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Abstract (English)

Context

In today’s world, cryptographic devices are almost omnipresent, and the necessity to guar-
antee their security has been increasing. When a cryptographic device is operating, any
kind of unintended leakage (time, power, electromagnetic, etc.) can be exploited by an
attacker. By querying the device multiple times, measuring the corresponding leakages,
and correlating them with internal sensitive values, the attacker is able to guess the secret
key.

Such side-channel attacks (SCAs) pose a threat to cryptographic devices. Evaluating
the security of cryptographic devices against SCAs is important for both the industrial
and academic sectors, and information-theoretic metrics turn out to be effective tools. To
thwart SCAs, a well-established countermeasure is masking. The issues of how to achieve
more effective masking, as well as how to evaluate the security of masked implementations,
have become topics of widespread concern.

My main goals are to quantify side-channel leakage, evaluate the security of
(both unprotected and masked) cryptographic devices against SCAs, and pursue
strategies to construct more effective masking codes.

Structure of the Manuscript

The main contributions can be divided into three chapters:
The first chapter (Chapter 2) is about the construction of masking codes:
- recent research on code-based masking indicates that the protection becomes more

efficient when the dual distance of the masking code is large, and the kissing number of
the dual of the masking code is low. Motivated by this, we employ linear programming to
derive bounds for the kissing number of q-ary linear codes with a given minimum distance;

- we show the effect of code-based masking is related to the weight enumeration of
the dual of the masking code. We first present mathematical tools to study those weight
enumerators, and then provide an efficient method to search for good codes, based on a
lexicographic sorting of the weight enumerators from lowest to highest degrees.

The second chapter (Chapter 3) evaluates the side-channel leakage of (both
unprotected and masked) cryptographic implementations:



- we proposed a conditional version of Sibson’s alpha-information by a simple closed-
form “log-expectation” expression. This definition satisfies important properties such as
consistency, uniform expansion, and data processing inequalities. Based on this definition
we evaluate the side-channel leakage of unprotected devices;

- we investigate how a code-based masked implementation leaks in an information-
theoretic setting, and establish that the mutual information between the sensitive variable
and the leakage decreases as the measurement noise variance increases, with an exponent
equal to the dual distance of the masking code.

The final chapter (Chapter 4) is about the security analysis of masked cryp-
tographic devices against side-channel attacks. We use alpha information measures
to analyze the implementation of Boolean masking and Arithmetic masking, and derive
the upper bound of the probability of success. More precisely, the divergence between the
probability of success of an ML attack and a blind guess is bounded by alpha information
between the sensitive variable and the side-channel leakage. Further, when α = 2, this
alpha information can be upper-bounded by a function of the leakage information quantity
of each masking share.

Meanwhile, these bounds also provide lower bounds on the minimum number of queries
required to achieve a given success rate, which improves the most advanced bound currently
available. An important issue, resolved in this part, is the removal of the loss factor due
to the masking field size.

Lastly, we discussed other metrics used in similar evaluations.
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Résume (Français)

Contexte

À l’heure actuelle, les dispositifs cryptographiques jouent un rôle presque incontournable
dans notre monde moderne, et la garantie de leur sécurité représente une préoccupation
de plus en plus prégnante. Lorsqu’un dispositif cryptographique est opérationnel, toute
fuite non intentionnelle, qu’elle soit liée au temps, à la puissance, à l’électromagnétisme,
etc., devient une potentielle vulnérabilité exploitée par des attaquants. En interrogeant le
dispositif de manière répétée, en mesurant les fuites correspondantes, et en les corrélant
avec des valeurs sensibles internes, un attaquant peut parvenir à deviner la clé secrète
utilisée.

Les attaques par canaux auxiliaires (SCAs), telles que décrites, posent une menace
significative pour les dispositifs cryptographiques. En conséquence, l’évaluation de la sécu-
rité de ces dispositifs face aux SCAs devient une préoccupation majeure, pour laquelle les
métriques informationnelles se révèlent être des outils efficaces. Afin de contrer les SCAs, le
masquage émerge comme une contre-mesure bien établie. Cependant, la recherche actuelle
se concentre sur l’optimisation du masquage pour le rendre plus efficace, tout en évaluant la
sécurité des implémentations masquées, constituant ainsi un domaine de recherche majeur.

Mes principaux objectifs sont de quantifier les fuites par canaux auxiliaires,
d’évaluer la sécurité des dispositifs cryptographiques (non protégés et masqués)
contre les SCAs, et de créer des méthodes permettant de construire des codes de
masquage plus efficaces.

Structure du manuscrit

Les principales contributions peuvent être divisées en trois chapitres :
Le premier chapitre (Chapitre 2) concerne la construction de codes de mas-

quage :
Les recherches les plus récentes dans le domaine du masquage basé sur le code indiquent

clairement que l’efficacité de la protection atteint son maximum lorsque la distance duale
du code de masquage est substantielle et que le nombre de contacts du code dual du code
de masquage est maintenu à un niveau bas. Dans cette perspective, nous procédons à la
démonstration rigoureuse des bornes relatives au nombre de contacts des codes linéaires
q-aires, en tenant compte d’une distance minimale prédéfinie. Cette démonstration repose



sur l’utilisation de techniques avancées de programmation, nous permettant ainsi de définir
avec précision ces bornes pour garantir une sécurité optimale dans les implémentations de
masquage. En suivant cette approche, nous contribuons à l’évolution continue des métho-
dologies de protection des dispositifs cryptographiques, en particulier ceux qui reposent sur
des codes linéaires q-aires, pour assurer une défense robuste contre les attaques potentielles.

Nous montrons que l’effet du masquage basé sur les codes est lié au polynome énumé-
rateur des poids du code dual du code de masquage. Nous présentons d’abord des outils
mathématiques pour étudier ce polynome énumérateur des poids, puis nous proposons
une méthode efficace pour rechercher de bons codes, basée sur un tri lexicographique des
polynomes énumérateurs des poids du degré le plus bas au plus élevé.

Le deuxième chapitre (Chapitre 3) évalue les fuites par canaux auxiliaires
des implémentations cryptographiques (non protégées et masquées) :

Nous proposons une version conditionnelle de l’alpha-information de Sibson avec une
formule explicite simple en « log-moyenne ».

Cette définition satisfait des propriétés importantes telles que la consitence, dévelop-
pement uniforme et les inégalités de traitement des données. Avec cette définition, nous
évaluons les fuites par canaux auxiliaires des dispositifs non protégés .

Nous étudions comment une implémentation masquée basée sur les codes fuit dans un
cadre informationnel et établissons que l’information mutuelle entre les variables sensibles
et les fuites observées diminue lorsque la variance du bruit de mesure augmente, avec un
exposant égal à la distance minimale du code duale du code de masquage.

Le dernier chapitre (Chapitre 4) concerne l’analyse de sécurité des disposi-
tifs cryptographiques masqués contre les attaques par canaux auxiliaires. Nous
utilisons des mesures d’information alpha pour analyser l’implémentation du masquage
booléen et du masquage arithmétique, et bornons supérieurement la probabilité de suc-
cès du meilleur adversaire. Plus précisément, la divergence entre la probabilité de succès
d’une attaque par maximum de vraisemblance et une supposition à l’aveugle est limitée
par l’alpha information généralisée entre la variable sensible et la fuite du canal auxiliaire.
De plus, lorsque α = 2, cette information généralisée peut être bornée supérieurement par
une fonction de l’information de fuite de chaque part de masquage.

En même temps, ces limites fournissent également des bornes inférieures sur le nombre
minimum de requêtes nécessaires pour atteindre un taux de succès donné, ce qui améliore
les meilleurs bornes de l’état de l’art. Un problème important, résolu dans cette partie,
est de retirer une constante multiplicative égal à la taille du corps consideré des bornes
obtenues.

4
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1.1 Side-Channel Analysis

In contemporary society, the stature and function of information have witnessed a marked
ascendance, and it has become a crucial strategic resource for societal development. In-
formation technology is transforming the way people live and work, and the information
industry has contributed significantly to economic growth. Concurrently, the safeguarding
of information has emerged as an escalating concern of paramount importance for numerous
individuals and entities.



Chapter 1. Background, Notations, and Research Status

The objectives of information security include: confidentiality, integrity, authentication,
and non-repudiation. As the cornerstone of information security, cryptography provides
protection for various data and communications, ensuring that only the appropriate recip-
ients can access and understand this data.

Development of Modern Cryptography

From the ancient Caesar cipher, the Enigma machine during World War II, to the
widely used and technically mature public-private key cryptographic systems in mod-
ern society, cryptography has undergone a long evolution. The rise of modern cryp-
tography can be attributed to the combination of computer science and mathematics.
In the 1970s, Diffie and Hellman first introduced the concept of public-key cryptogra-
phy [DH22], marking a revolutionary breakthrough in modern cryptography. Soon after,
the RSA (Rivest–Shamir–Adleman) public-key encryption algorithm was invented, offering
a method for data encryption and digital signatures [RSA78].

For many years, the research on symmetric encryption (such as the data encryption
standard (DES) [Cop94], the advanced encryption standard (AES) [RD01]) and asym-
metric encryption (like the RSA, the elliptic curve cryptography (ECC) [Kob87]) became
mainstream. Meanwhile, cryptography was also applied to various other security tasks,
such as hash functions, digital signatures, blind signatures, and zero-knowledge proofs.

These cryptographic algorithms play a fundamental role in safeguarding data by provid-
ing secure communication and storage mechanisms. Without cryptography, many modern
technologies and services, like cloud storage, online shopping, and email, could not operate
securely.

Origin of Side-Channel Attack

With the advancement of cryptography, attackers began to look for new methods be-
yond the pure mathematical domain to challenge cryptographic systems. This led to the
origin of side-channel attacks. Side-channel attacks do not target the encryption algo-
rithms directly but focus on the “by-products” or externally leaked information of the
actual implementations.

The birth of side-channel attacks can be traced back to 1996 when a significant de-
velopment was published by Paul Kocher. He demonstrated that the duration required
to execute cryptographic operations could inadvertently divulge information regarding the
encryption key [Koc96]. This innovative approach elucidated that attackers might derive
secrets merely by observing the time of execution. Such attacks, which exploit the runtime
of algorithms, are denominated as Timing Attacks.

In the ensuing years, Kocher, in collaboration with his colleagues, introduced two dis-
tinct methodologies of power attacks: simple power analysis (SPA) and differential power
analysis (DPA) [KJJ99]. The SPA, a category of side-channel attack, meticulously exam-
ines the power consumption of a cryptographic device during its operation. Intrinsically,
varying operations within a cryptographic algorithm may manifest disparate power con-
sumption patterns. For instance, certain operations might exhibit distinct power patterns
for the binary “0” compared to “1”. A thorough examination of these variances in power
patterns enables attackers to deduce intermediate values or, in some instances, the entire
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key utilized in the cryptographic procedure. A quintessential example would be if a de-
vice’s power trace distinctly delineates the variations between squaring and multiplication
operations, enabling attackers to discern specific key bits in particular algorithms.

In contrast to the relatively straightforward SPA, DPA embodies a more intricate mech-
anism. It exploits variations in power consumption patterns during cryptographic devices’
operation, enabling attackers to statistically analyze these patterns and potentially deduce
secret keys or other sensitive internal information without having to breach the algorithm
directly. This vulnerability means that even if a cryptographic algorithm is mathematically
secure, its physical implementation can still be susceptible to covert attacks, undermining
the overall security of the system.

From then on, side-channel attacks, as a novel and effective form of attack, have gained
attention from both the scientific and industrial communities, leading to a surge of research
on the topic.

1.1.1 Current Research on Side-Channel Analysis

Side-channel attack (SCA) is a powerful class of attacks that exploit informa-
tion leaked unintentionally during the execution of cryptographic algorithms.
Unlike traditional attacks that attempt to break the mathematical foundations of en-
cryption, side-channel attacks leverage various physical leaks, such as timing informa-
tion [DKL+00], power consumption [CCD00], or electromagnetic leaks [GMO01], to gain
insights into the sensitive information used in cryptographic operations.

Research concerning side-channel analysis can be broadly categorized into the following
three domains:

• Identify potent side-channel attack techniques. Such studies encompass: probing
further exploitable types of side-channel information (like a acoustic side-channel
[SSYA19]); investigating more powerful side-channel analysis strategies (see [LBM15]
for a machine learning approach); tailoring and executing side-channel attacks specific
to various cryptographic devices (see [XBZ12], studying the feasibility of inferring a
user’s tap inputs to a smartphone with its integrated motion sensors), and so forth.

• Propose robust countermeasures against side-channel attacks. This line of research
includes: hardware-based countermeasures (like the reduction of leaked electromag-
netic radiation or power consumption through physical shielding, see [GMOP15]),
software-based countermeasures (such as masking [Mes00, GM11], jamming the side-
channel with noise); and protocol-level countermeasures, like frequently altering keys
to limit the number of samples an attacker can gather in a short span of time, among
others.

• Ascertain effective side-channel analysis methods. Such investigations aim to utilize
the tools of mathematics and information theory to theoretically validate issues as-
sociated with side-channel analysis, see [SMY09, dCGRP19a]. This might involve
quantitative analysis of the amount of information leaked in side-channel analysis,
providing theoretical proof of the security of side-channel countermeasures, exploring
parameters that influence the efficacy of countermeasures, and so on.
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The content of this thesis predominantly pertains to the latter two categories: it en-
compasses research on masking—a widely-adopted countermeasure—as well as quantitative
analyses of information leakage in side-channel attacks, and investigations into the security
robustness of cryptographic devices against such attacks.

For designers and manufacturers of cryptographic devices, there is an inherent aspira-
tion to ensure these devices are resilient against all potential side-channel attacks. This
thesis predominantly adopts a defender-centric perspective, conducting secu-
rity assessments against the theoretically optimal attack strategy, specifically
the ML (maximum likelihood) attack.

The performance of ML attack surpasses all types of side-channel attacks encountered
in practice because, by definition, the ML attack seeks to identify the most probable key
based on observed measurements and the known (or assumed) statistical distribution of
these measurements. Essentially, it exploits the entire statistical structure of the side-
channel, a feat that’s nearly unattainable in real-world attacks. If a system can withstand
an ML attack, it is anticipated to fend off other less optimal side-channel assaults.

1.1.2 Framework of Side-Channel Attacks

A comprehensive evaluation is inextricably linked to appropriate modeling. In the realm
of side-channel analysis, various models have been proposed and deliberated upon across
a multitude of research endeavors, see [SMY09],[HRG14a],[dCGRP19a]. The side-channel
model presented in this thesis follows from these previous work.

Notations

Upper case letters, like X, are used to denote random variables. The set of all possible
values of X is represented in calligraphic letters like X . The probability distribution of X
is denoted as PX(x), the subscript X will be omitted when the context is clear, denoted
as P (x).

Let PX(x), QX(x) be two probability distributions of X that possess a dominating
measure µ(x) such that PX(x) � µ(x) and QX(x) � µ(x); the corresponding lower-case
letters pX(x) and qX(x) are densities of PX(x), QX(x) with respect to µ(x). When X is
a discrete random variable, µ(x) is usually taken as the counting measure; when X is a
continuous variable, µ(x) is usually taken as the Lebesgue measure.

Theoretical Model

In this thesis, the secret key is denoted as K and assumed to be uniformly distributed
over K; let N = |K| be the size of K. The public variable T is known to the attacker
and independent of the secret K; it can be plaintext or ciphertext, depending on whether
the algorithm used is encryption or decryption. Normally one assumes T is uniformly
distributed over T .

When a device is operating, the cryptographic algorithm operates on K and T to
compute a sensitive variable X = f(K,T ), where f is supposed to be a deterministic
function. During this process, side-channel information about X will inevitably leak, which
can include variations in algorithm execution time, voltage fluctuations, and so on. The
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attacker measures such side-channel leakages, which are also referred to as “traces” and
denoted as Y . After measuring sufficient amount of traces, the attacker will perform
statistical analysis on them and attempt to recover the secret K used in the cryptographic
algorithm. The guessed key is denoted as K̂. To improve the accuracy of the guess, the
attacker performsmmeasurements, each with corresponding Ti, Xi, and Yi, i = 1, 2, . . . ,m.
The m-element vector is denoted as Tm = (T1, T2, . . . , Tm).

The whole procedure can be seen as the following communication model in Fig. 1.1.

Crypto Side-channel Attack
XmK Y m K̂

Tm Tm

Figure 1.1: Side-channel seen as a communication channel (without masking).

The attacker exploits his knowledge of Tm and Y m to estimate the secret K̂ by using
the MAP (maximum a posteriori) rule.1 Obviously, the attack is successful if K̂ = K. The
(maximal) probability of success is denoted as

Ps = P(K = K̂|Y m, Tm) = EYmTm max
k

pK|YmTm(k|Y m = ym, Tm = tm), (1.1)

which is always no less than 1
N (better than blind guess). It maximizes the success proba-

bility P(K = K̂) because

P(K = K̂) = EYmTm
(
P(K̂ = K|Y m, Tm)

)
(1.2)

= EYmTm
(∑
k

p(k|Y m, Tm)P(K̂ = k|Y m, Tm)
)

(1.3)

≤ EYmTm
(
max
k

p(k|Y m, Tm)
)

(1.4)

where (1.3) holds because K − (Y m, Tm) − K̂ is a Markov chian; (1.4) with equality if
P(K̂ = k|Y m, Tm) = 1 for some x achieving max

k
p(k|Y m, Tm).

Since ML is equivalent to MAP when the distribution of K is uniform, the probability
of success for the ML attack is also Ps.

1.2 Code-Based Masking

Countermeasures against side-channel attacks involve a range of techniques aimed at mit-
igating the risk of sensitive information leakage through unintended side-channels. These
countermeasures include algorithmic approaches like hiding and masking, physical mea-
sures such as shielding against electromagnetic emissions, protocol level countermeasures,
etc. Among them, masking is one of the most widely used countermeasures
against side-channel attacks. It involves introducing random values, known as masks,
into the intermediate calculations of a cryptographic algorithm.

1Maximum success Ps(K|Y m, Tm) = EYmTm

(
max
k

p(k|Y m, Tm)
)
attained with K̂ = k̂(Y m, Tm) =

argmax
k

p(k|Y m, Tm).
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Masking Scheme

The masking scheme operates by splitting the sensitive variable into several shares, such
that any t shares of them are independent of the sensitive variable. This certain threshold
t is called the security order of the masking scheme. These shares will be processed by
cryptographic algorithm independently, ensuring that the masked values are used in all
intermediate computations. At the end of the computation, the masked shares are com-
bined to obtain the final result. During this process, some side-channel leakage depending
on each share are leaked and measured by the attacker. The whole procedure is shown in
Fig. 1.2:

Crypto Masking Side-channel Attack
Xm V mK Y m K̂

Tm Tm

Figure 1.2: Side-channel seen as a communication channel (with masking).

As in previous model, K, T , X represent the secret key, the public variable and sensitive
imformation respectively. X is a deterministic function of K and T . After masking, X is
splitted into d + 1 shares: X0, X1, . . . , Xd. The vector composed of all shares is denoted
as V = (X0, X1, . . . , Xd). The side-channel leakage Y = (Y0, Y1, . . . , Yd) is a vector of each
share’s leakage. Again, the attacker performs m measurements to guess the secret key, the
probability of success for the ML attack is denoted as Ps.

Definition 1.2.1 (Arithmetic Masking). Let Fq be a finite field with q elements. For an

arithmetic masking scheme over Fq, a sensitive variableX is masked into V = (X0, X1, . . . , Xd)

which satisfies

X = X0 +X1 + · · ·+Xd (1.5)

where X,X0, . . . , Xd ∈ Fq and “+” is the addition operation in Fq.

1.2.1 Rationale of Code-Based Masking

Code-based masking is a class of efficient and secure countermeasures. It includes Boolean
masking (BM) [CJRR99], inner product masking (IPM) [BFG+17], direct sum masking
(DSM) [BCC+14, CG18, PGS+17], etc. To the best of our knowledge, generalized code-
based masking [WMCS20] is the most generic masking scheme that unifies all above-
mentioned schemes.

Let Fq be a finite field with q elements, and k, s, d be positive integers with k+s ≤ d+1.
Consider the sensitive information X as a row vector comprising k components, which is
uniformly distributed across Fkq . The mask M is a uniform random variable over Fsq, it
introduces randomness in the masking scheme.

To split the sensitive information into d + 1 shares, X is multiplied by a matrix GC ∈
Fk×(d+1)
q and M is multiplied by a matrix GD ∈ Fs×(d+1)

q . The generalized code-based
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masking is modeled by
V = XGC +MGD, (1.6)

where GC and GD are dictated by the masking scheme, possessing a rank of k and s
respectively. Therefore the masked value V ∈ Fd+1

q is a row vector with d+ 1 components.
The row spaces of GC and GD are denoted as VGC = C and VGD = D, which are two

linear codes with paremeters [d + 1, k] and [d + 1, s] respectively (d + 1 is the length of
the linear codes, k and s are their dimensions). Thus GC and GD are also called generator
matrices of linear codes C and D. In code-based masking, we always assume C ∩ D = {0}.

Direct Sum Masking

If constraint C + D = Fd+1
q is applied in (1.6), then k + s = d + 1, and the system

becomes direct sum masking [BCC+14].

Inner Product Masking

Inner product masking [BFG+17] can be seen as a special case of direct sum masking,
which has k = 1, s = d, and

GC =
(

1 0d

)
GD =

(
αT Id

)
where 0d denotes an all-zero row vector of length d, αT denotes the transpose of a row
vector where α = (α1, α2, · · · , αd) ∈ Fdq , and Id is the identity matrix of order d.

Boolean Masking

Boolean masking [CJRR99] seems to be the simplest family of code-based masking
schemes:

Definition 1.2.2 (Boolean Masking). For Boolean Masking scheme, k = 1, s = d, and

two generator matrices are

GC =

(
1 0d

)
GD =

(
1Td Id

)
where 0d denotes an all-zero row vector, 1Td denotes the transpose of an all-one row vector

and Id is the identity matrix of order d. Since M = (M1, . . . ,Md) is uniformly distributed

over Fdq , the masked value

V = (X +
d∑
i=1

Mi,M1, . . . ,Md) (1.7)
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is uniformly distributed over Fd+1
q . Therefore, the attacker needs to know all d+ 1 shares

to recover the sensitive variable X.

Denote V as (X0, X1, . . . , Xd). If X,M1,M2, . . . ,Md are binary sequences with the

same length, and + is the XOR operation ⊕, then a Boolean masking scheme satisfies

X = X0 ⊕X1 ⊕ · · · ⊕Xd. (1.8)

1.2.2 Comparison with Wiretap Channel Model

The wiretap channel is a communication channel characterized by the presence of an eaves-
dropper, which poses a security threat to the transmitted information. This section dis-
cusses its differences and connections with side-channel attack scenario.

Wiretap Channel

The wiretap channel is first proposed by Wyner [Wyn75] and then considered by Csiszár
and Körner [CK78] in a more general way. The model is shown in Fig. 1.3:

Encoder XN

Main Channel (PY N |XN ) Decoder

Wiretap Channel (PZN |XN )

ms

Y N m̂s

ZN

Figure 1.3: A Wiretap Channel Model.

wherems represents the message, XN represents the corresponding N-bit binary codeword.
After ms is encoded into XN , it is transmitted through a main channel with probability
distribution PY N |XN . Upon receipt of Y N , the decoder makes an estimate m̂s of the
message. Meanwhile, the intruder wiretapped the codeword via a wiretap channel with
probability distribution PZN |XN . Thus XN is also the input of this wiretap channel, and
the output is denoted as ZN . Intuitively, the whole system is considered secure if the
mutual information between ms and ZN is small enough (for instance, I(ms;Z

N )→ 0 as
N →∞).

