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Introduction Générale 
 

 
 

   INTRODUCTION GENERALE  
 

 
La granulation en voie humide est un procédé courant dans diverses industries (chimie 

fine, pharmacie, alimentaire et minérale). Plusieurs travaux de recherche depuis ces 20 

dernières années portent sur l’étude et la compréhension des processus mis en jeu au 

niveau des poudres et des liants utilisés et au niveau des procédés mis en œuvre. 

Les approches de formulation solide (avec choix de phases liantes) sont basées sur des 

modèles et des essais expérimentaux qui restent à valider pour chaque type de 

fonctionnalité recherchée (tailles, formes, propriétés mécaniques des granules, etc.). 

Une difficulté souvent rencontrée est le contrôle du procédé du point de vue de la 

quantité optimale du liant et qui dépend essentiellement de l'opérateur et des propriétés 

finales des granules recherchées. Les difficultés se manifestent le plus souvent pour le 

contrôle d’un procédé de granulation avec de nouveaux produits. C’est aussi le cas où on 

souhaite prendre en compte un changement dans la formulation ou établir un changement 

d'échelle du procédé. 

Au plan microstructural, la mise en forme par croissance granulaire humide trouve 

actuellement des bases scientifiques et des lois de comportement granulaire qui justifient 

leurs adaptations aux poudres usuellement utilisées. Les connaissances pratiques dans 

l’industrie pharmaceutique permettent d’ajuster les différents paramètres (poudres, liants, 

agglomérats et variables du procédé), mais nécessitent une étude systémique lourde allant 

des propriétés intrinsèques des poudres aux propriétés finales des granules.  

Un des cas généralement rencontré dans les poudres pharmaceutiques (excipients) est 

l’impact des solubilités des substrats solides et son influence sur les approches énergie de 

surface, choix des liants, et finalement la procédure d’identification de mécanismes de 

croissance.  

Comme nous allons le développer dans ce manuscrit, la complémentarité des modèles 

d’énergie de surface et des modèles visqueux de croissance peuvent donner des critères 
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de choix entre l’analyse en phase humide (solide-liquide) et l’évolution des tenues 

mécaniques. 

Notre étude porte donc sur des poudres largement rencontrées dans la formulation solide 

pharmaceutique (Lactose et deux variétés de cellulose microcristalline). Ces poudres 

présentent néanmoins des difficultés liés à leur solubilité (lactose), au mélange (poudres 

cohésives) et en termes de suivi de la cinétique de croissance granulaire (collage sur les 

parois). 

Parmi nos objectifs, on peut citer les points suivants: 

1. Mettre en place une méthodologie d’identification des mécanismes de  granulation et 

contrôle des taux de liant en tenant compte des variables intrinsèques des poudres. 

2. Corréler les paramètres physico-chimiques (solide-liant), la rhéologie de la masse 

humide et la tenue mécanique des agglomérats (granules) secs obtenus. 

3. Identifier l’évolution des structures granulaires (via l’approche rhéologie) des 

mécanismes de croissance des mélanges de poudres hydro-soluble / hydro-insoluble 

et spécialement (MCC + Lactose). 

4. Corréler les profils rhéologiques de granulation humide issus de deux approches et 

contraintes différentes (cas du mélangeur à haut cisaillement Mi-Pro Procept® et du 

rhéomètre MTR Caléva®). Ceci devra nous permettre de revenir sur les liens entre la 

nature des pontages liquides mise en jeu dans la granulation humide et l’évolution 

d’un profil rhéologique général. 

Nous avons fait le choix de présenter une thèse de doctorat rédigée en anglais avec les 

parties introductives et conclusions en français et anglais. 

En fin de manuscrit, nous avons souhaité présenter un rappel, en français, de données clés 

de cette étude sous forme de « Synopsis ». 

Ce manuscrit s’articule autour de 3 Chapitres. Le premier est dédié à un rappel succinct 

des connaissances actuelles dans le domaine de la granulation humide à fort taux de 

cisaillement. Nous avons volontairement réduit ce parcours bibliographique car plusieurs 

références et thèses de doctorat avaient développé cet aspect. Une liste bibliographique 

est donnée à la fin de chaque chapitre du manuscrit ainsi qu’une liste alphabétique (en 
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annexe) des auteurs cités dans ce travail. Nous décrirons, néanmoins, les connaissances à 

ce jour au niveau de l'influence des paramètres opératoires et matières premières ainsi 

que les outils de contrôle généralement appliqués. 

Le deuxième chapitre regroupe l’ensemble des techniques et procédés utilisés dans ce 

travail et présente les données et caractérisations des matériaux et liants utilisés. On y 

présente aussi les méthodes mises en place pour l’identification des résistances 

mécaniques des granules. 

Le troisième chapitre (découpé en 4 sous chapitres) regroupe l’essentiel de nos résultats 

expérimentaux et analyses et synthèses des données. Les 4 parties de ce chapitre 

développent : 

• la méthodologie mise en place pour granuler nos matériaux ainsi que l’approche 

mécanique pour la résistance à la compression de nos granules. Nous présentons cette 

méthodologie sous forme d'un exemple type de granulation humide,  

• l'effet des variables opératoires, comme le taux de remplissage, la vitesse d'agitation 

de la pale, la présence et la dimension de l'émotteur ainsi que la dépendance entre ces 

variables. Une place importante est donnée à l'effet du taux de remplissage à 

différentes vitesses d'agitation, 

• l'effet des propriétés des phases liantes et des approche physico-chimie des interfaces 

(mouillabilité, angle de contact, travail d'adhésion, viscosité), 

• l'effet de la formulation solide lors de la granulation des mélanges (binaires) des 

poudres hydro-solubles / hydro-insolubles. 

 

Ainsi, dans cette étude, on se propose de développer des démarches permettant d’associer 

le comportement lors de la granulation (mécanismes, cinétiques de croissance, etc.) et les 

notions de consistance des granules humides et rhéologie avec la tenue mécanique à 

l'échelle du grain sec. 
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Introduction  
 

 
 

     INTRODUCTION 

 

Wet granulation is a process encountered in many industries (chemical, pharmaceutical, 

food and mining). A multitude of research papers of the last 20 years have tried to bring 

more understanding to the process in terms of binders and powders used and the 

equipments used. 

The solid formulation approach and the choice of the binding agent are based on models 

and experimental work that must be validated for each type of desired end-product 

property (size, shape, mechanical properties) etc.  

An often encountered difficulty is the control/monitoring of the process for an optimum 

binder requirement. This requirement depends largely on the operator and the desired 

end-granule properties. Difficulties arise for the control of the process when new 

products are involved. It is also the case when a new formulation is developed or the 

scale of the process has to be changed. 

At the micro scale size enlargement by wet granulation finds a scientific background and 

models that justify their adaptations for the more common powders. Practical knowledge 

within the pharmaceutical research allows adjusting the different influencing factors 

(starting materials, operating conditions) but they require systematic study ranging from 

starting materials characterization to end-granule properties. 

An often encountered case in the granulation of pharmaceutical excipients is the 

influence of soluble powders and their impact on the binder surface energy, binder choice 

and the identification of growth mechanisms. 

As it will be developed in this study the complementarity of the surface energy and the 

viscous growth models can give criteria of choice between the characterization in the wet 

state (solid-liquid) and the evolution of granule strength. 
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Our study deals with the wet granulation of fine, cohesive excipients generally used in 

the pharmaceutical industry (lactose and two grades of microcrystalline cellulose). These 

powders present however difficulties from a mixing point of view, solubility and granule 

growth kinetics. 

The objectives of this study include: 

1. Defining a methodology allowing the identification of granule growth mechanisms and 

optimum binder requirement control taking into account the physico-chemical 

properties of the starting materials. 

2. Relating physico-chemical properties of the starting materials (powder, binder 

solution), rheology and dry granule strength. 

3. Identifying the evolution of granule growth mechanisms by rheological approach of 

binary mixtures of water soluble / water insoluble powders. 

4. Comparison of torque curves obtained under different constraints (Mi-Pro Procept® 

high shear mixer and MTR Caleva® mixer torque rheometer) which should allow 

relating the nature of liquid bridges and the evolution of torque. 

 

We chose to present a PhD thesis written in english with introductive and concluding 

remarks in both english and french. At the end of the paper a reminder of objectives, 

approach, results and conclusions is given in french under the title "Synopsis".  

The thesis contains three chapters. The first is dedicated to short introduction into the 

world of wet granulation research. We kept this part short and concise on purpose since 

this aspect is generally well covered in literature (Handbooks) as well as other PhD 

thesis. We describe the knowledge to date as well as the means of control usually 

encountered. For convenience references are given at the end of each chapter and a 

general alphabetic list is given at the end of the thesis.   

The second chapter gives a description of the materials and methods used in this study as 

well as the equipment used. The experimental method used to describe granule strength 

and its optimization is also described. 
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The third chapter contains the results and discussions related to the investigated 

parameters. The 4 sub-chapters describe: 

• the methodology allowing the characterization of the wet granulation process 

runs as well as the characterization of the granules mechanical strength. We 

present this methodology as a typical example of wet granulation, 

• the effect of operating conditions like fill ratio, impeller speed, chopper presence 

and design (size) as well as the interaction between these factors. A special focus 

is set on the granulation at different impeller speeds for different fill ratios, 

• the effect of binder physico-chemical properties and the approach of wetting 

thermodynamics (wettability, contact angle, work of adhesion) and kinetics 

(viscosity),  

• the effect of solid formulation on the granulation of binary mixtures of water 

soluble / water insoluble powders. 

In this study we wish to develop techniques that allow relating the behavior observed 

during granulation (mechanisms, kinetics etc.) and the notions of wet mass 

consistency and rheology to the dry granule strength at the scale of the dry 

agglomerate.   
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   Chapter I: Essentials of High Shear Wet     
   Granulation 

 
 
1. Introduction 
 

The agglomeration of particulate solids in order to enlarge their size is an old technique 

encountered in many of today's industries. For each case be it the pharmaceutical, food or 

mining industry the substitution of the powder with agglomerated material presents 

certain advantages: the improvement of flow properties allowing an easier handling, the 

reduction of dust quantity in the work environment reducing inhalation risks and 

explosion hazard, improving on the products aspect and strength, segregation can be 

reduced while other properties like solubility and chemical reactivity can be improved. 

When an agglomeration technique implies agitation it is usually called granulation. 

Granulation is an agglomeration technique that allows obtaining granules with desired 

characteristics and functionality and can also be referred to as balling, pelletisation or 

coating.  

Granulation can be achieved by dry or wet methods depending on the initial powder 

properties and the required final granule properties. Dry granulation can be preferable 

when the product is sensitive to moisture. It can be achieved with small highly cohesive 

particles with sizes smaller than several microns only by applying pressure by 

extruding/compacting, fluidizing or tumbling [1,2] with another important aspect being 

the avoidance of a drying step. Subsequently dry granulation can be achieved in 

extruders, roller compactors, fluid or tumbling beds.  

Wet granulation is achieved by bringing in an intimate contact the initial powder particles 

with a binder solution. This can be done in high or low shear mixers, fluid bed 

granulators, tumbling drums or extruders. A variation of the wet granulation technique is 

the melt granulation - here the binder is added as a dry powder to the initial powder and 
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upon heating and melting allows the creation of material bridges between the initial 

particles in a similar manner to the wet granulation. 

The focus of this thesis is set on the study of granulation done in high shear mixers. This 

is a batch process consisting of a bowl equipped with a multi blade impeller and a 

chopper. This type of mixers can be found in the pharmaceutical, agrochemical and 

detergent industry because of their capacity to handle difficult initial powder 

formulations. The feed powder is usually dry mixed before the process starts so as to 

break up any dry agglomerates that my be already present in the mix and ensure 

homogenous starting conditions of each batch.  Binder is then added either at the 

beginning or gradually during the process. Binder added gradually can be added in a drop 

by drop fashion or sprayed on. In the wet massing stage the impeller ensures the mixing 

of powder and binder as well as the densification by shearing and impacting while the 

chopper is used to break up large agglomerates ensuring a redistribution of the material 

and obtaining a higher homogeneity in the final product. Finally the wet massing stage is 

followed by a drying stage.  The advantages presented by the high shear granulation 

process are that they can process wet sticky materials, can spread viscous binders, can 

handle cohesive powders, are less sensitive to operating conditions than tumbling 

granulators and can produce small high density granules [3]. 

The formation of granules in wet high shear mixing can be viewed as a succession of 

stages: 

1. Wetting: the initial particles are wetted by the liquid binder (solvent alone, solution or 

molten) and no bridges are formed between the initial particles; 

2. Growth of the particles: occurs first by nucleation, a process that when sufficient liquid 

is present at the granule surface allows for two or more granules to stick together. Under 

impact with the impeller, chopper, bowl walls and other particles these nuclei are 

densified squeezing more liquid to the surface and allowing to bind more particles.  

3. Breakage of granules: can also take place at the same time as growth and depending on 

the ratio between breakage and growth an equilibrium phase can be reached in granule 

growth.    
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2. Inter-particular Forces 
 

The forces that hold granules together were first approached by Rumpf [4,5] 

distinguishing between bonds with and without material bonds, followed by other 

researchers (Israelachvili [6] Schubert [7]; Tomas and Schubert [8]; Tomas [9]): 

With material bonds: 

- solid bridges created by mass transfer by sinter bridges because of high temperatures, 

partial melting, chemical reaction, hardening binders or crystal bridges because of 

recrystallization; 

- liquid bridges: 

- low mobility liquid bridges given by highly viscous binders that create strong 

bonds close in terms of strength to the solid bridges; 

- mobile liquid bridges created by surface tension and capillary pressure  

Without material bonds: 

- molecular forces (Van-der-Waals forces, free chemical bonds or valence forces, 

hydrogen bridges), electric and magnetic forces are forces that work at short range 

(<1µm) and depend on the roughness and size (<100µm) of the initial particles 

- interlocking bonds if the particles present a certain shape like fibers or threads that can 

twist and bend around each other or entangle during agglomeration. 

Figure 1 gives a graphic representation of these forces as given by Tomas [10] while 

Figure 2 shows the relative force of these types of bonds as a function of particle size 

[11,12]. Schubert [7] has shown that the Van der Waals forces are dominant between the 

forces without material bridge when the particle sizes are smaller then 100 microns. 
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Figure 1. Bonds between particles as seen by Tomas [10] 

 

Figure 2. Tensile strength as a function of interparticle bonding mechanism and particle 
size (Rumpf [11], Pietsch [12]) 
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3. Theory of Granulation  
 

3.1 Introduction 

Newitt and Conway-Jones [13] described the different stages of liquid bonding in 

granules and defined four stages: the pendular, the funicular, the capillary and the droplet 

stage (Figure 3). 

 

Figure 3. Granule saturation stages: a-pendular, b-funicular, c-capillary and d-droplet 

Before the addition of liquid to the dry powder mix agglomerates only exist due to 

attractive forces like the Van der Waals forces. The pendular stage is the first saturation 

stage - here particles are kept together by few liquid bridges present only at the contact 

points between the initial particles. The funicular stage is an intermediary stage between 

the capillary and the pendular stage - the amount of liquid has now increased and the 

bridges can bind more particles with the voids between the liquid bridges partly saturated 

with liquid. In the capillary stage this voids are saturated with liquid. The capillary stage 

is supposed to give the highest granule strength. At the surface of the agglomerate the 

liquid is drawn back into the pores under capillary action while inside the agglomerate 

the voids are completely filled with liquid. The droplet stage corresponds to what is 

generally called in granulation as over-wetting, the wetted mass looses most of its 

strength and turns into a paste and upon further liquid addition to a suspension. In high 

shear wet granulation the passage between these states can be a result of continued binder 
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addition as well as consolidation of the granules as a result of collisions with impeller, 

other granules or bowl walls increasing the saturation of the granules by reducing the 

interparticular voids. 

The modern theory of granulation [14] retains three granulation mechanisms (Figure 4) 

defined as:  

 1. Wetting and Nucleation,  

 2. Consolidation and Growth  

 3. Attrition and Breakage  

 

 

 

Figure 4. Mechanisms of granulation  Iveson et al [14] 
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3.2 Nucleation Mechanisms 

After being wetted by the liquid binder, granules start to agglomerate to form initial 

nuclei of two or more particles in the nucleation stage. Of special importance in this 

initial stage is the wetting zone which is defined as the zone where powder and liquid 

first come into contact. The nucleation stage is influenced by the wetting 

thermodynamics, drop penetration kinetics and binder dispersion. This initial stage is 

very important for the outcome of the granulation process. A choice of powder and 

binder that can lead to poor wetting or a choice of operating conditions like an increased 

liquid flow rate combined with an insufficiently high mixing speed can both lead to 

granulation runs with low reproducibility and small yields. Wetting thermodynamics 

establish if wetting is energetically favorable or not with the contact angle (θ) between 

solid and binder and the spreading coefficient (λ) of the liquid on the powder surface as 

main parameters to be controlled.  

The spreading coefficient λ shows the tendency of a powder-binder couple to spread over 

each other and depends on the works of cohesion and adhesion: 

Work of cohesion for the solid:  SVCSW γ2=      (I-1) 

Work of cohesion for the liquid: LVCLW γ2=      (I-2) 

Work of adhesion between liquid and solid: )1(cos += θγ LVaW    (I-3) 

Liquid-solid spreading coefficient: CLaLS WW −=λ      (I-4) 

Solid-liquid spreading coefficient: CSaSL WW −=λ      (I-5) 

Where θ is the contact angle, λ the spreading coefficient, γ the surface free energy and L, 

S and V show the state as being liquid, solid and vapor respectively. Equation I-3 is only 

valid for θ>0 which is a common case in wet granulation experiments. According to 

Rowe [15] two situations may be encountered as a function of λLS and λSL: 

-When λLS >0 and λSL <0 the binder forms a strong film around the solid particles and 

granule properties depend on the binder properties, 
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-When λLS <0 and λSL >0 the binder does not form a film around the particles and only 

isolated parts are covered with liquid. 

Aulton and Banks [16] have shown that increasing contact angle, by changing the ratio of 

hydrophobic and hydrophilic powders (salicylic acid, θ=103° and lactose, θ=30°) in the 

powder mix, while granulating with a 5% PVP aqueous solution in a fluid bed granulator, 

reduces the size of the final granulated product. Tüske et al. [17] have shown that by 

changing the nature of the powder (microcrystalline cellulose, lactose and starch) if the 

work of cohesion of the binder (hydroxypropylcellulose) is inferior to the work of 

cohesion of the powder and the work of adhesion binder/powder the binder coats the 

particles in a uniform layer. They also showed that a positive spreading coefficient for a 

two component system (binder+powder) can lead to dense, non-friable pellets but that 

certain limitations exist when trying to predict granule properties from spreading 

coefficients alone for more complex systems where the work of cohesion of the binder 

can also play an important role. 

The nucleation mechanism is highly dependant on the drop size relative to the primary 

powder particles. Shaefer and Mathiesen [18] proposed the following scenarios (Figure 5) 

for the case of melt granulation and were later on extended by Scott et al [19] to cover 

wet granulation.: 

- If the drops are relatively small nucleation will occur by distribution of the drops on the 

particle surface which will then coalesce to form nuclei. 

- If the drop is much larger than the initial particles nucleation will take place by 

immersion of the particles into the drop producing nuclei with saturated pores. 
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Figure 5. Mechanisms of nucleation after Schaefer and Mathiesen [18] 

In the case of immersion the theory proposed by Denesuk et al [20] for the penetration of 

a single drop into a porous surface applies the Washburn equation where flow is 

promoted by the capillary pressure and opposed by viscous dissipation giving a 

theoretical penetration time described by the following equation: 

θγ
μ

επ
τ

cos
2

422

2
0

LVpored Rr
V

=         (I-6) 

Where V0 is the total drop volume, ε the external porosity, rd the radius of the drop 

footprint on the surface, Rpore the effective pore radius based on cylindrical pores, μ is the 

liquid viscosity, γLV the liquid surface tension and θ the contact angle. This equation 

shows the direct dependence between nucleation kinetics and the adhesion tension on one 

side and the adverse affect on kinetics of liquid viscosity. The slowing effect of high 

viscosity on nucleation has been discussed by many authors (Kristensen et al [21], 

Hoornaert et al [22], Knight and Seville [23]) showing an increase in nucleation time and 

in nuclei diameter with increasing viscosity. 

 

3.3 Granule Growth 

Granule growth occurs when material in the granulator sticks together upon impact. The 

mechanism is called coalescence if two similarly sized granules are involved and layering 

or snowballing when collisions between coarse and fine particles take place. The 

distinction between the two is however dependant on the size intervals used to define 
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coarse and fine particles and therefore arbitrary.  Granule growth modeling has been 

approached by many authors. We will present in the following the main models 

depending on the main forces involved in their development. 

 

a) Rumpf's Theory 

The model proposed by Rumpf [2] estimates the force of the bond between two particles, 

which depends on the amount of binder between the two spherical particles relative to 

their volume and the size of the particles among others, to be the result of mainly static 

forces with the maximum value of this force given by the expression: 

pcap dF αγ=           (I-7) 

Where 1.9<α<π depending on the moisture content (ratio between liquid volume and 

particle volume), γ relates to the surface tension of the liquid and dp to the particle 

diameter.  

The failure mechanism proposed by Rumpf was taken to be the strength required to break 

all bridges between every particle along the fracture plane with the tensile strength for the 

funicular or capillary saturation stage given by: 

)cos()1( θγ
ε
εσ ⋅⋅

−
⋅⋅=

pid
SC        (I-8) 

Where C is the coordination number depending on the particle shape, S is the liquid 

saturation, ε the intragranular porosity, θ the contact angle, γ the liquid surface tension 

and dpi the initial particle diameter. The liquid saturation is defined as: 

l

sHS
ρ
ρ

ε
ε

⋅
−

⋅=
)1(

         (I-9) 

Where H is the moisture content, calculated as the ratio between the liquid mass 

introduced and the initial dry solid mass, ρs and ρl the solid and liquid density 

respectively. 
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Rumpf's equation states that granule strength is proportional to the binding force being 

inversely proportional with the initial particle size and increasing with decreasing 

porosity. Schubert [24] investigated the dependence between granule strength and liquid 

saturation state (Figure 6). In the figure Sp indicates the end of the pendular state and Sc 

the start of the capillary state where the granule is completely saturated. In the funicular 

state between the pendular and capillary state granule strength shows a steady increase 

which is expected as interparticular voids are replaced by liquid bridges. 

 

Figure 6. Relationship proposed by Schubert[24] between granule tensile strength and 

granule saturation states  

 

 

b) Ennis and Liu Theory 

Ennis et al [25, 26] developed a model for granule growth based on the dynamic liquid 

bridge. They defined the dimensionless viscous number in order to predict if collisions 

between two spherical granules will result in either coalescence or rebound depending on 

their kinetic energy and the energy dissipated during the collision: 

μ
νρ
⋅

⋅⋅⋅
=

9
8 0 rStv          (I-10) 

Where ρ is the granule density, μ the viscosity of the binder liquid and ν0 the relative 

velocity between the two spheres estimated to be close to the impeller tip speed in high 

shear granulation.  
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The model predicts that collisions will be successful (result in coalescence) if the viscous 

Stokes number has a higher value than a critical viscous Stokes number defined as: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ +=

a
v h

h
e

St ln11*          (I-11) 

Where e is the coefficient of restitution h is the thickness of the liquid surface layer and 

ha is the characteristic height of surface asperities (Figure 7) 

. 

Figure 7. Collision of two pellets as described by Ennis [25] 

Ennis et al defined three regimes as granules grow in size in the granulator in terms of 

magnitude of the viscous Stokes number compared to the critical Stokes number: 

Stv « Stv
* non-inertial regime all collisions are successful regardless of size of colliding 

granules; 

Stv = Stv
* inertial regime, some collisions are successful, collisions between two large 

granules are less likely to succeed; 

Stv » Stv
* coating regime, no collisions are successful. 

However, this model can be useful in predicting the size of granules for which successful 

coalescence is possible. Since in granulators the collision velocity can only be described 

as a range of values it imposes a range of Stokes viscous numbers to be considered. This 

makes that the passage from growth to no growth can only be described by a decrease in 

the proportion of collisions that result in successful coalescence. Granule growth is 

promoted by low values of the viscous Stokes number and high values of the critical 

Stokes number. The probability of successful coalescence increases with decreasing 
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particle density, impeller speed and granule size and increasing surface liquid layer and 

binder liquid viscosity.  

Thielmann et al [27] granulated in fluid bed a hydrophilic and hydrophobic powder (glass 

beads). They found the binder to spread better on the surface of hydrophilic particles 

giving a smaller liquid layer thickness than for the hydrophobic particles where the 

binder concentrated at the contact points between particles. This resulted in granules that 

were larger and rounder for the hydrophobic particles however this was accompanied by 

a wider final granule size distribution presenting significantly more fines than the 

hydrophilic particles. 

One difficulty in the model proposed by Ennis resides in the estimation of the coefficient 

of restitution, liquid layer thickness and the height of the asperities as they dependent on 

time and binder content. 

Liu et al [28] developed a model starting from the work of Ennis allowing to take into 

account the plastic deformation of granules on impact. Granules were supposed to have a 

strain rate independent elastic modulus and plastic yield stress. They studied two cases: 

when the granules present a liquid layer at granule surface and when the granule surface 

is dry and liquid is squeezed to the surface upon collision. The model defines conditions 

for two types of coalescence: 

- type I: when granules coalesce by viscous dissipation in the surface liquid layer before 

their surfaces touch (elastic deformation) 

- type II: when granules are stopped to a halt during rebound after their surface have 

made contact (plastic deformation) 

The regime diagrams proposed by these authors (Figures 8 and 9) are based on the 

viscous Stokes number as defined by Ennis and a Stokes deformation number that relates 

impact kinetic energy to the plastic deformation of the granule. Figure 8 shows the 

possible interpretations of this model. At low Stdef coalescence success depends only on 

the critical Stokes number as defined by Ennis. Different from the Ennis model is the 

prediction that at high plastic deformation increasing impact velocity can improve the 

probability of coalescence. For the dry surface case (Figure 9) at low Stdef no plastic 
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deformation occurs while for values above a critical value of Stdef the probability of 

coalescence becomes similar to the probability in the wet surface case. 

d
def Y

USt
2

2
0⋅

=
ρ

         (I-12) 

Where ρ represents the granules density (calculated as ratio between harmonic mean 

mass and cube diameter), U0 the collision velocity and Yd the granule dynamic yield 

stress. 

 

 

Figure 8. Stv vs Stdef for the wet surface case Liu [28] 
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Figure 9. Stv vs. Stdef  for the dry surface case Liu [28] 

 

c) Granule Growth Regime Map 

Iveson and Litster [29] introduced a granule growth regime map (Figure 10) taking into 

account the Stokes deformation number as a function of pore saturation (i.e. the amount 

of liquid present in the pores inside the granules as a fraction of the total pores). When 

not enough liquid binder is present we are in the dry, free flowing powder regime. With 

increasing binder content nucleation occurs while the induction growth corresponds to a 

low deformability of the material not leading to successful coalescence. Upon further 

increase of the pore saturation granules become deformable enough for successful 

coalescence and we are said to be in the steady growth regime in which granules grow 

linearly with time. Further wetting causes the granules to be too deformable and thus to 

weak to withstand impact with the granulation equipment and upon even further liquid 

addition a suspension is formed/the mass becomes over-wetted. 

Certain limitations of the granule growth regime map have been noted by Bouwman  

[30]. They show that difficulties in accurate measurement of the Stokes deformation 

number for visco-elastic materials can be encountered and due to large variations the 

results can overlap all growth regions.  
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Figure10. Granule growth regime map updated by Iveson and Litster[31] to the Stokes 

deformation number  

 

3.4 Breakage and Attrition 

Breakage of wet agglomerates in the granulator and attrition of dry agglomerates are both 

phenomena that affect the final product size distribution. Knight identified breakage as a 

function of impeller speed [32] in a process of melt granulation in a high shear mixer 

giving as proof of breakage the bimodal size distribution as well as the decrease in mean 

granule size when increasing the impeller speed from 800 to 1500 rpm at the end of an 

800 rpm batch (Figure 11) and a reduction of granule sphericity with increasing impeller 

speed due to fragmentation. Ramaker et al [33] replaced 5 to 10% of the mixers contents 

with fresh prepared colored granules in two high shear mixers (a coffee mixer and a Gral 

10) and calculated conversion rates as a function of color concentration at different 

processing times. They found that the conversion rate constants of smaller pellets were 

higher than those of the larger ones which indicated a faster formation of smaller pellets 

due to the break up of larger pellets. At higher impeller speeds they found an increase in 

the conversion rate constants indicating a faster break up of granules. Pearson et al [34] 

investigated breakage in a similar manner in a 30 L high shear mixer and found that the 

dye was distributed more from the larger particles to the finer particles than the other way 

around indicating that larger granules seem to be weaker. Vonk et al [35] approached the 
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breakage during growth from the early stages of the granulation process proposing a 

destructive nucleation growth mechanism were nuclei are broken down densified and 

followed by further growth. An equilibrium between growth and breakage  is found as 

fragmented parts are used to form new granules (Figure 12). It should be noted that in the 

experiments of Ramaker and Vonk all liquid was introduced at the beginning of the 

granulation process and not gradually which explains the simultaneity of nucleation, 

breakage and growth. Vonk et al also found that for increasing values of the impeller 

speed breakage of nuclei occurs when the impact pressure (Equation I-13) value increases 

above the calculated tensile strength of the nuclei. 

2
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       (I-13) 

Where σimpact is the impact pressure, F the acceleration force, A the cross sectional area of 

the granule, m the mass of the nucleus/agglomerate, a the acceleration of the 

agglomerate, Dg the agglomerate diameter, ρ the agglomerate density and ω the impeller 

tip speed (=πND , where N is the impeller speed in rpm and D the impeller diameter).  

