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Introduction (English)

Over the last twenty years, the study of wave propagation in dispersive media, and
more notoriously negative index materials in electromagnetism, has recovered signifi-
cantly more interest since the rapid development of the area of metamaterials. In
the classical theory of propagation, electromagnetic waves propagating through a deter-
mined material is well modelled by Maxwell’s equations subject to two physical quantities
which determine the properties of material: the dielectric permittivity ¢ and magnetic
permeability u of the material. Usually, materials in nature have both quantities positive
(e, 0 > 0), moreover, most of materials tend to have a permeability close to p and a
permittivity larger than ¢, where g and pq are, respectively, the permittivity and per-
meability of the vacuum [23,24]. In this sense, as the name can suggests, metamaterials
offer an alternative to realize all possible configurations trespassing the concept of "clas-
sical material”" and consequently opening a wide source of new properties non-found in
nature.

Introduction to metamaterials

Metamaterials, or also well-known as LHM (left-handed materials, first proposed by Vese-
lago in 1968 [86]) or NIM (negative-refractive index materials, media discovered much
earlier [57,58, 83]), are formally defined in [23,24] as "macroscopic composites of
periodic or non-periodic structure, whose function is due to both the cellu-
lar architecture and the chemical composition". More recently, Muamer Kadic,
Graeme W. Milton, Martin van Hecke, and Martin Wegener gave the following definition
(see |49]): "Metamaterials are rationally designed composites made of tailored
building blocks, which are composed of one or more constituent bulk materi-
als, leading to effective medium properties beyond those of their ingredients."

In much simpler words, metamaterials are artificial materials with physical properties
difficult to find in nature. Metamaterials consist of a periodic assembly of a large number
of resonant micro-structures (see Figure 1). Indeed, those micro-structures at the level
of the base cell confer the original and interesting properties. For this specific kind of
metamaterials, the witty idea for building them consists in cleverly choosing the structure
as well as the resonators in order to obtain the desired effectiveness of the medium, hence
by passing an homogenization process, the resulting effective homogeneous media present
the so-claimed properties.

Negative materials

As previously stated, in the study of classic dispersive electromagnetic media, we en-
counter "classical materials" whose electrical permeability and magnetic permittivity are



Figure 1: Two typical metamaterial structures in the microwave regime. A) A periodic structure (ho-
mogeneous medium) above, B) A non-periodic structure (inhomogeneous medium) below.

strictly positive quantities. As "classical materials", one firstly mentions the dielectrics
or dielectric media, which are electrical insulators (materials with low conductivity) with
the capacity of being polarized in the presence of an electric field. Examples of dielectrics
are: glass, wood, petroleum , and gases as air and nitrogen. It is also very useful the con-
cept of high vacuum, nearly lossless dielectric even though its relative dielectric constant
is only unity [55], thus the vacuum the can be considered a dielectric for our theoreti-
cal purposes. A good approximation of negative materials among natural materials are
metals (e.g. gold, silver and copper) in the optical frequency range since their permittiv-
ity exhibits a negative part compared to their imaginary part which is relatively small
(see [68]). However, as natural media, their permeability remains positive. Metaterials
are a second example of negative materials among manufactured materials. Furthermore,
they exhibit a permittivity or /and permeability negative in some frequency range.
Among the most important phenomena issued by the negative properties of a material,
we find:

e the spatial localization of electromagnetic waves over materials surfaces, this phe-
nomenon receives the name of surface plasmons;

e the phenomenon of negative refraction, which translates as the change of direction
of wave propagation of a beam transmitted over the interface between a negative
media and a dielectric, in this case one refers to materials of type LHM and NIM.




Plasmon surfaces

An electron gas in a solid, as for example the free electrons of metals, has the capacity to
undergo collective motions that have been named plasma oscillations. These collective
plasma oscillations are due to the long range nature of the Coulomb interaction between
conductions electrons in metals, as was pointed out for the first time by Pines and
Bohm [75] and discussed in detail by Pines [74]. The presence of surfaces introduces
new modes of plasma oscillations in addition to the bulk one. These new modes can
be excited by incident electrons or photons and can be detected experimentally. They
are also strongly dependent on the properties of the surfaces so that they can be used
to make sensors. Moreover these surface oscillations allow to shrink optical signals in
dimensions much smaller than their vacuum wavelength offering the way to have optical
circuits of nanometric dimensions. The quanta of these oscillations are called plasmons
(first introduced by R. Ritchie in 1957 |78] and later in 1960 introuduced the term surface
plasmon by Stern and Ferrel [84]). Plasmons are electromagnetic excitations coupled to
electrons in a metal or doped semiconductor.

Recently these waves have been used in new applications concerning the design of biosen-
sors, cancer therapies, the production of efficient photovoltaic cells and many others
(see [56]). Optical sensors based on surface plasmons, often referred to as surface plas-
mon resonance (SPR) sensors, exploit the sensitivity of the propagation constant of a
surface plasmon to refractive index changes occurring in its evanescent field. A change
in the refractive index produces a change in the propagation constant of the surface plas-
mon, which results in a change in the characteristics of the light wave interacting with
it. The first sensor of this kind was demonstrated by Nylander and Liedberg [67] for gas
detection.

From a mathematical point of view, the existence of these waves is mainly due to the fact
that at optical frequencies, some metals like silver or gold have a dielectric permittivity "
with a small imaginary part and a negative real part (see [7,13,14,21,32,46,70,77,90,93]
for come more rigorous examples and explanations). Neglecting the imaginary part, for
these ranges of frequencies, we are led to consider a real-valued " which is negative in
the metal and positive in the air around the metal.

For more detail on plasmonics, see for instance [5].

Applications of metamaterials

The huge regain of interest to the area of metamaterials has arose a considerable amount
of notable applications and potential applications. We present two of the most famous
of these.

For LHM, the most remarkable implementation is in the domain of superlens [72]
(see Figure 2), which can be widely used in the super-resolution medical imaging, optical
imaging, and nondestructive detection. The first superlens in the microwave regime was
realized in 2004 [40]. The importance of superlens resides in their non-submitting ability
to the diffraction limit phenomenon and are able to produce super resolution images |72].

For more general metamaterials, the cloaking devices have attached more and more
attention [41,51,66,73,91| (see Figure 3). Like out of Harry Potter’s saga, by choosing the
good parameters, the successful demonstrations of invisible cloaks experimentally in the
microwave regime [54,82] make it possible to realize cloaking devices in the future, that is
to say, we are not private in the out coming decades of acquiring invisibility cloaks being




Figure 2: Perfect lens with metamaterials, experiment led in Imperial college of London.

capable of deviating light beams conferring us invisible! Experiments on this subjects are
still not conclusive, indeed, for building this type of metamaterials we should be able to
realize pretty small periodic structures landing on the size of visible light wavelength (400
to 800 nanometers), which is still not technologically achieved. However, nowadays it is
possible to invisibilize objects for the microwaves whose wavelength oscillates between 1
millimeter and 1 meter [82].

Dispersive electromagentic waves: mathematical models

The dispersion phenomenon is ubiquitous in electromagnetism: the light velocity ina
medium has generally a dependency on the frequency of the wave, which can be seen as
an effect of "inertia" at the microscopic level. Despite its omnipresence, this frequency
dispersion has raised numerous theoretical issues and generated intense discussions espe-
cially since the introduction of metamaterials and negative index materials. This follows
in particular the extensive interest for spectacular devices like the perfect lens [72] and
the invisibility cloak or carpet [59], and more recently plasmonic structures like corners
with negative permittivity [6,46]. In this effervescence, apparent contradictions have been
pointed in physics literature about the causality principle and the notion of electromag-
netic energy. These contradictions are generally associated with an improper modeling
of frequency dispersion, precisely in the range of frequency where the optical properties
offered by metamaterials occur. However, most of mathematical studies in this context
concerning the frequency domain and not the time-dependent equations. Therefore, they
are in sufficient to describe the whole physics of theses materials since the frequencies
are correlated by dispersion that must be taken into account rigorously.
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Figure 3: Normalized magnetic field distribution of the lossless (left) and lossy (right) cloaking device
with plane wave excitation [1].

Under this understanding, we aim in this PhD thesis to go further in the analysis of dis-
persive systems to predict in particular their time-dependent behaviour. The approach
we will intend in this thesis is based on a first mathematical tool that comes from com-
plex analysis and more precisely the theory of Herglotz functions, i.e. analytic functions
of the upper-half plane with non-negative imaginary part, which precisely define the
permittivity and permeability of causal and passive linear media as functions of the fre-
quency [17,19]. Indeed, for dispersive electromagnetic systems, an important progress
was made by A. Figotin, J.Schenker, B.Gralak, and A.Tip [37-39, 85] and developed
by M.Cassier,C. Hazard, P.Joly and M.Kachanovska in [15,17]. Using Herglotz func-
tions properties in the frequency domain (in particular their representation theorem),
they rewrite the dissipative and dispersive time-dependent Maxwell’s equations as a con-
servative system. In the time-domain, it corresponds to the introduction of additional
variables (to the electrical and magnetic fields).

As explained e.g. in details in [14], in the domain of electromagnetism, Maxwell’s equa-
tions relate the space variations of the electric and magnetic fields E(x,t) and H(x,t)
(where x € R® denotes the space variable and ¢t > 0 the time parameter) to the time
variations of the corresponding electric and magnetic inductions D(x, t) and B(x,):

OD-VxH=0, B+VxE=0, xeRt>0. (0.0.1)

The former equations are completed by so-called constitutive laws that characterize the
material in which electromagnetic waves propagate, the constitutive laws make the link
between the electric (or magnetic) field and the corresponding induction. In this work,
we shall restrict ourselves to materials which are local in space (i.e. the induction at a
given point only depends on the corresponding field in this point). In standard dielectric
media, it is common to assume that the relationship is also local in time (typically the
electric induction D at a given point in time depends only on the electric field E). If,




moreover, one assumes that the medium is isotropic (roughly speaking, the relationship
between D and E does not see the orientation of the fields), it is natural to suggest that
the fields are proportional

D(x,t) = e(x) E(x,t), B(x,t) = u(x)H(x,1), (0.0.2)

where at any point x,e(x) and p(x) are positive real numbers called respectively the elec-
tric permittivity and the magnetic permeability of the material at a space point x € R3.
The fact that they may depend of x characterizes the possible heterogeneity of the ma-
terial. In the vacuum, these coefficients are of course independent of x (we speak of a
homogeneous media): e(x) = g &~ (367) 11072 Fm™, u(x) = po = 47107 Hm™".
However, (0.0.9) cannot hold and it must be seen only as an approximation. It appears
that simple proportionality laws can be valid only in the vacuum, otherwise this would
violate some physical principles [50]. In order to be consistent with such physical princi-
ples, one needs to abandon the idea that the constitutive laws are local in time and to
accept e.g. that D(x,t) depends on the history of the values of E between 0 and ¢, i.e.
D(x,t) is a function depending on the values in {E(x,s) | 0 < s < t}, in other words

D(x,t) = F(x,t;{E(x,s) | 0 < s <t}).

The above obeys a fundamental physical principle: the causality principle. Adding the
time invariance principle, i.e. that the material behaves the same way whatever the time
one observes it, one infers that the function F' is also independent of time: F(x,t;-) =
F(x;-). To translate the above in more mathematical terms, it is useful to go to the
frequency domain expressed by means of the Fourier-Laplace transform. The Fourier-
Lapace transform u of a function u is the function defined in the upper complex half-space
Ct:={w € C | Im(w) > 0} and defined by the following integral formula

-~ 1 ' iwt
u(w) = or /u(t)e dt. (0.0.3)

0

Dispersive (isotropic) electromagnetic materials are most often defined as materials in
which the proportionality laws of the form (0.0.9) hold true in the frequency domain,
that is to say, they are satisfied by the Fourier—Laplace transforms of the fields, rather
than by the fields themselves. In this case there is no reason to require that ¢ and p are
real and independent of the frequency. That is why a dispersive isotropic medium will
be defined as obeying constitutive laws of the form

~ ~ A~

D(x,w) = e(x,w) E(x,w), B(x,w)= pux,w) ﬁ(x, w), (0.0.4)

where for each x € R}, w € CT, w € C" — &(x,w) (the permittivity) and w € CT
p(x,w) (the permeability) are non-trivial functions of the frequency that describe the
dispersivity of the medium. For non-dispersive materials, these functions are real posi-
tive and constant, i.e. (0.0.9) holds. Of course, these functions satisfy some particular
properties imposed by physical or mathematical reasons:

e Causuality principle. To ensure the causality of D(x,t) (or B(x,t)) provided
that E(x,t) (or H(x,t)) is causal, it is natural to impose

Vx €R?, wrre(x,w) and w+ u(x,w) are analytic in CT. (0.0.5)




e Reality principle. A second requirement is that if D(x,¢) (or B(x,t)) is real then
E(x,t) (or E(x,t)) is real too. According to (0.0.11), the invariance of C* under the
map w — —w and Fourier-Laplace properties of real-valued functions, the reality
principle traduces as the condition

Vx €R® YweCh, e(x,—w)=¢e(x,w) and pu(x,—w)=pxw). (0.0.6)

e High frequency principle. A fundamental property from the physical point of
view is that, at high frequency, any material "behaves as the vacuum". Mathemat-
ically, this amounts to requiring that

Vx € R® Vn >0, lim e(x,w) = &y, lim X, W) = fg. 0.0.7
n Im{yon ( ) 0 Im{)on 1( ) = Mo ( )
|w|—>+00 |w|—>+00

This means that the material is "less and less dispersive" at high frequencies.

The following PhD work is composed of two independent parts related to wave propa-
gation in dispersive materials with a start point in the temporal regime, that is to say,
starting from an approach said stationary where we reconstruct a transitory wave as a
superposition of periodic waves. The first part of the PhD work consist in the analysis
of long time behaviour of the solution of Maxwell’s equations in dissipative generalized
Lorentz materials, this represents the content of the Chapter 1 and Chapter 2, these ones
develop two distinct approaches for the treatment of the subject. On the other hand, the
second part is devoted to the study of Maxwell’s equations in time regime, delimited in
a slab of metamaterial immersed in a dielectric material (for example the vacuum). This
second part comprehends Chapter 3, Chapter 4 and Chapter 5.

Part I Long time behaviour of the solution of Maxwell’s equations
in dissipative generalized Lorentz materials

Context

The analysis of decreasing and decreasing rates of the energy of solutions for dispersive
and dissipative models for linear wave propagation has been over long periods of time
studied in the literature. This research has primarily been motivated by applications
in visco-elasticity |22, 26, 35] and electromagnetism [36,61], but it has recently seen a
resurgence of interest due to its relevance to metamaterials, take for instance [17, 37,
63,65, 65|, where it is given a suitable construction of mathematical models congruent

with physically motivated principles such as causality and passivity principles (see also
[19,39,92]).

Content of the Part 1

In Chapter 1 we develop for Generalized dissipative Drude-Lorentz media a Lyapunov
technique for proving the polynomial stability of the electromagnetic energy, in a more
pedestrian way to say, the idea is to derive a differential inequality via a energy bal-
ance derived from Maxwell’s equations, hence by Gronwall-like inequalities in the spatial
Fourier domain and Plancherel’s isometry we reach upto the desired result. It is worth-
while mentioning that other stability results for dispersive/dissipative results have also
been obtained via the Lyapunov technique (see [35,36,61]), nevertheless, neither of those




techniques apply in our context given the lack of sign properties assumed for the convo-
lution kernels implied in the memory effects of our model.

Another ph

In Chapter 2, we treat the same problem as in Chapter 1 using in this occasion the ap-
proach of modal decomposition. This approach is technically more complex than the one
in the first chapter, but it has significantly several advantages. First, it is more physical
in many ways, as it explicitly refers to the dispersion relation of the medium via a wave
plane decomposition, this feature makes it easier for physicists to understand. Second,
it leads to optimal results, as it allows us to obtain both upper and lower bounds for the
stability of the system, this feature could not be reached via the first approach presented
by means of energy balance. Third, it allows to recover the same polynomial stability
results under the same dissipation hypothesis as Chapter 1, moreover, we achieve to ob-
tain polynomial stability results under weaker conditions on the dissipation coefficients,
in particular, one obtains in certain configurations weaker polynomial decay rates than
the ones observed in Chapter 1.

Part II Wave guides of a slab of metamaterial

Context

Most of materials found in nature have positive physical parameters for most frequencies.
However, it is well-know since last century that metals (such as gold) have a negative
electrical permittivity for a wide range of frequencies. The Drude model is a simple
model that can be used to describe the behavior of metals in this range. In the Drude
model, electrons in a metal are assumed to be free to move. This leads to a negative
permittivity for frequencies below the plasma frequency of the metal. Indeed, if by
applying fundamental dynamic principles to an electron and by linking its displacement,
to the polarization and the electric field, one shows the very good approximation

where gy stands for the permittivity in the vacuum and ). for the plasma pulsation of
the metal.

The negative permittivity of metals has several interesting properties. For example,
it allows surface plasmons to propagate at the interface between a dielectric and a metal.
Surface plasmons are waves that are confined to the interface. They have been used
in a variety of applications in micro and nano technologies, such as optical sensing and
imaging.

This second part of the thesis work places itself and tries to solve one of the perspec-
tives of the previous work made by Maxence Cassier, Christophe Hazard, and Patrick
Joly [14-16] in the study of wave propagation in a settle of two semi-spaces, one fulfilled
of a dielectric as the vacuum and the other of a dispersive material, Drude material. In
this work we intend to study the wave propagation considering a new separable geometry,
namely, the flat lens: a slab of dispersive material within a dielectric.

Content of the Part II

The second part is composed by Chapter 3 and Chapter 4 and enrolls itself as continuation
of the works of Bonnet-Joly, Dermenjian-Guillot, Ricardo Weder, and Calvin Hayden




. trique
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Figure 4: Scheme representation of a surface plasmon.

Wilcox for the study of wave propagation in stratified media 7,32, 90, 93|, Maxence
Cassier, Christophe Hazard, and Patrick Joly for their researches of a bi-layered medium
that involves a dispersive material modeled by Drude constitutive laws [14-16]. This
study is also developed in the original framework of Drude model.

Chapter 3 treats the general features of the second part of the thesis. In Section 3.1,
the physical and mathematical framework of the problem related to this study is pre-
sented. For this purpose, we begin with Maxwell’s equations in time domain presented
as modeling the problem in the case of the particular but enough rich Drude material.
Subsequently, a decomposition of solutions of our problem in Transverse Electric modes
(TE) and Transverse Magnetic modes (TM) is given. Once chosen to work arbitrarily
on mode TM, the original problem is simplified an reformulated under the form of an
abstract Schrodinger equation implying an unbounded operator A defined in a suitable
Hilbert space of finite energy functions. In Section 3.2, the symmetry of our problem
leads us to consider the Fourier transform ending up with the reduced Hamiltonians Ay,
where k € R is seen as the wave-length of the involved solutions. Later in Section 3.3,
the spectral theory of the reduced Hamiltonian is evoked, the concept of modal decom-
position is presented and the dispersion relation (relation between the frequency w and
the wave-length k) is derived.

Chapter 4 constitutes the soul of this second part of the thesis, where we find the set
solution for the dispersion relation and we confirm the presence of plasmonic waves. In
Section 4.1, we transform the dispersion relation in an equivalent dimensionless dispersion
relation the which we decompose as a countable collection of dimensionless dispersion
systems (DS,). Next in Section 4.2, we develop an abstract general technique for the
resolution of the systems (DS,,). Finally, we show that each system (DS,,) defines a curve
solution (dispersion curves) named C,, in Section 4.3, Section 4.4 and Section 4.5, we




investigate the analytic properties of C, divided, respectively, for the cases n > 2,n =1
and n = 0.

Chapter 5 presents the comparisons of our study in this second part of the thesis with
respect the previous studies: 1) the case of a non-dispersive slab material, treated in
what we refer ourselves as the classical case standing for the study of wave propagation
in stratified media (see [20-31,44,88-90,93,94] for the case of acoustic waves, [42,90] for
electromagnetic waves and [32,43,81] in the domain of elasticity); 2) the case of two-layer
media containing a dispersive Drude material [14-16].
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Introduction (Frangais)

Au cours des vingt derniéres années, ’étude de la propagation des ondes dans les milieux
dispersifs, et plus particuliérement des matériaux & indice négatif en électromagnétisme,
a suscité beaucoup plus d’intérét depuis le développement rapide du domaine des méta-
matériaux. Dans la théorie classique de la propagation, les ondes électromagnétiques
se propageant a travers un matériau déterminé sont bien modélisées par les équations
de Maxwell, soumises a deux grandeurs physiques qui déterminent les propriétés du
matériau : la permittivité diélectrique € et la perméabilité magnétique p du matériau.
Habituellement, les matériaux dans la nature ont des valeurs positives pour ces grandeurs
(e,0 > 0). De plus, la plupart des matériaux tendent a avoir une perméabilité proche
de pp et une permittivité supérieure a gy, o g9 et pg représentent respectivement la
permittivité et la perméabilité du vide [23,24]. En ce sens, comme son nom peut le sug-
gérer, les métamatériaux offrent une alternative pour réaliser toutes les configurations
possibles dépassant le concept de "matériau classique" et ouvrant ainsi une large gamme
de nouvelles propriétés non trouvées dans la nature.

Introduction aux métamatériaux

Les métamatériaux, également connus sous le nom de MGL (matériaux gauchers, pro-
posés pour la premiére fois par Veselago en 1968 [86]) ou MIR (matériaux a indice
de réfraction négatif, découverts bien plus tot [57, 58, 83]), sont formellement définis
dans [23,24] comme des "composites macroscopiques de structure périodique ou
non périodique, dont la fonctionnalité est due a 1’architecture cellulaire et
a la composition chimique". Plus récemment, Muamer Kadic, Graeme W. Milton,
Martin van Hecke et Martin Wegener ont donné la définition suivante (voir [49]) : "Les
métamatériaux sont des composites concus de blocs de construction adaptés,
composés d’un ou plusieurs matériaux de base constitutifs, donnant lieu a des
propriétés de milieu effectif au-dela de celles de leurs composants".

En termes plus simples, les métamatériaux sont des matériaux artificiels aux pro-
priétés physiques difficiles a trouver dans la nature. Ils consistent en un assemblage
périodique d’un grand nombre de microstructures résonantes (voir Figure 5). En effet,
ces microstructures au niveau de la cellule de base conférent les propriétés originales et
intéressantes. Pour ce type spécifique de métamatériaux, 'idée ingénieuse pour les con-
struire consiste a choisir habilement la structure ainsi que les résonateurs afin d’obtenir
lefficacité souhaitée du milieu. Ainsi, en passant par un processus d’homogénéisation,
les milieux homogénes effectifs résultants présentent les propriétés revendiquées.



Figure 5: Deux structures métamatériaux typiques dans le régime micro-ondes. A) Une structure péri-
odique (milieu homogeéne) ci-dessus, B) Une structure non périodique (milieu non homogeéne) ci-dessous.

Matériaux négatifs

Comme mentionné précédemment, dans I’étude des milieux électromagnétiques dispersifs
classiques, on rencontre des "matériaux classiques" dont la perméabilité électrique et la
permittivité magnétique sont strictement des grandeurs positives. Parmi les "matériaux
classiques", on mentionne tout d’abord les diélectriques ou les milieux diélectriques, qui
sont des isolants électriques (matériaux a faible conductivité) capables de se polariser
en présence d’un champ électrique. Des exemples de diélectriques sont : le verre, le
bois, le pétrole et les gaz tels que l'air et 'azote. Il est également trés utile de consid-
érer le concept de wvide haut, un diélectrique presque sans perte méme si sa constante
diélectrique relative est seulement 'unité [55]. Ainsi, le vide peut étre considéré comme
un diélectrique a des fins théoriques. Une bonne approximation de matériaux négatifs
parmi les matériaux naturels sont les métaux (par exemple, l'or, I'argent et le cuivre)
dans la gamme de fréquences optiques car leur permittivité présente une partie négative
par rapport & leur partie imaginaire qui est relativement petite (voir [68]). Cependant,
en tant que médias naturels, leur perméabilité reste positive. Les métamatériaux con-
stituent un deuxiéme exemple de matériaux négatifs parmi les matériaux fabriqués. De
plus, ils présentent une permittivité et/ou une perméabilité négative(s) sur une plage de
fréquences spécifique(s) en fonction de leur conception, ce qui les rend intéressants pour
les applications dans la manipulation des ondes électromagnétiques.

Parmi les phénomeénes les plus importants issus des propriétés négatives d’un matériau,
nous trouvons :
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e la localisation spatiale des ondes électromagnétiques sur les surfaces des matériaux,
ce phénomeéne est appelé les plasmons de surface;

e le phénoméne de réfraction négative, qui se traduit par le changement de direction
de la propagation d’une onde transmise sur 'interface entre un milieu négatif et un
dié¢lectrique, dans ce cas, il s’agit de matériaux de type LHM et NIM.

Plasmons de surface

Un gaz d’électrons dans un solide, comme par exemple les électrons libres des métaux,
a la capacité de subir des mouvements collectifs qui ont été nommés oscillations de
plasma. Ces oscillations collectives de plasma sont dues a la nature & longue portée de
I'interaction de Coulomb entre les électrons de conduction dans les métaux, comme 1'ont
souligné pour la premiére fois Pines et Bohm [75] et discuté en détail par Pines [74]. La
présence de surfaces introduit de nouveaux modes d’oscillations de plasma en plus de celui
du volume. Ces nouveaux modes peuvent étre excités par des électrons ou des photons
incidents et peuvent étre détectés expérimentalement. Ils dépendent également fortement
des propriétés des surfaces de sorte qu’ils peuvent étre utilisés pour fabriquer des capteurs.
De plus, ces oscillations de surface permettent de réduire les signaux optiques dans des
dimensions beaucoup plus petites que leur longueur d’onde dans le vide, offrant ainsi
la possibilité d’avoir des circuits optiques de dimensions nanométriques. Les quanta de
ces oscillations sont appelés plasmons (introduits pour la premiére fois par R. Ritchie en
1957 |78] et plus tard en 1960, le terme plasmon de surface a été introduit par Stern et
Ferrel [84]). Les plasmons sont des excitations électromagnétiques couplées aux électrons
dans un métal ou un semi-conducteur dopé.

Récemment, ces ondes ont été utilisées dans de nouvelles applications concernant
la conception de biocapteurs, les thérapies contre le cancer, la production de cellules
photovoltaiques efficaces et bien d’autres (voir [56]). Les capteurs optiques basés sur
les plasmons de surface, souvent appelés capteurs de résonance des plasmons de surface
(SPR), exploitent la sensibilité de la constante de propagation d’un plasmon de sur-
face aux changements d’indice de réfraction se produisant dans son champ évanescent.
Un changement dans l'indice de réfraction produit un changement de la constante de
propagation du plasmon de surface, ce qui se traduit par un changement dans les carac-
téristiques de 'onde lumineuse interagissant avec lui. Le premier capteur de ce type a
été démontré par Nylander et Liedberg [67] pour la détection de gaz.

D’un point de vue mathématique, 'existence de ces ondes est principalement due
au fait qu’aux fréquences optiques, certains métaux comme l'argent ou l'or ont une
permittivité diélectrique avec une petite partie imaginaire et une partie réelle négative
(voir [7,13,14,21,32,46,70,77,90,93] pour des exemples et des explications plus rigoureux).
En négligeant la partie imaginaire, pour ces plages de fréquences, nous sommes amenés
a considérer une " réelle qui est négative dans le métal et positive dans I'air autour du
métal.

Pour plus de détails sur la plasmonique, voir par exemple [5].

Applications des métamatériaux

Le regain d’intérét considérable pour le domaine des métamatériaux a suscité un nombre
notable d’applications et d’applications potentielles remarquables. Nous présentons deux
des plus célébres.
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Pour les matériaux a indice de réfraction négatif (LHM), la mise en ceuvre la plus
remarquable se situe dans le domaine de la super lentille [72] (voir Figure 6), qui peut
étre largement utilisée dans I'imagerie médicale a super-résolution, I'imagerie optique et
la détection non destructive. La premiére super lentille dans le régime des micro-ondes
a été réalisée en 2004 [40]. L’importance des super lentilles réside dans leur capacité a
ne pas étre soumises au phénomeéne de limite de diffraction et a produire des images a
super-résolution [72].

Figure 6: Lentille parfaite avec des métamatériaux, expérience menée a 'Imperial College de Londres.

Pour les métamatériaux plus généraux, les dispositifs de camouflage ont attiré de plus
en plus d’attention [41,51,66,73,91] (voir Figure 7). Comme dans la saga Harry Potter,
en choisissant les bons parameétres, les démonstrations réussies de capes d’invisibilité
expérimentales dans le régime des micro-ondes [54, 82| rendent possible la réalisation de
dispositifs de camouflage dans le futur, c’est-a-dire que nous ne sommes pas loin, dans
les décennies & venir, d’acquérir des capes d’invisibilité capables de dévier les faisceaux
lumineux nous rendant invisibles ! Les expériences sur ce sujet ne sont toujours pas
concluantes. En effet, pour construire ce type de métamatériaux, nous devrions étre
en mesure de réaliser des structures périodiques assez petites atteignant la taille de la
longueur d’onde de la lumiére visible (400 & 800 nanométres), ce qui n’est toujours pas
technologiquement réalisé. Cependant, de nos jours, il est possible de rendre invisibles
des objets pour les micro-ondes dont la longueur d’onde oscille entre 1 millimétre et 1
métre [82].

Ondes électromagnétiques dispersives : modéles mathématiques

Le phénoméne de dispersion est omniprésent en électromagnétisme : la vitesse de la
lumiére dans un milieu dépend généralement de la fréquence de 'onde, ce qui peut
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Figure 7: Distribution normalisée du champ magnétique du dispositif de camouflage sans perte (gauche)
et avec perte (droite) avec une excitation d’onde plane [1].

étre interprété comme un effet d’"inertie" au niveau microscopique. Malgré sa présence
généralisée, cette dispersion en fréquence a soulevé de nombreuses questions théoriques
et engendré des discussions intenses, en particulier depuis I'introduction des métamatéri-
aux et des matériaux a indice négatif. Cela fait suite notamment & 'intérét considérable
pour des dispositifs spectaculaires tels que la lentille parfaite 72| et la cape ou le tapis
d’invisibilité [59], et plus récemment, pour des structures plasmoniques comme les coins
avec une permittivité négative [6,46]. Dans cette effervescence, des contradictions ap-
parentes ont été relevées dans la littérature physique concernant le principe de causalité
et la notion d’énergie électromagnétique. Ces contradictions sont généralement associées
a une modélisation incorrecte de la dispersion en fréquence, précisément dans la plage
de fréquences ou les propriétés optiques offertes par les métamatériaux se produisent.
Cependant, la plupart des études mathématiques dans ce contexte concernent le do-
maine fréquentiel et non les équations dépendant du temps. Par conséquent, elles sont
insuffisantes pour décrire toute la physique de ces matériaux puisque les fréquences sont
corrélées par une dispersion qui doit étre prise en compte rigoureusement.

Dans cette optique, notre objectif dans cette thése de doctorat est d’approfondir
I’analyse des systémes dispersifs pour prédire en particulier leur comportement dépendant
du temps. L’approche que nous envisageons dans cette thése repose sur un premier outil
mathématique issu de 'analyse complexe et plus précisément de la théorie des fonctions
de Herglotz, c’est-a-dire des fonctions analytiques du demi-plan supérieur avec une partie
imaginaire non négative, qui définissent précisément la permittivité et la perméabilité de
milieux linéaires causaux et passifs en fonction de la fréquence [17,19].

En effet, pour les systémes électromagnétiques dispersifs, des progrés importants ont
été réalisés par A. Figotin, J. Schenker, B. Gralak et A. Tip [37-39, 85| et dévelop-
pés par M. Cassier, C. Hazard, P. Joly et M. Kachanovska dans [15,17]. En utilisant
les propriétés des fonctions de Herglotz dans le domaine fréquentiel (en particulier leur
théoréme de représentation), ils réécrivent les équations de Maxwell dissipatives et disper-
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sives dépendantes du temps comme un systéme conservatif. Dans le domaine temporel,
cela correspond a 'introduction de variables supplémentaires (aux champs électriques et
magnétiques).

Comme expliqué en détail, par exemple, dans [14], dans le domaine de I'électromagnétisme,
les équations de Maxwell relient les variations spatiales des champs électrique et mag-
nétique E(x,t) et H(x,t) (on x € R® désigne la variable spatiale et ¢t > 0 le parameétre
temporel) aux variations temporelles des inductions électriques et magnétiques corre-
spondantes D(x,t) et B(x,1) :

OD-VxH=0 0B+VxE=0, x€eRt>0. (0.0.8)

Les équations précédentes sont complétées par des lois constitutives qui caractérisent
le matériau dans lequel les ondes électromagnétiques se propagent, les lois constitutives
établissent le lien entre le champ électrique (ou magnétique) et l'induction correspon-
dante. Dans ce travail, nous nous limiterons aux matériaux qui sont locaux dans ’espace
(c’est-a-dire que I'induction en un point donné dépend uniquement du champ correspon-
dant en ce point). Dans les milieux diélectriques standard, il est courant de supposer que
la relation est également locale dans le temps (typiquement, I'induction électrique D a un
instant donné dépend uniquement du champ électrique E). De plus, si I'on suppose que le
milieu est isotrope (en gros, la relation entre D et E ne tient pas compte de I'orientation
des champs), il est naturel de suggérer que les champs sont proportionnels :

D(x,t) = e(x),E(x,t), B(x,t) = pu(x), H(x,1), (0.0.9)

ol en tout point x, £(x) et u(x) sont des nombres réels positifs appelés respectivement
la permittivité électrique et la perméabilité magnétique du matériau en un point spatial
x € R3. Le fait qu’ils puissent dépendre de x caractérise I'hétérogénéité possible du
matériau. Dans le vide, ces coefficients sont bien siir indépendants de x (on parle d’un
milieu homogéne) : e(x) = g¢ &~ (36, 7)1, 107, Fm™, pu(x) = po = 4, 7,107, Hm™L.
Cependant, (0.0.9) ne peut pas étre valide et doit étre vue uniquement comme une
approximation. Il apparait que des lois de proportionnalité simples ne peuvent étre
valables que dans le vide, sinon cela violerait certains principes physiques [50].

Pour étre cohérent avec de tels principes physiques, il est nécessaire d’abandonner
I'idée que les lois constitutives sont locales dans le temps et d’accepter, par exemple, que
D(x,t) dépend de I'historique des valeurs de E entre 0 et ¢, c’est-a-dire que D(x,?) est
une fonction dépendant des valeurs dans F(x,s),|,0 < s <t, en d’autres termes :

D(x,t) = F(x,t;{E(x,s) | 0 < s <t}).

Ce qui obéit & un principe physique fondamental : le principe de causalité. En
ajoutant le principe d’invariance temporelle, ¢’est-a-dire que le matériau se comporte de
la méme maniére quel que soit le temps ot on 'observe, on en déduit que la fonction F'
est également indépendante du temps : F(x,t;-) = F(x;-).

Pour traduire cela de maniére plus mathématique, il est utile de passer au domaine
fréquentiel exprimé au moyen de la transformée de Fourier-Laplace. La transformée de
Fourier-Laplace © d'une fonction u est la fonction définie dans la moitié supérieure du
plan complexe Ct :=w € C,|,Im(w) > 0 et définie par la formule intégrale suivante :
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u(w) = m,/u(i),ei’“’t dt. (0.0.10)

0

Les matériaux électromagnétiques dispersifs (isotropes) sont le plus souvent définis
comme des matériaux dans lesquels les lois de proportionnalité de la forme (0.0.9) sont
vérifiees dans le domaine fréquentiel, c’est-a-dire qu’elles sont satisfaites par les trans-
formées de Fourier-Laplace des champs, plutét que par les champs eux-mémes. Dans
ce cas, il n’y a aucune raison d’exiger que € et p soient réels et indépendants de la
fréquence. C’est pourquoi un milieu isotrope dispersif sera défini comme obéissant a des
lois constitutives de la forme :

D(x,w) =e(x,w), E(x,w), B(x,w)= ,u(x,w),f{\(x, w), (0.0.11)

ol pour chaque x € R}, w € C*, w € CT = &(x,w) (la permittivité) et w € CT
p(x,w) (la perméabilité) sont des fonctions non triviales de la fréquence qui décrivent
la dispersivité du milieu. Pour les matériaux non dispersifs, ces fonctions sont réelles,
positives et constantes, c¢’est-a-dire que (0.0.9) est vérifié. Bien sir, ces fonctions satisfont
certaines propriétés particuliéres imposées par des raisons physiques ou mathématiques :

e Principe de causalité. Pour assurer la causalité de D(x,t) (ou B(x,t)) a condi-
tion que E(x,t) (ou H(x,t)) soit causale, il est naturel d’imposer

Vx €R?, wire(x,w) et wr u(x,w) sont analytiques dans C*. (0.0.12)

e Principe de réalité. Une deuxiéme exigence est que si D(x,t) (ou B(x,t)) est
réel, alors E(x,t) (ou E(x,t)) est également réel. Selon (0.0.11), I'invariance de C*
sous l'application w — —w et les propriétés de Fourier-Laplace des fonctions réelles,
le principe de réalité se traduit par la condition

vx €R® YweCh e(x,—w)=c(xw) et wpx —w) =pxw). (0.0.13)

e Principe de haute fréquence. Une propriété fondamentale du point de vue
physique est que, & haute fréquence, tout matériau "se comporte comme le vide".
Mathématiquement, cela revient a exiger que

vx € R® Vi >0, lim e(x,w) = €g, lim X, W) = [o-
" B E W) =0, tm L HOw) = o
(0.0.14)

Cela signifie que le matériau est "de moins en moins dispersif" & haute fréquence.

Le travail de thése suivant se compose de deux parties indépendantes liées a la prop-
agation des ondes dans des matériaux dispersifs, avec un point de départ dans le régime
temporel, c’est-a-dire, en partant d’une approche dite stationnaire oti nous reconstru-
isons une onde transitoire comme une superposition d’ondes périodiques. La premiére
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partie du travail de thése consiste en ’analyse du comportement a long terme de la solu-
tion des équations de Maxwell dans des matériaux de Lorentz généralisés dissipatifs, cela
représente le contenu du Chapter 1 et du Chapter 2, qui développent deux approches
distinctes pour le traitement du sujet. En revanche, la deuxiéme partie est consacrée
a I'étude des équations de Maxwell dans le régime temporel, délimitée dans une lame
de métamatériau immergée dans un matériau diélectrique (par exemple le vide). Cette
seconde partie comprend Chapter 3, Chapter 4 et Chapter 5.

Partie I Comportement & long terme de la solution des équations
de Maxwell dans les matériaux de Lorentz généralisés dissipatifs

Contexte

L’analyse des taux de décroissance de I’énergie des solutions pour les modéles dispersifs et
dissipatifs de la propagation des ondes linéaires a été étudiée pendant de longues périodes
dans la littérature. Cette recherche a été principalement motivée par des applications en
visco-élasticité [22,26,35] et en électromagnétisme [36,61], mais elle a récemment suscité
un regain d’intérét en raison de sa pertinence pour les métamatériaux, comme le montrent
par exemple [17,37,63,65,65], o une construction appropriée de modéles mathématiques
congruents avec des principes motivés par la physique tels que les principes de causalité
et de passivité est présentée (voir également [19,39,92]).

Contenu de la Partie I

Dans le Chapter 1, nous développons pour les milieux Drude-Lorentz dissipatifs général-
isés une technique de Lyapunov pour prouver la stabilité polynomiale de I’énergie élec-
tromagnétique. En termes plus simples, l'idée est de dériver une inégalité différentielle
via un bilan énergétique issu des équations de Maxwell, ainsi, par des inégalités de type
Gronwall dans le domaine spatial de Fourier et 'isométrie de Plancherel, nous parvenons
au résultat souhaité. Il convient de mentionner que d’autres résultats de stabilité pour
des modéles dispersifs /dissipatifs ont également été obtenus via la technique de Lyapunov
(voir [35,36,61]), cependant, aucune de ces techniques ne s’applique dans notre contexte
étant donné le manque de propriétés de signe supposées pour les noyaux de convolution
impliqués dans les effets de mémoire de notre modéle.

Dans le Chapter 2, nous traitons le méme probléme que dans le Chapter 1 en utilisant
cette fois-ci 'approche de la décomposition modale. Cette approche est techniquement
plus complexe que celle du premier chapitre, mais elle présente plusieurs avantages signi-
ficatifs. Premiérement, elle est plus physique a bien des égards, car elle se référe explicite-
ment a la relation de dispersion du milieu via une décomposition en plans d’onde, ce qui
facilite la compréhension pour les physiciens. Deuxiémement, elle conduit a des résultats
optimaux, car elle nous permet d’obtenir & la fois des bornes supérieures et inférieures
pour la stabilité du systéme, ce qui n’a pas pu étre atteint par la premiére approche
présentée au moyen d’un bilan énergétique. Troisiémement, elle permet de retrouver les
mémes résultats de stabilité polynomiale sous les mémes hypothéses de dissipation que
le Chapter 1; de plus, nous parvenons a obtenir des résultats de stabilité polynomiale
sous des conditions plus faibles sur les coefficients de dissipation, en particulier, dans cer-
taines configurations, on obtient des taux de décroissance polynomiale plus faibles que
ceux observés dans le Chapter 1.
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Partie 11 Guides d’ondes d’une plaque de métamatériau

Contexte

La plupart des matériaux trouvés dans la nature ont des paramétres physiques positifs
pour la plupart des fréquences. Cependant, il est bien connu depuis le siécle dernier
que les métaux (comme l'or) ont une permittivité électrique négative pour une large
gamme de fréquences. Le modéle de Drude est un modéle simple qui peut étre utilisé
pour décrire le comportement des métaux dans cette plage. Dans le modeéle de Drude,
on suppose que les électrons dans un métal sont libres de se déplacer. Cela conduit &
une permittivité négative pour les fréquences en dessous de la fréquence de plasma du
métal. En effet, en appliquant des principes dynamiques fondamentaux a un électron
et en liant son déplacement a la polarisation et au champ électrique, on montre la trés

bonne approximation
2
clw)=¢p, |1 —— ),

oll £ représente la permittivité dans le vide et {2, la pulsation de plasma du métal.

La permittivité négative des métaux a plusieurs propriétés intéressantes. Par exemple,
elle permet aux plasmons de surface de se propager a 'interface entre un diélectrique et
un métal. Les plasmons de surface sont des ondes qui sont confinées a 'interface. Ils
ont été utilisés dans une variété d’applications en micro et nanotechnologies, telles que
la détection optique et 'imagerie.

Cette deuxiéme partie du travail de thése se place et tente de résoudre I'une des per-
spectives du travail précédent réalisé par Maxence Cassier, Christophe Hazard et Patrick
Joly [14-16] dans I’étude de la propagation des ondes dans un ensemble de deux demi-
espaces, 'un rempli d’un diélectrique comme le vide et 'autre d’un matériau dispersif, le
matériau de Drude. Dans ce travail, nous avons l'intention d’étudier la propagation des
ondes en considérant une nouvelle géométrie séparable, a savoir, la lentille plate : une
plaque de matériau dispersif dans un diélectrique.

Contenu de la Partie 11

La deuxiéme partie est composée des Chapter 3 et Chapter 4 et s’inscrit dans la continuité
des travaux de Bonnet-Joly, Dermenjian-Guillot, Ricardo Weder et Calvin Hayden Wilcox
pour 'étude de la propagation des ondes dans les milieux stratifiés |7, 32,90, 93], de
Maxence Cassier, Christophe Hazard et Patrick Joly pour leurs recherches sur un milieu
bicouche impliquant un matériau dispersif modélisé par les lois constitutives de Drude
[14-16]. Cette étude est également développée dans le cadre original du modéle de Drude.

Le Chapter 3 traite des caractéristiques générales de la deuxiéme partie de la thése.
Dans la Section 3.1, le cadre physique et mathématique du probléme lié a cette étude est
présenté. A cette fin, nous commencons par les équations de Maxwell dans le domaine
temporel présentant la modélisation du probléme dans le cas du matériau de Drude,
particulierement riche mais suffisamment précis. Ensuite, une décomposition des solu-
tions de notre probléme en modes transverses électriques (TE) et en modes transverses
magnétiques (TM) est donnée. Une fois choisi de travailler de maniére arbitraire sur le
mode TM, le probléme original est simplifié et reformulé sous la forme d’une équation
de Schrodinger abstraite impliquant un opérateur non borné A défini dans un espace de
Hilbert approprié des fonctions d’énergie finie. Dans la Section 3.2, la symétrie de notre
probléme nous ameéne a considérer la transformée de Fourier pour obtenir les Hamiltoniens
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Figure 8: Représentation schématique d’un plasmon de surface.

réduits Ag, ol k& € R est considéré comme la longueur d’onde des solutions impliquées.
Ensuite, dans la Section 3.3, la théorie spectrale de ’'Hamiltonien réduit est évoquée, le
concept de décomposition modale est présenté et la relation de dispersion (relation entre
la fréquence w et la longueur d’onde k) est dérivée.

Le Chapter 4 constitue 'essence de cette deuxiéme partie de la thése, ou nous trou-
vons ’ensemble des solutions pour la relation de dispersion et confirmons la présence
d’ondes plasmoniques. Dans la Section 4.1, nous transformons la relation de dispersion
en une relation de dispersion sans dimension équivalente que nous décomposons en une
collection dénombrable de systémes de dispersion sans dimension (DS,,). Ensuite, dans
la Section 4.2, nous développons une technique générale abstraite pour la résolution des
systémes (DS,,). Enfin, nous montrons que chaque systéme (DS,) définit une courbe
de solution (courbes de dispersion) nommée C,, dans les Section 4.3, Section 4.4 et Sec-
tion 4.5, nous étudions les propriétés analytiques de C,, divisées, respectivement, pour les
casn>2,n=1etn=0.

Le Chapter 5 présente les comparaisons de notre étude dans cette deuxiéme partie de la
thése par rapport aux études précédentes : 1) le cas d’un matériau en plaque non dispersif,
traité dans ce que nous appelons nous-mémes le cas classique représentant I’étude de la
propagation des ondes dans les milieux stratifiés (voir [29-31, 44, 88-90, 93, 94| pour le
cas des ondes acoustiques, [42,90] pour les ondes électromagnétiques et [32,43,81| dans

le domaine de I'élasticité); 2) le cas de deux milieux en couches contenant un matériau
dispersif de Drude [14-16].
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PART 1

MAXWELL’S EQUATIONS IN METAMATERIALS:
LONG TIME BEHAVIOR OF SOLUTIONS




CHAPTER 1

Long time behaviour of the solution of Maxwell’s equa-
tions in dissipative generalized Lorentz materials (I) A
frequency dependent Lyapunov function approach
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It is well-known that electromagnetic dispersive structures such as metamaterials can be
modelled by generalized Drude-Lorentz models. The present paper is the first of two articles
dedicated to dissipative generalized Drude-Lorentz open structures. We wish to quantify the
loss in such media in terms of the long time decay rate of the electromagnetic energy for the
corresponding Cauchy problem. By using an approach based on frequency dependent Lyapunov
estimates, we show that this decay is polynomial in time. These results extend to an unbounded
structure the ones obtained for bounded media in [65] via a quite different method based on the
notion of cumulated past history and semi-group theory. A great advantage of the approach
developed here is to be less abstract and directly connected to the physics of the system via
energy balances.



1.1. Introduction and motivation

1.1 Introduction and motivation

The study of the long time behaviour of solutions of dispersive and dissipative models for linear
wave propagation has already been extensively studied in the literature, primarily for applica-
tions in visco-elasticity and more recently in electromagnetism. The subject has recently known
a regain of interest related to metamaterials. We can refer for instance, in electromagnetism, to
the article [17] in which we presented a systematic construction of mathematical models com-
patible with physically motivated principle such as causality and passivity (see also [19,39,92]).
The common point to all these models is that the constitutive laws include memory effects cor-
responding to time convolution nonlocal operators that induce dispersion (the velocity of waves
is frequency dependent) and dissipation (the energy decay of the solution) that are in often
intimately related.

For such models one of the most natural question is the study of the long time behaviour of the
corresponding Cauchy problem: prove that the energy of the solution tends to 0 when ¢ tends
to 400 and study the rate of decay. This is of course closely related to the theory of control and
stabilization of dynamical systems where one commonly distinguishes the notion of exponential
stability (which corresponds to an exponential decay of the energy) and polynomial stability
(the energy decays as the inverse of a positive power of t).

1.1.1 Maxwell’s equations in dispersive media

1.1.1.1 General features

As said previusly in the introduction, Maxwell’s equations relate the electric and magnetic
inductions D(x,t) and B(x,t) (x € R® and t > 0 are respectively the space and time variables)
to the electric and magnetic fields E(x,¢) and H(x,t):

8tD—V><H:0,

(1.1.1)
OB+V xE=0.
On the other hand, one defines the electric polarization and magnetization by
D =¢gE + Py, Pyt : electric polarization,
(1.1.2)

B =puoH+ My, My : magnetization.

where €9 > 0 and pg > 0 are the vacuum permittivity and permeability. The above equations are
completed by the following non local constitutive laws (we consider the case of a homogeneous
medium)

Piot(- 1) = €0 /0 Xe(t — s) E(+, s) ds, s

t
M (1) = pi0 [ xonlt = 5) H(15) ds,
0
where x. and x,, are the electrical and magnetic susceptibilities of the material (convolutions

products being understood in the distributional sense, see for e.g. [20,95], for (xe, Xm) not in
Lj(RT)).
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1.1. Introduction and motivation

In the Fourier-Laplace domain
+oo )
E(,t) — E(,w) = / E(-,t) e“' dt, Im w >0,
0

(1.1.2) and (1.1.3) reduce to
D(,w) = e(w) E(,w),
(1.1.4)

B(,w) = p(w) H(,w)

where the complex permittivity e(w) and the complex permeability u(w) are given in terms of
the Fourier-Laplace transform of the susceptibility functions:

cw) =20 (14 () and  p(w) = po (1+ X (@)). (1.1.5)

where e(w) — €9 and p(w) — po when w — oo in C* :={w € C/ Im w > 0}. In other words,
the material behaves as the vacuum at high frequencies. In the frequency domain, passivity,
causality and the high frequency behaviour are traduced by the fact that (see [4,19,92,95] for
more details)

w i we(w) and w — w p(w) are Herglotz functions, (1.1.6)

that is to say analytic functions from C* into its closure C*. Furthermore as the susceptibilities
Xe and x,, are real-valued functions in the time domain, the permittivity and permeability
satisfy e(w) = e(—w) and p(w) = pu(—w), Vw € Ct.

Remark 1.1.1. [About the notion of passivity| The condition (1.1.6) is the condition which is
most often used to define passive materials: we called it mathematical passivity in [17]. In the
same article, we define the related notion physical passivity which is associated to the Cauchy
problem associated to (1.1.1, 1.1.2, 1.1.3), seen as an evolution problem with respect to the
electromagnetic field (E, H). In other words, we look at the free evolution of the system i.e in
the absence of external sources. More precisely a material is physical passive if and only if the
electromagnetic energy

1
E(t) = £(E,H, 1) == (50/ |E(x,t)]2dx+u0/ H(x,1)dx). (1.1.7)
2 R3 R3
can never exceeds its value at ¢t = 0, that is to say
Vi>0, E(t) <&(0). (1.1.8)

It is emphasized in [17] that the above property does not mean that the electromagnetic energy
is a decreasing function of time.

1.1.1.2 The generalized Lorentz media

In this paper, we shall focus on the most well-known subclass of models: the (dissipative)
generalized Lorentz media (see e.g. [2,17,48,52,53]). Such model will be called local because
of the relationship between D and E or B and H can be written with ordinary differential
equations. More precisely, these correspond to

Ne N'm
Piot = €0 Z Qij P;, Mot = o ZQ%L,E My, (1.1.9)
j=1 =1
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1.1. Introduction and motivation

where each P; (resp. each My) is related to E (resp. H) by an ordinary differential equation

aij+Oé67j8tPj+wg7ij:E, 1<j <N,

(1.1.10)
83M€+am,£atM£+w72n,gM€ =H, 1 </ < Ny,
completed by initial conditions centered at 0
P;(-,0)=0:P;(-,0) =0, 1<j<N,,
(1.1.11)

My(+,0) = 0, My(-,0) =0, 1 < £ < Ny,.
In the above equations, the (real) coefficients € j, Qp, ¢, We j, Wi, ¢ are supposed to satisfy
Qe; >0, we;>0, 1<j<Ney Qne>0, wme>0, 1<L< Ny, (1.1.12)
while for stability /dissipation issues the coefficients (¢, 4, ¢) must non-negative
Qej >0, 1<j< N me>0 1<L< Ny, (1.1.13)

Moreover, the reader will easily check that one can assume without any loss of generality that
the couples (o, j, we j) (resp. (., wm o)) are all distinct the ones from the others.

Note that (1.1.9, 1.1.10) corresponds to

Ne QQ . Nm Q2 ¢
—eo(1- e ) b - (1 _ ™, )
() e(w) =20 ( ; w2 +iae;w—w?; (b) plw) = po ; w? +iamw —w}
(1.1.14)
Straightforward calculations show that (1.1.9, 1.1.10) are equivalent to (1.1.3) with
Ne N,
Xe =D Wi Xegs Xm= Y Dy Xt (1.1.15)
j=1 =1
where the expression of each x, ; for v =e,m and j € {1,..., N, } is given by

(1) xu (1) = 25;]1- sinh (5,“- t/2) e (owit/2) if Q> 2wy 5,

(i) Xuj(t) =26, sin (6,;t/2) e” i1/ if oy, < 2wy, (1.1.16)
(id4) xu;(t) =t e~ (wat/2) if o j =2w,;,
where we have set 0, ; = 041243‘ — 4w3’j if o j > 2w, jand d,; = 4w37j — alzjyj if o ; <

2(4)1,,]'.

Note that each kernel x,, ; is not monotonous with respect to time as soon as w,,; > 0or a, ; >0
and tends to 0 when ¢t — +o0 if (and only if) ay,; > 0 (see figure Figure 1.1, first two pictures).
As a consequence x, does not tend to 0 at infinity as soon as one of the «,, ; vanishes (see figure
Figure 1.1, third picture).
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1.1. Introduction and motivation

Figure 1.1: Kernels as functions of time. Left: x, ; for o, ; > 2w, ; > 0. Center: x, ; for 0 < a,; <
2w, ;. Right: x, for N, =2,0,1 =0, a2 > 0.

1.1.2 A brief review of the literature

As said in introduction, there are already many existing results on the long time behaviour of
the solution of dissipative dispersive systems. In this paragraph, we discuss in some detail some
of the most significant contributions that are in close connection with the present work.

In the article [37], the authors considered a very abstract evolution model that in particular
includes (1.1.3) with x,, = 0 and a function x. for which w x.(w) is a Herglotz function. If one
assumes that this function satisfies the additional assumption that

fora. e. w€R, e(w):= lim Im(¢xe(¢)) exists, (1.1.17)
(eCt—w
(which is satisfied by most of dispersive materials in physics and in particular by generalized
Lorentz materials) then the sufficient dissipation condition (6.4) of [37] is equivalent to

fora. e. w€R, 7(w) >0, v 'e€LL.(R). (1.1.18)

When applied to the generalized Lorentz model (see Appendix A.1), namely when e(w) is given
by (1.1.14) the above condition corresponds to

31 < j < N, such that we j =0 and o, ; > 0. (1.1.19)

Under this condition, it is proven that the electromagnetic energy (see the formula (1.1.7)) tends
to 0 for any initial data (Eq, Ho) in L?(R3)? x L?(R3)3:

Y (Eog,Hp) € L2(R*)? x L3(R®)3, lim &(t) =0. (1.1.20)
t—-+o0
This result is proven in [17] (section 4.4) in a much more pedestrian way on a toy problem
corresponding the Drude model with No = Ny, = 1, we1 = w1 = 0 and e 1, Cem > 0.

In the above references, the question of the rate of convergence to 0 of the electromagnetic energy
is not discussed. This question is addressed in a series of work by S. Nicaise and her collaborator
C. Pignotti [63], [65](which generalizes [63]) (see also [64] for local dissipation models). These
works consider the initial value problem in a bounded domain Q C R3 with perfectly conducting
boundary conditions for which they prove polynomial stability in the sense mentioned below (see
estimate (1.1.25)). The conditions for polynomial stability in [65] are two fold:

(i) The first condition is expressed in the time domain, more precisely in terms of regularity
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1.1. Introduction and motivation

and decay properties of the kernels x. and xp,:

X = Xe OF Xm satisfies y € C2(RY), lim x'(¢t)=0, [x"(t)]<C e (with C,8 > 0).

t—+o00
(1.1.21)
Note that (1.1.21) implies that it exists C; > 0 such that |x/(t)| < C1 6 'e™% and |x(t)| <
Cy fort > 0 (see e.g. the appendix of |64] for the details). Hence, it follows (by integrations
by parts of the Fourier-Laplace integral) that

wRW) =i (w)+ix(0) and wyR(w)= —(;(W(w) +x'(0)) w™ ' +ix(0), VYweCT

(1.1.22)
where, as the Laplace-Fourier transform of a L' causal function, w )?(w) and w — ?(w)
are analytic on CT, continuous on CT and decay to 0 when w — oo in C+. Thus,
using (1.1.22), one observes that (1.1.21) implies that the functions w +— w Xe(w) and
w + wYm(w) are analytic on CT and can be extended as continuous and bounded func-
tions in the closed upper half-plane C*. Furthermore, ¥ = Xe, Xm, one has wx(w) =
ix(0) — x'(0)w™ + o(w™!) when w — oo in C+.

(ii) The second condition is expressed in the frequency domain for real frequencies. It also
has two parts. The first one is a strict positivity condition

VweR", 7e(w)="Imwyxe(w) >0, mn(w):=Im wxm(w) >0, (1.1.23)
which is completed by the additional assumption

Jw,p,C > 0such that: |w|>wy = Yelw)>C|w| P, Ym(w) > Cw™P,
(1.1.24)
that means the the (strictly positive) functions v.(w) and 7., (w) do not decay too fast at
infinity.

Under assumptions (1.1.21), (1.1.23) and (1.1.24), the authors of [65] prove, for H! initial data,
decay estimates of the form

_2
E(t)<Cpt (||E0”%{1(Q) + ||H0H12q1(9)). (1.1.25)

When specified to the case of the Lorentz kernels, it is easy to see (with (1.1.15) and (1.1.16))
that, in addition to the non-negativity of the coefficients (o j, am ), the conditions (1.1.21),
(1.1.23) and (1.1.24) (which is then satisified for p = 2) correspond to the following strong
dissipation condition.

Definition 1.1.2 (Strong Dissipation for Lorentz models).
VI<j<Ne, >0, VI<L< Ny, ape>0. (1.1.26)
It is worthwhile mentioning briefly the techniques of proof for (1.1.20) in [37] and (1.1.25) in [65].

The technique used in [37] is difficult to describe in a few lines but we can give some of the main
ideas. The authors use an augmented formulation of the evolution problem where, typically, the
convolutions (1.1.3) are hidden behind the introduction of new unknowns. In the very abstract
framework of [37|, these new unknowns can be seen as elements of an adequately constructed
Hilbert space. In the case of the Maxwell’s equations, these new unknowns are functions of (x,t)
but also of additional variable £ that varies in R (or a subset of R), see [37] and also [17,39]. The
fundamental property of the obtained “augmented" system is that it is conservative: in other
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words, it is an evolution problem associated with a self-adjoint operator A, in the augmented

Hilbert space:
duC

dt
This allows to use tools from spectral theory of self-adjoint operators and to obtain an adequate
(Fourier-like) integral representation of the solution of the original problem. The convergence
result (1.1.20) then appears as a consequence of the spectral theorem and the use of Riemann-
Lebesgue theorem on compact sets, that is justified by the assumption (1.1.18).

+1A.U. = 0.

Although quite different, the approach of [65] also starts from another augmented formulation
of the original system in which the convolutions (1.1.3) are again replaced by additional purely
differential equations. The construction of this augmented model relies of the very nice trick of
Dafermos [25] for treating viscoelasticity. This implies to introduce an additional time variable
s (that plays a similar role than & in [17]) and additional unknowns: the so called cumulated
past histories of the fields E and H. The convolution operators are then replaced by non
homogeneous transport equations in the (s,t) plane. Contrary to [37], the augmented system is
not conservative and is written as an autonomous evolution problem involving an operator A,
which is not self-adjoint but maximal dissipative:

di,
dt

+1A,U, = 0.

This problem arises from the application of the theory of semi-groups. In particular, estimates
(1.1.25) are obtained by the application of theorem 2.4 of [8]. Applying this theorem essentially
requires to establish localization results for the spectrum of A, (inside C~ = {w € C | Im(w) <
0}) and appropriate estimates for its resolvent, using the conditions (1.1.22,1.1.23,1.1.24).

1.1.3 About Lyapunov techniques

To conclude this short bibliographical review, it is worthwhile mentioning that other stability
results for dispersive/dissipative results have also been obtained via the Lyapunov technique:
roughly speaking, the idea is to derive some differential inequality (in time) for a certain func-
tional of the solution, namely the Lyapunov funtion £, which dominates the energy (or some
function of the energy). The stability estimates are then obtained from the time integration of
the differential inequality.

