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Chapter 1. Thesis Context and Motivation

Why Li-Ion Batteries?

In a planet hungry for sustainable transportation, the need to protect the environment is not only a convenience but a necessity. Most of the current on-road vehicles use crude oil distillates which, when burned, emit CO2 with large amounts contributing to global warming and climate change. For example, in the European Union, the transportation sector accounts for around 22.3% of greenhouse gas emission in 2019 1 . Hence, the need for sustainable green alternatives is vital. Electric vehicles (EVs) powered by lithium batteries are currently leading the way to facilitate the transition to a greener transportation system. Compared to other battery systems, LIBs are playing an increasingly important role as energy storage devices due to their high-power density, high gravimetric/volumetric energy density, low self-discharge, and low reduction potential of Li 2 . Figure 1 shows a comparison between various battery technologies in terms of gravimetric/volumetric energy densities.

Despite the remarkable advancements of LIBs and its wide uses in many industrial applications (e.g., laptops, cell phones), there exist some challenges for LIBs' performance to fully meet the demand of the market (e.g., safety, cost, lifetime). One of the main challenges of these energy storage systems is that their performance tends to deteriorate over time due to various chemical changes. Hence, a better understanding of this gradual deterioration of the battery would help to extend their lifetime and accelerate the transition to more sustainable future. But, before addressing such challenges in detail, we need first to understand the composition and working principle of LIBs.

Figure 1: Lithium-ion battery (LIB) compared to other battery technologies (dual-ion battery (DIB), lead-acid battery (LAB), nickel-metal hydride battery (NiMH), nickel-cadmium battery (NiCd), sodium-sulfur battery (NaS)) 3 .

Composition and Working Principle

Li-ion battery (LIB) is an electrochemical system consisting of a positive electrode namely the cathode and a negative electrode namely the anode separated by an ion conducting, electronically insulating medium called the electrolyte. The chemical reaction in the battery occurs when the battery is connected through an electrical circuit (electrical source or load): when there is a closed path connecting the electrodes 2,4 . Thus, electrons can move from one electrode to the other during the operation of the battery. When the battery is being charged, the cathode gets oxidized, and the anode gets reduced. Both electrons and Li + migrate from the cathode to the anode: electrons migrate through the external circuit while Li + migrate through the electrolyte. The opposite is true during discharging. A schematic picture of a Liion cell is shown in Figure 1.

The first commercialized LIB was built in 1991 by SONY in which they used LiCoO 2 as the cathode and graphite as the anode. LiCoO2 has a high potential of 3.9 V vs. Li + /Li and a good lifetime. However, due to the high cost of cobalt, many studies have been trying to replace it with cheaper elements such as manganese (e.g., LiMn2O4) 2 . On the contrary, graphite is abundant in nature, cheap and has a low potential of 0.05 V vs. Li + /Li 2 . In addition, it experiences a small volume expansion ~10% during cycling and does not involve any major structural changes, mechanical cracks, which explains its good reversibility 2 . The chemical nature of the electrolyte is crucial for LIBs' performance as it is the medium for the transport of Li + between the electrodes. Most of current LIBs use liquid electrolytes which are generally composed of organic solvents, salts, and additives 2 . Ethylene carbonate (EC) is the most used solvent as it is stable and ensures the cyclability of the battery. Lithium-based salts (e.g., LiPF6) are used to ensure high ionic conductivity of the electrolyte. Additives (e.g., vinylene carbonate (VC)) are added to improve LIB's performance by enhancing electrolyte properties such as: conductivity, temperature range, chemical stability, cycle stability, and non-flammability 2,5 .

Challenges to Li-ion Batteries

Safety and Cost

Safety of the battery is the most crucial aspects in defining battery feasibility. Inadequate cooling or heat dissipation can make temperature inside the battery to increase causing what is called thermal runway 6 . Thermal runaway refers to a rapid self-heating process derived from the exothermic chemical reactions that rapidly release the stored energy. It is considered the most catastrophic energetic failures of LIBs where temperature could reach 1000 °C. The thermal runaway can propagate from one cell to neighbors causing a fire that spreads to the entire battery pack. This issue raises the concern about the safety of the battery especially where incidences of explosions were reported. To ensure safety and avoid such scenarios, battery systems are often lined up with safety equipment that increases their weight, adding cost and decreasing its performance 6,7 .

Figure 3 shows the price of the battery cell and pack 8 . The battery cell consists of the main component of the battery like electrodes, separator electrolyte and current collectors. The battery pack is mostly the various controls/protection system of the battery like battery management system and a cooling system. In 2022, cells account for around 83% of the total pack price. It should be noted that the total price of the battery decreased over time except from 2021 to 2022 due to the increase in the price of battery cells (not battery pack) as a consequence of the increase in the cost of raw materials and the soaring inflation 8 . In addition, it should be noted that the demand for batteries has almost doubled from 2021 to 2022 and it is very challenging for industries to secure supply chains (e.g., mining of metals) with an enough rate to provide for such a high market demand. With more investment in mining and lower inflation rates, prices are expected to decrease starting from 2024 8 . Figure 3: The price of the battery cell and pack (taken from ref. 8 )

Battery Aging and Lifetime

The performance and hence the lifetime of LIBs decreases over time because of various chemical changes. The process of the gradual decline in the battery performance is called battery aging 9 . Battery aging occurs when the battery is used (cyclic aging) and even when the battery is stored (calendar aging). It should be noted that electric vehicles spend more than 90% of their lifetime parked where calendar aging takes place 10 . For electric vehicles, the battery is considered dead if only 70-80% of its initial capacity is still available (around 8 years of use). Note that aging experiments are usually performed at high temperatures to speed up the aging process: at room temperatures it would take months/years to reach 80% or 90% of the initial capacity [11][12][13][14] . Figure 4 shows various experimental aging studies from the literature [11][12][13][14] . 13 Right: the remaining capacity during calendar (cross) and cyclic (circle) aging for different LIBs having at a state of charge (60%) at 22 °C (bold lines) and 55 °C (dashed lines) by Hellqvist Kjell et al. 12 Although the mechanisms for battery aging are very complex and strongly related to operating conditions, they can be divided into loss of active and accessible electrode material, loss of conductivity in the electrodes, and loss of lithium inventory (LLI) 15 . LLI refers to the lost amount of cyclable lithium which is available for transport between electrodes. It should be noted that LLI is considered to be the primary aging mechanism governing LIB aging. LLI mostly rises from the formation and growth of a thin (nanometer) layer called the solid electrolyte interphase (SEI) which forms over the anode surface. A better understanding of the SEI would help to unlock the full potential of LIBs paving the way for a greener and more sustainable future.

The Solid Electrolyte Interphase (SEI)

The Solid Electrolyte Interphase (SEI) is a passivating layer that forms at the anode (e.g., Limetal)/electrolyte (e.g., EC) interface due to the reduction of the electrolyte by electrons from the anode, see Figure 2. It should be noted that the initial formation of the SEI layer protects the electrolyte from further reduction through blocking electrons coming from the anode. However, the SEI layer experience various chemical changes and grows over time consuming more electrons and electrolyte species leading to capacity loss and eventually the death of the battery.

Experimental studies have investigated the capacity loss over time have and predicted various behaviors (e.g., square root 11,16 , linear [17][18][19][20] or combinations of both 21,22 ). Recent theoretical and experimental have investigated the effect of SEI growth on capacity loss and reported a shift from a non-linear to a final linear behavior ,17,18 . The non-linear (square root) behavior was attributed to the diffusion of species inside the SEI layer while the linear behavior was attributed to mechanical cracking of the SEI and/or electron migration through the SEI. It should be noted that the composition of the SEI depends on the composition of the electrolyte. As mentioned before, EC is the main solvent used in LIBs and forms a stable passivating SEI layer when it decomposes. Hence, experimental studies have been focusing on identifying the composition of the SEI on EC-based electrolyte. It was found that the SEI has a multi-layered structure: a dense inorganic layer close to the anode and a porous organic layer close to the electrolyte. The dense inorganic layer is generally composed of lithium salts (e.g., Li2CO3 and Li2O) while the porous organic layer is very heterogenous and composed of various species mainly alkyl carbonates (dilithium ethylene dicarbonate Li2EDC and dilithium butylene dicarbonate Li2BDC) and/or polymers.

It should be noted that the stability of the SEI layer is very critical to achieve less irreversible capacity loss and to extend the battery's lifetime as well as to build high energy density batteries. For example, batteries based on Li-metal as the anode are considered the most promising next-generation batteries to be used in electric vehicles 23 . Li-metal batteries have much higher energy density (3860 mAh.g -1 ): around 10 times more than that of current lithiated graphite batteries (372 mAh.g -1 ). However, the development of these nextgeneration Li-metal batteries is delayed due to the safety issues: explosions that occur due to instability of the SEI at the anode/electrolyte interface.

Despite the progress of the experimental studies to understand the SEI, it is very challenging for these techniques to give details on the thermodynamics and kinetics of the SEI as well as its structural properties (e.g., porosity). The difficulty arises from the complex heterogeneous nature of the SEI and its small thickness (nanometer range) as well as the of the limitation of current experimental instruments 9,24 as some of the SEI reactions take place at the picosecond (ps) timescale which is hard to be captured experimentally 24 . A better understanding of the SEI is very important to understand the origin of the heterogeneous composition of the SEI and its growth. In addition, it would help to improve the performance of the battery through attaining less irreversible capacity loss. Theoretical studies based on molecular modeling of the SEI could give us more insight into this complex interphase. More details about the state of the art molecular modeling for SEI formation and growth is discussed in Chapter 2.

Chapter 2. Insights on the Molecular Modeling of Electrolyte Decomposition Reactions for Solid Electrolyte Interphase (SEI) Growth in Lithium-Ion Batteries

This Chapter is based on (or adapted from) the following article: Bin Jassar, M.; Michel, C.; Abada, S.; Bruin, T. de; Tant, S.; Nieto-Draghi, C.; Steinmann, S. N. Insights on the Molecular Modeling of Electrolyte Decomposition Reactions for Solid Electrolyte Interphase (SEI) Growth in Lithium-Ion Batteries. to be submitted to Batteries and Supercaps

The solid electrolyte interphase (SEI) formed at the surface of at the anode in lithium-ion batteries (LIBs) plays a crucial role in governing the battery stability and its lifetime. The SEI has a multi-layered structure: an inorganic layer close to the anode and an organic layer close to the electrolyte. In this review, we state the importance of considering the inorganic/organic interface to be the interface where the electrolyte decomposition reactions take place. We also review the possible electron transport mechanisms from the anode to the electrolyte through the SEI. We also provide a view on the current progress of molecular modeling techniques (e.g., DFT, ForceFields, Machine Learning Potentials) to understand the growth of the SEI and the challenges each method faces.

In the last section of this chapter, we describe the outlook of upcoming thesis chapters.

Introduction

The solid electrolyte interphase (SEI) is a heterogeneous thin (nanometer) layer that forms at the interface between the anode (e.g., Li-metal, graphite) and the electrolyte in lithium-ion batteries (LIBs) 1 . The SEI forms as a result of the electrolyte reduction by electrons from the anode where the Fermi level of the anode is higher than the lowest unoccupied molecular orbital (LUMO) of the electrolyte [1][2][3][4][5] . The electrolyte is generally composed of organic solvents (e.g., ethylene carbonate (EC)), salts (lithium hexafluorophosphate (LiPF6)), and additives (vinylene carbonate (VC)). At the initial cycles of the battery, the SEI protects the electrolyte from further reduction due to its passive nature. However, the composition and structure of the SEI undergo various changes and grow over time. The growth of the SEI is considered to be the primary mechanism behind LIBs aging leading to capacity loss and ultimately the deterioration of the battery's performance [6][7][8] .

Experimental studies have identified a multi-layered structured SEI: an inner dense inorganic layer (essentially composed of Li2CO3, LiF and Li2O) at the anode/SEI interface and an outer porous organic layer (containing mostly alkyl carbonates, polymers, etc.) at the SEI/electrolyte interface. Both of SEI layers have a mosaic structure, i.e., their compositions, structures, and properties evolve with time and space (lateral heterogeneity) 1 . Even though experimental studies were able to give us some information about the composition of the SEI layer, these methods face many challenges to investigate other aspects like structure, thermodynamic and kinetics of SEI's formation and growth. The difficulty emerges from small thickness of the SEI and limitations of existing experimental techniques. Theoretical studies have emerged to understand the decomposition reactions leading to the SEI formation and growth. However, they still face some challenges that we discuss in this chapter. But, to understand the SEI growth, we need first to understand where electrolyte decomposition reactions take place and what the main electron transport mechanisms are.

Where Do the Decomposition Reactions Take place?!

The SEI starts to form at the anode/electrolyte interface where the anode is in direct contact with the electrolyte. However, once the SEI forms, it separates the anode and the electrolyte forming a new interface: anode/SEI/electrolyte or anode/SEI-inorganic-layer/SEI-organiclayer/electrolyte, see Figure 1. In this chapter, we state the possible interfaces where the electrolyte decomposition reactions (SEI growth) are expected to take place once the new interface (anode/SEI/electrolyte) is formed.

Interface I: anode/SEI interface where the electrolyte decomposition reactions are limited by electrolyte diffusion through the SEI until it reaches the anode surface 9,10 , see Figure 1. This interface is generally used by continuum models to simplify the reaction environment 11 . Note that the inner inorganic layer of the SEI is dense and does not allow the diffusion of electrolyte species (e.g., solvents, salts) all the way until the anode interface ,4,12 . So, it is unlikely that we can find electrolyte species over the surface of the anode. However, it should be noted that the SEI can experience mechanical cracks that exposes the electrolyte to be in direct contact with the electrons in the anode. Hence, electrolyte species can diffuse through the cracked SEI to the electrons in the anode leading to electrolyte reduction and SEI (re)growth. However, in the absence of cracks, this interface is not expected to be the interface where decomposition reactions (SEI growth) occur.

Figure 1: The Solid electrolyte interphase (SEI) growth mechanism. For clarity only Li2CO3 is presented to represent the inorganic layer which can also be formed from Li2O and LiF, the electrolyte is also presented only by the solvent EC, but it also contains other species like the salt LiPF6.

Interface II: SEI front limited by charge transport through the SEI [13][14][15] where electrons and radical species diffuse all the way from the anode through the inorganic layer until the organic layer/electrolyte interface, see Figure 1. However, since the organic part of the SEI layer is porous and contains reducible species (e.g., EC.) 1,4,12 , electrons and radical species will directly react with the first reducible species it encounters rather than diffuses all the way until they reach the organic layer/electrolyte interface. Hence, the decomposition reactions are not expected to occur at this interface as well.

Interface III: inside the SEI. This intermediate regime was first proposed by Single et al. 16 It is a regime that combines Li 0 diffusion and electrolyte species diffusion. However, Single et al. 16 did not specify the exact interface where the decomposition reactions take place. We expect that the growth reactions to be inside the SEI over the inorganic salts (e.g., Li2CO3) at the inorganic/organic (in/organic) interface, i.e., by solvent diffusion from the electrolyte through the porous structure of the organic layer, until the solvent molecule reaches the dense inorganic layer, where it reacts with electrons (in the form of Li 0 ) that have diffused from the anode to the in/organic interface as shown in Figure 1.

Electron Transport Mechanisms

In this section, we discuss the main electron transport mechanisms from the anode to the electrolyte leading to electrolyte degradation and SEI growth. Table 1 shows four suggested mechanisms for electron transport: electron tunneling 15,17 , electron conduction 13,16,17 , solvent diffusion 13,[16][17][18] , Li 0 diffusion 16,17,[19][20][21] . 15,17 This mechanism suggests that if the inner layer of SEI layer is thin (e.g., less than 1 nm), electrons can tunnel from the anode through the SEI layer and reduces the electrolyte. Electron conduction 13,16,17 This mechanism assumes that the SEI layer is a conductive layer that allows electrons to be transported from the anode until the SEI/electrolyte interface, causing electrolyte degradation Solvent diffusion 13,[16][17][18] In this mechanism, the solvent molecules diffuse through the SEI layer until they reach the electrode (anode/SEI interface), then get reduced leading to the consumption of electrons and SEI growth. Li 0 diffusion 16,17,[19][20][21] This mechanism suggests that electrons at the anode in the form of Li 0 atoms can diffuse through the SEI and react with electrolyte species.

It should be noted that all four-electron transport mechanism contribute to the SEI formation and growth with different degrees at different stages of battery aging. Electron tunneling is a possible mechanism for electrons transport to the electrolyte when the thickness of the layer is less than 1-2 nm 1,3,4 . So, we would expect that the electron tunneling plays an important role during the initial moments of SEI formation where the SEI is still very thin < 1 nm. The electron conduction is another suggested mechanism but since the inner inorganic layer of the SEI is not conductive to electrons (e.g., band gab is 14 eV for LiF) 22 , this mechanism will not contribute strongly to the long-term growth where the insulating inorganic layer can reach widths of about 30 nm 23,24 . Solvent diffusion can also play a role at the initial time of SEI growth. However, it is unlikely to be the long-term mechanism for SEI growth due to the impermeability nature of the SEI dense inorganic layer to solvent molecules. In a comparative study of these four mechanisms to investigate the main mechanism leading to the long-term SEI growth, Single et al. 24 used a continuum model to model the relative capacity of the battery at different initial state of charge (SOCs) in comparison with experimental data. They found that solvent diffusion has no dependence at all with the initial SOC 24 . Even though both: electron tunneling, and electron conduction showed potential dependences, they both did not correlate with experimental data. Li 0 diffusion was found to be the only long-term growth mechanism that predicts capacity loss in an excellent agreement with experiments.

As mentioned before, note that once the SEI cracks, electron transport mechanisms (e.g., electron tunneling) that are unlikely to contribute to the electron transport on the long-term SEI growth, can play a role in electron transport and electrolyte degradation. For example, electron tunneling can play a role if the cracked SEI has a short thickness (e.g., less than 1 nm).

However, in the absence of cracks, Li 0 diffusion through the inorganic layer of the SEI can be seen as the most likely mediator for electron transport from the electrode to the electrolyte.

The first people to address the idea of radical Li 0 diffusion are Shi et al. 20 They found, using DFT, that if a Li 0 atom diffuses through the inorganic species Li2CO3 to the electrolyte it could dissociate into one Li + and one electron which could explain the self-discharging of a lithiated electrode and/or SEI growth 20 . The existence of neutral Li 0 interstitial point defect in Li2CO3 was demonstrated by Shi et al 21 . They found, theoretically using DFT, that the diffusion of Li 0 in Li2CO3 requires a small activation energy of around 0.3 eV. In other DFT studies, the SEI inorganic salts: LiF and Li2O were found to be also suitable for Li 0 diffusion 25 . Chen et al. 26 have calculated Li + migration energy barriers from DFT, along the major diffusion pathways of the three main components, LiF, Li2O, and Li2CO3, and found the energy barriers to be 0.73 eV, 0.152-1.362 eV, and 0.227-0.491 eV respectively. Follow-up studies reported the diffusion coefficient of Li 0 inside the inorganic layer (Li2CO3, LiF and Li2O) and found it to be in a range between (10 -14 -10 -16 m 2 /s) 16,21,[26][27][28][29][30][31][32][33][34][35][36] .

First Principles Models for Electrolyte Decomposition Reactions:

Density Functional Theory (DFT) and Semiempirical Methods (SEMs)

First principles (quantum) calculations can help study the thermodynamics and kinetics of the physical and chemical processes inside the battery by understanding properties e.g., energy densities, reaction energies, etc. DFT-based studies to investigate different reactions pathways for electrolyte degradation started more than 20-30 years ago 37,38 . These studies focused on the decomposition pathways of the main solvent EC as it is the most used solvent in LIBs and forms a stable SEI when it decomposes. The decomposition reactions of EC has been reported to be through two mechanisms: one-electron reduction mechanism and twoelectron reduction mechanism. Leung proposed a two-electron reduction mechanism that is expected to occur at the beginning of SEI formation where the anode is in direct contact with the electrolyte where the concentration of electrons is high 39 . However, once the SEI is formed and separates the anode from the electrolyte, the one-electron reduction mechanism is more favorable. We refer the reader to the literature 1,4,37,[39][40][41][42][43][44] for further details on different mechanisms and possible reaction pathways. It should be noted that most theoretical studies have been focusing on the one-electron reduction mechanism that governs the capacity loss of the battery. Herein, we summarize these studies (one electron reduction mechanism) to state the current progress in modeling these decomposition reactions.

Most theoretical studies (e.g., DFT) have been focusing on the reduction of EC in the gas-phase in isolation (only EC and Li 0 as initial reactants) 37,38,[41][42][43][44][45][46][47][48] , as shown in Figure 2. It was suggested that EC degradation starts once EC and Li 0 meet at the anode/electrolyte interface where they form cLi-EC• (where • to indicate the species as a radical). cLi-EC• can undergo ring-opening reactions leading to the formation of oLi-EC•. The formation of oLi-EC• is very critical since it starts a cascade of reactions. Subsequent reactions of these radicals with new Li 0 coming from the anode, lead to the formation of various inorganic (Li2CO3) and organic species (dilithium butylene dicarbonate (Li2BDC), dilithium ethylene dicarbonate (Li2EDC), see Figure 2.

Figure 2: Reaction paths for EC decomposition, with activation energies in kcal mol -1 (taken from ref. 40 )

Recent studies have started to investigate the decomposition reactions in the presence of a lithium surface mimicking the Li-metal electrode 45,46 . They found that carrying the decomposition reactions over Li-metal led to volume expansion of the Li-metal surface 45,46 .

Their results suggest that considering Li-metal surface can help to understand dendrite formation in order to suppress them, which remains a challenge for Li-metal batteries.

As mentioned before, we expect the electrolyte decomposition reactions once the SEI is formed to occur at interface III, see Figure 1. Hence, these reactions are expected also to take place over the surfaces of the inorganic salts (Li2CO3, Li2O and LiF). Studying the effects of SEI inorganic salts on electrolyte (e.g., EC) degradation reactions could help to understand the kinetic and composition of the SEI, as well as the selectivity of these salts. It should be noted that recent studies started to focus on the role of the inorganic salts on the Li + transport and electron-transfer properties 31,49 . For example, Kamphaus et al. investigated, using DFT, the effect of salts like Li2O, LiOH and Li2CO3 on the electron transport in Li-metal batteries 49 . They found that these salts through their passive nature slow down the charge transfer compared to pristine Li-metal. However, to the best of our knowledge, the decomposition reactions over the inorganic salts have not yet been investigated in the literature.

DFT calculations can also help to understand how other electrolyte (e.g., LiPF6 salt) decompositions affect the charge transfer to the SEI layer. Fluoride-based salts (e.g., LiPF6) are the ones mostly used in LIBs, since they help to decrease the growth of the SEI by forming an insulating dense inorganic LiF layer. It was found that LiF, which is found in the inorganic part of the SEI, has more negative electron affinity and hence is more effective in electron blocking (Li 0 ) than Li2O and Li2CO3 1,25,27,50 . A DFT study comparing lithium bis(fluorosulfonyl)imide (LiFSI) and lithium bis(trifluoromethylsulfoyl)imide (LiTFSI) salts suggests that LiFSI-based electrolytes form LiF more efficiently than LiTFSI, leading to a more protective mechanism for the Li-metal electrode 51 . Another DFT study was performed by Simone Di Muzio et al. to investigate the hydrolysis path for the decomposition of various salts LiPF6, LiTFSI, LiFSI and the hybrid salt lithium fluorosulfonyl-trifluorofulfonyl imide (LiFTFSI) 52 . They found that LiTFSI leads to more precipitation of solid LiF. However, the corrosive nature LiTFSI towards the aluminum current collector limits its uses. Other salts like LiAsF6, LiBF4, LiClO4 have drawbacks as well like toxicity, low ionic conductivity, and hazardousness due to peroxide formation from perchlorate (ClO -4) decomposition respectively 52 .

