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Merci aux jeunes chercheurs de l’équipe d’Aurélien avec lesquels j’ai eu le plaisir de
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dans leur séminaire que dans leurs parties de pétanque: Achraf, Adrienne, Alena, Deb,
Dorian, Hector, Marc, Matheus, Odalric, Omar, Philippe, Reda, Rémy, Timothée et Tuan.

La thèse, c’est aussi quelques moments de galère et il faut une bonne compagnie pour
y survivre.
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Résumé

Cette thèse s’intéresse aux problèmes d’exploration pure dans les Processus de Décision
Markoviens (PDM) et les Bandits Multi-Bras. Ces problèmes ont surtout été étudiés dans
une optique "pire-des-cas". L’objet de cette thèse est d’aller au-delà de ce cadre pessimiste
en approfondissant notre compréhension de la complexité "spécifique à l’instance", c’est-à-
dire du nombre d’observations dont un algorithme adaptatif aurait besoin pour accomplir
une tâche d’exploration pure dans un PDM qui n’est pas nécessairement difficile.

Premièrement, nous étudions le problème d’identification de la meilleure politique (en
anglais "Best Policy Identification" ou BPI) dans un PDM. En s’inspirant de travaux
existants dans le cas particulier des bandits, nous démontrons une borne inférieure sur
la complexité des algorithmes de BPI dans un PDM escompté. Ensuite nous proposons
un algorithme inspiré par cette borne et qui explore les paires d’état-action du PDM
proportionellement aux fréquences optimales dictées par la borne. Nous démontrons que
cet algorithme est, à un facteur 2 près, asymptotiquement optimal.

Dans un deuxième temps, nous développons une approche d’exploration plus directe
qui permet de collecter n’importe quel nombre souhaité d’observations depuis n’importe
quelles paires d’état-action dans un PDM épisodique, tout en utilisant un nombre minimal
d’épisodes. Nous verrons que pour un bon choix du nombre d’observations, une telle stratégie
peut être employée pour résoudre le problème de BPI mais aussi celui de l’exploration sans
récompense ("Reward-Free Exploration" en anglais). Ceci donne lieu à des algorithmes
admettant des bornes plus fines sur leur complexité, qui dépendent notamment du PDM
que l’on souhaite résoudre.

Finalement, à travers le problème d’identification de l’ensemble des bras ε-optimaux
dans un bandit multi-bras, nous explorons une méthode alternative pour prouver des bornes
inférieures dans les problèmes d’exploration pure. Nous illustrons certains cas où les bornes
obtenues ainsi sont plus fines que celles prouvées via la méthode classique.

Mots Clés. Processus de Décision Markoviens · Identification de la meilleure politique · Ex-
ploration sans récompense · Apprentissage par Renforcement · Exploration pure





Abstract

This thesis studies pure exploration problems in Markov Decision Processes (MDP) and
Multi-Armed Bandits. These problems have mainly been studied in a “worst-case” perspec-
tive. Our aim is to go beyond this pessimistic framework by deepening our understanding
of the “problem-dependent” sample complexity, i.e., of the number of observations that an
adaptive algorithm would need to accomplish a pure exploration task in an MDP that is
not necessarily difficult.

First, we study the problem of “Best Policy Identification” (BPI) in a infinite-horizon
discounted MDP. Drawing inspiration from existing work in the particular case of bandits,
we derive a lower bound on the sample complexity of fixed-confidence BPI algorithms.
Then we propose Navigate-and-Stop, an algorithm that explores the state-action pairs of
the MDP proportionally to the optimal frequencies dictated by the bound. We prove that
this algorithm is, within a factor of 2, asymptotically optimal.

In a second part, we develop a more direct exploration approach which allows to collect
any desired number of observations from any state-action pairs in an episodic MDP, while
using a minimal number of episodes. We will see that for a good choice of the number
of observations, such a strategy can be used to solve the problem of BPI but also that of
Reward-Free Exploration (RFE). This leads to algorithms that enjoy tighter bounds on
their sample complexity, which depend in particular on the MDP that the algorithm is
facing.

Finally, through the problem of All-ε-Best-Arms-Identification in a multi-armed bandit,
we explore an alternative method to prove lower bounds on the sample complexity for pure
exploration problems. Notably, we illustrate certain cases where the bounds obtained in
this way are tighter than those proven via the classical method.

Keywords. Reinforcement Learning · Markov Decision Processes · Best Policy Identifica-
tion · Reward-Free Exploration · Pure Exploration
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1.1 Preamble
“Human life is one long decision tree.” (Sterelny, 2007). Based on the previous truism, one
could argue that Humankind’s eternal tragedy lies in the fact that we are forever doomed to
learn the best decisions again, in nodes of this tree that our ancestors already encountered.
From walking to writing a thesis on to playing chess, there are numerous tasks that no
amount of transmitted knowledge alone can help us master. Instead, we must learn those
through practice, by trial-and-error.

Reinforcement Learning (RL) (Sutton & Barto, 2018) offers a paradigm for learning a
task by framing it as a sequence of state-dependent decisions that maximizes some notion
of long-term utility. For the toddler learning to walk, RL reduces the task to answering
the question: "Which muscle should I move next and in which direction when my body
is in its current position?". The utility would then be maintaining equilibrium through
several steps. Alternatively, for the Ph.D. student trying to write a thesis, the question is
rather: "Which idea should I present next and to which level of detail must I do so, given
the current state of my manuscript?". Here, a possible definition of the utility would be
receiving the least amount of corrections to make from your supervisors.

The underlying mathematical model for studying RL is the framework of Markov
Decision Processes (MDPs) (Puterman, 1994). Formally, an agent interacts sequentially
with some unknown environment starting from an initial state. At every time step, the
agent must select an action to play among a set of available actions. She then receives
a reward and the new state of the environment, both of which depend on the previous
state and the action that she played. Agents can act in various ways, characterized by
their policy, i.e. the function that determines which action the agent would play given her
current state and the information that she collected from the past rounds of interaction.
The quality of an agent’s policy is measured through the expected sum of rewards received
across a given time horizon, which can eventually be infinite. For example, the toddler
would obtain a reward for each step made without falling and the horizon would be infinite.
In the chess apprentice’s case, a reward could be given when she wins the game, but also
when she captures an adversary’s piece or traps her in a fork situation. The horizon can
then be set as the largest number of moves ever recorded in a chess game.

1.2 (The Need for) Pure Exploration in RL
RL algorithms start with zero knowledge of the environment and aim to learn a near-optimal
policy through repeated interactions with it. A central question that arises then is:

How to evaluate the learning trajectory of a given algorithm?

The most common approach in theoretical RL literature is to compare the rewards
gathered by the algorithm with those of a mighty agent who knew an optimal policy from
the very beginning. This leads to two distinct but similar performance criteria: regret
minimization (Lai & Robbins, 1985) and PAC-MDP (Kakade, 2003). As its name indicates,
regret minimization penalizes the amount of mistakes, represented by the rewards that the
algorithm missed during the learning process when it acts in a sub-optimal way. On the
other hand, the PAC-MDP criterion counts the number of time steps where the algorithm
plays according to an ε-sub-optimal policy, for some ε > 0. Both regret minimization and
PAC-MDP algorithms face an exploration-exploitation dilemma. Indeed, they must balance
the need to explore the environment to learn more about how it behaves with the need to
exploit the knowledge gained so far and act following the policy that appears to be optimal
given this knowledge.
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However, the exploration-exploitation paradigm does not capture all the possible situ-
ations that one might encounter in the real world. Indeed, in many applications, we are
interested in learning some property of the unknown environment using the least amount
of interactions with it, regardless of the rewards missed while learning. We refer to this
learning framework as pure exploration. The following examples illustrate some use cases
where we might instead want to perform pure exploration:

• A/B tests: Consider an E-business company running an A/B test experiment in
order to decide which among several possible versions of their website generates more
revenue or increases their user-engagement metrics. A/B tests are often modeled
through the framework of sequential hypothesis tests: The practitioner performs a
statistical test where they split the incoming traffic between a control version and
one or more treatment versions. Whenever the p-values of the collected data are
conclusive about the identity of the best version, the practitioner may decide to stop
the experiment (Johari et al., 2022). In addition, as explained in (Kohavi et al.,
2013), A/B test practitioners also need to be able to quickly detect whether some
treatment version performs very badly and abort the experiment. If they fail to
do so, their website might witness "user abandonment", i.e., frustrated users will
lose interest and never return back, and the company will incur costs in millions of
dollars. This "early stopping" component is typical in pure exploration algorithms,
where a stopping rule decides whether we have collected enough evidence to cease
exploration and return a good answer, see Section 1.4.4. In contrast, algorithms
for regret minimization or PAC-MDP either (i) assume a fixed time-bugdet for the
experiment and quantify the losses made by the algorithm during that time period or
(ii) prove theoretical upper bounds on the number of mistakes made by the algorithm
but without providing a method to know when the policies played by the algorithm
have become good enough. A/B tests pose an exploration challenge as well since
practitioners continuously monitor the experiment data to adjust the proportion of
traffic allocated to each version (Johari et al., 2022; Russac et al., 2021)

• Iterative environment design: A crucial problem for economists is that of market
design, i.e. which rules and incentives should we implement in order to get a certain
desired behavior by economic agents (companies and households). For instance, what
is the best way to reduce airlines carbon emissions? Is it through a direct carbon
tax? If so, should we tax flight tickets or the plane constructors? Or should we
perhaps subsidize other means of transportation to shift the collective behavior of
consumers? Recent works use an RL approach to answer this question (Zheng et al.,
2020; Johanson et al., 2022). Imagine that you are tasked with building a simulator
where a legislator could input their guess for an adequate reward function and get
to observe how the market would evolve in such conditions. The agents within the
simulator may need to relearn a near-optimal policy several times, as many as it takes
for the legislator to ensure that the proposed reward will induce the desired behavior.
Now since the reward that we seek to maximize at each round is only temporary, the
mistakes made by the RL agent while learning are not relevant per se. What matters
most to the simulator’s user is the ability to identify the optimal policies for a given
reward as fast as possible.
A similar problem also arises in video game design, where designers need to ensure
that pathological strategies, for instance running straight to the opponent’s goalkeeper
in a soccer game, can not win. Here it is rather the environment’s dynamics (i.e.
what is the game’s next state when the player chooses to play a certain action in
the current situation) that need to be tuned carefully to deliver a good gameplay
experience. For a given choice of game dynamics and a set of undesirable policies,
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we need a RL agent that can check with high confidence whether some undesirable
policy is near-optimal. Again, the emphasis in this case is on the speed by which one
can implement this iterative design strategy. In other words, we want to minimize
the number of games that the RL agent needs to complete this task with enough
certainty about its final answer. Notably, the losses incurred by our RL agent in
its training phase hold no particular interest to the game designer. All of these are
pure exploration problems, where we want to gather some information about the
environment with high confidence.

1.3 Markov Decision Processes
In order to formalize the different pure exploration problems studied in this thesis, we
first need to define Markov Decision Processes (MDPs) and recall some classical results in
Dynamic Programming (Puterman, 1994).

1.3.1 Infinite horizon MDPs with discount
To define an MDP, one needs a set of states S, a set of actions A, a collection of reward
distributions q : S ×A → P([0, 1]) and a Markov transition kernel p : S ×A → P(S), where
P(X ) denotes the set of probability distributions over the set X . An infinite horizon MDP is
then defined as the tupleM := (S,A, p, q). The interaction of an agent withM takes place
at discrete time steps, t ∈ N≥1. First, an initial state of the environment s1 ∈ S is drawn
from some initial distribution µ ∈ P(S). At every time step t, the agent observes the state
of the environment st and plays an action at ∈ A of her choice. She then observes a reward
Rt(st, at) and the new state of the environment st+1 respectively drawn from q(.|st, at) and
p(.|st, at). This interaction carries on indefinitely, yielding a trajectory

(
st, at, Rt(st, at)

)
t≥1

.
Except when we derive information-theoretic lower bounds, we will most often forget about
the reward distribution and use only its mean r(s, a) := Eq(.|s,a)[R(s, a)]. The mapping
(s, a) 7→ r(s, a) is called the reward function.

Assumption 1.1 Throughout this thesis, we always assume that S and A are finite. We
use S and A to denote their respective cardinals. We say then that the MDP is tabular.

We define the history of observations up to time t as Ht := (s1, a1, R1, . . . , Rt−1, st) and
denote by Bt the set of all possible histories at that time. Further, we let B := ∪t≥1Bt be
the set of all possible histories. Then we can characterize any agent by her policy, denoted
by π, which is a mapping from B to P(A) that determines which action the agent will play
based on the history of her previous observations. Two special classes of policies are the
set of stationary Markovian policies ΠS = {π : S → P(A) }1 and stationary deterministic
Markovian policies ΠD = {π : S → A }. Markovian policies only look at the current
state to compute a distribution over actions, from which the next action will be sampled.
Deterministic Markovian policies have the additional property that they output a single
action instead of a distribution.
The RL objective As explained before, RL tries to solve tasks by reducing them to finding
policies that maximize some long-term utility. In the case of infinite horizon discounted
MDPs, the utility of a policy π is defined as

Uπ :=

∞∑
t=1

γt−1Rt(st, at) ,

where γ ∈ [0, 1) is a pre-specified discount factor. Larger values of γ indicate that we value
future rewards (almost) as much as the immediate reward of step t = 1, while smaller values

1The S in ΠS stands for "stochastic".
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indicate a strong preference for the present. Note that Uπ is a random variable whose value
depends on the stochastic trajectory. Therefore, to optimize the utility one needs a metric
that summarizes its distribution when the agent executes some policy π. In this thesis, we
focus on the classical RL setting where the objective is set as the expectation of the utility,

V π(s) := EM,π

[ ∞∑
t=1

γt−1Rt(st, at)

∣∣∣∣ s1 = s

]
,

= EM,π

[ ∞∑
t=1

γt−1r(st, at)

∣∣∣∣ s1 = s

]
. (1.1)

The expectation above is taken over the randomness of the trajectory2 (st, at)t≥1 that
results from the interaction of the policy π with the MDPM, i.e, when at ∼ π(st) and
st+1 ∼ p(.|st, at) for all t ≥ 1. The mapping s 7→ V π(s) is called the value function of
policy π. A policy π? is said to be optimal if it maximizes the value function at every state

∀s ∈ S, V π?(s) = max
π:B→P(A)

V π(s) (1.2)

Theorem 5.5.3 in (Puterman, 1994) proves that for every history-dependent policy π there
exists a Markovian policy π̃ such that V π(s) = V π̃(s) for all states s. Therefore, if there
exists an optimal policy inM, it is sufficient to search for it among Markovian policies.

Bellman equations and value gaps A central object in the analysis of policy values is
the action-value function

Qπ(s, a) := EM,π

[ ∞∑
t=1

γt−1Rt(st, at)

∣∣∣∣ s1 = s, a1 = a

]
, (1.3)

which quantifies, for every state-action pair (s, a) and policy π, the total reward that the
agent would receive when she starts in state s, plays action a, then commits to playing
actions at ∼ π(.|Ht) in later time steps t ≥ 2. The optimal action-value function is simply
defined as

∀(s, a) ∈ S ×A, Q?(s, a) := max
π:B→P(A)

Qπ(s, a). (1.4)

Both the action-value function Qπ of a deterministic Markovian policy π and the optimal
action-value function Q? satisfy the Bellman equations

Qπ(s, a) = r(s, a) + γ
∑
s′∈S

p(s′|s, a)Qπ(s′, π(s′)), (1.5)

Q?(s, a) = r(s, a) + γ
∑
s′∈S

p(s′|s, a) max
a′∈A

Q?(s′, a′), (1.6)

for all (s, a) ∈ S ×A. One way to measure how suboptimal it is to play action a at state s
is through its value gap

∀(s, a) ∈ S ×A, ∆(s, a) := V ?(s)−Q?(s, a). (1.7)

Indeed, actions with ∆(s, a) = 0 are optimal, while a large value gap indicates that the
agent loses considerable reward when she plays action a at state s even if she commits to
executing an optimal policy later.

2For a rigorous construction of the underlying probability space and stochastic process, see Chapter 2 in
(Puterman, 1994).
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1.3.2 Non-stationary finite-horizon MDPs

In this thesis, we also study pure exploration within the framework of episodic MDPs.
Similar to its infinite-horizon counterpart, a non-stationary episodic MDP is a tuple
M := (S,A, H, {ph}h∈[H−1], {qh}h∈[H], s1). Here H denotes the horizon while the transition
kernel ph and the reward distributions qh may now also depend on the step h ∈ [H]. The
interaction of an RL agent with a finite-horizon MDP is structured through episodes
t ∈ N≥1, where each episode consists of H steps. At the beginning of every episode t, the
environment is at the initial state st1 := s1. At each step h ∈ [H − 1], the agent observes
the current state sth and plays an action ath. She then observes an immediate reward
Rth(sth, a

t
h) and a next state sth+1 respectively drawn from qh(.|sth, ath) and ph(.|sth, ath).

In the last step h = H, after playing an action atH , the agent only observes a reward
RtH(stH , a

t
H) before the current episode terminates and a new one begins. As with discounted

MDPs, we will often make use of the reward function r : (h, s, a) 7→ rh(s, a) where
rh(s, a) := Eqh(.|s,a)[Rh(s, a)].

Remark 1.1 The assumption of a fixed initial state s1 is without loss of generality.
Indeed, suppose that the initial state ofM was drawn from some distribution µ ∈ P(S).
Then any RL problem onM can be solved on an "augmented" MDPM′ where we add
a step h = 0 and a fictional initial state s0 such thata

∀s1 ∈ S, ∀a ∈ A, p′0(s1|s0, a) = µ(s1) and q(.|s0, a) = δ0

We leave the transition kernels and reward distributions at steps h ≥ 1 unchanged. The
new MDPM′ now has a fixed intial state and the total reward collected by any policy
is the same inM andM′. Only the horizon has changed, as H ′ = H + 1. �

aδ0 denotes the dirac distribution located at 0

The history of past observations is now defined for every episode as H1 = (s1) and
Ht = (s1

1, a
1
1, R

1
1, . . . , s

t−1
H , Rt−1

H ) for t ≥ 2. Similar to the infinite-horizon case, we let Bt
and B := ∪t≥1Bt respectively denote the set of possible histories at the beginning of episode
t and the set of all possible histories. Markovian policies become mappings from a state-step
pair to action distributions ΠS := {π : [H] × S → P(A)}. For a Markovian policy π,
we denote by πh(a|s) the probability that an agent executing π plays action a when the
environment state is s at step h. Finally, a Markovian policy is deterministic if outputs a
Dirac distribution over a single action. We let ΠD = {π : [H]× S → A } denote the set of
deterministic Markovian policies.

The RL objective In the episodic setting, the goal is to maximize the expected sum of
rewards over an episode3

V π
1 := EM,π

[
H∑
h=1

Rh(sh, ah)

∣∣∣∣ s1

]
. (1.8)

3When it is clear from context, we drop the dependence on the initial state from the value function since
the latter is fixed.
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V π
1 is called the value function at the root. For analysis purposes, it is convenient to define

the step-wise value function and the step-wise action-value function

∀(h, s) ∈ [H]× S, V π
h (s) := EM,π

[
H∑
`=h

R`(s`, a`)

∣∣∣∣ sh = s

]
,

= EM,π

[
H∑
`=h

r`(s`, a`)

∣∣∣∣ sh = s

]
. (1.9)

∀(h, s, a) ∈ [H]× S ×A, Qπh(s, a) := EM,π

[
H∑
`=h

R`(s`, a`)

∣∣∣∣ sh = s, ah = a

]
,

= EM,π

[
H∑
`=h

r`(s`, a`)

∣∣∣∣ sh = s, ah = a

]
. (1.10)

A policy π? is Bellman optimal if

∀(h, s) ∈ [H]× S, V π?

h (s) = max
π:B→P(A)

V π
h (s). (1.11)

In this thesis, we will mainly investigate a more relaxed notion of optimality. Namely, we
say that a policy π? is optimal if

V π?

1 = max
π:B→P(A)

V π
1 . (1.12)

In other words, a policy is optimal if it yields the best value at the initial state s1.

Backward Induction For episodic MDPs, Proposition 4.4.3 together with Theorem 4.5.1
in (Puterman, 1994) guarantee that

• There always exists a deterministic Markovian policy π? ∈ ΠD that is optimal,
• π? can be computed by the backward induction algorithm, also referred to as dynamic

programming. Its pseudo-code is presented below.

Algorithm 1 Backward Induction
1: Input: Transition kernel p, reward function r.
2: Initialize optimal action-value function Q?H+1(s, a)← 0 for all (s, a) ∈ S ×A
3: Initialize "artificial" transitions pH(s′|s, a)← 1(s′ = s) for all (s, a)
4: for h = H,H − 1, . . . , 1 do
5: Compute action-value of step h:

∀(s, a) ∈ S ×A, Q?h(s, a)← rh(s, a) +
∑
s′∈S

ph(s′|s, a) max
a∈A

Q?h+1(s′, a′) (1.13)

6: Compute optimal policy at step h:

∀s ∈ S, π?h(s)← arg max
a∈A

Q?h(s, a) (1.14)

7: end for

1.3.3 Finite-armed bandits
In Chapter 5, we will study a particular case of tabular MDPs, namely the multi-armed
bandit (MAB) model (Lattimore & Szepesvari, 2019). A finite MAB is defined by collection
of reward distributions ν := (νa)a∈[K] called arms, where K ∈ N≥1. The agent interacts
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with the bandit at discrete time steps t ∈ N≥1. At every time step t, the agent pulls an arm
At ∈ [K] and observes a reward Rt ∼ νAt . The samples from different arms at different
time steps are independent. In other words, for any sequence of time steps (t1, . . . , tN )
and sequence of actions (a1, . . . , aN ), the reward vector (Rt1 , . . . , RtN ) is a sample from
νa1 ⊗ . . . ⊗ νaN conditionally on the event (At1 = a1, . . . , AtN = aN ). At any time step
t ≥ 1, the history of observation is defined by Ht := (Au, Ru)1≤u≤t.

We will be interested in the mean-rewards of the arms, denoted by (µa)a∈[K]. We denote
by a? ∈ arg maxa∈[K] µa an arm with the largest mean, with ties broken arbitrarily. Finally,
µ? := µa? .

Remark 1.2 The finite-armed bandit is a special case of tabular episodic MDPs, where
S = 1, H = 1, A = K and q(.|s1, a) := νa. �

1.3.4 Sampling models and sampling rules
There exist mainly two sampling models that define how RL algorithms can collect observa-
tions in some MDPM.

Online model In general, RL algorithms must interact withM according to the same
protocol that deployed RL agents follow, see Sections 1.3.1 and 1.3.2. Given a history
of observations Ht, the sampling rule of an algorithm A determines which policy A will
execute in the next step to exploreM. Formally, in the discounted setting the sampling
rule is the mapping

SMP : B → ΠS

(s1, a1, R1, . . . , Rt, st+1) 7→ πt+1 (1.15)

where πt+1 is the policy used to select an action in the (t+ 1)-th time step. Similarly, in
the episodic framework, it is defined as

SMP : B → ΠS((
seh, a

e
h, R

e
h

)
h∈[H]

)
1≤e≤t 7→ πt+1 (1.16)

where πt+1 is the policy executed by A in episode t+ 1.

Generative model In some cases, the algorithms that we design to learn good policies
may have more degrees of freedom in the training phase than when they are finally deployed.
For instance, we might have access to a simulator, often called a generative model, that
enables us to query observations from any state-action pair (s, a) even if s is not the current
state of the environment (Chapter 2 in Kakade, 2003). More precisely, we think of a
generative model as a random sampler that takes as input a pair (s, a) and returns an
independent sample (R, s′) ∼ q(.|s, a)⊗ p(.|s, a). We denote by

(R, s′)← GenerativeModel(s, a) (1.17)

the act of sampling a reward and a transition from the state-action pair (s, a) using the
generative model. Under this model, the sampling rule of an algorithm is a mapping from
histories to distributions over states and actions, that determines which state-action pair
we will query next

SMP : B → P(S ×A)

(su, au, Ru)1≤u≤t 7→ (st+1, at+1) (1.18)
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1.4 Pure Exploration Problems
Now we present the pure exploration problems studied in this thesis.

1.4.1 Best Policy Identification
Exact Best Policy Identification A special problem of particular interest is that of exact
Best Policy Identification (BPI), where we want to find an optimal policy as fast as possible.
Assuming that there is a unique optimal policy π?, we wish to design an algorithm that
will interact withM until it has gathered enough observations to return an estimate π̂ that
is certified to be correct with high probability. We investigate this problem in the setting of
discounted MDPs.

Assumption 1.2 Let M?,1 be the class of infinite-horizon discounted MDPs with a unique
optimal policy. We assume thatM∈M?,1 and we denote its optimal policy by π?(M).
In other words,{

π ∈ ΠS : ∀s ∈ S, V π(s;M) = max
π′∈ΠS

V π′(s;M)

}
= {π?(M) }, (1.19)

where we indexed the value functions byM to emphasize their dependency on the MDP.

Definition 1.1 An algorithm A for exact Best Policy Identification interacts with the
MDP for a possibly random number of steps τ and returns an estimate of the best policy
π̂ ∈ ΠD. Given a risk δ ∈ (0, 1), we say that A is δ-PAC (or δ-correct) for BPI on the
class M?,1 if

∀M ∈M?,1, PM,A
(
τ < +∞, π̂ = π?(M)

)
≥ 1− δ, (1.20)

where PM,A denotes the distribution of observations when A interacts withM.

ε-Best Policy Identification (ε-BPI) In the ε-BPI problem we require the algorithm to
find a policy whose value is, with high probability, within a range of ε from the optimal
value. We will present results for approximate BPI in the setting of episodic MDPs.

Definition 1.2 An algorithm A for ε-Best Policy Identification interacts with the MDP
for a possibly random number of steps τ and returns an estimated policy π̂ ∈ ΠD. Given
a precision ε ≥ 0 and a risk δ ∈ (0, 1), we say that A is (ε, δ)-PAC (or (ε, δ)-correct) for
ε-BPI on some class of MDPs M if

∀M ∈M, PM,A
(
τ < +∞, V π̂

1,M ≥ V ?
1,M − ε

)
≥ 1− δ. (1.21)

1.4.2 Reward-Free Exploration (RFE)
Imagine that you have access to some dynamical system, represented by a transition kernel
p : [H]× S ×A → P(S), where you can play actions and observe the (possibly stochastic)
evolution of the system’s state following each action. You are tasked with learning the
dynamics and delivering an estimate p̂. This estimate will then be used by a planning
agent to maximize some utility given by their own mean-reward function, which is yet
undisclosed to you at present. Naturally, the planner expects your estimate to be sufficiently
accurate so that they never lose more than ε in value when they plan using p̂ instead of the
correct model p. How would you explore this system and how would you decide if you have
gathered enough data to satisfy the previous requirement? This is the topic of reward-free
exploration, which we will study in the setting of episodic MDPs.

We denote by π̂r an optimal policy in the MDP whose transition kernel is p̂ and the
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mean-reward function is r. We also let V π
1 (s1; r) be the value function of policy π under

the true transition model p when the mean reward function is r.
Definition 1.3 An algorithm A for reward-free exploration interacts with a dynamical
system (S,A, H, {ph}h∈[H], s1) for a possibly random number of steps τ and returns an
estimate of the transition kernel p̂. Given a precision ε > 0 and a risk δ ∈ (0, 1), we say
that A is (ε, δ)-PAC (or (ε, δ)-correct) for RFE on some class of transitions kernels P if
for all p ∈ P,

Pp,A
(
τ < +∞, ∀r ∈ [0, 1]SAH : V π̂r

1 (s1; r) ≥ V ?
1 (s1; r)− ε

)
≥ 1− δ, (1.22)

where Pp,A denotes the distribution of observations when A interacts with p. In this
case, we say that p̂ is an ε-good transition kernel.

1.4.3 All ε-best arms Identification (All-ε-BAI)

Last but not least, we will also investigate the problem of All ε-best arms Identification
(All-ε-BAI) in a multi-armed bandit. We consider Gaussian MABs with unit variance of
the form ν =

(
N (µa, 1)

)
a∈[K]

, where N (θ, σ2) denotes the Gaussian distribution of mean
θ and standard-deviation σ. For simplicity, we abuse notation and refer to a MAB ν by
its vector of mean-rewards µ = (µa)a∈[K]. The goal in All-ε-BAI is to identify the set of
"good" arms Gε(µ) := {a ∈ [K] : µa > µ? − ε} with high probability, where ε > 0 is a
pre-determined precision parameter and µ? := max

b∈[K]
µb.

Definition 1.4 An algorithm A for All ε-Best Arms Identification interacts with a MAB
µ for a possibly random number of steps τ and returns an estimated set Ĝ. Given a
risk δ ∈ (0, 1) and a precision ε > 0, we say that A is (ε, δ)-PAC (or (ε, δ)-correct) for
All-ε-BAI if

∀µ ∈ RK , PA,µ
(
τ < +∞, Ĝ = Gε(µ)

)
≥ 1− δ. (1.23)

Assumption 1.3 For the All-ε-BAI problem to be solvable with finite sample complexity,
we assume that there is no arm a such that µa = µ? − ε.

All-ε-BAI was initially proposed by (Mason et al., 2020) as an alternative objective to two
other pure-exploration problems in the multi-armed bandit literature, namely the TOP−k
arms selection (Kalyanakrishnan & Stone, 2010) and the THRESHOLD bandits (Locatelli
et al., 2016). The former aims to find the k arms with the highest means, while the latter
seeks to identify all arms with means larger than a given threshold s. As argued by (Mason
et al., 2020), finding all the ε-optimal arms is a more robust objective than the TOP-K
and THRESHOLD problems, which require some prior knowledge of the distributions in
order to return a relevant set of solutions. Take for example drug discovery applications,
where the goal is to perform an initial selection of potential drugs through in vitro essays
before conducting more expensive clinical trials: setting the number of arms k too high or
the threshold s too low may result into poorly performing solutions. Conversely, if we set
k to a small number or the threshold s too high we might miss promising drugs that will
prove to be more efficient under careful examination. The All-ε-BAI objective circumvents
these issues by requiring to return all the drugs whose efficiency lies within a certain range
from the best.
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1.4.4 General structure of pure exploration algorithms
Besides the sampling rule described in Section 1.3.4, pure exploration algorithms have two
additional components:

• Stopping rule: The stopping rule determines when an algorithm has gathered
enough observations to return a good answer, either an (ε-)optimal policy for BPI or
an ε-good transition kernel for RFE, with the desired level of confidence. Concretely,
the stopping rule is a sequence of random variables, denoted (STPt)t≥1, with values
in the set {True,False}. This sequence is measurable with respect to the filtration
generated by the sigma algebras of histories (σ(Ht))t≥1.

• Recommendation rule: The recommendation rule determines the final answer of
the algorithm. It is a sequence of random variables, denoted (RECt)t≥1, measurable
with respect to the filtration generated by the sigma algebras of histories (σ(Ht))t≥1.
For BPI (resp. RFE), RECt takes values in the set of deterministic Markovian policies
ΠD (resp. the set of all probability kernels P(S)SAH). For All-ε-BAI it is with values
in 2[K], the power set of [K].

Below are general templates for pure exploration algorithms in an episodic MDP in the
online setting and in a multi-armed bandit.4

Algorithm 2 Pure exploration protocol in episodic MDPs
1: Input: precision ε, risk δ ∈ (0, 1).
2: Initialize history H0 ← (s1)
3: for t = 1, 2, . . . do
4: πt ← SMP(Ht−1) // sampling rule
5: for h = 1, 2, . . . ,H do
6: Play at ∼ πth(sth) and observe reward Rth (only for BPI) and next state sth+1

7: end for
8: Update history with the last trajectory Ht ← Ht−1 ∪ {(sth, ath, Rth)}1≤h≤H .
9: if STPt: // stopping rule
10: Stop and return RECt // Recommendation rule
11: end if
12: end for

Algorithm 3 Pure exploration protocol in bandits
1: Input: precision ε, risk δ ∈ (0, 1).
2: Initialize history H0 ← ()
3: for t = 1, 2, . . . do
4: at ← SMP(Ht−1) // sampling rule
5: Play at and observe reward Rt
6: Update history with the last observation Ht ← Ht−1 ∪ {(at, Rt)}.
7: if STPt: // stopping rule
8: Stop and return RECt // Recommendation rule
9: end if
10: end for

1.5 The Sample Complexity of Pure Exploration
Notation For a pair of functions with real values f and g, we shall use f = O(g) (resp.
f = Ω(g)) if there exists a universal constant c > 0 such that f ≤ c · g (resp. f ≥ c · g).

4By convention, we set stH+1 := s1.
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The expression poly(X1, . . . , Xm) will refer to any polynomial function in the variales
X1, . . . , Xm. We write f = Õ(g) if f ≤ poly(log(Y1), . . . , log(Ym)) · g, where Y1, . . . , Ym are
other parameters that we shall specify after every Õ statement. We denote the infinity
norm of f by ‖f‖∞ := supx∈Dom(f) |f(x)| where Dom(f) is the domain of f .

Performance criteria When we design a pure exploration algorithm, we try to achieve
sample efficiency by minimizing the number of observations needed from the environment
to complete the pure exploration task. Concretely, we seek to minimize the stopping time
of our algorithm,

τ := inf
{
t ≥ 1 : STPt = True

}
. (1.24)

We note that τ is a random variable whose value depends on the stochastic process resulting
from the interaction of an algorithm A with the MDPM. Therefore, bounds on τ in the
literature feature either an expectation or a (1− δ)-quantile, both of which we refer to as
the sample complexity. Indeed for infinite horizon MDPs and episodic MDPs, τ respectively
corresponds to the number of collected samples and the number of played episodes before
the algorithm stops. In the latter case, since each episode consists of H samples of the
form (Rh, sh+1), τ can be easily linked to the number of samples N through the equation
N = τH.

Remark 1.3 There is a ubiquitous discrepancy in theoretical RL literature between lower
and upper bounds on the stopping time. To the best of our knowledge, all the existing
lower bound results feature an expectation, i.e., they state that E[τ ] is always larger than
some quantity LB that depends on the problem being considered. On the other hand,
with a few exceptions, most upper bounds feature a (1− δ)-quantile, i.e., they state that
with probability at least 1 − δ we must have τ ≤ UB for some quantity UB. For this
reason, we allow the sample complexity definition above to refer to both measures. This
mismatch between lower and upper bounds is also reflected in the definition of minimax
optimality below. �

1.5.1 Minimax complexity and optimality
An interesting quantity in any statistical learning problem is the minimax rate which
quantifies the performance of algorithms in the worst-case (Tsybakov, 2008). In pure
exploration problems, it has the following definition.

Definition 1.5 For some class of MDPs of interest M, we define the minimax rate as

Minimax(M) := inf
A

sup
M∈M

EA,M[τ ], s.t : A is (ε, δ)− PAC. (1.25)

We will say that an (ε, δ)-PAC algorithm A is minimax optimal on M if

∀M ∈M, PA,M

(
τ = Õ

(
Minimax(M)

))
≥ 1− δ, (1.26)

where Õ hides poly-logarithmic factors in S,A, (1− γ), 1/ε, log(1/δ).

Since its introduction by (Fiechter, 1994), BPI has mostly been investigated from a
minimax perspective. For infinite-horizon MDPs with a discount factor γ, (Azar et al.,
2013) showed that Ω

(SA log(1/δ)
(1−γ)3ε2

)
samples are necessary to produce an estimate Q̂ of the

action-value function such that PA,M

(∥∥∥Q̂−Q∥∥∥
∞
≤ ε
)
≥ 1− δ using a generative model.

Although this lower bound is for algorithms with a different objective (approximating the
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optimal Q-function up to ε), there seems to be a consensus in theoretical RL literature
that it should also be a valid lower bound for ε-BPI. Hence, a wide variety of works have
proposed ε-BPI algorithms that seek to match this bound (Even-Dar et al., 2006; Azar et al.,
2013; Sidford et al., 2018a; Agarwal et al., 2020; Li et al., 2020; Kozuno et al., 2022) when
a generative model is available. Perhaps the confusion about the lower bound originates
from Lemma D.1 in (Sidford et al., 2018a), which states that Ω

(SA log(1/δ)
(1−γ)3ε2

)
samples are

also necessary to identify an ε-optimal policy. However, we believe that their proof is false.5

Therefore, we formulate the following question.

Open question 1.1 Prove that any algorithm that outputs an ε-optimal policy in
discounted MDPs with probability larger than 1− δ needs at least Ω

(SA log(1/δ)
(1−γ)3ε2

)
samples.

The picture is more clear for ε-BPI in finite-horizon MDPS. (Dann & Brunskill, 2015)
proved that any PAC RL agent must play at least Ω(SAH2 log(1/δ)/ε2) episodes to identify
an ε-optimal policy in the worst-case. Their lower bound was derived under the assumption
of time-homogeneous rewards and transitions, i.e. ph(.|s, a) = p(.|s, a) and rh(s, a) = r(s, a)
for all h ∈ [H], while a lower bound of Ω(SAH3 log(1/δ)/ε2) episodes was later derived by
(Domingues et al., 2021) for the time-inhomogeneous case. BPI in the episodic setting was
investigated by several works (Dann & Brunskill, 2015; Dann et al., 2019; Kaufmann et al.,
2021; Ménard et al., 2021), all of which managed to propose algorithms with polynomial
sample complexity. Notably, (Ménard et al., 2021) managed to match the minimax bound
for all regimes of ε and δ.

1.5.2 The case for instance-dependent pure exploration
BPI and ε-BPI In order to derive the minimax lower bounds of the previous section, one
needs to design very specific hard MDPs. For instance, Figure 1.1 shows the hard MDP
class used in (Domingues et al., 2021) to prove the Ω(SAH3 log(1/δ)/ε2) bound. In this
example, the agent starts at state sw and can only collect non-zero reward if it reaches the
goal state sg at some step h ≥ H + 2, where H is a parameter of the MDP. To do that,
she has to keep playing the same action aw exactly H times then play a different action at
step h = H + 1 to reach an intermediate state s1. From there, she has to carefully pick
the action that has 1/2 + ε′ probability of making her reach sg, where ε′ > ε. Playing any
other action only yields a chance of 1/2 to reach sg and the corresponding policy would not
be ε-optimal in that case. A few comments are in order about this construction. First of
all, real-world problems are rarely this difficult. In particular, the fact that all actions in s1

have zero reward and are only different by ε′ in their transition probabilities makes the
problem somewhat hopeless, specifically designed to mislead the learning algorithm. Second,
establishing that some algorithm A is minimax optimal only reveals that A performs well for
this class of worst-case MDPs. However, it does not indicate whether the algorithm adapts
to the hardness of the MDP that it faces, i.e., whether the optimal policy of a very easy
MDP would be learned very quickly. Indeed, the minimax bounds do not make a distinction
between episodic (resp. discounted) MDPs of the same size (S,A,H) (resp. (S,A, γ)).
Finally, in some settings the focus on minimax optimality leads to naive exploration strategies.
For instance, it is known that sampling state-action pairs uniformly is enough to achieve
minimax optimality for BPI with a generative model in discounted MDPs (Azar et al., 2013;
Sidford et al., 2018a; Agarwal et al., 2020). This uniform sampling is the opposite of what
one might expect from any reasonable learning algorithm, that is, gradually focusing its
exploration efforts on regions where the reward is higher. This has motivated a recent line

5Indeed, their proof makes use of the High-Precision-MDP-Solver from (Sidford et al., 2018b). But they
mistakenly state that the sample complexity of that algorithm is Õ( S

(1−γ)3ε2
) instead of Õ( SA

(1−γ)3ε2
).
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Figure 1.1: class of hard MDPs

of works that focused on designing adaptive algorithms with instance-dependent guarantees,
i.e., a sample complexity based on properties of the MDP such as sub-optimality gaps.
The first algorithm of this kind is BESPOKE (Zanette et al., 2019), which was proposed
for discounted MDPs with a generative model. Notably, BESPOKE can adapt to the
MDP through a more intelligent sampling scheme than that of minimax algorithms. It
solves an optimization problem to compute an optimal vector of samples (nsa)s∈S,a∈A such
that querying nsa samples from each (s, a) will halve the uncertainty only on the value
of policies whose current empirical value is above a certain threshold. By progressively
focusing exploration on state-action pairs visited by high-value policies, BESPOKE finds
an ε-optimal policy using at most Õ(

∑
s,a C(s, a, ε) log(1/δ)) samples where6

C(s, a, ε) := min

(
1

(1− γ)3ε2
,
Var[R(s, a)] + γ2Vars′∼p(.|s,a)[V

?(s′)]

max(∆(s, a), (1− γ)ε)2
+

1

(1− γ) max(∆(s, a), (1− γ)ε)

)
,

∆(s, a) = V ?(s)−Q?(s, a) is the value gap of state-action pair (s, a), and Var denotes
the variance operator. Two notable features of this result are that the sample complexity of
BESPOKE (i) scales asO(SA log(1/δ)/(1−γ)3ε2) in the worst-case, which is the conjectured
minimax lower bound for this setting (Azar et al., 2013); (ii) it can be significantly smaller
than minimax whenever the MDP is such that playing different actions yields very different
total rewards, i.e., when the value gaps (∆(s, a))s∈S,a∈A are large compared to ε. Taking
inspiration from BESPOKE, we will present in Chapter 2 MDP-NaS, an algorithm for exact
BPI in the online setting that builds upon this idea of adapting the sampling strategy to
the MDP. We sketch some ideas and results that led to the design of MDP-Nas in Section
1.6.1.

The problem of achieving instance-dependent complexity for ε-BPI in episodic MDPs
also attracted some recent attention from the theoretical RL community. The first algorithm
with such guarantees is MOCA (Wagenmaker et al., 2022a). Its sample complexity is upper
bounded by C(M, ε) log(1/δ), where C(M, ε) is a functional of the MDP that depends on
the gaps (∆h(s, a))s,a. (Wagenmaker et al., 2022a) show that their complexity is never
worse than the minimax lower bound by more than an extra H2 and log2(1/δ) factors.
Therefore, in MDPs where H � SA and regimes where δ is not too small, MOCA can
improve upon the worst-case lower bound. MOCA is based on coupling a clever exploration
strategy with state-action eliminations, i.e. using confidence intervals on Q?h(s, a) to detect

6Õ hides logarithmic factors in S,A, 1/(1− γ), 1/ε and the gaps (∆(s, a))s,a.
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whether a 6= π?h(s) and discarding (h, s, a) in that case. In Chapter 4, we will present
PRINCIPLE, an algorithm for ε-BPI with instance-dependent guarantees based on an
alternative technique of policy eliminations. Instead of looking at state-action pairs, policy
eliminations use confidence bounds on the values of policies (V π

1 )π∈ΠS
to detect if π is

suboptimal. When that is the case, we adjust the sampling rule to cease exploration of the
regions visited by π.

RFE Beyond BPI, one may wonder whether it is possible to design adaptive algorithms
for RFE and what an instance-dependent complexity might look like for this problem.
RFE was introduced by (Jin et al., 2020) who proved that at least Ω

(
S2AH3

ε2

)
episodes are

necessary to solve the problem in a minimax sense. Later on, (Kaufmann et al., 2021)
noted that any (ε, δ)-PAC algorithm for RFE is also (ε, δ)-PAC for BPI, since it can
plan ε-optimally for any reward function. This implies that the minimax lower bound
of Ω(SAH3 log(1/δ)/ε2) episodes holds also for RFE. Together, these two results yield a
minimax rate of Ω

(H3SA log(1/δ)+S2AH3

ε2

)
episodes. This rate was matched by (Ménard et al.,

2021) and (Zhang et al., 2021b).
(Wu et al., 2022) showed that there is hope for improving upon this worst-case bound,

provided that one introduces additional assumptions about the reward functions used with
p̂ for planning at test time. Assuming that there exists a parameter ρ > 0 such that the
test reward functions induce a minimum value gap ∆min(M) larger than ρ, they designed
an RFE algorithm with a sample complexity of

Õ
(
H3SA

ρε
+
H4S2A

ε

)
episodes. Therefore, if we choose ε to be small enough w.r.t ρ and 1/H, the bound of
(Wu et al., 2022) will be smaller than the minimax rate. Beyond such a restricted setting,
adaptivity to the MDP in the vanilla version of RFE seems to be a hopeless problem at first
glance. Indeed, without further assumptions, the test reward can be chosen adversarially
and so one might think that vanilla RFE is a worst-case problem by definition. One of the
major contributions of this thesis, which the author of these lines is most proud of, is to
show that one can still adapt to the transition kernel of the MDP and achieve a complexity
that is smaller than the minimax rate in some regimes.

Contribution 1.1 In Chapter 3, we will present an RFE algorithm named Proportional
Coverage Exploration (PCE). With probability 1− δ, the sample complexity of PCE is
upper bounded by

Õ
(
C(M, ε, δ) +

poly(S,A,H)

ε

)
,

where the functional C(M, ε, δ) satisfies the following properties

1. For all MDPs,

C(M, ε, δ) ≤ SAH4 log(1/δ) + S2AH5

ε2
,

2. For a class of "ergodic" MDPs

C(M, ε, δ) ≤ SαAH4 log(1/δ) + S1+αAH5

ε2
,

where α is a parameter in (0, 1),
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3. If the MDP is a "hidden" contextual bandits, i.e., when ph(.|s, a) = ph(.|s) for all
(h, s, a),

C(M, ε, δ) ≤ AH3 log(1/δ) + SAH5

ε2
.

We see that up to an additional H2 factor, the sample complexity of PCE is never worse
than the minimax rate in the small ε regime. Furthermore, it has a reduced dependence
on the number of states in benign cases such as 2. and 3.

1.6 Overview of Contributions
This section contains some selected contributions from this thesis. We start by deriving a
lower bound which we will later use to design an algorithm à la Track-and-Stop for the
BPI problem in discounted MDPs, see Section 1.6.1. Then we discuss in Section 1.6.2
some limitations of the lower bounds derived using the KL-contraction (also known as the
data-processing inequality). We further show through the example of All-ε-BAI how the
simulator technique can be leveraged to prove tighter bounds in some regimes. Lastly, we
present some coverage methods that seek to collect observations from an episodic MDP in
an efficient manner.

1.6.1 Lower-bound-inspired algorithm for BPI
1.6.1.1 A recipe for optimality from the bandit literature

To study the problem of BPI, we draw inspiration from related work on the special case of
Best Arm Identification (BAI) in a multi-armed bandit. Assuming that there is a unique
optimal arm a?, the goal in BAI is to identify a? with a probability of error smaller than
δ, where δ ∈ (0, 1) is a pre-specified risk. When the arms distributions come from a
single-parameter exponential family7 (SPEF), (Garivier & Kaufmann, 2016) propose an
instance-dependent lower bound on the sample complexity of any δ-correct BAI algorithm,
along with a strategy that matches it. A few notations are due before introducing their
results.
Notation The Kullback-Leibler divergence between two distributions P and Q is defined as

KL(P,Q) :=

{
EX∼P[log( dP

dQ(X))] if P� Q
+∞ Otherwise

where dP
dQ denotes the Radon-Nikodym derivative of P with respect to Q. Distributions

belonging to the same SPEF can be fully characterized by their means. Therefore, we
simply refer to a bandit (νa)a∈[K] by its vector of means µ := (µa)a∈[K]. We use d(x, y) as
a shorthand for the Kullback-Leibler divergence between the distributions, belonging to the
SPEF we consider, whose means are x and y respectively. We refer to the set of possible
means of a bandit model by Θ, where Θ ⊂ RK . Alt (µ) := {λ ∈ Θ : a?(λ) 6= a?(µ)}
is the set of alternative bandit models, i.e., bandits with a different optimal arm. For
a ∈ [K], Na(t) :=

∑t
u=1 1 (au = a) will denote the number of pulls of arm a after t steps of

interaction between the algorithm and µ. Finally, we let ΣK := {ω ∈ RK+ ,
∑

a∈[K] ωa = 1}
denote the simplex of dimension (K − 1).

Proposition 1.1 (Theorem 1, (Garivier & Kaufmann, 2016)) The stopping time of any

7e.g. Bernoulli, Exponential or Gaussians with a known variance.
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δ-correct BAI algorithm A interacting with the bandit µ is lower bounded as

Eµ,A[τ ] ≥ T ?(µ) log(1/2.4δ), where T ?(µ) :=

(
sup
ω∈ΣK

inf
λ∈Alt(µ)

∑
a∈[K]

ωad(µa, λa)

)−1

.

(1.27)

We briefly recall their proof here, as it will be useful to contrast with another proof method
that will be presented in Section 1.6.2.

Proof. We consider an alternative bandit λ ∈ Alt (µ) and let kl(p, q) denote the Kullback-
Leibler divergence between Bernoulli distributions of respective means p and q. Thanks to
Lemma 1 from (Kaufmann et al., 2016), we have that∑

a∈[K]

Eµ,A[Na(τ)]d(νa, λa) ≥ kl(Pµ,A(E),Pλ,A(E)) , (1.28)

for any event E that is measurable w.r.t the filtration generated by the observations of
the algorithm until it stops (a1, R1, . . . , aτ , Rτ ). The idea is to come up with an event
E whose probability varies significantly between the two bandit problems. We choose
E :=

(
â = a?(µ)

)
, where â is the arm answered by the algorithm. Since A is δ-correct,

it holds that Pµ,A(E) ≥ 1 − δ while Pλ,A(E) ≤ δ. Using the monotonicity properties of
(x, y) 7→ kl(x, y), we get that

kl(Pµ,A(E),Pλ,A(E)) ≥ kl(1− δ, δ). (1.29)

Therefore, since (1.28) and (1.29) hold for any alternative model λ, we have that

kl(1− δ, δ) ≤ inf
λ∈Alt(µ)

kl(Pµ,A(E),Pλ,A(E))

≤ inf
λ∈Alt(µ)

∑
a∈[K]

Eµ,A[Na(τ)]d(νa, λa)

= Eµ,A[τ ] inf
λ∈Alt(µ)

∑
a∈[K]

Eµ,A[Na(τ)]

Eµ,A[τ ]
d(νa, λa)

≤ Eµ,A[τ ] sup
ω∈ΣK

inf
λ∈Alt(µ)

∑
a∈[K]

ωad(µa, λa), (1.30)

where we used that the vector of proportions ω :=
(Eµ,A[Na(τ)]

Eµ,A[τ ]

)
a∈[K]

belongs to the simplex
ΣK . The proof is concluded by noting that log(1/2.4δ) ≤ kl(1− δ, δ). �

Observe that the bound of Proposition 1.1 is problem-specific, since it depends on
the bandit µ that the algorithm is facing. The authors then propose the Track-and-Stop
algorithm which is asymptotically optimal, i.e., it satisfies

lim sup
δ→0

Eν,A[τ ]

log(1/δ)
≤ T ?(µ).

The intuition behind Track-and-Stop is that the solution to the optimization program in
(1.27) defines a vector of "ideal" frequencies ω?(µ) := (ω?a(µ))a∈[K] according to which
every arm must be pulled. This can be seen directly in the last part of the proof above.
However, this vector is initially unknown to the algorithm, so the sampling rule of Track-
and-Stop is based on tracking the optimal vector computed for the empirical bandit(
ω?(µ̂a(t))

)
a∈[K]

. The tracking is coupled with a forced exploration component, e.g. pulling
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any under-sampled arm a such that Na(t) ≤
√
t, which ensures consistency of the mean

estimator (µ̂a(t))a∈[K]. Since Track-and-Stop, several asymptotically optimal algorithms
with improved computational cost were later proposed (Degenne et al., 2019a; Jedra &
Proutiere, 2020; Wang et al., 2021). These algorithms remove the need to solve (1.27) at
every iteration either by using lazy updates (Jedra & Proutiere, 2020), sub-gradient ascent
methods (Wang et al., 2021) or online learning algorithms (Degenne et al., 2019a). However,
a common property of these algorithms is that they all seek, one way or another, to achieve
the following "golden" property

∀a ∈ [K],
Na(t)

t

a.s.−→
t→∞

ω?a(µ). (1.31)

We shall now detail another contribution which consists of deriving an analogue of the
lower bound in (1.27) for the BPI problem, then designing a sampling rule which satisfies
the counterpart of the optimality recipe (1.31) in MDPs.

1.6.1.2 A problem-dependent lower bound for BPI

Notation We consider the setting of infinite-horizon discounted MDPs, see Section 1.3.1.
The set of alternative MDPs is Alt (M) := {M′ ∈M?,1 : π?(M′) 6= π?(M)}. Let us define
the Kullback-Leibler divergence between MDPsM andM′ at some state-action pair (s, a)
by KLM|M′(s, a) := KL(qM(.|s, a), qM′(.|s, a)) + KL(pM(.|s, a), pM′(.|s, a)) where KL was
defined above. We use Σ = {ω ∈ RSA+ :

∑SA
i=1 ωi = 1 } to denote the simplex of dimension

SA − 1. Ω(M) := {ω ∈ Σ : ∀s ∈ S,
∑

a∈A ωsa =
∑

s′∈S,a′∈A p(s|s′, a′)ωs′a′} refers to
the set of weight vectors that satisfy the navigation constraints, otherwise knwon as the
mass-balance equations. Lastly, Nsa(t) :=

∑t−1
u=1 1 (st = s, at = a) denotes the number of

visits to state-action pair (s, a) up to the t-th step of interaction with the MDP.

