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Abstract

This thesis deals with the modeling of electroporation of a bilipid membrane. Electroporation
uses strong, short electrical pulses to create pores in cell membranes. Reversible electropo-
ration allows non-permeable molecules to enter cells without killing them, while irreversible
electroporation results in cell death in the target area. Because of the size of the cells (di-
ameter of 20 [µm]) and the duration of the pulse (10 [ns] to 100 [µs]), a precise study of this
phenomenon experimentally is practically impossible, therefore a model based approach is
necessary. Many models have been proposed, but none of them could satisfactorily explain
the many features of the experimentally observed phenomenon.

The aim of this thesis is to present a new phase field model of electroporation. This
physically based model consists of the Allen-Cahn equation for the membrane water content
and a nonlocal differential equation for the transmembrane voltage.

We first mathematically study our model. A fine analysis of the involved nonlocal
Dirichlet-to-Neumann operators in two simple configurations (a spherical membrane and
a flat periodic membrane) allows us to compare the time constants of the phenomenon be-
tween spherical and flat membranes. In addition, we perform a linear stability analysis of
our model which relates pore creation in the membrane to concavity condition in our model.
the effects of the equations coupling of our model. To estimate the parameters of the model,
we also compare the energy functional of our model with the energy functionals of other
physical models that currently represent the state of the art.

Second, we design a numerical scheme of order 2 in time. It is based on a Fast Fourier
Transform and a well-designed Strang Splitting scheme. This method, which is very powerful
in terms of computational time, is used to perform a sensitivity analysis of the parameters
of the model.

Finally, we compare our model with the most popular model of electroporation in a real-
istic scenario and with experimental data in the case of nanosecond pulses applied to a cell
suspension.

Keywords: Mathematical modeling; Electroporation; Fractional step numerical scheme;
Elliptic problem; Linear stability analysis; Phase ordering kinetics.



Résumé

Cette thèse est dédiée à la modélisation de l’électroporation d’une membrane bilipidique.
L’électroporation consiste à créer des pores dans les membranes cellulaires à l’aide d’impul-
sions électriques intenses et brèves. L’électroporation réversible permet l’entrée de molécules
non perméables dans le cytoplasme des cellules sans les tuer, tandis que l’électroporation
irréversible entraîne la mort cellulaire dans la zone ciblée. En raison de la taille des cellules
(diamètre de 20 [µm]) et de la durée de l’impulsion (10 [ns] à 100 [µs]), une étude expérimen-
tale précise de ce phénomène est pratiquement impossible, ce qui justifie l’introduction de
modèles mathématiques. Bien que de nombreux modèles aient été proposés, aucun n’a réussi
à expliquer de manière complète les multiples caractéristiques observées expérimentalement.
L’objectif de cette thèse est de présenter un nouveau modèle de champ de phase pour l’élec-
troporation. Ce modèle physique comprend l’équation d’Allen-Cahn pour la teneur en eau de
la membrane et une équation aux dérivées partielles non locale pour le potentiel transmem-
branaire. Dans un premier temps, nous procédons à une analyse mathématique approfondie
de notre modèle. Cela inclut une étude détaillée des opérateurs Dirichlet-to-Neumann non
locaux impliqués dans deux configurations simples (une membrane sphérique et une mem-
brane périodique plate), permettant ainsi une comparaison des constantes des temps entre
les deux. De plus, nous effectuons une analyse de stabilité linéaire de notre modèle, mettant
en évidence les effets du couplage des équations du modèle. Pour estimer les paramètres du
modèle, nous comparons également la fonctionnelle d’énergie de notre modèle avec celles
d’autres modèles physiques correspondant actuellement l’état de l’art. Dans un deuxième
temps, nous concevons un schéma numérique d’ordre 2 en temps. Ce schéma repose sur une
transformée de Fourier rapide et une méthode de splitting de Strang. Cette méthode est très
puissante en termes de temps de calcul et nous permet de réaliser une analyse de sensibilité
des paramètres du modèle. Enfin, nous confrontons notre modèle au modèle d’électroporation
le plus populaire dans un scénario réaliste ainsi qu’à des données expérimentales concernant
des impulsions de l’ordre de la nanoseconde appliquées à une cellule en suspension.

Mots clés : Modélisation mathématique ; Électroporation ; Champs de phase.
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Résumé long (en français)

L’électroporation consiste à soumettre les cellules à des champs électriques pulsés de forte
intensité et de courte durée dans le but de créer des pores dans leur membrane. Ces pores
permettent d’introduire des molécules non perméables dans les cellules vivantes sans les
tuer (électroporation réversible), ou de provoquer la mort des cellules dans la zone visée
(électroporation irréversible).

Reversible electroporation

Permeable 

membrane Viable cells

Irreversible electroporation

Very

permeable 

membrane

Cell swelling 

due to osmotic


Imbalance
Necrosis

Very

permeable 

membrane

Disturbed cell

homeostasis Apostosis

High voltages pulses 

and short duration

Cytoplasm

Nucleus

Cytoplasm

Nucleus

Apoptosis

Figure 1: Schéma représentant l’électroporation d’une cellule, montrant à la fois les aspects
réversibles et irréversibles.

Cette thèse se concentre sur le développement d’outils mathématiques novateurs pour la
modélisation de l’électroporation à l’échelle cellulaire. Le modèle d’électroporation que nous
proposons combine un modèle quasistatique du potentiel électrique autour de la membrane
cellulaire avec un modèle de champ de phase basé sur une version modifiée de l’équation
d’Allen-Cahn, qui décrit l’état de la membrane. Nous justifions physiquement ce modèle du
point de vue de la modélisation et démontrons son comportement en le simulant dans un
scénario approprié.
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Contributions

Objectifs de la thèse

La première contribution est le développement d’un nouveau modèle
mathématique basé sur la physique pour l’électroporation à l’échelle cellulaire.

Actuellement, il existe plusieurs modèles d’électroporation cellulaire, généralement répar-
tis en deux catégories : les modèles phénoménologiques et les modèles basés sur la physique.
Les modèles phénoménologiques reposent principalement sur des intuitions et contiennent
des paramètres ajustés par des expériences, ce qui les rend descriptifs plutôt que prédictifs.
En revanche, les modèles basés sur la physique sont mieux justifiés, mais ils doivent faire face
à la complexité accrue de la modélisation ce qui amène parfois à simplifier excessivement
le phénomène et ainsi à perdre certains aspects clés observés dans les expériences. Jusqu’à
présent, aucun modèle n’a été entièrement satisfaisant, et un consensus définitif au sein de la
communauté concernant le modèle d’électroporation cellulaire adéquat n’a pas été atteint.

Dans cette thèse, nous présentons un modèle mathématique d’électroporation cellulaire,
où tous les paramètres ont une interprétation physique.

Le modèle mathématique que nous proposons est donné par un système d’équations aux
dérivées partielles (EDP). Il prend la forme d’une équation semilinéaire de réaction-diffusion
d’ordre 2 agissant sur ϕ qui modélise l’état de la membrane couplée à une EDP non locale
ayant pour inconnue la différence de potentiel à travers la membrane notée v. Il s’écrit :

{
∂tϕ−D∆Γϕ = −αW ′(ϕ) + α

2
C ′

m(ϕ)v
2, ∀x ∈ Γ, t > 0,

ϕ(0, ·) = 0,
(1a)

{
Cm(ϕ)∂tv + (Sm(ϕ) + Λ)v = g, ∀x ∈ Γ, t > 0

v(0, ·) = 0,
(1b)

où D correspond à la diffusion latérale des lipides dans la membrane, W le potentiel double
puits de l’énergie libre associée à la membrane (voir Figure 3), Λ l’opérateur pseudodif-
ferentiel nonlocal composé de deux opérateurs Dirichlet-to-Neumann, Sm la conductance
électrique de la membrane, Cm la capacitance électrique de la membrane et g est un terme
source qui représente l’application du champ électrique.

Les deux équations sont définies sur une surface compacte et lisse Γ ⊂ R3 qui représentent
la membrane (voir Figure 2).

La deuxième contribution consiste à l’étude mathématique des propriétés
qualitatives du modèle

Le système couplé est une EDP quasi-linéaire en la variable (ϕ, v). Nous procédons à une
analyse mathématique approfondie de notre modèle. En effet nous montrons que ce mod-
èle possède de bonnes propriétés qualitatives pour notre problème et nous comparons son
comportement dans deux cas importants: Γ = S2 and Γ = T2 = (R/Z)2 (une membrane

8
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Figure 2: Représentation d’une cellule du point de vue de notre modèle. Le domaine intracel-
lulaire est représenté par Oc, la membrane est représentée par Γ, et le domaine extracellulaire
par Oe. L’union des trois ensembles correspond au domaine Ω.
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Figure 3: Potentiel énergétique associé à la membrane cellulaire sous l’influence d’un voltage
transmembranaire (TMV) v, Wm(ϕ) − Cm(ϕ)v

2/2. Les deux états stables sont donnés par
ϕ = 0 pour une membrane parfaite et ϕ = 1 pour un défaut dans la membrane (pore
contenant de l’eau). Le champ électrique favorise l’entrée d’eau dans la membrane en faisant
de la phase ϕ = 1 le seul point stable pour le potentiel énergétique de la membrane.
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sphérique et une membrane périodique plate) à travers une étude détaillée des opérateurs
Dirichlet-to-Neumann non locaux correspondants. Cette étude permet une comparaison des
constantes de temps entre les membranes sphériques et plates. De plus, nous effectuons
une analyse de stabilité linéaire de notre modèle, mettant en évidence les effets du couplage
des équations du modèle. Pour estimer les paramètres du modèle, nous comparons égale-
ment la fonctionnelle énergétique de notre modèle avec celles d’autres modèles physiques qui
représentent actuellement l’état de l’art.

La troisième contribution est le développement d’un schéma numérique
performant pour résoudre le modèle

Résoudre (1) numériquement n’est pas un problème trivial. La taille caractéristique as-
sociée à l’équation (1a) est de l’ordre de grandeur de quelques nanomètres tandis que la
taille characteristique de la membrane cellulaire es de l’ordre de quelques dizaines de mi-
cromètres. Par conséquent, indépendamment du schéma numérique utilisé pour résoudre le
problème, on doit utiliser un résolution spatiale très fine. De même, le temps caractéristique
associé à l’équation (1b) est de l’ordre de grandeur de la nanoseconde (dans le cas d’une
membrane électroporée). Ainsi, une haute résolution temporelle est nécessaire pour simuler
le phénomène, indépendamment du schéma numérique utilisé. Ces contraintes impliquent le
développement d’un schéma rapide et stable pour simuler le système.

Parmi les autres difficultés que nous repérons, il y a la propriété nonlocale de l’opérateur
Λ, le fait qu’il ne commute pas avec les opérateurs f → f

Cm(ϕ)
et f → Sm(ϕ)f , et la

dépendance en temps de l’opérateur f → 1
Cm(ϕ)

Λf (à travers la fonction t→ ϕ(t, ·)).
Nous développons un schéma numérique efficace qui surmonte l’ensemble de ces difficultés,

au moins dans le cas particulier de Γ = (R/Z)2. Il est basé sur une transformation de Fourier
rapide pour diagonaliser les opérateurs Λ et le laplacien, un solveur numérique itératif de
type gradient conjugué, et un schéma à pas fractionnaire de type splitting de Strang, pour
obtenir un schéma d’ordre 2 en temps.

Avec ce schéma, nous pouvons simuler un morceau de membrane de taille 4 · 104[nm2],
ce qui correspond à plus de trois ordres de grandeur par rapport à la taille d’une membrane
dans les cas des simulations de dynamiques moléculaires actuellement considérées comme
dans [85, 81].

L’efficacité de ce schéma numérique nous donne l’opportunité d’effectuer une analyse de
sensibilité pour les paramètres et de faire des comparaisons avec le modèle d’électroporation
le plus populaire dans un scénario réaliste et avec des données expérimentales dans le cas
d’impulsions nanosecondes appliquées à une suspension cellulaire.

Structure de la thèse
Dans le premier chapitre, nous faisons un résumé de l’état actuel de l’art dans la modélisa-
tion de l’électroporation cellulaire. Nous commençons par décrire la structure biologique et
la fonctionnalité de la membrane cellulaire, ce qui nous amène à examiner le comportement
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électrique de la membrane et à justifier ainsi sa modélisation sous l’angle électrique. Ensuite,
nous passons en revue les modèles les plus représentatifs de l’électroporation disponibles dans
la littérature. Au fil des dernières décennies, plusieurs modèles ont été proposés, certains
s’appuyant sur des principes physiques, d’autres étant des combinaisons de différents mod-
èles, et quelques uns étant des extensions de modèles établis précédemment.

Malgré cette diversité de modèles, aucun d’entre eux n’a pu expliquer intégralement
le phénomène d’électroporation, bien qu’ils montrent généralement un accord qualitatif
raisonnable avec les observations expérimentales. Cela soulève des questions importantes
pour les scientifiques utilisant l’électroporation dans leurs recherches, telles que l’identification
de la fréquence optimale de délivrance d’impulsions pour maximiser l’électroporation d’une
cellule, ainsi que les valeurs idéales pour l’intensité du champ ou la durée de l’impulsion
électrique.

Actuellement, ces questions dépassent les possibilités des modèles existants. Les modèles
que nous rappelons dans cette thèse :

• Le modèle de pore aqueux transitoire, initialement proposé par Chizmadzhev et al. qui
a joué un rôle crucial dans la compréhension actuelle de l’électroporation. Désigné sous
le nom de modèle PCA, ses concepts ont eu une influence significative sur le paysage
des modèles proposés depuis plus de quarante ans.

• Le modèle KN, développé par Neu et Krassowska, est une simplification du modèle de
Chizmadzhev. Il améliore le modèle initial en le rendant plus simple grâce à une analyse
asymptotique rigoureuse, qui remplace une équation aux dérivées partielles par une
équation différentielle ordinaire. Cette simplification facilite les simulations numériques
et a depuis lors fait du modèle KN le plus largement utilisé dans la communauté de
recherche.

• Le modèle développé par Leguèbe et al. est phénoménologique, combinant des idées
physiques avec certains comportements intuitifs hypothétiques de la membrane. Con-
trairement aux deux modèles précédents, celui-ci distingue explicitement la conductiv-
ité électrique membranaire de la perméabilité membranaire. Bien qu’il ne fasse pas
référence explicitement aux pores membranaires, puisqu’il est phénoménologique, il
n’est pas nécessairement en opposition avec cette notion.

• Nous présentons brièvement les résultats issus des simulations de dynamique molécu-
laire, qui constituent actuellement les représentations les plus détaillées de la mem-
brane. Cependant, ces simulations sont extrêmement limitées en raison de leur cout
de calcul. Par conséquent, elles ne permettent de simuler que de petites portions de
membrane à la fois, d’environ 100 [nm2] chacune.

Le deuxième chapitre est dédié à la présentation et à la justification de notre modèle,
qui se compose de trois parties principales. Dans la première partie, nous introduisons la
ligne de niveau ϕ, qui décrit l’état de la membrane cellulaire. Son évolution est contrôlée à
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travers la minimisation d’une fonctionnelle énergétique s’écrivant sous la forme suivante

E(ϕ, v) = κ

∫

Γ

∥∇ϕ∥2 +
∫

Γ

W(ϕ)− 1

2

∫

Γ

Cm(ϕ)v
2

pour un potentiel transmembranaire v donné. Cela amène à l’équation d’évolution 1a. Qual-
itativement, quand v ≡ 0, ce problème modélise bien le comportement de la membrane.

Concernant la modélisation électrique de la membrane, nous proposons aussi une ap-
proche pour comparer les deux cas Γ = S2 et Γ = T2 = (R/Z)2 nous permettant de mieux
comprendre l’impact de certains paramètres du système.

Nous présentons aussi des choix de modélisation raisonnables pour les fonctions ϕ →
Sm(ϕ) et ϕ → Cm(ϕ), puis, à travers une analyse de stabilité linéaire, nous identifions une
condition suffisante pour W et ϕ → Cm(ϕ) pour générer des instabilités. Ces instabilités
conduisent à la formation de pores sous l’influence du champ électrique. Notamment, nous
démontrons qu’en prenant Cm comme une fonction affine, cette condition n’est pas en général
verifiée. La dernière partie de ce chapitre est dédiée à l’estimation des paramètres. Nous
attribuons une signification physique à tous les coefficients utilisés dans notre modèle et nous
estimons approximativement chaque paramètre en fonction des quantités physiques connues
de la membrane cellulaire.

Enfin nous montrons que notre modèle représente une généralisation naturelle du modèle
proposé par Chizmadzhev et al. en identifiant les termes dans notre fonctionnelle énergétique
qui sont analogues à ceux présents dans leur modèle énergétique.

Dans le troisième chapitre, nous procédons à la validation numérique de notre modèle
et présentons les résultats obtenus. Nous exposons en détail les défis auxquels nous avons
dû faire face et le schéma numérique mis en place pour y répondre. Tout d’abord, nous
proposons un schéma initial naïf qui s’avère raisonnablement efficace dans le contexte de
notre problème. Ensuite, nous l’améliorons pour avoir une précision d’ordre deux en temps.

Pour éviter de discrétiser les opérateurs linéaires non bornés, nous exploitons le fait que
ces opérateurs peuvent être diagonalisés dans la même base de fonctions propres. Nous
validons cette approche numériquement en effectuant un test de convergence sur notre mod-
èle, démontrant ainsi une convergence d’ordre deux. Parmi les différents tests numériques
que nous effectuons, nous présentons une simulation impliquant l’application d’une impulsion
électrique de 12 [ns]. Cette simulation est basée sur une configuration similaire à celle utilisée
dans des expériences et dans les simulations de dynamique moléculaire. Dans ces conditions,
nous parvenons à électroporer un patch carré de membrane et à obtenir un comportement
qualitatif cohérent concernant les temps de charge et de décharge de la membrane, ainsi que
la durée de vie attendue des pores créés.

Nous procédons également à des tests de sensibilité pour évaluer l’influence des valeurs
des paramètres de notre modèle. Cela s’avère particulièrement intéressant en raison de
la nature quasi-linéaire de notre modèle, ce qui rend complexe une analyse mathématique
approfondie de l’équation (1). Parmi les paramètres que nous testons, nous prenons en
compte la conductivité électrique associée aux pores à l’intérieur de la membrane, la tension
superficielle de la membrane et le bruit, qui modélise les fluctuations thermiques naturelles
du système.
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Dans le quatrième chapitre, nous conduisons des expériences numériques en utilisant
notre modèle dans le but de le comparer à des données expérimentales dans différents con-
textes. Enfin, nous confrontons notre modèle au modèle d’électroporation le plus populaire
– c’est-à-dire le modèle de KN – dans un scénario réaliste. L’objectif est de comprendre
comment notre modèle se distingue du modèle le plus couramment utilisé en électropora-
tion, d’identifier ses avantages potentiels par rapport à ce dernier, et de déterminer les limites
qu’il doit surmonter.
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Introduction

This thesis is part of a long standing project with the objective of understanding physically
and quantitatively the phenomenon of electroporation. The work included was done at the
Institut Mathématiques de Bordeaux (IMB), within the Inria team Monc. The funding for
this project came from the Contrat Doctorale Spécifiques Normaliens (CDSN), a doctoral
scholarship from the Ecole Normale Supérieure de Lyon (ENS Lyon).

Some context
Electroporation is the application of pulsed electric fields of high intensity and short duration
to cells. The goal is to create defects – called pores – in the cell membrane [7]. Reversible
electroporation allows the introduction of non-permeable molecules into living cells without
directly killing them, while irreversible electroporation leads to the death of cells in the target
area.

Reversible electroporation

Permeable 

membrane Viable cells

Irreversible electroporation

Very

permeable 

membrane

Cell swelling 

due to osmotic


Imbalance
Necrosis

Very

permeable 

membrane

Disturbed cell

homeostasis Apostosis

High voltages pulses 

and short duration

Cytoplasm

Nucleus

Cytoplasm

Nucleus

Apoptosis

Figure 4: Diagrammatic representation of the electroporation of a cell, both reversible and
irreversible.

Although, this phenomenon was discovered decades ago [91], the development of new
technologies based on this phenomenon is still new. In fact, it has applications in current
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research in a variety of fields. Ranging from gene therapy [24, 34] and cancer treatment [21] to
treatment of cardiac arrhythmias [32, 82] and even in the food industry [53], the development
of techonology based in electroporation is more active than ever before.

An important example: in cancer alone, there is a promising niche for electroporation. It
turns out that in an important number of cases, the size of a tumor is not the most important
factor determining the type of treatment a patient receives. In fact, if a small tumor is placed
near a sensitive part of the body (near the aorta, for example), then it is likely that such
a patient would no longer be a candidate for surgery. Other options are also discarded, as
an example, radiofrequency therapy or other thermal ablation therapies are automatically
out of consideration. The heat produced from these therapies can diffuse to the sensitive
tissue surrounding the tumor and so there is big potential of causing collateral damage.
Electroporation provides an ideal treatment in this scenario. Currently, non-invasive and
non-thermal therapies which do not damage the structure of the tissue (the extracellular
matrix) based on electroporation, are being developed exactly for these types of scenarios :
tumor ablation via irreversible electroporation [71, 38, 55], electrochemotherapy [14], calcium
electroporation [29], among others. The short explanation of what these therapies consist
of is a local application of a short electric pulse to the tissue containing a tumor, then,
depending on the therapy, the corresponding agent is introduced into it. As the cancer cells
in the tumor have been electroporated, the injected agent can easily enter the cell and have
an effect on the tumor. This shows the particular allure of electroporation as it can boost
the effectiveness of other more traditional treatments (as in the case of electrochemotherapy,
for example). There is a real societal benefit to developing all these therapies in oncology as
cancer is a principal cause of death in Europe [8].

Similarly, in the treatment of cardiac arrhythmias [66], electroporation plays an important
role and for some of the same reasons as in cancer treatment. This treatment basically
consists of electrically isolating problematic tissue in the heart so that that it does not
interact erratically with the cardiac conduction system.

Other applications, like in the food industry, are usually related to facilitating the ex-
traction of the contents (juice, water, oil, etc) of certain biological mass [70]. Examples of
this can be seen in wine production, juice extraction, olive oil extraction, drying of herbs and
fruit, etc. So far, the benefits concern not only the quantity that can be extracted but the
quality of the final products as well. The electroporated biomass can more easily release its
contents and so less intense procedures (meaning they apply less energy, or take less time,
etc) are used to extract them, thereby better preserving the quality of extracted material.

Electroporation is also frequently used in the electrotransfer of DNA. Application of this
can be found in the fields working with genetically modified organisms, gene therapy [58],
electrotransfer of DNA vaccines [86], etc.

All these applications showcase the potential of this technology and motivate the need to
further understand this phenomenon. This need becomes more apparent when we consider
the number of parameters that play a role in electroporation: electrical conductivity of the
medium, intensity of the electric pulse, shape and size of the targeted cells, duration of
the pulse, mean cell orientation, number of pulse repetitions, frequency of pulses, etc. The
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nonlinearity of this phenomenon in addition to the number of parameters affecting it, make it
practically impossible to quantitatively understand this phenomenon by just trial and error
in experimentation. Additionally, it also owes its complexity, in part, to the different scales
of time involved (membrane changes can happen within nanoseconds and can persists for
minutes), and in part, to the biological context naturally included. As a result, modeling and
testing is the only way to push forward the understanding. In fact, depending on the scale
of the application (electroporation of some tissue, a suspension of cells in a fluid, a single
cell, or even just a very small part of the cell membrane), completely different models are
used to describe it. However, as is the case in a lot of biological settings, many mathematical
models (at all scales) can be made to fit the behaviour observed in experiments. This poses
the problem of choosing the "correct" model, and so physically based and predictive models
are of prime interest.

The work presented in this thesis targets the development of mathematical innovative
tools to model electroporation at the cellular scale. We construct an electroporation model
which couples an quasistatic model of the electric potential surrounding the cell membrane
and a phase-field model based on a modified version of the Allen-Cahn equation which
describes the state of the membrane. From a modeling point of view, we physically justify
this model and showcase its behavior by simulating it in a relevant scenario.

PhD Objectives

Main contributions

There are three main contributions of my work:

(1) The development of a new physically based mathematical model of electroporation at
cellular scale.

(2) The mathematical study of the qualitative properties of this model.

(3) The development of a very efficient numerical scheme to solve the PDE system corre-
sponding to our model.

Modeling Currently there are a several models of cellular electroporation. They roughly
fall into two categories: first, the phenomenological models and then the physically based
models. The phenomenological models are mainly based in intuition, and contain parameters
which have to be fitted for experimentally. As a result, by their nature, they are descriptive
and not predictive. On the other hand, the physically based models are better justified
however they have to deal with the increased complexity involved in this type of modeling.
Their fault tends to be the oversimplification of the phenomenon which then fails to capture
some key aspects, some of which have been witnessed in experimentation. So far, no model
has been satisfactory, in the sense that no definitive consensus in the community has been
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reached as to the correct model of cell electroporation. We introduce a mathematical model
of cell electroporation whose parameters all have a physical interpretation.

The mathematical model we propose is a system of partial differential equations (PDE).
It takes the form of a semilinear reaction-diffusion equation acting on a membrane order
parameter ϕ coupled with a linear parabolic and nonlocal PDE acting on the difference
of electric potential v across the cell membrane. Both equations are defined over a closed
surface Γ representing the membrane

{
∂tϕ−D∆Γϕ = −αW ′(ϕ) + α

2
C ′

m(ϕ)v
2, ∀x ∈ Γ, t > 0,

ϕ(0, ·) = 0,
(2a)

{
Cm(ϕ)∂tv + (Sm(ϕ) + Λ)v = g, ∀x ∈ Γ, t > 0

v(0, ·) = 0,
(2b)

where D corresponds to the lipid lateral diffusion in the membrane,W is a double well energy
potential, the nonlocal pseudodifferential operator Λ corresponds to the composition of two
Dirichlet-to-Neumann operators, Sm denotes the electric conductance of the membrane, Cm

the electric capacitance of the membrane and g represents a source term associated to the
application of an electric pulse to the cell.

Mathematical study The complete system is a quasi-linear PDE on the joint unknown
(ϕ, v). We perform an in-depth mathematical analysis of our model. Indeed, we show that
this model has good qualitative properties for our problem. We compare its behavior in two
important cases: Γ = S2 and Γ = T2 = (R/Z)2 (a spherical membrane and a flat periodic
membrane) through a detailed study of the corresponding nonlocal Dirichlet-to-Neumann
operators. This study allows a comparison of the time constants between spherical and
flat membranes. We also perform a linear stability analysis of our model, highlighting the
effects of coupling the model equations. In order to estimate the model parameters, we also
compare the energy functional of our model with that of other physical models that currently
represent the state of the art.

Numerical scheme Numerically solving (2) is not trivial. The characteristic length as-
sociated to (2a) is on the order of magnitude of a few nanometers and so any reasonable
numerical scheme needs to handle a high resolution in space. On the other hand, the char-
acteristic time in (2b) is smaller than one nanosecond and so, again, any numerical schemes
for this equation needs to be quick enough to handle a high resolution in time. These con-
straints naturally require fast and stable numerical schemes. Other difficulties arise from
the nonlocal nature of the operator Λ, the fact that it does not commute with the linear
operators f → f

Cm(ϕ)
and f → Sm(ϕ)f , and finally the fact that the unbounded operator

f → 1
Cm(ϕ)

Λf depends on time (through t → ϕ(t, ·)). We developed an efficient numerical
scheme which manages to overcome these difficulties, at least in the case of Γ = (R/Z)2.
The scheme uses a mix of Fast Fourier Transform (FFT) to diagonalize the laplacian and Λ,
a Conjugate gradient (CG) algorithm to invert the non-commuting operators, and a Strang
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splitting scheme to obtain a numerical scheme of order two in time. With it, we can simulate
a square patch of membrane of size 4 · 104[nm2], which is three orders of magnitude bigger
of what is currently possible in molecular dynamic simulations.

The efficiency of this numerical scheme gives us the opportunity to perform a sensitiv-
ity analysis for the parameters and to make comparisons with the most popular model of
electroporation in a realistic scenario and with experimental data in the case of nanosecond
pulses applied to a cell suspension.

Outline of the thesis:
The first chapter presents a summary of the current state of the art in cell electroporation
modeling. First we present the biological structure and functionality of the cell membrane.
This justifies the next section where we present the electrical behavior of membrane which
later on motivates its modeling from an electric point of view. After this, we show the
most representative models of single cell electroporation currently available in the literature.
In fact, over the past few decades, several models have been proposed. Some models are
inspired from physical principles, others are a combination of different models, and a few are
extensions of previously established models. With all these available models, it is natural
to wonder what is the need for another one. Well, for the most part, all these models
show, to one degree or another, reasonable qualitative agreement with the phenomenon of
electroporation, but no single model has been able to fully explain it. By this, we mean
that so far, no model captures most of the qualitative observations that have been seen in
experiments. In fact, many of the questions of interest to scientists using electroporation in
experiments, are out of reach of the current models. As an example of questions: what is the
optimal frequency of pulse delivery to maximize electroporation of a cell? Or similarly, the
optimal values for the field strength or the electric pulse duration in order to obtain a desired
outcome in experiments? These types of questions are important to understand in order to
develop better electroporation strategies and protocols. It is therefore vital to present the
most representative current models, showcase their ideas and highlight their limitations, to
motivate the need for a new model. The models we present are:

• The first transient aqueous pore model, introduced by Chizmadzhev et al., which paved
the way for the current understanding of electroporation. This model is denoted here
as the PCA-model. The history of this model spans more than forty years and its ideas
have had considerable influence in the current landscape of models available.

• A simplification of the Chizmadzhev model, developed by Neu and Krassowska and
denoted here as the KN-model. This model improved upon the first model in the
sense that it simplified it by means of a mathematical rigorous asymptotic analysis
thereby replacing a PDE by an ODE. This made it easier to simulate from a numer-
ical standpoint and has since become the most popular model used in the research
community.
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• A phenomenological model developed by Leguèbe et al. It presents a mix of physical
ideas and some hypothesized intuitive behavior of the membrane. Compared to the two
models above, it is the only one to explicitly differentiate between membrane electrical
conductivity and membrane permeability. The notion of membrane pores is not part
of this model however as it is phenomenological it does not really oppose this notion.

• We quickly describe some of the results obtained in molecular dynamic simulations.
These simulations are the most detailed representations we currently posses of the
membrane. They are however, extremely limited due to their computationally com-
plexity. As a result only small patches of membrane can be simulated at a time around
100 [nm2].