Chapman et al. performed a DFT study using the cluster-continuum approach on the dissociation of common lithium salts (LiTFSI, LiPF6, LiBF4, and LiClO4) in aprotic polar linear dimethyl carbonate (DMC) and cyclic propylene carbonate 53 . They found that LiPF6 is the most dissociated 53 . It should be noted that PF5 formed by LiPF6 decomposition forms an adduct with the solvent where the stability of the adduct depends on the nature of the solvent 54 . PF5 was found to be more stable in polar and sterically compact solvents such as EC than in less polar and bulky, linear carbonates such as DMC and diethyl carbonate (DEC) 54 . Furthermore, comparing to other slats, LiPF6 is not corrosive and has relatively high mobility of Li + (≈ 10.7 mS.cm -1 in EC/DMC). Hence, LiPF6 is currently the most used salt in LIBs as the "combination" of its physical/chemical properties makes it the most appropriate for this application 3,52 .

Polymers are found in the organic layer of the SEI and are generally formed from solvent/additive degradations. The study of polymers forming the SEI is very important since they can make a positive contribution to the mechanical stability and resistance to cracking. A stable resistance organic layer to electron reduction protects the electrolyte from further reduction hence a lower capacity loss of the battery 48 . However, due to its complexity, the exact structure of the organic layer is not yet known. Recent studies have started to investigate the polymeric pathways for solvents and additives. A study by Gibson and Pfaendtner investigated the impact of additives on the SEI formation 55 . They studied the oligomerization pathways and reaction networks using DFT and molecular dynamics (MD) respectively. They found that the additives VC and fluoroethylene carbonate (FEC) form stable adducts and exhibited low free energy barriers through modifying the polymerization pathways of EC. Another more detailed study was performed by Kuai et al. on EC and VC to investigate their polymerization pathways using ab initio molecular dynamics study 48 . They found that Li + bonding demonstrate catalytic effects on polymerization for both EC and VC. The ring-opening polymerization pathways of VC was found to be the one mostly dominates the oligomerization process. They also found that the polymerization and decomposition reactivities of VC are higher than EC while their cross-coupling has an even lower activation energy. Their results agree with the experimental evidence where the VC-added LIBs have an enhanced performance.

It should be mentioned that even though these DFT-based studies can accurately describe various electrolyte decomposition reactions, they are computationally very expensive and remain limited to systems up to 500 atoms. Low-cost electronic structure methods (semiempirical methods) can be seen as a cheaper alternative to DFT. Semi-empirical methods are based on approximation to DFT or Hartree-Fock (HF) [56][57][58][59] formalisms allowing them to handle larger systems and perform longer simulation times than DFT. Common classes of semiempirical methods include PM7 57 , DFTB [60][61][62][63][64][65] , GFN2-xtb 59 , etc. Such methods are parameterized based on specific training sets from experimental and/or DFT data. So, their performance depends on the optimized parameters. In the context of SEI system, Li et al. developed a selfconsistent charge density functional tight binding (SCC-DFTB) parameters for Li-Li, Li-H, Li-O, Li-C using DFT reference data 66 . The developed SCC-DFTB were used to model Li + desolvation energy and diffusion coefficient in liquid EC and was able to capture the effect of SEI thickness in blocking the electron transfer for Li/Li2CO3/liquid-EC. However, it should be mentioned that the training set used to develop SCC-DFTB neither included fluorinated compounds (e.g., salt LiPF6) nor the major EC and VC decomposition reaction energies (e.g., the formation of the major organic alkyl carbonates, polymers, etc.). The inclusion of these reactions is important to parameterize the parameters of these semi-empirical methods to model electrolyte decomposition reactions that are hard to investigate using DFT and to perform semi-empirical methods-based molecular dynamics to extend the simulation time to have a molecular structure of the SEI. Hence, the need to benchmark the performance of semi-empirical methods against DFT for SEI growth reactions is essential to judge their performance.

Note that semi-empirical methods (e.g., PM7-D3), on one hand, even though they are faster than DFT, still, these techniques are slower in comparison to classical methods e.g., ForceField (FF)-and Machine learning (ML)-based methods: it would take years for DFT to perform a 1 ns MD for a system of around 1000 atoms compared to months for PM7-D3 and weeks for FFbased methods. On the other hand, semi-empirical methods have the advantage of considering valance electrons and thus can describe chemical reactivity or charge transfer as well as some of the quantum mechanical effects that are neglected in classical methods.

Overall, the choice of the molecular method is always a balance between accuracy and computational cost. More details about FFs-and ML-based methods will be discussed in the upcoming sections.

Force Fields-(FF) Based Models: Molecular Dynamics (MD) and Monte Carlo (MC) Simulations

Classical molecular dynamics (MD) and Monte Carlo (MC) methods are used to perform longer simulation times (in comparison with DFT and semi-empirical methods). Generally, such methods uses ForceFields (FFs) to run their calculations. FF are computational methods that classically describe the forces between atoms using classical harmonic strings. Similar to semiempirical methods, FF-based methods are usually parameterized against quantum calculations 4 . There are two types of FF: nonreactive (no bond breaking/formation) and reactive (RFF). To study the electrolyte decomposition reactions, RFFs are generally used. In the context of LIBs, a study by Bedrov et al. focused on the development of a RFF (ReaxFF) to correctly reproduce the ring-opening reaction of cLi-EC•, as this transition is considered to be essential in the SEI formation and growth 4,42,43 , see Figure 3a. A more detailed study performed by Islam et al. developed "eReaxFF" to investigate various decomposition pathways of EC 44,67 . In the eReaxFF method, the valence electron of Li 0 is treated explicitly in a pseudo classical manner. Additional details of the eReaxFF method can be found in the original publication 67 . The developed eReaxFF predicted results for the EC decomposition reactions which are in good agreement with the quantum chemistry data available in the literature 37 . The MD simulations performed using this eReaxFF were able to capture the mechanism of the reduction of the EC molecule, ring opening of cLi-EC•, and subsequent radical termination reactions, see Figure 3b. However, the localization of the electron in all species was different from (electronic) spin density obtained with previous DFT results 37 .

Another study developed by Takenaka et al. used the ReaxFF developed by Bedrov et al. 43 to investigate the SEI growth for a ∼1.1 mol/L LiPF6 EC-based electrolyte and a lithiated graphite electrode through a hybrid MD/MC simulation 68 . They were able to predict a possible SEI structure, see Figure 3c. However, their model neither include any polymerization reactions nor the effect of the inorganic layer in electron blocking. In another study, Xie et al. performed a joint ReaxFF-DFT multi-scale simulations to investigate the initial reactions of 1.0 M LiPF6 salt in 1,3-dioxolane (DOL) 69 . They found that PF5 formed from LiPF6 decomposition can initiate the polymerization of DOL by activating its ring opening leading to an unexpected protective effect that could/may help stabilize Li electrode and protect the battery 69 . FF-based methods can also help us understand the effect of structure on Li + and important processes like charging and discharging [START_REF] Bedrov | Li + Transport and Mechanical Properties of Model Solid Electrolyte Interphases (SEI): Insight from Atomistic Molecular Dynamics Simulations[END_REF]71 as well as Li + transport inside the SEI. For example, an MD study showed that the energy barrier of Li + solvation-desolvation (0.42-0.46 eV) is lower than the energy barrier of Li + transport in bulk alkyl carbonate Li 2 BDC (0.6 eV), which shows that the transport of Li + , not desolvation, is the limiting step defining the Li + transport resistance 4,71 . It was also found that Li + transport inside the organic SEI made of Li2EDC rather depends on the structure than temperature: Li + diffusion in an ordered SEI layer is around 2-3 times faster than in a disordered layer 4,[START_REF] Bedrov | Li + Transport and Mechanical Properties of Model Solid Electrolyte Interphases (SEI): Insight from Atomistic Molecular Dynamics Simulations[END_REF]71 .

Kinetic Monte Carlo (kMC) models can extend the simulation time much larger than DFT (10 - 12 s) and MD (10 -9 -10 -6 s) 30 was performed to investigate the growth of the SEI during charging at a graphite electrode. The parameters were taken from previous experimental and theoretical studies 21,81 . They found that the SEI thickness and the charging time depend on the activation energy of the solvent's molecules diffusing through the SEI layer. As this activation energy barrier increases, the SEI thickness, and the charging time decrease 4,30 . Their results highlight the importance of the description of the porous nature of the SEI to understand the diffusion of electrolyte species. Other MCbased studies focused on the effect of temperature on lithium reduction rate and SEI thickness 4 . It was found that as temperature increases, lithium reduction rate decreases leading to an increase in total charging time but, the SEI thickness increases due to increase the kinetics of diffusion accelerated by high temperature 4 . Other recent studies focused on jointing DFT with MD/MC calculations to model SEI growth. A study by Abbott et al. 40 carried out EC decomposition reaction in the gas-phase in isolation to obtain activation energies to be used later is a kinetically corrected MC-MD simulations to study the SEI growth. They predicted a multilayered SEI structure 40 . Another study by Spotte-Smith et al. 47 also studied EC degradation reactions. They performed DFT calculation to obtain rate constants/activation energies to be used in a 1D kMC model to study the growth of the SEI. Their model also predicted a multilayered structure SEI 47 .

Note that even though such MD/MC were able to give us some insights (e.g., diffusion) and predict a plausible SEI structure, to the best of our knowledge, none of them were able to predict the capacity loss induced by SEI growth over time nor the polymeric structure of the organic layer of the SEI. Furthermore, it should be mentioned that when using FFs to run the MD/MC calculations, the FF parameters often need to be readjusted when applied to a different class of reactions, which was absent in the training set. In addition, such methods usually require extensive work and critical assumptions (e.g., localizations of electron) when dealing with radical species 44,67 .

Machine Learning Potentials (MLPs)

Machine learning potentials (MLPs) are mathematical computational functions that are used to predict the outcome of a costly computation in a shorter time. The ultimate goal of machine learning potentials (MLPs) is to achieve high accuracy similar to DFT but with lower computational cost 8,38 . The current state of art ML categories that can handle complex chemical systems (e.g., SEI) include: gaussian process-based learning 82 , neural network potentials 83 and graph neural networks 84,85 . Figure 4 shows the characteristics of molecular modeling techniques (accuracy and cost) as well as the ML-based models. It should be mentioned that details about the differences between ML-based models are out of the scope of this perspective, we refer the reader to the reviews 8,38 which check the potential of using ML-based models for SEI systems. However, in this section, we express major concerns regarding the development of MLPs to be used for SEI systems. MLPs benefit from the fact that they do not depend on any predefined functional form but rather their models learn through correlation between structure and forces/energy. Such models use descriptors (e.g., geometric fingerprints, charge density, graphs) or intrinsic material properties (e.g., the d-band center) to describe physical phenomena 86 . Unlike classical FF were adding more terms to capture complex interaction (e.g., polarizations) lead to increase in the computational cost, the cost of ML-based FF does not depend on the complexity of the interactions but on the choice of the model 38 . However, it should be mentioned that the functionals used in MLPs have no physical knowledge as they are not physics-based. This intrinsic black-box nature of the ML-based models hinders their use to get scientific insights for chemical systems like the SEI. So, to ensure that MLPs can accurately predict the physical processes (e.g., spatio-temporal SEI models) and obtain scientific insights, these models should have some physics-informed functions in their models 38,87 . Hence, the use of MLPs is considered a tradeoff between computational time and accurate physicsinformed functions. Deep learning methods (also known as explainable artificial intelligence (XAI)) can help explain how ML-based models work and give us scientific insights through combining and analyzing data features and the real physical phenomena. XAI models like sensitivity analysis and layer-wise relevance propagation can also help us develop deep descriptors for ML models. For example, charge density can be a descriptor for ionic migration paths on solid state electrolytes which would help better interpret the output of ML-based models.

Similar to FF-based models, MLPs also suffer from the lack of transferability since they are trained by using a specific training set which make studying a new SEI system with a new electrolyte long, slow, and expensive 88 . The difficulty in developing MLPs for complex systems like the SEI rise from the fact that such MLPs need to describe complex properties (e.g., electrochemical potential) and handle polarization and long-range anisotropic electrostatic interactions 89 . They also need to deal with far-from-equilibrium structures and complex reaction pathways. The need for DFT reference date: information about all reactants, products, intermediates, and transition state as training data is essential. However, most intermediates and reaction pathways to build the reference date for SEI system are yet unknown. A related point, with the importance role discovered of the SEI inorganic salts and the effect of the environment (additives and salts) on the electron transport, the computational cost for generating the reference DFT data is expected to be much higher (large number of atoms) which could delay the development of MLPs. A possible solution to this challenge is the use of autonomous reaction explorer models 90 which can help to map out SEI large reaction networks 38,86,88 policy for solving a particular problem, it could serve as an excellent starting point to identify the optimal policy on another related problem 86 .

In summary, like semi-empirical methods and FF-based models, ML-based models seen as an alternative to DFT. However, such methods need to be physics-informed and training with appropriate training sets to ensure their transferability among various SEI systems.

Conclusion

The SEI layer formed at the electrode/electrolyte interface in lithium-ion batteries (LIBs) has a multi-layered structure: an inorganic layer near the electrode and outer organic layer near the electrolyte. We expect that the reactions leading to the growth of the SEI to take place over the inorganic layer inside the SEI at the interface between the inorganic and organic layer. Hence, the inclusion of the inorganic layer in determining the electrolyte decomposition kinetics is essential to better describe the SEI growth and thus capacity loss of LIBs.

DFT-based methods have been able to give us insights on the initial moments of the electrolyte degradations. However, the current DFT-based methods cannot perform largesystem simulations for a long enough time to help us obtain spatio-temporal information about the SEI as well as other properties (e.g., kinetics of SEI growth). Semi-empirical methods along with FF-and MLPs-based models could be potential alternatives since they can extend the simulation time larger than DFT. However, extensive benchmarking/parameterizing is needed first to check their performance against DFT. The quality and quantity of these reference data could increase the total cost. The DFT training data needs to include decomposition reactions pathways, reactants, products, intermediates, and transition states as well as the effect of the inorganic layer on the kinetics of SEI growth.

Semi-empirical methods have the advantage of expressing some of the quantum effects that are neglected in FF-and MLPs-based methods. However, before using them, a benchmarking study is needed to check their performance for battery systems. FF-based methods and MLPs can be used to extend the time much more than quantum mechanical methods. However, such methods face the problem of their intrinsic nature of the lack of transferability meaning that they are parameterized to model a set of reaction only like decomposition reactions of solvent EC and are not applicable for other electrolyte species like LiPF6 and VC. Consequently, any change in the electrolyte species can require a new parameterization effort. The difference between FF-based methods and MLPs is that the former has more physics-based model where the cost of the simulation depends on the complexity of the physical interaction included. However, the cost of the simulation for ML-based models depends on the complexity of the model rather than the physics behind it. This black-box nature of the MLmodel limit their uses to obtain scientific insights from them. Explainable artificial intelligence can help us understand how ML-models work and hence extract scientific insights. In addition, the use of methods like active learning and reinforced learning could accelerate the development of training sets to make MLPs more transferable.

In summary, a better molecular investigation of the SEI would help understand the capacity loss of LIBs to extend their lifetimes. However, like all complex interphases, the main challenge facing our understanding of the SEI is the lack of fast and accurate simulation methods that accurately describe the complex nature of this interphase including the effect of solvents, salts, and additives.

The Outlook of Upcoming Thesis' Chapters

In this section, we describe the sequence chapters of the thesis, and we give an overview of each one.

Chapter 3: Methodology. In this chapter, we give theoretical details about the molecular methods used during the thesis (DFT, semi-empirical methods, MD and kMC).

Following the presented bibliography study, we expect electrolyte decomposition reactions leading to the SEI formation and growth to occur over the inorganic layer (e.g., Li2CO3) as shown in Interface III. Hence, to further investigate the validity of this approach, we used DFT to obtain reliable reaction energies, but we had to simplify the structural model. Note that it is computationally expensive to model all possible decomposition reactions of all electrolyte species using DFT. Previous studies have focused on the main solvent EC since its decomposition forms a stable SEI. Hence, in our study (Chapter 4), we also focused on the main decomposition reactions of EC where we studied the principal reaction pathways to obtain the energy barriers and their corresponding rate constants. Next, we investigated the effect of the inorganic solid on these decomposition reactions (Interface III). Then, we coupled our DFT results with kinetic Monte Carlos (kMC) simulations to access the time evolution of the SEI. kMC allows modeling the growth of the SEI layer (composition and kinetics) as well as capacity loss of the battery over time. The next chapter, Chapter 6, is a follow-up study to better understand the structure of the SEI and investigate its properties (e.g., diffusion, porosity), as opposed to its composition. These properties are very relevant in helping to construct macroscopic models to predict SEI growth and capacity loss of LIBs. It should be noted that the kMC model presented in Chapter 4 is an on-lattice kMC where each molecule occupies a lattice site of identical volume, independent on the nature of the molecule. In other words, such kMC-based methods do not have a real 3D structure of molecules. Hence, the idea of Chapter 6 (which is a proof of concept where the work is in progress) is to build a 3D structure of the SEI based on the results obtained in Chapter 4. Classical molecular dynamics (MD) simulations are usually used to construct a 3D structure of large systems (SEI) (e.g., 1000-1500 atoms) due to their relatively low computational cost compared to both DFT and semi-empirical methods. Therefore, we performed a classical MD study exploiting the reactive forcefield (ReaxFF) developed by Bedrov et al. 43 to construct a 3D structure of the whole SEI (inorganic and organic). However, through the construction of the SEI, we experienced a major limitation of ReaxFF to model the solid inorganic layer of the SEI: the structure of the solid Li2CO3 undergoes major structural instability. Hence, in our study (Chapter 6), we only studied the organic part of the SEI. Then, physical/structural analysis of this organic layer was investigated. Chapter 6: Investigation of the Porous Organic Layer of Dilithium Butylene Dicarbonate in the Solid Electrolyte Interphase of Lithium Batteries. The next step was to use PM7-D3 to overcome the limitations of this ReaxFF forefield. PM7-D3 would help to model the SEI and investigate its properties including both layer: inorganic and organic. However, as mentioned before, the computational cost of an MD based on semi-empirical methods e.g., PM7-D3 is much higher than that based on ReaxFF. One can see that constructing a plausible SEI structure is a balance between computational cost and more realistic chemistry. Due to the time limitation of the thesis, calculations using PM-D3 were not performed, and its perspective use will be discussed in Chapter 7.

Chapter 

Chapter 3. Methodology

Through the progress of the thesis, we have exploited different molecular modeling techniques: quantum mechanical methods (mainly density functional theory (DFT) and semiempirical methods), classical molecular dynamics (MD) and Kinetic Monte Carlo (kMC). In this chapter, we address the main theoretical details of these methods.

Wave Functional Theory: Hartree-Fock Method 1.1 Time-independent Schrödinger equation

Schrödinger's equation is a mathematical expression that describes the sate of a quantum system. In quantum chemistry, the quantum calculations are generally the ones that deal with stationary states, i.e., the non-relativistic time-independent Schrödinger equation 1,2,3 which is shown in Eq. ( 1):

H Ψ(x) = E Ψ(x) (1) 
Where H is the Hamiltonian operator, Ψ(x) is the wave function as a function of position and E is the energy of the system. The Hamiltonian is expressed as the following:

H = - ħ 2 2m ∇ + V(x) (2) 
where -

ħ 2 2m
∇ is the kinetic energy operator, m is the mass and

ħ 2 = h 2π
where h is Plank's constant, V(x) is the potential energy operator.

For a system of N electrons and M nuclei, the Hamiltonian operating on the wave function is:

H = ({i = 1, … , N}, {k = 1, … , M}) (3) 
H ̂= - ∑ ∇ i 2 2 N i=1 ⏟ kinetic energy of electrons - ∑ ∑ Z k R ik M k=1 N i=1 ⏟ Coulomb attraction between electron and nuclei + ∑ ∑ 1 r ij N j>i N i=1 ⏟ electrostatic repulsion energy between electrons - ∑ ∇ k 2 2 M k=1 ⏟ kinetic energy of nuclei + ∑ ∑ Z k Z l R kl M l>k M k=1 ⏟ electrostatic repulsion energy between nuclei (4)
Where 𝐙 is the atomic number, r ij is the distance between the electrons i and j, R ik is the distance between the electron i and the nucleus k and ∇ i 2 is the Laplacian of the i th electron 1 .

The Hamiltonian in Eq. ( 4) considers the kinetic energy of the electrons and the nuclei, the electrostatic repulsion energy between electrons and the electrostatic repulsion energy between nuclei as well as the electrostatic attraction between electrons and nuclei. It should be noted that the complexity of this equation makes it hard to be solved for systems containing more than two particles. Hence approximations are needed, the most important one is the Born-Oppenheimer (BO) approximation.

Born-Oppenheimer (BO) Approximation

The experienced forces on electrons and nuclei because of their electric charges are on the same order of magnitude. However, since the nuclei is much heavier than the electron, i.e., the mass of one nucleon is ≈ 1800 times higher than the mass of the electron, the velocity of the nuclei will be very small compared to the velocity of the electron. In other words, the electrons will respond much faster than the nuclei to any changes in the surrounding. So, while solving for electron motions, the nuclei can be approximated as fixed in space, i.e., the motion of the electron and the nuclei can be separated. This approximation is called the Born-Oppenheimer (BO) approximation 3 . The Hamiltonian after the BO approximation becomes:

H ̂= ∑ - 1 2 ∇ i 2 N i=1 -∑ ∑ Z k R ik M k=1 N i=1 + ∑ ∑ 1 r ij N j>i N i=1 + ∑ ∑ Z k Z l R kl M l>k M k=1 (5) 
We notice that the kinetic energy term for the nuclei in Eq. ( 4) has been removed. Following the BO approximation, we first solve for the electronic energy 2 . The electronic energy can be obtained from the electronic Hamiltonian:

H ̂el = ∑ - 1 2 ∇ i 2 N i=1 -∑ ∑ Z k R ik M k=1 N i=1 + ∑ ∑ 1 r ij N j>i N i=1 (6) 
H el Ψ el (x) = E el Ψ el (x) (7) 
Then, the total energy is calculated by the sum of the electronic energy and the repulsion energy of the nuclei.

E total = E el + ∑ ∑ Z k Z l R kl M l>k M k=1 (8) 
To obtain the total energy and solve Schrödinger equation following the BO approximation, we need to know the structure of the wave function. The exact mathematical description of the wave function is known for the Hydrogen atom where it is only a one electron system. However, for N-body (N is the number of electrons) quantum system, the exact wave function is not known but rather approximations to the wave functions are used.

Wave Function for N-body system: Slater Determinant

The most famous method used un quantum chemistry to approximate the wave function for multi-electron system is called the Hartree-Fock (HF) method. HF uses what is called Slater Determinant (SD) to approximate the N-body electron wave function 3 . The SD assumes that the N-body wave function can be expanded in a determinant of N × N where N is the number of electrons/spin-orbitals. The spin-orbitals used in HF are a product of the electron spin function and a function that contains the spatial coordinates (x,y,z) of the electron 3 :

φ = φ (x,y,z) σ s (9) 
For a two-electron orbital system: electrons 1 and 2, with spins α and β, the spin-orbitals function using SD is:

φ = φ (1,2) = 1 √2 | φ (1,𝛼) φ (2,𝛼) φ (1,𝛽) φ (2,𝛽) | (10) 
φ (1,2) = 1 √2 (φ (1,𝛼) φ (2,𝛽) -φ (1,𝛽) φ (2,𝛼) ) (11) 
The importance of SD is that it satisfies the antisymmetric principle of Pauli exclusion principle. It only allows an antisymmetric exchange of electrons within an orbital, i.e., electrons 1 and 2 should have different spins, if they have the same spin the determinant becomes zero.

It should be noted that the spin functions (σ s ) are orthonormal and has values either 0 or 1 depending on the orbitals. However, the spatial part of spin orbitals is complex and generally approximated by a set of functions called basis sets 1,3 . The computational cost depends on the complexity of the basis set used to represent this spatial function.

Basis sets

There are different classes of basis function used in quantum chemistry. The choice for basis sets depends on the studied system. Herein, we mention two types that are very commonly used 3 .

