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est suffisante pour qu'un graphe signé admette un homomorphisme à pK 6 , M q.

Résumé

Un graphe signé est un graphe G accompagné d'une fonction σ : EpGq Ñ t`, ´u. La coloration et l'homomorphisme des graphes sont deux des problèmes au coeur de la théorie des graphes, et ces notions et problèmes peuvent être naturellement étendus aux graphes signés. Dans cette thèse, nous introduisons deux notions duales: la coloration circulaire des graphes signés et le flot circulaire dans les graphes signés mono-orientés. Nous explorons les paramètres correspondants: le nombre chromatique circulaire et l'indice de flot circulaire sur certaines classes de graphes signés. L'étude s'inscrit dans le cadre du problème de 2k`1 k -flot circulaire de Jaeger et de sa conjecture duale de Jaeger-Zhang sur la cartographie des graphes planaires de grande maille aux cycles impairs. De plus, notre travail comble l'écart de parité en introduisant les analogues bipartis de ces conjectures.

Dans la premèire partie de la thèse, nous étendons la notion de coloration circulaire des graphes aux graphes signés, comme un raffinement de la 2k-coloration des graphes signés de Zaslavsky. Nous développons des outils, par exemple, des cliques circulaires signées, des cliques circulaires bipartis signées et des indicateurs signés, pour déterminer le nombre chromatique circulaire de graphes signés. Nous fournissons des bornes sur le nombre chromatique circulaire de plusieurs classes importantes de graphes signés: les graphes simples d-dégénérés signés, les graphes simples planaires bipartis signés, les graphes simples planaires signés et les graphes simples signés dont le graphe sous-jacent est k-colorable avec grande maille arbitraire.

Dans la deuxième partie, en tant que notion duale de la coloration circulaire des graphes signés, nous introduisons la notion de flot circulaire dans les graphes signés mono-orientés. Ceci est différent du concept largement étudié des flots dans les graphes signés biorientés. Nous adaptons et étendons les idées de la théorie des flots sur les graphes aux graphes signés. Nous fournissons une série de résultats d'indices de flux de graphes signés avec des conditions d'arête-connectivité données. En particulier, la condition de p6p ´2q-arête-connectivité s'avère suffisante pour qu'un graphe eulérien signé admette un 4p 2p´1 -flow circulaire. Lorsqu'il est limité aux graphes planaires, nous prouvons un résultat plus fort: tout graphe planaire biparti signé de maille négative au moins 6p´2 est circulaire 4p 2p´1 -colorable. C'est jusqu'à présent la meilleure borne de maille négative de l'analogue biparti de la conjecture de Jaeger-Zhang.

La troisième partie se concentre sur le problème d'homomorphisme des graphes planaires signés (bipartis). Nous fournissons d'abord une borne supérieure améliorée et exacte sur le nombre chromatique circulaire des graphes simples planaires bipartis signés en utilisant le nombre de sommets comme un paramètre. Deuxièmement, motivés par une reformulation du théorème des 4 couleurs, avec la méthode de potentiel nouvellement développée, nous prouvons une borne inférieure de la densité d'arêtes des C ´4-graphes signés critiques, et par conséquent, nous prouvons que tout graphe planaire biparti signé de maille négative supérieure au égale à 8 admet un homomorphisme à C ´4 et que cette limite de maille négative est la meilleure possible. Troisièmement, en utilisant un résultat de coloration des arêtes dont la preuve est basée sur le théorème des 4 couleurs, nous montrons que tout graphe planaire biparti signé de maille négative supérieure au égale à 6 admet un homomorphisme à pK 3,3 , M q, qui pourrait être considéré comme un analogue du théorème de

Introduction en français

Un des résultats les plus célèbres de la théorie des graphes est le théorème des quatre couleurs. En 1852, le mathématicien Francis Guthrie a essayé de colorier une carte des cantons d'Angleterre de sorte que deux région partageant une frontière commune reçoivent des couleurs différentes. Il a alors conjecturé que quatre couleurs suffisaient toujours pour colorier de cette façon une telle carte. Son frère Francis Frederick a transmis la question à son professeur Augustus de Morvan. Celui-ci a contribué ensuite à populariser ce problème, qui est devenu le problème bien connu des quatre couleurs. De nombreuses tentatives et preuves erronées ont eu lieu pendant le siècle suivant jusqu'en 1976 et la preuve de deux mathématiciens, Kenneth Appel et Wolfgang Haken. Ce fut une des premières preuves assistées par ordinateur, car elle nécessitait la vérification d'un grand nombre de configurations. La preuve par technique de déchargement de 1996 par Neil Robertson, Daniel P. Sanders, Paul Seymour et Robin Thomas, bien qu'ayant réduit le nombre de configurations, n'est toujours pas vérifiable par un être humain.

C'est pourquoi, 170 and après sa formulation, trouver une preuve alternative vérifiable par l'homme (voire élégante) au théorème dès quatre couleurs est toujours une question importante en théorie dès graphes. Il faut souligner de plus que cet énoncé simple et élégant « tout graphe plantaire est 4-colorable » est à l'origine d'une grande partie de la théorie des graphes du XXe siècle puisque la coloration de graphes est sans doute le sujet le plus largement étudié du domaine. Cette simple déclaration a conduit à la notion de nombre chromatique qui est le paramètre de graphe le plus largement étudié. Suite au problème des quatre couleurs, la coloration des graphes a été beaucoup développée avec de nombreuses branches et généralisations. La théorie des homomorphismes de graphes, importante dans cette thèse, est une généralisation naturelle de la notion de coloration.

Cette thèse est motivée par le théorème des quatre couleurs et ses reformulations et généralisations différentes. Tout d'abord, la notion de planarité a été caractérisée par Kuratowksi en 1930 : un graphe est planaire si et seulement si il ne contient pas K 5 ou K 3,3 comme mineur. Citons la conjecture de Hadwiger, qui est une généralisation du théorème des 4 couleurs basée sur la notion de mineur (et dont on peut considérer qu'elle à l'origine de la célèbre théorie des mineurs de Neil Robertson et Paul Seymour). Ensuite, un résultat de Tait sur la 3-colorabilité des arêtes des graphes planaires cubiques sans pont a inspiré une autre conjecture plus générale sur l'arête coloration des graphes planaires proposée par Paul Seymour. Enfin la théorie des flots développée par François Jaeger l'a conduit a formuler une autre généralisation sous forme de flot circulaires. Toutes ces conjectures et problèmes restent largement ouverts.

Dans cette thèse, nous considérons des généralisations de ces questions aux graphes signés. Cela servirait à une meilleure compréhension de la structure et des propriétés des graphes. Un graphe signé pG, σq est un graphe G avec une affectation σ de signes t`, ´u à ses arêtes. Un graphe peut être simplement vu alors comme un graphe signé dont toutes les arêtes sont positives. Étant donnée une coupe pX, X c q des sommets d'un graphe signe pG, σq, une coupe-inversion de la coupe pX, X c q est l'operation qui inverse les signes de toutes les arêtes dans la coupe. La notion de graphes signés donne de nouvelles perspectives aux conjectures évoquées ci-dessus : On peut ainsi vii viii donner un renforcement de la conjecture de Hadwiger, connu comme la conjecture de Hadwiger impaire, en utilisant la notion de mineurs d'un graphe signé. Dans la théorie de la coloration usuelle ainsi que dans la théorie des homomorphismes de graphes, on observe que les cycles de longueur impaire jouent un rôle beaucoup plus important que ceux de longueur paire. La théorie des graphes signés a cette particularité d'exploiter pleinement les cycles impairs et les cycles pairs. Ainsi, nous pouvons capturer certains problèmes de coloration de graphes à travers des problèmes de coloration de graphes signés même restreints à la classe des graphes bipartis signés. Ces motivations et extensions sont présentées plus en détail dans ce qui suit.

Le problème de flot de Jaeger et sa dualité

Une tentative notable de généralisation du problème des quatre couleurs est la conjecture du 4-flot proposée par W.T. Tutte en 1966 [START_REF] Tutte | On the algebraic theory of graph colorings[END_REF] :

La conjecture du 4-flot. Chaque graphe sans pont sans mineur de Petersen admet un 4-flot.

Développant davantage la théorie des flots, W. T. Tutte a proposé les deux conjectures suivantes :

La conjecture du 3-flot. Chaque graphe 4-arête-connexe admet un 3-flot.

La conjecture du 5-flot. Chaque graphe sans pont admet un 5-flot.

Vers la conjecture du 5-flot, P.D. Seymour a prouvé dans [START_REF] Seymour | Nowhere-zero 6-flows[END_REF] que tout graphe 2-arête-connexe admet un 6-flot. La meilleure borne d'arête-connectivité pour la conjecture du 3-flot a été donnée par L. M. Lovász, C. Thomassen, Y. Wu et C.Q. Zhang [START_REF] Lovász | Nowhere-zero 3-flows and modulo k-orientations[END_REF]. Un cas particulier de leurs résultats implique que tout graphe 6-arête-connecté admet un 3-flot.

Généralisant la conjecture du 3-flot de Tutte, F. Jaeger a proposé ce qui suit, connu aujourd'hui sous le nom de conjecture de flot circulaire de Jaeger : Étant donné un entier positif k, tout graphe 4k-arête-connexe admet un 2k`1 k -flot circulaire. M. Han, J. Li, Y. Wu et C.Q. Zhang ont réfuté cette conjecture en 2018 [START_REF] Han | Counterexamples to Jaeger's circular flow conjecture[END_REF]. La 4k-arête-connectivité n'est pas une condition suffisante pour qu'un graphe admette un 2k`1 k -flot circulaire. D'autre part, à l'appui de la conjecture, il a été vérifié en 2013 [START_REF] Lovász | Nowhere-zero 3-flows and modulo k-orientations[END_REF] que tout graphe 6k-arête-connexe admet un 2k`1 k -flot circulaire. C'est jusqu'à présent la condition suffisante la plus connue. Il est naturel de se demander quelle est la meilleure arête-connectivité suffisante pour qu'un graphe admette un 2k`1 k -flot circulaire.

Question 1. Étant donné un entier k ě 1, quel est le plus petit entier f pkq tel que tout multigraphe f pkq-arête-connexe admette un 2k`1 k -flot circulaire ? La coloration circulaire et le flot circulaire sur les graphes sont des notions duales qui contribuent chacune au développement de l'autre. Le nombre chromatique circulaire est un concept largement étudié pour les graphes. La restriction de la conjecture de 2k`1 k -flot circulaire de Jaeger aux graphes planaires, par dualité, est d'un intérêt particulier car il s'agit de donner la borne supérieure sur le nombre chromatique circulaire de graphes planaires ayant des grandes mailles.

Conjecture 1. Tout graphe planaire de maille supérieure ou égale à 4k admet une 2k`1 k -coloration circulaire.

De plus, C.Q. Zhang a renforcé Conjecture 1 et a proposé ce qui suit, connu comme la conjecture de Jaeger-Zhang.

Conjecture 2. [La conjecture de Jaeger-Zhang][Zha02] Tout graphe planaire de maille impaire supérieure ou égale à 4k `1 admet une 2k`1 k -coloration circulaire. A l'appui de Conjecture 1, en 2001, J. Nešetřil et X. Zhu [START_REF] Nešetřil | On bounded treewidth duality of graphs[END_REF], et indépendamment, A. Galluccio, L.A. Goddyn, et P. Hell [START_REF] Galluccio | High-girth graphs avoiding a minor are nearly bipartite[END_REF] ont prouvé que la condition de maille supérieure ou ix égale à 10k ´4 est suffisante pour qu'un graphe planaire admette une 2k`1 k -coloration circulaire. Dans [START_REF] Klostermeyer | p2 ` q-coloring of planar graphs with large oddgirth[END_REF], W. Klostermeyer et C.Q. Zhang ont introduit le lemme de pliage, à l'aide duquel ils ont prouvé q'une maille impaire supérieure ou égale à 10k ´3 était suffisante pour qu'un graphe planaire admette une 2k`1 k -coloration circulaire. Cette condition de maille impaire a été améliorée à 8k ´3 par X. Zhu [START_REF] Zhu | Circular chromatic number of planar graphs of large odd girth[END_REF]. En 2004, elle a été encore amélioré par O.V. Borodine, S.-J. Kim, AV Kostochka et D.B. Ouest à 20k´2 3 [START_REF] Borodin | Homomorphisms from sparse graphs with large girth[END_REF]. Le meilleur résultat pour la valeur générale de k, aujourd'hui, est obtenu en appliquant le résultat de [START_REF] Lovász | Nowhere-zero 3-flows and modulo k-orientations[END_REF] aux graphes duals des graphes planaires. Cela implique que tout graphe planaire de maille impaire supérieure ou égale à 6k `1 admet une 2k`1 k -coloration circulaire. Il existe également des tentatives et des améliorations de la Conjecture 2 pour de petites valeurs spécifiques de k. Pour k " 1, c'est une reformulation du célèbre théorème de Grötzsch. Pour des preuves de ce théorème, par exemple, voir [DKT11; DKT20; KY14b; Tho03]. Pour k " 2, le résultat le plus connu découle de la densité d'arêtes des graphes C 5 -critiques prouvé dans [START_REF] Dvořák | Density of 5/2-critical graphs[END_REF]. Il s'ensuit de ce résultat que tout graphe planaire de maille impaire supérieure ou égale à 11 admet une 5 2 -coloration circulaire. En étendant les techniques de [START_REF] Dvořák | Density of 5/2-critical graphs[END_REF], pour k " 3, il est prouvé dans [START_REF] Postle | On the Density of C_7-Critical Graphs[END_REF] que tout graphe planaire de maille impaire supérieure ou égale à 17 admet une 7 3 -coloration circulaire. Des preuves indépendantes de ces deux résultats (pour k " 2, 3) sont données dans [START_REF] Cranston | Circular flows in planar graphs[END_REF].

Notons qu'un graphe admet une 2k`1 k -coloration circulaire si et seulement s'il admet un homomorphisme à C 2k`1 . Inspiré par la conjecture de Jaeger-Zhang et la curiosité de l'absence du rôle des valeurs paires dans le problème de l'homomorphisme aux cycles, dans cette thèse, nous étendons la notion de coloration circulaire des graphes aux graphes signés qui est un raffinement de 2k-coloration sans zéro des graphes signés définis par T. Zaslavsky [START_REF] Zaslavsky | Signed graph coloring[END_REF]. Sur la base de la notion de coloration circulaire des graphes signés, nous avons étudié une conjecture analogique qui comble l'écart de parité. Il a été conjecturé dans [START_REF] Naserasr | Homomorphisms of signed graphs[END_REF] que tout graphe planaire biparti signé de maille négative supérieure ou égale à 4k ´2 admet une 4k 2k´1 -coloration circulaire. Un résultat à l'appui dans [START_REF] Charpentier | Homomorphisms of sparse signed graphs[END_REF] montre que la maille négative supérieure ou égale à 8k ´2 suffit pour qu'un graphe planaire biparti signé admette une 4k 2k´1 -coloration circulaire. Une question plus générale étendant la Conjecture 2 aux graphes planaires signés est la suivante : Question 2. Étant donné un entier positif ě 2, quelle est le plus petit entier gp q tel que tout graphe planaire signé de maille au moins gp q admette une 2 ´1 -coloration circulaire ?

Notons que la Conjecture 1 et son analogue biparti sont des restrictions de Question 2 sur la classe des graphes planaires signés avec tous les arêtes positifs pour impair et la classe des graphes planaires bipartis signés pour pair, respectivement. De plus, dans la conjecture de Jaeger-Zhang et son analogue biparti, la condition de maille a été renforcée pour être respectivement la condition de maille impaire et la condition de maille négative.

Homomorphisme aux cycles négatifs

Outre les graphes complets, les graphes les plus étudiés dans la théorie des homomorphismes de graphes sont des cycles impairs. En 1990, P. Hell et J. Nešetřil [START_REF] Hell | On the complexity of H-coloring[END_REF] ont montré que le problème de p2k `1q-coloration des graphes peut être capturé par le problème d'homomorphisme de graphes aux C 2k`1 , par une opération simple de subdivision de graphe. De plus, un graphe G admet un homomorphisme à C 2k`1 si et seulement si le nombre chromatique circulaire de G est borné par 2k`1 k . Ainsi la classe des cycles impairs joue un rôle important dans l'étude des problèmes d'homomorphisme et de coloration circulaire des graphes. Motivés par l'observation ci-dessus et la Conjecture 2, les homomorphismes aux cycles impairs ont été beaucoup étudiés, par exemple, x voir [Cat88; BHI+08; DP17; PS22]. Mais les cycles pairs sont moins intéressants comme cibles d'homomorphisme car ils sont homomorphiquement équivalents à K 2 .

Nous essayons de combler l'écart de parité en utilisant des cycles signés. Étant donné un graphe G, nous définissons T k´2 pGq comme étant le graphe signé obtenu à partir de G en remplaçant chaque arête de G par un chemin négatif de longueur k ´2. Nous avons le résultat généralisé suivant.

Proposition 1. Pour tout entier positif k, un graphe G est k-colorable si et seulement si T k´2 pGq admet un homomorphisme à un cycle négatif C ´k de longueur k.

En particulier, lorsque k=4, nous pourrions reformuler le théorème des quatre couleurs.

Théorème 1. [Le théorème des quatre couleurs reformulé] Étant donné un graphe planaire G, le graphe biparti signé T 2 pGq admet un homomorphisme à C ´4.

Pour un entier pair k, le graphe signé T k´2 pGq est toujours biparti. Nous nous intéressons plus particulièrement au problème d'homomorphisme des graphes planaires bipartis signés à cycles pairs négatifs. Avec la notion de coloration circulaire des graphes signés, il existe un lien similaire entre la coloration circulaire des graphes bipartis signés et les homomorphismes aux cycles pairs négatifs : Un graphe biparti signé pG, σq admet un homomorphisme à C ´2k si et seulement si pG, σq est circulaire 4k 2k´1 -colorable.

Question 3. [Analogue biparti de la conjecture de Jaeger-Zhang] Étant donné un entier positif k ě 2, quelle est le plus petit entier gpkq tel que tout graphe planaire biparti signé de maille négative au moins gpkq admette un homomorphisme à C ´2k ?

Contributions et organisations

Coloration circulaire des graphes signés Dans le Chapitre 3, nous étendons la notion de coloration circulaire des graphes aux graphes signés. Le nombre chromatique circulaire de graphes signés, noté χ c pG, σq, est un paramètre qui mérite d'être étudié. Nous montrons que le nombre chromatique circulaire est invariant par coupe-inversion et donnons plusieurs définitions équivalentes de notre coloration circulaire. En particulier, nous introduisons les cliques circulaires signées K s p;q et montrons qu'un graphe signé est circulaire p qcolorable si et seulement s'il admet une homomorphisme qui préserve le signe des arêtes à K s p;q . Ces notions étant relativement nouvelles, nous développons des outils, par exemple des indicateurs signés, pour calculer le nombre chromatique circulaire de graphes signés. En supplément, restreints à la classe des graphes biparties signés, nous introduisons des cliques circulaires bipartis signées.

Dans le Chapitre 4, nous déterminons des bornes (supérieures, inférieures ou les deux) pour le nombre chromatique circulaire de plusieurs classes de graphes signés : χ c pSD d q " 2t d 2 u `2, χ c pSBPq " 4, 14 3 ď χ c pSPq ď 6 et χ c pSKq " 2k où SD d est la classe des graphes simples ddégénérés signés, SBP est la classe des graphes simples planaires bipartis signés, SP est la classe des graphes simples planaires signés et SK est la classe des graphes simples signés dont le graphe sous-jacent (de maille arbitrairement grande) est k-colorable. En particulier, pour la classe des graphes 2-dégénérés signés, le supremum de la borne n'est pas atteinte et plus précisément, pour tout graphe 2-dégénéré signé pG, σq sur n sommets, on a χ c pG, σq ď 4 ´2 t n`1 2 u .

Flot circulaire dans les graphes signés

Une autre stratégie pour attaquer la Conjecture 2 ou son analogue est la théorie des flot.

xi Dans le Chapitre 5, nous introduisons la notion de flot circulaire dans les graphes signés, en tant que notion duale de la coloration circulaire des graphes signés. Ceci est différent du concept largement étudié du flot dans les graphes signés, basé sur la notion de bi-orientation. Comme le nombre chromatique circulaire d'un graphe signé est invariant sous l'opération de coupe-inversion, nous introduisons l'opération duale "cycle-inversion" et montrons que l'indice de flot circulaire d'un graphe signé est invariant par cycle-inversion. Il existe une connexion naturelle selon laquelle un graphe planaire signé pG, σq admet une r-coloration circulaire si et seulement si le graphe planaire signé dual pG ˚, σ ˚q admet un r-flot circulaire. Semblable à l'étude de la coloration circulaire, nous introduisons l'indicateur de flot signé pour aider au calcul de l'indice de flot circulaire. Pour deux classes spéciales de graphes signés, nous définissons l'orientation modulo k sur les graphes signés et fournissons une caractérisation de l'existence d'une telle orientation.

Dans le Chapitre 6, nous adaptons les idées de la théorie des flots sur les graphes aux graphes signés. En utilisant les résultats de [START_REF] Jaeger | Group connectivity of graphs-a nonhomogeneous analogue of nowhere-zero flow properties[END_REF] sur les graphes Z 6 -connectés et Z 4 -connectés, nous montrons que chaque graphe signé 3-arête-connexe (respectivement, 4-arête-connexe) admet un 6flot circulaire (respectivement, un 4-flot circulaire). De plus, nous prouvons que tout graphe signé 6-arête-connexe admet un r-flot circulaire où r ă 4. En utilisant des résultats et des méthodes développés dans [START_REF] Li | Circular flows via extended Tutte orientations[END_REF], nous montrons que tout graphe signé p6p ´1q-arête-connexe (respectivement, p6p `2q-arête-connexe) admet un 4p 2p´1 -flot circulaire (respectivement, 2p`1 p -flot circulaire). Aussi, nous prouvons que tout graphe Eulérien signé p6p ´2q-arête-connexe admet un 4p 2p´1 -flot circulaire. Dans le cas des graphes planaires bipartis signés, nous prouvons un résultat plus fort : tout graphe planaire biparti signé de maille négative au moins 6p ´2 admet une 4p 2p´1 -coloration circulaire. C'est à ce jour la borne de maille négative la plus connue pour l'analogue biparti de la conjecture de Jaeger-Zhang.

Analogue de la conjecture de Jaeger-Zhang

Dans la Part IV, nous nous concentrerons sur le problème d'homomorphisme des graphes planaires bipartis signés.

Dans le Chapitre 7, nous fournissons une borne améliorée sur le nombre chromatique circulaire de graphes simples planaires bipartis signés en utilisant le nombre de sommets comme un paramètre. Plus précisément, pour tout graphe simple biparti signé pG, σq sur n sommets, χ c pG, σq ď 4 ´4 t n`2 2 u . Nous construisons une série de graphes planaires bipartis signés montrant que cette borne supérieure est atteinte pour chaque valeur de n ě 2.

Dans le Chapitre 8, motivé par une reformulation du théorème des quatre couleurs dans le langage de l'homomorphisme au 4-cycle négatif C ´4, nous étudions le problème de l'homomorphisme des graphes planaires bipartis signés à C ´4. Nous définissons d'abord la notion de graphes signés pH, πq-critiques, comme une généralisation de la notion de graphes k-critiques. Dans un cas particulier où pH, πq " C ´4, un graphe signé pG, σq est dit C ´4-critique s'il est biparti, pG, σq n'admet pas d'homomorphisme à C ´4 mais chacun de ses sous-graphes propres le fait. Nous adaptons la méthode de potentiel utilisée dans l'étude des graphes critiques (voir [KY14a; DP17; PS22]) et fournissons la borne inférieure de 4 3 pour la densité d'arêtes de tous les graphes C ´4-critiques signés sauf un. En conséquent, nous prouvons que tout graphe planaire biparti signé de maille négative au moins 8 admet un homomorphisme à C´4. De plus, par une généralisation de la T k´2 -construction aux graphes signés, nous construisons un graphe planaire biparti signé de maille négative 6 qui n'admet aucun homomorphisme à C ´4. Au total, nous montrons que la maille 8 est la meilleure possible et réfutons le premier cas de l'analogue biparti de la conjecture de Jaeger-Zhang [START_REF] Naserasr | Homomorphisms of signed graphs[END_REF].

Dans le Chapitre 9, nous montrons que tout graphe planaire biparti signé pG, σq de maille négative au moins 6 admet un homomorphisme à pK 3,3 , M q, de manière équivalente, χ c pG, σq ď 3.

Part I

Introduction 1

| Introduction

One of the most celebrated results in graph theory is the 4-color theorem. It dates back to 1852 when Francis Guthrie, a mathematician, tried to color a map of the counties of England such that no two regions sharing a common boundary received the same color. He postulated that the maximum number of colors required to color such maps is 4. Later, after Francis's brother Frederick inquired this question with his teacher Augustus De Morgan who promoted the visibility of this problem, it became the well-known 4-color problem. Over the next century, various attempts to study the problem were made and this problem was resolved in 1976 when two mathematicians, Kenneth Appel and Wolfgang Haken published a computer-aided proof of the 4-color theorem. However, their proof cannot be verified by hand and relies crucially on a computer. In 1996, Neil Robertson, Daniel P. Sanders, Paul Seymour, and Robin Thomas gave a simpler but still computer-assisted proof that has fewer configurations and discharging rules.

Even after 170 years, finding an alternate proof to the 4-color theorem is an attractive question to graph theorists. An elegant and human-checkable proof of the 4-color theorem is still elusive. In graph theory, the 4-color theorem has a simple and beautiful formulation: Every planar graph is 4-colorable. This simple statement has led to the notion of chromatic number which is the most widely-studied graph parameter. Following the 4-color problem, graph coloring has been vastly developed with many branches and generalizations. The theory of graph homomorphisms is a natural generalization of the notion of the proper coloring of graphs.

The study in this thesis is motivated by the 4-color theorem and its different reformulations and generalizations. The development of minor theory and the famous Hadwiger's conjecture piqued the interest to study the class of graphs forbidding specific graphs as minors. Tait's result about the 3-edge-colorability of planar cubic bridgeless graphs inspired the more general conjecture about edge-coloring of planar graphs proposed by Paul Seymour. Furthermore, Jaeger's circular flow question captured and generalized the 4-color problem from the view of flow theory. All of these conjectures and problems remain widely open.

In this thesis, we consider generalizations of these questions to signed graphs. That would serve toward better understanding of the structure and properties of graphs. A signed graph pG, σq is a graph G together with an assignment σ of signs t`, ´u to the edges of G. A graph can be simply seen as a signed graph with all the edges being positive. The notion of signed graphs gives new perspectives to the conjectures mentioned above: We can reformulate a strengthening of Hadwiger's conjecture, odd Hadwiger's conjecture, using the notion of minor of signed graphs. The connection, between Seymour's edge-coloring conjecture and a conjecture of homomorphism to signed projective cubes, both as natural generalizations of the 4-color theorem, gives us more ideas of using the induction method. We note that odd cycles play important roles in the study of graph colorings and homomorphisms but even cycles are relatively pointless. The study of signed graphs helps to fill the gap between the parity and make full use of even cycles. In this line of the study, we can capture some graph coloring problems through signed graph coloring problems even restricted to the class of signed bipartite graphs. These motivations and extensions are presented in more detail in the following sections.

Odd Hadwiger's conjecture

In 1930, K. Kuratowski [START_REF] Kuratowski | Sur le probleme des courbes gauches en topologie[END_REF] characterized the class of planar graphs with the concept of a topological minor. A graph is planar if and only if it contains neither K 5 nor K 3,3 as a topological minor. Soon after in 1937, K. Wagner introduced the notion of edge-contraction and graph minor, and furthermore, showed that a graph is planar if and only if it contains neither K 5 nor K 3,3 as a minor. This paper [START_REF] Wagner | Über eine Eigenschaft der ebenen Komplexe[END_REF] is regarded as a significant achievement and the theory of graph minors has developed vastly since then.

One of the most famous and motivating conjectures, connecting the theory of graph minors and colorings, is Hadwiger's conjecture, introduced by H. Hadwiger [START_REF] Hadwiger | Über eine Klassifikation der Streckenkomplexe[END_REF] in 1943.

Conjecture 1.1.1. [Hadwiger's conjecture] For every integer k ě 0, every graph with no K k`1minor is k-colorable.

The appeal of Hadwiger's conjecture lies in not only its simple formalization using the concept of minors but also the fact that it represents a far-reaching generalization of the 4-color theorem. In 1943, H. Hadwiger proved the trivial cases k ď 2 in his talk. For k " 3, there are three different proofs that successfully verified the statement separately in [START_REF] Hadwiger | Über eine Klassifikation der Streckenkomplexe[END_REF][START_REF] Dirac | A property of 4-chromatic graphs and some remarks on critical graphs[END_REF][START_REF] Duffin | Topology of series-parallel networks[END_REF]. For k " 4, it has been shown to be equivalent to the 4-color theorem [START_REF] Wagner | Über eine Eigenschaft der ebenen Komplexe[END_REF]. Later in 1993, the case for k " 5 has been verified to be true and proved to be equivalent to the 4-color theorem as well in [START_REF] Robertson | Hadwiger's conjecture for K 6 -free graphs[END_REF]. However, for k ě 6, the conjecture remains unresolved.

For small values, a stronger variant of the conjecture has been proved. Especially for k " 3, in 1979, P. A. Catlin proved in [START_REF] Catlin | Hajós' graph-coloring conjecture: variations and counterexamples[END_REF] that every graph with no odd-K 4 is 3-colorable. Here odd-K 4 is a subdivision of K 4 such that each original triangle of K 4 becomes an odd cycle after the subdivisions. Generalizing the result of Catlin, a famous analogue of Hadwiger's conjecture, called odd Hadwiger's conjecture, was proposed by B. Gerard and P. Seymour ([JT95] page 115). To better describe the "odd" structure, we need the notion of the minor of signed graphs, in which we allow switching, deleting vertices and edges, and contracting only positive edges. See Section 2.3.1 for the detailed definition.

Conjecture 1.1.2. [Odd Hadwiger's conjecture] Given a graph G and an integer k ě 0, if pG, ´q has no pK k`1 , ´q-minor, then G is k-colorable.

This conjecture is indeed a strengthening of Hadwiger's conjecture. It is easily observed that given a graph G, if G contains no K k -minor, then the signed graph pG, ´q contains no pK k , ´qminor. Moreover, a graph G without a K k -minor needs to be sparse while its corresponding signed graph pG, ´q without pK k , ´q-minor could be partially dense. For example, the latter one may contain a complete bipartite graph as a subgraph while the former one cannot. The case for k " 4 is announced to be true by B. Guenin (see [START_REF] Seymour | Hadwiger's conjecture[END_REF]) but the proof has not yet been published and for k ě 5 it is still unknown.

Seymour's edge-coloring conjecture

An equivalent formulation of the 4-color theorem in terms of edge-coloring was introduced in 1880 by P. G. Tait [START_REF] Tait | Remarks on the colouring of maps[END_REF]. Even though his "proof" of 4-color theorem was incomplete, his work is informative and remarkable as it provided a nontrivial equivalence of the 4-color theorem and moreover, the idea of its proof is the origin of the study of the nowhere-zero flows of graphs.

Theorem 1.2.1. [4-color theorem restated] Every planar cubic bridgeless graph is 3-edge-colorable.

The condition of "planarity" in the theorem is crucial because the Petersen graph is known to be cubic and bridgeless but admits no 3-edge-coloring. P. Seymour proposed a generalized conjecture in 1975: Conjecture 1.2.2. [Seymour's edge-coloring conjecture] [Sey75] Every planar k-graph is k-edgecolorable.

Here, a k-graph is a k-regular multigraph with no odd-cut of size less than k. A cut pX, Y q is an odd-cut if |X| is odd and the size of pX, Y q is the number of edges with one end in X and another in Y . It can be observed that if a k-regular multigraph G has an odd-cut of size less than k, then it does not admit a k-edge-coloring. In other words, "no odd-cut of size less than k" is a necessary condition for the k-edge-colorability of k-regular multigraphs. Seymour's conjecture claims that with the added condition of planarity, this necessary condition is also sufficient.

Conjecture 1.2.2 has been studied for some small values. For k " 3, it is true as it is equivalent to the 4-color theorem. P. Seymour proved that the case k " 4 implies the case k " 3 [START_REF] Seymour | Matroids, Hypergraphs, and the Max,-Flow Min.-Cut Theorem[END_REF]. B. Guenin [START_REF] Guenin | Packing T -joins and edge colouring in planar graphs[END_REF] verified the cases k " 4, 5, using the result of the case k " 3 (thus the 4-color theorem). Furthermore, based on the results and proofs given by B. Guenin, the cases k " 6, k " 7, and k " 8 have been verified in [START_REF] Dvořák | Packing six T -joins in plane graphs[END_REF], [START_REF] Chudnovsky | Edge-colouring seven-regular planar graphs[END_REF], and [START_REF] Chudnovsky | Edge-colouring eight-regular planar graphs[END_REF], respectively. This conjecture remains open for larger values k ě 9.

In another direction, W. T. Tutte in 1966 (before the 4-color theorem was proved) proposed a different extension of Theorem 1.2.1, by replacing planarity with the condition of no Petersen graph as a minor.

Conjecture 1.2.3. Every 2-edge-connected cubic graph with no Petersen minor is 3-edge-colorable. This conjecture is claimed to be proved following several works on the subject, one of which is not published yet, we refer to [START_REF] Edwards | Three-edge-colouring doublecross cubic graphs[END_REF] for further details.

Homomorphism to signed projective cube

From the homomorphism point of view, the 4-color theorem is equivalent to saying that every planar graph maps to K 4 . To introduce a conjecture, generalizing the 4-color theorem, proposed by R. Naserasr, we need the notion of projective cube. A projective cube of dimension k, denoted by P Cpkq, is built from a hypercube Hpkq by adding diagonal edges which connect each vertex with its furthest non-neighbor in Hpkq. Note that the complete graph K 4 is just a projective cube of dimension 2. Furthermore, we note that for every integer k, P Cp2kq has odd-girth 2k `1 and P Cp2k ´1q is bipartite. Following the line of the study of homomorphism to projective cubes, R. Naserasr conjectured the following, whose first case is the 4-color theorem.

Conjecture 1.3.1. [P Cp2kq conjecture] [Nas07] Given a positive integer k, every planar graph of odd-girth at least 2k `1 admits a homomorphism to P Cp2kq.

To make use of the bipartite projective cubes and fill the parity gap, B. Guenin introduced the notion of homomorphism of signed graphs and signed projective cubes. A special signed projective cube, denoted by SP Cpkq, is defined as follows: we assign the signature to P Cpkq such that edges of the hypercube Hpkq are all positive and the additional diagonal edges are all negative. Note that the length of the shortest negative cycle, called negative-girth, of SP Cp2k ´1q is 2k. B. Guenin proposed the following conjecture.

JAEGER'S FLOW PROBLEM AND ITS DUAL

Conjecture 1.3.2. [SP Cp2kq conjecture] [Gue05]
Given a positive integer k, every signed bipartite planar graph of negative-girth 2k admits a homomorphism to SP Cp2k ´1q.

The above two conjectures are of independent interest and are also strongly connected to the Seymour's edge-coloring conjecture (Conjecture 1.2.2). Note that the two conjectures are uniformly stated in Conjecture 10.1.2.

Theorem 1.3.3. [START_REF] Naserasr | Homomorphisms of planar signed graphs to signed projective cubes[END_REF] Let k be a given positive integer.

• Seymour's edge-coloring conjecture holds for k " 2 `1 if and only if P Cp2 q conjecture holds for the given .

• Seymour's edge-coloring conjecture holds for k " 2 if and only if SP Cp2 ´1q conjecture holds for the given .

As mentioned before, it is a big challenge to resolve Conjecture 1.2.2 (and as well Conjectures 1.3.1 and 1.3.2). We note that the proofs of the cases k ď 8 of Conjecture 1.2.2 are based on the induction on k. Thus the introduction of the SP Cp2k ´1q conjecture helps to tackle Conjecture 1.3.1 by an inductive method and vice versa.

Jaeger's flow problem and its dual

Another notable attempt to generalize the 4-color problem is Tutte's 4-flow conjecture [START_REF] Tutte | On the algebraic theory of graph colorings[END_REF] proposed by W.T. Tutte in 1966: 4-flow conjecture. Every bridgeless Petersen-minor-free graph admits a nowhere-zero 4-flow.

If true, this would imply Conjecture 1.2.3. Further developing the theory of nowhere-zero flows, W. T. Tutte proposed the following two conjectures: 3-flow conjecture. Every 4-edge-connected graph admits a nowhere-zero 3-flow. 5-flow conjecture. Every bridgeless graph admits a nowhere-zero 5-flow.

Towards 5-flow conjecture, P.D. Seymour has proved in [START_REF] Seymour | Nowhere-zero 6-flows[END_REF] that every 2-edge-connected graph admits a 6-flow. The best edge-connectivity bound for the 3-flow conjecture is given by L. M. Lovász, C. Thomassen, Y. Wu, and C.Q. Zhang in [START_REF] Lovász | Nowhere-zero 3-flows and modulo k-orientations[END_REF] and one particular case of their results implies that every 6-edge-connected graph admits a nowhere-zero 3-flow. Generalizing Tutte's 3-flow conjecture, F. Jaeger [START_REF] Jaeger | On circular flows in graphs[END_REF][START_REF] Jaeger | Nowhere-zero flow problems[END_REF] proposed the following, known as Jaeger's circular flow conjecture nowadays: Given a positive integer k, every 4k-edge-connected multigraph admits a circular 2k`1 k -flow. A circular p q -flow is a p-flow pD, f q such that for each edge e, q ď |f peq| ď p ´q. On the one hand, M. Han, J. Li, Y. Wu, and C.Q. Zhang have disproved this conjecture in 2018 [START_REF] Han | Counterexamples to Jaeger's circular flow conjecture[END_REF]. The 4k-edge-connectivity is not a sufficient condition for a multigraph to admit a circular 2k`1 k -flow. On the other hand, in supporting the conjecture, it has been verified in 2013 [START_REF] Lovász | Nowhere-zero 3-flows and modulo k-orientations[END_REF] that every 6k-edge-connected multigraph G admits a circular 2k`1 k -flow. Until now, this is the best-known sufficient condition. It is natural to ask what is the best edge-connectivity that is sufficient for a (multi)graph to admit a circular 2k`1 k -flow.

Question 1.4.1. Given an integer k ě 1, what is the smallest integer f pkq such that every f pkqedge-connected multigraph admits a circular 2k`1 k -flow?

Circular coloring and circular flow on graphs are dual notions that each helps the development of the other. The circular chromatic number is a widely studied concept for graphs. A circular p q -coloring of a graph G is a mapping ϕ : V pGq Ñ t1, 2, . . . , pu such that for each edge uv, q ď |ϕpuq´ϕpvq| ď p´q. We refer to Section 2.1 for more definitions and details. Restriction of Jaeger's circular flow conjecture to planar graphs, by duality, is of special interest because it is about giving the best possible upper bound on the circular chromatic number of planar graphs of high girth.

Conjecture 1.4.2. Every planar graph of girth at least 4k admits a circular 2k`1 k -coloring. Moreover, C.Q. Zhang strengthened Conjecture 1.4.2 and proposed the following which is known as the Jaeger-Zhang conjecture.

Conjecture 1.4.3. [Jaeger-Zhang conjecture][Zha02] Every planar graph of odd-girth at least 4k `1 admits a circular 2k`1 k -coloring. Supporting Conjecture 1.4.2, in 2001, J. Nešetřil and X. Zhu [START_REF] Nešetřil | On bounded treewidth duality of graphs[END_REF], and independently, A. Galluccio, L.A. Goddyn, and P. Hell [START_REF] Galluccio | High-girth graphs avoiding a minor are nearly bipartite[END_REF] proved that the girth condition of 10k ´4 is sufficient for a planar graph to admit a circular 2k`1 k -coloring. In [START_REF] Klostermeyer | p2 ` q-coloring of planar graphs with large oddgirth[END_REF], W. Klostermeyer and C.Q. Zhang introduced the folding lemma, using which they proved the odd-girth at least 10k ´3 to be sufficient for a planar graph to admit a circular 2k`1 k -coloring. This odd-girth condition has been improved to 8k ´3 by X. Zhu in [START_REF] Zhu | Circular chromatic number of planar graphs of large odd girth[END_REF]. In 2004, it has been improved further by O.V. Borodin, S.-J. Kim, A.V. Kostochka, and D.B. West to 20k´2 3 in [START_REF] Borodin | Homomorphisms from sparse graphs with large girth[END_REF]. The best result for the general value of k, today, is obtained by applying the result of [START_REF] Lovász | Nowhere-zero 3-flows and modulo k-orientations[END_REF] to the dual of planar graphs. It implies that every planar graph of odd-girth at least 6k `1 admits a circular 2k`1 k -coloring. There are also attempts and improvements on Conjecture 1.4.3 for specific small values of k. For k " 1, it is a restatement of the famous Grötzsch's theorem. For some proofs of this theorem, for example, see [DKT11; DKT20; KY14b; Tho03]. For k " 2, the best known result follows from the edge-density of C 5 -critical graphs proved in [START_REF] Dvořák | Density of 5/2-critical graphs[END_REF]. It follows from this result that every planar graph of odd-girth at least 11 admits a circular 5 2 -coloring. Extending the techniques of [DP17], for k " 3, it is proved in [START_REF] Postle | On the Density of C_7-Critical Graphs[END_REF] that every planar graph of odd-girth at least 17 admits a circular 7 3 -coloring. Independent proofs of these two results (for k " 2, 3) are given in [START_REF] Cranston | Circular flows in planar graphs[END_REF].

Note that a graph G admits a circular 2k`1 k -coloring if and only if it admits a homomorphism to C 2k`1 . Inspired by Jaeger-Zhang conjecture and the curiosity of the absence of the role of evenvalues in the problem of homomorphism to cycles, in this thesis, we extend the notion of the circular coloring from graphs to signed graphs which is a refinement of 0-free 2k-coloring of signed graphs defined by Zaslavsky [START_REF] Zaslavsky | Signed graph coloring[END_REF]. See Section 3.1 for details. Based on the notion of the circular coloring of signed graphs, we studied an analogous conjecture that fills in the parity gap. It was conjectured in [START_REF] Naserasr | Homomorphisms of signed graphs[END_REF] that every signed bipartite planar graph of negative-girth at least 4k ´2 admits a circular 4k 2k´1 -coloring. A supporting result in [START_REF] Charpentier | Homomorphisms of sparse signed graphs[END_REF] shows that negative-girth 8k ´2 suffices for a signed bipartite planar graph to admit a circular 4k 2k´1 -coloring. A more general question extending Conjecture 1.4.3 to signed planar graphs is as follows:

Question 1.4.4. Given a positive integer ě 2, what is the smallest value gp q such that every signed planar graph of girth at least gp q admits a circular 2 ´1 -coloring? We note that Conjecture 1.4.2 and its bipartite analogue are restrictions of Question 1.4.4 on the class of signed planar graphs with all positive edges for odd and the class of signed bipartite planar graphs for even , respectively. Furthermore, in the Jaeger-Zhang conjecture and its bipartite analogue, the girth condition has been strengthened to be odd-girth condition and negative-girth condition, respectively.

Homomorphism to negative cycles

Besides the complete graphs, the most studied graphs in the theory of graph homomorphisms are odd cycles. In 1990, P. Hell and J. Nešetřil [START_REF] Hell | On the complexity of H-coloring[END_REF] showed that the p2k `1q-coloring problem of graphs can be captured by the problem of homomorphism of graphs to C 2k`1 , through a simple graph subdivision operation. Also, a graph G admits a homomorphism to C 2k`1 if and only if the circular chromatic number of G is bounded by 2k`1 k . Thus the class of odd cycles plays an important role in the study of homomorphism and circular coloring problems of graphs. Motivated by the above observation and Conjecture 1.4.3, homomorphisms to odd cycles have been studied a lot, for example, see [Cat88; BHI+08; DP17; PS22]. Even cycles are less interesting as homomorphism targets because they are homomorphically equivalent to K 2 .

We try to fill the parity gap using signed cycles. Given a graph G, we define T k´2 pGq to be the signed graph obtained from G by replacing each edge of G with a negative path of length k ´2. We have the following generalized result, which will be proved in Section 2.3.3. Proposition 1.5.1. For any integer k, a graph G is k-colorable if and only if T k´2 pGq admits a homomorphism to a negative cycle C ´k of length k.

In particular, when k=4, we could restate the 4-color theorem.

Theorem 1.5.2. [4-color theorem restated] Given a planar graph G, the signed bipartite graph T 2 pGq admits a homomorphism to C ´4.

For an even value k, the signed graph T k´2 pGq is always bipartite. We are especially interested in the homomorphism problem of signed bipartite planar graphs to negative even cycles. With the notion of the circular coloring of signed graphs, there is a similar connection between the circular coloring of signed bipartite graphs and the homomorphism to negative even cycles, that a signed bipartite graph pG, σq admits a homomorphism to C ´2k if and only if pG, σq is circular 4k 2k´1 -colorable.

Question 1.5.3. [Bipartite analogue of Jaeger-Zhang conjecture] Given a positive integer k ě 2, what is the smallest value gpkq such that every signed bipartite planar graph of negative-girth at least gpkq admits a homomorphism to C ´2k ?

1.6 Contributions and organization

Circular coloring of signed graphs

In Chapter 3, we extend the notion of the circular coloring of graphs to signed graphs, as a refinement of Zaslavsky's 2k-coloring of signed graphs. The circular chromatic number of signed graphs, denoted by χ c pG, σq, is a parameter worth investigating. We show that the circular chromatic number is invariant under switching and provide several equivalent definitions of our circular coloring. Especially, we introduce the signed circular cliques K s p;q and show that a signed graph is circular p q -colorable if and only if it admits an edge-sign preserving homomorphism to K s p;q . Since these notions are relatively new, we develop some tools, for example, signed indicators, to calculate the circular chromatic number of signed graphs. Moreover, restricted to the class of signed bipartite graphs, we introduce signed bipartite circular cliques.

Given a class C of signed graphs, χ c pCq " maxtχ c pG, σq : pG, σq P Cu. In Chapter 4, we determine bounds for the circular chromatic number of several classes of signed graphs: χ c pSD d q " 2t d 2 u `2, χ c pSBPq " 4, 14 3 ď χ c pSPq ď 6 and χ c pSKq " 2k where SD d is the class of signed d-degenerate simple graphs, SBP is the class of signed bipartite planar simple graphs, SP is the class of signed planar simple graphs and SK is the class of signed simple graphs whose underlying graph is kcolorable (with arbitrarily large girth). Especially, for the class of signed 2-degenerate graphs, the supremum of the bound is not achievable and more precisely, for any signed 2-degenerate graph pG, σq on n vertices, we have that χ c pG, σq ď 4 ´2 t n`1 2 u .

Circular flows in signed graphs

Another strategy to approach Conjecture 1.4.3 or its analogue is through the theory of flows.

In Chapter 5, we introduce the notion of the circular flows in signed graphs, as a dual notion of the circular colorings of signed graphs. This is different from the widely-studied concept of the flow on signed graphs, based on the notion of bidirection. As the circular chromatic number of a signed graph is invariant under the switching operation, we introduce the dual operation "inversing" and show that the circular flow index of a signed graph is invariant under inversing. There is a natural connection that a signed planar graph pG, σq admits a circular r-coloring if and only if the dual signed planar graph pG ˚, σ ˚q admits a circular r-flow. Similarly to the study of circular coloring, we introduce the signed flow indicator to help with calculating the circular flow index. For two special classes of signed graphs, we define the modulo k-orientation on signed graphs and provide a characterization of the existence of such orientation.

In Chapter 6, we adapt the ideas from the theory of flows on graphs to signed graphs. Using results of [START_REF] Jaeger | Group connectivity of graphs-a nonhomogeneous analogue of nowhere-zero flow properties[END_REF] about Z 6 -connected and Z 4 -connected graphs, we show that every 3-edgeconnected (respectively, 4-edge-connected) signed graph admits a circular 6-flow (respectively, circular 4-flow). Also, we prove that every 6-edge-connected signed graph admits a circular r-flow where r ă 4. Using some results and methods developed in [START_REF] Li | Circular flows via extended Tutte orientations[END_REF], we show that every p6p ´1qedge-connected (respectively, p6p `2q-edge-connected) signed graph admits a circular 4p 2p´1 -flow (respectively, 2p`1 p -flow). Also, we prove that every p6p ´2q-edge-connected signed Eulerian graph admits a circular 4p 2p´1 -flow. When restricted to signed bipartite planar graphs, we prove a stronger result that every signed bipartite planar graph of negative-girth at least 6p ´2 admits a circular 4p 2p´1 -coloring. This is so far the best known negative-girth bound of the bipartite analogue of Jaeger-Zhang conjecture.

Analogue of Jaeger-Zhang conjecture

In Part IV, we will focus on the homomorphism problem of signed bipartite planar graphs.

In Chapter 7, we provide an improved bound on the circular chromatic number of signed bipartite planar simple graphs using the number of vertices as a parameter. More precisely, for any signed bipartite planar simple graph pG, σq on n vertices, χ c pG, σq ď 4 ´4 t n`2 2 u . We construct a series of signed bipartite planar graphs showing this upper bound is tight for each value of n ě 2.

In Chapter 8, motivated by a restatement of the 4-color theorem in the language of homomorphism to the negative 4-cycle C ´4, we study the homomorphism problem of signed bipartite planar graphs to C ´4. We first define the notion of pH, πq-critical signed graphs, as a generalization of the notion of k-critical graphs. In a special case when pH, πq " C ´4, a signed graph pG, σq is said to be C ´4-critical if it is bipartite, pG, σq admits no homomorphism to C ´4 but each of its proper subgraphs does. We adapt the potential method used in the study of critical graphs (see [KY14a; DP17; PS22]) and provide the tight lower bound of 4 3 for the edge-density of all but one C ´4-critical signed graphs. Consequently, we prove that every signed bipartite planar graph of negative-girth at least 8 maps to C´4. Moreover, by a generalization of T k´2 -construction to signed graphs, we construct a signed bipartite planar graph of negative-girth 6 that admits no homomorphism to C ´4. Altogether, we show that the girth 8 is the best possible and disprove the first case of the bipartite analogue of Jaeger-Zhang conjecture [START_REF] Naserasr | Homomorphisms of signed graphs[END_REF].

In Chapter 9, we show that every signed bipartite planar graph pG, σq of negative-girth at least 6 admits a homomorphism to pK 3,3 , M q, equivalently, χ c pG, σq ď 3. Moreover, this girth bound is the best possible. The proof is based on a result of [START_REF] Naserasr | Homomorphisms of planar signed graphs to signed projective cubes[END_REF], which itself is based on a result of [START_REF] Dvořák | Packing six T -joins in plane graphs[END_REF] (the case of k " 6 of Conjecture 1.2.2), that every signed bipartite planar graph of negative-girth at least 6 admits a homomorphism to the signed projective cube SP Cp5q, and Grötzsch's Theorem. This result relies on an unpublished work [START_REF] Guenin | Packing T -joins and edge colouring in planar graphs[END_REF] which proves the case of k " 4, 5 of the same conjecture using the 4-color theorem.

In Chapter 10, we study the homomorphism of sparse signed graphs to pK 6 , M q, which could be regarded as an analogue of the Grötzsch Theorem. In this chapter, we prove that every signed graph pG, σq with madpGq ă 14 5 admits a homomorphism to pK 6 , M q and, as a corollary, we conclude that every signed planar graph of girth at least 7 is circular 3-colorable. This is the best-known result for Question 1.4.4 when " 3.

A graph is a pair G " pV pGq, EpGqq where V pGq is a finite set, called the set of vertices, and EpGq is a multiset of pairs of (not necessarily distinct) elements of V pGq, called the set of edges. The elements of the pair forming an edge are called the endpoints of the edge. An edge whose endpoints are identical is called a loop. If two edges have the same endpoints, then they are parallel. Thus a graph in this work is allowed to have loops and parallel edges. A simple graph is a graph without loops and parallel edges and a multigraph is a graph without loops. The order of a graph G is the cardinality of V pGq, denoted by |V pGq| or simply vpGq while the size of G is the cardinality of EpGq, denoted by |EpGq| or simply epGq. A subgraph H of G is a graph with V pHq Ď V pGq and EpHq Ď EpGq and a subgraph is proper if either V pHq Ĺ V pGq or EpHq Ĺ EpGq.

The degree of a given vertex v, denoted dpvq, is the number of edges incident to v. Moreover, given a graph G, we denote by δpGq the minimum degree and ∆pGq the maximum degree, which is respectively the minimum and the maximum among all dpvq's for v P V pGq. The average degree of a graph G is defined to be 2epGq vpGq and the maximum average degree of G, denoted madpGq, is the maximum average degree of H taken over all the subgraphs H of G. An even-degree graph is a graph where the degree of each vertex is even. A connected even-degree graph is called an Eulerian graph.

A walk W of a graph G is an alternating sequence v 1 , e 1 , v 2 , . . . , e k´1 , v k of vertices and edges (allowing repetition) such that for 1 ď i ď k, the edge e i has endpoints v i and v i`1 . A walk of a graph is said to be closed if v 1 and v k are identical. A path in a graph is a walk with all the vertices v i 's being distinct. We say a path P in a graph G is a thread if all of its internal vertices are of degree 2 in G. A cycle of a graph is a closed walk with all the vertices v i 's (except v 1 " v k ) being distinct. The length of a walk is the number of its edges. A path (or thread, or cycle) of length k is simply called a k-path (or a k-thread, or a k-cycle). We denote the k-path or k-thread by P k and denote the k-cycle with C k . An odd (or even) cycle is a cycle of odd (or even) length.

A cut of a graph G, denoted by C " pX, Y q, is a partition of V pGq into two disjoint subsets X and Y such that X Y Y " V pGq. The cut-set or edge-cut of a cut C " pX, Y q, denoted by EpX, Y q, is the set of edges (of EpGq) that have one endpoint in X and have the other endpoint in Y . A graph is k-edge-connected if for any cut pX, X c q of V pGq, we have that |EpX, X c q| ě k.

Circular coloring and circular flow of graphs

The graph coloring has various generalizations and refinements. In this thesis, we will focus on the circular coloring and its dual, circular flow, when restricted to planar graphs.

Circular coloring

Let r be a real number larger than 1. We denote by C r the circle of circumference r, which could be obtained from an interval r0, rs by identifying two endpoints 0 and r. Thus points in C r are real numbers from r0, rq. For two points x, y on C r , the distance between x and y on C r , denoted by d C r px, yq or d pmod rq px, yq, is the length of the shorter arc of C r connecting x and y. Given two real numbers a and b, the interval ra, bs on C r is a closed interval of C r in clockwise orientation of the circle whose first point is a pmod rq and whose end point is b pmod rq. For example, for a given r ą 4, r4, 1s " tt : 4 ď t ă r, or 0 ď t ď 1u. Intervals ra, bq, pa, bs and pa, bq are defined similarly. The length of the interval ra, bs is denoted by pra, bsq. Thus d pmod rq px, yq " mint prx, ysq, pry, xsqu.

Given a graph G, a circular r-coloring of G is a mapping f : V pGq Ñ C r such that for any edge uv P EpGq, d pmod rq pf puq, f pvqq ě 1. The circular chromatic number of G is defined as

χ c pGq " inftr | G admits a circular r-coloringu.
The concept of circular coloring of graphs was introduced by Vince in 1988 in [START_REF] Vince | Star chromatic number[END_REF], where a different but equivalent definition was given and the parameter was called the "star chromatic number". Later, the above definition was given in [START_REF] Zhu | Star chromatic numbers and products of graphs[END_REF] and the term "circular chromatic number" was coined in [START_REF] Zhu | Circular chromatic number: a survey[END_REF]. One important feature of the circular chromatic number is that for any graph G, χpGq ´1 ă χ c pGq ď χpGq and hence χpGq " rχ c pGqs. In other words, the invariant χ c pGq is a refinement of χpGq and it contains more information about the structure of G. The circular chromatic number of graphs has been studied extensively in the literature. We refer to surveys [START_REF] Zhu | Circular chromatic number: a survey[END_REF][START_REF] Zhu | Recent developments in circular colouring of graphs[END_REF] for more on this subject.

A homomorphism of a graph G to a graph H is a mapping f : V pGq Ñ V pHq such that for every edge uv of G, f puqf pvq is an edge of H. It is a folklore fact that a graph G is k-colorable if and only if G admits a homomorphism to K k (the complete graph on k vertices). Similarly, circular chromatic number of graphs could also be defined through graph homomorphisms. For integers p ě 2q ą 0, the circular clique K p;q has vertex set rps " t0, 1, . . . , p ´1u and edge set tij : q ď |i ´j| ď p ´qu. A graph G admits a circular p q -coloring if and only if it admits a homomorphism to K p;q .

Flow and circular flow

Given a graph G " pV, Eq, an orientation D of G is an assignment of a direction to each edge of G. For each edge e " uv, if e is oriented from u to v in D, then we write pu, vq P D.

Given a graph G and an Abelian group A, an A-flow of G is a pair pD, f q where D is an orientation on G and f : EpGq Ñ A such that the total out-flow equals to the total in-flow at each vertex v, i.e., ÿ pv,wqPD f pvwq ´ÿ pu,vqPD f puvq " 0 where ř refers to the addition in A. Sometimes, for the simplicity, we write B D f pvq :" ř pv,wqPD f pvwq ´ř pu,vqPD f puvq and when the orientation is clear from the context, we simply write Bf pvq. So here the condition of each vertex is Bf pvq " 0. Moreover, a nowhere-zero A-flow of G is an A-flow such that f : EpGq Ñ Azt0u.

There are two kinds of flows that are widely studied. A nowhere-zero (integer) k-flow of a graph G is a Z-flow pD, f q of G satisfying that 1 ď |f peq| ď k ´1. A modulo k-flow of G is a nowhere-zero Z k -flow in G. A nowhere-zero integer k-flow in G is naturally a modulo k-flow and conversely, the existence of a modulo k-flow also implies the existence of a nowhere-zero integer k-flow. The latter fact follows from a stronger result of [START_REF] Tutte | A contribution to the theory of chromatic polynomials[END_REF].

Lemma 2.1.1. [START_REF] Tutte | A contribution to the theory of chromatic polynomials[END_REF] If a graph admits a modulo k-flow pD, f q, then it admits an integer k-flow pD, f 1 q such that f 1 peq " f peq pmod kq for every edge e.

When we work with the nowhere-zero k-flow notion (or equivalently, nowhere-zero Z k -flow notion), we have values t1, . . . , k ´1u to assign to each of edges such that only a single value 0 is forbidden. A more general view is to forbid an arbitrary value on each edge. This is studied in the literature and is strongly related to the notion of Z k -connectivity defined below.

A mapping

β : V pGq Ñ Z k is called a Z k -boundary if it satisfies ÿ vPV pGq βpvq " 0 pmod kq.
A graph G is said to be Z k -connected if for every Z k -boundary β, there is an orientation D on G and a mapping f : EpGq Ñ Z k such that for each vertex v P V pGq, B D f pvq " βpvq pmod kq.

The connection between Z k -boundary and forbidding one value on each edge is given in [JLPT92] as follows:

Proposition 2.1.2. [START_REF] Jaeger | Group connectivity of graphs-a nonhomogeneous analogue of nowhere-zero flow properties[END_REF] Let G be a connected graph. The following claims are equivalent:

• G is Z k -connected.
• For any function g : EpGq Ñ Z k , there exists a modulo k-flow pD, f q such that for each edge e of G, f peq ı gpeq pmod kq.

• For any Z k -boundary β : V pGq Ñ Z k and any mapping g : EpGq Ñ Z k , there exists a function f : EpGq Ñ Z k which satisfies that B D f pvq " βpvq pmod kq for each v P V pGq and f peq ı gpeq pmod kq for each e P EpGq.

Circular flow and modulo -orientation

For more restrictions on the flow values, F. Jaeger first considered the 2k`1 k -flow [Jae84; Jae88], which was further generalized by L.A. Goddyn, M. Tarsi, and C.Q. Zhang [START_REF] Goddyn | On pk, dq-colorings and fractional nowherezero flows[END_REF] to the notion of circular flow of graphs. For any positive integers p, q with p ě 2q, a p q -flow of a graph G is a pair pD, f q where D is an orientation on G and f : EpGq Ñ Z satisfies q ď |f peq| ď p ´q and for each vertex v, B D f pvq " 0.

Given an orientation D, we denote by Ð Ý d D pvq and Ý Ñ d D pvq the out-degree and the in-degree at vertex v, which is the number of edges oriented to v and oriented from v, respectively.

Given a graph G, a modulo -orientation of G is an orientation D satisfying that

Ð Ý d D pvq ´Ý Ñ d D pvq " 0 pmod q.
Based on the parity of , we have the following two cases:

• For " 2k, a graph admits a modulo 2k-orientation if and only if it is an even-degree graph.

• [START_REF] Jaeger | On circular flows in graphs[END_REF] For " 2k `1, a graph admits a modulo p2k `1q-orientation if and only if it admits a 2k`1 k -flow.

Here we provide another necessary and sufficient condition for a graph G to admit a modulo p2k `1q-orientation.

Theorem 2.1.3. A graph G admits a modulo p2k `1q-orientation if and only if we can partition the edges of G into 2k `1 classes E 1 , E 2 , . . . , E 2k`1 such that we can orient all the edges so that for each vertex v and any i, j,

Ð Ý d E i pvq ´Ý Ñ d E i pvq " Ð Ý d E j pvq ´Ý Ñ d E j pvq
where ÐÝ d E k pvq and ÝÑ d E k pvq represent respectively the in-degree and out-degree of vertex v in the class E k .

Proof. One direction is easy. If there is a partition tE 1 , E 2 . . . , E 2k`1 u of EpGq and an orientation D satisfying the conditions of the theorem, then we have that

Ð Ý d D pvq ´Ý Ñ d D pvq " 2k`1 ÿ i"1 Ð Ý d E i pvq ´Ý Ñ d E i pvq " p2k `1qp ÐÝ d E 1 pvq ´ÝÑ d E 1 pvqq " 0 pmod 2k `1q.
For the other direction, suppose that a graph G admits a modulo p2k `1q-orientation D. We will apply some operations on G to get a new graph. As the operation does not change the orientation, with a minor abuse of notation we will use D to denote the orientation on the new construction. We keep on lifting a pair of incident edges with one ingoing and one outgoing, that is to say, in one turn, we delete two directed edges pu, wq, pw, vq, and add a new directed edge pu, vq. After all those lifting operations, in the new graph with the orientation D, each vertex is either all-in or all-out, and its degree is a multiple of 2k `1. Now we split each vertex to some vertices of degree exactly 2k `1 and denote the resulting graph by H. Note that H is p2k `1q-regular and every vertex is either all-in or all-out in D. This means that H is a p2k `1q-regular bipartite graph.

We consider a proper p2k `1q-edge-coloring of this bipartite graph H and thus we can partition the edge set into 2k `1 classes, say C 1 , C 2 . . . , C 2k`1 . We define a partition tE 1 , E 2 . . . , E 2k`1 u of EpGq as follows: For uv P EpGq X EpHq, if uv P C i , then let uv P E i ; For uv P EpHq which is obtained by lifting some pair of edges uw 1 , w 1 w 2 , . . . , w n v P EpGq, if uv P C i , then let uw 1 , w 1 w 2 , . . . , w n v P E i . Now we can check that E 1 , E 2 , . . . , E 2k`1 is a desired edge-partition of EpGq: We can see that the reverse operation of splitting vertex is the vertex identification, which does not affect this property, and the reverse operation of lifting a pair of incident edges does not affect this property either.