In the context of dissipative systems with memory, this type of technique was introduced in
particular to show exponential stability in the theory of linear viscoelasticity [22,26,35] (see
also [36,61] in the context of electromagnetism) and used in |61] where the authors establish
polynomial stability estimates associated to various damping phenomena in electromagnetism to
model, for instance, a rigid electric conductor or the ionized atmosphere (see also Remark 1.1.3).
However their technique cannot be applied to our case because it requires sign properties of the
derivatives of convolution kernels, which clearly prevents from time oscillations as in (1.1.15).
To give an idea about why this kind of assumption appears, let us come back the system (1.1.1,
1.1.2, 1.1.3) in the whole space R3, provided that the kernels . and x,, are of class C® on R™.
Adapting the techniques of [35] to dispersive Maxwell’s equations, one can show (formally) the
following identity (see Appendix A.2)

< (B, H)(1) + D(BH)(1) = 0 (1.1.27)
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where the Lyapunov function £(E, H) is a kind of augmented energy, namely
£<E7 H)(t> = g(EvH)(t) +€ad(E7H)(t) (1128)

with the additional energy

Eud (B, H) () = @x;w LBt 0 dx 5w (0) [ B0

— 5 Xo(t—s) / |E,(x,t) — E,(x, s)]QdX> ds (1.1.29)
- % th—s / |H,(x,1) (x,s)|2dx) ds.

and the functional D(E, H) is given by
DEH) = 20x(0) [ [BOx 0P dx+ o xn(0) [ [H(x 0P dx

— S0 /E (x,1)|? dx — “2“ " /yH (x,1)|? dx

+ 620/ " / |Ep(x, 1) (x,s)\de) ds

+ MQO/ " / H,(x,t) (x,s)|2dx) ds.

In the above formula (1.1.29) and (1.1.30), we have introduced the primitives (in time) of the
fields F = E, H:

(1.1.30)

t
F,(x,t) = / f(x,8)ds, Vt>0and ae. x€R
0

Sufficient conditions to ensure stability estimates and time decay results simply amount to check
that
LEH) > EEH) (< &uquEH)>0) and D(E,H) >0. (1.1.31)

It is clear on (1.1.29) and (1.1.30) that (2.5.3) lead to the (sufficient) conditions
xo(0) >0, x,(t) >0, ¥'(t)<0 and xP(t)>0 VteR", v=em. (1.1.32)
Such conditions are fulfilled, for instance, if there exists 5, > 0 such that
xv(0) >0, x,(t) >0, —xy(t) > B, x,,(t) and X7 (t) > =B, X, (t) (1.1.33)

which yields the existence of a constant § > 0 such that D(E,H) > § L(E, H) so that immedi-
ately implies the exponential stability of Maxwell’s equations in the sense that

E(t) <C e (1.1.34)
An elementary example of susceptibility kernels satisfying (1.1.33) is given by x,(t) =2 —e™*

Unfortunately, the conditions (2.5.3) are useless for analysing the stability of Maxwell’s gener-
alized Lorentz materials given by (1.1.10) and (1.1.12), the conditions (1.1.32) are only satisfied
by non-dissipative Drude materials for which y.(t) = Q2t and y,,(t) = Q2 ¢
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Remark 1.1.3. Tt is worthwhile to come back here to what we said in the remark 1.1.1 and
more precisely on the possible equivalence (generally conjectured) between the two notions
of mathematical passivity and physical passivity. What we show above is that the conditions
(1.1.32) are sufficient conditions for physical passivity. As a consequence, finding functions y.
and x,, satisfying (1.1.32) but such that the Herglotz property (1.1.6) would not hold, would
provide a counter example to the equivalence.

The conditions (1.1.32) are clearly reminiscent of the notion of Bernstein functions [3,80], i.e.
positive continuous function f : [0, 00[— (0,00), C* on (0,400) and whose derivative f’ is a
completely monotonous functions, which means that the sign of the successive derivatives of f
alternate with the order of derivation:

VieN\{0tand V>0, (=1 fU)() > 0. (1.1.35)

Completely monotone functions are also characterized as the Laplace transforms of positive
Borel measures on [0, +00) (see, e.g. [3,80]). It is known (see [45], Theorem 3.2 and corollary
3.14) that Bernstein functions satisfy the Herglotz property

w f(w) is an Herglotz function, where f(w) is the Laplace-Fourier transform of f.  (1.1.36)

However, when the alternating sign property (1.1.35) is only true for j < 3, which corresponds
to (1.1.32), (1.1.36) could a priori fail.

1.1.4 Objectives and outline of our work

We revisit in this first part of the thesis (composed by the Chapter 1 and Chapter 2) the
stability theory of (1.1.1, 1.1.2, 1.1.9, 1.1.10), that is to say Maxwell’s equations in generalized
dissipative Lorentz media. For the simplicity of exposition, we shall consider the problem posed
in the whole space R3 that authorizes the use of the Fourier transform in space. We have a
double objective

e propose new constructive proofs of stability estimates based on elementary tools that
avoids any use of "black box" results of abstract mathematical theory,

e extend the existing results with less restrictive assumptions than those appearing in [65]
or [64], namely to the case of the weak dissipativity assumption defined as follows (see
(1.1.37)).

Definition 1.1.4 (Weak Dissipation for generalized Lorentz models).

Ne Nm,
D e+ Y ame>0. (1.1.37)
j=1 =1

In this first paper, we shall restrict ourselves to the strong dissipation assumption (1.1.26)
and wish to recover in a quite explicit form the results from [65] with a technique inspired
by the Lyapunov approach. Compared to more standard Lyapunov methods, we introduce
frequency dependent Lyapunov functions (understand spatial frequency or wave numbers) that
in particular allows to distinguish the respective roles of low and high frequencies (the role of
low frequencies, that does not appear in a bounded domain as in [65] is due to the fact that we
work in an unbounded domain).

In the second paper, we shall use, in addition to the Fourier transform, a spectral representation
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of the solution that will permit us to derive sharp asymptotic long time estimates. This approach
is less tricky than the frequency dependent Lyapunov approach but is technically more involved
because non self-adjoint operators have to be handled. It also has the interest to only assume the
weak dissipativity condition (2.1.10) and to provide optimal results. We also think that, in both
papers, the arguments we shall use are quite close to physical notions (plane waves, dispersion
analysis, energy balance) which should make these papers more accessible to physicists.

The outline of the present paper is as follows. For pedagogical purpose and to emphasize the
main ideas that guided our computations, we first consider in section 1.2 the case of the (single)
dissipative Drude model that corresponds to the particular case of (1.1.10) when N, = N,,, =1
and we,1 = we,m = 0 (this corresponds to the toy problem considered in the section 4.4 of [17]). In
section 1.3, we shall extend the technical developments of the previous section to the generalized
Lorentz models (1.1.10), emphasizing the changes to be done in order to treat this more general
model. Our stability results are compared with the ones of [65]. In section 1.4, we present how
to apply our method to bounded domains (section 1.4.1) and extend our results to generalized
Drude-Lorentz models (section 1.4.2). Finally, the Appendix 1.4.2 gives the proofs of technical
results used through the paper.

1.2 The case of the Drude model

In this section we are interested in studying the behaviour for long times of the solutions of
the electric and magnetic fields, respectively, E and H, of the Drude model whose dissipative
formulation is obtained by introducing the time-derivatives of the polarization term P and the
magnetization term M (where for the Drude model Py = g9 Q2P and Mo, = o 22,M). The
unknowns of the problem are

E(x,t): R® x Rt — R3  H(x,t):R3* x Rt — R3,
OP(x,t) : R¥ x RT — R3, ;M(x,t) : R x RT — R3,
and satisfy the governing equations

0 E-VxH+eQ?0,P=0, (x,1)
1o Ot H+V X E + g Q2 0, M = 0, (x,t) € R® x R,
0P +a.0P=E, (x,1)
O*M + a,, XM = H, (x,1)

completed by initial conditions

E(-,O) = Eo, H(',O) = Hy,
(1.2.2)
9P (-,0) = ;M(-,0) = 0.

In (1.2.1), the coefficients (o, 1o, Qe, Q) are strictly positive. The coefficients (e, ayy,) are
strictly positive damping coefficients.

Setting H = L?(R3)3 x L?(R3)3 x L2(R?)3 x L?(R®)3, Proposition A. 3 in the Appendix 1.4.2 (see
also remark 1.4.4) insures that for (Eg, Hy) € L*(R)3 x L?(R)3, the system admits a unique mild
solution U = (E, H, 9;P, ;M) in C°(R*,H) which is a strong solution in C'(R*,#) as soon as
(Eo, Hp) belongs to H'(R3)3 x H'(R3)3. The goal of what follows is to analyze their influence
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1.2. The case of the Drude model

on the long time behaviour (decay) of the solution. More precisely, our goal is in particular to
obtain decay rates for the standard electromagnetic energy defined as following

1
£(1) = EB.HL1) = 1 (20 [BC,6)aquoy + o .6 aqus) ) (1.2.3)
This will be done through the following (augmented) energy

1
L(t) = L(B,H,P,M,1) .= £(B, H,#) + 5 (50 02 10, P (-, 1)1 72 (mo) + 1o Uy ||atM(-,t)||§2(R3)) ,
(1.2.4)
that is a decreasing function of time, according to the energy identity

d
dtﬁ(t)Jraegofzg/ \ﬁtP(x,t)\de+uoamen/ 19 M(x, )2 dx = 0, (1.2.5)
R3 R3

that is easily demonstrated by standard arguments (see [17], section 4.4.1 and remark 1.2.1).

For this purpose we shall use a Lyapunov function approach, based on the use the 3D spatial
Fourier transform F defined by:
1 .
G(k) = F(G)(k) = - | Gx)ekxdx VG e LYR*3NLAR?)?,
(2m)z Jr3

where we denote k € R3 the dual variable of x (or wave vector). We recall that F extends by
density as a unitary transformation from L?(R3)3 to L*(R})3. We set E(k,t) := F{E(-,t)}(k)
and analogously H,P and M the Fourier transforms of H, P and M, respectively. Accordingly
we denote Eg the Fourier transform of Ey and Hy the Fourier transform of Hy. Then (E,H, P, M)
satisfy

c0E—i(kxH) 4+ Q20;P =0, (1.2.6a)
o O H +i(k x E) + g Q2,0;M = 0, (1.2.6b)
O?P +a.0P=E, (1.2.6¢)
OPM + o M = H. (1.2.6d)

In the above formula, the usual cross product on R? x R? has been here extended to C? x C3 via
a x b = (agbg — azby,az3b; — a; bg,a; by — asby).
According to (1.2.2), the above system in complemented by
E(k,0) = Eo(k), H(k,0) =Hpk), 0P(k,0)=0M(k,0)=0. (1.2.7)

Let us note that by multiplying (1.2.6a) by E, using (1.2.6¢) and taking the real part, we obtain
that

1d —
577 (e0[E(k, 1?4+ 2022 10, Pk, t)[*) + ae g0 Q2 [0 P(k, t)[> — Re(i (k x H(k, 1)) - E(k,t)) = 0.
(1.2.8)
Analogously we have from (1.2.6b) and (1.2.6d) that
1d
5 (0 IH0G 1) 10 22,10, MO 1))t 23, 10 MK, )+ Rei (b < ECk, 1) -HK, 7)) = 0.

(1.2.9)
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1.2. The case of the Drude model

Finally by adding up (1.2.8) and (1.2.9) and using Re(i (k x E(k,¢))-H(k,t)) —Re(i (k x H(k, t)) -
E(k,t)) =0, we show that

d
< Dyt = 0, 1.2.1
p Lx +Dax =0 ( 0)
where we have set
Ly (t) = E(t) + Eak(t), the Lyapunov density,
Ex(t) == 3 (c0 [E(k, t)[> + po [H(k, t)[?), the energy density,

Eax(t) == 5(c0 Q2|0P(k, t)[> + po 2, |O:M(k, t)[?),  the additional energy density,
(1.2.11)
and the decay density (the index « is here to emphasize the fact that this is the term in (1.2.10)
which involes the damping coefficients a,. and )

Dax(t) := aeeo Q2 |0P(k, t)|> + am 1o Q2, |0:M(k, )| (1.2.12)

We employ the term "density" to refer to the fact that one works at fixed k: the electromagnetic
energy &, for instance, is obtained, via Plancherel’s theorem, by integration aver k of the energy
density &

E(t) = /6k(t) dk. (1.2.13)

Remark 1.2.1. The reader will note that (1.2.5) can be recovered by integrating the above
identity over k € R and applying Plancherel’s theorem.

We can not exploit only (1.2.10) for studying the long time behaviour of Ly (t) because we can
not estimate Ly(t) with the help of Dq (), which does not involve E and H. On the other
hand, we see on (1.2.6) that, in order to control E and H, we need the second order derivatives
0?P,02M. This suggests to look at the system obtained after time differentiation of (1.2.6).
Then in the same way that we obtained (1.2.10), we have (with obvious notation)

%Llﬁ +Dhx =0, (1.2.14)

where we have introduced the first order densities (where “first order" refers to that fact that
first order derivatives of the electromagnetic field are involved)

Li(t)=ELE) + 5312,1(@)7 first order Lyapunov density,
EL(t) == %(50 1E(k, )% + po [OH(k, t)[?) first order energy density,

Ea(t) == 5 (e0 Q2 [O7P (K, )[* + o 27, |0FM(k, t)[?),  first order add. energy density,
(1.2.15)
and the first order decay density

Dy 1c(t) == e £0 Q2 |07P (K, 1) + oo p1o U, [07M (K, 1) 2, (1.2.16)

which precisely involves 02P, 9?M. The next step is to combine (1.2.10) and (1.2.14). In what
follows, we shall use some standard notation, to begin with

(&) = (1+ [k[?)? (1.2.17)
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and to compare two positive functions f(k,t) and g(k,t), the notation

fk,t) <gk,t) <= 3IJC>0suchthat VkeR? Vt>0, f(k,t)<Cgk,t).
(1.2.18)
Performing the linear combination (1.2.10) +(k)~2 (1.2.14) we obtain (cf. remark 1.2.2)

d
200+ DL =0, (1.2.19)

where we have introduced the first order cumulated densities for the Lyapunov function, the

energy and the additional energy, (note the difference of notation between El((l) and Cllc, etc ...)

LY = Lo+ (0)72LL, &Y =G+ 07T2EL EG) = Eha+ (W72 L, (1.2:20)
and the first order cumulated decay density
D) = Dax + (k) 2 DL . (1.2.21)

Remark 1.2.2. The weight (k)2 is here to compensate the time derivation in the expressions
of £i and D] x SO that the quantities summed in the definitions (1.2.20) and (1.2.21) have the

(6%
same “homogeneity”.

The key point is that (1.2.19) can be exploited thanks to the following lemma.

Lemma 1.2.3

Assume that o, > 0 and «;, > 0. Then the following estimate holds

£ () < (0?2 DY (). (12.22)

Proof. In what follows, for conciseness, we omit to mention the (implicit) dependence of various
quantities with respect to ¢ and/or k. We recall that L'l({l) = 51((1) + Ss(zl)k

Since both a. and «,, are strictly positive, we immediately observe that we can control the
cumulated energy additional Eg )k with Dg)k :

Eax < Dax and Ehy < DLy which implies, by (1.2.20, 1.2.21), €4} <DL (1.2.23)

For estimating the energy density &, it is natural to use the constitutive equations (1.2.6¢) and
(1.2.6d) to deduce, again because o, and v, are strictly positive,

E[? < |0iP|? + 102 P|* < Do + ng, H|? < |OM 4 |02 M]? < Do x + Dc117k. (1.2.24)

Thus, by definition of &,
&k < Dax + Do (1.2.25)

For estimating the first order energy density &L, we need to bound 9;E and 9;H for which it
is natural to use Maxwell equations (1.2.6a) and (1.2.6b). This is where we need to introduce
k-dependent coefficients in our estimates. Indeed, from (1.2.6a) and (1.2.6h),

0:E[* < [k x HI? + |8:P|* < [k|* [H]* + |0:P?,
(1.2.26)
0 HI? < [k x E> + |:M[* < [K[? [E]? + [OM]*.
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Adding the two inequalities yields, by definition of &} (1.2.15) and Dg x (1.2.16) (we use again
ey Ay, > 0)
Ek < |KI” & + Dax < (k)* Do + [k[* Dy (1.2.27)

where, for the second inequality, we have used (1.2.25). Finally, performing (1.2.25) + (k)2

(1.2.27), gives

&) < Dax+Dhy < (k)2 DY) (since 1 < (k)?). (1.2.28)
Finally, (1.2.22) results from £ = & + €8}, (1.2.23) and (1.2.28). 0

The inequality eqrefestimacion chida in Lemma 1.2.3 means the existence of a constant o =
0-(607 HO, ey Oy, Qe, Qm) > 0 SUCh that

Combined with (1.2.14), this gives the differential inequality
Ce0 o 2 <0
gk To (k)L <

which gives by integration in time:

) < £ (0) e 07, (1.2.29)

Next, we show how to control El({l)(()) in terms on the initial data as

£1(0) < [E(k,0)]% + [H(k, 0)[. (1.2.30)
Indeed, by definition and initial conditions (1.2.7),
L1.(0) < |E(k,0)|* + [H(k, 0). (1.2.31)
On the other hand, from (1.2.15), one has
L1(0) < 10E(k, 0)* + |9H(k, 0)|* + [97P(k, 0)|* + [97M(k, 0) .

By (1.2.6a, 1.2.6b) at t = 0, |0;E(k,0)]* + |9:H(k,0)]* < |k[* (|[E(k,0)[* + [H(k,0)[?) since
0:P(k, 0) and 9;M(k, 0) vanish, while (1.2.6¢,1.2.6d) give |0?P(k, 0)|?+|0?M(k, 0)|> < |E(k, 0)|?+
IH(k,0)|?. Thus

L3(0) < (k) (|E(k,0)]* + [H(k, 0)[%). (1.2.32)

Finally (1.2.30) results from (1.2.31) +(k)~2 (1.2.32). At last, substituting (1.2.30) into (1.2.29),
as L < El(cl)

ot

Li(t) < (|E(k,0)]* + [H(k,0)]*) e @7 . (1.2.33)
This inequality says that the Lyapunov density decays exponentially in time for each |k|. It also
says the decay rate depends on |k| and tends to 0 when |k| tends to +oco. This is the reason why,
when coming back to the augmented energy L(t) (cf. (1.2.4)) we shall obtain only polynomial
decay. This is summarized in the main theorem of this section:
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Theorem 1.2.4

For any (Eg, Hg) € L?(R3)3 x L?(R3)3, the total energy tends to 0 when ¢ tends to +o0c :

lim_£(t) = 0. (1.2.34)

If (Eo,Hp) € H™(R?)? x H™(R3)3 for some integer m > 0, one has a polynomial decay
rate

L(t) < (I!EonHm(Rs) + ||H0H12qm(R3)> £ (1.2.35)

Proof. From the respective definitions of £ and Ly, by Plancherel’s identity and (1.2.33), we
have

__ot_

£@) = [ L) dk < / (o) + [Ho(k)[?) ¢ 7 dk. (1.2.36)
R3 R3

From Lebesgue’s dominated convergence theorem, we first conclude that (1.2.34) holds for any

initial data (Eo, Ho) € L?(R?)3 x L?(R3)3.

Next, in order to exploit the Sobolev regularity of the initial for obtaining (1.2.35), we rewrite
(1.2.36) as follows (we simply make appear artificially the factor (k)™ /t™)

ot

L) < t—m/ 00 (1B (1) + [Ho()?) (¢/()%)" ¢ 7 ak

R3
< 002 (a0 + Holk)) F(t/12) dk

where we have set Fy,(r) :==r™e~?",r > 0 which is clearly bounded on R™.

Setting Cy, := sup Fy,,(r) = (m/(oe))™, by Fourier characterization of Sobolev norms, we get

r>0
£(t) £ Cont™ ([ Bollzrm ey + [Holmaey )-

1.3 The case of the generalized Lorentz model

In this section, our goal is to extend the results in the latest section to the case of the (general-
ized) Lorentz model. The evolution (Cauchy) problem reads as follows

E(x,t) :R® x Rt — R3 H(x,t) : R® x Rt — R3
Find
Pi(x,t) :R¥*x Rt — R3,1 < j < N, My(x,t) : R®* xRT — R3, 1</ < N,
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such that (for all 1 < j < N, 1 </l < Np,)

Ne
0 E—-VxH+e Y 0F;0,P;=0, (x,t) € R x Rf, (1.3.1a)
j=1
NTV‘L
o0 H+V x E + po Z Q2,0 M, =0, (x,t) € R®* xR}, (1.3.1b)
/=1
HPj+ ;0 Pj+wl,;P;=E, (x,t) eR* xRS ,j€{1,...,N.,} (1.3.1c)
07 My + g O My + wi yMy = H, (x,t) eR* xR Le{l,...,N,,} (1.3.1d)

completed by the following divergence free initial conditions

E(,0)=E,, H(,0)=H, with V -Ej=V-Hy=0,

(1.3.2)
P('v 0) = M(a O) = 815P(70) = 8tM(7O) =0,
where for simplifying some formulas, we treat the P; and the M, collectively setting
P= (P, and M= (M)". (1.3.3)

In the above equations, the coefficients (Qe j, Q. 0, Qe j, Qi ¢) are supposed to satisfy (see remark
1.3.1)

O<Qe,1§"'§Qe,Nea 0<Qm,1§"'§gm,]\fm>
(1.3.4)
We,j>07 1 <7< Ne, wm,€>07 1 <0< Ny,
and one can assume without any loss of generality that the couples (o j, we ;) (resp. (Qm. ¢, Wm.¢))
are all distinct the ones from the others.

Remark 1.3.1. Note that one recovers the Drude model of section with N, = N,,, = 1 if
We,1 = Wm,1 = 0.
Setting H = L?(R3)3 x L?(R3)3 x L?(R3)3Ne x L2(R3)3Ne x L2(R3)3Nm x [2(R3)3Nm  Proposition
A. 3 insures that for

(Eo, Hy) € L*(R)3,

(1.3.1) admits a unique mild solution U = (E,H,P,9,P,M, ;M) in C°(R*,H), which is a
strong solution in C*(R*,H) as soon as (Eo, Hg) € H'(R?)? x H(R?)3.

The equations (1.3.1) are completed by the initial conditions (1.3.2). If the initial electric and
magnetic fields are divergence free, all vector fields appearing in (1.3.1) are divergence free at
any time, see Lemma 3.13 of [53], or Proposition A. 4 of Appendix A.4..

V. E( )=V -H(,{)=V -P;(,t) =V -My(-,t) =0, ¥t>0, ¥jt (1.3.5)

The equivalent for Lorentz of the identity (1.2.5) (for Drude) is (see [17])

N, N,
d e 2 2 m 2 2
= L(t) + €0 jE_l e, /R3 |Pj(x,t)["dx + o ;—1 e Uy g /Rg IMy(x,t))>dx = 0. (1.3.6)

We assume the strong dissipation assumption (1.1.26), namely all the damping coefficients are
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positive: ae j, o >0 forall 1 < j < Ne, 1 <2< Ny,.

Next, we observe that the space Fourier transforms (E,H,P;,My) of (E,H,P;, M) satisty

(

Ne
0O E—ik x H+ ¢ Z 02, 0,P; =0, (1.3.7a)
j=1
Np,
po O H+ik x E4pg Y 02, 0:Mg =0, (1.3.7b)
/=1
O Pj+ ae; 0P +w?;P; =E, (1.3.7¢)
07 Mg + Qg O Mg + wi, Mg = H. (1.3.7d)

According to (2.1.1), we shall set

Pi=(Pj)Ney, M:= (M), (1.3.8)

and will also use the condensed notation
N, N,
P> :=>"IP;]°, and |M*:=) [P (1.3.9)
j=1 =1

To study the long time behaviour of the solution of (1.3.7), it is natural to try to use the
same approach than for the Drude model in section 1.2. As a matter of fact proceeding as for
obtaining (1.2.10), we can derive from (1.3.7), and the identity Re(i(k x E(k,?)) - H(k,t)) —
Re(i(k x H(k,t)) - E(k,t)) = 0, the relation

d
— Daox =0, 1.3.10
7 Lx +Dax =0 ( )
where we have introduced the energy densities
Ly (t) = & (1) + Eax(t),

Ex(t) := 5 (c0 |E(k, 1)]* + po [H(k, 1)[?)

falt) = 3 (= ZQW 0,0, + o Zﬂmuatwk o) i
2<€0 Z%y P;j(k, t)* + po ;meQmﬁ“\Af(k 1)l >
and the decay density
Ne Np,
Dax(t) =20 3 0 ;0P (K, 1) + 1o > e Q2 4 [0:Me(k, £)[%. (1.3.12)
j=1 (=1

The main novelty, with respect to the Drude case, is the apparition of the second line in the
definition of £q i, that involves the fields P and M and not only their time derivative.
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1.3. The case of the generalized Lorentz model

Reasoning with the time derivatives of the fields as for the Drude case, we also have

d

- Li+DLy =0, (1.3.13)

having defined the first order energy densities

L (t) = Ep(t) + i (D),
Ex(t) == (20 |0E(k, 1) + po [04H(k, )|?)

1.3.14
£l (5029 OB i 32, (Japn 431
El

+2<€0 Z;Wej j|8tP (k t)| ‘I—,MU ZwméQ [|8tM€(k t)‘ >
]:

/=1

and the first order decay density

Ne Nrn
t) =& Z Qe j QZJ ‘8t2pj(k, t)|2 + wo Z Qe ¢ Qazn,f lang(k, t)‘Q. (1.3.15)
j =1

However, this time, (1.3.10) and (1.3.13) will not be sufficient to proceed as in the Drude case
because we need to control the term in the second line of the definition (1.3.11) of £q , in other
words P and M. Because these fields only appear the constitutive laws (1.3.7¢) and (1.3.7d), we
need to adopt a different strategy with respect to section 1.2:

(i) This time, the constitutive laws (1.3.7¢) and (1.3.7d) are used to control P and M (and no
longer E and H) in function of E, §;P, 0?P, H, ;M and 9?M

(ii)) We then need to control E and H in another manner: this will be done by using the
Maxwell’s equations (1.3.7a,1.3.7b), via k x E (resp. k x H) (this control will thus degen-
erate when |k| tends to 0) in function of 9;H and ;M (resp. O,E and 0,P). This will use
|k x E| = |k]| |E| (resp. |k x H| = |k||H|), which is the counterpart in Fourier space of the
free divergence property (1.3.5).

(iii) Finally, to control O,E and 9;H, the idea is to use again (1.3.7c) and (1.3.7d), but this time
after time differentiation. Doing so, we control 9,E and 9;H with 92P and 9?M, which do
appear in the definitions of Dq x and D}X,k, but also the third order derivatives 9;P and
oM.

That is why, in order to make appear a damping function containing the third order derivatives,
we differentiate the equations of the problem once more in time, which leads to the identity

d
- L} + D2, =0, (1.3.16)
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1.3. The case of the generalized Lorentz model

having defined the second order energy densities
L (t) = ELt) + G4 (1),

ER(t) = 5(c0 |OFE(k, ) + 1o |07 H(K, 1)[?)

(1.3.17)
E3(1) 2<50 ZQ PP (06,02 + o ZQ (om0
Nm
<50 ZwQ 025 10P (K, + 0 Y wry ¢ g |07 MK, 1) y?)
=1
and the second order decay density
Ne N
t)i=e0 Y 0o QO 10PP; (K, 0)* + 0 Y cren 0, o [07Me(K, ). (1.3.18)
j= =1

Finally, proceeding as for obtaining (1.2.19), we deduce from equations (1.3.10) to (1.3.18) that
d

£+ =0 1.3.19
dt Dol =0 ( )
where we have introduced the second order cumulated energy densities
2 2 2
2 —929 ] 2 2 2 o . 2
2 =30l =eP 15, & =3V, 5 =3 (ke (13.20)
j=0 §=0 §=0
and the second order cumulated decay density
2
9 IV

DY) =Y (k) DL, (1.3.21)

j=0

n (1.3.20, 1.3.21), by convention, £) = Ly, etc ... The key point is that, according to the

process (i)(ii)(iii) described above, we can bound El(f) in terms of Dg)k :

Lemma 1.3.2

Assume that the strong dissipation assumption holds. Then, one has the following estimate

£2(t) < ()2 + [k 72) DS (8). (13.22)

Proof. Before entering the technical details, let us first give the main ideas and steps of the
proof. The goal is to control El(f) with the help of Dg)k Towards this goal, we observe that

El(f) is a squared norm in U := (E,@tE,OfE, H, 9;H,9?H, P, 9,P, 7P, ;P M,@tM,ﬁfM,ﬁfM),

DY), is a squared norm in V := (8P, 57P, O3P, ;M, 92M, M),

The idea that we shall develop is that, roughly speaking, D D )k is also a norm with respect to V in

U along the linear manifold (in the U- space) generated by the equations (1.3.7a, 1.3.7b, 1.3.7¢, 1.3. 7d)
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1.3. The case of the generalized Lorentz model

and their time-derivatives. More precisely, we shall be able to control the terms which are
missing in V namely E,,E, 0?E,H, 9;H, 9?H, P,M with the terms appearing in Dg)k namely

0P, 02P, 93P, O,M, 92M, O}M. This will be done in the following order

Control 9,E with 9;P, 82P, 9P using 9(1.3.7¢c),

(a)
Control d;H with 9;M, 9?M, 9}M using 9;(1.3.7d),

Control E with d;H, 9M using (1.3.7b),
Control H with 0:E, 0,P using (1.3.7a),

Control O?E with 9;H, 9;P using 9;(1.3.7a),

Control 92H with 9;E, 9;M using 9;(1.3.7b),

@ Control P with 9;P, 9?P and E using (1.3.7¢c),
d
Control M with 9;M, 9?M and H using (1.3.7d).

Of course the constants in the estimates issued from using Maxwell’s equations (1.3.7a, 1.3.7b),
that is to say the ones of steps (b) and (c), will be k-dependent. It is worth while mentioning
that these equations are used in a different manner in (b) and (c). In step (b), they are used to
estimate lower order time derivatives of the field (E,H) with higher order time derivatives: as a
consequence, the constants in the estimates will blow up when k tend to 0. At the contrary, in
step (c), they are used to estimate higher order time derivatives of the field (E,H) with lower
order time derivatives: as a consequence, the constants in the estimates will blow up when |k|
tend to +o00.

Let us now enter in the details of the proof.

Step 1 : Control of the energy density 51((2), We control below each ot the terms (k)~% Ef(-
appearing in the sum (1.3.20) defining 81((2).

(a) Case j = 1 : control of (k)2 &L

Using the strong dissipation assumption (2.1.8), we obtain from differentiating (1.3.7c) with
respect to time and a summation over j according to (1.3.8, 1.3.9)

|0:E|* < |0iP|* + |07P|* + |0} P|*. (1.3.23)
On the other hand, by definition of each Di’k, and making appear at the right hand sides the
2)

ok We have

terms in the sum that defines D

7P < D%y = (k)72107PI> < (k)72 Dy = (k)* (k)" D ).

)

7P < Doy = (k) 72107PI> < (k)2 Dy < (k)2 (k)72 Do) (k) > 1),

)

0PI* < Dax = (k)"?107P|> < (k) Dax < (k)* (Pax) ((k) > 1).

After summation of the above three inequalities and by definition of Dg)k, we deduce from
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1.3. The case of the generalized Lorentz model

(1.3.23) that

(k)2 |E]* < (k)2 DY) (1.3.24)
Analogously from differentiating (1.3.7d) with respect to time, we get (k)2 |0;H|? < (k)? D((f)k
which, combined with (1.3.24) and the definition (1.3.14) of & , leads to

(k)2 EL < ()2 DY (1.3.25)
(b) Case j =0 : control of &.
Using the divergence free property (1.3.5) (i.e. k-H =0), (1.3.7a) and (1.3.24), we get

K2 HP = [k x H1? < [§,EP + 0P < (K)* D) + Dax < (k)* D)

)

since D x < D((f)k and 1 < (k). Thus [H|? < |k|~2 (k)* D@ or equivalently

ok’
— 2
H2 < ()2 + k[72) DE). (1.3.26)

Similarly, from (1.3.7b) we obtain [E|* < ((k)?+ [k|=2) D) which, combined with (1.3.26) and
the definition (1.3.11) of &, leads to

& < (02 + k| 72) DS (1.3.27)
(c) Case j = 2 : control of (k)~* &2
Differentiating (1.3.7a) in time and then using (1.3.25), we get
OPEP < [K[2 |0, HI2 + 82 P2 < (06 DT + DLy

Thus, as D}Lk < (k)2 PP < (k)6 PP it follows that:

ak — ok’

(k) EP < (k)2 DS (1.3.28)
Analogously, from (1.3.7b), we get (k)~4|02H|? < (k)2 ’Dg)k which, combined with (1.3.28)
gives

(k)™ &2 < (k)2 DS (1.3.29)

Using (1.3.27, 1.3.25, 1.3.29) in the definition (1.3.20) of the cumulated energy density £, we
get
&7 < (02 + k| 72) D& (1.3.30)

Step 2: Control of the energy density Eg)k We immediately observe from (1.3.11), (1.3.12) (def.
of L and D), (1.3.14), (1.3.15) (def. of £i and Dy), (1.3.17) and (1.3.18) (def. of £ and D})
that

Eax SIPP+IMP+ Dok, Ehx < Dak+Dax: Ehx < Dax+ Dix
thus, with the adequate linear combination, 5((22)k < DSL%— P2+ M2+ (k)2 Dy e+ (k)2 D}%k,
Le.

It remains to control P and M which corresponds to the point (d) above. Using the constitutive
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1.3. The case of the generalized Lorentz model

equation (1.3.7c¢) and the definitions (1.3.12, 1.3.15) of (Da,k,D;’k), together with (1.3.27),
yields to
PI? < 104 P[> + [0 P> + [E]* < Dok + Dhye + ((K)* + k| 2) DE),

thus, as Dax < D) and D, < (k)2 DY), (see (1.3.21)),

ak’
PI? < ()2 + [k[72) DY) (1.3.32)

Likewise from (1.3.7d), we have
M2 < ()2 + [k[72) DE).. (1.3.33)

Using (1.3.32) and (1.3.33) in (1.3.31), we finally obtained
2 - 2
£ < (K + k| 72) DS (1.3.34)

The announced estimate (1.3.22) follows from (1.3.30), (1.3.34) and the definition of El(f). O

Proceeding as in section 1.2 for obtaining (1.2.29), we deduce that, for some constant o > 0,

(2) (2) O P RRTNES2
Vk#0, L7() <L.7(0)e G02+k=2, (1.3.35)
We shall use an estimate for the initial value 61((2)(0) which is the equivalent of the estimate for
the Drude case. As getting this estimate is slightly more lengthy and tedious than for the Drude
case, we give it in a lemma whose proof is delayed in the Appendix 1.4.2, section Appendix A.1.

Lemma 1.3.3

L£E(0) < [Eo(k)[2 + [Ho(k) [ (1.3.36)

Therefore, using (1.3.36) in (1.3.35), and as Ly < Ll(f), we have

Li(t) < (E(k,0)[2 + [H(k, 0)[2) ¢ T77n2 (1.3.37)

The exponential decay rate in (1.3.35) degenerates when |k| — 400, as in the Drude case, but
also when |k| — 0 reason why the low (spatial) frequencies will need a special treatment leading
to new assumptions involving the moments of the initial data. For this reason, we introduce the
spaces, for p € N,

Ly(R®) = {u e L'(R) / (1 + |x|)Pu € L'(R%)}

(1.3.38)
LZILO(RS) = {u € LII)(Rg) / ¥ a such that |a] <p—1, /Rd % u(x)dx = 0}
where a = (a1, ag, a3) denotes a multi-index with “length" |a| = oy + @ + a3 and
9% =01 0520% and x“:= 2 2§?2$? for any x = (1,29, 73) € R%. (1.3.39)

We point out, that, from the definition (1.3.38), one has L§(R®) = L ,(R®) = L' (R?).

We are now in position to state the main theorem which is expressed in terms of the augmented
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energy L£(t) that naturally replaces the one defined by (1.2.4) for the Drude case, namely

Nm

L(t) = E(E,H,1t) (ao ZQ zj 0P (- )HLz rsy T 1o ZQ 0 19: M (-, )H%Q(R?’))?
(=1
N’In
(Eo ZUJ Q ||P )Hi?(R3) + Ho wan,éggn,é HMK('vt)H%?(R3)>'
(=1

(1.3.40)

Theorem 1.3.4

For any (Eq,Hg) € L%(R?)? x L?(R?)3 satisfying the free divergence condition, the total
energy tends to 0 when ¢ tends to 400 :

lim L(t) = 0. (1.3.41)

t——+o00
Moreover if for some integers m > 1 and p > 0,
(Eo, Ho) € H™(RS)S x H™(R®),  (Eo, H) € LLo(RY)® x LL (R}, (1.3.42)
one has a polynomial decay rate

E(t) < CﬁnF(E07H0) + CﬁF(EOaHO)

< p e (1.3.43)

where the above constants satisfy
2 2
Ctir(Eo, Ho) < [[Eo|lm sy + [IHollzm rs) »

Clp(Eo, Hp) < sup Hx EUHLl + sup Hx“HOHLl
|a|=p ||=p

Proof. From the respective definitions of £ and Ly, see (1.3.11) and (1.3.40), we can use
Plancherel’s identity in (1.3.37) to obtain

L(t) = . Li(t) dk < /Rd (|Eo(k)|* + [Ho(k)[*) ¢ T dk. (1.3.44)

Thus, from Lebesgue’s dominated convergence theorem, we deduce (2.1.33).

Next, as announced before, we treat low and high (space) frequencies separately. We begin with
high frequencies who can be treated as for the Drude model.

(i) Tf |k| > 1, then (k) + |k|72 < (k)2 +1 < 2(k)?. Thus

/ 0 dks/ (IEo()? + [Ho()?) ¢ 707 dk.
IK[>1

[k|>1

Bounding, in the right hand side, the integral over |k| > 1 by the one over R, we can proceed
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as in the proof of Theorem 1.2.4 (with o/2 instead of o, cf. (1.2.36)) to obtain

2m \" 9 )
< oet ! 7 * . .
/|k>1 Cilt) de < (aet) (HEOHH"L(W) + HHOHH'”(R?’)> (1.3.45)

(ii) If |k| < 1, then (k)2 + |k|=2 < 3 |k|~2, (both 1 and |k|? are smaller than |k|~2) thus

k|20t

/kglﬁk(t)dks/m (|E0(k)|2+|Ho(k)|2> e~ 3 dk. (1.3.46)

The behaviour of the right hand side is obviously dominated by what happens when |k| tends
to 0.

The condition (Eg, Hy) € L11,70(R3)3 X L;70(R3)3 implies in particular that
Va/lal<p—-1, 0%y(0) =9%Hy(0) = 0.

Furthermore, as (Eo, Ho) € L, 4(R?)?, their Fourier transform Eg and Hg are bounded functions
of class CP whose partial derivatives are bounded up to the order p. Consequently, using a Taylor
expansion at 0 truncated at order p, we have

[Eo(k)| < [k|” sup [[0aBollz=, [Ho(k)[ < [k[” sup [|0aHo| Lo
lal=p lal=p

which implies, using well known properties of the Fourier transform,

[Eo(k)| < [k|” Sup [121°Eo|| s Ho(k)| < [K[? Sap [l2[*Ho|| ;.
a|=p o|=p

Substituting the above in (1.3.46) yields
Ly (t) dk. < k2p‘“'2”dk[ “Bol?, + “Hy||, |
[ i< (e 5 ) [ sup Bl s o,

With the change of variable £ = v/ot k, we compute that, for some constant C'(p) > 0,

2, 1 2
e k= [ et ag= S0
R3 (ot)PT2 JRe (ot)Pt2

Finally, with another constant C that only depends on p and the parameters of the model, we
get

O « (0%
[ enars S [ sup ||+ Bo|[%. + sup [|e“H|[%, . (1.3.47)
|k|<1 T2 Llal=p lof=p
At the end, the final estimate (1.3.43) is obtained by joining (1.3.45) and (1.3.47). O

Remark 1.3.5 (Comparison with the estimates of [65]). The reader will check that, if we drop
the second term in the estimate (1.3.43), which is specific to the problem in the whole space,
our results for m = 1 coincide qualitatively with the ones of [65], cf. (1.1.25) with p = 2.
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1.4 Extensions

1.4.1 The problem in a bounded domain

One can consider the evolution problem associated to equations (2.1.1) (or (1.2.1)) but posed
in a bounded Lipschitz domain © of R? and completed, for instance, with perfectly conducting
conditions (in some sense the “Dirichlet" problem for Maxwell’s equations)

Exn=0 onodQ, (withn the unitnormal vector to 0Q), (1.4.1)

where 02 denotes the boundary of 2 and n the unit outward normal vector of 9¢2. In such a
case, the analysis of sections 1.2 and 1.3 can be extended. The main difference is the the use
of the Fourier transform in space has to be replaced by an adequate modal expansion. More
precisely, we introduce the cavity eigenvalue problem:

Find k£ € R and (u,v) # 0 € L?(2)3 x L*(Q)3 such that

i( 0 VX) (>=k(> e (142)
-Vx 0 v v

V-u=V-v=0 in{, and uxn=0, v.-n=0 on 0,

which corresponds to find the eigenvalues of the self-adjoint Maxwell operator A in the closed
subspace of L2(Q)3, # = {(u,v) € L?(Q)? /V-u=V-v=0 and v-n=0on dQ}, namely

A (u) =i ( Vxv ) . V(u,v)eD(A):=H N (Ho(rot; Q) x H(rot;€)), (1.4.3)

v -V xu

where H(rot; Q) := {v € L?(Q)3 | V x v € L?(2)3} and Hy(rot; Q) := {u € H(rot;Q) |[uxn =
0 on 99}. One shows, see e.g. [27] chapter IX, that the operator A has a compact resolvent
with a finite dimensional kernel (see Remark 1.4.1). From the theory of selfadjoint operators
with compact resolvent, and using the symmetries of Maxwell’s equations, one knows that there
is a countable infinity of cavity modes

(£kn,ul, vE) e Rx L2(Q)® x L2(Q)%, neN, withk, >0, Fk,— +oo (1.4.4)
with u} = u,; and v} = —v,, in such a way that {(uf,vi), n € N} form an orthonormal

basis of the Hilbert space (Ker A)J—. Then, one can decompose the electromagnetic field as
+o00 +oo
E(,t)=> Y Ex(huy, H(,t) =Y > Hr) vy,
+ n=0 + n=0
and the auxiliary field P; and M, (understood as in (1.3.1)) accordingly
+00 too
Pj('vt) :ZZ P;%n(t) u7:‘1:7 Mﬁ('at) :ZZ M??n(t) Vi:'
+ n=0 + n=0

The rest of the analysis follows exactly the same lines as for = R?, modulo the following
substitutions

+o00
k € R + N dk -+ ete.
€eR® — {(£,n),n € N}, /R3 — ZZ, etc

+ n=0
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The results are then similar to the one of Theorem 1.3.4 without the second term in the right
hand side of the estimate (1.3.43) and the hypothesis of the second line of (1.3.42), provided
some modifications on the assumptions for the initial data which must now satisfy

(Eo, Hy) € Ho := (Ker A)*, (orthogonality in #) (see also remark 1.4.1) (1.4.5)
and the Sobolev regularity (1.3.42)(first line) must be replaced by
(Eo,Hp) € D(A™)NHp, (see also remark 1.4.2). (1.4.6)

Remark 1.4.1. The (finitely dimensional) space Ker A is the space of electromagnetic static
fields

Ker.A:{(u,v)GLQ(Q)g/V-u:V'v:(),Vxu:va:OonQanduxn:(),v-nzoonaQ}.

When Q in simply connected, it is known that Ker A = {0} and that its dimension increases with
the complexity of the topology of €. For the proof of these assertions, we refer to chapter [X
of |27]. In some sense, the condition (1.4.5) can be seen as a substitute to the second condition
in (1.3.42).

Remark 1.4.2. The condition (Eg,Hy) € D(A™) implies (Eo,Ho) € H™(Q)? x H™(Q)3.
Furthermore, for C*° domains €, the condition (Eg, Hp) € D(A™) (see e.g. [27], chapter IX) is

equivalent to (Eo, Hg) € H™(Q)3 x H™(Q)3 for any integer m > 0.

1.4.2 The case of mixed Drude-Lorentz models

In the sums (1.1.14) defining e(w) and p(w) the resonance frequency we j or wy, , are either
strictly positive or zero. For instance, for e(w), we shall say that

2 02
= 5=, We,j > 0 s a Lorentz term, ——isa Drude term.  (1.4.7)

wQ—l—ioze,jw—we?j w2 +ioejw

In Section 1.2 (standard Drude model), we consider the case where e(w) and p(w) contained a
single Drude term while in Section 1.3, we consider the case where e(w) and u(w) only contained
Lorentz terms, because of assumption (see (1.3.4), second line).

It is natural to look at the cases where e(w) (resp. p(w)) contains Lorentz terms but also Drude
terms whose number is Ng. (respectively Ny ,,). It appears that our Lyapunov approach can
easily handle these cases (modulo minor additional manipulations) with the following results:

o If Ngo > 0 and Ng,, > 0, the result is the same as for the Drude model (see Theo-
rem 1.2.4).

e If Ny > 0and Ng,, =0 (or the contrary), the result is the one for (generalized) Lorentz
(see Theorem 1.3.4).

Appendix A

A.1. On the dissipation condition of [37] for Lorentz models

Let us recall that, when the limit (1.1.17) exists almost everywhere on the real axis (which is
the case for (generalized) Lorentz models), the sufficient dissipation condition (6.4) given in [37]

reads
fora. e. w€R, ImwxXe(w)>yw) ™ '>0 ~elL,.(R). (1.4.8)
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By virtue of the expression (1.1. 14)( ) of the complex permittivity e(w ) and the formula (1.1.5),
we have, as soon as w € R and w? +iae;w — w ;#0forallje{l,...,Ne}:

Im w Z .
XE |(“)2 + 1a€:] W= we j|2

Let Jo:={je{l,...,Ne} Jwe;j =0} and J; :={j € {1,...,Ne} / a; > 0}.

(i) Jy =0,1. e forall j € {l,...,Ne}, aej = 0 then Im w xe(w) = 0 and (1.1.18) can not
hold.

(i) J4 # 0. We distinguish two subcases.

(a) Jy N Jy# 0. This means that one w, ; vanishes, for instance we 1 = 0, and a1 > 0.
Then

2 w2 2
Qe,j Q j Qe,1 Qe,l

2 12 =
€.J

~ OéelQelw
I
m W Xe(w) = PEESTIRTAL Z|w2

+1o¢83w W

in which case (1.1.18)(ii) holds true with v : w > (a1 Qg ) lw +ice 1] € Li,.(R).

. R Qe j Q2 2
(b) JyNJy=0. In this case Im w xe(w) ~ ( Z 1 ) w, and (1.1.18) can not

w—0 wr
]EJ+ e,]

hold.

A.2. On the energy indentity (1.1.27)

Let E,H € C°(RT, H(rot;R?)) N C*(R*, L*(R*)?) and E, H, D,B € C*(R*, L?(R%)?) be solu-
tions of the equations (1.1.1), (1.1.2) and (1.1.3) where x, € C3(R+) for v = e,m. We explain
in this appendix how to obtain the energy identity (1.1.27) with (1.1.29) and (1.1.30).

From equations (1.1.1), (1.1.2) and (1.1.3) it is straightforward to deduce the identity (with
E(t) the electromagnetic energy, see (2.1.7))

0]

& +Z(t) =0, Z(t):= /R3 0Pt (x,t) E(x,t)dx + /R3 O:Miot (x,t) H(x, t)dx.  (1.4.9)

Differentiating the constitutive laws (1.1.3) in time, we have
t
OPon(x,t) =0 [ XLt = 5) Bl 5) s+ e e (0) B,
0

t
O Mot (%, 1) = o / X (0) H(x,t — 5) ds + po xm (0) H(x, t)
0
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from which we deduce that

T(t) = To(t) + Tn(t) with

L0 = col0) [ B OPaxta [ (Bt [ X9 ds)ax (1410

t
L (t) := po xm (0) /3 |H(x, t)|2dx + po /3 (H(x,t) / Xon (t — 5) H(x, s) ds)dx.
R R 0
It remains to transform Z.(t) and Z,,(t).
The basic technical ingredient concerns convolution type quadratic forms:
t
Qult) = / Kt — 8)u(s)d () ds, (1.4.11)
0
where k(t) is a given convolution kernel. When k(t) = C'§(t), formally Qu(t) = C L|u(t)|%.

The next lemma (lemma 3.2 in [61]) generalizes this observation to a smooth kernel. For
completeness, we provide here a constructive proof (which is not given in [61]).

Lemma A. 1

Given k € C%2(R") and u € CY(RT), Qu(t) (defined in (1.4.11)) satisfies

Qult) = % %[(k:(t) — k(0)) lu(t)? —/ K(t =) (u(s) - u(t)” ds]
0 (1.4.12)

RO OF 5 [ K= () - o) s

Proof. The guiding idea is to make appear time derivatives of square quantities in the expression

of Qu(t).

The main trick is to write u(s) = u(t) + (u(s) — u(t)) in (1.4.11), in such a way that

Quit) = % (k(t) - k(0)) %\u(t)]Q +/0 K(t — ) (u(s) — u(t))u(t) ds. (1.4.13)
On the one hand, one has
(kD) — k(0)) TP = 5 (k1) ~ KO) ) — 5 KOu(t)P (1.4.14)

On the other hand, observing that (u(t) — u(s)) u/(t) = 4 [(u(s) — u(t))2] we have

/ K'(t—s) (u(s) —u(t)) v (t)ds = —2/0 K (t—s) g

0
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i.e., since k'(t — s) & [(u(s) — u(t))2] =LK (t—s) (u(s) — u(t))2] — K"t —s) (u(s) — u(t))2,

/ K (t—s) (u(s)—u( )) "(t)ds = — 1/ %[kz (t—s) (u(s)—u(t))2]ds

0 2
/ K'(t —s) (u(s) — u(t)® ds.
IR

¢
Finally / i[k'(t —s) (u(s) — u( _ 4 (t—s) (u(s) — u(t))2 ds, thus
o dt dt

t/ . / 2
/Ok:(t—s)(u(s)— w(t))u (£) ds = —2dt/kt—s (s) — u(t))*ds

(1.4.15)
1
+2/ K'(t— s) (u(s) — u(t))2 ds.
0
Finally, substituting (1.4.14) and (1.4.15) in (1.4.13) leads to (1.4.12). O

Now, we wish to transform the integrand (in space) in the second term of the expression (1.4.10)
of Z.(t) by making appear a quantity of the form (1.4.11). For this, it is useful to introduce
primitives (in time) of the fields. More precisely, for F = E, H, we define

¢
F,(x,t) = /0 f(x,8)ds, Vt>0and ae. x¢cR.

In order to transform Z.(t), we first perform an integration by parts in time to get, since
EP(X7 O) = 07

t t t
et = 9B ds = [ it = ) 0By 5) ds = O Byl )+ [ L 9) Byl ) s
0 0

As a consequence, since E = 0,E,,, we have

t X/ (0) d 9 t
E(x,t) - / X.(t — s)E(x,s) ds = 62 pn |E,(x,1)|” + / Xo(t — s) Ep(x, s) - O E,(x,t) ds.
0 0

The second term in the right hand side of the above expression is a sum of terms of the form
(1.4.11) with k = x.. Thus, integrating in space and then using the lemma 1, and substituting
the resulting equality in the expression (1.4.10) of Z.(t) gives (note that the terms involving
X.(0) cancel each other)

€0 d €0 d ¢

1) =2 o (x / E,(x,1) y2dx) _th(/ (e 5)( /SE,,(X,t)—Ep(x,s)Fdx) ds)
+ €0 Xe(0 / IB(x,t)]?dx — = x( / |E,(x,1)]* dx
+ 620 X2 ( / |Ep(x,t) — Ep(x, s)\de> ds.

(1.4.16)
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Analogously, we have

1
Hai0n(0) [ B0 =20 [0 dx
R3 R3

t
+ % X (t —s) (/ H,(x,t) — Hy(x, s)|? dx) ds.
0 R3
(1.4.17)
Finally, (1.1.27) is simply obtained by gathering (1.4.9), (1.4.10), (1.4.16) and (1.4.17).

A.3. Estimating El(f)(O) in the Lorentz case

Below, we use the notation of Section 1.3 and our goal is to prove the estimate of Lemma 1.3.3,
namely

£2(0) < [Eo(K) + [Ho (ko) (1.4.18)
First, by definition of £y (0) and since P(k,0) = M(k,0) = 9;P(k,0) = 9:M(k,0) = 0,

£(0) = 5 (o Eoll0? + o [Ho(k) ). (1419)

Next we estimate (k)2 £ (0) = (k)72 &L(0) + (k)2 5512,1((0)-
From equations (1.3.7a) and (1.3.7b) at ¢t = 0, since 9;P(k,0) = 9:M(k,0) = 0,
(k)72 £c(0) < (k)72 (Jk x Eo(k)[* + [k x Ho(k)[*) < |Eo(k)|* + [Ho(k)[*.

Since P(k,0) = M(k,0) = 0,P(k,0) = 9:M(k,0) = 0, from (1.3.7c) and (1.3.7d) at t = 0, we
have
(k)2 £q1(0) < (k)7 (107P(k, 0)]* + |97 M(k, 0)[*) < |Eo(k)[* + [Ho(k)[

and as a consequence

(k) ™2 £ (0) < [Eo(k)[* + [Ho(k)[*. (1.4.20)
Finally we estimate (k)~% £2(0) = (k)~* £2(0) + (k)4 Sé’k(O).
For bounding (k)~* £2(0), we differentiate (1.3.7a) (resp. (1.3.7b)) and evaluate the resulting

equations at t = 0 to express 9?E(k,0) (resp. 0?H(k,0)) in terms of k x 9; H(k, 0) and 9?P(k, 0)
(resp. k x 9;E(k,0) and 9?M(k,0)). From this, we deduce

(k) €2(0) < (k) 7" ([k[* £c(0) +197P(k, 0) [+ Mk, 0)*) < (k)2 L1 (0) < Eo(k)|*+[Ho(k)I,
(1.4.21)
where for the last inequality we have used (1.4.20). For the last term we first observe that

(k)™ £8,1c(0) < (k)T (|1/P(k, 0)[* + |97 M(k, 0) | + [97P(k, 0)* + |07 M(k, 0)[*)

and we obtain 9;P(k,0) (resp. 9;M(k,0)) in function of 9;E(k,0) and 0?P(k,0) (resp. 9;H(k,0)
and 9?M(k,0)) from equations (1.3.7c) and (1.3.7d) after time differentiation. This leads to

(k)" Ex(0) S (k)™ (k) L3 (0) < (k)72 Li(0) < [Eo(k)|* + [Ho (k)| (1.4.22)

ol
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where uses (1.4.20) for the last inequality. Adding the two inequalities (1.4.21) and (1.4.22) we
obtain
(k)™ £3(0) < [Eo(k)[* + [Ho(k) . (1.4.23)

Finally. (1.4.18) is deduced from (1.4.19), (1.4.20) and (1.4.23).

A.4. Well-posedness and regularity of the solutions of the Cauchy problem
in generalized Lorentz media

The (Cauchy) problem (1.3.1) can be rewritten as a generalized Schrodinger evolution problem:

(iTU +iAU = 0 with U(0) = Uy, (1.4.24)

where the Hamiltonian A is an unbounded operator on the Hilbert-space:
H = L*(R®)3 x L2(R?)? x L*(R3)3Ne x L2(R3)3Ne x L2(R3)3Nm x L2(R3)3Nm  (1.4.25)

endowed by the following inner product : o
forany U= (E,H,P,P,M,M) and U’ = (E',H, P/, M/, P/ M), where (P, M) is defined as

n (1.3.3), (and the same for (P/, M’), (P, M) and (P/,M))
(U, U )y = (E E/)L2+7 (H,H) 2+ 22 Z 2,02, (P;,P)) Yo+ 2 ZQ (P, P

Ho
+5 Z;Qgg (Mg, M) 2 + —ZQ (Mg, M) 2

More precisely, if we introduce A : D(A) C H — H defined by

—g'VxH+Y ngij
. . , -P

VU= (E,H,P,P,M,M)c DA), AU:= i (1.4.26)
(oeeJP + w ;P;—E);

—M

(Oém’g Mg + wfnl Mg — H)g
the domain D(A) (dense in H) being given by

D(A) := H(rot;R?) x H(rot; R?) x L2(R*)3Ne x L2(R?)3Ne x L2(R3)3Nm x L2(R3)3Nm | (1.4.27)

we observe that one can rewrite (1.3.1) as (1.4.24) with the initial condition Uy = (Eg, Hp,0,0,0,0) €

H. We point that in the formula (1.4.26), we omit in the summation bounds 1 and N, (resp. 1
and N,,) for sum on j (resp. ¢) indices.

The well-posedness of (1.4.24) is ensured by the following lemma Lemma A. 2. This lemma
holds under the conditions (1.1.13) and (1.3.4) on the coefficients of the system (1.3.1). In
particular, no dissipation condition is required.
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Lemma A. 2

The operator —iA is a maximal dissipative operator.

Proof. To show that —iA is a maximal dissipative operator (see [28], theorem 8 p 340) is
equivalent to show one hand that —iA is dissipative, i.e. Im(AU,U) <0 for all U € D(A) and
that there exists w € CT such that A —w] is surjective. Thus the proof will consist in two steps.

Step 1: —iA is dissipative. Performing (AU, U)y thanks to (1.4.26), after integration by
parts, i. e. (VxH,E)2=(H,V xE);2 =(V x E,H),», one finds that

€ Nm
£ . .
(AU, U) = =3 ae; O 1IP5172 — 52 3 e 0 N3 <.
(=1

j=1 =

Step 2: for any w € C*, (A — wI)D(A) = H. We prove also the injectivity of the operator
A — wI by showing that for any F = (e, h, p, p,m,m) € H the system:

(A-w)U=F (1.4.28)
admits a unique solution U = (E,H, P, P, M, M) € D(A). To prove this, one first eliminates P

and M in the system (1.4.28) by using that P = —iwP —ip and M = —iw M — im and obtain
the following expression for P and M in term of E and H:

E (—iae; —w)pj — iP;

Pij=———+4+F,(w) where F,;(w)= (1.4.29a)
T geglw) " Ge, ()
H (=i — w)my — iy
My=——+F,s(w where F,,(w) = : , 1.4.29b
(@) e(w) (w) (@) ( )

where g ;(w) = w? +iae;w —wéj # 0 and g (W) = w? +iam ew —w?n’é #0 forwe Ct. We
point out that if w, is zero of ge, —w, is also zero of g.. Thus for w, ¢ iIR™, Im(wy) = —a. /2 < 0.
Therefore w € C* is not a zero of ge j. The same holds for the polynomials ¢, ¢. Thus, it follows
the expressions of P and M in terms of E and H:

. iwE . . iw?-pj—ij
Pi=——+F,;(w) where F;(w) = —22——— (1.4.30a)
T geglw) P Ge,j(w)
M= S9H b ) where By (e) = omd T i (1.4.30b)
(= —— +F,(w where mi(w) = ’ . =2
Qm,ﬁ(w) Q’m,f(w>

Eliminating P; and M in the two first equations of (1.4.28) yields to the following system in
E and H:

Ne
~VxH-iwew)E=Fe(w) with Fe(w)=colie— Y Q2 ;F,;w), (1.4.31a)
j=1
Npm, )
VxE-iwp(w)H=Fyw) with Fuw)=polih—-> Q2 Fp,w)], (14.31b)
/=1
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where £(w) and p(w) are defined by (1.1.14). Substituting
i

H= @)

(= VXE+F,(w)) (1.4.32)

in (1.4.31a) yields the following equation (satisfied in the sense of distributions)

V x (VX E)+we@)E = —— ¥ x Fy(w) + i Fo(w). (1.4.33)

() wop(w)

One shows using standard arguments that E € H(rot;R?) is solution of (1.4.33) if and only if
E is solution to the following variational problem in H (rot; R3):

a(E, ) =1(¢), V1 € H(rot;R?),

where the sequilinear form a and the antilinear form [ are defined for all ¢, € H(rot; R3):

a(, ) _/R3 (_(V X ¢) - (V xw)wg(w)w) ax, 1(1) _/

wpt(w) R3

—Fh(w)-i i w)-1 ) dx
( o) (7 X UTHE ) dx.

By using the Cauchy-Schwarz inequality, it is clear that a (resp. [) is continuous on H (rot; R3)?
(resp. on H(rot;R3)). Furthermore, w + we(w) and w + wu(w) are non-constant Herglotz
functions. Thus, w — —1/(wp(w)) is also a non-constant Herglotz function. Hence, one shows
that for all w € C*:

la(¢,¢)l > [Tma(d, ¢)| > v(w) 16117 rot.re):
where y(w) = min (Im (= (wp(w)™!),Im (wa(w))) > 0.

Thus, by the Lax-Milgram theorem, (1.4.33) admits a unique solution in H (rot; R?). Then, from
(1.4.32), (1.4.29a), (1.4.30a), (1.4.29b), (1.4.30b), H, P, P, M, M are defined uniquely in term
of E as elements of L?(R3)3. Moreover, with (1.4.31a), V x H € L?(R?)3, thus (1.4.28) admits
a unique solution U in D(A). O

The operator —iA is maximal dissipative. Hence, A is a closed operator (see e.g. [28], theorem
8 page 340) and its spectrum o(A) is contained in the closure of the lower half plane C—.
Furthermore, it follows from the Lumer-Phillips theorem (see e.g. [28], theorem 7 pages 336-
337) that —iA is the generator of a contraction semi-group {S(¢)}+>0 of class C°. This implies
the following standard results on the well-posdness of (1.4.24) and the regularity of its solutions
(where the Hilbert space D(A) is endowed with the graph norm defined by: HUH%(A) = ||U|3,+

|AUJZ, ¥ U € D(A).