Gaussian-type basis sets or Gaussian-type orbitals (GTOs)

In Gaussian-type orbitals (GTOs), the spatial part of the wave function is expanded as a set of basis function 𝜙:

φ (x,y,z) = a 1 𝜙 1 + a 2 𝜙 2 + ⋯ + a k 𝜙 k (12) 
a is normalization constant, k is the size of the basis sets. For example, we can define a GTO as 3 gaussian functions:

GTO (3G) = c 1 e -β 1 r 2 + c 2 e -β 2 r 2 + c 3 e -β 3 r 2 (13) 
Such basis sets are generally used for isolated molecules in the gas phase where the mathematical nature of GTOs makes it easier to be evaluated. However, in other applications like solid states and material sciences where the periodic boundary conditions are imposed, the mathematical form GTOs is not the most natural choice. Other more convenient basis sets called plane waves basis sets are generally used.

Plane wave basis sets

Plane wave basis sets are a class of basis sets that follow Bloch's theorem where the wave function for a periodic potential φ k (r) is the product of a plane wave e i𝐤•r times a function with the periodicity of the crystal lattice u k (r).

The one-electron wave function can be written as: 1,4 φ 𝐤 (r) = u 𝐤 (r) e i𝐤•r (14

)
where k is the wavevector.

Under a crystal lattice translation (a is the lattice constant): u k (r) = u k (r + a). Such functions can be expanded as a Fourier series 1,4 :

u 𝐤 (r) = ∑ c 𝐆 e i𝐆•r G ( 15 
)
where G is the reciprocal lattice vectors and cG is a constant for crystal potentials. Substituting Eq. ( 15) in Eq. ( 14) gives a sum of a discrete plane-wave basis set 2 :

φ 𝐤 (r) = e i𝐤•r ∑ c 𝐆 e i𝐆•r G (16) 
It should be mentioned that plane waves are not adapted for the core-electrons. Hence, when using plane-waves, we always need to use pseudopotentials. The use of plane waves is very common in solid state materials and periodic boundary calculation where their plane wave nature facilitates the calculation comparing to other basis sets (e.g., GTOs).

From Wave Functional Theory to Density Functional Theory

The wave function is a function of the coordinate r of all N electrons Ψ = Ψ(r 1 , … , r N ). For example, for a single CO2 molecule, there are 22 electrons and 3 spatial dimensions (x,y,z) which means that the wave function for a single CO2 molecule has 66 dimensions. The same thing can be applied for a nanocluster of 100 Pt atoms where the wave function has more than 23,000 dimensions. Such high dimensionality gives us an idea that solving the Schrödinger equation is extremely hard and time intensive. Hence, the need to reduce the dimensionality is important to ease the calculations.

It should be noted that for any set of coordinates r 1 , … , r N , the wave function Ψ of N electrons cannot be directly observed. However, the probability of finding the N electrons at particular r 1 , … , r N can be measured. The probability can be obtained through the formula Ψ * (r 1 , … , r N )Ψ(r 1 , … , r N ), the (*) to indicate a complex conjugate. In experiments, we do not know which electron is number 1, number 2, number 3, etc. However, the quantity of interest is the probability of finding the N electrons at coordinates r 1 , … , r N regardless of their order. The related quantity is the density of electrons, n(r).

The density of electrons at a particular position r can be written as:

n(r) = ∑ Ψ i * (r)Ψ i (r) N i (17) 
The description of electron density n(r) reduces the complexity and dimensionality of the problem from 3N coordinate (Schrödinger equation) to only 3 coordinates. This idea was the birth of density functional theory (DFT) 1 .

Density Functional Theory: First Theorems

The density functional theory (DFT) was put on solid theoretical grounds in the mid-1960s based on two theorems proved by Kohn and Hohenberg 1 . The first theorem: "The ground-

state energy from Schrödinger's equation is a unique functional of the electron density". The second theorem: "The electron density that minimizes the energy of the overall functional is the true electron density corresponding to the full solution of the Schrödinger equation".

Based on these theorems, Kohn and Sham developed a set of differential equations. These equations are considered the basis of all DFT calculations.

The Kohn-Sham (KS) equation for a single electron wave function can be written as:

[- h 2 2m ∇ 2 + V(r) + V H (r) + V XC (r)] Ψ i (r) = E i Ψ i (r) (18) 
where V(r) is the potential for the electron interaction with all the nuclei. V H (r) is called the Hartree potential and defines the electron interaction with the total electron density. V XC (r)

is the exchange-correlation potential.

The total energy functional from following the KS equations as a function of electron density can be written as 1,3 :

E[n(r)] = E known [n(r)] + E XC [n(r)] (19) 
E known [n(r)] = - 1 2 ∑ ∫ Ψ i * (r) ∇ 2 Ψ i (r) dr -∑ ∫ Z a R a -r n(r) dr a i + 1 2 ∫ ∫ n(r) n(r) r -ŕd r dŕ (20) 
The term E known [n(r)] includes from left to right respectively: the electron kinetic energies, interactions between electrons and nuclei and the electron-electron interactions. The term

E XC [{Ψ i }] is the exchange-correlation functional 1 . E XC [{Ψ i }] contains the quantum mechanical effects that are not present in E known [n(r)].

Exchange-Correlation Functional

The exchange correlation potential V XC (r) at position r is defined as a functional derivative of the exchange correlation energy with respect to the electron density:

V XC (r) = δE XC (r) δn(r) (21) 
Based on the Hohenberg-Kohn theorem, the exchange-correlation functional exist but its exact form is not known "yet" 1 . Approximations have been derived from the uniform electron gas model where the electron density n(r) at any coordinates r is constant. Hence, the exchange-correlation potential at position r can be approximated from the exchangecorrelation potential of the uniform electron gas at the electron density n(r) observed at that position r:

V XC LDA = V XC electron gas (r) [n(r)] (22) 
This approximation is called the local density approximation (LDA) since it uses only the local density. Another more accurate approximation than LDA is the generalized gradient approximation (GGA) that uses the local electron density n(r) and the local gradient in the electron density ∇n(r) 1 :

V XC GGA = V XC electron gas (r) [n(r), ∇n(r)] (23) 
Other functionals can be constructed and give different level of accuracy based on other contributions like meta-GGA, hybrid functionals, etc 1,3 . It should be noted that the choice of the functional in quantum calculation depends on the application and is always a trad-off between accuracy and computational cost. For example, for solid state calculations, GGA functionals such as Perdew-Wang (PW91) and Perdew-Burke-Ernzerhof (PBE) are considered the best candidates and are widely used while for molecular systems, hybrid functionals (which are very costly for solid-states) are the preferred choice 1,3 .

Solving Kohn-Sham (KS) Equations Algorithm

Kohn-Sham (KS) equations are solved through an iterative algorithm, initialized by an initial (guess) electron density 𝐧(𝐫), see Figure 1. Then, the KS equations are solved to obtain the single particle wave functions. From the wave functions, the corresponding KS electron density 𝐧(𝐫) KS is calculated. If the new electron density 𝐧(𝐫) KS is the same as the initial electron density 𝐧(𝐫), then, it is considered to be the ground-state electron density. Otherwise, the electron density is updated and a new iteration with a new electron density starts. 

Semi-empirical Methods

Semi-empirical methods or low-cost electronic structure methods are a class of quantum mechanical methods that are based on approximation to DFT (e.g., DFTB) or HF theory (e.g., PM3) [5][6][7][8] . These methods use mathematical functions with empirical parameters which are trained by experimental data and/or more accurate theoretical models. Various approximation and formalisms are used to build Semi-empirical methods. The most common formalism is called the neglect of diatomic differential overlap (NDDO) 3,9 .

The Neglect of Diatomic Differential Overlap (NDDO)

The Hamiltonian in the HF formalism is modified using the NDDO formalism to reduce the computational cost following three main approximations 3 :

1) The core electrons are eliminated as they do not contribute to chemical activity only valence electrons are considered in the Hamiltonian.

2) The use of minimal basis sets to represent atomic orbitals (GTOs).

3) Reduce the number of electron-electron repulsion integrals since these terms are the most computationally expensive.

In the NDDO formalism, the core electrons are treated by reducing nuclear charge or by adding special core function. Generally, a parameterized function is used to represent the nucleus and the core electrons which drastically reduces the complexity of the calculation. Hence, only valence electrons are mainly considered, see Eq. ( 24) 3 :

H ̂val = ∑ [- 1 2 ∇ i 2 + V(i)] n(val) i=1 + ∑ ∑ 1 r ij j>1
n(val) i=1 (24) , where n(val) is the number of valence electrons, -1 2 ∇ 𝑖 2 is the kinetic energy operator of the i th valence electron, V(i) is the potential energy of i th valence electron in the field of nuclei and the core electrons,

∑ ∑ 1 𝑟 ij >i n(val) i=1
is the electron-electron repulsion term.

One-electron integrals

It should be noted that semi-empirical methods use atom centered GTOs. In NNDO-based methods, all 3-4 center/atom electron integrals are neglected. For example, the spin-orbitals centered on the same atom A following the one-electron Hamiltonian is 3,10 :

〈φ s A |h ̂| φ v A 〉 = ∫ φ s A h ̂ φ v A dτ ( 25 
)
〈φ s A |h ̂|φ v A 〉 = 〈φ s A | - 1 2 ∇ i 2 -V A | φ v A 〉 -∑〈φ s A |V B | φ v A 〉 B≠A (26) 
Where φ s A and φ v A are basis functions to represent the spin-orbitals located at A only. In this case, all potential terms for electron interacting with the nuclei are calculated. However, when spin-orbitals are located at two different atoms 10 :

〈φ s A |h ̂|φ v B 〉 = 〈φ s A | - 1 2 ∇ i 2 -V A -V B | φ v B 〉 (27) 
NDDO only considers the potential energy between the electron and nuclei A and B only, i.e., we ignore electron-nuclei attraction potential with the third center/atom C, i.e., 〈𝛗 𝐀 |𝐕 𝐂 |𝛗 𝐁 〉 = 0 which reduces the cost of the calculations.

Two-electron integrals

The two electron repulsion integrals found in

∑ ∑ 1 r ij j>1 n(val) i=1
are computationally expensive to calculate. The general form of the two-electron integrals can be written as 3,10 :

∬ φ s A (1) φ v B (1) 1 r 12 φ λ C (2) φ σ D (2) dτ dτ (28) 
Where φ s A , φ v B , φ λ C and φ σ D are basis function to represent the spin-orbitals located at atom A, B C and D respectively. In NDDO, the two-electron electron integrals are only evaluated when A=B and C=D which drastically reduces the computational cost.

Following the one electron and two electron approximation, the total number of integrals is reduced from N 4 to N 2 which speeds up the calculation 3 .

It should be noted that the NNDO formalism has undergone various improvements and led to the development of various semi-empirical methods like AM1, PM3 [5][6][7][8] . The parametric methods (PM3), which was been developed by James Stewart in 1989, has received a huge interest and continuously experienced various improvement leading to the development of PM6 5 and PM7 6 .

Classical Molecular Dynamics

Newton's Equations of Motions and the Verlet Algorithm

Classical Molecular Dynamics (MD) is a class of molecular modeling techniques that solve Newton's equations of motions to predict the temporal evolution of a system of atoms or molecules. The most used algorithm to solve Newton's equations is what is called the Verlet algorithm where the position 𝐫 of a particle is given by Taylor expansion as 11 :

r(t + ∆t) = r(t) + v(t)∆t + f(t)∆t 2 2m + r ⃛∆t 3 6 + 𝑂(∆t 4 ) (29) 
, where m is the particle's mass, v(t) is the velocity, f(t) is the force and r ⃛ is the third derivative of position with respect to time. Similarly:

r(t -∆t) = r(t) -v(t)∆t + f(t)∆t 2 2m - r ⃛∆t 3 6 + 𝑂(∆t 4 ) (30) 
Summing Eq. ( 29) and Eq. ( 30) gives:

r(t + ∆t) + r(t -∆t) = 2r(t) + f(t)∆t 2 𝑚 + 𝑂(∆t 4 ) (31) 
r(t + ∆t) ≈ 2r(t) -r (t -∆t) + f(t)∆t 2 𝑚 ( 32 
)
The velocity of the particle v(t) depends on the change in the position of the particle over time:

v(t) = r(t + ∆t) -r(t -∆t) 2∆t + 𝑂(∆t 2 ) (33) 
It should be noted that to calculate the position and hence the velocity of a particle we need to know the forces applied on that particle. The forces applied on each particle during the simulation has three components (x, y and z) 11 . For example, the x-component of the force f x (r) for a system of a pair of particles can be obtained from the potential energy function u(r) through Eq. (34).

f x (r) = - ∂u(r) ∂x = -( x r ) ∂u(r) ∂r (34) 
Note that these forces e.g., f x (r) are calculated using interatomic potentials or ForceFields (FF), see Section 4.2 for details. The calculation of the forces is the most time-consuming step in the MD simulation. For a system of N particles, the evaluation of the forces scale as

N( N-1) 2
or N 2 . However, approximation can be made to speed up the calculation. For example, we can ignore the forces between two particles separated by large distance, i.e., we specify a cutoff distance below which the force between the two particles is calculated as they are close enough to interact. Otherwise, the force term concerning these particles is neglected 11 . Such approximation reduces the complexity of the equations in a way that the computation time scales in the range of [N -N A typical algorithm used to perform MD simulations is shown in Figure 2. The algorithm starts by assigning initial positions and velocities to the particles in the system. Then, the assigned FF through the potential energy function is used to calculate the forces on each atom to solve Newton's equations. Note that the forces experienced by each atom would lead to changes in its position and velocity. Hence the position r(t + ∆t) and the velocity v(t + ∆t) of the particles as well as the time (t = t + ∆t) are updated accordingly. The algorithm continues in this manner where the forces are recomputed depending on the new position and velocity of the particle. Consequently, the newly calculated forces would lead to new changes in the positions and velocities of the particles where the time will also be updated. The MD simulation continues the cycle of (re)updating positions, velocities, and time as well as (re)calculating the forces until the criteria are satisfied (end of simulation time) 11 .

Figure 2: Molecular Dynamics algorithm 11

ForceFields (FF)

In molecular modeling, classical ForceFields (FF) are mathematical expressions that are used to estimate the forces between atoms 12 . FF contains parameters (e.g., bond angles, bond lengths, atomic charges, etc.) that need to be parametrized and validated using training sets to check their performance/accuracy against more accurate theoretical models (e.g., DFT). It should be noted that FF-based methods are much faster than quantum mechanical methods (e.g., DFT and semi-empirical methods) as they classically describe the forces between atoms and ignore the time-consuming quantum mechanical effect. Due to their classical nature, FF's parameters are not fully transferable, i.e., they often need to be readjusted when applied to a different class of molecules, which was absent in the training set during the parameterization process 12 .

FFs can be classified into two classes: nonreactive or reactive. Nonreactive FFs are the ones that describe the interaction between atoms but do not allow for bond breakage/formation during the MD simulation. For modeling chemical reactions, reactive ForceFields (RFF) are implemented. One of the most popular RFF is ReaxFF 12,13,14 . ReaxFF uses the concept of bond order (BO) to calculate the bonded and nonbonded interactions (Van der Waals and electrostatic). The BO mimics the number of shared electrons in the bond between two atoms and can be calculated from the interatomic distance r ij , see Eq. (35). 

𝐁𝐎 𝐢𝐣 =
The first, the second, and the third exponential terms correspond to the single, double (π), and triple (ππ) bond order contributions, respectively. The bonding terms (p) and bonding equilibrium distance, (r o ) are parameterized to yield bond strengths and distances that agree with quantum mechanical predicted values for species that are at a distance r ij apart 13,14 .

The total energy of the system in ReaxFF is expressed as a sum of various partial energy contributions:

𝐄 𝐬𝐲𝐬𝐭𝐞𝐦 = 𝐄 𝐛𝐨𝐧𝐝 + 𝐄 𝐨𝐯𝐞𝐫 + 𝐄 𝐮𝐧𝐝𝐞𝐫 + 𝐄 𝐥𝐩 + 𝐄 𝐯𝐚𝐥 + 𝐄 𝐭𝐨𝐫 + 𝐄 𝐯𝐝𝐖𝐚𝐚𝐥𝐬 + 𝐄 𝐜𝐨𝐮𝐥𝐨𝐦𝐛 (36) 
The energy terms on the right-hand side of Eq. ( 36) are bond, over-coordination penalty and undercoordination stability, lone pair, valence, torsion, nonbonded Van der Waals, and Coulomb contributions respectively. In FF-based MD, the forces between atoms are computed from the potential energy functions associated with each of these partial energy contribution terms in Eq. (36). More details about ReaxFF are found in the original publications 12,13,14 .

Kinetic Monte Carlo (kMC)

Kinetic Monte Carlo (kMC) and Rate Constants

Kinetic Monte Carlo (kMC) methods are computational algorithms that obtain numerical results by repeated random sampling 15 . In this thesis, we have used the classical kMC method, usually named the "n-fold way", in the framework of the Bortz, Kalos, and Lebowitz (BKL) approach [16][17][18] . In MC, the evolution of chemical reactions in function of time can be expressed by means of a Master Equation 12:

dP α dt = ∑[W αβ P β -W βα P α ] β ( 37 
)
where t is time, α and β are configurations, P ∝ and P β are their probability. W αβ and W βα are transition probabilities per unit time that specify the rate of changes due to reactions (or events). The transition probabilities can be obtained with quantum chemical methods. The first term on the right-hand side of Eq. ( 37) stands for the increase in P α when other configurations change to α; the second term is for the reaction of α.

kMC replaces reaction probabilities by rate constants and assumes that the probability distribution P rx (t) of the time (t) that a reaction occurs is a Poisson process 15 :

P rx (t) = k e -k(t-t now ) (38) 
, where k is the rate constant and t now is the current time. The rate constant can be obtained from the transition state theory (TST) [19][20][21] according to:

k = k B T h q ‡ q exp [- E b k B T ] (39) 
, where E b is the energy barrier of an activated reaction or event (i.e., diffusive) obtained from DFT calculations, k B is the Boltzmann constant, T is the absolute temperature, h is Planck's constant and

q ‡ 𝑞
is the ratio of the partition function between the reactant and the transition state. This ratio is generally considered almost unity, assuming the situation where the entropy of the transition state of a reaction does not differ from the one of the reactants.

Hence, we only have

k B T h
which, in all of the simulation of this thesis, is approximated to k o = 10 13 s -1 [19][20][21] . Consequently, the simpler form of the rate constant equation is:

k = k o exp [- E b k B T ] ( 40 
)
where k 0 is the preexponential factor.

Kinetic Monet Carlo (kMC) Algorithm

What makes kMC different than other MC methods is the "notion" of time. In regular MCs, there is no time evolution, only sampling an equilibrium distribution. The principle of kMC is to start with a particular configuration and then predict the subsequent configurations. If a system is at configuration α, then the probability that the system stays at the same configuration is given by:

Q αα (t) = exp(-R αα t) (41) 
, where Q is the matrix of probabilities and R is the diagonal matrix of reactions. The probability distribution for the system to stay at the same configuration (first reaction) at time t ′ is given by:

r 1 = exp(-R αα t ′ ) (42) 
, where r 1 a random number ∈ [0,1). However, for a reaction to go from a configuration α to a configuration β, it should occur following W βα generating a new configuration α ′ at time t ′ from all possible new configuration β with a probability proportional to W α ′ α . The algorithm continues (if the end time of simulation has not reached yet) to go to the next step and increase the time to t ′′ according to the following equation:

r 2 = exp(-R α ′ α ′ (t ′′ -t ′ )) (43) 
The state of the system in kMC evolves by randomly selecting an event (diffusion or reaction) and its corresponding rate constant through:

∑ N i k i k-1 i=0 < ρ 1 ∑ N i k i i ≤ ∑ N i k i k i=0 (44) 
where N i is the number of reactions type i, k i is the rate constant of reaction i, ∑ N i k i i is the total rate and ρ 1 is a random number ∈ [0,1). kMC uses a method called the Variable Step Size Method (VSSM) 15 to run its calculation and describe the evolution of time. The algorithm of VSSM is shown in Figure 3. The algorithm starts by assigning the initial configuration α and time t. Then, the algorithm generate a time interval ∆t defining the time elapsed between two consecutive events occurring in the system. The time increases as 15 :

∆t = - ln(ρ 2 ) ∑ W βα β ( 45 
)
where and ρ 2 is a random number ∈ [0,1). Then, the algorithm change from the current configuration α to a a new configuration α ′ with probability W α ′ α /∑ W βα β . Then, the algorithm generates a new ∆t and a new configuration. The algorithm continues until the condition of the simulation are fulfilled, see Figure 3. More details about the kMC methodology are found in the literature [16][17][18] . The solid electrolyte interphase (SEI) is a multistructured thin layer that forms at the anode/electrolyte (e.g., lithium-metal/ethylene carbonate EC) interface due to electrolyte reduction. At the initial battery cycles, the SEI protects the electrolyte from further reduction. However, the SEI continues to grow with time leading to capacity loss and eventually the death of the battery. In this work, we modeled the battery-aging process at storage conditions (calendar aging). We studied EC decomposition reactions using density functional theory (DFT) simulations in the gas-phase in isolation and over the inorganic layer found inside the SEI composed of Li2CO3. We used the values obtained from DFT alongside diffusion coefficients from the literature to explore the temporal evolution of the concentration of species by kinetic Monte Carlo (kMC) simulations. We found that reactions occurring over Li2CO3 (001) led to a relatively slow SEI growth which is compatible with the general use of carbonate-based solvents in LIBs for protection/passivation purposes. Our simulations over Li2CO3 (001) predict the formation of a multilayered structured SEI. Moreover, our kMC simulations predict the shift from a non-linear initial behavior to a linear behavior for the capacity loss induced by the formation and growth of the SEI over time which was reported in previous experimental and theoretical studies for lithiated graphite-based batteries. We extended our analysis to the decomposition reactions over the Li2O (111) surface which could form from the decomposition of Li 2 CO 3 . We found that the selectivity of the decomposition reactions strongly depends on the inorganic surface. The main conclusion of this study is to highlight the crucial role played by surface reactions inside the SEI on the nature and selectivity of the decomposition kinetics of EC for the SEI growth.

Introduction

Batteries have been used and undergone continual improvement to meet market requirements and enhance daily life's activities 1,2 . Among the various battery types, lithiumion batteries (LIBs) are playing an increasingly important role in energy storage due to their high-power density, high energy density, low self-discharge and low reduction potential of Li (-3.04 V with respect to the standard hydrogen electrode) 1 . However, the performance of the battery tends to deteriorate over time due to irreversible chemical processes that take place 3- 5 . This gradual deterioration of the battery is governed by a process called battery-aging which can be cyclic (when the battery is used) or calendar (i.e., even if the battery is stored) [3][4][5] . The complex aging mechanisms can be categorized into loss of active and accessible electrode material (LAM), loss of Li inventory (LLI) and loss of conductivity (CL) in the electrode 6 . LLI is considered to be the primary aging mechanism leading to capacity loss. LLI mainly arises from the formation and growth of a thin layer (nanometer in thickness) at the anode/electrolyte interface called the solid electrolyte interphase (SEI) 7,8 . The SEI forms due to the reduction of the electrolyte by electrons from the anode 7 . The formation of the passivating SEI at the initial cycles of the battery usage protects the electrolyte from further reduction. However, the SEI layer continues to grow over time consuming further electrons and electrolyte leading to capacity loss and eventually the death of the battery 1,7 .

The SEI is viewed as a heterogeneous multilayered structure: an inner inorganic layer near the anode/SEI interface and an outer organic layer close to the SEI/electrolyte interface 7,9,10 . The nature of the anode and the electrolyte used affects the composition and the structure of the SEI layer 1,7,8 . Materials such as graphite Li-metal, silicon and tin have been used as anode materials 1,7,8 . The electrolyte used is generally composed of organic solvents, salts, and additives 1,7,8 . The commonly used solvent in LIBs is a mixture of cyclic carbonates like ethylene carbonate (EC) and linear carbonates: dimethyl carbonate (DMC), diethyl carbonate (DEC) or/and ethyl methyl carbonate (EMC). Most studies have been focusing on the cyclic EC which is the main solvent as it forms a stable SEI when it decomposes 1,7,8 . EC was found to have a higher electron affinity than linear carbonates (DMC, DEC, EMC), which makes EC most prone to reduction in cyclic/linear mixed electrolytes 7 .

