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Thèse de doctorat de l’Institut Polytechnique de Paris
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A B S T R A C T

Hall thrusters (HTs) are electric propulsion systems widely used in space applications
since their invention in the ’60s. Their E× B configuration allows for ionizing a pro-
pellant gas, usually xenon, and accelerating outwards the ions to create thrust. Hall
thrusters are used for an increasing diversity of space missions, including telecommu-
nications, Earth observation, scientific exploration, and deep space missions. However,
the physics of low-temperature low-pressure magnetized plasmas, typical of these
thrusters, is complex; several plasma processes that have direct relevance to the
thruster performance and lifetime are still poorly understood. Therefore, currently,
long and expensive life tests are required to design and develop new thrusters.

It is necessary to develop in the coming years a new experimental/numerical
methodology to propose innovative designs, capable of meeting the issues and
challenges of the space industry. Towards this objective, this thesis presents theoretical
and simulation results on the physics of low-temperature low-pressure magnetized
plasmas in the radial-azimuthal and axial-azimuthal planes of a HT. A 2D Particle-In-
Cell (PIC) code, LPPic, has been enriched by adding the effects of the third dimension
(i. e., the one not considered in the simulation) and an external electric circuit, to
get closer to real thrusters. Moreover, a spectral reconstruction technique to locally
calculate the power spectral density, the Two-Points Power Spectral Density (PSD2P),
has been implemented to analyze the simulation results.

Plasma instabilities have a direct impact on discharge physics and thruster per-
formance, as they strongly influence the anomalous electron transport in the axial
direction. In this work, we present a theoretical study on the development of insta-
bilities by deriving a 3D dispersion relation. The 3D dispersion was simplified to
recover the best-known 1D and 2D dispersions for this type of plasma and theoretical
results were compared with the results of PIC simulations. The radial-azimuthal
simulations made it possible to formalize a criterion for the growth of the Modified
Two-Stream Instability (MTSI) and to evaluate its contribution to the anomalous trans-
port. For their part, the axial-azimuthal simulations allowed us to characterize the Ion
Transit-Time Instability (ITTI), better understanding its growth and its effect on the
population of low-energy ions in the plasma plume. In addition, these simulations
have explained the propagation of the Ion Acoustic Wave (IAW) in the discharge: this
instability starts in the central part of the thruster channel and propagates towards
the cathode and anode.

Eventually, LPPic has been used to study the influence of different input parameters
(cathode electron temperature, anode voltage, mass flow rate, magnetic field shape,
propellant gas) on the discharge characteristics and on the thruster performance. The
stability of the LPPic code with respect to large variations in input values suggests
that a 2D PIC code could be used in an experimental/numerical methodology to
design new devices selecting interesting configurations/operating conditions before
running 3D PIC simulations.

vii



R E S U M É

Le propulseur à effet Hall (HT) est un système de propulsion électrique largement
utilisé dans le domaine spatial depuis son invention dans les années 1960. Sa configu-
ration E× B, autrement dit en champs croisés, permet d’ioniser un gaz, généralement
du xénon, et d’accélérer les ions pour générer de la poussée. Ces propulseurs jouent
un rôle essentiel dans diverses missions spatiales, telles que les télécommunications,
l’observation de la Terre et l’exploration spatiale lointaine. Cependant, leur fonction-
nement repose sur des plasmas froids magnétisés à basse pression, dont la physique
est extrêmement complexe. De nombreux phénomènes liés à ces propulseurs restent
encore peu compris, mais leur compréhension est cruciale pour améliorer leurs
performances et leur durée de vie.

Actuellement, la conception et le développement de nouveaux propulseurs à effet
Hall nécessitent des essais de durée de vie longs et coûteux. Il est donc impératif de
développer une méthodologie expérimentale/numérique plus efficace pour relever
les défis de l’industrie spatiale. Dans ce contexte, la présente thèse propose une
approche basée sur des résultats théoriques et des simulations pour étudier la
physique des plasmas froids magnétisés à basse pression, en se concentrant sur les
plans radial-azimutal et axial-azimutal d’un propulseur à effet Hall. Pour mener à
bien ces recherches, le code de simulation Particle-in-Cell (PIC) 2D, appelé LPPic, a été
amélioré en ajoutant une troisième dimension non simulée et un circuit externe afin
de mieux représenter les propulseurs réels. De plus, une technique de reconstruction
spectrale (PSD2P) a été mise en œuvre pour analyser localement la densité spectrale
de puissance et évaluer les résultats des simulations.

Une attention particulière a été portée aux instabilités du plasma, qui ont un
impact significatif sur la physique de la décharge et les performances du propulseur.
Ces instabilités affectent le transport anormal des électrons dans la direction axiale,
ce qui peut influencer considérablement le fonctionnement du propulseur. Dans le
cadre de cette thèse, une étude théorique du développement des instabilités a été
réalisée en dérivant une relation de dispersion tridimensionnelle. Cette relation de
dispersion 3D a ensuite été simplifiée pour retrouver les relations de dispersion
11D et 2D déjà connues pour ce type de plasmas. Les résultats théoriques ont été
comparés aux données issues des simulations PIC. Les simulations réalisées dans
le plan radial-azimutal ont permis d’établir un critère pour le développement de
l’instabilité modifiée à deux faisceaux (MTSI) et d’évaluer son impact sur le transport
anormal des électrons. De plus, les simulations effectuées dans le plan axial-azimutal
ont permis de mieux caractériser l’instabilité de transit des ions (ITTI), de comprendre
sa croissance et d’étudier son effet sur la population d’ions à basse énergie présente
dans le jet du propulseur. Les simulations dans le plan axial-azimutal ont également
révélé la formation de l’instabilité acoustique ionique (IAW) dans la partie centrale
du canal du propulseur, qui se propage ensuite vers la cathode et l’anode.

En outre, le code LPPic a été utilisé pour étudier l’influence de différents para-
mètres d’entrée tels que la température électronique de la cathode, la tension de
l’anode, le débit massique, la forme du champ magnétique et le propergol sur les



caractéristiques de la décharge et les performances du propulseur. Les résultats
obtenus ont montré que le code LPPic est stable même avec de grandes variations
des valeurs d’entrée, ce qui suggère qu’un code PIC 2D pourrait être utilisé dans une
approche expérimentale/numérique pour concevoir de nouveaux dispositifs. Cette
approche permettrait de pré-sélectionner des configurations ou des conditions de
fonctionnement intéressantes avant de réaliser des simulations PIC 3D plus coûteuses.

En conclusion, cette thèse présente une méthodologie numérique innovante pour
l’étude des propulseurs à effet Hall. Les résultats théoriques et les simulations numé-
riques ont permis de mieux comprendre la physique des plasmas froids magnétisés à
basse pression et ont ouvert la voie à des conceptions plus avancées. Cette recherche
contribue à l’affinement de la modélisation des propulseurs à effet Hall, afin d’en
améliorer les performances, tout en réduisant les coûts associés à leur développement.
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1.1 space propulsion
Space propulsion is the field of engineering that is focused on designing and devel-
oping systems that generate thrust and move spacecraft through space. One category
of propulsion systems is Electric Propulsion (EP), which by using electric energy
accelerates a propellant that is expelled outside the spacecraft to generate thrust.
Electric propulsion systems are lighter and more efficient than traditional chemical
propulsion systems, making them an excellent choice for long-duration missions
and deep space exploration. Furthermore, they can produce high levels of specific
impulse, enabling them to achieve greater speed per unit of propellant. Despite these
advantages, due to their lower thrust output, electric propulsion systems are not
suitable for quick maneuvers, where the chemical thrust is more advantageous.
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2 introduction

Most EP devices use plasma to create the ions that are accelerated to produce thrust.
Therefore, the study of electric thrusters is linked to that of plasma physics. Plasma
physics is the study of matter in its fourth state, known as plasma, and deals with the
collective behavior of electrons and ions in quasi-neutral electrified gases. The birth
of plasma physics can be traced back to the late 19

th century when physicists first
observed a glow in gas tubes. In the early 20

th century, Irving Langmuir performed
experiments on the properties of gas discharges and coined the term plasma to
describe the ionized gas [5]. However, it was not until the ’40s that plasma physics
emerged as a distinct field of study. Scientists could prove that plasmas are the most
common phase of matter in the universe: according to some estimates, more than
99% of the entire visible universe is plasma. In the last 50 years, plasma physics
has become a crucial field of study with applications in areas such as fusion energy,
astrophysics, materials processing, and space science, among others.

1.1.1 Chemical or electric propulsion

Chemical and electric propulsion are two different types of propulsion systems
used in space. Chemical propulsion relies on the combustion of chemical fuels,
such as liquid hydrogen and oxygen, to generate high-velocity exhaust gases which
provide thrust. On the other hand, electric propulsion uses electric energy to ionize a
propellant and create plasma that generates thrust.

One of the primary differences between the two forms of propulsion is the efficiency
of the systems. Chemical propulsion is comparatively less efficient than electric
propulsion, requiring a substantial amount of fuel to generate a limited amount
of thrust. In contrast, electric propulsion systems are much more efficient, using a
minimal amount of fuel to produce a substantial amount of thrust. However, the
thrust absolute value is different: chemical propulsion systems can produce high
thrust (e. g., up to MN), making them ideal for quick maneuvers and launches, while
EP systems have a much lower thrust, usually up to 500 mN.

Another distinction between the two forms of propulsion is the size and weight
of the systems. Chemical propulsion systems are typically larger and heavier (i. e.
considering the weight of the fuel) than electric propulsion systems, as they require
large fuel tanks and other components to store and deliver the fuel. Electric propul-
sion systems, on the other hand, are much smaller and lighter, as they only require a
small amount of fuel to produce thrust. This has an impact on the cost of the mission,
even if the initial cost of an EP system might be higher than that of a chemical system.

In conclusion, chemical and electric propulsion are two different types of propul-
sion systems with different strengths and weaknesses. Chemical propulsion is ideal
for quick maneuvers and launches, while electric propulsion is better for long-
duration missions and deep space exploration. Both types of propulsion have their
place in the field of space exploration, and the choice between them will depend on
the specific requirements of a given mission.
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1.1.2 EP history

Electric propulsion has a relatively short but significant history in the field of space
exploration. The concept of using electric energy to ionize a propellant and generate
a plasma to provide thrust was first evoked by the early 20

th century, but it wasn’t
until the latter half of the 20

th century that this technology began to be developed for
practical use in space. A history of the birth of electric propulsion can be found in
Ref. [56].

One of the earliest examples of EP is the ion engine, which was first tested in the
’60s by NASA. The ion engine was initially used for satellite station-keeping and
orbit-raising, but it rapidly found applications in deep space exploration. In the
same years, in the Soviet Union, Alexei Ivanovich Morozov led the experimental and
theoretical development of Stationary Plasma Thrusters (SPTs) [39], also named Hall
Thrusters (HTs). We will adopt the latter name for the rest of this work. The HTs use a
cross-field configuration to confine the plasma and accelerate ions to produce thrust.
The HTs were successfully used in space from 1971 and hundreds of satellites have
been equipped with them since [27]. Their development started in the West only
during the last decade of 20

th century.
The HTs are low-temperature plasma devices that are operated under low pressure

conditions. A low-temperature plasma is characterized by cold neutrals and ions
(i. e., ion temperature Ti . 1 eV1) and by hot electrons (i. e., electron temperature
Te & 1 eV). These engines are designed to operate under low pressure in space. For
this reason, on Earth, the HT are operated under vacuum conditions in specifically
designed test benches.

In recent years, EP has become increasingly important for spacecraft propulsion.
This is due, in part, to the increasing demand for more efficient propulsion systems,
as well as the advent of new materials and technologies that have made EP more prac-
tical and cost-effective. Electric propulsion has been used in a number of missions,
including deep space missions to explore the solar system and interplanetary space-
craft that are designed to study asteroids and comets. This technology has also been
used in commercial communication satellites, which require precise station-keeping
and orbit-raising capabilities.

The large variety of missions in which EP is currently used raised the problem
of changing the power of the thruster. For example, HTs were historically operated
with a narrow power range, i. e., 0.4− 1 kW [39]. The recent developments of the
space market (e. g., the emergence of the CubeSat and the of constellations) and of
the satellites technologies (e. g., high specific power generated by solar arrays) have
led to the need and possibility of a more flexible power range [143, 159, 191], which
resulted in the launch of large variety of new thrusters, among them the 5 kW HT

PPS5000 [194] from Safran Spacecraft Propulsion.
In conclusion, the history of EP is a relatively short but significant one, and this

technology has become increasingly important in the field of space exploration as
demand for more efficient propulsion systems has grown. With continued advances
in technology, it is likely that EP will continue to play an important role in the future
of space exploration.

1 We remember that 1 eV ≈ 11 604.5 K.
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Figure 1.1: A Hall thruster in operation. Image from CNES, february 2015.

Figure 1.2: An ion thruster in operation. Image from qinetiq.com.

1.1.3 Electric propulsion systems

In the Section 1.1.2, we mentioned ion thrusters and Hall thrusters as two types of
electric propulsion systems. In this section, we discuss the main characteristics of
these two systems, and we introduce some other types of thrusters currently studied
by the EP community.

The Hall thrusters, which are the main subject of this thesis, are composed by
an annular channel, where the plasma is created. The neutral gas is injected at the
channel bottom, which is at high voltage. A photo of a xenon-operated HT is shown in
Figure 1.1. The electrons to sustain the discharge are provided by a cathode at channel
exit, while the residence time of electrons in the discharge chamber is increased by the
presence of a magnetic field. The voltage drop between the anode and the grounded
cathode generates an electric field parallel to the thruster axis. The electric field profile
depends on the plasma conductivity at different axial positions. The total efficiency of
these thrusters is normally high, e. g., η > 60%, while the specific impulse is limited
by the power voltage (e. g., the Isp is in the range 1000 s− 3000 s).

The ion thrusters consist of a closed chamber in which different methods are
employed to ionize as much gas as possible. One can see an ion thruster in operation
in Figure 1.2. At one end of the chamber there is an electrostatic grid that is used to
accelerate the ions to high velocities. These thrusters have a good efficiency η > 60%
and a high specific impulse Isp > 2000 s.
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Resistojet and arcjet thrusters are two other types of electrothermal devices that are
currently studied by the EP community. These systems use the expansion of the gas
to produce thrust. Despite their apparent simplicity, they can have a good specific
impulse Isp > 500 s. Other types of thrusters are currently used and developed,
such as the magnetoplasmadynamic thrusters, pulsed plasma thrusters or electro-
spray thrusters. For a detailed discussion of these devices the reader should refer to
Refs. [76, 108, 161].

1.1.4 EP parameters

In order to establish the crucial variables of EP devices, a set of parameters is utilized,
some of which have been previously introduced. The objective of this section is to
establish specific quantities for assessing the performance of EP devices, specifically
Hall thrusters.

By considering Newton’s second law, we can write the motion equation as

Fext + ṁvexh = m
dv
dt

,

where Fext is the sum of the external forces acting on the spacecraft, m is the spacecraft
mass, v is the spacecraft velocity and vexh is the exhaust velocity (i. e. the velocity of
the expelled propellant). The force

T = ṁvexh

is named thrust. By considering a 1D problem with no external forces, one can
integrate the previous expression from the initial time t0 to the final time t f , obtaining
a velocity change

∆v = v f − v0 = vexh ln
m f

m0
,

where m0 is the initial mass and m f is the final mass, both including dry and payload
masses. The quantities v0 and v f are the initial and final velocities, respectively. This
equation takes the name of Tsiolkovsky rocket equation [7] and represents the basic
equation of rocket propulsion.

The total impulse is the integral of the thrust over the duration of the operation.
However, it is more common to refer to the specific impulse Isp, which represents the
impulse delivered per unit of propellant consumed. The specific impulse is expressed
as the ratio between the exhaust velocity and the gravitational acceleration g0,

Isp =
vexh
g0

.

The specific impulse is a very important quantity to evaluate the performance of a
propulsion system.

In the case of devices such as ion thrusters or HTs, one can calculate the thrust
produced by the ion beam as

T = ṁvexh = Γimi Aivexh,
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where Γi is the ion flux at the exit, mi the ion mass and Ai the thruster open area.
The previous expression is obtained by considering a 100% ionization: the neutral
gas contribution to the thrust can be neglected. The thrust power can be calculated as

PT =
1
2

miv2
exhΓi Ai .

The thrust power is not extremely significant by itself. However, it might give some
important insights when compared to the power provided by the generator. In this
thesis, we will often refer to the I-V power (i. e., PIV), as the power absorbed by the
discharge and PG as the power provided by the generator. The ratio between the
thrust power and the generator power is one of the crucial parameters to evaluate
the performance of an EP device.

The overall efficiency of a device should take into account several components,
from the efficiency of the voltage generator to the cathode efficiency, to the efficiency
of some on-board systems (e. g., the coils that generate the magnetic field in a HT) or
to the ionzation efficiency. Goebel and Katz [76] in Section 7.3.1 discuss in detail the
efficiency in the specific case of HTs. In this thesis, we will focus mainly on the mass
utilization efficiency,

ηm =
Γi Ai
Q0

,

where Q0 is the imposed neutral flux of particles at the anode. This quantity can be
also considered as the ionization efficiency, since it gives the fraction of the neutral flux
that is ionized.

1.2 hall thrusters
In this section, we discuss the general concepts governing the operation of HTs, which
are the subject of this thesis work. We will start by describing their main working
principles, then we discuss in detail the main characteristics of their plasma discharge.

1.2.1 Hall thruster basics

A Hall thruster consists of a coaxial annular cavity, with one channel end that is left
open and one is closed. A sketch of a HT section is reported in Figure 1.3. The neutral
gas is injected at the closed end of the channel, while the accelerated ions leave
the channel at the open end, creating the thrust. External coils provide a stationary
external magnetic field directed mostly in the radial direction. The closed end of the
channel is connected with a RLC circuit that keeps the anode at high voltage (some
hundreds of volts). The walls are generally made of a dielectric material (ceramic).
The plasma plume can be considered at low potential as well. The circuit at the
other end of the plasma is closed by a hollow cathode. The cathode provides the
electrons needed for ionization of the gas and those needed to neutralize the plasma
plume. The potential difference between anode and cathode creates an electric field
parallel to the thruster axis. Thus, the electric and magnetic fields form the so-called
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Figure 1.3: HT schematic from Boeuf [110].

E× B configuration. In the presence of this cross-field configuration, the electrons
are trapped by the magnetic field lines and start drifting azimuthally in the annular
channel, while being radially confined by the sheaths that form at the thruster inner
walls. The azimuthal drift increases the residence time of electrons inside the thruster
channel, thus increasing the ionization efficiency.

The collisional events that ionize the gas have an energy threshold (i. e., EXe =
12.13 eV for xenon), that is achieved when the electrons reach a velocity of ≈
2000 km/s. Thus, the faster the electrons, the longer time each electron stays in-
side the thruster channel, the larger the ionization efficiency is. In modern HTs, the
mass utilization efficiency is of the order of 90 %. The ions are created by electron
impact ionization of the neutral gas injected at the anode. As one can see in Figure 1.4,
the ions are produced inside the thruster channel and accelerated outwards by the
axial electric field. Since the ion Larmor radius (i. e., rL,i = miv⊥,i/qB, with mi ion
mass, v⊥,i ion thermal velocity in the plane perpendicular to the magnetic field, q
the elementary charge and B the magnetic field amplitude) is larger than the device
dimensions (i. e., up to 1 m in HTs conditions), the ions are weakly magnetized (or
even not magnetized) and they do not drift significantly in the azimuthal direction,
contrary to electrons. Considering that the ions are generated in the inner part of
the channel, most of them are accelerated by the entire anode/cathode voltage drop.
Thus, in the plume, they should reach a velocity

vi,exh =

√
e

2Va

mi
,

where Va is the anode voltage. The velocity vi,exh is the exhaust velocity of ions
and it is calculated above by considering monenergetic ions without collisions. With
Va = 300 V, the exhaust velocity of ions is 20 km/s in the case of xenon. The presence
of the E× B drift of electrons allows for having a large electric field directed axially,
without a space-charge. This is one of the main advantages of the HTs compared to
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Figure 1.4: Ionization (red), magnetic field (blue) and electric field (green) profiles along
the thruster axis. The dashed line represents the thruster channel exit. The HT

community often refers to the thruster axis as x-axis, to the azimuthal direction
as y-axis and to the radial direction as z-axis.

ion-gridded thrusters: ion current is not limited by space-charge effects, i. e., by the
Child-Langmuir law.

If we only consider the transport caused by the fields, the electron motion is
very restricted in the axial direction. However, the presence of electron-neutral
collisions, electron-walls collisions and electrostatic fluctuations create a significant
axial transport of electrons. The electrons that have entered the ionization region
travel to the anode and are collected by the closed end of the channel. The acceleration
of electrons to the anode must be controlled (hence the importance of the magnetic
field configuration) to decrease the losses and increase the gas ionization efficiency.

Let us consider now the steady-state functioning of HT. For any configuration of
magnetic and electric field, we can calculate the drift by dropping the term dv/dt in
the Lorentz force equation for a single electron, as

dv
dt

=
q

me
E +

q
me

v× B = 0.

Where q is the elementary charge, me the electron mass, E the electric field vector, B
the magnetic field vector and v the particle speed. By taking the cross product with
B, we obtain

E× B = B× (v× B) = vB2 − B(v× B),

with B the amplitude of the magnetic field. By considering the drift in the plane
perpendicular to the magnetic field, we can write

vE×B =
E× B

B2 ,

which is the so-called E× B drift. In standard HT devices the electrons can reach
the azimuthal velocity of 1× 106 m/s. To understand on physical grounds what
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happens, we need to think to an electron gyro-orbit. By assuming without loss of
generality that the electron initial velocity has the same direction as the electric field,
we have that an electron gains energy by the electric field for the first half orbit. It
means that the velocity component in the plane increases, so does the Larmor radius.
Conversely, in the second half orbit, it loses energy, so its Larmor radius decreases.
Hence, the variation of the Larmor radius is the cause of the drift of the guiding
center. This development is valid also for the ions, since no assumption was made
on the particle mass or initial speed. However, the specific configuration of the HT

prevents the ions with a mass mi to drift in the azimuthal direction: their Larmor
radius (ρi = v⊥/ωci = v⊥mi/eB ∝ mi) is larger than the device dimensions. In the
previous expression v⊥ is the thermal velocity component in the plane perpendicular
to the magnetic field. In the same expression appears the cyclotron frequency, which
is defined for electrons and ions, respectively, as

ωc,e,i =
qB
me,i

, (1.1)

depending on the particle mass.
The Hall current in the azimuthal direction can be written as

JH = −ene
E× B

B2 ,

where we introduced the electron density ne. This current generates a Lorentz force
density

f = JH × B,

that is exerted on the plasma in the axial direction. Thus, at steady-state, an equal
force is exerted on the magnetic field structure. This is the actual mechanism that
generates force translation from the axially accelerated ions to the thruster structure.
Assuming the charge neutrality in the plasma, with a simple substitution, we can see
that the force density on the ions is

f = eneE,

which is exactly the force accelerating outwards the ions.

1.2.2 Plasma boundaries

A laboratory plasma, such as a HT plasma, is confined inside a discharge chamber.
Whenever plasma interacts with a wall, a sheath forms. A sheath is a region where
quasi-neutrality is violated and a space charge forms. It is characterized by a higher
density of ions and a lower density of electrons (at least when the wall is floating). At
the interface between a plasma and a wall, the electron thermal flux is much larger
than the ion thermal flux such that a large excess of electrons hit the wall. Once
some electrons are absorbed, the plasma is no longer quasi-neutral. Thus, a directed
ion flux towards the wall is generated to compensate the absorbed electron flux. At
the HT channel walls, from the competition of the electron thermal motion and the
ion drift towards the wall, the sheath forms. The sheath stabilizes when the ion flux
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is balances to the electron flux (at least in 1D). With a rather simple mathematical
development [83], one can demonstrate that the ion speed at the sheath edge is given
by

uB =

√
kBTe

mi
.

The mechanism of formation of the sheath was first established by Bohm [1] and
became a well-known book topic. For this reason, uB takes the name of Bohm speed.
Even if the ion flux uini is constant in the sheath, the velocity and density at the wall
are such that uwall > uB and nwall < ns. Here, ns is the density at the sheath edge. In
the previous expression, we introduced the Boltzmann constant kB, such that kBTe
represents the thermal energy.

The positive charge layer at the walls generates a voltage difference between the
plasma and the walls, which is given in a floating sheath by

Vsheath =
kBTe

2e
ln
(

2πme

mi

)
,

in the case of a Maxwellian distribution of the electrons (the Maxwellian hypothesis
is not always satisfied [37, 71]). As one may notice, the sheath voltage is a function of
the electron temperature and electron-to-ion mass ratio. The acceleration of the ions
through the sheath is at the origin of one of the main issues in HT design: wall erosion.
The mechanism for accelerating the ions to impact a surface is a well-established
technique in plasma processing, with a wide number of applications in surface
treatment. What is fundamental for surface etching in nanoelectronics industry is
detrimental for HTs.

In experiments, it has been observed [53] that the characteristics of the materials in
contact with the plasma has a strong impact on the discharge behavior. In particular,
the high energy electrons impacting the wall can emit a secondary electron that is
accelerated back to the plasma. The frequency of this phenomenon, which is called
Secondary Electron Emission (SEE), depends on the choice of the material, on the
energy of the impinging electron and on the direction of the electron impact [51, 70,
71, 77, 85, 137].

1.2.3 Hall thruster anomalous transport

As we discussed in the previous sections, the electrons, that are trapped in the
magnetic field lines, start to drift in the azimuthal E× B direction. The collisions
allow the electron transport in an axial direction: the particles can jump from a
magnetic field line to another and move towards the anode, creating the so-called
cross-field transport.

We remember that in plasmas the conductivity and the electron mobility are related.
The electron conductivity tensor ¯̄σ0 is such that

J = ¯̄σ0 · E = nq ¯̄µ0E,

with J = nqu the current density and ¯̄µ0 the mobility tensor in a homogeneous
plasma. These simplified expressions allow us to write elementary relation between
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conductivity and mobility: ¯̄σ0 = nq ¯̄µ0. In the following, we drop the tensor double
line above the mobility symbol.

The classical collisional mobility in the direction perpendicular to the magnetic
field can be calculated by the electron momentum conservation equation with a
constant collision frequency [22], as

µ⊥class =
eνc
me

ν2
c + ω2

ce
.

In the previous expression the classical mobility µ⊥class depends on the collision
frequency νc of electrons with other species and on the electron cyclotron frequency
ωce = eB/me. We highlight that the relation

µ⊥class =
ux

Ex

is true only for homogeneous plasma (i. e., where the pressure gradient is negligible).
Several experimental works [4, 45, 68] have observed that the mobility along the

thruster axis is significantly larger than the one predicted by the classical theory pre-
sented here. This difference is estimated in 1 or 2 orders of magnitude, depending on
the discharge conditions [74, 106]. For this reason, the idea of anomalous mobility was
introduced. The first mechanism that was considered responsible for the increased
mobility was the SEE [6, 39, 76]. The SEE is capable of breaking the closed Larmor
orbits and induces a drift of the orbit center position upstream. However, several
recent works [50, 67, 136] have suggested that this mechanism may not be sufficient
to explain the overall anomalous transport.

The enhanced cross-field transport can be related to the fluctuations of electron
density and electric field: when these fluctuations are correlated in time a force con-
tributes to the electron transport in the axial direction. This mechanism was studied
by Adam et al. [55] and Ducrocq [65]. A decade later, Coche and Garrigues [99]
confirmed that finding using 2D Particle-In-Cell (PIC) simulations and Katz et al. [102]
introduced the concept of drag force. This theory was later developed and validated
by Lafleur and coworkers [106, 105, 118, 117, 133, 147], who found that the anomalous
transport at the channel exit and in the plume is due to the plasma instabilities devel-
oping along the azimuthal periodic direction. Tsikata et al. [79, 81] have confirmed
experimentally the presence of these high-frequency oscillations.

By writing the electron density fluctuation and azimuthal electric field fluctuations
as δne and δEy, we can introduce the electron-ion friction force, which is

Rei = e〈δneδEy〉,

with the angular brackets accounting for a space (or time) average. The correlation
term is zero when the electric field and the electron density are uncorrelated. However,
when the fluctuations are correlated, the electron friction force is non-null. Lafleur
et al. [105] proposed an expression for the anomalous mobility by considering the
correlation of plasma fluctuations. According to this theory, the anomalous mobility
is given by

µanom = µclass

(
1− ωce

νc

Rei/e
neEx

)
. (1.2)
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By considering a totally collisionless plasma, i. e., νc → 0, the classical mobility µclass
is null as well, while the anomalous mobility calculated in Eq. (1.2) becomes

µanom = − Rei/e
neExB

.

We recall that Rei is negative when the electron density and the electric field are corre-
lated. It is fundamental to understand the physical mechanisms that contribute to the
electron friction force Rei, so to the plasma oscillations. Ducrocq [65] demonstrated
the correlation of anomalous transport with the growth of the electron cyclotron drift
instability. This finding is supported by several other works in the last decade [99, 113,
117, 133, 165, 198]. In the next section, we discuss in detail the plasma instabilities
that are present in HTs and their role in anomalous transport.

1.2.4 Plasma instabilities in Hall thrusters

The HT E× B discharge is characterized by a number of plasma instabilities, that are
studied in detail in Chapters 2, 4 and 5. First, what is a plasma instability? A plasma
instability refers to a collective behavior of plasma in which the stationary state is
locally or globally perturbed. Instabilities can be convective or absolute, depending
on whether or not they are carried within plasma. To identify an instability, it is
common to measure (experimentally or numerically) a spectrum and compare it to a
Dispersion Relation (DR). A dispersion relation is obtained by solving an equation of
type

ω = ω(k),

with ω = ωR + ıγ the complex frequency (with ωR the real part and γ the growth
rate) and k the wavenumber. Some authors refer to k as the wavevector. However, we
decided to adopt the wavenumber definition, as it is more common in the literature,
while wavevector normally designates the particle function in quantum mechanics.

In HTs, a great variety of instabilities is present, ranging from some kHz to GHz [11,
12, 16, 17, 39, 40]. A graphical representation of the frequency ranges of these insta-
bilities is shown in Figure 1.5. In this chapter, we discuss just briefly the instabilities
characteristics: a more detailed description is given in the rest of the thesis.

At low frequency (i. e., 10 ∼ 100 kHz) we observe the presence of rotating spokes [4,
87]. In the same frequency range, HTs exhibit the Breathing Mode (BM): a low fre-
quency ionization instability that causes large variations in all the plasma parameters.
These oscillations were observed in Ref. [20], and frequently reported after [33, 78].
At intermediate frequency, at the order of some hundreds of kHz, we have the ion
transit time instabilities [59]. These instabilities owe their name to their characteristic
time, since their period is similar to the time spent by ions in the acceleration region.
In the same frequency range, we find the Ion Ion Two-Stream Instability (IITSI) [24].
Just beyond the threshold of the MHz, we have the Modified Two-Stream Instabil-
ity (MTSI) [16], a radial-azimuthal instability that develops in the thruster channel.
Finally, at ≈ 10 MHz we find the Electron Cyclotron Drift Instability (ECDI): as shown
in the theory, this instability results from the coupling of Bernstein modes with an
ion acoustic instability (i. e., the Ion Acoustic Wave (IAW)). In the following sections
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Figure 1.5: Representation of instabilities on the frequency spectrum.

we discuss the macroscopic characteristics of these instabilities, while the microscopic
details are discussed in the next chapters.

1.2.4.1 Breathing Mode

The BM is a ≈ 10 kHz modulation of the discharge current, that is accompanied by the
fluctuation of several plasma parameters, such as the species density and the electron
temperature [20]. Due to its macroscopic effects on the discharge parameters, it was
one of the first modes to be observed and studied in HTs. These large oscillations
can be detrimental to the operation of the thruster. Firstly, because they can cause a
large variation of the discharge current and plasma density, thus increasing the wall
erosion. Secondly, because the oscillations may damage the electric circuit supplying
the thruster.

The first studies about the development of the BM were made by Fife [35], who used
a predator-prey Lotka-Volterra model to describe the consumption of neutrals (preys)
by the charged species (predators). This model is extremely simple and explains
the mechanism behind the BM, although it suffers from some inconsistencies. At the
beginning of the discharge current growing phase, the ion populations starts to grow,
increasing the ionization, thus the consumption of neutrals. This growth cannot be
sustained forever, thus, at a given point, the neutral density is too low, slowing down
the ionization and thus reducing the charged population. So, the discharge current
decreases. When the neutral population is large enough, the trend changes sign
and the current start increasing again, restarting the BM cycle. This model was later
improved by Boeuf and Garrigues [33] and Barral and Ahedo [78], using 1D fluid
simulations rather than 0D models.

In more recent years several works addressed this topic, in particular Lafleur
et al. [175] and Chapurin et al. [169, 186]. In the first, Lafleur and coworkers have
shown that the 0D model is not sufficient and that the system is always stable if
one introduces a consistent neutral flow injection. By using a 1D model, Lafleur
demonstrates that the BM mechanism is rather complex. During the growing phase,
the increased electron temperature and ionization rate compensate for the decreasing
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neutral density, so the overall discharge current increases. Then, it exists positive
feedback between the growing plasma density and ionization rate, up to a certain
threshold, at which this mechanism stops, and the plasma density drops, along with
other plasma parameters. Alternatively, Chapurin and colleagues also studied the
BM with a 1D fluid model. They found that the breathing mode is linked to the
mechanism of ion backflow towards the anode.

To conclude about the BM, we can say that this instability, which does not have an
electrostatic nature, is not a simple phenomenon, but rather a complex mechanism
that is still not fully understood. Some macroscopic characteristics have been studied
and explained by the HT community, however, the microscopic origin of this mode is
still debated.

1.2.4.2 Ion transit-time instability

The ion transit-time instability is a ≈ 500 kHz instability that is characterized by a
modulation of the discharge current and the ion density. This instability is linked
to the ion transit time in the acceleration region and has been studied in different
regimes experimentally [18, 104], numerically and theoretically [44, 54, 59, 75, 132,
145, 170, 202]. In several of these works the name Ion Transit-Time Instability (ITTI)
is not used and the authors only refer generically to a resistive instability. The name
ITTI might not be the most appropriate one, since the instability is not related to a
boundary effect. However, we decided to keep this notation to be consistent with the
literature.

This instability is macroscopically linked to the existence of a packet of low-energy
ions in the thruster plumes. These ions are trapped in an electric field well and are
not accelerated axially. So, these ions arrive in the plume with a velocity one order of
magnitude lower than the one of the accelerated ions [115]. At the same time, some
of the ions exhaust velocity is larger than the one imposed by the anode voltage. This
effect appears to be related to the wave riding-mechanism: when the axial electric
field oscillates, the ions experience an average acceleration that is larger than the one
imposed by the anode voltage.

1.2.4.3 ECDI and MTSI

The Electron Cyclotron Drift Instability (ECDI), sometimes called EDI, electron drift
instability, has been observed and studied for more than half a century now in
different types of magnetized plasmas [11, 12, 14, 15]. In recent years, it gained a
renewed celebrity because, as said previously, it is considered to be the main driver
of the axial anomalous transport. The original DR, developed by Krall et al. [2, 3, 9],
considers cold ions and a drifting Maxwellian for kinetic electrons. It demonstrates
the coupling of magnetized electrons Bernstein modes with the ion acoustic wave.

When it became computationally possible, Ducrocq et al. [66] and Cavalier et
al. [92] developed a method to solve numerically the DR and compared the results
with solutions from simulations. Later, Lafleur and colleagues dedicated several
works to the analysis of this instability [106, 105, 118, 117, 133, 170].

From an experimental point of view, Tsikata and coworkers used collective Thom-
son scattering to detect this instability in the HT plume [79, 81, 103]. Brown and Jorns
also studied the presence of this instability [139]. The detection of this instability in
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simulations is much more common, and several works discussed the growth of this
instability and its development both in 1D [106, 128, 138, 165] and in 2D [94, 124,
99, 113, 129, 151, 177, 180, 198]. Villafana in his Ph.D. thesis [179] and in a recent
work [203] discussed the presence of the ECDI also in 3D PIC simulations.

The resonances of the ECDI occur at fixed wavenumbers, which are multiples of

kres =
ωce

vd,e
,

where vd,e is the macroscopic mean drift velocity of the electrons. Below the wavenum-
ber of the first resonance, the kinetic DR has another peak, which corresponds to the
Modified Two-Stream Instability (MTSI).

The MTSI is a 2D instability that develops in the channel region [16, 129, 177, 180,
203], or in the near plume region [163], with a component parallel to the magnetic
field and one to the E× B drift. This instability is characterized by a wavelength of
some millimeters and a frequency of the order of 1 MHz and is responsible both
for the anomalous transport in the axial direction and for an increased electron
temperature in the direction parallel to the magnetic field.

The E× B community agrees on the fact that high frequency ECDI and MTSI in-
stabilities are probably among the main drivers of anomalous transport in the HT

plume [160].

1.2.5 Main challenges

If these devices have been used successfully for over half a century, why should we
continue to study them? The answer is both simple and complex. It is simple because
we know that NewSpace (e. g.,the emergence of private entities in the 21

st century
space market) is driving the development of a new generation of thrusters with
a wide range of power and size. It is complex because the standard development
technique used in the industry does not meet the requirements of the market: the
trial-and-error method takes time and money.

For this reason, a large number of studies is nowadays conducted to improve
the HT design and meet the growing requirements. The scaling methods used by
some groups [84, 189], could derive some basic relations between the different
components, but miss some important aspects of the HTs design. For this reason,
other approaches are needed to better understand the physics of the HTs and its
effects on the performance.

The key elements under study are the instabilities: the origin of most of them
remains unclear. The BM oscillation cannot be simply explained, and we miss some
model that can predict the frequency and amplitude of this oscillation, given the
thruster parameters. Also, the high-frequency oscillations, which play a fundamental
role in anomalous transport, are not fully understood and a little effort has been
made to limit these oscillations. A reduced anomalous transport corresponds to an
increased residence time of electrons in the thruster channel, which directly affects
the ionization efficiency.

Moreover, the wall materials play a fundamental role. The erosion caused by the ion
bombarding on the walls may significantly decrease the thruster efficiency and the
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lifetime of the device. So, the study of the erosion mechanisms in different geometries
is a key point in the development of new HTs.

1.3 hall thruster plasma modeling
Plasma modeling, so the modeling of HTs, has represented a major challenge for
the scientists of the last century. The complexity of these systems has favored the
development of rather different techniques of describing the plasma discharges,
depending on the plasma characteristics and the goal of the simulation itself.

1.3.1 Plasma modeling basics

A plasma can be described using different models. Let us consider a system of
particles, each with 3D position r and velocity v. In the six-dimensional phase space
defined by the particles positions and velocities, we can introduce a distribution
function f (r, v, t) at the time t, such that

p = f (r, v, t)d3rd3v

represent the number of particles in the six-dimensional phase volume d3rd3v at
the position (r, v) and at time t. By studying the continuity of the distribution
function [63], we can derive the equation of motion for the particles, which, coupled
to Maxwell equations to or Poisson equation, becomes the Vlasov equation:

∂ f
∂t

+ v · ∂ f
∂r

+
q
m

(E + v× B) · ∂ f
∂v

= 0.

This equation neglects the effect of the correlation between pairs of particles at short
distances and times, that can be included by adding a collision term at the right-hand
side. Thus, we obtain the Boltzmann equation for the distribution function:

∂ f
∂t

+ v · ∂ f
∂r

+
q
m

(E + v× B) · ∂ f
∂v

=
∂ f
∂t

∣∣∣∣
c

. (1.3)

Unfortunately, the Boltzmann equation is extremely complex to solve, since it is
an integro-differential equation in six variables plus time. As we usually observe
macroscopic quantities (i. e., averages over the velocity space), such as the density,
the temperature, the velocity, et cetera, we can derive the momentum equations from
the kinetic equation.

By averaging over the velocity phase-space, we can reduce the complexity of the
dynamical equations and find the spatial distribution of some macroscopic quantities.
To obtain these quantities we need to take some velocity moments of the distribution
function calculated by the Boltzmann equation. The first moment is the density,
which is defined as

n(r, t) =
∫

f (r, v, t)d3v.

The flux of particles is defined as

Γ(r, t) = nu = n〈v〉v =
∫

v f (r, v, t)d3v,
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where u(r, t) is the mean, or fluid, velocity and 〈·〉v = 1/n
∫

f d3v the average over the
velocity space. The isotropic temperature derives from the second moment, as

kBT(r, t) =
m
3n

∫
(v− u)2 f (r, v, t)d3v.

If the temperature is not isotropic, we can define the pressure tensor as

Π(r, t) = m
∫

(v− u)⊗ (v− u) f (r, v, t)d3v.

This tensor is a 3× 3 matrix, with components

Πij = mn〈(vi − ui)
(
vj − uj

)
〉v,

with i, j = 1, 2, 3.
Once we have defined the moments of the distribution function, we can derive

the equations of motion for the macroscopic quantities. By integrating all the terms
of Eq. (1.3) over the velocity space, we can obtain the continuity equation for the
density:

∂n
∂t

+∇ (nu) = S.

In this equation S represents the particle loss or creation. Since the losses are usually
negligible, we can write this term as a function of the ionization frequency νi, as
S = νin.

The momentum conservation equation is obtained by integrating the Boltzmann
equation multiplied by mv over the velocity space:

m
[
∂

∂t
(nu) +∇ · (nu⊗ u)

]
= qn (E + u× B)−∇ ·Π+ Gcoll. (1.4)

On the left-hand side the first term represents an explicit variation of the speed, while
the second is the inertial term. On the right-hand side, the first term represents the
Lorentz force, the second is the pressure tensor gradient and the third is the collision
term. The collision term Gcoll represents the time rate of variation of the momentum
per unit volume due to the collision with other species. This term depends both on
the momentum transfer collision and on the ionization events. This term should be
calculated carefully, please refer to the literature for more details [90].

The solution of the Boltzmann equation at thermodynamic equilibrium has a Gaus-
sian speed distribution, which is called the Maxwellian distribution. The Maxwellian
distribution is defined as

fM(v) = n
(

m
2πkBT

)3/2
exp

(
− mv2

2kBT

)
.

This distribution is a solution of the kinetic equation when the collision term is
dominant. The thermal velocity of a species with mass m and temperature T is

vth =

√
2kBT

m
.
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The average speed can be obtained by integrating the distribution function over the
velocity space is

v̄ =
(

8kBT
πm

)1/2
.

The flux directed through a surface, let us say w, is given by

Γw =
1
4

nv̄.

The Maxwellian hypothesis about the distribution function is often used in the context
of simulations since it allows us to simplify the calculations. However, it is not always
a good approximation, since the distribution function can be very different when the
plasma is not near thermal equilibrium. In a recent work on a plasma similar to the
one studied in the current thesis, Alvarez Laguna et al. [182] have shown that the
distribution function may be strongly non-Maxwellian.

1.3.2 Plasma parameters

To model a plasma, we need to define some characteristic physical quantities, besides
the standard ones, that are the density, the temperature and the pressure. One can
define the plasma frequency ωp as the frequency of the plasma Langmuir oscillations.
This gives a typical timescale for the plasma response. The plasma frequency for
electrons and ions is defined as

ωp,e,i =

√
n0e2

ε0me,i
.

This quantity gives information about the natural frequency at which the plasma
would oscillate in the case of cold ions and electrons. The electron plasma frequency
is much larger than the ion plasma frequency. In the conditions of a xenon operated
HT, with a density of n0 ≈ 1× 1018 m−3. The first one has a value of ωp,e ≈ 50 GHz,
while the second one is ωp,i ≈ 1 GHz.

To define the typical length scale, we introduce the Debye length λD, which reads

λD =

√
ε0kBTe

n0e2 ,

where kB is the Boltzmann constant and Te is the electron temperature. The Debye
length is the length of the shielding of a negative charge in the plasma. The value of
the Debye length is related to the dimension of the plasma sheath at the boundaries:
as one may notice λD = vth,e/ωp,e. In the case of a HT with an electron temperature
of 10 eV and the same density as before, the Debye length is λD ≈ 20 µm. Both the
plasma frequency and the Debye length depend on the density (λD depends on
the temperature as well), thus, they may strongly vary along the Hall thruster axis
(i. e., the plasma is much denser at the channel exit than in the plume. Similarly, the
temperature peaks inside the channel and decreases significantly near the anode and
the cathode).
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Figure 1.6: The various methods to simulate a plasma.

1.3.3 Plasma modeling techniques

The Boltzmann equation (1.3) is the most detailed description of the entire phase-
space. However, solving the Boltzmann equation can be extremely costly, since one
needs to discretize the full phase-space (i. e., space and speed). This Direct Kinetic (DK)
approach is used by some solvers [62], also known as deterministic Boltzmann solvers,
to provide a solution of the Boltzmann equations, however, its complexity prevents
it from being used for long simulations. The PIC method is a numerical method
that allows us to solve the Boltzmann equation in a much more efficient way. In
this method, some superparticles (also called macroparticles) accounting for a large
number of single physical particles are mapped on a discrete spatial grid and the
evolution of the plasma is computed by solving the Lorentz-Poisson equation on the
grid. The PIC method is used in many plasma simulations, including the ones in this
work. Even if the cost of PIC simulations is lower than the one of DK simulations, it is
still very high. This is why the PIC method is often used in combination with other
methods, such as fluid method. Fluid simulations solve the conservation equations of
the plasma, that are the so-called moments of the Boltzmann equation described in
Section 1.3.1 (i. e., the first three moments are the continuity equation, the momentum
equation and the energy equation). The fluid method is much less costly than the
PIC method, but it is not able to capture the kinetic effects of the plasma, since
it deals with macroscopic quantities such as density, temperature and pressure.
Clearly, fluid modeling makes several assumptions that do not hold under every
condition. For example, the assumption of a Maxwellian distribution function is
often used in fluid simulations. The two techniques described above are sometimes
used together in the so-called hybrid simulations. These simulations usually solve the
faster electron dynamics using fluid equations, while the slower ion (and neutral)
dynamic is solved with PIC. In the following sections we presents some details about
the different modeling techniques reported above, briefly discussing their use by the
E× B community in HTs simulations. A schematic representation of the different
methods is shown in Figure 1.6.

1.3.3.1 Fluid simulations

Fluid simulations are among the most used plasma simulations, since they allow us
to study macroscopic plasma quantities. However, as just said, the simple description
of the plasma via fluid equations is obtained using some assumptions that are not
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always valid. This approach deals with integrated quantities, so the effects linked to
the discrete nature of the particles are inevitably lost.

If we take an infinite number of moments of the Boltzmann equation, we can
retrieve a kinetic description of a plasma with fluid formalism (yet the Maxwellian
assumption would still hold). Since we want to simplify the description of the plasma
and not make it more complex, we need to limit the number of moments we use.
The nth moment depends on the (n + 1)th, hence, we need to introduce some closure
terms to close the set of equations. As an example, the continuity equation depends
on the fluid velocity u, that can be derived in the momentum conservation equation.
However, in this equation appears the pressure tensor Π. The expression of this term
can be found by solving the energy conservation equation, and so on. The usual
methods make some hypothesis on the pressure tensor or heat-flux, limiting the set
of equation to the first two or three moments, respectively. Some works [182, 198]
consider more moments, for an improved description of the plasma. The set of fluid
equations is sometimes simplified by considering a drift/diffusion approximation
for the electrons [75], which consists of neglecting the inertial terms and in writing a
simpler expression for the momentum conservation equation.

Fluid codes have some other limitations. Indeed, several codes consider a quasi-
neutral plasma (i. e., ni = ne). The quasi-neutrality hypothesis allows us to get rid of
the Poisson equation but prevents any phenomenon that creates a space charge in
the plasma [33, 52, 109]. As an example, the plasma fluctuations are often related to
some deviation from the charge neutrality as well as the formation of the plasma
sheath at the plasma boundaries.

The first works in the E×B community with full-fluid simulations were performed
around 20 years ago [43, 48, 50, 51] in one dimension. More recently, the simulation
domain was extended to two dimensions [57, 89, 123, 130].

The biggest drawback of fluid simulations for HTs is related to the anomalous
transport. The anomalous transport is, as shown in Section 1.2.3, related to the electric
field and density fluctuations. Fluid simulations do not always capture the correct
growth rate for plasma instabilities, thus preventing the anomalous transport from
being correctly modeled. For this reason, several works add an anomalous collisional
term νanom to the standard collisional frequency in the momentum equation [35, 132,
175]. Clearly, this approach cannot reproduce perfectly the instabilities effect, for
which kinetic simulations are needed.

1.3.3.2 Hybrid simulations

The hybrid simulations are a first attempt to include kinetic effects, still keeping a low
computational cost. The first simulations were performed in the late ’90s by several
groups [33, 34, 38] and re-proposed many times since then. In these simulations
normally the electron dynamics is treated as a fluid, while the heavy species are
particles.

These simulations successfully reproduced the breathing mode and captured some
of the transit-time instabilities [33, 35, 54, 69]. However, it fails in reproducing the
high-frequency MHz instabilities, that are the major responsible for the anomalous
transport [133].
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1.3.3.3 Kinetic simulations

The weak electron collisionality in HTs (i. e., the mean free path of an electron is
larger than the device dimensions) prevents efficient thermalization and therefore
the distribution function is often not Maxwellian. Morozov in his book [39] proposed
the idea of multiple electron populations with different temperatures. Moreover,
the anisotropy related to the presence of the magnetic field further increases the
deviation from Maxwellian (i. e., the electron temperature is not necessarily isotropic:
the electron temperature perpendicular to the magnetic field may be larger than the
parallel one).