 

 

Figure11. Mean granule diameter vs granulation time and impeller speed by Knight et 

al[32]  
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Figure12. The growth mechanism proposed by Vonk et al[35]  

 

4. Granule Strength 

The equation proposed by Rumpf (Equation I-8) that enables a prediction of wet granule 

strength has been argued by Kendall [36] because of the assumption that all the bridges 

between the particles in the fracture plain fail suddenly. Kendall suggested that the 

fracture is more likely a result of crack propagation through the flaws in the granule 

structure. He applied a fracture mechanics approach to the sequential fracture of bonds 

rather than simultaneous bond rupture proposed by Rumpf deriving the following 

expression for granule strength: 

( ) 2/16/16/546.15 −ΓΓ= cd pct φσ          (I-14) 
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Where ø is the solid fraction of the granular assembly, Γc is the fracture surface energy, Γ 

is the equilibrium surface energy, dp is the constituent particle diameter and c is the flaw 

size in the assembly.  

Bika et al [37] point out that due to the heterogeneity characteristic to agglomerated 

material such continuum descriptions applicable to metals, ceramics and other 

conventional solids are not obvious but that agglomerate deformation is fundamentally 

similar to other solids. 

Factors affecting granule strength are: equipment variables and operating conditions like 

agitation intensity, equipment design and binder addition method and content; binder and 

feed powder properties like binder viscosity and surface tension, contact angle, feed 

powder nature and primary particle size. 

4.1 Equipment variables and operating conditions 

Increasing impeller speeds when a low viscosity binder is involved tends to lead to 

breakage (Shaefer [38], Knight [32]) while the agglomerate sphericity is decreased 

(Knight [32], Eliasen[39]). Impeller design has been found to give more spherical 

granules when the impeller blades are curved than when they are plane (Schaefer [40]). 

High impeller speeds are usually accompanied with a reduction in porosity and increase 

in compaction and consolidation which would typically lead to an increase in granule 

strength. A similar reasoning can be applied to the effect of increasing binder content that 

also reduces porosity and increasing granulation time that would lead to increased 

compaction and densification. Chopper speed influence is highly dependant on 

equipment design and deformability of the feed material as some authors found that 

chopper size and rotation can have an influence on granule strength by reducing the 

proportion of coarse granules and promoting densification (Holm[41]) while others 

reported that although the chopper slightly reduced granule size without having a 

significant effect on granule size distribution and intragranular porosity (Schaefer [42]). 

Holm et al [43] found that atomization improved the binder distribution at low impeller 

and chopper speeds while Knight et al [44] found that in high shear mixer granulation 

although initial differences exist between pour in, melt in and atomization, longer 

granulation times can ensure good binder distribution and uniform results. The influence 
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of increasing impeller speed has also been shown to improve liquid distribution and give 

narrower granule size distributions (Saleh [45], Oulahna [46]). 

 

4.2 Binder viscosity 

Keningley et al [47] showed that for a given particle size a minimum viscosity of the 

binder was necessary in order to promote growth. This minimum viscosity was found to 

increase with increasing particle size. Eliasen et al [48] found that for the granulation of 

lactose higher viscosity binders produce stronger granules presenting less comminution 

during the granulation process.  

Ennis et al [25] defined a viscous capillary number expressed as: 

L
vis

UCa
γ
μ

=           (I-15) 

Where U is the speed of the particles, μ is the binder viscosity and γL is the liquid surface 

tension. They state that: 

- If Cavis<10-3 the energy dissipation due to the viscosity can be neglected compared to 

the capillary forces and that adhesion is the product of static forces 

- If Cavis>1 the viscous force is dominant over the static forces. The viscous force 

expressed as: 

L
UdF pv

2

8
3πμ=          (I-16) 

Where L is the distance between two particles and dp the particle diameter. Ennis also 

showed that increasing binder viscosity reduces binder mobility in granules limiting 

compaction by resisting binder migration to the surface. 

In a similar manner Knight et al [44] define a critical viscosity of 1Pa.s above which 

binder viscosity is dominant and below which surface tension forces dominate. However, 

these boundaries have to be put however in the context of the materials on which they 

were obtained as material properties like nature, primary particle size and shape also play 

an important role. Iveson et al [49] showed that granule consolidation is a function of 

 39



Chapter I – Essentials of High Shear Wet Granulation 
 

both interparticle friction and viscous dissipation and that increasing binder viscosity 

reduces the deformability of granules reducing the consolidation rate. Van den Dries et al 

[50] found that increasing binder viscosity increases the heterogeneity of the 

agglomeration while also producing stronger granules and less breakage. 

 

4.3 Binder surface tension, contact angle, primary particle shape 

Capes and Danckwerts [51] found that a minimal surface tension was necessary to obtain 

agglomerates of a certain size in the drum granulation of sand. Iveson et al [52] found 

that a decrease in binder surface tension decreases the dynamic yield stress of granules. 

However for a more viscous binder they found that binder viscosity dominated the yield 

stress behavior. Frictional forces also depend on the contact angle between liquid binder 

and powder particles. Knight et al [53] found that for contact angles above 90° granules 

present lower granule strength and wider granule size distributions. Johansen and 

Schaefer [54] showed that rounder particles with narrow particle size distribution give 

smaller granule strengths due to reduced particle interlocking. 

 

5. Wet Mass Rheology 

Measuring either the torque developed by the impeller or the power draw of the 

granulator was among the first methods attempted to follow the wet granulation process 

(Lindberg et al. [55], Travers et al. [56]). Leuenberger et al [57] showed that both can be 

related to changes in the cohesive force or the tensile strength of the wet agglomerates. 

Figure 13 shows the evolution of mean granule size and torque evolution as a function of 

binder saturation as found by Leuenberger et al [57]. Leuenberger et al [58] defined 

stages in granulation corresponding to the liquid saturation stages of the wet mass (See 

section 1.3.1) by drawing tangents to the torque profile (Figure 14). This typical profile 

consists out of five phases as defined by the authors: 

- Phase I (up to S2): The components take up the binder to saturate the moisture content 

(equilibrium moisture content at 100% relative humidity of air). 
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- Phase II (S2 to S3): Corresponds to the formation of liquid bridges (pendular state) 

between the primary particles. 

- Phase III (S3 to S4): Plateau phase, the inter-particulate void space is filled by the 

binder, the liquid bridges are mobile (corresponds to the transition from pendular to 

funicular saturation state). 

- Phase IV (S4 to S5): Corresponds to the funicular saturation state with some particles 

already in the capillary state. 

- Phase V (above S5): Transition from the capillary state to a suspension.   

They stated that usable granules for tabletting can be obtained from granules produced 

between S3 and S4.  

A π value has been defined by Imanidis et al.[59] (Equation I-17) which corresponds to a 

well defined point on the plateau (between S3 and S4). The calculation of π depends on 

the detection of the steepest ascent (S-shaped ascent in the power consumption curve) 

and adding a constant amount of liquid:  

25

2

SS
SS

−
−

=π           (I-17) 

Where S is the amount of granulating liquid, S2 is the amount of liquid necessary which 

corresponds to moisture equilibrium at about 100% relative humidity, S5 is the amount 

for which complete saturation of inter-particulate void space before a suspension is 

formed.   

This method has been successfully implemented in an automated process (Betz et al. 

[60]) and allowed the operators to obtain a higher homogeneity of granule size 

distribution than in the case of adding a constant amount of granulating liquid. It allowed 

minimizing the effect of varying initial particle size distributions and seasonal effects like 

differences in relative humidities between winter and summer.  
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Figure 13. Granule saturation as a function of added binder and torque profile 
Leuenberger[57] 

 

Figure 14. Power consumption profile Leuenberger [58] 

 

Torque/power consumption curves present the advantage of in-line control of the 

granulation process if the granulator is instrumented in this respect. Some limitations 

 42



Chapter I – Essentials of High Shear Wet Granulation 
 

however, need to be taken into account if torque/power consumptions are to be used for 

control purposes: 

- the solid formulation should present a limited dissolution in the binder liquid 

- low viscosity binders are preferable and if possible a dry binder should be added to the 

powder mix and using a low viscosity binder (like water) as the binder liquid 

- hydration is also a phenomenon to be avoided as is gelation at higher temperatures 

-the liquid binder should be added gradually and not as poured in, all at the beginning 

Mackaplow et al. [61] describe encountering limitations in the usability of torque curves 

for very cohesive powders (high shear wet granulation of fine lactose particles). 

Instrumented granulators allow a comparison of torque/power consumptions curves for 

different starting materials. Other equipments that allow the assessment of the wet 

massing behavior of different powder-binder combinations have also been studied. One 

such equipment is the mixer torque rheometer (Figure 15) which has two contra-rotating 

intermeshing blades that mix the wet mass. Torque is recorded via a torque arm fixed to 

the reactor and linked to a calibrated dynamometer. It can be used to asses the changes in 

the wet mass when continually adding liquid but it can also be used to determined a 

pseudo-viscosity named wet mass consistency by introducing wet granules in the 

rheometer and recording the equilibrium torque. The mixer torque rheometer has been 

used for the estimation of the optimum water level for extrusion spheronisation by Souto 

et al [62], Luukonen [63], to study source variation of MCC grades (Parker and Rowe 

[64]), to study binder - powder interactions (Parker [65], [66]) as well as control in 

regards to scale-up (Landin [67], Faure [68]). By introducing the wet mass in the mixer 

torque rheometer and mixing for a certain amount of time a pseudo-viscosity can be 

defined. This pseudo viscosity, also called wet mass consistency, can be introduced as the 

viscosity term in the Reynolds number enabling the comparison of different scales with 

regards to a measurable wet mass property. If using the mixer torque rheometer as a 

scaled down high shear granulator one has to be careful in considering the differences in 

geometry and impeller speed in order to subject the wet mass to constraints of a similar 

magnitude order.  
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Even though the use of torque curves/power consumption profiles in order to describe the 

wet granulation process goes back a long time it's still an active subject of research 

because of the complex nature of agglomeration. The characteristic profile has been 

related to agglomerate tensile strength (Betz [60]), to liquid saturation (Holm et al [69]), 

to interparticle friction forces (Pepin et al [70]) and intragranular porosity (Ritala [71]). 

 

Figure 15. Schematic of the Caleva© mixer torque rheometer 

 

6. Scaling 

Recent PhD thesis by Giry [72] and Camara [73] as well as recent publications by 

Leuenberger and Betz [74] and Mort [75] give good overview of the wet granulation 

scale-up research knowledge to date. In this subchapter we will only be presenting some 

basic strategies regarding scale-up. High shear mixers come in a variety of designs; while 

some can be instrumented others may not. Given that high shear mixer granulation is a 

batch process scale-up to higher capacities has always presented an important research 

interest. There are several dimensionless groups that can be used for scale-up purposes 

and according to Buckingham's theorem they are: 

- Power number 
ρ

π 351 Nr
P

=        (I-18)  

- Specific amount of granulating liquid 
ρ

π
V
qt

=2      (I-19)  

- Fraction of volume loaded with particles *3 V
V

=π      (I-20)  
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- Geometric number 
vD

r
=4π        (I-21) 

- Froude number 
g

rN 2

5 =π         (I-22) 

Where P is the power consumption, r is the radius of the impeller, ρ is the specific 

density, q is the mass of granulating liquid added per unit of time, N is the impeller speed 

in revolutions per second, t is the process time, V the volume loaded with particles, V* is 

the total volume of the mixer, g is the gravitational acceleration and Dv the diameter of 

the vessel. If viscous binders are to be used the inclusion of the viscous Stokes number is 

recommended (Leuenberger et al [76]). 

Other dimensionless numbers are:  

- the impeller tip speed that can be used in order to maintain a constant maximal shear 

rate - the relative swept volume that represents the fractional volume of the total batch 

size which is displaced by the impeller in a specific time range and can be expressed as: 

N
VT

nhr
RSV

R

b

⋅
⋅

⋅⋅⋅
= *

2

4
π

        (I-23) 

Where N is the impeller speed in rpm, n the number of blades, r the radius of impeller, hb 

the height of the blade, TR the fill ratio and V* the mixer volume. 

-the Reynolds number which can use instead of the viscosity term the pseudo-viscosity 

obtained from the wet mass consistency measurements done in a mixer torque rheometer 

(Landin [67]): 

*

2

Re
μ

ρ Nrw=           (I-24) 

Where ρw is the wet mass bulk density, N is the impeller speed in rpm, r the impeller 

radius and μ* the wet mass consistency. 

-constant shear stress investigated by Tardos et al [77] and Michaels et al [78] showed 

that adjusting impeller speed to match the maximum shear stress at each scale of 
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investigation  allowed them to obtain good agreement upon scale-up in terms of mean 

granule size, granule dissolution and tensile strength. In their case constant shear was 

obtained for a scaling index n of 0.8 to 0.85 in the expression: 

n

x

y

y

x

D
D

N
N

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=           (I-25) 

Impeller tip speed, Froude number or the relative swept volume can not be kept constant 

at the same time during scale-up. Also as neither contains elements relative to the wet 

mass they should be considered a means for the scale-up of the machine rather than the 

process (Faure [79]). Rahmanian et al [80] tested some of the most common 

dimensionless numbers: constant shear, constant impeller tip speed and constant Froude 

number for the scale-up from a 1L Hosokawa Cyclomix high shear mixer to a 250L 

(going through 5 and 50L) and used granule strength in order to quantify scale-up 

efficiency. They found that constant impeller tip speed allowed them to obtain granules 

of comparable strength across the scales while the differences increased when using 

constant shear stress or constant Froude number. 

Scale-up of the wet granulation process is a complicated issue due to the complex nature 

of agglomeration but it can be further complicated by the lack of geometric similarity 

between scales even in granulators coming from the same manufacturer. Scale-up must 

also compensate for such effects like the effect of the chopper especially since it can 

affect differently granulation at different scales or the effect of the wall on which 

granules can stick and which can also slow down the granules. Such effects are more 

present at the small laboratory scale where new formulations and processes are developed 

but where extensive testing is far less expensive.  

 

7. Conclusion 

The most important goal in the research of the wet granulation process is the 

understanding of the underlying mechanisms and controlling the final granule properties. 

This introduction has shown that granulation presents complex interactions between 
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equipment variables as well as material properties making the outcome of a granulation 

hard to predict.  

This literature review has shown the great wealth of information available for the wet 

granulation agglomeration technique. The results presented allow us to draw the 

following conclusions: 

- The mechanisms occurring in a wet granulation process can be generally divided into 

three categories: wetting and nucleation, densification and growth and breakage and 

attrition. However the predominance of one mechanism over the other remains relatively 

poorly understood with the majority of the studies investigating just one of the categories 

usually under a small variation of operating conditions and physico-chemical properties 

of the powder-binder couple. 

- Systematic studies (Vialatte [2], Oulahna [46], Rahmanian[80], Benali [81]) allow to 

relate the effect of operating conditions and physico-chemical properties of the starting 

materials to agglomerate quality (size, size distribution, porosity, shape, strength)  

- The definition of the optimum binder requirement is a key issue in high shear wet 

granulation. As it depends mainly on the operator, the definition and optimization of the 

optimum binder requirement is of crucial importance for the subsequent product 

characterization. However, it is also a parameter that is often neglected making the 

generalization of the results presented in literature difficult. 

- The use of torque/power consumption curves to control wet granulation is a fairly 

established technique. It allows controlling the binder saturation of the wet mass. 

However the definition that the optimal binder requirement for pharmaceutical 

granulation purposes is situated on the plateau region remains somewhat vague. Also the 

relationship between the wet mass properties, granulation mechanisms and torque curves 

is still a subject of actuality with reports in literature showing little agreement. 

- Torque rheometers can be employed in order to offer additional information about the 

granulation behavior of powder-binder couples. They offer a refinement in the use of 

torque for scale-up of the wet granulation process. The connection between the 

information obtained in the rheometer and the wet granulation process is limited to the 
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measure of a pseudo-viscosity called wet mass consistency that allows verifying scale-up 

efficiency. 

- The influence of mixer scale is usually done by keeping one or more dimensionless 

groups constant, however these groups don't usually take into account the physico-

chemical properties of the starting materials representing the scale-up of the machine 

rather than the process mechanisms. 

 

The aim of this thesis is to bring more insight to the relationships between torque curves 

and changes in operating conditions and physico-chemical properties of the starting 

materials on one hand as well as the effects that these changes can have on the 

mechanical properties of the wet and dry granules. We will also investigate the effect of 

technology by changing mixer design and investigate the effect on mean granule size, 

granule size distribution, growth mechanisms and granule strength. 

Chapter II presents the materials and the equipment as well as the characterization 

methods used in this study.  

Chapter III will be divided in four subchapters each presenting one important aspect of 

granulation. Subchapter III.1 presents a typical example of granulation showing a 

granulation run and the methodology used to characterize the results. Subchapter III.2 

deals with the influence of operating conditions like fill level, impeller speed and chopper 

influence while also investigating the effect of mixer design for two geometrically similar 

granulators. In subchapter III-3 the influence of binder properties like viscosity, binder 

surface tension and powder binder interactions are discussed as well as the influence of 

binder choice. Finally subchapter III-4 shows the influence of varying substrate nature as 

well as granulation of mixes of two different components at two scales.   
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   Chapter II: Materials and Methods 
 

In this chapter we will be presenting: 

- the powder and binder solutions physico-chemical properties,  

- the main characterization methods employed  

- the operating protocol for the wet granulation experiments, 

- the equipment used in this study: the high shear mixers.  

 
1. Materials 

The principal starting powders used in this study were microcrystalline cellulose (MCC 

Avicel 105, FMC Biopolymer) and α-lactose monohydrate (Fischer-Bioblock, Acros 

Organics). The study of equipment variables and binder properties on granulation has 

been performed with 100% MCC while lactose was employed only for the study of 

varying proportions of MCC in MCC-lactose formulations. The binders used in this study 

were aqueous solutions of various concentrations of Polyvinylpirrolidone (PVP, Sigma 

Aldrich) and Hidroxypropylmethylcellulose (HPMC, Sigma Aldrich). More detail on the 

solid state binder products used can be found Appendix I.  

 

1.1 Microcrystalline Cellulose 

The chosen MCC powder, MCC Avicel 105 (FMC Biopolymer), presents a high 

cohesion and poor flowing characteristics being an interesting candidate for size 

enlargement operations. This powder is usually encountered in direct compression 

operations. Figure 1 shows a scanning electron microscope image of the initial MCC 

particles. MCC presents itself as a fine, white, water insoluble powder showing particles 

with elongated, irregular form. This form makes the definition of a mean diameter 

difficult. The values reported here are the ones obtained using a laser particle size 

analyzer (Malvern Mastersizer).  Figure 2 shows the X-ray diffraction spectrum allowing 
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us to measure the cristallinity index according to the relation proposed by Sidiras, 

Koullas, Vgenopoulos and Koukios [1]: 

( )[ ] 100
002

002 ⋅
−

=
I

IICrI am         (II-1) ( )%

Where I002 is the intensity peak at approximately 2θ=23° and Iam is the intensity 

corresponding to the peak at approximately 2θ=16°. The cristallinity index of the powder 

has been found to be of the order of 66% (Table 1).  

The properties of a more conventional MCC grade for high shear wet granulation, the 

Avicel 101, are also presented. Table 1 regroups the physical characteristics of the two 

MCC powders showing that both grades give similar cristallinity index values and 

leading us to believe that except for differences in mean particle size and density the two 

powders can be regarded as two different grades of the same product.  
 

    

Figure 1. SEM image of initial MCC Avicel 105 particles(a) and Avicel 101 particles (b) 
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Figure 2. X-ray diffraction patterns for two MCC grades: MCC Avicel 105 and Avicel 
101 

Powder 
properties D50 [µm] Span 

(D90-D10)/ D50 

Bulk 
Density 
[kg/m3] 

True 
Density 
[kg/m3] 

Cristallinity 
Index [%] 

Avicel 105 20 1.93 244 1514 66.33 
Avicel 101 60 2.1 291 1540 66.41 

Table 1. Physical characteristics of the MCC powders Avicel 105 and 101 
 

Microcrystalline cellulose can be prepared from either cotton seed hair or wood with 

cotton being almost poor cellulose while wood contains varying degrees of cellulose (40-

50%), hemicelluloses (20-30%) and lignin (20-30%). The cellulose polymer is made of 

cellobiose units that are linked by β-(1-4) glucosic bonds. Figure 3 shows the cellobiose 

units (a) that form larger unit cells (b) which form crystallites (c). Crystallites that present 

crystalline and amorphous regions are combined into microfibrils (d) and fibrils (e) which 

form the cellulose fibers (Luukonen [2]). Figure 4 shows the amorphous and crystalline 

zones in microcrystalline cellulose fibrils (Ribet [3]). 

 

Figure 3. Microcrystalline cellulose structure [3] 
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Figure 4. MCC microfibrils structure [4] 

The manufacturing process of microcrystalline cellulose requires dissolving the pulp by 

acid hydrolysis shortening the cellulose chains and removing the soluble parts like 

hemicelluloses and lignin. After washing with water, the suspension is spray dried into 

microcrystalline cellulose particles with sizes ranging from 50 to 100µm. If the pulp is 

milled, powdered cellulose can be produced that presents a higher degree of 

polymerization (~500 vs ~200 for MCC) and a lower degree of crystallinity (15-45% vs 

65-75% for MCC). Both types of celluloses are encountered in pharmaceutical 

applications. 

Fielden et al [4] suggested based on thermal studies of the interaction between MCC and 

water that MCC can be considered a 'molecular sponge'. MCC can retain large amounts 

of water but also easily release it upon drying. The role of MCC is stated to be to control 

the movement of the water through the wet powder mass during extrusion and modify the 

rheology of the wet mass conferring it a certain degree of plasticity. In the extrusion 

process the sponges are compressed until water is squeezed out and lubricate the particle 

flow through the extruder. 

Another model has presented by Kleinebudde [5] who proposes that a gel is produced 

during extrusion/granulation with MCC. In the presence of water the MCC particles are 

broken down into smaller subunits by the shear forces present in granulation/extrusion 

operations. The single particles with the size of a few microns turn into a 'crystallite gel' 

that immobilizes the liquid. The crystallites or their agglomerates can form a network by 

cross linking with hydrogen bonds at the amorphous ends.  
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The complexity of the models makes them difficult to be directly proven and studies that 

support both are available in literature ([6], [7], [8], [9]). Kleinebudde [10] suggested that 

the sponge model is more appropriate for the cellulose presenting a high degree of 

polymerization (powdered cellulose) while the crystallite gel model is more applicable to 

cellulose types with a lower degree of polymerization (MCC and silicified MCC). 

 

1.2 Lactose 

Alongside microcrystalline cellulose, lactose is another very widely used excipient. Sousa 

et al. [11] found when extruding/spheronizing different starting materials microcrystalline 

cellulose, glucose, mannitol, lactose, calcium phosphate, and barium sulphate that lactose 

was the material that did not present spherical pellets. This may be one of the reasons 

why MCC is often present in formulations together with lactose as it is known for its 

capacity to produce granules with high sphericity.  

Lactose is a disaccharide that consists of β-D-galactose and α/β-D-glucose fragments 

bonded through a β1-4 glycosidic linkage. Figure 5 presents the initial lactose particles 

that show large lactose crystals with finer lactose particles sticking to their surface. Table 

2 regroups the main physical characteristics of the α-lactose monohydrate powder 

(Fischer Scientific)  used in this study.  

 

   

Figure 5. SEM image of initial α lactose monohydrate particles 
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Powder 
properties D50 [µm] Span 

(D90-D10)/ D50 

Bulk 
Density 
[kg/m3] 

True 
Density 
[kg/m3] 

Solubility 
[g/100 cm3 

water at 25°C]
α lactose 

monohydrate 60 2.28 465 1510 17 

Table 2. Physical characteristics of lactose 

 

 

1.3 Binder Properties 

The binders used in this study were chosen so as not to chemically react with the solid 

and also to be of a certain practical importance for the wet granulation of the chosen 

excipients.  

The influence of the operating conditions and changing initial formulations in this study 

have been studied using ultra-pure water as a binder. For the study of binder properties 

aqueous solutions of various concentrations of Polyvinylpirrolidone (PVP) and 

Hidroxypropylmethylcellulose (HPMC) have been prepared. Contact angle values were 

obtained by the dynamic capillary rise method on a GBX Instrument balance (as 

described in Appendix II-1). Binder viscosity was obtained using a Haake Rheostress RS 

600 rheometer (As described in Appendix II-2).  

For the non-Newtonian binder solutions variations are observed in viscosity depending 

on shear rate. As it can be observed the higher concentration HMPC binder, HPMC 3%, 

presents Non-Newtonian behavior. The value chosen for representing viscosity for 

HPMC 3%  was 1047 s-1. An impeller speed of 800 rpm on the Mi-Pro 1.9L was imposed 

for all experiments when binder properties influence was studied.   

Table 3 regroups the physico-chemical properties of the binders used in this study and the 

contact angle between them and the microcrystalline cellulose powder Avicel 105. Figure 

6 shows the evolution of viscosity with increasing binder content while initially several 

concentrations where characterized only the ones allowing certain correlations between 

viscosity and work of adhesion (modification of viscosity for low variations of work of 
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adhesion and variation of work of adhesion for low variations in viscosity respectively) 

were chosen.  

The binders chosen are binders commonly used in the pharmaceutical industry and as it 

can be observed while viscosity varies strongly with a factor of 100 contact angle values 

are pretty close between the different binders. 

 

Binder properties ρ 
(kg/m3) 

γ 
(mN/m) 

μ 
(mPa·s at 

25°C) 

θ 
(°) 

Water 
 1000 72.2 1.0 69.0  ±  1.2 

Aqueous solution: 
PVP 3% (wt%) 1002 63.6 1.3 62.8  ±  4.3 

Aqueous solution: 
PVP 13% (wt%) 998 53.8 3.1 63.8  ±  4.7 

Aqueous solution: 
HPMC 0.5% (wt%) 986 47.6 3.1 76.3  ±  4.5 

Aqueous solution: 
.HPMC 1% (wt%) 993 47.1 8.1 79.0  ±  4.8 

Aqueous solution: 
HPMC 3% (wt%) 1004 47.3 117.0 82.2  ±  5.0 

Table 3. Binder solutions properties and contact angle with CMC Avicel 105 (viscosity 
determined at 1047 rpm for HPMC 3%) 

 

 Wa Ca* 

Water 98.1 0.06 
PVP 3% 92.8 0.08 
PVP 13% 77.5 0.23 

HPMC 0.5% 58.9 0.30 
HPMC 1% 56.1 0.84 
HPMC 3% 53.7 12.76 

Table 4. Work of adhesion and modified capillary number values for the studied binder 
solutions (binder solutions and CMC Avicel 105) 

Table 4 presents the values of the work of adhesion defined as: 

)1(cos += θγaW          (II-2) 

Where θ is the contact angle and γL the liquid surface tension, 
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and the modified capillary number allowing to take into account the contact angle 

between the powder and the liquid binder as proposed by Benali [12]: 

)cos1(
*

θγ
μ
+

=
UCa          (II-3) 

Where U is the speed of the particles, μ is the binder viscosity, γ is the liquid surface 

tension and θ the contact angle. 

As it can be seen in Tables 4  we can investigate the effect of interfacial forces for similar 

values of liquid viscosity (water and PVP 3%, and PVP13% and HPMC 0.5%) as well as 

the effect of viscosity for similar values of work of adhesion (the HPMC solutions), while 

varying the modified capillary number values between 0.06 and 12.76. 
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Figure 6. Viscosity evolution as a function of polymer concentration and shear rate 

 

 

2. Characterization Methods 

The characterization methods used in this study can be divided in morphological 

characterization methods, rheological and mechanical. 

 

2.1. Morphological Characterization Methods 

Morphological characterization methods include: 

- the study of granule surface morphology achieved on a Scanning Electron Microscope, 

- starting materials interaction with water was studied by water sorption isotherms, 

- granule roundness characterization on a an automated microscopy and image analysis 

technique, true density on a helium pycnometer, 

- mean granule size distribution by sieving,  

- granule porosity by mercury porosimetry. 
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In order to assess granule growth and morphological properties representative samples of 

solid (15 to 30g) were removed from the bed and tray-dried at 40°C for 24 hours. Due to 

the small size of the Mi-Pro mixer bowl each sample was taken from a new batch with 

experiments being carried out twice. The dried granules were sieved and 15 size fractions 

were collected. Weight mean diameter was determined using the following equation: 

Mean diameter:
∑

∑
iii

pm

df
d

i
i

i

f
=        (II-4) 

Where fi is the particle mass fraction of size interval i, di is the mean diameter of size 

interval i (µm). For a better understanding of agglomeration mechanisms, three 

characteristic granule classes were defined (Figure 7): fine (corresponding to the initial 

powder with granule diameters and dry agglomerates inferior to 200 µm), intermediate 

(weak granules with diameters between 200 µm and 800µm) and coarse agglomerate 

(strong, dense granules with diameters greater than 800 µm but smaller than 5mm). 

Granules exceeding 5mm are defined as lumps. Figure 7 shows the defined classes at 

50% liquid to solid ratio for an impeller speed of 800 rpm and chopper speed of 3000 

rpm as well as the expected effect on the granule sizes of impeller and chopper, with the 

impeller promoting agglomeration of fine and intermediate particles and the chopper 

cutting up the larger coarse particles.  

 

 
Figure 7. Sieving results for a L/S ratio of 50% (Mi-Pro V=1.9L, w=800 rpm, 

chopper=3000 rpm) 
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In our study the tapped and apparent density were evaluated using a tapped density tester 

(Erweka Ltd). The apparatus consists of two graduated cylinders placed on the tester 

platform. The tapping action is generated by a camshaft that lifts the platform and allows 

it to drop back onto its original position. The applied speed was of 300 taps per minutes 

and the number of taps applied was directly related to the changes observed by the 

operator in the volume occupied by the powder. Usually after ten minutes no further 

changes were observed in the volume occupied by the powder. The bulk density was the 

density obtained by dividing the mass of powder introduced to the volume occupied by 

the aerated powder in the cylinder.  For the determination of the wet mass bulk density 

the wet granules were just slightly manually tapped in a graduated cylinder as the wet 

product could easily be deformed and densified on prolonged tapping.  

