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la fois scientifique et humain que tu m’as offert. Tu as toujours su me motiver
dans les moments difficiles.
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d’IMA.

Le Deep Learning Working Group a aussi rythmé mes semaines au labo-
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Résumé

Le radar à synthèse d’ouverture (SAR) n’est pas impacté par la présence de
nuages ou la luminosité et permet donc l’acquisition d’images riches en informa-
tions pour l’observation de la Terre (chapitre 1). De fortes fluctuations appelées
”speckle” sont néanmoins visibles sur ces images et rendent leur interprétation
difficile. Le “speckle” est un phénomène intrinsèque à l’illumination cohérente de
la scène par le capteur est vient de la somme des échos des différents éléments
au sol au sein d’une case radar. Des interférences constructives et destruc-
tives ont lieu et donnent naissance aux fluctuations appelées speckle. Des im-
ages sans fluctuation ne peuvent donc pas être acquises. Les propriétés du
speckle sont différentes de celles du bruit additif blanc gaussien usuellement
utilisé en imagerie optique. Les algorithmes de despeckling sont donc propres
aux statistiques du speckle du modèle de Goodman (chapitre 2). Récemment,
des méthodes d’apprentissage profond ont donné de très bons résultats pour
la restauration d’une seule image SAR. Les travaux proposés au sein de cette
thèse utilisent le traitement conjoint de plusieurs images SAR pour améliorer
leur restauration en exploitant l’information commune tout en empêchant la
propagation de potentielles différences (chapitre 3).

Le chapitre 4 est centré sur le despeckling des images Sentinel-1 GRDM
Extra Wide de la glace de mer. La glace se déplaçant rapidement sur la mer,
des changements structurels apparaissent rapidement sur une zone d’intérêt,
rendant les piles multi-temporelles inexploitables. Le bruit thermique de ces
images ne peut pas être négligé car les valeurs de réflectivité de l’eau et de la
glace sont très faibles et proches du seuil du bruit thermique. Notre méthode
de despeckling polarimétrique utilise et restaure conjointement les canaux po-
larimétriques HH et HV disponibles dans les données d’intérêt. Une zone du
Nord de la Russie a été retenue pour l’entrâınement du réseau et s’inspire de
la méthode SAR2SAR, en prenant en entrée des images corrigées où la com-
posante de bruit thermique a été supprimée. La qualité des images Sentinel-
1 de l’Arctique restaurées avec notre approche est bien meilleure que celle
obtenue avec d’autres techniques de restauration. Une piste pour la valida-
tion du débruitage via l’analyse des résultats d’une méthode de classification
des différents types de glaces de mer est proposée en perspective.

Utiliser l’information partagée au sein d’une pile multi-temporelle tout en
ignorant l’impact des changements temporels améliore le despeckling comme
le montrent les travaux de débruitage multi-temporel des images SAR. Des
méthodes de despeckling multitemporel basées sur un moyennage temporel ou
l’utilisation d’une super-image construite à partir d’une moyenne temporelle
débruitée sont d’abord présentées dans le chapitre 5. Un modèle génératif
est ensuite proposé afin d’expliciter la formation d’une pile multi-temporelle
d’images SAR en tenant compte des corrélations spatiales et temporelles du
speckle. Une extension multitemporelle de la méthode MERLIN est basée sur
ce modèle génératif et prend en entrée des images additionnelles de la même zone
mais acquises à des dates différentes. L’entrainement du réseau est non supervisé
et s’inspire de la méthode Noise2Noise : la partie réelle (ou la partie imaginaire)
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de l’image et les dates additionnelles sont transmises au réseau et la partie imag-
inaire (ou la partie réelle) est utilisée comme cible. Un premier entrâınement
sur du speckle simulé montre que l’ajout d’images supplémentaires améliore la
restauration des images SAR avec un gain décroissant. Un blanchiment tem-
porel est proposé pour éviter une perte de performance liée aux corrélations
temporelles entre les canaux d’entrée. L’entrâınement du réseau a été effectué
sur des images TerraSAR-X en modalité stripmap ainsi que des images Sentinel-
1 en modalité stripmap.

L’absence d’image de référence rend l’évaluation des méthodes de despeckling
difficile. Le chapitre 6 se concentre sur la quantification des incertitudes liées à
la prédiction d’un réseau. Des travaux combinant le despeckling et l’estimation
d’une carte d’incertitudes sont d’abord présentés. Dans le cadre d’origine, i.e.
la méthode MERLIN, une seule valeur de réflectivité est prédite pour chaque
pixel. Dans ces travaux d’estimation d’incertitudes, nous visons à prédire les
paramètres d’une distribution choisie pour chaque pixel. Les paramètres des
lois uniforme puis inverse gamma sont estimés lors de l’entrâınement, mais les
résultats trouvés ne sont pas concluants. La difficulté à quantifier les incerti-
tudes dans un cadre d’apprentissage auto-supervisé où le niveau de bruit est
élevé est discutée via une analyse de l’erreur relative dans un cadre plus simple
de corruption par un bruit additif gaussien. Une autre méthode est proposée :
en utilisant le principe du réseau MERLIN, la prédiction de la carte moyenne
des différences entre les prédictions basées sur la partie réelle et imaginaire est
prédite pas un autre réseau. Elle fournit une carte d’incertitudes satisfaisante.
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Scalar and vector notations:
j C imaginary unit
z CTN representation of a stack of T N -pixels images

z(·, k) CT vector of values at pixel k
z(t, ·) CN t-th image of the stack
zt CN t-th image of the stack (compact notation)
zref CN image at date tref, the date to restore

Scene parameters:
d CTN dominant scatterers
r RTN

+∗ re�ectivities of speckled areas
rt RN

+∗ t-th re�ectivity image of the stack
isuper RN

+∗ super-image computed with the T images of the stack
ī RN

+∗ temporal mean (intensity) computed with the T images of the stack

Dual-polarimetric GRD images:
Σ C2N×2N polarimetric covariance matrix

d̃ R2N
+∗ calibrated GRD intensities

d̃c R2N
+∗ calibrated and corrected GRD intensities

σ0 R2N
+∗ calibrated re�ectivities

σ0
th R2N

+∗ thermal noise �oor component

Speckle �eld:
ϵ CTN uncorrelated speckle
Γk CT×T speckle coherence matrix at pixel k

Lk CT×T correlating operator such that LkL
†
k = Γk

L CTN×TN correlating operator for the full stack

Complex amplitudes on the radar antenna:
s CTN complex amplitude of the speckled component
z CTN resultant complex amplitude: z = s+ d
z̃ CTN complex amplitude including SAR system e�ects

Acquisition speci�c parameters:
φt CN atmospheric, topographic, and displacement

phase e�ects at each pixel of the t-th image
ψt CN phase ramp corresponding to the spectrum shift

due to angular discrepancies
Q CN×N SAR response (spectral apodization and 0-padding)
Ht CN×N SAR response (spectral apodization, 0-padding+shift)

Pre-processing step to enforce statistic independence:
ż CTN complex amplitudes with recentered power spectrum

γij(k) C complex correlation coe�cient (i.e., coherence)
between ż(ti, k) and ż(tj , k)

Wk C2×2 whitening matrix at pixel k
W C2N×2N whitening operator for a pair of images
z̊ CTN complex amplitudes after whitening

Self-supervised training:
åref CN real part of pre-processed image at date tref
b̊ref CN imaginary part of pre-processed image at date tref

LMERLIN self-supervised loss function
r̃ref RN

+∗ low-pass �ltered re�ectivities at date tref
ḋref CN low-pass �ltered dominant scatterers at date tref

Table 1: Main notations and corresponding dimensions.
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Chapter 1

Background and main objectives of

the thesis

1.1 Introduction to Remote-Sensing and its challenges from

an image processing perspective

1.1.1 Overview of Remote-sensing: di�erent ways to acquire images of
the Earth

NASA de�nes remote-sensing as the acquiring of information from a distance. Remote-sensing
is used to observe the Earth with sensors onboard satellites or aircrafts, aiming at detecting the
re�ected or emitted energy of various objects on the ground.
Airborne sensors are usually used to monitor a very speci�c area and produce very high resolution
images. Because of their relatively small distance to the ground, there is limited impact of the
atmosphere on the resulting image. However, the geometry of the acquisition is more complex
because the aircraft is less stable and its trajectory can be winding.
Remote-sensing satellites acquire images of the Earth from space. Their orbits can be classi�ed in
three main categories: low-Earth orbit (from 160 to 2000 km above the ground), medium-Earth
orbit (from 2000 to 35 500 km above the ground); and high-Earth orbit (more than 35 500 km
above the ground). The orbits can be geostationary (so the satellite keeps seeing the same area on
Earth) or follow various orbital tracks (most of the time from pole to pole, leading to cycles of a
�xed duration to scan the entire planet).

Di�erent kinds of sensors are used in remote-sensing, each one belonging to two main categories
as shown in Figure 1.1. Passive sensors are based on the analysis of radiation emitted by the scene
but coming from external sources; and active sensors are based on the analysis of radiation scattered
back by the scene coming originally from the sensor itself.
Passive sensors are capturing the power of the radiated light by the objects on the ground. The
acquisition mechanism is the same as a camera, and the sensor is targeting the ground with an
incident angle almost corresponding to nadir. The sensor can be sensitive to di�erent wavelengths:
optical images are obtained with visible wavelengths (400nm ≤ λ ≤ 800nm); multi-spectral and
hyperspectral images are also acquired with infrared radiations (from 800nm ≤ λ ≤ 12 500nm). The

10
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Figure 1.1: Passive sensors: radiation emitted by the sun is re�ected by the objects on Earth.
Their radiation is captured by the sensors. Active sensors: a radiation is emitted by the sensor and
scattered back by the objects on the scene. ©NASA Applied Sciences Remote Sensing Training
Program.

wavelength used to monitor a region is chosen based on what we want to study. Red radiations are
used to observe human structures whereas mid-infrared and even far-infrared radiations are used
to observe vegetation and forests, and are commonly used for military application.
These kinds of images, and especially optical images, are very easy to interpret and correspond to
the general idea of satellite imaging. Their characteristics are close to the ones of natural images,
making the use of traditional methods easy. Unfortunately, optical images can not be interpreted
when the cloud coverage is high: as the sensor is taking a picture of the scene, clouds and even a
lack of light (night for example) will lead to unreliable images. Monitoring equatorial climate zones
is thus very challenging or even impossible depending on the period of the year because of a very
cloudy and rainy weather. An example of the evolution of cloud coverage is given in Figure 1.2 for
the city of La Paz in Bolivia. Another extreme case could be for areas near the North or the South
poles where the nights can last up to 3 months. In the archipelago of Svalbard in Norway, the Polar
night starts on November 11th and ends on January 30th. During this time, light intensity is low
and monitoring sea ice or icebergs in the Arctic is almost impossible with optical images.

Active sensors like radars are emitting a radiation toward the area of interest. On the ground, a
�rst part of the radiation is absorbed, then a second part is re�ected and the �nal part is scattered.
The backscattered radiation is captured by the sensor and an image can thus be reconstructed.
The image is directly linked to the structures and the materials on the ground. Because of the
wavelengths used in radars, the acquisition does not rely on the weather and the atmospheric
conditions have a very low impact (this will shortly be discussed in this manuscript in Chapter 5).
Thus, the monitoring of an area on the ground or oceans can be done at all time, during night and
day, and through all seasons.

Nowadays, numerous satellites are gravitating around the Earth, each one having its speci�city
and dedicated �elds of applications. A non-exhaustive list is given in Table 1.1. In this work, we will
mainly focus on active sensors and more speci�cally Synthetic Aperture Radar such as Sentinel-1
and TerraSAR-X satellites.
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Figure 1.2: Sentinel 2 optical images of the city of La Paz, Bolivia. First image on the left was
acquired on 29/08/2023, cloud coverage equal to 0%; the second (central) image was acquired on
20/02/2023 with a cloud coverage equal to 17%; last image on the right was acquired on 01/01/2023
with a cloud coverage equal to 47%. Even if the central image has a medium cloud coverage, we can
see that it is very di�cult to perform segmentation or detection on this urban area. The last image
is impossible to process. In practice, the cloud parts of the images are ignored when processed. The
retrieval of the data needs a threshold percentage for the cloud coverage which is �xed depending
on the application.

1.1.2 RADAR and SAR images

RADAR (RAdio Detection and Ranging) is the most notorious active system used in remote-sensing,
and has lead to the Synthetic Aperture Radar imaging. The general concept of this type of imaging
relies on the timing of the propagation of an electromagnetic radiation emitted by the sensor. Part
of the radiation is scattered back to the sensor itself and based on the received echoes, an image is
produced.
The acquisition of Synthetic Aperture Radar images is carried with a satellite or an airborne which
is side-looking at the ground. They are generated using several acquisitions during the Synthesis
step: because the resolution of the image depends on the size of the antenna, a synthetic antenna
is simulated by acquiring multiple images of the same area and combining them. A focusing along
the range (direction orthogonal of the displacement of the sensor, associated with the abscissa in
the Cartesian plane of the image) and then on the azimuth (direction of displacement of the sensor,
associated with the ordinate in the Cartesian plane of the image) is done as shown in Figure 1.3.
Because the bandwidth of the sensor is limited, a convolution by a sinc function for each pixel of
the image is visible and the signature of each scatterer is wide-spread. To reduce the sidelobes and
make the SAR image more interpretable, a 0-padding and an apodization function is applied to
the spectrum of the SAR image. The synthesis step is not detailed in this manuscript but further
details are given in [1].

The �nal images are complex-valued and give an information in amplitude and also in phase.
Because we are working with electromagnetic radiations, di�erent polarizations can be observed
depending on the sensor. Most of the time, we have the HH (horizontal transmission, horizontal
reception) and VV (vertical transmission, vertical reception) polarizations, and the cross polariza-
tions HV (horizontal transmission, vertical reception) and VH (vertical transmission, horizontal
reception). Polarimetric information will be used in Chapter 4 of this manuscript.

Because the sensor is side looking and has an incident angle from 15 to 50 degrees, we can
observe geometrical deformations as explained in Figure 1.4. These deformations are not easy to
interpret as shown in Figure 1.5.

Moreover, SAR images are corrupted by a noise called speckle. The speckle is a multiplicative
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Name Type of sensor Spatial agencies involved Resolution Year of launching Revisit cycle

RADARSAT-2 SAR CSA (Canadian Space Agency) 1-100m 2007 24 days
MacDonald Dettwiler Associates Ltd. of Richmond, BC

TerraSAR-X SAR DLR (German Aerospace Center) 0.5-16m 2007 11 days

COSMO-SkyMed (4 satellites) SAR Italian Space Agency 1-100m 2007/2007 16 days
Thales Alenia Space 2008/2010

Pléiades 1A/1B Optical and infrared CNES (Centre National d'études spatiales, France) 0.7m 2011/2012 1 day
Airbus Defense & Space
Thales Alenia Space

ALOS-2 SAR JAXA (Japan Aerospace Exploration Agency ) 3-100m 2014 14 days
Advanced Land Observing Satellite-2

Sentinel-1 A/B SAR ESA (European Space Agency) 5-40m 2014/2016 6 days

Sentinel-2 A/B Multi-spectral sensor ESA 10-60m 2015/2017 5 days

RADARSAT Constellation (3 satellites) SAR CSA (Canadian Space Agency) 1-50m 2019 1 day

Landsat-9 Optical and thermal NASA 15-30m 2021 16 days
USGS (United States Geological Survey)

Table 1.1: Non-exhaustive list of active satellites in orbit nowadays. The resolution varies in a wide
range because of the di�erent modes used by the sensor to acquire images. In this thesis, we have
mainly worked with Sentinel-1 and TerraSAR-X images whose characteristics have been highlighted
in the table.

noise. Its level is very high, leading to many di�culties to process SAR images. Speckle is directly
linked to the physics of the scene: it results from the mixing of di�erent echoes from di�erent objects
on the �oor within one resolution cell. Adding all the echoes leads to constructive and destructive
interferences and thus a corruption of the original scene. Besides, because of the apodization of
the spectrum, the information in one pixel is spread across its neighbors and thus the speckle is
spatially correlated. Further details on the speckle characteristics and statistics will be given in
section 2.2.

When dealing with SAR images, many products exist. Because the resolution of SAR images
depends on the number of sensor locations combined to form the synthetic antenna, the mode of the
sensor plays an important role. If it is doing multiple acquisitions of an area by overlapping scans,
there will be more images to combine and the resulting SAR image will have a better resolution.
Other pre-processing can be done to the product to ease interpretation. Two kinds of products will
be used in this thesis:

� Single Look Complex Images: they have complex values. We can use properties related to
the amplitude, the phase, and their polarimetric information.

� Ground Range Detected images: they are processed by the provider to have square pixels on
the ground. To verify this property, a multi-looking (spatial averaging of pixel intensities)
needs to be done. This multi-looking is not isotropic on range and azimuth. The speckle
on these images is reduced thanks to the spatial averaging, and only the intensity values are
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Figure 1.3: Formation of SAR images. The original acquisition is given on the left side. A focusing
is done is range, and then in azimuth. The points are localized as the resolution of the image is
improved. To reduce the sidelobes of the scatterers, a 0-padding and an apodization function is
applied in Fourier domain. After this operation, the speckle is spatially correlated. The �gure is
inspired by the works [1, 2].

available.

The type of product is chosen based on the application. Di�erent products lead to di�erent
levels of noise. This thesis will focus on removing the speckle from SAR images (SLC and GRD
images) in various frameworks and applications, all including the use of temporal or polarimetric
information to improve the despeckled estimated image.

1.1.3 Examples of applications in remote-sensing

Numerous applications of both active and passive sensors have been developed within the commu-
nity to tackle environmental issues and challenges.
For example, Sentinel-2 images have been used in [4] to detect and monitor wild�res near the
Vesuvio in Italy in July 2018. As shown in Figure 1.6, RGB images contain mainly smoke which
is useful to help the local population to know when to evacuate. However, it is di�cult to identify
the �re pits. When using longer wavelengths (infrared light), the thermal activity can be studied
and the pits localized.

Sentinel-1 images can be used to monitor deforestation in equatorial areas on the globe, perform
tomography to reconstruct an area in 3D. Being invisible for optical sensors does not mean invisible
for SAR sensors: if there is a change in materials or density, it can be detected and tracked with
SAR sensors. An exemple is given for oil spill: using SAR images enables tracking of the spill
through time and eases the task of local authorities as shown in Figure 1.7 for the Grande America
vessel oil spill of March, 12th 2019.



CHAPTER 1. BACKGROUND AND MAIN OBJECTIVES OF THE THESIS 15

Ground

Line of Sight

Reso
lu

tio
n C

ell

Figure 1.4: Acquisition geometry of SAR images. The sensor, here illustrated by the airplane, is
side looking the area of interest with an incident angle θ approximately equal to 30 degrees. Because
of the orientation of the line of sight, echoes of scatterers along the axis orthogonal to the line of
sight are mixed within one resolution cell represented by the green rectangle. Thus, the responses of
the highest point of the right building, and the lowest point of the left building are mixed together.
This leads to the �attening e�ect of elevated objects that can be seen in Figure 1.5. Figure taken
from [3].

Because of their numerous advantages, the various information sources within SAR images and
the challenges linked to their interpretation, we have only worked with SAR images in this thesis.

1.2 The IMAGES team at Télécom Paris: previous work and

outstanding problems

To properly introduce the context of this work, we remind the previous work of the team working
in Remote-Sensing in the lab.

The work is at the intersection of image processing and machine learning. All the developed
approaches take into account the physics of the acquisition of SAR images.

The focus have been numerous through the years: information extraction (edge and line detec-
tors [5, 6], target extraction [7], lake and narrow river detection [8, 9]); 3D reconstruction in urban
areas with SAR tomography ([10, 3, 11]); speckle reduction ([12, 13, 14, 15, 16, 17, 18, 19]).

In the following, we highlight the contribution of the team in despeckling for SAR images to
better position our own work.

The problem of despeckling has been tackled by the team with di�erent points of view through
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Figure 1.5: Optical and SAR image of Bir Hakeim, Paris. The SAR sensor is on the left side of
the image. We can see that the building are �atten on the ground, this is particularly visible with
the Ei�el tower. These geometrical deformations are due to side looking: the top of the buildings
are seen at the same time as the ground because of an incident angle around 30 degrees. Thus,
the scattered signal of the top of the buildings and the ground are mixed in one pixel. This is
repeated for the windows of the building, starting from the top to the bottom. Optical image:
SPOT5 ©CNES; SAR image: TerraSAR-X ©DLR.

the years, all taking into account the physics of the SAR acquisition.
The exploitation of the patch similarity for SAR images has been explored starting with the

non-local paradigm developed in [12]. An interferometric version NL-InSAR has also been proposed
in [13] and generalized by the NL-SAR algorithm [20].

Because the statistics of the speckle are di�erent from the traditional noise of natural images
and its statistics di�er from the white Gaussian noise mostly used within the image processing
community, the application of traditional denoising algorithms is not easy. The framework MuLoG
[14] focused on how to apply a gaussian denoiser to SAR images with possibly multiple channels in
order to remove speckle.

Deep learning methods have also been developed, starting with convolutional neural networks
pre-trained on additive white Gaussian noise [17]. Even if the deep learning methods have over-
powered the traditional ones, the issue of the spatial correlation of the speckle was unresolved:
a downsampling step was still needed before despeckling to reduce these correlations. The semi-
supervised despeckling algorithm [18] was proposed to tackle this issue. This framework is based
on the Noise2Noise work by Lehtinen [21]: the training is supervised by another noisy sample of
the same area instead of a groundtruth image. To have pairs of noisy images, changes need to be
compensated. Further details are given in Section 4.1. To go even further, the MERLIN framework
[19] uses only one single image during the training: the pairs of images are formed using the real
and imaginary parts of the Single Look Complex images. The method is explained in section 5.3.
Both networks are trained using a negative log-likelihood derived from the statistics of the speckle.

Multi-temporal despeckling has also been studied by the team. The non-local method 2SPPB
[15], based on non-local means, exploits the information redundancy in a multi-temporal stack
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Figure 1.6: On the left panel, top: aerial view of the wild�res around the Vesuvio, bottom: MODIS
(©NASA) image of the area. On the right panel, top: Sentinel-2 RGB image where only the
smoke is visible, bottom: Sentinel-2 false color image obtained with Short-Wave InfRared and
Near-InfRared bands where we can localize the points of high temperature i.e. the �re pits. Figure
extracted from [4].

of images to �nd similar patches. RABASAR [16] uses a multi-temporal stack of SAR images
to compute a super-image and despeckle the ratio image between the noisy and the super-image.
Further details on this method will be given in Section 5.2.2.

The work presented in this manuscript is continuing the e�ort of the team to improve SAR
images: the proposed approaches are centered on self-supervised and unsupervised learning for
despeckling and on the joint use of several images. We account for the physics of the acquisition in
the methods. Even if the fusion of modalities could be relevant in this context, we decided to focus
only on SAR images.

A detailed presentation of the contributions of our work is given in chapter 3 after some context
(chapter 1) and an introduction on denoising (chapter 2).
Di�erent contexts have been explored: the context of scarce data and the context of abundant data.
The context of scarce data will be considered in the application of despeckling for sea ice images
where temporal and structural changes are signi�cant because of the ice crackling and shifting
rapidly. Temporal stacks are not helpful for the despeckling task and polarimetric information will
be used to perform the joint self-supervised despeckling (chapter 4).

The context of abundant data will lead to an approach for multi-temporal despeckling with
several images of the same area captured at di�erent times (chapter 5). This will lead to two kinds
of approaches developed in this work: the �rst one based on temporal averaging and the concept
of super-image; and the second one using unsupervised learning.

The lack of groundtruth images makes the evaluation of the despeckling methods very di�cult.
We propose in the last chapter to explore the uncertainty estimation for our models in order to
provide a con�dence degree to our predictions.
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Figure 1.7: Sentinel-1 image of the Grande America oil spill, March 12th 2019. The Italian container
ship caught �re near the French West coast and sank hours after. The ship was carrying 2 200
tons of fuel that were spread in the Atlantic ocean. Here we can see the oil spill in black stretching
on more than 50km. Marine vessels sent for help are also visible (bright targets). ©ESA o�cial
website



Chapter 2

Introduction: from image denoising

to despeckling

In this chapter, we introduce in section 2.1 the denoising problem and the usual assumptions on
the noise in the literature. The despeckling problem is then developed in section 2.2: the origin
and statistics of the speckle are detailed, and a literature review describes the classical and deep
learning despeckling techniques.

2.1 Introduction to image denoising: usual assumptions on

the noise and literature overview

In this �rst section, we present a short introduction to the denoising of natural images corrupted
by an additive white Gaussian noise. These concepts form an important basis for the development
of SAR image despeckling techniques.

