
Input: Data from edge nodes D1, D2, . . . , Dn
Output: Trained aggregated and updated model

1 Global Server Gs constructs the initial Global Autoencoder AE and
compiles it using the predefined hyper-parameters

2 Gs waits for the Ei to request. If the request is received, send AE to
the Ei

3 Ei receives the AE, trains it on its local data Di, and sends trained
weights of AE back to Gs

4 Gs, wait for n Ei-s to send back their locally train AE.
5 if weights received form n Ei-s then
6 F(w) = ∑n

k=1
nk
nt

wk
r+1

7 Gs constructs a classifier C
8 for For i = 1, 2, 3 do
9 set Weight of convolutional Layeri of C = Weight of convolutional

Layeri of F(w).
10 set convolutional Layeri of C trainable = False

11 Gs sends C to Ei
12 Ei trains C on Di and sends back the trained C to Gs.
13 Gs, wait for n Ei to send back their locally trained C.
14 if weights received form n Ei-s then
15 F(w) = ∑n

k=1
nk
nt

wk
r+1

16 Gs send F(w) to Ei
17 Ei set F(w) as weight of C and makes predictions
18 Repeat with continuously emerging data.

receiving the autoencoder, client Ei trains the autoencoder on its local data Di.

When the training is completed the client sends back the trained weights of

the autoencoder to the global server. The server waits for a fixed number n of

clients to send the weights of their locally trained AE. Here, n can be decided

by mutual consensus among administrators. When the desired number of

clients send their weights and are received by Gs, it aggregates the weights

of all the clients by using the formula for aggregation given by Eq. (3.7) from

[159].

F(w) =
n

∑
k=1

nk
nt

wk
r+1, where Fk(w) =

1
nk

∑
i∈Pk

fi(w)). (3.7)

Here, F(w) are the aggregated weights, nt is the number of data samples of

all participants and nk is the number of samples of k-th participant. For a
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ML problem, typically fi(w) = (xi, yi; w), that is, the loss of the prediction on

example xi, yi made with model parameters w. There are n clients over which

the data is partitioned, with Pk the set of indexes of data points on client k,

n is a total number of participants in each round and r is the global round

number.

After aggregation, Gs creates a new CNN-based classifier C for classifi-

cation. Here, again we use the Keras auto-tuner for best hyper-parameters

for the newly created C. Furthermore, we use the encoder part of the au-

toencoder for transfer learning. We transfer the weights of the updated and

aggregated encoder part of AE to C and set the transferred layers to static.

After this, Gs sends C to each client Ei. Upon receiving C, each Ei trains the

classifier using its local data and sends it back to Gs. Gs collects the weight

of n clients and aggregates them using Eq. (3.7). After aggregation, it sends

the aggregated weights back to each Ei. Clients set the aggregated weights as

new weights of their local C, which can be further used for predictions. Dur-

ing predictions, the XAI module taps the gradients and outputs the visual

explanation.

3.2.5 Communication Cost Reduction and Privacy Enhance-

ment

In the federated learning setting, training data remain distributed over a

large number of clients each with unreliable and relatively slow network con-

nections. For the synchronous protocols in federated learning [160], the total

number of communication bits that are required during uplink and down-

link communication by each of the N clients during training of the global

model is given by:

τup/down ∈ O(U × |w| × (H(∆wup/down) + τ)), (3.8)
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where U is the total number of updates by each client, |w| is the model size

and H(∆wup/down) is the entropy of transmitted weights during communi-

cation, τ is the difference between the update size and the minimal update

size, given by entropy [161]. Generally, there are three ways to reduce com-

munication costs: (1) reducing the number of clients N, (2) reducing the up-

date size, and (3) reducing the number of updates U. Hence, research on

communication-efficient federated learning can be divided into four groups:

model compression, client selection, update reduction, and peer-to-peer learn-

ing [114]. In order to provide communication-efficient federated learning, we

provide a new approach for our proposed architecture called layer selection,

which comes under the model compression group. Moreover, layer selection

can be added to all of the existing approaches to further reduce communi-

cation costs. The proposed layer selection (communication cost reduction)

method is shown in Figure 3.5, with more details given below.

Suppose that W1 and W2 represent the weights of all layers of the encoder

and decoder of the autoencoder, respectively, trained at edge devices. Since

we are only concerned with the encoder part of the autoencoder, the edge de-

vices select the weights of the encoder part (W1) and send them to the global

server. The global server aggregates the received weights to obtain the global

weights represented as AW1 and sent to the edges. After receiving AW1, the

edge devices use transfer learning to transfer these global weights to their lo-

cal classifier and freeze the transferred layers, as mentioned earlier. The edge

devices train the local classifier using their local data. Suppose that WC1 and

WC2 represent the weights of the trainable lower (convolutional) and higher

(dense) layers of a local classifier, respectively. As the higher layers learn

specific features about the underlying data [162], each edge sends only WC1

to the aggregation server that carries common and low-level features about

the training data. The aggregation server performs weighted aggregation

of all WC1 weights received to obtain AWC1, which are then sent to edge
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devices. The edge devices use AWC1 along with their individual WC2 for

a more localized classification of the ECG. Since we share few weights com-

pared to the classical method, this makes communication lighter and reduces

communication costs. Moreover, since the FL framework continuously per-

forms global training with emerging data, our communication cost reduction

method can significantly reduce the overall communication costs.

Furthermore, recall that features in deep neural networks are highly trans-

ferable in the lower levels of the network since they focus on learning more

common and low-level features. As the edge devices only send the weights

of lower layers, the privacy of underlying data at each edge is enhanced. To

be more precise, the weights of a lower layer, weights of the encoder part in

the autoencoder (WC1), contain more common and low-level features about

the underlying data, while the weights of higher layers, weights of the de-

coder part of the autoencoder (WC2), contains more specific features about

the underlying data. Hence, by not communicating WC2, we can increase the

privacy of the local data by sharing only weights (WC1) that contain more

common and low-level (i.e., less private) features.

3.3 Experimental Results

3.3.1 Dataset

For the experimental purpose, we used the widely used MIT-BIH Arrhyth-

mia Database [157] as our baseline dataset. This database contains 48 half-

hour excerpts of two-channel ambulatory ECG recordings, obtained from 47

subjects studied by the BIH Arrhythmia Laboratory between 1975 and 1979.

The dataset includes 109,446 samples. Twenty-three recordings were cho-

sen at random from a set of 4,000 24-hour ambulatory ECG recordings col-

lected from a mixed population of inpatients (about 60%) and outpatients
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FIGURE 3.5: The layer selection method for communication
cost reduction

(about 40%) at Boston’s Beth Israel Hospital; the remaining 25 recordings

were selected from the same set to include less common but clinically sig-

nificant arrhythmias that would not be well-represented in a small random

sample. In our experiment, we used ECG lead II re-sampled to the sampling

frequency of 125 Hz as the input. It should be noted that this dataset has

unbalanced classes. Figure 3.6 shows the distribution of the original dataset.

This highly unbalanced data can cause problems like overfitting. Hence to

balance the classes we used upsampling. The resulting data distribution af-

ter upsampling is shown in Figure 3.7. Furthermore, this dataset is highly

preprocessed, but in real-world scenarios, the ECG data collected is always

noisy. Hence, to simulate more realistic data we introduced 10-30% noise

into the original dataset and trained the proposed framework on the noisy



3.3. Experimental Results 69

version of the dataset, too. A comparison of the original (clean) and noisy

datasets are shown in Figure 3.8.

FIGURE 3.6: The distribution of the original dataset

3.3.2 Implementation Details

The Framework was implemented using Python and TensorFlow. Secure

socket layer communication was used for communication between the server

and edge devices. Both the autoencoder and the classifier were trained lo-

cally only on three local Raspberry Pi devices (Pi 3 Model B+ with 1.4GHz,

64-bit quad-core ARMv8 CPU and 1GB LPDDR2 SDRAM), denoted by Edge1,

Edge2 and Edge3. Furthermore, a workstation with an Intel core i-6700HQ

CPU and 32 GB RAM was used as the global server Gs. It should be noted

that FedHealth [117] initially trained their model at Gs, which may cause

security risks in the case of a malicious global server. If the models (AE

and C) are trained initially on Gs this may cause biased training. Hence,
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FIGURE 3.7: The distribution of the upsampled (re-balanced)
dataset

FIGURE 3.8: Comparison of the original and the noisy version
of the dataset

to avoid such risks, we performed only aggregation at the Gs. Furthermore,

AE adopted a convolution size of 3. It uses a Root Mean Square Propagation
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(RMSProp) as the optimizer. Each Ei device uses 80% of data for training and

20% of data for evaluation. We distributed the dataset randomly at each edge

device and introduced random noise. In this case, the data in Edge1 contains

20% random noise, the data in Edge2 contains 30% random noise, the data

in Edge3 contains 10% random noise. Furthermore, each edge used a fixed

batch size of 100 and was trained for 50 training epochs. Moreover, each edge

used an evolving learning rate, given by Eq. (3.1).

The classifier C used a batch size of 100. The learning rate was set to 0.001

with 150 training epochs. The accuracy of each of the locally trained C was

calculated by using the following equation:

Ai
cc =

|x : x ∈ Di ∧ y′(x) = y(x)|
|x : x ∈ Di|

. (3.9)

In regards to the execution time, given the above setting, it took an average

of 745 seconds to complete one global round of training. Furthermore, it took

an average of 2.32 seconds to generate a prediction and XAI results.

3.4 Performance Analysis of the Proposed Method

In this section, we analyze the performance of the proposed framework using

some state-of-the-art metrics.

3.4.1 Reconstruction of Autoencoder

We introduced noise into the dataset and used the noisy sample as the input

in the autoencoder and the cleaned samples as labels. The performance of

the autoencoder was measured using reconstruction Mean Absolute Error

(MAE). Reconstruction MAE for each locally trained AE in each of Edge1,

Edge2, Edge3 and aggregated AE is given in Figure 3.9. It can be seen that the

reconstruction MAE of the aggregated autoencoder is nearly 0, which means
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that our autoencoder reconstructed the original signal very well. Moreover,

it can be seen that the reconstruction MAE aggregation AE is less than or

nearly equal to the reconstruction MAE of each locally trained AE.

FIGURE 3.9: Reconstruction MAE

3.4.2 Classification Performance

Classification performance was measured using the performance metrics men-

tioned in Chapter 2.1.2. Precision, recall, F1-score metrics of each binary clas-

sifier (one for each of five class labels) at the three edge devices (Edge1, Edge2,

and Edge3) and the global server are given in Table 3.2. We also show the ac-

curacy of the five-class classifier in the last column. It should be noted that

the results shown in Table 3.2 are computed using the noisy data which we

prepared earlier. We also tested the proposed classifier using the original

(clean) data. With this data, it provided 98± 0.9% accuracy. Other metrics,

such as precision, recall, and F1-score, are shown in Table 3.3. However, for
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TABLE 3.2: The classification performance of the proposed framework, with the
noisy version of the dataset

Class Precision Recall F1-Score Accuracy
N 89% 91% 90%

94.9%
S 94% 89% 92%
V 93% 96% 94%
F 95% 94% 95%
Q 99% 99% 99%

(A) Edge 1 (20% noise)

Class Precision Recall F1-Score Accuracy
N 85% 87% 86%

91.9%
S 91% 87% 88%
V 91% 94% 92%
F 93% 93% 93%
Q 98% 98% 98%

(B) Edge 2 (30% noise)

Class Precision Recall F1-Score Accuracy
N 94% 98% 96%

97.9%
S 98% 92% 95%
V 95% 99% 97%
F 99% 94% 96%
Q 97% 100% 98%

(C) Edge 3 (10% noise)

Class Precision Recall F1-Score Accuracy
N 90% 92% 91%

94.5%
S 94% 89% 91%
V 93% 96% 94%
F 96% 96% 95%
Q 99% 99% 99%

(D) Global/Aggregation Server

real-time use we expect the data to be noisy, which is why we proceeded with

the noisy data.

TABLE 3.3: The classification performance of the proposed
framework, with the original (clean) dataset

Class Precision Recall F1-Score Accuracy
N 95% 99% 97%

98.9%
S 98% 97% 98%
V 97% 99% 98%
F 99% 93% 96%
Q 100% 100% 100%
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3.4.3 Qualitative Analysis

Understanding the reasons for predictions of the model decision is very im-

portant in healthcare applications. In order to validate that the decisions

made by the proposed XAI module are interpretable, we use visualization

to demonstrate that clinically important beats in the ECG wave are used for

classification. Figure 3.11 illustrates the importance of each beat that the ECG

classifier is giving while performing classification of some instance ECG sig-

nal inputs.

In order to achieve the explanations/explainability of the XAI module,

it is important to understand the ECG signal [163]. Generally, the ampli-

tude and width of the p-wave, QRS complex, and the T-wave are important

features of an ECG graph, as shown in Figure 3.10. These regions play a vi-

tal role in ECG analysis [164]. The XAI module in the proposed framework

shows that the proposed classifier looks at these critical features of the input

sample. In Figure 3.11, the red segments show more important regions of

the heartbeat for the network’s decision while predicting a particular class.

In other words, the red segments of the heartbeat have more influence on

the detection process of the classifier while classifying the input ECG signal.

These results can be used to help clinical practitioners to diagnose the under-

lying health issues. However, we strongly advise that these results should

not be used for any medical consultation without prior discussion with a

clinical professional. In other words, heat maps should be cross-checked by

clinicians with prior expert knowledge.

3.4.4 Comparison With Other State-of-the-Art Methods

We compared our proposed framework with the state-of-the-art methods re-

ported in 2020 [67], [86], [87], [117]–[122]. First, we compare the previous
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FIGURE 3.10: The major waves of a single normal ECG pattern

work with ours to show that the proposed framework provides all of the de-

sirable properties like explanations, privacy-preserving, and working with

raw data. Table 3.4 shows the comparison between our proposed method

and the other methods. It can be seen that the proposed scheme outperforms

others by providing all desirable properties, while others lack some of the de-

sirable properties. Moreover, we also compare our work with existing works

for ECG classification. It is to be observed that other methods used the base-

line MITBIH dataset (without noise), with which better accuracy results can

be achieved. Contrastingly, we introduced (10%-30%) noise into the data to

make it more realistic and to show that it is robust to varying noise across

different edge/client devices. Table 3.5 shows the comparison of classifica-

tion performance between our proposed method and the other methods. It

can be seen that our proposed method outperformed the methods in others.