Contribution 1.2 Our second contribution is an asymptotic lower bound on the sample
complexity of BPI algorithms. We actually derive a lower bound that holds for all δ > 0
in the proof. However, the limit bound when δ goes to zero is more interesting as it
suggests ideas for designing asymptotically efficient algorithms.

Theorem 1.1 — (Proposition 2, Al-Marjani et al., 2021). The sample complexity of any
δ-PAC BPI algorithm A satisfies,

∀M ∈M?,1, lim inf
δ→0

EA,M[τ ]

log(1/δ)
≥ T ?(M),

where T ?(M) :=

(
sup

ω∈Ω(M)
inf

M′∈Alt(M)

∑
s,a

ωsaKLM|M′(s, a)

)−1

. (1.32)

Theorem 1.1 gives a fundamental limit to the sample complexity of any BPI algorithm
A that is δ-correct. To better understand the expression of T ?(M), imagine a zero-
sum two-player game between A and nature. A plays an allocation vector in the set
Ω(M) which defines the proportion of time ωsa that A wants to spend exploring each
state-action pair (s, a). Nature then chooses an alternative MDPM′ such that A will
have a hard time distinguishingM fromM′ while using ω as an exploration strategy.
In information-theoretic terms, Nature achieves this goal by minimizing the Kullback-
Leibler divergence between the distribution of observations underM and its counterpart
underM′. We will prove in (1.39) that this KL divergence is exactly the objective of
the optimization program in (1.32). Now, in order to figure out which policy among
π?(M) and π?(M′) is the correct answer, A has to distinguish which MDP is actually
generating the observations, i.e. it has to maximize this KL divergence. The value of
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the resulting max-min optimization program defines the easiness of learning the optimal
policy inM: the larger the optimal KL divergence is, the easier it is for A to separate
M from allM′ ∈ Alt (M). It is only natural then that taking the inverse of this value
gives a lower bound on the sample complexity of BPI.

Remark 1.4 In contrast with the BAI lower bound (1.27) where the allocation vector
could take any value within the simplex, here the algorithm can only play a vector that
satisfies the navigation constraints. To see why, suppose that there exists a state s
that can only be accessed from another state s− ∈ S, i.e ∀(s′, a′) ∈ S ×A, p(s|s′, a′) =
1 (s′ = s−) p(s|s−, a′). In that case, we expect, for any algorithm, a positive correlation
between the number of visits to s and to s−. The navigation constraints capture these
dependencies that arise between the number of visits to different states because of the
structure of the transition kernel p. �

The proof of Theorem 1.1 can be decomposed into three steps:
1. First, we show that the vector of expected visits at the stopping time (E[Nsa(τ)])s∈S,a∈A

satisfies an information-theoretic constraint, see Lemma 1.1. It captures the fact
that there is a minimal number of samples that any BPI algorithm must collect to
distinguishM from alternative MDPsM′ ∈ Alt (M).

2. Second, in Lemma 1.2 we prove the navigation constraints described above.
3. Finally, using the fact that E[τ ] =

∑
s,a E[Nsa(τ)], we write the corresponding

optimization program that bounds the sample complexity.

Lemma 1.1 For allM′ ∈ Alt (M), it holds that∑
s∈S,a∈A

EM[Nsa(τ)]KLM|M′(s, a) ≥ kl(δ, 1− δ);

Proof. To simplify the analysis, we will abuse the notation of section 1.4 and write
SMP(at|s1, . . . , Rt−1, st) for the probability that the sampling rule of A plays action
at after observing the history (s1, . . . , Rt−1, st). Similarly STP(s1, . . . , Rt−1, st) (resp.
REC(π|s1, . . . , Rt−1, st)) will denote the probability that A decides to stop exploration
(resp. recommends the policy π) after observing

(
(su, au, Ru)1≤u≤t−1, st

)
. We recall that

µ denotes the distribution of the initial state. Let PM,A denote the distributions of the
stopping time, trajectories and recommendation when A interacts withM. EM,A will refer
to the corresponding expectation operator. Concretely, for any integer t ≥ 1, sequence(
(su, au, xu)1≤u≤t−1, st

)
∈ (S ×A× [0, 1])t−1 × S and policy π ∈ ΠD,

PM,A

(
τ = t, (Su, Au, Ru)1≤u≤t−1 = (su, au, xu)1≤u≤t−1, St = st π̂ = π

)
:= µ(s1)

×
[ t−1∏
u=1

SMP(au|s1, . . . , su)qM(xu|su, au)pM(su+1|su, au)[1− STP((sk, ak, xk)1≤k≤u−1, su)]

]
× STP((sk, ak, xk)1≤k≤t−1, st)REC(π|(su, au, Ru)1≤u≤t−1, st), (1.33)

is the probability that the algorithm starts at s1, plays a sequence of actions that generates
the trajectory (su, au, xu)1≤u≤t, stops at the t-th step and returns the policy π. We
use F to denote the filtration generated by the sigma-algebra of the trajectory until A
stops σ

(
(su, au, xu)1≤u≤τ−1, sτ , π̂

)
. Finally, kl(x, y) denotes the Kullback-Leibler divergence

between Bernoulli distributions of parameters x and y.
The proof starts by fixing an alternative MDPM′ ∈ Alt (M). By the KL-contraction

(Lemma 1 from (Garivier et al., 2019)), for any F-measurable variable Z with values in
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[0, 1] it holds that

KL(PM,A,PM′,A) ≥ kl(EM,A[Z],EM′,A[Z]). (1.34)

We take Z := 1 (π̂ = π?(M)). By δ-correctness of A, we have that EM,A[Z] = PM,A(π̂ =
π?(M)) ≥ 1 − δ while EM′,A[Z] = PM′,A(π̂ = π?(M)) ≤ PM′,A(π̂ 6= π?(M′)) ≤ δ.
Therefore, using the monotonicity properties of (x, y) 7→ kl(x, y) we have that

kl(EM,A[Z],EM′,A[Z]) ≥ kl(1− δ, δ). (1.35)

On the other hand, by definition of the KL divergence we have that

KL(PM,A,PM′,A) = EM,A

[
log

(
dPM,A(Oτ )

dPM′,A(Oτ )

)]
, (1.36)

where Oτ :=
(
t, (su, au, xu)1≤u≤τ−1, sτ , π

)
is a stream of possible observations. Now we

study the log-likelihood ratio of observations underM andM′. For any

L(Oτ ) := log

(
dPM,A(Oτ )

dPM′,A(Oτ )

)
(a)
= log

( τ−1∏
u=1

qM(xu|su, au)pM(su|su, au)

qM′(xu|su, au)pM′(su|su, au)

)

=
∑

s∈S,a∈A

τ−1∑
u=1

1 (su = s, au = a)

(
log

(
qM(xu|s, a)

qM′(xu|s, a)

)
+ log

(
pM(su+1|s, a)

pM′(su+1|s, a)

))
︸ ︷︷ ︸

:=Lsa(τ)

,

(1.37)

where in (a) we simplified by the probabilities of sampling, stopping and recommendation
rules in (1.33) which do not depend on the MDP as they are a property of the algorithm.
Next we study Lsa(τ) for a given pair (s, a). We introduce the random variables Yk and Zk
as the next state and the collected reward after the k-th time (s, a) has been visited. We
can re-write Lsa(τ) as:

Lsa(τ) =

Nsa(τ)∑
k=1

(
log

pM(Yk|s, a)

pM′(Yk|s, a)
+ log

qM(Zk|s, a)

qM′(Zk|s, a)

)
Observe that ξk := log pM(Yk|s,a)

pM′ (Yk|s,a) + log qM(Zk|s,a)
qM′ (Zk|s,a) and 1{Nsa(τ)>k−1} are independent,

because under the event {Nsa(τ) ≤ k − 1}, Yk and Zk have not been observed yet. Further
notice that EM[ξk] = KLM|M′(s, a). We deduce that

EM[Lsa(τ)] = EM

[ ∞∑
k=1

ξk1{Nsa(τ)>k−1}

]

=

∞∑
k=1

PM[Nsa(τ) > k − 1]KLM|M′(s, a)

= EM[Nsa(τ)]KLM|M′(s, a). (1.38)

Summing over all pairs (s, a) and plugging this back into (1.36) yields that

KL(PM,A,PM′,A) =
∑

s∈S,a∈A
EM[Nsa(τ)]KLM|M′(s, a). (1.39)

Combining (1.34) and (1.39) completes the proof. �
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The second ingredient in proving the lower bound is the navigation constraints, which
are specific to the MDP setting and are otherwise absent in BAI.

Lemma 1.2 For any algorithm A, and for all states s ∈ S, we have∣∣∣∣∣∑
a∈A

EM,A[Nsa(τ)]−
∑
s′,a′

pM(s|s′, a′)EM,A[Ns′a′(τ)]

∣∣∣∣∣ ≤ 1. (1.40)

Proof. For convenience we define for all states s, Ns(t) :=
∑

a∈ANsa(t). For any s ∈ S, by
looking at the last state-action that was played before each visit to s, we have that

Ns(τ) = 1 (s1 = s) +
∑
s′,a′

Nτ−1(s′,a′)∑
u=1

1
(
Ws′a′(u) = s

)
,

where Ws′a′(u) denotes the next state observed after the u-th time (s′, a′) has been visited.
Now fix (s′, a′) and let us introduce Gs′a′(t) =

∑Nt−1(s′,a′)
u=1 1

(
Ws′a′(u) = s

)
. Observe that

the events
(
Ws′a′(u) = s

)
and (Nt−1(s′, a′) > u− 1) are independent. Furthermore, for any

u,EM,A
[
1
(
Ws′a′(u) = s

)]
= pM(s|s′, a′). Hence, by Wald’s lemma

EM,A[Gs′a′(τ)] = pM(s|s′, a′)EM,A[Nτ−1(s′, a′)].

By plugging this in the first equality and taking the expectation we get

EM,A[Nτ (s)] = PM[1 (s1 = s)] +
∑
s′,a′

pM(s|s′, a′)EM,A[Nτ−1(s′, a′)]. (1.41)

From the above equality, the lemma is proved by just observing that PM[1 (s1 = s)] ≤ 1,
EM,A[Nτ−1(s′, a′)] ≤ EM,A[Nτ (s′, a′)] for any (s′, a′), and EM,A[Ns(τ)] ≤ EM,A[Nτ−1(s)]+1
for any s. �

In the final step in the proof of Theorem 1.1, we wrap-up the constraints from Lemmas
1.2 and 1.1 to get that

EM,A[τ ] ≥ inf
(nsa)s∈S,a∈A s.t:

∀M′∈Alt(M),
∑
s,a nsaKLM′|M(s,a)≥kl(1−δ,δ),

∀s∈S,
∣∣∑

a nsa−
∑
s′,a′ p(s|s′,a′)ns′a′

∣∣≤1

∑
s∈S,a∈A

nsa.

We define msa := nsa/ log(1/δ). Dividing by log(1/δ) and taking the lim inf when δ → 0
we get

lim inf
δ→0

EM,A[τ ]

log(1/δ)
≥ inf

(msa)s∈S,a∈A s.t:
∀M′∈Alt(M),

∑
s,amsaKLM′|M(s,a)≥1,

∀s∈S,
∑
amsa=

∑
s′,a′ p(s|s′,a′)ms′a′

∑
s∈S,a∈A

msa,

where we used that kl(1− δ, δ) ∼
δ→0

log(1/δ). Next, we define the vector ω ∈ RSA such that

ωsa = msa/
∑

s′,a′ms′a′ . One can check that ω ∈ Ω(M) and that∑
s∈S,a∈A

msa =

(∑
s∈S,a∈AmsaKLM′|M(s, a)∑

s∈S,a∈Amsa

)−1 ∑
s∈S,a∈A

msaKLM′|M(s, a)

≥
( ∑
s∈S,a∈A

ωsaKLM′|M(s, a)

)−1

.

From here, one can easily show that the value of the optimization program above is
larger than the characteristic time T ?(M) defined in (1.32).
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1.6.1.3 Converging to a target allocation vector: From tracking to navigation

In this section, we will assume that there is a unique optimal solution ω?(M) to (1.32) 8.
The question that naturally arises then is how to achieve the counterpart of the optimality
recipe from section 1.6.1.1 in MDPs. In other words, given a mappingM 7→ ω?(M), we
want to design a sampling rule that satisfies

∀(s, a) ∈ S ×A, Nsa(t)

t
−→
t→∞

ω?sa(M). (1.42)

We recall that for MAB problems, the C-tracking rule from (Garivier & Kaufmann, 2016)
is enough for this purpose. Concretely, given a sequence of optimal allocations for empirical
bandits (ω?(µ̂(u)))1≤u≤t, C-tracking pulls the arm defined by

at+1 =

{
arg mina∈[K]Na(t) if mina∈[K]Na(t) ≤

√
t−K/2,

arg mina∈[K]Na(t)−
∑t

u=1 ω
?
a(µ̂(u)) otherwise.

(1.43)

The first case above corresponds to the forced exploration component, which guarantees that
µ̂(t) −→

t→∞
µ (and by continuity ω?(µ̂(t)) −→

t→∞
ω?(µ)) almost surely. The second case is the

tracking component that enables finite-time control of the difference |Na(t)−
∑t

u=1 ω
?
a(µ̂(u))|.

To our knowledge, (Degenne et al., 2020) proved the tightest upper bound on this quantity,
of order O(log(K)) at every time step t ≥ 1. Still in the MAB framework, a remarkably
simpler solution in terms of analysis consists in sampling the (t + 1)-th arm according
to ω?(µ̂(t)), i.e. at+1 ∼ Multinomial

(
ω?(µ̂(t))

)
. Indeed, (Tirinzoni et al., 2020) showed

that this is sufficient to achieve asymptotic optimality in a regret minimization prob-
lem. The idea is that under this sampling rule, for every arm a ∈ [K], the sequence(
Ma(t) := Na(t)−

∑t
u=1 ω

?
a(µ̂(u))

)
t≥1

becomes a martingale of bounded differences w.r.t
the filtration generated by the history of observations. Standard martingale concentration
results then guarantee that each term Mt is upper bounded by Õ(

√
t) with high probability.

Unfortunately, none of the approaches mentioned above can be transferred straightfor-
wardly to the MDP setting. This is because the convergence (1.42) that we seek must hold
over both states and actions. Alas, the algorithms can only choose actions to play and
observe the next state st+1, which is the outcome of sampling from the transition kernel
pM(.|st, at). In other words, we seek to enforce the proportion of time spent exploring
sate-action pairs but we do not have direct control over the state of the environment. This
is the challenge of navigation and our third contribution will be to propose a sampling rule,
named C-Navigation9 that solves it.

The idea behind C-Navigation is to use the mixing properties of Markov chains to
achieve (1.42). Observe that each Markovian policy π ∈ ΠS induces a Markov chain on the
set of state-action pairs S ×A whose transition kernel is given by

Pπ(s′, a′|s, a) = π(a′|s′)pM(s′|s, a).

Furthermore, under mild conditions on the MDP, it can be shown (for instance Theorem
8.8.2 in (Puterman, 1994)) that any vector ω ∈ Ω(M) is the unique stationary distribution
of the Markov chain induced by the policy πω, where

∀(s, a) ∈ S ×A, πω(a|s) :=


ωsa∑

b∈A
ωsb

if
∑
b∈A

ωsb > 0,

1/A otherwise.

(1.44)

8While this may not hold in general, we have derived in (Al-Marjani & Proutiere, 2021) a proxy objective
which admits a unique maximizer. We elaborate more on this in Chapter 2.

9C-Navigation stands for cumulative navigation.
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Now imagine that we have access to an oracle that gives the value of ω?(M). In this
case, we can simply compute the corresponding policy πω? through (1.44) and use it as a
sampling rule, i.e., play at ∼ πω?(.|st) at every step t ≥ 1. Indeed, the Ergodic theorem
(see for example Theorem 4.16 in (Levin et al., 2006)) would then guarantee that

∀(s, a) ∈ S ×A, Nsa(t)

t
=

∑t−1
u=1 1 (su = s, au = a)

t
−→
t→∞

ω?sa(M), (1.45)

almost surely. We refer to this procedure as the mixing of the Markov chain Pπω? . However,
since the algorithm does not know ω?(M), we will apply the mixing procedure to ω?(M̂t),
where M̂t is the empirical MDP built using the maximum-likelihood estimates of (pM, rM).
As in C-tracking, we add a forced exploration component to ensure the consistency of our
estimates.

Contribution 1.3 In Chapter 2 we will present Navigate-and-Stop, a BPI algorithm based
on the C-Navigation sampling rule and prove that it is asymptotically optimal up to a
multiplicative factor of 2.

Letting πω?(M) denote the policy extracted from ω?(M) through (1.44), C-Navigation
plays an action at ∼ πt(.|st) where

πt(a|s) =
εt
A

+ (1− εt)
∑t

u=1 πω?(M̂u)(a|s)
t

, (1.46)

and (εt)t≥1 is a decreasing sequence of mixture parameters that converges to zero. In
particular, we shall discuss how (εt)t≥1 must be tuned as a function of the underlying
MDP in order to ensure that M̂t −→

t→∞
M almost surely. Intuitively, this guarantees that

πt ≈ πω?(M) for t large enough. Hence, we can use an ergodic theorem, albeit for a
non-homogeneous Markov Chain in this case, to prove that C-Navigation satisfies (1.42).

1.6.2 Bandit lower bounds beyond the KL contraction: The simulator technique
1.6.2.1 Limits of the classical KL-contraction-based lower bounds

The standard method to derive problem-dependent lower bounds for pure exploration
problems follows the proof schemes of Proposition 1.1 and Lemma 1.110. Lower bounds
of this style are tight at least in the asymptotic regime δ → 0, where a wide variety of
algorithms are able to match them (Garivier & Kaufmann, 2016; Degenne et al., 2019a;
Jedra & Proutiere, 2020; Wang et al., 2021). However, as explained in (Simchowitz et al.,
2017), there are scenarios where this result becomes loose in the moderate δ regime. The
example given in that paper is for the BAI problem when the class of possible models is
restricted to Gaussian bandits with means in the simplex, i.e. ν =

(
N (µa, 1)

)
a∈[K]

such
that µ ∈ {µ ∈ RK≥0,

∑
a∈[K] µa = 1}. If the ground truth bandit µ is such that µ1 = 0.9

then arm 1 is the best arm. In this case, one can show that the characteristic time T ?(µ)
defined in (1.27) is less than one. Indeed, one can show that there exists an algorithm such
that Eν,A[τ ] = Oδ→0

(
log(1/δ)

)
. Hence, (1.27) becomes

Eθ1,A[τ ] ≥ c log(1/2.4δ), (1.47)

where c ∈ (0, 1]. Intuitively, since arms are constrained in the simplex, any alternative
instance λ must have λ1 < 0.5 so that by Pinsker’s inequality d(µ1, λ1) ≥ (0.9−0.5)2

2 ≥ Ω(1).

10This method is efficient only for pure exploration problems with a single correct answer. Problems with
multiple correct answers require a more involved analysis, see (Degenne & Koolen, 2019) and (Garivier &
Kaufmann, 2021)
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Therefore, an algorithm that focuses its sampling effort on arm 1, meaning that N1(t)
t −→

t→∞
1,

is able to distinguish between µ and any λ ∈ Alt (µ). But the bound in (1.47) exhibits
no dependence at all on the number of arms K! This is at odds with what one might
expect from any δ-correct BAI algorithm, that is to sample each arm a few number of times,
which would result into τ = Ω(K). So why is this linear dependency on K absent from
Proposition 1.1 in this setting?

The answer is that there is oracle knowledge embedded in the proof above. More
precisely, the proof takes the point of view of an oracle that already knows the correct
answer for µ and its set of alternative instances and only seeks to confirm its beliefs. In
contrast, any algorithm starts with zero prior knowledge on the ground truth model which
generates the observations, so there must be some sample complexity cost associated with
learning that Alt (µ) only contains instances such that d(µ1, λ1) = Ω(1). This cost is not
captured by the KL-contraction proof scheme, hence we need new methods to derive a
more refined lower bound. One such method is the simulator technique which was proposed
in (Simchowitz et al., 2017) for BAI. Below, we illustrate their proof method for the BAI
problem.

1.6.2.2 Illustrating the simulator technique for Best Arm Identification

Notation: Before stating their result, let us introduce some notations. We denote by SK
the group of permutations over [K]. For a bandit instance ν = (ν1, . . . , νK) we define the
permuted instance π(ν) = (νπ(1), . . . , νπ(K)). SK(ν) = {π(ν), π ∈ SK} refers to the set
of all permuted instances of ν. We will write π ∼ SK to indicate that a permutation is
drawn uniformly at random from SK . Finally, for two probability distributions P and Q
defined over the same probability space (Ω,F), TV(P,Q) := supE⊂Ω |P(E)−Q(E)| is the
total-variation distance between P and Q.

Definition 1.6 An algorithm A is said to be symmetric if it satisfies for any permutation
π, any integer n ≥ 1 and any sequence of actions A1, . . . , An,

PA,ν
(
(a1, . . . , an) = (A1, . . . , An)

)
= PA,π(ν)

(
(a1, . . . , an) = (π(A1), . . . , π(An))

)
.

In other words, A is symmetric if it is indifferent to the order of the arms and acts only based
on the underlying distributions. (Simchowitz et al., 2017) showed that for any algorithm
A, one can easily build a symmetrized version Asym such that for any bandit instance ν,
Eπ∼SKEA,π(ν)[τδ] = EAsym,ν [τδ]. This will be important for the proofs to come, as we only
need to consider symmetric algorithms.

Proposition 1.2 — (Theorem 3, Simchowitz et al., 2017). Fix δ ≤ 1/4. Any BAI algorithm
A that is δ-correct over the class of Gaussian bandits with means in the simplex satisfies

Eπ∼SKEA,π(ν)[τδ] ≥
∑

a∈[K]\{a}

1− 4δ

8(µ? − µa)2
.

Thus, for the price of weaker dependence on the risk (1 − 4δ instead of log(1/δ)), the
simulator method manages to prove that BAI algorithms must pay a linear cost in terms of
the number of arms, even when their means are constrained to be within the simplex.

Proof. We restrict our attention to symmetric algorithms. Throughout the proof it will be
useful to represent bandit instances using the random table model (Lattimore & Szepesvari,
2019): ν can be defined as a collection of random variables (Xa,t)a∈[K],t≥1 where Xa,t

represents the reward received when playing arm a for the t-th time. Therefore it is enough
to specify the law of each Xa,t to define ν.
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The first step of the proof is to consider permutations where we only swap the best
arm with another suboptimal arm: π(a?) = a, π(a) = a?, π(b) = b ∀b ∈ [K] \ {a?, a}, where
a 6= a?. We define the non-stationary bandit instances ν̃ and π̃ such that

ν̃ :

Arm First n rewards Next rewards
a? ∼ N (µa? , 1) ∼ N (µa, 1)

a ∼ N (µa, 1) ∼ N (µa? , 1)

k ∈ [K] \ {a?, a} ∼ N (µk, 1) ∼ N (µk, 1)

and

π̃ :

Arm First n rewards Next rewards
a? ∼ N (µa, 1) ∼ N (µa? , 1)

a ∼ N (µa? , 1) ∼ N (µa, 1)

k ∈ [K] \ {a?, a} ∼ N (µk, 1) ∼ N (µk, 1)

ν̃ and π̃ will only serve as intermediate steps in our change-of-measure argument. In
particular, we do not require that the algorithm return a good answer on any of them. Let
Pλ denote the law of all relevant random variables (rewards, actions played, stopping times..)
when running algorithm A on instance λ and define the event E = (Na(τ) ≤ n). Observe
that Pν (E ∩ .) = Pν̃ (E ∩ .), since under E algorithm A observes the same distribution of
rewards. Thus using Bayes’ Theorem one can write

TV(Pν̃ ,Pν) = TV
(
Pν̃(E)× Pν̃(.|E) + Pν̃(Ec)× Pν̃(.|Ec), Pν(E)× Pν(.|E) + Pν(Ec)× Pν(.|Ec)

)
(a)
= TV

(
Pν(E)× Pν̃(.|E) + Pν(Ec)× Pν̃(.|Ec), Pν(E)× Pν(.|E) + Pν(Ec)× Pν(.|Ec)

)
(b)

≤ Pν(E)TV
(
Pν̃(.|E), Pν(.|E)

)
+ Pν(Ec)TV

(
Pν̃(.|Ec), Pν(.|Ec)

)
(c)

≤ Pν(Ec) = Pν (Na(τ) > n) , (1.48)

where (a) is because Pν(E) = Pν̃(E) hence Pν(Ec) = Pν̃(Ec) also, (b) is by the joint convexity
of the TV distance and (c) is because Pν (E ∩ .) = Pν̃ (E ∩ .) implies that Pν (.|E) = Pν̃ (.|E).
Similarly, by considering event E ′ = (Na?(τ) ≤ n) one can show that

TV(Pπ(ν),Pπ̃) ≤ Pπ(ν) (Na?(τ) > n) . (1.49)

Using the above, one can write

1− 2δ
(a)

≤ Pν (â = a?)− Pπ(ν) (â = a?)

(b)

≤ TV(Pν ,Pπ(ν))

≤ TV(Pπ(ν),Pπ̃) + TV(Pπ̃,Pν̃) + TV(Pν̃ ,Pν)

(c)

≤ Pπ(ν)(Na?(τ) > n) + Pν(Na(τ) > n) +

√
KL(Pπ̃,Pν̃)

2
(d)

≤ 2Pν(Na(τ) > n) +

√
KL(Pπ̃,Pν̃)

2
, (1.50)

where (a) uses the δ-correctness of A, (b) uses the definition of the total-variation distance,
(c) comes from combining (1.48) and (1.49) and using Pinsker’s inequality and (d) is because
the symmetry of the algorithm implies that Pπ(ν)(Na?(τ) > n) = Pν(Na(τ) > n). Now
denote by π̃i(t) (resp. ν̃i(t)) the distribution of the t-th column corresponding to arm i
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within the table of π̃ (resp. ν̃). Observe that by an analogue of (1.39) for non-stationary
bandits, we can write

KL(Pπ̃,Pν̃) =
∑
i∈[K]

Eπ̃,A
[ τ∑
t=1

1 (At = i) KL(π̃i(t), ν̃i(t))

]
(1)
=

∑
i∈{a?,a}

Eπ̃,A
[ τ∑
t=1

1 (At = i) KL(π̃i(t), ν̃i(t))

]
(2)

≤ n

(
KL(N (µa, 1),N (µa? , 1)) + KL(N (µa? , 1),N (µa, 1))

)
= n(µ? − µa)2

where (1) is because ν̃ and π̃ only differ in the distributions of arms a and a?, (2) is
because this difference only holds for the distributions of the first n rewards. Therefore,
the inequality above simplifies to

1− 2δ − (µ? − µa)
√
n/2 ≤ 2Pν,A(Na(τ) > n).

By setting n = 1/2(µ?−µa)2, we get that Pν,A
(
Na(τ) > 1/2(µ?−µa)2

)
≥ 1/4−δ. Applying

Markov’s inequality implies that

1− 4δ

8(µ? − µa)2
≤ Eν,A[Na(τ)].

The proof is concluded by summing over all sub-optimal arms. �

The simulator technique was used by (Mason et al., 2020) for the problem of All ε-Best
Arms Identification (All-ε-BAI) in multi-armed bandits, by leveraging a reduction from
All-ε-BAI to BAI. In our fourth contribution, we generalize the lower bound of (Mason
et al., 2020) and simplify its proof. Notably, our proof demonstrates how the simulator
technique can be used in MAB pure exploration problems without the need to perform a
reduction to BAI.

1.6.2.3 Basic analysis of All-ε-BAI

One can not fully grasp the added value of the simulator technique without a brief overview
of what the KL-contraction method can achieve for the All-ε-BAI problem. For this purpose,
we define the set of alternative bandits Alt (µ) = {λ ∈ Rk : Gε(λ) 6= Gε(µ)}. Further,
define the upper and lower margins

αε := min
a∈Gε(µ)

µa − µ? + ε and βε := min
b/∈Gε(µ)

µ? − ε− µb. (1.51)

For the simplicity of the presentation, we assume that the arms are ordered decreasingly
µ? = µ1 ≥ µ2 ≥ . . . µK . We let m := arg mina∈Gε(µ) µa − µ? + ε with ties broken in favor
of the largest index. Arm m is the arm with the lowest mean among good arms. Since
the arms are in decreasing order, arm m+ 1 is necessarily the arm with the largest mean
among bad arms and we have m+ 1 = arg minb/∈Gε(µ) µ

? − ε− µb with ties broken in favor
of the smallest index. Let us explore ways to construct alternative instances λ by starting
from µ and changing the mean reward of a single arm:

1. switching the status of an arm: Fix η > 0. For any good arm a ∈ Gε(µ) \ a?, we
can lower its mean reward by defining λ such that λa = µ?− ε− η and λb = µb for all
b 6= a, see Figure 1.2a. Note that the new instance satisfies a /∈ Gε(λ). Alternatively,
for a bad arm a /∈ Gε(µ) we increase its mean reward by letting λa = µ? − ε+ η and
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(a) Changing the status of
an arm

(b) Making arm m ε-suboptimal (c) Making arm m+ 1 ε-optimal

Figure 1.2: Possible changes-of-measure

λb = µb for all b 6= a. One can check that a ∈ Gε(λ). In both cases, we have come up
with an instance λ such that Gε(λ) 6= Gε(µ) and∑

i∈[K]

Eµ,A[Ni(τ)]KL(µi, λi) = Eµ,A[Na(τ)]KL(µa, λa)

= Eµ,A[Na(τ)]
(µa − λa)2

2

= Eµ,A[Na(τ)]
(|µa − µ? + ε|+ η)2

2
,

where we have used the identity KL(N (x, σ2),N (y, σ2)) = (x−y)2/2σ2. Now applying
Lemma 1 from (Kaufmann et al., 2016), we have that

Eµ,A[Na(τ)]
(|µa − µ? + ε|+ η)2

2
≥ kl

(
PA,µ

(
Ĝ = Gε(µ)

)
,PA,λ

(
Ĝ = Gε(µ)

))
≥ kl(1− δ, δ) ≥ log(1/2.4δ),

where in the second inequality we used the δ-correctness of A to establish that
PA,µ

(
Ĝ = Gε(µ)

)
≥ 1− δ and PA,λ

(
Ĝ = Gε(µ)

)
≤ PA,λ

(
Ĝ 6= Gε(λ)

)
≤ δ. Since the

inequality above holds for all η > 0, we take the limit η → 0 we get that

∀a ∈ [|2,K|], Eµ,A[Na(τ)] ≥ 2 log(1/2.4δ)

(µa − µ? + ε)2
. (1.52)

2. Making arm m bad: Another way to build alternative instances is by increasing
the maximum mean reward so that arm m is no longer within the set of good arms.
Concretely, we fix η > 0, a 6= m then define λa = µ? + αε + η and λb = µb for all
b 6= a, see Figure 1.2b. We now have

λa = µ? + αε + η

= µ? + (µm − µ? + ε) + η

= µm + ε+ η = λm + ε+ η > λm + ε,

where the second equality is by definition or m. Thus m /∈ Gε(λ). Proceeding as
above, we get that

∀a ∈ [K] \m, Eµ,A[Na(τ)] ≥ 2 log(1/2.4δ)

(µa − µ? − αε)2
. (1.53)
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3. Making arm m+ 1 good: Finally, we can also decrease the maximum mean reward
so that arm m+ 1 becomes a good arm. While increasing the value of µ? can be done
by focusing on the mean reward of a single arm, decreasing µ? might require changing
the mean reward of more than one arm. Concretely, for all arms a in Gβε(µ)\{m+1}
we define λa = µ? − βε − η for some fixed η > 0. We leave the mean rewards of other
arms unchanged, see Figure 1.2c. We thus have for all a ∈ Gβε(µ) \ {m+ 1}

λm+1 = µm+1

= µ? − ε− βε
= λa − ε+ η > λa − ε, (1.54)

where the second inequality is because arm m+1 achieves the argmin in the definition
of βε. On the other hand, for arms in [K] \ (Gβε(µ) ∪ {m+ 1}) we have

λm+1 = µ? − ε− βε
≥ µa − ε
= λa − ε.

Therefore m + 1 ∈ Gε(λ). Applying Lemma 1 from (Kaufmann et al., 2016) and
letting η go to zero we get that∑

a∈Gβε (µ)\{m+1}

Eµ,A[Na(τ)]
(µa − µ? + βε)

2

2
≥ log(1/2.4δ).

Since µ? − βε ≤ µa ≤ µ? for all a ∈ Gβε(µ), (µa − µ? + βε)
2 ≤ β2

ε and the inequality
becomes ∑

a∈Gβε (µ)\{m+1}

Eµ,A[Na(τ)] ≥ 2 log(1/2.4δ)

β2
ε

. (1.55)

The lower bounds in (1.52) and (1.53) reveal that (ε, δ)-PAC algorithms must pay a
minimum cost, in terms of samples, for every arm but one. However, (1.55) only establishes
a sample complexity cost for a special subset of arms, namely those that are within βε
margin from the optimal mean reward. (1.55) reflects the requirement that we should
estimate the mean reward of at least one arm in Gβε(µ) up to βε precision. If we fail to do
so, we might severely underestimate the value of µ? and wrongfully declare that m+ 1 is a
good arm. While this cost is specific to Gβε(µ) (underestimating arms outside of this set
does not change our answer about arm m+ 1), the proof above does not take into account
the fact that algorithms have to sample all arms a certain amount of time before learning
which belong to Gβε(µ). Here is yet another example of "oracle knowledge" within the proof,
which affects the tightness of the resulting lower bound. This is where our contribution
comes into the picture.

1.6.2.4 The simulator technique for bandit problems with many "special" arms

Here we use the same notation as Section 1.6.2.2.

Contribution 1.4 Our fourth contribution is a problem-dependent lower bound, averaged
over all the possible permutations of the bandit ν.
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Theorem 1.2 — (Theorem 3, Al Marjani et al., 2022). Fix δ ≤ 1/10 and ε > 0. Consider
an instance ν such that there exists at least one bad arm: Gε(µ) 6= [K]. Then any
(ε, δ)-PAC All-ε-BAI algorithm has an average sample complexity over all permuted
instances satisfying

Eπ∼SKEπ(ν),A[τ ] ≥ 2 log(1/2.4δ)

β2
ε

+
1

12|Gβε(µ)|3
∑

b∈[K]\Gβε (µ)

1

(µ? − µb + βε)2
,

While we have previously assumed that the mean-rewards of arms are ordered
decreasingly w.r.t their index, this is only done for the purpose of the analysis. In
practice, the arms of a bandit may come in any arbitrary order. The averaging over
permutations eliminates any artificial "luck" that an algorithm might have on ν just
because it assumes a particular order of arms.

Remark 1.5 In the special case where |G2βε(µ)| = 1, then |Gβε(µ)| = 1 also (since
{1} ⊂ Gβε(µ) ⊂ G2βε(µ)) and we recover the result of Theorem 4.1 of (Mason et al.,
2020). The lower bound above informs us that we must pay a linear cost in K, even
when there are several arms close to the best arm, provided that their cardinal does not
scale with the total number of arms, i.e. |Gβε | = O(1).
Furthermore, we shall present in Chapter 5 a bandit instance where the lower bound
obtained through KL-contraction can be arbitrarily smaller than the lower bound of
Theorem 1.2. �

Proof of Theorem 1.2

We restrict our attention to symmetric algorithms and use the random table model from
Section 1.6.2.2 to represent bandits. The first step of the proof is to show that no arm
can be played significantly less than the arms in Gβε(µ). This is the purpose of the lemma
below, which helps us avoid algorithmic reductions of the All-ε-BAI problem to BAI or
β-isolated tests as was done in (Mason et al., 2020).

Lemma 1.3 For all arms b ∈ [K] \Gβε(µ) and all integers n ≥ 1,

1

|Gβε(µ)|
∑

a∈Gβε (µ)

Pν,A (Na(τ) > n)− (µ? − µb)
√
n/2 ≤ 3Pν,A(Nb(τ) > n).

Proof. Fix a ∈ Gβε(µ) and n ≥ 1. Let π be the permutation that swaps arms a and b, i.e.
π(a) = b, π(b) = a and π(k) = k for k ∈ [K] \ {a, b}. We define the non-stationary bandit
instances ν̃ and π̃ such that

ν̃ :

Arm First n rewards Next rewards
a ∼ N (µa, 1) ∼ N (µa, 1)

b ∼ N (µb, 1) ∼ N (µa, 1)

k ∈ [K] \ {a, b} ∼ N (µk, 1) ∼ N (µk, 1)

and

π̃ :

Arm First n rewards Next rewards
a ∼ N (µb, 1) ∼ N (µa, 1)

b ∼ N (µa, 1) ∼ N (µa, 1)

k ∈ [K] \ {a, b} ∼ N (µk, 1) ∼ N (µk, 1)
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Again, ν̃ and π̃ will only serve as intermediate steps in our change-of-measure argument. In
particular, we do not require that the algorithm return a good answer on any of them. Let
Pλ denote the law of all relevant random variables (rewards, actions played, stopping times..)
when running algorithm A on instance λ and define the event E = (Nb(τ) ≤ n). Observe
that Pν (E ∩ .) = Pν̃ (E ∩ .), since under E algorithm A observes the same distribution of
rewards. Following the same steps that lead to (1.48) we have that

TV(Pν̃ ,Pν)≤Pν(Ec) = Pν (Nb(τ) > n) , (1.56)

Similarly, by considering event E′ = (Na(τ) ≤ n) it holds that

TV(Pπ(ν),Pπ̃) ≤ Pπ(ν) (Na(τ) > n) . (1.57)

Using the above, one can write

Pν (Na(τ) > n)− Pπ(ν) (Na(τ) > n)
(a)

≤ TV(Pν ,Pπ(ν))

≤ TV(Pπ(ν),Pπ̃) + TV(Pπ̃,Pν̃) + TV(Pν̃ ,Pν)

(b)

≤ Pπ(ν)(Na(τ) > n) + Pν(Nb(τ) > n) +

√
KL(Pπ̃,Pν̃)

2
(c)

≤ 2Pν(Nb(τ) > n) +

√
KL(Pπ̃,Pν̃)

2
, (1.58)

where (a) is thanks to the definition of the total variation, (b) comes from combining (1.56)
and (1.57) and using Pinsker’s inequality and (c) is because the symmetry of the algorithm
implies that Pπ(ν)(Na(τ) > n) = Pν(Nb(τ) > n). Now denote by π̃i(t) (resp. ν̃i(t)) the
distribution of the t-th column corresponding to arm i within the table of π̃ (resp. ν̃). By
an analogue of (1.39) for non-stationary instances, we can write

KL(Pπ̃,Pν̃) =
∑
i∈[K]

Eπ̃,A
[ τ∑
t=1

1 (At = i) KL(π̃i(t), ν̃i(t))

]
(1)
=

∑
i∈{a,b}

Eπ̃,A
[ τ∑
t=1

1 (At = i) KL(π̃i(t), ν̃i(t))

]
(2)

≤ n

(
KL(N (µa, 1),N (µb, 1)) + KL(N (µb, 1),N (µa, 1))

)
= n(µa − µb)2

(3)

≤ n(µ? − µb)2

where (1) is because ν̃ and π̃ only differ in the distributions of arms a and b, (2) is because
this difference only holds for the distributions of the first n rewards and (3) is because
µb ≤ µa since b /∈ Gβε(µ). Therefore, the inequality above is simplified to

Pν,A (Na(τ) > n)− (µ? − µb)
√
n/2 ≤ 3Pν,A(Nb(τ) > n).

Note that the inequality above holds trivially when a = b. Now, for a fixed b, by summing
the inequality over all arms a ∈ Gβε(µ) we get∑

a∈Gβε (µ)

Pν (Na(τ) > n)− |Gβε(µ)|(µ? − µb)
√
n/2 ≤ 3|Gβε(µ)|Pν(Nb(τ) > n).

Hence the statement of the lemma. �
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Remark 1.6 In the proof above, we built the non-stationary instance ν̃ (resp. π̃) so that
it "simulates" the multi-armed bandit ν (resp. π(ν)), i.e., it generates rewards from the
same distributions for the first n pulls of arms b (resp. arm a). Hence no algorithm can
distinguish between ν and ν̃ (resp. π(ν) and π̃) unless it has a non-zero probability of
pulling arm b (resp. arm a) more than n times. Unlike the KL-contraction proof where
we did a single change-of-measure ν −→ λ, the simulator technique relies on perfoming 3

changes-of-measure: ν
(1)−→ ν̃

(2)−→ π̃
(3)−→ π(ν) (see the inequalities leading to (1.58)). The

underlying intuition is that the sampling behaviour of A, represented by the probabilities
of the event (Na(τ) > n), will not differ much between ν and π(ν) if:

1. ν̃ is almost indistinguishable from ν
2. n is small enough that KL(Pπ̃,Pν̃) is negligible
3. π̃ is almost indistinguishable from π(ν).

The right choice of n will be dictated by the next Lemma. �

The second step in proving Theorem 1.2 is to show that arms in Gβε(µ) must be pulled
Ω(1/β2

ε ) times because underestimating their means by βε may cause the algorithm to
declare arm m+ 1 as ε-optimal.

Lemma 1.4 For all integers n ≥ 1,

1− 2δ − |Gβε(µ)|βε
√
n/2 ≤

∑
a∈Gβε (µ)

Pν,A (Na(τ) > n) .

Proof. Let η > 0. We define the instances λ and ν̃ such that

λ :

Arm All rewards
For a ∈ Gβε(µ) ∼ N (µ? − βε − η, 1)

For k ∈ [K] \Gβε(µ) ∼ N (µk, 1)

and

ν̃ :

Arm First n rewards Next rewards
For a ∈ Gβε(µ) ∼ N (µa, 1) ∼ N (µ? − βε − η, 1)

For k ∈ [K] \Gβε(µ) ∼ N (µk, 1) ∼ N (µk, 1)

By considering the event E = (∀a ∈ Gβε(µ), Na(τ) ≤ n), one can show in a similar fashion
to the proof of Lemma 1.3 that

TV(Pν̃ ,Pν) ≤ Pν(∃a ∈ Gβε(µ), Na(τ) > n) ≤
∑

a∈Gβε (µ)

Pν (Na(τ) > n) . (1.59)

Recall that m+1 ∈ arg mink/∈Gε(µ) µ
?−ε−µk and observe that m+1 becomes an ε-optimal

arm under λ (see (1.54)). Thus we have Pλ(m+ 1 /∈ Ĝε) ≤ δ while Pν(m+ 1 /∈ Ĝε) ≥ 1− δ.
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Therefore

1− 2δ ≤ Pν(m+ 1 /∈ Ĝε)− Pλ(m+ 1 /∈ Ĝε)
≤ TV(Pν ,Pλ)

≤ TV(Pν ,Pν̃) + TV(Pν̃ ,Pλ)

(a)

≤
∑

a∈Gβε (µ)

Pν (Na(τ) > n) +

√
KL(Pν̃ ,Pλ)

2

=
∑

a∈Gβε (µ)

Pν (Na(τ) > n) +

√
n
∑

a∈Gβε (µ)(µa − µ? + βε + η)2/2

2

(b)
=

∑
a∈Gβε (µ)

Pν (Na(τ) > n) +

√
n|Gβε(µ)|(βε + η)2

4

(c)
=

∑
a∈Gβε (µ)

Pν (Na(τ) > n) + |Gβε(µ)|(βε + η)
√
n/2

where (a) comes from (1.59) and Pinsker’s inequality, (b) is because all arms in Gβε(µ)
satisfy µ? − βε ≤ µa ≤ µ? and (c) comes from the fact that

√
|Gβε(µ)| ≤ |Gβε(µ)|. Note

that the inequality above holds for all η > 0. We get the final result by taking the limit
η → 0. �

In the final step of the proof, we combine the results of Lemmas 1.3 and 1.4 to get for
all b ∈ [K] \Gβε(µ)

1− 2δ

3|Gβε(µ)|
− (µ? − µb + βε)

√
n/6 ≤ Pν(Nb(τ) > n).

Thus by choosing n =
⌈

(1−2δ)2

|Gβε (µ)|2(µ?−µb+βε)2

⌉
we get

1− 2δ

6|Gβε(µ)|
≤ Pν(Nb(τ) > n) ≤ Pν

(
Nb(τ) ≥ (1− 2δ)2

|Gβε(µ)|2(µ1 − µb + βε)2

)
,

which implies by Markov’s inequality that for all b ∈ [K] \Gβε(µ),

(1− 2δ)3

6|Gβε(µ)|3(µ1 − µb + βε)2
≤ Eν [Nb(τ)].

The final result is obtained by summing the inequality over arms in [K] \Gβε(µ), adding
(1.55) and noting that for δ ≤ 1/10, (1− 2δ)3 ≥ 1/2.

Open question 1.2 At a high level, the simulator technique relies on the fact that
all instances in {π(ν)}π∈SK are somewhat equivalent, since only the indexing of arms
changes from one permutation to another. Therefore, a lower bound averaged over all
instances in that set still reflects the hardness of the bandit that our algorithm is facing.
However, this property no longer holds when we consider other bandit settings with
structure, e.g. Lipschitz bandits (Magureanu et al., 2014) or Linear bandits (Soare
et al., 2014). For instance in Lipschitz bandits, given arms (xa)a∈[K] ∈ [0, 1]K the mean
rewards of arms must satisfy ∀(i, j), |µi − µj | ≤ L|xi − xj | for some constant L > 0.
Hence, permutating the arms may break the Lipschitz property. This raises the following
question: How to generalize the simulator technique to other bandit settings where some
structure is embedded into the arms distributions? In particular, what is a possible class
of "equivalent" bandits that one can use to prove a refined problem-dependent lower
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bound in such settings?

1.6.3 Covering an MDP: minimum flows in graphs, submodular optimization and
zero-sum games
So far we have seen in Section 1.6.1 how to derive an instance-dependent lower bound
for BPI in discounted MDPs using the KL contraction method. We also briefly sketched
an exploration strategy that leads to an asymptotically optimal algorithm by solving the
max-min program of this bound and following the resulting allocation vector ω?(M). In
Section 1.6.2, we explained in a MAB setting why the KL contraction lower bounds can be
loose in the moderate δ-regime. In addition, we showed through the example of All-ε-BAI
how to derive tighter bounds for pure exploration using the simulator technique. This
motivates us to look for algorithmic guarantees beyond the asymptotic δ → 0 regime,
by seeking to design algorithms with sample complexity upper bounds that hold for all
δ ∈ (0, 1).

To that end, we developed an efficient method to cover an MDP, i.e., a sampling rule
that collects observations from any desired subset of state-action pairs using a minimal
number of episodes. We refer to this task as coverage of an MDP and we shall see in
Chapters 3 and 4 how efficient coverage is a powerful tool for designing pure exploration
algorithms. Notably, Contribution 1.1 would not have been possible without the study and
use of a near-optimal coverage algorithm.

In this section, we will present some results established in this thesis for coverage in the
case of deterministic transitions. As it turns out, there are some interesting connections
between the coverage of an MDP, solving flow problems on a graph and submodular
optimization. We will also briefly sketch some results for the general case of stochastic
MDPs, which will be further improved in Chapter 3. The contents are extracted from
appendices B and D of the conference paper:

Andrea Tirinzoni, Aymen Al Marjani, and Emilie Kaufmann. Near instance-optimal
PAC reinforcement learning for deterministic MDPs. In Advances in Neural Infor-
mation Processing Systems (NeurIPS), 2022.

1.6.3.1 Deterministic MDPs as directed acyclic graphs

We consider the setting of episodic MDPs (Section 1.3.2). We are interested in the case
where transition kernels are deterministic, i.e., when for all (h, s, a) ∈ [H]× S ×A, there
exists a unique state s′ such that ph(s′|s, a) = 1. Under this property, we can equivalently
represent the transitions by a sequence of deterministic functions {fh : S ×A → S}h∈[H]

such that fh(s, a) is the unique s′ defined earlier. A deterministic MDP then becomes the
tupleM := (S,A, H, {fh}h∈[H], {qh}h∈[H], s1).

Assumption 1.4 We assume that the transitions {fh}h∈[H] are knwon to the learner.

Assumption 1.4 is without loss of generality. Indeed if the transitions are unknown,
Proposition 2 in (Ortner, 2010) shows how we can recover them using no more than SAH
episodes. A procedure that achieves this is as follows: At the beginning of any episode
t, given the “known part” of the transitions, we find the closest state with an unexplored
action. We reach this state and play the action in question. Since there are altogether
SAH triplets (h, s, a) to explore, the total number of episodes needed is at most SAH.

Our second observation is that, if we ignore the reward distributions, M can be
represented as a layered directed acyclic graph (DAG) G(M) := (N , E , s1, sH+1) with nodes
N := {(s, h) : h ∈ [H], s ∈ S}, arcs E := {(s, a, h) : h ∈ [H], s ∈ S, a ∈ A}, a unique source
node (s1, 1), and a fictitious sink node (sH+1, H + 1) which is the endpoint of every arc
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(s, a,H) ∈ E . In particular, for node (s, h) ∈ N , there is one arc for each a ∈ A which
connects the node to (fh(s, a), h + 1). The graph is layered, in the sense that the set of
nodes can be partitioned into H subsets ({(s, h) : s ∈ S})h∈[H], one for each stage, and
transitions are possible only between adjacent stages. Let Ih(s) := {(s′, a′) ∈ S ×A | s′ ∈
Sh−1, a

′ ∈ Ah−1(s), fh−1(s′, a′) = s} be the set of incoming arcs into (s, h).

1.6.3.2 The minimum flow problem and its properties

We define a flow as any non-negative function η : E → [0,∞) that satisfies the navigation
constraints ∑

(s′,a′)∈Ih(s)

ηh−1(s′, a′) =
∑
a∈A

ηh(s, a) ∀h > 1, s ∈ S. (1.60)

We let Ω be the set of all flows. The value of a flow η is given by ϕ(η) :=
∑

a∈A η1(s1, a).
Let c : E → [0,∞) be a non-negative target function. We say that a flow η is feasible if

ηh(s, a) ≥ ch(s, a) ∀(s, a, h) ∈ E .

That is, ch(s, a) acts as a lower bound on the flow we require through arc (s, a, h). The
minimum flow for the target function c is the solution to the linear program,

ϕ?(c) := min
η∈Ω

∑
a∈A

η1(s1, a) s.t. ηh(s, a) ≥ ch(s, a) ∀(s, a, h) ∈ E . (1.61)

Intuitively, the goal is to minimize the amount of flow leaving the initial state while
satisfying the navigation and demand constraints. From the MDP perspective, if ηh(s, a)
is the number of times our algorithm A visited a triplet (h, s, a) then

∑
a∈A η1(s1, a) is

the total number of episodes played by A (since each episode starts by playing an action
at the initial state s1). Therefore, computing a minimum flow corresponds to minimizing
the number of episodes that are required to visit each triplet at least the amount of times
prescribed by the target function c.

We now state some simple properties of flows which will be useful later on. The first
two lemmas below can be immediately derived from the LP formulation.

Lemma 1.5 — Monotonicity. Let c1, c2 : E → [0,∞) be such that c1
h(s, a) ≤ c2

h(s, a) for
all (s, a, h) ∈ E . Then

ϕ?(c1) ≤ ϕ?(c2).

Lemma 1.6 Let c1, c2 be two non-negative lower bound functions and α > 0. Then,

ϕ?(αc1 + c2) ≤ αϕ?(c1) + ϕ?(c2).

Lemma 1.7 — Flow bounds. For any lower bound function c,

max
h∈[H]

∑
s∈S

∑
a∈A

ch(s, a) ≤ ϕ?(c) ≤
∑
h∈[H]

∑
s∈S

∑
a∈A

ch(s, a).

Proof. Both inequalities are easy to see from the navigation constraints and the definition
of the value of a minimum flow. First, note that the navigation constraints imply that for
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flow vector η and any h ∈ [H],

ϕ(η) =
∑
a∈A

η1(s1, a)

(i)
=

∑
s∈S,a∈A

ηh(s, a)

(ii)

≥
∑
s∈S

∑
a∈A

ch(s, a),

where (i) is thanks to the navigation constraints (1.60) and (ii) is because the flow is feasible.
Taking the maximum over h, we get the lower bound on ϕ?(c). The upper bound is trivial
since we can construct a feasible flow in the following fashion. For each (h, s, a), we define
a flow vector ηhsa ∈ Ω by starting with ηhsah (s, a) = ch(s, a) and ηhsa` (s̃, ã) = 0 elsewhere.
Then we propagate the flow into the adjacent layers. In other words, for the successor
state s′ = fh(s, a) we choose one action a′ and set ηhsah+1(s′, a′) = ch(s, a). Similarly, we
choose one predecessor state-action pair (s−, a−) ∈ Ih(s) and set ηhsah−1(s−, a−) = ch(s, a).
By doing this recursively, we build a flow vector ηhsa that satisfies ηhsah (s, a) ≥ ch(s, a) and
whose value is exactly ch(s, a). Then a feasible flow is given by the sum vector

η =
∑
h,s,a

ηhsa.