2.1.1 Usual assumptions in image denoising

We start by the general expression used in inverse problems in image processing:

y = A(x) + n (2.1)

where y is the degraded observation, x is the unknown clean image to be recovered, A is a degra-
dation operator that is often linear and n is a random realization of a noise term following a given
noise distribution.
The operatorA can be any degradation operator such as a blurring operator, an inpainting operator,
a projection or a geometric transform. In the image denoising problem, the operator A is the
identity.

The additive model of the noise in equation 2.1, where the distribution of n does not depend
on x, is a standard assumption in many algorithms proposed in the literature. Furthermore, the
noise is generally supposed white and Gaussian as it triggers mathematical properties that are at
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the core of various methods. This leads to the following problem

y = x+ n with n ∼ N
(
0, σ2I

)
(2.2)

In this simple model, the variance of the noise σ2 is associated with the level of the noise and does
not depend on the signal.

2.1.2 Literature overview

Many methods in image processing have been proposed to tackle image denoising throughout the
years. We provide a quick overview of denoising techniques. We distinguish traditional denoising
methods and deep learning based methods.

Traditional denoising methods

Traditional denoising methods can be classi�ed into di�erent types of methods. In this section, we
will distinguish the following ones

� Spatial �ltering methods

� Variational methods

� Non-local �ltering methods

� Transform-domain methods

The �rst methods to tackle the denoising of natural images corrupted by an additive white
Gaussian noise are spatial-domain �lter methods, such as the simple mean �ltering where the value
of each pixel in the image is replaced by the average value of its neighbors within a window with a
�xed shape.

The variational methods use image priors and minimize an energy function to produce the
denoised estimation. The energy is generally decomposed into two terms. The �rst term is known
as the likelihood/data �delity term, and the second term is the image prior/regularization term.
The likelihood term can be derived by assuming that the observations are distributed according
to a Gaussian distribution. Algorithms have been proposed based on di�erent expressions of the
image prior. The total-variation (TV) regularization introduced in 1992 by [22] greatly restores the
homogeneous areas of the image, but tends to over-smooth the image. Using a sparse representation
of the image within the optimization problem has been explored. Each patch of the image is
represented as a linear combination of several patches from a given dictionary. This dictionary can
be learned from a dataset, or from the image itself using the K-singular value decomposition (K-
SVD) algorithm [23]. The sparse representation can be coupled with the non-linear self similarity
property of natural images as in the non-local centralized sparse representation (NCSR) model
introduced in [24].

In 2005, the Non-Local-Mean algorithm [25] uses the concept of auto-similarity meaning that
for every patch within one image, one can �nd similar patches within the same image. To estimate
the denoised image, a patch centered on each pixel of the image is extracted; and the central pixel
is replaced by the weighted average of the central pixels of all the similar patches.

Transformed domain methods rely on the observation that the characteristics of the image and
the noise are really di�erent in the transformed domain, and it is thus easier to separate the noise
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from the clean image. The most famous transformed domain method is the Principle Component
Analysis, and its variation Independent Component Analysis [26]. The wavelet transform enables
a decomposition of the image into a scale space representation to better separate the main charac-
teristics of the image. However, all wavelet methods rely on the choice of the wavelet basis. The
BM3D method [27] is an extension of the Non-Local Means algorithm. For each pixel of the image,
similar patches are stacked into a 3D box using block matching. The 3D block is then transformed
into a wavelet domain, where a �ltering is done. After an inverse transform, the estimated patches
are aggregated to compute the �nal denoised image.

Deep learning based denoising methods

CNN-based methods have also been proposed to tackle the denoising problem. We can distinguish
the ones using supervised training and thus needing ground truth images to compute the Loss
during the training phase; and the unsupervised methods requiring only noisy image.

In the supervised learning framework, a prior knowledge of the noiseless associated to each
noisy image is needed. The Recursively Branched Deconvolutional Network (RBDN) [28] is a
generic image-to-image regressor and can thus be applied to image denoising. Zhang et al. [29]
proposed the DnCNN and apply a residual formulation to learn the denoising function. The model
is trained with a �xed variance of the noise which makes the generalization hard for the network: a
training is needed for every level of noise. To tackle this issue, the work [30] introduces the FFDNet
which takes an additional input informing the network of the noise variance at each pixel to help
the network even if the variance is not constant across the image.

The work Noise2Noise of Lehtinen et al. [21] has been game changing and a pioneer in unsu-
pervised learning. Indeed, no groundtruth data is needed for the training phase in the framework.
Assuming that pairs of noisy images of the same scene with independent and identically distributed
noise are available, the network will be able to restore the �rst noisy image by supervising the
training with the second one.
The Bayesian framework of the Noise2Void network [31] takes only one single noisy image as in-
put during the training phase. The network is trained to predict each pixel value using only its
neighboring pixels (blind spot method).

More recently, vision transformers have been developed and enable a non-local attention mecha-
nism to build a representation of the image [32]. Di�usion networks [33] have also reached excellent
results in regression for image processing and more particularly denoising. Transformers and dif-
fusion based architectures are very large and fastidious to train. In this thesis, we have developed
the framework to use these king of models, but haven't explored the in�uence of the architecture
and kept it simple in all the experiments. This choice is developed in the next chapter.

2.2 Application to SAR images: the despeckling problem

The despeckling problem we want to tackle in this thesis has some speci�cs that di�er from the de-
noising problem with natural images. In this section, we introduce the characteristics and statistics
of the speckle.
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2.2.1 The speckle: origin and statistics

The speckle originates from the summation of the coherent echoes coming from di�erent objects on
the ground, and mixed within one resolution cell. Thus, when an area on the ground is observed by
the sensor, the backscattered signals coming from various scatterers are mixed and form constructive
or destructive interferences. This phenomenon, known as speckle, is linked to the physics of the
acquisition and the observed scene itself. It is then impossible to capture speckle-free images with
a SAR system (we can still approximate one that could be used with a simulated noise, this will be
described in Chapters 4 and 5).

Because the number of coherent echoes within one resolution cell is high, we can apply the
central limit theorem to model the distributions of the real and imaginary parts of a single look
complex image z = a + j b. According to Goodman's model [34], at a given pixel, the real and
imaginary part are independent and identically distributed according to a Gaussian distribution
centered on zero and with a variance equal to r

2 , with r the real-valued re�ectivity of the scene,
meaning the expectation of the intensity.
We can then deduce that the complex amplitude z follows a complex circular Gaussian distribution
de�ned by

p(z) = p(a+ j b)
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(2.3)

Here, we are modeling the statistics of z and thus of the speckle independently of the SAR system
response.

We introduce the intensity image as i = |z|2. The speckle is a multiplicative noise, modeled by
Goodman as follows

i = r × s (2.4)

where s is the complex speckle component.
To reduce the speckle, an averaging step called multi-looking is often performed, leading to the

introduction of the equivalent number of looks L linked to the number of images averaged during
multi-looking. The higher L, the more images we have averaged and the lower the level of speckle.
The intensity of the speckle component is distributed according to a gamma distribution de�ned
by

p(s) =
LL

Γ(L)
s(L−1) exp(−Ls) (2.5)

with Γ(.) the gamma function. The expression of the variance and expectations values are given by
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E[s] = 1

E[i] = r

Var[s] =
1

L

Var[i] =
r2

L

We can see that the variance of the signal depends on the re�ectivity r: the highest the re�ectivity,
the strongest the noise.

The multiplicative property of the speckle makes it di�cult to deal with as it is signal-dependent.
A log transform is often applied to stabilize the variance and obtain an additive noise with a constant
variance throughout the image. The log-intensity of the speckle is distributed according to a Fisher-
Tippett distribution:

p(log s) =
LL

Γ(L)
eL log s exp(−Ls2) (2.6)

The expressions of the variance and the expectation value of the resulting noise are given by

E[log s] = ψ(L)− logL

Var[log s] = ϕ(1, L)

where ϕ(1, L) is the polygamma function of order L introduced in the book Abramowitz and Stegun
[35], and ψ(L) is the digamma function.

The SAR image z is then processed by the SAR system which has a limited bandwidth. This
will introduce spatial correlations of the speckle. These correlations are hard to deal with and
numerous methods need a pre-processing step consisting in down-sampling the image by a factor
two to reduce the spatial correlation of the speckle. This leads to a loss of resolution. Deep learning
methods have been able to deal with spatial correlation when trained on real images [18, 19].

In this chapter, we only present single polarization data. The context of dual-polarization
acquisitions will be the subject of chapter 4.

2.2.2 Classical despeckling techniques

In the case of single channel images (amplitude data), despeckling techniques have often been
inspired by denoising methods for natural images. As the speckle's statistics and properties are
di�erent from the traditional additive white Gaussian noise, the adaptation of conventional methods
can be challenging. Thus, spatial �ltering was used at the very beginning by applying a mean �lter
on SAR images. The conclusions have been the same as the ones with additive white Gaussian
noise: the despeckled images are blurred. Lee's �lter [36] introduced a trade-o� between the mean
�ltered image and the noisy image based on the value of the local variation coe�cient.

Non-local approaches based on the search of similar patches have also been developed [37, 38, 12,
39, 40, 13, 41, 42, 43, 44], and rely on the same principle as Non-Local Means [45] with an adaptation
to multiplicative and non-Gaussian noise. These techniques build non local neighborhoods that are
de�ned on the basis of pixel similarity and success in restoring thin structures and discontinuity
within SAR images.
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Variational methods have also been used with various regularization terms such as the Total-
Variation [46, 47, 48]. An analysis of similar patches can also be introduced while minimizing the
energy (data �delity term + regularization term) as proposed in [49].

Transformed domain methods were explored through wavelet decomposition [50] and curvelet
decomposition [51].

Nevertheless, the adaptation of methods inspired by natural image denoising can be tedious.
The MuLoG algorithm [14] circumvents theses adaptations by using a plugin ADMM approach:
the restoration of the image alternates between non-linear steps to take into account the statistics
of the speckle, and Gaussian denoising steps performed by any Gaussian denoiser, including deep
learning based denoiser.

2.3 Despeckling using deep learning based methods

Deep learning algorithms have proved to be very e�ective in image denoising, and they can deal with
non-Gaussian corruptions of images. The training step is time-consuming and requires a relatively
large data set. As the speckle is inherent to the scene, ground truth images can not be obtained
and the training of a network for despeckling has to deal with this lack of clean data. The inference
step on testing data is very fast, which is a very interesting point for real-time applications.

Supervised deep learning techniques were the �rst to be developed, the pioneering work beeing
the framework of Chierchia [52]. To train their network, ground-truth images are computed using
temporal stacks of SAR images: the areas that do not change through time are kept. The loss is
evaluated using a couple of one speckled image and one temporal average. The network architecture,
is inspired from the DnCNN [29].

The method NL-CNN introduced in [53] combines a patch-based non-local �ltering and deep
learning. The training set is computed using a similar strategy as one used in [54] which can be
sub-optimal because of temporal changes.

An alternative is to simulate speckle noise on a ground truth image obtained by temporal
averaging [55]. The Multi-Objective CNN-Based Algorithm MONet approach [56] uses a multi-
objective Loss function and focuses on spatial details, speckle statistical properties, and strong
scatterers identi�cation. Large datasets can be created by adding simulated speckle noise to natural
images [57, 58, 59]. However, the statistical distribution of natural images is di�erent from the one
of SAR images leading to poor restoration of bright scaterrers. As illustrated in [60], because of
spatial correlation of the speckle, results su�er from artifacts.

Self-supervised learning was introduced based on the work Noise2Noise by [21]. Training on
actual SAR images has been possible using pairs of images [18, 61] or even single images [19].
Temporal stacks can be used to compute speckled pairs of SAR images. Adversarial learning has
been used to produce speckle-free images in [62]. An adaptation of the Noise2Void framework [31]
has been proposed by [63], however, the correlation of the speckle can not be taken into account
with the Bayesian model used in the blind-spot method and a sub-sampling step is required.

Finally, SLC images are complex-valued: the adaptation of neural networks to complex values
is challenging. The works ϕ-Net proposed in [64] is an adaptation of the U-Net to denoise the
interferogram of SAR images. In the framework, the real part and the imaginary parts of the
complex interferogram are decorrelated, and then fed to the network.

A summary of the deep learning despeckling methods is given in Figure 2.1.
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Figure 2.1: Deep learning despeckling methods. Illustration from [65].

Despeckled images using various methods for SAR despeckling are presented in Figure 2.2. In
the following, we will focus on self-supervised methods able to tackle spatial correlation of the
speckle [18, 19].



CHAPTER 2. INTRODUCTION 26

Noisy image, ©ONERA

Denoised spatial Denoised TV regularization
multi-looking (5x5)

Denoised NL-SAR Denoised with deep learning
method MERLIN

Figure 2.2: Despeckling of SAR images with various methods illustrated on an image acquired by
the SETHI sensor of ONERA.



Chapter 3

Issues addressed in the thesis

This chapter discusses the issues we want to tackle while pointing the possible limits we will face.
This Ph.D. work tries to answer to the following question: how can we perform joint despeckling us-
ing deep learning approaches and self-supervised/unsupervised learning? Joint despeckling implies
the collaborative processing of several images as input, in particular in this thesis: a multi-temporal
stack or polarimetric data. The information redundancy within the input data can potentially be
exploited to retrieve thin structures such as tiny roads and rivers.

Choices concerning the architecture of the neural networks at the core of the proposed approaches
are discussed in following paragraphs. A schematic summary of the contributions of this thesis is
given at the end of the chapter.

3.1 Joint despeckling

The baseline for our comparisons will correspond to the single image SAR despeckling: this frame-
work takes a single image as input and estimates its re�ectivity. This kind of methods can be
labeled as Single-Input Single-Output (SISO) methods.

The extension to several images of the same area (acquired at di�erent times or coming from
di�erent polarizations) can be achieved using two distinct strategies:

� Multi-Input Multi-Output (MIMO) despeckling: multiple images are fed to the despeckling
network, and an equal number of re�ectivity images are estimated simultaneously.

� Multi-Input Single-Output (MISO) despeckling: multiple images are fed to the despeckling
network, but only the re�ectivity of the reference image is predicted.

For various applications and especially real-time applications, the MIMO strategy is far more
interesting: one only needs one inference step to despeckle an entire stack of SAR images. However,
the regression problem including the prediction of several despeckled images is more di�cult to
solve.
The motivation of using MIMO strategies comes from [66] where they aim at quantifying uncertainty
by using an approach inspired by ensemble methods. They prove that, using a MIMO con�guration,
we can utilize a single model's capacity to independently train several subnetworks for a speci�c
task. During the inference, the predictions of the independent subnetworks are averaged and the
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model is thus more robust without any additional computational cost. The authors empirically
show that 3 to 4 subnetworks can be used for a classi�cation task. The framework, illustrated in
Figure 3.1 is taking 3 to 4 images as input and performs the 3-4 predictions in parallel.
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Figure 3.1: Training and testing steps for uncertainty quanti�cation using a MIMO framework
and independent subnetworks for classi�cation. Only the �rst and last layers of the network are
changed. (a) Training step: 3 input images are fed to the network corresponding to 3 di�erent
classes. The predictions are done on each member thanks to independent subnetworks. (b) Testing
step: the same image is fed three times, leading to 3 di�erent predictions from each subnetwork.
The �nal estimation is computed by averaging the 3 predictions. Illustration from [66].

Coming back to our despeckling problem: regression problems are known to be more di�cult to
solve than classi�cation problems. Proving the independence of di�erent subnetworks is also di�cult
in our case. It is reasonable to say that 3 or less subnetworks can be used with a MIMO strategy.
In the following work, we will apply the MIMO strategy with no more than 2 input images, and we
will use the MISO strategy for 3 images and more.
We provide experimental results to show that, on the considered experiment, the performance of
the MIMO formulation with 2 input images is comparable to that of the MISO formulation. The
framework of the experiment is as follows:

- The experiment has been conducted on a despeckled Sentinel-1 temporal stack produced by
the ratio-based multi-temporal despeckling method introduced in [67]. The stack is composed
of 25 images of 1024 × 3072 pixels, representing the city Lelystad in the Netherlands. The
speckle is simulated independently on these images during the training.

- Two intensity SAR images of the same area acquired at di�erent times are used for testing.
We will note them i1 and i2. These images are generated based on r1 and r2 the correspond-
ing groundtruth images. Speckle is independently simulated on both input images with an
equivalent number of look L equals to 1 in both cases.

- For the MIMO strategy, the outputs of the network are the estimated re�ectivities of both
input images i1 and i2. We will note them {r̃1,MIMO, r̃2,MIMO} = fθ,MIMO(i1, i2) where
fθ,MIMO is the network function and θ its parameters. During inference, one can directly
estimate both denoised images with a single forward pass.

- For the MISO strategy, the output of the network is only the estimation of the re�ectivities of
the �rst input image such that r̃1,MISO = fθ,MISO(i1, i2) and r̃2,MISO = fθ,MISO(i2, i1) where
fθ,MISO is the network function and θ its parameters. The second input image helps the
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network to denoise the �rst one. During the inference phase, one needs to apply the network
twice to estimate both r̃1,MISO and r̃2,MISO.

- The quality of the despeckled images is poor in this experiment because of the reduced size
of the training set. The main goal is to show that for 2 input images, the MISO and MIMO
approaches produce comparable results.

The network is trained in a supervised framework and we de�ne the MIMO and MISO losses used
in the training as follows:

LMIMO =
1

2

(
|| log r̃1,MIMO − log r1||2 + || log r̃2,MIMO − log r2||2

)
(3.1)

LMISO = || log r̃1,MISO − log r1||2 (3.2)

The results given in Figure 3.1 show minor di�erences between the MISO and MIMO strategies.
By looking in details, one could eventually see that with the MISO approach, the estimated images
are less blurred.

Ground truth r1 Noisy image i1 Denoised image MIMO Denoised image MISO

Ground truth r2 Noisy image i2 Denoised image MIMO Denoised image MISO

Table 3.1: Comparison of the MIMO and MISO strategies for 2 input images. During the inference,
the despeckled images are estimated at once with the MIMO strategy whereas 2 forward passes are
needed with the MISO strategy.

The MIMO strategy is computationally more e�cient once the network is trained but limited in
its application to a small number of input images. In this thesis, we have worked with data where
only 2 input images are available at each time and temporal stacks were not available (see Chapter
4): in this case, we will stick to the MIMO strategy. We have also worked with multi-temporal
stacks of urban areas SAR images where a higher number of images can be fed to the network at
once (see Chapter 5): in this case, the MISO strategy is more relevant.
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conv 3x3 + ReLU
maxpool 2x2 + conv 3x3
upconv 2x2
skip connection

Figure 3.2: Schema of the UNet inspired architecture of the network used in the thesis. The input
and output layers change depending on the application and the chosen strategy: MIMO in chapter
4, and MISO in chapter 5. The training is residual, meaning that the network is predicting the
speckle in the noisy image. A normalization is applied to input images and consist in a log-transform
and a normalization of the input in the range [0, 1]. More details on this operation are given in
Annex A.

3.2 Focus on training strategies

Even if the ability of the network to deal with changes between the input channels is linked to its
capacity, the architectures of the networks proposed in this work remain quite simple. We do not
focus on �nding the optimal architecture for one speci�c task and leave this problem of architecture
optimization to further works.
The network architecture used throughout this thesis is a UNet network introduced in [18, 19] and
detailed in Figure 3.2. This architecture has proven to be very e�ective and easily trainable in
a reasonable time. Changes are made on the �rst and last layers when the number of input and
output images increases.
The Loss functions optimized during the training phases are always derived from the statistics of
speckle in SAR images to take the physics of the acquisition into account.

3.3 Structure of the manuscript

Three chapters presenting the thesis contributions follow.
The �rst one (chapter 4) describes our proposed joint polarimetric despeckling for sea ice images.

As structural changes happen very quickly on sea ice images because of the fast shifting of ice on
the sea, it is di�cult to exploit multi-temporal stacks of sea ice images to improve despeckling.
Our approach uses the polarimetric information (HH and HV channels) of GRDM Extra Wide
Sentinel-1 images in a MIMO framework.

The second chapter (chapter 5) focuses on our contributions in multi-temporal despeckling in
a context where numerous images of the same area acquired at di�erent times are available. Even
if there are challenges linked to pre-processing (such as registration of the stack of images), it is
bene�cial to use as many images as possible. Multi-temporal despeckling requires robustness to
temporal changes.

Lastly, a third chapter (chapter 6) synthesizes our work and explores the problem of uncertainty
estimation. This work is motivated by the lack of universal metrics to assert despeckling results
when no groundtruth image is available.
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Chapter 4

Joint polarimetric despeckling of

GRDM Extra Wide Sentinel-1 data

and application to sea ice images

Publications related to this chapter:

� Despeckling of dual-pol GRD sentinel-1 images in extra-wide mode by deep
learning (Oral presentation), Ines Meraoumia, Debanshu Ratha, Emanuele
Dalsasso, Loïc Denis, Florence Tupin, Andrea Marinoni, IEEE Inter-
national Geoscience and Remote Sensing Symposium (IGARSS
conference), 2023.

� Joint despeckling and thermal noise compensation, application to Sentinel-
1 images of the Arctic, Ines Meraoumia, Debanshu Ratha, Emanuele Dal-
sasso, Johannes Lohse, Florence Tupin, Andrea Marinoni, Loïc Denis, in
preparation, 2023

In this chapter, we will present the work jointly done with the Arctic University of Tromso in
Norway founded by the French-Norwegian project COSMIC (Advanced Processing of SAR Images
for the Arctic).

For dual-pol sensors, we want to process jointly the polarimetric information (HH and HV
images) to improve the despeckling. In this case, the sensor is using one polarization of the wave
for the emission (H here) and 2 polarizations H and V for the wave reception. As the main
application of this work is the study of sea ice, we will �rst introduce the Sentinel-1 products used
in the chapter and the challenges related to sea ice images in section 4.1.
A dual-polarimetry joint despeckling network is proposed based on the joint restoration of the
intensity images in section 4.2.3. This method is inspired by the existing framework SAR2SAR.
The network is trained in a self-supervised way using pairs of noisy images during the training, as
it has been proposed in the Noise2Noise framework [21].
We are interested in low re�ectivity areas such as water and ice where the thermal noise is visible

32
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and has an impact on despeckling. A despeckling network is proposed in section 4.3 to deal with
the thermal noise component on sea ice images.

4.1 Context and challenges related to Sentinel-1 GRDM EW

sea ice images

SAR images are very suited to observe the Arctic because of its longer dark periods, frequent
precipitations and cloud cover. Besides, subzero winter conditions enable freezing of the ocean into
sea ice, which must be navigated in the dark. Furthermore, the study of sea ice concentration, its
extent, ice type, the melting of northern glaciers and calving of Greenland glacier ice sheet is of
interest to assess the burning questions of climate change that is a�ecting the world.

With the particular aim to monitor sea ice, the European Space Agency (ESA) provides dual
polarimetric SAR Ground Range Detected (GRD) products available in medium resolution from its
spaceborne Sentinel-1 sensors for TOPSAR acquisitions in Extra Wide (EW) swath mode. GRDM-
EW SAR images are multi-looked intensities projected to the ground range using the Earth Ellipsoid
model. It provides a ground range coverage of approximately 400 km in �ve di�erent sub-swaths.
The multi-look factor of the �rst sub-swath is approximately equal to 15, while for the others it is
approximately equal to 10. The information provided by ESA on this product is given in Figure
4.1. These images are intensity images and there is no phase information available.

Figure 4.1: Information on Sentinel-1 GRDM EW images. The beam ID refers to the number of
sub-swath within the image. The equivalent number of looks L is higher on the �rst sub-swath
(15.2) and does not vary a lot among the others (between 9 and 10). The variance of the speckle
is inversely proportional to L, meaning that the level of noise changes in the image. ©ESA.

When working with Sentinel-1 GRDM EW images, the challenges (apart from the lack of reliable
validation data) are related to the speckle �uctuations and the thermal noise which adversely a�ect
the signal, in particular in low backscatter regions in the cross polarization channel. The training
strategy and the training data set are described in section 4.2
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In this chapter, we propose to perform a joint �ltering of the HH and HV images using a self-
supervised method inspired by the method SAR2SAR [18]. The joint processing of dual-pol images
allows the network to exploit the common information on the underlying scene, leading to a better
restoration of the re�ectivity than an independent restoration of each polarimetric channel.

The dual-polarimetry despeckling network described in section 4.2.3 removes the speckle from
intensity images, the method developed in section 4.3 accounts for the thermal noise while despeck-
ling SAR images.

4.2 Training strategy

Sentinel-1 GRDM EW images are intensity images. In the literature, various despeckling networks
have been proposed. We developed a method based on the SAR2SAR network [18] because it is a
self-supervised learning framework, robust to the spatial correlations of speckle and applicable to
intensity images.

