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Introduction
Soit X une courbe connexe projective lisse sur un corps algébriquement clos k. Soit
g = g(X) le genre de X. En 1938, Weil a introduit la notion de fibré vectoriel fini.
Un fibré vectoriel E est dit fini s’il existe deux polynômes distincts, f, g ∈ N[x], tels
que le fibré vectoriel f(E) soit isomorphe à g(E) (voir [Wei38]). Pour k = C, il a
prouvé qu’un fibré vectoriel est fini si et seulement s’il provient d’une représentation
de π1(X) qui se factorise par un groupe fini. Près de 40 ans plus tard, dans [Nor76],
Nori a introduit la notion de fibré vectoriel essentiellement fini comme un sous-
quotient d’un fibré vectoriel fini. La catégorie des fibrés vectoriels essentiellement
finis est une catégorie tannakienne, et le groupe correspondant est connu sous le
nom de groupe fondamental de Nori qui est un schéma en pro-groupes sur k dont
les k points sont isomorphes au groupe fondamental étale, πet

1 (X), lorsque k est de
caractéristique 0 (voir [Sza09, Corollaire 6.7.20] et aussi, [EHS08]).

En considérant un fibré vectoriel comme un GLn-torseur, nous sommes amenés à
nous poser la question suivante : Peut-on généraliser la notion de fibré vectoriel
essentiellement fini à une notion de G-torseur essentiellement fini, pour G un groupe
algébrique affine ? Nori a prouvé qu’un fibré vectoriel E est essentiellement fini si et
seulement s’il existe un schéma en groupe fini Γ, un Γ-torseur FΓ et une représentation
V de Γ telle que E ∼= FΓ ×Γ V . On est donc conduit à la définition suivante

Definition 0.1. Un G-torseur sur X est dit essentiellement fini si il admet une
réduction à un groupe fini.

Vu à travers la correspondance entre les fibrés vectoriels et les GLn-torseurs, cela
concorde avec la définition usuelle de fibré vectoriel essentiellement fini. On démontre
le théorème suivant :

Theorem 0.2. Soit G un groupe réductif, connexe et soit FG un G-torseur. Les
assertions suivantes sont équivalentes :

1. Le G-torseur FG est essentiellement fini.

2. Il existe une représentation fidèle ρ : G −→ GLV tel que ρ∗FG est un fibré
vectoriel essentiellement fini.

3. Pour toute représentation ρ : G→ GLV , ρ∗FG est un fibré vectoriel essentielle-
ment fini.

4. Il existe un morphisme surjectif et propre f : Y → X tel que f ∗FG est trivial.

Notons également que, puisque la semistabilité peut être vérifiée sur le fibré adjoint,
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tout G-torseur essentiellement fini est semistable. Nous donnons une autre preuve
de ce fait, n’utilisant pas la représentation adjointe.

Considérons M ss
G l’espace des modules des G-torseurs semistables sur X, pour G un

groupe réductif connexe. On rappelle que les composantes connexes de M ss
G sont

indexées par le groupe fondamental algébrique de G, π1(G). Si un G-torseur, FG est
dans la composante connexe correspondant à d ∈ π1(G), on dit que FG est de degré
d. Les fibrés vectoriels essentiellement fini sont de degré zéro. On prouve le théorème
suivant :

Theorem 0.3. Pour tout groupe réductif connexe G, tous les G-torseurs essentielle-
ment finis sur X ont un degré qui est de torsion.

Encore une fois, cela généralise le cas de G = GLn, puisque dans ce cas π1(G) = Z,
est sans torsion. Nous montrons également que si X est une courbe elliptique, alors
tous les G-torseurs essentiellement finis sont de degré 0.

Notons M ef,0
G les k-points correspondant aux G-torseurs essentiellement finis dans

M ss,0
G . Si G = GLn et n = 1 les G-torseurs essentiellement finis correspondent aux

fibrés en droites essentiellement finis c’est à dire aux fibrés en droites de torsions (
Voir le Lemme 3.1 [Nor76]). Ainsi M ef,0

GL1
est dense dans M ss,0

GL1
= Jac0(X) puisque

les points de torsion sont denses dans toute variété abélienne. En caractéristique
positive, Ducrohet et Mehta on montré que M ef,0

GLn
⊂ M ss,0

GLn
est dense pour tout

n, lorsque g ≥ 2 et de même pour les fibrés vectoriels de déterminant trivial i.e
SLn-torseur. (Ils montrent en fait qu’un plus petit ensemble d’objets appelés fibrés
vectoriels Frobenius perodique, sont denses [DM10]). Cependant en caractéristique
zéro, on en sait beaucoup moins sur la densité des fibrés vectoriels essentiellement
finis. Nous pouvons donc nous demander si M ef,0

GLn
est dense dans M ss,0

GLn
pour n > 1.

Plus généralement, nous nous intéressons à la question de savoir si M ef,0
G est dense

dans M ss,0
G pour G un groupe réductif connexe sur un corps algébriquement clos k.

Si g = 0, c’est-à-dire si X ∼= P1, il est bien connu que M ss,0
G (k) est un singleton. Il est

donc clair que tout G-torseur essentiellement fini sur P1 est trivial. Nous donnons
une preuve différente de ce résultat en utilisant une interprétation tannakienne de
la classification des G-torseurs sur P1 (voir [Ans18]) et la définition des torseurs
essentiellement finis. Si g = 1, c’est-à-dire si X est une courbe elliptique, nous
prouvons que M ef,0

G est dense dans M ss,0
G (k) pour tous les groupes réductifs connexes.

Ceci découle des travaux de Frăţilă [Fră21] et de Laszlo [Las98]. Au contraire, si
g ≥ 2 et que la caractéristique de k est zéro, nous montrons le théorème suivant :

Theorem 0.4. Pour tout groupe réductif connexe, semisimple de rang 1, M ef,0
G ⊂
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M ss,0
G n’est pas dense.

Le travail principal consiste à prouver le théorème pour les PGL2-torseurs. Notons
également que cela montre que M ef,0

GL2
⊂M ss,0

GL2
n’est pas dense. En caractéristique 0,

Weissman [Wei22] a obtenu indépendamment ce résultat de non-densité pour M ef,0
GLn

avec n > 1.

Par le théorème de Narasimhan et Seshadri, les points de M ss,0
GLn

(C) sont aussi les
classes d’isomorphisme de représentations π1(X) −→ Un(C), c’est-à-dire qu’il existe
un homeomorphisme analytique entre M ss,0

GLn
(C) et la variété de caractères

Hom(π1(X),Un(C))/ ∼ .

En particulier, les fibrés vectoriels finis correspondent à des représentations unitaires
du π1(X) qui se factorisent par des groupes finis. Comme la topologie de Zariski
est plus grossière que la topologie analytique, nous voyons comme corollaire de la
non-densité des fibrés vectoriels finis que l’ensemble des représentations unitaires de
rang n du π1(X) qui se factorisent par des groupes finis n’est pas dense à l’intérieur
de Hom(π1(X),Un(C))/ ∼.

Let X be a smooth projective connected curve over an algebraically closed field k.
Let g = g(X) be the genus of X. In 1938 Weil introduced the notion of a finite
vector bundle; a vector bundle E is called finite if there are two distinct polynomials,
f, g ∈ N[x], such that the vector bundle f(E) is isomorphic to g(E) (see [Wei38]).
For k = C, he proved that a vector bundle is finite if and only if it arises from
a representation of π1(X) which factors through a finite group. Almost 40 years
later, in [Nor76], Nori introduced the notion of an essentially finite vector bundle
as a subquotient of a finite one. The category of essentially finite vector bundles
forms a Tannakian category, and the corresponding group is known as the Nori
fundamental group, a pro-group scheme over k whose k points are isomorphic to the
étale fundamental group, πet

1 (X), when k is of characteristic 0 (see [Sza09, Corollary
6.7.20] and also e.g., [EHS08]).

Viewing a vector bundle as a GLn-torsor, we are led to the question: can we generalise
the notion of an essentially finite vector bundle, to a notion of an essentially finite
G-torsor, for G an affine algebraic group? Nori proved that a vector bundle E is
essentially finite if and only if there exists a finite group scheme Γ, a Γ-torsor FΓ and
a representation V of Γ such that E ∼= FΓ ×Γ V . Hence, we are led to the following
definition

Definition 0.5. An essentially finite G-torsor is a G-torsor over X which admits
a reduction to a finite group.
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Under the correspondence between vector bundles and GLn-torsors, this agrees with
the known definition of essentially finite vector bundles. We prove the following.

Theorem 0.6. Let G be a connected, reductive group, and let FG be a G-torsor.
Then the following are equivalent.

1. The G-torsor FG is essentially finite.

2. There exists a faithful representation ρ : G→ GLV such that ρ∗FG is an essen-
tally finite vector bundle.

3. For every representation ρ : G → GLV , ρ∗FG is an essentally finite vector
bundle.

4. There exists a proper surjective morphism f : Y → X such that f ∗FG is trivial.

Note also that since semistability can be checked on the adjoint bundle, every essen-
tially finite G-torsor is semistable. We give a self-contained proof of this fact, not
using the adjoint representation.

Let now M ss
G denote the moduli space of semistable G-bundles over X, for G a con-

nected reductive group. Recall that the connected components of M ss
G are indexed by

the algebraic fundamental group of G, π1(G). If a G-bundle, FG, lies in a component
corresponding to d ∈ π1(G), then it is said to have degree d. Essentially finite vector
bundles always have degree 0. We prove the following.

Theorem 0.7. For any connected reductive group G, every essentially finite G-torsor
over X is of torsion degree.

Again this generalises the case for G = GLn, since in this case π1(G) = Z, which
is torsion-free. We also show that if X is an elliptic curve then all essentially finite
G-bundles have degree 0.

Let now M ef,0
G denote the k-points of the essentially finite G-torsors of degree 0, inside

M ss,0
G , and let G = GLn. If n = 1, then essentially finite G-bundles correspond to

essentially finite line bundles, which correspond to torsion line bundles (see Lemma
3.1 [Nor76]). Hence, M ef

GL1
is dense inside M ss,0

GL1
= Jac0(X) since torsion points

are dense in any abelian variety. In positive characteristic Ducrohet and Mehta
have shown that M ef,0

GLn
⊂ M ss,0

GLn
is dense for all n when g ≥ 2, and similarly for

vector bundles with trivial determinant (they show in fact that a smaller set of
objects, called Frobenius periodic vector bundles, are dense; see [DM10]). However,
in characteristic zero much less seems to be known about the density of essentially
finite bundles when the rank is greater than 1. Hence, we may ask whether M ef,0

GLn
is
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dense in M ss,0
GLn

for n > 1, when char(k) = 0. More generally, we are interested in the
question of whether M ef,0

G is dense in M ss,0
G for arbitrary connected reductive groups

G over an arbitrary, algebraically closed field k.

If g = 0, that is if X ∼= P1, then it is well-known that M ss,0
G (k) is a singleton.

Hence it is clear that every essentially finite G-torsor over P1 is trivial. We give
a self-contained proof of this result using a Tannakian interpretation of both the
classification of G-torsors over P1 (see [Ans18]) and the definition of essentially finite
torsors. If g = 1, that is if X is an elliptic curve, then we prove that M ef,0

G is dense in
M ss,0

G for all connected, reductive groups. This follows from work of Frăţilă [Fră21]
and Laszlo [Las98]. On the contrary, if g ≥ 2 and char(k) = 0, then we show the
following.

Theorem 0.8. Let char(k) = 0. For all connected, reductive groups of semisimple
rank 1, M ef,0

G ⊂M ss,0
G is not dense.

The main work lies in proving the theorem for PGL2-torsors. Note also that this
shows that M ef

GL2
is not dense in M ss,0

GL2
. In characteristic 0, Weissman [Wei22] has

independently obtained this non-density result for M ef
GLn

for all n ≥ 1.

By the theorem of Narasimhan and Seshadri, the points of M ss,0
GLn

(C) are also the iso-
morphism classes of representations π1(X) −→ Un(C), i.e., there is an analytic home-
omorphism between M ss,0

GLn
(C) and the character variety Hom(π1(X),Un(C))/ ∼. In

particular finite vector bundles correspond to unitary representations of π1(X) which
factor through finite groups. As the Zariski topology is coarser than the analytic
topology we see as a corollary to non-density for rank n vector bundles that the set
of rank n unitary representations of π1(X) which factor through finite groups is not
dense inside Hom(π1(X),Un(C))/ ∼.
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1 Essentially finite vector bundle
Ce premier chapitre introduit les bases nécessaires pour la suite. Nous débutons par
une revue détaillée des fondamentaux des fibrés en droite, mettant en avant leurs
propriétés caractéristiques, notamment le célèbre théorème de Riemann-Roch.