As explained above, the non-Maxwellian character of the Electron Velocity Distri-
bution Function (EVDF) cannot be captured in classical fluid or hybrid simulations.
The kinetic simulations allow to capture the non-Maxwellian character of the plasma.
Two families of kinetic models exist: the grid-based Boltzmann equation solvers [127]
and the PIC/Monte Carlo Collisions (MCC) solvers [26]. The first one, also known
as Direct kinetic method, solves the Boltzmann equation on a grid in discretized
velocity phase-space [149]. This method is rather complex, since it solves a hyperbolic
partial differential equation, coupled to a resolution of the electro-magnetic field. In
the second one, the distribution function is recreated by using a large number of
superparticles with different velocities. These particles move in a space-grid. The
more particles are used, the better the description of the EVDF is. However, the com-
putational cost increases significantly with the number of particles and in many cases
the resolution gain is not worth the computational cost increase. A more sophisti-
cated particle to grid interpolation [196] allows us to retrieve some kinetic effect
that are otherwise not visible with the standard techniques. The implementation of
the particle methods does not have any particular difficulty, since they require the
solution of an ordinary differential equation for the particle motion and the Poisson
elliptic partial differential equation.

In the last two decades the E× B community has been extremely active in the
development of PIC/MCC codes. The first full-PIC 1D-radial codes were developed
by Taccogna et al. [64, 73] and by Sydorenko et al. [70, 72, 77]. Later, when the
importance of the azimuthal direction became clear, some authors developed the first
1D-azimuthal codes [66, 97, 105, 128]. More recently, different groups developed 2D
radial-azimuthal codes [94, 113, 112, 129, 136, 153, 152, 151, 177, 180] to study the
coupling of the azimuthal dynamics with the radial one. At the same time, the need
for simulating the direction of the thrust lead to the development of axial-azimuthal
codes [55, 99, 118, 131, 133, 124, 151, 141, 201, 202]. Axial-radial codes were developed
as well [46, 101].

Recently, two international benchmarks [140, 180] have been organized to compare
the different codes. The first organized by Thomas Charoy of Laboratoire de Physique
des Plasmas (LPP) dealt with the simulation of the axial-azimuthal plane of a HT. The
second, led by Villafana and organized by the LPP and the CERFACS groups, dealt
with the simulation of the radial-azimuthal plane of a HT.
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1.4 scope and outline of the thesis
This thesis is part of the collaboration between LPP and Safran Spacecraft Propulsion,
within the POSEIDON ANR Chair, started in 2017. Numerical simulations are a
required step to ease the conception of the new generation of HTs and to reduce
the development time. The principal objective of this study is to enhance the un-
derstanding of the physics underlying the operation of HTs and to develop more
effective models for their accurate representation. Such models should guide the
development of more efficient numerical tools, which can contribute to the design
of next-generation thrusters. This thesis follows and completes those of Croes [112],
Tavant [152] and Charoy [155], which have laid the foundation for the work presented
here.

One of the most recognized characteristics of HTs is the presence of plasma in-
stabilities, which strongly affect the electron transport along the thruster axis [118].
However, even if a large number of works have been published on the subject, a global
view about electrostatic instabilities was still missing. For this reason, in Chapter 2

we derive a 3D electrostatic dispersion relation. By projecting this dispersion relation
along the different thruster’s planes, we show that the 3D dispersion contains the
most known 1D and 2D DRs. With this top-down approach, we also show the need
to consider the multi-dimensional nature of the instabilities in order to understand
their development and propagation. However, the theory itself is not enough to
understand the growth and the effects of the instabilities: simulations are required.

The simulations in this work are realized using a 2D PIC code, LPPic, that can
simulate both the radial-azimuthal and axial-azimuthal planes of a HT. The code
development and characteristics are discussed in Chapter 3. The radial-azimuthal
simulations are analyzed in Chapter 4. In particular, in this chapter, we study the
conditions allowing the growth of the MTSI and its effects on the anomalous transport.
The instabilities in the axial-azimuthal plane, i. e., ITTI and the IAW, are discussed in
Chapter 5, along with their most important effects on the plasma parameters. The
comparison of the simulation results with the theory developed in Chapter 2 allows
us to explain the origin and propagation of these instabilities.

The simulations discussed heretofore are purely 2D. However, we know that the
third dimension plays a fundamental role in determining the plasma parameters. For
this reason, in the subsequent chapter, Chapter 6, we discuss the introduction of the
virtual third dimension, which takes into account the effects of the radial boundaries
in an axial-azimuthal simulation. Later, in Chapter 7, we show how the abundant
data resulting from PIC simulations can be used to study in detail the microscopic
and macroscopic HT physics. In the latter part of that chapter, we use our PIC code to
investigate the effect of changing the input parameters on the thruster physics and
performance. Table A.1 summarizes the axial-azimuthal simulations presented in this
thesis.



2 P L A S M A I N S TA B I L I T I E S

This chapter initially presents a comprehensive derivation of the 3D dispersion relation for
electrostatic modes in E× B plasmas. Subsequently, it is shown that from this dispersion
one can derive those of the ion acoustic wave (IAW), of the modified two-stream instability
(MTSI) and of the ion transit-time instability (ITTI). The limits of validity of these dispersions
relations and the conditions that favor the growth of the different modes are also discussed. The
last part of the chapter delves into different techniques for computing space-time spectra. The
primary focus is on the application of these methods to analyze and interpret particle-in-cell
(PIC) data. The discussion provides a detailed analysis of various approaches (FFT, PSD2P,
DMD) that can be employed to determine the spectra, outlining their respective advantages
and limitations.
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2.1 why instabilities?
The discussion in the previous chapter has shown that several instabilities in HTs

play a fundamental role in discharge physics. By strongly influencing the anoma-
lous electron transport in the axial direction, they have a direct impact on thruster
performance. Gaining a deeper comprehension of these instabilities constitutes a
crucial advance towards achieving a more effective modeling of HTs. In this chapter,
we study theoretically the dispersion relations that govern the propagation of the
electrostatic instabilities in HTs. We first derive a general 3D DR from the fluid equa-
tions. Subsequently, we derive the 2D DRs for the IAW, MTSI and the ITTI, and compare
them to those of previous published works. We also discuss the limits of validity of
these DRs and we propose some simplifications that provide a better understanding
of the nature of these modes.

In the second part of the chapter, we propose and discuss some methods to calculate
the spatiotemporal spectra, focusing on the application on PIC data. The comparison
between theoretical dispersions and numerical simulations will be presented in
Chapters 4 and 5.

2.2 the electrostatic dispersion relation
The HT plasma instabilities range from kHz to tens of MHz and propagate both
in azimuthal and axial directions. These instabilities have been extensively studied
theoretically [11, 12, 16, 17, 39, 66, 92, 106, 105], numerically [110, 144, 156] and
experimentally [103, 74, 139]. However, due to their complexity and the interplay
between these instabilities, the underlying physics is still not fully understood. ECDI is
a short-wavelength (λ ∼ 1 mm) high-frequency (ω ∼ 7 MHz) electrostatic instability
that develops mainly along the E×B drift direction. This instability has been studied
during the last 20 years [55, 94, 92, 99, 105, 133, 129, 150, 198] and has shown to have a
significant impact on the electron transport in the axial direction. PIC simulations [118,
140, 177] have revealed that this instability evolves towards the IAW after some tens
of microseconds. In addition to the ECDI, numerical studies have shown a radial-
azimuthal electrostatic instability, that was named MTSI, with a longer wavelength
(some millimeters) and a frequency in the MHz range [129, 163, 177, 180]. Hagelaar
et al. [54], Barral et al. [59] and Fernandez et al. [75] found an axial electrostatic
long-wavelength (∼ 1 cm) mid-frequency (∼ 400 kHz) instability that was called Ion
Transit-Time Instability (ITTI). This instability develops in the thruster plume and its
period is of the order of the duration of the transit of ions in the acceleration region.
As anticipated, the ITTI is a resistive instability, similar to the one studied by Litvak
and Fisch [44] in the azimuthal direction. Koshkarov et al. [132] have studied the
axial growth and propagation of this mode. Recently, Charoy et al. [170] have shown
the influence of the ITTI on the ion ejection velocity in PIC simulations. In the same
frequency range, some experimental and numerical studies [158, 174] have observed
the Ion-Ion Two Stream Instability (IITSI), which is related to the presence of doubly
charged ions. Finally, in the low-frequency range (∼ 10 kHz), the Breathing Mode
(BM) is found to be a low-frequency ionization instability. Despite the origin of this
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Figure 2.1: Schematic representation of a HT in 3D. The magnetic field is along the z di-
rection, the stationary electric field is along the x direction and the E× B drift
occurs in the negative y direction. The cathode is not represented.

instability not being fully understood [175, 169], it is commonly accepted that the BM

should not be considered among electrostatic plasma instabilities, since it is mainly
related to the oscillation of the densities and ionization rate.

2.2.1 Derivation of the 3D dispersion relation

In this section, we derive the DR from a fluid model that considers the continuity
and momentum equations for electrons and ions, coupled by Poisson’s equation. The
derivation in this section does not introduce any new instability: we derive a general
3D DR and we show precisely the intervals of validity of the most studied DRs in HTs.
Moreover, with a top-down approach, we show that it is possible to calculate a 2D
version of the DRs of some instabilities that are usually considered mono-dimensional.
As usual, we refer to the azimuthal direction as y, the axial direction as x and the
radial direction as z. We consider the magnetic field B = Bêz is along the z direction,
the stationary electric field E = Eêx is along the x direction and the E×B drift occurs
in the negative y direction. A scheme of the used axes, concerning a HT, is provided
in Figure 2.1.

Ions and electrons are assumed to be isothermal with an isotropic temperature.
We recall that in HTs the electrons are magnetized, while ions are not. Consequently,
we can neglect the effect of the magnetic field on ions. We perform a first-order
perturbation of the densities (cf. Refs. [16, 122]), the velocities, and of the potential.
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All the variables are written in the form ξ = ξ0 + ξ ′, where ξ0 is the equilibrium and
ξ ′ a small perturbation. The linearized fluid equations read

∂n′e
∂t

+ ve0 · ∇n′e + n0∇ · v′e = 0,

∂n′i
∂t

+ vi0 · ∇n′i + n0∇ · v′i = 0,

∂v′e
∂t

+ ve0∇ · v′e = − e
me

(E′ + v′e × B)− kBTe

mene0
∇n′e − νev′e,

∂v′i
∂t

+ vi0∇ · v′i =
eE′

mi
− kBTi

mini0
∇n′i − νiv′i ,

and Poisson’s equation reads

∇2Φ′ =
−e
ε0

(n′i − n′e). (2.1)

Here, ni,e are the ion and electron densities, vi,e are the ion and electron fluid velocities,
νi,e are the ion and electron collision frequencies, mi,e are the ion and electron masses,
Ti,e are the ion and electron temperatures, E is the electric field, B is the magnetic
field, kB is the Boltzmann constant and e is the elementary charge. The ionization
has been neglected in the system. In HTs, this assumption is valid almost everywhere,
but in the vicinity of the ionization peak. The steady-state solutions for electrons and
ions are

ve,0 · ∇ve,0 =− e
me

(E0 + Ve,0 × B)− kBTe

mene,0
∇ne,0 − νeve,0,

vi,0 · ∇vi,0 =
e

mi
E0 −

kBTi
mini,0

∇ni,0 − νivi,0.

Let us now consider a plane wave perturbation, i. e., ξ ′ = ξ̃ exp [ı(k · x−ωt)]. By
defining ω̄e,i

.= ω− k · ve,i,0, the continuity equations can be written as

ñe

n0
=

k · ṽe

ω̄e
, (2.2)

ñi
n0

=
k · ṽi

ω̄i
, (2.3)

for electrons and ions, respectively. The discussion on the momentum equations has
to be held separately for ions and electrons, since the former are not magnetized,
while the latter are. With ω̂e,i

.= ω−k ·ve,i,0 + ıνe,i, the linearized momentum equation
for non-magnetized isothermal ions reads

ṽi =

(
v2

th,i
ñi
n0
− eΦ̃

mi

)
k

ω̂i
, (2.4)

where vth,i = (kBTi/mi)
1/2 is the ion thermal velocity. The electron momentum

equation is more complex, since the equations in x and y directions are coupled
by the magnetic field. The linearized vector equation for isothermal magnetized
electrons is

−ıωmeṽe + meṽe (ık · ve0) = eΦ̃ık− ṽe × B−mev2
th,eık−meνeṽe.
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Each component reads

ṽex (ω− k · ve0 + ıνe) =
(

v2
th,e

ñe

n0
− eΦ̃

me

)
kx − ıṽeyωce,

ṽey (ω− k · ve0 + ıνe) =
(

v2
th,e

ñe

n0
− eΦ̃

me

)
ky + ıṽexωce,

ṽez (ω− k · ve0 + ıνe) =
(

v2
th,e

ñe

n0
− eΦ̃

me

)
kz.

In the previous equations we introduced the electron thermal velocity vth,e =
(kBTe/me)

1/2 and the cyclotron frequency ωce = qB/me. We solve the above sys-
tem for the three velocity components, as follows

ṽex =
(

v2
th,e

ñe

n0
− eΦ̃

me

) (
ω̂ekx − ıωceky

)
ω̂2

e −ω2
ce

,

ṽey =
(

v2
th,e

ñe

n0
− eΦ̃

me

) (
ω̂eky + ıωcekx

)
ω̂2

e −ω2
ce

, (2.5)

ṽez =
(

v2
th,e

ñe

n0
− eΦ̃

me

)
kz

ω̂e
.

Note that x and y are coupled, while the z direction (parallel to B) is independent, as
expected. By combining Eq. (2.4) and Eq. (2.5) with Eq. (2.3) and Eq. (2.2), respectively,
we obtain

ñi
n0

=
eΦ̃
mi

k2

ω̂iω̄i − k2v2
th,i

,

ñe

n0
=

− eΦ̃
me

(
ω̂2

e k2 −ω2
cek2

z
)

ω̂e(ω̂2
e −ω2

ce)ω̄e − ω̂2
e k2v2

th,e + ω2
cek2

zv2
th,e

.

These expressions can be injected in the linearized Poisson equation, that reads

k2Φ̃ =
en0

ε0

(
ñi
n0
− ñe

n0

)
,

to obtain the following isothermal fluid dispersion relation for a partially magnetized
plasma:

0 = 1+χi +χe = 1−
ω2

pi

ω̂iω̄i − k2v2
th,i
−

ω2
pe

(
ω̂2

e −
k2

z
k2 ω2

ce

)
ω̂e (ω̂2

e −ω2
ce) ω̄e − ω̂2

e k2v2
th,e + ω2

cek2
zv2

th,e
, (2.6)

where we remember the plasma frequencies defined as ωpe,i =
√

ne,iq2/ε0me,i, and
where we have introduced the ion and electron susceptibilities, χi and χe.

The ion part of the fluid dispersion in Eq. (2.6) is similar to the ion dispersion
in Ref. [66], that indeed was retrieved by a fluid ion model. The only differences
are related to the assumption (cold ions, collisionless plasma, no ion drift) made
by Ducrocq et al. in their model. The main discrepancies come out in the electron
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part, where the kinetic DR shows k-resonances that are not captured by the fluid
DR. The above 3D dispersion relation cannot be solved analytically to find ω = ω(k).
However, it can be simplified to retrieve the DRs of interesting waves/instabilities,
such as the aforementioned ion acoustic wave [12, 117, 118], the modified two-stream
instability [16, 129, 177] and the ion transit-time instability [59, 75].

2.2.2 Ion acoustic wave

2.2.2.1 The fluid IAW dispersion relation

The IAW, originally discussed by Gary and Sanderson in Ref. [11], has been observed
in both axial-azimuthal and radial-azimuthal 2D PIC simulations [156, 110, 170,
117, 113, 177, 180]. In these works, in particular, in Refs. [117, 156, 170, 177], the
IAW has been interpreted as the evolution of the ECDI in the saturated regime. In
the next section, we propose a kinetic/fluid comparison that clarifies the relation
between these two instabilities from a theoretical point of view. In Ref. [201], we have
shown that although the IAW is mainly an azimuthal instability, it has a small axial
component (along y). For this reason, to obtain the IAW dispersion relation from the
general dispersion relation of Eq. (2.6), we project in the xy-plane by imposing kz = 0.
The electron susceptibility then reads

χe = −
ω2

pe

(ω̂2
e −ω2

ce) ω̄e/ω̂e − k2v2
th,e

= − 1
k2λ2

D

1
(ω̂2

e−ω2
ce)ω̄e

ω̂ek2v2
th,e
− 1

, (2.7)

where the electron Debye length is defined as λ2
D = v2

th,e/ω2
pe and k =

√
k2

x + k2
y.

This expression can be simplified considering the typical characteristics of the IAW:
a wavenumber in the range ωce/vth,e � k � ωce/ve,0 and a frequency ω in the
MHz range (note that ve,0/ωce is the distance traveled by the electron guiding center
during one period of gyration and vth,e/ωce is the gyroradius, hence the condition
above implies that ve,0 � vth,e). In this limit, we have ωce � ω̂e and considering
a weak collisionality implies that ω̄e ∼ ω̂e. From these observations it follows that
(ω̂2

e −ω2
ce)ω̄e/

(
ω̂ek2v2

th,e

)
� 1, which allows writing a rather simple expression for

the electron susceptibility, i.e., χe = 1/k2λ2
D. By neglecting ion collisions and ion

thermal velocity, we can write an explicit expression for the DR, as

ω1,2 = k · vi,0 ±
kλDωpi

(1 + k2λ2
D)1/2

, (2.8)

which is the expression previously proposed by Gary [12]. The DR has no imaginary
part and therefore does not predict the growth of the instability. Lafleur et al. [106]
found from the kinetic theory the same expression for the real part of the DR,
accompanied by the following growth rate, for a Maxwellian distribution,

γ1,2 ≈ ±
√

πme

8mi

k · ve,0(
1 + k2λ2

D
)3/2

. (2.9)
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2.2.2.2 Comparison with kinetic theory

The kinetic DR calculated by Krall et al. [2, 3, 9], considering cold ions and a drifting
Maxwellian for electrons, in k ∼ ky limit reads

0 = k2
yλ2

D

(
1−

ω2
pi

ω2

)
+

[
1− I0(ψ2)e−ψ2

+
∞

∑
n=1

2(ω− kyve,0,y)2 In(ψ2)e−ψ2

(nωce)2 − (ω− kyve,0,y)2

]
, (2.10)

where ψ2 = k2
yv2

th,e/ω2
ce and In is the modified Bessel function of order n. A complete

study of the kinetic DR can be found in the works of Ducrocq et al. [66] and Cavalier et
al. [92]. It is interesting to note that this kinetic DR contains cyclotron resonances, that
are not present in the fluid DR calculated in the previous section. These resonances
(ky ≈ nωce/ve,0) are the well-known ECDI modes [92, 106]. Following the work of
Gary and Sanderson [11], this DR can be seen as the coupling of doppler-shifted
electron Bernstein modes with the ion acoustic wave.

As noted by Krall [2], the electron cyclotron resonances are related to the angular
non-uniformity of the distribution function perturbation. This fact is clearly in
contradiction with the hypothesis of scalar isotropic pressure. The first resonance is
simply related to the Lorentz force, i.e., an anisotropy related to the fluid velocity, so
it can be predicted by a simplified fluid model.

The comparison of the kinetic DR in Eq. (2.10) and the fluid one of Eq. (2.6) in
different intervals of k brings some useful insights. If we consider a long wavelength
instability such that ky � ωce/vth,e (i. e., k2

yv2
th,e � ω2

ce, so ψ2 → 0), we can simplify
the kinetic DR considering the terms up to ψ2. The only Bessel functions contributing
to the DR are the ones with n = 0, 1. Hence, the simplified kinetic DR reads

0 = 1−
ω2

pi

ω2 −
1

k2
yλ2

D

k2
yv2

th,e

(ω− kyve,0,y)2 −ω2
ce

and corresponds exactly to the fluid one projected along the y−axis (using the
electron susceptibility in Eq. (2.7)) in the collisionless cold plasma limit (i. e., ω̂e = ω̄e
and vth,e,i ∼ 0). We note that this expression, derived from the fluid theory, predicts
the presence of the first cyclotron resonance. However, if we consider the limit in
which we have obtained this expression (ky � ωce/vth,e) and that ve,0,y < vth,e, which
is true in most of the cases, we observe that the resonance at ky = ωce/ve,0,y disappears
since kyve,0,y < kyvth,e � ωce. In these conditions, the electron susceptibility becomes
χe = ω2

pe/ω2
ce, since k2v2

th,e � |(ω − kyve,0,y)2 − ω2
ce| ≈ ω2

ce and the DR simplifies to
ω2 ≈ ω2

ceω2
pi/ω2

pe. If we consider a wavenumber as in the previous section (i. e.,

ωce/vth,e � ky � ωce/ve,0,y) we have e−ψ2 → 0 and the kinetic DR in Eq. (2.10)
simplifies to

0 = k2
yλ2

D

(
1−

ω2
pi

ω2

)
+ 1,

that is exactly the fluid expression in Eq. (2.8) with no ion drift. The limit for
ky � ωceve,0,y is easily computed for both fluid and kinetic theories and reads
ω2 = ω2

pi.
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In conclusion, we have shown that in the fluid DR the cyclotron resonances with
n > 1 are not captured. This can be explained by the fact that the fluid theory is
not able to capture the angular asymmetries in the velocity space as the pressure is
assumed to be isotropic. In addition, we have shown that in the limit of short and
long wavelengths, the kinetic DR simplifies to the fluid DR.

2.2.3 Modified Two-Stream Instability

The modified two-stream instability is a radial-azimuthal instability, proposed by
McBride et al. [16], that was recently studied in detail by Janhunen et al. [129] and
Petronio et al. [177]. This instability owes its name to the Two-Stream Instability (TSI),
which is a simple example of streaming instability (cf. Section 6.6 in Chen [22]).
The TSI is characterized by the presence of fixed ions and drifting electrons, such
that their drift is parallel to the instability propagation. When we consider an E× B
discharge, the fields configuration is more complex: the instability propagation
along the different directions is coupled by the presence of the magnetic field. For
this reason, the E× B drifting electrons do not generate the standard two-stream
instability, but a 2D version of it, which takes the name of modified two-stream
instability, MTSI. The mechanism that provides the energy for this instability is the
relative drift of magnetized electrons and unmagnetized ions.

As anticipated, it is possible to find the DR of the MTSI simplifying the general DR

introduced previously. Limiting our interest to the yz-plane, the DR reads

0 = 1−
ω2

pi

ω2 −
ω2

pe

ω̂2
e

ω̂2
e −ω2

ce

ω̂2
e − k2

z/k2ω2
ce
− v2

th,e

,

where we considered a collisionless approximation, (i. e., ω̂e = ω̄e = ω− k · ve,0) and
no-drifting cold ions (i. e., vi,0 = vth,i = 0). In the case of cold electrons (vth,e = 0), the
electron contribution to the DR, χe, simplifies to

χe = − k2
z

k2

ω2
pe

(ω− kyve,0)2 −
k2

y

k2

ω2
peω2

ce((
ω− kyve,0

)2 −ω2
ce

) .

Injecting this expression in the full fluid DR, we obtain

0 = 1−
ω2

pi

ω2 −
ω2

pek2
z

(ω− kyv0)2k2 −
ω2

pek2
y((

ω− kyve,0
)2 −ω2

ce

)
k2

. (2.11)

This expression is exactly the one found by Janhunen et al. [129] in the case of cold
electrons with kinetic theory. In the next section, we derive a stability criterion for
the MTSI, similarly to what we have done in Ref. [177].

A simplification of the MTSI DR

To solve Eq. (2.11) numerically, we nondimensionalized the wavenumbers with the
inverse of the electron Debye length λD, the frequency with the ion plasma frequency,
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and the velocities by the Bohm speed uB = λDωpi =
√

kBTe/mi. The dimensionless
DR reads

1− 1
ω̃2 −

mi
me

k̃2
z

(ω̃− k̃yṽ0)2k̃2
− mi

me

k̃2
y(

(ω̃− k̃yṽ0)2 − ω2
ce

ω2
pi

)
k̃2

= 0, (2.12)

with ω̃ = ω/ωpi, k̃ j = k jλD, and ṽ0 = v0/uB. Note that, in the following, the dimen-
sionless quantities are denoted with a tilde.

The solver uses scipy.optimize [166], which employs the Nelder–Mead method with
the dimensionless convergence tolerance of ξ = 10−12. For fixed k̃y and k̃z, we solve
for the complex frequency ω̃ = ω̃r + iγ̃, where γ̃ = γ/ωpi is the non-dimensional
growth rate and ω̃r = ωr/ωpi the non-dimensional frequency. Figure 2.2 shows an
example of the solution (γ̃, ω̃r) in the k̃y − k̃z space for the classical values of the
magnetic and electric field in HT (i. e., B = 200 G, E = 1× 104 V/m and v0 = E/B) with
a n = 5× 1016 m−3 xenon plasma. In the bottom panels of the figure, the solid lines
show the solution for the growth rate and frequency as a function of the azimuthal
wavenumber for k̃z = 0.02. The peak represents the MTSI resonance.

The dimensionless DR, i.e., Eq. (2.12), does not have a trivial analytical solution.
However, it can be simplified using the following assumptions. First, in our range
of interest, we have k̃z � k̃y, thus we can consider that k̃ ≈ k̃y. Furthermore, as it
is a low-frequency wave, the numerical solution of Eq. (2.12) verifies the following
inequality ω̃ � k̃yṽ0. Lastly, in our range of interest, the radial wavenumber is such
that k̃yṽ0 � ωce/ωpi. Consequently, we further simplify the denominator of the
fourth term. As a result, we obtain a simplified DR that reads

1− 1
ω̃2 −

mi
me

k̃2
z

k̃4
yṽ2

0
+

mi
me

ω2
pi

ω2
ce

= 0. (2.13)

The explicit solution for ω̃ can be analytically calculated as

ω̃ =

[
1 +

mi
me

ω2
pi

ω2
ce
− mi

me

k̃2
z

k̃4
yṽ2

0

]− 1
2

, (2.14)

with a singularity at

k̃z =

(
me

mi
+

ω2
pi

ω2
ce

) 1
2

ṽ0k̃2
y.

Considering that in HT conditions me/mi � ω2
pi/ω2

ce, the previous expression in
dimensional form reads,

kz =
meEx

eB2 k2
y. (2.15)

This equation gives the position of maximum growth rate, γmax, in the ky − kz space.
Note that the spectral position of the MTSI resonance, γmax, does not depend on the
ion mass nor the plasma density, but only on the axial electric field and the radial
magnetic field.
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Figure 2.2: (a) Phase space of the growth rate γ̃(k̃y , k̃z); (b) frequency ω̃r(k̃y , k̃z) as calculated
numerically from the dispersion relation in Eq. (2.12). The green line shows the
position of max(γ̃) obtained with the analytical solution of Eq. (2.15). The black
dashed lines in (a) and (b) show the cuts reported in (c) and (d) for, respectively,
the growth rate and the frequency. In (c) and (d) the full lines are obtained
by solving numerically Eq. (2.12), while the dashed lines are obtained from
Eq. (2.14). From Ref. [177].
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In the upper panel of Figure 2.2, the position of the maximum growth rate as
calculated with the simple relation of Eq. (2.15) is shown with a green line with
triangular markers, delimiting the stable and unstable regions. One can note that
this solution is in very good agreement with the position found with the numerical
solution of Eq. (2.12). A comparison of the growth rate and frequency of both the
simplified (dashed lines) and the full fluid solution (solid lines) for k̃z = 0.2 is shown
in the panels (c) and (d) of Figure 2.2. Note that in the vicinity of the MTSI resonance
peak, the approximation ω̃ � k̃yṽ0 is not valid anymore and the simplified formula
fails to capture the magnitude of the peak. Nevertheless, Eq. (2.15) remains a good
approximation to identify the position of the MTSI peak in the ky − kz space.

As a result of these observations, from Eq. (2.15), we can establish an analytical
stability condition for the appearance of the MTSI in our PIC simulations. The unstable
region in the ky − kz space fulfills the following condition,

kz ≥
meEx

eB2 k2
y. (2.16)

The boundary conditions of the PIC simulation define a discrete set of couples
(ky, kz) in the unstable region, as explained below. In the case of a radial-azimuthal
simulation, the azimuthal wavenumber is fixed by the periodic boundary conditions
as ky = 2πm/Ly where m is a positive integer. Similarly, the Dirichlet boundary
conditions for the electric potential allow the growth of instabilities with kz = pπ/Lz
where p is a positive integer. Consequently, the stability condition for our PIC setup
can be expressed as

Lz/p ≤ eB2

4πmeEx
(Ly/m)2.

The (m, p) couple corresponding to the mode with the largest growth rate will
likely define the mode that develops in the PIC simulation. One should note that the
growth rate shown in Figure 2.2 is obtained with a fluid DR which overestimates
the growth rate at small radial wavelengths. In the kinetic dispersion relation [129],
the growth rate decreases at large radial wavenumbers and, hence, the modes with
small wavenumbers are more likely to appear. Under typical HT conditions, this
implies that the p with a larger growth rate is p = 1, which corresponds to half
wavelength in the radial direction. Eventually, under certain conditions, p = 2 can
appear, which corresponds to one wavelength in the radial direction. Modes with
larger p, although they are unstable, have a growth rate that is too small as compared
to other instabilities.

In Chapter 5 we will compare the theoretical results above with the numerical
solution of Eq. (2.12). Then, we will study the MTSI growth in PIC simulations, with
particular attention to the conditions favoring its development.

2.2.4 Ion transit-time instability

Hagelaar et al. [54], Barral et al. [59] and Fernandez et al. [75] introduced an axial
electrostatic long-wavelength (∼ 1 cm) mid-frequency (∼ 400 kHz) instability that
was called ion transit-time instability (ITTI). This instability is a resistive instability,
whose azimuthal propagation was studied by Litvak and Fisch [44]. It is interesting
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to note that Chable and coworkers [61] studied a similar resistive instability in a low
frequency (i. e., below 100 kHz) regime.

As previously, we consider a wave with both axial and azimuthal components
(i. e., k = (kx , ky, 0) with ky � kx). By neglecting the ion thermal velocity vth,i = 0 and
the electron gyration around magnetic field lines, the DR reads

0 = 1−
ω2

pi

ω̂iω̄i
−

ω2
pe

ω̂eω̄e − k2v2
th,e

.

The ITTI is a rather low-frequency instability, so we have ω � ωpi, and the previous
expression simplifies to

ω2
pi

ω̂iω̄i
= −

ω2
pe

ω̂eω̄e − k2v2
th,e

.

Moreover, since the ITTI is mainly axial and the ion drift in the azimuthal direction is
very small (the ions are not magnetized in these conditions), we have k · vi,0 ∼ kxvi,0,x.
As a result, these simplifications yield the following DR

ω1,2 =kxvi,0,x −
me

mi
(k · ve,0 − ıνe/2)±(

me

mi

(
2 (k · ve,0) kxvi,0,x − (k · ve,0)

2 + k2v2
th,e

)
−
(

me

mi

νe

2

)2
+ ıνe

me

mi
(k · ve,0 − kxvi,0,x)

)1/2

.

(2.17)

Fernandez et al. [75] used a model similar to the one proposed here for the ions,
while they considered a drift/diffusion model for electrons, obtaining eventually a
1D-version of the DR in Eq. (2.17). By neglecting electron gyration, we are reducing
our model to drift/diffusion as well. Note that this result corresponds to a situation
of quasi-neutrality for the plasma. Recently, Koshkarov et al. [132] demonstrated
that the effect of the finite Larmor radius and the electron inertia must be taken
into account to have an instability growth rate vanishing at infinity. The effect of
instability-driven turbulence in 2D is investigated in Koshkarov et al. [145].

Limit behavior of the ITTI

We define the two branches in Eq. (2.17) plus and minus waves (identified by the
sign prior to the square root) and we designate them with the subscripts p and
m, respectively. We observe that each branch can be stable or unstable (i. e., have
a positive or negative imaginary part), depending on the plasma parameters, and
an easy simplification of the radicand in the ITTI DR can explain why. We observe
that the real part of this radicand is largely dominated by the thermal term (i. e.,
k2v2

th,e � 2 (k · ve,0) kxvi,0,x − (k · ve,0)
2) and, considering some reasonable values

for the wavenumber, we also have that me/mik2v2
th,e � νe

me
mi

(k · ve,0 − kxvi,0,x). Then,
after some algebraic manipulation, real and imaginary parts of the simplified DR can
be rewritten

ωp,m = kx(vi,0,x ± cs),

γp,m =
νe

2
me

mi

kcs ± (kyve,0,y − kxvi,0,x)
kcs

,
(2.18)
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where cs =
√

me/mivth,e. In these equations, we observe that the real part does not
depend on the azimuthal direction, while the imaginary part does: the growth rate in
Eq. (2.18) is proportional to the azimuthal electron drift (term νe

me
mi

kyve,0,y). One may
notice in Eq. (2.18), that the growth rate does not vanish for large k. As mentioned
earlier, Koshkarov et al. [132] demonstrated that considering a finite Larmor radius
and electron inertia results in a stabilization of the large wavenumbers. Eq. (2.18) can
also be used to derive a stability condition for the plus and minus waves: plus wave is
unstable if

vi,0,x < cs + ve,0,yky/kx ,

and the minus wave is unstable if

vi,0,x > −cs + ve,0,yky/kx .

The ITTI is usually present downstream of the ion sonic point [170], where vi,0,x > cs,
so if we consider a purely axial propagation (ky = 0), the stability conditions presented
above only allow the growth of the minus wave, as it was observed by Fernandez
et al. [75]. The growth of the plus wave is only allowed downstream (i. e., where
vi,0,x > cs), if we consider a non-null azimuthal component of the wavenumber.
This underlines the importance of considering both directions: the driver of the
ITTI instability is a combination of the electron azimuthal motion with the ion axial
motion.

2.2.5 Resistive modes

The ITTI is a resistive-type instability, so we can compare it to similar instabilities, by
dropping some of the approximations done in the previous sections. In particular, we
study the differences between its DR and the one of some published works dealing
with resistive modes [122, 132, 145]. Considering again the 3D dispersions in Eq. (2.6),
we can write the DR in the axial-azimuthal plane (i. e., in the xy−plane) as

ω2
pi

ω̂iω̄i
=

ω2
peω̂e

ω2
ceω̄e − ω̂ek2v2

th,e
.

The main difference with the expression in Section 2.2.4 is that the electron inertia
and the effect of magnetic gyration are now taken into account. Expressing explicitly
the equation terms, we obtain

ω2
pi

(ω− k · vi,0)
2 =

ω2
pe(ω− k · ve,0 + ıνe,i)

ω2
ce (ω− k · ve,0)− (ω− k · ve,0 + ıνe,i) k2v2

th,e
. (2.19)

This equation is the same studied by Koshkarov et al. [145] (i. e., based on a work by
Smolyakov et al. [122]) in the context of the resistive mode instability connection with
turbulence. The only difference with that work consists of the term depending on the
diamagnetic drift speed which is not included in the current dissertation.

By defining the Lower Hybrid frequency as the geometric mean of the electron
and ion gyrofrequencies, ωLH =

√
ωceωci, the expression in the previous equation

can be rewritten as
1

(ω− k · vi,0)
2 =

ω− k · ve,0 + ıνe

ω2
LH (ω− k · ve,0 − (ω− k · ve,0 + ıνe) k2ρ2

e )
, (2.20)
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with ρe = vth,e/ωce the electron Larmor radius. The dispersion in Eq. (2.20) is exactly
the 2D version of the one recently discussed by Koshkarov et al. [132]. In that
work, the authors show that considering electron inertial and finite Larmor radius
is fundamental to stabilize this mode for large values of k. The advantage of the
development of this chapter is that it allows deriving directly an expression of the
2D resistive instability in the plane perpendicular to the magnetic field from a more
general expression.

2.2.6 Other electrostatic instabilities

The 3D dispersion relation in Eq. (2.6) can be used to derive other well-known
electrostatic instabilities, that we discuss hereafter. However, we recall that the
dispersion above has been calculated in the electrostatic limit. Thus, some of the
most well-known plasmas instabilities or waves (i. e., left and right principal waves,
et cetera) cannot be derived from this expression.

Simply considering the electron part of the dispersion relation, by neglecting the
collisions we obtain

ω2
e = ω2

pe + k2v2
th,e,

that is the standard DR of the electron plasma wave [22]. By neglecting the thermal
velocity of both species and the electron collision frequency (i. e., which makes the
DR non-resistive) we can retrieve from Eq. (2.19) the classical expression of the Lower
Hybrid (LH) mode instability for a quasi-neutral plasma, which is given by

(ω− k · vi,0)
2 = ω2

LH .

This mode appears as a result of the competition between the magnetized electrons’
inertia and the one of unmagnetized ions. So, it is interesting to notice that the
resistive mode presented above is an evolution of the lower hybrid mode in the case
of a collisional plasma where the electron temperature is not negligible. Now, by
keeping the collisionless approximation, but considering a non-negligible electron
temperature, we can write a correction the LH DR as

(ω− k · vi,0)
2 = ω2

LH

(
1 + k2ρ2

e

)
.

By including Poisson’s equation, we easily obtain from Eq. (2.19)

1
ω̂iω̄i

=
1

ω2
LH (1− k2ρ2

e )
+

1
ω2

pi
,

that is the expression correction proposed by Chen [22] (cf. Eq. (4.71) in Chen’s book).
Furthermore, also the DR of the Upper Hybrid (UH) mode is contained in this

expression. Considering, as usual, a collisionless cold plasma, in a frequency range
in which ω � ωpi, we have that the DR simplifies to

(ω− k · ve,0)
2 = ω2

ce + ω2
pe.
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This equation si the UH mode as reported by Chen [22]. The approach is of particular
interest because it allows us to understand which approximations need to be consid-
ered and to directly observe their effects on the DR terms. Again, with no effort, we
can include in the DR the effect of the electron temperature, obtaining

(ω− k · ve,0)
2 = ω2

ce + ω2
pe + k2v2

th,e.

In fully magnetized plasmas, in the same frequency range treated here, one finds
an electrostatic instability named Simon–Hoh Instability (SHI), which was introduced
by Sakawa et al. [28]. More recently, Hara et al. [190] studied a version of this
instability in the context of partially magnetized plasmas, the Modified Simon–Hoh
Instability (MSHI). The dispersion relation of the MSHI cannot really be found in
the limits discussed here. The calculation of the DR of this instability requires the
consideration of a non-zero plasma density gradient, that has been neglected in our
development (cf. Refs. [88, 122] for more details). To retrieve the result by Hara ad
coworkers, one should include in the continuity and momentum equations the term
∇n/n0. Deriving a 3D DR within this framework is beyond the scope of the current
work.

2.3 plasma instability spectral analysis
The theory developed in this chapter clearly shows that a large number of instabilities
may develop in E× B plasmas, even in a homogeneous background. However, the
study of these instabilities and the analysis of their development might not be
straightforward. In the following sections we analyze the main techniques that were
used to process the ω− k spectra starting from PIC simulations data. In particular, we
present the standard Discrete Fourier Transforms (DFTs), discussing its advantages
and limits. The axial gradients in the plasma profile do not allow the use of the
DFT along the axial direction. For this reason, we worked with a different technique,
the Two-Points Power Spectral Density (PSD2P), presented subsequently. Finally, we
introduce the Dynamic Mode Decomposition (DMD), which is a powerful tool to
decompose the plasma oscillations in different frequency ranges.

2.3.1 Discrete Fourier Transform

The DFT is based on the decomposition of a signal into a sum of sinusoidal functions.
The DFT of a periodic signal s of N samples is defined as

Sk =
N−1

∑
n=0

sne−i 2π
N kn,

for k = −N/2, . . . , N/2− 1. The sequence Sk is the DFT of the sequence sn. Each
of them is a sequence of complex numbers. The treatment described above can be
extended to multiple dimensions. The FFT is a well-known and widely used technique
in signal processing [25]. Since the ’60s [8], the usage of FFT has been extended to a
large number of different applications. The FFT is a particular algorithm that allows
us to compute the DFT of a signal much more rapidly that other methods.
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The DFT allows calculating the spectral components only at some given frequencies,
which are defined as

νk =
k

N∆x
,

with ∆x the sampling interval (the time or space between two consecutive samples).
From this equation, we can calculate the frequency resolution as

∆ν =
1

N∆x
,

and the maximum frequency that can be resolved as

νmax =
N
2
∆ν.

From these expressions we can derive some important concepts about the DFT: (i) to
ensure accurate signal capture, it is crucial to acquire input data with a sufficiently
long sampling duration; (ii) the sampling interval must be small enough to resolve the
signal; (iii) the signal must be periodic. These conditions are not always satisfied in
the simulations. In particular, the instabilities, that are often periodic in the azimuthal
direction, are not necessarily periodic in radial and axial ones. However, in the radial
direction, the walls fix the plasma profiles at the boundaries, making the use of FFT

still acceptable. Conversely, along the axial direction, the plasma profiles are not
periodic at all. This is a problem for the DFT and in the following sections, we will
discuss how to overcome it.

2.3.2 Two-points power spectral density

As discussed above, the DFT analysis does not allow us to distinguish how the local
conditions impact the modes propagating in the axial direction. In order to overcome
this issue, it is possible to use a Power Spectral Density (PSD) reconstruction technique
named PSD2P. This technique is based on the works by Beall et al. [21] and by Dudok
de Wit et al. [31] and allows us to calculate 2D wavenumber-frequency dispersion
maps by studying the correlation of the signal (the electron density in our case)
between two different points of the simulation. In more recent years, other methods
have been developed to better resolve the 2D modes, among them MUSIC (MUltiple
SIgnal Classification) [173] has been successfully used to obtain the time-space
spectrum [181]. However, in this section, we chose to discuss and focus only on the
PSD2P, in particular, because it allows deriving some information on the amplitude of
the mode. By using this method, the reconstruction of the PSD is obtained in a very
localized position of the simulation, as compared to standard FFTs. The impact of
the local plasma parameters in axial modes can then be revealed even during a BM

oscillation where strong axial gradients are present. In the next section, we describe
concisely the technique developed by Beall et al. [21]. The reader can refer to this
reference for more details.

PSD2P Technique description

To compute the spectrum along the axial direction, let us consider two probes at a
fixed azimuthal position and at axial positions x = x1 and x = x2, and let χp be the
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distance between them. Then take M pairs (x1, x2) along the azimuthal direction, one
at every grid point. The PSD2P is applied on a time interval T, corresponding to N
time steps, with ∆t = T/N. The temporal signal is recorded and is noted B(j)(xi , t),
with i = 1, 2, and the superscript refers to the jth pair. This signal is multiplied by
the Hamming windowing function (e. g.,a raised cosine function), and its spectral
components are calculated thanks to a DFT, as

B(j)(xi , ω) =
1
N

N

∑
l=1

B(j)
w (xi , l∆t) exp (−ıωl∆t).

Here, the subscript w stands for windowed and the unit imaginary number ı =
√
−1.

The frequencies used to decompose the signal are computed as a function of the time
step, as follows,

ω =
[
−N

2
, ...,−1, 0, 1, ...,

N
2
− 1
]
· 2π

T
.

For each pair of points and each frequency, we write the sample cross-spectrum as

H(j)(ω, χp) = B(j)∗(x1, ω)B(j)(x2, ω) = C(j)(ω) + ıQ(j)(ω), (2.21)

where the star indicates the complex conjugate. We construct a matrix of local
wavenumbers, k(j)

p (ω) = Θ(j)/χp, where the angle is given by

Θ(j) = arctan[Q(j)(ω)/C(j)(ω)].

Similarly to Eq. (2.21), we can calculate the signal self-correlation for each point of
each pair, as

S(j)
i (ω) = H(j)(ω, χp = 0) = B(j)∗(xi , ω)B(j)(xi , ω),

for i = 1, 2. Finally, the local power spectrum can be obtained by performing an
ensemble average on the M pairs of points weighted by the self-correlation,

Ŝl(kx , ω) =
1
M

M

∑
j=1

I[0,∆k)

(
kx − k(j)

p (ω)
)
· 1

2

[
S(j)

1 (ω) + S(j)
2 (ω)

]
,

where I[0,∆k)(kx) is an indicator function in the wavenumber space. In the present
work, the wavenumber is discretized as a function of the time step and the distance
between the two points, as follows,

kx =
[
−N

4
, ...,−1, 0, 1, ...,

N
4
− 1
]
· 2π

χp
. (2.22)

Other wavenumber discretizations are also allowed by this technique but are not
discussed in this work. As it can be inferred from Eq. (2.22), with this method
we can regularly detect the instability in a fixed range [kmin, kmax], where kmax
and kmin are the boundaries of the reconstruction axis. Whenever an instability
has a wavenumber k̃ out of this range, the instability will appear on the map at
a wavenumber k̃∗ ∈ [kmin, kmax], such that k̃∗ = k̃ − n · (kmax − kmin) if k̃ > 0 and
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Figure 2.3: Spectrum in the azimuthal direction calculated from the PIC electron density
signal extracted from the plume of an axial-azimuthal simulation: The spectrum
is obtained using a 2D FFT technique in (a) and with the PSD2P technique in
(b). The PIC signal analyzed is the electron density fluctuations at a fixed axial
position for a time interval of 8 µs. The low resolution of the FFT is related to the
fact that we used a standard 2D FFT.

k̃∗ = k̃ + n · (kmax − kmin) if k̃ < 0, with n ∈ N+. This technique can also be used to
compute the spectrum in the azimuthal direction, with pairs (y1, y2) at fixed axial
position.

Electron density fluctuations have been used rather than the commonly used elec-
tric field fluctuations. This is because the magnitude of a scalar quantity is preferable
when one wants to study the DRs along two different directions. In particular, we
noticed that using the azimuthal electric field gave noisier spectral maps when the
electric field instability direction is not aligned with the PSD2P direction. Dudok de
Wit et al. [31] developed an interesting variant of the method described above, using
wavelet transforms and time averaging on a single pair of experimental points. This
method is computationally more expensive, but it is more appropriate whenever one
wants to calculate the spectrum using a small number of pairs (x1, x2), or even a
single one.

To validate the results obtained by the PSD2P method, we have compared the
spectrum in the azimuthal direction as computed by a standard FFT and by a PSD2P

reconstruction. In Figure 2.3 we show an example of the spectrum calculated from the
PIC electron density signal extracted from the plume of an axial-azimuthal simulation.
A standard Fast Fourier Transform (FFT) map is shown in Figure 2.3 (a) while a
PSD2P map is shown in Figure 2.3 (b). Both techniques can detect the modes with
maximum amplitude, which corresponds to ω ≈ 1 MHz and ky ≈ 500 m−1. However,
we can see that the PSD2P can capture the spectrum with higher resolution in both
the wavenumber and the frequency.
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Figure 2.4: Dynamic Mode Decomposition applied to the azimuthal electric field in the
radial-azimuthal benchmark case. The field is divided in different frequency
ranges. The range is indicated in the title of each subfigure. We notice that the
signal in (a) is almost zero: this is coherent with the fact that the azimuthal
electric field has a null average.

2.3.3 Dynamic Mode Decomposition

The techniques presented above do not allow an active study of the signal temporal
evolution. For this reason, to study the spatiotemporal evolution of the plasma
dynamics we used a different technique, the DMD. The DMD is a data-driven technique
developed by Schmid [80]. It is based on a matrix-free formulation, relying only on
the input data, thus applicable also to the experimental flow data. As a result, this
technique allows us to separate the signal coming from different modes. The interest
of this technique in our case is that it allows disjoining the different instabilities,
allowing a subsequent analysis of each one’s effect separately.

In Figure 2.4 we observe the DMD applied to the radial-azimuthal benchmark
case that we discuss in the next chapter. The decomposition is calculated using an
algorithm based on the library Antares [86], developed by CERFACS. In the figure,
the azimuthal electric field is divided with the DMD and each subfigure corresponds
to a different frequency range. We see that this technique successfully allows us to
separate the different instabilities and that recomposing the signal from the different
modes allows us to recover the original signal, cf. (e) and (f).

However, the results from the DMD should be considered more qualitative than
quantitative, since they not always capture correctly traveling waves. To identify
precisely the unstable modes, we need to use the Fourier techniques described above
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in this chapter. Nevertheless, the DMD is a very useful tool to study the temporal
evolution of the signal and to visually identify the different instabilities.

2.4 chapter summary
In this chapter, we have derived an expression for the 3D dispersion relation (DR)
of electrostatic instabilities in E× B discharges, starting from an isothermal fluid
model (continuity and momentum equation for electrons and ions) that considers
Poisson equation. We have shown that it is possible to extract from it some simplified
DRs that correspond to the most common instabilities observed in E× B discharges,
in particular the Ion Acoustic Wave (IAW), Modified Two-Stream Instability (MTSI)
the Ion Transit-Time Instability (ITTI) developing in the axial-azimuthal (xy) and
radial-azimuthal (yz) planes of Hall thrusters. Moreover, we discussed the possibility
to derive the DR of other electrostatic instabilities starting from the 3D DR in Eq. (2.6).
We also highlighted the limits of this expression: its electrostatic nature and the
fact that we consider a homogeneous plasma (no density gradient) do not allow
to retrieve some well-known instability expressions, such as resistive drift, or MSHI.
Other kinetic effects, such as the wave particle interaction, cannot be captured by this
full fluid formulation.