The second chapter presents and gives the physical grounds of the model. There are
three main parts to it. The first part introduces the order parameter ϕ that describes state of
the cell membrane. This mainly concerns its evolution as it minimizes an energy functional
of the form

E(ϕ, v) = κ

∫

Γ

∥∇ϕ∥2 +
∫

Γ

W(ϕ)− 1

2

∫

Γ

Cm(ϕ)v
2

given a prescribed transmembrane potential v and results in Equation (2a). We show that
in the case of v ≡ 0 this model behaves as one would expect of a cell membrane. The next
part concerns the electric modeling of the membrane. In this part, we show the appropriate
way to compare two important settings Γ = S2 and Γ = T2. We present reasonable modeling
choices for the functions ϕ 7→ Sm(ϕ) and ϕ 7→ Cm(ϕ) and, through a linear stability analysis,
find a necessary key condition concerningW and ϕ 7→ Cm(ϕ) for instabilities. This translates
into the creation of pores as a result of these instabilities due to influence of the electric field.
In particular, we show that, for example taking ϕ 7→ Cm(ϕ) as an affine function cannot pro-
duce pores in the membrane. The last part of this chapter concerns parameter estimation.
It gives physical sense to all the coefficients used in our model and gives an approximate
value to each parameter in terms of known physical quantities of the cell membrane. We
also make the case that our model is a natural generalization of the transient aqueous pore
model proposed by Chizmadzhev et al. By this, we mean that we manage to identify terms
in our energy functional analogous to the energy functional they proposed in their model.

The third chapter validates our model numerically and shows some numerical results
we have obtained. It is a detailed presentation of the challenges we needed to overcome and
the numerical scheme that answers to them. We first propose a naive first scheme which
works reasonably well in the context of our problem. We then improve upon this scheme and
show that it is of order two accuracy in time. We do not discretize the unbounded linear op-
erators, because we exploit the fact that these operators can be diagonalized and in the same
basis of eigenfunctions. We numerically validate our claim by running a convergence test on
our model and we show that we actually do obtain a convergence of order two. Among the
numerical tests we do, we show a simulation which consists of an application of one 12 [ns]
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electric pulse. This simulation shares a similar setup used in experiments and in molecular
dynamics simulations. Under these conditions we manage to electroporate a square patch of
membrane and get some qualitative behavior regarding the membrane charge and discharge
times, in addition to the expected lifetime of the pores created. Furthermore, we test the
sensibility of our model to the values of the its parameters. This is particularly interesting
as the quasilinear nature of our model (2) makes it difficult to make a fine mathematical
analysis of the equation. Among the parameters we test for, we consider the electric con-
ductivity associated to pores inside the membrane, the surface tension of the membrane and
noise (which models the natural thermal fluctuations of the system).

In the fourth chapter, we perform numerical experiments with our model to compare it
with experimental data in different contexts. Finally, we confront our model with the most
popular electroporation model – the model of KN – in a realistic scenario. The goal is to
understand how our model differs from the most commonly used model for electroporation,
identify its potential advantages over the latter, and determine the limitations it must over-
come.

In the last chapter, a conclusion is made and some perspectives are given.
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Chapter 1

State of the art of electroporation
modeling at cellular scale: biological and
mathematical descriptions

In this chapter we first give a brief description of a cell membrane from a biological and
electrical point of view. This includes a description of the electrostatic model for electric
potential surrounding the cell membrane. Next, we present what the current understanding
of electroporation is and how it is modeled. This includes, the classical theory of transient
aqueous pores in the cell membrane, and a brief presentation of the rest of the state of the
art from a modeling point of view. Lastly, we present some of the limitations associated to
these models and finish the chapter with some remarks motivating the work present in the
subsequent chapters of this thesis.

1.1 Cell Membrane Biology
A biological description of a cell tends to include the cell membrane, the cytoplasm, nucleus
organelles, etc, each of which involve complex structures themselves. In this section, we will
limit ourselves to describing only the biological structure and functionality of the membrane
of a cell as it is the main object of interest, at least from a modeling standpoint. A more
in-depth study of the cell could be useful for other purposes, for example, when modeling
electroporation of organelles inside the cell. These considerations are out of the scope of this
thesis. It is important to note that the contents of this section apply to all animal cells and
so we will always reference a generic cell, without entering into further detail on the type of
cell it is. The presentation of the material below is mainly a summary of the physiology of
a cell membrane. We present only the most important factors that will enter into play in
the later modeling section of this chapter. A more detailed presentation of this material can
be easily found in other sources, for example, a lot of the material presented below is taken
from [54, 43].
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Glyceride tails

phosphoric acid head

phospholipid molecule

Figure 1.1: Simple representation of a generic phospholipid making up the cell membrane.
Examples of phospholipids are shown in Figure 1.2.

1.1.1 Membrane Structure

As a whole, from a structural point of view, the membrane is very thin layer surrounding
the cytoplasm and organelles of the cell. In fact, its thickness is usually between 5 and
10 [nm] while the diameter of its cell can easily reach 10 [µm]. The cell membrane is mainly
composed of fatty acids called phosphoglycerides or phospholipids.

These phosphoglyrecides are made from phosphoric acid and glycerides, which take the
form of a hydrophilic fatty acid head and hydrophobic glyceride tails, see Figure 1.1. They
are part of a general type of compound known as amphiphiles, which are chemical com-
pounds possessing both hydrophilic (water-loving) and lipophilic (fat-loving) properties. As
a result, when placed in water, these phosphoglycerides spontaneously rearrange themselves
into configurations which minimize exposure of the hydrophobic acid chains to the water
molecules. In other words, into configurations where the acid heads are in contact with the
water molecules while the tails are away from them. Figure 1.3 shows some of the possible
configurations that result from this spontaneous rearrangement. One of these arrangements
takes the form of a lipid bilayer. This lipid bilayer is the basic structure of the cell membrane.

The cell membrane (also known as plasma membrane), see Figure 1.4, contains in it dif-
ferent types of other structures like proteins, ion channels, enzyme, receptors, etc. However,
it is important to note that the plasma membrane is not a static structure. Both lipids and
proteins in the plasma membrane can rotate and diffuse laterally. For example, in the bi-
layer, cholesterol is also present, and it is known to affect the membrane fluidity. When they
accumulate together they form a structure known as a lipid raft which floats freely within
the membrane. Some of these structures will play a role in the modeling of the membrane
as we will show in the following sections.

Remark 1. From here on, the terms lipid bilayer, plasma membrane and cell membrane are
used interchangeably.

Among the proteins found in the cell membrane we highlight two important types. The
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(a) Structural formula of 1,2-dioleoyl-sn-glycero-3-pphosphatidylcholine (DOPC).

(b) Structural formula of 1-palmitoyl-2-deoyl-sn-glycero-3-phosphatidylcholine (POPC).

Figure 1.2: Two examples of phospholipids present in the cell membrane and used in molec-
ular dynamics simulations [47]. Images found in [60].
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Water

Water

(a) Bilayer configuration.

Water

Water

(b) Liposome configuration.

Water

(c) Micelle configuration.

Figure 1.3: Typical configurations into which lipids naturally rearrange themselves when
immersed in water.

Ionic channel

cholesterol protein

protein

Figure 1.4: Simple diagram showing structures that can be found in the membrane of a cell.
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first is ion channels. They form water filled pores in the membrane which are highly selective
in what they allow to pass through them. They allow passive transport (this process does
not consume energy) of only certain ions, depending on their size and charge. In fact, ion
channels are charge specific, which means that channels for anions (which are negatively
charged ions) have positively charged side chains in the pore, and vice versa for cations (ions
with positive charge). Furthermore, depending on the type of ion channel, they can open
and close as a consequence of different stimuli (light, mechanical stress, etc). Related to our
study, the important examples include the voltage-gated sodium channels, the voltage-gated
potassium channels and the voltage-gated calcium channels.

The second important type of proteins are lipoproteins. They are highly selective protein
carriers within the membrane, just like ion channels, however they use ATP as an energy
source in order to exercise active (energy consuming) transport of ions. Two important exam-
ples are the Ca2+-ATPase and Na+/K+-ATPase pumps that mediate this active transport
(see [78, 63, 17, 15] for a more detailed description). There are additional components in
the membrane, but these elements are sufficient to give us a good idea of how to model a
membrane.

1.1.2 Membrane functionality

From a biological point of view, the membrane plays an important regulating role. The
hydrophobic interior of the bilayer, composed of fatty acid chains, makes the membrane
impermeable to water-soluble molecules and so helps maintain the concentration of different
ions inside the cell.

Additionally, the membrane regulates the exchange of ions between a cell and its exterior
medium. The ion channels in the cell membrane allow the passage of only certain ions
(primarily Na+, K+, Ca2+ and Cl−) down their electrochemical gradient (from high to low
concentrations), thus giving the plasma membrane its semipermeable characteristic. If the
channels are open then this means that only certain ions can permeate across the membrane
by passive mechanisms, like diffusion.

Another important regulating function of the membrane is exercised by the lipoproteins
contained in it. For example, Na+/K+-ATPase controls the concentration gradients of Na+
and K+ across the membrane. This is done by active transport, enabling the cell to move
solutes up a concentration gradient (from low to high concentrations) across its membrane.
In general, because of this, it is not uncommon for the different ion concentrations inside
the cell to differ greatly from the concentrations in its exterior medium. In fact, the Na+
concentration tends to be higher outside the cell while the K+ concentration is higher inside
it. Functionally, this helps control the size of the cell and the water distribution on both
sides of the membrane.

These properties of the membrane have an important biological role, but more impor-
tantly, they also give rise to some key electrical properties of the membrane.
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1.2 Electrical properties of the cell membrane

1.2.1 Resting potential of the cell membrane

Due to the semipermeable nature of the cell membrane as described above, there is a con-
centration gradient for the different ions the membrane is selectively permeable to. This
creates an ion flux as a result of diffusion which acts on the ions, forcing them to cross the
cell membrane. This effect tends to accumulate ions at the inner and outer walls of the cell
membrane. An electric field across the membrane is thus created which in turn exerts a
force on the ions crossing the membrane as they have an electric charge. As a result, two
forces act on ions moving across a cell membrane, diffusive forces and electric forces. This
condition can be expressed in terms of net flux of ions, as in the following relation

J = JD + JE, (1.1)

where JD is the ionic flux due to diffusion and JE is the ionic flux due to the electric field
influence (both in units [mol.m−2.s−1]). The ionic flux due to diffusion is given by Fick’s
law, and takes the following form

JD = −umRT|z|F ∇c,

where um is ionic mobility in the medium (units in [m2.V−1.s−1]), R = 8.314 [J.mol−1.K−1]
is the gas constant, T (units in [K]) is the temperature of the system, z is the valence of the
type of ion, F = 9.649× 104 [C.mol−1] is Faraday’s constant, and c is the ion concentration
in units [mol.m−3].

The flux due to the electric field is given by:

JE = −um
z

|z|c∇U,

where U is the electric potential (in units [V]), z/|z| gives the sign of the force affecting the
ions, and −umz/|z| is the mean velocity achieved by these types of ions in a unit electric
field.

Replacing the expressions for JE and JD in (1.1) results in the Nernst-Planck equation

J = −um
(
RT

z

|z|∇c+ c|z|F∇U
)
.

Consider the case of a membrane separating two media (inside the cell and outside it)
containing a mix of different types of ions with no total net charge. If the membrane is only
permeable to one specific type of ion then by diffusion there is a net flow of this type of ion
in one direction across the membrane. This in turn, creates an imbalance in the charge and
so a transmembrane voltage is created. As more and more ions flow across the membrane,
the electric potential across the membrane increases until an equilibrium is reached (when
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diffusive and electric forces balance out). There is a transmembrane potential associated to
this equilibrium, it is known as the resting potential of the cell membrane. This process
reaches stability fairly quickly and so we assume that there is a negligible effect on the initial
ion concentrations on either side of the membrane. The equilibrium transmembrane voltage
V is given by the Nernst equation 1.2, which is derived from the Nernst-Planck equation
above by taking a null net ionic flux:

RT
z

|z|∇c = −c|z|F∇U.

Since the membrane is extremely thin we consider any small patch to be planar and describe
any variation across its perpendicular axis. This results in the following one-dimensional
problem

∂xc = −
zF

RT
∂xUc,

integrating this equation across the membrane results in

ci = coe
− zF

RT
(Ui−Uo),

where Ui and Uo are the electric potentials near the inside and outside wall of the cell
membrane, so that

ln

(
ci
co

)
= − zF

RT
V,

finally resulting in

V = −RT
zF

ln

(
ci
co

)
, (1.2)

where ci and co are, respectively, the inner and outer concentrations of the type of ion the
membrane is permeable to.

We denote the difference in electric potential across the plasma membrane as the trans-
membrane voltage (TMV) of the membrane. We follow the convention of defining the TMV
as the difference between the potential at the interior wall of the cell membrane minus the
potential at the exterior wall.
Remark 2. A generalization of this expression, in the case when the membrane is permeable
to multiple types of monovalent ions, is given by the Goldman-Hodgkin-Katz (see [54] for
more in-depth presentation of both equations):

V = −RT
F

ln

(∑
k P

+
k c

+
k,o +

∑
j P

−
j c

−
j,i∑

k P
+
k c

+
k,i +

∑
j P

−
j c

−
j,o

)
,

where P±
k , denotes the membrane permeability (in [m.s−1]) to kth positive or negative ion

(respectively) and c±k,i and c±k,o are the intracellular and extracellular concentrations of the kth

positive or negative ion, respectively.
Taking account for different types of ions and membrane permeabilities is a natural second

step when modeling the electric behavior of the cell membrane. An example of this can be
seen in [19, 20].
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Figure 1.5: Fluorescent plasmid DNA is inserted into the environment surrounding Chi-
nese hamster ovary cells, to visualize the mechanism of gene transfer with electroporation.
Plasmid-DNA accumulation on the cell membrane for PEF with different intensities is shown.
Ten pulses of 5 ms (1 Hz) were applied at 3 × 104 V.m−1 in (A), 5 × 104 V.m−1 in (B),
7× 104 V.m−1 in (C) and 9× 104 V.m−1 in (D). Image taken from [31].
.

1.2.2 Electric potential surrounding the cell membrane

We now consider the case where the cell is immersed in an externally applied electric field.
Of course, given that cell electroporation is a response to an electric stimulus applied to the
cell, usually in the form of a pulsed electric field (PEF), it is natural to study the electric
properties of the cell membrane. However, it has been shown that after PEF treatment, the
permeabilization of the cell membrane is not uniform across its surface, see Figure 1.5. For
example, evidence of this phenomenon can be seen (at least qualitatively) in experiments
where measurements Propidium-iodide intake of a Chinese hamster ovary cell after PEF
treatment. Imaging data clearly shows that the permeability of the membrane seems to be
higher at the sides of the cell facing the electrodes applying the treatment (for example, see
[31]). This supports the idea that electroporation is a physical phenomenon as opposed to
a biological response of the cell to an electric field. Therefore, it is sensible to model this
phenomenon by studying the TMV at each point of the cell membrane. To this end, we
study the electric potential surrounding the cell membrane.

Before detailing how the electric potential is modeled, we fix some notations.
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Figure 1.6: Diagram representing a cell Oc, its membrane Γ and its external environment
Oe. The union of all three sets makes up the whole system Ω.

Notation

• Oc and Oe denote two connected smooth domains representing the interior and exterior
of the cell, respectively.

• Γ := ∂Oc is the cell membrane itself (see Figure 1.6 for a clear representation).

• Ω := Ōc ∪ Oe denotes the entire system and Ω̄ is its outside border.

• σe and σc are the electric conductivities of the exterior and interior media respectively.
Additionally, σ : Oc ∪ Oe → R is a piecewise function defined by σ|Oc

:= σc and
σ|Oe

:= σe.

• n⃗c : Γ→ R3 is the unitary normal vector to Γ pointing towards the exterior of the cell

• Similarly, n⃗e : Γ → R3 the normal pointing to the interior of the cell. Therefore,
n⃗e(x) = −n⃗c(x), for all x in Γ.

• The electric potential surrounding the cell membrane is represented by a piecewise
function U : Oc ∪ Oe → R.

• Following the same convention as in [54], we define the TMV on Γ to be

[U ]Γ(x) := U|Γ− (x)− U|Γ+ (x), ∀x ∈ Γ,

where U|Γ± (x) := lim
τ→0+

U(x± τ n⃗c).
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Remark 3. The cell membrane is modeled as a two dimensional surface even though in
reality it has a non-zero thickness. This is naturally justified by its small thickness (relative
to the size of the cell), but it has also been mathematically validated in [69].

Electric potential in the quasi-static regime

As the cell membrane is mainly composed of a lipid bilayer, it prevents the passage of ions,
and so it behaves like an electric insulator between two conductive media. Therefore charge
accumulates on either side of the of the cell membrane. This gives rise to a change in the
TMV (it is no longer equal to the resting potential). A standard approach to modeling the
membrane in this scenario is to think of it as a leaky capacitor, due to its semipermeable
nature. The electric potential inside and outside the cell is given by the solution to the
Laplace equation where we consider both the interior and exterior of the cell to be source-free
environments (no net charge) [19]. Therefore, given an initial electric potential U0 : Oe∪Oc →
R, the electric potential U is modeled as the solution to the following PDE

∇ · (σ∇U) = 0, in Oe ∪ Oc, t ≥ 0, (1.3a)
U(0, ·) = U0(·), in Oe ∪ Oc, (1.3b)

U|∂Ω(t, ·) = g(t, ·), in ∂Ω, t ≥ 0, (1.3c)
σcn⃗c · ∇U|Γ− = σen⃗c · ∇U|Γ+ , t ≥ 0, (1.3d)

σen⃗e · ∇U|Γ+ (t, x) = Cm∂t[U ]Γ(t, x) + Iion(t, x), ∀x ∈ Γ, t > 0, (1.3e)

where g : R+× ∂Ω→ R prescribes an external electric field and Cm is the capacitance of the
membrane.

Equation (1.3d) is the condition of conservation of charge for the current density travers-
ing the cell membrane. The membrane electrical model is then expressed in Equation (1.3e),
as the current density passing trough the membrane. It is composed of a capacitive current
term, represented by Cm∂t[U ]Γ, and an ionic current term, represented by Iion. The ionic
current term describes the passive dynamics of the cell membrane, meaning, the ion channels
which allow the transport of certain ions through the membrane. It is usually defined as

Iion := Sm([U ]Γ − Vresting),

where Sm corresponds to the specific membrane conductance, and Vresting corresponds to the
natural resting potential of the membrane.

Remark 4. We consider from now on that Vresting is identically zero. This choice is made
only to simplify notation as this parameter does not play an important role in the mathemat-
ical description of electroporation models. That is to say, all the results obtained with this
choice of modeling can be easily modified to take into account a non-zero resting potential.

We highlight the fact that so far, the electroporation phenomenon has not been taken
into account in the above model. That is, we consider in the above model that the membrane
capacitance and conductance are constant and unchanged by the application of an electric
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field. We know that when a strong enough electric field is applied then the permeability and
conductance of the membrane drastically increases, and so the above model no longer yields
a faithful representation of the electric potential U . We address this point in Section 1.3,
where we present some models of electroporation. For now, we also ignore the question
of wellposedness of the above system. This question will be addressed in a more general
scenario in the next chapter.

1.2.3 Stationary TMV equation

In the above model (1.3), the TMV [U ]Γ (as well as the surrounding electric potential)
approaches a stationary state in the idealized scenario where the applied electric field E is
constant in time and the electric properties of the membrane do not change over time. This
involves solving a static version of (1.3), which takes the form of

∇ · (σ∇U) = 0, in Oe ∪ Oc, (1.4a)
U|∂Ω(·) = g(·), in ∂Ω, (1.4b)

σcn⃗c · ∇U|Γ− = σen⃗c · ∇U|Γ+ , (1.4c)
σen⃗e · ∇U|Γ+ (x) = Sm(x)[U ]Γ(x), ∀x ∈ Γ. (1.4d)

This determines the maximum TMV attained by the cell membrane for a given an external
electric field E (prescribed by the Dirichlet boundary condition g on ∂Ω). This is of particular
interest as the characteristic time of charge of a membrane is less than 1 [µs] [33], while
electric field pulse delivery which cause electroporation usually have pulses of widths in the
range of 1 − 100 [µs] or longer. This tool also helps in determining (at least intuitively)
whether or not a particular PEF application should cause electroporation in a cell.

Well-posedness result

A well-posedness result for (1.4) can be obtained from a direct application of a result in [37].
For completeness we add a short but different proof of well-posedness. It will use the following
theorem which is derived from the classic Banach-Necas-Babuska theorem, see [23] for a clear
presentation of the Banach-Necas-Babuska theorem.

Theorem 5. Let X and M be two Hilbert spaces, we denote by X ′ and M ′ their duals. Let
a : X × X → R, b : X ×M → R be two continuous bilinear forms, L ∈ X ′ and G ∈ M ′

and let Zb = {τ ∈ X | b(τ, q) = 0, ∀q ∈ M} be the kernel of b. If a is coercive over Zb (with
coercivity constant α) then the following variational problem

find (ξ, p) ∈ X ×M such that,

{
a(ξ, τ) + b(τ, p) = L(τ), ∀τ ∈ X,

b(ξ, q) = G(q), ∀q ∈M,
(1.5)

is well-posed if and only if

∃β > 0, inf
q∈M

(
sup
τ∈X

b(τ, q)

∥τ∥X ∥q∥M

)
≥ β.
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Furthermore, the unique solution (ξ, p) depends continuously on the problem data as follows

∥ξ∥X ≤
∥L∥X′

α
+

1

β

(
1 +
∥a∥
α

)
∥G∥M ′ ,

∥p∥M ≤
(
1 +
∥a∥
α

)(
1

β
∥L∥X′ +

∥a∥
β2
∥G∥M ′

)
.

Proof. See Chapter 1 of the Franck Boyer’s course notes [9] (in french).

Remark 6. The above variational formulation is easily transformed into the usual vari-
ational formulation used in the classic Banach-Necas-Babuska theorem by considering the
following continuous bilinear form

c : (X ×M)× (X ×M)→ R
((ξ, p), (τ, q)) 7→ a(ξ, τ) + b(τ, p)− b(ξ, q),

which translates the problem (1.5) into finding (ξ, p) ∈ X ×M such that

c((ξ, p), (τ, q)) = L(τ)−G(q), ∀(τ, q) ∈ X ×M.

To use the above theorem we transform (1.4) into a variational formulation as in (1.5).
First, we split (1.4a) by introducing a new unknown ξ and then we replace (1.4) with this
new system of equations

σ−1ξ −∇U = 0, in Oe ∪ Oc, (1.6a)
−∇ · ξ = 0, in Oe ∪ Oc, (1.6b)
U|∂Ω(·) = g(·), in ∂Ω, (1.6c)
n⃗c · ξ|Γ− = n⃗c · ξ|Γ+ , in Γ, (1.6d)
n⃗e · ξ|Γ+ = Sm[U ]|Γ , in Γ. (1.6e)

Next, we translate this into a variational formulation. For this we need a pair of Hilbert
spaces X and M as in (1.5).

Let γ±Γ : Hdiv(Oc ∪Oe)→ H−1/2(Γ) be two continuous trace operators on Hdiv(Oc ∪Oe)
given by

γ+Γ : τ 7→ n⃗e · (τ|Oe
)|Γ , and γ−Γ : τ 7→ n⃗c · (τ|Oc

)|Γ

To take into account the condition (1.6d) we consider the following Hilbert space

X := Hdiv(Oc ∪ Oe) ∩
(
γ+Tr

)−1
(L2(Γ)) ∩

(
γ−Tr

)−1
(L2(Γ)) ∩Ker(γ−Tr − γ+Tr),

∥τ∥2X := ∥τ∥2L2(Ω) + ∥∇ · τ∥
2
L2(Ω) .

Remark 7. The operators γ±Γ were introduced just to show the construction of X while being
extremely obvious in the fact that it is a Hilbert space (closed subspace of the Hilbert space
Hdiv(Oc ∪ Oe) made up of intersections of closed subspaces). When dealing with elements
of X we will not make a difference between these two operators and just use the notation of
restricting a function to Γ. The small abuse we make is done just to simplify notation.
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If we take M := L2(Ω), then we obtain the following result by a direct application of
Theorem 5. The following result was not found in the literature, however it has a classic
proof.

Corollary 8. Using the definitions of X and M given above, Equation (1.6) can be written
in a variational form as in (1.5), where U plays the role of p and the linear and bilinear
forms are

a : (ξ, τ) 7→
∫

Ω

σ−1ξ · τ +
∫

Γ

(n⃗e · ξ|Γ)(n⃗e · τ|Γ)
Sm

, ∀τ, ξ ∈ X,

b : (τ, q) 7→
∫

Ω

(∇ · τ)q, ∀τ ∈ X, q ∈M,

G : q 7→ 0, ∀q ∈M,

L : τ 7→
∫

∂Ω

gn⃗
Ω
· τ, ∀τ ∈M, where n⃗

Ω
: ∂Ω→ R3, is the unit outward normal vector at ∂Ω.

Furthermore, this problem is well-posed.

Proof. First, we detail the calculation which transforms (1.6) into (1.5). We multiply (1.6a)
by a test function τ ∈ X and then do an integration by parts on the second term:

∫

Ω

σ−1ξ · τ −
∫

Ω

∇U · τ = 0,
∫

Ω

σ−1ξ · τ −
∫

Oe∪Oc

∇U · τ = 0,

∫

Ω

σ−1ξ · τ +
∫

Oe∪Oc

U∇ · τ −
∫

Γ

n⃗c · τ|ΓU|Γ− −
∫

Γ

n⃗e · τ|ΓU|Γ+ =

∫

∂Ω

U|∂Ωn⃗Ω
· τ,

∫

Ω

σ−1ξ · τ +
∫

Γ

n⃗e · τ|Γ [U ]|Γ +
∫

Ω

(∇ · τ)U =

∫

∂Ω

U|∂Ωn⃗Ω
· τ,

∫

Ω

σ−1ξ · τ +
∫

Γ

n⃗e · τ|Γ
n⃗e · ξ|Γ
Sm︸ ︷︷ ︸

a(ξ,τ)

+

∫

Ω

(∇ · τ)U
︸ ︷︷ ︸

b(τ,U)

=

∫

∂Ω

U|∂Ωn⃗Ω
· τ

︸ ︷︷ ︸
L(τ)

.

The second equation in (1.5) is then recovered by multiplying (1.6b) by a test function
q ∈ M . Now, to prove well-posedness we only need to prove the inf-sup condition from
Theorem 5.

We prove that there exists a β > 0 such that for all q ∈M , there exists τ ∈ X for which
b(τ, q)/ ∥τ∥X ≥ β ∥q∥M .

Let q ∈ M := L2(Ω) we construct an element τ ∈ X as follows. Let ϕc ∈ H2(Oc) be the
solution to the following problem

−△ϕc = q, in Oc

ϕc = 0, in Γ,
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let ϕe ∈ H2(Oe) be the solution of the following problem

−△ϕe = q, in Oe

n⃗e · ∇ϕe = −n⃗c · ∇ϕc, in Γ,

ϕe = 0, in ∂Ω,

and finally let τ := −1Oc
∇ϕc − 1Oe

∇ϕe. By construction, τ ∈ X and

b(τ, q) =

∫

Ω

(∇ · τ)q =
∫

Ω

q2.

Furthermore,

∥τ∥2X = ∥∇ϕc∥2L2(Oc)
+ ∥∇ϕe∥2L2(Oe)

+ ∥q∥2L2(Ω) .

Using the Poincaré inequality we obtain the last inequality in the following calculation

∥∇ϕc∥2L2(Oc)
= −

∫

Oc

△ϕcϕc =

∫

Oc

qϕc ≤ ∥q∥L2(Oc)
∥ϕc∥L2(Oc)

≤ Cc ∥q∥L2(Oc)
∥∇ϕc∥L2(Oc)

,

where the constant Cc depends on the domainOc. We thus obtain ∥∇ϕc∥L2(Oc)
≤ Cc ∥q∥L2(Oc)

.
Similarly,

∥∇ϕe∥2L2(Oe)
=

∫

Oe

−△ϕeϕe +

∫

Γ

n⃗e · ∇ϕeϕe

=

∫

Oe

qϕe +

∫

Γ

n⃗e · ∇ϕeϕe

≤ Ce ∥q∥L2(Oe)
∥∇ϕe∥L2(Oe)

+

∫

Γ

ϕen⃗e · ∇ϕe

≤ Ce ∥q∥L2(Oe)
∥∇ϕe∥L2(Oe)

+ ∥n⃗e · ∇ϕc∥H−1/2(Γ) ∥ϕe∥H1/2(Γ)

≤ Ce ∥q∥L2(Oe)
∥∇ϕe∥L2(Oe)

+ C ′
e ∥ϕc∥H1(Oc)

∥ϕe∥H1(Oe)

≤ Ce ∥q∥L2(Oe)
∥∇ϕe∥L2(Oe)

+ C ′′
e ∥∇ϕc∥L2(Oc)

∥∇ϕe∥L2(Oe)

≤ C ′′′
e ∥q∥L2(Ω) ∥∇ϕe∥L2(Oe)

,

where C ′′′
e is a constant which depends only on the domains Oe and Oc. As a result of the

above calculations we obtain the following bound

∥τ∥X ≤
√

1 + C2
c + C ′′′2

e ∥q∥L2(Ω)

and so taking β := 1/
√

1 + C2
c + C ′′′2

e we have the desired result:

b(τ, q)

∥τ∥X
≥ β ∥q∥L2(Ω)

Remark 9. This proves that PH1(Ω) = {u ∈ L2(Ω) : u|Oe
∈ H1(Oe), u|Oc

∈ H1(Oc)} armed
with the norm ∥u∥ =

∫
Oe∪Oc

|u|2 +
∫
Oc
|∇u|2 +

∫
Oe
|∇u|2 +

∫
Γ
[u]2 is a Banach space.

35



Schwan’s equation

An important example of a solution to the stationary problem above, is the case of a spherical
cell with constant conductance Sm ≪ 1 (meaning Sm is a constant which we will make tend
to zero) and under the influence of a constant (in space and time) electric field. It shows the
maximum TMV that can be reached given an electric field magnitude. Let R0 > 0 denote
the radius of the cell, so that

Oc = BR0 := {x ∈ R3 | ∥x∥ =
√
x21 + x22 + x23 < R0}

and let Rext ≫ 1 denote the radius of the entire system, Ω = BRext . Given an electric field
E⃗ = |E|e⃗z, a boundary condition which results in this field is given in spherical coordinates
by g(θ, φ) = −|E|Rext cos(θ), where φ ∈ [0, π] and θ ∈ [0, 2π] denotes the angle of between a
point in ∂BRext = S2

Rext
and e⃗z (see Figure 1.7). An explicit solution to (1.4) can be obtained

by the method of separation of variables.

R0

Rext
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Figure 1.7: Spherical cell under the influence of a constant (in space and time) electric field
E⃗.