Ensuite, nous introduisons les notions essentielles de degré d’un fibré vectoriel et
de pente, en soulignant leurs propriétés élémentaires qui joueront un rôle central
dans notre compréhension des fibrés vectoriels et de leur classification.

La semi-stabilité est un concept fondamental que nous abordons ensuite, montrant
que la catégorie des fibrés vectoriels semi-stables à pente fixée constitue une catégorie
abélienne.

L’un des points clefs de ce chapitre est la notion de fibré vectoriel fini, dont l’origine
remonte à A. Weil en 1939. Nous montrons comment, dans le cas complexe, ces
fibrés sont en correspondance avec les représentations du groupe fondamental dont
les images sont finies, établissant ainsi un lien profond entre la topologie et la théorie
des fibrés vectoriels.

Enfin, nous explorons la notion de fibré vectoriel essentiellement fini, telle que for-
mulée par M. Nori, des décennies après les travaux de Weil. Ils sont définis comme
des sous-quotients de fibrés vectoriels finis.

1.1 Line bundles and divisors

Let k be an algebraically closed field and let X → Spec(k) be a smooth projective
and connected curve. By a vector bundle we mean a locally free coherent sheaf.

For x ∈ X, we let OX(−x) denote the sheaf of functions vanishing at x; that is,
for U ⊆ X, we have OX(−x)(U) = {f ∈ OX(U) | f(x) = 0}.
By construction, this is a subsheaf of OX and, in fact, OX(−x) is a line bundle on
X
For x ∈ X, we let kx denote the skyscraper sheaf of x whose sections over U ⊆ X

are given by kx(U) =

{
k if x ∈ U
0 else

.

The skyscraper sheaf is not a locally free sheaf; it is a torsion sheaf which is sup-
ported on the point x.
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Since H0(X, kx) = kx(X) = k and H1(X; kx) = 0 we have χ(X, kx) = 1.
There is a short exact sequence of sheaves

0→ OX(−x)→ OX → kx → 0

where the morphism OX → kx is given by evaluating a function at x. We can tensor
this exact sequence by a line bundle L to obtain

0→ L(−x)→ L → kx → 0

where L(−x) is a line bundle, whose sections are the sections of L which vanish at
x. Hence by additivity of Euler characteristics [Gro61, Proposition 2.5.2], we have
the following formula

χ(X,L) = χ(X,L(−x)) + 1

Recall that a Weil divisor over X is a finite formal sum of points D =
∑
x∈X

mx[x],

we define is degree by deg(D) =
∑
x∈X

mx. We say that a divisor is effective, denoted

by D ≥ 0, if mx ≥ 0 for all x.
For a rational function f ∈ k(X), we define the associated principal divisor

div(f) =
∑

x∈X(k)

ordx(f)[x]

where ordx(f) is the order of vanishing of f at x. We say that two divisors are
linearly equivalent if their difference is a principal divisor.
For a Weil divisor D, we define a line bundle OX(D) by

OX(D)(U) = {f ∈ k(X)∗ | (div(f) +D)|U ≥ 0}

As X is smooth, the above construction D 7→ OX(D) determines an isomorphism
from the group of Weil divisor modulo linear equivalence to the Picard group of
isomorphism classes of line bundles. In particular any line bundle L over X is
isomorphic to OX(D) for some divisor D. For proofs, see [Har77, Chapter 6].
For an effective divisor D, the dual line bundle OX(−D) is isomorphic to the ideal
sheaf of the subscheme D ⊆ X given by this effective divisor and we have a short
exact sequence

0→ OX(−D)→ OX → kD → 0

where kD denotes the skyscraper sheaf supported on D, thus kD is a torsion sheaf.
In particular, any effective divisor admits a non-zero section OX → OX(D). In fact,
a line bundle OX(D) admits a non-zero section if and only if D is linearly equivalent
to an effective divisor by [Har77, Proposition 7.7 page 157]

10



Theorem 1.1 (Riemann-Roch). Let L = OX(D) be a line bundle over X. then

χ(X,OX(D)) = χ(X,OX) + deg(D)

Proof. We can write D = [x1] + ... + [xn] − [y1] − ... − [ym] and then proceed by
induction on n + m ∈ Z. The base case D = 0 is obvious. Now assume that the
equality has been proved for D, then we have to show it for D + [x] and D − [x] for
x ∈ X. For D − [x] we use the following short exact sequence

0→ OX(−x)→ OX → kx → 0

and we tensor it by OX(D) to obtain

0→ OX(D − [x])→ OX(D)→ kx → 0

By the additivity of of Euler characteristics we have

χ(X,OX(D)) =χ(X,OX(D − [x])) + 1

χ(X,OX(D − [x])) =χ(X,OX(D))− 1

χ(X,OX(D − [x])) =χ(X,OX) + deg(D)− 1

= χ(X,OX) + deg(D − [x])

(1.1)

For D + [x] we use the following short exact sequence

0→ OX(−x)→ OX → kx → 0

and we tensor it by OX(D + [x]) to obtain

0→ OX(D)→ OX(D + [x])→ kx → 0

By the additivity of of Euler characteristics we have

χ(X,OX(D + [x])) = χ(X,OX(D)) + 1

= χ(X,OX) + deg(D) + 1

= χ(X,OX) + deg(D + [x])

(1.2)
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1.2 Notion of degree

Definition 1.2. Let E be a vector bundle of rank r on X, we define the degree of
E by deg(E) = χ(X, E)− rχ(X,OX)

Lemma 1.3. Let 0 → E1 → E2 → E3 → 0 be a short exact sequence of nonzero
vector bundles on X. Then

deg(E2) = deg(E1) + deg(E3)

Proof. Follows immediately from additivity of Euler characteristics [Gro61, Propo-
sition 2.5.2] and the additivity of ranks.

Lemma 1.4. Let E be a vector bundle on X, then T (E) = sup{deg(F) | F ⊆ E} is
finite.

Proof. Since the global sections functor is left exact, we get

H0(X,F) ⊆ H0(X, E)

This implies that h0(X,F) ≤ h0(X, E). Now by definition we have

h0(X,F)− h1(X,F) = deg(F) + rk(F)(1− g)

where g is the genus of X.
From this we get

deg(F) + rk(F)(1− g) + h1(X,F) = h0(X,F) ≤ h0(X, E)

Now,

• If g = 0 then deg(F) ≤ h0(X, E)− rk(F)− h1(X,F) and since rk(F) ≥ 0 and
h1(X,F) ≥ 0 we get deg(F) ≤ h0(X, E).

• If g = 1 we see that deg(F) ≤ h0(X, E)− h1(X,F) and since h1(X,F) ≥ 0 we
see that deg(F) ≤ h0(X, E).

• If g ≥ 2, deg(F) ≤ h0(X, E)−h1(X,F)+rk(F)(g−1) again since h1(X,F) ≥ 0
and rk(F) ≤ rk(E) then deg(F) ≤ h0(X, E) + rk(E)(g − 1)

12



Lemma 1.5. Let E be a vector bundle of rank r on X, then

deg(E) = deg(
r∧
E)

Proof. See [Le 97, Theorem 2.6.9 page 33].

Lemma 1.6. Let E1 and E2 be vector bundle on X, then

deg(E1 ⊗ E2) = rk(E1)deg(E2) + rk(E2)deg(E1)

Proof. Using the previous Lemma it follow from the fact that det(E1⊗E2) = det(E1)rk(E2)⊗
det(E2)rk(E1)

1.3 Notion of slope

Definition 1.7. Let E be a vector bundle on X we define the slope of E by µ(E) =
deg(E)
rk(E) .

Lemma 1.8. Let E1 and E2 be vector bundle on X, then µ(E1⊗E2) = µ(E1)+µ(E2)

Proof. We have

µ(E1 ⊗ E2) =
deg(E1 ⊗ E2)
rk(E1 ⊗ E2)

=
rk(E1)deg(E2) + rk(E2)deg(E1)

rk(E1)rk(E2)
= µ(E1) + µ(E2)

(1.1)

Proposition 1.9. Let E be a vector bundle on X, then µmax(E) = sup{µ(F) | F ⊆
E ,F ̸= 0} is finite.

Proof. Let F be a non trivial sub-bundle of E , we get µ(F) ≤ T (E)
rk(F)

, then µmax(E) ≤
T (E) we conclude by the Lemma 1.4.

Lemma 1.10. Let E1 and E2 be vector bundle on X, then we have

µmax(E1 ⊕ E2) ≤ max(µmax(E1), µmax(E2))
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Proof. Consider a subbundle F ⊆ E1 ⊕ E2, and denote by j : Spec(K(X))→ X the
inclusion of the generic point of X. The pullback j∗F decomposes as a direct sum
j∗F ∼= F1 ⊕F2, where the Fi are vector bundles over Spec(K(X)) corresponding to
sub-spaces of the vector spaces j∗Ei. The j∗Fi are locally free sub-sheaves of the Ei,
hence there exist sub-bundles Gi such that j∗Fi ⊆ Gi ⊆ Ei that have the same rank
as the j∗Fi. Then it suffices to prove µ(G1 ⊕ G2) ≤ max(µ(G1), µ(G2)), in fact we
have

µ(G1 ⊕ G2) =
deg(G1 ⊕ G2)
rk(G1 ⊕ G2)

=
deg(G1) + deg(G2)
rk(G1) + rk(G2)

≤ max(
deg(G1)
rk(G1)

,
deg(G2)
rk(G2)

)

= max(µ(G1), µ(G2))

(1.2)

Lemma 1.11. Let 0 → E1 → E → E2 → 0 be a short exact sequence of nonzero
vector bundles on X.

1. If µ(E1) ≤ µ(E2), then µ(E1) ≤ µ(E) ≤ µ(E2).

2. If µ(E1) ≥ µ(E), then µ(E1) ≥ µ(E) ≥ µ(E2).

3. If µ(E1) = µ(E2), then µ(E1) = µ(E) = µ(E2).

Proof. 1. By Lemma 1.3 we have µ(E) = d1+d2
r1+r2

and by assumption we have
µ(E1) = d1

r1
≤ µ(E2) = d2

r2
i.e d1 ≤ r1d2

r2
. Then

µ(E) = d1 + d2
r1 + r2

≤
r1d2
r2

+ d2

r1 + r2

≤ d2(r1 + r2)

r2(r1 + r2)

= µ(E2)

(1.3)

Using d2 ≥ r2d1
r1

we get µ(E1) ≤ µ(E)

14



2. Same calculation as 1. give the result.

3. Obvious by 1. and 2.

1.4 Notion of stability

Definition 1.12. Let E be a vector bundle on X, E is called semistable (resp
stable) if for every non trivial sub-bundle F we have µ(F) ≤ µ(E) (resp µ(F) <
µ(E)).

Lemma 1.13. Let E be a vector bundle on X, E is semistable (resp stable) if and
only if for every surjections E → F we have µ(F) ≥ µ(E) (resp µ(F) > µ(E)).

Proof. Suppose that E is semistable and let E → F be a surjection, then we have a
short exact sequence

0→ G → E → F → 0

Where G is the kernel of the surjection. By semistability of E we have µ(G) ≤ µ(E)
then deg(G)rk(E) ≤ deg(E)rk(G) hence (deg(E) − deg(F))rk(E) ≤ deg(E)(rk(E) −
rk(F)) i.e µ(F) ≥ µ(E).
Let F be a sub-bundle of E so we have the following short exact sequence

0→ F → E → E/F → 0

Then the same calculus in reverse direction shows that µ(F) ≤ µ(E).
And likewise with strict inequalities

Remark 1.14. 1. All line bundles are stable since they do not even have non-trivial
sub-bundles.

2. Let E be a vector bundle on X. If deg(E) and rank(E) are coprime then E is
semistable if and only if E is stable.

3. Let E be a vector bundle and L be a line bundle on X. Using the formula 1.8
we see that E is semistable (resp stable) if and only if E ⊗L is semistable (resp
stable).