4.2.1 Self-supervised training and the SAR2SAR method

Self-supervised strategies provide ways to train a despeckling network in the absence of ground-
truth. The SAR2SAR framework [18] requires pairs of SAR images with decorrelated speckle and
can be applied both to Single Look images or multi-looked ground-projected data. It is robust
to the spatial correlations of speckle. Speckle2Void [63] is predicting the value of one pixel of the
image based on its neighborhood, assuming pixel independence. It can be applied to single images
but it requires spatially decorrelated speckle. MERLIN [19, 68] exploits the real and imaginary
parts of SLC images and is robust to spatial correlations of speckle, it can be applied to unpaired
images [19] or multi-temporal stacks [68]. Yet, due to the lack of phase information, it cannot be
directly applied to GRDM data. SAR2SAR is therefore the most adapted framework to develop a
technique for Sentinel-1 GRDM images acquired in extra-wide mode.

SAR2SAR training is composed of three phases: in phase A, the network is pre-trained on
images corrupted by synthetic speckle; in phases B and C, the network is �ne-tuned on real SAR
images, learning sensor-speci�c features (e.g. spatial correlation, content, resolution). A schema of
all the phases of the training is given in Figure 4.2.

The loss function used in [18] corresponds to the cumulative negative log-likelihood derived
from Goodman's speckle model (where the log speckle component is distributed according to a
Fisher-Tippett distribution) over all the pixels:

LSAR2SAR (fθ(y1),y2) = − log p(y2|fθ(y1))

≈
∑
k

fθ(y1,k)− y2,k + exp(y2,k − fθ(y1,k)) (4.1)

where the approximation is veri�ed when spatial correlations of speckle are neglected; fθ is the
network with parameters θ; (y1,y2) is the pair of noisy log-intensity images, the �rst one is fed to
the network and despeckled while the second one is used as target for supervision.

In our extension to dualpol despeckling, we de�ne the loss function as the sum of the co-polar
and cross-polar restoration losses. We also suppose in the following that the polarimetric coherence
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has a limited impact on the result i.e. the HH and HV channels are not correlated. The loss
function is thus written as:

LSAR2SAR(fθ(y1,HH),y2,HH, fθ(y1,HV),y2,HV) = LSAR2SAR(fθ(y1,HH),y2,HH)

+ LSAR2SAR(fθ(y1,HV),y2,HV) (4.2)

Figure 4.2: Training strategy of the method SAR2SAR [18]. The training phase A is performed on
simulated speckle. A pair of noisy samples simulated from the same ground truth image is used
for the evaluation of the loss function. Phase B is a �ne tuning on actual SAR images. The noisy
pair of images is selected within a multi-temporal stack of SAR images. In order to compensate
the changes, prior images x̂ti (with i ∈ {1, . . . , N}) are computed by despeckling the stack with the
network obtained in phase A. They are then used to compensate the changes for the target image
ytn . Phase C is a �ne-tuning based on the same principle, but the prior images are computed using
the network trained in phase B. Illustration extracted from [18].
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4.2.2 Building the training data set

The application of the SAR2SAR self-supervised training strategy requires the availability of pairs
of images with decorrelated speckle and limited temporal changes. Spatial structures should remain
at the same location, yet changes of re�ectivity can be handled through the change compensation
step.

During the phase A of the training, the speckle is simulated on a RADARSAT-2 stack of 17
images of 679 × 932 pixels. The ground truth images have been computed using the RABASAR
methods [16] where a super-image is constructed by averaging all the images in the stack and the
ratio between the noisy image and the super-image is despeckled by the MuLoG algorithm [14].
For each image, the covariance matrix between the HH, HV and VV channels is estimated. To be
as close as possible to the case of Sentinel-1 GRDM images, the network is trained with patches
corrupted by a simulated speckle with an equivalent number of looks L chosen randomly for each
patch in {9, 10, 15}.

The phase B of the training requires image pairs or multi-temporal stacks of Sentinel-1 GRDM
EW images in order to build pairs of images for the evaluation of the loss. The changes are
compensated as shown in Figure 4.2, but consequent structural changes are harder to compensate
perfectly. Sea ice undergoes too marked changes to be adapted for SAR2SAR training. We preferred
selecting areas over land that are more stable.

As the dynamic range of sea ice images is not the same as the one of land images, we need
to ensure that our network is robust to these distribution shifts. A discussion on the impact of
distribution shift is proposed in Annex A. During the training, we arti�cially shift the dynamic
range of the input images by multiplying the intensities by a factor drawn in the range [0.1, 1] so
that the network can also be applied to sea ice images with lower re�ectivity values.

We built two multitemporal stacks of Sentinel-1 EW GRD Medium Resolution images (with 8
and 12 images per stack, respectively, each image composed of 10 000×10 000 pixels approximately)
near the mouth of the river Ob in north of Russia. The dual-polarization images (HH+HV) in the
stacks were observed in summer (August and September) in years 2017, 2018, or 2019, with identical
acquisition characteristics and a minimum temporal gap of 12 days. Since land is not covered by
snow in these images, there is a signi�cant contrast between the di�erent spatial areas (forests,
�elds, urban structures, lakes, coastal line, . . . ). This is bene�cial to learn how to restore a wide
diversity of spatial structures. Their common footprints are shown in Figure 4.4 represented on the
globe. A natural color image of the surrounding region, is provided in Figure 4.3 overlapping the
period of acquisition of the selected Sentinel-1 images and the HH polarimetric channel of the �rst
image of the two stacks are shown in Figure 4.5.

Figure 4.3: Highlighted Optimized Natural color image at the mouth of Ob from Sentinel-2 on
22-09-2019
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Figure 4.4: The footprints of the two regions selected for training dataset represented on the globe.

Figure 4.5: Sentinel-1 GRDM EWHH �rst images of the two multi-temporal stacks used for training
(river Ob, north of Russia). Each image contains approximately 10 000 000 pixels.

4.2.3 Dual-polarimetric despeckling network

To perform dual-polarimetric despeckling, we trained a network with the two polarimetric channels
as input and the loss function in equation 4.2, so that the network can process jointly the common
information and produce better restoration results. The training phases A and B are performed on
the RADARSAT-2 and the Sentinel-1 GRDM EW images respectively. The hyperparameters used
for the training phases are given in Table 4.1
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Synthetic speckle Actual speckle
Phase A phase B

# stacks 1 2
# images 17 20
avg images/stack 17 10
patch size 256× 256 256× 256
batch size 12 12
# patches 5304 11 640
# batches 442 570
# epochs 30 30

learning rate

{
10−3 10−3

10−4 after 10 epochs 10−4 after 10 epochs
10−5 after 20 epochs 10−5 after 20 epochs

Table 4.1: Training parameters of dual polarimetric joint despeckling. The network proposed in
section 4.2.3 and the network proposed in section 4.3 are trained with the same hyperparameters.

The experimental results are given in Figure 4.6 for the phase A, and Figure 4.7 for the phase B.
We can see that the joint despeckling produces better estimation of the re�ectivity image, especially
for thin structures such as tiny rivers.

As the application of this work is the study of sea ice, the thermal noise can not be neglected.
Indeed, the re�ectivity values are lower than the ones observed on land, and thus of the same order
of magnitude as the thermal noise �oor. We need to take the thermal noise component into account
for sea ice image despeckling (see Figure 4.8).

4.3 Training the network to account for the thermal noise

compensation

The thermal noise is particularly visible in low-re�ectivity areas such as water or young smooth ice.
The thermal noise component has discontinuities between each of the sub-swath as visible in Figure
4.8. When the re�ectivity values are smaller than the noise �oor, the degradation can be di�cult
to invert. Thermal noise appears as a background component with a low re�ectivity σ0th that adds
to the re�ectivity σ0 of the SAR scene. Fluctuations of the intensity in the SAR images are then
proportional to σ0 + σ0th. While areas with strong re�ectivities σ0 ≫ σ0th are not signi�cantly
a�ected by thermal noise, lower-re�ectivity regions su�er from increased �uctuations compared to
the level of �uctuations that would occur due to speckle alone. Furthermore, estimations of the
re�ectivity are biased unless the thermal �oor level is removed.
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Figure 4.6: Phase A: despeckling results on Sentinel-1 EW GRD Medium Resolution images, river
Ob, Russia: the �rst row shows the HH channel, the second row the HV channel. Images (a) and
(d): speckled images; images (b) and (e): restored images with an independent processing of the
channels i.e. the SAR2SAR network trained on simulated speckle (phase A); images (e) and (f):
dual-polarimetric despeckling network where HH and HV are processed jointly trained on simulated
speckle (phase A). As the network is trained on simulated speckle, it can not deal with the spatial
correlation of the speckle: a down sampling step is needed before feeding the network with real
images. An up sampling step is then performed to match the initial resolution of the images.
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Figure 4.7: Phase B: despeckling results on Sentinel-1 EW GRD Medium Resolution images, river
Ob, Russia: the �rst row shows the HH channel, the second row the HV channel. Images (a) and (d):
speckled images; images (b) and (e): restored images with a single polarization processing i.e. the
SAR2SAR network trained on the same data set described in 4.2.2, where HH and HV images are
considered as two independent samples during the training; images (e) and (f): dual-polarimetric
despeckling network where HH and HV are processed jointly. Because in phase B the network is
�ne tuned with real data, it is robust to speckle spatial correlation and no down-sampling step is
needed.
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HH noisy image IHH Corrected image σ0
HH

HV noisy image IHV Corrected image σ0
HV

Figure 4.8: Sentinel-1 GRDM EW images of sea ice in the Artic. The re�ectivity values of the image
are lower or equal to the thermal noise �oor: thermal noise has a huge impact on the interpretation
of the image and is visible, especially on the cross polarization HV. Left column: HH and HV
images in amplitude with the thermal noise component. We can see that the antenna gain on the
�rst sub-swath is higher than the rest of the image. The �uctuations of the thermal noise are visible
(horizontal strip patterns). Right column: the HH and HV images have been corrected i.e. the
thermal noise component has been removed using the Korosov algorithm [69]. This correction is
not perfect, but it clearly makes the interpretation of the images easier.
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4.3.1 Removing the thermal noise component

For sea ice and oceanographic applications, the calibrated noise vectors provided with GRD data
by ESA for NESZ (Noise Equivalent Sigma Zero) subtraction has not been found satisfactory. In
a recent work by Korosov et al. [69], a novel correction of thermal noise annotation in the range
direction is used to produce an e�cient denoising method. This work will serve as the state-of-art
for the thermal noise �oor removal of the cross polarization channel in S1 GRDM EW mode data
for the purpose of our study.

In this chapter, we work with GRD images and the dual-polarizations HH and HV. GRD images
are formed with complex amplitude SAR images. Their formation is described in our approximate
generative model for dual-polarimetric SAR imaging given in Figure 4.9 (right part of the �gure).
First we introduce z ∈ C2N the vector-image containing the HH and HV complex amplitudes each
composed of N pixels. We have

z =

(
zHH
zHV

)
The polarimetric covariance matrix Σ of z is written as

Σ = E [zz∗]

= E

[(
zHH
zHV

)
(z∗HH z

∗
HV)

]
=

(
E[zHH z∗HH] E[zHH z∗HV]
E[zHV z∗HH] E[zHV z∗HV]

)
We know that the relation between the square modulus of z and the intensity image i = (iHH iHV)

T

is |z|2 = i. By de�nition, the re�ectivity rHH and rHV are de�ned as

rHH = E[iHH]

rHV = E[iHV]

We can then write the covariance matrix Σn ∈ C2×2 at pixel n by

Σn =

(
rHH,n

√
rHH,n rHV,n ρn e

jβn

√
rHH,n rHV,n ρn e

−jβn rHV,n

)
where ρn ∈ [0, 1] is the polarimetric coherence and βn ∈ [−π, π[ is the polarimetric phase. In order
to match with the notations used in the literature in thermal noise removal, we will denote the
polarimetric response of the scene (i.e. re�ectivity) by σ0 in the following.

The right-hand-side of �gure 4.9 illustrates the steps that lead to ground-detected images such
as Sentinel-1 GRDM data based on the complex amplitudes z of an ideal synthesized SAR image.
The SAR system responseH is modeled as a linear operator in the spatial domain, and it introduces
spatial correlations due to possible zero-padding and spectral apodization during the SAR synthe-
sis. A gain

√
a ∈ R2N

+∗ transforms amplitudes into digital numbers. Finally, a multi-looking and
resampling step is performed in order to obtain approximately square pixels. This step is modeled
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by a linear �ltering operation by the operator S. In equation, the generative model of �gure 4.9
writes:

d̃ = S|diag(
√
a)Hz|2 , (4.3)

where d̃ is a vector containing the GRDM intensities. In the following, GRDM images will be
denoted with ·̃ on the variables. S is an operator that multilooks then subsamples to transform
single-look intensities into GRDM images. The squared modulus is applied separately to each
complex value, and z is the vector formed by concatenation of the polarimetric complex amplitudes
zn at each pixel of the image.

Figure 4.9: A generative model statistically equivalent to the physics of Sentinel-1 dual-pol GRD
imagery: the e�ects of speckle and thermal noise are modeled through an equivalent covariance
matrix Σtot.

The left-hand side of the �gure illustrates the components of the polarimetric covariance matrix
that characterizes the scene Σ, the thermal noise �oor Σth, and the total covariance matrix Σtot =
Σ+Σth.

Since thermal noise on the HH and HV measurements is independent, o�-diagonal values of Σth

are null. While pure speckle follows a complex circular Gaussian distribution Nc(I) with a unitary
covariance matrix I, single-look complex polarimetric SAR images follow the distribution Nc(Σtot).

We want to model the simulation of the speckle. Let us de�ne the matrix Mtot such that

MtotM
∗
tot = Σtot, (4.4)

then pure speckle η ∼ Nc(I) can be turned into complex amplitudes by

z = Mtotη with z ∼ Nc(Σtot) (4.5)

The factorization of matrix Σtot in equation 4.4 provides a generative model of complex-valued
polarimetric SAR amplitudes given in equation 4.5. In �gure 4.9 we illustrate the Cholesky fac-
torization even though other factorizations are also possible such as the computation of the square
root of Mtot. We have the following factorization de�ned at a given pixel n:
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Σtotn =

 σ0HHn
+ σ0HHthn

√
σ0HHn

σ0HVn
ρne

jβn√
σ0HHn

σ0HVn
ρne

−jβn σ0HVn
+ σ0HVthn


= MtotnM

∗
totn , (4.6)

where ρn ∈ [0, 1[ and βn ∈ [−π, π[ are the polarimetric coherence and polarimetric phase at pixel
n, and with

Mtotn =

√σ0HHn
+ σ0HHthn

0
√
un exp(−jβn)

√
σ0HVn

+ σ0HVthn
− un

 (4.7)

where

un =
σ0HHn

σ0HVn

σ0HHn
+ σ0HHthn

ρ2n . (4.8)

The full matrices Σtot and Mtot are block diagonal, with blocks Σtotn and Σtotn , meaning that
the polarimetric channels are correlated but pixels are independent.
The expression of this factorization will be useful to simulate synthetic speckle for the phase A of
the training of the SAR2SAR network.
The polarimetric complex amplitudes zn are formed by the pixelwise operations

∀n ∈ J1, NK, zn = Mtotnηn , (4.9)

where n is a pixel index, Mtotn and ηn are de�ned at pixel n. Mtotn is formed by the matrix
factorization

MtotnM
∗
totn

= Σtotn

= Σ
n
+Σthn

. (4.10)

The bias due to the thermal noise �oor can be removed using [69], leading to calibrated and corrected

data d̃c:

d̃c = diag(1/ã)d̃− σ̃0th , (4.11)

where the map of the inverse gain 1/ã is obtained by pixelwise division and the gain ã and noise
equivalent sigma zero σ̃0th at the GRDM resolution are obtained by application of the resampling
operator S:

ã = Sa (4.12)

σ̃0th = Sσ0th (4.13)

ã and σ̃0th are made available by the space agencies in the metadata of SAR images.
The aim of the despeckling and thermal noise compensation is to remove both the thermal bias

and the �uctuations due to thermal noise and speckle from the data d̃, meaning that we estimate
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the expectation E[d̃c]. As shown below, this expectation corresponds to the re�ectivity of the scene,
up to the low-pass �ltering e�ect of the SAR system. Combining equations (4.11) and (4.3) gives:

E[d̃c] = diag

(
1

ã

)
E
[
S|diag(

√
a)Hz|2

]
− σ̃0th (4.14)

Since calibration factors a vary slowly with the range and azimuth location, we can suppose

S|diag(
√
a)Hz|2 ≈ diag(ã)S|Hz|2

leading to the simpli�cation of the terms diag(1/ã) and diag(ã), and the expression of the expec-
tation becomes

E
[
|Hz|2

]
= diag (HE [zz∗]H∗)

where the notation diag() refers to the extraction of the diagonal of a square matrix. The linear
operator H operates separately on each polarimetric channel. Moreover, complex amplitudes in z
are uncorrelated for any pair of distinct pixels.
At pixel n, the expectation is thus equal to

∑
k |Hnk|2 ·(σ0HHk

+σ0HHthk
) for HH polarimetric channel

and
∑

k |Hnk|2 · (σ0HVk
+ σ0HVthk

) for HV polarimetric channel, which corresponds to the low-pass

�ltered re�ectivity obtained by accounting for the incoherent point spread function of the SAR
system.
Provided that σ̃0th matches the resampled and low-pass �ltered noise equivalent sigma zero values
in the HH and HV polarization channels such that

σ̃0th = S|H|2σ0th

then we obtain:

E[d̃c] ≈ S|H|2σ0 , (4.15)

where the square modulus |.|2 is applied element-wise, leading to a linear operator |H|2 that can
be interpreted as a convolution by the squared modulus of the complex-valued impulse response,
for a shift-invariant SAR imaging system.

To conclude, our objective is to recover the scene σ̃0, in ground range geometry, from the ground
detected data d̃ by removing thermal bias and �uctuations due both to thermal noise and speckle.
This scene is a low-pass �ltered and resampled version of the scene in slant geometry σ0, meaning
that we have:

σ̃0 = S|H|2σ0 (4.16)

with S|H|2 a linear operator that applies the incoherent point spread function of the system, low-
pass �lters and then resamples.

We want the network fθ to predict an estimation of the despeckled corrected re�ectivity. As
shown in Figure 4.10, the distribution of the corrected images is di�erent from the distribution of
intensity images. The loss function is identical to the one used in 4.2.3 and introduced in equation
4.2, and the change compensation step is also performed in the same way.
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Figure 4.10: After compensation of the shift due to the thermal noise �oor, corrected intensities
follow a di�erent statistical distribution. Here, the probability density function of the corrected
intensities is represented, in log scale (dB), for di�erent SNR values (ratios of the re�ectivity and
the thermal noise �oor σ0th). Compared to the Fisher-Tippett distribution followed in the absence
of thermal noise correction (red dashed curve SNR → ∞), the shape of the distribution is strongly
modi�ed by the correction, preventing from directly applying despeckling methods to corrected
images.

The most straightforward way to reduce speckle and compensate for the bias due to thermal
noise is a sequential processing: �rst despeckling of the intensity image leading to over-estimated
re�ectivities, then subtracting the thermal noise �oor σ0th. This strategy is illustrated in the top
row of Fig.4.11. The main weakness of this strategy is that discontinuities of σ0th are present in the
image processed by the despeckling algorithm. Imperfect restoration of these edges lead to artifacts
after the subtraction step. A better approach would consist in removing the thermal noise bias
before performing the reduction of �uctuations due to speckle and thermal noise.

4.3.2 Experimental results on simulated speckle

The �rst step of the training is done on simulated speckle. The training data set is the one used
for out dual-polarimetric despeckling network in section 4.2.3.

As the images corrected with the Korosov algorithm can contain negative values, feeding the
network with only the corrected images could be problematic. The thresholding is often done to
get rid of the negative values, but it triggers a loss of information. The task is then harder for the
network because some pixel information is lost. To make it easier, we decided to feed the network
with not only the corrected image, but also the intensity image after calibration, and the correction
σth
0 . The input of the network is thus formed by the following vector:

diag(1/ã) d̃

d̃c

σ̃0
th
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Figure 4.11: Despeckling techniques generally assume a multiplicative speckle model and must
be applied before thermal noise bias removal (top). We propose to remove this bias before the
despeckling step, provided that a speci�c despeckling technique be applied (bottom). This improves
the restoration because the thermal noise �oor discontinuities are removed before the despeckling
step.

During the training phase A with simulated speckle, noisy images containing thermal noise are
simulated using the statistically equivalent generative model for S1 EW mode GRD described in
Figure 4.9. For simulating the thermal noise component, we randomly extract a patch from an
actual thermal noise component from the training data set described in 4.2.2. The SNR factor,
de�ned as the ratio between the ground truth re�ectivity image and the thermal noise component,
is randomly selected within the range [0.1, 20] and leads to the adjustment of the re�ectivity values
to match the desired SNR. As the equivalent number of looks is not the same in all the image, the
speckle is simulated based on the position of the extracted patch with the entire SAR image. The
training hyperparameters are given in Table 4.1.

For testing, a new image is computed corresponding to an area in Belgica Bank. The image
has been acquired by the Radarsat-2 satellite in C-band Fine quad polarimetric. To build a ground
truth image, we �rst multilook the Single Look Complex (SLC) image to obtain roughly same
ground pixel size matching S1 EW mode GRDM images. Then a despeckling was performed on the
resulting covariance matrix using MuLog-BM3D [14]. The intensity information is extracted from
the diagonal of the �nal despeckled covariance matrices.
The thermal noise component is then added and corresponds to the component of one of the
Sentinel-1 image of our data set which contains a section of the �rst and the second sub-swath
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from a reference image in the training data set described in section 4.2.2. The SNR factor for this
simulation is �xed at 10. A set of 20 realizations of speckle are simulated and despeckled, and the
Mean Squared Error is computed as shown in 4.2. Our approaches has lower MSE values (in linear
and log-scale) than the dual-polarimetric despeckling network or the MuLog algorithm.

HH polarization HV polarization
MuLoG 0.000412 / 0.012417 9.355e-05/ 0.03154
Baseline 0.00038 / 0.01119 9.122e-05 / 0.02614

Proposed approach 0.00034 / 0.01037 8.438e-05 / 0.01882

Table 4.2: Mean Square Error computed between the restored image and the ground truth image
in blue, and Mean Square Error computed between the log restored image and the log ground truth
image in green. Both MSE are computed on 8 710 080 pixels (20 images of 688× 633 pixels)

Our proposed approach leads to better results especially in areas where the values of the re�ec-
tivity are low. On the water, the �uctuations related to the thermal noise, are attenuated on the
results in Figure 4.12 and Figure 4.13. There is no signi�cant artifacts linked to the correction of
the image after the despeckling (bright vertical lines are clearly visible on results obtained with the
dual-polarimetric despeckling network at the boundary between sub-swaths).

4.3.3 Training on Sentinel-1 GRDM-EW images

In this section, we perform the phase B of the training of the SAR2SAR algorithm. The network is
still trained using the loss in equation 4.2 evaluated on intensity images. The change compensation
is also performed on the intensity images. The pre-estimated re�ectivities used for this change-
compensation step are estimated with the network trained in phase A in section 4.3.2.

Experimental results are given in Figure 4.14 on Sentinel-1 GRDM EW images from the river
Ob in Russia. We compare ourselves to MuLoG, the SAR2SAR network and our dual-polarimetric
joint despeckling network in section 4.2.3. For these three methods, the correction of the image is
performed after the despeckling, leading to residual �uctuations where the re�ectivity values are
comparable to the thermal noise �oor. As we are processing corrected images with our network,
this is less visible in images restored with our approach.
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Groundtruth image Groundtruth image thermal noise

without thermal noise (σ0
HH) with thermal noise (σ0

HH + σHHth
) component (σHHth

)

Noisy image with thermal noise (d̃HH) Noisy corrected image

without thermal noise �oor (d̃HH ,c)

σ̂0
HH MuLoG σ̂0

HH Dual-pol despeckling network σ̂0
HH Proposed approach

Figure 4.12: Despeckling results for the HH polarization. Speckle has been simulated and GRDM
images computed based on the generative model in Figure 4.9. Fluctuations are attenuated in
the water when the network is processing the corrected images. The vertical line coming from a
correction posterior to despeckling, is less visible on the restored image by our proposed approach.
Results on HV images are given in Figure 4.13.
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without thermal noise (σ0
HV) with thermal noise (σ0

HV + σHVth
) component (σHVth

)

Noisy image with thermal noise (d̃HV) Noisy corrected image

without thermal noise �oor (d̃HV ,c)

σ̂0
HV MuLoG σ̂0

HV Dual-pol despeckling network σ̂0
HV Proposed approach

Figure 4.13: Despeckling results for HV polarization.
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Noisy image (HH) Despeckled with MuLog (HH) Despeckled with SAR2SAR (HH)

Despeckled with our dual-pol network (HH) Despeckled with our approach Despeckled with our approach

phase A (HH) phase B (HH)

Noisy image (HV) Despeckled with MuLog (HV) Despeckled with SAR2SAR (HV)

Despeckled with our dual-pol network (HV) Despeckled with our approach Despeckled with our approach

phase A (HV) phase B (HV)

Figure 4.14: Result on Sentinel-1 GRDM-EW images, River Ob, Russia. The 300× 300 pixels crop
is located in the �rst sub-swath of the image. Our dual-polarimetric despeckling network introduced
in section 4.2.3 is also used. The restored image with our method has more details than the MuLoG
algorithm while reducing the �uctuations related to thermal noise that are still visible in the water
in the dual-polarimetric and the SAR2SAR approaches.
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4.4 Conclusion

In this work, we used the polarimetric information of Sentinel-1 GRDM EW images to improve
despeckling. Because the main application of this work is the analysis of sea ice images, we have
proposed a method combining the thermal noise removal and despeckling. The network trained in
section 4.3.3 can be used on corrected SAR images which are widely used by the sea ice community.
The experimental results show that we are able to reduce the �uctuations in low re�ectivity areas
that are caused by a level of thermal noise close to the values of re�ectivity of ice and water.



