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RESUMÉ

Titre : Analyse et modélisation des données à haute fréquence sur les marchés financiers en utilisant
les processus de Hawkes et les réseaux de neurones

Résumé : Cette thèse est consacrée à l’étude de la microstructure du marché dans les marchés
électroniques, en mettant l’accent sur deux sujets clés. Le premier sujet concerne la construction de
deux modèles pour les événements de Niveau 1 dans le carnet d’ordres, en utilisant des approches
basées sur des modèles statistiques. Le premier modèle consiste en un processus de Hawkes non-
linéaire pour modéliser la dynamique du bid-ask spread, appelé le modèle "State-Dependent Spread
Hawkes". En intégrant les tailles des sauts du spread et sa valeur dans la fonction d’intensité, ce
modèle est capable de capturer diverses propriétés statistiques du spread. Le second modèle, appelé
"Hawkes process with shot noise", est utilisé pour séparer les sources de corrélation endogènes et
exogènes entre deux prix d’actifs. Pour ce faire, ce modèle suppose l’existence d’un processus latent
(shot noise), représentant des comportements d’agents spécifiques non directement observables sur
le marché. Théoriquement, des théorèmes de limite sont démontrés et dans la pratique, l’estimation
est facilitée par une technique d’estimation non paramétrique.
Le second sujet concerne l’analyse et la caractérisation des comportements des agents sur le marché
financier, en utilisant des approches basées sur des réseaux neuronaux profonds. Ce sujet comprend
deux tâches. La première tâche consiste à classifier les agents en fonction de leurs ordres passés, grâce
à une approche d’apprentissage supervisé. La deuxième tâche vise à apprendre la représentation
des comportements des agents, en utilisant un modèle d’apprentissage auto-supervisé fondé sur
la triplet loss. Ces représentations apprises nous permettent d’appliquer l’algorithme de clustering
K-means pour identifier des types de comportements distincts au sein de chaque groupe et ainsi
analyser les comportements des agents.

Mots clés : Microstructure du marché, Carnet d’ordres, Processus de Hawkes, Réseaux neuronaux

v





ABSTRACT

Title: Analysis and modeling of high-frequency data in financial markets using Hawkes processes
and neural networks

Abstract: This thesis is devoted to the study of market microstructure in electronic markets,
focusing on two key topics. The first topic concerns the construction of two models for Level 1
events in Limit Order Book, using model-driven approaches. The first model is a non-linear Hawkes
process for modeling spread dynamics, referred to as the "State-Dependent Spread Hawkes" model.
This model, integrating spread jump sizes and spread state into intensity, can capture a range of
statistical properties of the spread. The second model, called the "Hawkes process with shot noise"
model, is used to disentangle the endogenous and exogenous sources of correlation between two
asset prices. To do so, this model assumes the existence of a latent shot noise process, representing
specific agent behaviors not directly observable in the market. Theoretically, limit theorems are
demonstrated and in practice, the estimation is facilitated through a non-parametric technique.
The second topic involves analysis and characterization of agent behaviors in the financial market,
by employing data-driven approaches that relies on deep neural networks. This topic includes
two tasks. The first task is to classify agents, based on their placed orders, through a supervised
learning approach. The second task is to learn the representation of agents’ behaviors, using a
self-supervised learning model based on Triplet loss. These learning representations allow us to
apply the K-means clustering algorithm to identify distinct behavior types within each cluster and
therefore analyze the behaviors of agents.

Keywords: Market microstructure, Limit Order Book, Hawkes processes, Neural networks
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INTRODUCTION GÉNÉRALE

I - Contexte et motivations

Un marché financier est un système complexe qui est composé de nombreux éléments en interaction :
il comprend des investisseurs individuels et institutionnels, des entreprises, des gouvernements et
des régulateurs. Pendant longtemps, la modélisation de la dynamique des marchés financiers, en
particulier l’évolution des prix, a été un défi fondamental pour les mathématiques financières. La
capacité à modéliser avec précision et prédire le comportement du marché est cruciale pour élaborer
des stratégies d’investissement et gérer les risques.

À l’échelle macroscopique, les processus de prix apparaissent comme des trajectoires échantillonnées
à partir de modèles classiques en mathématiques financières, tels que le mouvement brownien
(voir Fig. 1a). Cependant, lorsque l’on se penche sur l’échelle microscopique et que l’on examine
les mouvements de prix sur de très courtes périodes de temps (par exemple, des secondes), le
comportement des processus financiers devient assez différent. Ce comportement distinct est illustré
dans la Figure 1.1b, qui se focalise sur un processus échantillonné à 90 secondes. En raison de la
structure des ticks, le prix prend des valeurs discrètes et se manifeste sous forme de processus
de sauts. Ce phénomène est appelé l’effet de microstructure. Alors que l’échelle macroscopique de
la modélisation nous donne une vision globale de la tendance du marché, l’échelle microscopique
fournit un aperçu de la microstructure du marché, ce qui est essentiel pour comprendre et décrire
son comportement macroscopique.

(a) À l’échelle macroscopique. Le segment orange re-
présente le processus initial de 90 secondes.

(b) À l’échelle microscopique. La trajectoire se
concentre sur le processus initial de 90 secondes dans
la Figure 1.1a.

Figure 1 – Exemples de processus de mid-price du CAC40 Future.

xiii



I. Contexte et motivations

Le concept de théorie de la microstructure du marché a émergé à la fin du 20e siècle et a connu
une évolution significative depuis 2005. Cette théorie étudie le processus de formation des prix
dans le cadre des mécanismes de négociation spécifiques, de la divulgation des informations de
négociation et des composants du marché. Elle évalue l’efficacité et l’équité du marché à l’aide
d’indicateurs typiques tels que la liquidité et la découverte des prix. On peut trouver un panorama
complet des aspects théoriques et empiriques de la microstructure des marchés dans des ouvrages
tels que Bouchaud et al. (2018); Harris (2003); Hasbrouck (2007); Lehalle and Laruelle (2018);
O’hara (1998). En raison du développement rapide du trading algorithmique et électronique, la
microstructure des marchés demeure l’un des domaines qui evolue le plus rapidement en recherche
financière. Un nombre croissant d’études est désormais consacré à l’analyse et à la modélisation des
flux d’ordres et de la dynamique des prix au niveau microscopique.

Pour décrire la microstructure des flux d’ordres et la dynamique des prix, les processus ponctuels
sont souvent utilisés (Abergel and Jedidi, 2013; Daniels et al., 2003; Smith et al., 2003). Dans ce
contexte, comme dans Bacry et al. (2015), le processus de Hawkes est une classe très populaire de
modèles qui a fait ses preuves dans la déscription des propriétés dynamiques de différentes quantités
des carnets d’ordres (Bacry et al., 2013a; Bowser, 2007; Large, 2007; Toke, 2011). Introduits par
Hawkes (1971a,b), les processus de Hawkes sont des processus ponctuels auto-excitants capables
de capter l’effet d’excitation mutuelle entre les événements. Ils ont gagné en popularité en raison
de leur capacité à rendre compte des interactions entre les événements et de leur aptitude à fournir
une interprétation simple et convaincante de ces interactions.

Dans cette thèse, notre objectif est d’examiner et de développer des modèles pour comprendre la
microstructure complexe des données à haute fréquence au sein d’un vrai marché financier. Nos
recherches sont facilitées par une grande base de données généreusement mise à disposition par
Euronext Paris. Cette base de données comprend un historique complet de toutes les commandes
passées dans le carnet d’ordres pour 40 actions de l’indice CAC40, ainsi que le contrats Future
CAC40. En particulier, chacune de ces commandes est identifiée par le numéro d’identification
anonyme de l’agent qui l’a déposée. Cette caractéristique nous permet d’étudier le comportement
des agents individuels sur le marché.

Plus précisément, nous nous concentrerons sur les questions suivantes.

Comment le marché peut-il résister aux chocs de liquidité ? (Chapitre 3)

La liquidité d’un actif désigne la facilité avec laquelle il peut être converti en espèces sans affecter
significativement le prix. Elle revêt une grande importance dans l’investissement car elle reflète la
solidité du marché. Cependant, il n’est pas toujours facile de donner une définition précise de la
liquidité. Dans une perspective à court terme, le bid-ask spread, défini comme l’étendue de l’écart
entre les cours d’achat et de vente, peut être considéré comme une approximation de la liquidité du
marché. Lorsque ce spread est important, cela indique un manque de liquidité et un déséquilibre
sur le marché. En revanche, un spread faible signale un équilibre. Si le spread se creuse rapidement
et de manière importante, cela peut déclencher une crise de liquidité (Díaz and Escribano, 2020;
Fong et al., 2017; Fosset et al., 2020a; Goyenko et al., 2009).

Dans le Chapitre 3, nous cherchons à comprendre comment un marché peut résister aux chocs ;
autrement dit, comment un marché peut "se réparer" lorsque le spread varie. Nous proposons
un modèle de processus de Hawkes pour décrire la dynamique du spread. Pour commencer, nous
décomposons les processus de spread en deux processus croissants, chacun associé à des événements
qui amplifient ou diminuent le spread. Cette décomposition transforme le processus de spread en
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Introduction Générale

un processus de comptage bidimensionnel.

Les processus de Hawkes ont prouvé leur efficacité pour modéliser l’effet d’excitation mutuelle entre
les flux de commandes, les mouvements de prix, etc. (Abergel and Jedidi, 2015; Bacry et al., 2013a,
2015). Cependant, modéliser le spread par des processus de Hawkes classiques n’est pas direct en
raison de la contrainte selon laquelle le spread doit être strictement positif. Pour répondre à cette
problématique, Zheng et al. (2014) et Fosset et al. (2020a) se sont intéressés à des processus de
Hawkes non linéaires qui imposent une intensité nulle pour les événements de diminution du spread,
lorsque celui-ci atteint son minimum, soit un.

Dans cette thèse, inspirés par les modèles Queue-reactive (Huang et al., 2015; Wu et al., 2019),
nous proposons un nouveau modèle appelé le State-Dependent Spread Hawkes (SDSH). Ce modèle
peut être considéré comme une généralisation des modèles discutés dans Zheng et al. (2014) et
Fosset et al. (2020a). Notre modèle SDSH intègre non seulement la mémoire des événements passés,
mais également l’état actuel du spread dans la fonction d’intensité. Dans le Chapitre 3, nous
démontrerons en quoi ce modèle SDSH permet de capturer davantage de propriétés statistiques.

Quels facteurs microstructurels contribuent aux corrélations entre les prix de diffé-
rentes actions ? (Chapitre 4)

La question précédente se concentrait sur la modélisation d’un actif unique. Dans cette question,
nous considérons plusieurs actifs et les corrélations de leurs prix. La corrélation est une mesure
statistique qui détermine comment les actifs évoluent les uns par rapport aux autres. Elle est
couramment utilisée en finance pour comprendre le comportement global du marché ou pour évaluer
le potentiel de diversification d’un portefeuille.

Les actifs peuvent présenter une corrélation en raison de divers facteurs. L’une des sources les
plus courantes de corrélation est leur secteur ou leur industrie. Par exemple, BNP Paribas et
Société Générale sont toutes deux des banques, elles sont donc susceptibles d’être affectées par des
conditions macroéconomiques similaires, telles que les taux d’intérêt, l’inflation et le comportement
des consommateurs. Par conséquent, leurs cours d’actions peuvent évoluer dans la même direction.

En plus de l’affiliation à un secteur ou à une industrie, les événements mondiaux peuvent éga-
lement avoir un impact sur plusieurs entreprises et entraîner des corrélations entre les secteurs.
Ces événements comprennent les communiqués de presse, les interventions gouvernementales, les
catastrophes naturelles comme la Covid-19 et d’autres chocs géopolitiques ou macroéconomiques.

Pour certaines valeurs mobilières spécifiques comme les contrats à terme ou les options, l’actif sous-
jacent commun de deux valeurs mobilières peut être la source la plus importante de leur corrélation.
Par exemple, Bobl et Bund sont fortement corrélés car ils représentent des contrats sur le même
actif sous-jacent avec des échéances différentes (voir Figure 6 dans Bacry et al. (2013a)).

Dans le Chapitre 4, nous souhaitons aborder la question de l’origine microscopique des corréla-
tions. À cette fin, nous introduisons des modèles qui englobent différentes sources de corrélation.
La première source est la source endogène, résultant des mécanismes de rétroaction internes des
processus de prix eux-mêmes. La deuxième source est une source exogène, induite par des facteurs
externes, tels que les nouvelles et le comportement des agents. La première source a été étudiée dans
Bacry et al. (2013a). Les auteurs ont également établi certains théorèmes limites pour le modèle
de processus de Hawkes (Bacry et al., 2013b).

Dans cette thèse, nous proposons une version étendue du modèle de processus de Hawkes introduit

xv



I. Contexte et motivations

par Bacry et al. (2013a), que nous appelons le modèle Hawkes with shot noise. En étendant le
modèle classique des processus de Hawkes pour les prix, nous introduisons une dimension latente
supplémentaire pour capturer la source exogène de corrélation. (Dans ce contexte, "latente" indique
que les événements dans cette dimension ne sont pas observables). Cette dimension est un processus
de Poisson qui influence les prix des deux actifs. La logique derrière l’ajout de cette dimension latente
est directe : si les prix de deux actifs commencent soudainement et simultanément à évoluer de
manière significative, une explication plausible est que ces fluctuations sont en effet entraînées par
des éléments externes communs.

L’inclusion de la dimension latente rend le modèle plus réaliste, mais introduit davantage de défis en
termes d’estimation. La méthode des cumulants non paramétriques (NPHC), introduite par Achab
et al. (2017), s’avère tout aussi efficace pour le modèle de Hawkes with shot noise. Le Chapitre 4
présente une validation empirique de l’efficacité de cette méthode.

Quels rôles les participants jouent-ils sur le marché ? (Chapitres 5 et 6)

Pour les deux questions précédentes, nous considérions le marché comme une entité auto-régulatrice.
Cependant, le marché est un système complexe composé de nombreux agents. Les performances
globales du marché découlent des actions individuelles de chaque agent sur celui-ci. Par conséquent,
comprendre les rôles et les contributions de ces agents est crucial pour comprendre le fonctionnement
du marché dans son ensemble.

À ce stade, nous introduisons la méthodologie de modélisation basée sur les agents (ABM) qui est
extrêmement utile dans différents domaines. Elle peut simuler les actions et les interactions des
individus et des organisations de manière complexe et réaliste (Axtell and Farmer, 2022; Iori and
Porter, 2018). Cependant, en raison de préoccupations concernant la protection des données, seules
quelques études (Cartea et al., 2023; Cont et al., 2023; Rambaldi et al., 2019) ont pu accéder aux
données avec l’identification des membres. Dans cette thèse, grâce à l’accès à la base de données
d’Euronext Paris, qui contient l’identification des agents, nous pourrons étudier le comportement
de trading de chaque agent individuel.

En examinant les actions d’un agent sur une période donnée, nous pouvons obtenir des informations
sur certains aspects macroscopiques : l’agent a-t-il tendance à agir en tant que market maker (teneur
de marché) ou market taker (preneur de marché) ? Ont-ils une stratégie de trading distincte ?
Comment se manifeste l’évolution de leurs stratégies au fil du temps ? Répondre à ces questions
est très important à la fois pour l’exploration académique et la régulation du marché. Ces réponses
peuvent être apportées par des modèles basés sur les agents, pour améliorer les caractéristiques
microstructurelles du marché. De plus, elles peuvent également aider les régulateurs à identifier les
comportements irréguliers sur le marché.

Les chapitres 5 et 6 seront consacrés à répondre aux questions mentionnées ci-dessus. Nous caracté-
risons un agent à un moment donné par une séquence d’ordres consécutifs qu’il exécute. Le chapitre
5 peut être considéré comme une étape fondamentale. En utilisant la méthode d’apprentissage su-
pervisé pour identifier les agents, nous étudions l’importance des variables et les performances de
la classification. Les méthodes d’apprentissage profond ont prouvé leur efficacité dans la modélisa-
tion des carnets d’ordres limites dans des travaux antérieurs Sirignano and Cont (2019); Sirignano
(2019); Zhang et al. (2019). Ce chapitre démontrera leur efficacité pour caractériser les agents.

Dans le chapitre 6, nous approfondissons la réponse aux questions précédentes. Ici, nous introduisons
d’abord les séquences d’ordres des agents dans une tâche prétexte, dans le but d’apprendre une
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représentation du comportement d’un agent à un moment donné. La tâche prétexte utilise une
approche d’apprentissage contrastif auto-supervisé avec une perte de triplet (Schroff et al., 2015).
De façon similaire aux travaux sur le traitement du langage naturel, tels que le succès remarquable
de Mikolov et al. (2013b), les représentations apprises peuvent révéler une structure intrinsèque au
sein des séquences d’ordres. Par conséquent, des algorithmes de regroupement peuvent être ensuite
appliqués pour regrouper les agents ayant des comportements similaires. Nous démontrons que les
agents peuvent être regroupés en groupes caractérisés par des stratégies de trading distinctes.

Les sections suivantes sont consacrées à un résumé des principaux résultats de cette thèse.

II - Résumé des principaux résultats

II.1 Résumé du Chapitre 3

Le chapitre 3 correspond au papier Ruan et al. (2023b), soumis à la revue Market Microstructure
and Liquidity (MML) Journal. Dans ce chapitre, nous proposons un modèle de processus de Hawkes
non linéaire pour modéliser la dynamique du spread entre les cours acheteur et vendeur, que nous
appelons le modèle State-Dependent Spread Hawkes (SDSH).

Le bid-ask spread est défini comme la différence entre le prix de vente le plus bas et le prix d’achat
le plus élevé dans un carnet d’ordres. Il est généralement utilisé comme mesure de la liquidité du
marché et joue un rôle crucial dans les analyses financières. Dans ce travail, nous représentons un
processus de spread sous la forme de pStqtě0, qui peut être décomposé en deux termes S`

t et S´
t ,

représentant respectivement les sauts positifs et négatifs du spread. Pour l’instant, tous les sauts
sont supposés être de taille d’un tick, ce qui donne St “ S0 ` S`

t ´ S´
t . Avant d’introduire notre

modèle SDSH, examinons de plus près deux modèles existants étroitement liés à notre approche.
Le premier modèle est le modèle de spread proposé par Zheng et al. (2014), qui est un modèle de
Hawkes contraint avec les fonctions d’intensité suivantes :

λ`
t “ µ` `

ÿ

ePt`,´u

ż t

0
φ`,ept´ sq dSe

s ,

λ´
t “ 1St´ě2pµ´ `

ÿ

ePt`,´u

ż t

0
φ´,ept´ sq dSe

sq,

(II.1)

où λ` (resp. λ´) est l’intensité associée à S` (resp. S´). La condition 1St´ě2 garantit que le spread
reste strictement positif en tout temps.

Le deuxième modèle, exploré dans Fosset et al. (2020a), est défini comme suit :

λ`
t “ µ` `

ż t

0
αβe´βpt´sq dS`

s

λ´
t “ µ´1St´ě2

(II.2)

Ce modèle est un exemple spécifique de (II.1) lorsque φ´,` et φ´,´ sont fixés à zéro. Les auteurs
démontrent que lorsque α ă 1 ´

µ`

µ´ , le système de Hawkes dans (3.1.2) est stable et le processus
de spread est stationnaire.

Le modèle SDSH peut être considéré comme une extension des deux modèles précédents. Nous
l’étendons (II.1) sous deux aspects différents :
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˝ Les tailles des sauts ne sont plus contraintes à être d’une unité de tick. Au lieu de cela, nous
considérons la possibilité de K tailles de sauts différentes. Cela fait que notre modèle prend
la forme d’un processus de Hawkes à 2K variables. La valeur de K est un hyperparamètre
qui peut être choisi de manière flexible en fonction de données spécifique.

˝ La contrainte 1St´ě2 pour λ´ est remplacée par des fonctions positives ou nulles plus géné-
rales fpSt´q. Ces nouvelles fonctions f , applicables à la fois à λ` et à λ´, permettent au
modèle d’incorporer le fait bien connu que le spread a tendance à revenir à sa moyenne.
Par conséquent, un terme "dépendant de l’état" est introduit. Ces fonctions f peuvent être
calibrées à l’aide de données disponibles.

En résumé, nous notons Se
t le processus de comptage qui comptabilise le nombre de sauts de taille

e, pour e P E :“ t`1,`2, . . . ,`K,´1,´2, . . . ,´Ku. Le processus de spread St peut être exprimé
comme suit :

St “ S0 `
ÿ

k“1,2,...,K

kS`k
t ´

ÿ

k“1,2,...,K

kS´k
t .

Soit λe la fonction d’intensité du processus de comptage Se. Le modèle SDSH est formulé comme
suit :

λe
t “ fepSt´q

«

µe `
ÿ

e1PE

ż t

0
φe,e1

pt´ sq dSe1

s

ff

Ici, f´kpsq doit être égal à 0 lorsque s ď k, afin de maintenir le spread positif. Nous supposons que
les noyaux sont paramétrés comme une somme de L termes exponentiels, donnés par :

φe,e1

ptq “

L
ÿ

l“1
αe,e1

l βle
´βlt

Propriété de Markov et ergodicité

Soit Xe,e1

t :“
ż t

0
φe,e1

pt´ sq dSe1

s , le processus combiné pSt, Xtq est un processus markovien.

Dans un scénario simplifié où K “ 1 et L “ 1, ce qui signifie E “ t´1, 1u et φe,e1ptq “ αe,e1

βe´βt,
nous pouvons énoncer la proposition suivante :

Proposition. Le processus pSt, Xtq est V-uniformément ergodique sous les conditions sui-
vantes :

f´p1q “ 0
f´pSq ě γS pour un certain γ ą 0 lorsque S ě 2
sup

S
f`pSqpα`,´ ` α`,`q ă 1

(II.3)

La preuve de cette proposition peut être trouvée dans 3.A.

Simulation et estimation

En utilisant la méthode classique de thinning introduite par Lewis and Shedler (1979); Ogata
(1981) et la bibliothèque open source Tick (Bacry et al., 2017), la simulation est directe. À des fins
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d’estimation, la méthode d’estimation du maximum de vraisemblance (EMV) est utilisée. Consi-
dérons une réalisation sur r0, T s et notons tek les instants des événements sur Se. La fonction de
log-vraisemblance peut être exprimée comme suit (pour simplifier, nous supposons que L “ 1) :

Lpα, µ, fq “
ÿ

ePE
p´

ż T

0
λeptq dt`

ż T

0
log λeptq dSe

t q

“
ÿ

ePE

SepT q
ÿ

k“1
logpµe `

ÿ

e1PE
αee1

β

ż te
k

0
e´βpte

k´sq dSj
sq `

ÿ

ePE

SepT q
ÿ

k“1
log fepSte

k
q

´
ÿ

ePE

ż T

0
pµe `

ÿ

e1PE
αee1

β

ż t

0
e´βpt´sqdSe1

s qfepStq dt

Voici les hyperparamètres et leurs réglages correspondants :
˝ K : la plus grande taille de saut autorisée par le modèle.
˝ L et tβlul“1,...,L : en pratique, choisir des βl espacés de manière logarithmique suffit à capturer

un large éventail de comportements, comme par exemple βl “ β110l´1.
˝ fepsq : nous supposons que toutes les fonctions fepsq sont constantes pour s dépassant une

valeur fixe S̄. Ainsi, pour chaque e et s ď S̄, fepsq est traité comme un paramètre.
Une illustration des résultats d’estimation sur des données simulées est disponible dans la Figure
3.1 dans le corps principal de cette thèse.

Résultats empiriques

Nous calibrons le modèle SDSH en utilisant les données CAC40 d’Euronext. Les données corres-
pondent aux processus de spread pour 3 actions, à savoir AXA, BNP Paribas, Nokia, ainsi que le
Future CAC40, sur environ 100 jours. Les hyperparamètres sont indiqués dans le Tableau 3.2.

Les Figures 2 et 3 fournissent des exemples de résultats d’estimation pour fe (Nokia) et les noyaux
essentiels φe,e1 (AXA). Comme prévu, nous observons que f`1psq et f`2psq présentent une tendance
à la baisse et se rapprochent de 0 à mesure que s augmente. À l’inverse, f´1psq et f´2psq sont des
fonctions globalement croissantes. Lorsque le spread est élevé, de petites valeurs de f`1psq et f`2psq

inhibent les sauts positifs tandis que de grandes valeurs de f´1psq et f´2psq encouragent les sauts
négatifs. Ce mécanisme renforce la tendance de retour à la moyenne du spread.

Figure 2 – Estimations des fonctions tfepsquePE pour NOKIA, E “ t´2,´1,`1,`2u.

La Figure 3 montre que les noyaux diminuent lentement selon une loi de puissance. Cette propriété
de mémoire longue du spread a été observée par diverses études empiriques ; par exemple, Mike
and Farmer (2008); Ponzi et al. (2006); Zawadowski et al. (2006).
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Figure 3 – Noyaux de Hawkes pour AXA.

Qualité de l’ajustement

Le modèle SDSH est capable de capturer les principales propriétés statistiques du processus de
spread. Dans cette section de résumé, nous nous concentrons sur la présentation d’une seule pro-
priété : la fonction d’auto-covariance (ACV) des incréments de spread (Figure 4). Des propriétés
supplémentaires peuvent être trouvées dans le contenu principal de cette thèse.

La fonction d’auto-covariance normalisée des incréments de spread pendant δ secondes avec un
décalage de τ secondes est définie comme suit :

ACV pδ, τq :“ 1
δ2 CovpSt`δ ´ St, St`δ`τ ´ St`τ q

La Figure 4 illustre la reproduction précise par le modèle de la courbe d’auto-covariance observée
dans les vraies données. Pour des différentes valeurs de δ lorsque τ est relativement grand, toutes
les courbes ACV pδ, τq ont tendance à converger, formant une courbe collective lisse. Cependant,
lorsque τ devient trop grand par rapport à δ, la figure d’insertion montre que la courbe ACV
devient bruitée. Par conséquent, pour reproduire précisément la courbe ACV sur une large gamme
de τ , nous pouvons faire varier la valeur de δ et choisir des valeurs appropriées de τ ni trop petites
ni trop grandes.

Figure 4 – Les fonctions ´ACV pδ, τq pour différentes valeurs de δ en fonction de τ en utilisant une
échelle logarithmique pour les vraies données AXA et les données simulées par le modèle (ajusté
sur les vraies données AXA).
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Prédiction

La dernière partie de ce chapitre est consacrée à la prédiction du spread, une application potentielle
du modèle SDSH. Nous expérimentons avec des horizons de prédiction allant de 3 secondes à 30
secondes et comparons les capacités prédictives du modèle SDSH à la méthode ACDP introduite
par Groß-KlußMann and Hautsch (2013). Les résultats comparatifs montrent que le modèle SDSH
surpasse la méthode ACDP dans la plupart des cas, en particulier pour les horizons temporels
courts.

II.2 Résumé du Chapitre 4

Le Chapitre 4 est un travail conjoint avec E. Bacry, T. Deschatre, M. Hoffmann et J.-F. Muzy.
L’article est actuellement en préparation. Dans ce chapitre, nous étudions les processus de Hawkes
avec shot noise, dans le but de séparer les sources endogènes et exogènes de corrélation entre les
prix de deux actifs.

L’endogénéité dans le contexte financier fait référence au fait que le prix d’un actif est influencé
par le prix d’autres actifs. En revanche, l’exogénéité indique les influences externes, telles que
les annonces de nouvelles qui influencent les prix. Une étude récente (Marcaccioli et al., 2022) a
étudié statistiquement les différentes performances des fluctuations de prix suite à des événements
endogènes et exogènes. L’objectif de notre travail est de construire un modèle capable de séparer
les sources endogènes et exogènes de corrélation entre les prix de deux actifs. Le Chapitre 4 se
concentre principalement sur un modèle qui intègre le comportement latent des agents.

Dans un scénario simplifié, supposons que N̄1 et N̄2 sont deux processus de comptage représentant
le nombre de transactions sur l’Actif 1 et l’Actif 2, respectivement. Avant de plonger dans les détails
de notre modèle, examinons un modèle de processus de Hawkes classique pour pN̄1, N̄2q

N̄1 : λ1ptq “ µ1 `

ż t

0
φ11pt´ sq dN̄1psq `

ż t

0
φ12pt´ sq dN̄2psq

N̄2 : λ2ptq “ µ2 `

ż t

0
φ21pt´ sq dN̄1psq `

ż t

0
φ22pt´ sq dN̄2psq

Maintenant, considérons un scénario légèrement plus compliqué. Certaines transactions sur l’Actif 1
sont déclenchées par ses propres fluctuations de prix ou par celles de l’Actif 2, reflétant une influence
endogène. Pendant ce temps, certains agents détiennent les deux actifs dans leurs portefeuilles
et pourraient participer à des transactions presque simultanées des deux actifs. Ces transactions
fortement corrélées, connues sous le nom de comportement latent des agents, sont générées de
manière exogène. Notre modèle intègre ce comportement latent des agents grâce à un processus de
Poisson appelé processus de shot noise. Il est important de noter que le processus de shot noise (ou
la dimension latente) est inobservable.

Dans notre modèle, N̄1 “ N1 ` N4 et N̄2 “ N2 ` N5. N1 et N2 sont des processus de Hawkes
classiques, tandis que N4 et N5 sont générés par un processus de shot noise N3, avec des délais
(distribution exponentielle) sur les deux processus. La Figure 5 illustre le concept de notre modèle.

En référence à l’exemple 7.3(a) de Daley et al. (2003), ce modèle de processus de Hawkes avec shot
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t (second)

Δ(2)
1 Δ(2)

3

Δ(1)
1 Δ(2)

2

Δ(1)
2

Δ(1)
3

N1
N2

N4
N5

N3

t (second)

P1
S P2

SP1
D P2

D

N̄1 = N1 + N4

N̄2 = N2 + N5

N3

Figure 5 – Les flèches en pointillés jaunes montrent la relation de génération. Si une flèche pointe
à partir d’un cercle vide, cela signifie que l’événement est un immigrant généré par une intensité
exogène. Sinon, la flèche pointe vers un enfant à partir de son parent. Le délai du k-ième shot
noise sur N̄i est indiqué par ∆piq

k (selon notre réglage ∆piq
k „ Exppaiq). Le shot noise commun est

représenté par l’ombrage vert.

noise peut être défini comme suit :
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N1 : λ1ptq “ µ1 `

ż t

0
φ11pt´ sq dpN1psq `N4psqq `

ż t

0
φ12pt´ sq dpN2psq `N5psqq

N2 : λ2ptq “ µ2 `

ż t

0
φ22pt´ sq dpN2psq `N5psqq `

ż t

0
φ21pt´ sq dpN1psq `N4psqq

N3 : λ3ptq “ µ3

N4 : λ4ptq “ a1 pN3ptq ´N4ptqq

N5 : λ5ptq “ a2 pN3ptq ´N5ptqq

(II.4)

Quelques notations

Avant de répertorier les principaux résultats de ce chapitre, clarifions d’abord certaines conventions
de notation.

˝ N̄ est un processus ponctuel à deux variables défini comme N̄ “

´

N̄1 N̄2

¯J

,

˝ φH est une matrice de noyaux avec φH “

¨

˝

φ11 φ12

φ21 φ22

˛

‚et RHptq est une matrice de fonctions

définie par RHptq “

8
ÿ

n“0
φ‹n

H ptq

˝ Les intégrales de φH et RH sont respectivement notées GH et RH , (i.e., GH “ ||φH || et

RH “

ż 8

0
RHptq, dt “ pI2 ´GHq´1),

˝ L’intensité inconditionnelle de N̄ est Λ̄ “

¨

˝

Λ̄1

Λ̄2

˛

‚“ RH

¨

˝

µ1 ` µ3

µ2 ` µ3

˛

‚ et l’intensité incondition-
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nelle de

¨

˝

N1

N2

˛

‚ est ΛH “

¨

˝

Λ̄1 ´ µ3

Λ̄2 ´ µ3

˛

‚.

Théorèmes limites

En suivant les théorèmes limites dans Bacry et al. (2013b), nous pouvons prouver des versions
analogues de ces résultats pour le modèle de processus de Hawkes avec shot noise.

Considérons l’hypothèse suivante :

Pour tous les i, j P 1, 2, ||φij
H || “

ż 8

0
φij

Hptq dt ă 8 et la matrice

GH “ ||φH || a un rayon spectral inférieur à 1
(A)

Theorem. Si la condition (A) est vérifiée, alors nous avons

sup
vPr0,1s

›

›

›

›

›

1
T
N̄T v ´ vΛ̄

›

›

›

›

›

ÝÑ 0 lorsque T Ñ 8 presque sûrement et en norme L2

Theorem. Si la condition (A) est vérifiée, en loi pour la topologie de Skorokhod, lorsque T Ñ 8,

1
?
T

`

N̄T v ´ ErN̄T vs
˘

Ñ RH

¨

˝

ΛH,1W1,v ` µ3W3,v

ΛH,2W2,v ` µ3W3,v

˛

‚ for v P r0, 1s

où pWvqvPr0,1s est un mouvement brownien standard à 3 dimensions.

Définissons X̄t “ N̄t ´ ErN̄ts. La matrice de covariance empirique de N̄ sur r0, T s est donnée par

C∆,T pN̄q “
1
T

tT {∆u
ÿ

i“1

`

X̄i∆ ´ X̄pi´1q∆
˘ `

X̄i∆ ´ X̄pi´1q∆
˘J

Theorem. Soit p∆T qT ą0 une famille de nombres réels positifs. Supposons que ∆T {T Ñ 0 lorsque
T Ñ 8. Alors, nous avons

C∆T , T pN̄q ´ c∆T
Ñ 0 lorsque T Ñ 8 en norme L2

avec

c∆ “

ż

R2
`

ˆ

1 ´
|t´ s|

∆

˙`

RHpsqΣ̄RHptqJ ds dt

` µ3

ż

R2
`

ˆ

1 ´
|t´ s|

∆

˙`
´

RHpsq ‹ Γ̄psq
¯

¨

˝

0 1

1 0

˛

‚

´

RHptq ‹ Γ̄ptq
¯J

ds dt

où Σ̄ “

¨

˝

Λ̄1 0

0 Λ̄2

˛

‚ et Γ̄ptq “

¨

˝

´a1e
´a1t 0

0 ´a2e
´a2t

˛

‚.

Corollary (Covariance Macroscopique).

lim
∆Ñ8

c∆ “ RH

¨

˝

Λ̄1 µ3

µ3 Λ̄2

˛

‚RJ
H
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Estimation (méthode NPHC)

Achab et al. (2017) ont développé une méthode d’estimation non paramétrique pour les processus
de Hawkes en utilisant les trois premiers ordres des cumulants. Nous pouvons prouver que cette
méthode est également applicable à notre modèle. En fait, elle est toujours efficace tant que le
nombre de paramètres est inférieur au nombre d’équations de cumulants indépendantes. La Figure
6 illustre un exemple de résultats d’estimation obtenus à partir de données simulées.

Figure 6 – Un exemple de normes de noyaux estimées et de baslines pour des données simulées.
Les lignes verticales rouges en pointillés indiquent les vraies valeurs. Les histogrammes représentent
les distributions des valeurs estimées à partir de 100 répétitions indépendantes. Chaque estimation
est basée sur un processus simulé couvrant 106 secondes, soit environ 3.68 ¨ 106 événements.

Extension à des dimensions supérieures

Le modèle de l’équation (II.4) peut être étendu à des dimensions supérieures. En particulier, consi-
dérons un modèle de prix bivarié, où P1 et P2 sont les processus de prix pour l’Actif 1 et l’Actif
2 respectivement. En suivant le modèle introduit dans Bacry et al. (2013a), la paire pP1, P2q peut
être dérivée de pN̄1 ´ N̄2, N̄3 ´ N̄4q, où N̄1,t (resp. N̄2,t) représente le nombre de sauts de prix vers
le haut (resp. vers le bas) au moment t pour l’Actif 1 et N̄3,t (resp. N̄4,t) représente le nombre de
sauts de prix vers le haut (resp. vers le bas) au moment t pour l’Actif 2. Dans ce cas, les processus
de comptage observables sont pN̄iqi“1,2,3,4 et la dimension observable augmente à 4. Dans le cadre
des processus de Hawkes avec modèle de shot noise, N̄i “ NH,i `ND,i pour i “ 1, 2, 3, 4 où NH,i et
ND,i sont définis comme suit :

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

NH,i : λH,i “ µH,i `

4
ÿ

j“1

ż t

0
φijpt´ sq drNH,jpsq `ND,jpsqs for i P t1, 2, 3, 4u

NX,k : λX,kptq “ µX,k for k P t1, 2u

ND,i : λD,iptq “ a1rNX,1ptq ´ND,iptqs for i P t1, 3u

ND,i : λD,iptq “ a2rNX,2ptq ´ND,iptqs for i P t2, 4u

Ici, nous supposons l’existence d’un shot noise à 2 dimensions, NX,1 et NX,2, où NX,1 (resp. NX,2)
affecte les deux sauts de prix à la hausse (resp. les deux sauts de prix à la baisse).
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La Figure 7 présente le résultat de la calibration du modèle sur les données de BNP Paribas et de
Société Générale provenant d’Euronext.

Figure 7 – Estimation des normes des noyaux de Hawkes et des baselines pour BNP Paribas et
Société Générale. "1" et "2" représentent les sauts de prix à la hausse pour BNP Paribas, tandis
que "3" et "4" représentent les sauts de prix à la baisse pour Société Générale.

Une variante du modèle

Les modèles précédents 1.2.4 et 1.2.5, appelés modèles de latent-behavior shot noise, reposent sur
l’hypothèse que le processus de shot noise est le comportement latent de certains agents. Dans ce
travail, nous proposons également une variante du modèle, appelée modèle de latent-information
shot noise, où le processus de shot noise représente l’information latente du marché.

SoientNH,ipi “ 1, . . . , dq les processus observables etNX,kpk “ 1, . . . pq les processus latents (c’est-à-
dire le processus de shot noise). L’espace des événements est E “ tNH,i, i “ 1, 2, . . . , duYtNX,k, k “

1, 2, . . . , pu et le modèle à information latente est formulé comme suit :

λH,iptq “ µH,i `

d
ÿ

j“1

ż t

0
φH,ijpt´ sq dNH,jpsq `

p
ÿ

k“1

ż t

0
φX,ikpt´ sq dNX,kpsq for i P t1, 2, . . . , du

λX,kptq “ µX,k for k “ 1, 2, . . . , p

où λH,i et λX,k sont les intensités de NH,i et NX,k respectivement. Nous pouvons prouver l’efficacité
de la méthode d’estimation NPHC sur cette variante du modèle tant que p ě d3`5d

6pd`1q
.

II.3 Résumé du Chapitre 5

Le Chapitre 5 est une première tentative d’utilisation des méthodes d’apprentissage profond
pour classer et caractériser les agents du marché. Nos principaux objectifs sont de répondre à des
questions telles que : sans s’appuyer sur des examens statistiques, pouvons-nous classifier les agents
efficacement ? Comment pouvons-nous caractériser les comportements divers des agents dans le
carnet d’ordres ? Quelles sont les principales caractéristiques qui distinguent différents agents ?

Dans ce chapitre, nous appliquons une méthode d’apprentissage supervisé pour classer les agents.
Plus précisément, nous nous concentrons sur 28 agents très actifs sur le marché des contrats à terme
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de l’indice CAC40. Nous supposons qu’à un moment donné, le comportement d’un agent peut être
décrit par une séquence d’ordres qu’il a soumis. Tout au long de ce chapitre, nous constatons que
l’ensemble le plus pertinent de variables descriptives de l’ordre pour cette tâche comprend trois
aspects : l’ordre lui-même (heure d’arrivée, prix, taille), le contexte du marché (état du carnet
d’ordres avant l’ordre) et le type d’action catégorique de l’ordre (limite, marché ou annulation à
un niveau spécifique). Une entrée pour le réseau neuronal est une séquence de N ordres consécutifs
passés par un agent, et la sortie est l’identifiant de l’agent.

Nous utilisons le modèle Gated Recurrent Unit bien connu dans la littérature, introduit par Cho
et al. (2014). L’architecture du modèle pour classifier les séquences d’ordres est illustrée dans la
Figure 8.

GRU

Flatten
Concatenate

Bidirectional 

Units = 128
Units = 128 Units = 28 Output

Dense

(256) Rate = 0.3 (1)

Dense

TanH
ReLU Softmax

Dropout

TanH

GRU ArgMax

Embedding

42 × 5
(N × 1)Input 2

AT

(N × 25)

(N × 5)

Input 1
HMC

Figure 8 – L’Input 1 est une séquence de N ordres avec 25 caractéristiques de base HMC (l’ordre
lui-même et le contexte du marché), l’Input 2 est la caractéristique catégorique AT (type d’action)

Résultats

Avec chaque entrée comprenant une séquence de 100 ordres, le modèle atteint une précision de
0,943 sur l’ensemble des données test. Ce résultat indique que les comportements des agents sont
efficacement distinguables à l’aide de méthodes d’apprentissage profond.

De plus, comme illustré dans la Figure 8, la caractéristique catégorique du type d’action est repré-
sentée par un vecteur à 5 dimensions avant d’être entrée dans le GRU. Dans le succès remarquable
de Word2Vec (Mikolov et al., 2013a,b), l’approche par embedding de mots capture différents degrés
de similarité sémantique entre les mots (comme "homme" - "roi" = "femme" - "reine"). Inspiré par ce
travail, nous visualisons les vecteurs après cet embedding des 42 types d’actions dans R2 en utilisant
une projection suivant les deux axes principaux donnés par l’analyse en composantes principales.
Cette visualisation révèle des motifs remarquables, comme le montre la Figure 9. Par exemple, les
ordres à cours limité et les annulations sont clairement séparés, tandis que les ordres au marché se
trouvent au milieu. De plus, la figure affiche un motif intéressant de la différence entre les embedding
des ordres à cours limité et des annulations.

Expériences étendues

Dans les expériences précédentes, chaque ordre était étiqueté en fonction de son agent (ID de
membre). En même temps, nous disposons également d’une autre étiquette plus fine, appelée "ITM".
ITM signifie Interactive Trading Machine utilisée par les banques, les fonds spéculatifs et autres
institutions financières. En particulier, les ITM sont une division des ID des membres, ce qui
implique que chaque ID de membre peut correspondre à plusieurs ITM.

Dans les expériences ultérieures, une entrée consiste en une séquence d’ordres passés par un ITM
spécifique et l’objectif est de prédire l’ID de l’ITM en tant que sortie. Tout comme dans les expé-
riences précédentes, nous sélectionnons au total 104 ITM dans cette expérience, appartenant à 21
membres. La Figure 10 montre la matrice de confusion des résultats de classification.
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Figure 9 – Projection PCA à deux dimensions des embedding à cinq dimensions des types d’actions.
La figure insérée affiche cinq lignes, chaque ligne ∆i, i “ 1, 2, 3, 4, 5 indique le vecteur du niveau de
cours limité i au niveau d’annulation i.

Les résultats montrent des schémas remarquables pour les ITM correspondant au même ID de
membre. Par exemple, en extrayant la sous-matrice correspondant à l’ID de membre 3 et en utilisant
une classification hiérarchique ascendante (clustering hiérarchique) sur les lignes de cette matrice,
les 39 ITMs du Membre 3 sont répartis dans 10 sous-groupes. Des visualisations détaillées de ces
résultats se trouvent dans le contenu principal de cette thèse.

II.4 Résumé du Chapitre 6

Le Chapitre 6 correspond à l’article Ruan et al. (2023a), qui a été accepté à la conférence
ICAIF’23 1. L’objectif de ce travail est de caractériser et de regrouper les comportements des agents.
Des études récentes, telles que Cont et al. (2023) et Cartea et al. (2023), ont également exploré
ce sujet à travers des modèles statistiques. Cependant, dans ce chapitre, nous proposons d’utiliser
une méthode d’apprentissage auto-supervisé appelée apprentissage contrastif pour développer une
représentation des comportements des agents. Il convient de noter que nous ne considérons que les
agents de type market taker.