This type of calculation will be further detailed in the next chapter, so in this part we
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will only present the resulting formula, known as steady state Schwan’s equation [87]

[U ]Γ(θ) =

σcσe

R2
0
(Rext/R0)

2 3
(Rext/R0)3−1(

σc

R0
+ σe

R0

1+2(Rext/R0)3

(Rext/R0)3−1

)
Sm +

(
σeσc

R2
0

1+2(Rext/R0)3

(Rext/R0)3−1

)Rext|E| cos(θ),

−−−−−→
Rext→∞

3σeσc

R0
|E| cos(θ)

σc+2σe

R0
Sm + 2σeσc

R2
0

,

−−−→
Sm→0

3

2
R0|E| cos(θ),

[U ]
Schwan

Γ (θ) =
3

2
R0|E| cos(θ), (steady state Schwan’s equation).

This result is what is most often cited in the literature (both experimental and theoret-
ical, [87, 24, 19]) as it provides a simple relation between the electric field magnitude |E|
and the resulting TMV in a round cell. For now this ends the presentation of the electric
behavior of the cell membrane. We continue with the mathematical modeling of single cell
electroporation and present the current state of the art.

1.3 Modeling electroporation of the membrane
Before the presentation of the most classical mathematical models of electroporation we first
present some of the aspects of this phenomenon which motivate the theories that have been
developed.

1.3.1 Experimental observations

In the presence of an electric field, the TMV of a cell increases (in absolute value) due to
charge accumulating at each wall of the cell membrane. When the TMV is large enough
then the following changes have been observed [81] (non-exhaustive list):

1. The membrane permeability is affected. There is now entry and exit of molecules that
would not normally be able to pass through the cell membrane.

2. Membrane electrical conductivity dramatically increases. This is also referred to as
dielectric breakdown. In particular, there is an increased exchange of ions between the
cell and its environment.

3. The TMV drops to near zero. This is linked with the increased membrane electrical
conductivity.

4. Some of the lipids in the lipid bilayer are oxidized, changing the composition of the
membrane.

5. Phosphatidylserine (PS) inside the cell is externalized. This is known as PS transloca-
tion.
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6. ATP and potassium ions (K+) exit the cell and calcium ions (Ca+) enter it.

7. The osmotic balance of a cell is disrupted.

8. If the electric field is not too strong then the cell may repair its membrane (meaning
it becomes semipermeable once again) and continue on living. Otherwise, the cell may
be greatly affected by the above changes or it may suffer too much physical damage
and, as a result, die. These two scenarios are known as reversible and irreversible
electroporation respectively.

It is important to note that even though the above changes are related, they are distinct
phenomena, happening at different time scales and depending on different factors. For
instance, the increased permeability allowing transit of molecules across the membrane is an
effect that has been detected up to milliseconds after the delivery of a strong electric pulse
on a cell (for example, see [89]). In contrast, the increased conductivity of the membrane,
allowing the exchange of ions of the cell with its exterior medium, happens within a few
microseconds of the start of an electroporating electric pulse.

In practice, the way experiments are setup to observe these types of behaviors, is that
one (or a few) pulsed electric field is delivered to a bath of suspended cells. After this,
the evolution of the system of cells is studied, for example, via imaging data, and then
conclusions follow. Experimentally, the main difficulty tends to be measuring a particular
effect of electroporation on a cell. This is usually done in indirect ways as it is difficult to
see the cell membrane up close with the necessary resolution to clearly study effects on the
cell membrane that happen on the time scales of microseconds, see [33], for a more detailed
account of experimental advances in this field.

Remark 10. Contrary to the rest of the points in the above list, the last point is often difficult
to quantify or model properly as it depends on the bath surrounding the cell (relating sucrose
and ions uptake, for example), not only the membrane state. As a result, the representation
of cell death is usually not addressed in most electroporation models. This is due to it
being a biological phenomenon, and the actual mechanisms which determine cell death not
always include physical damage of the cell membrane (membrane rupture). For example, cell
apoptosis (programmed cell death) can be an indirect consequence of electroporation.

We highlight that in practice the state of the membrane is difficult to measure experimen-
tally. As a result, in most models, the electroporated state of the membrane (of increased
permeability to most molecules) is tacitly equated with its high conductivity state. However,
it is important to note that in reality membrane permeability and conductivity are two dif-
ferent concepts. Membrane conductivity is an intrinsic property of the membrane to allow
the passage of current. Membrane permeability is a property of the membrane with respect
to a specific molecule.

1.3.2 Transient aqueous pore theory

So far the most used physically based theory explaining the sudden increase in membrane
permeability as a result of electric field influence is the creation of transient aqueous pores
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inside the membrane. Through these pores, the exchange between the cell and its environ-
ment takes place. A detailed presentation of this theory (and other less successful ones) can
be found in [91]. In the next section we present a quick summary of this theory and a couple
of models which are based on it.

Types of pores

This first model of electroporation explaining the dielectric breakdown of the cell membrane
by means of the creation of membrane defects was proposed by Chizmadzhev et al. [1, 67].
The idea is to explain the dielectric breakdown of the membrane by the creation of defects
which are assumed to be circular pores that do not interact with each other (as such, they
are described only by their radius). The dynamics of a pore of radius r are then driven by
the energy associated to the creation of such a pore in the membrane. The most common
model of this energy functional (see [64, 91]) requires the distinction between two different
types of pores: hydrophilic pores (conducting pores) and hydrophobic pores (non conducting
pores).

• Hydrophilic pores are assumed to be round (of toroidal shape) with the lipid heads
of the lipid bilayer covering the outer surface of the membrane (see Figure 1.8). Of
course, their hydrophilic nature will then affect the conductivity of the membrane.

The energy associated to such a pore is given by

E1(r) := 2πγr − πσr2 +
(
C1

r

)4

, r > 0,

where γ is the linear tension of a pore (also known as pore edge-energy per unit of
length) and σ is the surface tension of the membrane (or energy per unit of surface).
The third term, represents the steric repulsion resulting from the packing of the lipid
heads lining the defect (the value of C1 used in [64] is 9.67× 10−15 [J1/4.m]). Another
way to think about it is that considering a constant linear tension γ is too simplistic
to capture the mechanical constraints on the membrane when creating a pore. In
other words, as the radius of a hydrophilic pore goes to zero, the increased membrane
distortion leads to an increased mechanical strain of the membrane also known as the
steric hindrance of the lipids making up the cell membrane (or steric repulsion).

• On the other hand, hydrophobic pores are assumed to be cylindrical in shape (see
Figure 1.8). Their non conducting nature is a result of the their shape and the fact
that lipid tails in the cell membrane are hydrophobic. The energy associated to the
creation of these hydrophobic pores is given by [30]

Ẽ0(r) = 2πhκr
I1(r/r

∗)

I0(r/r∗)
,

where h = 5 [nm] is the membrane thickness, κ = 0.05 [N.m−1] is the interface tension
between the hydrophobic lipid tails and the water, r∗ represents the characteristic
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Water

Water

(a) Hydrophobic pore.

Water

(b) Hydrophilic pore.

Figure 1.8: Simple representation of the two types of pores in a lipid bilayer.

Value Description
h 5× 10−9 [m] membrane thickness
E∗ 45 [kT] maximum energy associated to a hydrophobic pore
r∗ 0.5 [nm] maximal radius associated to a hydrophobic pore
σ 10−3 [J.m−2] energy of an intact membrane (its surface tension)
γ 1.8× 10−11 [J.m−1] edge energy of a pore
C1 9.67× 10−15 [J1/4.m] Constant coefficient in hydrophobic energy pore.
ϵw 80 dielectric coefficient of water
ϵl 2 dielectric coefficient of lipid
ϵ0 8.85× 10−12 [F.m−1] permittivity of the vacuum

Table 1.1: Parameters used in the energy functional associated to a lipid bilayer. These
values have been taken from [64].

length of these pores (it is usually around 0.5 [nm]) and I0 and I1 are modified Bessel
functions (of order 0 and 1 respectively). For the sake of simplicity, instead of the above
formula, we use the following quadratic function which appropriately approximates the
hydrophobic free energy of a pore [64]

E0(r) := E∗(r/r∗)
2, r ≥ 0,

where r∗ is the characteristic radius of at which a hydrophilic pore becomes more
energetically favorable than its current hydrophobic configuration. E∗ is the energy
associated to a hydrophobic pore of such a radius. These values can be found in
Table 1.1.

The energy of any pore of a radius r ≥ 0 is then defined by

E(r) := min(E0(r), E1(r)).

As a result, the distinction of between hydrophobic and hydrophilic pores comes down to
the size of the radius after which hydrophilic pores are more energetically favorable than
hydrophobic ones. A graphical representation of this can be seen in Figure 1.9.
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Figure 1.9: The hydrophobic pore energy r 7→ E0(r) is in red, hydrophilic pore energy
r 7→ E1(r) is in blue and the minimum of both energies r 7→ E(r) is in orange. The point at
which the hydrophilic configuration becomes more energetically favorable is r∗ = 0.5 [nm].
This energy functional is the same as the one presented in [64]. The parameters associated
to this plot can be found in Table 1.1.
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When a pore radius r is big enough, the quadratic term (due to surface tension) is
more relevant than the other two terms in E1. We can see that past a certain size it is more
energetically favorable for a pore to keep growing, than to reseal (negative slope of the energy
functional at this point). This usually is interpreted as the breakdown of a lipid bilayer by
means of rupture. It is one of the reasons that can lead to irreversible electroporation in
living cells and membrane rupture in artificial lipid bilayers.

Remark 11. The modeling of the electrical breakdown of a membrane due to membrane
rupture has been naturally inspired by the modeling of soap films and their rupture. This is
based on the assumption that a membrane pore grows like a pore in a soap film. For example,
see [95, 42].

Electric field influence on the membrane

In the presence of transmembrane potential v : Γ → R, its influence on the lipid bilayer is
taken into account by adding an additional term to each of the energy functionals E0 and E1:

E0(r, v) = E∗(r/r∗)
2 − 1

2

(
(ϵw − ϵl)ϵ0

h

)
πr2v2, ∀r ≥ 0,∀x ∈ Γ,

E1(r, v) = 2πγr − πσr2 +
(
C1

r

)4

− 1

2

(
(ϵw − ϵl)ϵ0

h

)
πr2v2, ∀r ≥ 0,∀x ∈ Γ,

where ϵ0 is the electrical permittivity of the vacuum, and ϵw and ϵl are the dielectric constants
of water and of the membrane respectively. This additional term can be interpreted as
the electrical energy of a capacitor with a permittivity equal to the change in permittivity
between the two media, see [1]. Another interpretation, which comes from [33], is that
this additional term corresponds to the Born energy of the membrane, which is the energy
associated to moving a unit of charge from a medium of high permittivity and to one with
low permittivity. In the case of an intact membrane, the Born energy would be equal to this
additional term and so the energy needed to create a pore is equated to this Born energy.

Remark 12. The energy needed to create a pore under the influence of an electric field (by
means of the resulting transmembrane voltage) is thus given by

E(r, v) = min(E0(r, v), E1(r, v)), (1.7)

see Figure 1.10 for a visual representation of this energy functional.

Pore conductivity

As hydrophobic pores allow water enter into the membrane, they affect its conductivity. The
conductivity of a pore denoted by Sp, is given by (see [30, 18]) the following formula

Sp : R→ R+
∗ (1.8a)

v 7→
1
2
πhσw

(
e

vec
kT − 1

)

e
vec
kT

(
w0e

w0−lp
vec
kT −lp

vec
kT

)
w0−lp

vec
kT

− w0e
w0+lp

vec
kT +lp

vec
kT

w0+lp
vec
kT

(1.8b)
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Figure 1.10: Energy needed to create a pore in a lipid bilayer under the influence of different
transmembrane voltages.

Value Description
lp 0.15 relative entrance length of pores
σw 1.30 [S.m−1] conductivity of aqueous solution in pores
w0 2.65 nondimensionalized energy barrier within a pore

Table 1.2: Values used in the modeling of the pore conductivity. They were taken from [18,
19]

where lp is the relative entrance length of a pore, w0 is the energy barrier inside a pore
and ec is the electric charge of an electron. Typical values of the constants in the above
expression found in the literature are in Table 1.2.

This expression is derived from the Nernst-Planck equation presented in Section 1.2.1.
In fact, (1.8) is obtained from the integration of the Nernst-Planck equation describing the
movement of ions in an orthogonal direction across the membrane. This calculation is done
in [5].

1.3.3 PCA-model

In this section we present the first model involving transient aqueous pores in the mem-
brane presented by Pastushenko, Chizmadzhev and Arakelyan in [67]. The main idea con-
sists in describing the state of the cell membrane by means of a pore density distribution
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Value Description
D 5× 10−14 [m2.s−1] diffusion coefficient
νc 2× 1038 [s−1.m−3] attempt rate density
νd 1011 [s−1] fluctuation rate per lipid molecule

Table 1.3: Parameters used in the definition of the PCA-model. Values taken from [64].

n : R+ × R+ × Γ → R such that

Nr0(t, x) :=

∫ +∞

r0

n(r, t, x)dr

is the number of pores (per unit area of the membrane) of radius bigger than r0 ≥ 0, at
time t and at position x in Γ. If there is a transmembrane voltage v : Γ → R acting on the
cell membrane, the evolution of the distribution (r, t) 7→ n(r, t) is given by a Fokker-Planck
equation [91] with an additional source term [64] representing the creation and destruction
of pores.

∂tn−D∂r
(

1

kT
n∂rE + ∂rn

)
= νc

h

kT
e−E0/(kT )∂rE0 − νdnH(r∗ − r), ∀r ≥ 0,∀x ∈ Γ, (1.9a)

n(t = 0, ·) = n0, (1.9b)
n(·, r = 0) = 0, (1.9c)

where D is an abstract diffusion constant for pores in pore-radius space (in units [m2.s−1]),
k is the Boltzmann constant, T is the temperature of the system, νc is the attempt rate
density [92] (units in [s−1.m−3]), νd is the fluctuation rate per lipid molecule (units in [s−1]),
h is the membrane thickness, H is the Heaviside’s function, and lastly n0 is the initial state
of the cell membrane.

Remark 13. Equation (1.9) is also known as the Smoluchowski equation. Strictly speaking,
this only consists of half of the model, as we still need the coupling with the model determining
the TMV. We present a way of coupling both problems (which also applies to this model) in
the next section where we present the KN-model. There is more than one way to do this, for
instance see [80] where they show a different way than the one we present here.

1.3.4 KN-model

We now present a second model based on the same transient aqueous pore theory. It is
the most commonly used model of single cell electroporation and it was first introduced by
Krassowska et al. in [18, 64].

The approach taken by Neu and Krassowska consists of making an asymptotic analysis of
(1.9) in order to reduce it to the study of an ordinary differential equation which determines
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Value Description
α 109 m2.s−1 pore creation rate coefficient
q 2.56 coefficient linked to pore creation
Nm 1.5× 109 m−2 equilibrium pore density at zero TMV
Vep 0.258 V characteristic voltage of electroporation

Table 1.4: Parameters used in the KN-model. These values were taken from [65].

the evolution of the total density of (hydrophilic) pores at each point of the cell membrane

N(t, x) :=

∫ +∞

r∗

n(r, t, x)dr, t ≥ 0, x ∈ Γ,

where r∗ is the minimal radius a hydrophilic pore can have, see Figure 1.9.
Given an initial state of the cell membrane, given by N0 : Γ→ R+, and an initial potential

electric potential U0 : Oe ∪ Oc → R, the complete single cell electroporation model is given
by the couple (t, x) ∈ R+ × Γ 7→ (N(t, x), [U ]Γ(t, x)) which is determined from the solution
to the following system of coupled partial differential equations





∇ · (σ∇U) = 0, in Oe ∪ Oc, t ≥ 0,

U(0, ·) = U0, in Oe ∪ Oc,

U|∂Ω(t, ·) = g(t, ·), in ∂Ω, t ≥ 0,

σcn⃗c · ∇U|Γ− = σen⃗c · ∇U|Γ+ , t ≥ 0,

σen⃗e · ∇U|Γ+ (t, x) = Cm∂t[U ]Γ(t, x) + Sm[U ]Γ(t, x) + Iep(N, [U ]Γ), ∀x ∈ Γ, t > 0.

(1.10a)



Ṅ = αe([U ]Γ/Vep)2

(
1− N

Nmeq([U ]Γ/Vep)2

)
, t > 0, x ∈ Γ,

N(0, ·) = Nm, in Γ,
(1.10b)

where α, q, Vep and Nm are constants whose values and interpretation can be found in
Table 1.4. There is an additional term Iep in the description of the current density crossing
then membrane. It represents the component of the current density due to electroporation
Iep, meaning the current traversing pores induced by electroporation. It is given by the
following expression [18]

Iep(N, [U ]Γ) := Sp([U ]Γ) ·N(t, x) · [U ]Γ.

where Sp : R→ R+
∗ is the conductivity of a pore as a function of the TMV from (1.8).

Remark 14. One of the reasons for the success of this model is that simulating the ODE on
N is computationally less expensive compared to the PDE it was derived from. As it turns
out, in the original transient aqueous pore model, the disparate scales in time and space
naturally occurring in the model make it difficult to obtain numerical solutions. This aspect,
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is not particular to this model, but the use of an ordinary differential equation helps manage
this problem. In fact, it is a key feature of this phenomenon in general. For example, PEF
treatments typically last less than 100 [µs], yet membrane permeability can easily last several
seconds (and even minutes) after the PEF treatment is over.

As this model is derived from the original model proposed by Chizmadzhev el al., it
inherits from that model. For example, just like before, all pores are assumed to behave as a
singular toroidal default in a sea of lipids, as a result they are independent from each other.
In other words, interaction between pores is non-existent in this model.

Additionally, the long life of pores is driven by the shape of the energy valley in the pore
energy functional (1.7) (see Figure 1.10). Qualitatively, the model predicts the following
chain of events. First, the PEF treatment increases the cell’s TMV. Then, the number of
pores in the cell membrane increases as a result. This discharges the membrane TMV (near
the regions of the membrane where pores were created), and so the pore sealing mechanism
enters into play. Pores (hydrophilic) decrease in size down to a certain radius, where they
remain as further sealing would be more energetically costly due to steric repulsion. This
is the energy valley which can be seen in the energy functional in Figures 1.9 and 1.10.
Eventually, because of thermal fluctuations, these pores trapped in said configuration manage
to completely reseal (this means they turn into hydrophobic pores and then close up).

Since the introduction of this model, other models have been developed, partly to take
into account aspects of electroporation that are not captured by this model, and partly to
further understand or to verify the validity of this model.

1.3.5 LP-model (phenomenological) to account for lipid oxidation

Even though the KN-model describes quite well the initiation of the electroporation in a cell,
it fails to describe the influence of pulse repetition rate and the medium conductivity influence
as observed by Mir’s group et al. [75]. Poignard’s group proposed a phenomenological model,
called here LP-model, to account for the lipid oxidation, pore creationdue to high electric field
and the change in lipid configuration [46, 37]. The main feature of the LP model consists in
reducing the number of parameters of the KN-model and adding a reaction-diffusion equation
to describe the lipid oxidation due to the strong electric field.

In this model, the state of the membrane is described via two functions

X1, X2 : R+ × Γ → [0, 1],

which describe the degrees of porosity and permeability (to some particular test molecule)
of the cell membrane, respectively. These two membrane parameters will follow different
models. The membrane porosity follows, what is known and as a sliding door model, and
which naturally mimics the expected behavior of pores in a membrane being created and re-
sealing. The membrane permeability follows a reaction-diffusion partial differential equation
which models the alteration (oxidation) of phospholipids in the membrane and their lateral
diffusion inside it.
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Let β1, β2 : R → [0, 1] be two smooth sigmoid functions (their explicit formula is not
necessary to present the model, but they can be found in [46]). The LP-model takes the
following form





△U = 0, in Oe ∪ Oc, t ≥ 0,

U(0, ·) = U0(·), in Oe ∪ Oc,

U|∂Ω(t, ·) = g(t, ·), in ∂Ω,
σcn⃗c · ∇U|Γ− = σen⃗c · ∇U|Γ+ , in Γ, t ≥ 0,

σen⃗e · ∇U|Γ+ = Cm∂t[U ]Γ + Sm[U ]Γ + (X1S1 +X2S2)[U ]Γ, in Γ, t > 0,

(1.11a)

∂tX1 =
β1([U ]Γ)−X1

τ1
, in Γ, (1.11b)

∂tX2 − dm△ΓX2 = (β2(X1)−X2)

(
1

τ2,perm
+ 1{β2(X1)≥X2}

(
1

τ2,rec
− 1

τ2,perm

))
, in Γ,

(1.11c)
X1(0, ·) = 0, X2(0, ·) = 0, (1.11d)

where △Γ denotes the Laplace-Beltrami operator on Γ, dm is the lateral diffusion coefficient
of the lipids inside the membrane, S1 and S2 are the conductivites associated to a porated
and permeable membrane respectively, τ1 is the characteristic time of the poration process,
τ2,perm is the characteristic time of the permeabilization of the membrane, and τ2,rec is the
characteristic recovery time of the membrane.

Remark 15. This model explicitly differentiates between membrane conductivity and per-
meability. This distinction, in addition to the incorporation of membrane diffusion, helps
explain a phenomenon reported in [75, 4, 45] where PEF treatment has a higher efficiency
at lower frequency of pulse repetition. We denote this phenomenon as pulse accumulation.

1.3.6 Molecular dynamics

Further confirmation for the aqueous pore theory has been shown by means of molecular
dynamics simulations. These are sophisticated numerical simulations which model a lipid
bilayer and its surrounding environment by considering all the molecules making up the
system. Due to the huge computational cost of this approach, only small patches of a lipid
bilayer can be simulated, and for a short amount of time. The usual characteristic length
of the simulation box is on the order of 10 [nm] and the length of time simulated tends to
be smaller than 100 [ns]. Under these constrained conditions, Tarek, Vernier, Tieleman and
others (for example, see [88, 11, 83, 81]) have shown that it is possible to create aqueous
pores in the membrane with a strong enough electric field influence. They have also shown
the active transport of molecules across the membrane through an aqueous pore (such as the
electrotransfer of siRNA for nano-second PEF treatment [11]).

For the most part this approach is particularly useful as it presents an extremely rich
representation of the membrane and manages to show pore creation naturally appearing from
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simulations. Most other models, rely on unconfirmed, "cookie-cutter" notions (description
taken from [91], in regards to the first energy model proposed for the aqueous pore theory),
which are difficult validate (even though they may be intuitive to the point of being easily
convincing).

1.4 Extensions and Limitations

1.4.1 Extensions

The above list of models is not exhaustive, however it faithfully represents the most important
ideas that other approaches use to model the electroporation phenomenon. For example,
Miklavcic and Towhidi (see [57]), proposed a model where pore creation is described as a four-
stage process. Each stage is modeled by a density (like in the KN-model), all of which form
a system of ordinary differential equations which is coupled to the usual Laplace equation
which describe the TMV. Another example comes from [41, 49], where they construct a
model based on the KN-model above. In it, the evolution of the radii of pores created
by electroporation is taken into account, however their evolution is described by a system
of ordinary differential equations as opposed to using the Smoluchowski partial differential
equation (as in the PCA-model).

Instead of making a detailed account of all the existing models and their variations,
we limited ourselves to just the three models presented above. However, for the interested
reader, many other recent models can be found in [72].

1.4.2 Limitations

So far, among all the proposed models, there is no clear universally accepted model of elec-
troporation. In fact, among the three approaches to modeling electroporation presented here
(PCA-model, KN-model, LP-model and molecular dynamics), all have different problems or
limitations, some of which we list below.

PCA-model:

• The interaction between pores is neglected as pores are only characterised by their
radii and are independent to one another.

• The notion of hydrophobic pore is difficult to validate from an experimental point of
view. It is not clear if this is a pertinent notion when modeling electroporation.

KN-model:

• It requires many parameters, some of which are difficult to measure (for example, N0

and r∗). Even the expression of Sp depends on parameters which are known only up
to order of magnitude.
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• It contains parameters with no clear physical interpretation, like q and α, which have
to be fitted to experimental data.

• The dynamics of creation of pores involves the characteristic TMV of electroporation
Vep (Vep ∼ 0.256 [V] in the literature [64, 65]). This is an artifact, result of the
asymptotic analysis done to the Smoluchowski equation and it does not have a solid
physical basis. The characteristic TMV of electroporation should ideally be expressed
as a function of the intrinsic physical properties of the membrane. It should not itself
be part of the model describing the membrane.

• It is based on the original model proposed by Chizmadzhev et al. and therefore inherits
from its limitations.

• Some experimentally observed behaviors, like pulse accumulation, are not captured by
this model.

• The mechanism by which it explains the long time scale of the duration of high mem-
brane permeability is in contradiction with what we actually see in molecular dynamics
simulations [94, 11]. Basically, the KN-model predicts that after the membrane TMV
discharges there is rapid (hydrophilic) pore resealing until a certain radius at which
pores remain open due to the energy rearrangement cost to go back to a hydropho-
bic pore configuration. This cost is eventually paid due to thermal fluctuations, thus
giving the long duration to the electroporated state of the membrane. However, molec-
ular dynamic simulations do not seem to replicate this behavior. In fact, (hydrophilic)
pores tend to close up within nano-seconds of membrane discharge.

LP-model:

• It is phenomenological in nature and therefore it cannot be predictive. In other words,
an important number of parameters of this model have to be fitted to each experiment.

• Even though this model does fit experimental data (at least qualitatively), it lacks
some physical basis.

Molecular dynamics simulations:

• The results coming from these simulations are rich and detailed, however, this approach
is not scalable to bigger patches of lipid bilayers.

• The constraints due to the small size of the simulation box result in unrealistic physical
scenarios. In fact, a consequence of this can be seen in the strength of the electric
field needed to create pores (it differs from experimental data by two to three orders
of magnitude). The results from these numerical experiments are therefore mostly
qualitative.
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• Regardless of the points above, experimentation with this model requires consider-
able computationally resources which are not easily available and which require some
sophisticated engineering to use.

This concludes the presentation of the current state of the art in electroporation modeling.
All of the above limitations motivated the need for another model. We present this new model
in the next chapter.
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Chapter 2

Phase-field model of bilipid membrane
electroporation

This chapter is an excerpt from our article [36] (Sections 1 to 5).

2.1 Introduction
Electroporation is a microscopic phenomenon that consists in imposing high and short elec-
tric pulses to biological cells in order to weaken the structure of the plasma membrane.
Biologically active molecules that otherwise cannot diffuse through the membrane (e.g. hy-
drophilic compounds such as bleomycin or DNA) may then spread through the cell mem-
brane. If the pulses are short enough the process is reversible: the membrane is not destroyed
and reseals within minutes. The cell therefore can internalise external active molecules with-
out losing its viability. The interest for the phenomenon has increased constantly until
recently with the emergence of therapeutic strategies based on it, in oncology and also in
cardiology.

Even though the phenomenon has been discovered in the late 60’s, the ways the mem-
branes become permeable by the effect of an intense electric field is still not well understood.
In the late 90’s, the teams of Chizmadzhev and Weaver [16, 91] proposed a description
of the emergence of water pores in a sea of lipids, under very constraint geometries (the
pores are cylindrical). Then Krassowska and Neu proposed a Smoluchowski equation for
the population of cylindrical pores n(r, t) of radius r > 0 at the time t, and they derived
an asymptotic analysis to link the transmembrane potential to the total density of pores
N(t) =

∫
R+ n(r, t)dr, which satisfies an ordinary differential equation [64, 18]. From these

times, only slight modifications of the models have been proposed by Weaver [93, 79]. Ka-
vian et al. proposed then a phenomenological version of the Krassowska and Debruin model,
by limiting the number of parameter [37]. Leguèbe et al. proposed in [46] an extension by
introducing the surface reaction-diffusion of oxidised lipids. This last model seems closer to
the observations but it is phenomenological and lacks of any physical basis.

The aim of this paper is to propose a new model of membrane electroporation that
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combines membrane water content (initially 0 for non porated membrane) and transmem-
brane voltage. Our approach enables to make a link between the physics-based membrane
free-energy approaches of Chizmadzhev and Weaver and the reaction diffusion model of the
phenomenological model of Leguèbe et al. In particular, our model, which consists in Allen-
Cahn equation for the water content of the membrane, and a nonlocal differential equation
on the transmembrane voltage (TMV) is a generalisation of the previous approaches in the
context of phase ordering kinetics.

More precisely, given the free-energy E of the membrane as a functional depending on the
water content of the membrane ϕ and the transmembrane voltage v, our model of membrane
electropermeabilisation is a system of time evolution non local equation on the membrane Γ:





∂tϕ = −α∂E
∂ϕ
∀x ∈ Γ,∀t > 0,

Cm(ϕ)∂tv + (Sm(ϕ) + Λ)v = G, ∀x ∈ Γ,∀t > 0,

v|t=0 = v⋄, ϕ|t=0 = ϕ⋄, on Γ,

(2.1)

where ∂E
∂ϕ

is the Fréchet derivative of the functional E with respect to ϕ, Λ a pseudodifferential
elliptic operator of order 1, which is a combination of Dirichlet to Neumann maps and Cm

and Sm the capacitance and conductance of the membrane. This full model is presented in
details in Section 2.3 but before that, we will start in Section 2.2 to present the choice of the
free-energy E as a function of ϕ and v. In particular we somehow generalise the approach
of Chizmadzhev and Weaver, getting rid of the geometrical cylindrical assumption. We
then study the phase ordering Allen-Cahn model for the evolution of water content in the
membrane. Section 2.3 focuses on the electric part of the model, that is the non local
equation on the TMV.

We perform a fine analysis of the involved Dirichlet-to-Neumann nonlocal operators in
two simple configurations (a spherical membrane and a flat periodic membrane) that enables
us to compare the time constants of the phenomenon in spherical and flat membranes. These
two simple geometrical configurations are of high importance because on the one hand, the
shapes of cell in suspension and lipid vesicles in suspension are close to a sphere, while in
some experiments flat film of lipid is used to investigate electroporation [22]. In addition
most of the dynamic simulations on electroporation are performed in a flat geometrical
setting [85, 88, 11, 84]. Section 2.4 is devoted to the linear stability analysis of the coupled
problem. In Section 2.5, we present the choice of the parameters. Interestingly, we are able
to make a link between our approach and the approach of Chizmadzhev and Weaver in terms
of free-energy of the membrane. We also present the models of the membrane capacitance
and conductance. The concluding section presents the perspectives of this research.
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2.2 A mathematical model of membrane electroperme-
abilization

2.2.1 Free-energy of membrane subjected to a voltage

The membrane is considered as a combination of two mutually exclusive phases (lipid mem-
brane and water filled pores) and its state is described through the continuous phase order
parameter x ∈ Γ 7→ ϕ(x) ∈ [0, 1], see Cahn [13, 10]. This order parameter is somehow related
to the volume fraction of water that enters the membrane thanks to electroporation. The
state ϕ = 0 represents the ideal pure lipid phase and ϕ = 1 the ideal pure water phase. The
free-energy E of the membrane subjected to a transmembrane voltage v is the functional
energy, the so-called Gibbs energy, given in [39]

E(ϕ, v) = κ

2

∫

Γ

|∇ϕ|2 ds+
∫

Γ

Wm (ϕ) ds− 1

2

∫

Γ

Cm(ϕ)v
2 ds, (2.2)

where κ > 0 is linked with the interfacial tension [28] and Wm is the double-well potential
energy that describes the stable states of the membrane. The term |∇ϕ|2 regularises ϕ and
helps control the thickness of the water-lipid interface, as explained by Bray [10].