Proposition A. 3

Let m be an integer satisfying m > 1. If the initial condition Uy € D(A™) then the Cauchy
problem (1.4.24) admits a unique strong solution U € C™(RT, H) NC™ 1 (R*, D(A)) given
by U(t) = S(t)Ug for t > 0. If Uy € H, (1.4.24) admits a unique mild solution U €
CO(RT,H).

For the proof of this classical result, we refer to [28| (theorem 1 page 399) for the case m =1
and to [10](Theorem 7.5 page 191) for the case m > 1. For the definition of mild solutions when
the initial data Ug is in #H, we refer to [28| pages 404-405.

Remark 1.4.3. As the operator —iA is dissipative, the identity d£(¢)/dt = 2Im(AU(t), U(t))y <
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0 with £(t) = (U(t), U(t))y (the abstract version of (1.2.5) or (1.3.6)) implies the decay in time
of L(t).

We now define Hgiy,o the closed subspace of H given by

Hiivo :={U=(E,H,P,P MM)cH |V-E=V-H=V.P; =V.P; =V-M, = V-M; = 0},
(1.4.34)
(where in the previous definition the indices j and ¢ belong to {1,..., N} and {1,..., Ny, }).

Finally, the following proposition explains that if the initial data are divergence free, the com-
ponents of the solution to (1.4.24) remain divergence free for any ¢ > 0.

Proposition A. 4

Let Up € D(A)NHaiv,o and U : RT — H be the unique strong solution of (1.4.24) with Uy
as initial condition then U(t) € D(A) N Haiv,o for any ¢t > 0. If Uy € Hgiv,p then the mild
solution U of (1.4.24) satisfies also U(t) € Hgiyo for any t > 0.

Proof. We assume first that the initial condition is regular enough, namely Ug € D(A?). Hence
by Proposition A. 3, the strong solution U of (1.4.24) belongs to C?(RT,H) N C1(R*, D(A))
and thus the evolution equation (1.4.24) (or equivalently the system of equations (1.3.1)) holds
also at t = 0 and one can differentiate it for ¢ > 0. Taking the divergence in the distributional
sens of the equation (1.3.1a) for ¢ > 0 and taking the divergence of the equations 0;((1.3.1c))
fort >0 and j € {1,...,N.} leads to:

Ne
O V-E+> Q20,V-P;=0 and 0} V-Pj+ac;0; V-Pj+w?;0,V-P; =,V -E. (1.4.35)
j=1

Thus, substituting 9;V - E in the second equation of (1.4.35) gives

Ne
RV -Pijtog;0}V-Pi+wl;0V-Pi+ > Q2,0 V-Py=0forje{l,...,N}andt>0,
j'=1
(1.4.36)
with initial conditions: V - P;(-,0) = 0; - V - P;(-,0) = 0 (since Uy € Haiv,0). Then taking the
divergence of equation (1.3.1c) evaluated at ¢ = 0 yields

0 -V -Pj(,0) = —ac; 0, V- P;(-,0) —wZ; 8,V - P4(-,0) + V - E(-,0) = 0.

Thus, from (1.4.36), one deduces V-P;(-,t) = V-0,P;(-,t) = 0forany t > 0and j € {1,..., N¢}.
It follows with (1.4.35) that 9;V - E(-,t) = 0 with V - E(-,0) = 0. Therefore, one gets also
V - E(,,t) = 0. Similarly using (1.3.1b) and (1.3.1d) and their derivatives, one shows that:
V-My(,t) = V- -0My(-,t) =V -H(,t) =0t >0and ¢ € {1,...,N} and concludes that
U(t) € D(A) N Haiv,o for any ¢ > 0.

If Uy is less regular, i.e. Ug in Haiv,0, one obtains that U(t) = S(¢t)Ug € Hgivp from the
previous reasoning by using a density argument on the initial condition and the fact that the

elements S(t) of the C° semi-group corresponding to (1.4.24) are contractions. Moreover, if
Up € D(A), one has, by Proposition A. 3, U(t) € D(A) and thus U(t) € D(A) N Hadiv.0- O

Remark 1.4.4. The (Cauchy) problem (1.3.1) assumes that all the resonance frequencies satisfy
We,j,Wm,e > 0, in other words that e(w) and p(w) only contained Lorentz terms (in the sense of
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Section 1.4.2). However, all the results in this appendix still hold with a similar proof if they
contain Drude terms. In that case, if Ny, and Ny, are the number of electric and magnetic
Drude terms, one has to redefine H in (1.4.25) as

H — LQ(R3)3 > LQ(R3)3 > L2(R3)3(N€_Nd’e) > LQ(RS)BNE % LQ(R3)3(NW_Nd’M) % L?(R3)3Nm

(P; (resp. My) are no longer unknowns of the evolution problem for Drude terms).
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2.1. Introduction

2.1 Introduction

2.1.1 Motivation

This paper is devoted to the study of the long time behaviour, of solutions of the Cauchy problem
for Maxwell’s equations in a large class dissipative and dispersive materials: the generalized
Lorentz media. We refer for instance to [16,17, 19,69, 96] for the interest of considering such
media with respect to applications, in particular in the context of metamaterials. We are more
precisely interested in the decay of the electromagnetic energy. The evolution problem we
consider is the following

E(x,t):R* x RT — R? H(x,t) : R? x Rt — R?
Find
P;(x,t) :R¥*x Rt — R3, 1 <j < N, My(x,t) : R®* x R" — R3, 1 < (< N,

such that (for all 1 < j < N, 1 </ < Np,)

Ne
0O E-VxH+e Y Q2;0,P;=0, (x,t) € R x RT*, (2.1.1a)
j=1
Np,
po O H+V xE+po > Q7,0 My =0, (x,t) € R® x RT*, (2.1.1b)
/=1
FPj+ ;0 P;+w?,;P; =E, (x,t) € R* x RT™, (2.1.1c)
0 My + a0y My + wi, , My = H, (x,t) € R® x Rt (2.1.1d)

completed by the divergence free initial conditions

E(-, 0) =Eg € L2(R3), H(-,O) =Hy € L2(R3) with V- -Eg=V -Hy=0,
(2.1.2)
P(-,0) = M(-,0) = 0;P(-,0) = 9;M(-,0) = 0,

where L2(R3) = L?(R3)3 and, for simplicity, we have used the notations
P=(P;) and M= (M, with (P;):=(P;)Ne and (My):= (Mg)}m.

In (2.1.1), the fields E and H are respectively the electric and magnetic fields while the P;
and the M, are auxiliary unknowns (polarization and magnetization fields respectively). The
coefficients (we,j, wm,¢) and (e ;, Q) are supposed to satisfy

O<Qe,1§"'SQe,N57 0<Qm,1§"‘§9m,Nm7
(2.1.3)
Wej >0, 1<7<Ney wpye >0, 1< Ny,

These coefficients are responsible for dispersion effects. Finally, the coefficients (e ¢,y ¢) must
be non negative
Qe j = 0, 1<j<N, Ay > 0 1</£< N (214)

The presence of positive coefficients (o ¢, ) is responsible for dissipation effects. The reader
will notice that one can assume without any loss of generality that the couples (e j, we, j) (resp.
(¢, Wi ) are all distinct the ones from the others.
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Let us introduce the two rational functions

Ne Qi' N an’[
e(w) =¢€o (1 — ; qe](zu)> and  p(w) = po (1 — 2 Qm,Z(w)>7 (2.1.5)

where the second order polynomials ¢, ; and g, ¢ are defined by
Qej(w) = w? + o jw— wgyj and g e(w) = w? + fomow— "J?n,z- (2.1.6)

As functions of the frequency w, € and p are respectively the permittivity and permeability of
the generalized Lorentz media associated to the Maxwell’s system (2.1.1) (see Section 1.1 of
Chapter 1 for more details about their physical interpretation). We denote by P, (resp. Pp,)
the set of poles of the function € (resp. p). We also introduce Z. (resp. Z,,) the set of zeros
of € (resp. u). Generalized Lorentz media are causal and passive electromagnetic materials, as
defined in [18] for instance. The counterpart of causality and passivity in the frequency domain
is that w — we(w) and w — w pu(w) are Herglotz functions of the frequency. Herglotz functions
are analytic functions f in the upper half-plane C* := {w € C | Imw > 0} whose imaginary
part Im f is non-negative on C*. For more details about passive electromagnetic media and
Herglotz functions, we refer to [17-19)].

We make the two following assumptions which are linked to the irreducibility of the dispersion
relation associated to the system (2.1.1) that involves the product e(w)u(w) (see Section 2.3.2.1):

e (Hi): the electric polynomials g ; (see (2.1.6)) with distinct indices j do not have common
roots. The same holds for the magnetic polynomials g,, ¢ with distinct indices £.

e (Hg): The zeros of the permittivity € are not poles of the permittivity p and vice verca.
Namely, one assumes that P, N Z,,, = 0 and P, N Z. = 0.

Remark 2.1.1. It is easy to see that, as a. ; > 0, the roots of g, ; have a non positive imaginary
part. More precisely, as the discriminant of g ; is 6. ; = 4w]2- — O‘ij

1
o If acj < 2w, , the two roots of g ; are =i ;/2 + (5627j/2 ¢iR™,

o If aj > 2w, j, the two roots of g, ; are —i (a&j + ]567j|%)/2 €iR™.

Thus, when a.; < 2w j, the two roots of ¢ j, wy and —w, ¢ iR™, are distinct. Moreover,
as aej = —2Im(wy) and wej = |wy|, ge,; can not share a common root with an other electric
polynomial g j» since by assumption (e j,we ;) # (e ji;we ) for j # j'. Therefore, one only
needs to assume (H;p) for electric polynomials g, ;» for which a, j» > 2w, ;7. The same properties
hold for the magnetic polynomials ¢,  with obvious changes.

The electromagnetic energy is defined as

E(t) = E(B,H, t) := %(50 /RS IE(x, t)[2dx + po /RB |H(x,t)|2dx). (2.1.7)

The present chapter is the "sequel” of Chapter 1 in which we addressed the question of long
time decay of £(t) with a (frequency dependent) Lyapunov function approach. We were able to
prove some polynomzial stability results under the so-called strong dissipation assumption,

Definition 2.1.2 (Strong Dissipation for Lorentz models).

V1<j<Ne ;>0 VI<L< N, > 0. (2.1.8)
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By polynomial stability, we mean the energy decays more rapidly than a negative power of t:
E(t) < Ct* for some s > 0. (2.1.9)

In this paper, we address the same question as in |18] via a modal approach. Admittedly, this
approach is technically more involved than the one in [18], but it presents many advantages:

e it is by many aspects more physical (in particular it refers explicitly to the dispersion
relation of the medium) thus more easily understandable by physicists,

e it leads to optimal results in the sense that upper bounds of the type (2.1.9) can be
completed by corresponding lower bounds,

e it allows us to obtain polynomial stability results under a condition on the dissipation
coefficients which is strictly weaker than (2.1.8), namely the weak dissipation assumption:

Definition 2.1.3 (Weak Dissipation for Lorentz models).

Ne Nm
D e+ Y o> 0. (2.1.10)
j=1 =1

The reader will notice that the strong dissipation assumption imposes that all the coeffi-
cients (a,j, oy ) are strictly positive while the weak dissipation assumption means only
that at least one of them is strictly positive.

In Chapter 1, we made in Section 1.2 a rather extensive analysis of the literature addressing
problems similar to the one we consider here, with application in viscoelasticity [25, 26, 35] or
electromagnetism [36,61]. We discussed in particular various existing techniques for obtaining
polynomial or exponential stability results (Sections 1.2 and 1.3 ). The closest works to ours are
the paper by Figotin-Schechter [37] and the papers [63—65] by S. Nicaise and his collaborator
C. Pignotti. In [37], the authors prove that the electromagnetic energy of the solutions of a
large class of linear dissipative models tends to zero but without addressing the question of
the decay rate. In [63-65], the question of the decay rate of the solution is studied in detail
in bounded domains for perfectly conducting materials. However, when specified for Maxwell’s
equations in generalized Lorentz media, the results of [37] and [63-65] only applied when the
strong dissipation assumption (2.1.8) is satisfied. Furthermore, under the weak dissipation
assumption (2.1.10), we enlighten for some cases (when (2.1.8) does not hold) new decay rates
which are still polynomial but with a smaller exponent in 1/t than the ones observed in the
literature [18,63-65].

The outline of the rest of this chapter is as follows. First in Section 2.1.2, we rewrite the
Maxwell’s time-dependent system as a Schrodinger evolution problem which involves a maximal
dissipative Hamiltonian A. Then in Section 2.1.3, we state the main results of the article. In
Section 2.2, we show how to reduce the analysis of the Schrodinger evolution problem to the
study of an infinity of Ordinary Differential Equations (ODE) systems in time parametrized by
one real parameter. This is done by exploiting the fact that we work with constant coefficients
which allows us to use the Fourier transform in space and the isotropy of the model. The
equations are then parametrized by |k|, the modulus of the wave vector k, namely the dual
variable of the space variable. Each of this ODE system involves a finite dimensional dissipative
operator Ay | and the rest of the analysis is devoted to estimates, for large ¢ of the exponentials

e ALt for |k| € RT, (2.1.11)
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which obviously depends on the eigenvalues of Ay and more precisely on their imaginary
parts. Section 2.3 is devoted to general spectral properties of Ay | at fixed |k|: we characterise
its eigenvalues as the solutions of a rational equation parametrised by |k|, namely the dispersion
relation of the medium, whose analysis allows us to provide a diagonalizability criterion for
Ax),1- Then, we need to distinguish in Section 2.4, Section 2.5 and Section 2.6, respectively,
the large, small and intermediate values of |k|. In Section 2.4, devoted to large |k|, we provide
asymptotic expansions (when |k| — 400) of the solutions of dispersion relation which show the
diagonalisability of A | for [k| large enough. After diagonalization of the exponential (2.1.11),
we obtain optimal decay estimates in time of the high spatial frequency components (i.e. large
values of |k|) of the solution of the evolution problem, based on the behaviour of the imaginary
part of the eigenvalues of Ajx| | and uniform bounds (in [k|) of the associated (non-orthogonal)
spectral projectors. A similar strategy is adopted in Section 2.5 to derive optimal estimates
for the low frequency components (i.e. small values of |k|) of the solution. Section 2.6 deals
with estimates for intermediate values of |k|. The method is quite different and somewhat less
technical and precise that the method of Section 2.4 and Section 2.5 but it is sufficient to show
(in Section 2.7) that, the corresponding part of the solution decays exponentially fast in time.
Section 2.7 is devoted to the proofs of our main results, after regrouping the estimates of the
three previous sections and deriving estimates in space variable norms via Plancherel’s theorem:
this is where the polynomial decay due to large and small values of |k| is put in evidence. Finally,
Appendix B contains technical results used for the spectral analysis of Ajy| . In particular, in
Appendix B.2., Lemma B. 1 provides a useful implicit function-like result for some (scalar)
nonlinear equations in the complex plane. This lemma is used for the analysis of the dispersion
relation.

2.1.2 Maxwell’s equations in dissipative generalized Lorentz media

The (Cauchy) problem (2.1.1, 2.1.2) can be rewritten as a Schrédinger evolution problem

dU
d——l—lAU—O with U(0) = Uy, (2.1.12)

where the Hamiltonian A is an unbounded operator on the Hilbert-space:
H = L2(R*)N = L2(R?) x L2(R?) x L2(R®)Me x L2(R%)Me x LE(R*)Vm x L2(R3)M»  (2.1.13)
where N =2+ 2 (N, + Np,). H is endowed by the following inner product:

for any U = (E,H,P,P,M,M) € H and U’ = (E/,H',P', M, P',M') € H, where (P,M) is
defined as in (2.1.1), (and the same for (P, M’), (P,M) and (P’,M))

(U Uy = 3 (B.E) + 5 (HH)p
Ne &€
£ 2 / 0 /

+ 22 Q0 (P, Pz + - ZQ (P;, P)) (2.1.14)
]:
Nm

+ % wiy o,y (Mg, M)p2 + 7ZQmZ (Mg, Mj)pz
/=1

where (u, V)2 = / u - Vvdx denotes the standard inner product of L?(R3).
R3

(the symbol - stands here for the operation defined on C3 x C3 by a-b := a;b; + asbs + azbs).
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The Hamiltonian A : D(A) C H — H is defined by

—5,'VxH+Y Q2 P;

Ho 'V x E+30 O My

. : -P

VU= (E,HP,P,M,M)c DA), AU:= i (2.1.15)

acPj+w;P; —E
-M

Qe My + w2, , My — H
with D(A) (dense in H) being given by

D(A) := H(rot;R®) x H(rot; R?) x L*(R3)3Ne x L2(R3)3Ne x L2(R3)3Nm x L2(R¥)3Nm (2.1.16)
where H(rot;R3) := {u € L?(R?) | V x u € L%(R%)}.

Remark 2.1.4. Let us point out that, in the sequel, as in the formula (2.1.15), we shall often
omit the summation bounds 1 and N, (resp. 1 and N,,) for sum on j (resp. ¢) indices.

We notice that one can rewrite the evolution problem (2.1.1, 2.1.2) as (2.1.12) with the initial
condition
Uy = (Eo,Hp,0,0,0,0) € H satisfying V- -Eqg=V-Hy=0. (2.1.17)

Moreover, its associated electromagnetic energy &(t), defined in (2.1.7), is dominated by || U(¢)]|?.

We prove in Lemma A.2 of [18] that the operator —i A is maximal dissipative. Thus, it generates
a contraction semi-group {S(t)}+>0 of class C° (see e.g. Theorem 4.3 page 14 of [71]). Hence, the
Cauchy problem (2.1.12) is well-posed and stable. More precisely (see propositions A.3 of [18]),
it admits a unique mild solution

U = S(t)Ug € C°(RT, H),

which is a strong solution,
U € C'RT,H)NC°(RT,D(A)),

as soon as Ug € D(A), with D(A) is endowed with the usual graph norm || - [ p(a) defined by
105 = U153, + AU, ¥ U € D(A). (2.1.18)

We introduce now the well-known Hodge decomposition in electromagnetism which consists
to write any L2(R®)-fields as the orthogonal sum of a gradient (i.e. a curl free field) and a
divergence free field (see e.g. [27]). Namely, one has

L%(R%) = VIWL(R?) S13 (2.1.19)

divg»
where VIWW1(R3) = {Vu | u € W(R3)} with
WHR?) = {u € LL(R®) | (1 + |2|*)~%u € L*(R%) and Vu € L2(R%)}

the standard Beppo-Levy space on R?, and L2 = {u € L?(R?) | V-u = 0} the space of 3D

divg
free divergence fields in R3.
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Following the decomposition (2.1.19) for each copy L?(R3) of H = L2(R*)"V, one deduces imme-
diately that the Hilbert H admits the following orthogonal decomposition:
1

H =M &H, where H) = VW' (R*)N and H, = (L3,,)". (2.1.20)
Let us now introduce D(A) = D(A) NH and D(AL) = D(A)NH1. As an immediate conse-
quence of (2.1.15), (2.1.16), (2.1.18) and (2.1.20), one has

i
A(D(A))) C Hy, A(D(AL) C My and D(A) = D(A|) & D(A,).

Thus one can reduce the operator A as a sum of two closed and densely defined operators
Ay D(A) CHj— Hjand Al : D(AL) C Hy ~ H in the sense that

A= AH ® A with AHU =AU,V U e D(A”) and A|]U=AU,VU e D(AJ_). (2.1.21)

Moreover, since any element of ) is made of curl free vector fields, it is readily seen on (2.1.15)
that D(A)) = H and that A is bounded.

From (2.1.21), we deduce using the Hille-Yosida approximation of A (see Corollary 3.5 page 11
of [71]) that a similar reduction holds for the semi group {S(t)}:>0. Namely, A| and A| generate
two contraction semi-groups {S)(t)}+>0 and {S1(t)}¢>0 on the Hilbert spaces H| and H such
that for all ¢ > 0:

S(t) = S”(t) @S (1), S”(t)Uo = S(t)Up, VU € 7‘[”, S1(t)Ug = S(t)Up, VUg € H.

In more physical terms, it means that if the components of the initial conditions Uy € H are
curl free, then the solution U(¢) of (2.1.12) remains curl free and the corresponding dynamics is
trivial since it corresponds to a damped harmonic oscillator in finite dimension (these are non
propagative solutions of the Maxwell’s equations (2.1.1)).

Oppositely, the interesting case is when Ug € H | (e.g. for the divergence free initial conditions
(2.1.2)). Then the solution U(t) of (2.1.12) is divergence free, propagative and given by

Ut)=5,.(t)Upe H,, Vit>0.

2.1.3 Statement of the main results
2.1.3.1 The long-time energy decay rate

To expose our main result, Theorem 2.1.7, we need first to define an adapted functional frame-
work:

a. For each p > 0, we introduce the Banach space
L,(R*) = {ve S'(R% / k| ™P(1+|kP) v € L(R%)} (2.1.22)

(where k — ©(k) denotes here the Fourier transform of a scalar tempered distributions
v € §’(R?)) equipped with the norm

[vllz, == || &I7P(1 + k[P (2.1.23)

) O] oo sy

We point out that if v € L£,(R?), then one has [0(k)| < [[v]|z, k[P for a.e. k € R®. The
reader will also note that for ¢ > p, £,(R?) C £,(R?).
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Identifying a function in £,(R?) is not trivial since it requires to look at the same time at
the function and its Fourier transform. See however Remark 2.1.5 for some more concrete
examples of spaces of functions included in £,(R?).

We shall introduce £,(R?) = £,(R?)3 the vector valued version of £,(R?) endowed with
the norm || - ||z, defined by

Vu= (ug,uz,u3) € LR, |ullz, = ludlz, + lluzllZ, + JuslZ,-

Then, we define on £,(R?)™ the norm || ||~ by: VU = (E,H,P,P,M,M) € L,(R*)",
P

107 = IBIZ, + HIZ, + 37 (P52, + 1P5l12,) + > (IMAZ, + N, ).
J ¢

b. For each m > 0, the space H™(R?) = H™(R3)? where H™(R?) denotes the standard
Sobolev space defined on scalar functions, endowed with the norm || - ||ggm defined by

Vu = (u,uz,u3) € H™(R®),  |[ullfgmrs) = lutllfmrs) + lluallm sy + [1ualFrmrs),

where || - || yym (r3) is the usual Sobolev norm on H™(R?) (see e.g. [27] page 500). Then,
one defines the norm || - ||ggm sy for any U = (E,H,P,P,M,M) € H™(R*)" by

2
10 gy = Bl ey + Hlfpn ey

+ > (I1P;1m sy + I1P;lIFem(rs)) (2.1.24)
j

+ > (IMellfim sy + MellFpm gs))-
Z

Remark 2.1.5. | On the space £,(R3) | A first trivial observation is that for any p > 0, £,(R?)
contains all integrable functions whose Fourier transform is supported outside a ball centered
at the origin.

Moreover, for p € N, let us introduce the weighted L' space (already used in [18]):
LyR%) == {ve L'R%) / (1+[x])Pve LR} (L§(R®) = L'(RY)), (2.1.25)
endowed with the norm
||”UHL%)(R3) = |1+ |x\)PvHL1(R3). (2.1.26)

In particular, functions of LII,(R?’) have existing moments up to order p. Let us introduce, for
p > 1, the closed subspace of L})(R:}) of functions whose moments up to order p — 1 vanish:

Lyo(R%) == {u € Ly(R%) /¥ |a| <p—1, /x“udx =0}, (2.1.27)

where a = (a1, g, a3) € N3 denotes a multi-index with “length" |o| = a1 + ag + a3 and where

x* = x{" x5 x§" for all x = (21,72, 23) € R®. Moreover, by convention, Lj o(R?) := L*(R?).

Note that since any function in L},(R?’) belongs in particular to L!'(R?), its Fourier transform
v(k) is well defined and belongs to C§(R?), namely the closed subspace of L*°(R3) made of
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continuous functions that tend to 0 at infinity. We claim that
VpeN, L}y (R% C L, (2.1.28)
Indeed, from well-known properties of the Fourier transform, for all v € L}mO(R?’), one has
2°v(k) € CY(R?) for |a| <p and,ifp >0, 0°0(0) =0, for o] <p—1. (2.1.29)
Moreover, from the Taylor expansion of v(k) at 0, one gets (by the Taylor-Lagrange formula):
IC(p) >0 | [ok)| <C(p) HUHLW) k[P, VkeR?® and Vove L) (R). (2.1.30)

Thus, using the fact that [[V]|fe(rs) < [|v]lL1re) < [[v]lz1(r3), one deduces with (2.1.30) that

9(k)| < min(1, [k|?) [|v VkeR® and Vv e L) (R?). (2.1.31)

[

Then, it follows from (2.1.23) and (2.1.31) that the embedding (2.1.28) is continuous, more
precisely:
3C(p) >0, Yve LR, [l < C) HUHL}J(R?,). (2.1.32)

It also follows from (2.1.28) that, in particular, £, contains all compactly supported integrable
functions (in the x variable) whose moments up to order p — 1 vanish.

Next, we introduce the notion of critical configuration associated to the Maxwell’s system (2.1.1),
which will influence the long-time decay rate of the electromagnetic energy. It will be enlightened
in our proof via the analysis of the dispersion curves associated to this system in the high
frequency regime (see Section 2.4.1).

Definition 2.1.6. We say that the Maxwell’s system (2.1.1) is in a critical configuration if the
weak dissipation condition (2.1.10) holds and if one of the following conditions is satisfied:

a. Vle{l,...,Np},ame=0and 3je{l,...,Ne} | ac; =0 and we ; ¢ {wmvg}.
b. Vje{l,....,Ne},ae; =0and 3 € {1,..., Ny} | amye =0 and wyn e & {we;}-
When none of these condition holds, this system (2.1.1) is in a non-critical configuration.

We point out that, as the reader will easoly check, under the weak dissipation assumption
(2.1.10), the critical configuration can occur only if N, > 2 or N, > 2.

We are now able to state our main result under the weak dissipation assumption concerning
the decay of the total ||U(t)||3, associated to the Schrdinger evolution problem (2.1.12) with
divergence-free initial conditions Ug € H | which contain in particular initial conditions of the
form (2.1.17). Thus, this result applies to the Maxwell’s system (2.1.1) with initial conditions
(2.1.2).

We shall use below, as well as in the rest of this paper, the following

Notation 1. To compare two positive functions f(y) and g(y), where y € Y and y = x,k, t or
any combination of the variables, we introduce the notation:

[Sg <= 3C>0 | fly) <Cygly), Yyey,

where the constant C' depends only on N, N,,, and the coefficients of the system (2.1.1).
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Theorem 2.1.7

Let assume that the Maxwell’s system (2.1.1) satisfy the weak dissipation assumption
(2.1.10) and the irreducibility assumptions (H;) and (Hz). Then, for any initial condi-
tion Uy € H, the total energy |[U(t)||3, of the solution U of (2.1.12) tends to 0 when ¢
tends to +o00. Namely, one has
. 2

tlgrnoo 1U@)|I3, = 0. (2.1.33)
Moreover if for some real numbers m > 0 and p > 0, Uy € H?(R®)V N Eév N #H, then
the decay rate of |[U(t)||? is polynomial. However, the associated exponents in 1/¢ depend
on the configuration (see Definition 2.1.6) of the corresponding Maxwell’s system (2.1.1).
More precisely,

a. If the Maxwell system is in a non-critical configuration, then one has

Cie(Us) | CEp(Uo)

2
<
U, < THEEE 4 2

. Vi>0, (2.1.34)

b. If the Maxwell system is in a critical configuration, then one has

Crr(Uo) N CTp(Uo)

U@)|? < ~ . Vi>0, 2.1.
e s L 213
where in (2.1.34) and (2.1.35) the constants satisfy
Ol (U0) £ [ Vol oy and Cp(U) < Vo] 2 (2.136)

Remark 2.1.8. The energy |[U(¢)||%, is dominated in (2.1.34) and (2.1.35) by a sum of two
terms.

e The first one involves the Sobolev regularity of the initial condition and is linked, as it will
appear in the proof, to the decay of the high spatial frequency components of the energy.

e The second is related to the condition Ug € LZI],V and thus to the decay of the low spatial
frequency components of the energy.

The presence of the second term is directly related to the fact that the domain of propagation is
unbounded and does not appear in the control of the energy in bounded domains for perfectly
conducting materials (see, [63-65]).

Remark 2.1.9. For generalized Lorentz media, this Theorem generalizes under the weak dis-
sipation assumption (2.1.10) the results obtained under the more restrictive strong dissipation
assumption (2.1.8) in [63-65] for bounded domains and in [18] for the whole space R3.

As (2.1.8) excludes the critical configuration, the weaker decay (2.1.35) could not be observed.

2.1.3.2 Optimality of the bounds

In Theorem 2.1.7 , we prove a long-time polynomial decay rate for [[U(¢)| (cf. (2.1.34) and
(2.1.35)) for solutions U(t) of the Cauchy problem (2.1.12) which satisfies divergence free initial
conditions Ug € H . In this section, we analyse the question of the optimality of this decay rate.
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The estimates (2.1.34) and (2.1.35) involved a sum of two terms which are related to the decay
of the low and high spatial frequency components of the solution (see Remark 2.1.8). Thus, to
speak about optimal polynomial exponents, we need to decouple these two terms by separating
the high and low frequency behaviors of the solution U. Therefore, we introduce the 3D spatial
Fourier transform defined by
G(k) = F(G)(k) = ! - | G(x)e ®*dx VG e L'R® NL%*R?),
(2m)2 JR3

which extends to a unitary transformation from L?(R2) to L*(R}). Applying F to each copy
L2(R?) of # = L2(R3)" defines a unitary transform, still denoted F, in H.

We now introduce for (m,p) € RT™* x Rt the spaces
e = (VEH, NHPROY |3k, > 0] supp(F(V)) C RO\ B0, k), (21.37)
HY p ={VeH NL,R)N 3k >0|supp(F(V)) C B(0,k_)}. (2.1.38)

In the spirit of [63], we define for any m > 0 the high frequency optimal polynomial exponent
of solutions U(t) of the Cauchy problem (2.1.12) with initial conditions Ug € H'" gy as follows:

C(Uy)
Y

IE — sup{y € RT |V Uy € H'T'up, 3C(Uo) >0 | [SIGIEASS , V1) (2.1.39)

Similarly, we define for any p > 0 the low frequency optimal polynomial exponent:

C(Uy)
tY

yzf’F =sup{y €R" |V Uj € ’Hﬁ_’LF, IC(Ug) > 0| UM < , V> 1} (2.1.40)

We are now able to state our result concerning the low frequency and high frequency optimal
polynomial decay rates.

Theorem 2.1.10

Let (m,p) € R™* x RT. The exponents v and v} are given as follows:
a. If the Maxwell system is in a non-critical configuration, v\ = m and 71§F =p+3/2.

b. If the Maxwell system is in a critical configuration, 4IF = m /2 and 'ysz =p+3/2.

We point out that in Section 2.7.1, we show that the upperbounds (2.1.34) and (2.1.35) give
the right lower bounds on the exponents 7IF and ’Y;€F~ In Section 2.7.2, we show that these
lower-bounds are also upper-bounds and thus deduce the value of these exponents.

2.2 Fourier reduction

2.2.1 The reduced Hamiltonian Ayx

The homogeneity of the propagation medium allows us to reduce the spectral analysis of the
operator A defined in (2.1.15) to the spectral analysis of a family of (non-self-adjoint) operators
(Ak)kers on a finite dimensional space.

We introduce the space CV with C = C? endowed with the inner product (-,-)cn~ defined via
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the expression (2.1.14) by replacing U € # by U = (E,H,P,P,M,M) € CV with

P=(P;),P = (P;),M= (M),M= (M),

/

(the same for U’) and the L? inner product (-,-)r2 by the usual one in C: (E,E’) =E-E.

The corresponding norms in C or CVV are both denoted | - | for simplicity.

In this functional framework, A is unitarily equivalent via F to a direct integral of operators Ayx
defined on the finite dimension space CV. Namely, one has:

b
A=F* (/ A dk)}' ie. F(AU)(k) =A, FU(K), YU € D(A) and a.e. k € R®, (2.2.1)
R3

where the (bounded) linear operator Ay : CV — C¥ is given by

kxH .

E
kxE . .
m —iy Q2 M,
YU=(EH,P,P,MM) ecCY, AU= iP . (2.2.2)

—iae ;Pj — iwgﬂPj +iE

iM

—i amleg — ionﬂ’lMg + iH

We point out that A is deduced from the definition (2.1.15) of A by replacing the curl operator
V x operator by its spatial Fourier counterpart ikx. The usual cross product on R? x R? has
been here extended to C x C via the formula a x b = (agbg — agbg, agb; —aj bz, a; by —ashy).

Remark 2.2.1. A simple computation shows that for any U = (E, H, P, P, M, M) c CN:

N, Non
Im(AU, U)ow = =Y ae; Q2 PP =D e O, o IMe* < 0.
j=1 =1

Thus, for all k € R?, the spectrum of Ay, o(Ay) sin included in C = {w € C | Im(w) < 0}.

Hence, —iA(k) is maximal dissipative and the resolvant of A(k) , Ra,(w) = (Ax — wld)™! is
well-defined in C* and satisfies:

| Ra, (w)]| < Im(w)™!, Yw e CT and Vk € R3,

52
This estimate justifies the existence of the direct integral / Ak dk (see [62] page 5).
keR3

From an operator point of view, one deduces from (2.2.1) (see e.g. Theorem 4.2 of [62]) that
the contractions S(t) of the semigroup {S(t)}+>0 are also unitarily equivalent via F to a direct
integral of contractions e ** on CN. More precisely, one has for any t > 0:

@ . . «
S(t) = F* ( /R e dk)f, ie. F(S(t)U)(K) = e ™ FU(K), VU € H ae.k € RS (22.3)

From a more practical point of view, it means that the Fourier transform U = FU of the solution
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2.2. Fourier reduction

U of the Schrodinger evolution problem (2.1.12) with initial condition Uy € H satisfies a family
of Ordinary Differential Equations (ODE) in C" parametrized by the wave vector k. Namely,
one has for a.e. k € R3:

dU(k, t)

S AU ) =0 for >0 with U(k,0) = Up(k) = (FUo)(k). (2.2.4)

The solution of each this ODE is given by U(k, t) = e 7 AxtUy(k), ¥t > 0. We can now introduce
the counterpart of the Hodge decomposition (2.1.20) in the (spatial) frequency domain. In this
perspective, one decomposes orthogonally the space CV, for all wave vector k # 0, as

1
CY = Cy @ Cy, where Cy:=spank and Cy :={k}". (2.2.5)

One shows easily that Cf:’ i and ka are stable by Ag. Thus, one can reduce Ax as a sum of

two operators
N N N N
Ak7|| : Ck,” — Cka and AkA_ . Ck,J_ — Ck,J_

in such way that
Ak = Ay &AL with A U=AU, VU e CY and A, 1 U=AU,VUECY (226)

The above relation is nothing but the counterpart of (2.1.21) for Fourier components. Indeed,
following the decompositions (2.1.21) and (2.2.6), one proves easily that the operators A} and
the contractions S| (¢) of its associated semigroup {S, (t)}+>0 are also unitarily equivalent via
F to direct integral of operators Ay | and e Ak, Lt

5]

A = F* (/3 As.L dk)]—" ie. F(ALU)(k)=A 1 FU(),VUe D(AL), ae keR’,
R
57

Si(t) = F* (/w e_iAk’itdk>]-" ie. F(SL(U)(k) = e Al FUK), VU € 1y, aekeRS.

Similarly, the operators A| and SH(t) for ¢ > 0 are also unitarily equivalent via F to direct inte-
gral of operators and the latter relations hold also if one replaces all L-symbols by [|-symbols.

The direct integral decomposition of the operators S (¢) implies that the Fourier transform
U = FU of the solution U of the Schrodinger evolution problem (2.1.12) with initial divergence
free conditions Uy € H (as e.g. in (2.1.2)) satisfies for a.e. k € R%:

U(k,t) = e Mt Ug(k), Vt >0 where Ug(k) = (FUg)(k) € Cy ,. (2.2.7)

2.2.2 From Ay to Ay

In the expression of the solution (2.2.7), the space C x depends on k which complicates slightly
the analysis of the decay of the Fourier components U(k, t). To remediate to this point, one can
use the isotropic character of the medium.

We introduce (ej, ez, e3) the canonical orthonormal basis of C and for k 7é 0 the unit vector
k = k/|k|. We now construct a rotation Ry : C — C that maps the vector k into es as follows

- Ifk #+ te3, we set wy := (kxeg)/|k><e3| € Cyg, | so that (k, Wy, kxwk) is an orthonormal
basis of C. We then define Ry in this basis by

Rk(E) = €3, Rk(Wk) =€y, Rk(E X Wk) = ey.
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2.3. Modal analysis

- If k = +ey, we simply set R = Idc.
Finally, we define the operator Ry : CV — C¥ defined for all U = (E,H,P, P, M, M) e CN by
RiU = (RkE, RicH, (RiP;), (RiP;), (RkMy), (RiM)). (2.2.8)
Using the identity (we let its proof to the reader):
Ry (Rk(u) x Rk(v)) =uxv, Vu,veC
applied to u = k (and thus with Rx(u) = |k| e3), one observes with (2.2.2) that
Ak = RiAk Rk where Al := Ay (2.2.9)
Thus, Ax and Ay are unitarily equivalent. Furthermore, as
Ri(Cy ) = C| and Ri(CYy) = CY where C := Cy, and C| := C_ ., (2.2.10)
one has by (2.2.6):
A= RiAw R and A = R ApgL Ric. (2.2.11)

In particular, it shows with (2.2.7) that the Fourier transform U = FU of the solution U of
(2.1.12) with initial divergence free conditions Uy € H | satisfies for a.e. k € R®:

U(k,t) = R e it Ry Ug(k), V¢>0 where Ug(k) = (FUp)(k) € Cf .  (2.2.12)

Thus, to estimate the norm of |U(k,t)|, one only needs to analyse the spectral properties of
A, L on the space Cf which is now independent of k.

2.3 Modal analysis

The proofs of Theorem 2.1.7 and Theorem 2.1.10 are based on the spectral properties of Ay
These theorems are proved in Section 2.7 based on results established from Section 2.3 to
Section 2.6.

2.3.1 Spectrum and resolvent of the finite dimensional operators Ay

Using the expression (2.1.5), the rational functions € and p can be rewritten as

Pe(w) _ P (w)
(@) and p(w) = o (@)’

e(w) =¢ep (2.3.1)

where the unitary polynomials P, and Q. (resp. P, and @,,) are of degree 2N, (resp. 2N,,).
More precisely, Q. and P, are explicitly given in term of the ¢.; by

Ne Ne Ne
Qe(w) = H Gej(w) and Pe(w) = Qec(w) — Z QZJ H e, ie(W). (2.3.2)
j=1 j=1 k=1,k#j

The reader will verify that, with (2.3.2), the assumption (H;) implies that P, and Q. do not
share common zero. Therefore the representation (2.3.1) of the rational function ¢ is irreducible.

Thus, Pe, the set of poles of ¢, is exactly the set of roots of Q. which is the union over j of the
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2.3. Modal analysis

roots of g. ; and is therefore included in C~ (see Remark 2.1.1).
Moreover, by (H;) and Remark 2.1.1, the multiplicity of a root ws of Q. is either 1 or 2.

Obviously, the equivalent of (2.3.2) and the above properties hold for the polynomials P,, and
Qm-

We introduce the sets P := P, U Py, and Z := Z, U Z,,, where we recall that P, (resp. Pp,) is
the set of poles of the function e (resp. p) and Z. (resp. Z,,) the set of zeros of € (resp. u) and
the rational function D : C\ P — C defined by

D(w) = w?e(w) p(w), YweC\P. (2.3.3)

Using (Ha), it is easy to see that D(w) is irreducible. From (2.3.1) and (2.3.2), one deduces
immediately that its numerator is of degree N = 24 2N, 4+ 2N,, and its denominator iof degree
2N, + 2N,,. Moreover, its poles p and zeros z are respectively the elements P and Z U {0}.

We introduce for any k € R3, the set
S(|k|) == {w € C\ P | D(w) = [k|*}.

The following proposition establishes the link between S(|k|) and the spectrum of the operator
A|k\,J_ for k 7& 0.

Proposition 2.3.1

Let assume (H;) and (Hy). Then for any k € R?\ {0}, one has
(A1) = S(IK). (2.3.4)

Moreover, each eigenvalue w € o (A ) has a geometric multiplicity of 2.

Finally, we conclude this section with the resolvent

Ry (w) == (A, —wI)~h (2.3.5)
To obtain a readable expression, it appears useful to introduce some intermediate operators.
We first define four linear operators in E(Cf, C,): given F := (e, h,p;,p;, my, Ii’lg) € Cf

(—ioe,; —w) Pj —ity, —w)my — ity

D
pj, Apo(w)F = (

A.i(w)F = ’
e.j(W) Ge; (@) Gm o (W) 236
. 2 . . 2 . - .
. iwg ;Pj — wP;j . iwy, qmy — wiy
AP == AR T
9, m7

from which we define two more operators in £(CY,C_):

A.(w)F = —o (e+iZQg’j Acj(w) F), A (w) F = —pg <h+iz 02,y A o) F). (2.3.7)
Finally, we shall also define the finite subset of C :

Sy :=PU Z, U{0}. (2.3.8)
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2.3. Modal analysis

Proposition 2.3.2

Let k € R®. For any w € C\ (S(/k|) UST), the resolvent is given by
R|k‘(w) = V|k‘(w) S‘k|(w) + T (w) (2.3.9)
with Sp(w) € E(Cf, C, ) defined by: given F := (e, h,pj,pj,mg,mg) € Cf

wp(w)Ac(w)F — k| eg x A (w) F

S|(w) F:= D(w) — K2 , (2.3.10)
Vik|(w) € L(CL, CY) defined by: given X € C*
X iwX
V(@)X = (X,0,— , 0,0
= (x0.-(25) ()00
(2.3.11)
k| ( ez x X iweg x X )
+ 0 ) X7 0 ) 0 s ’
o) % (qm,z(w)> ( me(@) )
and finally 7 (w) € ﬁ(Cf) defined by : given F := (e, h,pj,pj,mg7rhg) € Cf
T(w)F = <0,A’"(w)F,o,o,—( Am () F ) ( 1A (w) F ))
wh(w) wp(w) gm,e(w) /" \ (W) G e (w) (2.3.12)

(0,0, (Aps(@)F), (Ap (@)F). (Ans(@)F). (A s(@)F) ):

The (purely computational) proofs of Proposition 2.3.1 and Proposition 2.3.2 are delayed to the
Appendix.

Remark 2.3.3. The function w — Ry (w) is well-defined and analytic for w € C\ o (A 1).
The set St is the set of singularities for w — 7 (w) but they are removable singularities in the
expression (2.3.9).

2.3.2 The dispersion relation
2.3.2.1 General properties of the dispersion relation

By Proposition 2.3.1, for a fixed wave number k # 0, the eigenvalues of Ay | are the solutions
w € C\ P of the equation
D(w) = k|, (2.3.13)

(with D(w) defined by (2.3.3)) referred in physics as the dispersion relation. We make in this
section several important remarks and results on this equation.

As a consequence of Remark 2.2.1, one has o(Aj) C C—, thus o(Ax|,L) C o(Ak)) C C—. We
give here an elementary proof that for k # 0, the spectrum o (A 1) is included in the lower
open complex half plane

O'(A|k|,L) cC, (2314)

based on the dispersion relation (2.3.13). Assume by contradiction that there exists w € C* N
o(A|,1). From Proposition 2.3.1, w satisfies (2.3.13) and therefore w # 0 and w ¢ P. Taking
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2.3. Modal analysis

the real part and the imaginary part of (2.3.13) leads to

Re (we(w)) Re (wp(w)) = [k[* +Im (we(w))

Im (wp(w)) > (2.3.15)
Re(we(w)) Im(wp(w)) + Re(w p(w)) Im(we(w)) = 0

(2.3.16)

where the rational Herglotz functions w — we(w) and w +— wp(w) are analytic and have a
positive imaginary part on C*. Furthermore, one has for w € R\ P

N
Im(we —60|w]22‘q 5 >0 and Im(wp(w MO\WPZM m,¢ Jm 5 > 0. (2.3.17)
€,] m

Thus, by the weak dissipation assumption (2.1.10), at least one of the coefficients c. ; or oy, ¢
is positive and it follows from (2.3.17) that

Im(we(w)) >0 or Im(wu(w)) >0 on R*\ P. (2.3.18)

Hence, (2.3.15) implies that Re (we(w)) and Re (wp(w)) have the same sign (and do not vanish),
whereas (2.3.16) implies that they have opposite sign, which leads to a contradiction. Thus, for
k £ 0, the solutions of the dispersion relation D(w) = |k|? all lie in C™.

Using the fact that e(—w) = e(w) and pu(—w) = p(w), one observes that if w is a solution of the
dispersion relation then —@ is also a solution of this equation. Thus for a fixed k # 0, the set
o(A|,1) is invariant by the transformation w — —@.

From the irreducible form (2.3.3) of D, one deduces that the dispersion relation is equivalent to
a polynomial equation of degree N. Namely, for a fixed k € R3\ {0}, one has:

D(w) = |k\2 = D‘k‘(w) =0, D(w):=eopo w? P.(w)Py(w) — ]k|2Qe(w)Qm(w) (2.3.19)
is a polynomial of degree N = 2 + 2N, + 2N,,, with dominant coefficient €¢ g. Thus, one has
Dyy|(w) ~ €0 p1o WAF2Net2Nm (1] 5 +00). (2.3.20)

This leads to the following corollary on the diagonalizability of Ay | -

Corollary 2.3.4

For k € R?\ {0}, Aj|,1 is diagonalizable on CY if and only if the roots of the polynomials
Dy defined in (2.3.19) are simple.

Proof. By Proposition 2.3.1 and relation (2.3.19), the eigenvalues of Ay | are the solutions
the polynomial equation D‘k|(w) = 0 of degree N. Furthermore, each distinct solution of this
equation is an eigenvalue of geometric multiplicity 2. As the space Cf is of dimension 2N, see
(2.2.10) the result follows immediately from a simple argument of dimension. O

We end this section with two paragraphs: one on the poles P and one on the zeros Z U {0}
of the rational function D associated to the dispersion relation. Indeed (as we will see in the
Section 2.3.3 and in the parts Section 2.4 and Section 2.5) poles and zeros play a key roles for
the asymptotics of eigenvalues of A respectively for [k| > 1 and |k| < 1.
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2.3.2.2 Properties of the poles of the rational function D

As we saw in Section 2.3.1, the elements of P are exactly the zeros of the denominator of the
rational function D, that is the polynomial of Q.Q,, of degree 2(N. + N,,). Thus, P contains
2(N¢ + Ny,) elements (counted with multiplicity) and this set is invariant by the transformation
w+— —w (see Remark 2.1.1).

The multiplicity m, of a pole p € P, it can not take any arbitrary value. Indeed, the elements
of P are precisely (see Section 2.3.1) the roots of the 2-nd order polynomials gej or g for
je{l,...,Ne}and £ € {1,...,Np,}. Thus, P C C~ (see Remark 2.1.1) and one has:

e IfpdiR™thenm,=1ifp ¢ P. NPy or my =2if w € P. NPy,
e Elseif p € iR™*, then by (H;), my € {1,2}if p ¢ PeNPp, or my, € {2,3,4} if p € PeNPpy.

We will see in Section 2.3.3 and Section 2.4.3 that the important poles for our analysis for |k| > 1
are the ones that lie on the real axis. These poles are associated to polynomials g. ; or g, ¢ for
which a,; = 0 or oy, = 0. Thus, they are of the form p = wey € Pe or p = wy e € Py
with we j, W > 0 and have multiplicity m, = 1if p ¢ P. NPy, or my, =2 if p € Pe N Pyy.

2.3.2.3 Properties of the zeros of the rational function D

As we saw in Section 2.3.1, the elements of Z U {0} are the zeros of the rational function D,
that is the zeros of the polynomial w?P.P,, of degree N = 2(N, + N,,) + 2. Hence Z U {0}
contains N elements (counted with multiplicity). D is defined as the product of the two (non-
constant) rational Herglotz functions w +— we(w) and w — wp(w) which satisfy (using (2.1.5))
Im(we(w)) > 0 and Im(wp(w)) > 0 on CT. Thus, these functions could not vanish in the
upper-half plane C* (indeed this property holds more generally for any non-constant Herglotz
function as a consequence of the open mapping theorem for analytic functions, see for e.g. [19]).
Therefore, Z U {0} is included in C~. Furthermore, as e(—@) = e(w) and pu(—©) = p(w), this
set is also invariant by the transformation w +— —.

Concerning the multiplicity m, of a zero z € Z U {0}, one observes that:

e 0 has a multiplicity mg = 2 of D since (by (2.1.3) and (2.1.5)) at the vicinity of 0:

N, 2 N, 2

- Qe j m Qmé

D(w) ~ w?e(0)(0), £(0) :go(1+§ T2j> >0, u(0) = M0(1+§ j wQ;) > 0. (2.3.21)
j:l €,] /=1 €,

e If z ¢ iR™, then —Z is a distinct zero with the same multiplicity m,.
e From the property (2.3.18) of ¢(w) and pu(w), one immediately sees that

a. If there exists two indices jo and £y such that ae j, > 0 and o, ¢, > 0 and D has no
non-zero real zeros, i. e. R*NZ = ().

b. If not, either all . ; vanish in which case R*NZ = Z,, either all a, ¢ vanish in which
case R*NZ = Z,, and these zeros z € Z, (resp. Z,,,) have multiplicity m, = 1 (this is
easily deduced from the graph of the function w € R\P, — e(w) or w € R\ Py, — p(w)
given by (2.1.5)).

We point out that the second scenario occurs in particular in the critical configurations
described by Definition Definition 2.1.6.

We will see in Section 2.3.3 and Section 2.5 that only the real zeros RN (ZU{0}) can contribute
at the main order to the asymptotic of the Fourier-components of |[U(k,t)| for k| < 1.
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2.3.3 Main lines of the analysis

The strategy for proving Theorem 2.1.7 is quite clear and simple:

(i) For each k € R3, one estimates individually U(k, t) using formula (2.2.7), or more precisely
(2.2.12), via the estimation of the exponential ekl

(ii) One gathers the above estimates to estimate the L?-norms of the various fields E, H, ...
via the norm ||U(-,t)||% thanks to Plancherel’s theorem.

For the first step, the key property is the fact that, as emphasized in Section 2.3.2.1 (see (2.3.14)),
the spectrum of Ay | is included if the complex half-plane C~. As a consequence, each |U(k, ?)|
will decay exponentially to 0 for large ¢.

The reason why the exponential decay is lost for ||U(-, )| and degenerates into a polynomial
decay, is linked to the fact that the rate of decay of |U(k, t)| depends on k and degenerates when
k| tends to 0 or +oo. This decay rate is of course linked to the distance of o(Aj 1) to the
real axis that can be deduced from the analysis of the dispersion relation D(w) = |k|?, where
D(w) = w?e(w) pu(w), that characterize the eigenvalues of A | (see Proposition 2.3.1).

e When |k| is bounded from below and above, this distance is uniformly bounded from
below by a strictly positive number which results into a uniform exponential decay of the
corresponding |U(k,t)|’s.

e When |k| tends to 0 or +oo this distance tends to 0 and obtaining sharp estimates of
|U(k, t)| requires to analyse the asymptotic behaviour of the imaginary parts Im w(|k|) of
those eigenvalues w(|k|) € (A, 1) whose distance to the real axis tends to 0.

From this observation, it is natural to split the analysis into three steps depending on the values
of the “space frequency" [k| :

(a) For “mid frequencies", typically k_ < |k| < k4 (with k— > 0), one will essentially aban-
don the spectral approach to the profit of standard techniques for ODE’s combined with
compactness arguments (the region k_ < |k| < k; is compact). This will be detailed in
Section 2.6.

(b) For “high frequencies”, |k| > k., eigenvalues can be arbitrarily close to the real axis when
k| — 4o0: considering the limit of the equation D(w) = |k|? when |k| — +o0 it is natural
to look at where, for real w, the function D(w) tends to +00. This only occurs in one of
the following situation when

— w — Zo0 in which case D(w) ~ w?/c?, so that one expects the existence of two
branches of eigenvalues wo(|k|) and —wWeo(|k|) where

woo(|k|) = c[k| + o([k[), [k = +oo,

where ¢ := ,/gg ,uo_l is the speed of light in the vacuum.

- w — *w, 4 with a, =0, v = e or m where w, 4 is a real pole of D of multiplicity 1
if wyg & Pe NPy, or 2if not (see Section 2.3.2.2).

If wy,g & Pe NP, one expects the existence of two branches of eigenvalues w, 4(|k|)
and —w, 4(|k|) such that

wyq([K[) = wpq +o(1),  [k| = +oo.
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Oppositely, f we g, = Wm,g, € Pe N P, one expects the existence of four branches of
cigenvalues g (Kl), ~eq, (IKI) » wrgs (IKJ). @ (Kl) such that w, g (k) and
Wi, (|Kk|) tends to weq, as |k| — +oo.

In the above cases, a more precise analysis of the asymptotic behaviour Im w(|k|) and
Im w, 4(|k|) when |k| — +o00 plays a crucial role.

(c) For “low frequencies", 0 < |k| < k_, again some eigenvalues can be arbitrarily close to the
real axis when |k| — 0 : considering the limit of the equation D(w) = |k|? when |k| — 0
it is natural to look at where, for real w, the function D(w) vanishes. This only occurs in
one of the following situation when

— w — 0 in which case by (2.3.21): D(w) ~ w?/c with ¢y := (£(0) #(0))~/2. Thus,
one expects the existence of branches of eigenvalues wy(|k|) and —@g(|k|) such that

wo([k[) = co [k| + o([k]), [k| = 0.

— If we are in the second scenario described in Section 2.3.2.3, non-zero real zeros exist
and are of multiplicity m, = 1. Thus, in this case, one has w — +z,, for v = e or
m, where z, is a zero of D(w). One then expects the existence of two branches of
eigenvalues w,, (|k|) and —w,, (|k|) such that

wz, (k|) = 2 +o(1),  [k| = 0.

In the above cases, a more precise analysis of the asymptotic behaviour of Im wy(|k|) and
Im w,, (|k|) when |k| — 0 plays a crucial role.

The analysis of point (b) will explain why the polynomial stability is limited by the Sobolev
regularity of the initial data with the first term in the right hand sides of the estimates
(2.1.34) and (2.1.35), while the analysis of point (¢) will explain why this polynomial
stability in the second term in the right hand sides of (2.1.34) and (2.1.35) is related to
the low frequency behavior of the Fourier components of the solution (and thus involved
naturally the spaces £,(R%)M).

Let us mention that, since the matrices Ay are not normal, the estimate of e Akt in the
regions |k| > k4 and |k| < k_ cannot be reduced to the study of their eigenvalues. That is why
we shall complete the analysis by proving that

e for k_ and k4 well chosen, the matrices Ay | are diagonalizable in the above regions,

e the associated spectral projectors can be bounded uniformly in |k| in each region.

2.4 Asymptotic analysis for large spatial frequencies k| > 1

As this section is the longest of the article, its seems useful to describe its structure. It is made
of three main subsections:

e Section 2.4.1: Asymptotics of dispersion curves for |k| > 1.
e Section 2.4.2: Spectral decomposition of the solution for |k| > 1.

e Section 2.4.3: Large time estimate of U(k,t) for |k| > 1.
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Section 2.4.3 puts together the results of Section 2.4.1 and Section 2.4.2. Tt is decomposed
into subsections dedicated to the estimate each of the components of the solution issued from
Section 2.4.2.

From the technical point of view, the proof of the asymptotic expansions will be based of a
lemma proved in the appendix Appendix B.2., namely the Lemma B. 1, that can be seen as a
kind of implicit function theorem for functions in the complex plane. This will also be the case
in Section 2.5.3.

2.4.1 Asymptotics of dispersion curves for k| > 1

In this section, we focus on long time estimates of the high (spatial) frequency components
U(k,t) (see (2.2.7)) of the solution. As explained in the above paragraph, the decay of U(k, ) is
related to the analysis of the solutions of the dispersion relation (2.3.13) for |k| > 1. Roughly
speaking, as |k|> — 400 when |[k| — +o00, the solutions of (2.3.13) must satisfy |D(w)| — +o0
as |k| — +o0. Thus, we observe two scenarios: either they diverge to oo or they converge to a
pole p € P, U Py, around which, If p € P is a pole of multiplicity m,, D can be rewritten as

D(w) = (w—p) ™ f(w) with f analytic on a vicinity of p and f(p) = A4, # 0. (2.4.1)

This leads to the following proposition.

Proposition 2.4.1

It exists k4 > 0 such that for |k| > ki, the solutions of the rational dispersion relation
(2.3.13) (or of its equivalent polynomial form (2.3.19)) are all simple. These solutions form
N distinct branches which are C*°-smooth functions (with respect to |k|) characterized by
their asymptotic expansion for large |k|. More precisely

e For any p € P with multiplicity m,, for large enough |k|, there exists m, distinct

branches of solutions wy,, n =1,...,m, of (2.3.13) satisfying

-2 1971, 2inm
wpn([kl) =P+ apn [k 7™ (14 0(1),  apn = |45/ ™ e ™ (k] = 400)
(2.4.2)
where A, is defined in (2.4.1) and 6, € (—n, x| is the principal argument of A,.

e There are 2 distinct branches of solutions wis of (2.3.13) that diverge to co as
wioo(|K|) = £ c|k| (1+0(1)) with ¢ = (eg o)~ 2 (Jk| — +00). (2.4.3)

Moreover, there are no other solutions of (2.3.13) (for |k| > k) than those described above.

Proof. Step 1: construction of the branches of solutions wy, ,(|k|).

Let p € P a pole of multiplicity m,. Then, the rational function D can be factorized as in
(2.4.1). Then p is a zero of multiplicity m,, of the function w + D(w)™! = (w — p)™ f(w)~?
which is analytic on an open neighbourhood of p and satisfies f(p)~! = Ay 1 £ 0. Moreover, for
|k| # 0, solving the dispersion relation:

_2
D(w) = [k|* is equivalent to solve the equation D(w)~! = k|72 = (| “‘p)mp.
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2.4. Asymptotic analysis for large spatial frequencies k| > 1

Then, by applying the Lemma B. 1 of the Appendix B.2. with
Gw)=Dw)™", z=p, gw)=Fflw ™", m=my, A=A"and =k,

we deduce for |k| large enough the existence of m,, distinct branches of solutions: |k| +— wy, ,(|k|)
of the equation D(w) = |k|? which are C* functions with respect to |k| and satisfy (2.4.2).

Step 2: construction of the 2 distinct branches of solutions w1 (|k|).

To reduce ourselves to the application of Lemma B. 1 as in step 1, the trick consists in saying
that D(w) = w?e(w) u(w) = |k|? is equivalent to D(w)™ ' = w2e(w) L u(w)™! = |k|~2. Then
we introduce the new unknown & = 1/w, so that |w| = +00 < & — 0 and

D(w) = w’e(w) pw) = k> <=  2e(1/6)  u(1/6)7! = k|72, modulo £ = 1/w. (2.4.4)
Then we introduce the rational function G(§):

G(&):=¢&2g(&), g(&):=e(1/6) ' u(1/&)~"  well defined for £ € C\ {1/z,2z € Z}

after having remark that g(£) could be extended anaytically at £ = 0 via

9(0) = %i_ff(l)f(f_l)_lﬂ(ﬁ_l)_l = (eopo) P =c* #£0.

Thus, we can now apply the Lemma B. 1, replacing w par &, with

2=0, g(&) =1/ 'u(1/)~", m=2 A=g(0)=c*and (=[k|l"

From Lemma B. 1, we deduce the existence of two distinct analytic functions ¢ — £4(¢), defined
at the vicinity of 0, such that G(¢+(¢)) = ¢? and such that

() ==+c'¢(140(1), as¢—0. (2.4.5)

Thus, setting wiso(|k|) = §i(\k\*1)71, we construct two branches of solutions of D(w) = |k|?
which admit by (2.4.5) the asymptotic expansion (2.4.3).

Step 3: conclusion. In step 1, since the sum of the m,’s over p € P is equal to 2N, +2N,,,, we
have constructed for |k| large enough, 2N, + 2N,,, solutions, namely {wy,,(|k|),p € P,n < m,}
which are all distinct due to the asymptotics (2.4.2).

In step 2, we have constructed for |k| large enough, 2 additional solutions w1 (|k|) that are
distinct thanks to (2.4.3).

From both asymptotics (2.4.2) and (2.4.3), none of this two solutions can coincide with any of
the ones of step 1. Therefore, with {wp,n(\k]),p eP,n<m,}U {wioo(]k]}, we have constructed
2Ne+2N,,+2 distinct solutions of (2.3.13). Since (2.3.13) is equivalent to a polynomial equation
of degree 2N, + 2N, + 2, cf. (2.3.19), there are no other solutions. O

2.4.2 Spectral decomposition of the solution for |k| > 1

In the physics literature, the solutions of the dispersion relation (2.3.13) k| — wp,(|k|) and
k| = wioo(|k|) (given here for large |k| by Proposition 2.4.1) are refereed as the dispersion
curves. The asymptotics (2.4.2) and (2.4.3) of these curves show that they do not cross each
other for [k| > 1. Thus, combining Proposition 2.4.1 and Corollary 2.3.4 yields immediately to
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2.4. Asymptotic analysis for large spatial frequencies k| > 1

the following property on the operator Ay | .