Observe that the proposed classifier deals with the classification tasks of five

classes, while others deal with fewer classes (some with two and some with

three). Additionally, the proposed method works in federated architecture
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FIGURE 3.11: The outputs of the XAI module

and performs better compared to others. Our proposed method provides

explainability as an additional feature. Moreover, the proposed method pro-

vides enhanced data privacy to the users via the federated setting, which is

not the case for other methods. Furthermore, the proposed method provides

robustness to varying noise by denoising raw signals without any further

preprocessing, followed by classification and explainability.

3.4.5 Privacy Enhancement

As mentioned earlier, digital healthcare data is like digital fingerprints that

carry a lot of personal information. Hence, we should protect such data as
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TABLE 3.4: Comparison with the state-of-the-art work

Scheme explanations Raw Input Privacy
Preserving

[154] 7 7 7

[155] 7 7 7

[165] 7 7 7

[117] 7 7 3

[118] 7 7 7

[87] 7 7 7

[119] 7 7 7

[86] 7 7 7

[120] 7 7 7

[121] 7 7 7

[67] 3 7 7

[122] 7 7 7

Proposed 3 3 3

much as possible while using them in ML algorithms. Most past studies on

ECG classification do not provide privacy protection for such data because

they are centralized and data are shared with the central model directly. Re-

cently, Chen et al. [117] used federated learning to provide privacy protec-

tion, by only sharing the learned parameters without sharing the data. Al-

though the shared parameters can protect privacy, there are still chances to

recover some information from the shared parameters of higher-level layers

in the classifier, since they can contain more data-specific information as dis-

cussed previously. As a comparison, in our proposed framework we only

share the learned parameters from lower-level layers that carry only more

common and low-level (i.e., less privacy-sensitive) features. Thus, our pro-

posed framework can enhance privacy even further, and at the same time

can reduce communication costs as fewer parameters are shared between the

edge/local and global servers.

A comparison between existing work in federated settings for healthcare

is shown in Table 3.6.
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TABLE 3.5: Comparison with previous studies for ECG classifi-
cation

Scheme Centralized or
Federated Acc (clean data) Acc (noisy

data)
[154] Centralized 86.0% -
[155] Centralized 96.9% -
[118] Centralized 98.1% -
[87] Centralized 96.5% -
[86] Centralized 93.1% -

[119] Centralized 98.7% -
[120] Centralized 94.9% -
[121] Centralized 98.1% -
[166] Centralized 98.6% -
[165] Centralized 98.3% -
[67] Centralized 98.8% -

Proposed Federated 98.9% 94.5%

3.4.6 Communication Cost Reduction

Here, we show the communication cost reduction using the proposed com-

munication cost reduction method. The number of total parameters commu-

nicated between an edge device and the global server, for one global round,

denoted by TPC, is given as follow:

TPC = W1+W2+WC1+WC2+AW1+AW2+AWC1 +AWC2, (3.10)

In the proposed framework, the TPC is given as follow:

TPC = 13386 + 13429 + 4160 + 181961 + 13386 + 13429 + 4160 + 181961

= 425872, (3.11)

With the proposed communication cost reduction method, the TPC is

given as follows:

TPC = W1 ++WC1 + AW1 ++AWC1, (3.12)
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In the proposed framework, the TPC is given as follows:

TPC = 13386 + 4160 + 13386 + 4160 = 35092, (3.13)

From Eqs. (3.11) and (3.13), we can calculate that the proposed communica-

tion cost reduction method reduces the communication cost by 8.2%.

TABLE 3.6: Comparison with the state-of-the-art work in feder-
ated setting for healthcare

Scheme Communication Cost
Reduction Privacy Enhancement

[117] 7 7

Proposed 3 3

3.4.7 Time Complexity of proposed Algorithm

In this section, we provide the time complexity of the proposed Algorithm 3.1.

In a CNN-based network, the number of features in each feature map is at

most a constant times the number of input features let us say n (typically the

constant is < 1). Convolving a fixed-size filter across an input signal with n

features takes O(n) time, since each output is just the sum product between

some features let’s say k in the input, and a fixed number of weights w in the

filter, and w and k do not vary with n. Similarly, any max or average pooling

operation does not take more than a linear amount of time in the input size.

Moreover, the edge node can compute in parallel, therefore, the overall run

time is still linear, i.e., O(n).

3.5 Summary

In this chapter, we proposed a privacy-preserving, efficient, and explainable

AI-based end-to-end framework to address the limitations of DL-based clas-

sifications. Firstly, we proposed a CNN-based autoencoder in a federated
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architecture to denoise the raw ECG signal from patients to achieve robust-

ness against varying noise present in the local data of edge/clients. When

trained on the baseline dataset, The proposed autoencoder provided an ex-

cellent reconstruction of the raw input signals and improved the overall per-

formance when applied in federated settings. Secondly, we proposed a new

classifier for ECG classification. When the classifier was trained in federated

settings it was able to improve the overall classification performance of the

edge devices. Moreover, the experimental results on the baseline database

revealed that the proposed framework outperformed existing algorithms, in-

cluding both centralized and federated ones. Furthermore, we extended the

usability of our framework by providing a novel explainable module on top

of the classifier, whose usefulness is visually demonstrated by showing that

clinically meaningful heartbeat segments of ECG signals are indeed behind

the classification results. Additionally, we also proposed a communication

cost reduction method, which can significantly reduce communication costs

while increasing the level of privacy protection of users’ ECG data against

the global server. Hence, the proposed framework shows its applicability

by providing many desirable properties including robustness, explanations,

privacy protection, communication cost reduction, and high accuracy in clas-

sification. Such a combination of such properties does not hold for other ex-

isting solutions, therefore making the proposed framework a unique solution

for real-world healthcare applications.

Eventually, the proposed framework will encourage (1) more healthcare

data owners to participate in training a good ML model for patients and

health professionals, with fewer privacy concerns, (2) more accurate diag-

nostic assistance in places with scarce access to cardiologists or healthcare fa-

cilities, (3) more explainable classification results that can be used to identify
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new potential patterns leading to trigger heart arrhythmias. Hence, the pro-

posed framework has great potential to be added to hospital computer soft-

ware platforms to support the work of health professionals and ultimately

reduce mortality and save human lives.

As a future research direction, we aim at applying the proposed frame-

work to more healthcare applications, especially HAR and anomaly detec-

tion in the context of home care, and other types of arrhythmia to extract

new patterns that might be helpful for their diagnosis and monitoring. How-

ever, as discussed in chapter 2 RNNs are computationally slow and CNNs

can be computationally expensive when we use them to capture long-term

dependencies, such as anomaly detection and HAR which requires monitor-

ing long-term dependencies and even higher dimensional data. Hence, in

the next chapter, we will introduce privacy-friendly transformers-based clas-

sification in federated settings which can achieve the best of both CNNs and

RNNs.

Moreover, the Fl architecture is still vulnerable to adversarial attacks as

discussed in Chapter 1 and 2. Such attacks are also applicable to upcoming

Chapter 4, and Chapter 5. Hence, we will address adversarial attacks such as

poisoning attacks in Chapter 6.

8
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Chapter 4

Lightweight Transformer-based

Classification in Federated Setting

for Home Care

4.1 Introduction

As discussed previously, researchers have made substantial progress on high

accuracy for DL applications. For example, HAR classifiers [92], [167], [168].

Yao et al. [92] proposed a deep learning model based on data collected from

accelerometer and gyroscope sensors on mobile devices, which involves a

hybrid model combining a convolutional neural network (CNN) and a re-

current neural network (RNN). However, training such models on real-world

data collected from smart devices leads to two major challenges. However,

as argued previously deep learning requires a large amount of data for train-

ing [92], which will incur communications between the centralized server

and clients (data owners). Second, collecting data from a home environment

can raise privacy concerns since a lot of the sensor data include or can in-

fer personal and sensitive data about people in the home [169], [170]. FL

helps improve the privacy of local data, reduces unnecessary communica-

tions between the global server and the clients, and meets the business needs
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of data owners and local healthcare providers who would not share their

data. Therefore, many researchers have considered using federated learning

for HAR and other healthcare applications [114].

In regards to performance, commonly used deep learning techniques in-

cluding CNNs and RNNs have their limitations. CNNs have an advan-

tage over RNNs (including LSTMs) as they are easy to parallelize, while

RNNs have recurrent connections and hence parallelizaion cannot be eas-

ily achieved. However, in long-term sequences like time series, capturing

the dependencies can be cumbersome and unpractical using CNNs [171]. To

address these challenges, transformers have been introduced recently [58].

The transformer technique is an attempt to capture the best of both worlds

(CNNs and RNNs). They can model dependencies over the whole range

of a sequence and there are no recurrent connections, so the whole model

can be computed in a very efficient feedforward fashion. Since its introduc-

tion, transformers have been widely studied in various applications, for ex-

ample, in natural language processing [172] and healthcare [173]. However,

the application of transformers for home care, such as HAR needs to be ex-

plored, and developing transformers in a federated setting can potentially

boost the HAR, as it enhances privacy which is much desired. Neverthe-

less, there are open questions regarding the implementation details such as

what are the limits of the algorithm and if transformers really perform well in

HAR, coupled with federated learning. Transformers are generally compu-

tationally expensive and to support FL the development of the lightweight

transformers-based model(s) is challenging.

In this chapter, to answer all these questions, first, we develop a novel

lightweight transformer for example time-series applications, and show that

it can provide high performance in terms of accuracy and computational cost

compared to existing deep models such as RNNs and CNNs. We trained
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and test the proposed base-line transformer using different open-source sen-

sor data. To show its applicability to real-time data, we collect data using a

prototype that we developed to collect human activity data using three dif-

ferent types of sensors: accelerometer, gyroscope, and magnetometer. While

collecting the data we tested different sensor locations on the human body:

hip, chest, and upper arm (further details about the prototype and data col-

lected will be provided in later sections). Furthermore, to address the afore-

mentioned challenges, such as privacy concerns and additional computa-

tional costs, we propose a novel transformer framework in a federated set-

ting called TransFed, the first transformer-based classifier for HAR in feder-

ated settings. Moreover, we evaluate the performance of federated learning

using the proposed transformer and showed that federated learning can be

used instead of centralized learning for time-series classification. We com-

pare the proposed transformer-based classifier under two training settings,

using centralized learning and using federated learning. In federated learn-

ing, we use skewed data based on a non-identical independent distributed

(non-IID) data distribution among clients, and in the centralized setting, we

use the whole dataset which contains only slightly unbalanced classes. With

experimental results, we show that the proposed TransFed outperformed ex-

isting state-of-the-art methods.

4.1.1 Contributions

The main contributions of the chapter are as follows:

1. We proposed a novel lightweight (in terms of the number of trainable

parameters required) transformer for classification. We show that the

proposed transformer outperformed other state-of-the-art HAR classi-

fication methods based on CNNs and RNNs when trained and tested
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on a public dataset as well as a dataset we constructed, for example, a

healthcare application i.e., HAR.

2. In order to address challenges related to privacy and computation costs,

we introduce TransFed, the first framework for classification based on

federated learning and transformers.

3. We designed a prototype to collect human activity data using three

different types of body sensors: accelerometer, gyroscope, and magne-

tometer. We also tested different locations of each type of sensor on the

human body to find the points of maximum impulse (PMIs) and evalu-

ated the performance of the data for each location. We then constructed

a new dataset for evaluating the proposed classifier.

4. We evaluated the performance of TransFed using non-IID data. Based

on the data distribution we analyze how the non-IID data of clients can

affect the performance of TransFed.

The rest of the chapter is organized as follows. Section 4.2 explains our

proposed transformer and the federated learning framework TransFed in de-

tail. The experimental setup and the experimental results on performance

analysis are given in Sections 4.3 and 4.4, respectively. The last section sum-

marizes the chapter.

4.2 Proposed Methods

In this section, we explain our proposed methods, including the proposed

lightweight transformer and the FL-based framework TransFed for address-

ing privacy concerns in a federated setting. For the proposed transformer

model, we first describe the model itself and then move on to explain two

data formats we tested for the proposed transformer model. Both the model
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itself and the data formats tailored for the model help improve the trans-

former’s performance in terms of computational complexity and classifica-

tion accuracy. The following three subsections will introduce the transformer

model, the data formats used, and the proposed TransFed framework, re-

spectively.

4.2.1 Proposed Lightweight Transformer Model

We designed a novel lightweight transformer, as shown in Figure 4.1. From

bottom to top, the first layer inputs the raw human activity data after prepro-

cessing it into certain sized window (as discussed earlier). The input is then

passed through the transformer layer, which extracts discriminative features

from the input data. Finally, the output of the transformer is fed into a pre-

diction layer for the classification or final output.

Unlike the traditional transformer model, we use a single patch encoding

in our model. This is because we found out that, we can get state-of-the-art

results even without using multiple patches, which helps make our proposed

transformer simpler and therefore more computationally efficient. The pro-

posed transformer is virtually divided into two parts: the transformer layer

and the prediction layer. Both layers are composed of many sub-layers. The

transformer layer starts with an augmentation sub-layer, which is used to

increase the diversity of the training set by applying random (but realistic)

transformations. The output of the augmentation sub-layer is fed into a nor-

malization sub-layer to normalize the data. Following the normalization sub-

layer, a multi-head attention sub-layer applies the self-attention mechanism

to the input data, which is the fundamental mechanism of a transformer. The

self-attention mechanism is a sequence-to-sequence operation: a sequence of

vectors goes in, and a sequence of vectors comes out. Let us call the input

vectors X1, X2, . . . , Xl and the corresponding output vectors Y1, Y2, . . . , Yl. To
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produce the vector Yi, the self-attention operation applies weights averaged

over the input vectors as follows:

yi = ∑
j

wijXj, (4.1)

where j indexes over the whole sequence and the sum of the weights to one

overall j-s. The weight wij is not a parameter as in a normal neural network

but is derived from a function over Xi and Xj. To make this operation more

lightweight, we use the dot product:

wij = XT
i Xj. (4.2)

Since the dot product gives a value between−∞ and +∞, we apply a softmax

to map the values to the range of 0 and 1, and to ensure that they sum to 1

over the whole sequence:

wij =
expwij

∑j exp wij
. (4.3)

The self-attention operation defines the correlation among the input features

with respect to the learning task. The output of the multi-head attention sub-

layer is then added with the output of the previous normalization sub-layer

and fed the result into a succeeding normalization sub-layer, which is then

passed through a dense sub-layer. The dense sub-layer applies a non-linear

transformation for further feature extraction, given as:

Output = activation(dot(input, kernel)), (4.4)

where “activation” is the element-wise activation function passed as the ac-

tivation argument, “kernel” is a weight matrix, and “dot” is the dot product.

