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Méthodes plug-and-play convergentes pour la résolution de problèmes inverses en
imagerie avec régularisation explicite, profonde et non-convexe

Résumé : Les méthodes plug-and-play constituent une classe d’algorithmes itératifs pour la
résolution de problèmes inverses en imagerie, où la régularisation est effectuée par un débrui-
teur de bruit Gaussien. Ces algorithmes donnent de très bonnes performances de restauration,
notamment lorsque le débruiteur est paramétré par un réseau de neurones profond. Cependant,
l’analyse théorique de la convergence de ces méthodes reste incomplète. La plupart des résultats
de convergence existants considèrent des débruiteurs non expansifs, ce qui n’est pas réaliste (ou
sous-optimal), ou limitent leur analyse aux termes d’attache aux données fortement convexes. De
plus, les algorithmes itératifs plug-and-play ne visent pas à minimiser une fonctionnelle explicite,
ce qui peut limiter leur interprétabilité et leur contrôle numérique. Nous distinguons deux types
d’algorithmes plug-and-play : les algorithmes RED, qui sont construits en supposant que le
débruiteur approche le gradient du logarithme de la distribution des images propres (appelé log
prior), et les algorithmes PnP, qui sont construits par approximation de l’opérateur proximal
du log prior. Pour ces deux familles d’algorithmes, nous proposons de nouvelles preuves de
convergence lorsqu’ils sont utilisés en conjonction avec un débruiteur spécifique. Le débruiteur
proposé, appelé débruiteur "Gradient-Step", s’écrit comme une étape de descente de gradient
sur un potentiel explicite et non-convexe paramétré par un réseau de neurones profond. De plus,
nous démontrons que ce débruiteur peut également s’écrire comme un opérateur proximal. Nos
expériences montrent que ces contraintes de paramétrisation ne compromettent les performances
de débruitage. En tirant parti des résultats de convergence des algorithmes proximaux pour des
problèmes non-convexes, nous démontrons que nos algorithmes RED et PnP sont des processus
itératifs convergents vers des points stationnaires de fonctionnelles explicites. Certains des énoncés
de convergence proposés impliquent cependant des conditions restrictives sur les paramètres du
problème. Nous proposons alors une version relâchée de l’algorithme de descente de gradient
proximal qui converge pour une plage de paramètres de régularisation plus large, permettant
ainsi une restauration d’image plus précise. Nous appliquons nos algorithmes PnP et RED à
divers problèmes inverses mal posés, tels que le défloutage, la super-résolution et l’inpainting.
Nos résultats numériques valident les résultats théoriques de convergence et démontrent que nos
algorithmes atteignent des performances de pointe, à la fois quantitativement et qualitativement.
Ces algorithmes RED et PnP ne sont cependant pas applicables pour des observations dégradées
avec un bruit de Poisson. Pour résoudre ce problème, nous proposons une généralisation du
plug-and-play basé sur l’algorithme de descente de gradient Bregman (BPG). BPG remplace la
distance Euclidienne par une divergence de Bregman, qui permet de mieux capturer la régularité
sous-jacente d’un problème inverse donné. Nous introduisons un nouveau modèle de bruit, appelé
modèle de bruit de Bregman, qui généralise le bruit Gaussien à cette nouvelle géométrie, ainsi
que de nouvelles versions Bregman des algorithmes RED et PnP. Nos évaluations expérimentales,
menées sur des problèmes inverses de Poisson, prouvent l’efficacité de la méthode et valident les
résultats théoriques de convergence.

Mots-clés : Plug-and-Play, Problème inverse, Débruitage, Convergence, Non-convexe
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Convergent plug-and-play methods for image inverse problems with explicit and
nonconvex deep regularization.

Abstract: Plug-and-play methods constitute a class of iterative algorithms for imaging inverse
problems where regularization is performed by an off-the-shelf Gaussian denoiser. These methods
yield impressive visual results, especially when the denoiser is parameterized by a deep neu-
ral network. However, the theoretical convergence analysis of plug-and-play methods remains
incomplete. Most of the existing convergence results consider nonexpansive denoisers, which
is non-realistic (or suboptimal), or limit their analysis to strongly convex data-fidelity terms.
Furthermore, plug-and-play iterative algorithms do not aim at minimizing any specific functional,
which can limit their interpretability and numerical control. We distinguish between two types of
plug-and-play algorithms: RED algorithms, which are constructed by assuming that the denoiser
approximates the gradient of the logarithm of the distribution of clean images (called log prior),
and PnP algorithms, which are built by approximation of the proximity operator of the log prior.
For these two families of algorithms, we offer new convergence proofs when they are used in
conjunction with a specific denoiser. The proposed denoiser, called Gradient-Step Denoiser, writes
as a gradient descent step on an explicit and nonconvex function parameterized by a deep neural
network. Additionally, we demonstrate that the Gradient-Step Denoiser can also be expressed as
the proximity operator of a related but distinct nonconvex function. Besides, experiments show
that this parametrization does not compromise denoising performance. Leveraging convergence
results for first-order optimization algorithms in the non-convex settings, we demonstrate that the
proposed RED and PnP algorithms are convergent iterative processes targeting stationary points
of explicit functionals. Some of these convergence results may assume restrictive conditions on
the parameters of the inverse problem. We propose a relaxed version of the Proximal Gradient
Algorithm (PGD) algorithm for weakly convex optimization which converges for a wider range of
regularization parameters, thus allowing more accurate image restoration. We apply our PnP
and RED algorithms to various ill-posed inverse problems, such as deblurring, super-resolution,
and inpainting. Our numerical results validate the convergence theory and demonstrate that our
algorithms achieve state-of-the-art performance both quantitatively and qualitatively. PnP and
RED methods are however not directly applicable for addressing Poisson inverse problems. To
address this limit, we propose a generalization of plug-and-play using the Bregman Proximal
Gradient (BPG) optimization technique. BPG replaces the Euclidean distance with a Bregman
divergence, which better captures the underlying smoothness of the problem. We introduce a
novel noise model, called the Bregman noise model, which extends Gaussian noise to the new
Bregman geometry, as well as new Bregman versions of the RED and PnP algorithms. Our
experimental evaluations, conducted on Poisson inverse problems, prove the efficiency of our
method and validate the established theoretical convergence results.

Keywords: Plug-and-Play, Inverse Problem, Denoising, Convergence, Nonconvex

Institut de Mathématiques de Bordeaux
UMR 5251 Université de Bordeaux, 33405 TALENCE, France.
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Résumé substantiel en français

L’objectif de cette thèse est de résoudre des problèmes inverses en imagerie en utilisant
des régularisations explicites et non-convexes apprises par réseaux de neurones profonds.
Nous exploiterons en particulier des algorithmes itératifs dotés de propriétés théoriques de
convergence bien établies.

Nous considérons un modèle d’observation général de la forme y = N(A(x∗)) avec
y ∈ Rm l’image dégradée observée, x∗ ∈ Rn l’image propre que nous voulons approcher,
A : Rn → Rm l’opérateur de dégradation et N : Rm → Rm un opérateur stochastique qui
représente le bruit de mesure. Le cas le plus courant étant A linéaire et N(x) ∼ N (x, ν2 Id)
un bruit Gaussien. Ce problème est classiquement abordé en résolvant un problème
d’optimisation de la forme suivante

x∗ ∈ arg min
x∈Rn

λf(x) + g(x) (1)

où f est un terme d’attache à l’observation dégradée, g un terme de régularisation et λ > 0
un paramètre de régularisation qui pondère l’importance des deux termes. Le terme de
régularisation permet d’inclure de l’information a priori sur la régularité de la solution
désirée. Un problème de longue date consiste à concevoir des fonctions g qui reflètent
une régularité pertinente sur x, tout en développant des schémas numériques efficaces
pour résoudre l’équation (2.2). Les premiers modèles d’images ont été développés avec des
régularisations explicites et convexes, par exemple la norme L2 ou la variation totale, afin
de résoudre le problème (2.2) avec des algorithmes itératifs aux propriétés de convergence
bien connues. Plus récemment, le deep learning a révolutionné le domaine de l’imagerie avec
différents modèles de réseaux de neurones qui ont produit des résultats remarquables dans
diverses applications. Il demeure un défi de déterminer comment incorporer au mieux des
modèles de deep learning dans une fonction de régularisation g qui présente les propriétés
nécessaires pour permettre l’utilisation de techniques d’optimisation établies.

La régularisation "plug-and-play".

La minimisation (2.2) est généralement effectuée en utilisant des algorithmes d’optimisation
du premier ordre, dits proximaux. Ces algorithmes opèrent individuellement sur les deux
termes de (2.2) via deux opérateurs : l’opérateur de descente de gradient Id−τ∇f et
l’opérateur proximal Proxτf . Par exemple, l’algorithme de descente de gradient proximale
(PGD) alterne entre une opération proximale et une étape de descente de gradient sur
l’une ou l’autre des fonctions f et g :

(PGD) xk+1 = Proxτg ◦(Id−τλ∇f)(xk) ou xk+1 = Proxτλf ◦(Id−τ∇g)(xk) (2)

Les algorithmes HQS, ADMM ou Douglas-Rachford Splitting (DRS) sont d’autres exemples
d’algorithmes proximaux.

Les méthodes Plug-and-Play établissent une connexion élégante entre ces algorithmes
d’optimisation et les modèles de réseaux de neurones profonds via l’introduction d’un
débruiteur d’image Dσ. Leur dérivation est basée sur l’analyse théorique des débruiteurs
optimaux MAP et MMSE. Étant donné un débruiteur générique Dσ, par exemple un
réseau de neurone profond, préalablement entraîné ou construit pour débruiter une image
dégradée par bruit Gaussien d’écart type σ, les algorithmes Plug-and-Play sont construits
en utilisant Dσ en lieu et place d’un opérateur de descente sur le terme de régularisation g :
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(i) pour les algorithmes RED, le débruiteur remplace l’opérateur de descente de gradient :
Dσ = Id−∇g.

(ii) pour les algorithmes PnP, le débruiteur remplace l’opérateur proximal :
Dσ = Proxτg.

Par exemple, l’algorithme PGD (2) devient avec cet échange

(PnP-PGD) xk+1 = Dσ ◦ (Id−τλ∇f)(xk)

ou (RED-PGD) xk+1 = Proxτλf ◦(Id−τ(Id−Dσ))(xk)

(3)
(4)

Des résultats de pointe pour divers problèmes inverses ont été obtenus avec ces procédés.
Un avantage significatif de ces méthodes est qu’elles sont non supervisées et qu’un simple
débruiteur Gaussien peut-être utilisé pour restaurer une variété de problèmes inverses. En
particulier, le choix du débruiteur et découplé du modèle de dégradation et donc du terme
d’attache aux données f .

Cependant, les algorithmes Plug-and-Play sont utilisées avec peu de garanties théoriques
de convergence. En effet, comme un débruiteur générique ne s’exprime généralement pas
exactement comme un opérateur proximal ou un gradient, les résultats de convergence
ne suivent pas facilement. La plupart des résultats de convergence qui existent limitent
leur analyse aux termes d’attache aux données fortement convexes, ce qui exclue de très
nombreux problèmes, ou considèrent des débruiteurs non expansifs. Il a été déjà démontré
que contraindre un débruiteur à être non expansif provoque une baisse considérable de
performance. De plus, avec l’utilisation d’un débruiteur générique, la régularisation est
seulement implicitement incluse via l’opération de débruitage. Ainsi, les algorithmes plug-
and-play ne minimisent pas de fonctionnelle explicite de la forme (1). Cela limite fortement
l’interprétabilité du résultat et le contrôle numérique de l’algorithme.

Débruiteur Gradient-Step pour la convergence des algorithmes RED (Cha-
pitre 4)

Nous proposons d’utiliser un débruiteur appelé Gradient-Step (GS) qui s’écrit exactement
comme une étape de descente de gradient sur un potentiel gσ : Rn → R différentiable et
paramétré par un réseau de neurone profond

Dσ = Id−∇gσ (5)

Nous choisissons en particulier gσ sous la forme

gσ(x) =
1

2
||x−Nσ(x)||2 (6)

avecNσ : Rn → Rn un réseau de neurones de classe C1. Grâce à cette écriture, nous pouvons
paramétrer Nσ avec n’importe quelle architecture de réseau de neurones différentiable qui
s’est montrée efficace pour le débruitage d’image, par exemple avec un UNet. Malgré le fait
qu’il soit contraint d’être un champ de gradients, Dσ obtient des résultats de débruitage à
l’état de l’art, et performe aussi bien que le même réseau UNet non contraint.

Dσ est appris pour débruiter simultanément à différents niveaux de bruits σ par
minimisation du coût L2 de débruitage

EX∼pX ,ξσ∼N (0,σ2I)

[
||Dσ(x+ ξσ)− x||2

]
(7)
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En utilisant le résultat de Denoising Score Matching (Vincent, 2011), il est alors prouvé
que gσ approche alors le log d’une version lissée (par convolution avec une Gaussienne
d’écart type σ) de la vraie distribution pX des images propres. Cela fait de gσ un bon
candidat pour régulariser un problème inverse.

Nous considérons deux algorithmes RED (RED-GD et RED-PGD) qui sont initialement
construits à partir respectivement des algorithmes de descente de gradient (GD) et de
gradient proximal (PGD). Avec le débruiteur GS (5), les algorithmes RED (appelés GSRED)
prennent à nouveau la forme de véritables algorithmes d’optimisation pour optimiser λf+gσ.
La fonction gσ étant non-convexe, la preuve de la convergence des algorithmes GS-RED
s’appuie alors sur les résultats connus de convergence en optimisation non-convexe. Ces
résultats sont préalablement étudiés au Chapitre 3. Ils s’appuient notamment sur la
propriété Kurdyka-Łojasiewicz (KŁ) que doit vérifier la fonction objectif. Après vérification
des hypothèses de convergence, nous démontrons que RED-GD et RED-PGD, avec le
débruiteur GS (5), convergent vers un point stationnaire de λf + gσ. Étant donné que la
constante de Lipschitz du gradient de gσ n’est pas explicite, le pas de temps de l’algorithme
est automatiquement règlé par backtracking.

Les expériences de défloutage, super-résolution, inpainting réalisées confirment les
résultats de convergence théoriques et montrent que les algorithmes GSRED atteignent
des performances au niveau de l’état de l’art.

Débruiteur proximal pour la convergence des algorithmes PnP (Chapitre 5)

Afin de prouver la convergence des méthodes PnP, nous proposons un second débruiteur
entraîné pour prendre exactement la forme d’un opérateur proximal. Pour cela, nous
démontrons que, pour gσ à gradient L-Lipschitz avec L < 1, le débruiteur Gradient-
Step (5) est un opérateur proximal, c’est-à-dire

Dσ = Id−∇gσ = Proxψσ (8)

pour une certaine fonction ψσ : Rn → R ∪ {+∞}. De plus, ψσ est M = L
L+1

-faiblement
convexe. Afin de contraindre ∇gσ à être contractant, nous proposons de régulariser le coût
d’apprentissage (7) avec un terme de pénalisation sur la norme spectrale de la Hessienne
de gσ. Ce coût s’écrit alors

Ex∼pX ,ξσ∼N (0,σ2)

[
||Dσ(x+ ξσ)− x||2 + µmax(

∣∣∣∣∇2gσ(x+ ξσ)
∣∣∣∣
S
, 1− ε)

]
(9)

Le débruiteur obtenu satisfait empiriquement la contrainte L < 1 tout en conservant de
bonnes performances de débruitage.

Avec ce débruiteur proximal, les algorithmes PnP (appelés ProxPnP) prennent à
nouveau la forme de véritables algorithmes proximaux pour optimiser λf +φσ. La fonction
de régularisation φσ étant faiblement convexe, la preuve de la convergence des algorithmes
ProxPnP s’appuie sur les résultats de convergence des algorithmes proximaux pour mini-
miser la somme de deux fonctions dont une est faiblement convexe. Nous montrons ainsi
que les algorithmes ProxPnP-PGD et ProxPnP-DRS sont garantis de converger vers des
points stationnaires de la fonction objective λf + φσ.

Avec la propriété précédente, Dσ s’écrit comme Proxψσ et non pas comme Proxτψσ (avec
un pas de temps τ > 0) comme utilisé dans les algorithmes proximaux (2). Ainsi, nous
sommes contraints d’avoir un pas de temps fixé à τ = 1. La convergence des algorithmes
proximaux étudiés est conditionnée à une contrainte sur le pas de temps τ qui dépend
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du paramètre de régularisation λ du problème. Ainsi, lorsque ProxPnP utilise un pas de
temps τ = 1, la contrainte se transforme en une limite sur la valeur du paramètre λ. Cela
devient problématique lorsqu’il s’agit de restaurer une image qui présente des dégradations
mineures. Dans de tels cas, on s’attendrait en effet à obtenir des solutions appropriées en
utilisant une faible valeur de λ.

Nous proposons alors une relaxation de l’algorithme de descente de gradient proximal,
appelée αPGD, dérivée de l’algorithme Primal Dual en version Bregman (Chambolle
and Pock, 2016). Quand la contrainte de convergence de l’algorithme PGD restreint la
somme de la constante de Lipschitz de ∇f et de la constante de convexité faible M de φσ,
l’algorithme αPGD, quant à lui, limite le produit de ces deux termes. Ainsi, lorsque M
tend vers 0, nous avons la liberté de choisir λ aussi petit que souhaité. Nous proposons en
parallèle une manière de contrôler la constante de convexité faible M de φσ.

Les expériences de défloutage et de super-résolution réalisées démontrent l’efficacité de
nos algorithmes ProxPnP. En particulier, Prox-αPGD remédie à la perte de performance
notable de ProxPnP-PGD attribuable à la restriction sur la valeur du paramètre λ.

Généralisation Bregman des algorithmes Plug-and-Play pour la résolution de
problèmes inverses de Poisson (Chapitre 6)

Dans les expériences précédentes, le bruit de mesure sur l’observation y était supposé
Gaussien. Pour de nombreuses applications, par exemple en microscopie ou en astronomie,
il est plus exact d’utiliser un modèle de bruit de Poisson y ∼ P(Ax). Le terme d’attache
aux données f adéquat est alors la divergence de Kullback-Leibler

f(x) =
m∑
i=1

yi log

(
yi

α(Ax)i

)
+ α(Ax)i − yi. (10)

Cependant, il est important de noter que ce terme ne possède ni un gradient Lipschitz, ni
un opérateur proximal explicite, ce qui restreint l’application d’algorithmes proximaux
pour la minimisation d’un objectif variationnel de la forme (1).