4. Let E be a vector bundle on X. Using 1.13 we see that E is semistable (resp
stable) if and only if E∗ is semistable (resp stable).
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Proposition 1.15. Let E and F be two semistable vector bundles on X. If µ(F) <
µ(E) then Hom(E ,F) = {0}.

Proof. Let α : E → F be a non trivial morphism, then Im(α) is a proper sub-bundle
of F . As E is semi-stable we have, by the Lemma 1.13 µ(E) ≤ µ(Im(α)), then
µ(F) < µ(Im(α)) but F is semi-stable, contradiction.

Proposition 1.16. Let E be a semistable vector bundle and let F be any vector
bundle on X. If µ(E) > µmax(F), then any morphism f : E → F is zero.

Proof. Assume Im(f) ̸= 0. Since E is semistable µ(Im(f)) ≥ µ(E) > µmax(F) by
Lemma 1.13. So µ(Im(f)) > µmax(F), a contradiction.

Proposition 1.17. Let E and F be two stable vector bundles on X with µ(E) =
µ(F) then Hom(E ,F) = {0} or E ∼= F

Proof. Suppose that Hom(E ,F) ̸= {0} and let α : E → F be a non trivial morphism,
then Im(α) is a non trivial sub-bundle of F . We have a surjection E → Im(α) so
by semistability of E we have µ(E) ≤ µ(Im(α)) and by semistability of F we have
µ(Im(α)) ≤ µ(F) then µ(E) = µ(Im(α)) = µ(F). As E and F are stable the only
possiblity is F ∼= Im(α) ∼= E

Proposition 1.18. Let E be a stable vector bundle over X. Then E is simple i.e
End(E) = k.

Proof. Suppose that there exists an endomorphism α which is not a scalar multiple
of the identity. Then for some x ∈ X(k) we have the restricted morphism αx ∈
End(E ⊗ k(x)) wich is not a scalar multiple of the identity. Take any eigenvalue
λ ∈ k of αx, then α − λIdE is not surjective. We deduce by the Proposition 1.17
that α− λIdE = 0 wich is a contradiction.

Corollary 1.19. Let E be a stable vector bundle over X. Then E is indecomposable.

Proof. If E is decomposable then it has non-trivial endomorphisms, given by different
homotheties on each factors.

Remark 1.20. 1. Let E be a vector bundle on X and let E1 ⊆ E be a proper
subsheaf which is a vector bundle of the same rank. Then deg(E1) < deg(E)
and therefore µ(E1) < µ(E). To prove this, we can replace E and E1 by their
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top exterior powers by Lemma 1.5 and thereby reduce to the case where E and
E1 are line bundles, in which case the result is obvious.

2. Let E be a vector bundle on X which is semistable of slope µ and let E1 ⊆ E
be a coherent subsheaf. Then E1 is also a vector bundle, but not necessarily
a vector sub-bundle since the quotient E/E1 might not be a vector bundle.
However, E1 is always contained in a vector sub-bundle Ẽ1 ⊆ E of the same
rank. Using the previous Remark we obtain

µ(E1) ≤ µ(Ẽ1) ≤ µ

Moreover, the first inequality is strict if E1 is not a subbundle of E .

Proposition 1.21. Let E be a vector bundle onX. Then there is a unique semistable
sub-bundle E1 ⊆ E such that for all sub-bundles F ⊆ E

1. µ(F) ≤ µ(E1)

2. µmax(E) > µmax(E/E1)

This sub-bundle is called the destabilising bundle of E .

Proof. By Lemma 1.9 there existe n0 ∈ N such that for all sub-bundle F of E we
have µ(F) ≤ n0 i.e {µ(F) | F ⊆ E ,F ̸= 0} is bounded. Since the possible slopes of
sub-bundles of E lie in the set

{d
r
: d ∈ Z, 1 ≤ r ≤ rk(E)}

Then {µ(F) | F ⊆ E ,F ̸= 0} is a discrete subset of R so the sup is attained i.e
there exist a sub-bundle E1 such that µmax(E) = µ(E1). Then it’s immediate that for
sub-bundle F ⊆ E we have µ(F) ≤ µ(E1). We can choose E1 to be a sub-bundle of
maximal rank among sub-bundles of slope µmax(E).
If F is a sub-bundle of E1 it’s a sub-bundle of E then by 1. µ(F) ≤ µ(E1) and E1 is
semistable. Consider now a sub-bundle E2 of E , strictly containing E1 and such that
µ(E2/E1) = µmax(E/E1). Since the sequence

0→ E1 → E2 → E2/E1 → 0

is exact, µ(E1) > µ(E2/E1) if and only if µ(E1) > µ(E2) by Lemma 1.11. But E2
is a sub-bundle of E , so µ(E2) ≤ µmax(E) = µ(E1). Since µ(E2) = µ(E1) would
contradict the maximality of rk(E1) for sub-bundles of E having slope µmax(E), one
has µ(E1) > µ(E2), which implies that µ(E1) > µ(E2/E1), i.e. µmax(E) > µmax(E/E1).
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Let F1 be another sub-bundle of maximal rank among sub-bundles of maximal slope
and consider the following sequence

0→ F1 → E → E/E1

We know that F1 is semistable and µ(F1) = µmax(E) > µmax(E/E1), Lemma 1.16
shows that the composed map F1 → E → E/E1 is zero. So F1 ⊆ E1, therefore
F1 = E1

Proposition 1.22. Let E1 and E2 be two semistable vector bundles over X with
µ(E1) = µ(E2) = µ, and E an extension of E2 by E1. Then E is semistable of slope µ.

Proof. We have the following short exact sequence.

0→ E1 → E → E2 → 0

By Lemma 1.11 we have that µ(E) = µ. Let F be a proper sub-bundle of E and
denote by F1 the destabilising bundle of F . Suppose that µ(F) > µ then µ(F1) > µ,
by Proposition 1.15 we have that Hom(F1, E2) = {0}. We deduce that F1 is a
sub-bundle of E1 wich is a contradiction since E1 is semistable.

Consider a rational number µ and let C(µ) denote the category of semistable vector
bundles of slope µ on X.

Proposition 1.23. The category C(µ) is abelian

Proof. This category is an additive sub-category of the category of vector bundles
because it has direct sums by Proposition 1.22.
Consider a non-zero map f : E → F of semistable bundles of slope µ. By semistablity
of E and F we have that µ(Im(f)) = µ, by Remark 1.20 it is forced to be a sub-
bundle of F , so f has constant rank and the kernel and cokernel are vector bundles.
We have two exact sequences

0→ ker(f)→ E → Im(f)→ 0

0→ Im(f)→ F → coker(f)→ 0

Applying Lemma 1.11 we conclude that ker(f) and coker(f) also have slope µ. Every
sub-bundle of ker(f) can also be regarded as a sub-bundle of E , and therefore has
slope smaller than µ by virtue of our assumption that E is semistable. This proves
that ker(f) is semistable of slope µ. We claim that coker(f) is also semistable of

18



slope µ. Assume otherwise: then there exists a sub-bundle F1 ⊆ coker(f) of slope
> µ. Let F0 be the inverse image of F1 in F , so that we have an exact sequence

0→ Im(f)→ F0 → F1 → 0

Applying Lemma 1.11, we deduce that µ(F0) > µ, contradicting the semistability of
F .

1.5 Finite bundle

Let K(X) be the Grothendieck ring associated to the additive monoid VB(X) corre-
sponding to the isomorphism classes of vector bundles over X. The Krull-Schmidt-
Remak theorem holds [Ati56], in particular, [W ], where W runs through all inde-
composable vector bundles on X, form a free basis for K(X).

Definition 1.24. For a vector bundle E , S(E) is the collection of all the indecom-
posable components of E⊗n, for all non-negative integers n.

Lemma 1.25. Let E be a vector bundle on X. The following are equivalent :

1. [E ]is integral over Z in K(X).

2. There are polynomials P and Q with non-negative integer coefficients, such that
P (E) ∼= Q(E), and P ̸= Q.

3. S(E) is finite.

Proof. 1. (1) ⇒ (2) : Let R ∈ Z[T ] unitary such that R([E ]) = 0 and R ̸= 0.
Choose P,Q ∈ Z[T ] such that P and Q have non-negative coefficient, and
R = P −Q. Then P ([E ]) = Q([E ]) in K(X), but VB(X) as a monoid, has the
cancellation property so it follows that P (E) ∼= Q(E).

2. (2)⇒ (1) : We write R = P −Q, then R([E ]) = 0.

3. (1) ⇒ (3) : Let R ∈ Z[T ] unitary such that R([E ]) = 0 and R ̸= 0. Let d be
the degree of R, then any member of S(E) is an indecomposable componant of
E⊗r for 0 ≤ r ≤ d− 1, then S(E) is finite.

4. (3)⇒ (1) : Suppose that S(E) is finite and consider the free additive subgroup
G ⊆ K(X) with basis S(E). Consider the Z-linear map mE : K(X) → K(X)
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define by [F ] 7→ [F ⊗ E ], then we have mE(G) ⊆ G. The characteristic poly-
nomial χ is a monic polynomial in Z[T ] with χ(mE) = 0 as an endomorpism of
K(X). We obtain χ(mE)([OX ]) = χ([E ]) = 0

Definition 1.26. A vector bundle E on X is said to be finite if it satisfies any of
the equivalent hypothesis of previous lemma

Lemma 1.27. Let E1 and E2 be two finite vector bundles on X then E1 ⊕ E2 and
E1 ⊗ E2 are finite.

Proof. This is obvious because integral elements form a ring

Lemma 1.28. Let E be a vector bundle on X, then E is finite if and only if E∗ is
finite.

Proof. If P and Q are polynomials with non-negative integer we have P (E) ∼= Q(E)
if and only if P (E∗) ∼= Q(E∗).

Lemma 1.29. Let E1 and E2 be two vector bundles on X such that E1 ⊕ E2 is finite
then E1 and E2 are finite.

Proof. The result follow from the inclusion S(Ei) ⊆ S(E1 ⊕ E2).

Proposition 1.30. Let L be a line bundle on X, then L is finite if and only if
L⊗m ∼= OX for some m > 0.

Proof. Suppose that L⊗m ∼= OX for some m > 0 then L is finite if we consider
P = Tm and Q = 1. Conversely if we suppose L finite then S(L) is a finite set and
S(L) consists of L⊗r for r ≥ 0. The result follows because all tensor powers L⊗r are
invertible and invertible sheaves are indecomposable.

Theorem 1.31. Let E be a finite vector bundle on X, then E is semistable of slope
0.

Proof. By Lemma 1.10 and the defintion of S(E) we have µ(F) ≤ sup{µmax(F) |
F ∈ S(E)} =: R(E), for every locally free sheaf F that is a subbundle of some E⊗i.
For every j > 0 we have µ(F⊗j) = jµ(F) by the Formula 1.8. On the other hand,
it is a subbundle of E⊗ij, so µ(F⊗j) ≤ R(E), this is only possible if µ(F) ≤ 0 for
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all F . In particular we have µ(E) ≤ 0, but the dual E∗ is again finite so µ(E∗) ≤ 0
must hold as well. Since µ(E∗) = −µ(E), this shows µ(E) = 0, and therefore also
µ(F) ≤ µ(E) for all subbundles F ⊆ E .

Definition 1.32. A vector bundle E of rank r on X is said isotrivial if there exists
an étale cover f : Y → X such that f ∗E ∼= O⊕r

Y

Theorem 1.33. Suppose that char(k) = 0 and let E be a vector bundle of rank r on
X which is isotrivial, then E is finite.

Proof. By definition there exist an étale cover f : Y → X such that f ∗E ∼= O⊕r
Y .

We consider A = f∗(OY ), this is an OX-algebra and we have the existence of trace
morphism TrA/OX

: A → OX . Such an OX-linear morphism allows us to find a
section of OX-algebra OX ↪→ A as the caracteristic is zero.
So each E⊗n is a direct summand of A⊕l. Hence, the indecomposable coherent OX-
modules appearing in E⊗n are isomorphic to certain indecomposable components of
A by the uniqueness of the Krull-Schmidt-Remak theorem. Then S(E) is finite since
A has finitely many indecomposable components, we conclude that E is finite.

1.6 Monodromy of finite bundle in the complex case

Let X → Spec(C) be a smooth projective and connected curve over complex num-
bers, we will identify X with X(C) the compact Riemann surface associated to X.