The output of the dense sub-layer is added with the output of the previous
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addition sub-layer. The transformer layer can be applied multiple times. The

output from the transformer layer is fed into a flattening and dense output

sub-layer with softmax activation, which gives the final classification proba-

bility distribution over the pre-defined classes.

4.2.2 Data Formats for Proposed Transformer Model

Since the input data format plays an important role in the classification and

computational efficiency of the proposed transformer model, we experimented

with two possible formats of the input data as explained below.

Image-based Format

Transformers introduced for computer vision tasks work with 2-D images by

splitting an image into a vector of small sub-images (patches). This vector

is used as the input. In order to follow the convention, we created an image

of size N × M from input samples of activity in a time frame of 2 seconds,

as a time frame of 2 seconds can give enough information about the activ-

ity, as shown in Figure 4.2. After this, patches of size n × n were created,

where N, M > n. We tried images and patches of different sizes. Unfor-

tunately, when we trained and tested the proposed transformer, using the

above-mentioned data format, the results were not good enough. This is due

to broken the natural boundary between consecutive 1-D samples into 2-D

images, which makes it hard for the transformer to capture all features effec-

tively by suppressing all random noise in the images because no 2-D filter

of a reasonable size would cover distant pixels that are neighboring samples

in the original 1-D signal. We observed that with the increase in size (the

number of transformer layers), the classification performance was improved

but this setting is not suitable for edge devices with a relatively low compu-

tation power. Nevertheless, this approach can be utilized in settings where
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FIGURE 4.1: The proposed transformer model.

the computational power is high enough. Hence, we decided not to use the

image-based format.
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FIGURE 4.2: Image-based format for the proposed transformer
model.

Averaged-Window Format

In this approach, we propose to reshape the raw input data into a fixed slid-

ing window of shape W× F, where W is the number of samples in a window

and F is the number of features. In our experiments, we tried to change W as

well as the number of features. Since a human activity is an action that can

be performed in a certain window of time, to capture a specific activity we

need to optimize the window size so that the model can map the information

contained in that window to a specific class. For example, going upstairs is

an activity that can be recognized within a suitable window size such as 2

or 3 seconds. Hence, W (the window size) is very critical in HAR because

of the following trade-off: if W is too small the classifier cannot distinguish

between activities; and if W is too large the classifier will require more data

and more computational resources. Let us take going upstairs as an example.

If W is below one second, it would not be suitable to recognize the activity as

no human being can finish going upstairs within just one second (for HAR

tasks, a single temporal point is too small to be informative). In regards to F,

we noticed that when there are a large number of candidate classes, a large

F significantly improves the classification performance. While for a small
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number of classes, a small (such as 6) or large (such as 9) value of F gives

almost the same classification performance. Moreover, we found that com-

bining tri-axial data from the accelerometer and gyroscope provides a signif-

icant improvement over combining accelerometer and magnetometer data

and combining magnetometer and gyroscope data. After trying many differ-

ent values of the window size with grid search, we found that a window size

of 140× 9 provided optimized results for all human activities we considered

when both accuracy and computational costs are taken into account. To sum-

marize, we take samples of the input over a time frame of 2 seconds with 9

features and average them feature-wise to generate a new sample as shown

in Figure 4.3. This format can work because averaging cancels the random

noise.

140
samples

Averaged sample of
window 140X9

ax ay az ay ayax axaz az

Time

Features

FIGURE 4.3: Averaged-window format for the proposed trans-
former model.

4.2.3 The Proposed FL Framework TransFed

Figure 4.4 shows the basic flowchart of the proposed TransFed. In our method,

the federated setting is adopted in order to facilitate collaborative learning

while preserving the privacy of the underlying data. In the federated setting,

a central (global) server sends the compiled architecture of the model (which

is a transformer in our case) to all edge or client devices. Each device trains
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its transformer locally using its local data. After all the local transformers

are trained, each edge device sends the trained parameters of its transformer

to the global server, which are then aggregated by the global server to con-

struct the global model without a training process. After the global model

is available, each edge device downloads the aggregated parameters of the

global model and updates its local model according to its local needs. There

are two expected key advantages of the federated setting, (i) it increases the

overall accuracy, generalization, and robustness of the model, and (ii) it pro-

vides better privacy protection to the data owners. Algorithm 4.1 defines the

workflow of the proposed TransFed framework.

4.3 Experimental Setup

In this section, we discuss the experimental setup that we designed to test

the performance of the proposed transformer in federated setting using real-

time data. We first discuss a testbed that we designed to construct a new

dataset and to support the experiments for evaluating the performance of

the proposed TransFed framework.

4.3.1 Testbed for Data Collection

TransFed can in principle work with different types of sensors from which

data about human activities are collected. For our testbed, we decided to use

three types of sensors available on most smart wearable devices: tri-axial ac-

celerometers, gyroscopes, and magnetometers. These sensors provide mea-

surements at a sampling frequency of 115 Hz. The frequency of 115 Hz estab-

lishes a sufficient condition for a sample rate that permits a discrete sequence

of samples to capture all the information from a continuous-time human ac-

tivity signal. The testbed is shown in Figure 4.5.
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FIGURE 4.4: An illustrative diagram of the proposed frame-
work.

Sensor Locations and Data Collection

Since the quality of data being used by an ML model can significantly impact

its performance, we decided to use a data-centric approach to ensure the per-

formance of our proposed model. One important aspect of acquiring high-

quality data for HAR purposes is to identify an optimized location on the
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human body for each sensor used. We need to optimize the sensor locations

in such a way that it provides both (i) data informative enough to be used in

ML, and (ii) convenience and comfort to humans while they are wearing the

sensors. Keeping both points in mind and considering what was commonly

chosen in the literature [93], [98], we tried different locations on the human

body: upper arm, hip, and chest. After placing each sensor on each body

location in the recruited individuals, we recorded data for the following 15

activities: sitting, walking, jogging, going upstairs, going downstairs, eating,

writing, using a laptop, washing face, washing hands, swiping, vacuuming,

dusting a surface, and brushing teeth. Using the data collected from each

location, we trained and tested the proposed transformer model, separately

for the data of each location, in a centralized setting. The results showed that

the model trained and tested using data collected from the hip outperformed

models using data collected from two other locations (chest and upper arm).

Hence, in the following, we report experimental results with data collected

from the hip only.

To construct our new dataset, we recruited five human participants with

different ethnic backgrounds, i.e., Pakistani, Algerian, French, Vietnamese,

and Moroccan. Before collecting the data, each participant was briefed about

each activity to be conducted, the health hazards of the experimental setup,

and how the data will be used by the researchers. No financial compensa-

tions were made. Each participant performed the 15 activities as shown in Ta-

ble 4.1. While performing each activity for a duration of around 3 minutes1,

the sensors placed on each participant generated activity data, which was

sent to the ESP32 module using the I2C communication protocol. Note that

the ESP32 and sensors were both located on the participant’s body, powered

by a lithium battery. The ESP32 module sent the data over Wi-Fi using the

1The precise duration was determined based on the ability and willingness of each par-
ticipant.
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HTTP method POST to the edge (Raspberry Pi), which was then stored in a

MySQL database. The experiment was approved by the ENSAIT, GEMTEX–

Laboratoire de Génie et Matériaux Textiles, University of Lille, France, from

which all participants were recruited.

TABLE 4.1: Description of the 15 human activities covered in
our experiments for constructing the new dataset.

Class Name Class
ID Performed Activity

Number
of Sam-

ples

Standing 0 Standing still on the
floor 22,851

Sitting 1 Sitting still on a chair 23,204

Walking 2 Walking at a normal
pace 23,982

Jogging 3 Running at a high
speed 21,594

Going Upstairs 4 Ascending on a set of
stairs at a normal pace 23,832

Going Downstairs 5
Descending from a set

of stairs at a normal
pace

21,836

Eating 6 Eating lunch 21,798
Writing 7 Writing on a paper 21,434

Using laptop 8 Using laptop normally 22,009
Washing face 9 Washing face standing 22,027

Washing hand 10 Washing hands
standing 22,009

Swiping 11 Swiping a surface
walking and standing 19,186

Vacuuming 12
Vacuuming a surface
while walking and

standing
22,507

Dusting a surface 13 Dusting a surface
sitting 21,513

Brushing Teeth 14 Brushing teeth
standing 22,495
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FIGURE 4.5: Our prototype for real-time data collection.

4.3.2 Federated Learning Testbed

We built a testbed to support the training and testing of the proposed HAR

classifier in a federated setting (i.e., the TransFed framework). The testbed

consists of one aggregation server (master node) and five clients (edge) de-

vices. Each client trains its local model for e = 100 epochs on the local

dataset, updates the local model, and sends the model back to the aggre-

gation server. When all clients perform e number of epochs, the master node

updates the global model and sends it again to the client workers. The pro-

cess continues in r number of communication rounds. Algorithm 4.1 defines

the whole implementation of the federated learning using TensorFlow and

socket communication. Each client executes Lines 3-5. Whereas, the rest

of the algorithm is executed by the aggregation server. In Algorithm 4.1,

train() refers to TensorFlow’s training (fit) function, and send() refers to

the send function of the MLSocket library in Python.

To simulate more realistic scenarios, we used the SSL (Secure Socket Layer)

protocol for secure communications between the server and client devices.

The transformer-based classifier was trained locally only on five local Rasp-

berry Pi devices (Pi 5 Model B+ with a 1.4GHz, 64-bit quad-core ARMv8

CPU and 1GB LPDDR2 SDRAM) as edge devices. Furthermore, a work-

station with an Intel core i-6700HQ CPU and 32 GB RAM was used as the



98 Chapter 4. Lightweight Transformer in Federated setting

Algorithm 4.1: The federated learning algorithm for training our
proposed transformer-based HAR classifier.

Input: GMr – the global transformer model for the r-th round, LMr
k –

the local model on the k-th client for the r-th round, n – the
number of data observations across all clients, nk – the number
of observations on each client (edge), LDk – the set of local
datasets for training on each client, r – the index of the current
round, e – the number of training epochs per one round, b –
the batch size of training data, ∆Wr

k – parameters of client k at
r-th round, K – the number of clients participating in
federated learning.

Output: Trained aggregated and updated model
1 while while r 6= 0 do
2 for each cleint k do
3 LMr

k = GMr

4 LMr+1
k = Train(LMr

k, LDk, e, b)
5 send (∆Wr+1

k )

6 GMr+1 = ∑K
k=1

nk
n LMr+1

k

aggregation server. This hardware setup for clients allowed us to simulate

what typical home healthcare systems can provide, in terms of computing

resources.

4.3.3 Data Partitioning and Distribution

In order to analyze the performance of the proposed transformer in a fed-

erated setting we used skew data derived from a non-IID distribution. To

achieve non-IID data over the clients in federated learning, we group the

data by each user in the dataset and split it among 5 different clients, and

selected one activity on each client to have 40-50% fewer samples. For exam-

ple, Client 1 has 40-50% less samples of standing activity compared to others

and Client 2 has 40-50% less samples of sitting activity compared to others.
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4.3.4 Centralized Setting

In addition to testing the performance of our proposed TransFed framework

based on the proposed transformer, we also tested the proposed transformer

in a centralized setting, which demonstrated that it is a general technique

that can work under both centralized and federated settings. We tested the

proposed transformers with both our new dataset and the well-known public

WISDM dataset [174], and compared its performance against other state-of-

the-art methods. Since most of the existing work used the WISDM dataset in

centralized setting, testing the proposed transformer-based classifier using a

public dataset in a centralized setting gives a fair comparison. The details of

WISDM can be found in Table 4.2.

TABLE 4.2: Basic information of the activity classes in the
WISDM dataset.

Class Name Class ID Number of Samples

Walking 0 424,400

Jogging 1 342,177

Going Upstairs 2 122,869

Going Downstairs 3 3,100,427

Sitting 4 59,939

Standing 5 48,395

4.4 Performance Analysis

In this section, we provide the performance analysis of the proposed frame-

work based on the above-mentioned experimental setup.
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FIGURE 4.6: Data derived from a non-IID quantity distribution
in the federated setting, where each client contains 40-50% less
data of a given class. The x-axis represents the class ID and the

y-axis represents the number of samples.

4.4.1 Accuracy (Training and validation)

To measure the classification performance of the proposed transformer-based

classifier, we use the four classification metrics presented in Chapter 2.1.2.

Accuracy (one-vs-rest accuracy, where we split multi-class classification into

a binary classification problem per class) is often used to measure how a ma-

chine learning classifier’s performance evolves during the training process.

The trend over time can be used to determine whether the model is prop-

erly and ideally trained, to detect anomalies in time (such as over- or under-

fitting), and to make necessary adjustments.

To evaluate the performance of the proposed transformer in a federated

setting, we used non-IID distribution as shown in Figure 4.6. We trained the

transformer at each client for 100 epochs. The hyperparameters used during

the training process are given in Table 4.3. Each client used two transformer

layers and a learning rate of 0.01 with an Adam optimizer.
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TABLE 4.3: Hyperparameters used by each client for federated
learning.

Hyper-Parameter Value

Learning Rate 0.01

Number of Epochs 100

Batch Size 30

Weight Decay 0.001

Transformer Layers 2

Multi-attention Heads 5

Input shape 140×9

Figures 4.7 show the accuracy of each local model at the corresponding

local client. For comparison purposes, we performed 100 iterations (epochs)

for each model and draw a point every 10 iterations when drawing, making

the curves clearer but still reflecting the overall trend. Among the local mod-

els, the performance is almost similar for the non-IID dataset, which indicates

that the proposed transformer is robust against imbalanced data caused by

a non-IID distribution. Overall, each local model was able to achieve more

than 98 percent training and validation accuracy using the non-IID dataset.

For the centralized setting, we trained the proposed model using the pub-

lic WISDM dataset as well as our collected dataset. The hyper-parameters

were kept the same as mentioned earlier for the federated setting. Figures 4.8a

and 4.8b present training and validation accuracy of the proposed trans-

former in the centralized setting using the WISDM dataset and our collected

dataset, respectively.
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(A) Client 1 (B) Client 2

(C) Client 3 (D) Client 4

(E) Client 5

FIGURE 4.7: Training and validation accuracy of the clients us-
ing data derived from a non-IID distribution.