Pour résoudre cette problématique, une approche possible consiste à se placer dans
un cadre plus général où la distance Euclidienne est remplacée par une divergence de
Bregman Dh(x, y). L’algorithme PGD est alors remplacé par sa version Bregman appelée
BPG(Bauschke et al., 2017)

xk+1 ∈ Proxhτg ◦∇h∗(∇h− τλ∇f)(xk). (11)

où Proxh est un opérateur proximal de Bregman. L’avantage de l’algorithme BPG est que
la condition ∇f Lf -Lipschitz nécessaire pour la convergence de PGD est remplacée par
une condition NoLip :

Il existe un potentiel strictement convexe h : Rn → R tel que Lfh− f est convexe.

Le terme d’attache aux données (10) satisfait cette condition pour h l’entropie de Burg
h(x) =

∑n
i=1− log xi.

Nous utilisons cet algorithme BPG pour dériver une version Bregman des algorithmes
RED et PnP. Pour cela, nous introduisons un nouveau modèle de bruit de Bregman, qui
généralise le modèle de bruit Gaussien et qui est défini, pour un paramètre γ, par la loi
postérieure

pY |X(y|x) = α(x) exp (−γDh(x, y)) . (12)
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Nos algorithmes Bregman PnP et RED sont dérivés en suivant le même raisonnement
que dans le cas Euclidien, mais pour ce nouveau modèle de bruit. Ainsi, nous étudions
d’abord les débruiteurs théoriques MAP et MMSE. Nous montrons que le débruiteur
MAP s’écrit comme un opérateur proximal de Bregman et que la formule de Tweedie se
généralise pour écrire le débruiteur MMSE en fonction du gradient du log prior. Maintenant,
étant donné un débruiteur générique Bγ, préalablement appris pour débruiter une image
dégradée par bruit Bregman de paramètre γ, les algorithmes Bregman PnP (B-PnP) et
RED (B-RED) sont construits en introduisant le débruiteur Bγ pour remplacer, dans
BPG (11), respectivement l’opérateur proximal de Bregman Proxhτg et le gradient ∇g.

Dans ce contexte, la régularisation plug-and-play et le terme d’attache aux données
sont donc liés par le choix du potentiel de Bregman h. Nous apportons donc une limite à
l’argument de découplage entre ces deux termes, souvent mis en avant dans la littérature
plug-and-play.

Ensuite, nous généralisons nos analyses de convergences précédemment proposées
dans le contexte Euclidien. Nous proposons une généralisation Bregman du débruiteur
Gradient-Step, qui s’écrit

Bγ(y) = y − (∇2h(y))−1 · ∇gγ(y), (13)

avec gγ : Rn → R un potentiel nonconvex paramétré par réseau de neurone. Équipé ce
débruiteur, nous démontrons que l’algorithme B-RED converge vers un point stationnaire
de la fonction λf + gγ.

De plus, après avoir prouvé un nouveau résultat de caractérisation des opérateurs
proximaux Bregman, nous montrons que, si Bγ à une Jacobienne définie positive, alors il
s’écrit comme un opérateur proximal de Bregman Bγ(y) ∈ Proxhφσ pour φγ une fonction
non-convexe. C’est la généralisation Bregman du débruiteur proximal (8). La convergence
de l’algorithme B-PnP, avec ce débruiteur, vers un point stationnaire de la fonction λf+φγ
est alors établie.

Nous appliquons nos algorithmes dans le contexte des problèmes inverses de Poisson
avec h l’entropie de Burg. Le modèle de bruit Bregman suit alors une loi inverse gamma
multivariée. Nous montrons que le débruiteur (13) appris sur ce modèle de bruit permet
d’efficacement régulariser un problème inverse de Poisson.
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1.1 Context

Image inverse problems are the core of various scientific and technological disciplines where
a digital visual representation is involved, be it a photograph, a medical scan, a satellite
or microscope image. In all of these disciplines, a physical device acquires a real-world
2D scene and renders a digital representation. While a camera directly captures image
pixels, a CT scanner renders a sinogram and a radio interferometer (for astronomical
images) collects spatial frequencies (see Figure 1.1). The image inverse problem consists in
reversing this acquisition, that is to say, in looking for a realistic input image that would
best explain the observation. It is a difficult problem due to the inherent imperfections
and physical limitations of the acquisition process. Essentially, observation devices are
recording an altered or distorted version of the original scene. These imperfections can be
caused by different factors. First, any physical acquisition device has limited resolution:
a photo camera has a limited number of pixels, a CT scanner sends X-rays at a limited
number of angles and a radio interferometer collects a finite number of frequencies. Also,
as a by-product of image capture, any sensor creates a certain amount of noise, of different
kind, on the digital image. The acquisition can also be altered for various additional
reasons. For instance, a photo can be blurred due to camera shake or object motion during
its acquisition, or the recorded scene can be partially occluded.

Before going further, we need to mention that a grayscale digital image consists of a
matrix filled with L×H pixels. Each pixel has a real value between 0 and 1, 0 corresponding
to a black pixel and 1 corresponding to a white pixel. Color images are represented by a
stack of three of such matrices representing respectively the level of red R, green G and
blue B. In practice, we will consider that a color image x is simply a vector of Rn i.e. a
list of n = 3LH real values x = (x1, ..., xn). It is built, for example, by listing the pixel
values one by one in the lexicographical order. From this representation, we can employ
mathematical tools and operations for describing and solving imaging problems.

Solving an image inverse problem consists in developing techniques for reversing the

15
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Figure 1.1: Image inverse problems

forward observation model and recovering the original scene as faithfully as possible.
The degradation that takes place during the acquisition process results in data loss, and
therefore, restoring the ideal image requires incorporating prior knowledge of what the
ideal image should resemble.

Traditional approaches reformulate image inverse problems as optimization problems.
They consider the clean image as the solution of the minimization of a well-chosen function.
This function typically writes as the sum of two terms. The first one, called data-fidelity
term, measures the dissimilarity between the estimation and the observation while the
second one, called regularization, ensures that the output satisfies some prior knowledge
about the regularity of the ideal output. Examples of typical regularization include Total
Variation (TV) which encourages smoothness within the reconstructed image, or the L1

norm within a specific basis or dictionary, which promotes sparsity in the representation.
Upon minimization, the result should align with the observation while adhering to the
requirements brought by the prior information. This optimization problem is addressed
through iterative optimization techniques. These iterations rely on two fundamental
mathematical operations: the gradient and the proximity operator. The convergence of
these algorithms has been well established for convex and nonconvex objectives.

More recently, with the advent of deep learning, deep neural networks have outperformed
classical methods in a variety of imaging problems. These networks are directly trained
to realize the image inversion thanks to very large datasets. More precisely, when we
have access to a substantial dataset of ground-truth pairs (input, observation), it becomes
possible to train a neural network to approximate the optimal mapping from observation
to input. Prior information is then automatically derived from the data and implicitly
embedded within the learned mapping. Despite being efficient and fast, these methods
come with several drawbacks. First, they require a large amount of data (thousands of
images) which can be expensive, time-consuming, or even impossible to get for some
inverse problems. It is also necessary to retrain the model whenever the degradation model
changes. For instance, one cannot use a model trained on CT scans of a brain for acquiring
other parts of the body. Moreover, deep learning models lack of interpretability. It is
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difficult to understand the rationale behind a specific output. This can pose a significant
limitation, especially when the output is utilized in human decision-making processes, as
it is typically the case for medical images.

Plug-and-play algorithms (Venkatakrishnan et al., 2013; Romano et al., 2017) were built
to take advantage from both strategies. They are iterative algorithms where the iterated
operator is constructed using a deep neural network. Compared to classical methods,
this deep neural network replaces either the gradient (RED algorithms) or the proximity
operator (PnP algorithms) of the regularization function. Therefore, it should implicitly
bring prior information. This deep neural network is previously trained to denoise images
corrupted with artificial Gaussian noise. Plug-and-play methods are unsupervised and have
shown state-of-the-art visual performance for various image restoration problems. However,
when incorporating an off-the-shelf generic denoiser within an iterative minimizing scheme,
one a priori loses its guarantees of convergence as well as its interpretability. Indeed,
plug-and-play methods do not minimize any explicit function. To ensure convergence
of plug-and-play schemes, many works have proposed specific parametrizations of the
plugged deep denoisers. However, existing results require either unverifiable or suboptimal
hypotheses, or assume restrictive conditions on the parameters of the inverse problem.

1.2 Contributions and Outline

In this work, we propose new types of plug-and-play methods in which the denoiser is
realized as a gradient descent step or as a proximal step on a function parameterized by a
deep neural network. Exploiting convergence results for optimization algorithms in the
nonconvex setting, we show that the proposed algorithms are convergent iterative schemes
that target stationary points of explicit global functionals.

In Chapter 2, we start by introducing more formally image inverse problems, convex and
nonconvex optimization and plug-and-play methods. We will make a distinction between
two kinds of plug-and-play algorithms that we will refer to PnP and RED, according to
the fact that the plugged denoiser approximates the MAP or MMSE estimator.

In Chapter 3, we present a variety of tools and results that will be the building blocks
for analyzing the convergence of plug-and-play algorithms. In particular, we give convex
and nonconvex convergence results for the most common proximal optimization algorithms
(PGD, DRS, ADMM or Primal-Dual). We also review in this chapter the existing literature
on plug-and-play convergence.

Our main contributions are contained in Chapters 4, 5 and 6.
In Chapter 4, we introduce a new deep denoiser, called Gradient-Step denoiser, which

writes as a gradient descent step on an explicit and nonconvex function parameterized by
a deep neural network. We show that it is possible to learn such a deep denoiser while not
compromising its performance. We prove that the proposed denoiser ensures convergence
of the RED algorithms (RED-PGD (2.102) and RED-GD (2.102)) towards a critical point
of an explicit objective function. Moreover, compared to other plug-and-play methods,
the resulting RED algorithms reach state-of-the-art restoration performance on deblurring
and super-resolution problems.

In Chapter 5, under additional constraints, we show that the Gradient-Step denoiser
writes as a proximity operator of another nonconvex function. We then prove that
PnP algorithms (e.g. PnP-PGD (2.109) and PnP-DRS (2.111)) also converge towards
explicit stationary points. In this chapter, we additionally introduce a new optimization
scheme, reminiscent of Proximal Gradient Descent, which converges for a wider ranger of
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regularization parameters, thus allowing for a more accurate image restoration.
In Chapter 6, we extend our PnP and RED methods in a more general Bregman

framework. Using a Bregman divergence instead of the Euclidean distance enables to
better capture the smoothness properties of the inverse problem, which proves particularly
useful when the observation is corrupted with Poisson noise. This extension is based on the
definition of a Bregman noise model that generalizes Gaussian noise. We propose a denoiser
that extends the Gradient-Step denoiser to this Bregman geometry, and show that this
denoiser can also write as a Bregman proximity operator. After proving new convergence
results for the Bregman Proximal Gradient (BPG) algorithm in the nonconvex setting,
we demonstrate that our Bregman PnP and RED methods converge towards explicit
stationary points. Eventually, we experimentally verify the efficiency of the approach for
Poisson image deblurring.
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2.1 Variational image restoration

Image restoration (IR) consists in estimating an unknown image (or signal) x ∈ X ⊆ Rn

given an observation y ∈ Y ⊆ Rm which has been degraded (e.g. with blur, noise,
sampling). The forward model is the map used to represent the physics behind this
degradation. From the clean signal x ∈ X , the forward map usually takes the form

y = N(A(x)) (2.1)
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where A : X → Y is deterministic and N : Y → Y is stochastic and characterizes the
noise affecting the measurements. Generally, and for the rest of this manuscript, A is
assumed linear. For example, for image inpainting, A is diagonal with binary values, and
for image deblurring, A represents the convolution with a blur kernel. More complex
degradations (e.g. image haze removal, single photon lidar) could nonetheless involve a
non-linear operator A . The most typical noise model is additive white Gaussian noise i.e.
N(x) = x+ ξ with ξ a realization of N (0, σ2 Id) a Gaussian distribution with zero mean
and standard deviation σ.

The image inverse problem consists in estimating x ∈ X given the observation y, the
forward operator A and the noise model N . An inverse problem is ill-posed in the sense
of Hadamard if it does not have a unique solution or if the solution does not change
continuously with respect to the input. This is typically the case if A is not invertible
or if its eigenvalues are too small in absolute value, which makes the noise explode in
the pseudo-inverse estimation. In order to address ill-posedness, a typical approach is to
incorporate regularization by reformulating the image inverse problem as a minimization
problem of the form

x̂ = arg min
x

f(x) + λg(x) (2.2)

where f : X → R, called data-fidelity term, measures the distance to a degraded observation
y, for example the L2 distance f(x) = 1

2
||A(x)− y||2, and g : X → R is a regularization

term weighted by a parameter λ > 0.
Including a regularization term g can permit to cope with the ill-posed nature of the

inverse problem by assuming a priori knowledge about the ground-truth solution, and thus
restricting the null space of the observation model A. The choice of the regularization
depends on the properties we wish to impose on the solution. For instance, one can
use the L1 norm g(x) = ||x||1 to enforce sparsity, or the Total Variation g(x) = ||Dx||1
for promoting spacial smoothness. More details on the choices of the regularization and
data-fidelity terms will be given in Sections 2.1.1 and 2.1.2.

This variational formulation can also be obtained via a Bayesian approach. Assume
that x is the realization of a random variable X with prior distribution pX(x): we assume
a prior distribution on (Rn,B(Rn)) that admits a density w.r.t. to the Lebesgue measure
on Rn. This prior depends on the type of image data considered. In the general case, it
represents the distribution of clean natural images, but it could also represent a more
specific kind of signal, for example medical or astronomical data. Let y be the realization
of Y with forward conditional distribution pY |X(y|x) = pN(y|A(x)) with pN the noise
distribution. The Maximum A Posteriori (MAP) estimation maximizes the posterior
probability distribution pX|Y (x|y)

x̂MAP = arg max
x∈X

pX|Y (x|y). (2.3)

By Bayes formula, the posterior distribution is given by (with pY (y) the marginal distribu-
tion of Y )

pX|Y (x|y) =
pX(x)pY |X(y|x)

pY (y)
(2.4)

and the MAP writes as the minimization of the sum of two functions

x̂MAP = arg min
x∈X

− log pY |X(y|x)− log pX(x). (2.5)
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Compared to (2.2), the MAP estimator relates the data-fidelity term to the conditional
distribution pY |X and the regularization term to the prior distribution pX . For example,
assuming Gaussian noise pN(y|x) ∝ exp

(
− ||x−y||

2

2σ2

)
, we obtain again the L2 data-fidelity.

Moreover, assuming a Laplacian image prior pX(x) ∝ exp (−λ ||x||1), we get back the
L1 regularizer. However, as advocated by Gribonval and Nikolova (2021), although
the variational formulation (2.2) can be derived via the MAP estimator, a variational
formulation is not necessarily linked to a Bayesian formulation of the form (2.5). For
instance, the L1 regularization can be chosen to promote sparsity, but it does not mean
that the Laplacian prior is a good distribution to represent the true image prior pX .

Once the image restoration task has been formulated as a minimization problem of the
form (2.2), one needs to choose an appropriate optimization algorithm to minimize the
sum of two functions. Typically, it consists in picking the most suitable algorithm in a list
of well-known iterative schemes, for example Gradient Descent (GD), Proximal Gradient
Descent (PGD) or Alternating Direction Method of Multipliers (ADMM). The choice of the
minimization algorithm mostly depends on the regularity of the functions f and g, which
may or may not fit its conditions required for convergence. Therefore, before proceeding,
one must need to precisely know which are the minimal conditions for convergence of the
iterative schemes of interest. These convergence results will be recalled in Section 2.3. In
practice, assuming that the forward model (i.e. the data term f) is given and fixed, in
order to achieve performant image restoration with convergence guarantees, the choice of
both the regularization function g and the minimization scheme has to be done jointly. For
example, as we will see later, minimization algorithms have stronger convergence properties
when applied to convex functions, which advocates for choosing convex regularizers. On
the other hand, very efficient regularizers may be nonconvex. Actually, under the general
MAP formulation (2.5), the regularizer is the true (but intractable) negative log image
prior − log pX(x) which is potentially highly nonconvex.

2.1.1 A variety of image priors

Classical priors Regularization is crucial since it tackles the ill-posedness of the IR
task by bringing a priori knowledge on the solution. A long-standing problem consists
in designing explicit prior functions g that reflect a relevant regularity prior on x while
allowing for efficient numerical schemes to solve (2.2). Following the variational approach,
research has first been dedicated to find, by hand, potentials g that are minimized when a
desired property of a clean image is satisfied. Among the most classical priors, one can
single out total variation Rudin et al. (1992), L2 norm (Tikhonov) Tikhonov (1963), or
sparsity in a given dictionary, for example in the wavelet representation Mallat (2009).
Note that the choice of an appropriate regularizing potential often depends on the kind of
degradation that is treated or on the type of structures we wish to recover in the image.
For instance, Total Variation (with MAP estimation) favors piecewise constant regions at
the cost of loosing textures details. Designing a prior g that is efficient for a variety of
images and degradations is a difficult task. With the advent of big data, a more recent
line of work tries to learn g from a dataset of “clean images” {xi} which can be understood
as realizations of X.

Among learned priors, from the idea that a clean image should be sparse in a given
dictionary D ∈ Rn×p, the first strategies consisted in learning these sparsity-promoting
dictionaries (Mallat and Zhang, 1993; Aharon et al., 2006; Mairal et al., 2009, 2008). This
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can be formulated as the following optimization problem

(D̂, r̂) = arg min
D∈C,r∈Rp

∑
i

l(ci, Dri) + λ ||r||0 (2.6)

where l : Rn×Rn → R is some loss function (e.g. the L2 or L1 norm) and C is a constraint
set for D (e.g. with columns ||dj|| ≤ 1 (Olshausen and Field, 1997)). Alternatively, the
nonconvex term ||r||0 can be replaced by the convex (and also sparsifying) ||r||1 norm to
make the minimization problem (2.6) convex in D and r (Tibshirani, 1996; Chen et al.,
2001).

A more general prior learning strategy consists in trying to approximate the true
image prior pX (or its log) with a parametric potential. The main advantage is that, in
theory, following the MAP formulation (2.5), such a learned prior can be used to efficiently
regularize any image inverse problem represented by f(x) = − log pY |X(y|x). The prior
and the observation model are then decoupled. For X representing natural images, the
distribution pX is however very complex and irregular in a high-dimensional space Rn.