Signed graphs and homomorphisms

A signed graph pG, σq is a graph G " pV, Eq together with an assignment σ : EpGq Ñ t`, ´u, which is called a signature. When the signature is clear from the context or can be omitted, sometimes we denote the signed graph by Ĝ. An edge with the sign ´is called a negative edge and an edge with the sign `is called a positive edge. Given a signed graph pG, σq, we denote by E `pG, σq and E ´pG, σq the sets of positive and negative edges of pG, σq, respectively. A signed graph with all edges being negative is denoted by pG, ´q while a signed graph with all edges being positive is denoted by pG, `q. Given a signed graph Ĝ, we denote by ´Ĝ the signed graph where the sign of each edge is opposite of what is in Ĝ. For example, pG, `q " ´pG, ´q.

A signed multigraph on two vertices with two parallel edges of different signs is called a digon. We say a signed graph pH, πq is an (induced) subgraph of pG, σq if H is an (induced) subgraph of G and σ 1 is a signature on H such that for every e P EpHq: σ 1 peq " σpeq. For simplicity, we may write pH, σq as a subgraph of pG, σq if H is a subgraph of G.

In this thesis, for drawing a signed graph, we use solid or blue lines to represent positive edges and dashed or red lines to represent negative edges. For underlying graphs with no signature, we use gray color.

Given a signed graph pG, σq and a vertex v of pG, σq, a switching at the vertex v is to multiply each of the signs of all edges incident to v by ´. This operation is based on the mathematical relation between the signs `and ´. Note that if there is a loop at v, then the multiplication will be done twice, thus nullified. Given a set A Ď V pGq, a switching at the set A is to switch at each vertex in A. That is equivalent to switching the signs of all edges in the edge-cut EpA, V pGqzAq. We say a signed graph pG, σ 1 q is switching equivalent to pG, σq if it is obtained from pG, σq by a series of switchings at vertices. In that case, we also simply say σ 1 is a switching equivalent signature of σ. It is easily observed that given a graph G, the relation "switching equivalent" is an equivalence class on the set of all signatures on G. In the study of coloring and homomorphism of signed graphs, switching-equivalent signed graphs are viewed as the same signed graph.

The sign of a structure in pG, σq is the product of the signs of all edges in the given structure, counting multiplicity. One of the most important notions we use is the sign of a closed walk (or a cycle) which is the product of signs of all its edges (allowing repetition). The sign of some structures, such as a closed walk or a cycle, is invariant under a switching, while for some other structures, such as a path, the sign of it may change (for example, switching at one of the endpoints of a path). Thus we may relax or restrict our use accordingly. For example, when speaking of the sign of a cycle, we may refer to any equivalent signature, but when speaking of the sign of a path, we are restricted to the signature in hand. As the sign of a cycle is invariant under the switching, for a given cycle, there are only two switching equivalent signatures on it. For a positive integer , we denote a negative cycle of length to be C ´ and a positive cycle of length to be C ` .

A result of Zaslavsky, fundamental in the study of signed graphs, shows that a switching equivalent class to which pG, σq belongs to is determined by signs of the cycles of pG, σq.

Proposition 2.2.1. [START_REF] Zaslavsky | Signed graphs[END_REF] Two signed graphs pG, σq and pG, σ 1 q are switching equivalent if and only if they have the same set of negative cycles.

Closed walks are the key structures of a signed graph. There are four possible types based on the parities of their lengths and signs (i.e., the parity of the number of negative edges). One may use elements of Z 2 2 to denote these four types. For any ij P Z 2 , we say a closed walk W of pG, σq is of type ij if the number of negative edges of W (counting multiplicity) is congruent to i pmod 2q and the total number of edges (counting multiplicity) is congruent to j pmod 2q. More precisely, a positive odd closed walk is of type 01, a negative odd closed walk is of type 11, a positive even closed walk is of type 00, and a negative even closed walk is of type 10.

Given a signed graph pG, σq, for each closed walk of type ij for ij P Z 2 2 , we denote the length of a shortest closed walk of type ij in pG, σq to be g ij pG, σq. When there is no such closed walk, we write g ij pG, σq " 8. Note that g 00 is trivially 2 for any graph with at least one edge. The other three values, g 01 pG, σq, g 10 pG, σq and g 11 pG, σq, play an important role in the study of homomorphisms of signed graphs.

Proposition 2.2.2. [NSZ21] Given a connected signed graph pG, σq, if two of g 01 pG, σq, g 10 pG, σq and g 11 pG, σq are finite, then the third one is also finite. This leads to three special sub-classes of signed graphs each of which is of special importance in the study of signed graphs.

• The class G 01 where for each pG, σq P G 01 , g 01 pG, σq might be bounded but the other two girth values are 8. Every element of this class, after a switching, can be presented as pG, `q, thus this class is the most natural embedding of graphs into larger class of signed graphs.

• The class G 10 where for each pG, σq P G 10 , g 10 pG, σq might be bounded but the other two girth values are 8. That is to say the underlying graph G has no odd-cycle. Thus this is the class of all signed bipartite graphs. The importance of this class will be further mentioned in Section 2.3.4.

• The class G 11 where for each pG, σq P G 11 , g 11 pG, σq might be bounded but the other two girth values are 8. Every element of this class, after a switching, can be presented as pG, ´q. This class is of high importance specially in connection to minor theory.

The girth of a signed graph pG, σq is the length of a smallest cycle of the underlying graph G, and the odd-girth or negative-girth of pG, σq is, respectively, the smallest g i1 or the smallest g 1j for any i, j P t0, 1u.

Coloring of signed graphs

One of the most natural extensions of proper colorings of graphs to signed graphs is the notion of 0-free coloring introduced by Zaslavsky in [START_REF] Zaslavsky | Signed graphs[END_REF]. Given a signed graph pG, σq and a positive integer k, a 0-free 2k-coloring of pG, σq is a mapping c : V pGq Ñ t˘1, ˘2, . . . , ˘ku such that for any edge e " uv of pG, σq, cpuq ‰ σpeqcpvq.

One observes immediately that if pG, σq contains a positive loop, then for no value of k it admits a proper coloring. However, for any signed graph pG, σq without a positive loop, there exists an integer k such that pG, σq admits a proper 0-free 2k-coloring. Moreover, k can be chosen to be (at most) the number of vertices, because assigning a distinct absolute value for each vertex satisfies the condition.

The specialty of the definition is that pG, σq admits a 0-free 2k-coloring if and only if for every switching-equivalent signature σ 1 , pG, σ 1 q also admits 0-free 2k-coloring. That is because if c is such a 2k-coloring for pG, σq, then after a switching at a vertex v one may change the color of v from cpvq to ´cpvq to preserve the property of being proper.

Note that the number of colors used in the 0-free coloring is always even. There have been several attempts to introduce an analogue coloring which uses an odd number of colors. The term "0-free" indeed identifies this coloring from a similar coloring where 0 is added to the set of colors and the set of vertices colored with 0 induces an independent set. The next definition was introduced in [START_REF] Zaslavsky | Signed graphs[END_REF] and is further developed in [START_REF] Máčajová | The chromatic number of a signed graph[END_REF]. Given a signed graph pG, σq and a positive integer k, a p2k `1q-coloring of pG, σq is a mapping c : V pGq Ñ t0, ˘1, . . . , ˘ku such that for any edge e " uv of pG, σq, cpuq ‰ σpeqcpvq.

Combining these two notions of colorings of signed graphs, there is a notion of chromatic number of a signed graph pG, σq, denoted by χpG, σq, defined to be the smallest n such that pG, σq admits an n-coloring and we refer to [START_REF] Máčajová | The chromatic number of a signed graph[END_REF] for more details. In this thesis, we normally work with signed graphs without positive loops. For simplicity, when pG, σq contains a positive loop, one may define χpG, σq " 8.

Homomorphism of signed graphs

Extending the notion of homomorphisms of graphs to signed graphs, regarding the signs of edges as two different colors, we have the following concept.

Definition 2.2.3. Given two signed graphs pG, σq and pH, πq, an edge-sign preserving homomorphism of pG, σq to pH, πq is a mapping of V pGq and EpGq to V pHq and EpHq (respectively) such that the adjacencies, the incidences and the signs of edges are preserved. When there exists an edge-sign preserving homomorphism of pG, σq to pH, πq, we write pG, σq s.p.

ÝÑ pH, πq.

Note that for two signed simple graphs, an edge-sign preserving homomorphism of one to another could be simplified to a vertex mapping which preserves the adjacency and the signs of edges.

One of the important operations, which distinguishes the signed graphs from the 2-edge-colored graphs, is switching. Thus we have the following definition which more faithfully represents the homomorphism relation between two signed graphs up to switching equivalence. Definition 2.2.4. [START_REF] Naserasr | Homomorphisms of signed graphs: An update[END_REF] Given two signed graphs pG, σq and pH, πq, a (switching) homomorphism of pG, σq to pH, πq is a mapping of V pGq and EpGq to V pHq and EpHq respectively such that the adjacencies, the incidences and the signs of closed walks are preserved. When there is a (switching) homomorphism of pG, σq to pH, πq, we write pG, σq Ñ pH, πq.

If there exists a switching homomorphism of pG, σq to pH, πq, then we may say that pG, σq admits an pH, πq-coloring or that pG, σq is pH, πq-colorable.

An easy observation is that if pG, σq s.p.

ÝÑ pH, πq, then pG, σq Ñ pH, πq but the converse is not necessarily true.

Theorem 2.2.5. [START_REF] Naserasr | Homomorphisms of signed graphs: An update[END_REF] Given two signed graphs pG, σq and pH, πq, pG, σq Ñ pH, πq if and only if there exists a switching-equivalent signature σ 1 of σ such that pG, σ 1 q s.p.

ÝÑ pH, πq.

The above theorem could be viewed as the equivalent definition of the (switching) homomorphism of signed graphs. It is convenient to use this definition in practice. Thus a homomorphism φ of pG, σq to pH, πq consists of three parts: φ 1 : V pGq Ñ t`, ´u which decides for each vertex v whether a switching is done at v; φ 2 : V pGq Ñ V pHq which decides to which vertex of pH, πq the vertex v is mapped; φ 3 : EpGq Ñ EpHq which decides the image of each edge. However, as most of time we will only consider simple graphs, φ 3 is induced by φ 2 and, therefore, the mapping φ is composed of φ 1 and φ 2 , i.e. φ " pφ 1 , φ 2 q. We note that since switching at X is the same as switching at V zX, the two mappings pφ 1 , φ 2 q and p´φ 1 , φ 2 q are identical.

Each of the notions (of homomorphism) leads to a corresponding notion of isomorphism: that is a homomorphism φ where φ 2 and φ 3 are one-to-one and onto. This, furthermore, leads to two notions of automorphism. For example, the negative 4-cycle with only one negative edge, as a 2-edge-colored graph, has only one non-trivial automorphism. Whereas, it is both vertex-transitive and edge-transitive with respect to the notion of (switching) homomorphism. It will be clear from the context which notion of isomorphism or automorphism we refer to. Following this notion of isomorphism, if pG 1 , σ 1 q is a subgraph of pG, σ 1 q where σ 1 is equivalent to σ, then we may refer to pG 1 , σ 1 q as a subgraph of pG, σq as well.

Given two signed graphs, how to prove whether there is a homomorphism or not from one to another? The parameters g ij , for ij P Z 2 2 , can help us to determine the nonexistence of the homomorphism.

Double switching graphs

A strong relation between the homomorphism of signed graphs and the edge-sign preserving homomorphism of signed graphs is provided in Theorem 2.2.5. In this section, we will use the following notion to build more connections between these two notions of homomorphisms of signed graphs. Definition 2.2.7. [START_REF] Naserasr | Homomorphisms of signed graphs: An update[END_REF] Given a signed graph pG, σq with vertex set V pGq " tv 1 , . . . , v n u, the Double Switching Graph of pG, σq, denoted by DSGpG, σq, is a signed graph with vertex set V `YV ẃith V `" tv 1 , . . . , v ǹ u and V ´" tv 1 , . . . , v ń u, satisfying the following conditions: Each set of vertices V `, V ´induces a copy of pG, σq, that is to say, for any positive (or negative) edge v i v j , v ì v j and v í v j are two positive (respectively, negative) edges of DSGpG, σq. For any positive (or negative) edge v i v j , v ì v j and v í v j are two negative (respectively, positive) edges of DSGpG, σq.

Note that a vertex v í connects to vertices in V `as it is obtained from a switching on v i . This construction was originally defined in [START_REF] Brewster | Edge-switching homomorphisms of edge-coloured graphs[END_REF] in a study of homomorphism of 2-edge-colored graphs, where a connection to homomorphism of signed graphs was established (see Theorem 2.2.8). The notion of the double switching graph is from [START_REF] Naserasr | Homomorphisms of signed graphs: An update[END_REF]. It refers to the fact that for any switchingequivalent signed graph pG, σ 1 q of pG, σq, there are two disjoint edge-sign preserving isomorphic copies of pG, σ 1 q in DSGpG, σ 1 q.

The next theorem builds another connection between the switching homomorphism and the edge-sign preserving homomorphism. For the sake of completeness, we give a direct proof using Definition 2.2.4. Theorem 2.2.8. [START_REF] Brewster | Edge-switching homomorphisms of edge-coloured graphs[END_REF] Given two signed graphs pG, σq and pH, πq, pG, σq Ñ pH, πq if and only if pG, σq s.p.

ÝÑ DSGpH, πq.

Proof. An identity mapping of the subgraph of DSGpH, πq induced on V `can be extended to a mapping of DSGpH, πq to pH, πq as follows. Each vertex v í is mapped to v ì , each edge v ì v j is mapped to an edge v ì v j of the opposite sign and each edge v í v j is mapped to an v ì v j of the same sign. It is easily verified that this mapping is a homomorphism of DSGpH, πq to pH, πq. Thus any edge-sign preserving homomorphism of pG, σq to DSGpH, πq induces a homomorphism of pG, σq to pH, πq.

For the converse, assume pG, σq maps to pH, πq and let φ be such a mapping. Let σ 1 be a signature on G where the sign of each edge uv is the same as the sign of φpuqφpvq. Then, clearly, the image of each cycle C of pG, σq in pH, φq is a closed walk whose sign (with respect to π) is the same as the sign of C in pG, σ 1 q. As this is also the case for pG, σq, it follows from Proposition 2.2.1 that σ 1 is switching equivalent to σ. Thus there is a set X of vertices such that σ 1 is obtained from σ by a switching at X. We modify φ to a mapping ψ of pG, σq to DSGpH, πq as follows. If v R X and φpvq " v i , then ψpvq " v ì . If v P X and φpvq " v i , then ψpvq " v í . One may now easily verify that ψ is an edge-sign preserving homomorphism of pG, σq to DSGpH, πq.

Signed graph operations

Minor

The notion of signed graphs, through independent development from the direction of minor theory, would build a better connection between the graph coloring theory and the graph minor theory.

Definition 2.3.1. Given two signed graphs pG, σq and pH, πq, pH, πq is said to be a minor of pG, σq if it can be obtained from pG, σq by switching, deleting vertices and edges, and contracting positive edges.

If pH, πq is a minor of pG, σq, for simplicity, we may say pG, σq contains pH, πq-minor, and otherwise, pG, σq is pH, πq-minor-free.

Given graphs G and H, we say H is an odd-minor of G if pG, ´q contains pH, ´q as a minor. For example, a K 3 -minor-free graph is a forest, while in contrast, a graph containing no odd-K 3 -minor is bipartite. The latter one forms a larger class even though both of them are 2-colorable. Similarly, the class of graphs G where pG, ´q has no pK k , ´q-minor is much larger than the class of graphs without K k -minor.

Signed indicator

In the study of coloring and homomorphism of graphs, using gadgets to construct new graphs from old ones is a fruitful tool. In this section, we extend this notion to signed graphs. Definition 2.3.2. A signed indicator I is a triple I " p Ĝ, u, vq such that Ĝ is a signed graph (with at least one edge) and u, v are two distinct vertices of Ĝ.

Assume Ĝ is a signed graph, I " p Ĝ, u, vq is a signed indicator and e " xy is an (either positive or negative) edge of Ĥ. By replacing e " xy with a copy of I " p Ĝ, u, vq, we mean the following operation: We delete the edge e from Ĥ, identify the vertex x with u and identify the vertex y with v.

There is a subtle issue in the above definition. An edge e " xy is an unordered pair. So we can write it as e " yx as well. However, by identifying y with u and identifying x with v, the resulting signed graph is different from the one as defined above. To avoid such confusion, it is safer to first orient the edges of Ĥ and then replace the directed edge e with I. However, for our usage, the difference does not affect our discussion, so we just say that we replace the edge e with I.

Definition 2.3.3. For a graph G and a signed indicator I, we denote by GpIq the signed graph obtained from G by replacing each edge with a copy of I.

For a signed graph Ĝ and two signed indicators I `and I ´, we denote by ĜpI `, I ´q the signed graph obtained from Ĝ by replacing each positive edge with a copy I `and replacing each negative edge with a copy of I

´.

An easy indicator we use often is the digon. Normally, given a graph G, we denote by G the signed graph obtained from G by replacing each edge with a digon. Given a graph G, we denote by kG the multigraph obtained from G by replacing each edge e of G with k parallel edges. Similarly, we denote by k Ĝ the signed multi-graph obtained from Ĝ, say Ĝ " pG, σq by replacing each edge e with k parallel edges and assigning a signature such that the product of the signs of all the k parallel edges is ´σpeq. Note that here k Ĝ might be not unique but up to inversing operation (introduced in Section 5.2), all these k Ĝ are (inversing) equivalent.

T k pG, σq and C ´k -coloring of signed graphs

As mentioned in Section 1.5, based on recent development of the theory of homomorphism of signed graphs, we show that by replacing odd cycles with negative cycles, we can fill the parity gap in this study. In order to connect the k-coloring problem with the C ´k -coloring problem, we introduce the following construction. Definition 2.3.4. Given a signed graph pG, σq, we define T k pG, σq to be the signed graph pG k , πq where G k is obtained from G by subdividing each edge so that it becomes a path of length k and π is an assignment of signs on the edges of G k so that the sign of the u ´v path, corresponding to the edge uv P EpGq, is the same as ´σpuvq.

In other words, given a signed graph Ĝ and two signed indicators I `" pP ḱ , u, vq and I

´" pP k , u 1 , v 1 q where P ḱ is a negative path of length k with two endpoints u and v while P k is a positive path of length k with two endpoints u 1 and v 1 , T k pG, σq " ĜpI `, I ´q. Using this T k -construction, the following lemma then shows the importance of the study of C ´k -coloring.

Theorem 2.3.5. A graph G is k-colorable if and only if T k´2 pG, `q admits a homomorphism to C ´k .

Proof. Since we can prove the theorem independently in each connected component of G, we may assume that G is connected. We consider two cases based on the parity of k. If k is an odd number, then in T k´2 pG, `q a cycle is negative if and only if it is of odd length. Let G k´2 denote the underlying graph of T k´2 pG, `q. Thus, this signed graph is switching equivalent to pG k´2 , ´q. Then, the problem of mapping T k´2 pG, `q to C ´k is reduced to a graph homomorphism problem of mapping G k´2 to C k . The equivalence then can be easily checked and we refer to [START_REF] Hell | On the complexity of H-coloring[END_REF] for a proof.

We now assume that k " 2 is an even number, in which case T k´2 pG, `q is a signed bipartite graph.

We first show that if T k´2 pG, `q Ñ C ´k , then G is k-colorable. Observe that, regarded as a signed graph equipped with switching, C ´k is both vertex-transitive and edge-transitive. Let x 1 , x 2 , . . . x 2 be the vertices of C ´k in the cyclic order. Let X 1 " tx 1 , x 3 , . . . x 2 ´1u and X 2 " tx 2 , x 4 , . . . x 2 u be the two parts of C ´k . Let φ be a homomorphism of T k´2 pG, `q to C ´k . Observe that as G, and therefore T k´2 pG, `q, is connected, the mapping φ preserves the bipartition of T k´2 pG, `q. Thus we may assume, without loss of generality, that the vertices of T k´2 pG, `q which correspond to the vertices of G map to the vertices in X 1 . Furthermore, recall that the homomorphism φ consists of two components φ 1 : V pT k´2 pG, `qq Ñ t`, ´u, and φ 2 : V pT k´2 pG, `qq Ñ X 1 Y X 2 . Thus the restriction of φ onto V pGq is a mapping to the set t`, ´u ˆX1 which is of order 2 . We claim that φ is a proper coloring of G. That is simply because if φ maps two adjacent vertices to the same element of t`, ´u ˆX1 , the negative pk ´2q-path that connects them in T k´2 pG, `q is mapped to a negative closed walk of length at most k ´2, but that contradicts the no-homomorphism lemma.

The converse then is easier. Assume χpGq ď 2 and let ψ be a 2 -coloring of G where t`, ´uˆX 1 is the color set. Therefore the coloring ψ can be viewed as ψ " pψ 1 , ψ 2 q where ψ 1 : V pGq Ñ t`, ´u and ψ 2 : V pGq Ñ X 1 . We claim that ψ can be extended as a homomorphism of T k´2 pG, `q to C ´k . For any edge uv in G, noting that ψpuq " ψpvq is not possible because ψ is a proper coloring, we consider two possibilities:

• pψ 1 puq, ψ 2 puqq " p´ψ 1 pvq, ψ 2 pvqq. The mapping ψ then has applied a switching only in one end of the u ´v path, and thus switches it to a positive (even) path. After identifying its end points the resulting positive even cycle can be mapped to just an edge of any sign.

• ψ 2 puq ‰ ψ 2 pvq. The two ψ 2 puq ´ψ2 pvq paths in C ´k are even, exactly one is negative, and each has length at most k ´2. The u ´v path then can be mapped to the path of the same sign where the sign is taken after applying possible switching by ψ 1 at its end points.

It completes the proof.

Corollary 2.3.6. A graph G is 4-colorable if and only if T 2 pG, `q maps to C ´4.

In particular, the 4-color theorem can be restated as:

Theorem 2.3.7. [4-color theorem restated] For any planar graph G, the signed bipartite planar graph T 2 pG, `q maps to C ´4.

SpGq and signed bipartite graphs

Our special interest in signed bipartite graphs is raised by the following definition and theorem.

Definition 2.3.8. [NRS15] Let I ˚" pC ´4, u, vq be a signed indicator where u and v are two nonadjacent vertices of the 4-cycle. We denote by SpGq the signed graph GpI ˚q, which is obtained from replacing each edge of G with the signed indicator I ˚.

Note that there is more than one choice of signature here, and moreover, having vertices already labeled, not every two such signatures are switching equivalent: Which of the two sides of a 4-cycle is chosen to be negative makes a difference here. However, up to a switching isomorphism, any two signature choices of SpGq are the same. In Figure 2.1, a planar embedding of SpK 4 q is depicted. The first easy observation on SpGq is that it is a signed bipartite graph where in one part all vertices are of degree 2. The next two theorems show the importance of this construction. The first one shows how to naturally embed the homomorphism order of graphs into homomorphism order of signed bipartite graphs, and the second one shows how to capture the notion of the chromatic number of a graph in this homomorphism order.

Theorem 2.3.9. [START_REF] Naserasr | Homomorphisms of signed graphs[END_REF] Given graphs G and H, G admits a homomorphism to H if and only if SpGq admits a homomorphism to SpHq.

We denote by pK 2,2 , eq the signed graph on K 2,2 with only one negative edge and by pK k,k , M q the signed graph on K k,k with its negative edges forming a perfect matching.

Theorem 2.3.10. [START_REF] Naserasr | Homomorphisms of signed graphs[END_REF] Given a graph G, we have the following claims.

• χpGq ď 2 if and only if SpGq Ñ pK 2,2 , eq;

• χpGq ď k if and only if SpGq Ñ pK k,k , M q for k ě 3;

As the problem of mapping signed graphs to pK k,k , M q could capture the problem of the coloring of ordinary graphs, the signed bipartite graphs pK k,k , M q are of special importance in the study of homomorphism of signed graphs.

Note that the planarity is preserved when we construct SpGq from a planar graph G. Let SPB 2 be the class of signed bipartite planar simple graphs in which one partite set has maximum degree of at most 2. It is clear that for each planar graph G, SpGq is in SPB 2 and that core of each signed bipartite graph in SPB 2 is a subgraph of SpGq for some planar graph G.

As a direct corollary of Theorem 2.3.9, we have the following reformulation of 4-color theorem.

Theorem 2.3.11. [4-color theorem restated] For any planar graph G, we have SpGq Ñ SpK 4 q.

Applying the case k " 4 of Theorem 2.3.10, we have another restatement of the 4-color theorem as follows.

Theorem 2.3.12. [4-color theorem restated] For any planar graph G, SpGq Ñ pK 4,4 , M q.

One can check that with an appropriate labeling of vertices, pK 4,4 , M q is the signed projective cube of dimension 3, i.e., SP Cp3q. The next theorem is a strengthening of the above restated 4-color theorem. Its proof is, in [START_REF] Naserasr | Homomorphisms of planar signed graphs to signed projective cubes[END_REF], based on an edge-coloring result of B. Guenin [Gue03] which in turn is based on the 4-color theorem.

Theorem 2.3.13. Every signed bipartite planar simple graph admits a homomorphism to pK 4,4, M q.

Viewing the 4-color theorem as the homomorphisms of planar graphs to K 4 , one may consider the only three core (proper) subgraphs K 1 , K 2 , K 3 of K 4 and for each of them ask: which planar graphs map to these subgraphs? While the homomorphism problem to K 1 is a matter of triviality and to K 2 is rather easy, the homomorphism problem of planar graphs to K 3 has been a subject of extensive study. On one hand, it is proved to be an NP-complete problem. On the other hard, starting with Grötzsch's theorem, an extensive family of planar graphs are proved to be 3-colorable. We refer to [DKT11; DKT20; Dvo13; KY14b; Tho03] and to the references there for some of the work on this subject.

Motivated by this observation, Theorem 2.3.10, and Theorem 2.3.13, it is natural to ask for each core subgraph of pK 4,4 , M q, which families of signed planar graphs map to it. Of such subgraphs of pK 4,4 , M q there are two notable ones to consider: (1) the negative 4-cycle C ´4. We refer to Chapter 8 for progress on this problem; (2) pK 3,3 , M q. We refer to Chapter 9 for results on the homomorphism problem to this signed graph.

Folding lemma on planar graphs

When we study the homomorphism and coloring problem of planar graphs, we have a useful lemma that enable us to make "uniform" the type of the facial cycles of a plane graph without changing its odd-girth. It has been introduced as the folding lemma in [START_REF] Klostermeyer | p2 ` q-coloring of planar graphs with large oddgirth[END_REF].

Lemma 2.3.14. [Folding lemma] [KZ00] Let G be a plane graph of odd-girth g and let C " v 1 ¨¨¨v k be a face whose boundary is not a cycle of length g. Then there is an integer i P t1, . . . , ku such that the graph G 1 obtained from G by identifying two vertices v i and v i`2 , where the index is taken modulo k, is still of odd-girth g.

Moreover, there is a bipartite analogue of the folding lemma on signed bipartite planar graphs proved in [START_REF] Naserasr | Homomorphisms of planar signed graphs to signed projective cubes[END_REF]. We will apply this lemma frequently when we study the circular coloring and homomorphism problems of signed bipartite planar graphs in Part IV.

Lemma 2.3.15. [Bipartite folding lemma] [NRS13] Let Ĝ be a signed bipartite plane graph and let 2k be the length of its shortest negative cycle. Assume that C is a facial cycle that is not a negative 2k-cycle. Then there are vertices v i´1 , v i , v i`1 , consecutive in the cyclic order of the boundary of C, such that identifying v i´1 and v i`1 , after a possible switching at one of the two vertices, the resulting signed graph remains a signed bipartite plane graph whose shortest negative cycle is still of length 2k.

We observe that by applying this lemma repeatedly, we get a homomorphic image of Ĝ which is also a signed bipartite plane graph in which every facial cycle is a negative cycle of length exactly 2k.

pH, πq-critical signed graphs

k-critical graphs

One of the key notions in the study of proper coloring is the concept of k-critical graphs, which is defined to be a graph of chromatic number k whose proper subgraphs are all pk ´1q-colorable. An extension of the notion to homomorphism was proposed in 1980's by Catlin [START_REF] Catlin | Graph homomorphisms into the five-cycle[END_REF], but the concept was not drawn much attention until recently.

Definition 2.4.1. Given a graph H, a graph G is said to be H-critical, if G does not admit a homomorphism to H but each proper subgraph of it does.

Note that a graph is k-critical if and only if it is K k´1 -critical. Next to the complete graphs, the most studied target graphs are odd cycles. One of the key directions of the study of k-critical graphs or C 2k`1 -critical graphs is to bound from below the number of their edges as a function of k and n (the number of vertices). Kostochka and Yancy gave a nearly tight lower bound in [START_REF] Kostochka | Ore's conjecture on color-critical graphs is almost true[END_REF], almost settling a conjecture of Gallai. Observing that being a 4-critical graph is the same as being C 3 -critical, it follows from the special case presented in [START_REF] Kostochka | Ore's conjecture for k " 4 and Grötzsch's theorem[END_REF] that any C 3 -critical graph on n vertices has at least r 5n´2 3 s edges. Their approach is extended to the study of C 5 -critical graphs in [START_REF] Dvořák | Density of 5/2-critical graphs[END_REF] and to C 7 -critical graphs in [START_REF] Postle | On the Density of C_7-Critical Graphs[END_REF]. In [START_REF] Dvořák | Density of 5/2-critical graphs[END_REF], it is proved that any C 5 -critical graph on n vertices has at least 5n´2 4 edges and they conjecture that the bound can be improved to 14n´9 11 . Similarly, in [START_REF] Postle | On the Density of C_7-Critical Graphs[END_REF], it is proved that any C 7 -critical graph on n vertices has at least 17n´2 15 edges and they conjecture that the bound can be improved to 27n´20 23 .

pH, πq-critical signed graphs

We extend this notion to signed graphs.

Definition 2.4.2. Given a signed graph pH, πq, a signed graph pG, σq is said to be pH, πq-critical if the following conditions are satisfied:

• g ij pG, σq ě g ij pH, πq for ij P Z 2 2 , (the condition of the no-homomorphism lemma),

• pG, σq Ñ pH, πq,

• pG 1 , σq Ñ pH, πq for every proper subgraph G 1 of G.

The notion captures and extends the notion of k-critical graphs as follows: A graph G is kcritical if the signed graph pG, `q is pK k´1 , `q-critical, here the condition of no-homomorphism lemma implies that G has no loop. The notion of H-critical graphs is also captured by viewing H as the signed graph pH, `q but with a minor revision. If G is an H-critical graph in the sense of [START_REF] Catlin | Graph homomorphisms into the five-cycle[END_REF] and it has an odd cycle C 2k`1 , where odd-girthpHq ą 2k `1, then G is the odd cycle C 2k`1 . Our first condition then eliminates these trivial cases.

For the particular case when pH, πq " C ´ , we identify two cases based on the parity of :

• " 2k `1. In this case, in order for pG, σq to satisfy the conditions of no-homomorphism lemma, in particular, we must have pG, ´q switching equivalent to pG, σq. After a switching of pG, σq to pG, ´q and C ´ to pC 2k`1 , ´q, the problem is reduced to the study of C 2k`1 -critical graphs (of odd-girth at least 2k `1).

• " 2k. In this case, in order for pG, σq to satisfy the conditions of no-homomorphism lemma, G must, in particular, be bipartite. This is the case of main interest of Part IV of this thesis.

We note that in the first case, to determine if pG, σq is switching equivalent to pG, ´q can be done in polynomial time and quite efficiently, but to determine if G Ñ C 2k`1 is an NP-complete problem. In contrast, in the second case, to find an equivalent signature under which we can map pG, σq to C ´ is the hard part, and given a fixed signature, we can determine, in polynomial time, if there exists an edge-sign preserving homomorphism to C ´ with only one negative edge(see Theorem 8.1.1).

Strengthening Theorem 2.3.5, we proved the following.

Theorem 2.4.3. A graph G is pk `1q-critical if and only if T k´2 pG, `q is C ´k -critical.

Proof. First we assume G is pk `1q-critical. We need to show that T k´2 pG, `q is C ´k -critical. Let e be an edge of T k´2 pG, `q and assume it is on the path corresponding to the edge uv of G.

Then since G is critical, G ´uv admits a k-coloring which can be transformed into a mapping of T k´2 pG ´uv, `q to C ´k . This mapping could then be extended to the remaining vertices of the corresponding uv-path.

Conversely, assuming that T k´2 pG, `q is C ´k -critical, we need to show that G is pk `1q-critical. This follows from the fact that T k´2 pG ´uv, `q is a proper subgraph of T k´2 pG, `q for any edge uv and Theorem 2.3.5.

| Circular colorings of signed graphs

This chapter is based on the following papers: Motivated by Jaeger-Zhang conjecture and its bipartite analogue discussed in Section 1.4, in this chapter, we extend the notion of circular coloring from graphs to signed graphs. It is a refinement of the 0-free coloring of signed graphs, which was introduced by Zaslavsky in [START_REF] Zaslavsky | Signed graphs[END_REF]. In this chapter, we only consider signed graphs without positive loops. In section 3.1, we prove the basic properties of this new notion. Especially, we provide a tight cycle argument in Section 3.1.2, using which we show that the circular chromatic number of a finite signed graph is a rational number. This idea allows us to find a finite set of candidates for the circular chromatic number of a given signed graph.

[NWZ21] R.
In Section 3.2, we show several equivalent definitions of circular r-coloring. Moreover, given a positive even integer p and positive integer q with p ě 2q, we build the signed circular clique K s p;q and show that a signed graph admits a circular p q -coloring if and only if it admits a homomorphism to K s p;q . Combining the tight-cycle argument, we know that there exists an (exponential time) algorithm which could determine the circular chromatic number of a finite signed graph.

In Section 3.3, we apply some graph operations on signed graphs and investigate the relationship between the circular chromatic number of the original (signed) graphs and the circular chromatic number of the resulting (signed) graphs. Lemma 3.3.11 tells us that if indicators I `, I ´satisfy certain circular coloring properties, then the circular chromatic numbers of Ĝ and ĜpI `, I ´q can be determined by each other. Especially, Theorem 3.3.12 indicates that via a signed graph operation, the circular chromatic number of a graph G can be determined by the circular chromatic number of SpGq and vice versa. In Lemma 3.3.18, we give the formula of the circular chromatic number of certain subdivision of a signed graph pG, σq in terms of the circular chromatic number of pG, σq.

When restricted to the class of signed bipartite graphs, in Section 3.4, we define signed bipartite circular cliques B p;q , which play an important role in the homomorphism order of signed bipartite graphs. More precisely, we prove in Theorem 3.4.2 that the circular chromatic number of a signed bipartite graph is bounded by p q if and only if it admits a homomorphism to B p;q . In particular, some interesting homomorphism targets are shown to be essentially signed bipartite circular cliques, for example, pK 3,3 , M q and C ´2k , etc. Based on the discussion on the class of signed bipartite graphs, we give some new restatements of the 4-color theorem at the end of this section.

Circular coloring of signed graphs

Let C r be a circle of circumference r obtained from the interval r0, rs by identifying the points 0 and r. For each point x on C r , the unique point of distance r 2 from x is called the antipodal of x and is denoted by x. Given a set A of points on C r , the antipodal of A, denoted by Ā, is the set of antipodals of points in A. In particular, if I is an open unit interval of C r , then Ī is its antipodal, which is also an open unit interval of C r . Definition 3.1.1. Given a signed graph pG, σq and a real number r, a circular r-coloring of pG, σq is a mapping f : V pGq Ñ C r satisfying the followings.

• For each positive edge uv of pG, σq, d pmod rq pf puq, f pvqq ě 1.

• For each negative edge uv of pG, σq, d pmod rq pf puq, f pvqq ě 1.

The circular chromatic number of pG, σq is defined as χ c pG, σq " inftr | pG, σq admits a circular r-coloringu.

Note that for any negative edge uv, the condition d pmod rq pf puq, f pvqq ě 1 is equivalent to

d pmod rq pf puq, f pvqq ď r 2 ´1.
Equivalently, we have a geometrical interpretation of circular coloring in the language of an assignment of unit intervals to the vertices of signed graphs. Let IpC r q be the set of all the open unit intervals of C r . Given a signed graph pG, σq and a real number r, a circular r-coloring of pG, σq is an assignment ϕ : V pGq Ñ IpC r q such that for each positive edge uv of pG, σq, ϕpuq X ϕpvq " H, and for each negative edge uv of pG, σq, ϕpuq X ϕpvq " H.

For finite (signed) graphs which are the main concerns of this work, noting that C r is a compact set and by a basic application of the notion of limits, we observe that the "inf" in the definition is attained and can be replaced by the minimum. It implies that if χ c pG, σq " r, then there exists a circular r-coloring of pG, σq.

Some basic properties

The first proposition is to show that our definition of the circular chromatic number is invariant under the switching isomorphism.

Proposition 3.1.2. Let pG, σq and pG, σ 1 q be two switching-equivalent signed graphs. Then every circular r-coloring of pG, σq corresponds to a circular r-coloring of pG, σ 1 q. In particular, χ c pG, σ 1 q " χ c pG, σq.

Proof. As signed graphs pG, σq and pG, σ 1 q are switching equivalent, without loss of generality, we assume that pG, σ 1 q is obtained from pG, σq by switching at a vertex set A. Let f be a circular r-coloring of pG, σq. Define g :

V pGq Ñ C r as gpvq " # f pvq, if v P V pGqzA, f pvq, if v P A.
It is easy to verify that g is a circular r-coloring of pG, σ 1 q.

The next observation tells us that the circular chromatic number of a signed graph is indeed a generalization of the circular chromatic number of a graph.

Observation 3.1.3. If G is a graph with no loop, then χ c pG, `q " χ c pGq.

The circular chromatic number of a signed graph is a refinement of its chromatic number, defined based on the notion of 0-free coloring define by Zaslavsky [START_REF] Zaslavsky | Signed graphs[END_REF]. Recall that a 0-free 2k-coloring of pG, σq is a mapping ϕ : V pGq Ñ t˘1, ˘2, . . . , ˘ku such that for any edge e " uv of pG, σq, ϕpuq ‰ σpeqϕpvq. Proposition 3.1.4. Given a positive integer k and a signed graph pG, σq, pG, σq is 0-free 2kcolorable if and only if pG, σq is circular 2k-colorable.

Let f : V pGq Ñ t˘1, ˘2, . . . , ˘ku be a 0-free 2k-coloring of pG, σq. Let

gpvq " # f pvq ´1, if f pvq P t1, 2, . . . , ku ´f pvq `k ´1, if f pvq P t´1, ´2, . . . , ´ku.
It is straightforward to verify that g is a circular 2k-coloring of pG, σq. Another direction follows directly from Lemma 3.2.6 which will be introduced later. Note that our definition of circular coloring is quite symmetric, meaning that each point on the circle plays the same role as others. Moreover, comparing our definition to the chromatic number defined in [START_REF] Máčajová | The chromatic number of a signed graph[END_REF], when the chromatic number is an odd integer, it is completely different. For example, it has been showed in [START_REF] Máčajová | The chromatic number of a signed graph[END_REF] that signed planar simple graphs are 5-colorable but later in Section 4.4, we will show that for signed planar simple graph pG, σq, χ c pG, σq ď 6.

Another key observation is that the circular chromatic number of signed graphs we defined plays well with the notion of homomorphisms of signed graphs. This will lead to the development of signed circular cliques in Section 3.2. Here we mention the no-homomorphism lemma first and observe that the circular chromatic number parameter follows the homomorphic order. Lemma 3.1.5. If pG, σq Ñ pH, πq, then we have χ c pG, σq ď χ c pH, πq.

Proof. As pG, σq Ñ pH, πq, by Theorem 2.2.5, there is a switching-equivalent σ 1 and an edge-sign preserving homomorphism ϕ, regarded as a vertex mapping, of pG, σ 1 q to pH, πq. Given a circular r-coloring f of pH, πq, f ˝ϕ is a circular r-coloring of pG, σ 1 q, which implies a circular r-coloring of pG, σq.

Observe that χ c pG, σq " 1 if and only if pG, σq has no edge. If pG, σq has one (either positive or negative) edge, then pG, σq is not circular r-colorable for any r strictly smaller than 2. Thus we always assume that r ě 2. Moreover, we have the characterization of signed graphs whose circular chromatic numbers equal to 2. Proposition 3.1.6. Given a signed graph pG, σq, χ c pG, σq " 2 if and only if pG, σq is switching equivalent to pG, ´q.

Proof. Without loss of generality, assume that pG, σq is connected. For one direction, assume that χ c pG, σq " 2. Let C be the circle of circumference 2 and let f : V pGq Ñ C be a circular 2-coloring. Assume there is a positive edge uv. Let f puq " a and f pvq " b. As d pmod 2q pf puq, f pvqq " 1 and C is of circumference 2, all the vertices will be mapped to either a or b. We denote A the set of vertices which are mapped to a. Switching at A, we obtain pG, ´q. The inverse is quite obvious. If pG, σq is switching equivalent to pG, ´q, then assigning the same point to all the vertices is a circular 2-coloring of pG, ´q.

For graphs, parallel edges do not have effect on (circular) chromatic number. However, for signed graphs, the presence or absence of parallel edges of different signs influences the circular chromatic number.

Proposition 3.1.7. Let D be a digon. We have that χ c pDq " 4.

Proof. Let x and y be the two vertices of D. It is easy to find a circular 4-coloring of D. That χ c pDq ě 4 holds because in any circular r-coloring ψ of D, the four points ψpxq, ψpxq, ψpyq and ψpyq must be pairwise at distance at least one.

Thus when we work with a signed graph pG, σq, it easily follows that χ c pG, σq ě 4 if pG, σq contains a digon (as a subgraph).

Tight cycle in a circular coloring

In this part, we extend the idea of the tight cycle to signed graphs. Using this concept, we show that the circular chromatic number of any finite (signed) graph is a rational number, and, moreover, it can be computed for any given signed graph. We start with the following definition. Definition 3.1.8. Assume pG, σq is a signed graph and φ : V pGq Ñ r0, rq is a circular r-coloring of pG, σq. The partial orientation D φ pG, σq of pG, σq with respect to φ is defined as follows: pu, vq is an arc of D φ pG, σq if and only if one of the following holds:

• uv is a positive edge and φpvq ´φpuq " 1 pmod rq.

• uv is a negative edge and φpvq ´φpuq " 1 pmod rq. Furthermore, arcs in D φ pG, σq are called tight arcs of pG, σq with respect to φ. A directed path (respectively, a directed cycle) in D φ pG, σq is called a tight path (respectively, a tight cycle) with respect to φ.

For any given circular r-coloring of a signed graph pG, σq, the existence of a tight cycle in its partial orientation D φ pG, σq is determined by the value of r. More precisely, we have the next lemma.

Lemma 3.1.9. Let pG, σq be a signed graph and let φ be a circular r-coloring of pG, σq. If D φ pG, σq is acyclic, then there exists an r 0 with r 0 ă r, such that pG, σq admits a circular r 0 -coloring.

Proof. For a given signed graph pG, σq and a circular r-coloring φ of pG, σq, suppose that D φ pG, σq is acyclic. Moreover, we assume among all such φ, D φ pG, σq has minimum number of arcs.

First we show that D φ pG, σq has no arc. Otherwise, since D φ pG, σq is acyclic, D φ pG, σq has an arc pv, uq such that u is a sink. Thus for every positive edge uw, pφpwq ´φpuqqpmod rq ą 1 and for every negative edge uw, pφpwq ´φpuqqpmod rq ą 1. As G is finite, there exists an ą 0 such that for every positive edge uw of pG, σq, pφpwq ´φpuqqpmod rq ą 1 ` and for every negative edge uw, pφpwq ´φpuqqpmod rq ą 1 ` . Let ψpxq " φpxq for x ‰ u and ψpuq " φpuq ` . Then ψ is a circular r-coloring of pG, σq and D ψ pG, σq is a sub-digraph of D φ pG, σq, in which pv, uq is not an arc and no new arc is created. So D ψ pG, σq is acyclic and has fewer arcs than D φ pG, σq, a contradiction.

Since D φ pG, σq has no arc, it follows from the definition that there exists an ą 0 such that for any positive edge uv, 1 ` ď |φpuq ´φpvq| ď r ´p1 ` q and for any negative edge uv, 1 ` ď |φpuq ´φpvq| ď r ´p1 ` q. Let r 0 " r 1` and let ψ : V pGq Ñ r0, r 0 q be defined as ψpvq " φpvq 1` for each vertex v P V pGq. Then ψ is a circular r 0 -coloring of pG, σq.

It implies that for a signed graph pG, σq, if χ c pG, σq " r, then every circular r-coloring of pG, σq has a tight cycle. Moreover, we have the following necessary and sufficient conditions based on the tight cycle argument for χ c pG, σq being r. It indicates that the notion of the tight cycle is a key tool in the study of the circular coloring of signed graphs.

Lemma 3.1.10. Given a signed graph pG, σq, χ c pG, σq " r if and only if pG, σq is circular rcolorable and every circular r-coloring φ of pG, σq has a tight cycle.

Proof. One direction follows from Lemma 3.1.9. It remains to show that if pG, σq is circular rcolorable and every circular r-coloring φ of pG, σq has a tight cycle, then χ c pG, σq " r. Suppose to the contrary that χ c pG, σq ă r, we would prove that there is a circular r-coloring φ of pG, σq such that D φ pG, σq is acyclic.

Assume χ c pG, σq " r 1 ă r. Let ψ : V pGq Ñ r0, rq be a circular r 1 -coloring of pG, σq. We define φpvq " r r 1 ψpvq. Then it is easy to verify that φ is a circular r-coloring of pG, σq and D φ pG, σq contains no arc. Hence, it is acyclic.

We remark here that given a circular coloring of a signed graph, the tight cycle is independent of a switching-equivalent signature. Assume that χ c pG, σq " r and f : V pGq Ñ r0, rq is a circular r-coloring of pG, σq. Given a vertex set A, let pG, σ 1 q be a signed graph obtained from pG, σq by switching at A. We define

gpvq " $ & % f pvq ´r 2 , if v P A, f pvq, if v R A.
Then g is a circular r-coloring of pG, σ 1 q. A tight cycle C " v 1 v 2 ¨¨¨v with respect to f is also a tight cycle with respect to g. As shown in the tight cycle argument, cycles play an important role in determining the circular chromatic number. Thus we provide a plausible set of values for the circular chromatic number of pG, σq.

Proposition 3.1.11. Every signed graph pG, σq, which is not a forest, has a cycle with s positive edges and t negative edges such that

χ c pG, σq " 2ps `tq 2a `t (3.1)
for some integer a.

Proof. Let C r denote a circle of circumference r, which is obtained by identifying the end points 0 and r of an interval r0, rs. Let pG, σq be a signed graph with χ c pG, σq " r and let ψ : V pGq Ñ r0, rq be a circular r-coloring of pG, σq. By Lemma 3.1.10, D ψ pG, σq contains a directed cycle C. Suppose that C consists of s positive edges and t negative edges and C " v 1 v 2 ¨¨¨v s`t . If v i v i`1 is a positive edge, then traversing from the point ψpv i q, one unit along the clockwise direction of C r , we arrive at the point ψpv i`1 q. If v i v i`1 is a negative edge, then from the point ψpv i q, by first traversing r 2 unit along the anti-clockwise direction of C r then traversing along the clockwise direction a unit distance, we arrive at the point ψpv i`1 q.

Therefore, the directed cycle C represents a traverse along the circle C r for the distance of s ´p r 2 ´1q ¨t, at end of which one must come back to the starting point. Intuitively, the cycle C (regarded as a curve) winds around the circle C r clockwise some number of times, say a times. So

1 ˆs ´p r 2 ´1q ˆt " r ˆa
for some integer a. Hence r " 2ps`tq 2a`t .

As r ě 2, a is an integer satisfying that |a| ď |V pGq| 2 . Since s `t ď |V pGq| and r ě 2, given the number of vertices of pG, σq, there is a finite number of candidates for the circular chromatic number of pG, σq. More precisely, the values of χ c pG, σq is limited to one of at most 2|V pGq| 2 possibilities. Thus we have the following corollary.

Corollary 3.1.12. Assume pG, σq is a signed graph on n vertices. Then χ c pG, σq " p q for some p ď 2n and q ď n. In particular, χ c pG, σq " mint p q | pG, σq admits a circular p q -coloringu.

It follows from Corollary 3.1.12 that there is an exponential-time algorithm (O(n 2 p n )) that determines the circular chromatic number of a finite signed graph. As the 3-colorability of graphs is one of the well-known NP-complete problems, the problem of determining the circular chromatic number of a given signed graph falls into the class of NP-complete problems and, thus, unless P=NP, one does not expect to find an algorithm that runs in less than the exponential time in order of a graph and that works for all signed graphs. But with a restriction on the input class, one may find better algorithms and approximations.

Equivalent definitions

The notions of the circular coloring and the chromatic number of signed graphs have various equivalent restatements. Here we introduce some of them. For s, t P r0, rq, let d pmod rq ps, tq " mint|s ´t|, r ´|s ´t|u. A circular r-coloring of a signed graph can be reformulated as follows, which is sometimes more convenient for the computation. Definition 3.2.1. Given a signed graph pG, σq and a real number r, a circular r-coloring of a signed graph pG, σq is a mapping f : V pGq Ñ r0, rq such that for each positive edge uv,

1 ď |f puq ´f pvq| ď r ´1
and for each negative edge uv,

either |f puq ´f pvq| ď r 2 ´1 or |f puq ´f pvq| ě r 2 `1.
We remark that if pG, σq is circular r-colorable, then there always exists a circular r-coloring f : V pGq Ñ r0, rq satisfying that f pvq ď r 2 for every vertex v. Assume that f is a circular r-coloring of pG, σq. Let A " tv | f pvq ě r 2 u. We define

gpvq " $ & % f pvq, if v R A f pvq ´r 2 , if v P A.
By Proposition 3.1.2, g is a circular r-coloring of pG, σ 1 q which is obtained from pG, σq by switching at a vertex set A. Such g is a circular r-coloring satisfying that gpvq ď r 2 for every vertex v. We can also define the circular coloring of signed graphs through the homomorphism. We first need some nice homomorphism targets. Normally, we only consider finite graphs but here we introduce infinite signed graphs based on the notion of circular r-coloring. Definition 3.2.2. For a real number r ě 2, let K s r be an infinite signed graph which has the vertex set r0, rq, in which for two vertices x and y,

• xy is a positive edge if 1 ď |x ´y| ď r ´1 and • xy is a negative edge if either |x ´y| ď r 2 ´1 or |x ´y| ě r 2 `1.

Note that when r ě 4, there are some pair of vertices are connected by one positive edge and one negative edge. The next lemma, viewed as one of equivalent definitions of circular coloring of signed graphs, follows directly from Definition 3.2.2. Lemma 3.2.3. Given a signed graph pG, σq and a real number r ě 2, pG, σq admits a circular r-coloring if and only if pG, σq

s.p. ÝÑ K s r .
By the natural projection of r0, rq to r0, r 1 q (f pxq " r 1 x r for x P r0, rq), we have the following.

Lemma 3.2.4. Given real numbers r 1 and r, r 1 ě r ě 2, K s r s.p.

ÝÑ K s r 1 .

Let r " p q and assume that p is an even positive integer. We claim that any signed (finite) graph pG, σq which is circular r-colorable admits a coloring where the colors used are in the form of i q with i being integer. As pG, σq is circular r-colorable, assume that f is a circular r-coloring of pG, σq. We partition the interval r0, p q q into p parts as follows: for each i P t0, . . . , p´1u, let I i " r i q , i`1 q q and thus p´1 Ť i"0

I i " r0, rq.
For each vertex v of pG, σq, we define a mapping g : V pGq Ñ t i q | i P t0, 1, . . . , p´1uu satisfying that gpvq " i q if f pvq P I i . We now show that such a mapping g is also a circular p q -coloring of pG, σq. We discuss two possibilities based on the signs of the edges.

• For a positive edge uv, we have 1 ď |f puq ´f pvq| ď p q ´1. It implies that

1 ´1 q ă |gpuq ´gpvq| ă p q ´1 `1 q .
Since q|gpuq ´gpvq| is an integer, we conclude that 1 ď |gpuq ´gpvq| ď p q ´1.

• For a negative edge uv, we know that either |f puq ´f pvq| ď p 2q ´1 or |f puq ´f pvq| ě p 2q `1. It implies that either

|gpuq ´gpvq| ă p 2q ´1 `1 q or |gpuq ´gpvq| ą p 2q `1 ´1 q .
Since p is even, p 2 is an integer. As q|gpuq ´gpvq| is an integer, we conclude that either |gpuq ´gpvq| ď p 2q ´1 or |gpuq ´gpvq| ě p 2q `1.

Note that it is crucial that p is an even integer. For otherwise p 2 is not an integer, and we cannot conclude that |gpuq ´gpvq| ď p 2q ´1 or |gpuq ´gpvq| ě p 2q `1. Indeed, if p is odd, then the set t0, 1 q , . . . , p´1 q u is not closed under taking antipodal points. The above observation leads to the following equivalent definition of the circular chromatic number of signed graphs after a scaling of the values. For i, j P t0, 1, . . . , p ´1u, the modulo-p distance between i and j is defined to be d pmod pq pi, jq " mint|i ´j|, p ´|i ´j|u. Given an even integer p and an integer x P t0, 1, . . . , p ´1u, the p-antipodal of x is x " x `p 2 pmod pq. When the set of integers that we work with is clear from the context, we just call x the antipodal of x. Definition 3.2.5. Given a signed graph pG, σq and integers p ě 2q ą 0 such that p is even, a pp, qq-coloring of pG, σq is a mapping f : V pGq Ñ t0, 1, . . . , p ´1u such that for any positive edge uv, d pmod pq pf puq, f pvqq ě q, and for any negative edge uv, d pmod pq pf puq, f pvqq ě q.

Note that d pmod pq pi, jq ě q is equivalent to q ď |i ´j| ď p ´q. The next lemma follows directly from the discussion above. Lemma 3.2.6. Given a signed graph pG, σq and integers p ě 2q ą 0 such that p is even, pG, σq admits a circular p q -coloring if and only if pG, σq admits a pp, qq-coloring. Thus the circular chromatic number of pG, σq is χ c pG, σq " mint p q | p is even and pG, σq admits a pp, qq-coloringu.

Based on the notion of pp, qq-coloring of signed graphs, defined above, we define a signed circulant graph to connect this coloring problem with the homomorphism problems. Definition 3.2.7. For integers p and q satisfying that p ě 2q ą 0 and p is even, the signed circular clique K s p;q has the vertex set rps " t0, 1, . . . , p ´1u, where

• ij is a positive edge if q ď |i ´j| ď p ´q and

• ij is a negative edge if either |i ´j| ď p 2 ´q or |i ´j| ě p 2 `q.

For q " 1, K s p;1 is also denoted by K s p .

Note that when p q ě 4, there are some pair of vertices are connected by a digon. In practice, we may take a circle of circumference p q and choose p points on this circle such that the length of the arc between any two consecutive points is 1 q . In this presentation of K s p;q , vertices i and j are connected by a positive edge if d pmod rq pi, jq ě 1 and they are connected by a negative edge if d pmod rq pi, jq ě 1. Equivalently, we may easily take a circle of circumference p, choose p points where consecutive points are at distance 1 and define positive and negative adjacencies based on whether d pmod rq pi, jq ě q or d pmod rq pi, jq ě q (respectively). Two examples K s 8;3 and K s 4;1 are showed in Figures 3.1 and 3.2 respectively. If r " p q is a rational and p is an even integer, then it is easily observed that K s p;q is a subgraph of K s r . Another observation on K s p;q is that the antipodal v of a vertex v (as a point of the circle) is among the vertices of K s p;q because we choose p to be an even number. This is a key reason behind the fact that our definition is a refinement of the 0-free coloring of signed graphs but not other similar colorings of signed graphs. Moreover, each vertex i in K s p;q is incident to itself with a negative loop. As we mentioned before, when p q ě 4, there are digons in K s p;q . Furthermore, the subgraph induced by all the positive edges of K s p;q is exactly the circular clique K p;q , which is known to be of circular chromatic number p q . Combining with the easy observation that there is an obvious pp, qq-coloring of K s p;q , we have χ c pK s p;q q " p q .

(3.2)

Naturally, we have the next lemma, which gives another equivalent definition of the circular chromatic number of a signed graph. Lemma 3.2.8. Given a signed graph pG, σq and integers p ě 2q ą 0 such that p is even, pG, σq admits a pp, qq-coloring if and only if pG, σq admits an edge-sign preserving homomorphism to K s p;q . Thus the circular chromatic number of pG, σq is χ c pG, σq " mint p q | p is even and pG, σq

s.p. ÝÑ K s p;q u.
As the homomorphism relation is transitive, we have the following.

Corollary 3.2.9. For r " p q , K s r s.p. ÝÑ K s p;q .

Next we state some basic properties of signed circular cliques.

Lemma 3.2.10. Given positive integers p, p 1 , q and q 1 with p, p 1 being even, if p q ď p 1 q 1 , then K s p;q s.p.

ÝÑ K s p 1 ;q 1 .
Proof. Let r " p q , r 1 " p 1 q 1 . Combining Lemma 3.2.4 and Corollary 3.2.9, we have that

K s p;q s.p. ÝÑ K s r s.p. ÝÑ K s r 1 s.p. ÝÑ K s p 1 ;q 1 .
This completes the proof.

The next lemma follows directly from the above.

Lemma 3.2.11. Given positive integers p, q, and k satisfying that p ě 2q, and assuming that p is even, we have that K s kp;kq s.p. ÝÑ K s p;q .

In a signed circular clique K s p;q , each vertex v has its antipodal v, which behaves oppositely compared to itself, that means all the positive (or negative) neighbors of v are the negative (or positive, respectively) neighbors of v. We can switch at half of vertices of K s p;q , say p 2 , p 2 `1, . . . , p´1 and then map them to 0, 1, . . . , p 2 ´1 correspondingly. That's the way we obtain the next definition of Ks p;q .

Definition 3.2.12. Let Ks p;q be the signed subgraph of K s p;q induced by vertices t0, 1, . . . , p 2 ´1u. Then we have the following lemma, which can be viewed as another definition of the circular chromatic number of signed graphs. Lemma 3.2.13. Given a signed graph pG, σq and integers p ě 2q ą 0 such that p is even, pG, σq admits a pp, qq-coloring if and only if pG, σq admits a switching homomorphism to Ks p;q . Thus the circular chromatic number of pG, σq is χ c pG, σq " mint p q | p is even and pG, σq Ñ Ks p;q u. Analogously, we have the following.

Lemma 3.2.14. Given positive integers p, p 1 , q, and q 1 with p, p 1 both being even, if p q ď p 1 q 1 , then Ks p;q Ñ Ks p 1 ;q 1 .

The core of signed circular clique

One may view the class of signed circular cliques K s p;q or Ks p;q as a representation of rational numbers at least 2 in the homomorphism order of the class of all signed graphs. Then the circular chromatic number of a signed graph pG, σq is determined by the first element of this chain (representing rational numbers) which is larger than pG, σq with respect to the homomorphism order. Therefore, we need to know that what is the core of such important signed graphs.

Lemma 3.2.15. Assume r " p q is a rational, p is an even positive integer and with respect to this condition, p q is in its simplest form. Then Ks p;q is the switching core of K s r .

Proof. Since Ks p;q is a subgraph of K s r and K s r Ñ Ks p;q , it suffices to show that Ks p;q is a switching core, i.e., it is not switching homomorphic to any of its proper signed subgraphs.

Assume to the contrary that there is a switching homomorphism of Ks p;q to a proper signed subgraph of Ks p;q , say pH, σq. As pH, σq Ñ Ks p;q and Ks p;q Ñ pH, σq, we have χ c pH, σq " χ c p Ks p;q q " p q . Let φ be a switching homomorphism of pH, σq to Ks p;q . By Lemma 3.1.10, there is a tight cycle C with respect to φ. Assume C " v 1 v 2 ¨¨¨v is a cycle of length . It follows from the definition of the tight cycle that φpv i`1 q ´φpv i q " q pmod p 2 q. Thus q " mp 2 for some positive integer m. Since p p 2 , qq " 1, we conclude that ě p 2 . So |V pHq| ě |V pCq| " ě p 2 " |V p Ks p;q q|. Noting that pH, σq is a core, the homomorphism of Ks p;q Ñ pH, σq is surjective and onto. Hence pH, σq " Ks p;q .

Lemma 3.2.16. Assume r " p q is a rational, p is an even positive integer and with respect to this condition p q is in its simplest form. Then K s p;q is the edge-sign preserving core of K s r .

Proof. As K s r s.p. ÝÑ K s p;q , it is enough to prove that K s p;q is an edge-sign preserving core. Let pH, σq be the edge-sign preserving core of K s p;q which is a proper subgraph and let ϕ be an edge-sign preserving homomorphism of K s p;q to pH, σq. Since any edge-sign preserving homomorphism is, in particular, a switching homomorphism and by Lemma 3.2.15, Ks p;q is a subgraph of pH, σq. Observe that for each vertex u of Ks p;q there are two corresponding vertices u 1 and u 2 of K s p;q such that a switching at u 1 gives u 2 . Furthermore, there exists a positive edge u 1 u 2 in K s p;q . So ϕpu 1 q ‰ ϕpu 2 q. Moreover, ϕpv i q ‰ ϕpu j q, for any i, j P t1, 2u and for any other vertex v of Ks p;q , as otherwise we have an edge-sign preserving homomorphism of Ks p;q to its proper subgraph by mapping u to v. It is a contradiction.

Operations on signed graphs

In this section, we will develop graph operations that help us in the study of the circular chromatic number. Recall that the circular chromatic number of a graph G is equal to the circular chromatic number of the signed graph pG, `q. Are there other relations of this sort? Our goal here is to develop a technique to provide such relations. We begin with an easy observation.

Observation 3.3.1. Given integers p, q satisfying p ě 2q ě 2, for any i, j P rps, ij is an edge of K p;q if and only if ij is a digon of Ks 2p;q .

Recall that G is a signed graph obtained from G by replacing each edge of G with a digon. The following then is implied by Observation 3.3.1.

Corollary 3.3.2. For any simple graph G, χ c p Gq " 2χ c pGq.

Since for any signature σ on a graph G the signed graph pG, σq is a subgraph of G, we have the following upper bound on the circular chromatic number of pG, σq.

Corollary 3.3.3. For any graph G and any signature σ of G, χ c pG, σq ď 2χ c pGq.

By Corollary 3.3.2, there is a large family of signed multigraphs for which the circular chromatic number bound of this corollary is tight. In Section 4.3, we present constructions of signed graphs of arbitrarily large girth, in particular simple ones, for which the bound of this corollary is tight.