In this Ph.D. work, the theoretical study of plasma instabilities is performed in
the context of the numerical studies of this thesis. Thus, in the second part of the
chapter we discussed some numerical techniques to detect and analyze the plasma
fluctuations in the PIC simulations. In particular, we discussed briefly the working
principles and limits of the DFT. Subsequently, we discussed in detail the PSD2P

reconstruction technique, a FFT based technique that allows us to reconstruct the
spectrum in any direction, using a limited amount of point pairs. We have shown
that this technique is able to capture the spectrum with higher resolution in both
the wavenumber and the frequency. Finally, we discussed the DMD technique, a data-
driven technique that allows us to separate the signal coming from different modes.
We illustrated how this technique successfully allows us to to separate the different
instabilities and that recomposing the signal from the different modes allows us to
recover the original signal.
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This chapter explains the numerical methods utilized in this thesis to model Hall thrusters. It
commences with an overview of the Particle-in-Cell (PIC) simulation methodology. Subse-
quently, it presents a description of the LPPic code, highlighting its salient features. Further, it
expounds on several numerical aspects of the code, paying particular attention to the impact of
scaling the vacuum permittivity. Finally, the last section of the chapter examines the coupling
between the electric circuit and the PIC simulations of HTs, which is a critical aspect of the
modeling process.
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The results in this chapter have been partially published in Ref. [201].

3.1 pic challenges
Probing plasma devices, such as HTs, in a non-invasive manner presents an excep-
tionally challenging task. This difficulty has resulted in a shortage of experimental
data, which, in turn, makes modeling plasma behavior an essential yet arduous task.
Hence, the development and improvement of numerical tools to simulate plasma be-
havior is a crucial area of research in this field. It is imperative to treat the numerical
models with utmost care. In this chapter, we provide an explanation of the model we
have selected, including the rationale behind our choice, and discuss the numerical
developments we have undertaken.

In Section 3.2 we introduced the plasma PIC simulations. These simulations are
the main tool used in this work. In particular, we introduce the PIC code used in this
thesis, LPPic, describing some of its features. Later, in Section 3.3, we discuss some
numerical aspects of the code, with a particular attention to the effect of scaling of
the vacuum permittivity. The final part of the chapter, corresponding to Section 3.4,
is dedicated to the study of the coupling of the electric circuit with PIC simulation of
HTs.

3.2 lppic : a 2.5d pic code for hall thrusters
As aforementioned, the fluid modeling deals with the average (or integrated) behavior
of the plasma, thus it treats the macroscopic properties as density, fluid velocity,
temperature, et cetera, which is limited under non-equilibrium conditions. For this
reason, a kinetic model is used in this thesis to study the plasma. The PIC code
used at LPP, called LPPic, is a particle in cell code developed for approximately 8

years. This code was initiated by Vivien Croes [112] to simulate a radial-azimuthal
simulation plane. The code was later developed by Antoine Tavant [152], who studied
mainly the plasma-wall interactions. At the same time, Romain Lucken [146] worked
on LPPic to study the PEGASES thruster [60] configuration. In more recent years,
Thomas Charoy [155] adapted the code to simulate the axial-azimuthal plane of a
Hall thruster. LPPic is a 2.5D code. This means that the Poisson equation is solved in
a 2D simulation plane, while it is not solved in the out-of-plane direction; and that,
at the same time, the particles have three space and velocity components. Thus, even
if the electric field is not calculated self-consistently in the out-of-plane direction, the
particle motion is followed also along this direction.

3.2.1 Numerical implementation of LPPic

Besides the general description of the working principles of a PIC code given in
Chapter 1, in this section, we discuss in more detail the theory of a PIC simulation,
with a particular interest in the characteristics of LPPic. In Figure 3.1 we show a
classical PIC/MCC cycle as it is implemented in LPPic.
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Figure 3.1: The PIC/MCC simulation cycle.

The PIC modeling is based on the assumption that the behavior of the plasma can
be described by following the motion of a reduced number of superparticles, each
one accounting for a large number of individual particles, and that their Coulomb
interaction can be modeled by the electric and magnetic fields calculated at some
fixed spatial points (the grid points). The statistical weight of each superparticle is
indicated as q f and should be seen as the number of real particles represented in the
simulation by a single superparticle. When the spatial dimension of a simulation is
not 3, as LPPic that is spatially 2D, more care needs to be dedicated to the parameter
q f . In a 3D simulation, a particle can be represented as a point in space, thus it is 0D.
When the simulation dimension is lowered to two, two spatial components of each
particle are well-defined, but the third is not. Similarly, in a 1D simulation, a particle
has two undefined spatial components. This leads to an interesting interpretation of
the weight factor unity of measure, which can be written as[

q f

]
= length3−N, (3.1)

with N the simulation dimension. By considering a 2D simulation as a plane in a 3D
space, the particles in the 2D simulation are a set of parallel lines, perpendicular to
the 2D simulation domain. In the same way, in a 1D simulation, the particles are a
set of 2D planes, perpendicular to the 1D simulation domain.

The mesh size ∆x and the time step ∆t are chosen, according to Birdsall and
Langdon [23], to satisfy the following conditions,

∆t ≤ 0.2
ωpe

,

∆x ≤ λD
2

.

We recall that electron plasma frequency and Debye length are defined as

ωpe =

√
nee2

ε0me
,

λD =

√
ε0kBTe

nee2 .
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The first condition ensures that the plasma frequency is resolved, while the second
ensures that the Debye length is resolved. Moreover, these conditions are proposed so
that the vast majority of the particles in a single time step does not cross more than
one mesh cell boundary. By considering the ratio between these two quantities we find
the well-known Courant–Friedrichs–Lewy (CFL) condition, i. e., numerical stability
criterion. One can notice that both these quantities depend on the plasma density ne,
on the elementary charge e, and on the vacuum permittivity ε0. The computational
cost of PIC simulations strongly limits the development of 3D simulations and of long
and spatially wide 2D simulations. This cost depends on the choice of an extremely
low time step and mesh size. Thus, if we want to relax the numerical constraint, we
have several options:

• work with a reduced plasma density,

• work with an increased vacuum permittivity.

Increasing the elementary charge is not a usual approach.
In recent years, several scaling methods have been proposed to relax the plasma

simulation constraints and so to lower the cost of these simulations. We identify four
families of techniques: (a) the permittivity scaling [46], (b) the reduction of the heavy
species mass or the increase of electron mass [46, 93, 134], (c) reduction of the plasma
density [114] and (d) the self-similarity scaling of the system [58, 64]. In our work,
we focused on vacuum permittivity scaling, as it was introduced by Szabo [46]. A
more detailed discussion about the scaling techniques can be found in Ref. [167] by
Yuan et al., where the authors analyzed the consequences of scaling methods in PIC

simulations in a miniaturized ion thruster.

Particles motion

From the charge distribution Q, the Poisson solver allows calculating the electric
potential Φ in the electrostatic approximation, by solving the Poisson equation

∆Φ = −Q
ε0

,

with ε0 the electric vacuum permittivity. As discussed above, in some occasions we
increased the permittivity to relax the numeric constraints of the PIC simulations, by
scaling the vacuum permittivity a factor α0. When it is the case, ε = ε0 · α0 is used
instead of ε0 in the Poisson equation. By deriving the electric potential Φ, one obtains
the electric field E at each grid point. The particles move following the Lorentz
equation

m
dv
dt

= qE + qv× B,

where m and q are the particles’ mass and charge respectively. Then, the charge
distribution Q is calculated by interpolating the charge of each particle on the grid
points of the cell where it is located. More details about the interpolation method are
given in Ref. [112].

The numerical method to move the particles on the grid depends on the magneti-
zation of the particle. As we discussed above, in HTs, the Larmor radius of ions is
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much larger than the device dimensions: thus, the ions are not magnetized, while
electrons are. The non-magnetized particles are moved using a leap-frog scheme [23],
as

vt+1 = vt +
q
m

Et∆t,

xt+1 = xt + vt∆t,

where ∆t is the time step and t its index, i. e., vt .= v(t∆t). The magnetized particles
(i. e. the electrons) are moved using a Boris scheme [10], which consists of a first
half-step of the leap-frog scheme, followed by a rotation of the velocity vector around
the magnetic field and by a subsequent second half-step of the leap-frog scheme.
One should notice that this introduces a shift of ∆t/2 between the position and the
velocity of the particles. The shift might insert some error in the computation of the
mean velocity. However, this method conserves the phase space volume, thus limiting
the non-energy conservation error [95].

The Poisson solver

Solving the Poisson equation is a key step in the PIC simulation. The Poisson equation
is solved in the simulation 2D-plane, while it is not solved in the out-of-plane
direction. In 1D the solution of the Poisson equation is rather simple, thanks to the
well-known Thomas algorithm for tridiagonal systems. In 2D the solution is more
complex, and a direct solution of the system would require huge computational
resources. Thus, 2D simulations usually demand the use of an iterative Poisson
solver.

In LPPic we use hypre [47], which is a library for the solution of sparse linear
systems on massively parallel computers using a multigrid approach. This library
is used via petsc [183]. Several tests have been conducted over the years and the
hypre library is the most efficient and stable in our case. This stencil-based method
is implemented in C, so needs a specific coupling with LPPic, which is coded in
Fortran. Even if the code has been subjected to several optimizations, the Poisson
solver remains one of the most time-consuming parts of the simulation.

The collision model

The collisions in plasmas are extremely important since they are the main source
of ionization. A collision is a multi-body problem in which two (or more) particles
interact. The collisions can be explained by using quantum mechanics and requires
an extremely careful modeling. To do that, we introduce the concept of cross-section.
The collisional cross-section is a means to quantify the probability of a scattering
event and can be intended as an effective area. Considering two hard spheres of
radius R and r respectively, the cross-section would be the conventional geometric
momentum-transfer cross-section: σ = π (R + r)2. However, when we pass to charged
particles and real gases the calculation of the cross-section becomes a difficult task.
The cross-sections used for the simulations in xenon and krypton of this thesis come
from the Biagi database in LXCat [119], while iodine cross-sections are gathered by
numerous sources [146].
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In LPPic different electron-neutral and ion-neutral collisions have been imple-
mented, while Coulomb collisions with short-range are neglected. For electrons,
we considered elastic, inelastic (ionizing or not) collisions with a stationary neutral
background. The mass ratio between neutrals and electrons makes the assumption of
frozen neutral realistic. During an elastic collision, the electrons are deflected by the
interaction with a neutral. In our model, we considered the energy transfer between
electron and neutral, thus, the electron loses a (tiny) amount of its kinetic energy,
changing direction. In an inelastic collision, an electron loses some of its energy to
excite or ionize a neutral. If a neutral is excited, it relaxes by releasing its energy by
photon irradiation or it remains in a metastable state. However, the fast relaxation
processes in gases justify the assumption that the majority of the neutral atoms are
in the ground state. Hence, in LPPic the collisions with an atom that is not in the
ground state are neglected. After an excitation, an electron is scattered in a different
direction with its energy reduced by the amount of energy of the excitation reaction.
If the inelastic collision is ionizing the atom, the kinetic energy of the atom, reduced
by the energy required to ionize, is divided equally to the two electrons, i. e., the
original one and the one extracted from the atom. The produced atom is assumed at
the same temperature as the neutral background gas. The ion-neutral collisions are
modeled considering two types of scattering events: the isotropic scattering and the
backscattering (charge-exchange). The neutrals do not remain fixed, since they have
almost the same mass as the ions. The collisions are performed by creating a ghost
neutral particle with a velocity extracted from a Maxwellian. The charge-exchange
collisions are momentum transfer collisions, so, they require a particular modeling, as
suggested by Phelps [29]. For a detailed discussion of these cross-sections and the
way they are calculated, the reader should refer to 1.2.3 and 1.2.4 in Romain Lucken’s
Ph.D. thesis [146].

The collisions in LPPic are modeled using a MCC algorithm, following the develop-
ment of Vahedi et al. [30]. This algorithm uses a null collision method, which reduces
the number of collisions to be calculated. The method can be explained with the help
of Figure 3.2. By adding an artificial collisional process, one can define the collision
frequency ν̃ as

ν̃ = ng max
E

(σTOT(E )v).

In the previous expression, the neutral gas density ng is assumed to be constant.
The total cross-section σTOT(E ) is obtained by summing over all the possible cross-
section at the energy E and v represents the particle speed. The null collision method
consists in adding another frequency νe to the total collision frequency, such that the
sum of all collision frequencies does not depend on the energy, and it is equal to ν̃.
The fraction of particles PNC that undergoes a collision event during a time step of
duration ∆t can be calculated as

PNC = (1− exp (ν̃∆t)) · Itot.

In the previous expression Itot is the total number of particles of a given species. Then,
PNC particles are selected randomly and for each of them, a collision is performed by
picking a random number X. The jth collision is performed when

νj/ν̃ ≤ X < (νj + νj+1)/ν̃.
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Figure 3.2: The null collision model used in LPPic.

If the selected collision is the null collision, there are no consequences or effects.

3.2.2 The radial-azimuthal simulations

The radial-azimuthal simulations are meant to simulate a section of the thruster chan-
nel. The simulation domain represents a limited portion of the azimuthal direction
circumscribed between the outer and inner walls. The axial direction, along which the
ions are accelerated, is not fully simulated. The choice of the axial position of the 2D
radial-azimuthal plane is crucial: we selected the thruster exit, where the axial electric
field is maximal and the anomalous mobility large. Since the axial particle motion
is not self-consistently solved, the axial position of the simulation plane cannot be
precisely identified.

The cartesian domain in the radial-azimuthal simulation is the one represented
in Figure 3.3, where the horizontal axis represents the azimuthal direction and the
vertical axis represents radial direction. The azimuthal direction is referred to as y
and the radial as z. The radial boundaries are limited by some walls. Different walls
can be used in LPPic: metallic walls (grounded) or dielectric walls. The walls may be
absorbing, reflective or emissive. During his thesis, Antoine Tavant [152] studied in
detail the different conditions related to use a different wall model and to the SEE. In
the simulations presented in the current manuscript, only metallic walls absorbing
and reflecting particles are used, to ease the study of the development of instabilities.

Some effects related to the device’s azimuthal curvature [94, 126] (i. e., differential
absorption, magnetic mirror, geometric expansion, centrifugal force, et cetera) are
present in real devices. However, the simulation domain does not take into account
the curvature. Moreover, the instabilities (i. e., ECDI, IAW, MTSI) have wavelength of
the order of some millimeters at most, thus, all these phenomena can be studied also
in a thin slab of the azimuthal direction. For these reasons we limited the azimuthal
length to a few centimeters, employing periodic boundary conditions along this
direction for both particles and fields.
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Figure 3.3: Radial-azimuthal simulation domain representation. The magnetic field is ho-
mogeneous and directed radially (vertically in the image) and the static electric
field is homogeneous and directed out of plane.

A constant magnetic field is applied in the radial direction, perpendicularly to the
radial walls. No amplitude gradient depending on the radial position is considered,
nor is there any magnetic field component along a non-radial direction. We remember
that the code used here is electrostatic, thus any other magnetic field is considered in
the code but the static one.

The acceleration of the ions out of the thruster occurs thanks to an axial electric field
generated by the anode-cathode voltage drop. Then, modeling the axial electric field
is fundamental to reproduce the HT behavior. In our code, hence, we introduced an
out-of-plane axial electric field constant in time and space and spatially homogeneous,
as one can see in Figure 3.3. So, the field configuration described here generates an
electron E× B drift in the azimuthal direction. One may notice that the electron drift
velocity in this direction (i. e., vE×B = E/B) depends only on the magnetic and electric
fields amplitudes, that are fixed by the chosen setup.

At the beginning of this section, we stated that in the LPPic 2.5D simulation the
particles are moved in the 3D space, while the electric field is only solved in a plane.
With an out-of-plane electric field Ex designed as the one described above, at each
time step the energy of each particle increases by

Ee,i =
(

qEx∆t
me,i

)2
,

where the subscript refers to the particle species. Héron and Adam [94] and Janhunen
et al. [129] observed that no steady-state regime can be reached in this regime of
continuous energy injection. If no collisions are considered, the heating along the
x direction is not a problem and all the plasma dynamics along this direction can
(and should!) be neglected. Conversely, when we consider collisional simulations, the
artificial temperature enhancement due to the third velocity component redistributes
in the other direction via collisions and collective motions (i. e., instabilities), dimin-
ishing greatly the realism of the simulation. For these reasons, a model of virtual
axial direction has been introduced in the simulation. This model was first used by



3.2 lppic : a 2.5d pic code for hall thrusters 51

Figure 3.4: The simulation domain for the axial-azimuthal simulations. The simulation do-
main is a 2D slab of the azimuthal direction. The simulation domain is bounded
by the cathode (grounded) and the anode (at high voltage). The cathode is mod-
eled as a quasi-neutral surface. The anode voltage is controlled by an external
circuit.

Lafleur et al. [105] in one dimension and subsequently adapted to 2D by Croes et
al. [113]. In this model, we bound the axial out-of-plane direction between 0 and Lx.
The particles reaching the boundaries are removed from the simulations. The charge
neutrality and particle balance are maintained by reinjecting the axially absorbed
particles into the simulation domain at the same (y, z) position. Since the electric field
is directed as the positive x axis, the ions are injected at x = 0, while the electrons at
x = Lx. A more detailed discussion about the axial convection model can be found
in Antoine Tavant’s thesis [152], in particular in Section 2.5 he compared different
models of particle re-injection.

3.2.3 The axial-azimuthal simulations

The axial-azimuthal simulations are meant to simulate a plasma azimuthal section,
from the bottom of the channel to some centimeters in the plume. The simulation
represents a limited portion of the azimuthal circumference (normally some cen-
timeters). In the axial direction, the simulation considers the thruster channel (i. e.,
≈ 2.5 cm) and some centimeters of the plume. The axial-azimuthal simulations were
first developed by Antoine Tavant and Thomas Charoy to model the PPS1350 by
Safran Spacecraft Propulsion [193]. Charoy’s thesis contains a detailed description of
the code and the simulation setup [155]. In this section, we only summarize the main
features of the simulations. The new modules are discussed in the next chapters.
Figure 3.4 shows a visual representation of the domain.

The 2D simulation domain (i. e., composed by the usual 2D cartesian grid with no
curvature) has a constant in time magnetic field in the radial direction, so perpendic-
ular to the simulation domain. The amplitude of the magnetic field varies axially and
it is constant in the azimuthal direction. The anode (i. e., at the left in the figure) is at
high voltage, while the cathode is grounded. This potential drop is responsible for
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an intense axial electric field Ex ≈ 10× 103 V/m. Periodic boundary conditions are
applied in the azimuthal direction. The anode voltage is controlled by an external
circuit. The circuit implementation is discussed hereafter. In this work, we use for
the cathode a quasi-neutral (QN) model: at each time step the quasi-neutrality at
the cathode is imposed by injecting the right number of electrons, in order to assure
that globally the net charge in the last simulation cell is zero. When the last cell is
charged negatively, any electron is injected at the cathode. The cathode model was
studied in detail in Section 2.4 in Charoy’s thesis [155].

The electrons injected from the cathode are accelerated towards the anode by
the axial electric field. However, their path towards the anode is affected by the
radial magnetic field. The electrons start to drift in the azimuthal direction, which
is periodic in our simulation. The azimuthal drift is of the order of 106 m/s and
increases the residence time (e. g., the residence time can be in the order of several
tens of microseconds) of electrons in the thruster channel, hence, it is responsible for
the high ionization efficiency of the HTs.

The ionization in LPPic is treated self-consistently. In the first version of the
code [140], the electron/ion pairs were injected at a fixed rate. Conversely, in the
current version of the code, the charged particles creation is performed within
the MCC module described above, by considering electron impact ionization. The
electrons are the only ones responsible for ionization, while the ions only make
elastic and charge-exchange collisions. The ions, mostly created in the shaded region
in Figure 3.4, are accelerated by the axial electric field towards the thruster plume,
creating the thrust. The self-consistent ionization couples the plasma discharge with
the neutral dynamics, allowing to reproduce the BM.

The neutrals are modeled with 1D fluid equations. The Euler equations are solved
with a HLLC solver [36], which is fully described in Section 2.3 of the thesis of
Thomas Charoy [155]. A fixed neutral flux rate is imposed at the anode, while open
boundary conditions are imposed at the cathode boundary. The 1D Euler system
solved in LPPic is

∂tρg + ∂x(ρgug) = S1,

∂t(ρgug) + ∂x(ρgu2
g) = −∂xPg + S2,

∂tEg + ∂x(Egug) = −∂x(Pgug) + S3.

In the previous expression ρg is neutral density, ug is the neutral fluid velocity, S1 and
S2 the collisional source terms, S3 the energy source term, Pg the neutral pressure,
Eg the neutral energy, defined as

Eg =
Pg

γ− 1
+

1
2

ρgu2
g.

The heat capacity γ is set equal to 5/3, since we normally deal with monoatomic
gases. The energy source term is defined as

S3 =
Eg − E∗

τ
,

to make the energy converge to the an imposed term E∗, such that

E∗ =
ρgRT∗

γ− 1
+

1
2

ρgu2
g.
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The parameter τ is chosen as low as 10−11 s. This imposed energy term makes
the system isothermal, so, the energy equation becomes redundant. However, the
presence of this term increases the stiffness of the system. In the current work, the
neutral gas temperature is set to 640 K.

A constant mass flow of neutral gas is injected at the anode. In addition to
that, the anode boundary condition also accounts for neutrals produced from ion
recombination at the anode. The set of equations described above deals with a flux
Γg = ρgug, hence, to obtain the real mass flow rate in the device we need to define
the device area.

In real HTs devices, the presence of the radial dimension plays an important role
in determining the characteristics of the plasma. As we discussed in Chapter 1, a
Bohm flux of particles leaves the simulation domain at the grounded thruster walls.
Moreover, the dynamics in the plasma plume is characterized by a high divergence
angle [168]. However, since LPPic is a 2.5D code, the radial dynamics cannot be
followed self-consistently. The Poisson equation is not solved along the out-of-plane
direction; hence, the radial effects need to be introduced indirectly in axial-azimuthal
simulations. In Chapter 7 of Tavant [152] Ph.D. thesis a first attempt of including
some radial effects was performed. However, as will be discussed in Chapter 6, that
model could not give a realistic description of the radial losses. We will therefore
introduce a more consistent model of the radial losses in 2D simulations in Chapter 6.

Electron mobility in Hall thrusters

As discussed in Section 1.2.3 the electron anomalous transport plays a fundamental
role in HTs. In the same section, we introduced the idea of friction force to model the
instability contribution to the anomalous transport. We define here first what will be
called classical mobility. By neglecting the acceleration and the inertia term in the
electron momentum equation (1.4), we can write a 1D-drift/diffusion equation as

neu =
qneE
mνe

− ∇(nekBTe)
mνe

. (3.2)

From this equation, one can define the collisional mobility, as

µ =
e

mνe

and, if kBTe does not vary spatially, the diffusion coefficient, as

D =
kBTe

mνe
.

One should notice that the usual definition of the mobility along the electric field
axis, i. e., µ = u/E, is only valid if the diffusion part of Eq. (3.2) is neglected.

However, by writing the collisional frequency as νe = e/mµ and injecting this in
Eq. (3.2), one may define the mobility as

µe =
−u

E−∇(nekBTe)/neq
. (3.3)

Hence, to calculate the electron mobility from macroscopic plasma quantities, we
need to use the diffusion term. This equation will be fundamental to estimate the
mobility from PIC simulations and to derive the anomalous collisionality, cf. Chapters 5.
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During the thesis of Thomas Charoy [155] a different approach was preferred. In
order to evaluate the anomalous transport in the axial direction, only the correlation
term Rei, as defined in Section 1.2.3, was employed.

3.2.4 Development and optimization of LPPic

The LPPic code was started in early 2015 and later developed by several Ph.D.
students [112, 146, 152, 155]. In 2019, LPPic was selected for optimization by the
HLST team of Centre Informatique National de l’Enseignement Superieur (CINES).
Thus, the LPP team and the CINES team worked together to rewrite the code in an
optimized way. The development started in late 2019 and was performed by myself,
Antoine Tavant and Thomas Charoy at LPP, while at CINES the work was led by
Umesh Seth and Gabriel Hautreux within the HLST team of CINES. The collaboration
ended after 1.5 years of work in June 2021. Below, we summarize the final results
contained in the report produced at the end of the collaboration. These results have
been published by the HLST team in Ref. [197].

Several steps were taken to optimize the code. The work started with optimizing
memory access. The code was transformed from array of structures (AoS) (i. e., each
particle is an individual Fortran derived type and they are allocated as a vector) to
structure of arrays (SoA) (i. e., every element of the derived structure is an individual
particle) to reduce memory and cache stalls. Other general optimizations included
force reductions, efficient loop directions, efficient array indexing, preprocessor
directives, compiler flag optimizations, and more. SIMD (Single Instruction and
Multiple Data stream) vectorization pragmas were added to improve vectorization in
some bottleneck parts of the code. The LPPic code uses the Hypre library for solving
Poisson equations. The performance of the code was examined with several linear
system solvers available with the Hypre library. The implementation of the Hypre
solver in the code was optimized by removing some initialization steps from the
main solver loop, which greatly improved the performance of the Poisson solver.
The code was moved from an old compilation environment (Intel / Intelmpi), from
versions of Hypre and the HDF5 library to a newer version of the overall environment.
The code uses Message Passage Interface (MPI) communications to exchange data
between processes. Blocking communications of MPI have been replaced by non-
blocking communications of MPI to benefit from overlapping communications and
computations. Input/output optimizations were made by providing the HDF5 code
with independent and collective MPI-IO options. Efficient use of the lustre file system
with appropriate stripping options to optimize overall input/output performance
was also communicated to users.

Several cases of plasma dynamics were validated with the optimized code, ob-
taining a good scaling and speedup. Figure 3.5 (a) shows the speedup of the 1D
helium benchmark case [96] at various stages of code optimization compared with the
original version of the code. The leftmost point represents the baseline speedup value
that corresponds to the original code on 2 nodes. The speedup was progressively
increased up to 2.5 times compared to the original code for this small physical case.
The code is massively parallelized, thus it is important to verify the proper scalability
of the code on a large number of nodes. This feature has been tested on Landmark
2B benchmark case [140] with increased azimuthal dimension. As one can see in
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Figure 3.5: (a) Speedup dependency on the chosen node type. (b) Speedup dependency on
the number of nodes. Adapted from [197].

Figure 3.5 (b), the code scales well up to 80 nodes. The more nodes we use, the more
the performance is improved with respect to the original code. The code is now ready
to be used for large-scale simulations.

The overall gain obtained rewriting LPPic is significant. The simulation time has
been greatly reduced and the scalability of the application has been greatly improved.
In addition, in 2022 the code was ported and turned on Joliot-Curie TGCC systems
with AMD Rome 2.6 GHz (AVX2) nodes partition, with 128 cores per node, a much
more energy efficient system than the cluster Occigen (Intel Xeon Haswell and
Broadwell processors at 2.6 GHz with 24 and 28 cores per node, respectively), where
the code has been used before.

3.3 scaled permittivity effect
Particle-in-Cell (PIC) simulations require a lot of computational resources: this is a
great limit to their development and use. As we discussed in Section 3.2.1, several
options for reducing the cost of the simulations are currently being explored by the
community. The approach used in the current work consists in increasing the value
of the permittivity by a factor α0, i. e., ε = α0ε0. The increment of the permittivity has
a direct effect on the Debye length λD =

√
εkBTe/nee2, which is increased by α

1/2
0 and

on the electron plasma frequency ωpe =
√

nee2/meε, which is reduced by a factor α
1/2
0 .

Considering the constraints of an explicit PIC simulations as formulated by Birdsall
and Langdon [23] (e. g., ∆t ≤ 0.2/ωpe and ∆x ≤ 0.5λD), we have that both the time
step and the cell size can be increased by a factor

√
α0. So, if the computational time

scaled linearly, the use of a scaling factor α0 to simulate given real spatial dimensions
and duration reduces the overall cost of a simulation by a factor α

3/2
0 . In reality, the

computational cost of a simulation is not linear with the number of grid points, e. g.,
the overall number of particles to be used varies as well. Thus, the gain that one can
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Figure 3.6: Discharge current evolution for different values of the permittivity scaling α0.

obtain by reducing the number of grid points might be much larger than the one
reported above, yet difficult to calculate exactly.

Nonetheless, scaling the permittivity has a cost: the simulations may considerably
shift from reality. Charoy et al. [170] used this method in HTs PIC axial-azimuthal
simulations, highlighting some of its effects on the plasma instabilities and therefore
on the friction force. In this work, we study in more detail the effects of the scaling
of permittivity on other important plasma parameters. In the following subsections,
we analyze four simulations, some already used by Charoy in Ref. [170], with
different scaling values α0 = 4, 16, 32, 64. The discharge current evolution in these
simulations is plotted in Figure 3.6. The simulation with the smaller value of α0
has been initialized in a configuration of a quasi-steady-state to ease convergence
and shorten the physical time to reach steady-state, so to reduce the CPU time
consumption.

3.3.1 Effect of the permittivity scaling on the computational cost

The domain used in simulation results presented in Figure 3.6 is the one described in
Charoy et al. [170] and consists of the usual cartesian 2D mesh. The anode is at high
voltage (i. e., 300 V in this case), while the cathode is grounded. Periodic boundary
conditions are applied in the azimuthal direction. Neutral dynamics is simulated
with Euler equations in 1D and the ionization is computed self-consistently within
the MCC module. To satisfy the CFL condition the time step and grid size depend on
the permittivity scaling: the larger the scaling, the larger will be the time and space
steps.
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Table 3.1: Simulation parameters and estimated total CPUh cost of a 300 µs of physical
time (for LPPic).

α0 dx ymax × xmax dt # of loops total CPU cost

4 4× 10−5 m 255× 1000 4× 10−12 s 7.5× 107 3× 106 CPUh

16 8× 10−5 m 127× 500 8× 10−12 s 3.75× 107 3.5× 105 CPUh

32 11× 10−5 m 88× 353 11× 10−12 s 2.65× 107 1.0× 105 CPUh

64 16× 10−5 m 63× 250 16× 10−12 s 1.875× 107 7.7× 104 CPUh

In Table 3.1 we report the simulation parameters for the four simulations with
different scalings, corresponding to a physical time of 300 µs. The CPUh cost of each
simulation is estimated by the results obtained with LPPic. Since the code is highly
parallelized, the total number of CPU hours is calculated by multiplying the actual
duration of the simulation by the number of MPI processes used. In the table, we
notice that the cost of the simulation decreases with the increase of the scaling factor,
as expected. A more precise estimation of the cost of the simulations is difficult to
obtain since for each simulation we used a different number of MPI processes and
we know that the code does not scale perfectly. When we increase the number of
MPI domains the performance decreases. In the case closer to reality (i. e., α0 = 4),
the total cost of the simulation is extremely high: with our current capabilities, this
simulation lasts for months and consumes millions of CPU hours. The number of
cells in azimuthal and axial directions (i. e., xmax and ymax) are given for physical
lengths of Ly = 1 cm and Lx = 4 cm, respectively. However, when the scaling is high
a reduced azimuthal length does not allow the growth of all instabilities [170]. So,
to allow the development of most of the instabilities, in the following, we analyze
a simulation with Ly = 1.5 cm in the cases of α0 = 32 and Ly = 2 cm in the cases of
α0 = 64.

3.3.2 Effect of the permittivity scaling on plasma parameters

3.3.2.1 Axial electric field

The PIC algorithm solves the Newton equation of motion for every superparticle: each
superparticle is pushed in the grid depending on the electromagnetic forces acting
on it. In an axial-azimuthal electrostatic simulation of a HT the potential at the axial
boundaries is fixed: the cathode is grounded while the anode is at high potential
(i. e., 300 V in our case). The axial electric field is responsible for the acceleration of
the ions out of the thruster, in order to produce the thrust. Therefore, accurately
representing it in the model is essential for effectively simulating the thruster’s
behavior. Theoretically, we have

Φanode = Φ(x = 0) =
∫ Lx

0
−∇Φ(x)dx =

∫ Lx

0
Ex(x)dx = 〈Ex〉Lx , (3.4)

with 〈Ex〉 the spatial average of the electric field value. By assuming Φx monotonic, the
previous equation suggests that the electric field mean value does not directly depend



58 numerical methods

Figure 3.7: (a) electric potential and (b) axial electric field averaged over the entire duration
(300 µs) simulation for the four cases.

on the scaling factor: 〈Ex〉 = Φanode/Lx. Conversely, if the monotonic assumption is
not verified, the electric field might be affected by the scaling factor.

In Figure 3.7 we observe that the shape of the time-averaged electric field and of
the potential: those profiles should not be interpreted as quasi-steady-state profiles
since the oscillations remain strong all along the simulations. However, they are
useful to have an idea of the shape of the potential and of the axial electric field. In
particular, we observe in Figure 3.7 (a) that the average profile of the potential is
monotonic in all cases. Nevertheless, we notice that some differences in the shape of
the electric field are present: in the following, we study this effect.

The expression in Eq. (3.4) represents a steady-state solution, not taking into
account the complex plasma dynamics (i. e., the presence of BM, ITTI and other
instabilities). This equation shows that the average value of the electric field should
depend only on the voltage drop at the boundaries and on the simulation axial
dimension. In Figure 3.8 we report the spatially averaged value of the electric field
as a function time for the four cases. The average value is calculated as the average
of the electric field over the entire domain at a fixed time. The shaded area covers
a 2% interval around the value (dashed line) calculated with Eq. (3.4). Hence, the
results suggest that the average value of the axial electric field is always within a
2%% interval around the nominal value given by the expression above. The reason
why the average electric field is lower than the theoretical one (dashed line) is related
to the monotonic assumption for the potential shape: a positive gradient must be
present. This is not visible in the averaged profiles shown in Figure 3.7 (a), but it will
be discussed in detail in Section 5.3.2.2 in the study of the axial electric field profile
related to the ITTI.

So far, we have suggested that the average value of the axial electric field should
not depend on the permittivity scaling value. However, the shape of the axial electric
field profile does depend on it. In Figure 3.7 (b) we observe that the electric field has
a bell shape: it is zero at the boundaries and has a maximum approximately near
the center of the domain. The amplitude and shape of the bell are different in the
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Figure 3.8: The spatially averaged value of the axial electric field evolution over time for the
four permittivity scaling values. The shaded area covers a 2% interval around
the theoretical value (dashed line) calculated with Eq. (3.4).

four cases. From these averaged profiles we can infer that the increased permittivity
scaling causes a flattening of the profiles: the maximum electric field decreases, while
the bell amplitude increases. However, since these profiles are averaged over a wide
period in which plasma conditions are quite different, it is more accurate to study
the temporal evolution of the electric field shape.

In Figure 3.9 we show the temporal evolution of the position of the maximum of
Ex (a), the maximal value of Ex (b), and the Full Width at Half Maximum (FWHM)
of the Ex bell (c). We observe that these quantities vary during the BM cycle: when
the current grows, the maximal value of Ex grows as well, while the width of the
bell decreases. At the same time, the position of the maximum of Ex moves towards
the anode. Conversely, during the decreasing phase of the BM the value of max(Ex)
decreases, i. e., the bell width increases, and the position of the maximum moves
towards the cathode. The temporal evolution of the electric field shape is consistent
with the temporal evolution of the plasma conditions: when the plasma is denser,
the electric field is stronger, and the bell is narrower. When the plasma is less dense,
the electric field is weaker, and the bell is wider. The larger bell-shape corresponding
to lower electric field strength is consistent with what is observed by comparing
Eq. (3.4) with Figure 3.8.

The position of the maximum, shown in Figure 3.9 (a), does not seem to depend
much on the permittivity scaling factor. In all cases its value ranges between 2 and
3 cm, corresponding to the channel exit, ideally located at 2.5 cm. Conversely, the
maximal electric field value drops when we increase the scaling factor (i. e., it goes
from ≈ 65 kV/m when α0 = 4 to ≈ 36 kV/m when α0 = 64). The width of the axial
electric field bell, represented by the FWHM in Figure 3.9 (c), appears to be much
larger when the scaling is high and to be significantly lower when the scaling is
low. When α0 = 64 the FWHM is about 2 cm, meaning that the electric field bell is
occupying most of the simulation domain.

In conclusion, the discussion of the axial electric field carried out in this section
shows that the average value of the electric field does not depend on the permittivity
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Figure 3.9: Postion (a), value (b) of the maximum of the axial electric field and FWHM (c) of
its profile as a function of time for the four cases. The discharge current (d).
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scaling factor. This is advantageous, because it means that the ion exhaust velocity
is not affected by the scaling factor (i. e., as the conservation of energy suggests).
Conversely, the shape of the electric field is affected. The larger scaling factor causes
a flattening of the electric field profile, while the smaller scale factor causes a sharper
profile.

3.3.2.2 Azimuthal electric field

We have seen that the axial electric field does not depend much on the permittivity
scaling factor, but what about the azimuthal electric field? The mean value of the
potential at each axial position is fixed by the axial boundary conditions. However,
along the azimuthal direction, the potential is not fixed by the boundary conditions,
but it only needs to be periodic. To understand the effect of permittivity scaling, let us
assume that we have a small perturbation Φ̃ in a mono-dimensional, homogeneous,
and constant plasma potential. If we consider the classical theory of Debye shielding,
we have that for a 1D case

Φ(y) = Φ̃ exp(−y/λD),

where we use the Debye length defined as usual as λ2
D = εkBTe/n0e2. The electric

field amplitude can be computed as the derivative of the potential; thus, we have
that:

E = −dΦ
dy

=
Φ̃

λD
exp

(
− y

λD

)
∝

1√
α0

. (3.5)

So, the same plasma potential fluctuation induces a reduced azimuthal electric field
response. When we include in our calculation a permittivity increment, it damps by
a factor

√
α0 the electric field amplitude. Similarly, it is trivial to show that within

the same hypotheses, the charge density fluctuations should not depend on α0. First,
we calculated at each time step and each axial position the standard deviation of the
potential, the azimuthal electric field, and the charge density. Figure 3.10 (a) shows
as an example the temporal evolution of the maximal standard deviation for the
azimuthal electric field. In Figure 3.10 (b)-(d), we show at each time step the average
maximal standard deviation of potential, the azimuthal electric field, and the charge
density.

The fluctuations of the azimuthal electric field depend on the chosen α0. The
average fluctuation values, represented by the solid lines in Figure 3.10 (a) and
reported in (c), depend on the scaling α0 in the way predicted by Eq. (3.5): the larger
the scaling, the smaller the fluctuation. The fluctuations of the charge density and
of the potential seem to be affected by the scaling factor in a less net way. The
charge fluctuations are damped by the increment of α0, but we do not observe the
linear behavior (proportional to α0) that is predicted by the theory. The potential
fluctuations seem not to follow a clear pattern. The difficulty of reading these data
is probably related to the approximate way we adopted to calculate the amplitude
of the fluctuations. In the next section, we analyze in more detail the effect of the
permittivity scaling on the plasma instabilities, by using a more accurate method to
study the fluctuations’ characteristics.
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Figure 3.10: The maximal standard deviation of the fluctuation in the azimuthal direction
of the azimuthal electric field is shown in (a). The average maximal standard
deviation of the fluctuation in the azimuthal direction of charge density (b),
azimuthal electric field (c), and potential are plotted vs the reciprocal of the
scaling factor, 1/

√
α0.
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Figure 3.11: Average energy density profiles. The results are normalized by the same
quantity.

To conclude this section, we analyze the axial profile of the time-average instability
energy density. Considering the instability energy W calculated as in Lafleur et
al. [106], we have

W =
1
2

ε0α0|δE|2ω
∂ε

∂ω
≈ 3ε0α0|δE|2.

The fluctuation amplitude is estimated using the standard variation of the azimuthal
electric field component in the azimuthal direction at each axial point. In Figure 3.11

we observe that the oscillation energy moves towards the anode: at high α0 the peak
is in the plume, while decreasing the scaling we observe an upstream shift of the
energy density.

3.3.3 Effect of the permittivity scaling on the plasma instabilities

In previous works [156, 201], it has been observed that the permittivity scaling might
have an effect on the numerous plasma instabilities that are present in the thruster.
As already discussed in Chapters 1 and 2, one of the best-known plasma oscillation
is the Ion Acoustic Wave (IAW). This instability develops in the external part of the
thruster channel, and it is (mainly) an azimuthal instability. In a recently published
work [202], we have shown that this instability also has an axial component. However,
in this part we are interested in the macroscopic characteristics of the instabilities,
so we consider only the azimuthal component of this mode. Considering the IAW DR
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calculated by Lafleur et al. [105], the wavenumber and frequency corresponding to
the maximum growth rate read

kmax
y =

1√
2λD

∝
1√
α0

, (3.6)

ωmax '
ωpi√

3
∝

1√
α0

, (3.7)

respectively, as discussed in Ref. [201]. In this section, we use the PSD2P described in
Chapter 2 to estimate the frequency and wavenumber of the IAW in the four cases
discussed above. Using this technique, we have calculated the ω− k spectrum along
the axial and azimuthal directions in the plume, as one can see in Figure 3.12, for
the four cases. Each case corresponds to a row, while the first column reports the
spectrum calculated in the axial direction and the second in the azimuthal one. The
last column shows four snapshots of the plasma potential. The times correspond
to the growing phase of the BM, that is the discharge phase in which the IAW is
stronger [170, 202]. We observe that the shape of the dispersion is rather similar in
the four cases, but the absolute values of frequency and wavenumber change.

From the PSD2P we can obtain the frequency and wavenumber of the most unsta-
ble component of the IAW for each simulation. As one can see in Figure 3.13, the
wavenumber and frequency of the most unstable mode are directly proportional to
α
−1/2
0 , as predicted in Eq. (3.7). Interestingly, if we estimate using a linear fit the value

of the most unstable mode corresponding to α0 = 1, we obtain ωmax = 10.6 MHz
and kmax = 5.46 mm−1. To verify this estimation, we need to compare it to an un-
scaled simulation. However, it is not trivial, since the plasma conditions strongly
affect the frequency and wavenumber and we would need a case identical to the
one analyzed here. The 2D axial-azimuthal benchmark case of Ref. [156] is a good
candidate, even if the conditions are slightly different. This steady-state test case was
analyzed by Ben Slimane et al. [185], using a virtual Thomson scattering, obtaining a
frequency of 6.5 MHz for the same instability. The differences between our estimation
of 10.6 MHz and the one measured of 6.5 MHz can be explained by analyzing the
effect of the different plasma densities on the maximal frequency. The density in the
plume in Ref. [156] is ≈ 1.5× 1017 m−3, while in the current simulations it oscillates
between 3× 1017 m−3 and 5× 1017 m−3. Equation (3.7) suggests that the maximal
frequency is proportional to

√
ni. Thus the frequency measured by [185] reported

to our conditions should be in the range 9/12 MHz, which is in good agreement
with our estimation. Proceeding in the same way for the wavenumber (i. e., the value
measured by Ben Slimane is 1.27 mm−1), is less straightforward since the density
is not the only parameter that affects the wavenumber: the electron temperature is
also playing a role in defining the Debye length. By considering only the density
variation we calculate an interval for the unscaled case from 1.8 mm−1 to 2.32 mm−1.
So, the agreement, in this case, is not as good as for the frequency and makes clear
the importance of considering the electron temperature for this analysis.

The linear fits in Figure 3.13 allow us to retrieve the maximum value of α0 for which
the instability will be fully observed. Those values are identified as 1/

√
α0 = 0.091

and 1/
√

α0 = 0.065, for wavenumbers and frequencies, respectively. Despite being
rather close, these numbers correspond to values of α0 of 120 and 238, respectively.
The large difference in these values is related to the rather low number of points used
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Figure 3.12: Each row corresponds to a different value of α0: 4, 16, 32, and 64 from top to
bottom. The first column (a, d, g, j) shows a PSD in the axial direction, while the
second (b, e, h, k) in the azimuthal one. The last column shows four snapshots.
The chosen times correspond to the growing phase of the BM. We highlight the
fact that for each α we use different limits in the k−range and ω-range.
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Figure 3.13: Variation of the (a) frequency and (b) wavenumber of the most unstable mode

as a function of α
−1/2
0 . The error bars are calculated as the standard variation of

the evolution of these value in time. The yellow lines show the linear fits.

to calculate the linear fit. They give a threshold of the maximum scaling that allows
the appearance of instability. Below these values, we expect that no instability will
be observed: this is particularly important for the HTs modeling, since the azimuthal
instabilities are the main driver for the axial anomalous transport [133], as we discuss
in the next Sections.

3.3.4 Effect of the permittivity scaling on the mobility

The discussion in the previous section showed that the increased permittivity scaling
is reducing the amplitude of the plasma oscillations, thus reducing (with respect to
reality) the transport in the axial direction. In this section, we analyze directly the
mobility during the BM cycle for the four cases with different scaling factors. The
mobility can be extracted from PIC simulations, as proposed in Eq. (3.3). The mobility
is a measure of the electron transport in the plasma, and it is directly related to
anomalous transport. In Figure 3.14 we show the evolution of the mobility during
the BM cycle for the four cases. In the first row, we show the axial discharge current
for the four cases and the times at which the mobility is calculated. The subfigures
(b-d) show the axial profiles of the mobility at four different times of the BM cycle. We
notice that the mobility profile varies significantly along the thruster, while the profile
shape itself remains more or less the same during a BM oscillation. Figure 3.14 shows
that the axial mobility is well calculated by the formula above. However, the mobility
in the plume remains extremely noisy. The mobility appears to depend significantly
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on the scaling during the growing phase of the BM (b,c), while this dependency seems
to be reduced in the decreasing phase (d,e). By comparing the two extreme results,
α0 = 4 and α0 = 64, we observe that in the channel the mobility is reduced by an
order of magnitude for α0 = 64 in comparison to α0 = 4. This is in agreement with the
previous discussion, where we showed that the amplitude of the plasma oscillations
is reduced with the increased scaling. This is also consistent with what was observed
by Charoy [156], by studying the friction force generated by the instabilities.

In summary, the discussion in this section has shown that it is arduous to study the
effect of the scaling of permittivity on the mobility in PIC simulations, since (i) it is
difficult to calculate the mobility directly from PIC data and (ii) the mobility changes
during a BM cycle. However, comparing the axial profiles of the mobility calculated at
different phases of the breathing mode shows that during the BM growing phase the
scaled permittivity artificially damps the instabilities, which in turns reduces reduce
the anomalous transport.

3.3.5 Other effects on instabilities

It is possible to further analyze the effect of the scaled permittivity on the plasma
instabilities. The discussion about the IAW was carried out in the previous sections,
hereafter we address the ECDI and ITTI. The scaled permittivity could also have some
consequences on the frequency and amplitude of the BM. In this work, this aspect is
not addressed.

Cavalier et al. [92] numerically solved the kinetic DR of the ECDI. Their results
show that the ECDI DR depends on the ratio ωce/ωpi. The ECDI resonances appear at
fixed values of ky, which do not depend on the vacuum permittivity. However, the
frequency of the wave at the maximum growth rate and, even more important, the
growth rate itself largely depends on the permittivity. Charoy et al. observed longer
wavelengths [140, 170] when introducing a permittivity scaling.

Fernandez et al. [75] have shown that the ITTI DR does not depend on the permit-
tivity scaling and this has been confirmed by Charoy et al. [170], who reported that
the ITTI frequency was nearly independent of the scaling factor. The major impact of
the scaling is on the oscillations amplitude. This is consistent with the observation of
Fernandez, who suggested that the ITTI growth rate is proportional to the electron
mobility (i. e., γITTI ∝ µ

−1/2
e ), that is reduced when the scaling factor increases, i. e.,

most likely because the anomalous mobility is governed by the ECDI/IAW, which as
noted above, is damped by increasing the permittivity scaling.

One should however be aware that the coupling between the modes, in particular
between the ITTI and the ECDI is non-linear, which makes it difficult to fully predict
the exact impact of the permittivity scaling on the instabilities dynamics. Finally,
the scaled permittivity could also have some consequences on the frequency and
amplitude of the BM. In this work, this aspect is not addressed.
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Figure 3.14: Evolution of the mobility during the BM cycle for the four cases with different
scaling factors. Discharge current of the four cases are shown in the first row,
the scaling is indicated in the title. The subfigures (b-d) show the axial profiles
of the mobility at four different times of the BM cycle. For each case the precise
time is indicated by the dot in the first row that has the same color of the frame
in (b-d).
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Figure 3.15: Scheme of the circuit of a HT. The generator applies a DC voltage Ug. The
voltage drop at the plasma boundaries and the discharge current are U and I,
respectively.

3.4 the circuit implementation
HT devices are powered by a DC voltage generator and are equipped with an
RLC filter that controls the anode voltage [82]. The electric filter is a fundamental
component of any HT device since it allows for both the control of the anode voltage
and the reduction of the current fluctuations on the voltage generator. Despite its
importance, it remains poorly studied and not much literature has been published
on this topic. Several layers of complexity may be used to design the electric circuit;
however, the main elements are fixed. The filter, sketched in Figure 3.15, is composed
of a series of two parallels. The first is composed of a resistor R and an inductance
L set in parallel, and the second by capacitance C in parallel with the discharge
chamber. In this section, we analyze the modeling of the circuit and we compare the
results of several PIC simulations in which we varied the circuit parameters.