The microcrystalline cellulose powder did not exhibit any intragranular porosity 

accessible by mercury porosimetry. The equation used to determine porosity is based on 

the tapped density of the powder and the true density determined by helium pycnometer: 

1001 ⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

s

tapped

ρ
ρ

ε  (%)        (II-5)  

Granule roundness was determined by an automated microscopy and image analysis 

technique (PharmaVision 830, Malvern Instruments Inc. USA). Roundness is a 

measurement relating length to width and presenting values in the range of 0 to 1. A 

perfect circle would present a roundness of 1 while a needle shaped particle would have a 

roundness close to 0. The roundness is determined typically using the equation: 

2

4

g

g

P
A

Roundness
π

=           (II-6) 

Where Ag is the measured area and Pg is the perimeter of the granules. The zoom 

objective was used at the 0.5 position at which it presents a resolution of 18 μm, a depth 

of field of 11 μm, a field of view of 4722x6166 μm and can analyze granules in the size 

range of 45 to 1908 μm. Granules investigated for roundness where granules in the range 

of 1000-1250 μm. Results can be expressed as a function of number or value distributions 
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however in our experiments both methods presented very similar values as well as nearly 

identical trends.  

Adsorption isotherms, characterizing liquid to solid adsorption have been investigated for 

the starting materials. They represent the relationship between the amount of gas or liquid 

adsorbed by unit mass of solid and the equilibrium pressure (or relative pressure) at a 

known temperature.  

The sorption characteristics of cellulose and lactose have been determined by a 

gravimetric method using a Surface Measurement Systems® automated Dynamic Vapor 

Sorption (DVS-1000) instrument which measures the uptake and loss of vapor using a 

controlled atmosphere microbalance with a mass resolution of ± 0.1 μg equipped with a 

video microscope system. The vapor partial pressure around the sample is controlled by 

mixing dry and saturated vapor gas flows using electronic mass flow controllers. In these 

experiments, the variation of mass of the sample was measured as a function of time over 

a range of values of relative humidity. The temperature is maintained constant at 

25°C±0.1°C by enclosing the system in a temperature-controlled incubator. 

 

2.2 Rheological Characterization Methods  

Rheological characterization methods include: 

- characterization of starting materials flowability on an Hosokawa powder tester and - 

granule bulk and tapped density on a tapped density tester  

- characterization of powder binder interaction by the multiple liquid addition method and 

and characterization of wet mass consistency on a mixer torque rheometer  

 

2.2.1 Flowability of the Starting Powders 

The flowability of the starting powders used in this study was assessed by calculating the 

Carr index(Table 5) and by tests carried out on a Freeman FT4 equipped with a shear cell 

(Appendix II.3).  The tests on the shear cell allowed us to obtain the flow functions for 

our initial powders following the Jenike classification of flowability by flow index [13] 
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and allowed us to further describe the cohesion of our initial powders (Figure 8). The 

Hausner ratio gives a measure of the compressibility of the powder. 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
=

tapped

bulktapped
cI

ρ
ρρ

         (II-7) 

 

bulk

tapped
rH

ρ
ρ

=           (II-8) 

 

Carr Index (%) Flowability Powder State 

5-15 Excellent Sand like powder without fibres and fine particles 

15-18 Good Sand like powder without fibres and fine particles 

18-22 Normal Powder with small amounts of fine particles and 
high density particles 

22-35 Not Good Powder with fine particles 

35-40 Poor Cohesive powder 

>40 Very Poor Very cohesive powder 

Table 5. Flowability of powders according to the Carr index 

 

Hausner Ratio Compressibility 

<1.25 Low  

1.25-1.4 Intermediate  

>1.4 High 

Table 6. Compressibility of powders as a function of the Hausner ratio 

 

Powder  Carr Index Hausner Ratio 
αLactose 48,89 1,95 
MCC Avicel 101 32,37 1,48 
MCC Avicel 105 51,47 2,06 

Table 7.The Carr index and Hausner ratio for the starting materials 
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According to the values obtained for the Carr index and Hausner ratio (Table 7) we can 

observe the larger microcrystalline cellulose powder, MCC Avicel 101, showing a better 

flowability and somewhat lower compressibility than both of the main powders in this 

study: MCC Avicel 105 and lactose.  

Figure 8 shows the obtained flow functions (measurement detailed in Appendix II.3) that 

confirm the predictions of the Carr index with the MCC Avicel 101 showing better 

flowability than both MCC Avicel 105 and Lactose that are in the cohesive region.  

 

Figure 8. Flow functions for the studied materials 

 

2.2.2 Characterization of Binder Powder Interactions 

The characterization of binder powder interactions was achieved using a mixer torque 

rheometer (Model MTR, Caleva Ltd, Dorset, England) which allows recording of torque 

values while the wet mass is being mixed. Two types of measurements have been carried 

out in this study: 

1. The MTR (Figure 9) was used as a tool for initial characterization of the powder 

binder couple by carrying out the multiple binder addition test. The binder is added to the 

powder with a certain liquid flow rate and then both binder and powder are mixed for a 

certain time. This step is repeated a certain number of times usually taking the powder 
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from the dry state to a suspension. The mixer torque rheometer measures two values in 

function of time and added liquid: the mean torque and the amplitude of the torque 

oscillations or torque range [14]. The mean torque is equivalent to the resistance of the 

wet mass to mixing and allows the monitoring of the different states of saturation of the 

agglomerate (Figure 10). The torque range describes the heterogeneity of the wet powder 

being a measure of mean torque standard deviation. In this study only the mean torque is 

represented as the mean range showed the same effects.  

The dry powder was mixed in the rheometer for 30 seconds in order to obtain the baseline 

response. The quantity of dry powder was selected so as to cover the mixing blades 

which led to a fill ratio of about 40%. The binder was added by the multiple addition 

method, after each addition the wet mass is mixed and at the end of the mixing period a 

mean torque value is stored so that each point on the torque curve corresponds to an 

addition and so to a new saturation value of the wet mass. The torque values are 

expressed as normalized torque thus taking into account the fill level. For all our 

experiments on the mixer torque rheometer a target mixing time of 10 minutes has been 

sought in order to ensure the good distribution of the binder in the powder bed. 

2. The wet mass consistency was determined on the MTR. The MTR (Figure 9) 

presents a great impeller surface in a confined bowl allowing an intense mixing of the 

wet mass. Samples of wet granules were mixed in the MTR and the torque response was 

recorded. A time of 480s was imposed for mixing of the wet granules. Granules are 

deformed under the action of the impellers and torque values evolve to a constant value 

named wet mass consistency.  

 

Figure 9. The mixer torque rheometer (MTR) 
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Figure 10. Mean torque as a function of added binder on the MTR [14] 

 

2.3 Mechanical Characterization Methods 

The mechanical characterization methods include the testing of the mechanical strength 

of the obtained granules. 

Two units were used in order to assess dry granule strength: a Texture Analyser XT plus 

(Figure 11) from Stable MicroSystems and a Instron 5567 mechanical testing 

machine(Figure 12).The Instron testing machine allows recording a maximum force of 

500N while the Texture Analyzer equipped with a 5kg load cell only allows measuring 

forces up to 50N. Both values were, however sufficiently high to ensure the breakage of 

the granules. Due to availability issues of the Instron testing machine, the Texture 

Analyzer had to be used for the characterization of granules obtained with different 

binders (Subchapter III-3). While the principle is the same results are not directly 

comparable due to the difference in load cells as well as probe surface size for the two 

machines. All other granule strength characterizations have been carried out on the 

Instron testing machine. 

Single granules were compressed with a stainless steel probe with pictures were taken 

before and after compression. Granules tested had a diameter close to the mean diameter 

of the granulation run. Granule strength was assessed using the following equation 

proposed by Adams et al [15]: 
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2
g

max
g Dπ

F4σ
⋅

=          (II-9) 

Where Fmax is the fracture force and Dg is the measured granule diameter. 

Imposed velocity of the steel probe was of 1 mm/min unless otherwise stated. 

Because granules are semi-brittle measuring the compression strength is possible. When 

the granule is subjected to compressive strain (displacement) a marked drop in the signal 

can be observed when the granule first cracks (Figure 13). The values recorded after this 

point on the load-displacement curve are of little practical use as they represent the 

compression of granule fragments and eventually powder particles.  

 

 

 

Figure 11. The Texture Analyzer XT plus 
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Figure 12. The Instron 5567 mechanical testing machine 

 

   

Figure 13. Load-displacement evolution for MCC Avicel 105 granulated with water, 
granule of 1.1 mm diameter under uniaxial compression at 1mm/min 

 

2.3.1 Preliminary Tests 

Figure 14 shows the evolution of the mean fracture force standard deviation as a function 

of the number of granules tested. There is only a very small difference in the mean value 

for the test of more than 30 granules. In our study the results expressed represent the 

mean deviation for at least 30 granules. The standard deviation calculated using 

Microsoft Office Excel was defined as: 

1

2

−

⎟
⎠
⎞

⎜
⎝
⎛ −Σ
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−

n

xx
Stdev          (II-10) 
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Where  represents the arithmetic mean of the x values and n the number of values. 
−

x

 

Figure 14. Mean value and standard deviation for granule strength measurements as a 
function of the number of tested granules (Avicel 105 granulated with water at 800 rpm 

in the Mi-Pro V=1.9L, granules in the size class 1000-1250µm) 

 

The granules seem to exhibit elastoplastic deformation which led us to investigate also 

the evolution of the Young's modulus. We applied the methodology described by 

Mangwandi et al. [16] in finding the elastic limit by following the linearity of the 

equation at the beginning of the compression cycle, allowing us to determine the point up 

until which the Hertz equation is applicable (Figure 15). The Hertz equation [17] is 

described as: 

2/3*2/1

3
2

Δ= lg ERF          (II-11) 

where F is the force, Rg is the radius of the granule, El* is the effective Young's modulus 

and ∆ is the total displacement of the moving platen. They [16] simplified the effective 

modulus by considering it reasonable that the Young's modulus of the platens is much 

greater than that of the granules so that the effective Young's modulus becomes a 

function of Poisson's ratio considered to be 0.2 as a typical value for porous materials as 

described by Chun et al [18]: 

2
*

1 υ−
=

EEl           (II-12) 
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Where E is the Young's modulus and υ is the Poisson's ratio. 

The energy required to be transmitted to the granule in order to induce macroscopic 

failure has been calculated from the area under the force displacement curve (Figure 16) 

up to the fracture peak using the OriginPro8® (Originlab) data analysis software. The 

fracture energy has been calculated as an absolute value but also as specific fracture 

energy as a function of the mean granule size by dividing the obtained surface by peak 

integration with the granule contact surface. 

 

 
Figure 15. Identifying the elastic limit of the granules by linearizing the Hertz equation 

 

Figure 16.Force-displacement peak integration using the OriginPro 8 data analysis 

software 
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Figure 17. Fracture force and Young’s modulus as a function of compression speed 

Three compression speeds have been investigated: 1, 3 and 6 mm/min. Figure 17 shows 

the evolution of the Young’s modulus and the fracture force as a function of compression 

speed for granules with mean granule sizes between 1000 and 1250 microns. We found 

that compression speed seems to have only a small influence on both parameters. 

However the loading Young’s modulus can be more precisely identified at the smaller 

compression speeds, which is why the rest of our results correspond to a 1 mm/min 

compression speed. 

 
3. Wet Granulation Protocol and Equipment 

 
3.1 Introduction  
 

High shear wet granulation can be achieved in a variety of mixer designs and can be 

instrumented or not. As a function of the high shear mixer design forces of different 

magnitude can be exerted on the powder bed. Figure 18 shows the forces that are subject 

to be influenced by the high shear mixer design according to Royce et al [19]: 

acceleration force (F1), resistance of the bowl (F2), centripetal force (F3), centrifugal 

force (F4), gravitational force (F5), and a fluidization force resulting from the angle of 

the impeller blade (F6).  
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Figure 18. Forces developed by the equipment during the granulation process [19] 

High shear mixers can be vertical or horizontal mixers (Figure 19) depending on the 

rotation plane of the impeller shaft. A special type of vertical high shear mixer is the high 

shear mixer with replaceable bowls where the chopper and the impeller are top driven 

and which allows the reduction of contamination since the seals do not come in contact 

with the product. In this thesis we focused on the wet granulation process performed in 

vertical high shear mixers. 

A typical high shear granulation experiment implies the following steps: 

- Premixing (usually done at high impeller and chopper speeds) of the initial dry powder 

- Addition of the liquid binder, we distinguish:  

- when the binder is poured in, the binder requirement is known and all the binder 

is introduced in the beginning of the granulation process, usually at low impeller 

and chopper speeds and followed by wet massing at high impeller and chopper 

speeds 

- when the binder is added gradually, binder addition and wet massing are 

concomitant usually at high impeller and chopper speeds 

- Drying stage 

As this thesis also uses the torque as a means to control wet granulation, binder is always 

added gradually in order to study the changes in torque as a function of added binder 

amount. The first two steps are done inside the granulator while the drying of the 

granules is done on a tray in an oven. 
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Figure 19. Two design philosophies for vertical high shear mixers: a) and b), schematic 
view of a horizontal high shear mixer c) and view inside an horizontal high shear mixer 
showing the ploughshare shovel, inlet lance for binder liquid and multibladed chopper   

 

3.2 Wet Granulation Protocol 

Granulation time for all experiments was of about 14 minutes: two minutes of dry mixing 

allowing for homogenization of the dry mass and allowing us to check torque stability 

and twelve minutes of wet mixing during which binder was added at a certain flow rate 

using a drop by drop system. The first granulation runs allowed us to establish the torque 

profiles for the studied operating conditions, powder and binder used. The results 

obtained are expressed in function of the fraction added liquid to initial dry powder mass 

named liquid to solid ratio: 

 L/S Ratio=Added Liquid Mass [kg] / Initial Powder Mass [kg] (%)   (II-13) 
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Discussing kinetics as a function of added liquid will always present a certain degree of 

relativity as the added liquid may or may not correspond to the granule liquid saturation 

especially when poor liquid distribution is involved. However, as we will discuss when 

presenting the materials used in this study, the complex nature of liquid solid interactions 

between the chosen powders and binders makes calculating saturation difficult. 

On of the most important parameters in wet granulation is the optimum liquid 

requirement. These first experiments allowed us to visually observe the evolution of the 

wet mass and obtain the torque curves which on analysis indicated the optimum liquid to 

solid ratio. These experiments were followed by new experiments were the granulation 

run was stopped at different liquid to solid ratios and samples were retrieved. These 

samples allowed us to characterize wet mass properties like wet bulk density, wet mass 

consistency and dry mass properties like mean granule size and morphology after drying. 

The drying of the granules was done overnight for about 24 hours at 40°C. 

 

3.3 The Mi-Pro HSM 

The Mi-Pro (Pro-C-Ept, Zelzate, Belgium) high shear mixer allows granulating while 

recording real time impeller torque values with 1 second intervals. This vertical axis high 

shear granulator can be equipped with differently sized glass bowls with corresponding 

three bladed impellers and choppers. They can range from 0.25 capacity to 1.9L through 

0.5L and 0.9L. In this thesis the 1.9L capacity bowl was chosen as the reference scale 

with some granulation runs being carried out at the 0.9L scale. Figure 20 gives the 

schematic description of the 1.9L and 0.9L bowls the only difference between them being 

a slight inclination of the chopper on the 0.9L bowl. The mixer is composed from: 

- An impeller that is close to the bottom of the bowl. 

- A chopper that is closed to the wall of the bowl.  

- The binder delivery system consists of an aspiration pump delivering the binder through 

a tube that intrudes in the mixer bowl. Binder addition was done at a constant rate using a 

Dosimat 760 syringe pump (Metrohm, Berchem, Belgium). The size of the capillary at 
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the end of the tube is of about 400µm and binder flow is directed towards the chopper in 

order to ensure better binder dispersion. 

 

 

Figure 20. Schematic representation of the two Mi-Pro bowls employed 

Figure 21 shows the whole setup including the computer whose software interface allows 

changing impeller, chopper and liquid dosing speed as well as allowing the operator to 

follow a real time evolution of the recorded torque and temperature.  

 

Figure 21. The Mi-Pro high shear mixer 
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3.4 The Diosna P 1-6 HSM 

 

Figure 22. Schematic of the Diosna high shear mixer 

The Diosna high shear mixer (Figure 22 and 23) is a 6L unit with a three bladed impeller 

and a tulip shaped chopper. Binder addition is done via a pump in a drop by drop manner 

with the size of the capillary of about 800µm. The Diosna high shear mixer doesn't record 

torque or power consumption curves but it does represent the power consumption and 

temperature on the screen of the computer used to control impeller and chopper speed.  

 

Figure 23. The Diosna high shear mixer 
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4. Conclusion 

In this chapter we have presented the products on which this study is focused, the 

equipments and the methods used to characterize our results. The main powders in this 

study are: MCC Avicel 105 and Lactose both being very cohesive powders with poor 

flowability characteristics. MCC Avicel 101 which is more common for high shear wet 

granulation experiments is also present in this study but only for comparison purposes. 

Because it is not soluble and because of it's strong cohesion the MCC Avicel 105 seems 

an interesting candidate in evaluating the relationship between torque curves and the 

main factors influencing high shear wet granulation. The influence of the main operating 

conditions and binder properties will be studied on the MCC Avicel 105 and from this 

point of view it should be considered the main powder in this study. Lactose is a product 

commonly found alongside MCC in granule formulations, it is soluble and allows for fast 

disintegrating tablets and is present in many of today's excipient formulations. 

The main equipments for creating granules have also been presented. The Mi-Pro high 

shear granulator allows working with different sized bowls similar in terms of bowl, 

impeller and chopper geometry and allowing the recording of torque curves developed on 

the main impeller shaft. The main scale of study is the Mi-Pro equipped with a 1.9L 

bowl. The Mi-Pro 0.9L bowl allows us to investigate granulation on a lower scale while 

the 6L Diosna high shear mixer allows us to investigate the effect of mixer design on a 

larger scale. 

Powder binder interaction will be assessed by means of contact angle measurements and 

rheology characterization on a mixer torque rheometer. Granule strength in the dry state 

will be evaluated by diametric single granule compression tests while wet granule 

strength will be assessed by using the same mixer torque rheometer in order to determine 

the wet mass consistency.  
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   Chapter III.1: Typical Example 

 
 
 
Because this study investigates variable operating conditions and varying binder band 

substrate natures we chose to begin the presentation of our wet granulation experiments 

with a typical example. It shows the granulation run for the case of Avicel 105 

microcrystalline cellulose powder with ultra-pure water on the 1.9L Mi-Pro high shear 

mixer. The characterizations accessible to us for a typical high shear granulation run 

(impeller speed 800 rpm, chopper speed 3000 rpm) are presented. 

 
1. Introduction 
 

A typical wet granulation flux scheme can be observed Figure 1 as adapted from Ennis 

and Litster [1]. The main judging criterion of the wet granulation process is usually a 

particle size interval with anything not included in the researched size range being 

recycled into the process. Granule size depends on the starting material properties and the 

shear and impact forces developed in the granulator among others affecting the granule 

growth mechanisms. Newitt and Conway Jones in the 1950's [2] described the evolution 

of liquid bonding in the granule as the pendular, funicular, capillary and droplet stage. 

Many granulation mechanisms have been proposed for various mixer designs and starting 

materials. Predominance of one mechanism over the others depends on equipment 

variables and physico-chemical properties of the starting materials. The aim of this sub-

chapter is to investigate the granulation of the MCC powder Avicel 105 on the Mi-Pro 

1.9L bowl high shear mixer showing the granule growth mechanisms as well as the 

means to characterize the obtained product. 
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Figure 1. Typical agglomeration circuit adapted from Ennis and Litster [1] 

2. Granulation Mechanisms 

Before granulating the product in the Mi-Pro the mixer torque rheometer (MTR) was 

used to asses the interaction between the powder and the liquid binder. Table 1 shows the 

operating conditions for the runs on the mixer torque rheometer. Binder is added by 

multiple additions, for each addition the developed torque is recorded at 100 Hz and a 

mean point is calculated before another addition.  

The curve obtained on the mixer torque rheometer (Figure 2) shows a slow evolution up 

to a liquid to solid (L/S) ratio of 20% corresponding to the wetting of the dry powder by 

the binder, for values between 20% and 43% an increase in torque is observed which 

might correspond to the formation of the first liquid bridges between the particles. For 

values between 43% and 85% a stark, almost linear increase in mean torque 

corresponding to the funicular stage. Beyond 85% the mass is very cohesive and evolves 

into a paste giving a maximum value at 150% L/S ratio. Beyond this point the paste 

transforms into a suspension and the torque values drop significantly. This preliminary 

test that takes little time and product allows us to predict the liquid requirement for the 

studied binder-powder couple and adjust the operating time on the Mi-Pro accordingly.  

A typical granulation run in a high shear mixer consists of a succession of stages: a dry 

mixing stage, the wet massing stage when the granules are produced and liquid is added 
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gradually to the dry powder and a drying stage. Torque curves where recorded during 

granulation as well as the amount of added binder.  

 
Figure 2. Normalized torque curve on the mixer torque rheometer (MTR) for the mixing 

of MCC Avicel 105 with ultra-pure water 
 

Parameters Mi-Pro MTR 

Binder Ultra pure water 

Powder MCC Avicel 105 (d50=20µm) 

Mass (g) 120 14 

Fill Ratio  

(% of Dry Powder Volume on 

Total Bowl Volume) 

26% 40% 

Liquid flow rate (ml/min) 10 3 

Dry Massing Time  [min] 2 0.5 

Wet Massing Time [min] 12  1min/addition 

Impeller speed (rpm) 800 42 

Chopper speed (rpm) 3000 NA 

Table 1. Operating conditions for the typical example on the Mi-Pro and on the MTR for 
the MCC Avicel 105 ultra-pure water couple 
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Figure 3 shows SEM pictures of the granules obtained. Figure 4 shows SEM pictures of 

granules obtained from microcrystalline cellulose and water on the Mi-Pro high shear 

mixer as a function of liquid to solid ratio and the corresponding torque curve. Figure 5 

shows the evolution of the three characteristic classes, defined as fines for particles with a 

size below 200 microns, intermediates for particles between 200 and 800 microns and 

coarse for particles with a mean size between 800 microns and 4 mm. Based on these 

figures the observed growth mechanisms as a function of L/S ratio can be grouped as 

follows:  

- for values of the S/L ratio between 0 and 20 % wetting occurs, SEM observations do    

not show any agglomerates. Only a very small percentage of fines is leading to 

intermediates, most probably because of the characterization method involved 

(sieving) and the very cohesive nature of the initial powder. Using a laser 

granulometry method for the initial stages of the granulation process might be a better 

solution than sieving.  

- for values ranging from 20% to about 45% nucleation occurs with the fine particles 

agglomerating to intermediates in the 200-800 µm range,  

- for L/S ratios exceeding 50% growth occurs by layering and coalescence, first with 

the fine particles being agglomerated into intermediate granules which achieve a 

maximum value at about 83% L/S ratio which also corresponds to the extinction of 

fines in the system and the apparition of the first coarse granules, secondly for values 

exceeding 83% when intermediate particles agglomerate to form coarse granules.  

- for L/S ratios above 100% overwetting occurs, some usable granules could still be 

obtained up to 125% L/S ratio but the yield is low and the wet mass presents a high 

percentage of lumps. For values above 125% L/S ratio the wet mass evolves to highly 

cohesive paste where further binder addition for L/S ratios above 150% turns the 

paste into a suspension. 

 
 

 86



Chapter III.1 – Typical Example 
 

   

 

   

 

 

Figure 3. SEM images of the granules obtained in the Mi-Pro for the granulation of MCC 
Avicel 105 with ultra-pure water: Wetting (a), Nucleation (b), growth by 

coalescence/layering (c),((d), Over-wetting (e) 

 87



Chapter III.1 – Typical Example 
 

 
Figure 4. Torque curve obtained on the Mi-Pro HSM for the granulation of MCC Avicel 

105 with ultra-pure water 

 

 

Figure 5. Evolution of the fine, intermediate and coarse size fractions obtained in the Mi-

Pro for the granulation of MCC Avicel 105 with ultra-pure water 

 

Figure 6 compares the torque curves obtained on the Mi-Pro and the MTR. What is 

immediately apparent is the much higher torque developed on the mixer torque rheometer 

which is clearly densifying more the wet mass and showing at the highest cohesion point 
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(150% L/S ratio) values roughly 6 times as high. Initially both start similarly: the wetting 

stages are almost identical while the nucleation stage seems to occur for similar values. 

From there on however differences become apparent: on the MTR granules are 

agglomerated much more quickly and liquid is more easily squeezed to the surface by the 

intense agitation taking place in the MTR and the mass evolves more quickly to a paste. 

Interestingly when the wet mass turns into a paste and no more differences exist between 

the structure of the product in either equipment we obtain the highest cohesion for the 

same L/S ratio. For values above 150% on the Mi-Pro the torque values (not represented)  

also drop however due to the stickiness of the paste it easily exits from the action range 

of the impeller sticking to the glass wall. This causes the torque curve to present great 

fluctuations and not be reproducible for values above 150% L/S ratio. 

 

Figure 6. Comparison of the torque response for the granulation of MCC Avicel 105in 

the Mi-Pro and the MTR with ultra-pure water 

 

3. Optimum Liquid Requirement 

Following the torque curve obtained on the mixer torque rheometer it is difficult to asses 

the optimum liquid requirement. The most reproducible point is the peak for which the 

wet mass in the Mi-Pro would correspond to a paste. On the Mi-Pro the growth zone is 
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represented by a plateau where the granule size is increasing (Figure 7) between 45 and 

83-90% L/S ratio. So choosing an optimum L/S ratio near the end of the plateau would 

ensure bigger, denser granules. Following the evolution of the granule size fraction we 

can observe that the end of the plateau in the torque curve corresponds to the 

consumption of all the fine particles. This also explains the increase in torque values as 

with all the fines being consumed the collisions between similarly sized granules and 

between granules and impeller, chopper and walls squeezes more binder to the granule 

surface increasing their stickiness, which in turn increases torque (as shown by Bouwman 

et al [3]). Following the torque curves and the granule size fractions evolutions we 

defined an optimum L/S ratio of 100% allowing us to maximize the yield in coarse sized 

granules. It has to be mentioned that for 800 rpm the mean granule size is of 900 microns 

which is very close to the border chosen in order to separate the intermediates and coarse 

granules. So while the percentage of coarse particles might not seem that high the 

increase in mean granule size is evident and the limits between the different size classes 

have been chosen so as to cover a wide range of impeller speeds and binder viscosities.  

 

Figure 7. Evolution of mean granule size as a function of liquid to solid ratio obtained in 

the Mi-Pro for the granulation of MCC Avicel 105 with ultra-pure water 
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4. Granule Strength 

4.1 Wet Granule Strength 

Determining single granule strength as a function of added binder is difficult, when the 

binder is added gradually, as the granules in the early stages present low granule 

strengths and mean granule sizes and are difficult to get in the numbers needed so as to 

present statistically relevant results.  This led us to investigate the bulk wet granule 

strength in the MTR, expressed as wet mass consistency.  

While the values for the wet bulk density (Figure 8) are almost constant in the beginning 

of the process (between 0 and 50% L/S ratio) there are great differences when compared 

to the density at the end of the granulation. First there is a slight increase between 50 and 

75% due to the apparition of dense coarse granules that are reflected in the density 

evolution followed by a strong increase in bulk density once the coarse fraction starts to 

increase (see also Figure 5).  Because of this evolution the study of the wet mass 

consistency has been done at constant volume rather than constant mass with enough 

powder introduced in the mixer so as to cover the blades of the MTR.  

Figure 9 shows the obtained the wet mass consistency measurements of the wet samples 

retrieved from the Mi-Pro high shear mixer. As it can be observed the technique is not 

very sensitive for low L/S ratios. Values increase as in the Mi-Pro only for values above 

83% L/S ratio when all the fines in the system have been consumed the granules begin to 

exhibit liquid at their surface. This can also be observed through the glass bowl walls of 

the Mi-Pro where the fines covering the walls progressively disappear showing clear 

walls allowing the observation of the wet granules for values above 83% L/S ratio.  
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Figure 8. Evolution of the bulk density of the wet mass as a function of L/S ratio obtained 

in the Mi-Pro for the granulation of MCC Avicel 105 with ultra-pure water 

 

 

Figure 9. Evolution of wet mass consistency measurements as a function of L/S ratio 

obtained in the Mi-Pro for the granulation of MCC Avicel 105 with ultra-pure water 
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4.2 Dry Granule Strength 

Figure 10 shows a typical granule size distribution for the typical experiment. Table 2 

shows the obtained values for the fracture force, granule strength, loading Young’s 

modulus, fracture energy and specific fracture energy as a function of mean granule size. 

Figures 11 to 13 show the graphical representation of these parameters a s a function of 

mean granule size. 

For the studied granulation run we investigated the evolution of the fracture force, 

granule strength, Young's modulus and fracture energy as a function of granule size. 

Based on the granule size distribution (Figure 10) we chose mean granule sizes between 

400 and 1800 microns. 400 microns is found as a limit to successful single granule 

compression tests as even at that value most of the grains present a distinct irregular 

granule shape with small degree of sphericity being rather abrasions from larger granules. 

Also above 1800 microns the granules are actually grape like structures of larger granules 

being most probably a result of insufficient spreading surface in the drying stage of the 

granules.  

The values of the Young’s modulus and granule strength seem to be of the same order of 

magnitude as the ones presented by Nordstrom et al [4] for wet granulation granules of 

MCC Avicel 101. They obtained values of 24.4 MPa for the granule strength and 1.82 

GPa for the Young modulus on the low porosity MCC granules (11% intragranular 

porosity determined as one minus the ratio between the effective and apparent densities). 