Notre approche utilise la perte de triplet comme fonction de perte pour l’apprentissage contrastif.
Introduite dans Schroff et al. (2015) pour la reconnaissance faciale, la perte de triplet vise à ap-
prendre une représentation des entrées brutes en minimisant la distance entre les échantillons de la
même classe et en maximisant la distance entre les échantillons de classes différentes. Dans notre
contexte, les classes représentent différents comportements de trading de 30 agents et une entrée
brute est une séquence d’ordres consécutifs de marché provenant d’un agent. Les échantillons simi-
laires sont des séquences du même agent qui sont temporellement proches les unes des autres, tandis
que les échantillons dissimilaires sont des séquences d’agents différents. Le critère de similarité est
utilisé pour éviter d’imposer une seule stratégie pour chaque agent. En effet, un agent peut changer

1. The Association for Computing Machinery (ACM) International Conference on Artificial Intelligence in Finance
(ICAIF) 2023
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Figure 10 – Matrice de confusion. Les blocs de sous-matrice diagonale représentent le regroupe-
ment des ITM du même membre. Les étiquettes le long de l’axe des abscisses sont présentées au
format "ITM - Membre", tandis que les étiquettes le long de l’axe des ordonnées sont affichées au
format "ITM - Membre ąą Précision".

de stratégie au fil du temps, en supposant que son comportement est temporairement cohérent.

La Figure 11 illustre la perte de triplet pour notre tâche. L’encodeur est un réseau à mémoire
récurrente à deux couches de type LSTM (Long-Short Term Memory) (comme indiqué dans la
Figure 12). Une entrée se compose d’une séquence de 50 ordres au marché (ou market orders
en anglais), chaque ordre de marché étant caractérisé par 8 variables descriptives. Grâce à cet
apprentissage contrastif, nous obtenons une fonction de représentation pour les séquences d’ordres
au marché. À ce stade, la phase d’apprentissage des représentations est terminée. La phase suivante
consiste en l’application de cette fonction de représentation à diverses tâches en aval.

Clustering

Nous avons choisi d’utiliser l’algorithme de clustering K-means sur les vecteurs de représentation.
En appliquant cette approche, nous regroupons tous les échantillons de séquences d’ordres au
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Time Member ID Features
09:10:01.001 101 **
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… … **
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xaAnchor
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Figure 11 – Illustration de l’apprentissage du modèle. X est une séquence d’ordres au marché
consécutifs et fpXq est sa représentation vectorielle dans R2. La perte de triplet minimise la distance
entre les échantillons du même agent ||fpXpq´fpXaq||2 et maximise la distance entre les échantillons
d’agents différents ||fpXnq ´ fpXaq||2.

GRU(N × #Features)
Input Output

Dense
(N × 100)

Dense

ReLU

Units = 100

TanH

Units = 40

TanH

LSTMLSTM
(40)

x f(x)

Figure 12 – Schéma de l’architecture du modèle d’encodage pour un échantillon.

marché en 7 groupes. La Figure 13 montre les résultats du regroupement. Notre tâche consiste
maintenant à comprendre la signification de chaque groupe. Nous évaluons les groupes en fonction
des indicateurs suivants : fréquence de trading, taille moyenne des transactions, spread avant les
transactions, tailles de file d’attente avant les transactions, direction de trading pure accumulée et
modifications de limite-à-transaction. Les résultats de l’évaluation sont résumés dans le Tableau 1.

Ces indicateurs différencient efficacement les groupes. Par exemple, le Groupe 2 présente la fré-
quence la plus élevée tandis que le Groupe 6 présente une faible fréquence, un spread élevé et des
valeurs de direction élevées. Par conséquent, nous pouvons en déduire que le Groupe 2 correspond à
un comportement de market making tandis que le Groupe 6 correspond à des pratiques de trading
directionnel.

Figure 13 – Résultats du clustering K-means. Chaque agent est représenté par une barre verticale,
qui peut être composée d’un ou de plusieurs segments. Chaque segment correspond aux échantillons
de l’agent assignés à un cluster spécifique.
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cluster 1 2 3 4 5 6 7

Frequency + +++ ++ + + + ++

Trade size +++ ++ ++ ++ + ++ +

Fill rate + + ++ ++ ++ ++ +++

Spread ++ + ++ + +++ +++ ++

QS ++ ++ ++ + +++ +++ ++

Opposite QS + + ++ ++ ++ ++ +++

Direction + + +++ + ++ +++ +

Modification + ++ + ++

Table 1 – Évaluation des groupes basée sur les indicateurs ci-dessus (de none() à bas (+) à haut
(+++))

Caractérisation des agents

Concentrons-nous maintenant sur un agent particulier et analysons son comportement à travers
différents groupes. L’exemple que nous prenons ici est l’Agent 9, dont les ordres sont principalement
classés dans les groupes 1, 2 et 3. La Figure 14 nous offre un aperçu de son comportement au sein de
ces groupes. Dans le Cluster 2, l’Agent 9 s’engage dans le trading à haute fréquence, ciblant souvent
les moments où la taille de la file d’attente est très faible. Lorsque nous traçons les périodes de
temps de ces échantillons tout au long de la journée de trading (comme illustré dans la Figure 14b),
différents comportements émergent. Nous observons qu’au matin, l’Agent 9 se comporte comme
dans le Cluster 1, tandis qu’au cours de l’après-midi, il présente des comportements similaires à
ceux du Cluster 2.

Prenons un autre exemple : l’Agent 10 (représenté dans la Figure 15). Nous pouvons observer que
cet agent a considérablement modifié son comportement à deux reprises au cours de la période. Le
premier changement survient autour de mars 2016, suivi d’un autre vers décembre 2016.
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(a)

(b)

Figure 14 – Agent 9. (a) Chaque figure correspond à un indicateur. À l’intérieur de chaque
figure, les trois barres verticales représentent les performances des échantillons de l’Agent 9 au
sein de chaque cluster. (b) Chaque figure correspond à un cluster. À l’intérieur de chaque figure,
l’histogramme affiche la distribution des échantillons en fonction des heures de sélection.

Figure 15 – Représentation temporelle des ordres de l’agent 10 en 2D. L’axe des abscisses re-
présente les dates et l’axe des ordonnées représente l’heure dans une journée. Dans ce diagramme,
chaque point représente l’heure d’occurrence d’un ordre de l’aget 10 et sa couleur indique le groupe
auquel il appartient.
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CHAPTER 1

GENERAL INTRODUCTION

1.1 - Background and Motivation

A financial market is a complex system that consists of many interacting components, including
individual and institutional investors, companies, governments and regulators. For a long time,
modeling the dynamics of financial markets, particularly the evolution of prices, has been a fun-
damental challenge for financial mathematics. The ability to accurately model and predict market
behavior is crucial for developing investment strategies and managing risk.

At macroscopic time scales, the price trajectories appear continuous and resemble sample paths
generated by classical models in mathematical finance, such as models driven by Brownian motion
(see Figure 1.1a). However, when we zoom in to the microscopic level and examine price movements
over very short time intervals (e.g., seconds), the behavior of financial processes becomes quite
different. This distinct behavior is illustrated in Figure 1.1b, which zooms in on the sample process
of Figure 1.1a over 90 seconds. Due to the tick structure, the price takes discrete values and manifest
as jump processes. This phenomenon is called microstructure effect. While the macroscopic scale of
modeling gives us a global vision of the market trend, the microscopic scale provides insight into the
microstructure of the market, which is essential for understanding and describing the macroscopic
behavior of the market.

(a) At the macroscopic level. The orange segment
represents the initial 90-second process.

(b) At the microscopic level. The trajectory zooms in
on the initial 90-second process in Figure 1.1a.

Figure 1.1 – Examples of Cac40 index Future mid-price processes

The concept of market microstructure theory emerged at the end of the 20th century, and has
undergone significant evolution since 2005. This theory studies the price formation process under
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1.1. Background and Motivation

specific trading mechanisms, trading information disclosure, and market components. It evaluates
the efficiency and fairness of the market using typical indicators such as liquidity and price discovery.
Comprehensive insights into the theoretical and empirical aspects of market microstructure can
be found in books such as Bouchaud et al. (2018); Harris (2003); Hasbrouck (2007); Lehalle and
Laruelle (2018); O’hara (1998). Due to the rapid development of algorithmic and electronic trading,
market microstructure continues to be one of the fastest growing fields in financial research. A
growing number of studies are now dedicated to the analysis and modeling of order flows and price
dynamics at the microscopic level.

To describe the microstructure of order flows and price dynamics, point processes are widely used
(Abergel and Jedidi, 2013; Daniels et al., 2003; Smith et al., 2003). Within this context, as reviewed
in Bacry et al. (2015), Hawkes process is a very popular class of models that has proven its effective-
ness in describing the dynamical properties of different quantities of limit order books (Bacry et al.,
2013a; Bowser, 2007; Large, 2007; Toke, 2011). Introduced by Hawkes (1971a,b), Hawkes processes
are self-exciting point processes that can capture the mutual exciting effect between events. They
have gained popularity due to their ability to account for event interactions and their capacity to
provide a straightforward and convincing interpretation of such interactions.

In this thesis, our objective is to examine and develop models for understanding the intricate
microstructure of high-frequency data within an actual financial market. Our research is facilitated
by an extensive database generously provided by Euronext Paris. This database includes a complete
history of all the orders placed in the order book for 40 stocks in the CAC40 index, as well as futures
contracts on the CAC40 index. In particular, each of these orders is labeled by the anonymous
identification number of the initiating agent. This feature allows us to study the behavior of
individual agents in the market.

More specifically, we will focus on addressing the following questions.

How can the market be resilient to liquidity shocks? (Chapter 3)

Liquidity of an asset means how easily it can be converted into cash without significantly affecting
the price. It is very important in investing because it reflects the solidity of the market. Never-
theless, it is not always easy to give a accurate definition of liquidity. For a short-term view, the
narrowness of the bid-ask spread can be considered as a proxy of market liquidity. When the spread
is wide, it indicates a lack of liquidity and a state of disequilibrium in the market. In contrast, a
narrow spread signals equilibrium. If the spread widens rapidly and substantially, it can trigger a
liquidity crisis (Díaz and Escribano, 2020; Fong et al., 2017; Fosset et al., 2020a; Goyenko et al.,
2009).

In Chapter 3, we attempt to understand how a healthy market can be resilient to shocks, in other
words, how a market can "repair" itself when the bid-ask spread varies. We propose a Hawkes
process model to describe the dynamics of the spread. To start, we decompose the spread processes
into two increasing processes, each associated with events that amplify or diminish the spread. This
decomposition transforms the spread process into a two-dimensional counting process.

Hawkes processes have demonstrated their effectiveness in modeling the mutual exciting effect
between order flows, price movements and so on (Abergel and Jedidi, 2015; Bacry et al., 2013a,
2015). Nonetheless, modeling the spread by classical Hawkes processes is not straightforward due
to the constraint for the spread to be strictly positive. Addressing this challenge, prior works by
Zheng et al. (2014) and Fosset et al. (2020a) have explored non-linear Hawkes processes which
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Chapter 1. General Introduction

impose a condition that the intensity of diminishing-spread events becomes null when the spread
reaches the minimum, that is one.

In this thesis, inspired by Queue reactive models (Huang et al., 2015; Wu et al., 2019), we propose
a new model named the "State-dependent Spread Hawkes" (SDSH) model. This model can be
considered as a generalization of the models discussed in Zheng et al. (2014) and Fosset et al.
(2020a). Our SDSH model not only incorporates the memory of historical events, but also integrates
the current state of the spread into the intensity function. In Chapter 3, we will demonstrate how
the SDSH model enhances the model’s capacity in capturing various statistical properties.

What microstructural factors contribute to correlations among the prices of different
stocks? (Chapter 4)

The previous question focuses on modeling a single asset. In this question, we consider multiple
assets and the correlations of their prices. Correlation is a statistical measure that determines how
assets move in relation to each other. It is commonly used in finance to gain insight into the overall
behavior of the larger market or to evaluate the diversification potential of a portfolio.

Assets can exhibit correlations due to a variety of factors. One of the most common sources of
correlation is their sector or industry. For example, BNP Paribas and Societe Generale are both
banks, so they are likely to be affected by similar macroeconomic conditions, such as interest rates,
inflation, and consumer behavior. As a result, their stock prices may move in the same direction.

In addition to industry or sector affiliation, global events can also impact multiple companies and
lead to correlations across sectors. Such events include press releases, government interventions,
natural disasters such as Covid-19, and other geopolitical or macroeconomic shocks.

For some specific securities like futures or options, the common underlying asset of two secturities
can be the most important source of their correlation. For instance, Bobl and Bund are highly
correlated because they represent contracts on the same underlying asset with different maturities.
(see Figure 6 in Bacry et al. (2013a))

In Chapter 4, we want to adress the question of the microscopic origin of the correlations. For
this purpose, we introduce models that encompass different sources of correlation. The first source
is the endogenous source, arising from the internal feedback mechanisms of the price processes
themselves. The second source is the exogenous source, driven by the external factors, such as the
news and agents behavior. The first source was studied in Bacry et al. (2013a), and the authors
also established some limit theorems for the Hawkes processes model (Bacry et al., 2013b).

We propose an expanded version of the Hawkes process model introduced by Bacry et al. (2013a),
which we call the "Hawkes processes with shot noise" model. Extending the classical Hawkes
processes model for prices, we introduce an additional latent dimension to the model to capture
the exogenous source of correlation. (In this context, "Latent" indicates that the events within this
dimension are not observable). This dimension is a Poisson process and influences the prices of
both assets. The rationale behind adding this latent dimension is straightforward: if the prices of
two assets suddenly and simultaneously start to move significantly, a plausible explanantion is that
these fluctuations are indeed driven by some common external elements.

The inclusion of the latent dimension makes the model more realistic but introduces more challenge
in terms of estimation. The non-parametric cumulant method (NPHC), introduced by Achab et al.
(2017), proves to be just as effective for the Hawkes shot noise model. Chapter 4 presents empirical
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validation of this method’s effectiveness.

What roles do market participants play in the market ? (Chapters 5 and 6)

In the two previous questions, we consider the market as a self-regulating entity. However it’s
important to recognize that the market is a complex system composed of numerous agents. The
overall performance of the market is derived from the individual actions of each agent in the market.
Consequently, understanding the roles and contributions of these agents is crucial to understanding
the market as a whole.

At this point, we have to mention the Agent-base modeling (ABM) methodology that is extremely
useful across various domains. It can simulate the actions and interactions of individuals and
organizations in complex and realistic ways (Axtell and Farmer, 2022; Iori and Porter, 2018).
However, due to privacy concerns, only a few studies (Cartea et al., 2023; Cont et al., 2023;
Rambaldi et al., 2019) have been able to access the dataset with member identification. In this
thesis, thanks to the access to the Euronext Paris database, which contains the agent identification,
we will be able to study the trading behavior of each individual agent.

Through the examination of an agent’s actions over a period, we can gain insights into some
macroscopic aspects: Does the agent tend to act as a market maker or a market taker? Do they
have some distinct trading strategy? How does the evolution of their strategies manifest over time?
Addressing these questions is very important for both academic exploration and market regulation.
These responses can be integrated into agent-based models to improve microstructural facts of the
market. Additionally, they can also help regulators to identify irregular behaviors in the market.

Chapters 5 and 6 will be dedicated to addressing the questions mentioned above. We characterize
an agent at a given time by a sequence of consecutive orders it executes. Chapter 5 can be viewed as
a foundational step. By leveraging the supervised learning method to identify the agents, we study
the importance of the features and the performance of the classification. Deep learning methods
have proven their power in modeling limit order books in prior works Sirignano and Cont (2019);
Sirignano (2019); Zhang et al. (2019). This chapter will further demonstrate their effectiveness in
characterizing agents.

Moving to Chapter 6, we delve into addressing the earlier questions. Here, we first input agents’
order sequences into a pretext task, with the aim of learning a representation of an agent’s behavior
at a given time. The pretext task uses a self-supervised contrastive learning approach with a triplet
loss (Schroff et al., 2015). Similar to works in natural language processing, such as the remarkable
success of Mikolov et al. (2013b), the learned representations can reveal some intrinsic structure
within sequences of orders. Consequently, clustering algorithms can be applied to group agents
with similar behaviors. We demonstrate that the agents can be clustered into groups with distinct
trading strategies.
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Chapter 1. General Introduction

1.2 - Summary of the main results

In this section, we present a summary of the key results of this thesis.

1.2.1 Summary of Chapter 3

Chapter 3 corresponds to the paper Ruan et al. (2023b), submitted to Market Microstructure
and Liquidity (MML) Journal. In this chapter, we propose a non-linear Hawkes process model for
bid-ask spread dynamics, referred to as the "State-Dependent Spread Hawkes" (SDSH) model.

The bid-ask spread is defined as the difference between the lowest selling price and the highest
buying price in a limit order book. It is usually used as a measure for market liquidity and plays a
crucial role in financial analyses. In this work, we represent a spread process as pStqtě0, which can
be decomposed to two terms S`

t and S´
t , representing respectively the positive and negative jumps

of spread. Currently, all jumps are assumed to be of size 1 tick, resulting in St “ S0 ` S`
t ´ S´

t .
Before introducing our SDSH model, let us take a look at two existing models closely related to
our approach. The first model is the spread model proposed by Zheng et al. (2014), which is a
constrained Hawkes model with the following intensity functions:

λ`
t “ µ` `

ÿ

ePt`,´u

ż t

0
φ`,ept´ sq dSe

s ,

λ´
t “ 1St´ě2pµ´ `

ÿ

ePt`,´u

ż t

0
φ´,ept´ sq dSe

sq,

(1.2.1)

where λ` (resp. λ´) is the intensity associated to S` (resp. S´). The indicator function 1St´ě2
ensures that the spread remains strictly positive at all times.

The second model, explored in Fosset et al. (2020a), is defined as follows:

λ`
t “ µ` `

ż t

0
αβe´βpt´sq dS`

s

λ´
t “ µ´1tStě2u

(1.2.2)

This model is a specific instance of (1.2.1) when φ´,` and φ´,´ are set to zero. The authors
demonstrate that when α ă 1 ´

µ`

µ´ , the Hawkes system in (1.2.2) is stable and the spread process
is stationary.

The SDSH model can be seen as a extension of these two prior models. We extend (1.2.1) in two
different aspects:

˝ The jump sizes are no longer constrained to be 1 tick. Instead, we consider the possiblity of
K different jump sizes. This results in our model taking the form of a 2K-variate Hawkes
process model. The value of K is a hyperparameter that can be flexibly chosen based on the
specific dataset.

˝ The constraint 1St´ě2 for λ´ is replaced by some more general non-negative functions fpSt´q.
These new functions f , applicable to both λ` and λ´, enable the model to incorporate the
well-known fact that the spread is mainly mean reverting. Consequently, the term "State-
dependent" is introduced. These functions f can be calibrated using available data.

In summary, we denote by Se
t the counting process that counts the number of jumps of size e, for
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e P E :“ t`1,`2, . . . ,`K,´1,´2, . . . ,´Ku. The spread process St can be expressed as follows:

St “ S0 `
ÿ

k“1,2,...,K

kS`k
t ´

ÿ

k“1,2,...,K

kS´k
t .

Let λe denote the intensity function of the counting process Se. The SDSH model is formulated as
follows:

λe
t “ fepSt´q

«

µe `
ÿ

e1PE

ż t

0
φe,e1

pt´ sqdSe1

s

ff

Here, f´kpsq should be 0 when s ď k, in order to keep the spread positive. We assume that the
kernels are parameterized as a sum of L exponentials terms, given by,

φe,e1

ptq “

L
ÿ

l“1
αe,e1

l βle
´βlt

Markov property and ergodicity

The combined process pSt, Xtq is a Markov process, where Xe,e1

t :“
şt
0 φ

e,e1

pt´ sq dSe1

s .

In a simplified scenario where K “ 1 and L “ 1, meaning E “ t´1, 1u and φe,e1ptq “ αe,e1

βe´βt, we
can state the following proposition:

Proposition. The process pSt, Xtq is V-uniformly ergodic under the following conditions:

f´p1q “ 0
f´pSq ě γS for some γ ą 0 when S ě 2
sup

S
tf`pSqupα`,´ ` α`,`q ă 1

(1.2.3)

The proof of this proposition can be found in 3.A.

Simulation and Estimation

By using the classical "thinning method" introduced by Lewis and Shedler (1979); Ogata (1981) and
the Tick open source library (Bacry et al., 2017), the simulation is straightforward. For estimation
purposes, the Maximum Likelihood Estimation (MLE) method is employed. Consider a realization
on r0, T s and denote by tteku the event times on Se. The log-likelihood function can be expressed
as follows (for the sake of simplicity, we assume that L “ 1):

Lpα, µ, fq “
ÿ

ePE
p´

ż T

0
λeptq dt`

ż T

0
log λeptq dSe

t q

“
ÿ

ePE

SepT q
ÿ

k“1
logpµe `

ÿ

e1PE
αee1

β

ż te
k

0
e´βpte

k´sq dSj
sq `

ÿ

ePE

SepT q
ÿ

k“1
log fepSte

k
q

´
ÿ

ePE

ż T

0
pµe `

ÿ

e1PE
αee1

β

ż t

0
e´βpt´sqdSe1

s qfepStq dt

Here are the hyperparameters and their corresponding settings:
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˝ K: the highest jump size allowed by the model.

˝ L and tβlul“1,...,L: in practice choosing the βl that are logarithmically spaced is sufficient to
capture a wide range of behaviors, as in βl “ β110l´1.

˝ fepsq: we assume all fepsq functions are constant for s exceeding a fixed value S̄. Thus, for
each e and s ď S̄, fepsq is treated as a parameter.

An illustration of the estimation outcomes on simulated data is available in Figure 3.1 within the
main body of this thesis.

Empirical results

We calibrate the SDSH model using CAC40 data from Euronext. The data corresponds to the
spread processes for 3 stocks, namely AXA, BNP Paribas, Nokia, as well as the CAC40 index
Future, during around 100 days. The hyperparameter settings can be found in Table 3.2.

The Figures 1.2 and 1.3 provide examples of the estimation results for fe (Nokia) and essential
kernels φe,e1 (AXA). As expected, we observe that f`1psq and f`2psq display a decreasing trend
and approach 0 as s increases. Conversely, f´1psq and f´2psq are globally increasing functions.
When the spread is high, small f`1psq and f`2psq values inhibit the positive jumps while large
f´1psq and f´2psq values encourage the negative jumps. This mechanism effectively reinforces the
mean-reversion nature of the spread.

Figure 1.2 – Estimations of the tfepsquePE functions for NOKIA, E “ t´2,´1,`1,`2u.

Figure 1.3 shows that the kernels decrease slowly as a power-law function. This long memory
property of spread has been observed by various empirical studies; for example, Mike and Farmer
(2008); Ponzi et al. (2006); Zawadowski et al. (2006).

Figure 1.3 – Hawkes kernels for AXA.
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Goodness-of-fit

The SDSH model is able to capture the main statistical properties of the spread process. In this
summary section, we focus on presenting only one property: the auto-covariance (ACV) function
of the spread increments (Figure 1.4). Additional properties can be found in the main content of
this thesis.

The normalized auto-covariance function of the spread increment during δ seconds with a lag of τ
seconds is defined as follows:

ACV pδ, τq :“ 1
δ2 CovpSt`δ ´ St, St`δ`τ ´ St`τ q

Figure 1.4 illustrates the model’s accurate replication of the auto-covariance curve observed in the
true data. For varying δ when τ is relatively large, all ACV pδ, τq curves tend to converge, forming
a smooth collective curve. However, when τ becomes too large compared to δ, the inset figure
shows that the ACV curve becomes obscured by noise. Therefore, in order to accurately reproduce
the ACV curve across a broad range of τ , we can vary the value of δ and choose suitable values of
τ neither too small nor too large.

Figure 1.4 – The ´ACV pδ, τq functions for different values of δ as a function of τ using a log-log
scale both for using the AXA true data and the model-simulated data (fitted on AXA true data).

Prediction

The last part of this chapter is devoted to the prediction of spread, a potential application of the
SDSH model. We experiment with prediction time horizons ranging from 3 seconds to 30 seconds
and compare the predictive capabilities of the SDSH model against the ACDP method introduced
by Groß-KlußMann and Hautsch (2013). The comparative results show that the SDSH model
outperforms the ACDP method in most cases, especially for the short time-horizons.

1.2.2 Summary of Chapter 4

Chapter 4 is joint work with E. Bacry, T. Deschatre, M. Hoffmann and J.-F. Muzy. The paper is
currently in preparation. In this chapter, we study Hawkes processes with shot noise, with the aim
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of disentangling the endogenous and exogenous sources of correlation between two asset prices.

Endogeneity in the financial context refers to the fact that the price of an asset is influenced
by the price of other assets. In contrast, exogeneity indicates the external influences, such as
the news releases that influence prices. A recent study (Marcaccioli et al., 2022) delved into some
statistical examinations of the different performances of price fluctuations following endogenous and
exogenous events. The objective of our work is to construct a model which is able to disentangle
the endogenous and exogenous sources of correlation between two asset prices. Chapter 4 mainly
focuses on a model that incorporates the latent agent behavior.

In a simplified scenario, suppose N̄1 and N̄2 are two counting processes representing the number
of trades on Asset 1 and Asset 2, respectively. Before delving into the details of our model, let us
review a classical Hawkes process model for pN̄1, N̄2q:

N̄1 : λ1ptq “ µ1 `

ż t

0
φ11pt´ sq dN̄1psq `

ż t

0
φ12pt´ sq dN̄2psq

N̄2 : λ2ptq “ µ2 `

ż t

0
φ21pt´ sq dN̄1psq `

ż t

0
φ22pt´ sq dN̄2psq

Now let us consider a slightly more complicated scenario. Some trades on asset 1 are triggered by
its own price fluctuations or by those of Asset 2, reflecting an endogenous influence. Meanwhile,
there are agents holding both assets in their portfolios and they might engage in nearly simul-
taneous trading of both assets. These highly correlated trades, known as latent agent behavior,
are generated exogenously. Our model incorporates this latent agent behavior through a Poisson
process known as the shot noise process. It is important to note that the shot noise process (or the
latent dimension) is unobservable.

In our model, N̄1 “ N1 `N4, N̄2 “ N2 `N5. N1 and N2 are classical Hawkes processes, while N4
and N5 are generated by a shot noise process N3, with delays (exponential distribution) on both
processes. Figure 1.5 illustrates the concept of our model.

t (second)

Δ(2)
1 Δ(2)

3

Δ(1)
1 Δ(2)

2

Δ(1)
2

Δ(1)
3

N1
N2

N4
N5

N3

t (second)

P1
S P2

SP1
D P2

D

N̄1 = N1 + N4

N̄2 = N2 + N5

N3

Figure 1.5 – The yellow dashed arrows show the relation of generation. If an arrow points from
a empty circle, it means that the event is an immigrant generated by an exogenous intensity for
self-exciting processes. Otherwise, the arrow points to a child from its parent. The delay of the
k-th shot noise on N̄i is indicated by ∆piq

k (by our setting ∆piq
k „ Exppaiq). The common shot noise

is represented by the greed shade.
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Referring to Example 7.3(a) in Daley et al. (2003), this Hawkes process with shot noise model can
be expressed as follows:

$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

N1 : λ1ptq “ µ1 `

ż t

0
φ11pt´ sq dpN1psq `N4psqq `

ż t

0
φ12pt´ sq dpN2psq `N5psqq

N2 : λ2ptq “ µ2 `

ż t

0
φ22pt´ sq dpN2psq `N5psqq `

ż t

0
φ21pt´ sq dpN1psq `N4psqq

N3 : λ3ptq “ µ3

N4 : λ4ptq “ a1 pN3ptq ´N4ptqq

N5 : λ5ptq “ a2 pN3ptq ´N5ptqq

(1.2.4)

Some notation

Before listing the key results of this chapter, we first clarify some notational conventions.

˝ N̄ is a two-variate point process defined as N̄ “

´

N̄1 N̄2

¯J

,

˝ φH is a kernel matrix with φH “

¨

˝

φ11 φ12

φ21 φ22

˛

‚and RHptq is a matrix of functions defined by

RHptq “

8
ÿ

n“0
φ‹n

H ptq

˝ The integrals of φH and RH are respectively denoted as GH and RH , (i.e., GH “ }φH} and

RH “

ż 8

0
RHptq dt “ pI2 ´GHq´1),

˝ The unconditional intensity of N̄ is Λ̄ “

¨

˝

Λ̄1

Λ̄2

˛

‚ “ RH

¨

˝

µ1 ` µ3

µ2 ` µ3

˛

‚ and the unconditional

intensity of

¨

˝

N1

N2

˛

‚ is ΛH “

¨

˝

Λ̄1 ´ µ3

Λ̄2 ´ µ3

˛

‚.

Limit theorems

Following the limit theorems in Bacry et al. (2013b), we can prove analogue versions for Hawkes
processes with shot noise model.

Consider the following assumption:

For all i, j P t1, 2u, }φij
H} “

ż 8

0
φij

Hptq dt ă 8 and the matrix

GH “ }φH} has spectral radius smaller than 1
(A1)

Theorem 1.1. If (A1) holds, we have

sup
vPr0,1s

›

›

›

›

›

1
T
N̄T v ´ vΛ̄

›

›

›

›

›

ÝÑ 0 as T Ñ 8 almost surely and in L2
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Theorem 1.2. If (A1) holds, in law for the Skorokhod topology, as T Ñ 8,

1
?
T

`

N̄T v ´ ErN̄T vs
˘

Ñ RH

¨

˝

ΛH,1W1,v ` µ3W3,v

ΛH,2W2,v ` µ3W3,v

˛

‚ for v P r0, 1s

where pWvqvPr0,1s is a standard 3-dimensional Brownian motion.

Set X̄t “ N̄t ´ ErN̄ts, the empirical covariance matrix of N̄ on r0, T s is

C∆,T pN̄q “
1
T

tT {∆u
ÿ

i“1

`

X̄i∆ ´ X̄pi´1q∆
˘ `

X̄i∆ ´ X̄pi´1q∆
˘J

Theorem 1.3. Let p∆T qT ą0 be a family of positive real numbers. And suppose ∆T {T Ñ 0 as
T Ñ 8. We have

C∆T ,T pN̄q ´ c∆T
Ñ 0 as T Ñ 8 in L2

with

c∆ “

ż

R2
`

ˆ

1 ´
|t´ s|

∆

˙`

RHpsqΣ̄RHptqJ ds dt

` µ3

ż

R2
`

ˆ

1 ´
|t´ s|

∆

˙`
´

RHpsq ‹ Γ̄psq
¯

¨

˝

0 1

1 0

˛

‚

´

RHptq ‹ Γ̄ptq
¯J

ds dt

where Σ̄ “

¨

˝

Λ̄1 0

0 Λ̄2

˛

‚ and Γ̄ptq “

¨

˝

´a1e
´a1t 0

0 ´a2e
´a2t

˛

‚.

Corollary 1 (Macroscopic covariance).

lim
∆Ñ8

c∆ “ RH

¨

˝

Λ̄1 µ3

µ3 Λ̄2

˛

‚RJ
H

Estimation (NPHC method)

Achab et al. (2017) developed a non-parametric estimation method for Hawkes processes by using
the first three orders of cumulants. We can prove that this method is also applicable to our
model. In fact, it is always effective as long as the number of parameters is lower than the number
of independent cumulant equations. In Figure 1.6, an illustration of the estimation outcome on
simulated data is presented. The true parameters are denoted by the red lines, while the histograms
show the distributions of estimated values across 100 separate replicates. This outcome validates
the efficacy of the NPHC method.

Extension to higher dimension

The model (1.2.4) can be extended to higher dimension. In particular, let us consider a bivariate
price model, where P1 and P2 are the price processes for Asset 1 and Asset 2 respectively. Following
the model introduced in Bacry et al. (2013a), the pair pP1, P2q can be derived from pN̄1 ´ N̄2, N̄3 ´

N̄4q, where N̄1,t (resp. N̄2,t) represents the number of upward (resp. downward) price jumps at
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Figure 1.6 – An example of estimated kernel norms and baselines for simulated data. Red dashed
vertical lines indicate the true values. The histograms represent the distributions of estimated
values from 100 independent replicates. Each estimation is based on a simulated process spanning
106 seconds, equivalent to approximately 3.68 ¨ 106 events.

time t for Asset 1 and N̄3,t (resp. N̄4,t) represents the number of upward (resp. downward) price
jumps at time t for Asset 2. In this case, the observable counting processes are pN̄iqi“1,2,3,4 and
the observable dimension increases to 4. Within the framework of the Hawkes processes with shot
noise model, N̄i “ NH,i `ND,i for i “ 1, 2, 3, 4 where NH,i and ND,i are defined as follows:
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NH,i : λH,i “ µH,i `

4
ÿ

j“1

ż t

0
φH,ijpt´ sq drNH,jpsq `ND,jpsqs for i P t1, 2, 3, 4u

NX,k : λX,kptq “ µX,k for k P t1, 2u

ND,i : λD,iptq “ a1rNX,1ptq ´ND,iptqs for i P t1, 3u

ND,i : λD,iptq “ a2rNX,2ptq ´ND,iptqs for i P t2, 4u

(1.2.5)

Here we assume the existence of a 2-dimensional shot noise NX,1 and NX,2 where NX,1 (resp. NX,2)
affect the two upward price jumps (resp. the two downward price jumps).

Figure 1.7 shows the result of calibrating the model on BNP Paribas and Société Générale data
from Euronext. This result offers a first blush into the model’s application to real-world data. More
applications will be explored in the future.

A variant of the model

The previous models 1.2.4 and 1.2.5, called the latent-behavior shot noise models, are based on the
assumption that the shot noise process is latent behavior of some agents. In this work, we also
propose a variant of the model, called the latent-information shot noise model, where the shot noise
process stands for the latent information of the market.

Let NH,ipi “ 1, . . . , dq denote the observable processes and NX,kpk “ 1, . . . pq denote the latent
processes (i.e., shot noise). The event space is E “ tNH,i, i “ 1, 2, . . . , du Y tNX,k, k “ 1, 2, . . . , pu
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Figure 1.7 – Estimation of Hawkes kernel norms and baselines for BNP Paribas and Société
Générale. "1" and "2" stand for the upward and downward price jumps for BNP Paribas while
"3" and "4" stand for the upward and downward price jumps for Société Générale.

and the latent-information model is formulated as follows:

λH,iptq “ µH,i `

d
ÿ

j“1

ż t

0
φH,ijpt´ sq dNH,jpsq `

p
ÿ

k“1

ż t

0
φX,ikpt´ sq dNX,kpsq for i P t1, 2, . . . , du

λX,kptq “ µX,k for k “ 1, 2, . . . , p

where λH,i and λX,k are the intensities of NH,i and NX,k respectively. We can prove the effectiveness
of the NPHC estimation method on this variant model as long as p ě d3`5d

6pd`1q
.

1.2.3 Summary of Chapter 5

Chapter 5 is our first attempt at using deep learning methods for classifying and characterizing
agents. Our primary goals include addressing questions such as: without relying on statistical
examinations, can we classify agents effectively? How can we characterize diverse agent behaviors
in the limit order book? What are the main features that distinguish different agents?

In this chapter, we apply a supervised learning method to classify agents. Specifically, we focus
on 28 highly active agents in the CAC40 index Future market. We assume that at a given time,
an agent’s behavior can be described by a sequence of orders they have submitted. Through this
chapter, we find that the most relevant set of order features for this task consists of three aspects:
the order itself (arriving time, price, size), the market context (state of the order book before the
order) and the categorical action type of the order (limit, market or cancellation at a specific level).
An input sample for the neural network is a sequence of N consecutive orders by an agent, and the
output is the agent’s ID.

We adopt the widely-known Gated Reccurent Unit model introduced by Cho et al. (2014). The
model architecture for labelling order sequences is illustrated in Figure 1.8.

Results

With each input comprising a sequence of 100 orders, the model attains an accuracy of 0.943 on
the test set. This outcome signifies that the agent behaviors are effectively distinguishable using
deep learning methods.
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GRU
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Bidirectional 

Units = 128
Units = 128 Units = 28 Output
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Dropout

TanH

GRU ArgMax

Embedding

42 × 5
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(N × 25)

(N × 5)
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Figure 1.8 – Input 1 is a sequence of N orders with 25 basic features HMC (the order itself and the
market context), input 2 is the categorical feature AT (action type)

Furthermore, as shown in Figure 1.8, the categorical action type feature is embedded into a 5-
dimensional vector before being fed into the GRU. In the remarkable success of Word2Vec (Mikolov
et al., 2013a,b), the word embedding approach captures various degrees of semantic simularity
between words (such as "man" - "king" = "woman" - "queen"). Inspired by this work, we visualize
the embedding vectors of the 42 action types in R2 using Principal Component Analysis projection.
This visualization reveals notable patterns, as shown in Figure 1.9. For example, limit orders and
cancellations are clearly seperated, while market orders are located in the middle. Moreover, the
inset figure displays an interesting pattern of the difference between the embedding vectors of limit
orders and cancellations.

Figure 1.9 – Two-dimensional PCA projection of the 5-dimensional embedding vectors of action
types. The inserted figure displays 5 lines, with each line ∆i, i “ 1, 2, 3, 4, 5 indicating the vector
from limit level i to cancellation level i.

Extended experiments

In the previous experiments, each order is labeled according to its agent (Member ID). At the same
time, we also have another more finely-grained label, called the "ITM". ITM stands for Interactive
Trading Machine used by banks, hedge funds and other financial institutions. Notably, ITMs are
a division of Member IDs, implying that each Member ID can correspond to multiple ITMs.

In the subsequent experiments, an input consists of a sequence of orders placed by a specific ITM
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and the objective is to predict the ITM ID as the output. Simlilar to the previous experiments,
we select in total 104 ITMs in this experiment, belonging to 21 Members. Figure 1.10 shows the
confusion matrix of the classification results.

Figure 1.10 – Confusion matrix. The diagonal submatrix blocks represent the grouping of ITMs
from the same Member. The labels along the x-axis (abscissa) are presented in the format "ITM -
Member", while the labels along the y-axis (ordinate) are displayed in the format "ITM - Member
ąą Accuracy".

The results show remarkable patterns of ITMs corresponding to the same Member ID. For ex-
ample, let us extract the submatrix corresponding to Member ID 3. By employing agglomerative
hierarchical clustering on the rows of this matrix, we group 39 ITMs of Member 3 to 10 subgroups.
Detailed visualizations of these results can be found in the main content of this thesis.
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1.2. Summary of the main results

1.2.4 Summary of Chapter 6

Chapter 6 corresponds to the paper Ruan et al. (2023a), which has been accepted for publication
at ICAIF’23 conference 1. Our objective of this work is to characterize and cluster agent behaviors.
Recent studys, such as Cont et al. (2023) and Cartea et al. (2023), have also explored this topic
through statistical models. In this chapter, we propose to use a self-supervised learning method
called contrastive learning to develop a representation of agent behaviors. It is worth noting that
we only consider the liquidity-taking agents in this work.

Our approach employs the triplet loss as the loss function for contrastive learning. Introduced in
Schroff et al. (2015) for face recognition, the triplet loss aims to learn a representation of raw inputs
by minimizing the distance between the samples from the same class and maximizing the distance
between the samples from different classes. In our context, the classes represent different trading
behaviors of 30 agents and a raw input is a sequence of consecutive market orders from an agent.
Similar samples are sequences from the same agent that are temporarily close to each other, while
dissimilar samples are sequences from different agents. The similarity criterion is employed to avoid
imposing a single strategy for each agent. In fact, an agent may change strategies over time, with
the assumption that their behavior is temporally consistent.

Figure 1.11 gives an illustration of the triplet loss for our task. We aim to find an encoder f which
maps the input sequences to a vector in Rn (in Figure 1.11, n “ 2). The triplet loss minimizes the
distance between the samples from the same agent }fpXpq ´ fpXaq}2 and maximize the distance
between the samples from different agents }fpXnq ´ fpXaq}2. Here Xa is the anchor sample, Xp

is a positive sample (i.e., similar to Xa) while Xn is a negative sample (i.e., dissimilar to Xa).

Time Member ID Features
09:10:01.001 101 **
09:10:03.356 101 **

… … **
09:21:02.760 101 **

xaAnchor

Time Member ID Features
10:05:59.10

2
302 **

10:09:30.30
9

302 **
… … **

10:30:20.43
0

302 **

xnNegative

Time Member ID Features
11:00:03.90

1
101 **

11:00:56.32
6

101 **
… … **

12:10:23.12
4

101 **

xpPositive

f

f

f

f(xa)
f(xp)

f(xn)

ℝ2

Figure 1.11 – Illustration of model learning. X is a sequence of consecutive market orders and
fpXq is its vector representation in R2.

The encoder f is a 2-layer Long-Short Term Memory (LSTM) network (as shown in Figure 1.12).
An input consists of a sequence of 50 market orders with each market order characterized by 8
features. Through this contrastive learning, we get a representation function for the sequences of
market orders. Until now, the preparation job is complete. The next phase involves applying the
representation function to various downstream tasks.

Clustering

We choose to use the K-means clustering algorithm on the derived representation vectors. By
applying this approach, we cluster all the samples of market order sequences into 7 groups. Figure
1.13 shows the clustering results. Now our task is to understand the significance of each cluster.

1. The Association for Computing Machinery (ACM) International Conference on Artificial Intelligence in Finance
(ICAIF) 2023
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Figure 1.12 – Encoding model architecture schema for one sample.

We evaluate the clusters based on the following indicators: trading frequency, average trade size,
spread before trades, queue sizes before trades, accumulated pure trading direction and limit-to-
trade modifications. The evaluation results are summarized in Table 1.1.

These indicators effectively differentiate the clusters. For example, Cluster 2 demonstrates the
highest frequency while Cluster 6 exhibits a low frequency, high spread and high direction values.
As a result, we can derive that Cluster 2 corresponds to market making behavior while Cluster 6
corresponds to directional trading practices. More details can be found in the main content of this
thesis.

Figure 1.13 – K-means clustering results. Each agent is represented by a vertical bar, which may
consist of one or multiple segments. Each segment corresponds to the agent’s samples assigned to
a specific cluster.

cluster 1 2 3 4 5 6 7

Frequency + +++ ++ + + + ++

Trade size +++ ++ ++ ++ + ++ +

Fill rate + + ++ ++ ++ ++ +++

Spread ++ + ++ + +++ +++ ++

QS ++ ++ ++ + +++ +++ ++

Opposite QS + + ++ ++ ++ ++ +++

Direction + + +++ + ++ +++ +

Modification + ++ + ++

Table 1.1 – Evaluation of the clusters based on the above indicators (from none() to low (+) to
high (+++)
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1.2. Summary of the main results

Agent characterization

Let us now focus on a particular agent and analyze its behavior across different clusters. The
example we take here is Agent 9, who is mainly assigned to Clusters 1,2 and 3. Figure 1.14
provides insight into its behavior within these clusters. When we plot the time periods of these
samples throughout the trading day (as illustrated in Figure 1.14b), a distinct pattern emerges.
We observe that in the morning, Agent 9 behaves as in Cluster 1, while in the afternoon, it exhibits
behaviors similar to those of Cluster 2.

(a)

(b)

Figure 1.14 – Agent 9. (a) Each figure corresponds to an indicator. Within each figure, the three
vertical bars represent the performance of samples from Agent 9 within each cluster. (b) Each
figure corresponds to a cluster. Within each figure, the histogram plot displays the distribution of
samples selecting times.

Let us consider another example, Agent 10 (depicted in Figure 1.15). We can see that Agent 10
significantly changed behavior twice during this period. The first time of change occurs around
March 2016, followed by another one around December 2016.
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Figure 1.15 – 2-D scatter plot. X-axis represents the dates and the y-axis represents the hour in a
day. In this plot, each point stands for the occurring time of a selected sample and its color shows
the cluster that it belongs to.
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PRELIMINARIES
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The aim of this chapter is to establish the foundational concepts and notations that will be used
throughout the thesis. Section 2.1 provides an overview of the financial market, as well as an
introduction to the dataset used in this thesis. In section 2.2, we will introduce the Hawkes
processes and some of their properties. The simulation and estimation inferences are also discussed
in this section. These preparatory elements lay the groundwork for Chapters 3 and 4. Section 2.3
will introduce some most popular artificial neural networks and their variants, setting the stage for
Chapters 5 and 6.

2.1 - Financial market

Financial markets refer to various markets where the buying and selling of securities takes place,
such as stock market, bond market, forex market, and derivatives market. The primary objective
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2.1. Financial market

of financial markets is to facilitate the efficient allocation of capital and assets in a financial econ-
omy. Over the past few decades, financial market have evolved from traditional markets, which
were manual and labor-intensive with high transaction costs, to modern financial markets. The
modern market refers to the digitalisation of financial markets and the rise of new financial tech-
nologies, including high-frequency trading (HFT) and algorithmic trading. These advancements
enable traders and investors to buy and sell securities quickly and efficiently.

This section is mainly dedicated to the introduction to some basic concepts of financial market and
description of the data used in this thesis.