Observe that Ks 2k is the signed graph on k vertices where each pair of distinct vertices are adjacent by a digon and each vertex has a negative loop. It follows from the structure of these signed graphs that in any edge-sign preserving homomorphism of a signed graph pG, σq to Ks 2k , negative edges impose no restriction and a positive edge poses only one restriction, more precisely, vertices connected by a positive edge cannot be mapped to the same vertex. In other words, any such a mapping is a proper k-coloring of the subgraph induced by the set of positive edges of pG, σq, denoted by G σ . Therefore, based on the following definition we have the next theorem. Let χ `pG, σq " min σ 1 "σ tχpG σ1 qu.

Theorem 3.3.4. For any signed graph pG, σq, 2χ `pG, σq ´2 ă χ c pG, σq ď 2χ `pG, σq.

Signed indicators

In Section 2.3.2, we have mentioned how we can use an indicator to build new signed graphs from a graph or a signed graph. Here we provide conditions on the indicators which help us to claim a formula. That is to say, one can determine the exact value of the circular chromatic number of the resulting signed graph from the original one.

Given signed indicators I `and I ´, recall that the signed graph ΩpI `, I ´q is obtained from Ω by replacing each positive edge with a copy of the indicator I `and replacing each negative edge with a copy of the indicator I

´.

Definition 3.3.5. Assume I " pΓ, u, vq is a signed indicator and r ě 2 is a real number. For a, b P r0, rq, we say the color pair pa, bq is feasible for I with respect to r if there is a circular r-coloring φ of Γ such that φpuq " a and φpvq " b.

Note that if a color pair pa, bq is feasible for I, then for any t P r0, rq, pa `t, b `tq and p´a, ´bq are also feasible for I. Here the calculation is taken modulo r. Then as soon as we know all feasible pairs of the form p0, bq for b P r0, r 2 s, we know all the feasible pairs. Definition 3.3.6. Assume I " pΓ, u, vq is a signed indicator and r ě 2 is a real number. Let ZpI, rq " tb P r0, r 2 s : p0, bq is feasible for I with respect to r u.

Observe that for I " pΓ, u, vq, ZpI, rq ‰ H if and only if χ c pΓq ď r. One useful interpretation of ZpI, rq is that this is the set of possible distances in C r between the two colors assigned to u and v in a circular r-coloring of Γ. Assume that I " pΓ, u, vq is a signed indicator.

• I is said to be a plus indicator if for each r ě χ c pΓq, there is a value f prq such that ZpI, rq " rf prq, r 2 s.

• I is said to be a minus indicator if for each r ě χ c pΓq, there is a value gprq such that ZpI, rq " r0, r 2 ´gprqs.

• I is said to be a plus-minus indicator if for each r ě χ c pΓq, there is a value hprq such that ZpI, rq " rhprq, r 2 ´hprqs.

Intuitively speaking, after a proper projection of the circle of circumference r such that 1 becomes f prq, the role of a positive edge can be passed into a plus indicator. Similarly, one can pass the role of a negative edge into a minus indicator. To do both at the same time then we must have f prq " gprq. Note that given a plus indicator I 1 " pΓ 1 , u 1 , v 1 q and a minus indicator I 2 " pΓ 2 , u 2 , v 2 q satisfying that f prq " gprq, we may build a plus-minus indicator from I 1 and I 2 by identifying vertices u 1 and v 1 with u 2 and v 2 , respectively. In such cases perhaps we will have more restrictions on the domain of the function h than the domain of f and g, but when all three are defined, we will have f prq " gprq " hprq. Let us first mention some examples.

Example 3.3.7. Assume that I " pΓ, u, vq is a signed indicator.

(1) If Γ is a negative 2-path connecting two vertices u and v, then I is a plus indicator and moreover, f prq " 2 ´r 2 for 2 ď r ă 4 and f prq " 0 for r ě 4, i.e., ZpI, rq " r2 ´r 2 , r 2 s for 2 ď r ă 4 and ZpI, rq " r0, r 2 s for r ě 4.

(2) If Γ is a positive 2-path connecting two vertices u and v, then I is a minus indicator and moreover, gprq " 2 ´r 2 for 2 ď r ă 4 and gprq " 0 for r ě 4, i.e., ZpI, rq " r0, r ´2s for 2 ď r ă 4 and ZpI, rq " r0, r 2 s for r ě 4.

(3) If Γ consists of a negative 2-path and a positive 2-path connecting two vertices u and v, then I is a plus-minus indicator and moreover, hprq " 2 ´r 2 for 8 3 ď r ă 4 and hprq " 0 for r ě 4, i.e., ZpI, rq " r2 ´r 2 , r ´2s for 8 3 ď r ă 4 and ZpI, rq " r0, r 2 s for r ě 4.

The following is easily proved by projections between circles.

Proposition 3.3.8. Given a plus, minus or plus-minus indicator I " pΓ, u, vq, the corresponding function, f , g, or h, defined on rχ c pΓq, `8q, is a continuous non-increasing function. In particular, for r large enough, the value of each function at r will be 0.

In the next two lemmas, we will see, for a given graph G, the relation between χ c pGq and χ c pGpIqq for the cases when I is either a plus indicator or a plus-minus indicator.

Lemma 3.3.9. Assume that I " pΓ, u, vq is a plus indicator and r, r 1 are two real numbers satisfying that r ą χ c pΓq and r 1 ą 2. If ZpI, rq " r r r 1 , r 2 s, then given a graph G, χ c pGpIqq " r if and only if χ c pGq " r 1 .

Proof. Let t " r r 1 . We first assume that χ c pGq " r 1 and prove that χ c pGpIqq " r. To prove that χ c pGpIqq " r, we show that χ c pGpIqq ď r and χ c pGpIqq ě r. To see that χ c pGpIqq ď r, let ϕ be a circular r 1 -coloring of G. Then we define ψ : V pGq Ñ r0, rq as ψpuq " tϕpuq. This mapping ψ satisfies that for any edge uv of G, d pmod rq pψpuq, ψpvqq ě t. So d pmod rq pψpuq, ψpvqq P ZpI, rq, and the mapping ψ can be extended to a circular r-coloring of the copy of Γ that was used to replace the edge uv. Therefore, this mapping ψ can be extended to a circular r-coloring of GpIq.

To prove that χ c pGpIqq ě r, we assume to the contrary that χ c pGpIqq " r 0 ă r where r 0 ě χ c pΓq. Let ψ be a circular r 0 -coloring of GpIq. As I is a plus indicator, there exists a t 0 such that ZpI, r 0 q " rt 0 , r 0 2 s and thus t 0 ď d pmod r 0 q pψpuq, ψpvqq ď r 0 2 for each edge uv P EpGq. Since χ c pΓq ď r 0 ă r and by Proposition 3.3.8, t 0 ě t. We define ϕpuq " 1 t 0 ψpuq for each vertex u of G and let r 1 0 " r 0 t 0 . Note that for any edge uv of G, d pmod r 1 0 q pϕpuq, ϕpvqq ě 1. Hence, ϕ is a circular r 1 0 -coloring of G. But r 1 0 " r 0 t 0 ă r t " r 1 , a contradiction. We now assume that χ c pGpIqq " r and prove that χ c pGq " r 1 . To prove that χ c pGq " r 1 we show that χ c pGq ď r 1 and χ c pGq ě r 1 . To see that χ c pGq ď r 1 , let ψ be a circular r-coloring of GpIq. So d pmod rq pψpuq, ψpvqq P rt, r 2 s. Then we define ϕ : V pGq Ñ r0, r 1 q as ϕpuq " ψpuq t . The mapping ϕ satisfies that for any edge uv of G, d pmod r 1 q pϕpuq, ϕpvqq ě 1. Thus ϕ is a circular r 1 -coloring of the graph G.

To prove that χ c pGq ě r 1 , we assume to the contrary that χ c pGq " r 1 0 ă r 1 " r t . Let ϕ be a circular r 1 0 -coloring of G. Thus, for any edge uv of G, 1 ď d pmod r 1 0 q pϕpuq, ϕpvqq ď r 1 0 2 . For real values of x satisfying χcpΓq r 1 0 ď x ă r r 1 0 , we define f pxq such that ZpI, xr 1 0 q " rf pxq, xr 1 0 2 s. By Proposition 3.3.8, f is a continuous non-increasing function in terms of x. As f p r r 1 0 q " t, and since r ą χ c pΓq, there is a choice of f pxq " t 0 such that χ c pΓq ď t 0 r 1 0 ă r and t 0 ě t. Let us now define ψpuq " t 0 ϕpuq for each vertex u of G. We have that t 0 ď d pmod t 0 r 1 0 q pψpuq, ψpvqq ď

t 0 r 1 0 2
. Thus, by the definition of ZpI, t 0 r 1 0 q, for each edge uv of G, the coloring ψ can be extended to a circular pt 0 r 1 0 q-coloring of Γ. This results in a circular pt 0 r 1 0 q-coloring of GpIq. However, this is in contradiction with the fact that t 0 r 1 0 ă r.

Lemma 3.3.10. Assume that I " pΓ, u, vq is a plus-minus indicator and r, r 1 are two real numbers satisfying that r ą χ c pΓq and r 1 ą 2. If ZpI, rq " r r 2r 1 , r 2 ´r 2r 1 s, then given a graph G, χ c pGpIqq " r if and only if χ c pGq " r 1 .

Proof. Let t " r 2r 1 . We first assume that χ c pGq " r 1 and prove that χ c pGpIqq " r. To see that χ c pGpIqq ď r, let ϕ be a circular r 1 -coloring of G and thus 1 ď |ϕpuq ´ϕpvq| ď r 1 ´1 for each edge uv P EpGq. Then we define ψpuq " tϕpuq for u P V pGq. This mapping ψ satisfies that for each edge uv of G, t ď |ψpuq ´ψpvq| ď r 2 ´t. As d pmod rq pψpuq, ψpvqq P ZpI, rq, ψ can be extended to a circular r-coloring of each copy of Γ and furthermore, can be extended to a circular r-coloring of GpIq.

To prove that χ c pGpIqq ě r, we assume to the contrary that χ c pGpIqq " r 0 ă r where r 0 ě χ c pΓq. Let ψ be a circular r 0 -coloring of GpIq. By certain switchings, we may assume that ψpvq P r0, r 0 2 q for each vertex v of GpIq. Since χ c pΓq ď r 0 ă r and I is a plus-minus indicator, there exists a t 0 such that t 0 ď d pmod r 0 q pψpuq, ψpvqq ď r 0 2 ´t0 for each edge uv of G. Since r 0 ă r, it follows from Proposition 3.3.8 that t 0 ě t. We define ϕpuq " 1 t 0 ψpuq for each vertex u P V pGq and let r 1 0 " r 0 2t 0 . Note that for any edge uv of G, 1 ď |ϕpuq ´ϕpvqq| ď r 1 0 ´1. Hence, ϕ is a circular r 1 0 -coloring of G, noting that r 1 0 " r 0 2t 0 ă r 2t " r 1 , a contradiction. We now assume that χ c pGpIqq " r and prove that χ c pGq " r 1 . To see that χ c pGq ď r 1 , let ψ be a circular r-coloring of GpIq. By certain switchings, we may assume that ψpvq P r0, r 2 q for each vertex v of GpIq. So d pmod rq pψpuq, ψpvqq P rt, r 2 ´ts. Then we define ϕ : V pGq Ñ r0, r 1 q as ϕpuq " ψpuq t and thus for any uv P EpGq, 1 ď |ϕpuq ´ϕpvqq| ď r 1 ´1. Such a mapping ϕ is a circular r 1 -coloring of G.

To prove that χ c pGq ě r 1 , we assume to the contrary that χ c pGq " r 1 0 ă r 1 " r 2t . Let ϕ be a circular r 1 0 -coloring of G. Thus, for any uv P EpGq, 1 ď |ϕpuq ´ϕpvqq| ď r 1 0 ´1. As I is a plus-minus indicator, for real values of x satisfying χcpΓq

2r 1 0 ď x ă r 2r 1 0
, we define hpxq such that ZpI, 2xr 1 0 q " rhpxq, xr 1 0 ´hpxqs. By Proposition 3.3.8, h is a continuous non-increasing function in terms of x. As hp r 2r 1 0 q " t " r 2r 1 and r ą χ c pΓq, there is a choice of hpxq " t 0 such that t 0 ě t and χ c pΓq ď 2t 0 r 1 0 ă r. We define ψpuq " t 0 ϕpuq for each vertex u of G and thus t 0 ď |ψpuq ´ψpvqq| ď t 0 r 1 0 ´t0 . By the definition of ZpI, 2t 0 r 1 0 q, this circular p2t 0 r 1 0 q-coloring ψ can be extended to each of Γ. We obtain a circular p2t 0 r 1 0 q-coloring of GpIq, noting that 2t 0 r 1 0 ă r, a contradiction.

Applying a similar proof, we obtain the following useful lemma, whose proof we do not include.

Lemma 3.3.11. Assume I `" pΓ `, u 1 , v 1 q is a plus indicator and I ´" pΓ ´, u 2 , v 2 q is a minus indicator. Assume that r ą maxtχ c pΓ `q, χ c pΓ ´qu and r 1 ą 2 are two real numbers and let t " r r 1 . If ZpI `, rq " rt, r 2 s and ZpI ´, rq " r0, r 2 ´ts, then given a signed graph Ω, χ c pΩpI `, I ´qq " r if and only if χ c pΩq " r 1 .

Remark. Note that in Lemmas 3.3.9, 3.3.10 and 3.3.11, the condition of "r ą χ c pΓq" or "r ą maxtχ c pΓ `q, χ c pΓ ´qu" is crucial. We provide two indicator examples to show that if r " χ c pΓq, then Lemmas 3.3.9 and 3.3.10 may fail. Similar examples can be provided for Lemma 3.3.11. Let I 1 " p Ĝ1 , u, vq and I 2 " p Ĝ2 , u, vq be two indicators depicted in Figures 3.3 and 3.4, respectively. It can be observed that χ c p Ĝ1 q " χ c p Ĝ2 q " 8 3 . Note that ZpI 1 , rq " r5 ´3r 2 , r 2 s for 8 3 ď r ă 10 3 and ZpI 1 , rq " r0, r 2 s for r ě 10 3 , and also note that ZpI 2 , rq " r3 ´r, 3r 2 ´3s for 8 3 ď r ă 3 and ZpI 2 , rq " r0, r 2 s for r ě 3. Therefore, I 1 is a plus indicator and I 2 is a plus-minus indicator. In particular, when r " 8 3 , we have that ZpI 1 , 8 3 q " r1, 4 3 s and ZpI 2 , 8 3 q " r 1 3 , 1s. For I 1 , we consider C 5 pI 1 q. It is not hard to produce a circular 8 3 -coloring of C 5 pI 1 q, which implies that χ c pC 5 pI 1 qq " 8 3 . Noting that χ c pC 5 q " 5 2 , we observe that Lemma 3.3.9 does not apply to this pair with r " 8 3 . For I 2 , we consider K 3 pI 2 q. Similarly, χ c pK 3 pI 2 qq " 8 3 and χ c pK 3 q " 3. Thus Lemma 3.3.10 with r " 8 3 does not apply to this pair. However, in our applications, for a plus indicator I " pΓ, u, vq, if we have ZpI, χ c pΓqq " t χcpΓq 2 u, then the conclusion of Lemma 3.3.9 still holds. Similarly, Lemma 3.3.10 also holds for a plus-minus indicator I " pΓ, u, vq satisfying that ZpI, χ c pΓqq " t χcpΓq 4 u. For a plus indicator

I `" pΓ 1 , u 1 , v 1 q u v Figure 3.3. I 1 " p Ĝ1 , u, vq u v Figure 3.4. I 2 " p Ĝ2 , u, vq
and a minus indicator I ´" pΓ 2 , u 2 , v 2 q satisfying the conditions of Lemma 3.3.11 and moreover, ZpI `, χ c pΓ 1 qq " t χcpΓ 1 q 2 u and ZpI ´, χ c pΓ 2 qq " t0u, Lemma 3.3.11 still holds. One basic example of a plus-minus indicator is the digon D with two endpoints u and v. It has been proved in Proposition 3.1.7 that χ c pDq " 4. Moreover, given r ě 4, if φ is a circular r-coloring of D where φpuq " 0, then simply by the definition, we know that φpvq P r1, r 2 ´1s. Hence, I D " pD, u, vq is a plus-minus indicator and note that ZpI D , 4q " t1u. Thus, by Lemma 3.3.10, for any given graph G, χ c pGpI D qq " 2χ c pGq. This is a restatement of Corollary 3.3.2. In particular, we have χ c pK 4 pI D qq " 8. Noting that this is a signed planar multigraph and that, by the 4-color theorem, every signed planar multigraph without a loop admits an edge-sign preserving homomorphism to it.

Another important example of a plus-minus indicator is C ´4 with u, v being two non-adjacent vertices (Example 3.3.7 (3)). Observe that for I " pC ´4, u, vq, GpIq is defined as SpGq in Section 2.3.4. Applying Lemma 3.3.10 and noting that ZpI, 8 3 q " t 2 3 u, we have:

Theorem 3.3.12. Given a graph G, we have

χ c pSpGqq " 4 ´4 χ c pGq `1 .
In particular, we have that

(1) χ c pGq ď 4 if and only if χ c pSpGqq ď 16 5 ,

(2) χ c pGq ď 3 if and only if χ c pSpGqq ď 3.

Proof. By Example 3.3.7 (3), given real number x with 2 ď x ă 4, ZpI, xq " r2 ´x 2 , x ´2s. Assume that χ c pGq " r 1 with r 1 ě 2. Then for a real number r, 2 ď r ă 4, by Lemma 3.3.10, if r 2r 1 " 2 ´r 2 , then χ c pSpGqq " r. This condition translates to r " 4 ´4 r 1 `1 .

It has been shown in Theorem 2.3.10 that by using SpGq construction and the graph homomorphism, the chromatic number of graphs can be captured by switching homomorphisms of signed bipartite graphs. Theorem 3.3.12 shows, furthermore, that χ c pSpGqq also determines χ c pGq.

Recall that we denote by SPB 2 the class of signed bipartite planar simple graphs in which one part vertex set has maximum degree of at most 2. A direct corollary of Theorem 3.3.12 is the following reformulation of the 4-color theorem.

Theorem 3.3.13. [4-color theorem restated] Every signed graph in SPB 2 admits a circular 16 5coloring.

Note that SPB 2 is a subclass of the class of signed bipartite planar 2-degenerate graphs. As proving this theorem directly is as hard as showing the 4-color theorem, this then naturally leads to two questions, each based on dropping one of the conditions. Question 3.3.14. What is the best upper bound on the circular chromatic number of signed 2degenerate simple graphs? Question 3.3.15. What is the best upper bound on the circular chromatic number of signed bipartite planar simple graphs?

We will answer the first question in Theorem 4.1.1 in Section 4.1.1 and answer the second question in Chapter 7. Moreover, for both problems, in terms of the number of vertices, we provide a precise upper bound and we show that each of our bound is tight.

Subdivisions

A classic relation between the chromatic number of a graph and homomorphism from a certain subdivision of it to the odd cycle is extended to a relation between the circular chromatic number of signed graphs and homomorphism of its subdivision to negative cycles in section 2.3.3. Here we present a slightly stronger version and then figure out the circular chromatic number of signed graphs built using this operation. Definition 3.3.16. Given a signed graph pG, σq and a positive integer , we define T ˚ pG, σq to be the signed graph obtained from pG, σq by replacing each edge e with a path P of length where internal vertices of different paths are distinct and assigning a signature satisfying that P contains an odd number of positive edges if e is a positive edge and P contains an even number of positive edges if e is a negative edge.

We note that there are many choices for the signature in defining T ˚ pG, σq, but, as all such choices are switching equivalent, one may take any. The relation between the circular chromatic number of pG, σq and T ˚ pG, σq follows from two following lemmas.

We denote a path of length which contains an odd number of positive edges by P o and a path of length which contains an even number of positive edges by P e . Here we consider P o and P e to be the two signed indicators.

Lemma 3.3.17. [START_REF] Pan | The circular chromatic numbers of signed series-parallel graphs[END_REF] Given an integer ě 1 and a real number r ă 2 ´1 ,

ZpP o , rq " r ´p ´1q r 2 , r 2 s and ZpP e , rq " r0, r 2

´ s.

It follows from the lemma that P o is a plus indicator and P e is a minus indicator. Combining Lemmas 3.3.11 and 3.3.17, where we take Γ `" P o , Γ ´" P e and t " ´p ´1q r 2 , we have the following.

Lemma 3.3.18. For any signed graph Ω,

χ c pT ˚ pΩqq " 2 χ c pΩq p ´1qχ c pΩq `2 .
In a particular case of " 2, we have that χ c pT 2 pG, σqq " 4χ c pG, σq 2 `χc pG, σq .

Note that for each positive integer , and by considering a graph G as a signed graph where all edges are positive, the 4-colorability problem of G is equivalent to proving that χ c pT ˚ pGqq ď 8 4 ´2 . For each choice of , we have a reformulation of the 4-color theorem: Every planar graph G satisfies that χ c pT ˚ pGqq ď 8 4 ´2 . For each such , then one line of study is to introduce an interesting class of signed graphs that includes T ˚ pGq for all planar graphs G and admits the same upper bound for the circular chromatic number. When is an even value, T ˚ pΩq is a signed bipartite graph for any signed graph Ω. The last note is that the SpGq construction is also a special case of this indicator construction. Given a graph G, one may first build the signed graph G by replacing each edge with a digon, then naturally T 2 p Gq is the same as SpGq.

Signed bipartite circular clique

In Theorems 2.3.9, 2.3.10 and 3.3.12, we have seen the importance of the restriction of the study into the class SB of signed bipartite graphs. In this section, we will focus on the class SB. The very first observation is that every signed bipartite graph admits a homomorphism to a digon. Combining this fact together with Proposition 3.1.7, we have χ c pSBq " 4.

As the signed circular clique plays an important role in the homomorphism order of general signed graphs, a natural question to ask is if the homomorphism order restricted to the subclass of signed bipartite graphs behaves similarly? More precisely, we would like to know if there is a chain of signed bipartite graphs in the homomorphism order on SB which plays the role of the circular clique. We note that no signed circular clique Ks p;q or K s p;q is bipartite. Indeed each vertex in any of these cliques has a negative loop on it. In this section, for 2 ď p q ď 4, we introduce a bipartite subgraph of these circular cliques that plays the role of circular clique in the restricted class SB. Definition 3.4.1. Given a rational number p q where p is an even number, 2 ď p q ď 4 and subject to these conditions p q is in its simplest form, we define the signed graph B p;q to be the following subgraph of K s p;q :

• The vertex set rps " t0, 1, . . . , p ´1u is partitioned to two parts X and Y where X " t0, 2, . . . , p ´2u and Y " t1, 3, . . . , p ´1u.

• The edge set is formed by the edges of K s p;q which have exactly one endpoint in X and another endpoint in Y .

• The signs of edges are also induced by K s p;q .

Next we show that B p;q , which itself is a signed bipartite graph, plays the role of the circular clique in the subclass of signed bipartite graphs. However, such signed graphs B p;q are partitioned into two classes depending on whether p is a multiple of 4 or it is 2 pmod 4q.

When p is a multiple of 4, then we will show that B p;q is a circular clique with respect to the edge-sign preserving homomorphism. It means that any signed bipartite graph of circular chromatic number at most p q admits an edge-sign preserving homomorphism to B p;q . In this case, as we will show, the subgraph induced on the vertices r p 2 s " t0, 1, . . . , p 2 ´1u forms the switching core of B p;q and will play the role of a signed bipartite clique with respect to the switching homomorphism. For example, B 16;5 is depicted in Figure 3.5 and its switching core, which is a signed graph on K 4,4 , is depicted in Figure 3.12.

When p " 2 pmod 4q, and again noting our assumption that p q is in its simplest form subject to p being even, the signed graph B p;q is already a core with respect to the switching homomorphism. For example, B 10;3 is depicted in Figure 3.6. In this case, to have a signed circular clique with respect to the edge-sign preserving homomorphism, we must consider DSGpB p;q q. To be more precise, when p " 2 pmod 4q, for a signed bipartite graph pG, σq to satisfy that χ c pG, σq ď q q , it is necessary and sufficient that pG, σq admits a switching homomorphism to B p;q . However, for some choices of σ, a switching might be necessary. To be sure to have an edge-sign preserving homomorphism then we must consider DSGpB p;q q. For the example of p " 6 and q " 2, which corresponds to circular chromatic number at most 3, see Figures 3.7, 3.8, 3.9 and 3.10. The first one, the signed graph of Figure 3.7 on three vertices, is the signed circular 3-clique with respect to the switching homomorphism. The second one, the signed graph of Figure 3.8, which is the Double Switch Graph of the first one, is the signed circular 3-clique with respect to the edge-sign preserving homomorphism. The third one, the signed graph of Figure 3.9, also on 6 vertices, is the signed bipartite circular 3-clique with respect to the switching homomorphism. Finally, the last one, the signed graph of Figure 3.10, on 12 vertices, is the Double Switch Graph of the previous one and is the signed bipartite circular 3-clique with respect to the edge-sign preserving homomorphism. To distinguish which of the two notions of homomorphisms we are working with and be consistent with the notation we used for the signed circular clique, we define B s p;q and Bs p;q as follows. Given a positive even integer p and a positive integer q such that subject to p being even, p q is in its simplest form and p q ě 2, we define B s p;q to be B p;q when 4 | p and to be DSGpB p;q q when 4 p. As mentioned before, these signed graphs play the role of signed bipartite circular cliques with respect to the edge-sign preserving homomorphism. For the switching homomorphism, we define Bs p;q to be B p;q when 4 p and to be the subgraph of B p;q induced on the vertices t0, . . . , p 2 ´1u when 4 | p. We should also note that in defining K s p;q and Ks p;q , we did not need to assume p q is in the simplest form. However, we note that K s ap;aq and Ks ap;aq map, respectively, to K s p;q and Ks p;q . By taking such a homomorphism and then taking the pre-image of B s p;q and Bs p;q , one may define B s ap;aq and Bs ap;aq . That B s p;q and Bs p;q play the role of circular cliques in the subclass of signed bipartite graphs is the subject of the next theorem. For simplicity, it is stated using B p;q and switching homomorphism but one can easily restate it by using B s p;q or Bs p;q and the associated notion of homomorphism.

Theorem 3.4.2. Given a signed bipartite graph pG, σq and a rational number p q in r2, 4s where p is a positive even integer and subject to this, p q is in its simplest form, we have χ c pG, σq ď p q if and only if pG, σq Ñ B p;q .

Proof. Let pG, σq be a signed bipartite graph. One direction is quite trivial. As B p;q is a subgraph of K s p;q , χ c pB p;q q ď p q . If pG, σq Ñ B p;q , then, by Lemma 3.1.5, we have χ c pG, σq ď p q . It remains to show that if χ c pG, σq ď p q , then pG, σq Ñ B p;q . Since B p;q behaves differently depending on whether p divides 4 or not, we divide the proof into two cases based on this criteria: (1) p " 4k. (2) p " 4k `2. We note that in the first case, q must be an odd number.

Case 1 p " 4k.

As p q ě 2, we know q is an odd number smaller or equal to 2k ´1. Let pX, Y q be the bipartition of B 4k;q and let pA, Bq be the bipartition of pG, σq. Since χ c pG, σq ď 4k q , there is an edge-sign preserving homomorphism of pG, σq to K s 4k;q . Let ϕ be such a homomorphism. Our goal is to modify ϕ, if needed, so that we obtain a mapping of pG, σq to B 4k;q . This would of course be based on the bipartition of G. One such modification is given as follows:

φpuq " $ & % ϕpuq `1 either u P A and ϕpuq P Y or u P B and ϕpuq P X, ϕpuq otherwise.

Intuitively, we aim at modifying the mapping such that the vertices in the part A of G are mapped to the vertices in the part X of B 4k;q and the vertices in the part B are mapped to the vertices in the part Y . In defining φ, for vertices of G satisfying these conditions under the mapping ϕ, we give a same image under φ. If this condition is not met, then we shift the image by 1 in the clockwise direction of the circle. What remains is to show that φ is also an edge-sign preserving homomorphism of pG, σq to K s 4k;q . Then it would naturally be a homomorphism of pG, σq to B 4k;q as well.

Given an edge e " uv of G, if both φpuq " ϕpuq and φpvq " ϕpvq hold, then e is already mapped to an edge of a same sign under ϕ and nothing left to show. If φpuq " ϕpuq `1 and φpvq " ϕpvq `1, then the claim follows from the circular structure of K s p;q , that is, if there is an edge ij of sign η in B 4k;q , then there is also an pi `1qpj `1q (additions done modulo 4k) edge of sign η. It remains to consider the case that only one endpoint of e " uv has been shifted. By the symmetry, we may assume φpuq " ϕpuq and φpvq " ϕpvq `1. Moreover, noting that u and v must be in different parts of the bipartite graph G, and again by the symmetries, we assume u P A and v P B with ϕpuq, ϕpvq P X. Hence, by our assumption, φpuq " ϕpuq and φpvq " ϕpvq `1 P Y . Depending on the signature of e, we consider two cases.

If e is a positive edge, then ϕpuqϕpvq is a positive edge of K s 4k;q . Thus q ď |ϕpuq ´ϕpvq| ď p ´q " 4k ´q. Observe that, as ϕpuq and ϕpvq are both in X, they have a same parity, and thus |ϕpuq ´ϕpvq| is an even number. However, since q is an odd number, both sides of the inequality (i.e., q and 4k ´q) are odd numbers and, therefore, equality cannot hold there. It is implied that if we change (only) one of ϕpuq and ϕpvq by a value of at most 1, then the inequality would still hold. Thus φpuqφpvq is a positive edge of K s 4k;q . If e is a negative edges, then (only) one of the following must hold: either |ϕpuq´ϕpvq| ď p 2 ´q " 2k ´q or |ϕpuq ´ϕpvq| ě p 2 `q " 2k `q. As in the previous case, we conclude that |ϕpuq ´ϕpvq| is an even number. However, p 2 " 2k is an even number while q must be an odd number. Thus both of 2k ´q and 2k `q are odd numbers and once again the equality cannot hold. Therefore, after shifting only one of the values of ϕpuq, ϕpvq by 1, the corresponding inequality holds with respect to the new function which is φ, that is to say, either |φpuq ´φpvq| ď 2k ´q or |φpuq ´φpvq| ě 2k `q. Hence e is mapped to a negative edge φpuqφpvq of K s 4k;q . Case 2 p " 4k `2.

Notice that in this case, p 2 " 2k `1 is an odd number. Let pX, Y q be the bipartition of B 4k`2;q and let pA, Bq be a bipartition of pG, σq.

Since χ c pG, σq ď 4k`2 q , there exists an edge-sign preserving homomorphism of pG, σq to K s 4k`2;q , say ϕ. Our goal is to modify ϕ to obtain a (switching) homomorphism of pG, σq to B 4k`2;q . This would be based on the bipartition of G. Intuitively, we want a mapping that maps vertices in A to X and those in B to Y . We observe that for each pair of antipodal vertices of K s 4k`2;q , one is in X and the other is in Y . Thus in the mapping ϕ, if one vertex is not mapped to the correct part, then we first apply a switching at that vertex and then map it to the antipodal of the original image. This is formalized as follows. What remains is to show that φ is a switching homomorphism of pG, σq to K s 4k`2;q . Then it would naturally be a homomorphism of pG, σq to B 4k`2;q as well.

Given an edge e " uv of G, if both φpuq " ϕpuq and φpvq " ϕpvq hold, then it follows easily that φpuqφpvq is the required edge. If φpuq " ϕpuq and φpvq " ϕpuq, then we switch at both of vertices u and v. Thus the sign of uv does not change. Moreover, vertices i and j are connected by an edge of sign η in K s 4k`2;q , then their antipodals are also connected by an edge of the same sign. Therefore, φpuqφpvq is an edge of K s 4k`2;q with the same sign as ϕpuqϕpvq and thus as uv. The final case is that only one endpoint of e " uv has been switched and mapped to the antipodal. By the symmetries, we may assume that we switch at v and φpvq " ϕpvq. Moreover, noting that u and v must be in different parts of the bipartite graph G, and again by the symmetries, we assume u P A and v P B with ϕpuq, ϕpvq P X. Hence, by our assumption, φpuq " ϕpuq and φpvq " ϕpvq P Y . Depending on the sign of e, we consider two cases.

If e is a positive edge, then ϕpuqϕpvq is a positive edge of K s 4k`2;q . Thus q ď |ϕpuq ´ϕpvq| ď p ´q " 4k `2 ´q. As |ϕpvq ´ϕpvq| " p 2 " 2k `1, we have |ϕpuq ´ϕpvq| ď 2k `1 ´q or |ϕpuq ´ϕpvq| ě 2k `1 `q. Note that now uv is a negative edge of pG, σ 1 q where σ 1 is obtained from σ by switching at v. Since ϕpuqϕpvq satisfies the condition for being a negative edge of K s 4k`2;q , φpuqφpvq is a negative edge that we required.

If e is a negative edges, then (only) one of the following must hold: either |ϕpuq ´ϕpvq| ď p 2 ´q " 2k `1 ´q or |ϕpuq ´ϕpvq| ě p 2 `q " 2k `1 `q. As in the previous case, we have that |ϕpvq ´ϕpvq| " p 2 " 2k `1. Thus q ď |ϕpuq ´ϕpvq| ď 4k `2 ´q. Switching at v makes uv become a positive edge. Now ϕpuqϕpvq satisfies the condition for being a positive edge of K s 4k`2;q , in other words, φpuqφpvq is a positive edge. Therefore, we verify that φ is a (switching) homomorphism of pG, σq to K s 4k`2;q and thus also to its signed bipartite subgraph B 4k`2;q .

Hence, we show that for any rational number 2 ď p q ď 4, there exists a signed bipartite circular clique whose circular chromatic number is exactly p q . We note that the assumption p q ď 4 is not used explicitly in the proof. If p q ą 4, then the signed bipartite graph induced by odd versus even vertices will contain a digon that admits a homomorphism from any signed bipartite graph and provides the upper bound of 4 for the circular chromatic number of this class of signed graphs. That leaves us with circular 3-coloring as a special case. In this case, by switching at all vertices of one part of B 6;2 , we get a signed graph pK 3,3 , M q. Hence, as a special case we have: Corollary 3.4.3. Given a signed bipartite graph pG, σq, χ c pG, σq ď 3 if and only if pG, σq Ñ pK 3,3 , M q. In particular, we have that χ c pK 3,3 , M q " 3.

Another special case is when p " 4k and q " 2k ´1. In this case, one may observe that the (switching) core of B 4k;2k´1 (on 2k vertices) is switching equivalent to the negative cycle C ´2k . Hence, we have the following corollary.

Corollary 3.4.4. Given a signed bipartite graph pG, σq, χ c pG, σq ď 4k 2k´1 if and only if pG, σq Ñ C ´2k . In particular, we have that χ c pC ´2k q " 4k 2k´1 . This helps us to fill the parity gap in some studies of the circular coloring of graphs where homomorphism of a graph to odd cycle C 2k`1 is known to be equivalent to a circular 4k`2 2k -coloring. A uniform presentation of the two is as follows.

Theorem 3.4.5. Given a positive integer , ě 2, and a signed graph pG, σq satisfying that g ij pG, σq ě g ij pC ´ q for each ij P Z 2 2 , we have χ c pG, ´σq ď 2 ´1 if and only if pG, σq Ñ C ´ .

New perspectives of the 4-color theorem

Recall a particular case of Theorem 3.3.12 that for any planar graph G, we have χ c pSpGqq ď 16 5 . Since every SpGq is a signed bipartite graph, the claim of this theorem is equivalent to the existence of an edge-sign preserving mapping from SpGq to B s 16;5 . Note that Bs 16;5 , the switching core of B s 16;5 , is a signed graph on K 4,4 . With one choice of a signature, among all equivalent signatures, this core is presented in Figure 3.12. We recall that the 4-color theorem is also restated in Theorem 2.3.12 in the form of mapping SpGq, for every planar G, to pK 4,4 , M q. To highlight the difference between the two reformulations, we note that χ c pK 4,4 , M q " 4. To see this, we prove a stronger statement. Let pK 3,4 , M q be the signed graph obtained from pK 4,4 , M q by deleting one vertex. Proposition 3.4.6. χ c pK 3,4 , M q " 4.

Proof. Since pK 3,4 , M q is bipartite, it admits a homomorphism to the digon, thus χ c pK 3,4 , M q ď 4. As pK 3,3 , M q Ă pK 3,4 , M q, χ c pK 3,4 , M q ě 3. Following from Proposition 3.1.11 and noting that there is no odd cycle in pK 3,4 , M q, we conclude that χ c pK 3,4 , M q P t3, 4u. It suffices to prove that pK 3,4 , M q is not circular 3-colorable. The signed graph pK 3,4 , M q consists of pK 3,3 , M q and a vertex w connecting to each vertex of one part of pK 3,3 , M q with a positive edge. Since the subgraph pK 3,3 , M q is switching equivalent to B 6;2 , the vertex mapping of pK 3,3 , M q to B 6;2 is surjective and unique up to switching. The vertex w has nowhere to map, a contradiction. Corollary 3.4.7. We have χ c pK 4,4 , M q " 4. Furthermore, χ c pK k,k , M q " 4 for k ě 4.

Let P be the class of all simple planar graphs and let SpPq " tSpGq | G P Pu. Then, by the discussions in Section 2.3.4 and also above, the 4-color theorem is equivalent to bounding the class SpPq by one of the following signed bipartite graphs: SpK 4 q depicted in Figures 2.1 (also in Figure 3.11 for a better comparison), Bs 16;5 depicted in 3.12 (the switching core of Figure 3.5), and pK 4,4 , M q depicted in 3.13. One may observe that SpK 4 q admits a homomorphism to both pK 4,4 , M q and Bs 16;5 but that pK 4,4 , M q and Bs 16;5 are homomorphically incomparable. The latter is a consequence of the following two facts:

• Any pair of nonadjacent vertices in pK 4,4 , M q or in Bs 16;5 belongs to a negative 4-cycle which means identifying them would result in a digon;

• The two signed graphs are not switching isomorphic, since χ c pK 4,4 , M q " 4 but χ c p Bs 16;5 q " 16 5 .
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As SpK 4 q itself is in the family SpPq, one does not expect much room to strengthen the result regarding this one beyond expected strengthening of the 4-color theorem. For example, the statement holds when G is K 5 -minor-free, and is expected to hold if pG, ´q has no pK 5 , ´q-minor.

Since SpK 4 q admits a homomorphism to each of pK 4,4 , M q and Bs 16;5 , it would not be a surprise if a stronger statement can be proved regarding these two targets. Indeed that is the case for pK 4,4 , M q: it bounds the class of all signed bipartite planar simple graphs (see Theorem 2.3.13). As the limit of the circular chromatic number of signed bipartite planar simple graphs is 4 (see in Chapter 7), this cannot be the case for Bs Based on the notions of the circular coloring of signed graphs we have introduced in Chapter 3, in this chapter, we study the bounds of the circular chromatic number of some families of signed graphs.

Given a class C of signed graphs, we define χ c pCq " suptχ c pG, σq : pG, σq P Cu.

As mentioned before, a signed graph with a positive loop does not admit any circular coloring and a negative loop does not affect the circular chromatic number. Though the presence of digons may affect the circular chromatic number, the restriction of the study on the class of signed simple graphs will be the focus of this work. Those families of signed graphs that we will investigate are listed as follows.

• SD d : the class of signed d-degenerate simple graphs,

• SSP: the class of signed series-parallel simple graphs,

• SO: the class of signed outerplanar simple graphs,

• SK: the class of signed simple graphs whose underlying graph is k-colorable,

• SP: the class of signed planar simple graphs.

We first study the circular chromatic number of signed d-degenerate graphs in Section 4.1. In Theorem 4.1.5, we show that χ c pSD d q " 2t d 2 u`2 for each integer d and that the supremum could be replaced by the maximum for d ě 3. In the exceptional case of d " 2, answering Question 3.3.14, we prove that for any signed 2-degenerate graph, 4 is the upper bound but it is not reachable by a finite signed graph. More precisely, for a signed 2-degenerate graph pG, σq, we show, in Theorem 4.1.1, that χ c pG, σq ď 4 ´2 t n`1 2 u where n is the number of vertices of G. In Section 4.2, for the class SSP and SO, it has been proved in [START_REF] Naserasr | Homomorphisms of signed graphs[END_REF] that every signed seriesparallel simple graph admits a homomorphism to the signed Paley graph SP al 5 , which is proved to be isomorphic to a subgraph of the signed circular clique K s 10;3 . Thus by constructing a tight example that has circular chromatic number exactly 10 3 , we prove that χ c pSSPq " χ c pSOq " 10 3 and that this bound is attainable. Moreover, Theorem 4.2.2 provides a tight bound of the circular chromatic number of the class of signed triangle-free series-parallel graph.

As we have seen in Corollary 3.3.3 that χ c pG, σq ď 2χ c pGq, and we are curious that whether this upper bound can be improved or not if the girth of the graph is large. The family of signed simple graphs whose underlying graph is k-colorable is of special interest. In Section 4.3, we show in Theorem 4.3.2 that χ c pSKq " 2k even when restricted to graphs of arbitrary large girth. The proof is by construction based on the notion of the augmented tree. The augmented tree was introduced in [AKR+16] to construct a graph of girth at least g whose chromatic number is larger than k for any given integers k and g.

In an attempt to generalize the 4-color theorem, E. Máčajová, A. Raspaud, and M. Škoviera conjectured in [START_REF] Máčajová | The chromatic number of a signed graph[END_REF] that every signed planar simple graph is t˘1, ˘2u-colorable. By Proposition 3.1.4, this is equivalent to say that χ c pG, σq ď 4 for every signed planar graph pG, σq. However, recently, in [START_REF] Kardoš | On the 4-color theorem for signed graphs[END_REF], F. Kardoš and J. Narboni refuted this conjecture by constructing a non-4colorable signed planar graph. In Section 4.4, we study this class of signed graphs. Based on an indicator, first presented in [START_REF] Kardoš | On the 4-color theorem for signed graphs[END_REF], we construct a signed planar simple graph with the circular chromatic number 4 `2 3 . This is, so far, the best-known lower bound for the circular chromatic number of SP. The best-known upper bound, which is 6, is a straightforward consequence of the 5-degeneracy of planar graphs.

We present a selection of open problems in Section 4.5. Note that using the notion of signed graph minor, we can restate the odd Hadwiger's conjecture (see Conjecture 1.1.2). Furthermore, in Section 4.5.1, we propose more general questions about signed pK k , ´q-minor-free graphs. As we mention in Section 4.4, the exact value of the circular chromatic number of the class of signed planar simple graphs is still an open problem. We discuss questions related to this special class in Section 4.5.2. The spectrum questions for several families of signed graphs, for example, signed planar graphs, are also not complete yet and we mention the questions in Section 4.5.3. The topic we will discuss in Section 4.5.4 is one of the main interests of this thesis. We pose the general question but will study some cases of the restriction of this question to the class of signed bipartite planar graphs in Part IV.

Signed d-degenerate simple graphs

The first class we investigate is the class of signed d-degenerate simple graphs. As graphs, they are easily observed to be pd `1q-colorable. However, in the context of the circular chromatic number of signed d-degenerate simple graphs, we discuss two cases depending on whether d " 2 or not.

Signed 2-degenerate simple graphs

First, we consider the special case when d " 2 and obtain the next result. We first prove the following theorem which, in particular, implies that circular chromatic number of any signed 2-degenerate simple graph is strictly smaller than 4. Then using the notion of tight cycle and Proposition 3.1.11, we will conclude Theorem 4.1.1. Theorem 4.1.2. Let Ĝ be a signed simple graph with a vertex w of degree 2. If the signed graph Ĝ ´w has circular chromatic number strictly less than 4, then Ĝ also has circular chromatic number strictly less than 4.

Proof. Let Ĝ be a minimum counterexample to the theorem. Then it follows immediately that G is connected and has no vertex of degree 1. Let u and v be the two neighbors of w. Since circular chromatic number is invariant under switching, and without loss of generality, we may assume both uw and vw are positive edges in Ĝ.

Let Ĝ1 " Ĝ´w and let be a positive real number smaller than 2, such that Ĝ1 admits a circular p4 ´ q-coloring. Let C be the circle of circumference 4 ´ .

By rotational symmetries of the circle we can assume that ϕpuq " 0. Then considering symmetries along the diameters of the circle, in particular the one that contains 0, we may assume ϕpvq ě 2 ´ 2 . Furthermore, we may assume ϕpvq ă 2 as otherwise we can complete ϕ to a coloring of Ĝ simply by setting ϕpwq " 1.

Our aim is to present a circular p4 ´ 4 q-coloring ψ of Ĝ. To this end, first we do a uniform scaling of the circle C to a circle C 1 to get a circular p4 ´ 2 q-coloring ϕ 1 of Ĝ1 . More precisely ϕ 1 : V p Ĝ1 q Ñ r0, 4 ´ 2 q is defined as follows:

ϕ 1 pxq " 4 ´ 2 4
´ ϕpxq.

The mapping ϕ 1 has the property that for a positive edge xy the points ϕ 1 pxq and ϕ 1 pyq are at distance (on C 1 ) at least 1 ` 8´2 and that the same holds for the distance between ϕ 1 pxq and the antipodal of ϕ 1 pyq whenever xy is a negative edge. Observe that ϕ 1 puq " 0 and ϕ 1 pvq ě 2 ´ 4 .

Next we introduce a circular p4 ´ 4 q-coloring of Ĝ1 by inserting an interval of length 4 inside C 1 to obtain a circle C 2 of circumference 4 ´ 4 . Assuming this interval is inserted at point 1 ´ 8 of C 1 , the new coloring ψ of Ĝ1 is defined as follows:

ψpxq " $ & % ϕ 1 pxq, if ϕpxq ă 1 ´ 8 , ϕ 1 pxq ` 4 , if ϕpxq ě 1 ´ 8 .
We need to verify that ψ is a circular coloring of Ĝ1 . For a positive edge xy, it's immediate to see that the distance of ψpxq and ψpyq is at least 1, because in changing C 1 to C 2 the distance between two points does not decrease. For a negative edge xy, we note that since the diameter of the circle is changed, the antipodal of each point is shifted by 8 . To be more precise, if a is a point of circle C 1 with a 1 as its antipodal, and a 1 and a 1 1 are the images of these points at C 2 after inserting an interval of length 4 , the antipodal of a 1 on C 2 is at distance 8 from a 1 1 (see Figures 4.1 and 4.2). Since in C 1 the distance between ϕ 1 pxq and the antipodal of ϕ 1 pyq is at least 1 ` 8´2 , even after this shift of 8 the distance between ψpxq and the antipodal of ψpyq is at least 1 and, therefore, ψ is a circular p4 ´ 4 q-coloring.

Finally, as ψpuq " 0 and ψpvq ě 2, we may complete the circular p4 ´ 4 q-coloring ψ of Ĝ1 to Ĝ simply by setting ψpwq " 1.

We observe that in this proof for two vertices x and y of Ĝ ´w if we have ϕpxq " ϕpyq, then we have ψpxq " ψpyq.

From the statement of this theorem, it follows immediately that every signed 2-degenerate simple graph admits a p4 ´ q-coloring for some positive real number . Next we use the notion of tight cycle to give a precise upper bound in terms of the number of vertices. • For each even value of n, χ c pG, σq ď 4 ´4 n .

Proof. As stated in Proposition 3.1.11, we know that χ c pG, σq " p q where p is twice the length of a cycle in G. Thus p is an even integer satisfying p ď 2n. Since χ c pG, σq ă 4 we have p q ă 4, in other words, p ă 4q. As p and q are integers, and moreover p is an even integer, we have p ď 4q ´2. Therefore, χ c pG, σq ď 4q´2 q " 4 ´2 q . On the other hand χ c pG, σq ď 2n q . For a fixed n, the sequence p 2n q q qPN is decreasing, whereas the sequence p4 ´2 q q qPN is increasing. It is easy to check that

max qPN min " 2n q , 4 ´2 q * " $ & % 4 ´4 n`1 for q " n`1 2 if n is odd, 4 ´4 n for q " n 2 if n is even.
This completes the proof.

In Theorem 4.1.3, we have proved the inequality of Theorem 4.1.1. For the moreover part, we construct a sequence of signed 2-degenerate simple graphs Ω i reaching the bound for n " 2i `1. For even values of n, it would be enough to add an isolated vertex to Ω i .
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Let Ω 1 " pK 3 , `q, that is the complete graph on three vertices v 1 , v 2 , v 3 with all edges being positive. Starting with Ω 1 , we define the sequence Ω i of signed graphs as follows. Given Ω i on vertices v 1 , v 2 , . . . , v 2i`1 , we first add a vertex v 2i`2 which a copy of v 2i`1 , i.e., it sees each of the two neighbors of v 2i`1 with edges of the same sign. Then we add a new vertex v 2i`3 which is joined to v 2i`1 and v 2i`2 , to one with a negative edge and to the other with a positive edge. Observe that Ω i has 2i `1 vertices and is 2-degenerate. The elements Ω 2 , Ω 3 and Ω 4 of the sequence are illustrated in Figures 4.3, 4.4, 4.5 respectively. Proposition 4.1.4. Given a signed graph Ω i as defined above, we have that

χ c pΩ i q " 4 ´4 |V pΩ i q| `1 .
Proof. We prove by induction a slightly stronger claim. Let r i " 4 ´2 i`1 . We claim that χ c pΩ i q " r i and, moreover, in any circular r i -coloring of Ω i , any tight cycle is a Hamiltonian cycle. The case i " 1 of this claim is immediate. That χ c pΩ i q ď r i follows from Theorem 4.1.3. To show that χ c pΩ i q ě r i , it is enough to show that Ω i is not r i´1 -colorable, because there are no rational numbers between r i´1 and r i with a numerator at most 2p2i `1q. To this end, and toward a contradiction, assume ψ is a circular r i´1 -coloring of Ω i . We claim that ψpv 2i´1 q " ψpv 2i q. That is because ψ is also a circular r i´1 -coloring of Ω i´1 , and in any such a coloring, any tight cycle (of Ω i´1 ) is a Hamiltonian cycle. As v 2i´1 is of degree 2 in Ω i´1 and v 2i is a copy of v 2i´1 , we must have ψpv 2i´1 q " ψpv 2i q. But then to complete the circular r i´1 -coloring to v 2i`1 we must have a point on the circle which is at distance at least 1 from both ψpv 2i´1 q and its antipodal. But that is only possible if the circumference of circle used for coloring is at least 4, a contradiction. Thus χ c pΩ i q " 4i`2 i`1 . For the moreover part, we observe that gcdp4i `2, i `1q " 1 when i is even and gcdp4i `2, i `1q " 2 when i is odd. Recall that χ c pG, σq " 2p q where p is the length of a tight cycle (with respect to a circular 2p q -coloring). Since |V pΩ i q| " 2i `1, such a tight cycle of Ω i in a circular 4i`2 i`1 -coloring is a Hamiltonian cycle.

Signed d-degenerate simple graphs for d ě 3

From the previous section, we can observe that the supremum of the circular chromatic number of signed 2-degenerate simple graphs is 4 but it is never achieved. Now, we will consider all the other cases for k ě 3.

Theorem 4.1.5. For any positive integer d ě 2, χ c pSD d q " 2t d 2 u `2.

Proof. First we show that every pG, σq P SD d admits a circular p2t d 2 u `2q-coloring. Equivalently, pG, σq admits an edge-sign preserving homomorphism to K s 2t d 2 u`2 whose vertices are labelled 0, 1, . . . , 2t d 2 u `1 in a cyclic order. Recall that in K s 2t d 2 u`2 between any pair of vertices i, j there are both positive and negative edges, unless i " j or i " j `t d 2 u `1. When i " j, there is a negative loop but no positive loop; when i " j `t d 2 u `1, i and j are connected by a positive edge but not a negative edge. Thus, given a vertex u of pG, σq and a partial mapping φ of pG, σq to K s 2t d 2 u`2 , if at most d neighbors of u are already colored, then φ can be extended to u. This now can be applied on the ordering of vertices of G which is a witness of G being d-degenerate.

To prove that the upper bound is tight, we consider three cases.

• For d " 2, the limit of the circular chromatic numbers of those signed graphs in Proposition 4.1.4 is 4.

• For odd integer d ě 3, this bound is tight by considering the signed complete graphs pK d`1 , `q.

• For even integer d ě 4, we now construct a d-degenerate graph G together with a signature σ such that χ c pG, σq " d `2.

Define a signed graph Ω d as follows. Take pK d , `q whose vertices are labelled x 1 , x 2 , . . . , x d . For each pair i, j P rds (i ‰ j), we add a vertex y i,j and join it to each of x i and x j with a negative edge, and to all the other x k 's with positive edges. Since each y i,j is of degree d and after removing all of them we are left with a K d , we have Ω d P SD d . We claim that χ c pΩ d q " d `2.

Assume this is not true and ϕ is a circular r-coloring of Ω d and r ă d `2. Without loss of generality, we may assume that ϕpx 1 q, ϕpx 2 q, . . . , ϕpx d q are cyclicly ordered on C r in a clockwise orientation. Furthermore, we may also assume that ϕpx 1 q, ϕpx 2 q has the maximum distance among all the pairs ϕpx i q, ϕpx i`1 q where the addition of the index is taken pmod dq. As the distance between each consecutive pair ϕpx i q, ϕpx i`1 q is at least 1, it follows that, except for x 1 , x 2 , d pmod rq pϕpx i q, ϕpx i`1 qq ă 2. We will now show that there is no possible choice for y 1,1`d 2 . A point between ϕpx i q and ϕpx i`1 q for i P t2, 3, . . . , d 2 ´1u Y t d 2 `2, . . . , d ´1u is at distance less than 1 from one of the two and cannot be the color of

y 1,1`d 2 because x i y 1,1`d 2 , x i`1 y 1,1`d 2
are both positive edges. If ϕpy 1,1`d 2 q P rϕpx 1 q, ϕpx 2 qs, then we show that

d pmod rq pϕpy 1,1`d 2 q, ϕpx 1`d 2 q ě d 2 , which is a contradiction because y 1,1`d 2 x 1`d 2 is a negative edge.
To see this, we consider clockwise and anti-clockwise distances of ϕpy 1,1`d 2 q and ϕpx 1`d 2 q. On the anti-clockwise direction, pϕpy 1,1`d 2 q, ϕpx 1`d 2 qq contains d 2 intervals of the form px i , x i`1 q, each of which is of length at least 1. On the clockwise direction, first of all, y 1,1`d 2

x 2 is a positive edge which means d pmod rq pϕpy 1,1`d 2 q, ϕpx 2 qq ě 1, and, furthermore, pϕpy 1,1`d 2 q, ϕpx 1`d 2 qq contains d 2 ´1 intervals of form px i , x i`1 q (for i P t2, 3, . . . , d 2 u). If ϕpy 1,1`d 2 q P rϕpx d q, ϕpx 1 qs, then the same argument shows that

d pmod rq pϕpy 1,1`d 2 q, ϕpx 1`d 2 qq ě d 2 . If either ϕpy 1,1`d 2 q P rϕpx d 2 q, ϕpx d 2 `1qs or ϕpy 1,1`d 2 q P rϕpx d 2 `1q, ϕpx d 2 `2qs, then d pmod rq pϕpy 1,1`d 2 q, ϕpx 1 qq ě d 2 , which is a contradiction as y 1,1`d 2
x 1 is a negative edge.

It follows directly from Proposition 4.1.5 that χ c pG, σq ď 2t ∆pGq 2 u `2. It's clear that when ∆pGq is odd, this bound is attained by the complete graph K ∆pGq`1 . But we don't know whether this bound of 2t ∆pGq 2 u `2 is tight when ∆pGq is even. We are also curious about the Brooks Theorem for signed graphs in terms of circular coloring.

Signed series-parallel simple graphs

In this section, we consider the class SSP of signed series-parallel simple graphs and its subclass SO of signed outerplanar simple graphs. It was proved in [START_REF] Naserasr | Homomorphisms of signed graphs[END_REF] that every signed K 4 -minor-free simple graph admits a (switching) homomorphism to the signed Paley graph SP al 5 , depicted in Figure 4.6. It is easy to check that SP al 5 is a signed subgraph of K s 10;3 (as it labeled). Hence, we have χ c pSOq ď χ c pSSPq ď 10 3 .

We then show that the upper bound is tight.

Theorem 4.2.1. χ c pSSPq " χ c pSOq " 10 3 .

Proof. Let pF, σq be the signed graph of Figure 4.7. It is easily observed that it is simple, outerplanar, and, thus, series-parallel. We will show that χ c pF, σq " 10 3 to obtain the equality in the theorem. Since pF, σq contains a positive triangle as a subgraph, its circular chromatic number is at least 3. By Proposition 3.1.11, the only possible values for χ c pF, σq are 3 and 10 3 . It remains to show that this graph does not admit a circular 3-coloring, equivalently, pF, σq does not admit a (switching) homomorphism to Ks 6;2 . Recall that Ks 6;2 is built from a positive triangle by adding to each vertex a negative loop. Suppose to the contrary that pF, σq Ñ Ks 6;2 . Then at least one edge of the negative triangle xyz is mapped to a negative loop of Ks 6;2 , as in Ks 6;2 every negative closed walk must contain a negative loop. Whichever edge of xyz is mapped to a negative loop, its two end vertices are identified and the resulting signed graph has a digon. But Ks 6;2 contains no negative even closed walk of length 2, a contradiction. So χ c pF, σq ą 3 and thus χ c pF, σq " 10 3 .

Providing a slightly improved girth condition for this class, we prove that every signed trianglefree series-parallel graph (the class denoted by SSP 4 ), in particular, every signed bipartite seriesparallel graph is circular 3-colorable.

Theorem 4.2.2. χ c pSSP 4 q " 3.

Proof. Let G xy be a triangle-free series-parallel graph with two terminals x and y of length . Assume that σ is a signature on G xy . We shall show that pG xy , σq s.p.

ÝÑ K s

6;2 . Given a positive integer and ω P t`, ´u, we define

D ω " $ ' ' ' ' & ' ' ' ' % t0, 1u, " 1, ω "
´. t2, 3u, " 1, ω " `. t1, 2u, " 2, ω P t`, ´u. t0, 1, 2, 3u, otherwise.

Given a signed triangle-free series-parallel graph pG xy , σq, let P xy denote the shortest signed path between x and y and let px, yq denote the length of P xy . It suffices to show the following claim.

Claim. Given a signed triangle-free series-parallel graph pG xy , σq, let " px, yq and ω " σpP xy q. For any i, j P V pK s 6;2 q satisfying that d pmod 6q pi, jq P D ω , there exists an edge-sign preserving homomorphism ϕ of pG xy , σq to K s 6;2 such that ϕpxq " i and ϕpyq " j. We show this by introduction based on the construction of pG xy , σq. For pG xy , σq " pK 2 , πq where K 2 " xy(so px, yq " 1), it is trivial. Now assume that the statement holds for two signed triangle-free series-parallel graphs pG 1

x 1 y 1 , σ 1 q and pG 2 x 2 y 2 , σ 2 q. Assume that px i , y i q " i for i P t1, 2u, without loss of generality, say 1 ď 2 . Suppose that σ 1 pP x1 y 1 q " α and σ 2 pP x2 y 2 q " β.

Let pG xy , σq be a signed triangle-free series-parallel graph obtained from pG 1

x 1 y 1 , σ 1 q and pG 2 x 2 y 2 , σ 2 q by a parallel operation with identifying the vertices x 1 with x 2 and y 1 with y 2 . So P xy " P x1 y 1 by the definition of the parallel operation and thus px, yq " 1 and σpP xy q " α. Also, as pG xy , σq is triangle-free, 1 ` 2 ě 4. First we claim that for any 1 , 2 satisfying that 1 ` 2 ě 4 and 1 ď 2 , D α 1 Ă D β 2 for any α, β P t`, ´u. It could be easily verified for the following cases: (1) 1 " 1,

2 ě 3, (2) 1 " 2 " 2, (3) 1 " 2, 2 ě 3, (4) 2 ě 1 ě 3. Since D α 1 Ă D β 2 ,
for any i, j satisfying that d pmod 6q pi, jq P D α 1 , there exists ϕ 1 : pG 1 x 1 y 1 , σ 1 q Ñ K s 6;2 and ϕ 2 : pG 2 x 2 y 2 , σ 2 q Ñ K s 6;2 such that ϕ 1 px 1 q " ϕ 2 px 2 q " i and ϕ 1 py 1 q " ϕ 2 py 2 q " j. We define ϕ : V pG xy q Ñ K s 6;2 such that ϕpvq " # ϕ 1 pvq, for v P V pG 1 x 1 y 1 q. ϕ 2 pvq, for v P V pG 2

x 2 y 2 q.

Such ϕ is an edge-sign preserving homomorphism of pG xy , σq to K s 6;2 satisfying that ϕpxq " i and ϕpyq " j.

Let pG xy , σq be a signed triangle-free series-parallel graph obtained from pG 1

x 1 y 1 , σ 1 q and pG 2 x 2 y 2 , σ 2 q by a series operation, without loss of generality, with identifying the vertices y 1 and x 2 . So px, yq " 1 ` 2 :" and px, yq is attained by the signed path P xy " P x1 y 1 YP x2 y 2 with σpP xy q " αβ.

First we prove the following claim:

Claim. For any i, j satisfying that d pmod 6q pi, jq P D αβ 1 ` 2 , there exists a k P V pK s 6;2 q such that d pmod 6q pi, kq P D α 1 and d pmod 6q pk, jq P D β 2 . Proof of the claim: As 1 ď 2 , we have six cases to discuss: (1) 1 " 2 " 1, (2) 1 " 1, 2 " 2, (3)

1 " 1, 2 ě 3, (4) 1 " 2 " 2, (5) 1 " 2, 2 ě 3, (6) 2 ě 1 ě 3. Suppose that i, j satisfy that d pmod 6q pi, jq P D αβ 1 ` 2 and without loss of generality, i `dpmod 6q pi, jq " jpmod 6q. We consider all the possibilities and choose proper k satisfying d pmod 6q pi, kq P D α 1 and d pmod 6q pk, jq P D β 2 that as follows:

(1) Suppose that 1 " 2 " 1 and d pmod 6q pi, jq

P D αβ 2 " t1, 2u. If α " β " `, then k " i ´2; if α " β " ´, then k " i `1; if α " `, β " ´, then k " i `2; if α " ´, β " `, then k " i ´1.
(2) Suppose that 1 " 1, 2 " 2 and d pmod 6q pi, jq P D αβ 3 " t0, 1, 2, 3u. If α " β " `, then k " i`2 when d pmod 6q pi, jq P t0, 1u and k " i ´2 when d pmod 6q pi, jq P t2, 3u; if α " β " ´, then k " i `1 when d pmod 6q pi, jq P t0, 2u and k " i ´1 when d pmod 6q pi, jq P t1, 3u; if α " `, β "

´, then k " i `2 when d pmod 6q pi, jq P t0, 1u and k " i ´2 when d pmod 6q pi, jq P t2, 3u; if α " ´, β " `, then k " i `1.

(3) Suppose that 1 " 1, 2 ě 3 and d pmod 6q pi, jq P D αβ " t0, 1, 2, 3u. If α " `, then k " i `2; if α " ´, then k " i `1.