By Lemma 1.6, ϕ(η) =
∑

h,s,a ϕ(ηhsa) =
∑

h,s,a ch(s, a). Therefore the value of the minimum
flow is at most this quantity. �

1.6.3.3 Minimum policy covers and minimum flows

A crucial problem that arises when trying to solve ε-BPI in a deterministic MDP is the
problem of computing a minimum policy cover. Imagine that we have run our ε-BPI
algorithm for t ≥ 1 episodes and collected nth(s, a) observations from each triplet (h, s, a).
Using these, we built high- probability confidence intervals on the optimal action-values

Q?h(s, a) ∈ [Q
h
(s, a), Qh(s, a)] ∀(h, s, a).

Based on the confidence intervals we can already establish that for every (h, s) ∈ [H]× S,
actions a such that Qh(s, a) < maxb∈AQh(s, b) are sub-optimal. Such triplets (h, s, a) no
longer need to be explored since we know that no optimal policy plays a at (h, s). We say
that they are eliminated. Therefore, we only want to collect observations from a subset of
triplets (h, s, a) ∈ {[H]×S ×A : Qh(s, a) ≥ maxb∈AQh(s, b)}. This motivates us to study
the minimum policy cover problem.

Formally, given a subset E ′ ⊆ E of the arcs (i.e., of the state-action-stage triplets), the
goal is to find a set of policies Πcover ⊆ Π of minimum size such that

∀(s, a, h) ∈ E ′, ∃π ∈ Πcover : (sπh, a
π
h) = (s, a).

That is, Πcover is the smallest set of policies that, played together, visit all arcs in E ′. This
problem can be easily reduced to a minimum flow problem with target function

ch(s, a) := 1
(
(s, a, h) ∈ E ′

)
,

which intuitively demands at least one visit to all (s, a, h) ∈ E ′, and zero visits from the
other triplets. Moreover, since c is integer-valued, an integer minimum flow exists which
can be computed by existing algorithms (e.g., Brandizi et al., 2012). Suppose that η? is one
such integer minimum flow. A policy cover can be easily extracted from it by the procedure
shown in Algorithm 4, which is similar to the method proposed by (Brandizi et al., 2012)
to obtain a minimum path cover in a layered DAG.
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Algorithm 4 Static Maximum Coverage
Input: deterministic MDP (without reward)M := (S,A, {fh}h∈[H], s1, H)
Solve LP (1.61) with targets ch(s, a) = 1 ((s, a, h) ∈ E ′) to get η?

Set η ← η?

Initialize Πcover ← ∅
while ϕ(η) > 0 do
Initialize a policy π with arbitrary actions
for h = 1, . . . ,H do
πh(sh)← arg maxa∈Ah(sh) ηh(s, a)
ηh(sh, πh(sh))← ηh(sh, πh(sh))− 1
sh+1 ← fh(sh, πh(sh))

end for
Πcover ← Πcover ∪ {π}

end while

Lemma 1.8 — size of policy cover. Let Πcover be the size of the policy cover returned by
Algorithm 4. Then

|Πcover| = ϕ?(1E ′).

Proof. Note that at every iteration of Algorithm 4, the value of the flow η is decreased by one
while the cardinal of Πcover is increased by the same amount. Since Algorithm 4 only stops
when the value of the update flow is zero, this means that |Πcover| = ϕ(η?) = ϕ?(1E ′). �

1.6.3.4 Dynamic Maximum Coverage and submodular maximization

While Static Maximum Coverage solves the minimum policy cover problem with optimal
sample complexity, it is not the most intuitive strategy one would think of to explore an
MDP. We would like to analyze a simpler strategy, named Dynamic Maximum Coverage
and hopefully prove some sample complexity guarantees for it too. At every iteration,
Dynamic Maximum Coverage solves a Dynamic Program for some reward r̃ and plays the
resulting policy. The exploration reward r̃ is initialized as an indicator reward over all
triplets in E ′: r̃h(s, a) := 1 ((s, a, h) ∈ E ′), then updated each time by setting zero reward
for the triplets that were visited. The pseudo-code of Dynamic Maximum Coverage is
reported in Algorithm 5.

Algorithm 5 Dynamic Maximum Coverage
1: Input: deterministic MDP (without reward)M := (S,A, {fh}h∈[H], s1, H)
2: Initialize number of visits nh(s, a)← O for all (h, s, a)
3: while min(h,s,a)∈E ′ nh(s, a) < 1 do
4: Compute πt ← arg maxπ∈ΠD

∑H
h=1 1 ((h, s, a) ∈ E ′, nh(sπh, a

π
h) < 1)

5: for h = 1, . . . ,H do
6: Play action πh(sh)
7: nh(sh, πh(s))← nh(sh, πh(s)) + 1
8: sh+1 ← fh(sh, πh(sh))
9: end for
10: end while



1.6 Overview of Contributions 43

Reduction to submodular maximization Let us define the set function C : 2ΠD → [0,∞)
as

C(Π′) :=
H∑
h=1

∑
s∈S

∑
a∈A

1
(
(h, s, a) ∈ E ′, ∃π ∈ Π′ : (sπh, a

π
h) = (s, a)

)
∀Π′ ⊆ ΠD.

Moreover, let Π̄i be the set containing the first i policies played by Dynamic Maximum
Coverage. We note that the policy selection strategy of Dynamic Maximum Coverage (Line
4 of Algorithm 5) is essentially a greedy algorithm approximating the maximization of C.
In fact, maximizing C corresponds to finding a set of policies that visit all triplets in E ′.
Instead of directly maximizing the set function C, Dynamic Maximum Coverage greedily
builds the set Π̄i by adding, at each round where it is used, the policy visiting most of
these unvisited triplets. Let us prove some of the important properties of C.

First, we relate the maximization of C to the computation of a minimum flow with
target function ch(s, a) ← 1 ((h, s, a) ∈ E ′), i.e., the same one used by Static Maximum
Coverage.

Proposition 1.3 — Maximization vs minimum flow. For each v ≥ ϕ?(1E ′),

max
Π′⊆ΠD:|Π′|≤v

C(Π′) = max
Π′⊆ΠD

C(Π′) = |E ′|.

Proof. Clearly, C(Π′) ≤ |E ′| for all Π′ ⊆ ΠD, which is attained when all state-action-stage
triplets in E ′ are visited at least once. When the cardinality of Π′ can be at least ϕ?(1E ′),
we can choose Π′ to include a set of ϕ?(1E ′) policies realizing a minimum 1-flow (i.e., a
minimum policy cover as the one computed by Static Maximum Coverage). These, by
definition, cover all under-visited triplets and thus attain the maximal value |E ′|. �

Observe that if Π′ ⊆ Π′′ then Π′′ must visit at least all the triplets visited by Π′. Therefore,
the following proposition holds.

Proposition 1.4 — Monotonicity. For each Π′ ⊆ Π′′ ⊆ ΠD, C(Π′) ≤ C(Π′′).

Proposition 1.5 — Sub-modularity. Function C is sub-modular, i.e., for every Π′ ⊆ Π′′ ⊆
ΠD and π̄ ∈ ΠD \Π′′,

C(Π′ ∪ {π̄})− C(Π′) ≥ C(Π′′ ∪ {π̄})− C(Π′′).

Proof. Note that

C(Π′∪{π̄})− C(Π′)

:=
∑

(h,s,a)∈E ′
1
(
(sπ̄h, a

π̄
h) = (s, a),¬∃π ∈ Π′ : (sπh, a

π
h) = (s, a)

)
=

H∑
h=1

1
(
¬∃π ∈ Π′ : (sπh, a

π
h) = (sπ̄h, a

π̄
h)
)

≥
H∑
h=1

1
(
¬∃π ∈ Π′′ : (sπh, a

π
h) = (sπ̄h, a

π̄
h)
)

= C(Π′′ ∪ {π̄})− C(Π′′),

where the inequality holds since Π′ ⊆ Π′′. �
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Proposition 1.6 — Greedy maximization. Let Π̄i be the set containing the first i ≥ 0
policies computed by Dynamic Maximum Coverage. Then, for any positive integer v,

C(Π̄i) ≥ (1− e−(i+1)/v) max
Π′⊆ΠD:|Π′|≤v

C(Π′).

Proof. This is a simple consequence of Theorem 1.5 of (Krause & Golovin, 2014) on greedy
maximization of submodular functions. We just need to show that Dynamic Maximum
Coverage is greedily maximizing the function C. To that end, observe that at iteration i+ 1
of Dynamic Maximum Coverage, we can rewrite the objective in Line 4 if Algorithm 5 as

f(π) :=

H∑
h=1

1
(
(h, s, a) ∈ E ′, nh(sπh, a

π
h) < 1

)
=

∑
(h,s,a)∈E ′

1
(
¬∃π̄ ∈ Π̄i : (sπh, a

π
h) = (sπ̄h, a

π̄
h)
)

=
∑

h∈[H],s∈S,a∈A

1
(
(h, s, a) ∈ E ′, (sπ̄h, a

π̄
h) = (s, a),¬∃π̄ ∈ Π̄i : (sπ̄h, a

π̄
h) = (s, a)

)
= C(Π̄i ∪ {π})− C(Π̄i).

�

Contribution 1.5 We now state the main theorem of this section.

Theorem 1.3 — (Theorem 10, Tirinzoni et al., 2022). The number of episodes played
by Dynamic Maximum Coverage is upper-bounded

d ≤ ϕ?(1E ′)(log(H) + 1).

Thus we see that the sample complexity of Dynamic Maximum Coverage is nearly
optimal, as we lose at most a logarithmic factor in the horizon compared to solving the
minimum flow LP.

Proof. Let i := supi∈N{i : C(Π̄i) ≤ |E ′| − ϕ?(1E ′)} be the last iteration at which at least
ϕ?(1E ′) triplets still need to be visited by the algorithm. Then, by Proposition 1.6 combined
with Proposition 1.3,

|E ′| − ϕ?(1E ′) ≥ C(Π̄i)

≥ (1− e−(i+1)/ϕ?(1E′ )) max
Π′⊆Π:|Π′|≤ϕ?(1E′ )

C(Π′)

= (1− e−(i+1)/ϕ?(1E′ ))|E ′|.

Thus,

(i+ 1) ≤ ϕ?(1E ′) log(|E ′|/ϕ?(1E ′)) ≤ ϕ?(1E ′) log(H),

where the second inequality holds since ϕ?(1E ′) ≥ maxh∈[H]

∑
s∈S

∑
a∈A 1 ((h, s, a) ∈ E ′)

by Lemma 1.7 and |E ′| ≤ H maxh∈[H]

∑
s∈S

∑
a∈A 1 ((h, s, a) ∈ E ′). This implies that

i ≤ ϕ?(1E ′) log(H)− 1. Finally, note that d ≤ i+ ϕ?(1E ′) since at iteration i+ 1 less than
ϕ?(1E ′) triplets are missing and the algorithm visits at least a new one every episode. �
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1.6.3.5 Two-player zero-sum games for efficient coverage in the stochastic case

In this section, we go back to the general case of coverage, i.e. when the target function c
is not necessarily the indicator over some subset of triplets and the transition kernel ofM
is no longer assumed to be deterministic.

Definition 1.7 — Active coverage algorithms. Given a failure probability δ ∈ (0, 1), we
want an algorithm that explores the MDP and with probability at least 1− δ collects
a ch(s, a) observations from every triplet (h, s, a). We say that such an algorithm is
(δ, c)-correct for coverage.

Motivation We shall see that a (δ, c)-correct coverage algorithm, named CovGame, is
the backbone of an RFE algorithm and an ε-BPI algorithm respectively presented in
Chapters 3 and 4. In fact, we will show that one can use CovGame in a plug-and-
play fashion to solve the RFE problem, simply by setting an appropriate target function
ch(s, a) ∝ supπ∈ΠD

pπh(s, a). On the other hand, for ε-BPI we combine CovGame with a
new technique that we call "Implicit policy eliminations" to get an algorithm that enjoys
instance-dependent sample complexity, see Section 1.6.4. Here we present a simplified
version of CovGame, as it conveys the main ideas behind solving coverage while still being
quite simple to analyze.

Intuition Let X := {(h, s, a) : ch(s, a) > 0} be the set of triplets to be covered and define
pπ

exp

h (s, a) := PM,πexp(sh = s, ah = s). We will prove in Theorem 3.1 that any (δ, c)-correct
coverage algorithm needs roughly more than

ϕ?(c) := inf
πexp∈ΠS

max
(s,a,h)∈X

ch(s, a)

pπ
exp

h (s, a)
, (1.62)

episodes (in expectation) to complete the coverage task. Now, observe that

1

ϕ?(c)
= sup

πexp∈ΠS

min
(s,a,h)∈X

pπ
exp

h (s, a)

ch(s, a)

= sup
πexp∈ΠS

inf
λ∈ΣX

∑
h,s,a

pπ
exp

h (s, a)λh(s, a)

ch(s, a)

= sup
πexp∈ΠS

inf
λ∈ΣX

EM,πexp

[∑
h,s,a

1(sh = s, ah = a)λh(s, a)

ch(s, a)

]
,

where ΣX := {ω ∈ R|X |+ :
∑

i ωi = 1} is the simplex with support over X . We see that the
inverse of the lower bound above is the value of a two-player zero-sum game between a first
player that plays a policy πexp to explore the MDP and a second player that plays a weight
vector λ in the simplex ΣX . Moreover, the objective of the max-min program above is the
value function of πexp for a particular reward r̃h(s, a) := λh(s, a)/ch(s, a). The previous
observations suggest to use a gaming approach that shares some similarities with Dynamic
Maximum Coverage. Specifically, we use the same idea of designing a suitable exploration
reward which we will try to maximize by running an algorithm for regret minimization
as a subroutine. However, instead of handcrafting the reward ourselves, we let another
competing algorithm design it for us. This gives rise to the meta-algorithm described in
Algorithm 6, which employs a regret minimizer AΠ and an online learner Aλ as a subroutine.
The idea is that Aλ is penalized whenever is outputs large weights for some triplets (h, s, a)
that were easily visited by AΠ. By doing so, we make Aλ challenge AΠ more by putting
higher rewards in triplets that are hard to reach, thereby making the exploration process
efficient.
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Remark 1.7 We shall prove in Lemma 3.1 that the quantity ϕ?(c) defined in (1.62) boils
down to the minimum flow defined in (1.61) wheneverM has deterministic transitions.
�

Algorithm 6 Simplified CovGame

1: Input: target function c, regret minimization algorithm AΠ, online learner Aλ, risk δ.
2: Initialize dataset of episodes D0 ← ∅
3: Set target set X ← {(s, a, h) ∈ [H]× S ×A : ch(s, a) > 0}
4: Normalize targets c̃h(s, a)← ch(s, a)/cmin (cmin := min(h,s,a)∈X ch(s, a))
5: Initialize challenger weights λ1

h(s, a)← 1((h, s, a) ∈ X )/|X | for all h, s, a
6: for t = 1, 2, . . . do
7: Define reward Rth(s, a) = 1((h, s, a) ∈ X )λth(s, a)/c̃h(s, a) for all h, s, a
8: Feed AΠ with Rt, confidence δ/2 and get exploration policy πt

9: Play πt and observe trajectory Ht := {(sth, ath, sth+1)}1≤h≤H−1

10: Update dataset Dt ← Dt−1 ∪Ht.
11: Feed Aλ with loss

`t(λ) =
∑

(h,s,a)∈X

λh(s, a)
1(sth = s, ath = a)

c̃h(s, a)

and get new weight vector λt+1

12: If ∀(h, s, a), nh(s, a;Dt) ≥ ch(s, a): Stop and return Dt
13: end for

Assumption 1.5 There exists a sublinear fonction T 7→ Rλ(T ) that bounds the regret of
Aλ anytime, i.e.

∀T ∈ N∗,
T∑
t=1

`t(λt)− min
λ∈ΣX

T∑
t=1

`t(λ) ≤ Rλ(T ) a.s. . (1.63)

Furthermore, there exists a sublinear fonction T 7→ RΠ(T, δ) that upper bounds the
dynamic regret of AΠ with high-probability, i.e., for any sequence of reward functions
(Rt)t≥1 ∈ (ΣX )N,

PM,AΠ

(
∀T ∈ N∗,

T∑
t=1

sup
π
V π

1

(
s1;Rt

)
−

T∑
t=1

V πt

1

(
s1;Rt

)
≤ RΠ(T, δ)

)
≥ 1−δ . (1.64)

Now we state the main result of this section, which is adapted from Theorem 3.2.

Theorem 1.4 Under the previous assumption, with probability at least 1 − δ, for all
T ≥ 1,

min
(h,s,a)∈X

nTh (s, a)

ch(s, a)
≥ T

ϕ?(c)
− 1

cmin

[
Rλ(T ) +RΠ(T, δ/2) +

√
T log

(
4T 2

δ

)]
The theorem above shows that the number of observations collected by Simplified Covgame
grows at a nearly optimal rate. Indeed, T/ϕ?(c) is the rate at which the expectation of the
ratio nTh (s, a)/ch(s, a) would increase after T episodes if we had an oracle that provides the
optimal πexp solution to the lower bound (1.62) and played such policy. However, since we
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do not have access to such an oracle, the observations increase at the optimal rate minus a
o(T ) term, which represents the cost of learning how to explore the MDP.

Corollary 1.1 Using AΠ = UCBVI(Azar et al., 2017) a and Aλ = HEDGE (Freund
& Schapire, 1997), we have RΠ(T, δ) ≤ 32 log(T + 1)

√
SAH2T (log(2SAH/δ) + S) and

Rλ(T ) ≤
√

2T log(SAH) +
√

log(SAH)/8.
This yields that with probability at least 1 − δ, Simplified CovGame instantiated

with the algorithms above has sample complexity

τ ≤ 2ϕ?(c) + Õ
((

ϕ?(c)

cmin

)2

SH2A(log(1/δ) + S)

)
,

where Õ hides logarithmic factors in S,A,H, 1/cmin and ϕ?(c).
aA modified version of UCBVI to handle changing rewards, see appendix C of (Al-Marjani et al.,

2023).

Proof sketch of Theorem 1.4

We denote by nT = [nTh (s, a)]h,s,a the vector of the number of visits to all the triplets. For
two vectors x = [xi]i and y = [yi]i, x/y := [xi/yi]i is the entry-wise division of x by y. The
first is structured in three steps. First, we relate the counts to the loss of the Aλ:

cmin min
(h,s,a)∈X

nTh (s, a)

ch(s, a)
= inf

λ∈ΣX
λ · (nT /c̃) (definitions of c̃ and ΣX )

= inf
λ∈ΣX

∑
(h,s,a)∈X

λh(s, a)

T∑
t=1

1
(
sth = s, ath = a

)
c̃h(s, a)

= inf
λ∈ΣX

T∑
t=1

`t(λ) (definition of `t(λ))

≥
T∑
t=1

`t(λt)−Rλ(T ). (regret bound of Aλ)

Second, we go from the loss of Aλ to the optimal value function of AΠ:

T∑
t=1

`t(λt) =
T∑
t=1

∑
h,s,a

1((h, s, a) ∈ X )λth(s, a)

c̃h(s, a)

(
1
(
sth = s, ath = a

)
± pπth (s, a)

)
(definition of `t(λt))

=
T∑
t=1

∑
h,s,a

pπ
t

h (s, a)Rth(s, a) +
T∑
t=1

∑
h,s,a

Rth(s, a)

(
1
(
sth = s, ath = a

)
− pπth (s, a)

)

=

T∑
t=1

V πt

1

(
s1;Rt

)
+MT (definition of V π

1 (s1;R) + martingale)

≥ sup
π

T∑
t=1

V π
1

(
s1;Rt

)
−RΠ(T, δ/2)−

√
T log

(
4T 2

δ

)
.

(Regret of AΠ + Azuma-Hoeffding’s inequality)
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Finally, we move from the optimal value function of AΠ to the lower bound (1.62).

sup
π

T∑
t=1

V π
1

(
s1;Rt

)
= sup

π

T∑
t=1

∑
h,s,a

pπh(s, a)
1((h, s, a) ∈ X )λth(s, a)

c̃h(s, a)

= T sup
π

∑
h,s,a

(
pπh(s, a)

1((h, s, a) ∈ X )

c̃h(s, a)

)(∑T
t=1 λ

t
h(s, a)

T

)

≥ T sup
π

min
(h,s,a)∈X

pπh(s, a)

c̃h(s, a)
= cmin

T

ϕ?(c)
.

Wrapping up everything, we get

cmin min
(h,s,a)∈X

nTh (s, a)

ch(s, a)
≥ cmin

T

ϕ?(c)
−Rλ(T )−RΠ(T, δ/2)−

√
T log

(
4T 2

δ

)

=⇒ min
(h,s,a)∈X

nTh (s, a)

ch(s, a)
≥ T

ϕ?(c)
− 1

cmin

[
Rλ(T ) +RΠ(T, δ/2) +

√
T log

(
4T 2

δ

)]
.

�

Remark 1.8 When the target function c is uniform: ch(s, a) = N1 ((h, s, a) ∈ X ), the
sample complexity showcased in Corollary 1.1 is nearly optimal. By "near-optimal", we
mean that when N →∞ the dominating term is 2ϕ?(c). Hence, in this regime, we are
able to match the lower bound up to a factor of 2. However, if the target function is
unbalanced, meaning that the ratio cmax/cmin is large, the second term in the bound
above is no longer negligible and we can not claim to be near-optimal. We will explain
in Chapter 3 how to improve Algorithm 6 in order to solve this issue. �

1.6.4 Implicit policy eliminations for computationally-efficient approximate BPI

In Chapter 4, we will derive a problem-dependent lower bound for ε-BPI. We will also see
that PEDEL, an ε-BPI algorithm proposed by (Wagenmaker & Jamieson, 2022) for the
general case of linear MDPs, nearly matches our lower bound when we instantiate it for the
tabular MDP setting. However, PEDEL has exponential time and memory complexities as it
needs to enumerate the set of deterministic policies ΠD in order to eliminate the suboptimal
ones. The structure of PEDEL is briefly sketched in Algorithm 7. Notation: We let
pπh(s, a) := PM,π(sh = s, ah = a) and p̂π,kh (s, a) := PM̂k,π

(sh = s, ah = a) where M̂k is the
empirical MDP constructed after k iterations of PEDEL. Ω(M) := {[pπh(s, a)]h∈[H],s∈S,a∈A :
π ∈ ΠS} denotes the set of all valid state-action distributions.
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Algorithm 7 General structure of PEDEL
1: Input: precision ε, risk δ.
2: Initialize set of candidate policies Π0 ← ΠD

3: for k = 0, 1, . . . do
4: Run exploration procedure to collect nkh(s, a) observations from each (h, s, a) ∈

[H]× S ×A such that

∀h ∈ [H], max
π∈Πk

∑
s,a

p̂π,kh (s, a)2

nkh(s, a)
≤ εk. (1.65)

5: Update the set of candidate policies

Πk+1 ← Πk \
{
π ∈ Πk : V̂ π

1 < max
π′∈Πk

V̂ π′
1 − 21−k

}
6: If |Πk+1| = 1 or 2−k ≤ ε:
7: Stop and return any π̂ ∈ Πk+1

8: end if
9: end for

At every iteration k, PEDEL keeps a set of candidate policies Πk which is initialized
as Π0 := ΠD. The exploration procedure aims to collect observations that will reduce the
size of a confidence interval over the values of policies in Πk below a certain threshold
εk

11. Then at the end of iteration k, the algorithm updates the set of candidate policies
by removing those that are provably suboptimal. PEDEL stops when there remains only
a single policy in the candidate set or it has reached a precision that is below ε. Hence,
we see that needs Ω

(
(SH)A

)
operations and memory space in its exploration procedure to

check whether the condition (1.65) holds and to eliminate suboptimal policies (line 5 of
Algorithm 7). So how can we eliminate policies while keeping a polynomial time-memory
complexity?

This is where our technique of implicit policy eliminations comes into the picture. We
exploit two basic properties of MDPs. The first is that the value of any Markovian policy π
is linear in its state-action distribution [pπh(s, a)]h∈[H],s∈S,a∈A:

V π
1 =

∑
h,s,a

pπh(s, a)rh(s, a). (1.66)

The second property is the fact that the set of state-action distributions Ω(M) is a polytope
defined by linear constraints. Precisely, we know that (e.g., Puterman, 1994) that

Ω(M) =

{
ρ ∈ RSAH+ :

∑
a∈A

ρ1(s, a) = 1,
∑
a∈A

ρh(s, a) =
∑

(s′,a′)

ρh−1(s′, a′)ph−1(s|s′, a′) ∀(h, s)
}
.

Therefore, instead of performing operations over sets of policies we define sets of candidate
state-action distributions (Ωk)k≥1. The general idea is that to eliminate suboptimal policies,
we take the set Ω(M̂k) and add to it a linear constraint of the shape∑

h,s,a

ρh(s, a)rh(s, a) > sup
η∈Ωk

∑
h,s,a

ηh(s, a)rh(s, a)− 21−k. (1.67)

11See (Wagenmaker & Jamieson, 2022) for the precise tuning of the sequence (εk)k
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This defines the set Ωk. The advantages over line of Algorithm 7 are that: (1) computing
the supremum in (1.67) can be done by solving a Linear Program (LP) for which there
are several algorithms that run in polynomial time; (2) storing the constraint above only
requires a memory space that is linear in SAH. As for the exploration procedure, observe
that if we run CovGame with target function ch(s, a) = supρ∈Ωk

ρh(s, a)/εk, then with
probability at least 1− δ we would collect (nkh(s, a))h,s,a observations such that

∀h ∈ [H], sup
ρ∈Ωk

∑
s,a

ρh(s, a)2

nkh(s, a)
≤ εk sup

ρ∈Ωk

∑
s,a

ρh(s, a) = εk.

Thus, we have achieved a sufficient condition for (1.65) by reducing the size of the confidence
interval over the values of policies that satisfy [p̂π,kh (s, a)] ∈ Ωk. Observe that such an
operation can still be done in polynomial time since computing the targets amounts to
solving another LP. In conclusion, we have implicitly eliminated the suboptimal policies
such that [p̂π,kh (s, a)] does not satisfy (1.67) using polynomial time and memory!

We give more details on the resulting ε-BPI algorithm in Chapter 4.
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In this chapter, we present Navigate-and-Stop, an algorithm for exact Best Policy Identi-
fication (Section 1.4.1) that uses mixing properties of Markov Chains to converge to any
allocation vector ω?(M). The contents of this chapter are based on the conference paper:

Aymen Al-Marjani, Aurélien Garivier, and Alexandre Proutiere. Navigating to the
Best Policy in Markov Decision Processes. In Advances in Neural Information
Processing Systems (NeurIPS), 34, 2021.
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2.1 On the Optimization Objective and the Optimal Allocation

In Chapter 1, we assumed that the solution to the optimization problem in (1.32) is unique.
In reality, we do not know whether this is truly the case. Indeed, let us define the quantity

T (M, ω) :=

(
inf

M′∈Alt(M)

∑
s,a

ωsaKLM|M′(s, a)

)−1

. (2.1)

Recall that we proved in Theorem 1.1 a lower bound on the sample complexity of BPI,
which is written as

lim inf
δ→0

EA,M[τ ]

log(1/δ)
≥ T ?(M) = inf

ω∈Ω(M)
T (M, ω), (2.2)

where the equality can be checked easily from the definitions of T (M, ω) and T ?(M). Then
we showed in (Al-Marjani & Proutiere, 2021) that even for a "toy" MDP of 2 states and 2
actions, the minimization problem in (2.1) is not convex. As such, it is difficult to obtain
theoretical guarantees on the uniqueness of its solution, let alone come up with a tractable
method to compute it. In the same paper, we also provided the following tractable upper
bound on T (M, ω). Some notations are due before stating the result.

Notation We recall that Σ := {ω ∈ RSA+ :
∑SA

i=1 ωi = 1 } refers to the simplex of dimension
SA− 1, while

Ω(M) := {ω ∈ Σ : ∀s ∈ S,
∑
a∈A

ωsa =
∑

s′∈S,a′∈A
p(s|s′, a′)ωs′a′}

denotes the set of allocation vectors that satisfy the navigation constraints. M?,1 denotes
the class of discounted MDPs with a unique optimal policy. ∆(s, a) := V ?(s)−Q?(s, a) is
the suboptimality gap of state-action pair (s, a). We use the shorthand π? to denote the
unique optimal policy ofM. ∆min(M) := mina6=π?(s) ∆(s, a) denotes the minimum positive
suboptimality gap. For a real-valued function f : X → R, sp(f) := supx,x′∈X |f(x′)− f(x)|
denotes the span of f .

Lemma 2.1 — Theorem 1, (Al-Marjani & Proutiere, 2021). For all vectors ω ∈ Σ and
MDPsM∈M?,1, it holds that T (M, ω) ≤ U(M, ω), wherea

U(M, ω) := max
(s,a):a6=π?(s)

Hsa

ωsa
+

H?

Smin
s

ωs,π?(s)
, (2.3)

and


Hsa :=

2

∆(s, a)2
+ max

(
16Vars′∼p(s,a)[V

?
M(s′)]

∆(s, a)2
,
6 sp(V ?

M)4/3

∆(s, a)4/3

)
,

H? :=
2S

[∆min(M)(1− γ)]2
+O

(
S

∆min(M)2(1− γ)3

)
.

(2.4)

aThe exact definition of H? is given in Section 2.6.

Using U(M, ω), we obtain the following upper bound on the characteristic time in (2.2):

T ?(M) ≤ U?(M) := inf
ω∈Ω(M)

U(M, ω). (2.5)

The advantages of this upper bound U?(M) are that:
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1. U?(M) is still a problem-specific quantity as it depends on the gaps and variances of
the value function inM.

2. The function ω 7→ U(M, ω) is strictly convex and the feasible set in (2.5) is also
convex. Therefore there is a unique allocation vector that solves (2.5).

3. Since the optimization problem in (2.5) has a convex objective and convex constraints,
we can easily compute its solution using either the Franke-Wolfe method or the
projected subgradient-descent algorithm.

Definition 2.1 For the rest of this chapter, we shall define the optimal allocation vector
as the one that solves (2.5),

ω?(M) := arg min
ω∈Ω(M)

U(M, ω). (2.6)

Remark 2.1 One can easily check that ω?sa(M) > 0 for all state-action pairs (s, a).
Indeed, from the definition of U(M, ω), the objective function of an allocation vector ω
that has a null component is infinite. Therefore, such an allocation cannot be optimal. �

Remark 2.2 While our algorithm’s design implements this particular choice of an alloca-
tion vector, the results that we will present can be applied in a straightforward fashion
if (i) the solution to (2.2) is unique; (ii) one assumes access to an optimization oracle
that solves that problem. �

2.2 C-Navigation: A Sampling Rule for Asymptotic Optimality

We introduce a few notations to simplify the presentation. Any stationary Markov pol-
icy π induces a finite Markov chain on S × A whose transition matrix is defined by
Pπ
(
(s, a), (s′, a′)

)
:= pM(s′|s, a)π(a′|s′). It also induces a Markov chain on the state space

S whose transition matrix is given by P̃π(s, s′) :=
∑

a∈A π(a|s)pM(s′|s, a). With some
abuse of notation, we will use Pπ to refer to both Markov chains. Pnπ denotes the n-th
power of Pπ. A standard result in Markov chain theory states that Pnπ is the transition
matrix corresponding to n-th step Markov chain. We denote by πu the uniform policy,
i.e., πu(a|s) = 1/A for all pairs (s, a). For a pair of policies π1 and π2, the mixture policy
with parameter ε is defined through π(a|s) := επ1(a|s) + (1 − ε)π2(a|s) for all (s, a). In
that case, we will simply write π := επ1 + (1 − ε)π2. Finally, we define the vector of
visitation-frequencies at time t, N(t)/t :=

(
Nsa(t)/t

)
(s,a)∈S×A.

Before we proceed, we need to make the following assumptions.

Assumption 2.1 We assume that M is communicating, i.e., we can reach any state s′

starting from any other state s. This means that for all (s, s′) ∈ S, there exists a
deterministic Markovian policy π ∈ ΠD and an integer t ≥ 1 such that

P t(s, s′) = PM,π(st = s′|s1 = s) > 0, (2.7)

where PM,π is the probability distribution of trajectories induced by playing π inM.

We restrict our attention to the case where M is communicating, for otherwise, there
would be a non-zero probability that the algorithm enters a set of states from which
there is no possible comeback. In this case, it becomes impossible to identify the optimal
policy.
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Assumption 2.2 Pπu is aperiodic.

This assumption is mild as it is enough to have only one state s̃ and one action ã such that
PM(s̃|s̃, ã) > 0 for it to be satisfied. Furthermore, Assumptions 2.1 and 2.2 combined imply
that Pπu is ergodic (because it is irreducible and aperiodic). This is still less restrictive than
the "M is ergodic" assumption which is ubiquitous in RL literature (Burnetas & Katehakis,
1997; Tarbouriech & Lazaric, 2019; Pesquerel & Maillard, 2022). Indeed, assuming that the
MDP is ergodic means that the Markov chains of all policies are ergodic.

2.2.1 Building-up the intuition
In contrast with the settings of MABs and MDPs with a generative model where one could
converge to any allocation vector in Σ through C-tracking, see (Garivier & Kaufmann, 2016;
Al-Marjani & Proutiere, 2021), here we face the challenge of navigation. Namely, the agent
can only choose a sequence of actions (at)t≥1 and follow the resulting trajectory whose law
is determined by the transition kernel: st+1 ∼ pM(.|st, at). Therefore, one might wonder
whether the convergence to the optimal allocation can be achieved by following a simple
policy. A natural candidate is the oracle policy defined by

∀(s, a) ∈ S ×A, πω?(M)
(
a|s
)

:=
ω?sa(M)∑
b∈A ω

?
sb(M)

. (2.8)

We will use πω?(M) to denote the oracle policy ofM and πω? whenever the MDP under
consideration is clear from the context. The oracle policy satisfies the following prop-
erty.

Proposition 2.1 ω?(M) is the unique stationary distribution of the Markov chain whose
transition matrix is Pπω? .

Proof. It is immediate to check that Pπω?ω
?(M) = ω?(M) using the fact that ω?(M) ∈

Ω(M). Hence ω?(M) is a stationary distribution of Pπω? . The uniqueness is guaranteed by
the irreducibility of Pπω? , see Proposition 1.7 in (Levin et al., 2006) for instance. Indeed,
a direct consequence of Assumption 2.1 is that for every couple of state-action pairs(
(s, a), (s′, a′)

)
∈ (S ×A)2, there exists π ∈ ΠD and t ≥ 1 such that P tπ

(
(s, a), (s′, a′)

)
=

PM,π(st = s′, at = a|s1 = s, at = a) > 0. By taking η = min
s∈S,a∈A

πω?(a|s), we have that

η > 0 (see Remark 2.1) and for all
(
(s, a), (s′, a′)

)
∈ (S ×A)2,

Pπω?
(
(s, a), (s′, a′)

)
= pM(s′|s, a)πω?(a

′|s′) ≥ ηpM(s′|s, a)π(a′|s′) = ηPπ
(
(s, a), (s′, a′)

)
.

Therefore it also holds that P tπω?
(
(s, a), (s′, a′)

)
> 0, which mean that Pπω? is irreducible.

�

πω?(M) is the "target" policy that we would like to play since, by the Ergodic theorem
(Theorem 4.16 in (Levin et al., 2006)), executing it guarantees convergence of the visitation-
frequencies N(t)/t to the stationary distribution ω?(M). However, because the rewards
and transitions ofM are unknown to the algorithm, so is πω?(M). We circumvent this
issue by using the oracle policy for the empirical MDP M̂t whose reward function and
transition kernel are the Maximum Likelihood Estimate (MLE) of rM and pM. Provided
that the MLEs are consistent M̂t −→

t→∞
M, we can hope that using πω?(M̂t) for exploration

will lead to the same asymptotic results than if we had used πω?(M) instead. To achieve
the previous requirement, we force exploration by playing a mixture with the uniform
policy. This ensures that all actions in all states are played sufficiently enough so that
Nsa(t) −→

t→∞
∞ for all (s, a).
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Definition 2.2 — C-Navigation. Given a decreasing sequence of mixture parameters
(εt)t≥1 and a sequence of empirical estimates

(
M̂t

)
t≥1

, the C-Navigation sampling rule
plays an action at ∼ πt(.|st) where

πt := εtπu + (1− εt)
∑t−1

j=0 πω?(M̂j)

t
, ∀t ≥ 1. (2.9)

Observe that we explore using a Cesàro-mean of oracle policies instead of the current
estimate of the oracle policy. This ensures the stability of the non-homogeneous Markov
chain, a property that will be crucial for our convergence guarantees.

2.2.2 Tuning the mixture parameters

We begin by defining an important parameter that describes how well-connected are the
states through the transition kernel ofM.

Definition 2.3 We define the communication parameter m as the maximum number of
transitions that are needed to travel between any pair of states in M with positive
probability:

m := max
(s,s′)∈S2

min{n ≥ 1 : ∃π : S → A, Pnπ (s, s′) > 0}.

Remark 2.3 Note that if it takes m steps to move between any pair of states (s, s′) with
non-zero probability, then we can move between any pair of state-actions ((s, a), (s′, a′))
in at most m+ 1 steps. Indeed, by playing action a at s, we move to some intermediate
state s̃. From there, we have at most m steps to reach s′ and play a′. �

If m is small, e.g. m = 1, then all states are reachable from any other state within a
one-step transition. As a result, it takes only a small effort to explore all states and actions.
On the other hand, m can be as large as S − 1 in the worst case1. In such a scenario, the
navigation challenge becomes harder since the agent may need to go through several "lucky"
transitions to cover all the states in a short time. Given these observations, it is only
natural that m quantifies how much forced-exploration the algorithm must perform. Our
next result is a lemma showing a sufficient condition on the sequence (εt)t≥1 to guarantee
forced exploration with high probability.

2.2.2.1 Sufficient conditions

Lemma 2.2 — High probability forced exploration. Denote by τk(s, a) the k-th time that
the algorithm visits the state-action pair (s, a). Suppose that the exploration rate of
C-Navigation satisfies εt ≥ t

− 1
2(m+1) for all t ≥ 1. Then there exists a parameter η > 0

that only depends onM such that

∀α ∈ (0, 1), P
(
∀(s, a) ∈ S ×A, ∀k ≥ 1, τk(s, a) ≤ λαk4

)
≥ 1− α,

where λα := (m+1)2

η2 log2(1 + SA
α ).

By inverting the inequality on the hitting times above, we immediately get the following
Corollary.

1S − 1 corresponds to the length of the shortest path between any pair of nodes in a graph whose nodes
are the states ofM and where all edges have weight one.
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Corollary 2.1 Denote by Nsa(t) the number of times the agent visits state-action (s, a)
up to and including time step t. Then under the same condition of the lemma above we
have

∀α ∈ (0, 1), P
(
∀(s, a) ∈ S ×A, ∀t ≥ 1, Nsa(t) ≥

(
t

λα

)1/4

− 1

)
≥ 1− α.

Remark 2.4 When the communication parameter m is unknown to the learner, one
can always replace it with its worst-case value mmax = S − 1. However, when prior
knowledge is available, using a faster-decreasing sequence εt = t

− 1
2(m+1) instead of t−

1
2S

can be useful to accelerate convergence, especially when the states ofM are "densely
connected", i.e., m� S − 1. �

Proof. For the sake of simplicity, we let Pt := Pπt be the transition matrix induced by the
policy that C-Navigation plays at time step t. We also denote a state-action pair by z
instead of (s, a). Let f be some increasing function such that f(N) ⊂ N and f(0) = 0 and
define the event E :=

(
∀z ∈ S × A, ∀k ≥ 1, τk(z) ≤ f(k)

)
. We will prove the following

more general result:

P(Ec) ≤ SA
∞∑
k=1

b f(k)−f(k−1)−1
m+1

c−1∏
j=0

[
1− η

m+1∏
l=1

εf(k−1)+(m+1)j+l

]
, (2.10)

where η is a constant depending onM. Then we will tune f(k) and εt so that the right-hand
side is less than α. First, observe that

Ec =
⋃

z∈S×A

∞⋃
k=1

(
τk(z) > f(k) and ∀j ≤ k − 1, τj(z) ≤ f(j)

)
.

Using the decomposition above, we upper bound the probability of Ec by the sum of
probabilities for k ≥ 1 that the k-th excursion from and back to z takes too long:

P(Ec) ≤
∑

z∈S×A

[
P(τ1(z) > f(1)) +

∞∑
k=2

P
(
τk(z) > f(k) and ∀j ≤ k − 1, τj(z) ≤ f(j)

)]

≤
∑

z∈S×A

[
P(τ1(z) > f(1)) +

∞∑
k=2

P
(
τk(z) > f(k) and τk−1(z) ≤ f(k − 1)

)]

≤
∑

z∈S×A

[
P(τ1(z) > f(1)) +

∞∑
k=2

P
(
τk(z)− τk−1(z) > f(k)− f(k − 1), τk−1(z) ≤ f(k − 1)

)]
≤

∑
z∈S×A

[
P(τ1(z) > f(1))

+
∞∑
k=2

f(k−1)∑
n=1

P
(
τk(z)− τk−1(z) > f(k)− f(k − 1)

∣∣τk−1(z) = n
)
P(τ0(z) = n)

]

=
∑

z∈S×A

[
a1(z) +

∞∑
k=2

f(k−1)∑
n=1

ak,n(z)P(τk−1(s) = n)
]
, (2.11)
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where

a1(z) := P(τ1(z) > f(1)) ,

∀k ≥ 2 ∀n ∈ [|1, f(k − 1)|], ak,n(z) := P
(
τk(z)− τk−1(z) > f(k)− f(k − 1)

∣∣τk−1(z) = n
)
.

We will now prove an upper bound on ak,n(z) for a fixed z ∈ S ×A and k ≥ 1.

1) Upper bounding the probability that an excursion takes too long: Let us rewrite
Pt as

Pt =

 Qt(z) [Pt(z
′, z)]z′ 6=z

[Pt(z, z
′)]Tz′ 6=z Pt(z, z)

 ,

so that state-action z corresponds to the last row and last column andQt(z) := [Pt(z
′, z”)]z′,z”∈S×A\{z}.

Further let pt(z′,¬z) := [Pt(z
′, z”)]z”6=z denote the vector of probabilities of transitions at

time t from z′ to states z” different from z. Using a simple recurrence on N , one can prove
that for all k,N, n ≥ 1 we have:

P
(
τk(z)− τk−1(z) > N

∣∣∣∣τk−1(z) = n

)
= pn(z,¬z)>

( n+N−1∏
j=n+1

Qj(z)

)
1 . (2.12)

Observe that the matrices (Qj)j are sub-stochastic, i.e, they each have at least one line
whose sum is strictly smaller than 1 (the line corresponds to the state-action pair from
which one can move to z within one transition using the uniform policy). Using Lemma
2.7, there exists η > 0 (that only depends onM) such that for all n ≥ 1 and all sequences
(πt)t≥1 that satisfy πt ≥ εtπu we have∥∥∥∥∥

n+m+1∏
l=n+1

Ql(z)

∥∥∥∥∥
∞

≤ 1− η
n+m+1∏
l=n+1

εl . (2.13)

Therefore using (2.12) for N = f(k) − f(k − 1) and breaking the matrix product into
smaller product terms of (m+ 1) matrices, we get for k ≥ 2

ak,n(z) = P
(
τk(z)− τk−1(z) > f(k)− f(k − 1)

∣∣ τk−1(z) = n

)
(a)
= E

[
P
(
τk(s)− τk−1(s) > f(k)− f(k − 1)

∣∣∣∣τk−1(z) = n, (πt)t≥1

)]

= E
[
pn(z,¬z)T

( n+f(k)−f(k−1)−1∏
j=n+1

Qj(z)

)
1

]
(b)

≤

∥∥∥∥∥∥
n+f(k)−f(k−1)−1∏

l=n+1

Ql(z)

∥∥∥∥∥∥
∞

≤

∥∥∥∥∥∥∥
f(k)−f(k−1)−1∏

l=(m+1)b f(k)−f(k−1)−1
m+1

c+1

Qn+l(z)

∥∥∥∥∥∥∥
∞

×
b f(k)−f(k−1)−1

m+1
c−1∏

j=0

∥∥∥∥∥
m+1∏
l=1

Qn+(m+1)j+l(z)

∥∥∥∥∥
∞

(c)

≤
b f(k)−f(k−1)−1

m+1
c−1∏

j=0

[
1− η

m+1∏
l=1

εn+(m+1)j+l

]

(d)

≤
b f(k)−f(k−1)−1

m+1
c−1∏

j=0

[
1− η

m+1∏
l=1

εf(k−1)+(m+1)j+l

]
:= bk , (2.14)
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where (a) uses the law of total expectation, (b) uses that ‖pn(z,¬z)‖1 ≤ 1, (c) uses the
fact that the matrices Q are substochastic while (d) is due to the facts that n ≤ f(k − 1)
and t 7→ εt is decreasing. Similarly, one can prove that

a1(z) ≤
b f(1)−1
m+1

c−1∏
j=0

[
1− η

m+1∏
l=1

ε(m+1)j+l

]

=

b f(1)−f(0)−1
m+1

c−1∏
j=0

[
1− η

m+1∏
l=1

εf(0)+(m+1)j+l

]
:= b1 , (2.15)

where we used the fact that f(0) = 0. Now we only have to tune f(k) and εt so that∑∞
k=1 bk <

α
SA and conclude using (2.11), (2.14) and (2.15).

2) Tuning f and the exploration rate: Since the sequence (εt)t≥1 is decreasing we have:

bk =

b f(k)−f(k−1)−1
m+1

c−1∏
j=0

[
1− η

m+1∏
l=1

εf(k−1)+(m+1)j+l

]

≤
b f(k)−f(k−1)−1

m+1
c−1∏

j=0

[
1− η

(
εf(k−1)+(m+1)j+S

)m+1
]

≤
[
1− η

(
εf(k)

)m+1
]b f(k)−f(k−1)−1

m+1
c
.

For f(k) = λ.k4 where λ ∈ N? and εt = t
− 1

2(m+1) we have: bf(k)−f(k−1)−1
m+1 c ≥ λk3

(m+1) and(
εf(k)

)m+1
= 1√

λk2
, implying:

bk ≤
[
1− η√

λk2

] λk3

(m+1)

≤ exp

(
−λk3η

(m+ 1)
√
λk2

)
= exp

(
− λ1/2kη

m+ 1

)
.

Summing the last inequality, along with (2.11), (2.14) and (2.15) we get:

P(Ec) ≤ SA
∞∑
k=1

bk ≤ SA
∞∑
k=1

exp

(
− λ1/2kη

m+ 1

)
=
SA exp

(
− λ1/2η

m+1

)
1− exp

(
− λ1/2η

m+1

) := g(λ) .

For λα := (m+1)2

η2 log2(1 + SA
α ), we have g(λα) = α, which gives the desired result. �

We complement the previous result with another lemma which shows that we can
use a slightly smaller rate of exploration if we only want to establish almost-sure forced
exploration.

Lemma 2.3 C-Navigation with any decreasing sequence (εt)t≥1 such that ∀t ≥ 1, εt ≥
t−

1
m+1 satisfies

PM,A
(
∀(s, a) ∈ S ×A, lim

t→∞
Nsa(t) =∞

)
= 1 .

Proof. Consider the event E :=
(
∃z ∈ S ×A, ∃M > 0, ∀t ≥ 1, Nz(t) < M

)
. Observe that

E =
⋃

z∈S×A
Ez, where for z ∈ S × A, Ez :=

(
∃M > 0, ∀t ≥ 1, Nz(t) < M

)
. We will prove

that P(Ez′) = 0 for all z′, which implies the desired result. From Remark 2.3, we have

∀(z, z′) ∈ (S ×A)2, ∃r ∈ [|1,m+ 1|], ∃π ∈ ΠD, P
r
π(z, z′) > 0, (2.16)
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where P rπ is the r-th power of the transition matrix induced by policy π. Therefore,

η := min
z,z′

max
1≤r≤m+1
π∈ΠD

P rπ(z, z′)

is positive. Fix z ∈ S ×A and let π, r be a policy and an integer satisfying the property
(2.16) above for the pair (z, z′). Observe that

Pt ≥ εtPπu ≥
εt
A
Pπ,

where the matrix inequality is entry-wise. Now define the stopping times (τk(z))k≥1 where
the agent reaches state-action z for the k-th time2. Also, denote by Xt the state-action
pair at the t-th step of the Markov Chain. Then

P
(
Ez′ | (πt)t≥1, (τk(z))k≥1

)
≤ P

(
∃N ≥ 1,∀k ≥ N,Xτk(z)+r 6= z′ | (πt)t≥1, (τk(z))k≥1

)
(a)

≤
∞∑
N=1

∞∏
k=N

P
(
Xτk(z)+r 6= z′ | τk(z), (πt)t∈[|τk(z)+1,τk(z)+r|]

)
=

∞∑
N=1

∞∏
k=N

[
1−

( τk(z)+r∏
t=τk(z)+1

Pπt

)
(z, z′)

]

≤
∞∑
N=1

∞∏
k=N

[
1−

( τk(z)+r∏
t=τk(z)+1

εt
A
Pπ

)
(z, z′)

]

≤
∞∑
N=1

∞∏
k=N

[
1− η

Ar

τk(z)+r∏
t=τk(z)+1

εt

]
(b)

≤
∞∑
N=1

∞∏
k=N

[
1− η

Am+1

τk(z)+m+1∏
t=τk(z)+1

εt

]
n

where (a) comes from a union bound and the strong Markov property3 and (b) comes from
the fact that r ≤ m+ 1 and εt ≤ 1. Now observe that the inequality above holds for all
realizations of the sequences (πt)t≥1. Therefore, integrating that inequality over all possible
sequences of policies yields:

∀z ∈ S ×A, P
(
Ez′ | (τk(z))k≥1

)
≤
∞∑
N=1

∞∏
k=N

[
1− η

Am+1

τk(z)+m+1∏
t=τk(z)+1

εt

]
.

We can already see that if state-action z is visited "frequently enough" (τk(z) ∼ c.k for
some constant c) then the right-hand side above will be zero. Since we know that a least
one state-action z is visited frequently enough, we consider the product over all state-action
pairs z of the probabilities above:

∏
z∈S×A

P
(
Ez′ | (τk(z))k≥1

)
≤

∑
(N1,...,NSA)∈(N?)SA

∏
z∈S×A

∞∏
k=Nz

[
1− η

Am+1

τk(z)+m+1∏
t=τk(z)+1

εt

]
(2.17)

:=
∑

(N1,...,NSA)

a(N1,...,NSA) .

2We restrict our attention to departure state-action pairs z that are visited infinitely often. Such pairs
always exist, therefore τk(z) is well defined.

3This property is sometimes referred to as: "Markov Chains start afresh after stopping times."



60
Chapter 2. Asymptotic Navigation for Problem- Dependent Best Policy

Identification

We will now show that a(N1,...,NSA) = 0 for all tuples (N1, . . . , NSA):

a(N1,...,NSA) ≤
∏

z∈S×A

∞∏
k=max

z
Nz

[
1− η

Am+1

τk(z)+m+1∏
t=τk(z)+1

εt

]

=

∞∏
k=max

z
Nz

∏
z∈S×A

[
1− η

Am+1

τk(z)+m+1∏
t=τk(z)+1

εt

]
.

Now by the pigeon-hole principle, for all k ≥ 1 there exists zk ∈ S ×A such that τk(zk) ≤
SAk, i.e., at least one state-action has been visited k times before time step SAk. For that
particular choice of zk and since (εt)t≥1 is decreasing, we get

a(N1,...,NSA) ≤
∞∏

k=max
z

Nz

[
1− η

Am+1

τk(zk)+m+1∏
t=τk(zk)+1

εt

]

≤
∞∏

k=max
z

Nz

[
1− η

Am+1

SA.k+m+1∏
t=SA.k+1

εt

]
.

For the choice of εt = t−
1

m+1 the right-hand side above is zero. To sum up, for all realizations
of (τk(z))z∈S×A,k≥1:∏

z∈S×A
P
(
Ez′ | (τk(z))k≥1

)
= 0 .

Therefore, for all z′,P
(
Ez′
)

= 0 and consequently P(E) = 0. �

2.2.2.2 A necessary condition

When m is unknown, replacing it by its worst-case value gives the forced exploration rates
of t−

1
S in Lemma 2.3 (resp. t−

1
2S in Lemma 2.2). These rates vanish quite slowly when the

number of states is large. Therefore we ask the question:

Are these rates really necessary to guarantee sufficient exploration in communicating
MDPs?

We give a partially positive answer to this question, by showing that a rate of at least
t−

1
S−1 is necessary in the worst case. Specifically, we show that if the sequence of policies

(πt)t≥1 is such that mins,a πt(a|s) = t−α decays polynomially, then we need α < 1/(S − 1)
in order to visit all states infinitely often.