2.1.1 High-Frequency Trading

High-frequency trading (HFT) refers to the use of advanced algorithms to make trades at lightning-
fast speeds. HFT is largely employed by major investment banks, hedge funds and institutional
investors. Its evolution began gradually after NASDAQ introduced a purely electronic form of
trading in 1983, and the execution time diminished from several seconds to milliseconds and even
microseconds. The key characteristics are trading at high speed, a large number of transactions
and short-term investment horizons. All portfolio-allocation decisions are executed by computerized
quantitative models. According to Biais et al. (2014), HFT strategies can be classified into five
types: market-making, arbitrage, directional trading, structural trading, and manipulation.

2.1.2 Limit Order Book

A market refers to a place where there are both buyers and sellers. Buyers always aim to buy at
lower price while sellers strive to sell at higher price. In financial market, the limit order book
provides such a mechanism for facilitating the interactions between buyers and sellers.

A Limit Order Book (LOB) is an electronic continuous-time double-auction mechanism which
records of all active orders for a particular financial asset at a given time Gould et al. (2013). It
displays the collection of buy and sell intentions within a specific market and comprises of two sides:
the bid side and the ask side. The bid side consists of the available prices of the buy orders, while
the ask side consists of the available prices of the sell orders. These prices are discrete and have a
basic unit of price interval referred to as the tick size, which represents the smallest increment in
price for the security.

The Best Bid Price (or simply the "best bid") is the highest buying price among the active buy
orders at time t. This price is also often referred to as the first level of the bid side. In a similar
manner, the Best Ask Price is defined as the lowest selling price among the active sell orders.
The best bid and best ask prices are denoted as P b

1 ptq and P a
1 ptq respectively. Furthermore, the

kth level of the bid (or ask) side refers to the kth highest (or lowest) available price in the bid (or
ask) side. In this thesis, P b

kptq and P b
kptq are used to denote the bid and ask prices of the kth level

respectively.

Simultaneously, the volume of available limit orders at the kth level of the bid side is represented
by V b

k ptq, while the volume of available limit orders at the kth level of the ask side is denoted by
V a

k ptq.

An order x can be characterized by several features including its arrival time tx, side (bid or ask)
sx, price Px, size Vx ą 0, and order type Cx. These features can be represented in vector form as
x “ ptx, sx, Px, Vx, Cxq.
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In the following, we will show the three most common types of orders (Cx): limit orders (Type=1),
market orders (Type=2), and cancellation orders (Type=3).

˝ Limit order : An order x is a bid limit order if sx “ Bid and Px ă P a
1 ptx´q. x is an ask

limit order if sx “ Ask and Px ą P b
1 ptx´q. (Order type = 1)

˝ Market order : An order x is a bid market order if sx “ Bid and Px ě P a
1 ptx´q. x is an

ask limit order if sx “ Ask and Px ď P b
1 ptx´q. A market order is an order to buy or sell

immediately. (Order type = 2)
˝ Cancellation order : A limit order which has not been filled can be removed (fully or

partially), this action corresponds to a cancellation order. (Order type = 3)
Now let us take the figure as an example to better understand some key terms in an LOB:

20 20.1 20.2 20.3 20.4 20.5 20.6 20.7 20.8 20.9 21
0

5

10

SpreadTick size
Best ask (L1)Best bid (L1) Ask L5

Mid price
1

23

Depth

Price

Vo
lu

m
e

Bid side Ask side

Figure 2.1 – A snapshot of an LOB at a point of time

˝ Tick size : The tick size of an LOB is the smallest permissible price interval (in the example
Fig. 2.1, tick size is 0.1)

˝ Best ask : The best ask at time t of an LOB is the lowest ask price (20.6 in the Fig. 2.1)
˝ Best bid : The best bid at time t of an LOB is the highest bid price (20.4 in the Fig. 2.1)
˝ Mid-price : The mid-price at time t of an LOB is the average of the best bid and best ask

prices at time t (20.5 in the Fig. 2.1)
˝ Spread : The spread at time t of an LOB is the difference between the best ask price and

the best bid price (in the example figure Fig. 2.1, the spread is 0.2, i.e. 2 ticks)
Abergel et al. (2016); Bouchaud et al. (2018); Gould et al. (2013) provide a nice introduction to
the LOB and its properties.

2.1.3 Market participants

There are various participants in a financial market, we will list some of them here.

Market makers

Market makers, also known as liquidity providers, play a crucial role in the functioning of a market.
They are typically large banks or financial institutions. They post liquidity on both sides of the
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market (buy and sell) and attempt to earn the bid-ask spread. By doing so, they take an adverse
selection risk at the same time, if the prices is really changing, they will never buy-back at a good
price.
Some market makers have a mandate to always provide liquidity to the market, while others may
only do so in certain market conditions. During periods of high volatility or uncertainty, some
market makers may withdraw from the market, leading to a temporary reduction in liquidity. In
fact, many market makers also engage in short-term trading strategies and may act as market
takers. This means that they will sometimes take positions in the market based on their own
analysis and research, rather than simply providing liquidity.

Institutions

Institutions are large entities such as banks, which engage in significant investments and thus gain
importance within the market. For instance, Proprietary trading firms and Investment banks are
two types of institutions.

A proprietary trading firm, refers to a financial institutions that trade for their own account, using
the firm’s capital rather than client funds. The firm may maintain the full amount of gain earned
on the investment by doing so.
An investment bank functions as a financial services company that acts as an intermediary in large
and complex financial transactions. Notable global investment banks include JPMorgan Chase,
Goldman Sachs and others. They are usually involved in managing complex financial transactions
like IPOs and mergers for corporate clients.

Hedge funds

A hedge fund is a limited partnership of private investors whose money is managed by professional
fund managers who use a wide range of strategies. The term "hedge" originally referred to the
practice of using various techniques to mitigate or "hedge" against market risks, but modern hedge
funds often use a broader array of strategies. Common hedge fund strategies includes long/short
equity, arbitrage, global macro, event-driven and so on.

Brokers

For many individual investors, direct access to the securities markets can be difficult without the
assistance of a broker. A broker is an individual or firm that acts as an intermediary between
an investor and a securities exchange. Brokers make their money by charging their customers a
commission for their services. They have a main role in facilitating the trading of securities on
behalf of their clients, which involves executing orders to buy or sell securities in the markets.

2.1.4 Data presentation

Within this thesis, most of the numerical experiments rely on a database sourced from the french
Euronext market’s CAC 40. This database includes a complete record of the limit order book for 40
stocks within the CAC40 index, as well as the futures contract associated with the CAC 40 Index.
The database, provided by Euronext, covers the period from February 2017 to February 2018 for
the stocks and from January 2016 to August 2017 for the futures contract. The data records every
single modification in the limit order book, across 15 limit levels on each side. The timestamps
have a precision of 1 microsecond.
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CAC 40

CAC 40 is a stock index, which is composed of the 40 most traded stocks on Euronext Paris. It is
a so-called "capitalization-weighted" index, which means that the market capitalization (number of
shares in circulation multiplied by the current share price) determines the weight of each company
in the index.

CAC 40 index Future (FCE)

A futures contract is an agreement between two parties to exchange a certain quantity of an
underlying asset at a predetermined price at a specified time in the future. Underlying assets include
physical commodities or other financial instruments. Normally, futures contracts are traded on an
exchange and to facilitate trading, the exchange specifies standardized features of the contract.

As its name indicates, the Future CAC 40 (CAC 40 Index Future; FCE) has as its underlying value
the Paris stock market index, the CAC 40.

Data example

Table 2.1 provides an artificial example of several consecutive actions on the limit order book. It is
worth noting that market context columns are visible to traders and investors, whereas the order
columns can only be viewed by the exchange. We are grateful to Euronext for providing us with
access to the order book data of the CAC 40 index. This access allows us to observe the real-time
evolution of the limit order book, including the order features (agent ID, order side, etc).

Time

Order x Market Context before the order x

ID Side Order
type Price Size Mid

Bid side Ask side

Price Size Price Size

tx Ax sx Cx Px Vx Pm P b
1 P b

2 P b
3 V b

1 V b
2 V b

3 P a
1 P a

2 P a
3 V a

1 V a
2 V a

3

09:54:22.297 1 Ask 1 20.8 3 20.5 20.4 20.3 20.2 2 5 5 20.6 20.7 20.8 3 4 3

09:54:22.509 2 Ask 2 20.4 1 20.5 20.4 20.3 20.2 2 5 5 20.6 20.7 20.8 3 4 6

09:54:23.655 1 Bid 3 20.2 2 20.5 20.4 20.3 20.2 1 5 5 20.6 20.7 20.8 3 4 6

09:54:23.985 3 Ask 2 20.4 3 20.5 20.4 20.3 20.2 1 5 3 20.6 20.7 20.8 3 4 6

09:54:24.003 4 Ask 1 20.5 2 20.35 20.3 20.2 20.1 1 5 3 20.4 20.5 20.6 2 0 4

Table 2.1 – An artificial example of 5 consecutive actions on the limit order book (only 3 limit
levels are shown in this table and the timestamp precision is one millisecond in this example). For
example, the first order in the table represents the following scenario: At 9:54:22.297, Agent 1
added a limit order (order type = 1) of size 3 at level 3 of the ask side. As a result, the order
volume at level 3 of the ask side increased from 3 to 6 after this order from Agent 1
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2.2 - Hawkes process

Hawkes process, which was first introduced by Alan G. Hawkes in Hawkes (1971a,b), is a type of
self-exciting point process. Originally developed to model earthquake events in seismology (Hawkes,
1973), Hawkes process has since been widely studied and applied to various fields, ranging from
epidemiology and social networks to neuronscience and finance. In epidemiology, Hawkes process
has been used to model the spread of infectious diseases (Rizoiu et al., 2018). For instance, many
recent studies involve in modelling the dynamics of Covid-19 pandemic using Hawkes processes
(Chiang et al., 2022; Garetto et al., 2021). It is also applied in modelling social networks, (Kobayashi
and Lambiotte, 2016; Rizoiu et al., 2017) and in neuronscience (Lambert et al., 2018; Reynaud-
Bouret et al., 2013). In addition to these applications, Hawkes process is particularly popular and
extensively studied in finance. It is usually used to model financial market, such as the arrival
of trades and order flows of limit order books (Bacry et al., 2013a, 2016; Bacry and Muzy, 2014;
Morariu-Patrichi and Pakkanen, 2022; Rambaldi et al., 2019; Wu et al., 2019). In particular, Bacry
et al. (2015) provides a comprehensive review of its application in finance. A recent book (Laub
et al., 2021) gives an overview of the crucial aspects of Hawkes processes and their applications.

2.2.1 Point processes

Before proceeding to the details of Hawkes process, let us first introduce some preliminary defini-
tions.

Definition 2.1 (Counting Process). A d-dimensional counting process tN t, t ě 0u is a stochastic
process which satisfies the following three properties for all i P t1, 2, . . . , du: N i,t ě 0, N i,t P N and
if s ď t, N i,s ď N i,t.

We use Ft to represent the filtration for the history up to time t.

Definition 2.2 (Point Process). A d-dimensional point process is a sequence of random event
arrival times T “ tpt0, e0q, pt1, e1q, pt2, e2q, ...u, for all k P N. tk stands for the arrival timestamps
and ek P t1, 2, . . . , du stands for the event type. For all k P N, tk ą 0 and tk ă tk`1.

The terminology of point process and counting process is usually interchangeable. From a point
process T , we can define a right-continuous counting process tN tu by N i,t “

ř

kě0
1ttkďtuXtek“iu, in

this case N t is called the counting process associated with the point process T . In this thesis, we
use both the two notations to represent a point process. In this thesis, we assume that the counting
and point processes are simple, meaning that each event arrival results in a jump of exactly 1.

Definition 2.3 (Conditional intensity). The intensity of a counting process is a measure of the
rate at which events occur. If tN t, t ě 0u is a d-dimensional counting process with associated
filtration F , then its intensity vector at time t given the past (before t but excluding t) is λt “

pλ1,t, λ2,t, ..., λd,tq where
λi,t “ lim

hŒ0

1
h
ErNi,t`h ´Ni,t | Ft´s

2.2.2 Definition of Hawkes process

Now let us proceed to the introduction of Hawkes process. Hawkes processes are self- and mutually-
exciting point processes introduced by Hawkes in the works Hawkes (1971a,b).
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Definition 2.4 (Hawkes process). A d-dimensional Hawkes process is a vector of counting pro-
cesses N “ pNiqiPt1,2,...,du with conditional intensity λt “ pλiqiPt1,2,...,du as follows:

λiptq “ µi `

d
ÿ

j“1

ż t

0
φijpt´ sq dNjpsq

where µi is an exogenous intensity for the i-th counting process Ni, and φij represents the influence
of the arrivals of j-th events on the intensity of the i-th counting process. The vector of exogenous
intensities is denoted by µ “ pµiqiPt1,2,...,du.

If φijptq ” 0 for all 1 ď i, j ď d, then Np¨q is a d-dimensional homogeneous Poisson process with
rate µ.

Example 1 (A univariate Hawkes process). Let us simulate a univariate Hawkes process with the
following parameters:

˝ sum of exponential kernel φptq “ 0.001e´0.1t ` 0.2e´t ` 0.1e´10t

˝ baseline µ “ 1.
See Figure 2.2 for a realization during 5 seconds.

Figure 2.2 – Example of a simulated univariate Hawkes process. The orange dots represent the
event times while the blue line represents the intensity function. The simulation interval is r0, 5s.

Remark 2.1. If we note a multivariate Hawkes process by its event times T “ tptk, ekqukPN, its
conditional intensity can be expressed as:

λiptq “ µi `
ÿ

kě0
φi,ek

pt´ tkq1tkăt

Example 2 (kernels). The following functions are some well-known kernels.
˝ Exponential kernel : φijptq “ αije

´βijtpαij , β ą 0q

˝ Power-law kernel : φijptq “ αijt
´βij pαij , β ą 0q

Proposition 2.1 (Markov property for exponential kernels). Consider a Hawkes process with
exponential kernel φijptq “ αijβe

´βt. In this case, pλptq,Nptqq is a Markov process and can be
represented in a Markovian form as

dλi,t “ ´βλi,t dt`

d
ÿ

j“1
αijβ dNj,t
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2.2. Hawkes process

For the purpose of clarity, we use the following symbols:
˝ µ represents the vector of exogenous intensities, with µi as the intensity for event type
i “ 1, 2, ..., d.

˝ φp¨q represents the matrix of kernel functions, with φijp¨q as the kernel function between
event types i and j.

One of the generalizations of the Hawkes process is the non-linear case, with the intensity function
expressed as :

λiptq “ hpµi `

d
ÿ

j“1

ż t

0
φijpt´ sq dNjpsqq

where hp¨q is a non-linear positive function. The nonlinear Hawkes process has been studied by
several authors, including Brémaud and Massoulié (1996) and Zhu (2013).

2.2.3 Some properties related to Hawkes processes

The linear Hawkes process has been extensively studied and documented in the literature. In the
following part, we will review some key properties of the linear Hawkes process.

Proposition 2.2 (Non-explosiveness). Consider a point process T “ tptk, ekq, k P Nu, set t8 “

limkÑ8 tk. T is called non-explosive if t8 “ 8 almost surely.

A Hawkes process is non-explosive if
ż t

0
φijpsqds ă 8 for all i, j P r1 : ns , t ě 0

Proposition 2.3 (Stationarity). N t has asymptotically stationary increments and λt is asymp-
totically stationary if the kernel satisfies the stability condition Bacry et al. (2015):

For all i, j, }φij} “

ż 8

0
φijptq dt ă 8 and the matrix

}Φp¨q} “ p}φij}qi,j has spectral radius smaller than 1
(A2)

where the spectral radius of a matrix is the maximum of the absolute values of its eigenvalues.

Next, we define the matrix of functions as

Rptq “

`8
ÿ

k“1
Φ‹kptq

where the symbol ‹ stands for a pointwise convolution operator for matrices i.e., given two ma-
trices of functions Ap¨q and Bp¨q, Dp¨q “ A ‹ Bp¨q is a matrix of functions defined as Dijptq “
ÿ

k

ż

Aikpt ´ sqBkjpsqds and Φ‹kptq is the k-th convolution of Φp¨q with itself. In other words,

Φ‹kptq “ Φ ‹ Φ ‹ ... ‹ Φ
looooooomooooooon

k times

.

Corollary 2. Under the assumption of stationarity as defined in equation (A2), it can be easily
shown that 1

R “ }Rp¨q} “ I `

8
ÿ

k“1
Φk “ pI ´ Φq´1

1. By a slight abuse of notation, we use Φ (resp. R) to denote the integrated matrix }Φp¨q} (resp. }Rp¨q}) in this
text.
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First and second order properties

We now proceed to introduce the cumulants densities associated with a Hawkes process. The
unconditional intensity (first order cumulant) Λdt “ ErdN ts is

Λ “ Erλts “ Rµ “ pI ´ Φq´1µ (2.2.1)

And if we denote by Cpsq dt ds “ ErdN t dNT
t`ss ´ ΛΛT dt ds the infinitesimal covariance matrix,

then its integrated cumulant (second order cumulant) is written as

C “ RΣRT (2.2.2)

where Σ is the diagonal matrix with Λ as its diagonal values, such that Σii “ Λi.

We define the conditional intensity matrix

gijptq “
ErdNi,t | dNj,0 “ 1s ´ λi dt

dt
, for t ą 0

This matrix is linked to the infinitesimal covariance matrix through the following equation: Cptq “

Σgptq. Furthermore, we have the following proposition (Bacry and Muzy, 2016):

Proposition 2.4 (Wiener-Hopf Equation). Under the assumption of stationarity as defined in
equation (A2), the matrix function X ptq “ Φptq is the unique solution of the Wiener-Hopf system

gptq “ X ptq ` X ‹ gptq, @t ą 0

Higher order

In general, the cumulant of order n of a n-dimensional random vector x “ txiuiPrns, denoted by
Kpxq, is defined as

Kpxq “
ÿ

π

p|π| ´ 1q!p´1q|π|´1
ź

BPπ

E

«

ź

bPB

xb

ff

where π is a partition of the set rns, | ¨ | denotes the cardinality of a set. For a given multi-index
i “ ti1, i2, ..., inu P rdsn, and a given time vector t “ tt1, t2, ..., tnu. The n-th order cumulant density
of the Hawkes process is defined as

Kiptq “
KpdNi1,t1 , dNi2,t2 , . . . , dNin,tnq

dt1 dt2 . . . dtn
(2.2.3)

where dNij ,tj is the infinitesimal increment of the Hawkes process for the ij-th dimension at time
tj . Jovanović et al. (2015) applied the Poisson cluster representation of Hawkes process to compute
the integrated cumulant.

Limit theorems

The following limit theorems results, proved in Bacry et al. (2013b), describe the asymptotic
behavior of Hawkes processes as the number of events grows to infinity.

Proposition 2.5 (Law of large numbers). Assume (A2) holds. Then N t P L2pPq for all t and

sup
vPr0,1s

}
NT v

T
´ vΛ}

TÑ8
ÝÝÝÑ 0 almost-surely and in L2pPq
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2.2. Hawkes process

Proposition 2.6 (Central Limit Theorem). Assume (A2) holds. Then for v P r0, 1s,

1
?
T

pNT v ´ ErNT vsq
T Ñ8
ÝÝÝÑ RΣ1{2Wv in law for the Skorokhod topology

where pWvqvPr0,1s is a standard n-dimensional Brownian motion and Σ is the diagonal matrix with
Λ as its diagonal values, such that Σii “ Λi.

If moreover the kernel matrix Φp¨q “ pφijp¨qq satisfies
ż 8

0

?
tφijptqdt ă 8, then

1
?
T

pNT v ´ ΛTvq
T Ñ8
ÝÝÝÑ RΣ1{2Wv in law for the Skorokhod topology

2.2.4 Simulation methods

Various methods are proposed in the literature for simulating Hawkes processes, including the ones
that we will briefly introduce below. In this part, we will introduce several techniques to simulate
a d-dimensional Hawkes process N , on the interval r0, T s, associated with the intensity function

λiptq “ µi `

d
ÿ

j“1

ż t

0
φijpt´ sq dNjpsq

Thinning

The thinning algorithm is a well-known method for simulating non-homogeneous Poisson processes
and has been applied to simulate Hawkes processes as well. Originally introduced by Lewis in Lewis
and Shedler (1979), the algorithm was later adapted by Ogata in Ogata and Akaike (1982) to be
suitable for simulating Hawkes processes.

To simulate a non-homogeneous Poisson processes with intensity function λptq, the thinning algo-
rithm consists of the following steps: (i) simulate a homogeneous Poisson process with intensity
λ‹ “ suptPr0,T s λptq, and (ii) for each point tm generated in step (i), accept it with probability
λptmq{λ‹, and reject it otherwise.

The thinning algorithm can be easily extended to simulate a d-dimensional Hawkes process N by
adjusting the intensity function stochastically.

Cluster algorithm

The simulation of Hawkes process can be realized following a recursive branching structure (Hawkes,
1973; Rasmussen, 2013).

˝ For each 1 ď i ď d, let Cp0q

i “ tpt
p0q
m , iqum be a realization on r0, T s of a homogeneous Poisson

process with rate µi. These initial points are usually called the immigrants (or generation 0),
the rest of the points are called offspring.

˝ Then to generate the next generation, we follow an iterative process. Let n P N` be the
current generation, and let Cpnq

j be the set of events of type j in generation n.

˝ For each offspring pt
pnq
m , iq of type i, generate a sequence of first-generation events of type

j, Cpn`1q

j “ tpt
pn`1q

m1 , jqum1 on the time interval rt
pnq
m , T s, with non-homogenous Poisson

process with rate φjipt´ tmq
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˝ Repeat this process for subsequent generations until no more events are generated on
r0, T s.

The superposition of all immigrants and offspring,
Ť8

n“0
Ťd

j“1C
pnq

j , constitute a realization of the
corresponding Hawkes process on the interval r0, T s.

Time-change

If Nt is a nonhomogeneous Poisson process with intensity function λptq and its cumulative intensity

function F p¨q is defined as F ptq “

ż t

0
λpuqdu, NF ´1ptq is an homogeneous Poisson process of intensity

1. As a result if ptiqiPN` is a realization of Poisson process of intensity 1, then pF´1ptiqqiPN` is a
realization of the non-homogenous process.

This method is also valid when Nt is a Hawkes process, while the greatest difficulty lies in the
computation of the inverse cumulative intensity function F´1p¨q. When the kernel function is
restricted to exponential, there exists an analytical expression for the cumulative intensity function
F , as described in Dassios and Zhao (2013).

2.2.5 Estimation

Most of the simulation and estimation techniques discussed in this thesis for Hawkes processes
are accessible through the open-source Tick Python library for convenient implementation and
utilization (Bacry et al., 2017). In this section, we provide a brief overview of some estimation
methods for Hawkes processes. Additional estimation approaches can be found in the literature,
such as least squares estimation (Reynaud-Bouret and Schbath, 2010), the INAR method (Kirchner,
2017), gradient-based methods (Cartea et al., 2021).

Given an observed sequence pNiq
d
i“1 over a time interval of r0, T s, represented as a sequence of

length n denoted as ptk, ekq, k “ 1, 2, ..., n, various methods can be employed as outlined below.

a. Maximum Likelihood Estimation (MLE)

First introduced by Ogata and Akaike (1982), the log-likelihood function is given by

Lpµ, φq “

d
ÿ

i“1
Lipµ, φq

where

Lipµ, φq “

ż T

0
logpλiptqq dNiptq ´

ż T

0
λiptq dt

“
ÿ

kPN,ek“i

log
˜

µi `

d
ÿ

j“1

ż tk

0
φijptk ´ sq dNjpsq

¸

´ µiT ´

ż T

0

ż t

0

d
ÿ

j“1
φijpt´ sq dNjpsq dt

“
ÿ

kPN,ek“i

log
˜

µi `
ÿ

mPN,tmătk

φi,emptk ´ tmq

¸

´ µiT ´

ż T

0

ÿ

mPN,tmăt

φijpt´ tmq dt

If we parameterize the Hawkes kernels φ by θ, i.e., φ “ φθ, then the MLE of pµ, θq based on the
observation is given by

µ̂, θ̂ “ arg min
µ,θ

Lpµ, φθq
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2.2. Hawkes process

b. Expectation-Maximization (EM)

In the work by Veen and Schoenberg (2008), the authors present an algorithm based on Expectation-
Maximization (EM) for parameter estimation in a Hawkes process. The EM approach introduces
a latent variable ukl to encode the branching structure of the Hawkes process. ukl takes the value
1 if event tk is a child of event tl, and 0 otherwise. The likelihood conditional on ukl, denoted
as Lpθ, uq, is called the complete data likelihood. The following gives the EM algorithm process
during the nth iteration:

˝ E-step: estimate the probability of ukl for each pair of events ptk, tlq (k ą l), based on the
current parameter θpnq.

˝ M-step: maximize the expected complete data log-likelihood Lpθ, upnqq with respect to θ, to
obtain θpn`1q.

Later, a non-parametric EM estimation is studied in Lewis and Mohler (2011).

c. Wiener-Hopf

Bacry et al. (2015) proposed a non-parametric estimation method by solving numerically the
Wiener-Hopf system in Proposition 2.4. The procedure is as follows:

˝ Estimate empirically the mean intensity Λ̂ and compute the empirical conditional intensity
ĝijptq by using a fine grid of t values

˝ Solve the Wiener-Hopf system using a quadrature method. Assume that the kernels are
piecewise constant on rtpkq, tpk`1qs where ttpkquk“1,...,K is a partition of r0, T s. Then the
Wiener-Hopf system can be written as a linear system of equations

ĝijptpnqq “ φijptpnqq `

d
ÿ

l“1

K
ÿ

k“1
ptpk`1q ´ tpkqqĝilpt

pnq ´ tpkqqφljptpkqq

˝ Solve this Kd2 linear system and we obtain the estimated kernels φ̂ijptq as well as their norms
}φ̂ij}.

˝ Estimate the exogenous intensity µ̂ through (2.2.1).

d. Non Parametric Hawkes Cumulant method (NPHC)

Achab et al. (2017) developed an estimation technique by using the cumulants method (as shown
in Equation (2.2.3)). Specifically, they provided an consistent estimator for the first, second and
third-order integrated cumulants and then usd these cumulants to estimate the kernel matrix norm
Φ (or equivalently R as R “ pI ´ Φq´1).

Λi “ lim
δÑ0

1
δ
ErNi,t`δ ´Ni,ts “

d
ÿ

m“1
Rimµm

Cij “ lim
δÑ0

1
δ

ż

τPR
CovpNi,t`δ ´Ni,t, Nj,t`δ`τ ´Nj,t`τ q

“

d
ÿ

m“1
ΛmRimRjm

Kijk “ lim
δÑ0

1
δ

ż

τPR

ż

τ 1PR
SkewpNi,t`δ ´Ni,t, Nj,t`δ`τ ´Nj,t`τ 1 , Nk,t`δ`τ 1 ´Nk,t`τ q

“

d
ÿ

m“1
pRimRjmCkm `RimCjmRkm ` CimRjmRkm ´ 2ΛmRimRjmRkmq

(2.2.4)
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where Skew stands for the function of coskewness i.e., SkewpX,Y, Zq “ ErpX ´ ErXsqpY ´

ErY sqpZ ´ ErZsqs for three random variables X,Y, Z.

And the estimator of these three cumulants are given by (N in the following equations stands for
the observed processes):

Λ̂i “
1
T

n
ÿ

m“1
1em“i “

Ni,t

T

Ĉij “
1
T

n
ÿ

m“1
1em“i

´

Nj,tm`H ´Nj,tm´H ´ 2HΛ̂j

¯

K̂ijk “
1
T

n
ÿ

m“1
1em“i

”´

Nj,tm`H ´Nj,tm´H ´ 2HΛ̂j

¯´

Nk,tm`H ´Nk,tm´H ´ 2HΛ̂k

¯ı

´
Λ̂i

T

n
ÿ

p,q“1
1ep“j,eq“kp2H ´ |tp ´ tq|q` ` 4H2λ̂iΛ̂jΛ̂k

(2.2.5)

for a H such that :
˝ each kernel φij is essentially supported by r0, Hs

˝ large enough s.t. the integration in the Eq 2.2.4 can pass to r´H,Hs with a small error
˝ small enough compared to T

And the estimator of R is given by R̂ P arg minR LpRq where LpRq is the loss function

LpRq “ κ}CpRq ´ Ĉ}2
F ` p1 ´ κq}KcpRq ´ K ĉ}2

F (2.2.6)

where
˝ } ¨ }2

F is the Frobenius norm, i.e., }A}2
F “

řm
i“1

řn
j“1A

2
ij for a matrix A “ pAijq

˝ Kc “ pKiijqd
i,j“1,K

ĉ “ pK̂iijqd
i,j“1

˝ CpRq and KpRq are given by Eq (2.2.4)

˝ Ĉ and K ĉ are given by Eq (2.2.5)

˝ κ P r0, 1s is used to re-scale the two loss terms in Eq (2.2.6), κ “
} xKc}2

F

}pC}2
F ` } xKc}2

F

For a more comprehensive understanding of the estimation technique, we invite readers to refer to
the paper Achab et al. (2017). Furthermore, one can also find the applications of this technique in
finance in their subsequent publication (Achab et al., 2018).

e. Neural models

In recent years, the use of deep learning methods for modeling the Hawkes processes’ conditional
intensity function has become very popular. One notable example is the neural Hawkes process
(NHP) proposed by Mei and Eisner (2017). In this work, they applied a continuous-time LSTM
networks to model a multivariate point process. Specifically, the intensity function λiptq is obtained
by

λiptq “ fipW
T
i hptqq

where fi is a non-linear function and hptq is the hidden state vector of the LSTM network at time
t. The hidden state vector hptq is given by hptq “ ok d p2σp2cptq ´ 1qq for t P ptk´1, tkq, where the
intensity decay over time is encoded in the memory cell cptq.
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2.3. Artificial Neural Networks

Another approach to modeling the Hawkes process is through the use of self-attention-based model,
such as the one proposed in Zhang et al. (2020). In their work, each event is encoded to a repre-
sentation vector xk, which is obtained by processing an embedding layer on the event type ek and
a time-shifted positional encoding. They then used a hidden vector to summarize the impact of all
previous events on a given event type e1. This hidden vector he1,k`1 is given by

he1,k`1 “

«

k
ÿ

j“1
fpxk`1,xjqgpxjq

ff

{

k
ÿ

j“1
fpxk`1,xjq

where xk`1 is like query in the attention terminology, xj is the key and gpxjq is the value. The
function f is a similarity function, defined as fpxk`1,xjq “ exppxk`1xT

j q.

Other related works in this area include the Recurrent Marked Temporal Point Process (RMTPP)
proposed by Du et al. (2016), the transformer Hawkes process model (THP) proposed by Zuo et al.
(2020).

2.3 - Artificial Neural Networks

In this section, we will provide a brief overview of some fundamental artificial neural networks
(ANNs) that are used in this thesis. ANNs are computing systems that mimics the manner in
which biological neurons communicate with each other. They are a subset of machine learning and
a crucial component of deep learning.

An ANN is composed of interconnected nodes, called artificial neurons, that work together to
process and transmit information. The nodes are organized into layers, including an input layer,
one or more hidden layers, and an output layer. The signals are transferred from one layer to the
next. By adjusting the weights of the neurons, an ANN can be trained to perform a wide range of
tasks such as image classification, speech recognition etc.

In this section, we will introduce some of the most popular neural network structures.

2.3.1 Multilayer perception

A multilayer perceptron (MLP) is a fully connected class of feedforward artificial neural network
(ANN).

To describe mathematically a MLP with n hidden layers, we can use the following formulation.

Input : x “ hp0q

i-th hidden layer : hpiq “ σpiqpW piqhpi´1q ` bpiqq

Output : y “ σpn`1qpW pn`1qhpnq ` bpn`1qq

where W piq and bi are the neural weights and biases. σpiqp¨q is the nonlinear activation function.
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Figure 2.3 – A multilayer perceptron with 2 hidden layers and a scalar output

Activation function The following are some of the most widely used non-linear activation func-
tions.

Sigmoid : σpxq “
1

1 ` e´x

Hyperbolic tangent : tanhpxq “
ex ´ e´x

ex ` e´x

Rectified linear unit : ReLUpxq “ maxp0, xq

2.3.2 Recurrent Neural Network

A recurrent neural network (RNN) is a class of artificial neural networks which are widely used to
time-series data and other sequential data.

fpW ,bq

xT ´1

hT ´1

yT ´1

fpW ,bq

xT

hT

yT

hT ´2

yT ´2

. . .

Figure 2.4 – An illustrative example of a RNN with one hidden layer. The outputs except the last
one are dashed, as ...

Input : pxtqt“1,2,...,T

Hidden state : ht “ fpW,bqpht´1,xtq

“ σhpWhht´1 `Wxxt ` bxq

Output : yt “ σypWyht ` byq
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where Wx,Wh,Wy represent respectively the linear weights associated with inputs xt, the previous
hidden state ht´1 and the current hidden state ht for output. bx and by are the bias terms while
σhp¨q and σyp¨q are the nonlinear activation functions.

However in practice, RNNs often struggle with the vanishing gradient problem, which hinders their
ability from keeping long-term memory. To overcome this problem,some special kinds of RNN,
such as gated RNNs, have been developed. The most used in practical applications are the Long
short-term memory (LSTM) and Gated Recurrent Unit (GRU).

Introduced by Hochreiter and Schmidhuber (1997), Long short-term memory networks (or
simply LSTMs) are a special kind of RNN which were explicitly designed to avoid the vanishing
gradient problem. The difference between a standard RNN and an LSTM lies in the repeating
module. Instead of having a single neural network layer, LSTM has four: a cell, an input gate, an
output gate and a forget gate.

Forget gate : ft “ σpWf xt ` Uf ht´1 ` bf q

Input gate : it “ σpWixt ` Uiht´1 ` biq

C̃t “ tanhpWCxt ` UCht´1 ` bCq

Cell state: Ct “ ft d Ct´1 ` it d C̃t

Output gate: ot “ σpWoxt ` Uoht´1 ` boq

Hidden state : ht “ ot d tanhpCtq

where W,U, b are weight matrices and bias vectors. σp¨q represents the sigmoid function, tanhp¨q

represents the hyperbolic tangent function and the operator d denotes the Hadamard product (or
element-wise product), i.e., for two matrices A and B, AdB “ pAijBijqij .

Gated Recurrent Unit (GRU) was introduced by Cho et al. (2014) in 2014, aiming to solve the
vanishing gradient problem. The GRU is like an LSTM but has fewer parameters.

Update gate : zt “ σpWzxt ` Uzht´1 ` bzq

Reset gate : rt “ σpWrxt ` Urht´1 ` brq

h̃t “ tanhpWhxt ` Uhprt d ht´1q ` bhq

Hidden state : ht “ zt d ht´1 ` p1 ´ ztq d h̃t

where the variable and function notations are similar to those in LSTM.

Bidirectional RNN Bidirectional RNNs (BiRNNs) are a type of neural networks that extend
the standard RNN by including an additional RNN layer. Unlike unidirectional RNNs, BiRNN
allows that the input flows in two directions such that the output layer has access to information
from both past and future. Figure 2.5 provides a visual representation of the unrolled Bidirectional
Recurrent Neural Network. 2

2.3.3 Convolutional Neural Networks

Convolutional neural networks (CNNs) are a class of artificial neural networks that are most com-
monly applied to analyze visual imagery. In contrast to traditional neural networks that use general
matrix multiplications, CNNs apply convolution operations in at least one of their layers.

2. Let note that there is a slight trick in this figure, the outputs of the backward layer will be reversed in fact.
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Forward

Backward

Figure 2.5 – An illustrative example of a Bidirectional RNN.

A basic CNN consists of a sequence of layers, similar to the MLP, with three main types of layers:
convolutional layer, pooling layer and fully connected layer.

The convolutional layer is a crucial block of the CNN architecture. It contains a set of filters or
kernels (as shown in Figure 2.6), which connect local regions in the input. By applying the filters
to the input data, the convolutional layer can detect or enhance some features.

0 1 1 1 0 0
0 0 1 1 1 0
0 0 0 1 1 1
0 0 0 1 1 0
0 0 1 1 0 0
0 1 1 0 0 0

Input I

˚

1 0 1
0 1 0
1 0 1

Kernel W

“

1 4 3 4
1 2 4 3
1 2 3 4
1 3 3 1

I ˚ W

ˆ1 ˆ0 ˆ1

ˆ0 ˆ1 ˆ0

ˆ1 ˆ0 ˆ1

Figure 2.6 – An illustrative example of a convolutional layer

The Pooling layers are responsible for reducing the dimensions of data by combining the groups
of the outputs into a single neuron. Max pooling and Average pooling are the most common pooling
operations. As indicated in their names, Max pooling returns the maximum value of a local group
of neurons which Average pooling takes the average value.

1 4 3 4
1 2 4 3
1 2 3 4
1 3 3 1

4 4
3 4

Max pooling 2 ˆ 2

Figure 2.7 – An illustrative example of a pooling layer
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2.3. Artificial Neural Networks

The Fully connected layer is the same as a traditional MLP, it connects every neuron in the
current layer to every neuron in the next layer.
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CHAPTER 3

STATE-DEPENDENT SPREAD HAWKES MODEL

From: The self-exciting nature of the bid-ask spread dynamics (Ruan et al., 2023b)
R. Ruan, E. Bacry, J.-F. Muzy

The bid-ask spread, which is defined by the difference between the best selling price and the best buying price
in a Limit Order Book at a given time, is a crucial factor in the analysis of financial securities. In this
study, we introduce the "State-dependent Spread Hawkes model" (SDSH), a new Hawkes process model for
spread dynamics that accounts for various spread jump sizes and incorporates the impact of the current spread
state on its intensity functions. Through the application of the SDSH model to high-frequency data from the
CAC40 Euronext market, we demonstrate its efficacy in capturing diverse statistical properties, including the
spread distributions, inter-event time distributions, and spread autocorrelation functions. Furthermore, we
illustrate the ability of the SDSH model to forecast spread values at short-term horizons.
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3.1. Introduction

3.1 - Introduction

The bid-ask spread, defined at a given time in a Limit Order Book by the difference between
the smallest ask (selling) price and the largest bid (buying) price, is a quantity of great interest
for financial securities. It represents the cost of an "immediate" transaction rather than a more
patient one. Many studies in economics literature are devoted to the bid-ask spread which is in
general decomposed into order processing costs, adverse selection costs and inventory risk (for the
liquidity providers/market makers who earn money from the spread) (Glosten and Harris, 1988;
Glosten and Milgrom, 1985; Huang and Stoll, 1997; Stoll, 1989). The spread is often used as a
proxy for market liquidity, with narrower spreads commonly associated to highly liquid markets.
For a literature review of liquidity measures, we refer readers to Díaz and Escribano (2020); Fong
et al. (2017); Fosset et al. (2020b); Goyenko et al. (2009). Let us also mention that the bid-ask
spread has been proved to be very closely related to realized volatility. Indeed, many empirical
studies (Fong et al., 2017; Goyenko et al., 2009) consistently prove a robust positive correlation
between these two variables (Bessembinder, 1994; Dayri and Rosenbaum, 2015; Wyart et al., 2008;
Zumbach, 2004).

Many other statistical properties of the bid-ask spread have been the focus of various works. For
instance, it has been shown that spread has a fat-tailed distribution and its dynamics is character-
ized by a long range (power-law) auto-correlation function (Bouchaud et al., 2018, 2009; Fall et al.,
2021; Groß-KlußMann and Hautsch, 2013; Mike and Farmer, 2008; Plerou et al., 2005). The studies
referenced (Mike and Farmer, 2008; Ponzi et al., 2006; Zawadowski et al., 2006) show that after a
large variation of the spread (i.e., a temporary liquidity crisis), the spread decays slowly back to an
equilibrium value. Let us note that, even though most of the time these statistical properties are
obtained through direct empirical studies on historical spread time-series, some papers tackle the
statistical properties of the spread (mainly the distribution of the spread values) via some statisti-
cal models of the limit and market order flows (Abergel and Jedidi, 2013; Bouchaud et al., 2002;
Daniels et al., 2003; Foucault et al., 2005; Muni Toke and Yoshida, 2017; Roşu, 2009; Smith et al.,
2003). Readers can find a nice overview of the different statistical properties of the bid-ask spread
in the chapter 7 of Bouchaud et al. (2009).

In order to understand the properties of market prices and their formation in the context of elec-
tronic markets, many approaches involving point processes have been proposed to describe the
occurrence of order book events (see e.g., Abergel and Jedidi (2013); Cont et al. (2010); Smith
et al. (2003)). Within this context, as reviewed in Bacry et al. (2015), Hawkes processes emerge as
a widely adopted class of models, for their effectiveness in describing the dynamical properties of
different quantities like the market activity (Bowser, 2007; Hardiman et al., 2013; Morariu-Patrichi
and Pakkanen, 2022; Muni Toke and Pomponio, 2012), the mid-price (Bacry et al., 2013a), the best
bid / best ask prices (Lee and Seo, 2022) and the first (L1) book levels (Bacry et al., 2016; Large,
2007; Zheng et al., 2014). Hawkes processes constitute a class of multivariate point processes that
were introduced in the seventies by A.G. Hawkes (Hawkes, 1971a) notably to model the occurrence
of seismic events. They involve an intensity vector that is (in its original form) a simple linear
function of past events. This popularity of Hawkes processes can be explained above all by their
great simplicity and flexibility.

Specifically, we would like to highlight a category of Hawkes processes referred to as "state-
dependent" Hawkes processes. These processes dynamically adjust their intensity based on the
current state of the system. Noteworthy contributions to state-dependent models in finance can
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be found in the references Morariu-Patrichi and Pakkanen (2022); Sfendourakis and Toke (2021);
Toke and Yoshida (2016); Wu et al. (2019).

Our main purpose of this chapter is to design a dynamical model for spread fluctuations based on
Hawkes processes. Though many studies can be found in the literature about the bid-ask spread and
its statistical properties, only a limited number provide models for its dynamics at high frequencies.
Besides, some recent econometric approaches involving long-memory auto-regressive, Poisson point
processes (Cattivelli and Pirino, 2019; Groß-KlußMann and Hautsch, 2013), one can mention few
models that rely on Hawkes processes. Zheng et al. (2014) proposed one of the first models for
the bid-ask spread dynamics of a financial asset which uses a constrained 2-dimensional Hawkes
process. The spread St is a positive integer multiple of the tick value (i.e., the minimum increment
defined by the market between two quotation values). The first (resp. second) dimension of this
Hawkes process S`

t (resp. S´
t ) is used for encoding the positive (resp. negative) jumps of the

spread. S`
t (resp. S´

t ) is an increasing function on time, with its value jumping by 1 every time
a positive(resp. negative) jump in the spread is observed. In this model, all jumps of the spread
are assumed to be 1 tick in size. Thus, one gets St “ S`

t ´ S´
t . The constrained Hawkes process

of Zheng et al. (2014) is defined by the intensities λ` and λ´ of the respective jump processes S`
t

and S´
t :

λ`
t “ µ` `

ÿ

ePt`,´u

ż t

0
φ`,ept´ sqdSe

s

λ´
t “ 1St´ě2pµ´ `

ÿ

ePt`,´u

ż t

0
φ´,ept´ sqdSe

sq

(3.1.1)

where µ` and µ´ correspond respectively to constant exogenous intensities (i.e., terms that do not
depend on the past events) for S` and S´. The 4 functions tφe,e1

ptque,e1“˘ are causal kernels (i.e.,
functions with support r0,`8q that encode the endogenous influence of past jumps of type e1 on the
occurrence of future jumps of type e). For the purpose of estimation, the kernels are often taken
to be exponential functions or a sum of exponential functions. This choice is motivated by the
fact that exponential kernel functions yield an explicit likelihood function, thus enabling efficient
computation. Zheng et al. (2014) chose exponential kernels of the form: φe,e1

ptq “ αe,e1

βe´βt (β
is the same for all the kernels). Let us point out that, Zheng et al. introduced a non-linearity
(the term 1St´ě2) in the "classical" definition of a Hawkes process. This non-linearity is necessary
to constrain the spread to keep from taking negative or zero values. In their work, Zheng et al.
performed numerical estimation of their model (using Maximal Likelihood Estimations) and studied
some statistical properties.