Wiretap Channel of Type II

In 1984, Ozarow and Wyner proposed the wiretap channel of type II [OW84]. Let
S ⊂ {1, 2, 3, . . . , N} be a µ-element set, where µ is an integer with 1 ≤ µ < N . Let Zi be
the i-th element of vector ZN (i = 1, . . . , N), which is calculated from

Zi =

{
Xi, i ∈ S
?, i /∈ S

(1.9)
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Then the wiretap channel model of type II is:

Encoder XN

Main Channel (PY N |XN ) Decoder

Wiretap Channel (S)

ms

Y N m̂s

ZN

Figure 1.4: A Wiretap Channel Model of Type II.

Example 1.2.1. Assume the chosen subset of an intruder is S = [1, 5, 7, 14, 15] and the

input of wiretap channel is a 16-bit codeword XN = [0 1 0 1 1 1 0 0 1 0 1 1 0 1 1 1]. Then

the observed value is

ZN = [0 ? ? ? 1 ? 0 ? ? ? ? ? ? 1 1 ?]. (1.10)

The Connections with Side-Channel Attacks

In a sense, the masking setting under the probing model2 can be viewed as a special
case of a wiretap channel of Type II, where an eavesdropper has access to a given number
of bits. Assuming that the information symbols of ms are elements in the finite field Fq. In
Fig. 1.4, the procudure can be seen as a masking scheme: the message m ∈ Fkq is encoded
as X ∈ Fnq by using a masking code. The elements in set S can be considered as the
positions of probed bits choosed by the side-channel attacker (see Section 3.2 for detail).

The Differences from Side-Channel Attacks

However, the classical wiretap channel scenario (Fig. 1.3) differs from the side-channel
attack in an important respect: Fig. 1.1 is not a genuine communication channel, where
the secret key K should always be kept as secret and is never to be transmitted reliably to
any destination (there is no legitimate receiver). The attacker queries the cryptographic
devices several times to guess the static secret key K. Even though the public variable T
varies, the same key is used for every encryption.

On the other hand, in a wiretap channel, messages need to be reliably encoded, trans-
mitted, and decoded in the presence of the eavesdropper. Typically, each transmitted
message varies, and what concerns us is the amount of leaked information during a single
information transmission. If we draw an analogy with side-channel attacks, it is like asking
the attacker to guess the secret key based on a single trace, which is quite challenging for
non-profiling attacks.

2Under the probing model, a κ-dimensional side-channel attack refers to the attacker observing the

sensitive values at κ positions. See Definition 3.2.1 for more detail.
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1.3 Information Measures

As the ancient saying goes, “To do a good job, one must first sharpen one’s tools.” Suit-
able metrics can significantly improve the accuracy of quantitative analysis. Information-
theoretic metrics have demonstrated their effectiveness in many works on side-channel se-
curity assessment. This section reviews several information theory concepts and
their properties, which will be instrumental in forming the content of the subsequent
chapters.

Information theory measures are mathematical tools commonly used to quantify uncer-
tainty (randomness), the amount of information, and differences between various distribu-
tions, among other things. Traditional information measures encompass Shannon entropy,
Kullback-Leibler divergence, Fano’s mutual information, etc. These definitions are ex-
tended to Rényi information theory measures, as they can be obtained from generalized
α-information theoretic measures by letting α→ 1.

Every metric has its own applicable usage scenarios. When dealing with a particu-
lar research question, choosing the most suitable metrics for the context can significantly
improve the effectiveness of the analysis. Generally, information-theoretic metrics can be
defined from two distinct perspectives: operational significance and axiomatic character-
ization. The latter facet aids in the metric selection process by allowing us to choose
metrics that exhibit specific properties relevant to addressing research questions. For ex-
ample, the characterization theorem defines Shannon entropy based on several “natural”
properties like expansibility, symmetry, additivity, etc. If all these properties are necessary
in a research scenario, then Shannon entropy is the only possible and good choice, as these
axioms uniquely determine this metric.

1.3.1 Entropy

Entropy is primarily linked with a state of randomness, disorder, or uncertainty. This
term and concept find application in various fields, ranging from classical thermodynamics,
where it was initially identified, to the microscopic depiction of nature in statistical physics,
and the principles of information theory.

The concept of information entropy was initially introduced by Claude Shannon in
1948, which is widely known as Shannon entropy. Given a random variable X with a
probability distribution PX and a dominating measure µ such that PX � µ, the Shannon
entropy of X is

Definition 1.3.1 (Shannon Entropy).

H(X) = −
∫
X
pX(x) log pX(x) dµ(x) (1.11)

When µ is a counting measure we obtain the classical definition of Shannon entropy
for discrete random variables:

H(X) = −
∑
x∈X

pX(x) log pX(x). (1.12)
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When µ is the Lebesgue measure, pX(x) is the probability density function, we obtain the
integral form of (1.12):

h(X) = −
∫
X
pX(x) log pX(x) dx, (1.13)

which is called the differential entropy.
Besides Shannon entropy, various other information entropy measures have been sug-

gested in literature, including Hartley entropy, collision entropy, min-entropy :

Definition 1.3.2 (Hartley Entropy). Suppose the domain of X has finite volume with

respect to the measure µ. The Hartley entropy of X is

H0(X) = log |X |. (1.14)

where |X | represents the volume of X with respect to µ. When X has finite elements and

µ is a counting measure, |X | is the number of elements in X .

Definition 1.3.3 (Collision Entropy).

H2(X) = − log

∫
X
p2
X(x) dµ(x). (1.15)

Definition 1.3.4 (Min-Entropy).

H∞(X) = − log
(
ess sup
x∈X

pX(x)
)
. (1.16)

The aforementioned definitions can be unified under a generalized concept known as
α-entropy, also commonly referred to as Rényi entropy. In 1961, Rényi proposed several
postulates that can characterize Shannon entropy and α-entropy [Rén61]. The closed-form
expression of Rényi entropy is

Definition 1.3.5 (Rényi Entropy (α-entropy)). Assume that either 0 < α < 1 or 1 < α <

+∞ (the particular values 0, 1,+∞ being obtained by taking limits). The α-entropy of a

random variable X with a probability distribution PX is defined as

Hα(X) = Hα(PX) = α
1−α log ‖pX‖α (1.17)

where we have used the special notation

‖pX‖α =
(∫
X
pαX(x) dµ(x)

)1/α
. (1.18)
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When µ is a counting measure we obtain the classical definition of Rényi entropy for
discrete random variables; when µ(x) is the Lebesgue measure we obtain the corresponding
definitions for continuous variables.

Letting α tends to 0, 1, 2,∞, one obtains Hartley entropy, Shannon entropy, collision
entropy and min-entropy, respectively. One has the following inequality:

H0(X) ≥ H(X) ≥ H2(X) ≥ H∞(X). (1.19)

That is because

Proposition 1.3.1. Hα(X) is non-increasing in α. For any α < β in [0,+∞], Hα(X) ≥

Hβ(X) with equality if and only if X is uniformly distributed.

Proof. When 1 < α < β, we have

Hα(X) =
1

1− α
log
(∫
X
pX(x)α dµ(x)

)
= − log

(∫
X
pX(x) · pX(x)α−1 dµ(x)

) 1
α−1

= − log
(

EX
(
pX(x)β−1

)α−1
β−1

) 1
α−1

≥ − log
(

EX
(
pX(x)β−1

)) 1
α−1
·α−1
β−1

= Hβ(X)

where the last inequality comes from Jensen’s inequality ( α−1
β−1 < 1 when 1 < α < β).

For other range of α and β, the inequality can be proved in a similar way using Jensen’s

inequality.

1.3.2 Divergence and its Conditional Version

In information theory, divergence is a measure that quantifies the difference or “distance”
between two probability distributions. The Kullback-Leiber divergence (K-L divergence),
also called relative entropy, is a widely used statistical distance.

Definition 1.3.6 (K-L Divergence). Given two probability distributions PX and QX de-

fined over the same sample space X , the divergence from PX to QX is defined as

D(PX‖QX) =

∫
X
pX(x) log

pX(x)

qX(x)
dµ(x). (1.20)

For discrete variable X with a counting measure µ, it becomes

D(PX‖QX) =
∑
x∈X

pX(x) log
pX(x)

qX(x)
. (1.21)
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When µ is the Lebesgue measure, pX(x), qX(x) are the probability density functions,
one obtains the integral form of (1.21):

D(PX‖QX) =

∫
X
pX(x) log

pX(x)

qX(x)
dx, (1.22)

which is compatible with the discrete form (1.21).

1.3.2.1 Alpha-Divergence

The Rényi divergence (also called α-divergence) is a well-known generalization of K-L
divergence:

Definition 1.3.7 (α-Divergence). Assume that either 0 < α < 1 or 1 < α < +∞ (the

particular values 0, 1,+∞ being obtained by taking limits).

The α-divergence of PX from QX are defined as

Dα(PX‖QX) = 1
α−1 log〈pX‖qX〉αα (1.23)

where we have used the special notation:

〈pX‖qX〉α =
(∫
X
pX(x)αqX(x)1−α dµ(x)

)1/α (1.24)

with the same convention for µ as in Definition 1.3.5.

It is easy to verify
lim
α→1

Dα(PX‖QX) = D(PX‖QX). (1.25)

A link between α-entropy and α-divergence is the following uniform expansion property
(UEP). Let U ∼ U(N) be uniformly distributed over a set of finite µ-measure N . (In the
discrete case U simply takes N equiprobable values.) Let P be a distribution over the
same sample space. Since u ≡ 1

N we have 〈p‖u〉α = N
α−1
α ‖p‖α, hence

Property 1.3.1 (UEP of α-Divergence[vEH14]).

Dα(P‖U) = Hα(U)−Hα(P ) = logN −Hα(P ). (1.26)

Another important property is the data processing inequality (DPI). A random trans-
formation given by a conditional distribution PY |X is noted PX → PY |X → PY if a
random variable X ∼ PX is input and the output distribution PY satisfies

pY (y) =

∫
X
pY |X(y|x)pX(x) dµ(x).

Similarly for QX → PY |X → QY one has

qY (y) =

∫
X
pY |X(y|x)qX(x) dµ(x).
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Property 1.3.2 (DPI for α-Divergence [PV10, Rio21]). Any transformation can only

reduce α-divergence: Dα(PX‖QX) ≥ Dα(PY ‖QY ).

1.3.2.2 Conditional Alpha-Divergence

The definition of α-divergence has been extended to conditional versions.

Definition 1.3.8 (Conditional α-Divergence [Ver15]). The conditional α-divergence is

defined as

Dα(PY |X‖QY |X |PX) = Dα(PY |XPX‖QY |XPX). (1.27)

This definition is consistent with the unconditional one:

Property 1.3.3 (Consistency of Conditional α-Divergence w.r.t. α-Divergence). If X ≡ 0

then

Dα(PY |X‖QY |X |PX) = Dα(PY ‖QY ). (1.28)

Here following Shannon [Sha53] we have noted X ≡ 0 for any random variable independent
of everything else considered (e.g., a constant variable).

In Definition 1.3.8 we remark that the expectation over the conditioned variable is only
taken inside the logarithm in the α-divergence’s expression:

Dα(PY |X‖QY |X |PX) = 1
α−1 log EX〈pY |X‖qY |X〉αα. (1.29)

1.3.3 Conditional Entropy

Conditional entropy, often denoted H(X|Y ), is a measure that quantifies the amount of
uncertainty remaining in a random variable X given the observation of another random
variable Y .

Definition 1.3.9 (Conditional Entropy). Given random variables X and Y with proba-

bility distributions PX and PY respectively. Let PXY be the joint probability distribution.

The conditional Shannon entropy is defined as

H(X|Y ) = −
∫
XY

pXY (x, y) log
pXY (x, y)

pY (y)
dµ(x, y) (1.30)

Conditional entropy is widely used in many research areas. In side-channel analysis,
attackers always guess the most likely key based on their observations of measured side-
channel leakages. Therefore, the conditional version of information-theoretic measures is
very commonly used in such scenarios.

After Rényi entropy was proposed, several studies have been conducted to seek an
appropriate definition of conditional α-entropy. Intuitively, a reasonable notion of condi-
tional α-entropy may satisfy several natural properties, such as non-negativity (the value
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of uncertainty should be non-negative, as the uncertainty of a completely certain variable
is 0) and conditioning reduces entropy (having more information can decrease the level of
uncertainty):

• non-negativity : Hα(X|Y ) ≥ 0 (at least for discrete random variable X);

• conditioning reduces entropy (CRE): Hα(X|Y ) ≤ Hα(X), where equality holds if
and only if X is independent of Y ;

In addition, as a generalization of conditional (Shannon) entropy, conditional α-entropy
is expected to be consistent with classical information measures as α tends to 1. So it
might be a good idea to draw inspiration from different expressions of conditional entropy
as follows [FB14]:

H(X|Y ) = EYH(X|Y = y) (1.31)
= H(XY )−H(Y ) (1.32)

Besides these, when X is a uniform distribution over a finite alphabet, i.e., X ∼ U(|X |),
the conditional entropy can be expressed by K-L divergence in the following way [TH18]:

H(X|Y ) = log |X | −D(PXY ‖PX × PY ) (1.33)
= log |X | −min

QY
D(PXY ‖PX ×QY ) (1.34)

Drawing from (1.31), (1.32), (1.33), and (1.34) respectively, we have different pro-
posals for conditional α-entropy:

(1) H̃1
α(X|Y ) = EYHα(X|Y = y).

(2) H̃2
α(X|Y ) = Hα(XY )−Hα(Y ).

(3) H̃3
α(X|Y ) = 1

1−α log EY ‖PX|Y ‖αα.

(4) H̃4
α(X|Y ) = α

1−α log EY ‖PX|Y ‖α.

The first two suggested notions are taken from [Cac97, equation (2.15)] and [JA04,
section 2.2] 3. These two proposals are argued that violate the property conditioning
reduces entropy [FB14]. The last two definitions are proposed by Hayashi [Hay11] and
Arimoto [Ari75] respectively. Both of them satisfy non-negativity (for discrete random
variable) and conditioning reduces entropy, the main difference is the latter one satisfies
the (variation of) chain rule [FB14], i.e.

Hα(X|Y ) +H0(Y ) ≥ Hα(XY ) (1.35)

where H0(Y ) is the Hartley entropy of Y , while Hayashi’s definition does not (see [FB14,
Example (4) and Theorem 3]).

In this thesis we use Arimoto’s definition H̃4
α(X|Y ), and denote it as Hα(X|Y )

in the rest of this article. In addition to the properties mentioned above, Arimoto’s
definition also satisfies other useful properties: consistency, uniform expansion property
(UEP) and data processing inequality (DPI). Consistency is obvious from the definition:

3The second definition was proposed again by Golshani et al. in 2009, see [GPY09, equation (2.10)].
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Property 1.3.4 (Consistency of Conditional α-Entropy w.r.t. α-Entropy). If Y ≡ 0 then

Hα(X|Y ) = Hα(X). (1.36)

Property 1.3.5 (Uniform Expansion Property). If U ∼ U(N) is uniform and independent

of X, then

Dα(PY |X‖U |PX) = Hα(U)−Hα(Y |X) = logN −Hα(Y |X). (1.37)

It is because 〈pX|Y ‖u〉α = N
α−1
α ‖pX|Y ‖α.

Property 1.3.6 (Data Processing Inequality [FB14, Rio21]). If X−Y −Z forms a Markov

chain, then

Hα(X|Y ) ≤ Hα(X|Z). (1.38)

In particular for Z≡0, it yields the conditioning reduces α-entropy (CRE):

Hα(X|Y ) ≤ Hα(X|0) = Hα(X). (1.39)

1.3.4 Generalized Mutual Information

The mutual information (MI) of two random variables is a measure of the mutual depen-
dency between the two variables, quantifying the “amount of information” gained about
one random variable through observing the other.

Definition 1.3.10 (Mutual Information). Given two random variables X and Y with

joint probability distribution PXY and corresponding distributions, the mutual information

between X and Y is

I(X;Y ) =

∫
XY

pXY (x, y) log
pXY (x, y)

pX(x)pY (y)
dµ(x, y). (1.40)

This quantity was first defined and analyzed by Claude Shannon, although he did
not refer to it as “mutual information”. The term was later coined by Robert Fano, so
sometimes it is called “Fano’s mutual information”.

Following the proposal of general information measures like Rényi entropy and diver-
gence, numerous studies have sought an apt generalization of mutual information. Different
definitions of α-information Iα(X;Y ) were proposed in the literature.

Intuitively, a reasonable definition should be consistent with Fano’s mutual information
as α→ 1, and possibly also satisfy the following useful properties:

• independence: Iα(X;Y ) ≥ 0 with equality if and only if X and Y are independent;
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• data post-processing inequality (post-DPI): if X −Y −Z forms a Markov chain, then
post-processing cannot increase the information, i.e., Iα(X;Z) ≤ Iα(X;Y );

• data pre-processing inequality (pre-DPI): if X − Y − Z forms a Markov chain, then
pre-processing cannot increase the information, i.e., Iα(X;Z) ≤ Iα(Y ;Z);

• monotonicity : Iα(X;Y ) is nondecreasing as α increases;

• closed-form expression amenable to efficient numerical estimation.

1.3.4.1 Comparison of Different Proposals

At least four definitions are defined in the literature (for discrete random variables):

(1) IAα (X;Y ) = Hα(X)−Hα(X|Y ),

(2) ICα (X;Y ) = minQY EX(Dα(PY |X‖QY )),

(3) IRα (X;Y ) = Dα(PXY ‖PX × PY ) = 1
α−1 log EY 〈pX|Y ‖pX〉αα,

(4) Iα(X;Y ) = minQY Dα(PXY ‖PX ×QY ) = α
α−1 log EY 〈pX|Y ‖pX〉α,

which somehow parallel the corresponding ones for conditional entropy.

Arimoto’s Definition

The first definition was proposed by Arimoto [Ari75]. It is easily seen to satisfy both the
independence and post-DPI property because of the DPI property of Arimoto’s conditional
entropy. However, it does not satisfy monotonicity because sometimes it can be decreasing
in α (as IAα (X;X) = Hα(X) is decreasing in α).

Csiszár’s Definition

The second definition is from Csiszár [Csi95]. It does not seem to admit a closed-
form expression, and the minimization is hard to solve analytically even in simple exam-
ples [Ver15]. However, one can prove monotonicity and the independence property, based
on the corresponding properties of the α-divergence.

Rényi’s α-Mutual Information

The third definition requires no minimization and appears in [TH18, equation (50)].
We call it Rényi’s α-mutual information because it is a natural definition from Rényi’s
divergence, just as in the classical case α = 1. Also, it is mutual in the sense that
IRα (X;Y ) = IRα (Y ;X). From the nonnegativity of α-divergence: Dα(P‖Q) ≥ 0 with
equality if and only if P = Q, it is easily seen that IRα (X;Y ) satisfies the independence
property. From the monotonicity property of α-divergence, it also satisfies monotonicity.
One can also check post-DPI and pre-DPI properties, by same reasoning line as in the
proof of [LCGR21, Property 8], replacing QY , QZ by PY , PZ , respectively.
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Sibson’s α-Information

Finally, the fourth definition is due to Sibson [Sib69] (see also [Ver15]). In contrast to
Rényi α-mutual information, symmetry does not hold in general: Iα(X;Y ) 6= Iα(Y ;X).
However, it is known to satisfy the independence property, monotonicity, and the pre and
post-DPI [PV10] (see also [Rio21]). See Table 1.1 for a summary of all properties.

Table 1.1: Summary of properties for various definitions of α-information.

Def. Independence Post-DPI Pre-DPI Monotonicity Closed-form

IAα yes yes — no yes

ICα yes — — yes no

IRα yes yes yes yes yes

Iα yes yes yes yes yes

Sibson’s α-information is perhaps the preferred generalization of Fano’s mutual infor-
mation and has found various applications [PV10, Ver15, TH18, Rio21, EWG21, EGI21].

In this thesis, we employ both Rényi’s α-mutual information and Sibson’s α-information
as information-theoretic tools for security evaluation. The remainder of this subsection
provides further details of these two definitions.

1.3.4.2 Sibson’s α-Information

The closed-form expression of Sibson’s α-information is

Definition 1.3.11 (Sibson’s α-Information).

Iα(X;Y ) = α
α−1 log EY 〈pX|Y ‖pX〉α, (1.41)

where we have used a special notation:

〈p‖q〉α =
(∫

pαq1−αdµ
)1/α

. (1.42)

In addition to the properties listed in Table 1.1, Sibson’s α-information also satisfies
uniform expansion property (UEP) and Sibson’s identity. As in the case of the conditional
α-entropy, since 〈pU |Y ‖u〉α = N

α−1
α ‖pU |Y ‖α, we have the following

Property 1.3.7 (UEP for α-Information [vEH14, Rio21]). If U ∼ U(N) is uniformly

distributed, then

Iα(U ;Y ) = Hα(U)−Hα(U |Y ) = logN −Hα(U |Y ). (1.43)
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An important property of α-information is Sibson’s identity. It is straightforward to
compute

〈pXY ‖pXqY 〉αα =

∫∫
pαY p

α
X|Y p

1−α
X q1−α

Y dµ (1.44)

=
〈
pY 〈pX|Y ‖pX〉α ‖ qY

〉α
α
. (1.45)

Defining the (suitably normalized) distribution q∗Y = pY 〈pX|Y ‖pX〉α/EY 〈pX|Y ‖pX〉α, sub-
stituting and taking the logarithm gives the following

Proposition 1.3.2 (Sibson’s identity [Sib69, Ver15]). One has

Dα(PXY ‖PXQY ) = Dα(Q∗Y ‖QY ) + Iα(X;Y ), (1.46)

hence the following alternate minimizing definition:

Iα(X;Y ) = min
QY

Dα(PXY ‖PXQY ). (1.47)

1.3.4.3 Rényi’s Alpha Mutual Information

Definition 1.3.12 (Rényi’s α-Mutual Information).

IRα (X;Y ) = Dα(PXY ‖PX × PY ) = 1
α−1 log EY 〈pX|Y ‖pX〉αα (1.48)

Since

min
QY

Dα(PXY ‖PX ×QY ) ≤ Dα(PXY ‖PX × PY ),

Sibson’s α-information is always less than or equal to Rényi’s α-mutual information:

Iα(X;Y ) ≤ IRα (X;Y ). (1.49)

Remark 1.3.1. Rényi’s α-mutual information does not satisfy the uniform expansion

property when considering Arimoto’s conditional entropy, as

IRα (U ;Y ) ≥ Iα(U ;Y ) = logN −Hα(U |Y ). (1.50)

However, one has

IRα (U ;Y ) = logN − H̃3
α(U |Y ) (1.51)

as shown in (1.33), where H̃3
α(U |Y ) is Hayashi’s proposal for conditional α-entropy.
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1.3.5 Generalized Fano Inequality

Assume X is discrete and estimated from Y using the MAP rule, with (maximal) proba-
bility of success Ps = Ps(X|Y ) = EY supx pX|Y (x|y = Y ). The guessed X is denoted as
X̂. Also let Ps(X) = supx pX(x) be the probability of success when guessing X without
even knowing Y . As X − Y − X̂ is Markov, using data processing inequality for Sibson’s
α-information and α-divergence, we have the following

Lemma 1.3.1 (Rioul’s Generalized Fano Inequality [Rio21, Thm. 1]).