To that end, consider a variant of the classical RiverSwim MDP (Strehl & Littman,
2008) with state (resp. action) space S = [|1, S|], (resp. A = {LEFT, RIGHT}). After
playing RIGHT the agent makes a transition of one step to the right while playing LEFT
moves the agent all the way back to state 1. Now suppose that the agent starts at s = 1
and allocates a sequence of probabilities (εt)t≥1

4 to explore the states to the right:

∀s ∈ S,∀t ≥ 1, πt(RIGHT|s) = εt = t−α.

This induces the non-homogeneous Markov Chain depicted in Figure 2.1.

4For simplicity, we assume that this probability is the same for all states.
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1 2 · · · S

εt

1− εt

εt

1− εt

εt

1− εt

1− εt εt

Figure 2.1: Non-homogeneous Markov Chain. An exploration rate of at least t−
1

S−1 is
needed.

Lemma 2.4 If the agent uses any α > 1
S−1 , with non-zero probability she will visit state

S only a finite number of times.

Proof. Indeed if the agent visits state S at time k, then the last S−1 transitions before k must
have been to the right, i.e., P(sk = S) ≤

∏k−1
j=k−S+1 εj ≤ (εk−S+1)S−1. Therefore E[NS(t)] ≤∑t

k=S(k−S+1)−α(S−1). In particular this implies that for α > 1
S−1 , lim supt→∞ E[NS(t)] =

M <∞. Therefore, using the reverse Fatou lemma and Markov’s inequality we get

P(∀t ≥ 1, NS(t) ≤2M) = E
[

lim sup
t→∞

t∏
k=1

1 (NS(k) ≤ 2M)
]

≥ lim sup
t→∞

E
[ t∏
k=1

1 (NS(k) ≤ 2M)
]

= lim sup
t→∞

E
[
1 (NS(t) ≤ 2M)

]
= lim sup

t→∞
P
(
NS(t) ≤ 2M

)
≥ 1

2
.

�

This proves that, in a worst-case instance like the one above, the probabilities of playing
any action must decay at a rate larger than t−1/(S−1). Otherwise, the algorithm only visits
some state a finite number of times. This would be problematic since we want to establish
the convergence (1.42).

Case of Ergodic MDPs: An MDP is ergodic if the agent can reach any state from any
other state using any policy. In other words, for any Markovian policy π ∈ ΠS, Pπ is ergodic.
For such MDPs, we can select εt = 1/tα where α < 1 without compromising the conclusion
of Lemma 2.3. The proof is deferred to Appendix 2.8.

2.2.3 Convergence of visitation frequencies to the optimal allocation
To establish the convergence of N(t)/t to ω?(M), we make use of an Ergodic Theorem for
non-homogeneous Markov Chains derived by (Fort et al., 2011) which we state below. Its
proof can be found in Appendix D of (Al-Marjani et al., 2021).
Notation: For a probability measure µ and a function f , µ(f) = EX∼µ[f(X)] denotes the
mean of f w.r.t. µ. Finally, for two policies π and π′ we define D(π, π′) := ‖Pπ − Pπ′‖∞ =
maxz∈S×A ‖Pπ(z, .)− Pπ′(z, .)‖1. We define the (S×A)×ΠS-valued process {(zt, πt), t ≥ 1}
where zt := (st, at) is the t-th state-action pair on the trajectory of the algorithm. Observe
that (zt, πt) is Ft-adapted and that for any bounded measurable function f,E[f(zt+1)|Ft] =∑

z′∈S×A Pπt(zt, z
′)f(z′). We recall the simplified notation Pt := Pπt .
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Proposition 2.2 (Corollary 2.9, (Fort et al., 2011)) Assume that:

(C1) ∀t ≥ 1, Pt is ergodic. We denote by ωt its stationary distribution.
(C2) There exists an ergodic kernel P such that ‖Pt − P‖∞ −→t→∞ 0 almost surely.

(C3) There exists two constants Ct and ρt such that for all n ≥ 1, ‖Pnt −Wt‖∞ ≤ Ctρ
n
t ,

where Wt is a rank-one matrix whose rows are equal to ωT
t .

(C4) Denote by Lt := Ct(1− ρt)−1. Then lim sup
t→∞

Lt <∞ almost surely.

(C5) D(πt+1, πt) −→
t→∞

0 almost surely.

Finally, denote by ω? the stationary distribution of P . Then for any bounded non-negative
function f : S ×A → R+, it holds that, almost surely,

t∑
k=1

f(zk)

t
−→
t→∞

ω?(f).

Theorem 2.1 Using C-Navigation as a sampling rule, it holds that lim
t→∞

N(t)/t = ω?(M)

almost surely.

Proof. We will show that C-Navigation satisfies the conditions of Proposition 2.2 for
P = Pπω? (M) and ω? = ω?(M). The statement of the Theorem follows immediately by
applying the Proposition for the functions f(z̃) = 1{z̃ = z}, where z is any fixed state-action
pair.
(C1): This is a direct consequence of the fact that Pπu is ergodic (due to Assumptions 2.1
and 2.2) which implies by construction that Pt is also ergodic. (C2): By Lemma 2.3 we have

Nsa(t)
a.s−→ ∞ for all (s, a). Hence

(
r̂t(s, a), p̂t(.|s, a)

) a.s−→
(
rM(s, a), pM(.|s, a)

)
. Berge’s

Maximum theorem (e.g. Theorem 17.31 in Aliprantis & Border, 2006) guarantees that
ω?(M̂t)

a.s−→ ω?(M) and by continuity of the mapping ω 7→ πω (see (2.8)), πω?(M̂t)
a.s−→

πω?(M). This implies that

Pt = εtPπu + (1− εt)

∑t−1
k=0 Pπω? (M̂k)

t

a.s−→ Pπω? (M). (2.18)

(C5): Since
(
Pt+1 − Pt

)(
(s, a), (s′, a′)

)
=
[
πt+1(a′|s′)− πt(a′|s′)

]
pM(s′|s, a), it holds that

‖Pt+1 − Pt‖∞ ≤ ‖πt+1 − πt‖∞, where πt+1 and πt are viewed as vectors of RSA. Next we

introduce the notation πtω? :=
∑t−1
k=0 πω? (M̂k)

t for the Cesàro-mean of oracle policies and
write

πt+1 − πt = (εt − εt+1)(πt+1
ω? − πu) + (1− εt)(πt+1

ω? − π
t
ω?)

= (εt − εt+1)(πt+1
ω? − πu) + (1− εt)

( t× πtω? + πω?(M̂t)

t+ 1
− πtω?

)
= (εt − εt+1)(πt+1

ω? − πu) + (1− εt)
πω?(M̂t)− πtω?

t+ 1
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Therefore

D(πt+1, πt) = ‖Pt+1 − Pt‖∞
≤ ‖πt+1 − πt‖∞

≤ (εt − εt+1) +
1

t+ 1
−→
t→∞

0.

(C3): By Lemma 2.9, Pt satisfies (C3) for Ct = 2θ(εt, π
t
ω? , ωt)

−1 and ρt = θ(εt, π
t
ω? , ωt)

1/r

where (ε, π, ω) 7→ θ(ε, π, ω) was defined in Appendix 2.5.
(C4): By definition, we have

σ(εt, π
t
ω? , ωt) =

(
εrt +

[
(1− εt)Amin

s,a
πtω?(a|s)

]r)
σu

(
min
z

ωu(z)

ωt(z)

)
a.s−→
(
Amin

s,a
πω?(a|s)

)
σu min

z

ωu(z)

ω?(z)
:= σ?, (2.19)

where the convergence was established in the proof of (C1). Note that σ? > 0 since
ωu > 0 (ergodicity of Pπu), ω? < 1 and πω? > 0 entry-wise. Similarly, it is trivial that
σ? < 1 since Amin

s,a
πω?(a|s) < 1,min

z

ωu(z)
ω?(z) < 1 and σu ≤ 1. Therefore θ(εt, πtω? , ωt) =

1− σ(εt, π
t
ω? , ωt)

a.s−→ 1− σ? := θ? ∈ (0, 1) and

lim sup
t→∞

Lt = lim sup
t→∞

Ct(1− ρt)−1

= lim sup
t→∞

2

θ(εt, πtω? , ωt)
[
1− θ(εt, πtω? , ωt)1/r

]
=

2

θ?
[
1− (θ?)

1
r

] <∞. (2.20)

�

2.3 Navigate-and-Stop
Navigate-and-Stop (NaS) is a model-based algorithm inspired by the lower bound. The
lower bound suggests that to identify the best policy in a sample-efficient manner, an
algorithm must collect samples from state-action pair (s, a) proportionally to ω?sa(M). For
that, we use C-Navigation which satisfies (1.42). C-Navigation is then combined with a
Generalized Likelihood Ratio Test (GLRT)5. If we denote by π̂?t the optimal policy in
the empirical MDP M̂t, the GLRT stops as soon as we are confident that π̂?t = π? with
probability at least 1− δ. The pseudo-code for NaS is given in Algorithm 8.

2.3.1 Pseudo-code
NaS starts by drawing a random MDP with a unique optimal policy (for example, it can
select Bernoulli rewards with means drawn from the uniform distribution on [0, 1] and
transitions from a Dirichlet distribution D(1, . . . , 1)) that will serve as an initial estimate
M̂0 ofM. The algorithm maintains, after t time steps, an empirical estimate M̂t of the
true MDP. Based on this estimate, NaS computes the empirical oracle policy πω?(M̂t)
defined in (2.8), and selects the action to play depending on the current state at ∼ πt(.|st),
where πt is given by either of our sampling rules. After each observation, M̂t is updated.
Finally, the algorithm checks if the stopping condition in (2.23) is satisfied, in which case

5Rather a proxy of the GLRT, see Section 2.3.2 for details
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Algorithm 8 Navigate-and-Stop (NaS)

1: Input: risk δ ∈ (0, 1), ERGODIC boolean variable, communication parameter m or
an upper bound.

2: if ERGODIC = True :
3: Set (εt)t≥1 = (1/

√
t)t≥1

4: else:
5: Set (εt)t≥1 = (t−

1
m+1 )t≥1

6: Set t← 0 and Nsa(t)← 0, for all (s,a)
7: Initialize empirical estimate M̂0 by drawing an arbitrary MDP from M?,1

8: for t = 1, 2, . . . do
9: Compute ω?(M̂t−1) by solving (2.6) and the corresponding policy πω?(M̂t−1) by

normalization (2.8)

10: Set πt ← εtπu + (1− εt)
∑t−1
j=0 πω? (M̂j)

t
11: Play at ∼ πt(.|st) and observe reward Rt and next state st+1.
12: Update empirical estimates

(
r̂t(s, a), p̂t(s, a)

)
s,a

and counts (Nsa(t))sa

13: if t · U
(
M̂t,N(t)/t

)−1 ≥ β(t, δ) :
14: Stop and return π̂?t := π?(M̂t)
15: end if
16: end for

it stops and returns the empirical optimal policy π̂?τ . The exploration rate used by NaS
depends on a boolean variable that indicates whether we have prior knowledge thatM is
ergodic or not.

2.3.2 Stopping rule

Assumption 2.3 We assume that the reward distributions qM′(s, a) for MDPs in M?,1

come from a single-parameter exponential family (SPEF) and can therefore be parametrized
by their respective means rM′(s, a).

Under the previous assumption, we can easily build MLE estimates of the reward distribu-
tions by computing the empirical mean. For any (s, a) and t ≥ 1 such that Nsa(t) > 0, we
let q̂s,a(t) denote the distribution belonging to the SPEF of our model, whose mean is the

empirical average r̂t(s, a) =

t∑
k=1

Rk1(st=s,at=a)

Nsa(t) .

2.3.2.1 Some Intuition on the GLRT

To implement a Generalized Likelihood Ratio Test (GLRT), we define `M′(t), the likelihood
of the observations under some MDPM′ ∈M?,1 by

`M′(t) :=

t−1∏
k=1

pM′(sk+1|sk, ak)qM′(Rk|sk, ak),

where at step k the algorithm is in state sk, plays action ak and observes the reward Rk
and sk+1 (the next state). Performing a GLRT at step t consists in (1) computing the
optimal policy π̂?t for the estimated MDP M̂t; (2) comparing the likelihood of observations
under the most likely model where π̂?t is optimal to the likelihood under the most likely
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model where π̂?t is sub-optimal. To that end, we define the ratio

GLR(t; π̂?t ) := log

sup
M′∈M?,1:π?(M′)=π̂?t

`M′(t)

sup
M′∈M?,1:π?(M′)6=π̂?t

`M′(t)
.

Intuitively, if GLR(t; π̂?t ) is large, then the evidence in favor of (π̂?t = π?) is stronger than
the evidence for (π̂?t 6= π?). Therefore, we reject the hypothesis (π̂?t 6= π?) as soon as this
ratio of likelihoods becomes greater than some threshold β(t, δ), properly tuned to ensure
that the algorithm is δ-PAC.

2.3.2.2 Tuning the threshold of the stopping time

Notation: To simplify the presentation, we write q̂s,a(t) := q̂t(.|s, a) and p̂s,a(t) := p̂t(.|s, a)
for the empirical reward and transition distributions at step t. Similarly, we denote
qM′(s, a) := qM′(.|s, a) and pM′(s, a) := pM′(.|s, a).

The next Lemma gives a simplified expression of the GLR that will be useful in the
design of our stopping rule. Its proof is deferred to Appendix 2.11.

Lemma 2.5 It holds that

GLR(t; π̂?t ) = t T
(
M̂t,N(t)/t

)−1
, (2.21)

= inf
M′∈Alt(M̂t)

∑
s,a

Nsa(t)
[
KL

(
q̂s,a(t), qM′(s, a)

)
+ KL

(
p̂s,a(t), pM′(s, a)

)]
,

(2.22)

where (M, ω) 7→ T (M, ω) was defined in (2.1).

(2.22) suggests that we need concentration inequalities on the Kullback-Leibler diver-
gence of transitions and reward distributions to set a proper threshold β(t, δ). This is the
purpose of the next Lemma, whose proof can be found in Appendix E of (Al-Marjani et al.,
2021).

Lemma 2.6 Define the thresholds for the transitions and rewards respectively,

βp(t, δ) := log(1/δ) + (S − 1)
∑
(s,a)

log
(
e
[
1 +Nsa(t)/(S − 1)

])
,

βr(t, δ) := SA ϕ
(

log(1/δ)/SA
)

+ 3
∑
s,a

log
(
1 + log(Nsa(t))

)
,

where x 7→ ϕ(x) is defined in the Appendix E of (Al-Marjani et al., 2021) and satisfies
ϕ(x) ∼

∞
x. Then for the threshold β(t, δ) := βr(t, δ/2) + βp(t, δ/2) we have that

PM,A

(
∃t ≥ 1,

∑
s,a

Nsa(t)
[
KL
(
q̂s,a(t), qM(s, a)

)
+ KL

(
p̂s,a(t), pM(s, a)

)]
≥ β(t, δ)

)
≤ δ.

Remark 2.5 Observe that β(t, δ) ∼
δ→0

2 log(1/δ). This will be crucial when analyzing the
sample complexity of NaS. �

Computing the likelihood ratio GLR(t; π̂?t ) can be difficult, since that is equivalent to
solving (2.1), see Section2.1. We circumvent this issue by using a lower bound on the GLR,
which leads to the following Theorem.
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Theorem 2.2 Combining C-Navigation with the stopping rule

τδ := inf

{
t ≥ 1 : t U

(
M̂t,N(t)/t

)−1 ≥ β(t, δ)

}
(2.23)

yields a δ-PAC algorithm for BPI, i.e., PM,A(τδ <∞, π̂?τδ = π?) ≥ 1− δ.

Proof. Observe that β(t, δ) = Ot→∞(log(t)). On the other hand, by Theorem 2.1 we have
that t U

(
M̂t,N(t)/t

)−1 ∼
t→∞

U(M, ω?(M)) · t almost surely. Therefore τδ is finite almost
surely. Now assume that the algorithm stops at time step t while π̂?t 6= π?. This means
thatM∈ Alt(M̂t). Hence,

P(π̂∗τ 6=π∗, τδ <∞) = P
(
∃t ≥ 1 : t U

(
M̂t,N(t)/t

)−1 ≥ β(t, δ), π̂∗t 6= π∗
)

(a)

≤ P
(
∃t ≥ 1 : t T

(
M̂t,N(t)/t

)−1 ≥ β(t, δ), M∈ Alt(M̂t)

)
(b)
= P

(
∃t ≥ 1 : inf

M′∈Alt(M̂t)

∑
s,a

Nsa(t)
[
KL
(
q̂s,a(t), qM′(s, a)

)
+ KL

(
p̂s,a(t), pM′(s, a)

)]
≥ β(t, δ), M∈ Alt(M̂t)

)
≤ P

(
∃t ≥ 1 :

∑
s,a

Nsa(t)
[
KL
(
q̂s,a(t), qM(s, a)

)
+ KL

(
p̂s,a(t), pM(s, a)

)]
≥ β(t, δ)

)
(c)

≤ δ

where (a), (b) and (c) use Lemmas 2.1, 2.5 and 2.6 respectively. �

2.4 Sample Complexity of Navigate-and-Stop

2.4.1 Main Theorem

Now we present the main guarantees on the sample complexity of NaS. We will only prove
the first statement of the next Theorem. For the second statement, we just give a proof
sketch as the full proof is somewhat involved.

Theorem 2.3 (i) NaS stops almost surely and its stopping time satisfies

PM,A

(
lim sup
δ→0

τδ
log(1/δ)

≤ 2U?(M)

)
= 1,

where U?(M) was defined in (2.5);
(ii) The stopping time of NaS has a finite expectation for all δ ∈ (0, 1) and

lim sup
δ→0

EM,A[τδ]

log(1/δ)
≤ 2U?(M).
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2.4.2 Proof of the almost-sure asymptotic complexity

Consider the event E =
(
∀(s, a) ∈ S × A, limt→∞

Nsa(t)
t = ω?sa(M) and M̂t →

t→∞
M
)
.

By Lemma 2.3 and Theorem 2.1, we have PM,A(E) = 1. We will prove that under E ,
lim sup
δ→0

τδ
log(1/δ) ≤ 2Uo(M). Fix η > 0. Under E and using the continuity of (M, ω) 7→

U(M, ω). There exits tη such that for all t ≥ tη

U
(
M̂t,N(t)/t

)−1 ≥ (1− η)U
(
M, ω?

)−1
, (2.24)

β(t, δ) ≤ log(1/δ) + SA ϕ
(

log(1/δ)/SA
)

+ ηU
(
M, ω?

)−1
t, (2.25)

where the last inequality comes from the fact that the threshold satisfies β(t, δ) = log(1/δ)+
SA ϕ

(
log(1/δ)/SA

)
+Ot→∞

(
log(t)

)
. Combining the inequalities above with the definition

of τδ, we get

τδ ≤ inf

{
t ≥ tη, (1− 2η)tU

(
M, ω?

)−1 ≥ log(1/δ) + SA ϕ
(

log(1/δ)/SA
)}

= max

(
tη,

[
log(1/δ) + SA ϕ

(
log(1/δ)/SA

)]
U
(
M, ω?

)
1− 2η

)
.

Since ϕ(x) ∼
∞
x, then the last inequality implies that lim sup

δ→0

τδ
log(1/δ) ≤

2U(M,ω?)
1−2η . Taking

the limit when η goes to zero finishes the proof.

2.4.3 Proof sketch for the expected sample complexity

The starting point of our proof is a concentration event of the empirical estimates M̂t

aroundM. For ξ > 0 and T ≥ 1, we define

C1
T (ξ) :=

T⋂
t=T 1/4

(∥∥∥M̂t −M
∥∥∥ ≤ ξ,∥∥∥πω?(M̂t)− πω?(M)

∥∥∥
∞
≤ ξ
)
,

where ‖M′ −M‖ := maxs,a |rM′(s, a) − rM(s, a)|+ ‖pM′(.|s, a)− pM(.|s, a)‖1 is a semi-
distance on MDPs in M?,1. Thanks to Lemma 2.2, we show in Lemma 18 of (Al-Marjani
et al., 2021) that C1

T (ξ) holds with high probability in the sense that

∀T ≥ 1, PM,A
(
C1
T (ξ)

)
≥ 1−OT→∞

(
1/T 2

)
. (2.26)

In a second step, we adapt the proof of (Fort et al., 2011) to derive a finite-time version of
Theorem 2.1 which results into the following proposition.

Proposition 2.3 — Proposition 19, (Al-Marjani et al., 2021). Under C-Navigation, for all
ξ > 0, there exists a time Tξ such that for all T ≥ Tξ, all t ≥ T 3/4 and all functions
f : S ×A −→ R+, we have

PM,A

(∣∣∣∣∑t
k=1 f(sk, ak)

t
− E(s,a)∼ω?(M)[f(s, a)]

∣∣∣∣ ≥ Kξ ‖f‖∞ ξ
∣∣∣∣C1
T (ξ)

)
≤ 2 exp

(
− tξ2

)
.

where ξ 7→ Kξ is a mapping with values in (1,∞) such that lim supξ→0Kξ <∞.

Let us define

C2
T (ξ) :=

T⋂
t=T 3/4

(
‖N(t)/t− ω?(M)‖∞ ≤ Kξ ξ

)
.
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Proposition 2.3 and Eq. (2.26) combined imply that for T large enough, the event C1
T (ξ) ∩

C2
T (ξ) holds with high probability. From this, we conclude that the expected stopping time

is finite on the complementary event, EM,A
[
τδ1
(
C1
T (ξ) ∪ C2

T (ξ)
)]
<∞. On the other hand,

given the asymptotic shape of the threshold β(t, δ) ∼
δ→0

2 log(1/δ), we may informally write

E
[
τδ1

(
C1
T (ξ) ∩ C2

T (ξ)
) ]
�
δ→0

2 log(1/δ) sup
(M′,ω′)∈Bξ

U?
(
M′, ω′

)
,

where Bξ = {(M′, ω′) : ‖M′ −M‖ ≤ ξ, ‖ω′ − ω?(M)‖∞ ≤ Kξ ξ}. Dividing by log(1/δ)
and taking the limits when δ and ξ go to zero respectively concludes the proof.

2.5 Discussion
We have designed a sampling rule that overcomes the navigation challenge and achieves the
optimality recipe (1.42) for any mapping of allocation vectorsM 7→ ω?(M). Such sampling
rule can lead to many different algorithms that enjoy instance-dependent guarantees, simply
by changing the definition of the objective in (2.3) to another problem-dependent quantity.
One limitation of our results is that they only cover the asymptotic regime δ → 0. In
the future, it would be interesting to derive instance-dependent bounds that hold for any
δ ∈ (0, 1). We note that such finite-time bounds have been obtained only recently for the
simpler setting of finite-armed bandits, see (Barrier et al., 2022) for instance.



Appendix of Chapter 2

2.6 Definition of H?

Let Var?max[V ?
M] = maxs∈S Vars′∼pM(.|s,π?(s))[V

?
M(s′)] denote the maximum variance of the

value function on the trajectory of the optimal policy. Further let sp(f) := supx,x′∈X |f(x′)−
f(x)| denote the span of a function real-valued f . Then (Al-Marjani & Proutiere, 2021)
define:

H? := S(T3(M) + T4(M))

T3(M) :=
2

∆2
min(1− γ)2

,

T4(M) := min

(
27

∆2
min(1− γ)3

, max

(
16Var?max[V ?

M]

∆2
min(1− γ)2

,
6 sp(V ?

M)4/3

∆
4/3
min(1− γ)4/3

))
.

Note that H? = O
(

S
∆2

min(1−γ)3

)
.

2.7 Upper Bound on the Norm of Products of Substochastic Matri-
ces
Before we proceed with the lemma, we lay out some definitions. η1 := min

{
Pπu(z, z′)

∣∣(z, z′) ∈
(S × A)2, Pπu(z, z′) > 0

}
denotes the minimum positive probability of transition in M.

Similarly define η2 := min
{
Pnπu(z, z′)

∣∣(z, z′) ∈ S ×A2, n ∈ [|1,m+ 1|], Pnπu(z, z′) > 0
}
the

minimal probability of reaching some state-action pair z′ from any other state-action z
after n ≤ m+ 16 transitions in the Markov chain induced by the uniform random policy.
Finally, η := η1η2.

Lemma 2.7 Fix some state-action z and let Pt be the transition matrix under some policy
πt satisfying πt(a|s) ≥ εtπu(a|s) for all (s, a) ∈ S ×A. Define the substochastic matrix

6Refer to Remark 2.3 for more detail.
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Qt obtained by removing from Pt the row and the column corresponding to z:

Pt =

 Qt [Pt(z
′, z)]z′ 6=z

[Pt(z, z
′)]Tz′ 6=z Pt(z, z)

 .

Then we have:

∀n ≥ 1,

∥∥∥∥∥
n+m+1∏
l=n+1

Ql

∥∥∥∥∥
∞

≤ 1− η
n+m+1∏
l=n+1

εl.

Proof. Define rk(n1, n2) =
SA−1∑
j=1

(
n2∏

l=n1+1

Ql

)
kj

the sum of the k-th row in the product

of matrices Ql for l ∈ [|n1 + 1, n2|]. We will prove that or all i ∈ [|1, SA − 1|]: ri(n, n +

m+ 1) ≤ 1− η
n+m+1∏
l=n+1

εl. The result follows immediately by noting that

∥∥∥∥∥n+m+1∏
l=n+1

Ql

∥∥∥∥∥
∞

=

max
i∈[|1,SA−1|]

ri(n, n+m+ 1).

Consider z′ such that Pπu(z′, z) ≥ η1 (such z′ always exists sinceM is communicating) and
let k? be the index of the row corresponding to z′ in Qt. Then for all n1 ≥ 1:

rk?(n1, l = n1 + 1) =

SA−1∑
j=1

(Qn1+1)k?j

= 1− Pn1+1(z′, z)

≤ 1− η1εn1+1. (2.27)

Now for n1, n2 ≥ 1 we have:

rk?(n1, n1 + n2) =

SA−1∑
j1=1

( n1+n2∏
l=n1+1

Ql

)
k?j1

=
SA−1∑
j1=1

SA−1∑
j2=1

( n1+n2−1∏
l=n1+1

Ql

)
k?j2

(Qn1+n2)j2j1

=

SA−1∑
j2=1

( n1+n2−1∏
l=n1+1

Ql

)
k?j2

[ SA−1∑
j1=1

(Qn1+n2)j2j1

]

=
SA−1∑
j2=1

( n1+n2−1∏
l=n1+1

Ql

)
k?j2

rj2(n1 + n2 − 1, n1 + n2)

≤ rk?(n1, n1 + n2 − 1)

...
≤ rk?(n1, n1 + 1)

≤ 1− η1εn1+1, (2.28)

where in the fifth line we use the fact that for all j2, a, b: rj2(a, b) ≤ 1 since the matrices Ql
are substochastic. The last line comes from (2.27). Now for all other indexes i ∈ [|1, SA−1|]
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we have:

∀n1 ∈ [|1,m|], ri(n, n+m+ 1) =
SA−1∑
j1=1

( n+n1∏
l=n+1

Ql ×
n+m+1∏
l=n+n1+1

Ql

)
ij1

=
SA−1∑
j1=1

SA−1∑
j2=1

( n+n1∏
l=n+1

Ql

)
ij2

( n+m+1∏
l=n+n1+1

Ql

)
j2j1

=
SA−1∑
j2=1

( n+n1∏
l=n+1

Ql

)
ij2

SA−1∑
j1=1

( n+m+1∏
l=n+n1+1

Ql

)
j2j1

=
SA−1∑
j2=1

( n+n1∏
l=n+1

Ql

)
ij2

rj2(n+ n1, n+m+ 1)

≤ (1− η1εn+n1+1)

( n+n1∏
l=n+1

Ql

)
ik?

+
∑
j2 6=k?

( n+n1∏
l=n+1

Ql

)
ij2

≤ (1− η1εn+n1+1)

( n+n1∏
l=n+1

Ql

)
ik?

+ 1−
( n+n1∏
l=n+1

Ql

)
ik?

= 1− η1εn+n1+1

( n+n1∏
l=n+1

Ql

)
ik?
, (2.29)

where we used (2.28) and the fact that the matrix
n+n1∏
l=n+1

Ql is substochastic. Now sinceM is

communicating then we can reach state-action z′ from any other state-action zi ∈ [|1, SA−1|],
after some ni ≤ m + 1 steps in the Markov chain corresponding to the random uniform
policy. In other words, if i is the index corresponding to zi then there exists ni ≤ m+ 1,
such that (Pniπu)ik? ≥ η2 > 0. Therefore

( n+ni∏
l=n+1

Ql

)
ik?
≥
( n+ni∏
l=n+1

εlPπu

)
ik?

=

( n+ni∏
l=n+1

εl

)
(Pniπu)ik?

≥ η2

n+ni∏
l=n+1

εl. (2.30)

Thus, combining (2.29) for n1 = ni and (2.30) we get:

∀i ∈ [|1, SA− 1|], ri(n, n+m+ 1) ≤ 1− η1η2

n+ni∏
l=n+1

εl

≤ 1− η1η2

n+m+1∏
l=n+1

εl

= 1− η
n+m+1∏
l=n+1

εl.

�
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2.8 Minimal Exploration Rate for Ergodic MDPs
This is a consequence of Proposition 2 (Burnetas & Katehakis, 1997), stating that there
exist c1, c2, C > 0 such that for all s and t large enough, PM,A[Ns(t) > c1t] ≥ 1− Ce−c2t.
A union bound yields: PM,A[∀s,Ns(t) > c1t] ≥ 1− CSe−c2t. To extend this result to the
numbers of visits at the various state-action pairs, we can derive a lower bound on Nsa(t)
given that Ns(t) > c1t by observing that a worst scenario (by monotonicity of εs) occurs
when s is visited only in the c1t rounds before t. We get E[Nsa(t)|Ns(t) > c1t] ≥ c3t

(1−α).
Remarking that Nsa(t+1)−Ns(t)εt is a sub-martingale with bounded increments, standard
concentration arguments then imply that PM,A[∀s, a,Nsa(t) >

c3
2 t

(1−α)] ≥ ϕ(t), where
ϕ(t)→ 1. Next, define the random variable Zt =

∏
s,a 1{Nsa(t) >

c3
2 t

(1−α)}. Applying the
reverse Fatou lemma, we get 1 = lim supt E[Zt] ≤ E[lim supt Zt]. From there, we directly
deduce (by monotonicity of t 7→ Nsa(t)) that a.s. limt→∞Nsa(t) =∞.

2.9 Geometric Convergence of Iterates of an Ergodic Chain
The following lemma is adapted from the proof of the Convergence theorem (Theorem 4.9,
(Levin et al., 2006)).

Lemma 2.8 Let P be a stochastic matrix with stationary distribution vector ω. Suppose
that there exist σ > 0 and an integer r such that P r(s, s′) ≥ σω(s′) for all (s, s′). Let W
be a rank-one matrix whose rows are equal to ωT. Then:

∀n ≥ 1, ‖Pn −W‖∞ ≤ 2θ
n
r
−1

where θ := 1− σ.

Proof. We write P r = (1−θ)W + θQ where Q is a stochastic matrix. Note that WP k = W
for all k ≥ 0 since ωT = ωTP . Furthermore MW = W for all stochastic matrices
M since all rows of W are equal. Using these properties, we will show by induction
that P rk = (1 − θk)W + θkQk. For k = 1 the result is trivial. Now suppose that

P rk = (1− θk)W + θkQk. Then

P r(k+1) = P rkP r

= [(1− θk)W + θkQk]P r

= (1− θk)WP r + (1− θ)θkQkW + θk+1Qk+1

= (1− θk)W + (1− θ)θkW + θk+1Qk+1

= (1− θk+1)W + θk+1Qk+1.

Therefore the result holds for all k ≥ 1. Therefore P rk+j −W = θk(QkP j −W ) which
implies that

∀n = rk + j ≥ 1, ‖Pn −W‖∞ ≤ θ
k
∥∥∥QkP j −W∥∥∥

∞

≤ 2θk = 2θb
n
r
c ≤ 2θ

n
r
−1.

�

2.10 Geometric Ergodicity of C-Navigation
Since Pπu is ergodic, there exists r > 0 such that P rπu(z, z′) > 0 for all z, z′ (Proposition
1.7, (Levin et al., 2006)). For a stationary distribution vector ω and a state-action pair z,
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we denote by ω(z) the component of ω corresponding to z. Moreover, we define

r := min{` ≥ 1 : ∀(z, z′) ∈ (S ×A)2, P `πu(z, z′) > 0}, (2.31)

σu := min
(z,z′)∈(S×A)2

P rπu(z, z′)

ωu(z′)
, (2.32)

where ωu is the stationary distribution of Pπu .

Lemma 2.9 Let πot := πω?(M̂t) (resp. πtω? :=
∑t

j=1 πω?(M̂j)/t) denote the oracle policy
of M̂t (resp. the Cesaro-mean of oracle policies up to time t). Further define the functions

σ(ε, π, ω) := σu

(
εr +

[
(1− ε)Amin

s,a
π(a|s)

]r)
min
z∈S×A

ωu(z)

ω(z)
,

θ(ε, π, ω) := 1− σ(ε, π, ω),

L(ε, π, ω) :=
2

θ(ε, π, ω)
[
1− θ(ε, π, ω)1/r

] .
Then for C-Navigation it holds that

∀n ≥ 1, ‖Pnt −Wt‖∞ ≤ Ctρ
n
t ,

where Ct := 2θ(εt, π
t
ω? , ωt)

−1 and ρt := θ(εt, π
t
ω? , ωt)

1/r. In particular Ct(1 − ρt)−1 =
L(εt, π

t
ω? , ωt).

Proof. Recall that: Pt = εtPπu + (1− εt)Pπt
ω?
. Therefore for all (z, z′) ∈ (S ×A)2,

P rt (z, z′) ≥ [εrtP
r
πu + (1− εt)rP rπt

ω?
](z, z′)

(a)

≥
(
εrt +

[
(1− εt)Amin

s,a
πtω?(a|s)

]r)
P rπu(z, z′)

(b)

≥
(
εrt +

[
(1− εt)Amin

s,a
πtω?(a|s)

]r)
σuωu(z′)

≥
(
εrt +

[
(1− εt)Amin

s,a
πtω?(a|s)

]r)
σu

(
min
z

ωu(z)

ωt(z)

)
︸ ︷︷ ︸

:=σt

ωt(z
′)

= σ(εt, π
t
ω? , ωt)ωt(z

′).

where (a) comes from the fact that Pπt
ω?
≥ Amin

s,a
πtω?(a|s)Pπu entry-wise and (b) is due to

(2.32). Using Lemma 2.8 we conclude that or all n ≥ 1

‖Pnt −Wt‖∞ ≤ 2θ(εt, π
t
ω? , ωt)

n
r
−1,

where θ(εt, πtω? , ωt) = 1 − σ(εt, π
t
ω? , ωt). Therefore Pt satisfies ‖Pnt −Wt‖∞ ≤ Ctρ

n
t for

Ct = 2θ(εt, π
t
ω? , ωt)

−1 and ρt = θ(εt, π
t
ω? , ωt)

1/r. �
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2.11 Simplifed Expression of the Generalized Likelihood Ratio

Proof. Observe that by definition M̂t is the MDP that maximizes the likelihood of obser-
vations. Hence, we have

GLR(t; π̂?t ) := log

sup
M′∈M?,1 s.t: π?(M′)=π̂?t

`M′(t)

sup
M′∈M?,1 s.t: π?(M′)6=π̂?t

`M′(t)

= log
`M̂t

(t)

sup
M′∈Alt(M̂t)

`M′(t)

= inf
M′∈Alt(M̂t)

log
`M̂t

(t)

`M′(t)
. (2.33)

Now we simplify the expression of the likelihhod ratio,

log
`M̂t

(t)

`M′(t)
=

t−1∑
k=1

[
log

qM̂t
(Rk|sk, ak)

qM′(Rk|sk, ak)
+ log

pM̂t
(sk+1|sk, ak)

pM′(sk+1|sk, ak)

]

=
t−1∑
k=1

log
qM̂t

(Rk|sk, ak)
qM′(Rk|sk, ak)

+
∑

(s,a)∈S×A

∑
s′∈S

Nsas′(t) log
pM̂t

(s′|s, a)

pM′(s′|s, a)

(a)
=

t−1∑
k=1

log
qM̂t

(Rk|sk, ak)
qM′(Rk|sk, ak)

+
∑

(s,a)∈S×A

Nsa(t)

[∑
s′∈S

pM̂t
(s′|s, a) log

pM̂t
(s′|s, a)

pM′(s′|s, a)

]

=

t−1∑
k=1

log
qM̂t

(Rk|sk, ak)
qM′(Rk|sk, ak)

+
∑

(s,a)∈S×A

Nsa(t)KL
(
p̂s,a(t), pM′(s, a)

)
(b)
=

∑
(s,a)∈S×A

Nsa(t)
[
KL
(
q̂s,a(t), qM′(s, a)

)
+ KL

(
p̂s,a(t), pM′(s, a)

)]
(2.34)

where Nsas′(t) :=
∑t

k=1 1 (sk = s, ak = a, sk+1 = s′) is the number of times we observed
the transition (s, a)→ s′ up to time step t, (a) uses that pM̂t

(s′|s, a) = Nsas′(t)/Nsa(t) and
(b) uses Lemma A.2 from (Degenne et al., 2020). Therfore, combining (2.33) and (2.34) we
get that

GLR(t; π̂?t ) = inf
M′∈Alt(M̂t)

∑
(s,a)∈S×A

Nsa(t)
[
KL
(
q̂s,a(t), qM′(s, a)

)
+ KL

(
p̂s,a(t), pM′(s, a)

)]
= t T

(
M̂t,N(t)/t

)−1

where the last inequality uses the definition of (M, ω) 7→ T (M, ω). �



3. Active Coverage and Reward-Free
Exploration in Episodic MDPs

In this chapter, we present and study the problem of active coverage. In particular, we
design an algorithm, CovGame, that efficiently solves this problem. Then, we will show
how an almost plug-and-play version of CovGame solves RFE with an instance-dependent
complexity. The contents of this chapter are based on the conference paper:

Aymen Al Marjani, Andrea Tirinzoni, and Emilie Kaufmann. Active Coverage for
PAC Reinforcement Learning. In Proceedings of the 36th Conference On Learning
Theory (COLT), 2023.
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3.1 Background on Coverage and RFE

The quality of the available data, whether it is actively gathered through online interactions
with the environment or provided as a fixed offline dataset, plays a fundamental role in
characterizing the performance of any reinforcement learning (RL, Sutton & Barto, 2018)
agent. An important concept to quantify such quality is coverage, a property measuring the
extent to which data spreads across the state-action space. The notion of coverage, through
the so-called concentrability coefficients, is ubiquitous in the vast literature on offline RL
(e.g., Munos, 2003; Munos & Szepesvári, 2008; Farahmand et al., 2009; Farahmand et al.,
2010; Chen & Jiang, 2019; Xie & Jiang, 2020; Xie & Jiang, 2021; Jin et al., 2021; Foster
et al., 2022). Intuitively, the better data covers the state space, the better performance
one can expect from an offline RL method. Recently, (Xie et al., 2022) showed that a
similar phenomenon also occurs in online RL: the sole existence of a good covering data
distribution implies sample-efficient online RL with non-linear function approximation, even
if such a distribution is unknown and inaccessible by the agent.

While these works treat coverage as a property of some given data or environment, a
large body of literature focuses on actively collecting good covering data. This falls under
the umbrella of reward-free exploration (RFE, Jin et al., 2020), a setting where the agent
interacts with an unknown environment without any reward feedback. The objective is to
collect sufficient data to enable the computation of a near-optimal policy for any reward
function provided at downstream, e.g., by planning on top of an estimated model of the
environment. Many provably-efficient algorithms exist for this problem that mostly differ
in their exploration strategy. Some try to gather a minimum number of samples from each
reachable state (Jin et al., 2020; Zhang et al., 2021c), while others adaptively optimize a
reward function proportional to their uncertainty over the environment (Kaufmann et al.,
2021; Ménard et al., 2021) or more simply a zero reward (Chen et al., 2022). All these
approaches provably guarantee that the collected data is sufficient to learn any reward
function provided at test time. Another popular technique is to seek data distributions
that maximize the entropy over the state-space (Hazan et al., 2019; Cheung, 2019; Zahavy
et al., 2021; Mutti et al., 2022). Finally, there is a long recent line of empirical works
focusing on RFE, where the problem is often called unsupervised RL (e.g., Laskin et al.,
2021; Eysenbach et al., 2019; Burda et al., 2019; Yarats et al., 2021).

The RFE literature mostly focuses on collecting data with the specific properties needed
for the task under consideration (e.g., achieving zero-shot RL at test time). Motivated by
the crucial role of coverage in RL, in this chapter we treat the problem at a higher level
of generality. We formulate and study the problem of active coverage in episodic MDPs,
where the goal is to interact online with the environment so as to collect data that satisfies
some given coverage constraints. Following (Tarbouriech et al., 2021) who considered a
similar problem in reset-free MDPs, we formalize such constraints as a set of sampling
requirements that the learner must fulfill during learning. This gives our framework a high
flexibility, as one can require different notions of coverage simply by changing the sampling
requirements. Moreover, the applications are numerous, as any active coverage algorithm
yields an exploration strategy that can be readily plugged in to tackle different problems.
In our specific case, we shall see in this chapter how to apply it to design an algorithm for
RFE. Then, in Chapter 4, we will present an algorithm for ε-BPI based on our solution to
the coverage problem.
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3.2 Definition of Active Coverage
3.2.1 Preliminaries

We consider the setting of Episodic MDPs, see Section 1.3.2. Denoting by Pπ (resp. Eπ)
the probability (resp. expectation) operator induced by the execution of a policy π ∈ ΠS

for an episode on M, we define, for each (h, s, a), pπh(s, a) := Pπ(sh = s, ah = a) and
pπh(s) := Pπ(sh = s). We let Ω(M) := {[pπh(s, a)]h∈[H],s∈S,a∈A : π ∈ ΠS} denote the set of
all valid state-action distributions. It is well known (e.g., Puterman, 1994) that Ω(M) is
convex and that

Ω(M) =

{
ρ ∈ RSAH+ :

∑
a∈A

ρ1(s, a) = 1,
∑
a

ρh(s, a) =
∑

(s′,a′)

ρh−1(s′, a′)ph−1(s|s′, a′) ∀(h, s)
}
.

We also recall that from every vector ρ ∈ Ω we can extract the corresponding policy πρ by
normalization:

∀(h, s, a) ∈ [H]× S ×A, πρh(a|s) :=


ρh(s, a)∑

b∈A
ρh(s, b)

if
∑
b∈A

ρh(s, b) > 0,

1/A otherwise.

(3.1)

Throughout the paper, we use 1X to denote an indicator function over some set X , i.e.,
1X (h, s, a) := 1{(h, s, a) ∈ X} for all h, s, a. We shall hide X whenever X = [H] ×
S × A. We make the following assumption to ensure that the whole state-space can be
navigated.

Assumption 3.1 — Reachability. Each state s ∈ S is reachable at any stage h ∈ {2, . . . ,H}
by some policy, i.e., maxπ∈ΠS

pπh(s) > 0.

Reachability conditions like Assumption 3.1 are standard in prior work. In non-episodic
reset-free MDPs (e.g., Jaksch et al., 2010), the MDP is often required to be communicating
to ensure learnability, i.e., any two states are reachable from each other by some policy.
Assumption 3.1 is the analogue for episodic MDPs, where we only need reachability from
the initial state. In episodic MDPs, reachability conditions have been used in different
settings, including model-free learning (Modi et al., 2021) and reward-free exploration
(Zanette et al., 2020).

3.2.2 Learning problem
The learner interacts with an MDP M with unknown transition probabilities in order
to fulfill some given sampling requirements. In particular, it is given a target function
c : [H]× S ×A → R, where ch(s, a) denotes the minimum number of samples that must
be gathered from (s, a) at stage h. In each episode of interaction t ∈ N∗, the learner
plays a policy πt ∈ ΠS and observes a corresponding trajectory {(sth, ath)}h∈[H]. Let
nth(s, a) :=

∑t
j=1 1(sjh = s, ajh = a) denote the number of times (s, a) has been visited at

stage h up to episode t.

Definition 3.1 — (δ-correct c-coverage algorithm). Fix δ ∈ (0, 1) and a target function
c. An algorithm is called δ-correct c-coverage if, with probability at least 1− δ, it stops
after interacting withM for a (possibly random) number of episodes τ and returns a
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dataset of transitions with visitation counts guaranteeing

∀(h, s, a), nτh(s, a) ≥ ch(s, a).

The goal in active coverage is to minimize the number of episodes required to collect at
least ch(s, a) samples from each h, s, a with high probability.
Examples While the definition of the active coverage problem gives complete freedom in
choosing the target function c, for our applications we shall mostly be interested in two spe-
cific instances. In uniform coverage, we have ch(s, a) = N1 ((h, s, a) ∈ X ) for some given set
X and N ∈ N. Intuitively, this requires collecting at least N samples from each state-action-
stage triplet in X , and the name suggests that the learner should explore X as uniformly
as possible. Possible applications include estimating the transition model uniformly well
across the state-action space (Tarbouriech et al., 2020) and discovering sparse rewards. In
our applications to PAC RL, we will further explore the benefits of performing proportional
coverage, which corresponds to setting ch(s, a) = N maxπ p

π
h(s, a)1 ((h, s, a) ∈ X ) 1. This

requires collecting a number of samples from each (h, s, a) ∈ X that scales proportionally
to its reachability.

3.3 Lower Bound on the Complexity of Active Coverage
Minimizing the sample complexity needed to solve the active coverage problem requires
the learner to properly plan how to distribute its exploration throughout the state-action
space, hence accounting for the complex interplay between the MDP dynamics p and the
target function c. The following theorem gives a precise characterization of the complexity
of this problem. Its proof is deferred to Section 3.3.2

Theorem 3.1 For any target function c and δ ∈ (0, 1), the stopping time τ of any δ-correct
c-coverage algorithm satisfies E[τ ] ≥ (1− δ)ϕ?(c), where

ϕ?(c) = inf
ρ∈Ω(M)

max
(s,a,h)∈X

ch(s, a)

ρh(s, a)
,

with X := {(h, s, a) : ch(s, a) > 0}.

The quantity ϕ?(c) of Theorem 3.1 provides an instance-dependent complexity measure
for the active coverage problem. In particular, it depends on both the MDPM through
the set of valid state-action distributions Ω(M) and on the target function c. It can be
interpreted as follows. Imagine that a learner repeatedly plays a policy that induces a
state-action distribution ρ ∈ Ω(M). Then, for any (h, s, a), the quantity 1/ρh(s, a) is the
expected number of episodes the learner takes to collect a single sample from (h, s, a).
This implies that max(s,a,h)∈X

ch(s,a)
ρh(s,a) is roughly the expected number of episodes needed

to satisfy the sampling requirements across all (h, s, a) when playing distribution ρ. Then,
the complexity measure is intuitively the minimum of this quantity across all possible
state-action distributions. In other words, any distribution ρ? attaining the minimum in
ϕ?(c) denotes an optimal c-coverage distribution, i.e., generating data from ρ? provably
minimizes the time to satisfy all sampling requirements, in expectation.

Remark 3.1 Observe that the lower bound of Theorem 3.1 holds for any δ-correct
algorithm, even for an oracle that knows the transition probabilities. In general, we do
not believe it to be exactly matchable since (i) any algorithm must work with sample

1To cope with unknown transitions, we will use an upper bound of pπh(s, a) in the definition of proportional
coverage.
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counts rather the expectations, (ii) the transition probabilities are unknown. However,
ϕ?(c) will appear as the leading order terms in the sample complexity of our algorithm,
while these learning costs will be absorbed into lower order terms. �

3.3.1 Links to other measures of coverage

3.3.1.1 Stochastic minimum flows

We begin by presenting an equivalent linear programming formulation of the optimal coverage
problem of Theorem 3.1 that we call stochastic minimum flow. It is a direct extension
to stochastic MDPs of the minimum flows for directed acyclic graphs in deterministic
MDPs, which we presented in Section 1.6.3. We define a flow as a non-negative function
η : S ×A× [H]→ [0,∞) such that∑

a∈A
ηh(s, a) =

∑
s′∈S

∑
a′∈A

ph−1(s|s′, a′)ηh−1(s′, a′) ∀s ∈ S, h > 1, (3.2)

η1(s, a) = 0 ∀s ∈ S \ {s1}, a ∈ A. (3.3)

That is, a flow η is a vector of visits to each state-action-stage triplet which satisfies the
navigation constraints of the MDP. Note that the second constraint ensures that flow can
only be created in the initial state s1. The value of η is the total amount of flow leaving
the initial state, i.e.,

ϕ(η) :=
∑
a∈A

η1(s1, a).

We say that a flow η is feasible for a target function c if

ηh(s, a) ≥ ch(s, a) ∀h ∈ [H], s ∈ S, a ∈ A.

The stochastic minimum flow problem consists in finding a feasible flow of minimum value.
It can be clearly solved as a linear program,

minimize
η∈RSAH

∑
a∈A

η1(s1, a),

subject to∑
a∈A

ηh(s, a) =
∑
s′∈S

∑
a′∈A

ph−1(s|s′, a′)ηh−1(s′, a′) ∀s ∈ S, h > 1,

η1(s, a) = 0 ∀s ∈ S \ {s1}, a ∈ A,
ηh(s, a) ≥ ch(s, a) ∀h ∈ [H], s ∈ S, a ∈ A.

(3.4)

We now prove that the optimal value of (3.4) is equal to ϕ?(c), the optimal coverage
complexity introduced in Section 3.3.

Lemma 3.1 If there exists a feasible flow for the target function c, the optimal value of
(3.4) is exactly ϕ?(c) = minρ∈Ω(M) maxh,s,a

ch(s,a)
ρh(s,a) .

Proof. Let us start from the linear programming formulation (3.4) and perform the change
of variables ρh(s, a)← ηh(s,a)

Z and Z ←
∑

s′∈S
∑

a′∈A ηh(s′, a′) for all h, s, a. Note that Z
is the value of the original flow η (and thus it does not depend on the stage), while ρh(s, a)
is a probability distribution over the state-action space for each h ∈ [H]. We obtain the
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following optimization problem (no longer a linear program due to the presence of a bilinear
constraint):

minimize
Z≥0,ρ∈RSAH

Z,

subject to∑
a∈A

ρh(s, a) =
∑
s′∈S

∑
a′∈A

ph−1(s|s′, a′)ρh−1(s′, a′) ∀s ∈ S, h > 1,

ρ1(s, a) = 0 ∀s ∈ S \ {s1}, a ∈ A,∑
s∈S

∑
a∈A

ρh(s, a) = 1 ∀h ∈ [H],

ρh(s, a) ≥ 0 ∀h ∈ [H], s ∈ S, a ∈ A,

Z ≥ ch(s, a)

ρh(s, a)
∀h ∈ [H], s ∈ S, a ∈ A.

The optimal solution for Z is clearly Z = maxh,s,a
ch(s,a)
ρh(s,a) , while the first four constraints

define exactly the set of valid state-action distributions Ω(M). This proves the statement.
�

3.3.2 Proof of Theorem 3.1
Define the coverage event Ecov =

(
∀(h, s, a) ∈ X , nτh(s, a) ≥ ch(s, a)

)
. We have that for

any δ-correct algorithm PM,A
(
Ecov

)
≥ 1 − δ. Therefore, for any triplet (h, s, a) ∈ X , we

have that

EM,A[nτh(s, a)] ≥ EM,A[nτh(s, a)1 (Ecov)] ≥ ch(s, a)PM,A
(
Ecov

)
≥ (1− δ)ch(s, a). (3.5)

Now consider the function ηh(s, a) := EM,A[nτh(s, a)] for all h, s, a. It is known that η
satisfies the navigation constraints (3.2)2. Hence η is a flow vector. Moreover, it satisfies
the constraint (3.5). By definition of stochastic minimum flow, this means that

EM,A[τ ] =
∑
a∈A

EM,A[nτh(s1, a)] = ϕ(η) ≥ ϕ?
(

[(1− δ)ch(s, a)]h,s,a

)
= (1− δ)ϕ?(c),

where in the last line we used that for any constant α,ϕ?(αc) = αϕ?(c). �

3.3.3 Bounding the minimum flow

Lemma 3.2 Suppose there exists a feasible flow for the target function c. Then,

max
h

∑
s,a

ch(s, a)︸ ︷︷ ︸
¶

≤ ϕ?(c) ≤
∑
h

inf
ρ∈Ω

max
s,a

ch(s, a)

ρh(s, a)︸ ︷︷ ︸
·

≤
∑
h,s,a

ch(s, a)

maxπ pπh(s, a)︸ ︷︷ ︸
¸

.

Proof. The proof of the lower bound is trivial by noting that the value of any flow η can be
written as ϕ(η) =

∑
s∈S

∑
a∈A ηh(s, a) for all h ∈ [H] and that any optimal flow satisfies

η?h(s, a) ≥ ch(s, a) for all h, s, a. Let us prove the upper bound. Fix any h ∈ [H] and let ρh

denote a solution to the optimization problem minρ∈Ω maxs,a
ch(s,a)
ρh(s,a) .