3.4.1 Circuit equations and coupling with the PIC code

Using Kirchhoff’s circuit laws, we have:

I = Ir + Il − Ic,

U = Ur −Ug,

Ic = C
dU
dt

,

Ul = Ur = RIr = L
dIl
dt

.

(3.8)

Where Ug is the DC applied voltage and the voltage drop at the plasma boundaries
and the discharge current are U and I, respectively. The indices r, l, and c are used to
define the voltage drop and current flowing in the different circuit components and
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d/dt represents the time-derivative. With some algebraic manipulation, the above
system simplifies to

dIr

dt
+

R
L

dIr

dt
= C

d2U
dt2 +

dI
dt

,

Ir =
Ug −U

R
.

(3.9)

Let ∆U = U −Ug, then the evolution of the circuit may be written as an ordinary
differential equation for this variable, as follows,

C
d2∆U

dt2 +
1
R

d∆U
dt

+
1
L
∆U = −dI

dt
. (3.10)

The equation above can be discretized and solved numerically, using the following
temporal discretization,

d2∆U
dt2 =

∆Un − 2∆Un−1 +∆Un−2

∆t2
RLC

+ O
(
∆t2

RLC

)
,

d∆U
dt

=
∆Un −∆Un−1

∆tRLC
+
∆tRLC

2
d2∆U

dt2 + O
(
∆t2

RLC

)
=

3∆Un − 4∆Un−1 +∆Un−2

2∆tRLC
+ O

(
∆t2

RLC

)
,

dI
dt

=
In−1 − In−2

∆tRLC
+ O (∆tRLC) .

(3.11)

The circuit equation is solved every NRLC PIC loops in order to average the current
and avoid high-frequency noise. So, in the above equation, the RLC time step can be
defined as a function of the PIC time step ∆t, as ∆tRLC = NRLC ·∆t. The discretization
scheme is a second order scheme for the voltage, while it is first order for the current
(calculated in PIC simulations), which means that, overall, the scheme is first order.

The voltage at the anode is set to Un = U(t = n ·∆tRLC), that is computed as
Un = Ug +∆Un from the following equation

∆Un =
L

2RLC + 3L∆tRLC + 2R∆t2
RLC

(
4(RC +∆tRLC)∆Un−1

− (2RC +∆tRLC)∆Un−2

− 2R∆tRLC (In−1 − In−2)
)

.

(3.12)

The current is averaged over NRLC loops and Eq. (3.12) is solved using the current
and voltage values at the previous time-steps to find the new anode voltage. This
voltage is kept constant for the subsequent NRLC time-steps. The results presented
here are obtained using NRLC = 250, which allows us to resolve the breathing mode
with ∼ 7500 time steps.

3.4.2 Transfer Function

In control systems engineering, the transfer function is a mathematical representation
of the relationship between the input and output of a linear, time-invariant system. It
provides a concise description of how the system behaves and can be used to design
controllers that produce a desired response.
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Figure 3.16: Bode diagram representing Eq. (3.13) using the chosen circuit parameters: R =
60 Ω, L = 4.4 mH and C = 15 nF. From Ref. [201]

3.4.2.1 Standard transfer function

Two sets of circuit element values have been tested. The first set uses values im-
plemented in some real HT devices and close to those used in Ref. [82]: R = 60 Ω,
L = 340 µH and C = 10 µF. This set is labeled "standard" in the following. The second
set is found by analyzing the circuit transfer function. The linear frequency response
of the circuit between the discharge electrodes (i. e., G(ω) = U(ω)/I(ω)) reads

G(ω) =
−RLCω2 + Lıω + R

RLıω
. (3.13)

This equation is used to choose R, L, and C values to limit the discharge current
oscillations in the conditions studied in this work. In Figure 3.16, we plot the Bode
diagram of Eq. (3.13) for R = 60 Ω, L = 4.4 mH and C = 15 nF. This set is labeled
"optimized" in the following. As shown in Figure 3.16, with these values, the filter is
adapted to damp the oscillations with a frequency around ∼ 20kHz, i. e., near the
BM frequency. However, as the discharge response is non-linear, we can expect that
the circuit will not be able to completely filter out the current oscillations in the PIC

simulations.

3.4.2.2 Alternative transfer function

The transfer function presented in the previous section is not unique. If we want to
study the effect of an instability generated in the plasma on the voltage generator,
we might use a different approach. By considering H(ω) = Ig(ω)/I(ω), we can write
a transfer function that relates the fluctuations of the current in the plasma (I), with
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Figure 3.17: The transfer function H(ω) calculated with Eq. (3.14) for different values of the
circuit components. The base solution (red) is compared to a varied resistivity
(a), inductance (b), and capacitance (c).

the induced fluctuations on the current in the generator (Ig). This transfer function,
calculated with linear approximation, is given by

H(ω) =
R + ıωL

−ω2RLC + ıωL + R
. (3.14)

We notice that at low frequency we have H(ω → 0) = 1 and at high frequency
H(ω → ∞) ∝ 1/ıωRC. With some analytical manipulations, we can write and
compute the poles and zeros of this transfer function in the limit LC � 4R2C2. A pair
pole/zero is found at a frequency ωa = R/L and a single pole at ωb = 1/RC− R/L.

This transfer function can be useful to evaluate the current fluctuations in the
generator caused by the plasma fluctuations. To investigate the robustness of the
circuit one may vary the values of the components around the base values defined
in the previous section, e. g., RBase = 60 Ω, LBase = 4.4 mH and CBase = 15 nF. In
Figure 3.17 we show the result obtained by varying each impedance separately by a
factor of 100 and 0.01. We observe that the base value has a gain of 1 up to ≈ 100 kHz,
and subsequently a linear decrease (i. e., H(ω) = 1/ıωRC for large frequencies).
By increasing the resistance, we observe that a positive gain region produces at
ω ≈ 20 kHz: this is particularly destructive for the HTs since the BM is exactly at this
frequency. The origin of this gain region is due to the values of ωa and ωb that are
close to each other. The reduction of the resistance only pops up a variation of the
pole position, that shifts at a higher frequency. The inductance variation generates
less important variations on the gain. The only remarkable effect is a small positive
gain region that appears at ω ≈ 100 kHz when we reduce the inductance L. By
variating the capacitance, we are moving the pole at ωb. By reducing the capacitance,
we extend the unit gain region at high frequencies. Increasing the capacitance reduces
the value of ωb, and consequently, it shrinks the unit gain region. However, the ωb
approaches ωa, a positive gain starts to appear.

The discussion in this section suggests that the transfer function and the consequent
choice of the circuit parameter depend on the goal of the circuit: if the goal is to limit
the oscillation within the plasma, one should consider the function G discussed in
the previous section. Otherwise, if the circuit is used to protect the generator from
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the plasma instabilities, the function H discussed here should be used. In the reality,
a trade-off between the two approaches is needed.

3.4.3 Analysis of the circuit effect on PIC simulations of different domain sizes

The axial-azimuthal simulation setup used to study the effect of the circuit and
subsequently to analyze the plasma instabilities is described extensively by Charoy
et al. [140, 170] and Petronio et al. [201]. Its main characteristics are summarized in
the following. In the rest of the section, we present several tests that are used to
investigate the effect of the circuit on the discharge.

3.4.3.1 Description of the PIC setup

As sketched in Figure 3.18, the domain consists of the usual structured Cartesian
mesh with axial and azimuthal lengths, Lx and Ly, respectively. The axial length
Lx = 4 cm includes the discharge channel (between the anode at x = 0 and x =2.5 cm)
and part of the plume for 2.5 ≤ x ≤4 cm. As always in our work, the curvature of
the channel is not considered, and periodic boundaries are imposed in the azimuthal
direction. The voltage at the cathode (right boundary) is fixed to zero, while the
anode (left boundary) voltage is controlled by the electric circuit, as described in the
previous section, with a DC voltage generator set to 300 V in most of the simulations.
The magnetic field is in the out-of-plane z-direction, and it varies along the thruster
axis as shown by the purple line in Figure 3.18, while it is constant along the
azimuthal direction. Its maximal value is set to 170 G at the exit plane of the thruster
channel. The plasma is initialized with a homogeneous density and at later times the
discharge is sustained by ionization (within the MCC module). A constant mass flow
ṁ = 5 mg s−1 of neutral gas is injected at the anode. A constant density of electrons
and ions is set in every cell at the beginning of the simulation.

The simulation parameters, summarized in Table 3.2, are chosen to respect the CFL

condition as set by Birdsall and Langdon [23], discussed in Section 3.2.1. A simulation
with these numerical parameters is extremely costly in order to capture several BM

periods. To relax the PIC constraints the permittivity scaling technique, described
above, is used. In the simulations analyzed here, α0 = 64 has been used, leading to
an increase of both ∆t and ∆x by a factor of 8.

3.4.3.2 Simulations with a small azimuthal length, Ly = 1 cm

We first study 2D PIC axial-azimuthal simulations with a reduced azimuthal length,
Ly = 1 cm with parameters given in Table 3.2. Figure 3.19 shows the time evolution
of the discharge current and the anode potential for a base case without circuit,
and for two different cases with RLC circuits discussed in Section 3.4: case 1 is for
standard HT circuit components (R = 50 Ω, L = 340 µH and C = 10 µF); case 2 is for
the optimized set of parameters (R = 60 Ω, L = 4.4 mH and C = 15 nF).

As seen in Figure 3.19 (a) a quasi-steady-state is reached after ≈ 100 µs and the
average current at steady-state is about the same for all three cases (Imean

d ' 3.3 A).
The circuit effect is nonetheless significant. For the base case (without circuit) the
standard deviation of the current after the transient phase is ≈ 0.58 A, and this
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Figure 3.18: The simulation mesh is composed of squared cells. The neutral gas is injected
at the anode (left) and the electrons at the cathode (right). The axis of the
thruster is x and the azimuthal direction is y. We use periodic boundary con-
ditions in the azimuthal direction. The magnetic field intensity is represented
by the purple line. It is perpendicular to the simulation plane (along z) and
does not change along the azimuthal direction. Please refer to Table 3.2 for a
detailed list of the simulation parameters. From Ref. [201]

Figure 3.19: Time evolution of the discharge current (a) and the anode potential (b) in 2D
PIC axial-azimuthal simulations with an azimuthal length, Ly = 1 cm without
RLC circuit, and with two different RLC circuits: case 1 is for standard HT

circuit components (R = 50 Ω, L = 340 µH and C = 10 µF); case 2 is for the opti-
mized set of parameters (R = 60 Ω, L = 4.4 mH and C = 15 nF). From Ref. [201].
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Table 3.2: Operating and numerical parameters used in PIC simulations. With a small axial-
azimuthal domain (4 cm× 1 cm), 3 simulation cases are considered: one without
circuit and cases 1 and 2 with circuits. With a larger axial-azimuthal simulation
domain (4 cm× 4 cm), 3 simulation cases are considered: one without circuit and
cases A and B with circuits.

Physical parameters Symbol Value Unit

Gas Xenon (-)

Radial magnetic field (max) B 170 G

Anode voltage Va 300 V

Cathode voltage Vc 0 V

Axial length Lx 4 cm

Azimuthal length Ly 1.01 or 4.08 cm

Initial plasma density n0 5× 1018 m−3

Initial electron temp. Te 1 eV

Initial ion temp. Ti 0.05 eV

Neutral mass flow rate ṁ 5 mg s−1

Thruster section Area 3.768× 10−3 m2

Cathode inj. temp. (not case C) Tcath
e 5 eV

Cathode inj. temp. (case C) Tcath
e 0.1 eV

Circ. param. (Case 1 / 2, A, B / C )

Resistance R 50/60/20 Ω

Inductance L 0.34/4.4/1.5 mH

Capacitance C 104/15/1 nF

Simulation parameters

Time step ∆t 1.6× 10−11 s

Cell size ∆x = ∆y 1.6× 10−4 m

Num. of cells xmax × ymax 250 × 63 or 255 (-)

Initial num. of part. per cell N/NG 400 part./cell

Num. of iter. between outputs Na 5000 (-)

Permittivity scaling α0 64 (-)
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quantity decreases to ≈ 0.46 A for case 1. The BM oscillations are severely damped
for case 2, i. e., with the optimized circuit (the current standard deviation drops
to ≈ 0.23 A). The filter has almost no impact on a higher frequency oscillation (at
≈ 200 kHz) that is observed in all three cases. In Figure 3.19 (b) we observe that the
anode voltage varies significantly during the first BM periods with the optimized
circuit, while for case 1 the voltage variation is negligible (without circuit the anode
voltage is constant). This study shows that the use of an optimized RLC circuit can
completely damp the BM oscillations in cases where the standard deviation of the
oscillations is small and, hence, close to a linear regime.

3.4.3.3 Simulations with a larger azimuthal length, Ly = 4 cm

We now consider some simulations with a larger azimuthal length, Ly = 4 cm, and
investigate the effect of the temperature of electrons injected at the cathode boundary.
Figure 3.20 shows the time evolution of the discharge current and the anode potential,
without RLC circuit, and with two different sets of RLC circuit parameters: case A
with R = 60 Ω, L = 4.4 mH and C = 15 nF, case B with R = 20 Ω, L = 1.5 mH and
C = 1 nF. These two different sets of circuit parameters are designed to damp the BM

oscillation with a very similar circuit response (calculated via Eq. (3.12)), but with
different time constants (i. e., τ ∝ 1/

√
LC), such that τA < τB. First, we observe that

without RLC circuit the frequency of the BM is similar to that of the small Ly = 1 cm
case (cf. Figure 3.19). However, as observed in Charoy et al. [170], the amplitude of
the fluctuations increases dramatically (it is 5 to 10 times larger for Ly = 4 cm than
for Ly = 1 cm). As already mentioned, such large fluctuations have severe numerical
consequences: (i) the PIC requirements may be violated near the peak (λD and ωpe
both depend on the plasma density), and/or (ii) the computational cost of each
simulation becomes unrealistic, and (iii) the high current peaks are followed by low
current phases during which the extinction of the discharge may occur. Therefore,
the use of the RLC circuit is crucial to run simulations with an azimuthal domain
length of several centimeters.

With an optimized RLC circuit and a temperature of emitted electrons of 5 eV
(similar to that in Figure 3.19), we observe in Figure 3.20 case A that the circuit
does not allow to completely damp the oscillations for Ly = 4 cm. Nevertheless, the
circuit can successfully prevent the large unphysical fluctuations that were otherwise
observed.

The different behaviors of case A and case B can be explained by the different
choices of circuit parameters. In the first case, the BM frequency is lower than in the
second case. The BM peaks appear to be more regular, while the amplitude of the
fluctuations is of the same order of magnitude in both cases. It is also interesting
to observe the anode modulation: the voltage oscillation is much larger in case A
than in case B. The origin of this circuit behavior cannot be easily explained. The first
hypothesis is that the different circuit parameters select one mode and not the other.
However, the frequency of the two modes is very close and it is not trivial to link the
non-linear behavior of the BM to the choice of the circuit impedances.

The fact that the BM is present for the Ly = 4 cm cases, while it is almost perfectly
damped for the Ly = 1 cm cases (i. e., case 2), supports the idea that the simulations
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Figure 3.20: Time evolution of the discharge current (a) and the potential (b) in 2D PIC

axial-azimuthal simulations with an azimuthal length, Ly = 4 cm without RLC
circuit, and for two RLC circuits: case A and case B as defined in Table 3.2.

with small Ly do not capture all the complexity of the discharge physics, and more
precisely the influence of the azimuthal modes on the axial modes.

3.4.4 Effect of the cathode temperature on the circuit response

The temperature of the electrons emitted from the cathode depends on the cathode
device and may vary in time. In most axial-azimuthal PIC simulations, it has been
traditionally fixed to a constant value (Tcath

e = 5 eV in the cases described heretofore).
Without RLC circuit, Charoy [156] observed that the choice of the cathode temperature
affects the discharge behavior. For this reason, we investigated the results obtained
with a RLC circuit for two different cases: case B with Tcath

e = 5 eV, the usual
choice already presented above, and case C with lower Tcath

e = 0.1 eV. The circuit
parameters are kept the same. In Figure 3.21 we observe that the current oscillations
and frequency are similar in both cases, however, the cathode temperature seems to
have an impact on the BM frequency. Moreover, we observe a difference in the anode
voltage evolution: in case C the oscillations around the mean value are smaller, while
in B they are more pronounced. These oscillations remain, in any case, smaller than
those observed in case A.

3.4.5 Current in the circuit components

Considering the optimized circuit, in this section, we analyze the evolution of the
current and voltage drop on each circuit component. In Figures 3.22 and 3.23 we
report the voltage drop over the parallel resistance/inductance (a) and the current (b)
in the four circuit components: resistance, inductance, capacitance and plasma for
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Figure 3.21: Time evolution of the discharge current (a) and the potential (b) in 2D PIC

axial-azimuthal simulations with an azimuthal length, Ly = 4 cm for two Tcath
e

of injection: case B (5 eV) and case C (0.1 eV).

Ly = 1 cm and Ly = 4 cm, respectively. The voltage drop over the capacitance is the
same voltage drop over the plasma and is reported in Figures 3.19 and 3.21.

In Figure 3.22 (a) the voltage drop over the parallel resistance/inductance converges
to zero at steady-state. This is expected, as in Figure 3.19 we observed that voltage at
the anode converge to the generator value. The low voltage drop over the resistance
causes a very low current in that component, e. g., the green current in (b). The
current in the capacitance depends on the voltage drop over the plasma, thus it is
very low at steady-state. So, the only circuit component in which a significant amount
of current flows is the inductance.

As we discussed in the previous section, the simulation with a larger azimuthal
length has a much more complicated plasma dynamics. Thus, it allows a more
interesting discussion about currents in the circuit components. Despite the large
potential fluctuations at the anode, the current in the capacitance is close to zero
during all simulations. Some high-frequency fluctuations are present during the
decreasing BM phase, which disappear in the increasing phase. In the case with the
small azimuthal length, we noticed that the current in the resistance was negligible: it
is not the case when we increase the azimuthal length. The larger fluctuations of the
anode voltage, which never stabilize at the nominal generator value, drive a non-zero
current in the resistance. However, as before, the largest current remains the one in
the inductance.

3.5 chapter summary
In this chapter, we present the electrostatic PIC code used in LPP to simulate HTs. In
particular, we gave a general description of the code features and modifications that
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Figure 3.22: Time evolution of the current in the circuit components and voltage drop
on each circuit component in 2D PIC axial-azimuthal simulations with an
azimuthal length, Ly = 1 cm, for the optimized RLC circuit in case 2.

Figure 3.23: Time evolution of the current in the circuit components and voltage drop
on each circuit component in 2D PIC axial-azimuthal simulations with an
azimuthal length, Ly = 4 cm, for the RLC circuit in case C.
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have been made. The second part of the chapter is related to the analysis of the scaling
permittivity in PIC simulations. We have shown that the scaled permittivity allows
us to reduce the cost of the simulations while retrieving the majority of the physical
parameters of the discharge. However, the variation of the permittivity strongly
affects the wavenumber, frequency, and growth rate of the electrostatic instabilities.
Eventually, we presented the circuit implementation in the PIC code. We have shown
that the circuit can damp the BM, but that the damping is less effective when a large
azimuthal domain is used. The investigation of different circuit parameters and
implementations has allowed concluding that the 1st order scheme for the current
represents a good choice for the circuit implementation in PIC simulations. Moreover,
we have shown that the circuit time constant needs to be small enough to allow the
circuit to react properly during the reduced simulation time interval. A different
circuit implementation is discussed in Appendix A.1.

It is worth noting an important aspect related to the current-potential phase shift.
In our attempt to minimize the plasma oscillations by adjusting circuit parameters,
we have caused these two quantities to be out of phase with each other. Specifically,
when the current is at a low value, the potential is high and vice versa, as illustrated
in Figure 3.20. This effect has an adverse impact on the overall performance of the
thruster. When the voltage is high and the exhaust velocity can be maximized, the
current is low, resulting in a reduction in thrust. Conversely, when the current is
high, the ion exhaust velocity is reduced, causing further performance degradation.
In conclusion, the present study shows that the choice of the circuit parameters is
not trivial and requires a careful analysis of the plasma dynamics.



4 R A D I A L- A Z I M U T H A L I N S TA B I L I T E S

The present chapter details the findings of our radial-azimuthal simulations. The first section
reports several simulations aimed at studying the development of the modified two-stream
instability (MTSI) and its impact on plasma dynamics, namely on the electron temperature
and anomalous transport. The subsequent section focuses on presenting the key outcomes of
the PIC radial-azimuthal benchmark, carried out as part of the LANDMARK project.
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4.1 radial-azimuthal pic simulations
In 2004, Adam et al. [55] proposed a model that accounted for azimuthal plasma
dynamics as being responsible for the anomalous transport. In recent years, Lafleur
and colleagues have published several papers [106, 105, 118, 117, 133] exploring the
role of instabilities in enhancing electron transport. These papers have underscored
the significance of the azimuthal direction in determining the plasma dynamics
within HTs.

In our group at LPP, numerous efforts have been conducted to study the plasma
dynamics with radial-azimuthal simulations. This work was initiated by Vivien
Croes [112], who first designed the radial-azimuthal version of LPPic. These radial-
azimuthal simulations allowed us to demonstrate [113] that the azimuthal instabilities
developing at a fixed axial position contribute significantly to the increased axial trans-
port. They demonstrated that the wall-plasma interactions only have an auxiliary role
in the anomalous transport in the configuration investigated. The radial-azimuthal
PIC simulations used by Tavant [152] analyzed the effect of the dielectric walls and
the SEE on the plasma characteristics and sheath development [136, 153].

The importance of the radial-azimuthal simulations is largely recognized by the
cold plasma E×B community [150, 160] and several works were published in the last
decade [94, 116, 113, 129, 151, 164]. In 2021 a benchmark [180] proposed by LPP and
CERFACS (viz., lead by Willca Villafana) brought together seven different groups to
compare their PIC radial-azimuthal results. This test case allowed to demonstrate the
presence of instabilities and to address some specific numerical aspects (e. g., particle
convergence) of the radial-azimuthal simulations. The results of this benchmark are
briefly presented at the end of this chapter.

The benchmark test case raised some questions about the instabilities that develop
in radial-azimuthal simulations. Besides the well-known ECDI, a longer wavelength
instability was observed. This instability was identified as the MTSI. Once the instabil-
ity nature was confirmed, we wondered why such instability was present in some
simulations and not in others and which were the consequences of the MTSI on the
plasma dynamics. This question is addressed in the present chapter and was the
subject of a publication in 2021 [177].

4.2 analysis of mtsi
As we have seen in Chapter 2, in addition to the ECDI, another type of electrostatic
instability having a component along the magnetic field is present in the radial-
azimuthal plane of a HT: the MTSI [16, 19]. The MTSI is an electrostatic instability
that appears under homogeneous plasma conditions (i. e., without density gradients)
and is caused by the E × B differential drift between magnetized electrons and
unmagnetized ions. As compared to the ECDI, it has a lower frequency and its
component along the drift direction appears at longer wavelengths (in HT conditions,
approximately 1 MHz and 5 mm). In addition, the MTSI has a component along the
magnetic field, unlike the ECDI that is completely perpendicular to B. The MTSI has
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been found in simulations of collisionless shocks [16, 91] and, more recently, in
simulations of E× B discharges [129, 163].

Janhunen et al. [129] studied the MTSI under typical HT conditions by calculating
the dispersion relation with unmagnetized ions and magnetized electrons. The MTSI

resonance peak was identified at low azimuthal wavenumbers with a radial compo-
nent. Using a radial-azimuthal PIC simulation, they studied the MTSI characteristics
and its coupling with ECDI modes. Nevertheless, in their work, the simulations do not
reach a steady-state since absorbing walls were used without an ionization source
and, hence, the plasma density was decreasing over time.

The presence of the MTSI in HTs is still not well understood as it has only been
observed recently [129, 151] and not in previous radial-azimuthal PIC simulations [94,
113, 112, 136, 144]. The numerical noise due to a poor particle resolution was invoked
as a possible explanation for this disagreement [128]. However, a recent study has
shown that the convergence of PIC simulations with the number of particles in 2D
is not as demanding as in 1D [140]. As a consequence, heretofore, there is not
full agreement on the conditions for the appearance of the MTSI in 2D E× B PIC

simulations and its impact on the discharge at steady-state.
In this chapter, we aim at clarifying the conditions for the development of the MTSI,

by comparing the theoretical MTSI dispersion relation with PIC simulations under
different setups that are relevant for HTs. Through these simulations, we identify the
configurations that favor the growth of the MTSI by changing the azimuthal and radial
lengths of the simulation domain, the plasma density, and the electric field intensity.
As opposed to previous works, we achieve steady-state solutions by using reflecting
walls in the radial direction, as previously done by Sengupta et al. [164]. This allows
us to study in detail how the MTSI affects the discharge behavior at steady-state and
its impact on the electron temperature, axial electron mobility, and k-spectrum.

4.2.1 The PIC model

In the current chapter, we consider a radial-azimuthal simulation of a plane of a
HT with a 2D Cartesian mesh, as described in Section 3.2.2. A magnetic field B is
imposed in the radial z direction while an electric field E is imposed in the axial x
direction, which is perpendicular to the simulation plane. The plasma is assumed to
be composed only of singly-charged xenon ions and magnetized electrons. Figure 4.1
shows a schematic representation of the simulation domain, in which the snapshot
represents the axial current density with the MTSI modulation.

In the radial direction, the domain is bounded by two reflecting walls at a fixed
potential Φ = 0. At the reflecting walls, the particles impinging the boundary are
reflected specularly, as done previously in Refs. [149, 164]. The use of these bound-
aries has two major advantages. (i) A steady-state is reached without the need for an
artificial re-injection of particles, which may impact the development of the instabili-
ties. The mean plasma density remains constant throughout the simulation, whereas
the steady-state for energy is reached after around 5− 10 µs. (ii) The absence of the
sheaths simplifies the physics at the system boundaries.

Despite the simulations being in 2D (radial-azimuthal), the evolution of the plasma
in the axial direction is also treated to reach a steady-state. This kind of axial virtual
model has been widely used before, both in 1D and 2D [113, 112, 105]. Even though
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Figure 4.1: Schematic representation of the radial-azimuthal (zy) simulation domain, with
periodic boundary conditions in y−direction and two perfectly reflecting walls
at the edges of the z one. The snapshot represents the axial current density at
1.5 µs in a simulation domain 1.28 cm× 1.28 cm. Figure from Petronio et al. [177].

there is only one cell in the axial direction, two boundaries in this direction are
considered at x = 0 and x = Lx. When one particle crosses one of these boundaries,
another is re-injected at the other side at the same radial and azimuthal position with
a velocity sampled from a Maxwellian flux distribution at the initial temperature. By
doing this, the total energy of the plasma saturates after some time, which allows the
simulation to reach a steady-state.

The physical and numerical parameters, if not otherwise stated, are presented in
Table 4.1. The dimensions Ly and Lz will be varied in our study whereas the axial
length Lx is fixed to 2 cm. As compared to previous works [136], in the present work,
we aim at studying the evolution of the plasma oscillations with a larger azimuthal
domain. Collisional processes and wall secondary-electron emission are not taken
into account. As a result, the mean density of electrons and ions remains constant
and equal to the initial one during the simulation. The electron-neutral collisions do
not interfere with the instability mechanism [129]. Their collision frequency [110]
(νe,n ∼ 5 MHz) is below the observed [129] growth rate of MTSI (γ ∼ 10 MHz). The
effect of the collisions at a steady-state is not investigated in this work. Statistical
convergence has been tested by increasing the average number of particles per
cell (N/NG) up to 400, without any major effect on the discharge characteristics.
Numerical parameters have been chosen to satisfy the electrostatic PIC stability
conditions as reported by Birdsall and Langdon [23], discussed in Section 3.2.1.

4.2.2 Methods used for the analysis of PIC results

The ECDI and MTSI can appear simultaneously in our PIC simulations. To study
separately their characteristics, we use here 2D FFT of the azimuthal electric field
Ey. The FFT is calculated both in the ky − kz and in the ky − ω phase spaces. As
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Table 4.1: Operating and numerical parameters used in PIC simulations. No scaling permit-
tivity is used.

Physical parameter Symbol Value Unit

Radial magnetic field B 200 G

Axial electric field Ex 1× 104 V/m

Axial length Lx 2 cm

Gas Xenon (-)

Initial plasma density n0 5× 1016 m−3

Initial electron temperature Te 10 eV

Initial ion temperature Ti 0.5 eV

Neutral pressure Pn 0 (-)

Simulation parameters

Time step ∆t 1.5× 10−12 s

Cell size ∆y = ∆z 5× 10−5 m

Initial number of particles per cell N/NG 100 particles/cell

Number of iterations between outputs Na 1000 (-)

we discussed in Section 2.3.1, the FFT here is adapted, because periodic boundary
conditions are employed in the azimuthal direction and specular grounded walls are
used in the radial direction.

In order to get the MTSI growth rate γPIC, we calculate the FFT of Ey at every
Na = 1000 time steps, obtaining a 2D ky − kz map. Once the ECDI and MTSI modes are
identified in the map, we determine the MTSI amplitude in the spectrum and we plot
it as a function of time. We determine its growth rate γPIC with a linear regression
of the MTSI mode amplitude. Similarly, for the MTSI frequency ωPIC

r , we use a FFT in
the ky − ω plane, at the radial position z = Lz/4. To stay away from the nonlinear
saturation part of the simulation, we perform the FFT on an interval of 2 µs starting
when the MTSI starts to grow. However, this time corresponds to only two or three
periods of the MTSI, which results in a rough estimation of ωPIC

r .
The MTSI has been observed to cause significant heating in the radial direction [129,

16]. In this chapter, we study the evolution of the mean radial electron temperature,
Te,z, that is computed at each grid point from the second moment of the distribution
function and averaged over the whole simulation domain.

4.2.3 Study of the onset of MTSI in PIC simulations

In Section 2.2.3, we have proposed an analytical expression to locate the MTSI reso-
nance peak in the wavenumber phase space. Here, these results are compared to 2D
radial-azimuthal PIC simulations to identify in which configurations the MTSI grows.
Table 4.2 contains a list of all the simulations that are analyzed in this section. We
recall that the DR has been calculated in the limit Te → 0, while the results presented
here are obtained at Te > 0. The finite electron temperature may cause a broadening
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Table 4.2: The simulation cases from 1 to 5 are analyzed in Section 4.2.4, from 6 to 14 in
Section 4.2.6 and from 15 to 17 in 4.2.7. The simulation parameters are the ones
specified in Table 4.1 if not otherwise stated. If present, γ̃PIC and ω̃PIC

r represent
the growth rate and the frequency of the MTSI, respectively.
1Initial density, n0 = 2 × 1017 m−3.
2Axial electric field, Ex = 3 × 104 V/m.

Case number Ly [cm] Lz [cm] γ̃PIC ω̃PIC
r

1 1.28 0.96 0.078 0.366

2 1.28 1.28 0.101 0.366

3 1.28 1.92 0.181 0.244

4 1.28 2.56 0.368 0.366

5 1.28 3.84 0.157 0.366

6 0.24 0.96 No MTSI

7 0.48 0.96 0.067 0.244

8 0.24 1.28 No MTSI

9 0.48 1.28 0.162 0.366

10 0.32 1.92 No MTSI

11 0.64 1.92 0.202 0.244

12 0.32 2.56 No MTSI

13 0.64 2.56 0.403 0.366

14 2.56 2.56 0.338 0.366

151 0.64 2.56 0.369 0.366

162 0.64 2.56 No MTSI

172 1.28 2.56 0.444 0.244

of the MTSI resonance peak, making the condition Eq. (2.16) less stringent. So, it is
possible to observe the MTSI characterized by wavenumbers not strictly verifying this
inequality, but such that

kz ∼
meEx

eB2 k2
y.

As an example, in Figure 4.2, we show the evolution of the azimuthal electric field
during the onset of the ECDI and MTSI for a representative case (case no. 3). As it can
be seen, the two modes mainly propagate in the azimuthal direction: one at a small
wavelength and high frequency which corresponds to the ECDI, and another one at
a larger wavelength that corresponds to the MTSI. As the growth rate of the ECDI is
larger, it appears first, whereas the MTSI is visible after ∼1 µs. As it can be noted, the
MTSI mode has a radial component, while ECDI does not. Specular reflection at the
walls prevents the formation of the sheaths, which helps to estimate the wavenumber
kz of the MTSI mode along the magnetic field direction (z). In most of our simulations,
we observe a half-wavelength between the upper and lower boundaries, with a
node at z = Lz/2 and two anti-nodes at z = 0 and z = Lz, corresponding to a radial
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Figure 4.2: Snapshots of the azimuthal electric field in case no. 3. In (a) we observe the
ECDI. The MTSI appears in (b). Figures (c) and (d) show the transition to a chaotic
behavior of the system. Adapted from [177].

wavenumber kz = π/Lz. After some microseconds, both oscillations are no longer in
a linear regime, which results in a more chaotic regime with mainly large wavelength
structures. In this section, we primarily focus on the linear regime of the instabilities.

4.2.4 Effect of the dimension of the computational domain on the MTSI

4.2.4.1 Influence of the domain radial length

As explained in Section 2.2.3, by changing the radial dimension of the simulation
domain, the radial wavenumber kz = π/Lz of the MTSI DR varies. To quantify this
effect on the instability, we vary the domain radial length Lz from 0.96 cm to 2.56
cm at constant domain the azimuthal length Ly = 1.28 cm. The temporal evolution
of the MTSI amplitude of the azimuthal electric field for four different Lz is shown
in Figure 4.3. Note that the growth rate of the MTSI is larger for increasing Lz. In
addition, the value at which the electric field saturates is also larger for increasing Lz.

In these PIC simulations, the growing modes correspond to the unstable mode,
compatible with the PIC boundary conditions, which is the closest to the MTSI peak, as
predicted by the analytical formula of Eq. (2.15). Therefore, Eq. (2.15) can be regarded
as a useful prediction of the wavelength of the fastest growing MTSI. The values of
growth rate and frequency resulting from the PIC are different from those calculated
with the fluid DR. Even if it is difficult to find a precise trend, the PIC growth rate
appears to be 50% to 80% lower than the fluid one. The reason for this discrepancy
can be attributed mainly to the Te = 0 of the fluid DR and other kinetic effects that are
present in the PIC simulation. Additionally, the MTSI frequency is inferred at 2 µs after
the instability grows, which corresponds only to a few oscillation periods. As the
instability grows to a nonlinear regime after a few periods, it is difficult to calculate
the frequency accurately.

For large enough values of Lz, the largest growing MTSI mode can have an entire
wavelength in the radial direction. In Figure 4.4, we show two cases with the same
azimuthal length and different radial lengths: one with Lz = 3.84 cm (case no. 5,
shown in panel (a)) and another with half this length (Lz = 1.92 cm, case no. 3, shown
in panel (c)). As it can be seen, the case with a larger radial length shows an MTSI

mode that has an entire wavelength in the radial direction whereas the other case has
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Figure 4.3: Evolution of the MTSI amplitude mode calculated from the Ey spectrum of four
PIC simulations with different radial lengths. The linear regressions used to
calculate γ̃PIC are shown by the dashed lines. The azimuthal length is 1.28 cm
for all the cases shown here. Adapted from [177].

an MTSI with half wavelength in the radial direction. Interestingly enough, in both
cases, the instability has the same ky and kz and, as shown in panel (b) of Figure 4.4,
a similar growth rate. The delay in the growth could be due to the random initial
distribution of particles.

4.2.5 Influence of the domain the azimuthal length

As explained in Section 2.2.3, the periodic boundary conditions in the azimuthal
direction play an important role in the selection of the azimuthal wavelength of the
MTSI. As a matter of fact, the azimuthal length may be too small to fit any ky in the
unstable region. This results in a simulation that spuriously does not develop the
MTSI, as it is explained in the following.

The azimuthal boundary conditions select the modes such that ky = 2πm/Ly where
m is a positive integer. To illustrate the effect of the azimuthal length on the MTSI, for
the set of Lz studied in the previous section, we perform two different simulations:
one with the azimuthal length smaller than the wavelength at the MTSI resonance
and another one with the azimuthal length larger than the wavelength at the MTSI

resonance. With reference to Table 4.2, we can see that the selection of the azimuthal
domain length can have a dramatic influence on the simulation, precluding the
formation of the MTSI when it is too small. Conversely, the MTSI in the PIC simulations
behave as expected from the DR if the azimuthal domain length is large enough.

The effect of the azimuthal domain length on the instabilities is illustrated in
Figure 4.5. In this figure, we show 2D snapshots of the azimuthal electric field Ey
for three PIC simulations with the same radial length (Lz = 2.56 cm) but different
azimuthal lengths Ly (from 0.32 cm to 2.56 cm). For too small Ly, only the ECDI
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Figure 4.4: 2D snapshots of the azimuthal electric field Ey at t = 1.5 µs for (a) Lz = 3.84 cm
(case no. 5) and (c) Lz = 1.92 cm (case no. 3). In (b): evolution of the MTSI mode
amplitude in the Ey spectrum. The dashed lines in (b) represent the linear
regression calculated during the instability growth. Adapted from [177].
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Figure 4.5: Snapshots (t = 1.20 µs) of Ey for three different PIC simulations with Lz = 2.56 cm.
(a): Ly = 0.32 cm, only ECDI (case no. 12). (b): Ly = 0.64 cm, one MTSI period (case
no. 13). (c): Ly = 2.56 cm, four MTSI periods (case no. 14). Adapted from [177].

develops, while in the other two cases, the MTSI is also present. One can note that
the same mode of MTSI develops in the cases (b) and (c) of Figure 4.5, although more
periods of the same wave are captured in the case with a larger azimuthal domain.

In Section 4.2.4.1, we observed that the growth rate strongly depends on the value
of the radial wavenumber. Here, we show that the MTSI can disappear if the azimuthal
length is reduced below a certain threshold. Moreover, we observed that once this
threshold is reached, the MTSI characteristics (wavelength and growth rate) are not
affected if the domain is large enough in the periodic azimuthal direction.

4.2.6 Impact of plasma density and axial electric field on the MTSI

As explained in Section 4.2.1, the mean plasma density and axial electric field are
imposed. As these two parameters vary along the axis of the thruster, in this section,
we investigate their impact on the MTSI.

4.2.6.1 Influence of the plasma density

In the simplified dispersion relation, Eq. (2.14), the dependency of the MTSI dispersion
relation on the plasma density is lost. It has been checked with the numerical solution
of Eq. (2.12) that the plasma density has no impact on the MTSI on-set in our ky − kz
range of interest, under the typical conditions for HTs. This observation has been
verified with two PIC simulations with the same geometry: one with the baseline
density (n0 = 5× 1016 m−3, case no. 4) and one with an increased plasma density
(n0 = 2× 1017 m−3, case no. 15).

Figure 4.6 shows 2D snapshots of the azimuthal electric field for the two PIC

simulations: the one with our baseline density in 4.6 (a) and the one with larger
density in 4.6 (b). We can see that the same long-wavelength MTSI is present for both
cases. Moreover, in 4.6 (c), we observe that the MTSI amplitude evolves with a similar
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Figure 4.6: 2D snapshots of the azimuthal electric field Ey at t = 1.20 µs for (a) the nominal
density n = 5× 1016 m−3 (case no. 4) and (b) a larger density n = 2× 1017 m−3

(case no. 15). In (c): evolution of the MTSI mode amplitude in the two cases.
Adapted from [177].

growth rate of γ̃PIC = 0.369. These PIC results agree with the conclusion drawn from
the analytical dispersion relation: the MTSI does not depend on the plasma density.
However, it is important to mention that the ECDI growth rate increases with the
plasma density, as expected from Cavalier et al. [92], making it more difficult to
observe the MTSI in denser plasmas.

4.2.6.2 Influence of the axial electric field

In Eq. (2.15), we showed that γmax has a parabolic shape in ky − kz space and that the
leading coefficient is proportional to Ex/B2. Therefore, the resonance peak depends
on the electric and magnetic fields. In this section, we study the impact of varying
the axial electric field Ex, with a constant magnetic field.

First, we calculate the DR with different axial electric fields. Figure 4.7 (a) shows the
position of the maximum of γ̃ for different values of the electric field. Figure 4.7 (b)
shows the corresponding growth rate for a fixed radial wavenumber. As the electric
field increases, the MTSI peak shifts towards low azimuthal wavenumbers, and the
growth rate increases. Additionally, we compare the position of γmax with the
simplified analytical expression of Eq. (2.15), showing good agreement.

To confirm these results with PIC simulations, we compare a case with the baseline
electric field E = 10 kV/m (case no. 13) with the MTSI to a case with a higher electric
field E = 30 kV/m (case no. 16). From our previous analytical studies, we expect that
no MTSI grows in the latter case since the MTSI peak is shifted towards smaller ky and
the azimuthal wavelength of the MTSI is too large to fit in the domain. Figure 4.8 (a)
and (b) show 2D snapshots of the azimuthal electric field corresponding to these
two cases. We observe that while the MTSI modulation is visible for the baseline case,
we observe only the ECDI for the case with a higher axial electric field, as expected.
Nevertheless, as explained previously, if Ly is large enough to fit the wavelength of the
MTSI, it appears in our PIC simulation. In Figure 4.8 (c), we reproduce the simulation
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Figure 4.7: In (a) the full lines show the position (k̃y , k̃z) of the maximum of γ̃ for different
axial electric field calculated from the fluid DR Eq. (2.12). The triangles show the
position of γmax obtained with the simplified analytical DR Eq. (2.15). In (b) we
show the growth rate γ̃(k̃y) for k̃z = 0.035 for different values of the axial electric
field. Adapted from [177].

at higher electric field with Ly = 1.28 cm instead of 0.64 cm. As the domain is large
enough to fit the MTSI azimuthal wavelength, the MTSI appears. Additionally, its
azimuthal wavelength is approximately twice larger than that in the case with the
same domain dimensions and baseline electric field (case no. 4, in Figure 4.6 (a)),
which is also in agreement with the prediction of Eq. (2.15).

4.2.7 Summary of results, comparison with previously published results and dis-
cussion

So far, we have extensively studied the linear regime and compared the results to
the analytical expression that was derived in Section 2.2.3. In Figure 4.9, we show a
summary of the simulation cases in the (ky, kz) phase space together with the position
of maximum growth rate as expected with the conditions of Table 4.1. We see that the
cases where the MTSI was observed are close to the parabola described in Eq. (2.15)
that delimits the maximum growth rate of the MTSI. Alternatively, the purple bullets
represent the allowed couples (k̃y, k̃z), corresponding to one half-wavelength radially
and a single wavelength azimuthally, for the cases where MTSI is not observed. These
points are all in the stable region and far from the singularity. Despite there are
some of the cases with MTSI that are in a stable region (but close to the frontier), the
temperature may induce a broadening of the resonance peak, allowing the growth of
the MTSI under conditions where the fluid DR with Te = 0 is stable.

In the following, we extend these conclusions to previously published works
presenting radial-azimuthal PIC simulations. For this purpose, we consider the condi-
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Figure 4.8: 2D snapshots of the azimuthal electric field Ey at t = 1.20 µs if (a) Ex = 10 kV/m
and Ly = 0.64 cm (case no. 13), (b) Ex = 30 kV/m and Ly = 0.64 cm (case no. 16)
and (c) Ex = 30 kV/m and Ly = 1.28 cm (case no. 17). Notice that in (a) Ey is
magnified by a factor 3. Adapted from [177].

Figure 4.9: The blue line shows the instability limit in Eq. (2.15). The red points represent
the couples (k̃y , k̃z) for which the MTSI is observed. Next to each point, we report
the related simulation labels. The purple points represent the allowed couples
(k̃y , k̃z), corresponding to a half-wavelength radially and a single wavelength
azimuthally, in the cases where MTSI is not observed. Notice that cases no. 4,
13, 14 and no. 3, 5, 15 correspond to the same point. The details about each
simulation are reported in Table 4.2. Adapted from [177].
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Figure 4.10: Positions of the maximum of γ (blue line), calculated with the simplified ana-
lytical DR Eq. (2.15), and allowed (ky , kz) (bullet points) using the parameters of
(a) Tavant et al. [136] (couple with half-wavelength in the radial direction and
one in the azimuthal direction) and (b) Janhunen et al. [129] (couples for half-
wavelength in the radial direction and one, two, three and four wavelengths
of MTSI in the azimuthal direction). The numerical fluid DR calculated from
Eq. (2.12) for the value of kz imposed by the boundary conditions is shown
for (c) Tavant et al. [136] and (d) Janhunen et al. [129]. The dashed green lines
correspond to the allowed ky, imposed by the periodic boundary conditions.
Since the density used in these cases is different, the results are not normalized.
From [177].

tions used by Tavant et al. [136], where the MTSI was not observed, and these used
by Janhunen et al. [129], where the MTSI was reported. In Figure 4.10 we show the
position of the maximum growth rate, as calculated by the simplified DR, and the ex-
plicit resonances allowed by the periodic boundary conditions used in the azimuthal
direction. In Figure 4.10 (a) and (c), we see that the ky allowed by the boundary
conditions in Tavant et al. is larger than the MTSI resonance peak, which explains why
they did not observe any MTSI long-wavelength structures. Alternatively, Janhunen et
al. observed one MTSI period in the azimuthal direction, which is in perfect agreement
with the results of Figure 4.10 (b) and (d) as one of the resonances has a wavelength
equal to the value at maximum growth rate.

In conclusion, Eq. (2.15) is a very useful analytical expression to determine if the
PIC domain allows the MTSI to grow. Moreover, it also captures the dependence of the
MTSI upon the physical conditions, i.e., density and imposed electric field.
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4.2.8 Evolution of the plasma properties with the MTSI

We now study the impact of the MTSI on some macroscopic parameters of the
discharge. First, we study the impact on the electron heating in the radial direction.
Secondly, the effect of the MTSI on the anomalous electron mobility in the axial
direction. For these studies, we compare cases with the same radial domain length
Lz and two different azimuthal lengths Ly: one that is large enough to capture the
MTSI and the other that is too small to develop the MTSI but large enough to capture
the ECDI. Finally, we analyze the nonlinear regime in a case with a wider azimuthal
dimension.

4.2.8.1 Evolution of the electron radial temperature

As noted by McBride [16], as the MTSI has a radial component, it produces a strong
heating in the radial direction. In Figure 4.11, we show the evolution of the mean
radial temperature Te,z for four cases, two with MTSI (red lines) and two without (blue
lines). Note that the reflecting walls prevent any dissipation of energy in the radial
direction and, hence, this results in radial heating in all cases. The saturation of the
average energy is obtained only thanks to the axial convection model, as proposed
by Lafleur et al. [105]

During the transient phase (0 < t < 4.5 µs), when the instabilities are easy to
distinguish, we can see in Figure 4.11 that heating in the radial direction starts
much earlier in the cases with MTSI (red lines, cases no. 11 and 13) than without.
Additionally, the case with the largest MTSI growth rate (solid red line) presents the
largest heating. Alternatively, in the cases without MTSI, (blue lines, cases no. 10 and
12) the temperature does not depend on the radial length during the transient state.
After the linear growth of the MTSI, the system becomes more chaotic and Figure 4.11

shows that the electron temperature in the radial direction at saturation is similar in
cases with and without MTSI.

4.2.8.2 Mobility

The axial electron mobility µ = −ue,x/Ex, i.e., perpendicular to the yz simulation
plane, is a crucial parameter in HT. Several studies have been conducted to relate the
anomalous mobility and the instabilities propagating in the thruster [133, 106, 118,
105]. Recent studies [118, 138, 156] have observed that the ECDI enhances the transport
in the axial direction. Here, we show that the long wavelength MTSI oscillations also
contribute to this transport. Following the work of Lafleur et al. [105], it is possible to
write the anomalous mobility as a function of the correlation between the oscillations
of the azimuthal electric field Ey and the electron density,

µeff =
|q|

mνm

1 + Ω2
ce

ν2
m

[
1−

Ωce
〈
δneδEy

〉
νmneEx

]
,

where νm is the electron-neutral collision frequency. In this work, no collisions are
considered. The above equation hence simplifies to

µeff = −
〈
δneδEy

〉
n0ExB

. (4.1)
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Figure 4.11: Evolution of the radial temperature for different PIC simulation cases with:
Ly = 0.64 cm and Lz = 1.92 cm cm (case no. 10), Ly = 0.32 cm and Lz = 1.92 cm
(case no. 11), Ly = 0.64 cm and Lz = 2.56 cm (case no. 12), Ly = 0.32 cm and
Lz = 2.56 cm (case no. 13). The red lines correspond to cases for which the MTSI

propagates. Adapted from [177].



4.2 analysis of mtsi 97

Figure 4.12: Axial mean mobility from the PIC (crosses), the correlation term (orange), or the
DMD-decomposition (µLF red, µHF pink) during the simulation calculated for (a)
case no. 12 without MTSI and (b) case no. 13 with MTSI. Adapted from [177].

To compare the influence of the MTSI on the mobility, we consider two cases,
cases no. 12 and 13, without and with MTSI, respectively, during the transient phase
(0 ≤ t ≤ 4.5 µs) when the instabilities are easy to distinguish. Figure 4.12 (a) and (b)
show that for the two cases, the measured PIC mobility is in good agreement with the
effective mobility given in Eq. (4.1). We would like to highlight that this definition
hence holds even in the presence of MTSI.