(4) Suppose that 1 " 2 " 2 and d pmod 6q pi, jq P D αβ " t0, 1, 2, 3u. Since D 2 " D 2 " t1, 2u, for any α, β P t`, ´u, if d pmod 6q pi, jq P t0, 1u, then k " i `2 and if d pmod 6q pi, jq P t2, 3u, then k " i ´2.

(5) Suppose that 1 " 2, 2 ě 3 and d pmod 6q pi, jq P D αβ " t0, 1, 2, 3u. Since D 2 " D 2 " t1, 2u, for any α, β P t`, ´u, k " i `2.

(6) Suppose that 2 ě 1 ě 3 and d pmod 6q pi, jq P D αβ " t0, 1, 2, 3u. Since D ` " D ´ " t0, 1, 2, 3u with ě 3, for any α, β P t`, ´u, k " i `2.

This completes the proof of the claim. ♦ For any i, j P V pK s 6;2 q satisfying that d pmod 6q pi, jq P D αβ 1 ` 2 , by the above claim, we could find a vertex k of K s 6;2 such that d pmod 6q pi, kq P D α 1 and d pmod 6q pk, jq P D β 2 . By hypothesis of pG i x i y i , σ i q for i P t1, 2u, there exists ϕ 1 : pG 1

x 1 y 1 , σ 1 q s.p.

ÝÑ K s

6;2 such that ϕ 1 px 1 q " i and ϕ 1 py 1 q " k, and ϕ 2 : pG 2 x 2 y 2 , σ 2 q s.p.

ÝÑ K s

6;2 such that ϕ 2 px 2 q " k and ϕ 2 py 2 q " j. Similarly, we define ϕ : V pG xy q Ñ K s 6;2 such that ϕpvq " # ϕ 1 pvq, for v P V pG 1 x 1 y 1 q. ϕ 2 pvq, for v P V pG 2

x 2 y 2 q.

Such ϕ is an edge-sign preserving homomorphism of pG xy , σq to K s 6;2 satisfying that ϕpxq " i and ϕpyq " j.

Moreover, note that SpK 3 q, shown in Figure 4.8, is a signed triangle-free series-parallel graph satisfying that χ c pSpK 3 qq " 3 by Theorem 3.3.12. This bound is tight.

Signed k-chromatic graphs

Following Corollary 3.3.3, we know that given a graph G and an arbitrary signature σ, χ c pG, σq ď 2χ c pGq, noting that the tightness is obtained by signed graphs with multiple-edges (thus, girth 2). In this section, we strengthen this claim by showing that the tightness stands even for signed simple graphs of arbitrary large girth.

To prove the result, we will use the concept of augmented tree introduced in [START_REF] Alon | Coloring, sparseness and girth[END_REF]. It has been introduced to prove, in a constructive way, Erdös' theorem that given integers k and g, there exists a graph of girth at least g whose chromatic number is larger than k.

Some basic notations about rooted trees are needed. Given a rooted tree T , the level of a vertex v is defined to be the distance from v to the root vertex in T . For a leaf u of T , there is a unique path in T from the root to u, denoted by P u . Moreover, vertices in P u ´tuu are ancestors of u.

A complete k-ary tree is a rooted tree, in which each non-leaf vertex has k children and all the leaves are in the same level. Given a complete k-ary tree T , a standard labeling of the edges of T is a labeling φ : EpT q Ñ t1, 2, . . . , ku such that for each non-leaf vertex v, v has each of its k children labeled from 1 to k correspondingly. Furthermore, given a standard labeling φ of EpT q and a k-mapping f : V pT q Ñ t1, 2, . . . , ku of the vertices of T , the f -path P f " pv 1 , v 2 , . . . , v m q of T is the path from the root vertex v 1 to a leaf v m of T such that for each i " 1, 2, . . . , m ´1, f pv i q " φpv i v i`1 q.

A q-augmented k-ary tree is obtained from a complete k-ary tree by adding, for each leaf u, q edges connecting u to q of its ancestors. These q edges are called the augmenting edges from u. Note that each cycle in the q-augmented k-ary tree contains at least one augmenting edge. For positive integers k, q, g, a pk, q, gq-graph is a q-augmented k-ary tree which is bipartite and has girth at least g. The existence of such a pk, q, gq-graph for any positive integers k, p, g has been proved in [START_REF] Alon | Coloring, sparseness and girth[END_REF].

Lemma 4.3.1. For any positive integers k, q, g ě 2, there exists a pk, q, gq-graph. Now we shall prove the next theorem which supports the tightness of the bound in Corollary 3.3.3 and is also of independent interest. Theorem 4.3.2. For any integers k, g ě 2 and any ą 0, there is a graph G of girth at least g satisfying that χpGq " k and a signature σ such that χ c pG, σq ą 2k ´ .

Proof. Let k and g be two integers which are both larger or equal to 2. It suffices to prove that for any integer p, there is a graph G of girth at least g whose chromatic number is at most k and there is a signature σ such that pG, σq is not p2kp, p `1q-colorable.

Let H be a p2kp, k, 2kgq-graph, which is a bipartite k-augmented 2kp-ary tree T of girth at least 2kg. Let φ be a standard 2kp-labeling of EpT q. For each v P V pT q, we denote the level of v by pvq.

Starting from the root, we partition the vertices in every consecutive k levels into a group and let θpvq " pvq mod k.

For each leaf v of T , we denote the vertices on P v that are connected to v by augmenting edges by u v,1 , u v,2 , . . . , u v,k . For each i, let u 1 v,i P P v be the closest descendant of u v,i with θpu 1 v,i q " i and let e v,i be the edge connecting u 1 v,i to its child on P v . Given a leaf v and an index i P t1, . . . , ku, we consider the following three sets:

A v,i " tφpe v,i q, φpe v,i q `1, . . . , φpe v,i q `pu, B v,i " tx `kp | x P A v,i u, C v,i " A v,i Y B v,i .
The addition above are all carried out modulo 2kp. Note that B v,i is a kp-shift of A v,i . Also we can regard the elements in B v,i as the antipodals of those in A v,i with respect to the set r2kps. Since

|C v,i | " |A v,i Y B v,i | " 2pp `1q for each i but k Ť i"1
C v,i Ď r2kps, by Pigeonhole Principle, there exists a pair of distinct indices, say i, j, such that C v,i X C v,j ‰ H.

There are two possibilities.

If A v,i X A v,j ‰ H (thus B v,i X B v,j ‰ H), then d pmod 2kpq pφpe v,i q, φpe v,j qq ď p. If A v,i X B v,j ‰ H (and hence B v,i X A v,j ‰ H), then d pmod 2kpq pφpe v,i q, φpe v,j qq ď p.
Let L be the set of leaves of T . For each v P L, we define one edge e v on V pT q as follows:

• If d pmod 2kpq pφpe v,i q, φpe v,j qq ď p, then let e v be a positive edge connecting u 1 v,i and u 1 v,j .

• If d pmod 2kpq pφpe v,i q, φpe v,j qq ď p, then let e v be a negative edge connecting u 1 v,i and u 1 v,j . Let pG, σq be the signed graph with vertex set V pT q and with edge set te v : v P Lu, where the signs of the edges are defined as above. We shall show that pG, σq has the desired properties.

First, observe that θ is a proper k-coloring of G. So G has chromatic number at most k.

Next, we show that G has girth at least g. For each edge e v " u 1 v,i u 1 v,j of G, let B v be the path which is the union of the subpath of P v from u 1 v,i to u v,i and the path u v,i vu v,j and the subpath of P v from u v,j to u 1 v,j . Then B v has length at most 2k. If C is a cycle in G, then replace each edge e v of C by the path B v , we obtain a closed walk in H. As H has girth at least 2kg, we conclude that C has length at least g and hence G has girth at least g.

Finally, we show that pG, σq is not p2kp, p `1q-colorable. Assume f is a p2kp, p `1q-coloring of pG, σq. As f could also be regarded as a 2kp-coloring of the vertices of T , there is a unique f -path, say P v . Assume e v " u 1 v,i u 1 v,j . It follows from the definition of f -path that f pu 1 v,i q " φpe v,i q and f pu 1 v,j q " φpe v,j q. By the definition of e v , the following claims hold.

• If e v is a positive edge, then d pmod 2kpq pφpe v,i q, φpe v,j qq ď p;

• If e v is a negative edge, then d pmod 2kpq pφpe v,i q, φpe v,j qq ď p.

This is in contrary to the assumption that f is a p2kp, p `1q-coloring of pG, σq.

Remark: The graph constructed above is shown to have chromatic number at most k. However, since 2kp

p`1 ă χ c pG, σq ď 2χpGq, we conclude that χpGq " k when p`1 ě 2k. It is not known whether there is a finite k-chromatic graph of girth at least g and a signature σ such that χ c pG, σq " 2k. Also, it is unknown whether for every rational p q , any integer g, and any ą 0, there is a graph G with χ c pGq ď p q and a signature σ such that χ c pG, σq ą 2p q ´ . Replacing k-chromatic graphs by k-critical graphs, we have a similar result. The following theorem about circular chromatic number of critical graphs of large girth was proved in [START_REF] Zhu | Circular chromatic number: a survey[END_REF].

Theorem 4.3.3. For any integer k ě 3 and ą 0, there is an integer g such that any k-critical graph of girth at least g has circular chromatic number at most k ´1 ` .

As a consequence of Theorem 4.3.3 and Corollary 3.3.3, we know that for any integer k ě 3 and ą 0, there is an integer g such that any k-critical graph G of girth at least g has signed circular chromatic number at most 2k ´2 ` . However, this bound is not tight. The following proposition follows from Theorem 3.3.4. Proposition 4.3.4. If G is a k-critical graph, then for any signature σ, χ c pG, σq ď 2k ´2.

Proof. Let σ be a signature on G. If pG, σq " pG, `q, then χ c pG, σq ď χpG, σq " χpGq " k. If σpeq " ´for some edge e, then the subgraph of G induced by positive edges has chromatic number at most k ´1. Hence, χ c pG, σq ď 2pk ´1q.

Signed planar simple graphs

The last but not the least family that we are interested in is the class of signed planar simple graphs. In this section, we work on bounding the circular chromatic number of this family.

Since planar simple graphs are 5-degenerate, by Proposition 4.1.5, χ c pSPq ď 6. It was conjectured in [START_REF] Máčajová | The chromatic number of a signed graph[END_REF] that every planar simple graph admits a 0-free 4-coloring. If the conjecture was true, it would have implied the best possible bound of 4 for the circular chromatic number of signed planar simple graphs. However, this conjecture was disproved in [KN21] using a dual notion. Later a direct proof of a counterexample is given in [START_REF] Naserasr | Complex chromatic number of signed planar simple graphs[END_REF]. Extending this construction, we build a signed planar simple graph whose circular chromatic number is 4 `2 3 , which is the best lower bound we found till now. We first introduce some notation to state the properties. Let r be a positive real number. Let φ be a mapping of a set tv 1 , . . . , v k u of points (or vertices of a graph) to C r . We denote by I φ;v 1 ,...,vq,v q`1 ,...,v k an interval of minimum length which contains tφpv i q : i " 1, . . . , qu Y tφpv i q : i " q `1, . . . , ku and by φ;v 1 ,...,vq,v q`1 ,...,v k the length of this interval. Note that the minimality of the length implies that the two end points of the interval I φ;v 1 ,...,vq,v q`1 ,...,v k are in tφpv i q : i " 1, . . . , qu Y tφpv i q : i " q `1, . . . , ku Lemma 4.4.2. For 0 ď α ă 2, assume φ is a circular p4 `αq-coloring of the signed graph pT, πq of Figure 4.9. Then φ;x,y,z P r1 ´α 2 , 1 `α 2 s. Moreover, for any t 1 , t 2 , t 3 satisfying that maxtd pmod rq pt i , t j q | i, j P t1, 2, 3uu P r1 ´α 2 , 1 `α 2 s, there exists a circular r-coloring φ of pT, πq such that φpxq " t 1 , φpyq " t 2 , φpzq " t 3 .

Proof. Let r " 4 `α and let φ be a circular r-coloring of pT, πq. Without loss of generality we may assume that φpxq, φpyq and φpzq are on C r in the clockwise order, and assume that the interval rφpzq, φpxqs is a longest interval among rφpxq, φpyqs, rφpyq, φpzqs and rφpzq, φpxqs. Thus I φ;x,y,z " rφpxq, φpzqs. We first claim that rφpzq, φpxqs contains φpyq. Otherwise, either rφpyq, φpyqs or rφpyq, φpyqs which is of length r 2 , is included in either pφpxq, φpyqs or rφpyq, φpzqq. This is a contradiction as rφpzq, φpxqs is longest among the three. As φpyq is contained in rφpzq, φpxqs, and as y is adjacent to both z and x with a negative edge, we conclude that rφpzq, φpxqs is of length at least 2. On the other hand, since z and x are adjacent with a negative edge, one of the two intervals, rφpzq, φpxqs or rφpxq, φpzqs is of length at most r 2 ´1 " 1 `α 2 . As α ă 2, the only option is that rφpxq, φpzqs is of length at most 1 `α 2 .

For the other direction, assume φ;x,y,z ă 1 ´α 2 , say I φ;x,y,z " r0, βs for some β ă 1 ´α 2 . Each of a, b, c is joined by a positive edge and a negative edge to vertices in x, y, z. This implies that φpaq, φpbq, φpcq P r1, 1 `β `α 2 s Y r3 `α 2 , 3 `α `βs. As each of the intervals r1, 1 `β `α 2 s and r3 `α 2 , 3 `α `βs has length strictly smaller than 1, two of the vertices a, b, c are colored by colors of distance less than 1 in C r . But abc is a triangle with three positive edges, a contradiction.

For the "moreover" part, without loss of generality, we assume that t 3 " 0, t 1 P r1´α 2 , 1`α 2 s, t 2 P r0, t 1 s. If t 1 P r1 ´α 2 , 1s, then let φpaq " 3 `α 2 , φpbq " 2 and φpcq " 1; if t 1 P r1, 1 `α 2 s, then let φpaq " 3 `α 2 , φpbq " 2 `α 2 and φpcq " 1. It is straightforward to verify that φ is a circular r-coloring of pT, πq.

By taking α " 2

3 ´ and a switching at the vertex z, we have the following formulation of Lemma 4.4.2 which we will use frequently.

Corollary 4.4.3. Let pT, π 1 q be a signed graph obtained from pT, πq by a switching at the vertex z, and let φ be a circular p 14 3 ´ q-coloring of pT, π 1 q where 0 ă ă 2 3 . Then φ;x,y,z P r 2 3 ` 2 , 4 3 ´ 2 s.

We define W to be the signed graph obtained from signed Wenger graph of Figure 4.10 by completing each of the four negative facial triangles to a switching of the mini-gadget of Figure 4.9. Next we show that W has a property similar to signed indicators, more precisely: Lemma 4.4.4. Let r " 14 3 ´ with 0 ă ď 2 3 . For any circular r-coloring φ of W , φ;u,v ě 4 9 .

The proof of Lemma 4.4.4 is long and detailed case-analysis, so we leave it to the end of this section. Let Γ be obtained from W by adding a negative edge uv. Let I " pΓ, u, vq be a signed indicator. It follows from Lemma 4.4.4 that for 4 ď r ă 14 3 , pI, rq Ď r 4 9 , r 2 ´1s.

Theorem 4.4.5. Let Ω " K 4 pIq. Then Ω is a signed planar simple graph with χ c pΩq " 14 3 .

Proof. First we show that Ω admits a circular 14 3 -coloring. For r " 14 3 , there is a circular r-coloring φ of Γ with φpuq " φpvq, defined as φpuq " φpvq " 0, φpwq " 3, φpx 1 q " 2, φpx 2 q " 1, φpx 3 q " 2, φpx 4 q " 1 3 , φpx 5 q " 4 and φpzq " φptq " 1. We observe that each of the four negative triangles satisfies the conditions of Lemma 4.4.2, and that the coloring of its vertices can be extended to the inner part of the mini-gadget. Let v 1 , v 2 , v 3 , v 4 be the 4 vertices of K 4 . Then there is a circular 14 3 -coloring φ of K 4 pIq with φpv i q " 0 for i " 1, 2, 3, 4. So χ c pΩq ď 14 3 . It remains to show that χ c pΩq ě 14 3 . Assume to the contrary that χ c pΩq ă 14 3 and let φ be a circular r-coloring of Ω for some 4 ď r ă 14 3 . Note that for the purpose of applying Lemma 4.4.4, we assume r ě 4. Without loss of generality, assume that φpv 1 q, φpv 2 q, φpv 3 q and φpv 4 q are on C r in this cyclic order.

As pI, rq Ď r 4 9 , r 2 ´1s, we know that for any 1 ď i ă j ď 4, 4 9 ď d pmod rq pφpv i q, φpv j qq ď r 2 ´1.

By symmetry, we may assume d pmod rq pφpv 1 q, φpv 3 qq " prφpv 1 q, φpv 3 qsq and d pmod rq pφpv 2 q, φpv 4 qq " prφpv 2 q, φpv 4 qsq. Hence prφpv 1 q, φpv 4 qsq " prφpv 1 q, φpv 2 qsq ` prφpv 2 q, φpv 3 qsq ` prφpv 3 q, φpv 4 qsq ě 3 ˆ4 9 " 4 3 ą r 2 ´1, and prφpv 4 q, φpv 1 qsq ě r ´p prφpv 1 q, φpv 3 qsq ` prφpv 2 q, φpv 4 qsqq ě 2 ą r 2 ´1.

This implies that d pmod rq pφpv 1 q, φpv 4 qq ą r 2 ´1, a contradiction.

Proof of Lemma 4.4.4

Assume to the contrary that φ is a circular r-coloring of W with φ;u,v " η ă 4 9 . Without loss of generality, we assume that φpuq " 0 and φpvq " η. Since each of φpzq and φptq is of distance at least 1 from both φpuq and φpvq, we have:

φpzq, φptq P $ ' & ' % r1 `η, 4 3 ´ 2 s Y r 10 3 ´ 2 , 11 3 `η ´ s, if η ď 1 3 ´ 2 , r 10 3 ´ 2 , 11 3 `η ´ s, otherwise. (4.1) Lemma 4.4.6. φpwq R p 5 3 ´ , 3 `ηq Y p4 ´3 2 , 2 3 `η ` 2 q.
Proof. Let φpwq " δ. First we show that δ R p 5 3 ´ , 3 `ηq. Assume to the contrary that δ P p 5

3 ´ , 3 `ηq. As x 2 is joined to u and w by positive edges,

φpx 2 q P $ ' ' ' ' & ' ' ' ' % r1, δ ´1s, if δ ą 8 3 ´ , rδ `1, 11 3 ´ s, if δ ă 2, r1, δ ´1s Y rδ `1, 11 3 ´ s, if 2 ď δ ď 8 3
´ .

(4.2)

φpx 3 q P $ ' ' ' ' & ' ' ' ' % r1 `η, δ ´1s, if δ ą 8 3 `η ´ , rδ `1, 11 3 `η ´ s, if δ ă 2 `η, r1 `η, δ ´1s Y rδ `1, 11 3 `η ´ s, if 2 `η ď δ ď 8 3 `η ´ . (4.3)
For a depiction of these cases, see Figure 4.11.

0 φpzq φpzq φpx 3 q φpx 3 q φpx 2 q φpx 2 q
Figure 4.11. A sketch of locating φpzq, φpx 2 q and φpx 3 q on C r

Claim. The following restrictions on the value of φpzq hold:

[I]. If δ ă 3 and φpx 2 q P r1, δ ´1s, then η ď 1 3 ´ 2 and φpzq P r1 `η, 4 3 ´ 2 s.

[II]. If φpx 2 q P rδ `1, 11 3 ´ s, then φpzq P r 10 3 ´ 2 , 11 3 `η ´ s.

[III]. If φpx 3 q P r1 `η, δ ´1s, then φpzq P r 10 3 ´ 2 , 11 3 `η ´ s.

[IV]. If δ ą 5 3 `η ´ and φpx 3 q P rδ `1, 11 3 `η ´ s, then η ď 1 3 ´ 2 and φpzq P r1 `η, 4 3 ´ 2 s.

Proof of the claim:

We prove the claim case by case.

[I]. Assume to the contrary (by Condition (4.1)) that φpzq P r 10 3 ´ 2 , 11 3 `η ´ s and φpx 2 q P r1, δ ´1s. Then d pmod rq pφpx 2 q, φpzqq ě mint 10 3 ´ 2 ´pδ ´1q, 14 3 ´ `1 ´p 11 3 `η ´ qu ą 4 3 ´ 2 , contradicting the fact that x 2 z is a negative edge.

[II]. Assume to the contrary (by Condition (4.1)) that φpzq P r1 `η, 4 3 ´ 2 s and η ď 1 3 ´ 2 . Then d pmod rq pφpx 2 q, φpzqq ě mint2 `η, δ ´1 3 ` 2 u ą 4

3 ´ 2 , contradicting the fact that x 2 z is a negative edge.

[III]. Assume to the contrary (by Condition (4.1)) that φpzq P r1 `η, 4 3 ´ 2 s, φpx 3 q P r1 `η, δ ´1s and hence δ ě 2 `η. As δ P p 5

3 ´ , 3 `ηq, d pmod rq pφpx 3 q, φpzqq ď δ ´1 ´p1 `ηq ă 1, contradicting the fact that x 3 z is a positive edge.

[IV]. Assume to the contrary (by Condition (4.1)) that φpzq P r 10 3 ´ 2 , 11 3 `η´ s. As δ ą 5 3 `η´ , d pmod rq pφpx 3 q, φpzqq ď 11 3 `η ´ ´pδ `1q ă 1, contradicting the fact that x 3 z is a positive edge. This completes the proof of the claim. ♦

To complete the proof of this lemma, we partition the interval p 5 3 ´ , 3 `ηq into three parts and consider three cases depending on to which part δ belongs.

Case (i) δ P p 5 3
´ , 2 `ηq.

As δ ă 2 `η, by Condition (4.3), φpx 3 q P rδ `1, 11 3 `η ´ s. Thus φpx 3 q P rδ ´4 3 ` 2 , 4 3 `η ´ 2 s. By Condition (4.2), φpx 2 q P r1, δ ´1s Y rδ `1, 11 3 ´ s. Subcase (i-1) φpx 2 q P r1, δ ´1s and hence, by Condition (4.2), δ ě 2.

As δ ă 2 `η ă 3, by [I], φpzq P r1 `η, 4 3 ´ 2 s and η ď 1 3 ´ 2 . Hence δ ă 2 `η ď 7 3 ´ 2 . Consider the interval I φ;x 3 ,x 2 ,z , see Figure 4.12. If φpx 3 q is the starting point of this interval, then since δ ´1 ă 4

3 ´ 2 , we have rφpx 3 q, φpzqs Ď rδ ´4 3 ` 2 , 4 3 ´ 2 s. If the starting of I φ;x 3 ,x 2 ,z is φpx 2 q or φpzq, then since δ ´1 ă 4

3 ´ 2 , we have rφpx 2 q, φpx 3 qs Ď r1, 4 3 `η ´ 2 s. In either case, I φ;x 3 ,x 2 ,z has length at most 2 3 ´ , contrary to Corollary 4.4.3. Subcase (i-2) φpx 2 q P rδ `1, 11 3 ´ s.

Case (iii) δ P p 8 3 `η ´ , 3 `ηq. As δ ą 8 3 `η ´ ě 8 3 ´ , by Conditions (4.2) and (4.3), φpx 2 q P r1, δ ´1s and φpx 3 q P r1`η, δ ´1s. As pr1 `η, δ ´1sq ă 1 and d pmod rq pφpx 2 q, φpx 3 qq ě 1, we conclude that δ ě 3 and φpx 2 q P r1, δ ´2s. As x 2 z is a negative edge, and the distance between the intervals r 10 3 ´ 2 , 11 3 `η ´ s and r1, δ ´2s is strictly larger than 4

3 ´ 2 , we know that φpzq R r 10 3 ´ 2 , 11 3 `η ´ s. By Condition (4.1), φpzq P r1 `η, 4 3 ´ 2 s and η ď 1 3 ´ 2 . This implies that φpzq and φpx 3 q are both in r1 `η, δ ´1s. However, δ ă 3 `η, so pr1 `η, δ ´1sq ă 1, contradicting the fact that x 3 z is a positive edge.

This completes the proof that φpwq R p 5 3 ´ , 3 `ηq. We observe that in this proof, the vertex x 1 plays no role. In other words, the conclusion holds for the signed subgraph induced on Gzx 1 . In this subgraph a switching at U " tw, x 2 , x 3 , x 4 , x 5 u results in an isomorphic copy where x 4 and x 5 play the role of x 2 and x 3 . Thus for the mapping φ 1 defined as φ 1 pvq " φpvq for v P V p W q ´U and φ 1 pvq " φpvq for v P U , we have φ 1 pwq R p 5

3 ´ , 3 `ηq. Hence, φpwq R p4 ´3 2 , 2 3 `η ` 2 q. If η ą 1 ´3 2 , then by the Lemma 4.4.6, we have no choice for φpwq. Thus we assume in the rest of the proof that η ď 1 ´3 2 and

φpwq P r3 `η, 4 ´3 2 s Y r 2 3 `η ` 2 , 5 3 
´ s.

The two cases will be considered separately.

Case A. φpwq P r3 `η, 4 ´3 2 s. As ux 5 is a negative edge and φpuq " 0, we have φpx 5 q P r 10 3 ´ 2 , 4 3 ´ 2 s. As pr3 `η, 4 ´3 2 sq ă 1, and x 5 w is a positive edge, we conclude that 3 `η, φpwq, φpx 5 q, 4 3 ´ 2 occur in this cyclic order. This implies that φpx 5 q P r4 `η, 4 3 ´ 2 s.

For i " 1, 2, 3, 4, by considering the edges between x i and u, v, w, similar arguments as above lead to the following restrictions on the value of φpx i q:

φpx 1 q P r1, 3 ´3 2 s, φpx 2 q P r1, 3 ´3 2 s, φpx 3 q P r1 `η, 3 ´3 2 s, φpx 4 q P r4 `η, 4 3 `η ´ 2 s.

By Condition (4.1), based on the choices of φpzq and φptq, we consider four cases.

Case A-1 η ď 1 3

´ 2 and φpzq, φptq P r1 `η, 4 3

´ 2 s. We will update the ranges of φpx i q's as depicted in Figure 4.13. In this figure the range of φpx i q's are shown as an interval partitioned to two parts. The full interval represent the restriction we have started with. We then show that the dotted part of the interval is not available for φpx i q, thus updating the range to the solid part of the interval.

As pr1 `η, 4 3 ´ 2 sq ă 1, φpx 3 q P r1 `η, 3 ´3 2 s and zx 3 is a positive edge, the points 1 ὴ, φpzq, φpx 3 q, 3 ´3 2 occur in C r in this cyclic order. This implies that φpx 3 q P r2 `η, 3 ´3 2 s.

As pr2`η, 3´3 2 sq ă 1, φpx 2 q P r1, 3´3 2 s and x 2 x 3 is a positive edge, the points 1, φpx 2 q, φpx 3 q, 3´3 2 occurs in C r in this cyclic order. This implies that φpx 2 q P r1, 2 ´3 2 s. By considering the positive edges x 5 t and then x 4 x 5 , similar arguments show that φpx 5 q P r4 `η, 1 3

´ 2 s and φpx

4 q P r 1 3 `η ` , 4 3 `η ´ 2 s.
Considering the positive edge x 1 x 2 and the range of φpx 2 q given above, a similar argument shows that φpx 1 q P r2, 3 ´3 2 s and hence φpx 1 q P r 13 3 ´ 2 , 2 3

´ s. Now consider the negative triangle x 1 x 5 u. If I φ;x 1 ,x 5 ,u " rφpx 1 q, φpx 5 qs, then

I φ;x 1 ,x 5 ,u Ď r 13 3 ´ 2 , 1 3 ´ 2 s but pr 13 3 ´ 2 , 1 3 ´ 2 sq " 2 3
´ ă 2 3 ` 2 , contrary to Corollary 4.4.3. Also φpuq " 0 cannot be an end point of the interval I φ;x 1 ,x 5 ,u , as 0 is at distance less than 2 3 ` 2 from each of the four end points of the intervals that are the ranges of φpx 1 q and φpx 5 q. Thus I φ;x 1 ,x 5 ,u " rφpx 5 q, φpx 1 qs. By Corollary 4.4.3, prφpx 5 q, φpx 1 qsq ě 2 3 ` 2 . Thus prφpx 1 q, φpx 5 qsq " r 2

´ prφpx 5 q, φpx 1 qsq ď 5 3

´ .

As φpx 1 q P r2, 3 ´3 2 s, φpwq P r3 `η, 4 ´3 2 s and φpx 5 q P r4 `η, 1 3 ´ 2 s, we conclude that φpwq P rφpx 1 q, φpx 5 qs (see Figure 4.14). Since wx 1 and wx 5 are positive edges, we have 2 ď prφpx 1 q, φpwqsq ` prφpwq, φpx 5 qsq " prφpx 1 q, φpx 5 qsq ď 5 3

´ , a contradiction.

Case A-2 η ď 1 3 ´ 2 , φpzq P r1 `η, 4 3
´ 2 s, and φptq P r

10 3 ´ 2 , 11 3 `η ´ s.
The proof is similar to the previous case. The positive edge zx 3 and the negative edge tx 4 further restrict the ranges of φpx 3 q, φpx 4 q. Then, the new ranges of φpx 3 q and φpx 5 q, together with the positive edges x 3 x 2 and x 4 x 5 further restrict the range of φpx 2 q, φpx 5 q. As the computations are very similar to the previous case, we just list the conclusion of this argument:

φpx 3 q P r2 `η, 3 ´3 2 s, φpx 2 q P r1, 2 ´3 2 s, φpx 5 q P r 1 3 `η ` , 4 3
´ 2 s and φpx 4 q P r4 `η,

1 3 ´ 2 s.
Next we consider the negative triangle vx 3 x 4 . As

φpx 3 q P r 13 3 `η ´ 2 , 2 3
´ s, φpx 4 q P r4 `η, 1 3

´ 2 s, and φpvq " η, Case A-3: Restrictions on wx 5 x 4 x 3 x 2 similar analysis as in the previous case shows that I φ;x 3 ,x 4 ,v " rφpx 4 q, φpx 3 qs and pφpx 4 q, φpx 3 qq ě 2 3 ` 2 . This means that prφpx 3 q, φpx 4 qsq ă 2. A similar argument shows that φpwq P rφpx 3 q, φpx 4 qs. As x 3 w, x 4 w are positive edges, we have 2 ď prφpx 3 q, φpwqsq ` prφpwq, φpx 4 qsq " prφpx 3 q, φpx 4 qsq ă 2, a contradiction.

Case A-3 η ď 1 3 ´ 2 , φpzq P r 10 3 ´ 2 , 11 3 `η
´ s, and φptq P r1 `η, 4 3

´ 2 s. We will update the ranges of φpx 2 q, . . . , φpx 5 q as depicted in Figure 4.15. We first have that φpwq P r3 `η, 4 ´3 2 s :" I w .

Recall that φpx 2 q P r1, 3´3 2 s and φpx 5 q P r4`η, 4 3 ´ 2 s. If φpx 2 q P r1, 2q, then d pmod rq pφpx 2 q, φpzqq ą 4 3

´ 2 , contrary to the fact that x 2 z is a negative edge. Thus φpx 2 q P r2, 3 ´3 2 s :" I 2 .

If φpx 5 q P p 1 3 ´ 2 , 4 3 ´ 2 s, then d pmod rq pφpx 5 q, φptqq ă 1, contrary to the fact that x 5 t is a positive edge. Therefore, φpx 5 q P r4 `η, 1 3

´ 2 s :" I 5 .

Note that pI 5 q ă 1. As φpx 4 q P r4 `η, 4 3 `η ´ 2 s and d pmod rq pφpx 5 q, φpx 4 qq ě 1 (as x 4 x 5 is a positive edge), we conclude that the four points 4 `η, φpx 5 q, φpx 4 q, 4 3 `η ´ 2 occurs in C r in this cyclic order and

φpx 4 q P r 1 3 `η ` , 4 3 `η ´ 2 s :" I 4 .
Note that pI 2 q ă 1, x 2 x 3 is a positive edge and φpx 3 q P r1`η, 3´3 2 s. Thus the points 2, φpx 2 q, φpx 3 q occurs in C r in this cyclic order. Hence, φpx 3 q P r1 `η, 2 ´3 2 s :" I 3 .

The intervals I w , I 5 , I 4 , I 3 , I 2 are each of length less than 1, and except for I 3 and I 4 there is no intersection among them (see Figure 4.16). Since pI 3 q ă 1 and x 3 x 4 is a positive edge, we have that φpx 4 q R I 3 . Thus the points φpwq, φpx 5 q, φpx 4 q, φpx 3 q, φpx 2 q occur in C r in this cyclic order. As C r is of length 14 3 ´ , the colors of some two consecutive vertices of the 5-cycle wx 5 x 4 x 3 x 2 is less than 1, but all the edges of this cycle are positive. This is a contradiction.

Case A-4 φpzq, φptq P r 10 3

´ 2 , 11 3 `η ´ s.

Similarly, we obtain that φpwq P r3 `η, 4 ´3 2 s, φpx 2 q P r2, 3 ´3 2 s, φpx 4 q P r4 `η, 1 3 `η ´ 2 s,

φpx 5 q P r 1 3 `η ` , 4 3
´ 2 s, and φpx 1 q P r 4 3 `η ` , 2 ´3 2 s.

The points φpwq, φpx 4 q, φpx 5 q, φpx 1 q and φpx 2 q occur in C r in this cyclic order. As all the edges of the 5-cycle wx 4 x 5 x 1 x 2 are positive, this is a contradiction.

Case B. φpwq P r 2 3 `η ` 2 , 5 3 
´ s. Similarly, by considering the edges between each of x i 's and vertices u, v, w, we have that

φpx 1 q, φpx 2 q P r 5 3 `η ` 2 , 11 3 ´ s, φpx 3 q P r 5 3 `η ` 2 , 11 3 `η ´ s, φpx 4 q P r 10 3 `η ´ 2 , 2 3
´ s, and φpx 5 q P r 10 3

´ 2 , 2 3

´ s.

Based on the choices of φpzq and φptq, we have four sub-cases to discuss.

Case B-1 φpzq, φptq P r 10 3

´ 2 , 11 3 `η ´ s. 0 φptq, φpzq φpx 5 q φpx 4 q φpx 3 q φpx 2 q φpx 1 q Figure 4.17. Case B-1: Updating ranges of φpx i q's 0 φpwq φpx 5 q φpx 1 q Figure 4.18. Case B-1: Restrictions on x 1 x 5 u

We will update the ranges of φpx i q's as depicted in Figure 4.17. The positive edges zx 3 and tx 5 further restrict the ranges of φpx 3 q and φpx 5 q. Then the new ranges of φpx 3 q and φpx 5 q, through the positive edges x 3 x 2 and x 5 x 4 , further restrict the ranges of φpx 2 q and φpx 4 q. By similar computation as previous cases, we have

φpx 3 q P r 5 3 `η ` 2 , 8 3 ´ s, φpx 2 q P r 8 3 `η ` 2 , 11 3 
´ s,

φpx 5 q P r 13 3 `η ´ 2 , 2 3 
´ s, and φpx 4 q P r 10 3 `η ´ 2 , 13 3 ´2 s.

Considering the positive edge x 1 x 2 and the range of φpx 2 q given above, we obtain that

φpx 1 q P r 5 3 `η ` 2 , 8 3 
´ s.

Next we consider the negative triangle x 1 x 5 u. As φpx 1 q P r4`η, 1 3 ´ 2 s, φpx 5 q P r 13 3 `η ´ 2 , 2 3 ´ s and φpuq " 0, similar analysis shows that I φ;x 1 ,x 5 ,u " rφpx 1 q, φpx 5 qs and prφpx 1 q, φpx 5 qsq ě 2 3 ` 2 . It implies that prφpx 5 q, φpx 1 qsq " 5 3 ´ 2 ă 2. We observe that φpwq P rφpx 5 q, φpx 1 qs (see Figure 4.18) and since x 5 w, x 1 w are both positive edges, we have that 2 ď prφpx 5 , wqsq ` pφpwq, φpx 1 qq " prφpx 5 q, φpx 1 qsq ă 2, a contradiction.

Case B-2 η ď 1 3 ´ 2 , φpzq P r 10 3 ´ 2 , 11 3 `η
´ s, and φptq P r1 `η, 4 3

´ 2 s.

The positive edge zx 3 and the negative edge tx 4 further restrict the ranges of φpx 3 q and φpx 4 q respectively. Then the new ranges of φpx 3 q and φpx 4 q, through the positive edges x 3 x 2 and x 4 x 5 , further restrict the ranges of φpx 2 q and φpx 5 q. By similar computation as previous cases, we have

φpx 3 q P r 5 3 `η ` 2 , 8 3 ´ s, φpx 2 q P r 8 3 `η ` 2 , 11 3 
´ s,

φpx 4 q P r 13 3 `η ´ 2 , 2 3
´ s, and φpx 5 q P r 10 3

´ 2 , 13 3 ´2 s.

Next we consider the negative triangle x 3 x 4 v. As φpx 3 q P r4 `η, 1 3 ´ 2 s, φpx 4 q P r 13 3 `η ´ 2 , 2 3 ´ s and φpvq " η, similar analysis shows that I φ;x 3 ,x 4 ,v " rφpx 3 q, φpx 4 qs and prφpx 3 q, φpx 4 qsq ě 2 3 ` 2 . This means that prφpx 4 q, φpx 3 qsq ă 2. We observe that φpwq P rφpx 4 q, φpx 3 qs and as x 4 w, x 3 w are both positive edges, we have that 2 ď prφpx 4 , wqsq ` pφpwq, φpx 3 qq " prφpx 4 q, φpx 3 qsq ă 2, a contradiction.

Case B-3 η ď 1 3
´ 2 and φpzq, φptq P r1 `η, 4 3

´ 2 s.

0 φptq, φpzq φpx 5 q φpx 4 q φpx 3 q φpx 2 q φpx 1 q We will update the ranges of φpx i q's as depicted in Figure 4.19. We know that φpwq P r 2 3 `η ` 2 , 5 3

´ s :" I w .

Recall that φpx 2 q P r 5 3 `η ` 2 , 11 3 ´ s and φpx 4 q P r 10 3 `η ´ 2 , 2 3 ´ s. If φpx 2 q P p 8 3 ´ , 11 3 ´ s, then d pmod rq pφpx 2 q, φpzqq ą 4

3 ´ 2 , contrary to the fact that x 2 z is a negative edge. Thus

φpx 2 q P r 5 3 `η ` 2 , 8 3 
´ s :" I 2 .

If φpx 4 q P r 10 3 `η ´ 2 , 13 3 `η ´ 2 q, then d pmod rq pφpx 4 q, φptqq ą 4 3 ´ 2 , contrary to the fact that x 4 t is a negative edge. Therefore,

φpx 4 q P r 13 3 `η ´ 2 , 2 3
´ s :" I 4 .

Note that pI 4 q ă 1. As φpx 5 q P r 10 3 ´ 2 , 2 3 ´ s and d pmod rq pφpx 5 q, φpx 4 qq ě 1 (as x 4 x 5 is a positive edge), we conclude that φpx 5 q P r 10 3 ´ 2 , 13 3 ´2 s :" I 5 .

Recall that φpx 3 q P r 5 3 `η ` 2 , 11 3 `η ´ s. Similarly, pI 2 q ă 1, and x 2 x 3 is a positive edge. Thus φpx 3 q P r 8 3 `η ` 2 , 11 3 `η ´ s. By the restriction from the positive edges x 1 x 2 and x 1 x 5 and the new ranges I 2 and I 5 , we have

φpx 1 q P r 8 3 `η ` 2 , 10 3 ´2 s :" I 1 .
The intervals I w , I 2 , I 1 , I 5 , I 4 are each of length less than 1, and there is no intersection among them (see Figure 4.20). As C r is of circumference 14 3 ´ , the colors of some two consecutive vertices of the 5-cycle wx 2 x 1 x 5 x 4 is less than 1, but all the edges of this cycle are positive. It is a contradiction.

Case B-4 η ď 1 3 ´ 2 , φpzq P r1 `η, 4 3
´ 2 s, and φptq P r

10 3 ´ 2 , 11 3 `η ´ s.
Similarly, we could obtain that

φpwq P r 2 3 `η ` 2 , 5 3 
´ s :" I w , φpx 2 q P r 5 3 `η ` 2 , 8 3

´ s :" I 2 , φpx 3 q P r 8 3 `η ` 2 , 11 3 `η ´ s :" I 3 , φpx 4 q P r 10 3 `η ´ 2 , 13 3 ´2 s :" I 4 , and φpx 5 q P r 13 3 `η ´ 2 , 2 3

´ s :" I 5 .

The intervals I w , I 2 , I 3 , I 4 , I 5 are each of length less than 1, and except for I 3 and I 4 there is no intersection among them. Since pI 4 q ă 1 and x 3 x 4 is a positive edge, φpx 3 q R I 4 . That is again a contradiction because of the 5-cycle wx 2 x 3 x 4 x 5 all whose edges are positive.

This completes the proof of Lemma 4.4.4.

Further questions

The circular coloring of graphs has been studied extensively in the literature. Many of the results and problems on the circular coloring of graphs would also be interesting in the framework of signed graphs. In the previous sections, we have studied the circular chromatic number of several classes of signed graphs. Here we present a collection of interesting problems for future work.

Signed graph minors

As mentioned in Section 1.1, one of the most intriguing conjectures in graph theory is the Hadwiger's conjecture and its strengthening, the odd Hadwiger's conjecture. Using the development in this work, the famous odd Hadwiger's conjecture can be restated as follows.

Conjecture 4.5.1. [Odd Hadwiger's conjecture restated] If pG, ´q has no pK k`1 , ´q-minor, then χ c pG, `q ď k.

To generalize this, one may ask:

Question 4.5.2. Assuming pG, σq has no pK k`1 , ´q-minor, what is the best upper bound on χ c pG, ´σq?

Let f pkq be the answer to Question 4.5.2. By Theorem 3.3.4, one can observe that if Conjecture 4.5.1 holds, then f pkq ď 2k. The best-known result so far for the odd Hadwiger's conjecture is in [START_REF] Postle | Further Progress towards the List and Odd Versions of Hadwiger's Conjecture[END_REF], where the upper bound of Opk ¨plog log kq 6 q is proved. Considering Theorem 3.3.4, we have f pkq " Opk ¨plog log kq 6 q.

Signed planar graphs

For the class of signed planar simple graphs, the upper bound of 6 follows from the fact that these graphs are 5-degenerate. With our definition of circular chromatic number and development in this work, one may restate a conjecture of [START_REF] Máčajová | The chromatic number of a signed graph[END_REF] as to "the circular chromatic number of the class of signed planar simple graphs is 4". However, this conjecture is recently disproved in [START_REF] Kardoš | On the 4-color theorem for signed graphs[END_REF]. The first counterexample provided in [START_REF] Kardoš | On the 4-color theorem for signed graphs[END_REF] is essentially the subgraph K 3 pIq of the signed graph of Theorem 4.4.5. The work of [START_REF] Kardoš | On the 4-color theorem for signed graphs[END_REF] is based on the dual interpretation of the circular fourcoloring of signed planar graphs. The examples build there then are based on non-Hamiltonian cubic bridgeless planar graphs. The underlying graph of the signed graph of Figure 4.10 is the dual of Tutte fragment used to build the first example of a non-Hamiltonian cubic bridgeless planar graph and referred to as Wenger graph in some literature. This graph itself is used as a building block in a number of coloring results. We note, furthermore, that since in Theorem 4.4.5 we give the exact value of the circular chromatic number of K 4 pIq, one does not expect to improve the lower bound using this particular gadget.

It remains an open problem to decide the exact value of the circular chromatic number of the class of signed planar simple graphs or to improve the bounds (of 14 3 and 6) from either direction.

Spectrum question

In the previous question one may also ask for the full possible range of circular chromatic number of a given family of signed graphs. For example, it is known [HZ00] that a rational number r is the circular chromatic number of a non-trivial K 4 -minor-free graph if and only if r P r2, 8 3 s Y t3u. As for signed K 4 -minor-free simple graphs, we extended the upper bound to 10 3 . In a recent paper [START_REF] Pan | The circular chromatic numbers of signed series-parallel graphs[END_REF], it has been proved that every rational number between 8 3 and 10 3 is the circular chromatic number of a K 4 -minor-free signed simple graph. Spectrum of the circular chromatic number of series-parallel graphs of given girth and circular chromatic number of planar graphs were studied in [Mos97; PZ02; PZ04; Zhu99b; Zhu99a]. Similar questions are interesting for signed planar graphs and other families of signed graphs.

Jaeger-Zhang conjecture and extensions

Note that ´C´ is the signed cycle of length where the number of positive edges is odd. Then χ c p´C ´ q " 2 ´1 . Recall that given a positive integer and a signed graph pG, σq satisfying g ij pG, σq ě g ij p´C ´ q for ij P Z 2 2 , χ c pG, ´σq ď 2 ´1 if and only if pG, σq Ñ ´C´ . Note that when " 2k `1, ´C´p2k`1q is switching equivalent to C 2k`1 and a signed graph pG, σq satisfying g ij pG, σq ě g ij pC 2k`1 q is equivalent to pG, `q; when " 2k, ´C´2k is switching equivalent to C ´2k and a signed graph pG, σq satisfying g ij pG, σq ě g ij pC ´2k q is bipartite. We recall the following general question. Question 1.4.4. Given a positive integer ě 2, what is the smallest value f p q such that every signed planar graph pG, σq of girth at least f p q has χ c pG, σq ď 2 ´1 ? We restrict our study to the class of signed planar graphs with all positive edges when " 2k `1 and to the class of signed bipartite planar graphs when " 2k.

Question 4.5.3. For " 2k `1, what is the smallest value f `p q such that every signed planar graph pG, `q of odd-girth at least f `p q has χ c pG, `q ď 2k`1 k ? As mentioned in Section 1.4, Jaeger-Zhang conjecture (Conjecture 1.4.3) claims that f `p q " 4k `1. That f `p3q " 5 is a restatement of the well-known Grötzsch theorem. Also, f `p5q ď 11 [DP17; CL20] and f `p7q ď 17 [PS22; CL20]. A general lower bound 4k `1 of f `p2k `1q is given in [START_REF] Zhang | Circular flows of nearly Eulerian graphs and vertex-splitting[END_REF] and the best upper bound till now follows from a flow result of [START_REF] Lovász | Nowhere-zero 3-flows and modulo k-orientations[END_REF] that f `p2k `1q ď 6k `1. Question 4.5.4. For " 2k, what is the smallest value f b p q such that every signed bipartite planar graph pG, σq of negative-girth at least f b p q has χ c pG, σq ď 4k 2k´1 ? The above question is a restatement of Question 1.5.3 and this is also the main question we will discuss in Part IV. It follows from a result of [CNS20] that 4k ´2 ď f b p2kq ď 8k ´2. It is obvious that f b p2q " 2 since every signed bipartite graph admits a homomorphism to a digon. Furthermore, in Chapter 7, we prove that for every signed bipartite planar graph pG, σq of negative-girth at least 4, χ c pG, σq ă 4. In Chapter 8, based on an edge-density result of C ´4-critical signed graphs using the potential technique and discharging method, we have that f b p4q " 8. In Chapter 9, our result implies that f b p3q " 6. The proof is based on an edge-coloring result of [START_REF] Dvořák | Packing six T -joins in plane graphs[END_REF], which in turn relied on an earlier work of B. Guenin [START_REF] Guenin | Packing T -joins and edge colouring in planar graphs[END_REF] and the 4-color theorem, and Grötzsch's theorem. Furthermore, recently we have proved that f b p6q ď 14 and f b p8q ď 20 in [START_REF] Li | Strongly Z 2k -connectedness and mapping signed bipartite planar graphs to cycles[END_REF].

For any integer ě 2, it is known that the general answer f p q to Question 1.4.4 exists and is finite. As an example, a result of [START_REF] Charpentier | Homomorphisms of sparse signed graphs[END_REF] implies that every signed planar graph of girth at least 10 admits a homomorphism to pK 4 , eq which is a signed graph on K 4 with only one negative edge. Their result implies that f p3q ď 10 as χ c pK 4 , eq " 3. In Chapter 10, we study the homomorphism of sparse signed graphs to pK 6 , M q where the condition of madpGq ă 14 5 is proved to be sufficient. Noting that χ c pK 6 , M q " 3, as a corollary, we improve the upper bound of f p3q to be 7. For other values, this question is still open.

Note that similar questions might be asked also for the class of signed K 5 -minor-free graphs.

Introduction

Following Tait's reformulation of the 4-color theorem, W.T. Tutte [START_REF] Tutte | A contribution to the theory of chromatic polynomials[END_REF] introduced the concept of nowhere-zero integer flows, which is dual to the concept of proper vertex coloring when restricted to planar graphs. In 1988, A. Vince [START_REF] Vince | Star chromatic number[END_REF] introduced a natural refinement of proper vertex coloring of graphs, which is now called the circular coloring. The dual notion, circular flows in graphs, was introduced by L.A. Goddyn, M. Tarsi, and C.Q. Zhang [START_REF] Goddyn | On pk, dq-colorings and fractional nowherezero flows[END_REF] in 1998.

In Part II, we have extended the notion of the circular coloring of graphs to signed graphs and studied the circular chromatic number of some families of signed graphs. In this chapter, based on the coloring-flow duality in signed planar graphs, we introduce the dual concept: circular flows in mono-directed signed graphs. Definition 5.1.1. Given a signed graph pG, σq and a real number r, a circular r-flow in pG, σq is a pair pD, f q where D is an orientation on G and f : EpGq Ñ p´r, rq satisfies the followings.

• For each positive edge e of pG, σq, |f peq| P r1, r ´1s.

• For each negative edge e of pG, σq, |f peq| P r0, r 2 ´1s Y r r 2 `1, rq.

• For each vertex v of pG, σq, its total out-flow equals the total in-flow in the orientation D, i.e., ÿ pv,wqPD f pvwq "

ÿ pu,vqPD f puvq.
This definition naturally extends the concept of circular flows from graphs to signed graphs. Considering a graph as a signed graph pG, `q, this is indeed the concept of the circular flow in graphs defined in [START_REF] Goddyn | On pk, dq-colorings and fractional nowherezero flows[END_REF]. Since the orientation will not influence of the existence of the circular r-flow in a signed graph, we may take f peq ě 0 for the simplicity.

We need to mention that there is another classical and commonly-accepted notion of flows that has been largely studied on signed graphs, using bidirected edges [Bou83; RZ11]. The bi-direction idea was motivated by the dual of tension on graphs embedded on non-orientable surfaces. In such an approach, each edge of a signed graph is assigned with two arrows, one for each end, in such a way that the two arrows on a positive edge are in the same direction, and the two arrows on a negative edge are in opposite directions. The condition at each vertex is the same: the total in-flow must be equal to the total out-flow. However, one should note that in this line of study, negative edges behave like a "black hole", meaning that a negative edge either creates a flow out of nothing or absorbs the in-flow.

In our definition, each edge of a signed graph is given a single direction (i.e., a single arrow), just as in the classic sense of flows in graphs. That is the reason why we call it circular flow in mono-directed signed graphs. Our definition of the circular flow in signed graphs is the dual notion to circular coloring and it generalizes the flow-coloring duality of Tutte [START_REF] Tutte | On the imbedding of linear graphs in surfaces[END_REF] and Goddyn-Tarsi-Zhang [START_REF] Goddyn | On pk, dq-colorings and fractional nowherezero flows[END_REF] on planar graphs. Given a signed plane graph pG, σq, the dual signed graph of pG, σq is the signed plane graph pG ˚, σ ˚q defined as follows: G ˚is the dual graph of the underlying graph G and σ ˚pe ˚q " σpeq for each edge e ˚P EpG ˚q where e ˚is the dual edge of e.

Theorem 5.1.2. For a signed planar graph pG, σq and its dual signed graph pG ˚, σ ˚q, pG, σq admits a circular r-coloring if and only if pG ˚, σ ˚q admits a circular r-flow.

The organization of this chapter is as follows. In Section 5.2, we introduce an operation called "inversing" on signed graphs, as a dual notion of the switching operation and prove some basic properties of signed graphs under inversing. In Section 5.3, with transforming the circular coloring of signed graphs to the tension on signed graphs, we show the duality between the concept of circular flow and circular coloring of signed graphs. Similar to circular flows in graphs, in Section 5.4, we introduce several equivalent definitions of circular flows in signed graphs. Especially, by Tutte's lemma, in the circular p q -flow, we may use values from the group Z p instead of Z. In Section 5.4.4, we discuss how several graph operations influence the circular flow index of the resulting signed graphs. In Section 5.5, we introduce the modulo -orientation on signed graphs and characterize the existence of the modulo -orientations on two classes of signed graphs. Furthermore, on those two special classes, we indicate the relation between the modulo -orientation and homomorphism to cycles.

Switching and inversing

A key concept that separates a signed graph from a 2-edge-colored graph is the switching operation. The circular chromatic number (also, the existence of the circular coloring) in Definition 3.1.1, as well as many other concepts in signed graphs, are invariant under switching. Recall that two signed graphs are said to be switching equivalent if one can be obtained from the other by switching on some vertices, in other words, when the symmetric difference of the negative edges of two signed graphs is an edge-cut. In planar graphs, the dual of an edge-cut is a cycle, or more generally, an even-degree subgraph.

To capture the duality between colorings and flows, we define a new operation on the cycles of signed graphs. Given a signed graph pG, σq and a cycle C of pG, σq, an inversing on the cycle C is to multiply the signs of all the edges of C by ´. Repeating this operation on a number of cycles then is to multiply the signs of all edges of an even-degree subgraph by ´. Two signed graphs pG, σq and pG, σ 1 q are said to be inversing equivalent if one can be obtained from the other by inversing on some cycles, in other words, when the symmetric difference of the negative edges of two signed graphs is an even-degree subgraph. We observe that the inversing-equivalent relation is an equivalence relation on the set of all signatures on G.

Noting that the sign of a cycle is invariant under switching, similarly, as inversing only applies on the edges of a cycle, the sign of a cut (defined to be the product of the signs of its edges) remains invariant under inversing. Thus, for a given cut, there are only two inversing equivalent signatures on it. Thus, depending on the parity of the number of negative edges of a cut and the sign of a cut, we have four types of cuts: type 00 is a positive cut that has an even number of edges, type 01 is a positive cut that has an odd number of edges, type 10 is a negative cut that has an even number of edges, and type 11 is a negative cut that has an odd number of edges. For a given signed graph pG, σq, we define C ij pG, σq to be the size (i.e., the number of edges) of a smallest cut of pG, σq of type ij where ij P Z 2 2 . When there is no such a cut, we write C ij pG, σq " 8. A first fact, easy to observe, is the following.

Lemma 5.2.1. Given a signed graph pG, σq, and cuts pX, X c q of type ij and pX 1 , X 1c q of type i 1 j 1 for ij, i 1 j 1 P Z 2 2 , the symmetric difference of pX, X c q and pX 1 , X 1c q is a cut of type ij `i1 j 1 .

In the next lemma, similar to Lemma 2.2.1, we show that the signs of cuts uniquely determine the inversing-equivalence class to which a signed graph belongs.

Lemma 5.2.2. Two signed graphs pG, σq and pG, σ 1 q are inversing equivalent if and only if they have the same set of negative cuts.

Proof. We have already observed that if pG, σq and pG, σ 1 q are inversing equivalent, then each cut has the same sign in these two signed graphs. For the inverse, assume that the sign of each cut in pG, σq is the same as its sign in pG, σ 1 q. In particular, it is the case for the cuts of the form ptvu, V pGqztvuq for every v P V pGq. Hence, if we take the symmetric difference S of the sets of negative edges in pG, σq and pG, σ 1 q, then the subgraph induced by these edges will be of even degree on each vertex. Therefore, pG, σ 1 q is obtained from pG, σq by inversing on the even-degree subgraph induced by S.

We note that in applying this lemma, one does not need to verify the condition for all the cuts. It is rather enough to verify it for a basis of the cut-space, that is the binary vector space consisting of all the cuts with the operation being the symmetric difference. A particular case would be to consider all but one of the cuts ptvu, V pGqztvuq from each connected component. We have the following result as a corollary.

Corollary 5.2.3. Given a graph G on n vertices with c connected components, there are 2 n´c distinct inversing-equivalent classes of signed graphs on G.

Next we show that given a signed graph pG, σq, one can apply an inversing so that the set of negative edges are all among edges of a spanning tree of G. Lemma 5.2.4. Let G be a connected graph and let T be a spanning tree of G. Given a signed graph pG, σq, there exists an inversing-equivalent signed graph pG, σ 1 q of pG, σq such that all the negative edges are in EpT q.

Proof. For each edge e R T , let C e be the unique cycle in the graph obtained from adding e to T . If e is a negative edge in pG, σq, then apply a switching on C e . After applying this process on all the edges of EpGzT q, we obtain a signed graph pG, σ 1 q in which each edge in EpGzT q is positive, proving this lemma.

A key example in the study of signed graphs equipped with the inversing operation is the dual of C ´k and we denote it by C ˚k. That is a signed graph on kK 2 with the product of the signs of the edges being negative. Observe that C 00 pC ˚kq " 0, C 01 pC ˚kq " 8 and that of the two values of C 11 pC ˚kq and C 10 pC ˚kq, depending on the parity of k, one is k and the other is 8. There are two sub-classes of signed graphs then proved to be of special importance in the study of circular flow in signed graphs.

• A signed graph pG, σq satisfying that C ij pG, σq ě C ij pC ˚p2 `1q q, for any ij P Z 2 2 , is inversing equivalent to pG, ´q.

• A signed graph pG, σq satisfying that C ij pG, σq ě C ij pC ˚2 q, for any ij P Z 2 2 , has all of its vertices to be of even degrees.

Note that the restriction on the first class captures the classic graphs and the second class is the class of even-degree (Eulerian if connected) signed graphs.

Flow-coloring duality

In this section, we use the notion of tension on signed graphs to build the connection between the circular coloring of signed graphs and circular flow in signed graphs.

Tension

Given a cycle C and a direction (clockwise or anti-clockwise) of C, we denote the set of forward edges by C F and the set of backward edges by C B . Extending the notion of r-tensions from graphs to signed graphs, we have the following.

Definition 5.3.1. Given a signed graph pG, σq and a real number r, an r-tension of pG, σq is a pair pD, φq where D is an orientation on G and φ : EpDq Ñ r0, rq satisfies the following conditions.

• For each positive edge e of pG, σq, φpeq P r1, r ´1s.

• For each negative edge e of pG, σq, φpeq P r0, r 2 ´1s Y r r 2 `1, rq.

• For any cycle C of pG, σq, ř

ePC F φpeq " ř ePC B φpeq.
It is clear that there is a natural one-to-one correspondence between the circular r-coloring of pG, σq and the r-tension on pG, σq. This is formally proved in the next lemma.

Lemma 5.3.2. A signed graph pG, σq admits a circular r-coloring if and only if pG, σq admits an r-tension.

Proof. Let pG, σq be a signed graph and let ϕ be a circular r-coloring of pG, σq. An r-tension, based on ϕ, is defined as follows: For each edge xy of pG, σq, if ϕpxq ă ϕpyq, we orient it as px, yq and if ϕpxq " ϕpyq, we orient it arbitrarily. Let D be the resulting orientation on G. Define φ : EpGq Ñ r0, rq such that for each e " px, yq P D, φpeq " ϕpyq ´ϕpxq. Thus such a pair pD, φq is an r-tension on pG, σq.

It remains to show that if pG, σq has an r-tension, then it admits a circular r-coloring. Without loss of generality, we assume that G is connected. Assume that pG, σq has an r-tension pD, φq. We define a vertex mapping ϕ : V pGq Ñ R as follows: choose an arbitrary vertex v ˚and define ϕpv ˚q " 0. For each other vertex u, let P be a walk from v ˚to u and let ϕpuq "

ÿ ePP F φpeq ´ÿ ePP B φpeq pmod rq.
where P F and P B are the sets of forward and backward edges in P , respectively. Since φpC F q φpC B q " 0 holds for every cycle, and thus every closed walk, ϕ is well-defined. That is to say, it does not depend on the choice of the v ˚u-walk. It is easy to verify that ϕ is a circular r-coloring of pG, σq.

Note that the third cycle condition of Definition 5.3.1 is crucial. Interchanging the roles of cycles and cuts (especially, ptvu, V pGqztvuq), we obtain the concept of circular flows in mono-directed signed graphs. We have seen this in Theorem 5.1.2.

Application of Hoffman's circulation theorem

A natural question that follows the definition of an r-tension is that: Does one need to verify the conditions on all the cycles of G? That is indeed not necessary for most signed graphs. The research for providing a minimal set of cycles that is sufficient to check is ongoing. Here we present an extension from one of the basic results from graphs to signed graphs. Recall that in this work, the role of the signature is to give different limits on the values assigned to positive and negative edges. A more general setting would be to have a certain limit on each of edges. A necessary and sufficient condition for the existence of a flow satisfying such limits is given by A.J. Hoffman in 1960. Lemma 5.3.4. A signed graph Ĝ admits a circular r-flow if and only if there is an orientation D and a partition π " pE 1 , E 2 q of E Ǵ such that for any cut pX, X c q of Ĝ,

ÿ uPX,vPX c ,pu,vqPD spuvq ď ÿ xPX c ,yPX,px,yqPD tpxyq where speq " $ ' ' & ' ' % 1, if e P E G , 0, if e P E 1 , r 2 `1, if e P E 2 , and tpeq " $ ' ' & ' ' % r ´1, if e P E G , r 2 ´1, if e P E 1 , r, if e P E 2 .
Applying the same technique to the tension rather than the flow, with the same function speq and tpeq defined above, we have the following conclusion. We leave the details to curious readers.

Lemma 5.3.5. A signed graph Ĝ has an r-tension if and only if there is an orientation D and a partition π " pE 1 , E 2 q of E Ǵ such that for any cycle C of Ĝ, ř

ePC F speq ď ř ePC B
tpeq.

Basic properties and equivalent definitions

In this section, we give basic properties of circular r-flow in signed graphs. Most of these properties are direct extensions from graphs. Thus we may omit some proofs.

Recall that the third condition in Definition 5.1.1 implies that given a signed graph pG, σq, if there is a circular r-flow pD, f q in pG, σq, then for any cut pU, U c q of G, ÿ pv,wqPD,@vPU,wPU c f pvwq " ÿ pu,vqPD,@vPU,uPU c f puvq.

(5.1)

The first observation is about characterizing the class of signed graphs that admits a circular r-flow for some finite r, following from the above observation. This is dual to the fact that the circular chromatic number is finite for the class of signed graphs without positive loops.

Proposition 5.4.1. A signed graph pG, σq admits a circular r-flow for some finite r if and only if it has no positive bridge.

Note that the inversing operation never changes the sign of a bridge, that is dual to the fact that a switching never changes the sign of a loop. Another basic property is the following.

Proposition 5.4.2. If a signed graph pG, σq admits a circular r-flow, then pG, σq admits a circular r 1 -flow for every r 1 ě r.

It is because that given real values r 1 and r where r 1 ě r, if pD, f q is a circular r-flow in pG, σq, then naturally pD, r 1 r f q is a circular r 1 -flow in pG, σq. Given a signed graph pG, σq without a positive bridge, the circular flow index of pG, σq, denoted by Φ c pG, σq, is the smallest rational number r such that pG, σq admits a circular r-flow, i.e., Φ c pG, σq " inftr | pG, σq admits a circular r-flowu.