Before the deep learning era, it was proposed with EPLL Zoran and Weiss (2011);
Hurault et al. (2018) to simplify the learning problem by working on lower-dimensional
image patches i.e. very small images (typically 8 × 8) extracted from the input image.
From a large collection of patches (≈ 106) extracted from a dataset of natural images, and
seen as realizations of a random variable denoted by Xp, the idea is to approximate the
true patch prior pXp with pθXp parameterized by a set of parameters θ. The full image log
prior log pX in (2.5) is then approximated via summing the learned patch log prior values
across all patches:

log pX(x) ≈
∑

patches xkp∈x

log pXp(x
k
p) ≈

∑
patches xkp∈x

log pθXp(x
k
p) (2.7)

In practice, pθXp is modeled in Zoran and Weiss (2011) as a Gaussian Mixture Model
(GMM) with 200 mixture components. The parameters θ of the GMM (means, covariances,
weights) are trained using the Expectation Maximization (EM) algorithm. EPLL is one of
the state-of-the-art methods among non-deep image restoration methods, and compared to
other efficient classical non-local methods such as BM3D, it has the advantage to provide an
explicit prior and thus to be readily applicable for a variety of inverse problems formulated
as (2.5). Even though very promising, the performance of the EPLL or dictionary learning
algorithm has recently been largely overtaken by deep learning based priors. Indeed,
compared to deep neural network architectures, the dictionary and GMM models have
limiting representation power.

Deep priors More recently, deep generative models make use of recent deep learning
advances to directly approximate the full prior with pθX parameterized by a neural network.
Among them, latent-based models propose to simplify the problem by introducing a latent
variable Z in Rp with simple prior pZ , typically N (0, Id). The parameters θ parameterize
the posterior pθX|Z via an image generator Gθ : Rp → Rn. For example, Generative
Adversarial Networks (GAN) (Goodfellow et al., 2014) or Normalizing Flows (NF) Rezende
and Mohamed (2015) models use the pushforward measure through Gθ denoted by pθX|Z =

Gθ#pZ while Variational Auto-Encoders (VAE) Kingma and Welling (2013) use a Gaussian
centered on Gθ(z) i.e. pθX|Z = N (Gθ(z),Σθ(z)). In this case, the image prior

pθX(x) =

∫
z

pθX|Z(x|z)pZ(z)dz (2.8)
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is however intractable. These models then resort to different strategies to optimize θ by
realizing Maximum Likelihood Estimation (MLE) on the image data

Ex∼X
[
− log pθX(x)

]
. (2.9)

GANs make use of a discriminator neural network, NFs parameterize Gθ to be bijective
and VAEs introduce an encoder neural network to approximate the intractable posterior
pZ|X inside a variational inference formulation.

Once trained, this prior can be used to regularize inverse problems. Depending on
the generative model, different variational formulations of the inverse problems have been
proposed. Using normalizing flows, by bijectivity of Gθ, the image prior is tractable:

pθX(Gθ(z)) = pZ(z)| det JGθ(z)|−1, (2.10)

and the MAP problem (2.5) can be rewritten as an optimization problem with respect to
the latent z (Helminger et al., 2020; Whang et al., 2020)

xMAP = Gθ

(
arg min

z
− log pY |X(y|Gθ(z))− log pθX(Gθ(z))

)
. (2.11)

Without bijectivity of Gθ, i.e. with a GAN or a VAE, directly integrating the generative
prior inside the MAP (2.5) is difficult. Instead, a workaround proposed by Bora et al.
(2017) consists in estimating a MAP w.r.t. the latent variable z

zMAP = arg max
z

pZ|Y p(z|y) (2.12)

and then choosing x = Gθ(zMAP ). (2.12) can be shown to write as (see (Gonzalez et al.,
2019, Appendix B.1))

zMAP = arg max
z

− log pY |X(y|Gθ(z))− log pZ(z). (2.13)

Note that the regularization term is different between (2.13) and (2.11). Both optimization
problems are highly nonconvex due to the nonconvexity of Gθ. Moreover, the landscape of
the learned pθX is often irregular and can suffer from mode collapse, i.e. most of the mass
is centered on a single kind of image. With such irregularities, it has been observed (Daras
et al., 2021; Saharia et al., 2022) that iterative optimization applied to these objectives
may not converge or easily fall in bad local minima.

Energy-Based Models (EBM) (Song and Kingma, 2021) directly consider a parametric
probability density in the image space using a potential Eθ : Rn → R via

pθX(x) =
exp(−Eθ(x))

Zθ
, (2.14)

where Zθ is a normalizing constant such that
∫
pθX(x) = 1. This constant is however

intractable and training via maximizing of the log-likelihood w.r.t. θ is again impossible.
Instead of trying to approximate this constant via MCMC, Score Matching (SM) consists in
matching the score ∇ log pX(x) with ∇ log pθX(x) = −∇Eθ(x), which does not involve the
intractable Zθ. Equality of the scores implies equality of the (normalized) distributions pθX



24 CHAPTER 2. MATHEMATICAL INTRODUCTION TO PLUG-AND-PLAY

and pX . Different score matching methods (Hyvärinen and Dayan, 2005; Vincent, 2011;
Song et al., 2020b) have been proposed to minimize the intractable divergence

EpX
[∣∣∣∣∇ log pθX(x)−∇ log pX(x)

∣∣∣∣2] . (2.15)

Among them, Denoising Score Matching (DSM) (Vincent, 2011) shows that minimizing
this divergence on noisy data comes back to training a denoising model with the L2 loss.
Thus, an image denoiser can be used to approximate the score ∇ log pX(x). This result
will be explained in more details in Section 2.4.1. In this manuscript, we will explore the
power of this denoising prior for regularizing image inverse problems. A review of existing
algorithms using this prior is given in Section 2.4.

Instead of the energy, score-based models directly parameterize the score with a
network sθ(x), trained to approximate ∇ log pX(x). An energy-based model Eθ(x) can be
turned to a score model via sθ(x) = −∇Eθ(x). Diffusion models Ho et al. (2020); Song
et al. (2020a) are score-based models with well-chosen parameterization. They became
recently extremely efficient and popular as a powerful generative model. Score-based
models have close connections with the RED algorithms that will be further analyzed in
this manuscript. This connection will be analyzed with further details in the perspectives
section, Chapter 7.

2.1.2 A variety of data-fidelity terms

In this section, we review the most common data-fidelity terms f appearing in the literature.
They usually write as a distance, in the general sense, between the degraded observation y
and the current estimate x:

f(x) = d(Ax, y). (2.16)

Under a general variational formulation (2.2), one can freely choose the data-fidelity term,
depending on the type of signal considered or on the regularity we wish to have on f . The
most standard data-fidelity term is the L2 distance

f(x) =
1

2
||Ax− y||2 (2.17)

which is infinitely differentiable, convex and verifies ∇2f = ATA. The smoothness and
strong convexity of f then depends on the eigenvalues of the operator ATA. For most of
the linear inverse problems (e.g. deblurring, super-resolution, in painting . . . ) ATA has
bounded eigenvalues, and it is common practice to normalize f with the spectral norm
of ATA so that f has Lipschitz constant 1. Except for particular applications such as
denoising, ATA is generally singular and f may not be strongly convex. In applications
such as Positron Emission Tomography (PET) or astronomical CCD cameras (Bertero
et al., 2009), where images are obtained by counting particles (photons or electrons) and
have positive values, it is also frequent to choose for d the Kullback-Liebler divergence
f(x) = KL(y, Ax) or f(x) = KL(Ax, y) which is convex but has non-Lipschitz gradient
at 0.

On the other hand, under the Bayesian formulation (2.5), the choice of the data-
fidelity is not free but inherently linked to the noise distribution pN chosen to model the
degradation via

f(x) = − log pY |X(y|x) = − log pN(y|Ax). (2.18)
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Assuming Gaussian noise, we have pY |X(y|x) ∝ exp
(
− ||Ax−y||

2

2σ2

)
and thus we retrieve the L2

data-fidelity term. Similarly, assuming Laplace noise pY |X(y|x) ∝
∏m

i=1 exp (−γ|(Ax)i − yi|),
we get a nonconvex L1 data-fidelity term. Finally, assuming Poisson noise, pY |X(y|x) ∝∏m

i=1(Ax)yii exp(−(Ax)i), the log-likelihood writes

− log pY |X(y|x) =
m∑
i=1

(Ax)i − yi log((Ax)i) = KL(y, Ax) + const (2.19)

and we retrieve the Kullback-Liebler data-fidelity term. Note that the Kullback-Liebler in
the reversed order KL(Ax, y) can also be used as a data-fidelity term in a variational for-
mulation (Bolte et al., 2018) but it does not correspond to a known noise distribution pY |X .
Finally, in the noiseless case y = Ax, the data-fidelity term is the nonsmooth indicator
function of A−1({y}) = {x | Ax = y}: f(x) = ıA−1({y}) (which, by definition, equals 0 on
A−1({y}) and +∞ elsewhere). This setup is used for image inpainting in Chapter 4.

In the general case, one can associate a choice of a distance d(x, y) in a general variational
formulation (2.2), with the choice of a noise model in a Bayesian formulation (2.5) via

pN(y|x) ∝ exp(−d(x, y)) (2.20)

provided
∫

exp(−d(x, y))dx <∞. If d writes as a Bregman divergence, when well-defined,
this noise model, referred to “Bregman noise model” in Chapter 6, belongs to the exponential
family of distributions (Banerjee et al., 2005).

2.2 Some useful definitions and properties
Before going further, we need to introduce some basic concepts that will be useful in
the rest of our analysis. In this section, we consider f : Rn → R ∪ {+∞}. Following
Rockafellar and Wets (2009), we take the convention to always define f on Rn by allowing
the value ±∞. We are interested in the minimization of such a function f , which will
therefore be assumed lower-bounded, and thus allowing only the value +∞. Everything
said about minimization can however be translated to maximization, with −∞ taking the
part of +∞. Following this path, we denote the domain of f by

dom f = {x ∈ Rn, f(x) 6= +∞}. (2.21)

We first recall that f is proper if dom(f) 6= ∅ and lower semicontinuous (lsc) if ∀x ∈ Rn

lim inf
y→x

f(y) > f(x). Moreover, it is coercive if lim
||x||→+∞

f(x) = +∞. We also recall the

definition of convexity.

Definition 1 (Convexity, strong and weak convexity).

• f is convex if ∀(x, y) ∈ dom f × dom f and ∀λ ∈ (0, 1),

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y). (2.22)

If the inequality is strict, then f is strictly convex.

• For α ∈ R, f is α-convex if x→ f(x)− α
2
||x||2 is convex. In particular, if α > 0, f

is called α-strongly convex and if α < 0, for M = −α, f is called M-weakly convex.
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2.2.1 Subdifferential

As we will deal with both convex and nonconvex functions, we need to give some details
on different notions of the subdifferential. We first define the standard version of the
subdifferential and then introduce more specific versions for nonconvex functions.

Definition 2 (Subdifferential (Bauschke and Combettes, 2011a)). Let f : Rn → R∪{+∞}
proper. The subdifferential of f is the point-to-set operator ∂f defined by

∀x ∈ Rn, ∂f(x) = {ω ∈ Rn, ∀y ∈ Rn, f(y)− f(x)− 〈ω, y − x〉 ≥ 0} . (2.23)

Let x ∈ Rn, f is said subdifferentiable at x if ∂f(x) 6= 0. The elements of ∂f(x) are
the subgradients of f at x. ∂f(x) is a closed and convex set (Bauschke and Combettes,
2011a, Proposition 16.4). The domain of the subdifferential stands for

dom(∂f) = {x ∈ Rn, ∂f(x) 6= ∅}, (2.24)

and verifies dom(∂f) ⊂ dom(f). If f convex is differentiable on its domain, dom(∂f) =
int dom(f) and for x ∈ int dom(f), ∂f(x) = {∇f(x)}. An important property of the
subdifferential is that it characterizes global minimizers of a proper function:

Theorem 1 (Fermat’s rule (Bauschke and Combettes, 2011a, Theorem 16.3)). Let f :
Rn → R ∪ {+∞} proper. Then

Argmin f = zeros(∂f) = {x ∈ Rn, 0 ∈ ∂f(x)}. (2.25)

Subdifferential of a nonconvex function

When f is nonconvex, the previous notion of subdifferential may not be informative
enough. Indeed, for minimizing a nonconvex function, there is usually no hope to target
a global minimum. Instead, one can hope to reach a point that is critical/stationary for
some generalized notion of subdifferential. There exists a variety of generalized notions of
subdifferentials for nonconvex functions (e.g. Clarke subdifferential, Fréchet subdifferential,
limiting subdifferential). Depending on the properties of the function and the type of
iterative scheme we are using, the appropriate choice of subdifferential may vary.

To study the convergence of proximal iterative schemes for minimizing a nonconvex
function, Attouch et al. (2013) use as notion of subdifferential the limiting subdifferential,
also called general subgradient in Rockafellar and Wets (2009):

∂limf(x) =
{
ω ∈ Rn,∃xk → x, f(xk)→ f(x), ωk → ω, ωk ∈ ∂̂f(xk)

}
(2.26)

with ∂̂f the Fréchet subdifferential of f (also called regular subgradient in Rockafellar and
Wets (2009)) defined as

∂̂f(x) =

{
ω ∈ Rn, lim inf

y→x

f(y)− f(x)− 〈ω, y − x〉
||x− y||

≥ 0

}
. (2.27)

The three introduced notions of subdifferential verify for x ∈ dom f

∂f(x) ⊂ ∂̂f(x) ⊂ ∂limf(x). (2.28)
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For f convex, the three subdifferentials coincide (Rockafellar and Wets, 2009, Proposition
8.12). For f of class C1 but not necessarily convex, the Fréchet and limiting subdifferential
coincide with the usual concept of gradient ∂̂f(x) = ∂limf(x) = {∇f(x)}. This generalized
notion of subdifferential gives birth to generalized notions of critical point or stationary
point i.e. x ∈ Rn such that

0 ∈ ∂limf(x). (2.29)

A necessary (but not sufficient) condition for x ∈ Rn to be a local minimizer of a nonconvex
function f is 0 ∈ ∂̂f(x) and thus 0 ∈ ∂limf(x). Last but not least, we give two important
properties of the limiting subdifferential.

Proposition 1 (Sum rule (Rockafellar and Wets, 2009, 8.8(c))). If F = f + g with f of
class C1 and g proper. Then for x ∈ dom(g),

∂limF (x) = ∇F (x) + ∂limg(x) (2.30)

Proposition 2 (Closeness of the limiting subdifferential). For a sequence (xk, ωk) ∈
Graph(∂limf), if (xk, ωk)→ (x, ω) and f(xk)→ f(x), then (x, ω) ∈ Graph(∂limf).

where Graph(F ) stands for the graph of a point-to-set mapping

GraphF = {(x, y) ∈ Rn × Rm, y ∈ F (x)}. (2.31)

For additional details on the notion of limiting subdifferential, we refer to (Rockafellar
and Wets, 2009, Chapter 8). In the rest of the manuscript, except if explicitly mentioned,
the subdifferential ∂f of a proper function f corresponds to the standard subdifferential
from Definition 2. In different parts of the manuscript, we will denote for simplicity ∂f as
the limiting subdifferential ∂limf . But in that case, it will be explicitly mentioned.

2.2.2 Proximity operator

An important operator that will be used across the manuscript is the proximity operator.

Definition 3 (Proximity operator). For f : Rn → R∪{+∞}, the proximity operator of f ,
denoted Proxf is the point-to-set mapping Proxf defined by

∀x ∈ Rn,Proxf (x) = arg min
z∈Rn

f(z) +
1

2
||x− z||2 . (2.32)

For f proper, lsc, bounded from below, and x ∈ dom f , Proxf(x) is nonempty. If
f is M -weakly convex with M < 1, it is single-valued. We say that f is proximable if
its proximity operator can be computed in closed-form. By optimality of the proximity
operator, we get directly the following characterization,

Proposition 3. Let f : Rn → R ∪ {+∞} proper lsc. For x ∈ dom f ,

z ∈ Proxf (x)⇔ x− z ∈ ∂f(z). (2.33)

This property is the origin of the notation

Proxτf (x) = (Id +τ∂f)−1(x). (2.34)

Note that if f is nonconvex, using a specific notion of subdifferential such as the limiting
subdifferential (defined in Section 2.2.1), we only have the implication =⇒ in (2.33).
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Interpretations of the proximity operator:

(i) First, the proximity operator is a generalization of the projection on a set. Indeed,
if f is the indicator of C a non-empty closed set, then Proxf (x) corresponds to the
projection of x on C.

(ii) Second, from Proposition 3, we have that for f convex and for τ > 0,

Fix(Proxτf ) = zeros(∂f). (2.35)

Therefore, minimizing f can be done by finding fixed points of the proximity operator,
for instance, via the fixed-point iterations, called proximal point algorithm

xk+1 = Proxτf (xk). (2.36)

For differentiable f , using Proposition 3, these iterations can be rewritten as

xk+1 = xk − τ∇f(xk+1). (2.37)

A proximal step can then be seen as a step of implicit gradient descent for
minimizing f . We will study in Section 4.2.2 the convergence of this algorithm for
convex and nonconvex f .

(iii) Another useful interpretation of the proximity operator is via the Moreau envelope
or Moreau-Yosida regularization eλf of a proper lsc function f : Rn → R ∪ {+∞},
with parameter λ > 0, defined as

eλf(x) = inf
z∈Rn

f(z) +
1

2λ
||x− z||2 (2.38)

It is the inf-convolution between f and x→ 1
2λ
||x||2. It is everywhere a lower bound

of f and for convex f , the stationary points of f and eλf coincide. Moreover, for
convex f , eλf is convex and continuously differentiable with gradient (Rockafellar
and Wets, 2009, Theorem 2.26)

∇eλf(x) =
1

λ
(x− Proxλf (x)) . (2.39)

By firm nonexpansivity of Proxλf (see Section 3.1.3), x−Proxλf (x) is then 1-Lipschitz
and ∇eλf is 1

λ
-Lipschitz. With this result, for convex f , Proxλf = Id−λ∇eλf can

then be seen as a step of explicit gradient descent on the Moreau envelope of f .

(iv) Eventually, with relation (2.34), the proximity operator writes as the resolvent of
the point-to-set mapping ∂f (given an operator T : Rn → Rn and λ < 0, the resolvent
is defined has (Id +λT )−1). For f proper, ∂f is a monotone operator (Combettes,
2018). We recall that a multivalued operator A defined on Rn is monotone if and
only if

∀x, y ∈ Rn, x̂ ∈ A(x), ŷ ∈ A(y), 〈x− y, x̂− ŷ〉 ≥ 0 (2.40)

Combettes (2018) proposes to generalize the theory for convex optimization problems
to monotone inclusion problems. Indeed, monotone operator theory is used in many
areas above optimization such as partial differential equations, evolution equations
and inclusions, and nonlinear equations. More details on this generalization are
given in the perspectives Chapter 7.
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Characterizations of the proximity operator

We also report important results characterizing proximity operators as gradients of convex
potentials. Moreau Moreau (1965) first showed that the proximity operator of a convex
function corresponds to a nonexpansive (1-Lipschitz) gradient of convex function.