Iα(X;Y ) ≥ Iα(X; X̂) ≥ dα
(
Ps(X|Y )‖Ps(X)

)
(1.52)

where dα(p‖q) denotes binary α-divergence:

dα(p‖q) = 1
α−1 log

(
pαq1−α + (1− p)α(1− q)1−α). (1.53)

Classical Fano’s inequality can be obtained by letting α→ 1.

1.4 Security Assessment Against Side-Channel Attack

Side-channel attacks have become a concern for cryptographic systems due to device’s
inherent tendency to leak information, which leverages information leaked during the ex-
ecution of cryptographic algorithms. To ensure resilience against these threats, a compre-
hensive security assessment strategy is indispensable. This subsection reviews the methods
used for evaluating potential vulnerabilities and understanding the efficacy of protective
measures, particularly in masked implementations.

1.4.1 Leakage Evaluation and Security Analysis

In [SMY09], the authors advocate for the evaluation of implementations by leveraging
both information theoretic measures (including conditional entropy, mutual information)
and security indicators (such as success rates or guessing entropy). They clarify the indi-
vidual relevance of mutual information and the probability of success, but approach these
metrics separately. In [DSVC14], the authors introduce a variety of metrics that assist in
quantifying the side-channel leakage of cryptographic chips.

In [dCGRP19b, dCGRP19a], Chérisey et al. use classical information-theoretic tools
(such as mutual information, K-L divergence) to establish some universal inequalities be-
tween the probability of success of a side-channel attack and the minimum number of
queries to reach a given success rate. Such inequalities are ‘universal’ in the sense that they
can apply to any type of attack and depend only on the leakage model. Leveraging Fano’s
inequality, the authors manage to forge a connection between mutual information and the
probability of success. All of these works utilized the classical information-theoretic tools.
As we will see in the subsequent sections of this paper, by applying generalized information
theory for the analysis of side-channel security, tighter bounds can be obtained.
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1.4.2 Evaluation of Masked Implementations

Masking serves as a preemptive countermeasure, deliberately obscuring the relationship be-
tween secret data and discernible leakages. By doing so, it becomes increasingly challenging
for attackers to extrapolate the concealed data. Evaluating the efficacy and robustness of
such masked implementations, in both practical and theoretical settings, is paramount.

As we mentioned before, the rationale of the masking scheme is splitting the sensitive
variable into several shares and processing each share independently. Thus the side-channel
leakage in masked implementations are vectors composed of each share’s leakage.

In [CJRR99], Chari et al. prove a lower bound on the number of measurements required
to carry out statistical attacks on devices: This bound increases as the number of shares
increases. In their work, the physical characteristics of the targeted devices are assumed to
satisfy several properties, and the security assessment focuses on leaking shares indepen-
dently of any computation. In 2013, Prouff et al. [PR13] consider a more general leakage
model: the only computation leaks information model. They derive a security bound for
masked block cipher implementations using a measure called bias (related to statistical dis-
tance). Their main theorem shows that given the noisy leakages on its shares, the bias of
sensitive variable decreases exponentially with the security order. Unlike [CJRR99], Prouff
et al. do not provide a bound on the number of measurement, but focus on demonstrating
that the information gained by observing the noisy leakage of one execution is negligible.

Subsequently, in [DFS15], Duc et al. derive a lower limit on the minimum number
m of queries required to achieve a given probability of success Ps. This lower bound is
later improved in [MRS23] and [IUH22]. Even though the subsequent two papers have
made considerable advancements to the results presented in Subsequently, in [DFS15], the
lower bounds they established still tend to loosen when dealing with a large size of the
finite field. All three papers conducted a security analysis of masked implementation using
mutual information.

1.4.3 The Parameters Affecting Masking Performance

Masking performance can be influenced by various parameters, both intrinsic and extrinsic
to the cryptographic system. Critical factors include: masking generation mechanisms,
operational environment, and algorithmic complexity. This thesis focuses on masking
generation mechanisms, more specifically, the linear codes used in the code-based masking.

It has been proven that the effectiveness of code-based masking is influenced by at least
two parameters of the dual of the masking code: the minimum distance and the kissing
number of the dual of masking code.

Before delving into the pertinent literature on this topic, we revisit several known
definitions of linear codes.

Definition 1.4.1 (Linear code parameters [MS77]). A linear code C is a set of vectors,

called codewords, which form a vector space over some finite field Fq. The parameters of

the linear code C is a triple [n, k, δ], where n is the code length, k is its dimension, and δ

is its minimum distance (also denoted as δC). When δ is not known, C is referred to as an

[n, k] linear code.

25



Chapter 1. Background, Notations, and Research Status

Definition 1.4.2 (Hamming Weight [MS77, Chap 1, §3]). The Hamming weight, or simply

the weight, of a vector x = (x1, · · · , xn) is the number of nonzero xi. It is denoted as wH(x).

Definition 1.4.3 (Weight Distribution [MS77, Chap 2, §1]). Let C be an [n, k, δ] linear

code and Ai be the number of codewords of Hamming weight i: Ai = |{x ∈ C | wH(x) = i}|.
The sequence A0, A1, . . . An is called the weight distribution of C. Obviously A0 = 1,

A1 = · · · = Aδ−1 = 0.

Definition 1.4.4 (Kissing Number). The kissing number of a linear code C is Aδ, the

number of nonzero codewords of minimum weight δ.

Definition 1.4.5 (Dual code [MS77] and dual distance). The dual code of a code C is the

linear code consisting of the set of all vectors orthogonal to all codewords of C, denoted as

C⊥. The dual distance δC⊥ of the code C is the minimum distance of C⊥.

As stated in Section 1.2.1, code-based masking employs two linear codes C and D in
the following way:

V = XGC +MGD, (1.54)

where GC and GD are generator matrices of C and D (thus the row spaces of GC and GD are
C and D), respectively.

At present, the side-channel security order of code-based masking has been linked to
the minimum distance and the kissing number of D⊥.

Dual Distance

The side-channel security order of code-based masking has been linked to δD⊥ , the dual
distance of masking code D. In [PGS+17], the authors prove the (bit-probing) security of
DSM is equal to δD⊥ ; For IPM, [CG18] establishes a connection between δD⊥ , the mutual
information between sensitive variable and leakage, and success rate. Namely, the security
of the masking scheme is increasing as δD⊥ increases.

Kissing Number

In [CGC+21b, CGC+21a], the authors prove the impact of code-based masking depends
on two properties of D⊥ (the dual of the masking code): its minimum distance δ and the
kissing number Aδ. By evaluating the mutual information between the sensitive variable
and leakage, they prove the random masking is all the more secure as δ is large and the
kissing number Aδ is small.

To conclude, the security of code-based masking is related to the distance and kissing
number of the dual of the masking code. Given a masking code with a specific length
and dimension, the larger its dual distance, the more secure the corresponding masking
becomes. If two masking codes have the same distance, then the one with a smaller kissing
number of its dual code is even more secure.
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CHAPTER 2

Construction of Masking Codes

This chapter consists of two sections, the content of the first section has been published
in “Linear Programming Bounds on the Kissing Number of q-ary Codes” [SLC+21], the
second section has been published in “Towards Finding Best Linear Codes for Side-Channel
Protections” [CLGR22].
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Abstract

The first section uses linear programming to derive upper and lower bounds on the
“kissing number” Aδ of any q-ary linear code C with distance distribution frequencies Ai,
in terms of the given parameters [n, k, δ].

The second section attempts to address the constructive selection of optimal codes
tailored for code-based masking when the device leaks information in the Hamming weight
leakage model. We show that the problem is related to the weight enumeration of the
extended dual of the masking code. We provide an efficient method to search for good
codes, based on a lexicographic sorting of the weight enumeration polynomial from lowest
to highest degrees.
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2.1 Linear Programming Bounds on the Kissing Number of

q-ary Codes

The kissing number Aδ of a linear code is the number of nonzero codewords of minimum
weight δ. As we discussed in Section 1.4.3, when parameters n, k, δD⊥ of the dual of the
masking code are given, the corresponding masking is all the more secure as the kissing
number of D⊥ is small [CGC+21b]. Therefore, the bounds on the kissing number give
us a clue about limits on the security improvements achieved by the related code-based
masking.

In this section, we derive several bounds on the kissing number of q-ary
codes by using the linear programming method, including numerical and ex-
plicit bounds. For a given minimum distance δ, the kissing number can vary significantly
as shown in Figure 2.1 and Figure 2.2. Therefore, the problem we consider is: Given the
length, dimension, and minimum distance of a code, how to bound the kissing number
above and below?

Building on MacWilliams formula of q-ary linear codes for Hamming weight enumer-
ators (see [MS77, Chap. 5, Eq. (47)]), we derive bounds on kissing number by linear
programming. This approach can be exploited numerically, using the linear programming
solver of Magma [BCP97], or analytically via the polynomial method of [MS77, Chap. 17,
Th. 20]. As shown in Tables 2.1 and 2.2, for binary codes, the numerical method is more
precise, while the polynomial method is useful to create insightful bounds with an explicit
analytical expression.

The more general problem of bounding arbitrary weight frequencies is studied using
similar techniques in [ABL01]. However, the results in [ABL01] are mostly asymptotic:
it gives non-explicit asymptotic bounds on all weight frequencies. In Ashikhmin et al.’s
work [ABV01], they investigated the existence of codes whose kissing number satisfying
an asymptotic lower bound. In the present paper we have strived to derive explicitly
possibility bounds for any q-ary linear codes with given parameters [n, k, δ].

2.1.1 Background

Let C be a [n, k, δ] linear code over the finite field Fq, with length n, dimension k, minimum
distance δ, and the weight distribution A0, A1, . . . An, where Ai = |{x ∈ C | wH(x) = i}|,
i = 0, . . . , n. Its dual code is denoted as C⊥, the weight distribution of C⊥ is denoted as
A′0, A

′
1, . . . A

′
n. By definition, A0 = 1, Aj = 0 for any 0 < j < δ, then

qk = 1 +Aδ +
n∑

j=δ+1

Aj . (2.1)

Before moving to linear programming bounds, let’s review the definition of the Krawtchouk
Polynomial.

Definition 2.1.1 (Krawtchouk Polynomial [MS77, Chap 5, §7]). For any prime power q
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and positive integer n, define the Krawtchouk polynomial

Pk(x;n) = Pk(x) =

k∑
j=0

(−1)j(q − 1)k−j
(
x

j

)(
n− x
k − j

)
, (2.2)

where k = 0, 1, . . . , n.

Example 2.1.1. The Krawtchouk polynomials for k = 0, 1, 2 are:

P0(x) = 1, (2.3)

P1(x) = (q − 1)− qx, (2.4)

P2(x) =
1

2

(
q2x2 + q(2n+ q − 2nq − 2)x+ 2n(n− 1)(q − 1)2

)
. (2.5)

In particular, when q = 2, they become:

P0(x) = 1, (2.6)

P1(x) = n− 2x, (2.7)

P2(x) = 2x2 − 2nx+
n(n− 1)

2
. (2.8)

See [MS77, Chap 5, §7] for background on these polynomials.

2.1.2 Linear Programming Bounds

For [n, k] linear codes over Fq, by MacWilliams formula for q-ary codes [MS77, Chap. 5,
Eq. (47)] we have

qk
n∑
i=0

A′ix
n−iyi =

n∑
i=0

Ai(x+ (q − 1)y)n−i(x− y)i, (2.9)

which yields

qkA′i =
n∑
j=0

AjPi(j) (2.10)

for all i = 0, 1, . . . , n.
Linear programming leads to the following theorem concerning a lower bound on the

kissing number.

Theorem 2.1.1 (Lower Bound on the Kissing Number). If C is an q-ary [n, k, δ] linear

code then Aδ ≥ qk − 1 − bLc, where L denotes the maximum of
n∑

j=δ+1

Aj subject to the

2n− δ constraints

− Pi(0)− (qk − 1)Pi(δ) ≤
n∑

j=δ+1

Aj(Pi(j)− Pi(δ)) (2.11)

for i = 1, 2, . . . , n, and Aj ≥ 0 for j = δ + 1, δ + 2, . . . , n.
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Proof. By definition of A′i, we have A′i ≥ 0 for i = 1, 2, . . . , n which, from (2.10), reads

Pi(0) + AδPi(δ) +
n∑

j=δ+1

AjPi(j) ≥ 0. Substituting Aδ = qk − 1 −
n∑

j=δ+1

Aj gives (2.11).

The Theorem is proved by using (2.1) again.

We have a similar result for upper bounds.

Theorem 2.1.2 (Upper Bound on the Kissing Number). If C is an [n, k, δ] q-ary code then

Aδ ≤ qk − 1 − dSe where S denotes the minimum of
n∑

j=δ+1

Aj under the same constraints

as above.

Proof. The proof is similar as Theorem 2.1.1, so it is omitted.

Consider the n inequality constraints (2.11)

− Pi(0)− (qk − 1)Pi(δ) ≤
n∑

j=δ+1

Aj(Pi(j)− Pi(δ))

for i = 1, 2, . . . , n, along with the n−δ constraints Aj ≥ 0 for j = δ+1, δ+2, · · · , n. In this
mathematical program, the Aj ’s are considered as rational variables if linear programming
is used, or integral variables if integer programming is intended. Both approaches can be
implemented in Magma [BCP97].

The calculation result of the linear programming method is presented in Figure 2.1
and Figure 2.2. Here we focus on binary codes, and take different rates R = k

n as different
examples (R ≈ 1

2 and R ≈ 1
3), with δ being the best known for given parameters [n, k].

Figure 2.1: Linear programming bounds on the kissing number for R ≈ 1/2. Bounds are tight for

n = 3, 4, 5, 6, 7, 8, 9.
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2.1. Linear Programming Bounds on the Kissing Number of q-ary Codes

Figure 2.2: Linear programming bounds on the kissing number for R ≈ 1/3. Bounds are tight for

n = 5, 6, 7, 8, 9, 15, 16.

The LP bounds are represented for n ranging from 3 to 16. We omit the cases when
k = 1 because they are trivial situations with only two codewords. For some choices [3, 2, 2],
[6, 3, 3], [7, 4, 3], [8, 4, 4], [5, 2, 3], [6, 2, 4], [15, 5, 7] and [16, 5, 8], the lower and upper bounds
agree and the kissing number is necessarily unique.

However, in general, the lower and upper bounds do not agree, and it is possible to find
actual codes with different kissing numbers between those bounds, as represented in light
blue color in Figure 2.1 and Figure 2.2. The research has been carried out by randomly
selecting linear codes of parameters [n, k, δ] and the range displayed in blue correspond
to actually discovered codes amongst the ones we explored. Our search could not be
exhaustive so that there might exist codes with lower or higher kissing numbers.

Some exceptions are when:

• [n, k, δ] = [8, 4, 4] and [16, 8, 5], as those are unique codes (extended Hamming
code [MS77] and shortened QR code [MS77]). The uniqueness of the latter is proven
in [BH01].

• [n, k, δ] ∈ {[3, 2, 2], [6, 3, 3], [7, 4, 3], [5, 2, 3], [6, 2, 4], [11, 4, 5], [12, 4, 6], [15, 5, 7],
[16, 5, 8]}, as the room between lower and upper bounds is limited.

We also superimposed in Figure 2.1 and Figure 2.2 the special case of Magma [BCP97]
Best Known Linear Code (BKLC). The function BKLC(n, δ) returns a code with the
largest known dimension, for a given length and minimum distance, consistently with
Grassl database [Gra07], which favors codes obtained by some algebraic construction. On
several occasions, especially for rate 1/2 codes, the kissing number of BKLC is relatively
high, hence Magma [BCP97] is not adapted to applications requiring a small kissing number.
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2.1.3 Explicit Bounds Using the Polynomial Method

The following identity is a polynomial way of expressing the duality of LP.

Lemma 2.1.3 (Polynomial Method[Del72, Eq.(18)]). Let β(x) ∈ Q[x] denote a polynomial

with Krawtchouk expansion

β(x) =
n∑
j=0

βjPj(x). (2.12)

The following identity holds

n∑
i=0

β(i)Ai = qk
n∑
j=0

βjA
′
j . (2.13)

Proof. Immediate by (2.10), upon swapping the order of summation.

2.1.3.1 Lower Bounds

Using Lemma 2.1.3 we have the following theorem. This theorem can also be obtained by
setting appropriate parameters in [ABL01, Thm 1].

Theorem 2.1.4 (Lower Bound[ABL01]). Let β(x) ∈ Q[x] satisfying

βj ≥ 0, ∀j = 0, 1, . . . , n, (2.14)

β(x) ≤ 0, ∀x ∈ (δ, n], (2.15)

β(δ) > 0, (2.16)

qkβ0 > β(0). (2.17)

Then we have the lower bound

Aδ ≥
qkβ0 − β(0)

β(δ)
. (2.18)

Proof. By Lemma 2.1.3 we have

β(0) +Aδβ(δ) +

n∑
i=δ+1

β(i)Ai ≥ qkβ0A
′
0 = qkβ0,

implying

β(0) +Aδβ(δ) ≥ qkβ0,

where (2.19) and (2.19) hold due to the specific assumptions made about the polynomial

β(x), namely (2.14) and (2.15).
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The main result of this paragraph are the following corollaries. First, we consider the
case of β linear.

Corollary 2.1.4.1. If δ = d(n− 1)(q − 1)/qe, then

Aδ ≥
qk − nq + n− 1

(n− δ)q − n+ 1
. (2.19)

Proof. Take β(x) = nq − n + 1 − qx. Because P0 = 1 and P1(x) = (q − 1)n − qx (see

Example. 2.1.1), the coefficients of the Krawtchouk expansion are β0 = β1 = 1. Thus

β(0) = nq − n + 1, β(δ) = nq − n + 1 − qδ, and β(x) ≤ 0 when x ≥ nq−n+1
q . So in order

to satisfy β(x) ≤ 0 for any integer x ∈ (δ, n], we must have δ+ 1 ≥ nq−n+1
q . Combine with

β(δ) > 0 we have (q−1)(n−1) ≤ qδ < (q−1)(n−1)+q. Plugging this data into Theorem

2.1.4, the result follows.

Next, we consider the scenario where β is a quadratic polynomial.

Corollary 2.1.4.2. If qδ > nq − n− 2q + 1 then

Aδ ≥
qk−2n(n− qn+ qδ + 2q − 1)− nδ − n

n− δ
. (2.20)

Proof. Assume β = 1 + β1P1(x) + β2P2(x), where

P2(x) =
q2

2
x2 +

q(q − 2nq + 2n− 2)

2
x+ (q − 1)2

(
n

2

)
.

To ensure the negativity of β for x ∈ (δ, n], the simplest is to assume β(δ + 1) = β(n) =

0. This gives a system of two equations in β1, β2. The solution according to Wolfram

alpha [LLC] is

β1 =
nq − 2n− qδ − 2q + 2

n(n− qn+ qδ + 2q − 1)
, β2 =

−2

n(n− qn+ qδ + 2q − 1)
.

This yields

β(δ) =
q2(n− δ)

n(n− qn+ qδ + 2q − 1)
, β(0) =

q2(δ + 1)

(n− nq + qδ + 2q − 1)
.

Then the result follows by Theorem 2.1.4.

Example 2.1.2. Consider the binary code C = RM(1,m), with parameters k = m + 1,

and δ = 2m−1. It is well-known that C is a two-weight code with A0 = A2m = 1, and

A2m−1 = 2m+1 − 2. Since 2δ − n+ 3 > 0, using Corollary 2.1.4.2 we have Aδ ≥ 2m+1 − 2.

So RM(1,m) meets the lower bound.
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If more constraints are imposed on the linear code C, using the same method as
in 2.1.4.2, we can obtain the following result:

Corollary 2.1.4.3. If C is a binary code and all weights of C lie in the range [δ, n − δ],

with distance δ < n
2 and (n− 2δ − 1)2 < n+ 1, then

Aδ ≥
2k−2(n2 − 4nδ − 3n) + (2k + 1)δ(δ + 1)

(2δ − n)
− δ − 1. (2.21)

Proof. Because all weights of C lie in the range [δ, n − δ], for a quadratic β, to ensure its

negativity on the weights it is enough to assume β(δ + 1) = β(n − δ) = 0. This gives a

system of two equations in β1, β2, if we write β = 1 + β1P1(x) + β2P2(x). The solution

according to Wolfram alpha [LLC] is

β1 = β2 =
2

n+ 1− (n− 2δ − 1)2
.

This yields

β(δ) =
−4n+ 8δ

n2 − 4nδ − 3n+ 4δ2 + 4δ
, β(0) =

4(δ2 + δ − nδ − n)

n2 − 4nδ − 3n+ 4δ2 + 4δ
.

Then the result follows by Theorem 2.1.4.

2.1.3.2 Upper Bounds

Like Theorem 2.1.4, the following theorem can also be obtained by setting appropriate
parameters in [ABL01, Thm 1].

Theorem 2.1.5 (Upper Bound[ABL01]). Let β(x) ∈ Q[x] satisfying

βj ≤ 0, ∀j = 1, . . . , n, (2.22)

β(x) ≥ 0, ∀x ∈ (δ, n], (2.23)

β(δ) > 0, (2.24)

qkβ0 > β(0). (2.25)

Then we have the upper bound

Aδ ≤
qkβ0 − β(0)

β(δ)
. (2.26)

The proof is analogous to that of Theorem 2.1.4 and is omitted.
The main results of this paragraph are the following corollaries. First, we consider the

case of β linear.
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Corollary 2.1.5.1. If n− nq + 1 + qδ > 0, then

Aδ ≤
qk + nq − n− 1

n− nq + 1 + qδ
. (2.27)

Proof. Take β(x) = n−nq+ 1 + qx, where P1(x) = (q−1)n− qx. By construction β0 = 1,

and β1 = −1. Note that β(0) = n − nq + 1, and β(δ) = n − nq + 1 + qδ. We see that

β(x) > 0, for x an integer > n−nq+1
q . Plugging this data into Theorem 2.1.5, the result

follows.

Next, we once again consider the scenario where β is a quadratic polynomial.

Corollary 2.1.5.2. If δ < (q−1)n+1
q , then

Aδ ≤
qk−2n(qn− n− qδ + 1) + n(δ − 1)

n− δ
. (2.28)

Proof. Assume β = 1− β1P1(x)− β2P2(x), with β1, β2 > 0. To ensure the positivity of β

for x ∈ (δ, n] the simplest is to assume β(δ − 1) = β(n) = 0. This gives a system of two

equations in β1, β2. The solution according to Magma [BCP97] is

β1 =
2n+ qδ − 2− nq
qn2 − n2 − qnδ + n

, β2 =
2

qn2 − n2 − qnδ + n
.

This yields

β(δ) =
q2(n− δ)

qn2 − n2 − qnδ + n
, β(0) =

q2(1− δ)
qn− n− qδ + 1

.

The result follows by Theorem 2.1.5.