More recently, Fosset et al. (2020a) built a simplified version of the previous model (3.1.1) and fo-
cused on the relation between spread dynamics and liquidity crises. Their constrained 2-dimensional
Hawkes process has intensity functions:

λ`
t “ µ` `

ż t

0
αβe´βpt´sq dS`

s ,

λ´
t “ µ´1tStě2u,

(3.1.2)

where the notation is as in model (3.1.1). The threshold αc “ 1 ´
µ`

µ´ distinguishes different stable
regimes. When α ă αc, the Hawkes system is stable and the invariant distribution of spread is
given. When αc ă α ă 1, the model is still stable but the spread grows linearly. When α ą 1, the
system is explosive and there is a liquidity crisis.
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In this chapter, we propose an approach inspired by these two papers but our model focuses more
on fitting empirical features and matching observed properties from market data. More specifically,
we propose the “State Dependent Spread Hawkes” (SDSH) model which accounts for bid-ask spread
fluctuations. The SDSH model can be seen as a generalization of the two previous models in that
it is a 2K-variate (K ě 1) Hawkes process which accounts for different jump sizes (up to size
K). It comprises multiple kernels to encode the influence of past jumps on future jumps. Each
component includes a non-linear element, as in the previous models, in order to ensure the spread
value remains strictly positive. In order to allow more complex dynamics, each kernel is a sum of
exponential functions, in contrast to the previous models. Our ambition is to account for more
aspects of the bid-ask spread dynamics that were not captured by the previous models.

Outline The chapter is organized as follows. The next section (Section 3.2) is devoted to a
detailed definition of our new model for the bid-ask spread. The Markov and ergodicity properties
of this model is studied in a particular case. Section 3.3 illustrates this model with some numerical
simulations and presents the estimation procedure on these simulations. Section 3.4, the core of
our chapter, is devoted to empirical results. This sections is divided in 4 subsections. The first two
correspond to a quick presentation and basic statistical properties of the real financial time-series
that will be used all along the section. The third one concerns the estimation of our model on these
data. Parameters estimation (including the kernels and the constraint parameters) are discussed
thoroughly. The last one is devoted to the goodness of fit of the model through different quantities,
mainly: the inter-event time distribution, the spread distribution and the autocorrelation function.
Section 3.5 provides a first approach that demonstrates the interest of the SDSH model in the issue
of short-term forecasting of spread values. We conclude in section 3.6.

3.2 - State-Dependent Spread Hawkes processes

3.2.1 Notation

Consider the limit order book (LOB) associated with a given asset. We note St the bid-ask spread
of this order book at time t, or in other words, the difference of the best ask price and the best bid
price at time t. We choose to express St in tick units where the tick corresponds to the smallest
price increment authorized by the market. St is therefore a right continuous process that can take
only strictly positive integer values (i.e., St P N˚). Its smallest possible value is St “ 1 (tick).

The process St can be interpreted as a jump process. Various orders sent to the LOB, depending on
their types and volumes, may induce different jump sizes in St. In our model, an event corresponds
to a specific jump in St, characterized by its size and direction. In practice, very large jumps
are extremely rare. Therefore, without loss of generality, we can limit the set of events to E “

t`1,`2, . . . ,`K,´1,´2, . . . ,´Ku, where K is a hyper-parameter of the model to be fixed for each
asset.

For each event e P E (i.e., for each jump type e), we denote Se
t the counting process that counts

the number of jumps of size e that occurs over time, beginning arbitrarily at time 0. Thus, we can
write the spread process St as:

St “ S0 `
ÿ

k“1,2,...,K

kS`k
t ´

ÿ

k“1,2,...,K

kS´k
t . (3.2.1)

In real limit order books, it is clear that the dynamics of the spread jumps highly depend on the
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size of the jumps. It is thus reasonable to build a model which incorporates different dynamics for
different jump sizes.

3.2.2 The SDSH spread model

In our model for spread dynamics, we assume that the multivariate counting process tSe
t uePE follows

a 2K-variate Hawkes process. However, since the dynamics of the various events depend on the
state of the current spread St itself (e.g., when the spread is 1 tick, no negative event can occur),
we introduce an additional term within the classical Hawkes framework. Depends on St, this term
represents a state variable that accounts for the current size of the spread. More precisely, if we
note λe

t the conditional intensity (at time t) of the counting process Se
t , the State Dependent Spread

Hawkes spread model can be formulated as follows:

λe
t “ fepSt´q

«

µe `
ÿ

e1PE

ż t

0
φe,e1

pt´ sqdSe1

s

ff

(3.2.2)

where (following the classical Hawkes processes framework)
˝ µe is the exogenous base intensity for the jumps of size e
˝ Φptq “ tφe,e1

ptque,e1PE is the Hawkes kernel matrix. The elements of this matrix are Hawkes
interaction kernels which are positive valued and encode the influence of past jumps of type
e1 on future jumps of type e.

˝ we assume that these kernels can be parameterized using a sum L exponentials; that is

φe,e1

ptq “

L
ÿ

l“1
αe,e1

l βle
´βlt. (3.2.3)

Indeed, this setting is hardly restrictive since many behavior can be easily reproduced by a
sum of exponentials (Bochud and Challet, 2007).

The current value of the spread is taken into account through the global multiplicative term fepSt´q

where
˝ St´ is the the left limit of S at time t (i.e., the spread size "just before" time t),
˝ fe is a non-negative function defined on N˚. It is subject to the the constraint that f´kpnq “ 0

when n ´ k ď 0, in order to prevent jumps leading to a zero or negative spread value. Let
us note that the Equation (3.2.2) remains unchanged if we multiply fe by a factor and
simultaneously divide µe and φe,e1 by the same factor. Therefore in the following, we set
arbitrarily the first non-zero value of fepsq to 1 (i.e., fepminsts, fepsq ‰ 0uq “ 1).

Let us point out that, in order to account for the impact of the current spread value on the different
jump dynamics of the spread, multiple choices are available. One intuitive option would have been
to make the kernel themselves depend on the spread size St´

. However, such a choice would
significantly increase the number of parameters for the kernels themselves, leading to important
estimation instabilities. The choice we made allows several things at once

˝ It keeps the number of estimation parameters at a manageable level.
˝ It encodes in an easy way the fact that negative values for St are forbidden.
˝ It enables the model to address the well known fact that the spread dynamics is mainly mean

reverting and that the higher the spread size is, the higher is the probability for large negative
jumps to occur.
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Compared to the previous models (3.1.1) and (3.1.2) mentioned in Section ??, the SDSH model
introduces many features that allow it to better account for the real dynamics of the spread:

˝ Flexibility in jump sizes: Unlike the previous models, the jump sizes in our model are no
longer constrained to be 1 tick.

˝ State-Dependent Adjustments: The model adjusts the intensity of each jump size not
only based on previous jumps but also on the current spread value, through the introduction
of “state-dependent” functions f .

˝ Complex Dynamics: The choice of the sum of exponentials for Hawkes kernels allows more
complex dynamics compared to simple exponential kernels as in Fosset et al. (2020a); Zheng
et al. (2014). Specifically, many existing studies highlighted that the spread dynamics are
characterized by long-memory properties.

3.2.3 Markov property and ergodicity

Using Eq.(3.2.1), since the Hawkes kernels are sums of exponential functions, it is easy to prove
the following property:

Proposition 3.1. The process pSt, Xtq, where Xe,e1

t :“
ż t

0
φe,e1

pt´ sqdSe1

s , is a Markov process.

In the simple scenario where K “ 1 (i.e., only jumps of size `1 or ´1 are allowed) and L “ 1 (i.e.,
only one exponential function), one can prove the following ergodic property:

Proposition 3.2. Assume K “ 1 and L “ 1, which implies that E “ t´1, 1u and φe,e1ptq “

αe,e1

βe´βt. The process pSt, Xtq is a V-uniformly ergodic Markov process, if the following
conditions hold true:

$

’

’

’

&

’

’

’

%

f´p1q “ 0
f´pnq ě γn for some γ ą 0 when n P N and n ě 2
sup
ně1

tf`pnqupα`,´ ` α`,`q ă 1

(A1)
(A2)
(A3)

Proof. The detailed proof for this result can be found in Appendix 3.A.

Thus, under these assumptions, the spread process possesses stationary distributions. Let us notice
that Condition (A2) ensures the spread to "return to the mean value", similar to the proportional
cancellation rate condition in Abergel and Jedidi (2013); Smith et al. (2003); Wu et al. (2019).
Condition (A3) corresponds to a stability condition ensuring the number of upward spread jumps
does exponentially diverge within a finite interval. This is a first result, the general proof (for any
K and L) seems to be much more challenging (as indicated in Remark 3.2), it will be the focus of
a forthcoming study.

An example of a function f for Proposition 3.2 is as follows:

f´pnq “ apn´ 1q for n P N˚,

f`pnq ”
1

1 ` α`,´ ` α`,`
for n P N˚.

In theory, in order to obtain ergodicity, f` needs to be bounded by a positive constant value, while
f´ should exhibit at least a linear growth rate approximately, with respect to the current spread
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value, denoted as n. However, it is important to note that in practice, when n is large enough (let
us say when n exceeds a threshold S˚ for some S˚ P N˚), the probability of the spread reaching n
(i.e., S “ n) becomes extremely low. Therefore, in practical situations, for n ě S˚, we approximate
fepnq with the value of fepS˚q.

3.3 - Numerical simulation and parametric estimation

3.3.1 Simulation

In order to perform numerical simulations, we use the classical "thinning method" introduced by
Lewis and Shedler (1979); Ogata (1981) and the Tick open source library (Bacry et al., 2017).

To make it easier for readers to understand how our model works in practice, Figure 3.1 shows the
result of a simulation during 20 seconds. The parameters for this simulation are as follows:

˝ K “ 1, i.e., E “ t`1,´1u “: t`,´u,
˝ L “ 1 and φe,e1

ptq “ αe,e1

e´βt, where β “ 1, α`,` “ α´,´ “ 0.1 and α`,´ “ α´,` “ 0.2,
˝ µ` “ µ´ “ 0.3,
˝ f`p1q “ 1, f`p2q “ 0.7 and f`pSq “ 0.3 for S ě 3,
˝ f´p1q “ 0, f´p2q “ 1, and f´pSq “ 5 for S ě 3.

Figure 3.1 – A realization of the SDSH spread model during 20 seconds using parameters as in-
dicated in the text. As we see, since we choose f´pSq to be very large (5) as soon as S ě 3, the
spread does not stay long at a value of 3.

3.3.2 Estimation principles

For parametric estimation, we will once again use the Tick python open source library. This
library supports robust parametric Maximum Likelihood Estimation (MLE) estimation for multi-
dimensional Hawkes processes using sum of exponentials. We slightly adjust the algorithms of this
library in order to incorporate the fepSq terms. The algorithm used in this model closely follows
the approach used for the QRH-II model described in Wu et al. (2019). The likelihood function for
this model is located in Appendix 3.B.
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3.3. Numerical simulation and parametric estimation

More precisely, to perform the parametric estimation, a set of hyper-parameters needs to be fixed
beforehand, according to the specificity of each asset (as discussed in Section 3.4 for specific cases):

˝ K: the highest jump size allowed by the model. This hyper-parameter should be carefully
chosen by looking at the effective probability of various jump sizes occurring in the real data.

˝ L and tβlul“1,...,L: in practice it is sufficient to recover a very large variety of behavior by
choosing the βl such that they are logarithmically spaced. A common choice is βl “ β110l´1.
L and β1 should be chosen to match the timescale range of interest.

˝ fepsq: each fepsq is a function of s P N˚ which corresponds to an infinite number of pa-
rameters. To make parametric estimation feasible, we have to make some assumptions on
the behavior of the fepsq functions for large s. Given that very large spreads are extremely
rare events, nearly any assumption works as long as it enforces mean reversion of the spread.
For our model, we arbitrarily chose to consider that all the functions fepsq are constant for s
greater that a predefined value S̄. In practice, the value of S̄ should be chosen so that spreads
of size greater than S̄ are extremely rare.

Given these hyper-parameters, our MLE parametric estimation algorithm allows to estimate
˝ the exogenous intensities tµeuePE (a total of 2K parameters)
˝ the kernel parameters tαe,e1

l ulPL,pe,e1qPE2 (a total of 4LK2 parameters)

˝ the values tfepsquePE,sPr1..S̄s (a total of (2KS̄´ K2`K
2 ´2K) parameters), under the condition

that K ă S̄ (let us remind that we fixed arbitrarily the first non zero value of fepsq to be 1).
So that amounts to 2K ` 4LK2 ` 2KS̄ ´ K2`K

2 ´ 2K parameters.

In the following section, we illustrate the estimation procedure on simulated data.

3.3.3 Estimation on simulated data

In this example, we simulate our model in dimension 2 (i.e., E “ t`1,´1u :“ t`,´u), implying
that the only possible movements for the spread are upward or downward shifts of one tick. The
simulation process, executed through the thinning method (Lewis and Shedler, 1979; Ogata, 1981)
as explained in Section 3.3.1, generates 50 independent samples of size 5000 seconds. We set the
parameters for the simulation to be (using the notations introduced in Section 3.2.2):

˝ µ` “ 0.3, µ´ “ 0.2.
˝ L “ 2 with β1 “ 20s´1, β2 “ 200s´1 and the Hawkes kernel is

φptq “

¨

˝

2 6

10 0

˛

‚e´20t `

¨

˝

4 20

20 4

˛

‚e´200t

.
˝ f`p1q “ 1, f`p2q “ 0.8, f`p3q “ 0.5, f`psq “ 0.2 for s ě 4,
f´p1q “ 0, f´p2q “ 1, f´p3q “ 2, f´psq “ 3 for s ě 4.

Estimation Then we estimate the parameters by employing a sum of exponential functions with
β1 “ 10s´1, β2 “ 100s´1, β3 “ 1000s´1,

φptq “ 10

¨

˝

α``
1 α´`

1

α`´
1 α´´

1

˛

‚e´10t ` 100

¨

˝

α``
2 α´`

2

α`´
2 α´´

2

˛

‚e´100t ` 1000

¨

˝

α``
3 α´`

3

α`´
3 α´´

3

˛

‚e´1000t
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Figure 3.2 – Numerical estimation from samples of a SDSH spread model. The four figures on the
left show the true kernels and the estimated kernels, and the two figures on the right show the true
f values and the estimated f values. The estimated µ` is 0.29 and the estimated µ´ is 0.19.

As evidenced by Figure 3.2, our estimation method successfully retrieves the parameter values µe

and accurately reproduce the shapes of both fepSq functions and the Hawkes kernel. It is worth
noting that the basis exponential functions for the simulation are very different from those for
estimation.

3.4 - Empirical results

3.4.1 Data

In this section, we calibrate the SDSH spread model using high-frequency data from the CAC40
French Euronext Market. The dataset includes every single change of the spread for 3 stocks (AXA,
BNP and NOKIA) and for the CAC40 index Future. The events are characterized by their jump
types and the timestamps with a precision of 1µs. The data for stocks (resp. CAC40 Future) are
extracted from February 1st 2017 (resp. January 4th 2016) to February 28th 2018 (resp. February
28th 2017). In order to minimize the intraday seasonality of the data we used only the data in
the intraday slot [10am,12am]. Thus, for a given asset, the estimation of the model is performed
considering each day as an independent realization. In order to avoid days with insufficiently short
time series, for a given asset, we omit all days associated with a number of events (i.e., spread
changes) below a threshold. We refer readers to the Table 3.1 for more detailed information about
each of these data series. It is important to note that the CAC40 Future has a much larger tick
size compared to the other three assets, which leads us to expect that its spread jump sizes will be
much smaller on average.
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Asset tick size Min.
#events #days Total #events EeventrSs EcalrSs

CAC40 Future 0.5 5,000 100 1,026,156 1.51 1.40

AXA 0.005 3,000 130 617,309 2.44 3.04

BNP 0.01 5,500 100 1,079,464 2.54 3.17

NOKIA 0.001 2,000 108 570,754 3.52 4.43

Table 3.1 – Characteristics of the data used for model estimation. For each asset, for each day we
only consider the slot from 10am to 12pm. Moreover, we keep only days where the number of events
(i.e., the number of times the spread changes) is above the ’Min. #events’ number. EeventrSs and
EcalrSs are the expectations of spread with two different distributions: event time distribution and
calendar time distribution. See Eq. (3.4.2) and (3.4.1) for their definitions.

3.4.2 Spread distribution and hyper-parameter settings

To determine the optimal values for hyper-parameters, as discussed in Section 3.3.2, we have to
examine the empirical distribution of the spread. Inspired by Bouchaud et al. (2009), we consider
two methods to measure the spread distribution. Each method is constructed as an average of daily
distributions.

˝ The first method uses the calendar time daily distribution:

PcalpS “ sq “
1
T

ż T

0
1Su“s du (3.4.1)

where r0, T s corresponds to the slot 10am-12pm.
˝ The second method uses the event time daily distribution:

PeventpS “ sq “
1
N

N
ÿ

n“1
1rStn´“ss (3.4.2)

where N is the total number of events on a given day from 10am to 12pm.
The solid lines in Figures 3.6 and 3.C.3 illustrates the so-obtained results. Let us point out that it
also displays (the right column) the distribution of the spread increments (i.e., dS).

Choice of K. As expected, since the tick of the CAC40 Future is much larger than the other
assets, we expect its spread jumps to be mainly of 1 tick. This expectation is indeed confirmed in
the right figure of 3.C.3c, where the amplitude of spread variations dS almost never exceeds 1 tick.
Consequently, it seems natural to choose K “ 1 for this asset. If we follow the same guidelines
(i.e., selecting K as the minimum value for which events corresponding to a spread change of ą K

ticks are very rare) it seems reasonable to choose K “ 2 for all other assets (see Figure 3.6, 3.C.3a,
3.C.3b).

Choice of S̄. As explained in Section 3.3.2, it appears reasonable to choose arbitrarily S̄ as the
maximum value for which the probability of the spread to be this value is not extremely close to
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zero (i.e., S̄ “ maxts |PpS “ sq ě δu for a given δ ą 0). In fact, it is almost impossible to perform
reliable estimations of fepSq for values of S which hardly never occur. More precisely, we choose
S̄ to be the maximum s for which PeventpS “ sq ě 1%. This leads to the following values: S̄ “ 5
(AXA), S̄ “ 5 (BNP), S̄ “ 8 (Nokia) and S̄ “ 2 (CAC40 Future).

Choice of L. As demonstrated in Figure b in Section 3.4.3, choosing L “ 6 and β1 “ 10´1s´1 for
all assets (consequently, following Section 3.3.2 β2 “ 1s´1, β3 “ 10s´1, β4 “ 102s´1, β5 “ 103s´1,
β6 “ 104s´1) is sufficient to capture the kernels dynamics on the time-scale r10´4s, 10ss. Let
us point out that we perform estimations with larger βL and smaller β1, but these adjustments
do not change significantly the results (though they increase significantly the estimation time or
alternatively lead to unstable results).

Table 3.2 summarizes all the choices for the hyper parameters

Asset K S̄ Kernel time scale # parameters

CAC40 Future 1 2 10´4s Ñ 101s pL “ 6q 27

AXA 2 5 10´4s Ñ 101s pL “ 6q 113

BNP 2 5 10´4s Ñ 101s pL “ 6q 113

NOKIA 2 8 10´4s Ñ 101s pL “ 6q 125

Table 3.2 – Values chosen for the hyper parameters (following the guidelines in Section 3.3.2) for
the dataset of each asset. K corresponds to the maximum jump size for the spread. S̄ is the
spread value above which the functions fepsq are considered as constant and the kernel time scales
is deduced from the choice of L and β1

3.4.3 Estimation

We perform parameter estimation for each time-series outlined in the previous Section using MLE
following the guidelines provided in Section 3.3.2. As mentioned before, all estimations in this study
are performed using the Tick open-source package (Bacry et al., 2017), after having adapted the
MLE exponential-kernel estimation algorithm to account the state dependent function fepSq. In
the following we will present the outcomes of these estimations and provide comments on them.
We start with the estimations of the tfepsquePE functions, followed by the estimations of the kernels
tφe,e1

ptque,e1PE .

a. Estimation of the tfepsquePE functions

The results of the estimated fe functions for different assets are displayed in Figure 3.3. Let us
recall that, for each e, the first positive value of fepSq is arbitrarily designated to 1.

An first observation is that all estimated curves exhibit the same behavior across all assets. As
expected, we notice that the the fe functions corresponding to positive events (i.e., upward jumps,
e P t`1,`2u) are decreasing functions, which decrease very quickly towards 0 whereas the fe func-
tions corresponding to negative events (i.e., downward jumps, e P t´1,´2u) are rapidly increasing
functions. When the spread is high, it is clearly pressed downward through inhibiting the positive
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events (as indicated by small f`1psq and f`2psq values for large spreads), and exciting the negative
events (large f´1psq and f´2psq values).

The two functions f´1 and f´2 are clearly saturating though saturation seems to appear faster on
f´1 than on f´2. It is important to recall that the estimation spreads larger than the chosen S̄

is impossible, due to statistical limitations. In other words, spread values above the chosen S̄ are
extremely rare, leading to insufficient data for estimation.

Let us remark that the range of values attained by the functions associated with negative events
is in line with the corresponding tick size and the average spread size of each asset (see Table
3.1). Indeed, large tick size corresponds to small average spread and small range of f´k values.
Specifically, the range increases from CAC40 Future (with the largest tick size) to NOKIA (with
the smallest tick size).

Figure 3.3 – Estimations of the tfepsquePE functions for AXA (left), BNP (middle), NOKIA (right),
E “ t´2,´1,`1,`2u. As for CAC40 Future, the S̄ is 2 and the K is 1, therefore f´1p1q “

0, f´1psq “ 1 if s ě 2, f`1p1q “ 1, f`1psq “ 0.0104 if s ě 2. For each e, the first positive value of
fepSq is arbitrarily set to 1.

b. Estimation of Hawkes kernels tφe,e1

ptque,e1PE

First, let us point out that our estimation procedure essentially leads to positive-valued kernels. In
practice, the MLE procedure described in Section 3.3.2 is able to detect inhibition behavior (i.e.,
significantly negative-valued kernels) when it is present in the signal. However, in our estimated
kernels, even though some kernels might exhibit minor negative values, these values are very small
and not significant. Of course, this does not mean that there is no inhibition behavior in the spread
counting process. In fact, the inhibition behavior is extremely strong but it is effectively managed
for each component Se

t , through the multiplicative term fepSt´q. This is the main reason why
we initially introduced them in our model (with "hard" inhibition of some components to prevent
negative spread values).

Comparison of kernel integrated quantities

Let emphasize that, the introduction of multiplicative terms in the "State Dependent" Hawkes
model (i.e., the fact that our model is not a standard Hawkes model due to the role of the state
variable St) prevents us from interpreting the L1 norm of the Hawkes kernels in the usual way.
Indeed, in a classical Hawkes model, one generally compares the different values of the L1 norms
t}φe,e1

ptq}1ue,e1PE and uses the classical population-based interpretation of a Hawkes model. In this
case, }φe,e1

ptq}1 represents the average number of events of type e1 "directly" generated by an event
of type e. In our model, this interpretation is not possible. Not only is it conditioned on a spread
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Figure 3.4 – Relative kernel integrated quantities Ĩs,epe1q for AXA. For each stock, for each value
of s, an image is displayed showing Ĩs,epe1q (defined by (3.4.3)) as a function of e (vertical axis) and
e1 (horizontal axis).

value but also the comparison between two norm values }φe1,e1

ptq}1 and }φe2,e1

ptq}1 for two different
components e1 ‰ e2 does not make sense.

However, we can still compare the influence of all past events of a given type e1 on the occurrence
of an event of type e. Indeed, let us consider a spread jump of size e at time tk. This means the
spread jumps from a value s (at time tk´) to s ` e (at time tk`), where s “ Stk´. Then one
could study the influence of each endogenous term in the sum (within the brackets) in (3.2.2), by

comparing the relative values
ż tk´

0
φe,e1

pt ´ uq dSe1

u for different e1 in order to understand which

event type e1 has the most significant influence on the occurrence of the jump of size e at time tk.
For that purpose, let us introduce the quantity

Is,e,tk
pe1q :“

ż tk´

0
φe,e1

ptk ´ uq dN e1

u , @e1

for a jump of size e occurring at time tk which changes the spread value from s to s ` e. We can
then define the corresponding averaged values over all timestamps tk where a jump of size e occurs
at spread s:

Īs,epe1q :“

ř

tk:dStk
“e,Stk´“s

Is,e,tk
pe1q

#ttk : dStk
“ e, Stk´ “ su

.

and finally the relative values

Ĩs,epe1q “
Īs,epe1q

supe1 Īs,epe1q
(3.4.3)

Figure 3.C.1 displays this quantity for AXA, showing Ĩs,epe1q for each value of s. In the image plot,
the vertical axis is e and the horizontal axis is e1. 1 Similar plots for other stocks can be found in
Appendix 3.C Figure 3.C.1. These figures reveal a common pattern among stocks: the occurrence
of a jump of size e is essentially triggered by past occurrences of opposing jumps of size ´e.

Comparison of the kernel shapes

Finally, estimation results show that the most energetic kernels are decreasing "slowly", resembling
a power-law decay t´β with an exponent β » 1. Such a power-law shape of the cross-excitation
kernels is not surprising since this behavior with similar exponent values have been observed by
various authors when modelling the market activity Bacry et al. (2015) or the dynamics of mid-price

1. Let us note that, for CAC40, since most of the time the spread is 1 tick S “ 1 (the only other possible state is
S “ 2 which happens very rarely), this type of analysis is not relevant
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Bacry et al. (2016). Figure 3.5 shows the contrariant kernels for AXA in a log-log plot. We see
that they display a power-law behavior on 3 or 4 decades (depending on the kernel). (See Figure
3.C.2a, 3.C.2b, 3.C.2c for the other assets in Appendix 3.C.)

Moreover, most of them display a very clear bump around the time t » 0.2 milliseconds. This is
not very surprising as this phenomenon has already been revealed in several former works (Bacry
et al., 2016; Rambaldi et al., 2017). It corresponds to an average latency of the market itself, which
is the average time for an agent to effectively place an order, reacting to a change of the order
book.

Figure 3.5 – Hawkes kernels for AXA. In this figure we present four contrariant Hawkes kernels
(i.e., φe,e1 for e “ ´e1). Each kernel φe,e1 (labeled e1 Ñ e on the figure with e, e1 P E) represents
the influence of the past jumps of size e1 on the occurrence probability of a future jumps of size
e. Each kernel is represented as a sum of L “ 6 exponentials, specifically φe,e1

ptq, where φe,e1

ptq “
L
ÿ

l“1
αe,e1

l βle
´βlt, where βl “ 1

τl
and τl takes values in the range t10´4s, 10´3s, . . . , 101su. All the

kernels are displayed on a log-log scale and show a power-law behavior on a large range of scales
(3, 4 or even 5 decades)

3.4.4 Goodness-of-fit

In this section, we demonstrate that the previously constructed and estimated model is able to
accurately capture diverse statistical properties of the spread process. We will study successively,
the spread distribution itself (that has already been discussed in Section 3.4.2), the inter-event time
distributions (i.e., time between change of spread values), the spread autocorrelation function and
finally the auto-covariance function of the spread increment process.

a. Spread Distributions

Let us first compare the spread distributions derived from the real data with the distributions
obtained from data simulated by our model, which was fitted to the real data. As discussed in
Section 3.4.2, both calendar time and event time distributions are considered.

Following the same lines as in Section 3.4.2, Figure 3.6 displays calendar-time spread distribution,
event-time distribution and spread jumps (dS) distribution for the AXA asset. The figures demon-
strate that the model accurately replicates these distributions. Several works have explored the
distribution of spread, but Fosset et al. (2020a) is one of the few that discuss it in detail. In their
spread model (as shown in Equation (3.1.2)), the distribution of spread is geometric, given by:

PpS ě nq “
1 ´ αc

1 ´ α
p1 ´ rqrn´2 for n ě 2

where αc “ 1 ´
µ`

µ´ and r P p0, 1q depends on α and β. However, since PpS “ nq is a decreasing
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function for n ě 2, the model Eq. (3.1.2) can only produce spread distributions that peak at S “ 1
or S “ 2. As shown in Figure 3.6 and 3.C.3, this Characteristic is not consistent with real data.

It is also important to note that the SDSH model is not limited to reproducing the spread distribu-
tion, but is a more comprehensive framework which can capture a wider range of spread dynamics.

Figure 3.6 – Spread distribution, comparison between true data and the the data obtained through
simulation for AXA. The left-hand figure is the Calendar time distributions, the middle figure is
the event time distributions, and the right-hand figure is the distributions of spread jumps size.

b. Inter-event time distributions

Let ttnun be the successive times at which the spread process S jumps (i.e., the spread changes).
We define the inter-event times t∆tnun by

∆tn “ tn ´ tn´1.

The first plot on the left of Figure 3.7a displays the empirical unconditional distribution of inter-
event times for both the AXA true data and simulated data using our model (fitted with AXA data).
The two other plots on the right hand-side of this latter plot show some conditional inter-event
time distributions. More precisely we define the set

t∆tS1ÑS2u :“ t∆ti | Spti`q “ S1, Spti`1`q “ S2u, (3.4.4)

where Spti`q is the value of the spread immediately after the jump at time ti. The middle plot
in Figure 3.7a shows the distribution of t∆t1Ñ3u, while the right one shows the distribution of
t∆t3Ñ2u.

We see that the model performs extremely well in reproducing the unconditional and conditional
inter-event time distributions. Figure 3.7b displays the qq-plots of the true distributions versus the
model distributions. Their linear behavior show how well the model fits the true distributions.

We invite reader to look at the results obtained for BNP, NOKIA or CAC40 Future in Appendix
3.C (Figures 3.C.4, 3.C.5 and 3.C.6).

c. Spread Autocorrelation

In this section, we study the auto-correlation function of the spread for true data and assess how
well the SDSH model is able to reproduce it.

The autocorrelation function of the spread on true data could a priori be estimated using straight-
forward quadratic covariations on all the available data. However such an estimation is prone to
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(a)

(b)

Figure 3.7 – AXA Inter-event time unconditional and conditional distributions. Comparison be-
tween AXA true data and data obtained through simulation of our model (fitted on AXA data)
(a) AXA true distributions versus model distributions for unconditional distribution or conditional
distributions (see (3.4.4)). The x-axis is on log scale. (b) Corresponding qq-plots in log-log scales.

highly biased results. Indeed, it is well known that the order book dynamics (and subsequently
the spread dynamics) is subject to long range correlations and strong intraday seasonal effects
(Bouchaud et al., 2009; Fall et al., 2021; Groß-KlußMann and Hautsch, 2013). To avoid these
biases, it is important to account for the intraday seasonality. A common approach is to limit the
computation of the quadratic covariations to certain time slots every day, by assuming that the
seasonal effects between different days are less affecting.

In our case, we use 15min time slots on the real data. More precisely we use eight 15min slots
between 10am and 12pm each day. On the other hand, for the simulated data, we keep the 2 hour
time-slots since there is no seasonality in the model. Figure 3.8 shows these estimations for AXA
and additional plots for BNP, NOKIA and CAC40 are available in Appendix 3.C Figure 3.C.7.
Each plot displays the autocorrelation functions for both true data and simulated data, shown in
linear-linear and log-log scales. Once more, the fits are amazingly good. The model succeeds in
reproducing the autocorrelation function of the spread with a very good accuracy.

d. Autocovariance of spread increments

In this section we focus on the autocovariance function of the spread increments. Let us first give
the exact definition.

Let us define the infinitesimal covariance of the infinitesimal measure dSt as CovpdSt, dSt1q, which
is assumed to be stationary and dependent only on pt1 ´ tq. We refer to this covariance as gpt1 ´ tq,
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Figure 3.8 – Auto-correlation function of the spread for AXA. True data versus model-simulated
data. Each plot corresponds to a different asset. Quadratic variations are used for estimation.
Eight 15min time-slots (between 10am and 12pm) are used everyday for true data in order to avoid
intraday seasonal effects. 2-hour slots are used for model-simulated data.

such that:

gpt1 ´ tqdtdt1 “ CovpdSt, dSt1q

“ ErdSt dSt1s ´ ErdStsErdSt1s,

Then, one gets, @δ ą 0 and @τ ą 0,

CovpSt`δ ´ St, St`δ`τ ´ St`τ q “ Er

ż t`δ

t
dSu

ż t`τ`δ

t`τ
dSvs ´ Er

ż t`δ

t
dSusEr

ż t`τ`δ

t`τ
dSvs

“

ż t`δ

t

ż t`τ`δ

t`τ
pErdSu dSvs ´ ErdSusErdSvsq

“

ż t`δ

t

ż t`τ`δ

t`τ
gpv ´ uq du dv

“ δ2
ż 1

0

ż 1

0
gpτ ` δpv ´ uqq du dv

It is thus natural to introduce a normalized quantity, which represents the relative covariance of
spread increment during δ seconds with lag τ seconds:

ACV pδ, τq :“ 1
δ2CovpSt`δ ´ St, St`δ`τ ´ St`τ q (3.4.5)

Let us point out that the function gpτq corresponds to the infinitesimal covariance function of a
stationary process, it should thus decreases to 0 when the lag τ goes to infinity. It seems reasonable
to assume that it does so in a "regular way". This assumption can be expressed mathematically as
follows: g is differentiable and there exist constant ϵ ą 0 and c ą 0 such that

|g1pτq| ă cτ´ϵ, @τ ą 0
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Under this assumption, we have, for any τ ą δ ą δ1 ą 0, that

|ACV pδ, τq ´ACV pδ1, τq| “

ˇ

ˇ

ˇ

ˇ

ż 1

0

ż 1

0
pgpτ ` δpv ´ uqq ´ gpτ ` δ1pv ´ uqqq du dv

ˇ

ˇ

ˇ

ˇ

ď pδ ´ δ1q max
|y|Pr0,maxpδ,δ1qs

|g1pτ ` yq|

ż 1

0

ż 1

0
|v ´ u| du dv

ď
1
3pδ ´ δ1q max

|y|Pr0,maxpδ,δ1qs
|g1pτ ` yq|

ď
cpδ ´ δ1q

3pτ ´ δqϵ

Consequently, the covariance function ACV pδ, τq can be estimated independently of the value of δ
as long as the lag τ is large enough compared to the value of δ. In practice, to avoid estimating
ACV for all possible values of δ and τ , one can fix a very small value for δ and then estimate the
ACV function on a range of τ that satisfies τ " δ. However, as we will see, if δ is chosen to be
extremely small compared to τ , the estimation can become very noisy due to the high-frequency
fluctuations. Therefore to get a smooth estimation, one needs to choose a value for δ that is much
smaller that τ but not so small that it introduces excessive noise.

Figure 3.9 not only visually reinforces this discussion but demonstrates that the model perfectly
reproduces all the statistical features of the true data (of the AXA asset). We choose to represent
´ACV instead of ACV since due to the mean reversion property of the spread, we naturally expect
ACV to be mainly negative. The inset in the figure shows ´ACV pδ, τq as a function of τ in a
log-log scale for a fixed δ “ 0.1s. One sees that if δ is too small compared to τ , the result gets
extremely noisy. Moreover it is clear from the plot that the autocovariance function computed
using the model simulated data reproduces very well the behavior of the one computed using the
true data.

The main plot displays the different estimations of the ACV pδ, τq as a function of τ for different
values of δ, indicated in the legend on the right hand-side. Following what we just said, we limited
for each δ the estimation of ACV pδ, τq for values of τ on a range so that δ is small compared to
τ but not too small. This approach results in all the estimation curves practically overlapping,
revealing a smooth curve for the auto-covariance function spanning nearly 7 decades of τ values.

This curve is close to be linear, indicating that the auto-covariance function is close to be power-
law. One can see the slight latency bump around τ “ 200µs, previously discussed in Section b for
Figures 3.5 and 3.C.2. However, the most impressive is the way the estimation computed using the
model-simulated data fits the estimation on true data on the whole range of scales. The fit is very
accurate.

Last but not least, it’s worth noting that the same results hold true when considering the other
assets. This is illustrated in Figure 3.C.8. The remarkable fit between the model and the data
remains consistent across the assets, and the auto-covariance curves exhibit a similar pattern. This
consistent behavior across multiple assets suggests the possibility of a stylized fact present in the
empirical processes of spreads.
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Figure 3.9 – The ´ACV pδ, τq functions for different values of δ as a function of τ using a log-log
scale both for using the AXA true data and the model-simulated data (fitted on AXA true data).
As expected (see discussion) the curves for different δ’s fall one onto the over letting discover a
power-law behavior with a slight bump close to the latency time scale » 200µs (see Section b).
The inset shows the particular curve ACV pδ, τq for δ “ 0.1s. It clearly confirms the fact that if τ
is too far to δ the estimation gets very noisy.

3.5 - Illustration on using SDSH model for spread forecasting

The goal of this section is to show that the SDSH model is a good candidate for high-frequency
spread forecasting. However, it is important to note that spread forecasting is a difficult task that
deserves much more dedicated research and comparisons with state of the art methods. It is clearly
beyond the scope of our current study. In this section, our aims are more modest. We just intend to
give some very preliminary results that allow us to glimpse the possibilities of such an application.

The issue we address is the prediction of the spread value at a specific time horizon ∆ in the
very near future (i.e., ∆ ă 1 min). According to Figure 3.9, a one-minute time window should be
sufficient to capture the direct impact of past events on future spread values. Taking into account
only the direct impact should be enough to capture most of the dynamics and to give an estimation
of the performance achievable by the SDSH model. Since we lack an explicit expression for the
spread distribution, we rely on Monte Carlo simulations to estimate the expected spread value at
the given time horizon. To elaborate further:

At time t0, the spread point process during the time interval rt0´60, t0s can be summarized by either
tSuut0´60ăuăt0 or equivalently by St0´60 along with all the events tpti, eiq, t0 ´ 60 ď ti ă t0ui“1,...,n

occurring within the time-interval rt0 ´ 60, t0s. Thus, in order to estimate E
“

St0`∆ |Su, u P rt0 ´

60, t0s
‰

, which represents the conditional mean at time-horizon ∆, we simulate 100 processes from
t0 to t0 ` ∆ with the intensity function at time t P rt0, t0 ` ∆s defined as

λe
t “ fepSt´q

`

µ̃eptq `
ÿ

e1PE

ż t´

t0

φe,e1

pt´ uqdSe1

u

˘

(3.5.1)
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where the baseline µ̃eptq is a function on t P rt0, t0 ` ∆s defined by

µ̃eptq “ µe `
ÿ

e1PE

n
ÿ

i“1
1ei“e1φe,e1

pt´ tiq . (3.5.2)

Before illustrating the performance of such an estimator, let us briefly describe an alternative model,
previously introduced in Groß-KlußMann and Hautsch (2013), that we will use as a benchmark for
our numerical tests.

Introducing a benchmark: the Autoregressive Conditional Double Poisson (ACDP)
model In Groß-KlußMann and Hautsch (2013), the authors introduce various spread prediction
models which are all based on the use of autoregressive conditional Poisson model. As our focus
is on high-frequency prediction, we will consider only the so-called ACDP model and not its long-
memory version (i.e., the LMACP, the Long Memory Autoregressive Conditional Poisson model).
Once again, it is important to emphasize that the development of an optimized spread forecasting
procedure based on the SDSH model, as well as conducting a thorough comparison with state-
of-the-art methods, falls beyond the scope of this study. A forthcoming work will be specifically
dedicated to these topics.

Within the ACDP framework, the spread process Sk, k P Z is a discrete time series, consisting
of spread values subsampled every ∆ “ 30s (as shown below, we explore the effects of varying
this sub-sampling interval which plays also the role of the time-horizon between 3 seconds and 30
seconds):

λk “ c` αS1
k´1 ` βλk´1

S1
k|Fk´1 „ DPpλk, γq

(3.5.3)

where S1
k “ Sk ´ 1 P N, and DPpλk, γq stands for the Double Poisson distribution defined by

PpS1
k “ n|λk, γq “ cpγ, λkqγ1{2e´γλk

`e´nnn

n!
˘`eλk

n

˘γn

Under this model, ErS1
k | Fk´1s “ λk.

As shown in Groß-KlußMann and Hautsch (2013), the log-likelihood function of ACDP model
reads:

log Lpc, α, β, γ|S1
r1:Nsq “

T
ÿ

k“1

´1
2 logpγq ´ γλk ` S1

kplogS1
k ´ 1q ´ logpS1

k!q ` γS1
k

`

1 ` logp
λk

S1
k

q
˘

¯

where λt “ p1 ´ βBq´1pc`αBpS1
tqq with BpS1

tq “ S1
t´1 being the backshift operator. When β ă 1:

λt “

8
ÿ

i“0
βiBipc` αBpS1

tqq

In practice, one estimates λt based on a truncation of the infinite sum. Specifically it is estimated

as λt “

N
ÿ

i“0
βiBipc ` αBpS1

tqq, where N is an hyper parameter of the method. In this work, we

set N to be 60. In fact, after experimenting with different values of N , we found that the results
remain consistent as long as N is greater than 10.
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Numerical results Let us present the numerical results on the relative performances of SDSH
and ACDP based methods. We are going to compare three different predictors for time-horizons
varying from ∆ “ 3s up to ∆ “ 30s.

- SDSH predictor:
- For each stock, the SDSH model is calibrated on training data which consists of 30-day

spread dynamics within a 2-hour window each day (from 10am to 12pm) for avoiding
strong seasonal effects.

- No re-estimation of the model parameters is made along running the test
- At each time, forecasting is made using the previous 1 minute data following Equations

(3.5.1) and (3.5.2)
˝ ACDP predictor:

- For each stock, the ACDP model is calibrated using a time rolling window of 1-hour of
spread data subsampled every ∆ seconds.

- Parameters are re-estimated every 10 minutes to ensure that the parameters remain
up-to-date.

- The model employs a one-step ahead prediction strategy using the most recent estimated
model for forecasting.

˝ Last predictor: A straightforward benchmark predictor involves assuming that St follows
a martingale, meaning that the prediction for the spread at time t0 ` ∆ is the last observed
value of the spread, denoted as Ŝt0`∆ “ St0 .

All methods are evaluated over a test period lasting 50 consecutive days, following the initial 30-
day training period for the SDSH model. The evaluation takes place specifically from 11am to
12pm every day. This time-frame is chosen to accommodate the ACDP method, as it requires a
minimum of one hour to calibrate the model before generating predictions. Therefore, we cannot
make predictions before 11am.

We evaluate these three predictors on three stocks (AXA, BNP Paribas and Nokia) as well as the
CAC40 index future. The performance comparison is presented in Table 3.3.

As table 3.3 shows, the Last predictor is always worse than the SDSH predictor though it out-
performs the ACDP predictor sometimes at the highest frequency (e.g., ∆ “ 3s, for AXA and
NOKIA). Moreover the SDSH predictor outperforms most of the time the ACDP predictor (and
systematically for the highest frequency ∆ “ 3s). These results are very encouraging in terms of
the predictive performance of the SDSH model. A detailed comparison with several state of the
art predictors and for a wider range of time horizons will be addressed in a forthcoming work.

3.6 - Conclusion

In this study, we introduced a State Dependent Hawkes process (SDSH) for modelling bid-ask
spread fluctuations, which generalizes the spread models presented in Zheng et al. (2014) and
Fosset et al. (2020a). Our model is a 2K-variate Hawkes process which can accommodate different
jump sizes (ranging from 1 to K). In order to account for the current spread value St, we introduced
a spread-dependent term fepStq (where e denotes an event type) and multiplied the classical Hawkes
intensity by this term. We chose to use the sum of exponential kernels to benefit from the Markovian
properties of the model. Notably, we demonstrated the ergodicity property in a particular case,
indicating that the spread process converges to a stationary distribution over time.
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3.6. Conclusion

∆ 3s 6s 12s 30s

Last 0.408 0.587 0.784 1.082

ACDP 0.514 0.520 0.565 0.808

SDSH 0.363 0.478 0.561 0.648

(a) AXA

∆ 3s 6s 12s 30s

Last 0.833 1.177 1.487 1.818

ACDP 0.737 0.851 0.971 1.320

SDSH 0.692 0.865 0.964 1.065

(b) BNP

∆ 3s 6s 12s 30s

Last 0.388 0.609 0.904 1.340

ACDP 0.508 0.609 0.744 1.031

SDSH 0.361 0.543 0.766 1.081

(c) NOKIA

∆ 3s 6s 12s 30s

Last 0.370 0.421 0.445 0.457

ACDP 0.283 0.258 0.256 0.267

SDSH 0.230 0.240 0.244 0.245

(d) CAC40 Index Future

Table 3.3 – Mean Square Error (MSE) of the 3 different predictors, Last, ACDP and SDSH for
different time sub-samplings ∆ (which plays also the role of the time-horizon).