Further define the mixed distribution ρ̃ :=
∑H

l=1
Zl
Z ρ

l, where Zl := minρ∈Ω maxs,a
ch(s,a)
ρh(s,a)

and Z :=
∑H

l=1 Zl. Then, ρ̃ ∈ Ω(M) is a convex combination of state-action distributions.
2For instance, by following the same steps in our proof of (1.41) and adapting it to episodic MDPs
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Hence,

ϕ?(c) ≤ max
h,s,a

ch(s, a)

ρ̃h(s, a)

(a)

≤ max
h

Z

Zh
max
s,a

ch(s, a)

ρhh(s, a)

= max
h

Z

Zh
min
ρ∈Ω

max
s,a

ch(s, a)

ρh(s, a)
= Z =

∑
h∈[H]

min
ρ∈Ω

max
s,a

ch(s, a)

ρh(s, a)
,

where (a) uses that ρ̃ ≥ Zh
Z ρ

h entry-wise. For the second upper bound, we define wh(s, a) :=
ch(s,a)

maxπ∈Π p
π
h(s,a) , with the convention that w(s, a) = 0 if ch(s, a) = 0 regardless of the value

of the denominator 3. For any reachable (s, a, h), let πs,a,h ∈ arg maxπ∈ΠD
pπh(s, a). For

any unreachable (s, a, h), let πs,a,h be an arbitrary deterministic policy. Let us define the
following mixed state-action distribution:

∀(h, s, a) : p̃h(s, a) :=
∑
s′∈S

∑
a′∈A

wh(s′, a′)

Z
p
πs′,a′,l
h (s, a),

where Zh :=
∑

s′∈S
∑

a′∈Aw(s′, a′). Since this is a convex combination of state-action
distributions, p̃ ∈ Ω(M). Then,

min
ρ∈Ω

max
s,a

ch(s, a)

ρh(s, a)
≤ max

s,a

ch(s, a)

p̃h(s, a)
≤ Zh max

s,a

ch(s, a)

wh(s, a)p
πs,a,h
h (s, a)

= Zh max
s,a

ch(s, a)

wh(s, a) supπ∈ΠD
pπh(s, a)

=
∑
h∈[H]

∑
s∈S

∑
a∈A

ch(s, a)

maxπ pπh(s, a)
.

�

Interestingly, each of the terms in the lemma above relates to a complexity measure that
appeared in previous works. The term ¶ is the complexity for covering a tree-based
deterministic MDP (Tirinzoni et al., 2022), perhaps the easiest MDP topology to navigate.
As ϕ?(c) reduces to the complexity of (Tirinzoni et al., 2022) in deterministic MDPs, we
attain the equality ϕ?(c) = ¶ in this specific tree structure. For a specific choice of c, · can
be shown to be exactly the “gap visitation” complexity measure introduced by (Wagenmaker
et al., 2022a) for ε-BPI. As a component of their ε-BPI algorithm MOCA, (Wagenmaker
et al., 2022a) introduced Learn2Explore, a strategy that learns policies to reach all states in
the MDP. While it may be possible to adapt Learn2Explore for our active coverage problem,
one limitation is that it learns how to reach each layer independently, and this is reflected
in the fact that · is only a loose upper bound (up to a factor H larger) to the optimal
complexity ϕ?(c). Finally, ¸ can be related to the sample complexity for active coverage
obtained by the GOSPRL algorithm of (Tarbouriech et al., 2021)4. It can be interpreted as
the complexity for learning how to reach each h, s, a independently, which makes it an even
looser upper bound to ϕ?(c).

3Note that, if maxπ∈Π p
π
h(s, a) = 0, then (s, a, h) is unreachable and it must be that ch(s, a) = 0 since

we assumed the minimum flow problem to be feasible.
4Since (Tarbouriech et al., 2021) consider reset-free MDPs, their complexity actually scales as∑
s,aDs,ac(s, a), where Ds,a is the minimum expected time to reach s, a from any state. In episodic

MDPs, the minimum expected number of episodes to reach some (h, s, a) is exactly 1/maxπ p
π
h(s, a), hence

yielding ¸.
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3.3.4 Concentrability and coverability
A definition of the concentrability coefficient for a distribution ρ ∈ P(S × A × [H]) is
Cconc(ρ) := maxs,a,h

maxπ pπh(s,a)

ρh(s,a) . This plays a fundamental role in characterizing the
efficiency of offline RL methods (see, e.g., (Chen & Jiang, 2019; Xie et al., 2022) and
references therein). It is easy to see that ϕ?(c) = infρ∈ΩCconc(ρ) for the target function c
of proportional coverage. That is, our coverage complexity is equivalent to the minimum
concentrability coefficient achievable by any distribution generated by some stochastic
policy. Under a similar perspective, (Xie et al., 2022) introduced the coverability coefficient
Ccov := infρ1,...,ρH∈P(X×A) maxs,a,h

maxπ pπh(s,a)

ρh(s,a) to characterize to what extent the best data
distribution covers all policies. Noting that the infimum is taken across all probability
distributions rather than valid state-action distributions, the optimal data distribution in
Ccov may not be attained by the execution of any stochastic policy. This means that Ccov

is not a valid complexity measure for active coverage in general, and it reduces exactly to
¶ for proportional coverage (see their Lemma 3), i.e., to a loose lower bound on ϕ?(c).

3.4 Near-Optimal Active Coverage by Solving Games

3.4.1 Intuition and pseudo-code of COVGAME

We propose CovGame (Algorithm 9), which adopts a game-based perspective inspired
by the bandit literature (Degenne et al., 2019b). We first observe that the complexity
ϕ?(c) can be interpreted as a zero-sum game between a learner trying to produce the best
sampling distribution ρ ∈ Ω(M) and an adversary trying to challenge it with the tuple
(h, s, a) whose sampling requirement is the hardest to meet under ρ. CovGame does not
directly solve the game in the definition of ϕ?(c) but rather an equivalent formulation
that simplifies learning. Recall that P(X ) denotes the set of probability distributions with
support in cX. Thanks to the min-max theorem, we can write

1

ϕ?(c)
= sup

ρ∈Ω(M)
min

(s,a,h)∈X

ρh(s, a)

ch(s, a)
= sup

ρ∈Ω(M)
inf

λ∈P(X )

∑
(h,s,a)∈X

λh(s, a)
ρh(s, a)

ch(s, a)

= inf
λ∈P(X )

sup
ρ∈Ω(M)

∑
(h,s,a)∈X

λh(s, a)
ρh(s, a)

ch(s, a)

= inf
λ∈P(X )

max
π∈ΠD

∑
(h,s,a)∈X

pπh(s, a)
λh(s, a)

ch(s, a)
,

where in the last equation we used that the inner maximization is a standard RL problem
with reward function given by λh(s,a)

ch(s,a)1 ((h, s, a) ∈ X ) and its optimum is known to be
attained by a deterministic policy (e.g., Puterman, 1994).

CovGame solves a variant of this min-max game that does not involve the tar-
get function c directly. The idea is to cluster the state-action pairs in X based on
their sampling requirement. To this end, we define the sequence of sets {Xk}k∈N as
X0 := X and Xk := {(h, s, a) : ch(s, a) > c+min2k} for all k ∈ N∗, where c+

min =
min(h,s,a)∈X ch(s, a) ∨ 1. At each round t ∈ N∗, CovGame tries to solve the game
infλ∈P(Xkt ) maxπ∈ΠD

∑
h,s,a p

π
h(s, a)λh(s, a), where kt is the largest index such that all state-

action pairs in X \ Xkt = {(h, s, a) ∈ X : ch(s, a) ≤ c+
min2kt} have been already covered.

Intuitively, CovGame progressively focuses on covering state-action pairs with larger
sampling requirements, while ignoring those that have already been covered. The main
advantage over solving the initial formulation of ϕ?(c) is two-fold. First, the learner is
allowed to play only deterministic policies, each being the solution to an RL problem.
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Algorithm 9 CovGame

1: Input: Target function c, RL algorithmAΠ, online learning algorithmAλ, risk δ ∈ (0, 1).

2: Let X0 := X and Xk := {(h, s, a) : ch(s, a) > c+
min2k} for all k ∈ N∗

3: Initialize counts n0
h(s, a) = 0 for all h, s, a

4: Reset Aλ on P(X ), set λ1
h(s, a)← 1((h, s, a) ∈ X )/|X | for all h, s, a

5: Initialize k1 ← 0
6: for t = 1, 2, . . . do
7: Get πt from AΠ given reward function λt and confidence 1− δ/2
8: Generate a trajectory {(sth, ath)}h∈[H] using policy πt and update counts nt

9: if nth(s, a) ≥ ch(s, a) for all h, s, a then
10: Stop and return all sampled trajectories
11: Update kt+1 ← max{j ∈ N : nth(s, a) ≥ ch(s, a) ∀(h, s, a) ∈ X \ Xj}
12: if kt+1 6= kt then
13: Reset Aλ on P(Xkt+1), set λt+1

h (s, a)← 1((h, s, a) ∈ Xkt+1)/|Xkt+1 | for all h, s, a

14: else
15: Feed Aλ with loss `t(λ) =

∑
(h,s,a)∈Xkt

λh(s, a)1(sth = s, ath = a), get weight λt+1

Second, in the sequence of games that we consider, the objective function is independent of
the scale of c, which avoids undesired dependencies (e.g., on the inverse of the minimum
value of c) when the target function is unbalanced.

CovGame approximately solves the sequence of games above by leveraging two online
learning algorithms, Aλ and AΠ. The one for the adversary (Aλ) can be any method for
online convex optimization on the simplex with linear losses. The one for the learner (AΠ)
can be any regret minimizer for RL that handles reward functions changing at each round
(but observed at the beginning of the round). A simple approach like UCBVI (Azar et al.,
2017) can be adapted to this purpose.

The final intuition behind CovGame is quite simple: at each round t, the adversary
produces a reward function λt supported over Xkt (the current set to be covered) and the
learner tries to find a good policy for maximizing it. This encourages the learner to visit
uncovered state-action pairs, eventually meeting the sampling requirements.

3.4.2 Sample complexity of COVGAME

In order to analyze the sample complexity of CovGame, we make the following assump-
tion on the adopted online learning algorithms, which will be satisfied by our specific
instance.

Assumption 3.2 — First-order regret. There exists a non-decreasing function Rλ(T ) such
that, if Aλ is instantiated on P(Xk) for some k on a sequence of linear losses {`t}t≥1

bounded in [0, 1],

∀T ∈ N∗,
T∑
t=1

`t(λt)− min
λ∈∆Xk

T∑
t=1

`t(λ) ≤

√√√√Rλ(T )
T∑
t=1

`t(λt) +Rλ(T ). (3.6)

There exists a non-decreasing function RΠ
δ (T ) such that, if AΠ is run with confidence

1− δ on a sequence of rewards {λt}t≥1 with λt ∈ P(X ) for all t, with probability 1− δ,
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for all T ∈ N∗,

T∑
t=1

V ?
1

(
s1;λt

)
−

T∑
t=1

V πt
1

(
s1;λt

)
≤

√√√√RΠ
δ (T )

T∑
t=1

V πt
1 (s1;λt) +RΠ

δ (T ), (3.7)

where V π
1 (s1;λ) :=

∑
h,s,a p

π
h(s, a)λh(s, a) and V ?

1 (s1;λ) := maxπ V
π

1 (s1;λ).

Theorem 3.2 — Sample complexity of COVGAME. Under Assumption 3.1 and 3.2, with
probability at least 1 − δ, CovGame satisfies nτh(s, a) ≥ ch(s, a) for all h, s, a and
its stopping time τ satisfies τ ≤ 64mϕ?(c) + T1, with m := dlog2(cmax/c

+
min)e ∨ 1,

cmax := maxh,s,a ch(s, a) and

T1 = inf

{
T ∈ N∗ :

T

2
≥ mϕ?(1X )

(
3RΠ

δ/2(T ) + 12Rλ(T ) + 24 log(4T/δ)
)

+ 1

}
.

Remark 3.2 While we require both learners to have first-order regret bounds (i.e.,
depending on the sum of observed losses), standard Õ(

√
T ) bounds can also be used at

the cost of a larger second-order term T1 in Theorem 3.2, from T1 = Õ(ϕ?(1X )) as in our
instantiation to T1 = Õ(ϕ?(1X )2). The key step in our proof is to show that first-order
regret implies convergence to the value ϕ?(c) of the game at a rate Õ(1/T ) instead of
the slower Õ(1/

√
T ) achieved with Õ(

√
T ) regret. As ϕ?(1X ) depends on the inverse

visitation probabilities (see Theorem 3.1), this ϕ?(1X ) versus ϕ?(1X )2 improvement will
be crucial to avoid undesired scaling with these quantities in our applications to PAC
RL. �

3.4.2.1 Our instanciation

For Aλ we propose to use the weighted majority forecaster (WMF, Littlestone & Warmuth,
1994) with variance-dependent learning rate for which, for any sequence of losses bounded in
[0, 1], we have by Theorem 5 of (Cesa-Bianchi et al., 2005) that Assumption 3.2 is satisfied
with

Rλ(T ) = 16 log(SAH). (3.8)

For AΠ we propose to use a variant of UCBVI (Azar et al., 2017) that can cope with
varying reward functions. The idea is that since the reward function λt is revealed to AΠ

at the beginning of round t, we can build an upper confidence bound Qt−1
h (s, a;λt) to the

optimal action-value function Q?h(s, a;λt) by estimating the transition probabilities with the
data collected up to round t− 1. Then, we play πth(s) = arg maxaQ

t−1
h (s, a;λt), the greedy

policy w.r.t. Qt−1
h . We build the UCBs by leveraging the “monotonic value propagation”

trick from (Zhang et al., 2021d) and prove that Assumption 3.2 is satisfied with

RΠ
δ (T ) = 65536SAH2(log(2SAH/δ) + 6S) log(T + 1)2. (3.9)

See Appendix C of (Al-Marjani et al., 2023) for details. Notably, we managed to prove a
similar first-order regret bound as the one derived by (Jin et al., 2020) for EULER (Zanette
& Brunskill, 2019b) with a remarkably simple analysis, without using any correction factor
in the bonuses, and with improved dependences on H (from H4 to H2) and δ (from
log(1/δ)3 to log(1/δ)).

As compared to the minimax regret rate (Azar et al., 2017), our resulting bound in
(3.7) features a dependence on S instead of

√
S in its leading-order term. This is the cost of
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handling changing rewards, which prevents us from building tight UCBs as commonly done
for a fixed reward function. Instead, we build UCBs that hold for all rewards simultaneously
using techniques from reward-free exploration (Ménard et al., 2021), a setting where an
extra dependence on S is unavoidable in the worst case (Jin et al., 2020). Time-varying
rewards, albeit under a weaker notion of regret, have also been studied in an adversarial
setting in which the reward λt is not revealed prior to round t (Rosenberg & Mansour,
2019).

Corollary 3.1 — Sample complexity of COVGAME with WMF and UCBVI. With probabil-
ity at least 1− δ, the stopping time of CovGame with Aλ =WMF and AΠ =UCBVI
is bounded by

τ ≤ 64mϕ?(c) + Õ(mϕ?(1X )SAH2(log(1/δ) + S)),

wherem := dlog2(cmax/c
+
min)e∨1 and Õ hides poly-logarithmic factors in S,A,H, ϕ?(1X ), log(1/δ).

The second term in the bound above can be interpreted as the cost incurred for learning
the optimal coverage complexity ϕ?(c) under unknown transition probabilities p. Still,
this learning cost depends at most logarithmically on the total sampling requirement
‖c‖1 =

∑
h,s,a ch(s, a). This implies that, for large ‖c‖1, this cost becomes negligible as

compared to the first term and τ ≤ Õ(ϕ?(c)), which matches the lower bound of Theorem
3.1 up to numerical constants and logarithmic terms.

Remark 3.3 If the transition kernel p is known, by replacing UCBVI with the computation
of the optimal policy w.r.t. to λt, we have RΠ

δ/2(T ) = 0. In this case, we get a smaller

additive cost Õ(mϕ?(1X ) log(SAH) log(1/δ)) which is only due to the randomness in
the collection of trajectories. �

3.4.3 Proof of Theorem 3.2

Note that, at the beginning of any round t ≥ 1, the learner Aλ works over the simplex
P(Xkt), hence λt ∈ P(Xkt). Let τ0 := 1 and, for i ∈ [m], let τi be the round at the beginning
of which kt has changed for the i-th time (i.e., kτi 6= kτi−1). Note that, for any i ≥ 0 and
t ∈ {τi, . . . , τi+1 − 1}, kt = kτi .

Lemma 3.3 Under Assumption 3.1 and 3.2, with probability at least 1 − δ, for any
i ∈ {0, . . . ,m− 1},

min
(h,s,a)∈Xkτi

n
τi+1−1
h (s, a) ≥ 1

8

τi+1 − τi
ϕ?(1Xkτi

)
− 3

8
RΠ
δ (τi+1)− 3

2
Rλ(τi+1)− 3 log(4τi+1/δ).
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Proof. Take any i ∈ {0, . . . ,m− 1}. Note that

min
(h,s,a)∈Xkτi

n
τi+1−1
h (s, a) = min

(h,s,a)∈Xkτi

τi+1−1∑
t=1

1
(
sth = s, ath = a

)
(definition of counts)

= min
(h,s,a)∈Xkτi

i∑
j=0

τj+1−1∑
t=τj

1
(
sth = s, ath = a

)
(definition of {τj}j≥0)

≥
i∑

j=0

min
(h,s,a)∈Xkτj

τj+1−1∑
t=τj

1
(
sth = s, ath = a

)
(Xkτi ⊆ Xkτj for all j ≤ i)

=
i∑

j=0

min
λ∈P(Xkτj )

∑
(h,s,a)∈Xkτj

λh(s, a)

τj+1−1∑
t=τj

1
(
sth = s, ath = a

)

=
i∑

j=0

min
λ∈P(Xkτj )

τj+1−1∑
t=τj

`t(λ). (definition of `t(λ))

≥ min
λ∈P(Xkτi )

τi+1−1∑
t=τi

`t(λ)

For each i, by the regret bound of the λ player (Assumption 3.2),

min
λ∈P(Xkτi )

τi+1−1∑
t=τi

`t(λ) ≥
τi+1−1∑
t=τi

`t(λt)−

√√√√Rλ(τi+1 − τi)
τi+1−1∑
t=τi

`t(λt)−Rλ(τi+1 − τi)

(a)

≥ 1

2

τi+1−1∑
t=τj

`t(λt)− 3

2
Rλ(τi+1 − τi)

(b)

≥ 1

2

τi+1−1∑
t=τj

`t(λt)− 3

2
Rλ(τi+1),

where in (a) we used the AM-GM inequality √xy ≤ x+y
2 for x, y ≥ 0 and in (b) we used that

Rλ(τi+1−τi) ≤ Rλ(τi+1) by monotonicity of T 7→ Rλ(T ). Let us now bound
∑τi+1−1

t=1 `t(λt).
Note that `t(λt) =

∑
h,s,a λ

t
h(s, a)1

(
sth = s, ath = a

)
for all for all t ∈ {τj , . . . , τj+1 − 1}

since λt is equal to zero outside Xkτj . Then,

τi+1−1∑
t=1

`t(λt) =

τi+1−1∑
t=1

∑
h,s,a

λth(s, a)
(
1
(
sth = s, ath = a

)
± pπth (s, a)

)

=

τi+1−1∑
t=1

V πt
1

(
s1;λt

)
+

τi+1−1∑
t=1

∑
h,s,a

λth(s, a)
(
1
(
sth = s, ath = a

)
− pπth (s, a)

)
︸ ︷︷ ︸

:=Mτi+1−1

.

Since both λt and πt are Ft−1-measurable,Mτi+1−1 is a martingale with differences bounded
by 1 in absolute value. Therefore, by Freedman’s inequality (e.g., Lemma 26 of Papini
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et al., 2021), with probability at least 1− δ/2,

∀T ≥ 1, |MT | ≤

√√√√ T∑
t=1

Vt × 4 log(4T/δ) + 4 log(4T/δ)

≤

√√√√ T∑
t=1

V πt
1 (s1;λt)× 4 log(4T/δ) + 4 log(4T/δ),

where we defined Vt := Var[
∑

h,s,a λ
t
h(s, a)1

(
sth = s, ath = a

)
| Ft−1] and used the simple

bound Vt ≤ E[
∑

h,s,a λ
t
h(s, a)1

(
sth = s, ath = a

)
| Ft−1] = V πt

1

(
s1;λt

)
, which holds since∑

h,s,a λ
t
h(s, a)1

(
sth = s, ath = a

)
≤ 1 almost surely by definition of λt. Plugging this into

the initial decomposition of
∑τi+1−1

t=1 `t(λt) and using the AM-GM inequality √xy ≤ x+y
2

for x, y ≥ 0,

τi+1−1∑
t=1

`t(λt) ≥
τi+1−1∑
t=1

V πt
1

(
s1;λt

)
−

√√√√τi+1−1∑
t=1

V πt
1 (s1;λt)× 4 log(4τi+1/δ)− 4 log(4τi+1/δ)

≥ 1

2

τi+1−1∑
t=1

V πt
1

(
s1;λt

)
− 6 log(4τi+1/δ).

We finally bound
∑T

t=1 V
πt

1

(
s1;λt

)
for any T . For all T ≥ 1, with probability at least

1− δ/2 from Assumption 3.2,

T∑
t=1

V πt
1

(
s1;λt

)
≥

T∑
t=1

V ?
1

(
s1;λt

)
−

√√√√RΠ
δ (T )

T∑
t=1

V ?
1 (s1;λt)−RΠ

δ (T ).

Applying once again the AM-GM inequality yields

T∑
t=1

V πt
1

(
s1;λt

)
≥ 1

2

T∑
t=1

V ?
1

(
s1;λt

)
− 3

2
RΠ
δ (T )

=
1

2

T∑
t=1

sup
ρ∈Ω

∑
h,s,a

ρh(s, a)λth(s, a)− 3

2
RΠ
δ (T ).

Now note that, since λt is supported on Xkτj for any t ∈ {τj , . . . , τj+1 − 1},

τi+1−1∑
t=1

sup
ρ∈Ω

∑
h,s,a

ρh(s, a)λth(s, a) =
i∑

j=0

τj+1−1∑
t=τj

sup
ρ∈Ω

∑
h,s,a

ρh(s, a)λth(s, a)

≥
i∑

j=0

τj+1−1∑
t=τj

sup
ρ∈Ω

min
(h,s,a)∈Xkτj

ρh(s, a)

=
i∑

j=0

τj+1 − τj
ϕ?(1Xkτj

)

≥ τi+1 − τi
ϕ?(1Xkτi

)
.

Plugging everything together proves the statement.
�
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Let m denote the number of times kt changes value through the execution of the algorithm,
that is m = |{t ≤ τ : kt 6= kt+1}|. We provide a bound on m.

Lemma 3.4 It holds thatm ≤ dlog2(cmax/c
+
min)e∨1. Moreover, for any i ∈ {0, . . . ,m−1},

we have min(h,s,a)∈Xkτi
n
τi+1−1
h (s, a) ≤ c+

min2kτi+2.

Proof. By definition of the update rule, we have that kt+1 ≥ kt for all t ≥ 1. Now take any
time t in which kt has changed value m times. Since k1 ≥ 0, this means that kt ≥ m. By
definition of kt, we know that nt−1

h (s, a) ≥ ch(s, a) for all (h, s, a) ∈ X \Xj for some j ≥ m.
However, if m ≥ dlog2(cmax/c

+
min)e ∨ 1, Xj = ∅ and thus the algorithm must have stopped.

This proves that m ≤ dlog2(cmax/c
+
min)e ∨ 1.

To prove the second statement, we note that for any i < m, we have kτi+1−1 = kτi
and n

τi+1−2
h (s, a) ≥ ch(s, a) for all (h, s, a) ∈ X \ Xkτi . Moreover, there must be some

(h, s, a) ∈ X \ Xkτi+1 such that nτi+1−2
h (s, a) < ch(s, a). Indeed, if this was not the case, we

would have an update of k at the end of round τi+1−2 instead of τi+1−1. Since all the triplets
in Xkτi have been covered, the uncovered triplet must be in Xkτi ∩X \Xkτi+1 = Xkτi \Xkτi+1.
By definition, all (h, s, a) ∈ Xkτi \ Xkτi+1 satisfy ch(s, a) ≤ c+

min2kτi+1. Hence,

min
(h,s,a)∈Xkτi

n
τi+1−1
h (s, a) ≤ min

(h,s,a)∈Xkτi
n
τi+1−2
h (s, a) + 1 < c+

min2kτi+1 + 1 ≤ c+
min2kτi+2

where we use that c+
min ≥ 1. �

We are now ready to prove Theorem 3.2

Proof of Theorem 3.2. Let m be the number of times kt has changed throughout the
execution of the algorithm. Note that, in the round τ in which the algorithm stops the
last change must occur, thus τm = τ + 1, and kτ+1 is set to any value such that Xkτ+1 = ∅.
Then,

τ = τm − 1 =
m−1∑
i=0

(τi+1 − τi) .

By combining Lemma 3.4 with Lemma 3.3 and rearranging, with probability at least 1− δ,
for any i ∈ {0, . . . ,m− 1},

τi+1 − τi ≤ 8ϕ?(1Xkτi
)c+

min2kτi+2 + 8ϕ?(1Xkτi
)

(
3

8
RΠ
δ (τi+1) +

3

2
Rλ(τi+1) + 3 log(4τi+1/δ)

)
≤ 8ϕ?(1Xkτi

)c+
min2kτi+2 + ϕ?(1X )

(
3RΠ

δ (τm) + 12Rλ(τm) + 24 log(4τm/δ)
)
,

where the second inequality is due to Xk ⊆ X for all k ∈ N and τi+1 ≤ τm for i ≤ m− 1.
Then,

τm ≤ 8
m−1∑
i=0

c+
minϕ

?(1Xkτi
)2kτi+2 +mϕ?(1X )

(
3RΠ

δ (τm) + 12Rλ(τm) + 24 log(4τm/δ)
)

+ 1.
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The first term can be bounded by

8
m−1∑
i=0

c+
minϕ

?(1Xkτi
)2kτi+2 = 8

m−1∑
i=0

c+
min2kτi+2 min

ρ∈Ω
max
s,a,h

1((h, s, a) ∈ Xkτi )
ρh(s, a)

≤ 32
m−1∑
i=0

c+
min2kτi min

ρ∈Ω
max
s,a,h

1(c+
min2kτi < ch(s, a))

ρh(s, a)

≤ 32
m−1∑
i=0

min
ρ∈Ω

max
s,a,h

ch(s, a)

ρh(s, a)
= 32mϕ?(c).

Plugging this into the bound on τm, we obtain the inequality,

τm ≤ 32mϕ?(c) +mϕ?(1X )
(

3RΠ
δ (τm) + 12Rλ(τm) + 24 log(4τm/δ)

)
+ 1.

Thus, for τm ≥ T1, we get that the sample complexity is bounded by τ ≤ 64mϕ?(c). Thus,
we conclude that τ ≤ τm ≤ max{T1, 64mϕ?(c)} ≤ 64mϕ?(c) + T1. The proof is concluded
by using Lemma 3.4 to bound m. �

3.4.4 Comparison with prior work
While inspired by an original game perspective which is crucial in our analysis, the actual
algorithmic approach of CovGame has a similar flavor as existing algorithms for different
exploration tasks: it runs a regret minimizer on different reward functions enforcing the
visitation of uncovered states. Using WMF as the λ-learner, the reward function in round t
is

λt+1
h (s, a) =

exp
(
−ξt−it

(
nth(s, a)− nith (s, a)

))
1 ((h, s, a) ∈ Xkt)∑

(h′,s′,a′)∈Xkt
exp

(
−ξt−it

(
nth′(s

′, a′)− nith′(s′, a′)
)) ,

where it is the last restart of WMF that happened before t and ξt is the variance-dependent
learning rate defined by (Cesa-Bianchi et al., 2005). Our reward function is related to
the number of prior visits and smoothly evolves over time, which is in contrast with most
prior approaches that rely on rewards of the form rYh (s, a) = 1((h, s, a) ∈ Y) for some
set Y, For example, GOSPRL translated to our episodic setting would use rt+1

h (s, a) =
1
(
nth(s, a) < cth(s, a)

)
. The Learn2Explore strategy (Wagenmaker et al., 2022a) uses a

subroutine to visit N times some of the state-action pairs in Y : it runs EULER (Zanette &
Brunskill, 2019a) on rY and restarts the algorithm with a reward function with reduced
support whenever some new state-action pair has reached N visits. Several algorithms for
RFE (Jin et al., 2020; Zhang et al., 2021a) also collect data using regret minimizers on top
of indicator-based rewards.

3.5 Application to Reward-Free Exploration
A strategy for RFE should return an estimate of the transition kernel p̂ from which a
planning agent can compute a near-optimal policy for any reward function. To be robust
to any possible reward in the test phase, we intuitively need to gather sufficient samples
everywhere in the MDP, which we propose to do explicitly by relying on CovGame
with proportional coverage (Section 3.5.1). The resulting algorithm is called Proportional
Coverage Exploration (PCE). PCE takes as input two parameters ε, δ and returns an
estimate of the transition probabilities p̂ that, with probability 1− δ, yields an ε-optimal
policy for any reward function bounded in [0, 1].
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3.5.1 PCE: Intuition and pseudo-code
The first observation in the design of PCE is that, it does not really matter which action
the planner plays at the pairs (h, s) ∈ [H] × S that are hard to reach. More precisely,
denoting by V π

1 (s1; r) :=
∑

h,s,a p
π
h(s, a)rh(s, a) the expected return of π under the reward

function r, it holds that

∀π ∈ ΠD,
∑

(h,s): supπ p
π
h(s)≤ε/2SH

∑
a∈A

pπh(s, a)rh(s, a) ≤ ε/2.

In other words, even if the planner selects sub-optimal actions in the step-state pairs (h, s)
such that supπ p

π
h(s) ≤ ε/2SH, she will at most incur a loss of ε/2 in the value function.

Therefore, we do not need to explore states whose reacheability is low.
This leads us to the second ingredient which motivates the choice of proportional

coverage: a novel ellipsoid-shaped confidence region for the value functions of all policies
under any reward. Let p̂t denote the maximum likelihood estimator of p after observing t
episodes. Denote by V̂ π,t

1 (s1; r) :=
∑

h,s,a p̂
π,t
h (s, a)rh(s, a) the expected return of π in the

empirical MDP with transitions p̂t and reward function r. Theorem 3.4 in Appendix 3.9
gives that, with probability 1− δ, jointly over all episodes t,

∀r ∈ [0, 1]SAH , ∀π ∈ ΠD,
∣∣V π

1 (s1; r)− V̂ π,t
1 (s1; r)

∣∣ ≤√√√√βRF(t, δ)
∑

(h,s,a)∈Xε

pπh(s, a)2

nth(s, a)
+
ε

4
,

(3.10)

where βRF(t, δ) ∝ H2 log(1/δ) + SH3 log(A(1 + t)) and Xε is a subset of triplets that
are not too hard to reach: Xε ⊆ {(h, s, a) : maxπ p

π
h(s, a) ≥ ε

4SH2 }. Hence, if we gather
ch(s, a) = O(HβRF(t, δ) supπ p

π
h(s, a)/ε2) visits from every (h, s, a) ∈ Xε, the confidence

interval above will satisfy√√√√βRF(t, δ)
∑

(h,s,a)∈Xε

pπh(s, a)2

nth(s, a)
≤ ε

√√√√βRF(t, δ)
∑

(h,s,a)∈Xε

pπh(s, a)2

c1HβRF(t, δ) supπ p
π
h(s, a)

≤ ε

√∑
(h,s,a)∈Xε p

π
h(s, a)

c1H
≤ε/c1,

for some constant c1 > 0. The last inequality above is due to the fact that for each step h,
the probabilities (pπh(s, a))s,a sum to one. Hence, for a good choice of c1, the estimation
error of V π

1 (s1; r) for any π and r will be below ε/2, which was demonstrated to be sufficient
for solving RFE (Jin et al., 2020).

Yet as the visitation probabilities are unknown, neither Xε nor ch(s, a) can actually
be computed. To solve this issue, we rely on an initialization phase based on the Esti-
mateReachability subroutine (line 2 of Algorithm 10), described in Appendix 3.10. This
procedure, which is similar to the initialization phase in MOCA (Wagenmaker et al., 2022a),
outputs for each (h, s) an interval [W h(s),W h(s)] to which maxπ p

π
h(s) belongs with high

probability using a low-order number of episodes of Õ(S3AH4/ε). The lower confidence
bound is then used to build a set X̂ that satisfies the requirements for Xε and the upper
bound is used to define the target function that is given as input to CovGame in phase k of
the algorithm: ckh(s, a) := 2kW h(s)1

(
(h, s, a) ∈ X̂

)
. The pseudo-code of PCE is presented

in Algorithm 10.
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Algorithm 10 PCE (Proportional Coverage Exploration)

1: Input: Precision ε, Risk δ ∈ (0, 1).
2: For each (h, s), run EstimateReachability((h, s); ε

4SH2 ,
δ

3SH ) to get confidence
intervals

[
W h(s),W h(s)

]
on maxπ p

π
h(s) (see Appendix 3.10)

3: Define X̂ := {(h, s, a) : W h(s) ≥ ε
32SH2 }

4: Define target function c0
h(s, a) = 1

(
(h, s, a) ∈ X̂

)
for all (h, s, a)

5: Execute CovGame
(
c0, δ/6

)
to get a dataset D0 of d0 episodes // Burn-in phase

6: Initialize episode count t0 ← d0 and statistics n0
h(s, a), p̂0

h(.|s, a) using D0

7: for k = 1, . . . do
8: // Proportional Coverage
9: Compute targets ckh(s, a) := 2kW h(s)1

(
(h, s, a) ∈ X̂

)
for all (h, s, a)

10: Execute CovGame
(
ck, δ/6(k + 1)2

)
to get dataset Dk and number of episodes dk

11: Update episode count tk ← tk−1 + dk and statistics nkh(s, a), p̂kh(.|s, a) using Dk
12: if

√
HβRF (tk, δ/3)24−k ≤ ε then stop and return p̂k

13: end for

Remark 3.4 We remark that PCE is computationally efficient as it inherits the complexity
of CovGame and EstimateReachability, both of which require solving one dynamic
program in every round to compute the optimistic policy used by UCBVI. We now
present its theoretical properties. �

Remark 3.5 — Reachability. Thanks to its initialization phase, PCE can be used even
when Assumption 3.1 is violated. All triplets that have zero probability to be reached
are filtered out from the set X̂ (line 3 of Algorithm 10), and CovGame always targets
reachable states. �

3.5.2 Sample Complexity of PCE

Theorem 3.3 Let p̂ be the estimate of the transition probabilities that PCE outputs. For
any reward function r, let π̂r be an optimal policy in the MDP (p̂, r). Then,

P
(
∀r ∈ [0, 1]SAH , |V π̂r

1 (s1; r)− V ?
1 (s1; r)| ≤ ε

)
≥ 1− δ.

Furthermore, with probability at least 1− δ, the total sample complexity of PCE satisfies

τ ≤ Õ
((
H3 log(1/δ) + SH4

)
ϕ?
([

supπ p
π
h(s)1(supπ p

π
h(s) ≥ ε

32SH2 )

ε2

]
h,s,a

)
+
S3A2H5(log(1/δ) + S)

ε

)
,

where Õ hides poly-logarithmic factors in S,A,H, 1/ε and log(1/δ).

Perhaps the most interesting feature of this bound is that thanks to Lemma 3.2, the ϕ?

term is at most SAH/ε2. As a result, a worst-case bound can be directly extracted from
Theorem 3.3:

τ = Õ

(
SAH4

ε2
log(1/δ) +

S2AH5

ε2
+
S3A2H5

ε
(log(1/δ) + S)

)
.

Given that the minimax rate of RFE is of order Ω
(SAH3 log(1/δ)+S2AH3

ε2

)
(Jin et al., 2020;

Kaufmann et al., 2021), we conclude that PCE is minimax-optimal up to an H2 factor
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and low-order terms scaling in 1/ε. More interestingly, the next Lemmas provide benign
MDP instances where the complexity of PCE can be much smaller than the minimax rate
in terms of the dependence on the number of states.

3.5.3 Adaptive reward-free exploration
We define the simplified complexity

PCE(M, ε) := ϕ?([sup
π
pπh(s, a)]h,s,a)/ε

2, (3.11)

which is an upper bound on the ϕ? term of Theorem 3.3. We start by considering the case
where the MDP is actually a contextual bandit, but this fact is unknown to the learner.

Lemma 3.5 — Disguised contextual bandits. Suppose thatM is a "disguised" contextual
bandit, i.e.,

∀(h, s, a, s′), ph(s′|s, a) = ph(s′|s).

Then PCE(M, ε) = A/ε2.

Plugging the Lemma above into Theorem 3.3, we get a reduced sample complexity for PCE
of order:

τ = Õ

(
AH3

ε2
log(1/δ) +

SAH4

ε2
+
S3A2H5

ε
(log(1/δ) + S)

)
.

For ε small enough, the term in 1/ε becomes negligible and we save an S factor compared
to the minimax rate.

Proof. In this case for any (h, s) and any policy π, pπh(s) = ph(s) is independent of the
policy. Thanks to the one-to-one correspondence between vectors in Ω(M) and Markovian
stochastic policies (see Section 3.2.1) we may write

ϕ?([sup
π
pπh(s, a)]h,s,a) = inf

πexp∈ΠS
max
s,a,h

supπ p
π
h(s, a)

pπ
exp

h (s, a)

= inf
πexp∈ΠS

max
s,a,h

ph(s) supπ πh(a|s)
ph(s)πexph (a|s)

= inf
πexp∈ΠS

max
s,h

1

mina π
exp
h (a|s)

= A,

where the last equality is because (mina π
exp
h (a|s))−1 ≥ A and the infimum over ΠS is

achieved by the uniform policy. �

3.5.3.1 Ergodic MDPs

Let α, β ∈ (0, 1) such that α > β. Further, define the set of probability vectors such that

Pα,β =

{
q ∈ RS+ :

S∑
i=1

qi = 1, max
i
qi ≤ Sα−1,min

i
qi ≥

1− Sβ−1

S − 1

}
.

Note that such set is never empty since the vector (Sβ−1, 1−Sβ−1

S−1 , . . . , 1−Sβ−1

S−1 ) always
satisfies the inequalities in its definition. We define the class of MDPs Merg such that their
transition kernel satisfies

∀(h, s, a), ph(.|s, a) ∈ Pα,β.
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Lemma 3.6 Assume thatM∈Merg, then PCE(M, ε) ≤ SαAH/ε2.

Therefore when the MDP is ergodic, the sample complexity of PCE is at most

τ = Õ

(
SαAH4

ε2
log(1/δ) +

SαAH5

ε2
+
S3A2H5

ε
(log(1/δ) + S)

)
,

where α ∈ (0, 1). In other words, we gain a S1−α factor and the dependence on S is
no longer quadratic despite the fact that we estimate a transition kernel p of dimension
S2AH.

Remark 3.6 Note that the "ergodicity" of MDPs in Merg can be as small as one wishes:
by taking the limit β → 1, the constraint mins′ ph(s′|s, a) ≥ 1−Sβ−1

S−1 becomes vacuous so
the MDP can be non-ergodic. In that regime, α = 1 and we recover the minimax rate
(up to an H factor) SAH3/ε2. �

Proof. First of all, we note that

∀π ∈ ΠD ∀s ∈ S, pπh(s) =
∑
s′∈S

pπh−1(s)ph(s|s′, πh−1(s′)) ≤
∑
s′∈S

pπh−1(s)Sα−1 = Sα−1.

(3.12)

Similarly

∀π ∈ ΠD ∀s ∈ S, pπh(s) ≥ 1− Sβ−1

S − 1
. (3.13)

Now using Lemma 3.2 we have that

ϕ?([sup
π
pπh(s, a)]h,s,a) ≤

H∑
h=1

inf
πexp∈ΠS

max
s,a

supπ p
π
h(s, a)

pπ
exp

h (s)πexph (a|s)

(a)
=

H∑
h=1

inf
πexp∈ΠS

max
s

1

pπ
exp

h (s)
× inf

(πexph (.|s))∈P(A)
max
a

supπ p
π
h(s, a)

πexph (a|s)

(b)
=

H∑
h=1

inf
πexp∈ΠS

max
s

1

pπ
exp

h (s)
×
(∑

a

sup
π
pπh(s, a)

)
(c)
=

H∑
h=1

inf
πexp∈ΠS

max
s

A supπ p
π
h(s)

pπ
exp

h (s)

= A
H∑
h=1

inf
πexp∈ΠS

max
s

supπ p
π
h(s)

pπ
exp

h (s)︸ ︷︷ ︸
:=Ch

, (3.14)

where (a) uses that for h ∈ [H] and any policy πexp, (pπ
exp

h (s))s and (πexp
h (a|s))a,s are

independent5, (b) solves the right-hand side minimization problem in (πexph (.|s)) for a fixed
state s and (c) uses that supπ p

π
h(s, a) = supπ p

π
h(s) (the equality is achieved by playing the

policy that maximizes pπh(s) then playing action a at (h, s)). Now fix h ∈ [H] and denote
by πs any policy in arg maxπ∈ΠD

pπh(s). Further define the stochastic policy π̃ such that

pπ̃ =

∑
s∈S p

πs

S
.

5The actions that a policy π plays at step h have no impact on the probabilities of reaching states
Pπ(sh = s) at that step.
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Using (3.13) we have that for all s ∈ S,

pπ̃h(s) =

∑
s′∈S p

πs
′

h (s)

S
≥

supπ∈Π p
π
h(s) + (S − 1)1−Sβ−1

S−1

S
=

supπ∈Π p
π
h(s) + 1− Sβ−1

S
.

(3.15)

Therefore

Ch = inf
πexp∈ΠS

max
s

supπ p
π
h(s)

pπ
exp

h (s)
≤ max

s

supπ p
π
h(s)

pπ̃h(s)

(a)

≤ max
s

S supπ p
π
h(s)

supπ∈ΠD
pπh(s) + 1− Sβ−1

= max
s

S

1 + 1−Sβ−1

supπ p
π
h(s)

(b)

≤ max
s

S

1 + S1−α(1− Sβ−1)

=
S

1 + S1−α − Sβ−α
≤ Sα,

where (a) uses (3.15) and (b) uses (3.12). Combining (3.14) with the previous inequality
yields that ϕ?([supπ p

π
h(s, a)]h,s,a) ≤ SαAH. �

The examples above suggest that, while RFE is by essence a worst-case problem where
one has to be robust to any reward at test time, there is still hope to adapt to the
“explorability” of the MDP.

3.6 Analysis of PCE
In this final section, we provide the full analysis leading to the proof of Theorem 3.4. To
simplify the presentation of the algorithm and the analysis, we index the counts as well as
the empirical estimates of transitions and rewards by their phase number. Hence, for each
triplet (h, s, a), nkh(s, a) and p̂kh(.|s, a) will refer to the number of visits and the empirical
transition kernel respectively after tk episodes, i.e. at the end of the k-th phase. Finally, for
a dataset of episodes D, nh(s, a;D) denotes the number of visits of (h, s, a) in the episodes
stored in D.

Good event
We introduce the following events

Evis :=

(
The set built using EstimateReachability

(
(h, s); ε

4SH2 ,
δ

3SH

)
for all (h, s)

satisfies
{

(h, s) : supπ p
π
h(s) ≥ ε

4SH2

}
⊆ X̂ ⊆

{
(h, s) : supπ p

π
h(s) ≥ ε

32SH2

}
and ∀(h, s) ∈ X̂ , supπ p

π
h(s) ≤W h(s) ≤ 36 supπ p

π
h(s)

)
,

ERFp :=

(
∀k ∈ N?,∀π ∈ ΠD, ∀r ∈ [0, 1]SAH ,∣∣∣∑s,a,h

(
p̂π,kh (s, a)− pπh(s, a)

)
rh(s, a)

∣∣∣ ≤√βRF (tk, δ/3)
∑

(s,a,h)∈X̂
pπh(s,a)2

nkh(s,a)
+ ε

4

)
,

Ecov :=

(
∀k ∈ N, CovGame run with inputs (ck, δ/6(k + 1)2) terminates after at most

64mkϕ
?(ck) + Õ

(
mkϕ

?(1X̂ )SAH2(log(6(k + 1)2/δ) + S)
)
episodes and returns a dataset Dk

such that for all (h, s, a) ∈ X̂ , nh(s, a;Dk) ≥ ckh(s, a)

)
,
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where mk = log2

( maxs,a,h c
k
h(s,a)

mins,a,h c
k
h(s,a)∨1

)
∨1 and βRF is defined in appendix 3.9.2. Then our good

event is defined as the intersection

ERFgood := Evis ∩ ERFp ∩ Ecov.

Lemma 3.7 We have that PM(ERFgood) ≥ 1− δ.

Proof. Let E denote the complementary event of E . We start by the following decomposition

PM(ERFgood) ≤ PM(Evis) + PM(Ecov) + PM(ERFp ∩ Evis ∩ Ecov).

Now we bound each term separately. First observe that applying Theorem 3.6 with
parameter ε0 = ε/4SH2 yields PM(Evis) ≤ δ/3. Second, using Corollary 3.1 we have

PM(Ecov) ≤
∞∑
k=0

PM(CovGame with inputs (ck, δ/6(k + 1)2) fails)

≤
∞∑
k=0

δ

6(k + 1)2
=
δπ2

36
≤ δ/3.

Next, note that by design of PCE n0
h(s, a) = nh(s, a; D̃0) and c0 = 1X̂ so that Ecov ⊂(

∀(h, s, a) ∈ X̂ , n0
h(s, a) ≥ 1

)
. Therefore we have

PM(ERFp ∩ Evis ∩ Ecov) ≤ PM
(
ERFp ,

{
(h, s) : sup

π
pπh(s) ≥ ε

4SH2

}
⊆ X̂ , ∀(h, s, a) ∈ X̂ n0

h(s, a) ≥ 1
)

= PM
({

(h, s) : sup
π
pπh(s) ≥ ε

4SH2

}
⊆ X̂ , ∃k ≥ 0 ∃π ∈ ΠD ∃r ∈ [0, 1]SAH :

∣∣∣ ∑
s,a,h

(
p̂π,kh (s, a)− pπh(s, a)

)
rh(s, a)

∣∣∣ >√√√√βRF (tk, δ/3)
∑

(s,a,h)∈X̂

pπh(s, a)2

nkh(s, a)
+
ε

4

)
(a)

≤ PM
({

(h, s) : sup
π
pπh(s) ≥ ε

4SH2

}
⊆ X̂ , ∃t ≥ t0 ∃π ∈ ΠD ∃r ∈ [0, 1]SAH :

∣∣∣ ∑
s,a,h

(
p̂π,th (s, a)− pπh(s, a)

)
rh(s, a)

∣∣∣ >√√√√βRF (t, δ/3)
∑

(s,a,h)∈X̂

pπh(s, a)2

nth(s, a)
+
ε

4

)
(b)

≤ δ/3,

where in (a) we introduced t0 = inf{t ≥ 1 : nth(s, a) ≥ 1,∀(h, s, a) ∈ X̂} and switched back
to indexing counts and estimates by the episode number (instead of the phase) in order to
apply Theorem 3.4 in (b) with Z = {(h, s, a) : (h, s) ∈ X̂} and ε0 = ε/4SH2. Combining
the four inequalities above yields the desired result. �

Low concentrability / Good coverage of all policies
The next lemma shows that PCE achieves proportional coverage.

Lemma 3.8 Under the good event, for all phases k ≥ 0, we have that

nkh(s, a) ≥ 2k sup
π
pπh(s, a) ∀(h, s, a) ∈ X̂ .
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Proof. First of all, note that for any triplet (h, s, a) ∈ X̂ , supπ p
π
h(s, a) is always attained by

some deterministic policy. Therefore, it is sufficient to prove that, given a fixed deterministic
policy π ∈ ΠD,

∀k ≥ 0, ∀(h, s, a) ∈ X̂ , nkh(s, a) ≥ 2kpπh(s, a) .

We do this by induction over k. For k = 0 the result is trivial since, under the good
event, we have that for all (h, s, a) ∈ X̂ , n0

h(s, a) ≥ c0
h(s, a) = 1 ≥ 20pπh(s, a). Now suppose

that the property holds for phase k. Then under the good event we know that for all
(h, s, a), nk+1

h (s, a)− nkh(s, a) = nh(s, a,Dk+1) ≥ ck+1
h (s, a). Plugging the definition of ck+1

(Line 9 of Algorithm 10) we get that for any (h, s, a) ∈ X̂ ,

nk+1
h (s, a) ≥ ck+1

h (s, a)

= 2k+1W h(s)

≥ 2k+1 sup
π
pπh(s)

= 2k+1 sup
π
pπh(s, a), (3.16)

where the second inequality uses the event Evis. �

Correctness

Lemma 3.9 Let p̂ be the estimate of the transition probabilities that PCE outputs. For
any reward function r, let π̂r be an optimal policy in the MDP (p̂, r). Then

P
(
∀r ∈ [0, 1]SAH , V π̂r

1 (s1; r) ≥ V ?
1 (s1; r)− ε

)
≥ 1− δ.

In other words, PCE is (ε, δ)-PAC for reward-free exploration.

Proof. Assume that PCE stops as phase k and let p̂k denote the empirical transition
estimates that it returns. Fix any reward function r = [rh(s, a)]h,s,a ∈ [0, 1]SAH and let
π̂ ∈ arg maxπ∈ΠD(p̂π,k)>r be the policy obtained when planning for reward function r
under the transition model p̂k. Further define π? ∈ arg maxπ∈ΠD(pπ)>r, V ?

1 := (pπ
?
)>r,

and V π̂
1 := (pπ̂)>r. Note that both π̂ and π? are deterministic. Therefore under the good

event ERFgood we have

V π̂
1 = (pπ̂)>r

(a)

≥ (p̂π̂,k)>r −

√√√√βRF (tk, δ/3)
∑

(s,a,h)∈X̂

pπ̂h(s, a)2

nkh(s, a)
− ε

4

(b)

≥ (p̂π
?,k)>r −

√√√√βRF (tk, δ/3)
∑

(s,a,h)∈X̂

pπ̂h(s, a)2

nkh(s, a)
− ε

4

(c)

≥ (pπ
?
)>r −

√√√√βRF (tk, δ/3)
∑

(s,a,h)∈X̂

pπ
?

h (s, a)2

nkh(s, a)
−

√√√√βRF (tk, δ/3)
∑

(s,a,h)∈X̂

pπ̂h(s, a)2

nkh(s, a)
− ε

2

(d)

≥ V ?
1 − 2

√
HβRF (tk, δ/3)2−k − ε

2
(e)

≥ V ?
1 − ε,
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where (a) and (c) use the good event ERFp for policies π̂ and π? respectively, (b) uses the
definition of π̂, (d) uses Lemma 3.8 and (e) uses the stopping condition of PCE (Line
10 in Algorithm 10). Note that the inequality above holds, under the good event Egood,
jointly for all reward functions r. Since PM(Egood) ≥ 1− δ, we have just proved that PCE
is (ε, δ)-PAC for reward-free exploration. �

Upper bound on the number of phases

Lemma 3.10 Define the index of the final phase of PCE,

κf := inf
{
k ∈ N+ :

√
HβRF (tk, δ/3)24−k ≤ ε

}
.

Further let τ denote the number of episodes played by the algorithm. Then under the
good event, it holds that κf <∞ and

2κf ≤ 32HβRF (τ, δ/3)

ε2
.

Proof. First, we prove that κf is finite. Under the good event, we have

tk =
k∑
j=0

dj

≤
k∑
j=0

[
64mjϕ

?(cj) + Õ
(
mjϕ

?(1X̂ )SAH2(log(6(j + 1)2/δ) + S)
)]
,

where we recall that mj = log2

( maxs,a,h c
j
h(s,a)

mins,a,h c
j
h(s,a)∨1

)
∨ 1. Now using the fact that cjh(s, a) ≤

2j1((h, s, a) ∈ X̂ ) for j ≥ 0 we deduce that m0 = 1 and mj ≤ j ∀j ≥ 1 so that

tk ≤
k∑
j=0

[
8(j + 1)2jϕ?(1X̂ ) + Õ

(
(j + 1)ϕ?(1X̂ )SAH2(log(4(j + 1)2/δ) + S)

)]
= Ok→∞

(
k22k

)
. (3.17)

Now recall that the threshold βRF was defined in Appendix 3.9 as

βRF (t, δ) := 4H2 log(1/δ) + 24SH3 log(A(1 + t)) (3.18)

Combining (3.17) and (3.18) gives that

βRF (tk, δ/3) = ok→∞
(
2k
)
.

Therefore κf = inf
{
k ∈ N+ :

√
HβRF (tk, δ/3)24−k ≤ ε

}
is indeed finite. The proof of the

second statement is straightforward by noting that κf − 1 does not satisfy the stopping
condition (Line 12 in Algorithm 10) and using the (crude) upper bound tκf−1 ≤ τ . �

Upper bound on the phase length

Lemma 3.11 Let k ≥ 1 be such that PCE did not stop before phase k. Under the good
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event, the number of episodes played by PCE during phase k satisfies

dk ≤ c1kHβ
RF (τ, δ/3)ϕ?