From the physical view point, the gradient term in (2.2) describes the fact the interfaces
water-lipid cost energy, and then two neighbouring pores will tend to merge to minimize
the energy. This term enables thus to describe the interactions between neighbouring pores,
which was not described by Weaver and Chizmadzhev approach. The term 1

2
Cm(ϕ)v

2 is the
electrostatic energy. It is worth noting that Weaver and Chizmadzhev considered the same
electrostatic energy, which affects the potential energy to favor the phase ϕ = 1 as described
by Figure 2.1. Weaver and Chizmadzhev proposed to use a linear capacitance Cm(ϕ) = Cl(1−
ϕ) +Cwϕ, Cl,w being the capacitance of pure lipid and water phases respectively [1, 16, 91].
However the linear stability analysis provided in Section 2.4 shows that linear capacitance
prevents the emergence of instabilities, as observed in a different context by Fraggedakis et
al. in [28]. In this paper we choose to use the mixture model of Looyenga [52]

Cm : ϕ 7→ ϵ0
h

([
ϵ
1/3
l + ϕ(ϵ1/3w − ϵ1/3l )

]3
ϑ1(ϕ) + ϵwϑ2(ϕ)

)
, (2.3)

where

ϑi(ϕ) =
1 + tanh(ki(ϕ− ϕth

i ))

2
, i = 1, 2,

are smooth cutoff functions. In the following, we set k1 = −15, k2 = 13 and ϕth
1 = ϕth

2 = 1.
As the water volume fraction is not conserved (defects can be created and disappear from

the membrane), we consider the non-conserved dynamics associated to this energy functional
(also called model-A by Bray [10]). The evolution of ϕ is determined by the L2–gradient flow
associated with the energy functional above. It corresponds to the Euler-Lagrange equation
for the energy ϕ 7→ E(ϕ, v). In other words, for a given kinetics coefficient α > 0 – also called
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Figure 2.1: Influence of a given constant transmembrane voltage (TMV) v on the potential
energyWm(ϕ)−Cm(ϕ)v

2/2. One can see that the TMV tends to tilt the double-well potential
to favor the phase ϕ = 1, favoring thus the entry of water in the membrane. The parameters
are given in Tables 2.1 and 2.2.
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phase field mobility – the order parameter ϕ satisfies the following Allen-Cahn equation on
the membrane surface Γ [3, 10, 13]:

∂tϕ−D0∆Γϕ = −α∂Wm

∂ϕ
(ϕ) +

α

2

∂Cm

∂ϕ
(ϕ)v2, ∀t > 0,

ϕ(0, ·) = ϕ0(·),
whereD0 := ακ is the lateral diffusion coefficient of lipids in [m2.s−1], and α is in [m2.J−1.s−1].

2.2.2 On the choice of the double well potential Wm

The simplest double well potential1 considered in Bray’s book is ϕ→ ϕ2(1− ϕ)2, for which
the pure phases ϕ = 0 and ϕ = 1 are global minima and the mixed phase ϕ = 1/2 is the
local maximum [10]. The energy barrier to pass from the phase ϕ = 0 to the phase ϕ = 1
is then defined as the height Wm(1/2) − Wm(0). Even though the qualitative behavior is
included in this simple form of potential, it is necessary to introduce a parametrisable double
well potential to make the link with the free-energy introduced by Weaver and Chizmadzhev
[16, 91].

Throughout the paper, the double-well potential Wm is set as :

Wm(ϕ) := a1ϕ
2(1− ϕ)2 + a2(ϕ+

1

2
)(ϕ− 1)2, ∀ϕ ∈ [0, 1], (2.5)

where a1 > 3
2
|a2|, so that Wm satisfies

Wm(0) =
a2
2
, Wm(1) = 0, W ′

m(1) =W ′
m(0) = 0, W ′′

m(0) > 0, and W ′′
m(1) > 0.

The above energy potential describes the fact that the pure lipid (ϕ = 0) and pure water
(ϕ = 1) phases are the only two stable phases. The energy barrier to pass from lipid to
water equals Wm(1/2) − a2/2. Note that unlike the symmetrical potential of Bray’s book,
the energy barrier to pass from the pure water phase to the pure lipid phase equalsWm(1/2).
Thus it requires more energy to pass from the pure water to the pure lipid phase than the
opposite. Section 2.5 is dedicated to a fine analysis of the energy to choose the parameters
a1 and a2 in adequation with Weaver and Chizmadzhev’s work.

It is however important to keep in mind that a2 mainly controls the value of the first local
minimum (Wm(0) = a2/2) and a1 the size of the local maximum (at ϕ0 := 1/2− 3a2/(4a1))
which is the height of the energy barrier to pass from 0 to 1.

The following lemma states the well-posedness of the phase-field model of the membrane
submitted to a given transmembrane voltage.

Lemma 16. Let s ≥ 3, T > 0, Cm ∈ Cs+2(R), v ∈ C([0, T [, Hs(Γ)) and ϕ⋄ ∈ Hs(Γ). Then
there exists a unique mild solution ϕ ∈ C([0, T ], Hs(Γ)) to

∂tϕ−D0∆Γϕ = −4αa1ϕ(ϕ− 1)(ϕ− 1/2 +
3a2
4a1

) +
α

2
C ′

m(ϕ)v
2, in ]0,+∞[×Γ, (2.6a)

ϕ|t=0 = ϕ⋄, on Γ. (2.6b)
1It is the polynomial with the lowest degree that describes the phase separation phenomenon.
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Even though the result of the above lemma is quite standard, we give the proof to make
the paper self-contained.

Proof. We use the semi-group theory combined with Picard fixed-point argument to prove
this result. Let S(t) be the contractive semigroup in Hs(Γ) generated by the operator
f 7→ D0∆Γf , then we can rewrite our problem in its mild formulation as

ϕ(t) = S(t)ϕ⋄ +

∫ t

0

S(t− τ)F (τ, ϕ) dτ

where

F (τ, ϕ) := F1(ϕ) + F2(τ, ϕ),

F1(ϕ) := −4αa1ϕ(ϕ− 1)(ϕ− 1

2
+

3a2
4a1

),

F2(τ, ϕ) :=
α

2
C ′

m(ϕ)v
2.

We know that ϕ 7→ F (τ, ϕ) is a Lipschitz function (uniformly on [0, T ]) on bounded sets of
Hs(Γ). In fact, Hs(Γ) is an algebra given that s ≥ 3 and dim(Γ) = 2 and so F1 is Lipschitz
on bounded sets (it is a polynomial). A similar argument shows that ϕ 7→ α

2
C ′

m(ϕ)v
2 is

Lipschitz if ϕ 7→ C ′
m(ϕ) is Lipschitz on bounded sets of Hs(Γ), which occurs thanks to the

regularity of Cm.
Let E := C0

(
[0, T ], Hs(Γ)

)
provided with the following norm

∥u∥E := sup
τ∈[0,T ]

e−βτ ∥u(τ)∥Hs(Γ) , where β > 0,

and consider the following function

Ψ : E → E

ϕ 7→ S(t)ϕ⋄ +

∫ t

0

S(t− τ)F (τ, ϕ)dτ.

Let C be a generic constant which takes other constants into account then for ϕ1, ϕ2 ∈
B(0, R) ⊂ E ,

∥Ψ(ϕ1)−Ψ(ϕ2)∥Hs(Γ) ≤
∫ t

0

∥F (τ, ϕ1)− F (τ, ϕ2)∥Hs(Γ) dτ,

≤ C

∫ t

0

eβτe−βτ ∥ϕ1 − ϕ2∥Hs(Γ) dτ,

≤ C
1

β
eβt ∥ϕ1 − ϕ2∥E ,

and so
∥Ψ(ϕ1)−Ψ(ϕ2)∥E ≤

C

β
∥ϕ1 − ϕ2∥E ,

where the constant C depends on v, Oe and Oc. By taking β large enough, Ψ is a contractive
map and we can conclude the proof.
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2.2.3 Qualitative properties of the membrane order parameter at
null TMV

This section is devoted to the membrane order parameter at null TMV. The aim is twofold.
On the one hand, we exhibit the qualitative properties of our model in a general geometric
setting, thanks to the results of Farina et al. [26]. On the other hand, we apply the results
of Alfaro et al. [2] and the references therein for the case of a flat torus – Γ = (R/Z)2 – to
obtain the orders of magnitude of the model parameters – a1, a2 and α, with D0 being fixed
to the lateral diffusion of the lipids.

In this section we summarize the existing mathematical results on the solution to Prob-
lem (2.6) (with v ≡ 0). There is an extensive literature studying the qualitative mathematical
properties of (2.6). One can cite, for example [3, 25, 2]. All the following results are related
to the following equation

∂tϕ−D0∆Γϕ = −4αa1ϕ(ϕ− 1)(ϕ− 1/2 +
3a2
4a1

), in ]0,+∞[×Γ, (2.7a)

ϕ|t=0 = ϕ⋄, on Γ. (2.7b)

General qualitative properties of the order parameter ϕ

Property 17. If the initial state of the membrane ϕ⋄ is smooth enough (C2(Γ) for example)
and verifies 0 ≤ ϕ⋄(s) ≤ 1 for almost any s ∈ Γ then, the solution ϕ to (2.7) satisfies the
same bounds

0 ≤ ϕ ≤ 1, a.e on (0,+∞)× Γ.

The next property is due to Farina et al., see [26]. To reference it, we first need to
introduce the following notion of stability.

Definition 18. We say that a stationary solution ϕ to (2.7) is stable if
∫

Γ

(
κ|∇ξ|2 +W ′′

m(ϕ)ξ
2
)
dx ≥ 0

for every smooth function ξ ∈ C∞(Γ). This quadratic form is called the second variation of
the energy functional (2.2) (with v ≡ 0) .

Property 19. Let Γ be a smooth closed compact manifold (with nonnegative Ricci curvature),
then the only stable solutions of (2.7) are constant.

Remark 20. This means that for the considered potential Wm, any porated membrane will
either reseal to a non porated state (ϕ ≡ 0) or disappear (ϕ ≡ 1).

Asymptotic behavior of the order parameter in the case of a flat membrane

Assume in this paragraph that Γ = (R/Z)2. The following property is due to Theorem 1.3
due to Alfaro et al. [2]. Before stating the result, we first introduce some notations.
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Notation 21. Let (an)n∈N, (bn)n∈N ∈ R be 2 sequences of R.
• We write

an ≲ bn

if there is a constant C > 0 such that for all n ≥ 0, we have an ≤ Cbn.
• Similarly, we write

an ≪ bn

if there is a sequence εn →n→+∞ 0 such that an ≤ εnbn.

Property 22. Assume that Γ = (R/Z)2. Let L > 0 denote the characteristic length scale
of Γ and let (D0,n)n∈N, (a1,n)n∈N, (a2,n)n∈N be three sequences strictly positive sequences. Let
ϕn be the solution to the rescaled (in time) equation (2.7)

∂τϕn −∆Γϕn =
−4a1,nαL2

D0,n

ϕn

(
ϕn − 1

)(
ϕn −

1

2
+

3a2,n
4a1,n

)
, (2.8)

ϕn(t = 0, ·) = ϕ⋄, (2.9)

where τ := L2

D0,n
is the rescaling time.

Assume that (D0,n)n∈N, (a1,n)n∈N and (a2,n)n∈N satisfy the following asymptotic behaviour

3a2,n
4a1,n

≲

√
D0,n

4a1,nαL2
≪ 1.

1. Given any smooth initial condition ϕ⋄ ∈ [0, 1], the typical profile of a solution to (2.8)
involves different regions where ϕn ≃ 1 and ϕn ≃ 0 and transition interfaces between
them of size

δn ≲

√
D0,n

4a1,nα
[m]. (2.10)

The time needed for the solution associated to ϕ0 to take above description is

Tn ≲
1

4a1,nα

∣∣∣∣log
(

D0,n

4a1,nαL2

)∣∣∣∣ [s]. (2.11)

2. The evolution of the transition interfaces can be described by the evolution of the level
set {x ∈ Γ | ϕ(x) = 1/2}. In the asymptotic regime described above, the motion of this
interface is primarily determined by mean-curvature flow [25, 2].

Remark 23. In this work, we will use Inequality (2.10) to determine the parameters of our
model. We are convinced that this is a reasonable approximation since the pores sizes are
very small compared to the size of the cell (the cell radius is around 10 − 50 [µm] and the
pore radii smaller than 50 [nm]). It is therefore natural to consider the membrane as a flat
surface when studying the development of a single pore.
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Some remarks on the non flat case

The rigorous mathematical derivation of the above results for the non flat case is out of
the scope of the present work. However, we want to present the main ideas that need to
be developed in order to adapt the proof of Alfaro et al. [2]. Let Γ be a smooth compact
manifold of dimension 2 without boundary embeddded in R3. We consider the Allen-Cahn
equation as written in Alfaro et al.

∂tu
ε −∆Γu

ε =
1

ε2
f(uε) := − 1

ε2
uε(uε − 1/2)(uε − 1), (2.12a)

uε|t=0 = u0. (2.12b)

1. The problem without diffusion is obviously the same as in the flat case and thus
the sub- and super solutions w±

ε of Problem (2.12) in Γ×]0, 4ε2| ln(ε)|[ –since here
µ = f ′(1/2) = 1/4– are given by

w±
ε (x, t) = Y

(
t/ε2;u0(x)± ε2C6

(
et/(4ε

2) − 1
))

,

where Y is the solution to the ODE with parameter ξ given in Eq. (3.5) of [2]:
{
∂τY (τ, ξ) = f(Y (τ, ξ)), τ > 0,

Y (τ = 0, ξ) = ξ.

Then one infers

(∂t−∆Γ)w
±
ε −

1

ε2
f(w+

ε ) =
1

ε2
(∂τY−f(Y ))+∂ξY

(
C6

4
et/(4ε

2) −∆Γu0 −
∂2ξY

∂ξY
|∇Γu0|

)
∂ξY.

One just has to modify the constant C0 defined in Eq. (1.8) of [2] into

C0 := ∥u0∥C0(Γ) + ∥∇Γu0∥C0(Γ) + ∥∆Γu0∥C0(Γ),

to show that w+
ε is a supersolution, similarly to the proof of Lemma 3.8 of [2]. Therefore

the time of generation of the interface is of order ε2| ln(ε)| as in the flat case. This
means that Inequality (2.11) of the above Property 22 should also hold in this more
general setting.

2. In order to get formally the equation of the motion of the interface, we can proceed
similarly as in de Mottoni and Schatzmann [61], by replacing the Euclidean distance
Λ0 of Eq. (1.11) of [61] by the distance distg associated to the metric tensor g as defined
in [44]. Concretely, let Mt := {x ∈ Γ|uε(x, t) = 1/2}, Γ+

t := {x ∈ Γ|uε(x, t) > 1/2},
and Γ−

t := {x ∈ Γ|uε(x, t) < 1/2}, then the signed distance to Mt is given by

dg(x, t) =

{
distg(x,Mt), x ∈ Γ+

t

−distg(x,Mt), x ∈ Γ−
t .
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Performing formally the same asymptotic expansion as in [61], we get the following
equation of the motion of the interface Mt

∂tdg −∆Γdg = 0, (2.13a)
|∇Γdg| = 1, (2.13b)
dg|t=0 = distg(x,M0). (2.13c)

It is worth noting that unlike the flat case, the motion is no longer driven by the mean
curvature. This means that the second point of Property 22 should change in this more
general setting.

3. Since we are considering only a compact smooth manifold Γ, the estimate of the thick-
ness of the interface remains of size O(ε). Indeed, first note that the profiles U0 and
U1 given by Eqs. (2.5) and (2.15) of [2] are exactly the same. Then the solution uε is
approximated in the vicinity of the interface M0 by

uε = U0(dg(x, t)/ε
2) + εU1(dg(x, t)/ε

2) + · · ·

One can then define the function H± given in page 543 of [2] similarly, by modifying
the Euclidean distance d0(x) into distg(x,M0) and the proof of Theorem 1.3 given at
page 543 of [2] should follow similarly. This means that Inequality (2.10) of the above
Property 22 should also hold in this more general setting.

In the next section, we present the equation satisfied by the transmembrane potential.

2.3 Transmembrane voltage in a membrane

2.3.1 Electric field around membranes

Throughout the paper, Γ is a closed 2D-surface without boundary. We denote by Ω the
bounded domain of R3 in which Γ is embedded, and let Oe and Oc be the 2 connected
components subsets of Ω and separated by Γ. Let σe (resp. σc ) be the constant conductivities
of Oe (resp. Oc), and let Cm : ϕ→ Cm(ϕ), Sm : ϕ→ Sm(ϕ) be the surface capacitance and
conductance of Γ, strictly positive bounded smooth functions of the order parameter ϕ.

Let v⋄ be a regular enough function of Γ. We assume that it belongs at least to H1(Γ).
The electric potential U around the membrane Γ verifies the following partial differential
equation (PDE)

[U ]Γ(t = 0, ·) = v⋄(·), on Γ, (2.14a)
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and for any time t > 0:




∇ · (σe∇U) = 0, in Oe,

∇ · (σc∇U) = 0, in Oc,

U(t, ·) = g(t, ·), on ∂Ω,
σcn⃗c · ∇U|Γ− + σen⃗e · ∇U|Γ+ = 0, on Γ,

σen⃗e · ∇U|Γ+ = Cm(ϕ)∂t[U ]Γ + Sm(ϕ)[U ]Γ, in Γ,

(2.14b)

where [U ]Γ = U|Γ− − U|Γ+ and U|Γ± : x 7→ lim
τ→0+

U(x∓ τ n⃗(x)) and n⃗(x) := n⃗c(x) denotes the

unitary normal vector to Γ directed towards Oc at any point x ∈ Γ, while n⃗e(x) = −n⃗c(x) is
the normal vector to Γ directed towards Oe.

Remark 24. It is worth noting that only the initial value of the transmembrane voltage
[U ]Γ(t = 0, ·) is required and not the value of the initial potential everywhere in the domain.
This is due to the fact that in the domains Oe and Oc, we have neglected the displacement
currents and only the conductive currents are considered, leading to an elliptic equation in
the inner and outer domains.

Interestingly, the above volume PDE can be rewritten in terms of Dirichlet-to-Neumann
operators. Denote by Λc,Λe and Λo the three following Dirichlet-to-Neumann operators

Λc : H
1/2(Γ)→ H−1/2(Γ)

f 7→ n⃗c · (σc∇vc)|Γ−

,where vc is the solution to

{
∇ · (σc∇vc) = 0, in Oc,

vc|Γ = f,

(2.15a)

Λe : H
1/2(Γ)→ H−1/2(Γ)

f 7→ n⃗e · (σe∇ve)|Γ+
,
, where ve is the solution to





∇ · (σe∇ve) = 0, in Oe,

ve|Γ = f,

ve|∂Oe\Γ
= 0,

(2.15b)

Λo : H
1/2(∂Ω)→ H−1/2(Γ)

g 7→ n⃗e · (σe∇v)|Γ+

, where vb is the solution to





∇ · (σe∇vb) = 0, in Oe,

v|Γ = 0,

v|∂Ω = g.

(2.15c)
Following [37], it is equivalent to solve the volume equation (2.14) for U or the following
nonlocal equation on the surface Γ for the transmembrane voltage (TMV), v = [U ]Γ,

Cm(ϕ)∂tv + (Sm(ϕ) + Λ)v = G, (2.16a)
v(t = 0, ·) = v⋄(·), (2.16b)

where

Λ = Λc(Λe + Λc)
−1Λe (2.16c)

G = Λc(Λe + Λc)
−1Λog. (2.16d)
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Remark 25 (Invertibilty of Λe + Λc). The fact that the operator Λe + Λc is invertible is
proven in Kavian et al. ( see Lemma 8 of [37]). Its comes from the fact that Λe is invertible
that Λc is a non negative self-adjoint operator.

Proposition 26. Problem (2.16) is equivalent to Problem (2.14) in the following sense:

• If U is solution to (2.14), then [U ]Γ : R+ × Γ→ R is solution to (2.16).

• If v solution to (2.16) then the piecewise function Ũ : R+ ×Oe ∪ Oc → R, defined on
Oe as the solution to





∇ ·
(
σe∇Ũ

)
= 0, ∀x ∈ Oe, t ≥ 0,

Ũ|∂Ω = g, ∀t ≥ 0,

σe∂neŨ|Γ+ = Cm(ϕ)∂tv + Sm(ϕ)v, ∀x ∈ Γ, t > 0,

Ũ|Γ+ (0, ·) = −(Λe + Λc)
−1(Λ0g + Λcv⋄), ∀x ∈ Γ.

and defined on Oc as the solution to
{
∇ ·

(
σc∇Ũ

)
= 0, ∀x ∈ Oc, t ≥ 0

Ũ|Γ− = (Λc + Λe)
−1(Λev − Λ0g), ∀x ∈ Γ, t ≥ 0.

is solution to (2.14).

Proof. This proof is taken from [37]. Using the definition of our Dirichlet-to-Neumann
operators we can see that U is a solution to (2.14) if and only if it verifies the following
equations

{
−ΛcU|Γ− = Cm(ϕ)∂t[U ]Γ + Sm(ϕ)[U ]Γ,

ΛcU|Γ− + ΛeU|Γ+ + Λ0g = 0.

Applying the operator (Λe +Λc)
−1 to the second equation and rearranging the terms results

in the following relation

−U|Γ− = −(Λc + Λe)
−1(Λe[U ]Γ − Λ0g).

Injecting this expression into the first equation shows the first point, with initial condition
v⋄ := [U0]Γ. The second point follows similarly.

Well-posedness of the transmembrane potential

The following result extends the well-posedness results of Kavian et al. [37] to time-varying
and space dependent capacitance.
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Lemma 27. Let T > 0, s ≥ 3, β0, β1 ∈ (0, 1], G ∈ Cβ0([0, T [, Hs(∂Ω)) and ϕ ∈ C1,β1([0, T ], Hs(Γ)).
Then for every initial condition v⋄ ∈ L2(Γ) there exists a unique classical solution

v ∈ C1([0, T ], L2(Γ)) ∩ C((0, T ], D(Λ))

to

Cm(ϕ)∂tv + (Sm(ϕ) + Λ)v = G

v(t = 0) = v0.

Proof. This result is a direct application of Theorem 6.1 and Theorem 7.1 from Pazy book [68,
Chapter 5]). In order to apply these results, let us first define

v :=
√
Cm(ϕ)v,

which satisfies

∂tv +

(
Sm(ϕ)− 1

2
C

′
m(ϕ)∂tϕ

Cm(ϕ)

)

︸ ︷︷ ︸
=:M(t)

v +
1√
Cm(ϕ)

Λ
1√
Cm(ϕ)︸ ︷︷ ︸

=:Λ̃(t)

v =
G√
Cm(ϕ)︸ ︷︷ ︸
=:f(t)

.

For all t ≥ 0 the operator Λ̃(t) is selfadjoint in L2(Γ) and monotone (Λ is monotone, see [37]).
The function M(t) is bounded and so we can always change the unknown we are solving for
by vk(t) := e−ktv(t) for large enough k > 0 and just consider M(t) > 2 and bounded. To
match the same notation used in [68], we define A(t) = M(t) + Λ̃(t). This operator is also
selfadjoint and monotone. Once this setting in place, we need to verify three conditions to
apply both theorems:

• The domain of D(A(t)) is dense in L2(Γ) and is independent of t ∈ [0, T ].

• For t ∈ [0, T ], the resolvent R(λ : A(t)) exists for all λ ∈ C, Re(λ) ≤ 0 and there exists
C > 0 such that

∥R(λ : A(t))∥L2(Γ) ≤
C

|λ|+ 1
, ∀t ∈ [0, T ], Re(λ) ≤ 0.

• There exists a constant C ′ and 0 < ζ ≤ 1 such that
∥∥(A(t)− A(s))A(τ)−1

∥∥
L2(Γ)

≤ C ′|t− s|ζ , ∀s, t, τ ∈ [0, T ].

The first point only depends on the domain of Λ̃(t) as v 7→M(t)v is bounded on L2(Γ). As
ϕ 7→ Cm(ϕ) is strictly positive and smooth, we obtain the following equality

D(A(t)) = D(Λ) = {u ∈ H 1
2 (Γ)|Λu ∈ L2(Γ)},
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where the graph norm of Λ is equivalent to the graph norm of Λ̃(t) for all t ∈ [0, T ]. In
fact the domain of Λ is H1(Γ) (see [37]) and so the norm equivalence results from the open
mapping theorem. The second point results from the following calculation

∥∥∥
(
λ− A(t)

)−1
∥∥∥
L2(Γ)

=

∥∥∥∥∥

(
λ− 1− (M(t)− 1)− Λ̃(t)

)−1
∥∥∥∥∥
L2(Γ)

≤ 1√
|λ|2 + 1−ℜλ

≤ 2

|λ|+ 1

where we exploit the fact that A(t) − 1 is still a selfadjoint monotone operator. The third
point is just a consequence of the Hölder continuity of ∂tϕ, and the second point. Due the
smoothness in time of t 7→ ϕ(t), we can take ζ = 1.

In the subsections, we characterize the operator Λ in two important configurations: a
spherical membrane and a flat torus, see Figure 2.2. These two cases are of importance,
because cells in suspension are mostly round, while molecular dynamic simulations deal
mostly with flat membrane. It is thus important to compare these two settings, in particular
to understand the main differences in terms of order of magnitude of the time constants.

2.3.2 Spherical and flat membranes

As stated in the introduction, understanding the specificities of spherical and flat mem-
branes is motivated by the fact that in the experiments cell and vesicle in suspension are
mostly rounded, while molecular dynamic simuations are mostly performed in a flat periodic
setting [22, 84]. In particular we propose in this section to perform a fine analysis of the
nonlocal operator Λ to provide quantitative criteria to compare the flat and the spherical
settings, see Figure 2.2.

The operator Λ in the case of a spherical membrane

We consider Γ and ∂Ω two spheres of radius R0 and R1 respectively where R1 > R0 (see
Figure 2.2). The interior of the cell Oc = B(R0) being the inner ball of radius R0 and
Oe = B(R1) \ (Γ ∪B(R0)) the rest of the domain.

The operator Λ of (2.16)–denoted by ΛS in the spherical setting– can be explicitly diag-
onalised in terms of the eigenfunctions of the Laplace-Beltrami operator on the unit sphere
denoted by S1.

More precisely, the spectrum of the Laplace-Beltrami operator−∆S is the set {ℓ(ℓ+1), ℓ ∈
N}, each eigenvalue ℓ(ℓ+1) being of multiplicity 2ℓ+1, and the eigenfunctions are the well-
known spherical harmonics (see Muller’s book [62]).

As a result we get the following lemma.

Lemma 28 (Eigenmodes of the operator ΛS for the sphere of radius R0). The operator
ΛS from Equation (2.16) is diagonalisable in the same basis as the sphere Laplace-Beltrami
operator −∆S1. Let ω

λS1
∆

be an eigenfunction of −∆S1 associated with the eigenvalue λS1∆ ∈
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∂Ω+

Γ
2H

L∂Ω−

R0
R1

∂Ω

Γ

Figure 2.2: Two situations of membrane considered in this paper. On the left, the cell
membrane separates the inner of the cell to the bath. The cell membrane Γ is the sphere of
radius R0 and the boundary condition at ∂Ω describes the effect of the electric field applied.
On the right, a flat bi-periodic patch of the membrane placed between two charged planes
∂Ω±.

{ℓ(ℓ+ 1), ℓ ∈ N}.

k±∆ :=
−1±

√
1 + 4λS

1

∆

2
, with λS

1

∆ ∈ {ℓ(ℓ+ 1), ℓ ∈ N} ,

λc,S :=
σck

+
∆

R0

,

λe,S :=
σe
R0

(
k+∆ − k−∆

(
R1

R0

)√1+4λS1
∆
)

(
R1

R0

)√1+4λS1
∆ − 1

,

λo,S :=
−σe
R0

(
R1

R0

)−k−∆

√
1 + 4λS

1

∆

(
R1

R0

)√1+4λS1
∆ − 1

,

then

ΛSω
λS1
∆
=

λe,Sλc,S

λc,S + λe,S
ωλS

∆
.
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In other words, if (ω
λS1
∆
, λS

1

∆ ) is the couple eigenvector/eigenvalue of −∆S1 , then (ω
λS1
∆
, λS)

is a couple eigenvector/eigenvalue of the operator ΛS where

λS =
λe,Sλc,S

λc,S + λe,S
.

Remark 29. As both operators ΛS and −△S are diagonalisible in the same basis, which is a
Hilbert basis of smooth functions in L2(S), the above list of eigenvalues for ΛS is exhaustive.

Proof. To prove the lemma, we diagonalise the three operators ΛS
o, ΛS

e and ΛS
c and then

conclude by using the above relations. First, we change to spherical coordinates. As σc
and σe are constant coefficients, given an interval I = (a, b) (b > a ≥ 0), each Problem
(2.15a)–(2.15b)–(2.15c) can be rewritten as

{
(2∂r

r
+ ∂2r )U + 1

r2
∆S1U = 0, ∀(r, θ) ∈ I × S1,

U|∂I\{r=0}(θ) = f(θ), ∀θ ∈ S1

}

We take f = ω
λS1
∆

and then we proceed by separation of variables. We assume the solution
has the following ansatz U(r, θ) = h(r)ω

λS1
∆
(θ). This implies that h verifies the following

second order ODE
2

r
h′ + h′′ − λS

1

∆

r2
h = 0,

whose solutions are given by

h(r) = Ark
+
∆ +Brk

−
∆ , where k±∆ =

−1±
√
1 + 4λS

1

∆

2
,

for some coefficients A,B ∈ R to be determined. We determine the coefficients according to
each Dirichlet boundary condition:

• By definition of the operator ΛS
c , r ∈ (0, R0) and h(R0) = 1, hence B = 0 and A = R−1

0

and therefore
ΛS

c(ωλS1
∆
) =

σck
+
∆

R0

ω
λS1
∆
.

• By definition of the operator ΛS
e , r ∈ (R0, R1), h(R0) = 1 and h(R1) = 0, simple

calculations lead to

ΛS
e(ωλS1

∆
) =

σe
R0

(
k+∆ − k−∆

(
R1

R0

)√1+4λS1
∆
)

(
R1

R0

)√1+4λS1
∆ − 1

ω
λS1
∆
.