Let π : X̃ −→ X be the universal cover of X , the group π1(X) acts freely over X̃
and X ∼= X̃/π1(X).
Let ρ : π1(X) −→ GL(V ) be a C-linear representation, this representation induces a
linear action of π1(X) over the vector bundle X̃ × V define by

γ.(x̃, v) = (γ.x̃, ρ(γ)(v))

We write Eρ the holomorphic vector bundle on X, quotient of X̃×V by the previous
action and we write Eρ the associated locally free OX-module.

We have a lot of compatibility with algebraic operations :

Proposition 1.34. Let ρ1 and ρ2 two representations of π1(X), then we get :

• Eρ1⊕ρ2
∼= Eρ1 ⊕ Eρ2

• Eρ1⊗ρ2
∼= Eρ1 ⊗ Eρ2

• ΛnEρ
∼= EΛnρ for every n > 0.
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• SymnEρ
∼= ESymnρ for every n > 0.

• E∗
ρ
∼= Etρ−1

• If ρ1 ∼= ρ2 then Eρ1
∼= Eρ2

Proof. See [Ses82, Proposition 34 page 39]

By the last and first items of the last proposition we get a morphism of monoids

RepC(π1(X)) −→ VB(X) −→ K(X)

define by [(ρ, V )] 7→ [Eρ] 7→ [(Eρ, 0)] and by the universal property of the Grothendieck
group we get a morphism of groups

φ : K(RepC(π1(X))) −→ K(X)

This morphism of groups is in fact a morphism of rings by the second item of the
previous proposition.

Proposition 1.35. Let ρ : π1(X) −→ GL(V ) be a representation such that the
image is finite. Then Eρ is a finite vector bundle on X.

Proof. Let G = Im(ρ), since G is a finite group, any complex G-module is com-
pletely reducible, and furthermore, there are only finitely many isomorphism classes
of irreducible G-modules, then by a similar argument as for finite bundle, [(ρ, V )] is
integral over Z in K(RepC(π1(X))), we deduce that [Eρ] is integral over Z in K(X)
because image of integral elements by a morphism of rings is integral, so Eρ is a finite
vector bundle over X.

Theorem 1.36. A holomorphic vector bundle E which is indecomposable on X come
from an irreducible representation ρ of π1(X) if and only if deg(E) = 0.

Proof. See Atiyah [Ati57] or Weil [Wei38].

Theorem 1.37. Let E be a finite vector bundle on X then there exists a represen-
tation ρ : π1(X) −→ GL(V ) such that G = Im(ρ) is finite and Eρ ∼= E.

Proof. Let E be a finite vector bundle over Y , by Lemma 1.29 we can suppose that
E is indecomposable, we know that µ(E) = 0 so deg(E) = 0, then by Theorem 1.36
there exist an irreducible representation ρ : π1(X) −→ GL(V ) such that Eρ ∼= E .
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By the Selberg’s Lemma ([Alp87]) it suffices to show that every element of G = Im(ρ)
is torsion.
Let g ∈ G, we know that there are polynomials P and Q with non-negative integer
coefficients, such that P (E) ∼= Q(E), and P ̸= Q, or for every x ∈ X the fiber
Ex ∼= V so P (V ) ∼= Q(V ) as G-modules. We deduce that S(V ) is finite and there are
finitely many G-modules, say V1, ..., Vk, such that every V ⊗j admits a decomposition
as G-modules

V ⊗j =
k∑

i=1

ai,jVi

where ai,j are non-negative integers.
So there are finitely many complex numbers, say (λi)1≤i≤N , such that all the eigen-
values for the action of g on any V ⊗j are contained in (λi)1≤i≤N . Since the i-th power
of an eigenvalue for the action of g on V becomes an eigenvalue for the action of g
on V ⊗i , it is that all the eigenvalues for the action of g on V must be roots of unity.
So for some N > 0 we have that gN as 1 for only eigenvalue, we claim that gN = Id.
Let An denote the (n+1)×(n+1) matrix whose (i, j)-th entry is 1 if i = j or i+1 = j
and 0 otherwise. Then An has a standard action on Cn+1 which is indecomposable.
We will denote Cn+1 equipped with the action of An by Vn. If n ≥ m then the Jordan
canonical form of An ⊗ Am has the form

An+m ⊕ An+m−2 ⊕ ...⊕ An−m

Indeed, let W denote the standard two dimensional representation of SL(2,C), and
let Symn(W ) be its n-th symmetric power. Denote by A the element(

1 1
0 1

)
of SL(2,C). For the representation Symn(W ) of SL(2,C), there exists a basis with
respect to which A acts by the matrix An. The assertion now follows from the fact
that for n ≥ m, the tensor product Symn(W )⊗ Symm(W ) is equivalent to

Symn+m(W )⊕ Symn+m−2(W )⊕ ...⊕ Symn−m+2(W )⊕ Symn−m(W )

as SL(2,C)-modules, see [FH91, page 151]
The indecomposable components which occur in V for the action of gN are of the
form Vn for some n. If gN ̸= Id , then not all such n are zero. Since there are only
finitely many indecomposable components occurring in all tensor powers of V , we
conclude that there will only be finitely many indecomposable components occurring
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in all tensor powers of Vn for the action of An. On the other hand, the assertion about
the Jordan canonical form of An⊗Am implies that Vkn occurs as an indecomposable
component for the action of A⊗k

n on V ⊗k
n . Hence Vkn occurs as a indecomposable

component of V ⊗k
n for all k, which is a contradiction.

Proposition 1.38. Let E be a finite vector bundle of rank r on X then E is isotrivial.

Proof. By the previous theorem there exist a representation ρ : π1(X) −→ GL(V )
such that Im(ρ) is finite and Eρ ∼= E . Let G = Ker(ρ), we know that π1(X)/G ∼=
Im(ρ) is finite so G correspond to a Galois étale cover f : Z −→ X, it is obvious by
the definition of Eρ that f ∗E ∼= O⊕r

Z .

Corollary 1.39. There are a bijection between :

1. Equivalence classes of finite vector bundle on X.

2. Isotrivial vector bundle on X.

3. Vector bundle on X coming from a representation of π1(X) with finite image.

Example 1.40. Let X be a smooth projective curve of genus 2 and D3 be the
dihedral group of order 6, if α is 3-root of unity, the elements of the group can be

represented in GL2(C) by
(
αk 0
0 α−k

)
and

(
0 α−k

αk 0

)
with 0 ≤ k ≤ 2.

Let A1 =

(
α 0
0 α−1

)
A2

(
α2 0
0 α−2

)
B1 =

(
0 α−1

α1 0

)
and B2 =

(
0 α−2

α2 0

)
.

We check that A1B1A
−1
1 B−1

1 A2B2A
−1
2 B−1

2 = I2 then we get a morphism

ρ : π1(X)→ D3 ↪→ GL2(C)

Finally Eρ is a finite bundle on X.

1.7 Torsors

Let G be an affine group scheme define over k.

Definition 1.41. A G-torsor over X is a scheme P over X with an action of G
such that there exists an fppf cover, (Ui → X)i∈I such that for each i ∈ I there is a
G|Ui

-equivariant isomorphism P |Ui
∼= G|Ui

Proposition 1.42. Let G acts on the right on a X-scheme j : P → X. The following
are equivalent :
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1. P is a G-torsor.

2. The scheme P is faithfully flat and locally of finite-type over X, and (p1, a) :
P ×X G→ P ×X P given by (p, g) 7→ (p, p.g) is an isomorphism.

Proof. This is [Mil80, page 120]

When G is a finite group, a G-torsor naturally gives a finite vector bundle.

Lemma 1.43. Let j : P → X be a G-torsor over X with G a finite group scheme.
The vector bundle EP = j∗OP is a finite vector bundle on X.

Proof. Consider the isomorphism P ×X GX → P ×X P given by the previous Propo-
sition. The OX-algebra corresponding to the left hand side is isomorphic as an
OX-module to E⊕n

P where n is the order of the group G(k). The right hand side
corresponds to E⊗2

P , whence an isomorphism E⊕n
P
∼= E⊗2

P and EP is finite.

Let Y be any quasi projective G-variety and let P be a G-torsor over X. For example
Y could be a G-module. Then we denote by P (Y ) the associated bundle with fibre
type Y which is the following object: P (Y ) = (P × Y )/G for the twisted action of
G on P × Y given by g.(p, y) = (p.g, g−1.y).
Any G-equivariant map f : Y → Z will induce a morphism P (f) : P (Y )→ P (Z)
A section s : X → P (Y ) is given by a morphism s̃ : P → Y such that s̃(p.g) = g−1s̃(p)
and s(x) = (p, s̃(p)) where p ∈ P is such that j(p) = x, where j : P → X

Definition 1.44. Let H be an affine group scheme. If φ : H → G is a morphism
of groups and Q is a H-torsor over X, the associated bundle Q(G), for the action
of H on G by left multiplication through φ, is naturally a G–torsor. We denote this
G–torsor often by φ∗Q and we say this torsor is obtained from Q by extension of
structure group.

Remark 1.45. In the special case when φ : G → GLV is a representation of G, we
denote φ∗P by VP

Definition 1.46. Let H be an affine group scheme and j : P → X a G-torsor. We
say that P admit a reduction to H if there exist a group morphism φ : H → G
and an H-torsor f : Q→ X such that P ∼= φ∗Q

Remark 1.47. It is easy to see that the pullback of P along f is the trivial G-torsor.

M.V.Nori (see [Nor76]) gives an alternative description of G-torsors, which I briefly
recall. Let Repk(G) denote the category of all finite dimensional representations

25



of an affine group scheme G, or equivalently, left G-modules. By a G-module (or
representation) we shall always mean a left G-module (or a left representation).
Given a G-torsor P over X and a left G-module V , the associated vector bundle is
denoted by P (V ). Consider the functor

F (P ) : Repk(G)→ BunX

wich sends any V to the vector bundle P (V ) and sends any morphism between two
G-modules to the naturally induced morphism between the two corresponding vector
bundles. The functor F (P ) enjoys several natural abstract properties. For example,
it is compatible with the algebra structures of Repk(G) and BunX defined using direct
sum and tensor product operations. Furthermore, F (P ) takes an exact sequence of
G-modules to an exact sequence of vector bundles, it also takes the trivial G-module
to the trivial line bundle on X, and the dimension of V also coincides with the rank
of the vector bundle F (P )(V ). Nori proves that the collection of G-torsors over X
is in one-to-one correspondence with the collection of functors F from Repk(G) to
BunX satisfying the following properties:

1. Strict : a morphism of vector bundles is said to be strict if its cokernel is
also locally free. Let u : V → W G-module map. Then we need the induced
morphism F (u) : F (V ) → F (W ) to be strict. In particular, Ker(F (u)) and
Im(F (u)) are also locally free.

2. Exact : Ker(F (u)) = F (Ker(u)),Coker(F (u)) = F (Coker(u)).

3. Faithfull: F (Hom(V,W )) ↪→ Hom(F (V ), F (W ))

4. Tensor functor : F (V ⊗W ) = F (V )⊗ F (W ) and F (trivial) = OX

5. The functor Fx (defined by Fx(V ) = F (V )x) is a fibre functor on the category
Repk(G)

1.8 Essentially finite bundle

Definition 1.48. A vector bundle E is essentially finite if it is semistable of
slope 0, and moreover there is a finite bundle G and semistable degree 0 subbundles
F2 ⊆ F1 ⊆ G such that E = F1/F2.

We will denote by EF(X) the full subcategory of C(0) consisting of essentially finite
vector bundles.

Remark 1.49. 1. Let G be a finite vector bundle and E be a sub-bundle of G with
slope 0. Then E is essentially finite.
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2. Let G be a finite vector bundle and E be a sub-bundle of G with slope 0. Then
G/E is essentially finite.

3. By definition the category EF(X) is abelian.

Lemma 1.50. Let E1 and E2 be two essentially finite vector bundles over X then
E1 ⊗ E2 is essentially finite.