4.4.2 Classification Performance

Tables 4.4–4.8 present classification results obtained on all five clients using

their local non-IID data in the federated setting. Table 4.9 shows the classi-

fication performance of the global model after performing federated averag-

ing. We tested the global model using a test dataset that was not used to train

any of the client models and the proposed transformer achieved an overall

accuracy of 98.74%.
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(A) Accuracy of the centralized model with
the WISDM dataset

(B) Accuracy of the centralized model with
our collected dataset

FIGURE 4.8: Training and validation accuracy of the classifier
based on the proposed transformer in the centralized setting.

Moreover, Tables 4.10 and 4.11 present the classification performance of

the proposed transformer-based classifier in the centralized setting, using the

WISDM dataset and our collected dataset, respectively. Overall the classi-

fier based on our proposed transformer achieved an accuracy of 99.14% and

98.89% with our collected dataset and the WISDM dataset, respectively. Since

the WISDM dataset has much more unbalanced class samples than our col-

lected dataset, it is not surprising to see the performance is (slightly) lower

compared with our collected dataset, since imbalanced data are harder to

learn.

4.4.3 Confusion Matrices

A confusion matrix, also known as an error matrix, is an n× n matrix or ta-

ble that shows how each class is classified into all the n classes of a classifier.

The diagonal elements of a confusion matrix show the correct classification

results and other cells show different misclassification rates. Hence, we eval-

uate the proposed transformer using a confusion matrix to determine where

exactly the transformer miss-classifies the classes during testing. Figure 4.9

presents the confusion matrix obtained with the updated global model in the
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TABLE 4.4: Classification performance of the clients using data
derived from a non-IID distribution: Client 1 with 50% less

“Standing” data.

Activity Precision Recall F1-score

Standing 100% 100% 100%
Sitting 100% 100% 100%

Walking 100% 100% 100%
Jogging 100% 100% 100%

Going Upstairs 100% 100% 100%
Going Downstairs 100% 100% 100%

Eating 100% 100% 100%
Writing 100% 100% 100%

Using Laptop 100% 100% 100%
Washing Face 100% 99.0% 99%

Washing Hand 99.0% 100% 99.0%
Swiping 95.0% 100% 98.0%

Vacuuming 100% 96.0% 98.0%
Dusting 100% 98.0% 99.0%

Brushing Teeth 100% 100% 100%

TABLE 4.5: Classification performance of the clients using data
derived from a non-IID distribution: Client 2 with 50% less “Sit-

ting” data.

Activity Precision Recall F1-score

Standing 100% 100% 100%
Sitting 98.0% 100% 99.0%

Walking 100% 98.0% 99.0%
Jogging 99.0% 99.0% 99.0%

Going Upstairs 98.0% 96.0% 97.0%
Going Downstairs 95.0% 99.0% 97.0%

Eating 98.0% 98.0% 97.0%
Writing 100% 96.0% 99.0%

Using Laptop 96.0% 100% 98.0%
Washing Face 99.0% 100% 99.0%

Washing Hand 97.0% 97.0% 97.0%
Swiping 96.0% 95.0% 96.0%

Vacuuming 93.0% 94.0% 93.0%
Dusting 96.0% 92.0% 94.0%

Brushing Teeth 97.0% 98.0% 97.0%

federated setting, using our collected dataset. Figure 4.10 presents the confu-

sion matrix obtained using the classifier based on our proposed transformer

in the centralized setting, using our collected dataset. In both figures, the
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TABLE 4.6: Classification performance of the clients using data
derived from a non-IID distribution: Client 3 with 50% less

“Walking” data.

Activity Precision Recall F1-score

Standing 100% 100% 100%
Sitting 100% 100% 100%

Walking 99.0% 100% 100%
Jogging 98.0% 98.0% 98.0%

Going Upstairs 98.0% 97.0% 98.0%
Going Downstairs 98.0% 98.0% 98.0%

Eating 95.0% 97.0% 96.0%
Writing 99.0% 98.0% 99.0%

Using Laptop 96.0% 97.0% 96.0%
Washing Face 96.0% 99.0% 97%

Washing Hand 98.0% 95.0% 96.0%
Swiping 96.0% 92.0% 94.0%

Vacuuming 95.0% 97.0% 96.0%
Dusting 96.0% 95.0% 96.0%

Brushing Teeth 97.0% 98.0% 98.0%

TABLE 4.7: Classification performance of the clients using data
derived from a non-IID distribution: Client 4 with 50% less

“Jogging” data.

Activity Precision Recall F1-score

Standing 100% 100% 100%
Sitting 100% 97.0% 99.0%

Walking 97.0% 100% 99.0%
Jogging 99.0% 100% 100%

Going Upstairs 99.0% 98.0% 98.0%
Going Downstairs 98.0% 99.0% 98.0%

Eating 97.0% 97.0% 97.0%
Writing 99.0% 98.0% 98.0%

Using Laptop 97.0% 99.0% 98.0%
Washing Face 98.0% 97.0% 98.0%

Washing Hand 96.0% 98.0% 97.0%
Swiping 96.0% 94.0% 95.0%

Vacuuming 93.0% 94.0% 94.0%
Dusting 95.0% 94.0% 95.0%

Brushing Teeth 99.0% 98.0% 98.0%

x-axis indicates the predicted class labels and the y-axis indicates the ground

true class labels. We can see that in both settings the proposed HAR classifier
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TABLE 4.8: Classification performance of the clients using data
derived from a non-IID distribution: Client 5 with 50% less

“Going Upstairs” data.

Activity Precision Recall F1-score

Standing 100% 100% 100%
Sitting 99.0% 97.0% 98.0%

Walking 97.0% 98.0% 98.0%
Jogging 99.0% 100% 99.0%

Going Upstairs 100% 100% 100%
Going Downstairs 99.0% 99.0% 99.0%

Eating 96.0% 96.0% 96.0%
Writing 100% 97.0% 98.0%

Using Laptop 96.0% 100% 98.0%
Washing Face 97.0% 97.0% 97.0%

Washing Hand 95.0% 95.0% 95.0%
Swiping 94.0% 95.0% 95.0%

Vacuuming 97.0% 96.0% 96.0%
Dusting 96.0% 97.0% 96.0%

Brushing Teeth 99.0% 98.0% 98.0%

TABLE 4.9: Classification performance of the global model after
federated averaging using data derived from a non-IID distri-

bution.

Activity Precision Recall F1-score

Standing 100% 100% 100%
Sitting 100% 100% 100%

Walking 99.0% 100% 100%
Jogging 99.0% 99.0% 99.0%

Going Upstairs 96.0% 94.0% 95.0%
Going Downstairs 97.0% 97.0% 97.0%

Eating 99.0% 97.0% 98.0%
Writing 100% 99.0% 100%

Using Laptop 99.0% 100% 99.0%
Washing Face 100% 98.0% 99.0%

Washing Hand 93.0% 100% 97.0%
Swiping 97.0% 90.0% 94.0%

Vacuuming 90.0% 98.0% 94.0%
Dusting 99.0% 94.0% 97.0%

Brushing Teeth 96.0% 99.0% 97.0%

worked very well with similar performance across all the 15 classes. Simi-

larly, Figure 4.11 presents the confusion matrix obtained using the WISDM

dataset in centralized settings. It can be seen that the proposed transformer
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TABLE 4.10: Classification performance of the proposed trans-
former in the centralized setting using WISDM dataset [174].

Activity Precision Recall F1-score

Walking 100% 100% 100%
Jogging 100% 100% 100%

Going Upstairs 95.0% 96.0% 96.0%
Going Downstairs 98.0% 99.0% 99.0%

Sitting 100% 100% 100%
Standing 97.0% 97.0% 97.0%

TABLE 4.11: Classification performance of the proposed trans-
former in the centralized setting using our collected dataset.

Activity Precision Recall F1-score

Standing 100% 100% 100%
Sitting 100% 99.0% 99.0%

Walking 99.0% 99.0% 99.0%
Jogging 98.0% 98.0% 98.0%

Going Upstairs 99.0% 95.0% 97.0%
Going Downstairs 97.0% 99.0% 98.0%

Eating 99.0% 98.0% 98.0%
Writing 98.0% 99.0% 98.0%

Using Laptop 97.0% 99.0% 98.0%
Washing Face 100% 97.0% 99.0%

Washing Hand 96.0% 100% 98.0%
Swiping 95.0% 90.0% 93.0%

Vacuuming 93.0% 98.0% 95.0%
Dusting 99.0% 93.0% 96.0%

Brushing Teeth 96.0% 100% 98.0%

achieved almost perfect classification results for all classification activities.

From the confusion matrices, it can be observed that misclassifications

occurred more between activities that involve similar body movements, e.g.,

swiping and vacuuming. It can also be observed that, even for these simi-

lar but different human activities, the proposed transformer achieved a very

good performance.
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FIGURE 4.9: The confusion matrix obtained with the final
global transformer model in a federated setting with five

clients, using data derived from a non-IID distribution.
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FIGURE 4.10: The confusion matrix obtained with the trans-
former model in a centralized setting using 5-fold cross-

validation, using the balanced collected data.
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FIGURE 4.11: The confusion matrix obtained with the trans-
former model in the centralized setting, using the WISDM

dataset.

4.4.4 Comparison with SOTA Methods

In this subsection, we compare the proposed transformer with existing SOTA

methods. Table 4.12 compares two key features of our proposed transform-

ers with methods based on RNNs and CNNs. RNN-based models do not al-

low parallelization during training because of their sequential nature, which

makes the model computationally slow and expensive. CNN-based methods

can perform parallel computation, but they are computationally expensive

because of the convolution function. Our new method based on the proposed

transformer completely eliminates recurrence and convolution and replaces

them with a self-attention mechanism to establish dependencies between the

input and the output. It is the first type of architecture to rely entirely on at-

tention to calculate representations of the input and the output. In addition,

transformers leave more room for parallelization. RNNs and CNNs use a

large number of parameters (usually hundreds of thousands or even more),

but the proposed transformer only uses 14,697 parameters, making it more
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suitable to be utilized in mobile computing devices. Moreover, unlike tra-

ditional transformers, the proposed transformer uses a single patch instead

of using multiple-patches. Therefore, the proposed transformer is also much

more computationally efficient.

TABLE 4.12: Comparison of our transformer-based approach
with those based on RNNs and CNNs, in terms of computation

costs.

Method Parallelization Computationally
Expensive

RNNs No Yes
CNNs Yes Yes

Transformers Yes No

We also compared the performance of the TransFed global model and the

centralized classifier based on the proposed transform with those of selected

state-of-the-art HAR methods in the literature [94], [96], [97], including five

working in a centralized setting and one in the federated setting. These three

state-of-the-art methods were chosen because their performance results were

reported using the WISDM dataset, which allows a direct comparison of

the performance results. Table 4.13 shows the comparison results with the

six selected state-of-the-art methods. It is obvious that our proposed meth-

ods achieved a substantial improvement in terms of accuracy when trained

and tested using our new dataset and the WISDM dataset. Specifically, our

method achieved an accuracy of 98.74% and 99.14% in the federated and cen-

tralized settings, respectively, using our collected dataset. Furthermore, us-

ing the WISDM dataset in the centralized setting, it achieved an overall ac-

curacy of 98.89%. Hence, from Table 4.13 it can be seen that the proposed

transformer outperforms existing state-of-the-art methods, in both central-

ized and federated settings.
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TABLE 4.13: Comparison with selected state-of-the-art methods for
HAR classification.

Scheme Centralized or
Federated Number of Activities Accuracy

[94]a Federated 6 89.00%
[96]a Centralized 6 97.63%
[97]a Centralized 6 96.70%

Proposeda Centralized 6 98.89%
Proposedb Federated 15 98.74%
Proposedb Centralized 15 99.14%

a Using the WISDM dataset.
b Using our new dataset.

4.5 Summary

In this chapter, we proposed a novel single-patch lightweight transformer

for home care applications e.g., HAR. We examined the use of transform-

ers as a HAR classifier. The purpose of the lightweight transformer was to

provide a state-of-the-art classification performance while keeping it compu-

tationally efficient for mobile computing devices such as smartphones. For

our proposed transformer-based classifier, we examined its performance in

both federated and centralized settings, under a non-IID data distribution.

To test the performance of the proposed transformer in the federated setting,

we developed a framework called TransFed and designed a testbed to collect

data from five human participants who conducted 15 different activities in a

simulated home environment.

Our extensive experimental results confirmed that the proposed trans-

former can provide better performance compared with a number of state-of-

the-art CNN- and RNN-based HAR classifiers while providing a standard-

ized and automated way to accomplish the feature learning step. Further-

more, the federated setting used by our proposed framework TransFed can

help improve data privacy, which is a major issue in centralized approaches.
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Up to this chapter, we used labeled data for healthcare applications. How-

ever, in some cases, such as anomaly detection it is hard to find data about

anomalies. Therefore, we need unsupervised or semi-supervised approaches

to address such challenges where data about some classes are limited and

hard to obtain. Hence, in the next chapter, we will be developing a frame-

work for adaptive anomaly detection in a federated setting with limited ano-

maly class data.

8
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Chapter 5

Adaptive Anomaly Detection and

Explanations with Federated

Learning

5.1 Introduction

One of the important tasks we often encounter when analyzing real-world

data is to determine whether a given instance is normal or an anomaly for a

given environment and task. The formal process of detecting or classifying

all such data instances (anomalous data points) in a data-driven fashion is

known as anomaly detection or outlier detection [103], [175]. Anomaly detec-

tion is important because it can be used to detect different types of important

real-world problems such as health issues, fraud, and security breaches. In

some critical applications such as many related to healthcare, anomaly detec-

tion can help avoid catastrophic outcomes, such as loss of human lives. For

example, anomalous cells in a Magnetic Resonance Image (MRI) or an irreg-

ular segment of an Electrocardiogram (ECG) may indicate the presence of a

specific disease such as a malignant tumor or an impeding heart attack [176]–

[178], respectively.
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Detection of anomalies or outliers has been of great interest to the statis-

tics and Machine Learning (ML) research communities. Many anomaly de-

tection techniques have been developed, including general techniques and

more application-specific ones. For example, an ECG (Electrocardiogram) is

a quick, safe, and painless way to monitor heart conditions (e.g., arrhyth-

mias). Nevertheless, to detect arrhythmias, longer-term ECG monitoring is

often required to track the patients’ heart conditions for an extended period

of time (e.g., 24 hours) [179]. Recent development in sensing technologies

has enabled such longer-term monitoring of patients. Smart and portable

devices, such as smart watches, Omron HeartScan [180], and the recently

developed Hexoskin Smart Garments [181], are revolutionizing cardiac di-

agnostics by monitoring cardiac activities and transmitting longer-term ECG

signals to cloud services for remote analysis by medical professionals. How-

ever, such signals are often too long for medical professionals to inspect, who

simply cannot spend too much time (hours or longer) looking at the ECG sig-

nal in order to detect possible abnormal signals.