• By definition of ΛS
o, r ∈ (R0, R1), h(R0) = 0 and h(R1) = 1, hence

ΛS
o(ωλS

∆
) =
−σe
R0

(
R1

R0

)−k−∆

√
1 + 4λS

1

∆

(
R1

R0

)√1+4λS1
∆ − 1

ωλS
∆
.

This concludes the proof.
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The operator Λ in the case of a flat periodic membrane

We consider now the case of a flat periodic membrane (R/(LZ))2. More precisely, the domain
Ω is defined by

Ω = (R/(LZ))2 × (−H,H) ⊂ R3

where H and L > 0 are strictly positive constants.
The membrane is defined by Γ = (R/(LZ))2 × {0} ⊂ Ω and ∂Ω = ∂Ω+ ∪ ∂Ω− where

∂Ω+ = (R/(LZ))2 × {H},
∂Ω− = (R/(LZ))2 × {−H}.

The exterior and interior of the cell are modeled as

Oe = {(x, y, z) ∈ Ω | z > 0}
Oc = {(x, y, z) ∈ Ω | z < 0}

respectively. In this setting, the electric potential around the membrane U satisfies (2.14)
with the boundary condition

g(t, ·) = g±(t, ·) on ∂Ω±,

where g+ and g− are given smooth enough functions of ∂Ω+ and ∂Ω− respectively. We also
get the similar diagonalisation result as in the spherical sphere.

Lemma 30 (Eigenmodes of the operator Λ for the flat torus (R/(LZ))2). The operator
Λ – denoted by ΛT in the case of a flat torus – is diagonalisable in the same basis as the
periodic Laplace operator −∆T. For k = (k1,k2) ∈ Z2, let 4π2∥k∥2/L2 and ωk(x, y) =
exp

(
(2iπ/L)(k1x+ k2y)

)
be the eigenpair of −∆T in Γ then

ΛTωk = λTkωk,

where

λTk =





1

H

σcσe
σc + σe

, if k = 0,

2π|k|
L tanh(2π

L
H|k|)

σcσe
σc + σe

, otherwise.

Proof. We proceed in the same way as in the case of the sphere. Denote by ΛT
c , ΛT

e , and ΛT
o

the operators (2.15) in this flat periodic setting. It is also convenient to split ΛT
o into ΛT,+

o

and ΛT,−
o defined as

ΛT,+
o : H1/2(∂Ω+)→ H−1/2(Γ)

g 7→ −σe∂zv|Γ+

, where v is the solution to





∇ · σe∇v = 0, in Oe,

v|Γ = 0,

v|∂Ω+ = g+
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ΛT,−
o : H1/2(∂Ω−)→ H−1/2(Γ)

g 7→ σc∂zv|Γ−

, where v is the solution to





∇ · σc∇v = 0, in Oc,

v|Γ = 0,

v|∂Ω− = g−.

Then, from (2.16) we infer

ΛT = ΛT
c (Λ

T
e + ΛT

e )
−1ΛT

e , and G =
1

σe + σc

(
σcΛ

+,T
o g+ − σeΛ−,T

o g−
)
.

We diagonalise the above operators and conclude by means of the above relations. All the
above problems associated to the operators ΛT,±

o , ΛT
c and ΛT

e can be solved similarly due the
symmetry of the domain. In all cases, we apply separation of variables, that is, we assume
that solution has the following ansatz v(x, y, z) = h(z)ωk(x, y) (like for the sphere, f = ωk).
This results in the following ordinary differential equation (ODE)

d2hk
dz2
−
(
2π

L

)2

|k|2hk = 0,

whose solution is of the form

hk(z) =

{
Ak sinh

(
2π
L
z|k|

)
+Bk cosh

(
2π
L
z|k

)
, if k ̸= 0,

A0z +B0, if k = 0.

We determine the coefficients Ak and Bk in each case according to the definition of the
operators. More precisely,

• In the case of the operator ΛT
e , one has the conditions hk(0) = 1 and hk(H) = 0.

• In the case of the operator ΛT
c one has the conditions hk(0) = 1 and hk(−H) = 0.

• In the case of the operator ΛT,+
0 one has the conditions hk(0) = 0 and hk(H) = 1.

• In the case of the operator ΛT,−
0 one has the conditions hk(0) = 0 and hk(−H) = 1.

The simple calculations (left to the reader) lead to the expressions given by the lemma.

We use this setting to approximate what locally happens near the poles of the cell when
we zoom in.

Spherical vs flat membranes

Definition 31 (Time constant and (dis–)charging times the transmembrane voltage). We
define the time constant of the membrane as

τΛ =
Cm(0)

Sm(0) + minλ∈S(Λ)\{0}(λ)
, (2.18)

where S(Λ) is the spectrum of Λ.
The charging (resp. discharging) time of the TMV subjected to a constant unidirectional

electric field of magnitude E = Ez, that is g+ = EH = −g−, is defined as 5τΛ, corresponding
in the linear regime to 99% of the complete charge (resp. discharge) of the membrane.
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Simple calculations lead to the following property.

Property 32 ( Time constants of the TMV for spherical vs flat membranes). Using the
expressions of the eigenvalues of the operators ΛS and ΛT given in Lemma 28 and Lemma 30
respectively , one gets

• In the case of a spherical membrane, one has

min
λ∈S(Λ)\{0}

(λ) = λS1 =
1

2R0

σc
+ R0

σe

(R1/R0)3−1
1+2(R1/R0)3

∼R1→+∞
σe
R0

2

1 + 2σe

σc

.

Therefore the time constant τ S of a spherical membrane in R3 is given by

τ S ∼R1→+∞
Cm(0)

Sm(0) +
1
R0

2σeσc

σc+2σe

.

• In the case of a flat torus,

τT =
Cm(0)

Sm(0) +
1

H

σcσe
σc + σe

.

Remark 33. In order to consider the periodic flat membrane as a zoomed-in flat patch of
the spherical cell model, it is thus necessary to match their time constants accordingly. This
means that to compare both settings, we need to adjust the height H of the box as

H =
R0

2

(
σc + 2σe
σc + σe

)
. (2.19)

In molecular dynamics simulations of membrane electroporation, the dimension of the sim-
ulation boxes are a few nanometers thick (see for instance papers by Tieleman or Tarek [85,
88, 11, 84]), while the cell radius is about 5 to 10 µs. According to the above estimation,
the corresponding time constant τTMD of the TMV in molecular dynamics simulation is thus
about 3 order of magnitude smaller than the time constant τ Svesicle of the TMV for spherical
bilipid membrane (also call vesicle)

τTMD ∼ 10−3 τ Svesicle.

Based on this observation, and due to the coupling between water content and TMV, we
believe that this dramatic difference on the time constant of the TMV prevents molecular
dynamics simulations to give quantitative information on the membrane electroporation, even
though they provide interesting qualitative description of the phenomenon.

The following property provides a bound on the Fourier coefficients of the steady TMV
in a membrane containing water.
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Property 34 ( Steady TMV in porated membrane). Let ϕ̄ be a smooth phase order param-
eter constant in time on Γ = (R/(LZ))2. Let (p, q) ∈ (0, 1]× [0, 1) be the proportion of pure
water (resp. pure lipid) phases inside the flat membrane, and let s0 be the mean of Sm(ϕ̄):

p :=
1

|Γ|

∫

{ϕ̄=1}
dx, q :=

1

|Γ|

∫

{ϕ̄=0}
dx, S̄m =

1

|Γ|

∫

Γ

Sm(ϕ̄) dx.

Denote by ϵ the term ϵ = 1 − p − q ∈ (0, 1). Let v∞ be the stationary solution of equation
(2.16) with a constant source term g+ = EH = −g−:

(Sm(ϕ) + Λ)v∞ =
σeσe
σc + σe

E. (2.20)

Assume v∞ that can be expanded in Fourier by

v∞(x) =
∑

k∈Z2

ξk exp

(
2iπ

L
k · x

)
, for a.e. x ∈ Γ.

Then one has the following estimate for k ∈ Z2:

|ξk| ≤
√
p(1− p)(Sm(1)− Sm(0))2 + ϵS2

m(1)

S̄m + 2π|k|
L tanh(2π|k|H/L)

σeσc

σe+σc

∥v∞∥L2,dµ , (2.21)

where dµ := dx/|Γ| is the probability measure so that

∀ψ ∈ L2(Γ), ∥ψ∥L2,dµ :=

(
1

|Γ|

∫

Γ

|ψ(x)|2 dx
)1/2

.

Remark 35 (Influence of the patch size). Letting L go to zero in (2.21), all the other
parameter being fixed, shows that the Fourier coefficients ξk the decreases linearly with L.
Therefore small patches tend to flatten the TMV artificially even if we keep the same pro-
portion of water in the membrane. This heuristic calculation suggests that large patches of
flat membrane are needed so that flat torus can be seen as a zoom of the spherical setting.

Proof. The squared L2 distance between s0 and Sm for the probability measure is bounded
by

∥∥Sm(ϕ̄)− S̄m

∥∥2

L2,dµ
=

∥∥Sm(ϕ̄)
∥∥2

L2,dµ
− S̄2

m

≤ S2
m(1)p+ S2

m(0)q + S2
m(1)ϵ− S̄2

m

≤ (Sm(1)− Sm(0))
2p(1− p) + ϵS2

m(1). (2.22)

Applying the operator (S̄m + Λ)−1 to the static equation (2.20) leads to

(S̄m + Λ)−1(Sm(ϕ̄)− S̄m)v
∞ + v∞ =

2σcσe
σe + σc

E

S̄m + 1
H

σcσe

σc+σe

.

Taking the L2 dot-product for the probability measure dµ with exp
(
2iπ
L
k · x

)
and using

(2.22) ends the proof.
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2.4 The nonlinear coupled system and its stability anal-
ysis

Putting the TMV equation and the order parameter equation results in the following joint
problem on Γ, we obtain

∂tϕ−D0△Γϕ = −αW ′
(ϕ) +

α

2
C

′

m(ϕ)v
2, ∀x ∈ Γ, ∀t > 0, (2.23a)

Cm(ϕ)∂tv + (Sm(ϕ) + Λ)v = G, ∀x ∈ Γ,∀t > 0, (2.23b)

v|t=0 = v⋄, ϕ|t=0 = ϕ⋄, on Γ. (2.23c)

Let (ϕ̄, v̄) be two constant solutions to (2.23) such that ϕ̄ < 0.5 − 3a2/8a1. For small
perturbations µ⋄, ε⋄ of these initial conditions, we assume there exists a unique solution
(t, x) 7→ (ϕ(t, x), v(t, x)). Let µ(t, x) := v(t, x) − v̄ and ε(t, x) := ϕ(t, x) − ϕ̄, and set
µ(0) = µ⋄ and ε(0) = ε⋄. Inserting these expressions into (2.23) and linearising results in
the following system

∂t

[
ε
µ

]
=

[
D0△Γ − αW ′′

m(ϕ̄) +
α
2
C

′′
mv̄

2 αC
′
m(ϕ̄)v̄

−S
′
m(ϕ̄)v̄

Cm(ϕ̄)
−Sm(ϕ̄)+Λ

Cm(ϕ̄)

][
ε
µ

]
. (2.24)

In both the case of Γ = S or Γ = (R/(LZ))2 the operators△Γ and Λ are diagonalisable in the
same L2 basis. We can thus further simplify the problem by looking at the decomposition
of ε and δ in its Fourier modes (or spherical harmonics).

Remark 36. Due to (ϕ̄, v̄) being constant, all of the operators in each entry of the square
matrix in (2.24) commute.

We denote by ε(t) =
∑
εn(t)ωn and µ(t) =

∑
µn(t)ωn the Fourier (or harmonic) decom-

position of the solution. Then splitting the above linearized problem along each frequency
(εn, µn) results in the following

∂t

[
εn
µn

]
=

[
−D0λ

△
n − αW

′′
m(ϕ̄) +

α
2
C

′′
m(ϕ̄)v̄

2 αC
′
m(ϕ̄)v̄

−S
′
m(ϕ̄)v̄

Cm(ϕ̄)
−Sm(ϕ̄)+λΛ

n

Cm(ϕ̄)

]

︸ ︷︷ ︸
:=An

[
εn
µn

]

where λ△n and λΛn are the n-th eigenvalues of −∆Γ and Λ respectively.
Linear instability occurs if there exists an integer n (associated to non-constant eigen-

functions) such that An has an eigenvalue with positive real part. This is the case if and
only if det(An) < 0 or Tr(An) > 0 for some n. We assume that the conductivity of the mem-
brane does not change much for ϕ̄ ∈ [0, 0.4] (see Section 2.5.4), we expect that |S ′

m(ϕ̄)| ≪ 1.
Therefore, the easiest condition to verify is det(An) < 0 (for some n). In fact, we get exactly

W ′′

m(ϕ̄) +
D0

α
λ△n +

S
′
m(ϕ̄)C

′
m(ϕ̄)

Sm(ϕ̄) + λΛn
v̄2 <

C
′′
m(ϕ̄)

2
v̄2.
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If S ′
m(ϕ̄) is small enough for ϕ̄ ∈ [0, 0.4], we simplify this constraint by

C
′′

m(ϕ̄) >
2

v̄2
W ′′

m(ϕ̄) +
2

v̄2
D0

α
λ△n + ρ, in units [F.m−2],

for some (small) ρ > 0. Using the expression of Wm given in (2.5), we infer

C
′′

m(ϕ̄) >
8a1
v̄2

((
6ϕ̄2 −

(
6− 3a2

a1

)
ϕ̄+

(
1− 3a2

2a1

))
+

D0

4a1α
λ△n

)
+ ρ.

In practice a2 ≪ a1 and D0

4a1α
∼ (δh)2 which is the membrane thickness (see Section 2.5)

this suggests the following simple sufficient condition allowing to study the effect of each
parameter in our model

C
′′

m(ϕ̄) >
8a1
v̄2

(
6ϕ̄2 − 6ϕ̄+ 1 + (δh)2λ△n

)
+ ρ. (2.25)

Remark 37. Dividing the above inequality (2.25) by Cm(ϕ̄) shows that the emergence of
instabilities is driven by 4a1

1
2
Cm(ϕ̄)v̄2

, which is the ratio of the barrier energy of the double-well
potential Wm and the electrostatic energy of the membrane. In addition the parameter α
impacts on the size of the initial instabilities created. This can be seen through the size of
the highest eigenmodes (highest in the sense of the value of |n⃗|) that are linearly unstable.
• In the flat periodic case the eigenvalues of the surface Laplace-Beltrami read

λ△n⃗ =
4π2|n⃗|2
L2

, if Γ = (R/(LZ))2,

We take the largest eigenvalue λn⃗ such that (δh)2λ△n⃗ ∼ 1, which results in the following

L

|n⃗| ∼ 2πδh. (2.26)

As in the periodic case the n⃗-th eigenfunction is of wavelength L/|n⃗|, therefore linear in-
stabilities reach eigenmodes of the lengthscale of the membrane thickness. This supports the
idea that the size of pores created by the influence of the electric field are expected to initially
be of the length scale of the membrane thickness.
• In the case of a spherical cell we get a similar result. Here the Laplace-Beltrami eigen-

values read

λ△n =
n(n+ 1)

R2
0

, if Γ = S, the sphere of radius R0.

Here, the notion of wavelength of an eigenfunction is not directly applicable, however
qualitatively, for higher values of n the eigenfunctions associated to λ△n oscillate more rapidly.
Another way to see this is the following, for a given eigenvalue λ△n , there is a spherical
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harmonic which divides the sphere in 2⌊n/2⌋(1 + ⌈n/2⌉) regions with alternating signs (also
known as nodal domains), see [48] for more information. Again, if we take the largest value
of n such that (δh)2λ△n ∼ 1, then we get

R2
0

n(n+ 1)
∼ (δh)2

|Γ|
4πn(n+ 1)

∼ (δh)2.

Therefore, we can see that there is at least one spherical harmonic with a nodal domain
of size comparable to (δh)2 which is linearly unstable. We conclude similarly as in the flat
membrane case, and we obtain a similar estimation of the initial size of pores.

2.5 Choice of membrane parameters
The aim of this section is to obtain reasonable estimates for the parameters in our model.
Indeed, some of these parameters are not physiological, meaning that they cannot be directly
measured. Therefore, we would like to infer a priori value ranges allowing realistic simulation.
To this end, we are going to link our free-energy (2.2) to the energy model proposed by
Chizmadzhev et al., from which the models of Krassowska, Weaver et al. are derived [41,
90, 93, 42].

2.5.1 Determination of the double-well potential coefficients

In the theory proposed by Abidor, Chizmadzhev and Weaver [1, 16, 91], the water pore
is assumed to be a cylinder embedded in a sea of lipid. The introduced the notion of
hydrophobic pores, defined as the pores with radius smaller that a pore parameter r⋆. It was
introduced to account for the fluctuation of lipids which does not generate water pathways
in the membrane. Pores of radius above r⋆ are defined as hydrophilic (see Figure 2.3) and
enables the water to pass through the membrane.

Energy functional (2.2) (when v = 0) can be thought of as a generalisation of the standard
energy model for hydrophilic pores (2.27). Interestingly, the use of reaction-diffusion on the
water content enables us to describe the interaction between neighboring pores, which was
not possible in the previous approach, since the pores were considered somehow isolated
from each other. In order to compare the both approaches, it is instructive to consider the
physical units of each term of the membrane free-energy (2.2).

As ϕ is dimensionless then the unit for κ is the energy unit [J] and the coefficients a1
and a2 have surface tension units [J.m−2]. We thus compare these terms with the linear and
surface tension terms from the hydrophilic pore energy in [91]. Let r⋆ > 0 be the radius at
which hydrophobic pores are more energetically favorable than hydrophilic pores (see [91, 64]
for a description of r⋆, in the literature its value is estimated to be r⋆ := 0.5[nm] ), then for
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Figure 2.3: Energy needed to create a pore of radius r according to Weaver and Chizmadzhev
appraoch. A pore is considered to be hydrophilic if its radius r is bigger than r⋆, otherwise
it is considered to be hydrophobic pore (see [91, 64]).

any radius r > r⋆ > 0 the energy needed to create a pore (see Figure 2.3) of that radius is

w(r) = 2πγr − πσr2 + C

r4
, ∀r > 0, (hydrophilic pore energy), (2.27)

where γ is the linear tension of the edge of a pore and σ the surface tension of the membrane.
The last term represents the steric repulsion of the lipid heads in the edge of a pore. In
practice it prevents (hydrophilic) pores from being too small which would be too energetically
costly. In order to make the link with our energy functional more concrete, we are going
to consider the case of an "ideal" smooth pore. This allows us to compare each term in
(2.27) with the terms in our energy functional. Let ϕp be a smooth circular pore of radius
r0 > 0 with a small interface (where ϕ ∈ (0, 1)) of size δh ≪ r0 (see Figure 2.4a). The energy
difference between an intact membrane ϕ ≡ 0 and a membrane with such a pore ϕp is given
by

E(ϕp, 0)− E(0, 0) =
κ

2

∫

Γ

|∇ϕp|2 +
∫

interface

(
Wm(ϕp)−Wm(0)

)
dx−

∫

interior
Wm(0)dx,

=
κ

2

∫

Γ

|∇ϕp|2 + π((r + δh)2 − r2)
(
W̄m −

a2
2

)
− πr2a2

2
, (2.28)

where W̄m is the mean value of x ∈ Γ 7→ Wm(ϕp(x)) inside the pore interface. As ϕp

takes values in [0, 1] for all x ∈ Γ, we deduce that W̄m ∈ [0,Wm(1/2 + 3a2/2a1)]. Let
γ0 := W̄m − a2/2, then (2.28) can be rewritten as

E(ϕp, 0)− E(0, 0) = 2πr0
(
δhγ0

)
− πr20

a2
2

+

(
κ

2
||∇ϕp||2L2(Γ) + π(δh)2γ0

)
. (2.29)
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1
ϕp

δhr0 r

(a) Profile of the order parameter ϕp.

δh

r0 h

(b) Representation of half the cross section of
ϕp.

Figure 2.4: Ideal smooth circular pore ϕp of radius r0 > 0 in a flat membrane Γ centered
at the origin. The rotational symmetry of the setting allows us to describe the pore as a
function r 7→ ϕp(r) where r is the distance to the origin. The thickness of the lipid bilayer
is denoted by h > 0. The interface is of size δh > 0 such that δh ≪ r0.

Looking at (2.29), the parallel between our energy functional and (2.27) becomes clear. We
already know that a1 and a2 represent surface tensions and we therefore deduce that δhγ0
corresponds to the linear tension of the pore’s edge γ from (2.27), and similarly for the term
a2/2 and σ from (2.27). This results in the following system of equations

W̄m −
a2
2

=
γ

δh
, and a2 = 2σ,

where a1 and a2 are the unknowns. The size δh of the interface for a typical pore can be
roughly estimated. The size of δh intuitively should be comparable with half the membrane
thickness h/2 (see Figure 2.4b). In order to determine the value of a1 expressed in terms of
the model proposed in [91], we need to invert the following nonlinear equation

W̄m =
γ

δh
+ σ,

where W̄m depends on a1, a2 and the shape of ϕp inside the interface.
As a first approximation, we estimate the value of W̄m by assuming that r 7→ ϕp(r)

changes almost linearly inside the interface (meaning that dϕp

dr
(r) ∼ 1/δh inside the interface).

This results in the following rough estimate

W̄m ∼
∫ 1

0

a1ϕ
2(1− ϕ)2 + a2(ϕ+ 1/2)(ϕ− 1)2dϕ =

a1
30

+
a2
4
.

Replacing this expression in the above equations results in the following values

a1 = 30
γ

δh
+ 15σ, and a2 = 2σ.

The last term in (2.29) will play a similar role to the steric repulsion term when a pore is
too small. In the next paragraph, we continue to estimate all the values of the model before
presenting the table summarizing the values used.
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2.5.2 Parameters influencing membrane dynamics under null TMV

We can now estimate the values of a1 and a2, in addition to the kinetic coefficient α. These
values depend only on the cell membrane and so we consider v ≡ 0 throughout this section.
To estimate the values of a1 and a2, we use the values of linear and surface tension from
[41]. To estimate α, we can roughly approximate it by using Property 22 in Section 2.2.3.
We take the asymptotic relation bounding the size of the anti-phase interface (δhn instead of
δh) from that property to be an equality and we obtain the following rough estimate

α =
D0

4a1(δh)2
[m2J−1s−1].

In practice, given estimates for a1, a2, D0 and δh, we estimate α via the above formula and
then verify the conditions from Property 22.

2.5.3 Summary of parameters

We summarize the choice of parameters used in our simulations in Table 2.1 and 2.2. The
conductivity of an intact membrane (lipid conductivity σl) is estimated by looking at its
characteristic time of charge

τm =
Cm(0)

Sm(0) +
2σeσc

R0(σc + 2σe)

, for an intact spherical membrane, with Cm(0) = ε0εl/h,

where h is the membrane thickness, ε0εl the lipid permittivity, σc and σe the conductivities of
the cell interior and exterior respectively, and R0 is the cell radius. According to experimental
observations (we refer the reader to [76, 77] and references therein), the value of τm ranges
between 0.1 µs and 1 µs.

Value Description Reference
D0 2× 10−12 m2.s−1 lateral diffusion of lipids in the cell membrane [51]
σ 10−6 J.m−2 surface tension of the lipid-bilayer [41]
γ 1.8× 10−11 J.m−1 pore edge energy [41]
ϵ0 8.85× 10−12 F.m−1 vacuum permittivity [59]
ϵw 80 relative water permittivity [91]
ϵl 2 relative lipid permittivity [91]
σc 1 S.m−1 interior medium conductivity [77, 76]
σe 1.5 S.m−1 exterior medium conductivity [76, 77]
σl 3× 10−5 S.m−1 lipid membrane conductivity [19, 41]
σw 1 S.m−1 pore conductivity [19, 41]
h 5× 10−9 m membrane thickness [41]

Table 2.1: Physical parameters of the cell electroporation model.

76



Value Description Section
δh 10−9 m pore edge size (Section 2.5.1)
α 9.26× 106 m2.J−1.s−1 kinetic coefficient of our model (Section 2.5.2)
a1 5.44× 10−1 J.m−2 measures energy barrier between the stable states (Section 2.5.1)
a2 2.0× 10−6 J.m−2 measures the surface tension of the membrane (Section 2.5.1)

Table 2.2: Estimated parameters specific to our model. We consider them up to order of
magnitude, as they are taken to be rough approximations deduced from our analysis. That
is why they may not verify the exact formulas used to defined them.

Remark 38. It is worth noting that with these choices of parameters, the coefficient
√

4a1αL2

D0

is large and 3a2
4a1

small. Therefore, the asymptotic results, presented in Property 22, hold.

2.5.4 Choice of the conductance and capacitance model

In this section, we look at one behaviour of our model according to the model choices for
Sm and Cm. Previous models require the values of these functions for the lipid (ϕ = 0) state
or the pore state (ϕ = 1). In this continuous setting, we have a modeling choice to make
to extend these properties to "mixed" states between lipid and pore (for example ϕ = 1/2).
For both Sm and Cm, the main approach will be to interpolate between the values of the
function for the stable states. Of course, whatever the choice of interpolation, our model is
only concerned by the values in a neighbourhood of ϕ ∈ [0, 1]. We can for example consider
linear interpolations and still consider Sm and Cm to be bounded if we just apply appropriate
cutoff functions outside the region of interest.

Membrane conductance model

The choice of Sm directly impacts on the amplitude of the transmembrane voltage v. In
order to interpolate between the conductivity of the membrane (lipid conductivity) and the
conductivity of a pore, we consider the following sigmoid function

Sm(ψ) =
σm(ψ)

h
, where σm(ψ) =

1 + tanh(k0(ψ − ϕth))

2
(σw − σl) + σl, ∀ψ ∈ R,

where σl and σw are the lipid and water conductivities respectively. The factor k0 > 0
determines the steepness of the transition between these two conductivities and the value of
ϕth ∈ [0, 1] is the water content threshold of the transition. The effect of electroporation on
the cell membrane tends to suddenly and dramatically increases its conductivity. As ϕ evolves
continuously in time and we dot not expect a gradual change in membrane conductivity
during its evolution, this translates into a steep transition for Sm. In other words k0 cannot
be too small if we wish to model this effect correctly. As for an appropriate value for ϕth, this
will depend on the value of k0 to some extent, although it is intuitive to impose ϕth ∼ 1/2 as
it is an instability mid point between the two stable states of the double well energy potential
Wm. In the following we set k0 = 100.

77



2.5.5 Influence of the capacitance model

In contrast to Sm, Cm directly affects the order parameter ϕ as it is directly responsible
(along with the TMV) for pore formation, which is why we must also consider the membrane
dynamics in this analysis.

Looking at the Allen-Cahn equation (2.23a), to promote water entering the membrane,
we need C

′
m(ϕ) > 0 (at least for ϕ ∈ [0, 1/2]). Furthermore, we do not expect that the

membrane order parameter ϕ uniformly increases as the TMV increases. The model of
Looyenga given in (2.3) ensures that so that constant solutions to the joint problem (2.23)
are (linearly) unstable and that C ′

m(ϕ) > 0.

2.6 Conclusion
We have proposed a new model of membrane permeabilisation based on the free-energy of the
membrane. The problem consists in a surface reaction-diffusion of the water content of the
membrane coupled to the nonlocal equation on the transmembrane voltage as described by
the system equation (2.23). Thanks to the analysis of the eigenvalue of the nonlocal operator
on the transmembrane voltage, we have compared the time constants in the spherical and the
flat periodic settings. This fine analysis enables us to state that in order to have comparable
time constants in both spherical and flat settings, it is necessary to have a flat periodic
setting with a height of the order of the sphere radius as shown in Equation (2.19).

This observation explains why the time constants obtained in the molecular dynamic
simulations (in which the height box of simulation is a few tens of nanometers) are most
likely too short compared with cell membrane electroporation.

From the modeling view point the free-energy of the membrane could be complexified.
Indeed, Breton and Mir have shown that the intense electric field generates an oxidation of
the lipids. This means that in addition to the pore, a new species of oxidised lipid is created.
The interfaces oxidised-nonoxidised lipids could increase the permeability of the membrane,
and thus could explain the long duration of the permeabilised state of the membrane [12].

Moreover, as presented in the stability analysis section, there is an important interplay
between the membrane potential Wm and the modeling choice of ϕ 7→ Cm(ϕ). Seeing as
we chose the Wm for the sake of simplicity, a more physically sensible model should be
possible with a more appropriate choice of membrane potential and maybe a different ca-
pacitance model. This choice will have little effect on the pore evolution once the membrane
is discharged, so we can expect the same pore sealing behavior. These perspectives will be
addressed in Chapter 5.
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Chapter 3

Numerical simulation of our phase-field
model

3.1 Introduction
Until recently, only molecular dynamic simulations (MD) were used to illustrate the emer-
gence of water pathway (called pores) in lipid bilayer subjected to short electric field of high
intensity. However the huge computational cost of MD imposes a small simulation box (a
few tens of nanometers large), a computation time of less than one hundred nanoseconds
and an electric field magnitude of several hundred megavolts (much higher than in experi-
ments), making it difficult to link to experimental observations. Another drawback of MD
is its link to "effective" electrical properties of the membrane such as capacitance and con-
ductance which cannot be easily extracted from the simulations. In the previous chapter,
we propose a phase-field model of lipid bilayer electroporation that link the water content of
the membrane to the electrical properties of the membrane, enabling to link the nanoscopic
phenomenon of pore creation and the microscopic description of membranes submitted to
high electric field of similar magnitudes as in the experiments. Roughly speaking, the model
consists of a 3D electric quasi-static equation describing the potential combined with a 2D
Allen-Cahn equation for the water content [36]. Somehow the model provides the physical
grounds of the phenomenological model proposed by Leguèbe et al. a decade ago [46] while
also allowing to simulate realistic physicial conditions.

This chapter is devoted to the simulation of System 2.23 presented in Chapter 2. In
Section 3.2 we present the numerical challenges that arise naturally in this problem, some of
which become even more difficult in the case of a sphere. In Section 3.3, we present an order 1
(in time) numerical scheme to simulate the coupled system of partial differential equations.
Then we improve it to obtain a scheme – presented in Section 3.4 – with second-ordre
temporal accuracy. Then, we perform a standard numerical test for the impoved scheme
to verify the second-order accuracy. Finally, in Section 3.5, we perform some experimental
simulations to measure the effects of different parameters on the result predicted by our
model.
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3.2 Numerical challenges and simulation setting
The computational challenge of the phase-field model proposed in Chapter 2 lies on the fact
that the characteristic size of the pores is on the length scale of a few nanometers. The
pore edges are of particular importance, and these are even smaller than pores so this means
that to simulate the cell membrane (or a patch of membrane) requires the use of a very fine
mesh with a resolution equivalent to about one nanometer in length. Additionally, even in
the case of a very small patch of membrane, the distance between the electrodes needed in
order to make a reasonable comparison with the electric behavior of a spherical cell is on
the same order of magnitude as the radius of that cell. As a result, considering a straight-
forward coupling of the 3D/2D model is computationally unfeasible, even for small membrane
patches. Even with adaptive meshing the size of the system containing the membrane patch
is too large to be solved in reasonable time (just the file size of the meshes easily surpasses
2 GB in storage).