Example 2.1.3. Still consider the binary code C = RM(1,m), where n = 2m, k = m+ 1,

and δ = 2m−1. Using Corollary 2.1.5.2, we have Aδ ≤ 2m+1 − 2. From Corollary 2.1.4.2

we know Aδ ≥ 2m+1 − 2. So Aδ = 2m+1 − 2. Because A0 = 1, it proved that RM(1,m)

is a two-weight code. RM(1,m) is the only code we know that satisfies the upper bound

and the lower bound at the same time.

If more constraints are imposed on the linear code C, we can derive the following result:

Corollary 2.1.5.3. If C is a binary code and all weights of C lie in the range [δ, n − δ],

with n− 2δ > 0 and (n− 2δ + 2)2 > n, then

Aδ ≤
2k−2

(
(n− 2δ + 2)2 − n

)
+ (δ − 1)(n+ 1− δ)

n+ 1− 2δ
. (2.29)
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Proof. For a quadratic β, of concavity ∩, to ensure its positivity on the weights it is enough

to assume β(δ − 1) = β(n− δ + 1) = 0.

This gives a system of two equations in β1, β2, if we write β = 1− β1P1(x)− β2P2(x).

The solution according to Magma [BCP97] is

β1 = 0, β2 =
2

(n− 2δ + 2)2 − n
.

This yields

β(0) =
4(δ − 1)(δ − n− 1)

(n− 2δ + 2)2 − n
, β(δ) =

4(1− 2δ + n)

(n− 2δ + 2)2 − n
.

Then the result follows by Theorem 2.1.5.

Table 2.1 and Table 2.2 contain the bounds for binary codes.

Table 2.1: Upper/Lower Bounds for some Linear Codes

Binary code Lower bound of Aδ Upper bound of Aδ

[n, k, δ] Poly. method LP bound LP bound Poly. method

[8, 3, 4] 2 3 7 10

[8, 4, 4] 14 14 14 14

[9, 3, 4] −2 1 7 12

[9, 4, 4] 6 6 14 19

[10, 3, 5] 0 2 4 12

[10, 4, 4] −2 12 15 25

[11, 4, 5] 4 5 7 22

[12, 4, 6] 10 11 14 18

[13, 4, 6] 2 4 14 24

[14, 4, 7] 8 8 8 20

[14, 5, 6] 2 7 27 50

[15, 4, 8] 15 15 15 15

[15, 5, 7] 15 15 15 41

[16, 4, 8] 6 7 15 22

[16, 5, 8] 30 30 30 30

Table 2.1 shows that the LP bound is more precise in general than the polynomial
method. The interest of the latter resides in producing intuitive bounds with a closed
formula.

Table 2.2 shows the LP bounds for n ranging from 17 to 32. It is a supplement to the
results in Figure 2.1 and Figure 2.2. Because it is difficult to calculate all possible values
of Aδ, we did not compare the bounds with the range of Aδ as Figure 2.1 and Figure 2.2.
As we can see from Table 2.2, for some values [22, 11, 7], [23, 12, 7] and [24, 12, 8], the lower
and upper bounds agree, which means the LP bounds must be tight at these values. It
also shows that when n is large, the lower bounds for some values may be trivial (smaller
than 1), while the upper bounds are much smaller than the trivial bounds (Aδ ≤ 2k − 1).
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Table 2.2: LP Bounds for some Linear Codes

Binary codes (R ≈ 1
2) Binary codes (R ≈ 1

3)

[n, k, δ] lower bound upper bound [n, k, δ] lower bound upper bound

[17, 9, 5] 17 50 [17, 6, 7] 12 23

[18, 9, 6] 69 142 [18, 6, 8] 32 50

[19, 10, 5] −14 72 [19, 6, 8] 12 51

[20, 10, 6] 40 209 [20, 7, 8] 29 83

[21, 11, 6] 56 282 [21, 7, 8] 9 83

[22, 11, 7] 176 176 [22, 7, 8] -3 88

[23, 12, 7] 253 253 [23, 8, 8] -2 143

[24, 12, 8] 759 759 [24, 8, 8] -12 163

[25, 13, 6] −23 526 [25, 8, 9] −29 64

[26, 13, 7] −67 295 [26, 9, 9] −43 100

[27, 14, 7] −33 353 [27, 9, 10] 31 247

[28, 14, 8] 295 1138 [28, 9, 10] −4 259

[29, 15, 7] −182 509 [29, 10, 10] −5 396

[30, 15, 8] 105 1724 [30, 10, 11] −14 178

[31, 16, 8] 168 1985 [31, 10, 12] 149 442

[32, 16, 8] −36 2274 [32, 11, 12] 298 639

2.1.4 Applications in Code-based Masking

Recall that the kissing number is one of the two factors that determine the concrete side-
channel security level in the code-based masking [CGC+21b] because the mutual informa-
tion that measures the informativeness of leakage is proportional to the kissing number.
In this respect, Theorem 2.1.4 and 2.1.5 enable us to bound the security gains induced by
the corresponding code-based masking. In particular, given the code parameters [n, k, δ],
these two theorems indicate the best and the worst cases of codes that can be achieved in
practice.

Taking the code [8, 4, 4] in Table 2.1 as an example, it is unique and has been proven to
be the best case in the code-based masking with two shares over F24 , given the variance of
Gaussian noise is greater than 1.0 [CG18]. In this case, both lower bound and upper bound
coincide in 14. Another example is the linear codes with parameters [12, 4, 6], which are the
optimal choices in three share cases over F24 [CGC+21b]. In the latter case, the lower and
upper LP bounds are 11 and 14, respectively, where the BKLC code in Magma [BCP97] gives
Aδ = 12. It is worth mentioning that Aδ = 12 is unique for all [12, 4, 6] linear codes which
is verified by exhaustive code search, although there are several non-equivalent classes.

In general, algebraic codes owing to their large automorphism group have a large kissing
number. Conversely, the application of code-based masking favors codes with low kissing
number, which are less studied and certainly deserve more attention.
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2.2 Finding Best Linear Codes for Side-Channel Protections

LetK, T , X represent the secret key, the public variable, and sensitive variable respectively.
The following model has been introduced in Section. 1.2:

Crypto Masking Side-channel Attack
Xm V mK Y m K̂

Tm Tm

Figure 2.3: Side-channel seen as a communication channel (with masking).

In this section, the number of shares is denoted as n instead of d + 1. This is
because we have plenty discussions about the masking code in this section, and using n as
the notation aligns with the commonly used code parameter [n, k].

To protect the key-dependent sensitive variable, X is masked into n shares: V =
(X0, X1, . . . , Xn−1). The side-channel leakage is denoted as Y = (Y0, Y1, . . . , Yn−1) with
each Yi deponding on Xi, i = 0, 1, . . . , n−1. The attacker queries the cryptographic device
m times and obtains corresponding traces Y m. Finally, the attacker use Y m and Tm to
compute the guessed key K̂.

For the code-based masking, as stated in Section 1.2.1, randomness M is introduced
in masking procedure and both X and M are multiplied by generator matrices of the
masking codes. Let Fq be a finite field where q is a power of 2, and k, s be integers
satisfying k + s ≤ n. One has

V = XGC +MGD, (2.30)

where X ∼ U(Fkq ), M ∼ U(Fsq), GC ∈ Fk×nq has rank k and GD ∈ Fs×nq has rank s. The row
space of GC and GD are denoted as VGC = C and VGD = D, they are two linear codes with
paremeters [n, k] and [n, s] respectively. We assume C ∩ D = {0}.

It follows that from the perspective of side-channel resistance, the word-level security is
only captured by the minimum distance of D⊥ [CG18, PGS+17]. By contrast, the bit-level
security of a code-based masking is related to both the minimum distance and the kissing
number of D⊥ [CGC+21b, CGC+21a] under the Hamming weight leakage model.

Rather than searching from all possible candidates as in [CGC+21a], we aim at con-
structing optimal linear codes for generalized code-based masking (GCM) by an efficient
algorithm. This is an open problem to the best of our knowledge. In [CGC+21b], the
authors demonstrate a good code (for masking countermeasure) should have a large min-
imum distance and a low kissing number. However, as we can see from the definition
of weight distribution (Definition 1.4.3), the kissing number of a code is only one coeffi-
cient of the weight distribution polynomial. As we demonstrate in the sequel, the entire
weight distribution is to be considered to assess the side-channel resistance of a code-based
masking.
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2.2.1 Background

Definition 2.2.1 (Linear Code over Specific Finite Field). An [n, k, δ] linear code over

the finite field F2` is denoted by [n, k, δ]2` to refer to the field on which the code is defined.

Definition 2.2.2 (Subfield extension of a code [MS77]). The subfield representation of

x ∈ F2` is its vector of coordinates [x] ∈ F`2, which depends on the choice of the basis of F2`

over F2. The subfield extension [C] is the set of all vectors obtained from the codewords of

C by taking the subfield representation of every component.

Considering a generator matrix of a linear code C of size k × n in F2` , the generator
matrix of the extended code [C] has a size of k`× n` in F2.

Definition 2.2.3 (Prefix-based lexicographical order of sequences). Let (Ai) and (A′i)

(0 ≤ i ≤ n) be two sequences of integers of length n. The sequence (Ai) is (strictly)

smaller than the sequence (A′i) if A0 < A′0, or if there exists 1 ≤ j ≤ n, such that Ai = A′i

for all 0 ≤ i < j, and Aj < A′j .

Definition 2.2.4 (Best weight distribution). A linear code C is said to be better than a

linear code C′ if its weight distribution is (prefix-based) smaller than that of C′. A code

has the best weight distribution if it is better than any other linear code.

Thus, to obtain the best weight distribution, we apply the following three principles:

1. maximize the minimum distance δ (recall that δ = min{i 6= 0;Ai > 0});

2. (in case of a tie) minimize the kissing number Aδ;

3. (in case of a tie) minimize the following coefficients Ai, i > δ in lexicographical order.

Regarding the first principle, it is feasible to construct a maximum distance separable
(MDS) code which maximizes the minimum distance. We have the following Delsarte’s
lemma for the dual of an MDS code.

Lemma 2.2.1 (Dual of an MDS code [Del75]). The dual of an MDS code is also an MDS

code.

Corollary 2.2.1.1. The dual distance of a linear MDS code of parameters [n, k]2` is δ =

k + 1.
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Proof of the corollary. The dual distance of a linear MDS code is equal to the minimum

distance of the dual of the code, which has parameters [n, n− k]2` . By Lemma 2.2.1, it is

MDS. Therefore, the Singleton bound [Sin64] is tight and we have that n− (n−k)+1 = δ.

Hence δ = k + 1.

With these notations, we present the following Algorithm 1, provide a conceptual pro-
cess for finding the best masking code for GCM. In particular, the difference comparing
with [CGC+21b, CGC+21a] lies in line 4, which indicates the better code in case of a tie
in Ai for δ ≤ i ≤ n.

Input : Masking order t (at word level over F2`)

Output : Codes for GCM over F2`

1 Construct an MDS code D:[n, n−k]2`with δD⊥ = t+ 1 // Use Corollary 2.2.1.1, δD⊥ = n−k+ 1

2 Apply subfield extension on D to get [D] // Use Definition 2.2.2

3 Compute the dual code [D]⊥ // Use Definition 1.4.5

4 if [D]⊥ has the best weight distribution then // Use Definition 2.2.4

5 return D

6 else

7 goto Line 1

Algorithm 1: Conceptual process for finding the best masking code for GCM.

2.2.2 Orthogonal Bases and Subfield Representations

In a code-based masking scheme, the side-channel security order at bit level is related to
the weight distribution of the codes in the subfield representation [CGC+21b, CGC+21a].
Particularly, given a code D in (2.30) defined over F2` , we wish to evaluate the weight
distribution of the dual extended code [D]⊥, and the natural question is to assess whether
this is equivalent to evaluate the weight distribution of extended dual code [D⊥]. However,
as shown in Figure 2.4, the commutative relationship does not hold in general because
depending on the choice of basis of F2` over F2, the two codes [D]⊥ and [D⊥] are not
always equivalent to each other.

As it turns out, the commutative relationship will hold true if the basis used in subfield
representation is a trace-orthogonal basis. Therefore, we first show how to construct trace-
orthogonal bases and then investigate the subfield extension of the code.

2.2.2.1 Construction of Trace-Orthogonal Bases

Let ` > 1 and F2` be the extension field of F2. By the Frobenius conjugacy property, the
trace function tr : F2` → F2, defined as tr(x) =

∑`−1
i=0 x

2i , is linear.
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D D⊥

[D] [D]⊥
?
= [D⊥]

Subfield

Dual

Subfield

Dual

Figure 2.4: Commutative connection between sub-field representation and duality.

The (trace-)orthogonality and orthonormality is defined as follows.

Definition 2.2.5. Elements a1, a2 in F2` are orthogonal if tr(a1a2) = 0. A basis {a1, a2, . . . , a`}

of F2` over F2 is orthonormal if tr(a2
i ) = tr(ai) = 1 and tr(aiaj) = 0 for all i 6= j.

Notice that, as mentioned in [SL80], we have the following result:

Lemma 2.2.2. A (trace-)orthogonal basis in F2` is always orthonormal.

Proof. Let ai be elements in a basis, where i ∈ {1, . . . , `}. We need to show that it satisfies

tr(ai) = 1.

The trace takes values in F2, which consists in two elements, namely 0 and 1. Therefore,

it must be proven that tr(ai) 6= 0. This means that ai is not self-orthogonal, since tr(a2
i ) =

tr(ai)
2 = tr(ai) in F2.

Let us reason by the absurd. Assume that ai is self-orthogonal. Then, not only ai is

orthogonal to all vectors aj (j 6= i), but also to itself. Therefore, it belongs to the dual of

the space vector E generated by the basis {a1, a2, . . . , a`}. Notice that E is the universe

code, hence its dual is the singleton {0}. Consequently ai = 0, which contradicts the fact

that ai is a basis vector.

Remark 2.2.1. Incidentally, we notice that the condition (36) in [Lem75, §5, p. 182] is

superfluous, since already implied by condition (37).

By [LN97, Note 3, page 75] (which points to the original paper [Lem75]), we know that
an orthonormal basis always exists. Although [Lem75] gives a formal construction meant
to provide the existence result, the resulting implementation is double-exponential in 2`,
which is far too complex to implement in practice.

In this paper, we consider instead a fast, but probabilistic, trace-orthogonal basis con-
struction given by Algorithm 2. For ` = 8, it works most of the time in one iteration (e.g.,
about 70.20% over 2000 times of randomly running Algorithm 2). Examples are provided
below.
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Input : ` ≥ 1, the extension order of F2, and α, a primitive element of F2`

Output : An orthonormal basis of F2`

1 (b1, . . . , b`)← (0, . . . , 0) // Basis, initialized with 0s

2 for i ∈ {1, . . . , `} do // Find the ith element of the orthonormal basis

3 for a ∈ (F2`)
∗ do // Candidate next vector in the basis (chosen randomly)

4 if tr(a) = 1 then // Test for tr(a2) = tr(a)2 6= 0 (only element 6= 0 is 1 in F2)

5 is_orthogonal← true

6 for j ∈ {1, . . . , i− 1} do

7 if tr(abj) 6= 0 then // Test whether a and bj are orthogonal

8 is_orthogonal← false

9 if is_orthogonal then

10 bi ← a

11 return (b1, . . . , b`)

Algorithm 2: Randomized construction of an orthonormal basis in F2` .

Remark 2.2.2. Strictly speaking, Algorithm 2 does not necessarily converge with a basis of

full rank. We observed that depending on the scanning order of field elements at line 3, the

algorithm can succeed or fail to return a basis. Therefore, we introduced a randomization

at this line, and repeated the algorithm until it returns a (full rank) basis.

In viewing of Definition 2.2.5, the elements in a basis must satisfy tr(ai) 6= 0. Therefore,
we can improve Algorithm 2 by removing zero-trace elements with a preliminary check of
all traces. The new procedure is shown in Algorithm 3.

Table 2.3 presents the comparison on efficiency between Algorithms 2 and 3. The per-
formance metric is the execution time, measured on a server which runs the Magma [BCP97]
system. This clearly shows the advantage of using Algorithm 3 when the order of the finite
field is large. For instance, when ` = 16, Algorithm 3 have a speedup by a factor of 5
compared to Algorithm 2.

We shall use the following two examples of trace-orthogonal bases throughout the rest
of this paper:

• B0 = {α252, α156, α122, α203, α5, α126, α71, α65},

• B1 = {α121, α252, α202, α20, α242, α15, α126, α44}.

where α is the first primitive element in the finite field F28 . Note that the irreducible
polynomial used in this paper is: g(X) = X8 + X4 + X3 + X2 + 1. Moreover, we also
investigate the default basis used in Magma [BCP97], which is a non-orthogonal basis:

• B2 = {1, α1, α2, α3, α4, α5, α6, α7}.
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Input : `, the extension order, and α, a primitive element of F2`

Output : An orthonormal basis of F2`

1 list← {}

2 for i ∈ {1, . . . , 2` − 1} do // Check the trace of elements in F∗
2`

3 if tr(αi) = 1 then

4 list← list ∪ {i} // Put the power in list if trace equals 1

5 B ← {αlist[1]} // Create a set with one element

6 start← 2 // Set the start position of searching (can be changed)

7 while #B 6= ` do

8 n← start

9 for k ∈ {2, . . . , `} do // Find the kth element of the orthonormal basis

10 for s ∈ {n+ 1, . . . ,#list} do

11 is_orthogonal← true

12 for j ∈ {1, . . . , k − 1} do // Test whether the candidate is orthogonal with elements in B

13 a← B[j] · αlist[s]

14 if tr(a) 6= 0 then

15 is_orthogonal← false

16 if is_orthogonal then

17 B ← B ∪ a

18 n← s

19 if #B < k then // Start again if we cannot find next base

20 break;

21 start← start + 1 // Change a start position (if we do not get enough basis)

22 return B

Algorithm 3: The improved construction of orthonormal bases in F2` .
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Table 2.3: The comparison on efficiency of two algorithms for constructing trace-orthogonal bases.

Note that with our Magma [BCP97] server is with Intel Xeon CPU@2.0GHz, 4 processors (only one

is used), and with 16GB Memory.

` 4 8 12 16 20 24

Run time (sec)
Alg. 2 0.0001 0.0038 0.1150 1.5034 36.0350 1146.1685

Alg. 3 0.0001 0.0019 0.0334 0.3065 4.7267 267.7467

2.2.2.2 Subfield Representation and Duality of Codes

We therefore specify the representation in Definition 2.2.2 by showing how to transform
an element over F2` into F2. The subfield representation [a] of a field element a is defined
as follows.

Definition 2.2.6. Let b = (b1, . . . , b`) an orthonormal basis of F2` . The subfield represen-

tation of a ∈ F2` is [a] = (tr(ab1), . . . , tr(ab`)).

The subfield representation code [D] can be seen a concatenated code (as per For-
ney [For65]) with D of parameters [n, k]2` as the outer code, and the universal [`, `, 1]2 as
the inner code. As a consequence, the side-channel security at bit level and word (`-bit
string) level are related by the subfield representation as follows: The security order at
word level is the dual distance of the code in F2` , whereas the security order at bit level is
the dual distance of the subfield representation in F2.

A nice feature of trace-orthonormal bases is that duality and subfield representation
commute:

Theorem 2.2.3. Let D be a linear code. Then under a trace-orthogonal basis, we have:

[D]⊥ = [D⊥]. (2.31)

Said equivalently, the duality and the sub-field representation form a commutative diagram:

D D⊥

[D] [D]⊥ = [D⊥]

Dual

Subfield Subfield

Dual

Proof. Given x, y ∈ Fn
2`

and their subfield representations are [x], [y] ∈ Fn`2 , respec-

tively. Then the inner product 〈x|y〉 = 0 implies that 0 = tr(〈x|y〉) =
∑

i tr(xiyi) =∑
i

∑
j [xi]j [yi]j = 〈[x]|[y]〉 where the third equality holds because of the property of the

trace-orthogonal basis. Therefore, we obtain [D⊥] ⊆ [D]⊥.
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Inversely, two linear codes [D⊥] and [D]⊥ are subspaces of Fn`2 that have the same

length 2n` and dimension 2(n−k)`, implying the same number of codewords in both codes.

As a consequence, we have [D⊥] = [D]⊥.

As a straightforward consequence of Theorem 2.2.3, the order of two transformations in
lines 2 and 3 of Algorithm 1 is interchangeable. Therefore, the selection of the best codes
can be achieved from the code D to the dual code D⊥ and then to the subfield extension
[D⊥]. Section 2.2.2.3 illustrates the gain in terms of speed of this method.

Remark 2.2.3. We notice that the resulting distances are not the same depending on:

• which basis is used,

• the code itself.

We provide several examples of properties of codes D⊥ of parameters [5, 3]256 (for
` = 8). The Magma [BCP97] scripts are given in Appendix of [CLGR22]). The difference
between the tables are the bases:

• B0 is used in Table 2.4,

• B1 is used in Table 2.5.

2.2.2.3 Optimized code research

We notice that the Subfield extension operation is “one-way”. Namely, it is easy to extend a
code from F2` to F`2 (see Magma SubfieldRepresentationCode command), but the inverse
operation is not trivial. Moreover, all codes of parameters [n`, k`]2 cannot be interpreted
as codes [n, k]2` . On the contrary, taking the dual of a linear code is invertible, and even
involutive, as (C⊥)⊥ = C.

Thus, leveraging trace-orthogonal bases, one can simplify the search for good codes by
trading Alg. 4 (which is a realization of Alg. 1) by Alg. 5.

2.2.3 Characterizing Side-Channel Security by Weight Distribution

Mutual information (MI) is commonly used in tasks related to measuring side-channel
leakage as an information-theoretic metric. Essentially, MI measures the statistical de-
pendencies between the key-dependent variables and the leakage, which considers the full
distributions of corresponding variables. Since the weight distribution determines how
weights of codewords in a linear code are distributed, it therefore determines the leakage
distribution of the masked variable from a coding-theoretic perspective [CGC+21b].

In view of this, we have the following conjecture.

Conjecture 2.2.1. MI between the sensitive variable and side-channel leakage depends

on the weight distributions of the corresponding codes in the code-based masking.
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Table 2.4: The dual distances for two

seeds when drawing random code D, us-

ing B0 of F256.

SetSeed(0) SetSeed(1)

δD⊥ δ[D]⊥ δD⊥ δ[D]⊥

4 8 4 6

3 6 4 7

4 8 4 6

4 6 4 6

4 8 4 8

4 7 4 8

4 7 4 8

4 7 4 8

4 8 4 7

4 7 4 8

Table 2.5: The dual distances for two

seeds when drawing random code D, us-

ing B1 of F256.