Observation 5.4.3. Given a graph G, a signature σ on G and a real number r, if G admits a circular r-flow, then pG, σq admits a circular 2r-flow.

Circular modulo r-flow

We have another geometrical interpretation of circular coloring. Given a circular r-coloring ϕ of a signed graph pG, σq, for each edge uv of pG, σq, ϕpuq and ϕpvq partition the circle C r into two segments and the shorter one is of length d pmod rq pϕpuq, ϕpvqq. This leads to the following equivalent and mainstream definition of circular modulo r-flow. The equivalence between this notion and the circular r-flow would be indicated later by using Tutte's lemma. Definition 5.4.4. Given a signed graph pG, σq and a real number r ě 2, a circular modulo r-flow in pG, σq is a pair pD, f q where D is an orientation on G and f : EpGq Ñ r0, rq satisfies the followings.

• For each positive edge e of pG, σq, f peq P r1, r ´1s.

• For each negative edge e of pG, σq, f peq P r0, r 2 ´1s Y r r 2 `1, rq.

• For each vertex v of pG, σq, there is an integer a such that ř pv,wqPD f pvwq ´ř pu,vqPD f puvq " ar.

In this view, edges of pG, σq are oriented and each is given a value from the group R{r0, rq. To observe that the existence of a circular modulo r-flow is independent of the choice of the orientation D, one notes that if the orientation of an edge e is reversed, then it is enough to change the value of f peq to its inverse value in the group R{r0, rq, that is r ´f peq when r0, rq is used to represent the elements of this group.

Note that if pG, σq admits a circular modulo r-flow pD, f q, then it also admits a circular modulo r-flow pD 1 , f 1 q such that f 1 peq P r1, r 2 s for each positive edge e and f 1 peq P r0, r 2 ´1s for each negative edge e. We simply define f 1 as follows: f 1 peq " r ´f peq if for positive edge e, f peq P p r 2 , r ´1s and if for negative edge e, f peq P r r 2 `1, rq, and f 1 peq " f peq otherwise. Flip those oriented positive edges satisfying that f peq P p r 2 , r ´1s and those oriented negative edges satisfying that f peq P r r 2 `1, rq and obtain D 1 .

We show that the existence of a circular modulo r-flow in a signed graph pG, σq, and thus the value of circular flow index of pG, σq, is independent of the inversing operation.

Proposition 5.4.5. Let pG, σq and pG, σ 1 q be two inversing-equivalent signed graphs. Then every circular modulo r-flow in pG, σq corresponds to a circular modulo r-flow in pG, σ 1 q.

Proof. To see this, let pD, f q be a circular modulo r-flow in pG, σq and let Ĉ be a signed cycle of pG, σq. Let σ 1 be the signature of G obtained from σ after an inversing on Ĉ. We define f 1 as follows:

f 1 peq " # f peq, if e R C,
| r 2 ´f peq|, if e P C. We define an orientation D 1 as follows: If f peq ě r 2 , then e is oriented in D 1 as same in D and otherwise, e is oriented in D 1 as opposite in D. It is easily verified that pD 1 , f 1 q satisfies all the conditions of being a circular modulo r-flow in pG, σ 1 q.

Later we will show the equivalence between the circular r-flow and the circular modulo r-flow for rational r. Thus we note that the circular flow index being independent of the inversing operation is dual to the circular chromatic number being independent of the switching operation.

Tight cut and rationality of the circular flow index

Note that the existence of the circular r-flow (or circular modulo r-flow) pD, f q is independent from the choice of the orientation, sometimes, for convenience, we may choose an orientation such that all the values f peq are all non-negative. We call such a flow a non-negative circular r-flow (or a non-negative circular modulo r-flow ). Now we introduce the concept of tight cut. Given a signed graph pG, σq and a non-negative circular r-flow pD, f q of pG, σq, a positive edge e is said to be tight if either f peq " 1 or f peq " r ´1, and a negative edge e is said to be tight if either f peq " r 2 ´1 or f peq " r 2 `1. Furthermore, a cut pX, X c q of pG, σq is said to be tight with respect to pD, f q if for each edge e " uv where u P X, v P X c , it satisfies that

f peq " $ ' ' ' ' & ' ' ' ' % 1,
if e is a positive edge and pu, vq P D, r ´1, if e is a positive edge and pv, uq P D, r 2 `1, if e is a negative edge and pu, vq P D, r 2 ´1, if e is a negative edge and pv, uq P D.

The concept of tight cut in the circular flow is the dual notion of tight cycle in the circular coloring. An analogue of the ideas from circular coloring then can be employed to prove that the circular flow index of a (finite) signed graph is a rational number and that the infimum in the definition is attained. The main idea is stated in the next lemma for which we only provide a sketch proof.

Lemma 5.4.6. Given a signed graph pG, σq, Φ c pG, σq " r if and only if pG, σq admits a circular r-flow and for any circular r-flow pD, f q, pG, σq has a tight cut with respect to pD, f q.

Proof. We first prove the "only if" part. Assume that Φ c pG, σq " r but pG, σq has no tight cut with respect to some non-negative circular r-flows. We choose such a circular r-flow pD, f q with minimum number of tight edges.

First we claim that there is no tight edge in pG, σq with respect to pD, f q. Otherwise, let uv be a tight edge. As pG, σq has no tight cut with respect to pD, f q, we can find a path P from u to v consisting of non-tight edges. Then by shifting the values along all edges of cycle C " P `uv by a sufficiently small amount, we get a new circular r-flow in which e is no longer a tight edge and no new tight edge is created. It is a contradiction to the choice of pD, f q, proving this claim. Since there is no tight edge in pG, σq with respect to pD, f q, for some positive , pD, 1 1` f q is also a circular r-flow in pG, σq, a contradiction.

For the "if" part, we need to show that if Φ c pG, σq ă r, then there is a circular r-flow in pG, σq such that there is no tight cut. Assume Φ c pG, σq " r 1 ă r and let pD, f 1 q be a non-negative circular r 1 -flow in pG, σq. Let f " r r 1 f 1 . Then pD, f q is a non-negative circular r-flow in pG, σq and pG, σq contains no tight edge with respect to pD, f q.

Assume that Φ c pG, σq " r and pD, f q is a circular r-flow in pG, σq. By Lemma 5.4.6, there exists a tight cut pX, X c q with respect to pD, f q. Assume that in EpX, X c q, there are s 1 positive edges e having f peq " r ´1, s 2 positive edges e having f peq " 1, t 1 negative edges having f peq " r 2 ´1, and t 2 negative edges having f peq " r 2 `1. According to Condition (5.1), we have that s 1 pr ´1q `t1 p r 2 ´1q " s 2 `t2 p r 2 `1q.

(5.2) Thus, we can determine the circular flow index r of pG, σq:

r " 2ps 1 `s2 `t1 `t2 q 2s 1 `t1 ´t2 " 2|pX, X c q| 2s 1 `t1 ´t2 .

(5.3)

As s 1 , s 2 , t 1 and t 2 are all non-negative integers, we have the following result.

Theorem 5.4.7. For every finite signed graph pG, σq with no positive bridge, the circular flow index Φ c pG, σq is a rational number and is the minimum over all r such that pG, σq admits a circular rflow, i.e., Φ c pG, σq " mint p q | pG, σq admits a circular p q -flowu.

Computing Φ c pG, σq

Observe that in Formula (5.2), the values of s 1 , s 2 , t 1 and t 2 are all bounded by the number of edges of G. Therefore, Formula (5.3) limits the possible choices of Φ c pG, σq to a rational number whose numerator and denominator each is bounded by 2|EpGq|.

From this discussion and also from the fact that given an orientation D of a signed graph pG, σq, verifying if pD, f q is a circular r-flow in pG, σq can be done in a polynomial time in size of the inputs, it follows that: Theorem 5.4.8. Given a signed graph pG, σq and a rational number r, the problem of determining whether Φ c pG, σq ď r is in the class of decidable problems and is in fact in the class NP.

However, the problem in an NP-hard problem and thus one would not expect an algorithm for the general class of signed graphs which runs in a sub-exponential time. That the problem is NP-hard follows from duality to the circular coloring problem. In particular, the problem includes the question of 3-colorability of planar graphs which is among the well-known NP-hard problems.

Real-valued p

q -flow and modulo p q -flow

In the previous discussion, we have observed that the circular flow index of any finite signed graph with no positive bridge is a rational number. With a further attention to the details, we observe that in fact, given r " p q , in defining a circular r-flow in a signed graph, we may restrict ourselves to the values of the form i q , for i P t0, 1, . . . , p ´1u. Then multiplying all values by q, we may work with integer values. Thus we have the following definition, where the set of solutions is restricted, but the existence of a solution is equivalent to the existence of one in the previous definitions and thus it can be equivalently employed to obtain the circular flow index of a given signed graph.

Definition 5.4.9. Given an even integer p and an integer q where q ď p 2 , a p q -flow of a signed graph pG, σq is a pair pD, f q where D is an orientation on G and f : EpGq Ñ Z satisfies the followings.

• For each positive edge e of pG, σq, |f peq| P tq, . . . , p ´qu.

• For each negative edge e of pG, σq, |f peq| P t0, . . . , p 2 ´qu Y t p 2 `q, . . . , p ´1u.

• For each vertex v of pG, σq, ř pv,wqPD f pvwq " ř pu,vqPD f puvq.

Our definitions so far are restricted to the real values. We next define the modulo p q -flow, which is equivalent to the p q -flow in Definition 5.4.9. The equivalence follows directly from Tutte's lemma (Lemma 2.1.1). We note that in the statement of Tutte's lemma there is no restriction on the values f peq, in particular, f peq " 0 is a possibility even though it is normally applied to nowhere-zero flows.

Definition 5.4.10. Given an even integer p and an integer q where q ď p 2 , a modulo p q -flow of pG, σq is a pair pD, f q where D is an orientation on G and f : EpGq Ñ Z p satisfies the followings.

• For each positive edge e of pG, σq, |f peq| P tq, . . . , p ´qu.

• For each negative edge e of pG, σq, |f peq| P t0, . . . , p 2 ´qu Y t p 2 `q, . . . , p ´1u.

• For each vertex v of pG, σq, ř pv,wqPD f pvwq " ř pu,vqPD f puvq pmod pq.

It follows from the discussion above that: Given a signed graph pG, σq and a rational number r " p q where p is even and p ě 2q, the following claims are equivalent:

(1) pG, σq admits a circular r-flow.

(2) pG, σq admits a p q -flow.

(3) pG, σq admits a modulo p q -flow.

(4) pG, σq admits a circular modulo r-flow.

Note that we shall use the modulo p q -flow concept most frequently when we determine the circular flow index of a given signed graph.

Operations on signed graphs

Assume I " pΓ, u, vq is a signed indicator and r ě 2 is a real number. Let I uv be obtained from I by adding an edge (without any signature) between u, v. Note that it might be a multi-edge but with a slight abuse of the notation, we use uv to denote this edge.

Definition 5.4.11. Given a signed indicator I " pΓ, u, vq and a real number r, for x P r0, rq, we say the value x is feasible for I with respect to r if there is a pair pD, φq where D is an orientation on I uv and φ : EpI uv q Ñ r0, rq satisfies the following conditions:

• For each positive edge e of Γ, φpeq P r1, r ´1s;

• For each negative edge e of Γ, either φpeq P r0, r 2 ´1s or φpeq P r r 2 `1, rq; • For the additional edge uv, φpuvq " x;

• For each vertex w of Γ, there is an integer a such that ř pz,wqPD φpzwq ´ř pw,yqPD φpwyq " ar.

Note that since the calculation is taken modulo r, if x is feasible for I uv , then r ´x is also feasible for I uv . Thus we only consider x P r0, r 2 s. Definition 5.4.12. Given a signed indicator I " pΓ, u, vq and a real number r ě 2, let Z ˚pI , rq " tx P r0, r 2 s | x is feasible for I with respect to r u.

For I " pΓ, u, vq, as I uv is not a signed graph, with a slight abuse of the notation, we define Φ c pI uv q :" mintr | Z ˚pI , rq ‰ Hu. Note that Φ c pI uv q is not necessary to be the same as Φ c pΓq.

Assume that I " pΓ, u, vq is a signed indicator.

• I is said to be a plus flow indicator if for each r ě Φ c pI uv q, there is a value f prq such that Z ˚pI , rq " rf prq, r 2 s. • I is said to be a minus flow indicator if for each r ě Φ c pI uv q, there is a value gprq such that Z ˚pI , rq " r0, r 2 ´gprqs. • I is said to be a plus-minus flow indicator if for each r ě Φ c pI uv q, there is a value hprq such that Z ˚pI , rq " rhprq, r 2 ´hprqs. Proposition 5.4.13. Given a plus flow, minus flow, or plus-minus flow indicator I " pΓ, u, vq, the corresponding function, f , g, or h, defined on rΦ c pI uv q, `8q, is a continuous non-increasing function. In particular, for r large enough, the value of each function at r will be 0.

The following three lemmas are dual to Lemmas 3.3.9, 3.3.10 and 3.3.11. So we omit the details of the proofs.

Lemma 5.4.14. Assume that I " pΓ, u, vq is a plus flow indicator and r, r 1 are real numbers satisfying that r ą Φ c pI uv q and r 1 ą 2. If Z ˚pI , rq " r r r 1 , r 2 s, then given a graph G, Φ c pGpIqq " r if and only if Φ c pGq " r 1 .

Lemma 5.4.15. Assume that I " pΓ, u, vq is a plus-minus flow indicator and r, r 1 are real numbers satisfying that r ą Φ c pI uv q and r 1 ą 2. If Z ˚pI , rq " r r 2r 1 , r 2 ´r 2r 1 s, then given a graph G, Φ c pGpIqq " r if and only if Φ c pGq " r 1 .

For a graph G, we define S ˚pGq as follows: replace each edge xy with P 2 2 by identifying x and y with u and v, respectively. One may observe that S ˚pGq is the dual to the notion of SpGq defined before (see Section 2.3.4) when restricted to planar graphs. Observing that S ˚pGq is the same as 2T 2 pG, `q, the next lemma follows from Lemmas 5.4.18 and 5.4.21.

Lemma 5.4.22. A graph G admits a circular 4-flow if and only if S ˚pGq admits a circular 16 5 -flow.

Hence, we have another restatement of the 4-color theorem as follows.

Theorem 5.4.23. [4-color theorem restated] Given a planar graph G, S ˚pGq admits a circular 16 5 -flow.

Modulo -orientations and homomorphisms to cycles

One of the main motivations for the study of circular flow in signed graphs is to provide settings in which inductive approach to a conjecture of Jaeger (Question 1.4.1) becomes more feasible. It remains an open problem then to provide the best edge-connectivity conditions that would work for Jaeger's circular flow conjecture. For a given integer k, assume that f pkq is the smallest value such that every f pkq-edge-connected graph admits a circular p2 `1 k q-flow and it has already been shown 4k `1 ă f pkq ď 6k (see Section 1.4 for details and references). To prove tighter upper bounds on the value of f pkq, one plausible approach is by induction on k. However, moving from Z 2k`1 to Z 2k`3 counts as two steps. To introduce an intermediary step based on Z 2k , we use the settings in signed graphs. We refer to [START_REF] Naserasr | Packing signatures in signed graphs[END_REF] and references therein for a successful example of such an approach. Here, we provide a similar packing property which would be the first step towards such an approach. As in this thesis, we will work with signed graphs, in which we need to distinguish positive and negative edges, so we need the following notation. We use Ð Ý d D pvq to denote the positive-outdegree of a vertex v with respect to an orientation D, and similarly, Ý Ñ d D pvq positive-in-degree, Ð Ý d D pvq negative-out-degree and Ý Ñ d D pvq negative-in-degree.

Definition 5.5.1. A signed graph pG, σq is said to be modulo -orientable if there exists an inversingequivalent signature σ 1 and an orientation D on G such that, with respect to pG, σ 1 q, we have that

p ´1qp Ð Ý d D pvq ´Ý Ñ d D pvqq " Ð Ý d D pvq ´Ý Ñ d D pvq.
(5.4) Such an orientation D is called a modulo -orientation of pG, σq.

We observe that the conditions on this definition can only happen on two special classes of signed graphs.

• If is an odd number, then the left side, being multiplied by ´1 is an even number. Thus in the subgraph induced by the set of negative edges with respect to σ 1 , the difference of in-degree and out-degree is an even number. Hence, in this subgraph, the degree of each vertex is even. So we can apply some inversing on cycles to inverse all edges into positive signs. In this case, we have a signed graph pG, σq where all cuts are positive and thus pG, σq is inversing-equivalent to pG, `q.

• If is an even number, then we conclude that at each vertex the difference of in-degree and out-degree for positive edges and negative edges, with respect to σ 1 , is of the same parity. That means the total degree of a vertex is even. In this case, we have an even-degree graph.

To present the potential induction idea to attack Jaeger's conjecture and its extension to signed Eulerian graphs (formalized in Question 6.4.8), we provide a necessary and sufficient condition of the existence of modulo -orientations in two special classes of signed graphs. Note that it generalizes Theorem 2.1.3. Let ´C˚ denote the dual signed graph of ´C´ .

Theorem 5.5.2. A signed graph pG, σq satisfying that C ij pG, σq ě C ij p´C ˚ q admits a modulo -orientation if and only if the following two conditions are satisfied:

1. there is a partition tE 1 , E 2 , . . . , E u of EpGq such that each E i is the set of positive edges of a signature which is inversing equivalent to σ, and 2. there is an orientation on G such that for each vertex v and any pair i, j P t1, . . . , u, we have that

Ð Ý d E i pvq ´Ý Ñ d E i pvq " Ð Ý d E j pvq ´Ý Ñ d E j pvq.
(5.5)

Proof. One direction of the problem is easy. Suppose that EpGq is partitioned into E 1 , E 2 , . . . , E , each E i being the set of positive edges of the signature σ i where each σ i is inversing equivalent to σ. Assume that D is an orientation satisfying Condition 2 of the theorem. We then add up Equations (5.5) for the pairs p1, jq, j " 2, 3 . . . , , and we obtain the main equality (Equation (5.4)) for a modulo -orientation on pG, σq, with respect to the inversing-equivalent signed graph pG, σ 1 q.

And we know that pG, σq must belong to one of the two special classes that satisfy

C ij pG, σq ě C ij p´C ˚ q.
For the converse, suppose that, with respect to an inversing-equivalent signature σ 1 , the signed graph pG, σ 1 q admits a modulo -orientation D. We will apply some operations on pG, σ 1 q to get a new signed graph pG 2 , σ 2 q. To construct G 2 from G, we may split vertices, thus we will have more vertices than those in G, and hence the names of edges might change, but there will be a clear correspondence between the edges of G and G 2 . Moreover, with respect to this natural correspondence between edges, the orientation on the edges will remain the same. Thus, with a minor abuse of notation, we will use D to denote the orientation on the edges in G 2 and all the intermediary constructions. Similarly, we will use σ to denote the sign of the edges in all these intermediary graphs.

To construct G 2 , if at a vertex v of G there are both incoming and outgoing edges of the same sign with respect to the signature σ 1 , then taking one of each at random, say uv and vw of sign η, we delete these two edges and add the oriented edge uw with the sign η. We repeat this operation until there are no such pairs of edges. Let pG 1 , σ 1 q be the resulting signed graph. We first observe that each vertex of G 1 is either a source or a sink with respect to the orientation D. That at a given vertex v all the edges of the same sign are in the same direction is the consequence of our operation. To observe that positive and negative edges of a vertex of G 1 are also in the same direction, we first note that G 1 has the same set of vertices as G. Next we note that the operation mentioned above does not change the difference of in-degree and out-degree in the set of positive (or negative) edges of a vertex v. In other words,

Ð Ý d G pvq ´Ý Ñ d G pvq " Ð Ý d G1 pvq ´Ý Ñ d G1 and Ð Ý d Ǵ pvq ´Ý Ñ d Ǵ pvq " Ð Ý d Ǵ1 pvq ´Ý Ñ d Ǵ1 pvq.
Thus D is a modulo -orientation on pG 1 , σ 1 q as well. We conclude that at each vertex v, p ´1qd G1 pvq " d Ǵ1 pvq. We then split each vertex v into d ´pvq copies v 1 , v 2 , . . . v d ´pvq where each v i takes one positive neighbor of v and ´1 negative neighbors of v. Let pG 2 , σ 2 q be the final signed graph. Recall that pG 2 , σ 2 q is equipped with an orientation induced by D. We then have an -regular graph oriented such that each vertex is either a source or a sink and where each vertex has exactly one negative edge incident to it. Thus the set of negative edges form a perfect matching and that the underlying graph is a bipartite graph with source vertices forming one part and sink vertices forming the other part. Let E 1 be the perfect matching corresponding to the positive edges and consider the p ´1q-regular subgraph of G 2 obtained from removing edges of E 1 . Any partition of the edges on this p ´1q-regular graph into perfect matching then works as E 2 , E 3 , . . . , E .

We claim that for " 2k `1, Definition 5.5.1 is equivalent to the classic definition of modulo p2k `1q-orientation on graphs (see Section 2.1.2). When " 2k `1, we only consider signed graphs pG, `q. For any signed graph pG, `q, the conditions of Definition 5.5.1 implies that there is an inversing-equivalent signature such that

Ð Ý d D pvq ´Ý Ñ d D pvq " p2k `1qp Ð Ý d D pvq ´Ý Ñ d D pvqq " 0 pmod 2k `1q.
Thus G admits a modulo p2k `1q-orientation. The other direction needs to use Theorem 2.1.3. Assume that G admits a modulo p2k `1q-orientation. Thus there is a partition tE 1 , . . . , E 2k`1 u of EpGq and an orientation D on G satisfying the conditions of Theorem 2.1.3. Without loss of generality, we may consider a signature, say σ 1 , where the set of positive edges is E 1 . Note that in pG, σ 1 q, E 2 Y ¨¨¨Y E 2k`1 is the set of negative edges and moreover, pG, σ 1 q is inversing-equivalent to pG, `q. Hence, with respect to pG, σ 1 q and the orientation D on G, Equality (5.4) is satisfied.

Lemma 5.5.3. [Jae88] A graph admits a circular 2k`1 k -flow if and only if it admits a modulo p2k `1q-orientation.

Our definition then helps to fill the gap in the parity by the case of modulo 2k-orientation on signed Eulerian graphs in Lemma 5.5.5. To see this lemma, we first give an equivalent definition of a circular 4p 2p´1 -flow in a signed Eulerian graph.

Lemma 5.5.4. A signed Eulerian graph Ĝ admits a circular 4p 2p´1 -flow if and only if it admits a 4p-flow pD, f q such that for each positive edge e, f peq P t2p ´1, 2p `1u and for each negative edge e, f peq P t´1, 1u.

Proof. Let Ĝ be a signed Eulerian graph. One direction is easy that any 4p-flow satisfying the above conditions is also a circular 4p 2p´1 -flow. We show that if Ĝ admits a circular 4p 2p´1 -flow pd, ϕq, then we can modify it and obtain a 4p-flow as required. Note that by the equivalence of definitions, we may assume that ϕpeq P t2k ´1, 2k, 2k `1u for each positive edge e and ϕpeq P t´1, 0, 1u for each negative edge e. Let E 1 " te P EpGq | ϕpeq P t0, 2ku. Since G is Eulerian, the set E 1 induces an even-degree subgraph. Then we partition E 1 into edge-disjoint cycles. For each cycle C in this partition, we modify ϕ on C as follows: If C is a directed cycle, then let f peq " ϕpeq`1 for each edge e P C. Otherwise, the cycle C is divided into segments P 1 , P 2 , . . . , P 2t , where each P i is a directed path and for each i, one of P i , P i`1 is a forward directed path and the other is a backward directed path. Let f peq " ϕpeq `1 for e P P 1 , P 3 , . . . , P 2t´1 and f peq " ϕpeq ´1 for e P P 2 , P 4 , . . . , P 2t . For edges e R E 1 , let f peq " ϕpeq. It is easy to verify that pD, f q is a 4p-flow as required.

Lemma 5.5.5. A signed Eulerian graph admits a circular 4k 2k´1 -flow if and only if it admits a modulo 2k-orientation.

Proof. Let pD, f q be a 4k-flow in pG, σq satisfying that f peq P t2k ´1, 2k `1u for each positive edge e, and f peq P t´1, 1u for each negative edge e. We choose a mapping ϕ : EpGq Ñ t1, 2, . . . , 2ku such that ϕpeq " f peqpmod 2kq for each edge e. Note that we have ϕpeq P t1, 2k ´1u for each e P EpGq. Next we define a pair pD 1 , f 1 q as follows: For each edge e with ϕpeq " 2k ´1, we reverse the direction of e in D (to obtain D 1 ) and set f 1 peq " 1; for any other edge, both the direction and the value remain the same as in D and ϕ (respectively). As f 1 accepts only 1 as output, it is easily observed that D 1 could be viewed as a modulo 2k-orientation on the underlying graph G, i.e.,

Ð Ý d D 1 pvq ´Ý Ñ d D 1 pvq " 0 pmod 2kq.
Next, based on the directed graph D 1 and following the methods of the proof of Theorem 5.5.2, we build a new digraph as follows: As long as there is a vertex, say v, with both indegree and outdegree nonzero, taking a pair of arcs, say pu, vq and pv, wq, we delete both of them and add a new arc pu, wq. At the end of this process, we obtain a digraph D 1 where each vertex is either a source or a sink. We note that D 1 might not be unique and depends on how we apply the process. However, we have

ÐÝ d D 1 pvq ´ÝÑ d D 1 pvq " Ð Ý d D 1 pvq ´Ý Ñ d D 1
pvq for any vertex v P V pD 1 q. Thus in the underlying graph of D 1 , we conclude that the degree of each vertex is a multiple of 2k. We further note that in the process of constructing D 1 from D 1 , each edge of D 1 has a unique corresponding edge in D 1 . More precisely, edges of D 1 correspond to a partition of edges of D 1 into directed paths.

For the final step, we split vertices of D 1 so to have a 2k-regular oriented graph D 2 . As D 2 inherits the property that each vertex is either a source or a sink, its underlying graph is a 2k-regular bipartite graphs with sources forming one part and sinks forming the other. Being a bipartite regular graph, D 2 admits a perfect matching. Let M be one such perfect matching. We define a signature σ 1 on G as follows: σ 1 peq is positive if the image of e is an edge of M , otherwise it is negative. It follows from our construction that with respect to D 1 and the signature σ 1 we have

p2k ´1qp Ð Ý d `pvq ´Ý Ñ d `pvqq " Ð Ý d ´pvq ´Ý Ñ d ´pvq.
To complete the proof, what remains is to show that σ and σ 1 are inversing equivalent.

We shall prove that for each vertex v P V pGq,

ś e"v σpeq " ś e"v σ 1 peq. Let d 1 pvq (or d 2 pvq)
represent the number of negative edges e with f peq " 1 (respectively, f peq " ´1), and d 1 pvq (or d 2 pvq) represent the number of positive edges e with f peq " 2k `1 (respectively, f peq " 2k ´1).

Observe that ś

e"v σpeq depends on the parity of

Ð Ý d 1 pvq`Ý Ñ d 1 pvq`Ð Ý d 2 pvq`Ý Ñ d 2 pvq
:" α with respect to the orientation D. Following the procedure to build D 1 , we know that with respect to the orientation D, there is a

β such that p Ð Ý d 1 pvq`Ð Ý d 1 pvqq`p Ý Ñ d 2 pvq`Ý Ñ d 2 pvqq´tp Ý Ñ d 1 pvq`Ý Ñ d 1 pvqq`p Ð Ý d 2 pvq`Ð Ý d 2 pvqqu " β ¨2k.
By the choice of σ 1 and noting the difference of indegrees and outdegrees of each vertex remain the same in the construction of D 2 from D, ś e"v σ 1 peq depends on the parity of β. Thus it is sufficient to prove that α " β pmod 2q. Since pD, f q is a 4k-flow in pG, σq, we have that

Ð Ý d 1 pvq`p´1q¨Ð Ý d 2 pvq`p2k`1q¨Ð Ý d 1 pvq`p2k´1q¨Ð Ý d 2 pvq " Ý Ñ d 1 pvq`p´1q¨Ý Ñ d 2 pvq`p2k`1q¨Ý Ñ d 1 pvq`p2k´1q¨Ý Ñ d 2 pvq. Hence, β " Ý Ñ d 1 pvq ´Ð Ý d 1 pvq `Ý Ñ d 2 pvq ´Ð Ý d 2 pvq " Ý Ñ d 1 pvq `Ð Ý d 1 pvq `Ý Ñ d 2 pvq `Ð Ý d 2 pvq " α pmod 2q.
Assume that for a signed graph pG, σq, there exists an inversing-equivalent signature σ 1 and an orientation D on G such that, with respect to pG, σ 1 q, such that p2k ´1qp

Ð Ý d D pvq ´Ý Ñ d D pvqq " Ð Ý d D pvq ´Ý Ñ d D pvq.
Let f : EpGq Ñ Z be a mapping satisfying that f peq " ´1 if e is a negative edge of pG, σ 1 q and f peq " 2k ´1 otherwise. It is easy to see that pD, f q is a circular 4k 2k´1 -flow of pG, σ 1 q and thus of pG, σq.

We note the following dual version of its conclusion in the case of planar graphs. Lemma 5.5.6. A signed Eulerian planar graph pG, σq admits a modulo 2k-orientation if and only if its dual signed graph pG ˚, σ ˚q admits a homomorphism to C ´2k .

The dual statement of Theorem 5.5.2, which is about homomorphism to ´C´k , can be stated as follows. But we note that pG, `q admits a homomorphism to C `p2k`1q if and only if pG, ´q admits a homomorphism to C ´p2k`1q .

Theorem 5.5.7. A signed graph pG, σq admits a homomorphism to ´C´k if and only if the followings are satisfied: There is a partition E 1 , E 2 , . . . E k of edges of G such that each E i is the set of positive edges of a signature which is switching equivalent to σ; There is an orientation D on G such that for each pair i, j and for each cycle C of G, and with the clockwise orientation on C, the difference between the number of the forward and the number of the backward edges of C that are colored i is the same as the difference among edges that are colored j.

In an inductive approach using Theorem 5.5.2 then one may try to prove the existence of two disjoint inversing-equivalent signatures σ 1 and σ 2 such that removing all negative edges in the signature σ 1 from G, the remaining graph together with the signature σ 2 is connective enough that is f pk ´1q-edge-connected. Applying induction and taking the k ´1 signatures on this graph, one would be left with a smaller task of completing it to a solution for the original graph. Theorem 5.5.7 provides a similar potential for an inductive approach. of signed graphs This chapter is based on the following paper:
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In this chapter, we study the circular flow indexes of some families of signed graphs.

Recall that the famous Tutte's 5-flow conjecture and 3-flow conjecture (in Section 1.4), which remain unsolved, state that every 2-edge-connected graph admits a nowhere-zero 5-flow and every 4-edge-connected graph admits a nowhere-zero 3-flow, respectively. For these two conjectures, P. Seymour [START_REF] Seymour | Nowhere-zero 6-flows[END_REF] showed that every 2-edge-connected graph admits a circular 6-flow and F. Jaeger [START_REF] Jaeger | Flows and generalized coloring theorems in graphs[END_REF] proved that every 4-edge-connected graph admits a circular 4-flow. Note that the celebrated 4-color theorem, in terms of flows, is equivalent to stating that every 2-edge-connected planar graph admits a circular 4-flow. Moreover, W.T. Tutte conjectured more ambitiously that in place of the condition of planarity with "Petersen-minor-free", the statement is still correct. This conjecture is known as Tutte's 4-flow conjecture. It has been verified that every 2-connected 3-regular Petersenminor-free graph admits a circular 4-flow, due to an equivalent result that every bridgeless cubic Petersen-minor-free graph is 3-edge-colorable (see Section 1.2 and [START_REF] Edwards | Three-edge-colouring doublecross cubic graphs[END_REF] for details). Some extensions of these classical results and conjectures to signed graphs are studied in Section 6.1. First, we could restate Seymour's 6-flow theorem and the 5-flow conjecture in Theorem 6.1.1 and Conjecture 6.1.2 in the language of the circular flows in mono-directed signed graphs. Based on the group connectivity results of [START_REF] Jaeger | Group connectivity of graphs-a nonhomogeneous analogue of nowhere-zero flow properties[END_REF], we show in Theorems 6.1.4 and 6.1.5 that 3-edgeconnectivity allows signed graphs to have circular 6-flows and 4-edge-connectivity allows signed graphs to admit circular 4-flows.

In Section 6.2, we show in Theorem 6.2.3 that if a graph G contains 3 edge-disjoint spanning trees, then given any signature on G, there exists an such that the signed graph pG, σq admits a circular p4 ´ q-flow. By the Nash-Williams and Tutte theorem, every 6-edge-connected signed graph pG, σq has Φ c pG, σq ă 4.

We have already seen that the edge-connectivity plays a central role in studying the existence of flows of graphs. Thus highly edge-connected (signed) graphs are of special interests in the study of flow theory. Jaeger's circular flow conjecture [START_REF] Jaeger | Nowhere-zero flow problems[END_REF] states that every 4k-edge-connected graphs admits a circular 2k`1 k -flow, where the case of k " 1 is Tutte's 3-flow conjecture. However, Jaeger's circular-flow conjecture has been disproved in [START_REF] Han | Counterexamples to Jaeger's circular flow conjecture[END_REF] when k ě 3. But it has been verified positively for 6k-edge-connected graphs in [START_REF] Lovász | Nowhere-zero 3-flows and modulo k-orientations[END_REF]. Recently, similar results are obtained for other edge-connectivities in [START_REF] Li | Circular flows via extended Tutte orientations[END_REF], i.e., every p6k ´2q-edge-connected graphs admits a circular 4k 2k´1 -flow and every p6k `2q-edge-connected graphs admits a circular r-flow where r is strictly smaller than 2k`1 k . In Section 6.3, we obtain analogous circular flow results on signed graphs of given edge-connectivity. Adapting their methods to signed graphs, in Theorem 6.3.5, we provide upper bounds of circular flow indexes of signed graphs based on the conditions of edge-connectivities in form of 6k `i for each i P r6s. In particular, we show that every p6k ´1q-edge-connected signed graph admits a circular 4k 2k´1 -flow and every p6k `2q-edge-connected signed graph admits a circular 2k`1 k -flow. Moreover, restricted to planar graphs, Jaeger's circular flow conjecture has a dual form that every planar graph of girth at least 4k admits a homomorphism to the odd cycle C 2k`1 . This conjecture has attracted special attention (see [Zha02; DP17; BKKW04], etc) but is still open. The result of circular 2k`1 k -flows of [START_REF] Lovász | Nowhere-zero 3-flows and modulo k-orientations[END_REF] implies, in particular, that every planar graph of girth at least 6k admits a homomorphism to C 2k`1 . In Section 6.3.1, we study an analogous problem of homomorphism of signed bipartite planar graphs to negative even cycles by using circular flows. Specifically, we show in Theorem 6.3.7 that every p6k ´2q-edge-connected signed Eulerian graph admits a circular 4k 2k´1 -flow, and thus, by duality (Theorem 5.1.2) and the bipartite folding lemma, every signed bipartite planar graph of negative-girth at least 6k ´2 admits a homomorphism to C ´2k .

Circular 4-flows and 6-flows

Whether graphs or signed graphs, the main question normally is the existence of a flow where values assigned to edges are limited. The starting point is to avoid 0, which is known as the nowherezero flow, based on which, numerous conjectures arise, for example, the famous 3-flow and 5-flow conjectures.

Note that our definition uses the normal direction on the edges, and thus the roles that different signs of edges play are about the different limitations on the values. The forbidden values, moreover, are antipodal values in a circular view. Therefore, sometimes stronger results can be stated by using only the values that are available for both positive and negative edges. In particular, Seymour's 6-flow theorem and Tutte's 5-flow conjecture can be restated in the following forms. Theorem 6.1.1. [Seymour's 6-flow theorem restated] Every 2-edge-connected signed graph has a circular 12-flow pD, f q such that for each edge e, f peq P t1, 2, 3, 4, 5u.

To observe this, we take a circular 6-flow pD, f q of a 2-edge-connected graph G and view it as a circular 12-flow in pG, σq for any signature σ on G. We can also directly apply Observation 5.4.3 and Lemma 5.4.18. Similarly, we have the following restatement. Conjecture 6.1.2. [Tutte's 5-flow conjecture restated] Every 2-edge-connected signed graph has a circular 10-flow.

Without changing the condition of 2-edge-connectivity to a higher connectivity, one cannot do any better than changing r to 2r. This is shown through a subdivision operation in Lemma 5.4.18.

Note that in Jaeger's conjecture about circular 2k`1 k -flow (or similarly, circular 4k 2k´1 -flow), the limitation can go up to a limit of only one or two values on each edge. Different limitations on values for edges are also studied in the literature. For example, we have seen the Z k -connectivity of graphs in Section 2.1.2 and we refer to [START_REF] Jaeger | Group connectivity of graphs-a nonhomogeneous analogue of nowhere-zero flow properties[END_REF] for more details. Theorem 6.1.3. [START_REF] Jaeger | Group connectivity of graphs-a nonhomogeneous analogue of nowhere-zero flow properties[END_REF] (1) Every 3-edge-connected graph is Z 6 -connected.

(2) Every graph with two edge-disjoint spanning trees is Z 4 -connected. In particular, every 4-edgeconnected graph is Z 4 -connected.

Next, we shall make use of these group connectivity results of graphs to obtain circular 4-flow and 6-flow results of signed graphs. Theorem 6.1.4. Every 3-edge-connected signed graph admits a circular 6-flow.

Proof. Let pG, σq be a 3-edge-connected signed graph. Thus the underlying graph G is Z 6 -connected by Theorem 6.1.3 (1). Recall the equivalent definition (in Proposition 2.1.2) of a graph being Zconnected: a graph G is Z -connected if and only if for any g : EpGq Ñ Z , there exists a modulo -flow pD, f q such that f peq ı gpeq pmod q for every edge e P EpGq. Therefore, we define g : EpGq Ñ Z 6 to be a mapping satisfying that gpeq " # 0, if e is a positive edge, 3, if e is a negative edge.

Thus the graph G admits a modulo 6-flow pD, f q such that f peq ı gpeq pmod 6q for each edge e. It is easy to verify that such pD, f q is a circular modulo 6-flow in pG, σq.

Similarly, we can directly apply Theorem 6.1.3 (2) to obtain the following.

Theorem 6.1.5. Every 4-edge-connected signed graph admits a circular 4-flow.

In the next section, we will give a direct proof of Theorem 6.1.5 and rather emphasize on the idea of considering the interactions of edge-disjoint spanning trees in proving the existence of circular flow.

Circular flow via the Nash-Williams and Tutte theorem

The following theorem, first proved, independently, by Nash-Williams [START_REF] St | Edge-disjoint spanning trees of finite graphs[END_REF] and Tutte [START_REF] Tutte | On the problem of decomposing a graph into n connected factors[END_REF], but normally referred as the Nash-William and Tutte theorem, provides a necessary and sufficient condition for a graph to have at least t disjoint spanning trees. Theorem 6.2.1. [Nash-William and Tutte theorem] Given a graph G, it contains t edge-disjoint spanning trees if and only if for every partition P of vertices in p parts, there are at least tpp ´1q edges connecting the parts of P.

For t " k and G being 2k-edge-connected, the conditions of the theorem will hold for every partition P. Thus we have the following corollary. Corollary 6.2.2. Every 2k-edge-connected graph contains a system of k edge-disjoint spanning trees.

A direct proof of Theorem 6.1.5: Let pG, σq be a 4-edge-connected signed graph, thus by Corollary 6.2.2, we may assume that G contains two edge-disjoint spanning trees T 1 and T 2 . By Lemma 5.2.4, without loss of generality, we can apply some inversing operations such that all negative edges are contained in T 1 .

For each edge e P EpGzT 1 q, let C 1 e be the unique cycle in T 1 `e. Define C 1 " ePEpGzT 1 q C 1 e . Similarly, let C 2 e be the unique cycle in T 2 `e for each e P EpT 1 q, and let C 2 " ePEpT 1 q C 2 e . Note that both of C 1 and C 2 are Eulerian subgraphs of G. Then we choose an arbitrary orientation D on G and when restricted to subgraphs of G, we still use the notation D to denote their orientations induced by D. The graph C 1 admits a circular 2-flow pD, f 1 q such that |f 1 peq| " 1 for each e P EpC 1 q, and the graph C 2 admits a circular 2-flow pD, f 2 q such that |f 2 peq| " 1 for each e P EpC 2 q. Let f " 2f 1 `f2 .

Hence, for each negative edge e (which must be in EpT 1 q), |f peq| " |2f 1 peq `f2 peq| P t1, 3u, and for each positive edge e, |f peq| P t1, 2, 3u. Therefore, pD, f q is a circular 4-flow in pG, σq. l

Later in Section 7.2, a sequence of signed bipartite planar simple graphs is constructed whose limit of the circular chromatic is 4. As the girth of the underlying graph is 4, their dual graphs are 4-edge-connected. Thus we have a sequence of 4-edge-connected signed graph for which the limit of the circular flow index is 4. Therefore, one cannot expect to replace the upper bound of 4 for the circular flow index of 4-edge-connected graphs in Theorem 6.1.5 with a smaller number. However, it follows from a later result in Theorem 7.2.1 that for signed Eulerian planar graph 4 is not attainable either. In other words, for each such a signed graph Ĝ, there exist a positive number p Ĝq such that Φ c p Ĝq " 4 ´ p Ĝq. We do not know if this is also the case for the circular flow index of all 4-edge-connected signed graphs. In the next theorem, we show that under a slightly different edge-connectivity, this would be the case. Theorem 6.2.3. For any signed graph pG, σq that contains 3 edge-disjoint spanning trees, Φ c pG, σq ă 4.

Proof. Let T 1 , T 2 and T 3 be three edge-disjoint spanning trees of the underlying graph G. By Lemma 5.2.4, we can find an inversing-equivalent signed graph pG, σ 1 q of pG, σq where all the negative edges are in T 1 . We have seen in the proof of Theorem 6.1.5 that every signed graph that contains at least two edge-disjoint spanning trees admits a circular 4-flow. So the signed graph pG, σ 1 q admits a circular 4-flow. We aim to build a modulo 4-flow pD, f q of pG, σ 1 q with more restrictions as follows:

• For each negative edge e in T 1 , f peq P t0, 1, 3u,

• For each positive edge e in T 1 Y T 2 , f peq P t1, 2, 3u,

• For each positive edge e in GztT 1 Y T 2 u, f peq " 2.

Let D be an orientation on G. We define a mapping g : EpGq Ñ Z 4 as follows:

gpeq " # 0, for each edge e P EpT 2 q, 2, for each edge e P EpGzT 2 q.

Then we define β ˚: V pGq Ñ Z 4 satisfying that β ˚pvq " B D gpvq pmod 4q. Such a mapping β could be verified to be a Z 4 -boundary. We consider the subgraph H " T 1 Y T 2 of G. The graph H, which contains 2 edge-disjoint spanning trees, is Z 4 -connected by Theorem 6.1.3 (2). Thus by Proposition 2.1.2, for any given Z 4 -boundary β, there exists a mapping f : EpHq Ñ Z 4 such that B D f pvq " βpvq pmod 4q for each vertex v P V pHq. Let f ˚: EpHq Ñ t1, 2, 3u denote the mapping corresponding to β ˚. To extend the mapping f ˚to the whole graph G, we assume that f ˚peq " 0 for each edge e P EpGzHq. Let f " f ˚´g and thus B D f pvq " 0 pmod 4q for every vertex v P V pGq. Thus pD, f q is a circular modulo 4-flow in pG, σ 1 q. Moreover, for each edge e P EpT 1 q, f peq P t1 ´2, 2 ´2, 3 ´2u which is t0, ´1, `1u; for each edge e P EpT 2 q, f peq is in t1 ´0, 2 ´0, 3 ´0u which is t1, 2, 3u; for each edge e P EpGzHq, f peq is in t0 ´2u which is t2u. So such pD, f q satisfies all the conditions required above.

Because the edges of T 3 are not tight, pG, σ 1 q has no tight cut with respect to such a circular 4-flow pD, f 1 q. Hence, by Lemma 5.4.6, pG, σq admits a circular r-flow where r ă 4.

In particular, applying Corollary 6.2.2, we have the following result. We note that this is a special case of a more general result (Theorem 6.3.5 (2) when p " 1) stated in the next section. Theorem 6.3.4. Given positive integers p and q satisfying that p ě q, a signed graph Ĝ admits a 2p q -flow if and only if the graph p2p ´2qqG admits a p4p, βq-orientation with βpvq " 2p ¨d`p vq pmod 4pq for each vertex v P V pGq,.

Proof. Given a signed graph Ĝ, we present a one-to-one correspondence between a p4p, βq-orientation on the graph p2p ´2qqG and a 2p q -flow in the signed graph Ĝ. By Tutte's theorem, a 2p q -flow in Ĝ is equivalent to a modulo 4p-flow in Ĝ satisfying the following conditions.

• For each positive edge e, f peq P t2q, 2q `2, . . . , 4p ´2qu.

• For each negative edge e, f peq P t2p ´2q, . . . , 2, 0, ´2, . . . , ´p2p ´2qqu.

For each e P Ep Ĝq, let res denote the set of its corresponding 2p ´2q parallel edges in p2p ´2qqG.

For a given p4p, βq-boundary β where βpvq " 2p ¨d`p vq pmod 4pq for each v P V pGq, assume that D is a p4p, βq-orientation on the graph p2p ´2qqG. This can also be viewed as a mapping of edges of p2p ´2qqG to Z 4p where each edge is assigned 1. We choose an arbitrary orientation D 1 on G. For each e P EpGq, we define a mapping I e : res Ñ t˘1u as follows: I e pe 1 q " 1 if e 1 P res in D is oriented as same as e in D 1 and I e pe 1 q " ´1 otherwise. Then we define a mapping f 1 : EpGq Ñ Z 4p as follows:

f 1 peq " ÿ e i Pres I e pe i q.

Note that for each edge e P EpGq, f 1 peq P t2p ´2q, 2p ´2q ´2, . . . , 2, 0, ´2, . . . , ´p2p ´2qqu, i.e., |f 1 peq| is even and it satisfies that |f 1 peq| ď 2p ´2q. Thus such pD 1 , f 1 q is a modulo 4p-flow in G satisfying that B D 1 f 1 pvq " βpvq pmod 4pq for each vertex v P V pGq. We define another mapping g : EpGq Ñ Z 4p such that gpeq " 0 if e is a negative edge and gpeq " 2p if e is a positive edge. Then, for each v P V pGq,

B D 1 gpvq " # 2p, if d `pvq is odd, 0, otherwise. 
Thus Bgpvq " 2p ¨d`p vq pmod 4pq for each v P V pGq.

Let f " f 1 `g. Then f : EpGq Ñ Z 4p satisfies the following claims: for each positive edge e, f peq " f 1 peq `2p P t2q, 2q `2, . . . , 4p ´2qu and for each negative edge e, f peq " f 1 peq P t2p ´2q, . . . , 2, 0, ´2, . . . , ´p2p ´2qqu. Moreover, considering the orientation D 1 on G,

B D 1 f pvq " B D 1 f 1 pvq `BD 1 gpvq " βpvq `2p ¨d`p vq " 0 pmod 4pq.
Hence, pD 1 , f q is a modulo 4p-flow in G as desired.

Conversely, let pD 1 , f q be a modulo 4p-flow in G satisfying the conditions stated as above. We can define a p4p, βq-orientation on p2p ´2qqG by appropriately orienting the edges in res for each edge e P EpGq, from the process above. As we observe from the above, the correspondence between the 2p q -flow in pG, σq and the special p4p, βq-orientation on the graph p2p ´2qqG is one-to-one. This completes the proof.

We are now ready to give our main results about the upper bounds on the circular flow indices of signed graphs based on the edge-connectivity of the underlying graphs. To prove the theorem, rather than study the circular flow in signed graphs directly, we apply Theorem 6.3.4 to study an orientation property of αG for some choice of α. Theorem 6.3.2 and Theorem 6.3.3 are also quite important in our proofs. Theorem 6.3.5. Given a signed graph pG, σq, we have the following claims:

(1) If G is p6p ´1q-edge-connected, then Φ c pG, σq ď 4p 2p´1 .

(2) If G is 6p-edge-connected, then Φ c pG, σq ă 4p 2p´1 .

(3) If G is p6p `1q-edge-connected, then Φ c pG, σq ď 8p`2 4p´1 .

(4) If G is p6p `2q-edge-connected, then Φ c pG, σq ď 2p`1 p .

(

) If G is p6p `3q-edge-connected, then Φ c pG, σq ă 2p`1 p . ( 5 
) If G is p6p `4q-edge-connected, then Φ c pG, σq ď 8p`6 4p`1 . 6 
Proof. Let pG, σq be a signed graph and let D be an orientation on G. In each case, we will choose some value of . We define g to be a mapping of EpGq to Z 4 satisfying that:

gpeq " # 2 , if e is a positive edge, 0, if e is a negative edge.
We define a mapping β : V pGq Ñ Z satisfying the following:

βpvq " B D gpvq pmod 4 q.

Note that ř

vPV pGq βpvq " 0 pmod 4 q. Moreover, βpvq " 2 if d `pvq is odd and βpvq " 0 otherwise.

Thus βpvq " 2 ¨d`p vq pmod 4 q.

Based on the notations introduced above, we will prove three claims (1), ( 2) and (3) of this theorem, and each of the remaining three is quite similar to one of the previous proved cases.

(1). To prove that pG, σq admits a 4p 2p´1 -flow, by Theorem 6.3.4, it suffices to consider the orientation property of the multigraph 2G. First we observe that 2G is a p12p ´2q-edge-connected graph. Combing the property of β defined above with " 2p and the fact that βpvq " d 2G pvq pmod 2q for each vertex v, we conclude that β is a p8p, βq-boundary of 2G. Thus applying Theorem 6.3.3 with k " 4p, we have that 2G admits an p8p, βq-orientation. It completes the proof of this claim by applying Theorem 6.3.4.

The proof of the claim (4) is similar to the claim (1). In this case, we consider 2G, observing that it is p12p `4q-edge-connected. We take " 2p `1 and it is easy to verify that β is an p8p `4, βq-boundary of 2G. By Theorem 6.3.3, it admits an p8p `4, βq-orientation, which could be transformed to a 2p`1 p -flow in pG, σq by Theorem 6.3.4. (2). In this claim, we will prove that there exists a sufficiently large s " spGq such that pG, σq admits a 4ps´2 2ps´s -flow. Our claim then follows by observing that 4ps´2 p2p´1qs ă 4p 2p´1 . By Theorem 6.3.4, based on the notations, we take " 2ps ´1 and consider the multigraph p2s ´2qG. We add a vertex z 0 to the graph p2s ´2qG connecting it to each vertex of G with 12p ´8 parallel edges and let H denote the resulting graph. Note that d H pz 0 q " p12p ´8q|V pGq|. We may extend β to z 0 by defining βpz 0 q " 0 pmod 8ps ´4q and noting that βpvq " d H pvq pmod 2q, we observe that the extended function is an p8ps ´4, βq-boundary of the multigraph H.

Next we shall apply Theorem 6.3.2 to obtain an p8ps ´4, βq-orientation on H. We define a partial orientation D z 0 at vertex z 0 of H as follows: For each vertex v, orient half of the edges connected to z 0 toward v and the other half away from v. If we choose s large enough, then we will have dpz 0 q ď p8ps´4q´2`|βpz 0 q|. For each subset A of V pGq with |V pGqzA| ą 1, since p2s´2qG is p12ps ´12pq-edge-connected, we have at least 12ps ´12p edges connecting A to V pGqzA. And since z 0 R A, there are p12p ´8q|A| edges connecting z 0 to A. Thus d H pAq ě 12ps ´12p `p12p ´8q|A| ě 12ps ´8, the latter inequality being the consequence of the fact that we take |A| ě 1 and p ě 1. Therefore, noting that βpAq ď 4ps ´2, we have that dpAq ě 12ps ´8 " p8ps ´4q ´2 `|βpAq|.

As the conditions of Theorem 6.3.2 are satisfied for H with z 0 being the special vertex, we use this theorem to get an p8ps ´4, βq-orientation on H. We claim that restriction of this orientation to p2s ´2qG is also an p8ps ´4, βq-orientation on it. This is the case because, for each vertex v, the number of edges oriented to z 0 from v and oriented to v from z 0 are chosen to be the same. We can then apply Theorem 6.3.4 to get a 4ps´2 2ps´s -flow in pG, σq. The proof of the claim (5) is similar to the claim (2). We shall prove that there exists a sufficiently large s " spGq such that Φ c pG, σq ď 4ps`2s´2 2ps ă 2p`1 p . We take " p2p `1qs ´1, consider the multigraph p2s ´2qG and again add to p2s ´2qG a special vertex z 0 such that it is connected to each vertex of G with 12p ´2 parallel edges. Take the partial orientation D z 0 as in the claim (2) and we can show that there is a large enough such that all the conditions of Theorem 6.3.2 are satisfied. Thus we extend this D z 0 to all the H and obtain an p8ps `4s ´4, βq-orientation on H, therefore, an p8ps `4s ´4, βq-orientation on p2s ´2qG. We are done.

(3). To prove that pG, σq admits a 8p`2 4p´1 -flow, by Theorem 6.3.4, it suffices to consider the existence of the p16p `4, βq-orientation on 4G. Observe that the multigraph 4G is p24p `4q-edge-connected. Take " 4p `1 in the previous settings and note that βpvq " d 4G pvq pmod 16p `4q and thus β is a p16p `4, βq-boundary of 4G. By Theorem 6.3.3, 4G admits a p16p `4, βq-orientation. Therefore, pG, σq admits a 8p`2 4p´1 -flow by Theorem 6.3.4. To prove the claim (6), similar to the proof of the claim (3), we consider 4G which is p24p `16qedge-connected. Take " 4p `3 and thus β is verified to be a p16p `12, βq-boundary of 4G. By Theorem 6.3.3, it admits a p16p`12, βq-orientation, which can be translated to a 8p`6 4p`1 -flow in pG, σq by Theorem 6.3.4.

Signed Eulerian graphs

Note that in Theorem 6.3.5, we always consider the p2 , βq-orientation on the multigraph αG where α is an even number. That is because we can take advantage of the fact that αG is Eulerian (assuming that G is connected). Here we give a circular flow result for signed Eulerian graphs with given high edge-connectivity conditions. Theorem 6.3.6. Given positive integers p, a signed Eulerian graph Ĝ admits a 4p 2p´1 -flow if and only if the underlying graph G admits a p4p, βq-orientation with βpvq " 2p ¨d`p vq pmod 4pq for each vertex v P V pGq.

Proof. Given a signed Eulerian graph Ĝ, we present a one-to-one correspondence between a p4p, βqorientation on the graph G satisfying that βpvq " 2p ¨d`p vq pmod 4pq and a 4p 2p´1 -flow in Ĝ. By Lemma 5.5.4, a 4p 2p´1 -flow in Ĝ is equivalent to a modulo 4p-flow pD, f q such that for each positive edge e, f peq P t2p ´1, 2p `1u and for each negative edge e, f peq P t´1, 1u.

For a given p4p, βq-boundary β satisfying that βpvq " 2p ¨d`p vq pmod 4pq for each v P V pGq, assume that D is a p4p, βq-orientation on the graph G. This can also be viewed as a mapping of edges of G to Z 4p where each edge is assigned 1. Let D 1 be an orientation on G. We define a mapping f 1 : EpGq Ñ Z 4p such that f 1 peq " 1 if e is oriented in D the same as in D 1 and f 1 peq " ´1 otherwise. Thus such pD 1 , f 1 q is a modulo 4p-flow in G satisfying that B D 1 f 1 pvq " βpvq pmod 4pq for each vertex v P V pGq. We define another mapping g : EpGq Ñ Z 4p such that gpeq " 0 if e is a positive edge and gpeq " 2p if e is a negative edge. Thus B D 1 gpvq " 2p ¨d`p vq pmod 4pq for each v P V pGq. Let f " f 1 `g. Then f : Ep Ĝq Ñ Z 4p satisfies the following conditions: for each positive cycle is a negative p6p ´2q-cycle and pG, σq admits no circular 4p 2p´1 -coloring. Let Ĝ˚" pG ˚, σ ˚q be the dual signed graph of pG, σq. Hence, the signed graph Ĝ˚i s Eulerian, p6p ´2q-regular and moreover, each of its negative edge-cuts has size at least 6p ´2. If G ˚is p6p ´2q-edge-connected, then we are done by Theorem 6.3.7. We may assume that Ĝ˚h as a small positive even edge-cut and we choose an edge-cut pX, X c q with X being inclusion-wise minimal among all the possibilities. That is to say, every subset Y of X has |EpY, Y c q| ě 6p ´2. Let Ĥ and Ĥc denote the signed subgraphs of Ĝ˚i nduced by X and X c , respectively. First, clearly, Ĝ˚{ Ĥ admits a circular 4p 2p´1 -flow. Otherwise, its dual signed graph (which is a subgraph of pG, σq) admits no circular 4p 2p´1 -coloring, contradicting the minimality of pG, σq. By Theorem 6.3.6, we know that Ĝ˚{ Ĥ admits a p4p, βq-orientation with βpvq " 2p ¨d`p vq pmod 4pq.

Let D be such a p4p, βq-orientation on Ĝ˚{ Ĥ. Now we consider G 1 " Ĝ˚{ Ĥc and we denote by z 0 the new vertex obtained by contraction. Let D z 0 denote the orientation of D restricted on the edges incident to z 0 (i.e., EpX, X c q) and let β be a p4p, βq-boundary (with βpvq " 2p¨d `pvq pmod 4pq) of G 1 satisfying that βpz 0 q " Ð Ý Ý d Dz 0 pz 0 q´Ý Ý Ñ d Dz 0 pz 0 q. Hence, we know that D z 0 achieves β at z 0 . In order to apply Lemma 6.3.8, we add 6p ´2 ´dpz 0 q many edges connecting z 0 with one vertex of G 1 ´z0 , and orient them half toward z 0 and half away from z 0 . We denote the resulting graph by G 1 1 and the resulting pre-orientation at z 0 by D 1 z 0 . Note that β is still a p4p, βq-boundary of G 1 1 and it is still achieved at z 0 by D 1 z 0 . Now we apply Lemma 6.3.8 to G 1 1 and we conclude that D 1 z 0 can be extended to a p4p, βq-orientation on G 1 1 , thus also a p4p, βq-orientation on G 1 . So the p4p, βq-orientation of Ĥc is extended to Ĥ and thus Ĝ˚a dmits a p4p, βq-orientation with βpvq " 2p ¨d`p vq pmod 4pq. By Theorem 6.3.6, G ˚admits a circular 4p 2p´1 -flow, thus by duality, a contradiction.

Further questions

Recall a restatement of Tutte's 5-flow conjecture (Conjecture 6.1.2): Every 2-edge-connected signed graph admits a circular 10-flow. Based on Seymour's 6-flow theorem, we showed in Theorem 6.1.1 that every 2-edge-connected signed graph admits a circular 12-flow.

It has been proved in [START_REF] Pan | Construction of graphs with given circular flow numbers[END_REF] that for any rational number r between 2 and 5, there exists a graph G with circular flow index being r. Thus by Lemma 5.4.18 and regarding a graph G as a signed graph pG, `q, we have the following corollary: Proposition 6.4.1. For any rational number r P r2, 10s, there exists a 2-edge-connected signed graph Ĝ whose circular flow index is r.

Improving the edge-connectivity conditions, we have seen in Theorem 6.1.4 that the 3-edgeconnectivity is sufficient for a signed graph to admit a circular 6-flow but we expect this condition can also imply the existence of circular 5-flows of signed graphs. Noting that there is a reduction of Tutte's 5-flow conjecture to 3-edge-connected cubic graphs [START_REF] Seymour | Nowhere-zero 6-flows[END_REF], we have the following stronger conjecture. Conjecture 6.4.2. Every 3-edge-connected signed graph admits a circular 5-flow.

Similar to the restatement of Tutte's 5-flow conjecture, by applying Observation 5.4.3 and Lemma 5.4.18, we can reformulate Tutte's 4-flow conjecture as follows. Note that Petersen graph, denoted by P , admits a nowhere-zero 5-flow but do not admit a nowhere-zero 4-flow, we have examples of 2-connected signed graphs, for example, T 2 pP, `q, which do not admit a circular 8-flow.

Conjecture 6.4.3. [Tutte's 4-flow conjecture restated] Every 2-edge-connected signed Petersenminor-free graph admits a circular 8-flow.

Furthermore, we showed in Theorem 6.1.5 that every 4-edge-connected signed graph admits a circular 4-flow and this is the best bound of the circular flow index for the class of 4-edge-connected signed graphs that we can expect. The tightness is based on the construction of a sequence of signed bipartite planar graphs of girth 4 on n vertices whose circular chromatic numbers is 4 ´4 t n`2 2 u . See Theorem 7.2.8 for more details.

W.T. Tutte has conjectured that every 4-edge-connected graph admits a nowhere-zero 3-flow. Later, M. Kochol proved in [Koc01] that Tutte's 3-flow conjecture is equivalent to the following statement.

Conjecture 6.4.4. [Tutte's 3-flow conjecture restated] Every 5-edge-connected graph admits a nowhere-zero 3-flow.

Thus we may propose the next conjecture which implies Tutte's 3-flow conjecture if it is true. Conjecture 6.4.5. Every 5-edge-connected signed graph admits a circular 3-flow.

In the end, we state a few more general questions, analogous to Jaeger's circular flow conjecture. Question 6.4.6. Given an integer k ě 1, what is the smallest integer f 1 pkq such that every f 1 pkqedge-connected signed graphs admits a circular 2k`1 k -flow? Question 6.4.7. Given an integer k ě 1, what is the smallest integer f 2 pkq such that every f 2 pkqedge-connected signed graphs admits a circular 4k 2k´1 -flow? We provide upper bounds for each of f 1 pkq and f 2 pkq in Theorem 6.3.5, that is to say, f 1 pkq ď 6k `2 and f 2 pkq ď 6k ´1. When restricted to signed Eulerian graphs, we have the following question. Question 6.4.8. Given an integer k ě 1, what is the smallest integer gpkq such that every gpkqedge-connected signed Eulerian graphs admits a circular 4k 2k´1 -flow? Regarding this question, we proved in Theorem 6.3.7 that every p6k ´2q-edge-connected signed Eulerian graph admits a circular 4k 2k´1 -flow, thus gpkq ď 6k ´2. Restricted to planar graphs, it also implies that every signed bipartite planar graph of girth 6k ´2 admits a homomorphism to C ´2k .

Noting that in graph, large odd-edge-connectivity is sufficient for graphs to admit circular p qflows. Here, for signed Eulerian graphs, we consider to replace the condition of edge-connectivity with the negative-edge-connectivity, i.e., the size of a minimum negative edge-cut. Dual to the bipartite analogue of Jaeger-Zhang conjecture (see Question 1.5.3), we propose a stronger question: Question 6.4.9. Given an integer k ě 1, what is the smallest integer g 1 pkq such that every negativeg 1 pkq-edge-connected signed Eulerian graphs admits a circular 4k 2k´1 -flow?