The differences might be explained by differences in starting material and granule 

preparation protocol (wet granulation followed by extrusion and spheronization and room 

temperature drying to name a few) translating in differences in final granule porosity. 

Similarly to the study of Nordstrom the first fracture point doesn’t correspond to a 

catastrophic failure with the granule being broken up into fragments but in the apparition 

of the first crack in the granules and only upon further increase in the applied 

compression force did the granule break up. 
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Figure 10. Granule size distribution for the end granules obtained in the Mi-Pro 

(granulation of MCC Avicel 105 with ultra-pure water) 

 

 

Sieve Mean 
Granule 
Size [µm] 

Fracture 
Force 

[N] 

Granule 
Strength 
[MPa] 

Young’s 
Modulus 

[GPa] 

Fracture 
Energy 

[mJ] 

Specific 
Fracture 
Energy 

[mJ/mm2] 

450 1.2 ± 0.4 6.2  ± 2.1   0.7 ± 0.1  0.010 ± 0.003 0.18 ± 0.04 

715 11 ± 0.9 25.0 ± 3.5 3.4 ± 0.3 0.5 ± 0.04 0.30 ± 0.02 

900 20 ± 2.0 31.4 ± 4.5 4.8 ± 0.5 0.9 ± 0.07 0.34 ± 0.02 

1125 29 ± 2.5 31.9 ± 4.6 5.1 ± 0.6 1.4 ± 0.12 0.35 ± 0.03 

1425 40 ± 3.1 32.7 ± 4.8 5.6 ± 0.6 2.3 ± 0.18 0.32 ± 0.02 

1800 59 ± 4.9 30.0 ± 4.5 5.5 ± 0.6 3.1 ± 0.22 0.34 ± 0.02 

Table 2. Single granule strength and deformation parameters for the granulation of MCC 
Avicel 105 with ultra-pure water 
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Figure 11. Mean fracture force and mean granule strength as a function of mean granule 
size for the granulation of MCC Avicel 105 with ultra-pure water 

 

 

Figure 12. Mean Young’s modulus as a function of mean granule size for the granulation 
of MCC Avicel 105 with ultra-pure water 

 

 

Figure 13. Mean fracture energy and mean specific fracture energy as a function of mean 
granule size for the granulation of MCC Avicel 105 with ultra-pure water 
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As it can be observed the fact that these measurements are all derived from the same 

basic information, that is the load – displacement curve, gives many similar evolutions of 

the different parameters. The parameters that also take into account the mean granule size 

(granule strength, Young’s modulus, specific fracture energy) present similar evolutions 

and show a strong difference between the results obtained at 450 microns compared to 

the values obtained from mean granule sizes between 715 and 1800 microns. We believe 

this difference to come from the difference in shape parameters between the granule 

classes. While the similarity between granules between 715 and 1800 microns seem to 

indicate a similar internal structure.   

Figure 14 shows the evolution of granule roundness as a function of granule size I the 

range accessible to the PharmaVision 830 Automated Microscopy System (45 to 1900 

microns with a 0.5 zoom objective) showing the smallest granules to also present the 

lowest roundness values. From 715µm onwards the roundness values present similar 

values with a peak being observed for granules with a mean granule size of about 

1125µm. This might be however related to sampling as the surface of the Pharmavision 

only allows testing a limited number of granules.  

Parameters that do not take into account mean granule size like the fracture force and the 

fracture energy present a linearly growing relationship with mean granule size. For the 

further study of dry granule strength we will only present the fracture force and the mean 

granule strength knowing however that the Young’s modulus, absolute and specific 

fracture energy can be calculated at any moment. 
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Figure 14. Roundness as a function of mean granule size for the granulation of MCC 
Avicel 105 with ultra-pure water 

 

5. Conclusion 

This first chapter described the wet granulation of the microcrystalline cellulose Avicel 

105 on the Mi-Pro high shear mixer and the means allowing us to obtain information in 

order to further characterize the process.  

Torque curves on the Mi-Pro have been found capable to ensure control of the 

granulation process without overwetting while following the granulation kinetics by 

retrieving samples, drying and sieving them allowed us to maximize the coarse fraction 

by slightly increasing the optimum liquid requirement. Comparisons between the torque 

curves obtained on the Mi-Pro and the mixer torque rheometer (MTR) show that the more 

intense mixing in the MTR (the normalized impeller torque is almost 6 times as high in 

the MTR than the Mi-Pro) makes it difficult to identify the growth zone (plateau phase on 

the Mi-Pro torque curve) while the wetting and nucleation stages and capillary peak as a 

function of added binder are common between the equipments.  

The granulation of microcrystalline cellulose has been found by SEM observation to go 

through four characteristic stages: wetting, nucleation, growth and overwetting which 

could be related to changes observed in the torque curve. After the nucleation stage mean 

granule size increases only slowly between 50 and 75% L/S ratio as the granules are not 
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deformable enough to lead to successful coalescence between granules. For values above 

80% L/S ratio mean granule size quickly grows as granules start to exhibit liquid on their 

surface. 

Granule strength has been evaluated in both wet and dry conditions. For the wet granules 

granule strength has been assimilated to the wet mass consistency that can be measured in 

the mixer torque rheometer. As granule growth only occurs late in the process the wet 

mass consistency measurements show low sensitivity to changes in the wet mass between 

20 and 83% L/S ratio as granules exhibiting liquid at the surface are covered with fine 

particles. The value of 83% corresponds to the extinction of the fines particles class and 

from here on more liquid needs to be squeezed to the surface in order for successful 

coalescence between intermediate and coarse granules to occur. This can also easily be 

observed on the Mi-Pro glass bowl walls where the fine particles covering them 

disappear showing a homogenous mass of granules while on the MTR the increased 

stickiness exhibited on granule surface increases wet mass consistency. 

Dry granule strength has been assessed by single granule compression tests allowing us 

to describe strength, deformation characteristics through the Young modulus and asses 

the energy necessary in order to fracture the granule. Parameters taking into account the 

granule size have been found to exhibit a similar evolution. The lower sized particles 

with mean granule size of 450 microns have been found to exhibit lower values than 

granules between 715 and 1800 microns This is believed to be a function of a different 

formation mechanisms: as granules between 715 and 1800 microns are more spherical 

they seem to be the product of successful coalescence between granules while the smaller 

particles showing a lower degree of sphericity seem to be a result of granule breakage 

and attrition. 
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Chapter III.2: Effect of Operating Conditions 
and Equipment Geometry 

 
 
The operating conditions and the equipment geometry can have a great impact on the 

growth and properties of granules. The Mi-Pro has made the object of studies regarding 

the influence of process parameters. Chevalier et al [1] investigated the effect of impeller 

speed, optimum liquid to solid (L/S) ratio and liquid flow rate as well as the effect of 

spheronization protocol on the wet granulation of a lactose – polyvinylpirrolidone 

mixture with water. They found that increased impeller speed increases yield and reduces 

the fraction of fines and defined an optimum L/S ratio, liquid flow rate and 

spheronization protocol. Gomez et al [2] also studied the influence of liquid flow rate on 

the granulation of lactose in the Mi-Pro and found that an increase in liquid flow rate has 

an effect on the formation of liquid bridges but not on the optimum liquid requirement. 

The Mi-Pro with a bowl of 1.9 L has been chosen as the reference scale and studies were 

conducted on the microcrystalline cellulose Avicel 105 granulated with ultra-pure water.  

The parameters chosen for investigation in this subchapter are: 

- Effect of operating conditions and equipment design. :  

1. Effect of the fill ratio, defined as  

Fill Ratio= 100* ⋅
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

V

M

bulk

i

ρ     (%)    (III-2-1) 

Where the volume of the initial dry powder is calculated by dividing the initial 

dry powder mass   Mi with the bulk density of the dry powder ρbulk, and the result 

is divided with the empty bowl volume, V*. 

 2. Effect of the impeller speed and chopper design, 

3. Comparison between the 0.9L and the 1.9L bowls of the Mi-Pro. 
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1. Effect of fill ratio 
 
1.1 Introduction 

The fill ratio has been studied by Bock et al. [3] on a Diosna high shear mixer with 1.2L 

capacity by varying the load of initial dry powder in the mixer (calculated using the dry 

powder bulk density). They studied a formulation made from equal parts of 

microcrystalline cellulose, lactose and anhydrous calcium hydrogen phosphate and 

investigated fill ratios of 10, 20, 30, 40, 50, 60 and 70%.  For a fill ratio of 80% 

granulation was not possible. They found the granule size distributions to be comparable 

between 10 and 20% and between 50 and 70% with the larger fill ratios presenting an 

increasing proportion of fine particles. Vialatte et al [4] studied the effect of increasing 

fill ratio from 25 to 42 and 59% in a system composed of alumina particles granulated 

with polyvinylic alcohol. They found that increasing fill ratio has no effect on the 

granulation mechanisms and granule growth and that for the same L/S ratio the amount of 

granulated product and granule porosity where not influenced by the fill ratio. They 

showed that increasing the fill ratio resulted in a higher mean granule size and wider 

granule size distributions. Schaefer et al [5], found that controlling the mixer load is 

crucial in controlling the movement of the mass in the bowl. They found that lower mixer 

loads give smaller mean granule sizes, a larger degree of lumps and small 

reproducibility.. Thies and Kleinebudde [6] state that for an increased mixer load an 

increase in mixing time is necessary in order to obtain pellets of a given size. 

 

1.2 Effect of fill ratio  

Three fill ratios were studied on the Mi-Pro using microcrystalline cellulose Avicel 105 

as starting material and ultra-pure water as binder: 16%, 26% and 32%. For values above 

32% slightly overwetting conditions lead to the impeller torque increasing above 110% of 

the maximum supported torque for more than three seconds leading to a halt of the 

mixing. As a result in order to protect the equipment we decided not to extend the study 

onto higher fill ratios.  
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The operating conditions associated to the study of the influence of the fill ratio are 

grouped in Table 1. The influence of the fill ratio has been studied with the chopper 

rotating at 3000 rpm, with the same specific liquid binder flow rate, the same optimum 

liquid requirement expressed as liquid to solid ratio (L/S ratio), the same mixing time and 

at three different impeller speeds: 100, 400 and 800 rpm corresponding to impeller tip 

speeds of 0.7, 2.9 and 5.8 m/s. 

 

High Shear Mixer Mi-Pro V=1.9L 

Fill Ratio= 100⋅
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

bowl

bulk

i

V

M
ρ

    (%) 

 

16% (75g), 26% (120g) and 32% (150g) 

Dry Mixing Time 2 min 

Wet Mixing Time 12 min 

Impeller Speed 100,400 and 800 rpm 

Chopper Speed 3000 rpm 

Specific Binder Flow Ratio 0.083(3) ml binder/ 1 g dry initial powder and 

minute 

Optimum Liquid Requirement 100% L/S ratio 

Table 1. Operating conditions on the Mi-Pro high shear mixer 

 

Figures 1 and 2 show the obtained torque curves at the 100 and 800 rpm settings for the 

three fill ratios as well as the reproducibility for the lowest studied fill ratio of 16%. At 

the 400 rpm setting the torque curves present a certain peculiarity that will be presented 

in more detail when discussing the effect of impeller speed (Chapter III.2.3). There is 

little difference between the 26 and 32% fill ratio settings at 800 rpm. The 32% fill ratio 

gives a slightly higher torque response at both speeds which could be explained by the 
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fact that an increase in mass could lead to an increase in the densification of the granules 

squeezing more binder to the granule surface. However the wet mass consistency 

measurements (Figure 3) are not sensitive enough to differentiate between the 26 and 

32% fill ratios both presenting similar wet mass consistencies. 

The use of the 16% fill ratio at the 800 rpm impeller speed setting presents certain 

problems from an operator’s point of view. Firstly, the reproducibility (Figure 2) of the 

torque curve at 800 rpm is low and can present certain artifacts that are not encountered 

at lower impeller speeds like the 100 rpm setting. Secondly, the low fill ratio coupled 

with strong affinity of the very cohesive MCC Avicel 105 to both walls and lid result in 

localized overwetting making results difficult to compare with the other fill ratios. The 

shorter growth zone observed on the torque curve for the 16% fill ratio at 800 rpm 

(Figure 1), the higher wet mass consistency (Figure 3, Table 2) and the higher mean 

granule sizes (Figure 6) are all proof that in this case overwetting occurs.  

 At 100 rpm the torque curves present different profiles for each fill ratio. While the 16 

andf 26% fill ratios are similar up to 30% for increased values the 26% fill ratio follows 

and evolution similar to the 32% fill ratio. The higher torque values in the beginning of 

the granulation for both 16 and 26% fill ratios could be explained by the combination of 

low fill ratio and low impeller speed not bringing the powder mass in contact with the 

chopper leading to a less than optimal binder distribution and the formation of lumps. 

The formation of lumps is however inherent to such a low impeller speed explaining the 

rather noisy evolution of the torque curves observed for all fill ratios. 
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Figure 1. Torque curves evolution for different fill ratios at 100 and 800 rpm for the 

granulation of MCC Avicel 105 with ultra-pure water  
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Figure 2. Reproducibility of the 16% fill ratio at 100 and 800rpm for the granulation of 

MCC Avicel 105 with ultra-pure water 
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Figure 3. Wet mass consistency measurements for wet granules produced at different fill 

ratios at 800 rpm for the granulation of MCC Avicel 105 with ultra-pure water 
 

 

Granule size distributions in the end of the granulation are presented in Figures 4 to 6 

while Table 2 regroups the mean granule sizes and wet mass consistency measurements. 

Figure 6 confirms that the overwetting anticipated from the shorter growth zone and the 

higher wet mass consistency at 16% fill ratio and 800 rpm also translates into higher 

mean granule sizes. From a granule size distribution point of view no significant 

differences in modality between the different fill ratios have been observed at either 100 

rpm or 400 rpm. However increasing impeller speed takes granule size distribution from 

pronounced bi-modal at 100 and 400 rpm to almost monomodal at 800 rpm for the 26 and 

32% fill ratios. The mean granule size increases with increasing fill ratio at all speeds 

with the exception of 16% fill ratio at 800 rpm. In terms of granule size distribution 

wideness we could not find any notable differences. In our case this seemed to be more a 

function of impeller speed rather than fill ratio. The wet mass consistency measurements 

present values of the same order of magnitude, again, excepting the 16% fill ratio – 800 

rpm impeller speed combination. Somewhat higher wet mass consistencies are obtained 

at 400 rpm than at 100 rpm however as granules are bigger in this case and sampling has 

 106



Chapter III.2 Effect of Operating Conditions and Equipment Geometry 
 

 
an important role in the outcome of the wet mass consistency we will consider the values 

to be of similar value. 

 

 

Impeller Speed 

[rpm] 

Fill Ratio 

[%] 

Wet Mass Consistency 

[N.m/kg] 

Mean Granule 

Size [μm] [± 10%] 

16 5.8 ± 1.2 2086 

26 6.2 ± 1.3 2254 100 

32 6.6 ± 1.5 2417 

16 8.4 ± 1.9 1714 

26 8.9 ± 1.8 1880 400 

32 7.7 ± 1.7 2047 

16 40 ± 6.3 2150 

26 8.2 ± 1.9 899 800 

32 6.4 ± 1.2 983 

Table 2. Wet mass consistency and mean granule size as a function of fill ratio and 

impeller speed rpm for the granulation of MCC Avicel 105 with ultra-pure water 
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Figure 4. Granule size distributions (histogram and cumulative) as a function of fill ratio 
at 100 rpm for the granulation of MCC Avicel 105 with ultra-pure water (end product) 
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Figure 5. Granule size distributions (histogram and cumulative) as a function of fill ratio 
at 400 rpm for the granulation of MCC Avicel 105 with ultra-pure water (end product) 
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Figure 6. Granule size distributions (histogram and cumulative) as a function of fill ratio 
at 800 rpm for the granulation of  MCC Avicel 105 with ultra-pure water (end product) 

 

Table 3 shows the obtained roundness values from the number distributions as a function 

of fill ratio and impeller speed while Figure 7 shows a comparison between roundness 

distributions by number as a function of fill ratio for an impeller speed of 400 rpm 

(detailed as histograms in Appendix III). At 100 rpm a slight decrease in roundness can 

be observed which could be related to the higher fill ratios coming in more contact with 

the chopper at low speeds. The highest roundness values are observed for the 400 rpm 

impeller speed and the 26% fill ratio. At 400 rpm the roundness is found to increase with 

 110



Chapter III.2 Effect of Operating Conditions and Equipment Geometry 
 

 
fill ratio and the lowest span values are found at this value. At 100 rpm the span values 

are influenced by the low mechanical strength of the granules in the investigated size 

range (1000-1250 μm) producing fines during the manipulation while at 800 rpm the 

phenomenon most likely to produce a similarly high span is granule breakage causing a 

higher variability in granule shape. At 800 rpm the obtained values are too similar to 

allow making a distinction in terms of influence of the fill ratio on granule roundness. 

 

Fill Ratio [%] Impeller Speed 

[rpm] 16 26 32 

 D50 Span D50 Span D50 Span 

100 0.72 0.61 0.67 0.70 0.69 0.70 

400 0.76 0.47 0.86 0.45 0.83 0.41 

800 0.73 0.58 0.72 0.54 0.73 0.6 

Table 3. Roundness values based on number distribution obtained on the PharmaVision 
830 Automated Microscopy System as a function of impeller speed and fill ratio (Span 

calculated as D90-D10/D50) for the granulation of MCC Avicel 105 with ultra-pure water 

 

 

Figure 7. Roundness distributions by number obtained for the studied fill ratios at an 
impeller speed of 400 rpm for the granulation of MCC Avicel 105 with ultra-pure water 
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Dry granule strength measurements where performed on the Instron mechanical testing 

machine as a function of both fill ratio and impeller speed. The steel probe velocity was 

of 1mm/min while the maximum recordable force was of 500N. The studied granules 

were as for the roundness measurements in the 1000-1250 microns range at 400 and 800 

rpm.  At 100 rpm these granules where to fragile to give reproducible results which is 

why the size range of 2000 to 2500 microns was preferred. As a general rule increasing 

the fill ratio from 16 to 26% gives higher mean granule strengths at all impeller speeds 

(Figure 8a) with the difference being stronger at the lower (100 rpm) and medium (400 

rpm) impeller speeds. Further increase in the fill ratio from 26 to 32% leads to weaker 

granules at 400 and 800 rpm while having no significant effect at 100 rpm. 

At 800 rpm (Figure 8b) the values in terms of mean granule strength vary between 22 and 

27.8 MPa with the 16% percent fill ratio presenting the lowest value (with a difference 

greater than the experimental uncertainty. At 400 rpm (Figure 8c) the same trend is 

observed however in this case the difference between the 16% fill ratio and the 26 and 

32% presents greater values. The same has been observed at 100 rpm (Figure 8d) with the 

26 and 32% fill ratios giving closer mean granule strength than the 16% fill ratio.  
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Figure 8.Mean granule strength as a function of fill ratio for the three studied impeller 
speeds: 100, 400 and 800 rpm for the granulation of MCC Avicel 105 with ultra-pure 

water (Strength determined on the 1000-1250 microns fraction for 400 and 800 rpm and 
2000-2500 microns for 100 rpm) 
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2. Effect of Impeller Speed and Chopper Design 
 

2.1 Introduction 

In high shear granulation the role of the impeller is to distribute the binder and promote 

agglomeration by bringing into contact the wetted powder particles while the chopper is 

supposed to break up large agglomerates in order to ensure narrow granule size 

distributions. The effect of the chopper depends largely on the equipment used, while 

some authors like Michaels et al [7] find no effect of the chopper on the granule size 

distribution others have found that using the chopper slightly decreases the mean granule 

size, Schaefer et al [5] or narrows the granule size distribution, Knight et al [8]. 

Increasing the impeller speed generally leads to a decrease in granule size and an increase 

in growth rate while promoting breakage that also leads to a decrease in granule 

sphericity. On a Mi-Pro high shear mixer with a bowl volume of 1.7L Hamdani et al [9] 

showed that for the melt granulation of a lactose and phenylephrine hydrochloride 

formulation that lowering chopper speed from 4000 rpm to 130 rpm increased the weight 

mean diameter from 1240 to 1480 microns. They also reported that increasing the 

impeller speed from 400 to 800 rpm increases mean granule size by a factor of ~6 (230 to 

1240 microns) while further increasing the impeller speed to 1000 rpm lead to 

overwetting due to excessive heat during granulation. 

 As most scale-up techniques usually imply finding the equivalence of impeller speeds 

between the scales following certain rules, reviewed by Faure et al [10], it seemed 

pertinent to investigate the effect of impeller speed on the Mi-Pro high shear mixer. 

In situ monitoring and identification of granule growth kinetics are important aspects of 

the wet granulation process and transition between growth regimes can be influenced by 

changes in operating conditions as shown by Saleh et al [11] and Benali et al.[12]. 

Describing high shear mixer granulation is considered especially difficult as 

agglomeration (growth); breakage and attrition are often simultaneous. Breakage and 

attrition depend on the mechanical strength of the wet agglomerate and the impact and 

shear forces developed by the main means of agitation present in the mixer. It is 

reasonable to assume that both chopper and impeller impact the consolidation of the 
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granules while the high impeller tip speed of the chopper also ensures breakage of lumps. 

The granulation of fine microcrystalline cellulose powders has been shown to go through 

a typical four regime granulation: wetting, nucleation, growth and overwetting by Benali 

et al [12]. Bouwman et al [13] have shown that granules in the growth stage present a 

high deformability upon impact and shear with pieces of the main granules breaking of 

and coalescing with other granules followed by a new rearrangement to a sphere.   

The aim of this chapter is to show the influence of impeller speed and chopper presence 

on the process and the ability of torque curves to control it. 

 

2.2 Effect of Impeller Speed and Chopper Design 

The main scale of operation was the Mi-Pro with a 1.9L bowl while the powder couple 

remains unchanged: microcrystalline cellulose MCC Avicel 105 as substrate and 

ultrapure water as a binder. The operating conditions are the same with the ones 

presented for the typical example except for the impeller speed that has been varied and 

the chopper that has been operated or not (as mentioned). The influence of chopper on 

mean granule size is discussed in Figure 9. Between 100 and 400 rpm lumps are found to 

increase with impeller speed when operating without a chopper (Figure 9a) leading to an 

inhomogenous product comprised of small fine undergranulated product and a large 

percentage of lumps which explains the high difference in mean granule size up to 600 

rpm between operating with and without chopper (Figure 9b). The high value for mean 

granule size at 100 rpm can be explained by our choice in defining lumps only for 

granules exceeding 5mm as a mean granule size of 3.5mm is still high and indicative of 

less then perfect granulating conditions. From 600 rpm onwards the impeller speed 

becomes sufficiently high so as to break the lumps and reduce the percentage to a 

negligible value at 800 rpm and beyond. It should also be noted that the high impeller 

speed also distributes the liquid binder better. Because of the drop by drop binder 

addition method using the chopper and directing the binder flow towards the chopper is 

actually recommended to help ensure a better liquid distribution. The same behavior has 

been observed on the 0.9L Mi-Pro granulation bowl Figure 10 showing the representative 
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samples taken from the granulator at different speeds when granulating without a 

chopper. 

 
Figure 9. Evolution of the lumps fraction (granules with diameter above 5mm) as a 

function of impeller speed (a) and mean granule size evolution as a function of impeller 
speed (b) in the Mi-Pro HSM V=1.9 L 

 
Figure 10. Evolution of final granulated product in the Mi-Pro HSM V=0.9 L without a 

chopper for three different speeds: 300, 650 and 950 rpm 

 

Setting the chopper at a high rotating speed and regarding the influence of impeller speed 

at 100, 400 and 800 rpm on the growth kinetics we can observe that increasing impeller 

speed accelerates the consumption of fine particles and the formation of intermediates 

and coarse granules (Figure 11). While for the lower impeller speeds (<800rpm) a 

decrease in intermediate particles percentage is observed near the end of the granulation 

runs for 800 rpm the intermediate particles show the highest percentage and are still 

present at the end of the granulation. This can be explained by the fact that at 800 rpm 

breakage occurs and with a mean granule size of 900 microns the intermediate fraction 

200-800µm does not contain low density, fragile granules, but rather high density broken 

down granules.  
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Figure 11. Evolution of the characteristic size fractions and mean granule size with 

chopper rotating at 3000 rpm for three impeller speeds in the Mi-Pro HSM V=1.9 L for 
the granulation of MCC Avicel 105 with ultra-pure water 

 

When looking at what happens with or without chopper at 800 rpm, where the chopper 

wouldn't be necessary in regards to mean final granule size, we see a significant 

difference in terms of granule growth, with the chopper delaying the formation of coarse 

granules (Figure 12) and having a strong influence on the intermediate granule class. 

When no chopper is present the intermediate granule class increases uninhibited at lower 

liquid to solid ratios after which it remains constant with a slight decrease after adding a 

binder mass corresponding to 58% liquid to solid ratio. In contrast when the chopper is 

operated the intermediate fraction increases strongly in the growth region between 50 and 

83-85% afterwards it seems that the chopper and less the impeller is responsible for the 

decrease observed in the descending evolution of intermediate particles above 85% L/S 

ratio and the agglomeration of these intermediate granules to coarse granules. Figure 12d 

shows the evolution of mean granule size showing best the influence of the chopper in 

delaying granule growth.  
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Figure 12 . Evolution of the characteristic size fractions and mean granule size with and 
without chopper at 800 rpm in the Mi-Pro HSM V=1.9 L for the granulation of MCC 

Avicel 105 with ultra-pure water 

 

The effect of chopper presence on torque curves with the chopper turning at 3000 rpm 

shows only small differences between operating with or without chopper at medium and 

high impeller speeds (Figure 13) on the torque curves. On the 400 rpm curve after the 

wetting stage (up to10% L/S ratio) a sharp drop in torque can be observed at 30% L/S 

ratio, it is characteristic for the granulation of MCC Avicel 105 at moderate speeds in the 

Mi-Pro and is independent of chopper operation: when suficient liquid is added the 

powder sticks to the side walls exiting the impeller action causing a sharp drop in 

impeller torque. This seems to be related to the mechanical dispersion of the binder in the 

powder bed as well as the small particle size and high compressibility of the MCC Avicel 

105. Figure 14 shows a torque comparison between MCC Avicel 105 (D50=20μm) and 

MCC Avicel 101 (D50=60 μm) and the reproducibilty for MCCAvicel 101 while Table 4 

recalls the main differences between MCC Avicel 105 and MCC Avicel 101.    
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Figure 13. Torque curve comparison in the Mi-Pro V=1.9 L with and without chopper 

for three different impeller speeds: 100, 400 and 800 rpm and between speeds with 
chopper active for the granulation of MCC Avicel 105 with ultra-pure water 
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Figure 14. Comparison between torque curves at 400 rpm with chopper active for MCC 

Avicel 101 and 105 (a) and reproducibility for MCC Avicel 101 (b) 

 

Powder 
properties 

D50 [µm] 
 

Span 
(D90-D10)/ D50 

Bulk 
Density 
[kg/m3] 

True 
Density 
[kg/m3] 

Cristallinity 
Index [%] 

MCC Avicel 
105 

20 1.9 244 1514 66.3 

MCC Avicel 
101 

60 2.1 291 1540 66.4 

Table 4. Physical characteristics of the MCC powders Avicel 105 and 101 

 

To better illustrate the difference in behavior between these two powders we performed a 

granulation run using water coloured with a red tracer. Figure 15 show the contents of the 

bowl for MCC Avicel 105 and Avicel 101. Figure 16 shows the bowl after the product 

has been emptied from the bowl. As it can be observed in Figure 15a there is a strong 

interaction between the MCC Avicel 105 powder and the glass walls of the Mi-Pro  while 

the same cannot be observed for the MCC Avicel 101 where the product stays inside the 

bowl without sticking to the walls. When emptying the bowls we can observe that for 

both powders a certain amount of powder is being compressed to the glass wall in the 

space between impeller and wall. The red stains formed where the coloured water has 

been added show a much greater local overwetting for MCC Avicel 105 than for Avicel 

101.  
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As noted by Hapgood et al [14] penetration times for different grades of excipients can 

vary greatly with mean particle size (Figure 17a) for different grades of lactose. The 

mean surface diameter varied between 26 and 69 microns and mean weight diameters 

between 67 and 200 microns (roughly 3 times as is the case for the difference between 

MCC Avicel 105 and Avicel 101). This phenomenon could account for the different 

behavior in the nucleation phase.  

Hapgood et al [15] proposed a nucleation regime map (Figure 17b) describing a 

dimensionless penetration time parameter as a function of a dimensionless spray flux.  
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Where tp is the penetration time and tc the circulation time of the powder in the nucleation 

zone, V' is the volumetric spray rate, A' the area flux of powder traversing the spray zone 

and dd the droplet diameter.  

While the penetration time is largely a function of formulation properties the 

adimmensionnal spray flux ψa depends on the operating conditions. The regime map  

(Figure 17b) describes three regimes of nucleation:  

- the drop controlled regime where each individual drop wets completely the powder bed 

to form a single nuclei granule and nuclei size distribution is controlled by the drop size 

distribution, 

- shear controlled regime (or mechanical dispersion regime) where liquid pooling or 

caking occurs where the binder meets the bed and binder distribution occurs only by 

breakage of lumps due to shear forces inside the powder bed, 

- and an intermediate regime between droplet and shear controlled where some 

agglomeration does occur near the spray zone without complete caking or pooling.  

The presumable difference in penetration time difference for our two MCC grades could 

explain taking the powder from the drop controlled regime (or intermediate) to the 
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mechanical dispersion controlled regime where good binder dispersion requires good 

mechanical mixing. Given the binder “footprint” in Figure 16b it is reasonable to assume 

that granulation for MCC Avicel 101 at 400 rpm takes place in the intermediate regime 

while granulation for MCC Avicel 105 occurs in the shear controlled regime. In our case 

the same binder flow rate is imposed through the same binder addition method (same 

average drop size) which leaves the velocity of the powder surface as the only free 

variable in estimating ψa. We couldn’t give an estimation for this velocity as the Mi-Pro 

lacks instrumentation with a high speed video camera and image analysis software or 

positron emission particle tracking technology, the two methods currently employed in 

order to measure powder surface velocity. However, as shown by Hapgood et al [15] for 

water pumped on a lactose bed the values for ψa would be close to a value of unity (in a 

25L Fielder high shear mixer) which would make it borderline between the intermediate 

and the shear controlled regime. 