Interestingly, thanks to Dirichlet-to-Neumann operators, the 3D/2D model is reduced
to a coupled system of two dimensional non-local partial differential equations, written on
the cell membrane, which is a smooth two dimensional compact manifold without boundary.
This has the computational benefit of reducing the dimension of the problem and so the size
of the mesh. There is also the added benefit that both the Laplace-Beltrami △Γ and the
Dirichlet-to-Neumann operator Λ are diagonalizable in the same basis in both of the scenarios
considered in Chapter 2. However, this simplification does not trivialize the problem as there
are still some computational challenges that need to be addressed.

First, we focus on the evolution equation for the TMV in the case of a periodic membrane
patch of characteristic length L > 0 represented as the flat torus Γ = (R/LZ)2. In practice,
given two functions G : R+ → R (piecewise smooth), and ϕ : R+ × Γ → [0, 1] (smooth in
time and space), we wish to construct a numerical scheme for the following equation on the
transmembrane voltage v:

{
Cm(ϕ)∂tv + Sm(ϕ)v + ΛTv = 2σeσc

σe+σc
E, in Γ,∀t > 0,

v(0, ·) = 0, in Γ.

Remark 39. The function E represents the intensity of the electric field pulse being applied.
Using the notation of lemma 30 for the source term G, we can see that

E(t) :=
g−(t)− g+(t)

2H
,

where g± are constant in space.

We list some of the difficulties associated to this problem, some of which automatically
render some standard numerical approaches unsuitable. It is important to note, that the
purpose of this list is twofold. First, it shows the numerical difficulty of the problem. Second,
it also convinces the reader that the main ideas in our scheme are reasonably "optimal" in
the sense that further improvements (which minimize computation time) are probably more
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a matter of engineering (parallelising and optimizing code) rather than a clever reformulation
of the problem.

The numerical difficulties in solving the TMV equation are:

1. Explicit scheme: The non local operator 1
Cm(ϕ)

ΛT is of order one and so one could
imagine just using some sort of explicit numerical scheme. In reality this is not practical
as the characteristic length of a patch is on the scale L ∼ 10−7 [m], and so in Lemma 30
we can see its amplifying effect on the operator ΛT. The fact that 1/Cm(ϕ) ∈ [10, 400]
does not help either. In short, the size of the problem naturally imposes a strong CFL
condition which makes using an explicit scheme a less desirable option.

2. Implicit scheme: The above point motivates the need for an implicit scheme, to gain
stability. This requires two clarifications.

First, the multiplicative operator v 7→ Sm(ϕ)
Cm(ϕ)

v can be neglected for now (meaning we
can eventually consider a numerical scheme which is explicit on this term). This is
natural, as it is a bounded operator and so it is not problematic, and even if this
decreases the accuracy of our scheme, for now the scheme stability takes precedence.

Second, given 0 < δt ≪ 1, we need to invert the operator Id + δt
Cm(ϕ)

ΛT, which is an
operator which cannot be diagonalised in the same basis as ΛT. We know that ΛT is
diagonalisable, and its definition imposes that we can only calculate it by means of its
diagonalized form (at least if we wish to keep this problem two dimensional). As it is
diagonalized in the same basis as the Laplacian, then applying ΛT to a function entails
using its Fourier series decomposition. As a result, if we were to discretize ΛT in the
canonical basis (in space and not in frequency), we would get a convolution operator
(as it is a multiplication operator in the Fourier basis), which is a full matrix.

Of course, this poses a problem as f 7→ 1
Cm(ϕ)

f is multiplication operator and so in
general it does not commute with ΛT. In fact, this operator in the Fourier basis takes
the form of a convolution operator, which when discretized also translates into a full
matrix.

In conclusion, an implicit numerical scheme is necessary and it is not trivial to imple-
ment as both of the operators above seem to be at odds with one another. Needless
to say, brute-forcing an inversion of full matrices at each discrete time step is not a
realistic approach and so some other approach has to be used.

3. Fast inversion: The full inversion procedure of the operator 1
Cm(ϕ)

ΛT needs to be fast.

Unlike the Laplacian△ which can be factorized once by means of Cholesky factorisation
and then inverted in this form at each time step, our operator depends on time and so
it changes at each time step. This means that the entire computational cost has to be
paid at each iteration.

81



This requirement, like the ones mentioned above, is non-negotiable. It, may possibly
be overlooked if the function ϕ is somehow constant. However, this scenario is not of
interest to us.

4. High time resolution: The characteristic time of charge of a cell is smaller than 1 [µs]
and once the membrane is porated its characteristic time of discharge is a fraction of
that. In the case of high conductivity of the intracellular and extracellular media, the
effect of the electric field is amplified, further increasing the magnitude of ∂tv. This is
due to the multiplicative factor σcσe

σe+σc
which appears in the source term. As a result,

this means that the problem naturally requires a high resolution in time to simulate.

When dealing with nanopulses, as the electric field magnitude is particularly high (on
the scale of 106 [V.m−1]), the time step δt needed is really small (on the scale of
10−10 [V.m−1]).

5. Sign preserving scheme: The numerical scheme of choice should ideally preserve the
sign of the TMV. By this we mean that if the initial condition of the TMV is positive
and the source term is null then the solutoin should stay positive for all time. This
is particularly important when the membrane discharges as we expect the TMV to
decrease to zero while remaining everywhere strictly positive (or negative, depending
on the direction of the electric field).

Of course, in the list of priorities, this property is last. Realistically speaking, when
the TMV is small enough (in absolute value) its sign does not make a big difference.
In particular, when considering a spherical cell we expect the parts of the cell facing
the electrodes applying the PEF treatment to have opposite charge.

The list above is not particular to the case of a periodic membrane patch. In the case
of a spherical cell, the same points apply. The first point may be less of a factor as the
characteristic length in that case is the radius of the sphere which is usually in the length
scale of 10 − 50 [µs]. However, the number of points in the discretization of the sphere is
orders of magnitude larger than for a patch, so other problems come into play.

We now focus on the semi-linear equation on the order parameter ϕ, again in the case of
a bi-periodic membrane patch Γ = (R/LZ)2. Given a smooth v : R+ × Γ → R we wish to
construct a numerical scheme for the following equation:

{
∂tϕ−D△Γϕ = −αW ′(ϕ) + α

2
C ′

m(ϕ)v
2, in Γ,∀t > 0,

ϕ(0, ·) = 0.

For the most part, this equation is not so problematic as the one before. It is a local equation
and so there is a choice between discretizing the unbounded operator △Γ or diagonalizing it.
Furthermore, the operator △Γ does not depend on time and so it is possible to alleviate the
cost of direct solvers used to invert Id+δt△Γ at each iteration. Finally, there is a fair amount
of literature on the subject of this equation, in particular regarding numerical schemes (for
example, see [74, 50, 27, 96, 73]).
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Solving the order parameter equation adds a last numerically difficulty:

6. High mesh resolution: As explained in Chapter 2 the solutions to the Allen-Cahn
involve regions where they are essentially constant (with values near 0 or 1), with sharp
interfaces between these regions. In practice, the numerical representations of these
solutions usually require a higher space resolution near these interfaces than in the rest
of the domain. Depending on the use case of the equation, this can be achieved by
means of adaptive meshing or by just considering parameters in the equation which
result in a bigger size of interface.

In our case, we expect pores to appear in random places in the membrane, therefore
adaptive meshing techniques are not a practical solution. Thus, we need a high space
resolution in the whole domain and the size of the discretization is determined by the
estimated size of the interface (which is naturally small).

This condition, translates into very refined meshes (even for small patches of mem-
brane). So, when considering a numerical scheme, its computational cost will play
an important role as there is a high minimum-resolution required for any simulation.
In practice, we expect one of these interfaces (which represents a pore edge) to be in
the order of magnitude of 10−9 [m] (see Chapter 2) this is why L ∼ 10−7 [m] in our
simulations.

From the above two lists, we can see that the main difficulty when dealing with both
equations coupled together, is the combination of high resolution in time needed from one
equation and high resolution in space needed from the other equation. For long pulses (longer
than 50 [µs]), and big membrane patches (larger than 100 [µm2]) this problem seems hard.
Indeed, some of the solutions we found in the case of a membrane patch do not easily transfer
to the spherical case.

Remark 40. In the rest of this chapter, Γ and Λ respectively denote the boundary (R/Z)2
and the operator ΛT from Section 2.3, unless otherwise indicated.

3.3 Order 1 numerical scheme
In this section, we present a simple and fast numerical scheme to approximate the solution
(v, ϕ) of the following rescaled partial differential equation

∂tϕ−
Dτ

L2
∆Γϕ = −ταW ′(ϕ) +

τα

2
C ′

m(ϕ)v
2, in Γ,∀t > 0, (3.1a)

Cm(ϕ)

τ
∂tv + Sm(ϕ)v + Λv = G, in Γ,∀t > 0, (3.1b)

v(0, ·) = 0, in Γ, (3.1c)
ϕ(0, ·) = 0, in Γ, (3.1d)

where τ > 0 represents some characteristic time and L > 0 is the characteristic size of the
membrane patch.
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The idea is to try to solve each equation separately so that we can tackle the difficulties of
each equation independently of the other. Once both equations can be solved independently
then we coupled them by a taking the dependence of one equation on the other to be explicit.

Remark 41. This approach to constructing a numerical scheme was mainly done to get the
model up and running in code, so that we could verify the behavior of our model without
caring too much for order of accuracy. It turns out, that the numerical schemes we used,
naturally worked together in the case of the coupled problem and were then improved upon
later on. We decided to present our scheme in this way (instead of just the final improved
scheme) as it shows the ideas we used in a more understandable manner.

3.3.1 Scheme to solve the Allen-Cahn equation

We start with the scheme for the equation of the evolution of the order parameter.

∂tϕ−
D0τ

L2
∆Γϕ = −4ταa1ϕ(ϕ− 1)(ϕ− 1/2 + 3a2/4a1) +

τα

2
C ′

m(ϕ)v
2, in ]0,+∞[×Γ,

ϕ(t = 0) = ϕ0,

where x ∈ Γ 7→ v(x) is constant in time. We solve this equation by using an operator
splitting scheme (for an example see [50]). The surface Γ is discretised with a Cartesian grid.

Let tn > 0 denote a point in time and δt > 0 denote a time step. We define Φn as the
spatial discretisation of ϕ(tn, ·) in our cartesian grid. At time tn+1 := tn + δt the numerical
approximation Φn+1 of ϕ(tn+1, ·) is obtained by numerically solving the following ordinary
differential equation (ODE) at each node of the square grid (xp, yq){p,q} ∈ Γ

dϕ

dt
= −4ταa1ϕ(ϕ− 1)(ϕ− 1/2 + 3a2/4a1) +

τα

2
C ′

m(ϕ)v
2, t ∈ (tn, tn+1),

(3.2a)
ϕ(tn, (xp, yq)) = (eδt△Φn)(xp, yq), (3.2b)

where the term eδt△ in the initial condition, is the heat semigroup which can be explicitly
calculated by diagonalising the Laplacian in Fourier domain. Concretely, if

ϕ(tn, x⃗) =
∑

k⃗∈Z2

ck⃗e
2iπk⃗·x⃗, ∀x⃗ ∈ Γ, (3.3)

then

eδt△ϕ(tn, x⃗) =
∑

k⃗∈Z2

(
e−δt4π2 |⃗k|2 τD0

L2 ck⃗
)
e2iπk⃗·x⃗.

The above calculation can be obtained explicitly for Φn by means of the Fast Fourier Trans-
form (FFT). Once eδt△Φn is calculated, Equation (3.2) is numerically solved by means of a
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Taylor method of order two. This approach is easy to implement and particularly fast to
solve. It can be summarized as follows. Given Φn we obtain Φn+1 in the following way




Φ∗ = FFT−1 ·

(
e−(δt)4π2 |⃗k|2 τD0

L2

)

k⃗

· FFT(Φn),

Φn+1 = Φ∗ + δtF (Φ∗)(1 + δt
2
F

′
(Φ∗)),

with

F : y 7→ −4ταa1y(y − 1)(y − 1/2 + 3a2/4a1) +
τα

2
C

′

m(y)v
2. (3.4)

Applying a Strang Splitting scheme to the above fractional step method gives order 2 accu-
racy in time [56]. Although when coupling both problems we may lose the second order of
accuracy it does help with the constant factors multipling the error and it does not increase
the computational cost by much. The Strang Splitting scheme we use takes the following
form





Φ∗ = FFT−1 ·
(
e−( δt

2
)4π2 |⃗k|2 τD0

L2

)

k⃗

· FFT(Φn),

Φ∗∗ = Φ∗ + δtF (Φ∗)(1 + δt
2
F

′
(Φ∗)),

Φn+1 = FFT−1 ·
(
e−( δt

2
)4π2 |⃗k|2 τD0

L2

)

k⃗

· FFT(Φ∗∗),

Remark 42. Operator splitting schemes are fairly standard as far as numerical schemes of
the Allen-Cahn equation go. That is why this equation was the least problematic of the two
in the coupled system.

3.3.2 Scheme to solve the transmembrane voltage

Due to the rescaling, the equation on the TMV is given by

Cm(ϕ)∂tv + τ(Sm(ϕ) + Λ)v = τG, ∀t > 0, ∀x ∈ Γ, (3.5a)
v(0) = v⋄, (3.5b)

where the operator Λ is described by the same eigenvalues as before (see Section 2.3), but
with eigenfunctions

ω(k1,k2)(x, y) := e2iπ(k1x+k2y), ∀(k1, k2) ∈ Z2, ∀x ∈ Γ.

Assume that the function x ∈ Γ 7→ ϕ(x) is constant in time, as well as G (this choice is
done mainly for simplicity). We denote by λ0 the smallest eigenvalue of Λ, which we remind
is given by the following formula (see Section 2.3)

λ0 =
1

H

σeσc
σc + σe

.
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Let V n denote the spatial discretisation of v(tn, ·), then to obtain the numerical ap-
proximation V n+1 of v(tn+1, ·) we numerically solve the following scheme (Strang operator
splitting scheme already applied):

V ∗ − V n

δt/2
+
τ

2

1

Cm(ϕ)
(Λ− λ0)(V ∗ + V n) = 0, (3.6)

V ∗∗ = e−τδt
(

Sm(ϕ)+λ0
Cm(ϕ)

)
V ∗ +

G

Sm(ϕ) + λ0

(
1− e−τδt

(
Sm(ϕ)+λ0

Cm(ϕ)

))
, (3.7)

V n+1 − V ∗∗

δt/2
+
τ

2

1

Cm(ϕ)
(ΛT − λ0)(V n+1 + V ∗∗) = 0, (3.8)

where ΛT − λT0 is a nonnegative symmetric operator. We remark that (3.7) corresponds to
the ordinary differential equation (ODE) part of the splitting (exact formula for the solution
of the ODE), while (3.6) and (3.8) correspond to the unbounded part of the splitting.

In order to invert equations (3.6) and (3.8) we use a Conjugate Gradient (CG) method [35].
For example, in the case of (3.6) this is possible by rewriting the linear problem as

AY = B

where

Y :=
√
Cm(ϕ)V

∗,

A :=

(
Id+

τδt

2

1√
Cm(ϕ)

(
ΛT − λT0

)
1√
Cm(ϕ)

)
, and

B :=

(√
Cm(ϕ)−

τδt

2

1√
Cm(ϕ)

(
ΛT − λT0

))
V n.

As A is symmetric positive definite operator (matrix) we can apply CG to solve this equation.
Lastly, V ∗ is then recovered by dividing the solution Y by

√
Cm(ϕ).

Like for the case of the Allen-Cahn equation, this scheme should have an accuracy of
order 2 in time.

Clarifications of this method

There are a few ideas to unpack in this scheme. First of all, the use of the splitting method.
As we described in Section 3.2, we are searching for an implicit scheme. We could at first

just take a standard implicit scheme of order 1. This translates to inverting the following
linear system:

(Cm(ϕ) + τδt(Sm(ϕ) + Λ))V n+1 = Cm(ϕ)V
n + τδtG.

If we were to write this system in matrix form, it would involve the inversion of a full matrix.
Therefore using a direct solver is not an option. As the problem is already symmetric we could
use the conjugate gradient method to solve this linear system. However, in its current form,
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this system is a badly conditionned. In practice Cm(ϕ) ∼ 10−2 [F.m−2], Sm(1) ∼ 109 [S.m−2]
and Sm(0) ∼ 104 [S.m−2] therefore unless the characteristic time τ is small enough (or
equivalently, δt is small enough) the condition number of the system is too large and this
affects the convergence of the CG solver. We therefore precondition it while keeping it
symmetric. By multiplying the above linear equation by

√
Cm(ϕ) + τδtSm(ϕ) and changing

variables we get
(
Id +

τδt√
Cm(ϕ) + τδtSm(ϕ)

Λ
1√

Cm(ϕ) + τδtSm(ϕ)

)√
Cm(ϕ) + τδtSm(ϕ)V

n+1

︸ ︷︷ ︸
new variable

= B

where

B =
Cm(ϕ)V

n + τδtG√
Cm(ϕ) + τδtSm(ϕ)

.

We would then use the CG solver by using at each step of the algorithm the FFT (and
its inverse) in order to quickly apply the non local operator Λ and the other operator
v 7→ v√

Cm(ϕ)+τδtSm(ϕ)
.

Although this solution seems reasonable, in practice it is extremely slow and solving the
above linear problem is also numerically unstable in general. The reason for this seems to be,
again, the membrane conductivity function Sm(ϕ). Again, if τ (or δt) is not small enough,
then usually numerical errors accumulate and the solver does not converge.

The operator is too complicated to precisely explain how this happens although our
intuition is the following. Just like in the case of a (discretized) Laplacian in a poisson
equation (which is ill-conditioned), this system is also ill-conditioned. However, in the case
of the Poisson equation, usually the source term typically is smooth (or at least not too
heterogeneous), which implies that most of its higher eigenmodes are small. In this case, as
the source term is divided by

√
Cm(ϕ) + τδtSm(ϕ) it means that if δt is not too small then,

where there is a pore, there is a sharp transition in the source term. This activates high
eigenmodes of the source term and so the natural ill-condition of the system kicks in.

Remark 43. It is probable that this is not the only effect that takes place and maybe it could
be fixed with some other preconditioning but further investigation of this approach seemed
fruitless and so we looked at a different approach.

At this point we consider a splitting scheme separating the unbounded term from the
bounded conductive term. This explains our choice for the operator splitting scheme, which
still allows our scheme to obtain order 2 accuracy in time (by using Strang splitting). It is
also a natural choice as the both operators v 7→ Sm(ϕ)

Cm(ϕ)
v and v 7→ 1√

Cm(ϕ)
Λ 1√

Cm(ϕ)
v produce

two semigroups with different characteristic timescales.

Remark 44. This was one of the motivating uses for this type of fractional methods. That
is, to solve differential equations with operators with characteristic times of different scales
of magnitude.
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The other noticeable idea in the scheme we presented above is removing the smallest
eigenvalue λ0 from Λ. This helps mantain the positivity of the scheme, the positivity really
only enters into play in the PDE part of the splitting as the other split gives an exact solution
(which always preserves positivity). This property has been tested for various forms of G
and ϕ, all with remarkably positive results.

3.3.3 Coupled problem

A simple scheme to solve the system of partial differenatial equations is then obtained by
combining the last two solvers. Meaning that, for a discrete numerical approximations
(Φn, V n) of (ϕ(tn, ·), v(tn, ·)) we calculate the approximate solution (Φn+1, V n+1) at time
tn+1 by applying the above two solvers but replacing v by V n in Equation (3.4) and Sm(ϕ)
and Cm(ϕ) by Cm(Φ

n) and Sm(Φ
n) respectively in (3.6 - 3.8).

Concerning the properties of the schemes, both of them are of order 2 accuracy in time
for their respective equations. Of course, no matter the order of accuracy of each scheme,
when combined in this explicit manner we expect to the accuracy to be of order one when
solving the coupled system of equations. Before continuing to the next section we finish
this one by explaining how our schemes answer the difficulties listed at the beginning of this
chapter:

1–2 Each independent solver is stable. The only caveat is that if δt is not small enough,
then the CG solver becomes numerically unstable. Still, there is a net gain in the size
we can take of δt before this numerical instability kicks in, at least we have seen it in
our simulations.

3 The scheme for the TMV equation is quite fast. On average each iteration takes less than
9 iterations before the CG solver converges, and so we think we have a good enough
preconditioner for the linear solver. The fact that we use the FFT also plays a big role
in keeping the computation costs low. This is the most costly part of the scheme in
this scenario as the ODE solver is explicit.

4 As a bonus, we do get the positivity property although this has only been tested for
numerically. A proof of this is out of the scope of this work.

6 Regarding the scheme for the equation of the order parameter, because we do not discretize
the Laplacian operator, the scheme is exact in space. This gives us the confidence to
take only the necessary resolution in space to simulate the membrane and no more.

A more accurate scheme is presented in the next section to help with the high time
resolution needed to simulate the problem.

3.4 Full order 2 numerical scheme
In this section we present an improved numerical scheme for the coupled system of equations.
It is a natural extension of the last one presented in the last section and so we focus on clear
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description of the scheme and not so much on the ideas behind it (they are essentially the
same as in the order 1 scheme).

3.4.1 Scheme description

Let T > 0 denote final time of simulation for the equation (3.1), which we rewrite here for
the convenience of the reader,

∂tϕ−
Dτ

L2
∆Γϕ = −ταW ′

(ϕ) +
τα

2
C

′

m(ϕ)v
2, in Γ,∀t ∈ [0, T ], (3.9a)

∂tv +
τSm(ϕ)

Cm(ϕ)
v +

τ

Cm(ϕ)
Λv =

τG

Cm(ϕ)
, in Γ,∀t ∈ [0, T ], (3.9b)

ϕ(0, ·) = 0, in Γ, (3.9c)
v(0, ·) = 0, in Γ. (3.9d)

Let Nt ∈ N, we divide the time interval in subintervals of size δt := T
Nt+1

so that tn :=
nT

Nt+1
, for n = 0, . . . , Nt + 1. Similarly, let Nx ∈ N, we consider the cartesian grid made

of the points (xi1, x
j
2) := ( i

Nx+1
, j
Nx+1

) where i, j = 0, . . . , Nx. We denote by
(
Φn

i,j

)
i,j

and(
V n
i,j

)
i,j

the numerical approximations of ϕ(tn, xi1, x
j
2) and v(tn, xi1, x

j
2) respectively. Finally,

let Gn
i,j := G(tn, xi1, x

j
2) and Gn =

(
Gn

i,j

)
i,j

be the numerical discretisation of the source term
G and let eδtD∆Γ denote the heat semigroup in Γ = (R/Z)2 evaluated at time δt. Given Φn

and V n, we consider the following fractional step scheme
{
Φ∗ = eδtD△ΓΦn,
V ∗−V n

δt
+ 1

2

(
1

Cm(Φ∗)

(
ΛT − λT

0⃗

)
V ∗ + 1

Cm(Φn)

(
ΛT − λT

0⃗

)
V n

)
= 1

2

(
Gn

Cm(Φn)
+ Gn+1

Cm(Φ∗)

) (3.10)

{[
Φn+1

V n+1

]
=

[
Φ∗

V ∗

]
+ δtF

([
Φ∗

V ∗

])
+ δt2

2
JF|(Φ∗,V ∗) · F

([
Φ∗

V ∗

])
(3.11)

where the function F is given by

F :

[
ϕ
v

]
7→

[
−αW ′

(ϕ) + α
2
C

′
m(ϕ)v

2

− (Sm(ϕ)+λT
0⃗
)

Cm(ϕ)
v

]
,

and its Jacobian, JF , is given by

[
ϕ
v

]
7→




−αW ′′
(ϕ) + α

2
C

′′
m(ϕ)v

2 αC
′
m(ϕ)v

−
(

S
′
m(ϕ)Cm(ϕ)−C

′
m(ϕ)(Sm(ϕ)+λT

0⃗
)

C2
m(ϕ)

)
v

Sm(ϕ)+λT
0⃗

Cm(ϕ)


 .

Therefore we solve each of the following problems with second order accuracy:

∂t

[
ϕ
v

]
=

[
D△T 0
0 − 1

Cm(ϕ)
(ΛT − λT

0⃗
)

] [
ϕ
v

]
+

[
0
G

Cm(ϕ)

]
(3.12)
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d

dt

[
ϕ
v

]
= F

([
ϕ
v

])
. (3.13)

Again, a Strang splitting scheme then should allow us to get second order accuracy in time.
The first part of the fractional step scheme, Eq. (3.10), can be solved as a decoupled problem.
In fact, we can apply the heat semigroup to solve the equation of the first coordinate in Eq.
(3.12) by means of the Fast Fourier Transform. Once Φn and Φ∗ are known, then solving
for V ∗ is done by means of a CG algorithm used along with the FFT, as before. The idea is
to symmetrise the second equation in (3.10) by rewriting it as a problem on a new variable
Y :=

√
Cm(Φ∗)V ∗ as follows

[
Id+

δt/2√
Cm(Φ∗)

(ΛT − λT
0⃗
)

1√
Cm(Φ∗)

]
Y = B

where

B =
√
Cm(Φ∗)

[[
Id− δt/2

Cm(Φn)
(ΛT − λT

0⃗
)
]
V n +

δt

2

[
Gn

Cm(Φn)
+

Gn+1

Cm(Φ∗)

]]
.

The second part of the scheme, Eq. (3.11), is a second order Taylor scheme for the ordinary
differential equation (ODE) shown in Eq. (3.13).

Remark 45. As is usual for iterative solvers, in the CG algorithm we use a residue tol-
erance according to the expected error of our scheme. In this case we expect second order
accuracy in time at most. Therefore, we take the residue tolerance threshold to be of the
form CGthreshold := max(10−2(Nt)

−3, 5 · 10−8).

Let Un := (Φn, V n), we rewrite the fractional step scheme presented above as

U∗ = NPDE(U
n, tn, δt), representing the one-step numerical method of Eq. (3.10),

Un+1 = NODE(U
∗, δt), representing the one-step numerical method of Eq. (3.11),

then, our choice of Strang splitting can be written as




U∗ = NPDE(U
n, tn, δt

2
),

U∗∗ = NODE(U
∗, δt),

Un+1 = NPDE(U
∗∗, tn + δt

2
, δt
2
).

(3.14)

Remark 46. In the above scheme, the numerical method NPDE will use the source term G
evaluated at times tn, tn+1 and tn+

1
2 := tn + δt

2
.

3.4.2 Convergence test

All the parameters and modeling choices for functions are given in Tables 3.1 and 3.2.
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Value Description Reference
D0 2× 10−12 [m2.s−1] lateral diffusion of lipids in the cell membrane [51]
ϵ0 8.85× 10−12 [F.m−1] vacuum permittivity [59]
ϵw 80 relative water permittivity [91]
ϵl 2 relative lipid permittivity [91]
σc 1 [S.m−1] interior medium conductivity [77, 76]
σe 1.5 [S.m−1] exterior medium conductivity [76, 77]
σl 3× 10−5 [S.m−1] lipid membrane conductivity [19, 41]
σw 1 [S.m−1] pore conductivity [19, 41]
h 5× 10−9 [m] membrane thickness [41]
δh 10−9 [m] pore edge size Section 2.5.1
α 9.26×106 [m2.J−1.s−1] kinetic coefficient of our model Section 2.5.2
a1 5.44× 10−1 [J.m−2] measures energy barrier between the stable states Section 2.5.1
a2 2.0× 10−6 [J.m−2] measures the surface tension of the membrane Section 2.5.1
E 3.2× 106 [V.m−1] Electric field magnitude of applied electric pulse.
R0 10−5 [m] Cell radius.

Table 3.1: Physically relevant values of parameters used in the simulations.

Modeling choices in our model

H := R0

2
σc+2σe

σc+σe
Distance between electrodes.

ϑ1 : ϕ 7→ 0.5(1 + tanh(−15(ϕ− 1))) Adhoc smooth cutoff function.
ϑ2 : ϕ 7→ 0.5(1 + tanh(13(ϕ− 1))) Adhoc smooth cutoff function.

Cm : ϕ 7→ ε0
h

([
ϵ
1/3
l + ϕ(ϵ

1/3
w − ϵ1/3l )

]3
ϑ1(ϕ) + ϵwϑ2(ϕ)

)
Membrane capacitance.

Sm : ϕ 7→ 1
2h
((σw − σl)(1 + tanh(100(ϕ− 0.5))) + 2σl) Membrane surface conductivity.

W : ϕ 7→ a1ϕ
2(1− ϕ)2 + a2(ϕ+ 0.5)(ϕ− 1)2 Membrane energy potential.

G0 : (x1, x2) 7→ 2σeσcE
σe+σc

Source term from constant electric field.

G : (t, x1, x2) 7→ 1[0,Tp](t) ·G0(x1, x2) Source term of duration Tp.

Table 3.2: For the purposes of testing it is only important that they be smooth although
they are also a natural choice for numerical experimenting (as explained in Chapter 2).

Let p⃗ = (p0, p1, p2), q⃗ = (q0, q1, q2) ∈ R × Z2. To test the convergence of (3.14) in our
setting we add an appropriate source terms to (3.9) so that the following functions

[
ϕ0

v0

]
=

1

2

[
1 + sin(2π(p0t+ p1x1 + p2x2))
1 + cos(2π(p0t+ q1x1 + q2x2))

]
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are an exact solution to the problem. This results in the following equation




∂tϕ− τD
L2 ∆Γϕ = −ατW ′

(ϕ) + τα
2
C

′
m(ϕ)v

2 + Sp⃗, ∀x ∈ T, ∀t > 0,

∂tv + τ

(
Sm(ϕ)
Cm(ϕ)

+ 1
Cm(ϕ)

ΛT
)
v =

τSq⃗

Cm(ϕ)
, ∀x ∈ Γ, ∀t > 0,

v|t=0 =
1+cos(2π(q1x1+q2x2))

2
, ϕ|t=0 =

1+sin(2π(p1x1+p2x2))
2

, ∀x ∈ T.

where the functions Sp⃗ and Sq⃗ are given by

Sp⃗ : (x, t) 7→ ∂tϕ0(t, x)−
τD

L2
∆Γϕ0(t, x) + ταW ′

(ϕ0(t, x))−
τα

2
C

′

m(ϕ0(t, x))v
2
0(t, x),

Sq⃗ : (x, t) 7→ Cm(ϕ0(t, x))∂tv0(t, x) + τSm(ϕ0(t, x))v0(t, x) + τΛTv0(t, x).