Theorem 2 ((Moreau, 1965, Corollary 10.c)). An operator T : Rn → Rn is the proximity
operator of a proper lsc convex function φ : Rn → R ∪ {+∞} i.e. f = Proxφ if and only if
the following conditions hold jointly:

(i) T is nonexpansive i.e. 1-Lipschitz.

(ii) there exists a proper lsc convex function ψ : Rn → R ∪ {+∞} such that for each
x ∈ Rn, T (x) ∈ ∂ψ(x).

Gribonval and Nikolova (2020) then extended this result to the characterization of the
proximity operator of nonconvex functions by removing the nonexpansivity condition.

Theorem 3 (Gribonval and Nikolova (2020)). An operator T : Rn → Rn is the proximity
operator of a function φ : Rn → R ∪ {+∞} i.e. T (x) ∈ Proxφ(x) for each x ∈ Rn, if and
only if there exists a proper lsc convex function ψ : Rn → R ∪ {+∞} such that for each
x ∈ Rn, T (x) ∈ ∂ψ(x). Moreover, T of class Ck is equivalent to ψ of class Ck+1 and T
L-Lipschitz is equivalent to ψ

(
1− 1

L

)
-weakly convex.

Therefore, one can fully characterize continuous proximity operators as gradients of
convex functions. These results will be essential for showing the convergence of plug-and-
play algorithms with denoisers that write as gradient of convex functions (Chapter 5).

2.2.3 Convex conjugate

In this section, we define the notion of convex conjugate and state some basic properties
that will be helpful in this manuscript, in particular for the analysis of the primal-dual
algorithm in Section 2.3.4. We refer to (Bauschke and Combettes, 2011a, Chapter 13) for
details and proofs.

Definition 4 (Convex conjugate). Let f : Rn → R ∪ {+∞}. The convex (or Fenchel or
Legendre-Fenchel) conjugate of f is f ∗ : Rn → R ∪ {+∞} defined by, for u ∈ Rn

f ∗(u) = sup
x∈Rn
〈x, u〉 − f(x). (2.41)

It is a proper convex function. Moreover, for proper convex lsc f , the biconjugate of f
is itself:

Proposition 4 (Fenchel-Moreau (Bauschke and Combettes, 2011a, Theorem 13.32)). Let
f : Rn → R ∪ {+∞} proper. Then f is lsc and convex if and only if f ∗∗ = f .

We deduce from this result that any proper lsc convex function f satisfies ∀x ∈ Rn

f(x) = sup
u∈Rn
〈x, u〉 − f ∗(u). (2.42)

This relation is particularly useful to decouple f from a composition with some operator
K : Rn → Rm

f ◦K(x) = sup
u∈Rn
〈K(x), u〉 − f ∗(u). (2.43)

As an immediate consequence of the definition of the conjugate, we have the following
Fenchel-Young inequality and characterization of the subdifferential
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Proposition 5 (Fenchel-Young). Let f : Rn → R ∪ {+∞} proper. Then ∀x, y ∈ Rn

f(x) + f ∗(y) ≥ 〈x, y〉 (2.44)

with equality if and only if y ∈ ∂f(x).

It will be also convenient to characterize the subdifferential of the convex conjugate
with the following property.

Proposition 6. Let f : Rn → R ∪ {+∞} proper lsc convex. Then,

u ∈ ∂f(x)⇔ x ∈ ∂f ∗(u). (2.45)

Finally, an important result on the proximity operator of the convex conjugate is given
by Moreau’s identity.

Proposition 7 (Moreau’s identity (Bauschke and Combettes, 2011a, Theorem 14.3)). Let
f : Rn → R ∪ {+∞} proper lsc convex. Then for λ > 0, and x ∈ Rn,

Proxλf∗(x) = x− λProx 1
λ
f (
x

λ
). (2.46)

2.3 First-order optimization algorithms
In this section, we review the most standard first-order algorithms for minimizing the sum
of two functions

min
x∈Rn

F (x) = f(x) + g(x) (2.47)

with f, g : Rn → R ∪ {+∞} proper, lower semi-continuous and lower-bounded. In the
general case, and except if explicitly mentioned, f and g are nonconvex and nonsmooth.
For nonconvex F , instead of looking for a global or local minimizer, we will rather look
for a critical point i.e. a point x such that 0 ∈ ∂F (x) for some predefined notion of
subdifferential. The convergence of each algorithm will be analyzed in detail in Chapter 3,
Section 3.2.

2.3.1 Proximal Gradient Descent

The Proximal Gradient Descent (PGD) (or Forward-Backward) algorithm consists in
alternating an explicit gradient step on a smooth f and implicit gradient descent step
on a potentially nonsmooth g. For an initial point x0 ∈ Rn and a fixed stepsize τ > 0, it
corresponds to the following fixed-point iterations

(PGD) xk+1 ∈ Proxτg ◦ (xk − τ∇f(xk)) . (2.48)

In the general case, we do not assume g (and f) convex. Therefore, Proxτg is potentially
multivalued. Note that the following Proximal Point (PP) and Gradient Descent (GD)
algorithms are particular cases of the PGD algorithm where one of the two functions is
zero:

(PP) xk+1 ∈ Proxτg(xk) (2.49)

(GD) xk+1 = xk − τ∇f(xk) (2.50)

We verify that a fixed-point of the PGD operator corresponds to a critical point of the
objective function F .
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Proposition 8. Assume f Lf -smooth. Then, for τ > 0,

zeros(∂F ) = Fix(Proxγg(Id−γ∇f)). (2.51)

where Fix(T ) = {x ∈ Rn, x ∈ T (x)} denotes the fixed points of the set-valued mapping T .

Proof.
0 ∈ ∂F (x)⇔ 0 ∈ ∇f(x) + ∂g(x)

⇔ −γ∇f(x) ∈ ∂τg(x)

⇔ x− γ∇f(x) ∈ (Id +∂τg)(x)

⇔ x ∈ Proxτg(x− τ∇f(x)).

(2.52)
(2.53)
(2.54)
(2.55)

Remark 1. For nonconvex g, when using as subdifferential a different notion, such as the
limiting subdifferential, the last equivalence is not true and we rather have

Fix(Proxγg(Id−γ∇f)) ⊂ zeros(∂F ) (2.56)

2.3.2 Half Quadratic Splitting

The Half Quadratic Splitting (HQS) algorithm consists in alternating proximal steps on f
and g.

(HQS) xk+1 ∈ Proxτg ◦Proxτf (xk). (2.57)

HQS does not target a minimizer of F = f + g but of eτf + g where eτf stands for the
Moreau envelope of f with parameter τ (defined in Section 2.2.2). Indeed, assuming f
convex, using (2.39), HQS writes as PGD iterations

xk+1 = Proxτg ◦(Id−τ∇eτf)(xk), (2.58)

with ∇eτf 1
τ
-Lipschitz continuous. It thus takes the form of a PGD algorithm for

minimizing

min
x∈Rn

eτf(x) + g(x) = min
x,z∈Rn

f(z) + g(x) +
1

2τ
||x− z||2 (2.59)

2.3.3 Douglas-Rachford Splitting / ADMM

The Douglas-Rachford Splitting (DRS) algorithm (Douglas and Rachford, 1956) minimizes
f + g by alternating proximal steps on f and g via the reflected proximity operator

Rproxf = 2 Proxf − Id . (2.60)

In its most general form, the algorithm writes, for β ∈ (0, 1],

(DRS) xk+1 ∈
(
β Rproxτg ◦Rproxτf +(1− β) Id

)
(xk) (2.61)

where, in the nonconvex case, Rproxg ◦Rproxf is a composition of point-to-set mappings.
β = 1

2
corresponds to the standard version of Douglas-Rachford Splitting, while β = 1 is
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generally referred to Peaceman-Rachford splitting (PRS). This algorithm can be rewritten
as

(DRS)


yk+1 ∈ Proxτf (xk)
zk+1 ∈ Proxτg(2yk+1 − xk)
xk+1 = xk + 2β(zk+1 − yk+1).

(2.62)

In the convex setting, it is well known that DRS is equivalent to the Alternating Direction
Method of Multipliers (ADMM) applied to the dual problem of (2.47) (Gabay, 1983). We
now show, in the general nonconvex case, the primal equivalence between DRS with β = 1

2

and ADMM algorithm, after swapping the order between f and g steps

(ADMM)


zk+1 ∈ Proxτg(yk − uk)
yk+1 ∈ Proxτf (uk + zk+1)
uk+1 = uk + zk+1 − yk+1.

(2.63)

Lemma 1. DRS (2.62) with β = 1
2
and ADMM (2.63) yk and zk iterations are equivalent.

Proof. Starting from the DRS iterations (2.62), using xk = uk + zk,
yk+1 ∈ Proxτf (uk + zk)
zk+1 ∈ Proxτg(2yk+1 − (uk + zk)) = Proxτg(yk+1 − (uk + zk − yk+1))
uk+1 = uk + zk − yk+1

(2.64)

which also writes, by inverting the last two steps,
yk+1 ∈ Proxτf (uk + zk)
uk+1 = uk + zk − yk+1

zk+1 ∈ Proxτg(yk+1 − uk+1)
(2.65)

or again 
zk+1 ∈ Proxτg(yk − uk)
yk+1 ∈ Proxτf (uk + zk+1)
uk+1 = uk + zk+1 − yk+1.

(2.66)

We verify in the convex case that a fixed-point of the DRS operator corresponds to a
critical point of the objective function F .

Proposition 9. Let f and g convex. For τ > 0,

zeros(∂F ) = Proxτf
(
Fix

(
Rproxτg ◦Rproxτf

))
. (2.67)

Proof.

0 ∈ ∂F (x)

⇔ 0 ∈ ∂τf(x) + ∂τg(x)

⇔ ∃z ∈ Rn such that − z ∈ ∂τg(x) and z ∈ ∂τf(x)

⇔ ∃y ∈ Rn such that x− y ∈ ∂τg(x) and y − x ∈ ∂τf(x)

⇔ ∃y ∈ Rn such that 2x− y ∈ (Id +∂τg)(x) and y ∈ (Id +∂τf)(x)

⇔ ∃y ∈ Rn such that x = Proxτg(2x− y) and x = Proxτf (y)

⇔ ∃y ∈ Rn such that x = Proxτg ◦Rproxτf (y) and x = Proxτf (y)

⇔ ∃y ∈ Rn and z = Rproxτf (y) such that 2x− z = Rproxτg ◦Rproxτf (y) and x = Proxτf (y)
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For x = Proxτf (y) and z = Rproxτf (y), we have 2x− z = y. Thus we get,

0 ∈ ∂F (x)⇔ ∃y ∈ Rn such that y ∈ Fix
(
Rproxτg ◦Rproxτf

)
and x = Proxτf (y).

We thus get a critical point of F by estimating a fixed point of the DRS operator
Tτ = Rproxτg ◦Rproxτf via the fixed-point iterations (2.61) and then by applying Proxτf
to this fixed point. This is the reason why it is useful to write the DRS iterations
as (2.62). With the notations of (2.62), if we show that the sequence (xk) converges, then
yk = Proxτf (xk) converges towards a critical point of F .

2.3.4 Primal-dual

Primal-Dual (PD) algorithms target solutions of the more general problem:

min
x∈Rn

f(Kx) + g(x), (2.68)

where K ∈ Rn×m is a linear operator and f, g are still proper, lower semi-continuous and
lower-bounded. Primal-dual is particularly useful when the proximal operators of both f
and g are simple to compute, but the proximal operator of f ◦K is not easily accessible.

Assume f and g convex, using the convex conjugate of f(K·), problem (2.68) has the
equivalent primal-dual formulation

min
x∈Rn

max
y∈Rm

〈K∗y, x〉 − f ∗(y) + g(x). (2.69)

Chambolle and Pock (2011) proposed the following algorithm to solve (2.69), which is
called Chambolle-Pock (CP) or Primal-Dual Hybrid Gradient (PDHG). For stepsizes τ > 0,
σ > 0, and relaxation parameter β ∈ [0, 1], it writes

yk+1 = Proxσf∗(yk + σKx̄k)
xk+1 = Proxτg(xk − τK∗yk+1)
x̄k+1 = xk+1 + β(xk+1 − xk).

(2.70)

For convex f and g, it is shown in (Chambolle and Pock, 2011, Theorem 1) that, for
τσ ||K∗K|| < 1, the iterates (xk, yk) given by the algorithm (2.70) converge towards (x∗, y∗)
solution of the primal-dual problem (2.69).

Eventually, the primal-dual algorithm (2.70) can be written in a fully primal version
using Moreau’s identity (Proposition 7). We then get rid of the convex conjugate and the
algorithm is well-defined for nonconvex f and g functions, and writes

zk+1 ∈ Prox 1
σ
f (

1
σ
yk +Kx̄k)

yk+1 = yk + σ(Kx̄k − zk+1)
xk+1 ∈ Proxτg(xk − τK∗yk+1)
x̄k+1 = xk+1 + β(xk+1 − xk).

(2.71)
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2.4 Image restoration with Gaussian denoising priors
In this section, we come back to the image denoising task. Denoising Gaussian noise
is the simplest and the most studied inverse problem in imaging. There exists a wide
variety of efficient generic Gaussian denoisers i.e. explicit operators Dσ : Rn → Rn built to
approximate x given y = x+ ξ with ξ white Gaussian noise with standard deviation σ. In
this section, we will see that such a generic denoiser can be used as a prior for regularizing
more general inverse problems. After presenting the MMSE and MAP theoretical denoising
estimators in Section 2.4.1, we will introduce in Section 2.4.2 the RED and PnP algorithms,
two family of iterative schemes for solving image inverse problems with Gaussian denoising
priors.

2.4.1 MMSE and MAP Gaussian denoisers

Consider a clean image x ∈ X = Rn, realization of the random variable X with prior
distribution pX . Assume the observation y ∈ Rn is obtained from x by adding random
Gaussian noise ξ of standard deviation σ i.e. y = x+ ξ with ξ realization of N (0, σ2 Id).
We denote by Gσ the Gaussian probability density of N (0, σ2 Id), and pσ = pY = pX ∗Gσ

the marginal distribution of Y . We now describe the MAP and MMSE denoisers which
are two optimal estimators y → x̂(y), intractable in the general case.

The Minimum Mean Square Error (MMSE) (or posterior mean) estimator.
It selects the mean of the posterior.

DMMSE
σ (y) = E[X|Y = y] =

∫
x∈Rn

xpX|Y (x|y)dx. (2.72)

It is the optimal Bayes estimator for the L2 loss i.e.

DMMSE
σ = arg min

Dσ measurable
E(X,Y )

[
||Dσ(Y )−X||2

]
. (2.73)

An important well-known property of the MMSE Gaussian denoiser is that it is related to
the score ∇y log pσ via Tweedie’s identity.

Proposition 10 (Tweedie’s identity (Efron, 2011)). With the previous notation, the
MMSE estimator for the Gaussian denoising problem verifies

DMMSE
σ = Id +σ2∇y log pσ. (2.74)

Proof. Using that
∫
x∈Rn pX|Y (x|y)dx = 1 together with Bayes formula, we can derive

∀y ∈ Rn, DMMSE
σ (y) = y +

∫
x∈Rn

(x− y)pX|Y (x|y)dx

= y +

∫
x∈Rn

(x− y)
pY |X(y|x)pX(x)

pY (y)
dx.

(2.75)

(2.76)

Meanwhile, using that pσ(y) = pY (y) =
∫
x
pY |X(y|x)pX(x)dx =

∫
x
Gσ(y − x)pX(x)dx, and

that ∇yGσ(y − x) = 1
σ2 (x− y)Gσ(y − x), we get

∀y ∈ Rn, ∇y log pσ(y) =
1

σ2

∫
x

(x− y)Gσ(x− y)pX(x)dx∫
x̂
Gσ(y − x̂)pX(x̂)dx̂

=
1

σ2

∫
x∈Rn

(x− y)
pY |X(y|x)pX(x)

pY (y)
dx.

(2.77)

(2.78)
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Combining (2.76) and (2.78), we get the desired identity.

Denoising Score Matching (DSM) provides a related result. It states that training a
parametric denoiser by minimization of the L2 denoising loss comes back to the approxi-
mation of the right term of (2.74) with this denoiser.

Proposition 11 (Denoising Score Matching (Vincent, 2011)). Given a parametric esti-
mator Dθ

σ : Rn → Rn with parameters θ,

EY∼pσ
[∣∣∣∣Dθ

σ(Y )− (Y + σ2∇ log pσ(Y ))
∣∣∣∣2] = EX∼pX ,Y∼pσ

[∣∣∣∣Dθ
σ(Y )−X

∣∣∣∣2]+ const.

(2.79)
where the constant is w.r.t θ.

Using Tweedie’s identity, the DSM result rewrites as

EY∼pσ
[∣∣∣∣Dθ

σ(Y )−DMMSE
σ (Y )

∣∣∣∣2] = EX∼pX ,Y∼pσ
[∣∣∣∣Dθ

σ(Y )−X
∣∣∣∣2]+ const. (2.80)

This indicates that training a neural network Dθ
σ to denoise Gaussian noise by minimizing

the L2 denoising loss (second term in (2.79)) comes back to training this network to
approximate the MMSE denoiser.

Using Tweedie’s formula, we can also interpret the MMSE Gaussian denoiser as a
step of explicit gradient descent, with stepsize σ2, on − log pσ, where pσ = pX ∗ Gσ is a
Gaussian-smoothed version of pX .

Lemma 2 (Gribonval (2011, Lemma A.1)). pσ = pX ∗Gσ verifies 1
2σ2 ||x||2 +log pσ strictly

convex.

With this property, from the convergence analysis of the Proximal Gradient Descent
algorithm in the nonconvex setting realized in Section 3.2 (refer to Theorem 7 and
Remark 8), iterating the MMSE denoiser can then be shown to converge towards a
stationary point of log pσ.

Finally, note that, from formula (2.77), considering the limit case where X is discrete
over a dataset {xi}i and pX ≈

∑
i δxi (even if strictly speaking, in that case, there is no

density w.r.t. Lebesgue measure), the MMSE corresponds to a weighted average of all the
data points {xi}i, with weights exp(− 1

σ2 ||y − xi||2).

The Maximum A Posteriori (MAP) estimator selects a maximum of the posterior
distribution.