Proof. Let E1 and E2 be two essentially finite vector bundles over X which are sub-
quotients of the finite bundle G1 and G2, so we have E1 = F

′
1/F

′′
1 with F ′′

1

ι1
↪−→ F ′

1 ↪→ G1
and E2 = F

′
2/F

′′
2 with F ′′

2

ι2
↪−→ F ′

2 ↪→ G2.
We see that E1 ⊗ E2 is isomorphic to a quotient of F ′

1 ⊗ F
′
2 by I = Im(ι1) + Im(ι2),

so it is a subquotient of G1 ⊗ G2 wich is finite by Lemma 1.27.
We have to show that E1 ⊗ E2 is semistable of slope 0, by 1.8 the slope is 0. We
have that F ′

1 ⊗ F
′
2 is a sub-bundle of G1 ⊗ G2 with slope 0 by formula 1.8, then it’s

semistable. We have the following exact sequence

0→ I → F ′

1 ⊗F
′

2 → E1 ⊗ E2 → 0

Then using 1.3 we have that µ(I) = 0 then I it’s semistable and using the fact that
C(0) is an abelian category we deduce that E1 ⊗ E2 is semistable.

Lemma 1.51. Let E be an essentially finite vector bundle on X. Then E∗ is an
essentially finite vector bundle.

Proof. By definition E is a subquotient of a finite bundle G, so we have E = F1/F2

with F2
ι
↪−→ F1 ↪→ G. We have the following exact sequence,

0→ F2 → F1 → E → 0

Then we get the following exact sequence

0→ E∗ → F∗
1 → F∗

2 → 0

By the Remark 1.49, F∗
1 is essentially finite then E∗ is essentially finite.

Theorem 1.52. Let x : Spec(k) → X be a k-rationnal point. Then the category
EF(X) is a neutral tannakian category over k.
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Proof. We know that EF(X) is abelian, using the Lemma 1.50 and 1.51 we have
that EF(X) is tensor and rigid. Finally, consider the functor given by E 7→ x∗E . It
is a faithful exact tensor functor with values in the category of finite dimensional
k-vector spaces, i.e. a fibre functor on EF(X).

Definition 1.53. Let x : Spec(k) → X be a k-rationnal point. The Nori fun-
damental group scheme of X with base point x is the affine k-group scheme
corresponding via Tannaka Duality to the neutral Tannakian category EF(X) and
the fibre functor x∗. We denote it by πN

1 (X, x).

For a subset S of Ob(EF(X)), let S∗ = {E∗ | E ∈ S}. Let S̃ = S ∪ S∗ and
S̄ = {E1 ⊗ ... ⊗ Em | Ei ∈ S̃}. Let EF(X,S) be the full sub tannakian category of
EF(X), this determines an affine group scheme wich we call πN

1 (X,S, x), such that

αS : EF(X,S)→ Repk(π
N
1 (X,S, x))

is an equivalence of categories. Let FS be the inverse of αS; then FS can be regarded
as a functor from Repk(π

N
1 (X,S, x)) to BunX such that the composite x∗ ◦ FS is

the forgetful functor. In particular there is a πN
1 (X,S, x)-torsor X̃S such that FS =

F (X̃S). The functor x∗◦FS and F (X̃S|x) coincide and there is a natural isomorphism
of X̃S|x with G, wich is equvalent to specifying a k-point x̃S.
Now, if S is a subset of Q, there is a natural transformation of Tannaka categories
from EF(X,S) to EF(X,Q) wich determines a natural morphism ρQS : πN

1 (X,Q, x)→
πN
1 (X,S, x) by [DM82, Corollary 2.9] and it follows that X̃S is induced from X̃Q by

the morphism ρQS .

Lemma 1.54. Let S be a finite collection of finite vector bundles. Then πN
1 (X,S, x)

is a finite group scheme.

Proof. Let E be the direct sum of all the members of S and their duals. Then E is a
finite vector bundle by Lemma 1.27 and 1.28, then S(E) is a finite set. We see that
S(E) generates the abelian category EF(X,S) in the sense of [Saa72, page 135] and
therefore πN

1 (X,S, x) is finite by [Saa72, page 156 4.3.2]

Remark 1.55. In particular when S = {E} is just one finite vector bundle we will
denote πN

1 (X,S, x) by πN
1 (X, ⟨E⟩, x).

Proposition 1.56. Let S be any finite collection of essentially finite vector bundles.
Then there is a G-torsor P on X with G a finite group scheme, such that the image
of F (P ) contains the given collection S.
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Proof. For each E ∈ S, choose G such that E is a quotient of semistable bundle of G,
and G a finite vector bundle. Let Q be the collection of G as constructed. Note that
S is a subset of Ob(EF(X,Q)).
Put G = πN

1 (X,Q, x) and P = X̃Q. By the previous Lemma, G is a finite group
scheme and let αQ be the equivalence of categories from EF(X,Q) to Repk(π

N
1 (X,S, x)).

We know that F (P ) ◦ αQ(G) = G for all object G of EF(X,Q). Thus proving the
Proposition.

Consider now the category FTorsX,x where object are triples (P,G, p), where G is a
finite group scheme over k, P is a left G-torsor over X and p is a k-rational point in
the fibre of P above x. A morphism (P,G, p) → (Q,G′, q) in this category is given
by a pair of morphisms φ : G → G′, ψ : P → Q such that the G-action on P is
compatible with the G′-action on Q , and moreover ψ(p) = q.

Definition 1.57. The πN
1 (X, x)-torsor X̃ is the universal covering of X.

The universal property possessed by πN
1 (X, x) and X̃ is given by the following :

Theorem 1.58. There is an equivalence of categories between FTorsX,x and the
category of finite group schemes G over k equipped with a k-group scheme morphism
πN
1 (X, x)→ G.

Proof. This is [Nor76, Proposition 3.11]

As a direct consequence of Nori’s work, we have a nice description of the essentially
finite vector bundles:

Proposition 1.59. A vector bundle E on X is essentially finite if and only if there
exists a finite k-group scheme G and a G-torsor j : P → X such that j∗E ∼= Ork(E)

P

Proof. This is Proposition 1.56 and Theorem 1.58.

Corollary 1.60. In char(k) = 0. A vector bundle is essentially finite if and only if
he is finite.

Proof. It suffices to show that an essentially finite vector bundle is finite.
Let E an essentially finite vector bundle, then there exists a finite k-group scheme G
and a G-torsor j : P → X such that j∗E ∼= Ork(E)

P . In char(k) = 0 by a Theorem of
Cartier G is étale then j is étale by [Mil80, Proposition 4.2], so E is finite.
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1.9 Frobenius Periodic Bundle

Suppose first that char(k) = p > 0 and let σX denote the absolute Frobenius of X.

Definition 1.61. A vector bundle E is Frobenius periodic if E ∼= (σn
X)

∗E for some
n ≥ 1.

The following Proposition is due to Lange and Stuhler:

Proposition 1.62. If vector bundle E is Frobenius periodic then E is isotrivial. If
E is an stable isotrivial vector bundle then E is Frobienius periodic.

Proof. The first part is [LS77, Theorem 1.4] and the second part is [BD07, Theorem
1.5]

Corollary 1.63. A Frobenius periodic vector bundle is essentially finite.

Proof. Let E be a Frobenius periodic vector bundle, then E is isotrivial, so there is
a Galois cover trivializing E , then by Proposition 1.59, E is essentially finite.
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2 Essentially Finite Torsors
Dans ce chapitre, nous abordons la stabilité et le degré dans le contexte des G-
torseurs, notamment dans le cas particulier où G est le groupe linéaire GLn, qui
correspond au cas des fibrés vectoriels.

Nous introduisons la notion de G-torseurs essentiellement finis, qui se révèle être
analogue à celle des fibrés vectoriels essentiellement finis. Nous démontrons qu’ils
sont semi-stables et que leur degré est de torsion. Enfin nous en donnons une carac-
térisations Tannakienne.

This chapter presents results achieved through collaboration with Stefan Reppen
in [GR23].

2.1 Stability and degree

Let k be an algebraically closed field and let X → Spec(k) be a smooth projective
and connected curve.
Let G be a connected, reductive group over k. Given a maximal torus T ⊂ G
let X∗(T ) denote the group of characters of T and let X∗(T ) denote the group
of cocharacters. Let further Φ ⊂ X∗(T ) denote the corresponding roots and let
Φ∨ ⊂ X∗(T ) denote the corresponding coroots. We let π1(G) denote the algebraic
fundamental group of G, namely,

π1(G) = X∗(T )/ span{Φ∨}. (2.1)

Given a parabolic P ⊂ G with Levi quotient L, let Φ∨
L ⊂ Φ∨ denote the coroots of

L. We write π1(P ) := π1(L).
Let MG denote the stack of G-torsors over X, let Mss

G denote the substack of
semistable G-torsors and let M ss

G denote the moduli space of semistable G-torsors
(see [Ram96a], [Ram96b] and [GLS+08]). If we consider another curve, Y , then for
clarity we may also write MG,Y to denote the stack of G-torsors over Y . We define
Mss

G,Y and M ss
G,Y analogously.

Recall that the connected components ofMG are labeled by π1(G), that is,

π0(MG) = π1(G). (2.2)

If λ̌ ∈ π1(G), let Mλ̌
G ⊂MG denote the corresponding component. Define similarly

Mss,λ̌
G and M ss,λ̌

G to be the components inMss
G respectively M ss

G corresponding to λ̌.
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Definition 2.1. If FG is an object ofMλ̌
G, then FG is said to be of degree λ̌.

We also have that π0(MP ) ∼= π0(ML) = π1(P ) and we similarly say that a P -torsor
is of degree λ̌P if it lies in the component corresponding to λ̌P .

Lemma 2.2. Suppose φ : G → H is a morphism of smooth connected algebraic
groups and let FG be a G-torsor of degree 0. Then φ∗FG has degree 0.

Proof. By [Hof10] we have a commutative diagram of pointed sets

π1(G) π0(MG)

π1(H) π0(MH),

(2.3)

where all morphisms are the natural ones induced by φ and where the left vertical
map is a group morphism. The statement follows.

Remark 2.3. In particular, if FG is a G-bundle of degree 0 then deg VFG
= 0 for all

representations V of G.

The center of G can be described as

Z(G) =
⋂
α∈Φ

ker(α) ⊂ T. (2.4)

By composition via the inclusion Z(G)→ T we have a natural map

X∗(Z(G))→ X∗(T )→ π1(G). (2.5)

Upon tensoring with Q this induces an isomorphismX∗(Z(G))Q ∼= π1(G)Q. Following
[Sch15] the definition of the slope map and subsequently the definition of a semistable
G-torsor is as follows.

Definition 2.4. For a parabolic subgroup, P , such that B ⊂ P ⊂ G, with corre-
sponding Levi L, the slope map ϕP : π1(P )→ X∗(T )Q is the map given by

ϕP : π1(P )→ π1(P )Q ∼= X∗(Z(L))Q → X∗(T )Q. (2.6)

Example 2.5. For G = GLn, we will describe the slope map ϕG. We have that
L = G so Z(L) = Diagn, the scalar matrices of rank n. We also have the standard
identificationsX∗(Diagn) ∼= Z andX∗(T ) ∼= Zn. Further, we may write π1(G) = Z·e1,
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where ei : t 7→ diag(1, ..., 1, t, 1, ..., 1) with t in the ith position, and (−) represents
the image in π1(G). Then we have that (a, ..., a) = nae1, hence the morphism
X∗(Diagn)→ π1(G) is simply

X∗(Diagn)→ X∗(T )→ π1(G) = Ze1
a 7→ (a, ..., a) 7→ (a, ..., a) = nae1,

(2.7)

i.e., multiplication by n. Thus, upon tensoring with Q the morphism ϕG from (2.6)
is given by

π1(G)→ π1(G)Q
∼=−→ X∗(Diagn)Q → X∗(T )Q

a 7→ a

1
7→ a

n
7→ (

a

n
, ...,

a

n
).

(2.8)

Now let P be an arbitrary parabolic of G = GLn, with Levi factor L =
∏m

i=1 GLni
.

Then Z(L) =
∏m

i=1 Diagni
∼= Zm. The isomorphism π1(P )Q → X∗(Z(L))Q is the

inverse to the morphism

X∗(Z(L)) ∼= Zm → Zn → Zm ∼= π1(P )

(a1, ..., am) 7→ (a1, ..., a1, a2, ..., a2, ..., am, ..., am) 7→ (n1a1, n2a2, ..., nma2),
(2.9)

where ai occurs ni times in the tuple in the middle. Thus, the slope map ϕP is given
by

π1(P )→ π1(P )Q ∼= X∗(Z(L))Q → X∗(T )Q

(a1, ..., am) 7→ (
a1
1
, ...,

am
1
) 7→ (

a1
n1

, ...,
am
nm

) 7→ (
a1
n1

, ...,
a1
n1

, ...,
am
nm

, ...,
am
nm

).
(2.10)

Definition 2.6. Let FG be a G–torsor of degree λ̌. We say that FG is semistable if
for each parabolic P ⊂ G and each reduction FP of FG to P , of degree λ̌P , we have
that

ϕP (λ̌P ) ≤ ϕG(λ̌). (2.11)

Remark 2.7. If ϕP (λ̌P ) < ϕG(λ̌) then FG is called stable.