For the SEI formed in EC-based electrolytes, experimental studies evidenced the presence of various species like Li2CO3 and alkyl carbonate (ROCO2Li)2 representing the inorganic and organic species respectively 1,[7][8][9][10][11][12] . The alkyl carbonate species formed inside the SEI are generally dilithium butylene dicarbonate (Li2BDC) and dilithium ethylene dicarbonate (Li2EDC). Even though experimental studies were able to give us an idea about the composition of the SEI, other aspects like thermodynamics and kinetics of the SEI formation and growth are hard to investigate due to the limitation of experimental techniques 1,7,8 . Theoretical studies have been performed to understand the thermodynamics, kinetics and composition of the SEI layer 7,8,[13][14][15][16][17][18][19] . Previous theoretical studies (e.g., DFT-based) have been used to model the very initial steps of EC reduction reactions by lithium radicals (Li 0 ) in isolation, ("only" Li 0 and EC, as initial reactants) or Li-metal 13,14,[20][21][22] . It was proposed that the decomposition reactions forming the SEI starts once Li 0 attacks EC, forming the closed Li-EC complex cLi-EC• (c stand for closed and • to indicate that the species is a radical). cLi-EC• undergoes a ring-opening reaction leading to oLi-EC• (o stands for opened) which in turn initiates a cascade of reactions to form Li 2 CO 3 and/or (ROCO 2 Li) 2 7,8,[13][14][15][16][17][18] . Since DFT-based methods are restricted to very short time scales, they are only directly applicable to the fast initiation reactions but cannot model the long-time evolution of large systems, characteristic for the slow growth of the SEI.

Continuum models can extend the simulation time and help to understand battery-aging processes that cannot be obtained by DFT 7,8,23,24 . Christensen et al. developed a continuum model of the SEI growth, assuming the SEI is mainly composed of Li2CO3 25 . They found that the SEI growth inducing capacity loss is faster for charged batteries where the anode contains more (reactive) electrons than for uncharged batteries 25 . Another continuum model developed by Kolzenberg et al. predicted a shift from an initial non-linear behavior of SEI growth with time to a linear regime at the long-term 26 . A shift to linear capacity loss was also observed experimentally by different groups during cyclic and calendar aging 3,5,[27][28][29] . Such continuum models can extend the simulation time, but they do not provide us with molecular and structural insights on the kinetics of the capacity loss induced by SEI growth 7 .

Kinetic Monte Carlo (kMC)-based models have attracted interest since they can simulate longer time scales (from milliseconds to hours) compared to what is attainable in DFT (picoseconds) and molecular dynamics MD (10 -9 -10 -6 s) 30 . Still, kMC explicitly describes the geometric evolution of a given system via stochastic reaction sequences and, thus, gives more structural insights than continuum models 30 . kMC uses a library of rate constants of elementary chemical reactions that are obtained from experiments or atomistic models (e.g., DFT) 8,30 . Previous kMC models employed in electrochemical systems like fuel cells, Li-O2 batteries and slurry redox flow batteries used on-lattice structural models 31 . In this common setup, species (atoms or molecules) occupy one or more discrete lattice sites 30 . Such kMC models can model reactions and diffusion events. For example, Thangavel et al. developed a kMC model for simulating the evolution of the carbon/sulfur mesostructure for discharging Li-S batteries where the rate constants of the electrochemical reactions were calculated using Butler Volmer type equations 31 . Another kMC model developed by Yin et al. simulated the process of Li 2 O 2 thin film growth during discharging of Li-O 2 batteries 32 . They found that Li 2 O 2 thin layer ordering is determined by the interplay between reaction and diffusion kinetics. In the context of the SEI in LIBs, previous kMC models were used to study the effect of some parameters like temperature and the charging rate on the charging time and SEI thickness 8 . A more detailed study by Abbott et al. 15 performed DFT calculation in the gas-phase in isolation for EC decomposition reactions and used the values to perform a kinetically corrected Monte Carlo-Molecular Dynamics simulations to study the SEI growth. Their model predicts a multilayered structure of the SEI. Furthermore, the simulations reveal the onset of Li2CO3 crystallization 15 in agreement with an experimental study where Li2CO3 crystallites were observed in the SEI 33 . A recent study by Spotte-Smith et al. 17 performed DFT calculations for EC decomposition reactions also in the gas-phase in isolation to obtain their corresponding energy barriers (Eb). They used the DFT values to obtain the rate constants of each reaction to be used in a 1D kMC model to study the SEI growth at different values of electrostatic potential. They also predicted a multilayered structure SEI 17 .

Previous joint DFT-kMC studies were able to predict a plausible SEI structure but none of them reported the way the capacity loss induced by the SEI growth evolves with time. In addition, previous DFT methods used to study EC decomposition reactions were considering the decomposition reactions in isolation or Li-metal 13,14,17,[20][21][22] . However, once the SEI layer is formed, the electrode is in contact with a series of layers from an inner inorganic layer to an outer organic layer which is in contact with the electrolyte (anode/inorganic-layer/organiclayer/electrolyte) [7][8][9][10] . Single et al. were the first to suggest that SEI growth reaction happens inside the SEI but did not specify the exact interface where the decomposition reactions occur 34 . The organic layer is a composite heterogeneous and porous material allowing the transport of EC molecules 2,7 . Since Li 0 will immediately react with the reducible organic species, it cannot diffuse through the organic layer of SEI. The inorganic layer is dense and permeable to Li 0 /Li + but not to the much larger EC molecules 7,35 . It should be noted that the Li 0 diffusion inside the inorganic SEI was first proposed by Shi et al. 35 . After that, follow-up studies by different groups investigated the effect of Li 0 diffusion on the SEI growth and capacity loss 23,26 . They suggest that Li 0 is the most likely electron transport mechanism for the SEI growth and predicted a shift to linear SEI growth with time 23,26 . Hence, we expect the SEI growth reactions to occur over the inorganic layer (e.g., Li2CO3) at the inorganic/organic (in/organic) interface inside the SEI, see Figure 1, i.e., by solvent diffusion from the electrolyte through the porous structure of the organic layer, until the solvent molecule reaches the dense inorganic layer, where it reacts with Li 0 that has diffused from the electrode to the in/organic interface.

Note that in commercial batteries the electrolyte is very complex and contains many species including salts (e.g., LiPF6) and additives (e.g., VC). LiPF6 and VC are added to the electrolyte to enhance some electrolyte properties like ionic conductivity and temperature range 1,7,8 . They contribute to the SEI structure and composition. For example, the decomposition of LiPF6 lead to the formation of LiF which was reported to be present the in SEI 1,7,8,28,36,37 . However, studying the decomposition reactions of realistic electrolyte mixture including their corresponding decomposition pathways is very challenging and computational too expensive. Considering this limitation, in this work, we focus on studying the SEI formation and growth during calendar aging of an LIB using a model system containing Li-metal as the anode and EC as the solvent. It is important to mention that the main consequence of not including other electrolyte species (e.g., LiPF6 and VC) in our study is probably the oversimplification of the heterogeneous SEI formed in our simulations compared with the one observed in real batteries. In that context, our work can be considered as an approach to the formation of SEI using a simplified electrolyte composition. We perform DFT calculations for the set of EC decomposition reactions commonly discussed in the literature. For reference purposes, we study the reactions in the isolated gas-phase similar to previous studies and inside the SEI layer. Our main aim is to analyze the reactions over the inorganic layer of Li2CO3 and assess the effect of the surface (i.e., SEI) on the thermodynamics and kinetics of these decomposition reactions. We mainly focus on the cLi-EC• ring-opening reaction that starts the whole cascade of reactions. For this purpose, we used a slab of Li 2 CO 3 (001) as can be seen in Figure 1 in ANNEX A, which corresponds to the most stable and most abundant, surface orientation of Li2CO3 and hence is most likely formed in the SEI 38 . Then, we used the activation energies and rate constants obtained from DFT calculations alongside diffusion coefficients from literature [38][39][40] in a kMC model to study the growth of the SEI layer (composition and kinetics) and the capacity loss with time. It should be noted that, since we are modeling calendar aging of the battery, all the DFT and kMC calculations were performed in the absence of any electric field to mimic an inactive battery (at storage conditions).

Figure 1: The interface where SEI growth reactions are expected to occur.

Methods and Computational Details 2.1 DFT Computational Details

All DFT calculations have been performed using the Vienna Ab initio Simulation Package VASP 5.4.4. [41][42][43][44] using the Perdew-Burke-Ernzerhof functional (GGA-PBE) 45 . Dispersion interactions were included using the density-dependent dispersion correction dDsC 46,47 . The projector augmented plane-wave (PAW) pseudopotential was used to describe the core electrons. All structures were optimized using the conjugate gradient algorithm in the gasphase in isolation (no slab) and over the slab of Li2CO3 (001), where (001) is the most stable surface orientation of Li2CO3 38 . The slab used to model Li2CO3 (001) layer is made of four layers, see Figure 1 in ANNEX A, where the bottom two are fixed. 12 Å of vacuum spacing were introduced to reduce the periodic interaction in the direction normal to the slab. The k-point sampling of the first Brillouin zone was performed with a 1 × 1 × 1 Monkhorst-Pack 48 grid for the isolated molecules, 3 × 3 × 1 grid for the slab Li2CO3 (001) calculations and 5 × 5 × 5 grid for bulk Li2CO3 calculations. Convergence criteria for the calculations were set to 10 -6 eV and 0.03 eV/Å, for the electronic self-consistency iterations and ionic relaxation loop respectively. A Fermi smearing with a width of 0.03 eV was employed. Spin polarized calculations are performed for radical species (such as cLi-EC•). The cutoff energy for the plane-wave-basis was set to 600 eV. Since we are interested in modeling the battery during calendar aging, i.e., the battery is inactive, we did not apply an electrochemical potential.

To obtain the energy barriers (Eb), the optimized geometries of reactants and products were used as inputs for the Opt'n Path software 49 to have a rough estimate of the minimum energy path (MEP) connecting them. The Nudged Elastic Band method (NEB) 50 was used to find a more accurate MEP and a possible transition state (TS) structure by creating 8 images between the initial and final states. Once the potential candidate for a TS was identified, the dimer method 51 was exploited to optimize the possible TS geometry. Finally, to ensure the nature of the potential candidate as a TS, a vibrational frequency calculation was performed. In the case of a TS, only one imaginary frequency should be obtained, which corresponds to the chemical reaction of interest.

Kinetic Monet Carlo (kMC)

Monte Carlo (MC) methods are computational algorithms that help obtain numerical results by random sampling [52][53][54] . In the present work, we have used the classical kMC method, usually named the "n-fold way", in the framework of the Bortz, Kalos, and Lebowitz (BKL) approach 52- 54 . Our kMC simulations were performed using SPPARKS software which is a parallel MC code 55 . We have adapted the on-lattice application "erbium" of SPPARKS to our system to include enough species to model the growth of our SEI model. More details about the kMC methodology and code modifications are found in the Methodology Chapter and Annex A respectively. Any event (reaction/diffusion) to occur in the "erbium" application must be described by an energy barrier/rate constant. If "two" species are meant to react to form "one" new species, they have to meet in space and a vacant site would be added to conserve the initial number of sites, Eq. (1).

A + B → C + vacant site (1) 
For the SEI to grow, three main factors are important: Li 0 diffusion, EC diffusion and decomposition reactions' energy barriers. In our simulation, all chemical reactions are considered reversible. SPPARKS also allows for calculation of diffusion coefficients. Additional details on the kMC parameters and the validation of the diffusion coefficient obtained through the mean square displacement are provided in the Annex A.

kMC set-up

The on-lattice kMC application implemented in the work represents a constant volume system, which has important implications in the way the reaction paths are considered. In practice, to avoid dilution of the system due to the production of gases, we assumed that once a gas molecule forms (e.g., C2H4), see Eq. ( 2), it immediately escapes from the volume control of our kMC simulations close to the SEI layer through combination of Eq. ( 2) and Eq. ( 3) to give Eq. ( 4):

A + B → C + C2H4 (2) 
C2H4 → vacant site (3)

A + B → C + vacant site (4) 
The concentration of any species (e.g., i), [C i ], is calculated using:

[C i ] = N i N A V total (5) 
, where N i is the number of species i inside the simulation box, N A is Avogadro's number and V total is the total volume of the simulation box.

The initial conditions of our kMC simulation where the solvent (EC) is in direct contact with the Li-metal, see Figure 4a. We used a simulation box with dimensions 8.8 nm × 8.8 nm × 35.2 nm corresponding to a total volume of ≈ 2700 nm 3 . The total number of sites is 128000. The box is periodic in the plane (x and y) direction only. We used an FCC lattice to model our system. The FCC lattice constant (a) is set to be 4.4 Å, providing a molar volume of 13.0 cm 3 mol -1 and specific capacity of around 3862 mAh.g -1 representing pure Li-metal anode as reported in the literature 1 . It should be noted that the local concentration of species (e.g., Li 0 ) is calculated with respect to the volume occupied by that species. Around 4.4 nm (in z direction) of the simulation box is filled with Li 0 with initial local concentration of [C local_Li 0 ] = 78.0 mol/l to mimic a Li-metal. Since we are using constant volume kMC (with the inherent fixed fcc-lattice size limitations) and to avoid EC being the limiting reactant (due to the lack of reducible species), the size of the EC compartment was set to be larger (around 30.8 nm in z direction, after the Li-metal zone) than that of the Li-metal with local concentration of that of the bulk EC [C bulk_EC ] = [C local_EC ] = 15.0 mol/l as reported in the literature 1,15 . It should be noted that our on-lattice kMC setup is to be understood as a molecular kMC approach, i.e., lattice sites can host molecules, not just atoms. This implies that the volume occupied by a single molecule is not realistic (the lattice distance was chosen to be representative of metallic Li). However, to have realistic starting concentrations of the solvent (EC) we spaced the EC molecules with empty sites and since they are freely diffusing (no lateral interactions), the average concentration is then physically relevant. For sake of simplicity, we will be referring to the concentration of species with respect to the total volume of the simulation box following Eq. ( 5): [C EC ] = 12.8 mol/l and [C Li 0 ] = 9.7 mol/l in the rest of the article. It should be noted that all species included in our model are neutral (e.g., Li 0 , EC). All our kMC simulations have been performed at constant temperature of 298 K (25 °C), representing normal storage conditions at room temperature in the absence of an electrical current.

As discussed before, the inorganic species Li2CO3 is permeable to Li 0 but not to EC. In our model, on one hand, EC can diffuse through vacancies and the newly formed species (excluding Li2CO3) and is assumed to have diffusion constant in the bulk of DEC_Bulk =10 -10 m 2 s - 1 and inside the organic SEI of DEC_SEI =10 -13 m 2 s -1 respectively as reported in previous studies 25,34,39,40,56 . On the other hand, Li 0 can diffuse only through the inorganic species Li2CO3. The diffusion coefficient of Li 0 inside the bulk Li2CO3 is assumed to be DLi =10 -14 m 2 s -1 which falls in the range of Li diffusion inside the SEI as reported in the literature 34,38,57,58 .

Note that several theoretical studies devoted to the transport of species in the solid phase usually use grain boundary models to calculate the diffusion coefficients. Hence, they intrinsically assume faster kinetics since diffusive species are placed close to solid edges. However, once the bulk structure of the crystal forms (as in the case of SEI growth), the "average" diffusion of species through the bulk solid phase will probably be slower. This inherent assumption affects the resulting time scale of kMC simulations, since both reactive and diffusion events are coupled in our model. The timescale in all our simulations must be considered as qualitative since it is difficult to link to any "real time" observed in experiments. More details about kMC methodology and assumptions made are found in the Methodology Chapter and Annex A.

In all our calculations, we used the "tree" solver implemented in SPPARKS. Performance tests to check the effect of the number of cores on the results of simulations were made. It was found that the results are independent on the number of CPU cores used. Consequently, all calculations in the following sections were performed using 32 cores. All parameters used in SPPARKS, performance test and additional results are provided in Annex A.

Results and Discussions

In the first subsection, we describe our DFT results for EC decomposition reactions in isolation and over Li 2 CO 3 (001). In the second subsection, we discuss the kMC simulations' results for the SEI growth and capacity loss.

DFT EC Decomposition Reactions in the Gas-Phase Isolation

The SEI starts to form when EC and Li 0 meet at the anode/electrolyte interface. Scheme 1 shows all decomposition reactions included in our study with energy values referring to the gas-phase. EC and Li 0 combine to form cLi-EC•, where the electron is located at the carbonyl carbon, which undergoes ring-opening reaction (R I , where "R" stands for Reaction and "I" is the reaction number) to form oLi-EC• through an energy barrier of 23 kJ/mol. The electron is located at the terminal CH2 of the newly formed product which could dissociate to ethylene (C2H4) and carbonate radical LiCO3• (RII) intermediate complex (through an energy barrier of 65 kJ/mol) where the electron is located at the oxygen (not connected to Li).

Once oLi-EC• is formed, a series of cascade reactions can occur. oLi-EC• can react with Li 0 to form Li2CO3 and C2H4 (RIII) or undergo coupling reaction with itself forming the alkyl carbonate Li2BDC (RIV) or it reacts with a carbonate radical LiCO3• forming the other alkyl carbonate Li2EDC (RV) via a substitution reaction. LiCO3• can also react with Li 0 to form Li2CO3 (RVI). The barrierless formation of the carbonate and alkyl carbonate (Li2BDC and Li2EDC) has also been suggested in the literature [13][14][15] . It should be noted that all reactions obtained in the gas phase in isolation are exothermic except RII, see Annex A for additional results and more details.

The inorganic part of the SEI layer (Li 2 CO 3 ) forms through two paths (R III and R VI ). We would expect more inorganic layer at high Li 0 concentration mostly through RIII since the energy barrier of RII is the highest, and this reaction is essential for RVI to occur. Away from the anode and closer to the electrolyte, Li 0 concentration decreases, and more organic species are expected 1,2,8,11,12,15 . The formations of the organic species Li2BDC and Li2EDC are barrierless but the decomposition of oLi-EC• (RII) is required first for Li2EDC. Consequently, based on the gas-phase DFT computations, we would expect Li2BDC to form before Li2EDC formation. Scheme 1: Ethylene carbonate (EC) decomposition reactions in the gas-phase in isolation. Eb is the energy barrier of each reaction in kJ/mol.

EC Decomposition Reactions over Li 2 CO 3 (001)

The diffusion of EC is faster than Li 0 , see Section "kMC set-up". Hence, the decomposition reactions over the surface start with the adsorption of EC over the surface (S-EC) until it meets Li 0 diffusing through Li2CO3 coming from the anode to form S-cLi-EC•, where S stands for the surface Li2CO3 (001). Therefore, we have also investigated the reaction sequence on the most stable surface of Li2CO3. The relative energies of species over Li2CO3 (001) are shown in Figure 2. Even though most of the reactions over Li2CO3 (001) follow the same chemistry as in the gas-phase in isolation, we notice some differences in energy barriers and reaction energies for RI and RII. The surface stabilizes the species compared to the gas-phase case in isolation. For example, the effect of Li2CO3 (001) stabilize cLi-EC• leading to an increase in the energy barrier for ring-opening reaction RI which initiates the cascade reactions. Consequently, it is harder to initiate the cascade reactions over Li2CO3 (001) since cLi-EC• is more stable in comparison with the isolation case. The transition state configuration for the ring-opening reaction over Li2CO3 (001) is shown in Figure 3. We notice that a Li atom of the surface is strongly interacting with the adsorbate. In contrast, the surface does not have a significant impact on the energy barrier of RII. Additional results including the geometries of species over Li2CO3 (001) are found in the Annex A. All barrierless reactions in Scheme 1 were found to be also barrierless over Li2CO3 (001) except for RIV. This can be attributed, on one hand, to the fact that in the direct reaction of the two o-LiEC• to form Li2BDC (in isolation), the reorientation to meet the "good" reaction configuration for C-C coupling reaction should come at no-cost. On the other hand, the surface stabilizes oLi-EC• leading to a C-C coupling with 13 kJ/mol energy barrier. In contrast, the oxygen radical in LiCO3• is highly reactive, and undergoes reactions RV and RVI with no energy barrier even over Li2CO3 (001).

The energy barriers obtained from our calculations agree with those of a previous study by Zhang et al. 14 . However, it should be noted that the energy barriers vary in the literature and are sensitive to the level of theory used. Spotte-Smith et al. 17 reported that the energy barrier varies for EC decomposition reactions and gave an example for the cLi-EC• ring-opening reaction where the difference could reach 90 kJ/mol at different levels of theory. Herein, we target the difference between reactions in isolation and over the surfaces by keeping the same level of theory and assume that this relative quantity is more robust with respect to the level of theory.

To study the kinetics of the SEI growth over time considering the effect of diffusion of species, we used the obtained energy barriers to calculate the rate constants needed for our kMC model, see the Methodology Chapter and Annex A for details. In particular, kMC allows us to compare the relative effect of reactions occurring over Li 2 CO 3 (001) with respect to the gas-phase case in isolation and the ensuing consequences on the kinetics and composition of the SEI growth and capacity loss.

kMC Results: Evolution of the SEI layer and Capacity Loss EC Decomposition Reactions in the Gas-Phase in Isolation

Table 3 in ANNEX A shows the physical parameters used in the kMC simulations. The initial configuration at time = 0 s before any SEI is formed and the concentration profile of species with time are shown in Figure 4a and 4b respectively. We notice the formation of SEI species: inorganic and organic species (Li2CO3 and alkyl carbonate (only Li2BDC)) respectively with time in agreement to previous theoretical and experimental studies that predict their formation. The final concentration of Li2CO3 is around 5 times higher than the alkyl carbonates Li2BDC. The small energy barrier for the ring-opening reaction (RI) and the high concentration of Li 0 leads to the higher concentration of Li2CO3 since most reactions follow RIII. The lifetime for the oLi-EC• is short since it reacts immediately with Li 0 before it reacts with another oLi-EC• or LiCO3• to form the alkyl carbonates. This explains the rapid consumption of Li 0 compared to EC: two Li 0 are consumed to form one Li2CO3 while only one EC is consumed. All Li2CO3 molecules formed were through RIII and not RVI. This is due to the relatively high barrier of oLi-EC• decomposition (RII) which is essential for (RV) and (RVI). This also explains the zero concentration observed for Li2EDC. Our results agree with a previous ReaxFF MD study performed by Bedrov et al. that predicted the exclusive formation of Li2BDC as the only alkyl carbonate formed from EC decomposition reactions in the gas-phase in isolation 59 .

It should be noted that all intermediate radical species (cLi-EC•, oLi-EC• and LiCO3•) have almost zero concentration throughout the simulation since they immediately react once they form. It is important to mention that the total concentration of C2H4 produced during the SEI formation assumed to escape from the system as defined in Eqs. (2) to (4) is 4.2 mol/l. The initial and final concentrations of all species in our kMC simulations are shown in Table 5 in ANNEX A.

The variation of the specific mass density profile along the Z-axis and a snapshot of the simulation box after all Li 0 have reacted after 0.6 microseconds (μs) for the gas-phase in isolation are shown in Figure 4c and4d respectively. We notice the beginning of the formation of a dense layer: close to the Li-metal anode where the total density is principally determined by Li2CO3 and a few Li2BDC molecules. This behavior agrees with what is expected from previous studies in the literature where the dense layer of the SEI is generally composed of inorganic species formed close to the anode 2,7,8 .

We would like to mention that our simulations do not include the effect of quantum tunneling. This phenomenon is more important for the decomposition reactions at the very initial moments of SEI formation. Consequently, we can expect that the time scales reported in our simulations for the case of reaction in isolation are probably overestimated (i.e., quantum tunneling would probably slightly reduce the magnitude of the activation barriers). However, once the SEI starts to form the probability of quantum tunneling decreases and the reactions follow the trend observed in our simulations. 