Chapter 5

Multi-temporal despeckling

Publications related to this chapter:

� Exploiting multi-temporal information for improved speckle reduction of
Sentinel-1 SAR images by deep learning, Emanuele Dalsasso, Ines Meraoumia,
Loic Denis, Florence Tupin, IEEE International Geoscience and Re-
mote Sensing Symposium (IGARSS conference), 2021
Recipient of the 2021 IEEE GRSS Symposium Prize Paper Award

� Fast strategies for multi-temporal speckle reduction of Sentinel-1 GRD im-
ages, Ines Meraoumia, Emanuele Dalsasso, Loic Denis, Florence Tupin,
IEEE International Geoscience and Remote Sensing Symposium
(IGARSS conference), 2022

� Débruitage multi-temporel d'images radar à synthèse d'ouverture par ap-
prentissage profond auto-supervisé, Ines Meraoumia, Emanuele Dalsasso,
Loic Denis, Florence Tupin, GRETSI conference, 2022

� Multi-temporal speckle reduction with self-supervised deep neural networks,
Ines Meraoumia, Emanuele Dalsasso, Loic Denis, Remy Abergel, Florence
Tupin, IEEE Transactions on Geoscience and Remote Sensing,
2023

In the previous chapter, the Multi-Input Multi-Output framework has been used for joint de-
speckling using the polarimetric information of a single GRD image. This approach has been elected
because we had some constraints concerning the data: sea ice images have a lot of structural changes
and motion through time. Providing the network with a temporal stack of images of the same area
would not have been bene�cial to the restoration process. However, in this chapter, the context of
work is di�erent: given that temporal stacks are acquired by satellites with only local changes (for
the monitoring of urban areas for example), how can we use this temporal information to improve
the despeckling performance?

The extraction and use of temporal information can be done indirectly, by temporal averaging
and through the use of a surrogate of the multi-temporal stack (what we call super-image in this

53
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manuscript, as in [16]); or directly by feeding the images to a network.
As it has been explained in Chapter 3, section 3.1, joint despeckling with a MIMO framework

is not e�ective when the number of input images is higher than two. In the following work, we will
be working in the Multi Input Single Output (MISO) framework.

This chapter will be structured as follows: in the �rst section, we will introduce multi-temporal
despeckling and provide key references in the literature; in the second section, we will develop the
proposed strategies based on temporal averaging and the computation of a super-image; and in the
last section, we will present our multi-temporal deep learning based method directly exploiting the
multi-temporal stack provided as input to the network.

5.1 Introduction to Multi-temporal despeckling

The Sentinel-1 satellite mission in the context of the Copernicus program of the European Space
Agency aims at providing open source data of the whole planet Earth. The Sentinel-1A satellite
was launched the third of April in 2014, and it started producing a huge volume of data with new
images of a land area every 6 days. The images are freely provided online by the European Space
Agency. In this context, we can work with multi-temporal stacks of SLC or GRD images provided
by the Sentinel-1 satellite.

Thus, the community has been interested in developing multi-temporal despeckling to leverage
the available volume of data. The spatial resolution of Sentinel-1 being between 5 meters to 40
meters approximately, the need for despeckling without changing the spatial resolution has been of
great interest.

In 2001, long time before the Sentinel-1 launch, a multi-temporal despeckling method has been
developed by Quegan [70]. The proposed �lter consists in the following idea: starting from a multi-
temporal averaging, we can improve the estimator by compensating for changes. The method relies
on the length of the time series and the quality of the single-image restorations that are used for
change compensation.

Successful single-image despeckling algorithms have also been extended to multi-temporal de-
speckling. The SAR-BM3D proposed by [39] is based on collaborative �ltering of blocks of similar
patches; in its multi-temporal extension MSAR-BM3D [54], the patches located at other dates in
the stack are also considered when searching for similar patches.
The two-step multi-temporal non-local means [15], inspired by the iterative �ltering proposed in
[12], is based on a weighted averaging along the spatial but also the temporal dimensions of similar
patches.

Adaptive �ltering of SAR temporal stacks can also be done using an adaptive mean �lter by
computing the coe�cient of variation and detect stable areas and areas containing changes through
time [71], or by computing a change detection matrix based on responses of similarity cross tests
between each pair of images selected within the stack [72, 73].
RABASAR [16] proposes to compute �rst a super-image by temporally multi-looking the image
stack. This super-image has almost no residual speckle �uctuations. Then, the ratio image between
the noisy image and the super-image is computed. The content of these ratio images is largely
simpli�ed and thus easier to restore because only speckle and changes with respect to the super-
image are remaining. The �nal despeckled images are obtained after re-multiplication by the super-
image. A drawback of ratio-based processing is that the lowest-contrasted structures present either
in the speckled image or in the super-image might be improperly restored. This could lead to
the suppression of details or the apparition of "ghost" structures leaking from the super-image as
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explained in [74] where a quantitative comparison between the temporal arithmetic mean image
and the temporal geometric mean image is done.

5.2 Simple integration of multi-temporal information with

high-SNR average images for multi-temporal despeckling

Working with a multi-temporal stack of images, an easy way to extract and use the temporal
information is to average all the images of the stack. Let z be the temporal stack of T SAR images
noted z1, z2, . . . ,zT and the corresponding intensity stack i such that i1 = |z1|2, . . . , iT = |zT |2.
The temporal mean in intensity ī is de�ned by

ī =
1

T

T∑
t=1

it (5.1)

The level of noise of ī is very low.
We can even go further and work with a super-image. Its concept and computation has been

introduced by [16], and directly �ow from temporal averaging. The super-image is computed by
despeckling the temporal mean ī with a despeckling algorithm. The resulting image, wich will
be noted isuper, does not represent the scene at any particular time as it averages the temporal
information of the stack. These super-images are also used as a groundtruth for the supervised
training steps of the despeckling SAR-CNN [17] and SAR2SAR [18] frameworks.

This subsection introduces simple approaches based on existing single-image despeckling algo-
rithms to obtain multi-temporal despeckling methods. First, an extension of the Quegan �lter
is proposed to try to improve the results by using images despeckled with the SAR2SAR frame-
work [18]; then an extension of RABASAR [16] is described using again the SAR2SAR network to
despeckle the ratio images.

5.2.1 Quegan �lter with re�ectivities estimated with a deep learning
based method

In this �rst proposed approach, we study a fast strategy to combine the best of single-image CNN
despeckling while exploiting multi-temporal redundancy with the widely used Quegan �lter. It
especially focuses on Sentinel-1 GRD data, which are widely used for operational programs.

As a despeckling method, we consider the adaptation of SAR2SAR to GRD images. We recall
that within SAR2SAR, a CNN is trained to estimate the re�ectivity image r at each pixel using pairs
of co-registered SAR images acquired at di�erent dates. The framework has �rst been developed on
single-look Sentinel-1 images. An adaptation to GRD data, presenting a di�erent number of looks
and spatially-varying speckle correlations, is presented in [75]. This network has been used as-is in
the following.

Quegan �lter [70] is a powerful yet simple approach to denoise multi-temporal stacks. When
the temporal correlation between the images can be neglected it boils down to an average of change
compensated images.
Let us consider a temporal stack of T intensity images where it and rt denote the intensity and
re�ectivity of a speci�c date t respectively. The �ltering formula giving the estimated re�ectivity
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r̂Qt of date t is

r̂Qt =
1

T

T∑
k=1

r̂Qt
ik
r̂k

(5.2)

The change compensation between date t and a date k of the multi-temporal stack is done thanks
to an estimation of the re�ectivity of each date k denoted by r̂k. This is a tricky problem since in
case of a perfect knowledge of r̂k, the multi-temporal denoising would not be needed. Therefore,
the better this estimation, the better the multi-temporal denoised result.

In practice, in the original paper, it is proposed to evaluate these estimates by local averages of
the intensity values around the processed pixel for each date. This corresponds to a local spatial
multi-looking. This estimation unsurprisingly leads to a loss of resolution, for instance blurring
strong targets and edges, and has a negative impact on the global multi-temporal result.

A simple improvement is thus to replace these estimates by more e�cient estimations, for
instance provided by SAR2SAR trained on GRD images [75]. Experimental results are shown in
Fig.5.1 on a stack constituted by 17 Sentinel-1 GRD images acquired around the town of Mallacoota,
Australia. The �gure shows more in details the improvement brought by integrating SAR2SAR
within the multi-temporal Quegan �lter. Replacing the spatial multilooking by the SAR2SAR
network leads to a better preservation of details.

The main advantage of this method is that it is really easy to use. People in the remote-sensing
community use GRD images because their geometry makes them easy to interpret and the level of
speckle is lower than the one observable in Single Look images. Besides, Quegan �lter is still widely
used despite numerous available multi-temporal �lters developed by the signal and image processing
community. It can also be implemented with a low computational complexity by pre-computing
the averages of multi-temporal data and storing them for the processing of many newly acquired
dates.

5.2.2 Extension of Ratio-based despeckling (RABASAR)

The second strategy that has been considered is the ratio-based approach proposed in [16]. The
idea is to create a super-image isuper, as introduced at the beginning of this section 5.1, and to
denoise a residual image corresponding to the ratio τ t between a speci�c date t and the associated
super-image such that for each pixel k we have

τt,k =
it,k

isuper ,k
(5.3)

The ratio image is then despeckled using any despeckling algorithm. The statistics of the ratio
image are not exactly the same as the noisy image and an adapted denoising algorithm is proposed
in the original paper [16]. In this case, there is no change compensation before averaging as in
Quegan strategy, but the residual image is easier to denoise than the original one as it has an
improved stationarity.
Finally, the denoised estimation of rt is retrieved by multiplying τ̂ t with the super-image isuper:

∀k r̂Rt,k = τ̂t,k × isuper ,k (5.4)

We propose to use SAR2SAR for the denoising of the ratio image τ t of date t. Note that this
method can be applied to Single Look images but also GRD images, the only condition to be veri�ed
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Figure 5.1: Details preservation and image quality is improved when SAR2SAR is integrated within
Quegan �lter (�g.(d)). On the one hand, single-image restoration results in a loss of �ne structures
(�g.(b)). On the other hand, the Quegan �lter requires a high-quality speckle reduction algorithm:
indeed, pre-estimating the re�ectivites with a spatial averaging blurs some of the image details
(�g.(c)).

is that the despeckling network has been trained on data from the same sensor and modality. Using
SAR2SAR avoids sub-sampling altogether which preserves the spatial resolution of the restored
images.
Owing to their non-linear nature, neural networks are very sensitive to the dynamic range of their
inputs. Signi�cantly shifting the dynamic range of input images between training and testing most
often leads to catastrophic results. Ratio images have very di�erent ranges compared to SAR
intensity images: in the absence of signi�cant changes between the image and the super-image, the
expected value of the ratio is 1. It is then necessary to appropriately rescale them in order to use
the SAR2SAR network trained on SAR images (i.e., not speci�cally trained on ratio images). We
experimented with several normalization strategies and describe the one that worked best. Let us
suppose that we work with a temporal stack of T images and want to despeckle the SAR image at
date t.

In order to preserve the original range, in log domain, of the intensity image it when processing
the ratio τ , we normalize the super-image isuper into i

0
super so its log-mean is equal to 0.
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The modi�ed ratio image τ 0 = it/i
0
super is processed by SAR2SAR. The obtained despeckled ratio

τ̂ 0 is then multiplied by the normalized super-image to produce the �nal estimate of the restored
image r̂:

r̂ = τ̂ 0 × i0super

We illustrate our method on single-look Sentinel-1 images of an area near Lelystad, Netherlands.
A stack of 25 images was spatially co-registered and temporally averaged. Remaining speckle �uc-
tuations were suppressed with MuLoG+BM3D [14], using an equivalent number of look estimated
in a homogeneous area. A single-look amplitude image and the super-image are shown in Fig. 5.2,
left column. Fig. 5.2 compares restoration results obtained by several strategies: the top block gives
single-image restoration results and the bottom block shows how the use of a super-image improves
the despeckling. Images (a) and (d) su�er from artifacts due to the application of a despeckling
method that is sensitive to spatial correlations of speckle directly on a Sentinel-1 image. Down-
sampling the images reduces speckle correlation and suppresses these artifacts ((b) and (e)). This
comes at the cost of a noticeable resolution loss, somewhat mitigated by the use of a super-image.
SAR2SAR is robust to speckle correlations. It gives superior results in the single-image scenario
(image c) and o�ers a restoration with an improved preservation of details such as thin roads or
�eld edges using the proposed multi-temporal approach (image f).

In the previous approaches 5.2.1 and 5.2.2, multi-temporal information has been exploited in a
simple way by working with temporal averaging and despeckling the ratio image between the noisy
image and the super-image. The comparison between the fast strategy using the improved Quegan
�lter and the RABASAR adaptation with the SAR2SAR denoiser is given in Fig. 5.3.

Although easy to apply, these methods do not fully exploit the temporal information. In the
following section, we propose a new deep learning based network taking a multi-temporal stack as
input and thus extracting the temporal information on its own.
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Figure 5.2: Comparison of several despeckling strategies for single-image and multi-temporal
processing. Figure extracted from [67].
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Figure 5.3: Comparison of several despeckling strategies for single-image and multi-temporal processing of GRD
images. (A) Single image restoration: the SAR2SAR network is trained on GRD images and no temporal information
is used. The estimated re�ectivity are blurred and there is a lack of details. (B) Restoration with multi-temporal
information and Quegan �lter: despeckling based on temporal averaging with change compensated images. The
SAR2SAR network is used to compute pre-estimated re�ectivities to perform the change compensation. (C) Restora-
tion with multi-temporal information and the use of super-image: the RABASAR based method. Two computations
of the super-image are illustrated, the �rst one with simple temporal averaging and the second one with an addi-
tional denoising step of the temporal mean. The ratio image is computed and despeckled with SAR2SAR. With both
computations of the super-image, the estimated re�ectivities are sharper and contain more details. The higher the
number of images in a stack, the fewer di�erences are between the two estimations. Figure extracted from [76].
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5.3 Self-supervised joint multi-temporal despeckling technique

The network proposed in this section can be trained end-to-end to produce a despeckled image from
a time series of co-registered SAR images. This is made possible by the use of a self-supervised loss
function introduced recently by our research team [19], bypassing the impossibility to access high-
quality ground truth images. Compared to simpler strategies based only on a single date enriched
by a super-image (as introduced in section 5.2), we feed the network with all available dates. This
leaves all freedom to the network to perform optimal temporal combinations, leading to improved
restorations even when only a few additional images are included.

Our method is grounded on a generative model of speckle that accounts for fully-developed
speckle areas, the presence of dominant scatterers due to man-made structures, interfer-
ometric coherence, and the spatial correlations induced by the SAR transfer function. This
generative model will be developed in paragraph 5.3.1.

Reminders on the MERLIN method are given in section 5.3.2. The theoretical framework of the
proposed method is developed in section 5.3. A numerical study is then performed on data with
simulated speckle to characterize the performance of the method in section 5.3.5. The approach is
then tested on stacks of TerraSAR-X Stripmap images in section 5.3.4. A study on the in�uence of
the temporal correlations when despeckling has also been done in the last section.

5.3.1 A generative model for multi-temporal stacks of SAR images

The ability to partition the data into two mutually independent sets is central to our self-supervised
training strategy. It is thus necessary to model the di�erent sources of speckle correlations arising in
multi-pass SAR imaging. If the images are acquired in interferometric conditions, then the speckle
remains partially coherent from one pass to the next. Otherwise, the speckle is fully decorrelated
and multi-temporal �ltering can be very e�ective provided that changes in the scene remain limited
(i.e. geometrical structures are aligned throughout the time series).

SAR images are a mix between:

(i) areas that follow Goodman's fully developed model (coherent summation of many similar
elementary phasors). They are typically composed of rough surfaces and scattering volumes

(ii) regions where the complex amplitude is mainly de�ned by the magnitude and phase of dom-
inant scatterers.

To include both phenomena, we build a composite model of a stack z ∈ CTN of T SLC SAR
images, each with N pixels. The stack is described as the superimposition of two components: a
speckle component s ∈ CTN , driven by a re�ectivity map r ∈ RTN

+∗ , and the dominant scatterers
component d ∈ CTN , see Figure 5.4(a).

In the following, the multi-temporal stacks will be represented in the form of a column vector
(e.g., z ∈ CTN ), by concatenation of the T images, and both the image at date t (noted z(t, ·) ∈
CN , or zt in compact form) and the vector of complex amplitudes at pixel k for all dates (noted
z(·, k) ∈ CT ) will be considered. A permutation matrix Π can be applied to transform the vector
z from an ordering according to a scan of all pixels for each date, one date after another, to an
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Figure 5.4: Generative model of speckle in multi-temporal SLC stacks of SAR images. Illustration
extracted from [68].

ordering according to a scan of all dates for a given pixel, before moving to the next pixel:

Πz = Π

z(t1, ·)...
z(tT , ·)

 =

z(·, k1)...
z(·, kN )

 . (5.5)

This permutation will be handy to describe the structure of various covariance matrices.
According to Goodman's model [34], the speckle component s(·, k) ∈ CT at pixel k follows a

complex circular Gaussian distribution Nc(Σk) de�ned by

p(s(·, k)|Σk) =
1

πTdet(Σk)
exp

[
−s(·, k)† Σ−1

k s(·, k)
]
, (5.6)

where ·† denotes the conjugate transpose; Σk is the speckle covariance matrix at pixel k. The
matrix Σk can be written as

Σk = diag(
√
r(·, k))Γkdiag(

√
r(·, k))

with r ∈ RTN
+∗ the vector of re�ectivities and Γk the coherence matrix. By de�nition, its entries

verify |Γk(ti, tj)| ≤ 1 for all ti and tj and Γk(t, t) = 1 for all t. Here, the square root function is
applied entry-wise.

The coherence matrices characterize how the temporal evolution of the scene decorrelates the
speckle. Starting from a pure speckle ϵk ∈ CT , with no correlation along the spatial and the
temporal axis (ϵk ∼ Nc(I)), a multiplication by the matrix Lk, where LkL

†
k = Γk (e.g., Lk is

a Cholesky factor of coherence matrix Γk), gives a random vector that follows the distribution
Nc(Γk).
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Thus, the speckled component can be generated from ϵk (Figure 5.4(b)):

s(·, k) = diag(
√
r(·, k))Lkϵk . (5.7)

The vector s ∈ CTN that concatenates all T images one after another can be obtained by

s =

s(t1, ·)...
s(tT , ·)

 = diag(
√
r)Π−1

L1 0
. . .

0 LN

Π

︸ ︷︷ ︸
L

ϵ . (5.8)

The covariance matrix of the speckled component s is block diagonal after a proper permutation

Cov[s] = diag(
√
r)Π−1

Γ1 0
. . .

0 ΓN

Πdiag(
√
r) , (5.9)

which shows that correlations are only along the temporal axis of the spatio-temporal stack.
The dominant scatterers component d ∈ CTN contains non zero values only at pixels with

dominant scatterers. Such scatterers may appear or disappear at some point in the time series.
The SLC amplitudes of the scene z then correspond to the superimposition of the two components:
z = s+ d, see Figure 5.4(c). We model the e�ects of the atmospheric phase, the topographic (and
possibly displacement) phase of the speckle component [77], and the spectral response of the SAR
system as follows (Figure 5.4(d)):

z̃ =

 z̃(t1, ·)...
z̃(tT , ·)


=

H1diag(exp(jφ1)) 0
. . .

0 HTdiag(exp(jφT ))

 z , (5.10)

where z̃ is the complex amplitude that includes these e�ects, Ht ∈ CN×N is the SAR response for
the t-th acquisition, and φt = φatmot

+ φtopot
+ φdispt

∈ CN combining the di�erent sources of
phase modi�cation.

The spectral response of the SAR system is generally identical for all passes, up to a 2D shift due
to angular discrepancies such as incidence and possibly squint angle di�erences between acquisitions.
Linear operators Ht, 1 ≤ t ≤ T , can thus be written

Ht = diag(exp(−jψt))Qdiag(exp(jψt))

where Q ∈ RN×N is the real-valued operator applied in spatial domain and corresponding to a
spectral response in Fourier domain. It is symmetrical and centered on the 0 frequency. The phase
vector ψt is the 2D ramp corresponding to this 2D shift in Fourier domain accounting for the
angular discrepancies at pass t. The complex amplitudes of the t-th pass can be rewritten

z̃t = diag(exp(−jψt))Qdiag(exp(jφt + jψt))zt . (5.11)
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The linear operator Q accounts for the spectral apodization introduced to reduce the sidelobes of
strong scatterers and a possible over-sampling which corresponds to a 0-padding in Fourier domain.
Both of them induce a low-pass �ltering e�ect on SAR images that does not depend on t.

Since the multi-temporal stack z̃ is generated from ϵ through a series of linear operations, z̃ is
also Gaussian-distributed with a mean equal to d̃. For each date t and subvector dt, we can de�ne
the low-pass �ltered dominant scatterers component d̃(t, ·) ∈ CN as

d̃(t, ·) = Htdiag(exp(jφt))dt

The covariance matrix of the multi-temporal stack z̃ can �nally be derived

Cov[z̃] =

diag(exp(−jψ1))Qdiag(exp(jφ1 + jψ1)) 0
. . .

0 diag(exp(−jψT ))Qdiag(exp(jφT + jψT ))


diag(

√
r)Π−1

Γ1 0
. . .

0 ΓN

Πdiag(
√
r)

diag(exp(−jφ1 − jψ1))Q
†diag(exp(jψ1)) 0

. . .

0 diag(exp(−jφT − jψT ))Q
†diag(exp(jψT ))


(5.12)

The complex values in the generated temporal stack z̃ are both spatially and temporally corre-
lated.

5.3.2 Reminder on the self-supervised single-image MERLIN method

The principle of the self-supervised training proposed in [19] called coMplex sElf-supeRvised de-
speckLINg (MERLIN), consists of splitting the real and imaginary components of a single-date SLC
image and exploiting their statistical independence during the training phase. In the testing phase,
two estimations are computed based on the real and imaginary parts. The �nal estimation is the
average value of these two estimations. The training and testing strategies are described in Fig.
5.5.

We remind that two di�erent tasks can be considered when extending speckle reduction to
multi-temporal stacks:

(i) the Multiple Input Single Output (MISO) framework where several dates are provided in
input but only a single image at a reference date tref is restored

(ii) the Multiple Input Multiple Output (MIMO) framework that restores at once all the dates
provided in the input multi-temporal stack

As discussed in section 3.1, we follow the MISO approach depicted in Figure 5.6 for two reasons:
the �rst one is the easier requirement of statistical independence with respect to the inputs of
the network when a single output is considered. The second one is the computational constraint:
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Figure 5.5: MERLIN strategy to despeckle one SLC image. (A) Self-supervised training: the
complex values of the data are used to perform self-supervised despeckling. The real and imaginary
parts are used as two independent noisy images of the same scene. A training based on Noise2Noise
[21] uses the squared real part (or squared imaginary part) as input and supervises the training
with the squared imaginary part (or the squared real part). (B) Testing and application of the
trained network to a new image: to test the method on one SLC image, a �rst estimation of the
re�ectivity image is computed by feeding the squared real part to the network, and a second one
by feeding it with the imaginary part. The �nal estimator is the average image between the two
pre-estimations. Figure extracted from [19].

in order for a MIMO network to output very di�erent images in case of large changes, several
independent paths must emerge within the network architecture, which requires a huge network
capacity [66] and a careful initialization to avoid getting stuck in poor quality local minima during
training, as we observed in our preliminary experiments.
In our MISO multi-temporal approach, we provide the network with the multi-temporal SLC stack of
T images where the real part (or imaginary part) of the reference date tref is excluded. This excluded
component is then used to supervise the training under the assumption that it is statistically
independent from the inputs. Here, the re�ectivities r and dominant scatterers d are considered
deterministic and only the speckle ϵ is random. Two preprocessing steps are required to ensure this
independence.