We incorporate the additional source terms into the above scheme (3.14) by replacing
G by Sq⃗ and by adding Sp⃗ to the ODE splitting (thereby considering a nonautonomous
ODE instead of (3.13)). Let Sn

q⃗,i,j := Sq⃗(t
n, xi1, x

j
2) and Sn

q⃗ =
(
Sn
q⃗,i,j

)
i,j

be the numerical
discretisation of the source Sq⃗. Our concrete fractional step testing scheme is written as

ÑPDE ←
{
Φ∗ = eδt∆ΓΦn,

V ∗−V n

δt
+ 1

2

(
1

Cm(Φ∗)

(
ΛT − λT

0⃗

)
V ∗ + 1

Cm(Φn)

(
ΛT − λT

0⃗

)
V n

)
= 1

2

( Sn
q⃗

Cm(Φn)
+

Sn+1
q⃗

Cm(Φ∗)

)

ÑODE ←
{[

Φn+1

V n+1

]
=

[
Φ∗

V ∗

]
+ δtF̃

(
tn,

[
Φ∗

V ∗

])
+ δt2

2

[
∂tF̃

(
tn,

[
Φ∗

V ∗

])
+ JF̃|(tn,Φ∗,V ∗) · F̃

(
tn,

[
Φ∗

V ∗

])]

where the function F̃ is given by

F :

(
t,

[
ϕ
v

])
7→

[
−αW ′

(ϕ) + α
2
C

′
m(ϕ)v

2 + Sp⃗(t)

− (Sm(ϕ)+λT
0⃗
)

Cm(ϕ)
v

]
.

Now our testing scheme consists of applying the above numerical methods ÑPDE and ÑODE

in the same manner as in (3.14).

Remark 47. Unlike in the scheme (3.14), in addition to U∗ and δt, ÑODE will also depend
on tn.

We can now continue with some numerical results. In Figure 3.1 we show some numerical
evidence of second order convergence in time. This is in accordance with what we expect
from a Strang splitting scheme.
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Figure 3.1: Convergence test for p⃗ = (0.2, 2, 0) and q⃗ = (1, 0, 3). In this test the characteristic
length of the membrane is L = 500 [nm] and the final time of the simulation is tNt+1 = 1 [ns].

Remark 48. As we diagonalise both △Γ and ΛΓ, the error due to the usual discrete approx-
imation of differential operators does not appear. In other words, the error in consistency of
our scheme depends only on the size of δt. We show evidence for this by testing our scheme
for numerical convergence in time for different values in Nx, see Figure 3.1.

3.5 Numerical Experiments
In the rest this chapter we run some numerical experiments of our model under physically
realistic conditions.

3.5.1 Simulation of coupled system

We simulated a flat bi-periodic membrane of size L = 200 [nm], see Figure 2.2-Right, under
the influence of a 12 [ns] square pulse of a uniform electric field of intensity |E| = 3.2× 106 [V.m−1].
After the membrane discharges its TMV we continue to simulate it for another 10 [µs]. We
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(a) ϕ at t = 12 [ns]. (b) ϕ at t = 27.5 [ns]. (c) ϕ at t = 30 [ns].
− 0

− 1

− 0.5

ϕ

(d) v at t = 12 [ns]. (e) v at t = 27.5 [ns]. (f) v at t = 30 [ns].
− 0

− 10

− 5

[V]

Figure 3.2: Simulations of System (3.9). The upper row of corresponds to the membrane
order parameter ϕ while the bottom row are the associated TMV.

pick as the initial condition

ϕ⋄ : (x, y) 7→ µ(x, y) (3.15)

where |µ| < 1.5 · 10−2 is a Gaussian random noise (which has been smoothed for numerical
stability purposes).

We can see in Figure 3.2 the evolution of the TMV shortly after the initial electric pulse.
During the initial charge time the TMV increases almost linearly, until about t = 12 [ns].
At this time, the electric field is turned off but the membrane remains charged. It then
discharges as a capacitor, slowly over time, while the order parameter continues to evolve
under the influence of the remaining TMV. At around t = 27 [ns] the conductive effect
of the membrane enters into play. At this point, the membrane is still charged but now
discharges mainly through the high conductivity spots that result from the affected order
parameter (ϕ > 1/2). These places can be seen more easily in Figure 3.2e in the distribution
of the TMV on the membrane. However, as the membrane charge is small, the membrane
discharges within nanoseconds of this configuration taking place. This sudden discharge of
the TMV leads us to consider that electroporation has occurred, although a clear membrane
configuration as the one described in Property 22 does not take place but until about 1 µs
later. This is in accordance with the time estimate described in that property. The initial

94



(a) ϕ at t = 0.235 [µs]. (b) ϕ at t = 0.635 [µs]. (c) ϕ at t = 1.435 [µs].
− 0

− 1

− 0.5

ϕ

(d) ϕ at t = 2.435 [µs]. (e) ϕ at t = 5.035 [µs]. (f) ϕ at t = 10.035 [µs].
− 0

− 1

− 0.5

ϕ

Figure 3.3: Continuing the evolution of the membrane order parameter ϕ for 10 [µs] after
the end of the pulse delivery.
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perturbation of the membrane grows (between t = 0 [ns] and t = 30 ns) resulting in a
stronger perturbation in accordance with linear instability analysis done in Section 2.4.

Remark 49. In fact, were we to take an affine function for ϕ 7→ Cm(ϕ), this behavior would
be completely lost. This is not only suggested by the linear instability analysis but we also
tested for it in practice.

In this setting the membrane is almost completely discharged by t = 33 [ns]. From that
point on, the transmembrane voltage does not play a significant role and only the Allen-Cahn
equation drives the membrane dynamics.

The lifetime of pores depends on their size. After the pulse, the pores remain open for
several microsecond as shown in Figure 3.3. It is worth noting that the pore closure is driven
by the mean curvature, as stated for the Allen-Cahn equation by Bellettini [6]. This has to
be linked to Kroeger et al. paper in which a curvature-driven pore closure is proposed [42].
That is why we see the pores becoming rounder as they shrink in size in Figure 3.3.

Remark 50. With respect to computational efficiency, we report that the entire simulation
took about 3 hours and a half in a computer armed with a 2.4 GHz Dual-Core Inter Core
i5 processor. The first 35 [ns] of simulation took a little more than 3 hours and the rest of
the time was used to simulate the next 10 [µs]. For the first 35 [ns] we used a time step of
δt = 0.02 [ns] and for the rest of the simulation δt = 15 [ns]. We highlight the fact that
our implementation has not been fully optimized nor parallelized. This is a crucial point
to increasing the size L of the membrane patch we can simulate. We do not forsee any
unsurmountable problems for this as one part of the splitting is solving an ODE at each
point of the grid, and the other is mainly done with FFT.

3.5.2 Evolution of the electric properties of the membrane

To better visualize the dielectric breakdown of the membrane, in this section we plot the
electric properties of the membrane as they evolve in time, instead of the order parameter ϕ,
as in the section above. Replicating the same numerical experiment as in the Section 3.5.1,
we show the evolution of the electric properties of the membrane during the pulse until it
discharges in Figure 3.4.

The creation of pores can be more easily read in the graph showing the conductivity of the
membrane due to the small locations where there is a huge spike in conductivity Sm(ϕ). In
contrast, we see that the capacitance of the membrane changes more uniformly in space. We
do highlight the fact that the change in capacitance is not negligible. This can be seen more
clearly in Figure 3.5, where we plot the evolution in time of the mean relative capacitance
of the membrane.

In fact, we can see in Figure 3.5 three notable characteristic stages of the membrane
during and shortly after the electric pulse delivery. The first 12 [ns], the membrane charges
due to the constant intensity pulse (3.2× 106 [V.m−1]) being applied. During this stage the
behavior of the membrane is almost linear as there is little change in the order parameter and
the pulse duration is much smaller than the characteristic time of charge of the membrane.

96



(a) Sm(ϕ)
Sm(0) at t = 12 [ns]. (b) Sm(ϕ)

Sm(0) at t = 27 [ns]. (c) Sm(ϕ)
Sm(0) at t = 32.5 [ns].

1

3.3e04

1.7e04

(d) Cm(ϕ)
Cm(0) at t = 12 [ns]. (e) Cm(ϕ)

Cm(0) v at t = 27 [ns]. (f) Cm(ϕ)
Cm(0) at t = 32.5 [ns].

1

1.2e01

6.5

Figure 3.4: Evolution of the relative electric properties during the membrane charge and
discharge stage.
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Figure 3.5: This shows the evolution of the mean electric properties of the membrane over
time. It shows the same time frame used in Figure 3.4. Due to the different orders of
magnitude in the membrane conductivity, we show the plot of t 7→

∫
Γ

Sm(ϕ)
Sm(0)

dx in logarithmic
scale.
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Just after the pulse ends, at 12 [ns], the membrane starts discharging, the cusp in the plot
of t 7→

∫
Γ
V is due to the discontinuity of the electric field (we turn the electric pulse

off instantaneously). This discharging is primarily the membrane acting as a capacitor
(the membrane conductivity is still not important enough). It is important to note that
during this discharge, the membrane capacitance changes considerably. The third stage is
when dielectric breakdown takes place (at around 27 [ns]) and there is a sudden membrane
discharge. This can be seen clearly in the plots as both the conductivity suddenly increases
and the TMV plummets at the about the same time.

3.5.3 Effect of membrane size on the TMV

In this section, we numerically show the influence the characteristic length L of the membrane
has on the shape of the TMV. To this end, we decouple problem (3.9) and only focus on
the effect of the membrane order parameter ϕ on the TMV. The basic setup is to consider
a membrane with one smooth round stationary pore in the center. This membrane is under
the effect of a constant electric field of magnitude E (see Table 3.1), therefore source term
G is the one used in Table 3.2. The explicit order parameter we consider in Figure 3.6 is
given by

ϕpore : (x1, x2) 7→ 1− tanh(5(sin2(π(x1 − 0.5)) + sin2(π(x2 − 0.5)))2). (3.16)

The results of can be seen in Figure 3.6. We can see the effect of the membrane size
in the distribution of the TMV. The smaller the size of the membrane the flatter the TMV
tends to be. In fact, for the bigger membrane not only is is the maximum value of the TMV
bigger than in the smaller membrane, the minimum value is also smaller than in the smaller
membrane. This suggests that taking L > 0 too small may artificially alter the behavior
of the TMV and therefore that of the membrane. This effect can be easily explained if we
periodically extend the smaller membrane patch to cover the same area of the bigger patch.
As the bigger membrane is four times bigger than the smaller area, the periodic extension
of the order parameter above is given by

ϕ4 pores(x1, x2) = 1− tanh(5(sin2(π(2x1 − 0.5)) + sin2(π(2x2 − 0.5)))2). (3.17)

With this extension now we have two order parameters defined in membrane of the same
size and can therefore compare the resulting TMV. The result of this simulation can be seen
in Figure 3.7. In this case, we get four repeated copies of the TMV distribution we get in
Figure 3.6 with one pore in a membrane of size L = 100 [nm].

In fact, we can see that the larger the value of L the more membrane configurations
that are possible (think of the membrane as an actual infinite plane due to the periodic
boundary conditions). This shows a correct way to compare two flat membrane patches of
different sizes L. We consider a big enough periodic extension of each of the membranes
so that both extended membranes have the same dimensions (this could potentially mean
we consider the whole plane). Then, we can compare the state of both membranes at this
scale, as we consider two patches of the same size. This means that if the value of L is
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(a) Diagonal cut (lower left corner to upper right corner) of these two simulations.

Figure 3.6: We simulate the charging of the membrane with order parameter given by (3.16)
and with null TMV as initial condition for 15 [ns]. This seems enough to get close enough to
the stationary state of the TMV. The resolution for each simulation is the same, by this we
mean that 1+Nx

L
is the same in both cases. The upper left image shows the TMV associated

to membrane of length L = 100 [nm], and Nx = 49. Its diagonal cut is displayed in the
bottom graph as the red curve. The upper right image shows TMV associated to membrane
of length L = 200 [nm], and Nx = 99. Its diagonal cut is displayed in the bottom graph as
the blue curve.
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Figure 3.7: We simulate the charging of the membrane with null TMV as initial condition
for 15 [ns]. We consider the same setup as in Figure 3.6, but the order parameter ϕ is given
by Eq. (3.17) this time. The upper image shows the TMV associated to membrane of length
L = 200 [nm] (Nx = 99). We compare this solution with the numerical solution we got
before (small patch, L = 100 [nm] in Figure 3.6). The diagonal cut of this simulation is
shown in blue in the graph below the simulation. It is compared with the diagonal cut from
TMV obtained for L = 100 [nm] in Figure 3.6 (shown in red, as in the graph in Figure 3.6).
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too small, whenever the membrane has one pore it is equivalent to a large plane with many
small pores which tend to flatten the resulting TMV. Larger values of L lead to potentially
more heterogeneous membrane configurations, which then implies more heterogeneous TMV
configurations. This illustrates the point made in Chapter 2, where we suggest that the
best option for this model is to take L as large as possible. If an interaction between the
membrane and the TMV results in a flat TMV profile when L ≫ 1, it would be a natural
consequence of the model and not an artificial effect resulting from a using a not big enough
patch. Of course, the notion of what is a big enough patch is not evident from what we
have shown until now. An appropriate size L of a patch would probably be something on
the lengthscale of the cell, although this intuition would have to be verified numerically by
simulating the whole cell membrane (for example in the case of a spherical cell).

3.5.4 Sensitivity Analysis of our model

In this section we simulate (3.9) applying a square pulse of duration Tp = 12 [ns] (see Table
3.2) to a membrane patch of size L = 200 [nm] (Nx = 199). After membrane discharge (when
the TMV is of order 10−4 or smaller), we continue our simulation but only considering the
order parameter equation (under the assumption of null TMV). This can be done with
the same splitting operator scheme, only it is just applied to the evolution equation on ϕ.
Most plots in this section start 50 [ns] after the start of the square pulse (by this time the
membrane has already been discharged). The only time this isn’t the case corresponds to
the tests for different conductivities of the intracellular and extracellular media. This is
because, depending on the conductivity the membrane discharge can have much later (at
around 100 [ns]) or sooner (at around 21 [ns]).

We show a sensitivity analysis of the electroporation model to some of its variables. The
non-linearity of the problem along with the high number of parameters in the model forces
us to consider only a part of the parameter space. We fix one set of parameters (see Table 3.1
and 3.2), and then we test the sensitivity of the model to changes in values around this fixed
set. We denote this fixed set as the base case, and we display the results associated to this
fixed in black in all the graphs. Due to the complexity of comparing different simulations,
we compare the evolution of the membrane where {ϕ > 0.5} for each simulation. By this,
we mean that we look at plot of the function

t 7→
∫

Γ∩{ϕ>0.5}
ϕ(t, x)dx

for different parameter values in each test.

Noise sensitivity

To test for noise sensitivity, we fix one realisation of a Gaussian noise Πrough ∼ N (0, 1) on
T. We then smooth it a bit by applying the heat semigroup for a short period of time (this
is done for numerical stability purposes). We denote the smoothed noise by Πsmooth. Finally

102



1 2 3 4 5 6

[µs]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

∫ Γ
∩{
φ
>

0.
5}
φ
d
x

ς = 0.005

ς = 0.008

ς = 0.0125

ς = 0.018

ς = 0.028

Figure 3.8: Noise sensitivity test for different values of ς. The same realisation of a Gaussian
noise on T is used, to faithfully compare between different simulations. We mark with dots
the curves above the base case and with triangles curves below the base case (in black).

we consider the initial condition to be given by

ϕ⋄(x) = ςΠsmooth(x), ∀x ∈ T

where ς > 0 and where ς2 corresponds to the variance of the noise. We fix (arbitrarily)
ς = 0.0125 to correspond to the base case of parameters. The results of this test can be
seen in Figure 3.8. We can see that adding more noise results in less water entering the
membrane. This is due to small defects being created early on after the pulse and so the
membrane discharges quickly before any big enough pore can be created. In the extreme
case ς = 0 the order parameter uniformly increases until it equals one everywhere.

Remark 51. We highlight the red vertical line that we marked at 1500 [ns] in Figure 3.8
and 3.9. This roughly corresponds to the time at which the membrane order parameter is
mainly composed of two regions where either ϕ = 0 or ϕ = 1 and only a small portion of
the membrane corresponding to transition layers between them. This is consistent with the
properties presented in Chapter 2.

Pore conductivity

Next, we tested the sensitivity of the model to the conductivity of the fluid filling pores
in the membrane. The results of this test can be seen in Figure 3.9. Naturally, the lower
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Figure 3.9: Given the same perturbed initial condition (noise associated to the base case)
we run simulations for different values of pore conductivities. We mark with dots the curves
above the base case and with triangles curves below the base case (in black).
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Figure 3.10: Sensitivity tests to changes in the line tension a1 and the surface tension a2 of
our model.

the conducitvity of the fluid filling the pores in a membrane the longer the membrane takes
to discharge. As a result, the effect of the TMV on the membrane continues to act for
longer, creating more membrane defects. In terms of membrane damage, it seems to be a
nonlinear effect (in terms of amount of water entering the membrane). In the case where
σw = 0.5 [S.m−1], most of the membrane is replaced by water, and the membrane patch
eventually disappears. This is most likely an extreme outcome of our model resulting from
the setting we consider (small biperiodic membrane patch). We cannot say that this result
should be interpreted as membrane rupture as usually the damage in the whole cell is not
uniform, and so this behavior would not happen all over a cell.

Line tension and surface tension

The next two tests concerns the line tension and surface tension terms a1 and a2. These
values were roughly estimated in Chapter 2, and so we test the robustness of the model to
variations in these values. The results are shown in Figure 3.10.

It seems that the increase in value of a1 increases the amount of water (although by a
small amount) which enters the membrane, although this is counter-intuitive as a higher
value of a1 means higher energy barrier between the two stable states ϕ = 1 and ϕ = 0.
This is a side-effect of sorts, as in high-intensity nanosecond pulses (as is our current base
case) the membrane easily quickly charges up to values largely surpassing what is needed to
overcome the energy barrier of the potential W . Therefore, increasing a1 plays a bigger role
on the time scale of pore formation and the length scale of small pores that can be created
(according to the properties of the Allen-Cahn equation we presented in Chapter 2). In fact,
although it may seem this parameter has little influence on the model it actually changes the
size of the pore edge quite significantly, to the point that if this value increases too much, a
higher resolution in space is needed to simulate the system.

Remark 52. One reason we do not simulate higher values of a1 is due to the effect it has on
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Figure 3.11: Sensitivity test to changes in the conductivity of the extracellular medium. In
graph (a) the interior conductivity is given by σc = 1 [S.m−1]. In graph (b) the interior
conductivity is given by σc = 1.25 [S.m−1].

the length scale of the pore edge (transition layer between ϕ = 1 and ϕ = 0). Higher values of
a1 demand higher resolution Nx (which can be numerically expensive) to accurately capture
the evolution of the membrane. We remark that testing the sensitivity of our model to the
kinetic coefficient α has a similar effect.

We highlight the low sensitivity of our model to changes in surface tension. This is
consistent with what we expect of a cell membrane, as surface tension does not play an
important role on electroporation. This seems to be the case in all models of electroporation
so far.

Extracellular and intracellular conductivity

Lastly we test the effect the conductivity of the exterior and interior media have on the
dynamics of the membrane. In our current setting the interior and exterior media are only
differentiated by their conductivity. Because of this, we focus more of our tests on the
exterior conductivity. The results of our tests are shown in Figure 3.11.

These parameters can be seen to have an important effect on the behavior of the system.
In fact, if we plot the evolution of the electrical properties of the system during the pulse
delivery until membrane discharge we get different behaviors. This is shown for two cases in
Figure 3.12.

Two simulations seem to have stable pores in Figure 3.11 as the proportion of membrane
does not seem to change much in 8 [µs]. This is mainly due to the big amount of damage
done to the membrane patch. It is not clear that this same behaviour would be replicated in
a spherical cell (or maybe in a bigger patch). This can be seen in Figure 3.13, where we show
the membrane 1.5 [µs] after the the start of the pulse and then at the end of their evolution
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Figure 3.12: Two graphs of the simulations done in Figure 3.11 in two cases. The graphs
in (a) corresponds to Figure 3.11a. The graphs in (b) corresponds to Figure 3.11b. Both
simulations correspond to the period between the start of the pulse and the membrane
discharge.

after 10 [µs]. This just shows that at long life of pores in the membrane is probably more
an artifact of this setting (we do not expect pores to be so big) than an actual behavior we
expect to see in the membranes.

With this test, we finish this chapter of the thesis.

3.6 Conclusion
We propose a robust and efficient numerical scheme to solve System 3.1. The corresponding
numerical scheme deals with all the numerical difficulties presented at the beginning of the
chapter. Its efficiency allows to make many numerical tests like the influence of the size of
the membrane patch and sensitivity analysis to various parameters.

Concerning the perspectives, they mainly concern transferring this numerical scheme to
the spherical cell setting (instead of a membrane patch), see Chapter 5 for details. For now,
we would like to compare our model to the more classical KN-model thanks to the numerical
scheme in an experimental situation.
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(b) σc = 1.25 [S.m−1], σe = 1.5 [S.m−1].

Figure 3.13: Figure (a) corresponds to the blue line in Figure 3.11a. Figure (b) corresponds
to the red line in Figure 3.11b.
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Chapter 4

Simulations in an experimental context

In this chapter, we run numerical simulations of the KN model (see Chapter 1, Section 1.3.4)
and our phase-field model introduced in Chapter 2 in a physically relevant setting. We
confront these models with data obtained from experimental results. Our goal is to find
an explanation for a surprising phenomenon observed experimentally in [77], where it was
shown that the effectiveness of electroporation decreases when the conductivity of the exterior
medium of the cell increases and when the number of applied pulses is low.

We first explain the experimental context in which this phenomenon was observed and
present two hypotheses which could explain it. Next, we look at a simulation protocol,
equivalent to the experimental setup, which takes into account these two hypotheses. We
show the different behaviors the KN model predicts and how this model could test the two
hypotheses we presented. Next, we do the same for the phase-field model. First we simulate
this model in a simplified setting (where we ignore lateral diffusion effects in the membrane)
for a wide range of parameters. Then, basing ourselves on these results, we simulate the more
general setting for a couple of parameter sets that are representative of the two hypotheses
we wish to test.

Finally, we compare the numerical results from the KN model and the phase-field model
and we propose a plausible explanation for the phenomenon experimentally observed in [77].
Notably, we show that the KN model is not sensitive to change in extracellular conductivity
(at least in the case of strong nanosecond pulses) and that phase field model improves upon
this by showing two distinct behaviors depending on the extracellular conductivity. We
conclude this chapter by putting forward a hypothesis which could explain this surprising
experimental result.

4.1 Experimental setting
The experimental setup was the same in both [76, 77]. Electric pulses were applied to a
culture of Chinese hamster lung cell line DC-3F. The external medium conductivity was
controlled by using two different media:

• S-MEM corresponds to a Minimum Essential Medium (MEM, 11380-037 Life Technolo-
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Figure 4.1: Scheme of the experimental setup used in [76, 77]. The distance between elec-
trodes is d = 4.19± 0.02 [mm]. This illustration is taken from [76].

gies) modified for the cultivation of cells in suspension and with a high-conductivity
of 1.5 [S.m−1] ;

• STM corresponds to a medium composed of 250 [mM] sucrose, 10 [mM] Tris HCl pH
7.0 and 1 [mM] MgCl2 and with a low-conductivity of 0.1 [S.m−1].

The applied electric field is measured with a D-dot sensor attached to the experimental
device. A diagram of the experiment setup for the pulse delivery is shown in Figure 4.1.

In the experimental procedure, cells are placed in a cuvette between two electrodes con-
taining the controlled medium. Electric pulses are then applied to the cell suspension. After
the pulses, the cells are left to rest at room temperature for 10 minutes.

Bleomycin – a cytotoxic drug – is added to the medium to detect reversible electropo-
ration. The cell groups without bleomycin in the medium are called control groups. After
the pulse delivery, the viability of the cells is evaluated using a quantitative cloning assay.
The two groups of cell suspensions are used to quantify the effectiveness of electroporation
by measuring cell viability.

Among the electroporation protocols, there are:

Protocol 1 the application of a single 100 [µs] pulse with an electric field intensity between 85 and
145 [kV.m−1],

Protocol 2 the application of a low number of 12 [ns] pulses (between 1 and 10) with an electric
field intensity of 14.2 [MV.m−1],

Protocol 3 the application of a low number of 102 [ns] pulses (between 1 and 30) with a field
intensity of 3.2 [MV.m−1],

Protocol 4 and a high number of 12 [ns] pulses (between 100 and 1000) with a field intensity of
3.2 [MV.m−1].

Table 4.1 summarizes the different experiments.
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Protocol Pulse count Pulse Duration Intensity Conductivity Effectiveness
1 1 100 [µs] [85, 145] [kV.m−1] 0.1 [S.m−1] high

1 100 [µs] [85, 145] [kV.m−1] 1.5 [S.m−1] low
Not defined 8 100 [µs] [50, 120] [kV.m−1] 0.1 [S.m−1] similar

8 100 [µs] [50, 120] [kV.m−1] 1.5 [S.m−1] similar
2 ≤ 3 12 [ns] 14.2 [MV.m−1] 0.1 [S.m−1] high

≤ 3 12 [ns] 14.2 [MV.m−1] 1.5 [S.m−1] low
3 ≥ 100 12 [ns] 3.2 [MV.m−1] 0.1 [S.m−1] low

≥ 100 12 [ns] 3.2 [MV.m−1] 1.5 [S.m−1] high
4 ≤ 10 102 [ns] 3.2 [MV.m−1] 0.1 [S.m−1] high

≤ 10 102 [ns] 3.2 [MV.m−1] 1.5 [S.m−1] low

Table 4.1: Table summarizing the results reported in [76, 77]. The effectiveness of electro-
poration is denoted as low or high just to compare these results. Quantitative results can
be found in these articles.

The take home message from these two articles is that higher extracellular conductivity
increases the effectiveness in cell electroporation of nanosecond pulses when a high number
of pulses are applied. Remarkably, the opposite behavior is observed when a low number of
pulses are applied. This can be seen in both the bleomycin group and in the control group.
The last column of Table 4.1 summarizes the effectiveness.

Remark 53. Particular attention is paid to limiting the number of electrical pulses applied
to avoid possible accumulation effects due to a high number of electrical pulses. This could
lead to a saturation phenomenon.

These results are counter-intuitive. If we look at the linear TMV model in the case of a
sphere (Lemma 27 taking ϕ ≡ 0 and constant in time), for example in the case of a 12 [ns]
square pulse (see Figure 4.2), we can see that the maximum TMV felt by the membrane is
about four times bigger when σe = 1.5 [S.m−1] compared to σe = 0.1 [S.m−1]. Therefore the
effectiveness of cell electroporation is naturally expected to be higher if the exterior medium
conductivity is higher, even for a single pulse.

We highlight two hypotheses presented in [77] that could explain this counter-intuitive
behavior:

• The first one states that extracellular conductivity may influence the conductivity of
the pores created by an electric pulse. As a result there is a quicker discharge of the
membrane in the higher conductivity medium and so the induced pores in the mem-
brane cannot attain too large of a size.

• The second hypothesis suggests that the influence of the sugar content in the low
conductivity medium could affect the state of the membrane by influencing some of its
mechanical properties (bending rigidity and stretching coefficients of the membrane).
In other words, a lower TMV would then be enough to electroporate the cell membrane.
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Figure 4.2: Resulting TMV at the pole of a cell of radius R = 5 [µm] (take θ = 0 in
Figure 1.7) from a square electric pulse of 12 [ns] of intensity E = 14.2 [MV.m−1].]

In light of these hypotheses, in the next sections, we are going to study the behavior
the KN model has for different parameters but subject to one of the experimental protocols
(Protocol 2) presented above. The goal is to find a suitable explanation for the counter-
intuitive behavior resulting from experiments. We first explain the simulation protocol which
mimics the experimental setting used in [77] to get the results in Table 4.1.

4.2 Simulation protocol
For our simulations, we consider the periodic membrane patch setting introduced in Chap-
ter 2 (see Figure 2.2-Right) and also used in Chapter 3. Regardless of the model we use (KN
model or phase-field model), the PDE determining the TMV in this setting is given by

Cm∂tv + (Sm + Λ)v = G, in Γ := (R/Z)2 (4.1a)
v(t = 0, ·) = 0, (4.1b)

where Λ is described in Lemma 30 and the source term G associated to the applied electric
field (of intensity E) is given by

G =
2σeσcE

σe + σc
.

A tpulse := 12 [ns] square electric pulse is applied to this system so that

G : t 7→ 2σeσc
σe + σc

ET · 1[0, tpulse/τ ](t), (4.2)
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where ET is the electric field intensity of the pulse applied. To test the effect of the different
extracellular conductivities we simulate both cases σe ∈ {0.1 [S.m−1], 1.5 [S.m−1]}.

In order to compare our simulations to the spherical setting, two constraints coming from
the linear electric model (as described in 2.3.2) are taken into account. The first constraint
is on the height of the simulation box

H =
R

2

σc + 2σe
σc + σe

, (4.3)

where R is the radius of the Chinese hamster lung cells. This constraint makes the character-
istic time of both the spherical membrane and the flat periodic membrane match; similarly,
to match the amplitude of the TMV amplitude in both settings as t → +∞ we obtain the
following constraint

ET =
3(σe + σc)

2(σc + 2σe)
ES, (4.4)

where ES = 14.2 [MV.m−1] is the electric field intensity applied to the spherical setting and
ET is the electric field intensity needed in the flat periodic case to compare both scenarios.

Remark 54. Taking these constraints into account in our simulations is important as σe is
not constant across simulations. In particular, when σc = 1 [S.m−1], depending on the value
of σe, ET ranges from 0.937ES to 1.375ES:

ET(σe = 0.1) = 1.375 · ES,

ET(σe = 1.5) = 0.937 · ES.

The following simulation replicates the experimental protocol 2 and it is defined as fol-
lows: verifying the above two constraints, we apply a single 12 [ns] square electric pulse
(resulting in (4.2)) on the membrane under two different extracellular conductivities σe ∈
{0.1 [S.m−1], 1.5 [S.m−1]}. Depending on the model we are studying – KN model, phase-field
ODE (introduced later) and phase-field PDE – we couple to Equation (4.1a) the associated
ODE or PDE. When simulating a system of ODEs we run the simulation until T = 10 [µs]

τ
.

When simulating a system of PDEs we run the simulation of the complete system until the
membrane is discharged (TMV is smaller than 10−3) after which we just run that model
with a null TMV (this is just the Allen-Cahn equation in the case of the phase-field model).