DMAP
σ (y) ∈ arg max

x∈X
pX|Y (x|y) = arg min

x∈X
− log pY |X(y|x)− log pX(x). (2.81)

It is not a Bayesian estimator in the sense that it does not minimize a Bayes risk. In the
Gaussian noise setting, the posterior distribution is pY |X(y|x) = Gσ(y−x) ∝ exp

(
− ||x−y||

2

2σ2

)
and the MAP estimator (2.5) writes

DMAP
σ (y) ∈ arg min

x∈Rn

1

2
||x− y||2 − σ2 log pX(x)

∈ Prox−σ2 log pX (y)

(2.82)

(2.83)
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From the different interpretations of the proximity operator proposed in Section 2.2.2,
several observations on the MAP denoiser can be done.

First, considering again the case where X is discrete, the MAP realizes the projection
of the input y on the data space.

In the more realistic absolutely continuous setting, we can interpret the MAP denoiser
as a step of implicit gradient descent, with stepsize σ2, on the true negative log image
prior − log pX . Using the convergence analysis of the Proximal Gradient descent algorithm
in the nonconvex setting (refer to Theorem 7) with f = 0 and g = − log pX , iterating the
MAP denoiser monotonically increases log pX and could be shown to converge towards a
stationary point of log pX .

It is also interesting to mention that (although unrealistic in the general case) assuming
− log pX convex, we have from identity (2.39) that, like the MMSE, the MAP denoiser
also realizes a step of explicit gradient descent on a smoothed version of − log pX , which is
here given by the Moreau-Yosida regularization

gMAP
σ (y) = eσ2(− log pX)(y) = inf

x
g(x) +

1

2σ2
||x− y||2 (2.84)

In comparison, recall that the MMSE case realizes a step of gradient descent on

gMMSE
σ = − log(pX ∗Gσ) (2.85)

gMAP
σ verifies

exp(−gMAP
σ (y)) = sup

x
exp(−g(x)) exp(−1

2
||x− y||2) = ||pXGσ(.− y)||∞ . (2.86)

i.e.
gMAP
σ (y) = log (− ||pXGσ(.− y)||∞) (2.87)

In comparison, gMMSE
σ verifies

exp(−gMMSE
σ (y)) =

∫
x

pX(x)Gσ(x− y)dx = ||pXGσ(.− y)||1 . (2.88)

i.e.
gMMSE
σ (y) = log (− ||pXGσ(.− y)||1) (2.89)

Therefore, the MAP and MMSE denoisers perform an explicit step of gradient descent on
a potential given by the log of, respectively, the L1 and L∞ norm of x→ pX(x)Gσ(x− y).

Related to the distinction between MAP and MMSE, Gribonval (2011) shows that the
Gaussian noise MMSE with prior pX is a MAP, but with another prior, which is related
but different from pX :

Proposition 12. There is φσ : Rn → R ∪ {+∞} such that the MMSE Gaussian de-
noiser (2.72) is the unique solution of a variational optimization problem of the form

DMMSE
σ (y) = arg min

x∈Rn

1

2
||x− y||2 + φσ(x) = Proxφσ(y) (2.90)

Proof. This result can be proved using the characterization, from the same authors, of
continuous proximity operators as gradients of convex functions, given in Theorem 3.
Indeed, from Tweedie’s identity (2.74) DMMSE

σ = ∇ψσ with ψσ : x→ 1
2
||x||2 +σ2 log pσ(x).

Moreover, with Lemma 2, ψσ is convex. The fact that the MMSE is a proximity operator
then follows from Theorem 3.
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In the general case, both MAP and MMSE denoisers remain theoretical estimators
without tractability. However, given a generic Gaussian denoiser Dσ : Rn → Rn, one can
assume that Dσ approximates one of the two estimators i.e. given a noisy image y ∈ Rn,

Dσ(y) ≈ DMMSE
σ (y) = y + σ2∇ log pσ(y)

or Dσ(y) ≈ DMAP
σ (y) = Prox−σ2 log pX (y).

(2.91)
(2.92)

Therefore, depending on this choice, a generic denoiser provides an approximation of the
true log (smoothed) prior via its gradient or its proximity operator.

2.4.2 RED and PnP algorithms for image restoration

Given the previous interpretation, we now introduce how a generic denoiser can be used to
regularize image inverse problems. Recall the form of the MAP formulation of a general
inverse problem (2.5)

x̂MAP = arg min
x∈X

− log pY |X(y|x)− log pX(x)

= arg min
x∈X

λf(x) + g(x)

(2.93)

(2.94)

with f ∝ − log pY |X(y|.) and g = − log pX and where we chose, for simplicity, the
regularization parameter λ > 0 to be in front of f . In order to apply the first order
algorithms presented in Section 2.3 to minimize the MAP objective (2.94), we need to
calculate precisely the gradient or the proximity operator of − log pX . The idea of the
following class of plug-and-play methods is to replace this gradient or Prox by a generic
off-the-shelf denoiser. In the rest of this section, we make the distinction between gradient
or proximal based plug-and-play algorithms. The former is called “Regularization by
Denoising” (RED) while for the latter we keep the acronym PnP.

Regularization by Denoising (RED) algorithms

Regularization by Denoising (RED) algorithms build on top of first order algorithms for
minimizing (2.94) involving the gradient of g = − log pX . Therefore, g needs to be smooth
(differentiable with Lipschitz gradient). This can be guaranteed by replacing the prior
pX by its smoothed version with a Gaussian kernel pσ = pX ∗ Gσ, where Gσ stands for
the Gaussian distribution N (0, σ2 Id). After defining the smoothed posterior using the
forward model p(y|x)

pσ(x|y) =
p(y|x)pσ(x)∫

x̂
p(y|x̂)pσ(x̂)dx̂

, (2.95)

the MAP formulation of the inverse problem derived in Section 2.5 now writes

x̂MAP
σ = arg min

x∈X
− log pY |X(y|x)− log pσ(x)

= arg min
x∈X

λf(x)− log pσ(x).

(2.96)

(2.97)

The functions pσ and − log pσ are C∞ and we showed in Lemma 2 that − log pσ is 1
σ2 -weakly

convex. Moreover, is it shown in Laumont et al. (2021) that pσ can be made arbitrarily
close to the original prior pX as σ → 0. Note also that this smoothing strategy enables to
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work with an absolutely continuous measure pσ even when pX is not, for example when X
is discrete and p =

∑
i δxi .

Minimization algorithms for (2.97) involving the gradient of gσ = − log pσ(x) encompass
the full gradient descent (GD) (2.50) and the proximal gradient descent (PGD) (2.48).

(PGD) xk+1 ∈ Proxτλf ◦ (xk − τ∇gσ(xk))

(GD) xk+1 = xk − τ(∇λf(xk) +∇gσ(xk)).

(2.98)
(2.99)

Given a real generic denoiser Dσ : Rn → Rn that approximates the MMSE denoiser
introduced in Section 2.4.1, we have from Tweedie’s identity (2.74),

∇gσ = −∇ log pσ =
1

σ2

(
Id−DMMSE

σ

)
≈ 1

σ2
(Id−Dσ) . (2.100)

After multiplying the problem (2.97) by σ2 and replacing λ←− λσ2, using

∇gσ ←− Id−Dσ, (2.101)

we get the RED-PGD and RED-GD algorithms

(RED-PGD) xk+1 ∈ Proxτλf ◦ (τDσ(xk) + (1− τ)xk)

(RED-GD) xk+1 = τDσ(xk) + (1− τ)xk − τλ∇f(xk).

(2.102)
(2.103)

Even though differently justified, RED algorithms were originally proposed in Romano
et al. (2017) while their score-based interpretation was formulated in Reehorst and Schniter
(2018).

PnP algorithms

PnP methods (Venkatakrishnan et al., 2013) build on proximal algorithms for minimiz-
ing (2.94) i.e. first order minimization algorithms (see Section 2.3) involving the proximity
operator of g = − log pX , such as

(PGD) xk+1 ∈ Proxτg ◦ (xk − τ∇λf(xk)) .

(HQS) xk+1 ∈ Proxτg ◦Proxτf (xk).

(DRS) xk+1 ∈
(
β Rproxτg ◦Rproxτf +(1− β) Id

)
(xk).

(2.104)
(2.105)
(2.106)

Remark that, compared to the PGD version (2.98) used for RED, for PnP, in (2.104),
the proximal step needs to be on the prior term g and thus the gradient step on the
data-fidelity term f . As explained in the presentation of the algorithms in Section 2.3, we
recall that HQS does not exactly optimize (2.94) but a regularized version of this objective.

As before, we assume given a real generic operator Dσ : Rn → Rn built to remove
Gaussian noise of standard deviation σ, that approximates the MAP denoiser introduced
in Section 2.4.1. Then, from the MAP formulation (2.82),

Proxg = Prox−σ2 log pX = DMAP
σ ≈ Dσ. (2.107)

Once again, the σ2 constant can be removed and accounted via the λ and τ parameters.
Taking

Proxτg ←− Dσ, (2.108)
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we get the PnP algorithms

(PnP-PGD) xk+1 ∈ Dσ ◦ (xk − τλ∇f(xk)) .

(PnP-HQS) xk+1 ∈ Dσ ◦ Proxτf (xk).

(PnP-DRS) xk+1 ∈
(
β(2Dσ − Id) ◦ Rproxτf +(1− β) Id

)
(xk).

(2.109)
(2.110)
(2.111)

For simplicity, we do not give here the PnP-ADMM and PnP-PD (Primal-dual) schemes,
but they can be easily derived with the same idea.

2.4.3 Practical implementation

Choice of the algorithm Among PnP and RED schemes, the choice of the algorithm
is strongly influenced by the regularity of the data-fidelity term f . In our analysis, we will
consider forward degradation models with linear A. The regularity of f(x) = − log p(y|x)
depends on A and on the noise distribution. In the most typical case of Gaussian inverse
problems, f(x) = ||Ax− y||2. When considering Poisson noise, the data-term falls back to
a Kullback-Leibler divergence f(x) = KL(y, Ax).

If f is non-proximable, i.e. its proximity operator is not available in closed-form, the
use of algorithms involving Proxτf should be avoided in practice. Note that for Gaussian
inverse problems,

Proxτf (x) =
(
Id +τATA

)−1
(τATy + x) (2.112)

and the calculation of the Prox amount to the calculation of the inverse of Id +τATA. The
Prox is then closed-form when A has closed-form singular value decomposition. This is of
course the case for inpainting where A is diagonal. This is also the case for image deblurring
when blur is performed with circular boundary conditions. However, for non-circular
boundary conditions, the Prox does not have a closed-form solution. Note that when
the data-fidelity takes the form f(x) = f̂(Ax) with f̂ proximable but f non-proximable
when A 6= Id, it is possible to use the primal dual algorithm (or its variants) presented in
Section 2.3.4 with K = A. In the general case of non-proximable f , a common workaround
consists in approximating, at each iteration, Proxτf with an internal optimization algorithm
such as gradient descent.

If f is nonsmooth (i.e. does not have Lipschitz gradient), we cannot use algorithms
requiring Lipschitz ∇f like PnP-PGD or RED-GD. This is for example the case for
Poisson image denoising, for which the Kullback-Leibler data-fidelity f(x) = KL(y, x) has
non-Lipschitz gradient in 0.

Note also that the case of nonsmooth and non-proximable data-fidelity term arises for
Poisson inverse problems with general A 6= Id. This problem is treated in Chapter 6 by
introducing a new notion of smoothness, using a Bregman divergence, which is adapted
to f .

Choice of the denoiser The choice of the plugged Gaussian denoiser is of uttermost
importance as it influences the restoration performance, the overall computational time and
the convergence of the algorithm. Originally applied with classical denoisers such as BM3D
(Venkatakrishnan et al., 2013; Chan et al., 2016; Kamilov et al., 2017) and pseudo-linear
denoisers (Nair et al., 2021; Gavaskar et al., 2021), more recent approaches (Meinhardt
et al., 2017; Zhang et al., 2017b; Sun et al., 2019a; Ahmad et al., 2020; Yuan et al.,
2020; Sun et al., 2021; Zhang et al., 2021) rely on denoisers parameterized with deep
convolutional neural networks (CNN).
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The most efficient classical denoisers such as BM3D (Dabov et al., 2007) or EPLL (Zoran
and Weiss, 2011) are time-consuming, and limit the acceptable number of iterations of
the plug-and-play iterative scheme. Using CNN denoisers allows both state-of-the-art and
time efficient algorithms. This will thus be the focus of our analysis.

The CNN most commonly encountered in PnP/RED papers is DnCNN (Zhang et al.,
2017a). The advantage of DnCNN is that it provides very good denoising performance
while being extremely lightweight and quick to evaluate. From a noisy input y = x+ ξ,
the main idea of DnCNN is to use residual learning to approximate the noise ξ rather
than the image x directly.

More recently, state-of-the-art performance for denoising and image translation in
general has been achieved with UNet (Ronneberger et al., 2015) architectures. A UNet
mainly consists of two paths. An encoding path progressively downsamples an image to
create meaningful feature maps at different scales, and a decoding path symmetrically
upsamples the feature maps back to an image. Key components of UNets are the skip-
connections between encoding and decoding blocks. They are useful to recover spatial
information lost during downsampling and to stabilize training by keeping a gradient
flow from the first layer to the last layer. UNet are usually fully convolutional and thus
can accept input images of any size. A famous example in the PnP literature is the
DRUNet (Zhang et al., 2021) architecture, represented in Figure 2.1. It consists in stacking
ResNets (He et al., 2016) blocks in a UNet-shaped model. UNet denoisers have proven to
be very efficient image prior in the context of image generation with score-based models
(Ho et al., 2020; Song and Ermon, 2019; Song and Kingma, 2021). Similar to DnCNN,
these models train very large UNets to approximate the noise or a re-scaled version of the
noise.

Figure 2.1: Architecture of the DRUNet denoiser (Zhang et al. (2021)).

While DnCNN needs to separately learn a model for each noise level, more recent
plug-and-play denoisers D : Rn × R++ → Rn are built to take both the input image and
the noise level σ as inputs. They are trained simultaneously to remove Gaussian noise
of standard deviation σ for all σ in a given interval. For the rest of the manuscript, we
denote D(y, σ) as Dσ(y).

It is important to remind that when plugged in a plug-and-play algorithm, the role of
the denoiser is to regularize via the MAP/MMSE interpretation rather than to remove
Gaussian noise. Indeed, at a certain iteration k, the image fed to the denoiser may
even not contain any kind of Gaussian noise. Then, the noise-level parameter σ of the
denoiser does not correspond to the noise level present in the input image. Instead, σ
can first be interpreted as a regularization parameter. In particular, for RED algorithm
(Section 2.4.2) Dσ ≈ Id−σ2∇(− log pσ) and σ plays the role of a smoothing parameter
for the regularizer − log pσ in the objective function (2.97). The σ parameter could also
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be interpreted as a stepsize. In particular, for PnP algorithm (Section 2.4.2), where the
MAP interpretation gives Dσ ≈ Prox−σ2 log pX . Therefore, for optimal performance, it is
important for PnP/RED algorithms to plug denoisers built to take the σ parameter as a
tunable parameter.

Deep denoisers are commonly trained to remove Gaussian noise by minimizing the L2

loss, with noise level σ uniformly sampled in [0, σmax],

arg min
θ

Ex∼pX ,σ∼U [0,σmax],ξσ∼N (0,σ2 Id)

[∣∣∣∣Dθ
σ(x+ ξσ)− x

∣∣∣∣2] . (2.113)

It has also been observed (Zhang et al., 2021) that the L1 loss instead of the L2 loss can
allow more stable training. It is common (Song and Ermon, 2019; Ho et al., 2020) to
weight each squared L2 norm in (2.113) by 1

σ2 . 1

2.4.4 Advantages, limits, and challenges of plug-and-play algo-
rithms

Advantages The main advantage of using as regularization a Gaussian denoising prior
is that Gaussian denoising an easy image inverse problems. It has been extensively studied
theoretically and practically, and there exists a large variety of algorithms and models
that have been developed for this specific task. Training deep Gaussian denoiser is often
stable, and it does not require a large amount of training images in order to achieve good
denoising performance (only 400 images are used to train DnCNN Zhang et al. (2017a)).
Other deep priors such as GANs/VAEs can be much more difficult to train. Therefore,
it is convenient to be able to exploit off-the-shelf denoisers for solving more complicated
image recovery tasks.

Another advantage of the plug-and-play framework is its flexibility. The same model
can be used to treat a large variety of degradations encoded in f . A related advantage
is that the algorithm is unsupervised in the sense that it does not need to be trained on
a specific task with ground-truth data. If applied with a deep denoiser, it only requires
training a single network to remove artificial Gaussian noise on a dataset of clean images.

Moreover, among unsupervised methods, PnP and RED algorithms achieve state-of-the-
art results (Meinhardt et al., 2017; Buzzard et al., 2018; Ahmad et al., 2020; Yuan et al.,
2020; Zhang et al., 2021) in various image inverse problems. Eventually, even though this
is out of the scope of this thesis, in order to reach optimal performance with ground-truth
training data, a common extension consists in unfolding PnP/RED algorithms in a global
trainable architecture (Adler and Öktem, 2018; Zhang et al., 2020). However, in practice
unfolded architectures typically use a very limited number of iterations (less than 10)
compared to PnP algorithms (hundreds of iterations).

Limitations. A generic denoiser Dσ e.g. a deep denoiser is not exactly the MAP nor
the MMSE denoiser. In the general case, it cannot be written as a proximity operator
Proxg or as a gradient descent map Id−∇g. Therefore, the well established convergence
of first order optimization algorithm do not generalize to PnP and RED algorithms when
replacing a proximity operator or gradient descent map by the denoiser.

Moreover, the regularization is only made implicit via the denoising operation. There-
fore, even if they converge, PnP and RED algorithms do not seek the minimization of an
explicit objective functional in the form (2.94). This strongly limits the interpretation of

1Ex∼pX ,y∼pY signifies that x and y are independent random variables following the laws X and Y .
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their output. It also impedes proper numerical control of the algorithm, as we cannot
verify the decrease and the convergence of a potential.

The numerical complexity of the algorithm during evaluation is also quite high compared
to supervised models. Indeed, it requires to evaluate the denoiser for hundreds of iterations.

Additionally, as explained in Section 2.4.1, we recall that with the Denoising Score
Matching result (2.80), a deep denoiser trained by minimizing the L2 loss (2.113) is
actually trained to approximate the MMSE denoiser. However, PnP algorithms presented
in Section 2.4.2 are originally derived assuming that the plugged denoiser approximates
the true MAP estimator and not the MMSE estimator. In spite of this, PnP algorithm
with deep denoisers trained with the L2 loss still provide very good results and perform
on par with RED algorithms. In our analysis, we will not need any assumption on the
capacity of the denoiser to approximate the true MAP or MMSE estimators. However, it
will be useful to keep in mind the Denoising Score Matching interpretation (2.80).
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In the following chapter, we delve into a more detailed exploration of the convergence
analysis of general first-order optimization algorithms and plug-and-play schemes. We
first introduce Section 3.1 a range of useful tools and concepts for addressing both convex
and nonconvex convex convergence. We will then able to formulate in Section 3.2 the
convergence theorems for each first-order optimization algorithm that was introduced in
Section 2.3, addressing both the scenarios of convex and nonconvex settings. Most of
the presented results are not from our contribution but were already published in the
literature. In Section 3.3, we conduct an in-depth examination of the existing literature
concerning the convergence of PnP and RED algorithms.