First, the shift of the SAR system response in the spectral domain at date tref induces correlations
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between real and imaginary components at this date. Thus, the Hermitian symmetry of the SAR
transfer function must be ensured. This issue was originally discussed in [19], it is extended to the
more di�cult case of a temporal stack in this work. A simple pre-processing step can be applied to
recenter the spectrum of the image at the reference date around the 0 frequency by multiplication by
the 2D phase ramp exp(jψtref). In order to preserve interferometric coherence, we apply the same
spectral shift to all dates such that the relative shift between Fourier spectra remains unchanged.
We denote the centered complex amplitudes by ż, de�ned by

∀t, ż(t, ·) = diag(exp(jψtref))z̃(t, ·) (5.13)

where the phase ramp ψtref required to recenter the spectrum, can be estimated from the power
spectrum of image z̃(tref, ·). This leads to the following simpli�ed expression at tref:

ż(tref, ·) = Qdiag(exp(jφtref + jψtref))ztref . (5.14)

Second, a whitening step may be necessary to address the correlations along the temporal axis,
depending both on the coherence matrices Γk (these matrices model how temporal decorrelations
a�ect the scene) and the shifts induced by the phases ψt which model geometric decorrelation
according to the interferometric baselines. In the context of multi-temporal speckle �ltering, the
stronger the correlations along the temporal dimension, the less useful the additional images. It
is therefore recommended to consider time series with su�cient temporal speckle decorrelation for
which no whitening step is necessary. If images are in interferometric con�guration with a large
coherence, a whitening step is required. Further experiments and a description of our proposed
whitening procedure are presented in the section 5.3.5.

We will denote by z̊ the stack after this preprocessing step, i.e., with minimal correlations along
the temporal dimension. Please note that z̊ = ż in the absence of whitening step.
Assumption 1 summarizes that temporal correlations have been suppressed by the preprocessing
step:

Assumption 1. The preprocessed image z̊ref at date tref is statistically independent of the images
z̊t for all dates t ̸= tref.

In our MISO framework, we will consider two sets of inputs (noted Ea and Eb) that contain all

images z̊t except for the imaginary part b̊ref ∈ RN (respectively the real part åref ∈ RN ) of z̊ref:

Ea = {åref} ∪ {̊zt|t ̸= tref} and Eb = {̊bref} ∪ {̊zt|t ̸= tref}.

In the following proposition, we show that these inputs are independent from the component set
aside. This independence will be key to train a network fed with the input set Ea (or Eb) under the

supervision of loss function involving the component b̊ref and respectively åref.

Proposition 1. Under assumption 1, the input set Ea is statistically independent from the imag-
inary part b̊ref at date tref, and similarly the input set Eb is statistically independent from the real
part åref.

Proof. Under assumption 1, the image z̊ref is independent from all other images z̊t with t ̸= tref. It
remains to prove that the real and imaginary parts at time tref are independent. According to our
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generative model of Sec.5.3.1, they can be expressed in terms of the speckle ϵref and the dominant
scatterers dref (

åref
b̊ref

)
=

(
ℜ( ˙dref)

ℑ( ˙dref)

)
+M

(
ℜ(ϵref)
ℑ(ϵref)

)
, (5.15)

where

˙dref = Qdiag(exp(jφref + jψref))dref (5.16)

and

M =

(
Qdiag

(
cos(αref)

√
rref
)

−Qdiag
(
sin(αref)

√
rref
)

Qdiag
(
sin(αref)

√
rref
)

Qdiag
(
cos(αref)

√
rref
) )

with αref = φref + ψref and where the square root as well as the multiplications between vector√
rref and the cosine and sine are all applied entry-wise.

Given that ℜ(ϵref) and ℑ(ϵref) are independent and identically distributed according to a Gaussian
distribution N (0, 12I), the real-valued vector formed by the real and imaginary components is also
distributed according to a Gaussian distribution:(

åref
b̊ref

)
∼ N

((
ℜ(ḋref)
ℑ(ḋref)

)
, 12MM†

)
(5.17)

with

MM† =

(
Qdiag(rref)Q

† 0
0 Qdiag(rref)Q

†

)
. (5.18)

This shows that åref and b̊ref are both jointly Gaussian and decorrelated, and thus, independent.

5.3.3 Self-supervised training strategy

In the MERLIN framework [19], the following single-date loss function has been introduced:

LMERLIN(a,u) =
∑
k

1

2
log uk +

a2k
uk

. (5.19)

where the sum is computed over all the pixels k, a is the real part of a SLC image, and u is the
output of the network based on the imaginary part b.
This loss was applied to train a network fed with the imaginary part b of a single SLC image
and supervised by the corresponding real part a, or conversely by providing a to the network and
supervising with b. Assuming that a and b are statistically independent, the network was shown
to learn how to estimate the re�ectivities.

We extend this loss to our multi-temporal MISO framework by replacing a with åref and b with
b̊ref. The parameters θ of our regression model fθ, i.e. the deep neural network, can be learned by
minimizing the following multi-temporal extension of the MERLIN loss function:

arg min
θ

Eb̊ref|r,d
Ea|r,d

[
LMERLIN

(̊
bref, fθ(Ea)

)]
+ Eåref|r,d

Eb|r,d
[LMERLIN (̊aref, fθ(Eb))] (5.20)
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According to Proposition 1, the inputs of the network Ea or Eb are independent from the images b̊ref
and åref used in the loss. It is thus impossible for the network to predict the stochastic component
in these images. One could argue that the output u = a would minimize equation (5.19) but due
to the stochastic nature of speckle, it cannot be guessed from the input of the network.
In the following proposition, we consider the family of all possible models fθ that map the input
images to a single output image. We then discuss in the proof of Prop.3 the special case of a
sub-family of models corresponding to a given parameterization of the regression model fθ, which
is, in our case, a �xed neural network architecture.

Proposition 2. The expectation of the multi-temporal MERLIN loss function (5.20) is minimal
with respect to the predictions fθ(Ea) and fθ(Eb) if and only if fθ(Ea) = r̃ref + 2ℑ(ḋref)

2 and

fθ(Eb) = r̃ref+2ℜ(ḋref)
2, where r̃ref is the diagonal of covariance matrix Qdiag(rref)Q

† and ḋref =
Qdiag(exp(jφref + jψref))dref.

Proof. We start by expressing the values of the two expectations that appear in equation (5.20).
They involve terms of the form

E

[∑
k

åref(k)
2

u(k)

]
and E

[∑
k

b̊ref(k)
2

v(k)

]

where
u = fθ(Eb) and v = fθ(Ea)

They can be rewritten

E

[
å†
refdiag

(
1

u

)
åref

]
= Tr

{
diag

(
1

u

)
E
[
årefå

†
ref

]}
E

[̊
b
†
refdiag

(
1

u

)
b̊ref

]
= Tr

{
diag

(
1

u

)
E
[̊
bref̊b

†
ref

]}
where 1/u denotes an entry-wise inversion. By marginalization of the Gaussian distribution de�ned
in (5.17), we obtain

E[̊arefå
†
ref] = ℜ(ḋref)ℜ(ḋref)† + 1

2Qdiag(rref)Q
†

E[̊bref̊b
†
ref] = ℑ(ḋref)ℑ(ḋref)† + 1

2Qdiag(rref)Q
†

This leads to:

Eb̊ref|r,d [LMERLIN(̊aref,u)] =
∑
k

1

2
logu(k) +

ℜ(ḋref(k))2 + 1
2 r̃ref(k)

u(k)
(5.21)

Eåref|r,d
[
LMERLIN(̊bref,v)

]
=
∑
k

1

2
log v(k)

ℑ(ḋref(k))2 + 1
2 r̃ref(k)

v(k)
. (5.22)

A necessary condition for the expectations to be minimal is:

∂

∂u(k)
Eåref|r,d [LMERLIN(̊aref,u)] = 0 ⇒ u(k) = r̃ref(k) + 2ℜ(ḋref(k))2 (5.23)
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∂

∂v(k)
Eb̊ref|r,d

[
LMERLIN(̊bref,v)

]
= 0 ⇒ v(k) = r̃ref(k) + 2ℑ(ḋref(k))2. (5.24)

The second-order derivatives for the values of u(k) and v(k) given by equations (5.23) and (5.24)

∂2Eåref|r,d [LMERLIN(̊aref,u)]

∂u(k)2

∣∣∣∣
u(k)=r̃ref(k)+2ℜ(ḋref(k))2

=
1

2(r̃ref(k) + 2ℜ(ḋref(k))2)2
(5.25)

∂2Eb̊ref|r,d

[
LMERLIN(̊bref,v)

]
∂v(k)2

∣∣∣∣∣∣
v(k)=r̃ref(k)+2ℑ(ḋref(k))2

=
1

2(r̃ref(k) + 2ℑ(ḋref(k))2)2
(5.26)

are both strictly positive, which shows that the values of u(k) and v(k) correspond to a minimum.
Since the solution to equations (5.23) and (5.24) is unique, we have identi�ed the only minimum of
the objective function.

Proposition 3. Minimization of the expectation of the multi-temporal MERLIN loss function leads
to an unbiased estimator [fθ(Ea) + fθ(Eb)]/2 of the sum of the low-pass �ltered re�ectivities r̃ref
and of the intensity of the low-pass �ltered dominant scatterers |ḋref|2 at date tref, provided that fθ
is su�ciently expressive (e.g., a deep neural network with su�cient width).

Proof. Under the Universal Approximation Theorem for width-bounded ReLU networks [78], a
network with su�cient width can be built to approximate an arbitrary and Lebesgue-integrable
function fθ. If less expressive estimators fθ are considered such as smaller networks, not fully-
connected architectures or even other estimators than deep neural networks, a bias may appear.
This is mainly due to the reduced ability of the estimator to match the optimal output given in
Proposition 2.
For a su�ciently expressive estimator producing the optimal output, according to Proposition
2, the minimum of the expectation of the multi-temporal MERLIN loss function is reached for
fθ(Ea) = r̃ref +2ℑ(ḋref)2 and fθ(Eb) = r̃ref +2ℜ(ḋref)2. The computation of the average concludes
the proof:

∀k, fθ(Ea)(k) + fθ(Eb)(k)

2
= r̃ref(k) + |ḋref(k)|2. (5.27)

Figure 5.6 illustrates the principle of the self-supervised training introduced in Propositions 2
and 3: during training, we minimize MERLIN loss with the sets Ea or Eb as input and the images
b̊ref or åref in the supervision. This leads to optimal weights θ∗ at the end of the training phase.
At test time, the estimates fθ∗(Ea) and fθ∗(Eb) are averaged to produce the �nal estimate.
For practical reasons, we use a convolutional U-Net architecture [79] which is also used in the
original MERLIN method. We consider a limited number of images in the training phase and an
approximate minimization based on stochastic gradient computed over mini-batches. The estimator
fθ∗ obtained is then only sub-optimal.
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Figure 5.6: Principle of the self-supervised method MERLIN: original approach [19] (top row) and
proposed multi-temporal extension (bottom row). For better visualization, the displayed images
are amplitude images. Figure extracted from [68].
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5.3.4 Experimental results

The performance of the proposed multi-temporal MERLIN strategy is �rst studied on images with
simulated speckle. Results on Single Look Complex TerraSAR-X images are then presented. In
both cases, we compare multi-temporal MERLIN networks trained for an increasing number of
additional inputs to study the quality improvement brought by these additional dates.

Quantitative analysis on simulated speckle

The unsupervised learning strategy presented in Section 5.3.3 is motivated by the lack of speckle-free
ground-truth images associated to each speckled SAR image. Yet, in order to perform a quantitative
assessment of multi-temporal �ltering, we �rst consider a simulated speckle framework in which
both speckle-free and speckle-corrupted images are available. We build high-quality speckle-free
stacks by multi-temporal �ltering with RABASAR-SAR2SAR [67] presented in section 5.2.2. We
then generate corrupted versions with simulated speckle corresponding to an ideal SAR transfer
function, i.e. speckle with no spatial correlation in the simulated images. This reference data set is
composed of 5 multi-temporal stacks of despeckled Sentinel-1 images, each stack containing from
25 to 69 images. Since the stacks are obtained from actual SAR images, realistic changes can
be observed throughout the time series. To simplify the simulations, we assume fully-developed
speckle: the ground-truth images correspond to the re�ectivities r and no dominant scatterer is
considered: d = 0. Information on the training sets and the hyperparameters used in all our
network trainings are gathered in table 5.1. The hyperparameters are kept unchanged whatever
the number of additional inputs.

Synthetic speckle Actual speckle
Sentinel-1 TerraSAR-X [Sentinel-1]

# stacks 7 2 [1]
# images 237 52 [12]
avg images/stack 33.9 26 [12]
patch size 256× 256 256× 256
batch size 8 8
# patches 1616 576 [1568]
# batches 202 72 [196]
# epochs 1000 1000

learning rate

{
10−3 10−3

10−4 after 10 epochs 10−4 after 10 epochs
10−5 after 910 epochs 10−5 after 910 [860] epochs

Table 5.1: Training parameters of the multi-temporal MERLIN networks (number of input channels
from 2 to 20)

We �rst evaluate the gain brought by the additional dates on the quality of the estimated speckle-
free image. Depending on the presence or absence of change, including an additional input image
may disturb or help the despeckling process. When comparing the performances of two networks, a
network with fewer inputs that underwent less changes might be favored over a network with more
inputs which were all impacted by larger changes. We mitigate the impact of this phenomenon on
our analysis by evaluating the performance of our networks on combinations of additional dates
forming nested sets. Thus, a network with j additional inputs with j > i shares the same i additional
dates as a smaller network with i additional inputs, but also bene�ts from j−i supplementary inputs.
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Figure 5.7 shows boxplots of the Peak Signal-to-Noise Ratio (PSNR) values computed on the
log-re�ectivities, for an increasing number of additional input images. The boxplots give for each
con�guration the minimum PSNR value; �rst, second, and third quartile PSNR values; and the
maximum PSNR value. These statistics are computed over 88400 patches of 256× 256 pixels, cor-
responding to di�erent spatial locations, choices of dates included as input, or speckle realizations.
The restoration quality, measured by the PSNR values, improves with the number of images. This
improvement is largest when the �rst additional dates are included. Including a few more dates to an
already large number of inputs produces a marginal improvement: unsurprisingly, multi-temporal
�ltering follows a law of diminishing returns with respect to the number of input dates.
Note that the dispersion of PSNR values for the mono-date �ltering (leftmost boxplot of Figure 5.7)
is very limited compared to the dispersion of PSNR values obtained with multi-temporal �ltering.
This is due to the variability of changes present in the additional channels. In multi-temporal
�ltering, situations with limited changes are more favorable to �ltering and lead to better PSNR
values, while drawing a set of dates with larger changes inevitably gives a worse PSNR value. The
variable luck in how similar the additional dates were explains the PSNR �uctuations.
As illustrated by Figure 5.8, PSNR values improve when increasing the number of additional input
images due to the joint reduction of the estimation bias and of the estimation variance. As illustrated
by the bias term, additional channels help preserve the spatial resolution, reduce the blur around
sharp structures such as points, lines and edges. By not only combining spatial samples but also
temporal samples, the estimation variance is reduced by multi-temporal �ltering.

The line pro�les shown in Figure 5.9 con�rm the improved ability to restore �ne structures
with multi-temporal �ltering: processing a single date (green line) makes it di�cult to retrieve the
contrast of thin lines (edges at the border of �elds); with an additional date, or even better, with
4 additional dates, these structures are much better restored.

Figure 5.7: Boxplots of PSNR values obtained for di�erent draws of additional dates and various
speckle realizations (each box plot indicates the minimum value, �rst quartile, in orange: median
value, third quartile, and maximum). Our multi-temporal MERLIN method outperforms the base-
line methods in terms of PSNR: with 3 additional inputs, the median PSNR with MSAR-BM3D is
36.04 dB (-1.50 dB) and with 2SPPB it is 30.06 dB (-7.48dB).
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Figure 5.8: Squared bias and variance averaged over 100 multi-temporal MERLIN estimations of
the re�ectivities of a Sentinel-1 stack of Limagne (France). The speckle is simulated based on the
method described in [67].

Results on actual Sentinel-1 Stripmap data and TerraSAR-X data

After the successful validation of our approach on time series with simulated speckle, we now turn
to real speckle.
In this part, we have observed that the temporal whitening step for the multi-temporal stack we
considered had a limited impact. We chose to skip this step and compare the performance of our
network trained directly on multi-temporal stacks with other reference methods. A study of the
impact of temporal correlation and our proposed whitening step are given in section 5.3.5.

Parameters used for our training are recalled in Table 5.1, last column. Figure 5.10 shows two
excerpts taken from the TerraSAR-X stacks used for training. Note that, given our self-supervised
training strategy, our network can be tested on the same dataset as used for training. When applying
the network to other datasets, the performance might drop if the type of area di�ers signi�cantly
(e.g, training on urban areas and testing on mountainous regions) due to a poor generalization. A
�ne-tuning step on the data of interest using the self-supervised loss is then preferable.

The Figure 5.10 contains two panels with the same numbering, each corresponding to a di�erent
stack. The single-look amplitude is shown in (a). In order to identify low-contrasted structures
and �ne details, the temporal average computed over the whole stack is shown in (b). Due to the
changes that occur throughout the time series, this image is not directly comparable to image (a)
but is still useful to analyze temporally-stable structures present in the scene given that speckle
is strongly reduced by temporal averaging. Areas with �uctuating re�ectivities lead to an average
value that di�ers from the re�ectivity at the date of interest. Restoration results obtained with
several speckle reduction methods are shown in each panel: (c) the mono-date MERLIN network,
(d and g) the proposed multi-temporal MERLIN networks, and two baseline patch-based methods:
(e and h) MSAR-BM3D introduced in [54] and (f and i) 2SPPB proposed in [15]. Multi-temporal
methods are applied to a subset of 4 dates (the reference date + 3 additional dates) in the second
row of the �gure, or 16 dates (the reference date + 15 additional dates) on the last row. Temporal
leakages can be observed in the results of MSAR-BM3D and 2SPPB: spurious information from the
other dates contaminate the reference date. This is especially visible by the attenuation of the dark
area in the center left of the image on the left pannel. In that respect, multi-temporal MERLIN
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Figure 5.9: Re�ectivites pro�le along the red line, Marais1, date 14. The pro�le associated to
MERLIN network estimation (green line) is blunt, meaning that the edges of the small observed
structures are blurred. The more additional inputs there are, the sharper the pro�le lines, leading
to a better retrieving of small structures.

o�ers much better results with restored re�ectivities in good match with the noisy observation
shown in Figure 5.10(a). Edges are sharper and low-contrast structures are better preserved in the
case with a limited amount of dates (3 additional inputs): Figure 5.10(d-f) left and right panels.

To illustrate that our self-supervised strategy requires only a modest amount of data and that
it can be applied to another satellite, we also trained from scratch the networks with a single stack
of 12 Sentinel-1 images in Stripmap mode with 2000 × 2000 pixels. We compare in Figure 5.11
our despeckling results to the images obtained with the same baseline methods as in Figure 5.10
(namely, MSAR-BM3D and 2SPPB). Similar observations can be made: �ne structures are better
restored by the multi-temporal MERLIN and fewer artifacts can be noticed. Increasing the number
of input images systematically leads to an improvement of the output image. Note that the use of
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MERLIN loss to train a network on Sentinel-1 in TOPS mode still requires some additional work
in order to �nd the adequate pre-processing that would lead to statistically independent real and
imaginary parts [19].

Figure 5.10: Multi-temporal denoising of TerraSAR-X images ©DLR (SLC images with actual
speckle): left panel, city of Saint-Gervais (France); right panel, city of Domancy (France). Each
panel shows (a) the noisy image; (b) the temporal average of all 26 images of the stack; (c) mono-date
MERLIN �ltering [19]; (d) multi-temporal MERLIN with 3 additional inputs; (e) MSAR-BM3D
[54] with 3 additional inputs, (f) 2SPPB with 3 additional inputs [15]; (g) multi-temporal MERLIN
with 15 additional inputs; (h) MSAR-BM3D [54] with 15 additional inputs, (i) 2SPPB with 15
additional inputs [15].

5.3.5 In�uence of temporal correlation

Images acquired in interferometric con�guration may su�er from correlations along the temporal
axis, as discussed in Section 5.3.1. This is not ideal in the context of multi-temporal �ltering as it
reduces the potential bene�t of temporal speckle averaging. Beyond this limitation, we illustrate
here that if neglected, i.e., if the proposed temporal decorrelation step is omitted, this type of corre-
lations impacts the despeckling performance of networks trained with the multi-temporal MERLIN
loss function. Thus the independence assumption between the inputs and the component used for
self-supervision is no longer valid and a whitening step is needed during the pre-processing of the
stack.

Experimental results on simulated speckle

We want to highlight the importance of temporal correlations and its impact on the despeckling
results. We repeat the experiment with simulated speckle presented in section 5.3.5, this time
introducing temporal correlations with a coherence matrix Γk identical for all pixels k, and following
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Figure 5.11: Multi-temporal denoising of Sentinel-1 Stripmap images of the Reunion island (France).
Each panel shows (a) the noisy image; (b) the temporal average of all 12 images of the stack; (c)
mono-date MERLIN �ltering [19]; (d) multi-temporal MERLIN with 1 additional input; (e) multi-
temporal MERLIN with 3 additional inputs; (f) multi-temporal MERLIN with 7 additional inputs;
(g) MSAR-BM3D [54] with 1 additional input; (h) MSAR-BM3D with 3 additional inputs; (i)
MSAR-BM3D with 7 additional inputs; (j) 2SPPB [15] with 1 additional input; (k) 2SPPB with 3
additional inputs; (l) 2SPPB with 7 additional inputs.

a simple temporal decorrelation model

∀k, Γk(ti, tj) = exp

(
−|ti − tj |

τ

)
, (5.28)
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where τ is a characteristic decorrelation time. Rather than reporting how the despeckling perfor-
mance degrades as a function of parameter τ , we use the more intuitive average coherence γ̄ de�ned
by

γ̄ =
1

T 2

∑
1≤i,j≤T

Γk(ti, tj) . (5.29)

Figure 5.12 reports the evolution of the PSNR of restored images computed on log re�ectivities, as
a function of the average coherence γ̄ for a network that uses two additional inputs. Up to γ̄ ≈ 0.2
the performance is almost unchanged. Then it degrades signi�cantly. At γ̄ ≈ 0.45, the PSNR
value is no better than that reached by a network with no additional input. Beyond γ̄ ≈ 0.45, it is
worse to include additional dates. The reason is that the temporal correlations of speckle lead the
network to "cheat" and to partially guess the speckled component in the images used to supervise the
training. Once trained, the network systematically leaves a large fraction of the speckle �uctuations
unchanged as it expects these �uctuations to also match well the temporally-correlated image used
for the supervision.

Figure 5.12: Evolution of the restoration performance (PSNR values computed on log re�ectivities)
as a function of the average coherence γ̄ of the multi-temporal stack.

Proposed whitening step and its impact

We illustrate our optional preprocessing step that performs a temporal decorrelation with respect
to the reference date. Our decorrelation is achieved as follows:

1) each SLC image of the stack is decomposed into a dominant scatterers component and a
background component;

2) interferograms with respect to the reference date are computed on the background compo-
nents;

3) at each pixel, a temporal whitening is performed;
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4) the contribution of dominant scatterers is reintroduced.

These di�erent steps are illustrated in Figure 5.13.
We perform step 1) with the method described in [7]: the low-pass �ltering e�ect introduced

by the SAR system response (step d of the generative model of Figure 5.4) is �rst compensated
by resampling and spectral equalization. Then an a contrario framework is applied to detect the
cardinal sines of the dominant scatterers. The contribution of the dominant scatterers is then
subtracted from the image and the original spectral apodization is reapplied.

In step 2), we estimate interferograms between all pairs of images drawn from the stack of
background components ż− ḋ. In our experiments, we use the MuLoG algorithm to compute these
interferograms. This step is computationally intensive since forming all possible interferograms
requires O(T 2) interferogram estimations for a multi-temporal stack with T dates.