In order to understand how the different instabilities affect the mobility, we use a
Dynamic Mode Decomposition (DMD) [80], i.e., a data-driven method that identifies
the dominant spatial-temporal modes of a signal, as explained in the Chapter 2.
Using this method, the total signal was divided into four frequency packets: the first
one contains the low-frequency continuous components, the second one gathers the
components near the MTSI frequency (between 0.1 and 3 MHz), the third one gathers
these near the ECDI frequency (between 3 and 5 MHz) and the fourth one gathers
these near to the second resonance of the ECDI frequency (between 5 and 7 MHz). By
using this decomposition, we calculated the mobility corresponding to each packet
using Eq. (4.1), where µLF is the mobility related to the range of frequencies around
the MTSI and µHF is this related to ECDI. Figure 4.12 shows the mobility associated
with the different modes for one case without MTSI (case no. 12 shown in panel (a))
and one case with the MTSI (case no. 13 shown in panel (b)). The mobility related to
the second resonance of the ECDI is not shown since it is negligible. We verified in
both cases that the sum of µLF and µHF corresponds almost perfectly to the measured
PIC mobility.

In Figure 4.12 (a), for the case without MTSI we observe that up to t = 3 µs, the
main contribution to the mobility µPIC is due to µHF, corresponding to the ECDI.
For t > 3 µs, µLF, corresponding to the low-frequency components traveling at a
frequency similar to MTSI start to play a significant role, making more difficult to
distinguish the contribution of each mode as the discharge transits to a more chaotic
mode. When the MTSI is present, in Figure 4.12 (b), we note that up to 4.5 µs, the
mobility is completely dominated by the MTSI (µ ∼ µLF). It is interesting to point out
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that during this transient phase (0 < t < 4.5 µs), in the case where the MTSI is present
the mobility is one order of magnitude larger than the case without MTSI.

4.2.8.3 Nonlinear regime

Previous works [15] have found that nonlinear effects were playing a major role
after some characteristic growth times. In our case, after the linear growth of the
instabilities and their saturation, the system becomes more chaotic and the structures
cannot anymore be identified as the superposition of only two modes, i.e., ECDI and
MTSI.

The energy transition from short to long wavelength modes has been predicted
theoretically [107] and also observed numerically in 1D and 2D PIC simulations [129,
128]. We recall that in our PIC simulations the total energy is not conserved because
the energy is constantly injected by the imposed axial electric field. Therefore, the
steady-state is reached only thanks to the convection in the virtual axial direction. In
Figure 4.13 (a), we show the k-spectrum of the azimuthal electric field at z = Lz/2
for case no. 3. In the spectrum, for t < 10 µs, we can distinguish the MTSI, the ECDI,
and the second resonance of the ECDI. At the beginning of the simulation, as the
ECDI grows faster, most of the energy is carried by the ECDI, while the intensity of
the MTSI is lower. Later, at t = 10 µs, we observe a mode transition towards low-k
modes with now a negligible quantity of energy carried by the ECDI modes. At this
point, we observe a broad spread of energy over ky. This time corresponds to a more
chaotic state of the system with the presence of structures that mostly exhibit large
azimuthal wavelengths.

The spectral analysis in the ω− ky phase-space provides important insights into
the nonlinear state of the system. Lafleur et al. [118] suggested that the discrete ECDI

transitions to the IAW, due to a resonance broadening mechanism. This has never been
studied in the presence of MTSI. The dispersion relation in the IAW limit presented in
Chapter 2 is given as [106]

ωr ≈ k · vi ±
kcs√

1 + k2λ2
D∗

, (4.2)

γ = ±
√

πme

8mi

kyv0

(1 + k2λ2
D∗)

3/2
, (4.3)

where vi is the ion drift velocity, cs =
√

qTe/mi is the sound speed and λD∗ is the
electron Debye length calculated in the nonlinear regime. In the case analyzed here,
the ion speed is negligible, thus Eq. (4.2) simplifies to

ωr ≈ ±
kcs√

1 + k2λ2
D∗

. (4.4)

In the limit kλD∗ � 1, the previous equation can be simplified to the linear sound
relation between the frequency and the wavenumber,

ωr ≈ ±kcs. (4.5)
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Figure 4.13: PIC case no. 3, with Ly × Lz = 1.28 cm× 1.92 cm. (a) Time evolution of the
k-spectrum of the azimuthal electric field. (b) Normalized plot of the 2D
FFT of the azimuthal electric field Ey(y, z = Lz/2, t) with y ∈ [0, Ly] and
t ∈ [20 µs, 30 µs]. The solid white line shows the ion acoustic dispersion re-
lation in Eq. (4.2), the dashed line shows the growth rate of the IAW, Eq. (2.9),
magnified 25 times, the green line shows the linear sound relation as in
Eq. (4.5). Adapted from [177].
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In Figure 4.13 (b), we show the 2D FFT of the azimuthal electric field at z = Lz/2
between 20 and 30 µs for case no. 3. The linear dispersion relation for acoustic waves
in Eq. (4.5) overlaps the observed instability spectrum. Moreover, the dominant
wavenumbers observed correspond to the ones with the largest growth rate of
Eq. (2.9). These results show that in the nonlinear regime the perturbations in the
electric field travel at the sound speed, therefore a saturated IAW might be the
dominant mode.

In the nonlinear stage, we do not observe significant variations in the electron
temperature and axial mobility. In the case no. 3, the mean radial electron temperature
grows during the linear regime and remains stable between 20 and 30 µs at ∼ 55 eV
with a standard deviation σ = 1.4 eV. Similarly, in the same time interval, the mobility
stabilizes to ∼ 1.4 m2/Vs with fluctuation of the order of 0.2 m2/Vs. It is worth
remarking that the absolute value of the mobility is considerably lower as compared
to the values of ∼ 6 m2/Vs obtained before by Tavant et al. [136] with a similar
configuration. As they were imposing a higher axial electric field (Ex = 20 kV/m),
their electron drift velocity was higher. The higher v0 and the larger plasma density
(n0 = 2× 1017m−3) used in their setup enhance the ECDI oscillations, which could
explain their higher axial mobility.

4.3 radial-azimuthal benchmark
The validation of the codes against the experiments is a crucial, yet very difficult, task.
Before we achieve validation, it is however necessary to perform a verification step, by
performing a code-to-code comparison. In the low temperature plasma community,
the 1D discharge benchmark by Turner et al. [96] is a reference for the verification
of the PIC MCC modules and Poisson solvers. However, this benchmark is not repre-
sentative of the HT conditions in a E× B thruster, which is more complex due to the
presence of the magnetic field. Moreover, the very different motions of electrons and
ions trigger numerous instabilities in HTs, that are not preset when using Turner’s
simulation setup. More recently, Charoy et al. [140] proposed a 2D axial-azimuthal
benchmark, within the framework of the LANDMARK project [111], that success-
fully captured the main characteristics of the HT physics along the axial-azimuthal
directions. However, the radial direction was not included in this benchmark. Thus,
the purpose of the second benchmark proposed by LPP and CERFACS [180] was
to model the plasma discharge in a radial-azimuthal section. The benchmark was
conducted in 2020 and 2021 and brought together seven different groups to compare
their PIC radial-azimuthal results, namely CERFACS from Toulouse (FR), LPP from
Paris (FR), USASK from Saskatoon (CA), Stanford (US), ISTP from Bari (IT), RUB
from Bochum (DE) and LAPLACE from Toulouse (FR). The test case was designed
to be representative of the HT conditions in a E× B thruster at the channel exit. The
test case is described in the following sections.



4.3 radial-azimuthal benchmark 101

4.3.1 Test case description

The test case considered for the benchmark is composed of a cartesian grid, with
squared cells, similar to the one described in Section 3.2.2, Figure 3.3. The azimuthal
direction y is periodic, while the radial one z is bounded between two grounded walls,
such that this time sheaths form. No dielectric layer is present in the simulation. The
time step and the grid resolution are chosen according to Birdsall and Langdon [26]
and the CFL condition is satisfied. The test case is composed of a quasi-neutral Xenon
plasma with an initial density of n0 = 5× 1016 m−3, an electron initial temperature
of Te = 10 eV, an ion temperature Ti = 0.5 eV, an axial electric field E0 = 1× 104 V/m
and a homogeneous radial magnetic field of B0 = 200 G. Only electrons and charged
ions Xe+ are considered in the simulation. The collisionless assumption was done,
thus there was no need to consider a background plasma density. The numerical
parameters are the ones reported in Table 4.1.

The particle losses at the walls (i. e., there is a Bohm flux of particles leaving the
domain) are compensated by the injection of particles in a steady ionization profile.
The ionization profile is chosen to be as similar as possible to one of the real devices:
it has its maximum at the plasma bulk center and decreases towards the walls. The
ionization profile S(z) is given by

S(z) = S0 cos
(

π
z− Lz

z2 − z1

)
for z1 ≤ z ≤ z2,

S(z) = 0 for z ≤ z1 or z ≥ z2

with S0 the maximum value of the source term, z2 − z1 the width of the ionization
zone, and Lz is the channel width. The width of the ionization zone is set to be
≈ 1.1 cm. The value of S0 is chosen to compensate an average current density exiting
at the wall of 100 Am−2, thus S0 = 8.9× 1022 m−3s−1. More details about the way the
number of particles’ pairs is chosen and injected are given in the paper [180].

The virtual axis model

In Section 4.2.1 we addressed the importance of considering a third virtual dimension
to limit the axial energy enhancement and reach a steady-state. For the benchmark
test case, we used a model similar to the one discussed in Section 4.2.1 and in
Refs. [106, 144, 138, 150, 113, 136]. However, some differences require to be pointed
out. All particles are initialized at x = 0 (i. e., in the x direction the Poisson equation
is not solved) with random radial and azimuthal coordinates. The particles are free
to move, thus they are accelerated in the axial direction by the imposed electric field.
The two virtual walls are located at x = ±Lx: once a particle reaches the boundary it
is removed from the simulation and a new particle with the same (y, z) coordinates
is injected at x = 0 and its temperature is sampled by a Maxwellian distribution
with fixed temperature. Here comes the main difference with the model discussed in
Chapter 3. On one side, the ions are accelerated in the direction of the axial electric
field and all of them are collected by the virtual wall at x = +Lx. On the other, most
of the electrons, that are accelerated in the opposite direction, are collected by the
wall at x = −Lx. However, some energetic electrons can gyrate along the magnetic
field lines and reach the wall at x = +Lx, which was not possible using the model
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Figure 4.14: Temporal evolution of the plasma parameters in the radial-azimuthal bench-
mark case. (a) the mean electron temperature evolution in axial (x), azimuthal
(y) and radial (z) directions. (b) the overall mean ion (ni) and electron (ne)
densities.

discussed before. Doing several tests allowed us to notice that the choice of the
virtual axis thickness and its model may strongly affect the plasma characteristics, in
particular the electron temperature.

4.3.2 Selected benchmark results: electron temperature, plasma density and fre-
quency analysis

For a complete discussion of the benchmark results, in particular for the discussion
about the appearance of the ECDI and MTSI instabilities, the reader should refer to the
paper [180]. Here, we study only the plasma parameters (temperature and density)
and the frequency analysis. In Figure 4.14 we show the evolution of the electron
temperature (a) and the electron and ion density (b). We observe that the temperature
reaches its final value after a couple of microseconds: this is compatible with the travel
time of the electrons between the center plane and the wall at which most of them
are absorbed. After that, the temperature oscillates around a fixed value. We also
observe that the fluctuations of temperature are rather high in the radial direction,
while the temperature is stable in azimuthal and axial directions. These fluctuations
are compatible with the variation of the MTSI intensity [180], which has been shown
previously to provide heating of the electrons in the radial direction. The quasi-
steady-state is reached after ≈ 10 µs: the mean density stabilizes, cf. Figure 4.14 (b),
at a value of ≈ 1× 1017 m−3, but some oscillations are still present.

As mentioned before, an important characteristic of this simulation is the simulta-
neous presence of both the MTSI and of the ECDI. As discussed in Chapter 1 and 2, the
ECDI is driven by the differential drift between electrons and ions, via the coupling
of the IAW with the doppler-shifted Bernstein wave [11, 17]. The ECDI resonances
occur at some specific values of the azimuthal wavenumber: ky = pωce/vd with
p ∈ N+ and vd = E0/B0. As we have shown above, the typical MTSI wavenumber
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Figure 4.15: The FFT of Ey averaged radially over three different intervals. The vertical
lines represent from left to right the peak of the MTSI, the peak of the ECDI first
resonance, and the peak of the ECDI second resonance.

cannot be easily identified, but its value usually is well below the first ECDI resonance.
In Figure 4.15 we report the FFT of Ey calculated in the azimuthal direction and
averaged over every radial position and in time. What we observe is that it is possible
to identify the low-ky MTSI frequency and the first two harmonics of the ECDI at a
slightly larger frequency. These mode characteristics have been retrieved by all the
groups participating in the Benchmark [180].

To compare precisely the results, the ion density and electron temperature radial
profiles (i. e., averaged azimuthally and in time) are reported in Figure 4.16. The
time averaging interval is 25− 30 µs. Both quantities show an excellent agreement
between the codes, all the differences are within the ±2.5% of the mean value (i. e.,
reported by the red line in Figure 4.16).

Among the other studies, we performed a study about statistical convergence.
Indeed, Okuda and Birdsall [13] have shown that a reduced number of superparticles
can increase the number of numerical collisions (i. e., the numerical noise) in the
PIC simulations. In Figure 4.17 (a) we report the mean final density as a function of
the weight factor q f and in (b) we report the corresponding axial profiles. One may
remark that the markers in (a) have the same color as the corresponding line in (b).
Figure 4.17 (a) shows that the weight factor should be no larger than 3× 106 m−1. If
it is the case, there is a significant deviation of the mean density from the converged
value. This is also evident in (b), where the profiles of the cases with a low number of
particles per cell are not converged to the good value obtained when the simulation
has, on average, more than 100 particles per cell.
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Figure 4.16: The radial (along z) average profiles of (a) the electron temperature and (b)
the ion and electron density. The shaded areas represent a ±2.5% around the
Benchmark value.

Figure 4.17: The statistical convergence of the simulation. (a) the mean final density as a
function of the weight factor q f . (b) the corresponding axial profiles. The mark-
ers in (a) have the same color as the corresponding line in (b). The nominal
case of the Benchmark is the yellow one.
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4.4 chapter summary
In this chapter, we studied the evolution of the MTSI in E× B discharge conditions
encountered in the radial-azimuthal (z, y) plane of Hall thrusters, by comparing
the theory developed in Chapter 2 with numerical simulations. In the Chapter 2,
we calculated an approximated version of the fluid dispersion relation of MTSI by
Janhunen et al. [129], given by Eq. (2.13). By solving analytically this simplified
dispersion relation, we have identified a stability criterion for the MTSI: the instability
grows if one of the couples (ky, kz) allowed by the boundary conditions and domain
lengths is such that kz fulfills the condition given by Eq. (2.16). This analytical
criterion has been compared to several 2D PIC simulations of E× B discharges in the
radial-azimuthal (z, y) plane of Hall thrusters. We found that the dimensions of the
simulation domain play a fundamental role in selecting the values of ky and kz. We
verified that by choosing properly the domain dimensions Ly and Lz, it was possible
to capture correctly the MTSI growth and its corresponding number of azimuthal
periods. In particular, we showed that an azimuthal length that is smaller than a
certain threshold prevents the MTSI from growing. Moreover, we showed that the
MTSI growth does not depend on the plasma density, but is affected by the axial
electric field (the required azimuthal domain Ly for the MTSI to grow is larger for
increasing axial electric field). The previous results of Janhunen et al. [129] and Tavant
et al. [136] have been analyzed by using the stability criterion derived in this paper,
and we managed to explain the reason why only one MTSI period was observed by
the former, and why the MTSI was not present in the latter.

We have also studied the impact of the MTSI on the macroscopic variables of the
discharge. First, we have observed that during the early times of the simulation
when the contributions of different instabilities are easy to distinguish, the MTSI

is responsible for strong heating in the radial direction and enhances the axial
electron mobility. For longer times, after the linear growth of the ECDI and MTSI and
their saturation, the electric field oscillations are present in a wider spectrum of
frequencies and wavelengths. In general, the initial oscillations evolve towards longer
azimuthal wavelengths. In this nonlinear regime, we observed some instabilities that
are compatible with an ion acoustic mode.

It is important to note that, due to the demanding computational requirements of
PIC, the present study is performed in a simplified 2D setup where the collisions with
the gas particles and the ionization events were neglected. For this reason, in future
work, the use of simulations that account for the gas dynamics could help to study
more consistently the MTSI characteristics for longer time spans. Additionally, all the
results in this work are obtained with specular walls. These boundary conditions
helped us to compare the simulations with our theoretical developments as the
formation of the sheath was prevented. In most of our simulations, we observed
a MTSI mode with half wavelength in the radial direction. However, the sheaths
allow the growth of modes with a slightly larger value of kz [12]. Unfortunately, the
presence of sheaths prevents us from calculating the precise value of kz, making more
difficult the comparison between the PIC results and the fluid DR. The sheaths are
expected to change the MTSI radial wavenumber, but the instability criterion is not
strongly affected. This fact was verified as we have successfully applied our theory
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to previous works [129, 136] where sheaths were present. Further work is needed to
investigate the effect of sheaths in the evolution of the MTSI.

In the last part of this chapter, we reported the results obtained in an international
benchmark, in which our group had a leading part, along with Willca Villafana at
CERFACS, Toulouse. In the benchmark, we compared the results by seven groups
of E × B discharges, representative for the radial-azimuthal plane of a HT. The
benchmark has shown that all the codes can retrieve the most important electrostatic
instabilities that appear in these conditions, the MTSI and the ECDI. Moreover, a
statistical convergence study performed on the superparticles’ weight showed that
for the studied conditions the value of q f should be less than 3× 106 m−1.



5 A X I A L- A Z I M U T H A L S I M U L AT I O N S
S P E C T R A L A N A LY S I S

This chapter provides a summary of our research on instability development in the axial-
azimuthal plane of HTs. The first section shows an analysis of the instabilities features of the
BM growing and decreasing phases. In the subsequent section, the growth and development
of the ion acoustic wave (IAW) are explored, and it is noted that this instability starts at the
channel exit before propagating towards the anode and cathode. In the final part of the chapter,
the ion transit-time instability (ITTI) and its impact on low-energy ions in the plasma plume
are investigated.

Chapter contents

5.1 Axial-azimuthal simulations . . . . . . . . . . . . . . . . . . . 107

5.2 Spectral analysis of the BM phases . . . . . . . . . . . . . . . 108

5.2.1 Analysis during the growing phase of the BM . . . . . . . . 112

5.2.2 Analysis in the decreasing phase of the BM . . . . . . . . . 112

5.2.3 Analysis over the entire BM period . . . . . . . . . . . . . . 115

5.2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.3 Instabilities in axial-azimuthal simulations . . . . . . . . . . . 118

5.3.1 The IAW in two dimensions . . . . . . . . . . . . . . . . . . 118

5.3.2 The ion transit-time instability . . . . . . . . . . . . . . . . . 128

5.4 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . 136

The results in this chapter have been partially published in Refs. [201, 202].

5.1 axial-azimuthal simulations
The radial-azimuthal simulations discussed in Chapter 4 are extremely useful to
study the physics of plasma-wall interaction. However, they are not sufficient to
capture the basic physics of HT’s, since they do not simulate the axial direction
(i. e., the thrust direction). A 3D simulation would be the best option to include the
dynamics along the three directions. Hirakawa and Arakawa in the ’90s proposed
the first model of 3D simulations [32]. Furthermore, there have been more recent
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attempts to conduct 3D simulations [135, 179, 203]. However, the costs of 3D PIC

simulations remain extremely high and most of the research is still conducted with
2D codes.

Despite the extensive literature about the azimuthal instabilities [66, 92, 129, 144,
133, 180], there are only a few studies [75, 185] of the axial modes, which may be
due to the difficulty of calculating a spectrum in the axial direction, in which strong
gradients are present. Here, we use the PSD2P method, developed by Beall et al. [21]
and described in Chapter 2, to reconstruct the PSD spectrum at a given axial position.

The significance of the azimuthal direction on the performance of the thruster is
now well established. Charoy and coworkers [170] initiated the study of the influence
of the coupling of azimuthal and axial instabilities on plasma dynamics, specifically
analyzing the BM phases. Despite their efforts, some aspects remained not fully
explained. In this chapter, we introduce some improvements to Charoy’s work and
we use theoretical and simulation results to gain deeper insights into the growth and
propagation of instabilities. This study allows us to better identify the effects of the
instability on the thruster performance.

In Chapter 3 we described the main features of an axial-azimuthal simulation and
the effect of the RLC circuit on some simulation cases. Some of these simulations
are reconsidered here, where we first study the development of plasma instabilities
during the different BM phases. Then, we compare the analytical DRs calculated in
Chapter 2 to the spectra obtained from PIC simulations, using the PSD2P reconstruction
technique (cf. Section 5.2). Subsequently, in Section 5.3, we investigate the origin and
development of the IAW and ITTI, giving particular attention to the dispersions’ 2D
effects. In this chapter, the PSD2P method is used to analyze the instability spectra in
cases A and C (i. e., 2D axial-azimuthal simulations with a 4 cm× 4 cm domain with
an optimized RLC circuit) described in Chapter 3.

5.2 spectral analysis of the bm phases
To capture several periods of the BM and reach a quasi-stationary state with a PIC

simulation, very long simulations are needed (≈ 500 µs of physical time) with a
computational cost of the order of weeks on thousands of CPUs. For this reason, as
described in Chapter 3, we have used a scaling technique that consists in artificially
increasing the vacuum permittivity [99]. It was shown that the artificial permittivity
has an impact on the growth rate of the electrostatic instabilities and that it also
increases artificially the wavelength of certain modes. For this reason, the azimuthal
length used in this chapter (Ly = 4 cm) is larger than the typical length used in
previous axial-azimuthal PIC simulations [124, 140].

It was previously observed that without ballast or filter, the BM oscillations may
become extremely large and may even drive the discharge into unphysical condi-
tions [155, 170]. Here, this problem is overcome by using an external RLC circuit [82]
that strongly damps the discharge current oscillations. Such circuits are also used in
experiments. Note that the circuit parameters values used in cases A and C, detailed
in Table 3.2, are different. These parameters are chosen to test two different circuit
responses: faster in A and slower in C.
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As reported in Charoy et al. [170], the time evolution of the plasma discharge during
a BM oscillation can be separated into two stages: the growing phase of the BM, where
the dominant instabilities are the high-frequency mainly-azimuthal ECDI/IAW, and
the decreasing phase of the BM where the intermediate frequency axial ITTI dominates.
The spectra are generated both in azimuthal and in axial directions, which allows us
to accurately determine the direction of the propagation of the various modes. This
analysis of the direction of the propagation will be detailed further in Section 5.3,
where we will analyze thoroughly the amplitude evolution of the spectra along the
thruster axis.

In Figures 5.1 and 5.2 we plot the time evolution of the discharge current in cases
A and C, respectively, with the axial profiles of electron temperature and density at
different times during the BM period. First, we note that the BM frequency decreases
when we use a lower injection temperature at the cathode. More importantly, in
case A there is a strong high-frequency oscillation that is absent in case C. The axial
profiles of electron temperature and density at different times in Figures 5.1 and 5.2
show that the plasma parameters oscillate more in the case of a higher injection
temperature. The electron temperature profiles are, however, fairly similar in both
cases. We observe that the temperature is higher in the decreasing BM phase, with a
maximum at the channel exit (i. e., between 2 and 2.5 cm). The profiles show strong
inhomogeneities in the axial direction, justifying the need of PSD2P to compute the
fluctuations spectra along this direction. In the bottom row of Figures 5.1 and 5.2 we
observe the axial profiles of the cyclotron frequency ωce, cf. Eq.(1.1), of the anomalous
collision frequency νt and of the classical collision frequency νclass. The anomalous
collision frequency is calculated from the electron mobility in the axial direction as

µe,x =
ve,x

Ex +∇(nekBTe)/nee
, (5.1)

by the usual mobility formula for magnetized plasmas: νt = meω2
ceµe,x/e, cf. Eq. (3.3).

One should be aware of the discussion about the anomalous transport in Section 1.2.3:
a more correct model of electron transport requires the inclusion of the friction force.

In both cases A and C, the profile of νt is rather smooth in the thruster channel,
while it is noisier in the plume. This fact is related to the method of calculation of
the mobility. Interestingly, we find the same trends and a similar order of magnitude
for all the quantities. First, as expected, in both works, the anomalous collision
frequency is higher than the classical one. In Dale et al. [142], the authors propose a
similar graph in an experimental work in slightly different discharge conditions. They
observe that the classical collision frequency decreases from the mid-channel to the
first centimeters of the plume, while the anomalous collisional frequency increases:
this is what we observe in our simulation results too.
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Figure 5.1: Case A with Tcath
e = 5 eV. (a) The discharge current. The four points indicate

the times at which the profiles in (b-e) and (f-i) are taken (the marker color
corresponds to the frame color in the bottom line). In the central line panels, we
show the axial profiles of electron temperature (red) and electron density (black)
at the chosen times. The purple line represents the magnetic field profile on a
linear scale. In the bottom panels, we show the axial profiles of the cyclotron
frequency ωce, the anomalous collisional frequency νt, and of the classical colli-
sional frequency νclass. The dashed black line represents the thruster exit plane.
From Ref. [201].
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Figure 5.2: Case C with Tcath
e = 0.1 eV. (a) The discharge current. The four points indicate

the times at which the profiles in (b-e) and (f-i) are taken (the marker color
corresponds to the frame color in the bottom line). In the central line panels, we
show the axial profiles of electron temperature (red) and electron density (black)
at the chosen times. The purple line represents the magnetic field profile on a
linear scale. In the bottom panels, we show the axial profiles of the cyclotron
frequency ωce, the anomalous collisional frequency νt, and of the classical colli-
sional frequency νclass. The dashed black line represents the thruster exit plane.
From Ref. [201].
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5.2.1 Analysis during the growing phase of the BM

We present PSD2P maps during the growing phase of a BM oscillation in Figures 5.3
(case A) and 5.4 (case C). In both cases, we analyze both the axial and the azimuthal
spectrum at two different points of the thruster, one inside the channel and one in
the plume. In addition, we select the mode at high frequency with large amplitudes
and we plot the direction of propagation.

As observed by Charoy et al. [170], the spectrum is dominated by the ECDI/IAW

during the growing phase. We can distinguish two regions: one close to the anode,
where the instability propagates at a finite angle with respect to the azimuthal
direction, and one in the plume, where the propagation is essentially in the azimuthal
direction. Inside the channel, plotted in subfigures 5.3 and 5.4 (a) and (d), we observe
that there are only small differences between cases A and C. In both cases, we observe
that the instability propagates with a significant angle, with an inclination of the wave
vector towards the anode, as shown by the cyan arrows in Figures 5.3 and 5.4 (c). The
most significant differences between case A and case C appear in the plasma plume,
in the PSD2P maps of subfigures 5.3 and 5.4 (b) and (e). In case C Figure 5.4 (e), we
identify the frequency and wavenumber corresponding to the ECDI at ω ≈ 1 MHz
and ky ≈ 400 m−1, while the spectrum in Figure 5.3 (e) calculated for case A is more
complex. The signature of the ECDI at high frequency and wavenumber is still seen,
but the main mode is at lower frequency and wavenumber, within the range reported
in Section 3.3 for the ITTI. It, therefore, appears that the PSD2P technique can capture
the simultaneous presence of both modes.

As it can be seen in Figure 5.4 (b), the ECDI/IAW also has a signature in the axial
direction. The mode with the largest amplitude is seen at kx = 0. As a result, we
observe a wave that propagates almost azimuthally. However, the axial dispersion
map, which was not analyzed in previous works, suggests that the ECDI/IAW may
have a 2D nature. The spectrum is broad and can be compared to the theoretical
IAW dispersion relation, as already done in several works [170, 118, 177, 139, 138,
185]. This discussion about the 2D nature of the IAW and the comparison with the
analytical DR will be carried out in Section 5.3.1.

In Figures 5.3 and 5.4 we see that the PSD2P technique successfully captures the
bending of the wavefronts, observed in the density snapshots. In addition, we observe
a change in the frequency of the dominant ECDI/IAW mode between the region near
the anode and that near the thruster exit. These results are consistent with the change
of direction in the propagation of the wave and change of frequency along the
thruster axis as observed by Ben Slimane et al. [185] using virtual Thomson scattering.
This will be further discussed in Section 5.3.1.3.

5.2.2 Analysis in the decreasing phase of the BM

The PSD2P maps of the decreasing phase of the discharge current are shown in
Figures 5.5 and 5.6 for cases A and C, respectively. As already observed by Charoy et
al. [170], the spectrum and dynamics of the instabilities are very different from those
of the growing phase. In the thruster channel, we still observe an ECDI-like instability
that propagates at a finite angle with respect to the thruster axis, but the spectrum
in the plume changes drastically. In this region, we observe a longer-wavelength
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Figure 5.3: Case A, growing phase of the BM. In (a) and (b): PSD2P maps calculated in
the axial direction in the channel and the plume. In (d) and (e): PSD2P maps
calculated in the azimuthal direction at the same axial positions. The white rings
represent the max of the PSD2P. In (c): a snapshot of the electron density map at
t = 294 µs. The arrows represent the instability direction, which is calculated by
the kx and ky in the spectra. Each frame corresponds to the arrow with the same
color. In (f): axial profile of the electron density at t = 294 µs. From Ref. [201].
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Figure 5.4: Case C, growing phase of the BM. In (a) and (b): PSD2P maps calculated in
the axial direction in the channel and the plume. In (d) and (e): PSD2P maps
calculated in the azimuthal direction at the same axial positions. The white rings
represent the max of the PSD2P. In (c): a snapshot of the electron density map at
t = 263 µs. The arrows represent the instability direction, which is calculated by
the kx and ky in the spectra. Each frame corresponds to the arrow with the same
color. In (f) axial profile of the electron density at t = 263 µs. From Ref. [201].
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instability, directed mainly axially, identifiable as the ITTI. This instability, which has
a frequency of the order of 500 kHz and a wavelength of the order of 1 cm, is also
captured in the dispersion maps by the PSD2P technique. Its frequency in case A is of
≈ 600 kHz and in case C of ≈ 300 kHz, while the axial wavenumbers are ≈ 80 m−1

and ≈ 40 m−1, respectively. In the axial PSD2P map, we observe that the instability
dispersion has approximately the same shape as the resistive mode identified by
Fernandez et al. [75] in radial-axial simulations. A complete comparison between the
linear theory and the PSD2P spectra is presented in Section 5.3.2.

Even if the azimuthal PSD peak remains at ky ≈ 0, we observe that the PSD2P map
is not perfectly symmetric. In particular, we note in Figure 5.5 (e) that the azimuthal
wavenumber is not perfectly centered at zero, as one would expect for a perfectly
axial instability. This is a hint that the ITTI may have a small azimuthal component. It
will be shown in Section 5.3.2 that this observation is crucial to understand the linear
phase growth of this instability.

5.2.3 Analysis over the entire BM period

The comparison of the spectra of cases A and C during an entire BM period suggests
the following. In case A, the ITTI is present in both phases and is dominant in
the plume during the phase of discharge current collapse. In case C, two different
dispersion maps are identified: one dominated by ECDI/IAW with almost no ITTI

during the growing phase of the discharge current (i. e., in Figure 5.4, the instability
in the plume is purely azimuthal), and another one dominated by the ITTI with
almost no presence of ECDI/IAW in the plume during the decreasing phase of the
discharge current. As further discussed in the following, the origin of this difference
may be explained by the ITTI growth rate derived from fluid theory, which depends
on the collision frequency [75], so on the electron temperature (the plume electron
temperature is different in cases A and C).

5.2.4 Summary

All in all, both ECDI/IAW and ITTI instabilities have a dominant propagation direction
(azimuthal for the ECDI/IAW and axial for the ITTI). However, thanks to the PSD2P tech-
nique, the two-dimensional character of these instabilities, that heretofore have been
seen as mono-dimensional instabilities, has been demonstrated. In the next sections,
we analyze in detail the 2D effects on the instabilities’ growth and propagation, and
it appears that 2D effects are very important.

In the previous section, we presented 2D PIC simulations of the axial-azimuthal
plane of a Hall thruster coupled to a fluid model for the gas. We studied two 4 cm×
4 cm PIC simulations with different cathode injection temperatures (i. e., Tcath

e fixed
to 0.1 or 5 eV) and circuit. For both cases, we observed that the ECDI/IAW instability
dominates during the growing phase of the BM, while the ITTI is predominant in
the decreasing phase of the BM. However, the injection temperature and the choice
of the circuit elements have demonstrated to play a role in the development of the
instabilities. In the case with low temperature, i.e., Tcath

e = 0.1 eV (named "case C"
above), the ITTI is not present during the growing phase of the current whereas the
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Figure 5.5: Case A, decreasing phase of the BM. In (a) and (b) we show the PSD2P calcu-
lated in the axial direction in the channel and the plume. In (d) and (e) we show
the PSD2P calculated in the azimuthal direction at the same axial positions. The
maximal density is very close to x = 0.96 cm (i. e., the axial position chosen for
the other figures), so we performed the analysis at a position slightly closer to
the anode. The white rings represent the max of the PSD2P. In (c) a snapshot
of the electron density map at t = 316 µs is shown. The arrows represent the
instability direction, which is calculated by the kx and ky in the spectra. Each
frame corresponds to the arrow with the same color. In (f) we report the electron
density axial profile at t = 316 µs. From Ref. [201].
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Figure 5.6: Case C, decreasing phase of the BM. In (a) and (b) we show the PSD2P calculated
in the axial direction in the channel and the plume. In (d) and (e) we show the
PSD2P calculated in the azimuthal direction at the same axial positions. The
white rings represent the max of the PSD2P. In (c) a snapshot of the electron den-
sity map at t = 272 µs is shown. The arrows represent the instability direction,
which is calculated by the kx and ky in the spectra. Each frame corresponds to
the arrow with the same color. In (f) we report the electron density axial profile
at t = 272 µs. From Ref. [201].
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IAW/ECDI disappears during the decreasing phase. In the case with Tcath
e = 5 eV and

faster circuit (named "case A" above) we observed a persistent ITTI during both phases
of the BM.

5.3 instabilities in axial-azimuthal simulations
In this section, we focus on case C of Chapter 3 with the low injection temperature
(i. e., Tcath

e = 0.1 eV), with a slower circuit response (i. e., higher τ) as it gives the
possibility to study the two instabilities separately. The different phases of this
simulation are analyzed in detail in Section 5.3.1, where we compare the PSD2P maps
to the analytical DRs obtained in Section 2.2. The analysis reveals key observations
about the nature and the development of these E× B instabilities.

5.3.1 The IAW in two dimensions

The ion acoustic wave has been studied as a purely azimuthal instability in several
works [170, 118, 177, 139, 138], while we observed that this instability has an axial
signature as well. In Section 2.2.2 we derived a bi-dimensional dispersion relation (cf.
Eq. (2.7)) for the IAW. By extracting λD, ωpi and vi,0 from PIC data and substituting
these values in Eq. (2.8), we can obtain the IAW frequency for different values of kx
and ky. Figure 5.7 (a) shows a map of the IAW frequency for values of kx and ky in a
typical range for IAW.

Since we are assuming that kx 6= 0 and ky 6= 0, the comparison of this DR map
with a simulation spectrum requires a 3D transform of a signal in the x − y − t
space, which is not achievable in a convenient way. This issue can be overcome
by considering that the main component of the IAW is an ECDI-like almost-purely
azimuthal oscillation (i. e., such that ky � kx), represented as the black arrow in
Figure 5.7 (a), with an azimuthal wavenumber kmax

y . Thus, we can assume that the
IAW is an instability developing around the (kx ≈ 0, ky ≈ kmax

y ) point in the k−space.
When we perform a spectral analysis in the azimuthal direction, we then have to
compare it with the 1D analytical DR calculated along the blue line in Figure 5.7 (a),
which corresponds to a dispersion ωazimuth

1,2 (ky) = ω1,2(ky, kx ∼ 0) that is equivalent
to the one commonly calculated for the 1D IAW. Oppositely, the 1D axial DR must be
calculated considering that the azimuthal wavenumber component is not negligible
and has a constant value kmax

y . Thus, the dispersion that we observe in the axial
direction corresponds to the one calculated along the green line in Figure 5.7 (a),
i. e., ωaxial

1,2 (kx) = ω1,2(ky ≈ kmax
y , kx). The coefficients of these equations are calculated

by averaging over y and over time the plasma parameters extracted from the PIC

simulation. The value of kmax
y is calculated from the PSD2P numerical spectrum in the

azimuthal direction.
A representation of these DRs is given in Figures 5.7 (b) and (c), where the blue

and green lines represent the 1D DRs calculated along the corresponding lines in
Figure 5.7 (a). The two color plots in these figures, displaying the azimuthal and axial
PSD2Ps, are discussed and compared to the analytical DRs in Section 5.3.1.2. Here, we
only emphasize the significant effect of the choice of the axial position at which we
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Figure 5.7: (a) Numerical solution of Eq. (2.8) with plasma parameters extracted from PIC

simulations (4 cm× 4 cm axial-azimuthal domain with an electron temperature
of injection at the cathode of 0.1 eV) at the axial position of x = 2.5 cm, corre-
sponding to the channel exit (i. e., kx ≈ 0 and ky ≈ 430 m−1). Bottom: Azimuthal
(b) and Axial (c) PSD2P map calculated at the channel exit. The green and blue
lines in (b) and (c) represent the azimuthal and axial projections of the IAW as
shown in (a). The dashed lines in (b) and (c) show the DR calculated inside the
channel, while the solid lines represent the DR calculated at the channel exit.
From Ref. [202].
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extract the plasma parameters: the axial DR varies drastically from the thruster inner
channel to the channel exit.

5.3.1.1 Temporal evolution of the IAW amplitude

To study the evolution of the IAW during a BM cycle, we take six time-intervals of
8 µs, spanning from the start to the end of a BM cycle, as shown in Figure 5.8 (a). For
each time-interval, we perform an axial and an azimuthal PSD2P at several positions
along the thruster axis and we calculate from these PSD2P maps the intensity of the
IAW peak (by summing axial and azimuthal contributions). Figure 5.8 (b) confirms
that the IAW intensity profiles change significantly during the breathing mode, as was
observed above. The study of the evolution of these profiles gives important insights
into the growth and development of ion acoustic instability.

At the beginning of the growing phase of the BM, cf. Figure 5.8 (c), we observe that
the IAW develops mainly in the external part of the channel and the plume (blue line
in Figure 5.8 (b)), with a maximum at x ∼ 1.75 cm, while almost no IAW is detected
in the thruster inner channel. This observation remains true in the BM growing
phase: green, orange, and yellow lines, i. e., Figs. 5.8 (d, e, f). Here, we observe that
the maximal IAW intensity stays between x = 1.5 and 2 cm, and progresses slightly
towards the anode at each subsequent time-interval. The IAW amplitude in the plume
is smaller than the maximum and approximately constant in space, increasing at
each time step of the growing BM phase. In the channel region near the anode, almost
no IAW is detected in the first two intervals (blue and green). At t =254 µs we observe
a consistent growth of the IAW also in this region, even if the IAW intensity near the
anode remains significantly lower than the one at the thruster exit.

In the decreasing phase of the BM (magenta and brown lines, i.e., Figs. 5.8 (g, h))
we observe a major change in the IAW characteristics. The instability starts to move
towards the anode, while in the central part of the thruster, almost no IAW is detected
and a weaker residual IAW is detected in the plume region. The absolute value of the
maximum, which is now near the anode, decreases. This means that a part of the
instability energy has been dissipated or convected out of the simulation domain
at the anode boundary. Similarly, the wave amplitude in the plume decreases: this
is consistent with the observations of the previous section where the IAW almost
disappears in the plume during the BM decreasing phase, which is dominated by the
ITTI.

The analysis of the evolution of the IAW amplitude performed in this section using
the PSD2P technique suggests that: (i) the instability forms at the beginning of the BM

growing phase at a position near the channel exit, (ii) during the whole BM growing
phase the instability strengthens at the channel exit and in the plume and starts to
propagate also in the region next to the anode, (iii) eventually, in the BM decreasing
phase, the IAW loses most of its energy at the cathode exit and in the plume, where
the ITTI becomes dominant (cf. [201]), while it remains prevailing near the anode,
even if it loses some of its energy.

5.3.1.2 The origin of the IAW

Although the discussion in the previous section has already given some important
insights about the origin of the IAW instability, the comparison of the PSD2P maps
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with the analytical DR improves significantly our understanding of the growth of this
instability. Since the shape of the spectrum along the thruster axis for x > 2 cm is
rather constant and, as we see in Figure 5.8 (b), the amplitude does not vary either,
we chose to calculate the PSD2Ps at the channel exit (x = 2.5 cm, cf. Figure 5.7 (b)
and (c)), and then to compare them to the analytical results obtained by Eq. (2.8).
Since we want to study how the analytical DR varies when we change the time and
the axial position, we work in a bi-dimensional parametric-space, that is difficult to
compare to the dispersion relations maps obtained with the PSD2P. To identify the
right time and axial position at which the instability forms, we dynamically adjusted
the time and position of the calculation, verifying that the best fit of the PSD2P maps
is obtained by calculating the dispersion at the beginning of the growing phase of the
Breathing Mode, which is consistent with what we observed in the previous section.
Similarly, we calculated the IAW analytical axial and azimuthal DRs at several axial
positions, comparing them to the PSD2P maps. An example is shown in Figure 5.7
(b) and (c), where we plotted two DRs: one calculated in the channel near the anode
(dashed line) and the other at the thruster exit (solid line). In Figure 5.7 (b) we can
see that both the dispersion calculated in the channel and the dispersion calculated in
the plume fit the azimuthal spectrum calculated with the PSD2P. Hence, it is difficult
to conclude anything about the instability origin using only the spectrum in the
azimuthal direction. As we have seen, the spectrum in the axial direction, reported in
Figure 5.7 (c), has a well-defined shape, that helps us to identify the position where
likely the IAW forms. We observe that the axial dispersion ωaxial

1,2 (kx) calculated at
the channel exit is consistent with the spectrum, while the one calculated using the
parameters extracted in the channel near the anode is not. Thus, these observations
suggest that the instability is not originated from the channel and then convected
outwards, as proposed in Ref. [170], but rather that the IAW arises in the central part
of the simulation (between the density peak and the max of the magnetic field). This
view is consistent with what has been observed in Section 5.3.1.1 concerning the
evolution of the instability intensity.

The previous observation about the position at which the IAW originates can be
consolidated by studying the characteristics of the IAW growth rate, calculated using
kinetic theory by Lafleur et al. [105], the result of which is given in Eq. (2.9). In
Figure 5.9 (a) we observe that in the azimuthal direction, the maximal growing
wavenumbers are rather well predicted by the analytical γ, as already noticed in
several other works [170, 118, 177]. The novelty is given by the result in (b), where
we observe that the expression in Eq. (2.9) predicts the growth of a low-kx mode, as
it is indeed observed. From Eq. (2.9) one can easily compute the maximal value of
the growth rate in the case of a purely azimuthal instability, as

γmax ≈ γ

(
ky =

1√
2λD

, kx ≈ 0
)

=
√

πme

54mi

ve,0,y

λD
, (5.2)

which is proportional to the ratio between the azimuthal drift of electrons and the
Debye length. The axial profiles of these quantities at the beginning of the BM cycle
are shown in Figure 5.10 (a) and the corresponding maximal growth rate profile is
shown in Figure 5.10 (b). Observation of this profile shows a weak growth rate in the
channel near the anode and in the plume. Definite evidence of a significant growth
rate is observed in the central part of the simulation, with a plateau between ∼ 1.4
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Figure 5.9: In (a) and (b) the 2D color plots show the PSD in azimuthal and axial directions,
respectively. In green, we draw the best IAW DR as in Figure 5.7. The correspond-
ing growth rate of Eq. (2.9) (magnified by a factor 8) is plotted in blue. From
Ref. [202].

Figure 5.10: (a) Debye length (red) and electron azimuthal drift velocity (blue) mean pro-
files between 234 and 238 µs. (b) The maximum growth rate from Eq. (5.2). We
remind the reader that the value of λD has been increased by a factor of 8 by
scaling the permittivity. From Ref. [202].
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Figure 5.11: The axial profiles of sound speed and ion axial velocity calculated at t = 262 µs.
The arrows indicate the direction of propagation and convection of the wave.
From Ref. [202].

and 2.7 cm. This corroborates the idea that the instability primarily grows in the
external part of the discharge channel and subsequently propagates towards the
anode and the cathode. In Figure 5.11 we observe that the ion flow is subsonic in the
anode region (i. e., x . 1.7 cm), which allows the propagation of the plasma wave.
Conversely, when the flow becomes strongly supersonic in the plume region, we
expect that a phenomenon of instability convection will couple with the propagation
of the wave [118]. In Figure 5.11 we present a schematic summarizing the propagation
and wave convection.

5.3.1.3 The cause of the bending of the IAW instability

Several works [140, 185, 158, 99] have reported the fact that the IAW/ECDI instability is
purely azimuthal in the plume, while it propagates with a non-zero kx component in
the region next to the anode. To understand the reason why we observe a change in
the instability direction we propose an analogy with the classical Snell theory of sound
waves propagation in media with different sound velocities [148]. This theory (that can
be extended from perfect gases to plasmas without further approximations) suggests
that the propagation velocity of sound waves depends on the gas temperature.

As already discussed above, the PSD2P technique successfully captures the bending
of the wavefronts, thus it can be used to study the evolution of the instability along
the thruster axis. We have calculated the PSD reconstructed spectrum in axial and
azimuthal directions at four different axial positions and the corresponding 8 PSD2P

maps are shown in Figure 5.12. In this figure, the subfigures (a-d) display the axial PSD

at different axial positions and the subfigures (f-i) show the corresponding azimuthal
ones. In (e) we show a snapshot taken at t = 263 µs of the electron density and,
superimposed to it, we draw the four arrows indicating the instability propagation
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direction determined by the main components calculated in the PSD2P spectra. The
instability propagates with kx 6= 0 in the channel near the anode, as one can notice
in Figs 5.12 (a) and (f), then the wavefronts fold in a position near the electron
temperature peak and the instability direction becomes parallel to the azimuthal
direction. Observing the subfigure pairs (c,h) and (d,i) we notice that the spectral
maps do not vary much in the plume and that the axial and azimuthal dispersion
relations of IAW (calculated as in the previous sections) successfully fit the dispersion
maps at both positions.

The propagation without energy losses of a plane wave at an interface of two
media implies the conservation of the wave frequency, otherwise the wave energy is
not conserved. So, just considering that the parallel (to the interface of two media)
wavenumber is conserved and that the wave velocity varies at the interface, we can
easily obtain the Snell law for plane waves as

cotanθdθ =
dv
v

,

where θ is the propagation angle with respect to the normal to the interface and
v = ω/k is the wave speed. Considering two regions of thickness δx, as shown in
Figure 5.13, we can write the Snell law as

sin θ1

v1
=

sin θ2

v2
, (5.3)

where v1,2 are the phase velocities in the two zones and θ1,2 are the corresponding
angles. Extending classical gas theory to plasma, as a first approximation we assume
that the hotter the plasma, the higher the propagation velocity of IAW. This is consis-
tent with the result in Eq. (2.8), which suggests that this oscillation propagates at the
Bohm speed, which is proportional to T1/2

e . So, considering an instability forming in
the region between the temperature peak and the thruster exit in the first phase of the
BM growing phase, its propagation towards the anode is blocked by the temperature
peak, which behaves as a barrier. By considering two propagation velocities v1 and v2,
such that v1 < v2, corresponding to a lower temperature and a higher temperature,
respectively, we use the Snell law to clearly explain the nature of this phenomenon.
Using such velocities in Eq. (5.3), we have that the refraction angle θ2 of a wave
propagating almost parallel to the azimuthal direction (sin θ1 ∼ 1) is such that

sin θ2 =
v2

v1
> 1.

Hence, this relation suggests that the propagation is forbidden from a zone with
lower temperature to a zone with higher temperature and successfully explains
the barrier behavior of the temperature peak. Moreover, this theory is confirmed by
the slow instability convection towards the temperature peak that we observe in
Figure 5.8 (b). Instability transport is not totally prohibited, as the temporal variation
of plasma parameters allows some propagation beyond the temperature peak. The
situation is different when we consider the region between the maximal temperature
position and the anode. In this zone the electron temperature decreases (from right to
left), so does the propagation velocity, and the wave propagation towards the anode
is not anymore forbidden. The Snell-behavior hypothesis proposed in this section can
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Figure 5.13: Schematic of the Snell refraction of an instability propagating from region 1 of
thickness δx with propagation velocity v1 to region 2 where the propagation
velocity is v2 < v1. From Ref. [202].

be quantitatively validated by comparing along the x−axis the propagation angle of
the main IAW mode (corresponding to the PSD2P intensity peak) calculated directly in
the PSD2P maps with one estimated by Snell wave propagation formula.