SetSeed(0) SetSeed(1)

δD⊥ δ[D]⊥ δD⊥ δ[D]⊥

4 8 4 7

3 6 4 7

4 7 4 7

4 7 4 8

4 8 4 7

4 7 4 7

4 7 4 8

4 6 4 7

4 7 4 7

4 7 4 8

Input : Number of iterations N

Output : Best found GCM code over F2`

1 w ← (2n, 0, . . . , 0) // Worst case for a weight enumeration polynomial

2 Dbest ← RandomCode[n, k]2`

3 for i ∈ {1, . . . , N} do

4 Select a random code D

5 if enumerationPolynomial([D]⊥) is better than w then

6 w ← enumerationPolynomial([D]⊥)

7 Dbest ← D

8 return Dbest

Algorithm 4: Bounded search for an efficient code

46



2.2. Finding Best Linear Codes for Side-Channel Protections

Input : Number of iterations N

Output : Best found GCM code over F2`

1 w ← (2n, 0, . . . , 0) // Worst case for a weight enumeration polynomial

2 Dbest ← RandomCode[n, k]2`

3 for i ∈ {1, . . . , N} do

4 Select a random code D′

5 if enumerationPolynomial([D′]) is better than w then

6 w ← enumerationPolynomial([D′]) // No computation of dual code for all candidates

7 Dbest ← D⊥

8 return Dbest

Algorithm 5: Optimized (compared to Alg. 4) bounded search for an efficient code

It is well-known that for a code of dual distance δ, any tuple of δ − 1 coordinates
is uniformly distributed, and some tuples of δ coordinates are linearly dependent [MS77,
Theorem 10]. Therefore, the side-channel security order under probing model is δ− 1, and
an attack of order δ, corresponding to codewords of Hamming weight equal to δ, brings
some mutual information that depends on σ−2δ, where σ2 is the variance of the AWGN
channel that characterized the leakage model. Moreover, since not all codewords have the
same Hamming weight δ, other codewords of weights > δ should bring more information
when considering mutual information as an information-theoretic metric.

Said differently, the mutual information is related to
∑n`

i=0
Ai
σ2i , or more precisely (re-

moving the useless 1 constant arising from i = 0), it is related to:

n∑̀
i=δ

Ai
σ2i

, (2.32)

where n` is the length of the extended code over F2 and Ai is the number of codewords
of weight i (in the dual of the code employed to mask the information). Hence the lexico-
graphical order of the Ai to compare the amount of leakage is indeed associated with the
masking code.

2.2.3.1 Connecting with Attacks

When evaluating with side-channel attacks, particularly in the optimal multivariate attacks
(using higher-order optimal distinguishers) [BGHR14], the weight distribution also plays
a significant role. More precisely, we have the following conjecture.

Conjecture 2.2.2. The success rate of optimal multivariate attack is determined by the

weight distributions of the corresponding codes in the code-based masking.
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2.2.4 Numerical Results

In the following, we consider a typical case of GCM by setting the generator matrices of
the two codes C and D as follows:

GC = ( 1 0 ) , (2.33)

GD =
(
α1 α2

)
=
(
αi αj

)
. (2.34)

Clearly, the code D is an MDS code of parameters [2, 1, 2]. Considering equivalent linear
codes over F28 , we can fix αj = 1 in GD. Hence there are only 254 candidates for the
second element in GD, corresponding to 254 linear codes.

As a common setting in side-channel analysis, we take the Hamming weight leakage
model with the Gaussian noise. The setup is shown in Figure 2.3 in a communication chan-
nel viewpoint. Considering different bases, we launch an information-theoretic evaluation
on all linear codes under different noise levels. The results are shown in Figure 2.5, 2.6
and 2.7 for the three bases, respectively. In particular, we add Figure 2.5(a) for the purpose
of comparison, which illustrates the effectiveness of our lexicographical order based sorting
of all codes.

Note that the two vertical red dashed lines are for indicating the different dual distances
δD⊥ ∈ {2, 3, 4}. For instance in Figure 2.5(b), the first vertical line marked 48 means there
are 48 linear codes with δD⊥ = 4, and 202 − 48 = 154 linear codes with δD⊥ = 3, and
remaining 52 linear codes with δD⊥ = 2.

An interesting observation from Figure 2.5, 2.6 and 2.7 is, the bases have a significant
impact on the distribution of linear codes. The mutual information increases (in most
cases, except for some local minima) with the code lexicographic order on their weight
enumeration polynomial. This justifies Conjecture 2.2.1. However, the number of excep-
tions (local minima) decreases when the noise increases, and the curves become indeed
strictly increasing. Particularly, the first basis B0 gives the best weight distribution among
the three bases, which will be investigated further in the next subsection.

2.2.5 Classifying Linear Codes

In order to find the best weight distributions under different bases, we classify linear codes
as in Table 2.6. Specifically, in Table 2.6, we first show the distribution of the minimum
distance of all 254 linear codes under the three bases, and then present the best weight
distribution in the last column. The takeaway point for the three bases is that the basis
has a significant impact on the distribution of the minimum distances. Under condition of
the prefix-based lexicographical order of weight distribution (Definition 2.2.3), we focus on
the number of codes with the minimum distance equal to 4, resulting that B2 gives more
codes with δ = 4 (among the three cases). On the contrary, the first basis B0 gives the
best weight distribution among all three bases where A4 = 2.

Secondly, we randomly generate 1,000,000 linear codes over F2 by fixing n = 16 and
k = 8 for comparison. The distribution of the minimum distances are listed in the fourth
row of Table 2.6. One interesting observation is that this random approach gives a better
weight distribution than all three bases over F28 .
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(a) Linear codes without sorting.

(b) Sorted linear codes in the lexicographical order.

Figure 2.5: Information-theoretic evaluation of all 254 candidates under the trace-orthogonal basis
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Figure 2.6: Information-theoretic evaluation of all 254 candidates under the trace-orthogonal basis

B1 sorted in the lexicographical order.

However, all above cases do not recover the best known linear code (BKLC) given
n = 16 and k = 8. We know that there is a unique linear code with parameters [16, 8, 5],
which has the minimum distance equal to 5 [CGC+21b]. Among all linear codes over
F2, this BKLC code gives us the best weight distribution according to our lexicographical
sorting, since it has A4 = 0 while A4 > 0 for other cases. From a perspective of side-channel
analysis, this BKLC code provides us a masking code with the bit-level security order
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Figure 2.7: Information-theoretic evaluation of all 254 candidates under the default basis B2 sorted

in the lexicographical order.

Table 2.6: Classifying linear codes under different bases. Note that the float number in parenthesis

is the ratio between the number of codes in a class and the total number of candidates.

Subfield
Number of linear codes with different δ

Best weight distribution
#{δ = 1} #{δ = 2} #{δ = 3} #{δ = 4} #{δ = 5}

B0 F28 → F2 0 52 (0.2047) 154 (0.6063) 48 (0.1890) 0
[ 1, 0, 0, 0, 2, 22, 40, 44, 45,

40, 32, 20, 8, 2, 0, 0, 0 ]

B1 F28 → F2 0 52 (0.2047) 174 (0.6850) 28 (0.1102) 0
[ 1, 0, 0, 0, 3, 21, 38, 46, 45,

40, 34, 18, 7, 3, 0, 0, 0 ]

B2 F28 → F2 0 36 (0.1417) 152 (0.5984) 66 (0.2598) 0
[ 1, 0, 0, 0, 4, 22, 35, 42, 47,

46, 36, 14, 4, 4, 1, 0, 0 ]

Random

codes
F2

60688

(0.0607)

357539

(0.3575)

528070

(0.5281)

53703

(0.0537)
0

[ 1, 0, 0, 0, 1, 23, 42, 42, 45,

40, 30, 22, 9, 1, 0, 0, 0 ]

BKLC F2 0 0 0 0 1
[ 1, 0, 0, 0, 0, 24, 44, 40, 45,

40, 28, 24, 10, 0, 0, 0, 0 ]

t = δD⊥−1 = 4, that is higher than all other linear codes. Unfortunately, this code cannot
be constructed by the subfield extension approach from F28 to F2 (e.g., by using bases like
Bi for i ∈ {0, 1, 2}). This is also the reason why the direct sum masking can be better than
the inner product masking in the sense of side-channel resistance [CG18, CGC+21b].

Evaluation of the best weight distributions under different bases. In Table 2.6,
we present five best cases of the weight distribution. In order to have a fair comparison,
we launch an information-theoretic evaluation by using mutual information. The results
are depicted in Figure 2.8.

As shown in Figure 2.8, the main observation is that our lexicographical order-based
sorting still works when comparing linear codes extended by using different bases. Note
that for the best weight distribution under B1 and B2, the curve for B1 is slightly higher
than that of B2. The reason is that other elements (e.g., Aδ+1, Aδ+2, etc.) in the weight
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Figure 2.8: Information-theoretic evaluation of the best weight distributions (WD) under different

bases as shown in Table 2.6.

distribution under B1 have more impact on mutual information.
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CHAPTER 3

Side-Channel Leakage Evaluation

This chapter consists of two sections, the results in the first section have been pub-
lished in “On Conditional Alpha-Information and its Application to Side-Channel Anal-
ysis” [LCGR21] and part of “Maximal Leakage of Masked Implementations Using Mrs.
Gerber’s Lemma for Min-Entropy” [BLR+23]; the second section has been published in
“Side-Channel Information Leakage of Code-Based Masked Implementations” [CRL+22].
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Abstract

The first section evaluates the side-channel leakage of a cryptographic de-
vice without countermeasures. To assess the leakage more precisely, we introduce a
novel metric called conditional Sibson’s α-information, and derive its corresponding Fano’s
inequality: The equality holds when α = ∞. Based on the simulation results, this novel
metric quantify the leakage more accurately than mutual information when α > 1.

The second section evaluates the Side-Channel Leakage of Code-Based Masked
Implementations using mutual information between sensitive variable and the
leakage. It is proved that exploitable information necessitates the attacker to deploy a
number of probes that is at least equivalent to the dual distance of the masking code,
irrespective of their specific placements.
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3.1 Side-Channel Leakage of Unprotected Implementations

In Section 1.1.2, the following side-channel model has been introduced:

Crypto Side-channel Attack
XmK Y m K̂

Tm Tm

Figure 3.1: Side-channel seen as a communication channel (without masking).

where K is the secret key with |K| = N , T is the public variable, X is sensitive variable de-
termined byK and T , Y is the side-channel leakage, andm is the number of measurements.
For conciseness, we use X to represent an m-dimensional vector Xm = (X1, X2, . . . , Xm),
and similarly, Y = (Y1, Y2, . . . , Ym) and T = (T1, T2, . . . , Tm).

The guessed key K̂ is estimated from Y ,T using the MAP rule, with (maximal) prob-
ability of success

Ps = P(K = K̂|Y ,T ) = EY T sup
k
pK|Y ,T (k|y = Y , t = T ). (3.1)

In [dCGRP19b, dCGRP19a], Chérisey et al. use classical information-theoretic tools
(such as mutual information, conditional entropy) to evaluate the side-channel leakage
of a cryptographic device. Leveraging Fano’s inequality, the authors manage to forge a
connection between mutual information and the probability of success Ps. To be more
specific, they derived the following theorem:

Theorem 3.1.1 (Fano Inequality for Conditional MI [dCGRP19a, Lemma 2]).

I(X;Y |T ) ≥ d
(
Ps‖ 1

N

)
(3.2)

where 1
N means a binary distribution whose probabilities are 1

N and N−1
N ; d(p‖q) denotes

binary divergence:

d(p‖q) = p log
p

q
+ (1− p) log

1− p
1− q

. (3.3)

In (3.2), d(Ps‖ 1
N ) is an increasing function of Ps when Ps ≥ 1

N (Ps falls within this
range, as the (maximal) probability of success invariably exceeds that of blind guessing).
Therefore the mutual information between the input and the output of the side-channel
I(X;Y |T ), sets an upper limit for the success rate of the attack. Using Monte Carlo
simulation, one can evaluate the value of I(X;Y |T ).

However, as shown in Figure 3 of [dCGRP19a], the inequality (3.2) has some room for
improvement. Considering that the choice of metric may be one of the causes for this gap,
we attempt to employ more general tools: α-information theoretic measures. More specif-
ically, we aim at extending the approach of [dCGRP19b, dCGRP19a] to α-information
quantities depending on a parameter α. For that we need the following ingredients that
were crucial in the derivation steps of [dCGRP19b, dCGRP19a]:
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• a closed-form expression of conditional mutual information, amenable to efficient
numerical estimation;

• a data processing inequality of conditional mutual information over a “conditional”
Markov chain for a given plain or cypher text T (known to the attacker);

• a expansion property of conditional mutual information, i.e., its decomposition as a
difference between conditional entropies, valid at least when the secret is assumed
uniformly distributed ;

• a Fano inequality which yields a lower bound on mutual information that depends
on the probability of success (or equivalently on the probability of error).

Our aim, therefore, is to establish all of these properties for a suitably defined conditional
Rényi version of mutual information of order α > 0.

The rest of this section is organized as follows. Section 3.1.1 proposes a natural def-
inition of conditional α-information satisfying the required properties and Section 3.1.2
makes a detailed comparison to previous proposals. Section 3.1.3 presents the main result
applied to side-channel analysis, which is then validated using simulations in Section 3.1.4
.

3.1.1 Conditional Alpha-Information

As a natural continuation of the generalized definitions in Section 1.3, we define the con-
ditional α-information with a “log-expectation” closed-form expression, obtained by taking
the expectation over the conditional variable inside the logarithm in the expression of
Sibson’s (unconditional) α-information (1.41):

Definition 3.1.1 (Conditional α-Information, Closed-Form Definition).

Iα(X;Y |Z) = α
α−1 log EZEY |Z〈pX|Y Z‖pX|Z〉α

= α
α−1 log EY Z〈pX|Y Z‖pX|Z〉α. (3.4)

where

〈p‖q〉α =
(∫

pαq1−αdµ
)1/α

. (3.5)

The notations follow from Section 1.3. To the best of our knowledge, this definition has

not been considered elsewhere.

3.1.1.1 Basic Properties

Our definition enjoys three important properties: consistency, uniform expansion property
(UEP) and data processing inequality (DPI).
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Property 3.1.1 (Consistency of Conditional α-Information w.r.t. α-Information). If Z is

independent of (X,Y ) then Iα(X;Y |Z) = Iα(X;Y ).

Proof. Obvious from the definitions.

Property 3.1.2 (UEP for Conditional α-Information). If U ∼ U(N) is uniformly dis-

tributed independent of Z, then

Iα(U ;Y |Z) = Hα(U)−Hα(U |Y Z) = logN −Hα(U |Y Z). (3.6)

Proof. Similarly as for the preceding UEPs, we have 〈pU |Y Z‖u〉α = N
α−1
α ‖pU |Y Z‖α. Aver-

aging over (Y,Z) and taking the logarithm gives the announced formula.

We say that a sequence of random variables forms a conditional Markov chain given
some random variable T if it is Markov for any given T = t.

Property 3.1.3 (DPI for Conditional α-Information). IfW−X−Y −Z forms a conditional

Markov chain given T , then

Iα(X;Y |T ) ≥ Iα(W ;Z|T ). (3.7)

Proof. By DPI of Sibson’s α-information, Iα(X;Y |T = t) ≥ Iα(W ;Z|T = t) for any t.

From closed-form expression of Sibson’s α-information this gives 〈pX|Y,T=t‖pX|T=t〉α ≥

〈pW |Z,T=t‖pW |T=t〉α for α > 1 and the opposite inequality for 0 < α < 1. This in turn

from Definition 3.1.1 gives the announced inequality for any α.

3.1.1.2 Conditional Sibson’s Identity

Proposition 3.1.1 (Conditional Sibson’s Identity). One has

Dα(PXY Z‖PX|ZQY Z) = Dα(Q∗Y Z‖QY Z) + Iα(X;Y |Z), (3.8)

hence the following alternate minimizing definition:

Iα(X;Y |Z) = min
QY Z

Dα(PXY Z‖PX|ZQY Z) (3.9)

Proof. Similarly as in the case of α-information, it is straightforward to compute

〈pXY Z‖pX|ZqY Z〉αα =

∫∫∫
pαY Zp

α
X|Y Zp

1−α
X|Zq

1−α
Y Z dµ (3.10)

=
〈
pY Z〈pX|Y Z‖pX|Z〉α ‖ qY Z

〉α
α

(3.11)
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Defining the (suitably normalized) distribution

q∗Y Z =
pY Z〈pX|Y Z‖pX|Z〉α
EY Z〈pX|Y Z‖pX|Z〉α

, (3.12)

substituting and taking the logarithm gives the announced identity.

3.1.1.3 Conditional Max-Information

Proposition 3.1.2 (Conditional Max-Information). Assuming X,Y take values in finite

alphabets, one has

I∞(X;Y |Z) = log EZ

∫
y
( max
x:pX|Z(x|z)>0

pY |XZ) dµY . (3.13)

This result easily follows from the following Lemmas 3.1.2 and 3.1.3.

Lemma 3.1.2. Assume X takes values in finite alphabets. Given any fixed y, z, we have

lim
α→∞

pY |Z · 〈pX|Y Z‖pX|Z〉α = max
x:pX|Z(x|z)>0

pY |XZ . (3.14)

Proof. [Method 1]: By Theorem 6 of [vEH14] we have

lim
α→∞

〈pX|Y Z‖pX|Z〉α = exp
(
D∞(PX|Y Z‖PX|Z)

)
= max

x:pX|Z(x|z)>0

pX|Y Z

pX|Z
. (3.15)

Because pY |Z · pX|Y Z/pX|Z = pY |XZ , the proof is finished.

[Method 2]: We use L∞-norm to prove this lemma.

pY |Z〈pX|Y Z‖pX|Z〉α = pY |Z
(∑
x∈X

pαX|Y Z p1−α
X|Z
) 1
α

=
(∑
x∈X

pαXY |Z p1−α
X|Z
) 1
α =

(∑
x∈X

(
pXY |Z p

1−α
α

X|Z
)α) 1

α

=
(∑
x∈X

(
pY |XZ p

1
α

X|Z
)α) 1

α
. (3.16)

For any ε > 0, there exists a sufficiently large α > 0 such that

pY |XZ − ε ≤ pY |XZ p
1
α

X|Z ≤ pY |XZ . (3.17)

Because X is finite, one always has a sufficiently large α > 0 such that (3.17) holds for any

x ∈ X . By L∞-norm we have

lim
α→∞

( ∑
x:pX|Z(x|z)>0

(
pY |XZ − ε

)α) 1
α

= max
x:pX|Z(x|z)>0

pY |XZ − ε (3.18)

Since ε > 0 is arbitrary, combined with the squeeze theorem, the proof is finished.
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Lemma 3.1.3. Assume Y takes values in finite alphabets. One has

lim
α→∞

log EY Z〈pX|Y Z‖pX|Z〉α = log EZ

∫
y

lim
α→∞

pY |Z · 〈pX|Y Z‖pX|Z〉α dµ.

Proof. By definition we have

lim
α→∞

log EY Z〈pX|Y Z‖pX|Z〉α = lim
α→∞

log EY Z exp
(
α−1
α Dα(pX|Y Z‖pX|Z)

)
.

where log EY Z〈pX|Y Z‖pX|Z〉α is bounded because EY Z〈pX|Y Z‖pX|Z〉α ≤ |Y| when α > 1.

Because α−1
α Dα(pX|Y Z‖pX|Z) is increasing in α when α > 1, this lemma follows from

the monotone convergence theorem.

Remark 3.1.1. In [IWK20], conditional maximal leakage is defined as a maximum over

Z, while our conditional max-information is averaged over Z—which is always no larger

than the conditional maximal leakage of [IWK20].

3.1.2 Comparison to Previous Definitions

All previous definitions of conditional α-information we are aware of are variations of the
form (3.9) where α-divergence is minimized with respect to different probability measures
QX|Z , QY |Z , QZ or combinations. There are exactly 23 = 8 possibilities:

(o) I000
α (X;Y |Z) = Dα(PXY Z‖PX|ZPY |ZPZ).

(i) I001
α (X;Y |Z) = min

QZ
Dα(PXY Z‖PX|ZPY |ZQZ).

(ii) I010
α (X;Y |Z) = min

QY |Z
Dα(PXY Z‖PX|ZQY |ZPZ).

(iii) I011
α (X;Y |Z) = min

QY Z
Dα(PXY Z‖PX|ZQY Z).

(iv) I100
α (X;Y |Z) = min

QX|Z
Dα(PXY Z‖QX|ZPY |ZPZ).

(v) I101
α (X;Y |Z) = min

QXZ
Dα(PXY Z‖QXZPY |Z).

(vi) I110
α (X;Y |Z) = min

QX|ZQY |Z
Dα(PXY Z‖QX|ZQY |ZPZ).

(vii) I111
α (X;Y |Z) = min

QX|ZQY Z
Dα(PXY Z‖QX|ZQY Z).

Definition (o) is mentioned in [TH18, Eq. (70)]. Definition (i) is the main proposal of
Esposito et al. [EWG21]. Definition (ii) is discussed by Tomamichel and Hayashi [TH18,
Eq. (74)] and is equivalent to definition (iv) by permuting the roles of X and Y :

I100
α (X;Y |Z) = I010

α (Y ;X|Z). (3.19)
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Our definition (3.9) is definition (iii), and is equivalent to definition (v) by permuting the
roles of X and Y :

I101
α (X;Y |Z) = I011

α (Y ;X|Z). (3.20)

Finally, definitions (vi) and (vii) seem new and related to a conditional version of the
Lapidoth-Pfister mutual information [LP16]:

Jα(X;Y ) = min
QXQY

Dα(PXY ‖ QXQY ). (3.21)

Thus we need only to compare our definition to (o), (i), (ii), (vi) and (vii).

We now discuss various properties for these definitions, by decreasing order of im-
portance: The fact that they admit or not a closed-form expression in terms of the in-
volved probability densities; their consistency with respect to α-information Iα(X;Y |0) =
Iα(X;Y ); the existence of a uniform expansion of the form Iα(U ;Y |Z) = logN−Hα(U |Y Z)
when U ∼ U(N) is independent of Z; and the fact that they satisfy data processing in-
equalities for conditional Markov chains.

Closed-Form and Consistency

Definition (o) is by itself a closed-form expression but is clearly inconsistent with respect
to Sibson’s α-information since I000

α (X;Y |0) = Dα(PXY ‖PXPY ) which by (1.47) is ≥
Iα(X;Y ) where the inequality is, in general, strict.

Definition (i) of Esposito et al. does admit a closed-form expression [EWG21, Thm. 2].
In fact, since

〈pXY Z‖pX|ZpY |ZqZ〉αα =

∫∫∫
pαZp

α
XY |Z(pX|ZpY |Z)1−αq1−α

Y dµ

=
〈
pZ〈pXY |Z‖pX|ZpY |Z〉α ‖ qZ

〉α
α
,

letting

q∗Z =
pZ〈pX|Y Z‖pX|ZpY |Z〉α
EZ〈pX|Y Z‖pX|ZpY |Z〉α

(3.22)

and taking the logarithm gives the following variation of Sibson’s identity (whose existence
is mentioned but does not explicitly appear in [EWG21]):

Proposition 3.1.3.