7 | Circular p4 ´ q-colorings of signed bipartite planar graphs

This chapter is based on the following papers:

[KNNW22] F. Kardoš, J. Narboni, R. Naserasr, and Z. Wang. "Circular p4 ´ q-coloring of some classes of signed graphs". In: SIAM J. Note that in Theorem 3.3.12, to capture the 4-color theorem, it is sufficient to bound (from above) the circular chromatic number of a special subclass of signed bipartite planar graphs by 16 5 . Recall that any signed bipartite graph with a digon has the circular chromatic number of exactly 4. Thus we are highly motivated to study the circular chromatic number of the class of signed bipartite planar simple graphs (see Question 3.3.15). Let SBP denote the class of signed bipartite planar graphs and for each even k, we denote by SBP k the class of signed bipartite planar graphs of negative-girth at least k.

In this chapter, on the one hand, we obtain that χ c pSBP 4 q " 4 and thus answer Question 3.3.15. On the other hand, we prove that the supremum 4 cannot be reached by any of the signed bipartite planar graphs. More precisely, in Theorem 7.2.1, applying the tight cycle argument, we give an upper bound of 4 ´4 t n`2 2 u for the circular chromatic number of a signed bipartite planar simple graph on n vertices. Moreover, we construct a sequence of signed bipartite planar simple graphs that attain the bound of Theorem 7.2.8. Based on the notion of signed indicators, we introduce Lemma 7.2.4 and Corollary 7.2.6 to determine the circular chromatic numbers of our sequence of signed graphs.

C ă4 -closed operations

Let C ă4 be the class of signed graphs of circular chromatic number strictly smaller than 4. In this section, we present two graph operations that preserve membership in this class C ă4 .

We first observe that Theorem 4.1.2 could also be viewed as an operation that preserves membership in this class: For each pG, σq P C ă4 and any pair of distinct vertices x and y of pG, σq, if we add a degree-2 vertex u and join it to two distinct vertices x and y with edges of arbitrary signs, then the resulting signed graph is also in C ă4 .

A slight modification and generalization of this one is based on the following notation. Let pG, σq be a signed graph and let u be a vertex of pG, σq. We define F u pG, σq to be the signed graph 100CHAPTER 7. CIRCULAR p4´ q-COLORINGS OF SIGNED BIPARTITE PLANAR GRAPHS obtained from pG, σq by contracting all the edges incident to u and keeping signs of all other edges as it is. One could easily observe that for two switching-equivalent signatures σ and σ 1 of G, the signed graphs F u pG, σq and F u pG, σ 1 q might not be switching equivalent. The claim of next theorem is that the inverse operation of F u is a C ă4 -closed operation.

Theorem 7.1.1. Given a signed graph pG, σq and a vertex u of pG, σq, if χ c pF u pG, σqq ă 4, then χ c pG, σq ă 4.

As F u pG, σq and F u pG, σ 1 q might not be switching equivalent even if pG, σq and pG, σ 1 q are switching equivalent, while applying this theorem in our main proof it is important to choose a suitable signature (switching equivalent to σ). In particular, if in G two neighbors of u, say x and y, are adjacent with a positive edge, then F u pG, σq will have a positive loop and so its circular chromatic number is 8. Similarly, if in G two neighbors of u have another common neighbor v which sees one with a positive edge and the other with a negative edge, then F u pG, σq has a digon and does not belong to C ă4 .

The proof of this theorem is quite similar to the proof of Theorem 4.1.2. We consider a circular p4 ´ q-coloring of F u pG, σq. Then we consider a corresponding coloring on pG ´u, σq noting that all neighbors of u are colored with a same color. We then modify the coloring as in the proof of Theorem 4.1.2 to find a color for u. We omit the details.

Next we define an edge-operation which also preserves membership in C ă4 . Let Ĝ be a signed graph with a positive edge uv. We define F uv p Ĝq to be the signed graph obtained from Ĝ as follows. First we add a copy u 1 of u, that is to say for every neighbor w (except v) of u we join u 1 to w with an edge which is of the same sign as uw. Similarly, we add a copy v 1 of v. Then we add two more vertices x and y with the following connections: xu, yv as positive edges and xu 1 , yv 1 , and xy as negative edges. See Figure 7.1. Proof. Let ϕ be a circular p4 ´ q-coloring of Ĝ for a positive real number . We assume, without loss of generality, that ϕpuq " 0 and 1 ď ϕpvq ď 2 ´ 2 . We view ϕ as a partial coloring of F uv p Ĝq. Our goal would be to modify ϕ to a circular p4 ´ 4 q-coloring of Ĝ in such a way that we can extend it on the four new vertices u 1 , v 1 , x and y. This would be done in two steps. We first scale the circle to increase its circumference by 2 and then insert an interval of length 4 into the circle after which we must modify images of some vertices. The details are as follows.

First we define the p4 ´ 2 q-coloring ϕ 1 as follows:

ϕ 1 pwq " 4 ´ 2 4 ´ ϕpwq.
This was the scaling part. Let γ "

4´ 2 4´ and note that

γ " 1 ` 8 ´2 ą 1 ` 8 ą 1.
Next we define ψ and show that it is a circular p4 ´ 4 q-coloring of F uv p Ĝq. On the vertices of Ĝ, the mapping ψ is defined as follows.

ψpwq "

$ & % ϕ 1 pwq, if ϕ 1 pwq ă 1 ´ 8 , ϕ 1 pwq ` 4 , otherwise.
It is then extended to the remaining four vertices by: ψpu 1 q " 8 , ψpv 1 q " ϕ 1 pvq ` 8 , ψpxq " 1, and ψpyq " ϕ 1 pvq ` 4 ´1.

We need to show that ψ is a circular p4 ´ 4 q-coloring of F uv p Ĝq. Restriction of ψ on Ĝ is a circular coloring because if w 1 and w 2 are two adjacent vertices of Ĝ, then in coloring ϕ either (1) ϕpw 1 q and ϕpw 2 q are at distance at least 1, or (2) ϕpw 1 q and ϕpw 2 q are at distance at least 1. This distance then is increased to at least γ in ϕ 1 . Then in defining ψ based on ϕ 1 either the distance remains the same, or it increases by 4 , or one end moves by a value of 8 . Thus, in all the cases the resulting distance is still larger than 1.

It remains to consider the connection to and among new vertices, u 1 , v 1 , x, and y. By the definition of ψ, the five edges incident to x or y are satisfying the conditions of the circular p4 ´ 4 qcoloring. It remains to verify the condition for edges incident with u 1 and v 1 but not incident with x or y.

We first consider the edges incident with u 1 . Recall that u 1 is a copy of u. Let w be a neighbor u in Ĝ. Based on the sign of wu 1 we consider two cases.

• wu 1 is a positive edge.

We need to show that the distance between ψpwq and ψpu 1 q is at least 1. Using the definition of circular coloring based on the circle, we consider both clockwise and anticlockwise distances on the circle. The anticlockwise path of the circle from u 1 to w passes through u and since u and w are already proved to be at distance at least 1, the anticlockwise distance from ψpu 1 q to ψpwq is larger than 1. For the clockwise direction, since uw is a positive edge we have ϕpwq ě 1. Thus, by the definition of ψ, we ψpwq " ϕ 1 pwq ` 4 whereas ψpu 1 q " 8 . Therefore, the clockwise distance of ψpu 1 q and ψpwq is larger than the clockwise distance of ϕpuq " 0 and ϕ 1 pwq which is at least 1.

• wu 1 is a negative edge.

In circular p4´ q-coloring ϕ, the distance of ϕpuq and ϕpwq is at most 1´ 2 . Again we consider two possibilities depending on if the distance is obtained in clockwise direction starting from 0 or anticlockwise. For clockwise direction, we observe that ϕ 1 pwq ă 1 ´ 8 . Thus in defining ψ the distance of ψpuq and ψpwq remains the same as the distance of ϕ 1 puq and ϕ 1 pwq, and the distance of ψpu 1 q to ψpwq is actually shorter. If the distance of ϕpwq and ϕpuq is obtained on anticlockwise direction starting from 0, then this distance is at most 1 ´ 2 . Therefore, the distance of ϕ 1 pwq and ϕ 1 puq is at most p1 ´ 2 qγ which is strictly smaller than 1 ´ 4 . As ψpu 1 q " 8 , the distance between ψpwq and ψpu 1 q remains strictly smaller than 1 ´ 8 , thus the negative edge wu 1 satisfies the condition. 102CHAPTER 7. CIRCULAR p4´ q-COLORINGS OF SIGNED BIPARTITE PLANAR GRAPHS We now consider the edges incident with v 1 . Observe that since 1 ď ϕpvq ď 2 ´ 2 , we have γ ď ϕ 1 pvq ď γp2 ´ 2 q. By the definition of ψ, and because ϕ 1 pvq ě 1 ´ 8 , we have:

γ ` 8 ď ψpv 1 q " ϕ 1 pvq ` 8 ď γp2 ´ 2 q ` 8 " 2 ´ 8 .
As v 1 is a copy of v, based on the sign of wv we consider two cases.

• wv 1 is a positive edge.

We need to show that the distance between ψpwq and ψpv 1 q is at least 1. Since wv is a positive edge, there are two possibilities: (1) ϕpwq P r0, 1 ´ 2 s, (2) ϕpwq P r2, 4 ´ s. For case (1), ϕ 1 pwq " γϕpwq ă 1 ´ 8 , then ψpwq " ϕ 1 pwq and thus the distance between ψpwq and ψpv 1 q is larger than γ ` 8 . For case (2), ψpwq " ϕ 1 pwq ` 4 . Thus the distance between ψpwq and ψpv 1 q is at least 1 ` 8´2 ` 8 , hence strictly larger than 1.

• wv 1 is a negative edge.

As wv is a negative edge in Ĝ, in any circular p4 ´ q-coloring ϕ, the distance of ϕpvq and ϕpwq is at most 1 ´ 2 and then the distance of ϕ 1 pvq and ϕ 1 pwq is at most γp1 ´ 2 q ă 1 ´ 4 . Also, we have that 2 ď ϕpwq ď 3 ´ . By the definition of ψ, if ϕ 1 pwq ě 1 ´ 8 , then ψpwq " ϕ 1 pwq ` 4 and thus the distance between ψpwq and ψpv 1 q is at most γp1 ´ 2 q ` 8 ă 1 ´ 8 . It remains to show that if ϕ 1 pwq ă 1 ´ 8 , then the distance between ψpwq and ψpv 1 q is smaller than 1 ´ 8 . In this case, ψpwq " ϕ 1 pwq. Therefore, compared with the distance between ϕ 1 pwq and ϕ 1 pvq, the distance between ψpwq and ψpv 1 q is increased by 8 , therefore, it is at most γp1 ´ 2 q ` 8 ă 1 ´ 8 . These operations will be used in the proof of the main result.

Signed bipartite planar simple graphs

In this section, we shall prove the following theorem, which implies that SBP 4 Ă C ă4 .

Theorem 7.2.1. If pG, σq is a signed bipartite planar simple graph on n vertices, then

χ c pG, σq ď 4 ´4 t n`2 2 u .
Moreover, this upper bound is tight for each value of n ě 2.

As in Section 4.1.1, we first show that the circular chromatic number of any signed bipartite planar simple graph is strictly smaller than 4 in Theorem 7.2.2. Then we use the notion of tight cycle to get an improved upper bound. Finally, we show that this upper bound is tight.

To this end, we will work with a minimum counterexample. One of the properties of a minimum counterexample follows from the bipartite folding lemma (Lemma 2.3.15). Recall that a (signed) plane graph is a (signed) planar graph together an embedding on the plane. For a plane graph, a separating -cycle is an -cycle which is not a face. Lemma 2.3.15 allows us to "fold" positive facial cycles in signed bipartite plane graphs such that the negative girth condition is not changed.

Theorem 7.2.2. For any signed bipartite planar simple graph pG, σq, we have χ c pG, σq ă 4.

Proof. Assume that pG, σq is a minimum counterexample with respect to |V pGq|, i.e., for no ą 0, pG, σq admits a circular p4 ´ q-coloring and |V pGq| is minimized. By the minimality of pG, σq and the bipartite folding lemma, we may assume that pG, σq admits a planar embedding such that every facial cycle of pG, σq is a negative 4-cycle. From here on, we will consider pG, σq together with such a planar embedding. Moreover, since any subgraph of pG, σq is also a signed bipartite planar simple graph, it follows from Theorem 4.1.2 that δpGq ě 3.

We proceed by proving some structural properties of pG, σq in the form of claims.

Claim 1 Every vertex of even degree in pG, σq must be in a separating 4-cycle.

Proof of the claim: Let u be vertex of pG, σq and of even degree. Assume to the contrary that u is not in any separating 4-cycle. Let C be the boundary of the face in pG ´u, σq which contains u. This cycle C in the embedding of pG, σq bounds dpuq negative faces, each of which is a negative 4-cycle. As dpuq is even, C is a positive cycle. Since switching does not affect the circular chromatic number, we may assume that σ is a signature in which all the edges of C are positive.

Let pG 1 , σ 1 q be the signed graph obtained from pG, σq by contracting all edges incident with u and by replacing each set of parallel edges of a same sign with a single edge of the same sign. Observe that, as u is in no separating 4-cycle, pG 1 , σ 1 q has no digon. Thus pG 1 , u 1 q is a signed simple graph. Furthermore, it is a signed bipartite planar simple graph which has less vertices than pG, σq. Thus it admits a circular p4 ´ q-coloring for some positive . But then Theorem 7.1.1 implies that χ c pG, σq ă 4. ♦ Claim 2 For every pair of adjacent vertices each of an odd degree in pG, σq, at least one is in a separating 4-cycle. Proof of the claim: The proof of this claim is similar to the previous one. Towards the contradiction, let x and y be two adjacent vertices of odd degrees, neither of which is in a separating 4-cycle. We consider the facial cycle C which is obtained after deleting x and y, and once again conclude that C must be a positive cycle as it bounds dpxq `dpyq many negative faces in pG, σq. Without loss of generality, we assume that σ assigns positive signs to all the edges of C and that σpxyq " ´. Let x 1 , x 2 , . . . , x be the neighbors of x distinct from y in the cyclic order of the embedding and, similarly, let y k , y k´1 , . . . , y 1 be the neighbors of y, distinct from x, in the cyclic order (see Figure 7.2). Thus x 1 y 1 and x y k are both edges of C and hence both are positive. We have two assertions on the neighborhood of x and y. The first observation is that x 1 y 1 and x y k are the only edges connecting some x i to some y j . That is because any other connection x i y j would create a separating 4-cycle xx i y j y but we have assumed (towards a contradiction) that x and y are in no such a 4-cycle. The second is that σpxx 1 q " σpyy 1 q and that σpxx q " σpyy k q. To see that σpxx 1 q " σpyy 1 q, we consider the face xx 1 y 1 y. We already know that xy is a negative edge and that x 1 y 1 is a positive edge. For this face to be a negative 4-cycle then we must have σpxx 1 q " σpyy 1 q. That σpxx q " σpyy k q follows from the same argument by considering the face xx y k y.

To complete the proof of the claim, we consider two signed graphs, we consider two signed graphs as follows. The first one is obtained from pG ´xy, σq by contracting all the edges incident to x where the new vertex is denoted u, and by contracting all the edges incident to y where the new vertex is denoted v, by replacing each set of parallel edges of a same sign with a single edge of the same sign and then adding a positive edge to connect u and v. We denote the result by Ĝ1 and note that it is a signed bipartite planar graph. Moreover, as neither of x, y is in a separating 4-cycle, Ĝ1 has no digon and thus it is simple. We note furthermore that in Ĝ1 the vertex u is connected to the vertex v with a positive edge (resulted from x 1 y 1 and x y k ). By the minimality of pG, σq, we conclude that χ c p Ĝ1 q ă 4.

The second signed graph we consider is obtained from pG, σq by identifying positive neighbors of x into a new vertex u, the negative ones (except for y) into a new vertex u 1 , and by identifying positive neighbors of y into a new vertex v, the negative ones (except for x) into a new vertex v 1 . Among a set of parallel edges of the same sign we delete all but one. Let Ĝ2 be the resulting signed graph. We note that Ĝ2 is not necessarily planar anymore. It follows from the discussion on the neighborhood of x and y that in Ĝ2 there is no edge connecting u 1 to v and, similarly, no edge connecting u to v 1 . Moreover, u is connected to v only with a positive edge and u 1 is connected to v 1 only with a positive edge.

Overall we observe that Ĝ2 is a (proper) subgraph of F uv p Ĝ1 q. It follows from Theorem 7.1.2 that F uv p Ĝ1 q and, therefore, Ĝ2 is in C ă4 , but Ĝ2 is a homomorphic image of pG, σq which implies χ c pG, σq ď χ c p Ĝ2 q. ♦ Claim 3 There is no separating 4-cycle in pG, σq.

Proof of the claim: Towards a contradiction, assume that there is a separating 4-cycle and let C be a separating 4-cycle with the minimum number of vertices inside. Let v 1 , v 2 , v 3 , and v 4 be the four vertices of C in this cyclic order. Let u be a vertex inside C. As pG, σq is bipartite, u can be adjacent to at most two vertices of C. Since pG, σq has minimum degree at least 3, u must have a neighbor, say v, which is not on C and thus inside C. By Claim 1 and Claim 2, at least one of u or v, say u, is in a separating 4-cycle, denoted C u . Since C contains the minimum number of vertices inside, C u cannot be all inside C. Thus u is adjacent to two vertices of C. Noting that G is bipartite, and by symmetry, we may assume v 1 and v 3 are adjacent to u. Then of the two 4-cycles uv 1 v 2 v 3 and uv 1 v 4 v 3 one contains v and thus is a separating 4-cycle with less vertices inside than C. This contradicts the choice of C and, hence, proves the claim. ♦ To complete the proof of the theorem, we observe that, by Claims 1 and 3, all vertices must be of odd degree, and, by Claim 2, no two of them can be adjacent, a contradiction.

Tight examples

We now construct tight examples and give the tight accurate bound in Theorem 7.2.8. Definition 7.2.3. Let Γ 1 be a positive 2-path connecting u 1 and v 1 . For i ě 2,

• if i is even, then let Γ i be obtained from Γ i´1 by adding two vertices u i and v i , -connecting u i to u i´1 by a positive edge, u i to v i´1 by a negative edge, -connecting v i to u i´1 by a negative edge, v i to v i´1 by a positive edge;

• if i is odd, then let Γ i be obtained from Γ i´1 by adding two vertices u i and v i , -connecting each of u i and v i to each of u i´1 and v i´1 by a positive edge.

u 1 v 1 u 2 v 2 u 3 v 3 Figure 7.3. Γ 3 u 1 v 1 u 2 v 2 u 3 v 3 u 4 v 4 Figure 7.4. Γ 4 u 1 v 1 u 2 v 2 u 3 v 3 u 4 v 4 u 5 v 5 Figure 7.5. Γ 5
For example, Γ 3 , Γ 4 and Γ 5 are illustrated in Figure 7.3, 7.4, and 7.5 respectively. Since this construction is similar to a construction in Section 4.1.1(see Figures 4.3, 4.4, and 4.5), with similar idea used in the proof of Proposition 4.1.4, we can also provide the circular chromatic number of each of the signed graphs in this sequence. Here, we give an alternative proof using the notion of signed indicator. First we prove some properties of this sequence of signed graphs when regarded as signed indicators.

Lemma 7.2.4. Assume i ě 1, 0 ă ă 1 i and r " 4 ´2 . Let I i " pΓ i , u i , v i q be a signed indicator. The following claims hold:

• If i is odd, then ZpI i , rq " r0, r 2 ´i s.
• If i is even, then ZpI i , rq " ri , r 2 s.

Proof. We prove this lemma by induction on i. For i " 1, this is trivially true. Assume i ě 2 and the lemma holds for i 1 ă i. Case 1. i is even. Assume φ is a circular r-coloring of Γ i with φpu i´1 q " 0. As ZpI i´1 , rq " r0, r 2 ´pi ´1q s, we may assume that φpv i´1 q P r0, r 2 ´pi ´1q s. The possible colors for u i are r1, r 2 `1 ´i s, and the possible colors for v i are r3 ´ , rq Y r0, 1 ´i s. So the possible distances between φpu i q and φpv i q are ri , r 2 s, i.e., ZpI i , rq " ri , r 2 s. Case 2. i is odd.

Assume φ is a circular r-coloring of Γ i with φpu i´1 q " 0. As ZpI i´1 , rq " rpi ´1q , r 2 s, we may assume that φpv i´1 q P rpi ´1q , r 2 s. The possible colors for u i and v i are r1 `pi ´1q , 3 ´2 s. So the possible distances between φpu i q and φpv i q are r0, 2 ´pi `1q s " r0, r 2 ´i s, i.e., ZpI i , rq " r0, r 2 ´i s. It completes the proof.

Corollary 7.2.5. For any ą 0, there is a signed bipartite planar simple graph Γ with χ c pΓq ą 4 ´2 .

Proof. Let 1 2 ă i ă 1 . Let Γ 1 i be obtained from the disjoint union of Γ 2i´1 and Γ 2i by identifying u 2i´1 in Γ 2i´1 and u 2i in Γ 2i into a single vertex u 1 i , and identifying v 2i´1 in Γ 2i´1 and v 2i in Γ 2i into a single vertex v 1 i . It follows from the construction that Γ 1 i is a signed bipartite planar simple graph.

Let I 1 i " pΓ 1 i , u 1 i , v 1 i q. Then for r " 4 ´2 , r 2 ´p2i ´1q " 2 ´2i ă 2i . Hence

ZpI 1 i , rq " ZpI 2i´1 , rq X ZpI 2i , rq " r0, r 2 ´p2i ´1q s X r2i , r 2 s " H.
So Γ 1 i is not circular r-colorable.

106CHAPTER 7. CIRCULAR p4´ q-COLORINGS OF SIGNED BIPARTITE PLANAR GRAPHS Corollary 7.2.6. If i " 2k, then for any graph G, χ c pGpI i qq " 4kχ c pGq kχ c pGq `1 " 4 ´4 kχ c pGq `1 .

Proof. Assume that χ c pGpI i qq " r " 4 ´2 . For i " 2k, by Lemma 7.2.4, ZpI i q " ri , r 2 s. Thus I i is a plus indicator. Note that i " kp4 ´rq. We apply Lemma 3.3.9 with χ c pGq " r 1 , we have that r r 1 " kp4 ´rq by solving which we obtain the formula in the statement.

Corollary 7.2.7. We have that • χ c pΓ 2k q " 4 ´4 2k`1 .

• χ c pΓ 2k`1 q " 4 ´2 k`1 .

Proof. For even values of i " 2k, the formula for the circular chromatic number of Γ 2k follows from Corollary 7.2.6 by taking G to be K 2 .

Let r " 4 ´2 . A similar computation can be done by taking Γ 2k`1 as an indicator I ín Lemma 3.3.11 with I `being free to choose (with respect to t " p2k `1q 4´r 2 where r " χ c pΩpI `, I 2k`1 qq). Applying this indicator to pK 2 , ´q, then we get the formula that r " p2k `1q 4 ´r 2 χ c pK 2 , ´q, and thus r " 4k`2 k`1 . Next, using the notion of tight cycle, we improve the bound of Theorem 7.2.2 and then show that this improved bound is tight.

Theorem 7.2.8. For any signed bipartite planar simple graph pG, σq on n vertices, we have:

• For each odd value of n, χ c pG, σq ď 4

´8 n `1 .

• For each even value of n, χ c pG, σq ď 4 ´8 n `2 . Moreover, these bounds are tight for each value of n ě 2.

Proof. As stated in Proposition 3.1.11, we know that χ c pG, σq " p q where p is twice the length of a cycle in G. As G is a bipartite graph, the length of each cycle is even. Thus p " 4k for some positive integer k such that 2k ď n.

Since χ c pG, σq ă 4 we have p q ă 4, in other words, 4k ă 4q. As k and q are integers we have k `1 ď q. Thus χ c pG, σq ď 4k k`1 " 4 ´4 k`1 . The upper bounds claimed in the theorem then follows by noting that n ě 2k and that n ě 2k `1 when n is odd.

To prove that the bounds are tight, we consider a homomorphic image Γ i of the above examples Γ i for when n " 2i is even. To build Γ i from Γ i , one must identify the last two vertices u i and v i of Γ i after a suitable switching. Note that the number of vertices of Γ i is 2i. Then by adding an isolated vertex to Γ i , we get an example that works for n " 2i `1. By Corollary 7.2.7, we are done.

Here we provided a bound of the circular chromatic number for the class of signed bipartite planar simple graphs. In the next chapters, we will investigate several subclasses of signed bipartite planar graphs of given larger negative-girths. The study also fits well in the framework of the study of the analogue of Jaeger-Zhang conjecture. conclude the tightness of our bound. Furthermore, there are two other constructions to build C ´4-critical signed graphs with almost tight edge-density.

We conclude this chapter with the application of our result to signed bipartite planar graphs in Section 8.5. Combining the bipartite analogue of Folding lemma and the Euler formula, in Theorem 8.5.1 we show that every signed bipartite planar graph of negative girth at least 8 maps to C ´4. Moreover, using an example of a signed planar graph which is not 4-colorable, constructed in [START_REF] Kardoš | On the 4-color theorem for signed graphs[END_REF], and applying the T 2 -construction to it, we could conclude that girth 8 is the best possible. In order to bound the circular chromatic number of the class SBP 8 , we build a sequence of signed bipartite planar graphs of negative-girth 8 whose circular chromatic numbers are approaching 8 3 and thus we have that χ c pSBP 8 q " 8 3 .

Homomorphism to C

´4 As C ´4 is the primary subject of this work, we will use the labeling of Figure 8.1 when referring to this signed graph on its own, but as a subgraph of another signed graph it will have an induced labeling.

u 4 u 3 u 2 u 1 Figure 8.1. C ´4
While the switching homomorphism and the edge-sign preserving homomorphism are closely related, these two notions are also fundamentally different. In particular, for our main target C ´4, it follows from Corollary 2.3.6 that deciding if a signed graph pG, σq admits a homomorphism to it is an NP-complete problem. We refer to [BFHN17; BS18; DFM+20] for more on this subject. However, for edge-sign preserving homomorphism to the signed graph in Figure 8.1, there is the following duality theorem. We note that this leads to a polynomial time algorithm for the problem of determining if an input signed graph admits an edge-sign preserving homomorphism to C ´4.

Combined with Theorem 2.2.5, this theorem says that in order to map a signed bipartite graph pG, σq to C ´4 it is necessary and sufficient to find a switching σ 1 of σ where no positive edge is incident with a negative edge at each end of it. first example of C ´4-critical signed graph must have at least six vertices. Let Γ be the signed graph obtained from K 4 by subdividing two nonadjacent edges, each once, with a signature assigned in such a way that each triangle of the K 4 become a negative 4-cycle (see Figure 8.3). It is not hard to see that Γ is an example of a C ´4-critical signed graph on six vertices. In fact, up to switching, it is the unique C ´4-critical signed graph on six vertices. We further note that Γ has edge-density exactly 4

3 . An example of higher interest, which is also a signed graph on a subdivision of K 4 , is the signed graph Ŵ of Figure 8.4 which is depicted in two different ways. This signed graph is proved in [START_REF] Charpentier | Homomorphisms of sparse signed graphs[END_REF] to have smallest maximum average degree among all signed bipartite graphs that does not map to C ´4, that is a maximum average degree of 18 7 . Using the extended notion of C ´4-critical signed graphs we introduced here, we will prove Ŵ to be the sole exception among the signed bipartite graphs of average degree less than 8 3 . Proof. Based on the presentation on the left side, if Ŵ maps to C ´4, then the outer 6-cycle, as it is a negative cycle, must map surjectively to C ´4, but then v 0 must be identified with one of v 2 , v 4 , v 6 , thus creating a negative cycle of length 2 and, therefore, contradicting the no-homomorphism lemma.

v 1 v 2 v 3 v 4 v 5 v 6 v 0 x 1 x 2 x 3 x 4 y 1 y 2 y 3
The equivalence class of signatures on this graph is determined by the signs of its three facial 4-cycles as depicted in the left side of the figure. If one of these facial 4-cycles is positive, then degree 2 vertex on this face can be mapped to v 0 , after a switching if needed. The resulting image then easily maps to C ´4.

An alternative proof. Based on the presentation on the right side, observe that each pair among y 1 , y 2 , y 3 is connected by a positive 2-path (through x 1 ) and by a negative 2-path. Thus identifying any two of them would create C ´2. In other words, in any homomorphic image of Ŵ which is a signed simple graph, the vertices y 1 , y 2 and y 3 must have distinct images.

For the moreover part, given a signature on W we may switch it so that x 1 y 1 , x 1 y 2 , and x 1 y 3 are positive edges. After such a switching, if each of x 2 , x 3 , and x 4 is incident to one positive and one negative edge, then we have a (switching) isomorphic copy of Ŵ . Otherwise, one of the vertices x 2 , x 3 , and x 4 can map to x 1 . After such a mapping, we have a signed bipartite graph on six vertices. If this signed graph does not map to C ´4, then it must contain Γ as a subgraph. However, Γ has eight edges while our six-vertex graph has only seven edges. l

Our goal here is to study the edge-density of C ´4-critical signed graphs. We show that, with the exception of Ŵ , every such signed graph has edge density at least 4 3 . In our proof then not only Ŵ but some constructions based on Ŵ will be of importance.

Automorphisms of Ŵ split its vertices to three orbits: tx 1 u, ty 1 , y 2 , y 3 u and tx 2 , x 3 , x 4 u and split its edges to two orbits: those incident to x 1 and those on the outer 6-cycle. We will need to consider two signed graphs obtained from Ŵ by subdividing one of its edges twice and then assigning a signature on the edges of this path so that the sign of the path is the same as the sign of the edge it has replaced. Since there are two orbits of the edges on Ŵ , essentially we have only two signed graphs obtained in this way. Presentations of these two signed graphs, each after a switching, are given in Figures 8.5 and 8.6. The signed graph of Figure 8.5, Ω 1 , is obtained from Ŵ by subdividing the edge x 1 y 3 twice (where all three edges are assigned positive signs) and then switching at the vertex set tx 2 , x 3 , y 3 u. The signed graph of Figure 8.6, Ω 2 , is obtained from Ŵ by subdividing the edge x 4 y 1 twice (where all three edges are assigned positive signs) and then switching at the vertex set tx 2 , x 4 , y 2 u.

x 1 x 2 x 3 x 4 x 0 y 1 y 2 y 3 y 0 Figure 8.5. Ω 1 x 0 x 1 x 2 x 3 x 4 y 0 y 1 y 2 y 3 Figure 8.6. Ω 2
It is easily observed that each of the two signed graphs with the signature presented in the Figures 8.5 and 8.6 satisfies the conditions of Theorem 8.1.1, and, therefore, each of them maps to C ´4. In the next two lemmas, we show that one cannot make either of these two signed graphs C ´4-critical by only adding a vertex of degree 2. Lemma 8.2.6. Let Ω 1 be the signed graph of Figure 8.5. If we add a vertex v to one part of Ω 1 and connect it with two vertices in the other part (with any signature), the resulting signed graph admits a homomorphism to C ´4.

Proof.

Let Ω 1 be the signed bipartite graph of Figure 8.5 consisting of a bipartition pX, Y q where X " tx 0 , x 1 , x 2 , x 3 , x 4 u and Y " ty 0 , y 1 , y 2 , y 3 u.

If the two edges incident to the new vertex v are of the same sign, by switching at that new vertex, if needed, we consider them both positive. The resulting signed graph has a signature satisfying Theorem 8.1.1, therefore, maps to C ´4. Hence we assume that the two edges incident to v are of different signs and consider two cases depending on to which part the vertex v belongs. Case 1. v is added to the X part. We consider three possibilities.

• v is adjacent to y 3 . By switching at v, if necessary, we assume that vy 3 is negative. The only possible problem against Theorem 8.1.1 is by the positive edge vy 2 . In that case, to resolve the issue, we apply a switching at x 2 .

• v is not adjacent to y 3 but v is adjacent to y 2 . We consider vy 2 to be negative and we are done.

• v is adjacent to both of y 0 and y 1 . We take vy 1 as a negative edge and we are done after a switching at x 2 .

Case 2. v is added to the Y part. We consider three possibilities.

• v is adjacent to one or both of x 0 and x 2 . We switch at one of x 0 and x 2 , one which is adjacent to v. Then by a switching at v (if needed) we have both edges incident to v of positive signs. The resulting signed graph satisfies the conditions of Theorem 8.1.1.

• v is adjacent to x 3 but not adjacent to x 0 and x 2 . We assume vx 3 is a negative edge. We switch at x 3 and the conditions of Theorem 8.1.1 are satisfied.

• v is adjacent to both of x 1 and x 4 . Similarly, we assume vx 4 is negative. We switch at x 0 and we are done.

Lemma 8.2.7. Let Ω 2 be the signed graph of Figure 8.6. If we add a vertex v to one part of Ω 2 and connect it with two vertices in the other part (with any signature), the resulting signed graph either contains Ŵ and maps to it or admits a homomorphism to C ´4.

Proof. Let Ω 2 be the signed bipartite graph of Figure 8.6 consisting of a bipartition pX, Y q where X " tx 0 , x 1 , x 2 , x 3 , x 4 u and Y " ty 0 , y 1 , y 2 , y 3 u.

As in the previous lemma, we can assume that of the two edges incident to v exactly one is negative. Again, we consider two cases depending on to which part v belongs. Case 1. v is added to the X part. We consider three possibilities.

• v is adjacent to y 2 . By a switching at v, if needed, we assume vy 2 is negative. The only reason Theorem 8.1.1 may not work is by the positive edge vy 0 . This can be taken care of by switching at y 0 .

• v is adjacent to y 0 but not adjacent to y 2 . By considering vy 0 as the negative edge incident to v, the resulting signed graph satisfies the condition of Theorem 8.1.1.

• v is adjacent to both y 1 and y 3 . We may assume vy 3 is a negative edge. The subgraph induced by x 1 , x 2 , x 3 , y 1 , y 2 , y 3 and v is (switching) isomorphic to Ŵ . To see this isomorphism, using labeling of W as in the Figure 8.4, it is enough to switch at x 2 and y 2 , and relabel v as x 4 while keeping all other labels the same. Finally, to see that the full graph of this case maps to Ŵ , it is enough to extend the previous isomorphism (which we name ψ) to a mapping. This is done, for example, by setting ψpx 0 q " p`, x 1 q and ψpy 0 q " p`, y 2 q and ψpx 4 q " p`, x 3 q.

Case 2. v is added to the Y part. We consider four possibilities.

• v is adjacent to x 1 . We choose vx 1 to be negative. The only obstacle against Theorem 8.1.1 then can come from the positive edge vx 4 , but we can switch at y 0 to resolve this issue.

• v is adjacent to x 4 but not adjacent to x 1 . We choose vx 4 to be negative. Then we already have a signature satisfying conditions of Theorem 8.1.1.

• v is adjacent to x 0 but to neither of x 1 and x 4 . Assuming that vx 0 is negative, we can switch at y 0 to apply Theorem 8.1.1.

• v is adjacent to both x 2 and x 3 . We assume vx 3 is negative. The subgraph induced by x 1 , x 2 , x 3 , y 1 , y 2 , y 3 and v is (switching) isomorphic to Ŵ . One such isomorphism φ is defined as follows: φpx 1 q " p´, y 2 q, φpx 2 q " p`, y 1 q, φpx 3 q " p`, y 3 q, φpy 1 q " p´, x 2 q, φpy 2 q " p`, x 1 q, φpy 3 q " p`, x 3 q, φpvq " p`, x 4 q. To complete this isomorphism to a homomorphism of the full graph to Ŵ we map x 0 , x 4 and y 0 as follows: φpx 0 q " p´, y 2 q, φpx 4 q " p`, y 3 q, φpy 0 q " p´, x 1 q.

We note that for a better correspondence we have used same or similar labels for vertices of the graphs. In the mappings ψ and φ thus the vertices of the domains are those of the graphs we work with but the images are those of Ŵ as labeled in Figure 8.4.

We are now ready to state and prove our main result on the structure of C ´4-critical signed graphs.

Observe that the mapping ϕ may have applied switching on some vertices of Ĥ. Applying switching on the same set of vertices of Ĝ, we get a switching equivalent signed graph. For simplicity, and without loss of generality, we may assume that Ĝ was given with this signature already.

Define Ĝ1 to be a signed (multi)graph obtained from Ĝ by first identifying vertices of Ĥ which are mapped to the same vertex of C ´4 under ϕ, and then identifying all parallel edges of the same sign. Observe that Ĝ1 is a homomorphic image of Ĝ and that ϕp Ĥq is (isomorphic to) the image of Ĥ in this mapping. Recall that in the mapping of Ĝ to Ĝ1 the bipartition is preserved. Therefore, Ĝ1 is bipartite. Since homomorphism is an associative relation, and since Ĝ Ñ C ´4, we have Ĝ1 Ñ C ´4. This can only be for one of two reasons: Either Ĝ1 contains a digon (i.e., C ´2), or Ĝ1 contains a C ´4-critical subgraph. We consider the two cases separately:

Case 1. Ĝ1 contains a C ´2. This implies that Ĝ contains a negative path P of length 2 with both endpoints in Ĥ and with its internal vertex in V p ĜqzV p Ĥq. We have that pp Ĥ `P q " pp Ĥq `4 ˆ1 ´3 ˆ2 " pp Ĥq ´2 ă pp Ĥq.

(8.1)

Recall that Ĥ is a maximum proper subgraph satisfying that Ĝ ‰ P 2 p Ĥq and pp Ĥq ď 3. Noting that Ĥ Ĺ Ĥ `P and Ĥ `P is a subgraph of Ĝ, and by the maximality of Ĥ, there are two possibilities: either Ĥ `P is not a proper subgraph of Ĝ, i.e., Ĝ " Ĥ `P , or Ĝ " P 2 p Ĥ `P q. The former case is impossible as Ĝ ‰ P 2 p Ĥq. So Ĝ " P 2 p Ĥ `P q and then pp Ĥ `P q " pp Ĝq ´4 ˆ1 `3 ˆ2 ě 1 ´4 `6 " 3 ě pp Ĥq,

which is in contradiction with (8.1). Case 2. Ĝ1 contains a C ´4-critical subgraph Ĝ2 . We classify the vertices of Ĝ2 into two parts: Those of the images of V p Ĥq, and the remaining vertices. We denote the former set by X 1 , more precisely X 1 " ϕpV p Ĥqq X V p Ĝ2 q, and the latter set by A, more precisely A " V p Ĝ2 qzX 1 . The subgraph induced by X 1 is denoted by X, in other words X " ϕp Ĥq X Ĝ2 . Observe that since Ĝ2 Ñ C ´4 and ϕp Ĥq Ă C ´4, A ‰ H.

Since |V p Ĥq| ě 5 and ϕ is a mapping of Ĥ to C ´4, at least two vertices are identified and, therefore, |V p Ĝ2 q| ď |V p Ĝ1 q| ă |V p Ĝq|. As Ĝ is a minimum counterexample to Theorem 8.3.1, we have either pp Ĝ2 q ď 0 or Ĝ2 " Ŵ . Since pp Ŵ q " 1, in all cases we have pp Ĝ2 q ď 1.

We now define a subgraph Ĝ3 of Ĝ as follows: Vertices of Ĝ3 are those vertices of Ĝ each of which is either a vertex of Ĝ2 or a vertex of Ĥ. That is to say V p Ĝ3 q " A Y V p Ĥq " tV p Ĝ2 q Y V p ĤquzX 1 . To give the edge set of Ĝ3 , we first choose a set E 1 of the edges of Ĝ as follows: If a vertex u P A is adjacent to a vertex v P X 1 , then we choose a vertex v 1 P V p Ĥq such that first of all ϕpv 1 q " v, second of all uv 1 P EpGq. From the construction of Ĝ1 , it is clear that there is such a vertex v 1 . We note that, there might be more than one choice for v 1 , in which case we select exactly one at random, and then let uv 1 be an edge in E 1 . The edge set of Ĝ3 is then defined to be the set of edges of Ĝ that are either induced by A, or by V pHq or edges in E 1 , with signature induced from the fixed signature of Ĝ. In other words, Ep Ĝ3 q " Ep Ĝ2 ´Xq `Ep Ĥq `E1 . Since each connection between the vertices of X and Ĝ2 ´X has a unique corresponding edge in E 1 , it follows that |Ep Ĝ3 q| " |Ep Ĝ2 q| ´|Ep Xq| `|Ep Ĥq| and, therefore, pp Ĝ3 q " pp Ĝ2 q ´pp Xq `pp Ĥq.

Since Ĝ and Ĝ2 are both C ´4-critical signed graphs, Ĝ2 is not a subgraph of Ĝ, that is to say X ‰ H. As X is a subgraph of C ´4, by Observation 8.3.2, pp Xq ě 4. Then we obtain that pp Ĝ3 q " pp Ĝ2 q ´pp Xq `pp Ĥq ď 1 ´4 `pp Ĥq " pp Ĥq ´3 ď 0.

(8.3) Since Ĝ3 is a subgraph of Ĝ and Ĥ Ĺ Ĝ3 (because A ‰ H), by the maximality of Ĥ and noting that pp Ĝ3 q ă pp Ĥq, either Ĝ " Ĝ3 or Ĝ " P 2 p Ĝ3 q. If Ĝ " Ĝ3 , then pp Ĝ3 q ě 1; if Ĝ " P 2 p Ĝ3 q, then pp Ĝ3 q ě 3, each of which is contradicting (8.3). Proof. By contradiction, assume Θ 1 is a subgraph of G and let x 0 , x 1 , . . . , x 4 be the labeling of its vertices in G as well. Observe that ppΘ 1 q " 2. Thus, by Lemma 8.3.3, G " pΘ 1 , σq for some signature σ. We note that there are three 4-cycles in Θ 1 , of which at least one must be a positive 4-cycle. By Observation 8.2.4 and as dpx 0 q " dpx 1 q " dpx 3 q " 2, no signature on Θ 1 would result in a C ´4-critical signed graph. Thus Ĝ can not contain a copy of Θ 1 as a subgraph.

Assume to the contrary that Θ 2 is a subgraph of G and let x 1 , x 2 , . . . , x 6 be its vertices in G as well. Observe that ppΘ 2 q " 3, thus, by Lemma 8.3.3, either G has only six vertices, or it has seven vertices and G " P 2 pΘ 2 q. By Lemma 8.2.3, no signature on Θ 2 would result in a C ´4-critical signed graph. If we add one or more edges to Θ 2 , then we will have a graph on 6 vertices and at least 4 3 ˆ6 " 8 edges. This cannot form a counterexample. We note that after adding an edge one may assign a signature to get the only C ´4-critical signed graph on six vertices Γ.

The remaining possibility is that G " P 2 pΘ 2 q. Let w be the added vertex. If w is not adjacent to one of x 1 or x 2 , then we have a contradiction by Lemma 8.2.3. Similarly, w must also be adjacent to one of x 4 and x 5 . As G is bipartite and by the symmetries of Θ 2 , we may assume that w is adjacent to x 1 and x 5 . Thus the underlying graph of G is the same as that of Ŵ , and by Proposition 8.2.5 it must be (switching) isomorphic to Ŵ . Therefore, Ĝ can not contain a copy of Θ 2 as a subgraph.

In the next lemma, we imply further structure on the neighborhood of a 2-thread. Lemma 8.3.5. Let vv 1 u be a 2-thread in Ĝ. Suppose that v is a vertex of degree 3 and let v 2 , v 3 be the other two neighbors of v. Then the path v 2 vv 3 must be contained in a negative 4-cycle in Ĝ.

Proof. Suppose to the contrary that the path v 2 vv 3 is not contained in a negative 4-cycle. If needed, by switching at v 2 or v 3 , we may assume that both vv 2 and vv 3 are of positive sign. Then by identifying v 2 and v 3 to a new vertex v 0 , we get a homomorphic image Ĝ1 of Ĝ. Observe that, since v 2 and v 3 are in the same part of G, G 1 is also bipartite. Furthermore, by our assumption, Ĝ1 does not contain a C ´2 and, therefore, g ij p Ĝ1 q ě g ij pC ´4q for every ij P Z 2 2 . As Ĝ does not map to C ´4, its homomorphic image, Ĝ1 , does not map to it either. Thus there must be a C ´4-critical subgraph Ĝ2 of Ĝ1 . By Lemmas 8.2.3 and 8.2.2, neither of the vertices v and v 1 is a vertex of Ĝ2 . On the other hand, v 0 P V p Ĝ2 q, as otherwise Ĝ2 is a proper subgraph of Ĝ which does not map to C ´4, contradicting the fact that Ĝ is C ´4-critical. Since Ĝ is a minimum counterexample to the Theorem and |V p Ĝ2 q| ă |V p Ĝq|, we have either pp Ĝ2 q ď 0 or Ĝ2 " Ŵ in which case pp Ĝ2 q ď; 1. For the moreover part, we first assume that T 2k´2 p Gq is C ´2k -critical and need to show that G is pk `1q-critical. For this it is enough to show that every proper subgraph H of G is k-colorable. Since T 2k´2 p Hq is a proper subgraph of T 2k´2 p Gq and any proper subgraph of T 2k´2 p Gq maps to C ´2k , by the first part of the theorem, H is k-colorable.

Next we assume G is pk `1q-critical. Let e be an edge of T 2k´2 p Gq. Our goal is to show that T 2k´2 p Gq ´e maps C ´2k . Let uv be the edge in G which corresponds to the thread (of T 2k´2 p Gq) to which e belongs.

Let G 1 " G{uv be the graph obtained from G by contracting the edge uv and let H " G ´uv. We observe that G 1 is k-colorable because first of all H is k-colorable, and, secondly, in any such coloring u and v must receive the same color.

Next we consider two signed graphs obtained from T 2k´2 p Hq: (1) The signed graph T ùv is obtained by identifying u and v. (2) The signed graph T úv is obtained by switching at u and then identifying u and v. One may easily observe that these two signed graphs are (switching) isomorphic, and in fact each of them can be regarded as T 2k´2 p G1 q. Since G 1 is k-colorable, and by the first part of the theorem, T 2k´2 p G1 q maps to C ´2k .

If e is deleted from the negative uv-thread, then we consider a mapping of T ùv to C ´2k . This mapping can also be viewed as a mapping of T 2k´2 p Hq to C ´2k where u and v are identified without any switching on them. As the positive uv-thread is of even length 2k ´2, this mapping can easily be extended to a mapping of T 2k´2 p Gq ´e to C ´2k . When e is on the positive uv-thread, we will consider a mapping of T úv to C ´2k . We note that after switching at u, the negative path becomes positive. The mapping can then be extended as in the previous case.

The T 2k´2 -construction, when applied on signed multigraphs G, connects the k-coloring problem of G to C ´2k -coloring problem of signed graphs. Thus C ´2k -coloring problem captures k-coloring problem for all the values of k. We note that T 2 p Gq is the same as SpGq defined in Section 2.3.4.

The first construction of C ´4-critical signed graphs is based on the T 2k´2 -construction of signed multigraphs G. By Theorem 8.4.3 and noting that odd cycles are the only 3-critical graphs, we have T 2 p C2k`1 q (i.e., SpC 2k`1 q) as an example of C ´4-critical signed graph for each value of k. See Figures 8.9 and 8.10 for T 2 p C3 q and T 2 p C5 q. The signed bipartite graph Ĝ2k`1 " T 2 p C2k`1 q has 6k `3 vertices and 8k `4 edges. Thus T 2 p C2k`1 q is an example of a C ´4-critical signed graph for which the bound of Theorem 8.3.1 is tight. Some proper identification of certain vertices of T 2 p C2k`1 q will also result in constructions of C ´4-critical signed graphs. Let Ĝ1 2k`1 be the signed (bipartite) graph obtained from Ĝ2k`1 by identifying two vertices of degree 2 which are at distance 2 and their common neighbor is adjacent to both with positive edges. See Figure 8.11 for an illustration of Ĝ1 5 . However, there is an exception that Ĝ1

3 contains Ŵ as a proper subgraph and, thus, is not C ´4-critical. For k ě 2, Ĝ1 2k`1 does not map to C ´4 because it is a homomorphic image of Ĝ2k`1 . Moreover, it has average degree of We state the next method to build C ´4-critical signed graphs from two given C ´4-critical signed graphs. Let Ĝ1 and Ĝ2 be two C ´4-critical signed graphs each with a vertex of degree 2. Suppose u is a vertex of degree 2 in Ĝ1 with u 1 and u 2 as its neighbors, and v is a vertex of degree 2 in Ĝ2 with v 1 and v 2 as its neighbors. As Ĝ1 is a C ´4-critical signed graph, Ĝ1 ´u maps to C ´4. But any such mapping must map u 1 and u 2 to the same vertex of C ´4 and must have applied a switching on Ĝ1 ´u so that with the same switching on Ĝ1 , the path u 1 uu 2 is negative. We consider Ĝ1 with this signature and do the same on Ĝ2 . Hence, no switching applies to the vertices u 1 , u 1 , v 1 , v 2 in each of homomorphisms, say ϕ 1 and ϕ 2 , of Ĝ1 ´u and Ĝ2 ´v to C ´4 and moreover ϕ 1 pu 1 q " ϕ 1 pu 2 q and ϕ 2 pv 1 q " ϕ 2 pv 2 q.

We then build a signed graph Fp Ĝ1 , Ĝ2 q " Ĝ from disjoint union of Ĝ1 and Ĝ2 by deleting u and v, and adding a positive edge u 1 v 1 and a negative edge u 2 v 2 . Following from the discussion above, Fp Ĝ1 , Ĝ2 q " Ĝ is C ´4-critical. In Figure 8.12, we have depicted the signed graph obtained from this operation on two disjoint copies of Ŵ (see Figure 8.4). We note that this is an example of a C ´4-critical signed graph on 12 vertices for which the bound of Theorem 8.3.1 is tight. One may note that, furthermore, the same technique can be applied to build a new C ´2k -critical signed graph from two C ´2k -critical signed graphs each having a vertex of degree 2. Moreover, towards building a C ´2k -critical signed graph of lower edge-density, instead of connecting u i v i directly, one may use paths of length k ´1, one of positive sign, one of negative sign. The famous Hajós construction of k-critical graphs can also be adapted to build C ´4-critical signed graphs. Let Ĝ1 and Ĝ2 be two C ´4-critical signed graphs with x 1 y 1 being a positive edge of Ĝ1 and x 2 y 2 being a negative edge of Ĝ2 . Then Ĝ1 ´x1 y 1 admits a homomorphism φ " pφ 1 , φ 2 q to C ´4. Since C ´4 is vertex transitive, and since p´φ 1 , φ 2 q is the same as pφ 1 , φ 2 q, we may consider only the mappings for which φpx 1 q " p`, u 2 q (where u 2 refers to the labeling of C ´4 in Figure 8.1). Then we must have φ 1 py 1 q " ´as otherwise, φ is also a mapping of Ĝ1 to C ´4. Furthermore, for any other edge e, if we take a mapping φ 1 of Ĝ ´e satisfying φ 1 px 1 q " p`, u 2 q, then we must have φpy 1 q " `. Similarly, consider a C ´4-critical signed graph Ĝ2 with a negative edge x 2 y 2 . Then by a similar argument, for any mapping ψ of Ĝ2 ´x2 y 2 for which ψpx 2 q " p`, u 2 q, we must have ψpy 2 q " `. We now build a new C ´4-critical signed graph Ĥ " Hp Ĝ1 , Ĝ2 q as follows: Ĥ is obtained from vertex disjoint copies of Ĝ1 and Ĝ2 by deleting x 1 y 1 , x 2 y 2 and identifying x 1 with x 2 to get a vertex x and y 1 with y 2 to get a vertex y. We observe that if there exists a homomorphism ϕ of Ĥ to C ´4, then, by symmetries, we may assume ϕpxq " p`, u 2 q. Then the restriction on Ĝ1 implies ϕ 1 pyq " ánd the restriction on Ĝ2 implies ϕ 1 pyq " `, a contradiction, implying that Ĥ does not map to C ´4. Removing an edge from one part of Ĥ then leads in mappings of the two different parts that can be merged together, which shows that Ĥ is C ´4-critical. An example of this construction, using two disjoint copies of the unique C ´4-critical signed graph Γ on 6 vertices (see Figure 8.3) is given in Figure 8.13.

The signed graph Hp Ĝ1 , Ĝ2 q has |V p Ĝ1 q| `|V p Ĝ2 q| ´2 vertices. Using the techniques mentioned above one can easily build C ´4-critical signed graphs of orders 9, 10, 11, 12. Then applying Hajós construction to a previously built C ´4-critical signed graph and Γ (on 6 vertices), one can build a C ´4-critical signed graph on any number n of vertices for n ě 9.

In the end, we will use the construction given above to discuss the relation between the minimum number of edges of k-critical graphs and C ´k -critical signed graphs with given number of vertices. Given positive integers k and n (n ě k `2), let f pn, kq be the minimum number of edges of a k-critical graph on n vertices. We refer to [START_REF] Kostochka | Ore's conjecture on color-critical graphs is almost true[END_REF] for an almost precise value of f pn, kq and for historical background on the study of this function. Similarly, we define gpn, kq to be the minimum number of edges of a C ´k -critical signed graph on n vertices. As noted above, gpn, 4q is well-defined for n ě 9. It can be similarly shown that gpn, kq is well-defined for n ě N k where N k is an integer depending on k only.

Theorem 2.4.3 (in Section 2.4) and Theorem 8.4.3 imply the following relations between f pn, kq and gpn, kq.

• By Theorem 2.4.3, gpn `pk ´3qf pn, kq, kq ď pk ´2qf pn, kq.

• By Theorem 8.4.3, gpn `2p ´1qf pn, q, 2 q ď 2p ´1qf pn, q. (8.6)

Authors of [START_REF] Dvořák | Density of 5/2-critical graphs[END_REF] and [START_REF] Postle | On the Density of C_7-Critical Graphs[END_REF] suggest that for k " 5 and k " 7 the inequality (8.5) is almost tight. Our work here shows that for C ´4-critical signed graphs the inequality of (8.6) provides a tight bound. For k " 6, the two inequalities provide similar bounds where the only difference is in the constant (in the favor of inequality of (8.5)). For other values of k " 2 the inequality of (8.5) provides a better bound than (8.6) and it is tempting to suggest that (8.5) gives a nearly tight bound for gpn, kq for k ě 5. A point of hesitation here is that, while the notion of k-critical graphs is widely studied and the value and behavior of f pn, kq are almost determined, the notion of critical signed graphs, aside from its relation to p2k `1q-critical graphs (with no sign), is a new notion and hardly anything is known about it. In particular, what can then be said about the minimum number of edges of a K s 2k -critical signed graph? Constructions other than G, combined with Theorem 8.4.1, may provide better bounds on gpn, 2kq.

Application to signed bipartite planar graphs

As a bipartite analogue of Jaeger-Zhang conjecture, it was conjectured in [START_REF] Naserasr | Homomorphisms of signed graphs[END_REF] that every signed bipartite planar graph of negative-girth at least 4k ´2 maps to C ´2k . Here we use the bipartite folding lemma (Lemma 2.3.15) to prove that every signed bipartite planar graph of negative-girth at least 8 maps to C ´4 and we show that this bound is tight, thus disproving the exact claim of the conjecture for the case k " 2.

Recall that Lemma 2.3.15 shows that given a signed bipartite planar graph pG, σq with an embedding on the plane, if the length of the shortest negative cycles of pG, σq is at least 2k and a face F is not a negative cycle of length 2k, then there is a homomorphic image of pG, σq which identifies two vertices at distance 2 of F and such that its shortest negative cycles are also of length at least 2k.

Observe that this identification preserves both of the planarity and the bipartiteness. Thus, repeatedly applying the lemma, we get a homomorphic image where all faces are negative cycles of length 2k. Taking k " 4, starting from a signed bipartite planar graph whose shortest negative cycles are of length at least 8, we get a homomorphic image Ĝ with a planar embedding where all faces are (negative) 8-cycles. Applying the Euler formula on this graph, we have |EpGq| ď 4 3 p|V pGq| ´2q. By taking Ĝ to be a smallest signed bipartite planar graph which does not map to C ´4 and whose shortest negative cycle is of length 8, we conclude that on the one hand, by the argument above, it has at most 4 3 p|V pGq| ´2q edges, but on the other hand, Ĝ must be C ´4-critical, and thus, by Theorem 8.3.1, has at least 4 3 |V pGq| edges. This contradiction is a proof of Theorem 8.5.1. Theorem 8.5.1. Every signed bipartite planar graph of negative-girth at least 8 maps to C ´4. Moreover, this girth condition is the best possible.

We now show that the negative-girth condition being at least 8 in this theorem is tight. For this, it would be enough to build a signed planar simple graph pG, σq which is not t˘1, ˘2u-colorable. Then, by Theorem 8.4.1, T 2 pG, σq is a signed bipartite planar graph of negative girth at least 6 which does not map to C ´4.

Theorem 8.5.2. There exists a bipartite planar graph G of girth 6 with a signature σ such that pG, σq Ñ C ´4.

The smallest example we have built so far in this way have 150 vertices. However, this example has the extra property that vertices on one part of the (bipartite) graph are all of degree 2. Perhaps simpler examples can be built which do not satisfy this property. Using the language of the circular coloring of signed graphs, we could restated the above Theorem.

Theorem 8.5.3. We have that χ c pSBP 8 q " 8 3 . That χ c pSBP 8 q ď 8 3 is a consequence of Theorem 8.5.1 and Corollary 3.4.4. We will conclude Theorem 8.5.3 by a sequence of signed bipartite planar graphs of negative-girth 8 whose circular chromatic number is approaching 8 3 . Using a special case of Theorem 3.3.18 for " 2, we have that χ c pT 2 pG, σqq " 4χcpG,σq 2`χcpG,σq . We have seen in Section 7.2 that there is a series of signed bipartite graphs Γ i and for each integer i, it has the circular chromatic number 4 ´4 i`1 . Thus the signed bipartite graph T 2 pΓ i q satisfies that χ c pT 2 pΓ i qq "

4 ˆp4 ´4 i`1 q 2 `p4 ´4 i`1 q " 8i 3i `1 .
Note that T 2 pΓ i q is of negative-girth 8 and when i goes into infinity, the limit of χ c pT 2 pΓ i q is 8 3 . The C ´4-coloring problem even when restricted to the class of signed bipartite planar graphs remains an NP-complete problem proved in [START_REF] Dross | Complexity of planar signed graph homomorphisms to cycles[END_REF]. Thus, one does not expect to find an efficient classification of signed bipartite planar graphs which map to C ´4. However, some strong sufficient conditions could be provided. One such condition is based on the restatement of the 4-color theorem given in Theorem 2.3.7. Another is Theorem 8.5.1 of this work that shows no negative cycle of length 2, 4, 6 is a sufficient condition. As a generalization of Theorem 2.3.7 which also captures essential cases of Theorem 8.5.1, we propose the following: Conjecture 8.5.4. Let G be a bipartite planar graph of girth at least 6. Let σ be a signature on G such that in pG, σq all 6-cycles are of the same sign. Then pG, σq Ñ C ´4.

We note that, while one may use Lemma 2.3.15 to reduce facial 4-cycles of a signed graph which is the subject of Theorem 8.5.1, there could be separating 4-cycles in a signed bipartite planar graph to which this theorem may apply. Therefore, the conjecture does not capture all cases to which Theorem 8.5.1 applies. pK 2k , M q This chapter is based on the following paper:

[NŠWX21] R. Naserasr, R. Škrekovski, Z. Wang, and R. Xu. Mapping sparse signed graphs to pK 2k , M q. 2021. arXiv: 2101.08619 [math.CO]

Homomorphisms of sparse signed graphs

Given signed graphs pG, σq and pH, πq, we have seen in Lemma 2.2.6 that the girth inequality g ij pG, σq ě g ij pH, πq for ij P Z 2 2 is a necessary condition for the existence of a homomorphism of pG, σq to pH, πq. It's quite natural to ask the following question, which is one of the most central questions in the study of graph homomorphism.

Question 10.1.1. Given signed graphs pG, σq and pH, πq, under which structural conditions on G the necessary conditions of Lemma 2.2.6 become sufficient?

For example, Conjectures 1.3.1 and 1.3.2 claim that for SP Cpkq, the condition of planarity is sufficient.

Conjecture 10.1.2. Every signed planar graph pG, σq satisfying that g ij pG, σq ě g ij pC ´k q for ij P Z 2 2 admits a homomorphism to SP Cpk ´1q.

The case k " 3 is equivalent to the 4-color theorem, which tells us that every signed planar simple graph pG, ´q admits a homomorphism to pK 4 , ´q. For the case k " 4, it is a strengthening of the 4-color theorem that has been showed in [START_REF] Naserasr | Homomorphisms of planar signed graphs to signed projective cubes[END_REF], based on an edge-coloring result of B. Guenin [START_REF] Guenin | Packing T -joins and edge colouring in planar graphs[END_REF] which in turn is based on the 4-color theorem. It claims that every signed planar graph pG, σq satisfying that g ij pG, σq ě g ij pK 4,4 , M q for ij P Z 2 2 admits a homomorphism to pK 4,4 , M q. These two results provide a possible answer to Question 10.1.1 for special targets, that is the condition of "planarity". That is to say, the conditions of no-homomorphism lemma for pK 4 , ´q and pK 4,4, M q are sufficient for signed planar graphs to admit homomorphism to it. However, planarity is not always a feasible solution for every target. For example, for the signed graph pK 3 , `q, even with the extra condition of planarity, not only the necessary conditions of the no-homomorphism lemma are not sufficient but it is expected to be far from it, as the 3-coloring problem of planar graphs is known to be an NP-hard problem in [START_REF] Garey | Some simplified NP-complete graph problems[END_REF]. For such cases, two closely related conditions are considered: the first one is having higher girth conditions for planar graphs (for instance, the Grötzsch theorem and Jaeger-Zhang conjecture) and the second one is to have low maximum average degree. This approach has been used to prove the following result:

where mpuq is the matching vertex of u (in pK 2k , M q or pK k,k , M q) defined by M . Since G is bipartite, φ 1 pvq preserves the adjacency. The images of closed walks then are the same as in φ. Thus φ 1 is a homomorphism of pG, σq to pK k,k , M q.

In particular, for a signed bipartite graph pG, σq, to have "pG, σq Ñ pK 4,4 , M q" is equivalent to have "pG, σq Ñ pK 8 , M q" and to have "pG, σq Ñ pK 3,3 , M q" is equivalent to have "pG, σq Ñ pK 6 , M q". As to study the homomorphism of signed bipartite planar graphs to pK 4,4 , M q directly is as hard as to study the 4-Color Theorem, motivated by this relationship, we change our target signed graph to be pK 6 , M q and more generally pK 2k , M q. Furthermore, combining Theorems 2.3.10 and 10.1.7, we have the next corollary.

Corollary 10.1.8. Given an integer k ě 3 and a graph G, we have χpGq ď k if and only if SpGq Ñ pK 2k , M q.