3.1 Tools and concepts for analyzing convergence

3.1.1 Inequalities for convex and smooth functions

Before going further, we introduce some basic inequalities verified by convex or smooth
functions. These inequalities are the basic blocks that will be used in our different proofs
of convergence. We consider in this section f : Rn → R ∪ {+∞} proper and lower
semi-continuous (lsc).

43



44 CHAPTER 3. PRELIMINARY CONVERGENCE RESULTS

Convex functions First, from the definition of the subdifferential, we can show that a
convex function verifies

Proposition 13. If f is convex, for all (x, y) ∈ dom f × dom f , and for all z ∈ ∂f(y),
we have

f(x) > f(y) + 〈z, x− y〉. (3.1)

We can then re-write this result for a weakly convex function and derive a new inequality
on the proximity operator of a (weakly) convex function, called Three-points inequality.

Corollary 1. If x→ f(x) + γ
2
||x||2 is convex for some γ ∈ R, then

(i) For all (x, y) ∈ dom f × dom f , and for all z ∈ ∂f(y), we have

f(x) ≥ f(y) + 〈z, x− y〉 − γ

2
||x− y||2 ; (3.2)

(ii) (Three-points inequality) For all (x, y) ∈ dom f×dom f , and for all z ∈ Proxf (y),
we have

f(x) +
1

2
||x− y||2 ≥ f(z) +

1

2
||z − y||2 +

1− γ
2
||x− z||2 . (3.3)

Remark 2. This encompasses the convex (γ = 0), strongly convex (γ < 0) and weakly
convex (γ > 0) cases.

Proof. (i) is direct from Proposition 13 applied to x→ f(x) + γ
2
||x||2.

(ii) The optimality conditions of the proximal operator z ∈ Proxf (y) gives

y − z ∈ ∂f(z). (3.4)

Hence, by Proposition 13 applied with the convex function x→ f(x) + γ
2
||x||2, we have

∀x, y ∈ dom(f)× dom(f),

f(x) +
γ

2
||x||2 ≥ f(z) +

γ

2
||z||2 + 〈y − z +

γ

2
z, x− z〉

⇔ f(x) ≥ f(z) + 〈y − z, x− z〉 − γ

2
||x− z||2

(3.5)

and therefore adding 1
2
||x− y||2 on both side,

f(x) +
1

2
||x− y||2 ≥ f(z) +

1

2
||x− y||2 + 〈y − z, x− z〉 − γ

2
||x− z||2

= f(z) +
1

2
||x− z||2 +

1

2
||y − z||2 − γ

2
||x− z||2

= f(z) +
1

2
||y − z||2 +

1− γ
2
||x− z||2 .
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Smooth functions We now consider the case of f with gradient L-Lipschitz, which we
refer to f L-smooth. First, if f is only differentiable (and not necessarily with Lipschitz
gradient) then Proposition 13 turns to an equivalence:

Proposition 14 ((Bauschke and Combettes, 2011a, Proposition 17.10)). Let C ⊆
int dom(f) an open and convex subset of int dom(f). If f is differentiable on C, then the
following statements are equivalent

(i) x→ f(x) + γ
2
||x||2 is convex on C for some γ ∈ R

(ii) for all (x, y) ∈ C,

f(x)− f(y)− 〈∇f(y), x− y〉 ≥ −γ
2
||x− y||2 (3.6)

If f is twice differentiable, this is also equivalent to

(iii) ∀x ∈ C, ∀u ∈ Rn, 〈∇2f(x)u, u〉 ≥ −γ ||u||2

Moreover, if f has Lipschitz gradient on a convex set, without any convexity conditions,
it verifies the following descent lemma.

Proposition 15 (Descent Lemma (Bauschke and Combettes, 2011a, Lemma 2.64)). If f
is L-smooth on an open and convex set C ⊆ int dom(f), ∀(x, y) ∈ C × C, we have

|f(x)− f(y)− 〈∇f(y), x− y〉| ≤ L

2
||y − x||2 . (3.7)

Combining Propositions 14 and 15, we can give the following results relating smoothness
and convexity.

Corollary 2. Let C ⊆ int dom(f) an open and convex subset of int dom(f). f is L-smooth
on C , then both x→ L

2
||x||2 + f(x) and x→ L

2
||x||2− f(x) are convex on C. If f is also

convex, then we have the equivalence.

Proof. (=⇒) From Propositions 15, f L-smooth implies that for all x, y ∈ C

− (f(x)− f(y)− 〈∇f(y), x− y〉) ≤ L

2
||y − x||2

⇔ f(x)− f(y)− 〈∇f(y), x− y〉 ≥ −L
2
||y − x||2

(3.8)

(3.9)

which means, by Proposition 14, that x → f(x) + L
2
||x||2 is convex. The convexity of

x→ −f(x) + L
2
||x||2 is direct considering −f .

(⇐=) (Combettes, 2018, Theorem 18.15)

Remark 3. Note that for analyzing the converge results of optimization algorithms, in
most of the cases, only one direction of the descent lemma is necessary

f(x)− f(y)− 〈∇f(y), x− y〉 ≤ L

2
||y − x||2 (3.10)

This is equivalent (Proposition 14) to L
2
||x||2−f(x) being convex. While the other direction

of the descent lemma

−(f(x)− f(y)− 〈∇f(y), x− y〉) ≤ L

2
||y − x||2 (3.11)

is equivalent to L
2
||x||2 + f(x) being convex. Therefore, when f is nonconvex, in most of

the cases, it is enough to only assume L
2
||x||2 − f(x) convex. This is less restrictive than

assuming f with L-Lipschitz gradient.
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3.1.2 Kurdyka–Łojasiewicz property

The Kurdyka-Łojasiewicz (KŁ) property (Bolte et al., 2007) is a local property that
characterizes the shape of the function f around its critical points {x ∈ int dom(f), 0 ∈
∂f(x)}. It is a tool widely used in nonconvex optimization (Attouch et al., 2010, 2013;
Ochs et al., 2014; Bolte et al., 2018; Zeng et al., 2019). We use the definition from Attouch
et al. (2010). In this section and in the rest of this chapter, ∂f stands for the limiting
subdifferential (see Section 2.2.1 for more details).

Definition 5 (Kurdyka-Łojasiewicz (KŁ) property (Attouch et al., 2010)). A function
f : Rn → R ∪ {+∞} is said to have the Kurdyka-Łojasiewicz property at x∗ ∈ dom(f)
if there exists η ∈ (0,+∞), a neighborhood U of x∗ and a continuous concave function
φ : [0, η)→ R+ such that φ(0) = 0, φ is C1 on (0, η), φ′ > 0 on (0, η) and ∀x ∈ U∩[f(x∗) <
f < f(x∗) + η], the Kurdyka-Łojasiewicz inequality holds:

φ′(f(x)− f(x∗))dist(0, ∂f(x)) ≥ 1. (3.12)

Proper lsc functions that satisfy the Kurdyka-Łojasiewicz inequality at each point of dom(∂f)
are called KŁ functions.

Remark 4. (i) This is a general definition, it is also common to directly define the
desingularizing function φ as φ(s) = cs1−θ for some c > 0 and θ ∈ [0, 1) (Bolte et al.,
2007).

(ii) For f proper lsc, the KŁ inequality always holds at non-critical points x∗ ∈ dom ∂f
(Attouch et al., 2010, Remark 4.(b)).

(iii) For f smooth and f(x∗) = 0, the KŁ inequality (3.12) writes ||∇(φ ◦ f)(x)|| ≥ 1.
The KŁ property can thus be interpreted as the fact that, up to a reparameterization,
the function is locally sharp (Attouch et al., 2013).

The KŁ inequality was originally specifically derived by Kurdyka (Kurdyka, 1998) to
extend to tame functions the "Łojasiewicz inequality" (||∇f(x)|| ≥ C ||f(x)− f(x∗)||θ
with θ < 1) verified by real analytic functions. The class of tame functions generalizes the
class of real semialgebraic function. The KŁ inequality was later extended to nonsmooth
continuous subanalytic functions by Bolte et al. (2007).

Nonconvex convergence to a critical point with Kurdyka–Łojasiewicz property

We now explain why Kurdyka–Łojasiewicz functions are useful for nonconvex convergence.
Given a KŁ function f , we want to show convergence of a sequence (xk)k∈N, produced by a
certain iterative procedure, towards a critical point of f . With the following theorem, it is
proposed by Attouch et al. (2013) sufficient conditions on (xk) such that this convergence
is verified. This comprehensive theorem will be the basis of the nonconvex convergence
analysis of first-order optimization algorithms in Section 2.3.

Theorem 4 (Attouch et al. (2013, Theorem 2.9)). Let f : Rn → R ∪ {+∞} be a proper
lsc function. Consider a sequence (xk)k∈N satisfying the following conditions :

• H1 : Sufficient decrease condition ∀k ∈ N,

f(xk+1) + a ||xk+1 − xk||2 ≤ f(xk). (3.13)
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• H2 : Relative error condition ∀k ∈ N, there exists ωk+1 ∈ ∂f(xk+1) such that

||ωk+1|| ≤ b ||xk+1 − xk|| . (3.14)

• H3 : Continuity condition There exists a subsequence (xki)i∈N and x̂ ∈ Rn such
that

xki → x̂ and f(xki)→ f(x̂) as i→ +∞. (3.15)

If f verifies the Kurdyka–Łojasiewicz property at the cluster point x̂ specified in H3, then
(xk) converges to x̂ as k → +∞ and x̂ is a critical point of f .

Remark 5. It is proposed in Ochs et al. (2014) similar but slightly different conditions
H1 and H2 involving (xn, xn+1) to ensure the same result for a two-step algorithm.

The first condition H1 models the descent of the objective function f along the iterates.
Note that if f is lower-bounded, with H1, as f(xk) decreases, we have convergence of
the function values f(xk), as well as, by telescopic sum,

∑
||xk+1 − xk||2 < +∞ i.e. the

sequence has finite length. If f is also coercive, then {f(x) < f(x0)} is necessarily bounded
and the iterates remain bounded. We can then extract from (xk) a subsequence converging
towards x̂. With condition H2 and H3, we obtain 0 ∈ ∂f(x̂) i.e. the limit point is a critical
point of f .

When dealing with a nonconvex function f , a sequence (xk) satisfying the above
conditions is not guaranteed to converge to a single point. It can be the case if f is
flat or highly oscillating around its critical points. The KŁ property is a general and
flexible condition that prevents the above cases and ensures single-point convergence of
any sequence satisfying H1, H2 and H3.

How to verify that a function verifies the Kurdyka–Łojasiewicz property?

In Section 3.2, we will make use of this theorem to study the convergence of iterative
algorithms for minimizing the sum of two functions F = f + g with f or g nonconvex.
The first requirement for this theorem is to show that F is KŁ. However, the KŁ condition
is not stable by sum. Therefore, we will need to introduce conditions on f and g such that
f + g is KŁ.

Moreover, in the context of our analysis, g is a regularization term that will be typically
parameterized by a neural network. Even if the set of KŁ functions is large in practice,
verifying that a function, and more particularly a neural network, is KŁ is not easy. We
need to choose a subclass of KŁ functions that, on the one hand, is large enough to
encompass all our functions of interest and, on the other hand, has minimal stability
properties so that inclusion to that set is easy to verify. In particular, for neural networks,
stability by sum and composition are minimal requirements.

Subanalytic functions constitute a large enough set to include all our functions of
interest. They include in particular real analytic functions and semialgebraic functions.
We now define these three set of functions and give, in different lemmas, their most
important stability properties.

Real analytic functions

Definition 6 (Real analytic). A function f : Rn → R∪{+∞} with open domain is said
to be (real) analytic at x ∈ dom(f) if f may be represented by a convergent power series
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on a neighborhood of x. The function is said to be analytic if it is analytic at each point of
its domain. We can extend the definition for f : Rn → Rm which is analytic at x ∈ Rn if
for f = (f1, ...fm), all fi : Rn → R are analytic at x.

Typical real analytic functions include polynomials, exponential functions, the log-
arithm, trigonometric and power functions. Moreover, real analytic functions have the
following stability properties

Lemma 3 (Krantz and Parks (2002)). (i) The sum, product, and composition of real
analytic functions are real analytic.

(ii) A partial derivative of f real analytic is real analytic.

(iii) Real Analytic Inverse Function Theorem Let f : Rn → Rm be real analytic in
a neighborhood of x ∈ Rn and suppose Jf(x) non-singular, then f−1 is defined and
is real analytic in a neighborhood of f(x). In particular, if f is real analytic and
∀x ∈ Rn, Jf (x) is non-singular, then f−1 is real analytic on Im(f).

Semialgebraic functions

Definition 7 (Semialgebraic Attouch et al. (2010)).

• A subset S of Rn is a real semialgebraic set if there exists a finite number of real
polynomial functions Pi,j, Qi,j : Rn → R such that

S = ∪pj=1 ∩
q
i=1 {x ∈ Rn, Pi,j = 0, Qi,j < 0} (3.16)

• A function f : Rn → R ∪ {+∞} (resp. f : Rn → Rm) is called semialgebraic if
its graph {(x, y) ∈ Rn × R, y = f(x)} (resp. {(x, y) ∈ Rn × Rm, y = f(x)}) is a
semialgebraic subset of Rn × R (resp. Rn × Rm).

From Definition 7, we first easily verify that polynomial functions are semialgebraic func-
tions. Some other typical semialgebraic maps are the indicator function of a semialgebraic
set or the Euclidean norm.

The set of semialgebraic functions has strong stability properties. The main ones follow
from the Tarski-Seidenberg principle, which states that the image of a semialgebraic subset
of Rn+m by projection on the first n coordinates is a semialgebraic subset of Rn. From
this theorem, the following holds.

Lemma 4 (Perrin (2020)). (i) The sum, product, and composition of semialgebraic
functions are semialgebraic functions.

(ii) If a partial derivative of f semialgebraic exists, then it is semialgebraic.

(iii) The image and preimage of a semialgebraic set by a semialgebraic function is a
semialgebraic set.
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Subanalytic functions Similar to semialgebraicity, in order to define subanalytic func-
tions, we need to define first semianalytic and subanalytic sets. A semianalytic set is
defined locally by an expression of the form (3.16) but where the polynomials are replaced
by general real analytic functions. A subanalytic set is locally the projection of a bounded
semianalytic set.

Definition 8 (Subanalytic Bolte et al. (2007)).

• A subset S of Rn is a semianalytic set if each point of Rn admits a neighborhood V
for which there exists a finite number of real analytic functions fi,j, gi,j : Rn → R
such that

S ∩ V = ∪pj=1 ∩
q
i=1 {x ∈ Rn, fi,j = 0, gi,j < 0} (3.17)

• A subset S of Rn is a subanalytic set if each point of Rn admit a neighborhood V for
which

S ∩ V = {x ∈ Rn, (x, y) ∈ U} (3.18)

where U is a bounded semianalytic subset of Rn × Rp with p ≥ 1.

• A function f : Rn → R∪{+∞} (resp. f : Rn → Rm) is called subanalytic if its graph
{(x, y) ∈ Rn × R, y = f(x)} (resp. {(x, y) ∈ Rn × Rm, y = f(x)}) is a subanalytic
subset of Rn × R (resp. Rn × Rm).

Subanalytic functions encompass both analytic functions and semialgebraic functions
(Shiota, 2012). However, they do not enjoy the same stability results. In particular, there
is not such Tarski-Seidenberg principle for the stability via projection from a general
unbounded subanalytic set. However, by definition, the result holds for bounded sets, and
we still have the following stability results

Lemma 5 (Shiota (2012)). (i) The sum of two subanalytic functions is subanalytic if
at least one of the two functions maps a bounded set to a bounded set or if both
functions are non-negative.

(ii) The product of two subanalytic functions is subanalytic if both functions map a
bounded set to a bounded set.

(iii) The composition g ◦ f with g subanalytic is subanalytic if f or g−1 maps a bounded
set to a bounded set.

Finally, the important point is that continuous subanalytic functions are KŁ:

Lemma 6 (Bolte et al. (2007, Theorem 3.1)). Let f : Rn → R ∪ {+∞} be a proper,
subanalytic function and assume that f is continuous on its domain, then f is a KŁ
function.

We come back to our practical case of interest, i.e. the minimization of F = f + g
where f is a data-fidelity term and g a deep regularization. Given the strong stability
properties of semialgebraicity, nonconvex optimization papers (Attouch et al., 2013; Bolte
et al., 2018) often work directly with semialgebraic functions to verify that an objective
verifies the KŁ property on its domain. Typically, some optimization methods directly
assume f and g semialgebraic. In our analysis, the regularizer g will be parameterized by
a neural network, which basically consists of composition and sums of linear maps and
activation functions. A linear map being clearly semialgebraic, the main difficulty is to
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show that activation functions are semialgebraic. This is the case of the ReLU which can
be expressed with a system of polynomial (in)equalities:

for x, y ∈ R, y = ReLU(x) = max(0, x) if and only if y(y − x) = 0, y ≥ x, y ≥ 0. (3.19)

However, it is not true anymore for other common activation functions, like softplus

s(x) =
1

α
log(1 + exp(αx)). (3.20)

Softplus is however clearly analytic. Actually, as shown by Zeng et al. (2019), most of the
activation functions are semialgebraic or real analytic. A linear map being also analytic
and semialgebraic, by stability of these two notions by sum and composition, it is easy to
show that, in general, neural networks are either semialgebraic or real analytic and thus
subanalytic.

As f commonly measures a distance to an input, it is non-negative. As g is assumed
lower-bounded, we might assume g to be non-negative as well, even if it means adding a
constant to the global objective F . Thus, with Lemma 5 it will be enough to assume f
subanalytic in order to show that F is KŁ.

3.1.3 Fixed-point theory

In order to study the convergence of first order optimization algorithms and of plug-and-
play algorithms, it will be useful to formulate these iterative algorithms as fixed-point
algorithms. Convergence will then follow from fixed-point convergence theory.