Dα(PXY Z‖PX|ZPY |ZQZ) = Dα(Q∗Z‖QZ) + I001
α (X;Y |Z), (3.23)

with the following closed-form expression:

I001
α (X;Y |Z) = α

α−1 log EZ〈pXY |Z‖pX|ZpY |Z〉α. (3.24)
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However, I001
α is inconsistent (with respect to Sibson’s α-information) for the same reason

as in the case of I000
α : From (3.24) we have

I001
α (X;Y |0) = Dα(PXY ‖PXPY ) ≥ Iα(X;Y ). (3.25)

Definition (ii) of Tomamichel and Hayashi also admits a closed-form expression [TH18,
Eq. (75)]. In fact by the (unconditional) Sibson identity (1.46) applied to all variables
conditioned on Z = z for any z, one easily sees that Dα(PXY Z‖PX|ZQY |ZPZ) achieves its
minimum when for qY |Z = q∗Y |Z = pY |Z〈pX|Y Z‖pX〉α/EY |Z〈pX|Y Z‖pX|Z〉α as given above
in the proof of Proposition. (3.1.1), which gives

I010
α (X;Y |Z) = 1

α−1 log EZ(EY |Z〈pX|Y Z‖pX|Z〉α)α. (3.26)

From this it follows that I010
α (X;Y |0) = Iα(X;Y ), proving that I010

α is consistent.
Finally, definitions (vi) and (vii) are neither closed-form nor consistent; for when Z ≡ 0,

the definitions reduce to the Lapidoth-Pfister mutual information:

Jα(X;Y ) = min
QXQY

Dα(PXY ‖ QXQY ) (3.27)

which already does not admit a closed-form expression, and for which Jα(X;Y ) ≤ Iα(X;Y )
where the inequality is, in general, strict [LP16]. In the following we focus on the other
definitions which admit closed-form expressions.

Uniform Expansion Property

The uniform expansion property (UEP) is a crucial requirement in our subsequent
derivations (Theorem 3.1.4). It is naturally satisfied for α-information (Property 1.3.7)
and it is important that it is also satisfied for its conditional version.

Using the above closed-form expressions it is easy to check the UEP when U ∼ U(N) is
independent of Z, neither I000

α (U ;Y |Z), nor I001
α (U ;Y |Z), nor I010

α (U ;Y |Z) equals logN−
Hα(U |Y Z). This is not surprising since in general, from the different minimizations of α-
divergence,

Iα(X;Y |Z) = I011
α (X;Y |Z)

≤ min
{
I001
α (X;Y |Z), I010

α (X;Y |Z)
}

≤ I000
α (X;Y |Z)

(3.28)

where inequalities are, in general, strict. Hence the only case where the UEP (which is
crucial in our subsequent derivations) holds is for the definition (iii) proposed in this paper.

Data Processing Inequality

Finally, since definitions (o) and (i) are inconsistent with I000
α (X;Y |0) = I001

α (X;Y |0) =
Dα(PXY ‖PXPY ), they do not even satisfy data processing inequalities for a unconditional
Markov chain. Therefore, the only remaining candidate for DPI is definition (ii).

Property 3.1.4 (DPI for I010
α (X;Y |Z)). If W −X − Y − Z forms a conditional Markov

chain given T , then I010
α (X;Y |T ) ≥ I010

α (W ;Z|T ).
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Proof. Let PX,Y,T → PX,Z,T |X,Y,T → PX,Z,T → PW,Z,T |X,Z,T → PW,Z,T . By the con-

ditional Markov condition, we have PX,Z,T |X,Y,T = PX,T |X,TPZ|X,Y,T = PX,T |X,TPZ|Y,T

where PX,T |X,T is the identity operator; similarly PW,Z,T |X,Z,T = PW |X,Z,TPZ,T |Z,T =

PW |X,TPZ,T |Z,T . Thus if QY |T → PZ|Y,T → QZ|T , we find PX|TQY |TPT → PX,Z,T |X,Y,T →

PX|TQZ|TPT → PW,Z,T |X,Z,T → PW |TQZ|TPT . By the data processing inequality for

α-divergence (Property 1.3.2), Dα(PX,Y,T ‖PX|TQY |TPT ) ≥ Dα(PW,Z,T ‖PW |TQZ|TPT ) ≥

Iα(W ;Z|T ). Minimizing over QY |T gives the announced DPI.

Table 3.1: Comparison of some properties for the various definitions.

Definition Ref. Closed-form Consistency UEP DPI

o [TH18] yes no no no
i [EWG21] yes no no no

ii,iv [TH18] yes yes no yes
iii,v (this thesis) yes yes yes yes
vi,vii — no no

Table 1.1 summarizes the comparison between properties of (o)–(vii).

3.1.3 Fano Inequality for Conditional Alpha-Information

Now, the generalized Fano’s inequality for conditional alpha-information can be derived as
follows.

Theorem 3.1.4. One has the following upper bound on the probability of success Ps:

Iα(X,Y |T ) = Iα(K,Y |T ) ≥ dα(Ps‖
1

N
) (3.29)

where dα(p‖q) denotes binary α-divergence:

dα(p‖q) = 1
α−1 log

(
pαq1−α + (1− p)α(1− q)1−α). (3.30)

Proof. The chain K −X − Y is Markov given T by assumption but since X = f(K,T ),

the chain X − K − Y is also Markov given T . Therefore, by the conditional DPI

(Property 3.1.3), Iα(X,Y |T ) = Iα(K,Y |T ) (inequalities in both directions). Now since

K − Y − K̂ is also Markov given T , we have Iα(K;Y |T ) ≥ Iα(K; K̂|T ). Since K is
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equiprobable independent of T , by the UEP (Property 3.1.2), Iα(K; K̂|T ) = logN −

Hα(K|K̂,T ) ≥ logN −Hα(K|K̂) = Iα(K; K̂). Finally, using Lemma 1.3.1, Iα(K; K̂) ≥

dα(Ps(K|Y ,T )‖Ps(K)) = dα(Ps‖ 1
N ), which proves (3.29).

Remark 3.1.2. From (3.30), dα(p‖q) is increasing in p when p ≥ q. Hence (3.29) gives

an upper bound on Ps (which is obviously ≥ 1/N since Ps = 1/N corresponds to a blind

guess when the attacker does not know Y ).

In fact, this Fano’s inequality for conditional α-information becomes an equality in the
limiting case α = ∞. Thus, conditional max-information can accurately characterize the
probability of success.

Theorem 3.1.5 (Generalized Fano’s Inequality at α = +∞). For a uniformly distributed

secret K,

I∞(X,Y |T ) = I∞(K;Y |T ) = d∞(Ps(K|Y ,T )‖(Ps(K)))

= log(NPs)

where d∞(p‖q) = lim
α→∞

dα(p‖q) = log max
x,q(x)>0

(p(x)/q(x)), Ps = Ps(K|Y ,T ) is the optimal

probability of success, and Ps(K) = 1/N is the corresponding probability of success in the

case of blind estimation (without any observation).

Proof. Under the MAP rule, the probability of success writes

Ps = EY T (max
k

pK|Y ,T )

= ET

∫
y
(max

k
pY |K,T pK|T )dµY . (3.31)

Because the secret key K is uniformly distributed and independent from T , Therefore,

(3.31) becomes

Ps =
1

N
· ET

∫
y

(
max
k

pY |K,T
)
dµY . (3.32)

Combining (3.13) and (3.32) we have I∞(K;Y |T ) = log(NPs). Since Ps ≥ 1/N , one has

Ps ·N ≥ (1− Ps) ·N/(N − 1) and d∞(Ps(K|Y ,T )‖(Ps(K))) = log(NPs).

3.1.4 Numerical Simulations

We consider an implementation of the AES with a large number m of measurement traces.
Here N = 2` = 256 and the most commonly used leakage model is

Yi = wH(S(Ti ⊕K)) + εi (i = 1, 2, . . . ,m) (3.33)

62



3.1. Side-Channel Leakage of Unprotected Implementations

where wH denotes the Hamming weight, S denotes a S-box permutation and εi are i.i.d ∼
N (0, σ2). Letting X = (Xi)i, Y = (Yi)i, T = (Ti)i, both Ti and K belongs to F2` . We
next use Monte-Carlo simulation to compute Iα(X,Y|T) = Iα(K,Y|T).

Recall that

Iα(X,Y|T) = Iα(K,Y|T) = α
α−1 log EYT〈pK|YT‖pK|T〉α

= α
α−1 log

(∫
y

∑
t

p(y, t)

(∑
k p(k|t)pα(y|t, k)

) 1
α

p(y|t)
dµY

)
. (3.34)

This value can be estimated by using Monte-Carlo simulation by the law of large
numbers. Indeed, we have

exp α−1
α I(X,Y|T) ≈ lim

NC→∞

1

NC

NC∑
j=1

(∑
k p(k|tj)pα(yj |tj , k)

) 1
α

p(yj |tj)

= lim
NC→∞

1

NC

NC∑
j=1

(∑
k p(k)pα(yj |tj , k)

) 1
α∑

k p(k)p(yj |tj , k)
, (3.35)

where tj ∼ U(Fm
2`

) and yj ∼ N (f(tj , kj), σ2Im) ∈ Rm by choosing kj ∼ U(F2`) and
εi ∼ N (0, σ2).

By focusing on one draw (t,y) of Monte-Carlo simulation in (3.35), we have

(∑
k p(k)pα(y|t, k)

) 1
α∑

k p(k)p(y|t, k)
= p(k)

1−α
α ·

(∑
k p

α(y|t, k)
) 1
α∑

k p(y|t, k)
(3.36)

= 2`·
α−1
α ·

(∑
k exp (− α

2σ2 ||y − f(t, k)||2)
) 1
α∑

k exp (− 1
2σ2 ||y − f(t, k)||2)

. (3.37)

Considering independent Gaussian noise in each yj , we can simplify (3.35) and insert
into (3.34), therefore,

Iα(X,Y|T) ≈ `+
α

α− 1
log

1

NC

NC∑
j=1

(∑
k p

α(yj |tj , k)
) 1
α∑

k p(y
j |tj , k)

(3.38)

= `+
α

α− 1
log

1

NC

NC∑
j=1

(∑
k exp (− α

2σ2 ||yj − f(tj , k)||2)
) 1
α∑

k exp (− 1
2σ2 ||yj − f(tj , k)||2)

, (3.39)

given a larger enough NC .
Figure 3.2 presents the numerical results of the upper bounds of success probability for

diverse values of α, which compares them to the average performance of the optimal ML
attack (with error bars).
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Figure 3.2: Comparison of upper bounds on success rate Ps given α-information Iα(X,Y|T) for

different values of α.

With the increase in the value of α, the bound (3.29) becomes progressively tighter.
And as we have already proven, the equality in (3.29) holds when α = ∞. Compared
to previous result [dCGRP19a] (represented by the black dashed line in the figure, when
α=1), our generalized Fano’s inequality has made significant improvements when α ≥ 2.
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3.2 Side-Channel Leakage of Code-Based Masked Implemen-

tations

LetK, T , X represent the secret key, the public variable and sensitive variable respectively.
The following model has been introduced in Section 1.2:

Crypto Masking Side-channel Attack
Xm V mK Y m K̂

Tm Tm

Figure 3.3: Side-channel seen as a communication channel (with masking).

In this section, the number of shares is denoted as n instead of d + 1. This is
because we will have plenty discussions about the masking code in this section, and using
n as the notation aligns with the commonly used code parameter [n, k].

To protect the key-dependent sensitive variable, X is masked into n shares: V =
(X0, X1, . . . , Xn−1). The side-channel leakage is denoted as Y = (Y0, Y1, . . . , Yn−1) where
each Yi deponding on Xi, i = 0, 1, . . . , n−1. The attacker queries the cryptographic device
m times and obtains corresponding traces Y m. Finally, the attacker use Y m and Tm to
compute the guessed key K̂.

For the code-based masking, as stated in Section. 1.2.1, randomness M is introduced
in masking procedure and both X and M are multiplied by generator matrices of the
masking codes. Let Fq be a finite field where q is a power of 2, and k, s be integers
satisfying k + s ≤ n. One has

V = XGC +MGD, (3.40)

where X ∼ U(Fkq ), M ∼ U(Fsq), Matrices GC ∈ Fk×nq has rank k and GD ∈ Fs×nq has rank
s. The row space of GC and GD are denoted as VGC = C and VGD = D, they are two
linear codes with paremeters [n, k] and [n, s] respectively. We assume C and D are linear
complementary codes:

VGC ∩ VGD = C ∩ D = {0n},
VGC ⊕ VGD = C ⊕ D = Fnq ,

(3.41)

where 0n is the all-zero vector.
To simplify the derivations in the following sections, we represent Fq in F2 by the

sub-field representation [MS77, § 7.7]. This allows us to focus only on binary variables in
F = F2 in later proof.

3.2.1 Background

In order to quantify the impact of probes, we adopt the following definition of the probing
model in a κ-dimensional attack [ISW03].
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Definition 3.2.1 (Probing Model). Let κ > 0 be the dimension of the attack, and Π ∈ Fn

be a binary row vector of Hamming weight κ. The location of the nonzero elements in Π

represent the “location” of probes in a κ-dimensional attack. Let AΠ denote the m × κ

matrix obtained from the m× n matrix A by removing all columns (Ai,j)j corresponding

to zero elements Πj = 0 in Π. The probing model is described as

V Π = XGΠ

C +MGΠ

D. (3.42)

The concern is whether V Π (or some noisy version of it) leaks information about secret
X in the presence of masking M .

Note that with our notation, Π
Π ∈ Fκ is the all-one vector and we haveA·ΠT = AΠ·(Π

Π)T .
Let wH(·) denote the Hamming weight of a vector. In particular wH(Π) = κ. The following
notion of generalized Hamming weight is known to be a sound tool to characterize the
leakage [Wei91], especially under the probing model in the noiseless scenario where the
information leakage in code-based masking is modeled by a special case of wire-tap channel
II (see Section. 1.2.2).

Definition 3.2.2 (Generalized Hamming Weight [Wei91]). For any linear code C, the

support χ(C) of C is the set of not-always-zero coordinates of C. The r-th generalized

Hamming weight of an [n, k] linear code C, where 1 ≤ r ≤ k, is defined as the cardinality

of the smallest support of a r-dimensional subcode of C:

δr, C = min
C′
{|χ(C′)| ; C′ is an [n, r] subcode of C}. (3.43)

In particular δ1, C is the minimum Hamming weight of codewords in C, i.e., the minimum
distance of C.

Definition 3.2.3 (Weight Enumerators). Let {Ai}i=0,...,n be the Hamming weight distri-

bution of the [n, k] linear code C. The weight enumerator of C is the polynomial

WC(x, y) =
n∑
i=0

Aix
n−iyi. (3.44)

Let {Bi}i=0,...,n, {Ai}i=0,...,n be the Hamming weight distribution of the masking code
D and its dual code D⊥ respectively. Using MacWilliams theorem [MS77, Chap. 5, Theo-
rem 1] for x = p and y = 1− p one has

WD(p, 1− p) =
1

|D⊥|
WD⊥(1, 2p− 1). (3.45)
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3.2.2 Attacks Under Noiseless Measurements

In a noiseless attack, the attacker knows Y = V Π without noise. The question is what quan-
tity of information it can leak about the secret X. The information leakage is classically
measured [VCS09, §5] by mutual information

I(X;V Π) = H(V Π)−H(V Π|X), (3.46)

where H(·) denotes the Shannon entropy for discrete variable. Next, we will use (3.46) to
estimate the value of I(X;V Π).

Lemma 3.2.1. Let A be an m×n matrix of rank r over F, and VA ⊂ Fn its row space. If

X ∼ U(Fm) is a row random vector uniformly distributed over Fm, then Y = XA ∼ U(VA)

is uniformly distributed over VA.

Proof. By the canonical decomposition of the linear application Φ : x 7→ y = xA, ImΦ =

VA ∼= Fm/Ker Φ where Ker Φ has dimension m − r. In other words Φ−1(y) = x + Ker Φ

for any y ∈ VA.

Now if X ∼ U(Fm) with P(X = x) = 1
2m and Y = XA = Φ(X), then for any y ∈ VA,

we have

P(Y = y) = P(X ∈ Φ−1(y)) = P(X ∈ x+ Ker Φ)

=
|Ker Φ|

2m
=

2m−r

2m
=

1

2r
=

1

|VA|
. (3.47)

Lemma 3.2.2. One has
H(V Π) = κ bits. (3.48)

Proof. From Lemma 3.2.1, XGC ∼ U(C), MGD ∼ U(D), hence V = XGC + MGD ∼

U(C ⊕ D) = U(Fn). It follows that V Π ∼ U(Fκ), hence H(V Π) = log2 |Fκ| = κ.

Next consider the dual code D⊥. We have Π ∈ D⊥ if and only if GD ·ΠT = GΠ

D ·(Π
Π)T = 0.

Thus to every codeword of Π ∈ D⊥ of weight δ correspond to δ linearly dependent columns
in GΠ

D. Now if κ < δD⊥ , where δD⊥ is the the dual distance of the code D, every set of κ
columns of GD are linearly independent so that GΠ

D always has full rank κ.

Theorem 3.2.3. Let δD⊥ be the dual distance of the code D. If κ < δD⊥ then

I(X;V Π) = 0. (3.49)
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Proof. Since GΠ

D has full rank κ, by Lemma 3.2.1, MGΠ

D ∼ U(VGΠ

D
) = U(Fκ). The condi-

tional distribution of V Π given X = x is then V Π|X = x ∼ xGΠ

C + U(Fκ) = U(Fκ), which

does not depend of x. Thus V Π is independent of X, that is, I(X;V Π) = 0.

Hence V Π does not leak any information about the secret. In particular, we recover
the following result from [CGC+21b]: If a polynomial P has numerical degree < δD⊥ , then
I(X;P (V Π)) = 0.

Theorem 3.2.4 (Noiseless Information Leakage). If an adversary chooses κ = δD⊥ probes,

then

I(X;V Π) =


1 bit, if Π ∈ D⊥,

0, otherwise.
(3.50)

Proof. If Π 6∈ D⊥ then the κ columns of GΠ

D are linearly independent and GΠ

D has full rank.

Then as in the proof of Theorem 3.2.3, I(X;V Π) = 0.

If Π ∈ D⊥ then the κ columns of GΠ

D are linearly dependent while every subset of less

than κ columns of GD is linearly independent. Hence GΠ

D has rank κ− 1. By Lemma 3.2.1,

MGΠ

D ∼ U(VGΠ

D
) where VGΠ

D
has dimension κ − 1, so that H(V Π|X = x) = H(xGΠ

C +

MGΠ

D) = κ − 1 bits. Averaging over X gives H(V Π|X) = κ − 1 bits. From Lemma 3.2.2,

I(X;V Π) = H(V Π)−H(V Π|X) = κ− (κ− 1) = 1 bit.

Assuming the attacker chooses her probes’ locations at random, let Π be a random
vector chosen uniformly among all Π ∈ Fn of weight κ. Then we have the following

Corollary 3.2.4.1. If an adversary chooses κ positions of probe randomly and κ = δD⊥,

then on average

I(X;V Π) =
Aκ(
n
κ

) bits, (3.51)

where Aκ is the kissing number of D⊥.

Proof. From Theorem 3.2.4, I(X;V Π | Π = Π) = 1 or 0 according to whether Π ∈ D⊥ (Aκ

possibilities) or not (
(
n
κ

)
−Aκ possibilities). Averaging over Π gives

I(X;V Π) =
Aκ(
n
κ

) × 1 +

(
n
κ

)
−Aκ(
n
κ

) × 0 =
Aκ(
n
κ

) bits. (3.52)

Theorem 3.2.4 can be generalized as follows.
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Theorem 3.2.5. If an adversary can choose κ ≥ δD⊥ = δ1,D⊥ probes, then the maximum

amount of information she can extract is determined by:

max
Π

I(X;V Π) = max{r ; δr,D⊥ ≤ wH(Π)} bits, (3.53)

where δr,D⊥ is the rth generalized Hamming weight of the code D⊥.

Proof. Probing wH(Π) positions is equivalent with taping wH(Π) coordinates of a codeword

in the wiretap channel II. Therefore, it is straightforward from [Wei91] that the extractable

information is determined by (3.53).

3.2.3 Attacks Under Noisy Measurements

In classical side-channel analysis setups [HRG14a, BGHR14], the attacker exploits directly
the noisy leakage, usually assumed to be equal to the leakage of V in the presence of some
additive white Gaussian noise (AWGN) of variance σ2. However, such setups require to
make an ad-hoc assumption about the leakage model, i.e., a function that transduces a
vector of field elements in F into a real number in R. In order to be more general, we
assume in this paper a narrower attack model, which digitizes the measured side-channel
leakage for subsequent analysis. This corresponds to the situation of a hard detection or
hard decision making—the side-channel is digitized prior to analysis.

Consider a AWGN channel with i.i.d noise ∼ N (0, σ2) in transmitting binary variables,
followed by a binary detector. As is well known, the overall channel model becomes a
memoryless binary symmetric channel (BSC) of probability p = Q(

√
γ) where

Q(x) =
1√
2π

∫ ∞
x

e−
t2

2 dt

is the Q-function and γ = 1/σ2 is the actual signal-to-noise ratio (SNR). Therefore, in this
section, we consider a discrete noise (a.k.a. binary error vector E) which follows the i.i.d.
Bernoulli distribution and show how this discrete noise affects the amount of information
an adversary can extract.

Let E ∈ Fn be the error vector with i.i.d components Ei ∼ B(p) where p = P(Ei = 1).
In short E ∼ B(p)⊗n. Let

V ′ = XGC +MGD + E

be the noisy leakage, and considering κ = wH(Π) probes gives

V ′Π = V Π + EΠ = XGΠ

C +MGΠ

D + EΠ. (3.54)

The problem is to evaluate the mutual information I(X;V ′Π).
By Theorem 3.2.3, κ probes provide no information about the sensitive variable X

when κ < δD⊥ . In this case I(X;V ′Π) = 0. Therefore, we shall only consider the scenario
for which κ = δD⊥ with Π ∈ D⊥. Then, from the analysis of the previous section, GΠ

D has
rank κ− 1 and generates a [κ, κ− 1] parity check code DΠ = VGΠ

D
, with the [κ, 1] repetition

code as the dual code DΠ⊥ = {0, Π
Π}.
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Theorem 3.2.6 (Noisy Information Leakage). In our hard decision probing model with

κ = δD⊥ with Π ∈ D⊥, one has

I(X;V ′Π) = 1− h(p∗) (3.55)

where h(p) = −p log p− (1− p) log(1− p) denotes the binary entropy and p∗ = WDΠ(p, 1−

p) =
∑

iBip
κ−i(1−p)i, the weight enumerator polynomial of the code DΠ generated by GΠ

D.

Notice that 0 ≤ p∗ ≤
∑

i

(
κ
i

)
pκ−i(1− p)i ≤ 1 hence p∗ is a probability.

Proof. Consider I(X;V ′Π) = H(V ′Π) −H(V ′Π|X). Because E is independent of V , V ′Π =

V Π + EΠ is, like V Π, uniformly distributed over U(Fκ) so that H(V ′Π) = κ.

The conditioned entropy H(V ′Π|X = x) = H(xGΠ

C + MGΠ

D + EΠ) = H(MGΠ

D + EΠ) is

independent of the value of x because the probability distribution of MGΠ

D + EΠ is only

affected by the invertible shift operator which adds xGΠ

C ∈ Fκ. Hence averaging over X

gives H(V ′Π|X) = H(MGΠ

D + EΠ).

Now consider the κth extension of the memoryless BSC channel, which transforms each

input vector w ∈ VGΠ

D
= DΠ to some output w′ ∈ VFκ . Noting p∗ =

∑
iBip

κ−i(1 − p)i, a

direct inspection shows that there are two possible cases:

• w′ ∈ VGΠ

D
: the probability of each w′ is p∗

2κ−1 ;

• w′ /∈ VGΠ

D
: the probability of each w′ is 1−p∗

2κ−1 .