Then we calibrated our SDSH model using high-frequency data obtained from CAC40 Euronext
Market, including three stocks (AXA, BNP, Nokia) and the CAC40 Future index. We examined
the estimated spread-dependent term f , as well as kernel functions to better understand how they
affect the spread dynamics. Our analysis revealed that the estimated fep¨q is decreasing when e is
an event which increased the spread, while for at least one downward event e1, fe1

p¨q is increasing.
Such fe is able to press the spread down when its value is high by exciting more downward events.
In terms of kernel functions, our estimation results showed that most of them tend to decrease very
slowly, resembling a power-law kernel function.

We studied the ability of this model to capture various spread statistics. We found that our model
very successfully replicates the spread distributions, measured by both calendar time and event
time. We also observed that the model accurately reproduces other important statistical features,
including the distributions of inter-event times, spread autocorrelations as well as spread increments
autocovariance.

Finally we demonstrated the effectiveness of the SDSH model in predicting the spread across
different sample window sizes. Our results suggest that the SDSH model is a reliable and robust
choice for predicting the spread.
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APPENDIX

3.A - Proof of V-uniform ergodicity

We restrict our model to the case where K “ 1 and L “ 1. The model then is written as follows:

λeptq “ fepSt´qpµe `
ÿ

e1PE

ż t

0
φe,e1

pt´ sqdSe1

s q

where E “ t`1,´1u “: t`,´u and φe,e1

ptq “ αe,e1

βe´βt

This section is devoted to the prove of the Proposition 3.2 of Section 3.2.3. From now, we replace
event ` by 1 and ´ by 2. To avoid the ambiguity of notation, in the following part, we replace the
superscripts by subscripts. Under the new notations, we replicate the proposition here:

Proposition. Let us consider the model given just above and X “ pXlmql,mPt1,2u. Assume that the
following conditions are satisfied

f2p1q “ 0
f2pSq ě γS for some γ ą 0 when S ě 2
sup

S
tf1pSqupα12 ` α11q ă 1

(A3)

then the process pSt, Xtq is a V-uniformly ergodic Markov process.

Remark 3.1. Let us note that in this model, the last condition sup
S

tf1pSqupα12 ` α11q ă 1 is

equivalent to pα12 ` α11q ă 1 and sup
S

tf1pSqu ă“ 1.

Lyapunov function

As Xlmptq “

ż t

0
αlme

´βpt´sqdNm
s ,

dXlmptq “ ´βXlmptqdt` αlmdN
m
t
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3.A. Proof of V-uniform ergodicity

Function VlmpXlmq

VlmpXlmq “ Xlm

The infinitesimal generator L of Xlm on Vlm

LVlmpXq “ αlmλm ´ βXlm

“ ´βXlm ` αlmfmpSqµm ` αlmfmpSqp
ÿ

n

βXmnq

“ ´βXlm ` αlmµmfmpSq ` αlmβfmpSqpXm1 `Xm2q

Function VSpSq

V2pSq “ S

As dSt “ dN1
t ´ dN2

t , the infinitesimal generator L of S on VS :

LV2pSq “ λ1 ´ λ2

“ f1pSqµ1 ` βf1pSqX11 ` βf1pSqX12 ´ f2pSqµ2 ´ βf2pSqX21 ´ βf2pSqX22

Function V on pX,Sq Now we consider a function V on pX,Sq

V pX,Sq “
ÿ

l,mPt1,2u

ηlmXlm ` ηS

where ηlm, η ą 0.

Then the infinitesimal generator L of pX,Sq on V is:

LV pX,Sq “ ´η11βX11 ` η11α11µ1f1pSq ` η11α11βf1pSqpX11 `X12q

´η12βX12 ` η12α12µ2f2pSq ` η12α12βf2pSqpX21 `X22q

´η21βX21 ` η21α21µ1f1pSq ` η21α21βf1pSqpX11 `X12q

´η22βX22 ` η22α22µ2f2pSq ` η22α22βf2pSqpX21 `X22q

`ηf1pSqµ1 ` ηβf1pSqX11 ` ηβf1pSqX12

´ηf2pSqµ2 ´ ηβf2pSqX21 ´ ηβf2pSqX22

Before giving the proof of Proposition 3.2, we should mention the following theorem. See Theorem
5.2 in Down et al. (1995) and 2.5.2 in Abergel and Jedidi (2013).

Theorem 3.1. For a ψ-irreducible, aperiodic Markov process X, if the following drift condition
(D) holds, then X is V-uniformly ergodic.

(D) For some ρ, b ą 0 and a coercive function V ě 1

LV ď ´ρV ` b (3.A.1)

Proof of Theorem 3.2. Suppose that we have already the following conditions:

pHq “

$

’

&

’

%

η12α12 ` η22α22 ă η

η11α11 ` η21α21 ` η ă η11

η11α11 ` η21α21 ` η ă η12

(H1)
(H2)
(H3)
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Chapter 3. State-Dependent Spread Hawkes model

To proceed, we will split LV pX,Sq into four distinct parts and show their individual upper bounds.

LV pX,Sq “ I1 ` I2 ` I3 ` I4

where

I1 “ p1q ` p2q

“ ´η11βX11 ´ η12βX12

` η11α11βf1pSqpX11 `X12q ` η21α21βf1pSqpX11 `X12q ` ηβf1pSqpX11 `X12q

ă p´η11 ` η11α11 ` η21α21 ` ηqβX11 ` p´η12 ` η11α11 ` η21α21 ` ηqβX12

ă ´ϵ1βX11 ´ ϵ2βX12

this last inequality is directly derived by conditions pH2q and pH3q.

I2 “ p3q ` p4q

“ ´η21βX21 ´ η22βX22

` η12α12βf2pSqpX21 `X22q ` η22α22βf2pSqpX21 `X22q ´ ηβf2pSqpX21 `X22q

“ ´η21βX21 ´ η22βX22 ` pη12α12 ` η22α22 ´ ηqβf2pSqpX21 `X22q

pH1q

ă ´η21βX21 ´ η22βX22

Now for the other two terms I3 and I4:

I3 “ p5aq

“ η11α11µ1f1pSq ` η21α21µ1f1pSq ` ηµ1f1pSq ă η11α11µ1 ` η21α21µ1 ` ηµ1 “: C1

I4 “ p5bq
“ η12α12µ2f2pSq ` η22α22µ2f2pSq ´ ηf2pSqµ2 “ pη12α12 ` η22α22 ´ ηqf2pSqµ2

ă ´ϵ0µ2f2pSq
pA2q

ă ϵ0µ2γ ´ ϵ0µ2γS “: C2 ´ ´ϵ0µ2γS

where

˝ 0 ă ϵ0 ă η ´ η12α12 ´ η22α22

˝ 0 ă ϵ1 ă η11 ´ pη11α11 ` η21α21 ` ηq

˝ 0 ă ϵ2 ă η12 ´ pη11α11 ` η21α21 ` ηq

Therefore

LV pX,Sq “ I1 ` I2 ` I3 ` I4

ă ´ϵ1βX11 ´ ϵ2βX12 ´ η21βX21 ´ η22βX22 ` C1 ´ ϵ0µ2f2pSq

ă ´ϵ1βX11 ´ ϵ2βX12 ´ η21βX21 ´ η22βX22 ` C1 ` C2 ´ ϵ0µ2γS

ă ´ρpη11X11 ` η12X12 ` η21X21 ` η22X22 ` ηSq ` C

“ ´ρV pX,Sq ` C

where ρ “ mint
ϵ1

η11
,
ϵ2

η12
, 1,

ϵ0µ2γ

η
u, β ą 0 and C “ C1 ` C2

Now we only need to find some ηlm, η ą 0 satisfying the hypothesis pHq to finish this proof.
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3.B. Log-likelihood function of spread model

As α11 ` α12 ă 1,
α11

1 ´ α12
ă 1 ă

1 ´ α11

α12
. We note δ “

1
2p

1 ´ α11

α12
´ 1q. Then the following values

for ηlm, η
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

η11 “ 1, η12 “
1 ´ α11

α12
´ δ ą 1 “ η11

η21 “ δ
α12

4α21
, η22 “ δ

α12

4α22

η “ 1 ´ α11 ´
1
2δα12

(3.A.2)

satisfy the condition pHq.

Remark 3.2. For a more complicated version of our model:

λeptq “ fepSt´qpµe `
ÿ

e1PE

ż t

0
φe,e1

pt´ sqdSe1

s q

where E “ t`1,`2,´1,´2u, φe,e1

ptq “ αe,e1

βe´βt (exponential kernels). Using the same proof, we
can prove that under the following conditions pA1q and pH1q, the pX,Sq is a V-uniformly ergodic
Markov process.

pA1q “

$

’

’

’

’

&

’

’

’

’

%

f´1pSq “ 0 when S “ 1
f´2pSq “ 0 when S “ 1, 2
maxpf´1pSq, f´2pSqq ě γS for some γ ą 0 when S ě 3
f`1pSq, f`2pSq ď 1 for all S

pH1q “

$

’

’

’

’

&

’

’

’

’

%

ř

e ηe,´1α
e,´1 ă η

ř

e ηe,´2α
e,´2 ă 2η

ř

e ηe,`1α
e,`1 ` η ă η`1,e1 ,@e1 P E

ř

e ηe,`2α
e,`2 ` 2η ă η`2,e1 ,@e1 P E

And the coercive function V is V pX,Sq “
ř

e,e1PE ηe,e1Xe,e1 ` ηS

3.B - Log-likelihood function of spread model

The log-likelihood function for the spread model is a function on µ, α and f . For brevity, we will
only give the formula for the case where L “ 1 (only one decay). In order to distinguish from the
notations that already exist, the log-likelihood function is denoted by L. Consider a realization on
r0, T s and denote by tteku the event times on Se. The log-likelihood function is:

Lpα, µ, fq “
ÿ

ePE
p´

ż T

0
λeptq dt`

ż T

0
log λeptq dSe

t q

“
ÿ

ePE

SepT q
ÿ

k“1
logpµe `

ÿ

e1PE
αee1

β

ż te
k

0
e´βpte

k´sq dSj
sq `

ÿ

ePE

SepT q
ÿ

k“1
log fepSte

k
q

´
ÿ

ePE

ż T

0
pµe `

ÿ

e1PE
αee1

β

ż t

0
e´βpt´sqdSe1

s qfepStq dt

(3.B.1)

where SepT q is the number of event e in r0, T s, and tek is the timestamp where the kth event (type
e) occurs.
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Chapter 3. State-Dependent Spread Hawkes model

3.C - More numerical results

In the main body of this paper, our empirical results are primarily centered on AXA. However,
the optimal hyperparameters may vary when applied to different assets. In this section, we present
similar empirical results for the other assets (BNP, Nokia and the futures contract of CAC40).
These results serve to demonstrate the versatility and effectiveness of our model across a range of
assets, thereby enhancing its performance and applicability.

(a) BNP

(b) NOKIA

Figure 3.C.1 – Relative kernel integrated quantities Ĩs,epe1q for (a)BNP and (b) NOKIA. Each
heatmap matrix corresponds to a stock and a value of s, displaying Ĩs,epe1q (defined by (3.4.3)) as
a function of e (vertical axis) and e1 (horizontal axis).
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3.C. More numerical results

(a) BNP

(b) NOKIA

(c) CAC40 Future

Figure 3.C.2 – Hawkes kernel shapes for (a) BNP, (b) NOKIA, and (c) CAC40 Future. In each
figure we present four (two for CAC40 Future) contrariant Hawkes kernels (i.e., φe,e1 for e “ ´e1).
Each kernel φe,e1 (labeled e1 Ñ e on the figure with e, e1 P E) represents the influence of the past
jumps of size e1 on the occurrence probability of a future jumps of size e. Each kernel is represented
as a sum of L “ 6 exponentials, specifically φe,e1

ptq, where φe,e1

ptq “
řL

l“1 α
e,e1

l βle
´βlt, where βl “ 1

τl

and τl takes values in the range t10´4s, 10´3s, . . . , 101su. All the kernels are displayed on a log-log
scale and show a power-law behavior on a large range of scales (3, 4 or even 5 decades)
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(a) BNP

(b) NOKIA

(c) CAC40 Future

Figure 3.C.3 – Spread distributions, comparison between true data and the the data obtained
through simulation of (a) BNP, (b) NOKIA, (c) CAC40 Future. The left-hand figures are the
Calendar time distributions, the middle figures are the event time distributions, and the right-hand
figures are the distributions of spread jumps size.
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3.C. More numerical results

(a)

(b)

Figure 3.C.4 – BNP Inter-event time distributions. (a) Compare empirical inter-event-time
distribution with simulated inter-event-time distribution. The x-axis is on log scale. (b) Log-log
qq-plot of empirical inter-event-times (x-axis) vs. simulated inter-event-times by model (y-axis).

(a)

(b)

Figure 3.C.5 – NOKIA Inter-event time distributions. (a) Compare empirical inter-event-time
distribution with simulated inter-event-time distribution. The x-axis is on log scale. (b) Log-log
qq-plot of empirical inter-event-times (x-axis) vs. simulated inter-event-times by model (y-axis).
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(a)

(b)

Figure 3.C.6 – CAC40 index Future Inter-event time distributions (a) Compare empirical
inter-event-time distribution with simulated inter-event-time distribution. The x-axis is on log
scale. (b) Log-log qq-plot of empirical inter-event-times (x-axis) vs. simulated inter-event-times by
model (y-axis).
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(a) BNP (b) NOKIA

(c) CAC40 Future

Figure 3.C.7 – Spread autocorrelation for (a) BNP, (b) Nokia, (c) CAC40 index Future. True
data versus model-simulated data. Each plot corresponds to a different asset. Quadratic variations
were used for estimation. Eight 15min time-slots (between 10am and 12pm) were used everyday for
true data in order to avoid intraday seasonal effects. 2 hours slots were used for model-simulated
data.

Figure 3.C.8 – Autocovariance of spread increments. The ´ACV pδ, τq function for different
assets. For each asset the curves that are displayed (in the main plot and in the inset) follow the
same protocol as the one of Figure 3.9
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CHAPTER 4

HAWKES PROCESS WITH SHOT NOISE MODEL

Joint work with E. Bacry, T. Deschatre, M. Hoffmann, J.-F. Muzy

We propose an expanded version of the Hawkes process model introduced by Bacry et al. (2013a), which we call
the "Hawkes processes with shot noise" model. To capture the exogenous source of correlation, we introduce
a latent dimension (shot noise) to the model. This latent dimension encodes the exogenous information that
cannot be observed through the price processes, such as news and some specific agent behavior. We prove
some limit theorems for this model and provide a non-parametric method for estimation. We also apply this
model to real financial data.
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4.1. Introduction

4.1 - Introduction

Modeling the dynamics of asset prices has always been a crucial and also challenging task. At
large scales, Brownian diffusion models are widely used. However, these continuous-time models
have limitations when it comes to capturing the microstructural noise. On the other hand, Hawkes
process, a finely grained model, has the ability to capture the main stylized facts of high-frequency
data, such as Signature plots and the Epps Effect, as demonstrated in Bacry et al. (2013a). Hawkes
process is a class of multivariate point processes, introduced by Hawkes (1971a,b) in the seventies.
Since then, it has become very popular across various domains, including in finance. A significant
body of literature is devoted to this topic, starting with the pioneering work of Bowsher (2007).
Research on asset price modeling focuses on both single-asset prices models and multi-asset prices
models. Single-asset works include Bacry and Muzy (2014); Da Fonseca and Zaatour (2015), which
involve studying volatility and price autocorrelation. Bacry et al. (2013a); Da Fonseca and Zaatour
(2017) are examples involving multi-asset models, which studied the correlation between assets
prices. In this work, we follow the work of Bacry et al. (2013a,b) and focus on multi-asset models
as well as the correlation between asset prices.

What are the factors contributing to the correlation between two assets? In this work, we propose
that correlation arises from two different sources. The first source is the endogenous source, which
comes from the internal feedback mechanism of the price processes themselves. This self-impact
leads to correlations between assets. The second source is the exogenous source, driven by the
external information, such as the news and agent behavior. An noteworthy recent work to mention
in this context is Marcaccioli et al. (2022). In this paper, the authors showed that the abnormal
price movements following news releases (exogenous) exhibit different dynamical features from
those arising spontaneously (endogenous). Similar research can also be found in Bouchaud (2011);
Sornette (2006); Sornette and Helmstetter (2003).

In the context of correlation between assets, to illustrate the exogenous source, let us consider the
example of Bobl and Bund. These two assets are highly correlated, because they represent futures
contracts on the same underlying asset with different maturities. As a result, global information
of the underlying asset, such as news, can affect the prices of both assets. Moreover, traders who
engage with both assets may employ hedge and arbitrage strategies and thus trade on both assets
simultaneously. We can refer to these traders as cross-traders.

In this study, we present two models referred to as the "Hawkes process with shot noise" models,
or abbreviated as "shot noise models". These models are designed to capture the different sources
of correlation between two assets. In addition to the multivariate Hawkes process proposed in
Bacry et al. (2013a), we suppose the existence of a latent (multivariate) Poisson process. The two
models are respectively called the latent-behavior model and the latent-information model.
The latent-behavior model assumes that the exogenous source of correlation comes from the latent
behavior of above-mentioned cross-traders, while the latent-information model assumes that the
exogenous source of correlation comes from the latent information, such as news.

Let us consider a simplified scenario where we have two counting processes, denoted as N̄1 and N̄2.
These processes count respectively the numbers of trades on Asset 1 and Asset 2.

˝ In the latent-behavior model (two-dimensional asset process), each observable process
comprises two terms. Specifically, N̄1 “ N1 ` N4 and N̄2 “ N2 ` N5. Let λi denote the
conditional intensity of Ni, for i P t1, 2, 3u. N3 is a latent Poisson process, representing
the cross-trader decision which is not directly observable. Whenever a shot noise event N3
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Chapter 4. Hawkes process with shot noise model

takes place, it generates two events in both asset processes N4, N5, with a random delay. If
we denote the point process N3 as ttiuiPN, then N4 and N5 are respectively tti ` ∆1,iuiPN
and tti ` ∆2,iuiPN. ∆k,i are independent random variables. The latent-behavior model is
mathematically defined as:

N1 : λ1ptq “ µ1 `

ż t

0
φ11pt´ sq dpN1psq `N4psqq `

ż t

0
φ12pt´ sq dpN2psq `N5psqq

N2 : λ2ptq “ µ2 `

ż t

0
φ22pt´ sq dpN2psq `N5psqq `

ż t

0
φ21pt´ sq dpN1psq `N4psqq

N3 : λ3ptq “ µ3

N1, N2 are the events partially generated exogenously and independently with rates µ1 and
µ2 and partially generated endogenously, by the self-exciting mechanism.

˝ In the latent-information model, the latent process N3 represents the latent information
such as news. The conditional intensity of the assets processes are defined as:

N̄1 : λ1ptq “ µ1 `

ż t

0
φ11pt´ sq dN̄1psq `

ż t

0
φ12pt´ sq dN̄2psq `

ż t

0
φ13pt´ sq dN3psq

N̄2 : λ2ptq “ µ2 `

ż t

0
φ21pt´ sq dN̄1psq `

ż t

0
φ22pt´ sq dN̄2psq `

ż t

0
φ23pt´ sq dN3psq

N3 : λ3ptq “ µ3

We assume the Poisson process N3 is the latent information, such as the news. In this
scenario, the shot noise events will only affect the intensities of both assets processes, without
superimposing events on them. The observable processes are N̄1 and N̄2.

In this work, we mainly focus on the first shot noise model, i.e., the latent-behavior model. As
to the latent-information model, we will briefly discuss it in Section 4.6. Following Bacry et al.
(2013b), we will also provide some limit theorems for the Hawkes process with shot noise models.

Since the shot noise process is latent, estimation of the parameters of these shot noise models are
challenging. For the classical Hawkes process, Achab et al. (2017) conducted a non-parametric
cumulant method (NPHC) to estimate norms of Hawkes kernels. In this work, we will demonstrate
that the NPHC estimator remains effective for the shot-noise models. Other existing methods
typically rely on EM algorithm, such as Linderman et al. (2017); Mei et al. (2019); Shelton et al.
(2018). In the appendices, we will also provide a Sequential Monte Carlo EM method for the
parameters estimation for the shot noise model with latent agent behavior.

Outline The rest of this chapter is organized as follows. Section 4.2 introduces a two-dimensional
latent-agent-behavior shot noise model. Prior to that, we provide some common notation and a
review of the bivariate delayed Poisson process. In Section 4.3, we extend the limit theorems
presented in Bacry et al. (2013b) to the latent-behavior model. Section 4.4 focuses on the review of
the NPHC estimation method and its application to the latent-behavior model. In Section 4.5, we
further extend the model to higher dimensionality and apply it to the real financial data. Section
4.6 is devoted to a brief study on the latent-information shot noise model. Finally, in Section 4.7,
we conclude this work and discuss some future research directions.
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4.2. Hawkes process with shot noise model (latent-behavior)

4.2 - Hawkes process with shot noise model (latent-behavior)

4.2.1 Notation and definitions

˝ Let Inˆm denote a matrix in Rnˆm filled with 1

˝ Im denotes an identity matrix in Rmˆm

˝ Φptq is a matrix of Hawkes kernel functions

˝ Ψptq “

8
ÿ

n“1
Φ‹nptq where Φ‹nptq “ Φ ‹ Φ ‹ ¨ ¨ ¨ ‹ Φ

looooooomooooooon

n times Φ

˝ Kernel norm matrix G :“ }Φ} “

ż 8

0
Φptqdt

˝ Rptq “ Imδptq ` Ψptq where m is the dimension of the process and δptq is the Dirac
function

˝ R “

ż 8

0
Rptqdt

˝ The operator x¨, ¨y is defined by xf, gy :“
ż 8

0
fptqgptqJdt for two matrices of functions f and

g with f, g P L2pR`q.

4.2.2 Bivariate Delayed Poisson process

Suppose we have an unobservable main Poisson process NX of rate µ. A bivariate delayed Poisson
process pN1, N2q is constructed from the main Poisson process NX (see Lawrance and Lewis (1975);
Lewis (1972)). An event at time t in NX produces an event at time t` ∆p1q in N1 and an event at
time t` ∆p2q in N2. ∆p1q and ∆p2q are two independent random variables.

The following proposition is from Example 7.3(a) in Daley et al. (2003).

Proposition 4.1. Suppose that ∆p1q and ∆p2q are two independent random variables with exponen-
tial distributions of parameters a1 and a2 respectively. Suppose that at time t, given the internal
history Ft´, NXptq “ m, N1 “ n1, N2 “ n2, where necessarily m ě maxtn1, n2u. Then the
intensity of pNX , N1, N2q is given by

λXptq “ µ

λ1ptq “ a1pm´ n1q

λ2ptq “ a2pm´ n2q

(4.2.1)

The margin intensity of Ni is given by λiptq “ µp1 ´ e´aitq. When t Ñ 8, the marginal processes
become simple stationary Poisson processes of rate µ.

Remark 4.1. We can also consider pNX , N1, N2q in Proposition 4.1 as a multivariate Hawkes
process. In this case, the conditional intensity can be written as

λXptq “ µ

λiptq “

ż t

0
aip dNXpsq ´ dNipsqq, for i “ 1, 2

(4.2.2)
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Chapter 4. Hawkes process with shot noise model

Therefore the kernel matrix is

Φ0ptq ” Φ0 “

¨

˚

˚

˚

˚

˝

0 0 0

a1 ´a1 0

a2 0 ´a2

˛

‹

‹

‹

‹

‚

(4.2.3)

In the context of the Hawkes process framework, we define the function:

R0ptq “

8
ÿ

n“0
Φ‹n

0 ptq

Here, Φ‹n
0 ptq represents the result of convolving the function Φ0ptq with itself n ´ 1 times using

matrix convolutions. Let Aptq and Bptq denote two square matrices of functions, and pA ‹ Bqijptq

represents the matrix convolution operation between A and B. Specifically, pA ‹ Bqijptq is given

by: pA ‹ Bqijptq “
ÿ

k

ż t

0
AikpsqBkjpt ´ sqds. Specifically, A‹0ptq “ δ0ptqI, where δ0ptq is the Dirac

delta function and I is the identity matrix.

By using an induction argument, we can demonstrate that Φ‹n
0 ptq can be expressed as follows:

Φ‹n
0 ptq “ Φn

0
tn´1

pn´ 1q!

Here, Φn
0 represents the matrix inner product performed n times. By calculation, we find that:

Φn
0 “ p´1qn`1

¨

˚

˚

˚

˚

˝

0 0 0

pa1qn ´pa1qn 0

pa2qn 0 ´pa2qn

˛

‹

‹

‹

‹

‚

Consequently, we have, R0ptq “ δ0ptqI ` Φ0e
´Φ0t and

R0 “

ż 8

0
R0ptqdt “

¨

˚

˚

˚

˚

˝

1 0 0

1 0 0

1 0 0

˛

‹

‹

‹

‹

‚

This result is independent of the values of a1 and a2.

4.2.3 (2 ˆ 2 ` 1)-dimensional Hawkes process with shot noise

Consider a simple scenario where we have two distinct assets, and we can observe the moments
when their prices change. We assign the event type that moves the price of Asset 1 as e “ 1, and
the event type that changes the price of Asset 2 as e “ 2. The point processes associated to these
two event types are respectively denoted as N̄1 and N̄2.

In this work, we assume the existence of an unobservable exogenous Poisson process. We introduce
a delay for each asset. When a noise event occurs at time t, this noise arrives at asset 1 with a
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4.2. Hawkes process with shot noise model (latent-behavior)

delay ∆p1q „ Exppa1q 1, i.e., appearing at stock 1 at time t ` ∆1. Similarly, it arrives to stock 2
with a delay ∆p2q „ Exppa2q, appearing at t ` ∆p2q. Intuitively, this model can boost the macro
correlation of the two prices thanks to these "common" shot noises. For example, when all the
events originate from the shot noise, the macro correlation can even attain 1, which the classical
model without shot noise cannot achieve. A 2-dimensional model is illustrated in Figure 4.2.1.

t (second)

Δ(2)
1 Δ(2)

3

Δ(1)
1 Δ(2)

2

Δ(1)
2

Δ(1)
3

N1
N2

N4
N5

N3

t (second)

P1
S P2

SP1
D P2

D

N̄1 = N1 + N4

N̄2 = N2 + N5

N3

Figure 4.2.1 – An illustration of a 2D latent agent behavior shot noise model. For i P t1, 2u,
N̄i “ Ni `Ni`3 represents the i-th price process which is observable, while N3 stands for the latent
shot noise process which is not directly observable. The yellow dashed arrows show the relation
of generation. If an arrow points from a empty circle, it means that the event is an immigrant
generated by an exogenous intensity for self-exciting processes. Otherwise, the arrow points to a
child from its parent. The delay of the k-th shot noise on N̄i is indicated by ∆piq

k (by our setting
∆piq

k „ Exppaiq). The common shot noise is represented by the greed shade.

Definition 4.1 (p2 ˆ 2 ` 1q-dimensional Model). Suppose a1, a2 ą 0, the intensity vector of N “

pNiqi“1,2,..,5 is defined as
$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

N1 : λ1ptq “ µ1 `

ż t

0
φ11pt´ sq dpN1psq `N4psqq `

ż t

0
φ12pt´ sq dpN2psq `N5psqq

N2 : λ2ptq “ µ2 `

ż t

0
φ22pt´ sq dpN2psq `N5psqq `

ż t

0
φ21pt´ sq dpN1psq `N4psqq

N3 : λ3ptq “ µ3

N4 : λ4ptq “ a1 pN3ptq ´N4ptqq

N5 : λ5ptq “ a2 pN3ptq ´N5ptqq

(4.2.4)

An oversimplified interpretation Let’s consider a scenario where there are two assets and
only three distinct types of agents operating in the market. Type-1 agents trade only the first asset
and Type-2 agents trade only the second asset. However Type-3 agents possess both assets. Type-1
and Type-2 agents engage in trading activities using information from both assets, employing self-
and cross-exciting kernels. On the other hand, Type-3 agents make their trading decisions based on
a Poisson process (N3), therefore independently to the events of both assets. When Type-3 agents
decides to trade, they respond to both assets with independent random delays Exppaiq. However,

1. The probability density function for Exppaq is ae´at
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Chapter 4. Hawkes process with shot noise model

it’s important to note that in the market, Type-1 and Type-2 agents are unable to differentiate
between events generated by Types-1,2 or Type-3 agents. Consequently, they respond to both
types of events using the same kernel (the reason for the term φijpt´ sq drNjpsq `Nj`3psqs).

Let φH “

¨

˝

φ11 φ12

φ21 φ22

˛

‚, the kernel matrix for the complete model is Φ “

¨

˝

φH 02ˆ1, φH

03ˆ2 Φ0

˛

‚where

Φ0 is defined in Equation (4.2.3). We denote µH to be

¨

˝

µ1

µ2

˛

‚and ψHptq “

8
ÿ

n“1
φ‹n

H ptq.

Proposition-definition 1. Let Γ “

¨

˝

´a1 0

0 ´a2

˛

‚ and γ “

¨

˝

a1

a2

˛

‚.

For t P R`,

Ψptq “

8
ÿ

n“1
Φ‹nptq

“

¨

˚

˚

˚

˚

˝

ψHptq ψH ‹ γ̄ptq ψHptq ` ψH ‹ Γ̄ptq

01ˆ2 0 01ˆ2

02ˆ2 γ̄ptq Γ̄ptq

˛

‹

‹

‹

‹

‚

(4.2.5)

where Γ̄ptq :“ ΓeΓt “

¨

˝

´a1e
´a1t 0

0 ´a2e
´a2t

˛

‚, γ̄ptq :“ eΓtγ “

¨

˝

a1e
´a1t

a2e
´a2t

˛

‚

Therefore Rptq “ I5δptq ` Ψptq, and

R “

ż 8

0
Rptqdt “

¨

˚

˚

˚

˚

˝

RH pRH ´ I2qI2ˆ1 02ˆ2

01ˆ2 1 01ˆ2

02ˆ2 I2ˆ1 02ˆ2

˛

‹

‹

‹

‹

‚

(4.2.6)

Proof. For n P N`,

Φ‹n “

¨

˚

˚

˚

˚

˝

φ‹n
H

řn
k“1 φ

‹k
H ‹ Γ‹pn´k´1q ‹ γ

řn
k“1 φ

‹k
H ‹ Γ‹pn´kq

01ˆ2 0 01ˆ2

02ˆ2 Γ‹pn´1q ‹ γ Γ‹n

˛

‹

‹

‹

‹

‚

Since Γ‹nptq “ Γn
tn´1

pn´ 1q!, we have directly
ř8

n“1 Γ‹nptq “ ΓeΓt

8
ÿ

k“0
Γ‹k ‹ γptq “ pI2δptq ` ΓeΓtq ‹ γptq “ p

ż t

0
pI2δpsq ` ΓeΓsqdsq ¨ γ “ eΓt ¨ γ
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4.3. Limit theorems

8
ÿ

n“1

n
ÿ

k“1
φ‹k

H ‹ Γ‹pn´k´1q ‹ γ “ ψH ‹ p

8
ÿ

k“0
Γ‹kq ‹ γ “ ψH ‹ peΓt ¨ γq

Corollary 3. The mean intensity of the complete model is

Λ “ Rµ “

¨

˚

˚

˚

˚

˝

RH pRH ´ I2qI2ˆ1 02ˆ2

01ˆ2 1 01ˆ2

02ˆ2 I2ˆ1 02ˆ2

˛

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˝

µH

µ3

02ˆ1

˛

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˚

˝

RHµH ` pRH ´ I2qI2ˆ1µ3

µ3

µ3

µ3

˛

‹

‹

‹

‹

‹

‹

‹

‚

We denote by ΛH the mean intensity vector of
´

N1 N2

¯J

, that is ΛH “ RHµH `pRH ´I2qI2ˆ1µ3.
Then the observable mean intensity is

Λ̄ “ ΛH `

¨

˝

µ3

µ3

˛

‚“ RH

¨

˝

µ1 ` µ3

µ2 ` µ3

˛

‚.

4.3 - Limit theorems

4.3.1 The law of large number and the central limit theorem

Consider the following assumption:

For all i, j P t1, 2u, }φH,ij} “

ż 8

0
φH,ijptqdt ă 8 and the matrix

GH “ }φH} has spectral radius smaller than 1
(A4-1)

The observable process N̄ “

¨

˝

N̄1

N̄2

˛

‚“

¨

˝

N1 `N4

N2 `N5

˛

‚

Theorem 4.1. Assume that (A4-1) holds. Then Nt P L2pP q for t P R`, and we have

sup
vPr0,1s

}
1
T
NT v ´ vRµ} ÝÑ 0

as T Ñ 8 almost surely and in L2pP q.

For observable process N̄

sup
vPr0,1s

›

›

›

›

›

1
T
N̄T v ´ vΛ̄

›

›

›

›

›

ÝÑ 0

where Λ̄ is defined in Corollary 3.
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Theorem 4.2. Assume that (A4-1) holds. We have

1
?
T

pNT v ´ ErNT vsq Ñ RΣ1{2Wv, for v P r0, 1s

in law for the Skorokhod topology as T Ñ 8. pWvqvPr0,1s is a standard 5-dimensional Brownian
motion. Σ is the diagonal matrix such that Σii “ Λi where Λ “ Rµ.

As the elements of the last two columns of R are all 0,

1
?
T

pNT v ´ ErNT vsq Ñ

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

RH

¨

˝

Λ1 0

0 Λ2

˛

‚

¨

˝

W1,v

W2,v

˛

‚` pRH ´ I2qI2ˆ1µ3W3,u

µ3W3,v

µ3W3,v

µ3W3,v

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

for v P r0, 1s

Therefore, for the observable process N̄

1
?
T

`

N̄T v ´ ErN̄T vs
˘

Ñ RH

¨

˝

Λ1W1,v ` µ3W3,v

Λ2W2,v ` µ3W3,v

˛

‚ for v P r0, 1s

Corollary 4. Suppose that (A4-1) holds and furthermore we have the following restriction on φH ,

ż 8

0
φHptqt1{2dt ă 8 (A4-2)

Then
?
T p 1

T NT v ´ vRµq Ñ RΣ1{2Wv, v P r0, 1s in law for the Skorokhod topology when T Ñ 8.
Moreover,

?
T p

1
T
N̄T v ´ vΛ̄q Ñ RH

¨

˝

Λ1W1,v ` µ3W3,v

Λ2W2,v ` µ3W3,v

˛

‚

4.3.2 Empirical covariation across time scales

For N P N5, set Xt “ Nt ´ErNts. On a time interval r0, T s, for 0 ă ∆ ă T , the empirical covariance
matrix of N is defined as

V∆,T pNq “
1
T

tT {∆u
ÿ

i“1

`

Xi∆ ´Xpi´1q∆
˘ `

Xi∆ ´Xpi´1q∆
˘J (4.3.1)

Similarly, for N̄ “

¨

˝

N1 `N4

N2 `N5

˛

‚, set X̄t “ N̄t ´ ErN̄ts, the empirical covariance matrix of N̄ is

C∆,T pN̄q “
1
T

tT {∆u
ÿ

i“1

`

X̄i∆ ´ X̄pi´1q∆
˘ `

X̄i∆ ´ X̄pi´1q∆
˘J
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4.3. Limit theorems

Theorem 4.3. Let p∆T qT ą0 be a family of positive real numbers. And suppose ∆T {T Ñ 0 as
T Ñ 8. We have

V∆T ,T pNq ´ v∆T
Ñ 0 as T Ñ 8 in L2

where
v∆ “

ż

R2
`

ˆ

1 ´
|t´ s|

∆

˙`

RpsqΣRptqJ ds dt

In particular, for the observable process N̄ ,

C∆T ,T pN̄q ´ c∆T
Ñ 0 as T Ñ 8 in L2

where

c∆ “

ż

R2
`

ˆ

1 ´
|t´ s|

∆

˙`

RHpsqΣ̄RHptqJ ds dt

` µ3

ż

R2
`

ˆ

1 ´
|t´ s|

∆

˙`
´

RHpsq ‹ Γ̄psq
¯

¨

˝

0 1

1 0

˛

‚

´

RHptq ‹ Γ̄ptq
¯J

ds dt

(4.3.2)

Corollary 5 (Macroscopic covariance).

lim
∆Ñ8

c∆ “ RH

¨

˝

Λ̄1 µ3

µ3 Λ̄2

˛

‚RJ
H

where Λ̄ “

´

Λ̄1 Λ̄2

¯J

is defined in Corollary 3.

Corollary 6 (Microscopic covariance). Assume that a1 “ a2 “ a " 1, for ∆ „ Opaq

c∆ “
1
∆CovpN̄t`∆ ´ N̄t, N̄t`∆ ´ N̄tq

“

¨

˝

Λ̄1 0

0 Λ̄2

˛

‚`

ˆ

1 ´
1 ´ e´a∆

a∆

˙

¨

˝

0 µ3

µ3 0

˛

‚` ∆c̃` op∆q

where

c̃ “

´1
2ψHp0q

¨

˝

Λ̄1 µ3

µ3 Λ̄2

˛

‚`
1
2

¨

˝

Λ̄1 µ3

µ3 Λ̄2

˛

‚ψHp0qJ `

ż 8

0
ψHptq

¨

˝

Λ̄1 µ3

µ3 Λ̄2

˛

‚ψHptqJdt
¯

Remark 4.2. If c12
∆ “ 1

∆CovpN̄1,t`∆ ´ N̄1,t, N̄2,t`∆ ´ N̄2,tq. For an given a,

c12
∆ “

1
2µ3a∆ ` c̃12∆ ` op∆q

where

c̃12 “
1
2pψH,11p0qµ3 ` ψH,12p0qΛ̄2 ` ψH,21p0qΛ̄1 ` ψH,22p0qµ3q

` Λ̄1xψH,11, ψH,21y ` Λ̄2xψH,12, ψH,22y ` µ3xψH,11, ψH,22y ` µ3xψH,12, ψH,21y

“ µ3

ˆ

1
2ψH,11p0q `

1
2ψH,22p0q ` xψH,12, ψH,21y ` xψH,11, ψH,22y

˙

`

ˆ

1
2ψH,21p0q ` xψH,11, ψH,21y

˙

Λ̄1 `

ˆ

1
2ψH,12p0q ` xψH,12, ψH,22y

˙

Λ̄2
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Chapter 4. Hawkes process with shot noise model

Then the shot noise term µ3 is non-negligible and observable if

µ3

ˆ

a

2 `
1
2ψH,11p0q `

1
2ψH,22p0q ` xψH,12, ψH,21y ` xψH,11, ψH,22y

˙

"

ˆ

1
2ψH,21p0q ` xψH,11, ψH,21y

˙

Λ̄1 `

ˆ

1
2ψH,12p0q ` xψH,12, ψH,22y

˙

Λ̄2

If we suppose furthermore that ψHp0q are small compared to xψH , ψHy, then the following condition
for a if sufficient to have an observable microscopic shot noise

a

2 "
1
µ3

`

xψH,11, ψH,21yΛ̄1 ` xψH,12, ψH,22yΛ̄2
˘

´ xψH,12, ψH,21y ´ xψH,11, ψH,22y

Example 3. Let us consider a model with the following parameters:
˝ µH “

´

0.2 0.1
¯

and µ3 “ 0.15

˝ φH,ijptq “ αije
´βt where α “

¨

˝

0.8 0

0.3 0.6

˛

‚ and β “ 1

˝ a1 “ a2 “ a

(a) Comparison of c12 and f curves for three different values of a

(b) Comparison of three different values of a in one single plot

Figure 4.3.1 – Microscopic covariance for different values of a. The solid lines indicate the covariance
curves c12pa,∆q “ 1

∆CovpN̄1,t`∆´N̄1,t, N̄2,t`∆´N̄2,tq, while the dashed lines represent the functions

fpa,∆q “ µ3p1´
1 ´ e´a∆

a∆ q. For each a, c12pa,∆q is empirically calculated from a simulated process
of length 106 seconds, equivalent to approximately 3.68 ¨ 106 events.

Through Figure 4.3.1, we can see that as a attains a significant magnitude, the platform on the
quasi-constant segment of f becomes noticeable. Conversely, when a is small, the platform vanishes.
Therefore, when assuming the value of a is large enough, this microscopic correlation curve can
also be an heuristic criterion to detect the presence of the shot noise.
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4.4 - Estimation: Apply NPHC on Hawkes with shot noise model

4.4.1 Review: Non-Parametric Hawkes Cumulant estimation methods (NPHC)

In the paper Achab et al. (2017), the authors developed an estimation technique by using the
cumulants method. Given a classical d-variate Hawkes process N , let us define its conditional

intensity vector as λt “ µ `

ż t

0
φpt ´ sq dNs, where φptq is the d ˆ d kernel matrix. This paper

provided an consistent estimator for the first, second and third-order integrated cumulants and
then usd these cumulants to estimate the kernel matrix norm, i.e., G “

ż 8

0
Φptqdt (or equivalently

R as R “ pI ´Gq´1).

Λi “ lim
δÑ0

1
δ
ErNi,t`δ ´Ni,ts “

d
ÿ

m“1
Rimµm

Cij “ lim
δÑ0

1
δ

ż

τPR
CovpNi,t`δ ´Ni,t, Nj,t`δ`τ ´Nj,t`τ q

“

d
ÿ

m“1
ΛmRimRjm

Kijk “ lim
δÑ0

1
δ

ż

τPR

ż

τ 1PR
SkewpNi,t`δ ´Ni,t, Nj,t`δ`τ ´Nj,t`τ 1 , Nk,t`δ`τ 1 ´Nk,t`τ q

“

d
ÿ

m“1
pRimRjmCkm `RimCjmRkm ` CimRjmRkm ´ 2ΛmRimRjmRkmq

(4.4.1)

where Skew stands for the function of coskewness i.e., SkewpX,Y, Zq “ ErpX ´ ErXsqpY ´

ErY sqpZ ´ ErZsqs for three random variables X,Y, Z.

Given a realization of a Hawkes process with asymptotically stationary increments Nt on r0, T s, let
us note the realized process as tptk, ekq, k “ 1, 2, . . . , nu. The estimator of these three cumulants
are given by

Λ̂i “
1
T

n
ÿ

m“1
1em“i “

Ni,T

T

Ĉij “
1
T

n
ÿ

m“1
1em“i

´

Nj,tm`H ´Nj,tm´H ´ 2HΛ̂j

¯

K̂ijk “
1
T

n
ÿ

m“1
1em“i

”´

Nj,tm`H ´Nj,tm´H ´ 2HΛ̂j

¯´

Nk,tm`H ´Nk,tm´H ´ 2HΛ̂k

¯ı

´
Λ̂i

T

n
ÿ

p,q“1
1ep“j,eq“kp2H ´ |tp ´ tq|q` ` 4H2Λ̂iΛ̂jΛ̂k

(4.4.2)

for a H such that:
˝ each kernel φi,j is essentially supported by r0, Hs

˝ large enough s.t. the integration in the Eq 4.4.1 can pass to r´H,Hs with a small error
˝ small enough compared to T

The NPHC algorithm estimates the kernel norm matrix G by minimizing the "difference" between
estimated cumulants and the theoretical cumulants.
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4.4.2 Applying NPHC on Hawkes with shot noise model

The focus of this section is to provide the cumulant computations for the Hawkes model with shot
noise and to demonstrate the validity of the cumulant method for our model. We note that the
unknown variables in this model are RH , µH and µ3 which represent the integrated triggering
kernel matrix, the exogenous intensity vector for the Hawkes process, and the rate for the shot
noise Poisson process, respectively. It is worth noting that the parameters ai are not included in
the unknown variables, since they vanish in the macro cumulant terms.

In total, the number of parameters in the model is 7, where 4 is the number of parameters in RH ,
2 is the number of parameters in µH , and 1 for µ3.

Mean intensity

The first-order cumulant of the full model is

Λ “

¨

˚

˚

˚

˚

˝

RH pRH ´ I2qI2ˆ1 02ˆ2

01ˆ2 1 01ˆ2

02ˆ2 I2ˆ1 02ˆ2

˛

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˝

µH

µ3

01ˆ2

˛

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˝

RHµH ` pRH ´ I2qI2ˆ1µ3

µ3

µ3I2ˆ1

˛

‹

‹

‹

‹

‚

Let us represent RHµH ` pRH ´ I2qI2ˆ1µ3 as ΛH . The observable first-order cumulant is the sum
of the mean intensity of the endogenous processes ΛH and the shot noise processes µ3I2ˆ1

Λ̄pRH , µH , µ3q “ ΛH ` µ3I2ˆ1 “ RH

¨

˝

µ1 ` µ3

µ2 ` µ3

˛

‚ (4.4.3)

Covariance

The second-order cumulant of the full model is a 5 ˆ 5 matrix

C “ R5ˆ5Σ5ˆ5R⊺
5ˆ5

where Σ5ˆ5 “

¨

˝

ΣH 02ˆ3

03ˆ2 µ3I3

˛

‚, ΣH is the diagonal matrices with diagonal entries given by the

vectors ΛH , i.e., ΣH,ii “ ΛH,i.