In the following, we consider a general operator T : E → E defined on E ⊂ Rn. We
assume that Fix(T ), the set of fixed-point of T is non-empty. In this section, we
will review sufficient conditions on T to ensure that the fixed-point iterations

xk+1 = T (xk) (3.21)

converge towards a fixed-point of T . As soon as T is L-Lipschitz with L < 1, it is a
contraction and Banach’s fixed-point theorem states that there exists a unique fixed-point
of T and that the scheme (3.21) converges to this fixed-point. When T is only 1-Lipschitz
(that is nonexpansive), convergence to a fixed-point can nevertheless be ensured using
a Krasnosel’skii-Mann relaxation of the iterates. They take the form, for some positive
sequence (νk)k

xk+1 = (νkT + (1− νk) Id)(xk). (3.22)

Convergence of (3.22) is given by the following theorem.

Theorem 5 (Krasnonel’skii-Mann iterations (Bauschke and Combettes, 2011a, Theorem
5.15)). Let T be a nonexpansive operator that admits fixed-points and (νk) be a sequence in
[0, 1] such that

∑
k νk(1− νk) = +∞. Then the sequence (3.22) converges to a fixed-point

of T and verifies
∑
νk(1− νk) ||xk+1 − xk||2 < +∞.

Given this result, a convenient notion for showing convergence of fixed-point iterations
of the form of (3.21) with T non-contractive is the notion of θ-averaged operators.

Definition 9 (θ-averaged operator). T is θ-averaged for θ ∈ (0, 1) if T = θR + (1− θ) Id
with R nonexpansive. In particular, an averaged operator is nonexpansive. T is said firmly
nonexpansive if it is 1

2
-averaged.
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The following result states convergence of the fixed-point iterations for averaged
operators.

Corollary 3. Let θ ∈ (0, 1). Let T be a θ-averaged operator that admits fixed-points. Then
the sequence xk+1 = T (xk) converges to a fixed-point of T and verifies

∑
||xk+1 − xk||2 <

+∞.

Proof. Using T = θR+(1−θ) Id with R nonexpansive, the fixed-point of T and R coincide.
We get the result by directly applying Theorem 5 with the operator R and fixed νk = θ.

We now outline some useful properties for establishing the averageness of an operator.
First, using Definition 9, we immediately get the following result on the relaxation of
θ-averaged operators.

Proposition 16. Let θ > 0 such that T writes T = θR+ (1− θ) Id with R a nonexpansive
operator. In particular, if θ < 1, T is θ-averaged. Then for α ∈ (0, 1

θ
), αT + (1− α) Id is

αθ-averaged.

We will also make use of the following result showing that the composition and convex
combination of averaged operators are averaged.

Proposition 17 ((Bauschke and Combettes, 2011a, Proposition 4.42 and 1.44)). Let
T1 : E → E and T2 : E → E, if T1 and T2 are respectively θ1 and θ2-averaged, then

(i) T1 ◦ T2 is θ-averaged with θ = θ1+θ2−2θ1θ2
1−θ1θ2 .

(ii) For α ∈ (0, 1), αT1 + (1− α)T2 is αθ1 + (1− α)θ2-averaged.

Application to descent mappings We now make explicit the link between fixed-point
operator theory and convex optimization. A step of gradient descent and the proximity
operator of a convex function are both averaged operators. Moreover, if the function is
strongly convex, then they are contractive.

Proposition 18. Let f : Rn → R ∪ {+∞} be a proper lsc convex function,

(i) for τ > 0, Proxτf is firmly nonexpansive (Bauschke and Combettes, 2011a, Corollary
23.8).

(ii) f is L-smooth ⇔ f differentiable and Id− 2
L
∇f is nonexpansive ⇔ f differentiable

and ∀τ ∈
(
0, 2

L

)
, Id−τ∇f is τL

2
-averaged.

Remark 6. This is not true any more for a nonconvex f .

Proof. (ii) ∀τ ∈
(
0, 2

L

)
, T = Id−τ∇f is τL

2
-averaged ⇔ ∀τ ∈

(
0, 2

L

)
, 2
τL
T + (1− 2

τL
) Id =

Id− 2
L
∇f is nonexpansive i.e. ∀x, y∣∣∣∣∣∣∣∣(x− y)− 2

L
(∇f(x)−∇f(y))

∣∣∣∣∣∣∣∣2 ≤ ||x− y||2 (3.23)

or, by expanding the left term, ∀x, y

||∇f(x)−∇f(y)||2 ≤ L〈x− y,∇f(x)−∇f(y)〉 (3.24)

i.e. ∇f is 1/L co-coercive. For convex f , this is equivalent to ∇f being L-Lipschitz
(Bauschke and Combettes, 2011a, Theorem 18.15).
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Proposition 19. Let f : Rn → R ∪ {+∞} be a proper lsc µ-strongly convex function and
τ > 0

(i) Proxτf is 1
1+τµ

- Lipschitz.

(ii) If f is L-smooth, then Id−τ∇f is max (|1− τµ|, |1− τL|)-Lipschitz (Ryu et al.,
2019).

3.2 Convergence of first order optimization algorithms
In order to analyze and understand the convergence of plug-and-play algorithms, we
need to dive more precisely into the convergence theory of the first-order optimization
algorithms presented in Section 2.3. Recall that PGD, DRS, ADMM or PD target the
minimization of the sum of two functions

min
x∈Rn

F (x) = f(x) + g(x) (3.25)

with f, g : Rn → R ∪ {+∞} proper, lower semi-continuous and lower-bounded. For
each algorithm, we will prove convergence in the convex (both f and g are convex) and
nonconvex (both f and g can be nonconvex) settings. In the nonconvex case, instead of
looking for a global or local minimizer, we will rather look for a critical point i.e. a point
x such that 0 ∈ ∂F (x). In this section, ∂F stands for the limiting subdifferential (see
Section 2.2.1) ∂limF (Equation 2.26). Recall that for F convex, the limiting subdifferential
falls back to the standard convex subdifferential (Definition 2).

3.2.1 Proximal Gradient Descent (PGD)

We first analyze the convergence of the PGD algorithm

(PGD) xk+1 ∈ Proxτg ◦ (xk − τ∇f(xk)) . (3.26)

The convergence of the Gradient Descent (2.50) and Proximal Point (2.49) algorithms,
which are particular cases of PGD, will follow immediately.

Convex case

We first assume that both f and g are convex and that f is Lf -smooth (i.e. ∇f is Lf -
Lipschitz). In this context, convergence of the PGD algorithm (3.26) can be easily derived
using the fixed-point convergence of averaged operators derived in Section 3.1.3. From the
fact that the gradient descent and proximity mappings are averaged (Proposition 18) and
the fact that the composition of averaged operators is averaged (Proposition 17), we get
that the PGD fixed-point operator is averaged:

Corollary 4. For τ < 2
Lf
, TPGD = Proxτg ◦(Id−τ∇f) is averaged.

Using Theorem 3, we can directly conclude on the convergence of the PGD algorithms
with convex functions.

Theorem 6 (Convergence of convex PGD). Assume f and g proper, lsc, convex, lower-
bounded and f Lf -smooth. Then for τ < 2

Lf
, the iterates given by the PGD algorithm (3.26)

converge towards a global minimizer of F .
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Proof. F being lower-bounded, it admits a global minimum. From Proposition 8, for all
τ > 0, Fix(TPGD) = zeros(∂F ) = arg minF 6= ∅. Using the fact that for τ < 2

Lf
, TPGD is

averaged (Corollary 4) along with the convergence of fixed-point iterations of averaged
operators (Theorem 3), we get the desired result.

Nonconvex case

When F = f + g is nonconvex, convergence towards a global minimum is out of reach.
However, we can still target a critical point of the objective F . Simply assuming that f
has Lipschitz-gradient, the descent lemma (Proposition 15) permits to derive a sufficient
decrease of the objective function F = f + g along the iterates. If F is also lower-bounded,
we get convergence of the function values and of the norm of difference between two
iterates towards 0. At this point, we can also show that any converging subsequence does
converge towards a stationary point of F .

Proposition 20 (First convergence results for nonconvex PGD.). Assume f and g proper,
lsc, bounded from below, with f Lf -smooth. Then, for τ < 1/Lf , the iterates (xk) given by
the PGD algorithm (3.26) verify

(i) (F (xk)) is non-increasing and converges.

(ii) The sequence has finite length, i.e.
∑+∞

k=0 ||xk+1 − xk||2 < +∞ and ||xk+1 − xk||
converges to 0 at rate mink<K ||xk+1 − xk|| = O(1/

√
K)

(iii) All cluster points of the sequence (xk) are critical points of F .

Proof. Although the arguments of this result are standard and can be found in various
works (Beck and Teboulle, 2009b; Attouch et al., 2013; Ochs et al., 2014; Bolte et al.,
2018), we here give the full proof for the sake of completeness.

(i) We first reformulate the PGD iterates as

xk+1 ∈ Proxτg ◦ (xk − τ∇f(xk))

⇔ xk+1 ∈ arg min
x

g(x) +
1

2τ
||x− (xk − τ∇f(xk))||2

⇔ xk+1 ∈ arg min
x

g(x) + 〈x− xk,∇f(xk)〉+
1

2τ
||x− xk||2 .

(3.27)

(3.28)

(3.29)

Hence by evaluating the right-hand side at xk+1 and xk, and adding f(xk) on both sides,
we get

f(xk) + g(xk+1) + 〈xk+1 − xk,∇f(xk)〉+
1

2τ
||xk+1 − xk||2 ≤ f(xk) + g(xk) = F (xk).

(3.30)
Then, using the descent lemma (Proposition 15)

f(xk) + 〈xk+1 − xk,∇f(xk)〉+
1

2τ
||xk+1 − xk||2

= f(xk) + 〈xk+1 − xk,∇f(xk)〉+
Lf
2
||xk+1 − xk||2 +

(
1

2τ
− Lf

2

)
||xk+1 − xk||2

≥ f(xk+1) +

(
1

2τ
− Lf

2

)
||xk+1 − xk||2 .

(3.31)

(3.32)

(3.33)
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Leading to the sufficient decrease equation

F (xk) ≥ F (xk+1) +

(
1

2τ
− Lf

2

)
||xk+1 − xk||2 . (3.34)

For τ < 1
Lf

, (3.34) together with the fact that F is assumed lower bounded proves (i).
(ii) Denoting by F ∗ the limit of F (xk), summing (3.34) between k = 0 and k = K − 1

gives

k−1∑
k=0

||xk+1 − xk||2 ≤
1(

1
2τ
− Lf

2

) (F (x0)− F (xK)) ≤ 1(
1
2τ
− Lf

2

) (F (x0)− F ∗) (3.35)

which proves that ||xk+1 − xk||2 is summable and thus converges to 0. Additionally,

min
k<K
||xk+1 − xk||2 ≤

1

K

k−1∑
k=0

||xk+1 − xk||2 = O(1/K). (3.36)

(iii) Suppose that a subsequence (xki)i is converging towards x. Let us show that x is
a critical point of F . By optimality of the proximal operator of g, for all k ≥ 0

xki+1 − xki
τ

−∇f(xk+1) ∈ ∂g(xki+1). (3.37)

where ∂g stands for the limiting subdifferential (2.26). In other words, for ωki =
xki−xki−1

τ
−

∇f(xki), (ωki , xki) ∈ Graph ∂g. From the continuity of ∇f , we have ∇f(xki) → ∇f(x).
As ||xki+1 − xki || → 0, we get

xki − xki−1
τ

−∇f(xki)→ −∇f(x). (3.38)

By closeness of ∂g (Proposition 2), if we can show that g(xki)→ g(x), we get −∇f(x) ∈
∂g(x) i.e. x is a critical point of F (with Proposition 1). We now show that

g(xki)→ g(x). (3.39)

Using the fact that g is lsc we first have

lim inf
i→∞

g(xki) ≥ g(x). (3.40)

On the other hand, by optimality of (3.29),

g(xki+1) + 〈xki+1 − xki ,∇f(xki)〉+
1

2τ
||xki+1 − xki ||

2

≤ g(x) + 〈x− xki ,∇f(xki)〉+
1

2τ
||x− xki ||

2 .
(3.41)

Using that xki → x and xki+1 − xki → 0 when i→ +∞, we get

lim sup
i→∞

g(xki) ≤ g(x), (3.42)

and
lim
i→∞

g(xki) = g(x). (3.43)
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To go further, we can use the abstract nonconvex convergence result of Theorem 4,
with the Kurdyka–Łojasiewicz (KŁ) property (Refer to Section 3.1.2 for more details on
the KŁ property). Using this result, we now show that if F = f +g is KŁ and the sequence
generated by the PGD algorithm is bounded, the sequence converges towards a critical
point of the objective function.

Theorem 7 (Single point convergence of nonconvex PGD.). Assume f and g proper, lsc,
lower-bounded, with f Lf -smooth and F = f + g KŁ. Then, for τ < 1/Lf , if the iterates
(xk) given by the PGD algorithm (3.26) are bounded, then they converge towards a critical
point of F = f + g.

Proof. This result is a direct application of the general nonconvex convergence result from
Theorem 4. We need to verify its assumptions H1, H2 and H3. All three assumptions
were verified in the proof of the previous Proposition 20:

• H1 was verified with (3.34).

• H2 was verified with (3.37). Indeed, we showed that ωk = xk+1−xk
τ

∈ ∂g(xk+1) +
∇f(xk+1) = ∂F (xk+1).

• H3: The iterates (xk) are assumed bounded. Thus, there exists a subsequence
(xki)i∈N converging towards x̂ ∈ Rn as i→ +∞. In the proof of Proposition 20 (iii)
it was shown that for such a subsequence limi→∞ g(xki) = g(x̂). By continuity of f ,
we get limi→∞ F (xki) = F (x̂).

Remark 7. (i) The boundedness of the iterates is verified as soon as the objective F
is coercive. Indeed, it ensures that {F (x) ≤ F (x0)} is bounded and, since F (xk) is
non-increasing (Proposition 20(i)), that the iterates remain bounded.

(ii) We explained in Section 3.1.2 that, in practice, the Kurdyka–Łojasiewicz (KŁ)
property is verified by a very large class of functions and can be checked using the
notions of semialgebraicity or subanalyticity.

Remark 8. In both Proposition 20 and Theorem 7, instead of assuming f with Lf -Lipschitz
gradient, we get the exact same results by assuming the weaker condition

f of class C1 and x→ 1

2
||x||2 − f(x) convex. (3.44)

As explained in Remark 3, this is a sufficient condition for the descent Lemma (applied
Equation (3.33)) to be true. The res of the proof follows identically.

Weakly convex - Nonconvex case

When the function under the Prox (here g) is assumed M -weakly convex, one can relax
the condition on the stepsize from τ < 1/Lf to τ < 2/(Lf +M). This result will be useful
in Chapter 5.

Theorem 8 (Convergence of PGD for weakly convex g). Assume f and g proper, lsc,
lower-bounded, with f Lf -smooth and g M-weakly convex. Then, for τ < max( 2

Lf+M
, 1
Lf

),
the properties (i)-(iii) from Proposition 20 hold and if F is KŁ and the iterates are bounded,
then they converge towards a critical point of F = f + g.
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Remark 9. In particular, if g is convex, the condition on the stepsize becomes τ < 2/Lf .

Proof. Compared to the proofs of Proposition 20 and Theorem 7, we only need to modify
the sufficient decrease condition (3.34) so that the condition on the stepsize changes. The
optimality condition of (3.29) gives

xk − xk+1

τ
−∇f(xk) ∈ ∂g(xk+1). (3.45)

As g is M -weakly convex, Corollary 1 (i) gives that for z ∈ ∂g(xk+1)

g(xk) ≥ g(xk+1) + 〈z, xk − xk+1〉 −
γ

2
||xk − xk+1||2 ; (3.46)

Using (3.45), we get

g(xk)≥g(xk+1)+
||xk − xk+1||2

τ
+〈∇f(xk), xk+1− xk〉 −

M

2
||xk − xk+1||2. (3.47)

Using the descent lemma (Proposition 15)

f(xk+1) ≤ f(xk) + 〈∇f(xk), xk+1 − xk〉+
Lf
2
||xk − xk+1||2 . (3.48)

Combining both inequalities, for F = f + g, we obtain

F (xk) ≥ F (xk+1) +

(
1

τ
− Lf +M

2

)
||xk − xk+1||2 . (3.49)

Using τ < 2
Lf+M

, the rest of the proofs from Proposition 20 and Theorem 7 hold. Note
that when M ≥ L, the stepsize condition from the fully nonconvex convergence results of
Proposition 20 and Theorem 7 τ < 1/Lf is less restrictive. We thus keep the condition
τ < max( 2

Lf+M
, 1
Lf

).

Remark 10. Once again, the smoothness condition on f can be replaced by

f of class C1 and x→ 1

2
||x||2 − f(x) convex. (3.50)

3.2.2 Douglas Rachford Splitting (DRS) / ADMM

We remind the form of the DRS and ADMM algorithms already introduced in Section 2.3.3.

(DRS)


yk+1 ∈ Proxτf (xk)
zk+1 ∈ Proxτg(2yk+1 − xk)
xk+1 = xk + 2β(zk+1 − yk+1)

(3.51)

(ADMM)


zk+1 ∈ Proxτg(yk − uk)
yk+1 ∈ Proxτf (uk + zk+1)
uk+1 = uk + zk+1 − yk+1

(3.52)

With Lemma 1 we showed the equivalence between DRS (with β = 1/2) and ADMM. In
this section, we study the convergence of the DRS algorithm (3.51) for β ∈ (0, 1]. The
convergence results of ADMM (2.63) will therefore follow immediately. We follow the
same kind of analysis as the one done in the previous section for PGD. Remind that the
DRS iterates (3.51) also write as

xk+1 ∈
(
β Rproxτg ◦Rproxτf +(1− β) Id

)
(xk) (3.53)
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Convex case

We first assume that both f and g are convex. Once again, in this context, we can show
convergence of DRS using the fixed-point convergence results derived in Section 3.1.3.
From Proposition 9, with the notations of (3.51), if we show that the DRS fixed-point
iterations converge, then (yk) converges towards a critical point of F .

Theorem 9 (Convergence of convex DRS). Assume f and g proper, lsc, lower-bounded,
convex. Then for τ > 0 and β ∈ (0, 1], the iterates (yk)k given by the DRS algorithm (3.51)
converge towards a global minimizer of F .

Proof. For τ > 0, we denote Tτ = Rproxτg ◦Rproxτf . As F = f + g is convex and lower
bounded, zeros(∂F ) 6= ∅ and by Proposition 8, Fix(Tτ ) 6= ∅. Moreover, the Prox of a
convex function being firmly nonexpansive (i.e. 1

2
-averaged), by definition, its Rprox is

nonexpansive. Tτ is then nonexpansive by composition of nonexpansive operators. Using
Theorem 5 with fixed µk = β, we get that the fixed-point iterations given by (3.53)
converge towards a fixed-point of Tτ . By Proposition 8, the iterates yk from (2.62) then
converge towards a critical point of F i.e. a global minimum.