Example 2.8. Again let G = GLn, we show why this definition gives back the usual
slope semi-stability for vector bundles.
Let now E be a vector bundle, let P ⊂ G be a parabolic with Levi factor L =∏m

i=1 GLni
and let FP be a reduction of E to P . This amounts to giving a fil-

tration 0 ⊂ E1 ⊂ ... ⊂ Em = E , where rk Ei − rk Ei−1 = ni. Then deg(FP ) =
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(deg(π1,∗FP ), ..., deg(πm,∗FP )) where πi : P → L → GLni
is the composition of the

projections P → L and L→ GLni
. Then we see that

ϕP (deg(FP )) = (
deg(π1,∗FP )

n1

, ...,
deg(π1,∗FP )

n1

, ...,
deg(πm,∗FP )

nm

, ...,
deg(πm,∗FP )

nm

)

= (µ(E1), ..., µ(E1), ..., µ(Em/Em−1), ..., µ(Em/Em−1)).
(2.12)

Since ϕG(deg(E)) = (µ(E), ..., µ(E)) we see that Definition 2.6 agrees with the usual
slope semi-stability definition.

Now we recall some results of [Sch15] regarding the slope map. To this end, let λ ∈
X∗(T ) be a dominant character and let V be a finite-dimensional G-representation
of highest weight λ. If P is a parabolic with Levi factor L, and if V =

⊕
ν∈X∗(T ) V [ν]

is the weight space-decomposition of V , then let

V [λ+ ZΦL] :=
⊕

ν∈λ+ZΦL

V [ν], (2.13)

where ΦL are the roots of the Levi L. Then we have the following result.

Proposition 2.9. Keep the notation as above. Let FG be a G-torsor of degree λ̌G.
Then the slope of the vector bundle VFG

is given by

µ(VFG
) = ⟨ϕG(λ̌G), λ⟩. (2.14)

Furthermore, if FP is a P -torsor of degree λ̌P with corresponding Levi bundle FL,
then the vector bundle V [λ+ ZΦL]FL

has slope

µ(V [λ+ ZΦL]FL
) = ⟨ϕP (λ̌P ), λ⟩. (2.15)

Proof. This is [Sch15, Proposition 3.2.5(b), (c)].

2.2 Essentially finite Torsors

Definition 2.10. An essentially finite G-torsor is a G-torsor over X which admits
a reduction to a finite group.

Remark 2.11. Although we have fixed a smooth, projective, connected curveX over k
for simplicity of the exposition, this definition makes sense over an arbitrary scheme.
Similarly, we may use the same definition for arbitrary affine groups, not necessarily
connected reductive.
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Remark 2.12. Note that if φ : Γ → G is a map from a finite group Γ, then we
obtain an injection φ̃ : Γ/ ker(φ) ↪→ G. If FΓ is a Γ-torsor, then φ∗FΓ = φ̃∗(π∗FΓ) as
G–torsors, so we can always assume Γ to be a subgroup of G.

Example 2.13. 1. The trivial G-torsor G×X is essentially finite since it admits
a reduction to the trivial group.

2. If Γ is finite then every Γ-torsor FΓ is essentially finite since FΓ
∼= id∗ FΓ.

3. Note that if α : G → G′ is a morphism of algebraic groups and FG is an
essentially finite G-torsor, then α∗FG is an essentially finite G′-torsor.

We will now give two equivalent conditions for a G-bundle to be essentially finite; one
in terms of the Nori fundamental group, and one Tannakian interpretation. Since k
is algebraically closed, there is a rational point x of X.

Proposition 2.14. A G-bundle FG is essentially finite if and only if there exists a
morphism ρ : πN

1 (X, x)→ G such that ρ∗X̃ ∼= FG.

Proof. Let FG be an essentially finite G-torsor, let ι : Γ ↪→ G be a finite subgroup of
G and let j : FΓ → X be a Γ-torsor such that ι∗FΓ

∼= FG. Let y be a rational point
of FΓ such that j(y) = x. Then j defines a pointed finite torsor (FΓ, y) → (X, x).
By [Nor76, Proposition 3.11], there is a morphism πN

1 (X, x)→ Γ, which we compose
with ι to get a morphism ρ : πN

1 (X, x)→ G such that FG
∼= ρ∗X̃.

Conversely, suppose that we have a morphism ρ : πN
1 (X, x)→ G such that ρ∗X̃ ∼= FG.

Since πN
1 (X, x) = lim←−i

Ai is the inverse limit of its finite quotients Ai (see [Nor82]),
there is some i and a morphism ρi : Ai → G such that ρ factors

ρ : πN
1 (X, x)

πi−→ Ai
ρi−→ G (2.1)

where πi is the projection. Since ρ∗X̃ ∼= ρi,∗(πi,∗X̃) we see that FG is essentially
finite.

Proposition 2.15. A G-torsor FG is essentially finite if and only if there exists a
finite group Γ, a Γ-torsor FΓ, and a tensor functor α : Repk(G)→ Repk(Γ) such that
:

1. we have that ωΓ ◦ α = ωG, where ωG : Repk(G) → Veck and ωΓ : Repk(Γ) →
Veck are the forgetful functors; and
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2. we have a commutative diagram

Repk(G) VecX

Repk(Γ)

FG

α
FΓ

(2.2)

Proof. If FG is essentially finite, coming from a finite group Γ, a group morphism
φ : Γ → G and a Γ-torsor FΓ, then we take α to be the induced functor from φ.
Conversely, every such α, by [DM82, Corollary 2.9], comes from a group morphism
φ : Γ→ G.

Remark 2.16. If a G-torsor FG is essentially finite then there exists a finite group Γ
and a Γ-torsor jΓ : FΓ → X such that j∗ΓFG is trivial.

Proposition 2.17. Under the correspondence between vector bundles of rank n and
GLn-torsors, a GLn-torsor is essentially finite if and only if the corresponding vector
bundle is essentially finite.

Proof. Let FGLn be a GLn-torsor, and let Γ be a finite subgroup of GLn, α : Γ→ GLn

and let j : FΓ → X be a Γ-torsor such that FGLn = α∗FΓ. Then FGLn is trivialised by
j : FΓ → X so the corresponding vector bundle E is also trivialised by j : FΓ → X.
Thus, E is essentially finite.

Conversely suppose E is an essentially finite vector bundle. Then there is a finite
group ι : Γ→ GLn and a Γ-torsor FΓ → X such that E = FΓ ×Γ An. Then we have
that

E = FΓ ×Γ An ∼= FΓ ×Γ GLn ×GLn An ∼= ι∗FΓ ×GLn An, (2.3)

whence the vector bundle associated to ι∗FΓ is E. Hence, the bundle corresponding
to E is isomorphic to ι∗FΓ, hence essentially finite.

Lemma 2.18. Let Y be a proper and connected scheme over k. A G-bundle FG

over Y is trivial if and only if for any faithful representation ρ : G → GLV , ρ∗FG is
trivial.

Proof. The idea of this can be found in [BD13, Lemma 4.5], but we spell out the
details since their assumptions on the base scheme are different from ours. Suppose
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that ρ : G → GLV is any faithful representation. Consider the long exact sequence
of pointed sets (see [DG70, III, §4, 4.6])

1→ G(Y )
ρ−→ GLV (Y )

π−→ (GLV /G)(Y )
δ−→ H1(Y,G)

ρ∗−→ H1(Y,GLV ), (2.4)

where π : GLV → GLV /G is the canonical projection. The morphism δ takes a
Y -point y : Y → GLV /G to the G-bundle δ(y) := Y ×GLV /G,y,π GLV . Since G is
reductive, GLV /G is affine and hence, using that Y is proper and connected, y is
constant. That is, we have a factorisation y : Y → Spec k → GLV /G. Since k
is algebraically closed, (GLV /G)(k) = GLV (k)/G(k), and hence y being constant
implies that there is a lift ỹ : Y → GLV of y. By the universal propery of fiber
products we thus see that δ(y) admits a section, whence δ(y) is trivial. Hence, by
exactness of the sequence a G-bundle FG is trivial if and only if ρ∗FG is trivial.

Theorem 2.19. Let G be a connected, reductive group, and let FG be a G-bundle.
Then the following are equivalent.

1. The G-bundle FG is essentially finite.

2. There exists a faithful representation ρ : G→ GLV such that ρ∗FG is an essen-
tally finite vector bundle.

3. For every representation ρ : G → GLV , ρ∗FG is an essentally finite vector
bundle.

4. There exists a proper surjective morphism f : Y → X such that f ∗FG is trivial.

Proof. By above we see that 1. implies 3., and it is clear that 3. implies 2. By
[BdS11] 4. is equivalent to 3. Hence we prove that 2. implies 3. and that 3. implies
1.

First suppose that 2. holds, let φ : G→ GLW be a faithful representation such that
φ∗FG is essentially finite and let ρ : G→ GLV be an arbitrary representation. Since
φ∗FG is essentially finite there is a proper surjective morphism f : Y → X such that
f ∗φ∗FG is trivial. Since any restriction of f ∗φ∗FG to a connected component of Y
is trivial, we may assume that Y is connected. Thus, since f ∗φ∗FG

∼= φ∗f
∗FG, we

see from Lemma 2.18 that f ∗FG is trivial. Hence, f ∗ρ∗FG
∼= ρ∗f

∗FG is trivial, which
implies that ρ∗FG is essentially finite (again by [BdS11]). This proves that 2. implies
3.

Now assume that 3. holds. Then the functor FG : Repk(G)→ BunX factors through
the category of essentially finite vector bundles, hence induces a group morphism
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ρ : πN
1 (X, x) → G such that ρ∗X̃ ∼= FG. Thus, by Proposition 2.14 FG is essentially

finite.

Proposition 2.20. Every essentially finite G-torsor is semistable.

Proof. Let FG be such a torsor. Let further P ⊂ G be a parabolic of G, let λ
be a dominant character and let V be a representation of highest weight λ. Since
FG is essentially finite, the associated vector bundle VFG

is essentially finite, hence
semistable. Hence, using Proposition 2.9, we have that

⟨ψG(λ̌G), λ⟩ = µ(VFG
) ≥ µ(V [λ+ ZΦL]FL

) = ⟨ψP (λ̌P ), λ⟩. (2.5)

That is, for every dominant character λ ∈ X∗(T )Q we have that

⟨ψG(λ̌G)− ψP (λ̌P )), λ⟩ ≥ 0. (2.6)

Since the cone of cocharacters with non-negative pairing with all dominant characters
is double-dual to the cone of simple coroots, we see that

ψG(λ̌G)− ψP (λ̌P ) ≥ 0. (2.7)

Proposition 2.21. Let FG be an essentially finite G-torsor. Then its degree is
torsion as an element of π1(G).

Proof. Let FG be such a bundle. Let j : FΓ → X be a finite bundle such that
FG
∼= FΓ ×Γ G. Let T be a maximal torus and B ⊃ T a Borel containing T , and

choose a reduction FB of FG to a Borel. We know that j∗FG is trivial. Since

j∗FB ×B G = j∗(FB ×B G) = j∗FG, (2.8)

we see that j∗FB×BG is trivial. We have that π0(MB,FΓ
) = π0(MT,FΓ

) = X∗(T ) and
this maps surjectively onto π0(MG,FΓ

). The fact that j∗FB maps to the trivial torsor
means that it corresponds to 0 in π1(G) = X∗(T )/Φ

∨ = π0(MG,FΓ
). This implies

that the degree of j∗FB, seen as an element in X∗(T ), is a sum of coroots. The
equality π0(MB) = π0(MT ) is induced by the morphism πT : B → T , so πT,∗j∗FB
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also corresponds to a sum of coroots. Since πT,∗j∗FB = j∗πT,∗FB, the conclusion
follows if we can show that the morphism

j∗ :MT,X →MT,FΓ
(2.9)

has the property that, if j∗FT has degree in Φ∨, then the same holds for a multiple
of deg(FT ).