Further formula can be found by the following computations:

C “

¨

˚

˚

˚

˚

˝

RHΣHR⊺
H ` µ3pRH ´ I2qI2ˆ2pR⊺

H ´ I2q µ3pRH ´ I2qI2ˆ1 µ3pRH ´ I2qI2ˆ2

µ3I1ˆ2pRH ´ I2q⊺ µ3 µ3I1ˆ2

µ3I2ˆ2pRH ´ I2q⊺ µ3I2ˆ1 µ3I2ˆ2

˛

‹

‹

‹

‹

‚

Then the second-order cumulant of the superposed processes (i.e. the observable covariance matrix)
is

C̄pRH , µH , µ3q “ pCijqi,jPt1,2u “

´

ÿ

kPt0,3u

ÿ

k1Pt0,3u

Ci`k,j`k1

¯

i,jPt1,2u

“ RHpΣH ` µ3I2ˆ2qR⊺
H

(4.4.4)
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Skewness

And if we denote the third-order cumulant of the 5-variate processes by K i.e.

Kijk “

5
ÿ

m“1
pCimRjmRkm ` RimCjmRkm ` RimRjmCkm ´ 2ΛmRimRjmRkmq

then for the superposed observable processes

K̄pRH , µH , µ3q “ pKijkqi,j,kPt1,2u “ p
ÿ

d1Pt0,3u

ÿ

d2Pt0,3u

ÿ

d3Pt0,3u

Ki`d1,j`d2,k`d3qi,j,kPt1,2u (4.4.5)

Remark 4.3 (consistency for p2 ˆ 2 ` 1q ´ D). Λ̄ leads to 2 equations, C̄ results in 3 indepen-
dent equations and K̄ leads to 4 equations, therefore there are 9 independent equations, which are
sufficient to uniquely determine the values of the variables RH , µH and µ3.

In fact, suppose RH “

¨

˝

x y

z w

˛

‚

The observable cumulants are Λ̄ “

¨

˝

Λ̄1

Λ̄2

˛

‚“

¨

˝

pµ1 ` µ3qx` pµ2 ` µ3qy

pµ1 ` µ3qz ` pµ2 ` µ3qw

˛

‚ and

C̄ “

¨

˝

Λ̄1x
2 ` Λ̄2y

2 ` 2µ3xy Λ̄1xz ` Λ̄2yw ` µ3xw ` µ3yz

Λ̄1xz ` Λ̄2yw ` µ3xw ` µ3yz Λ̄1z
2 ` Λ̄2w

2 ` 2µ3zw

˛

‚

K̄111 “ 3C̄11x
2 ` 3C̄12y

2 ´ 2pΛ̄1 ` µ3qx3 ´ 2Λ̄2y
3 ´ 2µ3pw ` zqy2 ´ 2µ3px2 ` 2x´ 1qy ` 2µ3x

K̄222 “ 3C̄22w
2 ` 3C̄12z

2 ´ 2Λ̄1z
3 ´ 2pΛ̄2 ` µ3qw3 ´ 2µ3px` yqz2 ´ 2µ3pw2 ` 2w ´ 1qz ` 2µ3w

The system of seven equations, namely Λ̄1, Λ̄2, C̄11, C̄12, C̄22, K̄111, K̄222, possesses already a unique
solution. Consequently, according to Theorem 2.1 in Achab et al. (2017), we can conclude that
NPHC for our shot noise model remains consistent.

The outline of the estimation algorithm can be found in Algorithm 1. We make a slight adjustment
to the loss function to allow the error in the estimation of Λ.

Example 4. Let us consider the following model with:

˝ µH “

´

0.2 0.1
¯

and µ3 “ 0.15

˝ φH,ijptq “ αije
´βt where α “

¨

˝

0.8 0

0.3 0.6

˛

‚ and β “ 100

˝ a1 “ a2 “ 1000
Figure 4.4.1 illustrates the estimation results for this model. This figure empirically demonstrates
the consistency of the NPHC method for our model.
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Algorithm 1: Non Parametric Hawkes Cumulant estimation of GH , µH and µ3
Data:Observable processes pPiq for i P t1, 2u

Step 1: Estimate integrated cumulants from the observable data Λ̂, Ĉ, K̂ (see (4.4.2))
Step 2: Design loss function

LpΘq “ κ1}ΛpΘq ´ Λ̂} ` κ2}C̄pΘq ´ Ĉ} ` κ3}K̄cpΘq ´ K̂c}

κ1 : κ2 : κ3 “ p}Ĉ} ` }K̂c}q : p}Λ̂} ` }K̂c}q : p}Λ̂} ` }Ĉ}q

Step 3: Estimate Θ “ pRH , µH , µ3q by minimizing the loss function LpΘq

Θ̂ “ pR̂H , µ̂H , µ̂3q “ arg min
Θ

LpΘq

Return: ĜH “ I2 ´ R̂´1
H , µ̂H , µ̂3

4.5 - Extension to higher dimension and Application to finance

4.5.1 Extension

Let us extend our shot noise model to p2 ˆ d` pq dimension, in this case, the event space

E “ tNH,i, i “ 1, 2, . . . , du
loooooooooooomoooooooooooon

H

ď

tNX,k, k “ 1, 2, . . . , pu
looooooooooooomooooooooooooon

X

ď

tND,i, i “ 1, 2, . . . , du
loooooooooooomoooooooooooon

D

where NH stands for the classical Hawkes process, NX is the Poisson process noise and ND is
the delayed NX . In particular, in p2 ˆ 2 ` 1q-dimensional model, NH “ pN1, N2q, NX “ N3 and
ND “ pN4, N5q.

The conditional intensity function is then
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

NH,i : λH,iptq “ µH,i `

d
ÿ

j“1

ż t

0
φijpt´ sqdrNH,jpsq `ND,jpsqs for i P H

NX,k : λX,kptq “ µX,k for k P X

ND,i : λD,iptq “
ÿ

kPX
aikrNX,kptq ´ND,iptqs for i P D

(4.5.1)

where aik is the parameter for the delay of the k-th shot noise on ND,i.

In the case where aik “ 8, the k-th shot noise on ND,i occurs directly and without any delay. On
the other hand, when aik “ 0, the k-th shot noise on ND,i is completely absent.

The observable process in this general model is N̄ “ pN̄iqiPt1,2,...,du where

N̄i “ NH,i `ND,i

Remark 4.4. Under the general model (4.5.1), we can demonstrate the similar theorems as in
Section 4. However, for the estimation, the consistency of NPHC is not always guaranteed. One
must verify the number of independent equations in the system of cumulants and the number of
unknown variables in each specific case.

Example 5. Let us consider the following model with d “ 4 and p “ 2:
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Figure 4.4.1 – Estimated kernel norms and baselines for Example 4. The red dashed vertical lines
indicate the true values. The histograms represent the distributions of estimated values from 100
independent estimations. Each estimation is based on a simulated process spanning 106 seconds,
equivalent to approximately 3.68 ¨ 106 events. ϕ̂H,ij (resp. µ̂) indicates the estimated values for
the kernel ϕH,ij (resp. µ). ϵ denotes the root-mean-square error between the estimated and true

values. For example, in µ3 figure, ϵ “

b

ř100
k“1pµ̂

pkq

3 ´ µ3q.

˝ µH “

´

0.1 0.1 0.15 0.15
¯

and µX “

´

0.2 0.2
¯

˝ φH,ijptq “ αije
´βt where α “

¨

˚

˚

˚

˚

˚

˚

˚

˝

0.01 0.15 0.4 0.1

0.15 0.01 0.1 0.4

0.2 0.05 0.01 0.4

0.05 0.2 0.4 0.01

˛

‹

‹

‹

‹

‹

‹

‹

‚

and β “ 100

˝ a11 “ a31 “ a22 “ a42 “ 1000, other aik “ 0

Figures 4.5.1, 4.5.2 and 4.5.3 show respectively the estimation results for the baselines µ, the matrix
RH and the kernel norms GH . We can see that the estimations for µ and RH exhibit a high degree
of accuracy, while the estimation for GH is biased. This bias originates from the computation of
matrix inverses. In fact, the cumulant terms integrate the matrix RH instead of GH . Therefore,
GH can be viewed as a deduction from RH . When RH has a spectral radius close to 1, it is very
likely to have a large estimation error for GH .

4.5.2 Bivariate assets price

Now let us proceed to a bivariate price model P “ pP1, P2q obtained from a 4-dimensional process

pP1, P2q “ pN̄1 ´ N̄2, N̄3 ´ N̄4q

with N̄1,t (resp. N̄2,t) represents the number of upward (resp. downward) price jumps at time t for
Asset 1 and N̄3,t (resp. N̄4,t) represents the number of upward (resp. downward) price jumps at
time t for Asset 2. N̄i “ NH,i `ND,i.

86



Chapter 4. Hawkes process with shot noise model

Figure 4.5.1 – Estimated baselines for Example 5. The red dashed vertical lines indicate the
true values. The histograms represent the distributions of estimated values from 100 independent
estimations. Each estimation is based on a simulated process spanning 106 seconds, equivalent to
approximately 4 ¨ 106 events.

Suppose that the 10 dimensional process N is defined as

N “ pNH,1, NH,2, NH,3, NH,4, NX,1, NX,2, ND,1, ND,2, ND,3, ND,4q

And its associated conditional intensities are as follows:
$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

NH,i : λH,i “ µH,i `

4
ÿ

j“1

ż t

0
φijpt´ sqdrNH,jpsq `ND,jpsqs for i P t1, 2, 3, 4u

NX,k : λX,kptq “ µX,k for k P t1, 2u

ND,i : λD,iptq “ a1rNX,1ptq ´ND,iptqs for i P t1, 3u

ND,i : λD,iptq “ a2rNX,2ptq ´ND,iptqs for i P t2, 4u

(4.5.2)

In other works, this is an extended shot noise model with 2 independent sources of Poisson processes
noises NX,1, NX,2. NX,1 produce two delayed processes on N1 and N3, i.e., the upward price jumps
processes for the two assets, and NX,2 produce two delayed processes on N2 and N4, i.e., the
downward price jumps processes for the two assets.

Disentangling endogenous & exogenous The macroscopic covariance matrix can be split into
two parts:

C̄ “ RH

“

ΣH ` µX

¨

˝

I2 I2

I2 I2

˛

‚

‰

RJ
H

“ RHdiagpRHµHqRJ
H

loooooooooooomoooooooooooon

“:I1

`µXRH

“

diagpRHI4ˆ1q `

¨

˝

0 I2

I2 0

˛

‚

‰

RJ
H

loooooooooooooooooooooooooomoooooooooooooooooooooooooon

“:I2

(4.5.3)

where diagpvq is the diagonal matrix with diagonal entries given by the vector v.
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Figure 4.5.2 – Estimated RH for Example 5. The red dashed vertical lines indicate the true values.
The histograms represent the distributions of estimated values from 100 independent estimations.
Each estimation is based on a simulated process spanning 106 seconds, equivalent to approximately
4 ¨ 106 events.

Under the decomposition (4.5.3), I1 is considered to be the endogenous part of the covariance
matrix, as it is independent of the exogenous intensity µX . I2 is the exogenous part.

Example 6 (BNP Paribas & Société Générale). To calibrate the latent-behavior model, we use
high-frequency data from BNP Paribas and Société Générale, obtained from the CAC40 French
Euronext Market. The dataset covers a period of 272 days starting from February 2017. We extract
the price movements of both assets each day between 9 am and 11 am. To reduce the impact of
varying mean intensities, we divide this time interval into ten 10-minute time slots. In total, we
have approximately 4.6 ¨ 106 events available for estimation.

We set H “ 1s, and the estimated parameters are presented in Figure 4.5.4.

The total correlation corresponding to C̄ in (4.5.3) is 16.1%, while the endogenous correlation cor-
responding to I1 is 13.1%. This means that the contribution of exogenous factors to the correlation
is 3%.
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Figure 4.5.3 – Estimated }ΦH} (or equivalently GH) for Example 5. The red dashed vertical lines
indicate the true values. The histograms represent the distributions of estimated values from 100
independent estimations. Each estimation is based on a simulated process spanning 106 seconds,
equivalent to approximately 4 ¨ 106 events.

4.6 - A variant of Hawkes process with shot noise model (latent
information)

In this section, let us proceed to study the latent-information shot noise model. Let us start with
a simple scenario where we have 2 different assets and we can track the times at which their prices
change. We label the event type that moves the price of asset 1 as N1, and the event type that
changes the price of asset 2 as N2. Additionally, we assume the existence of unobservable exogenous
information, such as the news, that can affect the prices of both assets. We denote by N3 this event
type and consider it to follow a Poisson process. In this case the event space E “ tN1, N2, N3u.

4.6.1 Model

In this model, N1 and N2 are two observable point processes, N3 is a latent Poisson process
which can impact the intensities of N1 and N2. The shot noise model (illustrated in Figure 4.6.1)
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Figure 4.5.4 – Estimation of Hawkes kernel norms and baselines for BNP Paribas and Société
Générale. "1" and "2" stand for the upward and downward price jumps for BNP Paribas while "3"
and "4" stand for the upward and downward price jumps for Société Générale.

is defined as follows:

N1 : λ1ptq “ µ1 `
ÿ

jPE

ż t

0
φ1jpt´ sq dNjpsq

N2 : λ2ptq “ µ2 `
ÿ

jPE

ż t

0
φ2jpt´ sq dNjpsq

N3 : λ3ptq “ µ3

(4.6.1)

where
˝ µ1 and µ2 are the constant baseline intensities of N1 and N2 respectively, and µ3 is the

intensity of Poisson process N3

˝ φijptq is the impact kernel function of event type j on event type i, for i P t1, 2u and j P E

Remark 4.5. As a matter of fact, this model can also be interpreted as a Hawkes process with
stochastic baselines.

λiptq “ µ̃iptq `
ÿ

jPt1,2u

ż t

0
φijpt´ sq dNjpsq

where µ̃iptq “ µi `

ż t

0
φi,3pt´ sq dN3psq, for i P t1, 2u.

pd` pq-dimensional process

Event space E “ tNH,i, i “ 1, 2, . . . , du
loooooooooooomoooooooooooon

H

Y tNX,k, k “ 1, 2, . . . , pu
looooooooooooomooooooooooooon

X

NH,i : λH,iptq “ µH,i `

d
ÿ

j“1

ż t

0
φH,ijpt´ sq dNH,jpsq `

p
ÿ

k“1

ż t

0
φX,ikpt´ sq dNX,kpsq for i P t1, 2, . . . , du

NX,k : λX,kptq “ µX,k for k P X
(4.6.2)
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N1

N2

N3

t (second)

N1
N2

N3

Figure 4.6.1 – An illustration of a (2+1)-dimensional latent information shot noise model. For
i “ 1, 2, Ni represents the i-th price process which is observable, while N3 stands for the latent
shot noise process which is not directly observable. The yellow dashed arrows show the relation
of generation. If an arrow points from a empty circle, it means that the event is an immigrant
generated by an exogenous intensity for self-exciting processes. Otherwise, the arrow points to a
child from its parent. The shot noise process is represented by the greed shade.

Kernel function matrix

Φ “

¨

˝

φH φX

0pˆd 0pˆp

˛

‚

We denote }Φ} the matrix obtained by taking the integrals of the components of kernel matrix Φ,
then

R “ pId`p ´ }Φ}q´1 “

¨

˝

pId ´ }φH}q´1 pId ´ }φH}q´1}φX}

0pˆd Ip

˛

‚“:

¨

˝

RH RX

0pˆd Ip

˛

‚

4.6.2 NPHC Estimation

Let us denote the observable cumulant functions as Λ̄, C̄ and K̄. The number of independent

equations provided by these three cumulants is given by d`
dpd` 1q

2 `
d3 ` 3d2 ` 2d

6 .

The parameters for estimation include }φH}, }φX} and µ giving a total of pd`pqpd`1q parameters.
Among them, d2 parameters come from }φH}, dk from }φX}, and d ` p from µ. Therefore, for a
consistent estimation, one necessary condition is that the number of equations should be greater

than the number of parameters. In other words: p ď
d3 ` 5d
6pd` 1q

. For example, when d “ 2, we have
p ď 1, and when d “ 4, we have p ď 2.

Cumulant formula The theoretical cumulants are the functions on Θ “ pRS , RX , µq. In the
complete model, expressing the first-order cumulants is straightforward and can be done as follows:
First order cumulant (mean intensity)

ΛpΘq “

¨

˝

RHµH `RXµX

µX

˛

‚:“

¨

˝

ΛH

µX

˛

‚
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Second order cumulant (covariance)

CpΘq “

¨

˝

RHΣHR
T
H `RXΣXR

T
X RXΣX

ΣXR
T
X ΣX

˛

‚“:

¨

˝

CHpΘq CXpΘq

CXpΘq ΣX

˛

‚

where ΣH and ΣX are the diagonal matrices with diagonal entries given by the vectors ΛH and ΛX

respectively.

Example 7. Figure 4.6.2 illustrates the estimation results for the model with the following param-
eters:

˝ µ “

´

0.5 0.4 0.1
¯

˝ φijptq “ αije
´βt for i P t1, 2u, j P t1, 2, 3u where α “

¨

˝

0.5 0.1 1

0.1 0.5 1

˛

‚

The estimation results are less accurate than those in Examples 4and 5, especially for the kernels
ϕ13 and ϕ23. As this model has more parameters than the previous ones, there can be some mu-
tual compensation between ϕi3 and µ3 within the context of statistical errors associated with the
cumulants.

Figure 4.6.2 – Estimated kernel norms and baselines for Example 7. The red dashed vertical lines
indicate the true values. The histograms represent the distributions of estimated values from 100
independent estimations. Each estimation is based on a simulated process spanning 106 seconds,
equivalent to approximately 2.75 ¨ 106 events.
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4.7 - Conclusion and future research

This chapter introduced our ongoing work concerning the Hawkes process with shot noise models,
with a specific focus on the first model, known as the latent-behavior model. Theoretically, we
provided the limit theorems for this model. In the empirical part, we demonstrated the consistency
of the NPHC method and illustrated the estimation accuracy through two examples. We also
applied this model to the price processes of BNP Paribas and Société Générale and found a non-zero
shot noise contribution. At the end of this chapter, we briefly introduced a variant of this model,
called the latent-information model, for which the NPHC estimation method remains applicable.

In the future, we will delve deeper into the practical applications of these models to real data. We
also plan to study EM estimation methods for these models, which can give us more information on
the latent shot noise process (e.g., kernels’ shapes, shot noise delays). Moreover, another prospect
is constructing another model which combines both the latent-behavior model and the latent-
information model.
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APPENDIX

4.A - Proofs

The proofs of Theorem 4.1 and Theorem 4.2 can be based on the corresponding proofs in Bacry
et al. (2013b), with some modifications to accommodate our shot noise model. In this section, we
restate the lemmas and demonstrate the effectiveness of these lemmas on the shot noise model.

Preparations

Proposition 4.2. Let f be a non-negative measurable function in L1pRq with fptq “ 0 for t ă 0,
given a ą 0, haptq “ ae´at1tě0

ż T

0
pf ‹ haqptqdt “

ż T

0

ż t

0
afpsqe´ateas ds dt

“

ż T

0
fpsq ds´ e´aT

ż T

0
fpsqeas ds

ÝÑ

ż 8

0
fptqdt when T Ñ 8

Proof. By L’Hôpital’s rule, lim
T Ñ8

e´aT
şT
0 fpsqeas ds “ lim

T Ñ8
fpT q “ 0

Proposition 4.3. Let f be an even function which is bounded. Given a positive a, haptq “

ae´at1tě0. In this case, fptqhaptq is integrable over R. We denote the integral of fptqhaptq over R
as

xf, hay “

ż

R
fptqhaptqdt

Then we have

xf ‹ ha, hby “
b

a` b
xf, hay `

a

a` b
xf, hby
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Proof.

xf ‹ ha, hby “

ż 8

0

ż 8

0
fpt´ sqhapsqhbptq ds dt

“

ż 8

0

ˆ
ż t

0
fpt´ sqhapsq ds`

ż 8

t
fps´ tqhapsq ds

˙

hbptq dt

“

ż 8

0

ˆ
ż t

0
ae´ateaufpuq du`

ż 8

t
ae´ate´aufpuqds

˙

¨ be´bt dt

“ ab

ż 8

0
fpuqeau

ż 8

u
e´pa`bqt dt du` ab

ż 8

0
fpuqe´au

ż 8

0
e´pa`bqt dt du

“
ab

a` b

ˆ
ż 8

0
fpuqe´budu`

ż 8

0
fpuqe´au du

˙

“
b

a` b
xf, hay `

a

a` b
xf, hby

Proposition 4.4. Let f be an even function which is bounded. Given two positive values a, b,
haptq “ ae´at1tě0 and hbptq “ be´bt1tě0. If g1 and g2 are two integrable functions on R`. We have

xf ‹ g1 ‹ ha, g2 ‹ hby “
b

a` b
xf ‹ g1, g2 ‹ hay `

b

a` b
xf ‹ g2, g1 ‹ hby

In particular, when a “ b, for a matrix of integrable functions G,

xf ‹ ha ‹G, ha ‹Gy “
1
2xf ‹G, ha ‹Gy `

1
2xG ‹ ha, f ‹Gy

Proof. For two positive values u, r, let us define

T1pu, rq “

ż 8

r

ż 8

u
fpt´ sqe´aps´uqe´bpt´rq ds dt

“

ż 8

0

ż 8

0
fpt` r ´ s´ uqe´ase´bt ds dt

“

ż 8

0

ż 8

r´s´u
fpyqe´ase´bpy´r`s`uq dy ds

“

ż 8

´8

fpyq

˜

ż 8

pr´y´uq_0
e´pa`bqsds

¸

e´bpy´r`uq dy

“
1

a` b

ż 8

´8

fpyq

´

e´ap´y`r´uq1yăr´u ` e´bpy´r`uq1yąr´u

¯

dy

f is even
“

1
a` b

ˆ
ż 8

u´r
fpyqe´apy`r´uq dy `

ż 8

r´u
fpyqe´bpy´r`uq dy

˙

“
1

a` b

ˆ
ż 8

u
fpy ´ rqe´apy´uq dy `

ż 8

r
fpy ´ uqe´bpy´rq dy

˙
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Now let us finish the proof

xf ‹ g1 ‹ ha, g2 ‹ hby

“

ż

R`

ż

R`

fpt´ sq
´

hapsq ‹ g1psq
¯´

hbptq ‹ g2ptq
¯

ds dt

“ab

ż

R`

ż

R`

fpt´ sq

ż s

0
e´aps´uqg1puq du

ż t

0
e´bpt´rqg2prq du dr ds dt

“ab

ż

R`

ż

R`

T1pu, rqg1puqg2prq du dr

“
ab

a` b

ż

R`

ż

R`

ˆ
ż 8

r
fpy ´ uqe´apy´rq dy `

ż 8

u
fpy ´ rqe´bpy´uq dy

˙

g1puqg2prq du dr

p‹q
“

b

a` b
xf ‹ g1, g2 ‹ hay `

a

a` b
xf ‹ g2, g1 ‹ hby

p‹q is true due to the following equations

ż

R`

dr

ż

R`

du

ż 8

r
dy afpy ´ uqe´apy´rqg1puqg2prq “

ż

R`

dr

ż

R`

dy

ż y

0
du afpy ´ uqe´apy´rqg1puqg2prq

“

ż

R`

du

ż

R`

dy afpy ´ uq
`

g2pyq ‹ e´ay
˘

g1puq

“ xf ‹ g1, g2 ‹ hay
ż

R`

dr

ż

R`

du

ż 8

u
dy bfpy ´ rqe´bpy´uqg1puqg2prq “

ż

R`

dr

ż

R`

dy bfpy ´ rq

´

g1pyq ‹ e´by
¯

g2prq

“ xf ‹ g2, g1 ‹ hby

Lemma 1 (Lemma 2 in Bacry et al. (2013b)). For all finite stopping times S, one has

ErNSs “ µErSs ` Er

ż S

0
ϕpt´ sqNt dts

ErNSs ď RµErSs

(4.A.1)

Proof. The first equation in Eq(4.A.1) is not affected by this kernel form. Therefore we only need
to check the second inequality.

˝ i “ 3 ErN3,Sps “ µ3ErSps as N3 is a Poisson process

˝ i P t4, 5u, N4 and N5 are both delayed processes of N3 ErNi,Sps ď ErN3,Sps “ µ3ErSps
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˝ i P t1, 2u

ErNi,Sps “ µiErSps ` E
”

ż Sp

0

5
ÿ

j“1
φijpSp ´ tqNj,t dt

ı

“ µiErSps ` E
”

ż Sp

0

ÿ

j“1,2
φijpSp ´ tqpNj,t `Nj`3,tq dt

ı

ď µiErSps ` E
”

pNj,Sp `Nj`3,Spq

ż 8

0

ÿ

j“1,2
φijpSp ´ tq dt

ı

ď µiErSps `
ÿ

j“1,2

varphiij}ErNj,Sp `Nj`3,Sps

ď µiErSps `
ÿ

j“1,2
}φij}ErNj,Sps ` µ3ErSps

ÿ

j“1,2
}φij}

(4.A.2)

Let denote NH “

¨

˝

N1

N2

˛

‚, µH “

¨

˝

µ1

µ2

˛

‚

ErNH,Sps ď

´

µH ` µ3GHI
¯

ErSps `GHErNH,Sps

ď ¨ ¨ ¨

ď

”´
n
ÿ

k“0
Gk

H

¯

µH ` µ3GH

´
n
ÿ

k“0
Gk

H

¯

I2ˆ1

ı

ErSps `Gn`1
H ErNH,Sps

nÑ8
ÝÝÝÑ

”

pI ´GHq´1µH `GHpI ´GHq´1µ3

ı

ErSps

“

´

RH pRH ´ IqI2ˆ1

¯

¨

˚

˚

˚

˚

˝

µ1

µ2

µ3

˛

‹

‹

‹

‹

‚

ErSps

(4.A.3)

In conclusion, when p Ñ 8, ErNSs ď RµErSs

Lemma 2 (Lemma 3 in Bacry et al. (2013b)). Let h be a Borel and locally bounded function from
R` to Rd . Then there exists a unique locally bounded function f : R` Ñ Rd solution to

fptq “ hptq `

ż t

0
Φpt´ sqfpsq ds

given by

fhptq “ hptq `

ż t

0
Ψpt´ sqhpsq ds

Proof. We can easily follow the proof in Bacry et al. (2013b) until fhptq ´fptq “
şt
0 Φpt´sqpfhpsq ´

fpsqq ds.

˝ i “ 3, by the definition of the kernel matrix Φ, we have directly fh,3ptq ´ f3ptq “ 0
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˝ i P t4, 5u, fh,iptq ´ fiptq “ ´ai´3
şt
0pfh,ipsq ´ fipsqq ds ñ fh,iptq “ fiptq

˝ i P t1, 2u,
fh,iptq ´ fiptq “

ř5
j“1

şt
0 Φijpt´ sqpfh,ipsq ´ fipsq

looooooomooooooon

“0 if j=3,4,5

q ds “
ř2

j“1
şt
0 ϕ

ij
Hpt´ sqpfh,ipsq ´ fipsqq ds

Let gi “ |fh,i ´ fi|, and g “

¨

˝

g1

g2

˛

‚, then we have gptq ď
şt
0 ϕHpt ´ sqgpsq ds. As ρpGHq ă 1,

we return to the same proof as in Bacry et al. (2013b).

Lemma 3 (Lemma 4 in Bacry et al. (2013b)). Define the d-dimensional martingale pMtqtě0 by

Mt “ Nt ´

ż t

0
λs ds

For all t P R`, the following equations hold

ErNts “ tµ`

ˆ
ż t

0
Ψpt´ sqs ds

˙

µ (4.A.4)

Nt ´ ErNts “ Mt `

ż t

0
Ψpt´ sqMs ds (4.A.5)

Proof of Theorem 4.1

Lemma 4 (Lemma 5 in Bacry et al. (2013b)). Let p P r0, 1s and assume that
ş8

0 tpϕHptq dt ă 8

componentwise. Then we have the following properties:

˝ if p ă 1, we have T pp
1
T
ErNT us ´ uRµq Ñ 0 as T Ñ 8 uniformly for u P r0, 1s

˝ if p “ 1, we have T p
1
T
ErNT s ´Rµq Ñ Bµ as T Ñ 8 (see (4.A.7) for the definition of B)

Proof.
ż 8

0
tpϕHptq dt ă 8 ñ

ż 8

0
tpψHptq dt ă 8 is proven in Bacry et al. (2013b). We need to

further prove that
ż 8

0
tp|Ψptq| dt ă 8 componentwise as well.

In fact, it is enough to prove that

˝

ż 8

0
tpψHptq ‹ peΓtq dt ă 8

˝

ż 8

0
tpeΓt dt ă 8

Since Γ ď 0 componentwise, the second inequality can be deduced straightforwardly. In order to

99



4.A. Proofs

establish the first inequality, we must prove that
ş8

0 tppψHptq ‹ e´atq dt ă 8 holds true for a ą 0.
ż 8

1
tppψHptq ‹ e´atq dt “

ż 8

1
tp
ż t

0
ψHpsqe´apt´sqds dt

“

ż 8

0
ψHpsqeas

`

ż 8

s_1
tpe´at dt

˘

ds

“

ż 8

0
ψHpsqeas

`1
a
e´aps_1qps_ 1qp `

p

a

ż 8

s_1
e´attp´1 dt

˘

ds

ď
1
a

ż 8

0
ψHpsqps_ 1qp ds`

p

a

ż 8

0
ψHpsqeas

ż 8

s_1
e´attp´1 dt ds

ď
1
a

ż 8

0
ψHpsqps_ 1qp ds`

p

a2

ż 8

0
ψHpsqease´aps_1qps_ 1qp´1 ds

ď
1
a

ż 1

0
ψHpsq ds`

1
a

ż 8

1
ψHpsqsp ds`

p

a2

ż 8

0
ψHpsqps_ 1qp ds ă 8

(4.A.6)

As ψHptq ‹ peΓtq is a continuous function,
ş1
0 t

ppψHptq ‹ e´atq dt ă 8.

When p “ 1, from Bacry et al. (2013b), we have
ş8

0 tψHptq dt “ pI2 ´ GHq´1
´

ş8

0 tϕHptq dt
¯

pI2 ´

GHq´1 “: BH

ż 8

0
tΨptq dt “

¨

˚

˚

˚

˚

˝

BH BHI2ˆ1 ` }ψH} 1
γ }ψH} 1

Γ

01ˆ2 0 01ˆ2

02ˆ2
1
γ

1
Γ

˛

‹

‹

‹

‹

‚

“: B (4.A.7)

where 1
γ “

¨

˝

1
a1

1
a2

˛

‚and 1
Γ “

¨

˝

´ 1
a1

0

0 ´ 1
a2

˛

‚

Lemma 5 (Lemma 6 in Bacry et al. (2013b)). There exists a constant Cµ,ϕH
such that for all

t,∆ ě 0,

E
ˆ

sup
tďsďt`∆

}Ms ´Mt}
2
˙

ď Cµ,ϕH
∆

Proof. ˝ i “ 3, ErN3pt` ∆q ´N3ptqs “ µ3∆
˝ i P t4, 5u, From (4.A.4)

ErNipt` ∆q ´Niptqs
a1

i“ai´3
“

˜

ż t`∆

0
a1

ise
´a1

ipt`∆´sqds´

ż t

0
a1

ise
´a1

ipt´sqds

¸

µ3

ď ∆
ˆ
ż 8

0
a1

ie
´a1

it dt

˙

µ3 “ µ3∆
(4.A.8)

˝ i P t1, 2u, Let denote NH “

¨

˝

N1

N2

˛

‚, µH “

¨

˝

µ1

µ2

˛

‚

ErNH,ts “ tµH `

ˆ
ż t

0
ψHpt´ sqs ds

˙

µH `

ˆ
ż t

0
spψHpsq ‹ γ̄q ds

˙

µ3
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Since
ş8

0 ψHpsq ‹ γ̄ds
pBy Proposition 4.2q

“
ş8

0 ψHpsqI2ˆ1ds “
`

pI2 ´GHq´1 ´ I2
˘

I2ˆ1, we obtain

ErNHpt` ∆q ´NHptqs ď ∆pI2 ´GHq´1µH ` ∆
`

pI2 ´GHq´1 ´ I2
˘

I2ˆ1µ3 (4.A.9)

In summary, we obtain ErNt`∆ ´Nts ď ∆Rµ componentwise.

Proof of Theorem 4.3

Proof. From Bacry et al. (2013b) Theorem 3, we have V∆T ,T pXq ´ v∆T
Ñ 0 when T Ñ 8, where

v∆ “

ż

R2
`

ˆ

1 ´
|t´ s|

∆

˙`

RpsqΣRptqJ ds dt

Let us denote by f∆ptq the function
´

1 ´
|t|

∆

¯`

which is even bounded on R.

Then the covariance matrix for N̄ “

¨

˝

N1 `N4

N2 `N5

˛

‚ is

c∆ “
1
∆CovpN̄t`∆ ´ N̄t, N̄t`∆ ´ N̄tq

“

´

I2 02ˆ1 I2

¯

v∆

´

I2 02ˆ1 I2

¯J

“

ż

R2
`

f∆pt´ sq
´

I2 02ˆ1 I2

¯

RpsqΣRptqJ
´

I2 02ˆ1 I2

¯J

ds dt

p♣q
“

ż

R2
`

f∆pt´ sqRHpsqΣHRHptqJ ds dt` µ3

ż

R2
`

f∆pt´ sq
´

RHpsq ‹ γ̄psq
¯´

RHptq ‹ γ̄ptq
¯J

ds dt

` µ3

ż

R2
`

f∆pt´ sq
´

RHpsq `RHpsq ‹ Γ̄psq
¯´

RHptq `RHptq ‹ Γ̄ptq
¯J

ds dt

“pT1q ` pT2q

where

˝ The first term

pT1q “

ż

R2
`

f∆pt´ sqRHpsqΣ̄RHptqJ ds dt

with Σ̄ “ ΣH ` µ3I2 and p♣q is from

´

I2 02ˆ1 I2

¯

Rpsq “

´

RH ψH ‹ γ̄ ` γ̄ ψH ` ψH ‹ Γ̄ ` δI2 ` γ̄

¯

“

´

RH RH ‹ γ̄ RH `RH ‹ Γ̄
¯
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˝ The second term is

pT2q “µ3

ż

R2
`

f∆pt´ sq
´

RHpsq ‹ γ̄psq
¯´

RHptq ‹ γ̄ptq
¯J

ds dt

` µ3

ż

R2
`

f∆pt´ sq
´

RHpsq ‹ Γ̄psq
¯´

RHptq ‹ Γ̄ptq
¯J

ds dt

` µ3

ż

R2
`

f∆pt´ sqRHpsq
´

RHptq ‹ Γ̄ptq
¯J

ds dt

` µ3

ż

R2
`

f∆pt´ sq
´

RHpsq ‹ Γ̄psq
¯

RHptqJ ds dt

“µ3

ż

R2
`

f∆pt´ sq
´

RHpsq ‹ Γ̄psq
¯

¨

˝

0 1

1 0

˛

‚

´

RHptq ‹ Γ̄ptq
¯J

ds dt

The last equality is due to Proposition 4.4.

Proposition 4.5. Consider two vectors of bounded and integrable functions f, g on R`,

xp1 ´
| ¨ |

∆ q`, fy “

ż ∆

0
p1 ´

t

∆qfptqdt “
1
2fp0q∆ ` op∆q (4.A.10)

xf, p1 ´
| ¨ |

∆ q` ‹ gy “

ż

R2
`

p1 ´
|t´ s|

∆ q`fptqgpsq ds dt “ ∆xf, gy ` op∆q (4.A.11)

Proof. Let us prove the second equation.
´

1 ´
|t´s|

∆

¯`

is non-zero when t ă s ă t` ∆ or s ă t ă s` ∆,
ż

R2
`

p1 ´
|t´ s|

∆ q`fpsqgptq ds dt

“

ż

R`

ż t`∆

t
p1 ´

s´ t

∆ qfpsqgptqJ ds dt`

ż

R`

ż s`∆

s
p1 ´

t´ s

∆ qfpsqgptqJ dt ds

“

ż

R`

˜

ż ∆

0
p1 ´

u

∆qfpt` uq du

¸

gptqJdt`

ż

R`

fpsq

˜

ż ∆

0
p1 ´

u

∆qgps` uqJ du

¸

ds

(4.A.10)
“ ∆

ż

R`

fptqgptqJdt` op∆q “ ∆xf, gy ` op∆q

Proof of Corollary 6. Following the proof for Theorem 4.3,

pT1q “

ż

R2
`

ˆ

1 ´
|t´ s|

∆

˙`

pI2δpsq ` ψHpsqqΣ̄pI2δptq ` ψHptqqJ ds dt

“Σ̄ `

ż ∆

0

ˆ

1 ´
t

∆

˙

Σ̄ψHptqJ dt
looooooooooooooomooooooooooooooon

pT1,2q

`

ż ∆

0

ˆ

1 ´
t

∆

˙

ψHptqΣ̄ dt
loooooooooooooomoooooooooooooon

pT1,3q

`

ż

R2
`

ˆ

1 ´
|t´ s|

∆

˙`

ψHpsqΣ̄ψHptqJ ds dt

loooooooooooooooooooooooooomoooooooooooooooooooooooooon

pT1,4q
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˝ pT1,2q “ 1
2 Σ̄ψHp0qJ∆ ` op∆q and pT1,3q “ 1

2ψHp0qΣ̄∆ ` op∆q by Eq.(4.A.10) of Proposition
4.5.

˝ pT1,4q “ ∆
ş

R` ψHptqΣ̄ψHptqJdt` op∆q directly from Eq.(4.A.11) of Proposition 4.5
Therefore pT1q “ Σ̄ `

`1
2 Σ̄ψHp0qJ ` 1

2ψHp0qΣ̄ `
ş

R` ψHptqΣ̄ψHptqJdt
˘

∆ ` op∆q

For pT2q, let us denote pψH ‹ Γ̄q by ψH,Γ, we have

pT2q “ µ3

ż

R2
`

ˆ

1 ´
|t´ s|

∆

˙`
´

Γ̄psq ` ψHpsq ‹ Γ̄psq
¯

¨

˝

0 1

1 0

˛

‚

´

Γ̄ptq ` ψHptq ‹ Γ̄ptq
¯J

ds dt

“ pT2,1q ` pT2,2q ` pT2,3q ` pT2,4q

where
˝ By Proposition 4.3 and Ha

´´

1 ´
|t|

∆

¯` ¯

“
ş8

0

´

1 ´
|t|

∆

¯`

ae´atdt “ 1 ´ 1´e´a∆

a∆

pT2,1q “ µ3

ż

R`

ˆ

1 ´
|t´ s|

∆

˙`

Γ̄psq

¨

˝

0 1

1 0

˛

‚Γ̄ptqJ ds dt

“ µ3

ż

R`

ˆ

1 ´
|t´ s|

∆

˙`

a1a2

¨

˝

0 e´a1se´a2t

e´a2se´a1t 0

˛

‚ds dt

“ µ3

ˆ

1 ´
a2

a1 ` a2

1 ´ e´a1∆

a1∆ ´
a1

a1 ` a2

1 ´ e´a2∆

a2∆

˙

¨

˝

0 1

1 0

˛

‚

“ µ3
a1a2
a1 ` a2

∆

¨

˝

0 1

1 0

˛

‚` op∆q

˝ Similarly,

pT2,2q “ µ3

ż

R2
`

ˆ

1 ´
|t´ s|

∆

˙`

ψHpsq ‹ Γ̄psq

¨

˝

0 1

1 0

˛

‚Γ̄ptqJ ds dt

By Prop 4.5
“ µ3∆

ż

R`

ψHptq ‹ Γ̄ptq

¨

˝

0 1

1 0

˛

‚Γ̄ptqJdt` op∆q

pT2,3q “ µ3

ż

R2
`

ˆ

1 ´
|t´ s|

∆

˙`

Γ̄psq

¨

˝

0 1

1 0

˛

‚

`

ψHptq ‹ Γ̄ptq
˘J

ds dt

“ µ3∆
ż

R`

ψHptq

¨

˝

0 1

1 0

˛

‚

`

ψHptq ‹ Γ̄ptq
˘J
dt` op∆q

pT2,4q “ µ3

ż

R2
`

ˆ

1 ´
|t´ s|

∆

˙`
`

ψHpsq ‹ Γ̄psq
˘

¨

˝

0 1

1 0

˛

‚

`

ψHptq ‹ Γ̄ptq
˘J

ds dt

“ µ3∆
ż

R`

`

ψHptq ‹ Γ̄ptq
˘

¨

˝

0 1

1 0

˛

‚

`

ψHptq ‹ Γ̄ptq
˘J

dt` op∆q
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When a " 1, for a function f P C1pR`q
Ş

L1pR`q, and suppose that f 1ptq is bounded on R`,
ż 8

0
fptqae´at dt “ fp0q `

ż 8

0
f 1ptqe´at dt “ fp0q `Op

1
a

q

Therefore, a1ψHptq ‹ e´a1t “ ψHptq ´ ψHp0qe´a1t `Op 1
a1

q, and
ż 8

0
a1a2e

´a2tψHptq ‹ e´a1t dt “ ψHp0q ´
a2

a1 ` a2
ψHp0q `Op

∆
a1 ^ a2

q “
a1

a1 ` a2
ψHp0q `Op

∆
a1 ^ a2

q

Now let us consider in particular a1 “ a2 “ a

pT2,1q “ µ3

ˆ

1 ´
1 ´ e´a∆

a∆

˙

¨

˝

0 1

1 0

˛

‚

pT2,2q “
∆
2 µ3ψHp0q

¨

˝

0 1

1 0

˛

‚`Op
∆
a

q

pT2,3q “
∆
2 µ3

¨

˝

0 1

1 0

˛

‚ψHp0qJ `Op
∆
a

q

pT2,4q “ µ3∆
ż 8

0
ψHptq

¨

˝

0 1

1 0

˛

‚ψHptqJdt`Op
∆
a

q

In summary, for ∆ „ Op 1
aq

c∆ “pT1q ` pT2q

“Σ̄ `

ˆ

1
2Σ̄ψHp0qJ `

1
2ψHp0qΣ̄ `

ż

R`

ψHptqΣ̄ψHptqJdt

˙

∆ ` µ3

ˆ

1 ´
1 ´ e´a∆

a∆

˙

¨

˝

0 1

1 0

˛

‚

`
1
2ψHp0q

¨

˝

0 µ3

µ3 0

˛

‚`
1
2

¨

˝

0 µ3

µ3 0

˛

‚ψHp0qJ ` ∆
ż 8

0
ψHptq

¨

˝

0 µ3

µ3 0

˛

‚ψHptqJdt` op∆q

“

¨

˝

ΛP,1 0

0 ΛP,2

˛

‚`

ˆ

1 ´
1 ´ e´a∆

a∆

˙

¨

˝

0 µ3

µ3 0

˛

‚

` ∆
´1

2ψHp0q

¨

˝

ΛP,1 µ3

µ3 ΛP,2

˛

‚`
1
2

¨

˝

ΛP,1 µ3

µ3 ΛP,2

˛

‚ψHp0qJ `

ż 8

0
ψHptq

¨

˝

ΛP,1 µ3

µ3 ΛP,2

˛

‚ψHptqJdt
¯

` op∆q

Proof of Corollary 5. Follow the proof for Theorem 4.3,

lim
∆Ñ8

pT1q “

ż

R2
`

RHpsqΣ̄RHptqJ ds dt “ RHΣ̄RJ
H
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Chapter 4. Hawkes process with shot noise model

And by Proposition 4.2,

lim
∆Ñ8

pT2q “ µ3

ż

R`

RHpsq ‹ Γ̄psq ds

¨

˝

0 1

1 0

˛

‚

ż

R`

pRHptq ‹ Γ̄ptqqJ dt

“ µ3RH

¨

˝

0 1

1 0

˛

‚RJ
H

4.B - Simulation (latent-behavior model)

In this section, we will introduce two different techniques to simulate a (2 ˆ 2 ` 1)-dimensional
Hawkes process with shot noise (i.e., Model (4.2.4)).