In light of Theorem 2.2.8, we study the edge-sign preserving homomorphism to DSGpK 6 , M q in place of the switching homomorphism to pK 6 , M q. Our proof is based on the discharging technique. Assume that pG, σq is a minimum counterexample to Theorem 10.1.4. To provide a set of forbidden configurations, we need to study the structural properties of the counterexample. We view an edge-sign preserving homomorphism to DSGpK 6 , M q as a special list homomorphism with the list assignments being subsets of the vertices of DSGpK 6 , M q and we call it a DSGpK 6 , M q-list coloring. In Section 10.2.2, we develop some basic tools to study this special list coloring. Our set of forbidden configurations are provided in Section 10.3.1. Then in Section 10.3.2, the discharging technique is employed to prove that pG, σq cannot have maximum average degree less than 14 5 . Generalizations of the theorem to pK 8 , M q and even pK 2k , M q are considered in Section 10.4 and examples toward the tightness of results are provided in Section 10.5. Note that in contrast to Theorem 2.3.13, we show that the conditions of no-homomorphism lemma are not sufficient for mapping signed planar graphs to pK 8 , M q and give a series of signed planar graphs of girth 3 that do not map to pK 8 , M q in Theorem 10.5.2.

Preliminaries

In the sequel, we shall use the labelings of vertices of pK 6 , M q and DSGpK 6 , M q as in Figure 10.2. We denote the signature of DSGpK 6 , M q by m ˚. In pK 6 , M q, vertices 2i ´1 and 2i, for i P t1, 2, 3u, are connected by a negative edge where all other edges are positive. The vertex set of DSGpK 6 , M q, denoted by C, is partitioned into two sets: C `and C ´. Each vertex x in C α , α P t`, ´u, is connected to a unique vertex in C α by a negative edge, this vertex is called the pair of x, denoted by Pairpxq. A pair of colors would refer to a vertex of DSGpK 6 , M q and its pair. Given a vertex x α and its pair y α , the vertices x ´α and y ´α form another pair, and moreover, the four vertices together form a layer in DSGpK 6 , M q, shown as a horizontal line in Figure 10.2. Given a vertex x P C, the only vertex in DSGpK 6 , M q not adjacent to it is called the inverse of x. Moreover, given a subset X of C, the inverse of X, denoted X ´, is the set of of inverses of the elements of X.

One of the main ideas of this work is to extend a partial mapping of a signed graph pG, σq to DSGpK 6 , M q to a mapping of the full graph. Such extension problems lead to the idea of DSGpK 6 , M q-list coloring. We use the following drawing to capture this idea: vertices presented using squares are colored and vertices presented using circles are yet to be colored (see Figure 10.3 for example). We refer to [START_REF] Bok | List homomorphism problems for signed graphs[END_REF] and references there for a general study of list-homomorphism problem of graphs and signed graphs.

However, list assignments considered in this work are rather special and restricted. Normally, in list coloring, elements from the same list are considered to have no difference in the sense of igure 10.2. DSGpK 6 , M q the permutation. But since our list is a subset of the vertex set of a signed graph, there are structural properties of lists at each vertex. To better describe lists of available colors at vertices and understand the structure of lists, we introduce the following terminology.

In the sequel, given a set L of colors, we always assume that L Ď C. A set colors of size is called to be a -set. We denote by L c the set of elements in CzL. A set L of colors is said to be paired if for all x P L but at most one, we have P airpxq P L. For example, L 1 " t1 `, 2 `, 3 `, 4 `, 5 `u and L 2 " t1 `, 2 `, 5 ´, 6 ´u are paired sets of colors while L 3 " t1 `, 3 `u and L 3 " t1 `, 2 `, 3 ´, 5 ´u are not. We say a paired set L is layered if no three colors of L belong to the same layer and furthermore, we say a layered set L is one-sided if all the colors in L are on the same side, i.e., either L Ď C `or L Ď C ´. A layered set L of size 2k `1, for k " 0, 1, 2, is said to be a neighbored p2k `1q-set if L consists of k pairs on one side and a single element on the other side. Observe that a neighbored 5-set is the set of all vertices adjacent to a vertex v by positive edges. A neighbored 3-set consists of neighbors of a vertex x which are connected to x by positive edges and each of which has a positive path of length 2 to another fixed vertex y. A special case when |Lpvq| " 1, we know that the vertex v is precolored.

Given a signed graph pG, σq, a DSGpK 6 , M q-list assignment L of pG, σq is a function that assigns to each vertex of G a set Lpvq Ď C. For a DSGpK 6 , M q-list assignment L of pG, σq, a mapping φ : v Ñ Lpvq such that for each edge uv P EpGq, m ˚pφpuqφpvqq " σpuvq is a special list coloring of pG, σq, as we only consider lists that are subsets of C, when there is no confusion, we call such a list coloring an L-coloring. If there exists an L-coloring, we say pG, σq is L-colorable.

Observation 10.2.1. If pG, σq is L-colorable, then pG, σq s.p. ÝÑ DSGpK 6 , M q.

For a given signed graph pG, σq, a signature on G obtained from σ by switching at a vertex subset X, is denoted by σ X . Given a DSGpK 6 , M q-list assignment L and a vertex subset X of pG, σq, let L X be a list assignment defined by: L X pvq "

#

pLpvqq ´, for v P X Lpvq, for v P V pGqzX.

Observation 10.2.2. For all X Ă C, a signed graph pG, σq is L-colorable if and only if pG, σ X q is L X -colorable.

Tool: signed rooted trees

Let T be a rooted tree with root v. Given a vertex x of T , we define a subtree rooted at x, denoted by T x , to be the subgraph induced by x and those vertices of T whose unique path to v contains x.

Let L be a DSGpK 6 , M q-list assignment of a signed rooted tree pT, σq. Toward deciding if pT, σq is L-colorable and taking advantage of the rooted tree, we have the following notation. For a vertex x of pT, σq, we define the set of admissible colors, denoted L a pxq, to be the set of the colors c P Lpxq such that with the restriction of L onto pT x , σq there exists an L-coloring φ of pT x , σq where φpxq " c. Thus pT, σq is L-colorable if and only if L a pvq ‰ H, noting that v is the root of T , and moreover, reducing Lpxq to L a pxq at any time would not affect L-colorability of pT, σq. Sometimes, instead of considering the set of admissible colors at a vertex, it is preferable to consider the set of colors that are forbidden through the restriction from its descendants or neighbors in general. Let xy be an edge of pG, σq and assume Lpyq is the set of colors available at y. Then we define F Lpyq pxq to be the set of forbidden colors at x because of the edge xy and the list Lpyq. More precisely, a color c is forbidden on x because of Lpyq if for each choice c 1 P Lpyq either c is not adjacent to c 1 or σpxyq ‰ m ˚pcc 1 q. For example, if Lpyq " t1 `, 2 `, 3 ´u and xy is a positive edge, then F Lpyq pxq " t1 `, 2 `, 3 ´, 4 ´u. When the list assignment is clear from the context, we may simply write F y pxq in place of F Lpyq pxq. For an L-coloring of a signed subtree pT x , σq, we have the following relation between the two notions:

L a pxq " Lpxqz ď y y is child of x F L a pyq pxq.
Thus in the rest of this work, we may modify list Lpxq by removing colors from F y pxq or simply replacing it by L a pxq at any necessary time. We first gather some basic rules on these modifications in the following lemmas.

Lemma 10.2.3. Let pT, σq be a path vv 1 v 2 , regarded as a rooted tree with v being the root. Let L be a list assignment satisfying |Lpv 2 q| " 1 and Lpvq " Lpv 1 q " C. Then L a pvq is a paired 10-set. Lemma 10.2.4. Let T be a 3-path v 1 v 2 vv 3 , regarded as a rooted tree with v being the root. Let L be a list assignment satisfying |Lpv 1 q| " |Lpv 3 q| " 1 and Lpv 2 q " Lpvq " C. Then L a pvq is either a neighbored 5-set, or a neighbored 3-set, or it is a one-sided paired 4-set. Lemma 10.2.5. Let pT, σq be a signed rooted tree of Figure 10.3 with the root v. Let L be a list assignment satisfying |Lpv 1 1 q| " |Lpv 2 q| " 1 and Lpvq " Lpv 0 q " Lpv 1 q " C. Then we have |L a pvq| ě 8.

These observations can be verified using the vertex-transitivity of the signed graph DSGpK 6 , M q.

Properties of L-coloring of signed paths and cycles

In this section, we study the properties of L-coloring of a given signed graph and develop tools of independent interest that will be used in Section 10.3. sign of v 1 v 3 is preserved. By Lemma 10.2.10, this coloring can be extended to v 2 . Thus we may assume k ě 2 and, by Observation 10.2.2, we may assume that σpv 1 v 2 q " σpv 1 v 2k`1 q " σpv 2 v 3 q " `. Furthermore, without loss of generality, we assume that Lpv 2 q " t1 `, 2 `, 3 `, 4 `, 5 ´u.

If Lpv 2k`1 q contains four elements of C `, then after taking three of them as L 1 pv 2k`1 q and setting L 1 pv 2 q " t1 `, 2 `, 3 `, 4 `u while keeping the rest of the lists same, we may apply Lemma 10.2.12 to color the path v 2 v 3 ¨¨¨v 2k`1 . This coloring then is extendable to v 1 by Lemma 10.2.11.

If Lpv 2k`1 q contains t5 ´, 6 ´u, then we may take L 1 pv 2k`1 q to consist of 5 ´, 6 ´and the only element of Lpv 2k`1 q in C `, and complete the coloring as in the previous case. We may, therefore, assume Lpv 2k`1 q " t1 ´, 2 ´, 3 ´, 4 ´, cu where c P t5 `, 6 `u.

Next we consider the case that t1 ´, 2 ´, 3 ´, 4 ´u Ă Lpv 3 q. By Lemma 10.2.6 (5), there is a 3-subset L 1 pv 2k q of Lpv 2k q such that the signed edge v 2k v 2k`1 is L 1 -colorable for every choice c v 2k P L 1 pv 2k q and L 1 pv 2k`1 q " t1 ´, 2 ´, 3 ´, 4 ´u. We may now first color the path v 3 v 4 ¨¨¨v 2k with list assignment L 1 pv 3 q " t1 ´, 2 ´, 3 ´, 4 ´u, L 1 pv 2k q defined above, and Lpv i q for all other values of i by Lemma 10.2.12. To complete the coloring, then we color v 2 with 5 ´, and v 2k`1 with a color from t1 ´, 2 ´, 3 ´, 4 ´u. This coloring then is easily extendable to v 1 . Thus, without loss of generality, we may assume that Lpv 3 q " Czt1 ´, 2 ´u.

To complete the proof, we consider the list assignment on the path v 4 v 5 ¨¨¨v 2k`1 where v 2k`1 is assigned L 1 pv 2k`1 q " t3 `, 4 `, 5 ´u and each other vertex is assigned Lpv i q. By Lemma 10.2.12, we have an L 1 -coloring φ of this signed path. Given φpv 4 q, one can always pick a color in t3 `, 4 `, 3 ´, 4 ´u for v 3 such that the sign of the edge v 3 v 4 is preserved. However, for any such choice, the coloring of v 3 and v 2k`1 can be extended to v 1 and v 2 by argument similar to the end of the proof of previous lemma. This concludes the proof.

10.3 Mapping sparse signed graphs to pK 6 , M q

In this section, we shall prove the first part of Theorem 10.1.4. With all the connection and preparation, it suffices to prove the following theorem.

Theorem 10.3.1. Every signed graph pG, σq satisfying that madpGq ă 14 5 admits an edge-sign preserving homomorphism to DSGpK 6 , M q.

To prove Theorem 10.3.1, we assume that pG, σq is a minimum counterexample, that is to say, madpGq ă 14 5 , pG, σq does not map to DSGpK 6 , M q and the number of vertices of G is as small as possible. The proof is typical and organized as follows. In the coming subsection, we present a set of reducible configurations in pG, σq and then we use discharging arguments to show that at least one reducible configuration listed before exists in pG, σq, which is a contradiction that completes the proof.

Reducible configurations

In order to describe a forbidden configuration better, we use the following standard terminology. A vertex of degree k is called a k-vertex. Moreover, a k `-vertex is a vertex with degree at least k and a k ´-vertex is a vertex of degree at most k. A k i -vertex is a k-vertex with precisely i neighbors of degree 2. When proving that a configuration F is forbidden, we consider F together with all its neighbors that are precolored. A precolored neighbor, say v, of F might see more than one vertex in F , however, for simplicity we view such a configuration with multiple copies of v, one for each neighbor in F , and with all copies receive the same color as v. In a special case that F is a tree, this allows us to view the subgraph induced by F and its neighbors as a tree.

As pK 6 , M q is a vertex-transitive signed graph up to switching operation, equivalently, DSGpK 6 , M q is vertex-transitive as a 2-edge-colored graph, we have the following. a full list, and by applying Lemma 10.2.5 to the uz-branch of the figure, we modify the list of u to a paired 8-set. We then apply Lemma 10.2.14 (3) on the 4-cycle uxwy and we are done.

Finally we show that w cannot be a 3 0 -vertex either. Depending on whether w is adjacent to z or not, we have two cases to consider:

Case 1: w " z. We follow the labelings of Figure 10.11. Assuming that rest of the signed graph is precolored, to extend the coloring to this part of the graph we have a full list of colors available on u and w, and on each of x, y and z we have a paired 10-set available (equivalently, only a paired 2-set is missing). In what follows, we shall try three possible partial coloring φ of u and w, for each choice we either can extend φ to the full configuration, or give a condition on the lists for x, y and z. Then we could find fourth assignment to u and w that is extendable.

Our first coloring to consider satisfies that φpuq " 1 `and φpwq " 3 `. This coloring can be extended to x, y and z unless for one of them, say x, one of the following holds: (1) both ux and xw are negative edges and the missing pair on x is t5 ´, 6 ´u or (2) both ux and xw are positive edges and the missing pair on x is t5 `, 6 `u.

As a second choice, we try the coloring φpuq " 1 `and φpwq " 5 `. Similarly, if this choice of colors is not extendable, for a vertex, say y, either (3) both uy and yw are negative edges and the missing two colors are t3 ´, 4 ´u or (4) both uy and yw are positive edges and the missing pair on y is t3 `, 4 `u, which, in particular, justifies the choice y ‰ x.

As a third try, on examining the coloring φpuq " 1 `and φpwq " 3 ´, we conclude that for one of the three vertices, say z, either (5) uz is positive and zw is negative with t5 `, 6 `u as the missing pair on z or (6) uz is negative and zw is positive with t5 ´, 6 ´u as the missing pair on z. Theses conditions also justify that z is distinct from both x and y.

We now observe that the choice of φpuq " 1 `and φpwq " 5 ´is extendable on all three of x, y, z.

Case 2: w  z. We use the labelings of Figure 10.12. Figure 10.12. w is adjacent to z Upon forming list of available colors on u, x, w and y using zz 1 -branch for u, x 1 -branch for x, and y 1 -branch for y, by Lemma 10.2.5, the list of u is a paired 8-set. The list of w is a neighbored 5-set and the list of each of x and y is a paired 10-set. In particular, there is one color from each layer available at w. For one such color, say c, there must be three pairs of colors available for u each not in the same layer as c. Let c 1 , c 2 and c 3 each be a color from one of these pairs. We may now proceed as in the previous lemma, assigning c to w and c i to u would be not extendable only if x or y is of a certain type, but there are only two of these vertices and three distinct possibilities.

Paths in 3-subgraph

We have so far seen that the minimum counterexample pG, σq has no 3 2 -vertex and no 3 1 -vertex seeing two other 3 1 -vertices. To complete our proof, we need further information on the subgraph induced by 3-vertices. When applying the discharging technique in the next section, among 3 0vertices the poorest one would be:

• (type 1) a 3 0 -vertex all whose neighbors are 3 1 -vertices,

• (type 2) a 3 0 -vertex with two 3 1 -neighbors one of which has another 3 1 -neighbor.

Hence, a path of pG, σq is said to be poor if first of all, its vertices are alternatively of type 3 0 and 3 1 , and secondly, the start and end vertices of the path are among the poorest type of 3 0 -vertices.

Our goal is to show that pG, σq does not contain a poor path. To this end, we assume that P is a minimum poor path in pG, σq whose vertices are labeled v 1 v 2 ¨¨¨v 2k`1 . If the end vertex v 1 is of type 1, then we label its other 3 1 -neighbors v 0 and v 1 0 and if it is of type 2, then its other 3 1 -neighbor is labeled v 0 and the other 3 1 -neighbor of v 0 is labeled v ´1. Vertices v 2k`2 , v 1 2k`2 and v 2k`3 are defined similarly. Observe that, by Lemma 10.3.7, vertices v ´1 and v 2k`3 , when exist, are two distinct vertices. Thus for k ě 1, depending on the types of two ends of the poor path, we have three possible types of poor paths. For k " 0, v 1 is viewed as the end vertex from each direction, but as it is a 3-vertex, it cannot be of type 1 from each end, thus we can only have two types of poor paths in this case. In Figure 10.13, both of these two possibilities of poor paths when k " 0 are depicted and only one possibility for k ě 1 is also presented. Let I 3 0 " t1, 3, . . . , 2k ´1, 2k `1u and I 3 1 " t0, 2, . . . , 2k, 2k `2u. As every 3 1 -vertex has a 2-neighbor, for i P I 3 1 zt0, 2k `2u, the vertex v i is not adjacent to any vertex v j for j P I 3 0 Y I 3 1 zti 1, i `1u. Moreover, by Lemma 10.3.8, vertices v 0 and v 1 0 , when the latter exists, do not share a 2-neighbor. Furthermore, vertices v 0 and v 1 0 are not distinguishable in a poor path so we can switch their roles if necessary. We can similarly treat v 2k`2 and v 1 2k`2 .

Finally, we prove the statement pcq: v 0 is not adjacent to v 2k`2 . Assume to the contrary that v 0 is adjacent to v 2k`2 . Then v 0 v 1 ¨¨¨v 2k`2 is a cycle. In the above arguments, we have shown that first of all there is no chord in this cycle, secondly, for any two 3 1 -vertices of the cycle, their 2-neighbors are distinct. As before we consider the signed subgraph pH, σq induced by the cycle and its 2-neighbors. Then again a coloring of pGzH, σq can be extended to pH, σq by Lemma 10.2.15 (1).

Lemma 10.3.11. There is no poor path in pG, σq.

Proof. Assume to the contrary that P " v 1 ¨¨¨v 2k`1 is a minimum poor path in pG, σq. Let pH, σq be the subgraph of pG, σq induced by v 0 , v 1 , . . . , v 2k`2 , v 1 0 or v ´1 depending on the type of v 0 , v 1 2k`2 or v 2k`3 depending on the type of v 2k`1 and all of their 2-neighbors. Observe that by Lemma 10.3.9 and Lemma 10.3.10, H is indeed a tree. By the minimality of pG, σq, we have a coloring of pGzH, σq which induces a list assignment L on the signed tree pH, σq. To complete the proof, considering v 1 as the root of this tree, we show that L a pv 1 q ‰ H.

If k " 0, then H is either the signed graph paq of Figure 10.13 or the signed graph pbq. In either case, to compute the number of colors forbidden on v 0 , we apply Lemma 10.2.5 to the v ´1-branch and Lemma 10.2.3 to the 2-vertex branch, concluding that L f pv 0 q is contained in a paired 6-set and, therefore, L a pv 0 q contains a paired 6-set. Thus, by Lemma 10.2.6 (7), the v 0 -branch will forbid at most a pair of colors from Lpv 1 q. If we have the case paq of the figure, then each of v 2 and v 1 2 , by Lemma 10.2.5, will forbid at most two pairs from Lpv 1 q, altogether we have at most five pairs, thus in all case L a pv 1 q contains at least one pair of color. If we have the case pbq of the figure, then by symmetry of v 0 and v 2 we have at most a pair forbidden from Lpv 1 q by v 2 . In this case, Lpv 1 q was a neighbored 5-set, thus L a pv 1 q still contains at least one element.

For k ě 1, depending on the type of v 2k`1 and just as in the previous case, L a pv 2k`1 q contains either a paired 4-set or a neighbored 3-set. Then, by Lemma 10.2.3 and Lemma 10.2.6 ((5) or (4)), L a pv 2k q contains a paired 6-set, which in turn implies that L a pv 2k´1 q is a neighbored 3-set. Repeating this process, L a pv 2 q contains a paired 6-set, thus from this branch of the tree at most one pair of colors will be forbidden on v 1 . Now if v 1 is of type 1, then the branches corresponding to v 0 and v 1 0 each may forbid at most two pairs of colors, and since Lpv 1 q " C, we still have a pair of available colors. If v 1 is of type 2, then the v 0 -branch forbids only one pair, and since Lpv 1 q is a neighbored 5-set, we still have a color available at v 1 .

Discharging Method

Recall that pG, σq is a minimum counterexample to Theorem 10.1.4. A 3 ´-subgraph of G is a connected component H of the subgraph induced by the set of 3-vertices and 2-vertices of G. Given a 3 ´-subgraph H, let n 0 pHq be the number of vertices of H which are 3 0 -vertices in G and let n 1 pHq be the number of 3 1 -vertices of G that are of degree 3 in H, i.e., the number of vertices in H each of which has one 2-neighbor and two 3-neighbors.

Lemma 10.3.12. In any 3 ´-subgraph H of G, n 0 pHq ě n 1 pHq.

Proof. Our proof is by discharging technique. We assign an initial charge of 1 to those vertices in H that are 3 0 -vertices of G and a charge of 0 to all other vertices in H. We will introduce some discharging rules and prove that, upon applying these rules, each vertex in H which is a 3 1 -vertex of G receives a total charge of 1 2 while no 3 0 -vertex of G in H loses more than 1 2 . That would prove our claim. The discharging rules we use are as follows.

Rule 1. Given a 3 0 -vertex v 1 of G, assume there exists a unique path P " v 1 ¨¨¨v 2k`1 , k ě 0 satisfying that v i is a 3 0 -vertex of G for odd i and v i is a 3 1 -vertex of G for even i. We have the following two sub-rules: positive triangle with two negative edges does not admit an edge-sign preserving homomorphism to pK 6 , M q. Thus considering the triangles uvw and uvx, all their edges must be positive in σ 1 . Hence, only one of xy or yw is negative. Considering the symmetry of xy and yw, we assume σ 1 is the signature given in the figure. Without loss of generality, we may assume xy is mapped to the edge 12. Then none of the other three vertices can map to 1 or 2. But then there is no positive triangle induced by t3, 4, 5, 6u to map them to. With regard to mapping signed bipartite planar graphs to pK 3,3 , M q and pK 4,4 , M q, the existence of a (simple) signed bipartite planar graph all whose mappings to pK 4,4 , M q are onto, follows from a general construction of [START_REF] Naserasr | Walk-powers and homomorphism bounds of planar signed graphs[END_REF]. However, in this special case, we have a smaller example of Figure 10.16. In this example, any pair of vertices in the same part of the bipartition belongs to a negative 4-cycle, and thus identifying any such pair would create a negative 2-cycle. Hence, any mapping of this signed bipartite graph to pK 4,4 , M q is onto. Thus it does not map to its subgraph pK 3,3 , M q.

Finally, noting that Theorem 10.4.1 implies that any graph of maximum average degree less than 3 maps to pK 2k , M q for k ě 4, we show that the conditions of maximum average degree cannot be improved for any value of k. Our examples, depicted in Figure 10.17, are built from a negative cycle on each of whose edge we build a positive triangle. Proof. The proof is based on the fact that pK 2k , M q (for any given k) has no triangle with two negative edges. Suppose to the contrary that there exists a homomorphism of pG , σq to pK 2k , M q, i.e., there exists a switching-equivalent signature σ 1 and an edge-sign preserving homomorphism of pG , σ 1 q to pK 2k , M q. But then at least one edge of the negative -cycle is assigned a negative sign by σ 1 and then the triangle associated with this edge has two negative edges. But there is not such positive triangle in pK 2k , M q, a contradiction.

In Part IV, we are working on different classes of signed graphs in each of the previous chapters.

Generally, we denote by P and SP, respectively, the class of all planar graphs and the class of all signed planar graphs, where we allow loops and multi-edges. We denote by P k (or P k ) the subclass of P where each graph in P k is of girth (or, respectively, odd-girth) at least k. Similarly, the subclass of SP where the shortest cycle of each member is at least k will be denoted by SP k . Thus, in particular, SP 2 is the class of all loop-free signed planar graphs and SP 3 is the class of all signed planar simple graphs.

Recall that in Section 2.2 we have mentioned three subclasses of signed graphs of special importance according to their g ij conditions. They are the class G 01 " tpG, `q | G is a graphu, the class G 10 " tpG, σq | G is bipartiteu, and the class G 11 " tpG, ´q | G is a graphu. When restricted to planar graphs, we have the following classes.

For a given integer k, let SP k denote the class of signed planar graphs pG, σq such that the signed graph pG, ´σq satisfies that for each ij P Z 2 2 , we have g ij pG, ´σq ě g ij pC ´k q. There are two kinds of classes based on the parity of k:

• For an odd integer k " 2 `1, and after some suitable switching, SP k consists of all signed planar graphs of odd-girth at least k with all edges being assigned positive signs, i.e., P 2 `1.

It is a subclass of G 01 .

• For an even value of k " 2 , the class SP k consists of all signed planar bipartite graphs of negative-girth at least k, i.e., SBP 2 . It is a subclass of G 10 .

We note that SP k is not a subclass of SP k as signed graphs in SP k may have positive even cycles of any length while signed graphs in SP k have no short cycles of length less than k. However, it is expected that the circular chromatic number of SP k is determined by the subclass SP k X SP k .

The questions of determining χ c pSP k q is closely related to some of the most well known theorems and conjectures in the theory of graph coloring, such as the 4-color theorem, Grötzsch's theorem, and Jaeger-Zhang conjecture and its bipartite analogue. For k " 3 and 4, both answers are 4, the first by the 4-color theorem, the second by the observation that 4 is the upper bound for the class of signed bipartite simple graphs in Chapter 7 showing that 4 cannot be improved. For k " 5, we have the Grötzsch theorem, that gives upper bound of 3 which is also shown to be the optimal value. For k " 6, as shown in Chapter 9, using the 4-color theorem, 14 5 ď χ c pSP 6 q ď 3. But we still do not know what is the exact value for χ c pSP 6 q. For k " 8, we study the edge-density of C ´4critical signed graphs in Chapter 8. The result implies that χ c pSP 8 q " 8 3 and the tightness of this bound is verified by a T 2 -construction of a sequence of signed bipartite graphs of circular chromatic number approaching 4. Using the notion of flows of signed graphs, developed in Chapter 5, we have recently proved that χ c pSP 14 q ď 12 5 and χ c pSP 20 q ď 16 7 in [START_REF] Li | Strongly Z 2k -connectedness and mapping signed bipartite planar graphs to cycles[END_REF]. For larger and more general k, we have the widely studied Jaeger-Zhang conjecture for k " 4p `1 and its bipartite analogue for k " 4p, stated in Conjectures 11.0.1 and 11.0.2. In supporting Conjecture 11.0.2, we prove in Theorem 6.3.9 that the condition of negative-girth being at least 6p ´2 is sufficient for signed bipartite planar graphs to admit a circular 4p 2p´1 -coloring. This also leads to the importance of the question of determining χ c pSP k q. The circular chromatic number bound for the class of signed planar simple graphs is discussed in Section 4.4 of Chapter 4, we show that 14 3 ď χ c pSP 3 q ď 6 and the precise value is still an open problem. Also, in Chapter 10, our result of mapping sparse signed graphs to pK 6 , M q implies that χ c pSP 7 q ď 3 but we do not know whether this bound is tight or not. In a recent work [START_REF] Li | Strongly Z 2k -connectedness and mapping signed bipartite planar graphs to cycles[END_REF], we show that χ c pSP 10 q ď 8 3 . Following from some earlier flow results in Chapter 6, we provide some bounds on χ c pSP 6p`i q for i P t1, 2, . . . , 6u in Theorem 6.3.5. In the next table, we summarize the best known results for these questions for some value of k.

Circular chromatic number of SP k and SP k k Bounds on χ c pSP k q Reference Bounds on χ c pSP k q Reference 2 χ c pSP 2 q " 4 Prop. 3.1.7 χ c pSP 2 q " 8 the 4-color thm 3 χ c pSP 3 q " 4 the 4-color thm 14 3 ď χ c pSP 3 q ď 6 Thm. 4.4.1 4 χ c pSP 4 q -4 Thm. 7.2.1 χ c pSP 4 q ď 4 [MRŠ16] 5 χ c pSP 5 q " 3 [Grö58], [START_REF] Steinberg | Grötzsch's theorem for the projective plane[END_REF] 6 14 5 ď χ c pSP 6 q ď 3 Thm. 9.2.4 ˚¨6 p ´2 χ c pSP 6p´2 q ď 4p 2p´1 Thm. 6.3.9 χ c pSP 6p´2 q ď 8p´2 4p´3 Thm. 6.3.5 6p ´1 χ c pSP 6p´1 q ď 4p 2p´1 [START_REF] Li | Circular flows via extended Tutte orientations[END_REF] χ c pSP 6p´1 q ď 4p 2p´1 Thm. 6.3.5 6p ˚6p `1 χ c pSP 6p`1 q ď 2p`1 p [START_REF] Lovász | Nowhere-zero 3-flows and modulo k-orientations[END_REF] χ c pSP 6p`1 q ď 8p`2 4p´1 Thm. 6.3.5 6p `2 ˚χc pSP 6p`2 q ď 2p`1 p Thm. 6.3.5

In this table, when we write χ c pCq " r, it means that χ c p Ĝq ď r for each member Ĝ of the class C and that the equality is known to hold for at least one member of the class. When we write χ c pCq -r, we mean that χ c pCq ď r and there is a sequence of signed graphs of C whose limit of the circular chromatic number is r. In such cases, sometimes it is verified that the r is never reached by a single member of C. For example, this is indeed the case for the class SP 4 . In other cases, it is not known if the equality holds for some members or the inequality is always strict. In particular, for P 8 the sequence that gives the limit of 8 3 is tT 2 pΓ i qu where Γ i is the sequence reaching the limit of 4 for SP 4 . It remains an open problem whether the equality can be reached in this case.

There are some trivial inclusions among the classes considered here: SP k`2 Ď SP k and SP k`1 Ď SP k . In such cases, any upper bound for the larger class works also on the smaller one and any lower bound for the smaller one works on the larger one as well. In the entries of the table where we write "˚" the best known bounds come from the other entries of the table based on these inclusions.

To tighten the gap in the bounds or, more ambitiously, to determine the exact values, is the subject of some of main work in the theory of coloring planar graphs. A notable conjecture is that of Jaeger-Zhang which can be restated as:
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  Theorem 4.1.1. If pG, σq is a signed 2-degenerate simple graph on n vertices, thenχ c pG, σq ď 4 ´2 t n`1 2 u .Moreover, this upper bound is tight for each value of n ě 2.
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  Theorem 5.3.3. [Hoffman's circulation theorem] [Hof60] Let G be a digraph and let s, t : ApGq Ñ R ě0 satisfy speq ď tpeq for each e P ApGq. Then there exists a function f : E Ñ R ě0 satisfying that ř pu,vqPApGq f puvq " ř pv,wqPApGq f pwvq with speq ď f peq ď tpeq for each e P ApGq if and only if ÿ pu,vqPApGq,uPU,vRU spuvq ď ÿ px,yqPApGq,xRU,yPU tpxyq @U Ă V pGq. When considering the circular r-flows in signed graphs, we have the following corollary. Given a cut C of pG, σq, we denote the set of forward edges of C by C F and the set of backward edges of C by C B .
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 8 Figure 8.4. C ´4-critical signed graph Ŵ depicted in two ways We give two different proofs for the fact that Ŵ does not map to C ´4. Each proof takes advantage of one of the presentations in Figure 8.4, and leads to different development of ideas. Proposition 8.2.5. The signed graph Ŵ of Figure 8.4 does not map to C ´4. Moreover, up to a switching equivalence, this is the only signature on this graph with this property.
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  Towards proving Theorem 8.3.1, next we show that the underlying graph G of the minimum counterexample Ĝ does not contain two 4-cycles sharing edges. Let Θ 1 denote the graph of Figure 8.7 and Θ 2 denote the graph of Figure 8.8. Lemma 8.3.4. Given a minimum counterexample Ĝ to Theorem 8.3.1, the underlying graph G does not contain either Θ 1 or Θ 2 as a subgraph.
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  Given a graph G, we denote by G the signed multigraph obtained from G by replacing each edge with a digon. It is easily observed that: Observation 8.4.2. A graph G is k-colorable if and only if the signed multigraph G admits a 0-free 2k-coloring.Next we develop another technique to build C ´2k -critical signed graphs.Theorem 8.4.3. Given a graph G, we have χpGq ď k if and only ifT 2k´2 p Gq Ñ C ´2k . Moreover, G is pk `1q-critical if and only if T 2k´2 p Gq is C ´2k -critical.Proof. The first part of the theorem follows from Theorem 8.4.1 and Observation 8.4.2.

  q| , it does not contain Ŵ as a subgraph and any proper subgraph of it has average degree strictly less than 8 3 . Thus, by Corollary 8.3.7, it is a C ´4-critical signed graph for which the bound of Theorem 8.3.1 is tight. Further identification of vertices of degree 2 would lead to other examples for which the bound of Theorem 8.3.1 is either tight or nearly tight.
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Part II

Circular Colorings of Signed Graphs 0 φpzq φpx 3 q φpx 2 q Figure 4.12. Subcase (i-1): Restrictions on the negative triangle x 3 x 2 z.

By [II], φpzq P r 10

3 ´ 2 , 11 3 `η ´ s. Note that pr 10 3 ´ 2 , 11 3 `η ´ sq " 1 3 `η ´ 2 ă 1. Since d pmod rq pφpx 3 q, φpzqq ě 1 (as x 3 z is a positive edge) and φpx 3 q P rδ `1, 11 3 `η ´ s, we conclude that δ ď 5 3 `η ´ and φpx 3 q P rδ `1, 8 3 `η ´ s. This implies that I φ;x 3 ,x 2 Ď rδ `1, 11 3 ´ s. As δ ą 5 3 ´ , prδ `1, 11 3 ´ sq ă 1, contrary to the fact that x 2 x 3 is a positive edge.

Case (ii) δ P r2 `η, 8 3 `η ´ s. Depending on the ranges of φpx 2 q and φpx 3 q, we consider four subcases.

Subcase (ii-1) φpx 2 q P r1, δ ´1s and φpx 3 q P r1 `η, δ ´1s.

By [III], φpzq P r 10 3 ´ 2 , 11 3 `η ´ s. As φpx 2 q, φpx 3 q P r1, δ ´1s, pr1 `η, δ ´1sq ă 1 and x 2 x 3 is a positive edge, we have δ ě 3 and φpx 2 q P r1, δ ´2s. However, the distance of points in r 10

3 ´ 2 , 11 3 `η ´ s and r1, δ ´2s is at least 2 ´η which is strictly larger than 4 3 ´ 2 , contradicting that x 2 z is a negative edge.

Subcase (ii-2) φpx 2 q P r1, δ ´1s and φpx 3 q P rδ `1, 11 3 `η ´ s. (φpx 3 q P rδ ´4 3 ` 2 , 4 3 `η ´ 2 s) By [IV], φpzq P r1 `η, 4 3 ´ 2 s and by Condition (4.1), η ď 1 3 ´ 2 . Note that the interval I φ;x 3 ,x 2 ,z is one of the following intervals:

´ 2 s, rφpx 3 q, φpx 2 qs Ď rδ ´4 3 ` 2 , δ ´1s, rφpzq, φpx 2 qs Ď r1 `η, δ ´1s, rφpzq, φpx 3 qs Ď r1 `η, 4 3 `η ´ 2 s, and rφpx 2 q, φpx 3 qs, rφpx 2 q, φpzqs Ď r1, 4 3 `η ´ 2 s.

All the above intervals have lengths at most 2 3 ´ , implying that φ;x 3 ,x 2 ,z ă 2 3 ` 2 , this contradicts Corollary 4.4.3.

Subcase (ii-3) φpx 2 q P rδ `1, 11 3 ´ s and φpx 3 q P r1 `η, δ ´1s. By Condition (4.2), δ ď 8

3 ´ , and by [III], φpzq P r 10 3 ´ 2 , 11 3 `η ´ s. Observe that φpx 3 q P r 10 3 `η ´ 2 , 4 3 `δ ´ 2 s. So I φ;x 3 ,x 2 ,z is one of the following intervals:

rφpx 3 q, φpzqs, rφpx 3 q, φpx 2 qs Ď r 10 3 `η ´ 2 , 11 3 `η ´ s, rφpx 2 q, φpx 3 qs Ď rδ `1, 4 3 `δ ´ 2 s, rφpx 2 q, φpzqs Ď rδ`1, 11 3 `η´ s, rφpzq, φpx 2 qs Ď r 10 3

´ 2 , 11 3

´ s, and rφpzq, φpx 3 qs Ď r 10 3

´ 2 , 4 3 `δ´ 2 s.

Thus the φ;x 3 ,x 2 ,z ă 2 3 ´ , contradicting Corollary 4.4.3. Subcase (ii-4) φpx 2 q P rδ `1, 11 3 ´ s and φpx 3 q P rδ `1, 11 3 `η ´ s. The interval rδ `1, 11 3 `η ´ s has length at most 2 3 ´ ă 1. This contradicts the fact that x 2 x 3 is a positive edge.

Part III

Circular Flows in Signed Graphs

Lemma 5.4.16. Assume I `" pΓ `, u 1 , v 1 q is a plus flow indicator and I ´" pΓ ´, u 2 , v 2 q is a minus flow indicator. Assume that r ą maxtΦ c pI ù1 v 1 q, Φ c pI ú2 v 2 qu and r 1 ą 2 are two real numbers and let t " r r 1 . If Z ˚pI `, rq " rt, r 2 s and Z ˚pI ´, rq " r0, r 2 ´ts, then given a signed graph Ω, Φ c pΩpI `, I ´qq " r if and only if Φ c pΩq " r 1 .

Let P 2 2 be a signed multi-path on three vertices u, w, v, and between u, w there are two parallel edges of the same sign, between w, v there are two parallel edges of different signs.

Example 5.4.17. Assume that I " pΓ, u, vq is a signed indicator.

(1) If Γ is a signed 2K 2 with one positive edge and one negative edge connecting two vertices u and v, then I is a plus flow indicator and Z ˚pI , rq " r2 ´r 2 , r 2 s for 2 ď r ă 4 and Z ˚pI , rq " r0, r 2 s for r ě 4.

(2) If Γ is a signed 2K 2 with both positive edges connecting two vertices u and v, then I is a minus flow indicator and Z ˚pI , rq " r0, r ´2s for 2 ď r ă 4 and Z ˚pI , rq " r0, r 2 s for r ě 4.

(3) If Γ is a signed multi-path P 2 2 connecting two vertices u and v, then I is a plus-minus flow indicator and Z ˚pI , rq " r2 ´r 2 , r ´2s for 8 3 ď r ă 4 and Z ˚pI , rq " r0, r 2 s for r ě 4. (4) If Γ is a signed 2-path connecting two vertices u and v with one positive edge and one negative edge, then I is a plus-minus flow indicator and Z ˚pI , rq " r1, r 2 ´1s for r ě 4. Recall that T pG, σq is a signed graph obtained from pG, σq by replacing each edge e with an -path of signature ´σpeq. Since here we work with inversing-equivalent signed graphs, we need to indicate which signature we choose for the T -construction. Especially, for T 2 pG, `q, we choose the signed 2-path to consist of one positive edge and one negative edge. Considering the signed indicator of Example 5.4.17 (4) and applying Lemma 5.4.15, we obtain the following result.

Lemma 5.4.18. Given two integers p and q satisfying that p q ě 2, a graph G admits a circular p q -flow if and only if T 2 pG, `q admits a circular 2p q -flow. We denote by K o 2 (or K e 2 ) a signed K 2 which contains an odd (or, respectively, even) number of positive edges. Considering signed indicators I `" K o 2 and I ´" K e 2 , we obtain the next lemma, which is dual to Lemma 3.3.17.

Lemma 5.4.19. Given an integer ě 1 and a real number r ă 2 ´1 ,

s and Z ˚p K e 2 , rq " r0, r 2

´ s.

We combine Lemmas 5.4.16 and 5.4.19, where we take Γ `" K o 2 , Γ ´" K e 2 and t " ´p ´1q r 2 , and then we have the following result.

Lemma 5.4.20. For any signed graph Ω,

2 χ c pΩq p ´1qχ c pΩq `2 .

In particular, when " 2, Ωp2K o 2 , 2K e 2 q " 2Ω (recall Ĝ in Section 2.3.2) and then we have χ c p2Ωq " 4χcpΩq χcpΩq`2 .

Lemma 5.4.21. Given a real number r, r ě 2, a signed graph Ĝ admits a circular r-flow if and only if 2 Ĝ admits a circular 4r r`2 -flow.

Corollary 6.2.4. For every 6-edge-connected signed graph pG, σq, Φ c pG, σq ă 4.

Moreover, it has been proved in [START_REF] Han | Nowhere-zero 3-flow and Z 3 -connectedness in graphs with four edge-disjoint spanning trees[END_REF] that every graph that contains 4 edge-disjoint spanning trees admits a circular 3-flow. Simply by Lemma 5.2.4, we can show that every signed graph with 5 edge-disjoint spanning trees admits a circular 3-flow, and consequently, every 10-edge-connected signed graph admits a circular 3-flow. But this result is not optimal. In the next section, we will apply other techniques to show a stronger result (Theorem 6.3.5 (4) when p " 1) that 8-edgeconnectivity is sufficient for signed graph to admit a circular 3-flow.

Note that C. Thomassen has proved in [START_REF] Thomassen | The weak 3-flow conjecture and the weak circular flow conjecture[END_REF] that every 8-edge-connected graph is Z 3connected and furthermore it has been proved in [START_REF] Lovász | Nowhere-zero 3-flows and modulo k-orientations[END_REF] that 6-edge-connected graph is Z 3connected. However, we cannot make use of those group connectivity result and apply a similar idea as in Theorem 6.1.4 to show that every 8-edge-connected (or even stronger, 6-edge-connected) signed graph admits a circular 3-flow. It is because our definition of circular (modulo) 3-flow in signed graphs is quite different from the notion of Z 3 -connected graphs.

Circular flows of highly edge-connected signed graphs

In this section, we shall study the circular flow indexes of some classes of signed graphs with given edge-connectivity conditions. The results are obtained by considering stronger statements based on the following definitions. Definition 6.3.1. [START_REF] Li | Circular flows via extended Tutte orientations[END_REF] Given a graph G, a function β : V pGq Ñ t0, ˘1, . . . , ˘ku is a p2k, βqboundary of G if for every vertex v P V pGq, βpvq " dpvq pmod 2q, and

Given a subset A Ă V pGq, we define βpAq P t0, ˘1, . . . , ˘ku such that βpAq " ř vPA βpvq pmod 2kq.

Given a p2k, βq-boundary β, an orientation D of G is called a p2k, βq-orientation if for every

The following theorem and its corollary play a key role in proving our results in this section.

Theorem 6.3.2. [LTWZ13; LWZ20] Let G be a graph with a p2k, βq-boundary β, where k ě 3. Let z 0 be a vertex of V pGq such that dpz 0 q ď 2k´2`|βpz 0 q|. Assume that D z 0 is an orientation on Epz 0 q (edges incident to z 0 ) which achieves boundary βpz 0 q at z 0 . Let V 0 " tv P V pGqztz 0 u | βpvq " 0u. If V 0 ‰ H, we let v 0 be a vertex of V 0 with the smallest degree. Assume that dpAq ě 2k ´2 `|βpAq| for any A Ă V pGqztz 0 u with A ‰ tv 0 u and |V pGqzA| ą 1. Then the partial orientation D z 0 can be extended to a p2k, βq-orientation on the entire graph G.

The next key theorem follows from Theorem 6.3.2.

Theorem 6.3.3. [START_REF] Li | Circular flows via extended Tutte orientations[END_REF] Let G be a p3k ´3q-edge-connected graph, where k ě 3. For any p2k, βqboundary of G, G admits a p2k, βq-orientation.

In general, this theorem holds for both even and odd k as remarked in [START_REF] Li | Circular flows via extended Tutte orientations[END_REF].

Next, we will extend a theorem of [START_REF] Li | Circular flows via extended Tutte orientations[END_REF], which allows us to apply p4p, βq-orientations of graphs to study circular 2p q -flows of signed graphs. The proof is based on similar ideas to the proof of Theorem 1.2 in [START_REF] Li | Circular flows via extended Tutte orientations[END_REF]. Recall that d G pvq denotes the number of positive edges incident to v in the signed graph Ĝ, and when the graph we refer to is clear from the context, we may write d `pvq as well. edge e, f peq " f 1 peq `2p P t2p ´1, 2p `1u and for each negative edge e, f peq " f 1 peq P t´1, 1u. Moreover, B D 1 f pvq " B D 1 f 1 pvq`B D 1 gpvq " βpvq`2p¨d `pvq " 0 pmod 4pq. Hence, pD 1 , f q is a modulo 4p-flow in Ĝ as we required.

Conversely, let pD 1 , f q be a modulo 4p-flow in G satisfying the conditions stated as above. We can define a p4p, βq-orientation on G by appropriately orientating each edge e P EpGq, from the process above. As we observe from the above, the correspondence between the 4p 2p´1 -flow in pG, σq and the p4p, βq-orientation on the graph G with βpvq " 2p ¨d`p vq pmod 4pq is one-to-one. This completes the proof.

The next theorem follows from Theorems 6.3.3 and 6.3.6. Theorem 6.3.7. For any signed Eulerian graph pG, σq, if G is p6p ´2q-edge-connected, then Φ c pG, σq ď 4p 2p´1 . By the duality between the circular coloring of signed bipartite planar graphs and the circular flow in signed Eulerian planar graphs, we conclude that every signed bipartite planar graph of girth at least 6p´2 admits a circular 4p 2p´1 -coloring, i.e., it admits a homomorphism to C ´2k . Furthermore, we claim that we can replace the girth condition with the same negative-girth condition and obtain the same conclusion. We first prove the next lemma. Lemma 6.3.8. Let G be a p6k ´2q-edge-connected Eulerian graph and let z 0 be a vertex of degree 6k ´2 of G. For any p4k, βq-boundary β and its corresponding pre-orientation D z 0 on the edges incident to z 0 satisfying that Ð Ý Ý d Dz 0 pz 0 q ´Ý Ý Ñ d Dz 0 pz 0 q " βpz 0 q pmod 4kq, D z 0 can be extended to a p4k, βq-orientation on G.

Proof. Let G be a p6k ´2q-edge-connected Eulerian graph and z 0 be a vertex of degree 6k ´2. Let N G pz 0 q denote the set of neighbors of z 0 . Assume β is a p4k, βq-boundary and D z 0 is the corresponding pre-orientation on the edges incident to z 0 . We aim to apply Theorem 6.3.2, thus we need a "proper" β ˚such that |β ˚pz 0 q| " 2k. Let D 1 z 0 be a pre-orientation obtained from D z 0 by changing one in-arc, say pw, z 0 q, of z 0 to an out-arc and let β 1 be defined as follows:

It is easy to verify that β 1 is a p4k, βq-boundary of G and D 1 z 0 achieves β 1 at the vertex z 0 . We claim that the pre-orientation D z 0 is extendable if and only if the pre-orientation D 1 z 0 is extendable. It is simply because the extended orientations, say D and D 1 , will be the same when restricted to the subgraph G ´z0 . By repeatedly applying this flipping operation, we may find a p4k, βq-boundary β ˚satisfying that |β ˚pz 0 q| " 2k and its corresponding pre-orientation D z0 . Since G is p6k ´2qedge-connected, all the conditions (with respect to β ˚) of Theorem 6.3.2 are satisfied, thus D z0 can be extended to G. Therefore, for any p4k, βq-boundary β of G, its corresponding pre-orientation D z 0 which achieves β at z 0 could be extended to a p4k, βq-orientation on G.

Applying the bipartite folding lemma (Lemma 2.3.15) and Lemma 6.3.8, we have the following. Theorem 6.3.9. Every signed bipartite planar graph of negative-girth at least 6p ´2 admits a circular 4p 2p´1 -coloring.

Proof. Assume to the contrary that pG, σq is a minimum counterexample. By Lemma 2.3.15, we may assume that pG, σq is a signed bipartite plane graph of negative-girth 6p´2 in which each facial graphs

This chapter is based on the following paper: Using the T -construction introduced in Section 2.3.3, we have seen another reformulation of 4-color theorem (Theorem 2.3.7): For any planar graph G, the signed graph T 2 pG, `q admits a homomorphism to C ´4. Observing that for a simple graph G the negative-girth of T 2 pG, `q is at least 6 (corresponding to a triangle of G), R. Naserasr, E. Rollova, and E. Sopena conjectured in [START_REF] Naserasr | Homomorphisms of signed graphs[END_REF] that every signed bipartite planar graph of negative-girth at least 6 admits a homomorphism to C ´4. However, in Section 8.5, we disprove this conjecture. Furthermore, as an application of the results of this section, we prove that if the condition on negative-girth is increased to 8, then the result holds.

In Section 2.4, we have introduced the notion of pH, πq-critical signed graphs. In this chapter, we will focus on C ´4-critical signed graphs. Since the girth condition of Definition 2.4.2 eliminates the cases which do not satisfy conditions of the no-homomorphism lemma, the first observation is that C ´4-critical signed graphs are all bipartite. We show in Theorem 8.3.1 that every C ´4-critical signed graph on n vertices must have at least r 4n 3 s edges with a sole exception of a signed bipartite graph on 7 vertices which has only 9 edges (depicted in Figure 8.4). The main method that we use in the proof is the potential technique, developed in [START_REF] Kostochka | Ore's conjecture for k " 4 and Grötzsch's theorem[END_REF] and then further used in [START_REF] Dvořák | Density of 5/2-critical graphs[END_REF] and [START_REF] Postle | On the Density of C_7-Critical Graphs[END_REF], to estimate the potential and thus the sparsity of such critical graphs.

In the next section, we present the necessary terminology and also include a useful result (Theorem 8.1.1) about determining the existence of an edge-sign preserving homomorphism to C ´4. In Section 8.2, we start with some extremal examples of C ´4-critical signed graphs, for example, the smallest C ´4-critical signed graph with respect to the number of vertices, namely Γ in Figure 8.3 and the smallest C ´4-critical signed graph with respect to the edge-density, namely Ŵ in Figure 8.4. Furthermore, we consider some other signed bipartite graphs and some constructions on them, and prove that either it contains Ŵ as a subgraph or it maps to C ´4. Those structures will appear in the proof of the main theorem when we apply some operations to the minimum counterexample.

After the preparations, in Section 8.3, we prove our main result on the minimum number of edge-density of C ´4-critical signed graphs. We use the potential technique to find the forbidden configurations in a minimum counterexample and apply the discharging technique to obtain a contradiction in the end. Furthermore, in Section 8.4 we introduce some techniques to build C ´4-critical signed graphs of low edge-density. Among other constructions, the construction SpC 2k`1 q helps to 8.2 C ´4-critical signed graphs Setting pH, πq to be C ´4 in the definition of pH, πq-critical signed graphs, we have the following definition.

Definition 8.2.1. A signed graph pG, σq is said to be C ´4-critical if the followings hold:

• pG, σq is a signed bipartite simple graph;

• pG, σq Ñ C ´4;

• pG 1 , σq Ñ C ´4 for every proper subgraph G 1 of G.

We first give some general structural properties of a C ´4-critical signed graph.

This is an easy consequence of the fact that C ´4 is vertex transitive. Recall that a k-thread of G is a path of length k whose internal vertices are all of degree 2 in G. It is easily observed that the maximum length of a thread in an pH, πq-critical graph is bounded by a function of pH, πq. For C ´4-critical signed graphs, we have: Lemma 8.2.3. A C ´4-critical signed graph Ĝ does not contain a 3-thread.

Proof. Assume to the contrary that G has a 3-thread P " x 0 x 1 x 2 x 3 . Recall that a C ´4-critical signed graph is bipartite. As x 0 and x 3 are connected by a path of length 3, they are in different parts of G. Since Ĝ is C ´4-critical, the signed graph Ĝ1 " Ĝ ´tx 1 , x 2 u maps to C ´4. Let ϕ be such a mapping. Observe that, by Lemma 8.2.2, Ĝ1 is connected, thus ϕ preserves the bipartition of G 1 . In particular, ϕpx 0 q and ϕpx 3 q are in two different parts of C ´4 and thus adjacent. We note that ϕ has possibly applied switchings on some vertices of G 1 . Working with the resulting signature obtained from the same switching on Ĝ, we let P be the signed graph induced on P . If P has the same sign as the edge ϕpx 0 qϕpx 3 q, then ϕ can be extended by mapping P to this edge as well. Otherwise, ϕ can be extended by mapping P to the rest of the C ´4 (that is C ´4 ´ϕpx 0 qϕpx 3 q).

In this lemma, length 3 for a forbidden thread is the best one can do. We may see examples of C ´4-critical signed graphs with vertices of degree 2, that correspond to 2-threads. However, we still have some restriction on such threads: Observation 8.2.4. Given a C ´4-critical signed graph, a vertex of degree 2 cannot be on a C `4.

In fact, this is generally true for any core, note that any pH, πq-critical signed graph must be a core. 

Edge-density of C ´4-critical signed graphs

The main theorem we shall prove is as follows.

Thus the natural potential function of graphs we may work with is:

ppGq " 4|V pGq| ´3|EpGq|.

We note that the potential of a signed graph is the potential of its underlying graph.

Observation 8.3.2. We have ppK 1 q " 4, ppK 2 q " 5, ppP 3 q " 6 and ppC 4 q " 4. Thus any signed bipartite graph on at most 4 vertices has potential at least 4.

In the rest of this section, we let Ĝ " pG, σq be a minimum counterexample to Theorem 8.3.1. That is to say:

• Ĝ is a C ´4-critical signed graph with pp Ĝq ě 1 and Ĝ is not isomorphic to Ŵ ;

• Any C ´4-critical signed graph Ĥ, Ĥ ‰ Ŵ , with |V p Ĥq| ă |V p Ĝq| satisfies that pp Ĥq ď 0.

Given a signed graph Ĥ, we denote a signed graph obtained from Ĥ by adding a new vertex and joining it to two vertices of Ĥ (where the signs of the two new edges are arbitrary) by P 2 p Ĥq. Normally, to denote a path as a graph we use P n where n is the number of the vertices.

In the following lemma, we list the plausible potential of the subgraphs of the minimum counterexample Ĝ.

Lemma 8.3.3. Let Ĝ " pG, σq be a minimum counterexample to Theorem 8.3.1 and let Ĥ be a subgraph of Ĝ. Then 1. pp Ĥq ě 1 if Ĝ " Ĥ;

2. pp Ĥq ě 3 if Ĝ " P 2 p Ĥq; 3. pp Ĥq ě 4 otherwise.

Proof. The first claim is our assumption on Ĝ. If Ĝ " P 2 p Ĥq, then pp Ĝq " pp Ĥq `4 ˆ1 ´3 ˆ2, and then, since pp Ĝq ě 1, we have pp Ĥq ě 3. We now prove that for any other subgraph of Ĝ, pp Ĥq ě 4.

Suppose to the contrary that Ĝ contains a proper subgraph Ĥ which does not satisfy Ĝ " P 2 p Ĥq, and satisfies pp Ĥq ď 3. Among all such subgraphs, let Ĥ be chosen so that |V p Ĥq| `|Ep Ĥq| is maximized. We first claim that Ĥ is an induced subgraph of Ĝ. Otherwise, assume that e is an edge connecting two vertices of Ĥ. As adding an edge to a graph only decreases the potential, the assumption of the maximality implies that either Ĝ " Ĥ `e or Ĝ " P 2 p Ĥ `eq. In the first case, pp Ĥq " pp Ĝq`3 ě 4; in the second case, pp Ĥq " pp Ĥ `eq`3 ě 6 (since pp Ĥ `eq " pp Ĝq´4`6 ě 3), both contradicting the assumption that pp Ĥq ď 3.

By Observation 8.3.2, |V p Ĥq| ě 5. As Ĝ is C ´4-critical and Ĥ is a proper subgraph, there is a homomorphism ϕ of Ĥ to C ´4. Since C ´4 is vertex transitive, we may assume that ϕ preserves the bipartition of Ĥ induced by the bipartition of Ĝ. This is automatic if H is connected, but important if H is not connected.

Let Ĝ3 be the signed graph obtained from Ĝ2 by splitting v 0 back to v 2 and v 3 , adding the vertex v and adding the positive edges vv 2 and vv 3 back. Note that Ĝ3 is a subgraph of Ĝ. We observe that pp Ĝ3 q " pp Ĝ2 q `4 ˆ2 ´3 ˆ2 " pp Ĝ2 q `2 ď 3. (8.4) Furthermore, the equality is only possible if Ĝ2 " Ŵ . As v 1 R V p Ĝ3 q, we know that Ĝ3 ‰ Ĝ. By Lemma 8.3.3, we must have pp Ĝ3 q " 3 and Ĝ " P 2 p Ĝ3 q. And since equality in (8.4) must hold, we also have Ĝ2 " Ŵ . As Ĝ2 " Ŵ , vertices of Ĝ2 are of degree 2 or 3, and, thus, the splitting operation on v 0 (that we considered in order to build Ĝ3 ) is the same as subdividing one of its edges twice. Recall that there are two types of edges in Ŵ up to (switching) isomorphism. Thus the subdivided signed graph Ĝ3 is one of the two signed graphs: either Ω 1 of Figure 8.5 or Ω 2 of Figure 8.6. Thus either Ĝ " P 2 pΩ 1 q or Ĝ " P 2 pΩ 2 q. In the former case, by Lemma 8.2.6, Ĝ maps to C ´4. In the latter case, by Lemma 8.2.7, either Ĝ maps to C ´4 or it contains Ŵ as a proper subgraph but this contradicts the fact that Ĝ is C ´4-critical.

By combining Lemma 8.3.4 and Lemma 8.3.5, we have our main forbidden configuration as follows:

Corollary 8.3.6. A vertex of degree 3 in the minimum counterexample Ĝ does not have two neighbors of degree 2.

We are now ready to prove Theorem 8.3.1.

Proof. (of Theorem 8.3.1) We will employ the discharging technique. We assign an initial charge of cpvq " dpvq to each vertex of the minimum counterexample Ĝ. Observe that the total charge is 2|EpGq|. We apply the following discharging rule: "Every vertex of degree 2 receives a charge of 1 3 from each of its neighbors." For each vertex v, let c 1 pvq be the charge of v after the discharging procedure. Since there is no 3-thread in G, each degree-2 vertex v receives a total of 2 3 from its two neighbors and thus c 1 pvq " 2`2 3 " 8 3 . Each degree-3 vertex u has at most one neighbor of degree 2, so c 1 puq ě 3´1 3 " 8 3 . Each vertex w of degree at least 4 has charge c 1 pwq ě dpwq ´dpwq 3 " 2dpwq 3 ě 8 3 . Thus the total charge is at least 8|V pGq|

3

. That contradicts the assumption that pp Ĝq " 4|V pGq| ´3|EpGq| ě 1.

Applying this result in terms of maximum average degree of the (underlying) graph, denoted madpGq, we have the following.

Corollary 8.3.7. Given a signed bipartite (simple) graph Ĝ, if madpGq ă 8 3 and Ĝ does not contain Ŵ as a subgraph, then Ĝ Ñ C ´4.

Constructions of sparse C ´4-critical signed graphs

We have already seen in Section 2.3.3 that χpGq ď k if and only if T k´2 pG, `q Ñ C ´k . Next we extend this connection based on the notion of 0-free 2k-coloring of signed graphs. A signed graph pG, σq is K s 2k -critical if it does not admit a 0-free 2k-coloring but each of its proper subgraphs does. Using this notion, Theorem 2.3.5 can be extended to the following theorem. A proof of this theorem is also obtained by revising the proofs of Theorem 2.3.5 and Theorem 2.4.3 given in Section 2.3.3. Theorem 8.4.1. A signed multigraph Ĝ admits a 0-free 2k-coloring if and only if
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Introduction

Recall there is a strengthening of the 4-color theorem that every signed bipartite planar simple graph admits a homomorphism to pK 4,4 , M q. Following a special case for k " 3 of Theorem 3.3.12, we have the next reformulation of the Grötzsch theorem.

Theorem 9.1.1. [Grötzsch's theorem restated] For any triangle-free planar simple graph G, χ c pSpGqq ď 3.

As an analogue of the Grötzsch theorem, we are interested in the homomorphism to pK 3,3 , M q, a core subgraph of pK 4,4 , M q. Note that in Corollary 3.4.3 the homomorphism problem to pK 3,3 , M q is equivalent to the circular 3-coloring problem of signed bipartite planar graphs. We further note that considering Theorem 2.3.10, the problem of mapping signed bipartite planar graphs to pK 3,3 , M q captures the 3-coloring problem of ordinary planar graphs. We will prove the following theorem, noting that our proof is based on the 4-color theorem.

Theorem 9.1.2. Every signed bipartite planar graph of negative-girth at least 6 admits a homomorphism to pK 3,3 , M q. Moreover, the girth condition is best possible.

We view Theorem 9.1.2 as a parallel theorem to Grötzsch's theorem. Later, in Section 9.3, we propose a question as potentially common strengthening of these two theorems.

Another line of this study is to bound the circular chromatic number of given classes of signed graphs. Following the results in Chapters 7 and 8, we have that χ c pSBP 4 q " 4 and χ c pSBP 8 q " 8 3 and both of equalities are attained by some tight (infinite or finite) examples. Here, addressing the case " 6, we bound χ c pSBP 6 q in Theorem 9.2.4. The upper bound of 3 is implied from Theorem 9.1.2 but its tightness has not been verified yet.

Circular 3-coloring of signed bipartite planar graphs

The proof of the upper bound of Theorem 9.1.2 is based on some results regarding the connection between the edge-coloring results and homomorphism to signed projective cubes introduced in Section 1.3. We first state some results we may use.

The following result is implied by an edge-coloring result of [START_REF] Dvořák | Packing six T -joins in plane graphs[END_REF], whose proof is based on the results of [START_REF] Guenin | Packing T -joins and edge colouring in planar graphs[END_REF], eventually based on the 4-color theorem. 9.2. CIRCULAR 3-COLORING OF SIGNED BIPARTITE PLANAR GRAPHS 123 Theorem 9.2.1. [START_REF] Naserasr | Homomorphisms of planar signed graphs to signed projective cubes[END_REF] If pG, σq is a signed planar graph satisfying that g ij pG, σq ě g ij pSP Cp5qq for ij P Z 2 2 , then pG, σq Ñ SP Cp5q. As the signed projective cube SP Cp5q is bipartite and of negative-girth 6, i.e., g 10 pSP Cp5qq " 6 and g 01 pSP Cp5qq " g 11 pSP Cp5qq " 8, it means that every signed bipartite planar graph of negative-girth at least 6 admits a homomorphism to SP Cp5q. A characterization of mapping signed graphs to the signed projective cubes is also given in [START_REF] Naserasr | Homomorphisms of planar signed graphs to signed projective cubes[END_REF].

Theorem 9.2.2. [NRS13] Given a positive integer k and a signed graph pG, σq, pG, σq Ñ SP Cpkq if and only if there exists a partition of the edges of G, say E 1 , E 2 , . . . , E k`1 , such that for each i P t1, 2, . . . , k `1u, the signature σ i , which assigns ´to the edges in E i , is switching equivalent to σ.