EC Decomposition Reactions over Li 2 CO 3 (001) and SEI growth

Following our assumption that the growth reactions take place over the inorganic layer inside the SEI, we performed kMC simulations using the configuration shown in Figure 4e where 4 layers of Li2CO3 (representing a concentration of 1.9 mol/l and 0.88 nm thickness in z direction) are placed between the EC and Li 0 compartments to mimic the influence of a preformed inorganic layer of the SEI. We used a slightly bigger simulation box with 8.8 nm × 8.8 nm× 36.08 nm to add the layers of Li 2 CO 3 while maintaining the same initial local concentration of Li 0 and EC molecules as used in the study of the system at the gas-phase in isolation. The structure of the organic layer was neglected in the initial configuration since from our results in isolation, we notice the formations of small amounts of Li2BDC compared to Li2CO3. In addition, since the precise structure of the organic layer is not known experimentally 2,7,8,12 , we would like to avoid any assumption on the structure of the organic part of the SEI. In any case, our approximate rate constants do not depend on the organic layer. Over Li2CO3 (001), the movement of reactant species is restricted since they are strongly adsorbed. Therefore, the diffusion of EC is only possible through the vacant sites, or through swap events with final products such as Li2EDC and Li2BDC. In our work, the diffusion coefficient of EC was set to be (DEC_SEI = 10 -13 m 2 s -1 ) lower than the bulk value and similar to the value of electrolyte species diffusing inside the SEI 25,56 . All the physical parameters used are shown in Table 3 in ANNEX A.

The variation of concentration of species with time when reactions occur over Li2CO3 (001) is shown in Figure 4f. We notice that reactions over Li2CO3 (001) are slower than in isolation: all Li 0 are consumed in ≈ 1.2 milliseconds (ms) which is three orders of magnitude slower than the time observed in the gas-phase in isolation (0.6 μs). This is because Li2CO3 (001) increases the barrier of the cLi-EC• ring-opening reaction (from 23 to 53 kJ/mol, see Figure 2) slowing down the decomposition reactions, explaining the abundance of the cLi-EC• in Figure 4f compared to Figure 4b. In addition, Li 0 is less accessible to the reaction intermediates since it needs to diffuse through the Li2CO3 prior to any subsequent reaction. This gives more time for oLi-EC• molecules to react to form Li2BDC before a new attack by Li 0 may occur. Hence, we notice a higher consumption of EC and more generation of organic species as compared to the case in the gas-phase in isolation. However, and like the results obtained in gas phase in isolation, the relative high energy barrier of the ethylene dissociation reaction (EbII in Figure 2) explains the zero concentration of Li2EDC. This also explains why most of the Li2CO3 forms through RIII rather than RVI.

The increase in the formation of the organic species leads to a more structured multilayer SEI. The specific mass density profile along the Z-axis after 1.2 ms obtained over Li2CO3 (001) is shown in Figure 4g and the corresponding configuration of the simulation box in Figure 4h. Additional intermediate snapshots of the kMC simulations are added in the Annex A. A thin and dense inorganic layer (≈ 2 nm) is composed of Li2CO3 (which has an initial thickness of 0.88 nm at the beginning of the simulation) close to the Li-metal anode. A thick porous organic layer (≈ 17 nm) is found above (from Z-axis=2 nm to 19 nm) where the total density is mostly composed of the organic species Li2BDC rather than EC as reported in the literature 2,7,8,11,59 . The existence of the organic layer over Li2CO3 layer was detected experimentally through XPS studies 12 . It should be noted that these XPS studies can demonstrate the presence of alkyl carbonates, but they are unable to differentiate between Li2EDC and Li2BDC 9,10,12,59 .

It should be noted that the relative position of species inside the simulation box (e.g., the initial Li 2 CO 3 in Figure 4e) is not fixed. Consequently, the initial number of Li 2 CO 3 and the newly formed ones can slightly move through different events (diffusive or reactions), and, in particular, they can swap their position with Li 0 . Figures 4e and4h show the presence of the Li2CO3 layer at the beginning and at the end of the simulations respectively. The thickness of the layer slightly increases from 0.88 nm to around 2 nm, but its relative position inside the simulation box has changed due to diffusion.

The observed thickness of both the inorganic and organic layers (ε Inorganic and ε Organic respectively) of the SEI obtained by the analysis of the concentration profiles as a function of the z position (similar to Figure 4g) at different simulation times are shown in Figure 5. We see a linear growth of the SEI layer (ε SEI = ε Inorganic + ε Organic ) with time. The linear time dependence of the long-term SEI growth with time has been reported in the literature 26 . We also notice that the growth of the inorganic layer is slower than that of the organic one since a larger amount of Li2CO3 is needed per one dense inorganic layer in comparison to the amount of alkyl carbonate needed to form one porous organic layer. The final thickness of the inorganic layer at the final steady state conditions of our simulations is ≈ 2 nm 1,2,7,8 while the thickness of the organic layer is ≈ 17 nm. It should be noted that, the initial number of layers of Li2CO3 in the setup in Figure 4e represents 0.88 nm of the final thickness of the inorganic layer. The effect of the initial number of layers of Li2CO3 on the concentration profile of species with time was found to be negligible, see Figure 7 in ANNEX A for more details. Some studies predict the formation of a compact organic layer due to the formation of polymers inside the organic layer of the SEI from solvent/additives degradation and polymerization 1,7,22,60 . Under these conditions, one would expect that the organic species will not freely move inside a polymeric network. Hence, we tested the effect of this polymeric environment on the setup in Figure 4e assuming a strong slowing down of the mobility of the product species. In this case, our hypothetical system consists of a kMC simulation where once an organic species (Li2BDC or Li2EDC) is formed, it remains captured at its position (i.e., the species are not allowed to diffuse). We found that this hypothetical setup led to a small increase in the concentration of Li2CO3 and the formation of a more compact organic layer which is still thicker than the inorganic layer formed. However, this setup did not fundamentally change the overall behavior of the concentration profiles with time (see Figure 8 in ANNEX A for more details).

EC Decomposition Reactions over Li 2 O (111)

Li2O was detected inside the SEI, and it is generally assumed to originate from the decomposition of Li2CO3 1,7,8,61,62 . For example, Han et al. found that at high Li 0 concentration close to the vicinity of the anode (Li-metal) Li2CO3 is converted to Li2O 61 . The formation and presence of CO2 due to the electrochemical decomposition of Li2CO3 were also reported 62 . Hence, we tested the decomposition reactions over the most stable surface orientation of Li2O (111). To simplify our kMC simulations, Li2CO3 is set to immediately decompose (barrierless reaction) to Li 2 O and CO 2 (modifying R III and R VI ), see Eq. ( 6).

Li2CO3 → Li2O + CO2 (6) 
The energy barriers calculated using DFT over Li2O (111) are shown in the Annex A. In contrast to the energy barriers calculated in the gas-phase in isolation, Li2O (111) limits the ring-opening reaction RI (Eb increases from 23 to 42 kJ/mol) and Li2BDC formation reaction RIV (from barrierless to Eb = 53 kJ/mol) but catalyzes the ethylene dissociation reaction RII (Eb decreases from 65 to 48 kJ/mol) while the other reactions remain barrierless. More details about energy barriers, reaction energies and geometries of species over Li2O (111) are found in the Annex A. We used the same kMC setup as that for Li 2 CO 3 (001) but changing 4 layers of Li2CO3 to Li2O and the diffusion coefficient of Li 0 in Li2O was set to be 10 -16 m 2 s -1 similar to values in the literature for Li 0 diffusion in the bulk Li2O 38,63 . When carrying out reactions over Li2O (111), we notice that similar to Li2CO3 (001), the timescale for the total consumption of Li 0 was three orders of magnitude lower than in isolation, see Figure 10 in ANNEX A for details. We form mostly the inorganic species Li2O and some Li2EDC but almost no Li2BDC. The effect of carrying reactions over Li2O (111) could explain the abundance of Li2EDC in comparison to Li2BDC in some experimental studies 2,7,8,11 . Overall, Li2O (111) provides a path for the enhanced formation of Li2EDC with respect to Li2BDC. In summary, our kMC results predict that if the inorganic layer is composed of Li2CO3, the organic layer would consist mostly of Li2BDC, while if the inorganic layer is composed of Li2O we would favor Li2EDC over Li2BDC. Thus, each surface features a specific selectivity regarding the production of the SEI organic species. This inorganic-surface specific formation of the organic layer might explain the complex, heterogenous composition of the SEI.

Relative Capacity and Calendar Aging

Calendar aging experiments are usually performed at higher temperatures to speed up the aging process, because at room temperatures it could take years to reach 80% or 90% of the initial capacity. While our model resembles to a Li-metal anode, most calendar aging studies in the literature focus on LIBs with lithiated graphite anode. These studies report different decays for the capacity loss induced by SEI growth with time 4,37 : non-linear (square root) 64 , linear 3,26,65,66 or combinations of both 67,68 . However, recent theoretical and experimental aging studies reported a shift from a non-linear to a final linear behavior for the capacity loss 3,5,26 . It should be noted that the experimental time observed for capacity loss is different for different battery-aging studies even when experiments are performed using the same solvent, salts, and aging temperature 5,28,36,37 . This could be attributed to the complex design of the battery and/or the uncertainty in the experiment setup and composition. Hence, it is arduous to obtain a generalized experimental capacity loss plot and any comparison between experimental time and our simulations' time needs to be taken qualitatively.

The relative capacity induced by SEI growth is related to Li 0 concentration according to Eq. (7), where [ 

Figure 6 shows a comparison of the relative capacity obtained from our kMC simulation with the experimental results obtained by different groups for calendar aging of LIBs at 25 °C69 and 55 °C36 . As previous aging studies reported a final linear behavior for the capacity loss, hence, we linearly extrapolated the experimental relative capacity to compare with our kMC simulations. We have, in order to ease the qualitative comparison, normalized time (τ) from 0 to 1, representing 100 % and 0 % relative capacity, respectively.

Note that the evolution time of the relative capacity is strongly correlated to the Li 0 loss during time through Eq. ( 7). We observe in Figure 4b in the case of the gas-phase in isolation that the consumption of Li 0 follows a non-linear behavior. Hence, the corresponding relative capacity also follows a non-linear behavior with time as seen in Figure 6. This non-linear dependency can notably be attributed to the limited diffusion of EC and Li 0 , since once the SEI starts to form Li 0 and EC are not anymore in direct contact. On the other hand, once the dense inorganic layer (Li2CO3) forms, electrolyte degradation reactions take place over Li2CO3 and results in a linear consumption of both Li 0 and relative capacity with time in agreement with experimental data, as can be seen in Figure 4f and Figure 6, respectively.

In summary, we notice that even though we used Li-metal anode in our study rather than lithiated graphite and considered EC as the only solvent molecule our model predicts a shift from an initial fast non-linear (in isolation) to a slower and linear (over Li2CO3) decay of the relative capacity. It should be noted that various mechanisms like electron migration and mechanical effect (SEI fracture and regrowth) were proposed to explain the final linear behavior for capacity loss induced by SEI growth. Our approach suggests that this linear behavior could be attributed to the effect of the inorganic layer that slows down the decomposition reactions (Li2CO3 can be considered as a protective layer). Moreover, this slow of Li 0 loss observed by Li2CO3 (001) is in line with the use of carbonate-based solvents (EC) to build a stable passivating SEI layer to protect LIBs 1,7 .

In order to validate that the linear loss in Li 0 is due to the inclusion of reaction over Li2CO3 (001) and not a simple consequence of the preformed Li2CO3 layers introduced in the initial setup of our simulations as shown in Figure 4e, we used the energy barriers obtained in the gas-phase in isolation for the same initial setup as for the reactions over the Li2CO3 (001) i.e., with preformed Li2CO3 layers. We obtained the same non-linear behavior limited by diffusion as in the case where no initial Li2CO3 layers are used. We also mostly formed Li2CO3 and almost no organic species, see Figure 11 in ANNEX A for details. 69 where they performed calendar aging at 25 °C for a commercial LIB having a state of charge (100 %). The purple square represents the experimental study by Kjell et al. 36 where they performed calendar aging for a different LIB having at a state of charge (60%) at 55 °C. The dashed lines are linear extrapolation of the experimental data. The black, blue, and green lines represent the relative capacity (loss of Li 0 ) for our calculation in isolation, over Li2CO3 (001) and over Li2O (111) respectively. τ = t t ≈0% of relative capacity where t is the the theoretical (simulated) time.

For the case where EC decomposition reactions were performed over Li2O (111), the relative capacity induced by SEI growth follows an intermediate behavior between non-linear and linear behaviors as can be seen in Figure 6. The slow diffusion of Li 0 in the bulk Li2O explains the slow non-liner capacity loss at the initial time that shifts to linear once Li 0 meet EC over Li2O. It is important to mention that, on one hand, the Li 0 diffusion in the bulk of Li2O (10 -16 m 2 s -1 ) is two orders of magnitude lower than through Li2CO3 (10 -14 m 2 s -1 ). On the other hand, the ring-opening energy barrier R I (E bI = 42 kJ/mol) is lower than the value obtained over Li 2 CO 3 (001) (EbI= 53 kJ/mol). Consequently, Li 0 diffusion through Li2O (111) plays a more dominant role to govern the SEI growth kinetics than over Li 2 CO 3 (001). On the other hand, Li 2 CO 3 (001) stabilize the cLi-EC• slowing the decomposition reactions where the kinetics is governed by the ring-opening reaction (RI) rather than diffusion explaining the linear loss of Li 0 /capacity. A plausible way to get the SEI structure is the formation of Li2O close to the Li-metal anode. As we get away from Li-metal, Li 0 concentration decreases and the reaction proposed in Eq. ( 6) becomes less probable leading to the formation of Li2CO3, followed by the formation of alkyl carbonates (Li-metal/Li2O/Li2CO3/alkyl-carbonate/electrolyte) as suggested in the literature 12 . In any case, overall, the kMC results observed in our work are compatible with this general picture.

Conclusion

The solid electrolyte interphase (SEI) layer forms from the reduction of ethylene carbonate (EC) by lithium radical (Li 0 ) at the anode/electrolyte interface. The growth of the SEI importantly contributes to the battery-aging process which leads to capacity loss and eventually the death of the battery. In our work, we modeled the battery at storage conditions (calendar aging). We performed DFT calculations to calculate the energy barriers for EC decomposition reactions in the gas-phase in isolation and over the inorganic surfaces most likely found inside the SEI. The main contribution of this theoretical work, coupling DFT and kMC simulations, is to highlight the effect of the inorganic layer on these decomposition reactions. We used our DFT values alongside diffusion coefficients obtained from the literature to study the formation and the growth of the SEI over time by means of kinetic Monte Carlo (kMC) simulations. Our model predicts that EC decomposition reactions in isolation mostly lead to the formation of inorganic species Li2CO3 and a non-linear loss of Li 0 /capacity. Reactions occurring over Li2CO3 (001) led to the formation of more organic species (dilithium butylene dicarbonate, Li2BDC) and a more realistic SEI multilayered structure, where inorganic species are close to the anode and organic species are formed close to the interface with the electrolyte. Our simulations predict that the growth of the inorganic layer is slower compared to the growth of the organic layer. We also tested the effect of carrying reactions over Li2O (111) based on the assumption that once Li2CO3 forms, it converts to Li2O and CO2. We found that Li2O mostly forms inorganic species Li2O and some Li2EDC (dilithium ethylene dicarbonate) but few Li2BDC. The enhanced formation of Li2EDC over Li2O (111) compared to Li2BDC could explain its abundance in the organic layer in some experimental studies 2,7,8,11 . In summary, we provide evidence that reactions over Li2CO3 (001) or Li2O (111) leads to contrasting selectivities in terms of the produced organic species.

The loss of Li 0 /capacity over Li2CO3 (001) is found to have a linear behavior with time which is slower than the one observed in the case of the gas-phase in isolation, since Li2CO3 (001) stabilizes the radicals and increases the energy barrier for the ring-opening reaction. This slow behavior of Li 0 /capacity loss over Li2CO3(001) could explain the common use of carbonatebased solvents to protect and extend the lifetime of LIBs 1,7 . Overall, our model predicts a shift for the loss of Li 0 /capacity with time from a non-linear initial behavior in isolation limited by diffusion to a slower linear behavior (once reaction takes place over Li 2 CO 3 (001)). This shift in time dependence has been observed in some experimental and theoretical works in the literature for lithiated graphite-based batteries. We also determined the relative capacity with time over Li2O (111) and found that it follows an intermediate regime between non-linear and linear. Our work shows that considering the role of inorganic species like Li2CO3 and Li2O in studying decomposition reactions leading to battery-aging could explain the kinetics, structure, and heterogeneity of the SEI. Studying the reactivity related to the solid electrolyte interphase (SEI) growth in lithium-ion batteries is challenging due to system heterogeneity (spatial and compositional). Semi-empirical methods have the potential to reduce the computational cost compared to DFT computations. In this study, we have assessed the performance of four semi-empirical methods (GFN-xtb, GFN2-xtb, PM6-D3 and PM7-D3) to model major reactions for SEI formation and growth. We have included the major decomposition reactions of the most used solvent (ethylene carbonate), most used salt (lithium hexafluorophosphate) and other electrolyte species like the co-solvent 1,3-dioxolane and the additive vinylene carbonate. We compared the values obtained by the semi-empirical methods to reference data obtained using DFT (PBE-dDsC). We have found that PM7-D3 is the most accurate lowcost method, with a mean absolute deviation 59 kJ/mol. Furthermore, we have identified a weakness of PM7-D3 to describe the generation of organic radicals starting from Li 0 . We then tested the performance PM7-D3 to model larger (solid) systems: lithiated graphite (LiCx) and inorganic salts nanoparticles. We found that PM7-D3 qualitatively agrees with DFT for the lithiation and near quantitatively for the nanoparticles' growth. Finally, we have performed PM7-D3-based molecular dynamics simulations for the SEI inorganic/organic interface, by surrounding inorganic nanoparticles with ethylene carbonate solvent molecules and alkyl carbonate decomposition products. Among all the investigated systems, only Li2O surrounded by ethylene carbonate features reactive events, suggesting that Li 2 O can only be formed in the actual SEI if it is passivated by other inorganic species.

Introduction

The solid electrolyte interphase (SEI) is a thin passivating layer formed at the anode/electrolyte in lithium-ion batteries as a consequence of the reduction of the electrolyte by electrons from the anode [1][2][3][4] . Experimental studies were able to identify a multi-layered structure with an inorganic inner layer near the electrode/SEI interface (Li2CO3, LiF, and Li2O), and an organic outer layer near the SEI/electrolyte interface consisting of alkyl carbonate, polymers, etc. [1][2][3][4][5] . However, due to the limitation of the experimental techniques, it is challenging to investigate other properties of the SEI like thermodynamics and kinetics of it its formation and growth [1][2][3]5,6 . Computational models have emerged to better understand the SEI formation and growth. Previous theoretical studies (e.g., DFT) focused on the decomposition pathways of main electrolyte species i.e., the ethylene carbonate solvent and lithium hexafluorophosphate, LiPF6, as supporting salt. However, these techniques are restricted to very short time scales and cannot model large systems. So, the need for a cheaper computational method is essential to model reactions in amorphous systems like the SEI 1,2 .

Reactive forcefield methods were used to study electrolyte decomposition reactions (e.g., 1,3dioxolane 7 ) and extend the simulation time. However, these reactive force fields are plagued by a difficulty of transferability: they are usually built and optimized for a specific set of reactions (e.g., the decomposition of ethylene carbonate only) and need to be reparameterized for each new composition of the system [8][9][10] . The limitation of reactive force fields can be traced back to the major approximations at the heart of their functional form, i.e., the inherently classical description of the chemical bonds 9,10 . Semi-empirical methods constitute a potential alternative since they are also about three orders of magnitude faster than DFT. In contrast to reactive force fields, semi-empirical methods are based on quantum mechanics and are, therefore, somewhat more "universal/transferable", i.e., less systemspecific [11][12][13][14] . Therefore, we here investigate to which extent established semi-empirical methods can be reliable to study the reactivity in the SEI. With a low-cost, sufficiently accurate method in hand, one could perform extensive explorations of the reactivity in the SEI, determining rate constants that could be incorporated into multi-scale, multi-physics models to enhance our atomistic understanding of the SEI growth and battery aging mechanisms.

In general, semi-empirical methods are based on approximations to first principles DFT or Hartree-Fock [15][16][17][18][19] formalisms. One of the most successful families of the semi-empirical methods is the neglect of diatomic differential overlap methods, first introduced by John Pople 20 . Several improvements were made to the original formalism and led to the development of various flavors of Hartree-Fock-like semi-empirical methods and in particular AM1 and PM# [15][16][17][18] , where popular values for # are 3, 6 and 7, referring to various generations. PM#-based methods are well established since they have regularly been updated and improved. For example, through the development of PM6, the core-core interactions were modified to use the Voityuk's core-core diatomic interaction parameters and Thiel's d-orbital approximation which led to a significant reduction in error for compounds of main-group elements and enabled its use for the whole block of the transition metals 15 . Further improvements were made to PM6 and led to the development of the most recent method among the PM# family (PM7) 16 . Unlike PM6, PM7 uses proxy functions to represent noncovalent interactions which led to improved results 16 .

Similar to the empirically parameterized Hartree-Fock methods such as PM# family, approximations to DFT have been formulated under the class of methods that are called density functional tight binding (DFTB), 17,18,21 particularly developed in the work of Seifert, Elstner, and Frauenheim [21][22][23][24][25][26][27] . In contrast to PM7 which is applicable across the periodic table of the elements, in DFTB system-specific parameterizations (almost like for reactive force fields) dominate. For example, Li et al. developed DFTB parameters for Li-Li, Li-H, Li-O, Li-C 28 . Their parameters were obtained based on DFT reference data using Perdew-Burke-Ernzerhof functional (GGA-PBE) 29,30 . The developed parameters were used to model Li + desolvation and diffusion in liquid ethylene carbonate. However, parameters for fluorinated compounds (e.g., salt LiPF6) are still missing. In addition, their training set did not consider ethylene carbonate and vinyl-carbonate decomposition reaction energies, questioning their applicability to the formation of the major organic component of the SEI, i.e., alkyl carbonates. Another DFTBbased method was developed by Grimme et al. 17,18 called GFN-xtb. GFN-xtb avoids the pairspecific potentials of DFTB and instead, uses mainly global and element-specific parameters 17 . The reduction of the pair-specific potentials has led to the need for fewer parameters and, thus, to an easier parameterization compared to DFTB 17 , allowing GFN-xtb to be parameterized for all spd-block elements (Z = 1-86). Further improvements to the GFN-xtb were made and led to the development of GFN2-xtb, strictly following a global and elementspecific parameter strategy. 18 GFN2-xTB uses improved terms for the multipole-extended electrostatic and exchange-correlation energy compared to its first generation. In addition, it inherently includes a newly developed dispersion correction (D4) 31,32 considering electronic structure effects that were neglected in the previously used dispersion correction (D3) 33,34 of GFN-xtb 18 . More details about these semi-empirical methods can be found in the original publications [15][16][17][18] .

In our work, we are benchmarking for general-purpose four semi-empirical methods: GFNxtb 17 , GFN2-xtb 18 , PM6-D3 15,33,34 and PM7-D3 16,33,34 against DFT (PBE-dDsC) as a reference. DFT-based methods (e.g., PBE) are the most used methods for studying the SEI and reactions at the solid/liquid interface in general, as DFT offers the best compromise between accuracy and computational cost for large (periodic) systems. We tested the performance of the semiempirical methods for major decomposition reactions of the most common electrolyte species used in lithium-ion batteries i.e., the most used solvent, ethylene carbonate and most used salt LiPF6, together with popular additives, such as vinyl carbonate and 1,3-dioxolane 1,2,5,[35][36][37][38][39][40][41] . In a second step we assess the performance of the most accurate method (PM7-D3) for describing lithium insertion into graphite and inorganic nanoparticles. Furthermore, we demonstrate the capability of PM7-D3 to perform stable molecular dynamics (MD) calculations. For the MD simulations, we have built our system comprising a nanoparticle of the most abundant salts (LiF, Li2CO3 or Li2O) representing the inorganic layer and surrounded them with three representative organic species: ethylene carbonate, dilithium ethylene dicarbonate, Li2EDC, and dilithium butylene dicarbonate, Li2BDC.