([
supπ p

π
h(s)1

(
supπ p

π
h(s) ≥ ε

32SH2

)
ε2

]
h,s,a

)
+ Õ

(
k
S3A2H5(log(6(k + 1)2/δ) + S)

ε

)
,

where c1 = 73728. Furthermore, the duration of the initial phase is upper-bounded as

d0 ≤ Õ
(
S3A2H5(log(6/δ) + S)

ε

)
.

Proof. Using the good event and the definition of ck we write

dk ≤ 64mkϕ
?

([
2kW h(s)1

(
(h, s, a) ∈ X̂

)]
h,s,a

)
+ Õ

(
mkϕ

?(1X̂ )SAH2(log(6(k + 1)2/δ) + S)
)

(a)

≤ 64kϕ?
([

2kW h(s)1
(
(h, s, a) ∈ X̂

)]
h,s,a

)
+ Õ

(
kϕ?(1X̂ )SAH2(log(6(k + 1)2/δ) + S)

)
,

(3.19)

where (a) uses that mk = log2

( maxs,a,h c
k
h(s,a)

mins,a,h c
k
h(s,a)∨1

)
∨ 1 ≤ k. Now by definition of the good

event we have that for any triplet (h, s, a) ∈ X̂ , W h(s) ≤ 36 supπ p
π
h(s). Therefore

ϕ?
([

2kW h(s)1
(

(h, s, a) ∈ X̂
)]

h,s,a

)
(a)

≤ ϕ?
([

36× 2k sup
π
pπh(s)1

(
(h, s, a) ∈ X̂

)]
h,s,a

)
(b)

≤ ϕ?
([1152HβRF (τ, δ/3) supπ p

π
h(s)1

(
(h, s, a) ∈ X̂

)
ε2

]
h,s,a

)
(c)

≤ 1152HβRF (τ, δ/3)ϕ?
([

supπ p
π
h(s)1

(
supπ p

π
h(s) ≥ ε

32SH2

)
ε2

]
h,s,a

)
, (3.20)

where (a) uses that ϕ?(c) ≤ ϕ?(c′) if ∀(h, s, a) ch(s, a) ≤ c′h(s, a), (b) uses Lemma 3.10 and
the fact that k ≤ κf since PCE did not stop before phase k and (c) uses Lemma 3.12 and
the fact that X̂ ⊆

{
(h, s, a) : supπ p

π
h(s) ≥ ε

32SH2

}
on the good event. Using again this last

property yields

ϕ?(1X̂ )≤
∑
h,s,a

1
(

(h, s, a) ∈ X̂
)

supπ p
π
h(s, a)

=
∑

(h,s,a)∈X̂

1

supπ p
π
h(s)

≤ 32H3S2A

ε
, (3.21)

where the first inequality uses Lemma 3.2. Combining (3.19), (3.20) and (3.21) proves the
statement for k ≥ 1. Now it remains to upper bound the duration of the burn-in phase. To
that end, we write that by definition of the good event

d0 ≤ 64m0ϕ
?(1X̂ ) + Õ

(
ϕ?(1X̂ )SAH2(log(6/δ) + S)

)
,
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where m0 = log2

( maxs,a,h c
0
h(s,a)

mins,a,h c
0
h(s,a)∨1

)
∨ 1 = 1. Therefore

d0 ≤ Õ
(
ϕ?(1X̂ )SAH2(log(6/δ) + S)

)
≤ Õ

(
S3A2H5(log(6/δ) + S)

ε

)
,

where the last inequality uses (3.21). �

Proof of Theorem 3.3
Proof. Denoting by Tvis the number of episodes used by the EstimateReachability
sub-routine in line 2 of the algorithm, we write

τ = Tvis +

κf∑
k=0

dk

≤ Tvis + Õ
(
S3A2H5(log(6/δ) + S)

ε

)
+

κf∑
k=1

[
c1kHβ

RF (τ, δ/3)ϕ?
([

supπ p
π
h(s, a)1

(
supπ p

π
h(s) ≥ ε

32SH2

)
ε2

]
h,s,a

)
+ Õ

(
k
S3A2H5(log(6(k + 1)2/δ) + S)

ε

)]
≤ Tvis + c1κ

2
fHβ

RF (τ, δ/3)ϕ?
([

supπ p
π
h(s)1

(
supπ p

π
h(s) ≥ ε

32SH2

)
ε2

]
h,s,a

)
+ Õ

(
κ2
f

S3A2H5(log(6(κf + 1)2/δ) + S)

ε

)
, (3.22)

where we used Lemma 3.11 to upper bound (dk)k≥0. From Theorem 3.6, we know that Tvis
is deterministic and satisfies

Tvis = Õ
(
S3AH4

(
log
(
SAH
δ

)
+ S

)
ε

)
= Õ

(
κ2
f

S3A2H5(log(6(κf + 1)2/δ) + S)

ε

)
. (3.23)

Combining inequalities (3.22) and (3.23) with the definition of the threshold βRF (t, δ) =
4H2 log(1/δ) + 24SH3 log(A(1 + t)) we get

τ ≤ c1κ
2
fHβ

RF (τ, δ/3)ϕ?
([

supπ p
π
h(s)1

(
supπ p

π
h(s) ≥ ε

32SH2

)
ε2

]
h,s,a

)
+ Õ

(
κ2
f

S3A2H5(log(6(κf + 1)2/δ) + S)

ε

)
≤ c2κ

2
f

(
H3 log(1/δ) + SH4 log(A(1 + τ))

)
ϕ?
([

supπ p
π
h(s)1

(
supπ p

π
h(s) ≥ ε

32SH2

)
ε2

]
h,s,a

)
+ Õ

(
κ2
f

S3A2H5(log(6(κf + 1)2/δ) + S)

ε

)
, (3.24)

where c2 = 24c1 On the other hand, thanks to Lemma 3.10 and the definition of the
threshold βRF we have that

κf ≤ log2

(
128H3 log(1/δ) + 768SH4 log(A(1 + τ))

ε2

)
. (3.25)
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Combining (3.24) with (3.25) and solving for τ we get that

τ ≤ Õ
((
H3 log(1/δ) + SH4

)
ϕ?
([

supπ p
π
h(s)1

(
supπ p

π
h(s) ≥ ε

32SH2

)
ε2

]
h,s,a

)
+
S3A2H5(log(1/δ) + S)

ε

)
,

where Õ hides poly-logarithmic factors in S,A,H, ε and log(1/δ). �

3.7 Conclusion
We proposed CovGame, a simple algorithm that adaptively collects episodes in an MDP
to explicitly gather a required number of samples ch(s, a) from each triplet (h, s, a). We
proved that its sample complexity scales with a new notion of optimal coverage ϕ?(c), which
is an instance-dependent lower bound on the sample complexity of any adaptive coverage
algorithm. We then illustrated the use of CovGame as a building block for reward-free
exploration. By relying on (an optimistic variant of) proportional coverage, we proposed
PCE, an algorithm for RFE with an instance-dependent sample complexity bound that
improves over the minimax rate in several classes of "easy-to-navigate" MDPs.



Appendix of Chapter 3

3.8 Properties of the Minimum Flow

Lemma 3.12 For any α, β ≥ 0 and target functions c1, c2, ϕ?(αc1 + βc2) ≤ αϕ?(c1) +
βϕ?(c2).

Proof. Clearly, ϕ?(αc1) = αϕ?(c1) by definition for any α ≥ 0, c1. From the LP formulation,
we note that if η?1 (resp. η?2) is an optimal flow for c1 (resp. c2), then η?1 + η?2 is a feasible
flow for c1 + c2. This implies that ϕ?(c1 + c2) ≤ ϕ?(c1) +ϕ?(c2) for any c1, c2, which proves
the statement. �

3.9 Concentration of Value Functions
In this appendix, we derive the concentration bounds on value functions needed for our
PAC RL algorithms. We shall assume that rewards lie in [0, 1] almost surely.

3.9.1 General results

Lemma 3.13 [Concentration of p̂TV ] Let Z ⊆ [H] × S × A, Z := |Z|, and {Vh : S →
[0, H]}h∈[H+1] be a collection of bounded functions. With probability at least 1− δ, for
any t ≥ t0 := inf{t : nth(s, a) ≥ 1, ∀(h, s, a) ∈ Z},∑

(h,s,a)∈Z

nth(s, a)
∣∣(p̂th(s, a)− ph(s, a))TVh+1

∣∣2 ≤ 4H2 log(1/δ) + 2ZH2 log(1 + t).

Proof. We start by building a suitable stochastic process to apply Theorem 1 of Abbasi-
Yadkori et al., 2011. Let Ft,h denote the filtration up to stage h of round t. For any
h ∈ [H], t ≥ 1, the random variable ηth := Vh+1(sth+1)− ph(sth, a

t
h)TVh+1 is zero-mean and

H2-subgaussian conditionally on Ft,h due to the boundedness of the functions {Vh}h∈[H]. Let
Xt
h be a Z-dimensional vector containing a value 1 at position (h, sth, a

t
h) if (h, sth, a

t
h) ∈ Z,

and zero at all other positions. Note that Xt
h is Ft,h-measurable, while ηth is Ft,h+1-



102 Chapter 3. Active Coverage and Reward-Free Exploration in Episodic MDPs

measurable. Let Yt :=
∑t

j=1

∑H
h=1X

t
hη

t
h. For all (h, s, a) ∈ Z, we have

[Yt]h,s,a =
t∑

j=1

1
(
sjh = s, ajh = a

)(
Vh+1(sjh+1)− ph(sjh, a

j
h)TVh+1

)
= nth(s, a)(p̂th(s, a)− ph(s, a))TVh+1.

Let Dt :=
∑t

j=1

∑H
h=1X

t
h(Xt

h)T = diag([nth(s, a)](h,s,a)∈Z). Theorem 1 of Abbasi-Yadkori
et al., 2011 combined with Equation 20.9 from Lattimore and Szepesvari, 2019 yield that

P
(
∀t ≥ 1,

∥∥Y t
∥∥2

(I+Dt)−1 ≤ 2H2 log(1/δ) + ZH2 log(1 + t/Z)

)
≥ 1− δ.

Since nth(s, a) ≥ 1 for any t ≥ t0 and (h, s, a) ∈ Z, following Corollary 3 in Réda et al.,
2021,

Dt = diag
(
[nth(s, a)](h,s,a)∈Z

)
� (I +Dt)/2,

which implies
∥∥Y t

∥∥2

D−1
t
≤ 2

∥∥Y t
∥∥2

(I+Dt)−1 for any t ≥ t0. Plugging this into the probability

above and using that
∥∥Y t

∥∥2

D−1
t

is exactly the left-hand side of the statement concludes the
proof. �

Lemma 3.14 [Concentration of p̂TV for all V ] Let Z ⊆ [H] × S × A, Z := |Z|, and
V := {V : S → [0, H]} be the set of all bounded functions mapping S into [0, H]. With
probability at least 1− δ, for any functions {Vh ∈ V}H+1

h=2 and t ≥ t0 := inf{t : nth(s, a) ≥
1, ∀(h, s, a) ∈ Z},∑

(h,s,a)∈Z

nth(s, a)
∣∣(p̂th(s, a)− ph(s, a))TVh+1

∣∣2 ≤ 4H2 log(1/δ) + 12(SH + Z)H2 log(1 + t).

Proof. Let Yt(V2, . . . , VH+1) :=
∑

(h,s,a)∈Z n
t
h(s, a)

∣∣(p̂th(s, a)− ph(s, a))TVh+1

∣∣2 denote the
quantity to be bounded for fixed functions Vh ∈ V for all 2 ≤ h ≤ H + 1. Let {ξt}t≥1 be a
sequence of positive values to be specified later. For all t, let Ξt := {ξt, 2ξt, . . . bH/ξtcξt}.
Note that |Ξt| = bH/ξtc and, for all x ∈ [0, H], there exists y ∈ Ξt s.t. |x− y| ≤ ξt. For all
t, we build a discrete cover Vt of V as Vt := {V : S → [0, H] | ∀s : V (s) ∈ Ξt}. For any t,
{Vh ∈ V}H+1

h=2 , and {V h ∈ Vt}H+1
h=2 , using x2 − y2 = (x+ y)(x− y) and abbreviating ph(s, a)

and p̂th(s, a) respectively as ph,s,a and p̂th,s,a,∣∣Yt(V2, . . . , VH+1)− Yt(V 2, . . . , V H+1)
∣∣

=
∣∣∣ ∑

(h,s,a)∈Z

nth(s, a)(p̂th,s,a − ph,s,a)T (Vh+1 + V h+1)(p̂th,s,a − ph,s,a)T (Vh+1 − V h+1)
∣∣∣

≤ 2H
∑

(h,s,a)∈Z

nth(s, a)
∣∣∣(p̂th,s,a − ph,s,a)T (Vh+1 − V h+1)

∣∣∣
≤ 4Ht‖Vh+1 − V h+1‖∞.

Therefore,

min
{V h∈Vt}H+1

h=2

∣∣Yt(V2, . . . , VH+1)− Yt(V 2, . . . , V H+1)
∣∣ ≤ 4Hξtt. (3.26)
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Now let αt := 4H2 log(1/δt) + 2ZH2 log(1 + t) + 4Hξtt for a sequence {δt}t of values in
(0, 1) to be defined. We have

P
(
∃t ≥ t0, {Vh ∈ V}H+1

h=2 : Yt(V2, . . . , VH+1) ≥ αt
)

≤ P
(
∃t ≥ t0, {V h ∈ Vt}H+1

h=2 : Yt(V 2, . . . , V H+1) ≥ αt − 4Hξtt

)
≤
∞∑
t=t0

∑
{V h∈Vt}H+1

h=2

P
(
Yt(V 2, . . . , V H+1) ≥ 4H2 log(1/δt) + 2ZH2 log(1 + t)

)

≤
∞∑
t=t0

∑
{V h∈Vt}H+1

h=2

δt =
∞∑
t=t0

δtbH/ξtcSH ,

where the first inequality uses (3.26), the second one uses a union bound and the definition
of αt, the third one uses Lemma 3.13, and the equality uses the sizes of the two sets in the
sums. Setting ξt = H/t and δt = δ

2tSH+2 ,

∞∑
t=t0

δtbH/ξtcSH ≤
δ

2

∞∑
t=t0

1

t2
≤ δ.

Finally, with these choices we have

αt = 4H2 log(1/δ) + 4H2 log(2) + 4H2 log(tSH+2) + 2ZH2 log(1 + t) + 4H2

≤ 4H2 log(1/δ) + 4H2 log(2) + 12SH3 log(t) + 2ZH2 log(1 + t) + 4H2

≤ 4H2 log(1/δ) + 12SH3 log(t) + 12ZH2 log(1 + t).

This implies the statement. �

Lemma 3.15 [Concentration of r̂] Let Z ⊆ [H]× S ×A and Z := |Z|. With probability
at least 1− δ, for any t ≥ t0 := inf{t : nth(s, a) ≥ 1,∀(h, s, a) ∈ Z},∑

(h,s,a)∈Z

nth(s, a)
(
r̂th(s, a)− rh(s, a)

)2 ≤ 4 log(1/δ) + 2Z log(1 + t).

Proof. Following the proof of Lemma 3.13, we build a suitable stochastic process to apply
Theorem 1 of Abbasi-Yadkori et al., 2011. We define Ft,h, Xt

h, Yt, Dt exactly as in the proof
of Lemma 3.13, while we redefine ηth := rth − rh(sth, a

t
h), with rth the random reward sample

observed at stage h of episode t. Since rewards lie in [0, 1] almost surely, ηth is zero-mean and
1-subgaussian conditionally on Ft,h. Moreover, it is easy to see that, for all (h, s, a) ∈ Z,

[Yt]h,s,a = nth(s, a)(r̂th(s, a)− rh(s, a)).

Theorem 1 of Abbasi-Yadkori et al., 2011 combined with Equation 20.9 from Lattimore
and Szepesvari, 2019 yield that

P
(
∀t ≥ 1,

∥∥Y t
∥∥2

(I+Dt)−1 ≤ 2 log(1/δ) + Z log(1 + t/Z)

)
≥ 1− δ.

We can then conclude exactly as in Lemma 3.13 by showing that
∥∥Y t

∥∥2

D−1
t
≤ 2

∥∥Y t
∥∥2

(I+Dt)−1

for any t ≥ t0, which implies the statement. �



104 Chapter 3. Active Coverage and Reward-Free Exploration in Episodic MDPs

3.9.2 Concentration results for RFE
For reward-free exploration, it is sufficient to concentrate the values of all deterministic
policies. Our concentration result stated below features the threshold function

βRF (t, δ) := 4H2 log(1/δ) + 24SH3 log(A(1 + t)).

Theorem 3.4 Let Z ⊆ [H] × S × A and Z := |Z|. Suppose that, for some ε0 > 0,
maxπ p

π
h(s, a) ≤ ε0 for all (h, s, a) /∈ Z. With probability at least 1 − δ, for any

t ≥ t0 := inf{t : nth(s, a) ≥ 1,∀(h, s, a) ∈ Z}, π ∈ ΠD, and reward function r ∈ [0, 1]SAH ,

∣∣∣ ∑
h,s,a

(
p̂π,th (s, a)− pπh(s, a)

)
rh(s, a)

∣∣∣ ≤
√√√√βRF (t, δ)

∑
(h,s,a)∈Z

pπh(s, a)2

nth(s, a)
+ (SH − Zπ)Hε0,

where Zπ := |Z ∩ {(h, s, πh(s)) : h ∈ [H], s ∈ S}|.

Proof. Fix any reward r and deterministic policy π. Let V π
h and V̂ π,t

h denote the value
functions of π under (p, r) and (p̂t, r), respectively. By Lemma 3.16 and the assumption on
the set Z,∣∣∣ ∑

h,s,a

(
p̂π,th (s, a)− pπh(s, a)

)
rh(s, a)

∣∣∣ ≤∑
h,s,a

pπh(s, a)
∣∣(p̂th(s, a)− ph(s, a))T V̂ π,t

h+1

∣∣
≤

∑
(h,s,a)∈Z

pπh(s, a)
∣∣(p̂th(s, a)− ph(s, a))T V̂ π,t

h+1

∣∣+ (SH − Zπ)Hε0.

By applying Lemma 3.14 on the set Zπ = Z ∩ {(h, s, πh(s)) : h ∈ [H], s ∈ S}, whose
cardinality is at most SH, and union bounding over all ASH deterministic policies, with
probability at least 1− δ, the following holds for all t ≥ t0, π ∈ ΠD, and value functions
bounded in [0, H]:∑

(h,s,πh(s))∈Z

nth(s, πh(s))
∣∣(p̂th(s, πh(s))− ph(s, πh(s)))TVh+1

∣∣2 ≤ βRF (t, δ).

Thus, by Lemma 3.17,∑
(h,s,a)∈Z

pπh(s, a)
∣∣(p̂th(s, a)− ph(s, a))T V̂ π,t

h+1

∣∣ =
∑

(s,πh(s),h)∈Z

pπh(s)
∣∣(p̂th(s, πh(s))− ph(s, πh(s)))T V̂ π,t

h+1

∣∣
≤ sup

u∈RSH ,∑
(s,πh(s),h)∈Z n

t
h(s,πh(s))u2

s,h≤β
RF (t,δ)

∑
(s,πh(s),h)∈Z

pπh(s)us,h

=

√√√√βRF (t, δ)
∑

(h,s,a)∈Z

pπh(s, a)2

nth(s, a)
.

�

3.9.3 Concentration results for BPI

For BPI, we need concentration bounds on
∣∣V̂ π,t

1 − V π
1

∣∣ that hold uniformly across all
time steps and stochastic policies. Here V̂ π,t

1 :=
∑

h,s,a p̂
π,t
h (s, a)r̂th(s, a), where r̂th(s, a) is
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the MLE of rh(s, a) and p̂π,th (s, a) is an estimator of pπh(s, a) computed from the MLEs
{p̂h(s′|s, a)}h,s,a,s′ of the transition probabilities. To this end, we shall define the thresholds

βr(t, δ) := 4 log(2/δ) + 2SAH log(1 + t),

βp(t, δ) := 4H2 log(2/δ) + 24SAH3 log(1 + t),

βbpi(t, δ) := 16H2 log(2/δ) + 96SAH3 log(1 + t).

Compared to βRF (t, δ), we note that βbpi(t, δ) features larger multiplicative constants but
also a dependency in A instead of log(A) in its second term which comes from the need to
concentrate the values of all stochastic policies.

Theorem 3.5 With probability at least 1 − δ, for any t ≥ t0 := inf{t : nth(s, a) ≥
1, ∀(h, s, a)} and π ∈ ΠS, the following holds:

∣∣V̂ π,t
1 − V π

1

∣∣ ≤
√√√√βbpi(t, δ) min

(∑
h,s,a

pπh(s, a)2

nth(s, a)
,
∑
h,s,a

p̂π,th (s, a)2

nth(s, a)

)
.

Moreover, for any r̃ ∈ [0, 1]SAH ,

∣∣∣ ∑
h,s,a

(
p̂π,th (s, a)− pπh(s, a)

)
r̃h(s, a)

∣∣∣ ≤
√√√√βp(t, δ)

∑
h,s,a

pπh(s, a)2

nth(s, a)
.

Proof. Fix any stochastic policy π. By Lemma 3.16,

∣∣V̂ π,t
1 − V π

1

∣∣ ≤∑
h,s,a

pπh(s, a)
∣∣r̂th(s, a)− rh(s, a)

∣∣+
∑
h,s,a

pπh(s, a)
∣∣(p̂th(s, a)− ph(s, a))T V̂ π,t

h+1

∣∣.
By applying Lemma 3.15 and Lemma 3.14 for the set Z = {(h, s, a) : h ∈ [H], s ∈ S, a ∈ A},
which is of cardinality SAH, with probability at least 1− δ, the following hold for all t ≥ t0
and for all value functions (Vh)h∈[H] supported in [0, H]:

∑
h,s,a

nth(s, a)
∣∣r̂th(s, a)− rh(s, a)

∣∣2 ≤ βr(t, δ),
∑
h,s,a

nth(s, a)
∣∣(p̂th(s, a)− ph(s, a))TV π,t

h+1

∣∣2 ≤ βp(t, δ). (3.27)

Thus, by Lemma 3.17, optimizing over the deviations as in the proof of Lemma 3.4,

∣∣V̂ π,t
1 − V π

1

∣∣ ≤√√√√βr(t, δ)
∑
h,s,a

pπh(s, a)2

nth(s, a)
+

√√√√βp(t, δ)
∑
h,s,a

pπh(s, a)2

nth(s, a)
.

Using that βr(t, δ) ≤ βp(t, δ) and noting that βbpi(t, δ) = 4βp(t, δ) proves the first statement
with the first term in the minimum only. To prove it with the second term as well, it is
enough to use Lemma 3.16 with the roles of the two value functions swapped and repeat
the same steps as above.
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To prove the second statement, we proceed as in the proof of Theorem 3.4 and write∣∣∣ ∑
h,s,a

(
p̂π,th (s, a)− pπh(s, a)

)
r̃h(s, a)

∣∣∣ ≤ ∑
h,s,a

pπh(s, a)
∣∣(p̂th(s, a)− ph(s, a))T V̂ π,t

h+1

∣∣
≤ sup

u∈RSH ,∑
h,s,a n

t
h(s,a)u2

h,s,a≤β
p(t,δ)

∑
h,s,a

pπh(s, a)uh,s,a

=

√√√√βp(t, δ)
∑
h,s,a

pπh(s, a)2

nth(s, a)
,

where we used Lemma 3.17 and together with inequality (3.27). �

3.9.4 Auxiliary results

Lemma 3.16 — (Lemma E.15 of Dann et al., 2017). Consider two MDPs with transitions
p, p̂ and rewards r, r̂, respectively. Let V π

h , V̂
π
h denote the value function of a (possibly

stochastic) policy π in these two MDPs. Then, for any s, h,

V π
h (s)− V̂ π

h (s) = Êπ
[

H∑
`=h

(
r`(s`, a`)− r̂`(s`, a`) +

(
p`(s`, a`)− p̂`(s`, a`)

)T
V π
`+1

)∣∣∣∣∣ sh = s

]
.

Lemma 3.17 Let n ∈ N, p, b ∈ Rn with b having strictly positive entries, and c ∈ R≥0.
Then,

sup
x∈Rn:∑n
i=1 bix

2
i≤c

n∑
i=1

pixi =

√√√√c

n∑
i=1

p2
i

bi
.

Proof. Let v be the value of the optimization program. Then we know that

−v = inf
x∈Rn:∑n
i=1 bix

2
i≤c

−
n∑
i=1

pixi. (3.28)

The Lagrangian of the quadratic program above writes as

L(x, λ) = −
n∑
i=1

pixi + λ

( n∑
i=1

bix
2
i − c

)
,

where λ ≥ 0. The KKT conditions then yield that the optimal solution satisfies that

∀i ∈ [|1, n|], xi = − pi
2λbi

n∑
i=1

bix
2
i = c

Solving this system yields that the optimal Lagrange multiplier λ =
√

c∑n
i=1

p2
i
bi

which implies

that the value of (3.28) is −
√
c
∑n

i=1
p2
i
bi
. �
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3.10 Estimating State Reachability

Let AΠ be a regret minimizer that has a small regret for a (fixed) reward function r. If
we set this reward function to r(h,s)

h′ (s′, a′) = 1((s′ = s, h′ = h)) for a target pair (h, s)
intuitively the regret minimizer will visit as much as possible state s in step h and the
total reward collected by the algorithm, nth(s) =

∑
a∈A n

t
h(s, a), will be close to t×Wh(s),

where the maximum visitation probability Wh(s) = maxπ p
π
h(s) is actually the optimal

value function in the MDP with reward function r(h,s). The empirical number of visitations
can thus be used to estimate the unknown visitation probability.

This idea is already at the heart of the initialization phase of the MOCA algorithm
(Wagenmaker et al., 2022a), which relies on repeatedly running the Euler algorithm. We
propose a slightly simpler version below, that doesn’t need any restart and relies on a generic
algorithm AΠ satisfying some first-order regret bound scaling with a quantity RΠ

δ (T ), as
specified in the following theorem. EstimateReachability ((h, s); ε0, δ) outputs a valid
confidence interval [W h(s),W h(s)] on the value of Wh(s), which can be further used to
eliminate all (h, s) whose maximum visitation probability is smaller than a target ε0.

Algorithm 11 EstimateReachability ((h, s); ε0, δ)

1: Input: Step h, state s, threshold ε0 > 0, failure probability δ ∈ (0, 1), regret minimizer
AΠ

2: Output: An interval [W h(s),W h(s)]

3: Compute T = T (ε0, δ) = inf
{
T ∈ N : 4RΠ

δ/2(T ) + 6 log
(

4
δ

)
≤ ε0

4 T
}

4: Collect T episodes {(st1, at1, . . . , stH , atH)}t≤T using AΠ with reward r̃h′(s′, a′) = 1((s′ =
s, h′ = h)) and confidence 1− δ/2

5: Let nTh (s) =
∑T

t=1 1(sth = s) be the number of visits of (h, s)

6: Define W h(s) =
(
nTh (s)

2T − ε0
16

)
∨ 0 and W h(s) =

(
2nTh (s)
T + ε0

4

)
∧ 1

Theorem 3.6 Assume that, for all (h, s), when AΠ is run for the reward function r = r(h,s)

and confidence 1− δ up to some horizon T ∈ N, with probability larger than 1− δ,

T∑
t=1

V ?
1 (s1; r)−

T∑
t=1

V πt

1 (s1; r) ≤
√
RΠ
δ (T )TV ?(s1; r) +RΠ

δ (T ). (3.29)

For all (h, s), let [W h(s),W h(s)] be the output of EstimateReachability (h, s; ε0, δ/(SH))
and define

X̂ =
{

(h, s) : W h(s) ≥ ε0

8

}
.

With probability 1− δ, the following holds:
• For all (h, s), Wh(s) ∈

[
W h(s),W h(s)

]
• {(h, s) : Wh(s) ≥ ε0} ⊆ X̂ ⊆

{
(h, s) : Wh(s) ≥ ε0

8

}
• For all (h, s) ∈ X̂ , W h(s) ≤ 36Wh(s).

Moreover, the (deterministic) sample complexity necessary to construct X̂ is

Tε0(δ) := SH × inf

{
T ∈ N? : T ∈ N : 4RΠ

δ/(2SH)(T ) + 6 log

(
4

δ

)
≤ ε0

4
T

}
.

In particular, using UCBVI as the regret minimizer, we have Tε0(δ) = Õ
(
S2AH2(log(SAHδ )+S)

ε0

)
.
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Proof. Let T = T (ε0, δ) be the (deterministic) number of episodes of EstimateReacha-
bility ((h, s); ε0, δ), which satisfies

4RΠ
δ/2(T ) + 6 log

(
4

δ

)
≤ αε0T for α :=

1

4
. (3.30)

The analysis relies on the first-order bound on the regret of AΠ assumed in (3.29) and on a
tight control of the martingale

MT =
T∑
t=1

[
1(sth = s)− pπth (s)

]
,

where pπh(s) = pπh(s, π(s)) is the probability to reach s under policy π. Observing that the
increment of this martingale is bounded in [−1, 1] and that its variance is upper bounded
by Wh(s), we can use Bernstein’s inequality to get that

P

(
|MT | ≤

√
2TWh(s) log

(
4

δ

)
+

2

3
log

(
4

δ

))
≥ 1− δ

2
.

Remarking that the regret of AΠ for the reward function r = r(h,s) can be written

T∑
t=1

V ?
1 (s1; r)−

T∑
t=1

V πt

1 (s1; r) = TWh(s)−
T∑
t=1

pπ
t

h (s) = TWh(s)− nTh (s) +MT

and that nTh (s) ≤ TWh(s) + MT , we obtain that with probability larger than 1 − δ, the
following two inequalities hold:

nTh (s) ≥ TWh(s)−

[√
Rδ/2(T )TWh(s) +Rδ/2(T ) +

√
2 log

(
4

δ

)
TWh(s) +

2

3
log

(
4

δ

)]

TWh(s) ≥ nTh (s)−

[√
2 log

(
4

δ

)
TWh(s) +

2

3
log

(
4

δ

)]
Using the AM-GM inequality above, this first yields

nTh (s)/2− g(δ) ≤ TWh(s) ≤ 2nTh (s) + f(T, δ),

where f(T, δ) := 4Rδ/2(T ) + 16
3 log

(
4
δ

)
and g(δ) := 7

6 log
(

4
δ

)
. Observing that g(δ) ≤

1
4f(T, δ) and f(T, δ) ≤ αε0T by inequality (3.30), we get

nTh (s)

2T
− αε0

4
≤Wh(s) ≤

2nTh (s)

T
+ αε0,

which also implies
Wh(s)

2
− αε0

2
≤
nTh (s)

T
≤ 2Wh(s) +

αε0

2
.

As the output of EstimateReachability ((h, s); ε0, δ) can be written[
W h(s) =

(
nTh (s)

2T
− αε0

4

)
∨ 0,W h(s) =

(
2nTh (s)

T
+ αε0

)
∧ 1

]
and we get that with probability larger than 1− δ:

1. For any value of Wh(s),

Wh(s)

4
− αε0

2
≤W h(s) ≤Wh(s) ≤W h(s) ≤ 4Wh(s) + 2αε0.
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2. If Wh(s) ≥ ε0, then Wh(s) ∈ [W h(s),W h(s)] ∈ [1−2α
4 Wh(s), (4 + 2α)Wh(s)].

3. If Wh(s) < ε0, then Wh(s) ∈ [W h(s),W h(s)] ∈ [0, (4 + 2α) ε0].
Now if [W h(s),W h(s)] is the output of EstimateReachability ((h, s); ε, δ/SH) and

X̂ =

{
(h, s) : W h(s) ≥ 1− 2α

4
ε0

}
we deduce that, with probability 1− δ:

• (h, s) with Wh(s) ≥ ε0 are all in X̂ .
• Since W h(s) ≤Wh(s), any (h, s) with Wh(s) < 1−2α

4 ε0 does not belong to X̂ .
This proves that {(h, s) : Wh(s) ≥ ε0} ⊆ X̂ ⊆ {(h, s) : Wh(s) ≥ 1−2α

4 ε0}. To prove
the last statement we remark that for (h, s) ∈ X̂ , if Wh(s) ≥ ε0, we have by 2. that
W h(s) ≤ (4 + 2α)Wh(s) while if Wh(s) ∈

[
1−2α

4 ε0, ε0

)
we have by 3. that

W h(s) ≤ (4 + 2α) ε0 ≤ 4
4 + 2α

1− 2α
Wh(s)

Plugging the value α = 1/4 yields W h(s) ≤ 36Wh(s) in both cases.
To get an upper bound on the number of episodes used by an instance of Esti-

mateReachability, we need to find a T that satisfies

T − 1 ≤ 16

ε0
RΠ
δ/(2SH)(T ) +

24

ε0
log

(
SAH

δ

)
. (3.31)

For UCBVI, Theorem 19 of (Al-Marjani et al., 2023) yields a regret bound with Rδ(T ) =
2562SAH

(
log
(

2SAH
δ

)
+ 6S

)
log2(T + 1). Using the inequality log2(x) ≤ 4

√
x we get a first

crude upper bound on T by solving a quadratic equation which gives the final scaling by
plugging back this crude bound in (3.31). �





4. Implicit Policy Eliminations for Efficient
ε-BPI

In this chapter, we present an asymptotic instance-dependent lower bound for the sample
complexity of ε-Best Policy Identification (ε-BPI) in episodic MDPs, see Section 1.4.1.
Then we design PRINCIPLE, an algorithm for this problem based on the idea of implicit
policy eliminations. The lower bound is based on some (yet) unpublished results, while the
algorithm comes from Appendix F of the conference paper:

Aymen Al Marjani, Andrea Tirinzoni, and Emilie Kaufmann. Active Coverage for
PAC Reinforcement Learning. In Proceedings of the 36th Conference On Learning
Theory (COLT), 2023.
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4.1 Instance Dependent Lower Bounds
In this section we consider the class M1 of stochastic MDPs with Gaussian rewards of unit
variance, in which νh(s, a) = N (rh(s, a), 1). While this setting differs from the standard
assumption that the rewards are almost surely in [0, 1], there are two reasons which, in our
opinion, justify its study. First, this setting has proved useful in previous works to derive
closed-form lower bounds that scale with intuitive quantities such as the return gaps, see
(Dann et al., 2021) and (Tirinzoni et al., 2022). Second, as we will see shortly, the resulting
lower bound is nearly matched by an algorithm that assumes that the reward distributions
are sub-gaussian.
Notation: Πε := {π ∈ ΠD : V π

1 (s1) ≥ V ?
1 (s1) − ε} refers to the set of all deterministic

ε-optimal policies. Denoting by Pπ (resp. Eπ) the probability (resp. expectation) operator
induced by the execution of a Markovian policy π ∈ ΠS for an episode on M, we let
V π

1 := Eπ
[∑H

h=1Rh
∣∣s1

]
be the value function of π at the initial state1. The policy gap

of π is then defined as ∆(π) := V ?
1 − V π

1 , where V ?
1 := maxπ∈ΠD

V π
1 is the optimal value

function at s1. We further define the minimum policy gap ∆min(ΠD) := minπ∈ΠD\{π?}∆(π),
where π? is an arbitrary optimal policy (i.e., V π?

1 = V ?
1 ). Note that ∆min(ΠD) = 0

whenever multiple optimal policies exist. Moreover, we denote the visitation probability
of (h, s, a) under π as pπh(s, a) := Pπ(sh = s, ah = a) and pπh(s) := Pπ(sh = s). We let
Ω :=

{(
pπh(s, a)

)
h,s,a

: π ∈ ΠS} the set of state-action distributions generated by stochastic
policies. We recall that

Ω(M) :=

{
ρ ∈ RSAH+ :

∑
a∈A ρ1(s, a) = 1,

∑
a ρh(s, a) =

∑
(s′,a′) ρh−1(s′, a′)ph−1(s|s′, a′) ∀(h, s)

}
.

4.1.1 General lower bound for near-optimal policy identification

Our first result is a general bound that holds for any ε ≥ 0 in the regime δ → 0. Its proof,
which follows the same steps as the proof of the lower bound for ε-Best Arm Identification
(and other pure exploration problems) of (Degenne & Koolen, 2019), is deferred to Appendix
4.6.

Theorem 4.1 Any ε-BPI algorithm that is (ε, δ)-PAC for all instances in M1 satisfies, for
anyM∈M1,

lim inf
δ→0

EM[τ ]

log(1/δ)
≥ LB(M, ε)

where

LB(M, ε) := 2 min
πε∈Πε

min
ρ∈Ω(M)

max
π∈ΠD

∑
s,a,h

(
pπh(s, a)− pπεh (s, a)

)2
ρh(s, a)(∆(π)−∆(πε) + ε)2

.

Theorem 4.1 states that no matter how adaptive an ε-BPI algorithm is, there is a minimal
cost in terms of episodes that it must pay in order to learn an ε-optimal policy ofM. This
cost is problem-dependent since it is a functional ofM, the MDP to be learned. A more
detailed interpretation of the complexity LB(M, ε) is further provided in Section 4.1.3. We
note that one can get rid of the assumption of unit variance simply by multiplying each
term of the sum that appears in LB(M, ε) with σ2

hsa. This gives a lower bound for MDPs
with Gaussian rewards where the (known) variances may vary across triplets (h, s, a).

1Since we consider episodic MDPs where the initial state s1 is fixed, we drop it from the notation of
value functions.
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4.1.2 Finite-risk bound for exact identification

In the case of exact identification (i.e. ε = 0), we derive a lower bound which is valid
for any δ ∈ (0, 1) under the assumption that the optimal state-action distribution is
unique.

Assumption 4.1 We assume that there exists p? ∈ Ω(M) s.t. for any optimal policy π?

(i.e., with V π?
1 = V ?

1 ) we have pπ? = p?.

Note that this is assumption was considered in (Tirinzoni et al., 2021). As shown in
that paper, it implies that there is a unique optimal action in states visited with positive
probability by some optimal policy, but there can be arbitrarily many optimal actions in
all other states.

Theorem 4.2 Fix any MDP M ∈ M1 s.t. the optimal state-action distribution p? is
unique. Then, for any (0, δ)-correct ε-BPI algorithm,

EM[τ ] ≥ 2 min
ρ∈Ω

max
π∈ΠD:
∆(π)>0

∑
s,a,h

(pπh(s, a)− p?h(s, a))2

ρh(s, a)∆(π)2
log

(
1

2.4δ

)
.

Remark 4.1 When S = H = 1 and the optimal action a? is unique, the bound above
reduces to 2

∑
a∈[K]

1
∆2
a
, where ∆a? := mina6=a? ∆a and ∆a := µ? − µa for a 6= a?. This

is, up to a universal constant, equal to the lower bound for best-arm identification in
Gaussian multi-armed bandits, see Lemma (Garivier & Kaufmann, 2016). �

Proof. The idea is to compute, in closed form, the smallest KL divergence between the
distribution of the observation under the MDP M and under an alternative M̃ that
has the same transitions but a different mean reward function rM̃h . Let nτh(s, a) :=∑τ

t=1 1 (sh = s, ah = a) denote the number of visits to the triplet (h, s, a) until the last
episode. By an analogue of (1.39), the KL divergence between distributions of observations
underM and M̃ takes the simple form

KL(PM,PM̃) =
∑
h,s,a

EM[nτh(s, a)]

(
rM̃h (s,a)−rMh (s,a)

)2

2 ,

where we used that within the class M1 reward distributions are Gaussian and the transition
kernel is the same as that of M. Note that, since p? is unique, any δ-correct algorithm
satisfies PM(V π̂

1 = V ?
1 ) = PM(pπ̂ = p?) ≥ 1− δ. Now fix a sub-optimal policy π (i.e., with

∆(π) > 0). The closest alternative M̃ where π becomes better than any optimal policy of
M can be computed by solving the quadratic program

inf
r̃:r̃T pπ>r̃T p?

∑
s,a,h

E[nτh(s, a)]
(rh(s, a)− r̃h(s, a))2

2
=

∆(π)2

2
∑

s,a,h
(pπh(s,a)−p?h(s,a))2

E[nτh(s,a)]

.

By δ-correctness, in such closest alternative we have PM̃(pπ̂ = p?) ≤ δ. Then, by an
analogue of Lemma 1.1, for any π with ∆(π) > 0,

∆(π)2

2
∑

s,a,h
(pπh(s,a)−p?h(s,a))2

E[nτh(s,a)]

≥ log

(
1

2.4δ

)
.
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The final lower bound is obtained by solving the optimization problem

minimize
η∈RSAH

∑
a

η1(s1, a),

subject to∑
a

ηh(s, a) =
∑
s′,a′

ph−1(s|s′, a′)ηh−1(s′, a′) ∀s ∈ S, h > 1,

η1(s, a) = 0 ∀s ∈ S \ {s1}, a ∈ A,

2 log

(
1

2.4δ

)∑
s,a,h

(pπh(s, a)− p?h(s, a))2

ηh(s, a)
≤ ∆(π)2 ∀π : ∆(π) > 0,

where we performed the change of variable ηh(s, a) = E[nτh(s, a)] and used that η must satisfy the
navigation constraints. Note that the last constraint is equivalent to

2 log

(
1

2.4δ

)
max

π:∆(π)>0

∑
s,a,h

∑
a′ η1(s1, a

′)

ηh(s, a)

(pπh(s, a)− p?h(s, a))2

∆(π)2
≤
∑
a

η1(s1, a) (4.1)

Finally, we apply the change of variable

∀(h, s, a), ρh(s, a) =
ηh(s, a)∑
a η1(s1, a)

.

It is straightforward that ρ ∈ Ω(M) is a valid state-action distribution. Replacing by ρ in the
LHS of (4.1) and plugging back into the optimization program yields the stated lower bound. �

4.1.3 Interpreting the lower bound
While the expression of the lower bound might seem mysterious at first glance, we provide
below a possible interpretation in terms of the reduction of some confidence intervals, in the
simpler setting of known transitions and unknown reward distributions. Our explanation
hinges on the following concentration inequality, proved in Appendix 4.7.

Lemma 4.1 Assume that the rewards are in [0, 1] almost surely. For any policy π ∈ ΠD,
define the estimator V̂ π,t

1 :=
∑

h,s,a p
π
h(s, a)r̂th(s, a), where r̂th(s, a) is the MLE of rh(s, a)

using samples gathered until episode t. Then the event

E :=

(
∀t ≥ t0, ∀π, π′ ∈ ΠD,

∣∣(V̂ π,t
1 − V̂ π′,t

1 )− (V π
1 − V π′

1 )
∣∣ ≤√βr(t, δ) ∑

h,s,a

(
pπh(s,a)−pπ′h (s,a)

)2

nth(s,a)

)
holds with probability larger than 1 − δ, where t0 := inf{t : nth(s, a) ≥ 1,∀(h, s, a) ∈
[H]× S ×A} and βr(t, δ) := 4 log(1/δ) + 4SH log(A(1 + t)).

Suppose that a learner explores the MDPM using a fixed (stochastic) policy πexp whose
state-action distribution is ρ. Then, after playing πexp for K ≥ 1 episodes, E[nKh (s, a)] =
Kρh(s, a) so that the size of the confidence interval on V πε

1 − V π
1 should roughly be√

βr(t, δ)
∑

h,s,a

(
pπh(s,a)−pπεh (s,a)

)2

Kρh(s,a) . Now, if the learner wishes to test whether πε is ε-
optimal it has to determine the sign of V πε

1 − V π
1 + ε for all other policies π. To do

that, it is sufficient to shrink the size of the confidence interval on V πε
1 − V π

1 below
1
2 |V

πε
1 − V π

1 + ε| = 1
2 |∆(π)−∆(πε) + ε| for all policies π. Solving for the minimal K that

satisfies the previous conditions, we see that playing roughly

K(πexp, πε) ∝ log(1/δ) max
π∈ΠD

∑
s,a,h

(
pπh(s, a)− pπεh (s, a)

)2
ρh(s, a)(∆(π)−∆(πε) + ε)2
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episodes using the exploration policy πexp is enough to determine whether πε is ε-optimal.
Since the learner has the liberty to return any ε-optimal policy using any exploration policy,
the lower bound corresponds to the minimum of K(πexp, πε) w.r.t to these two variables.

4.2 Towards a Matching Upper Bound
In this section, we review the existing problem-dependent upper bounds for the ε-BPI
problem (with ε > 0). As we will see, a recent algorithm proposed by (Wagenmaker &
Jamieson, 2022) nearly matches the lower bound of Theorem 4.1.

ε-BPI with a generative model (Zanette et al., 2019) were the first to propose an
instance-dependent ε-BPI algorithm, called BESPOKE. In infinite-horizon tabular MDPs
with a discount factor γ ∈ [0, 1) and when the algorithm has access to a generative model,
BESPOKE finds an ε-optimal policy with a sample complexity of at most

Õ
([∑

s,a min

(
1

(1−γ)3ε2
,

Var[R(s,a)]+γ2Vars′∼p(.|s,a)[V
?(s′)]

max(∆(s,a),(1−γ)ε)2 + 1
(1−γ) max(∆(s,a),(1−γ)ε)

)]
log
(

1
δ

))
,

where ∆(s, a) = V ?
M(s) − Q?M(s, a) is the value gap of state-action pair (s, a) and Var

denotes the variance operator. This bound is always smaller than the conjectured minimax
rate for this setting (Azar et al., 2013). For the setting of episodic linear MDPs (Jin et al.,
2019), the GSS-E algorithm by (Taupin et al., 2022) solves a G-optimal design to determine
the sampling frequencies of each state-action pair. The sample complexity of GSS-E is

upper bounded by Õ
(

dH4

(∆min(M)+ε)2 (log(1/δ) +d)

)
, where ∆min(M) = mins,a 6=π?(s) ∆(s, a)

is the minimum value gap in M. Up to horizon factors, this result improves upon the
Ω(d2H2/ε2) minimax bound for this setting (Wagenmaker et al., 2022b) whenever the
minimum value gap inM is large.

Online ε-BPI On top of the sub-optimality gaps which characterized the bounds when a
generative model is available, the problem-dependent complexities in online ε-BPI feature
an additional component, namely visitation probabilities. These constitute the price
that online ε-BPI algorithms pay in order to navigate the MDP and collect observations
from distant states. Most existing results on the sample complexity are of the form
PM,Alg

(
τ = Õ

(
CAlg(M, ε) log

(
1
δ

)))
≥ 1 − δ, where CAlg(M, ε) is a complexity measure

corresponding to a given algorithm Alg and the Õ notation is used to hide numerical
constants and logarithmic factors in S,A,H, 1/ε and log(1/δ). For example, for the MOCA
algorithm (Wagenmaker et al., 2022a) obtain

CMOCA(M, ε) = H2
H∑
h=1

min
πexp∈ΠS

max
s,a

1

pπ
exp

h (s, a)
min

(
1

∆h(s, a)2
,
Wh(s)2

ε2

)
+
H4
∣∣OPT(M, ε)

∣∣
ε2

,

where ∆h(s, a) := V ?
h (s)−Q?h(s, a) is the value gap of triplet (h, s, a), Wh(s) = supπ p

π
h(s) is

the maximum reachability of state s at step h ∈ [H] and OPT(M, ε) is a set of near-optimal
triplets (h, s, a). In the above bound, the contribution of a triplet (h, s, a) to the total
complexity will be small when either (i) its value gap ∆h(s, a) is large or (ii) it is hard to
reach by any policy, that is Wh(s)� ε. This "local complexity" of (h, s, a) is weighted by
1/pπ

exp

h (s, a), which is the (expected) number of episodes that the algorithm needs to play
in order to reach (h, s, a) when using πexp as an exploration policy. Subsequent works have
proposed alternative local complexity measures featuring policy gaps instead of value gaps
(Tirinzoni et al., 2022; Wagenmaker & Jamieson, 2022). Policy gaps can be larger than
value gaps, notably in deterministic MDPs (Tirinzoni et al., 2022).
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4.2.1 PEDEL: A close to optimal algorithm
Among algorithms whose sample complexity is expressed with policy gaps, the PEDEL
algorithm proposed by (Wagenmaker & Jamieson, 2022) has the complexity term which
looks the most like the complexity measure in our lower bound. PEDEL can tackle the
more general setting of identifying a near-optimal policy in linear MDPs (Jin et al., 2019).
Its instantiation to the special case of tabular MDPs yields a sample complexity whose
leading term is

CPEDEL(M, ε) = H4
H∑
h=1

min
ρ∈Ω

max
π∈ΠD

∑
s,a

pπh(s, a)2

ρh(s, a)(∆(π) ∨ ε ∨∆min(ΠD))2
,

ignoring some additive second-order term which is polynomial in S,A,H, log(1/δ) and
log(1/ε). The next proposition, proved in Appendix 4.8, compares this complexity measure
to the lower bound.

Proposition 4.1 For any MDPM, it holds that

CPEDEL(M, ε) ≤ 8H5LB(M, ε) +
4H6

(ε ∨∆min(ΠD))2
.

This result shows that for MDPs in which the minimum policy gap is a constant w.r.t other
problem parameters ∆min(ΠD) = Ω(1), the complexity CPEDEL(M, ε) is only an H5 factors
away from the instance-dependent lower bound. The same conclusion holds when we are
interested in the regime ε = Ω(1).

Remark 4.2 Upon close inspection of its pseudocode, it seems that PEDEL was designed
with the implicit assumption that ε = O(H/d3/2), where d is the dimension of the linear
MDP (d = SAH in our tabular setting). This results in cases, e.g. if ε = Ω(1/d), where
the true sample complexity of PEDEL can be d times larger than CPEDEL(M, ε). We
elaborate on this in Appendix 4.8.2. �

4.3 Proportional Coverage with Implicit PoLicy Elimination

4.3.1 Basic intuition
We now present PRINCIPLE, an algorithm for ε-BPI, which uses CovGame as a subroutine
for exploration. Recall that in the PCE algorithm of Chapter 3, we sought to achieve
good proportional coverage w.r.t. the set of all policies, i.e., by requiring that nkh(s, a) ≥
2k supπ∈ΠD

pπh(s, a) for all h, s, a, k. This is due to the “worst-case" nature of RFE, where
any policy can be potentially optimal for some reward function at test time. On the contrary,
the mean-reward r is fixed in BPI, a property that we can leverage to perform more adaptive
exploration. A natural idea, which led to the tight theoretical guarantees on PEDEL that
we saw earlier, is to eliminate policies as soon as we are confident enough that they are
sub-optimal. This helps the algorithm adapt its exploration to focus on policies of higher
value. The same idea was also used by (Tirinzoni et al., 2022) to perform near-optimal
ε-BPI in deterministic MDPs. Unfortunately, while (Tirinzoni et al., 2022) managed to
achieve so in a computationally efficient manner for deterministic MDPs, PEDEL needs
to enumerate all policies to do the same in stochastic environments, hence yielding an
exponential time-memory algorithm. Our strategy, PRINCIPLE, achieves a policy-gaps
dependent sample complexity while remaining computationally efficient. Its pseudo-code is
reported in Algorithm 12.
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Implicit policy eliminations The key idea is to replace the explicit policy eliminations of
PEDEL with sequential constraints on the set of state-action distributions corresponding
to high-reward policies. While PEDEL computes at each round k a set of policies Πk that
contains an optimal policy with high probability, PRINCIPLE computes a set of state-action
distributions Ωk that w.h.p contains the distribution vector [p̂π

?,k
h (s, a)]h,s,a of some optimal

policy π? under the empirical transition model p̂,k. In particular, PRINCIPLE maintains,
at each phase k, a high-probability lower bound V k

1 on the optimal value function V ?
1

computed as

V k
1 := sup

ρ∈Ω(p̂k),

max
h,s,a

ρh(s,a)/nkh(s,a)≤2−k

∑
h,s,a

ρh(s, a)r̂kh(s, a)−
√

22−kHβbpi(tk, δ/3),

where βbpi(t, δ) ∝ H2 log(1/δ) + SAH3 log log(t) and Ω(p̂k) is the set of valid visitation
probabilities in the empirical MDP whose transition kernel is p̂k. As common, V k

1 is
computed by subtracting a confidence interval to the maximum expected return estimated
on the empirical MDP defined by (p̂k, r̂k). A notable exception is that we focus only
on state-action distributions that are well-covered by the current data, i.e., such that
max
h,s,a

ρh(s, a)/nkh(s, a) ≤ 2−k. Then, PRINCIPLE defines a set of “active” state-action

distributions as

Ωk :=

{
ρ ∈ Ω(p̂k) :

∑
h,s,a

ρh(s, a)r̂kh(s, a) ≥ V k
1, max

h,s,a
ρh(s, a)/nkh(s, a) ≤ 2−k

}
.

Intuitively, ρ is active at phase k if (1) it is a valid state-action distribution in the
empirical MDP with transition probabilities p̂k, (2) it induces an estimated expected return∑

h,s,a ρh(s, a)r̂kh(s, a) larger than V k
1, and (3) it is well-covered by the current data. Then,

as compared to PCE, PRINCIPLE simply replaces the quantity supπ∈ΠD
pπh(s, a) in the

target function used for CovGame at phase k with supρ∈Ωk−1 ρh(s, a), i.e., it restricts the
exploration to active state-action distributions. In our analysis, we show that with high
probability, state-action distributions corresponding to optimal policies are never eliminated
from Ωk and V k

1 gradually approaches V ?
1 from below. That is, Ωk is dynamically pruned

to contain only distributions corresponding to higher returns, hence achieving implicit
eliminations of sub-optimal policies.