Remark 55. All simulations of ODE systems are done using the ODE solver of the package
Scipy.integrate of Python (function odeint), with a Runge-Kutta 4 adaptive scheme.

In order to test the first hypothesis we will consider the two following modeling choices
for the conductivity of aqueous solution in pores:

σw =
σe + σc

2
, (4.5)

1

σw
=

1

σe
+

1

σc
. (4.6)

113



Value Description
α 109 [m2.s−1] pore creation rate coefficient
q 2.56 coefficient linked to pore creation
Nm 1.5× 109 [m−2] equilibrium pore density at zero TMV
Vep 0.258 [V] characteristic voltage of electroporation
Sm 2 [S.m−2] membrane conductivity
Cm 3.54 · 10−3 [F.m−2] membrane capacitance
σc 1 [S.m−1] interior medium conductivity
L 200 [nm] characteristic length of membrane patch
R 5 · 10−6 [m] cell radius
E 14 · 106 [V.m] pulsed electric field intensity

Table 4.2: Reference parameters used for the KN model.

The first choice (4.5), is a simple intuitive model where we consider a linear interpolation
between the extracellular and intracellular conductivities. The second choice (4.6) can be
thought of as an analogy between the membrane and a circuit of resistances in series.

4.3 KN model behavior
This section is dedicated to the simulation of the KN model to confront it to the results
shown in Table 4.1. The KN model was briefly introduced in Chapter 1, however for the
convenience of the reader we rewrite it below. We express it in the setting of a periodic
membrane patch as we are also interested in comparing this model to the phase-field model.

dN

dt
(t, x)− ταe(v/Vep)2

(
1− N(t, x)

Nmeq(v/Vep)2

)
= 0, t > 0, x ∈ Γ, (4.7a)

∂tv +
τ(Sm + Sp(v) ·N)

Cm

v +
τΛ

Cm

v =
τG

Cm

, in Γ,∀t ∈ [0, T ], (4.7b)

N(0, ·) = Nm, in Γ, (4.7c)
v(0, ·) = 0, in Γ. (4.7d)

where the reference values for α, q, Vep and Nm are constants whose values can be found in
Table 4.2, and τ is the characteristic time used for simulating purposes only.

Simulation Protocol

We test the first hypothesis by simulating the two modeling choices from Equations (4.5)
and (4.6). The second hypothesis is tested by varying the coefficients α and Vep around the
reference set of parameters.
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Results

The results of our simulations to test the first hypothesis, using the reference parameters,
are shown in Figures 4.3, 4.4 and 4.5.

Figure 4.3 first shows the behavior of the solutions of the KN model under the considera-
tion that the conductivity of the fluid filling a pore does not depend on the intracellular and
extracellular conductivities. This is the usual consideration taken in the literature [19, 18, 77].
It is thought of as a reference simulation.

Figures 4.4 and 4.5 show the behavior of the solutions of the KN model under the two
different modeling choices (4.6) and (4.5). As in our phase field model we see a net increase
in the damage done to the membrane, here measured by the number of pores being created
in the membrane patch.

Roughly speaking, regardless of the modeling choice for σw, this model predicts a sharp
increase in the TMV along with an instant creation of pores in the membrane. The TMV
then plateaus at ∼ 1 [V] for the rest of the electric pulse and finally rapidly drops due to the
present number of pores. This similarity in electrical behavior means that this model does
not seem to differentiate between the conductivity of the extracellular conductivities.

We now continue with the numerical experiment where we vary the parameters α and
Vep. The results of this experiment as shown in Figures 4.7 and 4.6.

We can see again that when using (4.6), there is a net increase in the amount of pores
being created regardless of the extracellular conductivity. With this model we can find a set
of parameters (α, Vep) such that more pores are created at lower extracellular conductivity.
However, because both membranes are considerably affected by electroporation at this point,
it is highly unlikely that this would explain the marked difference in the effectiveness of
electroporation observed experimentally.

According to this model, pore population remains stable for a long time (more than
100 [µs]). Therefore regardless of the hypothesis we consider, this model predicts effective
electroporation while using any of the two media, STM or SMEM.

4.4 Phase-field model behavior
In this section we now test the phase-field model to the experimental data. Before continuing
with this section we fix a reference set of parameters around which we will study the behavior
of this model. This set of parameters is given in Table 4.3.

4.4.1 ODE System

A first approach is to study the idealized scenario where the membrane initial condition is
ϕ(t = 0, ·) = 0. This consideration neglects diffusive effects in the membrane and so it allows
us to test a wide range of the parameters as our model is simplified to an ODE system.
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Figure 4.3: Time evolution of the solutions of the KN model using the reference parameters
given in Table 4.2 and modeling fluid conductivity filling a pore independent on the intracellu-
lar and extracellular conductivities. A 12 [ns] square pulse of magnitude E = 14.2 [MV.m−1]
is applied to two systems with different extracellular conductivity. The two plots on the left
show the evolution of the system during the charge and discharge of the membrane.
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Figure 4.4: Time evolution of the solutions of the KN model using the reference parameters
given in Table 4.2 and modeling pore conductivity with (4.5). A 12 [ns] square pulse of
magnitude E = 14.2 [MV.m−1] is applied to two systems with different extracellular con-
ductivity. The two plots on the left show the evolution of the system during the charge and
discharge of the membrane.
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Figure 4.5: Time evolution of the solutions of the KN model using the reference parameters
given in Table 4.2 and modeling pore conductivity with (4.6). A 12 [ns] square pulse of
magnitude E = 14.2 [MV.m−1] is applied to two systems with different extracellular con-
ductivity. The two plots on the left show the evolution of the system during the charge and
discharge of the membrane.
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Figure 4.6: Final state of L2N (at time t = 2 [µs]) for different values of α and Vep after
being influenced by a 12 [ns]. Pore conductivity (4.5).

Figure 4.7: Final state of L2N (at time t = 2 [µs]) for different values of α and Vep after
being influenced by a 12 [ns]. Pore conductivity (4.6).
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Value Description
D0 2× 10−12 [m2.s−1] lateral diffusion
ϵ0 8.85× 10−12 [F.m−1] vacuum permittivity
ϵw 80 relative water permittivity
ϵl 2 relative lipid permittivity
σc 1 [S.m−1] interior medium conductivity
σl 10−8 [S.m−1] lipid membrane conductivity
h 5× 10−9 [m] membrane thickness
δh 10−9 [m] pore edge size
α 1.852 · 107 [m2.J−1.s−1] kinetic coefficient
a1 5.44 · 10−1 [J.m−2] measures membrane linear energy
a2 2.0 · 10−6 [J.m−2] measures membrane surface tension
E 14 · 106 [V.m−1] pulsed electric field intensity.
R 5 · 10−6 [m] cell radius
L 200 [nm] characteristic length of membrane patch.
k1 20 manages interporlation between σl and σw.
Sm ϕ 7→ σw−σl

2h
(1 + tanh(k1(ϕ− 1

2
))) + σl

h
membrane surface conductivity.

Table 4.3: Reference values of parameters. The model behavior is studied around this
predefined set.

Indeed in this setting, System (3.9) reads as the following ODE system

dϕ

dt
= −ταW ′

(ϕ) +
τα

2
C

′

m(ϕ)v
2,∀t ∈ [0, T ], (4.8a)

dv

dt
= −τSm(ϕ)

Cm(ϕ)
v − τ

Cm(ϕ)

σeσc
σe + σc

1

H
v +

τG

Cm(ϕ)
, ∀t ∈ [0, T ], (4.8b)

ϕ|t=0 = 0, (4.8c)
v|t=0 = 0, (4.8d)

where τ is a time rescaling constant and 2H denotes the distance between the electrodes in
the periodic membrane setting.

The motivation for this approach is that by considering a system of ODEs we can sweep
a wide range of parameters to get a rough idea of the behavior of our model. This also helps
our intution when we choose a reference set of parameters to test the second hypothesis with
a full PDE simulation.

Results

We test the first hypothesis by considering the conductivities of the fluid filling the pores
σw to depend on the intracellular and extracellular conductivities. The simplest concrete
modeling choice is to consider the mean value between these two values, in other words we
consider the constraint (4.5). The numerical solution of the ODE system, using the reference
parameters and this choice for σw, is shown in Figure 4.8.
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Figure 4.8: Time evolution of (4.8). Parameters fixed using Table 4.3. Pore conductivity
defined by (4.5). Square pulse of magnitude E = 14.2 [MV.m−1] and 12 [ns]. Red (resp.
blue): extracellular conductivity σe = 0.1 [S/m] (resp. σe = 1.5 [S/m]). Left-Top (resp.
Left-Bottom): ϕ (resp TMV) during the first nanoseconds (charge and discharge of the
membrane). Right: ϕ until a stable state is reached.
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Figure 4.9: Time evolution of (4.8). Parameters fixed using Table 4.3. Pore conductivity
defined by (4.6). Square pulse of magnitude E = 14.2 [MV.m−1] and 12 [ns]. Red (resp.
blue): extracellular conductivity σe = 0.1 [S/m] (resp. σe = 1.5 [S/m]). Left-Top (resp.
Left-Bottom): ϕ (resp TMV) during the first nanoseconds (charge and discharge of the
membrane). Right: ϕ until a stable state is reached.
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Figure 4.10: Final state of order parameter ϕ (at time t = 10 [µs]) for different values of a1
and α. Pore conductivity (4.5).
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For both extracellular conductivities, the membrane charges like a capacitor and dis-
charges, for the most part, due to dielectric breakdown. The main difference between when
considering STM and SMEM is the time that the respective membrane remains charged, e.g.,
when the TMV is greater than 2 [V] (this is an arbitrary but reasonable threshold value).
When using STM (low extracellular conductivity), the time of membrane charging is much
larger than when using SMEM. As a result, the TMV is not as high as in the SMEM case
and the dielectric breakdown is not immediate. In fact, the membrane remains charged for
some time after the end of the pulse (it discharges like a capacitor during this time) before
dielectric breakdown occurs, so the total time that the TMV remains high is longer than
when the extracellular conductivity is lower.

We also simulate the second choice to modeling the conductivity of the fluid entering
the membrane (4.6). The behavior of the system with this modeling choice is shown in
Figure 4.9. In this case, the behavior is similar to the one shown before, however we can see
that due to the smaller value of σw, the discharge time is increased and thus the influence of
TMV on the order parameter ϕ persists after dielectric breakdown (when ϕ > 0.5). Thus, it
is clear that this additional effect leads to a net increase in the water entering the membrane
compared to the other choices (4.5). In other words, this modeling choice is only likely to
increase the effectiveness of membrane electroporation for both media (SMEM and STM) in
this model.

These two graphs are intended to illustrate the general behavior of the reference values.
For values close enough to these parameters, we expect similar behavior in similar time
periods, so when considering different parameters, we are mainly interested in the final state
of the order parameter. A wide range of parameters can lead to different behaviors (ϕ
never reaches ϕ = 0.5, for example). In general, the membrane either experiences dielectric
breakdown and then discharges rapidly, or dielectric breakdown does not occur (ϕ(t) < 0.5
for all t > 0) and the membrane then discharges slowly like a capacitor until it returns to
the stable initial state ϕ = 0.

The second hypothesis presented in Section 4.1 is tested by simulating (4.8) using different
values of a1. Intuitively, we could imagine that the effect of sugar in the STM on the
membrane could manifest as a lower energy barrier in the membrane potential W . In other
words, the value of a1 could be lower when using STM than when using SMEM . Therefore,
to test this hypothesis we test different values of a1 around its reference value. As the value
of α is determined from the value of a1 (see Chapter 2), we also vary α around its reference
value as well. To get a more complete description of the effect of these two parameters on the
outcome of our simulations, we make them vary independently. The results of this numerical
experiment are shown in Figures 4.10 and 4.11.

To interpret these results, we fix a value of α and then find a a1STM smaller than a1SMEM

such that then final state of ϕ in STM is higher than the final state of in SMEM. It is clear
that even a moderate decrease in the value of a1 when using the low conductivity medium
(STM) does not compensate for the higher TMV resulting from the higher conductivity
medium. Of course, this does not take into account spatial effects that appear when we
consider the full PDE.
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We highlight that for the modeling choice (4.6) the final state of the order parameter
ϕ is equal to 1 for more parameter choices (a1, α) as expected than for the other modeling
choice (4.5). For this reason, we will focus more on the use of (4.5) when simulating the full
PDE system.

It should be noted that a more dramatic change in parameters is not shown because it
strongly contradicts the pore-edge estimates made in Chapter 2. To counteract this effect
on the estimate, we would also need to change the value of the lateral diffusion coefficient.

4.4.2 PDE System

We continue to test the hypotheses presented at the beginning of this chapter by simulating
the complete PDE system (3.9), which we rewrite here

∂tϕ−
Dτ

L2
△ϕ = −ταW ′

(ϕ) +
τα

2
C

′

m(ϕ)v
2, in Γ,∀t ∈ [0, T ], (4.9a)

∂tv +
τSm(ϕ)

Cm(ϕ)
v +

τ

Cm(ϕ)
Λv =

τG

Cm(ϕ)
, in Γ,∀t ∈ [0, T ], (4.9b)

ϕ(0, ·) =Mnoise(1 + Πsmooth), in Γ, (4.9c)
v(0, ·) = 0, in Γ, (4.9d)

where Γ = (R/Z)2, Mnoise corresponds to the noise magnitude, and Πsmooth is smoothed out
(by applying the periodic heat kernel like in Chapter 3) realization of the a Gaussian noise and
rescaled so that ∥Πsmoot∥∞ = 1. We already know from the sensitivity test done in Chapter 3
that higher noise magnitude results in less water entering the membrane induced by the
pulsed electric field. As a physically sensible amount of noise in the membrane (determined
by Mnoise) is unclear, we test for a few values of noise magnitude in our simulations.

Results

Here we show the numerical solution of the time evolution of the unknowns of the PDE
system for a limited set of parameters. Dealing with a large set (as in the case of the ODE
system) is more computationally expensive and more difficult to study (and impractical to
display). We will therefore favor choosing a few representative set of parameters instead of
a wide range (as in the case of the ODE system). Additionally, for practical reasons, we
restrict ourselves to the linear pore conductivity model (4.5).

First, we show the behavior using the reference values of the parameters for different
values of Mnoise. The behavior of the membrane charging and discharging is shown in Fig-
ures 4.13 and 4.12. The behavior of the membrane just after the membrane is completely
discharged, see Figure 4.14.

We can see two different behaviors arise depending on the different extracellular conduc-
tivities. This can be seen during the time period when the electric field pulse influences the
membrane and also later on, once the membrane is discharged and enters a metastable state.

During the electric pulse, it is clear that a higher extracellular conductivity results in a
higher TMV during the membrane charging phase. Other than this, there is the additional
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correspond to different values of Mnoise. Simulations are stopped when the mean TMV is
smaller than 10−3 [V].
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(a) Mnoise = 0.05, t = 538 [ns] (b) Mnoise = 0.05, t = 538 [ns]

(c) Mnoise = 0.025, t = 530 [ns] (d) Mnoise = 0.025, t = 530 [ns]

(e) Mnoise = 0.0125, t = 527 [ns] (f) Mnoise = 0.0125, t = 527 [ns]

Figure 4.14: Numerical resolution of the PDE system using the reference parameters after
membrane discharge (simulations associated to Figures 4.12 and 4.13). The left column shows
results corresponding to σe = 0.1 [S.m−1], the right column corresponds to σe = 1.5 [S.m−1].
In both cases, σw = (σe + σc)/2.
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distinction that at higher conductivity, dielectric breakdown happens before the pulse deliv-
ery ends. As a result the membrane remains charged for a much shorter time than in lower
extracellular conductivity. This is the case for all the levels of noise we used.

Remark 56. We highlight that during the membrane charging phase the behavior of the mean
values of our simulation are qualitatively similar to the ODE simulation shown in Figure 4.8.

After the membrane is discharged, the membrane enters its metastable state where the
difference between water and the membrane state in the membrane is more clearly defined.
During this time, there is a clear difference of the electric pulse effect at higher extracellular
conductivity.

There are two visible differences from our results. The first is the amount of water
that enters the membrane. At higher conductivity, there is visibly more water entering the
membrane (at all levels of noise). The second observable difference is the sensitivity of the
effectiveness of electroporation to the noise magnitude. It seems that at higher conductivity,
the amount of water entering increases much more dramatically when the noise magnitude
decreases. In fact, as an extreme example, whenMnoise = 0.0125, and σe = 1.5 [S.m−1] we can
see that most of the membrane is water (this would normally be interpreted as irreversible
electroporation).

Now, in order to test the second hypothesis which could explain this phenomenon, is
to also alter the values a1 and D0. Decreasing the value of a1 lowers the energy barrier
between the two stable states of the order parameter and thus a lower TMV is required
to tilt the energy potential into a single stable state (ϕ ≡ 1). In order to preserve the
qualitative properties of the order parameter (see Chapter 2) we also proportionally decrease
the diffusion coefficient. This ensures that there is little change to the pore edge size. The
physical significance of this change is not so important for the moment as we are only
interested in exploring the behaviors our model can capture. Additionally, as we study
values near the reference set of parameters established before, the resulting change in the
diffusion coefficient is never so important as to require further justification (from a modeling
standpoint).

The parameters changed in order to test the second hypothesis are shown in Table 4.4.
The results are shown in Figures 4.15 and 4.16.

Value Description
D0 5× 10−13 [m2.s−1] lateral diffusion
a1 1.36 · 10−1 [J.m−2] measures membrane linear energy

Table 4.4: Values selected to test the second hypothesis. The other parameters are fixed at
the reference values (see Table 4.3). Both of these values correspond to one fourth of the
respective reference values.

In this setting, we are testing both the first and second hypothesis. That is, we consider
that the conductivity of the fluid entering the membrane depends on both the intacellular and
extracellular media, and because of the sugar content in STM (low conductivity medium)
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Figure 4.15: Mean behavior of the solutions of the PDE system (during pulse delivery) using
a modified set of parameters (adapted at the second hypothesis), σe = 0.1 [S.m−1] and
σw = (σe + σc)/2. The different colors correspond to different values of Mnoise. Simulations
are stopped when the mean TMV is smaller than 10−3 [V].

the mechanical properties of the membrane change at low conductivity. It is clear when
comparing Figure 4.16 with the second column in Figure 4.14, that the experimental counter-
intuitive results of [77] cannot be explained only using these two hypotheses, as there is a
significant increase in the amount of water entering the membrane at higher extracellular
conductivity.

We emphasize that this result also holds for other similar values of a1 and D0. We do
not show them for practical reasons, but the reader should be easily convinced of the clear
difference in the results by comparing Figures 4.16 and 4.14.

4.5 Conclusion
We have shown the different behaviors that the KN model and the phase field model can
explain. From our results, it appears that the two hypotheses proposed by Silve et al. works
are not the main cause of the marked difference in the effectiveness of electroporation as a
function of the extracellular medium at a low number of delivered pulses. Our numerical
simulations suggest that the change in the conductivity of the pores as a function of the
extracellular conductivity (first hypothesis) has no effect on the amount of water entering
the membrane (unless the change is dramatic). If the conductivity of aqueous solution in
pores σw (depending on the use of STM or SMEM) ranged from 0.3 to 1.5 [S.m−1] then
the expected result (independent of the model) is qualitatively similar to when σw does not
depend on the external medium of the cell (for example σw = 1 [S.m−1]). If we additionally
consider the second hypothesis (as manifested in each of the models), we see that it cannot
explain these results either. It is possible that these two hypotheses play a role in this
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(a) Mnoise = 0.05, t = 538 [ns]

(b) Mnoise = 0.025, t = 530 [ns]

(c) Mnoise = 0.0125, t = 527 [ns]

Figure 4.16: Numerical resolution of the PDE system using a modified version of the pa-
rameters for D0 and a1 (see Table 4.4) after membrane discharge (simulations associated to
Figure 4.15). These results correspond to σe = 0.1 [S.m−1] and σw = (σe + σc)/2.
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phenomenon, but our simulations suggest that they are not the main driver. This leads to
the idea that the increased permeability of the cell membrane is not necessarily related to
the amount of water entering the cell membrane.

It is clear that the KN model makes little difference between the two experimental media
(STM and SMEM). This can be explained by the dependence on Vep of the equation governing
the evolution of N . Since nanosecond pulses use strong electrical pulses, we would normally
expect (using the linear model) the value of TMV to reach much larger values than for longer
pulses with weaker electrical pulse delivery. This means that if we do not drastically change
the parameters of the KN model (using the second hypothesis), we should expect a large
amount of pores to be generated regardless of the conductivity of the extracellular medium.
Once the pores are created and the membrane is discharged, the long lifetime predicted by
this model would further challenge the surprising results observed in [77].

In summary, although the KN model provides an explanation for the electroporation
phenomenon, it appears to be at odds with the experimental results. If the increased perme-
ability of the membrane due to electroporation is a consequence of the long lifetime of the
pores, then we should not expect the results of Silve’s group [77] to hold. If the increased
membrane permeability is due to some other effect, then the fact that this model does
not distinguish between high and low extracellular conductivity, means that this hypothesis
probably cannot be tested with this model.

The phase-field model, on the other hand, improves on the KN model by showing a clear
difference in the effect of extracellular conductivity on the dynamics of the membrane order
parameter and TMV. More importantly, it shows a significant difference in the duration
that the membrane remains charged at a high TMV. It appears that higher conductivity
causes a kind of premature dielectric breakdown that discharges the membrane, protecting
it from the rest of the electrical pulse. Furthermore, since we assume that membranes close
within a few microseconds, it is clear that considering only the amount of water entering the
membrane cannot explain the behavior observed experimentally by Silve et al. [77].

The phase-field model results suggest that another effect may play a role in the phe-
nomenon observed in [77]. These results seem to indicate that this phenomenon could be
due to the change in the membrane as a result of the long exposure of the membrane to
a high TMV. This implies that the effectiveness of electroporation at lower conductivities
(and a low number of nanopulses) is not primarily related to the amount of water entering
the membrane. We therefore hypothesize that the increase in electroporation effectiveness
is due to an oxidation effect of the membrane resulting from the long time period it remains
charged. Once the membrane is oxidized, the permeability associated with this new state of
the membrane should last much longer than the expected lifetime of a pore and would thus
explain the results observed in [77].
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Chapter 5

Conclusion and perspectives

5.1 Conclusion
In this work, a new phase field model of electroporation based on physical principles was
presented. It consists of the Allen-Cahn equation for the membrane water content and a
nonlocal differential equation for the transmembrane voltage.

As for the mathematical aspects, a fine analysis of the involved nonlocal Dirichlet-to-
Neumann operators was performed in two basic configurations, allowing the comparison of
the time constants of the phenomenon between spherical and flat membranes. Furthermore,
a comprehensive linear stability analysis of our model was conducted. In addition to these
very interesting results and to estimate the parameters of the model, a comparison of the
energy functional of our model with the energy functionals of other physical models was
performed.

As for the numerical aspects, a highly efficient numerical scheme of order 2 in time was
developed and implemented, harnessing the Fast Fourier Transform and a Strang Splitting
scheme. This robust technique significantly enhances computational efficiency, facilitating a
sensitivity analysis of the parameters of the model.

Lastly we compare our model to the KN-model in a realistic scenario using experimental
data in the case of nanosecond pulses applied to a cell suspension. As a result, we show
that – unlike the classical KN-model – our model behaves differently as observed in the
experiments to different pulse durations and to different number of pulses. Furthermore, we
highlight that the short pore-lifetime our model predicts is compatible with the experimental
observations done by Silve et al. regarding the influence of extracellular conductivity on
electroporation effectiveness when a small number of pulses are applied. Indeed, it could
explain the different timescales for which the cell membrane is conductive and for which the
membrane is permeable.

Despite all these qualities, our model has room for improvement. From a modeling point
of view, our model does not allow to link higher extracellular conductivity to lower electro-
poration effectiveness in the case of small number of pores. From a numerical simulation
point of view, we still need to obtain a reasonable simulation which takes into account a
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whole cell and not just a periodic membrane patch. These limitations are discussed in the
following sections.

5.2 Perspectives
We conclude with some of the directions in which we plan to take the electroporation model
we have presented in this work. We present two aspects. First, the further development of
our model to account for the more complex aspects of electroporation. Second, a strategy
to tackle the simulation of the spherical cell model.

5.2.1 Extensions and changes to our model

Lipid oxidation

As we explained in Chapter 1, an important aspect of cell electroporation is the characteristic
timescales involved. When a cell is electroporated, the duration of increased permeability
of the membrane cannot be explained by only considering pore dynamics. According to
our model, the lifetime of a pore is not much more than 10 µs, so we do not expect that
it is the only cause of the increased membrane permeability. This conclusion is consistent
with what has already been observed in molecular dynamics simulations [40], since the pores
close almost immediately there as well (they do not even come close to 1 µs lifetimes in these
simulations).

A theory has been proposed for distinguishing conductivity between the highly conductive
and highly permeable states of the membrane. This involves the chemical alteration of the
lipid membrane due to lipid oxidation as a result of the elevated TMV, which is a consequence
of the applied electric field.

This distinction could explain the unintuitive phenomenon observed in [77] in which
a small number of nanosecond electric pulses are less effective at a higher extracellular
conductivity. The hypothesis is that a sudden increase in TMV promotes "premature" pore
creation and therefore the membrane discharges fast enough to avoid membrane damage
from prolonged exposure to an elevated TMV.

The addition of this oxidized or altered membrane could be modeled in a couple of ways.
A possible extension of our model to take into account lipid oxidation consists in associating
a new energy potential Woxi to oxidised phospholipids and then describe the state of the
membrane by means of an additional order parameter ρ, which describes the degree of
oxidation of the membrane. For example we could conceive of having an energy functional
of the form

E(ϕ, ρ, v) = κ

2

∫

Γ

∥∇ϕ∥2 +
∫

Γ

Woxi(ϕ)fsig(ρ) +W(ϕ)(1− fsig(ρ))−
1

2

∫

Γ

Cm(ϕ, ρ)v
2

where fsig : R → [0, 1] is a sigmoid function to be chosen to interpolate between the two
states of the membrane (oxidised or not). Additionally, the order parameter ρ would follow
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a reaction-diffusion equation on the membrane. This would capture the oxidation process of
phospholipids and the lateral diffusion of the oxidised phospholipids in the membrane.

Another option would be to consider a Cahn-Hilliard model which distinguishes two
phases, normal membrane and oxidised membrane. This would involve adding another order
parameter, ψ, which would also evolve according to an energy functional similar to the one
associated to ϕ. By this we mean that there would be a similar H1

0 (Γ) norm and a membrane
energy potential, but with an extra term to model the oxidation process. Of course, this
would behave completely differently to the first option we proposed, as the Cahn-Hilliard
equation has a tendency to accumulate each phase into different regions, as opposed to a
diffusion equation which does the opposite.

These different modeling choices do not represent trivial research. Indeed, both ideas,
membrane diffusion and accumulation (in the form of rafts, as indicated in Chapter 1), are
potentially valid ways to model membrane dynamics.

Choice of potential W
In our model, we chose the membrane potential W as a fourth-degree polynomial because it
was the simplest function that satisfied all the requirements we needed. This arbitrary choice
can be justified by the fact that in Allen-Cahn dynamics the exact shape of the potential has
no real influence on the evolution of the membrane parameter. This is especially true when
the initial condition has significantly different sections where the order parameter has the
two different stable values (ϕ ∈ {0, 1}). In this case, the evolution of the order parameter is
related to the mean curvature of the interphase sections.

However, in our case we have a completely different setup. We start with an order
parameter that is essentially a stable phase (ϕ ∼ 0), and then water enters the membrane
due to the TMV influence. In this part of the evolution, the actual form of the potentialW is
indeed important, as we have shown with the linear instability analysis. We could therefore
argue that there is still some work to be done to determine an appropriate (and physically
inspired) shape for the membrane potential. Creating a "better" membrane potential is
easily accomplished using simple polynomials, but more refined analysis should probably be
performed to motivate the exact choice. This is one of the places where molecular dynamics
simulation results shoud prove to be useful.

Minor adjustments

Other than this, some modeling choices still need further development. For example, mod-
eling the noise affecting the membrane order parameter ϕ is still not well understood. Fur-
thermore, it has a considerable effect at least for the application nanosecond pulses. Another
example is the electrical conductivity of membrane ϕ 7→ Sm(ϕ) and a model for the conduc-
tivity of the fluid entering the membrane σw. We show a couple of examples in Chapter 4,
but a more definite choice would help control the number of parameters we can fix when
numerically testing different hypotheses by simulating this model.
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5.2.2 Numerical scheme for a spherical cell setting

A pore edge is somehow comparable in size to the width of the cell membrane h ∼ 10−9 [m]
and the characteristic length of a cell membrane is comparable with the cell radius R0 ∼
10−5 [m]. Then to capture the evolution of pores in a spherical cell setting we would need a
discretized membrane with an amount of nodes of around

R2
0

h2
∼ 108.

At this scale, simulating without parallelization or without dedicated use of a GPU is un-
feasible. Other than this, the fact that we are not in a periodic setting anymore means that
we can no longer base our numerical scheme the in the speed of the FFT algorithm. We
propose to tackle this simulation problem in the following manner.

As explained in Chapter 3, our scheme is optimized for this problem, as a result we
essentially keep the same splitting scheme for the spherical case but we now need to change
the way of solving each of the split problems.

We propose an approach of solving the heat equation in the first split by discretizing the
Laplace operator. This seems to be an appropriate choice as the amount of nodes we have
to consider implies a large amount of spherical harmonics we would need to consider when
diagonalising the operator (this quickly becomes unfeasible). Moreover, as we do not have
the speed from the FFT algorithm diagonalising the Laplacian operator loses most of its
advantages. Solving the linear system resulting from this problem can be done in the GPU
by means of an iterative solver based on Krylov spaces (like the one we use in Chapter 3),
although there could be other more appropriate solvers at our disposal.

The problem concerning the non-local Dirichlet-to-Neumann operator Λ also cannot be
solved by means of diagonalization because of the large amount of nodes involved. It also
cannot be done otherwise as we would then have to solve a 3D problem. One solution to
this impasse, is to keep our current CG solver but to artificially project the solutions onto
a reasonably big eigenspace of Λ but which remains moderate in size so that computations
do not take too long.

As we have seen in our simulations the amount of increased conductivity seems to strongly
flatten the TMV. This suggests that if we were to consider, say the eigenspaces of Λ associated
to its first fifty eigenvalues (in the spherical setting), it could be enough for our simulation
purposes. This is not an ideal solution from a numerical analysis standpoint, but it is an easy
and practical solution to the computational challenges involved in our problem. Furthermore,
this type of computation is possible to do in parallel.

Lastly, the ODE split can be solved in parallel as there is no space component. Later
on, an adaptive mesh could be use to speed up computations, as we do not expect much
to happens at the equator of the cell (where the normal vector is orthogonal to the applied
electric field).
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