 

 
Figure 15. View of the full Mi-Pro 1.9L at 400 rpm with chopper active at 41% L/S ratio 

for MCC Avicel 105 (a) and Avicel 101 (b) 
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Figure 16. View of the empty  Mi-Pro 1.9L at 400 rpm with chopper active at 41% L/S 

ratio for MCC Avicel 105 (a) and MCC Avicel 101 (b) 
 
 

 
Figure 17. Drop penetration time as a a function of lactose surface mean particle size 
from Hapgood et al [14] (a) and nucleation regime map from Hapggod et al [15] (b) 

 

Where torque curves are continuos (100 and 800 rpm) we observe an evolution similar to 

that proposed by Leuenberger [16]. For the low impeller speed of 100 rpm we observed 

that the chopper turning at high speed can also lead to agglomeration. The granulation at 
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100 rpm with chopper active is characterised by an initial wetting stage up to 10% L/S 

ratio followed by a first stage of nucleation forming few but big low resistance 

agglomerates mainly by layering. Once granules are large enough they come in contact 

with the chopper and a secondary nucleation stage takes place with denser nuclei 

originated from the broken up larger agglomerates which ends at about 55% L/S ratio. 

For the granulation run without chopper at 100 rpm the second nucleation stage and 

redistribution of powder and binder doesn't take place and the end result corresponds to 

granules presenting a much larger mean granule size. At 400 and 800 rpm the chopper 

influence is not visible in the recorded torque curve showing the same inflexion points 

independent of chopper use.  

An interesting feature to study has been the chopper design. The smaller and shorter 

chopper that equipped the 0.9 L bowl has been mounted on the 1.9 L bowl at an impeller 

speed of 650 rpm, considered sufficient so as to bring the powder mass in contact with 

both choppers (Figure 18).  While in both cases no lumps have been observed the 

difference in mean granule size is quite stark: 1200 µm with the smaller chopper and 950 

µm (20% difference) with the regular one showing the size reducing effect of the chopper 

for intermediate speeds. 
 

 
Figure 18. Choppers from the Mi-Pro HSM, 0.9 L and 1.9 L bowls and granules obtained 
in the 1.9 L bowl using the smaller chopper (left) and the regular chopper (right) for the 

granulation of MCC Avicel 105 with ultra-pure water 
 

 

Using the granules in the 1000-1250 microns range the roundness of the obtained 

granules has been studied. Table 5 and Figure 19 show the evolution of roundness with 
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increasing impeller speed. Up to 400 rpm the roundness increases while for values above 

400 rpm granules begin to decrease in roundness.  

Roundness 
Impeller Speed [rpm] 

D50 Span=(D90-D10)/D50 

100 0.67 0.7 

260 0.77 0.43 

400 0.86 0.45 

550 0.79 0.47 

800 0.72 0.54 

Table 5. Roundness as a function of impeller speed 

 

 
Figure 19. Roundness distributions by number as a function of impeller speed for the 

granulation of MCC Avicel 105 with ultra-pure water 

 
 
Figure 20 shows the evolution of interparticular porosity with increasing impeller speed, 

as it is to expected the reduction in mean granule size also leads to a reduction in the 

volume occupied by the granules. 

Dry granule strength measurements (Figure 21a) show that increasing the impeller speed 

leads to an increase in granule strength. Above 800 rpm however a slight decrease in 
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granule strength was also observed which could be related to granule breakage becoming 

dominant to such an extent that granule growth and consolidation are affected leading to 

less strong granules.  

It should also be mentioned that the granules obtained at 100 rpm in the studied granule 

size range, 1000-1250 microns show a very low reproducibility (one in ten granules give 

an exploitable load-displacement curve). In order to obtain a better reproducibility 

granules in the size range 2000-2500 microns have also been studied for 100, 260 and 

400 rpm. The results (Figure 21b) show the same trends with 100 rpm and 260 rpm 

showing similar dry granule strengths and a non-negligible increase in granule strength at 

400 rpm.   

 

 
Figure 20.Evolution of intergranular porosity as a function of impeller speed for the 

granulation of MCC Avicel 105 with ultra-pure water 
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Figure 21.Evolution of dry granule strength as a function of impeller speed (a) and 

comparison between granule strength evolutions as a function of studied granule size (b) 
for the granulation of MCC Avicel 105 with ultra-pure water 

 
 
 
3.  Effect of Equipment Geometry 
 

As we have shown when discussing chopper influence mean granule size depends largely 

on impeller speed, with sizes decreasing upon increasing impeller speed. Comparing final 

granule size between two scales of the Mi-Pro: 0.9 and 1.9L presenting similar geometric 

proportions in terms of bowl and impeller shape and expressing the impeller speed as 

impeller tip speed we found a greater granule size for speeds inferior to 1.5 m/s on the 

small scale (0.9L) as the liquid distribution is less than optimal and a high degree of 
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lumps are formed, while for speeds between 1.5 and 4.03 m/s granules are consistently 

larger on the larger scale (1.9L). The evolution of slowly decreasing mean granule sizes 

is common to both scales, for values above 4.03 m/s breakage occurs and for values of 

4.7 m/s and above granule sizes become comparable (Figure 22). 

Granule breakage is a result of impact pressure overcoming the strength of the wet 

granules. Figure 23 shows the evolution of impact pressure for the two setups calculated 

using the formula proposed by Vonk [17] in equation 5: 

2

3
2 νρσ ⋅⋅≈impact         (III-2-4) 

Where ρ is the granule density and ν the impact speed approximated as the impeller tip 

speed. 

For both scales breakage is present from an impact pressure of approximately 6 kPa 

onwards corresponding to values above the theoretical static tensile strength calculated 

using the equation proposed by Rumpf [18]: 
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Where C is a material constant (C=6 for uniform spheres), ε is the granule porosity, di the 

initial particle diameter, θ is the liquid–solid contact angle, γL the liquid surface tension 

and S the liquid pore saturation. 

In order to investigate differences between scales we chose to look in more detail at the 

growth mechanisms at nearly identical impeller tip speeds by analyzing the evolution of 

the three characteristic fractions (Figure 24). We chose the speed of 400 rpm at the 1.9 L 

scale and 460 rpm at the 0.9 L scale corresponding to impeller tip speeds of 2.93 and 2.89 

m/s respectively. Fill ratio, binder flow per initial mass of dry powder, chopper speed, 

homogenization protocol and granulation time have been kept constant between scales. 

The wetting stage is similar occurring up until an S/L ratio of 30% is reached. Afterwards 

nucleation and growth start for the small scale, with coarse granules beginning to show at 

30% L/S ratio, while for the larger scale coarse granules begin to form only from 50% 

L/S ratio onwards. This behavior can be explained by the more confined volume of the 
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0.9 L bowl causing an increase in contacts between granules which leads to an 

acceleration of growth mechanisms as well as the more inclined chopper that can interact 

more with the moving powder bed assuring a more intense mixing. 

In terms of granulation mechanisms similar behavior to the one observed in the Mi-Pro 

have been observed in a 6L Diosna high shear mixer as described by Oulahna [19] and in 

the 10 L Zanchetta Roto as described by Benali [12]. 

 

 
Figure 22. Evolution of mean granule size as function of impeller tip speed on two scales 

of the Mi-Pro HSM: 0.9L and 1.9L for the granulation of MCC Avicel 105 with ultra-
pure water 

 

 
Figure 23. Evolution of Impact pressure and Rumpf's static tensile strength as a function 

of impeller tip speed for the granulation of MCC Avicel 105 with ultra-pure water 
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Figure 24. Evolution of the characteristic size fractions for the same impeller tip speed in 

the Mi-Pro HSM V=1.9 L and V=0.9 L 
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4. Conclusion 

The effect of the fill ratio and the main means of agitation in a high shear mixer have 

been investigated in this study. Fill ratio has been found to increase mean granule size 

across all studied impeller speeds. While fill ratio has not been found to have a dramatic 

influence on granulation mechanisms two situations should be avoided:  

- at low impeller speeds lower fill ratios will change the nucleation behavior of the 

powder as the particles might not be influenced by the chopper as a means of 

breaking up the early lumps that form at low impeller speeds, 

- at high impeller speeds where the lower value of the fill ratio can lead to overwetting 

because of interactions between powder and wall/lid.   

Fill ratio has been found to impact roundness of the obtained granules however this is 

more evident at low to medium impeller speeds, while at higher impeller speeds the 

roundness of the granules seemed independent of fill ratio. Mean dry granule strength has 

been shown to increase with fill ratio from 16 to 26% at all studied speeds with the 

phenomenon being more evident at lower to medium impeller speeds. A further increase 

of the fill ratio from 26 to 32% leads to lower dry granule strengths at lower to medium 

impeller speeds while at high impeller speeds no effect is observed. 

We found that torque curves can allow a good control over the granulation process 

especially at high impeller speeds. At intermediate impeller speeds torque curves show a 

low reproducibility especially because of the strong cohesive nature of the employed 

grade of microcrystalline cellulose. We found that it is important to study the effect of 

chopper presence at more than just one speed as by increasing impeller speed lumps 

percentage will increase for low to medium impeller speeds and decrease when impeller 

speed alone can break up the lumps for high impeller speeds. As a general rule the 

chopper allows for better binder distribution in the Mi-Pro and is found to be necessary 

for successful granulation at low to moderate impeller speeds. For high impeller speeds in 

excess of 4.4 m/s with or without chopper similar granule sizes and growth mechanisms 

are observed. 
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Granule roundness was found to increase with impeller speed up to a certain speed after 

which granules roundness has been found to decrease with increasing impeller speed 

most probably because of increased breakage of the granules. Dry granule strength has 

been found to increase with increasing impeller speed presenting only a slight decrease at 

the highest impeller speed studied. 

 The effect of equipment geometry between the 0.9 and the 1.9 L Mi-pro high shear 

mixers has shown that at the lower scale accelerate granule growth takes place while 

keeping a constant impeller tip speed can give good agreement in terms of size between 

the scales. 
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   Chapter III.3 Effect of Formulation : Effect of     
   Binder Nature and Properties 
 

In this subchapter we have studied the influence of various aqueous polymer solutions on 

the wet granulation of microcrystalline cellulose MCC Avicel 105. We have investigated 

the influence of the binder properties (viscosity, work of adhesion) on the rheology, 

granulation kinetics, wet mass consistency and dry granule strength. In addition the 

influence of mixer design has also been studied for a low viscosity and a high viscosity 

system. 

 
1. Introduction 
 

Wet high shear granulation implies the addition of a binder. This can be achieved either 

by adding a liquid binder characterized by a certain viscosity, surface tension and contact 

angle or by adding a low viscosity liquid like water onto a powder mix comprised of the 

powder to granulate and a solid binder that dissolves in the low viscosity liquid changing 

its properties. Also the binder may be added as a dry powder in the powder mix and 

liquefied by increasing temperature up to its melting point. Adding the binder as a dry 

powder allows the granulation with high viscosity binders without using dedicated pumps 

or clogging the nozzles and for some high viscosities it might even be the only solution. 

We chose to work in the case of the first method where aqueous binder solutions are 

prepared and characterized before the granulation process. This limited the maximum 

viscosity to be studied to about 120 mPa.s as this was the upper limit for pump used by 

the liquid addition system used in this study. 

The viscosity of the binder is important in understanding the granulation mechanisms 

involved and the strength of the resulting granules. Keningley et al [1] found a minimum 

binder viscosity associated with granulating non-porous calcium carbonate particles with 

silicone fluids. They found that in order to successfully form granules a minimum 
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viscosity of 10mPa.s was necessary for mean particle sizes of 8 microns, of 100 mPa.s for 

particles with a mean size of 50 to 80 microns and of 1Pa.s for particles presenting a 

mean particle size of 230 microns. Several authors have shown (Johansen and Schaefer 

[2], Mills et al [3]) that an increase in viscosity has a benefic effect on granulation up to a 

certain critical value above which the opposite effect is observed.  

The influence of viscosity on granulation mechanisms has also been discussed by Mills et 

al [3]. The granulation: at low viscosities is believed to be controlled by layering growth 

mechanisms. At higher viscosities coalescence was the predominant mechanism based on 

the absence of layered material, a smaller sphericity and a slow growth consistent with 

growth by coalescence.  

The influence of surface tension has been investigated by Capes and Danckwerts [4]. 

They found that a minimal surface tension was necessary in order to favor agglomeration. 

Iveson et al [5] found that:  

- decreasing binder surface tension can lead to a decrease in the dynamic yield stress in 

the agglomerate  

- but that for higher viscosities binder viscosity dominated the wet granule dynamic 

yield stress.  

Ritala et al [6] found that power consumption of the granulator increases with increasing 

binder surface tension. 

Ennis et al [7] studied the coupled effect of viscosity and surface tension. They found that 

the granulation mechanisms depend essentially on the competition between the capillary 

and viscous forces. They defined a viscous capillary number relating these forces: 

L
vis

UCa
γ
μ

=          (III-3-1) 

 Where U is the speed of the particles, μ is the binder viscosity and γL is the liquid surface 

tension. 

They found that:  
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- If Cavis<10-3 the energy dissipation due to the viscosity can be neglected compared to 

the capillary forces and that adhesion is the product of interfacial forces 

- If Cavis>1 the viscous force is dominant over the static forces with the viscous force 

expressed as. 

Like Ennis, Benali et al. [8] investigated the wet granulation of microcrystalline cellulose 

by defining a modified capillary number as: 

)cos1(
*

θγ
μ
+

=
L

UCa         (III-3-2) 

Where the liquid surface tension is replaced by the work of adhesion. They found that for 

values of the modified capillary number above a value 1.62 the viscous forces 

predominate and control granule growth while for values below unity the interfacial 

forces are dominant since increasing the work of adhesion enhances the growth kinetics. 

They also found that granule friability increases with decreasing viscosity for values of 

the modified capillary number above unity. We chose to use this definition for our study. 

The aim of this study is to better understand the relationship between the physico-

chemical properties of the powder binder couple and their effects on wet mass rheology, 

granulation kinetics, wet mass consistency and dry granule strength. 

 

2. Effect of Binder Nature and Properties 

2.1 Rheological Properties of the Powder-Binder Couple 

Figure 1 and Table 1 show the obtained torque curves on the MTR by the method of 

multiple liquid additions and the values corresponding to the peak of these curves 

respectively. As discussed in our previously (Chapter III-1) the peak torque on the MTR 

for the case of microcrystalline cellulose indicates the capillary state which in the Mi-Pro 

HSM corresponds to the granules uniting into a single paste like mass showing a 

maximum torque for the same L/S ratios. However when used comparatively to asses 

binder suitability we can observe similar behavior and cohesion for water and PVP 3% 

solution. PVP 13% develops a slightly higher cohesion than both water and PVP 3% 
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while using both PVP 3% and PVP 13% as binders lowers the L/S ratio necessary for 

achieving the capillary state. The HPMC 0.5% and 1% binder solutions are showing 

higher cohesions than those obtained with water while an abrupt increase in torque is 

observed for the more viscous binder solution of HPMC 3% indicating a greater risk in 

over wetting the powder bed. From a point of maximum developed cohesion HPMC 3% 

stands out from the rest of the polymer binders used.   

 

 
 
 
 

 
 

Figure 1. Mean torque curves on the MTR by the multiple addition method for the studied 

binder solutions using MCC Avicel 105 as powder 
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Binder type 

 

γ 
(mN/m) 

μ 
(mPa·s  

at 25°C) 

Peak Torque 
[N.m/kg] 

L/S Ratio 
corresponding to 
the Peak Torque 

[%] 
Water 72.2 1.0 84.3  ± 4.3 150 

PVP 3% 63.6 1.3 83.6  ± 4.8 128.5 
PVP 13% 53.8 3.1 100.1 ± 5.1 128.5 

HPMC 0.5% 47.6 3.1 109.3 ± 5.2 150 
HPMC 1% 47.1 8.1 126.5 ± 5.3 128.5 
HPMC 3% 47.3 117 192.9 ± 6.2 107 

Table 1. Peak torque and corresponding L/S ratio for the studied aqueous solutions 
mixed by multiple addition method with MCC Avicel 105 on the MTR (as reminder from 
Chapter II  for the differences between the binder solutions, the surface free energy and 

viscosity are also given)  

 

2.2 Granulation Kinetics for the Studied Binders 

Torque curves recorded on the Mi-Pro high shear mixer (Figure 2) have shown that 

different binder types present different liquid requirements. Table 2 regroups the optimal 

binder requirement and the L/S ratios for the transitions in the torque curve. The initial 

wetting and nucleation phases are similar for all binders the extent of the growth varies. 

For water a quantity of liquid equivalent to approximately 100% L/S ratio is necessary 

while even the slightest addition of a polymer (PVP 3%) lowers the optimum L/S ratio 

(Figure 2a). Low viscosity polymeric binders like PVP3% and PVP 13%, HPMC 0.5% 

and HPMC 1% show similar torque curves with the plateau phase ending at about 75 to 

83% L/S ratios, lower than the 83-91% L/S ratio observed when granulating with water. 

It was also observed that both water and the PVP solutions give shorter wetting stages 

(20-22% L/S ratio) than the HPMC solutions (27% L/S ratio). For high viscosity binders 

like HPMC 3% we have observed even shorter growth zones with values around 75-78% 

L/S ratio (Figure 2b). The optimum liquid requirement corresponds largely with the end 

of the plateau. For water more water can be added as to maximize the yield in coarse 

granules without endangering overwetting. For the aqueous polymer solutions the end of 

the plateau is the maximum safe value for the L/S ratio. The polymer film on the granule 

surface favors coalescence and overwetting can easily occur. When granulating with 
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HPMC 3% granulation has to be closely watched because the passage from granules to 

paste occurs more rapidly for the more viscous binders and overwetting is easily obtained 

(Figure 3).  
 

 
Binder type 

 

Optimum   
L/S Ratio 

[%] 

L/S ratio 
Wetting Stage 

[%] 

L/S ratio  
Nucleation 

End[%] 

L/S ratio Plateau 
region [%] 

Water 100 0-22 22-45 45→(83 to 91) 
PVP 3% 83 0-22 22-45 45→(75 to 83) 
PVP 13% 83 0-20 22-45 45→(75 to 83) 

HPMC 0.5% 83 0-27 27-45 45→(75 to 83) 
HPMC 1% 83 0-27 27-45 45→(75 to 83) 
HPMC 3% 77 0-34 34-50 50→(75 to 77) 

 
Table 2. Wet granulation characteristic results for the different binders employed 

 

 
 

 
 

Figure 2. Representative torque curves for the studied binder solutions on the Mi-pro 
1.9L HSM 

 
 

 142



Chapter III.3 Effect of Binder Nature and Properties 
 

 

 
 

Figure 3. Final granules obtained in the Mi-Pro 1.L HSM for different L/S ratios of 
HPMC 3%  

 

From the granule growth kinetics point of view we have observed that: 

- for low viscosity binders like PVP 3%, PVP 13% and HPMC 0.5% for the same L/S 

ratio the interfacial forces are dominant (Figures 4a and 4c). The fine fraction 

decreasing more rapidly and mean granule size increasing with increasing work of 

adhesion in the order PVP 3%>PVP 13%> HPMC 0.5% as predicted from the 

wettability measurements, 

- for different concentrations of HPMC increasing viscosity accelerates growth in the 

order HPMC 3%>HPMC 1%> HPMC 0.5% (Figures 4b and 4d), 

- while the torque curve show little differences in the transitions between the wetting 

and nucleation stages the evolution of the fines particles class (Figures 4a and 4b) are 

more indicative for differences between the different aqueous solution binders, 

- the evolution of the mean granule size (Figures 4c and 4d) does not allow us to 

interpret difference between the different binders up to 50% L/S ratio for the low 

viscosity binders and up to 25% for the higher viscosity binders.  

The accelerated growth for more viscous binders, anticipated from the torque curves 

which indicated lower L/S ratios in order to achieve optimum liquid requirement, can be 

explained by the longer penetration time (as defined by Denesuk et al [9]) of the more 

viscous binders in the granules that form a film on the surface leading to successful 

coalescence between granules. This observation is further confirmed by the higher wet 

mass consistencies recorded.  
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Figure 4. Evolution of fine particles(a,b) and mean granule size(c,d)  for the wet 

granulation runs of MCC Avicel 105 with different binder solutions 

 

We applied the same approximation of the granule growth kinetics as the one proposed 

by Benali et al [8] by assuming that granule growth can be described as a first order 

consecutive chemical reaction: A→B→C (Figure 5). This allows defining an overall 

growth kinetic constant K by replacing the concentration of A by the percentage of the 

fine particles, and the time by the liquid to solid ratio in the chemical kinetic law: 
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⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

fines

fines

x
x

SdL
dK

0

ln
/

       (III-3-3) 

Where Xfines
0- initial ratio of fine particles and Xfines  -the ratio of fine particles at a given 

L/S ratio. 

Our results presented in Figure 6a confirm the observations of Benali et al [8] in that 

there seems to be a direct and linear correlation between growth and work of adhesion for 

the low viscosity binders (HPMC0.5%, PVP 3%, PVP 13%, water). A similar connection 

can be made drawn between the kinetic constant K and the capillary number (Figure 6b) 

using the HPMC aqueous binder solutions (HPMC 0.5%, HPMC 1%, HPMC 3%) 

however more points are necessary in order to establish the linearity of the dependence.  

 

Figure 5. First order consecutive reaction kinetics 
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Figure 6. Kinetic constant vs work of adhesion for Ca*<0.8(a) and kinetic constant vs 

Ca* for the HPMC aqueous binder solutions used for the granulation of MCC Avicel 105 
on the Mi-Pro 1.9L HSM 

 

 

2.3 Granule Strength 

Table 3 shows the results in terms of mean granule size, wet mass consistency and dry 

granule strength. Two situations can be identified:  

- for the polymeric solutions with Ca*<0.8 a reduction of Wa leads to a reduction in 

mean granule size as well as a slight reduction of granule strength while the optimum 

L/S ratio remains constant  

- for polymeric solutions with Ca* > 0.8 we observe slightly larger mean granule sizes, 

lower granule strengths and an increase in wet mass consistency.  

These results seem to be in line with the results obtained by Benali et al [8] with the 

decrease in the boundary condition (0.8 vs. 1) most probably affected by the lower 

viscosity necessary to agglomerate finer particles (20 microns mean granule size for 

MCC Avicel 105 versus 60 microns mean particle size for MCC Avicel 101) as also 

shown by Keningley et al [1].  

Granulation with pure water is considered a special case as it demands much more liquid 

to granulate and interpretations on granule growth kinetics or final granule properties are 
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hard to correlate with just differences in physico-chemical properties between binder 

solutions. 

 

 
Binder type 

 

Wa 
[mN/m] Ca* Mean Diameter 

[µm] [±10%] 

Dry Granule 
Strength 
[MPa] 

Wet Mass 
Consistency 

[N.m/kg] 
Water 98.1 0.058 899 37.0  ±   4.7 8.2 ± 1.6 

PVP 3% 92.8 0.082 936 29.2  ±  4.3 2.6 ± 0.6 
PVP 13% 77.5 0.235 877 27.4  ±  3.1 3.7 ± 0.8 

HPMC 0.5% 58.9 0.307 857 26.6  ±  4.8 3.6 ± 0.9 
HPMC 1% 56.1 0.842 1006 13.7  ±  2.7 5.2 ± 1.3 
HPMC 3% 53.7 12.76 1039 13.0  ±  2.4 27.6 ± 3.6 

 
Table  3. Dry granule strength and wet mass consistency as a function of binder used for 

the granulation of MCC Avicel 105 on the Mi-Pro 1.9L HSM 
 
 

Wet samples taken at the end of each granulation run of the Mi-Pro for the different 

aqueous solution binders at the optimum L/S ratios have been mixed in the MTR in order 

to determine wet mass consistency. This approach is based on the presumption that the 

intense mixing in the MTR can transform the granules to a homogenous mass. Figure 7 

shows some typical wet mass consistency results from which the mean value has been 

calculated. For aqueous solution binders with a viscosity lower than 3.1 mPa.s the wet 

mass consistency depends on the added binder mass with the following evolution water > 

PVP 3% > PVP 13% (Figure 7a).  At the same L/S ratio like water however both PVP 

solutions show higher wet mass consistencies than water (Figure 7b). For the HPMC 

solutions we can observe that only a high increase in viscosity as for HPMC 3% gives a 

much larger wet mass consistency compared to both HPMC 1% and HPMC 0.5%. 

(Figure 7c).  

When regrouping the evolution of wet mass consistency as a function of the modified 

capillary number (Figure 8a) we can observe the following regions: for Ca*<0.8 we have 

lower viscosities which are followed by a weak change in wet mass consistency between 

0.8 an 3.8 and by a strong increase for high values of Ca*.  
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The mean dry granule strength was evaluated for granules with diameters between 1 and 

1.25 mm considered as representative for our granulation runs in respect to the final mean 

granule sizes and granule size distributions. The dry granule strength measurements show 

that granule strength increases with increasing work of adhesion (Figure 8b) for low 

viscosity binders. It also shows a sharp drop in dry granule strength for the more viscous 

binders compared to the low viscosity binders.  
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Figure 7. Wet mass consistency evolutions for the for PVP aqueous solutions and water 
at optimum binder requirement (a), at the same L/S Ratio =100% (b) and for the 

evolution of the HPMC aqueous binder solutions (c) 
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Figure 8. Evolution of wet mass consistency vs Ca* (a) and dry granule strength vs work 
 of adhesion (b) 

 

2.4 Effect of Mixer Design 

 The results obtained on the 1.9L  Mi-Pro were up scaled to a Diosna 6L high shear mixer 

in order to verify if the results previously described preserve their validity. We chose the 

two binders solution with significantly different properties from the ones tested: water 

with low viscosity and high binder surface tension and HPMC 3% with a high binder 

viscosity and a lower binder surface tension. Two scale-up criteria were investigated: 

- constant impeller tip speed,   Dπ
60
Nω ⋅⋅=     (III-3-4) 

- constant Froude number,  
g

DNFr
2 ⋅

=     (III-3-5) 

Where N is the impeller speed, D the impeller diameter and g the gravitational 

acceleration constant.  

Applying these rules gave two corresponding impeller speeds on the Diosna:  

- 460 rpm for constant impeller tip speed, 

- 605 rpm for constant Froude number.  
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The same fill ratios, granulation time, optimum L/S ratios have been kept while using the 

same manually controlled drop by drop pump on both high shear mixers. The chopper on 

the Diosna has been operated at 500 rpm while the chopper on the Mi-Pro was turning at 

3000 rpm. Figure 9 shows the obtained granule size distributions. 
 

 

 

Figure 9. Granule size distributions on the studied high shear mixers: using water (a) 
and using HPMC 3% (b) for the granulation of MCC Avicel 105 

 

Mean granule size analysis (Figure 9a and b) shows that both scale up criteria yield lower 

mean granule sizes on the Diosna. The constant impeller tip speed yields a closer result in 
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terms of granule sizes, it shears and impacts less, causing breakage to a lesser extent than 

when keeping the Froude number constant. 

Dry granule strength (Table 4) shows again greater values for water as a binder than 

HPMC 3%. While dry granule strength has been determined for the same size interval as 

in the previous experiments we also tested some granules in the 2.5-3mm range. Figure 

10 shows the load-displacements curve for two larger granules (2.5-3.15 mm) for water 

and HPMC. We observe that the water granulated granule doesn't break while the HPMC 

3% granules is being crushed.   

 

Binder type and 
Impeller speed 

Dry Granule 
Strength [MPa] 

Mean Granule 
Size [µm] [±10%] 

Mi-Pro   
Water (800 rpm) 37.0 ±  4.7 899 

HPMC 3% (800 rpm) 13.0 ±  2.4 1039 
Diosna   

Water (460 rpm) 29.5 ±  5.0 840 
Water (605 rpm) 24.1 ±  3.5 715 

HPMC 3% (460 rpm) 10.6 ±  3.1 780 
HPMC 3% (605 rpm) 10.8 ±  2.5 670 

 
Table 4. Dry granule strength and mean granule size on the investigated mixers 

 

Increasing impeller speed reduces dry granule strength on the low viscosity binder 

however on the high viscosity binder little variation in dry granule strength is observed. 

Granule strength compared between mixers shows lower values when granulating at the 

larger scale. This can be explained by the fact that at lower scales mixing is more intense 

and collisions between particles are more frequent leading to increased granule 

consolidation. 
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Figure 10. Typical load displacement curves for large granules from the Diosna HSM 
with constant impeller tip speed as scale-up rule and water and HPMC3% as binders for 

the granulation of MCC Avicel 105 
 

3. Conclusion 
 
We found that torque curves can allow a good control over the granulation process 

allowing us to define optimum binder requirements for the different binder solutions 

used, essential for obtaining similar granule size distributions. Optimum liquid 

requirement has been found to decrease with increasing viscosity, this indicating the 

accelerated growth due to more successful coalescence between granules, however this 

slower penetration of the binder has to very different effects on granule strength: it yields 

higher wet mass consistencies as the viscous binder is still at granule surface and sticks 

easily to the mixer torque rheometer blades but doesn't offer a great inner strength which 

is apparent from the dry granule uniaxial compression tests where the more viscous 

binders show lower granule strength. Recorded torque curves as well as granule growth 

kinetics and dry granule strength measurements show that granulation, at low viscosities, 

is dependant on the work of adhesion. The use of the capillary viscous number allowed us 

to define the boundaries for which the work of adhesion is the dominant parameter 

Ca*<0.8 and for which the viscosity is the controlling parameter Ca*≥0.8. 