Computational complexity The computations of V k
1 and supρ∈Ωk−1 ρh(s, a) amount to

solving standard constrained MDPs, which can be done by linear programming (e.g., Efroni
et al., 2020). Moreover, PRINCIPLE does not store the set Ωk but only its associated
constraints, whose number is linear in SAH. This implies that PRINCIPLE, unlike PEDEL,
requires polynomial (in SAH) time and memory.

4.3.2 Theoretical guarantees

Theorem 4.3 PRINCIPLE is (ε, δ)-PAC for ε-BPI and, with probability 1 − δ, it has
sample complexity

τ ≤ Õ
(

(H3 log(1/δ) + SAH4)

[
ϕ?
([

sup
π∈ΠS

pπh(s, a)

max(ε,∆(π))2

]
h,s,a

)
+
ϕ?(1)

ε
+ ϕ?(1)

])
,

where 1 denotes a function equal to 1 for all h, s, a and Õ hides poly-logarithmic factors
in S,A,H, ε, log(1/δ) and ϕ?(1).
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4.3.3 Pseudo-code

Notation: To simplify the presentation of the algorithm and the analysis, we index
the counts as well as the empirical estimates of transitions and rewards by their phase
number (instead of episode number). Hence, for each triplet (h, s, a), nkh(s, a), p̂kh(.|s, a)
and r̂kh(s, a) will refer to the number of visits, the empirical transition kernel and the
empirical mean reward respectively after tk episodes, i.e. at the end of the k-th phase.
For a transition kernel p̃, we define the corresponding set of state-action distributions as
Ω(p̃) :=

{
[p̃πh(s, a)]h,s,a : π ∈ ΠS

}
. Finally, for a dataset of episodes D, nh(s, a;D) denotes

the number of visits of (h, s, a) in the episodes stored in D.

Algorithm 12 PRINCIPLE (PRoportIoNal Coverage with Implicit PoLicy Elimination)
1: Input: Precision ε, Confidence δ, set of reachable states S
2: Output: A policy π̂ that is ε-optimal w.p larger than 1− δ
3: Define target function c0

h(s, a) = 1 for all (h, s, a)
4: Execute CovGame

(
c0, δ/4

)
to get dataset D0 and number of episodes d0 // Burn-in

phase
5: Initialize episode count t0 ← d0 and statistics n0

h(s, a), r̂0
h(s, a), p̂0

h(.|s, a) using D0

6: Initialize the set of active distributions Ω0 ← Ω(p̂0)
7: for k = 1, . . . do
8: // Proportional Coverage
9: Compute ckh(s, a) := 2k min

(
sup

ρ̂∈Ωk−1

ρ̂h(s, a) + 2
√
Hβbpi(tk−1 + SAH2k, δ/2)21−k, 1

)
for all (h, s, a)

10: Execute CovGame
(
ck, δ/4(k + 1)2

)
to get dataset D̃k and number of episodes Tk

11: if Tk > SAH2k then
12: Run PruneDataset(D̃k, ck) to get effective dataset Dk and effective phase length

dk
13: else
14: Set dk ← Tk and Dk ← D̃k
15: end if
16: Update effective episode count tk ← tk−1 +dk and statistics nkh(s, a), r̂kh(s, a), p̂kh(.|s, a)

using Dk
// state-action-distribution elimination

17: Compute the lower confidence bound

V k
1 := sup

ρ̂∈Ω(p̂k),

max
h,s,a

ρ̂h(s,a)/nkh(s,a)≤2−k

ρ̂>r̂k −
√

22−kHβbpi(tk, δ/2)

18: Update the set of active state-action distributions

Ωk ←
{
ρ̂ ∈ Ω(p̂k) : ρ̂>r̂k ≥ V k

1 and max
h,s,a

ρ̂h(s, a)/nkh(s, a) ≤ 2−k
}

19: if
√

22−kHβbpi(tk, δ/2) ≤ ε then
20: Compute any ρ̂? ∈ arg maxρ̂∈Ωk ρ̂

>r̂k and extract the corresponding policy π̂
21: return π̂
22: end if
23: end for
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Algorithm 13 PruneDataset

1: Input: Target counts c, Dataset D̃ such that nh(s, a; D̃) ≥ ch(s, a) for all (h, s, a)
2: Output: A dataset D of d ≤ SAH2k episodes satisfying nh(s, a;D) ≥ ch(s, a) for all

(h, s, a)
3: Initialize dataset D ← ∅, episode number d← 0 and dataset-counts nh(s, a;D)← 0 for

all (h, s, a)
4: for episode e = (se` , a

e
` , R

e
`)1≤`≤H in D̃ do

5: if ∃` ∈ [H] such that n`(se` , a
e
` ;D) < c`(s

e
` , a

e
`) then

6: Update dataset-counts nh(seh, a
e
h;D)← nh(seh, a

e
h;D) + 1 for all h ∈ [H]

7: Update dataset D ← D ∪ {e} and episode number d← d+ 1
8: if nh(s, a;D) ≥ ch(s, a) for all (h, s, a) then
9: return (D, d)
10: end if
11: end if
12: end for

Remark 4.3 — Reachability. While for the PCE algorithm we were able to reduce the
sample complexity by ignoring states that are hard to reach (which also allows using PCE
when Assumption 3.1 is violated), we did not manage to propose a similar improvement
for PRINCIPLE. This is because in reward-free exploration it is sufficient to guarantee
that the true confidence intervals that depend on the visitation probabilities under the

true MDP are small, i.e.,
√
βRF(tk, δ)

∑
(h,s,a)

pπh(s,a)2

nkh(s,a)
≤ 2k. This allows us to filter out

all (h, s, a) for which supπ p
π
h(s, a) ≤ O(ε/SH2), by arguing that their contribution to the

true confidence interval is negligible. In contrast, the analysis of PRINCIPLE crucially
relies on concentrating the values of policies by minimizing their empirical confidence

intervals, i.e.,
√
βbpi(tk, δ)

∑
(h,s,a)

p̂π,kh (s,a)2

nkh(s,a)
≤ 2k (see (4.8) and the proof of Lemma4.7).

We do not see a straightforward way to ignore the contribution of hard-to-reach states
to these empirical confidence intervals. �

4.3.4 Comparison with other BPI-algorithms

In this section, we compare PRINCIPLE with other algorithms for Best-Policy Identification
algorithms that enjoy problem-dependent guarantees, namely PEDEL (Wagenmaker &
Jamieson, 2022) and MOCA (Wagenmaker et al., 2022a). Recalling that ∆(π) = V ?

1 − V π
1

denotes the policy gap of π, we first note that by Theorem 4.3, the leading term in the
sample complexity of PRINCIPLE in the small (ε, δ) regime is PRINCIPLE(M, ε) log(1/δ)
where

PRINCIPLE(M, ε) := H3ϕ?
([

sup
π∈ΠS

pπh(s, a)

max(ε,∆(π))2

]
h,s,a

)
.

We will now compare this term with the leading terms in the sample complexities of PEDEL
and MOCA respectively, in the same asymptotic regime.

4.3.4.1 Comparison with PEDEL

The next lemma shows that (up to H factors) the rate of PEDEL is always better than
the complexity measure achieved by PRINCIPLE. Recall that this comes at the cost of an
intractable algorithm.
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Lemma 4.2 For any MDPM, it holds that PEDEL(M, ε) ≤ H2PRINCIPLE(M, ε).

Proof. Fix any h ∈ [H], ρ ∈ Ω, π ∈ ΠD. Then we have∑
s,a

pπh(s, a)2

ρh(s, a)
≤
(

max
s,a,h

pπh(s, a)

ρh(s, a)

)∑
s,a

pπh(s, a) = max
s,a,h

pπh(s, a)

ρh(s, a)
.

Therefore for all h ∈ [H], using that ΠD ⊂ ΠS we have

min
ρ∈Ω

max
π∈ΠD

∑
s,a

pπh(s, a)2/ρh(s, a)

max(ε,∆(π),∆min(ΠD))2
≤ min

ρ∈Ω
max
π∈ΠD

max
s,a,h

pπh(s, a)/ρh(s, a)

max(ε,∆(π),∆min(ΠD))2

= min
ρ∈Ω

max
s,a,h

max
π∈ΠD

pπh(s, a)/ρh(s, a)

max(ε,∆(π),∆min(ΠD))2

≤ min
ρ∈Ω

max
s,a,h

sup
π∈ΠS

pπh(s, a)

ρh(s, a) max(ε,∆(π))2

= ϕ?
([

sup
π∈ΠS

pπh(s, a)

max(ε,∆(π))2

]
h,s,a

)
.

Therefore

PEDEL(M, ε) := H4
H∑
h=1

min
ρ∈Ω

max
π∈ΠD

∑
s,a

pπh(s, a)2/ρh(s, a)

max(ε,∆(π),∆min(ΠD))2

≤ H5ϕ?
([

sup
π∈ΠS

pπh(s, a)

max(ε,∆(π))2

]
h,s,a

)
= H2PRINCIPLE(M, ε).

�

4.3.4.2 Comparison with MOCA

Let us define the complexity functional,

MOCA(M, ε) := H2
H∑
h=1

min
ρ∈Ω

max
s,a

1

ρh(s, a)
min

(
1

∆̃h(s, a)2
,
Wh(s)2

ε2

)

+
H4
∣∣(h, s, a) : ∆̃h(s, a) ≤ 3ε/Wh(s)

∣∣
ε2

,

where Wh(s) := supπ p
π
h(s) is the reachability of (h, s) and

∆̃h(s, a) :=

{
minb6=a V

?
h (s)−Q?h(s, b) if a is the unique optimal action at (h, s),

V ?
h (s)−Q?h(s, a) otherwise

is the value gap of (h, s, a). Theorem 1 together with Proposition 2 of (Wagenmaker et al.,
2022a) yield that the stopping time of MOCA satisfies

τ ≤ Õ
(
MOCA(M, ε) log(1/δ) +

poly
(
SAH, log(1/ε), log(1/δ)

)
ε

)
.

Therefore we see that MOCA(M, ε) log(1/δ) is the dominating term in the sample complex-
ity of MOCA in the regime of small ε and small δ. On the other hand, as stated earlier, the
leading term in PRINCIPLE’s complexity in that regime is PRINCIPLE(M, ε) log(1/δ).
Therefore we compare MOCA(M, ε) with PRINCIPLE(M, ε) to assess which algorithm is
better in this regime.



4.3 Proportional Coverage with Implicit PoLicy Elimination 121

Lemma 4.3 Fix any ∆ ∈ (0, 1]. There exists an MDPM where

MOCA(M, ε) = Ω

(
H5SA

ε2

)
while PRINCIPLE(M, ε) = O

(
H4SA

ε∆
+
H4 log(S) log(A)

ε2

)
.

Proof. Consider the MDP in Figure 4.1 which consists of an initial state s1 and two
sub-MDPs depending on the action taken at step h = 1. If the learner takes action
a1 it receives a reward ∆ > 0 and makes a transition to a sub-MDP M1 for which
|S1| = log(S), |A1| = log(A), H1 = H − 1 and where the rewards can be anything. On the
other hand, if it takes action a2 the learner will receive zero reward and make a transition
to a sub-MDP M2 for which |S2| = S − log(S), |A2| = A,H2 = H − 1, the rewards are
equal to zero everywhere and the transitions are deterministic, i.e. p(s′|s, a) ∈ {0, 1} for all
(s, a) ∈ S2 ×A2. Note that in this example ∆̃h(s, a) = 0 for all (h, s, a) ∈M2. Therefore

s

s

s

Figure 4.1: MDP instance with large policy gaps and small value gaps.

MOCA(M, ε) ≥
H4
∣∣(h, s, a) : ∆̃h(s, a) ≤ 3ε/Wh(s)

∣∣
ε2

,

≥ H4(H − 1)(S − log(S))A

ε2
. (4.2)

On the other hand for all triplets (h, s, a) in the sub-MDPM2 we have

sup
π∈ΠS

pπh(s, a)

max(ε,∆(π))2
≤ sup

π∈ΠS

4π1(a2|s1)

(ε+ ∆(π))2
, (4.3)

where we used that pπh(s, a) ≤ π1(a2|s1) (since the only path to reach (h, s, a) is by playing
action a2 at s1) and that max(a, b) ≥ (a+ b)/2. Now, by the performance-difference lemma
((e.g. Lemma 5.2.1 in Kakade, 2003)) we have

∆(π) =
∑
h,s,a

pπh(s, a)[V ?
h (s)−Q?h(s, a)]

≥ pπ1 (s1, a2)[V ?
1 (s1)−Q?1(s1, a2)] = π1(a2|s1)∆.
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Plugging this back into (4.3), we get

sup
π∈ΠS

pπh(s, a)

max(ε,∆(π))2
≤ sup

π∈ΠS

4π1(a2|s1)

(ε+ π1(a2|s1)∆)2

= sup
x∈[0,1]

4x

(ε+ x∆)2
=

1

ε∆

For triplets (h, s, a) outside ofM2 (i.e. either at s1 or in the sub-MDPM1 ) we use the
crude bound

sup
π∈ΠS

pπh(s, a)

max(ε,∆(π))2
≤

supπ∈ΠS
pπh(s, a)

ε2
.

Therefore

PRINCIPLE(M, ε) = H3ϕ?
([

sup
π∈ΠS

pπh(s, a)

max(ε,∆(π))2

]
h,s,a

)
= H3ϕ?

([
sup
π∈ΠS

pπh(s, a)

max(ε,∆(π))2
(1 ((h, s, a) ∈M2) + 1 ((h, s, a) /∈M2))

]
h,s,a

)
(a)

≤ H3ϕ?
([

sup
π∈ΠS

pπh(s, a)

max(ε,∆(π))2
1 ((h, s, a) ∈M2)

]
h,s,a

)
+H3ϕ?

([
sup
π∈ΠS

pπh(s, a)

max(ε,∆(π))2
1 ((h, s, a) /∈M2)

]
h,s,a

)
≤ H3ϕ?

([
1 ((h, s, a) ∈M2)

ε∆

]
h,s,a

)
+H3ϕ?

([
1 ((h, s, a) /∈M2) supπ∈ΠS

pπh(s, a)

ε2

]
h,s,a

)
(b)

≤ H3
∑

(h,s,a)∈M2

1

ε∆ supπ∈ΠS
pπh(s, a)

+H3
∑

(h,s,a)/∈M2

1

ε2

(c)
=
H3(H − 1)(S − log(S))A

ε∆
+
H3(H − 1) log(S) log(A)

ε2
(4.4)

where (a) uses the sub-linearity of the flow from Lemma 3.12, (b) uses the bound on ϕ? from
Lemma 3.2 and (c) uses that the sub-MDPM2 has deterministic transitions. Combining
(4.2) and (4.4) finishes the proof. �

4.4 Analysis of PRINCIPLE
4.4.1 Good event

We introduce the following events

Ebpi :=

(
∀k ∈ N?,∀π ∈ ΠS,

∣∣V̂ π,k
1 − V π

1

∣∣ ≤
√√√√βbpi(tk, δ/2) min

(∑
s,a,h

pπh(s, a)2

nkh(s, a)
,
∑
s,a,h

p̂π,kh (s, a)2

nkh(s, a)

)

and
∣∣∣ ∑
s,a,h

(
p̂π,kh (s, a)− pπh(s, a)

)
r̃h(s, a)

∣∣∣ ≤
√√√√βbpi(tk, δ/2)

∑
s,a,h

pπh(s, a)2

nkh(s, a)
for all r̃ ∈ [0, 1]SAH

)
,

Ecov :=

(
∀k ∈ N, CovGame run with inputs (ck, δ/4(k + 1)2) terminates after at most

64mkϕ
?(ck) + Õ

(
mkϕ

?(1)SAH2(log(4(k + 1)2/δ) + S)
)
episodes and returns a dataset D̃k

such that for all (h, s, a), nh(s, a; D̃k) ≥ ckh(s, a)

)
,
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where mk = log2

( maxs,a,h c
k
h(s,a)

mins,a,h c
k
h(s,a)∨1

)
∨ 1 and βbpi(t, δ) = 16H2 log(2/δ) + 96SAH3 log(1 + t)

is defined in Appendix 3.9. Then our good event is defined as the intersection

Egood := Ebpi ∩ Ecov.

Lemma 4.4 We have that PM(Egood) ≥ 1− δ.

Proof. Let E denote the complementary event of E . We start by the following decomposition

PM(Egood) ≤ PM(Ecov) + PM(Ebpi ∩ Ecov).

Now we bound each term separately. First observe that using Corollary 3.1 we have

PM(Ecov) ≤
∞∑
k=0

PM(CovGame with inputs (ck, δ/4(k + 1)2) fails)

≤
∞∑
k=0

δ

4(k + 1)2
=
δπ2

24
≤ δ/2.

Next, note that by design of PRINCIPLE n0
h(s, a) = nh(s, a; D̃0) and c0 = 1 so that

Ecov ⊂
(
∀(h, s, a), n0

h(s, a) ≥ 1
)
. Therefore we have

PM(Ebpi ∩ Ecov) ≤ PM
(
Ebpi and ∀(h, s, a) n0

h(s, a) ≥ 1
)

≤δ/2,

where we applied Theorem 3.5 and used the fact that βp(t, δ) ≤ βbpi(t, δ). Combining the
two inequalities above yields the desired result. �

4.4.2 Low Concentrability / Good coverage of optimal policies

Lemma 4.5 Under the good event, for all k ≥ 1 such that PRINCIPLE did not stop
before phase k, it holds that nh(s, a,Dk) ≥ ckh(s, a) for all (h, s, a) and dk ≤ SAH2k.

Proof. Fix k ≥ 1 such that PRINCIPLE did not stop before phase k. By definition of the
good event, we know that at the end of CovGame, nh(s, a; D̃k) ≥ ckh(s, a) for all (h, s, a).
Now we distinguish two cases.

If Tk ≤ SAH2k: then the result follows immediately since in this case, by design of
PRINCIPLE (line 14 in Algorithm 12), Dk = D̃k and dk = Tk.

If Tk > SAH2k: the first statement is a direct consequence of the stopping condition
of PruneDataset run with parameters (D̃k, ck) (lines 7-8 in Algorithm 13). Now for
the second statement, observe that each new episode e added by PruneDataset to Dk
increments the dataset-count of at least one triplet (h, s, a) that is not yet covered, i.e.
nh(s, a;Dk) < ckh(s, a). By the pigeon-hole principle it takes at most

∑
h,s,a c

k
h(s, a) episodes

to ensure that nh(s, a,Dk) ≥ ckh(s, a) for all (h, s, a). Therefore

dk ≤
∑
h,s,a

ckh(s, a) ≤ SAH2k,

where we used that ckh(s, a) ≤ 2k due to the clipping. �

The next lemma shows that the set of active state-action distributions always contains
the distributions induced by optimal policies.
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Lemma 4.6 Under the good event, for all optimal policies π? ∈ Π? and all phases k ≥ 0,
we have that

p̂π
?,k ∈ Ωk and nkh(s, a) ≥ 2kpπ

?

h (s, a) ∀(h, s, a).

Proof. We fix an optimal policy π? and prove the statement by induction. For k = 0, the fact
that p̂π?,0 ∈ Ω0 is trivial since Ω0 = Ω(p̂0) consists of all possible state-action distributions
induced in the MDP whose transition kernel is p̂0. Furthermore, under the good event
we have that, for all (h, s, a), n0

h(s, a) ≥ c0
h(s, a) = 1 ≥ 20 max

(
pπ

?

h (s, a), p̂π
?,0
h (s, a)

)
. Now

suppose that the property holds for phase k. Then we know that for any (h, s, a)∣∣p̂π?,k+1
h (s, a)− p̂π

?,k
h (s, a)

∣∣ ≤ ∣∣p̂π?,k+1
h (s, a)− pπ?h (s, a)

∣∣+
∣∣pπ?h (s, a)− p̂π

?,k
h (s, a)

∣∣
(a)

≤

√√√√βbpi(tk+1, δ/2)
∑
s,a,h

pπ
?

h (s, a)2

nk+1
h (s, a)

+

√√√√βbpi(tk, δ/2)
∑
s,a,h

pπ
?

h (s, a)2

nkh(s, a)

(b)

≤ 2

√√√√βbpi(tk+1, δ/2)
∑
s,a,h

pπ
?

h (s, a)2

nkh(s, a)

(c)

≤ 2
√
βbpi(tk+1, δ/2)H2−k

= 2
√
βbpi(tk + dk+1, δ/2)H2−k

(d)

≤ 2
√
βbpi(tk + SAH2k+1, δ/2)H2−k, (4.5)

where (a) uses the event Ebpi for the reward r̃`(s′, a′) = 1
(
(`, s′, a′) = (h, s, a)

)
, (b) uses the

facts that t 7→ β(t, δ) is non-decreasing and nk+1
h (s, a) ≥ nkh(s, a), (c) uses the induction

hypothesis which yields that nkh(s, a) ≥ 2kpπ
?

h (s, a) and (d) uses Lemma 4.5. Similarly, we
have that ∣∣pπ?h (s, a)− p̂π

?,k
h (s, a)

∣∣ ≤√βbpi(tk + SAH2k+1, δ/2)H2−k (4.6)

Now thanks to Lemma 4.5, we know that for all (h, s, a), nk+1
h (s, a)−nkh(s, a) = nh(s, a,Dk+1) ≥

ck+1
h (s, a). Plugging the definition of ck+1 (Line 9 of Algorithm 12) we get that,

nk+1
h (s, a) ≥ 2k+1 min

(
sup
ρ̂∈Ωk

ρ̂h(s, a) + 2
√
Hβbpi(tk + SAH2k+1, δ/2)2−k, 1

)
(a)

≥ 2k+1 min
(
p̂π

?,k
h (s, a) + 2

√
Hβbpi(tk + SAH2k+1, δ/2)2−k, 1

)
(b)

≥ 2k+1 max
(
p̂π

?,k+1
h (s, a), pπ

?

h (s, a)
)
, (4.7)

where (a) uses that, by the induction hypothesis, p̂π?,k ∈ Ωk and (b) uses (4.5) along with
(4.6). In particular we have proved that maxh,s,a p̂

π?,k+1
h (s, a)/nk+1

h (s, a) ≤ 2−(k+1). Now it
remains to show that (p̂π

?,k+1)>r̂k+1 ≥ V k+1
1 . Let us consider ρ̃ achieving the supremum

in the definition of V k+1
1 , i.e.,

ρ̃ ∈ arg max
ρ̂∈Ω(p̂k+1),

max
h,s,a

ρ̂h(s,a)/nk+1
h (s,a)≤2−(k+1)

ρ̂>r̂k+1,
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and let π̃ be a policy corresponding to ρ̃2. Then we have that

(p̂π
?,k+1)>r̂k+1

(a)

≥ V ?
1 −

√√√√βbpi(tk+1, δ/2)
∑
s,a,h

pπ
?

h (s, a)2

nk+1
h (s, a)

≥ V π̃
1 −

√√√√βbpi(tk+1, δ/2)
∑
s,a,h

pπ
?

h (s, a)2

nk+1
h (s, a)

(b)

≥ ρ̃>r̂k+1 −

√√√√βbpi(tk+1, δ/2)
∑
s,a,h

ρ̃h(s, a)2

nk+1
h (s, a)

−

√√√√βbpi(tk+1, δ/2)
∑
s,a,h

pπ
?

h (s, a)2

nk+1
h (s, a)

(c)

≥ ρ̃>r̂k+1 − 2
√

2−(k+1)Hβbpi(tk+1, δ/2)

= V k+1
1 (4.8)

where (a) uses the event Ebpi for policy π?, (b) uses the same event combined with the fact
that ρ̃ = p̂π̃,k+1, and (c) uses (4.7) and the fact that by definition of ρ̃,max

h,s,a
ρ̃h(s, a)/nk+1

h (s, a) ≤

2−(k+1). Now combining (4.7) with (4.8) gives that p̂π?,k+1 ∈ Ωk+1. This finishes the
proof. �

4.4.3 Correctness

Lemma 4.7 Under the good event, if PRINCIPLE stops then the recommended policy
satisfies V π̂

1 ≥ V ?
1 − ε.

Proof. Suppose that PRINCIPLE stops at phase k ≥ 1. Let π? be any optimal policy and
recall the definition ρ̂? = arg maxρ̂∈Ωk ρ̂

>r̂k with ties broken arbitrarily. We have that

V π̂
1

(a)

≥ (ρ̂?)>r̂k −

√√√√βbpi(tk, δ/2)
∑
s,a,h

ρ̂?h(s, a)2

nkh(s, a)

(b)

≥ (p̂π
?,k)>r̂k −

√√√√βbpi(tk, δ/2)
∑
s,a,h

ρ̂?h(s, a)2

nkh(s, a)

(c)

≥ V ?
1 −

√√√√βbpi(tk, δ/2)
∑
s,a,h

p̂π
?,k
h (s, a)2

nkh(s, a)
−

√√√√βbpi(tk, δ/2)
∑
s,a,h

ρ̂?h(s, a)2

nkh(s, a)

(d)

≥ V ?
1 − 2

√
2−kHβbpi(tk, δ/2)

(e)

≥ V ?
1 − ε,

where (a) uses the event Ebpi for policy π̂ and the fact that ρ̂? = p̂π̂,k, (b) uses the definition
of ρ̂? and the fact that, by Lemma 4.6, p̂π?,k ∈ Ωk, (c) uses the event Ebpi for the policy π?,
and (d) uses that for all ρ ∈ Ωk,maxh,s,a ρh(s, a)/nkh(s, a) ≤ 2−k and (e) uses the stopping
condition of PRINCIPLE (Line 19 of Algorithm 12). �

4.4.3.1 Upper bound on the number of phases

Lemma 4.8 Define the index of the final phase of PRINCIPLE, κf := inf
{
k ∈ N+ :√

22−kHβbpi(tk, δ/2) ≤ ε
}
. Further, let τ denote the number of episodes played by the

2i.e. π̃ is the policy obtained by normalization of ρ̃.
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algorithm. Then under the good event, it holds that κf <∞ and

2κf ≤ 8Hβbpi(τ, δ/2)

ε2
.

Proof. To prove that κf is finite we write

tk =

k∑
j=0

dj

≤ d0 + SAH

k∑
j=1

2j

≤ Õ
(
ϕ?(1)SAH2

(
log(4/δ) + S

))
+ SAH2k+1, (4.9)

where we have used the coverage event Ecov and Lemma 4.5 to upper bound d0 and (dk)1≤j≤k
respectively. This means that tk = Ok→∞

(
2k
)
. Now recall that

βbpi(t, δ) = 16H2 log(1/δ) + 96SAH3 log(1 + t). (4.10)

Combining (4.9) and (4.10) gives that

βbpi(tk, δ/2) = ok→∞
(
2k
)
.

Therefore κf = inf
{
k ∈ N+ :

√
22−kHβbpi(tk, δ/2) ≤ ε

}
is indeed finite. The proof of the

second statement is straightforward by noting that κf − 1 does not satisfy the stopping
condition (Line 19 in Algorithm 12) and using the (crude) upper bound tκf−1 ≤ τ . �

Lemma 4.9 (Upper bound on phases where a suboptimal policy is active)
Consider any suboptimal policy π ∈ ΠS. Further let k such that PRINCIPLE did not
stop at phase k and p̂π,k ∈ Ωk. Further, let τ denote the number of episodes played by
the algorithm. Then under the good event, we have the inequality

2k ≤ 16Hβbpi(τ, δ/2)

max(ε,∆(π))2
,

where ∆(π) := V ?
1 − V π

1 denotes the policy gap of π.

Proof. Let π? be any optimal policy. Then we have

V ?
1 −

√√√√βbpi(tk, δ/2)
∑
s,a,h

p̂π
?,k
h (s, a)2

nkh(s, a)

(a)

≤ (p̂π
?,k)>r̂k

(b)

≤ sup
ρ̂∈Ω(p̂k),

max
h,s,a

ρ̂h(s,a)/nkh(s,a)≤2−k

ρ̂>r̂k

= V ?,k
1 +

√
22−kHβbpi(tk, δ/2)

(c)

≤ (p̂π,k)>r̂k +
√

22−kHβbpi(tk, δ/2)

(d)

≤ V π
1 +

√√√√βbpi(tk, δ/2)
∑
s,a,h

p̂π,kh (s, a)2

nkh(s, a)
+
√

22−kHβbpi(tk, δ/2),
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where (a) uses the event Ebpi for π?, (b) uses the definition of Ωk along with Lemma 4.6
which gives that p̂π?,k ∈ Ωk, (c) uses our assumption that p̂π,k ∈ Ωk and (d) uses the event
Ebpi for policy π. Rewriting the inequality above we get that

∆(π) = V ?
1 − V π

1

≤

√√√√βbpi(tk, δ/2)
∑
s,a,h

p̂π
?,k
h (s, a)2

nkh(s, a)
+

√√√√βbpi(tk, δ/2)
∑
s,a,h

p̂π,kh (s, a)2

nkh(s, a)
+
√

22−kHβbpi(tk, δ/2)

≤ 2
√

2−kHβbpi(tk, δ/2) +
√

22−kHβbpi(tk, δ/2) = 4
√

2−kHβbpi(tk, δ/2), (4.11)

where the last inequality uses the fact that p̂π?,k ∈ Ωk by Lemma 4.6 and that p̂π,k ∈ Ωk

by assumption. Therefore, using a crude bound tk ≤ τ we get that

2k ≤ 16Hβbpi(τ, δ/2)

∆(π)2
.

Combining the result above with Lemma 4.8 and the fact that k ≤ κf yields the final
result. �

4.4.3.2 Upper bound on the phase length

Lemma 4.10 Let Tk denote the number of episodes played by PRINCIPLE during phase
k ≥ 1. Then we have

Tk ≤ 256Hβbpi(τ, δ/2)kϕ?
([

sup
π∈ΠS

pπh(s, a)

max(ε,∆(π))2

]
h,s,a

)
+ 48k

√
Hβbpi(tk−1 + SAH2k−1, δ/2)2kϕ?(1)

+ Õ
(
kϕ?(1)SAH2

(
log(4(k + 1)2/δ) + S

))
.

Proof. Define mk = log2

( maxs,a,h c
k
h(s,a)

mins,a,h c
k
h(s,a)∨1

)
∨ 1. Under the good event, we have

Tk ≤ 64mkϕ
?(ck) + Õ

(
mkϕ

?(1)SAH2
(

log(4(k + 1)2/δ) + S
))

≤64kϕ?(ck) + Õ
(
kϕ?(1)SAH2

(
log(4(k + 1)2/δ) + S

))
, (4.12)

where the last inequality uses the fact that for all (h, s, a), ckh(s, a) ≤ 2k. Now we simplify
the expression of ϕ?(ck) as follows

ϕ?(ck) = ϕ?
([

2k min
(

sup
ρ̂∈Ωk−1

ρ̂h(s, a) + 2
√
Hβbpi(tk−1 + SAH2k−1, δ/2)21−k, 1

)]
h,s,a

)
≤ ϕ?

([
sup
π∈ΠS:

p̂π,k−1∈Ωk−1

2kp̂π,k−1
h (s, a) + 2

√
Hβbpi(tk−1 + SAH2k−1, δ/2)2k+1

]
h,s,a

)
,

(4.13)

where we have used that ϕ?(c) ≤ ϕ?(c′) if ∀(h, s, a) ch(s, a) ≤ c′h(s, a). Now fix a policy
π in the set {π ∈ ΠS : p̂π,k−1 ∈ Ωk−1}. Using the event Ebpi for the rewards r̃`(s′, a′) =
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1
(
(`, s′, a′) = (h, s, a)

)
we have that for all (h, s, a)

2kp̂π,k−1
h (s, a) ≤ 2kpπh(s, a) + 2k

√√√√βbpi(tk−1, δ/2)
∑
s′,a′,`

p̂π,k−1
` (s′, a′)2

nk−1
` (s′, a′)

(a)

≤ 2kpπh(s, a) + 2k
√
βbpi(tk−1, δ/2)H21−k

≤ 2kpπh(s, a) +
√
Hβbpi(tk−1 + SAH2k−1, δ/2)2k+1

(b)

≤
32Hβbpi(τ, δ/2)pπh(s, a)

max(ε,∆(π))2
+
√
Hβbpi(tk−1 + SAH2k−1, δ/2)2k+1,

where (a) uses that max
s′,a′,`

p̂π,k−1
` (s′,a′)

nk−1
` (s′,a′)

≤ 21−k since p̂π,k−1 ∈ Ωk−1 and (b) uses Lemma 4.9.

Plugging the inequality above into (4.13) we get that

ϕ?(ck) ≤ ϕ?
([

sup
π∈ΠS

32Hβbpi(τ, δ/2)pπh(s, a)

max(ε,∆(π))2
+ 3
√
Hβbpi(tk−1 + SAH2k−1, δ/2)2k+1

]
h,s,a

)
≤ 32Hβbpi(τ, δ/2)ϕ?

([
sup
π∈ΠS

pπh(s, a)

max(ε,∆(π))2

]
h,s,a

)
+ 3
√
Hβbpi(tk−1 + SAH2k−1, δ/2)2k+1ϕ?(1), (4.14)

where we used Lemma 3.12 in the last step. Combining (4.12) and (4.14) finishes the
proof. �

4.4.3.3 Total sample complexity

Theorem 4.4 With probability at least 1− δ, the total sample complexity of PRINCIPLE
satisfies

τ ≤ Õ
(

(H3 log(1/δ) + SAH4)

[
ϕ?
([

sup
π∈ΠS

pπh(s, a)

max(ε,∆(π))2

]
h,s,a

)
+
ϕ?(1)

ε
+ ϕ?(1)

])
,

where Õ hides poly-logarithmic factors in S,A,H, ε, log(1/δ) and ϕ?(1) and ∆(π) :=
V ?

1 − V π
1 denotes the policy gap of π.

Proof. We write

τ =

κf∑
k=0

Tk

≤ Õ
(
ϕ?(1)2SAH2

(
log(4/δ) + S

))
+

κf∑
k=1

Tk

≤
κf∑
k=1

256Hβbpi(τ, δ/2)kϕ?
([

sup
π∈ΠS

pπh(s, a)

max(ε,∆(π))2

]
h,s,a

)
︸ ︷︷ ︸

:=A

+

κf∑
k=1

48k
√
Hβbpi(tk−1 + SAH2k−1, δ/2)2kϕ?(1)︸ ︷︷ ︸

:=B

+ Õ
(∑κf

k=1 kϕ
?(1)SAH2

(
log(4(k + 1)2/δ) + S

))
︸ ︷︷ ︸

:=C

,
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where we have used Lemma 4.10. Now we bound each term separately. First note that

A ≤ 256Hβbpi(τ, δ/2)ϕ?
([

sup
π∈ΠS

pπh(s, a)

max(ε,∆(π))2

]
h,s,a

)
κ2
f

(a)

≤ 256Hβbpi(τ, δ/2)ϕ?
([

sup
π∈ΠS

pπh(s, a)

max(ε,∆(π))2

]
h,s,a

)
log2

2

(
8Hβbpi(τ, δ/2)/ε2

)
(b)

≤ O
(

[H3 log(1/δ) + SAH4 log(1 + τ)]ϕ?
([

sup
π∈ΠS

pπh(s, a)

max(ε,∆(π))2

]
h,s,a

)
log2

2

(
8Hβbpi(τ, δ/2)/ε2

))
,

where (a) uses Lemma 4.8 and (b) uses the definition of βbpi. Similarly

B ≤ 48
√
Hβbpi(τ + SAH2κf−1, δ/2)2κfϕ?(1)κ2

f

(a)

≤ 48

√
4H2βbpi(τ + SAH2κf−1, δ/2)βbpi(τ, δ/2)

ε2
ϕ?(1) log2

2

(
8Hβbpi(τ, δ/2)/ε2

)
≤ 48H

ε
βbpi(τ + SAH2κf−1, δ/2)ϕ?(1) log2

2

(
8Hβbpi(τ, δ/2)/ε2

)
(b)

≤ O
(
ϕ?(1)

ε

[
H3 log(1/δ) + SAH4 log

(
1 + τ +

4SAH2βbpi(τ, δ/2)

ε2

)]
log2

2

(
8Hβbpi(τ, δ/2)/ε2

))
,

where (a) and (b) use Lemma 4.8. Finally

C ≤ Õ
(
ϕ?(1)SAH2

(
log(4(κf + 1)2/δ) + S

)
κ2
f

)
≤ Õ

(
ϕ?(1)SAH2

[
log
(4 log2

2

(
8Hβbpi(τ, δ/2)/ε2

)
δ

)
+ S

]
log2

2

(
8Hβbpi(τ, δ/2)/ε2

))
,

where we have used Lemma 4.8 again. Combining the three inequalities with the definition
of βbpi we get that

τ ≤ O
(

(H3 log(1/δ) + SAH4)

[
ϕ?
([

sup
π∈ΠS

pπh(s, a)

max(ε,∆(π))2

]
h,s,a

)
+
ϕ?(1)

ε
+ ϕ?(1)

]
× polylog(τ, S,A,H, ϕ?(1), ε, log(1/δ))

)
.

Solving for τ yields

τ ≤ Õ
(

(H3 log(1/δ) + SAH4)

[
ϕ?
([

sup
π∈ΠS

pπh(s, a)

max(ε,∆(π))2

]
h,s,a

)
+
ϕ?(1)

ε
+ ϕ?(1)

])
,

where Õ hides poly-logarithmic factors in S,A,H, ε, log(1/δ) and ϕ?(1). �

4.5 Conclusion and open question
We proposed the first general instance-dependent lower bound for online ε-BPI and proved
that it is nearly matched by PEDEL. This however comes at the cost of enumerating and
storing the set of deterministic policies, which is of size ASH . This is needed by PEDEL in
order to both eliminate suboptimal policies and solve an experimental design of the form

min
ρ∈Ω(M)

max
π∈Π`

∑
s,a

p̂π,`h (s, a)2

ρh(s, a)
,

where Π` ⊂ ΠD is the set of active policies at iteration ` (initialized as Π0 = ΠD) and
p̂π,`h (s, a) refers to the visitation probability under the empirical MDP M̂`. Therefore, we
ask the following question
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Open question 4.1 Is there an ε-BPI algorithm that can (nearly) match the lower bound
of Theorem 4.1 while maintaining a computational and memory complexity that are
polynomial in SAH?

We believe that answering this question would shed light on the (still elusive) question of
instance-optimality in ε-BPI. Indeed, if the answer is negative then this would indicate a
clear separation between MDPs and Bandits where we know that computationally efficient
instance-optimality is possible (Garivier & Kaufmann, 2016; Jedra & Proutiere, 2020).

Finally, in an attempt to make policy eliminations tractable, we combined proportional
coverage in CovGame with an implicit policy elimination scheme to design an ε-BPI
algorithm. Thus we obtained PRINCIPLE, the first computationally efficient algorithm for
ε-BPI in stochastic MDPs whose sample complexity scales with policy gaps.



Appendix of Chapter 4

4.6 Proof of Theorem 4.1
As mentioned before, our proof is inspired by the one from (Degenne & Koolen, 2019). The
key differences are in Lemma 4.11 which explicits the shape of the characteristic time for the
ε-BPI problem and Lemma 4.13 which relies on a slightly different martingale construction
to concentrate the likelihood ratio. Indeed, our martingale involves the expected number of
visits to state-action pairs instead of the actual number of visits as in (Degenne & Koolen,
2019), which is crucial to obtain the navigation constraints ρ ∈ Ω(M) in the optimization
program of the lower bound.
Notation: For any πε ∈ Πε, we define the set of alternative MDPs that have the same
transitions asM but in which πε is no longer ε-optimal:

Alt (πε) :=

{
M̃ ∈M1 : ∀(h, s, a), ph(.|s, a;M̃) = ph(.|s, a;M)

and ∃π ∈ ΠD, V M̃,πε

1 < V M̃,π
1 − ε

}
.

Finally, we define the characteristic time to learn that πε is ε-optimal

T (M, πε, ε) :=

(
sup

ρ∈Ω(M)
inf

M̃∈Alt(πε)

∑
h,s,a

ρh(s, a)

(
rM̃h (s, a)− rMh (s, a)

)2
2

)−1

.

Further, for any set of MDPs E ⊂ M1, we let E denote the closure of E where the
convergence is defined w.r.t the distance d(M,M′) := maxh,s,a |rMh (s, a)− rM′h (s, a)|.

Proof. Let ξ ∈ (0, 1) and define T := (1 − ξ) minπε∈Πε T (M, πε, ε) log(1/δ)3. Thanks to
Markov’s inequality we have that

EM[τ ] ≥ T (1− PM(τ < T )). (4.15)

3For simplicity, we assume the latter is integer.
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We will now upper bound the probability on the right-hand side above. Since the algorithm
is (ε, δ)-PAC We have that

PM(τ < T ) = PM
(
π̂ /∈ Πε, τ < T

)
+
∑
πε∈Πε

PM
(
π̂ = πε, τ < T

)
≤ δ +

∑
πε∈Πε

PM
(
π̂ = πε, τ < T

)
. (4.16)

Now we fix πε ∈ Πε and apply Lemma 4.14 for the event C =
(
π̂ = πε, τ < T

)
∈ FT , which

yields that there exists M̃1, . . . ,M̃SAH+1 ∈ Alt (πε) such that for all y > 0

PM
(
π̂ = πε, τ < T

)
≤ exp

(
y +

T

T (M, πε, ε)

)
max

1≤i≤SAH+1
PM̃i

(π̂ = πε, τ < T
)

+
SAH+1∑
i=1

exp

(
− y2

2T (σiλ?i )
2

)
= δξ−1 exp(y) max

1≤i≤SAH+1
PM̃i

(π̂ = πε, τ < T
)

+
SAH+1∑
i=1

exp

(
− y2

2T (σiλ?i )
2

)
. (4.17)

Now for any i ∈ [|1, SAH + 1|] since M̃i ∈ Alt (πε) there exists a sequence of MDPs
(M′n)n≥1 with values in Alt (πε) such that limn→∞M′n = M̃i

4.
By definition of Alt (πε), we have that PM′n(π̂ = πε, τ < T

)
≤ PM′n(π̂ = πε) ≤ δ for all

n ≥ 1. Therefore

PM̃i
(π̂ = πε, τ < T

)
≤ PM̃i

(π̂ = πε)

(a)

≤ lim inf
n→∞

PM′n(π̂ = πε) ≤ δ, (4.18)

where (a) uses Fatou’s lemma. Combining (4.17) with (4.18) for the value y = ξ log(1/δ)/2
yields

PM
(
π̂ = πε, τ < T

)
≤ δξ exp(y) +

SAH+1∑
i=1

exp

(
− y2

2T (σiλ?i )
2

)
(a)
= δξ/2 +

SAH+1∑
i=1

exp

(
− ξ2 log(1/δ)

4(1− ξ) minπε∈Πε T (M, πε, ε)(σiλ?i )
2

)
,

(4.19)

where (a) uses the definition of T . Therefore limδ→0 PM
(
π̂ = πε, τ < T

)
= 0. This,

combined with (4.16) gives that limδ→0 PM(τ < T ) = 0. Plugging this back into (4.15) and
using the definition of yields

lim inf
δ→0

EM[τ ]

log(1/δ)
≥ (1− ξ) min

πε∈Πε
T (M, πε, ε).

To finish the proof of Theorem 4.1, we simply take the limit when ξ goes to zero and use
the simplified expression of the characteristic time given by Lemma 4.11. �

4.6.1 Simplifying the expression of the characteristic time

4Recall that the convergence was defined w.r.t the distance d(M,M′) := maxh,s,a |rMh (s, a)− rM
′

h (s, a)|



4.6 Proof of Theorem 4.1 133

Lemma 4.11 For anyM∈M1 and πε ∈ Πε we have

T (M, πε, ε) = 2 inf
ρ∈Ω(M)

max
π∈ΠD

∑
s,a,h

(
pπh(s, a)− pπεh (s, a)

)2
ρh(s, a)(∆(π)−∆(πε) + ε)2

.

Proof. Let us first solve the inner minimization program in the definition of T (M, πε, ε)−1.
Using the definition of Alt (πε), we have that

inf
M̃∈Alt(πε)

∑
h,s,a

ρh(s, a)

(
rM̃h (s,a)−rMh (s,a)

)2
2 = min

π∈ΠD

inf
M̃:V M̃,πε

1 <V M̃,π
1 −ε

∑
h,s,a

ρh(s, a)

(
rM̃h (s,a)−rMh (s,a)

)2
2 .

(4.20)

Now observe that we can rewrite V M̃,πε

1 < V M̃,π
1 − ε as linear constraint in the rewards of

M̃: ∑
h,s,a

(pπh(s, a)− pπεh (s, a))rM̃h (s, a) > ε,

⇐⇒
∑
h,s,a

(pπh(s, a)− pπεh (s, a))
(
rM̃h (s, a)− rMh (s, a)

)
> V πε

1 − V π
1 + ε,

⇐⇒
∑
h,s,a

(pπh(s, a)− pπεh (s, a))
(
rM̃h (s, a)− rMh (s, a)

)
> ∆(π)−∆(πε) + ε

Therefore, letting uh(s, a) = rM̃h (s, a)− rMh (s, a), the program in (4.20) is equivalent to

min
π∈ΠD

inf
u s.t:∑

h,s,a
(pπh(s,a)−pπεh (s,a))uh(s,a)>∆(π)−∆(πε)+ε

∑
h,s,a

ρh(s, a)
uh(s, a)2

2
. (4.21)

Solving the KKT conditions of the previous program, we get that

inf
u s.t:∑

h,s,a
(pπh(s,a)−pπεh (s,a))uh(s,a)>∆(π)−∆(πε)+ε

∑
h,s,a

ρh(s, a)
uh(s, a)2

2
=

(∑
h,s,a

(pπh(s, a)− pπεh (s, a))2

ρh(s, a)(∆(π)−∆(πε) + ε)2

)−1

.

Summing up all the inequalities, we conclude that

T (M, πε, ε)−1 =
1

2
sup

ρ∈Ω(M)
min
π∈ΠD

(∑
h,s,a

(pπh(s, a)− pπεh (s, a))2

ρh(s, a)(∆(π)−∆(πε) + ε)2

)−1

.

�

4.6.2 A max-min game formulation

We define ∆SAH+1 := {λ ∈ RSAH+1
+ :

∑SAH+1
i=1 λi = 1} to be the simplex of dimension

SAH. Finally Conv(E) refers to the convex hull of E.

Lemma 4.12 Fix πε ∈ Πε and define the set of KL-divergence vectors generated by
alternative instances in Alt (πε),

D(πε) :=

{[(
rM̃h (s, a)− rMh (s, a)

)2
2

]
h,s,a

∈ RSAH s.t M̃ ∈ Alt (πε)

}
.
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Then there exists ρ? ∈ Ω(M), λ? ∈ ∆SAH+1 and M̃1, . . . ,M̃SAH+1 ∈ Alt (πε) such
that

T (M, πε, ε)−1 =
SAH+1∑
i=1

λ?i

[∑
h,s,a

ρ?h(s, a)

(
rM̃i
h (s, a)− rMh (s, a)

)2
2

]
.

Furthermore, for any ρ ∈ Ω(M) we have that

SAH+1∑
i=1

λ?i

[∑
h,s,a

ρh(s, a)

(
rM̃i
h (s, a)− rMh (s, a)

)2
2

]
≤ T (M, πε, ε)−1.

Proof. Observe that we can rewrite the expression of the characteristic time T (M, πε, ε) as
follows,

T (M, πε, ε)−1 = sup
ρ∈Ω(M)

inf
M̃∈Alt(πε)

∑
h,s,a

ρh(s, a)

(
rM̃h (s, a)− rMh (s, a)

)2
2

= sup
ρ∈Ω(M)

inf
d̃∈D(πε)

ρ>d̃

= sup
ρ∈Ω(M)

inf
d̃∈D(πε)

ρ>d̃

= sup
ρ∈Ω(M)

inf
d̃∈Conv(D(πε))

ρ>d̃, (4.22)

where Conv(D(πε)) denotes the convex hull of D(πε). Now let (ρ?, d?) be an optimal
solution to (4.22). Since D(πε) ⊂ RSAH , by Carathéodory’s extension theorem we have
that there exists λ? ∈ ∆SAH+1 and d1, . . . , dSAH+1 ∈ D(πε) such that d? =

∑SAH+1
i=1 λ?i di.

This means that there exists ρ? ∈ Ω(M) and M̃1, . . . ,M̃SAH+1 ∈ Alt (πε) such that

T (M, πε, ε)−1 = (ρ?)>d?

=

SAH+1∑
i=1

λ?i (ρ
?)>di

=
SAH+1∑
i=1

λ?i

[∑
h,s,a

ρ?h(s, a)

(
rM̃i
h (s, a)− rMh (s, a)

)2
2

]
.

This proves the first statement. Now for the second statement, using Sion’s minimax
theorem ((Sion, 1958), Theorem 3.4) we know that

(ρ?)>d? = sup
ρ∈Ω(M)

inf
d̃∈Conv(D(πε))

ρ>d̃ = inf
d̃∈Conv(D(πε))

sup
ρ∈Ω(M)

ρ>d̃,

i.e., (ρ?, d?) is a saddle point of (4.22). This means that for all ρ ∈ Ω(M)

ρ>d? ≤ (ρ?)>d? = T (M, πε, ε)−1.

Expanding the left-hand side proves the second statement. �

4.6.3 Log-likelihood ratio of MDPs with same transition kernel
In the following we fix an algorithm A. For T ≥ 1 we define the history up to the end
of episode T as HT := (st1, a

t
1, R

t
1, . . . , s

t
H , a

t
H , R

t
H ,1 (t ≤ τδ))1≤t≤T . For any MDPM, we

write PM to denote the probability distribution over possible histories when A interacts
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withM5. Further (FT )T≥1 will denote the sigma algebra generated by (HT )T≥1. Finally,
for a pair of MDPsM,M̃, we define the log-likelihood ratio of observations at the end of
any episode T 6

LT (PM,PM̃) := log
dPM
dPM̃

(HT )

= log

( T∏
t=1

H∏
h=1

exp
(
− [Rth − rMh (sth, a

t
h)]2/2

)
pMh−1(sth|sth−1, a

t
h−1)

exp
(
− [Rth − rM̃h (sth, a

t
h)]2/2

)
pM̃h−1(sth|sth−1, a

t
h−1)

)
.

Lemma 4.13 For any pair of MDPsM,M̃ ∈M1, there exists a martingale (under EM)(
MT (PM,PM̃)

)
T≥1

whose increments are (2d(M,M′)2 + d(M,M′)4/2)-subGaussian
and such that the likelihood ratio at the end of episode T satisfies

LT (PM,PM̃) = MT (PM,PM̃) +
∑
h,s,a

EM[nTh (s, a)]

(
rM̃h (s, a)− rMh (s, a)

)2
2

.

Proof. Using that the MDPsM and M̃ share the same transition kernels and have Gausssian
reward distributions with unit variance, we can simplify their log-likelihood ratio as follows,

LT (PM,PM̃) = −1

2

T∑
t=1

H∑
h=1

[(
Rth − rMh (sth, a

t
h)
)2 − (Rth − rM̃h (sth, a

t
h)
)2]

=
1

2

∑
h,s,a

T∑
t=1

1(sth = s, ath = a)

[(
Rth − rM̃h (s, a)

)2 − (Rth − rMh (s, a)
)2]

.

(4.23)

Now for any fixed (h, s, a) we can define r̂Th (s, a) :=
∑T
t=1 1(sth=s,ath=a)Rth

nTh (s,a)
if nTh (s, a) > 0 and

r̂Th (s, a) := 0 otherwise. Then we can write that

T∑
t=1

1(sth = s, ath = a)
(
Rth − rMh (sh, ah)

)2
=

T∑
t=1

1(sth = s, ath = a)

[(
Rth − r̂Th (s, a)

)
+
(
r̂Th (s, a)− rMh (s, a)

)]2

=
T∑
t=1

1(sth = s, ath = a)

[(
Rth − r̂Th (s, a)

)2
+
(
r̂Th (s, a)− rMh (s, a)

)2]

+ 2
(
r̂Th (s, a)− rMh (s, a)

) T∑
t=1

1(sth = s, ath = a)
(
Rth − r̂Th (s, a)

)
︸ ︷︷ ︸

=0

=

T∑
t=1

1(sth = s, ath = a)

[(
Rth − r̂Th (s, a)

)2
+
(
r̂Th (s, a)− rMh (s, a)

)2]
. (4.24)

5Since we will be considering the same algorithm A interacting with different MDPs, we do not index
the probability distributions by A.

6With the convention that p0(.|s0, a0) = 1(s1 = .) for all (s0, a0). Also note that we have simplified the
probabilities of choosing actions πt(ath|sth, ath−1, . . . , s

t
1,Ht−1) and of stopping πt(τδ = t|Ht) as they only

depend on the history, therefore having the same value forM and M̃.