Methods and Computational Details

All molecules were optimized using the DFT Perdew-Burke-Ernzerhof functional (GGA-PBE) 29,30 to provide reference results, to which PM6-D3, PM7-D3, GFN-xtb and GFN2-xtb are compared. The Vienna Ab initio Simulation Package VASP 5.4.4. [42][43][44][45][46] was exploited to run the DFT computations. Dispersion interactions were included using the density-dependent dispersion correction dDsC 47,48 . The core electrons were described using the projector augmented plane-wave (PAW) pseudopotentials. All structures were optimized using the conjugate gradient algorithm in the gas-phase. The k-point sampling of the first Brillouin zone was restricted to the Gamma point 49 . Convergence criteria were set to 10 -6 eV and 0.03 eV/Å, for the electronic self-consistency iterations and ionic relaxation loop respectively. A Fermi smearing with a width of 0.03 eV was employed. Spin polarized calculations are performed for radical species. The cutoff energy for the plane-wave-basis was set to 600 eV. The vacuum space to avoid spurious periodic interaction was at about 10 Å in all directions. The semiempirical methods PM6 15 and PM7 50 Hamiltonians were exploited in combination with the Grimme dispersion correction D3 33,34 in Gaussian 16, revision C.01 51 . GFN-xtb computations used the standard setup in xtb version 6.4.1 [17][18][19] . The dispersion corrections D3 and D4 are, thus, included in GFN-xtb 17 and GFN2-xtb 18 respectively. All the computations were performed in vacuum and all energies obtained are electronic energies (without any thermodynamics corrections).

For the MD calculations, the structure of the systems was built using Packmol 20.11.0 52,53 . We used the hydrogen isotope tritium that allows for a step size of 1 fs without causing numerical instabilities. The MD simulations were performed for 10 ps using the atom centered density matrix propagation molecular dynamics model (ADMP) using Gaussian16 51 . The temperature was set to 298 K relying on the built-in velocity-rescaling thermostat. The electron dynamics was quenched, so that we are performing Born-Oppenheimer molecular dynamics. The simulation time cost (system of around 550 atoms) for each 10 ps simulation is around 14 days using 36 CPU cores. We tested a similar MD system but using PBE/STO-3G instead of PM7-D3. We found that it took more 5 days for only 0.17 ps. So, it would take around 290 days for 10 ps at the DFT level, highlighting the speedup obtained when using semi-empirical methods instead.

Results and Discussions

Set of reactions

We evaluate the accuracy of the four semi-empirical methods, i.e., PM6-D3, PM7-D3, GFN-xtb and GFN2-xtb for 32 major (elementary) reactions that are discussed in the literature 1,2,5,[35][36][37][38][39] of the SEI formation and growth, see Figure 1.

Figure 1 Reactions considered for assessing the accuracy of semi-empirical methods for reactions relevant in the context of lithium-ion batteries. Reaction energies in kJ/mol at the PBE-dDsC level of theory are indicated above the reaction arrow.

We have chosen these reactions based on literature reports on major decomposition reactions of the main electrolyte species. These decomposition reactions ultimately lead to the formation and growth of the SEI 1,2,4 . For convenience, we have grouped the reactions according to their nature: First, we have the highly exothermic oxidation of lithium in the presence of water impurities. Then, we have identified acid-base reactions, followed by salt decompositions that are strongly endothermic in our gas-phase conditions and hydrolysis reactions that are nearly athermic. Radical generation (mildly exothermic), propagation (generally exothermic) and termination reactions (strongly exothermic) make up three complementary groups, followed by a last group of miscellaneous reactions which describes reactivity that is closely related to the systems investigated.

In terms of common reactants, one can highlight Li 0 (e.g., reaction 1), the supporting salt LiPF6 (reaction 8), the solvent ethylene carbonate (reaction 12), the additive vinyl carbonate (reaction 13) and the (co-)solvent 1,3-dioxalane (reaction 29). In terms of notable products one can mention the inorganic components of the SEI Li2O, LiF and Li2CO3 (reactions 1, 3 and 24, respectively) and the organic butylene and ethylene dicarbonate (reaction 25 and 27, respectively). The reaction list also includes the main decomposition reactions for the first steps in vinylene/ethylene carbonate cross polymerization reactions (e.g., reactions 18 and 22) 40 and the reactions between 1,3-dioxolane and LiPF6 (reactions 29 and 30) as reported in previous studies 7 .

PBE-dDsC vs. Semi-Empirical Methods

To start the analysis, we investigate the overall accuracy of semi-empirical methods compared to the reference PBE-dDsC computations in Figure 2. First of all, we notice that all four tested methods lead to acceptable results in the sense that all the data is clustered around the bisector, i.e., no excessive outliers have been identified. This is further confirmed by the high Pearson-correlation coefficients (R 2 >0.9) for all cases. In other words, trends in relative reaction energies are quite faithfully reproduced, so that semi-empirical methods can be exploited for pre-screening of large reaction networks encountered in the SEI formation 14,54 . When considering quantitative agreement with the reference level of theory, one notices that PM6-D3 and PM7-D3 feature slopes that are closer to unity as compared to GFN-xtb and GFN2-xtb, suggesting that PM6-D3 and PM7-D3 show a smaller systematic error. Similarly, the maximum errors range from 205 kJ/mol for PM7-D3 (reaction 1) to 395 kJ/mol for GFN2xtb (reaction 27). From this global overview, one might recommend PM6-D3 on par with PM7-D3 for use in SEI-related research, with a slight preference for the latter given its higher correlation coefficient. The better performance of PM7 compared to PM6 was previously reported in the literature 15,50 . For example, PM7 was found to predict more accurate geometries than PM6 for a set of 2194 solids and to feature a significant improvement in the prediction of heats of formation 15,50 . This encouraging overall performance of semi-empirical methods has, however, to be nuanced by the consideration of the quantitative errors: Figure 3 shows the mean absolute deviations (MADs) which range from 59 kJ/mol for PM7-D3 to even 106 kJ/mol for GFN2-xtb. Similarly, the percentage deviations are above 70 % in all cases. These performance indicators demonstrate that semi-empirical methods do not yet reach quantitative agreement with DFT but should only be used for "pre-screening" purposes and/or their results need to be reevaluated at the DFT level to achieve quantitatively reliable results.

Figure 3 Left: The mean absolute deviation (MAD) and right the mean absolute percentage deviation for the four semi-empirical methods against PBE-dDsC.

Finally, one needs to address the question of "across-the-board" accuracy given our classification of reactions into different groups in Figure 1, are they all treated on an equal footing by the semi-empirical methods? This is addressed in Figure 4. To simplify the discussion, we only show data for two out of the four tested semi-empirical methods: GFNxtb and PM7-D3, which are the better performing variants of the two families. When analyzing the MAD as a function of the reaction class, first, one notes that the two semi-empirical methods perform overall quite similarly, with two exceptions: GFN-xtb is significantly more accurate for the prediction of the reactions that generate radicals (Gen, reaction 12 and 13), while PM7-D3 is more accurate for the termination reactions (Term, reactions 24-28), suggesting that both methods are slightly imbalanced regarding the creation/coupling of carbon-based radicals. Other than that, the oxidation of Li (LiOx, reactions 1 and 2) are badly described by both methods. One has to keep in mind, however, that these two reactions are somewhat artificial, in the sense that in the "real" SEI, the reacting Li atom is not surrounded by vacuum, but rather stabilized either as a solid (metal Li electrode) or as an intercalation compound. Furthermore, the produced LiOH and Li2O will form solids, with electronic structures quite far from their elementary building blocks in the gas-phase.

When considering the percentage deviations, PM7-D3 that shows very large errors for four reactions: the two related to hydrolysis and the two related to the generation of radicals. The reason for the high relative errors is different for the two groups: The hydrolysis reactions are nearly athermic, so that even relatively small absolute errors (less than 20 kJ/mol) lead to high percentage errors. The performance for the generation of radicals is simply bad, as already seen in the MADs. Still, GFN-xtb also shows mean percentage errors of around 100% for these reactions, so that one can conclude that these reactions are difficult to describe accurately with such low-cost methods. Table 1 andTable 2 (in Annex B) show all reaction's energies for each method, the individual absolute % deviation and the absolute deviation relative to PBE-dDsC.

Figure 4 Left: The mean absolute deviation (MAD) and right the mean absolute percentage deviation for GFN-xtb and PM7-D3 against PBE-dDsC, reported in terms of the eight groups of reaction types defined in Figure 1.

Following our assessment, we chose PM7-D3 as the best candidate among the four semiempirical methods. However, to further check the fitness of PM7-D3 for computations of systems relevant to the solid electrolyte interphase, we also need to study larger systems representing the negative electrode (in this case lithiated graphite (LiCx)) and various salts formed from the decomposition of the main solvent and main salt: Li2CO3, LiF and Li2O.

PM7-D3 calculations for SEI structures

Lithiation of graphite

The lithiated graphite (LiCx) is currently the most used negative electrode in lithium-ion batteries. The (de)intercalation process of Li 0 between the graphene layers is important for the cycling of the battery. In our calculations, we have used two layers of graphene to host various numbers of Li 0 to mimic the battery at different degrees of lithiation, i.e., different states of charges 55 , see Figure 5. These structures are inspired from the experimental 55 structures of lithiated graphite, which have been the object of a DFT benchmarking study by Lenchuk and co-workers 56 . In the first row of Figure 5, we start with a very low lithium content (LiC108), where Li 0 is placed in the center between the two graphene-like layers. Increasing the Li 0 content, we move to LiC36, where three Li 0 atoms are arranged in a diagonal-like structure, in order to maximize their distances while keeping their preferred intercalation sites. Then, adding two more Li 0 atoms, one reaches again a symmetric structure. In the second row of Figure 5, we report our model for the half-lithiated electrode, which has 9 Li 0 atoms located between the graphite layers representing LiC12. Finally, the fully lithiated structure features additional 9 Li atoms "on top" of the graphene sheet, leading to LiC6.

To study the lithiation of graphite, we have computed the intercalation energy of Li 0 atoms for the five structures described at the PBE-dDsC level of theory. Figure 5f reports the average lithiation energy as a function of the Li 0 content. One can notice that as the number of intercalated Li 0 increases, the reaction energy per Li 0 becomes slightly more exothermic (10-20 kJ/mol) until around 5 Li 0 atoms where any further addition makes the reaction energy less exothermic. The initial increase in exothermicity at low-Li contents is likely due to deformation energies: intercalating one Li 0 atom or several drives the graphitic layers to a similar extent apart. The significant decrease (57 kJ/mol) in average Li-intercalation energy going from half lithiated to fully lithiated graphite (LiC12 to LiC6) has probably two origins: On one hand, in our model the "additional" layer of Li 0 is no more stabilized from both sides by carbon atoms and, on the other hand, given at least their partially positive atomic charge, the Li 0 atoms start to interact (repel) each other significantly.

It should be noted that the off-set energy in Figure 5f between PM7-D3 and PBE-dDsC for the reaction energies for the lithiation of graphite is likely due to the use of the isolated Li 0 atom as a reference. Indeed, the formal oxidation of Li 0 was found to lead to significant errors according to Figure 4. Using PM7-D3, we notice that the most exothermic reaction is for Li 0 intercalation where the number of Li 0 atoms is 1 and located in the center (structure a). Even though the PBE-dDsC trend in intercalation energies at low Li 0 content were not captured by PM7-D3, the latter still follows the overall trend for high Li 0 content. This suggests that the deformation energy of the carbon structure is likely to be overestimated by PM7-D3, while the electrostatic repulsion between Li 0 atoms is well captured.

Figure 5 Representation of lithiated graphite models (a-e) and the reaction energies (kJ/mol) for the Li 0 intercalation per 1 Li 0 atom with respect to graphite and Li 0 atom (f).

SEI salts: Li2CO3, LiF and Li2O

The salts Li2CO3, LiF and Li2O that form from the electrolyte degradation grow (from a small nanoparticle to large) with the aging of the battery and form the dense inorganic layer inside the SEI. To check whether PM7-D3 can capture the energy changes as the nanoparticle size increases, we built series nanoparticles of increasing size, keeping the morphology similar, see Figure 6. To quantify the growth energy, we report the relative energy of the nanoparticles normalized by the number of elementary units with respect to the largest one in the series. The reasoning is that for large nanoparticles, the relative energy is expected to be small, i.e., just related to the surface energy. At smaller sizes, the electronic structure of the nanoparticle might change, and the surfaces can relax more, so that "chemical" effects (also related to corners and edges) are expected to be dominant compared to the surface energy itself. We notice that PM7-D3 has the same trend and near quantitative agreement with PBE-dDsC. We note that the difference in relative energies is in the order of 50 kJ/mol for the smallest nanoparticles of Li 2 CO 3 and LiF (the error for Li 2 O is much lower). This order of magnitude is similar to the MAD for the molecular reactions studied above, see Figure 3, indicating an overall robust and similar performance for these growth energies compared to the reaction energies studied previously.

Figure 6 Left: atomic models (the smallest system included, corresponding to only one formula unit, is omitted), right graphs representing the energy for one unit of salt in a nanoparticle, relative to the corresponding energy in the largest nanoparticles as a function of the number of formula units in that particle. First row: Li2CO3, middle row: Li2O, bottom: LiF. Red is O, brown is C, green is Li and light-blue is F.

Molecular Dynamics using PM7-D3 for ethylene carbonate, butylene and ethylene dicarbonates surrounding LiF, Li 2 CO 3 and Li 2 O

Having identified PM7-D3 as a promising semi-empirical method for reactions in the SEI, we are now investigating the ability of PM7-D3 to perform MD simulations. The examined systems are built based on nanoparticles in Figure 6, representative of the inorganic components of the SEI (LiF, Li2CO3 and Li2O). These inorganic particles are surrounded by three prototypical organic layers: the solvent ethylene carbonate and the two main constituents of the organic SEI component, butylene and ethylene dicarbonates.

For the system where the ethylene carbonate molecules surround the LiF and Li2CO3 particles, ethylene carbonate was adsorbed mainly through its carbonate functional group, nearly parallel to the surface, see Figure 7. After 10 ps (including thermalization, see computational details), we do not notice any chemical reaction. This is to be contrasted with the corresponding system over Li 2 O: some of the ethylene carbonate molecules undergo a ring opening reaction through the breaking of the oxygen-carbon bond, which will be analyzed in more detail in the next paragraph. For the MD systems where the alkyl carbonates surround the nanoparticles, we notice that the alkyl carbonates are either connected to each other via bridging cations or to the inorganic particle through the terminal carbonate forming a complex structure, see Figure 7. This complex structure on top of the inorganic salt could explain the reported uncertainty in identifying the exact organic species found in the SEI 1,2,5 . To test the robustness of this first PM7-D3 MD run and to assess whether the ring-opening occurs systematically, we have decreased the temperature of the MD to 100 K. Again, we have observed ring opening events over the Li2O. The high reactivity of Li2O solid was previously mentioned in the literature: 57 In an ab initio molecular dynamic to investigate effect of the SEI on the reactivity of polysulfide over Li-metal anode, Bertolini et al. found that Li2O is the most reactive salt compared to LiF and Li 3 N which leads to the decomposition of lithium polysulfides found in the electrolyte of Li-S batteries 57 . According to this evidence of high reactivity of Li2O, we suggest that the formation of Li2O, which originates from de decomposition of Li2CO3, is experimentally incomplete, i.e., restricted to the "core" of the particles, adding one more heterogeneity of the SEI.

Conclusion

We have performed a benchmark study to test the performance of the semi-empirical methods: GFN-xtb, GFN2-xtb, PM6-D3 and PM7-D3 against PBE-dDsC to model major solid electrolyte interphase (SEI) reaction in lithium-ion batteries. We investigated a set of 32 reactions based on the literature including the decomposition of major electrolyte species of the main solvent ethylene carbonate, the most used salt lithium hexafluorophosphate, the additive vinylene carbonate and the (co-)solvent 1,3-dioxolane. We found that PM7-D3 is the most accurate low-cost model, with a mean absolute deviation 59 kJ/mol, even though this method fails to predict the generation of organic radicals quantitatively. We then performed further computations to assess the performance of PM7-D3 to model larger (solid) systems: lithiated graphite (LiCx) and inorganic salt nanoparticles. We found that PM7-D3 is in qualitative agreement with PBE-dDsC for the lithiation and near quantitative for the effect of the size of the nanoparticles. Finally, we have performed a 10 ps PM7-D3-based molecular dynamics computations for the inorganic/organic interface of the SEI. We observe ring opening reaction of ethylene carbonate and dehydrogenation/deprotonation reactions in contact Li2O. Hence, our study suggests a higher reactivity of the Li2O as compared to LiF and Li2CO3. The observed reactivity of Li2O is coherent with the observations in a previous DFT study where the solid Li2O was the most reactive salt in the SEI of Li-S batteries. Overall, our study shows that through benchmarking semi-empirical methods, we can identify a computationally less expensive method to perform longer simulations to further help understand chemical processes that are hard to investigate using DFT. In this work, we have tried to investigate the physical/structural properties of the solid electrolyte interphase (SEI) using molecular dynamics (MD) simulation exploiting the ReaxFF Forcefield. These properties are very useful to help construct macroscopic models to model the SEI growth and capacity loss of lithium-ion batteries. However, through the construction of the SEI structure, a major limitation of ReaxFF was reported concerning the failure to model the inorganic solid Li2CO3 forming the inorganic layer of the SEI. Hence, we limited our study to the organic part of the SEI where we have investigated the properties of a porous layer made up of the organic species Li2BDC and the main solvent EC with concentration taken from our previous study (Chapter 4). The MD simulation was used to calculate the diffusion coefficient of the solvent EC inside the organic layer (10 -12 m 2 /s) exploiting the mean square displacement method. Then, we used the Zeo++ software to calculate its structural properties e.g., specific surface area (1156 m 2 /g), specific pore volume (0.343 cm 3 /g) and pore size distribution (pore radius range from 1.8 to 3.8 Å).

In this chapter we present preliminary results on this system that can be considered as a proofof-concept. However more simulations and analysis are needed to go beyond this stage in the future.

Introduction

In the previous chapters, we have given details about the solid electrolyte interphase (SEI) (e.g., reactions, composition). We have also discussed the importance of theoretical studies to overcome the difficulties facing experimental techniques to help investigate the kinetics of SEI growth. Herein, we theoretically extend our structural understanding of the SEI layer [1][2][3][4][5][6][7][8][9][10][11][12] .

Theoretical studies based on macroscopic models have investigated the capacity loss induced by SEI growth over time and predicted various behaviors (e.g., nonlinear 13,14 , linear [15][16][17][18] or combinations of both 19,20 ). However, these models were reported to suffer from the lack of accuracy in their SEI's physical/structural parameters (e.g., solvent diffusion inside the SEI, porosity) 21 which hinder their developments. Note that the development of these macroscopic models is very important in the industry as they are used in battery management systems to help improve the overall performance of the battery (e.g., capacity, safety, etc.).

Molecular modeling methods can be used to give more insights into the structure of the SEI and help overcome the uncertainties in its parameters [25][26][27][28][29][30] . Most of the molecular modeling studies reported in the literature which aim at shedding light on the properties of the SEI are performed at the density functional theory (DFT) level of theory 6,9,[22][23][24][25][26][27][28] . Previous DFT-based studies were able to suggest various degradation pathways of electrolyte species (e.g., ethylene carbonate EC) resulting in the formation of various inorganic and organic species of the SEI. However, the computational cost of DFT is not suited to model large systems (number of atoms > 1000) required to investigate the properties of the SEI realistically. Low-cost electronic structure methods (semi-empirical methods) can be used to perform MD calculations to investigate various SEI properties as they are faster than DFT. In our recent study, we have investigated the performance of four low-cost methods (GFN-xtb, GFN2-xtb, PM6-D3 and PM7-D3) [31][32][33][34] against accurate DFT (PBE-dDsC) [36][37][38][39] to model various reactions related to the SEI 35 , see Chapter 5 for details. We found that PM7-D3 is the best performing semi-empirical method as it is suitable for a wide range of SEI reactions and systems. However, it should be noted that, even though PM7-based methods are faster than DFT, they are relatively slow compared to the classical forcefields (FFs)-based methods: for a 5-10 ns MD of a system containing 500-1000 atoms, it would take 1-2 weeks using the ReaxFF forcefield while close to 6 months using PM7 32 . Therefore, most studies in the literature have focused on the use of MD simulations using FFs-based methods when dealing with large system sizes 25,26 .

Forcefields used in MD calculations can be classified into two types: nonreactive (no bond forming/breaking) or reactive. In the context of the SEI, an MD study used a nonreactive forcefields called APPLE&P to investigate the transport of Li + inside an organic layer containing the bulk Li2BDC 9,26 . They found that that the Li + transport in the bulk alkyl carbonate Li2BDC has an activation energy of 0.6 eV. Another study performed by Bedrov et al. 27 developed a reactive forcefield (ReaxFF) to investigate various SEI chemistries to help understand the kinetics of SEI growth. The developed ReaxFF forcefield was able to reproduce the EC ringopening reaction which was reported to be a critical step in the SEI formation and growth, in agreement with previous quantum mechanical data 27,28 . In addition, it was also able to investigate the reaction pathways leading to the formation of various SEI species e.g., dilithium butylene dicarbonate Li2BDC. Subsequent studies performed by different groups have exploited this ReaxFF forcefield to model various SEI systems. For example, a study by Takenaka et al. used this ReaxFF forcefield to investigate the SEI growth on EC-based electrolyte using a hybrid MD/MC simulation 29 . Another study performed by Xie et al. used this ReaxFF forcefield alongside DFT to investigate the initial reactions of 1.0 M LiPF6 salt in 1,3-dioxolane (DOL) 30 . They found that PF5, which is a product from the decomposition of LiPF6, can initiate the DOL polymerization 30 .

It should be noted that during the progress of this chapter we have tried to investigate the properties of the SEI layer (both the inorganic Li2CO3 and organic part Li2BDC) using the ReaxFF forcefield 27 . However, although this forcefield captures some of the SEI chemistry, if fails to correctly to model the solid Li2CO3 being present in the inorganic layer of the SEI, see Section 2.1 for details. Hence, in this study, we only model the organic layer of the SEI while the inorganic part Li2CO3 is not considered in this proof-of-concept. The organic species used to represent the organic part of the SEI are the alkyl carbonate Li2BDC as well as the solvent EC with initial concentrations based on the concentration profiles along the Z-axis obtained from our previous study, see Section 3.2 of Chapter 4 28 . We have performed a ReaxFF-based MD to study the structural properties of the organic SEI. These properties would give us more insights on the SEI and reduce the reported uncertainties in its parameters which would help construct macroscopic models to investigate the capacity loss in lithium-ion batteires 21 .

It should be mentioned that the SEI formed in commercial batteries contains various species (e.g., LiF, polymers) that are formed from the decomposition of other electrolyte species e.g., the salt LiPF6 and the additive vinylene carbonate 3,6,9 . Studying the effect of these species are out of the scope of this work. So, one can consider that the organic layer used in this study as a simplified model composed of Li2BDC and EC which is formed based on the main decomposition reactions of the main solvent EC ignoring the effect of other electrolyte species.

Methods and Computational Details

Limitation of ReaxFF forcefield: inorganic/organic Interface of the SEI

In this section we discuss two main limitations of the ReaxFF forcefield developed by Bedrov et al. 27 to model SEI systems:

1. We have faced a limitation when using the ReaxFF forcefield to perform a MD simulation for the SEI shown in Figure 1a: the structure of the solid Li2CO3 experiences major structural instabilities, see Figure 1b. We even tried to use other forcefields (FFs) developed by: Raju et al. 40 , Islam et al. 41 and Liu et al. 42 . However, none of these FFs were able to perform stable MD simulations of the solid Li 2 CO 3 . This could probably be explained by the fact that the periodic solid Li2CO3 was not considered in the training data set used to parameterize these FFs.

Therefore, due to this limitation, we only investigate the properties of the organic layer shown in Figure 1c. 2. We have encountered another limitation of ReaxFF 27 : the two Li + atoms on Li2BDC were assumed to be connected to the carbonate without considering the possibility of ionic dissociation. So, the investigation of the diffusion of Li + from the ionic dissociation of Li2BDC cannot be investigated using such FFs. However, as mentioned before, the computational cost to perform PM7-D3-based MD is much higher than that of ReaxFF-based methods for such very large systems. One can see that building a large realistic structure of the SEI is a tradeoff between computational cost and more realistic chemistry. More details on the use of PM7-D3 are discussed in the perspective Section of Chapter 7.