The temporal whitening applied for step 3) is based on the local coherence matrix that has been
computed before. Correlations along the temporal axis of the speckle depend both on the coherence
matrices Γk (capturing the temporal decorrelation of the scene); and on the shifts induced by the
phases ψt (accounting for the geometrical decorrelation due to the change of incidence angles
introduced by the interferometric baseline). To reduce these correlations, a whitening process can
be designed based on the covariance values:

Cov[ż(tref, k); ż(ti, k)] = E[(żref(k)− ḋref(k))(żi(k)− ḋi(k))∗]

The dominant scatterer component ḋ can be extracted from the images using an iterative algorithm
[7]. The 2× 2 interferometric covariance matrices is written(

Cov[ż(tref, k); ż(tref, k)] Cov[ż(tref, k); ż(ti, k)]
Cov[ż(ti, k); ż(tref, k)] Cov[ż(ti, k); ż(ti, k)]

)
at each pixel k. It can then be estimated by using an algorithm such as MuLoG [14]. We propose
to use these estimations to approximate the 2N × 2N covariance matrix

Cov

[(
żi
żref

)]
≈
(

Di i D†
ref i

Dref i Dref ref

)
, (5.30)

where the four N ×N blocks are diagonal. Neglecting o�-diagonal values of the matrices Di i and
Dref ref amounts to considering a limited spatial correlation length meaning that the SAR impulse
response is close to a Dirac. Neglecting o�-diagonal values of the matricesDi ref andDref i is justi�ed
when the multi-temporal stack is in interferometric con�guration: a shift by one or more pixels of
the image żi with respect to image żref drastically reduces the interferometric coherence and the
diagonal of Di ref is dominant.
From the expression of the covariance matrix Cov[z̃] given in equation 5.3.1 and the de�nition of ż
in equation 5.14, we can derive the exact covariances Cov[żi] and Cov[żref] of the centered complex
amplitudes of the considered pair of SAR images:

Cov[żi] = Qdiag(ri)Q
†

Cov[żref] = Qdiag(rref)Q
†

We approximate this covariance matrix by its diagonal:

Cov[żi] ≈ Di i

Cov[żref] ≈ Dref ref
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with r̃i the diagonal of matrix Qdiag(ri)Q
† and r̃ref the diagonal of matrix Qdiag(rref)Q

†. These
vectors correspond to a low-pass �ltered version of the re�ectivity maps, according to the SAR
response Q.
The anti-diagonal blocks are approximated by

Dref i = diag(γ̃i ref
√
r̃ir̃ref)

where products between vectors are applied entry-wise, and γ̃i ref ∈ CN is the vector of complex-
valued coherences between dates ti and tref (∀k, 0 ≤ |γ̃i ref(k)| ≤ 1).
The covariance matrix of a pair of complex amplitudes at a pixel k is �nally given by:

Cov

[(
ż(ti, k)− ḋ(ti, k)
ż(tref, k)− ḋ(tref, k)

)]
= Cov

[(
ż(ti, k)
ż(tref, k)

)]
=

(
r̃(ti, k) γ̃i ref(k)

√
r̃(ti, k)r̃(tref, k)

γ̃∗i ref(k)
√
r̃(ti, k)r̃(tref, k) r̃(tref, k)

)
. (5.31)

The covariance along the temporal dimension between the image of reference żref and the image at
date ti żi modeled by (5.30) can be suppressed by multiplying each 2N vector (żi − ḋi, żref − ḋref)
by a whitening matrix W, leading to the whitened pair of images (̊zi, z̊ref):

(
z̊i
z̊ref

)
= W

(
z̊i − ḋi
z̊ref − ḋref

)
+

(
ḋi
ḋref

)
(5.32)

with

W = Π−1

W†
1 0

. . .

0 W†
N

Π (5.33)

and

WkW
†
k = Cov

[(
ż(ti, k)− ḋ(ti, k)
ż(tref, k)− ḋ(tref, k)

)]−1

. (5.34)

The matrices Wk can be obtained by Cholesky factorization of the inverse of the covariance matrix
given in equation (5.34).
The closed-form expression of the Cholesky factorization in equation (5.34) leads to a simple de�-
nition of the whitened pair

{
z̊(ti, k) = τ ż(ti, k) + (1− τ)ḋ(ti, k)−

√
r̃(ti,k)
r̃(tref,k)

τ γ̃∗i ref(k)(ż(tref, k)− ḋ(tref, k))
z̊(tref, k) = ż(tref, k) ,

(5.35)

where τ = 1/
√
1− |γ̃i ref(k)|2.
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Note that only the complex amplitude z̊ti is modi�ed while z̊ref is left unchanged. This whitening
procedure can thus be repeated for all pairs (ti, tref), with 1 ≤ ti ≤ T and ti ̸= tref, thereby producing
a pre-processed stack in which images are all decorrelated with respect to the reference date tref and
the decorrelated images provide information for the self-supervised training. Only the statistical
independence with respect to this target date matters for the validity of the self-supervision used
in section 5.3.3.
We also need to prove that the whitened pair (̊z(ti, k), z̊(tref, k)) has indeed a diagonal covariance
matrix to perform the training.
We can rewrite the whitened pair as follows:(

z̊(ti, k)
z̊(tref, k)

)
=

(
τ −

√
r̃(ti,k)
r̃(tref,k)

τ γ̃∗i ref(k)

0 1

) (
ż(ti, k)− ḋ(ti, k)
ż(tref, k)− ḋ(tref, k)

)
+

(
ḋ(ti, k)

ḋ(tref, k)

)
. (5.36)

Since the centered dominant component is deterministic, it follows from equations (5.36) and (5.31)
that

Cov

[(
z̊(ti, k)
z̊(tref, k)

)]
= Cov

[(
z̊(ti, k)− ḋ(ti, k)
z̊(tref, k)− ḋ(tref, k)

)]
=

(
τ −

√
r̃(ti,k)
r̃(tref,k)

τ γ̃∗i ref(k)

0 1

)
Cov

[(
ż(ti, k)
ż(tref, k)

)]( τ 0

−
√

r̃(ti,k)
r̃(tref,k)

τ γ̃i ref(k) 1

)

=

(
r̃(ti, k) 0

0 r̃(tref, k)

)
. (5.37)

This proves that, for each pixel k, the two complex amplitudes are decorrelated. Since they are
jointly Gaussian and decorrelated, they are statistically independent.
Step 3) is thus very fast since it only requires applying pixelwise the simple whitening transform of
equation (5.35).

Finally, the reintroduction of dominant scatterers in step 4) leads to the temporally whitened
stack z̊.

In order to assess the impact of this temporal decorrelation step, we compared the performance
of the same network trained in one case directly on a stack of 26 TerraSAR-X images ż (i.e., the
spectra have been shifted to center the spectrum of the reference date, but no temporal decorrelation
step has been carried out). And in the other case, using a pre-processed stack with our spectrum
centering plus the temporal decorrelation technique. Coherences between the �rst two images of
the original and the pre-processed stacks computed with the MuLoG algorithm are presented in
Figure 5.14. It shows that the proposed whitening step strongly reduces the coherence. Despeckling
results are presented in Figure 5.15 and very few di�erences can be observed even though slight
changes may be noted around some scatterers. The average coherence on this stack of TerraSAR-X
images is equal to 0.23, which corresponds to a mild level of correlation with a negligible impact
on the despeckling performance, as shown in our experiments with simulated speckle reported in
Figure 5.12. This illustrates that, even in the case of a satellite with interferometric capabilities,
the computationally heavy preprocessing step of temporal decorrelation can be skipped when the
coherence level is moderate.



CHAPTER 5. MULTI-TEMPORAL DESPECKLING 81

Figure 5.13: Illustration of the preprocessing step to reduce temporal correlations of the speckle:
(�rst row) the multi-temporal stack is decomposed into dominant scatterers and background using
the method in [7]; (second row) the background component is then whitened and the dominant
scatterers are added back to produce the preprocessed stack.

Figure 5.14: Coherences computed with the MuLoG algorithm on the 2 �rst dates (2009/05/31 and
2009/06/11 ) of the Domancy TerraSAR-X stack ©DLR. The studied area is introduced in 5.13;
left: estimated coherence before the whitening step; right: estimated coherence after the whitening
step.

5.4 Conclusion

Multi-temporal despeckling have been explored in this chapter. First, methods based on temporal
averaging or the use of a super-image avec been introduced in section 5.2

A generative model based on the decomposition of the SLC images into a speckle component and
a dominant scatterers component has been developed in section 5.3.1. It breaks down the di�erent
sources of statistical correlation between spatial, temporal, and real/imaginary components of the
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Figure 5.15: Impact of the temporal whitening step on multi-temporal denoising of TerraSAR-X
images ©DLR, city of Domancy (France). (a) noisy image; (b) multi-temporal MERLIN with 2
additional inputs trained on one TerraSAR-X stack without the temporal whitening step; (c) multi-
temporal MERLIN with 2 additional inputs trained on one TerraSAR-X stack with the temporal
whitening step.

complex amplitudes of SAR images. In sections 5.3.4 and 5.3.5, we have shown that under some
assumptions like a low coherence or an adequate preprocessing step (temporal whitening), the
self-supervised training strategy MERLIN can be extended to stacks of SLC images.
This strategy improves the despeckling performance achieved by mono-date networks by exploiting
temporal redundancies of the scene and temporal �uctuations of speckle. Our quantitative analysis
shows an improvement of the restored re�ectivities, a re�ned spatial resolution, and very few tem-
poral contamination by possible changes in the additional dates provided in input. The networks
trained directly on SAR images, without groundtruth, produce restored images of higher quality
compared to state-of-the-art techniques.



Chapter 6

Estimating the uncertainties

associated to the restored images

This chapter presents our work on estimating uncertainties for deep learning-based despeckling
methods.

The lack of ground truth image, as stated in the �rst chapter, has made the quantitative
evaluation of despeckling methods quite di�cult. Even though metrics exist, such as the equivalent
number of looks computed on homogeneous areas of the restored image, or the analysis of ratio
images [80, 81] to form the equivalent of method noise in [25], none is consensual.
With deep learning methods, it is always di�cult to �nd clues that the network has created in-
formation, which is a known problem. The despeckling of bright scatterers is tricky as it is even
di�cult to di�erentiate them from speckle in the noisy image most of the time.
We want to provide both a restored image and an uncertainty map. We will then be able to locate
areas where the network is not con�dent and the despeckling could not be blindly trusted.

This chapter provides an introduction and a general overview about uncertainty estimation in
deep learning, and then presents two kinds of methods that were developed: the �rst one is related
to the estimation of distribution parameters for each pixel of the image, which is statistically well
grounded but proved very challenging to train in a self-supervised fashion; the second one is based
on the estimation of the expected di�erence map between re�ectivities predicted from the real and
imaginary part of an SLC image using the MERLIN framework [19] and is much better.

6.1 Overview of uncertainty quanti�cation in machine learn-

ing

Basic neural networks do not estimate uncertainty. Most of the time, uncertainties are due to
undesired �uctuations in the data (this is what we call data uncertainty) and are linked to a lack
of knowledge of the neural network (this is what we call model uncertainty). It is quite di�cult to
perfectly unmix data and model uncertainties. This section will provide an overview of uncertainty,
starting from its de�nition and where it comes from, to the di�erent kinds of methods that have
been proposed these recent years.

83
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6.1.1 What is uncertainty?

When we are training a network and estimating uncertainty, the whole process can be decomposed
into 4 di�erent steps starting from the raw information used in the training and ending to a predic-
tion by a neural network with quanti�ed uncertainties: the data acquisition process, the design and
training of the network, the inference phase and the prediction of uncertainty. During each one of
these steps, uncertainty can be introduced and can come from the variability in real world situations
(diversity in the test data set di�erent from the one in the training set, a phenomenon known as
distribution shift), error and noise in the labels or ground truth (referenced as label noise), errors
in the model structure (for example, deep networks tend to be overcon�dent due to over�tting),
errors in the training procedure (coming from the choice of the hyperparameters and the stochastic
process used for gradient estimation during the training).

We are mostly interested in the uncertainty propagated onto a prediction r̂.
The predictive uncertainty associated with r̂ is in general separated into data uncertainty (that
directly stems from the data) and model uncertainty (caused by shortcomings in the model such as
errors in the training procedure, insu�cient model structure, lack of knowledge due to unknown data
and bad coverage of the training data set). While model uncertainty can be theoretically reduced
by improving the architecture, the learning process or the training set, the data uncertainty cannot
be explained away.

Evaluating the quality of the uncertainty estimates is a challenging task: the quality of the
uncertainty estimation depends on the underlying method for estimating uncertainty. There is
a lack of ground truth uncertainty estimates and de�ning ground truth uncertainty estimates is
challenging. No metric is consensual, meaning that uncertainty is de�ned di�erently in di�erent
machine learning tasks: prediction intervals or standard deviations are used in regression tasks
while entropy is used in classi�cation or segmentation tasks.

The uncertainty can be measured as the width of an interval. The Prediction Interval Coverage
Probability represents the percentage of test predictions that fall into a prediction interval and is
de�ned as

PICP =
c

n
(6.1)

where n is the total number of predictions and c the number of ground truth values that are actually
captured by the predicted intervals. The larger the interval, the better the PICP which can be a
undesired behavior: we do not want to predict very large intervals.

Calibration of the uncertainty is also important. A predictor is said to be well-calibrated if the
derived predictive con�dence represents a good approximation of the actual probability of correct-
ness. For regression task, the calibration can be de�ned such that predicted con�dence intervals
should match the con�dence intervals empirically computed from the data set. Calibration can
be performed during the training phase by modifying the loss function in order to have a cali-
brated network or post-processing methods applied after the training step to adjust the predictions
afterwards.

6.1.2 Di�erent methods to estimate uncertainties

Based on [82], there are 4 di�erent types of methods to estimate uncertainties:

� Test-time augmentation methods: they give the prediction based on a single deterministic
network but augment the input data at test-time.
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� Ensemble methods: they combine the predictions of several di�erent deterministic networks
at inference.

� Single deterministic methods: they give a prediction based on one single forward pass
within a deterministic network. The uncertainty quanti�cation is either derived by using
additional methods or is directly predicted by the network.

� Bayesian methods: they cover all kinds of stochastic networks, and focus on model uncer-
tainty estimation.

Figure 6.1: This �gure sums up the 4 types of methods to compute uncertainty. Some of then are
described in the following paragraphs. Illustration inspired by one of the �gures in [82].

Test-Time data augmentation methods

Test-Time augmentation methods enable uncertainty quanti�cation thanks to data augmentation.
Di�erent predictions are done by the network of interest based on di�erent augmentations of the
original input sample, and uncertainty is computed based on these multiple predictions. Possible
augmentation policies are described in [83].

Ensemble Methods

Ensemble methods rely on the estimation of uncertainty using multiple members meaning di�erent
variations of one algorithm. The main argument of these approaches is that a group of decision
makers tend to make better decisions than a single decision maker. This could be implemented by
averaging over the members' predictions for example. The accuracy is improved and it gives an
intuitive way of representing model uncertainty on a prediction by evaluating the variability among
the members' predictions.
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Indeed, each network used for uncertainty estimation is expected to converge to a slightly di�erent
local optima during training. To maximize the variety in the behavior among the networks, di�erent
approaches can be applied such as random initialization and data shu�e, bagging and boosting,
data augmentation and ensemble of di�erent network architecture. The work of Lakshminarayanan
et al. [84] is often referenced as a pioneer work in estimation of uncertainty in deep learning using
ensemble methods.
A family of ensemble methods used in the literature are know as Sub-ensembles methods. They tend
to reduce the computational cost by dividing a neural network architecture into two sub-networks.
The trunk network is used for the extraction of general information from the input data and the
task network is using this information to perform the required task. The weights of each member's
trunk are �xed based on the resulting parameters of one single model while the parameters of each
ensemble members' task network are trained independently [85, 86, 87].
Even if ensemble methods provide a simple approach for the quanti�cation of uncertainty, they are
computationally greedy and will not be studied in details in this work.

Single deterministic methods

The main advantage of single deterministic methods is that they require only a single pass through
the deterministic model to obtain an estimation of the uncertainty associated to a prediction r̂.
Two types of single deterministic approaches can be cited: the ones where a single network is
explicitly modeled and trained in order to quantify uncertainties; and the ones that use additional
components in order to give an uncertainty estimate on the prediction of the network.
Some methods known as external uncertainty quanti�cation approaches, consist in a two-steps
framework where the prediction is �rstly done and then the uncertainty is estimated based on the
later prediction [88, 89]. The training of two neural networks is necessary: one is speci�c to the
prediction task and a second one to uncertainty quanti�cation based on the predictions of the �rst
one. Single deterministic methods can be applied to several networks as a post-processing step. The
uncertainty quanti�cation is always based on the method itself and takes into account uncertainty
due to the architecture, the training procedure and the training data.

The Bayesian methods

In Bayesian modeling, the model uncertainty is formalized as a probability distribution over the
model parameters θ of the network, and the data uncertainty is formalized as a probability distri-
bution over the model outputs r̂ given a parameterized model fθ.
Let D be the training set, the model uncertainty is captured through p(θ|D) the posterior distri-
bution on the model parameters. Ensemble approaches approximate the posterior distribution by
learning several di�erent parameter settings and averaging over the resulting models where Bayesian
inference reformulates the problem using the Bayes Theorem:

p(θ|D) =
p(D|θ)p(θ)
p(D)

where p(θ) is the prior distribution on the model parameters; p(D|θ) represents the likelihood that
the data D is a realization of the distribution predicted by the model parameterized with θ.
Bayesian inference can be conducted through
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� Variational inference which approximates the intractable posterior distribution by optimizing
over a family of tractable parametric distributions.

� Sampling approaches based on Markov Monte Carlo Sampling and further extensions, where
uncertainty can be represented without a parametric model.

� Laplace approximation which simpli�es the target distribution by approximating the posterior
distribution using the second order Taylor series expansion around the MAP estimate. The
computation of the Hessian is required and could be challenging and time-consuming.

When the size of the data set and the number of parameters of the networks are huge, Bayesian
approaches are really challenging and time-consuming.

In the following work, we focus on single deterministic methods because a network is trained
to predict the restored image and the uncertainty map simultaneously, and external uncertainty is
at the center of the estimations in both sections 6.2.1 and 6.2.2. Bayesian approaches will not be
used to predict model uncertainty, but the framework described in Section 6.2.1 is inspired by the
Bayesian framework.

6.2 From despeckling to uncertainty quanti�cation

This section describes the contributions of this thesis on uncertainty quanti�cation for despeckling
of SAR images.

In the �rst approach, the network is trained to predict the parameters of the chosen distribution
for the re�ectivity at each pixel of the image. The methodological framework of this approach is
engaging, but the experimental results obtained so far are not satisfactory. We can explain this
observation by computing the relative error of the uncertainty parameters in a simpli�ed test case
of an additive Gaussian noise. This error is too high to expect good results with our network.
The second approach is more practical and exploit the MERLIN framework. We can then train a
network to predict the expected value of the L2 norm of the di�erence between the two predicted
log-re�ectivities using the real and the imaginary part of the image.

In order to have quantitative results, the network is trained on simulated speckle. The ground
truth images are obtained again by using the RABASAR extension [67]. The training hyperparam-
eters and further information on the training set are given in Table 6.1.

# images 237
patch size 256× 256
batch size 8
# patches 1616
# batches 202
# epochs 1000

learning rate

{ 10−3

10−4 after 10 epochs
10−5 after 910 epochs

Table 6.1: Training parameters for uncertainty estimation using the MERLIN network on simulated
speckle.
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6.2.1 Prediction of the re�ectivity distribution at each pixel

The work [90] proposes a new framework for modeling predictive uncertainty called Prior Networks
which explicitly models uncertainty triggered by distributional mismatch between the test and
training data distributions. The framework is proposed for a classi�cation task and they aim at
identifying out-of-distribution samples and detecting misclassi�cation.

Prior Networks explicitly predict parameters of a distribution over a simplex representing the
classi�cation space. When the network is con�dent in its prediction, it should yield a sharp distribu-
tion centered on one of the corners of the simplex. When the input is in a data region with noise or
class overlap which corresponds to data uncertainty, the network should yield a sharp distribution
at the center of the simplex meaning that the network is con�dent that the input data are not out-
of-distribution but the class can not be easily chosen. For out-of-distribution inputs, the network
should yield a �at distribution over the simplex meaning that the input data is not understood
and thus the prediction is uniformly distributed over the simplex. These various predictions are
illustrated in Figure 6.2

Figure 6.2: Illustration of the di�erent use cases of the prediction of the Prior Network introduced
in [90]. This 2D simpli�cation shows a simplex for a three classes classi�cation task. (a) Con�-
dent prediction: sharp and on one vertex (representing one class) of the simplex; (b) High data
uncertainty: sharp and at the center because the network is sure it is di�cult to classify; (c) Out-
of-distribution: wide and at the center, the data distribution is unknown to the network. Figure
extracted from [90].

These networks were �rstly developed for classi�cation while we are interested in performing
despeckling (i.e. regression models). Our approach is inspired by [90]: parameters of a distribution
of the re�ectivity are predicted by the network at each pixel. The sharper the distribution, the
more certain the network is of its prediction.
We still consider in the following the MERLIN mono-date approach with the following loss:

L(r(a), b) = − log p(b|r(a))

≈ −
∑
k

log p(bk|rk(a)) if the spatial correlations of the speckle are weak (6.2)

where b is the imaginary part (another loss can be de�ned by swapping b with a) of the SLC image
and r is the sought re�ectivity image.
The networks outputs one estimation of the re�ectivity for each pixel. However, we want to quantify
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the quality and the con�dence of the network's predictions. We typically expect the network not
to be con�dent on dominant scaterrers or thin structures.
Instead of predicting one value for each pixel, we want to predict a distribution for each pixel of the
re�ectivity image: a sharp distribution around a value (the mode or the mean value depending on
the distribution) could be associated with a con�dence in the prediction: while a �at distribution is
associated with a lack of con�dence for this prediction because the network can not make a choice.
We de�ne our new loss as follows:

L(p,a, b) = −
∑
k

log

[∫
R+

p(bk|rk(a)) p(rk(a))drk(a)
]

(6.3)

We want to �nd a parametrized distribution in every pixel k of p(rk(a)) such that the integral
in equation 6.3 is consistent. We will study two distributions for p: the �rst one is uniform with
a parametrization in log-re�ectivity; the second one is inverse gamma with a parametrization in
re�ectivity.
First we will work with log-intensities which is sometimes more convenient. In this case, the
following change of variables is needed:

y = log(bk)
2

x = log rk(a) (6.4)

We need a closed-form expression of the distribution followed by y. Based on the statistics of
the speckle introduced in 2.2, the imaginary part b (and of the real part a as well) is normally
distributed. We can derive the probability density function f|x of the log of the squared imaginary
part y = log(bk)

2 conditionally to x:

f|x : R∗ → R+∗

y 7→ e−ey−x

√
πe−y+x

. (6.5)

The �nal expression of our extended Loss in log-scale in pixel k is

ℓ(p, y) = − log

[∫
x∈R

e−ey−x

√
e−y+x

√
π
p(x)dx

]
(6.6)

The expression of p(rk) in equation 6.3, or p(x) in equation 6.6 is important because it will enable
us to interpret the results: if we have a mono modal distribution, we will model an uncertainty
which is not necessarily symmetric, and the predicted value can be de�ned as the mean or the
mode of the distribution. If we have a multi-modal distribution, we allow the network to hesitate
between several categories of prediction ("�eld" versus "thin road" for example), but then we would
have more parameters to estimate and it would be more challenging. Our �rst choice for p was the
Gaussian distribution, but the integral in equation 6.6 is intractable.

Two distributions over the predicted re�ectivities will be considered in the following: the uni-
form distribution over the log re�ectivity (equation 6.6); and the inverse gamma distribution
over the re�ectivity (equation 6.3)
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Uniform distribution over the log-re�ectivities for uncertainty quanti�cation

This section gathers some works on estimating uncertainty based on prediction intervals and de-
scribes the proposed approach to estimate uncertainty for despeckling.

The work [91] considers the generation of prediction intervals by neural network for quantifying
uncertainty in regression tasks. The high-quality prediction intervals should be as narrow as possible
while capturing a speci�ed portion of data. The proposed loss function is based on this property and
does not require any distributional assumption. Where neural networks estimate one value for each
output point (or pixel if working with images), in most of the cases, prediction intervals directly
communicate uncertainty by o�ering a lower and upper bounds for a prediction and assurance that
the realized data point will fall between these bounds with a high probability. In [91], the prediction
intervals are estimated by minimizing the Mean Prediction Interval Width (MPIW) with a �xed
value of the Prediction Interval Coverage Probability (see equation 6.1). The wider the interval,
the more uncertain the network is.
The approach presented in [92] works with any machine learning model, such as neural networks,
regardless of the true unknown data distribution or choice of model. They rigorously quantify
the uncertainty in an image-valued point prediction. They want to model per-pixel uncertainty
intervals of the predicted image that contain the true pixel values with a user-speci�ed probability.
The user selects a risk level α ∈ (0, 1) and an error level δ ∈ (0, 1), then they construct the intervals
that contain at least 1−α of the ground-truth pixel values with probability 1−δ. This algorithm is
modular, allowing the user to use the most complex methods to have an estimation of the ground-
truth image, including neural networks, all while having uncertainty intervals that reliably render
quality of the predictions. The intervals are predicted by a two-steps method: �rst the lower and
upper bounds are estimated using any method such as a neural network, and then calibration of
the uncertainty is done by scaling the bounds until they contain the right fraction of the ground
truth pixels.