Using axial and azimuthal PSD2P maps and selecting the values corresponding
to the PSD peak we identified the values of ωmax, kx,max and ky,max, corresponding
to the intensity peak. In Figure 5.14 (a) we observe that the direction of the vector
identified by the pair (kx,max, ky,max) successfully represents the wavefront propaga-
tion direction. The propagation angle measured with respect to the x axis, as θ2 in
Figure 5.13, is estimated by calculating the arctangent of ky,max/kx,max and is plotted
in Figure 5.14 (b) using blue markers. To apply the Snell method just described, we
need to know the main mode phase velocity. It can be estimated by the ratio between
the frequency ωmax and wavenumber kmax, this last obtained as

kmax =
√

k2
x,max + k2

y,max.

The considerations made in the previous sections suggest that the propagation starts
at the axial position x1 at the right of the temperature peak (i. e., x1 = 2.25 cm). Thus,
taking the velocity v1 and angle θ1 at this position, from the velocity v2 at a generic
position x2 we can calculate using Eq. (5.3) the corresponding propagation angle
θ2. Using this method, we estimate the propagation angle at every axial position,
obtaining the angles represented by the red marks in Figure 5.14 (b). The comparison
of the angles directly measured in the simulation with the ones estimated by the
Snell law shows good agreement all along the thruster axis, confirming the validity
of our model. However, Figure 5.14 requires some additional discussion: firstly, we
hypothesize that the origin of the underestimation of the angle in the channel is
because we analyze a single time-interval and we do not consider the complex
evolution of the propagation reported in previous sections. Secondly, we think that
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Figure 5.14: (a) An electron density snapshot and (b) the angle measured by PIC simula-
tions (blue dots) and the one calculated using the Snell law (red dots). From
Ref. [202].

the badly estimated angles in the plume are related to the rather spread out PSD2P

spectra measured in this region, as visible by Figure 5.12 (i). Moreover, a phenomenon
of instability convection may be present in this region of the simulation[118].

The model presented here helps us to interpret the IAW amplitude variation in
Figure 5.8 (b). The IAW cannot propagate from a colder to a hotter region, since a
hotter plasma corresponds to a larger propagation velocity. Thus, the IAW instability
that develops in the central part of the simulation domain, is slowly convected
towards the temperature peak and only a tiny fraction of its intensity can pass the
barrier. When most of the instability power reaches the temperature peak and the
temperature starts to decrease (at the beginning of the BM decreasing phase), the
propagation is no anymore forbidden, so the instability propagates in the colder
plasma at a different angle. In the previous discussion we assumed a rather simple
relation of proportionality of the IAW propagation speed with the plasma temperature,
that is probably true at first approximation, but that should be analyzed in more
detail, since other factors may also play a role in this relation.

5.3.2 The ion transit-time instability

As shown in Section 5.2, the ITTI develops in the external part of the channel and in
the plume, mainly in the decreasing BM phase. In this section, we study the analytical
DR derived in Chapter 2 and we compare it to PSD2P maps that were obtained from
PIC data, demonstrating the importance of considering the 2D nature of the ITTI.

5.3.2.1 The ITTI 2D spectrum

As mentioned above, the ITTI is difficult to capture since it mainly develops along
the thruster axis and the standard techniques (i.e., based on the FFT) do not allow
for studying the spectrum along this direction. Fernandez et al. [75] have calculated
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Figure 5.15: (a) The axial profile of the two ITTI branches for kx = 40 m−1. The plus branch
is traced in green and the minus branch is in black. In (b) and (c) the lines
represent the profile of γm (red) and γp (blue) for four different values of ky.
From Ref. [202].

an ITTI 1D dispersion relation by using fluid equations (continuity and momentum
for ions, while the electrons are described by the continuity equation and by a
drift/diffusion equation in which they introduced a collision frequency depending on
the anomalous electron mobility). In Section 2.2.4, we have shown that an equivalent
DR with two branches, cf. Eq. (2.17) can be obtained just by considering continuity
and momentum equation for both electrons and ions. In addition, Fernandez et al.
observed that the dispersion map calculated from their numerical experiment at the
thruster exit was better described by the plus instability branch, with reference to the
branches nomenclature given in Section 2.2.4. However, they found the paradox that
in the 1D approximation this branch is stable. Here, we have shown that for ky 6= 0
the plus branch has a positive growth rate and can be unstable.

Most of the parameters that appear in the ITTI DR can be estimated directly from
the PIC simulation, while for the collision frequency appearing in Eq. (2.18) it is more
subtle, because the fluid model does not consider the well-known anomalous mobility.
If we consider the classical collision frequency measured in the simulation we obtain
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growth rates in the kHz range, very far from what we observe in the PIC simulations.
However, as suggested by Fernandez et al., we can consider an anomalous collisionality
depending on the anomalous mobility. The anomalous electron mobility in the axial
direction (i. e., µe,x) can be expressed, including the electron pressure gradient, as
in Eq. (5.1) and the total collision frequency can then be estimated by the usual
mobility formula for magnetized plasmas: νe = meω2

ceµe,x/e. Once we have calculated
the anomalous frequency, we only need to properly choose the values of axial and
azimuthal wavenumbers to plot the ITTI growth rate profile along the x-axis. In the
previous section we observe that the ITTI axial wavenumber can be estimated from
the PSD2P maps and takes a value of kx ≈ 40 m−1, while the azimuthal wavenumber
is more difficult to estimate because of the rather broad azimuthal PSD. For this
reason, in Figure 5.15 we calculate using the full ITTI dispersion (i. e., Eq. (2.17)) the
axial profile of ωp,m and γp,m for four different values of ky, always considering
kx = 40 m−1. To have a better estimation of the growth rate it is necessary to consider
the finite electron Larmor radius and electron inertia terms[132]. Figure 5.15 (a)
confirms the weak dependence of the real part of the dispersion on the value of ky,
as predicted by the simplified DR in Eq. (2.18). Conversely, the imaginary part of
the dispersion strongly depends on the value of ky. If ky is strictly equal to zero, we
observe that the minus wave is unstable all along the axis, while the plus wave is
unstable in the channel and damped in the plume. We observe that the minus wave is
more damped for increasing values of ky while the plus wave becomes increasingly
unstable. In particular, we observe that the most unstable point of the profile is close
to the ion sonic point, which was identified as the point where the ITTI grew[170].

In Figure 5.16, we show the numerical PSD2P calculated during a BM decreasing
phase in the thruster plume. We observe that the ITTI plus wave calculated by Eq. (2.17)
at the ion sonic point describes perfectly the dispersion from PIC simulations, while
the minus wave corresponds to lower frequencies. This result, compared with the
analysis in Figure 5.15, strengthens the idea that we need to consider an azimuthal
component of the ITTI to predict the growth of the branch that is observed. As reported
above, the main instability frequency calculated by the PSD2P is ωITTI ∼ 350 kHz and
propagates with a wavenumber kITTI ∼ 40 m−1 in the axial direction. In Figure 5.16 (a)
we do not plot the azimuthal DR since the ITTI dispersion relation has been calculated
in the small-ky limit and it would be appropriate to plot it only for ky � kmax

x .
We can conclude that the ITTI, as the IAW, has a preferential direction (i. e., axial in

this case), but that we need to consider a 2D dispersion relation to properly describe
the instability growth. In particular, we have shown that the electron azimuthal drift
is a paramount component of the ITTI growth rate.

5.3.2.2 The effect of the ITTI on the discharge current

In this section, we study the effect of the ITTI on a macroscopic parameter, the dis-
charge current, that is usually analyzed in experiments through DFT techniques [171].
The discharge current that is measured in the PIC simulations at quasi-steady-state
(for t > 100 us) is shown in Figure 5.17 (a). In this figure, we can distinguish six
BM periods. As reported in previous sections, the ITTI is stronger during the BM de-
creasing phase. For this reason, we expect that the effect of the ITTI on the discharge
current will be visible mainly during this phase. In Figure 5.17 (b) we zoom on a
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Figure 5.16: Azimuthal (a) and axial (b) PSD2Ps. In (c) a snapshot of the electron density
at t = 282 µs is shown. The green line in (b) represents the ITTI frequency, cal-
culated as in Eq. (2.17). The dotted vertical red line in (c) reports the position
of the ion sonic point and the vertical dash-dotted blue line represents the
axial position at which the PSD2P is calculated. The dispersion in the azimuthal
direction is not displayed, since the expression in Eq. (2.17) was calculated in
the small ky limit. From Ref. [202].

single BM period and we clearly observe a modulation of the discharge current in
the BM decreasing phase, that is not present in the BM growing phase. The large BM

fluctuations in this simulation make it extremely difficult to observe precisely the ITTI

in performing a FFT on the entire discharge current (even after high-pass filtering of
the current signal). To overcome this issue, we have calculated the five spectra in the
six BM decreasing phases, where the ITTI oscillation is stronger, obtaining the results
in Figure 5.17 (c). The average spectrum in Figure 5.17 (d) evokes the presence of a
modulation of the current at ≈300 kHz, that is exactly corresponding to the ITTI main
frequency found in the previous section.

The ITTI is an ion instability, but until now the origin of this name could be unclear.
In the previous paragraph, we have shown that it is possible to link the discharge
current to the ITTI oscillations, but the mechanism has not been discussed yet. To
illustrate it, in Figure 5.18 we study a single ITTI period (the one between the two
vertical black lines in Figure 5.18 (a)). Looking at the evolution of the axial ion density
profile in Figure 5.18 (b), we notice that the ITTI has a weak impact on the density
in the channel region, while the transit of ions is visible in the acceleration region.
between t = 276.9 µs and 279.3 µs we observe a packet of ions moving along the
acceleration region towards the cathode, creating the current modulation that we
have observed. Interestingly, as soon as the packet has reached the cathode another
packet starts to form at the beginning of the acceleration region. This behavior can
be understood by looking at the axial electric field shape in (c). We notice an electric
field well moving as the ions packet. This is particularly visible at t = 279.66 µs, when
the formation of the new packet of ions is sustained by the creation of a well in the
electric field profile.
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Figure 5.17: (a) the discharge current during several periods of the BM. (b) a zoom of the
discharge current between 275 and 295 µs. (c) FFTs calculated from the current
with the same color in (a). (d) the average spectrum. From Ref. [202].

Figure 5.18: (a) The discharge current in a decreasing phase of the BM. The two vertical black
lines bound a single ITTI oscillation. For this ITTI oscillation, in (b) and (c), we
show the time evolution of the ion density and the axial electric field, respectively.
From Ref. [202].
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5.3.2.3 Number of low-speed ions in the acceleration region

The interaction of the HT plume with the spacecraft is a key parameter in the choice of
the appropriate thrusting system since the backflow of charged particles can damage
the spacecraft equipment or charge the spacecraft itself. In particular, the HT plume,
composed of a large number of ions, has a large divergence, resulting in a high risk
of ion contamination of the spacecraft surfaces [168]. The slow ions and the ions
created by Charge Exchange events are more likely to return to the spacecraft, while
fast ions escape more easily.

The discussion in the current Section 5.3.2 has demonstrated that the ITTI engenders
the presence of slow ions in the plume, however, we have not treated an important
point: which is the percentage of slow ions on the overall number of ions? To estimate
the number of slow ions leaving the spacecraft, we considered the ion velocity
distribution function and we studied the percentage of slow ions over the total
number of ions. In Figure 5.19 we show the ion velocity distribution functions (i. e.,
for vx, vy and vz) at four different axial positions at the end of a decreasing BM cycle.
In (a) we observe that near the anode there is a backflow of ions (i. e., 〈vx〉 < 0),
while the distribution along y and z is rather Maxwellian. At the channel center (b)
we observe that ion drift is low: this is expected since the ions have not yet crossed
the acceleration region. At the channel exit (c) most of the ions have been accelerated:
we observe a strong asymmetry in the distribution along x. Finally, at the cathode (d)
we observe again a strong asymmetry in the distribution along x and we distinguish
two families of ions: the slow ions (shaded blue band) and the fast ions (shaded red
band). The number of slow ions appears to be non-negligible with respect to the
number of fast ones.

In Figure 5.20 we show the time evolution at a quasi-steady-state of the percentage
of slow (b) and fast (c) ions. The slow ions are counted by integrating the peak of
the distribution corresponding to the blue shaded band in Figure 5.19, while the fast
ions are calculated by integrating the distribution in the proximity of the peak with
the highest velocity (red shaded band). Moreover, Figure 5.20 (a) shows the velocity
corresponding to the max of the fast (orange) and slow (red) ions peak and (d) the
discharge current. In (a) we observe that the velocity of the fast ions is fluctuating
around the nominal value given by

vx,max =
√

2V0/mi .

The percentage of slow ions needs to be compared with the different phases of the
BM cycle. During the growing phase, where the ITTI is weak, the number of slow ions
is rather low, almost null. Conversely, during the BM decreasing phase we observe in
the evolution of the slow ions’ percentage the usual modulations: some ions’ packets
push the fraction of slow ions up to the 40% of the total. A peak is usually followed
by a valley, where the number of slow ions is similar to the value in the growing
phase of the BM cycle. The number of fast ions in (c) represents approximately 80% of
the total number of ejected particles, meaning that the number of slower ions is never
negligible, but that the number of fast ions is almost always the dominant one. The
modulation frequency of the number of slow ions during the BM decreasing phase is
of the order of 300 kHz, so very close to the ITTI frequency discussed above.
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Figure 5.19: (a-d) Ion velocity distribution functions at four different axial positions at
the end of a decreasing BM cycle, corresponding to the time indicated by the
dashed line in (e). In (d) the shaded blue band represents the slow ions, while
the shaded red band represents the fast ions.
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Figure 5.20: (a) Velocity of the slow (red) and fast (orange) ions packets. Percentage of slow
(b) and fast (c) ions. (d) Discharge current density.
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5.4 chapter summary
The theoretical DRs of IAW and ITTI derived in Chapter 2, have been compared in this
chapter with some results of PIC simulations. In particular, we demonstrated the need
to consider the multidimensional nature of these instabilities to fully understand
their origin and characteristics.

First of all, although the IAW is usually considered as a purely azimuthal instability,
here, we have shown that it is important to consider the bi-dimensional nature of
this instability to understand its growth and evolution. The PSD2P technique allowed
us to demonstrate the good agreement between the spectral maps calculated in axial
and azimuthal directions with the analytical DR. Moreover, the analysis of a sequence
of time intervals has shown that this instability develops at the external part of the
thruster channel (i. e., near the channel exit between 2 and 2.5 cm in this work case)
and subsequently propagates inwards (towards the anode) and outwards (towards
the cathode). Calculating the spectrum at different axial positions with the PSD2P

technique has allowed us to study the shape of this instability along the thruster axis.
With a simple analogy with the propagation of acoustic waves in media with different
refractive indexes, we have explained how the temperature gradient in the inner part
of the thruster channel generates the change of direction of the propagation fronts.

Secondly, we have shown that the ITTI, which is usually considered as a purely
axial instability, is also influenced by the azimuthal direction. We have calculated
the ITTI dispersion relation with a non-zero azimuthal component. The ky 6= 0 has a
weak impact on the real part of the DR, which is well described by a purely axial DR.
However, it has a strong effect on the imaginary part of the DR and it explains why the
plus wave is observed, and not the minus wave. When we considered an anomalous
collisionality (related to the anomalous mobility in the axial direction), the ITTI growth
rate is consistent with the growth time that we observe in the PIC simulations. It is
possible to identify the packets of ions traveling from the density peak outwards
(the ITTI is an instability related to the ion transit in the acceleration region) and to
recognize their effect on the discharge current and the population of slow ions in
the plume. This observation suggests a possible way to detect experimentally this
instability on real devices.
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The radial direction plays a crucial role in the performance of HTs, however, it is not included
in 2D axial-azimuthal simulations. In this chapter, the feasibility of incorporating radial
effects into 2D models, without the need for 3D simulations, is explored. To account for
radial boundaries, a Bohm flux of particles is removed from the simulation. Additionally,
using a simplified model, the impact of Secondary Electron Emission (SEE) on the discharge
is examined and it appears to have little effect. Finally, a comprehensive analysis of a self-
consistent simulation that includes the radial direction is reported.
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6.1 third radial dimension modeling
So far, we have used 2D PIC simulations, either in the radial-azimuthal plane (cf.
Chapter 4), or in the axial-azimuthal plane (cf. Chapter 5) but it is quite clear that 3D
modeling of the plasma is necessary to have a complete and consistent description
of the discharge. However, 3D modeling requires large computational resources.
In this chapter, we investigate the possibility of including radial effects in the 2D
modeling, without the need for a 3D simulation. Antoine Tavant in the final chapter
of his thesis [152] has shown that the radial absorption of charged particles in axial-
azimuthal simulations plays an important role in determining the discharge main
parameters. In the current chapter, we discuss the limitation of his model and we
introduce an improved model of the radial dynamics in an axial-azimuthal simulation.
In the following, we refer to the model of radial direction as the virtual third direction,
or virtual-r.

The use of a virtual third direction has largely been used in radial-azimuthal
simulations [106, 113, 180], where the out-of-plane electric field provides an energy
that is not otherwise dissipated by the system (because the particles are constantly
accelerated along this direction). In the axial-azimuthal simulations considered here,
the energy injected in the system by the axial electric field is dissipated by the
particles leaving the simulation domain at the axial boundaries (i. e., anode and
cathode). For this reason, we do not observe a dramatic growth of the system’s total
energy. Nevertheless, the use of a third virtual dimension (a virtual radial direction
model) in axial-azimuthal simulations introduces radial losses (that exist in reality)
and can therefore increase significantly the accuracy of these simulations.

The first model of virtual radial dimension was introduced in Refs. [55, 99], where
the authors used an artificial collision frequency (function of the particle energy)
to consider the isotropic reflection of electrons by the wall. In more recent years,
Tavant [152] considered a kinetic model, similar to the one used in radial-azimuthal
simulations for the virtual axial direction [105]. In his work, Tavant used a thermal
flux of particles leaving the simulation domain at the radial walls: an equal number of
electrons and ions was absorbed radially at each time step. However, the particle flux
at the radial boundaries is far from being thermal: the radial flux is a Bohm flux, as
described in Chapter 1. The first attempt to consider the radial losses as a Bohm flux
of exiting particles in a 2D PIC-MCC code was made by Fubiani and coworkers [100,
114]. They modeled the ion losses in the third direction by introducing an artificial
loss frequency proportional to the Bohm velocity, while considering a thermal flux
of electrons at the wall (i. e., only high-energy electrons are absorbed at the walls).
However, this model does not maintain the overall charge neutrality in the simulation,
which must be maintained at all times, when walls are made of ceramics. For this
reason, in our work we consider a Bohm flux of ions leaving the domain and we
remove from the simulation an equal number of electrons, the most energetic ones,
so that the charge absorbed by the walls is globally zero. Moreover, we show that the
choice of the third direction thickness plays a fundamental role and requires careful
consideration.

The virtual radial model is reported from Section 6.1.1 to 6.1.3, while in Section 6.2
we discuss the results from PIC simulations. In particular, we show how the intro-
duction of the virtual third dimension affects the discharge dynamics. Section 6.2.2
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is devoted to the analysis of the effect of the virtual-r on the plasma instabilities.
The macroscopic effects on the thruster performance are addressed in Section 6.2.3.
Then, in Section 6.3 we introduce the SEE in our virtual-r model, studying its effect
on the discharge dynamics. Along with SEE, we introduce the mechanism of neutral
repopulation from the ions hitting the walls. Finally, in Section 6.4 we analyze a
self-consistent simulation in which the virtual-r thickness is chosen equal to the real
device dimensions.

6.1.1 Choice of the model for the virtual-r

Tavant in his thesis [152] proposed a kinetic model for the virtual radial dimension
with two major drawbacks: (i) the ion flux leaving the plasma at the walls was a
thermal flux, rather than a Bohm flux, and (ii) electrons were absorbed radially in
the entire simulation domain and not only in the channel part. Here, we propose a
different model that considers a more realistic Bohm flux of particles leaving radially
the simulation domain, only in the thruster channel and not in the plume.

6.1.2 The Bohm flux at the walls

To model the virtual radial direction, we consider the plasma as a fluid. As demon-
strated in Section 1.2.2, a charged sheath forms at the plasma boundaries. The sheath
is a non-neutral charge region, thus, an electric field directed towards the wall forms.
This field accelerates the ions towards the wall and repels the electrons, reducing the
electron thermal flux that is absorbed by the walls. The ion flux towards each wall
can be obtained from Bohm theory [1] and reads

Γi = hn

√
kBTe

mi
, (6.1)

where n is the plasma density in the center of the bulk and h is the ratio between the
plasma density at the sheath edge and the center [83]. The electron flux is essentially
a thermal flux, that can be expressed as

Γe =
nv̄
4

exp
( eVf

kBTe

)
,

with v̄ the electron mean velocity in a Maxwellian distribution and Vf , that is negative,
the potential difference between the wall and the bulk, named floating potential. The
floating potential is not calculated self-consistently by the simulation, thus, it is not
possible to directly use the formula above to extract the right number of electrons.
Some previous works [99, 114] proposed to set a constant voltage drop ∆Φ and
absorb all the electrons with an energy larger than the given value. However, this
approach is not realistic, since the potential difference between the wall and the bulk
depends on the plasma characteristics, which vary considerably along the thruster
channel. Moreover, it is difficult to conserve the overall charge neutrality, which is
mandatory in the case of dielectric walls, if the absorption at the walls of electrons
and ions follows two different mechanisms without any feedback between them. For
this reason, it is necessary to first use the Bohm flux of ions and then assume that the
number of ions and electrons absorbed at the wall is the same.



140 virtual radial (third) dimension

6.1.3 Numerical implementation of the virtual-r

Once we have calculated the flux, we calculate the number of outgoing particles per
cell at each time step, as

Ni,exit = 2
Γi∆tdxdy

q f Lz
, (6.2)

where q f is the weighting factor and Lz a typical thickness of the z (radial) direction.
The factor 2 considers the two walls (e. g., internal and external radial boundaries of
the thruster channel). The choice of the thickness Lz is crucial since in standard 2D
simulations we do not need to define the thickness of the out-of-plane dimension.
As highlighted in Chapter 1, the weight factor q f in 2D simulation represents the
weight of a superparticle on the bi-dimensional plane. Thus, its unit is one over a
meter. The particles that move in this bi-dimensional grid are degenerated in the third
dimension. When working with motion along the third direction, it is necessary to
define a length Lz, otherwise, the particles along this direction are not well defined.
So, we can define the non-dimensional weight factor q̃ f as

q̃ f = q f Lz. (6.3)

By defining q̃ f , we are imposing that the particles are vertical segments of length Lz
moving in the xy-plane. Defining this length is necessary to have a dimensionless
number of exiting particles, but the choice of its value could be somehow arbitrary.
Varying this number changes the charge of each superparticle; therefore, the larger
is Lz, the greater the charge of each superparticle and the smaller is the number of
particles we must remove from the simulation to absorb a Bohm flux at the walls.
From the number of exiting particles at each wall, we can calculate the current density
absorbed for each species as

Jabs,i,e = e
Ni,exitq̃z

∆tdxdy
.

The previous equations, with no surprise, simplifies to

Jabs,i,e = 2eΓi.

So, the exiting current density does not depend on the choice of Lz, while the absolute
number of absorbed superparticles does. The physical interpretation of the quantity
in Eq. (6.3) is not trivial. In the following, we try to give two possible interpretations
of it, depending on what we think a 2D simulation represents.

i. If we interpret the 2D simulation as the simulation of an infinitely thin slab
of plasma in the bulk, it is arduous to give a physical interpretation of this
out-of-plane dimension. This length should not be considered as a physical
length or the real device thickness. A scheme of the thin slab in the plasma
bulk is reported in Figure 6.1 (a).

To better understand this interpretation, let us consider two different configu-
rations of plasma between two walls: one such as the walls are separated by
a length L̃1 and the other by L̃2, with L̃1 � L̃2. Assuming the plasma bulk
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Figure 6.1: Black lines: plasma density profile between two walls. (a) interpretation of the
2D simulation as a thin slab of plasma at the bulk center. (b) interpretation of
the 2D simulation as a thick slab of plasma accounting for the entire bulk.

at equilibrium, with the same plasma characteristics in the two cases (i. e.,
same n, Te, and h), we have that the exiting current density at the walls is the
same. However, the number of absorbed particles is different: the larger is L̃,
the smaller is the number of absorbed particles. So, when we use L̃2, we are
absorbing a way lower number of particles in comparison to the case when we
use L̃1. Thus, in two situations in which the bulk is the same, the number of
removed particles from the 2D simulation is different. This number does have
an impact on the characteristics of the infinitely thin plasma slab at the center
of the bulk.

Therefore, in this first interpretation, the number of absorbed particles is not
related to the real device thickness, but to the arbitrary choice of Lz. The most
reasonable value of Lz can only be estimated by simulation tests.

ii. In the second interpretation, the 2D simulation does not represent anymore
a thin slab of plasma at the center of the bulk, but rather a thick slab of bulk
plasma. In this case, the thickness of the slab is given by Lz and the plasma
can be considered homogeneous in the out-of-plane direction. The number
of absorbed particles is related to the real device thickness: the larger is Lz,
the fewer particles are absorbed at the walls and the less the bulk plasma is
affected by the radial losses. This is physical: a very thick bulk plasma is less
affected by the radial losses than a thin one. See Figure 6.1 (b) for a schematic
interpretation of this idea.

Whatever interpretation we choose, it is essential to characterize the parameter
Lz by simulation tests. In the following, we examine different Lz to understand
which one better helps in the description of the thruster physics and which are the
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important parameters. At the end of this chapter, we analyze a simulation in which
the value of Lz is chosen to be the same as the real device thickness.

In the PIC code the virtual radial direction is implemented in this way: first, we
calculate the number of exiting particles for each grid domain as in Eq. (6.2) and from
that the total number of particles exiting in a MPI domain (normally these domains do
not exceed the size 1.6 mm× 1.6 mm). Then, we remove an equal number of electrons
and ions in each MPI domain: the absorbed electrons are the most energetic ones,
while no energy ordering is done for the ions.

The h-factor

In Eq. (6.1), the h-factor represents the edge-to-center density ratio. This value needs
to be inserted as an input in our simulations. From the literature [63, 83], we have
that in low pressure plasmas, like the one of HTs, h is close to 0.5. We decided to
use this value in our simulations. To demonstrate the validity of this assumption we
can use the simulations in the radial-azimuthal domain, which allow calculating this
value. Figure 6.2 shows the species density profiles (a) and the net charge density (b)
at the steady-state of the radial-azimuthal benchmark simulation [180]. We observe
that a positively charged sheath exists near the walls, indeed in that region, we have
ni > ne, while the internal (i. e., bulk) plasma remains quasi-neutral. To define the
sheath edge, we use the following definition: the sheath edge is the point at which
the Bohm velocity is equal to the ion fluid velocity [98]. By that definition, using as
input the values from the radial-azimuthal simulation, we have that the h-factor is
equal to 0.46, i. e., close to the value of 0.5 used in our simulations.

The current profiles

In Figure 6.3 we show the case of a channel depth of 2.5 cm. The input parameters
of this simulation are those used for the axial-azimuthal simulations in Chapter 5,
with the value of Lz equal to 2 cm and Ly = 1 cm. In red we show the profile of the
ion absorbed current density by the walls, Jabs,i. The blue dashed, dotted and solid
lines represent the electron, ion, and total axial current densities, respectively. One
can notice that the total current density is rather constant and that the current in
the plume is dominated by the ions, which is what we expect from a thruster. The
radial current density calculated from the radially absorbed particles (red markers)
corresponds to the Bohm current density profile (i. e., black line), as calculated using
the local (i. e., at the corresponding axial position) plasma density and temperature.
The large temperature and density make the Bohm current profile reach a maximum
near the exit of the thruster channel: it is here that most of the particles are absorbed
at the walls. We notice also that a small number of particles is absorbed near the
anode. As one observes in Figure 6.3, the particles are not absorbed in the plume,
i. e., for x > 2.5cm. This choice does have an impact: if we had not considered the
channel/plume difference a large number of particles would have been absorbed in
the near plume. The effect of the plume divergence has not been investigated here.
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Figure 6.2: Radial (along z) profiles of (a) the electrons (brown) and ions (green) den-
sity and (b) charge density. The insets show the sheath-bulk transition. The
red dashed lines delimit the sheath region. The test case corresponds to the
radial-azimuthal benchmark [180] and the profiles are calculated at steady-state.



144 virtual radial (third) dimension

Figure 6.3: Blue dashed, dotted and solid lines represent the electron, ion, and total axial
current densities at quasi-steady-state, respectively. The red markers represent
the radial current density calculated from the radially absorbed particles and the
black line represents the Bohm current density profile, calculated using plasma
density and temperature. As one may notice, any particle is removed in the
plume (i. e., for x > 2.5 cm).

6.2 study of the effect of the virtual-r in 2d
axial-azimuthal pic simulations

We present in this section the simulation that has been run to study the effect of
the radial virtual dimension. The simulation domain is the one largely described in
Chapters 3 and 5. As before, two different azimuthal domain lengths are investigated:
first a reduced Ly = 1 cm domain and subsequently a domain with Ly = 4 cm. The
parameters of the simulations are reported in Table 6.1. The Lz tested are: 1 cm, 2 cm,
and 4 cm, and correspond to 64, 128, and 256 grid points, respectively. The length Lz
is varied in a range such that in some cases we are underestimating the real device
dimension, while in some others we are overestimating it. This is done to test the
effect of the virtual dimension on the simulation results, exaggerating or reducing
the effect of the virtual dimension. The self-consistent case in which the Lz takes the
real device dimension is analyzed later in this chapter.

The current and potential evolution for the simulation with Ly = 1 cm are reported
in Figure 6.4 (a) and (b), respectively. As in Section 3.4, the current and potential
evolutions are well controlled by the RLC filter. The average current decreases for
decreasing value of Lz. Moreover, the BM oscillations appear to be more damped
when the virtual-r is used.

In Figure 6.5 (a) and (b) we report the current and potential evolution in a case
where the azimuthal domain length is increased to Ly = 4 cm. The current and
potential evolution are still well controlled by the RLC and the mean discharge
current is still reduced by the presence of the virtual radial dimension. However, it
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Table 6.1: Operating and numerical parameters used in PIC simulations.

Physical parameters Symbol Value Unit

Gas Xenon (-)

Radial magnetic field (max) B 170 G

Anode voltage Va 300 V

Cathode voltage Vc 0 V

Axial length Lx 4 cm

Azimuthal length Ly 1 or 4 cm

Initial plasma density n0 1× 1018 m−3

Initial electron temperature Te 1 eV

Initial ion temperature Ti 0.05 eV

Neutral mass flow rate ṁ 3.5 mg s−1

Thruster section Area 3.768× 10−3 m2

Internal radius Rint 2.05 cm

External radius Rext 3.55 cm

Cathode injection temperature Tcath
e 5 eV

Circuit parameters

Resistance R 120 Ω

Inductance L 4.4 mH

Capacitance C 15 nF

Simulation parameters

Time step ∆t 1.6× 10−11 s

Cell size ∆x = ∆y 1.6× 10−4 m

Number of cells xmax × ymax 250 × 63 or 255 (-)

Particles per cell init. N/NG 400 particles/cell

Superparticles weight q f 6.5× 107 m−1

Iterations between outputs Na 5000 (-)

Permittivity scaling α0 64 (-)
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Figure 6.4: Plasma potential (a) and current (b) density profiles for the simulation with
Ly = 1 cm for different values of the virtual-r length.

is clear that the circuit has more difficulties in controlling the current and potential
oscillations: the anode potential continues to fluctuate and never really stabilizes at
the nominal value, as it does in the case of a reduced azimuthal length. The amplitude
of the BM oscillations appear to be reduced, but current and potential do not reach
the quasi-steady-state that were observed in the case of Ly = 1 cm.

6.2.1 Macroscopic effects of the virtual-r

The time evolutions of the current and potential in Figures 6.4 and 6.5 show that these
parameters do depend on the choice of the virtual dimension thickness. To quantify
the dependence of these parameters on the Lz dimension, we report in Figure 6.6 the
mean and standard deviation values for the current and the potential for each case.

The mean (time-averaged) current in Figure 6.6 (a) decreases with the decrease
of Lz. This is expected: the plasma density is smaller when radial losses are larger,
resulting in a decreasing current. Remarkably, there is a rather good agreement
between the current evolution with small and large azimuthal lengths. We highlight
that the simulated currents are comparable to those measured in the PPSX00 [154, 195]
(i. e., Id between 0.7 A and 3.3 A, since the simulations used the typical parameters of
this particular thruster). However, some differences remain since the simulations still
lack important features (3D, SEE, et cetera).

The amplitude of the BM relative to its mean value does not seem to depend on the
value of the virtual-r length Lz: we observe in (b) that the relative standard deviation
of the current divided by its mean value is almost constant. The mean value of the
potential at the anode, reported in (c), does not depend on Lz.

The average voltage depends on the value of the azimuthal length Ly. With a small
Ly, the anode voltage is on average larger than the nominal voltage (i. e., set to 300 V),
while for large Ly the anode voltage is on average smaller than the nominal voltage.
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Figure 6.5: Plasma potential (a) and current (b) density profiles for the simulation with
Ly = 4 cm for different values of the virtual-r length.

Figure 6.6: Mean (a) and relative standard deviation (b) of the current. Mean (c) and relative
standard deviation (d) of the anode voltage. The circles represent the results
obtained with Ly = 1 cm, while the diamonds represent the results obtained with
Ly = 4 cm. The colors are indicated on top.
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The relative standard deviation of the anode voltage, reported in (d), is larger for
large Ly than for small Ly. This is because the BM oscillations are damped more
effectively in the case of small Ly. As for the current, the relative standard deviation
of the anode voltage in (c) does not depend on the value of Lz. Its value is rather
close to zero when Ly = 1 cm (i. e., almost no BM), while it is larger when Ly = 4 cm.
A high-frequency modulation of the discharge current is visible in all cases, even
though it is more difficult to identify in the case of large Ly. The frequency of these
oscillations depends on the value of Lz: it is larger for thin Lz and smaller for large
Lz.

6.2.1.1 Current absorbed at the walls

The electron/ion current absorbed at the walls is an important parameter to evaluate
the accuracy of the virtual third dimension and to estimate the number of particles
absorbed at the walls. By construction, the overall absorbed current is strictly zero,
since we impose an equal contribution of electrons and ions. Nevertheless, the
comparison of the one-species current exiting with the overall current in the device
provides some information about the wall losses. This current, named hereafter Iabs,i,
is calculated by rescaling the current absorbed in the simulation in an area 2LyLch,
by the walls area of real device 2π (Rint + Rext) Lch. The ratio between the current
exiting at the walls and the discharge current indicates the number of ions that are
absorbed at the walls for every ion accelerated to produce thrust, assuming that the
current at the thruster exit is composed only of ions. The results for the different Lz
values are shown in Figure 6.7.

Figure 6.7 (a) and (b) show the time evolutions of the total absorbed current for
different Lz thicknesses: Ly = 1 cm (a) and Ly = 4 cm (b), respectively. We observe in
both cases the BM modulation of the current (also observed in Figure 6.4 and 6.5).
In Figure 6.7 (c) and (d) we show the ratio between the absorbed current and the
total axial current, for Ly = 1 cm (a) and Ly = 4 cm (b), respectively. In (c) we observe
that the BM modulation has almost disappeared: the ratio Iabs,i/Id is almost constant
over time. We notice that when Lz is smaller the exiting current intensity is smaller.
The results with an increased azimuthal length are more difficult to interpret, as
can be seen in (d). In Figure 6.8 we can observe the corresponding mean values.
In Figure 6.8 (b) we notice that the smaller the radial thickness, the smaller the
ratio between the current absorbed at the walls and the axial discharge current.
For Ly = 1 cm and Ly = 4 cm this ratio decreases in the same way. An interesting
observation is that when Lz is larger, we absorb more current (that corresponds to a
lower number of particles), since the plasma density and electron temperature are
larger.

In Section 6.2.1 we have shown that the mean current does not depend much on the
azimuthal length. Here, we observe that the radial current does. The large simulation
domains, where the BM remains strong, show a larger radial current, which is about
30% to 50% larger. This fact suggests that the different dynamics developing when
we consider larger azimuthal simulation domains favor the wall losses. The first
suspect is, clearly, the BM. How can the presence of this instability in the case of
Ly = 4 cm affect the wall losses? Considering that the BM depends on the ionization
rate [175], while Eq. (6.1) depends on the electron temperature, we can hypothesize
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Figure 6.7: Absorbed current for Ly = 1 cm (a) and Ly = 4 cm (b), respectively. The absorbed
current is divided by the total axial current for Ly = 1 cm (c) and Ly = 4 cm (d),
respectively.

Figure 6.8: (a) mean absorbed current for Ly = 1 cm (circles) and Ly = 4 cm (diamonds). (b)
Ratio of the absorbed current over the total axial current for Ly = 1 cm (circles)
and Ly = 4 cm (diamonds).
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Figure 6.9: Electron temperature (red) and density (green) for Ly = 1 cm with different Lz.
The shaded area shows the standard deviation around the mean value.

that the fluctuations of these quantities along a BM cycle are responsible for the larger
wall losses. In the next section, a more detailed analysis of these plasma parameters
is presented.

6.2.1.2 Effect of the virtual-r on the plasma parameters

To understand how the absorbed radial current depends on the choice of the az-
imuthal length we need to investigate how the plasma parameters vary in the
simulations described above.

Small simulation domain in the azimuthal direction (Ly = 1 cm)

As seen in Eq. (6.1) the electron temperature and density define the Bohm flux of
particles leaving the simulation domain. In this section, we analyze the evolution
of these quantities in the simulations with an azimuthal length of Ly = 1 cm. The
evolution of the electron temperature and density profiles are difficult to represent.
So, we show in Figures 6.9 and 6.10 the mean profiles and the time evolution of these
quantities in some selected points, respectively.

The density profiles in Figure 6.9 (green line) is strongly affected by the presence
of the virtual third dimension. We see that the maximal average density decreases
from ≈ 10× 1017 m−3 to ≈ 3× 1017 m−3. The oscillations around the mean value are
much stronger when Lz is larger, while the decrease of Lz reduces significantly the
fluctuations amplitude, cf. (d). Conversely, the density profile in the plume (i. e., for
x > 2.5 cm) remains almost unchanged in all four cases. In Figures 6.10 (e-h) we
draw the evolution of the density at four different axial positions: near the anode
(red line), in the center of the channel (green line), at the channel exit (blue line)
and in the plume (yellow line). We observe that the density near the anode and in
the channel is strongly reduced by the virtual radial direction, while the one at the
channel exit and in the plume is less affected. These figures also evidence how the
plasma density (in particular in the channel and near the channel exit) oscillates as
the total current does (cf. Figure 6.4).

The red line in Figure 6.9 displays the axial profile of the averaged electron
temperature. Similarly to what we have observed for the density, the temperature
peak decreases when we introduce the virtual radial dimension: it passes from
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Figure 6.10: Temporal evolution at quasi-steady-state of the electron temperature (a-d) and
density (e-h) for Ly = 1 cm. The red, green, blue, and yellow lines show the
evolution at x = 0.5 cm, 1.5 cm, 2.5 cm and 3.5 cm, respectively. Each column
corresponds to Lz value reported in the title.

≈ 30 eV with no virtual-r to ≈ 18 eV for Lz = 1 cm. The electron temperature value
near the anode and in the plume (red and yellow lines, respectively) does not seem
to depend much on the choice of the virtual-r thickness. Even if the temperature
peak decreases, the temperature oscillations in Figure 6.10 do not seem to reduce
much when we introduce the virtual-r, at least in (a-c).

The position of the temperature peak remains in any case close to the thruster
channel exit, while the density peak is close to the anode. Moreover, we observe
that the dependency of the temperature value on the virtual-r in Figure 6.10 is less
obvious than the one of the density. In (a-c) the most significant effect of the virtual-r
on the temperature is near the channel exit (blue lines), while elsewhere the effect is
less pronounced. For all the values of the virtual-r, the electron temperature ordering
of the axial points remains the same: the temperature is the lowest near the anode
(red line) and the highest at the thruster exit (blue line). This is not the case for the
density: its ordering depends on the virtual-r thickness. The density in the plume
becomes similar to the density at its peak for Lz = 1 cm, while with no virtual-r the
density at the peak is more than twice the density in the plume.

Large simulation domain in the azimuthal direction (Ly = 4 cm)

When we consider a larger simulation domain in the azimuthal direction (Ly = 4 cm),
as already shown in Section 6.2.1, the BM is more intense and the plasma parameters
are more affected by the presence of the virtual radial dimension. In Figure 6.11

we show the electron temperature and density profiles in the case of Ly = 4 cm.
The larger shaded area shows that the BM oscillations in this case cause all plasma
parameters to vary significantly. Moreover, in Figure 6.12 we show the temporal
evolution of the electron temperature and density at four different axial positions
for the four values of the virtual-r length Lz. Observing the oscillations of plasma
density in these figures, we immediately notice the effect of the virtual radius on the
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Figure 6.11: Electron temperature (red) and density (green) for Ly = 4 cm with different Lz.
The shaded area shows the standard deviation around the mean value.

Figure 6.12: Temporal evolution during the BM cycle of the electron temperature (a-d) and
density (e-h) for Ly = 4 cm. The red, green, blue and yellow lines show the
evolution at x = 0.5 cm, 1.5 cm, 2.5 cm and 3.5 cm, respectively. Each column
corresponds to Lz value reported in the title.

density near the anode: if no virtual-r is used, the density is higher than everywhere
else. The presence of the virtual-r reduces the density at x = 0.5 cm to values similar
to those at the other axial positions. Even if the trend is similar in Figure 6.10 (e. g.,
the density near the anode reduced by the virtual-r), the density is much larger near
the anode when Ly = 4 cm. The average density is reduced by the virtual-r all along
the axis, but the effect is weaker far from the anode.

We notice also that the large BM oscillations present in Figure 6.12 mask almost
completely the high-frequency modulation that we observed in Figure 6.10 and that
only a residual high-frequency modulation persists in the decreasing phase of the BM.
This is consistent with what was observed in Section 5.2: during the growing phase
of the BM the ITTI is almost invisible.

The electron temperature, in this case, is rather different from the one observed
in Figure 6.10 for Ly = 1 cm. The temperature is higher at x = 1.5 cm than at the
thruster exit. For all values of Lz, but the smallest, the temperature inside the channel
remains quite large. We observe that the high-frequency modulation of the electron
temperature for Ly = 4 cm is rather different from the one observed for Ly = 1 cm:
the modulation is much stronger and the frequency is much higher.
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6.2.1.3 Effect of the virtual-r on the electron energy distribution

In this section, we study the effect of the virtual-r on the EVDF. As explained at the
beginning of this chapter, the virtual-r absorbs the most energetic electrons, thus it is
interesting to observe how this impacts the EVDF.

In Figure 6.13 we study the EVDF for different cases (columns) at different axial
positions (rows) for the simulations with an azimuthal length of Ly = 1 cm. Near the
anode (i. e., first row) the effect of the virtual-r is seen since the high-energy tails are
depleted for small values of the virtual-r lengths Lz. In the middle of the channel
(i. e., center line in the Figure) we observe that the temperature has strongly increased
in all directions and that again the virtual-r reduces the temperature. Both near the
anode and in the mid-channel, we observe that the presence of the E× B drift breaks
the symmetry of the distribution: the azimuthal velocity distribution is shifted in the
y direction (i. e., green lines).

The electrons emitted at the cathode are in all cases at the same temperature,
Tcath

e = 5 eV. However, in the last row of Figure 6.13, where we show the distribution
in the plume, we notice that the EVDF high-energy tails depend on the chosen virtual-r
value. The temperature (i. e., that is proportional to the width of the distribution) is
higher when the virtual-r is not present: this is consistent with what we observe in
Figure 6.10. Therefore, the electron distribution in the plume (i. e., so near the cathode
where the electrons are emitted) depends on the value of the virtual-r thickness, even
if there are no radial losses in the plume.

6.2.2 Influence of the virtual-r on the instabilities

As largely discussed in this thesis, the instabilities play a fundamental role in defining
the characteristics of the E×B HT discharge. For this reason, in this section, we discuss
the effect of the virtual-r on the instabilities. In particular, we focus on the BM and
the ITTI.

Effect of the virtual-r on the BM oscillations

We have shown that the BM is responsible for the increased losses observed when the
azimuthal length is Ly = 4 cm. So, in this section, we focus on the BM oscillations in
the discharge with Ly = 4 cm.

In Figure 6.14 (a) we report the evolution of the discharge current for different
values of the virtual-r thickness Lz, while in (b) and (c) we display the corresponding
BM frequency and amplitude, respectively. We observe that the BM frequency and
amplitude are both larger when the virtual-r is larger. By comparing the BM amplitude
with the mean discharge current value, cf. subfigure (c), we observe that the amplitude
of the oscillations is linked with its mean value. Without the virtual-r, the amplitude
is large roughly half of the mean value, while for a large value of Lz (green markers)
the BM amplitude becomes of the order of the current mean value. When the thickness
of the virtual-r decreases (yellow markers), the amplitude of the BM shrinks to a value
close to half of the mean current.

At the beginning of this chapter, we observed that when we reduce the value of Lz
we are increasing the number of absorbed particles at the wall, cf. Eq. (6.2). A way
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Figure 6.14: (a) Temporal evolution of the discharge current. The thick lines show the
analyzed BM cycles. From these intervals are extracted the frequency (b) and
amplitude (c) of the BM oscillations. The colors are reported on the legend on
top.

to model the radial losses [114, 175] is to introduce an artificial collision frequency
in the ion dynamics. So, decreasing the value of the thickness Lz would correspond
to increasing the particle-wall collision frequency. A 1D fluid code that simulates
the discharge (i. e., similar to the one described by Ref. [175]) is available at LPP:
this allowed us to compare the PIC results with the effect of an increased collision
frequency in a fluid code. Note that the BM frequency observed by this code (≈ 5 kHz)
is lower than the one that we observe in our PIC simulations. This is not surprising: it
is extremely difficult to reproduce with a 1D fluid code the complex physics of HTs.

By tuning in the fluid code, the wall losses (i. e., increasing and decreasing the wall
losses by a factor α), we observed a variation of the BM frequency. In Figure 6.15 we
show the evolution of the BM frequency for different values of the wall losses with
this 1D fluid code, with α = 1 corresponding to the case of standard wall losses. We
observe here that for low wall losses (e. g., low α) the frequency is lower than in the
nominal case. Then, it increases up to the standard value α = 1 and subsequently
drops for high wall losses. The behavior observed in the fluid code is consistent
with the results obtained in the PIC simulations. In particular, we observe that the
BM frequency slightly increases from the no-virtual-r case to the case with virtual-r
length Lz = 4 cm. Then, when the losses at the walls increase, the BM frequency drops.

To conclude, it was shown that: (i) the wall losses affect both the BM frequency
and amplitude, (ii) the BM frequency does not depend monotonically on the wall
losses: there is a first phase in which the frequency increases with the wall losses,
then it reaches a maximum value and finally it drops when the wall losses are above
a certain threshold.
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Figure 6.15: Evolution of the BM frequency for different values of the wall losses in a 1D
fluid code developed at LPP (similar to the one described in Ref. [175]). The
coefficient α is used to decrease or increase the wall losses. The standard wall
losses correspond to α = 1.

Figure 6.16: (a) FFT of the current for different values of virtual-r with Ly = 1 cm. (b) The
dominant frequency. The colors are reported on the legend on top.

Effect of the virtual-r length on the ITTI

The large temperature gradients make it difficult to evaluate the effect of the virtual-r
on the ITTI. However, some major effects can be observed. In particular, we first study
the effect on the discharge current in the case of an azimuthal length of Ly = 1 cm,
where the ITTI is well distinguishable in the discharge current, and then we discuss
the effect on the ITTI frequency in the case of an azimuthal length of Ly = 4 cm, where
the spectrum is easily computed with the PSD2P.

In Figure 6.16 we observe that performing a FFT transform of the discharge current
in the case of a small azimuthal length of 1 cm allows for a clear evaluation of
the current modulation frequency. Recent works [170, 202] and the discussion in
Chapter 5 have shown that it is possible to link the current modulation with the
ITTI frequency. In (b) we display the maximal frequency for each Lz: this frequency
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Figure 6.17: Wavenumeber (a) and frequency (b) corresponding to the most unstable mode
calculated by Eq. (6.4) for different values of the electron temperature.

increases from ≈ 160 kHz up to ≈ 280 kHz when the virtual-r thickness is decreased.
Thus, these results suggest that larger losses correspond to a higher ITTI frequency.

In Figure 6.16 (a) we also observe that high-order harmonics are present in the
FFT spectrum. The origin of these harmonics in the current evolution remains still
unknown. These might be related to different resistive modes growing at different
axial positions. We have previously discussed the presence of strong axial temperature
and density gradients: this corresponds to diverse plasma characteristics that excite
different ITTI modes.

A theoretical explanation of the ITTI frequency shift requires the use of dispersion
relations. At first, we analyze the 1D axial dispersion of the resistive wave as it was
calculated by Koshkarov et al. [132] and derived in Chapter 2. The dispersion relation
is given by

1
ω− kxvi,0,x

=
ω− kxve,0,x + ıνe

ωLH (ω− kxve,0,x + k2
xρ2

e(ω− kxve,0,x + ıνe))
. (6.4)

This equation is a third-order equation that can be easily solved numerically to find
ω(kx). This equation depends on five parameters (i. e., vi,0,x , ve,0,x , νe, ρe and ωLH).
In the following, we consider these parameters as calculated in the simulation with
Ly = 1 cm and Lz = 2 cm. Following the discussion of the current chapter, we know
that the virtual-r affects the electron temperature and density, while the velocities
(which depend on the absolute intensities of electric and magnetic field) are weakly
dependent on the virtual-r. Since the electron density does not play a role in the
DR, we suppose that the variation of ITTI frequency should be related to the electron
temperature variation caused by the virtual-r. In the dispersion reported in Eq. (6.4)
the only parameter that depends on the temperature is the Larmor radius ρe: in the
following, we study how the variation of this parameter around its nominal value
affects the instability modes.