Corollary 2.4.2

It exists k4 > 0 such that for [k| > ki, Ay 1 is diagonalizable on c?.

To express the diagonal decomposition of the solution U(k,t), we split (see Section 2.3.2.2) the
sets of poles P C C~ in three disjoint subsets : P = P_ U Ps U Py with

P_:=PNC, Ps:={pePnNR|m,=1}, and Py;:={pePNR|m, =2}.

We point out that the weak dissipation condition (2.1.10) implies that at least one pole of P
lies in C, thus P_ # () whereas the strong dissipation condition (2.1.8) implies that all poles
lie in C, that is P_ = P. From Section 2.3.2.2, one has also that Py = P. NPy, NR.

Using Proposition 2.3.1 and Proposition 2.4.1, we introduce the following partition of the spec-
trum of Ay | for [k| > ky:

(A1) = {wzoo (k) } U {wp(lk]),p € Ps} U {wpr(kl),p € Py, 7 € {1,2}}

U {wpn(k]), pEP_,n=1,...,my}.

(where we set wy(|k|) := wp1(|k|) for real pole p € Py of multiplicity m, = 1.) We refer to the
Figure 2.1 for an illustration of the behavior of the dispersion curves for |k| > 1. For |k| > k4,

Ps P4 ps3 Ps
o_o(IK1) /\ \ / /\ / oralID
@, 1(1k]) @, 2(1KD) @, ([Kk]) w, [k @ (1K]) @21k 1)
o, 1(1k]) @, (1K)
Q‘Q e P_ p1 € P_
X X
w, (1K) w, »(1k])

Figure 2.1: Sketch of a configuration of the dispersion curves for large |k| large in the case where
P =P_UPsUPy with P_ = {p1,p2}, Ps = {p3,pa} and Py = {ps,pe }-

as Ay 1 is diagonalizable by Corollary 2.3.4,, CJ]Y can be decomposed as

N 2 i
Cl = @ Vi), +00 @ GB Vik|p @ @ 7@1 Vik|pr @ @ n@l Vik| p.n (2.4.6)
+ pEPs pEPy peEP_

Vik|, 200 = ker (A 1 — wioo([k|) Id), Vi pn = ker (Ayq, 1 — wpn([k|) Id), n < my, oam
2.4.7
Vik,p = ker (AL —wp((k)1d), Vi pr = ker (A1 = wpr(K]) 1d), 7 = 1,2,
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where the above direct sums are (in general) non-orthogonal. Following these direct sums, one
decomposes uniquely any vector = € CJI as

r= Z%k\ +oo T Z Tkl p + Z Zﬂﬁ\km + Z Z%k\,pn

PEPs peEPy r=1 peP_ n=1
Tkl 00 € Vi oo Tkl € Vi and @i pr € Vi prs i pn € Vil -
Then, we define the spectral projectors I, ,(|k|), p € P_andn € {1,...,m,}, [Lio(|k|), IL,(|k]|)

for p € Py and II,,(|k|) for p € P4 and r € {1,2} associated receptively to the eigenvalues
wpn([K|); wroo([k]); wp([k|) and wy - ([k[) by:

Moo (k) (%) = 21200, Hpn([k) (@) = 2| pns

HP(’kD(x) = T|k|,ps Hpﬂ"(‘k’)(x) = Z|k|,p,r

From Proposition 2.3.1, the geometric multiplicity of each eigenvalues in (A 1) is two. Thus,
all the II, ,(|k|), Hioo(k), II,(|k|) and II,,(|k|) are rank two projectors. We emphasize that
the dissipative operator Ay | is not not normal, thus its spectral projectors are not orthogonal.
For |k| > k4, as A is diagonalizable (by Corollary 2.3.4), one has

(2.4.8)

AL = Zwioo k)00 (k) + Z wp (k)L ([k]) + Z prr kI, ([k|)

pEPs pEPy r=1

+ D pr,nukbnp,n(rkn.

pEP_n=1

Thus, for |k| > k., the solution U(k,t) given by (2.2.12) can be expressed for all ¢ > 0 as

U(k, t) = Uso (K, t) + Ug(k, t) + Ug(k, t) + U_(k,t) (2.4.9)
where '
Uso(k,t) = > et DIRETIL . (IK|) Rac Uo(K), (i)
Usk,t) = Y e r(DERETT (K| Ri Uo(K), (i1)
peps

2 (2.4.10)
Ug(k,t) = > > e nrRDIRe 11, (K)) Ric Up(K), (i)

pEPd r=1

mp
U_(l,t) = S0 3 eenn Bt RE 11, (k) RicUp (). (iv)

peEP_n=1

2.4.3 Estimates of U(k,t) for k| > 1

In each subsection of this section, we shall make appear a lower bound k4 > 0 for giving a sense
to |k| > 1 via |k| > k4. A priori, the value of k1 will change from one section to the other but
we can always choose a value for ky that is larger than its previous values. This convention will
be adopted systematically without being explicitly mentioned.
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2.4. Asymptotic analysis for large spatial frequencies k| > 1

2.4.3.1 Orientation

In what follows we are going to estimate successively, in Lemma 2.4.5, Lemma 2.4.9 , Lemma 2.4.12
and Lemma 2.4.13, each of the terms appearing in the decomposition (2.4.9).

For Uy (k,t),Us(k,t) and Ug(k,t), which will be treated in Section 2.4.3.2 to Section 2.4.3.4,
we shall bound separately each of the terms of the sums in (2.4.10)(i) to (2.4.10)(iii). For
cach eigenvalue w(|k|) € {wioo(|k|), wp(|k|), wpr(|k|)}, we shall first estimate in Lemma 2.4.3,
Lemma 2.4.6 and Lemma 2.4.10 the corresponding spectral projector II(|k|). Many approaches
are possible. It appeared useful to use here the expression of II(|k|) provided by the Riesz-
Dunford functional calculus (see e.g. [34], sections VII.1 and VIL.3), in terms of a contour inte-
gral in the complex plane whose integrand involves the resolvent )y (w) studied in Section 2.3.1.
This contour will be taken as a (positively oriented) circle Cjy| centered at w(|k|)

Cug = {weC/lw—wlkl)|=pu} (2.4.11)

whose radius py must be chosen in such a way that

(i) C|k| does not enclose or intersect any other eigenvalue,
(2.4.12)
(ii) Cjx| does not enclose or intersect any point of the set S7.

This will be automatically achieved if we take pjy| equal to half of the distance of w(|k]|) to all
the points that one wants to avoid, namely

pirg = 1/2 dist (w((k]). (kD). (K]) = (o(Ag.) UST) \ {w(k)). (2.4.13)
We then have the formula
1
(k) = — 5 ” Riq(w) dw = _m/ lvm )Sjxg (w) dw, (2.4.14)

where the first equality is justified by (2.4.12)(i) and the second by the expression of the resolvent:
Ry (w) = Vi (w)Sp|(w) + T (w) (given in Proposition 2.3.2) and by (2.4.12)(ii) since as Sy is
defined as the set of singularities of w — T (w), this function is analytic on C\ S7.

From (2.4.14), we deduce the inequality that we shall use systematically in the following, namely

(KD < ppg sup ([ @) 1S (@)1 (2.4.15)

weCk|

In a second step, we shall concentrate on the exponentials appearing in each factor whose esti-
mate for large k will rely on the asymptotic expansion of the eigenvalues (and more particularly
their imaginary parts), see Lemma 2.4.4, Lemma 2.4.11 and Lemma 2.4.7. These results will
be transformed into sharp exponential decay estimates for |Ux (k,t)|, |Us(k,t)| and |Ug(k,t)],
in which the rate of decay degenerates for |k| — +oo, see Lemma 2.4.5, Lemma 2.4.9 and
Lemma 2.4.12.

Finally, the last term (2.4.10) U_(k, t) will not be treated by using (2.4.10)(iv) but an alterna-
tive expression directly issued from the Riesz-Dunford functional calculus (see Section 2.4.3.5).
In fact, the exponential decay of |U_(k, t)| will be, contrary to the previous terms, uniform with
respect to |k|, so that it will not contribute at the end to the large time equivalent of U(-,t).
This is the reason why we can be satisfied with rough estimates.
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2.4.3.2 Estimates of Uy (k,t) for k| > 1

In the following Lemma, we estimate the spectral projectors ITL(|k]).

Lemma 2.4.3

The spectral projectors 11 (|k|) are uniformly bounded for large |k|.

P6 b3 ps
P
k)
o_(IKD) \ j\ /afl(l
ot (K1) @, (K oy (KD @, (1K) @, (1K)
C C
Cp6717|k| Cp6’27|k| p3,|k| +OO,k
07,;2,1(|k|) wp1,1(|k|)
(meP- pr € P
><.W %
@, (1K) w, »(|K])

Figure 2.2: Contours of integration Cjx| 400, and Cjk|,, used for the estimate of I1,..(|k|), IIp,(|kl),
ps € Ps, I, 1(Jk|) and II,, 2(|k|) for pg € Py (corresponding to the Figure 2.1).

Proof. We follow the approach described in Section 2.4.3.1 for w(|k|) = wis(|k|) and denote
C.too, k| the corresponding contour, see (2.4.11) and Figure 2.2.

Step 1 : Estimate of p. Defining pj by (2.4.13) for w(|k|) = wioo(|k|) and using the
asymptotic behaviour (2.4.3), it is clear that

Plk| ~ 2 ck|, (|k| —» +o00), thus P S k| for [k large enough. (2.4.16)

Step 2 : Estimate of (D(w) — |k|?)~!. This term is of interest because it appears in the
expression (2.3.10) of Sjy(w). Using (2.3.1), (2.3.3), we compute that

|k|2)—1 — Qe(w) Qm(w)

(D(w) - D)

with Dy (w) given in (2.3.19). (2.4.17)

According to Proposition 2.4.1, we know that Dy (w) is a polynomial of degree N with simple
roots so that, according to (2.3.20), it can be factorized as (note that we distinguish below
Wioo(|k|) that go to co with |k, from the other roots which remain bounded)

D (@) = €0 o Dy (@) (@ — wroo([K])) (@ — wooo([K])) (2.4.18)

with Dy, || (w) given by

my 2
Dy@) =[] IT w-wpn(&D) T (w—wp(kD) T I] (w—wpr(KD). — (2.4.19)
peEP_n=1 PEPs pEPyr=1
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In the same way, thanks to (2.4.2), for any w(|k|) € {wpn(|k|),wp(|k]),wpr (k) },
w0 — (kD] > [wioo(Kl) — w(IKD)| — o — wioo(KD)| ~ c[kl/2, (K| = +oo).  (2.4.20)
Thus, by definition (2.4.19) of Dy, x|(w), we deduce from (2.4.22) and (2.4.20), that
| Dy, i (w)] > C [k[NeFNm) V€ Cyg iy, for some C > 0. (2.4.21)
Next, if w € Cio k|, Dy the reverse triangular inequality
|w = wroo ([K))| = |wtoo (k) = wroo ([K)| = | — wioo (k][ ~ 3c[k[/2,  (Jk| = +00) (2.4.22)

since, by (2.4.3), |wioo(|k|) — wroo([k|)| ~ 2¢|k| and |w — wioo([k|)| = pjx ~ c|k|/2. Thus,
using (2.4.22) and (2.4.21) in (2.4.18) yields, as |w — wieo(|k|)| = pk| o0 Ciog k|,

Dg(@)| 1 S o |-G,y e Oy . (2.4.23
For bounding Qe (w)Qm(w), that appears in (2.4.17), we use an upper bound for w € Ci ||
w| < Jwroo([K)| + ppg ~ 3elk|/2, k| = +o0, ¥V w € Cono iy (2.4.24)
to deduce that, as Q¢Q,, is a polynomial of degree 2(N, + Np,),
1Qel) Q)] S 2NN < PNV Ve € Cag i, (2.4.25)
Thus, using (2.4.25) and (2.4.23) in (2.4.17), we get, for |k| large enough,
(D)~ k) £ pjd 17, ¥ € o (2.4.26)

Step 3: Estimates of Sy (w) and Vi (w). Owing to (2.3.10), to estimate Sj|(w), it remains
to estimate wyu(w)Ae(w) — |k|eg x Ay (w). We claim that,

for [k| large enough, ||wp(w)Ac(w) — [kl ez x Ap(w)|| S k|, Vw € Conon,  (2.4.27)
which, combined with (2.4.23) provides, via (2.3.10),
IS @) S Pps VW € Cooo i (2.4.28)
To prove (2.4.27), notice first that along Cio k|,
|w| > |woo ([K|)| — p ~ clk|/2 when [k| — +ooc. (2.4.29)
Thus, as pu(w) = po + o(1) as |w| — oo, with the upper bound (2.4.24), one gets

| wi(w)Ae(w) — [kl es x An(w)|| < k| ([|Ac(w)]| + [|Am(w)]

), Vw e Cioo,|k|‘

Finally, we prove A.(w) and A, (w) are uniformly bounded (in k) on C, o k|- Towards this goal,

we first estimate the operators (Ac j(w),Acj(w), Am(w), Am ¢(w). From (2.3.6),

1+ |w]
|ge,j (w)]

; ' 1+ |w
[1Ac,j (@)l A (@I < v Am @) [[Am (W) S |

7qm,g(w!) , (2.4.30)

83



2.4. Asymptotic analysis for large spatial frequencies k| > 1

Thus, using (2.4.29), as ge; (W), gm.e(w) ~ w? when |w| — 400 (see (2.1.6)), one has

e (@) S K72 Jgme(@)|TH S K2 for w € Cooo - (2.4.31)
Thus, using the above inequalities and the upper bound (2.4.24) in (2.4.30), we get

1Ac @) 1A @) S k™ Am @), [An (@) < [k~

The formulas (2.3.7) show that A.(w) and Ay, (w) are the sum on a fixed (independent of w)

operator with a (fixed) linear combination of (e, h, A, ;(w),Ac ;(w),Am e(w), Ame(w)). They are
thus uniformly bounded (in k) on C4q ||, proving (2.4.27).

Finally, using (2.4.24), (2.4.31) and that, on Coo k|, lwp(w)|™' < ot k|71, when k| — oo,
one sees on the definition (2.3.11) of the operator Vi (w) that, for |k| large enough,

Vi@l 1, YV w € Ciooi- (2.4.32)

Conclusion. It suffices to use (2.4.28) and (2.4.32) in (2.4.15) for TI(|k|) = His(k]|), to
conclude that |11 (|k|)|| < 1 for |Kk| large enough. O

The next lemma is about the asymptotic expansion (in powers of |k|)) of wioo(|k|) when k| —
+o00. It is important to push the expansion up to the first apparition of a negative imaginary
part, since it will govern the decay of U (|k|,t) for large |k|.

Lemma 2.4.4

The eigenvalues wyoo(|k|) satisfy the following asymptotic expansion

wioo(|k|) = £ c|k| % k| —iéz—c’;o k|72 4 o(|k|7?), as k| = 400,  (2.4.33)
where Aj o and Ap o are two real constants given by

Ao = Q2+ Q2 and Ayeo =) e+ omeQy (2434

with A; oo > 0and Ay o, > 0 thanks to the weak dissipation condition (2.1.10). In particular

_ A2,oo
2c2

Im(wiso (k) = k|72 + o(|k|7?), as |k| — 4oc. (2.4.35)

Proof. Since w_oo(|k|) = —wieo(|k|) (see Section 2.3.2.1), we only prove (2.4.33) for
wiso(|k|) = §+(\k|_1)_l, ( cf. the proof of Proposition 2.4.1, step 2 )

Step 1: Proof of w . (|k|) = c|k| + O(]k|™1)

The proof of Proposition 2.4.1 defines the functions ¢ +— £4(¢) as the branches of solutions

of the equation G(&) = ¢? near & = 0, where G(&) = £2g(€) and g(¢) = e(1/&)1u(1/6)~ 1  is
analytic near 0 and even. In particular ¢’(0) = 0 and, by Lemma B. 1 (with z = 0, g(0) = ¢?
and m = 2), and more precidely (2.7.39), we deduce that

£+(Q) =c1¢(1+0(¢?) near 0, thus wio(k|) =clk| +O(k|™") at occ. (2.4.36)

Step 2: Computations of the terms of order |k|~! and |k|2
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By analyticity of £;((), and using the step 1, we know that, for some coefficients (A1, A2),
() =cC(1+ A1+ A +0(¢h). (2.4.37)
In order to compute A; and Ay, we are going to proceed by identification in the equation

£0(0)?9(8+(0) = ¢ (2.4.38)

Let us compute the Taylor expansion in the left hand side of (2.4.38). By (2.1.5,2.1.6), one has
e(1/€) = eg [1 — (ZQ;) 2 +i (Zae,j Qg]> e + 0(54)], as £ — 0,
p1/6) = o [1= (D 02,) € +1 (D ame Qi) € +0(€N],  ase—o.
It follows that, with (A; o, A2.c0) the coefficients defined by (2.4.34),
96 =1+ A& —1 Ao &+ 0(€Y), as&—0, (2.4.39)
that is to say, as £(¢) = O((),
§4(0)?9(61(Q)) = @ (£4(O)° + AL &4 (O =1 Ao £1(O)° + O(¢%)),  as ¢ — 0. (2.4.40)
On the other hand, using (2.4.37), we have, truncating the expansions at the order 5 in (,
E (P =c?C(1+2A17+2428° +0(¢Y)),
(O =14 0(CD), &0 = (1+0(C2),
which we can substitute into (2.4.40) to obtain
E(O?9(6+ () =C A +2A41C +243) + Ao 3¢ 1 Apoo e P+ 0(CF). (2.4.41)
Using the above in (2.4.38) leads to the equations
2A1+ Ao 2 =0, 245—iAscc?=0.
from which we conclude easily. The remaining details are left to the reader. O

We conclude this section by estimating the term Uy (k,t) in the decomposition (2.4.9) .

Lemma 2.4.5

For any constant C' € (0, Ag 0/ (2¢2)) with As o given by (2.4.34), there exists k4 > 0 such
that for |k| > k4, the functions Uy (k, t) defined by (2.4.9) and (2.4.10) satisfy

__C_
Uso(k, )| S e 2 Up(K)|, Vt>0. (2.4.42)

Proof. The functions U (k,t) are defined by (2.4.9) and (2.4.10) for |k| large enough. As the
operator Ry and its inverse Ry are unitary, one has

U (k)] < Y ek E T, (K] || [Uo(k)l, V¢ > 0.
+

Thus, the upper bound (2.4.42) follows immediately from (2.4.35) (see Lemma 2.4.4) and the
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inequality || IIico(|k|)]] <1 (see Lemma 2.4.3). O

2.4.3.3 Estimates of U,(k,?) for k| > 1

We estimate now the term U,(k, t) in (2.4.9) which involves in particular the projectors IL,(|k]).

Lemma 2.4.6

The spectral projectors II,(|k|), p € P, are uniformly bounded for large |k|.

Proof. We follow the approach described in Section 2.4.3.1 for w(|k|) = wy(|k|), p € Ps and
denote C,, | the corresponding contour, see (2.4.11) and Figure 2.2.

Step 1 : estimate of p). Obviouly, for |k| large enough, since w,(|k|) tends to p when |k| ,
the infimum defining pjy| in (2.4.13) is attained at the point p, i.e. :

P = 5 |wp([kl) = ~ 5 [Ap] K72 (k| = +o00), with [4,[ >0, (2.4.43)
according to (2.4.2) for m, = 1 since p € Ps.
For the rest of the proof, we essentially follow the proof of Lemma 2.4.3.

Step 2 : Estimate of (D(w) — ]k|2)_1.

First, due to (2.4.2) and (2.4.43), it is clear that there exists C' > 0 such that , for |k| large
enough,

Vﬁep\{p}, Vwecp,\kh ‘w_wﬁ,n(’kD{?

w — wp([k|)],

w — wr([k[)| > C > 0.
Thus, for [k| large enough, the function Dy, i (w) given by the product (2.4.19) satisfies
VweClyks [Dykw)l>C py thus ]Dby‘k‘(w)\*l < plﬁ (2.4.44)
On the other hand, due to (2.4.2) and (2.4.43),
lw — wieo(k])| = c|k| + o(|k|)  uniformly for w € Cp, k|-
It is then immediate to infer from the definition (2.4.18) of Dy (w) that, for |k| large enough,
| Dy (w)| 7 S pﬁ(} k|7, Vw e Cpy- (2.4.45)
Moreover, p € Ps is a simple zero of the product Qe Q. Hence, for any w € Cp, i
1Qe(w) Qu(@)] Sl — bl S pig + [ wp(K) = p| ~ & |4, 12 (2.4.46)
As a consequence, from the expression (2.4.17) of (D(w) — |k|?)7!, it is clear that
(D) — K21 S ol K74 Ve ey (2.4.47)
Step 3: Estimates of Sy (w) and Vi (w).

To estimate Sjy|(w), it remains to estimate wu(w)Ac(w) — k| es x Ay (w). Due to this, we shall
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be led to distinguish two cases, p € P,, and p € Pe, and show that, for |k| large enough,

p P Vol IS <o K™ V@IS, @)
(2.4.48)
HpePe Vwelug IS <o K2 Vi@l S K2 (@)

Proof of (2.4.48)(i). Asp € P, NPs, p ¢ P. and by Hy, there is a unique index /(o such
that p = fwy, . Thanks to (2.4.30), all the operators (A, j(w),Ap (W), Ane(w), Ap e(w) are

uniformly bounded along C,, x| except (A g, (w), A to (w)), as p is a simple pole of w > Ay, ¢, (w)
|—1

and w > A,, 4, (w). More precisely, as ¢y ¢, (w)| ' ~ |w—p|~" when w — p, for |k| large enough,
VweCppkps  dmeW) ™ Slw—pl™" = pj SIk?, according to (2.4.43) (2.4.49)
Thus, using the bounds (2.4.30) and the fact that Cp, |y lies in a bounded set,
Ve € Copts Mm@l lAmeo @)l S k2 (2.4.50)
Thanks to formulas (2.3.7) for (Ac(w), Ap(w)), we decuce that
VoG AN ST An@)] S K2 (2.4.51)
Moreover, as p € Py, is a simple pole of p(w) and Cp, |k uniformly bounded :
|w(@)] ~ pplw = p| Y, with g, >0, thus [p(w)] S w —p| 7" < k| along Cp,  (2.4.52)
which, joined to (2.4.51), gives (the dominant term is the second one)
Vwelyk lwn(w)Ac(w) — kles x Ay (w)| S k|3, (2.4.53)
The estimate for Sjyj(w) in (2.4.48)(i) then follows from (2.4.47), (2.4.53) and (2.3.10).
For Vi (w), we first observe that |p(w)| ~ 1y |w — p|~" when w — p also implies that

[u(w)| ™" < |k|7? along C, - (2.4.54)

On the other hand one sees on formula (2.3.11) that the dominant term in V) (w) on C, i is
asymptotically proportional to the function

k| (@) ™" Gy (w) 1

This explains the estimate for Vi (w) in (2.4.48)(i) since, according to the inequalities (2.4.49)
and (2.4.54), [p(w)|™" |gm,eo (@) T 1 on Cp -

Proof of (2.4.48) (ii). The proof is very similar to the one of (i) and we shall simply point out the
difference with (7). As p € P.NPs, p ¢ Py, and there is a unique index jo such that p = +we j;,.

This time, all the operators (A, j(w), Ay (W), Ay (W), Ay, o(w) are uniformly bounded along Cp, k|
except (Acjo (W), Acjo (w)) and, similarly to (2.4.51), one shows that

~

IAc@)]l < [P, IAm W)l < 1. (2.4.55)
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The difference with (7) is that, this time, u(w) remains bounded on Cp,jx|» reason why we have
lon(w)Ac(w) — k| es x A (w)] < kI, (2.4.56)
which leads to the estimate for Sy (w) in (2.4.48)(ii).

For Vjk|(w), one sees on formula (2.3.11) that, this time, the dominant terms in Vi (w) on Cp, x|
is now proportional to

|dego (@) S Jw =2l S ol T S K

This explains the estimate for V) (w) in (2.4.48)(ii).
Conclusion. The important observation is that, from (2.4.48), in all cases
IS @) Vi) S o
One concludes by applying (2.4.15) to II(|k|) = IL,(|k|). O

We now give the asymptotic expansion of the eigenvalues wy(|k|) for large |k|. As the study of
their imaginary part requires to distinguish two cases, for the sake of readability, we delay it to
the Corollary 2.4.8.

Lemma 2.4.7

Let p € Ps. The eigenvalue wy,(|k|) satisfies the following asymptotic expansion
op((K]) = p+ Ay (k|72 + Ay [k~ oK), as k| = +oo, (2.457)

where the complex numbers A, 2 and A, 4 are given by

if p=twej, €Pe, Apo2=—3c0pulp)R,; #0 and A,y =

NO[—=

( (w’p he,p)2>,(p)'

((w25 hmm)z)/(p).
(2.4.58)

N[

if p=twme, € Pm, Ap2=—%pope(p) an,ep #0 and A4 =
where for any w € (C\ P) U {p},

ifp=dwej, hepw)=(w-peWw), ifp=dtwej, hmpw)=(w-p)pw).

Proof. Let p € P,. Thus, either p € P, or p € P,,. We assume without a loss of generality that
p € Pe. The proof is done by symmetric arguments if p € P,.

We are in the situation covered by the step 1 of the proof of Proposition 2.4.1, in the case
m, = 1, see also (2.4.1) . As p is a simple pole of we(w), there exists (by Hy) a unique index
1 < jp < N, such that p = £wej,. In that case the set {wpn(/k|),1 < n < my,} is reduced to
one single function denoted |k| — wy(|k|). It is constructed as the unique branch of solutions
of the equation D(w)~! = ¢ with ¢ = |k|~2 that converges to p when ¢ — 0.

Next, we make more precise the factorization of D(w)~! = (w?epu)~! corresponding to (2.4.1)
for m, = 1. By definition (2.4.59) of h.p, we can write

D(w) ™! = (w—p)gp(w) with g,(w) := (W hep) (W)™t
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From the definition of e(w), we also have

(1% ) -a e, o)
he p(w) =¢ep(w—p) (1— — ) g 2 (thus hep(p) = —e0 22 (2.4.60)
B o i p 2

= ted(w) w+p p

which shows that g, is analytic at the neighbourhood of p (by (Hz), p(p) # 0) and that

gp(p) = —2 (0 p(p) Q2;) " #£0,

1 -1

By formula (2.7.39), with ( = [k|™2, 2 =p, g=gp, m=1, a,! = g(p)~! we get
Q7 gp(p) [kl
wy(|k[) = p — €0 p p(p) Tﬂp\kf_Q - W +o(|k| ™), as [k| = +oo. (2.4.61)
P

This is nothing but (2.4.57) since —g,,/ gﬁ = (l/gp)/ = (w*pheyp) by definition of g,. Thus, one
gets
9p(p)

s = e ) ) 0) = 5 (Fhes)’) @)

Finally, note that, since Pe N Z,, = 0, (see (Ha)), p ¢ Z,, so that p(p) # 0 thus Ao #0. O

The behaviour on the imaginary part of A, ), leads us to make the distinction between the critical
and non critical configurations. For the ease of the reader, we recall below that the critical case
corresponds to one of the following two situations (see Definition 2.1.6):

a. V0e{l,...,Npn}, ape=0and 3j e {1,...,Ne} | e ; =0 and we; ¢ {wm,g}.

b. Vje{l,....Ne}, aej=0and 30 {1,..., Ny} | e =0 and wy ¢ ¢ {we;}-

Corollary 2.4.8

Following the notations introduced in Lemma 2.4.7. In the non critical case,
VpePs,, ImAy, <O0. (2.4.62)
As a consequence, there exists C' > 0 such that, for |k| large enough,
VpePs, Imwy(k|) <—Clkl™2 (2.4.63)
In the critical case, in situation 1, P, NPy # () and
VpeP.NPs, ImAy,=0and ImAy, <0, VpeP,NPs, ImAy, <0, (2.4.64)
while, in situation 2, P, NPs # () and
VpePnNPs, ImAy,=0and ImAy), <0, VpeP.NPs, ImAy, <0. (2.4.65)

As a consequence, there exists C' > 0 such that, for |k| large enough

VpeP,, Imuwy(k|) <-Clkl™ (2.4.66)

Proof. Non critical case. We prove (2.4.62) for p € Ps N Pe, the case p € Ps NP, is similar.
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According to formula (2.4.58), we simply have to check that Im(p u(p)) > 0. Thanks to (2.3.17)
, this will be true as soon as, at least one index ¢, oy, o > 0. However, p € P; NP, means that
p = *we; for some j with o ; = 0 and also that we ; ¢ {wmg} (since p is a simple pole). Thus,
if all ¢ vanished, we would be in the situation 1 of the critical case, which is excluded.

Of course, (2.4.63) is a direct consequence of (2.4.62) .

Critical case. We prove (2.4.64) in situation 1, the proof of (2.4.65) in situation 2 being
similar.

First P, NP is non empty since any we j such that o, ; = 0 (a set which is itself non empty by
definition of the situation 1) belongs to P N Ps.

Let p € P.NPs. In situation 1, all oy, ¢ vanish thus, by (2.3.17), p(w) and p'(w) are real-valued
for w € R\ Py,. In particular, Im (p ,u(p)) = 0 which implies by (2.4.58) that Im Ap , = 0. Next,
as hep(p) € R by (2.4.60), using (2.4.58) again yields

Aps = (WP phey) (p)(Wihep)(p) = Im Apy=p*1*(p) hep(p) Imhl,(p).  (2.4.67)

Moreover, p € P, NPy implies p = £w, for some k such that o, = 0. However, from the
formulas for p(w) (2.1.5), the polynomials g ; (2.1.6) and hey (2.4.60), one computes that

2

Qe
hep(p) = =20 m A, ,(p) =cop Y Tt
b J#k

Qe,j (1

|q63

’2, (2.4.68)

The weak dissipation condition (2.1.10) implies that at least one a. ; for j # k is strictly positive
so that Im h, ,(p) > 0, implying by (2.4.67) that Tm A, 4 < 0.

Finally, for p € Ps NPy, the proof of Im A, > < 0 uses (2.4.58), (2.3.17) and the fact that at
least one o ; for j # k is strictly positive. The proof of (2.4.64) is thus complete.

Finally (2.4.66) is easily deduced from (2.4.57), (2.4.64) and (2.4.65) after remarking that, for
k| large enough, |k|=* < |k|=2 which implies —|k|72 < —|k|™* (details are again left to the
reader). O

Thus, proceeding as in the proof of Lemma 2.4.5, one shows using Lemma 2.4.6 and Corol-
lary 2.4.8 the following result.

Lemma 2.4.9

There exists k4 > 0 and C' > 0 such that the function Us(k,t) defined by (2.4.9) and
(2.4.34) satisfy the following estimates:

a. If the system (2.1.1) is in a non-critical configuration, then
_Ct
Us(k,t)| Se 2 |Up(k)|[, Vt>0 and V |k| > k4. (2.4.69)

b. If the system (2.1.1) is in a critical configuration, then

_cCt
Us(k,t)| S e 7 [Ug(k)|, VE>0 and V|k| > k. (2.4.70)
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2.4.3.4 Estimates of U;(k,t) for |k| > 1

This time we estimate Ug(k,t) in (2.4.9) which involves in particular the projectors II, ,(|k]).

Lemma 2.4.10

The projectors II,, . (|k|), p € Pg,r = 1,2 are uniformly bounded for large |k|.

Proof. We follow again the approach of Section 2.4.3.1 for wlk|) = wp,(|k|), p € Pg,r = 1,2
and denote Cp, . || the corresponding contour (see (2.4.11) and Figure 2.2). Without any loss of
generality, we can restrict ourselves to r = 1.

Step 1 : estimate of py|. Thanks to the asymptotic (2.4.2), it is clear that the distance from
wp,1(|k|) to any other eigenvalue that is different from wy 2(|k|) remains bounded from below,
for large |k|, by a strictly positive constant. The same observation holds true for distance from
wp,1(|k|) to any other point of the set Sy than p.

Oppositely, the distances |wp1(k|) — p| and |wp1(k|) — wp2(|k)| tend to 0 when k| — +o0.
More precisely, from (2.4.2) applied with m, = 2, since p € Py, one deduces that

1o 1o
|wp 1 (k) = p |~ [Ap]2 K71 Jwpi (k) —wpa(k) [~ 2[Ap)2 K71, (k| = +00) (24.71)
with |A,| > 0. As a consequence, for |k| large enough, we have
1 .
P = 3 |wp(k)) = p[ ~ 5 [4p]2 [k[71 (Jk| = +00), with [4,] >0, (2.4.72)

Step 2 : Estimate of (D(w) — |k|2)_1. It is very similar to the one in Lemma 2.4.6. One
observes thanks to (2.4.2) that, when [k| — 400, in the product (2.4.18) defining Dy, i (w), only
two terms, namely w — wp 1(|k|) and w —wp 2(|k|), are not bounded from below when w decribes
Cp,jx| and |k| — +oc. Thus for some C > 0, w € C,, 1 || and |k| large enough

P
Db,|k‘(w)\ >C ‘w —wp1(/kl) | ‘w — wp (k) ‘ = C pp| ‘w — wp (k) ‘ (2.4.73)
By the reverse triangular inequality, along Cp, 1 x|,
|w = wpa(IkD) | > [wpi(lk]) = wp2(lk]) | = [w = wpa(k]) [ = |wp1(Ik]) — wp2(lk]) | = pp,
thus, using the equivalent (2.4.72) for pj and |wp1(|k|) — wp2(|k)| ~ 2 |Ap| k|7,
|w = wpa(k]) [ = [wp,i(Ik]) = wp2(lk]) | = ppg ~ 5 [4p] k7"
Therefore, from (2.4.73), we deduce that
[ Dy i ()| 1 S Pﬁj k|, YweClCk-

Thus, proceeding as in Lemma 2.4.6 (observe that by passing from |Dj, ej(w)|™" to [ Dy (w)| ™1,

see (2.4.44) and (2.4.45), one looses two powers of |k|),

1D (@) S o 1KY Y w €Cp - (2.4.74)
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Moreover, p € Py is a double zero of the product Q. Q. Hence, for any w € C, 1 |

2 _
|Qe(w) Qm(@)| S lw = pI* < (o + wp(k) —pl)"| ~ T |4p] [k]7* (by (2471, 2.4.72)).
(2.4.75)
As a consequence, from (2.4.17), we finally get by product of (2.4.74) and (2.4.75),

(D) = ) € o K2 Y w € Gy (2.4.76)
Step 3 : Estimates of Sy (w) and Vi (w)

As p € P,,,NP,, there is a unique pair of indices of indices {£y, j, } such that p = fwe j, = Lwp 4, -
The situation is a kind of mix between the two situations (i) and (i) met in the step 3 of the
proof of Lemma 2.4.6.

Using (2.4.30) one sees that all the operators (A ;(w), Ay W), Ao (W), Apg(w)) are uniformly
0

bounded along Cp, 1 || except (Ac,jo (W), Ae jo (W)s Am, o (W), Am g (w)).
Proceeding as for (2.4.51) in the proof of Lemma (2.4.6), one easily gets (we omit the details)
A S K 1A S Kl (2.4.77)
As p is a simple pole of u(w), we obtain, similarly to (2.4.52) in the proof of Lemma 2.4.6,
Ve e Cpup @) S lw—plt S [kl (2.4.79)
which, joined to (2.4.77), gives
wop(w)Ac(w) — [kl €5 % Am(w)] < K. (2.4.79)
Finally using (2.4.76) ans (2.4.79) in the definition of (2.3.10), we get
ISp @) S oy KI7H YV w € Cpapug- (2.4.80)
For Vi (w), we first observe that |p(w)| ~ pp |w — p|~ (w — p) also implies that along C, 1 k|,

@)™ Syl < Ik as [k - +oc.

Thus, the function k| pu(w)~tis bounded for |k| large enough. As a consequence, one sees on
formula (2.3.11) that Vg (w) blows with the same rate than ge j,(w) ™ and g g, (w) ™!, that is
to say proportionally to pﬁ, that in to say proportionally to |k|. Therefore

Vi (@I < k[, ¥VweCppg- (2.4.81)

Conclusion. Again, by (2.4.80) and (2.4.81), || Sy (w)]] [[Vik (w)]| < pﬁ(} and one concludes with
(2.4.15) for II(|k|) = IL,(|k|). O

We now give the asymptotic expansion of the eigenvalues wy ,(|k|) for large |k|.

92



2.4. Asymptotic analysis for large spatial frequencies k| > 1

Lemma 2.4.11

For p € Py, then p = £ w, j, = £ W, for some (jp,£,) and

Qe,’p Qm,[ _ _ _
U‘)P,r(|k|):p+(_1y#|k‘ P Apa [k (k[ 7),  as k| = 4oo, (2.4.82)

where the complex number A, 2 is given by

1
AILQ =5

2 (w2 he,jphm,ﬁp),(p)v (2483)

where the functions hejp and hyy, p are defined in (2.4.59). Moreover, one has

Im A, < 0. (2.4.84)

Proof. Let p € Pg. Then (by H;), there exist two unique indices j, € {1,...,N.} and ¢, €
{1,..., Ny} such that p = +w, j, = Fwme,. Then the two functions |k| +— wy,-(|k|) are defined
in the proof of Proposition 2.4.1 for |k| large enough via the Lemma B. 1 as the two branches
of solutions of the equation D(w)~! = (2 with ¢ = |k|~! on a vicinity of p. Here, p € P. NP, is
a common simple pole of the rational functions we and wyu. More precisely, from the definition
(2.4.58) of (heyp, hmp) (see Lemma 2.4.7) we have

D(w) = WQhe,p(w) B p(w) (w — P)_Q-

which emphasizes the fact that p is a double pole of the D(w), thus a double zero of D! :
D(w)~! = (w—p)?g(w) where g(w) := (W he p(w) him p(w)) ! is analytic at the vicinity of p and
satisfies (using the expression (2.4.60) for h., and its equivalent for Ay, p):

g(p) =42Q 7 Q% > 0.

Thus, using the asymptotic formula (2.7.39) of Lemma B. 1 (with ¢ = |k|™', 2 = p, m = 2 and
= —/g(p) = —2¢/(Qej, Une,), a2 = /g(p) the two roots of X? = g(p), see (2.7.39)) yields

k|) = —1k—1—M k|2 k|2 k 2.4.85
wpr(|k|) =p+a, k| 290) k™% + o(|k| %), as |k| — +o0. (2.4.85)

To conclude, it remains to remark that a, 2 = g(p)~! and g*

= W2he,p I, p which gives

4P IW) ey e ’
o) 92(p)_(9 ) (p) = (W?hep himp) (P)- (2.4.86)

Finally, it remains to show that Im A, 2 < 0. From (2.4.84) and the expressions (2.4.59) of hcy
and Ay, p, it follows (as p?, hep(p), hmp(p) are real) that

2
P
Tm Ay = - [P p(p) T F, () + hep(p) Tm hi, ()]

Finally using that he,(p) = —eo Qajp/(Zp) and Ry, p(p) = —po Q3 Mty /(2p), the expression
(2.4.68) for Im(hy ,(p)) and its equivalent form for Tm(hy, ,(p)) gives that

02, N Q2ae; 02, Tm Q2 onn
Im A 9 = _0—2 p2 < m,tp e,J " &J + €.Jp m,l ) >
" 4 -_Z )P 4 2 |gm.e(p)]?

(=100,
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(where ¢=2 = £q ip). Thus, this term is negative by the weak dissipation condition (2.1.10) since

at least one coeflicient ae j or a,, is positive. Finally, combining (2.4.85) and (2.4.86) gives
(2.4.82). 0

We now estimate the term Uy(k,t) for large |k|. Proceeding as in the proof of Lemma 2.4.5,
one shows using Lemma 2.4.10 and Lemma 2.4.11 the following result.

Lemma 2.4.12

If P; # @, then it exists ky > 0 and C' > 0 such that the function Ug(k,t) defined by
(2.4.9) and (2.4.34) satisfy the following estimate

_Ct
Ua(k,t)| < e %7 [Ug(k)|, V>0 and V|k| > k. (2.4.87)

2.4.3.5 Estimates of U_(k,t) for |k| > 1

As announced in Section 2.4.3.1, since we simply want to obtain a “rough" exponential decay
estimate for U_(k,t), we do not need to separate the analysis in three different lemmas as in
Section 2.4.3.2, Section 2.4.3.3 and Section 2.4.3.4 but give a direct proof using Riesz-Dunford
functional calculus.

Lemma 2.4.13

There exists § > 0 and k4 > 0 such that U_(k,t), defined by (2.4.9) and (2.4.10), satisfies

U_(k,t)| Se 0t [Ug(k)|, Vt=>0, VI[k|l> ks (2.4.88)

Proof. We introduce a simple closed contour I, included in C~ such that all the poles of P_ lies
inside I" (see Figure 2.3). We denote ¢ the distance from I' to the real axis:

§ = min{—Im(w), w € '} > 0.

For |k| large enough, by (2.4.2) and (2.4.3), I" encloses all eigenvalues wy, »(|k|) for p € P_ and
n € {1,...,m,} but no other elements of the spectrum of Aj. Then, by the Riesz-Dunford
functional calculus, it exists k4 > 0 such that we have the formula:

U_(k,t) = —%/Feiwt Ry (w) RiUop(k) dw, for [k| > ky. (2.4.89)

As Ry is unitary, it leads to
U-(1,8)] S e ((max | Byg ()]]) [Uo(ko), (2.4.90)
where || - || denotes the operator norm of £(CY'). It remains now to estimate Rpyj(w) from its

expression Rjy|(w) = Vik|(w)Sjk|(w) + T (w) in Proposition 2.3.2 (choosing I" such that I'N Z,,, =
). The more involved step concerns the esimate of Sjy(w).

Step 1 : Estimate of Sji (w). The expression of Sy |(w), given in (2.3.10), involved the term
(D(w) — |k|?)~L. We first bound this term by using (2.4.17), (2.4.18) and (2.4.19). From the
asymptotic behaviour (2.4.2), it follows that Dy, |i|(w) given by (2.4.19) saitisfies:

Dy (@) S1, Vwerl. (2.4.91)
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DPe P4 P3 D5
-l [KD) ‘/\ \ LS /\ @U
w, (1K) @, (1K) ' @, (1K) 0, (k)
wp4.l(|k|) : Dy 1 [k[)

@, (1K) @, (1K)
ppeP- | mer)
><,w <
@, »(1K])

r

w, (k)

Figure 2.3: Contour integration for the estimate of U_(k,t) in the case where P_ = {p;,p2} (corre-
sponding to the Figure 2.1).

From the asymptotic expansion (2.4.3), |w —wioo(|k|)|™* = ¢ k| ™' +o(|k|7!). Hence, it yields
with (2.4.18) and (2.4.91):
[Dp(w) ! < k|7, and thus with (2.4.17) [(D(w) — k)" S k|7 Vwel. (2.4.92)
On the other hand, from the definitions (2.3.6) and (2.3.7), it is immediate that
| wn(@)Ac(w) — [kles x Auw)|| < [k, Ve eT. (2.4.93)
Combining (2.4.92) and (2.4.93) with (2.3.10) yields
1S (W) < [k|7!, Vw €T and [K| > k. (2.4.94)

Step 2 : Final estimate. From the expression (2.3.11) and (2.3.12) of V) |(w) and T (w) we
deduce that
V@I <k, [TwWI<1, VYwel, (2.4.95)

thus by (2.4.94) [|[Rji(w)|| S 1, Vw € I' which we substitute into (2.4.90) to obtain (2.4.88). [

2.4.3.6 The global estimates
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2.4. Asymptotic analysis for large spatial frequencies k| > 1

Theorem 2.4.14

It exists ky > 0 such that for |k| > k4, the spatial Fourier components |U(k,t)| of the
solution of (2.1.12) with initial condition Uy € H, satisfy the following estimates:

a. If the Maxwell system is in a non-critical configuration, then there 3 C, C > 0 such

that oy
U(k,t)| < Ce 2 |Ug(k)|, Vt>0. (2.4.96)

b. If the Maxwell system is in a critical configuration, then there 3 C C > 0 such that

~ _Ct
U(k,t)] < Ce X' |Ug(k)|, Vt=>0. (2.4.97)

Proof. The inequalities (2.4.96) and (2.4.97) follow immediately from the expression (2.4.9) of
|U(k,t)| for |k| large enough and the estimates of the four terms |U(k,t)|, |Us(k,t)|, [Ua(k,t)]
and |[U_(k, t)| given respectively by Lemma 2.4.5, Lemma 2.4.9, Lemma 2.4.12 and Lemma 2.4.13
(since for k| large enough, t > 0 and Cy, Cy > 0: et < ¢=C1lk 7t < o=Ca[k™"t), O

We prove in the following result that the estimates of Theorem 2.4.14 are optimal for an infinite
family of well chosen initial conditions Uy € H']' yp for any fixed m > 0.
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2.4. Asymptotic analysis for large spatial frequencies k| > 1

Theorem 2.4.15

Let m, ky > 0 and ¢ : RT — R be any a measurable and bounded function satisfying:

3
supp ¢ C [k, +oo] and 0 < |¢([k|)| < (1 + |k[>)™*/2 for |k| > ky + 1 and s > B + m.
(2.4.98)

a. If the Maxwell system is in a non-critical configuration, one defines (for k. sufficiently
large) an initial condition Uy of (2.1.12) via its Fourier transform:

Vi (wioo (k)€1

Uo(k) = F(U0)(1) = $(lk) Ri, <= i

vk € R%*. (2.4.99)

Then, Ug € H' g and 3 C, C > 0 such that the associated solution U of (2.1.12)
satisfy

~ _Ct
Ce 2 |Up(k)| < |U(k,t)|, Vt>0 and Yk e R>*. (2.4.100)

b. If the Maxwell system is in a critical configuration, by Corollary 2.4.8, it exists (at
least one) p € Py such that

Tmw,(k|) = Tm A, 4 k|~ + o(|k| ™), as |k| > +oo, with Tm Ay, < 0. (2.4.101)
Defining (for k. sufficiently large) as an initial condition Uy for (2.1.12) by

Vi (wp(k])) e
Vi (wp(K]))er]’

Uo(k) = F(Up)(k) = &(|k|) R Vk € R®*, (2.4.102)

then, Uy € H''yp and 3 C, C > 0 such that the associated solution U of (2.1.12)

satisfy
Ct

Ce ™7 |Ug(k)| < |U(k,t)|, ¥t>0andkeR¥" (2.4.103)

In other words, the estimates (2.4.96) and (2.4.97) are optimal for an infinite family of
solutions.

Proof. We separate it in two steps.

Step 1. Proof of the lower bound (2.4.100):

From Proposition 2.4.1, we know for |k| > ki, |k| — wiso(|k]|) is well defined and satisfy (by
Lemma 2.4.4) the asymptotic expansion (2.4.32).

Furthermore, the proof of Proposition 2.3.1 in appendix Section 2.7.2.2, shows that any U in the
two-dimensional eigenspace ker (A‘k| —wioo(|K|) Id) is of the form U = (E, H,P,P, M, M) for some
EeCy and (H,P, P,M, M) deduced from E by formula (2.7.33,2.7.34), with w = wi(|k]).

This can be expressed with the help of the operator Vi (w) € L(C, CY), see (2.3.11), as follows
ker (A — Wioo(|k]) Id) = Vi (w00 (K[)) (CL)- (2.4.104)
Let m € N*. Let us define Uy via its Fourier transform Ug(k) and formula (2.4.99) where Ry, see

(2.2.8), is unitary. For s > 3/2 +m, k — (1 + [k|>)™/?Uy(k) € L%(R*)V, thus Uy € H™(R3)N
and thus belongs by construction to H'" yp.
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2.5. Asymptotic analysis for small spatial frequencies |k| < 1

Next, thanks to formula (2.2.12) for U(k,t), (2.4.99) and (2.4.104), one has
U(k,t) = e Akt Ug(k) = e @+t yg(k)  and thus  [U(k, t)| = e~ m@reo (kD 1y (k).

Moreover, using Lemma 2.4.4 and more precisely the expansion (2.4.33) for wy(|k|), one knows
that for large enough |k|, with Ay o > 0 defined by (2.4.34),

A2,oo

“32KE <Imwio(lk|) <0 (simply because 1/3 < 1/2).
c

A2700 t

We thus get e <2k |Uy(k)| < |U(k, t)|, which achieves the proof of (2.4.100).

Step 2 Proof of the lower bound (2.4.103):

If the Maxwell system is in the critical configuration, to show that the estimate (2.4.97), one
only needs to define Uy by (2.4.102) (instead of (2.4.99)) replacing we (|k|) by wp(|k|) satisfying
(2.4.101) (instead of (2.4.33)).

O

2.5 Asymptotic analysis for small spatial frequencies k| < 1

As the reader can expect, the structure of this section is similar to the one of Section 2.4 with
three subsections:

e Section 2.5.1: Asymptotics of dispersion curves for 0 < |k| < 1.
e Section 2.5.2: Spectral decomposition of the solution for 0 < |k| < 1.
e Section 2.5.3: Large time stimate of U(k,t) for 0 < |k| < 1.

This section is however shorter than Section 2.4 because much less particular cases appear.

2.5.1 Asymptotics of the dispersion curves for k| < 1

This section is the counterpart of Section 2.4.1 for low spatial frequencies. In other words, we
focus here on long time estimates of the low (spatial) frequency components U(k, t) (see (2.2.7))
of the solution. As explained in Section 2.3.3, the decay of U(k,t) for |k| < 1 is related to the
analysis of the solutions of the dispersion relation (2.3.13) at low frequencies. Roughly speaking,
as |k|> — 0 when |k| — 0, the solutions of (2.3.13) must satisfy |D(w)| — 0 as |k| — 0. Thus,
they converge to a zero z € Z U {0} of the rational function D. Thus, as one can rewrite D at
the vicinity of a zero z of multiplicity m, as

D(w) = (w — 2)™g(w) with g analytic on a vicinity of z and g(z) = A, # 0. (2.5.1)

This leads to the following proposition (the equivalent of Proposition 2.4.1 in Section 2.4.1).
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2.5. Asymptotic analysis for small spatial frequencies |k| < 1

Proposition 2.5.1

It exists k— > 0 such that for 0 < |k| < k_, the solutions of the rational dispersion relation
(2.3.13) (or of its equivalent polynomial form (2.3.19)) are all simple. These solutions form
N distinct branches which are C*°-smooth functions of |k| € (0,k_]. These branches are
characterized by their asymptotic expansion for small |k|. More precisely, if z € Z U {0}
is a zero of multiplicity m, of D, there exists m, distinct branches of solutions w, ,, n =
1,...,m; of (2.3.13) satisfying

2i

L%Amnzz+@;mﬁa1+dmx @mszUm&%eé (k| = 400) (2.5.2)

where A, is defined in (2.5.1) and 0, € (—m, 7] is the principal argument of A,.

Proof. Step 1: Construction of the branches of solutions w; ,(|k|).

Let z € ZU{0} a zero of multiplicity m,. Then, the rational function D can be factorized as in
(2.5.1). Moreover, the dispersion relation can be rewritten as

2 z
D(w) = K2 = (Jk|7)™.
Thus, by applying Lemma B. 1 of the appendix Appendix B.2. with
G(w)=D(w), m=m,, A=A, and(=|k?*™,

we deduce the existence of k— > 0 and m, distinct C* branches of solutions |k| € (0,k_] —
w2 n(k|) of the dispersion D(w) = |k|?>. Moreover, for the solutions w, ,(/k|) , we can use the
asymptotic expansion (2.7.39) of Lemma B. 1 with ¢ = |k|?>/™ which gives (2.5.2).

Step 2: Conclusion. From the asymptotic (2.5.2), w,,(k|) for z € ZU {0} and n €
{1,...,m;} are all distinct for |k| small enough and positive. Since the sum of the m,’s, for
z € ZU{0} is equal to 2N, + 2N,, + 2, we have constructed 2N, + 2N,,, + 2 distinct solutions of
(2.3.13). As (2.3.13) is equivalent to a polynomial equation of degree 2N, +2N,, +2, cf. (2.3.19),
these solutions are simple roots and there are no other solutions for small positive |k|. O

2.5.2 Spectral decomposition of the solution for |k| < 1

Our goal here is to obtain for small |k| a decomposition of U(k, ) similar to the one obtained
for large |k| (see (2.4.9,2.4.10)).

For this, we first notice that, combining Proposition 2.5.1 and Corollary 2.3.4 yields immediately
to the following property on the operator Ay | .

Corollary 2.5.2

It exists k— > 0 such that for 0 < |k| < k_, Ay | is diagonalizable on cl.

To obtain the decomposition of U(k, t), we split (see Section 2.3.2.3) the sets of zeros {0} U Z C
C— of D in three disjoint subsets : {0} U Z = {0} U Z; U Z_ where the multiplicity of z =0 is
mo = 2 and

Z_ :=2NC and Z,:={z€ ZNR|m, = 1}.

99



2.5. Asymptotic analysis for small spatial frequencies |k| < 1

Remark 2.5.3. [On the set Z_] We point out that the weak dissipation condition (2.1.10)
implies (see (2.3.18) and (2.3.17)) that at least one element of Z lies in C™, thus Z_ # 0.

The strong dissipation condition (2.1.8) implies that all elements of Z lie in C~, that is Z_ = Z.

Remark 2.5.4. [On the set Z5| According to the analysis of the zeros of made in Section 2.3.2.3,
the structure of the set Z; strongly relies on the condition

3 (jo, £o) such that ae j, > 0 and ay, g, > 0. (2.5.3)

More precisely, if (2.5.3) holds, Z, = (). Oppositely, with the weak dissipation condition (2.1.10),
if (2.5.3) does not hold, either all c, ; vanish in which case Z, = Z, either all oy, vanish and
Zs = Zm.

According to Proposition 2.3.1 and Proposition 2.5.1, we have the corresponding partition of
the spectrum of Ay | for 0 < k| < k_:

oA 1) = {wor(k]), 7 =12} U{w.(k]),z € Zs} U{w.n(k]), z€ 2, n=1,...,m.},
(2.5.4)
where, for simplicity, we write w,(|k|) instead of w, 1(|k|) for the simple zeros zero z € Z,. We
point out that “by symmetry” of the dispersion relation, it holds wp 2(|k|) = —@o 1(|k])-

For a sketck of the small |k| behaviour of the dispersion curves, see Figure 2.4.

For 0 < |k| < k_, as A1 is diagonalizable by Corollary 2.5.2, Cf can be decomposed as

26 24
wz ([K]) ws, (k) 0,1(/k])
Co,1,[k|

Figure 2.4: Sketch of a configuration of dispersion curves for small values of |k| in the case where
{0tUZ ={0} U Z_U Z, with Z_ = {21, 29, 23} and Z; = {24, 25, 26, 27}-

2
me
CY =D Viwor D Viw:© D & Videm (2.5.5)
r=1 -

ZEZg z2€EZ_
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2.5. Asymptotic analysis for small spatial frequencies |k| < 1

where we have defined the 2D (see below) subspaces

Vikg,0,r, = ker (AL — wor (k) 1d), r=1,2 V. = ker (A1 — w.(/k|)1d),
(2.5.6)
Vikg,zn = ket (A 1 — wen(k]) Id), 1 <n <m,

where the above direct sums are (in general) non-orthogonal. Thus, one decomposes uniquely
any vector x € Cf as

2 m
T = Z$|k|7o,r + Z T,z T Z Zf’f\kw,n
r=1

ZEZ, z€Z_n=1

Tikl,0r € VK05 Tkl € Vik,z and Tk 20 € Vik]zn-

Then, we define the spectral projectors Il ,-(|k|) for r € {1, 2}, I1,(|k|) for z € Z5 and II,, ,,(|k|),
z€ Z_andn € {1,...,m,} associated to the eigenvalues wq ,(|k|), w(|k|) and w;(|k|) by:

Hoﬂn(’k’) = x‘k"om, Hz(|k‘)($) = ac|k|7z and szn(\k\)(w) = x|k"z7n. (2.5.7)

From Proposition 2.3.1, the geometric multiplicity of each eigenvalues in (A 1) is two. Thus,
all these projectors are rank two projectors. We again emphasize that the dissipative operator
Ak, L 1s not normal, thus its spectral projectors are not orthogonal.

For 0 < |[k| < k_, as A1 is diagonalizable (by Corollary 2.3.4), one has

2 my
A|k\,L = ZWO,erDHO,r(‘kD + Z Wz(|k‘) Hz(|k|) + Z sz,n(’kD Hz,n(’kD' (258)

r=1 zE€EZg z€Z_n=1

Thus, for 0 < |k| < k_, the solution U(k,t) given by (2.2.12) can be expressed for all £ > 0 as

U(k,t) = U.o(k,t) + U o(k, t) + U, _(k, ) (2.5.9)
where
( 2 )

U.o(k,t) = e t«orDERETI,  (Jk|) Ry Up(k), (4)
r=1

U.s(k,t) = Z e 1= (kDR TL (|k|) Ric Uo (k), (44) (2.5.10)
ZEZS

my )

U.—(kt) = > Y e wenlMDERITE (k) RiUo (k). (idd)

z€Z_n=1

2.5.3 Estimates of the low frequency components of the solution
2.5.3.1 Orientation

Proceeding as for large |k| in Section 2.4.3, we estimate successively, in LLemma 2.5.7, Lemma 2.5.10
and Lemma 2.5.11, the three terms appearing in the decomposition (2.5.9). An important dif-
ference with Section 2.4.3 is that we consider bounded values of |k|, namely 0 < |k| < k7, for
some k£~ > 0, which will simplify some estimates via compacity arguments.
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2.5. Asymptotic analysis for small spatial frequencies |k| < 1

Two cases will have to be distinguished.

Case 1: estimate of U,o(k,t) and U, 4(k,t), This will be done in Section 2.5.3.2 and Sec-
tion 2.5.3.3, by bounding separately each of the terms of the sums in (2.5.10)(i) and (2.5.10)(ii).

For each eigenvalue w(|k|) € {wo,(|k|),w:(/k|)}, we shall first estimate in Lemma 2.5.5 and
Lemma 2.5.8 the corresponding spectral projector II(|k|) uniformly in |k| for |k| small enough
and positive. To this aim as in Section 2.4.3, we use the Dunford-Riesz functional calculus that
says that, if I'|y| is a close contour in C that encloses w(|k|) but no other eigenvalue of Ay |, so

that
1

2im i

For II,(|k|) in Lemma 2.5.8, since w,(|k|) is a simple eigenvalues that converges to z while
remaining well separated from the other eigenvalues. Hence, using Proposition 2.3.2, we can
choose for I'y| a fixed circle I' (i.e. independent of |k|) centered at z, along which the operator
Rik|(w), by continuity in (|k|,w) and compactness of [0,k~] x I, remain bounded. Thus, the
uniform estimate of I1,(|k|) becomes obvious.

For the projector Il (|k|) (this is the same for IIp2(|k|) ), this is more complicated because
the two distinct eigenvalues wo . (|k|) (r = 1,2) converge both to 0 while remaining far way from
the other eigenvalues any other point of the set Sy than 0. For this reason, we shall take as
[y the circle Cyq |k centered at wo1([k|) with radius pp| = |wo2(|k|) — wo,1(|k[)[/4 in order
to prevent wo2(|k|) from being inside Cy ;|- This circle will also not contain 0 or any other
point of Sy (by Proposition 2.5.1). As a consequence, in (2.5.11), Rj|(w) can be replaced by
the product Vi (w) S (w), (see formula (2.3.9) for Ry (w) and the definition (2.3.8) of S7)
leading, similarly to (2.4.15), to

ITI(RDI < o sup (Vg @)IHISpqg @)Il), (2.5.12)

wEC|k‘

Moreover the operators Vi (w) and Sjyj(w) will blow up when [k| tend to 0 but this will be
compensated by the fact that the radius of pj| tends to 0.

In a second step, we concentrate on the exponentials appearing in each factor of the terms
involved in U, o(k,t) and U, ¢(k,t) whose estimate for small |k| rely on the asymptotic ex-
pansion of the eigenvalues (and more particularly their imaginary parts), see Lemma 2.5.6 and
Lemma 2.5.9.

Case 2: estimate of U, _(k,t). This term will be treated as the term U_(k,¢) (in Sec-
tion 2.4.3.5), because the set {w.,(|k|)} will remain far from the real axis for small enough
|k|. Thanks to this property, the exponential decay of |U, _(k, t)| will be, contrary to the previ-
ous terms U, o(k,t) and U, 4(k, t), uniform with respect to |k|, so that it will not contribute at
the end to the large time equivalent of U(-,¢). For proving this, we shall not use (2.5.10)(ii) but
an alternative formula directly issued from the Riesz-Dunford functional calculus. Compared to
Section 2.4.3.5, its estimate in Lemma 2.5.11 will be simplified by a compacity argument.
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2.5. Asymptotic analysis for small spatial frequencies |k| < 1

2.5.3.2 Estimates of U, o(k,t) for 0 < |k| < k_

In the following Lemma, we estimate the spectral projectors Il . (|k|) (for r = 1,2) using (2.5.12)
with a simple closed contour I'y satistying the two following properties:

(1) T encloses w(|k|) but no other eigenvalue of Ay 1,
(2.5.13)
i1) I does not enclose any point of the set St
k|

Lemma 2.5.5

It exists k— > 0 such that the spectral projectors Il (k| ), 7 € {1, 2} are uniformly bounded
for 0 < |k| < k_.