 154



Chapter III.3 Effect of Binder Nature and Properties 
 

 

 155

References 

[1] S. Keningley, P. Knight, A. Marson, An investigation into the effects of binder viscosity on 
agglomeration behaviour, Powder Technol. 91 (1997) 95–103 

[2] A. Johansen, T. Schaefer, Effects of interactions between powder particle size and binder viscosity on 
agglomerate growth mechanisms in a high shear mixer, European J. of Pharm. Sciences 12 (2001) 297–309 

[3] P.J.T. Mills, J.P.K. Seville, P.C. Knight, M.J. Adams, The effect of binder viscosity on particle 
agglomeration in a low shear mixer/agglomerator, Powder Technol. 113 (2000)140–147 

[4] C. Capes, P. Danckwerts, Granule formation by the agglomeration of damp powders. Part I: the 
mechanism of granule growth, Transactions of the Institution of Chemical Engineers 43 (1965) 116–124 

[5] S. M. Iveson, J.D. Litster, B. Ennis, Fundamental studies of granule consolidation. Part 2. Quantifying 
the effects of particle and binder properties. Powder Technol. 99 (1998) 243–250 

[6] M. Ritala, O. Jungersen, P. Holm, A comparison between binders in the wet phase of granulation in a 
high shear mixer, Drug Dev. And Ind; Pharm. 12 (1986) 1685-1700 

[7] Ennis, B.J., Tardos, G., Pfeffer, R., A microlevel-based characterization of granulation phenomena, 
Powder Technol. 65 (1991) 257-272 

[8] M. Benali, V. Gerbaud, M. Hemati, Effect of operating conditions and physico–chemical properties on 
the wet granulation kinetics in high shear mixer, Powder Technol. 190 (2009) 160-169 

[9] M. Denesuk, G.L. Smith, B.J.J. Zelinski, N.J. Kreidl, D.R. Uhlmann, Capillary penetration of liquid 
droplets into porous materials, J. Colloid Interface Sci. 158 (1993) 114–120. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter III.4 – Effect of Formulation: Granulation of Soluble and Insoluble Powders 
 

 
   Chapter III.4: Effect of Formulation:  
   Granulation of Soluble and Insoluble Powders 
 
 
On this subchapter we have studied the influence of microcrystalline cellulose content in 

lactose-MCC mixtures. The MCC grade chosen was MCC Avicel 105 while the lactose 

was a crystalline α-lactose monohydrate. The starting materials a characterized from a 

rheological standpoint as well as by their water sorption isotherms and their behavior 

during wet granulation on the Mi-Pro high shear mixer. Two formulations have been 

chosen one containing 7 parts lactose and 3 parts MCC Avicel 105 called "Lactose/MCC 

7/3" and one containing 7 parts MCC and 3 parts lactose called "Lactose/MCC 3/7" and 

compared in terms of rheological characterization, granule growth kinetics, wet mass 

consistency and dry granule strength. Additionally we will try to relate the observations 

to the starting materials properties as well as attempt to validate our observations on two 

different scales. 

 
1. Introduction 
 

The manufacturing of granules often demands the granulation of powder mixtures in 

order to obtain specific product properties at the end of the granulation process. Favoring 

one component over the other in binary mixtures influences granule properties. 

Microcrystalline cellulose (MCC) is one of the most widely used pelletization agents, 

being highly hygroscopic and conferring a certain degree of plasticity to the mixture 

while lactose is commonly used as excipient in the pharmaceutical industry. The amount 

of granulation liquid required for granulation depends on the mass fraction of MCC in the 

formulation as shown by Kristensen et al [1] when describing the wet granulation of 

lactose-MCC mixtures in a rotary processor controlled by torque measurements. They 

show that increasing MCC content (between 10 and 100%) increases the water content at 

the end-point of binder addition, determined as a function of torque evolution.    
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Kristensen et al. [2] compared the growth mechanisms of water soluble lactose with that 

of water insoluble calcium hydrogen phosphate. They found that calcium hydrogen 

phosphate requires 1.8 times more binder for significant granule growth than lactose. 

This observation was related to the increased plasticity of the wetted mass given by the 

solubility (of about 20%) of lactose in water.  

Different authors (Kristensen et al [1], Vecchio et al [3] and Holm et al [4]) recommend 

10 to 45% mass percentage MCC for successful pelletization. However this amount 

depends largely on the other components present in the formulation as well as the grades 

of the components. Holm et al [4] found that MCC content was influential when paired 

with the water soluble lactose than with the insoluble calcium hydrogen phosphate. They 

also found that the lowest level of MCC content for which a controllable pelletization 

process could be obtained increased with the fineness lactose and calcium phosphate 

grades. They also underlined the greater sensitivity of lactose-MCC formulations to 

binder content: within 0.25% relative to dry material translating to ±15g of water in order 

to achieve a mean pellet size of 900 to 1100µm. Kleinebudde et al. also stress the 

importance binder requirement stating that if binder levels are to be kept constant for 

varying degrees of MCC content the results are not directly comparable. The studies of 

Leuenberger et al [5] and Betz et al [6] show that a ternary powder mixture composed of: 

86% (of the dry mass) lactose, 10% corn starch and  4% Polyvinylpirrolidone granulated 

with water can allow reliable control of the granulation process. Mackaplow et al. [7] 

showed that for wet high shear granulation of three different grades of lactose (fine, 

medium, and coarse)  with water that torque curves become less reproducible and present 

more noise with decreasing mean granule size of the starting materials. They found the 

granulation process for the finer particles (mean particle size of 39µm) to be influenced 

by increased wall build-up affecting the torque curve in ways not related to intrinsic 

granule properties. 

Even though many studies deal with the granulation of different pharmaceutical products 

mixtures there are still few systematic studies that allow characterizing the influence of 

formulation parameters (proportion of different components in the mixtures) and the 

influence of geometrical parameters (mixer design) on the granule growth kinetics, end-

product granule strength and morphologic evolution of the obtained product.  
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We have set out to study the effect of microcrystalline cellulose content in lactose-MCC 

mixtures on wet mass rheology, high shear wet granulation kinetics, wet mass 

consistency and dry granule strength. Additionally we will try to relate the observations 

to the starting materials properties as well as attempt to validate our observations on two 

different scales. The powders chosen are fine (microcrystalline cellulose powder MCC 

Avicel 105 with mean granule size of 20 µm and a fine lactose grade, α lactose 

monohydrate with a mean granule size of 60µm), very cohesive, presenting poor flowing 

characteristics. This makes them interesting candidates for size enlargement operations. 

 

2. Effect of Formulation:  Granulation of Soluble and Insoluble 

Powders 

2.1 Characterization of the Starting Materials 

SEM pictures of the starting materials can be found in Chapter II-1. We recall that:  

- the MCC presents itself as a fine, white, water insoluble powder showing particles 

with elongated, irregular form,  

- the initial lactose particles show large lactose crystals with finer lactose particles 

sticking to their surface. 

Differences in liquid requirement between MCC and lactose have been apparent from the 

first preliminary characterization studies on the mixer torque rheometer and the water 

sorption isotherms. Water sorption isotherms are expressed as changes in sample mass as 

a function of water activity (or relative humidity) that can be defined as: 

0p
paw =          (III-4-1) 

%100%100
0

×=×= wa
p
pRH       (III-4-2) 

Where aw is the water activity, RH the relative humidity of the sample, p the partial 

pressure of water vapor in the mixture and p0 the saturated vapor pressure of water at the 

temperature of the mixture. 
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Water sorption isotherms (Figures 1a and 1b) show type II sorption isotherms (Rouquerol 

et al [15]) where the adsorption of the first layer of water molecules on the particle 

surface can be identified by the first inflexion point in the sorption curve which with 

increasing water activity is followed by multiple layers being adsorbed to surface and as a 

second inflexion point appears in the curve water becomes loosely bound, mobile, with 

minimal water-solid interactions. MCC presents a much higher water affinity than 

lactose. For the same values of water activity, for instance for 0.8 when water is loosely 

bound MCC adsorbs about 8% while lactose adsorbs only about 0.04%. This result also 

implies that when granulating liquid would be present in a loose form at particle surface 

much quicker for the lactose particles than for the MCC particles. The observed 

hysteresis on desorption are comparatively low. They could be caused by intragranular 

porosity in the sample tested as well as the interaction between product and water 

molecules ([15]). As both products present interactions with water (as detailed in Chapter 

II for microcrystalline cellulose, while lactose is soluble) this could also explain the 

observed hysteresis.  

 
 

Figure 1. Water sorption isotherms for the starting materials: MCC (a) and Lactose (b) 

 

Figure 2 shows the torque curve obtained on the MTR (Figure 2a) and the torque curve 

obtained on the Mi-Pro (Figure 2b) for the MCC Avicel 105 powder while Figure 3 gives 

the same information for lactose. The peak of the torque curve for the MCC powder 

corresponds to the wet powder mass turning to a highly cohesive paste in the Mi-Pro. The 

end of the plateau region on Figure 2b has been found to correspond to the total 

consumption of the fine particle class (Subchapter III-1) while granulation can still be 
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continued in order to maximize the coarse granules class up to a L/S ratio of 100% after 

which overwetting occurs. Growth mechanisms proposed on Figures 2b and 3b are based 

on characteristic granule class evolution and SEM observations. For the lactose MTR 

curve a shoulder is observed before the torque peak appearing at 16% L/S ratio. Benali 

[17] showed that for the same type of powder from the same source the optimum L/S 

ratio to be of 13% which would correspond to the end of the plateau region observed on 

the lactose MTR curve. Our experiments on the Mi-Pro with lactose have shown a very 

strong interaction between the wet mass and the mixer bowl leading to large wall build-

ups for L/S ratios exceeding 4%. Stopping the granulation experiment and scraping the 

mixer bowls allows obtaining granules to the same L/S ratio as that observed by Benali 

[17]. With the gradual addition of binder, the end of the plateau region on the Mi-Pro 

(Figure 3b) corresponds to the majority of the wet mass exiting the impeller action and 

sticking to the mixer wall and a small fraction of product evolving to a suspension. It is 

our opinion that for the case of granulation of pure lactose a better granulation process 

can be achieved with the whole optimum water requirement should added over a short 

period of time in the beginning of the granulation. This would allow the formation of an 

initial homogenous paste like mass that would be further dispersed by the granulating 

equipment and shaped into granules.   
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Figure 2.Torque curves developed upon gradual addition of binder on the (a) MTR and 
(b) Mi-Pro for MCC Avicel 105 

 
 
 

 
 

 
 

Figure 3.Torque curves developed upon gradual addition of binder on the (a) MTR and 
(b) Mi-Pro for lactose 
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Comparing the rheological data for the two starting materials we can conclude that: 

- lactose requires less binder to granulate than microcrystalline cellulose (13% vs 

100%),  

- agglomerated MCC Avicel 105 particles develop a far greater cohesion than 

agglomerated lactose particles on the MTR (Figures 2a and 3a), 

- torque curves on the Mi-Pro for MCC Avicel 105 and lactose are not completely 

comparable since the process is less than optimal for lactose granulation after the 

plateau region however what is evident is the much shorter wetting region for the 

lactose particles confirming our predictions from the water sorption isotherms that 

lactose presents binder on the surface for lower binder contents, which in turn will 

promote nucleation and growth. 

 

2.2 Powder Mixtures Characterization 

In order to study the granulation of powder mixtures we chose two different formulations, 

one containing 7 parts lactose and 3 parts MCC Avicel 105 called "Lactose/MCC 7/3" 

and one containing 7 parts MCC and 3 parts lactose called "Lactose/MCC 3/7" and 

compared them in terms of rheological characterization, granule growth kinetics, wet 

mass consistency and dry granule strength. 

2.2.1 Rheological Characterization  

It is apparent from the torque curves obtained on the MTR besides the difference in liquid 

requirement there also seems to be a huge difference in terms of developed torque. The 

torque values are almost 16 times higher for MCC Avicel 105 than lactose. Figure 4a 

shows the MTR curve for the two studied formulations as well as the curves for the pure 

starting materials. We find that increasing the percentage of microcrystalline cellulose 

increases linearly the liquid requirement for the mixture at the peak torque (Figure 4b). 

As expected from the findings of Kristensen et al [1] the liquid requirement and torque 

increase with increasing MCC percentage. MCC has a strong affinity for water and 

increasing MCC content increases the binder content necessary in order to promote 

granule growth. This behavior has also been observed on the granulation of MCC 

 162



Chapter III.4 – Effect of Formulation: Granulation of Soluble and Insoluble Powders 
 

Avicel 101 - Lactose mixtures (Figure 5): Increasing the percentage of microcrystalline 

cellulose increases linearly the liquid requirement for the mixture as well as the peak 

torque. This behavior seems to be independent of the grade of MCC used.  

 

 

 
Figure 4.MTR torque curves developed upon gradual addition of binder for the pure 

starting materials and the studied formulations (a) and peak L/S ratio as a function of 
MCC Avicel 105 content (b) 
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Figure 5. Mixer torque rheometer curves for different percentages of MCC Avicel 101 in 

MCC-Lactose mixtures 

 

2.2.2 Granulation Kinetics  

In order to obtain reproducible results granulation is best stopped in the passage from the 

pendular to the funicular saturation stage which is defined by the plateau region on the 

torque curves (Leuenberger [5]). Stopping liquid addition at L/S ratios closer to the end 

of the plateau allows obtaining denser granules, while slightly increased values allow a 

reduction of fines in the system but in the same time endanger overwetting.  For the 

studied formulations values closest to the end of the plateau have been chosen as 

optimum liquid requirements for granulation: 38% for the granulation of the 

Lactose/MCC 7/3 formulation (Figure 6a) and 68% for the granulation of the 

Lactose/MCC 3/7 formulation (Figure 6b). From an optimum liquid requirement point of 

view this values fall as expected in between the liquid requirement for pure lactose 

granulation at 13% L/S ratio and pure MCC at 100% L/S ratio. It can also be observed 

that torque curves have a similar profile to the one presented for pure MCC in Figure 2b. 

Torque profiles are similar for both formulations: after an initial wetting period longer for 

the Lactose/MCC 3/7 formulation the characteristic S-shaped "turning point" (as defined 

by Betz et al [6]) can be observed as a signal of the pendular saturation stage where 
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nucleation of initial particles usually occurs followed by the plateau region when growth 

of the particles occur in the funicular saturation stage (Goldszal and Bousquet [18]). 

Torque values on the plateau are slightly higher for the lactose/MCC 3/7 formulation 

reflecting the higher resistance to mixing of the MCC and indicating greater resistance to 

impact and shear of the agglomerates. It can also be observed that the Lactose/MCC 7/3 

formulation torque curve is noisier as agglomerates containing more lactose are stickier 

and can easily adhere to the glass bowl causing inhomogeneous flow of the wetted 

material. This phenomenon has also been observed by Holm et al [4]. 

 

 

 

Figure 6. Torque curves on the Mi-Pro HSM for the Lactose/MCC 7/3 (a) and the 
Lactose/MCC 3/7 (b) formulations 
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Comparing the evolution of the characteristic size classes  for the two studied 

formulations on the Mi-Pro high shear granulator and using the evolution obtained for 

100% MCC as reference (Figure 7) we are able to confirm the interpretation of our torque 

curves: increasing lactose content in the mixtures decreases optimum water requirements 

and accelerates granule growth; changes in growth mechanisms occur for similar values 

of L/S ratio as observed in the torque curve (also confirmed by SEM observations).  
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Figure 7. Evolution of fine (a), intermediate (b) and coarse(c) size classes and mean 
granule size for the studied formulations (d) using 100% MCC Avicel 105 as reference  

 

After an initial wetting period ranging from 0 to 10% L/S ratio for the Lactose/MCC 7/3 

formulation and from 0 to 15% for the Lactose/MCC 3/7 formulation when no significant 

changes in the granule size distributions are observed, nucleation occurs marked by a 

sudden decrease in the fine particle class mass percentage (Figure 7a) with initial 

particles presenting sufficient plasticity to unite into small nuclei of several initial 

particles.  
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The end of the nucleation stage can be observed as a change in the slope of the 

intermediate granules mass percentage (Figure 7b). For 100% MCC growth can be 

observed in two stages as a sudden increase in slope from 58% L/S ratio to 83% 

corresponding to the preferred agglomeration of fines and intermediates granules until the 

fines are depleted and as agglomeration between intermediates as a second stage between 

83% and 100%. The intermediates particle class is never depleted as the high impeller 

and chopper speeds impose final granule sizes close to the upper boundary of the 

intermediates fraction (800µm). 

For the Lactose/MCC 7/3 and Lactose/MCC 3/7 formulations nucleation occurs up to 

20% L/S ratio and up to 40% respectively. Nucleation end can be observed as a peak in 

intermediate particle class (Figure 7b). This point corresponds to the beginning of the 

plateau region on the torque curves (Figure 6). Alternatively this point also corresponds 

to the apparition of the first coarse granules in the system (Figure 7c) explaining why the 

intermediate granules mass percentage slightly decreases and that for the mixtures growth 

occurs by simultaneous collision between fines and intermediates and also between 

intermediate granules. 

For L/S ratios increasing beyond 38% for the Lactose/MCC 7/3 formulation and beyond 

68% for the Lactose/MCC 3/7 formulation granules become overwetted and 

uncontrollable growth takes place. The optimum liquid requirement being well indicated 

by the end of the plateau on the torque curves. These results confirm the predictions made 

from torque curve analysis in terms of optimum liquid to solid ratio as well as separation 

between stages. 

Figure 7d presents the evolution of the mean granule size as a function of L/S ratio. 

Given the extent of the coarse particle class (800µm to 4mm) the mean granule size 

follows a similar evolution to that of the coarse particle size class. It is also interesting to 

note that in order to obtain granules of a certain size less binder is necessary with 

decreasing MCC content. Mean granule size increases with increasing lactose percentage 

in the mixtures can be explained by the higher plasticity granted by the increased lactose 

content favoring coalescence between granules and also by the fact that upon drying 

granules containing MCC have been known to shrink (Kleinebudde et al [19]). 
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2.2.3 Morphology Evolution  

SEM image analysis (Figures 8 and 9) allows us to better understand the before 

mentioned granulation mechanisms. For low L/S ratios we can see that no agglomerates 

are formed (Figure 8a and 9a). For increased L/S ratios nucleation (small agglomerates of 

several initial particles) can be observed, this seems to occur preferentially between MCC 

particles (Figures 8b and 9b) however it should also be noted the absence of fine lactose 

particles that most probably have went into solution.  

Given the behavior observed on the water sorption isotherms with lactose presenting 

loosely bound water for low values of water activity it is also reasonable to suspect that 

nucleation is accelerated by the presence of lactose with MCC nuclei forming around 

lactose crystals.  Figure 8c shows to that effect MCC particles sticking to the surface of 

the larger lactose particles.  For the Lactose/MCC 3/7 formulation growth occurs in two 

stages that don't seem to have an impact on the characteristic sizes evolution, first we can 

observe the agglomeration of MCC nuclei into MCC granules (Figure 8d) for L/S ratios 

between 40 and 55% although they may still present a lactose core followed in a later 

stage by agglomeration between both MCC and lactose particles (Figure 8e). The same 

agglomeration between MCC granules and lactose particles can also be observed for the 

Lactose/MCC 7/3 formulation (Figure 8c). Final granules (Figure 8f and 9d) are spherical 

while initial particles, lactose crystals in particular, can still be observed. 

The torque curves obtained on the Mi-Pro similar in nature to the pure MCC torque curve 

and SEM observations seem to imply that for both formulations MCC controls the liquid 

distribution in the wet mass. These findings seem to relate favorably with the findings of 

Kuentz and Leuenberger [20] who showed that for a binary mixture of MCC and 

paracetamol the percolation threshold for MCC was of about 20%, meaning that for 

values above 20% MCC forms a continuous network. The results also confirm the 

assumption made in the beginning of this study that MCC would control binder 

distribution based on the water sorption isotherms given the higher affinity of MCC for 

water. 

Figure 10 shows the granule size distribution for pure MCC and the two studied 

formulations. No change in granule size distributions form with varying formulation is 
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observed. Increasing lactose content reduces the amount of finer particles and shifts the 

distributions to larger sizes. The larger amount of fines with increasing MCC content 

could also be a function of MCC shrinkage upon drying which was also observed by 

Kristensen et al [1]. 

 

 
Figure 8. SEM images of agglomerates at different L/S ratios for the Lactose/MCC 

3/7formulation: (a) wetting (L/S=15%), (b) nucleation (L/S=25%), (c) MCC particles 
sticking on lactose particles (L/S=25%), (d) growth (L/S=40%), (e) growth  (L/S=55%), 

(f) final granules (L/S=68%) 
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Figure 9. SEM images of agglomerates at different L/S ratios for the Lactose/MCC 7/3 
formulation: (a) wetting (L/S=10%), (b) nucleation(L/S=16%), (c) growth (L/S=32%), 

(d) final granules (L/S=38%) 

 

 
Figure 10. Granule size distribution for the two studied formulations as well as 100% 

MCC 
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2.3 Granule Strength  

Granule strength has been assessed by two methods in an effort to describe both wet and 

dry granules: wet mass consistency measurements, for the wet end granules and uniaxial 

compression tests, for the end dry granules. Similar values of wet mass consistency have 

been obtained for the two formulations only pure MCC showing a noticeably larger wet 

mass consistency Table(1). In terms of granule strength we observe increase in mean dry 

granule strength with increasing MCC content. The opposite is observed when looking at 

the displacement (Figure 11) as the formulation Lactose/MCC 7/3 shows larger 

displacements values up to the fracture point indicating an increased plasticity of the 

granules. 

 
Figure 11. Force-displacement curves for the Lactose and MCC formulations 

 

 

Product  Wet mass consistency 
[N.m/kg] 

Granule strength 
 [MPa] 

Lactose/MCC 7/3 3.1  ±  0.7 18.1  ±  3.3 
Lactose/MCC 3/7 4.1  ±  0.7 26.5  ±  5.5 

100% MCC 8.2  ±  1.5 32.1  ±  5.8 
Table 1. Wet mass consistencies and dry granule strengths for the two studied 

formulations and pure MCC ((Mi-Pro, w=800 rpm, ch=3000 rpm) 
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2.4 Effect of Mixer Design 

Effect of mixer design was evaluated by applying constant impeller tip speed (Equation 

III-3-4) and constant Froude number (Equation III-3-5). These rules gave two 

corresponding impeller speeds on the Diosna: 460 rpm (impeller tip speed) and 605 rpm 

(Froude). The same fill ratios, granulation time, optimum L/S ratios have been kept while 

using a manually controlled drop by drop pump on both high shear mixers. The chopper 

on the Diosna has not been operated while the chopper on the Mi-Pro was turning at 3000 

rpm. 

In term of impeller tip speed we keep an impeller tip speed of 5.85 m/s while passing to 

the Diosna while the constant Froude number gives an impeller tip speed of 7.72 m/s. 

Mean granule size analysis (Figure 12a and 12b) shows that both scale up rules yield 

lower mean granule sizes on the Diosna than on the Mi-Pro. In this Figure ITS is 

indicative of the scale-up rule used meaning impeller tip speed while Fr is indicative of 

the Froude number being used as scale-up rule. Also the granule size distributions present 

a more pronounced bi-modality showing a larger proportion of fine particles on the 

Diosna. This could be related to differences in binder addition method. While on the Mi-

Pro the binder flow is directed towards the chopper in order to ensure better binder 

distribution on the Diosna binder addition with a capillary twice as large and binder flow 

can  not be directed towards the chopper. The difference in granule size distribution can 

be explained by the formation of lumps (granules with sizes above 5 mm) representing 

about 10% of the mass despite the high impeller speeds on the Diosna (while on the Mi-

Pro virtually no lumps are formed). The impeller tip speed yields a closer result in terms 

of granule size (Table 2) it shears and impacts less the wet granule reducing to a lesser 

extent mean granule size than when keeping the Froude number constant. It should also 

be noted that while for the Lactose/MCC 3/7 formulation scale-up rules produce roughly 

the same results with differences in final mean granule size inferior to 8%, the lactose 

formulation is more sensitive to changes in impeller speed: at constant impeller tip speed 

we observe a decrease in mean granule size of 9.2% and at constant Froude number of 

17.7%. Usual variations in granule size between batches in the same operating conditions 
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have been between 3 and 10%. The difference in mean granule size is probably not a 

function of increased breakage occurring in the Diosna but rather a result of the formation 

of lumps giving an inhomogeneous binder distribution. From a morphological point of 

view, SEM observations presented in Figure 13 have not allowed us to identify 

differences in growth mechanisms between the two scales.  

 

 

 
Figure 12.Granule size distributions for the (a) Lactose/MCC 3/7 formulation and (b) 

Lactose/MCC 7/3 formulation 
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Setup Dpm [µm] 
Mi-Pro  

Lactose/MCC 3/7 1142 
Lactose/MCC 7/3 1376 

Diosna - Impeller tip speed  
Lactose/MCC 3/7 1162 
Lactose/MCC 7/3 1249 
Diosna-Froude  

Lactose/MCC 3/7 1050 
Lactose/MCC 7/3 1132 

Table 2. Mean granule size for the studied formulations on the two high shear mixers: 
Mi-Pro and Diosna 

 

Table 3 presents the recorded wet mass consistency values and dry granule strength 

measurements for the experiments on both scales for the studied formulations. We 

observed a higher consistency for the Lactose/MCC 3/7 formulation than the 

Lactose/MCC 7/3 formulation indifferent of the scale used with wet mass consistency 

decreasing on the large scale. For the large scale (Diosna) we observed that increasing 

impeller speed also increases wet mass consistency and although values remain fairly 

close it is not unreasonable to imagine that increased impeller speed squeezes more 

binder to the granule surface. Dry granule strength is found to decrease on the Diosna for 

both formulations regardless of scale-up rule used. However increasing impeller speed on 

the Diosna increases dry granule strength and as a consequence we can say that using the 

Froude number as scale-up rule gives a better agreement in terms of mean dry granule 

strength. For the case of the Lactose/MCC 7/3 formulation mean granule size is halved 

upon scale-up. We attributed this phenomenon to a preferential agglomeration of the 

MCC particles in the lumps formed on the Diosna. Because of this the granules tested 

poor in MCC content show lower mean granule strength. 
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Figure 15. Growth mechanisms on the Mi-Pro (a-f) and Diosna (a*-f*) HSM for the 

Lactose/MCC 7/3formulation 
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Product and Setup 
Wet mass 

consistency 
[N.m/kg] 

Granule 
strength 
 [MPa] 

Mi-Pro Lactose/MCC 7/3 3.1  ±  0.7 18.1  ±  3.3 
Diosna (Fr=ct) Lactose/MCC 7/3 3.0  ±  0.7 10.1  ±  2.0 
 Diosna (ω=ct) Lactose/MCC 7/3 2.8  ±  0.7 8.9  ±  2.0 

Mi-Pro Lactose/MCC 3/7 4.1  ±  0.7 26.5  ±  5.5 
Diosna (Fr=ct) Lactose/MCC 3/7 3.8  ±  0.8 24.5  ±  6.0 
Diosna (ω=ct) Lactose/MCC 3/7 3.6  ±  0.9 21.5  ±  4.1 

Table 3. Wet mass consistencies and dry granule strengths for the different formulations 
on the Mi-Pro and the Diosna high shear mixers 

 

3. Conclusion 

Our study has shown that torque curves obtained during granulation can allow good 

control of the granulation process for the different formulations studied. Torque curves 

allow following agglomeration mechanisms at the macro scale which were confirmed by 

scanning microscope analysis and granule growth kinetics. The water sorption isotherms 

have shown a greater affinity of MCC for water vapor than lactose and this behavior is 

recognized in the granulation mechanism of the two formulations where binder 

distribution is conditioned by MCC. The same water sorption isotherms seem to indicate 

that water becomes loosely bound at particle surface quicker for lactose than for MCC. 

This could explain the shorter wetting periods for increasing lactose content as well as the 

accelerated growth associated. The proposed growth mechanism seemed to be 

independent of the scale used to for investigation. 

From a wet mass consistency and dry granule strength the Lactose/MCC 3/7 formulation 

showed both higher consistencies and higher dry granule strength on both scales, with the 

difference being greater in terms of dry granule strength than in terms of wet mass 

consistency. For the Lactose/MCC 7/3 formulation dry granules are more deformable, 

granules supporting greater irreversible deformation until fracture appears. 