If FT corresponds to the cocharacter µFT
, then j∗FT corresponds to the cocharacter

µj∗FT
= deg(j)µFT

. Thus if µFT
=

∑n
i=1 aiα

∨
i + µ, where αi are the simple roots and

µ ∈ X∗ \ Φ∨ then

µj∗FT
=

n∑
i=1

deg(j)aiα
∨
i + deg(j)µ =

n∑
i=1

a′iα
∨
i

Hence, deg(j)µ ∈ Φ∨.

We now apply this to our situation above, i.e., with FT := πT,∗FB, and since π1(G) =
X∗(T )/Φ

∨ we can conclude that deg(FG) is torsion.

Proposition 2.22. Let G be a connected, reductive group. If X is an elliptic curve,
then every essentially finite G-bundle over X has degree 0.

Proof. We argue by induction on the dimension of G. If dim(G) = 1 then G ∼= Gm

and the result follows since it is true for all vector bundles. Suppose now that
dim(G) = n > 1. Let FG be an essentially finite G-torsors of degree d. By [Fră21]
there is a proper Levi L and a degree d′ ∈ π1(L) such that the inclusion ι : L → G
induces a surjectionMd′

L,X →Md
G,X . Let FL be a reduction of structure group of FG

to L. Since FG is essentially finite there is a faithful representation ρ : G→ GLV such
that ρ∗FG

∼= (ρ ◦ ι)∗FL is essentially finite. By Theorem 2.19 this implies that FL is
essentially finite. Since L is a proper Levi, by induction d′ = 0, whence d = 0.

If the characteristic of k is positive, there is a stronger notion of semistability, defined
as follows. Let σX : X → X denote the absolute Frobenius of X.

Definition 2.23. A G-torsor FG is said to be strongly semistable if for all n ≥ 0,
(σn

X)
∗FG is semistable.

Proposition 2.24. Every essentially finite G-torsor is strongly semistable.
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Proof. For any algebraic group H, and any H-torsor, if σH : H → H denotes the
absolute Frobenius of H, then we have that (see , [Las01, page 655]

(σH)∗FH
∼= σ∗

XFH . (2.10)

Let now FG be an essentially finite G-torsor. Let j : FΓ → X be a finite bundle such
that FG

∼= FΓ ×Γ G. Since the push-forward along group morphisms commutes with
pullbacks, we have that

j∗(σΓ)∗FΓ
∼= j∗σ

∗
XFΓ

∼= (σX)
∗j∗FΓ

∼= (σX)
∗FG. (2.11)

Hence (σX)
∗FG is essentially finite and thus semistable. The statement follows sim-

ilarly via induction.

Definition 2.25. A G-torsor FG is Frobenius periodic if FG
∼= (σn

X)
∗FG for some

n ≥ 1.

Proposition 2.26. A Frobenius periodic G-torsor is isotrivial.

Proof. See [BD07, page 496].

Corollary 2.27. A Frobenius periodic G-torsor is essentially finite.

2.3 The prestack of essentially finite torsors

LetMef
G denote the functor

Mef
G : Affop

k → Grpds

U 7→
{

essentially finite G-torsors over U ×X
}
+
{

isomorphism of G-torsors
}
.

(2.1)
It is immediate thatMef

G is a subfunctor ofMss
G.

Proposition 2.28. The functorMef
G is a k-prestack.

Proof. First suppose that f : U ′ → U is a morphism in Affop
k and suppose FG is an

essentially finiteG-torsor over U×X. Let (Ui → U) be a cover and (gij : gij ∈ G(Uij))
a cocycle for FG. Then (f ∗Ui → U ′) is a cover of U ′ and (f ∗gij)ij is a cocycle for
f ∗FG. Indeed, since gijgjk = gik on Uijk we see that

f ∗gijf
∗gjk(x) = gij(f(x))gjk(f(x)) = gik(f(x)) = f ∗gik(x). (2.2)
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The torsor f ∗FG is also essentially finite since if gij ∈ Γ(Uij) ⊂ G(Uij) for some finite
group Γ, then f ∗gij = gij ◦ f also takes values in Γ. Since Mss

G is a lax functor we
see thatMef

G is one as well.

Next it is clear that if FG, F
′
G ∈Mef

G(U), then Isom(FG, F
′
G) : Aff/U → Set is a sheaf

since homomorphisms of finite G-torsors are simply homomorphisms of G-torsors and
Mss

G is a stack.

Remark 2.29. Note however that Mef
G is not a stack since the descent data is not

necessarily effective. Indeed, let G = GLn and let E be a vector bundle which is not
essentially finite. Let further (Ui → X) be a trivialising cover of E, with trivilising
morphisms ϕi : E|Ui

→ On
Ui

. Then E|X×Ui
with the morphisms (id×ϕ−1

j ) ◦ (id×ϕi)
form a descent data for E|X×X ∈ MG(X ×X). Now, if E|X×X is essentially finite,
then so is E. Indeed, by [BdS11, Theorem 1] we have a proper surjective morphism
f : Y → X ×X such that f ∗EX×X is trivial, and by composing with the projection
X × X → X we have a proper surjective morphism g : Y → X such that g∗E is
trivial. Since E was assumed not to be essentially finite, we conclude that E|X×X is
not essentially finite and the descent data constructed is not effective.

The following statement is immediate, but will be important for us in the final
section.

Proposition 2.30. Let G and G′ be reductive groups. The isomorphismMss
G×G′

∼=−→
Mss

G ×Mss
G′ restricts to an isomorphism

Mef
G×G′ ∼=Mef

G ×Mef
G′ . (2.3)

Proof. The isomorphism on objects is given by

FG×G′ 7→ (π∗FG×G′ , π′
∗FG×G′),

(FG, FG′) 7→ FG × FG′ ,
(2.4)

where π : G × G′ → G and π′ : G × G′ → G′ are the projections. If Γ ⊂ G × G′ is
a finite structure group of FG×G′ , then π(Γ) and π′(Γ′) are evidently finite structure
groups of FG and FG′ respectively. Similarly, finite structure groups Γ and Γ′ of FG,
respectively FG′ , give a finite structure group, Γ× Γ′ of FG × FG′ .
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3 Density of essentially finite torsors
Dans ce chapitre on s’intéresse à la densité des G-torseurs essentiellement finis de
degré zéro dans l’espace des modules des G-torseurs semi-stables de degré zéro.

Après avoir donné quelques propriétés dynamiques de l’espace des modules, on sé-
pare l’étude en trois parties, en fonction du genre de la courbe.

Lorsque le genre est nul, on montre que tout les G-torseurs essentiellement finis
sont triviaux.

Lorsque le genre est égal à 1, on démontre que les G-torseurs essentiellement fi-
nis forment un sous ensemble dense de l’espace des modules G-torseurs semi-stables.

Lorsque le genre est supérieur ou égal à 2, on montre que lorsque G est un groupe
semi simple de rang 1, ce qui inclus donc les groupes GL2, SL2 et PGL2 ne forme
pas un sous-ensemble dense. Dans ce dernier cas la preuve se ramène à létude du cas
G = PGL2.

This chapter presents results achieved through collaboration with Stefan Reppen
in [GR23].

3.1 Preliminaries

Proposition 3.1. Suppose π : G→ H is a morphism of reductive algebraic groups
such that π(Z(G)0) ⊂ Z(H)0. If π admits a section s : H → G such that s(Z(H)0) ⊂
Z(G)0, then density of M ef,0

G in M ss,0
G implies density of M ef,0

H in M ss,0
H .

Proof. Suppose that M ef,0
H is not dense in M ss,0

H . Since π∗ takes essentially finite G-
torsors to essentially finite H-torsors, by Lemma 2.2 we have a commutative diagram
as follows

M ef,0
G M ef,0

H

M ss,0
G M ss,0

H

π∗

s∗

π∗

s∗

(3.1)

Since π∗ is a morphism, π∗
(
M ef,0

G

)
⊂ M ef,0

H . Suppose now on the contrary that

M ef,0
G is dense in M ss,0

G . Pick any F ∈ M ss,0
H . Then s∗F ∈ M ss,0

G = M ef,0
G . But since
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π∗s∗ = id we see that

F = π∗s∗F ∈ π∗
(
M ef,0

G

)
⊂M ef,0

H , (3.2)

which implies that M ef,0
H =M ss,0

H . Contradiction.

Remark 3.2. The condition on the centers is to make sure that the pushforward of a
semistable bundle is semistable.

Corollary 3.3. Let G be a direct product of reductive groups G1 and G2. If M ef,0
Gi

is not dense in M ss,0
Gi

for some i = 1, 2, then M ef,0
G is not dense in M ss,0

G .

Proof. We use the projection πi : G→ Gi and apply the previous proposition.

Proposition 3.4. Let G = T be a torus. Then M ef
T is dense in M ss,0

T .

Proof. First suppose T = Gm. Then M ss,0
T = Jac0(X) is the Jacobian of X and

essentially finite Gm-torsors corresponds to finite line bundles which corresponds to
torsion points on Jac(X), which are dense. If T ∼= Gr

m for r > 1, then we apply
Proposition 2.30 and the statement follows.

3.2 Genus 0

Let now X = P1
k, where k is an arbitrary algebraically closed field. By Proposition

2.14 we immediately have the following statement.

Proposition 3.5. Every essentially finite G-torsors over X is trivial.

Proof. Since πN
1 (X, x) is trival, the statement follows from Proposition 2.14.

It is also well-known that M ss,0
G (k) is a singleton so the density statement is imme-

diate.

For the remainder of this section, we give a different proof of Proposition 3.5, which
might be interesting in its own right. We do this by using the Tannakian interpreta-
tion of essentially finite G-torsors and the classification of G-torsors on X.

The classification of G-torsors on X was initially done by Grothendieck [Gro57]
and by Harder [Har68] for characterstic p. In [Ans18] Anschütz gives a Tannakian
interpretation of this classification. We thus begin by introducing the relevant notions
from [Ans18].
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Over X there is a canonical Gm-torsor

η : A2 \ {0} → X

(x0, x1) 7→ [x0 : x1],
(3.1)

often called the Hopf bundle. Pushforward along this bundle defines an exact, faithful
tensor functor

E : Repk(Gm)→ BunX

V 7→ A2 \ {0} ×Gm V,
(3.2)

Taking the Harder-Narashiman filtration of a vector bundle over X defines a fully
faithful tensor functor

HN : BunX → FilBunX (3.3)

from BunX to the category of filtered vector bundles. Finally we can take the graded
pieces of a filtered vector bundle and this defines an exact tensor functor

Gr : FilBunX → GrBunX , (3.4)

where GrBunX is the category of graded vector bundles.

Proposition 3.6. The composition

EGr : Repk(Gm)
E−→ BunX

HN−−→ FilBunX
Gr−→ GrBunX (3.5)

is an equivalence of tensor categories onto its essential image, which consists of graded
bundles E =

⊕
n∈ZEi such that each Ei is semistable of slope i.

Proof. This is [Ans18, Lemma 2.3].

The main Theorem of Grothendieck, restated in the Tannaka language by Anschütz
is now given by

Proposition 3.7. Let G be a reductive group over k. The composition with E
defines faithful functor

Φ : Hom⊗(Repk(G),Repk(Gm))→ Hom⊗(Repk(G),BunX), (3.6)

which induces a bijection

Hom⊗(Repk(G),Repk(Gm)) ∼= H1
ét(X,G) (3.7)

on isomorphism classes.
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Proof. This is [Ans18, Theorem 3.3].

The inverse of this is given by composition with E−1
Gr ◦ Gr ◦ HN. Using this we can

now describe all essentially finite G-torsors on X.

Proposition 3.8. Every essentially finite G-torsors over X is trivial.

Proof. Let FG : Repk(G) → BunX be an essentially finite torsor. By Proposition
2.15 there exists a commutative diagram of tensor functors

Repk(G) BunX

Repk(Γ)

FG

α
FΓ (3.8)

for some finite group Γ. By [Ans18] this sits inside the following larger diagram

Repk(G) Repk(Gm) BunX FilBunX GrBunX

Repk(Γ)

α

Φ−1(FG)

FG

E HN gr

E−1
gr

f

FΓ

(3.9)

where f is defined to be the composition

f := E−1
gr ◦ gr ◦ HN ◦ FΓ. (3.10)

Since all functors are tensor functors, so is f . By [DM82, Corollary 2.9] f is induced
by a morphism

f̃ : Gm → Γ. (3.11)

Since Gm is connected and Γ is discrete we see that f̃ and thus f is the trivial map.
But this implies that

FG
∼= E◦Φ−1(FG) ∼= E◦E−1

gr ◦gr◦HN◦FG
∼= E◦E−1

gr ◦gr◦HN◦FΓ◦α ∼= E◦f ◦α (3.12)

is the trivial torsor.
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3.3 Genus 1

In the case when X is an elliptic curve, the density result follows almost immediately
from known properties of M ss

G , studied by Laszlo [Las98] in characteristic 0 and
Frăţilă in charactierstic p [Fră21].