Proof. Let v € {1,2}. We follow the approach of the Section 2.4.3 and introduce as I'y the
circle Cy .|| (positively oriented) of center wy ,(|k|) and radius

P = 1 lwo1 (k) — wor(lk]) [, (2.5.14)
(see Figure 2.4 for an example of contour Cq,. | with 7 =1,2.)
From the aymptotics (2.5.2) applied with mg =2 (z = 0 is a double zero), one deduces that
1 1
|wo 1 (K[) | ~ [Aol2 [K[,  [wo(|k]) —wo2(k)|~2[Ao|> |K|, ([k]—0) (2.5.15)

so that, for k| small enough, I' does not enclose wp 2(|k) nor 0 (and of course any other point
of S7). As explained in Section 2.5.3.1, we can apply the inequality (2.5.12). As ppy| S |k,
according to (2.5.14) and (2.5.15), we thus obtain

Mo (kDI < k| sup (Vg (@) 1S ()]l)- (2.5.16)

weCo, k|

It remains to estimate the operators Vi (w) and S (w) given by the formulas (2.3.10) and
(2.3.11). Without any loss of generality, we can restrict ourselves to r = 1 for the rest of the
proof.

Step 1: Estimate of (D(w) — |k\2)71.

This term is involved in the expression (2.3.10) of Sjxj(w). Let us recall that (see (2.4.17))

(D(w) — k) ™" = Qe(w) Qum(w) Dy (w) ™.

where Djy(w) is the polynomial defined by (2.3.19). Using the Proposition 2.5.1, we know that
Dyy|(w) can be factorized as the following for |k| sufficiently small and positive:

m.
D) = g0 pio (w = woi ([k]) (w —woa(k))) [ (w—ws(k) [T T (w—w:-n(KD).
2EZg z€Z_n=1
(2.5.17)
Since w;(lk|),z € Z; or w,,(k|),z € Z_ converge to z # 0, cf. (2.5.2), the last two products
in (2.5.17) remain bounded from below in modulus when w describes C,, x| and [k| is small
enough.
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2.5. Asymptotic analysis for small spatial frequencies |k| < 1

On the other hand, it is easy to see that for [k| small enough (Cy 1 k| has been chosen for that),
Vwe o |w—woi(lk])] = Clk|, |w—woa(kl)] = Clk,
Thus from (2.5.17), we infer that
VweCorxs |[Dpgw)™ < k|72 (2.5.18)

Thus, as the polynomial Q¢(w)®@,(w) remains obviously bounded for bounded w, we deduce
that there exists k_ > 0 such that

VweCo, [Pw)—IkP™" <kl for0< |kl <k_. (2.5.19)

Step 2: Estimates of S (w) and Vi (w)

First, it follows from their definitions (2.3.6) that A, ;(w), A, ;(w), Ane(w) and A, ¢(w) are
uniformly bounded in operator norm when w does not approach 0 (indeed 0 is not a zero of the
polynomials ge j and ¢, ¢). Thus [|Ac(w)]| < 1 and [|Ap(w)]] < 1 according to (2.3.7).

Moreover, p(w) = pu(0) +o(1) as w — 0 and |w| < [k| on Cy ;1 ||, thus, for [k| small enough,
Vo e Conr Nom@Acw) — [kles x An(@)l| S ] + Kl S [kl (2.5.20)
Combining (2.5.19) and (2.5.20) in (2.3.10) yields that it exists k_ > 0:

VweCoru ISl S Ik™  for 0< [k < k_. (2.5.21)
Finally, as, along Cq 1 ||, |w| > ’P\k|,1 - |w0,1(|k|)H ~ 1 |A0\% k| as |k| — 0, we deduce that

Vw € Cou k|, ’LSJM,EL for 0 < |k| < k_.
” jw| [p(w)] ™ |l

Since |gej(w)|™! and [gme(w)]|™?

V|k\ (OJ),

remain bounded along Cq 1k, by the formula (2.3.11) for

Vi)l S1, Yw ey and 0<[k| <k_. (2.5.22)

Conclusion: Combining (2.5.20) and (2.5.22) in eq. (2.5.16) finally implies that it exists k_ > 0
such that IIp 1 (|k|) is uniformly bounded for 0 < |k| < k_.
O

The next lemma is about the asymptotic expansion (in powers of |k|) of wo(|k|) when |k| — 0.
It is important to push the expansion up to the first apparition of a negative imaginary part,
since it will govern the decay of U, o(k, ) for small values of |k|.

Lemma 2.5.6

For r € {1,2}, the eigenvalue wy,(|k|) satisfies the following asymptotic expansions, with
co = (2(0)u(0)) /2 > 0,

wyr([k]) = (=1)"¢o |k| — %(au)’(O) cg |k\2 + o(lk\z), as [k| — 0, (2.5.23)

with moreover

Im ( — (ep)'(0)) < 0. (2.5.24)
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2.5. Asymptotic analysis for small spatial frequencies |k| < 1

Proof. Using (2.3.21), one has D(w) = w?g(w) where the rational function g = &(-) u(-) is
analytic at the vicinity of 0 and satisfies g(O) =¢(0)p(0) > 0. Thus applying Lemma B. 1 with
z=0,mp=2,(=lk|, a1 = —g(0)"/2 = —c;' and ag = c; ' , the asymptotic formula (2.7.39)
yields:

wer (k) = ar k" — 2O 12 4 o), as k] 0.
’ " 2¢(0)?

This is precisely the asymptotic (2.5.23). It remains to prove (2.5.24).

©(0) > 0 and €(0) > 0, thus it is equivalent to show that 1(0) Ime’(0) 4+ £(0) Im 1/ (0) > 0. The
Taylor expansion of the rational functions € and p (see (2.1.5) and (2.1.6)) gives

/ e Qe,j Qg j / Al Qm,L Qm N4
Ime'(0) = ¢ E — L >0 and Im'(0) = po E —— 2>0.
: w; wi
j=1 €,j =1 m,l

Furthermore, by the weak dissipation condition (2.1.10) at least one coeflicient c. j or ey, is
positive, thus one has Im&’(0) > 0 or Im z/(0) > 0 and we can conclude. O

Combining the Lemma 2.5.5 and Lemma 2.5.6 (formula (2.5.23) and (2.5.24)) and proceeding
as in the proof of Lemma 2.4.5 gives the following estimate for U, o(k, ).

Lemma 2.5.7

It exists k— > 0 and C' > 0 such that the function U, o(k, t) defined by (2.5.9) and (2.5.10),
satisfies the following estimate

U.o(k,8)] <e €1 Ug(k)|, VE>0 and 0< |k| < k_. (2.5.25)

2.5.3.3 Estimates of U, ,(k,t) for 0 < |k| < k_

This time we estimate U, 4(k,?) in (2.5.9) which involves in particular the projectors II,(|k]).

Lemma 2.5.8

There exists k_ > 0 such that the spectral projectors I, (|k|), z € Z, are uniformly bounded
for 0 < |k| < k_.

Proof. The proof of this lemma has already been sketched in Section 2.5.3.1 (paragraph about
2(|k|)). The details, similar to some already treated cases, are left to the reader. O

We now give the asymptotic expansion of the eigenvalues w,(|k|) for small |k|.
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2.5. Asymptotic analysis for small spatial frequencies |k| < 1

Lemma 2.5.9

Let z € Z5. The eigenvalue w,(|k|) satisfies the following asymptotic expansion
w.(k|) = z + A.|k|* + o(|k[?), as |k| =0, (2.5.26)
where the complex number A, is defined by (two disjoint cases have to be distinguished) :

(wp)' ()7

ze(z)

/ —1
faez, A=WIET oz A

i) (2.5.27)

)

and satisfies in all cases Im A4, < 0.

Proof. The elements of Z are simple zero (m, = 1) of the rational function D, it means that
either z € Z, or z € Z,,. We will do the proof by assuming that z € Z,, the proof for z € Z,,
can be done with obvious “symmetric arguments”.

Using Proposition 2.5.1 and more precisely the asymptotic expansion (2.5.2) (with here m, = 1)
yields to (2.5.26) with A, = g(z)~! where g is defined by (2.5.1), that is to say

g(w) = D(w) = we(w) wp(w) for w e C\ (PU{z}).

w—Zz w—Zz

Since z € Z, is a real simple zero of we(-) thanks to assumption (Hs), i. e. Z. NPy, = 2, it is
not a zero nor a pole wu(-). Thus, g can indeed be extended analytically for w = z with

9(2) = (we)'(2) zp(2).

1 1
Thus, one has A, = = that is (2.5.27).

9(2)  zp(z)(we)'(2)
We now show now that Im A, < 0. As z € Z., one observes on one hand (see Remark 2.5.4)
that Z, = Z. and that all the a, ; vanish. Thus, we(w) is real-valued on the real axis (outside
the poles P, of £(w)) and from expression (2.1.5), one deduces easily that (we) (w) > 0 on R\ Pe.
In particular, as z € R\ Pe, one has

(we)'(2) > 0.

On the other hand, as all the . ; vanish, one knows by the weak dissipation condition (2.1.10)
that at least one coefficient o, ¢ > 0. Therefore by the formula (2.3.17), Im(zu(z)) > 0. Thus,
one deduces that

m ((20(2)") = — Im(zp(=)/2u(2) < 0.
Together with (we)’(z) > 0, this implies that Im(A,) is negative. O

Combining Lemma 2.5.8 and Lemma 2.5.9 (formula (2.5.26) and (2.5.27)) and proceeding as in
the proof of Lemma 2.4.5 gives the following estimate for U, 4(k, t).

Lemma 2.5.10

If Z, # @, then it exists k_ > 0 and C' > 0 such that the function U, 4(k,t) defined by
defined by (2.5.9) and (2.5.10), satisfies the following estimate

Uk, t)] e O Ugk)|, V£E>0 and 0< k| <k_. (2.5.28)
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2.5. Asymptotic analysis for small spatial frequencies |k| < 1

2.5.3.4 Estimates of U, _(k,t) for 0 < |k| < k_

As announced in Section 2.5.3.1, since we simply want to obtain a “rough" exponential decay
estimate for U, _(k,t). We give a direct proof of it using Riesz-Dunford functional calculus.

Lemma 2.5.11

There exists § > 0 and k— > 0 such that U, _(k,t), defined by (2.5.9) and (2.5.10), satisfies

U, _(k,t)] S e [Up(k)|, Vt>0, VO<|kl<k_. (2.5.29)

Proof. The proof is similar to the one of Lemma 2.4.13 and even shorter since |k| is bounded
here. We introduce a fixed simple closed contour I', included in C~ such that all the zeros of
Z_ lie inside I' (see Figure 2.4). We choose also I' such that I' NP = @. We denote by

0 =min{—Im(w), we T} >0 (2.5.30)
the distance from I to the real axis.

For |k| positive and small enough, U, _(k, ) is on one hand well-defined by (2.5.9) and (2.5.10)
and on the other hand, by Proposition 2.5.1, I" encloses all eigenvalues wy, ,(|k|) for z € Z_
and n € {1,...,m,} but no other elements of the spectrum of Ai|- Thus by the Riesz-Dunford
functional calculus, one gets that it exists k_ > 0 such that

*

R .
U. (k1) = — / ¢4 Ry (w) RaUo (k) dw, for 0 < [k| < k_, (2.5.31)
I

2

where the resolvent Ry(w) is well-defined by Proposition 2.3.2 for (k|,w) € K = [0,k_] x T
Moreover, the function (k|,w) — Rx(w), valued in £(C ), is continuous on the compact K.
Then, using the fact that Ry is unitary and the definition (2.5.30) of § (which implies that
et < e79% on T'), it follows from (2.5.31) that

U, (k,t)| < Ce™®" [Ug(k)|, ¥ |k| € (0,k-] where C = e MR @)l

2.5.3.5 The global estimate

Theorem 2.5.12

It exists k- > 0, C, C > 0 such that for 0 < |k| < k_, the spatial Fourier components
|U(k, t)| of the solution of (2.1.12) with initial condition Uy € H | satisfy:

Uk, t)| < Ce Uy (k)|, V¢ > 0. (2.5.32)

Proof. The proof is similar to the one of Theorem 2.4.14 using Lemma 2.5.7, Lemma 2.5.10 and
Lemma 2.5.11. O

We prove in the following result that the estimates of Theorem 2.5.12 is optimal for an infinite
family of well chosen initial conditions Uy € HY | for any fixed p > 0.
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2.6. Estimates of “mid frequencies” components of the solution

Theorem 2.5.13

Let p>0and k- > 0 and ¢ : RT — R be any measurable and bounded function satisfying
supp ¢ C [0,k_] and 0 < |p(|k])| < k[P for k| < Ek_. (2.5.33)

If the initial condtion Ug of (2.1.12) is defined (for k_ small enough) via its Fourier trans-
form:

Vi (wo,1(/k]))e1
Vi (wo,1([k])ex|’

Uo(k) = F(Up)(k) = o(|k|) Ri: Vk € R®*, (2.5.34)

then Uy € HY ; and 3 C, C > 0 such that the associated solution U of (2.1.12) satisfy

CeCtK” Uy (k)| < |U(k,?)|, Vt>0and Vk e R (2.5.35)

In other words, the estimate (2.5.32) is optimal for an infinite family of solutions.

Proof. Using (2.5.33) and (2.5.34), it is clear that Uy € H' ;. The rest of the proof uses the
following asymptotic expansion of Imwp 1(|k|) (given by Lemma 2.5.6):

Imwo,1(|k|) =Im (= (ep)'(0)) k> + o(|k|*), as |k| -0 with Im (— (ep)'(0)) <0

and is similar to the proof of Theorem 2.4.15. Therefore, the details are left to the reader. [

2.6 Estimates of “mid frequencies” components of the solution

The goal is to prove (see Theorem 2.6.2) that for intermediate frequency components, i. e., for
0 < k— < |k| < kg4, the Fourier components of the solution U(k,t) decay exponentially with
a uniform exponent depending only on the compact set K = [k_,ky]|. The proof is based on
three key ingredients: the Dunford decomposition in linear algebra, the following perturbation
Lemma and finally a compacity argument.

Lemma 2.6.1

Let M € £(CY). We assume that there exists two constants C,a > 0 such that
leM]| < Cem!, vt > 0.
Then, for any perturbation A € L(Cf), one has the following estimate:

”et(M—i-A)H < Ce(—a+CHAH)t’ Vit > 0.

Proof. The proof, based on the Duhamel formula and the Grénwall’s lemma, is done e.g. in
lemma 1.6 page 97 of [12] or in the Proposition 4.2.18 page 406 of [47]. O
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2.6. Estimates of “mid frequencies” components of the solution

Theorem 2.6.2

Let K = [k_, k] be a compact interval of R™* then there exist two constants C' > 0 and
B > 0 (depending only on K) such that the spatial Fourier components |[U(k,t)| of the
solution of (2.1.12) with initial condition Uy € H | satisfy

Uk, t)| < Ce P |Ug(k)|, V¢ >0and VkeR?| |kl €K. (2.6.1)

Proof. Let k € K be fixed. By virtue of (2.3.14), o(A, 1) is included in the lower half-plane
C~, thus it follows from the Dunford Decomposition of A, | (see e.g. Corollary 2.26 page 106
of [47]) that it exists oy > 0 and Cj, > 0 such that

e ARt < Cp e™ ™t Vit >0. (2.6.2)

As the function |k| = —iAj  is clearly continuous from R™* to E(C]f), it exists an open
interval (k — nk, k + nx) such that

523

, VK€ (k—mk+m)NK. (2.6.3)
2C},

= i(A, L — Ak )l <
Hence, applying Lemma 2.6.1 with
M= —iA;1 and A= —i(Ay,L — Ak 1)
yields the following inequality for all ¢ > 0 and V|k| € (k — ng, k + nx) N K:
le” M Lf]| < Ce P with B = ay, — Ci|| Al (2.6.4)
Thus, one deduces immediately from (2.6.3) and (2.6.4) that
le it < Cem 2t Yt>0 and VY [k| € (k— gk + 1) N K. (2.6.5)

As the compact K C U (k — iy k + nk), it exists N > 0 and ky, ko, ... ky € K such that
keK

K C U (kn — Nkp s kn + nkn>- (2.6.6)

n<N
With ag, > 0 and C, > 0 given by (2.6.2) for k = k;, we define

C= max Cj, >0and a= min oy >0.
i=1,.,N i=1,..,N

i=1,.. i=1,...,

Then, combining (2.6.5) and (2.6.6) yields
e ALt < Ce™2,  Vit>0 and V|k| € K.

As the operator Ry is unitary, one finally deduces, with (2.2.12), the estimate (2.6.1). O

109



2.7. Proof of the main Theorems of the Chapter 2

2.7 Proof of the main Theorems of the Chapter 2

2.7.1 Proof of Theorem 2.1.7 (decay rate estimates)

This section constitutes the last step of the proof of Theorem 2.1.7. For this final stage, we
follow the approach developed in the proofs of Theorem 1.2.4 and Theorem 1.3.4 of Chapter 1.
For the sake of readability, we recall here the argument, which rely on Plancherel’s identity
and the three decay estimates proved for high, low and intermediate frequencies respectively in
Theorem 2.4.14, Theorem 2.5.12 and Theorem 2.6.2.

Let k_ and k4 be two fixed positive real numbers satisfying k_ < k4 such that the estimates
(2.4.96) and (2.5.32) of Theorem 2.4.14 and Theorem 2.5.12 holds.

Using the Plancherel identity, any solution of (2.1.12) with initial condition Uy € H satisfies

U@ = /k| Uk, )2 dk + /k

|U(k,t)|2dk+/ U(k,t)*dk. (2.7.1)
<k- —<Ik|<k4

k+<‘k‘

Step 1: proof of the convergence result (2.1.33)

In a non critical configuration, using the low frequency estimate (2.5.32), the intermediate
frequency estimate (2.6.2) and the high frequency estimate (2.4.96) of U(k,t), one gets there
exist three constants C; > 0, Cy > 0 and C3 > 0 (independent of U) such that

U3 < /k| ) e~ Ot U (k) 2 dk+e 2 U |3, + /k o~k Uy (k)2 dk. (2.7.2)
<k_

+<|K|

When ¢ — +00, the second term in (2.7.2) converges exponentially to 0, whereas the first and
third terms tends to 0 by the Lebesgue’s dominated convergence Theorem.

In a non critical configuration, one obtains (2.1.33) by the same reasoning only after replac-

ing the high frequency estimate (2.4.96) by (2.4.97) (thus it consists to substitute the factor
e~Cslkl ™ty o=Cslkl ™"t i the second integral of (2.7.2)).

Step 2: Estimate of the low frequency term in (2.7.2)

We assume now that the initial condition Ug € H | N E;V for some integer p > 0.

Thus, by definition on the £] norm (see (2.1.23)), [Ug(k)| < [k[? [|[Ug| o~ for a.e. k € R® and
p
consequently

/k ) e—C1|k\2t ‘Uo(k)‘2 dk < (/Rd e—01|k|2t ’k|2p dk) ”UOHi‘,N (2.7.3)
<Kk— P

Since, with the change of variable £ = v/Cit k ,

|k‘2p o—Cr Ikt g3 — (Cl)p—i-B / ‘§|2p ol de = iipg)’
R 16)PT2 JR3 3
one concludes from (2.7.3) that
—Culk|* C(p) 2
/|k|<k e~ R Uy (k)2 dk < o [Tolfzx- (2.7.4)
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2.7. Proof of the main Theorems of the Chapter 2

Step 3: Estimate of the high frequency term in (2.7.2)
In a non critical configuration:

We assume here that the Maxwell’s system is in a non critical configuration and that the initial
condition Ug € H, N H™(R?)Y for some m > 0. We estimate here the third term of (2.7.2)
corresponding to the high frequency contribution. To this aim, we denote by (k) the quantity:
(k) := (1 + |k[2)%/2. Then, using the fact that e C3/kI™*t < ¢=Cs) ™"t o yewrite this third
term as follows (we simply make appear artificially the factor (k)™ /t™)

— - —m m t m _
[ e s e [ a0P s ()" e di
ki <[K| ki <[k| (k)

<o [ 00 U9 i (1/002) dk

where we have set Fj,(r) := 7™ e~ r > 0 which satisfies: sup Fy, (1) = Cp, := (m/(Cse))™.
r>0

Thus, by Fourier characterization of Sobolev norms:
/ e~ O Yo (k)2 dk < G " Uollfgmgsyv, ¥t >0. (2.7.5)
k’+<|k‘

In a critical configuration:

We assume here that the Maxwell’s system is in a critical configuration with again an initial
condition Ug € H, N H™(R®)N. The proof is similar to the one of the estimate (2.7.5). We
simply enlightens the differences. In a critical configuration, one has to replace the estimate
(2.4.96) by (2.4.97). Thus, in (2.7.2), one has to to substitute the factor eC3lkl ™ by ¢=Calkl™*¢
in the second integral of (2.7.2). Then, one has

_ m/2 _
/ e—C’g\k| 44 ’UO(k)P dk < t—m/2/ <k>2m‘U0(k)’2 (F) 6_03 (k)~4t dk
oy <k| ks <[] (k)

<2 [ ) B8/ () i

Setting C’m/Q := sup F, /»(r), this yields, by definition (2.1.24) of the H™(R3)" norm,
r>0

/ o Cslk|™?t |U0(k)|2 dk < C~'m/2 2 ||U0H%-IM(R3)N, Vit>0. (2.7.6)
k?+<|k‘

Step 4: Proof of the estimate (2.1.34) and (2.1.35).

In the non critical case (resp. the critical case), it suffices to substitute (2.7.4) and (2.7.5) (resp.
(2.7.4) and (2.7.6)) into (2.7.2) to obtain (2.1.34) (resp. (2.1.35)).

2.7.2 Proof of Theorem 2.1.10 (optimality decay rate estimates)

2.7.2.1 Optimality of the high frequency polynomial decay rate

Determination of 7/ in an non-critical configuration

We assume first that the Maxwell system is in a non-critical configuration.
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2.7. Proof of the main Theorems of the Chapter 2

First, we emphasize that for any initial conditions Ug € H'' g (see (2.1.37) for the definition
of ’HTHF) Whi‘Ch does not contain any low frequency Fourier components (since as Uy € H yrs
supp(Ug) € R*\ B(0, k. )), we have the upper-bound given by (2.7.2) and (2.7.5), namely

Loz
CTHRROY v s, (2.7.7)

tm ’

U2, < /k O gl k5
+<

Clearly, (2.7.7) implies that 7. (defined by (2.1.39)) exists and satisfies 4.IF > m. To show
that v!IF = m, we construct for any € > 0 an initial condition Uy € H''yp such that the
associated solution of (2.1.12) satisfies

C
|U()]13, > pred for some C' >0, Vt>1.

To this aim, according to Theorem 2.4.15, we choose Ug. in the form (2.4.99), more precisely

Vi) (wioo([K)) €1
ikl (w400 ([k]))e1]” (2.7.8)

Uock) = ¢e([k|) Ry

o-(k|) = (1+ k|2~ (T+E+2D) if [k| > ky, = 0 otherwise,

where the exponent % + %5 + 5 has been chosen just above in order to ensure the H™ regularity
of Up, (see (2.5.33)). As moreover Uy () is supported in {|k| >k}, Uoe € H yp -

Therefore, applying the inequality (2.4.100) of Theorem 2.4.15, we get, as [Ug (k)| = ¢:(|k]),
_20¢ f
e 1% (14 |k|2)"(3Tm+e) < |U.(k,t)|%, forae. ke R3| [k|>kyand VE>0.  (2.7.9)

By Plancherel identity, ||U.(¢)3, = / |U-(k,t)||* dk. Therefore, using (2.7.9), one gets

k.

_2ct
L(t) = / e K2 (1 + |k|?)~B/2Fm+e) qk < ||U.(1)[13, (2.7.10)
(k| >k
that is to say, the integrand in (2.7.10) only depends on |k|,
too _a2c:
L(t) = 47T/ o M (1 4 [K[2)~B/24m+2) 12 d[k|.
k4
Using the change of variable ¢ = v/t/|k| in I.(t) yields, with |k|>d|k| = —t3 ehde
kﬁ d¢
Is(t) _ 471'75% + e—20§2 £3+2m+25 (52 _|_t)_(3/2+m+5) {74
0

Then, using £2 < t/k? and thus that £ +¢ < (1 + k%) ¢ on the domain of integration gives

Vit 2
Ce,(t) (m4 B ke 20¢
L)z Gds G0 = an )7 [T a
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2.7. Proof of the main Theorems of the Chapter 2

As C%,(t) > 0 is a strictly increasing, restricting ourselves to ¢ > 1, (2.7.10) leads to

1
vez1, Sl <) <.
Thus, vHF < m+¢, for all € > 0 and this yields v2/¥" < m. Thus, one concludes that v/ = m.

Determination of 7!I' in a critical configuration

We assume now that the Maxwell system is in a critical configuration.

The proof is very similar to the one for the non critical case and we shall only point out the
differences. First the inequality (2.7.6) shows that v\ > m /2.

To prove the reverse inequality, we proceed as for the non critical case. The main difference lies
in the choice of the initial data Ug . which is now chosen as in (2.4.102), more precisely

Vi (wp((k]))e1
Vik| (wp([K))ex|”
for some p € Py such that w,(|k|) satisfies (2.4.101) (see again Theorem 2.4.15) and the function

¢ defined in (2.7.15). In that case, we have to apply the inequality (2.4.103), instead of
(2.4.100), which leads to (instead of (2.7.9))

Uo (k) = F(Uo)(k) = ¢:(Ik|) Ry Vk € R%*, (2.7.11)

_2Ct
R

e 1T (14 [k[2)"GTmte) <|U.(k,t)|2, forae. keR3| [k| >kyand VE>0. (2.7.12)

the main difference with being (2.7.9) being that |k|? is replaced be |k|* in the exponential.

The rest of the calculations follows the same lines than in the non critical case modulo trivial
adaptations : for instance the change of variable ¢ = v/t/|k| is replaced by ¢ = v/t/|k|?>. The
remaining details are left to the reader.

2.7.2.2 Optimality of the low frequency polynomial decay rate

We compute here the exponent VII;F (defined by (2.1.40)) for p > 0 . The approach is similar to
the one used in Section 2.7.2.1 to compute .IF.

First, we underline that for any initial condition Uy € H' | (see (2.1.38) for the definition of
Hi’_ Lr) Which does not contain any high frequency Fourier components (since the support of Ug

is included in B(0,%k_)), we have the upper-bound (2.7.2) and (2.7.13), namely,

_ 2 C(p
VO S [ e uoP acs S

3
|k|<k_ P2

100z (2.7.13)

Clearly, (2.7.13) implies that %I;F exists and satisfies fyg;F > p+3/2. To show that V;jF < p+3/2,
we construct an initial condition Uy € 7—[11 L such that

u@)|Z > C(p), for some C' >0, Vt>1. (2.7.14)
H tp+%
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To this aim, according to Theorem 2.5.13, we choose Uy in the form (2.5.34), more precisely

Vi (wo,1([kl)) e
Wik (wo.1 ([k])ex|” (2.7.15)

Uo(k) = ¢lk|) Ry

o(|k|) = |k|P if k| < k_, =0 otherwise
Therefore, applying the inequality (2.5.32) of Theorem 2.5.13, we get as |Ug(k)| = ¢(|k|):

e 2O K12 < UK, 1) %, for ae. k €R?| |k| < k_ and YVt > 0. (2.7.16)

k_
By virtue of Plancherel identity: |U(t)[|3, = / |U(k,t)||* dk, it follows from (2.7.16) that
0

k_
/ e 2Ot 2P qi < |[U(8)]12,. (2.7.17)
0

Hence, using the change of variable £ = v2C't k , one obtains

1

VEE o ole 5
o . .
(2Ctpts /0 [€]7 e dE S [[U()[[5-

It leads to (2.7.14) and more precisely to

C=p) o)z with Clh.p) =
tp+§

k_
L g et ae, vex 1.
2Cwts /0 g

Thus, vX¥ < p +3/2 and one concludes that v/ = p +3/2.
P P

Appendix B

B.1. Spectrum and resolvent of Ay |
Proof of Proposition 2.3.2: resolvent of Ay |

Given F = (e,h,p,p,m,m)’ € C} and w € C\ S(k|) NSy, we look at the problem
Find U = (E,H,P,P,M,P) € CY such that (Ay | —wl)U=F, (2.7.18)

which is equivalent to finding U = (E, H, P, If), M, P) € C]f solution of the system

|k|e3 x H . . .

—T—lzﬁg,jpj—wE:e, (1)
K . (2.7.19)

e3z X . 2 v ..

— i Q My —wH=h, 1

o L2 DM (i)

iP; —wP; =pj, (2)
(2.7.20)

—iae;Pj —iw?;P;+iE —wP; = pj, (i4)
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2.7. Proof of the main Theorems of the Chapter 2

iM; — wM =, (4)
(2.7.21)
—iau,, I\./Ig—iw?n’g M, +iH — wMy = my. (11)

We want to show that this problem admits a unique solution U defining U = Rjy(w) F. The
proof of Proposition 2.3.2 is thus purely computational and reduces to solving explicitly the
system (2.7.19,2.7.20, 2.7.21). We provide some details for the ease of the reader.

Substituting the expression of P; and M, given by (2.7.20)(i) and (2.7.21)(i), i.e.
Pj=—iwP; —ip, My=—iwM,—im (2.7.22)

into (2.7.20)(ii) and (2.7.21)(ii), we get, by definition of ¢. j(w) and ¢, ¢(w) and by definition
(2.3.6) of the operators A, j(w), An, ¢(w) (the division by ge ;(w) and g, ¢(w) is allowed because
w ¢ P),

Pj = + Ap,j(w) F and ME = — =+ Am,f(w) F. (2723)

 e(W) Gme(w)

Thus, going back to P; and My, via (2.7.20)(i) and (2.7.21)(i), by definition (2.3.6) of A, ;(w), A ; (w)
iwH

Qm,é(w)

B iwE
Ge,j(w)

P, +A,j(w)F and My=— + A e(w)F. (2.7.24)

Substituting Pj, from (2.7.24), into (2.7.19)(ii) we get, by definitions (2.1.5, 2.3.6) of u(w) and
A (w):

k| e3 x E — wpu(w) H = uo (h 1302, Ae(w) F) = An(w)F. (2.7.25)
Similarly, from My in (2.7.24), we obtain, by definitions (2.1.5, 2.3.6) of e(w) and A.(w),

k| es X H— we(w)E = 50<e +i)0 02, Ayy() F) = —Aw)F. (2.7.26)
In order to eliminate H between (2.7.25) and (2.7.26), we perform the combination

|kles x (2.7.25) — wpu(w)(2.7.26)
This gives, since —|k|es x (|k|es x E) = |k|2E, (as U € C¥, e3 and E are orthogonal)
(IKP? — D)) E = wia() Ac(w)F — K] €5 X An(w)F. (2.7.27

As w ¢ S([k[), one has D(w) — |k|?> # 0 and therefore, by definition (2.3.10) of Spj(w),

_ |kleg x Ay (w) F —wp(w) Ac(w) F

: Dw) — K2

= S (W) F. (2.7.28)

Thus, since wp(w) # 0 (as w ¢ Z,, U{0}), from (2.7.25) and by definition (2.3.7) of Ap(w) :

1
H= o <|k\ e3 x Sy (@) F + Ap(w) F). (2.7.29)
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Finally, substituting (2.7.27, 2.7.29) in (2.7.23, 2.7.24) we get the expression of the other

_S|k| (w)F
Ge,j (W)

Am(w) F + ‘k‘ eg X S‘k|(w) F
Wi (W) G ¢ (w)

P, = + A, j(w)F, Myg=A,(w)F—

)

(2.7.30)
1w Sjk|(w) F

Ge,j(w)

Ap(w)F + [kles x S (w) F
N(w)Qm,f(w)

i = + Ap’j(w) F, Mg = Amj(w) F+i

The reader will then easily verify that the formulas (2.7.27, 2.7.29, 2.7.30) lead to the expression
(2.3.9, 2.3.10, 2.3.10, 2.3.12) given in Proposition 2.3.2 for the resolvent Rjy|(w).

Spectrum A | : proof of Proposition 2.3.1

From Proposition 2.3.2, we already know that
o(Ak,1) C S(k[) UST.
To prove the Proposition 2.3.1, it suffices to show that
(i) o(Ak,)NST=0.
(ii)  S(|k|) C o(Aj,1) and for any w € S(|k|), dim Ker (A —w]|) =2.

Preambulus. For both steps, we shall use the fact that U = (E,H, (P;), (P), (Mp), (Pg)) €
Ker (Aj,1 —w|) means that solution of (2.7.19,2.7.20,2.7.21) with F = (e,h, p, p, m, ) = 0.
Therefore, procceding as for obtaining (2.7.23) and (2.7.24), before division by ge j(w) and
dme(w), we deduce from (2.7.20,2.7.21) that

Vi,j, qm(w) Pj = —E, qm,(g(w) Mz = —H7 qe,j(w) Pj =iw E, qmj(w) M[ = —jwH.
(2.7.31)
Proof of Step (i). Assume that w € Sy = P. U P, U Z,,, U {0}.

(a) Let w € Pe and U € Ker (A|k\,J_ — wId), for some jo, ge j,(w) = 0, thus, by (2.7.31), E = 0.
Thus, by (2.7.31) and assumption (Hi) that yields g j(w) # 0 jor j # jo, we conclude that
P; =0 and P; = 0 for any j # jo.

Next, according to assumption (Hp) again,

e Either ¢, ¢(w) # 0 for any m, we conclude from (2.7.31) M =0, M = 0. Thus, going back
to (2.7.19)(ii) with h = 0, we have H = 0 (since w # 0). Then, from (2.7.19)(i) with e = 0,
we have P;, = 0, thus P;, = 0 since, by (2.7.22) for p =0, —iwP;, = P, and w # 0 (as
0¢ Pe).

e Or there exists a unique ¢y for which ¢, ¢(w) = 0. In that case (2.7.31) implies that
H =0 and My = My = 0 for any ¢ # £y. Finally, going back to (2.7.19) (i) and (ii) with
e =h =0, we have P;, = My, = 0, thus Py, = My, = 0 since (2.7.22) for m = p = 0 gives
—iwP;, = Pj, and —iwMy, = My, with w # 0.

In all cases, U =0, thus w ¢ o(Aj| 1)
(b) In a symmetric manner, we prove that if w € P, w ¢ o(Aj,1)-

Now, for the rest of the proof, we point out that for w ¢ P, one shows by proceeding exactly as
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for obtaining (2.7.25) and (2.7.26) that
(1) |k|es xE—wu(w)H=0, (2) —|klesxH—-we(w)E=0. (2.7.32)

More precisely, one checks that, as soon as (2.7.31) holds and w ¢ P, (2.7.32) is equivalent to
(2.7.19) for F = 0.

(c) It remains to look at w € Z,,, U{0}, i. e. wpu(w) = 0. By (Hz), one has PN (Z,,,U{0}) = 2.
Thus, from (2.7.32)(1) and since E-e3 = 0, we deduce that E = 0 and it follows with (2.7.32)(2)
that H = 0 (as H-e3 = 0). Then, going back to (2.7.31), since w ¢ P, we deduce that
P=P=0and M=M =0, thus U= 0. This proves that w ¢ o (A, L)-

Proof of Step (ii). Let w € S(|k|) and U € ker (Ay, . — w|). First note that, since by
assumption k # 0 and thus wp(w) # 0 (since w satifies the dispersion relation (2.3.4)), according
to (2.7.32)(a), we have

Kk E
H = [Kles xE (2.7.33)
wht(w)
so that, it yields with (2.7.31):
E : iwE k E - iwlk E
Pj=— L P= 2= M= _KlesxE g _ dwlkles xE oy o a

Ge (@) T gej(w) T wp(@) gme@)’ T W () gme(w)

Of course (2.7.33) and (2.7.34) means that dim Ker (Aj ;| —wId) <dim C; =2.

To prove (ii), it suffices to check that VE € C, U = (E,H,P, P, M, M) € ker (A|k|7L —w]ld), with
(H,P,P,M,M) given by (2.7.33,2.7.34) is a solution to (2.7.19, 2.7.20, 2.7.21) with F = 0. This
is equivalent (since w ¢ P) to checking (2.7.31, 2.7.32). This is rather immediate since (2.7.34) is
nothing but (2.7.31) with H given by (2.7.33) while (2.7.33) is nothing but (2.7.32)(1). It remains

to check (2.7.32)(2). However, substituting (2.7.33) into the left hand side of (2.7.32)(2) gives,
as —|k|eg x (|k| ez x E) = |k|?E for Ein C_,

(D(w) — k) E =0, (2.7.35)
which is true for any E € C, since D(w) = |k/|2.

B.2. Technical result for the analysis of the dispersion curves

We are interested in the solution of the parametrized (by ¢ € C) nonlinear equations in w € C
of the form (z € C being given):

Find w € C such that (w— 2)™ g(w) = ¢, with g analytic near z and g(z) #0, (2.7.36)

and more precisely to the fact that (2.7.36) defines implicitly w in function of ¢, via m branches
of solutions wy,(¢), for small |(].
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Lemma B. 1

Let G be an analytic function on a domain 2 C C and z €  a zero of multiplicity m € N*
of G. Thus, G can be rewritten as

G(w) = (w— 2)"g(w) with ¢ analytic on a vicinity of z and g(z) = A # 0. (2.7.37)

Then, there exist an open neighborhood U of ( = 0 and m distinct analytic functions
¢ wp(C) for n=1...,m defined on U such that

G(wn(C))=¢™ onU (2.7.38)

Moreover the functions wy,(¢) have the following Taylor expansion

a2q'(z
an(Q) = +ay (- 220

s

C24+0(¢%), as ¢ = 0, where a, = |A]Y/™ elm el , (2.7.39)

0 € (—m,m] is the principal value of the argument of A and the complex coefficients a,, are
the m,, distinct roots of the polynomial equation X™ = A.

Furthermore, one can find an open neighborhood D of z included in 2 such that the set of
solutions of G(w) = ¢™ on D for ( € U is exactly given by {w,({) for n =1,... ,m}.

Proof. We want to find branches of solutions ( — w,({) of the equation
G(w) =¢", (2.7.40)

where ( is a parameter that lies on an open neighborhood of 0. To this aim, fix 1 <n <m and
make the following change of unknown w — n, for ¢ # 0:

n=—1+w-2)a, (' <= w=z+a,"¢(1+n) (2.7.41)

where the coefficient a,, is the root of the polynomial equation X™ = A defined in (2.7.39).
Therefore by replacing (2.7.41) into (2.7.40) and using the fact that g(z) = A = al}, we notice

that on an open neighborhood of ¢ = 0, finding an analytic branches ¢ — w,(¢) of solutions of
(2.7.40) is equivalent to find an analytic branch ¢ — 7, ({) satisfying

Hy(¢n) =0 with Hy(¢n) = (1+n)"g(z+a," ¢ (1+n)) —g(2), (2.7.42)

with w, given in term of n, by (2.7.41). As g is analytic on a vicinity of z, by the Hartogs
Theorem (see |[?], Theorem 36.8 page 271), the function H, (¢, n) is well-defined and analytic on
a neighbourhood of (0,0) in C x C and satisfies H,(0,0) = 0. We then want to use the analytic
implicit function Theorem (see |?], Theorem 7.6 page 34) to solve Hy((,n) = 0. Thus, one has
first to check that 0, H,,(0,0) # 0. Indeed, from (2.7.42), we compute

OpHn(Cm) = m (L+m)" " g(z +ay " C(L+n) + (L +m)"a," ¢ ¢'(z +a, ' C(1+1m))
so that in particular
OnH,(0,0) = mg(z) # 0. (2.7.43)

Hence, the analytic implicit function Theorem proves the existence of two open neighbourhoods
of the origin U,, C C (the (-complex plane) and V,, C C (the n-complex plane) and of an analytic

118



2.7. Proof of the main Theorems of the Chapter 2

function 1, (¢) : U, — V;, satisfying n(0) = 0 such that

{(C777) €U, xV, | Hn(Cann) - 0} = {(CJ]n(C))v QS Un}

Moreover, one has

O0cHy,(0,0) a,1g'(2)

(0) = — ool = o . 2.7.44
1O = =5, Ha(0,0) ~  m(e) (27.44)
Thus ¢ = w,(¢) := 2+ a,* ¢ (1 +n,(¢)) is analytic branch of solution of (2.7.40) on U,,. Since
(0) = 0, as ¢ — 0, 7,(¢) = ¢n,(0) + O(¢?), which, put in the definition of w,(¢), gives
(2.7.39).

We point out that, as the coefficients a,,! in (2.7.39) are all distinct, we have constructed m
distinct analytic functions ¢ — wy(¢) for n = 1...,m defined on the open neighborhood U,
defined as the intersection of the sets Uy, for n € {1,..., m}, which satisfy (2.7.38) and (2.7.39).

The last point is proven with Rouché Theorem (see for e.g. Theorem 10.43 page 225 of |?]).
As g does not vanish at the vicinity of z, we can find > 0 such that, if D is the open disk of
radius 7 and center z, D C  and g does not vanish in D. Hence, by (2.7.37), the only zero of
G(w) in D is z, with multiplicity m. Let us define the function G¢ : w — G(w) — ("™ which is
analytic on 2 and 9D the circle of center z and radius 7. Then, one has:

VwedD, |G¢(w)—Gw)|=I¢™ and by (2.7.37), |G(w)| > r™ mgb\g(w)] > 0.
we

Thus for |¢| < R =r min |g(w)|"/™, one gets
weoD

V(| <R, VwedD, |Gc(w)-Gw)|<|GWw).

Therefore by the Rouché Theorem, G and G have the same number of zeros (counted with
multiplicity) in D. Hence G¢ has m zeros on D(z,r) for || < R. Let D(0, R) be the open disk
of center 0 and radius R. Thus, if we define U as U N D(0, R), then there are no other solutions
of G(w) =¢™ on D and ¢ € U than w,(¢) for n € {1,...,m}. O

Remark 2. The result of Lemma 1 is related to Puiseux series. Puiseux series have been derived
in [?7,7,7?] for the perturbation analysis of eigenvalues of non-selfdjoint matrices. However the
results of [?| do not apply directly here since in some situations we are perturbing derogatory
eigenvalues (i.e. non simple eigenvalues). Moreover, we need to compute explicitly the two first
coefficients of the Puiseux series which is not done in |?|, Section 1.2 or in |?]|, see Corollary
4.2.9.
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Conclusion and future perspectives of the Part I

In this first part, we have analyzed in details the dissipation effects due the absorption mech-
anisms present in generalised Drude-Lorentz medium, via the large time behaviour of the cor-
responding Cauchy problem. The main conclusion is that the decay of the solution is weaker
(polynomial decay) than the one observed with more standard dissipation effects such as the
electric conduction, which leads to exponential decay.

These results have been obtained under the assumption that the whole propagation domain.
A rather natural, but much more difficult, question is whether our results can be extended to the
case where absorption is present only in a strict subdomain of the domain of propagation. This
question has in particular be addressed in the case of standard dissipative media (conductive
media) concerning the decay of the local energy (i. e. the energy in a bounded domain while the
problem is posed typically in the whole space, see [9,79], in the continuation of similar results
in non dissipative media [11].
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CHAPTER 3

Mathematical formulation of the problem
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3.1 Physical and mathematical framework

3.1.1 The Drude model in a perfect lens

In this work, we consider in the real-three-dimensional space R?, a metamaterial filling an infinite
rectangular plate of width 2 L (L > 0), namely,

R = {i::(x,y,z)€R3|7L<y<L}=R><(*L,L)><R,

whose behavior is given by a Drude model [14,16,48,86], and the complementary domain, R?/R,
is composed by a dielectric, for instance, the vacuum (see Figure 3.1). The triplet (e, ey, e;)
designates the canonical basis of R3.

For any vector ¥ € R and instant ¢ > 0, we denote

» E(X,t) the electric field, » D(X,t) the electric induction,
(3.1.1)
» H(X,¢) the magnetic field, » B(X,¢) the magnetic induction.

Assuming the presence of a source current density Jg, the time evolution in the whole space of
(E,H, D, B) are governed by the macroscopic Maxwell’s equations (in the following we use the
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Figure 3.1: Description of the infinite slab filled by a Drude material in the vacuum.

notation Curl to refer to the classic curl operation in R?)

8D — Curl H= —J,, 3.1.2
t b in R? x [0, 00). (3.1.2a)

(Maxwell’s equations)
8B + Curl E = 0, (3.1.2b)

which are complemented by the constitutive laws characterizing the material in which electro-
magnetic waves propagate by relating the electric (or magnetic) field and the corresponding
induction, they are written in following form

(Constitutive laws) D=cE+P and B=poH+M, inR?®x][0,00),

(3.1.3a)
involving two additional unknowns, the electric and magnetic polarizations, respectively denoted
as, P and M. The positive constants g9 and pg stand, respectively, for the permittivity and the
permeability of the vacuum.

In the vacuum, P = M = 0 thus the Maxwell’s equations turns into

egOt E—Curl H= -7, - (3.1.4a)
(Vacuum) in R?/R x [0, 00).
o O H+ Curl E = 0, (3.1.4Db)

On the other side, for a homogeneous nondissipative Drude material, the constitutive laws are
characterized by relating the polarization fields P and M to E and H as following

xP=J, %IJ=cQPE, and M=K, §K=pQH,

where the two unknowns J and K are called usually the induced electric and magnetic currents.
Both parameters, 2. and €, are positive constants which characterize the behavior of a Drude
material. By eliminating the D, B, P and M, we obtain the time-dependent Maxwell’s equations
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in a Drude material, namely,

0 E—-Curl H+J = -J,, 9,J=¢Q*E,
(Drude material) in R x [0, 00).
o0t H+ Curl E+ K =0, K = 1o Q3 H,

(3.1.5a)

(3.1.5b)
The equations (3.1.4) and (3.1.5) must be supplemented by the usual transmission conditions
on the boundary

ey X E(-,t)]y=+1 =0, [ey x H(-,t)]y=+1 =0, forallt>0, (3.1.6)
the latter express the continuity of the tangential electric and magnetic fields through the
interfaces y = —L and y = L. The notation [f],—,, designates the gap of a quantity across
y = y07 i'e'7

[fly=yo == hE}(IH [f(yo+h) — flyo — h)],

where the limits must be understood in the trace sense, in the framework of the classic Sobolev
spaces adapted to Maxwell’s equations.

For every instant ¢ > 0, we assume the fields E(-,t),H(-,t),J(-,t),K(-,t), Curl E(-,¢) and
Curl H(-,t), satisfying (3.1.4), (3.1.5) and (3.1.6), are square integrable functions. Under this
premise, it naturally leads to introduce the following function spaces

L2(0) = {u O —RY /|u(>z)\2 A% < oo}, (3.1.7)
o

where |-| and O are, respectively, the euclidean norm and an open set of R%, d € N. In particular,
if d = 3, in addition we introduce

Hcur1(0) = {u € L* (0) | Curl u € L* (0)} . (3.1.8)
Therefore, for a fixed instant ¢t > 0, and given J4(-,t) € L? (R3) , we search for solutions fields
(E(-, 1), H(-,1),3(- 1), K(-, 1)) € (Heoun(R%))? x (L* (R)).
Remark 3.1.1. Since the space Hour1(R?) is characterized in the following way (cf. [60])
ulr € Hourn(R),
ulgs % € Hcurl(R3/R),

u € Houn(R?) <= (3.1.9)
ey x ufy=—r =0,

ey X uly=r, =0,

thus, the transmission conditions (3.1.6) for the electric and magnetic fields are implicitly implied
for elements belonging to the functional space Hour (R?).

Finally, in order to rewrite the system equations presented in (3.1.4), (3.1.5) and (3.1.6) in a
unified evolution problem, hence we introduce the operators, extension-by-zero and restriction
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to R for 3D fields as following:

I3 := L?(R) — L? (R%)
f — fin R and
0in R3/R

Rs := L* (R%) — L*(R)
F — Flp

Under the latter setting, we reformulate (3.1.4), (3.1.5) and (3.1.6) in the evolution problem

O E—Curl H+1I3J = —J,, in R3 x [0, 00), (3.1.10a)
po Oy H+ Curl E+ T3 K = 0, in R® x [0, 00), (3.1.10Db)
I =e0Q? R3E, in R x [0,00), (3.1.10c)
| 0K = o5, R H, in R x [0, 00), (3.1.10d)

and where (E,H,J,K) € (Hcur1(R?))? x (L? (R))2.

3.1.2 2D Maxwell’s equation. TE and TM equations

In the following, we exploit the invariance-by-translation properties of the established medium,
under this basis we will restrict ourselves to the study of the transverse electric equations (trans-
verse magnetic equations), i.e., when the electric (magnetic) field is orthogonal to the plane of
propagation, this fact will simplify our 3D Maxwell’s equations system into a 2D model. For
this purpose, the following hypothesis is assumed:

#(H;) The source current density Js does not depend on the variable z.

As a consequence, the whole setting of our problem is invariant with respect the z—variable.
Then we can make the simplification 9, = 0 (seen as linear operator). Following this premise,
we split every field U € {E,H,J,K,J;} (only depending on (z,y)) into U, := (U,,U,)" the
transverse component to the invariant direction e, and U := U, the parallel component to this
direction. The Curl operator can be reformulated as

Curl U — curl U ’
curl U
where curl and curl are, respectively, the 2D curl operators of scalar and vector fields, namely

0
curlu:z( yu> and curl w := 0y uy — Oy uy, Whereu:<ux>.

—0zu Uy

Remark 3.1.2. Note that for any field U = (U], U”)T satisfying (3.1.6), where the equations
are understood in the sense of distributions, assumes implicitly the 2D version of the transmission
conditions, namely; the transverse component U imposes the transmission condition:

Uzly=—1 =0 and [Uzly=r =0, (3.1.11)
and in turn, the parallel component U :

[U],-_, =0 and [Oy] _, =0. (3.1.12)
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Remark 3.1.3. Also observe that the condition U € Hgyr1(R?) implies

Uje L*(R*) and curl Uje L?(R?) (or equivalently, Uj € L*(R*) and VUje L*?(R?)),
U, € L? (Rz) and curl U, € L? (R2) ,

which naturally leads us to introduce the function spaces
H'R*) :={ue L’ (R*) | Vue L*(R*)} and Heu(R?) :={ueL*(R?®) |curluec L?(R%)},

thus U € Heur1(R?) imposes the conditions Uy € H'(R?) and U, € H.,;1(R?).

Remark 3.1.4. The respective belongings of U and U to the spaces H'(R?) and Hcyn(R?)
link us back to the 2D transmission conditions (see Remark 3.1.2), more specifically, U} € H'(R?)
contains the transmission condition (3.1.12) and U, € Hy(R?) contains (3.1.11).

Finally, let us define the infinite slab @ := R x (=L, L), the operators eztension-by-zero and
restriction to @ for 2D fields:

Iy := L (Q) — L*(R?) Ry := L2 (R?) — L*(Q)

— f 1 and , 3.1.13

7 fme F s Flo (3.1.13)
0in R°/Q

and the operators extension-by-zero and restriction to @ for scalar fields:
I, := L? — L%(R?
2 (Q) ( ) RQ = LZ(RQ) N LQ(Q)
f — fin Q and . (3.1.14)
o3 A F — Flg

0in R°/Q

Under this setting, we notice that the evolution system (3.1.10) decouples into two new inde-
pendent evolution systems. The first one involves the unknowns

(EL(t), Hy(1), IL(t), K|(-,t)) € Houn(R?) x H'(R*) x L* (Q) x L*(Q)

g0t Bl —curl Hy +1I2J, = —Js, in R% x [0, 00), (3.1.15a)
pio O H + curl E; + 1, K| = 0, in R? x [0, 00), (3.1.15b)
o) XI =0 RE, in Q x [0,00), (3.1.15¢)
O K| = 110, Ry H, in Q@ x [0,00). (3.1.15d)

The latter is called (TE) for transverse electric inasmuch as the electric field E is transverse to
the invariant direction for the problem setting, i.e., e,. The second system evokes the unknowns

(B 1), Hi(t), Jy(- 1), Ki(t) € H'(R?) x Hey(R?) x L*(Q) x L* (Q) :

c00y B —curl Hy + 1l J) = —J, in R x [0, 00), (3.1.16a)

oy Hy + curl B + I K| =0, in R% x [0, 00), (3.1.16D)

i Oy Jy =0 Ry B, in Q x [0, 00), (3.1.16¢)
| 0Ky =0, RoH, in Q x [0, 00). (3.1.16d)
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Analogously, we denominate the latter as (T'M) for transverse magnetic. Given the mathematics
similarity of the systems (7TE) and (TM), we chose arbitrarily to study the system (7T'M).
Before entering to the functional analysis terrain, we agree on simplify the notation for (TM)
by renaming the unknowns

H, Ky
E=E, H:HL:<H>, J=Jj. K:KL:<K > Js=Jg. (3.1.17)
) Y

In this sense, the T'M transmission problem reads as

(E('at)v H('vt)a J('vt)a K(’t)) € HI(R2) X HCurl(R2) X L2(Q) X L2 (Q) :

0 E —curl H + 1 J = —J,, in R? x [0, 00), (3.1.18a)
1o 0y H +curl E +TI, K =0, in R% x [0, 00), (3.1.18b)
A OJ =y Ry E, in Q x [0, 00), (3.1.18c¢)
K =0 Ry H, in Q x [0, 00). (3.1.18d)

3.1.3 Reformulation of the TM equations as a Schrédinger evolution equa-
tion

In this subsection, we reformulate the TM transmission problem as a Schrédinger evolution

equation

d
—U+iAU=F. (3.1.19)

For this purpose we assume that A is an unbounded operator on the Hilbert space
Hop := L*(R*) x L* (R?) x L*(Q) x L* (Q) (3.1.20)

(note that L% (0) = (L*(0))? for O € {R?,Q}), the latter endowed with the inner product
defined for all U = (B, H,J,K)" and U’ = (E',H',J', K’)" in ‘Hap by

(U U"),,, =e0 (B, E) o + pro (H, H' ) + (£092) ™" (1, ) o + (10 2,) " (K, K(’>Q -
3.1.21

where (u,v)y, = /u - dx dy denotes the classical L? inner product, for O € {R?, Q}.
(@
Finally, one obtains (3.1.19) by setting F := (—¢; " Js,0,0,0) and by defining the operator
A as
AU := AU, for all U € D(A) := H'(R?) x H.1(R?) x L*(Q) x L*(Q) C Hap, (3.1.22)

where A is the following matrix differential operator (derivatives in the distributional sense):

0 € L curl —&g 1 I, 0

A | P curl 0 0 —pg Th (3.1.23)
g0 2 Ry 0 0 0
0 Ko Q?n R2 0 0
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3.1. Physical and mathematical framework

One again, we recall that the belongings £ € H'(R?) and H € H_ y1(R?) contains the trans-
mission conditions in Remark 3.1.2.

Proposition 3.1.5

The operator A : D(A) C Hap — Hap is self-adjoint.

Proof. This proof is similar to the ones done in Proposition 2.1 of [16] or Proposition 2 of [17]. We
recall it here for the reading. We first prove that A is symmetric. Let U = (E, H, J, K)T, U’ =
(E',H',J',K")T € D(A), then it follows from (3.1.21), (3.1.22) and (3.1.23):

(AU, U"),, =i|(curl H,E"), — (IIy J, E' )y — (curl E,H"),
— (I K, H'), + (R2 E, J’>Q +(R2 H, K’>Q . (3.1.24)

By parts integration it is known that
Y(u,v) € H'(R*) x Heyn(R?)  (u,curl v)ge = (curl u, v) (3.1.25)

and by the fact II§ = Ry and II§ = Ra, respectively, for the classic inner products (weighted
by 1) in L?*(R?) and L? (R?), then (3.1.24) rewrites as

(AU U"),, = i[<H,curl Ees = (J, Ry E") oy — (E,curl H ),

(3.1.26)

—(K,Ry H'), + <E,H2J’>Q + (H, 11 K’>Q] = (U,AU"),,,

meaning that A is a symmetric operator. By classic results D(A) is dense in Hop, so one can
define the adjoint operator A* whose domain is defined as

D(A*) := {W €Hop | IW* € Hap VV € D(A) : (W,AV),, = (W*, V), } (3.1.27)

Since A is a symmetric operator, then it only rests to prove that D(A) = D(A*) to conclude that
A is a self-adjoint operator. Moreover, the inclusion D(A) C D(A*) is immediately followed from
the symmetry, we show the inclusion D(A*) C D(A). Let be W = (Ew, Hw, Jw, Kw)' €
D(A*), we have to prove that (Ew, Hw) € H'(R?) x H¢y1(R?). Consider the adjoint W* =
(B Hy, Jyy Kiyy) T € Hap which holds

VYV € DA) : (W,AV)y, = (W* V), . (3.1.28)

By choosing V = (F,0,0,0)" € D(A) with E € D(R?) := C°(R?), then (3.1.28) is equivalent
to
(Hw,curl E)g, = (Jw, R2 E)Q +ieo (Bw, E)ge,

and since Il = R3 and using integration by parts, we deduce

(curl Hw, E) = (Hw,curl E)p,
=y Jw, E)ge + (10 By, E)ge
= (I, Jw +ico By, E)go (3.1.29)

where (-,-) stands for the duality product in D(R?)" x D(R?), we observe that (3.1.29) implies
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3.2. Fourier decomposition of the TM Hamiltonian A: the reduced Hamiltonians Ay.

that
curl Hy =1l Jw +igo By, in D(R?Y, (3.1.30)

and provided that Ils Jw +ieg Ejy € L?(R?), then
curl Hy =1l Jw +igo By, in L*(R?), (3.1.31)

which implies that Hyy € Hcy1(R?). In the same way, by choosing V' = (0, H,0,0)" € D(A)
with H € D(R?) := (D(R?))2, one can show that Fy € H!(R?). We conclude that W €
D(A). O

3.2 Fourier decomposition of the TM Hamiltonian A: the re-
duced Hamiltonians A;.

Due to the invariance of our medium with respect to the r—axis, we can allow us to reduce the
spectral analysis of the operator A to the spectral theory of a family of self-adjoint operators
(Ar)ker whose domains are functions depending only on the variable y. This perspective will
reduce the analysis of the guide modes into a scalar problem.

Let be G the 1D Fourier transform along the z—axis, in other words

(Fu)(k) := (2 7'(‘)_% /u(z:) exp(—ikx) dz, Yue L'R)NL*R), (3.2.1)
R

which can be extended to a isometric transformation from L?(R,) to L?(Ry). For functions of
both variables x and y, we still denote by G be the partial Fourier transform in the y—direction.
Fubini’s theorem assures us that the partial Fourier transform for fields of both variables = and
y, U € Hap, is such that

U(k,"):=FU(k,) € Hip, foraekcR, where

Hip = L*(R) x L? (R) x L*((—L, L)) x L*((—L, L)).

The Hilbert space H1p is endowed with the inner product (-, -),, defined in an analogous way
as the expression (3.1.21) except that L? inner products are now defined on one-dimensional
domains, R (instead of R?) and (—L, L) (instead of Q).

By applying G to our TM transmission problem (3.1.18) leads us to introduce a family of
transmission problems indexed by k € R which read as

U(-t) = (E(-,t), H(, 1), J(1), E(.,t)) € H'(R) x Heu, (R) x L*(—L,L) x L*(~L, L) :
(0, FE —curly H+11J = —J,, in R x [0, 00), (3.2.2a)
o0 H + curly E+TIK =0, in R x [0, 00), (3.2.2b)
(T My,) R R
oJ =y RE, in (~=L,L) x [0,00), (3.2.2¢)
K = puo Q2 RH, in (=L, L) x [0,00). (3.2.2d)
here curly u:= d—u—'k : curlpw == ikuy, — 2 fo u = ( )"
wher kU= dy’ 1ku , urly u =1k uy Qy ru = (Uz,Uy) ,

and the operators I, II, and R, R are defined as in (3.1.13) and (3.1.14) but over the domain
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3.3. Spectral theory of the reduced Hamiltonian operators Ag

(=L, L) corresponding to the y—variable. Finally
H .y, (R) := {u € L*(R) | curlyu € L*(R)} = H'(R) x L*(R).

Analogously to the 2D T'M transmission problem (3.1.18), one translates (3.2.2) into a Schréodinger
evolution equation, by introducing a family of operators (Ag)rer in Hip related to A by

~

FAU)(-, k) =A(U)(-, k), foraekeR, (3.2.3)

AU := A, U, for all U € D(A) := H'(R) X Hey, (R) x L*(—L, L) x L?> (—L, L) C H1p,
(3.2.4)
where Ay is deduced from the definition of A (3.1.23) by replacing the z—derivative by the
product ik, i.e.,

0 561 curly —561 1I 0
-1 —1
= 1 0 0o - II
A =i | Ho ST Ho (3.2.5)
e R 0 0 0
0 w3 R0 0
Note once more time that the transmission conditions (3.1.6) are satisfied insofar as
[E],__,=0=[E]_,, and [H]|_ _ =0=[H]__, (3.2.6)
the which is summarized in the belonging (E, f{\) € H'(R) x Hey, (R).
Under this basis, it comes naturally:
Proposition 3.2.1
The operator A, : D(Ax) C Hip — Hip is self-adjoint.
Proof. Similar proof as in Proposition 3.1.5. O

3.3 Spectral theory of the reduced Hamiltonian operators A;

3.3.1 General structure of the spectrum of A,

Since Ay is a self-adjoint operator, we know that its whole spectrum, o(Ay) is a real subset
composed uniquely by its point spectrum (o,(Ax)) and the continuum spectrum (o.(Ag)).