Considering the parameters extracted by the PIC simulation, we measured the
values of vi,0,x , ve,0,x , Te and B at the thruster exit and we estimated the anomalous
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collisionality νt by using the formula already used in Chapter 5, Eq. (5.1). By solving
numerically Eq. (6.4) it is possible to calculate the wavenumber and frequency of
the most unstable mode (i. e., the one corresponding to the maximal growth rate). In
Figure 6.17 we show the results of this calculation for different values of the electron
temperature (i. e., corresponding to a variation of ρe) around the one calculated by
PIC. We observe that the frequency of the most unstable mode decreases with the
electron temperature. This is consistent with the results reported in the previous
section. The electron temperature drop originated by the virtual-r makes the ITTI

frequency increase. However, the temperature fluctuation and the large temperature
gradient along the thruster axis make it difficult to estimate precisely the exact value
of the temperature during the ITTI growth. Moreover, the exact growing position of
the ITTI is not known. Thus, the result of this calculation gives only a good indication
of the effect of the virtual-r on the ITTI frequency and explains the decreasing trend
of the frequency that is observed in the PIC simulations. One should note that the
dispersion discussed here is the one of the minus wave (cf. Section 2.2.4), which is the
only unstable branch when we work with a 1D DR. The limited azimuthal direction
considered for these simulations makes it different to compare these results with
those of the 2D DR, as done in Chapter 5.

6.2.2.1 ITTI captured with PSD2P

The PSD2P technique can be used also to study the effect of the virtual-r in the larger
azimuthal domains. Considering the same axial position for the four cases, e. g.,
x = 3.5 cm, we calculated the PSD2P during the decreasing phase of the BM, where
we know that the ITTI is more intense. In Figure 6.18 we show the PSD2P for the four
cases. We observe that the ITTI typical shape is captured by the PSD2P technique.

A first look at the maps suggests that the virtual-r does have an impact on the mode
frequency. This frequency can be extracted by the PSD2P maps just by calculating the
max value in the colormaps. The results are reported in Table 6.2. Unfortunately, the
limited amount of time (i. e., ≈ 20 µs) that we can use for the PSD2P technique does
not allow to have a good resolution of the low-frequency modes. We observe that
the spectrum is much more localized in the cases with the virtual-r, while without
virtual-r it is more spread. When we reduce the virtual-r thickness, we detect a
transition to larger frequencies (e. g., the frequency corresponding to the max of the
PSD2P is reported in Table 6.2). The trend is similar to the one observed before with
Ly = 1 cm: the ITTI frequency increases when we reduce the virtual-r thickness. In the
case with the smallest virtual-r thickness, the ITTI frequency is, surprisingly, lower
than the one measured in the case Lz = 2 cm. But, again, this is probably related to
the limited time of the PSD2P technique and its low resolution at low frequencies.

Even if the trend is similar, we notice that the frequency of the ITTI main mode is 2

to 3 times larger when Ly = 4 cm, when compared to the case with Ly = 1 cm. This
can be explained considering the discussion about the azimuthal propagation held in
the previous section. By changing the simulation domain azimuthal length, we are
imposing different boundary conditions for the propagation of the ITTI mode. This is
critical for the ITTI growth rate, which is very sensitive to a change in ky. Moreover,
the different temperatures measured in the case with larger Ly have an impact on the
ITTI frequency.
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Figure 6.18: PSD2P time-axial spectra at x = 3.5 cm for no virtual-r (a), Lz = 4 cm (b),
Lz = 2 cm (c) and Lz = 1 cm (d). The time at which is map is calculated is
indicated in the subfigure title.

Case ITTI frequency [kHz]

no virtual-r 420

Lz = 4 cm 460

Lz = 2 cm 670

Lz = 1 cm 580

Table 6.2: Frequency of the ITTI mode calculated from the PSD2P maps.

6.2.2.2 IAW frequency

The PSD2P allows studying the axial-azimuthal propagation of the IAW. In Chapter 5

we showed that this instability is dominant during the growing phase of the BM. By
applying the PSD2P technique to the four cases analyzed in this section, we study
how the presence of the virtual-r affects the IAW frequency spectrum. The analysis is
carried out in the last part of the growing BM phase when the IAW is stronger.

The results reported in Figure 6.19 are not so easy to interpret. First, we observe
that the IAW modulation is clear in the snapshot of the case without virtual-r and
becomes more and more concealed when we reduce the virtual-r thickness. This
corresponds to an increase in the frequency of the ITTI discussed earlier, which is
approximately at the same frequency. As one can observe in Figure 6.19 (a), with
no virtual-r, the IAW dispersion is visible at frequencies of ≈ 1 MHz. In (b), (c), and
(d) the IAW dispersion remains visible at approximately the same frequency, but it is
more difficult to distinguish it from the one of ITTI. In these cases, the two dispersions
merge, making it more difficult to study individually the two instabilities.

So, here, the clear IAW oscillations observed and discussed in Chapter 5 are not
present anymore. The instability dynamics is much more coupled and the ITTI is
present almost all along the simulations. The virtual-r makes the plasma parameters
more homogeneous and less time-dependent, so the growth of the ITTI is always
allowed and not only during the decreasing BM phase. Moreover, the IAW growth
rate [105] depends on the temperature: the reduced temperature (i. e., caused by a
smaller value of Lz) makes the IAW growth rate smaller. These are the reasons why it
is harder to capture the IAW in the cases with the virtual-r.
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Figure 6.19: PSD2P at x = 2.0 cm for no virtual-r (a), 4 cm (b), 2 cm (c) and 1 cm (d). The time
at which is map is calculated is indicated in the subfigure title and a snapshot
of the density at that time is shown in the bottom figures (e-h).

6.2.3 Effect of the virtual-r on the thruster performance

The presence of the virtual-r has a major effect also on the thruster performance
and power consumption. In this subsection, we analyze the effects of the virtual-r
on important propulsion parameters such as the thrust, the specific impulse, and
the power consumption. Moreover, we study the evolution of the power losses at the
walls and how they impact the overall power provided to the system. The parameter
definitions are given in Section 1.1.4.

6.2.3.1 Macroscopic effects on performance

We have shown all through this chapter that the presence of the virtual-r has an
impact on plasma dynamics. As a result, it is not surprising to observe that it also
influences the thruster performance. In Figure 6.20 we show the dependence of the
average specific impulse, the thrust, the mass efficiency, and the thrust-to-power ratio
on different virtual-r thicknesses. In this figure, we observe that the introduction and
subsequent decrease of the virtual-r thickness causes a drop in all the parameters.
The trend observed for different azimuthal lengths Ly = 1 cm and Ly = 4 cm is similar.
With no virtual-r, the thruster parameters are significantly larger with the large
azimuthal length. The difference reduces with virtual-r. When the virtual-r thickness
is 1 cm the performance does not depend anymore on the azimuthal length.

The results in Figure 6.20 can be compared to the real thruster performance to
understand which virtual-r thickness would better match with the real device, which
is ≈ 1.5 cm thick. The thrust and specific impulse are of a good order of magnitude,
compared to those of the PPSX00, to which our simulation corresponds the most.
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Figure 6.20: Specific impulse (a), thrust power (b) and mass efficiency (c), and thrust power-
to-power ratio (d), as a function of the virtual-r thickness. The results are
reported for both cases with Ly = 1 cm and 4 cm, as indicated in the legend at
the bottom.

The Isp nominal value reported by SAFRAN [195] is between 1300 s and 1650 s. The
thrust appears as well to be of a good order of magnitude, with a substantial drop
related to the presence of the virtual-r. However, we recall that the estimation of the
thrust is done with the thruster section, which is critical in 2D simulations and it is
not self-consistently treated in these simulations. The mass efficiency decreases as we
increase the losses at the walls. However, we recall that the mechanism of neutral
repopulation was not yet included in the process: the absorbed ions are lost.

6.2.3.2 Power Losses at the walls

The power losses at the wall are calculated as the sum of two losses: the thermal
energy lost by both electrons and ions, and the acceleration of ions out of the plasma
by the sheath. The thermal energy can be calculated directly from the energy of
absorbed particles, while for the acceleration power, we need to use the floating
potential, which gives the potential drop ∆Φ from the plasma bulk to the grounded
walls. The overall power loss is then given by

P =

Ntot

∑
j=1

Ei,j + Ee,j + Vf ,j

∆t
· q f Lz, (6.5)

where Ntot is the number of superparticles exiting pairs in a ∆t. Ei,j and Ee,j are the
energies of the ion and the electron of the jth absorbed pair, respectively. The floating
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Figure 6.21: Power losses at the walls as a function of the virtual-r thickness. The time
evolution is shown for cases with Ly = 1 cm (a) and 4 cm (b). In (c) we show the
average power losses and (d) the total I-V power provided by the generator.

potential Vf ,j is calculated at the position in which the jth pair is absorbed. By the
bounded plasma theory [83], the floating potential can be written as

Vf ,j = − kBTe

2e
ln
(

2πme

mi

)
. (6.6)

The time evolution of the power absorbed at the walls is reported in Figure 6.21, in
(a) for Ly = 1 cm and in (b) for Ly = 4 cm. In (c) we show the average total wall power
absorption and in (d) the I-V power provided by the generator. We observe that the
generator power is comparable to the nominal power of the PPSX00 device [195] (i. e.,
from 200 W to 1000 W). This power is calculated by multiplying the current by the
voltage at the anode. This result is consistent with what we observed in Section 6.2.1,
where we highlighted that the discharge current is of the same order of magnitude
as one of the real devices. In (a) and (b) we see that the radial power loss has rather
small fluctuations when the azimuthal simulation length is small. These fluctuations
become much more prominent when the azimuthal dimension is increased.

In Figure 6.21 (c) we find that the radial power loss decreases as we decrease the
thickness of the virtual-r. This is counterintuitive. However, it can be easily explained.
We have shown in this chapter that for the same plasma characteristics and different
Lz the number of absorbed superparticles varies, but the number of real absorbed
particles does not, since the factor q f · Lz compensates the lower number of absorbed
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superparticles. So, the exiting power is strongly correlated with the bulk plasma
characteristics. In Section 6.2.1.2 we have shown that one of the main effects of the
virtual-r is to reduce the temperature in the plasma: a reduced plasma temperature
means a reduced number of absorbed particles. This is the reason why the power
absorbed at the walls decreases as we decrease the virtual-r thickness.

6.2.4 Summary of important results

The most important take-home messages of these sections are the following: (i) the
azimuthal length of axial-azimuthal simulations does play an important role. The
larger the azimuthal length is, the larger the BM is and the larger are the plasma
parameters oscillations; (ii) the virtual-r can reduce the discharge current, the electron
temperature, and density, more efficiently when the BM is small; (iii) the virtual-r
affects the plasma instabilities in the discharge; (iv) the large BM oscillations increase
the radial losses.

6.3 secondary electron emission effects
The Secondary Electron Emission (SEE) is a mechanism related to the emission of
low-energy electrons from the walls after the absorption of an electron. The model
of virtual-r studied until now does not consider any radial re-injection of particles.
Many studies [39, 71, 77], however, have shown that the presence of SEE has a strong
impact on the discharge characteristics and the thruster performance. In this section,
we study the effect of the virtual-r considering a simple SEE model.

6.3.1 SEE Model

The effect of secondary electron emission on HT discharges has been studied in detail
during Antoine Tavant’s Ph.D. [152] with radial-azimuthal PIC simulations. In his
work, Tavant used the kinetic SEE model proposed by Barral [59],

σ(E ) =

σ0 + (1− σ0)E/E0 if E < Emax,

σmax if E ≥ Emax,
(6.7)

where σ is the emission rate, E is the electron energy. σ0, σmax and E0 are parameters
such that Emax = σmax−σ0

1−σ0
E0. For each electron absorbed at the walls, he calculated

the value of σ(E ), which corresponds to the number of electrons to inject from the
walls. These electrons were injected at a fixed temperature, colder than the one of the
outgoing flux.

A purely kinetic model cannot be used in axial-azimuthal simulations studied in
the present thesis. In theory, we could calculate the number of SEE events for each
exiting electron from Eq. (6.7), as was done by Barral and Tavant. Nonetheless, this
would harm the flux neutrality at the walls. In radial-azimuthal simulations (or real
devices) the potential at the walls adapts, compensating for the fluxes difference
caused by SEE. Unfortunately, this is not possible in 2.5D simulations, where the
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Figure 6.22: Axial currents profiles in a case with σ̄ = 0.25. The blue, green, and red mark-
ers correspond to the electron, ion, and SEE current density profiles, respec-
tively. The black line shows the Bohm current density as calculated from
Eq. (6.1).

Poisson equation is only solved in the xy-plane and not in the direction perpendicular
to the wall. For this reason, in the current work, a simplified version of the previous
expression is needed: considering a Maxwellian flux with temperature Te, the average
emission rate is

σ̄ ≈ σ0 + (1− σ0)2Te/E0. (6.8)

We observe that the average number of SEE events depend on the electron temperature
and thus varies along the thruster axis. Considering a fixed ion Bohm flux towards
the walls (called Γi) and σ̄ < 1, we can write a simple current balance that maintains
the plasma quasi-neutrality, obtaining that the electron and SEE fluxes read

Γe =
1

1− σ̄
Γi and ΓSEE =

σ̄

1− σ̄
Γi , (6.9)

respectively. These flux expressions require additional simplification. By considering
the expression in Eq. (6.8), when Te ∼ E0/2, the value σ̄→ 1, that implies a divergence
in the number of absorbed and emitted electrons, as one notices from Eq. (6.9). For
this reason, whenever the temperature is free to vary, we experience critical numerical
problems in the determination of the number of absorbed/re-emitted electrons. Thus,
we set the temperature to a constant value, so to keep the value of σ̄ fixed. Other
models that consider an emission rate depending on the temperature, but compatible
with our model, are left for future work. In Figure 6.22 we show the axial profiles
of the exiting electron and ion current densities, along with the axial profile of the
Bohm current density. The SEE emission by the walls is calculated with σ̄ = 0.25,
resulting in the red profile in Figure 6.22. Consistently with Eq. (6.9), we observe that
the ion current density is the one fixed by the Bohm condition, while the electron
current density is increased by the SEE. The SEE and electron current densities have
an opposite sign: the first is entering the simulation domain by the walls, while the
latter is leaving the domain. When we sum them, we correctly retrieve the overall
neutrality of the plasma.
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Figure 6.23: Current (a) and anode potential evolution for a simulation with Ly = 1 cm and
L̃z = 2 cm. Two different values of the SEE emission rate are considered: σ̄ = 0.5
(green) and σ̄ = 0.8 (blue), while the red line represents the base case.

Since we are considering the electron re-injection at the walls, we decided to
include in the model the ion neutralization at the walls. The neutral gas flow model
proposed by Charoy [170] has been improved by considering that the ions exiting at
the walls capture an electron, thus forming a new neutral particle, that is re-injected
in the plasma (as a new term source in the neutral gas fluid model). Note that this
was not present in the model without SEE.

6.3.2 SEE in virtual-r PIC simulations

The effect of the secondary emission in PIC simulation has been tested first on
simulations with a small azimuthal length of Ly = 1 cm. The chosen value of the
virtual-r is here 2 cm. In Figure 6.23 we show the time evolution of the current and
potential for different values of the σ̄ parameter. These results suggest the idea that
the SEE has a weak importance on the discharge current and potential evolution. The
average current increases from the case with no-SEE (I = 1.68 A) to the case with
σ̄ = 0.5 (I = 1.84 A). Then, for a larger value of the SEE emission rate σ̄ = 0.8 we
observe a slight drop in the discharge current (I = 1.76 A). It is difficult to find a clear
trend in the mean current evolution, but we observe that in this calculation the SEE

has a rather weak effect on the discharge current and causes a small enhancement in
its average value.

The electron temperature and density profiles are shown in Figure 6.24. The
electron temperature and density are slightly decreased by the SEE emission, but
the effect is not very significant. Unfortunately, it is rather difficult to draw a clear
conclusion from these results, since the effect of the SEE emission is rather weak and
does not have a clear trend.
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Figure 6.24: Electron temperature (red) and density (green) for Ly = 1 cm with different
values of σ̄ with Lz = 2 cm. The shaded area shows the standard deviation
around the mean value.

The SEE has also been tested in simulations with a larger azimuthal length, Ly =
4 cm, as shown in Figure 6.25. The results prove that the evolution of the current and
the anode potential are weakly affected by the presence of secondary emission. The
differences in the BM period that are visible in Figure 6.25 are more likely related to
the random nature of the simulations, more than to the SEE effect. In particular, we
observe that the amplitude of the BM oscillations remains almost constant and is not
affected by the SEE emission.

Thus, the preliminary results from the current model implemented in our PIC

simulations suggest that the presence of the SEE (in the way it is modeled) may not
strongly affect the discharge characteristics. The interpretation of this result is not
trivial. A possible explanation is that the importance of the SEE lies in the competition
of the potential shape in the sheath with the particle flux (i. e., the amplitude of the
floating potential drop depends on the SEE rate), that cannot be reproduced in a
2D simulation like the one we are considering. Clearly, in future work, it would be
interesting to implement a more refined model of SEE in the PIC simulations to study
more accurately the influence of SEE on the discharge characteristics.

6.4 analysis of consistent virtual-r width
In the previous section, we investigated the effect of the virtual third dimension
when changing the radial thickness of the channel. We now study a simulation
in which the radial thickness of the channel is fixed. In this case, we consider
L̃z = Rext − Rint = 1.55 cm. The thickness is used in the PIC simulation both to define
the current (that is used to solve the circuit equations) and to define the neutral
density from the total mass flow rate imposed to the neutral fluid equations. The
other simulation parameters are chosen as previously and are given in Table 6.1.

6.4.1 PIC results

As before, we ran two different cases, the first with an azimuthal length Ly = 1 cm
and the second with Ly = 4 cm. The current and potential evolutions are shown
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Figure 6.25: Current (a) and anode potential evolution for a simulation with Ly = 4 cm
and L̃z = 4 cm. Three different values of the SEE emission rate are considered:
σ̄ = 0.25 (green), σ̄ = 0.50 (blue), and σ̄ = 0.75 (yellow), while the red line
represents the base case.

in Figure 6.26 (a) and (b) respectively. We observe that the comments made in the
previous section are still valid: the case with a large azimuthal length has a strong
BM, which is almost totally damped in the case with Ly = 1 cm.

Even if the neutral flux (i. e., 5 mg/s) is somewhat higher than the one used
experimentally, we can compare the current simulations to the PPSX00 [195]. In this
case, the average current is around 2.5 A, which is consistent with what one can
expect from a PPSX00 thruster. The current observed here also agrees with the values
in Figure 6.6.

These two simulations can also be used to calculate some engineering parameters,
such as the specific impulse, the thrust, and the thrust power, defined above. The
averaged values obtained in the simulation and shown in Table 6.3 are in the right
range. However, some important discrepancies between the case with Ly = 1 cm and
the case with Ly = 4 cm still hold. All three parameters are lower in the case with
Ly = 4 cm: again, the presence of the BM affects the discharge characteristics and
reduces the thruster performance. The reason for this behavior can be explained by
analyzing the power losses as in Section 6.2.3.2. As one can see in Figure 6.27 (a)
the radial power losses increase significantly when the breathing mode is present.
In (b) we observe, conversely, that the power provided by the generator does not
vary much between the two cases. In the first one, the average I-V power is about
750 W, while in the second one, it is around 650 W. The I-V power oscillations are
more complex than what could be expected by looking at the current and voltage
oscillations in Figure 6.26.
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Figure 6.26: Current (a) and anode potential evolution for a simulation with a virtual-r with
L̃z = 1.55 cm and two different azimuthal lengths (Ly = 1 cm and 4 cm).

Table 6.3: Engineering parameters for the simulations with consistent virtual radius.

Ly = 1 cm Ly = 4 cm

Isp 1539 s 1210 s

T 51.6 mN 35.6 mN

Pthrust 390.1 W 210.6 W

Figure 6.27: Radial power losses (a) and I-V power (b) for the simulations with Ly = 1 cm
and Ly = 4 cm.
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Figure 6.28: Fluxes for Ly = 1 cm (a) and Ly = 4 cm (b). Mass and acceleration efficiencies for
Ly = 1 (c) and Ly = 4 cm (d).

6.4.2 Mass utilization efficiency

The mass utilization efficiency is one of the key parameters for any type of thruster.
As discussed in Section 1.1.4, it can be calculated rather easily. However, even if this
parameter gives an idea of the global efficiency of the thruster, it is not the only one
that should be considered and one should also consider the efficiency of the thrust
production. To evaluate this efficiency, we can define an acceleration efficiency. Ions
are accelerated by the axial electric field to produce thrust. In an ideal case, each ion
acquires an energy of

√
2Vanode/mi. However, as shown in Chapter 5, there might be

a significant number of ions that have smaller velocities. In this case, the acceleration
efficiency is defined as

ηacc =
vout

i√
2 Vanode

mi

,

where vout
i is the average ion velocity after the acceleration region.

In Figure 6.28 (a) and (b) we show the evolution of the neutral fluxes at the anode
and the outgoing flux of unionized particles. We also show the flux of accelerated
ions at the exit. One can see that the flux of outgoing neutrals is almost low and its
value is rather constant in time. Interestingly, when the BM is present in the case with
Ly = 4 cm, we have a significant backflow of ions towards the anode, which results in
an increased neutral flux at the channel bottom. This phenomenon is almost invisible
in the other case. This is consistent with what was observed by Chapurin et al. [169],
in their study of the BM.

The ion current oscillations are similar to the current oscillations in Figure 6.26.
One may notice that the fluxes do not sum up to zero at steady-state: this is related
to the fact that some ions are absorbed at the walls.

In Figure 6.28 (c) and (d) we plot the mass and acceleration efficiencies. The mass
efficiency is almost constant in both cases and higher than 90%. This is consistent
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with what was observed above about the outgoing current. The acceleration efficiency
behaves differently: in the case with Ly = 1 cm, the acceleration efficiency has a
rather long transient before reaching a steady-state at around 74%. In the case with
Ly = 4 cm, the acceleration efficiency fluctuations are locked to those of the BM. This
can be understood by thinking about the anode voltage fluctuations in Figure 6.26 (b):
when the current is low, the voltage is larger than the nominal one, while when the
current is high, the voltage is lower than the nominal one. This means that the ions
get a larger acceleration when the current is low.

6.5 chapter summary
In this chapter, we introduced a virtual-r model that considers the radial losses in
a 2D axial-azimuthal simulation. The model was built considering a Bohm flux of
particles exiting the thruster to reach the radial walls, while the divergence effect
is not taken into account in the thruster plume. The radial magnetic field in the
simulation is constant, however, the magnetic field gradients near the wall may affect
the Bohm flux. This is a topic that should be investigated in the future.

In the first part of the chapter, we discussed the effect of introducing the virtual-r
by comparing four thicknesses. These tests, even if they are not consistent with the
thruster section defined within the simulation, allowed us to characterize both the
microscopic and macroscopic effect of the radial losses in the PIC simulations.

In the second part of the chapter, we proposed a simulation with a virtual-r and
consistent channel thickness and we showed that it can successfully reproduce the
major parameters of a HT better than a simulation without virtual-r. This allows
us to conclude that including the virtual-r is a fundamental step in making more
realistic simulations. Even if the results in this chapter are very promising, some
work is still required to include the SEE in the simulations in a more convincing
way. The simple model presented here does not reproduce the strong effect of SEE

demonstrated experimentally.
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In this chapter, it is presented a thorough analysis of the evolution of both microscopic and
macroscopic plasma parameters during a BM cycle, which enables us to gain insight into
the ionization mechanism in HTs. Additionally, several simulations obtained using LPPic
are presented to demonstrate how the code can be used to explore the parametric space of key
quantities for the design of HTs. This is achieved by varying various factors, such as anode
potential, mass flow rate, magnetic field configuration, propellant, and cathode temperature,
allowing for a better understanding of the plasma behavior under different conditions.
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7.1 introduction
The PIC simulations provide a large amount of information on the studied plasma
discharges. However, with the work presented in previous chapters, we are far from
exploiting the volume of data produced by a 2.5D PIC code as LPPic. For this reason,
in this chapter, we first analyze again some PIC results to show some additional
interesting points. In particular, we analyze the evolution of plasma parameters (e. g.,
electron temperature, density, et cetera) during a BM cycle.

Later, we report several simulations obtained with the PIC code: we show how
LPPic can be used to explore the parametric space of key quantities for the design
of HTs, by varying anode potential, mass flow rate, magnetic field configuration,
propellant and cathode temperature. For each of them, we analyze the effect on some
plasma parameters (e. g., density, electron temperature, et cetera) and on engineering
performance (e. g., thrust, specific impulse, et cetera).

7.2 analysis of the bm dynamics using a pic run
The code used in this thesis, LPPic, is one of the first codes in which the charged
species dynamics in 2.5D, treated with a PIC method, is coupled to a 1D neutral gas
dynamics, modeled with fluid equations [170]. As shown in Chapters 3, 5, and 6, this
allows us to reproduce the BM oscillations. However, even if the BM has been analyzed
in the final part of Chapter 6, we have not discussed yet the microscopic mechanism
of these oscillations. Barral and Ahedo [78] and more recently Lafleur et al. [175]
have studied the BM plasma parameters using a 1D fluid code, which successfully
reproduces the mechanism and allows us to inquire the origin of it. However, a 2.5D
PIC simulation can provide a much more detailed analysis of the BM dynamics. In
this section, we analyze the BM dynamics using the axial-azimuthal PIC simulation
with self-consistent virtual-r described in Section 6.4 with an azimuthal length of
Ly = 4 cm.

7.2.1 Analysis of breathing mode

In Figure 7.1 we show the spatiotemporal evolution (more precisely, the temporal
evolution of the axial profiles) of some important plasma parameters averaged
azimuthally: the normalized gas density ng (a), gas speed vg (b), electron density
production rate by ionization Siz (c), electron density ne (d), electron azimuthal speed
ve,y (e), electron temperature Te (f), ionization rate coefficient Kiz = Siz/ngne and
the axial electric field Ex (g). We recall that the electron density production rate by
ionization in Figure 7.1 (c), given by

Siz = ngneKiz(Te),
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Figure 7.1: Spatiotemporal evolution of normalized gas density ng (a), gas speed vg (b),
electron density production rate by ionization Siz (c), electron density ne (d),
electron azimuthal speed ve,y (e), electron temperature Te (f), ionization rate
coefficient Kiz = Siz/ngne (g) and axial electric field Ex(h). The maps are obtained
by averaging azimuthally at every time. The color scale is the same for all the
plots. In (i) we show the total current evolution. The vertical dashed lines allow
to separate four phases of the BM cycle.
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depends on the effective electron temperature and the electron and neutral densities
and on the ionization rate coefficient Kiz, that is plotted in Figure 7.1 (g). We also
recall that the ionization rate coefficient can be written as

Kiz =
4π

ne

∫ ∞

viz

σiz(v) fe(v)v3dv,

with viz the ionization threshold velocity (i. e., viz =
√

2eEiz/me, with Eiz the energy
threshold for ionization) and σiz the ionization cross-section. The effective electron
temperature is directly calculated from the electron energy distribution function.
The fluctuations of these quantities are crucial in the evolution of the BM, which is
an ionization instability. Therefore, understanding their variations is essential for
explaining the development of the BM.

Usually, the BM is divided into two phases: the phase in which the current grows
and the phase in which it decreases. The complexity of the case under study here,
however, suggests using more than two phases: we decided to subdivide the growing
and decreasing phases in two parts. With reference to Figure 7.1 (i), the first phase
(A1) corresponds to the first part of the growing BM phase, where the current grows
significantly and has no high-frequency fluctuations. This phase is followed by A2,
which corresponds to the interval in which the current reaches a plateau and only
high-frequency fluctuations are present. Then, the decreasing BM phase is divided into
two parts: B1 and B2. In B1 the current suddenly drops, while in B2 the current is low,
and high-frequency fluctuations are present. The final part of phase B2 corresponds
to the initial part of A1, thus we can consider that the BM cycle is concluded. The BM

cycle observed in this simulation has a rather slow dynamic: in several other cases,
the phases A2 and B2 are very short, or not even present. Even if it might not be the
most typical BM shape, its slow-varying parameters are particularly convenient to
analyze.

The reader could wonder why we include phase A2 in the BM growing phase since
the current in this segment does not increase. This choice has been made considering
the neutral dynamics, reported in Figure 7.1 (a) and Figure 7.2 (a). In these figures,
we observe that the neutral density remains unperturbed during the BM cycle near
the anode or in the plume, while it is strongly perturbed in the mid-channel region.
In A1, where the current is increasing, we observe that the neutral density starts
to decrease, while most of the neutral ionization occurs in A2. This is the reason
why we included A2 in the BM growing phase: it is a phase of high neutral gas
ionization, where Siz is maximal. Then, when the BM decreasing phase starts in B1,
the phenomenon of neutral depletion is reversed: the neutral gas starts to repopulate.
Most of the neutral repopulation occurs in B2.

The plasma density in Figure 7.1 (d) experiences a complementary behavior: the
plasma starts from a low level at the beginning of A1, then increases during A1 and
A2, has a maximum in B1 and drops in B2.

A low number of electron-ion pairs are created during A1, as one can notice by
looking at Siz in Figure 7.1 (c). Most of the ionization events happen in A2, when the
neutral density is already decreasing. As a consequence, the plasma density peak
is reached during B1. In B2 there is almost no ionization, and the plasma density
remains low. The electron temperature decreases in A1 and is low in the first part
of A2. Subsequently, in the second part of A2 and in B1, the electron temperature



7.2 analysis of the bm dynamics using a pic run 175

Figure 7.2: (a) Neutral density temporal evolution at three different positions. (b) Maxi-
mal normalized amplitude evolution of Siz, ne, Te and Ex. The dashed vertical
lines as in Figure 7.1 separate the different BM phases. These data are extracted
directly from PIC outputs.

starts to increase. In B2 the electron temperature is high, while the electron density
is low. Before the ionization ignites again, the electron temperature has already
dropped. So, the electron temperature corresponds to low ionization and vice versa
(cf. Figure 7.1 (c) and (f)). However, Te is related to other plasma parameters: the
axial electric field Ex in Figure 7.1 (h) consequently and the electron azimuthal speed
ve,y in Figure 7.1 (e). Indeed, when the electric field increases, the electron azimuthal
drift (i. e., vE×B = E/B) and in turns the averaged electron energy also increases. The
ionization rate coefficient Kiz in Figure 7.1 (g) is of course related to the electron
temperature.

In Figure 7.2 (b) we plot the temporal evolution of the max of Siz, ne, Te and Ex. As
one can observe, the evolution of the electron density production rate is in phase with
the evolution of the electron density amplitude. The electric field oscillation, in phase
with the electron temperature, appears delayed with respect to the electron density
oscillation. This is different from what was observed by Lafleur et al. [175] in a fluid
simulation, in which the electric field increase was related to the electron density
increase. During A1, the increase in the electron density is sustained by the increase
of the electron density production rate, so on ne itself. The growth of Siz cannot be
explained by the increase of Kiz, which diminishes, as Te, in this phase. At the end
of A2, the neutral density is extremely low, which cancels out the electron density
production rate Siz. Nevertheless, for a short period, the charged species density
growth is sustained by the increased temperature, which increases the ionization
rate coefficient. However, this does not last long: even if Te remains high, in B2 the
electron density production rate and the density experience a sharp drop.
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Figure 7.3: Each column represents a time instant (indicated in the first row). The first row
shows the electron temperature profiles, the second the gas and electron density,
the third the ionization rate coefficient Kiz, and the fourth the electron density
production rate Siz. These data are extracted directly from PIC outputs.

7.2.2 Impact of electron temperature and densities on the ionization mechanism in
the BM

In this section, we further analyze how the electron temperature and densities impact
Kiz and Siz, by studying the evolution of their axial profiles, using data directly
extracted from PIC. In the first row of Figure 7.3, we report the axial profiles of the
electron temperature along the three simulation directions and the total temperature.
We observe that the temperature profiles experience the same trend and that they are
both low near the anode and the cathode, while they have a peak at the channel exit
(i. e., between 1.5 cm and 2.5 cm). The temperature profile is almost identical in the
three directions.

As we can see in the second row of Figure 7.3, the gas density profile varies very
slowly during a BM cycle. Its evolution is more easily understandable in Figure 7.2 (a):
the density is high and almost constant near the anode, while it is almost constant
and close to zero in the plume. In between, in the ionization region, the gas density
oscillates significantly. To better understand the physical mechanism governing this
kind of oscillation, one should imagine the neutral gas mass oscillating back and
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forth around a fixed position, see for example the iso-density white dashed line in
Figure 7.1 (a). The electron density fluctuates in a much more strong way. The density
is low near the anode, while it grows and reaches a maximum inside the thruster
channel. The maximal density is followed by a steep drop, which is then followed by
a slow increase in the plume. In the plume, it does not vary significantly.

In the third row of Figure 7.3, we show the ionization rate coefficient profile
evolution. As already mentioned, Kiz follows the temperature at all times. The total
ionization frequency, i. e., Siz, is reported in the last row. As one can observe, the
profile of Siz is different from both the electron temperature and the density profiles.

It is therefore difficult to identify a positive feedback between the electron density
production rate and the electron temperature: when the temperature increases, the
ionization rate coefficient Kiz does, but the electron density production rate Siz does
not. The latter depends on the complex dynamics of both the gas and the plasma
densities along with the ionization rate coefficient variations.

7.2.3 Study of the drift balance in the BM

As observed in the previous sections, the electron drift in the azimuthal direction is
linked to the electron temperature and the ionization rate coefficient Kiz. In Figure 7.4
we show the electron azimuthal velocity profile at four different instants of the BM

period. In this figure, we report the E× B drift (cf. Section 1.2.1),

vE×B =
E× B

B2

in red and the diamagnetic drift

vD =
−∇(kBTene)× B

qneB2

in green. The sum of these two terms is shown in blue, while in black we report the
velocity measured directly in the PIC code. In the same figure, we show the evolution
of the axial electric field (orange). The red markers in the current discharge evolution
plotted in (e) show the instants analyzed in the above figures.

The profiles in Figure 7.4 clarify several points about the electron dynamics in the
HTs. First, we observe that the electrons injected isotropically at the cathode (x = 4 cm)
are not accelerated azimuthally right away. In the region near the cathode, both
the E× B and diamagnetic drifts are very small. Only once an electron enters the
zone where the axial electric field Ex is large, it starts to accelerate in the azimuthal
direction. The diamagnetic drift, which depends on the pressure gradient, is opposite
to the E× B drift. However, at all instants of the BM cycle, the diamagnetic drift
is smaller than the E× B one. In the ionization zone (i. e., between around 1.5 cm
and 2.5 cm), the diamagnetic drift is negligible with respect to the E× B drift: the
effective ion drift (black line) is composed almost exclusively by the E× B one (red
line). Only in the anode region, where both drifts change sign, the diamagnetic drift
becomes comparable to the E× B drift. In this region, the two drifts balance, so
the electron azimuthal speed results to be low. Boeuf and Garrigues in Ref. [124]
observed a similar trend in a simplified axial-azimuthal configuration with a fixed
ionization source term (with no gas flow), and then no BM. They reported that the
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Figure 7.4: (a)-(d) Profiles of the electron velocity along the thruster axis. The red line repre-
sents the E× B drift, the green is the diamagnetic drift, the blue is the sum of the
two, and the black is the drift as it is extracted by the electron speed in the PIC

simulation. In (e) we show the discharge current, where the red markers indicate
the instants analyzed in the above figures.
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Figure 7.5: Diamagnetic drift profile along the thruster axis at different times (Top row).
The velocity vD,1 is calculated in the isothermal approximation, while vD,2
considers the gradient of the entire pressure term. The density, temperature, and
pressure profiles are shown in the bottom row.

diamagnetic drift and the E×B drift have a similar value. This is not what we observe
here: the intense electric field issued by the high anode voltage at the end of the BM

cycle, makes the E× B drift much larger than the diamagnetic one. The difference is
probably related to the different conditions of their simulation.

The computation of the diamagnetic drift requires some further discussion: in
some cases [76] the diamagnetic drift is written using the isothermal approximation,
i. e., the pressure gradient is computed using the electron density only, while the
temperature exits the gradient term. In Figure 7.5 (a)-(d) we show the axial profiles
of the diamagnetic drift calculated with the isothermal approximation (red line) and
the full pressure gradient (green line). We observe that the two profiles experience
more or less the same trend, but there are some substantial differences in the central
part of the domain. These differences can be explained with reference to the density,
temperature, and pressure profiles in Figure 7.5 (e)-(h). We note that the isothermal
approximation never holds.

7.2.4 Electron transport in the axial direction of the thruster

The anomalous electron transport in the axial direction is one of the most studied
characteristics of HTs. In this thesis, we characterized in detail the instabilities driving
this transport, nevertheless, we have not discussed yet in depth the transport itself.
As already mentioned in Section 1.2.3, numerous studies [133, 170] have shown that
a convenient way to model this transport is to use the correlation term, or friction
force,

Rei = q〈δnδEy〉,

where δn and δEy are the density and the electric field fluctuations, respectively. We
calculated the azimuthal average of this term and plotted its spatiotemporal evolution
(i. e., the temporal evolution of its axial profile) in Figure 7.6.
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Figure 7.6: (a) Spatiotemporal evolution (i. e., the temporal evolution of the axial profile) of
Rei over the span discussed before. In (b) we report the same data, but we zoom
on the region indicated by the ruby rectangular box in (a), i. e., 1 cm < x < 2 cm
and 170 µs < t < 200 µs. In (c) we show the discharge current evolution. The
dashed vertical lines help to define the different times of the discharge.

As one can see in Figure 7.6 (a), the friction force term is particularly large at the
channel exit and in the plume when the current is large: from the end of A1 to the
beginning of B2. The friction force term is negligible elsewhere: in the inner channel
region, i. e., x < 2 cm, the value of Rei is always very low, as it is during the BM phases
when the current is low. This observation allows us to conclude that the anomalous
transport, or at least its component depending on the correlation, is present only
during the high-current phase of the breathing mode, while it disappears when the
current drops. This agrees with the results of Ref. [201], reported in Chapter 5, where
we discussed the growth of the instabilities during the BM cycle.

Even if the most significant part of the anomalous transport occurs mainly at
the channel exit and in the plume, some clarifications can be added, thanks to the
analysis of Figure 7.6. The friction force is so large in the plume that it is difficult
to see if any increased transport is present in other regions. However, zooming on
some precise intervals allows us to retrieve further results: in Figure 7.6 (b) we report
the same data, but we zoom in the region indicated by the ruby rectangular box
in Figure 7.6 (a), i. e., 1 cm < x < 2 cm and 170 µs < t < 200 µs. In this region, the
friction force is not negligible, but it is not as large as in the plume. This observation
suggests that the anomalous transport is not only present in the plume, but also in
the channel region. This agrees with the results of Ref. [202], reported in Chapter 5,
about the wave propagation in the plasma from the mid-channel region towards
the anode. In this figure, we observe that at the beginning of the BM growing phase,
a non-zero Rei starts to propagate from x ∼ 2 cm to the anode. This propagation
lasts for around 10 µs. However, the absolute value of Rei in the channel remains
significantly smaller than in the plume.
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7.2.5 Discussion of the main results on the BM

The study of the plasma parameters evolution during the BM, captured with a PIC

simulation allows us to draw some conclusions about the development of this mode.
The main elements of our analysis are listed below.

• The BM can be divided into four phases: two during the current growing phase
(i. e., A1 and A2), and two during the current decreasing phase (i. e., B1 and B2).

• Most of the particles creation happens during A2, while the production rate is
almost zero during B1 and B2.

• The electron density production rate, i. e. Siz, evolution depends on the compe-
tition between neutral gas, plasma density, and ionization rate coefficient Kiz.
In particular, Siz and Kiz peaks occur during different BM phases.

• The E× B drift is dominating the electron motion in the azimuthal direction,
being always larger than the diamagnetic drift. The latter cannot be calculated
with the isothermal approximation.

• The electron anomalous transport is present in the plume during the high-
current phase of the BM, while it vanishes when the current is low.

7.3 variation of the ht configuration
The simulations not only can explain the physics of a device and help understand
the origin of a particular phenomenon but they can also be used to simulate different
device configurations. In this section, we discuss the results of a study we performed
to explore the characteristics of a HT under different working conditions. When not
specified in the text, the simulation parameters are those reported in Table 3.2. In
this section, simulations with both azimuthal lengths of Ly = 1 cm and Ly = 4 cm
are presented. Despite having shown in Chapter 3 that using Ly = 1 cm does not
permit the complete development of the BM, it is still valuable to investigate the
plasma behavior in such cases to have a preliminary understanding of the trend.
Nevertheless, one should keep in mind that the results with this reduced length are
not fully reliable. In some of these simulations, we used the virtual-r model discussed
in Chapter 6: if it is the case, it is explicitly mentioned.

7.3.1 Anode voltage variation

In this section, we study how the anode voltage impacts the plasma behavior and the
engineering parameters. Since we wanted to observe the complete plasma dynamics
reproducing the BM, we used a simulation domain with Ly = 4 cm. The cathode
temperature was fixed at 5 eV and the neutral gas mass flow rate at 5 mg/s, while the
imposed DC supply voltage, i. e., V0, was varied from 200 V to 800 V. To introduce
the wall losses, we used the virtual-r model described in Chapter 6 with Lz = 4 cm.

In Figure 7.7 we show the evolution of the discharge current and the voltage at the
anode for different values of the imposed DC supply voltage. These results clearly
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Figure 7.7: Discharge current (a) and anode potential (b) as a function of time, for different
anode voltages.

show that the plasma dynamics is strongly influenced by the imposed anode voltage.
For example, the BM frequency increases with the voltage, as observed experimentally.

Effect on current and potential

By averaging the results in Figure 7.7, we obtain in Figure 7.8 the mean discharge
current (a) and the mean anode potential (c). To have a more quantitative evaluation
of the results, we also show in Figure 7.8 the standard deviation of the discharge
current (b) and the anode potential (d), divided by the corresponding mean value.
The mean current appears to decrease with the voltage. This decrease, which is
significant for voltages between 200 V and 400 V, is less obvious for larger values
of the anode potential. In Figure 7.8 (c) we observe that the mean anode potential
stabilized at the imposed voltage value. Some deviation is still observed at high
anode voltage; however, it is rather small if compared to the mean value. In Figure 7.9
we show the evolution of the absorbed power for different generator voltages.

In Figure 7.7 (b) we plot the standard deviation of the discharge current divided by
the current mean value: even if the amplitude of the fluctuations varies significantly
(i. e., in the range 40%− 80%), it is difficult to find a clear trend. Conversely, the
fluctuations of the anode voltage, reported in (d), have a more linear behavior: when
we increase the anode voltage, the fluctuation amplitude drops.
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Figure 7.8: Average discharge current (a) and anode potential (c). (b) and (d) show the stan-
dard deviation of the discharge current and of the anode potential, respectively,
divided by the corresponding mean value.

Figure 7.9: Average I-V power absorbed by the thruster for different generator voltages.
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Figure 7.10: (a) Normalized FFT of the current for different anode voltages. (b) Evolution
of the BM frequency as a function of the anode voltage. The blue line shows a

polynomial fit of type ω = aV1/4
0 + b, with a and b two coefficients calculated

with linear regression.

Effect on the BM frequency

In the work of Fife [35], a simple formula for the BM frequency ωBM was proposed:

ωBM ∝
(
vgvi,x

)1/2 ,

where vg is the gas injection velocity and vi,x is the ion ejection velocity in the x
direction. Increasing the anode voltage causes an increase of the ion ejection velocity,
e. g., vi,x ∝

√
V0, which in turn increases the BM frequency. By imposing a constant

neutral flux, the neutral injection velocity is fixed and we should therefore observe
the frequency scaling as

ωBM ∝ V1/4
0 .

Figure 7.10 (b) shows the evolution of the modulation frequency as a function of
the imposed anode voltage. The result shows that the trend follows the formula
proposed by Fife [35]. One should notice that when the anode voltage is low, the
simulation experiences a strong transient, and the shape of the BM peaks changes
significantly. So, in these conditions, several other mechanisms might influence the
BM frequency.

Figure 7.10 (a) shows that when we increase the anode voltage, we can detect higher
order harmonics of the BM in the current, as it was observed by several experimental
works [157, 171].

Plasma parameters

The change in the anode voltage affects all the plasma parameters. We study the axial
profile of the average temperature and electron density profiles for different values of
anode voltage. The values are reported in Figure 7.11, where the shaded area covers
a standard deviation from the average value. The electron temperature, plotted in
red, increases significantly with the increase of the anode voltage. The origin of this
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Figure 7.11: Mean electron temperature and density for different imposed anode voltages.

Figure 7.12: Mean electron azimuthal velocity (ve,y, blue) and ion axial temperature (vi,x,
brick red) for different imposed anode voltages. The horizontal dashed line
represents the ideal exhaust ion velocity.

phenomenon is strictly related to the plasma ignition mechanism of HTs. In these
devices, electric energy from the generator is transferred to the plasma through the
azimuthal drift. The larger the anode potential is, the larger the axial electric field is
and, therefore, the larger the azimuthal velocity amplitude of the electrons.

These observations can be discussed concerning Figure 7.12, where we show the
mean profiles of azimuthal electron velocity (in blue) and the axial ion velocity (in
brick red). The azimuthal electron velocity, as explained, increases with the anode
voltage. The profile shape remains almost unchanged in the channel region near the
anode, while it varies substantially at the channel exit, where the axial electric field
reaches its maximum.

The axial ion velocity is an important parameter for the thrusters since it is directly
related to the specific impulse. The horizontal dashed lines in Figure 7.12 represent
the ideal exhaust velocity

vi,exh =

√
2eVanode

mi
,

for each anode voltage value. Consistently, the measured ion speed depends on the
imposed potential. However, we notice that the speed at x = 4 cm is lower than the
one predicted by the theory. The cause of the reduced exhaust velocity can be found
in various phenomena: (i) part of the ions are not accelerated by the full voltage;
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(ii) the presence of axial instabilities, discussed in Section 5.3.2.3 and (iii) the anode
voltage oscillations.

The origin of (i) is easy to understand: the acceleration region and the ionization
region are partially superimposed, so, some of the ions do not experience the full
acceleration imposed by the potential drop. The physical origin of (ii) is discussed
in Chapter 5, where we have shown how the axial instabilities induce a population
of low-energy ions in the plasma plume. The origin of (iii) can be explained by the
means inequality. An oscillating potential implies that the mean exhaust velocity is

〈vi,exh〉 =

√
2

mi
〈
√

eVanode〉 <

√
2

mi

√
e〈Vanode〉.

So, the more the anode voltage oscillates, the lower is the average exhaust velocity.
At high voltage, the effect is negligible, while at lower voltage the effect is more
pronounced: a reduction of the ion velocity of the order of 5− 10% can be related to
this phenomenon. Globally, we observe that the acceleration efficiency, defined as the
ratio between the effective mean exhaust velocity and the theoretical one, increases
with the anode voltage.

Effect on engineering parameters

The variation of the plasma parameters has a direct impact on the operating param-
eters of the thruster. In Figure 7.13 we show the variation of the specific impulse,
thrust, mass efficiency, and thrust power-to-power ratio (Pthrust/PG) as a function of
the anode voltage. In all four subfigures, we observe that the thruster performance
increases with the increase of the anode voltage.

As explained in Section 1.2, we have usually considered that thrusters do not scale
well: the results presented here contradict this statement. However, the root of this
phenomenon can be explained rather simply. First, the biggest scaling problems are
found when we scale down the thruster, reducing the power and not increasing it, as
we have done here. In addition, we observe that when we lower the anode voltage to
200 V, the discharge begins to be less stable: under these conditions, there is a real
risk of turning off the discharge. Furthermore, these simulations do not take into
account the third direction: when we increase the temperature in the plasma, we
increase the particle flow and energy to the walls. Thus, we increase wall erosion and
decrease the lifetime of the thruster.

The graphs in Figure 7.13 show that the voltage imposed at the anode and the
thrust, specific impulse, and power ratio increase almost linearly with the imposed
anode voltage. By increasing the DC supply voltage by a factor of 4, the thrust and
specific impulse gain a factor of ≈ 3. In all cases, the mass efficiency is rather good
(i. e., > 75%). These results suggest that the development of a higher-power thruster
should not require any special modification of the axial-azimuth configuration.
However, the increased power will require a more careful design in the radial
direction to control the wall erosion related to the high electron temperatures, that
we observed for high anode voltages.
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Figure 7.13: (a) Specific impulse, (b) thrust, (c) mass efficiency, and (d) thrust power-to-
power ratio as a function of the anode voltage.
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Figure 7.14: Current (a) and anode potential (b) temporal evolution for different values of
the neutral gas flow rate.