Suppose that the Hawkes kernels are some sum of exponential functions as follows :

ϕijptq “

U
ÿ

u“1
αu,ijβuexpp´βutq

We first provide the simulating algorithm 2 for a bivariate Poisson processes, i.e., two delayed shot
noise processes.

Algorithm 2: Generate bivariate Poisson noises
Input: a1, a2, µ3, T

1 On r0, T s, generate a poisson process 2 N3 „ PP pµXq, N3 “ ttkuM
k“1;

2 Generate the two sets of delays p∆piq
k qM

k“1 „iid Exppaiq, for i “ 1, 2;
3 N4 Ð ttk ` ∆p1q

k uM
k“1;

4 N5 Ð ttk ` ∆p2q

k uM
k“1;

5 N “
Ť

i“4,5
tptk, iq|tk P Ni X r0, T su;

6 return N (ascending ordered by the first elements)

Simulation algorithms

We propose two algorithms to simulate the Hawkes process with shot noise: the cluster algorithm
and the thinning algorithm.

The cluster algorithm generates a Hawkes process recursively by creating clusters of immigrants. In
this model, the immigrants consist of the superposition of immigrants from self-exciting processes
and from shot noise. The generation of immigrants is accomplished through Algorithm 2. Once
the immigrants have been generated, the clustering approach is the same as for classical Hawkes
processes Jovanović et al. (2015). The process is described in detail in Algorithm 3.

The thinning algorithm is based on the Ogata algorithm Ogata (1981). Algorithm 4 shows the
procedure for generating a Hawkes process with shot noise.
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4.C. Sequential Monte Carlo Expectation-Maximization Method

Algorithm 3: Cluster algorithm : generate Hawkes processes with shot noise
1 Setting : Hawkes kernels ϕijptq “

řU
u“1 αu,ijβuexpp´βutq

Input: µ1, µ2, tpαuq2ˆ2uU
u“1, tβuuU

u“1, µ3, a1, a2, T ;
2 for i P t1, 2u do
3 Generate Ni immigrant process, which is a poisson process on r0, T s, Ni „ PP pµiq

4 Using Algorithm 2, generate the shot noise (the "synchronized" immigrants) N4 and N5;
5 for i P t1, 2u do
6 N̄i Ð sortedpNi YNi`3q;
7 for t P N̄i do

/* Generate the cluster of an immigrant */
8 for j P t1, 2u do
9 for u P r1 : U s do

10 Generate ppnq „ PP p1q on r0,∆s where ∆ “ αu,ji

`

1 ´ expp´βupT ´ tqq
˘

;

11 tj,n “ t´
1
βu

logp1 ´
pn

αu,ji
q;

12 N̄j Ð N̄j
Ť

ttj,nun;
13 Repeat the generation of cluster part on ttj,nun until it becomes an empty set

14 return tsortedpN̄iquiPt1,2u

4.C - Sequential Monte Carlo Expectation-Maximization Method

Several related studies have already applied the Expectation-Maximization method (EM) to address
similar problems, including Cappé (2009); Linderman et al. (2017); Mei et al. (2019); Shelton et al.
(2018). However, these studies are not directly applicable to our model. In this section, we will
introduce the EM method for our latent-behavior model. Specifically, we will only consider a
simplified version of the model, which is a 2-dimensional process with a1 “ 8 in Eq. (4.2.4). In
this case, N3 and N4 coincide, and the latent-behavior model can be expressed as follows:

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

N1 : λ1ptq “ µ1 `

ż t

0
φ11pt´ sq dpN1psq `N4psqq `

ż t

0
φ12pt´ sq dpN2psq `N5psqq

N2 : λ2ptq “ µ2 `

ż t

0
φ22pt´ sq dpN2psq `N5psqq `

ż t

0
φ21pt´ sq dpN1psq `N4psqq

N4 : λ4ptq “ µ3

N5 : λ5ptq “ a pN4ptq ´N5ptqq

(4.C.1)

with N̄1 “ N1 `N4 and N̄2 “ N2 `N5 being the two observable processes.

Let us reframe the problem. Within the event space E “ 1, 2, 4, 5, as illustrated in Figure 4.C.1,
these elements are associated with specific symbols: 1 is denoted by a blue diamond ( ), 2 by a
blue circle ( ), 4 by a red diamond ( ), and 5 by a red circle ( ). For an event type e P E , we denote
the shape of e as re. If e is diamond (e “ 1 or 4) then re “ 1; if e is circle, then (e “ 2 or 5) re “ 2.
We also denote the color of e as Ze. If e is blue (e “ 1 or 2) then Ze “ 0; if e is red (e “ 4 or 5)
then Ze “ 1. In other words, Z “ 0 means the event is from the Hawkes part N1 or N2, Z “ 1
indicates that the event is a shot noise i.e., from N4 or N5.

We can represent our shot noise model differently by breaking down each complete event X into
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Chapter 4. Hawkes process with shot noise model

Algorithm 4: Ogata algorithm : generate Hawkes processes with shot noise
1 Setting : Hawkes kernels ϕijptq “

řU
u“1 αu,ijβuexpp´βutq

Input: µ1, µ2, tpαuq2ˆ2uU
u“1, tβuuU

u“1, µ3, a1, a2, T ;
2 Using Algorithm 2, generate the bivariate shot noise processes N4 and N5;
3 s Ð 0;
4 H Ð H, N Ð sortedtpYtPN4pt, 1qq Y pYtPN5pt, 2qqu;
5 ptnoise, enoiseq Ð N r1s ; /* the first element in N */
6 for u, i P t1, 2, . . . , Uu ˆ t1, 2u do
7 convu,i Ð 0 ; /* the convolution term in intensity */

8 while s ă T do
9 λ˚ Ð

ř

ipµi `
řU

u“1 convu,iq;
10 Generate v „ Up0, 1q;
11 w Ð ´ log v{λ˚ ; /* w „ Epλ̄q */
12 if tnoise ă s` w then

/* This part is the only difference from the Ogata Algorithm for the
classical Hawkes Model, if the candidate s` w comes after the next
noise immigrant */

13 For u, i P t1, 2, . . . , Uu ˆ t1, 2u, convu,i Ð convu,ie
´βuptnoise´sq ` αu,i,enoise ;

14 s Ð tnoise;
15 ptnoise, enoiseq Ð NextpN q;
16 else
17 s Ð s` w;
18 Generate D „ Up0, 1q;

/* accepting this candidate with probability
ř2

i“1pµi `
řU

u“1 convu,ie
´βuwq

λ˚
*/

19 if D ď

ř2
i“1pµi `

řU
u“1 convu,ie

´βuwq

λ˚
then

20 k Ð 1;

21 while D ą

ř2
i“1pµi `

řU
u“1 convu,ie

´βuwq

λ˚
do

22 k Ð k ` 1;
23 H Ð H Y tps, kqu;
24 For u “ 1, 2, . . . , U and i “ 1, 2, convu,i Ð convu,ie

´βuw ` αu,i,k ; /* update
conv */

25 else
26 For u “ 1, 2, . . . , U and i “ 1, 2, convu,i Ð convu,ie

´βuw ; /* update conv */

27 return H Y N (ascending ordered by the first elements)
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t (second)

Δ(2)
1 Δ(2)

3

Δ(1)
1 Δ(2)

2

Δ(1)
2

Δ(1)
3

N1
N2

N4
N5

N3

t (second)

N2

N̄1 = N1 + N4

N̄2 = N2 + N5

N3

N1 N5N4

Figure 4.C.1 – Observable : events shape re (diamond or circle), unobservable : event color Ze

(blue or red).

three distinct features: the arrival time t, the event shape re, and the event color Ze. This is
denoted as X “ pt, eq “ p t, re

loomoon

Y

, Zeq, as shown in the figure above.

˝ Y “ pt, req is an observable feature with the event arrival time t and the event shape re P t1, 2u

(diamond or circle).

˝ The color Ze is unobservable.

Suppose the Hawkes kernels are exponential functions, that is φijptq “ αijβe
´βt. Let us introduce

the EM method for this model, considering a realization with N events pXnqN
n“1, where each event

is represented as Xn “ ptn, enq. We define the sigma-algebra Ft´ “ σpXs, s ă tq, and the observable
part of the data is denoted as Yn “ ptn, rnq. Note that from now we simplify ren and Zen as rn and
Zn, respectively.

Likelihood function

Suppose β is known, let θ denote the other parameters of this model, θ “ pµ, α, aq. Define the
following global functions, which are independent of the latent variable Z:

g1ptq “
ÿ

tkăt,rk“1
βe´βpt´tkq

g2ptq “
ÿ

tkăt,rk“2
βe´βpt´tkq

Giptq “

ż t

0
gipsqds for i P t1, 2u

(4.C.2)

Therefore the values of these functions at time tk are :

giptkq “
ÿ

tlătk,rk“i

βe´βptk´tlq

“ e´βptk´tk´1q
ÿ

tlăt,rk“i

βe´βptk´1´tlq ` βe´βptk´tk´1q1rk“i

“ e´βptk´tk´1qgiptk´1q ` βe´βptk´tk´1q1rk´1“i

Hiptkq “ Giptkq ´Giptk´1q “

ż tk

tk´1

gipsqds

“
1 ´ e´βptk´tk´1q

β
giptk´1q ` p1 ´ e´βptk´tk´1qq1rk´1“i

(4.C.3)
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Chapter 4. Hawkes process with shot noise model

The log likelihood function of the complete model is:

Lpθq “
ÿ

i“1,2,4,5

`

ż T

0
log λiptq dNiptq ´

ż T

0
λiptq dt

˘

“

2
ÿ

i“1

ż T

0
log λiptq dNiptq

looooooooooooomooooooooooooon

I1

´

2
ÿ

i“1

ż T

0
λiptq dt

looooooomooooooon

I2

`

5
ÿ

i“4

`

ż T

0
log λiptq dNiptq ´

ż T

0
λiptq dt

˘

loooooooooooooooooooooooomoooooooooooooooooooooooon

I3

Let us calculate each term separately:

I1 “

2
ÿ

i“1

ÿ

tk,ek“i

log
`

µi `

2
ÿ

j“1
αij

ż tk

0
βe´βptk´sqpdNjpsq ` dNj`3psqq

˘

“

2
ÿ

i“1

ÿ

tk,ek“i

logpµi `

2
ÿ

j“1
αij

ÿ

tlătk,rl“j

βe´βptk´tlq

looooooooooomooooooooooon

gjptkq

q

“

2
ÿ

i“1

ÿ

tk,ek“i

logpµi `

2
ÿ

j“1
αijgjptkqq

I2 “

2
ÿ

i“1

ż T

0

´

µi `

2
ÿ

j“1
αij

ż t

0
βe´βpt´sqpdNjpsq ` dNj`3psqq

¯

dt

“ pµ1 ` µ2qT `

2
ÿ

i“1

ÿ

tk
t0“0

tN`1“T

2
ÿ

j“1

ż tk

tk´1

ż t

0
βe´βptk´sqpdNjpsq ` dNj`3psqq

looooooooooooooooooooomooooooooooooooooooooon

gjptq

dt

“ pµ1 ` µ2qT `

2
ÿ

i“1

ÿ

tk

2
ÿ

j“1
αijHjptkq ´

2
ÿ

i“1

2
ÿ

j“1
αijHjpT q

I3 “
ÿ

tk,ek“3
logpµ3q `

ÿ

tk,ek“4
1N4ptk´qąN5ptk´q logpapN4ptk´q ´N5ptk´qqq

´ µ3T ´ a

ż T

0
pN4ptq ´N5ptqq dt

loooooooooooomoooooooooooon

ř

tk
pN4ptk´1`q´N5ptk´1`qqptk´tk´1q

where HjpT q “ GjpT q ´GjptN q and tN is the last event arrival timestamps before T .

Therefore the gradients are straightforward:
BL

Bµi
“

ÿ

tk,ek“i

1
µi `

ř2
j“1 αijgjptkq

´ T, i “ 1, 2

BL

Bαij
“

ÿ

tk,ek“i

gjptkq

µi `
ř2

m“1 αimgmptkq
´

ÿ

tk,ek“i

Hjptkq ´HjpT q, i, j “ 1, 2

BL

Bµ3
“

ÿ

tk,ek“4

1
µ3

´ T

BL

Ba
“

ÿ

tk,ek“5
1N4ptk´qąN5ptk´q

1
a

´
ÿ

tk

pN4ptk´q ´N5ptk´qqptk ´ tk´1q

(4.C.4)
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4.C. Sequential Monte Carlo Expectation-Maximization Method

Some calculations

Given a complete path of X from t “ 0 to tn´, and the observable part of the data at time tn, the
probability of the color of n-th event being red is

pθpZn “ 1|Yn,Ftn´q “
pθpZn “ 1, Yn|Ftn´q

pθpYn|Ftn´q

“
pθpZn “ 1, Yn|Ftn´q

pθpZn “ 1, Yn|Ftn´q ` pθpZn “ 0, Yn|Ftn´q

(4.C.5)

For en P t1, 2u,

λenptnq “ lim
dtŒ0

1
dt
PpNenptn ` dtq ´Nenptnq “ 1|Ftn´q

“ µen ` αen,1
ÿ

tkătn,rk“1
g1ptkq ` αen,2

ÿ

tkătn,rk“2
g2ptkq is independent of Zr1:n´1s

(4.C.6)

Therefore

pθpZn “ 0|Yn “ ptn, 1q,Ftn´q “
λ1ptnq

µ3 ` λ1ptnq
(4.C.7)

pθpZn “ 0|Yn “ ptn, 1q,Ftn´q is independent of Zr1:n´1s while pθpZn “ 0|Yn “ ptn, 0q,Ftn´q depends
on the upcoming shot noise on node 2.

Sequential Monte Carlo Expectation-Maximization (SMCEM)

The Expectation-Maximization algorithm (Dempster et al., 1977) is an efficient iterative procedure
for estimating the Maximum Likelihood Estimate (MLE) in the presence of missing or hidden
data. Given a set of observable data, a set of latent data Z and a vector of unknown parameters
θ, the likelihood function for the complete data is Lpθ;Y,Zq “ pθpY,Z | θq. However, since Z is
unobserved, the MLE θ̂ is obtained by maximizing the marginal likelihood of the observed data
pθpY | θq. The EM algorithm is used when the marginal likelihood is difficult to compute. It
accomplishes this task through an iterative process consisting of two key steps:

˝ E-step: Qpθ | θpkqq “ EZ„pp¨|Y,θpkqqrlog ppY, Z | θqs

˝ M-step: θpk`1q “ arg maxθ Qpθ | θpkqq

In our specific case, where the distribution pθpZ1:N |Y1:N q lacks a closed-form expression, we need
to approximate the expected value Qpθ, θpkqq using the Monte Carlo method. Without proving the
convergence, we propose the following SMCEM algorithm for our model.

SMCEM

Z is a sequence of random variables with Zn P t0, 1u. Since events of N5 are delayed replications
of N4. Given a realization Y1:N “ pt, rq1:N , Z1:N should satisfy the following constraints:

n
ÿ

i“1
Zi1ri“1 ě

n
ÿ

i“1
Zi1ri“2, @n P t1, 2, . . . , Nu

Let q be a probability of Z1:N which is defined as follows:

qpZn “ 1 | rn “ 1, Y1:n´1, Z1:n´1q “
1
2
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Chapter 4. Hawkes process with shot noise model

qpZn “ 1 | rn “ 2, Y1:n´1, Z1:n´1q “

#

0 if
řn´1

i“1 Zi1ri“1 ě
řn´1

i“1 Zi1ri“2
1
2 otherwise

Then the SMCEM algorithm is as follows:
- Monte Carlo : for m P r1 : M s, generate Zpmq

1:N „ q.
- E-step :

Qpθ, θnq “ EZ1:N „p
θpkq pz1:N |y1:N q

“

log pθpY1:N , Z1:N q
‰

«
1
M

M
ÿ

m“1

pθpkqpZ
pmq

1:N |Y1:N q

qpZ
pmq

1:N q
log pθpY1:N , Z

pmq

1:N q

- M-step : θn`1 “ arg maxθ Qpθ, θnq

Online SMCEM

˝ Init: Set initial parameters θp0q, and calculate the conditional distribution of Z1 given the
initial event shape pθp0qpZ1 “ 1|r1 “ 1q “

µ
p0q

3
µ

p0q

1 `µ
p0q

3
, pθp0qpZ1 “ 1|r1 “ 2q “ 0.

For m P r1 : M s, draw Zm
1 „ Pθp0qpZ1|Y1q “ Pθp0qpZ1|r1q.

˝ Iteration: at n-th iteration (i.e., at n-th event)
- Monte Carlo : for m P r1 : M s, draw Zm

n „ Pθpn´1qpZn|Y1:n, Z
m
1:n´1q.

- E-step :

Qpθ, θnq “ EZ1:n„P
θpnq pz1:n|y1:nq

“

logPθpY1:n, Z1:nq
‰

“
ÿ

z1:n

PθpnqpZ1:n|Y1:nq logPθpY1:n, Z1:nq

“
ÿ

Zn

ÿ

Z1:n´1

PθnpZn|Y1:n, Z1:n´1qPθnpZ1:n´1|Y1:nq logPθpY1:n, Z1:nq

“
ÿ

Zn

1
M

M
ÿ

m“1
PθnpZn|Y1:n, Z

m
1:n´1q logPθpY1:n, Z

m
1:nq

- M-step : θn`1 “ arg maxθ Qpθ, θnq

Remark 4.6. In fact, we can reformulate the problem in a Markovian context.

N “ pN1, N2, N4, N5q ô X “ tptn, enq, n P N, en P t1, 2, 4, 5uu

ô tptn, rn, Zn
loomoon

en

q, n P N, rn P t1, 2u, Zn P t0, 1uu

ô tp tn, rn
loomoon

Yn

,
n
ÿ

k“1
p1ek“4 ´ 1ek“5q

loooooooooomoooooooooon

“:Z̄n

q, n P N, rn P t1, 2u, Zn P Nu

pYn, Z̄nq is in fact Markovian:
˝ once pY1:n, Z̄1:nq is given, λiptq is known for i P t1, 2, 4, 5u and t P rtn, tn`1q.
˝ From event n to event n` 1:
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4.C. Sequential Monte Carlo Expectation-Maximization Method

˝ if rn`1 (observable) is 1, then

- Z̄n`1 Ð Z̄n ` 1 with probability
µ3

λ1ptn`1q ` µ3
.

- Z̄n`1 Ð Z̄n with probability
λ1ptn`1q

λ1ptn`1q ` µ3
.

˝ if rn`1 (observable) is 2, then

- Z̄n`1 Ð Z̄n ´ 1 with probability
µ3Z̄n

λ2ptn`1q ` µ3Z̄n
p“ 0 if Z̄n “ 0q.

- Z̄n`1 Ð Z̄n with probability
λ2ptn`1q

λ2ptn`1q ` µ3Z̄n
.
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CHAPTER 5

SUPERVISED LEARNING FOR CLASSIFICATION OF AGENTS

This chapter focuses on behaviors of agents in the market. We propose a supervised learning method to
identify the agents, by using the Gated Recurrent Unit network. An input is a sequence of orders submitted
by an agent and the output is the ID of this agent. The classification accuracy is very high, implying that the
agents behave very differently from each other. We also analyze the importance of features and the embedding
patterns of action types.
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5.1 - Introduction

Nowadays, most modern financial markets use electronic limit order books (LOB), a double con-
tinuous auction system which tracks and records orders submitted by market participants (in this
work, we also call them the "agents"). Modeling the limit order book is a key aspect to understand
the microstructure of market. Existing researches on modeling limit order book can be roughly clas-
sified into two categories : the statistical model-based methods and data-driven machine learning
methods.

Statistical model-based approaches usually require expert knowledge and certain assumptions about
the system. A very rich literature exists on limit order book models, and some notable examples are
mentioned here. One prominent model is the Zero-Intelligence (ZI) limit order book model, which

113



5.1. Introduction

was proposed by Smith et al. (2003). This model describes the order flow using independent Poisson
processes, under the assumption that orders are placed without any specific trading strategies.
Despite its simplicity, the model was proven to be able to reproduce several important statistical
properties (Daniels et al., 2003; Farmer et al., 2005). Since then, many more sophisticated works
appeared. Remarkable work like Cont et al. (2010); Foucault et al. (2005) and Abergel and Jedidi
(2013) gained recognition, along with the queue-reactive Markovian model (Huang et al., 2015)
and the Hawkes models (Abergel and Jedidi, 2015; Large, 2007).

The use of data-driven machine learning approaches has become increasingly popular in finance
due to advances in deep learning technology and the availability of large volumes of high-frequency
trading data. Unlike traditional methods, these approaches do not necessarily require assump-
tions and can handle highly complex data. Most of the existing works focus on applying deep
learning models on limit order book data for the purposes of price forecasting or price movement
classification. For example, Sirignano (2019) proved the effectiveness of neural networks for limit
order book modeling the distribution of the best bid/ask prices. Later, Sirignano and Cont (2019)
tested a Deep LSTM network on 1000 US stocks, and exploited the universality of features across
the stocks. Other different neural networks architectures were exploited to forecast the short-term
price movement direction, including convolutional neural networks (DeepLOB) in Tashiro et al.
(2019); Zhang et al. (2018, 2019), recurrent neural networks in Dixon (2018), LSTM and atten-
tion networks in Zhang et al. (2021) as well as self-attention transformer networks in Wallbridge
(2020). Authors of Mäkinen et al. (2019) proposed a deep network that combined CNN, LSTM
and attention mechanism to predict price jumps. In Maglaras et al. (2022), authors proposed a
RNN architecture to estimate the distribution of time-to-fill for a limit order, while in Briola et al.
(2020), different deep learning networks for forecasting price returns were studied in order to gain
a comparative perspective. For more related works, on can refer to Doering et al. (2017); Jiang
(2021); Kumbure et al. (2022); Nabipour et al. (2020); Ntakaris et al. (2018); Wang et al. (2018);
Yan et al. (2020). We also recommend the book de Prado (2018) for more technical details.

The collective actions of agents on the limit order book determines the macroscopic evolution of
the market. Therefore, to fully understand the dynamics of a market, it is crucial to comprehend
the roles and strategies of individual agents. However, before delving into analyzing the behavior,
strategies and impact of individual agents on the market, we first need to answer some fundamental
questions. For instance, how do market participants differ from each other? Which features are
the most important in identifying market participants ? In this work, we aim at answering these
questions through a specific task which is to identify high-frequency agents.

Traditional statistical models for modeling the limit order book often rely on strong assumptions
about the underlying system and may be limited in their ability to handle complex data. The aim
of our work is to identify market participants by analyzing their actions in the limit order book.
This data can be very complex as order actions can occur at different price levels, and the bid/ask
prices, as well as the mid-price, can change frequently. This complexity makes it difficult to apply
traditional mathematical models to the data. To overcome this challenge, we employ deep learning
techniques to recognize market participants based on a sequence of consecutive orders they placed.

Deep learning is a powerful class of machine learning that is able to extract high-level features
from the raw input by using multiple "deep" layers. However it usually requires access to large
dataset. In this work, we focus on high-frequency agents who exhibit a significant level of activity,
i.e., having a large number of orders placed during a given period. We apply a popular deep neural
network, the Gated Recurrent Unit (GRU) (Cho et al., 2014), to learn a representation of these
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Chapter 5. Supervised learning for classification of agents

agents’ order sequences. Here a sequence of orders is defined as a list of consecutive orders placed by
a market agent. To achieve the best quality of results, we conduct several scenarios with different
lengths of the sequence, as well as different sets of features.

Outline. The rest of this chapter is organized as follows. In Section 5.2, we introduce the limit
order book data used in this work and discuss the data preprocessing. Section 5.3 displays neural
network architectures and feature engineering techniques used in our classification approach. Then
in Section 5.4, we present the results of our study, including a comparison of classification accuracy
across different models and scenarios. We also analyze the action types embedding patterns and the
importance of features. To extend our analysis, in Section 5.5, we conduct additional experiments
by increasing the granularity level of agent labels and based on these results we group the agents.
Finally, we conclude our study in Section 5.6.

5.2 - Data Description

A Limit Order Book is a record of active orders, each order is represented by a separate row in the
book. Each row includes the information about the order’s characteristics and the current market
context. The information about the order includes its arrival time, its side (sell or buy), the price
at which it is placed, its size, its type (limit, cancellation or market) and the agent who placed
this order. The current market context provides a snapshot of the bid and ask limit orders in the
market.

In this study, we analyze the CAC40 future index limit order book (LOB) data obtained from the
Euronext market. The data covers a period of 300 consecutive trading days, starting from January
6th, 2016 and ending on March 7th, 2017, and comprises data collected between 9:00 am and 5:00
pm for each day. The depth of the order book is up to 10 levels.

In the dataset, each order features two anonymized numeric IDs. The first ID represents the member
who placed the order, and the second ID identifies the specific connection used. In this paper, we
will refer to the first ID as "Member" and the second ID as "ITM". In high frequency trading,
"ITM" stands for Interactive Trading Machine used by banks, hedge funds, and other financial
institutions. "ITM"s are specialized computer systems which are designed to execute trades in a
fast and efficient manner. It is important to note that ITMs are a division of Members, meaning
an ITM belongs to a Member, while a Member can have multiple ITMs. In fact in our dataset, the
number of ITMs used by each member can vary from one to more than one hundred.

5.2.1 Member selection

Out of our 300-day dataset, we have identified 170 active Members. Despite this, the majority of
these members either have limited daily order volume or show only brief periods of activity. In this
study, we only consider Members who have placed at least 6000 orders on more than 30 separate
trading days. To determine this, we first identify the trading days where a Member placed at least
6000 orders, and then add that Member to our list of eligible Members if they meet the minimum
threshold of 30 trading days. This selection process results in a pool of 28 highly active Members.
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5.2. Data Description

Figure 5.2.1 – Member–ITM. The figure displays the top 10 most active Member IDs and their
associated ITM IDs. Each pie chart represents a Member, with each section of the pie representing
a specific ITM. The sections are divided based on the proportion of orders associated with each
ITM. The title of each pie chart consists of 3 parts : the Member ID, the total number of orders
placed by that Member, and the number of ITMs represented within the chart.

5.2.2 Data normalization and extraction

Input

A single input, labeled as α, is a sequence of N orders placed by agent α. We denote a single input
by X “ px1,x2, ...,xN q P RNˆM where @i, xi P RM is represented as a M -dimensional vector.
In other words, each order is comprised of M features, which a subset of the feature collection
presented in Table 5.3.1.

Data Normalization

Prior to extracting samples from the limit order book, we normalize the data as follows:
˝ time : ti ´ t0, where t0 is the timestamps of the first order

˝ price :
P ´ min pP q

max pP q ´ min pP q
P r0, 1s, max pP q (resp. min pP q) is the maximum (resp. minimum)

of the prices in all limit order books from training days, including the best bid and the best
ask prices P b

1 pt´q, P a
1 pt´q and P b

1 pt`q, P a
1 pt`q,

˝ size :
V

max pV q
P r0, 1s, max pV q is the maximum of the volumes in all these limit order books

from training, including the volumes of all limit orders V b
n pt´q, V a

n pt´q and V b
n pt`q, V a

n pt`q.

Extraction of samples

After normalization, we extract 200,000 samples in total for training, validation, and testing days.
The number of samples is divided into three parts with a 0.70:0.15:0.15 ratio for training, validation,
and testing, respectively. Or to be more specific, for each agent α, we divide its available dates
(i.e., the trading days where it has more than 6000 orders) into 3 parts : training dates Dtrainpαq,
validation dates Dvalpαq and test dates Dtestpαq, with the same proportion as before (0.7:0.15:0.15).
The three sets of days are disjoint to prevent information leakage. The labels of these samples i.e.,
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Feature Value # Description

tx (or ti) R` 1 time

P b
1 ptx´q R` 1 best bid price immediately before x

P a
1 ptx´q R` 1 best ask price immediately before x

tV b
k ptx´qu10

k“1 N` 10 volume of bid side limit orders at kth level before x

tV a
k ptx´qu10

k“1 N` 10 volume of ask side limit orders at kth level before x

Px R` 1 order price

Vx N` 1 order size

Ax t0, 1u 1 indicates if the order is aggressive (i.e., a market order)

sx t0, 1u 1 indicates if the order is on the ask side (1) or bid side (0)

P b
1 ptx`q R` 1 best bid price immediately after x

P a
1 ptx`q R` 1 best ask price immediately after x

tV b
k ptx`qu10

k“1 N` 10 volume of bid side limit orders at level k after x

tV a
k ptx`qu10

k“1 N` 10 volume of ask side limit orders at level k after x

Table 5.2.1 – Features for a single order x in the raw data, the ith order of a sequence of orders

their corresponding agents are uniformly distributed.

To extract a training sample of agent α, we randomly select a date D from Dtrainpαq, based on the
the number of orders during a day over all days

PpDq “
#tα’s orders at day Du

ř

DPDtrainpαq #tα’s orders at day Du
, for D P Dtrainpαq

and randomly extract N consecutive orders of this agent on the selected day. The same process is
repeated for the validation and test samples.

5.3 - Methodology

Deep learning is a powerful class of machine learning that is able to extract high-level features from
the raw input by using multiple "deep" layers. In this work, we apply a popular deep neural net-
work, the Gated Recurrent Unit (GRU), to learn a representation of these agents’ order sequences.
To achieve the best quality of results, we conduct several scenarios with different lengths of the
sequence, as well as different sets of features.

5.3.1 Model architectures and Implementation

We detail our network architectures in this section, which depend on the selection of input features.
In general, they comprise two main building blocks : Bidirectional Gated Recurrent Unit (GRU)
layers and two dense layers.
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Gated Recurrent Unit

Gated Recurrent Unit (GRU), introduced in 2014 by Cho et al. (2014), is a special type of Recurrent
Neural Network architecture designed to solve the vanishing gradient problem of a standard RNN.
It has two gates, the update gate and the reset gate. These gates are used to control the flow of
information through the network. This design has led GRUs to be widely applied in various ares,
including natural language processing, speech recognition, etc.

In this work, we use Bidirectional GRU (or simply BiGRU) to process the sequential data of orders.
To recap, Bidirectional GRU is a variant of GRU architecture that allows information flow in two
directions, i.e., both forward and backward in time. It is usually more powerful than a normal
GRU as it captures contextual information from both past and future.

Dropout

Dropout (Srivastava et al., 2014) is a powerful regularization technique that can be used in neural
networks to prevent overfitting. During training, it involves randomly setting a fraction of the
neurons to zero, which can help prevent the network from relying too heavily on any one feature
or a set of features.

To apply dropout effectively, it is important to set an appropriate dropout rate. In this work, we
used the Python library Ray Tune (Liaw et al., 2018) to optimize the dropout rate. By doing so,
we found that a dropout rate of 0.3 worked well for our neural network.

The problem in this work is to classify sequences of orders based on their associated Member.
Therefore the output of the final dense layer is a 28-dimensional vector that goes through a SoftMax
activation function to produce the final probability result, where the SoftMax activation function
is defined by :

σpzqi “
ezi

řd
j e

zj
, for i “ 1, 2, ..., d and z “ pz1, z2, ..., zdq P Rd

where d is the number of classes (in this work d “ 28) and z is the input to softmax function. As
σpzq has each component in the range p0, 1q and the components sum up to 1, it can be interpreted
as a vector of probabilities. When the network is used to classify an input x sequence of orders,
the prediction ŷ will be determined by the label corresponding to the highest probability in the
output distribution, i.e., ŷ “ arg maxptσpzqiui“1,2,...,28q.

Implementation

The neural networks are mainly built using Keras (Chollet et al., 2018), an open-source Python
library. We apply the neural networks architectures to 4 different input cases (see Table 5.3.1).
The neural networks are equipped with cross-entropy loss and the ADAM (Adaptive Moment
Estimation) (Kingma and Ba, 2015) optimizer is applied. The data is trained on training samples,
the learning is stopped when the validation accuracy does not increase for 50 more epochs.

5.3.2 Feature engineering

In our raw data, an order consists of all the features which are displayed in Table 5.2.1. Now in
order to enhance model accuracy, we will create the following new features :

˝ Action type : the action type is a categorical variable, transformed from the six rows at the
bottom of Table 5.2.1, or the FMC features in Table 5.3.1.
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Chapter 5. Supervised learning for classification of agents

The set of all possible action type categories is defined as

C “ tAsk Limit at level k, Bid Limit at level k, k P r1 : 10su

Y tAsk Cancel at level k, Bid Cancel at level k, k P r1 : 10su

Y tAsk Market order, Bid Market orderu

(5.3.1)

˝ Order flow : the order flow is a new added feature which cannot be derived from Table
5.2.1. The order flow type C i.e., Fcpti´1 Ñ tiq indicates the number of orders of type C in
the entire market between two consecutive orders made by an agent. 1

We will employ our model to evaluate three competitive sets of features, namely (1) HMC+FMC,
(2) HMC+AT and (3) HMC+AT+OF as shown in Table 5.3.1. In addition, we will present a
benchmark model which incorporates only three features which are considered as the most signifi-
cant (from the results afterwards). The three sets of features share 25 common features, including
3 characteristics of the order and 22 market context indicators immediately before the execution
of the order.

Class Feature # Baseline HMC+FMC HMC+AT HMC+AT+OF

HMC

tx (or ti) 1 ✓ ✓ ✓ ✓

Px (price) 1 ✗ ✓ ✓ ✓

Vx (size) 1 ✓ ✓ ✓ ✓

P b
1 ptx´q 1 ✗ ✓ ✓ ✓

P a
1 ptx´q 1 ✗ ✓ ✓ ✓

tV b
k ptx´qu10

k“1 10 ✗ ✓ ✓ ✓

tV a
k ptx´qu10

k“1 10 ✗ ✓ ✓ ✓

FMC

Ax (aggressive ?) 1 ✗ ✓ ✗ ✗

sx (side) 1 ✗ ✓ ✗ ✗

P b
1 ptx`q 1 ✗ ✓ ✗ ✗

P a
1 ptx`q 1 ✗ ✓ ✗ ✗

tV b
k ptx`qu10

k“1 10 ✗ ✓ ✗ ✗

tV a
k ptx`qu10

k“1 10 ✗ ✓ ✗ ✗

AT Cx (action type) 1 ✓ ✗ ✓ ✓

OF tFcpti´1 Ñ tiqucPC (flow) 42 ✗ ✗ ✗ ✓

Table 5.3.1 – Features for a single order x, the ith order of a sequence of orders

1. Normalization of the order flow :
mintFc, 100u

100 P r0, 1s
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HMC+FMC The first set of features (scenario 1) consist of the 25 basic features (HMC) and
also the 24 supplementary features (FMC), as shown in Table 5.3.1. Therefore a single input of
type 1 consists of in total N rows with each row having 49 features.

GRU(N × 49)
Input

Bidirectional 

Units = 128

GRU
Units = 128

ReLU

Units = 28

Softmax

Output

Dense
(2 × 128) (256) Dropout

Rate = 0.3

(28) (1)
Flatten ArgMax

Dense

TanH
ReLU Softmax

GRU Dropout

HMC+AT In the previous set of features, we supply the market context before and after an
order (HMC+FMC), expecting the neural network to discover the full information of an order by
itself. While in this set of features (scenario 2), instead of constructing the entire limit order book
context after each order, we provide its action type. With the action type Cx of an order x, we
will be able to fully reconstruct the order book after the execution of order x.

Remark 5.1. In the original order books, there are certain types of orders referred to as "modifi-
cations". These modifications indicate that the agent has either:

(a) relocated some orders from one level to another (on the same side), or
(b) altered the quantity of a limit order.

In the first scenario (a), we divide the modification order into two separate orders: a cancellation
order at the previous limit price and a limit order at the new price (with the same timestamp). In
the second scenario (b), as the level of the order remains unchanged, it can be treated as either a
cancel or limit order. If the size decreases, it is considered a cancel order, otherwise, it is considered
as a limit order.

To summarize, an input of scenario 2 (HMC+AT) consists of 26 features in total, comprising 25
basic features (HMC) and 1 additional feature representing the action type (AT).

Since the action type Cx is a categorical variable, it will be encoded as a one-hot numeric array be-
fore being sent to GRU, i.e., to handle a category Cx “ i, the one-hot encoding of Cx is represented
as Cx “ p0, 0, ..., 1

loomoon

ith element

, ..., 0q.

GRU

Flatten
Concatenate

Bidirectional 

Units = 128
Units = 128 Units = 28 Output

Dense

(256) Rate = 0.3 (1)

Dense

TanH
ReLU Softmax

Dropout

TanH

GRU ArgMax

Embedding

42 × 5
(N × 1)Input 2

AT

(N × 25)

(N × 5)

Input 1
HMC

Figure 5.3.1 – NN .. input 1 is the 50 orders with 25 basic features, input_2 is the supplementary
feature

The first layer is an embedding layer which converts one-hot vector Cx to a vector of dimension
5. To make it clearer, the operation of this layer is in fact Cembed

x “ CxQ, where Q is a matrix in
R42ˆ5.

We replace the scalar order type (Cx P r1 : 42s) with a 5-dimensional embedding vector, which
serves as input to a Bidirectional GRU layer with 30 features.
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HMC+AT+OF If we look at the numerical results beforehand in Table 5.4.1, it appears that we
have provided enough information of a particular agent based on the previous input it has received.
However the model still lacks the understanding or the dynamics of the entire order book. Until
now, our inputs only include the actions of the agent and the market context, but what we aim
to achieve is to enable the model to also comprehend what happened in the market between two
consecutive orders of this agent, or in other words, what drives the agent to take a specific action.

To enhance our model’s ability, in addition to the 26 features from the second model (HMC+AT),
we propose to add 42 additional order flow features (OF), represented by tFlow type C,C P Cu.
We attempt to give a representation of the market dynamics by providing the flow of each action
type. By doing so, we expect that the model can learn not only the aspects of an specific agent
but also the interactions between the agent and the entire market. By adding these new features,
the total number of features will be increased to 66.

5.4 - Numerical results

To establish a benchmark for comparison, we selected the LightGBM method as our reference
model. LightGBM is a gradient boosting framework that uses tree-based learning algorithms intro-
duced in Ke et al. (2017). It is often compared to deep learning algorithms because both are widely
used in machine learning and have been shown to be effective in many applications. In this work,
we compare LightGBM and BiGRU model, expecting that the deep learning model can capture
more intricate patterns in the data. Table 5.4.1 presents a comparison of the accuracy of the two
classification models when applied to sequences of different lengths.

Input
Type

N “ 20 N “ 50 N “ 100

BiGRU LightGBM BiGRU LightGBM BiGRU LightGBM

Baseline 0.819 0.850 0.878 0.879 0.916 0.894

HMC+FMC 0.737 0.708 0.857 0.756 0.892 0.784

HMC+AT 0.866 0.861 0.912 0.889 0.943 0.900

HMC+AT+OF 0.882 0.846 0.916 0.885 0.948 0.905

Table 5.4.1 – Numerical results. This table displays the accuracy results of different models applied
to the test data. (HMC = History Market Context, FMC = Future Market Context, AT = Action
Type, ATF = Action Type Flow)

To learn more about the performance of our classification model, we define the accuracy of classi-
fying samples for a given agent α as:

raccpαq “
|tŷn “ α|yn “ α, n “ 1, 2, ..., Nu|

|tyn “ α, n “ 1, 2, ..., Nu|

Here, yn represents the true label of the n-th sample and ŷn represents the predicted label. | ¨ |

stands for the cardinality of a set. The accuracy rate racc for each agent is presented in Figure
5.4.1. We can see that the selected high-frequency agents exhibit considerable variability. Most
agent demonstrate an accuracy rate of over 90%, with several agents (eg. 8,12 and 21) achieving
nearly 100%.
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Figure 5.4.1 – Accuracy of classifying samples for each agent. The x-axis represents the member
ID, while the y-axis represents the accuracy rate.

Embedding of action types

Inspired by the remarkable success of Word2Vec (Mikolov et al., 2013a,b), where the word em-
bedding approach captures various degrees of semantic similarity between words (such as "man"
- "king" = "woman" - "queen"), we are curious to explore if a similar approach can be applied to
the embedding of action types in our work. Specially we are interested in examining if embedding
action types would reveal any patterns or relationships between different categories of actions.

Figure 5.4.2 displays the results of action type embedding from the BiGRU N=10 input type
(HMC+AT). An point in the figure represents the 2-dimensional Principal Component Analysis
(PCA) projection of the 5-dimensional embedding vector of an action type. As shown in the
figure, the embedding layer has effectively differentiated between the three order types - limit,
cancellation and market - which demonstrates its efficacy in capturing the differences between this
actions. Moreover, the figure reveals that cancellations at level 1 are closely aligned with market
orders, as both types have the same impact on the market.

Figure 5.4.2 – Two-dimensional PCA projection of the 5-dimensional embedding vectors of action
types. The inserted figure displays 5 lines, with each line ∆i, i “ 1, 2, 3, 4, 5 indicating the vector
from limit level i to cancellation level i.
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Feature importance

In the following figures, we will show the feature importance matrices of LightGBM. The feature
importance matrices offer a visual representation of the relative impact each feature has on the
model’s output. The importance of a feature is calculated by the number of times it is used to
split the data across all trees. Features that are used more frequently are considered to be more
important and have a greater impact on the model’s prediction.

Figure 5.4.3 shows the feature importance of model (HMC+AT) when N “ 10 while Figure 5.4.4
displays the feature importance of benchmark model. By analyzing both feature importance ma-
trices, as well as the prediction accuracy results in Table 5.4.1, we observed that the order type
and time (or frequency) are the most significant features.

Figure 5.4.3 – Feature importance heatmap

Figure 5.4.4 – Feature importance heatmap

5.5 - Extend experiments to ITMs

Now, instead of classifying Members, we apply the NN architecture to classify ITMs using the
second set of features (HMC+AT). By doing so, we aim to get a deeper insight into the relationship
between Members and ITMs.

ITM selection

We have identified more than 1000 active ITMs. However we only focus on the ITMs that corre-
spond to the selected Members. The eligibility criteria for ITM selection is the same as for Member
selection; an ITM is considered eligible if it has placed at least 6000 orders on more than 30 distinct
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trading days. This filtering process leads to a list of 104 highly active ITMs, that belong to 21
Members.

Confusion matrix

The Confusion Matrix, represented by C, is a useful tool for evaluating the accuracy of a classifier.
Each entry Cij represents the number of instances that were labeled as class i but predicted as
class j. In this study, we utilize the normalized confusion matrix, which is obtained by dividing
each entry Cij by the sum of all entries in row i, i.e., Cij{

ř104
k“1 Cik.

Now if we examine the confusion matrix in Figure 5.5.1, it is clear that the misclassified samples are
frequently confused with other ITMs that belong to the same Member. We assume that the neural
networks struggle to differentiate between these ITMs due to their high degree of similarity. Based
on this assumption, we can leverage the information from the confusion matrix to group the ITMs
of a Member into distinct clusters based on their shared characteristics. Specifically, each cluster
can represent a unique manner or mode of operation that the ITMs belonging to that group tend
to exhibit. For instance, by extracting the sub-matrix of Member with ID=3, which is a 39 ˆ 39
matrix, we can use the agglomerative hierarchical clustering to regroup the ITMs. The resulting
groups of ITMs are considered to share similar behaviors, as demonstrated by dendrogram plots in
Figures 5.5.2a and 5.5.2b. In the same way, Figure 5.5.3a and 5.5.3b show the clustering result for
Member 6.

5.6 - Conclusion

We demonstrate in Section 5.4, that even the worst-case scenario has an average accuracy of
over 70%, which means that the high-frequency agents are vastly different from one another. By
analyzing the feature importance, we show that the most important features for the classification
task are the time (or frequency), order size and action type of order.

We find that the best way to provide the action types to the neural networks is to categorize
them and apply an embedding layer after one-hot encoding. By visualizing the projections of such
embedded action types on R2, we surprisingly find that the neural networks have "understood" the
relationship among these action types very well.

Based on these findings, we apply the best-performing model to an extended task. In Section 5.2,
we introduce the concept of two IDs assigned to an agent, Member ID and ITM, where ITMs are
a division of Member IDs. In contrast to the first classification task which classifies Member IDs,
this additional task focuses on classifying ITMs. The confusion matrix shows clear diagonal blocks,
with each block representing a Member ID. We then demonstrate that this is in fact a useful tool
for clustering ITMs for a given Member ID.
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Figure 5.5.1 – Confusion matrix. The diagonal submatrix blocks represent the grouping of ITMs
from the same Member. The labels along the x-axis (abscissa) are presented in the format "ITM -
Member", while the labels along the y-axis (ordinate) are displayed in the format "ITM - Member
ąą Accuracy".
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(a) Dendrogram plots, given a threshold 1, we can get 10 subgroups.