To address the above-mentioned challenges in different applications, such

as longer-term ECG analysis, machine learning based anomaly detection meth-

ods have been proposed [182]. Nevertheless, as we argued previously, such

methods have limitations in terms of privacy concerns, communications costs,

and explanations [183]–[186]. Moreover, to train a sufficiently accurate and

robust machine learning model, we normally need a lot of well-labeled data,

which can take a long time to collect from a single silo (organization) es-

pecially if one or more target health conditions are not very common. An-

other limitation of most threshold-based anomaly detection methods is that

they do not determine the threshold adaptively. Instead, they rely on the

standard deviation [187] or the absolution deviation around the mean [188]

to determine the threshold. However, this approach works only when we
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know the (at least approximate) underlying distribution of data. Unfortu-

nately, most real-time data are not normally distributed so the distribution

has to be estimated first. Additionally, in addition to privacy concerns men-

tioned above, data owners (individual silos) often have other reasons to be

unwilling to share data with a central authority, e.g., market competition. All

such problems call for more adaptive and privacy-preserving machine learn-

ing in a non-centralized setting, and FL has been proposed to address such a

need [112].

In this chapter, we present AnoFed, a new framework for adaptive ano-

maly detection in federated settings that can achieve the above-mentioned

aims. Although we show the applicability of the proposed framework for

ECG analysis, the general idea can be extended to other digital health ap-

plications. In AnoFed, we apply FL for two goals – to provide enhanced

data privacy and to reduce communication costs. The use of FL allows incre-

mental updates of the global model while new data from participating nodes

(edge devices) come in, therefore achieving adaptivity. To support resource-

constrained edge devices as local nodes, we propose novel lightweight transf-

ormer-based Autoencoders (AE) and Variational Autoencoders (VAE) as build-

ing blocks of AnoFed. Moreover, we combine the proposed models with the

SVDD [42] with kernel density estimation for adaptive anomaly detection,

for each global round of training in the federated setting. We also provide an

XAI module to trace the most critical part(s) of the ECG that is/are responsi-

ble for the detected anomaly.

5.1.1 Contributions

The key contributions of this paper are summarized as follows.

1. To the best of our knowledge, AnoFed is the first lightweight (in terms
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of the number of parameters and the number of local/global train-

ing rounds required for the desired efficacy) VAE and an AE based

on transformers in federated setting (for enhanced privacy of user) for

ECG anomaly detection. Owning to the use of transformers, AnoFed

can combine the merits of both CNN- and RNN-based models.

2. We propose a new framework which is a combined design of the VAE/AE

and SVDD with kernel density estimation for adaptive anomaly detec-

tion. The VAE/AE extracts feature from the input data in the form of

error vectors which are then used to train the SVDD with kernel den-

sity estimation, which allows the proposed framework to provide state-

of-the-art results even when the data distribution changes in the local

clients in the federated setting.

3. We design an XAI module to improve the explainability of the results of

our framework, which helps enhance the trust of users in the proposed

framework.

4. We trained and tested our proposed framework using two datasets

from PhysioNet [189] and a testbed with three edge devices and a global

server, and the results show that our framework could achieve SOTA

detection accuracy with the proven ability to automatically adapt to

different distributions of the data (error vectors).

The rest of the chapter is organized as follows. Section 5.2 presents the

proposed framework. Sections 5.3 and 5.4 present the experimental setup

and performance analysis, respectively. Comparisons with some SOTA meth-

ods and an analysis of the time complexity of the proposed framework are

also included in Section 5.4. Finally, the last section summarizes the chapter.
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FIGURE 5.1: Overview of the proposed framework AnoFed.

5.2 Proposed Framework AnoFed

In this section, we first give an overview of the proposed framework AnoFed

and then provide details of different components.

5.2.1 Overview

An overview of the proposed framework is shown in Figure 5.1. Let us as-

sume that there are K edge devices participating in FL to jointly train an ECG

anomaly detection system. In order to train a joint global model GM, all

the edge devices connect to a central server or global server GS, where an

edge device is represented as Ek and data in each edge device is represented

as Dk, k = 1, . . . , K. GM represents the global updated model and LMk the
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local model at Ek. We divide one global round into two phases: in Phase

one, GM is AE/VAE, and in Phase two, GM is SVDD. Additionally, we de-

note the weights of LMk in Phase one as Wk and averaged weights of GM

as AW. In Phase two, we denote the weights of LMk as SWk and averaged

weights of GM as SAW. In Phase one, all the edge devices train the VAE/AE

and use a callback to monitor the reconstruction loss. When the reconstruc-

tion loss is not improving anymore, each edge device sends the local weights

of VAE/AE to the global server and waits for the global server to send the

aggregated weights for VAE/AE. After aggregating the updates, the global

server sends the aggregated updates to all participating edged devices. Each

edge device then computes the error vectors using the aggregated updates

and starts Phase two: training of the SVDD. Similar to the first phase, each

edge device monitors the classification performance of the local SVDD and

sends the updates to the global server once it stops improving, which are

then aggregated and sent back to all participating edge devices. The expla-

nations can be achieved in both the global model and the local models. It

should be noted that the XAI module does not require training, instead, it

simply takes the output of the AE/VAE and that of the SVDD classifier to

produce a visualized explanation of the detected anomaly. The training of

each global round is described by Algorithm 5.1. In this algorithm, nk is the

number of training samples of the edge device Ek, and nt = ∑K
k=1 nk is the

total number of samples across all edge devices.

5.2.2 Proposed AE and VAE

Since both AE and VAE performed well according to the literature, we tested

an AE and a VAE with the same number of transformer blocks in order to

see which one performs better. The proposed AE and VAE are shown in

Figure 5.2.
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Algorithm 5.1: The training procedure of the proposed framework
AnoFed (a single global round)

Input: Data from edge devices D1, D2, . . . , Dk
Output: AW and SAW

1 GS compiles the initial GM
2 GS sends GM to the requesting Ek
3 Ek receives GM, trains it using local data Dk, and sends updated

weights Wr
k of LMr

k to GS
4 GS waits to receive updates from all K edge devices.
5 if updates received form K edge devices then
6 AW = ∑K

k=1
nk
nt

Wr
k

7 Gs sends AW to Ek
8 Ek updates its local model with AW
9 Ek computes error vectors

10 Ek trains SVDD using error vectors and sends updated weights SWr
k

to GS
11 if updates received form K edge devices then
12 SAW = ∑K

k=1
nk
nt

SWr
k

13 Gs sends SAW to Ek

In both the AE and the VAE, the encoder module consists of the first in-

put layer that takes the ECG segment of 140 stamps as the input. The out-

put of the input layer is passed through the transformer layer. The trans-

former layer consists of many sub-layers as shown in Figure 5.2. The first

one is an augmentation layer, which applies random (with loss of informa-

tion) and more realistic (without significant loss of information) transforma-

tions to increase the diversity of the training set. The output from the aug-

mentation layer is normalized using a normalization layer, and then a multi-

head attention layer applies the self-attention mechanism. The self-attention

mechanism takes a sequence and outputs a corresponding sequence vector.

Let us consider k-dimensional input vectors X1, X2, . . . , Xt and X′1, X′2, . . . , X′i

as their corresponding output vectors. To compute the vector X′i , the self-

attention mechanism computes weights averaged over all the input vectors,
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FIGURE 5.2: The AE and the VAE for our proposed framework
AnoFed.

given by the following equation:

X′i = ∑
j

WijXj, (5.1)
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where j indexes the whole sequence and the sum of all the indexes is equal

to one. The weight Wij is computed using the following function over Xi and

Xj:

Wij = XT
i Xj. (5.2)

As the output of a dot product is a real value, in order to map the values in

the range of 0 and 1, and to ensure that the sum over the whole sequence

sums to 1, we employ a softmax function, given as follows:

Wij =
exp(Wij)

∑j exp(Wij)
. (5.3)

The dot product in the self-attention mechanism expresses the correlation of

input features. The output features are obtained by computing the weighted

sum over the whole input sample. The output of the multi-head attention

layer is combined with the output of the preceding normalization layer using

an additional layer. Then, the output of the additional layer is fed into a

succeeding normalization layer. The output of this normalization layer is

then fed into a dense layer that applies a non-linear transformation to extract

further features, given as follow:

Output = factivation(dot(input, kernel)), (5.4)

where factivation is the activation function, and the kernel is a weight matrix.

The output of the final dense layer gives latent space representation in the

case of AE, i.e., the encoder maps the input into a lower-dimensional feature

space Z. Whereas in the case of VAE, the output is a latent distribution with

µ as the mean and σ as the standard deviation, expressing the latent space

regularization (enforced to be close to a standard normal distribution). For

both AE and VAE, the latent representation is then fed into the decoder. The

decoder module consists of four simple dense layers and the final layer uses



122 Chapter 5. Adaptive Anomaly Detection in Federated Setting

a sigmoid activation function that gives probability distributions of the can-

didate classes, whereas the activation function of the remaining layers is a

rectifier linear unit (ReLU).

5.2.3 Proposed SVDD Module

In a federated setting, because the distributions of local data and the global

data can differ from each other significantly, anomaly detection methods re-

lying on a static threshold (normally manually selected based on the train-

ing data, e.g., the mean plus one standard deviation of the reconstruction

loss) may not ensure the global model can still work well. To address this

challenge, we propose to use SVDD along with density kernel estimation for

adaptive anomaly detection, which can avoid the problem of setting a static

threshold. We adopted the SVDD classifier from [42] to construct a nonlinear

SVDD by employing kernel density estimation, as shown in Figure 5.3. The

kernel maps the input into a new higher-dimensional feature space by apply-

ing a nonlinear transformation using a special kernel function. After that, we

use the SVDD model in this new higher-dimensional feature space. Hence,

the SVDD linear model in this new higher-dimensional feature space repre-

sents a nonlinear model in the input space. To train the proposed SVDD, Ek

first computes the error vectors Ei, given by the following equation:

Ei = Xi − X′i . (5.5)

Let E1, E2, . . . , Ek be independent and identically distributed samples with

f , where f is the unknown density at any given sample E, then kernel density

estimator function of f is given by the following equation:

fb(E) =
1
k

k

∑
i=1

Kerb(E, Ei), (5.6)
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FIGURE 5.3: Adaptive anomaly detection using SVDD.

where Ker is the Laplace radial-basis kernel and b is the adaptive bandwidth.

A scaled kernel with bandwidth b is defined as follows:

Kerb(X) =
1
b

Ker(
X
b
).

In order to come up with an adaptive bandwidth for the SVDD, we use a

grid search mechanism. The grid search mechanism is provided with the

error vectors, which apply a grid search using pre-defined hyperparameters

and outputs the best bandwidth denoted as b.

5.2.4 Proposed XAI Module

In sensitive applications such as digital healthcare, we need to inform users

about why the model reached the output results and which portion(s) of the
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input is/are responsible for the certain output. In our case, health profes-

sionals (end users of the anomaly detection system) would be interested in

knowing which portion of the input is responsible for the maximum recon-

struction loss because that portion would most influence and contribute to

an anomaly. Hence, identifying such a segment in the input would help

identify the key pattern(s) of an anomalous ECG signal. However, deep

learning-based modules are complex in nature to explain, i.e., a high number

of model parameters. To address this challenge, we provide a model-agnostic

XAI module to identify the segment (of desired length/window size) of the

input ECG sample that contributes the most to the reconstruction loss, there-

after to the anomaly. Let X = (x1, . . . , xn) be the input to the AE/VAE, and

X′ = (x′1, . . . , x′n) be the corresponding reconstruction, where X is an ECG

signal with n time stamps. Then, the proposed XAI module identifies the

key segment of the ECG signal with the maximum reconstruction loss by Al-

gorithm 5.2. In this algorithm, s is the number of sub-segments of the input,

Spos is the starting position of a sub-segment, Epos is the end position of the

sub-segment, maxloss is the maximum reconstruction loss, maxloss-position is

the position of the sub-segment in the input, and SLoss is the reconstruction

loss of a given sub-segment.

5.3 Experimental Setup

5.3.1 Dataset Description

To train and test the proposed framework AnoFed, we used a combination

of two datasets from PhysioNet [189]. For the anomaly class, we used the

BIDMC Congestive Heart Failure Database. This database contains longer-

term ECG recordings of severe congestive heart failures from 15 subjects, out
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Algorithm 5.2: The XAI module used in the proposed framework
AnoFed

Input: Anomalous ECG signal, desired window size Ws ≤ n
Output: Segment with the maximum reconstruction loss

1 calculate the possible number of sub-segments s and set the start
position Spos = 0, end the position Epos = Ws maxloss = 0,
maxloss-position = (0, 0)

2 for i=1, 2, . . . , s do
3 SLoss = abs(mean(X[Spos : Es]− X′[Spos : Es])2)
4 if SLoss > maxloss then
5 maxloss-position = (Spos, Ws)

6 maxloss = SLoss

7 Spos = Spos + Ws
8 Epos = Epos + Ws

9 Return maxloss, maxloss-position

of which 11 were men (aged 22 to 71), and 4 were women (aged 54 to 63). Fur-

ther details about the data are available in [189]. The data was pre-processed

by extracting each heartbeat of equal length using interpolation, and the class

values were obtained by automated annotations [190]. For normal subjects,

we use the Massachusetts Institute of Technology-Beth Israel Hospital (MIT-

BIH) normal sinus rhythm [189]. It includes 18 longer-term ECG recordings

of 18 subjects (5 men, aged 26 to 45, and 13 women, aged 20 to 50) with no sig-

nificant arrhythmias. We randomly selected 5,000 (2919 normal samples and

2081 anomaly) heartbeats from each dataset to train and test the proposed

framework AnoFed. Figure 5.4 shows one example sample from each of the

two selected databases. Table 5.1 presents additional information about the

datasets used. It should be noted that the anomaly class contains different

sub-classes of anomalies in it.