7.3.2 Neutral gas mass flow rate

One of the parameters that are usually modified to change the thruster working
point is the neutral gas mass flow rate. In real devices, neutral gas is injected through
some nozzles at the bottom of the thruster channel, in correspondence with the
anode. The shape and distribution of these openings can have a non-negligible effect
on discharge characteristics and thruster efficiency. However, in our bi-dimensional
code, the nozzles are not modeled and the gas is uniformly injected into the system.
The present analysis is performed by varying the neutral gas flow rate at the anode
boundary.

Effect on current and potential

The first tests on the variation of the neutral mass flow rate have been performed on
some cases with Ly = 1 cm and consistent virtual-r (cf. Section 6.4). In Figure 7.14 we
show the evolution of the current (a) and anode potential (b) for different values of
the neutral gas flow rate. In this figure, the mass flow rate is varied from 2.5 mg/s to
5 mg/s. In all cases, a steady-state has been reached and the anode voltage after the
transient is close to the nominal value of 300 V. The current, as expected, increases
with the increasing mass flow rate. The BM is more pronounced in the initial phase
when the mass flow rate is higher. However, it is damped over time. The transient
appears to be longer for a larger mass flow rate. The high-frequency modulation (i. e.,
usually linked to ITTI) is present in the case of high mass flow rate, while it almost
disappears in the case of low mass flow rate.
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Figure 7.15: Current (a) and anode potential (b) temporal evolution for different values of
the neutral gas flow rate.

The discharge current evolution in Figure 7.14 suggests that the mass efficiency
depends on the mass flow rate. We note that the current corresponding to ṁ = 5 mg/s
is more than twice larger than the one corresponding to ṁ = 2.5 mg/s: the mass
efficiency is higher in the case of higher mass flow rate. The efficiency increases from
45% in the case of ṁ = 2.5 mg/s to 59% in the case of ṁ = 3.5 mg/s and to 62% for
ṁ = 5 mg/s. Therefore, the higher the mass flow rate is, the higher the mass efficiency
is. This is probably related to the larger power absorbed by the plasma in the case of
a large mass flow rate.

As we reported several times, the simulations with Ly = 1 cm do not reproduce
the BM. For this reason, we run some other cases, in similar conditions, but with
Ly = 4 cm. A virtual-r of Lz = 4 cm is used in these simulations in order to include
some radial losses. This makes the simulations not fully consistent, but it eases the
convergence of the simulation with a small neutral flux. Otherwise, the increase of
the radial losses above a certain threshold risks switching off the discharge.

In Figure 7.15 we show the current (a) and anode voltage (b) evolutions for five
different values of the neutral gas mass flow rate, varied between 2 mg/s and 5 mg/s.
For the case with a mass flow rate of 2 mg/s, only one period BM was simulated: at
the end of the descending phase, the lack of particles caused the plasma to shut down.
The plasma behavior appears to be radically different from the one of Ly = 1 cm
reported in Figure 7.14: the large current fluctuations related to BM are present for
all values of the neutral gas mass flow rate. Moreover, the BM does not seem to be
damped over time. The high cost of each simulation forced us to limit the physical
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Figure 7.16: Average I-V power absorbed by the thruster for different mass flow rates.

time of each simulation: only a couple of BM periods are simulated for each test case.
In Figure 7.16 we observe that the power absorbed by the discharge is lower at low
mass flow rate. This, unfortunately, makes the comparison between the different
cases less straightforward.

The first feature that stands out in Figure 7.15 is the BM: how do its frequency and
amplitude depend on the imposed mass flow rate? In Figure 7.17 we show the BM

frequency (b) and amplitude (c) for different values of the neutral gas mass flow rate.
The BM frequency is calculated as the inverse of the time between consecutive peaks
of the current. In the case of ṁ = 2 mg/s the frequency is calculated using a single
peak, so we expect that the error in this measurement is large and that the result,
in this case, might be anomalous. For ṁ = 3 mg/s, 3.5 mg/s, 4 mg/s the frequency is
calculated using two peaks, while for ṁ = 5 mg/s the frequency is calculated using
several peaks. The error in the frequency measurement is therefore expected to be
smaller for a higher mass flow rate. As an example, studying the blue line in (a),
we observe that the current increase during the BM growing phase is much steeper
at t ≈ 100 µs than at t ≈ 250 µs. So, the choice of peaks might affect the frequency
measurement, in a case like the present one, where a limited number of peaks can be
used.

The results show that the BM frequency increases with the mass flow rate, as
observed experimentally. This phenomenon is included in the theory by Fife [35],
introduced in Section 7.2.1. At equilibrium, we have that the neutral (i. e., vg) and ion
(i. e., vi,x) velocities can be written as

vg = lKizn0
i ,

vi,x = lKizn0
g,

with n0
g and n0

i the equilibrium neutral and ion densities, respectively, and l the
ionization length. The BM frequency is then given by

ω =
(

n0
i n0

gK2
iz

)1/2
.
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Figure 7.17: From the current (a), we calculated the BM frequency (b), mean current, and
the BM amplitude (c), for different values of the neutral gas flow rate. In (a) we
show explicitly the filtered BM peaks.
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Figure 7.18: Electron temperature (red) and density (blue) profiles for different values of the
neutral gas flow rate.

Hence, we see that an increased mass flow rate, which implies an increased density,
leads to an increased BM frequency.

The BM amplitude is calculated as the current standard variation over a BM period
and it is reported with the crosses in Figure 7.17 (c). The amplitude of the BM

fluctuations appears to be strictly linked to the mean current: the amplitude of the
fluctuations is as large as the current mean value.

Effect on plasma parameters

By averaging the electron temperature and density over time, we obtain the axial
profiles in Figure 7.18. The electron temperature profile seems to be weakly affected
by the variation of the injected gas mass flow rate. Not only is the average profile
almost constant, but also the fluctuations around the average value (shaded area) are
very similar in all cases.

Conversely, the electron density profile is strongly affected by the variation of the
neutral gas mass flow rate: a larger neutral injection corresponds to a larger plasma
density. However, the profile shape remains unchanged: it increases from the anode
and reaches a maximum near x = 1 cm. Then, it has a sharp drop, followed by a
dome-like shape, which has a maximum at around x = 3 cm.

The electron temperature and density show clearly that the principal effect of the
variation of the neutral gas mass flow rate is to vary the mean plasma density in the
thruster, without impacting Te. Interestingly, the effect on the density on average is
distributed over the whole thruster: we do not observe a particular increase of the
density in a specific region.

Effect on engineering parameters

The analysis of the engineering parameters, as defined in Section 1.1.4, allows for
quantifying the effect of the change of neutral flux on the thruster performance. In
Figure 7.19 we show the variation of the specific impulse, thrust, mass efficiency, and
thrust power-to-power ratio for different values of the neutral gas mass flow rate.
The Isp reported in Figure 7.19 (a) experiences a small increase with the increase
of the neutral gas mass flow rate. Since its value does not depend on the mass
flow, this result suggests that when we increase the neutral gas mass flow rate, we
are improving the ion acceleration towards the plume. The thrust Figure 7.19 (b)
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Figure 7.19: Specific impulse (a), thrust (b), mass efficiency (c), and thrust power-to-power
ratio (d) for different mass flow rates.

increases linearly with the neutral gas mass flow rate: it means that the thruster
works properly for the different values of injection mass flow rate.

In Figure 7.17 (c) we remark that the mean current over a BM period increases
with the increase of neutral mass flow rate, as expected. Consistently, the mass
consumption efficiency is almost constant (i. e., around 70− 75%) for all cases but the
first, where it takes the value of 85%. At low mass flow the efficiency seems better.
However, as we discussed above the analysis in the case of ṁ = 2 mg/s is not fully
reliable.

The thrust power-to-power ratio (d) increases linearly with the neutral gas mass
flow rate. However, the thrust power-to-power ratio reported here (i. e., at best 32%)
is significantly lower than the one observed in literature for real devices [76]. We
remember that the I-V power is not constant for the various cases, as one can observe
in Figure 7.16.

7.3.3 Magnetic field variation

The magnetic configuration is one of the key elements for the proper operation of a
HT and the architecture of the magnetic circuit represents one of the most important
challenges in the design of the thrusters. The magnetic field is generated by the
current flowing in the coils, and it is therefore possible to vary the magnetic field
by changing this current. In our simulations, the coils are not modeled and only a
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Figure 7.20: Current (a) and potential (b) for different values of Bmax, the peak value of the
magnetic field, for azimuthal length Ly = 1 cm.

static magnetic field is considered. In this section, we present a preliminary study of
the effect of varying the magnetic field on plasma parameters and thruster perfor-
mance. The magnetic field, azimuthally homogeneous, varies axially as depicted in
Figure 3.18. We recall that the standard magnetic field maximal value is Bmax = 170 G.
In this chapter, we will change the amplitude of the magnetic field by keeping its
axial profile constant. So, the different configurations will be labeled by the value of
Bmax.

Effect on current and potential

The first study has been performed on simulations with Ly = 1 cm, by varying
the magnetic field amplitude. The temporal evolutions of the current and anode
voltage are reported in Figure 7.20. The fluctuations in these parameters appear to
be strongly related to the value of the magnetic field: the larger B is, the larger the
fluctuations in current and potential. When the magnetic field is reduced, the current
is extremely steady and its mean value is higher than the one calculated for the case
with Bmax = 170 G. In contrast, when the value of the magnetic field is increased to
Bmax = 250 G, the oscillations of current and potential become larger: the circuit does
not efficiently damp the BM. Although these results, obtained with a small azimuthal
domain, are very interesting, they do not fully reproduce the BM. For this reason,
we decided to analyze in detail some simulations performed with Ly = 4 cm, which
allows the full development of the BM.



7.3 variation of the ht configuration 195

Figure 7.21: Current (a) and potential (b) for different values of Bmax, the peak value of the
magnetic field, for azimuthal length Ly = 4 cm.

Following the same approach used before, in the case of Ly = 4 cm, the peak
value of the magnetic field is varied from Bmax = 100 G to Bmax = 240 G, without
changing the shape of its axial profile. The current and potential temporal evolution
are reported in Figure 7.21 (a) and (b), respectively. These temporal evolutions appear
to be strongly dependent on the chosen value of the magnetic field: when the peak
value of the magnetic field is increased, the current and potential oscillations are
more significant.

Similarly to what happened in the case with Ly = 1 cm, the reduction of the
magnetic field amplitude causes a reduction in current and potential oscillations:
the BM almost disappears. A residual modulation of the BM is detectable in the
modulation of the anode voltage, i. e., red line in Figure 7.21 (b). The frequency in
the case of a small magnetic field appears to be increased if compared to that of
the cases with a larger magnetic field. The power absorbed by the discharge, in
Figure 7.22, is large (almost 1 kW) for Bmax = 100 G, while it reduces to ≈ 700 W
when the amplitude of the magnetic field is increased.

Effect on plasma parameters

To understand which plasma parameters are changed in these simulations we com-
pare the mean profile of the electron density and temperature for different values
of Bmax in Figure 7.23. In Figure 7.23 (a) we observe that the mean profiles are very
well defined for Bmax = 100 G, while in the others, for Bmax > 100 G, a rather large
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Figure 7.22: Average I-V power absorbed by the thruster for different values of Bmax.

Figure 7.23: Electron temperature (red) and density (green) profiles for different values of
the magnetic field.

interval (calculated as the value standard deviation) is present, in particular in the
plume region.

The electron density profile in green varies significantly: the one in Figure 7.23 (a)
has a maximum near the channel exit at around x ≈ 2.5 cm, while in Figure 7.23 (b)-(e)
the maximum is localized near the anode, around x ≈ 1 cm. The electron temperature
profile in red experiences the same trend: in (a) the max is at x ≈ 2.75 cm, while
in (b)-(e) it is between x = 1.8 cm and x = 2.1 cm. So, the variation of magnetic
field intensity changes the localization of the plasma, which is less confined when
the magnetic field is reduced. Most of the plasma density, then, is located near the
channel exit and not near the anode when Bmax is low. Moreover, the temperature
peak is shifted towards the plume.

Effect on engineering parameters

The engineering parameters are reported in Figure 7.24. All parameters are maximal
in the case with Bmax = 100 G. In the other four cases the performance is significantly
poorer, which is liked to a lower power absorption, as one observes in Figure 7.22.
This effect is particularly interesting for specific impulse and thrust: both these
parameters are extremely large when the magnetic field is reduced. By comparing
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Figure 7.24: Specific impulse (a), thrust (b), mass efficiency (c), and thrust power-to-power
ratio (d) for different values of the magnetic field maximum value.

the values calculated for the case with the nominal case Bmax = 170 G, we can observe
that the specific impulse increases by ≈ 55% and thrust almost doubles when the
value of Bmax is decreased to 100 G (here the power consumption increases by ≈ 50%).
The efficiency, which is high in all cases, approaches the value of 1 when the magnetic
field is reduced to Bmax = 100 G.

7.3.4 Alternative propellants

All the simulations presented in this thesis until now have been performed using
xenon as propellant. However, in recent years, due to constraints on the xenon supply,
several other propellants have been proposed and tested [125, 178, 200]. For this
reason, we tested in our simulations the use of different propellants: krypton and
iodine. See Table 7.1 for some details about these gases. Krypton, as xenon, is a noble
gas, so it does not require any particular modification of the code. For krypton, we
only need to take into account the right mass and collisional cross-sections [125].
Iodine, instead, requires more care, since it is not a noble gas (i. e., it is a halogen).
Its chemistry is more complicated: the neutral gas is present in both atomic I and
molecular I2 forms and the presence of positive, double positive, and negative ions
is reported [162]. Nevertheless, Esteves et al. [187] has shown that in the typical
range of pressures of HTs (i. e., 1 mTorr) iodine can be considered as fully dissociated
and that the presence of negative ions is negligible (in particular at these electron
temperatures). For this reason, we considered a fully dissociated iodine plasma, with
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Propellant Mass Ionization energy

Xenon 131.29 uma 12.13 eV

Krypton 83.80 uma 13.99 eV

Iodine (atomic) 126.90 uma 10.45 eV

Table 7.1: Characteristics of the used gases.

only positive atomic ions [146]. The mass and collisional cross-sections of iodine
are taken from several sources. More details about the collisional processes and the
cross-section data used are reported in Ref. [146].

Effect on current and potential

The temporal evolutions of the current and potential for krypton and iodine are
reported in Figure 7.25 for two different values of the input mass flow rate. In the
same figure, we added as a reference a xenon simulation. All the three simulations
presented here use the consistent virtual-r thickness (Lz = 1.55 cm) and Ly = 1 cm.
When we consider a neutral gas mass flow rate of 5 mg/s, the current obtained in the
simulation is different: the heavier propellant (Xe) produces a smaller exiting current,
while the lighter (Kr) one generates a larger one. We observe the same behavior for
a neutral mass flow rate of 3.5 mg/s, but in this case, the difference is not so clear:
the final current does not seem to depend much on the propellant. This is quite
unexpected since the number of Kr ions injected in the simulation is much larger
than the number of Xe ions when the imposed neutral mass flow rate is the same. In
all cases, the circuit damps the BM oscillations and the anode voltage converges to the
one imposed by the generator. Some high-frequency modulation seems to depend on
the chosen propellant.

The difference among the currents becomes visible by calculating the current
axial profiles in Figure 7.26. It can be seen that for all gases the outgoing current
is composed almost exclusively of ions, which is positive for the operation of the
thruster. Only minor differences are present in the profile shapes, meaning that both
krypton and iodine are good candidates as HT propellant.

Effect on plasma parameters

The different mass and collisional cross-sections affect the plasma parameters. In
Figure 7.27 we report the electron density (in green) and temperature (in red) profiles
for the three different propellants and the two mass flow rates. First, we notice
that both parameters are similar for all three propellants, only minor differences
are present. This is a good sign since it means that the plasma parameters are not
strongly dependent on the propellant and that the same thruster can be operated
with different gases.

We observe also that in the case of krypton, the temperature obtained with ṁ =
3.5 mg/s is significantly lower than with other propellants with the same mass flow
rate. This does not happen when we increase the neutral flux: the temperatures in
this case are similar for the three gases. The origin of this difference is not clear. It
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Figure 7.25: Current (a) and potential (b) for different propellants.

Figure 7.26: Electron (solid lines) and ion (dashed lines) current profiles for different
propellants at 5 mg/s, averaged over the last 25 µs of simulation.
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Figure 7.27: Electron density and temperature profiles for different propellants averaged
between 250 and 300 µs.

might be related to the competition between the different ionization processes and
the radial losses, which depend on the ion mass (cf. Section 6.1).

Engineering parameters

To evaluate the performance of the thruster with other gases, we have calculated
some engineering parameters (cf. Section 1.1.4). In Figure 7.28 we show the spe-
cific impulse, thrust, mass efficiency, and thrust power-to-power ratio for the three
different propellants and mass flow rates.

The mass has a direct effect on the exhaust velocity for a fixed anode potential.
For this reason, we are not surprised to observe that the specific impulse is larger
for krypton than for iodine and xenon. For all three gases, we notice that the Isp is
smaller for a mass flow rate of 3.5 mg/s, which means that for the reduced mass
injection the acceleration of the particles is less efficient. The thrust appears to be
slightly decreasing with the propellant atomic mass for ṁ = 3.5 mg/s, while it is
almost constant for ṁ = 5 mg/s. By writing as

T = miv2
i,exhni ,

and the exhaust velocity as in Section 7.3.1 we notice that T does not depend on the
mass of the ion. Conversely, T does depend on the density, which is expected to be
larger for a lighter atom, with a fixed mass flow rate. This probably origins the slight
decrease in thrust with the increase of the propellant atomic mass.

For all gases, the thrust measured with ṁ = 5 mg/s is more than twice larger
than the one measured with ṁ = 3.5 mg/s. This can be related to the mass efficiency
reported in Figure 7.28 (c), where we see that the mass efficiency decreases when the
mass flow rate is reduced. The thrust power-to-power ratio, reported in (d), is not
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Figure 7.28: Specific impulse (a), thrust (b), mass efficiency (c), and thrust power-to-power
ratio (d) for different propellants.

significantly affected by the propellant. The ratio seems to weakly increase with the
increase in mass flow rate.

The results of this section show that Krypton and Iodine do not have macro-
scopic drawbacks and can be used in HT with performance comparable to xenon.
Nonetheless, it should be noted that these 2D simulations provide only a preliminary
assessment of the thruster operation with different propellants. Thus, to obtain a more
accurate evaluation, an extensive experimental campaign is required, specifically to
scrutinize the intricate effects of iodine on the thruster components.

7.3.5 Study of the cathode temperature

In Thomas Charoy’s Ph.D. [170], a preliminary study about the effect of the cathode
model was performed. The focus of this section lies between a numerical study
examining the impact of different boundary conditions set in the LPPic code and
a study investigating the actual effect of the cathode temperature on the plasma
parameters. Thus, it aims to address two questions: firstly, which cathode boundary
condition is most suitable to use in the LPPic code? Secondly, given the constraint
that a real hollow cathode may not always allow the ejection temperature to be freely
varied, what are the effects of electron temperature on plasma characteristics?

According to Refs. [120, 121, 172, 176], the ejection temperature of a hollow cathode
should be in the order of some electron volts. For this reason, in this study the cathode
temperature (i. e., Tcath

e ) is varied from 0.1 eV to 15 eV. In Figure 7.29 we show the
evolution of the discharge current for different values of the cathode temperature. In



202 lppic: an engineering tool

Figure 7.29: Current temporal evolution for different cathode temperatures.

this case, no circuit is used, and Ly = 1 cm. The anode voltage is set to 300 V and the
mass flow rate to 3.5 mg/s.

Current oscillations

As one can see in Figure 7.29, the temperature of the cathode plays an important
role in determining the dynamics of the discharge in a HT simulation. The effect
of the current is macroscopic: when the injection temperature is low, we retrieve
in the current the well-known BM oscillation, which gradually disappears when we
increase the injection temperature. The average value of the current, reported in
Table 7.2, does not appear to change significantly when the cathode temperature is
changed. Variations in the mean value between cases appear to be mainly related
to random fluctuations in the current and the mediation process itself: if we ran a
longer simulation, we would expect all cases to converge to roughly the same value.
However, some differences might still be present, since the BM impacts all plasma
parameters.

To evaluate the amplitude of the BM oscillations, we used the standard deviation of
the current density between 100 µs and 350 µs. The results are reported in Table 7.2.
Between the case with the lowest cathode temperature and the one with the highest
one, the standard deviation is reduced by a factor of more than 10. When Tcath

e is
0.1 eV, the amplitude of the current oscillations is on the order of the average value
of the current. By increasing the temperature at the cathode, it is observed that the
standard deviation becomes progressively smaller. In Figure 7.30 we note that the
amplitude of the oscillation appears to be proportional to the inverse of the cathode
temperature.

In addition, we note that the high-frequency modulation (i. e., of the order of some
hundreds of kHz) related to ITTI is also present. This modulation, present in all
cases, is distinguishable in the two cases with higher cathode temperature since the
BM is almost absent. Even if the frequency of the modulation seems to be affected
by the cathode temperature, we decided not to perform a detailed analysis of this
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Tcath
e Imean Ampl.

0.1 eV 2.39 eV 1.87 eV

1 eV 2.37 eV 1.22 eV

5 eV 2.61 eV 0.66 eV

10 eV 2.41 eV 0.30 eV

15 eV 2.47 eV 0.16 eV

Table 7.2: Current density and its
standard variation calcu-
lated between 100 µs and
350 µs.

Figure 7.30: Amplitude of the
oscillation as a func-
tion of the cathode
temperature.

frequency, because the large BM oscillations for low cathode temperature do not allow
an accurate estimation of the frequency.

Temperature and density

One of the main effects of increasing the injection temperature at the cathode is an
increase in the overall electron temperature, as one can observe in Figure 7.31. In this
figure, the red lines show the time-averaged value of the axial electron temperature
profile. As one can see, the profile near the anode appears to be unaffected by the
temperature change at the cathode. Some differences appear in the central part of
the simulation at x ≈ 2 cm. In the case of low injection temperature, the electron
temperature is significantly lower concerning the case of high injection temperature
(i. e., from 27 eV to 37 eV). Moreover, consistently with the current evolution, we
observe that some large oscillations around the mean value are present in the case of
low Tcath

e , while the oscillations are much less intense in the case of high Tcath
e .

The greatest differences are observed in the plasma plume: if the cathode tempera-
ture is less than ∼ 5 eV, the electrons in the plume are cooler than those at the thruster
exit. Conversely, at high Tcath

e , the electron profile is such that the temperature of the
cathode (i. e., at the right boundary) is higher than that at the exit of the thruster: the
temperature of the electron profile increases in the plume. This is also confirmed by
the temperature gradient (i. e., ∇xTe) in the plume, which is shown in Figure 7.32.
The temperature gradient is positive in the case of high cathode temperature, while
it is negative in the case of low cathode temperature. In this figure, one can see that
in the case of Tcath

e = 5 eV, the derivative appears rather continuous and regular,
whereas, in all other cases, there is a discontinuity near the position of the cathode.
This discontinuity suggests that the corresponding chosen cathode temperature is
not the natural temperature to which the system would converge.

We observe that large density fluctuations are present when the BM is present, i. e.,
for low Tcath

e , while no fluctuations are visible for high temperatures. The average
profile in the channel does not seem to depend on the cathode temperature, whereas
the density in the plume does. For low temperatures, the density decreases towards
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Figure 7.31: Average electron temperature (red) and density (green) profiles for different
values of the cathode temperature. The shaded areas cover ± one standard
deviation of the profiles.

Figure 7.32: Profiles of the temperature (red) and temperature gradient (blue) in the plasma
plume for different values of the cathode temperature.
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Figure 7.33: Profiles of the electron (solid lines) and ion (dashed line) average currents for
different values of the cathode temperature.

the plume, whereas, for high temperatures, the density in the plume seems to be
much more important. This difference is related to ionization: the high temperature
at the cathode leads to a higher electron density production rate and, consequently, to
a higher density in the plume. However, the different density in the plume does not
imply a different current density of ions or electrons. As can be seen in Figure 7.33,
the current profiles of ions and electrons appear to be almost independent of the
temperature imposed at the cathode.

7.4 chapter summary
The results reported at the beginning of this chapter unveil some important features
of the BM: this instability engenders an oscillation of all plasma parameters, e. g.,
gas and plasma densities, temperature, ionization rate coefficient, electron density
production rate, electric field, electron temperature, and velocity, et cetera. These
parameters oscillate at the same frequency as the BM, but with a phase shift among
them.

By analyzing the extensive data obtained from the PIC simulation, we discovered
that the ionization rate coefficient, Kiz, is significantly correlated with the electron
temperature. However, the electron density production rate, Siz, is found to be
independent of the electron temperature. These observations led us to conclude
that the ionization process in Hall thrusters is influenced by the interplay between
temperature and species density, and an increase in temperature alone is not sufficient
to sustain an increase in density.

In the second part of the chapter, we used LPPic to simulate different thruster
configurations. The simulations are extremely sensitive to changes in input param-
eters, so we decided to change one parameter at a time. Initially, by variating the
fixed anode voltage, we have shown that the BM amplitude and frequency depend
on this parameter. Moreover, these simulations have shown that at high voltage we



206 lppic: an engineering tool

can recover some BM higher-order harmonics. Afterwards, by variating the input
neutral gas mass flow rate, we pointed out that the BM amplitude and frequency
only slightly increase, when this parameter varies. The magnetic field has also a
significant effect on the BM: the oscillations almost disappear when the value of the
magnetic field reduces. This is accompanied by minor confinement of the plasma,
which concentrates at the thruster exit. Subsequently, we have shown that LPPic can
be used to test other propellants, e. g., krypton and iodine. The preliminary findings
indicate that these alternative gases are viable options for use in HTs. However, we
note that further investigations are required to confirm these results since these
results have been obtained with an azimuthal length of 1 cm only and simplified
chemistry for iodine. Finally, we analyze the effect of different cathode injection
temperatures. The results show that setting the injection temperature of 5 eV is the
most suitable in this kind of simulation and that the BM amplitude is larger for lower
injection temperature, while the BM is almost totally damped when the injection
temperature is higher than 5 eV.



8 C O N C L U S I O N

Chapter contents

8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

8.1.1 Results from the linear theory . . . . . . . . . . . . . . . . . 207

8.1.2 Results in the radial-azimuthal simulation plane . . . . . . 208

8.1.3 Results in the axial-azimuthal simulation plane . . . . . . . 209

8.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

8.2.1 LPPic code improvements . . . . . . . . . . . . . . . . . . . . 210

8.2.2 Comparison with experiments . . . . . . . . . . . . . . . . . 210

8.2.3 Use the 2.5D LPPic code as a design tool for future HTs . . 211

8.1 summary
Hall thrusters are a prominent technology for space propulsion. However, the physics
of these devices remains not fully understood. In this framework, the current thesis
used kinetic simulations to deepen our understanding of the governing principles
of these devices. Moreover, the recent developments of the LPPic code allow us to
challenge the possibility of using PIC simulation to guide the design of new thrusters.

The roots of this thesis are in the previous Ph.D. works of Croes [112], Tavant [152]
and Charoy [156] at LPP. Their developments are the necessary basis used for all the
results presented in this work. Croes and Tavant studied the interaction of plasma
and walls in radial-azimuthal simulations: this was the basis for the work described
in Chapter 4. The rest of the thesis (i. e., Chapters 5, 6 and 7), where we studied the
plasma discharges in the axial-azimuthal configuration, owes much to the previous
works of Tavant and Charoy, who developed the LPPic code and the methodology to
study the discharges in this configuration.

8.1.1 Results from the linear theory

The HTs are characterized by a large number of instabilities. Even if these devices
are strongly non-linear, the linear theory perturbation method is a good candidate
to study the growth and development of these instabilities. In Chapter 2 we have
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calculated a 3D dispersion relation and we have shown that one can derive from it
the most known electrostatic DRs.

The importance of the results in Chapter 2 is that they allow us to demonstrate
that IAW, MTSI, and ITTI can be included in the same expression. Moreover, the
approach followed in this chapter has provided insight into the limits of validity
of the simplifications to derive simple versions of the electrostatic DRs and to study
the relation between the different instabilities, among which the ECDI. After having
calculated the DRs, we discussed the conditions that allow and favor the growth of
the different instabilities and the physical mechanisms that are important for the
growth.

In the second part of Chapter 2, we discussed the strengths and limitations of the
spectral techniques that are used in the rest of the thesis. The DFT, which is commonly
used, is a rather simple technique and it has been successfully used for years, but it
is not localized and requires periodic signals. The PSD2P allows for reconstructing the
spectrum of much more complex signals, but the implementation of the algorithm is
not trivial. The DMD is extremely powerful to have a qualitative idea of the amount of
energy carried by each mode. However, it is less adapted to a precise and quantitative
analysis of the modes.

8.1.2 Results in the radial-azimuthal simulation plane

The radial-azimuthal simulations have been used in Chapter 4 to study the evolution
of the plasma instabilities in this simulation plane. We considered a plasma slab
at the exit of the thruster channel, with a homogeneous radial magnetic field and
an axial electric field imposed externally. We observed the evolution of the plasma
parameters and we performed several simulations to understand the nature of these
instabilities.

We developed a solver to obtain the numerical DR of the MTSI and we compared
the results with analytical predictions. This allowed for demonstrating that the size
of the simulation domain does play a role in determining whether the MTSI instability
grows, or not. Moreover, we could define an instability criterion based on the plasma
and simulation characteristics. Then, using several PIC simulations, we have shown
that reducing the azimuthal dimension of the simulation domain kills the growth
of the MTSI, while the ECDI remains active. This analysis has been also successfully
applied to some already published works.

Afterwards, we calculated the effect of the MTSI on the plasma parameters, in
particular, we have shown that the MTSI can lead to a significant increase in the
plasma temperature in the radial direction. Using some advanced spectral techniques
(e. g., the DMD) we calculated the effect of the MTSI on the electron transport in the
axial direction, showing that the MTSI increases this transport. Finally, the study of
the non-linear regime allowed us to observe the appearance of an ion acoustic wave
in the azimuthal direction.

The work in the radial-azimuthal plane has been completed through participation
in an international benchmark. In this benchmark, by injecting in the simulation a
fixed and constant number of electron/ion pairs, we have shown that 7 international
groups could reach the same density and temperature profiles, and could observe
two instabilities, i. e., MTSI and ECDI.
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8.1.3 Results in the axial-azimuthal simulation plane

The axial-azimuthal simulations have been studied in Chapters 3, 5, 6 and 7. The
simulation domain is a rectangular cartesian mesh, going axially from the anode at
one boundary to the cathode at the other. The ionization is treated self-consistently
within the MCC module, while the axial neutral dynamics is solved with 1D isothermal
Euler equations. These conditions allow the development of the BM, which is one of
the main plasma instabilities in HTs.

In Chapter 3 we showed that the use of the external circuit allowed the current
oscillations to be controlled and the discharge to be stabilized. This fact made it
possible to run longer simulations and avoid the large current oscillations that were
observed [170] whenever the azimuthal domain was larger than 1 cm.

Subsequently, in Chapter 5 we studied the evolution of the plasma instabilities in
the axial-azimuthal simulation plane. Using the PSD2P we investigate the instabilities
development during the growing and decreasing phases of the BM and we have
shown that the IAW dominates the growing phase, while the ITTI dominates the
decreasing phase. Subsequently, we used the results from Chapter 2 to compare the
numerical spectral maps to the analytical DRs. This allows showing some significant
characteristics of the plasma instabilities: the IAW and ITTI should be considered as
2D instabilities. If we describe them as 1D, it is not possible to explain the observed
behavior. Moreover, the spectral analysis allowed us to explain the origin of the
wavefronts bending observed for the IAW: it is related to a variation of the refractive
index of the plasma. The analysis of the ITTI allowed us to show that the instability
is related to the presence of low-energy ions in the plume, the presence of which is
particularly detrimental for the spacecraft.

In Chapter 6, a model to include in axial-azimuthal simulations the radial losses
occurring within the thruster channel. The simulations have shown that the choice of
the length of the virtual radial dimension affects all aspects of the discharge. At the
end of the chapter, we analyzed and fully characterized a self-consistent case of an
axial-azimuthal simulation with a virtual-r.

In Chapter 7 we have shown how LPPic can be used to explore the parametric
space of HT operation. Using the PIC results, we have shown that it is possible to
derive some important considerations about the development of the BM in HTs. In
particular, we have shown that the ionization mechanism is a consequence of the
competition between neutral gas consumption, the fluctuations in plasma density,
and in the electron temperature. However, our results made it clear that electron
temperature growth alone cannot sustain ionization growth. Later, we changed some
simulation input parameters, i. e., anode voltage, neutral mass flow rate, magnetic
field value, propellant, and cathode temperature. By varying these parameters, we
could evaluate their impact on some discharge characteristics, such as the electron
temperature and density axial profiles, and on some engineering parameters, such as
the thrust, the specific impulse, and the mass consumption efficiency. The results in
this chapter allow us to demonstrate the flexibility of our code and to show that it
can be used to guide the design of a new thruster.
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8.2 perspectives
The future perspectives of this work are numerous. We identified three main research
directions: the LPPic code developments, the comparison with experiments, and the
use of simulations as a design tool for future HT developments.

8.2.1 LPPic code improvements

The LPPic code represents the core of this thesis: without an efficient and reliable
code, it would have been impossible to perform the simulations and obtain the results
presented in this manuscript. However, the current 2.5D LPPic code could be further
improved in several ways, to include more physical effects.

• The current model of virtual-r does not successfully reproduce the SEE. The
current simplified model of secondary emission has a weak impact on the
discharge, while we were expecting to observe the opposite. This is probably
related to the approximation we made, which dampens the effects of SEE. Thus,
it is necessary to improve the model and to find a way to include the SEE more
realistically.

• The virtual-r is implemented in using the Bohm flux; however, some recent
works [199] use some reduced-order schemes to decouple the solution of the
Poisson equation along the different direction. By using this approach, it could
be possible to have a more consistent third direction, with a real plasma sheath
and a more realistic particle flux. Some attempts have already been made (cf.
Appendix A.3), but they have not been successful.

• The percentage of doubly charged ions is estimated in the range 0− 25% [41,
42, 49]. Even if their presence in low-power thrusters might be negligible (the
percentage is higher at higher power), it would be great to consistently (i. e., via
MCC) evaluate the number of multiply charged particles and study their effect
on the discharge.

• The iodine studied in Chapter 7 was considered in this work as a perfect atomic
gas. This, unfortunately, is not the case in real life. Currently, during his Ph.D.
at LPP, Nicolas Lequette is developing a MCC module to include the detailed
chemistry of iodine plasmas. It will be of great interest to carry out the first
axial-azimuthal PIC simulations of HTs with the detailed chemistry for iodine.

8.2.2 Comparison with experiments

In parallel to this Ph.D. work on HT simulations, experiments on HTs have been
carried out at LPP. In collaboration with Tarek Ben Slimane some steps have been
made to compare experiment and simulation results. The detailed analyses of the
simulations presented in this work, together with those carried out by Ben Slimane
and collaborators [184], make it possible to identify some key points that can form the
basis for a reliable comparison between simulations and experiments. We identified
three possible ways to compare the simulation and experimental results:
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• use of a Collisional Radiative Model (CRM) to compare synthetic spectra pro-
duced by PIC results to the experimental spectra calculated from emission
spectroscopy;

• study the variation of the discharge current in different operating regimes, i. e.,
changing the anode voltage and the mass flow rate;

• compare the effects of the different propellants on the discharge parameters
and thruster performance.

Although the work is promising, we highlight some critical points that we are
currently studying. First, when the CRM is used to compare the simulation results
with the experimental measurements we need to consider data at the same axial
position (i. e., distance from the anode). So, when we try to make the comparison,
we are limited by the reduced portion of the axial direction that at the same time
is included in the simulation and that can be probed experimentally. Namely, the
length of the plume in the simulation is rather small (< 2 cm) and difficult to enlarge.
Conversely, from the experimental point of view, it has not been possible to probe
the plasma inside the channel. Secondly, the laboratory thruster conditions are rather
different (i. e., lower anode voltage and mass flow rate, higher discharge current, et
cetera) from those used in the simulation presented in the thesis, thus the results of
LPPic are not always stable and the discharge tends to switch off. An improvement
of the comparison techniques is fundamental to advance the understanding of the
discharge and to validate the LPPic code.

8.2.3 Use the 2.5D LPPic code as a design tool for future HTs

The simulations of Chapter 7 have shown that it is possible to use LPPic as an
engineering tool: it is robust when we change the input parameters. Nevertheless,
the parameter exploration that we performed in that chapter was not exhaustive. It
would be great to perform a more complete study, to find the optimal conditions
for the discharge. In particular, with the use of the virtual-r, one should address the
problem of geometrical design and test new thruster configurations, working with
lower anode voltages and mass flow rates. The study of the effect of the magnetic
field also deserves to be carried out: in Chapter 7 we have shown that the plasma
profile is strongly by the absolute value of the magnetic field. It would be interesting
to quantify this more precisely and to assess the consequences of a plasma localized
more mid-channel or towards the channel output.

The optimal design is not only the one that provides the larger thrust of specific
impulse: along this thesis, we have shown that plasma instabilities are fundamental to
define the plasma parameters. Therefore, when designing a new thruster, it should be
kept in mind that high-frequency oscillations must be damped to reduce anomalous
transport in the axial direction, and the BM must be blunted to reduce wall losses and
erosion. The code can provide some important insights about the thruster design
that reduces plasma instabilities.
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a.1 other circuit implementation
The circuit solution described above is the one that has been used in the simulation
presented in this thesis. However, other circuit implementations are possible. In this
section, we present a possible different circuit implementation. The main difference
with the circuit described in Eq. (3.11) is that the current is now solved with a 2nd

order scheme. This scheme consists in using the same discretization for the voltage,
and a second-order scheme for the current, as

dI
dt

=
In−1 − 2In−2 + In−3

2∆tRLC
+ O

(
∆t2

RLC

)
.

As one can see, to calculate the current first derivative at the second order, we are
obliged to use the current at the previous three times steps, centered in n− 2.

In Figure A.1 we show the current (a) and anode voltage temporal evolution for two
simulations run with the 2nd order scheme. The results are shown for two simulations
with Ly = 1 cm and Ly = 4 cm. In the small Ly case, the current does not reach a
constant value and the BM is persistent in the simulation, moreover, the amplitude
of the current oscillations is larger than in the non-circuit case discussed above.
With Ly = 4 cm we observe the same current oscillations present in the Ly = 1 cm
simulation. So, the discharge current seems to be independent of the azimuthal
length, which is different from what we have observed above. Conversely, the anode
voltage is stable: its oscillations are much smaller than with the 1st order current and
the mean value remains closer to the generator value.

The reason why the 1st order version of the circuit is preferred to the 2nd order one
is listed below.

• In the 2nd order version, when we try to reconstruct the current in the different
circuit components the equality Itot + Ic = Ir + Il is not satisfied. This can be
seen noticing that Ir = (Ug −U)/R, Il = Il,0 +

∫ t
0 (Ug −U)/L and Ic = CdU/dt

are almost constant, since U is almost constant and Ug is constant. Conversely,
the total current Itot is oscillating significantly.

• The circuit, which is designed to dampen the BM, fails in its task at all: in the
small Ly case the BM is persistent and the current oscillations are larger than in
the non-circuit case.

The numerical origin of these problems cannot be found easily. One hypothesis is that
those problems are related to a bad coupling of the voltage and current discretization
in the 2nd order scheme.
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Figure A.1: Discharge current (a) and voltage (b) with a 2nd order scheme. The results are
shown for two simulations with Ly = 1cm and Ly = 4 cm.
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a.2 axial-azimuthal simulation list
The simulations listed in Table A.1 are ordered as they appear in the manuscript, the
chapter is indicated in the first column. In the second column, we highlight the main
topic of the simulation, while in the third we report the used azimuthal length Ly. In
the fourth column, we show the number of simulations that are compared. In the
last, we describe in more detail the simulation characteristics. We remember that the
simulation parameters are given in Table 3.2 if not specified differently.

Table A.1: List of all axial-azimuthal simulations in this thesis.

Chapter Subject !H

How
many
simul.

Description of the major variations

Ch. 3


1 to
2 cm 4 Study the effect of varying the permittivity scaling .

No circuit is used.

Circ.
'!�

1 cm 3
Compare the effect of the circuit by varying the
impedances. The values of ', ! and � are detailed
in Table 3.2

4 cm 3

Compare the effect of the circuit by varying the
impedances. The value of ', ! and � are detailed
in Table 3.2. The effect of the cathode temperature is
also studied.

Ch. 5 Instabilities 4 cm 2 Analysis of two cases, introduced in Ch. 3, to study
the plasma instabilities.

Ch. 6

Virtual-r
value

1 cm 4 Different values of the virtual thickness are com-
pared (i.e. !I = ∞, !I = 4 cm, !I = 2 cm and
!I = 1 cm). All the other simulation parameters,
including the section, are kept constant. The values
are of the virtual thickness are used to vary the flux
of particles towards the walls.

4 cm 4

SEE
1 cm 3 Different emission rates are compared by varying �,

with !I = 2 cm. All the other values, including the
section, are kept constant.4 cm 4

Consistent
case

1 and
4 cm 2

The thickness (!I = 1.55 cm) is consistent with the
section used to define the mass flow rate and the
current.

Ch. 7

Virtual-r
value 4 cm 1 The same simulation analyzed at the end of Ch. 6 is

used to study the BM.
Change
+0

4 cm 5 The anode potential is varied between 200 V and
800 V, with a virtual-r of !I = 4 cm.

Change
¤<

1 cm 3 Themass flow rate is variedwith a consistent virtual-
r of thickness !I = 1.55 cm.

4 cm 4 The mass flow rate is varied with !I = 4 cm.

Change
B

1 cm 3 The amplitude of the magnetic field is varied, while
no virtual-r is used.

4 cm 3 The amplitude of the magnetic field is varied, with a
consistent virtual-r of thickness !I = 1.55 cm.

Change
gas 1 cm 6

Krypton, iodine and xenon are tested with !I =
1.55 cm and two values of the mass flow rate: 3.5
and 5 mg/s

Change
)cath
4

1 cm 5 Variation of the cathode temperature, with no circuit,
nor virtual-r.
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a.3 pseudo-virtual radial dimension

a.3.1 Introduction

The term pseudo was introduced by Faraji et al. [188, 199], who presented the concept
of a pseudo-scheme. The main idea is to consider the potential Φ spatially separable
and to work with coupled 1D problems. This approach not only allows us to reduce
significantly the cost of Poisson’s equation solution but also lowers the number of
superparticles needed in the simulation domain. LPPic is a 2D code, so we can try to
enhance it to pseudo-3D by considering a potential such that

Φ(x, y, z) = CxyΦ(x, y) + CzΦ(z), (A.1)

with x, y and z in the simulation domain and Cxy, Cz two coefficients. From this
expression of the potential, we can easily write two separate Poisson equations for
the potential and charge density in the xy-plane and along the z-axis. In the current
work, we consider Cxy = Cz = 1/2.

In our simulation domain, we implemented a rather simple scheme: the solution of
the Poisson equation remains the same in the axial-azimuthal plane, but the potential
is multiplied by the coefficient Cxy. To simulate the radial direction, we make a 1D
discretization of the radius and we solved a 1D problem along these directions. The
walls are considered grounded, so Dirichlet boundary conditions are applied along
this direction. The superparticles, already followed along z, are interpolated on the
radial grid points and a 1D Poisson equation is solved using Thomas’ algorithm to
find Φ(z).

a.3.2 Mono-domain

The first attempt has been performed by considering the potential in the radial
direction free to fluctuate, while kept at zero at the boundaries. The simulation
domain is divided into two parts: the channel and the plume. The radial-Poisson’s
equation is not solved in the plume and reflective walls are used to keep the particles
inside the z-domain. Conversely, the Poisson equation is solved inside the channel
and the particles exiting the domain are absorbed by the walls. In this way, we are
creating the sheaths on the internal walls, while the plasma along the radial direction
in the plume only moves in thermal motion. In Figure 3.19 we show the evolution of
the current and the potential in a 1 cm× 4 cm simulation with Lz = 4 cm This value
is particularly high, otherwise the high losses turn off the discharge. The evolution of
the current is rather different when compared to the standard similar cases discussed
in Ref. [201] and discussed in Section 3.4 in the presence of a circuit: the oscillation is
sharper and the steady-state voltage of 300 V is not reached. Moreover, some higher
frequency oscillations are observed at the anode voltage.

In Fig. A.3 (a) and (b) we observe the axial and radial profiles of the potential, taken
when the current is low. The axial profile in this case, i. e., in (a), is rather standard
for this kind of simulation. Also, the potential profile in the radial direction between
the center of the simulation and the walls, i. e., in (b), has an expected configuration:
our code successfully manages to recreate the sheaths and the classical shape of a
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Figure A.2: Current (a) and potential (b) evolution in a 1 cm× 4 cm simulation.

plasma between two walls. However, the absolute value of the potential is one order
of magnitude lower than the one that is expected in the thrusters [152].

In Figure A.4 we show the potential profiles at the current peak. In this case,
the behavior appears to be curious: we observe a large increase of the potential
components, both the one calculated in the xy-plane and the one along the radial axis.
The potential in the plasma bulk has increased significantly: we have a substantial
potential increase from the anode to the channel center. This is very uncommon and
physically only possible for a short amount of time. This is the reason why the large
current peaks, generated by the extremely large electric field derived by this potential,
last for a few time steps. However, these potential developments make us think that
plasma dynamics has some non-physical parts.

a.3.3 Other approaches

Similarly, with what we have done with the virtual radial dimension in Chapter 6,
we solved a different radial-direction problem for every CPU domain. The goal of
that was to consider the different plasma characteristics at a different axial position
and, consequently, the fact that the sheath has different shapes at different positions
(e. g., near the anode, the temperature and density are quite different compared to
the channel outlet). So, we interpolated the z position of each particle and we solved
different Poisson’s equations for each CPU. Unfortunately, this method turned out
to be unsatisfactory. In the simulation corners, where a double (radial and anodic)
sheath forms, there are no particles left. Thus, we obtain nonphysically large electric
fields that make the simulation crash.
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Figure A.3: Axial profile (a) and radial (b) profile of the plasma potential in a 1 cm× 4 cm
simulation. In (c) we show the current density evolution and in (d) a snapshot of
the ion density.

Figure A.4: Axial profile (a) and radial (b) profile of the plasma potential in a 1 cm× 4 cm
simulation at the current peak at t = 178.4 µs.
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Another option was to set the center potential at the value of the anode and then
solve two Poisson equations (bottom half and top half of the z−axis) keeping the
walls grounded. In this way, we expected to have a more reasonable voltage drop
in the radial direction. However, the fact of fixing the potential at the center with a
Dirichlet condition favors the creation of a thin sheath in the middle of the plasma at
z = 0, which is not physical at all.

a.3.4 Conclusions on pseudo-3D

The pseudo-3D appears to be an interesting option to take into account the radial
direction when the code is 2D axial-azimuthal. However, the test presented here
shows two main problems:

• the potential drop between the plasma bulk and the walls is too small. This
is probably because we are separating the potential contribution in different
directions;

• working with more refined subdomains makes the simulation crash since at
the corners the presence of a double sheath makes the walls absorb most of the
electrons.

Even if the results in this section are not conclusive, we consider that this path might
be fruitful and that it requires some further investigation.
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Résumé : Les propulseurs à effet Hall (HTs)
sont des systèmes de propulsion électrique uti-
lisés dans diverses applications spatiales. La confi-
guration des HTs permet l’ionisation d’un gaz
propulseur et l’accélération des ions pour créer
une poussée. Actuellement, pour répondre rapi-
dement aux enjeux de l’industrie spatiale, il de-
vient crucial de développer une méthodologie
expérimentale/numérique qui puisse proposer des
designs innovants pour ces propulseurs. Dans ce
cadre, cette thèse présente des résultats théoriques
et numériques sur la physique des plasmas froids

magnétisés à basse pression dans les plans radial-
azimutal et axial-azimutal d’un HT. Une analyse
détaillée des instabilités, qui affectent fortement la
durée de vie des HTs, est effectuée. Ensuite, ce travail
étudie l’origine de la croissance des instabilités et leur
rôle dans le transport anormal des électrons, qui a un
rapport direct avec la performance du propulseur. L’in-
fluence de différents paramètres d’entrée sur les ca-
ractéristiques de la décharge suggère qu’un code PIC
2D pourrait être utilisé pour sélectionner des condi-
tions/configurations potentiellement intéressantes.

Title : Plasma instabilities in Hall Thrusters: a theoretical and numerical study

Keywords : Electric propulsion, Hall thrusters, plasma physics, electrostatic instabilities, PIC simulations

Abstract : Hall thrusters (HTs) are electric propul-
sion systems used in various space applications. The
configuration of HTs allows for the ionization of propel-
lant gas and the acceleration of ions to create thrust.
There is currently a need to develop an experimen-
tal/numerical methodology to propose innovative de-
signs for the space industry. Towards this objective,
this thesis presents theoretical and simulation results
on the physics of low-temperature low-pressure ma-
gnetized plasmas in the radial-azimuthal and axial-

azimuthal planes of a HT. In this work, a detailed ana-
lysis of the instabilities in HTs, strongly affecting the
device lifetime, is carried out to explain the origin of
their growth and underline their role in the anoma-
lous transport of electrons, which has a direct rele-
vance in the thruster performance. The influence of
different input parameters on the discharge characte-
ristics has been studied and suggests that a 2D PIC
code could be used to select potentially interesting
conditions/configurations.
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