System setup via NPT-MD and NVT-MD

The concentration of Li2BDC and EC used to construct the organic part of the SEI were taken from our previous study (Chapter 4) where we investigated a list of the main EC decomposition reactions reported in the literature using DFT. Then, we used the DFT results to perform a 3D kinetic Monte Carlo simulation (kMC) to study the formation and growth of the SEI. It should be noted that our kMC system was built with appropriate initial concentrations to mimic a Limetal anode and bulk EC. The density of the porous organic layer of the SEI obtained in our simulation was ≈ 1.2 g/cm 3 with concentrations of EC and Li2BDC ≈ 4.7 mol/l and 4.4 mol/l respectively. More details about the study and SEI structuring are found in the original publication (Chapter 4) 6,9,43,44 .

We have built a simulation box representing the 3D structure of the organic part of the SEI containing 44 and 41 molecules of EC and Li2BDC respectively using the Packmol 45,46 Package implemented in the AMS software. To avoid overlapping between molecules, we first built a large simulation box with dimensions 5 nm × 5 nm × 5 nm where the molecules are represented at gas-like density conditions, see Figure 2a. Then, we performed a constanttemperature, constant-pressure molecular dynamics (NPT-MD) to equilibrate the system: compress the simulation box from the initial condition to the density of the organic layer reported in our previous kMC study. All the MD calculations in this study were performed using the Amsterdam Modeling Suite and exploiting the ReaxFF forcefield developed by Bedrov et al. 27 . The NPT-MD was performed for 5 ns with a step size of 0.25 fs. We used the Nosé-Hoover thermostat and the Martyna-Tobias-Klein barostat to bring the system to a temperature of 298 K and a pressure of 1 atm, respectively. We used a damping constant of 200 fs for both the thermostat and barostat. The electronegativity equalization method (EEM) was used to calculate the partial charges. The cutoff distance for the electrostatic and Van der Waals interactions was set to be the default value of 10 Å.

a) b

Figure 2: a) The initial simulation box size 5.00 nm × 5.00 nm × 5.00 nm before the NPT-MD. b) simulation box size 2.55 nm × 2.55 nm × 2.55 nm after the NPT-MD After the equilibration of the system using the NPT-MD, the output of the NPT-MD, Figure 2b, with the appropriate density and concentration values of EC and Li2BDC (see Section 3.1) was used as an input to perform a constant-temperature, constant-volume molecular dynamics (NVT-MD). The NVT-MD was performed for 10 ns: the first 5 ns was an equilibration run while the second 5 ns was a production run. The NVT-MD allows to increase the statistics when calculating the SEI properties. All the calculations were performed using 36 CPU cores: it takes 1-2 weeks to obtain 5-10 ns of simulation time. The simulation stops when the specified simulation time ends.

Calculated Properties

EC Diffusion inside the organic layer:

To calculate the diffusion coefficient of EC, we need to analyze the trajectory of EC molecules through the NVT-MD to calculate their mean squared displacements (MSDs). Note that the MSD for a particle is defined as the evolution of the position (r) of a particle over time (t) with respect to a reference position, see Eq. (1).

MSD (t) = 〈[r(0) -r(t)] 2 〉 (1) 
Then, from the slope of the MSD curve we can calculate the self-diffusion coefficient following Eq. (2).

D = slope of (MSD) 6 (2) 
The MSD reported in our study is the average MSD for all EC molecules calculated on a window of 2.5 ns over the time-interval (5 ns-10 ns) of the NVT-MD, after the initial 5 ns equilibration.

Structural Properties:

We investigated some structural properties that are generally calculated for porous materials. We used the Zeo++ software [47][48][49][50][51] to calculate specific surface area and specific pore volume using a spherical probe with radius 1.86 Å representing the radius of N2 molecule [52][53][54][55] . The pore size distribution (PSD) has also been calculated and is defined based on the largest void sphere with default radius of 1.2 Å that can be fitted in the structure without overlapping any atoms similar to previous studies [47][48][49][50][51][52][53][54][55] . More details about the Zeo++ software are found in the original publications [47][48][49][50][51] .

Results and Discussions

The results obtained at the moment of the submission of the thesis are summarized as follows: Section 3.1 includes the equilibration of the system using NPT-MD simulations, and Section 3.2 includes the analysis of the production trajectory generated using NVT-MD simulations. In Section 3.3, important notes about the current work are discussed.

Equilibration of the system using NPT-MD simulations

The variation of the density and the volume of the simulation box during the NPT-MD is shown in Figure 3a. The average values of the properties (pressure, temperature, volume, and density) were calculated from the second half of the NPT-MD simulation trajectory (2.5 ns) using a 10-block average. The average value of temperature and pressure are 298.1 ± 0.6 K and 8 ± 212 atm respectively. Note that the high fluctuation of the pressure is typical for such NPT-MD calculations for similar systems and forcefields as reported in the literature 56,57 .

The variation of the density and the volume of the simulation box is shown in Figure 3b. We noticed that the system reaches the steady state at around 1 ns where the values of the volume of the box and the density are almost equilibrated. The average value of the volume of the simulation box taken from the second half of the trajectory is 165.4 ± 0.1 nm 3 with cell parameters of 2.547 ± 0.003 nm 3 (with a=b=c, and ===90°). 

Trajectory production using NVT-MD simulations.

We used the final configuration (and cell parameter) of the NPT-MD, Figure 2b, to perform an NVT-MD simulation to produce a trajectory of 10 ns. The first 5 ns of the NVT-MD was performed to equilibrate the system while the remaining last 5 ns was used to calculate the diffusion coefficients of the solvent EC inside the organic SEI and to investigate properties e.g., pore size distribution.

EC Diffusion inside the orgaic Layer:

To calculate the average self-diffusion coefficients of EC molecules inside the simulation box in Figure 2b, we have analyzed the trajectories of all EC molecules through the NVT-MD simulations to calculate the average value of the MSD. The average value of MSD for all EC molecules over time is shown in Figure 4. We notice that the linear regime starts at around 1.0 ns. Then, the self-diffusion coefficient was calculated from the slope of the MSD vs. time plot under the diffusive linear regime starting from 2.0 ns. The diffusion coefficient of EC was found to in the order of 10 -12 m 2 /s which fits in the range of the reported values of the diffusion coefficients of electrolyte species inside the SEI 12,58,59 . This low diffusion coefficient is in line with the nature of the expected slow EC diffusion inside the porous SEI compared to the relatively fast diffusion in the bulk electrolyte (10 -10 m 2 /s) reported in previous studies [60][61][62] .

Figure 4: The mean squared displacement (MSD) of EC molecules obtained from (5-10 ns) NVT-MD simulation at ambient conditions (298K and 1 atm).

Surface Area, Pore Volume, and Pore Size Distribution

To further investigate the local structure of the organic layer, we have chosen three independent configurations extracted from the NVT-MD trajectory at t = 5, 7.5 and 10 ns to perform several structural analyses. To do that, we removed the EC molecules while keeping only the organic product Li2BDC. The average value of the specific surface area and specific pore volume (calculated using the Zeo++ software) were found to be 1156 m 2 /g and 0.343 cm 3 /g respectively. Table 1 shows the specific surface area and specific pore volume for the three independent configurations. Figure 5 shows the pore size distribution of the three independent configurations at time 5 ns 7.5 ns 10 ns. The values of the PSD for the three configurations range from around 1.8 to 3.8 Å. Note that the spherical radius of the bulk EC is around 3 Å which is in the range of the pore size of all the three configurations. 

Important Note:

As we mentioned before, due to the limited time remaining for the submission of the thesis, some methodological aspects, additional calculations (in progress) and data analysis required to obtain more realistic/accurate results were not included in the actual version of the manuscript. In perspective, further calculations could be performed to investigate other properties. Herein, we report the following: 63 :

1. Perform a more detailed system size analysis: the box size we used in our study has a lattice constant of 2.55 nm (after the NPT-MD). To check the effect of the box size on the calculated properties (e.g., self-diffusion coefficient of EC), we would vary the system size, i.e., lattice constant of the simulation box. Then, we would plot the property (e.g., diffusion coefficient of EC) vs. 1/lattice constant to help us extrapolate and obtain the diffusion coefficient for the infinite box size. In addition, one also must perform longer MD simulation time to obtain more accurate values of the MSDs. 2. An alternative option to the previous procedure is to use the system-size correction for the self-diffusion coefficient proposed by Yeh et al [63][64][65][66] . In their study, the authors developed a finite size correction method and found a relationship where the shear viscosity of the system is used to correct the dependence of this property with the simulation system size. However, in view of the order of magnitude of the preliminary results obtained for the self-diffusion coefficient (10 -12 m 2 /s), we can infer that the viscosity of the system could be very high. The calculation of the shear viscosity by NVT-MD simulations would require even longer simulations to properly sample the pressure tensor autocorrelation functions (i.e., the magnitude used to compute the viscosity in molecular simulations 67 ). In fact, recent works exploit the Yeh et al. [63][64][65][66] relationship in the opposite way around, where self-diffusion coefficient obtained at different system sizes are used to estimate the shear viscosity of the system 68 . Finally, one can argue that system modeled is probably at the limit of what can be obtained by standard NVT-MD simulations for the viscosity estimation. 3. Calculate other properties e.g., the radial distribution functions (RDF) and tortuosity of the organic SEI. The RDF would help investigate the spatial arrangement of particles around a reference particle, i.e., the variation of the density around a reference as a function of distance. Tortuosity would give an idea about the degree of twisting in a particle path, i.e., how much longer a path is compared to a straight-line distance between two points. These properties would give more insights on the structure of the organic SEI. 4. A more realistic description of the diffusion inside the SEI probably requires a model including the inorganic/organic interface as shown in Figure 1a: In this configuration, an estimation of the self-diffusion coefficient parallel and perpendicular to the interface can be performed. PM7 can be used to overcome ReaxFF forcefield's limitation and model the inorganic/organic interface of the SEI. More details about the use of PM7 is in the Perspective Section of Chapter 7.

Conclusion

In this work, we have tried to build a 3D structure of the SEI including both layers (inorganic and organic) using classical molecular dynamics exploiting the ReaxFF forcefield. However, we have encountered a limitation of the ReaxFF forcefield to model the inorganic solid Li2CO3 of the SEI where the salt undergoes major structural instability. Therefore, we limited our study to investigate the structural and transport properties of the organic layer only.

The organic layer included in our study is a simplified layer composed of Li2BDC and EC. The initial concentrations of EC and Li2BDC were taken from the results reported in our previous study (Chapter 4). We first performed an NPT-MD simulation using the ReaxFF forcefield to build the simulation box representing a 3D structure of the organic layer. Then, we performed NVT-MD simulations to investigate its physical/structural properties. We found that the selfdiffusion coefficient of EC is in the order of 10 -12 m 2 /s which fits in the range of reported values in the literature. We also found that the organic SEI has an average specific area of (1156 m 2 /g), an average specific pore volume of (0.343 cm 3 /g) and a pore size distribution with pore radius range from around 1.8 to 3.8 Å. Note that such physical/structural properties of the SEI are very important from an industrial point of view to help construct the macroscopic models to predict/understand battery aging and capacity loss.

We would like to note that results obtained in this chapter need to be considered preliminary as more technical details/results are needed to go beyond this proof-of-concept.

Chapter 7. Overall Conclusion and Perspectives

Overall Conclusion

Li-ion batteries (LIBs) are the present status of advanced energy storage devices spanning a wide range of applications (e.g., smartphones, electric vehicles) and paving the way to a greener more sustainable future. The aging of LIBs is mainly governed by the formation and growth of the solid electrolyte interphase (SEI) layer which is formed at the surface of the anode. While the initial formation of the SEI stabilizes the battery through protecting the electrolyte, the SEI undergoes various compositional and structural changes and grows over time, resulting in the consumption of active electrons and capacity loss of the battery.

Understanding the growth kinetics of the SEI as well as its effect on the battery capacity is essential to unleash the full capabilities of LIBs. Yet, reaching this understanding is very challenging. The challenges emerge from its short thickness (nanometer) and its heterogeneous nature as well as the limitation of existing experimental methods. Hence, in this thesis, we have shed light on the formation and growth of the SEI layer theoretically using molecular modeling techniques.

Theory and experiments show that the SEI is composed of two layers: an inorganic layer close to the anode and an organic layer close to the electrolyte. While the inorganic layer (e.g., Li2CO3, Li2O) is very dense layer, the organic one (e.g., dilithium butylene dicarbonate, Li2BDC) is porous and contains various reducible electrolyte species. Theory shows that Li 0 diffusion through the SEI is the most likely electron transport mechanism from the anode to the electrolyte leading to the SEI growth. It was found that the inorganic layer of the SEI allows the transport of small species e.g., Li 0 . After a critical literature review, the SEI growth mechanism was expected to take place over the inorganic layer: Li 0 diffuses from the anode to the surface of the inorganic salts and meets electrolyte species (e.g., ethylene carbonate EC) that diffuse through the pores of the organic layer.

To investigate the mechanism of SEI growth, and its effect on capacity loss, a hybrid molecular model was constructed, coupling density functional theory (DFT) calculations with kinetic Monte Carlo (kMC) simulations. First, the decomposition reactions of the main solvent EC were investigated using DFT to obtain their activation energies. Then, kMC was used to model the formation and growth of the SEI layer (kinetics and composition) over time. It was found that, at the initial formation of the SEI in the absence of the inorganic layer, the capacity loss over time follows a relatively fast non-linear behavior limited by diffusion of reactive species. However, considering the effect of the inorganic layer (e.g., Li2CO3) on the kinetics of SEI growth led to a slow linear behavior for the capacity loss limited by reaction kinetics. In addition, it was found that when considering the effect of the inorganic layer, more organic species were generated which led to a more realistic multilayered structure of the SEI. The model also reveals that the composition of the SEI was strongly dependent on the nature of the inorganic salts (Li2CO3 or Li2O) forming the inorganic layer as each surface is more selective to certain organic species than the other. Overall, the outcomes of the model highlight the significant role of the inorganic layer in understanding the heterogeneous composition and kinetics of SEI growth as well as the behavior of capacity loss over time.

The model described above is based on a simplified electrolyte composition: considering only the solvent EC while neglecting the effect of other electrolyte species (e.g., LiPF6 salt, additives) on the composition and kinetics of SEI growth. Furthermore, only the influence of the solid phase on the reaction energetics has been probed, but the reaction environment of the SEI (lateral to the reactants and perpendicular to the surface) has been neglected. These approximations have been necessary due to the computational cost of DFT. Low-cost electronic structure methods (semi-empirical methods) could be good candidates to model complex SEI chemistry as they are computationally less expensive than DFT and more transferable than classical methods (e.g., ForceFields FFs). However, the performance of these methods to model various battery systems has not been investigated in the literature. Therefore, a benchmark study was undertaken to assess the capability of four semi-empirical methods (GFN-xtb, GFN2-xtb, PM6-D3, PM7-D3) to reproduce the trends of DFT (PBE-dDsC) computations for reactions relevant to the SEI. The benchmark study included various decomposition reactions of major electrolyte species leading to the formation of various SEI species: inorganic (e.g., LiF, Li2O, Li2CO3) and organic (e.g., Li2BDC, polymerization pathways). It was found that PM7-D3 is the most accurate method with a mean absolute deviation of 59 kJ/mol. Even though PM7-D3 was found to have a non-negligible energy offset, it was found to correlate well with DFT data and works quite satisfactorily for a large range of reactions and systems, including energetics of small salt nanoparticles.

In the last part of the thesis, we tried to investigate physical properties of the SEI to obtain more insights on its structural characteristics. Such properties of the SEI include EC diffusion inside the SEI and the porosity of the organic layer. Molecular dynamics (MD) calculations using empirical FFs are usually employed to build large system sizes (i.e., SEI) due to their low computational cost compared to quantum mechanical methods. Through the construction of the SEI structure, we encountered a major limitation of the reactive FF (ReaxFF) to model the inorganic solid Li 2 CO 3 : major structural instability. Therefore, the investigation of the SEI was limited to the properties of the organic layer only. In this proof of principle study, we found that the organic SEI has pore sizes of radius in a range of (1.8 to 3.8 Å) and an EC diffusion coefficient of 10 -12 m 2 /s. These properties are important as they are used as input parameters to construct macroscopic models to better understand the SEI growth and predict capacity loss on an industrial level.

Outlook and Perspectives

In this section, we address different approaches to extend our understanding of the SEI layer. First, we highlight technical details related to the DFT-kMC model. Second, we proceed to discuss the link between molecular models and macroscopic models: continuation of Chapter 6. Third, we explore approaches to obtain more realistic reaction/diffusion rate constants.

Technical details to the DFT-kMC model in Chapter 4:

• Fixed sized lattice kMC: due to the intrinsic limitation of the fixed sized lattice of the kMC model used in Chapter 4, the density profiles of species can be over/under-estimated as the sites can be occupied with any species regardless of their volume. To overcome this limitation, one can modify the SPPARKS code to consider that each species should be allowed to occupy a varying number of lattice sites to account for its relative size.

• Different anode materials: following the model we used in Chapter 4 where Li-metal was used as the anode, one can extend the analysis to lithiated graphite as most of current LIBs use this type of anode. This study would help to compare the behavior of the concentration profiles of SEI species (over time and along the Z-axis) and capacity loss over time between using different anode materials. However, to build the lithiated graphite anode, some modifications of the SPPARKS code are needed e.g., adding a new species to represent the graphite layers.

• Battery Cycling: It is very difficult to consider the effect of cycling using molecular modeling as this process is very complex and affect various components of the battery cell. Herein, we discuss two main phenomena that occur at the anode during cycling: First the amount of Li 0 keeps changing at the anode (Li 0 concentration increases when charging and decreases with discharging). Second, the structure of the anode experience volume change which could cause cracking of the SEI leading to faster degradation of the electrolyte species as they are exposed to more Li 0 .

To include the effect of changing Li 0 concentration at the anode, one can specify an event in kMC where the Li 0 appears/disappears near the electrode at a rate proportional to the charging/discharging rate. To include cracking scenario in the kMC model: cracking can be seen as an additional fast exposure of electrolyte species to Li 0 leading to fast/additional reduction of the electrolyte: 1) the use of faster diffusion coefficients of Li 0 . 2) the use of additional diffusive sites (e.g., tetrahedral sites in the on-lattice kMC) where Li 0 can meet with EC on the tetrahedral site representing additional diffusive/reactive sites due to the cracking of the SEI. • Desorption of organic species: we would like to mention that if the organic species formed from the electrolyte decomposition reactions were strongly adsorbed over the inorganic layer, they can be seen as a passivating layer blocking reducible electrolyte species (e.g., EC) to come close to the surface of the inorganic layer hindering their reduction by Li 0 which would slow down the kinetics of SEI growth and capacity loss. Therefore, we recommend investigating the activation energy of the desorption of organic species e.g., Li2BDC over the inorganic solids (e.g., Li2CO3, Li2O) and adding their corresponding rate constants to the kMC model.

From Molecular Models to Macroscopic Models: Continuation of Chapter 6

Theoretical studies based on macroscopic models are of important interest for industrial applications as they are used in battery management systems to help improve the battery's lifetime (e.g., performance prediction, safety, etc.). These models use various physical parameters of the SEI (e.g., EC diffusion coefficient, porosity of the SEI, density, ionic conductivity) to run their calculations. However, a major limitation of current macroscopic models hindering their development is their intrinsic oversimplification of the SEI layer. These models do not differentiate between the inorganic and organic parts of the SEI but rather treats the SEI as one whole homogeneous layer. From our work, we find it important to consider the SEI as two layers when constructing these models: inorganic layer and organic layer, each with different physical/structural properties. Another challenge facing the development of these models is the high uncertainties reported for the values of SEI parameters which hinders the understanding of SEI growth and capacity loss. Molecular modeling techniques can be used to overcome the uncertainties and help obtain more accurate values of SEI parameters.

The use of PM7: In chapter 6, we have investigated the use of the forcefield ReaxFF to obtain certain properties of the SEI. However, we have encountered certain limitations of ReaxFF: the failure to model the inorganic layer Li2CO3 and the absence of Li + dissociation. PM7-based methods can be used to overcome these limitations and help to build a more realistic 3D structure of the whole SEI layer (both parts: inorganic and organic). Furthermore, it would allow calculating important properties which would help to obtain other SEI parameters. For example, PM7 can be used to calculate the diffusion coefficient of Li + inside the SEI which is an important model's parameter. Then, Li + diffusion coefficient can be used to calculate another important parameter e.g., the ionic conductivity of the SEI using the Nernst-Einstein relationship.

Reaction and Diffusion Rates a) Reactions rate constants

Herein, we address an important point concerning the "unreasonable time (micro/milli seconds)" reported in Chapter 4. Note that the kinetics and the simulation time scale in kMC is governed by the activation energy (Eb) and the preexponential factor k0 found in k=k0 exp (Eb/RT). The values of Eb vary in the literature and are very sensitive to the level of theory used. For example, EC ring-opening reaction which is a critical step for the SEI formation was reported to have an energy barrier with a huge range (23 kJ/mol -127 kJ/mol) depending on the level of theory used. Such variations in E b can shift the time scale by many orders of magnitudes (e.g., from milliseconds to hours/days). Hence, the choice of accurate DFT methods to calculate the energy barriers is important as these reactions are highly dependent on the level of theory. Furthermore, in the model developed in Chapter 4, the effect of the SEI environment (salts, polymers, etc.) were neglected which probably led to an underestimation of the values of Eb. For the preexponential factor k0 used in our study, it was approximated to 10 13 s -1 which is generally used when the entropy of the transition state is assumed to be like that of the reactants. One can see k0 as a time scaling factor, i.e., where the use of a smaller value of k0 (more entropic constraints due to reaction environment), would shift the timescale of the whole kMC from seconds to hours/days.

To obtain more realistic values of the rate constants, one can select a molecular method to perform a reactive MD with a realistic electrolyte composition to obtain accurate values of both k0 and Eb. However, it should be noted that a major challenge for standard MD simulations is the difficulty to model slow processes like battery aging (SEI growth) as some events (reactive/diffusive) are rare due to their small values of the rate constants (e.g., high activation energies). To overcome this challenged enhanced sampling methods (e.g., metadynamics) can be used. Metadynamics can accelerate the exploration of the configuration space and overcome high energy barriers through applying a bias potential which allows to capture slow processes. Through analyzing the bias applied one can obtain information about the rate constant of these slow/rare events. Other enhanced sampling techniques e.g., thermodynamic integrations and umbrella sampling can be used to obtain accurate values of the free energy differences between two thermodynamic states (e.g., reactants and transition state, i.e., activation energy) and/or construct a free energy surface. Then, the activation energy calculated can be coupled with transition state theory principles to obtain more realistic values of the rate constants.