TABLE 5.1: More information about the datasets used to train
and test the proposed framework AnoFed.

Class Name Class ID Number of Samples

Normal 1 2919
Anomaly -1 2081
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(A) BIDMC Congestive Heart Failure Database (anomalous ECG)

(B) MIT-BIH Normal Sinus Rhythm Database (normal ECG)

FIGURE 5.4: An example sample from each of the two used
databases.

5.3.2 Implementation Details

In order to evaluate AnoFed in real time, firstly we developed a testbed us-

ing three Raspberry Pi devices (Pi 3 Model B+ with 1.4GHz, 1GB LPDDR2

SDRAM, and 64-bit quad-core ARMv8 CPU) as clients, as shown in Figure 5.5

and a Dell workstation with 32 GB RAM and an Intel® Core™ i-6700HQ CPU

as GS. For the initial (r = 0) global round, GS compiles the AE or the VAE.

We used Adam as the optimizer for both the AE and the VAE. We distributed

the above-mentioned datasets equally (but randomly selected) among the

three edge devices. 75% of the data was used for training by each client or

edge, whereas the rest 25% for testing. Secondly, we increase the number of

clients to five. In the second setting, we used a non-IID data (unbalanced

and skewed) distribution (Edges 3 and 5 with around 630 training samples

each, where Edge 3 contains 60% data from the normal class and 40% data
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FIGURE 5.5: System diagram of the testbed

from the anomaly class. Edge 5 contains 60% data from the anomaly class

and 40% data from the normal class). Each of other clients contain around

1,200 samples selected randomly. 70% of the data was used for training and

30% was used for testing in each client. In both settings, we also kept 1,000

randomly selected samples (not part of the training set in any edge device) to

test the global model. Additionally, we used 10-fold cross-validation in both

settings. Since our task is to use the reconstruction loss to predict anomalies,

we used the normal data only for training the AE and the VAE. Furthermore,

each edge used a batch size of 42, and was trained for only three epochs in

each global round. The ability of our proposed AE/VAE to achieve the min-

imum reconstruction loss within three epochs and one global round makes

it suitable for resource-constrained devices, which is much needed in many

health-related applications. We used a learning rate of 0.001, with a clip value

of 0.5. We used mean squared error (MSE) as the loss function. In order to

find the best suitable bandwidth for kernel estimation in SVDD, we used

sklearn’s grid search module with bandwidth space of (3, 0.2,10), and 30-fold

cross validation1.
1The cross-validation parameter 30 was empirically determined to get better results for

the SVDD classifier.
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5.4 Performance Analysis of the Proposed Frame-

work

In this section, we report the performance of the proposed framework AnoFed

using some state-of-the-art metrics.

5.4.1 Reconstruction Loss

In order to evaluate the performance of AnoFed, we trained both the AE and

the VAE in a federated setting following the experimental setup explained in

the previous section. Figure 5.6 shows the reconstruction loss using the pro-

posed AE and Figure 5.7 shows the reconstruction loss using the proposed

VAE. It can be seen that both the AE and the VAE performed very well. We

use the blue dotted line to show the point one standard deviation away to

the right of the mean of the normal distribution, which can be chosen as a

typical static threshold of the classifier. We can optimize this threshold by

recursively trying other possible values. However, as mentioned previously,

the anomaly detection methods using a static threshold are not compatible

with the federated setting due to different distributions of local and global

models. Hence, we decided to use SVDD along with density kernel estima-

tion for adaptive anomaly detection in a federated setting, which allows us

to avoid setting a static threshold. Although both the AE and the VAE have

similar reconstruction losses, VAEs are considered more generalizable than

AEs [191]. Therefore, we chose to use the error vectors computed using the

VAE’s predictions for kernel density estimation and SVDD training.

5.4.2 Classification Performance

To measure the classification performance, we used the classification perfor-

mance metrics described in chapter 2.1.2.
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FIGURE 5.6: Reconstruction losses of the proposed AE in dif-
ferent models.
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Tables 5.2 and 5.3 present the anomaly detection performance of AnoFed

using the proposed adaptive anomaly detection method in IID and non-IID

data distribution among the clients, respectively, where the number of edge

devices is also changing per data distribution setting. It can be seen that

the proposed method not only achieved state-of-art performance for local

models but also for the global model. As mentioned before, our method does

not require prior knowledge about the distribution of the underlying data, as

it can automatically adapt to the changing distribution when new data come

in.

Figures 5.8 and 5.9 show that AnoFed is able to separate the normal and

anomaly ECG test samples efficiently both locally and globally for both IID

and non-IID settings, respectively. Any test samples with a distance more

than the radius (red line) of the normal class are classified as an anomaly.

E1 E2

E3 GS

FIGURE 5.8: Hyperspheres obtained using AnoFed for IID data.
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FIGURE 5.9: Hyperspheres obtained using AnoFed for non-IID
data with increasing number of clients.

5.4.3 Explainability with XAI module

In order to trace back the segments of the input ECG sample to build trust

among the user we proposed an XAI module as discussed previously. In

this subsection, we show with a sample test example how efficiently the pro-

posed XAI module can trace back the segments of the ECG signal responsible

for maximum reconstruction loss. Figure 5.10 shows an example output of

the proposed XAI module. We used a window size of 10 timestamps. Hence,

each input sample is divided into 14 sub-segments. It can be seen that seg-

ments 14, 6, and 10 of samples 1, 2, and 3 are highlighted in red showing that

these segments have the maximum reconstruction loss (the reconstruction
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TABLE 5.2: The classification performance of the proposed
framework (the adaptive approach).

Class Precision Recall F1-Score Accuracy
Normal 100% 96.0% 98.0% 97.6%Anomaly 95.0% 99.0% 97.0%

(A) Edge 1

Class Precision Recall F1-Score Accuracy
Normal 100% 97.0% 99.0% 98.1%Anomaly 96.0% 100% 98.0%

(B) Edge 2

Class Precision Recall F1-Score Accuracy
Normal 99.0% 98.0% 98.0% 98.0%Anomaly 96.0% 99.0% 97.0%

(C) Edge 3

Class Precision Recall F1-Score Accuracy
Normal 100% 97.0% 98.0% 98.8%Anomaly 97.0% 99.0% 98.0%

(D) Global Server (GS)

loss for each segment is given on the top of each column). In other words,

the segments highlighted in red contribute more to the reconstruction loss as

compared to others, thereafter for the anomaly.

5.4.4 Comparison

In this subsection, we compare AnoFed with some state-of-the-art meth-

ods [106], [192]–[197], in terms of desired features provided and the overall

detection accuracy. Table 5.4 presents the results of the comparison. It can

be seen that AnoFed provides desirable properties such as enhanced privacy

protection (because FL employed in the framework allows peers in the net-

work to train a global model without sharing local healthcare data, but only

sharing trained parameters that reveal less information compared with the

case when the raw local data is shared with the global server directly), ex-

plainability, and adaptive anomaly detection, while others lack some of the
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TABLE 5.3: The classification performance of the proposed
framework (the adaptive approach) with non-IID data.

Class Precision Recall F1-Score Accuracy
Normal 98% 97.0% 98.0% 97.0%Anomaly 97.0% 99.0% 97.0%

(A) Edge 1

Class Precision Recall F1-Score Accuracy
Normal 100% 96.0% 98.0% 98.0%Anomaly 96.0% 99% 98.0%

(B) Edge 2

Class Precision Recall F1-Score Accuracy
Normal 94.0% 97.0% 95.0% 94.0%Anomaly 95.0% 91.0% 93.0%

(C) Edge 3

Class Precision Recall F1-Score Accuracy
Normal 99.0% 96.0% 97.0% 97.0%Anomaly 95.0% 99% 97.0%

(D) Edge 4

Class Precision Recall F1-Score Accuracy
Normal 91.0% 99.0% 94.0% 93.0%Anomaly 98.0% 87.0% 92.0%

(E) Edge 5

Class Precision Recall F1-Score Accuracy
Normal 100.0% 96.0% 98.0% 98.0%Anomaly 96.0% 100% 98.0%

(F) Global Server (GS)

desired properties. Table 5.5 presents comparison of selected state-of-the-

art methods [106], [192]–[196] with AnoFed in terms of the overall detection

accuracy. It can be seen that AnoFed achieved a performance either compa-

rable to or better than the compared methods, with an overall accuracy of

98.8%. Moreover, we achieved state-of-the-art accuracy by training AnoFed

with just three local rounds and one global round, which makes it compu-

tationally efficient for resource-constrained devices. It should be noted that

AnoFed was evaluated in a federated setting, while all others are centralized

so less privacy-friendly as mentioned previously.
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(A) Sample 1

(B) Sample 2

(C) Sample 3

FIGURE 5.10: An example sample showing how the XAI mod-
ule helps achieve explainability.

TABLE 5.4: Comparison with selected state-of-the-art methods
(key features).

Scheme Explainability Adaptivity Enhanced Privacy Protection
[106] 7 7 7

[192] 7 7 7

[193] 7 7 7

[194] 7 3 7

[195] 7 7 7

[196] 7 7 7

[197] 7 3 7

Proposed 3 3 3

5.4.5 Time Complexity of AnoFed

In this subsection, we present the time complexity for the entire pipeline of

AnoFed. Since the number of transformer layers and the multi-head atten-

tion is constant, i.e., they do not depend on the input size, the dot product

in multi-head attention for a given input of size n features takes O(n) time.
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TABLE 5.5: Comparison with selected state-of-the-art methods
(detection accuracy).

Scheme Centralized or Federated Accuracy (%)
[106] centralized –
[192] centralized 99.8
[193] centralized 95.0
[195] centralized 96.0
[196] centralized 99.3
[197] centralized 95.0
[198] federated 70.0 (F1-score)
[199] federated 96.94 (Multi-class)

Proposed federated 98.8

Moreover, each output is the sum product of k features of the input, with a

fixed number of weights, which are not dependent on n. Similarly, computa-

tion on the activation function takes a linear amount of time. Furthermore, all

the edge or client devices perform in parallel, therefore, the overall run-time

is linear, i.e., bounded by O(n).

In our experiments, AnoFed took 74.3 seconds to complete one global

round of training. This time is further divided as follows: training the AE/VAE

for 3 rounds took around 35.4 seconds and training the SVDD took around

38.9 seconds in a federated setting. Additionally, the framework took 0.93

seconds to test a sample. It should be noted that the actual run-time per-

formance of the entire pipeline can vary depending on the implementation

details such as the hardware used, and the number of samples each local

model has.

5.5 Summary

Anomaly detection is one of the important tasks to address when it comes to

digital healthcare with machine learning. Deep learning-based models can

achieve state-of-the-art results, but when being applied in a centralized set-

ting, they suffer from data privacy, data availability, trust, and unknown data
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distribution issues when used for sensitive applications like anomaly detec-

tion in healthcare. In this paper, to address such challenges, we proposed

AnoFed, a FL-based anomaly detection framework, to facilitate collabora-

tive learning with distributed edge servers working with a global server. In

order to facilitate FL with resource-constraint edge devices, we proposed

a lightweight VAE and an AE based on transformers, which are used to

minimize the reconstruction loss within three training epochs of each global

round. To enhance the performance of the FL with a static threshold, we

proposed to use kernel density estimation-based SVDD, which can provide

adaptive anomaly detection without setting a hard threshold. AnoFed can

address issues such as estimating the underlying data distribution automat-

ically with each global round of FL for efficient and accurate anomaly de-

tection. Additionally, we proposed an XAI module to provide some level

of explainability to the results of AnoFed, by tracing back the major seg-

ments of the input that are responsible for a detected anomaly. Lastly, we

tested the proposed framework by combining two benchmark datasets from

PhysioNet’s repository and showed that AnoFed achieved up to 98.8% test

accuracy with 10-fold cross-validation with changing distributions of data.

We also compared AnoFed with a number of selected state-of-the-art meth-

ods, showing comparable results on the performance, but with new desired

features such as better privacy protection, adaptive anomaly detection, and

enhanced explainability.

Although the proposed frameworks in this chapter and previous chapters

can provide explanations, lightweight computation, and enhanced privacy,

with SOTA performance, we still need methods to address security issues

such as poisoning attacks which can potentially degrade the performance of

the global model and thereafter limits the application of FL if such issues are

not addressed. Consequently, to overcome these limitations, in the upcoming

chapter, we will present a comprehensive framework specifically designed to
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address poisoning attacks in Fl. By identifying and mitigating the risks asso-

ciated with poisoning attacks, this framework aims to enhance the effective-

ness and security of Fl applications. Through our proposed framework, we

will provide practical strategies and techniques to detect, prevent, and miti-

gate the adverse impact of poisoning attacks, thereby ensuring the reliability

and integrity of the FL process

8
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Chapter 6

Using Anomaly Detection to Detect

Poisoning Attacks in Federated

Learning Applications

6.1 Introduction

Privacy and security are among the top issues to be addressed in privacy

and security-sensitive applications of ML, such as healthcare, autonomous

vehicles, etc. As mentioned earlier, FL enhances data privacy in ML applica-

tions [112]. Nevertheless, the global model in FL can be easily manipulated,

even if a single-edge device is compromised [35]–[37]. The attack surface of

FL is growing due to its distributed nature. For example, malicious peers can

launch data poisoning [125], [126] or model poisoning [127] attacks, in which

one or more malicious edge devices manipulate their local training data or

the local model trained on benign data, to impair the performance of the up-

dated global model. In other words, in FL, data is not collected at a single

server and there are multiple devices for collecting and analyzing data. Such

distributed settings increase the chances of data poisoning attacks, hence,

methods should be developed for data integrity and authentication
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6.1.1 Contributions

To overcome the weaknesses of the SOTA defense measures mentioned in

chapter 2, in this chapter we made the following key contributions:

• We propose a novel framework for detecting poisoning attacks in FL,

which employs a reference model ( used to check stitching connectivity)

based on a public dataset and an auditor model to detect malicious up-

dates. It can reach the lowest possible computational complexity O(K)

where K is the number of clients.

• We implemented a detector based on the proposed framework to detect

poisoning attacks.

• We evaluate our detector’s performance against state-of-the-art (STOA)

poisoning attacks for two typical applications of FL: electrocardiograph

(ECG) classification and human activity recognition (HAR). Our exper-

imental results showed that our detector can indeed overcome all the

above-mentioned weaknesses.