(b)

Figure 5.5.2 – Member ID = 3. The labels on both axes are presented in the format "ITM(cluster)",
where "cluster" indicates the subgroup to which the ITM belongs.
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(a) Dendrogram plots, given a threshold 1, we can get 3 subgroups.

(b)

Figure 5.5.3 – Member ID = 6. The labels on both axes are presented in the format "ITM(cluster)",
where "cluster" indicates the subgroup to which the ITM belongs.
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CHAPTER 6

SELF-SUPERVISED LEARNING FOR CLUSTERING AGENTS

From : Liquidity takers behavior representation through
a contrastive learning approach (Ruan et al., 2023a)

R. Ruan, E. Bacry, J.-F. Muzy

Thanks to the access to the labeled orders on the CAC40 data from Euronext, we are able to analyze agents’
behaviors in the market based on their placed orders. In this study, we construct a self-supervised learning
model using triplet loss to effectively learn the representation of agent market orders. By acquiring this
learned representation, various downstream tasks become feasible. In this work, we utilize the K-means
clustering algorithm on the learned representation vectors of agent orders to identify distinct behavior types
within each cluster.
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6.1. Introduction

6.1 - Introduction

Deep learning has achieved great success in recent years, mainly due to advances in machine learning
algorithms and computer hardware. As a result, it has become an indispensable tool in a wide range
of fields, both in research and in practical applications. Specifically, in finance, deep learning has
been applied extensively to predict stock prices movements using limit order book data. This
technique is particularly effective in handling complex data which statistical models often struggle
to manage. Notable works in the recent literature include Sirignano and Cont (2019); Sirignano
(2019); Zhang et al. (2021, 2019).

In particular, contrastive learning (CL) is a powerful technique in deep learning that has led to
significant advances in representation learning. It has been widely applied, especially in vision
domain, as demonstrated by the success of works such as Chen et al. (2020); Grill et al. (2020);
He et al. (2020). In the domain of time-series analysis, CL has also shown great potential. For
example, Contrastive Predictive Coding (CPC) of Oord et al. (2018) employed a latent space to
capture historical information and predict future observations, and has demonstrated impressive
results in speech recognition tasks. In healthcare, authors in Mohsenvand et al. (2020) applied CL
on electroencephalogram data while Mehari and Strodthoff (2022) used it on electrocardiography
data. In finance, CL has been used for stock trend prediction (Hou et al., 2021), and financial time
series forecasting (Wu et al., 2020).

In financial markets, the collective actions of agents in the limit order book determines the macro-
scopic evolution of the market. Therefore, to fully understand the dynamics of a market, it is
crucial to comprehend the roles and strategies of individual agents. However, due to the challenge
of accessing confidential trading data, only a few studies have been conducted in the area of char-
acterizing market participants. For example, Brogaard et al. (2010, 2014) have studied limit order
book data with agents labeled as either High-frequency traders (HFTs) or Market makers (MMs).
Hagströmer and Nordén (2013) has analyzed the different behaviors of HFTs and MMs. With ac-
cess to agent identities, Kirilenko et al. (2017) classified the agents into HFTs, MMs, fundamental
buyers, fundamental sellers and opportunistic traders, and studied their behavior before and after
the flash crash of may 2010. A recent research in this area was conducted by Cont et al. (2023),
where the authors analyzed limit order book data from the broker view and grouped the agents
into four groups, for each they detailed descriptions of the properties. A study that deserves special
attention in our research is the work Cartea et al. (2023). In their study, the authors presented
statistical models designed to predict the behavior of trading algorithms using data from Euronext
Amsterdam. By extracting the coefficients from their prediction model, they identified three dis-
tinct categories of trading algorithms prevalent in the market: directional trading, opportunistic
trading, and market making.

In this chapter, our objective is to analyze and characterize the different behaviors of the agents.
More specifically, we will study successions of any fifty consecutive market orders placed by any
agent. Each order is defined by eight features (see Section 6.3), resulting in a sample matrix of size
50 ˆ 8. The inner structure of such a sample can be complex and challenging to represent using
classical methods. To address this challenge, we aim to learn a representation (i.e., embeddings)
that can effectively embed each such sample into a lower-dimensional vector space. We propose to
use a self-supervised contrastive learning approach using a triplet loss (Schroff et al., 2015). For
each "anchor" sample from an agent two other samples (not overlapping in time) are chosen :

˝ one (positive) sample from the same agent
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˝ one (negative) sample from another agent.
The pretext task, from which the embeddings are learned, consists in trying to identify the positive
sample (through the use of the triplet loss). All samples are taken over a two hours period of time
during the same day, so that the positive sample and the reference sample, corresponding from the
same agent and being close in time, can be considered hopefully as corresponding to the "same"
structure/strategy.

The learned embeddings can be utilized for various downstream tasks, such as clustering and clas-
sification. In this work, we will apply the K-means clustering algorithm to the learned embeddings,
by doing so, we aim to reveal the different strategies employed by agents and the development of
their strategies over time. To the best of our knowledge, we are the first to propose a contrastive
learning method on limit order book representation.

Outline. This chapter is organized as follows. In Section 6.2, we recall some important concepts
and terminology, including limit order book, liquidity makers and takers, and contrastive learning
with triplet loss. We will also properly formulate the main problem to be addressed in this chapter.
In Section 6.3, we describe the data used as well as the preprocessing steps. Section 6.4 presents the
neural network architectures, implementation information and evaluation metrics. We demonstrate
the importance of some features. In Section 6.5, we apply the K-means clustering algorithm, a
downstream task, to the learned embeddings. We analyze the properties of each cluster and the
clustering results of each agent. Finally, concluding remarks and discussions are provided in Section
6.6.

6.2 - Preliminaries

In order to provide a comprehensive understanding of the concepts and terminology used in this
chapter, we will begin by briefly reviewing several important concepts. These include concepts in
financial markets background, such as limit order books, liquidity takers, as well as a loss function
for contrastive learning, namely the triplet loss. At the end of this section, we will proceed to
formulate the main problem to be addressed in this study.

6.2.1 Limit order book

A limit order book (LOB) is an auction mechanism used in financial markets to record the buy
or sell orders placed by traders. These orders can be categorized into three major types: limit
orders, cancellation orders, and market orders.

A market order is an order to buy or sell a stock at the market’s current best available price,
which typically ensures an immediate execution. Conversely, a limit order is a buy or sell order at
a specific price, which cannot be executed immediately. This is because the current market quotes
do not match the trader’s desired target price. In this case, the limit order will join the queue in
the limit order book and wait until it can be executed at the desired price or a better one, unless
it has been canceled. The action to cancel a limit order corresponds to a cancellation order, which
removes an unfilled order from the queue. We refer the interested readers to the reference Gould
et al. (2013) for a very nice review of limit order book concepts.

Furthermore, it is important to provide definitions for aggressive trades and passive trades.
When agent α places a market order, it effectively can be seen as a match of two orders. They are
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respectively an existing limit order at price p in the queue placed by agent β, and a marketable
limit order placed by agent α that matches this price p. This market order can be seen as both
an aggressive trade for agent α and a passive trade for agent β. It is worth noting that these
terminologies may differ from other definitions that one can find elsewhere.

6.2.2 Liquidity takers vs. Liquidity providers

In financial markets, participants can be broadly classified into two categories : liquidity providers
and liquidity takers. Liquidity providers, also known as market markers, are the agents who place
limit orders on both sides of the market (buy and sell) and attempt to earn the bid-ask spread.
Conversely, liquidity takers, typically traders and investors, seek to earn profits from the price
movement of asset or use the price movement as a hedge to the other positions in their portfolio. In
traditional markets, market makers are usually designated by the market while in modern markets,
anyone can be a market maker. In fact the distinction between liquidity providers and takers is
not clear-cut.

In this chapter, we will focus on the the behavior of liquidity takers through the analysis of their
aggressive trades in the LOB. Later in this chapter, we will demonstrate that some highly active
liquidity takers are also significant liquidity providers. For instance, members 11, 12 and 24 in Fig.
6.3.1 can be considered as such agents.

6.2.3 Self-supervised learning with Triplet loss

Self-supervised learning (SSL) is a machine learning approach, which processes unlabeled data to
obtain useful representations that are helpful for various downstream tasks. Among self-supervised
methods, contrastive learning is a very popular technique, notably used for computer vision tasks
(for instance SimCLP (Chen et al., 2020), BYOL (Grill et al., 2020), MoCo (He et al., 2020),
Barlow twins (Zbontar et al., 2021)). Its aim is to learn a representation function that embeds
similar inputs close together and dissimilar inputs far apart. Over the years, the loss functions
used in contrastive learning have evolved from a simple comparison between one positive and one
negative sample (Chopra et al., 2005) to multiple positive and negative samples (Gutmann and
Hyvärinen, 2010; Oord et al., 2018; Sohn, 2016).

In this work, we apply our deep neural networks, which are equipped with the triplet loss, to learn a
representation function for limit order book data. The Triplet Loss was first introduced by Schroff
et al. (2015), where it was used for face recognition of individuals under varying poses and angles.
Since then, it has become a widely used loss function for supervised similarity tasks. As illustrated
by Fig.6.2.1, the fundamental idea behind the Triplet Loss is to learn a representation function fp¨q

that brings inputs that match (referred to as positive inputs) closer to the reference input (referred
to as the anchor) and pushes away inputs that do not match (referred to as negative inputs). The
triplet loss function can be defined as following :

Ltriplet “

N
ÿ

i“1
max

´

}fpXa
i q ´ fpXp

i q}2
2 ´ }fpXa

i q ´ fpXn
i q}2

2 ` γ, 0
¯

(L1)

where
- f : X Ñ Rd is a representation function that embeds an input to a d-dimensional Euclidean

space Rd.
- γ is a margin between positive and negative pairs, the margin value is added to push negative

samples far away.
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- Xa indicates Anchor sample, Xp indicates Positive sample, Xn indicates Negative sample.

Xa

Xn

Xp

Xa

Xn

Xp

Anchor Anchor

Positive Positive

Negative

Negative

Learning

Figure 6.2.1 – Triplet Loss illustration. The Triplet Loss minimizes the distance between the anchor
Xa and the positive Xp, and maximizes the distance between the Anchor Xa and the negative Xn.

6.2.4 Problem formulation

The objective of this work is to develop a robust method for representing a sequence of consecutive
market orders sent by the same agent. To this end, we introduce a novel approach that employs a
deep neural network with an LSTM architecture, equipped with a triplet loss function. Fig. 6.2.2
gives an illustration of an example framework (when d “ 2).

Time Member ID Features
09:10:01.001 101 **
09:10:03.356 101 **

… … **
09:21:02.760 101 **

xaAnchor

Time Member ID Features
10:05:59.10

2
302 **

10:09:30.30
9

302 **
… … **

10:30:20.43
0

302 **

xnNegative

Time Member ID Features
11:00:03.90

1
101 **

11:00:56.32
6

101 **
… … **

12:10:23.12
4

101 **

xpPositive

f

f

f

f(xa)
f(xp)

f(xn)

ℝ2

Figure 6.2.2 – Illustration of model learning. X is a sequence of consecutive market orders and fpXq

is its vector representation in R2. The triplet loss minimizes the distance between the samples from
the same agent }fpXpq ´ fpXaq}2 and maximize the distance between the samples from different
agents }fpXnq ´ fpXaq}2.

Since a sequence of orders is highly structural, determining the similarity between two sequences of
orders can be very challenging. However the Rd space is widely recognized and offers a straightfor-
ward measure of distance between two points. As a result, the representation function f establishes
a connection between the intricate order book space and a more comprehensible Rd space.

Once a comparison between two sequences of orders becomes possible, one can apply various down-
stream tasks. In this work, our focus lies in grouping these sequences of orders from different
agents, represented by their images in Rd, to several clusters. Through this clustering process, we
expect to uncover the trading behavior and strategy of these agents.

6.3 - Data Description

In this present work, we analyze the limit order book (LOB) of the front month 1 CAC40 index
futures contracts. The data was obtained from the Euronext market and spans a period of 300

1. The term "front month" refers to the nearest expiration date in futures trading.
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consecutive trading days, from January 6th, 2016 to March 7th, 2017, between 9:00 am and 5:00
pm each day. Let us again mention that this task focuses only on market orders in the LOB rather
than all types of orders.

We present a network that utilizes the Triplet Loss (L1) and takes consecutive market orders of
an agent as inputs. Through training this network, our goal is to obtain a robust representation
function that maps order book inputs to a lower-dimensional vector space. Similarity between two
order book inputs is determined based on whether they belong to the same agent or not.

Agents selection

Out of our 300-day dataset, we have identified 170 active Members. Despite this, the majority of
these members either have limited daily order volume or show only brief periods of activity. In this
study, we only consider Members who have placed at least 200 market orders each day on more
than 45 separate trading days. This selection process results in a pool of 30 highly "market order"
active Members. Remarkably, each of these selected agents has placed no less than 15,000 market
orders during the designated period.

Once more, we only consider the aggressive trades (market orders) executed by an agent during
a period and do not include the passive trades, which are executed by market orders placed by
another agent that fully or partially match the limit orders of this agent. However, it’s important
to note that passive trades can have a significant impact on an agent’s behavior, and we plan to
address this issue in our future work.

In order to have a deep insight into the 30 members that we selected and measure how much these
30 members are weighted in the market, we have conducted the following statistics.

˝ Let us define the "actions at L1" as all the orders (limit, cancellation and market) which are
executed at the best bid or best ask price levels. The previous 30 selected members (which
place the most market orders) are in fact among the top 40 most active agents at L1, with
the top 20 most active agents included in this group. In simpler terms, these 30 selected
members can be considered the most influential agents at L1.

˝ We also provide the ratio of the number of passive trades to the number of aggressive trades for
each agent in Fig 6.3.1, in order to gain a better understanding on the visible of these agents.
A high passive-aggressive ratio indicates a more market-marker-like agent, who provides more
liquidity than takes liquidity from the market.

Figure 6.3.1 – The ratio of passive trades to aggressive trades for each Member

These statistics demonstrate that by focusing on those who place significantly aggressive trades, we
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have effectively taken into account the majority of the most important active market participants.

Order features and Input data

In this work, we have chosen to describe a market order x by the following features,
- t (timestamps): the timestamp which records the time point when an order is executed
- qT (Quantity): the amount of stocks traded (this value is always equal to or less than the

size proposed by the trader)
- s (Side): whether an order is a buy or sell order
- M (Limit to trade modification): the specific type of action, M “ 1 represents the modifica-

tion of an existing limit order to make it aggressive, while M “ 0 signifies the placement of
an aggressive order that is immediately executed

- P b
1 pt´q: the best bid price immediately before the execution of this order

- P a
1 pt´q: the best ask price immediately before the execution of this order

- Qb
1pt´q: the volume of limit orders at the best bid (best bid queue size)

- Qa
1pt´q: the volume of limit orders at the best ask (best ask queue size)

It results that an order is represented as an 8-dimensional vector. Each input X is a sequence of 50
consecutive market orders executed by one agent α, X “ pxiqi“1,2,...,50, corresponding to a matrix
in R50ˆ8. The set of inputs labeled by α is denoted by Yα. In the Triplet Loss approach, a single
input is composed of Xa, Xp, Xn, where Xa and Xp (note that Xa ‰ Xp) come from the same
agent α, while Xn is sourced from a different agent β. In other words, Xa and Xp belong to the
set Yα, while Xn belongs to another set Yβ, with β ‰ α. The triplets are constructed locally in
time, the positive sample Xp and the negative sample Xn are required to be "temporally close" to
the anchor sample. In this work, two samples are considered "temporally close" if the time interval
between their first order’s timestamps is less than 2 hours.

The use of a local model in this work is motivated by the dynamic nature of agent behavior. As
the goal is to learn the representation of sequences of orders of an agent, it is expected that an
agent’s strategy may change over time. In such a scenario, it would not be appropriate to force
inputs that are far apart in time to match, even though they are from the same agent. By utilizing
a local model, the contrastive learning approach is leveraged to better capture the dynamic nature
of agent behavior.

6.4 - Implementation details and numerical results

In this study, we employ Long Short-Term Memory (or simply LSTM) to process the sequences of
market orders. LSTM is a variation of RNN which was designed to address the problem of vanishing
gradients in standard RNNs (Hochreiter and Schmidhuber, 1997). Compared to another variant
Gated recurrent unit (GRU), LSTM has a more complex structure. It includes memory cells, input
gates, forget gates and output gates. Specifically, in this work, we applied stacked LSTMs, which
are well-known for their ability to handle more complex models and deliver improved performance
compared to the simple LSTM architecture (Sutskever et al., 2014).

6.4.1 Inputs and Hyperparameters

We conducted tests on multiple sets of input sample features, and we present three of these sets in
Table 6.4.1. In the next subsection, we will introduce an evaluation metric and demonstrate that
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the best set of features is the (Basic+M+QS). Additionally, we performed tests with an extended
set of features, including the queue sizes at level 2 and 3 in addition to the eight features, however
we found that they do not exert a significant impact on the current task. As a result, we conclude
that these eight features listed in Table 6.4.1 are sufficient for our task.

Features Basic Basic+M Basic+M+QS

Time (interevent time) ✓ ✓ ✓

Quantity ✓ ✓ ✓

Side (buy or sell) ✓ ✓ ✓

Limit to trade modification ✗ ✓ ✓

Best bid price ✓ ✓ ✓

Best ask price ✓ ✓ ✓

Best bid qty ✗ ✗ ✓

Best ask qty ✗ ✗ ✓

Table 6.4.1 – 3 types of input : Basic, Basic+M, Basic+M+QS. "M" stands for limit to trade
modification and "QS" stands for the best level queue sizes.

The LSTM network used in this work has a stacked architecture with two hidden layers. The
first layer consists of 100 units, while the second layer has 40 units. The encoded representation
of the input sequence is obtained from the last output of the second layer, i.e., the dimension of
the embedding space is d “ 40 (We tried also other smaller output dimensions but they did not
perform as well). The margin in triplet loss γ was set to 0.5. See Fig 6.4.1 for a model architecture
illustration.

Input : triplet pXa, Xp, Xnq

Encoder : f “ f2 ˝ f1 with
#

f1p¨q “ LSTMpp Ñ 100q

f2p¨q “ LSTMp100 Ñ 40q

Output : pfpXaq, fpXpq, fpXnqq

Loss : max
`

}fpXaq ´ fpXpq}2
2 ´ }fpXaq ´ fpXnq}2

2 ` γ, 0
˘

(NN1)

GRU(N × #Features)
Input Output

Dense
(N × 100)

Dense

ReLU

Units = 100

TanH

Units = 40

TanH

LSTMLSTM
(40)

x f(x)

Figure 6.4.1 – Encoding model architecture schema for one sample.

The PyTorch library (Paszke et al., 2019) was primarily used to implement the neural networks.
To train the networks, we used the Adam optimizer (Kingma and Ba, 2015) with a learning rate of
0.002 and a batch size of 64. The training process was conducted on a single NVIDIA GPU Tesla
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P4. The training process was stopped after 500 epochs. And early-stopping was not implemented
due to the the effectiveness of the triplet loss in preventing overfitting.

6.4.2 Numerical results

To prevent any data leakage, the 300 consecutive trading days are divided into two distinct sets,
namely training days and test days. The numbers of training days and of test days follow a ratio
of 4:1. Therefore the training inputs T0 and the test inputs T1 are extracted from 240 training days
and the remaining 60 test days respectively. We introduce an evaluation metric for the test data
T1, called the failure rate. This metric is defined by the following formula:

r “
| ti P t1, 2, ..., Nu such that }fpXa

i q ´ fpXn
i q} ă }fpXa

i q ´ fpXp
i q}u |

N

where N “ |T1|, and the test data T1 is defined as T1 “
␣

pXa
i , X

p
i , X

n
i q, i “ 1, 2, ..., N

(

. More
precisely, when considering a particular agent α, the failure rate can be expressed as follows :

rα “
| ti P t1, 2, ..., Nu such that Xa

i P Yα and }fpXa
i q ´ fpXn

i q} ă }fpXa
i q ´ fpXp

i q}u |

| ti P t1, 2, ..., Nu such that Xa
i P Yαu |

Here | ¨ | stands for the cardinality of a set. The quantity p1 ´ rαq is the proportion of triplets
where the positive and negative sample are correctly distinguished.

Table 6.4.2 gives the unconditional failure rates of the 3 feature sets. It reveals that the action
type and the best bid/ask price level queue sizes play a crucial role in this task. The evaluation
comparison, conditional on agents, for these feature sets is illustrated in Figure 6.4.2.

Features Basic Basic+M Basic+M+QS

Failure rate (r) 8.03% 6.72% 5.32%

Table 6.4.2 – Evaluation results for the 3 types of input : Basic, Basic+M, Basic+M+QS.

Figure 6.4.2 – Failure rate for each agent in different scenarios.
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6.5 - Downstream task: Clustering

So far, we have acquired a learned representation function for market order sequences. In this
section, we will test this representation in a downstream task that consists in performing a clustering
of agent behavior.

Cluster analysis is the task of grouping or segmenting a collection of objects into subsets or "clus-
ters", such that the objects within the same cluster are more similar to each other than those
assigned to different clusters (see 14.3 in Hastie et al. (2009)). As detailed below, we will apply
K-means cluster analysis to the encoded orderbook samples. To ensure a comprehensive analysis,
we extract over 3000 samples for each agent from the market orders. Trough the neural network
equipped with triplet loss, we obtain an encoder function, f , which can map a sequence of market
orders to a lower dimensional vector that is interpretable. With the clustering of these lower dimen-
sional vectors, we hope to uncover patterns that are not possible to discover through traditional
statistical methods. More precisely, we aim to group the sequences of market orders by different
agents into several subsets and each subset will be considered as a trading strategy. Let us note
that an agent can belong to multiple clusters and a cluster may encompass samples from different
agents.

6.5.1 K-means clustering

K-means clustering (Lloyd, 1982; MacQueen, 1967) is one of the most popular clustering methods.
Given a set of observations py1,y2, ...,ynq P Rnˆd, K-means clustering seeks to minimize the within-
cluster sum of squared deviations by assigning each observation yj to its nearest cluster center.
To formulate the task mathematically, K-means algorithm assigns these observations to k˚ clusters
tY1, Y2, ..., Yk˚u by solving the following optimization problem. The cluster centers, denoted by µi,
are updated iteratively until convergence.

min
k˚
ÿ

i“1

ÿ

yPYi

}y ´ µi}
2

In practice, in order to apply K-means, one must select the number of clusters k˚. In this work, we
aim to apply K-means clustering to group the encoded orderbook samples into subsets of similar
strategies. In order to provide a comprehensive view of strategies, it is desirable to have a relatively
small number of clusters compared to the total number of agents. A variety of methods have been
proposed in the literature to determine the number of clusters k˚, such as the "Elbow" method,
the gap statistic, the Silhouette method, etc. In this work, we employ the "Elbow" method to
determine the optimal number of K-means clusters, which is set to 7. Figure 6.5.1 displays the
K-means clustering result.

One can remark that several Members belong to only one cluster, such as members 1,11,12,17 and
22. It is not surprising as these members have consistent and especially low failure rate (as shown
in Figure 6.4.2), showing that they are rather distinctive. On the other hand, many agents belong
to several clusters which may be interpreted by the fact that their strategy is changing over time.

6.5.2 Characterizing clusters by indicators

In order to have a deeper understanding of these clusters and how they differ from one another,
we will evaluate them using a set of indicators. To start, we present each indicator and plot the
evaluation of input data for each cluster based on this indicator. These box plots show the quantile
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Figure 6.5.1 – K-means clustering results. Each agent is represented by a vertical bar, which may
consist of one or multiple segments. Each segment corresponds to the agent’s samples assigned to
a specific cluster.

range (25th percentile, median and 75th percentile) for the inputs of each cluster.

Frequency: If δt stands for the average inter-event time (calculated as 1
49pt50´t1q), the frequency

indicator
60
δt

represents the average number of trades per minute. The higher the value, the more
frequently market orders are being placed by the agent.

Figure 6.5.2 – Box plot of trade frequency data for samples within each cluster. The median is
represented by the middle line. The box encompasses the lower (25%) and upper (75%) quartiles.
The whiskers, extending from the box, indicate the range from the minimum to the lower quartile
and from the upper quartile to the maximum values.

Size: Let q̂i indicate the size of ith order, the average order size is denoted by
1
50

50
ř

i“1
q̂i. Ad-

ditionally, we introduce another term called the average trade size
1
50

50
ř

i“1
qi where qi is the filled

quantity of ith market order. It is worth noting that q̂i and qi are not always the same, q̂i repre-
sents the intended trade size, while qi represents the actual executed trade size, therefore qi ď q̂i.
With the two terms, we will be able to construct another indicator fill rate, which is calculated as
50
ř

i“1
qi{p

50
ř

i“1
q̂iq (always ď 1).
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Figure 6.5.3 – Box plot of trade size (top) and fill rate (bottom) data for samples within each
cluster.

Spread: The average spread value is defined as
1
50

50
ř

i“1
pP a

1 pti´q ´ P b
1 pti´qq, where P a

1 pti´q(resp.

P b
1 pti´q) is the best ask (resp. bid) price before the execution of the ith order. A low spread value

indicates a more liquid market.

Figure 6.5.4 – Box plot of bid-ask spread immediately before trades for samples within each cluster.

Queue size (QS): The indicator queue size is calculated as
1
50

50
ř

i“1
Qsi

1 pti´q. si stands for the

side of the ith order (buy or sell), and Qsi
1 pti´q denotes the volume of the available orders at the

best level on the same side before the ith order was executed. Some traders may choose to place
a market order when the available number of limit orders is low, in order to avoid missing out on
potential gains.

We also define another indicator (called opposite queue size (opposite QS)) as
1
50

50
ř

i“1
Q

sc
i

1 pti´q.

sc
i represents the opposite side of the ith order (buy or sell). Qsc

i
1 pti´q is the volume at the best

level of the opposite side from where the trade occurs. For example, if order i is a buy order si “ a,

140



Chapter 6. Self-supervised learning for clustering agents

Q
sc

i
1 pti´q is the queue size at best bid limit. A high value of opposite queue size implies that if

the orders were placed as limit orders, they would take a long time to be executed due to the long
waiting list. We may apply this indicator to measure the level of impatience displayed by an agent,
which can serve as a valuable sign of aggressive actions by a market maker.

To gain a more comprehensive understanding, we also analyzed the Related queue size (RQS) and
the opposite related queue size (Opposite RQS), in addition to QS and opposite QS. RQS and

opposite RQS are respectively defined by
1
50

50
ř

i“1
Qsi

1 pti´q{qi and
1
50

50
ř

i“1
Q

sc
i

1 pti´q{qi. A value of RQS

close to 1 indicates that the market orders are executing almost all the best level orders. Moreover,
the price is moving after these trades when RQS “ 1.

We are inspired to include these indicators based on the observation that the arrival rate of order
flows is influenced by the queue sizes. This property, named Queue Reactive, has been studied in
several works Huang et al. (2015); Wu et al. (2019).

Figure 6.5.5 – Within each cluster, box plot illustrate the queue sizes of samples. On the left side,
the figures represent the queue sizes at the side where trades occur, while the right side figures
stand for the queue sizes on the opposite side. The top figures show the actual queue sizes, while
the bottom figures display the queue sizes relative to the trade size.

Direction: We represent the direction of an input using the formula |
50
ř

i“1
qi ¨ si|{p

50
ř

i“1
qiq, where

si is 1 if the order is a buy order, otherwise si is -1. We take the absolute value in the formula
because the crucial information we are interested in is whether the input is directional rather than
the direction itself. A direction value close to 0 indicates a balanced input, while a value close to 1
indicates a highly directional input. Specifically, a value of 0 indicates that the buy and sell orders
are evenly distributed, whereas a value of 1 indicates that all orders are on the same side.
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Figure 6.5.6 – Box plots of direction indicators for samples within each cluster

Limit to trade modification: The final indicator we use is the proportion of modification in

all the market orders, calculated as
1
50

50
ř

i“1
Mi. Here Mi indicates whether the ith market order is

a limit to trade modification order. Let us note that M “ 1 means that the order was modified
from an existing limit order to make it aggressive, while M “ 0 means that the order was added
aggressive.

Figure 6.5.7 – Box plots of modification proportion for samples within each cluster

Based on all previous indicator analysis, we can summarize the characteristics of these clusters in
the following table 6.5.1, by using a rating system ranging from (+) to (+++).

Notably, we see that
˝ Cluster 4 : This cluster exhibits low frequency, minimum spread, and zero modification. It

is dominated by agents 10, 17, and 22. Referring to Figure 6.3.1, we observe that these three
agents have almost no passive trades. Therefore in Cluster 4, agents primarily function as
speculators.

˝ Cluster 6 : This cluster demonstrates low frequency, high bid-ask spread, and a significant
directional indicator. Agents within this cluster perform directional trading.

˝ Cluster 7 : This cluster is characterized by a high opposite queue size, non-obvious direction
and significant modification. Agent 11 and Agent 12 are the main contributors to this cluster.
Examining Figure 6.3.1, we notice that these two agents exhibit a high passive-aggressive
ratio, indicating that Cluster 7 represents the impatient behavior of market makers.

6.5.3 Delving into details of each agent

To further analyze the behavior of agents in different clusters, we use the indicators mentioned
earlier to evaluate their samples in each cluster. We select a few agents as examples to illustrate
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cluster 1 2 3 4 5 6 7

Frequency + +++ ++ + + + ++

Trade size +++ ++ ++ ++ + ++ +

Fill rate + + ++ ++ ++ ++ +++

Spread ++ + ++ + +++ +++ ++

QS ++ ++ ++ + +++ +++ ++

Opposite QS + + ++ ++ ++ ++ +++

Direction + + +++ + ++ +++ +

Modification + ++ + ++

Table 6.5.1 – Evaluation of the clusters based on the above indicators (from none() to low (+) to
high (+++)

the differences in their behavior across different clusters.

The first example is Member 9 which is, according to the results of Fig.6.5.1, assigned to clusters
1,2 and 3. Figure 6.5.8a provides insight into its behavior within these clusters. In cluster 2, Agent
9 engages in high-frequency trading, typically when the queue size is very low. When we plot the
time periods of these samples throughout the trading day (as shown in Figure 6.5.8b), we observe
that in the morning, Agent 9 preferentially behaves as Cluster 1, while in the afternoon, it exhibits
behaviors similar to those of Cluster 2.

Another example is Agent 20, globally belongs to the clusters 3,5 and 6. We can observe that the
samples of Agent 20 that belong to the cluster 3 have a higher frequency and are more likely to be
active when the market is liquid as indicated by a smaller spread. In contrast, in cluster 5, with
the significant modifications and lower direction index values, the agent behaves more like a market
maker. (see Figure 6.5.9)

To visualize the evolution of agents’ behaviors over time, we present two examples, namely agent
6 and 10, respectively in Figure 6.5.10 and 6.5.11. During the period from January 2016 to March
2017, it is observed that Agent 6 exhibits a decrease in activity while maintaining a relatively
consistent behavior. On the other hand, it is observed that Agent 10 significantly changes the
behavior twice during this period. The first time of change occurs around March 2016, followed by
another one around December 2016.

6.5.4 Clusters visualization

A popular statistical method for visualizing high-dimensional data is the t-distributed stochastic
neighbor embedding (t-SNE) (Van der Maaten and Hinton, 2008). It is a non-linear technique
that maps high-dimensional data to a low-dimensional space while preserving the structure of
the original data. However, in practice, t-SNE can be computationally expensive and struggle
with high-dimensional data. Therefore, it is often recommended to first use another dimensionality
reduction method, such as Principal component analysis (PCA), to reduce the number of dimensions
to a reasonable amount before applying t-SNE. Figure 6.5.12 shows the results of applying t-SNE
to 50,000 order book samples from the thirty agents.
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(a)

(b)

Figure 6.5.8 – Agent 9. (a) Each figure corresponds to an indicator. Within each figure, the three
vertical bars represent the performance of samples from Agent 9 within each cluster. (b) Each
figure corresponds to a cluster. Within each figure, the histogram plot displays the distribution of
samples selecting times.

Based on the t-SNE visualization, we have observed the following noteworthy observations:
˝ Agent 11 and 12 are assigned to the same cluster, while their images are almost disjoint. This

suggests that these two agents share similarities with respect to other agents in the dataset,
but the difference between them is still distinct. Similar observations can be made for Agent
21, 24 and 26, although their dissimilarities are less clear compared to Agents 11 and 12.

˝ Even though Agent 1, 3, 6 and 8 all have a significant portion distributed within cluster
2, there is a higher degree of similarity among Agent 3,6 and 8 compared to the similarity
between Agent 1 and the other three agents.

6.6 - Conclusion and Discussion

In this chapter, we present a novel approach for limit order book analysis by designing a contrastive
learning method with triplet loss. Our study uses the CAC40 index future data provided by
Euronext Paris, spanning from January 2016 to February 2017. We make the assumption that
individual agents maintain consistent behavior over short periods, while different agents exhibit
distinct behaviors. By training neural networks, we obtain vector representations of sequences of
market orders from the same agent.

We employ K-means clustering on the set of obtained representation vectors, in order to group the
sequences of market orders effectively. This clustering cut the set to seven clusters. Subsequently,
we define various indicators such as trading frequency, spread to characterize the sequences within
each cluster. This allows us to identify distinct market marker clusters as well as clusters associated
with directional agents. Furthermore, we analyze the behavior of each agent across different clusters
based on these indicators, offering valuable insights into their trading behavior and its evolution
over time.
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(a)

(b)

Figure 6.5.9 – Agent 20 : (a) Each figure corresponds to an indicator. Within each figure, the three
vertical bars represent the performance of samples from Agent 20 within each cluster. (b) Each
figure corresponds to a cluster. Within each figure, the histogram plot displays the distribution of
samples selecting times.

In future research, we plan to expand our analysis to include both aggressive and passive trades,
thus providing a more comprehensive understanding of the market. Inspired by the work Cartea
et al. (2023), we also intend to extend the order features by incorporating additional factors such
as deep order volume in the limit order book and agent inventories.

Furthermore, the learned representation vectors can be applied to various downstream tasks. For
instance, in market forecasting, the embedding vectors from active agents can effectively repre-
sent the market context. Additionally, these vectors can be utilized for agent-based generation of
synthetic market data, offering new possibilities for market simulation and analysis.
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Figure 6.5.10 – 2-D scatter plot. X-axis represents the dates and the y-axis represents the hour
in a day. In this plot, each point stands for the occurring time of a selected sample and its color
shows the cluster that it belongs to.

Figure 6.5.11 – 2-D scatter plot. X-axis represents the dates and the y-axis represents the hour
in a day. In this plot, each point stands for the occurring time of a selected sample and its color
shows the cluster that it belongs to.
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Figure 6.5.12 – t-SNE visualization of 50,000 samples : the colored parts in each subfigure represent
the samples of a given agent, the different colors indicate the clusters to which the agent belongs
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CONCLUSION AND PERSPECTIVES

The objective of this thesis was to analysis and model the high-frequency data in financial markets
using Hawkes processes and deep learning methods. The database used in this study comprised
order book data of 40 stocks as well as the futures contract of the CAC40 index, all sourced from
the French Euronext market.

Before delving into the main topics, Chapter 2 was dedicated to establishing essential ground-
work. This chapter provided a comprehensive introduction to topics relevant to this thesis, such as
financial markets, Hawkes processes and neural networks.

The heart of this thesis was Chapters 3 to 6, where each individual chapter corresponded to a project
during my Ph.D. studies. Chapter 3 was devoted to the construction of a non-linear Hawkes process
model for spread dynamics, referred to as the "State-Dependent Spread Hawkes" model (SDSH).
Comparing to the classical linear Hawkes model, this model integrated a "state-dependent" term
into the intensity function. This term served several purposes: (i) it guaranteed the positivity of
the spread value, (ii) it adjusted the intensity according to the spread state. In this model, we also
allowed multiple jump sizes of the spread. With exponential kernels and some assumptions on the
state-dependent term, we demonstrated the ergodicity property of this model, for a specific case.
Estimations are based on the Maximum Likelihood Estimation method. We calibrated this model
using the order book data of CAC40, and the results showed that the model was able to accurately
reproduce diverse statistical properties of the spread. As a direction of applications, we tried to
forecast the spread using this model. Comparing with other baseline models, our model showed a
better performance in terms of forecasting accuracy, especially for the short-term forecast.

Chapter 4 introduced two "Hawkes process with shot noise" models, originally designed to dis-
entangle exogenous and endogenous factors of correlation between two assets’ prices. These two
models are respectively named the "latent-behavior" model and the "latent-information" model.
In this chapter, we concentrated mainly on the latent-behavior model. This model assumed the
existence of a shot noise process, which encoded latent behaviors of agents. The latent behaviors
encompassed instances where some agents are engaged in trading both assets at the same time.
We proved some limit theorems for this model, by using the same techniques as in Bacry et al.
(2013b). Only one section was devoted to the introduction of the latent-information model, which
as well incorporated a shot noise process. However, the shot noise process in this second model
represented news events. In empirical applications, we proposed to use the non parametric Hawkes
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cumulant estimator. This method was proven to be effective for both the latent-behavior and
latent-information models.

While the market participants analyze the market and make decisions based on price movements,
regulators and exchanges are interested in the strategies and behaviors of agents. From Chapter 5,
our focus shifted towards characterizing the agent behaviors by applying deep learning approaches.
As each order was labeled with the agent identity who placed it, we proposed to identify an agent’s
behavior by sequences of consecutive orders placed by this agent. Chapter 5 employed a supervised
learning method in order to categorize these sequences of orders. The numerical results on CAC40
Future data showed that the agents in the market performed differently and our model could
accurately classify them. Through a comparison of different sets of features for each order, we
found an optimal approach for feeding the model with the most relevant information.

Based on the work of Chapter 5, we established a more realistic and applicable task in Chapter
6. While it is not obvious to compare agent behaviors, our goal was to develop an encoder which
maps agent behaviors to a Euclidean space Rn which is a familiar mathematical space. We applied
a self-supervised learning method equipped with a triplet loss function for this purpose. During
training, the encoder learned to map two similar agent behaviors to nearby points in Rn and two
dissimilar behaviors to distant points. To clarify, in our model, a agent’s behavior is represented
by a sequence of market orders. Two behaviors (or two sequences of orders) were considered
similar if they originated from the same agent and occurred within a close temporal proximity
(less than 2 hours) while they were dissimilar if they belonged to different agents. Thanks to the
acquired encoder, comparison of order sequences became possible. Subsequently, we applied the K-
means clustering algorithm on the representation (in Rn) of order sequences, which grouped order
sequences (i.e., agent behaviors) into different clusters, with each cluster representing a unique
trading behavior.

To summarize, our research involved the development of models based on Hawkes processes to
capture Level 1 events in Limit Order Book, and the utilization of deep learning methods for the
analysis and characterization of agent behaviors. We believe that our contributions have added
value to both the academic and industrial communities. Nevertheless, like any scientific research,
our work raises new questions and opens doors to new directions. In future studies, we can extend
the previous work and explore new directions as follows.

The State-Dependent Spread Hawkes model (SDSH) can be extended in several ways. One im-
mediate avenue for improvement lies in its application scope. In this thesis, we focused on four
assets with relatively small spreads. Broadening the model’s application to assets with larger mean
spreads would provide a richer understanding of the "state-dependent" elements. At the same time,
we aim to delve deeper in the predictive capabilities of the model, as mentioned in Chapter 3.
Furthermore, there are theoretical aspects to consider, as the demonstration of stationarity for the
general SDSH models is still missing. The above points are based on the existing SDSH model; of
course, we can also make adjustments to the model. It is clear that the intensity of spread jumps
depend on the queue size, meaning that a higher number of orders at the best levels reduces the
likelihood of spread value changes. Thus, to enhance the model’s capacity, we can incorporates the
queue sizes into the state-dependent terms.

The development of the Hawkes process with shot noise model is an ongoing work. In Chapter 4,
we focused on the the theoretical aspects of this model and its estimation using synthetic data. In
future wok, we will apply this model on diverse range of assets across different markets. On the other
hand, regarding estimation techniques, we can also try other methods, such as the Expectation-
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Maximization (EM) algorithm. In Section 4.C, we provided an overview of the potential application
of the Sequential Monte Carlo EM algorithm. However, it’s important to note that we have not
yet implemented this algorithm nor established its convergence properties. This remains a subject
of our ongoing research efforts.

As to the deep learning methods for analyzing agent behaviors, our approach will continue to
build upon the techniques outlined in Chapter 6. In our future research, we have plans to expand
our input data by incorporating additional features, including: (i) providing both aggressive and
passive trades, (ii) integrating deeper order volume and agent inventories, (iii) expanding our
scope to include a broader range of agents, rather than just the market takers. Furthermore, the
learned representation vectors of agent behaviors can be applied to a wide range of downstream
tasks. Beyond these applications, we can also address more challenging problems related to agent
behaviors in the market. At the macroscopic level, we want forecast the trading volume of agents,
or predict whether they are net buyers or net sellers. At the microscopic level, we can try to predict
the next order of an agent, including its price level, direction (buy or sell), and timing, based on
their previous order history.
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MOTS CLÉS

Microstructure du marché, Carnet d’ordres, Processus de Hawkes, Réseaux neuronaux

RÉSUMÉ

Cette thèse est consacrée à l’étude de la microstructure du marché dans les marchés électroniques, en mettant
l’accent sur deux sujets clés. Le premier sujet concerne la construction de deux modèles pour les événements
de Niveau 1 dans le carnet d’ordres, en utilisant des approches basées sur des modèles statistiques. Le pre-
mier modèle consiste en un processus de Hawkes non-linéaire pour modéliser la dynamique du bid-ask spread,
appelé le modèle "State-Dependent Spread Hawkes". En intégrant les tailles des sauts du spread et sa valeur
dans la fonction d’intensité, ce modèle est capable de capturer diverses propriétés statistiques du spread. Le
second modèle, appelé "Hawkes process with shot noise", est utilisé pour séparer les sources de corrélation en-
dogènes et exogènes entre deux prix d’actifs. Pour ce faire, ce modèle suppose l’existence d’un processus latent
(shot noise), représentant des comportements d’agents spécifiques non directement observables sur le marché.
Théoriquement, des théorèmes de limite sont démontrés et dans la pratique, l’estimation est facilitée par une
technique d’estimation non paramétrique.
Le second sujet concerne l’analyse et la caractérisation des comportements des agents sur le marché financier,
en utilisant des approches basées sur des réseaux neuronaux profonds. Ce sujet comprend deux tâches.
La première tâche consiste à classifier les agents en fonction de leurs ordres passés, grâce à une approche
d’apprentissage supervisé. La deuxième tâche vise à apprendre la représentation des comportements des
agents, en utilisant un modèle d’apprentissage auto-supervisé fondé sur la triplet loss. Ces représentations
apprises nous permettent d’appliquer l’algorithme de clustering K-means pour identifier des types de com-
portements distincts au sein de chaque groupe et ainsi analyser les comportements des agents.

ABSTRACT

This thesis is devoted to the study of market microstructure in electronic markets, focusing on two key topics.
The first topic concerns the construction of two models for Level 1 events in Limit Order Book, using model-
driven approches. The first model is a non-linear Hawkes process for modeling spread dynamics, referred
to as the "State-Dependent Spread Hawkes" model. This model, integrating spread jump sizes and spread
state into intensity, can capture a range of statistical properties of the spread. The second model, called the
"Hawkes process with shot noise" model, is used to disentangle the endogenous and exogenous sources of
correlation between two asset prices. To do so, this model assumes the existence of a latent shot noise process,
representing specific agent behaviors not directly observable in the market. Theoretically, limit theorems are
demonstrated and in practice, the estimation is facilitated through a non-parametric technique.
The second topic involves analysis and characterization of agent behaviors in the financial market, by employ-
ing data-driven approaches that relies on deep neural networks. This topic includes two tasks. The first task
is to classify agents, based on their placed orders, through a supervised learning approach. The second task is
to learn the representation of agents’ behaviors, using a self-supervised learning model based on Triplet loss.
These learning representations allow us to apply the K-means clustering algorithm to identify distinct behavior
types within each cluster and therefore analyze the behaviors of agents.

KEYWORDS

Market microstructure, Limit Order Book, Hawkes processes, Neural networks
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