For the point spectrum, we look for the real values w € R such that

~

AU =wU, for some U = (E H, 7 f{\) e D(AL)/{0}, (3.3.1)

or equivalently, by replacing the definition of Ay (see (3.2.4) and (3.2.5)),

ieg! (Curlk H-1I f) ~wk, (3.3.2a)
gyt (—curlk E‘—Hf(\) —wH, (3.3.2b)
ieg 2 RE =wl, (3.3.2¢)
i RH=wkK. (3.3.2d)
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3.3. Spectral theory of the reduced Hamiltonian operators Ag

In this sense, every non trivial solution U= (E, f{\, j, f{\) of (3.3.2) belonging to D(A)
is an eigenfunction of Ay associated to the eigenvalue w € R. Inasmuch as R? is an unbounded
domain, as the reduced Hamiltonians does not have compact resolvent, those are not completely
formed by punctual spectrum. Only the eigenfunctions cannot form by themselves a family
basis (also called modal family). In order to complete this modal family, we need to take in
consideration other proper functions: generalized eigenfunctions, which consist by relaxing the
belonging condition to D(Ag). Therefore we are interested into solving (3.3.2) inside a functional
space bigger than the solutions of finite energy.

3.3.2 Modal decomposition of A: Guided modes and point spectrum of A;

The core idea of a modal decomposition consists on representing at every instant the solution of
an evolution equation (e.g. (3.1.19)) as the superposition of elements in a family of functions
depending only on the spatial variable, the elements of this family are called free vibration modes
(or proper modes, or simply mode). In this sense, the solution U of (3.1.19) can be rewritten as
the superposition (an infinite sum for a countable modal family, or an integral for the continuous
case) where each one of the terms is the product of the form

R(U (z,y) e @), (3.3.3)
in other words, the product of a mode U(z,y) and a function depending only on the time,
allowing the variable separation between the spatial variable with the time variable.

In addition, the geometry of our problem leads us to find a particular subfamily of proper
modes, called guided modes, which are given by the form inspired in a variable separations

U(x,y) = Uly) et (3.3.4)

the function U (y) is called a reduced mode.
Note that any solution to the homogeneous evolution equation (3.1.19) of the form (3.3.3)
must satisfy
AU =wU, (3.3.5)

meaning that to find the (non trivial) free vibration modes of our problem implies to find the
eigenfunctions of the operator A.

Similarly, by replacing 9, for the multiplication by ik in the definition of A, then one can no-
tice that a reduced proper mode defining a guide mode as in (3.3.4), results into an eigenfunction
of Ax associated to the eigenvalue w :

AU =wU. (3.3.6)

(The guided modes are the modes localized in the slab material representing evanescent solutions
out of the slab, conducting us to find L?(R,) solutions.) Therefore, to find the guided modes
of the whole Hamiltonian A rewrites as to study o,(Ax),k € R. The reduced modes can be
divided into two types: the reduced proper modes (or reduced eigenfunctions) and the reduced
generalized modes (or reduced generalized eigenfunctions). The reduced proper modes are the
solutions U to (3.3.6) in D(Ay), these are solutions of finite energy and they describe the point
spectrum op(Ay). Whereas the reduced generalized modes are bounded solutions of (3.3.6), they
do not decay sufficiently at infinity to belong to D(Ag), thus they represent solutions of infinite
energy. It can be formally proved in subsequent discussions that the reduced generalized modes
characterize the continuous spectrum o.(Ag). This last spectrum consists of intervals for which
(3.3.6) has no trivial solutions in D(Ax) but admits bounded solutions.
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3.3. Spectral theory of the reduced Hamiltonian operators Ag

3.3.3 Point spectrum of A; : reduction to a scalar problem

Insofar, the Fourier transformation (or in more humble means the variable separation) has
allowed us to introduced the reduced Hamiltonians Ag. Thus the study of the spectrum o(A)
allows us to reduce the problem into a one-dimensional problem, the latter enables the explicit
computation of solutions of the system (3.3.2). For this purpose, we express the vector solution
U= (E, H,J, E) € D(Ay,) in terms of the single scalar variable E. In order to write Hand K
in terms of E, we need to assume that w in (3.3.2) is non zero, we will treat first the particular
case w = 0. We assume in the whole analysis that k # 0.

CASE w = 0.
By making w = 0 in (3.3.2) it is obtained that

.J =culy H, (3.3.7a)
NK = —curly B, (3.3.7D)
RE =0, (3.3.7¢)
RH =0. (3.3.7d)
From (3.3.7a) and (3.3.7d) we have
J=RIJ=Rculy H=cul, RH =0, (3.3.8)

and analogously from (3.3.7b) and (3.3.7c), K = 0. Hence all the fields £, H, J, K are 0 in
(=L, L) (in the Drude material). On the other hand in R/(—L, L) (the vacuum), the equations
(3.3.7a), (3.3.7b) and the transmission conditions on the interface (3.2.6) imply that

{curlk E =0, in R/(—L, L), {curlk H =0, in R/(—L, L)

A _ A _ L (3.3.9)
E(-L)=0= E(L), H(-L)=0=H(L),

Since we look for solutions U of (3.3.7) in D(Ay) it yields

Elrj(-r.) =0, o | (3:3.10)
H |g/(—1.1) = grad; ¢, ¢ € H}(R/(—L, L))

d \T
where grad;,u = <i ku, dyu) ,
we conclude that U takes the form
U = (0,Igrad, ¢,0,0)", (3.3.11)
where IT is extension-by-zero over R/(—L, L) :

:= L?>(R/(-L,L)) — L?*(R)
f — finR/(~L,L) . (3.3.12)
0in (~L, L)
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3.3. Spectral theory of the reduced Hamiltonian operators Ag

We assume for the rest of the computations that w # 0. From (3.3.2¢) and (3.3.2d) it follows

~ iEO QZ

7o —  ipg?

RE, K=-"""""RH, (3.3.13)
w w

the last ones being substituted in (3.3.2a) and (3.3.2b) combined with the identities II R f =
L—pryfand ITR f = 1(_p 1) f (where 1(_y, 1) is the indicator function on (—L, L)) yields to

— 02 ~

curly H = —iweg <1 -~ n(_L,L)) E, (3.3.14a)
~ 02 —

CllI‘lk F=iw Mo <1 — TT; H(—L,L)) H, (3314b)

—~ ~ 2
We can observe that in order to express H in terms of F, it is necessary to have (1 — g—’; Il(_LJJ)) #*
0 in R, which is only possible if w # +£,,. We examine this particular case as follows.

CASE w € {—Q, Q).

In this case and from (3.3.14b), we obtain that curly E = 0 in (—L, L), which implies E = 0
n (=L, L) (Drude material) and, recalling (3.3.2c), J = 0. On the other hand, in R/(—L, L)
(vacuum), by combining (3.3.14a) and (3.3.14b) it follows

2
K E — dd— E = curly curly E =iwpg cwly H =eopow? E, inR/(=L,L),  (3.3.15)
y?

and from the transmission condition (3.2.6), we have E(—L) = 0 = E(L). Then we have that

2 ~ fn .
{ — s E+ (R — o) E =0, nR/(=L, L), (3.3.16)

Since we are still looking for solutions E € H(R), and the equation (3 3.16) does not have non
trivial solutions in H'(R/(—L ,L)), we conclude that E=0inR/(~L,L). Hence E = 0.
Now we study the magnetic field H. The nullity of the electric field E and (3.3.14b) shows that
H=0in R/(—L, L) (vacuum). On the other side in (—L L) (Drude materlal) from (3.3.14a)
combined with the transmission condition in the interface H (-L)=0= H (L) (since H=0
in R/(—L,L)), we get

curly H =0, in (=L, L),

iy - : (3.3.17)
H(-L)=0=H(L),

thus f{\|(_L7L) = grad,, ¢ for some ¢ € HA((—L,L)), and thus, recalling (3.3.2d), K =
410 QU gradké according to w = +€,,,. Finally in this case, U takes the form
U= (0,ILgrad,, 6,0, +iuoQmgrad, ¢)', ¢ € HY (=L, L)). (3.3.18)

All these results for w € {—Q,,0,Q,,} can be summarized in the following proposition:
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Proposition 3.3.1

For all k € R*, the values —{),,,, 0 and €,,, are eigenvalues of infinite multiplicity of Ay whose
respective associated eigenspaces Ker(Ay + ), Ker(A;) and Ker(Ag — ;) are given by

Ker(Ay + Q) = {(O,ngadk 6,0, %10 Qmgrad, $)7 | 6 € H&((—L,L))},
) ) (3.3.19)
Ker(Ay) = {(O,l:Igradk $,0,00T | 6 e H&(R/(—L,L))}.

Moreover, the orthogonal space (Ker(Ar) ® Ker(Ag + Q) ® Ker(Ay — Q)" coincides
with
T divy H =0 in R/{—L, L} and
Hip(divg 0) := (E H, 7, K) eHin|
divpy K =01in (—L,L)

(3.3.20)

Proof. We have previously seen the contentions
Ker(Ay 4 Q) € { (0, T grad, ¢,0, %10 O gradi )" | 6 € HY(-L, L))},
Ker(Ay) € {(0,TTgrad; 6,0,0)7 | ¢ € HY(R/(~L, L)) } .
Conversely, by stepping back the previous computatlons one deduce that for all ¢ € H0 ((-L, L)),

then the vector (0,ILgrady ¢,0, =1 Q, grad, ) (resp. (0,IIgrad; ¢,0,0)T) belongs to
D(Ay) and satisfies (3.3.2) for w = +£Q,,, (resp. w = 0), in other words

(0,ILgrad,, ¢,0, £ i Qm grad, ¢) T € Ker(A, T Q) (resp. (0, grad; ¢,0,0)" € Ker(A;))
. This proves the identities (3.3.19).

On the other hand, one can notice the following equivalences derived from (3.3.19)

P
(E, H, 7 K) € Ker(A,)*

= H grad, é dz =0, Yée H'R/(—L,L)) (3.3.21)
R\(—-L,L)
< divy, H=0in H 'R\ (-L,L)).

Similarly,

_—~ A~

(E, H, 7, K) € Ker(Ay, + Q)"

— (H Fipo U K)-grad, ¢ de =0, Vo e HY(~L,L)

(—L,L)
<= divy, (H FipgQyn K)=0in H(-L, L),
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Henceforth
~ o~ o~ —~\ T
(E, H. 7 K) e (Ker(Ay + Q) @ Ker(Ay, — Qm))*

s divy (H —ipoQn K)=01in HY(—L, L) and divy, (H + i Qm K) =0in H *(—L, L)

— div, H = divy K =0in H'(—L, L).
(3.3.22)
The result follows by combining (3.3.21) and (3.3.22). O
CASE w ¢ {0, 0, Q.
We introduce for y € R\ {—L, L}
0?2 02
(y,0) = o <1 L 1<_L,L><y>) ) = o (1 - 1(_L,L><y>> L (33

which are piece-wise functions, constants on the domains (—L, L) and R/(—L, L) for every w # 0.
Hence we can rewrite (3.3.14) as

~

curly H = —iwe(-,w)E, (3.3.24a)
curly £ =iwp(,w) H. (3.3.24b)

If in addition, we assume w ¢ {—Q,, Q }, then it follows that p(w) # 0, hence

curl E 9 ~
curly | ———— | —w?e(,w) E =0, 3.3.25a
( () ) () (3:3.252)
H=—— " curly E. (3.3.25b)
W/J('yw)

Thus, from (3.3.2¢), (3.3.2d) and (3.3.25h):

igg Q2 0?2
curly u, 10 %% Ru, 50 UL
o W)

~

U=ViwE, Viuu= (u -

-
_ R curly u> 3.3.26
WM(‘aW) ( )

Therefore IAJA' is completely described in terms of E. Our problem reduces to find the electromag-
netic field E, the last drives us to rewrite (3.3.25a) into the scalar Sturm-Liouville differential
equation

d 1 d ~ 1 ~
- —E )+ k* —w?e(r,w) p(,w)) E=0. 3.3.27

i (o i B) * ey 00— et 3:3:21)
In order to guarantee the regularity U = Vk,wE € D(Ay), then we need the belonging E €

H(R). Such solution E € H'(R) of the equation (3.3.27) must then satisfy the transmission
condition on the interface {—L, L} (see (3.2.6)), namely,

,13’\

} = 0. (3.3.28)
dy  Jy—ir

[E]yziL =0 and [u(~,w)

By steeping back the computations we notice that the reciprocal is also true, in other words, we
therefore have the following proposition:
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Proposition 3.3.2

Let be w € R\ {=Qm, 0,2}, then E € H'(R) is solution of the ODE (3.3.27) with interface
conditions (3.3.28) if and only if U = View E € Ker (A, —w). In that case, if such solution
E is non trivial, then w € o,(A;) with U = kawE as eigenfunction associated to the
eigenvalue w.

3.3.4 Towards the solution of the scalar problem: derivation of the disper-
sion relations

In the following, we will consider the functions

0?2 02
) =0 (1= S5 1n®) . wle)i=po (1- 23 100n@),  6329)

defined for w € R\ {—Q;,,0, Q. }.
We are interested in solving the Hemholtz equation for w and k£ € R

——— B+ (K - w?e(,w)pu(-,w)) E=0,  in R/{-L,L}. (3.3.30)

The equation (3.3.30) is complemented with the transmission conditions on the interface,

. d -
[Ely—+r =0 and [u_1(~,w) — E] =0. (3.3.31)
dy y==xL
We consider the piece-wise function
k? — e o w2, for |y| > L,

k2 — w?e(y,w) ply,w) = { (3.3.32)

k% — e(w) p(w) w?, for |y| < L,

where the functions e(w) and p(w) stand, respectively, for the frequency dependent electric
permittivity and the frequency dependent magnetic permeability, and these are given by

@)= (1- f;) )= o (1- %;) | (33.33)

In order to express the solutions to the Helmholtz equation (3.3.30), we need to introduce
the principal branch of the complex square root /-, for z € C :

Vz = \z|% exp (12) , where z = |z| exp(i), 6 ¢€ (—m, ). (3.3.34)

In this sense, the last consideration yields to the usual square root for real positive nlumbers and
extend the definition in R™ by the limit form the half-plane C*, namely, v/a = a? is the real
positive square root for a > 0 and /a = i|a]% for a < 0. Therefore, we define

eka = \/k‘i2 - €(w) IU’(W) (")2’ |y’ < L,
Okw(y) == ’ (3.3.35)

HXw = k2 — g0 po w?, ly| > L.

Now we are able to express the general solution for the equation (3.3.30).
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For this purpose, we notice, since (3.3.30) is a second order ODE governed by the operator
—% + 0k ., which is invariant with respect to even distributions and odd distributions in D'(R),

hence it is implied that
VE € D'(R), E issolution of (3.3.30) <= E° and E° are solutions of (3.3.30), (3.3.36)

where L€ and E° stand, respectively, for the even and odd parts distributions of E. Moreover,
one can verify that £° and E° satisfy the transmission conditions (3.3.31) provided E realizes
them as well. This suggests to look for the even and odd functions satisfying (3.3.30). We
recall that finding solutions in H'(R) is equivalent to search for eigenvalues for Ay, meanwhile
bounded solutions correspond to generalized eigenvalues. Let us begin the analysis for the finite
energy solutions which are described by the belonging to H*(R).

Even solutions E € H!(R)

If we look for the pair solutions to (3.3.30) belonging to H'(R), then we have the following
problem in the half-line [0, c0) :

d? 2 o) :
-5 E°+0; () E°=0,in (0,L) U (L,0),
ddyf " , (3.3.37)
@ Ee’y:() = 0,

in order to find finite energy solutions, we require the condition 6, > 0 in the unbounded
domain (L, c0), which implies H,ZM >0, or

E* > g0 po w?. (3.3.38)

In this case, the solutions of (3.3.37) with finite energy define a one-dimensional space generated
by the canonical solution

” cosh (ngw y) , y € [0,L), 33,30
Uk w(y) == 3.
A5, exp (—HXw y) ,y € [L,00)

where exp(+) and cosh(-) stand, respectively, for the complex exponential and hyperbolic cosine
functions. Aj,  is a value to determinate in order to vj  verifies the transmission conditions
(3.3.31). The solution vf, , given by (3.3.39) is canonical in the sense that it holds:

14
M(',O)) dy

v, (0)=1  and < v,f:’w> (0) = 0. (3.3.40)

The condition [vf |y=1 = 0 gives us directly the value of V7
cosh (Ggw L) = Af, exp (—HXW L)
= A}, =exp (HKw L) cosh (QIQW L). (3.3.41)
Meanwhile, by substituting the value of A} , in [M(-, w)~! dd—y ve} i = 0, we obtain the implicit

relation between k£ and w

1
—— 0P sinh (0P L) = ——0) V<, exp (=0, L). 3.3.42
e % (O L) = =7 Ok Vicw exp (~0p L) (3.3.42)
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3.3. Spectral theory of the reduced Hamiltonian operators Ag

Hence, by combining (3.3.41) and (3.3.42), we obtain the dispersion equation for even modes
-the equation relating the wavenumber k with the frequency w-, namely,

0p., tanh(0p, L) = —“/iw) Oy .- (3.3.43)
0

Finally, the even solutions in H'(R) to (3.3.30)-(3.3.31) are generated by the basis

Viiw) =vi(lyl), yeR (3.3.44)

Surface plasmon even mode

Propagative even mode

0

Figure 3.2: Graphic representation of the even canonical mode Viw: (top) evanescent mode HI?M €RT,
(bottom) propagative mode 6, € iR™.

0dd solutions E € H(R)

Similarly, for the odd solutions in H(R) to (3.3.30), we consider the problem in the half-line
[0,00) :
2 2 7o ;
-5 E°+6; () E°=0,1in (0, L) U (L, 00),
v “ , (3.3.45)
E°(0) =0,
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3.3. Spectral theory of the reduced Hamiltonian operators Ag

once again, to find finite energy solutions, we require the condition (3.3.38). Thus, (3.3.45)
defines a one-dimensional solution space given by the canonical solution

W) = Ok if 0, # 0, (3.3.46)

p(w)y, y€[0,L),
v (y) = if 0f, = 0. (3.3.47)
A7, exp (—HXM y) , Yy € [L,00),

In both cases, (3.3.38) holds in order to have finite energy solutions. The expressions (3.3.46)
and (3.3.47) are said to be canonical solutions of (3.3.45) in the sense that they satisfy:

2, (0)=0  and (M (fw) ddy v;;,w> 0) =1, (3.3.48)

and where Af,  is obtained by the transmission condition [v] |,—r =0 :

M(;)U) exp (6}, L) sinh (65, L) . if 6, # 0,
i : (3.3.49)
plw) exp (04, 1) L, if 6, = 0.

k,w

In this case, we obtain a different (but dual) implicit relation between k and w, derived from

the transmission condition [M(-, w)~ % vy w] =0:if P  +# 0 then one has
K y:L k)

1
p(w) ! ‘;(D“) (9,§w cosh (e,ﬁw L)) = %, P XD (—HX,W L),
k,w

by a similar argument as in the even case solution, one can infer that sinh <0£w L) # 0 (otherwise

g, 18 ot a canonical solution as stated), hence one arrives to
w
60 coth(0P. 1) = — 1) gv (3.3.50)
K bl uo b
in the case when ngw = 0 one simply obtains

1 pw) v
= 05 - 3.3.51
i3 o ( )

Finally, the odd solutions in H'(R) to (3.3.30)-(3.3.31) are generated by the basis

Viow(y) := sen(y) vi ,(lyl)- (3.3.52)
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3.3. Spectral theory of the reduced Hamiltonian operators Ag

Surface plasmon odd mode

600 —

- ko,w(y)
[ I

' _Vk(?w(y)
6 I
I

: n —= 5
- I
I
U
I
B 1]
1
b I
I
I
I
-6 !
I
I
I
Propagative odd mode

I

osl | —Vk(fw(y)
I
I
06— !
I
I
04— :
I
I
02— I
1
I
I
02k I
I
I
04— 1
I
I
-06 1
I
I
-08 I
I
I

Figure 3.3: Graphic representation of the odd canonical mode V7, (top) evanescent mode G,Qw € RH,
(center) propagative mode G,QM € iR, (bottom) lineal mode Q{ZW =0.
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3.3. Spectral theory of the reduced Hamiltonian operators Ag

In this sense, for all k£ € R\ {0}, we introduce the following sets:

Teven (k) := {w R\ {=Qm, 0, 0} ‘ 6y, €R" and 6P, tanh(6P, L) = —’“‘l(;”) exw}
0
(3.3.53)

ot q(k) == {w R\ {=Qm, 0,2} ‘ 0y, €R* and 0F, coth(6P, L) =~ 0,§w},

1o

o0 (k) == {weR\{ U, 0, Qm}‘e,‘{weRJf 0P, =0 and 1 =-tgl

(3.3.54)
Now we can establish the following result
Proposition 3.3.3
For all k € R\ {0} we have that
op(Ak) \ {=n, 0, Un} = even (k) U dodd (k) (3.3.55)

Proof. If w € ap(Ar) \ {—m, 0, Qm} then there exists E € H!(R)\ {0} such that E is solution
of (3.3.30) and (3.3.31), hence Ee and E° are also solutions to (3.3.30) and (3.3.31). Since Eis
not identically zero then E° or EO one of them, is also not identically zero. If E° # 0, then from
the fact that E° satisfies (3.3.30) and (3.3.31) it follows that E° := Vi, for some A € C\ {0}
(where V7 is defined as in (3.3.44)) and the pair (k,w) satisfies (3.3. 38) and (3.3.43), in other

words, w € Teven (k). Similarly, w € ooqq(k) in the case E° # 0. Therefore we have the subset
relation

Tp(AR) \ {=Qm, 0, U} € even(k) U doad (k).

Conversely, if w € Oeven(k) then w € C\ {=Qp,0,Qp,} and E = Vi, (see again (3.3.44)) is
solution of (3.3.30) and (3.3.31) belonging to H'(R). Hence w € 0,,(Ag), this show the contention
Teven (k) € 0p(Ak)\{—m, 0, Q. }. Analogously one proves o444 (k) C 0p(Ar) \{—2m, 0, }. O
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4.1. Preliminaries for solving the dispersion relations

4.1 Preliminaries for solving the dispersion relations

The approach in what follows is to find, for all £ € R\ {0}, all the values w € R for which the
function v¢(-) described in (3.3.39) forms a canonical basis for (3.3.37). The latter fact leads us
to want to solve the dispersion equation (3.3.43) which is complemented with the finite energy
condition

HKW € R", equivalently, &g puow? < k2. (4.1.1)

The usual point of view for solving this kind of dispersion relation is to consider the wavenumber
k and look for the solutions w (the frequency) of (3.3.43) (we shall see that they are infinitely
many) as functions of k, giving the so-called dispersion curves. Of course, due to the high non
linearity of the equation (3.3.43), its resolution - even the existence of solutions - is not obvious.
The point of view we shall follow is slightly different that simply seeing (3.3.43) as an equation
in w: it is essentially guided by technical reasons (that we try to explain below) and inspired by
the computations made by C. H. Wilcox in [93] (see also the related works of Y. Dermanjean,
J.C. Guillot and R. Weder in stratified media [29-32,88-90]).

Before entering in the technique used for the resolution of (3.3.43) we introduce the notion
of dimensionless terms of our problem, this will allow us to deepen in the analysis in a more
comfortable way and to rescue important properties of the solutions related to the parameters
of the Drude model and the medium: Q., Q,,, L.

4.1.1 Nondimesionalization/Scaling: dimensionless dispersion equations

In order to avoid dimensional disproportions, we introduce the analogous adimensional terms of
k,w, L and the ratio linking Q. with €, which read as follows

Qe
k:=kL, w:=\opowLl, Q.=+ coomL, P=q o (4.1.2)

The ratio p between the two frequencies €2, and €2, is a characteristics of the Drude material
while Q. is a dimensionless half-thickness of the internal layer : it is the ratio between L and the
wavelength A, = o o/, of a plane wave propagating at frequency Q,, in the vacuum. The
dimensionless wavenumber « is the ratio between the half-thickness L and the z-wave length cor-
responding to the z-wavenumber k. The dimensionless frequency w represents the ratio between
L and the wavelength A\ = g p9/w of a plane wave propagating in the vacuum at frequency w.
Let us introduce the relative dimensionless permittivity and permeability, respectively as,

202 2
erw) =1-"—"% ) =1-"53 (4.1.3)

1% D
k,w? ek,w’

o= VE2E—w? &P, = VR = (W) (W) w?. (4.1.4)

Using the above quantities, the finite energy condition (3.3.38) becomes into,

We also introduce the analogous dimensionless terms associated to 6 namely,

w? < K2, (4.1.5)
and (3.3.43) implies the dimensionless dispersion equation for even eigenfunctions:

o tanh €7, = —pp(w) €, (4.1.6)
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4.1. Preliminaries for solving the dispersion relations

analogously, for odd eigenfunctions, (3.3.50) rewrites as:
55& coth gﬁD@ = —pr(w) ffzg- (4.1.7)

4.1.2 Spectral zones N~ and N~

Since (4.1.6) and (4.1.7) are invariant with respect to the sign of w or k, that is

(k,w) is solution of (4.1.6) ( (4.1.7))
= (4.1.8)
(a1 k,azw) is solution of (4.1.6) ((4.1.7)), for all aj,as € {—1,1}.

Henceforth, it suffices to consider the solutions of (4.1.6) in the first quadrant of the kT—plane
satisfying (4.1.5). We therefore restrict our study inside the set

N = {(k,w) €ERT xR | w < K} (4.1.9)
In this sense, our goal traduces to characterize the sets
Deven = {(k,w) € N | (k,w) satisfies (4.1.6) }, (4.1.10)
Dodd = {(k,w) € N | (k,w) satisfies (4.1.7)}. (4.1.11)
Since ££, € RTUiRT U {0}, we esteem convenient to decompose A in three regions as follows:

N =N"UNUNT,

N = {m,w) eN|eD, e 1R+} _ {(H,w) eN

er(w) pr(w) w? > HQ},
NT = {(m,w) eEN|eD, e R+} _ {(W) o N (4.1.12)

er(w) pr(w) w? < Hz},

NO = {(n,m en|ep, = o} _ {(m,w) eN

er(w) pir(w) w? = RQ}.

According to [14,16], it is easy to describe the regions N, 't and N with the help of the
graph of a function ®(x). More precisely, let us define the critical (dimensionless) wavenumber
and frequency

2 02
p- 2
K)g = ﬁ;;;, W, = K, (4113)

®(r) : Rt — RT is the piecewise smooth function defined by

K if K < ke,
() = 1 (4.1.14)
5 (2@ P )~ [(2 4 2 (2~ )+ 4w ) i w2 e

It is easy to see that ®(k) is strictly increasing on [0, k], strictly decreasing on [k, +00) and
thus reaches its maximum at kK = k. where ®(k.) = k.. Moreover, for large values of x, one has

P
B(r) ~ —2  with By = pQ2,. (4.1.15)
K
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4.1. Preliminaries for solving the dispersion relations

All these properties are visible in Figure 4.1 where the graph of ® is presented.

o(x)

Figure 4.1: Graphic of ®(-).

Figure 4.2: Representation of the regions N~ and N't.

Then the sets N~ and N are characterized by (see Figure 4.2)

N~ = {(/@,w) € RT x R

w<‘1>(ff)},

Nt = {(/@,w) € RT x RT

K> ke, (k) <w < /{}, (4.1.16)

N0 = {(mw) € RT x RT

K> Ke,W = @(n)}.
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4.1. Preliminaries for solving the dispersion relations

Lemma 4.1.1

Deven mNO = ®7

DoddmN0={< o ) (@) s w) (er(w)ur(W)—l)wQZ(Mr(w))‘2}.

Proof. Let (k,w) € Deven NN?, hence (k,w) satisfies
52& tanh fffD@ = —pr(w) gig:w

&P, =0,

(4.1.17)

Yo >0 ((r,w) € N) then p,(w) = 0.

the last system implies that p,(w) E,‘éﬂ = 0, and since &
Finally, from §££ = 0 we deduce

K2 = er(w) pr(w) w? =0, (4.1.18)
which is a contradiction since 0 < w < k by definition of Deyen. This proofs the first identity.

On the other hand

(k,w) € Dodd NN <= €2, = /K2 —&r(w) pr (W) w? = 0 and &2, coth&P, = —pr(w) €7,
= k=ver(w) pr(w)w? and 1= (z cotha)|,—o= —pr(w)&Y,
= k=ver (W prWw? and (u(w)?=r-w

=  r=VeuWwe? and (&(w) (W) - 1w = (u(w)?

In the last series of equivalences we have used the fact that z cothx is continuously extended
in x = 0, since the limit of x cothx when z — 0 is equal to 1, and we have also used that if w
satisfies (g, (w) pr(w) — 1) w? = (pr(w))~2 then

)
W w) >1 = w< \/’% <Q, = —puw)>0. (4.1.19)
+p
This concludes the proof. ]

Consequently Deyen and Dyqq are decomposed as

Deven = Divey U D5

even even’ Where ngen = Deven m NS? s € {_7 +}7
Doda = D,yq U Ddaa U DSy, where Dy := Doaa NN?, se€{—,0,+}.

Remark 4.1.2. In subsequent sections we will prove that for all the values of p,Q,, > 0, ngd
consists of exactly one element.
4.1.2.1 Reformulation of the dispersion equations (4.1.6)-(4.1.7) in the zone N’

In the following, we will try introduce the approach for solving (4.1.6) for values (k,w) € N,
meaning that §££ € RT. We first start our analysis for D eyen. Let us note that if (k,w) € DY, .y,
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4.1. Preliminaries for solving the dispersion relations

then from (4.1.5) and (4.1.6) we have that

D D
tanh
pr(w) = —W <0 (since 5,]32 €R™"), (4.1.20)
R,w

moreover j(w) =1 — =2 < 0 implies w? < Q2 and consequently w € (0,2,,) (since w € RY).
Henceforth

'D+

even

= {(m,w) €R" x (0,9,,) | satisfies (4.1.6)} NNT.

Due to non-polynomial nature of (4.1.6) (appearance of trigonometric complex functions) and
in order to avoid the manipulation of square roots appearing in the definition of &Y w and ¢b w
(see (4.1.4)), therefore, it appears convenient to retype (4.1.4) and (4.1.6) under the form of a
system of 3 equations with 4 variables (k,w, ¢, ¢P) € RT x (0,9,,) x RT x RT :

¢ tanh &” = —pu (w) €Y, (4.1.21a)
(V) =K —u?, (4.1.21b)
(€7 = K = er(w) pr(w) . (4.1.21¢)

The usual approach is to fix any of the four variables (usually one fixes the wavenumber ) and
solve the system for the other three as unknowns. We make some few manipulations as follow:
we first eliminate the wavenumber k in (4.1.21¢) by using (4.1.21b) in order to obtain the next
equivalent system,

eP tanh €P = —p (w) €Y, (4.1.22a)
K2 =w? + (&V)? (4.1.22b)
(er(w) pr(w) = 1 w® = (€V)* = (£P)*. (4.1.22¢)

Finally we eliminate the variable £V by replacing its value from (4.1.22a):

(er(w) pr(w) = w? = ((pr(w))~? tanh® ¢ — 1) (¢7)?, (4.1.23a)
k2 =w? + (ur(w) 2 (P tanh €P)2. (4.1.23b)

Summarizing, we have seen so far that (k,w) € D¥,, implies that (k,w,&P) is solution of

even
(4.1.23) for some ¢P € RT.

Conversely, if (k,w,&P) € RT x (0,9,,) x R is solution of (4.1.23), then by stepping back the
calculus lately made, we arrive to

€0 =60, and (€2, tanh€0,)% = (ur(w) €))7,
where f,gg and f;/& are defined as in (4.1.4), consequently

ng,g tanhgnD,g = |£/§D,g tanh££g| = |/~LT(Q) V | = _/*LT( )gﬁ w) (4124)

where we have used that tanh(-) > 0 in R} and p,(-) < 0 in (0,9,,). We have therefore prove
the following.
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Proposition 4.1.3

(kyw) € D{,eq if and only if (k,w) € RT x (0,2,,,) and for some T > 0, (x,w, T) satisfies the
system
(r(@) 1 (@) — De? = ((ur(w)) ™ tank? 7 — 1) 72, (4.1.252)
w2 = w? + (ur(w)) "2 (7 tanh7)2. (4.1.25Db)

In this case the value of 7 is given by 7 = 5,’2& (: \/HQ —er(w) pr(w) QQ) .

Remark 4.1.4. In the statement of Proposition 4.1.3, we have intentionally suggested as un-
known "7" instead of £ as a manner to introduce to the a parametric characterization which
allows us to think D" as a parametric curve {(x(7),w(7))|7 > 0}, this fact will be justified

and refined in following sections.

The characterization of the set D!, follows the same principle as for D{,.,. Indeed, one

can easily repeat the previous calculus by exchanging the role of tanh(-) by coth(-), in order to
obtain the following analogous characterization.

Proposition 4.1.5

(k,w) € Dty if and only if (k,w) € RT x (0,2,,) and for some 7 > 0, (k,w, 7) satisfies the
system

(er(w) pir(w) — D w? = ((ur(w)) 2 coth® 7 — 1) 72, (4.1.26a)

K2 = w? + (ur(w)) "2 (7 cothT)2. (4.1.26b)

In this case the value of 7 is given by 7 = gg (: \//-@2 —er(w) pr(w) QQ) .

4.1.2.2 Reformulation of the dispersion equations (4.1.6)-(4.1.7) in the zone N~

It is possible to give a similar characterization for values (k,w) € D~ with some changes.
First, we notice that if (k,w) € N7, then (£, € iRT meaning that £% < &.(w)pu,(w) w?,
which combined with (4.1.5) leads us to

w? < & (W) pr (w) w?. (4.1.27)

The last inequality, applied to the Drude model (see (4.1.3)) yields

QQ 292 QQ4
w2<< _m> <1_P m>w2:w2_(1+p2)gi+pw2m

w2

S o W (4.1.28)
hence w € (0,k.) C (0,%,,) (since k. < ,,). Therefore
D ven = {(n,w) € RT x (0,k.) | satisfies (4.1.6)} AN

On another hand, for (k,w) € N~ we define

Miw = Ver(w) pr(w)w? — k2 € RT (and consequently 5,?& =1Nkw)- (4.1.29)
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In this sense, if (k,w) € Dayey, by substituting (4.1.29) in (4.1.6) we obtain

even’

—pir (w) gfy,g = f,gg tanh frgg
= (iNkw) tanh(in, )
= (INw) (i tannew) = —Mkw tannegw,

thus the dispersion equation rewrites as
M a0 g = fr (W) €4 (4.1.30)

From the latter, a new (important) observation is about the sign of tan,, indeed, since
w € (0,k:) C (0,9,,) and consequently p,(w) < 0, then (4.1.30) implies 7y, tann,, < 0, hence

tann., <O0.

oven depending on the belonging of (1), w, tan ny )
to each one of the branches of the graph of the real tangent function, tan(-).

The latter suggest to study the solutions (k,w) € D,

Using the fact that the positive domain where the real tangent function defines a disjoint union
of intervals, namely,
tan " {R"}NRT = U ((n—%) 7r,n7r), (4.1.31)
neN

then the property, tann,, < 0, yields to express 7, of the form:
Nrkw = N — arctanT, for some 7 > 0. (4.1.32)
In here, we have parametrized each point in the interval ((n — %) M, nﬂ) into the form
{nm—arctant | 7> 0}.
This lead us to define the family of functions
Non : [0,+00) — ((n— 3)m,nw], non(r) :=n7 —arctant, n €N, (4.1.33)
in such a way that (4.1.32) retypes as

Nkw = Non(T), for some 7 > 0. (4.1.34)

By substituting the latter in (4.1.30) and by noticing that

tann, (1) = —7, for alln € N, and 7 > 0, (4.1.35)
then we obtain
—7 1an(7) = pr(w) EF - (4.1.36)
Summarizing, (k,w) € DY, satisfies, for some n € N, (4.1.36) and
(1) = Ver(w) pr(w) w? — k2. (4.1.37)

From here, we begin the same approach as the reformulation of DE,,. We see the couple of
equations, (4.1.36) and (4.1.37), as a system of 4 variables (k,w, &Y, 7) € RT x (0, k.) x Rt xRt
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satisfying
—T 20 (7) = pir(w) €Y,
(€)= r* =, (4.1.38)

U%n(T) = &p(w) pr(w) w? — K2,

and by an analogous algebraic manipulation previously made, we arrive to the system

(er(w) pr(w) — D w? = <(Hr(w))2 2+ 1) ns,. (), (4.1.39a)

K2 = w? + (e (W) 72 (T 720 (7))2. (4.1.39b)

Conversely, if for some n € N, (k,w, ) € RT x (0, r.) X RT is solution of (4.1.39), one can verify
that

Mon(T) = Nww and  (T02a(7))* = (r(w) €1,)° (4.1.40)

Since 1y, (+) satisfies (4.1.35) and from the first equation of (4.1.40), we infer that tann., =
—7 < 0, and by substituting the latter in the second equation of (4.1.40) and taking square root
we get (once more, since p,(w) < 0in (0,£,,))

“Mw 1NN w = [N tannew| = |p (W) fl‘{/:£| = —pr(w) ffzgv (4.1.41)

which is equivalent to (4.1.6) with the consideration §££ = i1y w, this shows that (k,w) € D¢,

even*

All the above can be condensed in the following proposition:

Proposition 4.1.6

(k,w) € Dgyep if and only if (k,w) € RT x (0, k) and for some n € N and 7 > 0, (k,w, T)
satisfies the system

(er(@) pr(w) = Dw? = (@) > 72+ 1) 13, (1), (4.1.42a)
K2 = w? + (W) 72 (Tan(1))2 (4.1.42b)
In this case the value of 7 is given by 7 = —tan(i&2).

For the characterization of the set D_,,, we see that we cannot simply change the role of tan(-)
by cot(-) in (4.1.30) and consequently the role of arctan(-) by arccot(-) in (4.1.33), this occurs
because, while the identity

tanh(iz) =1itanz, x €R

occurs, in the other hand we have that
coth(iz) = —icotz, x€R,

so the appearance of the negative sign sligthly modifies the computation. Nevertheless, we will
obtain a resemblance to Proposition 4.1.6. Indeed, we recall that for (k,w) € D44y C N~ we
have 5,?& = i1y w, where 1, is defined in (4.1.29). Since

(1Mr,w) cOth(insw) = Nkw Ot My w,
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therefore, (4.1.7) rewrites as
M COb Mg = —fir (W) EF - (4.1.43)

By using the identity
tan(z + §) = —cotz, z€R,

we arrive to the corresponding reformulation of the dispersion equation in D_,,,

Mew ta0(New + 5) = pir(w) €Y, (4.1.44)

Notice the similitude between and (4.1.30) and (4.1.44), indeed, (4.1.44) is a shifted version
of (4.1.30) inside the argument of the tangent function, the latter fact lead us to consider the
following function:

Nont1 : [0,400) — (nm, (n+ 2) 7], nont1(7) = (n+3)m—arctan7, n € NU{0}, (4.1.45)

which satisfies
tan (non41(7) + 5) = —.

From here we can replicate exactly the same reasoning made for arriving to Proposition 4.1.6.
The following result is therefore obtained:

Proposition 4.1.7

(k,w) € Dyyq if and only if (k,w) € RT x (0,k.) and for some n € NU {0} and 7 > 0,
(k,w, T) satisfies the system

(er(w) pr(w) — Dw? = ((ur(w) > 72+ 1) 53,41 (1), (4.1.462)

R =w? + (kr (Q))_Q (T 772n+1(7))2 . (4.1.46b)

2

In this case the value of 7 is given by 7 = tan (i Erw T+ E) .

Remark 4.1.8. We can standardize the definition of the functions defined in (4.1.33) and
(4.1.45) as follows: for all n € N,

-1
n 5 w;n] y Mn(T) = gn —arctanT, n € N, (4.1.47)

i 0y+00) —

therefore the definition of (4.1.47) coincides with (4.1.33) (resp. (4.1.45)) when n = 2m is a
positive even number (resp. n = 2m + 1 is positive odd number).

4.1.3 The dimensionless dispersion systems (DS,,),>o and the dispersion curves
(Cn)nZO

In the previous section we presented characterizations of the sets Dgyen, Ddvens Doad> Pigq 5
the solutions (k,w) in a certain domain resolving a system (among a family of more manageable
systems) by including the existence of a positive parameter 7 > 0. This approach is inspired in
the previous work by C. Wilcox (see [93]). This approach suggests to see the dispersion solution
sets Deven, Dodd as the countable union of dispersion curves designed, respectively, by the even
and odd positive numbers, each of them characterized by what we will call a dispersion system.

This idea can be formally expressed as follows, first we introduced the even dispersion systems
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’Dispersion system (DSy) ‘

(DS0) (er(w) pr(w) — 1) w® = Ao(7) (ur(w)) ™ + Bo(7), (4.1.48a)
0
k2 =w? + Ag(1) (pr(w)) 2, (4.1.48D)
where the functions Ay and By are defined in (0, +00) as

Ao(7) := (7 tanh 7)?, By(7) == —7%, 7>0. (4.1.49)

’Dispersion system (DS2,) ‘

(er(@) pr(w) — 1) w? = Agn(7) (1r(w)) ™2 + Ban(7), (4.1.50a)
(DS2n) 2 2 -2
R* = w4+ Aop(7) (pr(w))™ . (4.1.50Db)

where n € N and the functions Asg,, and By, are defined in (0, +00) as
Aoy (1) := (T 120 (1))?, Bon(7) :=1n3,(1), 7>0. (4.1.51)
In this sense, Propositions 4.1.3 and 4.1.6 can be rewritten as the following identities,

D:ven = CU? ngen = U CQn, (4152)

neN

where the even dispersion curves are defined as

Co := {(n,w) € R x(0,9,,)

(k,w, T) satisfies (DSy) for some 7 > 0},
(4.1.53)
Cop 1= {(/{,w) eRT x(0,9,,)

(k,w, T) satisfies (DSay,) for some 7 > 0}, n € N.

Therefore D gyen is the countable union of dispersion curves indexed by the non negative even
numbers,

Z)even = U CQn- (4.1.54)

n€Ng

One can expect that decomposition of the set D,qq into Didd and D, follows the same princi-
ple as for Deyen. However, the latter would mean that D4, reassembles a countable collection of
dispersion curves indexed by the positive odd numbers {2n+1|n € N}, meanwhile D!, forms
an extra dispersion curve! Fven if this fact does not present any mathematical contradiction,
we want to keep consistency within the presentation of D,qq, more precisely, we aim to present
D oda as the countable union of dispersion curves indexed by the positive odd numbers (with no
extra curve). For this purpose, we need to be careful in defining the odd dispersion curves, we
proceed by defining the odd dispersion systems as follows:

Dispersion system (DS7)

(DSH) (er(w) pr(w) — D) w? = AT (7) (ur(w)) "2 + B (1), (4.1.55a)
' K2 = W+ AT () (@), (4.1.55b)
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where the functions A7 and Bj" are defined in (0, +00) as

Ai"(T) = (7 COthT)Z, BT(T) =72 7>0. (4.1.56)

Dispersion system (DS7)

(DsT) (er(w) pr(w) = D) w? = Ay (1) (ur(w)) ™" + By (7), (4.1.57a)
1

K=t AT (T) (@)%, (4.1.57b)
where the functions A] and B; are defined in (0,400) as

AL (1) = (7 m (7)), By (1) := ni(r), T >0. (4.1.58)

’Dispersion system (DS2,+41) ‘

(er(w) pr(w) — 1) w? = Agnp1 (1) (pr(w)) "> + Bopya (1), (4.1.59a)

DS,
(P K2 = P 4 Agnr(7) ()2, (4.1.500)

where n € N and the functions Ag, 1 and Bag,41 are defined in (0, 4+00) as

Agpi1 (1) = (T m2n41(7))?, Ban41(7) == 3 41(7), 7> 0. (4.1.60)

We define also the odd dispersion curves as

Cf = {(m,w) €RT x(0,92,,)

(k,w,T) satisfies (DST) for some 7 > 0},

Cy = {(K,W) €RT x(0,9,,)

(k,w, T) satisfies (DS7) for some 7 > 0},

Cont1:= {(/@,w) €RT x(0,9,,) | (k,w, T) satisfies (DS2,,41) for some 7> 04, n €N,
(4.1.61)
therefore Propositions 4.1.5 and 4.1.7 rewrite as
D—gdd = CT? D;dd = (U C2n+1> U Cl_ (4.1.62)
neN

Note that we decomposed the first odd dispersion system in two parts, namely, (DSD corre-
sponding to solutions in the zone N, and (DS7) for solutions in N~. This is issued from the
fact, as it will be later proved, that these two systems form separately C°° curves but concate-
nated by adding a point (which coincides to be the unique solution (k,w) of (4.1.7) such that
er(w) pr(w) w? = k%, that is £, = 0, in other words, the unique element of DY ;) form a single
C' curve solution resulting in what we will name the dispersion curve Ci. In other words, we
will consider the following system

’Dispersion system (DS7) ‘

(er(w) pr(w) = 1) w® = A1 (7) (pr(w)) ™2 + Bi(7), (4.1.63a)
(DS1)

K2 = w? + A (1) (pr(w)) 72, (4.1.63b)
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2
Al_(tan(gs)),0<s<17 <g(1—s)tan(gs)>,0<5<1,

Ai(s) =<1, s=1, =< L, s =1,

2
AT (s —1), s>1, ((5 — 1) coth(s — 1)> , s>1, (4.1.64)
2
By(s) By (tan(%s)),0<s <1, r<5(1_3)>,0<s<1,
1(s8) = -

Bf (s —1), s > 1, —(s—1)2, s> 1.

The definitions of A; and By arise from smoothly mapping (C'*°) the intervals (0, 1) and (1, 4+00)
onto (0, +00), respectively, given by the following diffeomorphisms

(0,1) — (0, +00) 1 (1,+00) — (0,+00)
an )
s HT:tan(gs) s = T=s5—1

In this sense, A; gathers the information of A and A] inside, respectively, the intervals (0, 1)

and (1,+00). Similarly for By, By and Bi". On this basis, we can equivalently redefine C] and
Cy as

Cy = {(ﬁ,w) €RT x(0,9,,)

(k,w, T) satisfies (DS1) for some 7 € (0, 1)},

(4.1.65)
Cf = {(/i,w) € R x(0,9,,) | (k,w, T) satisfies (DS7) for some 7 > 1}.
In addition we define the dispersion curve C; as
Ci:= {(/@,w) € R x (0,9,,) | (k,w, T) satisfies (DS1) for some 7 > 0}, (4.1.66)

Finally, D,qq is the countable union of dispersion curves indexed by the positive odd numbers,

Doaa = | J Cont1. (4.1.67)

neNg

Remark 4.1.9. Thanks to Remark 4.1.8, we can regroup the definition of the dispersion systems
for natural numbers n > 2 as follows

’Dispersion system (DS,,) for n > 2‘

(D) (er (@) pr(w) = 1) w® = An(7) (pr(w)) ™2 + Bu(7), (4.1.68a)
DS,

K = 4 An(r) (@) 2, (4.1.68)
where n > 2 and the functions A,, and B,, are defined in (0, +00) as

An(r) :=72a(7)%,  Bu(r) :i=ma(7)%, 7>0. (4.1.69)
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4.2 General technique and tools for the parametric resolutions
of the dispersion equations

4.2.1 A general family (4.2.2) of 7—dependent systems

In great part of the work which follows, we enter to the domain of the study of the solutions
of the parametric curves consisting of points, (k(7),w(7)) satisfying the dispersion equation
(4.1.6). Among all the properties we will derive for the parametric curves, there are specially
two of great interest leading a technique developed in this work consisting in basic tools —basic
real analysis— : the first one which is also the first result we state for those curves is —as it
should be— the existence and uniqueness of smooth curves; secondly, we pay attention to the
critical points, that is, the points where the derivatives of the parametric curves nullify, giving
as consequence a complete study of the intervals of decaying or increasing.

We present now the main general technique used when treating this topic. In first instance, we
notice from the expressions of the systems (DS,,)n>2, (DST), (DST), (DS1) and (DSy) (defined,
respectively, in (4.1.68), (4.1.57), (4.1.55), (4.1.63) and (4.1.48)) the appearance of two recurrent
functions defined as follows:

Definition 4.2.1 (Definiiton of u and v). We define the continuously differentiable functions

on (0,9,,) \
2
w(w) = (e (@) () — 1) w2 = 22m (14 202,

o (4.2.1)

By using the last defined functions, we can rewrite the dispersion systems (DSy)n>2,(DS7),
(DST), (DS1) and (DSy) into a general abstract form

u(w) = A(7) v(w) + B(7), (4.2.2a)
K% = w? + A(T) v(w). (4.2.2b)

Note that if (k,w) solves (4.2.2a) then (4.2.2b) is equivalent to
x* = J(w) — B(1), (4.2.3)

where we have defined

T = w’ + u(w) = &r(w) pr(w) w* = w* +

o~ (L+ %) Q7
In some results it will be more convenient to work with the equivalent expression (4.2.3).

4.2.2 A general existence and uniqueness result for (4.2.2)

The proof existence of solutions for a system of the form (4.2.2) resides on the Implicit Func-
tion Theorem, whose hypothesis can be verified under specific assumptions for A(-) and B(-),
moreover, if these hypothesis are verified for every 7 > 0, then it is guaranteed the existence of
a global and smooth curve solution {(k(7),w(7)) | 7 > 0}. For this purpose, we first give some

important properties for u(-), v(-) and J(-).
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Figure 4.3: Graphic representation of the functions J(-) (top) u(-) (bottom left) and v(-) (bottom right).

Lemma 4.2.2

The following properties hold for u(-),v(-) and J(-).

(a)
lim u(w) = 400, lim v(w) =0,
w—>0 w—0
lim u(w) = —032,, lim v(w) = +o0;
w—Q,, w—Q,,

(b) v'(w) >0, for all w € (0,9,,);
(¢) v(w) <0, for all w > 0;

(d) J'(w) <0ifwe (0,p2Q,,), while J'(w) > 0if w > p2 Q,,..

Proof. The property (a) follows directly from the definition of u(-) and v(+) in (4.2.1).
By differentiating v(-) in (4.2.1) we have,

v (W) = =2, (w) b (w) >0, since pl(w) > 0 and p,(w) <0 in (0,9,,), (4.2.4)
while for u(-) we compute

ZQ4 2 ZQ4
u(w) = F2m - (14 ) 22, thus (@) = —Lom, (4:25)
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from which (b) and (c) follow immediately. Finally, for w > 0 we have

J(w)=2w— :? <0 <= 2w<

—m

Now we are able to establish the following theorem:

Theorem 4.2.3

Let be I C R an open interval and m € N U {co}. Suppose that A, B € C™(I) such that
A(7) > 0 for all 7 € I. Then there exists unique C™(I)—functions

w:1—1(0,9,,) and %:I—R"
such that for each 7 € I, (k(7),w(7)) is the unique solution of the system
{ u(w) = A(1) v(w) + B(1), (4.2.7a)
K2 =w? + A(T) v(w). (4.2.7b)

Conversely, if there exists C™—functions w : I — (0,9,,) and % : I — R, such that
(k(1),w(7)) solves (4.2.7) for every 7 € I, then A, B € C™(I).

Proof. Let us define the function F : (0,9,,) x I — R given by
Flw,7) = A(1)v(w) + B(1) — u(w). (4.2.8)
From the hypothesis we have that F' € C"™((0,£2,,) x I) and thanks to (4.2.2) we verify that
0w F(w,7) = A(T)v'(w) — v/(w) >0, forall (w,7) € (0,9,,) x RT. (4.2.9)

Let be 19 € I fixed and consider the function F(-,7p) : (0,£,,) — R. From Lemma 4.2.2 one
can deduce that, since A(7y) > 0,

lim F(w,79) = —oc0 and lim F(w,79)= 400, (4.2.10)

+ —
w—>0 w—

then by continuity, there exists w, € (0,,,) such that F'(w, ,70) = 0, this value for w_ is
unique since (4.2.9) guarantees that F'(-,7p) is an increasing function. Hence, (4.2.9) and the
Implicit Function Theorem show that the function defined as w(79) := w,, is C"(I) and satisfies
F(w(m0),70) = 0, for 79 € I. Because of the way F' was defined, we get that (w(7p), 70) satisfy
(4.2.7a). Finally, by defining

R(T) = \/(Q(T))2 + A(T)v(w(1)), Te€L (4.2.11)

On the other hand, if (K(7),@(7)) solves (4.2.7) for every 7 € I, then it follows that

hence A, B € C™(I) provided that w,x € C™(I), concluding the proof of this theorem. O
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4.2.3 Monoticity result for the solution to the solution of (4.2.2)

In what follows, we assume the hypothesis and notation of the statement and the proof of
Theorem 4.2.3. Theorem 4.2.3 enable us to see the solutions of the abstract system (4.2.2) as a
parametric curve

C = {(&( )| T > 0}. (4.2.12)

The curve C possess a certain degree of smoothness provided enough regularity on the functions
A(-) and B(-). In particular we give notorious interest to the first derivatives of w and &, both
of them guaranteed by assuming A, B € C'([).

Remember that our ultimate goal is describing the collection of dispersion curves, {Cp}nen,, as
graphs over k. The last goal is reached whenever it is possible to invert the function 7~ &(7)
on the interval I, in this case, the curve C takes the form of the graph

C={(r,&" (k)| € R[]}, (4.2.13)

where @* = wo {k} ! and {&}~! is the inverse function of %(-) which maps the interval %[I]
onto I. The continuity of k — {k}~!(k) is guaranteed by the continuity of 7 + %(7), which
leads in turn the continuity of the function x — @*(k). On the other hand, the function @* has
the same smoothness as w and & as long as & # 0, moreover, the Inverse Function Theorem
allows us to easily compute the first derivative as

d . o (T

1k =30

where %(7) = k and &'(7) # 0. (4.2.14)

The differentiability of @* at x € K[I] for which (8)'(7) =0 (K(7) = k) must be studied by a
limit computation, in other words, one must verify the existence of the limit

el (4.2.15)

li =
T’inn' H,(’T/) ’

The Implicit Function Theorem allows us to implicitly calculate the derivatives of w and k.
Indeed, the first derivative of w can be found as:

i O @), Ar)u(@(n) + B'(r)
w'(T) agF(Q(T), T) A(T) U’(@(T)) o (Q(T)) ) (4.2.16)
while (4.2.2b) gives us
R (1) = le(f) ([25)(7) + A(r)v'(@(7))] &' (1) + A'(7) v(&(ﬂ))j (4.2.17)

where the denominator never degenerates given the hypothesis of Theorem 4.2.3. One can also
derive an alternative expression for &'(7) in terms of @' (7) using (4.2.3):

(1) = 27 0) (J'@(r)& () = B'(7)). (4.2.18)

By substituting (4.2.16) into (4.2.17) (one obtains the same result by substituting (4.2.16) in
(4.2.18)) and by reducing terms, then we obtain
1 A’(T)U(UJ(T)) ( (t ) [ @(T)+ A(7) U’(&(T))] B'(7)

FO = 5 T A eEm) —w@m)  4219)
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where it was used the fact J'(w) = 2w + v/(w). The two expressions for the first derivative
of ®(7), namely, (4.2.17) and (4.2.18) will be subsequently used. On another hand, (4.2.16)
provides a first manner to localize the critical points of W(7), indeed,

J(r)=0 <« A(r)v(a(r))+B'(r)=0, (4.2.20)
in this sense, we can distinguish two scenarios depending if (A’(7), B'(7)) nullifies:
e If (A'(7),B'(1)) = (0,0), then 7 is actually a critical point of &(7).

o If (A'(1),B'(1)) # (0,0) then, if 7 is a critical point of @(7), necessarily A’(1) # 0 and
B'(7) # 0 (remember that v(@(7)) > 0), hence

_B'(7)
Al(r)’

J'(r)=0 <= v(@(r)) =a(r), where a(r):= (4.2.21)

in this case, since v(-) is an increasing function in (0, 2,,) (see Lemma 4.2.2), then
a(r) = v (a(1)), (4.2.22)

where v{=1}(.) stands for the inverse function of v(-) in (0,£,,). On the other hand,
substituting v(@(7)) = a(r) in (4.2.7a) yields to

A(r) B'(7)

u(@(7) = B(r),  where B(r) = A()a(r) + B(r) = ==

+ B(7). (4.2.23)

Once again, since u(-) is monotone in (0,£,,) we consider its inverse, u{=1(-), hence
(4.2.23) implies
@(r) = w1 (B(1)). (4.2.24)

Comparing (4.2.22) and (4.2.24) we obtain a necessary condition for a critical point 7 € I,
namely

v (a(r)) = Y (B(1). (4.2.25)

In fact, we can also prove that is a sufficient condition, for that we explore when the
derivative (4.2.16) is negative or positive. For this purpose it is important to consider the
sign A'(+), as established in the following theorem.

Theorem 4.2.4

Under the hypothesis and notation of Theorem 4.2.3. If «(-) > 0 and A’(-) > 0 in I, then
the following statements are true for all 7 € I:

(a) it @ (r) = 0, then vt~ (a(7)) = ut"(B(r));

(b) if & (r) < 0, then v{=1} (a(r)) < ul=1}(B(r));

(c) if & (7) > 0, then v{-1} (7)) > w1} (B(7)).

Proof. The proof of (a) has been treated in the latter discussion. We prove hereafter (b). Assume
that @'(7) < 0, by using (4.2.16) and the fact 9, F(@(7),7) = A(r) v (@(7)) — «/(@(7)) > 0,
hence it follows that

Al(r) U(Q(T)) + B'(t) > 0.
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The latter together with the hypothesis A’(-) > 0 in R leads to

_B'(7)
A(7)

a(r) = <v(@(r)), (4.2.26)

and since v(+) is strictly increasing, so it is v{=1}(.), therefore
oI (1)) < @(7). (4.2.27)
Since w(7) satisfies (4.2.7a) and using (4.2.26), we have, according to (4.2.23),

A(r) B'(7)

a B =680 (4.2.28)

u(Q(T)) = A(T)U(@(T)) + B(1) > —

This time we use that «{=1}(-) is strictly decreasing (u(-) is strictly decreasing) to deduce from
the latter that
@(r) < w7 (B(1)). (4.2.29)

From (4.2.27) and (4.2.29) it follows the conclusion of (b). The proof of (c) is analogous. [

One can return to our Drude model by recurring to the definition of u(-),v(-) given in (4.2.1),
from which we deduce the expressions for the inverse of these functions in the domain (0,2
namely,

m)»

1 1
2 04 2 2 2
z+(1+p?)Q;, 273 4+ 1

Therefore, for a critical point 7 € I of w(+), the equation (4.2.25) yields the following

2\ < P )é
of%(T)—Fl C\B() + (140005,

This implies

1
a”z(r)+1 _ B(r) +(1+p°) 07, 2 p(7)
o = or thus p“a"2(7)=1+ E

In this sense, we have the following corollary.

Corollary 4.2.5

Under the assumptions of Theorem 4.2.4, then the followings are true for 7 > 0 :
(a) if @ (7) = 0, then Spa, (1) =0;

(b) if &'(7) <0, then S, () <0;

1€

(c) if &(7) >0, then S, (1) > 0;

where S, :(0,4+00) — R is defined as

B(7)
QZ

m

Sp2,, (1) =1+ —pPa3(r). (4.2.31)
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From the last corollary, we give interest to study the zeros (if any) of the function S, o (-),
in order to treat this problem, it will be useful to consider the critical points of S, (-) and
classify them as local minima or maxima. For this purpose, we present the following result links
the critical points of S, () and af-).

Proposition 4.2.6

Under the assumptions of Theorem 4.2.4, then S, (-) and a(-) have the same intervals of
increase (resp. decrease). In particular, they have the same critical points, moreover, those
have the same nature of local minima, local maxima or saddle point.

Proof. By derivating, S, o (-) and using the definition of a(-) and 3(-) in, respectively, (4.2.21)

and (4.2.23), we obtain the following:

since a(-) > 0, it follows that S, o (7) and o/(7) have the same sign, therefore they are simul-
taneously increasing (resp. decreasing) in the same intervals. In the same way, S| o (7) =0 if

and only if o/(7) = 0, hence they share the same critical points. Furthermore, if 7* is a critical
point of S, (-) and a(-), by computing the second derivative of S, o (7*), we have that:

$ta, )= (204 2 i)

* o/ (77) + (A(T*) - ’;2@—3(7*)> o/ (%)

o wi, _ wi,
A(T* 2
= < u();;b) + % 04_3(7*)> (1), (since o/ (7%) = 0).
Thus ;’&m (7*) and o”(7*) have the same sign, provided that A(-) > 0 and «(-) > 0. O

4.3 Study of the curves (C,),>2.

As said previously in Section 4.1.3, our aim is to prove that the sets (Cy),>2 are the graphs of
a C°°— function on the variable k.

The outline of the rest of this section is as follows:

e In Section 4.3.1 we prove that each C,, constitutes a C*>°—curve, {(kn(7),w,, (7)) |7 > 0}.
e In Section 4.3.2, we study the monotonicity of the functions 7+ w,, (7).
e In Section 4.3.3, we study the monotonicity of the functions 7+ K, (7).
e In Section 4.3.4, we study the behaviour at oo of the functions 7 +— w,,(7) and 7 — K, (7).

e In Section 4.3.6, we give a quite complete ( "geometrical") description of the dispersion
curves.
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4.3. Study of the curves (Cp)n>2.