Proposition 3.9. Suppose X is an elliptic curve. Then M ef
G is dense in M ss,0

G for
any reductive group G.

Proof. Let T be a maximal torus of G and let W be the corresponding Weyl group.
Then, by [Las98, Theorem 4.16] and [Fră21, Theorem 1.1], we have an isomorphism

φ :M ss,0
T /W →M ss,0

G (3.1)

induced by the inclusion ι : T ↪→ G. Since ι∗(M ef
T ) ⊂ M ef

G , the result follows from
Proposition 3.4.

3.4 Genus>1

Let now X be of genus g ≥ 2. Suppose first that char(k) = p > 0. In [DM10,
Proposition 4.1 and corollary 5.1] the authors proved that, for any n > 0, the set of
k-points in M ss,0

GLn
(resp M ss

SLn
) Frobenius periodic is dense. Hence, the set of k-points

corresponding to essentially finite vector bundles is also dense by Corollary 1.63.
Hence, we may state the following.

Proposition 3.10. Let k be of characteristic p > 0. For any n > 1, M ef,0
PGLn

is dense
in M ss,0

PGLn
.

Proof. This follows from the previous discussion and the fact that the projection
GLn → PGLn induces a surjection M ss,0

GLn
→M ss,0

PGLn
by [Ser58, Proposition 18] which

takes essentially finite GLn-torsors to essentially finite PGLn-torsors.

Let now k be of characteristic zero. We restrict ourselves to split reductive groups
of semisimple rank 1. By classical results (see e.g., [Mil17, Chapter 21]) these are all
given by the following list.

Proposition 3.11. Let G be a split reductive group of semisimple rank 1. Then,
up to isomorphism, G is one of the following groups:

GL2 ×Gr
m, SL2 ×Gr

m, PGL2 ×Gr
m, r ∈ N. (3.1)
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Hence, by Proposition 3.1 applied to the projection map, if we show non-density for
SL2, GL2, and PGL2, we show it for all split reductive groups of semisimple rank
1. Now, by known results [BLS98, I.3 page 7], the quotient maps on the respective
groups induce dominant morphisms

M ss
SL2
→M ss,0

PGL2

M ss,0
GL2
→M ss,0

PGL2
.

(3.2)

Thus, to show non-density for split reductive groups of semisimple rank 1 it suffices
to show it for PGL2, which we do now.

To do this we need a bound on the dimension of M ss
O(2). For a connected reductive

group G it is well-known that dimMG = dim(G)(g − 1) (see e.g. [Sor00]). Since
O(2) is not connected, we compute dimMO(2) following the approach for connected
reductive groups.

Lemma 3.12. We have that dimMO(2) = g − 1.

Proof. Let FO(2) be an O(2) bundle and let o2 denote the Lie algebra of O(2). Let
further Ad : O(2)→ GL(o2) denote the adjoint representation and let E := Ad∗FO(2).
By definition we know that the dimension ofMO(2) at the point FO(2) is the rank of
the cotangent complex at FO(2), which is equal to −χ(X,E). By Riemann-Roch we
thus have that

dimMO(2) = − deg(E)− rk(E)χ(X,OX)

= − deg(E) + g − 1.
(3.3)

By identifying O(2) as the matrices

O(2) = T ′
∐

T ′{
[
0 1
1 0

]
}, T ′ = {

[
t 0
0 t−1

]
: t ∈ Gm}, (3.4)

one sees immediately that the adjoint representation is self dual. Then we see that

o2 ∼= {
[
a 0
0 −a

]
: a ∈ k} and for M ∈ O(2) we have that

Ad(M)

[
a 0
0 −a

]
=M

[
a 0
0 −a

]
M−1 =



[
a 0

0 −a

]
M ∈ T ′[

−a 0

0 a

]
M ∈ T ′{

[
0 1

1 0

]
}
. (3.5)
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If e1 =

[
1 0
0 −1

]
denotes the standard basis of o2, and e∨1 :

[
a 0
0 −a

]
7→ a, the

corresponding basis for o∨2 , then the action of O(2) on o∨2 is given by

M · ae∨1 =


ae∨1 M ∈ T ′

−ae∨1 M ∈ T ′{

[
0 1

1 0

]
}
. (3.6)

We thus see that o2 and o∨2 are isomorphic as O(2)-modules.

Hence, E ∼= E∨ and thus deg(E) = − deg(E) whence deg(E) = 0. We conclude that
dimMO(2) = g − 1.

Lemma 3.13. Let ι denote an inclusion ι : O(2) ↪→ PGL2. If FO(2) is a semistable
O(2)-bundle then ι∗FO(2) is a semistable PGL2-bundle.

Proof. The proof of [BS02, Proposition 2.6] applies verbatim, since an O(2)-bundle
FO(2) is semistable if and only if ι′∗FO(2) is semistable, where ι′ : O(2) ↪→ GL2 is the
standard representation.

Proposition 3.14. The subset of essentially finite PGL2-torsors is not dense inside
M ss,0

PGL2
.

Proof. By [NvdPT08] the finite subgroups of PGL2 are given by S4, A5, A4 and for all
n ∈ N, µn and Dn. Furthermore, for each finite subgroup there is only one conjugacy
class by [Bea10, Proposition 4.1]. Hence, for a given finite subgroup Γ, we may
choose any embedding ι : Γ ↪→ PGL2 and unambiguously consider ι∗MΓ ⊂Mss,0

PGL2
.

Now, for any such group Γ, ι∗MΓ ⊂ M ss,0
PGL2

is a finite number of points. Indeed, we
have that

H1
et(X,Γ) = Hom(π1(X),Γ) (3.7)

and since π1(X) is (pro)finitely generated, we see thatH1
et(X,Γ) is a finite set. Hence,

to prove the proposition it is enough to show that the essentially finite torsors whose
finite group is isomorphic to Dn or µn for some n > 0, is not dense. By abuse of
notation, we still denote this subset by M ef

PGL2
.

Let π : GL2 → PGL2 denote the quotient morphism. From [NvdPT08, Section 2] we
thus see that we may choose the embedding such that for every such Γ, we have a
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commutative diagram

Γ π(O(2)) PGL2

ι

, (3.8)

where O(2) ⊂ GL2 is realized as the matrices

O(2) = T ′
∐

T ′{
[
0 1
1 0

]
}, T ′ = {

[
a 0
0 a−1

]
: a ∈ Gm}. (3.9)

Since π(O(2)) ∼= O(2), and since ι′ : O(2) ∼= π(O(2)) ↪→ PGL2 is a closed embedding,
the induced morphism ι′∗ :MO(2) →MPGL2 is locally of finite type by [Hof10, Fact
2.3]. By Lemma 3.13 this induces a map ι′∗ : Mss

O(2) → Mss
PGL2

, which induces by
the universal property of the coarse moduli space a morphism of finite type schemes
M ss

O(2) →M ss
PGL2

. By taking base change along M ss,0
PGL2

we obtain an open subscheme
U ⊂M ss

O(2) and a morphism of finite type f : U →M ss,0
PGL2

. We thus obtain a Cartesian
diagram

U M ss,0
PGL2

M ss
O(2) M ss

PGL2

f

ι′∗

, (3.10)

Now, for any essentially finite PGL2-torsor, FPGL2 , we may assume that FPGL2 =
ι′∗FO(2) where FO(2) is an essentially finite O(2)-torsor.

Hence, we have a finite type morphism f : U → M ss,0
PGL2

of projective varieties such
that

M ef
PGL2

⊂ f(U). (3.11)

Thus, it suffices to show that f is not dominant. Suppose it was. Then we obtain
an inclusion of functions fields

k(M ss,0
PGL2

) ↪→ k(U). (3.12)

This implies that

3g−3 = dimM ss,0
PGL2

= tr.degkk(M
ss,0
PGL2

) ≤ tr.degkk(U) = dimU = dimM ss
O(2) ≤ g−1,

(3.13)
where the last inequality follows from Lemma 3.12.
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From the statement for PGL2 we obtain the same statement for SL2.

Corollary 3.15. The subset of essentially finite SL2-torsors is not dense inside M ss,0
SL2

.

Proof. Since the map M ss
SL2
→ M ss,0

PGL2
is dominant this follows from Proposition

3.14.

From this we obtain the same statement for GL2.

Corollary 3.16. The subset of essentially finite GL2-torsors is not dense inside
M ss,0

GL2
.

Proof. The same proof as above applies, or we have the following. Consider the map

det :M ss,0
GL2
→ Jac0(X). (3.14)

Since det−1(OX) =M ss
SL2

by Corollary 3.15 we obtain the desired result.

Finally, the complete statement is the following.

Corollary 3.17. For any split reductive group G‚ of semi-simple rank 1, the essen-
tially finite G-torsors are not dense in M ss,0

G .

Proof. This follows from the classification of split reductive groups and Proposition
3.14.
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Soit X une courbe projective lisse de genre g, définie sur un corps algébriquement
clos k, et soit G un groupe réductif connexe sur k. Nous disons qu’un G-torseur est
essentiellement fini s’il admet une réduction à un groupe fini, généralisant la notion de
fibrés vectoriels essentiellement finis à des groupes G arbitraires.
Nous donnons une interprétation tannakienne de tels torseurs, et nous prouvons que
tous les G-torseurs essentiellement finis ont un degré de torsion, et que ce degré est
égal à 0 si X est une courbe elliptique.
Nous étudions ensuite la densité de l’ensemble des k-points des G-torseurs essentielle-
ment finis de degré 0, noté Mef,0

G , à l’intérieur de Mss,0
G , les k-points de tous les G-torseurs

semi-stables de degré 0. Nous montrons que lorsque g = 1, Mef,0
G est dense dans

Mss,0
G . Quand g > 1 et quand car(k) = 0, nous montrons que pour tout groupe réductif

semi-simple de rang 1, Mef,0
G n’est pas dense dans Mss,0

G .
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Résumé 

Soit X une courbe projective lisse de genre g, définie sur un corps algébriquement clos k, et soit G un groupe 
réductif connexe sur k. Nous disons qu'un G-torseur est essentiellement fini s'il admet une réduction à un 
groupe fini, généralisant la notion de fibrés vectoriels essentiellement finis à des groupes G arbitraires.  
Nous donnons une interprétation tannakienne de tels torseurs, et nous prouvons que tous les G-torseurs 
essentiellement finis ont un degré de torsion, et que ce degré est égal à 0 si X est une courbe elliptique. 
Nous étudions ensuite la densité de l'ensemble des k-points des G-torseurs essentiellement finis de degré 0, 
noté M^{ef,0}_G, à l'intérieur de M^{ss,0}_G, les k-points de tous les G-torseurs semi-stables de degré $0$. 
Nous montrons que lorsque $g=1$, M^{ef,0}_G est dense dans M^{ss,0}_G. Quand g>1 et quand car(k)=0, nous 
montrons que pour tout groupe réductif semi-simple de rang 1, M^{ef,0}_G  n'est pas dense dans M^{ss,0}_G. 
 

 

 

 

 

 

 

 

 

 

Résumé en anglais 

Let X be a smooth projective curve of genus g, defined over an algebraically closed field k, and let G be a 
connected reductive group over k. We say that a G-torsor is essentially finite if it admits a reduction to a finite 
group, generalizing the notion of essentially finite vector bundles to arbitrary groups G. We give a Tannakian 
interpretation of such torsors, and we prove that all essentially finite G-torsors have torsion degree, and that 
the degree is 0 if X is an elliptic curve. We then study the density of the set of k-points of essentially finite G-
torsors of degree 0, denoted M_{G}^{ef,0}, inside M_{G}^{ss,0}, the k-points of all semistable degree 0 G-
torsors. We show that when g=1, M_{G}^{ef,0} inside M_{G}^{ss,0} is dense. When g>1 and when \Char(k)=0, 
we show that for any reductive group of semisimple rank 1, M_{G}^{\ef,0} inside M_{G}^{\ss,0} is not dense. 
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