Then we have

H(V ′Π|X) = H(MGΠ

D + EΠ)

=
2κ−1∑

1

p∗

2κ−1
log

2κ−1

p∗
+

2κ−1∑
1

1− p∗

2κ−1
log

2κ−1

1− p∗

= d− 1 + h(p∗),

hence I(X;V ′Π) = H(V ′Π)−H(V ′Π|X) = 1− h(p∗).

Theorem 3.2.6 shows that adding noise can only decrease the mutual information
I(X;V ′Π). In the sequel, we further detail the evaluation of mutual information under
weak and strong noise, respectively.
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3.2.3.1 Attacks Under Weak Noise

For weak noise we consider σ → 0, γ → +∞, and, therefore [BS79],

p = Q(
√
γ) ∼ e−γ/2√

2πγ
(3.56)

tends exponentially toward zero. As a result we have the following behavior.

Theorem 3.2.7 (Information Leakage Under Weak Noise). In our hard decision probing

model with κ = δD⊥ with Π ∈ D⊥, as σ → 0 (hence p → 0), one has the asymptotic

equivalence

1− I(X;V ′Π) ∼ κ · e−1/2σ2

2
√

2πσ2
→ 0. (3.57)

Proof. Applying MacWilliams’ identity (3.45) to the code DΠ = VGΠ

D
, whose dual code DΠ⊥

is the [κ, 1] repetition code, we obtain

p∗ =
1

2

κ∑
i=0

Ai(2p− 1)i =
1 + (2p− 1)κ

2

Since p→ 0, according to whether κ is even or odd, p∗ → 1 or p∗ → 0. Hence H2(p∗)→ 0

is equivalent to either −(1 − p∗) log(1 − p∗) or −p∗ log p∗. Therefore, 1 − I(X;Z ′Π) =

H2(p∗) ∼ −pκ log(pκ) ∼ −pκ log(p) ∼ γκe−γ/2

2
√

2πγ
where γ = σ−2, which yields the announced

formula .

Since I(X;V ′Π) will tend to 1 when the noise approaches zero, one recovers Theo-
rem 3.2.4 in the noiseless case.

3.2.3.2 Attacks Under Strong Noise

One of the main benefits of masking is that, under sufficient strong noise, the number of
measurements to recover the secret key used in a masked cryptographic implementation
increases exponentially with the protection order (indicated by the dual distance in code-
based masking). Herein we investigate the asymptotic features of information leakage
quantified by I(X;V ′Π) under a strong noise, i.e., when σ → +∞, γ → 0 so that p→ 1

2 .

Theorem 3.2.8 (Information leakage under strong noise). In our hard decision probing

model with κ = δD⊥ with Π ∈ D⊥, as σ → +∞, one has the following equivalence:

I(X;V ′Π) ∼ 2κ−1

πκ · ln 2
· σ−2κ. (3.58)
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Proof. By first-order Taylor expansion, Q(x) = 1
2 −

1√
2π

x∫
0

e
−t2

2 dt = 1
2 −

x√
2π

+ o(x) and

p = Q(
√
γ) = 1

2 −
√

γ
2π + o(

√
γ) = 1

2 − ε + o(ε) where ε =
√

γ
2π = 1√

2πσ2
→ 0 when

σ → +∞.

Applying MacWilliams’ identity (3.45) to DΠ = VGΠ

D
, we obtain

p∗ =
1

2

κ∑
i=0

Ai(2p− 1)i =
1

2
+ (−2)κ−1εκ + o(εκ).

Now by Taylor’s expansion at second order for the entropy H2(p∗) is H2(1
2) + H ′(1

2)(1
2 −

p∗) + 1
2H
′′(1

2) · (1
2 − p

∗)2 = 1− 2 log2(e) · (1
2 − p

∗)2. Finally, we have

I(X;Z ′Π) = 1−H2(p∗) ∼ 2 log2(e) ·
(
−2κ−1(−ε)κ

)2
= 22κ−1ε2κ · log2(e) =

2κ−1

πκ · ln 2
· σ−2κ (3.59)

Theorem 3.2.8 shows that the mutual information between the sensitive variable X and
the noisy measurements is exponentially decreasing in σ2 with an exponent equal to the
protection order κ (dual distance of D).
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CHAPTER 4

Attack Evaluation of Masked Implementations

The result of this chapter has been published in “Improved Alpha-Information Bounds for
Higher-Order Masked Cryptographic Implementations” [LBC+23].
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Abstract

In this chapter, the security of protected cryptographic implementations is evaluated
for any masking order, using alpha-information measures. Universal upper bounds on the
probability of success of any type of side-channel attack are derived. These also provide
lower bounds on the minimum number of queries required to achieve a given success rate.
An important issue, solved in this section, is to remove the loss factor due to the masking
field size.
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4.1 Alpha-Information Bounds for Higher-Order Masked Im-

plementations

The security assessments in this section apply to implementations protected by arithmetic
masking or boolean masking. The following model has been introduced in Section 1.2:

Crypto Masking Side-channel Attack
Xm V mK Y m K̂

Tm Tm

Figure 4.1: Side-channel seen as a communication channel (with masking).

As in the previous model, the secret K and the public variable T are independent of
each other and uniformly distributed over a same finite field Fq = F2l . The field size is
denoted as N . The sensitive variable X ∈ Fq is a deterministic function of K and T .

According to Definition.1.2.1 and Definition.1.2.2, both arithmetic masking and Boolean
masking (for binary sequences with XOR operation) split the sensitive information X into
d+ 1 shares V = (X0, X1, . . . , Xd), satisfying

X = X0 ⊕X1 ⊕ · · · ⊕Xd, (4.1)

where ⊕ is the additive operation in the underlying field. For example, notation ⊕ can be
the bitwise XOR operation in Boolean masking.

During computation, side-channel information on V = (X0, X1, . . . , Xd) is leaking and
can be measured as a noisy “trace” by the attacker, denoted by Y = (Y0, Y1, . . . , Yd). We
assume that Y is the output of a memoryless side-channel with input V . Since masking
shares are drawn uniformly and independently, both V and Y are i.i.d. sequences.

The attacker measuresm traces Y m = (Y1,Y2, . . . ,Ym) corresponding to text sequence
Tm = (T1, T2, . . . , Tm), and exploits her knowledge of Y m and Tm to estimate the secret
key K̂. Again, since the side channel is memoryless, Xm and Y m are i.i.d. sequences. Let
Ps = P(K = K̂) be the probability of success of the attack upon observing Tm and Y m.
In theory, maximum success is obtained by the MAP (maximum a posteriori probability)
rule with success probability denoted by Ps = Ps(K|Y m, Tm).

4.1.1 State-of-the-art

Duc et al. [DFS15] derived a lower bound on the minimum number m of queries required
to achieve a given probability of success Ps, which can be rewritten as:

m ≥
log(1− 1

N )− log(1− Ps)

− log
(

1− ( N√
2 log e

)d+1
∏d
i=0

√
I(Xi;Yi)

) (4.2)

where d + 1 is the number of shares, N is the field size, and I(Xi;Yi) is the mutual
information between each share and its corresponding leakage. They also showed that
this bound was quite loose in practice and conjectured that when the leakage of shares is
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sufficiently noisy (and independent among shares), the lower bound on m should take the
approximate form

m &
β(Ps)∏d

i=0 I(Xi;Yi)
(4.3)

where β is a “small constant depending on Ps”[DFS19, p. 1279].
The bound (4.2) was improved recently in [MRS23]:

m ≥
d1(Ps‖ 1

N )

log
(

1 + N
2 ( 2

log e)
d+1

∏d
i=0 I(Xi;Yi)

) (4.4)

where d1(·‖·) is the binary Kullback–Leibler divergence. A similar bound was derived
independently in [IUH22]. Although this greatly improves (4.2) for small N , when the
field size N is large, the N factor in the denominator loosens the bound by an substantial
amount. Therefore, an important issue is to find out whether this factor N can be removed.

4.1.2 Lower Bounds on Sibson’s Alpha-Information

4.1.2.1 Bounding Success by Sibson’s Alpha-Information

In Fig. 4.1, the sensitive variable Xm is a function of K and Tm; K̂ is a function of
(Y m, Tm). It is easily seen from the figure that the following Markov chains hold:

K ←→ (Y m, Tm)←→ K̂, (4.5)
(K,Tm)←→ Xm ←→ Y m. (4.6)

The probability of success of the side-channel attack is Ps = Ps(K|Y m, Tm). Using
Lemma 1.3.1, one has dα

(
Ps‖ 1

N

)
≤ Iα(K;Y m, Tm).

Based on the closed-form expression we have

Lemma 4.1.1. Iα(K;Y m, Tm) ≤ Iα(K,Tm;Y m). (4.7)

Proof. By definition, α−1
α Iα(K;Y m, Tm) can be writen as

log EY m,Tm〈pK|Y m,Tm‖pK〉α = log ETm
∫
Y m

pY m|Tm
(∑

k

pαK|Y m,Tmp
1−α
K

) 1
α

= log ETm
∫
Y m

(∑
k

pαK,Y m|Tmp
1−α
K

) 1
α
.
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Then one has

Iα(K;Y m, Tm)
(?)
= α

α−1 log ETm
∫
Y m

(∑
k

pαY m|K,TmpK|Tm
) 1
α

(??)

≤ α
α−1 log

∫
Y m

(
ETm

∑
k

pαY m|K,TmpK|Tm
) 1
α

= α
α−1 log

∫
Y m

(∑
k,tm

pαY m|K,TmpK,Tm
) 1
α

= α
α−1 log

∫
Y m

pY m

(∑
k,tm

pαK,Tm|Y mp
1−α
K,Tm

) 1
α

= Iα(K,Tm;Y m)

where (?) holds since pK = pK|Tm (K and Tm are independent) and pαK,Y m|Tmp
−α
K|Tm =

pαY m|K,Tm ; (??) is Jensen’s inequality: when α > 1, x
1
α is concave and α

α−1 is positive;

when 0 < α < 1, x
1
α is convex and α

α−1 is negative. In both cases the inequality holds in

the same direction.

It follows that the generalized Fano inequality implies

dα
(
Ps‖

1

N

)
≤ Iα(K,Tm;Y m). (4.8)

Because (K,Tm) ↔ Xm ↔ Y m forms a Markov chain, using the DPI of Sibson’s α-
information we have

Iα(K,Tm;Y m) ≤ Iα(Xm;Y m). (4.9)

Also, when Tm is not observed, each component of Xm is i.i.d., and since the side-channel
is memoryless, (Xm;Y m) is an i.i.d. sequence. It easily follows from the definition that

Iα(Xm;Y m) = mIα(X;Y ). (4.10)

From (4.8), (4.9), and (4.10), we arrive at the main result of this section:

Theorem 4.1.2. One has

dα
(
Ps‖

1

N

)
≤ mIα(X;Y ) (4.11)

Note that since dα
(
p‖q
)
is increasing in p when p ≥ q, Theorem 4.1.2 gives an upper bound

on the probability of success Ps.

4.1.2.2 Comparison with the Classical Bound

A natural question is to compare (4.11) with the classical bound for α = 1, especially in
terms of how it depends on N . Since dα and Iα are non-decreasing in α, a precise answer
is not obvious. One can argue as follows. Assume Ps is fixed in (0, 1). For α = 1, one has
at first order

d1

(
Ps‖ 1

N

)
= logN − (1− Ps) log(N − 1)− h(Ps) ≈ Ps logN (4.12)

76



4.1. Alpha-Information Bounds for Higher-Order Masked Implementations

where h(Ps) is the binary entropy function. For α < 1, dα
(
Ps‖ 1

N

)
≤ d

(
Ps‖ 1

N

)
does not

grow faster than O(logN). For α > 1, one has at first order

dα
(
Ps‖ 1

N

)
= logN + 1

α−1 log
(

Pαs +
(1− Ps)α

(N − 1)α−1

)
≈ logN (4.13)

Thus the O(logN) term applies for any α, and the lower bound in (4.11) will not
become looser than the classical bound as the field size N increases.

4.1.3 Upper Bound on Rényi Mutual Information

4.1.3.1 Euclidean Distance to the Uniform

In the field of cryptography, the total variation distance ‖P − U‖1 of a given N -ary dis-
tribution P to the uniform distribution U ∼ U(N) is a common criterion to evaluate
randomness. For α 6= 1 we have the following

Definition 4.1.1 (α-Distance). Let X be an N -ary random variable. The “α-distance”

between PX and a uniform distribution U ∼ U(N) is defined as

‖PX − U‖α =
(∑

x

∣∣pX(x)− 1
N

∣∣α) 1
α
. (4.14)

In this section we focus on the Euclidean distance (α = 2) because of the following

Lemma 4.1.3. With the same notations, one has

D2(PX‖U) = log(1 +N · ‖PX − U‖22). (4.15)

Proof. One has ‖PX − U‖22 =
∑

x(pX(x) − 1
N )2 =

∑
x p

2
X(x) − 1

N . Since D2(PX‖U) =

log(N ·
∑

x p
2
X(x)), the result follows.

The following important Lemma is known as the XOR Lemma in the case of Boolean
Masking[MRS23].

Lemma 4.1.4 (Group Lemma). Let X1, X2 be independent random variables over a finite

Abelian group X of size N , and U ∼ U(X ). Let X = X1 ⊕X2, where ⊕ denotes the group

operator in X . One has

‖PX − U‖22 ≤ N · ‖PX1 − U‖22 · ‖PX2 − U‖22. (4.16)

By finite induction, if X is split into d+1 independent shares: X = X0⊕X1⊕· · ·⊕Xd,
one has

‖PX − U‖22 ≤ Nd‖PX0 − U‖22‖PX1 − U‖22 · · · ‖PXd − U‖
2
2. (4.17)
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Proof. Since X = X1 ⊕ X2, one has PX = PX1 ∗ PX2 where ∗ denotes the convolution

operator over the Abelian group. It is easy to check that PX −U = (PX1 −U)∗ (PX2 −U),

and by the Cauchy-Schwarz inequality, |(PX1 −U) ∗ (PX2 −U)| ≤ ‖PX1 −U‖2‖PX2 −U‖2.

Summing over the N values of X gives (4.16).

Remark 4.1.1. Lemmas 4.1.3 and 4.1.4 do not seem to be easily generalized to other

values of α 6= 2. This is the main reason why we focus on α = 2 in this paper.

4.1.3.2 Upper Bound of Rényi 2-Information for Each Share

Since Sibson’s α-information does not exceed Rényi mutual information (inequality (1.49)),
Theorem 4.1.2 implies

dα
(
Ps‖

1

N

)
≤ mIRα (X;Y ). (4.18)

We now upper bound IRα (X;Y ) by noting that, by definition since X is uniformly dis-
tributed,

IR2 (X;Y ) = log EY expD2(PX|Y ‖U)

= log(1 +N · EY ‖PX|Y − U‖22).
(4.19)

Since {Xi, Yi}i=0,...,d are mutually independent, (4.17) applies for X|Y and we have

IR2 (X;Y ) ≤ log
(
1 +N · EY N

d
d∏
i=0

‖PXi|Yi − U‖
2
2

)
(4.20)

= log
(
1 +

d∏
i=0

N · EYi‖PXi|Yi − U‖
2
2

)
(4.21)

= log
(
1 +

d∏
i=0

(exp IR2 (Xi;Yi)− 1)
)
. (4.22)

Putting all inequalities together yields the main result of this paper:

Theorem 4.1.5 (Main Result). The number of traces m can be lower bounded by

m ≥
d2(Ps‖ 1

N )

log
(

1 +
∏d
i=0(exp IR2 (Xi;Yi)− 1)

) . (4.23)

Note that from Subsection 4.1.2.2 with α = 2, the numerator does not lose tightness
compared the case α = 1 (compare (4.4)).
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4.1.4 Numerical Results

In this subsection, we validate our results by simulation. The side-channel settings are as
follows:

• the field of variables is the AES (Advanced Encryption Standard) field F2` with ` = 8,
thus N = 256;

• side-channel information is generated by taking the Hamming weight leakage model
and additive white Gaussian noise (one of the most commonly adopted models [MOP07]);

• the Boolean masking is considered with orders d ∈ 0, 1, 2.

Shannon and Rényi mutual information (MI) is evaluated by Monte-Carlo simulation. In
particular, we compare Rényi MI in (4.22) with the following

I(X;Y ) ≤ log
(
1 + N

2 ( 2
log e)

d+1
d∏
i=0

I(Xi;Yi)
)

(4.24)

used in (4.4).
Fig. 4.2 confirms this on the performance bounds on the success rate as a function of

m, for d = 1 and 2.

2 1 21 23 25 27 29 211 213

Num. of queries m

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e 

s

d = 1
d = 2

Figure 4.2: Ps vs m in attacks and the corresponding bounds for noise variance σ2 = 8. The plain

curves show the results of direct maximum likelihood (ML) attacks [HRG14b]; the dotted curves

show the predictions by Theorem 4.1.5; the dashed curves are for the state-of-the-art bound (4.4).

Our new bounds are significantly more accurate than the state-of-the-art: For Ps = 80%
and d = 1, the ML attack gives about m ≥ 60, our new bound gives m ≥ 25, while (4.4)
gives only m ≥ 1. Much improvement can also be observed for d = 2.

This work uses traditional information-theoretic tools to evaluate the side-channel se-
curity of masked implementations, essentially providing bounds when α = 1.

Interestingly, our result may also be related to [PGMP19], since equation (4.22) has the
same form as [PGMP19, Theorem 3], but with different information-theoretic metrics. It
would be worthwhile to investigate the relationships and compare the various information
metrics used in security proofs.
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4.2 Further Discussions

4.2.1 Possible Directions for Improvement

In Section 4.1, evaluating security of masked implementations mainly consists of three
steps:

1. Firstly, using the Fano inequality to bound the success rate by the “global” mutual
information between the sensitive variable and the side-channel leakage:

dα
(
Ps‖

1

N

)
≤ Iα(Xm;Y m). (4.25)

Here, “global” refers to the information between the leakage obtained from all m
queries and their corresponding sensitive variables.

2. Secondly, using the information Iα(X;Y ) obtained from a single query (times m) to
bound the global mutual information Iα(Xm;Y m).

Iα(Xm;Y m) ≤ m · Iα(X;Y ) (4.26)

Since the public variable used in each query is uniformly distributed and i.i.d. se-
quence, and the side-channel is memoryless, (Xm;Y m) is also an i.i.d. sequence.

3. Lastly, we use the leakage information of each share to bound the information
Iα(X;Y ) when α = 2:

I2(X;Y ) ≤ log
(
1 +

d∏
i=0

(exp IR2 (Xi;Yi)− 1)
)
. (4.27)

where IR2 (Xi;Yi) is Rényi α-mutual information between each share and its leakage.

The significance of this inequality lies in the fact that directly estimating the mutual
information of high-dimensional vectors, i.e., Iα(X;Y ) or Iα(V ;Y ), is too compli-
cated. Thus we would like to bound Iα(X;Y ) by the mutual information of each
single share and its corresponding leakage, Iα(Xi;Yi), i = 0, 1, . . . , d. This can sig-
nificantly simplifies the estimation.

For certain reasons, we have only derived the bounds for α = 2 in the third step.
Ideally, we aim to derive:

dα
(
Ps‖

1

N

)
≤ Iα(Xm;Y m) ≤ mIα(X;Y ) ≤ mf

(
Iα(X0;Y0), . . . , Iα(Xd;Yd)

)
(4.28)

for any α, where f is a function of d+ 1 variables.
Regarding this evaluation process, there are two points I’d like to clarify:

• Firstly, if we can replace the α-information in (4.28) with the corresponding condi-
tional α-information (given the public variable T ), we would obtain better bounds.
In fact, the first inequality in (4.28) can be extended to conditional α-information, as
shown in Section 3.1. However, somehow, it is challenging to obtain a result similar
to the second inequality in (4.28) for the conditional α-information Iα(Xm;Y m|Tm).
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• Secondly, it’s challenging to determine which value of α yields the optimal solution
for this bound. Intuitively, the first inequality in (4.28) might perform increasingly
better as α grows, as indicated by the simulation results in Section 3.1. However,
the second inequality might lose precision as α increases. The third inequality is
even more elusive. Based on some other research results, the function f for different
values of α appears to be distinct.

4.2.2 In the Case of Alpha = 1/2

Recall that α-entropy, α-divergence, and Sibson’s α-information are defined as

Hα(PX) = α
1−α log ‖pX‖α (4.29)

Dα(PX‖QX) = 1
α−1 log〈pX‖qX〉αα (4.30)

Iα(X;Y ) = α
α−1 log EY 〈pX|Y ‖pX〉α. (4.31)

where

‖pX‖α =
(∫
X
pαX(x) dµ(x)

)1/α (4.32)

〈pX‖qX〉α =
(∫
X
pX(x)αqX(x)1−α dµ(x)

)1/α (4.33)

One has the following property:

Proposition 4.2.1. Let X,U ∼ U(N) be uniform distributions, then

exp
(
α−1
α Iα(X;Y

)
) = EY exp

(
α−1
α Dα(PX|Y ‖U)

)
. (4.34)

A natural question arises: Can the method used in Section 4.1 be applied to other
values of α? Deriving similar bounds as in Section 4.1 for α = 1

2 seems to be promising,
because D 1

2
(PX‖QX) is also related to Euclidean distance:

D 1
2
(PX‖QX) = −2 log(

∑
x

√
pX(x)

√
qX(x))

= −2 log(1− 1

2
‖
√
pX(x)−

√
qX(x)‖22) (4.35)

However, using the same method in Section 4.1, I only obtain a trivial
bound for α = 1

2 . The detailed derivation process is as follows.
When α = 1

2 , Proposition 4.2.1 becomes

I 1
2
(X;Y ) = − log

(
EY exp

(
−D 1

2
(PX|Y=y‖U)

))
. (4.36)

We also have the following group lemma for α = 1
2 :
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Lemma 4.2.1 (Group Lemma). Let X0, X1, . . . ,Xd be independent random variables over

a finite Abelian group X of size N , and U ∼ U(X ). Let X = X0 ⊕X1 ⊕ · · · ⊕Xd, where

⊕ denotes the group operator in X . One has

1− 1

2
‖
√
PX −

√
U‖22 ≥

d∏
i=0

(
1− 1

2
‖
√
PXi −

√
U‖22

)
. (4.37)

Proof. Proving this lemma for two variables (X = X0 ⊕X1) is enough:

2− ‖
√
PX −

√
U‖22 = 2−

∑
x

(
√
pX(x)−

√
1
N )2 = 2√

N

∑
x

√
pX(x) (4.38)

=
2√
N

∑
x

(∑
x0

pX0(x0)pX1(x	 x0)
) 1

2 (4.39)

≥ 2√
N

∑
x

( 1

N
· (
∑
x0

√
pX0(x0)pX1(x	 x0))2

) 1
2 (4.40)

=
2

N

∑
x0

√
pX0(x0)

∑
x

√
pX1(x	 x0) (4.41)

=
1

2

1∏
i=0

( 2√
N

∑
xi

√
pXi(xi)

)
(4.42)

=
1

2

1∏
i=0

(
2− ‖

√
PXi −

√
U‖22

)
(4.43)

where (4.40) is using the Cauchy-Schwarz inequality (
∑N

i=1

√
zi)

2 ≤ N ·
∑N

i=1 zi.

By induction, this lemma can be proved.