The next theorem, following from Theorems 9.2.1 and 9.2.2, is the basic tool that we will use to prove Theorem 9.1.2 and then obtain the upper bound in Theorem 9.2.4.

Theorem 9.2.3. Given a signed bipartite planar graph pG, σq of negative-girth at least 6, there are 6 disjoint subsets of edges, E 1 , E 2 , . . . , E 6 , such that each of the signed graphs pG, σ i q, i P t1, 2, . . . , 6u, where E i is the set of negative edges of pG, σ i q, is switching equivalent to pG, σq.

In other words, the signature packing number of any signed bipartite planar graph of negativegirth at least 6 is at least 6 (see [START_REF] Naserasr | Packing signatures in signed graphs[END_REF] for more details on signature packing numbers). Now we are ready to prove the main result as follows.

Theorem 9.2.4. We have that 14 5 ď χ c pSBP 6 q ď 3. Proof. We first prove that every signed bipartite planar graph of negative-girth 6 admits a homomorphism to pK 3,3 , M q and then conclude that χ c pSBP 6 q ď 3.

Let pG, σq be a signed bipartite planar graph of negative girth at least 6 with a bipartition pA, Bq. By Theorem 9.2.3, there are disjoint subsets E 1 , E 2 , . . . , E 6 of edges of pG, σq such that for each i P r6s, the signature σ i , whose negative edges are E i , is equivalent to σ.

We consider the signed graph pG, σ 1 q where the set of negative edges is E 1 . Let G 1 be the graph obtained from G by contracting all the edges in E 1 . In this notion of contracting, we delete the contracted edge (those in E 1 ) but all other edges remain. Thus in theory we may have loops and parallel edge in the resulting graph. However, we show next that not only G 1 has no loop, it has no triangle either. In other words, we claim that every odd cycle of G 1 is of length at least 5.

To see this, let C 1 be an odd cycle of G 1 . This cycle is obtained from a cycle, denoted C, of G by contracting some edges (of E 1 ). As G is bipartite, the cycle C must be of even length. Thus the number of the contracted edges, i.e., |EpCq X E 1 |, is odd. Therefore, C is a negative cycle in the signed graph pG, σ 1 q. As all the pG, σ i q, i " 1, 2, . . . , 6, are equivalent, C is negative in all of them which means it has an odd number of edges from each of E i 's. As these sets are disjoint, and as for i " 2, 3, . . . 6, they still present in G 1 , the cycle C 1 has an odd number of edges from each E i for i " 2, 3, . . . 6. In particular, that is at least one edge from each, and noting again that they are disjoint sets, we conclude that C 1 is of length at least 5.

Having shown that G 1 is a triangle-free planar graph with no loop (might have parallel edges), we may apply the Grötzsch theorem to obtain a 3-coloring ϕ : V pG 1 q Ñ t1, 2, 3u of G 1 . Let pX, Y q be the bipartition of pK 3,3 , M q. Label the vertices X " tx 1 , x 2 , x 3 u and Y " ty 1 , y 2 , y 3 u such that tx 1 y 1 , x 2 y 2 , x 3 y 3 u is the set of negative edges.

We define the mapping ψ of pG, σ 1 q to pK 3,3 , M q as follows:

ψpuq " # x i , if u P A and ϕpuq " i y i , if u P B and ϕpuq " i.

124CHAPTER 9. HOMOMORPHISMS OF SIGNED BIPARTITE PLANAR GRAPHS TO pK 3,3 , M q It remains to show that ψ is an edge-sign preserving mapping of pG, σ 1 q to pK 3,3 , M q. For any positive edge uv of pG, σ 1 q, without loss of generality, we may assume that u P A, v P B and that ϕpuq " i, ϕpvq " j. Noting that uv is also an edge of G 1 , as ϕ is a proper 3-coloring, we have that i ‰ j. Thus ψpuqψpvq " x i x j is a positive edge in pK 3,3 , M q. For any negative edge uv of pG, σ 1 q, without loss of generality, assume u P A, v P B. As uv P E 1 is contracted to a vertex to obtain G 1 , ϕpuq " ϕpvq " i. So ψpuqψpvq " x i y i is a negative edge. Hence, ψ is an edge-sign preserving homomorphism of pG, σ 1 q to pK 3,3,M q. This completes the proof of the upper bound.

For the lower bound, we consider an example of signed planar simple graph pG, σq satisfying χ c pG, σq " 14 3 , given in Section 4.4. Then it follows from Lemma 3.3.18 that χ c pT 2 pG, σqq " 14 5 . It is easily observed that, since pG, σq is a signed simple planar graph, T 2 pG, σq has (negative) girth at least 6 and obviously it is a signed bipartite graph.

Questions and remarks

We have proved in Theorem 9.2.4 that every signed bipartite planar graph of negative-girth at least 6 admits a circular 3-coloring. However, the best example of signed bipartite planar graph of negative-girth 6 we know has circular chromatic number 14 5 and we cannot determine the exact value for SBP 6 . It remains an open problem to build such signed graphs of circular chromatic number between 14 5 and 3. We would like to ask the following question similar to what we have studied for signed bipartite planar graphs in Chapter 7.

Question 9.3.1. For any given signed bipartite planar graph Ĝ of negative-girth 6, does there exist an " p Ĝq such that Ĝ admits a circular p3 ´ q-coloring?

We establish a connection between this problem and a circular coloring problem of the class of signed planar simple graphs, using the notion of indicators. We have seen that 14 3 ď SP ď 6, where SP denote the class of signed planar simple graphs, in Section 4.4 and the next question is still unsolved.

Question 9.3.2. For any given signed planar simple graph Ĝ, does there exist an " p Ĝq such that Ĝ admits a circular p6 ´ q-coloring?

Let us mention that a negative answer to Question 9.3.2 would imply a negative answer to Question 9.3.1. For any signed planar simple graph Ĝ, T 2 p Ĝq is in the class SBP 6 . If there exists a signed planar simple graph Ĝ with χ c p Ĝq " 6, then χ c pT 2 p Ĝqq " 3 which answers Question 9.3.1 negatively.

There are some other perspectives to improve what we have proved in this chapter. The first is about the use of the 4-color theorem in our proof of the upper bound of 3 for the circular chromatic number of the subclass SBP 6 . Could one find a relatively short proof of this without using the 4-color theorem? Or can one show that, on the contrary, this result implies the 4-color theorem? We recall that, in Section 2.3.4, reformulations of the 4-color theorem using special classes of planar graphs of large girth are given. So this would not be a surprise.

The second question would potentially strengthen our result to include the Grötzsch theorem as a special case. One possibility is observed by reformulating the Grötzsch theorem itself as follows.

We recall that K 3 Ñ G if and only if SpK 3 q Ñ SpGq. Thus a potential strengthening of our result, which would also include the Grötzsch theorem, is as follows.

Conjecture 9.3.4. If pG, σq is a signed bipartite planar graph with the property that SpK 3 q Ñ pG, σq, then χ c pG, σq ď 3, i.e., pG, σq Ñ pK 3,3 , M q.

Recall the reformulation in Theorem 2.3.10, when G is triangle-free, SpGq contains negative 4-cycles but no 6-cycle. If, furthermore, G is assumed to be of girth 5, then SpGq will contain no 8cycle either. This calls another line of study that follows Steinberg's conjecture [START_REF] Steinberg | The state of the three color problem[END_REF]. R. Steinberg proposed that planar graphs with no cycle of length 4 and 5 are 3-colorable. This conjecture was recently disproved in [START_REF] Cohen-Addad | Steinberg's conjecture is false[END_REF]. However, some supporting results have been proved earlier, with the most notable one being the result of [START_REF] Borodin | Planar graphs without cycles of length from 4 to 7 are 3-colorable[END_REF] which shows if cycles of length 4, 5, 6, 7 are not subgraphs of a planar graph G, then G is 3-colorable. It is natural for us to ask the following question.

Problem 9.3.5. What is the smallest value of k, k ě 3, such that every signed bipartite planar graph with no 4-cycles sharing an edge and no cycles of length 6, 8, . . . , 2k, admits a homomorphism to pK 3,3 , M q?

For further study on this direction we refer to a recent work of [START_REF] Hu | Circular coloring and fractional coloring in planar graphs[END_REF]. In this work, replacing 3-coloring problem with homomorphism (of graphs) to C 2k`1 , authors consider the question of when forbidden cycles of length 1, 2, . . . , 2k, 2k `2, . . . , f pkq and planarity imply a mapping to C 2k`1 . They conclude that this is only possible when 2k `1 is a prime number. A natural analogue question is to ask the same for negative even cycles when signed bipartite planar graphs are considered.

Theorem 10.1.3. [CNS20] Given a signed graph pH, πq, there exists an ą 0 such that every signed graph pG, σq, satisfying g ij pG, σq ě g ij pH, πq and madpGq ă 2 ` , admits a homomorphism to pH, πq.

Since the existence of is known, the main interest is then to find the best value of for a given signed graph pH, πq. Recall that Question 1.4.4 asks, given a positive integer ě 2, what is the smallest value gp q such that every signed planar graph of girth at least gp q admits a circular 2 ´1coloring. Since a circular 2 ´1 -coloring of a signed graph pG, σq could be regarded as a homomorphism of pG, σq to the signed circular clique K s 2 ; ´1, combined with Euler's formula, the existence of ( ą 0) ensures the existence of gp q of Question 1.4.4. In [START_REF] Charpentier | Homomorphisms of sparse signed graphs[END_REF], the best value of " 4 7 is proved for pK 4 , eq where only one edge is negative. In this chapter, we find the best value of for the classes of signed graphs pK 2n , M q where M is a perfect matching of the graph under consideration. We highlight the two main results: Theorem 10.1.4. Every signed graph with maximum average degree less than 14 5 admits a homomorphism to pK 6 , M q. Moreover, the bound 14 5 is the best possible. Note that since we only consider signed simple graphs, the conditions of no-homomorphism lemma with respect to pK 6 , M q is always satisfied.

Theorem 10.1.5. Every signed graph with maximum average degree less than 3 admits a homomorphism to pK 8 , M q. Moreover, the bound 3 is the best possible.

Note that the notion of edge-sign preserving homomorphisms of signed graphs is a renaming of the notion of homomorphisms of 2-edge-colored graphs, which have been extensively studied since the 1980s. As (switching) homomorphism is relatively new, using the connection we have seen in Theorem 2.2.8, we may work with the Double Switching Graph of our target signed graphs. In particular, in relation to our work, we may apply Theorem 2.5 of [START_REF] Borodin | Homomorphisms from sparse graphs with large girth[END_REF] to the Double Switching Graph DSGpK 6 , M q of pK 6 , M q with t " 3 to obtain the following and our Theorem 10.1.4 improves this result.

Theorem 10.1.6 (Special case of Theorem 2.5 of [START_REF] Borodin | Homomorphisms from sparse graphs with large girth[END_REF]). If G is a graph of girth at least 7 and maximum average degree at most 28 11 , then pG, σq Ñ pK 6 , M q for any signature σ.

Next we shall explain our motivation of choosing this family of signed graphs, noting that n " 3 is of special importance and is the main case of the difficulty in this chapter. First we recall a strengthening of 4-Color Theorem that every signed bipartite planar graph maps to pK 4,4 , M q. The next theorem establishes the connection between the homomorphisms of signed bipartite graphs to signed graphs pK 2k , M q and pK k,k , M q.

Theorem 10.1.7. A signed bipartite graph pG, σq admits a homomorphism to pK k,k , M q if and only if it admits a homomorphism to pK 2k , M q.

Proof. Since pK k,k , M q is a subgraph of pK 2k , M q, if pG, σq maps to pK k,k , M q, then it obviously maps to pK 2k , M q as well.

For the other direction, assume that φ is a mapping of pG, σq to pK 2k , M q. Let pX, Y q be a bipartition of G and let pA, Bq be a bipartition of K k,k . If φ maps any vertex of X to any element in A and any vertex of Y to any element in B, then we are done. Otherwise, we define a mapping φ 1 as follows:

In the following lemmas, for a given edge xy, viewed as a rooted tree with y being the root and x being the leaf, we would like to bound the size of F x pyq in terms of the size of Lpxq. Note that the larger the set Lpxq is, the smaller the set F x pyq becomes. Often we use the following lemma on an edge xy to evaluate F x pyq without explicitly stating that the edge xy under consideration is regarded as a rooted tree with the leaf x and the root y.

Lemma 10.2.6. Let pK 2 , σq be a signed edge xy and let L be its DSGpK 6 , M q-list assignment. Then the following statements hold:

(1) If Lpxq is empty, then F x pyq " C.

(2) If Lpxq consists of one element, then F x pyq is a paired 7-set.

(3) If Lpxq is a paired 2-set, then F x pyq is a paired 6-set.

(4) If Lpxq is a paired 3-set, then F x pyq is a paired set of size at most 4. Moreover, if Lpxq is not one-sided, then |pLpyqzF x pyqq X C `| ě 4 and |pLpyqzF x pyqq X C ´| ě 4.

(5) If Lpxq is a paired 4-set, then F x pyq is a paired set of size at most 4. In particular, if Lpxq is not layered, then F x pyq " H, and if Lpxq is one-sided, then F x pyq is a paired 2-set.

(6) If Lpxq is a neighbored 5-set, then F x pyq is a paired 2-set.

(7) If Lpxq is a paired 6-set, then F x pyq is a paired set of size at most 2. In particular, if Lpxq is not layered or one-sided, then F x pyq " H.

(8) If Lpxq is a paired set of size at least 8, then F x pyq " H.

Proof. We assume that xy is a positive edge. The case when xy is negative is similar.

In the first claim, Lpxq " H means that there is no valid color for x, in other words, all colors are forbidden at y. In the second claim, we may assume Lpxq " t1 `u, then F x pyq " t1 `, 2 `, 1

´,

3

´, 4 ´, 5 ´, 6 ´u which is of size seven. In the third claim, there is only one type of paired 2-set. Without loss of generality, we assume Lpxq " t1 `, 2 `u and then F x pyq " t1 `, 2 `, 3 ´, 4 ´, 5 ´, 6 ´u.

Next, suppose that Lpxq is a paired 3-set. Without loss of generality, we only consider three possibilities Lpxq " t1 `, 2 `, 3 `u, Lpxq " t1 `, 2 `, 1 ´u, and Lpxq " t1 `, 2 `, 3 ´u. We easily obtain that for the first possibility F x pyq " t3 ´, 5 ´, 6 ´u, for the second possibility F x pyq " t1 `u, and for the last possibility F x pyq " t1 `, 2 `, 3 ´, 4 ´u. Observe that |pLpyqzF x pyqqXC `| ě 4 and |pLpyqzF x pyqqX C ´| ě 4 when Lpxq is not one-sided.

Suppose now Lpxq is a paired 4-set. Again without loss of generality, we only need to consider three cases Lpxq " t1 `, 2 `, 3 `, 4 `u for Lpxq being one-sided, Lpxq " t1 `, 2 `, 1 ´, 2 ´u for Lpxq being not layered, and Lpxq " t1 `, 2 `, 3 ´, 4 ´u for Lpxq being layered but not one-sided. For the first case F x pyq " t5 ´, 6 ´u, for the second case F x pyq " H, and for the last case F x pyq " t1 `, 2 `, 3 ´, 4 ´u.

Suppose Lpxq is a neighbored 5-set, say Lpxq " t1 `, 2 `, 3 `, 4 `, 5 ´u, we easily get F x pyq " t5 ´, 6 ´u.

Suppose Lpxq is a paired set of size 6. Without loss of generality, we consider three possibilities Lpxq " C `for Lpxq being one-sided, Lpxq " t1 `, 2 `, 3 `, 4 `, 1 ´, 2 ´u for Lpxq being not layered, and Lpxq " t1 `, 2 `, 3 `, 4 `, 5 ´, 6 ´u for Lpxq being layered but not one-sided. For the first two possibilities F x pyq " H, and for the last possibility F x pyq " t5 ´, 6 ´u.

It is an easy observation that if Lpxq contains four elements of a layer, then F x pyq " H. This implies that F x pyq " H when Lpxq is a paired set of size at least 8.

We note that if Lpxq consists of one color, then CzF x pyq is a neighbored 5-set and if Lpxq is a neighbored 3-set, then CzF x pyq is a paired 8-set containing neither C `nor C

´.

The next observation is straightforward and we will use it frequently in Section 10.3. Note that a paired 8-set, where all the elements compose two layers, do not contain a neighbored 5-set.

Observation 10.2.7. Let pK 2 , σq be a signed edge xy and let L be a DSGpK 6 , M q-list assignment of it satisfying that each of Lpxq and Lpyq is either a neighbored 5-set or a paired 8-set. Then one can choose c x P Lpxq and c y P Lpyq such that c x and c y are in different layers and m ˚pc x c y q " σpxyq.

Lemma 10.2.8. Let pK 2 , σq be a signed edge xy and let L be its DSGpK 6 , M q-list assignment where Lpxq is a neighbored 5-set and Lpyq is either C `or C ´. Then there exists a choice c x P Lpxq and a 4-subset L 1 pyq of Lpyq such that for every c y P L 1 pyq, m ˚pc x c y q " σpxyq .

Proof. As a neighbored 5-set intersecting both C `and C ´, if σpxyq is positive, then we choose c x P Lpxq X Lpyq, otherwise we choose c x P Lpxq X pCzLpyqq. Then c x has four neighbors in Lpyq which are adjacent to it by edges of sign σpxyq.

Next we consider the L-colorings of signed nontrivial paths and cycles. The next observation is a useful tool in showing the forbidden configurations in Section 10.3. Observation 10.2.9. Let pP 3 , σq be a signed path xyz and let L be a DSGpK 6 , M q-list assignment where Lpyq " C, Lpxq " tc x u and Lpzq " tc z u. Then pP 3 , σq is L-colorable unless one of the following conditions holds:

(1) c x and c z are in the same layer but on different sides, and P 3 is a positive path;

(2) c x and c z are in the same layer and on the same side, and P 3 is a negative path.

Lemma 10.2.10. Let pP 3 , σq be a signed path xyz and let L be its DSGpK 6 , M q-list assignment satisfying one of the following conditions:

(1) Lpyq " C, Lpxq " tc x u, and Lpzq " tc z u where c x and c z are in different layers;

(2) Lpxq " tc x u, Lpyq is a paired 10-set, and Lpzq is a neighbored 5-set;

(3) |Lpyq| ě 5, and each of Lpxq and Lpzq is a neighbored 5-set.

Then pP 3 , σq is L-colorable.

Proof. The first case is a restatement of Observation 10.2.9. To prove the other two cases, by Observation 10.2.2, we may assume both edges are positive. For the second case, without loss of generality, we may assume that c x " 1 `. If Lpzq contains one of 3 ´, 4 ´, 5 ´, 6 ´, say 5 ´, without loss of generality, then we take c z " 5 ´. Since Lpyq is a paired 10-set, it contains one of 2 ´or 6 `either of which completes the coloring. If Lpzq contains none of 3 ´, 4 ´, 5 ´, 6 ´, then, as it is a neighbored 5-set, it must contain 3 `, 4 `, 5 `, 6 `. If the choice of c z " 3 `does not work, then Lpyq is the complement of t5 `, 6 `u, in which case taking c z " 5 `would work.

For the third claim, without loss of generality, we assume Lpxq " t1 `, 2 `, 3 `, 4 `, 5 ´u. Then except for 5 ´and 6 ´, every vertex of DSGpK 6 , M q is connected by a positive edge to at least one vertex in Lpxq. Similarly, there is only one pair, say a, b, of vertices of DSGpK 6 , M q which is not connected by a positive edge to at least one vertex in Lpzq. Since |Lpyq| ě 5, there is a color in Lpyq different from 5 ´, 6 ´, a, b. Assigning this color to y, we can find choices for x and z.

Lemma 10.2.11. Let pP 3 , σq be a signed path xyz with σpxyq " α and σpyzq " β. Given a layered 6-set X, for every c x P X and c z P X αβ , there exists c y P C such that m ˚pc y c x q " σpxyq and m ˚pc y c z q " σpyzq.

Proof. By Observation 10.2.2, we assume that α " β " `. Then X αβ " X. For every c x , c z P X, since X is a layered 6-set, either (1) c x " Pairpc z q or (2) c x and c z are in different layers. In both cases, Observation 10.2.9 assures that c y exists.

In the next lemma, we consider the L-coloring of a signed path on 2k vertices. Lemma 10.2.12. Let pP 2k , σq be a signed path where P 2k " v 1 v 2 ¨¨¨v 2k for k ě 1 and let L be a DSGpK 6 , M q-list assignment of pP 2k , σq satisfying one of the following conditions:

(1) Lpv 1 q is a paired 3-set, Lpv 2k q is a one-sided 4-set, and for each i P t2, . . . , 2k ´1u, Lpv i q contains a neighbored 5-set for odd i and |Lpv i q| ě 10 for even i.

(2) Lpv 1 q is a one-sided 4-set, Lpv 2k q is a paired 3-set and for each i P t2, . . . , 2k ´1u, Lpv i q contains a neighbored 5-set for odd i and |Lpv i q| ě 10 for even i.

Then pP 2k , σq is L-colorable.

Proof. For k " 1, we consider a signed edge v 1 v 2 with v 1 being its root. By symmetry, we may assume that L is a list assignment satisfying that Lpv 1 q is a paired 3-set and Lpv 2 q is a one-sided 4-set. By Lemma 10.2.6 (5), |F v 2 pv 1 q| " 2. For any color c P Lpv 1 q, we can color v 1 by the remaining color from Lpv 1 qzF v 2 pv 1 q.

For the first case with k ě 2, consider pP 2k , σq as a rooted signed tree with root v 2k´1 . Since |Lpv 1 q| ě 3, by Lemma 10.2.6 (4), L a pv 2 q, which is Lpv 2 qzF v 1 pv 2 q, contains a paired set of size at least 6. Applying Lemma 10.2.6 (7) and Lemma 10.2.6 (4) alternately, we can propagate this and obtain that |L a pv 2i´1 q| " |Lpv 2i´1 qzF v 2i´2 pv 2i´1 q| ě 5 ´2 " 3 and |L a pv 2i q| " |Lpv 2i qzF v 2i´1 pv 2i q| ě 10 ´4 " 6 for i P t2, . . . , k ´2u. Finally, by Lemma 10.2.6 (5) and ( 7), for the root v 2k´1 , we have

For the second case with k ě 2, similarly, consider pP 2k , σq as a rooted signed tree with root v 2k´1 . So |L a pv 2 q| " |Lpv 2 qzF v 1 pv 2 q| ě 10 ´2 " 8, by Lemma 10.2.6 (8) and (6), we can propagate this and obtain that |L a pv 2i q| " |Lpv 2i qzF v 2i´1 pv 2i q| ě 10 ´2 " 8 and |L a pv 2i`1 q| " |Lpv 2i`1 qzF v 2i pv 2i`1 q| ě 5 ´0 " 5 for i P t2, . . . , k ´2u. For the root v 2k´1 , by Lemma 10.2.6 (4) and (8), we have |L a pv 2k´1 q| " |Lpv 2k´1 qzpF v 2k pv 2k´1 q Y F v 2k´2 pv 2k´1 qq| ě 5 ´4 ´0 " 1. This completes the proof.

From now on, we consider the L-coloring of signed cycles. We first state a result of the signed cycle on four vertices. Lemma 10.2.13. Let pC 4 , σq be a signed 4-cycle xyzt and let L be a DSGpK 6 , M q-list assignment of pC 4 , σq where each of Lpxq and Lptq is a neighbored 5-set, and each of Lpyq and Lpzq is a paired 10-set. Then pC 4 , σq is L-colorable.

Proof. By switching, if necessary, we may assume that xy, yz and zt are all positive edges. If, after necessary switchings, xt is also a positive edge, then we choose colors c x P Lpxq for x and c t P Lptq for t such that they are in different layers but on the same side. This is possible because Lpxq and Lptq are both neighbored 5-sets. We may then assume, without loss of generality, c x " 1 `and c t " 3 `. Then the possibility of colors for the pair of two vertices py, zq is one of the following cases: p2 ´, 4 ´q, p4 `, 5 `q and p6 `, 2 `q. But since in each of Lpyq and Lpzq only one pair is missing, at least one of these three possibilities works. Now we assume that xt is negative. With the given Lpxq and Lptq, we always have a choice for c x P Lpxq and c t P Lptq such that they are on different sides and in different layers. Without loss of generality, assume c x " 1 `and c t " 3 ´. Then the option to extend xt-path through y, z is either coloring vertex y with 2 ´and vertex z from t5 ´, 6 ´u, or coloring vertex z with 4 `and vertex yc from t5 `, 6 `u. Therefore, if pC 4 , σq is not L-colorable, then either Lpyq " t1 ´, 2 ´uc , Lpzq " t3 `, 4 `uc or Lpyq " t5 `, 6 `uc , Lpzq " t5 ´, 6 ´uc . However, as Lpxq and Lptq are both neighbored 5-sets, we also have one of the two following possibilities for c x and c t : either they form a pair, or c x P C ´and c t P C `. Based on whichever the possibility, we have a choice for y and z this time.

More generally, we have the following result for signed even cycles.

Lemma 10.2.14. Let pC 2k , σq be a signed even cycle v 1 v 2 ¨¨¨v 2k with k ě 2 and let L be a DSGpK 6 , M q-list assignment of pC 2k , σq satisfying one of the following conditions:

(1) For even values of i, Lpv i q is a neighbored 5-set, and for odd values, it is a paired 10-set.

(2) Lpv 1 q " C, Lpv 2 q is a paired 8-set containing neither C `nor C ´, and Lpv 2k q is a neighbored 5-set. For other vertices v i , if i is even then Lpv i q is a paired 10-set and if i is odd then Lpv i q is a neighbored 5-set.

(3) Lpv 1 q " C, Lpv 2 q and Lpv 2k q are neighbored 5-sets, Lpv 3 q is a paired 8-set containing neither C `nor C ´. For other vertices, if any, Lpv i q is a neighbored 5-set if i is odd and Lpv i q is a paired 10-set otherwise.

Then pC 2k , σq is L-colorable.

Proof. By Observation 10.2.2, we may assume that σpv 2k v 1 q " σpv 1 v 2 q " σpv 2 v 3 q " `in all cases. We consider each case separately.

(1). Since Lpv 2k q is a neighbored 5-set, either Lpv 2k q X C `or Lpv 2k q X C ´is a one-sided 4-set. Without loss of generality, we assume that |Lpv 2k q X C `| " 4. Since Lpv 2 q is also a neighbored 5-set, Lpv 2 q has at least one element in C `, without loss of generality, let 1 `be one such an element and assign it to v 2 . Then, using Lemma 10.2.6 (2), update the list of colors available at v 3 to a neighbored 3-set L 1 pv 3 q. Furthermore, update the list of available colors at v 2k to the one-sided 4-set L 1 pv 2k q " C `X Lpv 2k q and leave the lists of other vertices as they were given. Applying Lemma 10.2.12 (2) to the signed path pP 2k´2 , σq with P 2k´2 " v 3 ¨¨¨v 2k and with the modified list assignment given above, we color all the vertices of P 2k´2 . If v 2k is colored 1 `or 2 `, then, as Lpv 1 q is a paired 10-set, we could find a choice to extend the coloring to v 1 and we are done. Else, by symmetry among colors 3 `, 4 `, 5 `, 6 `, we may assume v 2k colored with 3 `. If this coloring is not extendable to v 1 , then Lpv 1 q " t5 `, 6 `uc .

If t5 `, 6 `u X Lpv 2 q ‰ H, then by choosing a color for v 2 from t5 `, 6 `u and repeating the same process, this time we are sure to have a choice to color v 1 . Thus we have one of the two possibilities for Lpv 2 q: (i). It contains t1 `, 2 `, 3 `, 4 `u. (ii). It is t1 `, 3 ´, 4 ´, 5 ´, 6 ´u. If the latter happens, we choose a color for Lpv 2k q from C ´, and repeat the previous process with L 1 pv 2k´1 q being a neighbored 3-set and L 1 pv 2 q " t3 ´, 4 ´, 5 ´, 6 ´u. Hence, we must have t1 `, 2 `, 3 `, 4 `u Ă Lpv 2 q. By the symmetry of v 2k and v 2 , we also have t1 `, 2 `, 3 `, 4 `u Ă Lpv 2k q. But then once again we repeat the original process by assigning the color in Lpv 2 q X t5 ´, 6 ´u to v 2 and taking L 1 pv 2k q " t1 `, 2 `, 3 `, 4 `u. So for each choice of color for v 2k , we could find a choice for v 1 which is not in t5 `, 6 `u. We are done.

(2). Since Lpv 2k q is a neighbored 5-set, without loss of generality, we assume that |Lpv 2k qXC `| " 4. Let X " C `and let L 1 pv 2 q " Lpv 2 q X X. We update the list of available colors at v 2 to L 1 pv 2 q, observing that it is a one-sided 4-set. Considering the tree v 2 v 3 rooted at v 3 , by Lemma 10.2.6 (5), since Lpv 3 q is a neighbored 5-set, we update the list of available colors at v 3 to a neighbored 3set L 1 pv 3 q. Now set L 1 pv 2k q " X X Lpv 2k q and L 1 pv i q " Lpv i q for i P t4, . . . , 2k ´1u. Applying Lemma 10.2.12 (1) to the signed path P 2k´2 " v 3 ¨¨¨v 2k and with the modified list assignment given here, we color all the vertices of P 2k´2 . Noting that the colors of v 2k and v 2 are both chosen from X, and by Lemma 10.2.11, we can complete the coloring to v 1 .

(3). We first assume that there is a color c P Lpv 2 q such that four positive neighbors (connected by positive edges) of c are in Lpv 3 q. In that case, we color v 2 by c. We update Lpv 2k q by removing colors in the same layer as c and Lpv 3 q by taking the four positive neighbors of c. To complete the coloring, we color the path v 3 v 4 ¨¨¨v 2k by Lemma 10.2.12. Then by Lemma 10.2.10, we can find a color for v 1 and we are done.

If no such a choice of c exists, then Lpv 2 q Ă Lpv 3 q, as otherwise any color in Lpv 2 qzLpv 3 q would work. Thus without loss of generality, we assume Lpv 2 q " t1 `, 2 `, 3 `, 4 `, 5 ´u and Lpv 3 q " t1 `, 2 `, 3 `, 4 `, 3 ´, 4 ´, 5 ´, 6 ´u. Next, we examine the choice of 3 `for v 2 . This updates Lpv 3 q to a neighbored 3-set. If Lpv 2k q contains at most one of 3 ´and 4 ´, then the updated list L 1 pv 2k q " Lpv 2k qzt3 ´, 4 ´u contains a one-sided 4-set and we are done by applying Lemma 10.2.12. Thus we assume t3 ´, 4 ´u Ă Lpv 2k q, this implies that |Lpv 2k q X t1 `, 2 `, 5 `, 6 `u| " 1, let c 1 be the common element. We consider two cases:

• c 1 P t1 `, 2 `u. Then we set L 1 pv 2k q " t3 ´, 4 ´, 5 ´, 6 ´u and, by using Lemma 10.2.12, we color the path v 4 ¨¨¨v 2k . Then depending on the color of v 4 , we choose a color for v 3 from t3 `, 4 `, 3 ´, 4 ´u. Based on this choice, we color v 2 from t1 `, 2 `, 5 ´u. By Observation 10.2.9, since v 2k v 1 v 2 is a positive path, any of these choices for v 2k and v 2 can be extended to v 1 .

• c 1 P t5 `, 6 `u. We set L 1 pv 2k q " t3 ´, 4 ´, c 1 u, and consider the path v 4 ¨¨¨v 2k (when k " 2, this is a single vertex). By Lemma 10.2.12 and with the list assignment Lpv 4 q, . . . , Lpv 2k´1 q, L 1 pv 2k q, this path admits a coloring. Let c 2 be the color of v 4 . Of the elements in t3 `, 4 `, 3 ´, 4 ´u at least one, say c 3 , is adjacent to c 2 by a positive edge. Assign c 3 to v 3 . If c 3 P t3 `, 4 `u, then we choose a color from t1 `, 2 `u for v 2 ; if c 3 P t3 ´, 4 ´u, then there exists a color from t3 `, 4 `, 5 ´u for v 2 . In each case, we can choose a color for v 2 which is not in the same layer as the color of v 2k . By Lemma 10.2.10, we can extend this coloring to v 1 and complete the coloring of this even cycle.

Thus in all cases, we find an L-coloring.

For signed odd cycles, we have similar results based on the given DSGpK 6 , M q-list assignments.

Lemma 10.2.15. Let pC 2k`1 , σq be a signed odd cycle where C 2k`1 " v 1 v 2 ¨¨¨v 2k`1 and let L be a DSGpK 6 , M q-list assignment of pC 2k`1 , σq satisfying one of the following conditions:

(1) Lpv i q is a neighbored 5-set for each even i and Lpv i q is a paired 10-set for each odd i.

(2) Lpv 1 q " C and Lpv 2k`1 q is a neighbored 5-set. For other vertices, Lpv i q is a neighbored 5-set if i is even and Lpv i q is a paired 10-set otherwise.

Then pC 2k`1 , σq is L-colorable.

Proof. (1). Applying Lemma 10.2.8 to the signed edge v 2k v 2k`1 , since Lpv 2k q is a neighbored 5-set and Lpv 2k`1 q is a paired 10-set (thus containing C `or C ´), we can assign a color c v 2k P Lpv 2k q to v 2k and choose a subset L 1 pv 2k`1 q of Lpv 2k`1 q which is a one-sided 4-set and has the property that for each c P L 1 pv 2k`1 q we have m ˚pc v 2k cq " σpv 2k v 2k`1 q. Considering the signed edge v 2k v 2k´1 , by Lemma 10.2.6 (2), |L a pv 2k´1 q| ě 3. We set L 1 pv 2k´1 q :" L a pv 2k´1 q and L 1 pv i q " Lpv i q for i P t1, 2, . . . , 2k ´2u. We may now apply Lemma 10.2.12 (2) to the signed path pP 2k , σq where P 2k " v 2k`1 v 1 v 2 ¨¨¨v 2k´1 and we are done.

(2). The proof of this case is similar to the proof of Lemma 10.2.14 (3). For k " 1, by Observation 10.2.7, we can always choose c v 1 P Lpv 1 q and c v 3 P Lpv 3 q which are in different layers such that the Lemma 10.3.2. The signed graph pG, σq is 2-connected, and in particular, we have δpGq ě 2.

Let L be a DSGpK 6 , M q-list assignment of pG, σq. Next we show that vertices of certain types are reducible.

Lemma 10.3.3. The signed graph pG, σq does not contain the following types of vertices: 2 1 -vertex, 3 2 -vertex, 4 4 -vertex, 5 5 -vertex.

Proof. Observe that pG, σq contains no 3 2 -vertex (respectively, 5 5 -vertex) implies that pG, σq contains no 2 1 -vertex (respectively, 4 4 -vertex). Thus it is sufficient to prove that G has no 3 2 -vertex or 5 5 -vertex. Let v be a 3 2 -vertex, let u and w be its 2-neighbors and let x be its third neighbor. Moreover, let y and z be the other neighbors of u and w (see Figure 10.4). We claim that any L-coloring of x, y and z could be extended to a coloring of the signed tree induced by u, v and w (rooted at v). That is because the color of x reduces the list of available colors at x to a neighbored 5-set of which at most two elements become forbidden respectively by each of the vu and vw-branches, leaving at least one admissible color at v.

The proof of 5 5 -vertex is similar. Let v be a 5 5 -vertex. Consider the tree T induced by v, its neighbors and their neighbors and suppose it is rooted at v. Assume all the leaves of T are colored. Thus we have a full list of colors available at v at the start, each of the five branches may forbid two from Lpvq, leavings us with at least two colors in the admissible set of v.

Observe that this simple argument will not work on other types of vertices. More precisely, for any other type of a vertex v, there is a coloring of its neighborhood that leaves us with an empty admissible set at v. However, in the next series of lemmas, we put some restrictions on the neighbors of vertices of type 3 1 , 3 0 and 4 3 . Lemma 10.3.4. There is no 3 1 -vertex adjacent to a 4 3 -vertex in pG, σq.

Proof. Suppose to the contrary that a 3 1 -vertex u is adjacent to a 4 3 -vertex v. Let u 1 , u 2 be the other two neighbors of u with u 2 being of degree 2, and let v 1 , v 2 , v 3 be the other three neighbors of v all of which are all of degree 2. We first consider the case that u 2 is distinct from v 1 , v 2 , v 3 . Let w 0 be the other neighbor of u 2 , finally let w 1 , w 2 , w 3 be the other neighbors of v 1 , v 2 , v 3 respectively. Observe that w i and u 1 are not necessarily distinct vertices of G, but as they are going to be precolored, for the sake of this proof we may assume that they are distinct. Let T be the tree induced by u, v, u 2 , v 1 , v 2 , v 3 and w 0 , w 1 , w 2 , w 3 and consider it as rooted at v. See Figure 10.5 for illustration. Let L be a DSGpK 6 , M q-list assignment which assigns a list of size 1 to each of w i 's and u 1 , and a full list to the other vertices of T . Observe that, by Lemma 10.2.5, the u-branch of the tree forbids at most two pairs of colors from Lpvq and, by Lemma 10.2.3, each other branch forbids at most one pair of colors from it, thus L a pvq contains at least one pair of admissible colors. This completes the proof of the case. Now we consider the case that u and v have a common 2-neighbor, say w. Let u 1 be the other neighbor of u and let v 1 , v 2 be the other two neighbors of v. Furthermore let each of w 1 and w 2 be the neighbor of v 1 and v 2 (respectively) distinct from v. See Figure 10.6. As before, we may assume that u 1 , w 1 and w 2 (precolored vertices) are distinct. Let T be the tree induced by tu 1 , u, v, v 1 , v 2 , w 1 , w 2 u and let L be a DSGpK 6 , M q-list assignment which gives a single color to u 1 , w 1 and w 2 and a full list to the other vertices. We show that T admits an L-coloring such that colors of u and v are in different layers. This completes the proof as for any such choice of colors for u and v one may find an extension for w by Observation 10.2.9. Our claim itself is the result of the fact that considering uu 1 -branch of T , L a puq is a neighbored 5-set and considering only vv 1 and vv 2 -branches, L a pvq contains a paired 8-set.

Lemma 10.3.5. There are no adjacent 3 1 -vertices who share a common 2-neighbor in pG, σq. Proof. Assume to the contrary that u and v are two adjacent 3 1 -vertices of G, and w is the common 2-neighbor of them. Let u 1 be the third neighbor of u and let v 1 be the third neighbor of v, see Figure 10.7. Thus we have a list assignment on the subgraph induced by u 1 , u, w, v, v 1 , where u 1 and v 1 are precolored and the other three have a full list. Our claim then follows from Observations 10.2.7 and 10.2.9 as in the proof of the previous lemma.

Lemma 10.3.6. There is no 3 0 -vertex together with two 3 1 -vertices inducing a triangle in pG, σq.

Proof. Suppose that two adjacent 3 1 -vertices u and v share a 3 0 -neighbor w. Since G is 2-connected, u and v do not have a common 2-neighbor, moreover, let u 1 and v 1 be their 2-neighbors respectively. As w has no 2-neighbor, its third neighbor w 1 is distinct from u 1 and v 1 . Furthermore, we label the other neighbors of u 1 and v 1 as u 1 and v 1 , respectively, but noting that, as we will consider them to be precolored vertices, they do not need to be distinct from each other or from w 1 which will also be precolored. Then the set of admissible lists on u, v, w, induced by the coloring of u 1 , v 1 and w 1 , would satisfy the conditions of Lemma 10.2.15 (1) with k " 1, proving that this configuration is reducible.

Lemma 10.3.7. There is no 3 1 -vertex having two 3 1 -neighbors in pG, σq.

Proof. Suppose to the contrary that u, v, w are three 3 1 -vertices and v is adjacent to both u and w. Let u 1 , v 1 and w 1 each be the 2-neighbor of u, v and w respectively. By Lemma 10.3.5, we know v 1 is distinct from u 1 and w 1 . Furthermore, u and w are not adjacent, as otherwise we have a sub-configuration of Lemma 10.3.6. Depending on whether u 1 and w 1 are distinct or not, we consider two cases.

Figure 10.9. Case: u 1 " w 1

Case 1: u 1 ‰ w 1 . We use the labeling of vertices near u, v and w as given in Figure 10.8, noting that u 2 , u 1 1 , v 1 1 , w 1 1 and w 2 are distinct from u, v, w, u 1 , v 1 and w 1 , but they are not necessarily distinct from each other, however as they are precolored, this would not matter in our proof.

We consider the rooted tree at v of Figure 10.8 whose leaves are precolored and at start all colors are available on each of the internal vertices. Then, by Lemma 10.2.5, each of the u-branch and w-branch of the tree forbids at most four colors from Lpvq, while, by Lemma 10.2.3, the v 1 -branch of the tree forbids exactly two colors. Thus there are always at least two admissible colors in Lpvq.

Case 2: u 1 " w 1 . We follow the labeling of Figure 10.9 where this common 2-neighbor is relabeled as x.

We note again that vertices u 2 , w 2 and v 1 1 of this figure are distinct from other vertices of the figure but not necessarily distinct from each other. We first assign a list to each of the vertices where u 2 , w 2 and v 1 1 are precolored, and other five vertices each have a full list. Then we update the lists of u, w and v according to, respectively, u 2 , v 1 1 and w 2 . In updated lists, each of Lpuq and Lpwq is a neighbored 5-set, Lpvq is a paired 10-set and Lpxq is a full set. Thus we may apply Lemma 10.2.14 (1) with k " 2.

Lemma 10.3.8. Let u be a 3 0 -vertex of pG, σq whose neighbors x, y and z are all 3 1 -vertices. If x and y have a common neighbor w, then dpwq ě 4.

Proof. We first observe that, by Lemma 10.3.6, tx, y, zu is an independent set. Let w be a common neighbor of x and y. The vertex w is not a 3 1 -vertex, as otherwise it would contradict Lemma 10.3.7. Now we show that w cannot be a 2-vertex. Suppose to the contrary that w is a 2-vertex, see Figure 10.10. Having colored the rest vertices of pG, σq except for the 2-neighbor of z, we are left with a list assignment on u, x, y, z, w where each of Lpxq and Lpyq is a neighbored 5-set, Lpwq is Lemma 10.3.9. Given a minimum poor path P " v 1 v 2 ¨¨¨v 2k`1 , with labelings defined as above, in the minimum counterexample pG, σq, the vertex v 0 is not adjacent to v i for i P t2, 3, . . . , 2k, 2k `1u and the vertex v 2k`2 is not adjacent to v j for j P t1, 2, . . . , 2ku. Moreover, v 0 ‰ v 2k`2 .

Proof. We give a proof for v 0 , the argument for v 2k`2 follows by symmetry. It is already mentioned in the paragraph proceeding the lemma that v 0 is not adjacent to v i for even values of i. Thus, we only need to consider the odd values of i.

In the case of k " 0, because v 1 is of degree 3, at least one side is of type 2, thus one of v 0 or v 2 has its degree already full and both of the claims follow.

Next we consider the case k " 1. The claim is that v 0 is not adjacent to v 3 . By contradiction suppose it is. Since v 0 is a 3 1 -vertex, we already have v 1 and v 3 as the neighbors of v 0 which are not 2-vertices. This, in particular, implies that v 3 is of type 1 and that v 0 " v 4 , and v 1 4 is the other 3 1 -neighbor of v 3 . We may now apply Lemma 10.3.8 with u " v 3 , and this completes the proof for k " 1.

For k ě 2, and for the first part of the claim, observe that v 1 must be of type 1, as otherwise v 1 and v ´1 are the only 3-neighbors of v 0 . Assume to the contrary that v 0 is adjacent to v j for an odd value of j. We now get a contradiction with the minimality of P by considering the shorter poor path: v j v j`1 ¨¨¨v 2k`1 . It remains to show that v 0 ‰ v 2k`2 . Again, suppose to the contrary that v 0 " v 2k`2 . Thus v 0 , which is a 3 1 -vertex, is adjacent to both v 1 and v 2k`1 , and, therefore, it has no other 3-neighbor. Hence both v 1 and v 2k`1 are of type 1. But again we get a contradiction to the minimality of P by taking the shorter poor path: v 1 v 0 v 2k`1 .

Lemma 10.3.10. Given a minimum poor path P " v 1 v 2 ¨¨¨v 2k`1 in pG, σq, the following statements hold: (a) For any i P I 3 1 Y t´1u and j P I 3 1 Y t2k `3u, the vertices v i and v j do not have a common 2-neighbor.

(b) For any i P I 3 0 Y t´1u and j P I 3 0 Y t2k `3u, the vertex v i is not adjacent to the vertex v j .

(c) The vertex v 0 is not adjacent to v 2k`2 .

Proof. We prove the first two claims by contradiction. We consider all the pairs i, j for which one of the two statements do not hold. Among all such pairs then we choose one where j is the minimum possible and, based on this condition, i is the maximum possible. Then, depending on which of the statement fails for this pair of i, j, we consider two separate cases.

Case 1. The statement paq does not hold for i and j. We consider four subcases based on i and j.

• pi, jq " p´1, 2k `3q. Thus, in particular, we assume v ´1 and v 2k`3 exists and that they are distinct from other vertices, hence, v 0 is not adjacent to v 2k`2 . Let pH, σq be the subgraph of pG, σq induced by the vertices of P , the vertices v ´1, v 0 , v 2k`2 , v 2k`3 and all their 2-neighbors. Let u be the common 2-neighbor of v ´1 and v 2k`3 . Observe that, by the maximality of j and the minimality of i, expect for u, every other 2-vertex in pH, σq sees only one vertex in pH, σq and that there is no connection between 3 0 -vertices of pH, σq. We may then color pGzH, σq by the minimality of pG, σq, and with respect to this partial coloring, consider the list of available colors on the vertices of pH, σq. Observe that if we remove all 2-vertices but u from pH, σq, we have a subgraph pH 1 , σq which is a signed p2k `6q-cycle. Furthermore, by Lemma 10.2.3, the list coloring problem on pH, σq can be modified to a list coloring problem on pH 1 , σq where L 1 puq " C, L 1 pv ´1q and L 1 pv 2k`3 q each is a neighbored 5-set, each L 1 pv i q, i " 0, 2, . . . , 2k `2, is a paired 10-set and each L 1 pv j q, j " 1, 3, . . . , 2k `1, is a neighbored 5-set. But then, by Lemma 10.2.14 (1), we do have a coloring of pH 1 , σq with respect to this list assignment L 1 .

• i " ´1, j P I 3 1 . Let u be the common neighbor of v ´1 and v j . Similar to the previous case, we consider the subgraph pH, σq induced by v ´1, v 0 , . . . , v j and all their 2-neighbors, noting that, by the choice of j and i, each such a 2-neighbor is adjacent to only one vertex in pH, σq and that no two 3 0 -vertices in pH, σq are adjacent. Thus the subgraph pH 1 , σq induced by u and 3-vertices of pH, σq is a pj `3q-cycle. Again, similar to the previous case, a coloring φ of pGzH, σq induces a list assignment on pH 1 , σq which satisfies the conditions of Lemma 10.2.15 (2), therefore, φ can be extend to the rest of pG, σq.

• i " 0. By symmetry of 1 and 2k `1, we may assume j P I 3 1 . First we note that if j " 2k `2, then v 0 is not adjacent to v 2k`2 as otherwise we have the forbidden configuration of Lemma 10.3.5. Let u the common 2-neighbor of v i and v j . For this case, we consider two subcases based on the type of the vertex v 1 .

If v 1 is of type 1, then we take pH, σq to be the subgraph induced by v 0 , v 1 , v 2 , . . . , v j , v 1 0 and all their 2-neighbors. Let φ be a coloring of pGzH, σq. Let L be the list assignment induced on pH, σq by the partial coloring φ. This L-coloring problem is reduced to an L 1 -coloring problem of the cycle v 0 v 1 ¨¨¨v j u where L 1 puq " C, L 1 pv 0 q and L 1 pv j q are neighbored 5-sets, L 1 pv 1 q, by Lemma 10.2.5, contains at least one paired 4-set from C `and one paired 4-set from C ´, and the rest of L 1 pv k q are alternatively neighbored 5-sets and paired 10-sets. Overall this cycle with respect to L 1 satisfies the conditions of Lemma 10.2.14 (3), and, therefore, the coloring φ can be extended to the rest of pG, σq.

If v 1 is of type 2, then, by similar arguments, the problem is reduced to the L 1 -coloring of the cycle v 0 v 1 ¨¨¨v j u where the lists of v 0 and v 1 have changed the roles, with all other remaining the same as before. We may then apply Lemma 10.2.14 (2) to complete the proof.

• i P I 3 1 zt0u. By the symmetry of i " 0 and j " 2k `2, we may assume j P I 3 1 , j ‰ 2k `2.

As in the previous cases, let pH, σq be the subgraph induced by v 0 , v 1 , . . . v j , one of v ´1 or v 1 0 depending on the type of v 1 , and all the 2-neighbors of already chosen vertices. Let the common 2-neighbor of v i and v j be u and note that all other 2-neighbors of the vertices in pH, σq are distinct. Furthermore, no pair of 3 0 -vertices in pH, σq are adjacent. Assume that pGzH, σq admits a list-coloring φ and let L be the associated list assignment on pH, σq. As before, we reduce the L-coloring problem of pH, σq to an L 1 -coloring of the cycle uv i v i`1 ¨¨¨v j which satisfies the conditions of Lemma 10.2.14 (2). To get L 1 , if v 1 is of type 1 we apply Lemma 10.2.5 to v 1 from two directions after which we have a paired 4-set of colors available at v 1 . Then using Lemma 10.2.6 (4), (5), (7) and Lemma 10.2.3, we update the lists of vertices v l of P with l ď i such that we have, alternatively, lists of size 6 and 3 until v i´1 , and |L 1 pv i q| ě 8. The case when v 1 is of type 2 is quite similar. The only difference is that at the start v 1 would a neighbored 3-set rather than a paired 4-set.

Case 2. The statement pbq does not hold for i and j. The proof technique is quite similar to the previous case with less subcases to consider, so we only give the general idea. The case of i " ´1, j " 2k `3 is not possible by Lemma 10.3.7. In all other subcases, we consider the subgraph pH, σq induced by vertices v 0 , v 1 , v 2 , . . . , v j , one of v ´1 or v 1 0 , and their 2-neighbors. The problem then is reduced to a list coloring problem on pH, σq, but as pH, σq has a unique cycle, we may further reduce the problem to list coloring of the cycles. However, in all but one of the cases we may apply Lemma 10.2.15 (1). In the exceptional case when v 0 is adjacent to v 2k`2 and v 1 is adjacent to v 2k`1 , we consider the 4-cycle v 0 v 2k`2 v 2k`1 v 1 and let pH, σq be the subgraph induced by this 4-cycle and the two 2-neighbors of v 0 and v 2k`2 . Then a coloring of pGzH, σq can be extended to pH, σq by Lemma 10.2.13. (i) If v 2k`1 has two other neighbors that are 3 1 -vertices of G, then for k ě 1, v 1 gives a charge of 1 2 to v 2 .

(ii) If v 2k`1 has one 3 1 -neighbor, v 2k`2 , which itself has a 3 1 -neighbor in G (P can be seen as one end of a poor path), then for k ě 0, v 1 gives a charge of 1 2 to v 2 .

Rule 2. Each 3 1 -vertex of G which is of degree 3 in H and is of charge 0 after Rule 1, receives a charge of 1 4 from each of its 3 0 -neighbor. First observe that a 3 1 -vertex x of G which is of degree 3 in H, by Lemma 10.3.7, has at least one 3 0 -neighbor say y. If the other 3-neighbor z of x is a 3 1 -vertex, then P " y is a path described in Rule 1 piiq where k " 0 and x " v 2 , moreover, this is unique such a path as any other such a path P 1 together with P will form a poor path, contradicting Lemma 10.3.11. Therefore, by Rule 1, x will receive a charge of 1 2 from y. If z is also a 3 0 -vertex then either it receives a charge of 1 2 from one of y or z when applying Rule 1 or, it will receive a charge of 1 4 from each of them, thus in all cases it will have a final charge of 1 2 . It remains to show that no 3 0 -vertex of G in H will lose more than 1 2 of its charge. Since G has no poor path, and that Rule 1 can only apply if there is a unique path P , it may only apply in one direction on a given 3 0 -vertex. Thus Rule 1, on its own, will take a charge of at most 1 2 from a 3 0 -vertex.

Next we consider a 3 0 -vertex u which has three 3 1 -neighbors u 1 , u 2 and u 3 each of which is a 3-vertex of H. Let u 1 1 , u 1 2 and u 1 3 be neighbors of u 1 , u 2 u 3 , respectively, which are not u and not 2-vertices. Thus each of them has to be a 3 0 -vertex of G as otherwise we have a poor path with k " 0. First we assume that u 1 1 u 1 uu 2 u 1 2 is a part of a cycle where vertices are alternatively 3 0 -vertices and 3 1 -vertices of G. We claim that in this case u 1 3 u 3 u is the unique path P satisfying Rule 1. Otherwise, a second path P 1 starting at u 1 3 exists. If P 1 has no common vertex with P , then P and P 1 together form a poor path, contradicting Lemma 10.3.11. Else, P 1 must intersect the cycle to reach u, in which case the common part of P 1 and the cycle form a poor path. Thus u 3 receives a charge of 1 2 from u 1 3 by Rule 1. When applying Rule 2, u loses only a total charge of 1 2 . When there is no such a cycle, then each of u 1 i u i u, i " 1, 2, 3, is a path satisfying Rule 1 with k " 1, furthermore, each of them satisfies the condition of being unique, as otherwise we will have a poor path. Thus u will lose no charge in this case.

It remains to show that if a 3 0 -vertex u has given a charge of 1 2 to a 3 1 -neighbor u 1 by Rule 1 then u will not lose any charge by Rule 2. Let u 2 be another 3 1 -neighbor of u which is a 3-vertex of H. Let u 1 2 be the other neighbor of u 2 which is not a 2-vertex. We claim that u 1 2 is a 3 0 -vertex. Otherwise, together with the path P (of Rule 1) we have a poor path. Then, by adding u 1 2 and u 2 to P , we get a unique path satisfying the conditions of Rule 1, therefore u 1 2 must have given a charge of 1 2 to u 2 and, hence, u 2 does not take any charge when applying Rule 2.

We are now ready to prove the Theorem 10.3.1.

Proof. (of Theorem 10.3.1.) By discharging technique, the initial charge assigned to each vertex v is cpvq " dpvq ´14 5 . Since we have assumed that the average degree of G is strictly less than 14 5 , the total charge is a negative value. However, after applying the discharging rule introduced next, we will partition the vertex set so that on each part the sum of final charges is positive. This would be in contradiction with the total charge being negative and complete the proof of the theorem. The discharging rule is as follow:

Rule. A 4 `-vertex gives a charge of 2 5 to each of its 2-neighbors and a charge of 1 5 to each of its 3 1 -neighbors.

Let c ˚pvq be the final charge of the vertex v after the discharging. It is immediate that if dpvq ě 5, then c ˚pvq ě 1 5 . For a 4-vertex v, it follows from Lemma 10.3.3 and Lemma 10.3.4 that c ˚pvq ě 0. To complete the proof, we show that the total charges on each connected component of the 3 ´-subgraph of G is non-negative.

Let H be one such a component. If H has no vertex which is a 2-vertex in G, then all vertices have positive charges. Let v be a 2-vertex of G in H. Observe that if H consists of only v, then both its neighbors are 4 `-vertices and c ˚pvq " 0. Otherwise, either c ˚pvq " ´2 5 or c ˚pvq " ´4 5 . For the former to be the case, one of the neighbors of v must be a 4 `-vertex of G, thus v has a unique neighbor in H. For the latter to be the case, both neighbors of v must be 3-vertices and thus v has two neighbors in H. Let l be the number of 2-vertices of G in H that their final charge is ´2 5 and let k be the number of 2-vertices of G in H that their final charge is ´4 5 . By Lemma 10.3.3, the neighbors of these 2-vertices are l `2k distinct 3 1 -vertices of G in H. Of these l `2k vertices in H, suppose that p of them are of degree 3 in H and that the rest are either of degree 2 or 1, the latter being possible only when H is just an edge. Observe that 3-vertices of G with at most two neighbors in H have a third neighbor that is a necessarily 4 `-vertex of G, and, therefore, such vertices have charge at least 2 5 . For the p vertices that are 3 1 -vertices of G in H, by Lemma 10.3.12, there must be at least p other vertices in H that are 3 0 -vertices of G. As all these vertices have a charge of 1 5 , the over-all charge in a connected component H of the 3 ´-subgraph of G is non-negative, proving our claim.

10.4 Mapping sparse signed graphs to pK 8 , M q When the target signed graph is pK 8 , M q, we show the condition of a maximum average degree strictly smaller than 3 is sufficient for pG, σq to admit a homomorphism to pK 8 , M q. Moreover, we will see that this condition is not only the best possible for pK 8 , M q but that it cannot be improved for pK 2k , M q, k ě 5, either. As in the previous case, to prove our claim we will work with DSGpK 8 , M q. We apply the same technique developed in Section 10.2 without detailed descriptions of DSGpK 8 , M q-list assignment L and L-coloring. Note that now C represents the vertex set of DSGpK 8 , M q.

Theorem 10.4.1. Every signed graph pG, σq satisfying that madpGq ă 3 admits an edge-sign preserving homomorphism to DSGpK 8 , M q.

To prove Theorem 10.4.1, we assume that pG, σq is a minimum counterexample. Similarly, we first study the properties of a DSGpK 8 , M q-list coloring of a signed rooted tree.

Lemma 10.4.2. Let xy be a signed edge and let L be its DSGpK 8 , M q-list assignment. Then the following statements hold:

(1) If |Lpxq| " 1, then F x pyq is a paired set of size 9.

(2) If Lpxq contains either a neighbored 5-set or a one-sided 6-set, then F x pyq is a paired set of size at most 2.

Corollary 10.4.3. Let pP 3 , σq be a signed path xvy and let L be a DSGpK 8 , M q-list assignment of pP 3 , σq with Lpvq " C, Lpxq " tc x u and Lpyq " tc y u. Then CzpF x pvq Y F y pvqq contains two colors which are in different layers unless one of the following conditions holds:

(1) c x and c y are in the same layer but on different sides, and P 3 is a positive path;

(2) c x and c y are in the same layer and on the same side, and P 3 is a negative path.

10.5. TIGHTNESS AND PLANARITY 147 Note that in the two special cases, pP 3 , σq admits no L-coloring. Next we list a set of forbidden configurations in the minimum counterexample pG, σq.

Lemma 10.4.4. The signed graph pG, σq does not contain the following vertices: 1-vertex, 2 1 -vertex, 3 1 -vertex, 4 3 -vertex and 5 5 -vertex.

Proof. We only prove the case of a 3 1 -vertex, the remaining cases being almost direct corollary of the Lemma 10.4.2. Suppose to the contrary that v is a 3 1 -vertex in G. Let u be the 2-neighbor of v, let v 1 , v 2 be the other two neighbors of v, and let u 1 be the second neighbor of u, see Figure 10.14. Let G 1 be the graph obtained from G by removing u and let H be the subgraph induced by tu, vu. Assume that L is a DSGpK 8 , M q-assignment of pG, σq where Lpuq " C for each vertex u P V pGq. By the minimality of pG, σq, there is L-coloring φ of pG 1 , σq. Since φpvq exists, the two exceptions of Corollary 10.4.3 cannot be the case here and, therefore, CzpF v 1 pvq Y F v 2 pvqq contains two colors which are in different layers. Let φ 1 be the restriction of φ on pGzH, σq and let L 1 be an associated list assignment of pH, σq. Now we shall show that pH, σq is L 1 -colorable, where L 1 puq " CzF u 1 puq is a neighbored 7-set, L 1 pvq " CzpF v 1 pvq Y F v 2 pvqq. By Lemma 10.4.2 (2), F u pvq is a paired 2-set, thus L a pvq " L 1 pvqzF u pvq ‰ H, a contradiction. Now we are ready to prove Theorem 10.4.1.

Proof. (of Theorem 10.4.1.) By discharging method, we assign an initial charge of cpvq " dpvq ´3 at each vertex v of pG, σq. Then by the assumption on the average degree, we have ř vPV pGq cpvq ă 0.

We apply the following discharging rule:

Rule. Every 2-vertex receives 1 2 from each of its two neighbors. It is straightforward to check that all vertices have non-negative charges after applying this rule, a contradiction with the fact that the total charge is a negative value.

Tightness and planarity

In this section, we first give several examples to show the tightness of our theorems. These examples show that the conditions of the no-homomorphism lemma is not sufficient for mapping signed planar graphs to pK 3,3 , M q, pK 6 , M q and pK 8 , M q. We then apply our results to signed planar graphs with further structural conditions, and propose further direction of study.

The first example, given in Figure 10.15, shows that the bound of 14 5 in Theorem 10.1.4 is the best possible.

Proposition 10.5.1. There exists a signed graph with maximum average degree 14 5 which does not admit a homomorphism to pK 6 , M q.

Proof. Suppose to the contrary that the signed pG, σq of Figure 10.15 admits a homomorphism to pK 6 , M q (illustrated in Figure 10.1). Equivalently, there exists a switching-equivalent signature σ 1 such that pG, σ 1 q admits an edge-sign preserving homomorphism to pK 6 , M q. Observe that a Observe that pG , σq is a signed planar graph that satisfies the conditions of no-homomorphism lemma with respect to pK 2k , M q. We note that mapping signed bipartite planar graphs to pK 2k , M q is equivalent to mapping them to pK k,k , M q, and that mapping to the latter is a strengthening of the 4-color theorem as stated in Theorem 2.3.13. Thus we would like to raise the following question: Question 10.5.3. For which values of g 01 , g 10 , g 11 , the condition of g ij pG, σq ě g ij , ij P Z 2 2 would imply a mapping of signed planar graph pG, σq to pK 8 , M q? Applying Euler's formula to planar graphs, one concludes that any planar graph of girth at least 7 has an average degree strictly less than 14 5 . Since girth condition is a hereditary property, the same holds for the maximum average degree. Thus we have the following result.

Theorem 10.5.4. Every signed planar graph of girth at least 7 admits a homomorphism to pK 6 , M q.

In particular, we have the following: Corollary 10.5.5. χ c pSP 7 q ď 3.

We improve an early result of [START_REF] Charpentier | Homomorphisms of sparse signed graphs[END_REF] which claims that every signed planar graph of girth at least 9 admits a circular 3-coloring. However, we do not know if 7 is the best possible girth condition.

CHAPTER 11. CONCLUSION AND REMARKS Conjecture 11.0.1. [Jaeger-Zhang conjecture] Given a positive integer p, we have that χ c pSP 4p`1 q " 2p `1 p .

A bipartite analogue of this conjecture was first proposed in [START_REF] Naserasr | Homomorphisms of signed graphs[END_REF], but considering Theorems 8.5.1 and 8.5.2, based on this work, we propose the following modification.

Conjecture 11.0.2. [Bipartite analogue of Jaeger-Zhang conjecture] Given a positive integer p, we have that χ c pSP 4p q " 4p 2p

´1 .

Note that the value of Conjecture 11.0.2 seems to what one may expect for χ c pSP 4p´1 q and that of Conjecture 11.0.1 seems to be what one may expect for χ c pSP 4p`2 q as well.