The rest of the Chapter is organized as follows. Section 6.2 presents the

proposed framework. Sections 6.3 and 6.4 cover the performance evaluation

and comparison of the proposed framework, respectively. Finally, the last

section summarizes the Chapter.

6.2 Proposed Framework

6.2.1 Threat Model

Attacker’s goal: Similar to many other studies [125], [129], [130], we consider

an attacker whose goal is to manipulate the global model in such a way that it

has low performance (i.e., high error rates) and/or misbehaves in a particular
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way. Such attacks make the global model underperform. For example, an

attacker can attack competitor FL systems. We consider both targeted and

untargeted [200] attacks, as discussed previously.

Assumptions: We consider the following assumptions about the threat

model:

1. There are one or more malicious edge devices who try to launch a

model poisoning attack against the global model, possibly in a collabo-

rative manner (i.e., launching a colluding attack).

2. All the attackers follow the FL algorithm, i.e., they train their local

model using their local data and share the parameters with the global

model.

3. All the attackers have two strategies: manipulating their local training

data and train the local model using the manipulated data, and manip-

ulating the model parameters after training it on benign data.

4. All the attackers have the full knowledge about the aggregation rules,

the global model architecture, the auditor model (see Section 6.2.2 for

more details about the auditor model), and the detection results, i.e.,

the whole detection framework is a white box and can be used as an

oracle to adapt the attackers’ strategy.

5. The global server can trust a third party or an isolated component,

which maintains a public dataset that has data representing all classes

of the underlying application for training the auditor model, and the

attackers cannot poison this public dataset or the auditor model.

Note that the final assumption may look very strong, but the existence

of a public dataset is common in many fields (e.g., a public health dataset

maintained by the scientific community).
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6.2.2 Overview

In this subsection, we describe the proposed framework. An overview of the

proposed method has been shown in Figure 6.1. Let us assume K edged de-

vices (hospitals, organizations, etc.) collaborate to train a joint global model

GM. An edge Ek trains a local model LMk using its local data Dk, where

k = 1, 2, . . . , K. The global server GS is responsible for receiving the updates

from edge devices and aggregation. We assume that a trusted third party or

GS (We consider trusted third party to be a different entity from GS) also has

an open-source dataset which is called public data and we represent it as DP.

DP is supposed to be a representative dataset of all the classes in a classifica-

tion problem, i.e., it has samples from each candidate class. The training for

a global round is given as follows.

1. Trusted third party creates an audit model AM and a reference model

RM. Where RM has the same architecture as global model GM.

2. Trusted third party splits DP into train DPtrain and test DPtest datasets

and trains the RM using DPtrain.

3. After training, trusted third party makes predictions with RM using

DPtrain and DPtest. During the predictions for each dataset, trusted

third party taps the activations of the last hidden layer for each input

sample using Algorithm 6.1 to create a dataset DAtrain, and DAtest for

each DPtrain and DPtest, respectively.

4. Trusted third-party trains the audit model (a one-class classifier) us-

ing DAtrain. Here, we treat all the samples of DAtrain as a single class.

Trusted third party sends the trained AM, RM, DPtest and a value P to

GS. We define P later in the section.

5. Each Ei trains LMi using Di.
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6. Each Ei sends updates Wi of trained LMi to GS.

7. GS sets Wi as the parameters of RM and makes predictions using DPtest.

During the predictions, GS taps the activations of RM for each input

sample using Algorithm 6.1 to create a dataset DAi.

8. GS makes predictions using AM and DAi as input data. For every

input sample X ∈ DAi, AM outputs yi ∈ {1,−1} and creates a set

Y = {y1, y2, . . . , yz}, where z is the total number of samples in DAi.

9. GS computes poisoned rate hi =
o×100

z , where o is the total number of

−1′s in Y.

10. GS includes Wi in global aggregation if hi ≤ P, otherwise discards

Wi. Here, P = htest + ασ, and it is the percentage of poison that we

want to tolerate. σ is called deviation tolerance and it is given as σ =

|htest − htrain|. htest and htrain are calculated using DPtrain and DPtest,

respectively. α is a parameter to make the threshold flexible. In our

experiments, we set α = 1.

Algorithm 6.1: Creation of Audit Dataset(s) DAi

Input: A dataset Di and a trained model M
Output: a new dataset DAi

1 for X ∈ Di do
2 Transform X into batch size
3 Make Prediction using X as a test sample in M
4 Get activation maps Ak

l,w of the last convolutional layer. where k is
the number of activation maps with length l and width w each.

5 Get probability score yc, where c is the class label of X.
6 Reshape Ak as an array of 1× j, where j = l × w× k.
7 Reshape X as an array of 1× l, where l is the product of the height

and width of X
8 Compute s = X ‖ Ak ‖ yc

9 Append s in DAi as a new data sample

10 Output DAi

The proposed framework works based on the following two propositions.
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Proposition 1 When a model is trained on noisy data (malicious/poisoned), the first

half of the layers are similar to a model trained on good-quality data (benign).

Proposition 2 Different models with the same architecture but random initial seeds,

trained on different training sets of a similar distribution, have similar internal rep-

resentations and thereafter similar activations for a given test input sample.

Based on Proposition 2, we expect that the models trained on different

datasets of similar distributions will behave similarly. Since the information

specific to the data is learned by the higher-level layers of the model, we

take the activation of the last hidden layer (in the case of CNN’s last convo-

lutional layer) to capture more information (features) related to the training

data. We only consider the activations of the last as it provides sufficient

information about the underlying training data to detect poisoning attacks.

Activations from other higher-level layers can also be incorporated for this

purpose, nevertheless, this increases the computational costs with no signif-

icant improvement in the results for detecting poisoning attacks. Hence, we

only consider the activations of the last convolutional hidden layer. We cap-

ture this property by training another model (AM) to learn the behavior of a

model trained on the benign dataset (RM in our case). Hence, models behav-

ing similarly to the model trained on the benign datasets are probably free

from poisoning attacks, and at least they do not degrade the performance of

the global model.

6.3 Performance Evaluation

We evaluated the proposed framework using two healthcare applications,

i.e., ECG classification and HAR.
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6.3.1 Experimental Setup

Datasets: For ECG classification, we use the widely known MIT-BIT arrhyth-

mia dataset [157]. The dataset contains 48-half-hour two-channel ECG record-

ings. These recordings were obtained from 47 subjects. The dataset contains

109,446 samples, sampled at a frequency of 125 Hz. Further, the dataset con-

tains five classes of ECG: non-ecotic beats (normal beats), supraventricular

ectopic beats, ventricular ectopic beats, fusion beats, and unknown beats.

For HAR, we used the dataset in [174], [201]. The dataset contains time-

series data related to 14 different human activities (standing, sitting, walking,

jogging, going up-stairs, going down-stairs, eating, writing, using a laptop,

washing face, washing hands, swiping, vacuuming, dusting, and brushing

teeth) collected using sensors such as accelerometers, magnetometers, and

gyroscopes.

Classifiers: We developed a convolution neural networks (CNN) based

classifier for each application. The developed classifiers do not achieve the

optimum classification for the considered datasets. This is because our ob-

jective is to show that our proposed framework can detect anomalous (poi-

soning attacks), not to achieve the best performance in terms of classification.

For ECG classification we developed a five-class classifier and the aim of FL

here is to learn a global five-class classifier, and for HAR we developed a

fourteen-class classifier, and the aim of FL here is to learn a global fourteen-

class classifier.

Federated Setting: To simulate the federated setting, we simulated a net-

work with three edge devices (two benign ones and one attacker) where the

three edge devices were implemented using Tensorflow 2.11 and Python 3 in

a Dell latitude laptop with 12th Gen Intel® Core™ i7-1265U processor and

16 MB DDR4 RAM and a global server using Tensorflow 2.11 and Python

3 in a Dell workstation with 32 GB RAM and an Intel® Core™ i-6700HQ
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CPU. Furthermore, we divided the dataset equally, but randomly among the

participating edge devices for each application, i.e., ECG classification and

HAR.

6.3.2 Performance Evaluation

In order to evaluate the performance of the proposed framework, we first

tested the proposed framework to check its ability to differentiate samples in

DAi of benign edges from samples in DAi of malicious edges. We trained

a RM and an AM using a public dataset (which is excluded from the train-

ing data of the edge devices and the test data). We distributed each candi-

date dataset (ECG and HAR) equally (in the case of the HAR dataset, benign

nodes contain slightly more data) but randomly among the benign and ma-

licious nodes. For each dataset, we did the following. We created DAi using

each benign edge and labeled each sample as 1 (for benign). Similarly, for the

malicious edge, we created DAi using each type of model and data poison-

ing attack discussed in Section 2.4.1 and selected random samples from each

attack’s DAi to make a new DAi and labeled each sample as -1. We combined

the two DAi’s that we created and labeled as -1 and 1. Then, this lastly cre-

ated dataset was used to test the AM. Note that here we just show the ability

of the proposed framework to classify benign and malicious samples not the

detection of updates. We will show the detection of updates later. Table 6.1

shows the classification accuracy of the proposed framework to differenti-

ate samples generated using shared parameters of benign edged devices and

the samples generated using shared parameters of malicious edge devices

for ECG classification. Similarly, Table 6.2 shows the classification accuracy

of the proposed framework to differentiate samples generated using shared

parameters of benign edged devices and the samples generated using shared
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parameters of malicious edge devices for HAR. For both types of applica-

tions, it can be seen that the proposed framework can differentiate samples

of benign and malicious edged devices very well, with an overall accuracy

of 94% and 99% for HAR and ECG classification, respectively. As mentioned

previously, here we calculate the overall accuracy of AM to classify benign

and malicious samples which is 94% and 99% for HAR and ECG respectively.

It should be noted that the poison attack detection is still 100% as updates

with 94% and 99% poisoned samples will have a poison rate of around 94%

and 99%, respectively. Hence, updates with 94% and 99% poison rates will

be classified as malicious and will be removed from global aggregation.

TABLE 6.1: Classification accuracy of AM for ECG classification

Class Precision Recall F1-Score #(Samples)

Benign 100 97 98 9,000
Malicious 97 100 99 9,000
Accuracy 99 18,000

Micro average 99 99 99 18,000
Weighted average 99 99 99 18,000

TABLE 6.2: Classification accuracy of AM for HAR

Class Precision Recall F1-Score Support

Benign (1) 96 95 95 22,280
Malicious (-1) 90 91 91 11,140

Accuracy 94 33,420
Micro average 93 93 93 33,420

Weighted average 94 94 94 33,420

Now, we show the ability of the proposed framework to detect malicious

updates and remove them from the global aggregation. We simulated the

proposed framework as follows. First, the trusted third party prepares the

RM and the AM and trains the RM and the AM using the public data and

sends it to GS. Then the benign devices and the attacker send the updates

to the GS. The attacker launches a given attack at each global round. For

example, for round r it uses a random label flipping attack and for r + 1 the
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attacker launches a feature poisoning attack, and so on. We tested the per-

formance of our proposed framework under all the different types of model

and data poisoning attacks listed in Section 2.4.1. Moreover, we distributed

the data among the edged devices randomly but using non-independent and

identically distributed unbalanced data distribution, where each edge has

40-50% fewer data for a given class. For example, edge 1 has 40% fewer sam-

ples of non-ecotic beats class for the ECG dataset as compared to other edge

devices, and edge 2 has 50% fewer samples of supraventricular ectopic beats

class compared to other edge devices. In comparison, edge 3 (attacker) has

an equal number of samples for each class. This is done in order to give

more attacking power to the edge3. For example, if the attacker has an equal

number of samples of each class it can launch a random label flipping attack

which will eventually affect all the classes and will affect the global model

significantly. We follow similar distribution for the HAR dataset.

First, we present the comparison of the accuracy of the global model af-

ter one global round with and without our proposed framework, under four

different data poisoning attacks. Note that our global model achieves opti-

mum accuracy after one global round, hence we launched the attack in each

global round. Otherwise, the attacks can be launched at any given global

round. Figure 6.2 presents a comparison of the accuracy of the global model

under different data poisoning attacks and with and without the proposed

framework for ECG classification. Here, GM is a global model with our pro-

posed framework under different data poisoning attacks, LS represents the

global model under a label swapping attack without our proposed frame-

work, RLF represents the global model under a random label and feature

poisoning attack without our proposed framework, RL represents the global

model under a random label attack without our proposed framework, and

FP represents the global model under a feature poisoning attack without our
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FIGURE 6.2: Performance of the global model with and without
our proposed framework under four different data poisoning
attacks on ECG classification. Here, GM presents the Proposed
Framework, LS presents Label Swapping, RLF presents Ran-
dom Label Feature poisoning, RL presents Random Label and

FP presents Feature Poisoning.

proposed framework, all in a federated setting. It can be seen that the perfor-

mance of the global model deteriorates significantly under the data poison-

ing attacks. It can also be seen that the performance of the global model was

not affected by the poisoning attacks when we applied our proposed frame-

work that could detect and eliminate almost all poisoned updates from the

malicious edge before global aggregation. As mentioned previously, even if

the accuracy of AM for benign and malicious sample detection is not 100%,

it can accurately detect all the malicious updates because the poisoning rate

is high. Hence, its malicious updates detection is still 100%. Similarly, Fig-

ure 6.3 presents the performance of the global model compared under four

different data poisoning attacks with and without adopting the proposed

framework for HAR. Since all the malicious updates are detected and re-

moved before aggregation, the accuracy of the global model remains almost

similar for a given dataset.
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FIGURE 6.3: Performance of the global model with and without
proposed framework under four different data poisoning at-
tacks on HAR. Here, GM presents the Proposed Framework, LS
presents Label Swapping, RLF presents Random Label Feature
poisoning, RL presents Random Label and FP presents Feature

Poisoning.

Moreover, Figure 6.4 presents a comparison of the accuracy of the global

model under four different model poisoning attacks with and without our

proposed framework for ECG classification. Here, GM shows the perfor-

mance of the global model with our proposed framework, and SF shows the

performance of the global model under a sign flip attack without our pro-

posed framework, SV shows the performance of the global model under a

same value attack without our proposed framework, AGA shows the perfor-

mance of the global model under a performance additive Gaussian noise at-

tack without a proposed framework, and GA shows the performance of the

global model under a gradient ascent attack without our proposed frame-

work, all in a federated setting. Similarly, Figure 6.5 presents a comparison

of the accuracy of the global model under the four different model poisoning

attacks with and without our proposed framework for HAR.