The choice of the molecular method to perform the MD simulation is very critical. PM7-D3, being the best semi-empirical methods for the SEI, can be used to perform such calculations to help capture various decomposition reactions of a realistic electrolyte composition and their corresponding rate constants. In addition, it should be noted that the performance of PM7 can even be enhanced further through a readjustment of its parameters to obtain closer agreement with DFT for reactions/systems related to the SEI which would increase its robustness/accuracy. Alternatives to PM7-D3 include FFs-and machine learning (ML)-based methods. These methods, first, need to be parametrized with DFT training data related to the SEI to ensure their accuracy. Both FF-and ML-based methods must include the decomposition reactions of various electrolyte species and model complex chemical reactions (e.g., LiPF6 decomposition, polymerization). Furthermore, they also need to be able to model the solid inorganic salts forming the inorganic layer of the SEI (e.g., Li2O and Li2CO3) and their effects on the decomposition reactions of electrolyte species.

b) Li 0 diffusion coefficients through the solid inorganic layer of the SEI

The diffusion coefficients reported in the literature for Li 0 through the inorganic SEI (10 -14 -10 - 16 m 2 /s) are usually calculated assuming a preexponential factor of k 0 = 10 13 s -1 where the diffusion takes place through grain boundaries (GBs). Hence, these studies implicitly assume faster kinetics by placing the species close to solid edges. Note that that if the inorganic layer of the SEI e.g., Li2CO3 has a pure crystalline structure, the diffusion will be taking place through the bulk of Li2CO3 not GBs, where the diffusion through the bulk will probably be slower. However, it should be mentioned that it is very challenging to know whether the inorganic layer of the SEI e.g., Li2CO3 has a pure crystalline structure (slow diffusion through the bulk) or not (faster diffusion through GBs) as more details about the structure of the inorganic layer are needed. to the cases in isolation and over Li2CO3 (001): one of the two oLi-EC• reactants forming Li2BDC is connected to Li2O (111) with all the three oxygen atoms, see Figure 4e, making it hard to form through the C-C coupling reaction. The geometries of species over Li2CO3 (001) and Li2O (111) are shown in Figure 3 and Figure 4 respectively. Table 2 shows the length of bonds broken/formed for the obtained TS geometries. This procedure can be used to validate the link between the introduced diffusion rate constant and the expected diffusion coefficient in the kMC simulation [1][2][3][4][5][6][7] . It is important to mention that in a complex mixture of species the "effective" diffusion constant of specie will be the consequence of the combination of all possible diffusive events encountered for this species. The example given in Figure 5 only allows validating in the kMC setup the appropriate link between the average distance between sites, the diffusive rate constant and the expected diffusion coefficient in a homogeneous media. The concentration profile of species (e.g., Li2BDC) with time is almost the same and is independent of the initial number of Li2CO3 layers, see Figure 7. The only expected difference is the final concentration of Li2CO3 in the case where we start with 8 layers since we start the simulation with more Li2CO3 species to form the initial 8 layers of Li2CO3 compared to the case when only 2 layers are used The initial condition and concentration profile vs. time for EC decomposition reaction over 4 initial preformed layers of Li2CO3 (001) assuming a strong slowing down of the mobility of the product species can be observed in Figure 8a and 8b respectively. The concentration profile, Figure 8b, of species and the linear loss of Li 0 is almost the same as when the organic products move, see Figure 4f in Chapter 4. We only noticed a small increase in the final concentration of the inorganic species and a shorter final thickness of the organic layer, see Figure 8c, 8e and Figure 9. For a practical point of view, to specify an event in SPPARKS, if two species are meant to react to form a new species, a vacant site would be added to conserve number of sites. We also need to identify the number of sites involved in any event and provide the type of sites (e.g., fcc), the name of the species involved as well as the energy barrier, see Figure 16.

Parameters used in the kMC simulation and box size

Figure 16: Specifying events in SPPARKS software Table 6 shows the names used for the species in SPPARKS. 

Figure 2 :

 2 Figure 2: A schematic representation of components of Li-ion Battery: Copper (Cu) and Aluminum (AL) are used as current collectors. SEI stands for the solid electrolyte interphase.

Figure 4 :

 4 Figure 4: Experimental behaviors of aging. Left: State of health (SOH) during Calendar aging for a commercial LIB at different state of charge (SOC) and different temperature by Matadi et al.13 Right: the remaining capacity during calendar (cross) and cyclic (circle) aging for different LIBs having at a state of charge (60%) at 22 °C (bold lines) and 55 °C (dashed lines) by Hellqvist Kjell et al.12 
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 3 Figure 3: a) FF: ReaxFF parameterizations 43 b) Termination reactions using eReaxFF 44,67 c) a hybrid MD/MC simulation to model SEI growth for a lithiated graphite electrode and a ∼1.1 mol/L LiPF6 EC-based electrolyte 68 .
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 4 Figure 4: Molecular modeling techniques and ML models.
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 1 Figure 1: Algorithm to find the ground state electron density 1.

Figure 3 :

 3 Figure 3: Variable Step Size Method (VSSM) Algorithm: t is time, α and β are configurations, P∝ and Pβ are their probability. Wαβ and Wβα are transition probabilities per unit time 15.
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 4 A Joint DFT-kMC Study to Model Ethylene Carbonate Decomposition Reactions: SEI Formation, Growth, and Capacity Loss during Calendar Aging of Li-Metal Batteries This Chapter is based on (or adapted from) the following article: Bin Jassar, M.; Michel, C.; Abada, S.; Bruin, T. de; Tant, S.; Nieto-Draghi, C.; Steinmann, S. N. A Joint DFT-kMC Study to Model Ethylene Carbonate Decomposition Reactions: SEI Formation, Growth, and Capacity Loss during Calendar Aging of Li-Metal Batteries. ACS Applied Energy Materials 2023, 6 (13), 6934-6945. DOI: 10.1021/acsaem.3c00372.
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 2 Figure 2: EC decomposition reactions in isolation (black) and over Li2CO3 (001) (blue). S stands for surface.

Figure 3 :

 3 Figure 3: Side and top views of transition state geometry of the ring-opening reaction (RI) over Li2CO3 (001). The colors: red, white, brown, and green represents oxygen, hydrogen, carbon, and lithium respectively. The blue dashed line represents the C-O bond distance (1.73 Å). Only the top layer of the surface in contact with reactive species is shown.

Figure 4 :

 4 Figure 4: Summary of kMC results. a-d) Information of the EC decomposition reactions in isolation: a) Initial conditions b) Variation of the concentration of species vs. time c) Specific mass density profile along the Z-axis of the simulation box d) Snapshots of the simulation box after 0.6 μs. e-h) Information of the EC decomposition reactions over Li2CO3 (001): e) Initial conditions f) Variation of the concentration of species vs. time g) Specific mass density profile along the Z-axis of the simulation box h) Snapshots of the simulation box after 1.2 ms. ρ total is the total density.

Figure 5 :

 5 Figure 5: Evolution of the SEI layer thickness with time after EC decomposition reaction over Li2CO3 (001).

Figure 6 :

 6 Figure 6: The behavior of the relative capacity induced by SEI growth as a function of time. The red square represents the experimental values by the study of Matadi et al.69 where they performed calendar aging at 25 °C for a commercial LIB having a state of charge (100 %). The purple square represents the experimental study by Kjell et al.36 where they performed calendar aging for a different LIB having at a state of charge (60%) at 55 °C. The dashed lines are linear extrapolation of the experimental data. The black, blue, and green lines represent the relative capacity (loss of Li 0 ) for our calculation in isolation, over Li2CO3 (001) and over Li2O
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 5 Benchmarking Semiempirical Methods for the Li-Ion battery Solid Electrolyte Interphase This Chapter is based on (or adapted from) the following article: Bin Jassar, M.; Michel, C.; Abada, S.; Bruin, T. de; Tant, S.; Nieto-Draghi, C.; Steinmann, S. N. Benchmarking Semiempirical Methods for the Li-Ion battery Solid Electrolyte Interphase. Submitted to ACS Physical Chemistry C.

Figure 2

 2 Figure 2 Parity plot for the semi-empirical methods GFN-xtb, GFN2-xtb, PM6-D3 and PM7-D3 against PBE-dDsC for all the reactions tested. The corresponding least-squares fit are given in the legend above the plot, the black diagonal line indicates the bisector.

Figure 7

 7 Figure 7 Screenshots after 10 ps of ethylene carbonate (left) and lithium ethylene dicarbonate (right) surrounding LiF respectively: white is H, red is O, brown is C, green is Li and light-blue is F.

Figure 8

 8 Figure8shows the C-O bond length of three ethylene carbonate molecules over Li2O. The initial bond length is around 1.4 Å. The first ring opening (C-O scission) occurs already after 0.5 ps. For this first ring opening, the ethylene carbonate was already relatively close to the reactive oxygen in Li2O at the beginning of the MD. However, the second and third ringopening reactions start only when the second and the third EC molecules get closer to the oxygen in Li2O (starting from around 2.2 and 2.8 ps respectively). It should be noted that in addition to ring opening reaction, we also noticed a C-H scission for some solvent molecules, further illustrating the high reactivity of the oxygen atoms at the Li2O surface.

Figure 8 C

 8 Figure 8 C-O bond length distance for three EC molecules ring opening reactions over Li2O.ROn represent the ring opening (RO) reaction for the n th EC.
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 6 Investigation of the Porous Organic Layer of Dilithium Butylene Dicarbonate in the Solid Electrolyte Interphase of Lithium Batteries This Chapter is based on the following work: Bin Jassar, M.; Steinmann, S. N; Michel, C.; Abada, S.; Tant, S.; De Bruin, T.; Nieto-Draghi, C. Investigation of the Porous Organic Layer of Dilithium Butylene Dicarbonate in the Solid Electrolyte Interphase of Lithium Batteries. In progress.

Figure 1 :

 1 Figure 1: a) 3D structure of the SEI of both the inorganic and organic layer b) the expansion of the inorganic layer during the MD c) the porous organic part of the SEI

Figure 3 :

 3 Figure 3: The variation of the temperature and the pressure (a), and the volume and the density (b) during the NPT-MD simulations at ambient conditions (298K and 1 atm).

Figure 5 :

 5 Figure 5: Pore size distribution (PSD) obtained from three independent configuration extracted at t = 5, 7.5 and 10 ns the NVT-MD trajectory at ambient conditions (298K and 1 atm).

Figure 1 :

 1 Figure 1: Surfaces used in our calculations Li2CO3 (001) and Li2O (111). Li: green, O: red, C: brown.

Figure 2 :

 2 Figure 2: EC decomposition reactions, in isolation (black), over Li2CO3 (001) (blue) and over Li2O (111) (green), S stands for surface

Figure 3 :Figure 4 :

 34 EC decomposition reactions over Li2CO3 (001): a and b are side and top views of transition state geometry of RI respectively. c and d are side and top views of transition state geometry of RII respectively. e-h) Structures of TS-RVI, Li2BDC and Li2EDC and Li2CO3 respectively. Only top layer of the surface in contact with reactive species is shown. Li: green, O: red, C: brown, H: gray. EC decomposition reactions over Li2O (111): a and b are side and top views of transition state geometry of RI respectively. c and d are side and top views of transition state geometry of RII respectively. e-h) Structure of TS-RVI, Li2BDC and Li2EDC and Li2CO3 respectively. Only top layer of the surface in contact with reactive species is shown. Li: green, O: red, C: brown, H: gray.

Figure 6 : 2 .3 kMC Results 2 . 3 . 1

 62231 Figure 6: Simulation box size: 8.8 nm × 8.8 nm × 35.2. the lower green box compartment represents Li-metal, and the upper compartment represents the bulk EC

Figure 7 :

 7 Figure 7: Concentration of species vs. time for EC decomposition reactions over for 2 (left) and 8 (right) initial preformed layers of Li2CO3 (001)

Figure 8 :

 8 Figure 8: a-d) EC decomposition reactions over 4 initial preformed layers of Li2CO3 (001) assuming a strong slowing down of the mobility of the products (polymeric environment) : a) Initial conditions b) Variation of the concentration of species vs. time c) Specific mass density profile along the Z-axis of the simulation box d) Snapshots of the simulation box after 1.5 ms.

Figure 9 :Figure 10 :

 910 Figure 9: SEI growth for EC decomposition reaction over 4 initial preformed layers of Li2CO3 (001) assuming a strong slowing down of the mobility of the product species.

  

  

  

  

  

  

  

  

  

  

  

Table 1 :

 1 Electron transport mechanisms

	Electron
	tunneling

  In the context of SEI in LIBs, a kMC model developed by Methekar et al.79,80 was built to study the formation of the SEI on a graphite surface. Their model tries to model an electrode being charged under a constant potential4 . They found that the time required for charging decreases with the number of cycles due to the growth of the passive SEI layer 79 . Another kMC method developed by Hao et al.

	72,73 . kMC is a MC-based methods that describes the evolution of
	events (e.g., reaction, diffusion) over time. kMC uses rate constants/activation energies to
	model various physical and chemical processes. The rate constants/activation energies used
	in kMC can be obtained theoretically (e.g., DFT) or directly from experiments. kMC models
	have been used in various electrochemical systems like fuel cells 74 , Li-O2 batteries 75,76 and
	slurry redox flow batteries 77,78 .

Chapter 4: A Joint DFT-kMC Study to Model Ethylene Carbonate Decomposition Reactions: SEI Formation, Growth, and Capacity Loss during Calendar Aging of Li-Metal Batteries, in ACS Applied Energy Materials

  

	computations for reactions relevant to the SEI. Semi-empirical methods are about three
	orders of magnitude faster than DFT, allowing one to describe larger systems. Compared to
	other parametrized methods such as density functional tight-binding (DFTB) or reactive force
	fields (RFF), Semi-empirical methods (e.g., PM7 or GFN-xtb) have the advantage to exist in a
	unique, "universal" parametrization, so that changes in the electrolyte composition (e.g.,
	including the salt LiPF6, and/or LiTFSI) could, in principle, be assessed without the need of
	reparametrizing the underlying Hamiltonian. Among the four semi-empirical methods (GFN-
	xtb, GFN2-xtb, PM6-D3, PM7-D3) studied, it was found that PM7-D3 is the best one to
	represent the chemistry of the SEI. The results are summarized in Chapter 5.
	The composition/structure of the SEI obtained in our study in Chapter 4 are based on the
	decomposition reactions of the main solvent EC only. To increase the heterogeneity of the SEI,
	we need to include more electrolyte decomposition reactions. Note that, in commercial
	batteries, the electrolyte is very complex and contains various species including salts (e.g.,
	LiPF6) and additives (e.g., vinyl carbonate). However, studying the decomposition reactions of
	realistic electrolyte mixture including their corresponding reaction pathways (e.g.,
	polymerization) and the effect of the inorganic layer (Interface III) by accurate methods (DFT)
	is very challenging and computationally too expensive. Therefore, cheaper methods are
	needed to better understand the complexity of the SEI and capacity loss. Hence, we have
	undertaken a benchmark study to assess the capability of more approximate and faster
	electronic structure methods (semi-empirical methods) to reproduce the trends of DFT

Chapter 5: Benchmarking Semi-Empirical Methods for Solid Electrolyte Interphase Lithium-Ion Batteries, has

  been submitted to ACS the Journal of Physical Chemistry C.
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Table 1 :

 1 Specific surface area and specific pore volume obtained at ambient conditions (298K and 1 atm) from three independent configurations extracted from the NVT-MD simulations at t = 5, 7.5 and 10 ns.

	Property	5 ns	Structure at time 7.5 ns 10 ns	Average	Standard deviation
	specific surface area m 2 /g	1184	1144	1139	1156	24
	specific pore volume cm 3 /g 0.345	0.352	0.332	0.343	0.01

Table 1 :

 1 Reaction energies (Er), energy barriers for the forward (Eb) and backward (Ebb) reactions in kJ/mol

	Reaction		in isolation		over Li2CO3 (001)		over Li2O (111)
		Eb	Er	Ebb	Eb	Er	Ebb	Eb	Er	Ebb
	I	23	-95	118	53	-97	150	42	-94	126
	II	65	63	2	62	29	34	48	-17	65
	III	0	-375	375	0	-362	362	0	-356	356
	IV	0	-383	383	13	-361	374	53	-365	418
	V	0	-322	322	0	-232	232	0	-224	224
	VI	0	-437	437	0	-391	391	0	-339	339

Table 2 :

 2 The length of bonds broken/formed for transition state (TS) geometries (in Å)

	TS	In Isolation	Over Li2CO3 (001)	Over Li2O (111)
	I	1.68	1.73	1.70
	II	2.30	2.16	1.90
	IV	##	3.48	4.00

Table 3 :

 3 Parameters used in the kMC simulation: list of reactions, energy barriers for the forward reaction Eb (kJ/mol), backward reaction Ebb (kJ/mol) from our DFT calculations, and diffusion coefficient D (m 2 s -1 )

		EC Decomposition Reactions in kMC	in isolation	over Li2CO3 (001)	over Li2O (111)
			Eb	Ebb	Eb	Ebb	Eb	Ebb
	R0	Li 0 + EC → cLi-EC•	0	63	0	213	0
	RI	cLi-EC• → oLi-EC•	23	118	53	150	42
	RII	oLi-EC• → LiCO3• + C2H4	65	2	62	34	

Table 6 :

 6 The names used for the species in SPPARKS code

	Species	Li	EC oLi-EC• LiCO3•	cLi-EC•	Li2EDC Li2BDC	Li2CO3	vacant site
	In SPPARKS	li	ec	oec	carb	eth	liedc	libdc carbonate	vac
	#								

Example of SPPARKS Input file (modified Erbium application)

  == OEC) ivalue = sites[HELIUM]; else if (which[i] == CARBO) ivalue = sites[CARB]; else if (which[i] == ETHE) ivalue = sites[ETH]; else if (which[i] == LIEDC) ivalue = sites[PLIEDC]; else if (which[i] == LIBDC) ivalue = sites[PLIBDC]; else if (which[i] == CARBON) ivalue = sites[CARBONATE]; else if (which[i] == INN) ivalue = sites[INNER];

	else if (which[i]
	seed	9999
	app_style	erbium
	lattice	fcc 4.4 #cereate FCC lattice
	region	box block 0 20 0 20 0 80
	boundary	p p n #periodicity in x and y only
	create_box box
	create_sites box value i1 0 basis 1*4 1 # basis 5*8 2 basis 9* 3 #cereate sites in FCC lattice
	read_sites SS_4.4_n_layers_0 # read initial configuration
	sector	yes
	solve_style tree

Table 2 :

 2 Absolute % deviation (A%D) and absolute deviation (AD) of all reactions relative to PBE-dDsC

	Reactions	GFN-xtb A%D	AD	GFN2-xtb A%D AD	PM6-D3 A%D	AD	PM7-D3 A%D	AD
	1	97	194	142	285	115	230	102	205
	2	61	84	108	149	70	96	70		96
	3	13	29	77	175	19	42	6		15
	4	2	2	106	81	2	2	1		1
	5	49	29	249	147	36	21	46		27
	6	65	39	250	152	62	37	97		58
	7	3	3	11	11	67	66	37		36
	8	43	72	54	89	39	65	9		16
	9	20	58	10	28	7	21	4		13
		82	32	351	136	114	44	23		9
		66	3	238	11	151	7	403		18
		85	54	191	120	255	161	236	149
		135	65	263	126	397	190	379	182
		69	65	67	64	88	83	66		62
		155	76	153	75	198	97	165		80
		246	151	161	99	248	152	231	142
		140	113	96	77	102	82	97		78
		17	21	18	22	19	24	16		20
		4	7	4	7	12	22	11		21
		139	78	58	32	122	68	63		35
		478	63	657	87	104	14	116		15
		0	1	19	34	5	9	7		13
		81	80	91	90	89	88	54		54
		52	228	59	259	29	127	30	131
		30	113	32	121	32	123	31	120
		19	101	20	103	26	135	23	118
		75	240	123	395	10	31	13		43
		66	245	51	191	6	21	8		32
		120	55	139	63	48	22	76		34
		3	2	15	8	44	23	91		47
		19	55	28	82	2	7	4		11
		35	75	41	89	1	3	3		7
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Typical INCAR file for DFT Calculations

Specifies the "precision"-mode Selects a robust mixture of the Davidson and RMM-DIIS algorithms Specifies the cutoff energy for the plane-wave-basis set in eV. Fermi smearing: good for semiconductors and molecules Width of the smearing in eV. Specifies the exchange-correlation functional Perdew-Burke-Ernzerhof Global break condition for the electronic SCF-loop Fully automatic optimization of projection operators Specifies the maximum number steps stored in Broyden mixer No CHGCAR file written No WAVECAR file written Maximum number of ionic steps Ionic relaxation (conjugate gradient algorithm) Break condition for the ionic relaxation loop: Maximum gradient (eV/A) Spin polarized calculations (collinear) are performed Specifies the initial magnetic moment for each atom Difference between alpha and beta electrons Better output regarding the spin population Dispersion correction

Kinetic Monet Carlo (kMC) 2.1 Link between diffusion rate constants and diffusion coefficients through the Mean Square Displacement (MSD) in kMC simulations

SPPARKS software allows for calculating of diffusion coefficients D of species where specie (e.g., vacant site) can be swapped by another diffusing species (jump from one site to the other), see Eq. ( 1) and Eq. ( 2):

X + vacant site → vacant site + X (1)

where ddl is the degree of freedom (ddl = 3 in 3D), ν is the diffusion rates (s -1 ) and ∆d is the average distance between sites (3.8 Å in our system). To extract the diffusion coefficient from the trajectories of a particle, the mean square displacement (MSD) method was used. For a particle i:

, where d i,t is the position of the molecule i at time t and d i,t 0 is the position at time t0. The diffusion coefficient D is related to MSD through:

So, we can obtain D from the slope of the linear curve of MSD vs. time, see Figure 5 as an example for calculating Li 0 diffusion coefficient. To check weather carrying reactions over Li2CO3(001) is responsible for the linear behavior, we tested the same setup in Figure 4e in Chapter 4 but using EC decomposition reactions in isolation. We notice the same non-linear behavior as in Figure 4b in Chapter 4 in isolation but even a lower concentration of organic species Li2BDC, see Figure 11. It should be noted that we also observe a shift in the time scale from micro to milliseconds since the diffusion of species was reduced to mimic SEI environment.

Figure 11: Concentration of species vs. time using EC decomposition reactions in the gas phase in isolation over 4 initial preformed layers of Li2CO3. 

Initial and Final Concentration

Effect of a larger Box Size:

We have used a larger box size (17.6 nm × 17.6 nm× 70.4 nm) to see an eventual system-size effect behavior in our simulation results. We notice no significative effect of using a larger simulation box on the concentration profile of species with time, as can be seen in Figure 13. We notice no effect of the initial number of seeds used to run the kMC simulation on the concentration profile of species with time, see Figure 14.

75221 25874 14741

Figure 14: Concentration of species vs. time and density profile for EC decomposition reactions in the gas phase in isolation using different initial seeds numbers.

Effect of Number of Cores Used

We notice no effect of the number of cores used on the concentration profile of species with time, as can be seen in Figure 15.

2-cores 4-cores 8-cores 16-cores

Figure 15: Concentration of species vs. time and density profile for EC decomposition reactions in the gas phase in isolation using different CPU cores 

fcc fcc carbonate vac 301 li oec #############DIFFUSION EVENTS (the values below when inserted in SPPARKS gives us the diffusion coefficient needed for Li and EC diffusion). event 2 fcc fcc eth ec -38 ec eth event 2 fcc fcc oec ec -38 ec oec event 2 fcc fcc li carbonate -32 carbonate li event 2 fcc fcc vac ec -55 ec vac event 2 fcc fcc liedc ec -38 ec liedc event 2 fcc fcc libdc ec -38 ec libdc event 2 fcc fcc carb ec -38 ec carb #############TEMPERATURE IN UNITS OF R*T, where R is universal gas constant (0.008314 kJ/ (mol* K)) and T is Temperature (298) temperature 2.48 #### Output file customization diag_style erbium stats yes &

list li ec oec carb eth liedc libdc carbonate inner vac events s1 s2 s3 s4 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15 d16 d17 d18 d19 d20 d21 d22 d23 d24 d25 stats 0.0000000001

Code Modification of Erbium application (SPPARKS)

There erbium application has two files: app_erbium.cpp for the calculations and diag_erbium.cpp for the output. Initially, the app_erbium.cpp code has four species erbium (er), hydrogen (h), helium (he), and vacancy (vac). We changed the names of er, h and he to li (Li), ec (EC), and oec (cLi-EC•), respectively. We added more species to adapt the code to our SEI model: carb (LiCO3•), eth (cLi-EC•), liedc (Li2EDC), libdc (Li2BDC), carbonate (Li2CO3) and inner (extra species, we did not use it). Table 7 shows the original app_erbium.cpp code and our major modifications. The file "diag_erbium.cpp" was also modified to be adapted to the modified app_erbium.cpp, see Table 8. 

) which[i] = CARBON; else if (strcmp(list[i],"inner") == 0) which[i] = INN; if (which[i] == LI || which[i] == EC || which[i] == OEC || which[i] == CARBO || which[i] == ETHE || which[i] == LIEDC || which[i] == LIBDC || which[i] == CARBON || which[i] == INN || which[i] == VAC) int sites[11],ivalue; sites[ERBIUM] = sites[HYDROGEN] = sites[HELIUM] = sites[CARB] = sites[ETH] = sites[PLIEDC] = sites[PLIBDC] = sites[CARBONATE] = sites[INNER] = sites[VACANCY] = 0; if (which[i] == LI) ivalue = sites[ERBIUM]; if (which[i] == EC) ivalue = sites[HYDROGEN];

Chapter 9. ANNEX B of Chapter 5