Using the framework introduced at the beginning of this section, we want to estimate prediction
intervals when despeckling a SAR image with the MERLIN network. If we suppose that the log
re�ectivity image x is uniformly distributed on an interval [xmin, xmax] for each pixel of the image,
then the network needs to predict the estimated re�ectivity and the lower and upper bounds for
each pixel. We can deduce an uncertainty map by displaying the width of the intervals equal to
xmax − xmin.
Based on the equation 6.6, our new loss function is de�ned as

ℓ(U[xmin,xmax], y) = − log

[∫
x∈R

e−ey−x

√
e−y+x

√
π

1

xmax − xmin
dx

]

= − log

[
erf(e

1
2 (y−xmin))− erf(e

1
2 (y−xmax))

xmax − xmin

]
(6.7)

where the erf function is the Gauss error function de�ned as

erf(z) =
2√
π

∫ z

0

e−t2dt

As explained before, calibration is important for uncertainty estimation. An easier way to solve the
problem for the network will be to predict the estimated re�ectivity xpred and the half-width of the
interval ∆x = (xmax − xmin)/2 such that:
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xmin = xpred −∆x

xmax = xpred +∆x (6.8)

The loss function of equation 6.7 can thus be written

ℓ(U[xpred−∆x,xpred+∆x], y) = − log

[
erf(e

1
2 (y−xpred+∆x))− erf(e

1
2 (y−xpred−∆x))

2∆x

]
︸ ︷︷ ︸

p(y;xpred,∆x)

(6.9)

Optimizing this loss function in 6.9 means that the prediction xpred is in the middle of the interval
[xmin, xmax]. This assumption makes the problem easier but leaves a smaller degree of freedom.
During the training, the output of the network corresponding to ∆x needs to be positive, this is
enforced by applying a Relu function.
Depending on the width ∆x of the predicted intervals, we plot the distribution p(y;xpred,∆x) and
the loss function in Figure 6.3.
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Probability density function: Loss function:

p(y;xpred,∆x) , − log p(y;xpred,∆x)

as a function of xpred, as a function of xpred,

for a �xed value of y and ∆x for a �xed value of y and ∆x

Figure 6.3: Density functions and loss functions (see equation 6.9) for a �xed value of y as a function
of xpred. The color of the curves are associated with di�erent values of ∆x. We can see that when
the parameter ∆x is large, the distribution becomes less and less sharp and the Loss minimum value
is larger. The ideal case would be a prediction interval of width 0 centered on the right re�ectivity
value, for our expression. The limit when xmin tends to xmax is the MERLIN Loss. A larger interval
means that the network is less con�dent on its prediction.

Experimental results are given in Figure 6.4: we started by training one network to predict
xpred and ∆x simultaneously. Unfortunately, the quality of the restored images was much worse
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compared to the image obtained using the original MERLIN method. The lower bound xmin and
the upper bound xmax of our prediction intervals are very blurred and lack details. We would expect
high values of the interval's width around bright scatterers and smaller ones on homogeneous areas.
To make the problem easier, we decided to �x the predicted re�ectivity during the training step,
using the estimation of the original MERLIN network. We then want to predict the ∆x value
for each pixel of the image. Fewer parameters are to be estimated, and we could suppose that the
optimization problem is then made easier. However, experimental results presented in 6.5 show that
the estimation of xmin and xmax is still very noisy. Numerous training attempts have been made,
and hyperparameters have been tuned while keeping the same architecture as the one introduced
in chapter 3.



CHAPTER 6. UNCERTAINTY ESTIMATION 93

Ground truth image Noisy image MERLIN (original)

(simulated speckle)

xpred xmin xmax

Uncertainty map de�ned as |xmax − xmin|

Figure 6.4: Predictions of the network when trained to optimize the loss function corresponding to
equation 6.9.
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Ground truth image Noisy image MERLIN (original)

(simulated speckle)

xpred xmin xmax

Uncertainty map de�ned as |xmax − xmin|

Figure 6.5: Predictions of the network when trained to optimize the loss function corresponding to
equation 6.9 when xpred has been pre-estimated using the MERLIN network.

Inverse gamma distribution over the re�ectivity for uncertainty quanti�cation

The results obtained with a uniform distribution over the re�ectivity were not satisfying. Based
on existing work such as Speckle2Void [63], we tried to predict the parameter of an inverse gamma
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distribution over the re�ectivity1. The inverse gamma probability density function f at a pixel k
is de�ned as

p(rk) = f(rk, α, β)

=
βα

Γ(α)

(
1

rk

)α+1

exp

(
− β

rk

)
where α is the shape parameter and β is the scale parameter. We would rather to express these
parameters using the relectivities2 rk and the estimated number of looks L. The inverse gamma is
conjugated to the gamma distribution which guarantees a closed form of the equation 6.3.
First, we de�ne the estimated re�ectivities as the expectation of the distribution:

E[rk] ≡ r̂k =
β

α− 1

And for the variance, we have the following equation:

Var[rk] =
β2

(α− 1)2(α− 2)
,

so if we de�ne L such that Var[rk] =
r̂2k
L (like for the parameter L of the gamma distribution), we

obtain the following expression of α and β for the inverse Gamma distribution:

β = r̂k(α− 1)

α = L+ 2 (6.10)

Combining the equations 6.3 and 6.10 leads us to the expression of the following loss function:

L(G(L+ 2, r̂k(α− 1)), r̂k, b, L) = − log

[
(r̂k(1 + L))2+L (b2 + r̂k + Lr̂k)

− 5
2−L Γ

(
5
2 + L

)
√
π Γ (2 + L)

]
(6.11)

The expression of the loss function L(G(L + 2, r̂k(α − 1)), r̂k, b, L) is complex this is why we will
suppose that the network already estimated the value of r̂k and we only want to estimate the
parameter L. We did not manage to obtain a closed-form expression of the Maximum Likelihood
estimator L̂ML for this approach.
We are expecting L to be quite high, indicating a low uncertainty. In the past, our network has
predicted an output within a range very close to [0, 1]. To make it easier for the network, we express
the predicted parameter L̂ based on the output fθ(a)k of the network at pixel k in di�erent ways:

L̂ = fθ(a)k (6.12)

L̂ =
1

fθ(a)k
(6.13)

L̂ = exp (fθ(a)k) (6.14)

1Here we are working with re�ectivity and b, not in log scale.
2To have easier notations, we note rk = rk(a)
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Trainings have been done in the exact same conditions to compare the di�erent strategies/formulations
to estimate L.

Experimental results are presented in Figure 6.6. We can see that the di�erent expressions of the
parameter L depending on the output of the network lead to a very similar map of the estimated
number of looks. The map seems to depend on the re�ectivity value because a high value of L
is observed for areas of high re�ectivity values. We are expecting a relatively high value of L on
homogeneous zones, but obtained L ≈ 3 which is far too low for the denoised images.

Ground truth image Noisy image MERLIN (original)

(simulated speckle)

L̂ = fθ(a) L̂ = 1
fθ(a)

L̂ = exp (fθ(a))

Figure 6.6: Experimental results with the inverse gamma distribution: the network estimates the
parameter L̂ for each pixel of the image. The larger L̂, the smaller the variance and the more con-
�dent the network is on its prediction. Results using the three di�erent parametrizations described
in equations 6.14 are given.

Based on the previous results, we can see that assuming that the re�ectivity follows a certain
distribution (uniform or inverse gamma distributions) and training the network to estimate the
parameters of this distribution does not work very well. The parameter maps are either noisy or
too much correlated to the re�ectivity values which is not a desired behavior. As the predicted
parameters are directly linked to the variance of the re�ectivity image, we can wonder whether the
problem of estimating the variance of the re�ectivity is not too hard to solve. This can be illustrated
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by studying a lower bound of this estimator in an easier case: restoring images corrupted by an
additive white Gaussian noise.

The variance estimation problem: illustration with additive Gaussian noise

We remind some de�nitions used in the following.
Let θ = (θ1, θ2, . . . , θd)

T ∈ Rd. We want to estimate θ based on N measurements noted
i1, i2, . . . , iN , and each measurement is independently distributed according to the probability den-
sity function f(i;θ). The Fisher information matrix I ∈ Rd×d is de�ned as

Im,n = −E

[
∂2

∂θm ∂θn
log f(i;θ)

]
for all m,n ∈ 1, . . . , d (6.15)

Let θ̂ =
(
θ̂1, θ̂2, . . . , θ̂d

)T
∈ Rd be an unbiased estimator of θ. The Cramér-Rao bound states

that the covariance of θ̂ is always greater or equal to the inverse of the Fisher information matrix:

covθ(θ̂) ≥ I(θ)−1 (6.16)

We also have, for all m ∈ 1, . . . , d

var(θ̂m) ≥
[
I(θ)−1

]
mm

(6.17)

To make things easier, we work with Gaussian noise.
Let r be the re�ectivity such that

r ∼ N (µ, σ2
r)

where σr de�nes the uncertainty on r.
We de�ne the observed image as i = r + ϵ with

ϵ ∼ N (0, σ2
b )

so that i|r ∼ N (r, σ2
b )

Proposition 4. The minimum relative error on the estimated parameter σ2
r is given by

Err[σ̂2
r ] =

√
Var[σ̂2

r ]

σ2
r

=

√
2

N

σ2
r + σ2

b

σ2
r

In our case, we have σ2
r ≪ σ2

b , and the relative error can thus be written

Err[σ̂2
r ] ≈

√
2

N

σ2
b

σ2
r
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When the number of samples N increases, the relative error decreases. However, the term
σ2
b

σ2
r

is really high. This illustrates that estimating the small variance of a random variable when only
accessing to observations that are the sum of this small-variance random variable plus another
random variable with much larger variance is di�cult and requires a very large amount of samples
(if σb = 100σr, N has to be 108 times larger than when σ2

r = σ2
b ) This may explain why the

problem we are trying to solve is di�cult and the network does not manage to estimate reliably
∆x or the variance parameter L when we are using a uniform or an inverse gamma distribution for
the re�ectivity. Training with huge data sets and much larger mini-batch sizes may signi�cantly
improve the performance. We followed a di�erent direction instead that works on small training
sets.

Proof. The unconditional distribution followed by i is also Gaussian:

i ∼ N (µ, σ2
r + σ2

b )

The uncertainties we want to estimate are related to r. We suppose that we know σ2
b (a characteristic

of the observation system). We want to estimate µ and σ2
r .

The Probability Density Function f of i is de�ned as

f(i;µ, σ2
r) =

1√
2π

1√
σ2
r + σ2

b

exp

(
−1

2

(i− µ)2

σ2
r + σ2

b

)
(6.18)

The negative log-likelihood L is de�ned as

L(i;µ, σr) = − log f(i;µ, σ2
r)

=
1

2
× log(σ2

r + σ2
b ) +

1

2

(i− µ)2

σ2
r + σ2

b

+ log(
√
2π) (6.19)

We considerN independent and identically distributed samples i1, i2, . . . , iN . The joint log-likelihood
is:

− log f(i1, i2, . . . , iN ;µ, σ2
r) =

N∑
k=1

− log f(ik;µ, σ
2
r)

=

N∑
k=1

[
1

2
× log(σ2

r + σ2
b ) +

1

2

(ik − µ)2

σ2
r + σ2

b

+ log(
√
2π)

]

= N log(
√
2π) +

N∑
k=1

[
1

2
× log(σ2

r + σ2
b ) +

1

2

(ik − µ)2

σ2
r + σ2

b

]
(6.20)

and corresponds to the empirical expectation of the single-observation neg-log likelihood up to a
constant.
We de�ne µ̂(ML) by

µ̂(ML) = argmin
µ

− log f(i1, i2, . . . , iN ;µ, σ2
r)
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The �rst order derivative of the negative log-likelihood is given by

∂

∂µ

(
− log f(i1, i2, . . . , iN ;µ, σ2

r)
)
=

1

σ2
r + σ2

b

N∑
k=1

(µ− ik)

The estimator µ̂(ML) is computed by solving ∂
∂µ

(
− log f(i1, i2, . . . , iN ;µ, σ2

r)
)
= 0:

leading to

µ̂(ML) =
1

N

N∑
k=1

ik (6.21)

We �nd the expression of the empirical mean, as expected.

In the exact same way, we de�ne σ̂2
r

(ML)
by

σ̂2
r = min

σ2
r

(
− log f(i1, i2, . . . , iN ;µ, σ2

r)
)

Note that σ2
r is treated as a variable, not as the square of a variable in the following derivations.

The notation σ2
r is kept to prevent the introduction of additional notations.

∂

∂σ2
r

(
− log f(i1, i2, . . . , iN ;µ, σ2

r)
)
=

1

2

1

σ2
r + σ2

b

[
N −

N∑
k=1

(ik − µ)2

σ2
r + σ2

b

]

σ̂2
r

(ML)
veri�es ∂

∂σ2
r

(
− log f(i1, i2, . . . , iN ;µ, σ2

r)
)
= 0:

Leading to

σ̂2
r

(ML)
=

1

N

N∑
k=1

(ik − µ)2 − σ2
b

Again, we �nd the empirical variance corrected by the noise variance, a result that was expected.
We now compute the Fisher information matrix. In our case, the parameters vector θ is de�ned

as θ =
(
µ, σ2

r

)
.

The Fisher information matrix is de�ned as

I(µ, σ2
r) =


E
[

∂2

∂µ2 L(i;µ, σ2
r)
]

E
[

∂2

∂µ ∂σ2
r
L(i;µ, σ2

r)
]

E
[

∂2

∂σ2
r ∂µ L(i;µ, σ2

r)
]

E
[

∂2

∂σ2
r
2 L(i;µ, σ2

r)
]


Let us compute each term of the matrix:

E

[
∂2

∂µ2 L(i;µ, σ2
r)

]
=

N

σ2
r + σ2

b

E

[
∂2

∂σ2
r ∂µ

L(i;µ, σ2
r)

]
= E

[
i− µ

(σ2
r + σ2

b )
2

]
= 0
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E

[
∂2

∂µ ∂σ2
r

L(i;µ, σ2
r)

]
= E

[
i− µ

(σ2
r + σ2

b )
2

]
= 0

E

[
∂2

∂σ2
r
2 L(i;µ, σ2

r)

]
=

E
[
(i− µ)2

]
(σ2

r + σ2
b )

3
− N

2

1

(σ2
r + σ2

b )
2

=
N

2

1

(σ2
r + σ2

b )
2

Finally, we can write the Fisher information matrix as follows

I(µ, σ2
r) =


N

σ2
r+σ2

b
0

0 N
2

1
(σ2

r+σ2
b )

2

 (6.22)

Based on the de�nition of the Cramér-Rao bound and (6.17), we can derive a lower bound of

the variance of our unbiased estimator σ̂2
r :

Var[σ̂2
r ] ≥

2

N
(σ2

r + σ2
b )

2

Note that the maximum likelihood estimator is asymptotically e�cient, so the bound is reached
when N is large.

Finally, the minimum relative error on the estimated parameter σ2
r is given by

Err[σ̂2
r ] =

√
Var[σ̂2

r ]

σ2
r

=

√
2

N

σ2
r + σ2

b

σ2
r

6.2.2 Prediction of the expected di�erence between the log re�ectivities

This section presents an empirical method to estimate an uncertainty map based on the predictions
of the MERLIN network [19].

Proposed approach

In the test phase, the MERLIN network provides two estimations of the re�ectivities: the �rst one
is only based on the real part a of the image and will be noted ra; the second one is only based
on the imaginary part b and will be noted rb. The �nal estimation of the re�ectivity image is the
mean of these two estimations

r̂�nal =
ra + rb

2
. (6.23)
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We can use these two estimations to provide an information on the uncertainty of the prediction:
if ra and rb are really di�erent, then the variability of the network prediction is high and so is the
associated uncertainty. We can study the quantity

1

2
(log ra − log rb)

2
.

One can argue that we could simply compute the di�erence between the two estimated re�ectiv-
ity images every time the MERLIN network gives a prediction. Examples of such maps are provided
in Figure 6.7 with simulated speckle. We can see that the di�erence maps are very noisy and it is
di�cult to have a good estimation of what we can call the estimated-re�ectivity di�erence.
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Figure 6.7: Raw di�erence maps de�ned as 1
2 (log ra − log rb)

2, computed based on 2 simulated
SLC images of the same ground-truth re�ectivity image.

We are then interested in predicting the expectation of the estimated-re�ectivities di�erence noted
d and de�ned as

d = E

[
1

2
(log ra − log rb)

2

]
(6.24)

An approximation of this expectation has been computed throughout the following steps: �rst,
we simulate speckle N = 1000 times over the same ground truth image. Then, for each noisy sample
k, we estimate the images ra, k and rb, k with the original MERLIN network trained on simulated
speckle. For each noisy sample k, we compute the estimated-re�ectivities di�erence as 1

2 (log ra, k−
log rb, k)

2. We �nally average all the estimated-re�ectivities di�erence:
∑N

k=1
1
2 (log ra, k−log rb, k)

2.
This map is shown �gure 6.8.
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Figure 6.8: Average of all the estimated-re�ectivities distance:
∑N

k=1
1
2 (log ra, k − log rb, k)

2; left:
linear scale; right: log scale.

We suggest to train a network to predict d (see equation 6.24).
The network takes as input the real part a and the re�ectivity predicted by the MERLIN network
based on the real part ra (equivalently b and rb), and predicts the expected di�erence between the

log-re�ectivity images in equation 6.24. The estimation is noted d̂a (and equivalently d̂b).
The Loss is then de�ned as follows

L(a, ra, rb) =
∣∣∣∣∣∣∣∣12 (log ra − log rb)

2 − d̂a

∣∣∣∣∣∣∣∣2
=

∣∣∣∣∣∣∣∣12 (log ra − log rb)
2 − fθ(a, ra)

∣∣∣∣∣∣∣∣2 (6.25)

where fθ(a, ra) is the output of the network fθ.

In test phase, the �nal estimation of the di�erence noted d̂ is de�ned as

d̂ =
d̂a + d̂b

2
(6.26)

Experimental results

This method has proven to be e�ective and provide a good estimation of theoretical uncertainty
map presented in Figure 6.8. The results shown in Figure 6.9 highlight the lack of con�dence of
the network concerning the edges and the bright scaterrers.
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Figure 6.9: Experimental results of the training of the network to minimize the loss function
introduced in equation 6.25
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Variance estimation

We want to justify why the formulation of the estimated-re�ectivities distance leads to better results.
This is why we derive in the following the relative error of the variance of our new estimator.

Once again, we consider the easier case of an additive Gaussian noise. Let ra be the re�ectivity
predicted based on the real part and rb the one predicted based on the imaginary part. We have

ra ∼ N (µ, σ2
r)

rb ∼ N (µ, σ2
r)

Proposition 5. The relative error of the variance of the estimator 1
2 (ra − rb)

2 is de�ned as√
Var

[
1
2 (ra − rb)

2
]

σ2
r

= 2
√
5 (6.27)

Similarly, the relative error of the empirical variance σ̄2 of the estimator 1
2 (ra − rb)

2 computed
based on N independent samples ∆1,∆2, . . . ,∆N is de�ned as√

Var [σ̄2]

σ2
r

=

√
2

N
(6.28)

The relative error in equation 6.27 is a constant and does not depend on the value of σr, meaning
that these data are more reliable to perform the training of our network.

The relative error in equation 6.28 is not constant but is bounded. We �nd again that the error
decreases when the number of samples N increases. But in this case, the number of samples N
is not the same as the one used in the �rst part with the negative log-likelihood minimization: in
the �rst case, we consider the real part and the imaginary part as two di�erent samples; in the
second case, we need them both to compute the estimated-re�ectivity distance. If we note NML

the number of samples with the �rst approach, we have N = NML/2.
The relative error on σ2

r is much lower in the regime where σ2
b ≫ σ2

r (our case, since the equivalent
number of looks after denoising is much larger than the initial number of looks). This means that
much fewer samples are required to train the network (for each epoch and each mini-batch).

Proof. We want to evaluate the signal-to-noise-ratio of the raw di�erences between two estimated
re�ectivities: √

Var
[
1
2 (ra − rb)

2
]

σ2
r

First, we compute the expectation of the estimated-re�ectivity distance

E
[
(ra − rb)2

]
= E

[
r2a
]
+ E

[
r2b
]
− 2E [ra rb]

ra and rb are iid so E [ra rb] = µ2, leading to
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E
[
(ra − rb)2

]
= E

[
r2a
]
+ E

[
r2b
]
− 2µ2

= σ2
r + µ2 + σ2

r + µ2 − 2µ2

= 2 σ2
r

By estimating the expectation of the estimated-re�ectivity distance, we are estimating the variance
of the re�ectivity σ2

r .
We want to compute the variance of our estimator. To make it easier to compute, we introduce
∆ = ra − rb, and

∆ ∼ N (0, 2 σ2
r)

As ∆ is a Gaussian random variable, we will use the known expression of the moments (of order 4
especially) in the following.

Var
[
(ra − rb)2

]
= Var

[
∆2
]

= E
[
∆4
]
− E

[
∆2
]2

= 3(
√
2σr)

4 − (2σ2
r)

2

= 20σ4
r

We �nally compute the relative error:

√
Var

[
1
2 (ra − rb)

2
]

σ2
r

=
1

2

√
Var

[
(ra − rb)2

]
σ2
r

=

√
20σ4

r

σ2
r

= 2
√
5

In order to keep the same framework as section 6.2.1, we also compute the relative error using
the empirical variance computed based on N independent samples ∆1,∆2, . . . ,∆N

The empirical mean approximating the expression E
[
∆2
]
is given by

σ̄2 =
1

2N

N∑
k=1

∆2
k

As ∆k for k ∈ {1, . . . , N}, is centered, we have

E
[
σ̄2
]
= E

[
1

2N

N∑
k=1

∆2
k

]

=
1

2
E

[
1

N

N∑
k=1

∆2
k

]
= σ2

r
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This is thus an unbiased estimator of σ2
r (like the ML estimator that worked on noisy samples i).

We want to compute √
Var [σ̄2]

σ2
r

where σ̄2 is de�ned as a sum of N independent square Gaussian variables. We can re-write σ̄2 as

σ̄2 =
1

2N

N∑
k=1

∆2
k

=
1

2N
× 2σ2

r

N∑
k=1

(
∆k√
2σr

)2

Since ∆k ∼ N (0, 2 σ2
r) for all k ∈ {1, . . . , N}, we deduce that

∆k√
2σr

∼ N (0, 1) for all k ∈ {1, . . . , N}

σ̄2 is then proportional to the sum of N independent square standard normal variables, meaning
that it is distributed according to a Chi square distribution, with N degrees of freedom, and the
variance follows from the closed-form expression of the variance of a χ2 random variable:

Var

[
N∑

k=1

(
∆k√
2σr

)2
]
= 2N

We can then compute the relative error

√
Var [σ̄2]

σ2
r

=

√
Var

[
1

2N 2σ2
r

∑N
k=1

(
∆k√
2σr

)2]
σ2
r

=
1

2N
2σ2

r

√
Var

[∑N
k=1

(
∆k√
2σr

)2]
σ2
r

=
1

2N
2σ2

r

√
2N

σ2
r

=

√
2

N
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6.3 Conclusion

In this chapter, we presented three methods to estimate uncertainties related to despeckling. The
�rst two methods rely on the prediction of a distribution over the re�ectivity for each pixel. Pa-
rameters of a uniform distribution and an inverse gamma distribution have been predicted by the
network. The experimental results were not very satisfying, this could be explained by the compu-
tation of the relative error of the variance of our estimators: the relative error is very high which
means that the problem we want to solve is di�cult. A third method, simple yet e�ective, is
proposed to compute an uncertainty map associated to the re�ectivity images estimated with the
MERLIN network. The methodological framework introduced in section 6.2.1 is very interesting
but has led to poor experimental results. This can be explained by the high relative error associated
with the variance estimation at the core of our approach.
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Chapter 7

Conclusion and perspectives

7.1 Conclusion

This thesis presents our work on joint despeckling of SAR images and provides some methods to
estimate the uncertainty related to their restoration.

Joint despeckling can be performed using two di�erent strategies: the Multi-Input Multi-Output
framework and the Multi-Input Single-Output framework. In chapter 3, we explained that the
MIMO strategy can be used when the number of input images is low (equal to 2 or 3) whereas
the MISO strategy can be used with as many input images as possible, the main limitation being
the capacity of the network we plan to use. The MIMO has the advantage that only one forward
pass is needed to estimate the re�ectivity images associated to all the input images when the MISO
strategy requires one forward pass for each image.

In this work, the MIMO strategy has been used for joint despeckling of dual polarization Sentinel-
1 GRDM EW images for sea ice analysis. We proposed a self-supervised deep learning approach
based on a previous method developed by the IMAGES team called SAR2SAR [18]. One of the
main challenges related to sea ice images is the impact of thermal noise. We decided to feed
our network with corrected images where the thermal noise �oor bias has been removed with the
Korosov algorithm [69]. The joint processing of HH and HV images improves the restoration of thin
structures such as tiny rivers, and the processing of corrected images leads to less �uctuations in
low re�ectivity areas in the restored images. The artifact (vertical line) appearing when subtracting
the thermal noise �oor after the despeckling step is strongly reduced in our approach.