136 Chapter 4. Implicit Policy Eliminations for Efficient ε-BPI

Similarly, one can show that

∑
h,s,a

T∑
t=1

1(sth = s, ath = a)
(
Rth − rM̃h (sth, a

t
h)
)2

=
T∑
t=1

1(sth = s, ath = a)

[(
Rth − r̂Th (s, a)

)2
+
(
r̂Th (s, a)− rM̃h (s, a)

)2]
. (4.25)

Combining equations (4.23), (4.24) and (4.25) we get that

LT (PM,PM̃) =
1

2

∑
h,s,a

T∑
t=1

1(sth = s, ath = a)

[(
r̂Th (s, a)− rM̃h (s, a)

)2 − (r̂Th (s, a)− rMh (s, a)
)2]

=
1

2

∑
h,s,a

nTh (s, a)

(
rMh (s, a)− rM̃h (s, a)

)(
2r̂Th (s, a)− rMh (s, a)− rM̃h (s, a)

)
.

(4.26)

Next we define the sequences

MT (h, s, a) :=
1

2

[
nTh (s, a)

(
rMh (s, a)− rM̃h (s, a)

)(
2r̂Th (s, a)− rMh (s, a)− rM̃h (s, a)

)
− EM[nTh (s, a)]

(
rM̃h (s, a)− rMh (s, a)

)2]
.

MT (PM,PM̃) :=
∑
h,s,a

MT (h, s, a).

Using (4.26) one can check that

LT (PM,PM̃) = MT (PM,PM̃) +
∑
h,s,a

EM[nTh (s, a)]

(
rM̃h (s, a)− rMh (s, a)

)2
2

.

This proves the second statement. Now for the first statement we note that for T ≥ 2

MT (h, s, a)−MT−1(h, s, a) =
1

2

(
rMh (s, a)− rM̃h (s, a)

)
1(sTh = s, aTh = a)

(
2RTh − rMh (s, a)− rM̃h (s, a)

)
− 1

2
PM(sTh = s, aTh = a)

(
rM̃h (s, a)− rMh (s, a)

)2

.

Therefore, using that conditionally on the event (sTh = s, aTh = a) the reward RTh is
independent of the filtration generated past episodes FT−1, we have that

EM
[
MT (h, s, a)−MT−1(h, s, a)

∣∣∣∣FT−1

]
=

1

2

(
rMh (s, a)− rM̃h (s, a)

)
PM(sTh = s, aTh = a)

(
2rMh (s, a)− rMh (s, a)− rM̃h (s, a)

)
− 1

2
PM(sTh = s, aTh = a)

(
rM̃h (s, a)− rMh (s, a)

)2

= 0.
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Therefore
(
MT (h, s, a)

)
T≥1

, and consequently
(
MT (PM,PM̃)

)
T≥1

, is a martingale.
Furthermore its increments can be decomposed as follows

MT (PM,PM̃)−MT−1(PM,PM̃)

=
1

2

∑
h,s,a

(
rMh (s, a)− rM̃h (s, a)

)
1(sTh = s, aTh = a)

(
2RTh − rMh (s, a)− rM̃h (s, a)

)

− PM(sTh = s, aTh = a)

(
rMh (s, a)− rMh (s, a)

)2

=
(
rMh (s, a)− rM̃h (s, a)

)
1
(
sTh = s, aTh = a

) (
RTh − rMh (s, a)

)︸ ︷︷ ︸
:=AT

+
1

2

(
rMh (s, a)− rM̃h (s, a)

)2 (
1
(
sTh = s, aTh = a

)
− PM

(
sth = s, ath = a

))
.︸ ︷︷ ︸

:=BT

Now we prove that each term is sub-Gaussian under PM. First, we have that

|AT | ≤ d(M,M′)
∣∣1 (sTh = s, aTh = a

) (
RTh − rMh (s, a)

)∣∣ .
Since the reward ditribution of (h, s, a) underM is N

(
rMh (s, a), 1

)
, we conclude that AT

is σ2
A-sub-Gaussian where σA := d(M,M′). Similarly, we have that

|BT | ≤
1

2
d(M,M′)2

∣∣1 (sTh = s, aTh = a
)
− PM

(
sth = s, ath = a

)∣∣ ≤ d(M,M′)2/2.

Therefore we conclude that BT is σ2
B-sub-Gaussian where σB := d(M,M′)2/2. Using

Lemma 4.15, we conclude that MT (PM,PM̃)−MT−1(PM,PM̃) is 2(σ2
A + σ2

B)-subgaussian.
�

4.6.4 The change-of-measure argument

Lemma 4.14 Consider (M̃i)1≤i≤SAH+1 ∈ Alt (πε)
SAH+1

given by Lemma 4.12 and let
T ≥ 1. Then for any event C ∈ FT and any y ≥ 1 we have

PM(C) ≤ exp
(
y +

T

T (M, πε, ε)

)
max

1≤i≤SAH+1
PM̃i

(C) +
SAH+1∑
i=1

exp

(
− y2

2T (σiλ?i )
2

)
,

where σ2
i := 2d(M,M̃i)

2 + d(M,M̃i)
4/2.

Proof. Consider the simplex vector λ? ∈ ∆SAH+1 given by Lemma 4.12. We define the
mixture distribution Q =

∑SAH+1
i=1 λ?iPM̃i

and the corresponding log-likelihood ratio

LT (PM,Q) := log
dPM
dQ

(HT ).

Using Lemma 3.1 from (Garivier & Kaufmann, 2021) we have that for any event C ∈ FT
and any x > 0,

PM(C) ≤ exQ(C) + PM(LT (PM,Q) > x). (4.27)



138 Chapter 4. Implicit Policy Eliminations for Efficient ε-BPI

We bound each term in the right-hand side separately. First note that, since λ? ∈ ∆SAH+1,
for any event C

Q(C) =
SAH+1∑
i=1

λ?iPM̃i
(C)

≤ max
1≤i≤SAH+1

PM̃i
(C) (4.28)

On the other hand, we have that

LT (PM,Q)
(a)

≤
SAH+1∑
i=1

λ?i log
dPM
dPM̃i

(
(st1, a

t
1, R

t
1, . . . , s

t
H , a

t
H , R

t
H)1≤t≤T

)

=
SAH+1∑
i=1

λ?iLT (PM,PM̃i
)

(b)
=

SAH+1∑
i=1

λ?iMT (PM,PM̃i
) +

SAH+1∑
i=1

λ?i
∑
h,s,a

EM[nTh (s, a)]

(
rM̃i
h (s, a)− rMh (s, a)

)2
2

=

SAH+1∑
i=1

λ?iMT (PM,PM̃i
) + T

SAH+1∑
i=1

λ?i
∑
h,s,a

EM[nTh (s, a)]

T

(
rM̃i
h (s, a)− rMh (s, a)

)2
2

(c)

≤
SAH+1∑
i=1

λ?iMT (PM,PM̃i
) +

T

T (M, πε, ε)
,

where (a) uses the convexity of x 7→ log(1/x) and Jensen’s inequality, (b) uses Lemma
4.13 and (c) uses the second statement of Lemma 4.12 and the fact that the vector[EM[nTh (s,a)]

T

]
h,s,a

belongs to Ω(M). Therefore for any y > 0, we have that

PM
(
LT (PM,Q) >

T

T (M, πε, ε)
+ y

)
≤ PM

( SAH+1∑
i=1

λ?iMT (PM,PM̃i
) > y

)

≤
SAH+1∑
i=1

PM
(
MT (PM,PM̃i

) > y/λ?i

)

≤
SAH+1∑
i=1

exp

(
− y2

2T (σiλ?i )
2

)
, (4.29)

where in the last line we defined σ2
i := 2d(M,M̃i)

2 + d(M,M̃i)
4/2 and used Azuma-

Hoeffding inequality along with Lemma 4.13. Combining (4.28) and (4.29) with (4.27) for
x = T

T (M,πε,ε) + y gives the result. �

4.6.5 Sum of subgaussian random variables

Lemma 4.15 Let X an Y be to random variables with values in R that are σ2
X and σ2

Y

subGaussian respectively. Then X + Y is 2(σ2
X + σ2

Y )-subGaussian.

Proof. Using Cauchy-Schwartz’s inequality and the definition of sub-Gaussian variables, we
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write

E[exp
(
t(X + Y )

)
] = E[exp(tX) exp(tY )]

≤ E[exp(2tX)]1/2E[exp(2tY )]1/2

≤ exp
(4t2σ2

X

2

)1/2
exp

(4t2σ2
Y

2

)1/2
= exp

( t2(2σ2
X + 2σ2

Y )

2

)
.

�

4.7 Proof of Lemma 4.1
Proof. Fix any pair of policies π, π′. We write

(V̂ π,t
1 − V̂ π′,t

1 )− (V π
1 − V π′

1 ) = (pπ − pπ′)>(r̂t − r)

=
∑
h,s,a

(pπh(s, a)− pπ′h (s, a))(r̂th(s, a)− rh(s, a))

=
∑
h,s,a

1
(
a ∈ {πh(s), π′h(s)}

)
(pπh(s, a)− pπ′h (s, a))(r̂th(s, a)− rh(s, a)),

where we used vector notation pπ = [pπh(s, a)]h,s,a. Now applying Lemma 3.15 with
δ′ = δ/(A2SH) and Z =

{
(h, s, a) : (h, s) ∈ [H]×S, a ∈ {πh(s), π′h(s)}

}
we get that with

proability at least 1− δ/(A2SH), for all t ≥ t0,∑
h,s,a

1
(
a ∈ {πh(s), π′h(s)}

)
nth(s, a)

(
r̂th(s, a)− rh(s, a)

)2 ≤ 4 log(1/δ) + 4SH log(A(1 + t))

= βr(t, δ),

where we used that |Z| ≤ 2SH. Next we use Lemma 3.17 with p = pπ − pπ′ which yields
that

∣∣(V̂ π,t
1 − V̂ π′,t

1 )− (V π
1 − V π′

1 )
∣∣ ≤

√√√√βr(t, δ)
∑
h,s,a

1
(
a ∈ {πh(s), π′h(s)}

)(pπh(s, a)− pπ′h (s, a)
)2

nth(s, a)

≤

√√√√βr(t, δ)
∑
h,s,a

(
pπh(s, a)− pπ′h (s, a)

)2
nth(s, a)

,

with probability at least 1− δ/(A2SH). We conclude the proof with a union bound over
pairs of policies (π, π′) ∈ ΠD ×ΠD. �

4.8 PEDEL
4.8.1 Proof of Proposition 4.1

First, let us introduce the intermediate complexity measure

C(M, ε) := min
ρ∈Ω

max
π∈ΠD

∑
s,a,h

pπh(s, a)2

ρh(s, a)(∆(π) ∨ ε ∨∆min(ΠD))2
.

We start by showing that H3C(M, ε) ≤ CPEDEL(M, ε) ≤ H5C(M, ε). For h ∈ [H]

consider any ρ?,h ∈ arg minρ∈Ω maxπ∈ΠD

∑
s,a

pπh(s,a)2

ρh(s,a)(∆(π)∨ε∨∆min(ΠD))2 . Now, letting ρ̃ :=
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1
H

∑H
h=1 ρ

?,h, we see that since Ω is a convex set, ρ̃ ∈ Ω. Furthermore,

C(M, ε) = min
ρ∈Ω

max
π∈ΠD

∑
s,a,h

pπh(s, a)2

ρh(s, a)(∆(π) ∨ ε ∨∆min(ΠD))2

≤ max
π∈ΠD

∑
s,a,h

pπh(s, a)2

ρ̃h(s, a)(∆(π) ∨ ε ∨∆min(ΠD))2

(a)

≤
H∑
h=1

max
π∈ΠD

∑
s,a

pπh(s, a)2

ρ̃h(s, a)(∆(π) ∨ ε ∨∆min(ΠD))2

(b)

≤ H

H∑
h=1

max
π∈ΠD

∑
s,a

pπh(s, a)2

ρ?,hh (s, a)(∆(π) ∨ ε ∨∆min(ΠD))2

= H

H∑
h=1

min
ρ∈Ω

max
π∈ΠD

∑
s,a

pπh(s, a)2

ρh(s, a)(∆(π) ∨ ε ∨∆min(ΠD))2

= H−3CPEDEL(M, ε),

where (a) uses the fact that maxπ
∑

h f(π, h) ≤
∑

hmaxπf(π, h) and (b) uses the crude
bound ρ̃h(s, a) ≥ ρ?,hh (s, a)/H. On the other hand we have

CPEDEL(M, ε) = H4
H∑
h=1

min
ρ∈Ω

max
π∈ΠD

∑
s,a

pπh(s, a)2

ρh(s, a)(∆(π) ∨ ε ∨∆min(ΠD))2

≤ H4
H∑
h=1

min
ρ∈Ω

max
π∈ΠD

∑
s,a,h

pπh(s, a)2

ρh(s, a)(∆(π) ∨ ε ∨∆min(ΠD))2

= H5C(M, ε).

Therefore, we just proved that

H3C(M, ε) ≤ CPEDEL(M, ε) ≤ H5C(M, ε). (4.30)

Now we compare C(M, ε) and LB(M, ε). Using that a2 ≤ 2(a− b)2 + 2b2, we note that
for any ρ ∈ Ω and any πε ∈ Πε,

max
π∈ΠD

∑
s,a,h

pπh(s,a)2

ρh(s,a)

(∆(π)∨ε∨∆min(ΠD))2≤ max
π∈ΠD

∑
s,a,h

[
2(pπh(s,a)−pπεh (s,a))2

ρh(s,a)(∆(π)∨ε∨∆min(ΠD))2 +
2pπ

ε

h (s,a)2

ρh(s,a)(∆(π)∨ε∨∆min(ΠD))2

]
≤ max

π∈ΠD

∑
s,a,h

2(pπh(s,a)−pπεh (s,a))2

ρh(s,a)(∆(π)∨ε∨∆min(ΠD))2 + max
π∈ΠD

∑
s,a,h

2pπ
ε

h (s,a)2

ρh(s,a)(∆(π)∨ε∨∆min(ΠD))2

= max
π∈ΠD

2(pπh(s,a)−pπεh (s,a))2

ρh(s,a)(∆(π)∨ε∨∆min(ΠD))2 +
∑

s,a,h
2pπ

ε

h (s,a)2

ρh(s,a)(ε∨∆min(ΠD))2 .

(4.31)
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Now let us define ρ0 := arg minρ∈Ω maxπ∈ΠD

∑
s,a,h

(pπh(s,a)−pπεh (s,a))2

ρh(s,a)(∆(π)∨ε∨∆min(ΠD))2 and ρ̃1 :=

ρ0+pπ
ε

2 . Then we have that

C(M, ε) = min
ρ∈Ω

max
π∈ΠD

∑
s,a,h

pπh(s, a)2

ρh(s, a)(∆(π) ∨ ε ∨∆min(ΠD))2

≤ max
π∈ΠD

∑
s,a,h

pπh(s, a)2

ρ̃1
h(s, a)(∆(π) ∨ ε ∨∆min(ΠD))2

(a)

≤ max
π∈ΠD

2(pπh(s, a)− pπεh (s, a))2

ρ̃1
h(s, a)(∆(π) ∨ ε ∨∆min(ΠD))2

+
∑
s,a,h

2pπ
ε

h (s, a)2

ρ̃1
h(s, a)(ε ∨∆min(ΠD))2

(b)

≤ max
π∈ΠD

4(pπh(s, a)− pπεh (s, a))2

ρ0
h(s, a)(∆(π) ∨ ε ∨∆min(ΠD))2

+
∑
s,a,h

4pπ
ε

h (s, a)2

pπ
ε

h (s, a)(ε ∨∆min(ΠD))2

= 4 min
ρ∈Ω

max
π∈ΠD

∑
s,a,h

(pπh(s, a)− pπεh (s, a))2

ρh(s, a)(∆(π) ∨ ε ∨∆min(ΠD))2
+

4H

(ε ∨∆min(ΠD))2
,

where (a) uses (4.31) and (b) uses that for all (h, s, a), ρ̃1
h(s, a) ≥ max(ρ0

h(s, a), pπ
ε

h (s, a))/2.
Now taking the minimum over πε ∈ Πε in both sides of the previous inequality proves that

C(M, ε) ≤ 4 min
π∈Πε

min
ρ∈Ω

max
π∈ΠD

∑
s,a,h

(pπh(s, a)− pπεh (s, a))2

ρh(s, a)(∆(π) ∨ ε ∨∆min(ΠD))2
+

4H

(ε ∨∆min(ΠD))2

≤ 16 min
π∈Πε

min
ρ∈Ω

max
π∈ΠD

∑
s,a,h

(pπh(s, a)− pπεh (s, a))2

ρh(s, a)(∆(π) + ε−∆(πε))2
+

4H

(ε ∨∆min(ΠD))2

≤ 8LB(M, ε) +
4H

(ε ∨∆min(ΠD))2
, (4.32)

where in the second inequality we used that ∆(π) + ε−∆(πε) ≤ 2(∆(π) ∨ ε ∨∆min(ΠD)).
Combining (4.30) and (4.32) proves the first inequality.

4.8.2 On the complexity of PEDEL in the moderate precision regime
PEDEL has a loop structure where at each iteration it seeks to halve the precision of
its estimate of the value for all the policies that are still active. Taking a closer look
into the design of PEDEL, we notice that it starts the first iteration with the parameter
`0 = dlog2

d3/2

H e and ends at dlog 4
εe. From Theorem 7 in (Wagenmaker & Jamieson, 2022),

we get that the number of episodes played during the initial iteration is

O
(
H4

H∑
h=1

infΛexp∈Ωh maxϕ∈Φ ‖ϕ‖Λ−1
exp

εexp

)
, where εexp :=

ε2
`0

β`0
,

ε`0 := 2−`0 =
H

d3/2
, β`0 := 64H2 log(

4H2|Π|`20
δ

).

As a consequence, running just the initial iteration of PEDEL requires the number of
episodes

C0 := O
(
d3H4 log(|Π|/δ) min

ρ∈Ω
max
π∈ΠD

∑
s,a,h

pπh(s, a)2

ρh(s, a)

)
.

When ε = Ω(1/d), we have that d2 = Ω( 1
(ε∨∆(π)∨∆min(ΠD))2 ) for all policies π so that

C0 = Ω

(
dH2 log(|Π|/δ) min

ρ∈Ω(M)
max
π∈ΠD

∑
s,a,h

pπh(s,a)2

ρh(s,a)

(ε ∨∆(π) ∨∆min(ΠD))2

)
.
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Therefore when ε = Ω(1/SAH), we get that the sample complexity of PEDEL for
tabular MDPs satisfies

τ = Ω (SAH × CPEDEL(M, ε) log (1/δ)) ,

with high probabilty.



5. All-epsilon Best Arms Identification

In this Chapter, we investigate the All-ε-BAI problem (see Section 1.4.3). Firt, we derive
an instance-dependent lower bound using the KL contraction method. Then, we present
an efficient method to solve the the max-min program featured in this lower bound. This
leads us to the design of a Track-and-Stop algorithm, whose sample complexity matches
the lower bound when δ tends to 0. Finally, we provide an example of a bandit instance
where the simulator lower bound of Theorem 1.2 can be tighter than the KL contraction
bound. The contents of this chapter are based on the conference paper:

Aymen Al Marjani, Tomáš Kocák, Aurélien Garivier. On the Complexity of All ε-
Best Arms Identification. In European Conference on Machine Learning and Principles
and Practice of Knowledge Discovery in Databases (ECMLPKDD), 2022.
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5.1 Lower bound
Notation: We consider Gaussian bandits of the shape ν =

(
N (µa, 1)

)
a∈[K]

which we
parametrize by their mean-reward vector µ ∈ RK . Gε(µ) := {a ∈ [K] : µa ≥ maxb µb − ε}
will denote the set of "good arms". We use ΣK := {ω ∈ RK+ :

∑
a∈[K] ωa = 1} for

the simplex of dimension K − 1. The set of alternative bandit instances is defined as
Alt(µ) = {λ ∈ RK : Gε(µ) 6= Gε(λ)}. By following the same steps in the proof of (1.27),
we derive the lower bound below.

Proposition 5.1 For any δ-correct algorithm A and any bandit instance µ, the expected
stopping time τδ can be lower-bounded as

Eµ,A[τδ] ≥ T ?ε (µ) log(1/2.4δ)

where

T ?ε (µ)−1 := sup
ω∈ΣK

Tε(µ, ω)−1 and (5.1)

Tε(µ, ω)−1 := inf
λ∈Alt(µ)

∑
a∈[K]

ωa
(µa − λa)2

2
. (5.2)

The characteristic time T ?ε (µ) above is an instance-specific quantity that determines the
difficulty of our problem. The optimization program in the definition of T ?ε (µ) can be seen
as a two-player game between an algorithm which samples each arm a proportionally to
ωa and an adversary who chooses an alternative instance λ that is difficult to distinguish
from µ under the algorithm’s sampling scheme. This suggests that an optimal strategy
should play the optimal allocation ω∗ that maximizes the optimization problem (5.1) and,
as a consequence, rules out all alternative instances as fast as possible. This motivates our
algorithm, presented in Section 5.2.

Proof. Let kl(p, q) be the KL-divergence between two Bernoulli distributions with parame-
ters p and q. We start by applying Lemma 1 from (Kaufmann et al., 2016) which states
that for any Fτ -measurable event E , and any pair of bandit problems µ and λ,∑

a∈[K]

(µa − λa)2

2
Eµ,A[Na(τδ)] ≥ kl(Pµ,A(E), Pλ,A(E))

We let E := (Ĝ 6= Gε(µ)), where Ĝ is the set answered by A at the end of exploration. For
this choice of event and since A is δ-correct, we have Pµ,A(E) ≤ δ. On the other hand, by
choosing λ ∈ Alt(µ), we get Pλ,A(E) ≥ 1− δ. Therefore, using the monotonicity properties
of (p, q) 7→ kl(p, q) we have kl(Pµ,A(E), Pλ,A(E)) ≥ kl(δ, 1 − δ). Since this holds for any
alternative problem λ ∈ Alt(µ), we get

kl(δ, 1− δ) ≤ inf
λ∈Alt(µ)

kl(Pµ,A(E), Pλ,A(E))

≤ inf
λ∈Alt(µ)

∑
a∈[K]

Eµ,A[τδ]
(µa − λa)2

2

Eµ,A[Na(τδ)]

Eµ,A[τδ]

≤ Eµ,A[τδ] sup
ω∈ΣK

inf
λ∈Alt(µ)

∑
a∈[K]

ωa
(µa − λa)2

2
,

where we used that the vector Fraction (Eµ,A[Na]/Eµ,A[τδ])a∈[K] is in the simplex. We
conclude by noting that kl(δ, 1− δ) ≥ log(1/2.4δ). �
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5.2 Track-and-Stop for All-ε-BAI
We propose an adaptation of the Track-and-Stop strategy similar to the one proposed by
(Garivier & Kaufmann, 2016) for the problem of Best-Arm Identification. It starts by
sampling once from every arm a ∈ [K] and constructs an initial estimate µ̂K of the vector
of mean rewards µ. After this burn-in phase, the algorithm enters a loop where at every
iteration it plays arms according to the estimated optimal sampling rule (5.3) and updates
its estimate µ̂t of the arms’ expectations. Finally, the algorithm checks if the stopping rule
(5.4) is satisfied, in which case it stops and returns the set of empirically ε-good arms. The
full pseudo-code is provided in Algorithm 14.

5.2.1 Sampling rule
For our sampling rule we rely on C-tracking: first, we compute ω̃(µ̂t), an allocation vector
which is 1√

t
-optimal in the lower-bounf problem (5.1) for the instance µ̂t. Then we project

ω̃(µ̂t) on the set ∆ηt
K = ∆K ∩ [ηt, 1]K . Given the projected vector ω̃ηt(µ̂t), the next arm to

sample from is defined by:

at+1 = arg min
a

Na(t)−
t∑

s=1

ω̃ηta (µ̂s), (5.3)

where Na(t) is the number of times arm a has been pulled up to time t. In other words, we
sample the arm whose number of visits is farther behind its corresponding sum of empirical
optimal allocations. In the long run, as our estimate µ̂t tends to the true value µ, the
sampling frequency Na(t)/t of every arm a will converge to the oracle optimal allocation
ω∗a(µ). The projection on ∆ηt

K ensures exploration at a minimal rate of ηt = 1

2
√

(K2+t)
so

that no arm is left behind because of bad initial estimates.

5.2.2 Stopping rule
To be sample-efficient, the algorithm must stop as soon as the collected samples are
sufficiently informative to declare that Gε(µ̂t) = Gε(µ) with probability larger than 1− δ.
For this purpose we use the Generalized Likelihood Ratio (GLR) test (Chernoff, 1959). We
define the Z-statistic

Z(t) := t× Tε
(
µ̂t,

N(t)

t

)−1

where N(t) =
(
Na(t)

)
a∈[K]

. As shown in (Degenne et al., 2019a; Garivier & Kaufmann,
2021), the Z-statistic is equal to the ratio of the likelihood of observations under the most
likely model where Gε(µ̂t) is the correct answer, i.e. µ̂t, to the likelihood of observations
under the most likely model where Gε(µ̂t) is not the set of ε-good arms. The algorithm
rejects the hypothesis Gε(µ̂t) 6= Gε(µ) and stops as soon as this ratio of likelihoods becomes
larger than a certain threshold β(δ, t), properly tuned to ensure that the algorithm is δ-PAC.
Following this intuition, we define the stopping rule as

τδ := inf
{
t ∈ N : Z(t) > β(t, δ)

}
(5.4)

One can find many suitable thresholds from the bandit literature (Garivier, 2013; Magureanu
et al., 2014; Kaufmann & Koolen, 2021), all of which are of the order β(δ, t) ≈ log(1/δ) +
K
2 log(log(t/δ)). Such β(t, δ) is enough to ensure that Pµ,A

(
Gε(µ̂τδ) 6= Gε(µ)

)
≤ δ, i.e. that

the algorithm is δ-correct.
Now we state our sample complexity result which we adapted from Theorem 14 in

(Garivier & Kaufmann, 2016). Notably, while their Track-and-Stop strategy relies on
tracking the exact optimal weights to prove that the expected stopping time matches the
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Algorithm 14 Track-and-Stop
1: Input: risk δ, accuracy parameter ε.
2: Pull each arm once and observe rewards (ra)a∈[K].
3: Set initial estimate µ̂K = (r1, . . . , rK)T .
4: Set t← K and Na(t)← 1 for all arms a.
5: for t = 1, 2, . . . do:
6: Compute ω̃(µ̂t), a 1√

t
-optimal vector for (5.1) using mirror-ascent.

7: Pull next arm at+1 given by (5.3) and observe reward rt.
8: Update µ̂t according to rt.
9: Set t← t+ 1 and update

(
Na(t)

)
a∈[K]

.

10: if t× Tε
(
µ̂t,

N(t)
t

)−1
> β(t, δ) then:

11: Stop and return Gε(µ̂τδ)
12: end if
13: end for

lower bound when δ tends to zero, our proof shows that it is enough to track some slightly
sub-optimal weights with a decreasing optimality gap in the order of 1√

t
to enjoy the same

sample complexity guarantees. The proof is deferred to Section 5.6.

Theorem 5.1 For all δ ∈ (0, 1), Track-and-Stop terminates almost-surely. Moreover, its
stopping time τδ satisfies

lim sup
δ→0

E[τδ]

log(1/δ)
≤ T ?ε (µ).

Remark 5.1 Suppose that the arms are ordered decreasingly µ1 ≥ µ2 ≥ · · · ≥ µK .
(Mason et al., 2020) define the upper margin αε = min

k∈Gε(µ)
µk − (µ1 − ε) and provide a

lower bound of the form f(ν) log(1/δ) where

f(ν) := 2

K∑
a=1

max

(
1

(µ1 − ε− µi)2
,

1

(µ1 + αε − µa)2

)
.

It can be seen directly (or deduced from Theorem 5.1) that f(ν) ≤ T ?ε (µ). In a second
step, they proposed FAREAST, an algorithm whose sample complexity in the asymptotic
regime δ → 0 matches their bound up to some universal constant c that does not depend
on the instance ν. From Proposition 5.1, we deduce that T ?ε (µ) ≤ cf(ν), which can
be seen directly from the particular changes of measure considered in that paper. The
sample complexity of our algorithm improves upon previous work by multiplicative
constants. �

Note that Algorithm 14 requires to solve the best response problem, i.e. the minimization
problem in (5.2), in order to be able to compute the Z-statistic of the stopping rule, and
also to solve the entire lower bound problem in (5.1) to compute the optimal weights for
the sampling rule. The rest of this chapter is dedicated to presenting the tools necessary to
solve these two problems.
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5.3 Solving the Min Problem: Best Response Oracle
For a given vector ω, we want to compute the best response

λ∗ε,µ(ω) := arg min
λ∈Alt(µ)

∑
a∈[K]

ωa
(µa − λa)2

2
. (5.5)

To simplify the presentation, we assume that the arms are ordered decreasingly µ1 ≥ µ2 ≥
· · · ≥ µK . We also denote by Bε(µ) := [K] \Gε(µ) the set of bad arms.

Since an alternative problem λ ∈ Alt(µ) must have a different set of ε-optimal arms
than the original problem µ, we can obtain it from µ by changing the expected reward of
some arms. We have two options to create an alternative problem λ:

• Making one of the ε-optimal arms bad. We can achieve it by decreasing the
expectation of some ε-optimal arm k while increasing the expectation of some other
arm ` to the point where k is no more ε-optimal. This is illustrated in Figure 5.1.

• Making one of the ε-sub-optimal arms good. We can achieve it by increasing
the expectation of some sub-optimal arm k while decreasing the expectations of the
arms with the largest means -as many as it takes- to the point where k becomes
ε-optimal. This is illustrated in Figure 5.1.
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Figure 5.1: Left: Making One of the ε-Optimal Arms Bad. Right: Making One of the
ε-Sub-Optimal Arms Good.

In the following, we solve both cases separately.
Case 1: Making one of the ε-optimal arms bad. Let k ∈ Gε(µ) be one of the ε-
optimal arms. In order to make arm k sub-optimal, we need to set the expectation of arm k
to some value λk = t and the maximum expectation over all arms to max

a
λa = t+ ε. Note

that the index of the arm ` with maximum expectation can be chosen in Gε(µ). Indeed,
if we choose some arm from Bε(µ) to become the arm with maximum expectation in λ
then we would make an ε-suboptimal arm good which is covered in the other case below.
The expectations of all the other arms should stay the same as in the instance µ, since
changing their values would only increase the value of the objective. Now given indices
k and `, computing the optimal value of t is rather straightforward since the objective
function simplifies to

ωk
(µk − t)2

2
+ ω`

(µ` − t− ε)2

2
for which the optimal value of t is:

t = µk,`ε (ω) :=
ωkµk + ω`(µ` − ε)

ωk + ω`
.

and the corresponding alternative bandit is:

λk,`ε (ω) := (µ1, . . . ,µ
k,`
ε (ω)︸ ︷︷ ︸

index k

, . . . ,µk,`ε (ω) + ε︸ ︷︷ ︸
index `

, . . . , µK)T.
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The last step is taking the pair of indices (k, `) ∈ Gε(µ)× (Gε(µ) \ {k}) with the minimal
value in the objective (5.2).
Case 2: Making one of the sub-optimal arms good. Let k ∈ Bε(µ) be a sub-optimal
arm, if such arm exists, and denote by t the value of its expectation in λ. In order to make
this arm ε-optimal, we need to decrease the expectations of all the arms that are above the
threshold t+ ε. We pay a cost of 1

2ωk(t− µk)
2 for moving arm k and of 1

2ωi(t+ ε− µi)2

for every arm i such that µi > t+ ε. Consider the functions:

fk(t) :=
1

2
ωk(t− µk)2 and fi(t) :=

{
1
2ωi(t+ ε− µi)2 for t < µi − ε,
0 for t ≥ µi − ε.

∀i ∈ [K] \ {k}

Each of these functions is convex. Therefore the function f(t) :=
K∑
i=1

fi(t) is convex and has

a unique minimizer t∗. One can easily check that f ′(µk) ≤ 0 and f ′(µ1 − ε) ≥ 0, implying
that µk − ε < µk ≤ t∗ ≤ µ1 − ε. Therefore

` := min{i ≥ 1 : t∗ > µi − ε} − 1

is well defined and satisfies ` ∈ [|1, k − 1|]. Note that by definition µ`+1 − ε < t∗ and
t∗ ≤ µa − ε for all a ≤ `, hence

0 = f ′(t∗) = ωk(t
∗ − µk) +

∑̀
a=1

ωa(t
∗ + ε− µa).

This implies that1

t∗ = µk,`ε (ω) :=
ωkµk +

∑`
a=1 ωa(µa − ε)

ωk +
∑`

a=1 ωa

and the alternative bandit in this case writes as:

λk,`ε (ω) := (µk,`ε (ω) + ε︸ ︷︷ ︸
indices 1to `

, µ`+1, . . . ,µ
k,`
ε (ω)︸ ︷︷ ︸

index k

, . . . , µK)T.

Observe that since ` depends on t∗, we can’t directly compute t∗ from the expression above.
Instead, we use the fact that ` is unique by definition. Therefore, to determine t∗ one
can compute µk,`ε (ω) for all values of ` ∈ [|1, k − 1|] and search for the index ` satisfying
µ`+1 − ε < µk,`ε (ω) ≤ µ` − ε and with minimum value in the objective (5.2).

As a summary, we have reduced the minimization problem over the infinite set Alt(µ) to
a combinatorial search over a finite number of alternative bandit instances whose analytical
expression is given in the next definition.

Definition 5.1 Let λk,`ε (ω) be a vector created form µ by replacing elements on positions
k and ` (resp. 1 to `), defined as

λk,`ε (ω) := (µ1, . . . ,µ
k,`
ε (ω)︸ ︷︷ ︸

index k

, . . . ,µk,`ε (ω) + ε︸ ︷︷ ︸
index `

, . . . , µK)T

for k ∈ Gε(µ) and

λk,`ε (ω) := (µk,`ε (ω) + ε︸ ︷︷ ︸
indices 1to `

, µ`+1, . . . ,µ
k,`
ε (ω)︸ ︷︷ ︸

index k

, . . . , µK)T

for k ∈ Bε(µ) where µk,`ε (ω) is a weighted average of elements on positions k and ` (resp.

1µk,`ε (ω) has a different definition depending on k being a good or a bad arm.
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1 to `) defined as:

µk,`ε (ω) :=
ωkµk + ω`(µ` − ε)

ωk + ω`

for k ∈ Gε(µ) and

µk,`ε (ω) :=
ωkµk +

∑`
a=1 ωa(µa − ε)

ωk +
∑`

a=1 ωa

for k ∈ Bε(µ).

The next lemma is a direct conclusion of the reasoning above.

Lemma 5.1 Using the previous definition, λ∗ε,µ(ω) can be computed as

λ∗ε,µ(ω) = arg min
λ∈ΛG∪ΛB

∑
a∈[K]

ωa
(µa − λa)2

2

with ties broken arbitrarily and where

ΛG := {λk,`ε (ω) : k ∈ Gε(µ), ` ∈ Gε(µ)/{k}}

and

ΛB := {λk,`ε (ω) : k ∈ Bε(µ), ` ∈ [|1, k − 1|] s.t. µ` ≥ µk,`ε (ω) + ε > µ`+1}.

5.4 Solving the Max-Min Problem: Optimal Weights
First observe that we can rewrite Tε(µ, .)−1 as a minimum of linear functions:

Tε(µ,ω)−1 = inf
d∈Dε,µ

ωTd where Dε,µ :=

{(
(λa − µa)2

2

)T

a∈[K]

∣∣ λ ∈ Alt(µ)

}
. (5.6)

Note that by using Dε,µ instead of Alt(µ), the optimization function becomes simpler
for the price of more complex domain (see Figure 5.2 for an example). As a result, Tε(µ, .)−1

is concave and we can compute its subgradients thanks to Danskin’s Theorem (Danskin,
1966) which we recall in the lemma below.

Figure 5.2: Comparison of Alt(µ) with Simple Linear Boundaries (First Figure) and Dε,µ
with Non-Linear Boundaries (Second Figure) for µ = [0.9, 0.6] and ε = 0.05.
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Lemma 5.2 (Danskin’s Theorem) Let λ∗(ω) be a best response to ω and define d∗(ω) :=( (λ∗(ω)a−µa)2

2

)T
a∈[K]

. Then d∗(ω) is a subgradient of Tε(µ, .)−1 at ω.

Next we prove that Tε(µ, .)−1 is Liptschiz.

Lemma 5.3 The function ω 7→ Tε(µ,ω)−1 is L-Lipschitz with respect to ‖ · ‖1 for any

L ≥ max
a,b∈[K]

(µa − µb + ε)2

2
.

Proof. As we showed in Lemma 5.1, the best response λ∗ε,µ(ω) to ω is created from µ by
replacing some of the elements by µk,`ε (ω) or µk,`ε (ω) + ε. We also know that µk,`ε (ω) is a
weighted average of an element of µ with one or more elements of µ decreased by ε. This
means that

max
a∈[K]

µa ≥ µk,`ε (ω) ≥ min
a∈[K]

µa − ε

and, as a consequence, we have

|µi − λ∗ε,µ(ω)i| ≤ max
a,b∈[K]

(µa − µb + ε)

for any i ∈ [K]. Let f(ω) := Tε(µ,ω)−1. Using the last inequality and the definition of
d∗(ω), we can obtain for any ω, ω′ ∈ ΣK ,

f(ω)− f(ω′) ≤ (ω − ω′)Td∗(ω′)
≤ ‖ω − ω′‖1‖d∗(ω′)‖∞

≤ ‖ω − ω′‖1 max
a,b∈[K]

(µa − µb + ε)2

2

�

As a summary Tε(µ, .)
−1 is concave, Lipschitz and we have a simple expression to

compute its subgradients through the best response oracle. Therefore we have all the
necessary ingredients to apply a gradient-based algorithm in order to find the optimal
weights and therefore, the value of T ?ε (µ). The algorithm of our choice is the mirror ascent
algorithm which enjoys the following guarantees.

Proposition 5.2 — (Bubeck, 2015). Let ω1 = ( 1
K , . . . ,

1
K )T and define the learning rate

αn = 1
L

√
2 logK
n . Then using mirror ascent algorithm to maximize a L-Lipschitz function

f , with respect to ‖ · ‖1, defined on ∆K with generalized negative entropy Φ(ω) =∑
a∈[K] ωa log(ωa) as the mirror map enjoys the following guarantees:

f(ω∗)− f

(
1

N

N∑
n=1

ωn

)
≤ L

√
2 logK

N
.

Remark 5.2 — Computational complexity of our algorithm.. To simplify the presenta-
tion and analysis, we chose to focus on the vanilla version of Track-and-Stop. However,
in practice this requires solving the optimization program that appears in the lower
bound at every time step, which can result in large run times. Nonetheless, we note that
there are many possible adaptations of Track-and-Stop that reduce the computational
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complexity, while retaining the guarantees of asymptotic optimality in terms of the
sample complexity (and with a demonstrated small performance loss experimentally). A
first solution is to use Franke-Wolfe style algorithms (Ménard, 2019; Wang et al., 2021),
which only perform a gradient step of the optimization program at every step. Once can
also apply the Gaming approach initiated by (Degenne et al., 2019a) which only needs
to solve the best response problem, and runs a no-regret learner such as AdaHedge to
determine the weights to be tracked at each step. This approach was used for example
by (Jourdan et al., 2021) in a similar setting of pure exploration with semi-bandit
feedback. Another adaptation is the Lazy Track-and-Stop (Jedra & Proutiere, 2020),
which updates the weights that are tracked by the algorithms every once in a while. �

5.5 Comparing the Simulator Lower Bound to the Characteristic
Time
In this section, we show that the simulator bound of Theorem 1.2 can be arbitrarily large
compared to T ?ε (µ) log(1/δ). Fix δ = 0.1 and let ε, β > 0 with β � ε and consider the
instance such that µ1 = β, µK = −ε and µa = −β for a ∈ [|2,K − 1|]. Note that in this
case βε = β, where βε was defined in (1.51). By symmetry, ωa = ω2 for all a ∈ [|2,K − 1|].
In this case, using Lemma 5.1 we have

T ?ε (µ)−1 (a)
= sup

ω∈ΣK

min

(
ω1ωKβ

2

2(ω1 + ωK)
,
ω1ω2(ε− 2β)2

2(ω1 + ω2)
,

ω2ω3ε
2

2(ω2 + ω3)

)
= sup

ω∈ΣK

min

(
ω1ωKβ

2

2(ω1 + ωK)
,
ω1ω2(ε− 2β)2

2(ω1 + ω2)
,
ω2ε

2

4

)
≥ sup

ω∈ΣK

min

(
ω1ωKβ

2

2(ω1 + ωK)
,
ω1ω2(ε− 2β)2

2(ω1 + ω2)
,
ω2(ε− 2β)2

4

)
.

The first term of the min in (a) corresponds to the cost of making arm K a good arm by
simultaneously increasing its mean reward and decreasing the mean reward of the first arm,
the second term to that of making arm 2 a bad arm by simultaneously decreasing its mean
reward and increasing the mean reward of the first arm. The third term, corresponds to
the cost of making arm 2 a bad arm by simultaneously decreasing its mean reward and
increasing the mean reward of the arm 3 (which is the same cost if we replace arms 2 and
3 by any other pair of arms in [|2,K − 1|]). Now we look for ω such that ω1 = ωK > ω2.
This means that the third term of the min in the last line is always smaller than the second
term. If we note S the set of such omegas then one can write

T ?ε (µ)−1 ≥ sup
ω∈ΣK∩S

min

(
ω1β

2

4
,
ω2(ε− 2β)2

4

)
(5.7)

Note that the right hand side is maximized when both terms of the min are equal. Let ω̃
be the maximizer. Then

2ω̃1 + (K − 2)ω̃2 = 1, and ω̃1β
2 = ω̃2(ε− 2β)2.

Solving for ω̃ and injecting in (5.7) we get

T ?ε (µ)−1 ≥ (ε− 2β)2β2

8(ε− 2β)2 + 4(K − 2)β2

or equivalently

T ?ε (µ) ≤ 8

β2
+

4(K − 2)

(ε− 2β)2
.
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When β � ε and δ is fixed, this yields T ?ε (µ) log(1/δ) = O(1/β2 +K/ε2). In contrast note
that for this particular instance |Gβ(µ)| = 1 so that the lower bound of Theorem 1.2 is at
least of order Ω(K/β2). Therefore, we see that the simulator bound exhibits an improved
scaling w.r.t the number of arms K.

5.6 Proof of Theorem 5.1

We start with a few technical lemmas. The first two are adapted from (Garivier & Kaufmann,
2016):

Lemma 5.4
(
Lemma 7, (Garivier & Kaufmann, 2016)

)
For all t ≥ 1, the C-Tracking

with weights (ω̃(µ̂s))s∈N∗ ensures that Na(t) ≥
√
t+K2 − 2K and that

max
1≤1≤K

∣∣∣∣Na(t)−
t∑

s=1

ω̃a(µ̂s)

∣∣∣∣ ≤ K(1 +
√
t)

Lemma 5.5
(
Lemma 19, (Garivier & Kaufmann, 2016)

)
For ξ > 0, define Iξ , [µ1−

ξ, µ1 +ξ]× . . . [µK−ξ, µK+ξ]. And for T ≥ 1, consider the event: ET =
T⋂

t=bT 1/4c

(
µ̂t ∈ Iξ

)
.

Then there exists two constants B,C that only depend on µ and ξ such that

Pµ,A
(
EcT
)
≤ BT exp(−CT 1/8)

where EcT is the complementary event of ET .

The last lemma states that µ 7→ Tε(µ,ω)−1 is Lipschitz. Its proof is deferred to the
end.

Lemma 5.6 For all vectors ω in the simplex, for all instances µ, µ′ in [µmin, µmax]K we
have

|Tε(µ′,ω)−1 − Tε(µ,ω)−1| ≤ 4(µmax − µmin + ε)
∥∥µ′ − µ∥∥∞ .

Now we are ready to prove the Theorem. We denote by L1([µmin, µmax]K) , 4(µmax−µmin+
ε) the Lipschitz constant of the mapping µ 7→ Tε(µ,ω)−1 in the domain [µmin, µmax]K and
by L2(µ) , maxa,b∈[K]

(µa−µb+ε)2

2 the Lipschitz constant of the mapping ω 7→ Tε(µ,ω)−1.

We will prove a lower bound on Tε
(
µ̂t,

N(t)
t

)−1 under ET which will result into an upper
bound on the stopping time τδ = inf

{
t ∈ N : tTε

(
µ̂t,

N(t)
t

)−1 ≥ β(δ, t)
}
. First observe that

under ET , the L1 constant is upper bounded: L1(Iξ) ≤ L1,max , 4(maxa µa−minb µb + ε+

2ξ). Similarly, we have for all bT 1/4c ≤ t ≤ T, L2(µ̂t) ≤ L2,max ,
(maxa µa−minb µb+2ξ+ε)2

2 .
Now applying Lemma 5.4 and the Lipschitz property w.r.t the weights, we have for all
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bT 1/4c ≤ t ≤ T

Tε

(
µ̂t,

N(t)

t

)−1

≥ Tε
(
µ̂t,

t∑
s=1

ω̃(µ̂s)

t

)−1

− L2,max
K(1 +

√
t)

t

≥

t∑
s=1

Tε
(
µ̂t, ω̃(µ̂s)

)−1

t
− L2,max

K(1 +
√
t)

t

≥

t∑
s=bT 1/4c

Tε
(
µ̂t, ω̃(µ̂s)

)−1

t
− L2,max

K(1 +
√
t)

t
,

where we used the fact that the mapping ω 7→ Tε(µ,ω)−1 is concave (resp. non-negative) in
the second (resp. last) inequality. Now observe that for all s, t ≥ bT 1/4c, ‖µ̂t − µ̂s‖∞ ≤ 2ξ.
Therefore the Lipschitz property w.r.t µ implies that

Tε
(
µ̂t,

N(t)

t

)−1 ≥

t∑
s=bT 1/4c

Tε
(
µ̂s, ω̃(µ̂s)

)−1

t
− 2ξL1,max(t− bT 1/4c)

t
− L2,max

K(1 +
√
t)

t

≥

t∑
s=bT 1/4c

T ∗ε
(
µ̂s
)−1

t
−

t∑
s=bT 1/4c

1√
s

t
− 2ξL1,max − L2,max

K(1 +
√
t)

t
(5.8)

where in the second inequality we used the fact that by definition ω̃(µ̂s) is at most 1√
s

sub-optimal. Now observe that

T ∗ε
(
µ̂s
)−1 −→

s→∞
T ∗ε
(
µ
)−1 almost surely (since Na(t) ≥

√
t+K2 − 2K).

t∑
s=bT 1/4c

1√
s

t
∼

t→∞

∫ t
1
dx√
x

t
−→ 0.

K(1 +
√
t)

t
−→ 0.

Therefore for η > 0, there exists tη such that for all t ≥ tη,

t∑
s=bT 1/4c

T ∗ε
(
µ̂s
)−1

t
−

t∑
s=bT 1/4c

1√
s

t
− L2,max

K(1 +
√
t)

t
≥ T ∗ε

(
µ
)−1 − η. (5.9)

Summing up (5.8) and (5.9), we get for all t ≥ tη,

Tε
(
µ̂t,

N(t)

t

)−1 ≥ T ∗ε
(
µ
)−1 − 2ξL1,max − η.

Therefore for every T such that T ≥ max
(
tη,

β(δ,T )

T ∗ε

(
µ
)−1
−2ξL1,max−η

)
, we have ET ⊂ (τδ ≤ T )

thus P(τδ > T ) ≤ P
(
EcT
)
≤ BT exp(−CT 1/8). Hence for T0(δ) := inf

{
T ≥ 1 : T ≥
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max
(
tη,

β(δ,T )

T ∗ε

(
µ
)−1
−2ξL1,max−η

)}
it holds that

E[τδ] =
∞∑
T=1

P(τδ > T )

≤ T0(δ) +

∞∑
T=1

BT exp(−CT 1/8).

Note that

max

(
tη,

β(δ, T0(δ))

T ∗ε
(
µ
)−1 − 2ξL1,max − η

)
≤ T0(δ) ≤ max

(
tη,

β(δ, T0(δ))

T ∗ε
(
µ
)−1 − 2ξL1,max − η

)
+ 1.

Since lim
δ→0

β(δ,t)
log(1/δ) = 1, the last inequality implies that lim sup

δ→0

T0(δ)
log(1/δ) ≤

1

T ∗ε

(
µ
)−1
−2ξL1,max−η

and consequently lim sup
δ→0

E[τδ]
log(1/δ) ≤

1

T ∗ε

(
µ
)−1
−2ξL1,max−η

. We conclude by letting η and ξ go

to zero. �

5.6.1 Proof of Lemma 5.6
First case: arms in µ and µ′ have the same order

Without loss of generality, suppose that µ1 ≥ µ2 ≥ . . . ≥ µK and µ′1 ≥ µ′2 ≥ . . . ≥ µ′K .
Then we see that for all k 6= l ∈ [K],µk,`ε (ω) and µ′k,`ε (ω) have the same formula and :
|µ′k,`ε (ω) − µk,`ε (ω)| ≤ ‖µ′ − µ‖∞, which implies that |λ′k,`ε (ω) − λk,`ε (ω)| ≤ ‖µ′ − µ‖∞.
Therefore, letting f denote the function f(µ,λ) ,

∑
a∈[K] ωa

(µa−λa)2

2 , we have

|f(µ′,λ′k,`ε (ω))− f(µ,λk,`ε (ω))| ≤ 1
2

∑
a∈[K]

ωa(µ
′
a − µa + λk,`ε (ω)a − λ′k,`ε (ω)a)(µ

′
a + µa − λk,`ε (ω)a − λ′k,`ε (ω)a)

≤
ωa × 2 ‖µ′ − µ‖∞ × 2(µmax − µmin + ε)

2
= 2(µmax − µmin + ε)

∥∥µ′ − µ∥∥∞ .
where in the second inequality we used the fact that λk,`ε (ω) (resp. λ′k,`ε (ω)) is a weighted
average of some arm in µ(resp. µ′) with one or more arms of µ(resp. µ′) decreased by ε
and therefore lies in [µmin − ε, µmax]K . Let (k0, l0) be such that λ∗ε,µ(ω) = λk0,l0

ε (ω) then

Tε(µ
′,ω)−1 − Tε(µ,ω)−1 = Tε(µ

′,ω)−1 − f
(
ω,λk0,l0

ε (ω)
)

≤ f
(
ω,λ′k0,l0

ε (ω)
)
− f

(
ω,λk0,l0

ε (ω)
)

≤ 2(µmax − µmin + ε)
∥∥µ′ − µ∥∥∞ .

By symmetry we get for all instances µ and µ′ with the same arm ordering:

|Tε(µ′,ω)−1 − Tε(µ,ω)−1| ≤ 2(µmax − µmin + ε)
∥∥µ′ − µ∥∥∞ .

Second case: arms in µ and µ′ have a different order
Then for n large enough we can find a sequence (µi)0≤i≤2n of instances in the segment
[µ,µ′] such that µ0 = µ, µ2n = µ′ and:

∀i ∈ [|0, 2n−1|], µi and µi+1 have the same arm ordering and
∥∥µi+1 − µi

∥∥
∞ ≤

‖µ′ − µ‖∞
2n−1

.
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We can construct such a sequence in the following way: Split [µmin, µmax]K into K! regions
such that any two instances in the same region share the same arm ordering. The boundaries
between these regions correspond to instances where two or more arms are equal. Starting
from µ0 , µ, span the segment [µ,µ′] and define µi+1 to be the first instance where: either
the L∞ distance from µi is equal to ‖µ

′−µ‖∞
2n−1 , or we cross a boundary between two regions.

Since there can be at most K!− 1 changes in the arm ordering, for n large enough such
sequence always exists. Now we have:

|Tε(µ′,ω)−1 − Tε(µ,ω)−1| ≤
2n−1∑
i=0

|Tε(ω,µi+1)−1 − Tε(ω,µi)−1|

≤
2n−1∑
i=0

2(µmax − µmin + ε)
‖µ′ − µ‖∞

2n−1

≤ 4(µmax − µmin + ε)
∥∥µ′ − µ∥∥∞ .

where in the second inequality we use the first case and the fact that µi and µi+1 have the
same arm ordering. As a summary, we always have:

|Tε(µ′,ω)−1 − Tε(µ,ω)−1| ≤ 4(µmax − µmin + ε)
∥∥µ′ − µ∥∥∞ .

5.7 Conclusion
We shed a new light on the sample complexity of finding all the ε-good arms in a multi-armed
bandit with Gaussian rewards. We derived an instance-dependent lower bound, identifying
the characteristic time that reflects the true hardness of the problem in the asymptotic
regime. Then, capitalizing on an method to solve the optimization program that defines
the characteristic time, we proposed an efficient Track-and-Stop strategy whose sample
complexity matches the lower bound for small values of the risk level. Finally, we proved
that the simulator bound from Chapter 1 can have a better scaling in the number of arms
and can be arbitrarily larger than the first bound for moderate values of the risk.
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