The effect of mixer design studied by scaling up from the 1.9 Mi-pro to the 6L Diosna  

high shear mixer showed a better agreement in terms of mean granule size when using 

the impeller tip speed as scale-up rule. However this agreement seems of a lesser 
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importance when analyzing granule size distributions. Both scale-up rules yield a higher 

percentage of lumps and fine particles presenting significantly different granule size 

distributions from the ones obtained on the smaller scale. This could be explained by 

differences in binder addition and dispersion systems between the scales.  Both wet mass 

consistency and dry granule strength for the studied formulations decreased upon scale-

up with the difference being however more accentuated in terms of dry granule strength. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 178



Chapter III.4 – Effect of Formulation: Granulation of Soluble and Insoluble Powders 
 

 179

References 

1. J. Kristensen, T. Schæfer, P., Kleinebudde, Direct Pelletization in a Rotary Processor Controlled by 
Torque Measurements. II: Effects of Changes in the Content of Microcrystalline Cellulose, AAPS 
Pharmsci 2(3) article 24 (2000) 

2. J. Kristensen, P. Holm, A. Jaegerskou, T. Schæfer, Granulation in high speed mixers Part4: effect of 
liquid saturation on the agglomeration, Pharm. Ind. 46 (1984) 763-767 

3. C. Vecchio, G. Bruni, A. Gazzaniga, Preparation of Indobufen Pellets by Using Centrifugal Rotary 
Fluidized Bed Equipment Without Starting Seeds, Drug Dev. Ind. Pharm. 20 (12) (1994) 1943-1956 

4. P. Holm, M. Bonde, T. Wigmore, Pelletization by granulation in a roto-processor RP-2-Part 1: Effect of 
process and product variables on granule growth, Pharm. Technol. 8 (1996) 22-36 

5. H.L. Leuenberger, M. Puchkov, E. Krausbacher, G. Betz, Manufacturing pharmaceutical granules: Is the 
granulation end-point a myth, 3rd Int. Granulation Workshop Sheffield (2007)  

6. G. Betz, P. J. Burgin, H. L. Leuenberger, Power consumption profile analysis and tensile strength 
measurements during moist agglomeration, Int. J. Pharm. 252 (2003) 11–25 

7. M. B. Mackaplow, L. A. Rosen, J. N. Michaels, Effect of primary particle size on granule growth and 
endpoint determination in high-shear wet granulation, Powder Technol. 108 (2000) 32-45 

8. R.L. Carr, Evaluating flow properties of solids, Chem. Eng. 18 (1965)163-168 
9. J. Schwedes, Testers for measuring flow properties of particulate solids, Powder Handling and 

Processing Vol. 12 (4) (2000) 337-354 
10. R. C. Rowe, Characterization of wet powder masses using a mixer torque rheometer. 4. Effect of blade 

orientation, Int. J. Pharm. 133 (1996) 133-138 
11. P. Luukkonen, T. Schæfer, L. Hellen, A. M. Juppo, J. Yliruusi, Rheological characterization of 

microcrystalline cellulose and silicified microcrystalline cellulose wet masses using a mixer torque 
rheometer, Int. J. of Pharm. 188 (1999) 181–192 

12. P. Kleinebudde, The crystallite-gel-model for microcrystalline cellulose in wet granulation, extrusion 
and spheronization, Pharm.Res. 14 (1997) 804-809 

13. J.S. Ramaker, Fundamentals of high shear pelletisation process - PhD thesis, Rijksuniversiteit 
Groningen (2001) 

14. M.J. Adams,M.A. Mullier, J.P.K. Seville, Agglomerate strength measurement using a uniaxial confined 
compression test, Pow. Tech. 78 (1994) 5-13 

15. F. Rouquerol, J. Rouquerol, S. King, Adsorption by powders and porous solids: Principles, 
methodology and applications, Academic Press (1999) 

16. T.M. Chitu, D. Oulahna, M. Hemati, Wet granulation in a laboratory scale high shear mixer: Effect of 
chopper presence, design and impeller speed, 9th Int. Symposium on Agglomeration  Sheffield (2009) 

17. M. Benali, Prédiction des interactions substrat/liant lors de la granulation: Etude expérimentale dans un 
mélangeur granulateur à fort taux de cisaillement- Approches thermodynamiques par simulation 
moléculaire, PhD thesis, INP Toulouse (2006)  

18. A; Goldszal, J. Bousquet, Wet agglomeration of powders: from physics toward process optimization, 
Pow. Tech. 117 (2001) 221-231 

19. P. Kleinebudde, Shrinking and swelling properties of  pellets containing microcrystalline cellulose 
(MCC) and low substituted hydroxypropylcellulose (L-HPC). I. Shrinking properties, Int. J. Pharm. 104 
(1994) 209-219 

20. M. Kuentz, H. Leuenberger, A new theoretical approach to tablet strength of a binary mixture 
consisting of a well and a poorly compactable substance, Eur. J. of Pharm. and Biopharm. 49 (2000) 151-
159 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   



Synopsis et Points Clés de L’Etude 
 

 

 

   Synopsis et Points Clés de l’Etude  
 
 
Le chapitre I 
 

Dans ce chapitre, on a présenté une synthèse bibliographique montrant les bases de la 

granulation humide ainsi que les derniers progrès enregistrés dans ce domaine. Nous 

avons décrit les connaissances à ce jour au niveau de l'influence des paramètres 

opératoires et des matières premières ainsi que les outils de contrôle et de suivi 

généralement appliqués.  

À partir de cette synthèse bibliographique, on constate que:  

- L'effet des paramètres opératoires sur les mécanismes de croissance est  fortement 

dépendant du produit et du matériel utilisé et que la prédiction des comportements 

lors de la granulation à partir des caractéristiques physico-chimiques des constituants 

est peu décrit. L'effet des conditions opératoires peut être décrit par des modèles 

mécanistiques basés sur le couple, les bilans de population ou la carte de régimes de 

croissance. 

- La granulation humide présente une grande complexité avec des facteurs 

interdépendants et difficiles à hiérarchiser et une grande variabilité des matières 

premières. Des mécanismes communs ont pu être définis et le processus divisé 

comme une succession de trois étapes: (i) mouillage et nucléation, (ii) consolidation 

et croissance par coalescence et (iii) rupture et attrition. Néanmoins la prédominance 

d'un mécanisme sur les autres est difficile à prédire et la plupart des études sont 

consacrés à l'investigation d'un seul mécanisme prédominant. 

- Des études systémiques (Vialatte [2], Oulahna [47], Rahmanian[74], Benali [75]) 

permettent d'établir des liens entre les paramètres opératoires, les propriétés physico-
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chimiques des matières premières et la qualité du produit final (taille, distribution de 

tailles, porosité, résistance mécanique). 

- La définition de la quantité optimale du liant est une étape clef de la granulation. Elle 

dépend surtout de l'opérateur et des propriétés recherchées dans le produit final. Ce 

phénomène induit des grandes variations lors de la généralisation des effets observés 

lors de la granulation humide. Il est impératif d'avoir une définition et une 

optimisation robuste à mettre en place permettant ainsi de réduire l'influence d'un 

paramètre qui peut apporter des changements importants dans les propriétés finales 

du produit.  

- La mesure du couple (ou de la puissance consommée) est une technique établie 

permettant de prédire le comportement lors de la granulation. Néanmoins, la 

définition selon laquelle la quantité optimale de liant (pour la granulation des produits 

pharmaceutiques) correspond au plateau du profil de couple (puissance) reste 

discutable. En plus le lien entre l'évolution du couple et les propriétés de la masse 

humide reste un sujet actuel. Différents auteurs ont relié l'évolution du couple 

(puissance consommée) à la saturation liquide, la porosité intragranulaire, la friction 

interparticulaire ou la résistance mécanique.  

- Le rhéomètre à couple peut être employé pour apporter plus d'information au niveau 

d'interactions poudre - liant. Il permet de faire un lien entre les différentes échelles 

d'étude à travers une propriété de la masse humide appelé consistance humide ou 

pseudo viscosité. À notre connaissance, le lien de l'évolution du couple sur le 

rhéomètre MTR avec les mécanismes observés lors de la granulation n'a jamais été 

abordé sous l’angle  "lien entre masse humide, consistance et tenue mécanique à sec". 

- Les travaux bibliographiques traitant de l’influence de la viscosité du liquide (ou 

phase liante) sur la croissance particulaire sont controversés. Ce paramètre gouverne 

le temps de l’étalement du liquide à la surface du solide à granuler et affecte par 

ailleurs les forces d’interactions entre les particules mouillées. Sur ce dernier point, 

deux écoles se distinguent : la première privilégiant les propriétés de mouillage 

(tension de surface et angles de contact solide-liquide) et leur rôle dans les forces 

capillaires et la seconde école mettant en avant les phénomènes de dissipation 
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visqueuse lors des collisions entre particules et leur impact sur les mécanismes et 

cinétiques de granulation.  

 

L'enjeu de notre travail réside dans une approche systémique basée sur le liens entre: 

influence des paramètres opératoires, technologie employée et propriétés physico-

chimiques des matières premières grâce à un suivi rhéologique, morphologique et 

mécanique.   

 

Le chapitre II 

Le chapitre 2 regroupe l'ensemble des techniques de caractérisation employées, les 

méthodologies utilisées dans l'étude, les  propriétés physico-chimiques des matières 

premières, les méthodes mises en place pour la caractérisation des granules issus du 

procédé de granulation humide ainsi que les granulateurs utilisés. 

Les poudres utilisées lors de cette étude sont la cellulose microcristalline et le lactose. 

Ces deux excipients sont souvent rencontrés dans les opérations de mise en forme pour la 

fabrication des comprimés pharmaceutiques. La principale poudre de l'étude est la 

cellulose microcristalline « Avicel 105 » présentant une forte cohésion et un faible degré 

de coulabilité. Pour comparaison, certains essais sont menés avec la cellulose 

microcristalline «Avicel 101» présentant une moindre cohésion et une meilleure 

coulabilité. Pour l'étude des mélanges binaires, le lactose a été utilisé comme deuxième 

excipient.  

Les liants utilisés sont des solutions aqueuses de Polyvinylpirrolidone (PVP) et hydroxy-

methylpropylcellulose (HPMC), liants habituellement utilisés dans l'industrie 

pharmaceutique. Les concentrations en solution choisies nous ont permis de moduler la 

tension superficielle du liant, sa viscosité et l'angle de contact avec la poudre.  

La tenue mécanique des granules peut être caractérisée soit à l'état humide en déterminant 

la consistance de la masse humide dans un rhéomètre à couple, soit à l'état sec par 

compression directe des grains individuels. La distribution granulométrique et la taille 

moyenne sont établies par tamisage. Trois classes granulométriques sont définies pour 
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décrire la cinétique de granulation : la classe de fines correspondant aux particules 

initiales, la classe intermédiaire avec des agglomérats de faible résistance mécanique et la 

classe des grosses particules. 

Au niveau du procédé, l'échelle principale de l’étude est le granulateur à haut taux de 

cisaillement instrumenté Mi-Pro Pro-cepT® avec un bol de 1.9 litres. Afin d’étudier 

l’influence des géométries et  des échelles du procédé, des essais ont été réalisés dans un 

Mi-Pro avec bol de 0.9 litres et dans un granulateur à haut cisaillement Diosna® de 6 

litres. 

 

Le chapitre III 

Ce chapitre présente l'essentiel de nos essais expérimentaux. Vu la diversité des 

conditions opératoires étudiées et des propriétés physico-chimiques des matières 

premières, on a choisi de présenter dans le sous-chapitre III.1 un exemple type de 

granulation humide.  

Les conditions opératoires sont typiques pour un essai de granulation à haut taux de 

cisaillement dans le granulateur Mi-Pro de 1.9 litres sont : une vitesse de la pale 

d'agitation de 800 tr/min, une vitesse de l'émotteur de 3000 tr/min, une addition 

progressive du liant et un temps de granulation de 12 minutes pour assurer une bonne 

distribution du liant (addition du liant en jet à travers un tube capillaire de 400 microns 

vers l'émotteur). Le couple solide - liquide étudié est la cellulose microcristalline Avicel 

105 granulée avec de l'eau ultra-pure.  

Les mécanismes et la cinétique de croissance ainsi que l'évolution des courbes de couple 

sur le mixer torque rhéomètre (MTR) et le granulateur instrumenté Mi-Pro sont discutés. 

La caractérisation morphologique des granules (distribution de tailles, observations 

MEBE) nous permet d'identifier les mécanismes de croissance en fonction de la quantité 

de liant introduite (rapport liquide/solide) et de les relier à l'évolution du couple sur le 

Mi-Pro. Ainsi, on peut identifier les étapes de mouillage, nucléation et croissance : par 

enrobage de fines particules initialement, puis par coalescence des particules 

intermédiaires et sur-mouillage. Une quantité de référence de liant correspondant à un 
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rapport liquide solide (L/S) de 100% a été définie. La même méthodologie va être mise 

en place pour définir les quantités optimales de liant pour tous les autres essais.  

La comparaison des évolutions du couple dans le rhéomètre (MTR) et le granulateur (Mi-

Pro) montre des similitudes ainsi que des différences qui sont discutées. La partie initiale 

des courbes (pour de faibles valeurs du rapport liquide solide) montre une évolution 

similaire décrivant le mouillage et la nucléation. Pour des valeurs du rapport L/S élevées, 

la différence entre la conception de ces deux réacteurs devient évidente : 

- sur le Mi-Pro, les granules commencent à se former et grandir par 

enrobage/coalescence avec des particules plus fines. Ce fait se traduit par un plateau 

sur l'évolution du couple. Dès que les agglomérats présentent un excès d'eau  à la 

surface, des particules fines vont s'y déposer. Ce phénomène se traduit par une légère 

augmentation de la taille des  agglomérats et  peu d'adhésivité à la surface des grains; 

ce qui donne un plateau au niveau du profil rhéologique. 

- sur le MTR, une agitation plus intense et un réacteur confiné imposent une 

accélération des mécanismes de croissance et vont unir les agglomérats dans une pâte. 

Ce fait, se traduit par une forte augmentation du couple vers un pic ou la cohésion de 

cette pâte est maximale pour une valeur du rapport L/S de 150% (cas de nos poudres). 

À la fin de la région du plateau (sur le Mi-Pro), la totalité des particules fines a été 

consommée et l'agglomération continue par coalescence des granules. Les granules 

présentent une couche liquide à la surface et vont s'agglomérer dans des structures de 

tailles plus importantes avec le risque de sur-mouiller la poudre. Il est possible de 

continuer la granulation jusqu'a une valeur de 100% du rapport L/S sans risquer le sur-

mouillage en favorisant le pourcentage des gros agglomérats. Pour des valeurs 

supérieures, la prise en masse du système a lieu et des amas de produit se forment en 

donnant une pâte. A ce stade, on observe sur le Mi-Pro un signal du couple similaire au 

signal identifié au MTR pour la même valeur du rapport L/S. Pour des valeurs 

supérieures à 150% du rapport L/S, une pâte va se former dans les deux réacteurs étudiés. 

Les forces beaucoup plus grandes, présentes sur le MTR, sont observées à travers la 

valeur du couple normé par la masse initiale. A ce niveau, les valeurs du couple normé 

sont six fois plus grandes sur le MTR que sur le Mi-Pro. 
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L'évolution de la consistance humide des granules issus du Mi-Pro pour différents 

rapports L/S a été étudiée sur le MTR. Ceci nous a permis de confirmer l'augmentation de 

l'adhésivité des granules dans le Mi-Pro une fois que les particules fines ont été 

consommées. Les collisions granules-pale, granules-parois et granules-granules font 

ressortir une couche de liant à la surface.  

Les essais de compression directe des grains individuels mettent en évidence les 

conclusions suivantes: 

- la courbe force-déplacement permet de suivre la déformation du grain jusqu'au 

moment où la première rupture du grain se produit, 

- à partir de cette évolution force-déplacement, on peut calculer la résistance du grain 

(équation d'Adams et al. 1994), le module de Young (selon la méthodologie décrite 

par Mangwandi et al 2007), l'énergie de compression (aire sous le pic) et l'énergie de 

compression spécifique (aire sous le pic divisé par la surface de contact). Les 

paramètres force de rupture et énergie de compression, qui ne sont pas reliés par le 

calcul à la taille du grain, montrent une croissance linéaire avec la taille du grain 

étudié (entre 450 et 1800µm). Une relation de linéarité croissante  apparaît  entre la 

taille granulaire (de 450 à 900µm), la résistance, le module de Young et l'énergie de 

compression spécifique. Pour des tailles de grain élevées, une stabilisation de ces 

paramètres est observé. Ceci est considéré comme indicateur d'une différence 

morphologique entre les grains inférieurs à 900µm et les grains supérieurs. En effet, 

l'analyse morphologique de la sphéricité des granules a montré que les particules 

inférieures à 900µm présentent une sphéricité plus faible. Ce phénomène peut être 

relié aux fortes contraintes présentes dans le mélangeur à haut cisaillement et 

l'hypothèse que les particules inférieures à 900µm sont des fragments des agglomérats 

plus grands. 

 

Le sous-chapitre III-2 porte sur l'effet des variables opératoires ainsi que la granulation 

sur deux bols différents du mélangeur à haut cisaillement Mi-Pro. Le même couple 

poudre-liant a été gardé: cellulose microcristalline « Avicel 105 » granulée avec de l'eau 
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ultra-pure. Par ailleurs, un essai a été réalisé avec la cellulose « Avicel 101 » moins 

cohésive.  

Les variables retenues dans cette étude sont le taux de remplissage, la vitesse d'agitation 

et la présence et conception de l'émotteur. Le taux de remplissage et la présence et 

conception de l'émotteur sont des paramètres peu étudiés dans la littérature spécifique. En 

revanche, la vitesse d'agitation est un des paramètres les plus étudiés. La totalité des 

travaux référencés montrent l'influence de ce paramètre sur la qualité finale du produit et 

les mécanismes de croissance. 

Trois taux de remplissage ont été étudiés et exprimés en pourcentage par rapport au 

volume occupé par la poudre initiale sèche dans le granulateur : 16, 26 et 32%. 

L'influence de ces taux de remplissage a été étudié pour trois valeurs d'agitations 

différentes : 100, 400 et 800 tr/min avec l'émotteur tournant à 3000 tr/min et un temps de 

granulation de 12 minutes. Les valeurs de la vitesse d'agitation ont été considérées 

indicatives pour conditions de faible cisaillement, intermédiaire et haut. Pour des valeurs 

du taux de remplissage supérieures à 32%, on rencontre une limite du granulateur au 

niveau du couple maximal enregistrable lors de rapports L/S supérieurs à 100%. Les 

valeurs, du taux de remplissage, inférieures à 16% n'ont pas été étudiées. La haute vitesse 

d'agitation (800 tr/min) projette du produit sur le couvercle et les parois du granulateur; 

ce phénomène à des effets plus importants pour les faibles taux de remplissage comme le 

16% provoquant le sur mouillage du système.  

L'ensemble des essais sur les différents taux de remplissage nous a permis de tirer les 

conclusions suivantes : 

- pour 100tr/min, les courbes de couple montrent une différence au niveau de l'étape de 

mouillage et de nucléation entre le taux de remplissage de 16 et 32% en temps que le 

taux de remplissage (Ø) de 26% présente un comportement intermédiaire étape de 

mouillage et nucléation similaire avec Ø=16% et étape de croissance similaire avec 

Ø=32%. Les différences peuvent être expliquées par l'effet de l'émotteur qui pour une 

faible vitesse d'agitation, à faibles rapports L/S, peut favoriser l'agglomération en 

améliorant la distribution du liant par la rupture des amas formés. Cet effet est quand 

même dépendant du contact entre l'émotteur et le lit de poudre. On peut imaginer ce 
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contact comme décroissant avec le taux de remplissage. D'une manière qualitative, on 

a démontré l'importance du contact entre l'émotteur et le lit de poudre lors de l'étude 

de la conception de l'émotteur : un émotteur légèrement plus court va favoriser la 

formation des particules plus grandes (même amas).  

- les valeurs du couple en fin de granulation, les distributions granulométriques et la 

taille finale  des particules, sont similaires entre les différents taux de remplissage 

avec une très légère augmentation avec le taux de remplissage. 

- pour 400 tr/min, on n'a pas observé des effets du taux de remplissage sur les courbes 

de couple ou les distributions granulométriques. La même évolution croissante au 

niveau de la taille moyenne finale des granules avec le taux de remplissage est 

observée.  

- pour 800 tr/min,  on observe le sur-mouillage pour le taux de remplissage de 16% 

(aussi observable par une région de plateau plus courte sur les courbes de couple), les 

résultats au niveau de la taille moyenne finale sont similaires pour 26 et 32% avec 

une légère augmentation de la taille avec le taux de remplissage. 

- les mesures de consistance humide montrent des valeurs similaires entre les différents 

taux de remplissage et les différentes vitesses d'agitation (sauf le couple 800 tr/min, 

Ø=16%). 

- les mesures de tenue mécanique, des grains individuels, montrent une augmentation 

de la résistance en passant du taux de remplissage 16 à 26%, puis une légère 

diminution de la résistance en passant de 26 à 32% pour 400 et 800 tr/min et pas 

d'effet pour 100 tr/min. 

 

Au niveau de la vitesse d'agitation, la présence et dimension de l'émotteur et 

géométrie de l'échelle, on a étudié : 

- l'effet de la vitesse d'agitation, avec et sans  émotteur, sur la taille moyenne des 

granules ainsi que l'effet de la présence de l'émotteur sur la cinétique de granulation 

pour une vitesse d'agitation de 800 tr/min. 
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- l’influence de la conception de l'émotteur en utilisant un émotteur légèrement plus 

court sur le bol de 1.9L du Mi-Pro.   

- l’influence de la vitesse d'agitation sur les courbes de couple et la cinétique de 

granulation avec l'émotteur tournant à 3000 tr/min. 

- le cas particulier des vitesses intermédiaires (400 tr/min) pour MCC Avicel 105 et 

MCC Avicel 101. 

- l’influence de la vitesse d'agitation sur la sphéricité et la tenue mécanique des 

granules. 

- l’influence de la taille du bol du réacteur en comparant l'évolution de la taille 

moyenne des granules en fonction de la vitesse d'agitation sur les bols de 0.9 et 1.9L 

du Mi-Pro, influence sur la cinétique de granulation pour la même vitesse en bout de 

pale. 

 

Les points clés qui ressortent  de l'étude de la vitesse d'agitation et la présence et 

dimension de l'émotteur sont : 

- sans émotteur, pour les faibles vitesses d'agitation, la formation des amas  influence la 

granulation avec des pourcentages augmentant de 40 à 60% entre 100 et 400 tr/min. 

Pour des valeurs supérieures, la pale commence à rompre les amas et à 800 tr/min, on 

n'observe pratiquement plus d'amas et le diamètre final est similaire avec ou sans 

émotteur. 

- la cinétique de granulation (évolution des classes caractéristiques et diamètre moyen) 

montre qu’à 800 tr/min, même si la taille finale de granules est similaire, l'émotteur à 

un effet retardateur sur la croissance des granules. 

- la présence de l'émotteur à faible vitesse d'agitation (100 tr/min) va réduire la taille 

finale des granules et augmenter les valeurs de la courbe de couple pour les étapes de 

nucléation et croissance ; ce qui indique une augmentation de la densification de 

granules avec la présence de l'émotteur.   
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- pour une vitesse intermédiaire, l'utilisation d'un émotteur légèrement plus petit qui 

réduit le contact entre l'émotteur et le lit de poudre conduit à des granules d'une taille 

plus importante, moins homogènes. 

- l'augmentation de la vitesse d'agitation va accélérer la croissance et réduire la taille 

finale des granules. 

- l'investigation des courbes de couple permet de reconnaître les différentes étapes de 

granulation. Au niveau de la vitesse de 400 tr/min, on a observé une discontinuité au 

niveau de la nucléation et une chute de la courbe de couple pour la CMC Avicel 105. 

En réalisant le même essai avec la cellulose Avicel 101 (taille moyenne 60µm vs 

20µm pour Avicel 105, même fournisseur, même indice de cristallinité), on observe 

une continuité de la courbe du couple. Ce phénomène peut être relié à la carte de 

régime de nucléation proposé par Hapgood [2003] : une taille plus faible peut donner 

une différence assez grande en terme de temps de pénétration, ce qui peut changer le 

régime de nucléation du régime intermédiaire (conditionné par les paramètres du 

procédé identiques pour les deux essais: même système d'addition de liant, même 

vitesse d'agitation) au régime de nucléation mécanique où la vitesse d'agitation va 

contrôler le processus de nucléation.    

- la sphéricité des granules augmente avec la vitesse d'agitation jusqu' 400 tr/min puis 

décroît au moment où les forces d'impact et de cisaillement provoquent la rupture des 

agglomérats humides. 

- la tenue mécanique des granules à l’état sec augmente avec la vitesse d'agitation d'une 

façon presque linéaire entre  100 et 800 tr/min. Pour des valeurs supérieures  à 800 

tr/min, on observe une légère diminution explicable par la prédominance du 

mécanisme de rupture sur le mécanisme de croissance et consolidation. 

- la comparaison de  la pression d'impact défini par Vonk et al [1997] avec la résistance 

à la traction des granulés humide défini par Rumpf [1958] permet de prédire la vitesse 

d'agitation pour laquelle le mécanisme de rupture va devenir prédominant. 

- D'une façon générale, l'évolution de la taille moyenne avec la vitesse d'agitation est 

similaire pour les deux échelles étudiées du Mi-Pro (0.9 et 1.9L). La vitesse en bout 

 190



Synopsis et Points Clés de L’Etude 
 

de pale donne une bonne approximation pour la taille finale des granules entre les 

échelles. Néanmoins, d'un point de vue cinétique, la croissance des granules pour une 

vitesse en bout de pale donnée est accélérée par la granulation à l'échelle plus petite.   

. 

Le sous-chapitre III-3 traite l'influence des propriétés physico-chimiques du liant sur 

la rhéologie, les mécanismes et cinétiques de croissance, la consistance de la masse 

humide et la résistance mécanique des granules secs et l'influence de la technologie 

(granulation sur le Mi-Pro 1.9L et Diosna 6L). Les liants utilisés (solutions aqueuses de 

PVP et HPMC à différents pourcentages) nous permettent de varier la tension de surface, 

la viscosité et l'angle de contact. Ces caractéristiques ont été regroupées par deux termes : 

le travail d'adhésion et le nombre capillaire visqueux modifié. 

L'influence de la technologie sur les propriétés finales des granules obtenus sur le Mi-Pro 

1.9L et le Diosna 6L a été étudiée pour deux liants avec des propriétés fondamentales 

différentes de notre étude (eau -faible viscosité, grand travail d'adhésion et HPMC 3%- 

grande viscosité, travail d'adhésion plus faible). Le transfert d'échelle a été réalisé en 

gardant le même temps de granulation, le même débit spécifique, le même taux de 

remplissage et l'équivalence de la vitesse a été faite à travers le nombre de Froude ou de 

la vitesse en bout de pale. Néanmoins, des différences restent entre les échelles au niveau 

de la conception et de l'emplacement de l'émotteur et du système d'addition du liant. 

Les différents faits marquants qui ressortent de cette étude d'influence des propriétés des 

solutions liantes sont : 

- le rhéomètre décrit des évolutions similaires pour les différents liants (sauf 

HPMC3%). On a observé, néanmoins, que le pic augmente avec la viscosité de la 

solution (même au niveau des faibles viscosités). Pour la solution la plus visqueuse 

HPMC3%, on a observé le pic le plus grand et un passage différent avec une 

augmentation du couple avec une pente plus grande. Ce fait, indique qu’un sur 

mouillage peut se produire plus facilement avec ce liant ce qui  a été confirmé avec 

des observations morphologiques lors des essais sur le Mi-Pro.   
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- la méthodologie décrite lors de l'exemple type nous a permis de définir la quantité 

optimale de liant pour les différents liants utilisés. D'une façon générale, même un 

faible ajout de polymère (PVP3%) qui ne change pas d'une manière significative la 

viscosité du liant va réduire le nécessaire du liant (de 100% à 83% rapport L/S). Ce 

qui montre que la présence de ces polymères favorise la coalescence des granules. La 

quantité optimale de liant reste constante à environ 83% rapport L/S pour des 

viscosités entre 1.3 mPa.s et 8.1 mPa.s, mais diminue à 77% pour une viscosité de 

118 mPa.s. 

- pour les solutions polymériques aqueuses, la fin de la région de plateau (ou zone de 

croissance) correspond assez bien à la quantité optimale de liant. Les courbes de 

couple nous ont permis de retrouver les différentes étapes de granulation et un bon 

contrôle du procédé. Les distributions de tailles pour les différents liants sont 

similaires. 

- pour Ca* inférieur à 0.8, on a observé que le travail d’adhésion est le paramètre 

dominant. Une réduction du travail d’adhésion réduit la tenue mécanique des granulés 

secs, ralentit la croissance des granules et réduit légèrement la taille des granules. 

- pour Ca* supérieur ou égal a 0.8, la viscosité est le paramètre dominant. La réduction 

de la viscosité ralentit la croissance des granules, réduit la taille des granules et la 

consistance humide. 

- au niveau de la résistance mécanique des granulés secs, on a observé un effet de seuil 

au niveau de Ca* <0.8 pour lequel une chute de la résistance apparaît avec 

l'augmentation de la Ca* 

- une relation linéaire peut être établie entre la constante cinétique « K » et le travail 

d'adhésion pour les faibles viscosités. Une relation similaire peut être trouvée pour les 

grandes viscosités, mais le nombre limité des solutions visqueuses investiguées ne 

nous permet pas de conclure d'une manière définitive. 

- Benali et al [2006] ont observé une limite similaire entre la prédominance des forces 

interfaciales respectivement visqueuses pour un nombre capillaire modifié autour de 
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l'unité. Cette différence peut être reliée à une viscosité plus faible nécessaire pour 

agglomérer les particules plus fines présentes dans notre étude.  

- les distributions granulométriques sur le Diosna sont similaires entre elles et 

différentes de celles qui sont obtenues sur le Mi-Pro pour les deux liants et les deux 

règles de transfert d'échelle employés. La vitesse en bout de pale permet d'obtenir des 

tailles moyennes finales plus proches de celles qui sont obtenues sur le Mi-Pro. La 

résistance mécanique des granulés secs diminue avec l'augmentation de l'échelle.  

 

Dans le sous-chapitre III-4, on a investigué l'effet de la formulation lors de la 

granulation des mélanges des poudres hydro-solubles / hydro-insolubles. Une 

caractérisation des matières de départ (CMC Avicel 105 et Lactose monohydrate) est 

réalisée du point de vue rhéologique et morphologique. Les isothermes de sorption 

montrent des différences entre ces deux matériaux pour l'interaction avec l'eau : la 

cellulose présente une grande affinité pour l'eau étant capable d’adsorber de grandes 

quantités jusqu'au moment que de l'eau libre en surface peut être identifiée. D'autre part, 

le lactose adsorbe moins de liquide et par conséquent présente plus rapidement du liquide 

en surface qui pourra favoriser le pontage entre les particules lors de l'agglomération. La 

CMC est insoluble avec une grande affinité pour l'eau et le lactose est soluble avec une 

faible affinité. De ce point de vue, il est raisonnable de s'attendre à ce que la CMC 

contrôle la distribution du liant dans le lit des particules lors des opérations 

d'agglomération des mélanges « CMC-lactose ».  

La caractérisation rhéologique sur le MTR des matières premières confirme l'affinité plus 

grande de la CMC pour l'eau et offre une information supplémentaire sous la forme du 

pic de couple qui présente une cohésion beaucoup plus grande de la masse humide de 

CMC par rapport à la masse humide de lactose.  