4.3.1 Existence and uniqueness of the solution (x,(7),w, (7)) of (DS,)

Theorem 4.3.1: Existence of the parametric curves solutions to (DS,,),>2

Let be p,2,, > 0 and n > 2 fixed. There exists a unique couple of C*° functions w,, :
[0,00) — (0, ke) and Ky, : [0,00) — R such that for any 7 > 0, (w,,(7), kn(7)) is solution
(parameterized by 7) of (DS,,) (defined in (4.1.68)-(4.1.69)). Consequently, C, is fully
described as

C, = {(lin(T),gn(T)) | T > 0}. (4.3.1)
Moreover, the initial point of the curve C, is given by (£, (0),w,(0))

1
2

00 = knl0) = i = 0%, ((F) + 0 92) (13.2)

In particular, the sequence (ky(0))n>2 forms a strictly decreasing sequence that tends to 0
when n — +o0 as 2p Q2 /mn.

Proof. The existence of the C* (][0, 00)) functions w,, : [0,00) — (0, k¢) and Ky, : [0,00) — RT
solving the dispersion system (DS,) (see (4.1.68)) is a direct application of Theorem 4.2.3
applied to the functions A, and B, defined in (4.1.69), which are C* in [0, +-00).

Finally, by taking 7 = 0 in (4.1.42b) yields to w,,(0) = k,(0) and (4.1.42a) applied in 7 = 0
gives u(w,(0)) = n,(0)* = (3 n)2, which shows the announced value for w,,(0) in virtue of the

formula for the inverse of u(-) (see (4.2.30)). O

4.3.2 Study of the monotonicity of w,(7)

In what follows we want to use the results presented in Section 4.2.3. First note that for n > 2

T

A3,(7) = 27 0(7) (ma(7) + 70,(7)) = 27 0a(7) (0 (7)
since (1) > 775 > 0 for 7 > 0 (see Lemma C. 1). Secondly, we introduce the functions oy,
and [, defined using A,, and B, see (4.1.69), (as («, 8) were defined from (A4, B) in (4.2.21)
and (4.2.23)). That is to say, for a,, := — B/, /AL, as An(7) = 72 1,(7)? and B, (1) 1= n,(7)?,

on(7) = — 21 (7) 7, (7) _ 1 (7)
" 270 (7) (a(T) + 7(7)) 7 (0a(7) + T 0 (7))
or equivalently, as 1/, = —(1 +72)7!
an(r) = (r+79) " () - ) (4.3.4)

while, for 8,(7) := An(7) an(7) + Bn(T), we compute that

Bu(T) = nu(7)? (nn(T) - HTTZ)_l (4.3.5)

Let us remind that Lemma C. 1 guarantees us that «,(+) is a positive function in R*.

With these elements, we can proceed as previously presented in Section 4.2.3 to study the
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4.3. Study of the curves (Cp)n>2.

monoticity of w,(-) (n € N). For this purpose, we need to study the real zeros of the function

Bn(7)
QQ

m

[T

Snp0, (T) =1+ — 0% (an(7)) 2.

(4.3.6)

Proposition 4.3.2

For all n > 2 and p,§,, > 0, the function S, , 0 (-) has a unique positive zero, 7, > 0,
such that Sy, 0 (-) is positive (resp. negative) in (0,7,) (resp. (7, +00)).

Proof. From Proposition 4.2.6, one deduces that Sy, , 0 (-) is strictly decreasing in R, provided
that ay, () is strictly decreasing in R (see Lemma C. 1). With the aid of Lemma C. 1 we can
also compute

2
: (571) .
TE}I& Snpo, (T) =1+ 277271 >0 and Tgnioo Snp, (T) = —oc. (4.3.7)

Therefore, the Intermediate Value Theorem guarantee us that S, , o (-) has a unique positive
zero, whom we denote as 7,,. Since Sy, 5.0 (-) is strictly decreasing, it easily follows that Sy , 0 ()
is positive (resp. negative) in (0, 7,) (resp. (7, +00)). O

Ke,2

Figure 4.4: Graphic representation of the function w,,(-) for n = 2,3,4,5.

The following corollary is a direct consequence of Corollary 4.2.5 and Proposition 4.3.2.

Corollary 4.3.3

Under the notation of Proposition 4.3.2. For all n > 2 and p,,,, > 0, 7, > 0 is the unique
positive critical point of w,,(-). Moreover, w/,(-) > 0 (resp. w/,(-) < 0) in the interval (0, 7,)
(resp. (7p, +00)).
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4.3. Study of the curves (Cp)n>2.

4.3.3 Study of the monotonicity of the function x,(7)

This analysis is essential to show that the curve C, is the graph of a function of x (this will be
done in section 4.3.6).

Lemma 4.3.4

The function 7 +— K, (7) is a strictly increasing function. Moreover, ! (7) > 0 for all 7 > 0.

Proof. By using (4.2.19) one can compute

oL Qu+d(wn) () v(wn) + (1) (2w, + 70 v (wn))
2 Kn 72 777% ’Ul(gn) - ul(gn) .

(4.3.8)

n

Thanks to Lemma 4.2.2 and the fact that w,, € (0,k.) C (0,£,,) we see that the denominator
of the right hand side in (4.3.8) is positive. Thus, we deduce that the sign !, is the opposite of
the sign of

ot 0nr On = (2w, + 0/ (w,) (TP ) v(wn),  gn = () (2w, + 7005 0 ().
Since v(-) > 0, the function g} is negative because

2w, + v (w,) =J (w,) <0, by Lemma 4.2.2 (d) since 0 < w,, < k¢ < p% Q.

(4.3.9)
(202 =270 (n +700) = 2700 (9n — 1752) > 0, (see Lemma C. 1 (i)).
The function g2 is negative because
(n2) =2nan), = -1 <0,
(4.3.10)
2w, + 2 n2 v (w,) > 0, since v'(w,,) > 0 by Lemma 4.2.2 (a).
We deduce that x], > 0 which concludes the proof. O

4.3.4 Asymptotic behaviour of the functions w,(7) and x,(7) when 7 — +oc0

Preliminary informal asymptotic analysis of w,,

Below, w stands for w,,(7), so that w satisfies (4.1.68a), i. e.

u(w) = (1+v(w) ) n2(r) (4.3.11)

Since n, (1) — ”T_lﬂ when 7 — 400, for large 7, we can replace the above equation by the

"tangent" equation

2
u(w) = (n ; ! 7r> (14 v(w) 7). (4.3.12)

We first see that, when 7 — +o00, if (4.3.12) holds, w cannot remain bounded away from 0.
Indeed, in such a case, v(w) remains as well bounded away from 0 (see Lemma 4.2.2), hence
the right hand side of (4.3.12) would blow up when 7 — 400 while the left hand side would
remain bounded (since we already know that u(w) is bounded far from 0). Therefore, w — 0 as
T — 00.
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4.3. Study of the curves (Cp)n>2.

This suggests to replace (4.3.12) by another approximate equation obtained by replacing u(w)
and v(w) by their equivalent for small w, namely

204 4
P, w
u(w) 2 v(w) o
This leads to the approximate equation
204 2 4.2
P, n—1 ( wET )
= 1 . 4.3.13
w? ( 2 ﬂ) ol 4319)

When 7 — 400, w? 72 can not remain bounded since the left hand side of (4.3.13) blows up.

Therefore, 1 can be neglected with respect to %—Z, which leads to the other approximate
equation o
204 -1 2 4.2
Pim _ (D7) 21 (4.3.14)
w 2 Q.
which gives
2p01 \3
g:QnT*%, where €, = Bl (4.3.15)
m(n—1)

The above (formal) analysis suggests that the function w,,(7) satisfies
w, (1) ~ Qp 778 (T — +00)

This is what we are going to prove rligorously using the implicit function theorem. Note that
(4.3.15) suggests to introduce X = 73 w as a new unknown of the equation (4.3.11).

Rigorous analysis. The rigorous proof of the announced result will be obtained by combining
the use of the proposed change of variable with the implicit function theorem.

The precise result is the following :

Lemma 4.3.5

Let be n > 2. The function 7 +— w,,(7) has the following asymptotic behavior

wo(T) = Q7 5 —yur 40 (r7Y), (7= o0),

4.3.16
o (200N et
" \(n-1)7/) " T = 3p(n—1)7
The function 7 +— Kk, (7) has the following asymptotic behavior
/{n('r) =K, T% —0pn 7-_% + 0(7_%), when 7 — 400,
el N2 9 (4.3.17)
— 2l Q
Kn ;:n 17TQ2LQ;127 67’1,:97’1,%
2 3pLh,

Proof. (i) Study of w,, (7). First note that the form of the approximate equation (4.3.14) suggests
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4.3. Study of the curves (Cp)n>2.

to multiply the equation (4.3.11) by w?, which leads to as
Uw) = (W + V(w) 7°) 1 (7)?, (4.3.18)
where we have defined the two functions

Uw) = (er(w) pr(w) — D' = p? 2,

m

6 (4.3.19)

Vi) =t =

— (1+p?) Q2 w?,

m

We introduce, as suggested above, the new unknown X = s w as well as the new parameter
2 3
£:=7"3, 50 that w? = ¢ X? and 7 = £~ 2, (4.3.18) becomes, using(4.3.19) for U and V/,

X6

W) (e2)%. (4.3.20)

PP, — (14 %) 2, e X? = <€X2 +
We wish to study (4.3.20) as an equation in X parametrized by £, when € — 0 (which corresponds
to 7 — 400). In order to apply the implicit function theorem, we introduce the function
Fo(X,e) = p?Qt —(1+p%) Q% e X?— (5X2+X6 2(e72), eX?#£02, (4.3.21)
n 9 T p ==m p =m (Q?n o €X2)2 nn ? =m> M
in such a way that
(X, ¢e) satisfies (4.3.20) <= F,(X,e)=0. (4.3.22)

It is easy to see that F,(X,¢) is of class C' (details are omitted) in the open set defined by
e X% # 02 and that

2 6
9 n—1 X
Fo(X,0) = p°Q,, — ( 5 7[') Q—ﬁn.

In particular,

2004 \3
Fo(X,0)=0, X>0 ~— X=Q,= _APim )
(n—1)m

We can apply the implicit function theorem near (¢ = 0, X = €,,) since

n—1 2 x5
OxFn(X,0) :=—6 5 T Q—4<O, VY X #£0. (4.3.23)

From the implicit function theorem, we deduce that, for |¢| small enough, the equation F,, (X, ¢) =
0 admits, in the neighborhood of X,,, a unique solution X, (¢) and that the function ¢ — X, (¢)
is of class C'! in the neighbourhood of € = 0, with in particular

X1 (0) = — Ox Fn(Xn,0) ! 0-Fn( Xy, 0). (4.3.24)

Of course, in view of the global existence and uniqueness of the solution w,(7) > 0 of the
equation (4.3.11), which is linked to the equation F,,(X,¢) = 0 through the change of variables

€:= 7'_%, and X = 73 w, by identification, we deduce that for large enough 7 we have

w, (1) =778 Xp(773).

=n
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4.3. Study of the curves (Cp)n>2.

Using X,,(¢) = Q, + X, (0) € + o(e), we deduce
wo (1) =775 QA7 L XL0) +o(r7Y), (T — 400) (4.3.25)

To complete the proof, it remains to compute X/ (0) via (4.3.24). Using the expansion of 7, (1)
at infinity:
~n—1 -2

() = 5 T+ — % + 0(7_3), T — 400

we deduce that nn(s_%) =olny 0(5%). Moreover
2 2\—2 —4 X2\ -2 —4 X2 2
(@2, — X3 2=~ (1—59—2) Q- (1—}—259—24—0(5))

thus, we can expand F, (X, ¢) for small ¢ as

2 6 2 8
204 n—1 X 2y 02 2 n—1 2 X 3
which shows that
1 X
O-Fn(X,0) = —(14p*) Q2 X% - L (= 1?72 X2 (1 +2 Qﬁ>
— 1 2. 2Xp _ )2 2
For X = Q,, 7 (n—1)*r° g = Q;,p°, thus
n—1 \?
0-Fn(Q,0) = f[ ( 7r> +(1+ 3,02)Q,2n} Q2. (4.3.26)
On the other hand, cf. (4.3.23), we have
-1 \* 0
Ox Fn(Qp,0) = — 6 (" 5 7r> fo =—-3p2% (n—-1)m, (4.3.27)
n—1 3 )
where we have used s o p for the second equality.
Substituting (4.3.26) and (4.3.23) gives
n—1_\2 2\ 02
5em) + (143070
xi(0) = -2 m, 4.3.28
Hence, thanks to (4.3.25), we obtain the expansion (4.3.16).
(i) Study of k(7). We use (4.1.50b), i. e.
/<;n(7‘)2 = gn(T)2 + v(gn(r)) 72 nn(T)Q. (4.3.29)
Wt
We first study the behaviour of v(w,(7)). Since v(w) = (2*792)2
W= =S4y,
v(w) = 't + 20905+ O(w®)  (w—0) (4.3.30)
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4.3. Study of the curves (Cp)n>2.

On the other hand, from (4.3.16), we can write
wn(r) = Q5 (1= 75775 +o(r75)),

with
vE=0 (4.3.31)

we deduce ,
w, (1) =Qk 3(1—4%7 3—1—0(7 3))

gn(T) QGT 5(1—67n7 3—1—0(7 3))

that we can substitute into (4.3.30) to obtain
n—m

o(wa(r) =273 (1= amird 1202002078 4 o(r7 ).

Thus, as 1,(7)% = (25+ 7r)2 +0(r71)

v(gn(T))Tznn(T)Z: <n;17r>2 Qle;fT% (1—2(2’yn D227 3 +o(r %)>

Substituting the above in (4.3.29), we get, w,, (7)? = o(1),

1 2
K (T)? = (n2 W) Qig#% (1—2(2% 020-2) 7~ 3 + o(t %))7 (4.3.32)

which leads to

—1
n(r) = o TR (1- (29 - Q) T +o(r7H)). (4.3.33)

By substituting the values of vy, 2,7, (see (4.3.16) and (4.3.31)) we obtain that

29 — Q2.0 =0 2y - 0 ) (4.3.34)
gt (LD 39 2902
" 3p(n—1)m (n—1)m
-9 Q 1 (L ) + Qz
3p(n—1)m
The expansion of x,(7) follows easily. O

4.3.5 Characterization of the curves (C,) as graphs

Theorem 4.3.6

For all n > 2, each one of the curves C, is the graph of a C*°—function on (k,, +00). More

precisely,
Co = {(k,w(K)) | K > K}, wh i=w,, 0 {Kn} " (4.3.35)

where k,, = k,,(7) is an invertible function whose inverse is given by {s,} ! : [ken, +00) —
[0, +00).
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4.3. Study of the curves (Cp)n>2.

Proof. Let n > 2 fixed. From Lemma 4.3.4, we know that «,,(+) is an invertible function (since it
is strictly increasing) which maps £, (0) = ke, (see Theorem 4.3.1) and such that &, (7) — +o0
as T — +00, hence k,, maps the domain [0, +00) onto [k, +00), thus its inverse function is
well defined: {r,} ™1 : [Kem, +00) — [0, 4+00). Since Ky, is C* and &},(-) > 0 in (0, +00), then
the Inverse Function Theorem guarantees that {s,} ! is C* in (kcp, +00).

Finally, from Theorem 4.3.1 it follows that

(k,w)el, <= (Fn(7),w, (7)) = (k,w) for some 7 > 0,
= K> Ken, T={rn} '(8) and w=w,(7)
= K> kepn and w=w,({k,} " (K)) = wi(k).
O
4.3.6 Geometric properties of the curves (C,)
Theorem 4.3.7
For all n > 2,p,Q,, > 0, w;, has the following properties:
(a) w} is continuously differentiable at k = k¢, and (w}) (ken) = 1;
(b) wy has aunique critical point, &}, € (K¢p, 00), 1.€., (w)) (k)) = 0, moreover, (w}),)'(k) >
0 (resp. (wh)' (k) <0)if K € [Kem, Ky (vesp. k € (K, +00));
(c) for all k > kep, 0 < whh (k) < wp (k) < P(K);
(d) wi(k) =Pt —ank3+0(k3), as K — +o0, where ®o, was defined in (4.1.15)
and a,, := 6,8, Kg—i—’yn Kf; > 0 (see the definitions of v, K, and §,, in Lemma 4.3.5).
Proof. (a) From chain’s rule derivation and the inverse derivative formula one gets that
(Wh) (k) = wn(7) where k,(7) = K (4.3.36)
AT C) S *

Substituting in (4.3.36) the expression for the derivatives of w,, and &, deduced respec-
tively, from (4.2.16) and (4.3.8), thus we obtain

Y (n2)" + (72 n2)" v(w},)
) = 2 G @) iy o) + OB (ot o))
where £, (7) = K, w), = w, (7) = w; (k) and 1, := N, (7). Since £, (0) = K¢, hence we need
evaluate the right-hand expression of (4.4.60) at 7 = 0,w} = w,,(0) = Kk¢n, by using the
fact (n7)'[r=0 = (2 m,)lr=0 = —7n # 0 and (7 n2)'|r=0 = (27 10 (70 + 7 1)) |r=0 = 0
thus we get

(W) (Kem) = 2 Fen (mg)/'ﬁ“> =1 (4.3.38)
a 7 "\ 2ken (13) =0
From (4.3.36) and Lemma 4.3.4, it follows that (w})’(x) and w),(7) have the same sign,
where k,(7) = k. Therefore, this clause is a direct consequence of Corollary 4.3.3 and in
this case k) = kn(7)}).

The relations 0 < wy (k) and wy, (k) < ®(x) are derived directly from the fact that
Cn+1,Cny C N~ and (4.1.16). For the last inequality, we notice since kK > Kepn > Kentl,
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4.3. Study of the curves (Cp)n>2.

then kK = k(7)) = Kpt1(s) for some 7,5 > 0. Since (k,w (k) = (kn(7),w,, (7)) satisfies
(4.1.68a)-(4.1.68b) for 7, by subtracting, we obtain

(1) = u(wy (7)) + wi (1) = k(1) = T (wi (k) — £, (4.3.39)

analogously , )
Mht1(8) = T (Whi1 (k) — K% (4.3.40)

since the ranges of the functions 72 and 7?2 41 are, respectively, the intervals

(= Ho 2| ana (o H? (o7
then one deduce that n2(7) < n2,,(s) and therefore

T (wi(®)) = K* < T (Wi (k) — K, (4.3.41)

consequently J(wy,(k)) < J(wj,1(k)), finally since J is strictly decreasing in (0, x.)

(remember that k. < p% Q,, and see Lemma 4.2.2) and wy,(x),w}, (k) € (0, k), then it
follows that wy (k) < w; (k).

We use the estimation (4.3.17) proved in Lemma 4.3.5, altogether with Lemma C. 4 applied
to Ky, seen as a function on 7'% :

73 = K,'k+6,67 +o(k7h), ask— +oo, (4.3.42)

and we have abbreviate 7 = {x, } ~!(k), hence

5 = (K" s+ 6,67t +o0 (k) )_1

= (K k)™ (1 + 0, Knk 240 (5_2) )
=K, k! (1 — 6, K,k 240 (/@_2) )
=Kok ' =6, K25 +0(k%), ask — +oo, (4.3.43)

-1

analogously one proves

-3
= (Knl K+6nk t+o (k) >
= K3k -36, K40 (k7°), as Kk — 4oo. (4.3.44)
Finally, by substituting (4.3.43) and (4.3.44) in (4.3.16):
wh (k) =Q, (Kn k=6, K23 +o (I‘&_?’) > — Yn <K2 K340 (m_?’) )
= Kk = (0,0 K2+ K k™2 + 0 (k72)

We notice that Q, K, = 25t 7w Q3 O, 2 = pQ2 = ®o. Thus the clause (d) follows.
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Figure 4.5: Graphic representation of the function w?(-) for n = 2,...,20. (a) The functions w} (blue
graphs) are smooth in k., (red points) and the respective graphs are tangent to the identity line w = .
(b) The green points represents the maximum of each function w . (c) The graphs are well-ordered in
decreasing order, wy* on the top and wj(0) at the bottom. (d) All the functions w} tend asymptotically
to w = P(k).

4.4 Study of the curve C;

4.4.1 Description of the set C; =C;, NN~

4.4.1.1 Existence and uniqueness of the solution (k] (7),w; (7)) of (DS7)

Theorem 4.4.1: Existence of the parametric curves in D_

There exists a unique couple of C* functions wy : [0,00) — (0, k¢) and x; : [0,00) — R
such that for any 7 > 0, (k7 (7),w; (7)) is solution (parameterized by 7) of (DST) (4.1.57)-
(4.1.58). Consequently, C; is fully described as

Cy = {(/{1_(7),@1_(7)),7 € R+}. (4.4.1)

The initial point of the curve C, is given by

[N

2 -
wy (0) = ky (0) = Ke1 = p 7, <4 +(1+ ,o2)93n> : (4.4.2)

Proof. The proof is analogous to the one of Theorem 4.3.1, indeed, as a consequence of Theo-
rem 4.2.3 with the choice of C*° functions

Af (1) =72ni(r), B (r):=mni(r). (4.4.3)
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4.4. Study of the curve C;

4.4.1.2 Study of the monotonicity of w; (1)

In this part we are interested into studying the increasing and decreasing intervals for the
function w; (-). For this purpose we present the functions

SN (.79 (o DR 11 /1 R G
@A)~ 2rm@) () +rh@) T ) ()
= ((+7) (m) - 17) o (4.4.4)
— _ _ 72 9
Br(r): = Ay (r)ar (1) + By (r) = (1+ ) (- ) )t(r)
= LT)T (4.4.5)

Next we introduce the following function

S, (1) =1+ /8527) 207 (1) (4.4.6)

that satisfy the following properties :

Proposition 4.4.2

Let be p, 2, > 0, then the following are true for the zeros of 57 o (-):

==m

NI

(a) I 1+ 22 — p2(3/2)72 > 0, then S (-) > 0.

(b) If 1+ ?2@ — p? (3/2)7% <0, then 57, o (*) has a unique positive zero, 7, > 0.

Moreover Sy, (-) is positive (resp. negative) in (0,7;) (resp. (7, +00)).

Proof. We know from Lemma C. 1 that o5 (-) is strictly decreasing, therefore Sy o (+) is also
decreasing (see Corollary 4.2.5) and satisfies

lim S 14 T d lim Sy 1432 2(3/07h, et
Jim S0, () =1+ "g=>0 and _lim_Sj,q (1)=1+55 0" (3/2)7% (447)

hence 57, o (-) has a positive zero if and only if 1+ ;@ —p? (3/2)7% < 0, in this case, this zero

is unique given that 57, o () is strictly decreasing. The clauses (a) and (b) follow directly. [J

As a consequence of Corollary 4.2.5 and Proposition 4.4.2 we have:
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4.4. Study of the curve C;

Corollary 4.4.3

Let be p,2,, > 0, then under the notation of Proposition 4.4.2, the following are true for
the zeros of S, o (°).

(a) If 1+ 22 — p*(3/2)72 > 0, then (w;)'()) > 0 in R*.

b) If 1+ % —p?(3/2 ~3 < 0, then 7; > 0 is the unique positive critical point of wi (+).
o, 1 1
Moreover, (wy )/ (-) > 0 (resp. (w;)'(-) < 0) in the interval (0,7, ) (resp. (1 ,+00)).

€

wy (1)

€

Q. = 1.0000, p = 0.3500, Q. = 1.0000, p = 2.0998,

(a) (b)

1+ % — p2(3/2)" 2 = 2.4000. 1+ % — p?(3/2)"% = —1.1000.

Figure 4.6: Graphic representation of the function wj (-).

4.4.1.3 Study of the monotonicity of the function x| (1)

Similarly as for the functions k,(-),n > 2 we can prove in exactly the same manner that ] (-)
is a strictly increasing function, this result is important again for establishing the character of
graphs of function of the curves C; :

Lemma 4.4.4

The function 7 — «] (7) is a strictly increasing function.

Proof. Analogous proof as Lemma 4.3.4. O

4.4.2 Description of the set C =C; NN

4.4.2.1 Existence and uniqueness of the solution (ki (7),w] (7)) of (DS})
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4.4. Study of the curve C;

Theorem 4.4.5: Existence of the unique parametric curve in DJ,.,

There exists a unique couple of C* functions w{ : [0, 00) — (0,£,,) and &7 : [0,00) —
RT such that for any 7 > 0, (w](7),s] (7)) is solution (parameterized by 7) of (DS])
(defined in (4.1.55)-(4.1.56)). Consequently, C; is fully described as

C = {(wi (7),x{(7))|7 >0} (4.4.8)

Moreover, this curve has as initial point:

w;(0) is the unique solution in (0, ) of the equation u(w) = v(w),
(4.4.9)

Proof. The existence of the C°° ([0, 00)) functions wi : [0,00) — (0,£,,,) and ] : [0,00) —
R* solving the dispersion system (DST) (see (4.1.55)) is a direct application of Theorem 4.2.3
applied to the functions A and B; defined in (4.1.56), which are C* in [0, +00). Finally, since
A7 () is continously defined at 7 = 0, indeed, Tlino A7 (1) = 1, then by making 7 = 0 in (4.1.55),

we notice that
u(wy (0) = (W (0)) and (k] (0))? = (W (0))* + v(w] (0)), (4.4.10)

but the equation u(w) = v(w) has a unique solution in (0,%,,) since v/(-) < 0 and v'(-) > 0 (see
Lemma 4.2.2), therefore the value of wi (0) is specifically determined by this solution, hence

(51(0))* = (@i (0))* + v(w] (0) = (wf (0))* +u(wf (0) = T (wy (0)). (4.4.11)
O

4.4.2.2 Study of the monoticity of 7 — w; (1)

With no more delay, we introduce the functions

af(T) = —m = (cothT (CothT — 7 csch? T))_l, (4.4.12)
F(r) = AT (1) of (1) + Bf (1) = (73 esch? 1) (coth 7 — 7 csch? 7)1, (4.4.13)

F(r 1
S, (T) =1+ ;zg L 2 (af ()b, (4.4.14)
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Proposition 4.4.6

Let be p,$2,, > 0, then exactly one of the following occurs:

(a) If p <1, thenSpo () >0in RT
(b) T p>1and 1+ /2 —p?(3/2)72 <0, then Sf, 5 (-) <0inR*

(c) Ifp>T1andl +5 32 _ (3/2)*% > 0, then Sfp@ (*) has a unique zero ;" € (0, 00).

==m

This zero satisfies Sl+ Q. ()>0 (S+p7 (-) < 0)in (0,77") (resp. in (71, +00)).

Proof. Lemma C. 2 guarantee us that Oéi‘—(') is strictly decreasing, hence from Proposition 4.2.6
it follows that S, 0. (1) is also strictly decreasing. In addition, Lemma C. 2 give us

3/2
Xp:= lim S":p@ (r)=1+4 LQ —p? (3/2)_%
0 2 (4.4.15)
Xoo 1= TLIEOOSJCMQ (1) =1-p%

Case (a) : p < 1. In this case, Xoo > 0 and since S}

+ +
Ston L()>01nR , proving (a).

Lpg ( ) is strictly decreasing, it follows that

Case (b) : p>1and 1 +3 /2 (3/2)_% <0.

In this case Xo < 0, then S, o (1) < 0 for 7 > 0 (since the SI%Q (+) is strictly decreasing)
proving the clause (b).

Case (c) : p>1and 1+5 3/2 — p? (3/2)_% > 0.

In this case Xg > 0 and X, < 0 since p > 1. Then the continuity and monoticity of 51 P, ()
and the Intermediate Value Theorem guarantee that S+ .0 maps the interval (0,400) onto
(X oo, X0), in particular, since 0 € (X0, Xp), then Sfr% N
proves the clauses (c). O

has a unique zero in (0, +00) which

Corollary 4.4.7

Let be p, 2, > 0. Under the notation of Proposition 4.4.6, then one of the following is true:
(a) If p <1, then (w)(-) > 0 in (0, +00).
(b) T p>1and 1+ 2 3/2 p?(3/2)72 <0, then (w;)'(-) < 0 in (0, 400).

(c) fp>Tland 1+ 32 p*(3/2)” 2 > 0,then 7 > 0 is the unique critic point of w] (+),
moreover, (w])'(- ) >0 (resp. (w)'(-) < 0) in (0,7") (resp. (11, +00)).

4.4.2.3 Study of the monotonicity of the function s (7)
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w
Q Qim _|_< )
+ Wi\
/ i (r)
Qim
0 T
0 T
Q,,, = 1.0000, p = 3.3680,
(b) 3/2 2 -1
—p°(3/2)"2 = —6.7621.

(a) Q, = 1.0000,p = 0.6000.

w
wi (r7) —
+
wy ()
Qint
0 T
Q,, = 1.0000, p = 1.3749,
() 3/2 2 -1
14+ 52 —p~ (3/2)" 2 = 0.9565.

Figure 4.7: Graphic representation of the function wi(-).

Lemma 4.4.8

The function 7 +— k] (7) is a strictly increasing function.

Proof. We shall verify that for any 7 > 0, (k)'(7) > 0. Two cases are distinguished:
(i) If p < 1, then Corollary 4.4.7 assures us that (w])’(-) > 0 in (0,+400), on the other hand

from (4.2.17) we have that
+

(201 (1) + A7 (1) V' (@i (7)) ] (i)' (1) + (A7) (1) v(w] (7))

=1

(k1) (1) =
1 247 (7)
the which is compose of only positive terms, hence it follows that (k] )'(7) > 0 in (0, +00).
Tn <9, < p% Q... henceforth

(ii) If p > 1, then for all 7 > 0 we have that 0 < w
< 0 (see Lemma 4.2.2), then by using (4.2.19) one gets

Tt (7)
L A 7w + [2uf ATV (D] (B 0)
1 257 (7) A(r) v () = () |
where w{ = w} (7), and since J'(w]) < 0 and (B]")'(7) = —27 < 0, then one can proceed
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4.4. Study of the curve C;

as in Lemma 4.3.4 to conclude that (x])/(7) > 0.

4.4.2.4 Asymptotic behaviour of the functions w; (7) and ] (7) when 7 — o

We start this part with a heuristic deduction of the analysis behaviour of wy () as 7 — oo.
For simplicity, given 7 > 0, we mean by wi = wi (7) .

The first natural thought is to determinate if gf — Wo, a8 T — 00, for some w € R. We
will suppose that is the case. For the next computations, we recall that wi (+) satisfies (4.1.57a).
First notice, since the range of wy () is (0,£,,), then w., € [0,£,,].
If we assume that w,, = 0, then from (4.1.57a) and the following limits

im A =1, lim Bi(r) = -0,
we can therefore notice that the left-side of the equation (4.1.57a) tends to +o00 (since w = 0 is
a pole of u(-), see Lemma 4.2.2).
On the other hand, the right-side of the equation tends to —oo (since w = 0 is a zero of v(+)),
this shows that in fact it must occur that w,, > 0. The latter fact yields to the fact that u(w)
must be bounded as 7 — o0, so necessarily we need that

v(w!) coth? 7 — 1 =u(w) 772 — 0 as 71— o0, (4.4.16)

which implies in turn that

v(w]) ~tanh*7 —  as T — oo, (4.4.17)
therefore v(w,,) = 1, hence
02\ 2 02 Q2
<1—wéz> =v(wy,)=1 = ‘ _£:1 = ng —1=1 (wew <9,,)
Qn

Inspired from the asymptotic expressions for the functions wy (-),n > 1, we want to find an

expression an approximation of the form

0
(1)~ =24+ Qo7 %, asT — oo, for some o > 0. (4.4.18)

V2

(S

By computation the first order approximation of v(-) at w = QT’; :
+ R 02
u(w]) ~u Vil Q (p* = 1), as 7 — 00
N 9 83 9 (4.4.19)
v(w]) ~v ( ) (*)( —ig)_l—i— (wl—%)a57—>+oo,

substituting (4.4.18), (4.4.19) and coth7 ~ 1 when 7 — oo in (4.1.57a), we obtain

8V2 Q,
Q% (2 -1) = o <w1 - \@> 72, (4.4.20)

m
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4.4. Study of the curve C;

which gives us
+ Qm qun (p2 - ]-) 7_—2.

Y 812

(4.4.21)

Our next goal is to prove formally the last asymptotic behavior, for this purpose we will need

to the following values:

e We therefore compute for v(-) and its first two derivatives,

v (QT’Z) = (17 W)],_a, =1,

V2
0 82
o (;\/%) — ( 2Nr } umfn a9 (4.4.22)
2&m
Q - _ 144
V' (T8) = 6174w (@) — 207 w) 1 (@) |2y = oo
S8m
e while for u(-) and its derivative we get
(@)= (L) - -ne
V2 wg P wfﬂim P mo
Sov2 (4.4.23)
1 (2, _ _QQm p2 _ 2
/()= (75| = e
=T V2
Lemma 4.4.9
The function 7 — wi (7) has the following asymptotic behavior
Q
gf(T) == 4 Q72 + Yoo 440 (7_4) , (T — 00),
V2
@ (- 1) (4.4.24)
P 2 5
Qo 1= , = 17p° —9 -1)Q
wim Pl e (1T 0) (P )2
The function 7 — k] (7) has the following asymptotic behavior
K[ (T) =T+ Koo T '+ 00073 +0(773), when 7 — +o0,
(4.4.25)
1 1 V2
Ko =5 P2 -5 Q?n? b0 = -5 (1 —4p2)Qono.
2 2 2
Proof. We consider the variable change ¢ = 772, and we notice that the analysis of (4.1.57a)
around 7 = o0, is equivalent to the one around € = 0 of the following equation
u(X)e+1=uv(X) coth? (72). (4.4.26)
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4.4. Study of the curve C;

We show that (4.4.26) has a smooth solution £ — X;(g) around ¢ = 0. We base our proof by
means of the Implicit Function Theorem. Let us consider the function

Gi(X,e) i=u(X)e+1—v(X) coth® (£72),  (X,e) € (0,2,,) X [0,0). (4.4.27)

. _1 . o .
Since € — coth (5 2) defines a smooth function on around a positive neighborhood of € > 0,
moreover, one can verify

1

lim coth (575) =1,
e—0F

) 10/ ) csch? (5_%)
Jim, (eoth (£75)) = = lim ——-— =0, (4.4.25)

L\ (3 8_% — 2 coth (5_%) > csch? (6_%)

lim (coth (575)) = lim - = 0.

e—0t e—0t 483

Consequently, the former limits yield:

lim coth? (87%) =1,
e—0t

e—07F

lim (coth2 (5—%))/:0, , (4.4.29)
)

lim (co‘ch2 (5_%)

e—0t

which permits to show that G; is smooth at (X,e) = (QT’;, 0) . Furthermore, one has

G1(2,0) =0,

and, as Ox G1 (QT’;, 0) = [/ (X)e —v'(X) coth? (5_%)])‘ , one computes that

OxG1(22,0) = -

Hence the Implicit Function Theorem give us the existence of a smooth function ¢ — Xj(¢)
around a positive neighborhood of ¢ = 0 such that

Gi1(X1(e),e) =0 and X1(0) = ;\/’g (4.4.30)

Using the second order Taylor approximation around € = 0, we deduce that

X0
Xi(g) = X1(0) + X1(0) e + % 2 +o0(?), ase— 0T (4.4.31)

now we are interested into compute X{(0) and X7 (0). For this purpose, we use the following
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4.4. Study of the curve C;

expression for the two first derivatives derived from the implicit differentiation:

88 gl(X1(€),€)

Xi(e) = — , 4.4.32
1) Ox G1(X1(¢e),¢) ( )
02 G1(X1(e), ) Xi(e)?
28}( 8591(X1(5),5) . X{(é‘)
0% G1(X (e),¢) 1
XV(e) = — X 4.4.32b
1(8) 8XQ1(X1(8),5) ( )
By computing the first partial derivatives of G; we obtain:
dx G1(X, ) = o/ (X) e — v'(X) coth? (5—%) : (4.4.33a)
0:G1(X,e) = u(X) —v(X) (Coth2 <€*%>>/, (4.4.33b)
consequently, the second order derivatives hold
0% G1(X,e) = u"(X)e — v"(X) coth? (6_%), (4.4.34a)
1 N\/
Ox 0. G1(X,e) = 8- Ox G (X, &) = o/ (X) — v/ (X) (coth2 (5—5)) : (4.4.34D)
N
92 G1(X,e) = v(X) (co‘ch2 (5_5)) . (4.4.34c)

Hence, with the aid of (4.4.22), (4.4.23) and (4.4.29), we evaluate (4.4.33) and (4.4.34) at

(X,e) = (Q—\/%,O) as follows

(ox0 ((5.0) =~ (%) =~
2.6: (S.0) =u (3) = (* - D2
%o (B0) = (%) =

ox 0-1 (22,0) = 0.0, (2,0) = (%) = ~4v22,, /%,

926 (Q—fg,o) —0.
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Consequently by substituting the latter in (4.4.32) evaluated at (X,¢) = <7ﬁ,0) it yields

R (i 01 - e DE V54
X1<O) - _8\/§/Qm - 8\/5 )
o) (X))
—8v2Q,, 0% || X1(0)
1
X1(0) = — 0 <7773 ' (4.4.35)
90— 1), < S, +02(p* - 1)Qy,
T 8v2/9,,
= 64f(17p -9)(p* - 1) 2,

The unicity of smooth solutions of (DS]) indicates that w (1) = X;(¢) = X1(772), therefore
from (4.4.31) and (4.4.35) we obtain the asymptotic expression (4.4.24).

For the asymptotic analysis for x] (-), first we derive from (4.1.57a) and (4.1.57b) the equivalent
definition for x{ (+), namely

KM =T+ T (1), JTw):=w’er(w)p(w)=w’+ Y 02 (1+4p?), (4.4.36)

by computing the Taylor expansion of first order for J(-) at

s=s(35) 0 (5) (o) (e )

— <p2—;> D2 +V2(1-4p%)Q,, <w—(\2/’g> +0(w—?/”%>,

and by using (4.4.24) until an order of 7-2 we obtain
J(wi () = <p2 - ;) D2 +V2(1-4p*)Q, W7 2 +0(r72), asT—o00. (4.4.37)
The information in (4.4.36) and (4.4.37) allow us to deduce that
(k1 (1))? = 72 <1 + (p2 - ;) Q2 724 V/2(1-4p2)Q, Qo4 + 0(7—4)> , (4.4.38)
and hence by taking square root
Kf(r) =T (1 + % <p2 - ;) Q74 f (1—4p%) Q, Qo774+ 0(7—4)>

1 2
=74 = <p2 — > an 71 + \Qf (1 — 4p2)Qm Qo 73 + 0(7_73). (4439)
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4.4.3 Full description of the curve C;
4.4.3.1 Existence and uniqueness of the solution (x1(s),w;(s)) of (DS1)

In this section we will show that C; is the continuous and smooth concatenation of the curves
C; and Cfr by adding a point, namely, the unique point in the set C; N NP.

Theorem 4.4.10

There exists a unique couple of C! functions w; : [0,00) — (0,2,,,) and &1 : [0,00) — R
such that for any s > 0, (k1(s),w;(s)) is solution (parameterized by s) of (DS7) (4.1.63)-
(4.1.64). Consequently, C; is fully described as

Cr = {(k1(s),wi(s)),s € RT}. (4.4.40)

The pairs of functions (k7 (-),w] (+)) and (k] (-),w] (+)) are related to (k1(+),w;(-)) as

(k1,w)lo,1) = (K1 0¥, wy ov7),
(4.4.41)
+

(51, w1)(1,400) = (57 0vT, wi ovt),
where v~ and v' are the C*°—diffeomorphisms defined, respectively, in (0,1) and (1, c0)
onto (0,00) :

Vo= (0’ 1) — (OaJVOO) vt = (17+OO) — (07+OO)
and . (4.4.42)
s +—> tan (g 3) S — s—1

The initial point of the curve C; is given by

2 _1
W (0) = K1(0) = ke == pQ2, (Z +(1+p%)Q2) 2. (4.4.43)

On the other hand, C; intersects the curve Nj in exactly one point, which is given by

(k1(1),w;(1)) = (Kint, Wiyt ), where the value of (Kint, wiy;) is defined as

w is the unique solution in (0, k) of the equation u(w) = v(w),

Yint

) (4.4.44)
Rint = (j(gint)) 2.

Proof. The existence of the C*! ([0, 00)) functions w; : [0,00) — (0,£,,) and k1 : [0,00) — RT
solving the dispersion system (DS1) (see (4.1.63)) is a direct application of Theorem 4.2.3
applied to the functions A; and B defined in (4.1.64), which are C* in [0, +00).

By the definitions given in (4.1.58) and (4.1.64), we notice that Ay = A] ov™ and By = B] ov™
in (0,1), it therefore follows that for all s € (0,1), (k1(s),w;(s)) is solution of (4.1.57) for
T =v"(s) € (0,+00), hence by the uniqueness of such solution (see Theorem 4.4.1), then we
conclude that

(k1(s),wi(s)) = (k1 (1), w1 (7)) = (K (v (5)), w1 (W (), O<s<L.

A very similar argument proves that

(k1(s),wi () = (5 (V7 (5)), 0 (W7 (5))),  s>1L
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From Theorem 4.4.1, we know that (k] (-),w; (+)) is continuously defined at 7 = 0 on the right,
hence it follows that

lim (k1(s),w(s)) = lim (ky (v (5)),wy (v (s))) = lim (ky (7),wy (7)) = (Ke,wen)s

s—07t s—0t T—0t

hence (k1(+),w;(+)) is continuously extended to s = 0 on the right and proving (4.4.43).

Similarly, one has

lim (k1(s),wi(s)) = lim (k] (0" (s)),wi (V" (s))) = lim (] (7),wi (7)) = (Kint, Wint);
s—1+ s—1+ T—0*t
and since (k1(+),w;(+)) is continuous, then (3.3.2) follows. O

Remark 4.4.11. The identities (4.4.41) imply that (k1(-),w;(-)) is C* in the intervals (0, 1)
and (1, +o00).

4.4.3.2 Study of the monotonicity of w; ()

One would expect to proceed as it has been previously treated in the Sections 4.3.2, 4.4.1.2
and 4.4.2.2. However we find a new particularity given by the nature of the functions A4;(-) and
Bj(+), namely A (1) =0 = Bj(1). The former fact implies that

wi(1) =0=r1(1), (4.4.45)

in this sense we need to evaluate hm wl( )/KY(8).

Lemma 4.4.12

For all p > 0,9,, > 0 the limit hm wl( )/} (s) exits, moreover, we have the following

tim £2(8) _ 2ims (1= 5 v(in)) , (4.4.46)
s—LRY(S)  2wing + V' (Wing) — § 0(@int) T’ (Wing)
: . wi(s) .
sign <Sh_r>n1 m’l(s)> =sign (S1,p0, ), (4.4.47)
where we have defined the quantity
Sipg, =1+ ;/2 —p2(3/2)"z. (4.4.48)

25m

Proof. We first calculate the limits lim (wy)/(7)/(k7) (1) and  lim (w{) (7)/(k7) (7).
T—>+00 T—>4+0t

From (4.2.18) applied to (4.1.57) we obtain

(wr)'(7) (wp)'(7)

Tgr?i-oo (k1) (7) - rﬂgli-oo 21 (7) J'(wy (7)) (wy)(7) — (By)(7)
. (w1 Y (/B (7
B (7 eV 79 ) R M
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thus by computing

@ )'(7) _ ( (AI)’(T)U(WI(T))+(Bf)’(7)>
T—roo (By (1) mee X (B)'(7) A (1) v'(wy (7)) — w/(wp (7))

i (00 ) e () -1
T—>+00 Al_ (7—) ’Ul(gl_(T)) _ ul(gl_ (T))

2 0(wiy) — 1

o *int

= o) (4.4.50)

Yint Yint

where a; (-) was defined in (4.4.4) and they were used the limits lirgl_ w, (T) = wyy; and
T—>+00

lirﬂ aj (1) = 3/2 (see Lemma C. 1). Thus, by substituting (4.4.53) in (4.4.49) one obtains
T—+00

% v (gint ) —1
v’ (Qint ) —u (gint )

T (Wing) ( %U(%nt) ! ) -1

v’ (gint ) —u (Qint)

(wp)'(7)

e (wy (7)

= 2 Kint

2 Kint (% U(@int) - 1B[Lg)
%v(gin‘c) jl<gint) - jl(gint) - v,(gint) + ul(gin‘c)

. 2 Kint (1 -

2
3 v
QQint + 0 (gint) - % U(gint) ‘-7/ (gint)

(4.4.51)

On the other hand, in an analogous way we have

S (s A W)
A ) e (2 T e ) @ () = (Bf)(7)>

i [omt @B
e (2 0 TG0 (@ /B o) - 1) B

%v(gin‘c) -1

= 4.4.
(i) — () (4.4.53)
And hence
+y/ 2 kint (1 — 2 .
lim (”i) (1) _ fin 5 0(wim)) (4.4.54)
=0t (K])(T)  2Wing + V' (Wing) — 5 V(Wing) T (Wint)
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From (4.4.41), one can deduce

(s) _ (w)(™(s)) (W7)(s) _ ()™ (s))
A6 @ ) e SO
wi(s) _ @) (s) (r)'(s) _ (wi)f(s) o (1, +00)
ri(s)  (RDT() () (s)  (51)(F(s)) T
which together with (4.4.51) and (4.4.54) leads to
i () o @)'(m) 2 6ine (1= 5 0(@in))
= R0) T (V) P ) — 50 )
b 6 o @) 26 (1= 3olew)
s—1F ’{/1(8) T—0F (KIFY(T) 2("‘}mt +v ( 1nt) %U(Win‘c) j/(wlnty

proving (4.4.46). For the last part, as w;,; € (0,k¢) C (O,p% Q,.) (put reference), then J'(w;,,) <
0 and v(wiye ), V' (wWipt) > 0 (see Lemma 4.2.2), therefore

Dpis (1 — 2 . )
sign Ring ( g U(@mt)) / = sign (1 R ’U(wint)> (4457)
2wln‘c +v ( mt) 3 v(gint) \7 (Qint) 3
We next notice the following , since v(Kint) = u(Kint) :
2 3 3
1- gU( 1nt) >0« U( 1nt) < 2 and u(gint) < 2
02 3 2! 3
<:>‘ - =+ <5 and p;m—(1+p2)Q%1<f
Wint 2 Wing 2
Q2 202 3
et ric S g P8 gy 2 32
Wing g1nt Q
= p2(3/2)72 + p2 < 1+ p? + %
=1+ 3/2 2(3/2)"% >0,
similarly one can prove
2
- g olwm) =0 = 14 32 —p?(3/2)72 =0,
2
1—51)(%m)<0:>1+3/2 2(3/2)"2 < 0.
. 2 : 3/2 4 _1 . .
Hence sign ( 1 — 3 v(wip) | =sign | 1+ @z P (3/2)"2 ) which finishes the proof. O
24m
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4.4. Study of the curve C;

Corollary 4.4.13

Let be p,Q,, > 0. The set containing the critical points of w; (i.e., {7 > 0]w}(7) = 0})
is of the form {1, 7}, moreover, the following statements are true for the critical points of
Wi -

(a) If p <1, then 7, = 1, in other words, 7 = 1 is the unique critical point of w;, in this
case, w) (1) > 0 for 7 # 1.

(b) If p > 1, then wi(7) > 0if 7 € (0,71) \ {1} and W}(7) < 0if 7 € (71,400) \ {1},
furthermore:
(b.1) I S1,0 <0, then 7y <1 and k1(71) < Kint-
(b.2) If SlvP»Qm =0, then 7 =1 and Hl(ﬁ) = Kint-
(b.3) If S1p0 >0, then 71 > 1 and k1(71) > Kint-

Wy
w "7
/ |
-~
Ke1l o
’ 1
1
I
1
Qint 1
I I
I 1
| :
Kel \ \
} I
: 0 =
0 1 T
Q. = 1.0000, p = 2.2748,
(a) ©,, =1.0000, p = 0.6000. (b)
Sl;Pva = —1.7250.
W
w —
w wi (T wy(7)
gim _1( ) _______________
______ /_I
| e ! :
: l ’
1 ! !
1 ! !
Kel I | :
I I
: l ’
: l ’
: l ’
0 1 T 0 1 Tl T
Q.. = 1.0000, p = 1.7498, 2, =2.0000, p = 1.3749,
(c) (d)
Slﬁpyﬂm =0. SLP’Qm = 0.9565.

Figure 4.8: Graphic representation of the function w; (-).

4.4.3.3 Study of the monotonicity of k(1)

186



4.4. Study of the curve C;

Lemma 4.4.14

The function 7 — k1(7) is a strictly increasing function. Moreover, k] > 0 in R\ {1} and
/

Proof. Tt follows directly since Lemma 4.4.4, Lemma 4.4.8 and (4.4.41) establish that s is
a composition of strictly increasing functions on the intervals (0,1) and (1,+o00) (indeed, v~
and v1 are clearly strictly increasing). The value x}(1) = 0 has been indicated previously in
(4.4.45), O

4.4.4 Characterization of the curve (C;) as a graph

Theorem 4.4.15

The curve C; is the graph of a C'—function on k. More precisely,
Ci = {(k,wi () [k > ke1}, wi=wjofr} (4.4.58)

where 1 = #1(7) is an invertible function whose inverse is given by a C'! —function, namely,
{r1} 7" 1 [Re, +00) — [0, +00).

Proof. From Lemma 4.4.14, we know that ki(-) is an invertible function (since it is strictly
increasing) which maps #1(0) = k1 (see Theorem 4.4.10) and such that #1(s) = k] (s — 1) —
+o00 as s — 400 (see Lemma 4.4.9), hence 1 has as domain and as image, respectively,
the intervals [0, +00) and [kcn, +00), therefore its inverse function is well defined, {x;}~1 :
[Ke,1, +00) — [0, 400). Hence from Theorem 4.3.1 it follows that

(k,w) €C1 <= (k1(s),w;(s)) = (k,w) for some o > 0,
= K> key, s=1{k1} (k) and w=w,(7)
= K> ken and w=w;({x1} 7 (K)) = wi(k).

From Lemma 4.4.14, it follows that the inverse function {x1}~! is derivable in (0, +00) except

at s = 1 (where k1(1) = Kint), hence wj is derivable on the intervals (k¢1, Kint), (Kint, +00).

On another hand, Lemma 4.4.12 assures us that (w}) (kint) = lim1 W} (s) /K] (s) exists, which
S—

finishes the proof. O

4.4.5 Geometric properties of the curve (C;)
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4.4. Study of the curve C;

Theorem 4.4.16

For all p,Q,,, > 0, w] has the following properties:
(a) wj is continuously differentiable at k = k.1 and (w}) (ke1) = 1;
(b) The followings are true for the critical points of wj :

(b.1) if p <1, then w} does not have critical points, moreover, (w3)'(-) > 0in (0, +00),

(b.2) if p > 1, then w] has exactly one critical point, x}, which is a global maximal
in (Ke1,+00), that is to say, (wi) (k) > 0 (resp. (w}) (k) < 0) if kK € (K1, KT)
(resp. Kk € (K}, +00)), moreover,

o if 51,0 <0, then k] < Kint,
e if 51,0 =0, then K] = Kint,
o if Sl,p,Qm > 0, then K] > Kint.

(c) for all K > ke1, wh(k) < wi(k);

(d) [Asymptotic behavior for long frequencies|

Q
wi(k) = =2 + Qo K2+ (200 Koo + Vo0) k440 (K,_4) , as k — +o0o,

V2
where Qo0, Koo and 7o, were defined in (4.4.24) and (4.4.25) (see Lemma 4.4.9).

Proof.  (a) From the definition of wj, the chain’s rule derivation and the inverse derivative
formula one gets that

(w?) (k) = wy (s) = (wl),(:), where k1(s) = k = K] (1), for kel < K < King.  (4.4.59)

1(8)  (ky)(7)

Substituting in (4.3.36) the expression for the derivatives of w and x] deduced, respec-
tively, from (4.2.16) and (4.2.19), thus we obtain

V() = 2 5 (nf) + (7 m7)" v(wi)
(i) =2 <(7277f)’v(w’{).7(w®+(n?)’(2wi+72n¥v/(w1‘))>’ (4.460)

=

where k7 (7) = Kk € (Ke,1, Kint), W] = wi (7) = wj(k) and 1 = m (7). Since k] (0) = ke,
hence we need to evaluate the right-hand expression of (4.4.60) at 7 = 0,w] = w; (0) =
fic,1, by using the fact (nf)’|r=0 = (21n ) lr=0 = —7 # 0 and (72 7)'|;=0 = (2771 (m +
711))|r=0 = 0 thus we get

(W) (Ke,1) = 2 et ((77%)/'720) = 1. (4.4.61)

2kt (17) =0

(b) From Lemma 4.4.14 and the identity (4.4.59) we derive that (w})'(x) and w/(s) have the
same sign, where k = k;1(s) and s € R\ {1}. From Lemma 4.4.12, we know that

sign ((@T)/(/ﬁnt)) = sign <sh_n>11 E(:S,Ej;

> = sign (Sl’p@m) ,

thus, this clause follows directly as a consequence of Corollary 4.4.13.
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4.4. Study of the curve C;

(c) We consider two cases:

(c1) If kep < K < Kint, then we can write wj(k) = wy (7) where 7 > 0 is such that
k = K] (7). Notice that kK > Kk¢1 > K2, henceforth k = ko(s) for some s > 0. From
here, we can use exactly he same reasoning as in the clause (¢) of Theorem 4.3.7 to
conclude that

wy (k) = wa(s) < wy (1) <wi(k).
(¢.2) If Kint < K, then wi(k) = w] () for some 7 > 0, then (k,w}(k)) € Cf C NT
which implies that ®(x) < w}(k), on the other hand (k,w}(x)) € C C N~ gives us

wi (k) < ®(k), those relations give us the desired inequality.

(d) We use the estimation (4.4.25) proved in 4.4.9, altogether with Lemma C. 4 applied to

K= /if seen as a function on 7 :

T=k—Kyork 4o (/{_1) , as kK —> 400, (4.4.62)

and we have abbreviate 7 = {x] }~!(k), hence
—2
2 = </{ — Koo/{_1 +o0 (/4_1) >
—2
= k2 <1 — K+ K240 (/{‘2) )

= k2 (1 +2Kk 240 (K,72) )
=Kk 2 +2Kork o (kY), ask— +o0, (4.4.63)

Finally, by substituting (4.4.63) in (4.4.24) and since 7% = ™% 4+ 0 (k%) as kK — +0o0,
one obtains

+ Qoo k2 + (200 Koo + Vo0) k40 (Ii_4) .

SIF
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4.4. Study of the curve C;

_g{(ﬁ) ® (ﬁmﬁc) ° (HC,lvﬁ’C,l) ¢ (Hintagint)

(a) Q, = 1.0000,p = 0.6000.

_glk(r”) ° (HC?EC) ° (‘%C,lvﬁC,l) ® (ﬁintvgint) ¢ (F”LQT)

Q,. = 1.0000, p = 2.0406,
(b)
Slyp,Qm (TC) = —0.900.
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4.4. Study of the curve C;

—Wi(K) © (Feshic) @ (epshicn) © (K7@0) = (ins i)

Sk

Q,, =1.0000, p = 1.7498,
(c)
Sl,p,Qm (1) = 0.

_g{(ﬁ) ° (ﬁC?H’C) ° (KC,17H’C,1) . (Hfintagint) ¢ (/qaglk)

S

Q. =2.0000,p = 1.6784,
S1.p.0,, (Tc) = 0.2000.

(d)

Figure 4.9: Graphic representation of the function wj(:).
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4.5. Study of the curve Cy

4.5 Study of the curve C

In this section, we will prove that the set D, is composed by a unique dispersion curve named

Co, for this purpose, we follow the same technique developed for the description of the dispersion
curves {Cp }n>2.

4.5.1 Existence and uniqueness of the solution (x,(7),w,(7)) of (DSy)

Theorem 4.5.1: Existence of the unique parametric curve in DJ,.,

There exists a unique couple of C* functions w, : [0,00) — (0,£,,,) and kg : [0,00) — RT
such that for any 7 > 0, (wy(7), ko(7)) is solution (parameterized by 7) of (DSy) (defined
in (4.1.48)-(4.1.49)). Consequently, Cp is fully described as

Co = {(wy(7), ko(7)) | T > 0}. (4.5.1)

Moreover, this curve has as initial point

=

wo(0) = ko(0) = ke :=pQ,, <1 + p2>_ . (4.5.2)

Proof. The existence of the C* ([0, 00)) functions wy, : [0,00) — (0,2,,,) and kg : [0,00) — RT
solving the dispersion system (DSa,) (see (4.1.50)) is a direct application of Theorem 4.2.3
applied to the functions Ay and By defined in (4.1.49), which are C* in [0, +00). Finally by
making 7 = 0 in (4.1.48), we notice that w,(0) = ko(0) and

2 ()4
P~ 2\ (2
-1 Q: =0
w,(0)? (107 S =0,
by resolving the latter for wy(0) > 0 we obtain (4.5.2). O

4.5.2 Study of the monotonicity of w,(7)

In what follows we want to use the results presented in Section 4.2.3. In the first instance, we
note that
Aj(r) =27 tanh(r) (tanh7 + 7 sech®7) >0, 7> 0. (4.5.3)

Secondly, we present the functions g and Sy defined using Ay and By (see (4.2.21) and (4.2.23))
as follows

() B, 2T
ap(t):=—=7 =
0 Ay 27 tanhT (tanhT + 7 sech?r)
-1
= <tanh7 (tanhT + 7 sech? 7) > , (4.5.4)
72 tanh 7
Bo(T) : = Ap(T) ap(7) + Bo(1) = 72

"~ tanhT + 7 sech® 1 B

B 73 sech? 7 (4.5.5)
N tanh 7 + 7 sech® 7 o

Lemma C. 2 guarantee us that aq(-) is a positive function in RT.
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4.5. Study of the curve Cy

With these elements, we can proceed as previously presented in Section 4.2.3 to study the
monoticity of wy(-). For this purpose, we need to study the real zeros of the function

Bo(7)
QQ

m

Sopq, (1) =1+ — 02 (ao(7)) 2. (4.5.6)

From Lemma C. 2, it is deduced that ag(-) has a global minimum at 7 = 7., then Proposi-
tion 4.2.6 guarantee us that Sp,0 (-) has a also a minimum in 7 = 7., with this in mind we
establish the following proposition which describes the zeros of Sp .0 (-).

Proposition 4.5.2

Given p, ., > 0, then exactly one of the following is true:

(a) If p > 1, then Sp,0 (-) > 0 has a unique zero, 7o > 0, such that Sp,0 (7) > 0 if
and only if 7 € (0, 7).

(b) If p<1and Sppq (7c) >0, then Sp,q (-) is strictly positive in R*.
(c) If p<Tland Sppq, () =0, then Sp,0 () is non negative and 7 is its unique zero.

(d) If p < 1and Sp,0 (7) <0, then Sy, (-) has exactly two zeros, Tél) < Téz)

—m

that Sp 0 (7) > 0if and only if 7 € (0, Tél)) U <7'(§2), +oo) .

such

Proof. From Proposition 4.2.6, one deduces that Sp,0 (-) and ag(-) have the same critical
points (in this case this is unique and equal to 7, which is a global minimum (see Lemma C. 2),
therefore

So0,p.0. (+) is strictly decreasing (respc. strictly increasing) in (0,7.) (respc. (7, +00).) (4.5.7)

m

In addition, with the aid of Lemma C. 2 we can also compute

1_p2S07 1fPZL

4.5.8
1—p?>0,if p< 1, (4.5.8)

lim+ Sopa, (1) =1>0 and

T—0 T—>

lirﬂoo SO’p1Qm (1) = {

(a) If p > 1, then from the fact that Sp(-) < 0 by definition and ag(7.) < 1, one can deduce

that
o, (70) = 14 20— 2 (g ()
—m
By combining, (4.5.7) and (4.5.8) with the latter proven, we deduce that there exits an
unique 79 € (0,7) such that Sp,0 (70) = 0, while Sy, 0 (-) < 0 in (79, +00), showing
this clause.

N

< 0.

(b) In this case we have min{So, 0 (7)|7 > 0} = So,.0, (7) > 0, henceforth Sy, () is
strictly positive in R™.

(¢) Inhere we have min{Sp 0 (7)|7 >0} = So,0 (7) = 0, then the clause follows directly.

(d) For the last clause, if So 0 (7c) < 0 then from (4.5.7) and (4.5.8) it follows that there

exists a unique Tél) € (0, 7.) such that So7p7Qm(T(§1)) = 0. On another hand, since p < 1,

then one deduces that there exists a unique Téz) € (7¢, +00) such that Sp,0 (Téz)) =0.
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4.5. Study of the curve Cy

These facts implie (retake again (4.5.7)) that Sp,0 () > 0 in (O,Tél)) U <T(§2),—|—OO> ,
while Sp,0 (-) <0in (Tél),752)> , finishing the proof.

Corollary 4.5.3

Under the notation of Proposition 4.5.2. Given p, 2, > 0, then exactly one of the following
happens:

(a) If p > 1, then wy(-) > 0 has a unique critical point, 79 > 0 such that wy(7) > 0 (resp.
wp(7) < 0) in (0,70) (resp. (70, +00).

(b) If p<1and Syp0 (7e) >0, then wi(-) >0 in RT.

(c) If p<land Sop0 (1) =0, then wy(7) > 0in 7 # 7. and W'(7.) = 0.

(d) If p < 1and Sop0 (7)) <0, then wy(-) has exactly two critical points, Tél) < TéQ)
such that w((7) > 0 (resp. wy(7) < 0) in (0,7’5”) U (TéQ), +oo> (resp. (Tél),Té2)>).

€

. _/ a7

0 ) T
Q,. = 1.0000, p = 0.5566,
(a) Q,, = 1.0000, p = 1.1000. (b)
So,p.0,, (Tc) = 0.1438.

&€
&

wy(7) () wy(7)

Ke
0
Q,, = 1.0000, p = 0.9527, Q,. = 2.0000, p = 0.9571,
(c) (d)
50.p.9,,(c) = 0. So.p.q,, (Tc) = —0.0831.