Table 6.3 shows the poisoning rate identified by the proposed framework
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FIGURE 6.4: Performance of the global model with and with-
out proposed framework under four different model poison-
ing attacks on ECG classification. Here, GM presents the Pro-
posed Framework, AGA presents Additive Gaussian Noise,
GA presents Gradient Ascent, SF presents Sign Flipping, and

SV presents the Same Value attack
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FIGURE 6.5: Performance of the global model with and with-
out proposed framework under four different model poisoning
attacks on HAR. Here, GM presents the Proposed Framework,
AGA presents Additive Gaussian Noise, GA presents Gradient
Ascent, SF presents Sign Flipping, and SV presents the Same

Value attack
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for each edge in the federated setting for HAR. Here Edge 1 and Edge 2 are

benign devices and Edge 3 is the malicious device that launches different

data poisoning attacks in each global round, whereas the P value in the ta-

ble shows the threshold, which is calculated using htest and σ. Any updates

(Wi) from an edge device for which it’s corresponding DAi has a value of hi

greater than P will be marked as malicious or poisoned and removed from

global aggregation. It can be seen that in Table 6.3, h1 and h2 for Edge 1 and

Edge 2, respectively, have a value smaller than P. Hence, the updates W1

and W2 will be included in global aggregation, while W3 will be excluded

from global aggregation as its corresponding h3 is greater than P. It can be

seen that our proposed framework can not only detect the attacks but also

provide insights into the percentage (a general idea about possible poison

percentage) of poisoned data being used to train a malicious local model.

For example, for LS we swapped the label of some classes (for ECG classi-

fication two classes and for HAR 10 classes) while keeping the rest of the

labels in their original form, thereafter it gives a value of 47.7 for ECG and

81.2 for HAR. Similarly, Tables 6.4, 6.6 and 6.5 present the performance of

our proposed framework to detect data poisoning attacks on ECG classifi-

cation, model poisoning attacks on ECG classification, and model poisoning

attacks on HAR, respectively. Hence, these results show that the proposed

framework can identify malicious updates which are then removed from the

global aggregation.

TABLE 6.3: Detection of data poisoning attacks on HAR

Attack
Type P (htest = 20.0, σ = 10.0) Edge 1 (h1) Edge 2 (h2)

Edge 3
(Malicious)

(h3)

RLF 30.0 23.3 11.5 94.5
RL 30.0 23.5 10.0 100
LS 30.0 21.1 19.7 81.2
FP 30.0 18.3 16.1 91.0
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TABLE 6.4: Detection of data poisoning attacks on ECG classi-
fication

Attack
Type P (htest = 15.0, σ = 10.0) Edge 1 (h1) Edge 2 (h2)

Edge 3
(Malicious)

(h3)

RLF 25.0 10.2 14.5 100
RL 25.0 14.5 19.0 100
LS 25.0 12.1 21.3 47.7
FP 25.0 13.3 22.1 100

TABLE 6.5: Detection of model poisoning attacks on HAR clas-
sification

Attack
Type P (htest = 20.0, σ = 10.0) Edge 1 (h1) Edge 2 (h2)

Edge 3
(Malicious)

(h3)

SF 30.0 20.3 19.5 100
SV 30.0 20.2 20.1 100

AGA 30.0 20.1 19.7 90.1
GA 30.0 20.3 20.1 100

TABLE 6.6: Detection of model poisoning attacks on ECG clas-
sification

Attack
Type P (htest = 15.0, σ = 10.0) Edge 1 (h1) Edge 2 (h2)

Edge 3
(Malicious)

(h3)

SF 25.0 10.0 11.7 100
SV 25.0 10.2 10.1 100

AGA 25.0 9.9 9.7 96.1
GA 25.0 10.1 10.4 100

6.4 Comparison

Table 6.7 shows a comparison of our proposed framework with some of the

STOA methods for detecting poisioning attacks in FL [36], [134], [135], [137],

[138], [140], [141], [202]–[206], where the Category column presents the type

of detection mechanism, attack type presents type of attack, the Model Accu-

racy column presents the accuracy of global model under attack compared

with the accuracy of global model without any attack, the Data Distribution
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column presents the type of data distribution among clients: independent

identically distributed (IID), non identically distributed (Non-IID), d repre-

sents model size (depth) of each client and K is the total number of edge de-

vices/clients. It can be seen that our proposed framework provide more de-

sirable features than all other STOA methods. Our proposed framework does

not need knowledge about the number of attackers. It can detect both types

of attacks, i.e., model and data poisoning attacks. Moreover, its time com-

plexity is the least compared to others. Additionally, the proposed method

can be used in both IID and non-IID data distribution with high accuracy.

6.5 Summary

In this Chapter, we present a novel framework to detect poisoning attacks

in FL applications. Our proposed framework can efficiently detect SOTA

data and model poisoning attacks by observing the activations of the shared

weights of the local models. Unlike most of the existing methods, our pro-

posed framework can detect poisoning attacks without degrading the global

model’s performance. In addition, while most of the existing methods need

knowledge about the number of attackers in the network, which can limit

their applications, our proposed method can detect poisoning attacks with-

out any knowledge about the number of attackers in the network. Moreover,

in principle, our proposed method can detect any number of attackers, es-

pecially if they do not collude, thanks to the use of the auditor model based

on the public dataset, while many SOTA methods can only work up to a

particular number of attackers. Additionally, the time complexity of our pro-

posed framework is dependent only on the number of edge devices, with

makes it suitable to be used with any size (in terms of depth) of the net-

work, whereas the time complexity of existing SOTA methods depends on

the number of edge devices as well as the size of the network. We tested our
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proposed framework under four different data poisoning attacks and four

different model poisoning attacks for two healthcare applications, showing

that the proposed framework could efficiently detect malicious updates and

can exclude them from the global aggregation.

8
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Chapter 7

Conclusions, Limitations and

Future Work

7.1 Conclusions

In this thesis, we developed frameworks for high-performing, robust, and

privacy and security-enhanced healthcare applications by leveraging the stre-

ngths of FL. We address the challenges faced by centralized DL i.e., pri-

vacy concerns, high communication costs for data collection, and the need

for high-quality data for data-hungry DL models. We addressed these chal-

lenges by building high-performing and robust frameworks in federated set-

tings which can enhance privacy, reduce communication costs and provide

SOTA performance. Additionally, we provided XAI modules to help explain

the outcome of complex DL models which are needed in some applications,

such as healthcare applications. Furthermore, we made our proposed frame-

work robust against non-IID data distribution and data poisoning attacks

in a federated setting. In particular, we make the proposed framework ro-

bust against varying noisy, unbalanced and skewed data, data poisoning and

model poisoning attacks. In Chapter 3, we developed and validated a CNN-

based two-phase approach for robust end-to-end classification in a federated

setting with model-agnostic explanations based on GradCAM. In Chapter 4,
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in order to support applications that have long-term dependencies, such as

HAR we proposed a lightweight transformer-based classifier, which attained

SOTA performance while being computationally lightweight to support fed-

erated learning with resource-constrained clients. In Chapter 5, for adap-

tive anomaly detection in federated settings, we designed and validated a

novel two-phase approach. First, we proposed transformer base AE/VAE

and trained them using the normal class signal, from which we get the er-

ror vectors and we use the obtained error vectors along with Kernel density

estimation and one class support vector data description for anomaly detec-

tion. Additionally, we designed and validated an explainable AI module to

detect the region of the input with the highest impact on the output, which

helps decision-making by tracking back the regions with the highest anomaly

with adaptive window size. Finally, in Chapter 6, we designed and validated

a framework for poisoning attack detection in federated settings which can

detect poisoning attacks without the need for access to local data with low

time complexity.

To summarize, the thesis introduces innovative frameworks for health-

care applications using Federated Learning (FL). Key contributions include

enhancing privacy/security, overcoming centralized DL challenges, and pro-

viding explainability. The work ensures robustness in federated settings against

data distribution variations and attacks. Chapter-wise, we develop a CNN-

based classification approach with model-agnostic explanations, a lightweight

transformer-based classifier for HAR application, a novel adaptive anomaly

detection approach with an explainable AI module, and a novel low time-

complexity poisoning attack detection framework with SOTA performance.

Overall, the research advances privacy-sensitive applications of embedded

AI by tackling privacy, communication, and robustness issues while enhanc-

ing security, interpretability, and performance.
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7.2 Limitations and Future work

In this section, we discuss some limitations and perspectives of the proposed

frameworks. Our proposed frameworks provide SOTA performance, robust-

ness, explanations, and enhanced security and privacy. However, there are

certain limitations, which can be explored in the future to make the proposed

frameworks more reliable and trustworthy. Limitations and perspectives are

given as follows:

1. The proposed frameworks consider the data devices in distributed edg-

es to be homogeneous (same device), but in some cases, the devices

may be heterogeneous, and device-specific characteristics ( measuring

units, sampling rate, etc) may limit the generalizability of the local

models from device to device and may reduce the accuracy of the ag-

gregated model.

2. In addition, a major limitation of our work is that datasets such as our

newly constructed dataset were based on only five human participants

and a more artificially constructed home care scenario. It is therefore

important to evaluate the proposed work in more realistic home health-

care settings, and ultimately move the proposed frameworks into real-

world usage. For such future work, the involvement of patients, carers,

and health professionals is vital in all stages of the research process,

following well-established standard procedures and guidelines such as

the UK Standards for Public Involvement [209].

3. In regards to HAR, one important aspect of the real-world-facing re-

search is to carefully evaluate the acceptability and usability of body

sensors used to ensure that they are the right ones for the target pa-

tients. This suggests that different sets of body sensors may have to be

used for patients with different conditions or preferences, so we need to
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investigate how the proposed frameworks will change w.r.t. the differ-

ent sets of sensors. These include scenarios where nobody sensors can

be put on the body of a patient, so computer vision-based approaches

relying on monitoring cameras and microphones will need investiga-

tion, which will involve very different ML/DL models from those we

used for the proposed work in this thesis. Validating the performance

of our proposed frameworks with a larger dataset covering more pa-

tients and people with normal conditions will be useful to consolidate

the evidence presented in this thesis.

4. Furthermore, our experiments were based on a small number of edge

devices (3-10) and simulated local data, so it will be important to re-

validate the overall performance of the proposed frameworks in a more

real-world setting. Doing both will require close collaboration with

healthcare organizations, which will not be trivial to achieve and will

be our long-term future work.

5. From a security perspective, although our proposed framework in Chap-

ter 6 has a number of merits, it also has the following limitations:

• The need to maintain a stable and validated public dataset: The depen-

dence on a well-validated public dataset means that our method

will not work if drastically different new data samples and even

new classes keep emerging. Examples include automatic detec-

tion of rare diseases or rapidly changing viruses (e.g., COVID or

flu viruses), and intrusion detection systems where attackers keep

changing their attack behaviors. In other words, our proposed

method is suitable only for applications where 1) class labels are

stable and representative samples of each class do not change too

rapidly, or 2) a public dataset can be easily maintained by an ac-

tive community despite the fast evolution of data samples. In the



7.2. Limitations and Future work 163

future, we will study how to relax the dependency on the public

dataset, which likely requires new ideas to update the RM, e.g.,

based on some distributed consensus protocols.

• Dependence on a trusted third party or component: Conceptually speak-

ing, our proposed model relies on a trusted third party or a trusted

component of the global server – the auditor model + the refer-

ence model + the public dataset. Such dependencies are widely

used in cryptography. In some applications, such a trusted party

or model may be difficult to find or establish, e.g., when the clients

do not have trust on each other and cannot agree on anything

they can trust collectively. If it is possible to remove the trusted

party/component or constructed a similar entity under a “zero

trust” environment is an interesting future research direction.

• Sensitivity to “small” poison in updates: The anomaly detection com-

ponent of our proposed method still relies on a threshold to detect

malicious clients, therefore it will not be able to detect “small” poi-

soning attacks. While in this case, a single attacker may find it dif-

ficult to poison the global model, carefully coordinated colluding

attacks of many malicious clients may be able to collectively make

a difference. Detecting such small colluding poisoning attacks re-

quires different approaches, and will be one interesting future re-

search direction.

• Limited experimental results: Although we conducted many experi-

ments, the existence of many poisoning attacks and different con-

figurations of the FL system means that our experimental results

do not cover all aspects of our proposed method. For instance,

we used only three edge devices and one attacker and therefore

did not consider different combinations of multiple attackers who
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could launch different attacks with different parameters and some

of them could collude. In the future, we plan to conduct a more

comprehensive set of experiments to investigate more aspects of

our proposed method’s performance.

• More advanced attacks: Our experiments were conducted with known

poisoning attacks that are unaware of our proposed method. Some

advanced attacks may be developed to target our proposed method

with a better evasion rate. For example, backdoor trigger attacks

inject a trigger into the training data, and the malicious behavior

of the attack is invoked only in the presence of the trigger. Hence,

advanced attacks and how our proposed method can be further

improved to mitigate such attacks will be another direction of fu-

ture research.

6. Adoption of proposed techniques to other types of federated learning

such as vertical FL will require signification modification in the design

and revalidation of the experiments.

7. As we discussed in Chapter 2, FL can be subjected to difference infer-

ence attacks that aim at compromising privacy, DP is a useful privacy

protection mechanism, and research has shown that there exists a trade-

off between privacy and efficacy [210]. If we increase the noise (i.e., de-

crease the privacy budget), the accuracy of the model will decrease. If

we use a high privacy budget (i.e., add low noise), we can achieve high

accuracy, but in this case, the inference attacks can be launched suc-

cessfully, i.e., the privacy budget can affect the attack’s performance.

Moreover, ML models may be able to ignore the added noise in train-

ing data if they have been sufficiently well-trained because ML models

can generalize well if trained on noisy data, thus ignoring the noise and

adapting key features of data [211]. Despite these complicated aspects
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with the application of DP to FL, to the best of our knowledge, no past

research has systematically investigated how different FL aggregation

methods and/or privacy budgets interact with DP mechanisms such as

DP-SGD, therefore it remains unknown if DP-SGD can survive MIAs

effectively when different FL aggregation methods are used. Hence,

methods are needed to fill this research gap via a number of exper-

iments, which can reveal that if using DP-SGD alone cannot always

protect against MIA attacks and the relationship between the privacy

budget and the performance of MIAs is non-monotonic. In such cases,

additional methods should be developed to enhance privacy protec-

tion.

8
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