Combine (4.35), (4.36) and (4.37) we can prove the following theorem:

Theorem 4.2.2. With the same notations in Section 4.1, one has

I 1
2
(X;Y ) ≤

d∑
i=0

I 1
2
(Xi;Yi) (4.44)

Proof.

I 1
2
(X;Y ) = − log

(
EY exp

(
2 log(1− 1

2‖
√
PX|Y =y −

√
U‖22)

))
≤ − log

(
EY exp

(
2 log

( d∏
i=0

(1− 1
2‖
√
PXi|Yi=yi −

√
U‖22)

)))
= − log

(
EY

( d∏
i=0

(1− 1
2‖
√
PXi|Yi=yi −

√
U‖22)

)2)
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= − log
(

EY

( d∏
i=0

exp(−1
2D 1

2
(PXi|Yi=yi‖U))

)2)
= − log

( d∏
i=0

EYi exp
(
−D 1

2
(PXi|Yi=yi‖U)

))
=

d∑
i=0

I 1
2
(Xi;Yi)

Unfortunately, this bound is useless because the upper bound of I 1
2
(X;Y ) is even

increasing as d increases. In fact, this is a trivial bound for any α, because we have
Markov chain X − (X0, . . . , Xd)− (Y0, . . . , Yd) = Y , which implies

Iα(X;Y ) ≤ Iα(X0, . . . , Xd;Y0, . . . , Yd) =
d∑
i=0

Iα(Xi;Yi). (4.45)

Of course, it’s always possible to find a better bound for α = 1
2 using other methods.

4.2.3 In the Case of Alpha =1

In [BCG+23], we used “Mrs. Gerber’s lemma” to derive similar improved bounds (removing
the field size loss). The following notations are used:

Definition 4.2.1 (Binary Entropy). The Shannon entropy for a binary random variable

is denoted as

Hb : [0, 1] −→ [0, 1]

p 7−→ −p log2(p)− (1− p) log2(1− p)

Let H−1
b : [0, 1] 7→

[
0, 1

2

]
be the inverse of Hb restricted to

[
0, 1

2

]
.

Definition 4.2.2 (Binary Convolution ?). The convolution for a binary random variable

is denoted as

? : [0, 1]2 −→ [0, 1]

x, y 7−→ (1− x)y + x(1− y).

Definition 4.2.3 (Mrs. Gerber’s functions). For any positive integers `, n, let fMI,2` :

[0, 1]n+1 → [0, 1] be the function defined by

fMI,2`(δ0, . . . , δn) = 1−Hb

( n
?
i=0

H−1
b (1− δi)

)
.

Remark 4.2.1. The function fMI,2` is decreasing with respect to each of its inputs, and

is equal to 0 when every δi = 0.
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The lower bound on the minimum number of queries required to achieve a given success
rate is

Theorem 4.2.3 (Bounds on Number of Traces [BCG+23]).

m ≥
d1(Ps‖ 1

N )

fMI,2`(I(X0;Y0), . . . , I(Xd;Yd))
. (4.46)

4.2.4 In the Case of Alpha Tends to Infinity

The other paper [BLR+23] derives similar security bounds for α = ∞, which might lead
to a better bound because, as we pointed out earlier, the generalized Fano inequality for
conditional Sibson’s α-information becomes an equality when α = ∞. More specifically,
the upper bound in [BLR+23] is

Theorem 4.2.4 (Bounds on Number of Traces [BLR+23, Eq. (65)]).

m ≥
d∞(Ps‖ 1

N )

log
(

1 + (M − 1)d
∏d
i=0(exp I∞(Xi;Yi)− 1)

) . (4.47)
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Conclusions

The content of this thesis can be broadly classified into three aspects:

The first aspect centered around a widely-used countermeasure against side-
channel attacks: generalized code-based masking. Prior research indicates that the
security of code-based masking is related to the distance and kissing number of the dual
of the masking code. Given a masking code with a specific length and dimension, the
larger its dual distance, the more secure the corresponding masking becomes. If two
masking codes have the same dual distance, then the one with a smaller kissing number
of its dual code is even more secure. Based on this conclusion, we first studied the
possible values of the kissing number of a code with a determined length,
dimension, and distance, and derived the upper and lower bounds of the kissing
number using linear programming. On the other hand, we considered: aside from
the distance and kissing number, are there other parameters that impact the efficacy of
masking? Experimental results indicate that the side-channel resistance of code-based
masking can be better evaluated by considering the entire weight distribution of the dual
code: the smaller the lexicographical order based on prefixes of the weight
distribution, the better the code-based masking.

The second aspect involves the assessment of side-channel leakage. To more accurately
estimate side-channel leakage, we proposed a generalized definition of conditional
mutual information and compared it with other generalized conditional information
definitions. We then employed this new metric to estimate the side-channel
leakage of unprotected cryptographic devices, deriving the corresponding Fano
inequality. This generalized definition introduces the parameter α: when α → 1, we
can replicate the result in previous work; when α > 1, this new metric gives better Fano
inequality. This generalized definition introduces the parameter α: when α → 1, it repli-
cates the results of previous work; when α > 1, this new metric provides a more favorable
Fano inequality. Experimental results, based on Hamming weight leakage and Gaussian
noise, indicate that as alpha increases, the new Fano inequality can provide us with tighter
bounds; notably, when α approaches infinity, the Fano inequality holds as an equality. On
the other hand, for cryptographic implementations protected by code-based
masking, we utilized Fano’s mutual information to evaluate their side-channel
leakage. We considered the probing model, demonstrating that an attacker needs to de-
ploy at least as many probes as the dual distance of the mask to obtain useful information;
when the side channel carries strong noise, the mutual information between the sensitive



variable and the noisy measurements decreases exponentially in σ2 with an exponent equal
to the protection order δ, where σ is the standard deviation of the noise and δ is the dual
distance of the masking code.

The third aspect involves the attack evaluation of masked implementations
for arithmetic masking and Boolean masking. Compared to the “leakage evalua-
tion” in the second section, this “attack evaluation” section delves into the relationship
between the amount of side-channel leakage information and the number of traces required
to achieve a given success rate. Universal upper bounds on the probability of success for
any type of side-channel attack are derived using alpha-information measures. In partic-
ular, when α = 2, the generalized mutual information between the sensitive variable and
the side-channel leakage can be upper-bounded by the leakage information quantity of
each masking share. These also provide lower bounds on the minimum number of queries
required to achieve a given success rate. An important issue, resolved in this part, is the
removal of the loss factor due to the masking field size.

Other metrics have also been used in similar evaluations. Comparing the boundaries
corresponding to different metrics, with the aim of identifying the optimal boundary, will
be the objective of the next phase of research.
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Appendix: Notes on Leftover Hash Lemma

This appendix is an attempt to improve the leftover hash lemma (LHL).
The LHL has been widely applied in various domains of cryptography and complexity

theory. The proof of LHL employs the Pointcheval-Zimmer inequality. Since this inequality
is not optimal, we tried to replace it with an optimal inequality that was recently proposed
in [Rio22]. The improvement brought about by this change is negligible, but it may inspire
the search for an α-information version of the leftover hash lemma.

5.1 Background, Notations and Definitions

Imagine a scenario: You have an n-bit secret key uniformly distributed over {0, 1}n, hence
its Rényi entropy is n bits. However, t bits of the key have unfortunately been leaked to
the adversary, and you don’t know the specific positions of these t bits. Consequently, the
entropy of this secret key decreases from n bits to n− t bits. At this point, the key is like
a “chicken rib”, tasteless when consumed (it only has poor quality randomness), but a pity
to discard (as it still contains n− t bits of information entropy). So, how would you handle
this partially leaked key?

A possible solution is to find a “randomness extractor” to extract the remaining ran-
domness from this key. The leftover hash lemma shows (almost) universal hash functions
are good randomness extractors: they can extract “almost uniform” random bits from
any random variable X, and the length of extract bits is close to the min-entropy of X,
i.e., H∞(X). Such extractors are called LHL-based extractors. Before delving into their
details, we need to clarify the following concepts.

In this appendix we use H to represent Hash functions, and use H in bold to denote
the entropy.

Total Variation Distance

In cryptography, the total variation distance (also known as statistical distance) is
an essential metric that quantifies the disparity between two probability distributions by
computing half the sum of their absolute probability differences.

Let PX , QX be two probability distributions over a same sample space X . The total



variation distance between PX and QX is

∆(PX , QX) =
1

2

∑
x∈X
|pX(x)− qX(x)| (5.48)

where the factor 1
2 ensures 0 ≤ ∆(PX , QX) ≤ 1.

The well-known Pinsker’s inequality establishes the relationship between TV and Shan-
non entropy:

∆2(PX , U) ≤ 1

2 log e
(log |X | −H(PX)) (5.49)

where U represents a uniform distribution over the same sample space as PX .

Universal Hash Functions

Let X,H be random variables over X and H respectively. The sample space H is a
family of Hash functions and each h ∈ H maps x ∈ X to a bit sequence, h : X → {0, 1}v
where v is a positive integer.

Given ε > 0, if a uniform random variable H satisfy

P
(
H(x1) = H(x2)

)
≤ ε (5.50)

for any x1, x2 ∈ X with x1 6= x2, we say H is ε-almost universal. Specifically, H is called
universal if ε = 1

2v .

Extractors

A function Ext : X × {0, 1}n → {0, 1}m is a (k, ε)− extractor, if for all X distributed
over X and H∞(X) ≥ k, we have

∆(Ext(X,Un), Um) ≤ ε. (5.51)

where Un denotes the uniform distribution over {0, 1}n.

5.2 Leftover Hash Lemma

The leftover Hash lemma was first stated in [ILL89]. It has multiple versions. In this thesis
we use the formulation of [Sho06, Thm 8.37].

Theorem 5.2.1 (Leftover Hash Lemma). Let X be a random variable over X = {0, 1}n.

H is a family of Hash functions, |H| = 2d, and these functions are denoted as {0, 1}d.

Random variable H is uniformly distributed over H and every h ∈ H maps X to {0, 1}m.

Let Ext : (X ,H)→ {0, 1}m+d be a function maps (x, h) ∈ (X ,H) to

Ext(x, h) = (h(x), h). (5.52)
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If H is 1+β
2m -almost universal Hash functions, then the function Ext is a (k, ε)-extractor,

where ε =

√
β+2m−k

2 .

Proof. By definition of total variation distance, one has

∆(Ext(X,H), Um+d) =
1

2

∑
h∈H,x∈X

∣∣∣P(H(X),H)(h(x), h)− 1

2m+d

∣∣∣. (5.53)

Use Vi, i = 1, . . . , 2m+d to denote the items in the summation of (5.53) without taking

absolute value, i.e., P(H(X),H)(h(x), h) − 1
2m+d . Use Si to denote the corresponding sign

vector of Vi, then (5.53) can be written as

∆(Ext(X,H), Um+d)

=
1

2

2m+d∑
i=1

Vi · Si ≤
1

2

√√√√(
2m+d∑
i=1

V 2
i )(

2m+d∑
i=1

S2
i ) =

1

2

√√√√2m+d · (
2m+d∑
i=1

V 2
i )

where

2m+d∑
i=1

V 2
i =

∑
x∈X ,h∈H

(
P(H(X),H)(h(x), h)− 1

2m+d

)2
=

∑
x∈X ,h∈H

P 2
(H(X),H)(h(x), h)− 2

2m+d
+

1

2m+d

= ‖P(H(X),H)‖22 −
1

2m+d
,

where ‖ · ‖2 is Euclidean norm, and H2(PX) = − log ‖PX‖22.

Actually, the inequality we obtained above is the Pointcheval-Zimmer inequality [CFPZ09,

Lemma 4] (which is also proved earlier in [Sho06, Thm 8.36]):

∆(Ext(X,H), Um+d) ≤
1

2

√
N · exp

(
−H2((H(X), H))

)
− 1 (5.54)

=
1

2

√
N · ‖P(H(X),H)‖22 − 1

where N = 2m+d. The next step is to bound ‖P(H(X),H)‖22. One has

‖P(H(X),H)‖22 =
∑

x∈X ,h∈H
p2

(H(X),H)

(
h(x), h

)
=
∑
h

p2
H(h)

∑
x

p2
H(X)

(
h(x)|H = h

)
= P(H = H ′) ·

(
P(X = X ′) + P(X 6= X ′) P(H(X) = H(X ′)|H = h,X 6= X ′)

)
.
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Because P(H = H ′) = 1
2d
, P(X = X ′) ≤ 1

2k
when H2(X) ≥H∞(X) ≥ k, and P(H(x1) =

H(x2)|H = h, x1 6= x2) ≤ 1+β
2m for any h ∈ H when H is 1+β

2m -almost universal, one has the

following inequality

∆(Ext(X,H), Um+d) ≤
1

2

√
2m+d · 1

2d
(

1

2k
+

1 + β

2m
)− 1

=
1

2

√
β + 2m−k.

Let ε = 1
2

√
β + 2m−k, then Ext is a (k, ε)-extractor.

In particular, when β = 0, Theorem 5.2.1 becomes: If H is universal Hash functions,
then the function Ext is a (k, 2

m−k
2
−1)-extractor.

Entropy Loss

The entropy loss of an extractor is one of the considerations for evaluating a randomness
extractor. when extract m almost uniform bits from X with H∞(X) = k, the entropy loss
is defined as L = k −m.

In Theorem 5.2.1, the input of Ext is random variable X with H∞(X) = k and d bits
turely random variable H, the output is almost uniform random bits of length m+ d. So
the entropy loss of this Ext is L = k −m = log2

1
4ε2−β . When β = 0, L = 2 log2(1

ε )− 2.

5.3 Relation between Statistical Distance and Rényi Entropy

One of the most important steps in this proof is the Pointcheval-Zimmer inequality [CFPZ09,
Lemma 4] (see (5.54)), which upper bounds the total variation distance by Rényi entropy
of order 2. However, this inequality is not optimal. It can be improved as shown in [Rio22].

In [Rio22], the author derives bounds between statistical distance and Rényi entropy
using majorization theory. This section will briefly introduce these bounds.

Majorization

Majorization is a widely-used concept in the theory of inequalities and in linear algebra,
which provides a way to compare vectors in terms of the arrangement of their components.

Let X be a random variable over finite alphabet X . The probability distribution of X
is denoted as PX(x), and the probabilities pX(x) is rearranged as

p(1) ≥ p(2) ≥ · · · ≥ p(N) (5.55)

where p(1) = max
x

pX(x) is the maximum probability, p(i) (i = 2, 3, . . . , N) is the i-th
largest probability.

90



5.3. Relation between Statistical Distance and Rényi Entropy

Given two probability distributions PX and QX , we say that PX is majorized by QX ,
denoted as PX ≺ QX , if their rearranged probabilities satisfy:

k∑
i=1

p(i) ≤
k∑
i=1

q(i), for k = 1, . . . , n− 1; (5.56)

n∑
i=1

p(i) =
n∑
i=1

q(i). (5.57)

S-Concavity

In [Rio22, Sec. 4], the author introduced the concept of “s-concavity”: a quantity is called
s-concave if it decreases with some certain transformations. As stated in [Rio22, Sec.4],
Rényi entropy Hα is s-concave because p ≺ q implies

Hα(p) ≥Hα(q). (5.58)

Total Variation Distance v.s. Rényi Entropy

Use ∆ = ∆(PX , U) to represent the total variation distance between PX and uniform dis-
tribution U ∼ U(N); let K = |{p ≥ 1

N }|, the following majorization was proved in [Rio22,
Eq. (52)]:

( 1
N + ∆

K , · · · ,
1
N + ∆

K︸ ︷︷ ︸
K times

, 1
N −

∆
N−K , · · · ,

1
N −

∆
N−K︸ ︷︷ ︸

N−K times

) ≺ PX ≺ (∆+ 1
N ,

1
N , · · · ,

1
N︸ ︷︷ ︸

L−1 times

, R− L
N , 0, . . . , 0)

(5.59)
where R = 1−∆ and L = bNRc.

Combine (5.58) and (5.59) one has the following lower and upper bounds for α-entropy
of X:

Hα(X) ≥ 1
1−α log

(
(∆ + 1

N )α + L−1
Nα + (1−∆− L

N )α
)
, (5.60)

Hα(X) ≤ 1
1−α log

(
( 1
N + ∆

K )α ·K + ( 1
N −

∆
N−K )α · (N −K)

)
. (5.61)

Let α→ 1 one has

H(X) ≥ logN − (∆ + 1
N ) log(N∆ + 1)− (R− L

N ) log(NR− L), (5.62)

H(X) ≤ −(∆ + K
N ) log( ∆

K + 1
N )− (N−KN −∆) log( 1

N −
∆

N−K ). (5.63)

When α > 1, (5.61) becomes an upper bound on ∆:

∆ ≤ f−1
α

(
exp
(
(1− α)Hα(X)

))
(5.64)

where f−1
α is the inverse of the function:

fα(∆) = ( 1
N + ∆

K )α ·K + ( 1
N −

∆
N−K )α · (N −K). (5.65)
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This inverse exists because fα(∆) is an increasing function and continuous on [0, 1] (as
f ′α(∆) ≥ 0 when ∆ ∈ [0, 1]).

In particular, f2(∆) = 1
N + N∆2

K(N−K) and

f−1
2 (y) =

√
(y − 1

N )K(N−K)
N . (5.66)

Combine (5.64) and (5.66) one has a new inequality between total variation distance and
2-entropy H2(X):

∆ ≤
√
K(N−K)

N

√
N · exp

(
−H2(X)

)
− 1. (5.67)

It is better than the Pointcheval-Zimmer inequality because
√
K(N−K)

N is always no greater
than 1

2 .

5.4 Applying New Bounds to LHL

By replacing (5.54) in the proof of LHL with (5.64), one obtains the following theorem:

Theorem 5.4.1 (Leftover Hash Lemma). Let X be a random variable over X = {0, 1}n.

H is a family of Hash functions, |H| = 2d, and these functions are denoted as {0, 1}d.

Random variable H is uniformly distributed over H and every h ∈ H maps X to {0, 1}m.

Let Ext : (X ,H)→ {0, 1}m+d be a function maps (x, h) ∈ (X ,H) to

Ext(x, h) = (h(x), h). (5.68)

Let N = 2m+d and K = |p
(
(h(x), h)

)
≥ 1

M |. If H is 1+β
2m -almost universal Hash functions,

then the function Ext is a (k, ε′)-extractor, where ε′ =
√
K(N−K)

N ·
√
β + 2m−k.

Remark 5.4.1. In this theorem, the entropy loss of Ext is

L = k −m = log2

1
N2

K(N−K)ε
2 − β

. (5.69)

When β = 0, L = 2 log2(1
ε )− 2 log2

N√
K(N−K)

. The entropy loss in this theorem is always

less than what is presented in Theorem 5.2.1 when K 6= N/2.

This theorem tells us that if there is a family of universal hash functions with more
extreme value of K (means K is far away from N

2 ), then its corresponding LHL-based
extractor has less entropy loss. However, such an improvement is negligible: the new LHL,
compared to the original, both achieve an entropy loss of 2 log2(1

ε ) − O(1) when β = 0.
And it has been proven in [RT00] that 2 log2(1

ε ) is the smallest possible entropy loss for
any extractor when one is concerned with general distinguishers.
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5.5. Perspective

5.5 Perspective

In the proof of Theorem 5.4.1 we only use the optimal bound (5.61) when α = 2. Since the
optimal bound (5.61) is actually valid for all α > 0, it might be possible to obtain an α-
version of LHL using this bound. This may require proposing the α-version of universality
of Hash functions. This is a future research direction.
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Résumé : L’utilisation répandue des dispositifs cryp-
tographiques met en évidence le besoin de leur fonc-
tionnement sécurisé sur des plateformes physiques.
Des fuites d’informations involontaires, telles que la
durée d’exécution, la puissance, et les émissions
électromagnétiques, peuvent permettre aux atta-
quants de déduire les clés secrètes utilisés via des
attaques par canaux cachés (SCAs). L’importance
des SCAs a intensifié la recherche sur la sécurité
des dispositifs cryptographiques, avec l’émergence
de mesures théoriques de l’information comme ou-
tils d’évaluation efficaces. Dans ce contexte, les ob-
jectifs centraux de cette thèse sont de quantifier les
fuites par canaux cachés, évaluer la sécurité des
dispositifs cryptographiques face aux SCAs (à la
fois non protégés et masqués), et de trouver une
méthode pour élaborer des codes de masquage
plus efficaces. Pour la construction du code de mas-
quage, nous trouvons des bornes par programmation
linéaire sur le nombre de contact des codes q-aires.
Nous montrons également que le code est d’autant

plus performant que le polynome enumérateur des
poids du code dual est minimal pour l’ordre lexicogra-
phique.
Concernant l’évaluation des fuites par canaux cachés,
nous introduisons une nouvelle métrique d’informa-
tion, appelée alpha-information conditionnelle de Sib-
son. Elle peut exprimer par une formule explicite pro-
pice aux évalution numériques et vérifie plusieurs pro-
priétés utiles. En utilisant cette mesure, nous exa-
minons les fuites par canaux cachés des dispositifs
non protégés. De plus, nous utilisons l’information
mutuelle de Fano pour évaluer les fuites par canaux
cachés des implémentations masquées basées sur
un code sous un modèle de sondage.
Enfin, pour l’évaluation de la sécurité des
implémentations masquées, nous utilisons l’alpha-
information pour évaluer les implémentations de mas-
quage arithmétique et booléen. Nous définissons
des limites inférieurs universelles sur le nombre
de requêtes nécessaires pour atteindre un taux de
succès donné.

Title : Security Assessment Against Side-Channel Attacks: Insights from an Information-Theoretic Perspective

Keywords : Side Channel, Information Theory, Masking, Security Assessment

Abstract : In today’s world, the widespread use of
cryptographic devices highlights the need for their se-
cure operation. Unintended leakages, like time, po-
wer, and electromagnetic emissions, can allow atta-
ckers to deduce secret keys via side-channel attacks
(SCAs). Evaluating the security of cryptographic de-
vices against SCAs is important for both the industrial
and academic sectors, and information-theoretic me-
trics turn out to be effective tools. “Masking” stands
out as a key countermeasure, with ongoing discus-
sions on its optimization and the security of its imple-
mentations.
In light of this context, the central aims of this thesis
are to quantify side-channel leakage, appraise the
security of cryptographic devices against SCAs
(both unprotected and masked), and to explore me-
thodologies for formulating more potent masking
codes.
For masking code construction, we establish linear
programming bounds for the kissing number of q-ary
linear codes, guided by recent findings on optimized
code-based masking performance related to the dual
code’s kissing number. In addition, we demonstrate

the connection between code-based masking efficacy
and the whole weight enumeration of the dual of the
masking code. The lexicographical order based on
weight distribution prefixes is proposed for selecting
ideal masking codes.
Regarding side-channel leakage evaluation, we in-
troduce a novel information metric, called conditional
Sibson’s alpha-information. This metric has an expli-
cit expression and possesses several beneficial pro-
perties. Utilizing this metric, we delve into the side-
channel leakage of unprotected devices. Additionally,
we use Fano’s mutual information to evaluate the side-
channel leakage of code-based masked implementa-
tions under probing model.
Lastly, when considering the security assessment
of masked implementations, we utilize the alpha-
information measure to appraise the security of both
arithmetic and Boolean masking implementations. We
derive universal bounds on the probability of success
of any type of side-channel attack. These also provide
lower bounds on the minimum number of queries re-
quired to achieve a given success rate.
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