Au niveau de la granulation de matières premières dans le Mi-Pro, les résultats pour la 

CMC sont connus de l'exemple type avec une quantité optimale de liant pour un rapport 

L/S de 100%. Pour le lactose, on a rencontré des difficultés similaires à celles rencontrées 

par Mackaplow et al. [2001] avec le lactose humide présentant des grandes 

accumulations sur les parois du granulateur. En arrêtant l'essai et enlevant le dépôt de 
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matière présent sur les parois, on peut obtenir des granules pour un rapport L/S optimal 

d'environ 13%. Cependant, notre avis est que la granulation de lactose sur le Mi-Pro 

pourra être améliorée avec un ajout de toute la quantité optimale de liant en début de 

granulation et à faible vitesse d'agitation. Cela permettra d'obtenir une masse humide 

homogène qui, dans une étape suivante avec une vitesse d'agitation plus grande, pourra 

être dispersée et consolidée en granules.   

La caractérisation rhéologique des mélanges sur le MTR a montré une dépendance 

linéaire et croissante entre le taux de CMC dans le mélange et le nécessaire de liant et la 

cohésion de la masse humide au niveau du pic. Ceci a été confirmé pour les deux types de 

CMC disponibles (Avicel 101 et Avicel 105) montrant que ce phénomène est 

indépendant de la taille de la CMC. À partir de ces essais, on a choisi deux mélanges de 

CMC Avicel 105 (D50=20µm) et lactose (D50=60µm) pour une caractérisation plus 

détaillée : avec 7 parts lactose et 3 parts cellulose (Lactose/MCC 7/3) et avec 3 parts 

lactose et 7 parts cellulose (Lactose/MCC 3/7). La granulation de ces deux mélanges avec 

de l'eau a été caractérisée sur deux échelles : le Mi-Pro 1.9L et le Diosna 6L. 

 

L'ensemble de nos résultats nous permet de tirer les conclusions suivantes : 

- les courbes de couple ont montré un bon contrôle du processus avec des quantités 

optimales de liant proches de la fin de la zone de croissance. 

- un mécanisme de croissance est proposé : le lactose est vu comme le promoteur de 

l'étape de nucléation en favorisant le pontage entre les particules initiales et la 

coalescence entre les nucleus. Ceci, avec la solubilisation progressive des fines 

particules de lactose, on observe des agglomérats qui semblent constitués 

majoritairement des particules de CMC et qui, avec l'augmentation du rapport L/S, 

vont coalescer avec des particules de lactose de taille plus importante.  

- l'étendue du plateau (et de l'étape de mouillage observables sur les courbes de couple 

obtenus dans le Mi-Pro) diminue avec l'augmentation du taux de lactose dans les 

mélanges. Ce qui est aussi confirmé au niveau des cinétiques de granulation : 

l'augmentation du pourcentage de lactose accélère le phénomène d'agglomération.   
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- la taille des granules augmente avec le pourcentage de lactose en mélange, ce qui peut 

être expliqué par la plus grande taille des particules initiales du lactose ainsi que par 

le phénomène de retraississement observé lors du séchage pour les particules de CMC 

(Kleinebudde [1994]). 

- la consistance humide augmente faiblement entre les deux mélanges étudiés avec le 

contenu en CMC dans les mélanges binaires, tandis que la résistance des granulés 

secs augmente d'une façon plus importante avec le contenu de CMC dans les 

mélanges. 

- comme sur les essais portant sur l'influence des propriétés de liant, les distributions 

granulométriques dépendent essentiellement de l'échelle utilisée. Dans le cas de la 

granulation de mélanges « CMC – lactose »,  les différences entre les échelles en 

terme d’addition de liant ont comme résultat une quantité plus grande des amas et des 

fines particules en fin de granulation.  

- en terme de taille des granules, la vitesse en bout de pale permet d'obtenir une taille 

moyenne plus proche de celle obtenue dans le Mi-Pro. Pourtant, du point de vue de la 

résistance des granulés secs, le nombre de Froude constant permet d'obtenir un 

meilleur accord.  
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Conclusions 

Dans cette étude, les mécanismes et les cinétiques de croissance intervenant dans la 

granulation humide en mélangeurs à haut taux de cisaillement ont été étudiés. Ces aspects 

ont été reliés au profil du couple de mélange granulaire (comme outil de suivi). 

Nous avons présenté un exemple type de granulation humide et l’on a défini :  

- la méthodologie nous permettant de faire le lien entre les mécanismes et cinétiques de 

croissance et les courbes de couple enregistrés,  

- la quantité optimale de liant pour un couple poudre-liant,  

- la caractérisation du point de vue des propriétés morphologiques, rhéologiques et 

mécaniques les granules. 

Les bases émises dans l'exemple type ont été appliquées en suite pour la caractérisation 

de l'influence des variables opératoires, de la nature et des propriétés physico-chimiques 

du liant, et enfin de la formulation sur des mélanges binaires poudre hydro-soluble / 

hydro-insoluble.  

L'étude sur l'influence des variables opératoires a permis d’identifier les conditions qui 

favorisent ou non l'agglomération et aussi de quantifier leur effet sur les propriétés finales 

de granules.  

Nos essais portant sur l'influence des propriétés physico-chimiques des solutions nous 

permettent d'identifier deux situations en fonction de la prédominance des forces 

statiques ou des forces visqueuses.  Le nombre capillaire visqueux Ca* permet de définir 

une limite pour une valeur de (0.8). Pour des valeurs inférieures à 0.8, les forces statiques 

représentés par le travail d’adhésion sont dominantes et influent sur la cinétique de 

croissance et la résistance des granulés secs. Pour des valeurs supérieures ou égales à 0.8, 
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c’est les forces visqueuses qui sont dominantes et influent sur la cinétique de croissance, 

la taille des particules et la résistance humide des agglomérats. 

Enfin la compréhension des mécanismes de croissance lors de la granulation humide des 

mélanges binaires des poudres hydro-solubles et hydro-insolubles peut être amélioré par 

la caractérisation rhéologique ainsi que par l'utilisation des isothermes de sorption. Un 

mécanisme de croissance a été proposé et validé par des observations microscopiques. 

 

Perspectives 
Comme perspective pour ce travail, les pistes intéressantes peuvent être séquencées 

comme suite: 

- Étendre et généraliser à d’autres substrats solides les liens entre courbes de couple, 

cinétique de croissance, rhéologie et résistance mécanique des granulés secs présentés 

dans cette étude. 

- Étude et influence de l’étape de séchage post granulation humide et son impact sur les 

modifications structurelles des granules secs obtenus. Ce qui permettra de lier 

l’évolution des structures granulaires (arrangements au sein du grain, porosité, 

fractures, …) aux tenues mécaniques observées. 

- Reprendre les données expérimentales développées dans cette étude avec une 

modélisation de type bilans de populations. Aspect que nous avons abordé lors de nos 

travaux de recherche mais que nous n’avons pas présenté dans ce manuscrit. 

- Regarder la répartition des phases liquides liantes dans la masse granulaire humide 

avec d’autres moyens d’investigation que le profil rhéologique et observations 

microscopiques (sondes infrarouge, etc.) 
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Conclusions 

This thesis presented the mechanisms and growth kinetics occurring during wet  

granulation in high shear mixers. These aspects were related to changes in the torque 

curve (as monitoring tool).  

The presented typical wet granulation example allowed defining: 

- the methodology allowing to link granulation mechanisms, granule growth kinetics 

and recorded torque curves, 

- the optimum binder requirement for a given powder-binder couple, 

- the characterization from a morphological, rheological and mechanical point of view 

of the granules. 

On the basis of the typical example the same methodology has been applied for 

subsequent granulation runs investigating the influence of operating conditions, binder 

nature and physico-chemical properties and formulation on binary mixtures of water 

soluble / water insoluble powders. 

The study of operating conditions allowed identifying conditions that favor 

agglomeration or not and quantifying the effect on end granule properties. 

The experiments carried out on the influence of binder nature and physico-chemical 

properties describe two situations as a function of static or viscous forces dominance. The 

modified viscous capillary number Ca* shows a boundary for a value of 0.8. For values 

below 0.8 the static forces represented by the work of adhesion are dominant influencing 

the granule growth kinetics and the dry granule strength. For values above 0.8 the viscous 

forces are dominant influencing the granule growth kinetics, granule size and wet mass 

consistency. 
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Finally the understanding of the growth mechanisms occurring for the wet granulation of 

water soluble / water insoluble powder mixtures can be increased by rheological 

characterization and water sorption isotherms of the starting materials. A growth 

mechanism has been proposed and validated by microscope analysis. 

 

Perspectives 

Interesting perspectives for this thesis include: 

- Expanding the study of links between torque curves, granule growth kinetics, 

rheology and dry granule strength to other particular solids.  

- Studying the influence of the granule drying stage and its impact on the structural 

modification of the dry granules. This would allow linking the evolution of the 

granular structure (inner structure, porosity, fractures etc) to the recorded granule 

strengths. 

- Investigating the experimental results presented in this study by population balance 

modeling. Aspect approached during this thesis but not presented in the paper. 

- The study of binder liquid distributions in the wet mass by other means than just 

rheological characterization and microscope observations (near infrared analysis etc) 
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Appendix I. Dry Binder Datasheets 

1. Hydroxy-propyl-methyl-cellulose (HPMC) - Sigma Aldrich 

 

 

Figure 1. HPMC structure 

Product Number: H8384 

Product Brand: SIGMA  

CAS Number 9004-65-3    

Appearance (Color): White to Off-White  

Appearance (Form): Powder  

Solubility: 50 mg/ml 

Solubility (Turbidity): Colorless to Faint Yellow at 25 G plus 500 ml of water Solubility 

(Color): Clear to Slightly Hazy  

Apparent Viscosity: 40 - 60 cps   2% in water at 20 deg C 

Preparation Instructions: 
 
It is very important to thoroughly disperse the particles in water with agitation before 
they will dissolve. Otherwise, they will lump and form a gelatinous membrane around the 
internal particles, preventing them from wetting completely. There are four dispersion 
techniques commonly used to prepare solutions of hydroxypropylmethylcellulose: 
dispersion in hot water, dry blending, dispersion in non-solvent medium, and dispersion 
of surface-treated powders. (The last method is only for surface-treated 
powders). 
Dispersion in hot water: 
1. Heat approximately 1/3 the required volume of water to at least 90 °C. 
2. Add the powder to the heated water with stirring or agitation. 
3. Agitate the mixture until the particles are thoroughly wetted and evenly dispersed. 
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4. Add the remainder of the water (cold water) to lower the temperature of the dispersion. 
As the product cools, it will reach a temperature at which it becomes water soluble. It will 
then begin to hydrate and dissolve, increasing the viscosity of the solution. 
5. Continue agitation for at least 30 minutes after the proper temperature is reached for 
solubility. The solution is now ready to use. 
 

2.Poly-vinyl-pirrolidone (PVP) - Sigma-Aldrich  

 

Figure 2. PVP structure 

Product Name: Polyvinylpyrrolidone (average mol wt 10,000)  

Product Number: PVP10  

Product Brand: SIAL 

CAS Number: 9003-39-8 

Appearance: White To Off-White  

Powder Solubility: Clear Faint to Light Yellow Solution at 100mg/ml in Water Water By 

Karl Fischer: NMT 5.0% 

Ir Spectrum: Consistent With Structure 

Nitrogen: 11.5 To 12.8% 

 Ph Test: 3 To 7 (5% Solution)  

K Value: 13 To 19  

Recommended Retest: 4 Years  

 
 

 

 202



Appendices 

Appendix II. Methods 

Appendix II.1 Contact Angle Measurement for MCC Avicel 105 

 

The wettability of a powder by a liquid binder can be described by the surface tension or 

the contact angle between the powder and the liquid binder. The Washburn method is 

widely used technique allowing the determination of the contact angle for porous solids 

and powder beds (Goldszal [1], Vu[2], Galet [3]). 

Washburn analyzed the capillarity driven Poiseuille flow of liquid and neglecting the 

effects due to initial transient flow regime and the flow of displaced air derived the 

differential equation (1) for which the solution is given by equation 2. 

cosθ
4l
γ

μ
R

dt
dl tube=            (1) 

2μ
γcosθR

t
l tube

2

=          (2) 

- l : capillary rise length (m) 

- Rtube : the tube radius (m) 

- μ : liquid binder viscosity (Pa.s) 

- γ : liquid surface tension (mN/m) 

- θ : contact angle (°) 

Plotting the squared length of liquid binder penetration in the bed against time gives a 

straight line. The slope of this linear evolution depends on the liquid binder properties 

(viscosity, surface tension), the radius of the capillary tube and the contact angle between 

powder and liquid binder. The space between the particles of the powder bed can be 

written as "X" capillaries with a Rc radius and by knowing the real density of the binder 

(ρL) the following equation can be written: 

πXRρ
Ml

c
2

L

L=          (3) 
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ML: the liquid mass (kg) 

X: number of capillaries (-) 

Rc : capillary radius (m) 

ρL: liquid density (kg/m3) 

Thus the modified Washburn equation can be written as: 

cosθ
μ
γρC

2μ
cosθπXγρR

t
M 2

L
w

222
L

5
tube

2
L ==       (4) 

Where Cw is a constant dependant only on powder bed "geometry" and can be determined 

determined using a  liquid known to fully wet the powder (of known ρL and η and with 

cosθ=1). Usually alkans are used in our case hexane was used and for the microcristalline 

cellulose Avicel 105 a value of 1.505·10-5 has been obtained. The equipment used was a 

ILMS tensiometer produced by GBX at 25°C. Reproducibility was ensured by preparing 

each cell (cyclindrical tube) with the same amount of powder and submitting it to 

centrifugation at 3500 rpm for 10 minutes in order to obtain similar packing of the 

particles.  Figures 1 and 2 show the values of contact angles for the different studied 

binder solutions.  

 

Figure 1. Contact angle values for MCC Avicel 105 and various percentages of PVP 

binder solutions 
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Figure 2. Contact angle values for MCC Avicel 105 and various percentages of HPMC 

binder solutions 
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Appendix II. Methods 

Appendix II.2 Viscosity Determination 

 

The viscosity of the binder solutions used was determined on a hake Rheostress 600 

rheometer. A rotating cone and plate rheometer was used for the viscosity measurements 

as it allowed good precision for low as well as higher viscosity liquids. The cone plate 

rheometer has a diameter of 35mm, a 1° cone angle and a 0.054 mm truncation (Figure 

1).  

Viscosity was determined at various shear rates (with the rotor turning between 200 and 

2000 rpm) and at a temperature of 25°C. For all binders except the HPMC 3% solution a 

mean value has been calculated as the viscosity evolution has been found to be 

independent of shear rate. For HPMC 3% solution the value at 1047 rpm has been 

retained for the calculation of the modified viscous capillary number. 

 

 
Figure 1. The Haake Rheostress rheometer 

 

 

The shear stress can be written as:: 

dd MZτ ⋅=           (1) 

Md: torque (N.m)  
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Z : stress factor (m-3) 

The stress factor Z is calculated as: 

3
kRπ2

3Z
⋅⋅

=           (2) 

Rk: the cone radius. 

The shear rate is proportionally linked to the angular velocity and thus speed and a shear 

factor: 

ΩM  γ ⋅=
⋅

 

Ω: the angular velocity,  calculated as (2π/60)n where n is the speed of the rotor 

M: shear factor, calculated as 1/α where α is the cone angle (rad-1). 
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Appendix II.3 Flow Function Determination 

 

This study has been carried out on the shear cell module of the Freeman FT4 powder 

rheometer. Powders can flow like liquids which allow a certain ease in manipulation, 

continuous classification and dry mixing however internal friction and cohesion forces 

between particles can resist flow.  

The shear cell measures rheological properties of powders at low flow rates under various 

consolidating pressures. There are two phases involved in the shear method: 1. 

consolidation and pre shear and 2. shear analysis.  

The failure of the sample depends on its consolidation. Consolidation and pre-shear  

consists of shearing the sample under a maximal normal stress. Once steady state flow 

(constant shear force) has been achieved the initial normal load is removed.  

The second phase consists of applying a smaller normal load. Shear travel resumes and 

the peak shear force corresponding to the shear normal load is noted. This step is repeated 

a number of times with the same consolidation load and increasing normal loads (σ1,2,3) 

as described by Schwedes [1]. Figure 1 shows an example on a similar geometry to the 

Freeman FT4 (the Schulze ring shear cell). Jenike [2] offers a protocol allowing us to 

chose the maximum consolidation normal loads as well as the normal loads for the shear 

tests.  

example of data acquisition 

0

0,1

0,2

0,3

0,4

0,5

0,6

0 200 400 600 800

Time 

Preshear

Shear

Figure 1. Example of procedure to get a yield locus from a Schulze ring shear cell 
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Inspired by this protocol Table 1 gives the consolidation loads as well as the normal loads 

retained in our study. Plotting the yield locus (τ=f(σ1,2,3), Figure 2) allows us to determine 

the unconfined yield strength (σc, Mohr circle going through the origin and tangent to the 

yield locus, as described by Schulze [3]) and the consolidation stress (σ1, obtained by 

drawing the largest Mohr circle tangent to the yield locus).  Obtaining different yield loci 

for different consolidation loads allows the drawing of flow functions defined as ffc=σc 

/σ1  for a material. Tables 2,3,4 and 5 give the obtained unconfined yield strength and 

consolidation stresses obtained for different consolidation loads for the studied powders. 

Similar to the classification used by Jenike [4] flow behavior can be defined as: 

  not flowing for ffc<1 

  very cohesive for 1<ffc<2 

  cohesive for 2<ffc<4  

  easy flowing for 4<ffc<10 

  free flowing for 10<ffc 

 

 

 

Figure 2. Example of yield locus from Bimbenet [5] 
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Consolidation Load (kPa) Normal Load (kPa) 
0.5 
0.8 
1.1 
1.4 

 
 

2 
1.6 
1 

1.6 
2.2 
2.8 

4 

3.2 
2 

3.2 
4.4 
5.6 

8 

6.4 
4 

6.4 
8.8 
11.2 

16 

12.8 

Table1. Applied consolidation and normal loads 

 

Powder σc (kPa) σ1 (kPa) Cohesion 
(kPa) ffc =σ1/σc 

αLactose monohydrate 1,97 4,59 0,61 2,33 

MCC Avicel 101 1,45 4,44 0,44 3,05 

MCC Avicel 105 2,30 5,22 0,65 2,27 

Table 2. Mechanical characterization for a consolidation load of 2 kPa 

  

Powder σc (kPa) σ1 (kPa) Cohesion 
(kPa) ffc =σ1/σc 

αLactose monohydrate 2,807 9,123 0,829 3,250 

MCC Avicel 101 1,324 8,714 0,380 6,581 

MCC Avicel 105 3,426 10,181 0,952 2,972 

Table 3. Mechanical characterization for a consolidation load of 4 kPa 
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Powder σc (kPa) σ1 (kPa) Cohesion 
(kPa) ffc =σ1/σc 

αLactose monohydrate 5,150 17,717 1,541 3,440 
MCC Avicel 101 2,432 17,102 0,704 7,032 
MCC Avicel 105 6,117 19,237 1,750 3,145 

Table 4. Mechanical characterization for a consolidation load of 8 kPa 

 

Powder σc (kPa) σ1 (kPa) Cohesion 
(kPa) ffc =σ1/σc 

αLactose monohydrate 7,789 34,753 2,279 4,461 

MCC Avicel 101 4,373 35,099 1,226 8,026 

MCC Avicel 105 11,185 37,529 3,199 3,355 

Table 5. Mechanical characterization for a consolidation load of 16 kPa 

 

References 

[1] J. Schwedes, Measurement of flow properties of bulk solids, Powder Technol. 88 (1996) 285-290  

[2] The institution of chemical engineers, Standard shear testing technique for particulate solids using the 
shear cell, IchemE (1989)  

[3] D. Schulze, Powders and bulk solids : behavior, characterization, storage and flow, Springer Berlin 
Heidelberg (2008)  

[4] A.W. Jenike, Storage and flow of solids, (1964/1980) Bull No. 123, 20th Printing revised 1980, Univ of 
Utah, Salt Lake City 

[5] J.-J. Bimbenet, M. Loncin, Bases du génie des procédés alimentaires, (1995) 

 

 

 

 

 

 

 

 211



Appendices 

Appendix III Roundness Curves in Histogramms 

 

The following figures present the distributions as histogramms for the roundness 

evolutions shown in  represented in Chapter III.2 Influence of Operating Conditions and 

Equipment Geometry specifically Figures 7 (Roundness distributions by number obtained 

for the studied fill ratios at an impeller speed of 400 rpm for the granulation of MCC 

Avicel 105 with ultra-pure water)   and 19 (Roundness distributions by number as a 

function of impeller speed for the granulation of MCC Avicel 105 with ultra-pure water). 

 
Figure 1. Roundness distribution by number obtained for a fill ratio of 16% at an 

impeller speed of 400 rpm for the granulation of MCC Avicel 105 with ultra-pure water 
 

 
Figure 2. Roundness distribution by number obtained for a fill ratio of 26% at an 

impeller speed of 400 rpm for the granulation of MCC Avicel 105 with ultra-pure water 
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Figure 3. Roundness distribution by number obtained for a fill ratio of 32% at an 

impeller speed of 400 rpm for the granulation of MCC Avicel 105 with ultra-pure water 
 

 
Figure 4. Roundness distribution by number obtained for a fill ratio of 26% at an 

impeller speed of 100 rpm for the granulation of MCC Avicel 105 with ultra-pure water 
 

 
Figure 5. Roundness distribution by number obtained for a fill ratio of 26% at an 

impeller speed of 260 rpm for the granulation of MCC Avicel 105 with ultra-pure water 
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Figure 6. Roundness distribution by number obtained for a fill ratio of 26% at an 

impeller speed of 550 rpm for the granulation of MCC Avicel 105 with ultra-pure water 
 

 
Figure 7. Roundness distribution by number obtained for a fill ratio of 26% at an 

impeller speed of 800 rpm for the granulation of MCC Avicel 105 with ultra-pure water 
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List of Symbols 
 

a - acceleration of the granule       (m/s2) 

aw - the water activity        (-) 

A' - the area flux of powder traversing the spray zone   (m2/s) 

A - cross sectional area of the granule     (m2) 

Ag - area of the granules       (m2) 

c - flaw size in assembly       (m) 

C - coordination number depending on the particle shape    (-) 

      (C=6 for a perfect sphere) 

CrI - cristallinity index       (%) 

Cw - constant         (-) 

D - impeller diameter        (m) 

Dv - diameter of the vessel       (m) 

Dg - granule diameter        (m) 

di - mean diameter of size interval i       (m) 

dd  - the droplet diameter       (m) 

dp - particle diameter        (m) 

dpi - initial particle diameter       (m) 

dpm - mean diameter        (m)  

e - coefficient of restitution       (-) 

E - Young's modulus         (Pa) 

El
* - effective Young's modulus      (Pa) 

fi - particle mass fraction of size interval i     (-) 

ffc - flow function         (-) 

Fa - acceleration force        (N) 

F - force         (N) 

g  -  gravitational acceleration constant.      (m/s2) 

h - thickness of the liquid surface layer     (m) 

ha - characteristic height of surface asperities     (m) 
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hb - height of the blade       (m) 

H - moisture content        (%) 

Hr -Hausner Ratio        (-) 

Ic - Carr index         (-) 

I002, Iam - intensity peaks on the X-ray diffraction curves   (-) 

K - growth kinetic constant        (-) 

l – capillary rise length        (m) 

L - distance between two particles      (m) 

L/S Ratio - liquid to solid ratio      (%) 

m' - harmonic mean granule mass      (kg) 

m - granule mass        (kg) 

M - shear factor        (rad-1) 

Md - torque         (N.m) 

Mi - initial dry powder mass       (kg) 

ML - liquid mass        (kg) 

n - number of blades on the impeller      (-) 

N - impeller speed         (rpm) 

p  - partial pressure of water vapor in the mixture    (Pa) 

p0  - saturated vapor pressure of water     (Pa) 

P - power consumption       (W) 

Pg - perimeter of the particles       (m) 

q - mass of liquid added per unit of time     (kg/s) 

r - radius of the impeller        (m) 

rd - radius of the drop footprint on the surface    (m) 

Rc - capilllary radius        (m) 

Rg - radius of the granule       (m) 

RH  - relative humidity of the sample      (-) 

Rk - cone radius        (m)  

Rpore - effective pore radius based on cylindrical pores   (m) 

Rtube - tube radius       (m) 

S - the liquid saturation       (%) 

 216



List of Symbols 
 
 
t - process time        (s) 

tp - penetration time        (s) 

tc - circulation time        (s) 

TR - fill ratio         (%) 

U - speed of the particles       (m/s) 

U0 - collision velocity        (m/s) 

V - volume loaded with particles      (m3) 

V* - total volume of the mixer      (m3) 

V0 - total drop volume        (m3) 
' - volumetric spray rate       (m3/s) V

WCS - work of cohesion for the solid       (N/m) 

WCL - work of cohesion for the liquid     (N/m) 

Wa - work of adhesion between liquid and solid    (N/m) 

X – number of capillaries       (-) 

Xfines
0- initial ratio of fine particles      (%) 

Xfines  - the ratio of fine particles at a given L/S ratio    (%) 

Z – stress factor        (m-3) 

 

Greek Symbols 

 

α - cone angle         (rad) 

γ - liquid surface free energy       (N/m) 

Γc - the fracture surface energy      (N/m) 

Γ - equilibrium surface energy      (N/m) 

∆ - displacement        (m) 

Ω - angular velocity         (s-1) 

ε - inter-particular porosity       (-) 

θ - contact angle        (°) 

λ - the spreading coefficient       (N/m) 

μ - liquid viscosity        (Pa.s) 

μ* - wet mass consistency       (N.m/kg) 
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ν0 - relative velocity between two granules     (m/s) 

υ - Poisson's ratio        (-) 

ρbulk - solid bulk density       (kg/ m3) 

ρtapped - solid tapped density       (kg/ m3) 

ρs - solid density        (kg/ m3) 

ρl - liquid density        (kg/ m3) 

ρw - the wet mass bulk density      (kg/ m3) 

ρ - granule density        (kg/ m3) 

σ - wet agglomerate strength       (Pa) 

σg - dry agglomerate strength       (Pa) 

σ1 - unconfined yield strength      (Pa) 

σc - consolidation stress       (Pa) 

σimpact  - impact pressure       (Pa) 

ø - solid fraction of the granular assembly     (%) 

χ - the surface porosity       (%) 

ω - impeller tip speed        (m/s) 

ψa - adimmensionnal spray flux      (-) 

τh - adimmensionnal penetration time      (-) 

τd - shear stress        (Pa) 

 

Dimensionless Groups 

 

Cavis - viscous capillary number 

Ca* - modified viscous capillary number  

Fr - Froude number 

Stv - viscous Stokes number 

Stv
* - critical viscous Stokes number 

Stdef - Stokes deformation number 

Re - Reynolds number 

RSV - relative swept volume
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Résumé 
 

Résumé 

Cette étude est dédiée à la compréhension du processus de granulation humide en 

mélangeurs à haut taux de cisaillement. Une étude systémique et méthodologique a été 

menée permettant l'investigation de l'influence des paramètres opératoires, de la 

technologie employée et des propriétés physico-chimiques des matières premières. Cette 

investigation est réalisé a travers des techniques de caractérisation morphologiques, 

rhéologiques et mécaniques. En reliant les courbes de couple enregistrés lors de la 

granulation humide à la cinétique de croissance des granules, aux caractérisations 

microscopiques et aux propriétés mécaniques des granules la prédiction du comportement 

lors de la granulation devient possible. La caractérisation des propriétés mécaniques des 

granules a été étudié à deux échelles: à l'échelle du milieu humide la consistance a été 

caractérisé par un rheometre à torque  et à l'échelle de l'agglomérat sec la résistance 

mécanique a été caractérisé par des mesures de compression directe des grains 

individuelles. Cette approche permet d'avoir des informations complémentaires 

permettant de mieux décrire l'évolution des courbes de couple dépendantes de propriétés 

de la masse humide et la compétition entre les forces interfaciales et visqueuses 

conditionnant la qualité des grains secs résultés.  Les paramètres investigués par cette 

approche sont l'effet du taux de remplissage du réacteur, l'effet de la vitesse d'agitation, 

de la présence et de la conception de l'émotteur, de la conception du réacteur employé, 

des propriétés physico-chimiques de la solution liante et des propriétés des mélanges 

binaires des poudres hydro-solubles / hydro-insolubles.  

 

Mots clés: Granulation humide, haut taux de cisaillement, mécanismes et cinétiques de 

croissance, rhéologie, résistance des granules, excipients pharmaceutiques 
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Abstract 
 

Abstract 

This study is dedicated to the understanding of the wet granulation process in high shear 

mixers. A systematic study has been carried out that allows the investigation of the 

influence of operating conditions, technology and physico-chemical properties of the 

starting materials. This investigation is achieved by morphological, rheological and 

mechanical characterization methods. By linking recorded torque curves during the 

granulation process to granule growth kinetics, microscope characterizations and to the 

end-granule properties granulation outcome prediction becomes possible. The 

characterization of the mechanical properties has been done at two scales: at the granule 

bed scale the bulk wet mass consistency has been determined on a mixer torque 

rheometer, at the granule scale single dry granule direct compression tests were carried 

out. This approach gives complementary information allowing  better description of the 

torque curves directly related to the wet mass properties and the competition between 

static and viscous forces conditioning the dry end granule quality. The factors 

investigated in this study are: the effect of fill ratio, impeller speed, chopper presence and 

design, mixer design, binder physico-chemical properties and formulation properties for 

binary water-soluble / water insoluble powder mixtures. 

 

Keywords: wet granulation, high shear mixers, growth mechanisms and kinetics, 

rheology, granule strength, pharmaceutical excipients  
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