When considering applications on land (urban areas or agriculture monitoring), the thermal
noise is negligible. Chapter 5 focuses on multi-temporal despeckling where several images of the
same area acquired at di�erent times are used. A simple way of processing the multi-temporal stack
is to compute a temporal average image or even a super-image. Deep learning methods can be used
within existing frameworks such as the Quegan �lter [70] or the RABASAR framework [16]. An
unsupervised deep learning method based on the MERLIN approach [19] is proposed in this chapter
to reach high-quality despeckling even when few images are available. This method takes as input

109
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the real or imaginary part of the reference image and intensity images of other dates in additional
channels. Adding more images provides more temporal information and improves the quality of the
despeckled images. This gain increases with respect to the number of input images, but its growth
reaches a plateau. While this approach improves the quality of the estimated re�ectivity images,
its main limit is that a speci�c network needs to be trained for each number of input images.

The �nal contributions described in chapter 6 are related to uncertainty estimation for despeck-
ling. Based on the MERLIN network, an uncertainty map is estimated to provide information on
the network's con�dence. The �rst approaches are based on the predictions of the parameters of
a distribution over the re�ectivity pixels. The networks provide a 1D distribution of re�ectivities
at each pixel. The sharper the distribution, the more con�dent the network is. The choice of such
distribution is constrained by the need of a closed form of the loss function. Uniform and inverse
gamma distributions were studied, both leading to poor results in practice. This is explained by a
simpli�ed study of the relative error of the variance of our estimator computed in the more simple
case of additive white Gaussian noise.
Another method has been proposed and is based on the computation of the expected di�erence
between the restored image based on the real part of the image, and the restored image based on
the imaginary part. This approach leads to good results and the estimated uncertainty map shows
high uncertainty on edges and areas containing bright scaterrers.

The architecture and the contributions of this thesis are summarized in Figure 7.1.



CHAPTER 7. CONCLUSION AND PERSPECTIVES 111

Chapter 4

Chapter 5
Chapter 5

Chapter 6

Figure 7.1: Overview of the scienti�c contributions of this thesis
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7.2 Remaining issues and perspectives

The perspectives are divided into two categories in the following sections: methodological perspec-
tives and application perspectives.

7.2.1 Methodological perspectives

Number of input images for multi-temporal despeckling

The multi-temporal unsupervised method developed in section 5.3 is not �exible in the sense that
adaptation to a di�erent number of input images requires the training of the method. It would be
interesting to have a new framework where the testing phase can be conducted with an arbitrary
number of input images corresponding to the images available for a speci�c application.

In preliminary experiments, wanted to perform an early fusion of the input images. We trained
a network taking as input the noisy image and a super-image corresponding to the temporal mean
computed with all the available dates. Thus, depending on how many images are available for the
test phase, the level of the speckle of this multi-temporal average �uctuates, but is lower that the
level of speckle of the image we want to restore. It also provides information on stable structures.

To test this hypothesis, we considered simulated speckle on ground truth images computed by
averaging all the images in a Sentinel-1 temporal stack, and then despeckling this temporal mean
with MuLoG [14]. We work with 5 temporal stacks. These ground truth images have also been
used in the training of the network SAR2SAR in the original paper [18]. The input of the network
is a tensor composed of two images: the �rst image (the one we want to restore) is corrupted by
a speckle with an equivalent number of look L = 1 (single look SAR image); the second image is
the associated multi-temporal average computed by averaging 10 noisy samples from the Sentinel-1
stack 1.

The network is trained using the hyper-parameters of the original SAR2SAR network [18] in
the training phase A. During the training, a pair of noisy images is simulated using the same patch
from the ground truth image, and the multi-temporal average is computed for each patch. The loss
function is computed based on the output of the network (i.e. the estimated despeckled image) and
the second noisy sample (i.e. the target).

The experimental results are given in Figure 7.2.

1the speckle is not simulated, the noisy images come from a stack of single look Sentinel-1 images
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Noisy single-look image (Lelystad) Super-image, L = 10 (Lelystad)

Despeckled, SAR2SAR (Lelystad) Despeckled early-fusion (Lelystad)

Noisy single-look image (Limagne) Super-image, L = 10 (Limagne)

Despeckled, SAR2SAR (Limagne) Despeckled early-fusion (Limagne)

Figure 7.2: Results of the early fusion method en Sentinel-1 images of Lelystad, the Netherlands, and
Limagne, France. The speckle is simulated for the noisy images, and the super-image is computed
by averaging 10 Sentinel-1 images of the same area acquired at di�erent times. The early fusion
restored image is more blurred that the one restored with the original SAR2SAR network.
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We can see that the early fusion does not give better results even though we provide the network
with more information: the super-image has a low level of noise and the stable structures such as
the �eld delimitations and the roads are more visible. These results were unexpected. This could
be explained by the di�culty to process images with di�erent level of noise when just concatenated
before being fed to the network. A solution could be to provide an evaluation of the equivalent
number of looks as in FFDNet [30].

Another strategy could be to perform an iterative despeckling as in FastDVDNet [93]. Five
consecutive frames are used as input to denoise the central frame. Triplets of these consecutive
frames are fed to a �rst denoising blocks, and all the blocks have the same weights. The outputs
of theses blocks are then fed to a second denoising block, leading to the �nal estimation of the
denoised middle frame. The proposed cascade architecture is shown in Figure 7.3.

Figure 7.3: Cascade architecture of FastDVDnet. Five consecutive frames are taken as input of
the framework. The �rst denoising blocks take three consecutive images as input, and share the
weights. The second denoising step takes the three outputs of the previous blocks. The network
estimated the denoised image corresponding to the central frame of the input sequence. Illustration
from [93].

They also prove that this two-step denoising is improving the restored images: a network taking
the �ve frames as input and predicting the denoised central frame is also trained. The quality of the
estimations of the single denoising block network is worse that the one of the proposed approach,
indicating that there may be room for improvement for our proposed multi-temporal despeckling
approach.

Multi-modal and multi-sensor input images

In this thesis, we worked with images coming from a �xed sensor and the same modality. For some
applications, it is useful to exploit as many images as possible even if they are not from the same
sensors or the same modality.
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Mixing images acquired with di�erent sensors is not an easy task as the resolution can be very
di�erent. The incident angle is not the same either, meaning that the geometrical deformation are
not the same. The network needs to be robust to these changes and exploit the shared information
between images at di�erent resolution. In the work of another PhD student of our research group
[94], the joint exploitation of SAR images and optical images has been achieved using the MERLIN
network. Even if the optical image is projected into the radar geometry, the deformation between
the optical and radar images are di�erent, meaning that this approach could generalize to other
sensors.

Study of network architectures

As stated in chapter 3, the research of the best architecture for our problem has not been done in
this thesis because this problem is far from trivial, time-consuming and should be tackled once the
training strategy has proven itself e�cient.

The e�ectiveness of the MIMO strategy is linked to the architecture: the more parameters we
have and the deeper the network, the more input images the network will be able to handle.

Attention layers used in transformers could be used when performing multi-temporal despeck-
ling. In the work on super resolution [95], a multi-temporal stack is taken as input and the network
predicts a high resolution image and the related uncertainty map. The architecture is very complex
and contains attention layers. A description of the architecture is shown in Figure 7.4.
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Figure 7.4: Architecture of the network PIUnet proposed in [95] for super-resolution. The model
processes a stack of low resolution images and estimates an uncertainty map and a super-resolution
image. The self-attention layers are key to enforce permutation invariance of the input images while
being able to retrieve the stable structures within the temporal stack.
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With attention layers, the authors enforce the permutation invariance of the input images. To
build an invariant model, they use a sequence of equivariant operations followed by a global invariant
function.

A function f : X → Y is said to be equivariant to the actions g of a group G if f(g◦x) = g◦f(x)
for all x ∈ X, g ∈ G.

A function f : X → Y is said to be invariant to the actions g of a group G if f(g ◦ x) = f(x) for
all x ∈ X, g ∈ G.

In this case, they are dealing with the permutation group, and the actions are all the possible
permutation of the temporal stack of images. For equivariant functions, the output will be the
permuted version of the output corresponding to the order of the input images without the permu-
tation. Having an invariant function at the end of the network means that the output will always
be the same independently from the order of the input images. This means that the network is
more robust and capture the input images properties, not their order. Building an entire invariant
model is di�cult because invariant functions are usually simple, the common example being the
mean function. It is di�cult to extract complex features only with invariant functions. The order
of the images needs to be tracked to extract information and cross correlations between them, and
then an invariant function can be applied. The authors of [95] have build a model composed of
equivariant functions and ending with an invariant function. The equivariant function used in the
network are self-attention.

In our work, it was approximately enforced by randomly shu�ing the input channels during the
training step. The capacity of attention layers to recover the invariant information within the stack
of images make them more robust to permutations.

7.3 Application perspectives

7.3.1 Despeckling for sea ice classi�cation

This work is done in collaboration with the UiT the Arctic University in Tromso and the researchers
Debanshu Ratha, Johannes Lohse and Andrea Marinoni.

There is a large number of downstream applications of SAR remote sensing that may bene�t
from improved speckle reduction in S1 wide-swath imagery.

In this section, we focus on sea ice monitoring. Sea ice conditions are routinely mapped by
national ice services worldwide and the resulting information is distributed in the form of ice charts.
While operational ice chart production is at present still performed manually, multiple studies have
investigated the (semi-)automated separation of sea ice and open water as well as the classi�cation
of di�erent sea ice types, using both deep-learning approaches and statistical methods [96].

Here, we consider a pixel-wise classi�cation algorithm introduced in [97].
The method uses the local incident angle together with both HH and HV backscatter intensities

of Sentinel-1 GRDM EW images. It accounts for the well-known e�ect of class-dependent backscat-
ter variation with local incident angle. A linearly variable mean value for each class distribution is
assumed. We use a version of the classi�er that was speci�cally trained for the area around Belgica
Bank in Western Fram Strait, which is shown in Figure 7.5.

It distinguishes four ice classes (Open Water, Young Ice, Level Ice, Deformed Ice) which are
relevant for tactical navigation and used in [98].
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Figure 7.5: Area of interest for sea ice classi�cation around Belgica Bank (red rectangle). The
yellow marker indicates the position of the ship during the research expedition of the Norwegian
Ice Service. The displayed image in RGB is computed using the HV, HH, HH. The images used in
the study were acquired during two overpasses on 02/05/2022 and 03/05/2022.

We illustrate the positive impact of a despeckling step on the ice classi�cation results. Because
we do not have ground truth classi�cations, having a closer look at the performance of other methods
can help validate our method.

For this experiment, we select four images from two Sentinel-1 overpasses on May 2nd and May
3rd 2022. We separately apply six di�erent despeckling methods, including no speckle reduction,
multi-looking with two di�erent window sizes (9x9 and 21x21 pixels), the two baseline methods
(MuloG with BM3D (d) and SAR-BM3D (e)), as well as the dual-polarimetry joint despeckling
method described in section 4.2.3 (f).

The entire area and its corresponding sea ice classi�cation is given in Figure 7.6. Zoomed-
in close-up comparisons of the classi�cation results obtained from the di�erent speckle reduction
methods are presented in Figure 7.7 and Figure 7.8.
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Figure 7.6: (left): speckle-free image of our area of interest estimated by the dual-polarimetry joint
despeckling method network from section 4.2.3. The image is displayed using a false color RGB
displaying (RGB: HV, HH, HH). (right): corresponding classi�cation result after applying the dual-
polarimetry joint despeckling method.

Figure 7.7: Close-up comparison of ice type classi�cation results after di�erent despeckling methods.
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Figure 7.8: Close-up comparison of ice type classi�cation result after di�erent despeckling methods.
The dual-polarimetry joint despeckling method enables the classi�er to maintain small scale details
such as the open lead in the lower right corner.

In Figure 7.7, the results clearly show that despeckling with large multi-looking windows blurs
out class boundaries, in particular for relatively small spatial structures, resulting in large areas
of wrong ice types. Our dual-polarimetry joint despeckling method is able to maintain the spatial
detail, while at the same time reducing speckle e�ects signi�cantly.

As expected, MuLoG, SARBM3D and our dual-polarimetry joint despeckling method outper-
form the multi-looking approaches. For our network, the classi�cation results appear signi�cantly
smoother compared to no speckle reduction, while at the same time maintaining small-scale struc-
tures such as narrow leads which are important features for tactical navigation.

However, we can see the line artifact in Figure 7.7: the line is not vertical anymore because
the image have been geocoded i.e. projected on the Earth and they are not in the radar geometry
anymore. For geocoding, rotation are performed and have changed the orientation of the artifact
line. This line comes from the correction step which removes the thermal noise component of
the image. The correction is performed after despeckling. Our dual-polarimetry joint despeckling
method has attenuated this artifact, but it is still there.

In a very forthcoming work, we want to train the classi�er on the �nal network developed in
section 4.3 which takes the thermal noise into account.

More generally, the despeckling step if often needed for applications using SAR images. Multi-
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temporal despeckling is particularly useful when a large volume of data is available, and could thus
be applied for any kind of Earth monitoring.

It could particularly be interesting to apply the methods developed in this thesis for forest
monitoring, or tiny rivers detection as introduced in [75].
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and deep learning, Deep Learning Working Group seminar, LTCI Télécom
Paris

• Multi-temporal despeckling of SAR images, Deep Learning Working Group
seminar, LTCI Télécom Paris

• Multi-temporal despeckling of SAR images with self-supervised deep neural
networks, Université Jean Monet, Saint-Etienne

• SAR image despeckling: an overview, UiT The Arctic University of Tromso,
Norway

• Uncertainty quantification in deep learning, Deep Learning Working Group
seminar, LTCI Télécom Paris

• Introduction to Remote Sensing: case study on despeckling Synthetic Aper-
ture Radar images, Vertaix Lab, Princeton University, USA
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III Awards

• IEEE International Geoscience and Remote Sensing Symposium
(IGARSS conference), 2022 for the paper Exploiting multi-temporal in-
formation for improved speckle reduction of Sentinel-1 SAR images by deep
learning, Emanuele Dalsasso, Ines Meraoumia, Loic Denis, Florence Tupin
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Appendix A

On normalizing the input of the

network

A.1 Context of the work

In chapter 4, we are working with Sentinel-1 GRDM EW images (polarizations HH and HV). The
main application of this work is the study of sea ice, but due to quick structural changes in these
kind of areas, it is di�cult to construct a temporal stack of images (needed to the training step of
our network in order to select pairs of noisy images for our self-supervised method). The network
is thus trained on land, but the will be tested on sea ice images. The re�ectivity values of sea ice
images is lower than the land images, this could lead to a distribution shift of the input patch.
Neural networks are sensible to distribution shift, so we propose to evaluate the impact of a shift
of re�ectivity values on the quality of the restored images. The network used in the following is the
SAR2SAR network taking one image as input (original framework), and we use the HH and HV
images as 2 di�erent samples.

A.2 Normalization applied in previous work

Based on [18] and even [19], the following normalization has been done before feeding the network
with any image during the training and testing phases.
Let A be the amplitude image of interest. We want the network's input to be in [0, 1] and we note
y the normalized input image de�ned as:

y =
log(A)−m

M −m

where m = min log(A) and M = max log(A).
During the training phase, the values of m and M are computed over the whole data set. Because
out training set contains images of land, we have mland and Mland. However, we test the network
on sea ice where the dynamic range of the images is lower.
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A.3 Compressing the histogram

The re�ectivity values of the sea ice and water are very low compared to land. Thus, the distribution
of the pixel values of sea ice images is shifted. When the image is normalized, the distribution of the
normalized image is thus shifted. The network is then forced to process an image with a di�erent
distribution, and this could lead to poor result, and maybe artifacts. We want to check the changes
triggered by a shift of dynamic.
We thus compress the histogram of the input image to see if the artifact we have observed on the
denoised sea ice images are related to the distribution of the input image.

A.3.1 Proposed experiment

Let α ∈ [0, 1] be the compression parameter of the input image histogram.
Let us de�ne the stretched image Aα as:

Aα = α A

where α ∈ [0, 1]
By keeping the previous normalization, we have:

yα =
log(α A)−m

M −m

=
logA−m

M −m
+

logα

M −m

= y +
logα

M −m

By keeping the same normalization parameters m and M , compressing the histogram of A leads to
a shift of logα

M−m for the normalized image in [0, 1].
Based on A, the network predict r̂; based on Aα, the network predicts r̂α
Ideally, we would have r̂α = α r̂. To evaluate the impact of compressing by a factor α, we compute
the following metric that we will later denote by dα:

dα =

∣∣∣∣∣
∣∣∣∣∣ log r̂ − log

(
r̂α

α

)
log r̂

∣∣∣∣∣
∣∣∣∣∣
2

(A.1)

We can also use the Structural Similarity Index Measure (SSIM) to provide a metric on similarity
between r̂α and α r̂.

A.3.2 Experimental results

We use the weights of the network trained on the whole our data set described in 4.2.2.
The metrics are computed on 10 images of 512× 512 pixels extracted from the �rst and the third
sub-swath of one Sentinel-1 GRDM EW image.
50 values of α are used to plot the evolution of the metrics with respect to α.
Quantitative results representing dα and the SSIM with respect to α are shown in Figure A.1.
Qualitative results on Sentinel-1 GRDM EW of river Ob in Russia are presented in Figure A.2.
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Figure A.1: Quantitative results: the plots represent the evolution of dα (de�ned in equation A.1)
with respect to α (�rst row) and the evolution of the SSIM with respect to α (second row). For
values of α such that α ≤ 0.2, their is a drop of both metrics, meaning that the relation r̂α = α r̂
is not respected.

Based on the quantitative and qualitative results, we can see that the normalization a�ects
the results of the network: when the value of α is too low, the estimated image is blurred and
the details are not correctly restored... Low values of α correspond to re�ectivity values of sea
ice images. Thus, we need to be careful when using such normalization especially when the test
data are images from areas of low re�ectivities. In the training step, we can arti�cially change the
dynamic of the input images to improve the network robustness to a shift of dynamic.
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Figure A.2: Result Sentinel-1 GRDM EW images of river Ob, Russia. The patch is extracted from
the �rst sub-swath
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Résumé : Le radar à synthèse d’ouverture (SAR)
n’est pas impacté par la présence de nuages ou la lu-
minosité et permet donc l’acquisition d’images riches
en informations pour l’observation de la Terre (cha-
pitre 1). De fortes fluctuations appelées ”speckle” sont
néanmoins visibles sur ces images et rendent leur in-
terprétation difficile. Le “speckle” est un phénomène
intrinsèque à l’illumination cohérente de la scène par
le capteur : des images sans speckle ne peuvent
donc pas être acquises. Les propriétés du speckle
sont différentes de celles du bruit additif blanc gaus-
sien usuellement utilisé en imagerie optique. Les al-
gorithmes de despeckling sont donc propres aux sta-
tistiques du speckle du modèle de Goodman (chapitre
2). Récemment, des méthodes d’apprentissage pro-
fond ont donné de très bons résultats pour la restaura-
tion d’une seule image SAR. Les travaux proposés uti-
lisent le traitement conjoint de plusieurs images SAR
pour améliorer leur restauration en exploitant l’infor-
mation commune tout en empêchant la propagation
de potentielles différences (chapitre 3).
Le chapitre 4 est centré sur le despeckling des images
Sentinel-1 GRDM Extra Wide de la glace de mer. La
glace se déplaçant rapidement sur la mer, des chan-
gements structurels apparaissent rapidement sur une
zone d’intérêt, rendant les piles multi-temporelles in-
exploitables. Le bruit thermique de ces images ne
peut pas être négligé car les valeurs de réflectivité
de l’eau et de la glace sont très faibles et proches
du seuil du bruit thermique. Notre méthode de des-
peckling utilise et restaure conjointement les canaux
polarimétriques HH et HV. L’entrainement autosuper-
visé du réseau s’inspire de la méthode SAR2SAR, en
prenant en entrée des images corrigées où la compo-
sante de bruit thermique a été supprimée. La qualité
des images Sentinel-1 de l’Arctique restaurées avec
notre approche est bien meilleure que celle obtenue
avec d’autres techniques de restauration.
Utiliser l’information partagée au sein d’une pile multi-

temporelle tout en ignorant l’impact des changements
temporels améliore le despeckling. Des méthodes
de despeckling multitemporel basées sur un moyen-
nage temporel ou l’utilisation d’une super-image sont
d’abord présentées dans le chapitre 5. Un modèle
génératif est ensuite proposé afin d’expliciter la for-
mation d’une pile multi-temporelle d’images SAR en
tenant compte des corrélations spatiales et tempo-
relles du speckle. Une extension multitemporelle de la
méthode MERLIN est basée sur ce modèle génératif
et prend en entrée des images additionnelles de la
même zone mais acquises à des dates différentes.
L’entrainement du réseau est non supervisé et s’ins-
pire de la méthode Noise2Noise : la partie réelle (ou
la partie imaginaire) de l’image et les dates addition-
nelles sont transmises au réseau et la partie imagi-
naire (ou la partie réelle) est utilisée comme cible.
L’ajout d’images supplémentaires améliore la restau-
ration des images SAR avec un gain décroissant.
Un blanchiment temporel est proposé pour éviter une
perte de performance liée aux corrélations tempo-
relles entre les canaux d’entrée.
L’absence d’image de référence rend l’évaluation des
méthodes de despeckling difficile. Le chapitre 6 se
concentre sur la quantification des incertitudes liées
à la prédiction d’un réseau. Des travaux combinant le
despeckling et l’estimation d’une carte d’incertitudes
sont d’abord présentés. Dans le cadre d’origine, une
seule valeur de réflectivité est prédite pour chaque
pixel, alors que nous visons à prédire une distribu-
tion pour chaque pixel. Les paramètres des lois uni-
forme puis inverse gamma sont estimés lors de l’en-
traı̂nement. La difficulté à quantifier les incertitudes
dans un cadre d’apprentissage auto-supervisé où le
niveau de bruit est élevé est ensuite discutée. En
utilisant le réseau MERLIN, la prédiction de la carte
moyenne des différences entre les prédictions basées
sur la partie réelle et imaginaire fournit une carte d’in-
certitudes satisfaisante.
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Abstract : Synthetic Aperture Radar (SAR) images
are not affected by the presence of clouds or varia-
tions of sunlight. They provide very useful information
for Earth observation (chapter 1). They are impac-
ted by strong fluctuations called ”speckle” which make
their interpretation difficult. The speckle is a pheno-
menon intrinsic to the coherent illumination of the
scene by the radar, meaning that speckle-free images
can not be captured and used as reference to train
models. The properties of speckle are different from
that of the traditional additive white Gaussian noise
used to model corruptions in optical images, and pro-
per despeckling algorithms are needed. Most of them
rely on statistics derived from the Goodman’s model
(chapter 2). Recently, deep learning based methods
have been very successful at despeckling a single
SAR image. This work focuses on improving the des-
peckling performance by jointly processing several in-
put images to exploit the common information while
still preventing the propagation of differences from
one image to another (chapter 3).
The despeckling of Sentinel-1 GRDM Extra Wide
images of sea ice is studied in Chapter 4 for sea
ice studies. The ice is shifting quickly on the sea
and multi-temporal stacks of a specific area can not
be used for despeckling purposes due to structural
changes. In the images, thermal noise can not be ne-
glected because the reflectivity values of water and
ice are very low and close to the thermal noise floor.
We propose a dual-polarimetric despeckling frame-
work where HH and HV polarimetric channels are
used as input and are jointly despeckled in a single
pass. The network is trained in a self-supervised way
inspired by the existing SAR2SAR framework and
takes corrected images where the thermal noise floor
level has been removed as input. Our approach shows
a clear improvement over existing image restoration
techniques on Sentinel-1 images of the Artic.
Despeckling can be improved by combining measu-

rements pertaining to common information within the
temporal stack while ignoring data impacted by tem-
poral changes. First, multi-temporal despeckling me-
thods using temporal averaging and the computa-
tion of a super-image (i.e. despeckled temporal mean
image) are introduced at the beginning of Chapter 5.
A generative model is then proposed to explicit the
statistics of SAR multi-temporal stacks and account
for the spatial and temporal correlations of speckle. A
multi-temporal extension of the existing MERLIN fra-
mework is derived from this model. The network is
fed with additional images of the same area acqui-
red at different dates. It is trained in an unsupervised
way inspired by the Noise2Noise framework: the real
part (or the imaginary part) of the image and addi-
tional dates are fed to the network and the imaginary
part (or the real part) is used as a target. Adding more
images continuously improves the despeckling perfor-
mance, but with diminishing gains. A temporal white-
ning is proposed to prevent the drop of performance
of the network when the input channels are temporally
correlated.
Despeckling methods are hard to evaluate because of
the lack of ground truth images. Chapter 6 focuses on
uncertainty quantification for despeckling using deep
learning. First, works are presented to combine des-
peckling and estimation of the uncertainty map during
the training. Starting from a framework where only one
value is predicted for each pixel, we aim at predicting a
distribution for each pixel. Parameters of uniform and
inverse gamma distributions are estimated. The shar-
per the distribution, the more certain the network is
of its prediction. We discuss the difficulty of estima-
ting uncertainties in a self-supervised learning frame-
work where the noise level is high and the limits faced
by our formulations. Working with the MERLIN frame-
work, an estimation of an uncertainty map is proposed
based on the expected difference map between pre-
dictions from the real and imaginary parts.
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