Figure 4.10: Graphic representation of the function wg(-).
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4.5.3 Study of the monotonicity of r(7)
4.5.3.1 A first result under restrictive conditions

In this section we want to study the increasing monoticity of the function 7 — ko (7) for all the
values p, Q.. > 0. We will see that for some cases of p,2,, > 0, this monoticity property is true,
the other cases are not still proved.

In the same manner when the monoticity of the functions «, (-) was studied, we are interested
in analysing the sign of the derivative (xo)(+), one first approach is to compute this value by
using the Implicit Function Theorem (see resemblances with the proof in Lemma 4.3.4). Since
wo(7) satisfies

Fo(wo(r),7) =0, where Fy(w,7) := (72 tanh?® 1) v(w) — 7% — u(w),

then by differentiating we have

W (7)) — _arFo(gn(T),T) 27— (72 tanh? 7)" v(wy (7))
) T Rl r) T (7 ) v () — () .
and from (4.1.48b) one deduces
2 ko (ko) = (7% tanh? 7) v(wg) + <2 wo + (72 tanh? 1) v/(wo)) Wy (4.5.10)

and by remplacing the value of wy, obtained in (4.5.9) we deduce that

27 <2w0 + (72 tanh? 1) v’(w0)> — (72 tanh? 7) v(wg) (v (wo) + 2wp)

2 ko (ko) = v (wp) (12 tanh? T) — u/(wp)

27 <2w0 + (72 tanh? 7) v’(w0)> — (7% tanh? 1) v(wy) I’ (wp)

v'(wp) (72 tanh? 7) — ' (wy) (4.5.11)

Thanks to Lemma 4.2.2 and the fact that w, € (0,£2,,) we see that the denominator of the right
hand side in (4.5.11) is positive. Therefore (ko) and s; + sy are of the same sign, where

s1: =27 (Zwo + (72 tanh? 7) v'(w0)> and sy := —(7% tanh? 1) v(wp) (v (wg) + 2wp)

(4.5.12)
The function s; is positive since is composed by positive terms including v'(w) (see (4.2.2)).
On the other side, since v(w) > 0 and (72 tanh? 1)’ > 0, then the sign of sy is delimited by
the sign of u/(wy) + 2wy, additionally we know that the condition

0<w<p’?Q,, (4.5.13)

implies u/'(w) + 2w < 0 (see Lemma 4.2.2). Therefore, if we have w, < p'/2Q,,, then it will

occur in turn that ss > 0. The problem is that we cannot assure (4.5.13) for all the cases p > 0,
indeed, we know that for all the values of p > 0, wy — Q—’;, therefore for values p < %, the
condition (4.5.13) is not true for large positive values of 7.

Nevertheless, one easy way to guarantee (4.5.13) is considering the particular case p > 1,
indeed, since wy € (0, £2,,) the condition (4.5.13) follows directly, consequently so > 0 and finally

(o)’ > 0. We have proved the following:
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Proposition 4.5.4

If p > 1, then ko(-) is a strictly increasing function.

We want now to explore what happens when p < 1. Coming back to (4.5.10), since the terms
(72 tanh? 1)/, v(w),v'(w) are all positive, then one can notice that wj > 0 implies (ko) > 0,
moreover, in this case of (xg)’ = 0 requires necessarily that (72 tanh? 7)'v(w) = 0 which is only
valid when 7 = 0, therefore we can conclude that (kg)'(r) > 0 for 7 > 0. This analysis and
Corollary 4.5.3 lead us to the following result:

Proposition 4.5.5

If0 < p<1andQ,, >0 are such that p—2 <1 — %‘%) > (amin)_%, then ko(+) is a strictly

increasing function.

4.5.3.2 A new alternative approach for the general case
4.5.3.3 Introduction to some ideas

We consider 2,,,, p > 0 fixed. Let us consider the following functions

J (W) = w?e(w) p(w), (4.5.14a)
T(k,w) =V K? = T (w), (4.5.14b)
s(k,w) = V/K? — w2, (4.5.14c
F(k,w) := 7(5,w) tanh7(x,w), (4.5.14d

4.5.14e

— o~
~— O~ e

4.5.14f
In addition we will consider the function
ap(t) =7 tanh7, 7 >0, (4.5.15)

hence F(k,w) = ao(7(k,w)). Given k > 0 fixed, we will write f.(w) = f(k,w), where f = f(k,w)
and k<o will stand for min{x, Q,,}. In that sense, the function s, (and consequently, also G)
is well defined in the open interval (0, ), and 7, (and consequently, also Fj;) is well defined in
(®(k), k<q, ) where

1 1\3 Q
2(x) = (52 + 92, (0 + D)= [(R+02, (P—1)*+492%, 72 )?, for 5> hp = \/pl%pz,
(4.5.16)

stands for the minimal root of the equation J(w) = k2. We finally define the following interval
Iy := (®(k), k<q, ). The functions 7(-), sx(:), Fi(-), Gx(:) are then all positives in the interval
I, for all kK > k.

Objective: We want to show that for all kK > k., there exists a unique w, € I, such that
H,.(w,) =0 and H.(w,) > 0.

As a state of art, we proceed as usually, by analyzing the existence of zeros for Hy(-) and
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intervals of moniticity.

Proposition 4.5.6: Existence

For all k > k. there exists w* € I,; such that H,(w*) = 0.

Proof. This is a direct consequence of the Intermediate Value Theorem by noticing that
H(k,®(k)) =0—-G(k,®(k)) <0 and H(k kg, )= F(k kg )—0>0. (4.5.17)

O]

Lemma 4.5.7: Derivatives

Let be x > 0 fixed.

. . 1 - .
(i) Fi has a maximum at w = w,, 1= p2 Q,,,, moreover, F, is increasing for w < w,. and
decreasing for w > w,.

(ii) Gy is decreasing for w < /.

Proof. By computing F. we have

() — @)
Fi(w) = 2 () T (w), (4.5.18)

since J has an unique critical point which is minimum, namely, w
On the other hand, by computing G/,

co» then (i) follows immediately.

: w 20
=—| (- — 4.5.1
Gl = () 25+ 2 00 ) (4519
and since —p,(w) is positive in (0,9,,)(D 1), then we have (ii). O

Corollary 4.5.8

For all k > k., He(-) is strictly increasing in the interval (®(k),w,.). Consequently, H()
has at most one zero in (®(k),w,.), in that case, if Hy(w*) =0, then HJ(w*) > 0.

Remark 4.5.9. Corollary 4.5.8 does not answer completely our objective beacuse of the fol-
lowing:

(I) We cannot guarantee the existence of zeros of Hy(-) inside the interval (®(k),w,.).

(II) Even if H.(-) had a zero belonging to the interval (®(k),w,..), we cannot exclude the
possibility of any other zero in I./(®(k),w,.)-

(IIT) If w* € I;/(P(k),w,.) satisfies H,(w*) = 0, it is not readily seen that HJ (w*) > 0.

Remark 4.5.9 leads us to consider second derivatives in order to gather more information:
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Lemma 4.5.10: Second derivatives

(i) Fy is a strictly concave function on Ij.
(ii) If Q,, < k, then Gy, is a strictly convex on I,.

iii) If kK < Q,,, then G, has a unique inflection point in (0, k<q ), namely,
m =m

902 K% —Q,, K> \/3(11Q$n—8/<;2)

win (k) = 2@ 1 ) (4.5.20)
Proof. We consider the function
b(r) = “/2(:), >0, (4.5.21)
then by differentiating (4.5.18) we get
mw) = ) g2 ) 7 w), (4522

274 (w)

so in order to prove that F, is concave, we demonstrate that F/ < 0, and since b(1) =
% (% + sech? 7) > 0, for 7 > 0, and J”(w) > 0, then it suffices to show that ¥'(7) < 0,

for 7 > 0, indeed,

1 <T sech? 7 — tanh 7

5 — 2 tanh 7 sech? 7'> <0, 7>0,

T

since T sech? 7 < tanh 7.
On the other hand, by differentiating twice G\, we obtain

Gr(w) = (—p(w))"sx(w) +2 (=p(w)) s, (W) + (—p(w)) s (w)

(292, + K2 wt — 902 K2w? + 692, K

w? s} (w) ’
therefore the zeroes of G” are given by the positives roots of Pi(w) := (202, + w?)w* —
902 k2w? + 602 k*, namely,
902 K2+ Q,, K> \/3(11Q3n — 8k2)
Wi = 5 3 , (4.5.23)
2297 + K?)
provided that 11 an — 8k2% > 0. Since
902 K2+ Q,, k21/3 (1192, — 8k2)
- - \/ - > min{k, 2, } = k<q_, (4.5.24)

2292, + K?)
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then we focus in the smallest root

902 K% —Q, K> \/3(11Q2n—8n2)
2(292% + K2)

Win(K) =

For the case k > §2,,, and provided 11 Q,Qn —8k2% >0, then we have

008 K2 -0, k23 (1105 —803)\ T
. > = 4.5.25
wi, (k) > 2R+ 1) 2, ( )

meaning that G, has no roots in the interval I, = (®(k),,,), and since

_ 200 (52 - 90) (357 - Q7))
- D 54 ()

Gr(,,) >0,

it follows that G/ > 0 in I, showing (ii).
On the other hand, if Kk < Q,,, then w;, (k) is well defined and one can verify that
P.(0) =602 k' >0, Pir)=rr>-0% <0, (4.5.26)
ans since w;, (k) is the smallest root of Py, then necessarily w;,(x) € (0, k). O

The main reason why we have introduced the second derivatives is for the use of the following
lemma (whose proof is oriented by a geometrical argument):

Lemma 4.5.11

Let be I = (a,b) C R an interval and f € C%(I) such that f” < 0 in I. Suppose that
f(a) <0 and f(b) > 0, therefore f has a unique zero in I, furthermore, if z € I is the zero,
then f/(z) > 0.

Proof. The existence of a zero is a direct consequence of the hypothesis and the Intermediate
Value Theorem. For proving the uniqueness, we proceed by contradiction, let us suppose that
a < zp < z1 < b are such that f(z9) = 0 = f(21). Since f” < 0, meaning that f is strictly
concave, we therefore have f((1 —1¢)z9+1tb) > (1 —1t) f(z0) +t f(b) > 0 for all t € (0,1), in
consequence f(x) > 0 for all € (20,b), which contradicts the assumption f(z1) = 0, proving
uniqueness. Finally, considering z € [ the zero of f, the Mean Value Theorem guarantee us that
exists xg € (z,b) such that f/(zg) = % > 0, and since f/(-) is strictly decreasing (f” < 0),
it follows that f’(z) > f/(xo) > 0, finishing the proof. O

Proposition 4.5.12

If kK € (Keywyo UQ,,,+00), then there exists a unique w, € I, such that Hy(w;) = 0,
moreover, it holds Hj (wy,) > 0.

Proof. M If k € (Kke,w,c|, then I, C (®(k),w.c), the result therefore follows from Corol-
lary 4.5.8.

B If x> Q,, then Lemma 4.5.10 guarantee us that H,(-) is a strictly concave function on
I, such that Hi(®(k)) < 0 < Hg(L,,), hence we can apply Lemma 4.5.11 to conclude.
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4.5.3.4 Approach using Complex Analysis

In what follows, we desire to use Hurwitz’ theorem in Complex Analysis:

Theorem 4.5.13: Hurwitz'theorem

Let (fn)nen be a sequence of holomorphic functions on a connected open set U that converge
uniformly on compact subsets of U to a holomorphic function f which is not constantly
zero on U. If f has a zero of order m € N at zg then for every small § > 0 such that
B(zp,0) C U and for sufficiently large n € N (depending on §), f, has precisely m zeroes
in B(zp,0), including multiplicity. Furthermore, these zeroes converge to zy as n — oo.

We use the last theorem in order to prove the following abstract result

Lemma 4.5.14

Let be . >0 and I, 1" :[0,00) — R continuous functions on [k, 00) such that
a) I~ (k) < IT(k) for all k> ke,
b) I~(-) is monotonous decreasing and I " (-) is monotonous increasing.

Let be the domain indezed complex domain
X = {(m,z) € [Key, +00) X C| I (k) < R(2) < I+<l€)}

and consider H € C(X;C). Suppose that for all K > k., H(k, ) : U, — C is a holomorphic
function not constantly zero, where

Ues:={2€C|I (k) <R(2) < IT(k)}. (4.5.27)
We say that xk > 0 satisfies the property P if and only if
H(k,-) has a unique zero on U, and this is real and simple. (4.5.28)

If kg > ke is such that x satisfies the property P for all k. < k < kg and Z(H (ko, -)) U, #
(), then kg satisfies also the property P.

Proof. We first prove that the zero of H(ko,-) in Uy, is unique. For all k € (0, k9) we denote as
2, the unique zero of H(k,-) in U,. We prove that for any zero of H(ko, ")),z € Us,, it holds

lim z, =2 (4.5.29)
K—>Rg
Let 6 > 0 such that B(z/, ) C U,,, hence
I (ko) < R(2") =6 < R(Z")+ 6 < I (ko). (4.5.30)

By continuity and monoticity of I~ (-) and I7(-), there exists k* € (0, ko) such that

I (k) < I (ko) + g and It (ko) < I (k) + g, for all k € (kK*, ko). (4.5.31)
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Combining (4.5.30) and (4.5.31), we obtain

I (k) < R(Z) — g < R(Z) + g <I"(k), forall k€ (k* ko). (4.5.32)

(4.5.32) shows that
)
B (z’, 2> C Uy CUg, forall k€ [k", Ko (4.5.33)

Now we define what it will be the common domain for the functions H(k,-),k* < k < Kg. Let
be M > 0 big enough such that

B (z', g) CU:={zeC| I (k) <R(z)<I(x"), [3(z)| <M}, (4.5.34)

hence U is a bounded open of C such that U CC Ug+ C Uy, for all k € [k*, ko]. Hence we
consider the family of holomporhic functions

{H(Fa, ) ‘ K € [H*,Ho]},

defined on the domain U. Since U is bounded, then R := [k*, ko] x U is compactly embedded
in X. As a consequence of our hypothesis, we have that H is uniformly continuous in R, which
implies in turn that {H(k, ) }x<r<r, converges uniformly to H(kp,-) on compact subsets of U,
as k — Ko. Then we can use Hurwitz’ Theorem, given any neighborhood V of 2’ in U, and any
sequence (ky) C (k*, ko) such that k, — ko as n — +00, there exists a further subsequence
(kn,) such that
Clim oz, =2, (4.5.35)
j—>4o0 J
In here, we have used that H(k,-) has unique zeros in U. This proves (4.5.29), which proves in
turn the uniqueness of the zero of H(ko,-) and that 2’ is real (since (z,) C R). Moreover, from
Hurwitz’ Theorem, it can be seen that the unique zero of H(ko,-) is simple, since the number
of zeros (with multiplicities) of H(k,-) (k < ko) is 1. O

4.5.3.5 General proof for the monotony of x(-)

Our objective is to prove the following proposition:

Proposition 4.5.15: Strictly increasing of x|,

(ko) () > 0 in RT, for all p,9,, > 0.

First we present the setting for using Lemma 4.5.14. We define I, I : [k.,00) — R as
I (k) :=®(k), IT(k):=min{k,Q,}, > ke, (4.5.36)

where k. and ® are defined as in (4.5.16). Let be X the complex domain
X = {(I-i, 2) € [Ke,+00) X C|I7 (k) < R(2) < I+(k:)}. (4.5.37)

And define H : X — C asin (4.5.14f). It is clear that H € C(X;C). One can notice that for all
k > k¢, H(k,-) is a non-constantly holomorphic function on C\ {®(x), x}, hence is holomorphic
on U, defined as in (4.5.27).
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Lemma 4.5.16

The following are true for (k,z) € X :
(i) R (m) > 0;
(ii) If H(k,z) =0, then z € R;
(i) Z(H(k,-))NUg # 0.

Proof. (i) First note that R(z) > 0 since I~ (k) = ®(k) > 0. Proceeding by contradiction,
and since we are considering the principal branch of the square root, we suppose that

R (\/ K2 — z2> =0, in other words, 22 = x2, which implies that z = R(z) € RT and hence
contradicts the fact that R(z) < I (k).

(ii) Let us consider k := k/L and w := z/( /€0 1o L), from the definition of H we have

H(k,z)=0 < §£Z tanhf,l,zz = —pr(w) SIZZ
— 60 tanh(8P, 1) = — @ gv
; ; w

and form the first clause, we have that R(6) ) > 0, hence w € oeven(k) C R, this implies
that z € R.

(iii) It follows directly from Proposition 4.5.6.

Lemma 4.5.17

For all k > k., there exists an unique w,, € (I~ (k), [ (%)) such that H(k,w,) = 0, moreover,
it also holds 0, H (k,w,,) # 0.

Proof. We say that s > k. satisfies the property (Q) if and only if there exists a unique w, €
(I~ (s),I"(s)) such that H(s,w,) = 0 and 9, H (s,w,) # 0. We therefore define the following set

T := {k > k. | s satisfies the property (Q) for all s € (¢, x|}, (4.5.38)

one deduces from Proposition 4.5.12 that (k.,w..) C Z, in particular, Z # (), and since the
manner it was defined, it follows that Z is an interval. It only rest to prove that Z does not have
an upper bound, indeed, arguing by contradiction, if Z is upper bounded then we can consider
Ko := supZ < +oo. The latter yields to (ke,k0) C Z, in other words, for all k. < k < ko, K

satisfies the property (Q).

We first prove that kg satisfies the property (Q). For this purpose, we see verify the hypothesis for
using Lemma 4.5.14, in fact, it only remains to prove that the property (Q) implies the property
(P) as in Lemma 4.5.14, indeed, Lemma 4.5.17 implies that for all k € (s, k.), H(k,-) has
exclusively real zeros, and this is unique and simple provided the property (Q). Hence, H (Ko, -)
has a unique zero (I~ (ko), I (ko)), W,,, which is simple, in other words, 9, H (k,w,,) # 0.

The former information yields kg € Z and consequently, k9o = maxZ. The fact that «¢ satisfies
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the property (Q) give us the necessary hypothesis for apply the Implicit Function Theorem for
real fuentions, therefore the property (Q) can be extended in open neighborhood of kg, which
contradicts the maximality of kg, this proves that Z = (k., +00) finishing the proof. O

Lemma 4.5.18: Monotonicity of kg

The following are true for 7 > 0 :
(i) ko(T) > ke and I~ (ko(T)) < wy(T) < It (Ko(T)),
(if) H(ro(7),wo(7)) =0,

(iii) sign (8w H (ko(T),wo(T))) = sign (k((7)) , consequently k() () > 0.

Proof. (i) Tt follows from the fact that (ko(7),wy(7)) € Co C N and (4.1.16).
(ii) Tt follows from the definition of H and (ko(7),wq (7)) € Co C Dien-

(iii) For simplicity, we make x = ko(7) and w = wy(7). From (4.2.19) and since x > 0 and
Ap(7) v (w) — u/(w) > 0, then we derive that

sign (kq(7)) = —sign (4p(1) v(w) T’ (w) + (2w + Ao(7) V' (w)) By(7)) - (4.5.39)

On another hand,

Ow H(k,w) = 0, F(k,w) — 0,y G(K,w)
= ap (T (K, w)) Oy 7 (K, W) + pir.(w) 5(k, W) + pir (W) O 5(, w),
_ap(t(k,w) I'(w) L) s(m ) — 2w pir(w)
— 27 () + . (w) s(k,w) 2s(nw) (4.5.40)

and since (k,w) = (ko(T),wy(7)) solves (4.1.48), then we can notice
r=r(nw) and  s(sw) = v/Ao(r) v(@) = lao(r)r ()] = —ao(r) prL(w), (45.41)

where we have used that Ag(7) = a2(7) and v(w) = u, %(w), then by replacing the latter
in (4.5.40) we obtain

O H(k,w) = 7Cl6(7') J (w) B ao(T) ph(w) N QUZ(&)

N 27 pir (w) ao(7)
_ap(n) (W) 2a0(1) (W) 1 (w) | wpP(w)
27 2 i} (w) ao(7)
_ap(1) I (w) | ao(r) v'(w) w
B T R R 454
where it was used that B{(7) = =27 and v'(w) = _2;#((5))' Finally,
~ [ 2a0(r) ap(m) v(w) T'(w) + (2w + a§(1) v'(w)) By(7)
O HHlr ) = ( ~2ao(r) By(r) v(e) > |
_ [ A v(w) T'(w) + (2w + Ao(7) v'(w)) By(7)
- ( o) B (7] o) ) : (4.5.43)
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where again it was used the fact that Ag = a3 and consequently A = 2agay, since
aop(7), —Bo(7) > 0 for 7 > 0 and v(w) > 0, then we deduce that from (4.5.39) and (4.5.43)
that

sign (8, H (ko(7),wy(7))) = sign (8 H(k,w))
o

= —sign ( T)v(w) T (w) + (2£+ Ap(T) UI(Q)) B(/)(T))
= sign (ky(7)) ,

and from Lemma 4.5.17 and the clauses (i) and (ii) we conclude that 0, H (ko(T),wq (7)) >
0 and therefore x4(7) > 0.
O

4.5.4 Asymptotic behaviour of the functions w)(7) and x((7) when 7 — oo
Inspired in the results obtained in 4.4.2.4, an heuristic argument will lead us to consider an

asymptotic behavior

0
Wo(T) ~ =2 +Q o7 2 40(r7?), asT— +o0. (4.5.44)

V2

Lemma 4.5.19

The function 7 +— w((7) has the following asymptotic behavior

Q.
wo(T) = =2 + Qoo 7~ —|—’707_4—|-0(7‘_4), (1 — 00),
V2
5 (4.5.45)
0 e T ("= 1) Yoo 1= (1702 —9) (p2 — 1) Q5
> 8v2 T 64 \f o
The function 7 — ko(7) has the following asymptotic behavior
ko(T) =T+ Koo T 1+ 0o 73 +0(773), when 7 — 400,
(4.5.46)

Proof. We consider the variable change ¢ = 72, and we notice that the analysis of (4.1.48a)
around 7 = o0, is equivalent to the one around € = 0 of the following equation

w(X)e+1=0(X) tanh?® (5*%) . (4.5.47)

We show that (4.5.47) has a smooth solution ¢ — Xy(e) around € = 0. We base our proof by
means of the Implicit Function Theorem. Let us consider the function

Go(X,€) == u(X)e+1 — v(X) tanh? (5—%) . (X,2)e(0,9,)x[0,00).  (4.5.48)

Since € +— tanh (e_%> defines a smooth function on around a positive neighborhood of € > 0,
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moreover, one can verify

lim tanh (5_%) =1,
e—07t
NN sech? (es*%)
lim <tanh (5_5)) =— lim 5 =0, (4.5.49)
e—0t e—0t 2¢2
N <3 55 — 2 tanh <5_%>> sech? (5_%>
lim <tanh <€*§>) = lim 3 =0,
e—07t e—07t 4e
consequently
lim tanh? (57%) =1,
e—07t
/
lim (tanh2 (e—%>) =0, (4.5.50)
e—07t
TN\
lim (tanh2 (5_5)> =0,
e—07t

then Gy is smooth at (X, ¢e) = (Q—\/T%, 0) , furthermore, this point verifies Gy (Q—\/T%, O) =0and

9y Go <?}go> = (W) —2/(X) tan? (e 3))]

hence the Implicit Function Theorem give us the existence of a smooth function ¢ — X(¢)
around a positive neighborhood of € = 0 such that

m

Q
Go(Xo(e),e) =0 and Xo(0) = =2. 4.5.51
o(Xo(e), ) o0 ="2 (4551
Using the second order Taylor approximation around € = 0, we deduce that
/ Xg(()) 2 2 +
Xo(e) = Xo(0) + X(0) e + —y € + o(e?), ase — 0. (4.5.52)

now we are interested into find X’(0) and X" (0). For this purpose, we use the following expres-
sion for the two first derivatives derived from the implicit differentiation:

oy 0:-Go(Xe)e). .
X)(e) = ™ QO(X(E),e)’ (4.5.53a)
02 Go(Xo(e),¢) (Xp())?
2(9)( 85 gg(Xg(E),E) . X(/)(é“)
, &% Go(Xo(e). €) 1
X!(e) = — 9x Go(Xole).5) (4.5.53b)
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By computing the first partial derivatives of Gy we obtain:

Ox Go(X,e) = u/(X) e —v/'(X) tanh? (5_%), (4.5.54a)

8. Go(X, ) = u(X) — v(X) <tanh2 (g—%)>', (4.5.54D)

consequently, the second order derivatives hold

0% Go(X,e) = u"(X) e — v"(X) tanh? (¢72), (4.5.55a)
Oy 9- Go(X, €) = 8. Ox Go(X, €) = u/(X) — v'(X) (tanh2 (g—%))’ , (4.5.55b)
02 Go(X, €) = (X)) (tanh? (g*%))". (4.5.55¢)

Hence, with the aid of (4.4.22), (4.4.23) and (4.5.50), we evaluate (4.5.54) and (4.5.55) at

(X,¢e) = (Q—\/T%,O) as follows

=
‘\Z)
3]
N—
1
|
o
N

ox Go (%,0) = —v
0-G0 (2.0) =u (%) = (P - 122

Ox 0 Go (22.,0) = 0. 0,60 (2,0) =/ (22) = ~4v22,, /%,

=
e
N—
I
|
i

0
82 Go (;fg,o) ~0.
From here, the remaining of the proof is identical to the proof of Lemma 4.4.9. O

4.5.5 Characterization of the curves (Cy) as graphs

Theorem 4.5.20

The curve Cy is the graph of a C°°—function on k. More precisely,
Co = {(R,QS(H)) ’ K > Hc}, gé ‘= wp 0 {FJQ}_l (4,5_56)

where kg = ko(7) is an invertible function whose inverse is given by a C°°—function, namely,
{Ko} ™!+ [Ke, +-00) — [0, +00).

Proof. The proof is similar as the proof of Theorem 4.4.15. O

4.5.6 Geometric properties of the curves (Cy)
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Theorem 4.5.21

For all p,Q,, > 0, wy* has the following properties:
(a) wg is continuously differentiable at k = k. and (w})) (k) = 1;
(b) exactly one of the following holds:
(b.1) if p > 1, then wy* has a unique critical point k§ € (k., +00)) such that (wg*)’(k) >
0 (resp. (wo*)'(k) < 0) in (ke, K5) (resp. (k§, +00));
(b.2) if p < 1and Sppo (7)) > 0 then (wox)' (k) > 0 for all £ > k;

(b.3) if p < 1and SO,p,Qm (1¢) = 0, then (wo*)' (k) > 0for k # ko(7e) and (wyx)' (ko (7)) =
0;
(b.4) if p < land Sy ,0 (7e) <0, then wy(-) has exactly two critical points, H(()l) < H(()z)

such that (wj) (k) > 0 (resp. (w§)'(k) < 0) in (mc,nél)) U <I<L[()2),+OO) (resp.
(52,082

(c) for all kK > ke, wi(k) <wj(k) < Qy;

(d) [Asymptotic behavior for long frequencies|

Q
Wi(K) = T2 + Qoo ki 2+ (2000 Koo +700) 6 +0(k74), ask — +oo,

V2
where Qu0, Koo and 7o were defined in (4.5.45) and (4.5.46)(see Lemma 4.5.19).

Proof.  (a) From chain’s rule derivation and the inverse derivative formula one gets that

(wh) (k) = wo(7) where ko (7) = K. (4.5.57)

From (4.2.18) and replacing B{(7) = —27 we have that
2ko(7) k(1) = 27 + T (wp (7)) wo (7). (4.5.58)

Let us first notice that, since (72 tanh®7)'|,—¢ = 0, then from (4.5.9) we have w}(0) = 0,
and consequently from (4.5.58), £((0) = 0. Then we need to study (4.5.57) by taking the
limit when 7 — 0. By substituting (4.5.58) in (4.5.57) we obtain

(WQX%YZZ&MT)2T+n7;g§i»“%“), (45.59)

From (4.5.9) we can deduce that

( 1 — tanh h h? 7’ 1
im0 T) ~ lim tan T(t;m T + 7sech” 1)’ v(wy(7)) _ 40
T—0t 27T T—0+ (72 tanh?) v/ (wo (7)) — v/ (wo(7)) —u/(wp(0))
(4.5.60)
where the last limit is well determined since v’ < 0 (see (4.2.2)). Henceforth
lim (W) (k) = lim 2#o() ! 2 ! 1
im (w = = 2k, —1,
w0 et TR (1) + T (o (7)) T () + T ()
(4.5.61)
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where it was used that wy(0) = k. and v/ (w) = J'(w) — 2w.

From (4.5.57) and Lemma 4.5.18, it follows that (w})’(x) and w/,(7) have the same sign,
where ko (7) = k. Therefore, this clause is a direct consequence of 4.5.3 and in this case 7,
is a critical point of wy(+) if and only if k = ko(7.) is a critical point of w{(+).

The relation wj(k) < ©,, is readily seen from the definition of Cy and Theorem 4.5.20.
For the last inequality, consider k > k.

First, if & < Kint, then s := {k1} (k) < {k1} " (Kins) = 1 and w,(s) = wi(x). The fact
that s < 1 implies that w;(s) = w] (v~ (7)) for some 7 > 0 (see Theorem 4.4.10), hence

(r,wi(k)) = (k1 (7),wy (1)) €Cy CNT,

which implies that
wi(k) < ®(k), (4.5.62)

but (k,wh(k)) € Co € N, which leads to
P(k) < wh(k). (4.5.63)
From (4.5.62) and (4.5.63) follows that w} (k) < wi(k).
If K = Kint, then it follows necessarily that
(k, w5 (k) = (Kint, Wint) € No,
hence wj(k) = (k) < wj(K).

Finally, we treat the case kiny < k. This case is equivalent to prove that the curves Cgy
and Cf does not intersect themselves, indeed, we have that starting from the depart point
K = Kint one gets (see the proven above)

wi (Kint) < w(Kint),

hence if for some Ky > King, it happens that wi(k«) < wf(k«) then we can use the Intermedi-
ate Value Theorem to rpove that there exists Ky € (Kint, £+) such that wi (k) = wWi(Kax),
meaning that Cy and Cfr intersect themselves in some point. We will prove that the latter
cannot happen. We proceed by a contradiction reasoning, let us assume that there exists
kwsx > King such that w,, = w](kw) = wi(ks), then we can write k = ko(7) for some
7> 0 and k = k] (s) for some s > 0. The latter implies that (k, V) satisfies (4.1.55) for
s> 0 and (k,w,,) satisfies (4.1.48) for 7 > 0:

(ET(Q**) /’LT(Q**) - 1)Q3* = 82 COth2 S (MT’(Q**))iz - 827 (4564&)
K2 =w?, 4+ 52 coth® s (pr(w,,)) 2, (4.5.64b)
(er(wo) pir(wp) — 1w, = 7° tanh® 7 (pr(w,,) > — 77, (4.5.654)
k2 = w?, + 72 tanh® 7 (pr(wp)) 2. (4.5.65b)

By combining, (4.5.64a) and (4.5.64b) we obtain

’Q2 = "r(g**) + 527
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where we remind that F(w) := w? &, (w) pur(w), , we derive analogously that

K= Flw,,) + 72
The latter two equations imply that s = 7, hence by using (4.5.64a) and (4.5.65a), one

deduces that coth? s = tanh? s which is impossible since tanhz < 1 < cothz for z > 0.
This finishes the proof of this clause.

(d) By using the asymptotic behavior of w, and ko as 7 — +00 (see Lemma 4.5.19), one can
replicate the proof of the clause (d) in Theorem 4.4.16 to conclude this one.

O]
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4.5. Study of the curve Cy

(a) Q,, = 1.0000, p = 1.1000.

Q,, = 1.0000, p = 0.5566,
(b)

S1.p.0,, (Tc) = 0.1438.
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—wy(k) o (Ke,tic) o (Ko(Te),wy(7e))

Q. = 1.0000, p = 0.9527,
Sl,ﬂ,Qm (TC) =0.

(c)

N’-I-

Q,. = 2.0000, p = 0.9571,
d
S0, (Tc) = —0.0831.

Figure 4.11: Graphic representation of the function wg(-).
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Appendix C

C.1. Real analysis tools

Define -
m(7) = - —arctanT, T >0,
2 -1
aj (1) = ((7‘ + 73) (171(7) - 1Jr%)) , T >0, (4.5.66)
b (r) = )
(1) = >0,

m(r) — =
and for p > 1 define the following functions

np(T) = ]g — arctan 7, 720,
-1
ap(T) = ((T + 7'3) (np(T) - H%)) , 7> 0, (4.5.67)
3
/Bp(T) = LT)T’ T Z O

ﬁp(T)—ﬁ

Lemma C. 1

The following properties hold for all p > 1:
i) np(r) >m(r) > 13372 > 17 forall 7 > 0.
(i) ai and «, are strictly decreasing positive functions in R™.

Y lm o ()= 1 .
(i) lim oy (r) = lm apy(r) =+oo

. 3
(iv) Tirgoo aj (1) = 2 and TE)IROO ap(7T) =0.

(v) Br(0) = (%)% and 5,(0) = (BF)*.

(i) lim Br(r ):gand lim  B,(r )—((1’2”> |

T—>+00 T—>+00

Proof. (i) An elementary computation shows that g +3 5372 = 1552 for 7 > 0. On the other side,

the relation 7,(+) > 771( ) derives directly form the definition. Let us consider the function
a(t) :==m(1) — 1+3 5. It is easy to note that

a(0) = g >0 and lim a(7r)=0.

T—>+00

Moreover, by differentiating a(-) we obtain

dry =L 397 (143774 (147%)(3-97)
1+72 (1+372)2 (14 72) (1_|_37-2)2
:_(1—1—672—1-974)—1—(3—672—97'4):_ 4 <0. foralls>0
(1+72) (1+372)° (1+72) (1+372)% -

hence a(-) defines a strictly decreasing and consequently we have that a(-) > 0, concluding
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4.5. Study of the curve Cy

the proof of this clause.

(ii) Let us define p > 1,
Qp(7) = ag, ! (7)
— (47 ()~ 1123

1472

so this clause is equivalent to prove that @), is a strictly increasing positive function in
RT. Observe that

Qp(r) = (T +7°) <(p HE +m(r) - 1_:7_2>
= LD (74 7%) + Qu(7),

then it only suffices to prove the result for Q1(-). Indeed, by inspecting the derivative of
Q@1(-) and using the proven in the clause (i), we have

Qi =1+37) (m) = ) + 47 (~ 1 — )

— (14372 <771(T)— 14:72> —(r+7% <(1+272)2)
= (1+372) (771(7) - 1+TTz> - 13:72
> (1+377) (

3T T 2T
1+372 1+72) 1472
BT +7%) —7(1+37?) 27
(1+372) (1+72)  1+72
2T _ 2T _0
(1+372)(1+72) 1472 7

=(1+37%)

= (14372
where the inequality is strict for 7 > 0. This proves that @ is strictly increasing in R™
and since Q1(0) = 0, hence it is positive for 7 > 0.

(ili) For p > 1, it is clear that @, is continuously well defined at 7 = 0 and @,(0) = 0, hence
it follows this clause.

. . T . . 1 . . 1 . 14372
(iv) Note that Tgrrioo (771 (1) — 1—%77'2) = Tgnioo i 0 and since ( +T3> = —(T+T§)2 #
0in R™, then we can use L’Hopital’s rule to the function <771 HTQ) / (ﬁ) having
i /
Tgr?kole( ):Tgn-&}oo< 1—|—7‘)/(T+7‘3>

2
. / 14372
= lim ( ( )
T—+00 (74 73)2
= lim ———= =

)
272 2
T—+oo 14372 3

The result for p > 1 follows directly from the fact that Q,(7) = (p=D)m (T+7%) +Qi(7).
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4.5. Study of the curve Cy

(v) One can readily compute from the definition and since for every p > 1, 7]}%(0) = (p{)z.

-1
(vi) For p > 1 one has lim n,(7) = =Ur > 0, then it easily follows
T—>+00 2
L0 (- & 1>7r>2
T—rtoo np(T) — S (p—1)m/2 2

3
On the other hand, we can repeatedly apply again L’Hépital’s rule to the quotient m(:#ﬂ

. T
-

. . 3 o . T _ T ! _ 2 .
since TE}H}_OO ™ (T) = lim <7]1(7') - 1_’_7_2> =0 and (7]1(7’) - m) = —m 7é 0:

T—>+00

lim

i (7)
T—rtoo M(7) —

2 1
— = lim —3m()

S G )
2
= 1 2
s/ ()
1 —4T
= i -
T_%ooG’”(T)( 1+T2>/<(1+T2)2>

. 2T
:Tgn—il—oo 3771(7—)/ (1+7'2

O
Let us consider the functions defined in R* = (0, +00) :
ag() := (tanh 7 (tanh 7 + 7sech? 7'))71 , 7>0,
73 sech? 7
Bo(T) :=— 5 T >0,
tanh 7 + 7sech” 7 (4.5.68)
of (1) := (coth7 (cothT — 7 csch? 7) )71, T >0,
3 h2
Fr) = — B T 7> 0.

)
cothT — 7esch? 7

214




4.5. Study of the curve Cy

Lemma C. 2

The following properties hold:

(i) g is positive in R and has an unique positive critical point, 7. > 0. Moreover
ay(-) < 0in (0,7.) and ag(-) > 0 in (7, +00). In this case, ag(r:) < 1.

i) i = d li =1.
(i) lim ag(T) = +o0 an 7'—1>H-il-ooa0(7—)

(iii) lim pBo(7) =0 and lim Bo(r) =0.

7—0+ T—>r+00

(iv) af is a strictly decreasing positive function in RT.

3
: iy = O - +() —
(v) TE}I(l)+ ay (1) 5 and Tgnioo a (1) =1
3
. . + _ v . + —
(vi) TE}]%+ By (r) = 5 and Tgnioo By (1) =0.

Proof. (i) Since tanh7 (tanh7 + 7sech®7) > 0 (7 > 0), then g is positive in RT, by
computing the first derivative,
sech? 7 (tanhT + 7 sech? 7') + tanh 7 (sech2 T+ sech? 7 — 27 sech? 7 tanh 7')
tanh? 7 (tanh 7 + 7 sech? T) 2
sech? 7 (3 tanh 7 + 7 sech? 7 — 27 tanh? 7‘)
o tanh? 7 (tanhT + 7 sech? 7')2
sech? 7 (7‘ + 3tanh 7 — 37 tanh? 7')

B tanh? 7 (tanh T + 7 sech? 7') 2

(@0)'(r) = —

7 sech? 7
=— 5 RV a(T), (4.5.69)
tanh” 7 (tanhT+Tsech 7')

where it was used the identity sech?(-) + tanh?(-) = 1 and we have defined

tanh
T_ 3 tanh? 7.

a(r) =143
-

Since )
sech” T

5 Y >0, 7>0,
7 tanh® 7 (tanhT+Tsech 7‘)

then the sign of (ag)’'(7) depends entirely of the sign of a(7), we focus in this last function.

One can prove using L’Hopital’s rule, that limoa(r) = 4 and it is readily seen that
T—
lim a(7) = —2. Moreover, by inspecting the derivative we have
T—>+00

tanh T — 7 sech® 7
2

d(r) =3 (

+ 2 tanh 7 sech? 7') <0, forT>0,
-
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(i)

(iv)

the last derivative being negative since the inequality sinh(27) > 27,7 > 0 implies

sinh(27) >27 == 2sinh7 cosh7 > 27

sech? 7 27 sech? 1

5 > 5 = 7 sech® 7.

= tanh7 = (2 sinh7 coshT)

This shows that a(-) is strictly decreasing in R™, thus it has an unique positive zero, let us
name it 7. > 0, by adding the last fact with (4.5.69) we conclude the proof of this clause:

— (1) >0 <= 71€(0,7),

0 a
() (1) =0 <= a(r)=0 <= 71=1,
0 a

(1) <0 <= 7€ (7c,+00).
Finally, in order to prove that «(7.) < 1, we notice first that

ao(Tc) <1l <= tanhT. (tanh Te+ T sech? Tc) >1
< 7. tanh7, sech?7, > 1 — tanh® 7, = sech? 7,

<~— r:=T.tanh71. > 1.
So it only remains to show that r > 1, for that, since a(7.) = 0, it follows that
Tc2+37‘—3r2 =0,
therefore
3r(r—1)=72>0 =— r>1

Since lim tanh7 (tanh7 + 7sech?7) = 0%, it follows lim ap(r) = +oc.
—>0t T—07F

On the other hand, as sech 7 ~ 2 exp(—7) as 7 — 400,

lim 7 sech?r =0,
T—>+00

and since lim tanh(7) = 1, then it is readily seen that lim ag(7)=1.
T—>+00 T—>+00

From the limit lim (7/tanh7) =1, one derives
T—0

) ... —(r/tanhT) (T sech 7)? L —(1) )
TI&nOIB()(T) N Tlglo 1+ (7/tanh7) sech?7 1+ (1)(1) .

On another hand, since and sech7 ~ 2 exp(—7) as 7 — +o0, then lini T sech? 7 =
T—>+00

lim 73 sech?7 = 0. The last added to the fact lim tanh7 = 1leadusto lim [Bo(r) =
T—>+00 T—>+00 T—>+00

0.
The inequality sinh(27) > 27 (7 > 0) assures us that

sinh(2 1) -
-

sinh(27) >27 == sinh7cosh7T = 5

cosh 7

sinh 7

=—> coth7t = = sinh 7 cosh 7 csch? 7 > 7 csch? 7.
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This guarantees us that af is positive in R*. On another hand, by inspecting its derivative
we have

—csch? 7 (coth 7 — 7 csch? T) + coth 7 (— csch? 7 — esch?® 7 + 27 coth 7 csch? 7')

(o) (r) = -
! coth? 7 (coth 7 — 7 csch? 7‘) 2

csch? 7 (7' csch? 7 + 27 coth? 7 — 3 coth 7')
coth? 7 (coth 7 — 7 csch? 7') 2
csch? 7 (3 7coth?T — 3 cothT — 7')

coth? 7 (coth 7 — 7 csch? 7') 2

_ csch? 7 i b(r),
2
(cothT — 7 csch 7')

where it was used the identity coth?(-) — esch?(-) = 1 and we have defined

_ 37coth?T —3 cothT — 1

b :
(7) coth? 7

= 3 (1 —tanh7) — 7 tanh? 7.

Since )
csch”

coth T (Coth 7 — 7 csch? T) 2

>0, 7>0,

then it suffices to show that b(-) is a positive function in RT.

V(1) = 3(1 —sech? 7) — (tanh? 7 + 27 tanh 7 sech? 1)
— 3 tanh? 7 — tanh? 7 — 27 tanh 7 sech? 7

=2 tanhr (tanhT—T sechQT) >0, 7>0

where we have used the inequality tanh7 > 7 sech? 7 (7 > 0), proved in the clause (i).
Therefore, b(-) is strictly increasing in RT and since b(0) = 0, it follows our result.

(v) We use repeatedly L'Hopital’s rule as follows

sinh® 7 1
lim of (1) = lim —— B
7—0 7—0 sinh® 7 coth 7 (cothT — 7 csch 7')

. sinh® 7
= lim T
7—0 cosht (5 sinh(27) — 7)
. 1 . sinh3 7
= lim clim ———————
7—0coshTt 7—0 % sjnh(2 7-) —

3 sinh? 7 cosh(7)

= 1i

TE}o cosh(27) —1
= lim cosh lim 6sinh7-—cosh7-_ im M_g
T TN T2 sinh(27) b0 2sinh(27) 2

On the another hand, by using lim 7csch?7 =0and lim coth7 = 1, we compute
T—>+00 T—>+00

1
lim of (1) = lim 5 = L.
T—s400 T—+o0 coth 7 (cothT — 7 csch T)
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(vi) Using L’Hépital’s rule,

: h2 3 h2
lim ﬁfL(T)Z lim <s1n T)( 75 csch® 1 )

T—0 7—0 \ sinh? 7 cothT — 7csch? 7
: 7
7—0 5 sinh(27) — 7
3712
= lim ————
7—0 cosh(27) — 1

I 61 . 6
im ——— =
7—0 2 sinh(27)

6
=1 —_— = - =
50 4 cosh(27) 4 2
Once again, using the fact that sinh(27) ~ €27 /2 as 7 — +00, we have that

lim sinh(27)/7® = +o0,

T—>+00
hence
+ T3
lim )= lim +—7———
T—>+00 Br(r) T—++00 % sinh(27) — 7
I 1 0
— 1m = ().
T—>+00 % sinh(27)/73 — 1/72
O
Lemma C. 3
The following piece-wise functions are C! in R*.
2
A7 (tan (5 5)), 0 < s < 1, (g(1—s>tan(gs)>,0<s<1,
Ai(s) =4 1, s=1. =< 1, s=1.

By (tan (5 s)),0<s <1,
N CCCE) .

2
Af (s - 1), s> 1, ((s — 1) coth(s — 1)> , s> 1,
Bf (s — 1), s =1, —(s —1)% s> 1.

(4.5.70)

Proof. Tt is readily seen that A;(-) and Bi(-) are C! in the intervals (0,1) and (1, +oc). Hence,
it only remains to prove that they are continuous and differentiable at s = 1. It is not difficult
to see that Bj(-) is continuous at s = 1 and Bj(1) = 0, moreover

—%2(1—3),0<3<1,
Bi(s) := (4.5.71)
—2(s—1), s> 1,

which is continuously extended at s = 1 as B{(1) = 0. On the other side, by using L'Hopital’s
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rule:

N
lim g(l—s) tan(gs>: lim m

s—1- Sﬂg* COS S

—sins + (% —S) cos §

= lim ; =

s I~ —sins
s cosh s
lim (s —1)coth(s—1)= lim —
s—1t s—0+ sinh s
. cosh s + s sinh s

= lim =1,

s—0+ cosh s

which proves that lim Aj(s) =1= lim A;(s), hence Ai(-) is continuous at s = 1. Now by
s—1— s— 1t
differentiating,

2 Aﬂg(i(r—ﬁmm(Z)y,0<s<L

1(s) = (4.5.72)

2 Aﬂ@(@—ncmms—n>: s> 1,

then we proceed to calculate the following limits

/
lim <7T (1 —s) tan (z) ) = lim
s— 17 \ 'S S s—1—

— lim E (gfs)f%sin%
- 2 cos? s

S—>§
. 7 (14 cos 23)
= lim —(————
s— I 2 sin 2s

. m ([ 2sin2s
= lim —|——) =0,
s— I 2 \ 2 cos2s

!
lim ((s — 1) cosh(s — 1)) = lim <coth(3 —1) — (s — 1) csch?(s — 1))
s—s1t s—s1t
= lim (coth s — s csch? s)
s—0t
. 1 ginh2s — s cosh? s
= lim 2
s—0t sinh? s
cosh 2s — cosh? s — s sinh 2s
= lim
s—0t sinh 2s
. —2s cosh 2s
= lim ——m =

s—0+ 2 cosh2s ’

hence lim Aj(s)=0= lim A](s), finishing this proof. O

s—1— s—1t
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Lemma C. 4

Let R > 0 and y = y(z) an invertible and continuous real function defined for z > R. Let
a,b € R such that a > 0. If y has the following asymptotic behavior

y(z):=ax+bz 4o (fv_l) , asx —» 400, (4.5.73)
hence, the inverse function x = z(y) holds

z(y)=ay—by " +o(y ) (4.5.74)

Proof. For simplicity, we use z := z(y) and y := y(x). From (4.5.73) we derive that y — 400
as x —> 400, hence, x and y are increasing since they are both invertible and continuous. Then
(4.5.74) is equivalent to prove

zy—a 'y  +b=o0(1), asy— +oo, (4.5.75)
which in turn is equivalent to
ry—aty? +b=o0(1), asz — +oo. (4.5.76)

We now prove the desired asymptotic behavior. From (4.5.73), one deduces

b 2
y? =a?2? <1 +- 2%+ 0 (33_2)>

2b
=a’z? <1—|— gx_2 +0(x_2)>
=a’2® +2ab+0(1), asz — +oo.
Thus,
zy—a 'y +b=a (az+ba ' +o(z7")) —a! (a®2® +2ab+0(1)) +b
= (a:cz—i—b) — (az® 4 2b) + b+ 0(1)

=o0(l), asx — 4o0.
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CHAPTER 5

Comparisons with two previous related works
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material) [14,15] . . . . . . .. oL e 223

In the following, we present two previous works related to ours, we aim to enlighten the main
differences with respect their results to ours and highlight the new features obtained in this new
study.

5.1 Comparison with the "classical three layers media case" [93]

The first of these comparisons begins, in chronological order, with the work made by C. Wilcox
in 1976 [93], on what we refer ourselves as the classical case standing for the study of wave
propagation in stratified media (see [29-31,44,88-90,93,94] for the case of acoustic waves, [42,90]
for electromagnetic waves and [32,43,81] in the domain of elasticity). In [93] this article a spectral
analysis for the Pekeris Operator acting on a class of functions u = u(y) defined for y > 0 and
vanishing at y = 0 is given, the Pekeris differential operator in one dimension is defined by

Au=—=(y) ply) — 7 (uly) " 5—u), (5.1.1)

where y € R, and the functions ¢ = ¢(y) and p = p(y) satisfy

c, 0<y< L,

cly) = (5.1.2)
c2, Y 2 L7
M1, 0< y < La

nly) = (5.1.3)
p2, y > L.

In 93], the resolvent and spectral family of A is constructed by using Fourier analysis (on the
variable y dimensions larger that one) to reduce A to an ordinary differential operator, in this
study the problem is complemented with boundary conditions at y = 0 equal to 0. Hence, the
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determination of of the reduced eigenfunctions (of finite energy) lead to the dispersion equation

¢= 120 cot(nL), (5.1.4)
M1

1 1
where & := (k:2 — "2—22) 2 and n = (“;—22 — l<:2) 2 are both real and positive. Once more, k is the
2 1

spectral variable while w is the frequency or eigenvalue associated. Note that &, € R} implies
that ¢; < co. The dispersion relation (5.1.4) has a parametric representation for the solutions
given by a countable family of dispersion curves of the form:

1
w = % <1+(%2) Tz)z [(n_%)w—karctanﬂ,
h(c3—c2) . >0, (5.1.5)
2 2

where n € N.. The following properties of w, = wy(k) can be derived from (5.1.5) (see Fig-
ure 5.1).

e w,(k) is analytic in (k,, +00), where k,, := (2n — 1) k1, k1 := ﬁ 57, and wy (k) >0
32

[T

for k > k,.
o 1k <wp(k) <cok forall k > k.
o wy,(ky) = coky and W, (ky) = ca.

o wy(k) ~c1kas k — +oo.

Figure 5.1: Slab of a dielectric configuration.

The results of [93] can be interpreted in our same context, as the study of the transmission
problem between a slab of a dielectric on a second dielectric with permittivities and permeabil-
ities, respectively, €1, u1 > 0 and €9, uo > 0, and whose speed wave propagations are given by,
respectively,

=

cy = (51 Nl) %, Co 1= (82 ,ug)f . (516)

In this sense, the existence of finite energy guided modes is assured only when ¢; < co, and
are evanescent (in our Drude model, we talk about plasmon surfaces since we face a dispersive
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material). In contrast to our model, we exhibit the existence of an infinite number of dispersion
curves linked to propagative guided modes, while only two curves dispersion are related to the
evanescent ones. Moreover, in our study we have showed that the dispersion curves are not
in general monotone, indeed, the dispersion curves wy(k),n > 2 have all a maximum (where
the group velocity vanishes). On another hand, the asymptotic computation has show that the
dispersion curves in our analysis have a finite limite (0 for the propagative curves and Q—\/%L for

the plasmonic curves), in contrast to the unbounded growth for the classical case.

5.2 Comparison with the case of a two layer media (vacuum/Drude
material) [14, 15]

The second comparison is devoted to the work made by M. Cassier, C. Hazard and P. Joly [14,15].
In the latter, a geometry of a two layer configuration between a Drude material (as in our case)
and a dielectric (the vacuum) is considered (see Figure 5.2). The search of finite energy guided

Figure 5.2: Two layer configuration.

modes leads to a dispersion relation linking the frequency parameter A\ to the spectral variable
k, this dispersion relation is of polynomial parameter and can be resolved (\ as a function on
k) in order to obtain the unique solution given by

AGR), if Qo # O,
A(k) = (5.2.1)
Qﬁa if Qp, = Qe,

where A(k) is defined as follows

02 k2 Q2 k4 1
T Gy
0 0 - €0 Mo -
A(k) = " moe (5.2.2)
02, k202

4
-|—Q$n\/ k +%,ier>Qm.

“m o
2 eopo (02 -2 (0 1o (922, — 02))*

In [14,15], it is proved that A(k) takes values on [k., +00) (ke := /€0 lo

analytic, moreover,
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e \(k) is a constant function equal to X, := QTTS = %, if Qe = Qu,

e \(k) is strictly increasing and A\(k) 1 QT’; as kT 400, if Qe < Qpp,

e \(k) is strictly decreasing and A(k) | 53/"21 as k T +oo, if Q,, < Q..

) | g
App / Ay,
k= kp(\) k= kn(\)
Y oo k=Y
Qm i A Ar)r, AF,E (>\ = )\g(k»
DE Qp I\
— /‘AEE (A= Ae(k) = QL) 0.
R =LY = Q
7 % Am = k= k()
= . k=k()) 2 1
/'/ A 1 Ay
ke ;k ; 'k
" S
App Jﬂmmww
k=kp(X)
Qe

Figure 5.3: Dispersion curves for the two layer configuration. From left to right and top to bottom, the
cases: Q. = Q, Qe < Q,, and Q,, < Q..

See Figure 5.3 for an illustration of A(k). We can appreciate that for the same kind of meta-
material (a Drude material), the geometry has an important role: in our slab configuration
we have found an infinite number of dispersion curves, two of them related to the evanescent
guided modes (surface plasmons) and an infinity of them of propagative order in the dielectric,
also we have seen that in the case Q. = Q,, (case p = 1) no one of this evansecent guided
waves is constant on any interval , indeed, we have proved that the dispersion curves have at
most two critical points. The latter considerations is quite important: the fact that in the
bi-layered configuration exists a constant plasmonic wave equal to A, in the case {2, = €y,
implies that this value ), is an eigenvalue of the operator A, furthermore, it is proven that
op(A) = {£Q,,0,£X,}. In the opposite case, Qe # yy,, we have o,(A) = {£,,,0}. In both
cases, the punctual spectrum is formed by eigenvalues of infinite multiplicity, all of the latter
is proven using the proper tools of direct integrals of Hilbert spaces and operators [33,76,87].
In a very resumed explanation, the reason for which the constant plasmonic curve A = A, is in
the punctual spectrum of the whole Hamiltonian A in the case Q. = €, it is mainly the fact
of the existence of open intervals on the spectral parameter (k € R) (and hence set of positive
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5.2. Comparison with the case of a two layer media (vacuum/Drude material) [14,15]

measure) whose reduced Hamiltonians (A;) contain A, in the punctual spectrum (A, € A for
k € (k¢, +00)). This consideration is never achieved in our study, in any case for the parameters
Qe and §,,, the dispersion curves (propagative or plasmonic) have intervals for the which they
are constants, in other words, the phase velocity never vanishes on intervals of the spectral
frequency k € R.
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Conclusion and future perspectives of the Part 11

The spectral study performed in the second part of this work , has allowed us to described
completely the guided modes associated to a slab of Drude metamaterial embedded in the
vacuunm. This model constitutes a mathematical modeling of the geometry of the perfect flat
lens described by J. Pendry in [72]. We have showed the existence of an infinity number of those
modes for every wavelength number k£ € R and the existence of a threshold critical wavelength
number k. for the which the problem stars to exhibits the existence of plasmonic surface waves.
Moreover, we have seen that there exists a second threshold critical wavelength number kiny > k.
such that the problem have two plasmonic surface waves.

Finally, we want to comment some future perspectives to work on the subject. Since the
geometry represents an interesting aspect, our first aim is to extend the guided waves study
to others structures studied in physics. We mention two of these structures. The first of this
geometries is the case of a cylindrical lens [59] which consists of a three layered media in a
cylindrical geometry (see Figure 5.4), this geometry enters in category of separable geometry,
just as well as the two configurations treated before: the first studied in [14,15] (the two-layered
media) and later in this work (perfect flat lense or the slab of metamaterial). The second kind
of geometry to explore is more challenging. In the harmonic regime, if the interfaces delimiting
the dispersive negative medium is not smooth and presents corners, in a given critical frequency
range (which depends on the corner), energy can accumulate near this singularity, so that the
energy seems to leak at the corner, given raise to the black-hole effect [6,46,70,77]

Metamaterial

Dielectric 1

Dielectric

Figure 5.4: Metamaterial cylindrical configuration (left) and metamaterial configuration with corners
(right).
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Titre : Etude de deux problémes de propagation d’ondes en milieu électromagnétique dispersif: 1) Stabilité en temps
long dans un milieu de Drude-Lorentz; 2) Transmission entre une couche de metamateriau et un diélectrique.

Mots clés : Milieux dispersifs électromagnétiques, stabilité en temps long, fonctions de Lyapunov, analyse spectrale,

relation de dispersion, ondes guidées.

Résumé Cette thése traite de deux problemes
indépendants liés aux phénomenes de propagation des
ondes dans les milieux dispersifs. Dans la premiére par-
tie, nous étudions le comportement en temps long des
solutions des équations de Maxwell dans des milieux dis-
sipatifs généralisés de Drude-Lorentz. Plus précisément,
nous souhaitons quantifier les pertes dans de tels mi-
lieux a l'aide du taux de décroissance de I'énergie
électromagnétique pour le probléme de Cauchy corres-
pondant. Cette premiére partie est elle-méme composée
de deux approches. La premiére, I'approche par fonc-
tions de Lyapunov en fréquence, consiste a obtenir une
inégalité différentielle (en temps) pour certaines fonction-
nelles de la solution, les fonctions de Lyapunov £y, ou k
désigne la fréquence spatiale. Les estimations de stabi-
lité sont ensuite obtenues par l'intégration en temps de
l'inégalité différentielle. En développant cette méthode,
nous obtenons un résultat de stabilité polynomiale sous
des hypothéses de dissipation fortes. La deuxiéme ap-
proche, 'approche modale, exploite les propriétés spec-
trales de l'opérateur hamiltonien apparaissant dans le
probleme de Cauchy. Cette derniére approche améliore

la premiere en autorisant des hypothéses de dissipation
faibles. Dans la deuxiéme partie du travail, nous nous
intéressons au probléme de transmission d’une couche
de métamatériau de Drude non dissipatif dans un mi-
lieu diélectrique. Dans ce contexte, nous considérons les
équations de Maxwell temporelles bidimensionnel en po-
larisation TM et nous les reformulons en une équation
de Schrédinger dont le Hamiltonien, A, est un opérateur
autoadjoint non borné. La transformation de Fourier
nous permet de travailler avec des Hamiltoniens réduits
Ay, k € R. Enfin, nous nous intéressons au spectre
ponctuel du Hamiltonien réduit qui est lié aux modes
guidés du probleme original. Cette étude débouche sur
une relation de dispersion dont la difficulté réside dans
son caractére hautement non linéaire par rapport au pa-
ramétre spectral. Nous prouvons I'existence d’une infi-
nité dénombrable de branches de solutions pour la re-
lation de dispersion : les courbes de dispersion. Nous
donnons une analyse précise de ces courbes et mettons
en lumiére, notamment, I'existence d’ondes guidées cor-
respondant a des palsmons surface.

Title : Study of two wave propagation problems in electromagnetic dispersive media: 1) Long-time stability analysis
in Drude-Lorentz media; 2) Transmission between a slab of metamaterial and a dielectric.

Keywords : Electromagnetic dispersive media, long-time stability, Lyapounov functions, spectral analysis, disper-

sion relation, guided waves

Abstract : This PhD thesis addresses two independent
problems related to wave propagation phenomena in dis-
persive media. In the first part, we investigate the long-
time behavior of solutions of Maxwell’s equations in dis-
sipative generalized Drude-Lorentz media. More preci-
sely, we wish to quantify the loss in such media in terms
of the decay rate of the electromagnetic energy for the
corresponding Cauchy problem. This first part is in turn
composed by two approaches. The first one, namely,
the frequency dependent Lyapunov approach, consists
in deriving a differential inequality (in time) for certain
functionals of the solution, the Lyapunov functions Ly,
where k is the spatial frequency. The stability estimates
are then obtained from the time integration of the diffe-
rential inequality. By developing this method, we obtain
a polynomial stability result under strong dissipative as-
sumptions. The second approach, the modal approach,
exploits the spectral properties of the Hamiltonian opera-
tor appearing in the Cauchy problem. This last approach

ameliorates the first one by considering weak dissipa-
tion assumptions. In the second part of the work, we
are interested in the transmission problem of a slab of
non-dissipative Drude metamaterial within a dielectric. In
this context, we consider the TM two dimensional time-
dependent Maxwell’s equations and we reformulate it
into a Schrédinger equation whose Hamiltonian, A, is a
unbounded self-adjoint operator. Fourier transform allow
us to work with the reduced Hamiltonians A, k € R. Fi-
nally, we are interested in the point spectrum of the redu-
ced Hamiltonian which is related to the guided modes of
the original problem. This study leads to a diseprsion re-
lation whose difficulty lies in its highly non-linear charac-
ter with respect to the spectral parameter. We prove the
existence of a countable infinity of solution branches for
the dispersion relation: the so-called dispersion curves.
We give a precise analysis of these curves and enlighten
the existence of guided waves which correspond to sur-
face plasmons.
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