Remark 11. Using Theorem 5 in its most general form, DRS can be extended with
iteration-dependent relaxation parameters βk in (0, 1] such that

∑
k βk(1− βk) = +∞.

Remark 12. By fixed-point convergence, the iterates (xk)k in (2.61) verify ||xk+1 − xk|| →
0. However, via the form (2.62) of DRS, ||xk+1 − xk|| = β ||zk+1 − yk+1||. Thus, the
iterates (zk)k in (2.62) also converge towards the same minimizer of F .

Nonconvex case

Li and Pong (2016) and Themelis and Patrinos (2020) propose convergence proofs of the
DRS algorithm for the minimization of the sum of two nonconvex functions F = f + g, one
of the two functions (here f) being differentiable with Lipschitz gradient Lf . Themelis and
Patrinos (2020) generalize the result from Li and Pong (2016) with a less restrictive stepsize
condition. Both consider as Lyapunov function the Douglas-Rachford envelope (Themelis
and Patrinos, 2020) (or Douglas-Rachford merit function (Li and Pong, 2016))

FDR
τ (x, y, z) = f(y) + g(z) +

1

τ
〈y − x, y − z〉+

1

2τ
||y − z||2 (3.54)

Similar to the PGD convergence analysis realized in Section 2.3.1, two convergence
results can be derived. First, under no additional assumption, one can show convergence of
the Douglas-Rachford envelope FDR

τ (xk, yk, zk) along the iterates and convergence to 0 of
||xk+1 − xk|| = β ||yk+1 − zk+1||. Second, invoking the Kurdyka–Łojasiewicz (KŁ) property
(Section 3.1.2), we get convergence towards a critical point of the objective function. Both
results are encompassed in the following theorem.

Theorem 10 (Li and Pong (2016); Themelis and Patrinos (2020)). Assume that f and g
are proper, lsc, lower-bounded and that f is Lf -smooth and Mf -weakly convex. Then, for
a stepsize

0 < τ < min

(
1− β
Mf

,
1

Lf

)
, (3.55)

the sequence (xk, yk, zk) generated by the DRS algorithm (2.62) verifies
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(i) FDR
τ (xk−1, yk, zk) is non-increasing and converges (Themelis and Patrinos, 2020,

Theorem 4.1)

(ii) xk − xk−1 = β(yk − zk) tends to 0 with rate mink≤K ||yk − zk|| = O( 1√
K

). (Themelis
and Patrinos, 2020, Theorem 4.2)

(iii) (yk) and (zk) have the same cluster points, which are critical points of F . (Themelis
and Patrinos, 2020, Theorem 4.2)

(iv) If the sequence (xk, yk, zk) is bounded, and if FDR
τ is KŁ, then the sequences (yk) and

(zk) converge to the same critical point of F . (Li and Pong, 2016, Theorem 2)

Remark 13. (i) We can assume f weakly convex without loss of generality. Indeed, as
f is assumed Lf -smooth, by Proposition 2, f is at least Lf -weakly convex and we
have necessarily Mf ≤ Lf .

(ii) Point (iv) follows from (Li and Pong, 2016, Theorem 2). In this theorem, instead
of assuming that FDR

τ is KŁ, it is directly assumed that f and g are semialgebraic,
which implies that FDR

τ is KŁ. We prefer to keep a more general result, as this
theorem will be used in Chapter 5 with non semialgebraic functions.

(iii) Contrary to what we had with PGD, for DRS here the decreasing function is not F
itself but the Liapunov FDR. As is shown in (Li and Pong, 2016, Theorem 4), if f
or g are coercive, FDR is coercive and the iterates remain bounded.

3.2.3 Primal-Dual

We now analyze the convergence of the Primal-Dual algorithms introduced in Section 2.3.4.

Convex case

For convex f and g, we recall the form of the Primal-Dual Chambolle-Pock algorithm
yk+1 = Proxσf∗(yk + σKx̄k)
xk+1 = Proxτg(xk − τK∗yk+1)
x̄k+1 = xk+1 + β(xk+1 − xk)

(3.56)

For convex f and g, it is shown in (Chambolle and Pock, 2011, Theorem 1) that, for
τσ ||K∗K|| < 1, the iterates (xk, yk) given by the algorithm (3.56) converge towards (x∗, y∗)
solution of the primal-dual problem (2.69).

The Primal-Dual algorithm is generalized in Chambolle and Pock (2016) with Bregman
proximity functions as,

yk+1 = arg miny
1
σ
DhY (y, yk) + f ∗(y)− 〈Kx̄k, y〉

xk+1 = arg minx
1
τ
DhX (x, xk) + g(x) + 〈x,K∗yk+1〉

x̄k+1 = xk+1 + β(xk+1 − xk)
(3.57)

where Dh here denotes the Bregman divergence associated to a smooth and convex
potential h:

Dh(x, y) = h(x)− h(y)− 〈∇h(y), x− y〉. (3.58)

(3.57) falls back to (3.56) for hX(x) = hY (x) = 1
2
||x||2. For convex f and g, provided that

the potentials hX and hY are 1-convex with respect to the norm ||.||2 (i.e. Dh(x, y) ≥
1
2
||x− y||2), convergence of (3.57) towards a saddle point of (2.68) is ensured as long as
τσ ||K∗K|| < 1 (Chambolle and Pock, 2016, Remark 3).
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Nonconvex case

For nonconvex f , we consider the full primal version of the algorithm presented in (2.71)
zk+1 ∈ Prox 1

σ
f (

1
σ
yk +Kx̄k)

yk+1 = yk + σ(Kx̄k − zk+1)
xk+1 ∈ Proxτg(xk − τK∗yk+1)
x̄k+1 = xk+1 + β(xk+1 − xk).

(3.59)

The authors of Möllenhoff et al. (2015) study the convergence of this algorithm for weakly
convex f and strongly convex g, also assuming that the strong convexity of g dominates the
weak convexity of f in order to ensure that the overall objective F = f(K.) + g is convex.
This is too restrictive for our study, as neither the data-fidelity nor the regularization
functions is strongly convex in the general case. More relevant for us, the authors of Sun
et al. (2018) study the convergence of the algorithm (3.59) with β = 0, for nonconvex
f and g functions, and prove a result, reminiscent of the previous convergence result of
nonconvex DRS Theorem 10.

We define wk = (zk, yk, xk, xk−1), dk = (xk, yk) and the Liapunov function

F PD(wk) = g(xk) + f(zk) + 〈Kxk − zk, yk〉+ σ ||zk −Kxk−1||2 + σ ||K||2 ||xk−1 − xk||2

(3.60)

Theorem 11 (Sun et al. (2018)). Assume that f and g are proper, lsc. Let (zk, yk, xk)
produced by Algorithm (3.59) with β = 0, 2τσ ||K2|| ≤ 1. Then,

(i) (F PD(wk)) is non-increasing, with the sufficient decrease condition

F PD(wk)− F PD(wk+1) ≥ min

(
1

2τ
− σ ||K||2 , 1

2σ

)
||dk − dk+1||2 (3.61)

(ii) If (wk) is bounded, ||dk+1 − dk|| → 0 with finite length and for any cluster point
(y∗, x∗) of (dk), x∗ is a critical point of F : x→ f(Kx) + g(x).

(iii) If the sequence (wk) is bounded and F PD is KŁ, (dk) converges towards (x∗, y∗) where
x∗ is a stationary point of x→ f(Kx) + g(x).

Compared to the convergence of DRS Theorem 10, at this point, we do not need f
or g to be smooth and bounded from below. However, the second and third points of
the theorem require the boundedness of the iterates. The reason is that, with this choice
of Liapunov function F PD, they cannot show that F PD is bounded from below when
f and g are. Moreover, a sufficient condition for the boundedness of the iterates (wk)
is the coercivity of the decreasing Liapunov function F PD. However, contrary to DRS,
the coercivity of F is not enough (see (Sun et al., 2018, Lemma 3.10)) to guarantee the
coercivity of F PD. We now prove that this gap can be addressed by assuming, similar to
Theorem 10 for DRS convergence, f differentiable with Lf -Lipschitz gradient. This is a
new result previously not seen in the literature.

Theorem 12. Assume f and g proper, lsc, lower-bounded. Suppose that f is Lf -smooth.
Let (zk, yk, xk) produced by Algorithm (3.59) with β = 0, 2τσ ||K||2 ≤ 1 and σ ≥ Lf . Then,
if F is coercive, the sequence (wk) remains bounded.
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Proof. Departing from

F PD(wk) = g(xk) + f(zk) + 〈Kxk − zk, yk〉+ σ ||zk −Kxk−1||2 + σ ||K||2 ||xk−1 − xk||2 ,
(3.62)

and using that

||zk −Kxk||2 = ||zk −Kxk−1 +Kxk−1 −Kxk||2

≤ 2 ||zk −Kxk−1||2 + 2 ||Kxk−1 −Kxk||2

≤ 2 ||zk −Kxk−1||2 + 2 ||K||2 ||xk−1 − xk||2

(3.63)

(3.64)

(3.65)

we get

F PD(wk) ≥ g(xk) + f(zk) + 〈Kxk − zk, yk〉+
σ

2
||zk −Kxk||2 (3.66)

that is to say

F PD(wk) ≥ Lσ(xk, yk, zk) (3.67)

where Lσ(x, y, z) := g(x) + f(z) + 〈Kx− z, y〉+ σ
2
||z −Kx|| is the augmented Lagrangian,

with dual variable y for the minimization problem{
f(z) + g(x)
Kx = z.

(3.68)

The optimality condition for the update of zk+1 gives (x̄k = xk since β = 0)

Kxk +
1

σ
yk − zk+1 ∈

1

σ
∂f(zk+1). (3.69)

Using the update yk+1 = yk + σ(Kxk − zk+1) we get

yk+1 ∈ ∂f(zk+1). (3.70)

Since f is differentiable, ∀k > 0, yk = ∇f(zk) and

F PD(wk) ≥ g(xk) + f(zk) + 〈Kxk − zk,∇f(zk)〉+
σ

2
||zk −Kxk||2 (3.71)

Since we also suppose that f has Lf -Lipschitz gradient, we get by the descent lemma
(Proposition 15), for σ > Lf ,

F PD(wk) ≥ g(xk) + f(Kxk) = F (xk) (3.72)

First we get that the sequence (F PD(wk)) is bounded from below and thus converges. Also,
since F (xk) ≤ F PD(wk) ≤ F PD(w0), if F is coercive, we get that (xk) remains bounded.
From the second update of (3.59),

∣∣∣∣zk+1 −Kxk
∣∣∣∣ = 1

µ

∣∣∣∣yk+1 − yk
∣∣∣∣ which tends to 0 by

(ii) and thus (zk) is also bounded. Finally, by relation yk = ∇f(zk), as f has Lipschitz
gradient, (yk) is also bounded. All in all, wk = (zk, yk, xk, xk−1) remains bounded.
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3.3 Existing results on plug-and-play convergence
Designing convergence proofs for the PnP and RED algorithms presented in Section 2.4.2
is an active research topic. The goal is to derive sufficient and minimal conditions on
the denoiser such that the algorithms converge. We separate the existing convergence
studies into two main classes: fixed-point convergence and convergence via minimization.
The former views plug-and-play algorithms as fixed-point operators and analyze their
convergence using the fixed-point convergence theory developed in Section 3.1.3. The latter
considers that the algorithms minimize a global functional and studies the convergence
towards a minimizer (for a convex objective) or a stationary point (for a nonconvex
objective).

3.3.1 Fixed-Point convergence

In the following, we view PnP and RED algorithms as fixed-point iterations

xk+1 = T (xk). (3.73)

For instance, the RED algorithms (2.102) and (2.103) give to the following fixed-point
operators {

TRED−PGD = Proxλτf ◦ (τDσ + (1− τ) Id)
TRED−GD = (τDσ + (1− τ) Id)− τλ∇f (3.74)

while for the PnP algorithms (2.109), (2.110) and (2.111)
TPnP−PGD = Dσ ◦ (Id−τλ∇f)
TPnP−HQS = Dσ ◦ Proxλτf
TPnP−DRS = β(2Dσ − Id) ◦ Rproxτλf +(1− β) Id

(3.75)

In Section 3.1.3, we gave sufficient conditions on T (e.g. T averaged) to ensure the
convergence of such iterations towards a fixed-point of T . Assuming a convex data-
fidelity term f , in the context of plug-and-play, we look for sufficient conditions on the
denoiser such that these assumptions are met.

Convergence theory with averaged denoisers

A first common assumption is to take the denoiser θ-averaged for θ ∈ (0, 1) (see Definition 9).
From the fixed-point convergence theory developed in Section 3.1.3, we derive convergence
results for the PnP algorithms in Theorem 13 and RED algorithms in Theorem 14. Some
of these results or their extensions can be found in the literature (Sun et al., 2019b,a, 2021;
Pesquet et al., 2021; Ryu et al., 2019) but others, in particular for RED convergence, have
not been given in the literature so far. Therefore, for the sake of completeness, we give
the full proofs of both theorems.

Theorem 13 (Fixed-Point convergence of PnP algorithms). Assume Dσ θ-averaged for
θ ∈ (0, 1) and f proper, lsc, convex. If the PnP fixed-points operators (3.75) have fixed-
points, then

(i) If f is differentiable with Lf -Lipschitz gradient, for 0 < τλ∇f < 2, PnP-PGD
converges towards a fixed-point of TPnP−PGD.

(ii) For τ > 0, PnP-HQS converges towards a fixed-point of TPnP−HQS.
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(iii) If Dσ is firmly nonexpansive (i.e. θ = 1
2
), for τ > 0 and β ∈ (0, 1), PnP-DRS

converges towards a fixed-point of TPnP−DRS.

And all the fixed-point sequences verify
∑
||xk+1 − xk||2 < +∞.

Proof. Points (i) and (ii) consist in showing that the PnP operator T is averaged using
the fact that the composition of averaged operators is averaged (Proposition 17(i)). As f
is convex, Proposition 18 indicates that Proxλτf is firmly nonexpansive and that Id−λτf
is averaged for τλL < 2. As Dσ is also averaged, by composition, we respectively get that
TPnP−HQS and TPnP−PGD (for τλL < 2) are averaged. Eventually, we conclude on the
convergence result applying Corollary 3.

For point (iii), we show that the operator T = (2Dσ − Id) ◦ Rproxτλf is nonexpansive,
and then we can conclude on the convergence applying Theorem 5. Proxλτf and Dσ are
both firmly nonexpansive, thus, by definition, Rproxλτf = 2 Proxλτf − Id and 2Dσ − Id
are nonexpansive, and T is nonexpansive.

Theorem 14 (Fixed-Point convergence of RED algorithms). Assume Dσ θ-averaged
for θ ∈ (0, 1) and f proper, lsc, convex. If the RED fixed-points operators (3.74) have
fixed-points, then

(i) For 0 < τθ < 1, RED-PGD converges towards a fixed-point of TRED−PGD.

(ii) If f is differentiable with Lf -Lipschitz gradient, for 0 < τ
(
λLf
2

+ θ
)
< 1, RED-GD

converges towards a fixed-point of TRED−GD.

And all the fixed-point sequences verify
∑
||xk+1 − xk||2 < +∞.

Remark 14. The proof below remaining true for the case θ = 1, the convergence results
of RED hold when Dσ is only nonexpansive but not necessarily averaged (at the expense of
stronger conditions on the stepsize).

Proof. For (i), we use Proposition 16 to get that τDσ+(1−τ) Id is τθ-averaged, and we con-
clude using again that the composition of averaged operators is averaged (Proposition 17(i))
along with Corollary 3 for convergence. For (ii), we re-write TRED−GD as

TRED−GD = τ (Dσ − λ∇f) + (1− τ) Id (3.76)

We denote T̂ = Dσ − λ∇f and θ̂ =
λLf
2

+ θ. If we show that T̂ = θ̂R+ (1− θ̂) Id for some
nonexpansive operator R (θ̂ is possibly bigger than 1), then using Proposition 16, we get
that TRED−GD = τ T̂ + (1− τ) Id is τ θ̂-averaged, and we can conclude on the convergence
using Corollary 3. We have

T̂ = Dσ − λ∇f =
1

2
((2Dσ − Id) + (Id−2λ∇f)) . (3.77)

Using that Dσ is θ-averaged and Id− 1
L
∇f is 1

2
-averaged (Proposition 18), we write, with

R1 and R2 two nonexpansive operators,

Dσ = θR1 + (1− θ) Id

Id− 1

L
∇f =

1

2
R2 +

1

2
Id

(3.78)

(3.79)



3.3. EXISTING RESULTS ON PLUG-AND-PLAY CONVERGENCE 63

giving respectively

2Dσ − Id = 2θR1 + (1− 2θ) Id

Id−2λ∇f = 2λL(Id− 1

L
∇f) + (1− 2λL) Id = λLR2 + (1− λL) Id .

(3.80)

(3.81)

Thus we can write T̂ as

T̂ =
1

2
(2θR1 + (1− 2θ) Id) +

1

2
(λLR2 + (1− λL) Id)

= θR1 +
λL

2
R2 +

(
1− (θ +

λL

2
)

)
Id

= θ̂R + (1− θ̂) Id

(3.82)

(3.83)

(3.84)

with

R :=
θ

θ + λL
2

R1 +
λL
2

θ + λL
2

R2 (3.85)

which is nonexpansive as a weighted average of nonexpansive operators.

For both previous convergence theorems, the fact that the sequences verify∑
||xk+1 − xk||2 < +∞ (3.86)

implies that they converge with rate

min
0≤k≤K

||xk+1 − xk|| = O(
1√
K

). (3.87)

As we will see now, it is as hard to train averaged deep denoiser as to train nonexpansive
denoisers. However, for a practitioner who does not want to train any denoiser but
has access to an off-the-shelf nonexpansive denoiser, but not averaged, it may still be
possible to get convergent algorithms. First, for RED algorithms, as noticed in Remark 14,
the convergence result holds for a nonexpansive denoiser. For the case of PnP-PGD
and PnP-HQS algorithm, it is easy to show that the PnP fixed-point operators TPnP
with nonexpansive denoisers are not averaged but nonexpansive. The solution to ensure
convergence is thus to modify the algorithms xk+1 = TPnP (xk) with Krasnonel’skii-Mann
iterations

xk+1 = νkTPnP (xk) + (1− νk)xk (3.88)

with a sequence νk ∈ [0, 1] such that
∑
νk(1 − νk) = ∞. Theorem 5 then gives the

convergence of (3.88) towards a fixed-point of TPnP . Note that this trick does not extend
to PnP-DRS which already writes as Krasnonel’skii-Mann iterations.

Training averaged and nonexpansive deep denoisers

A generic deep denoiser trained without specific constraint is not averaged nor nonexpansive
in practice. In this section, we review different methods in the literature that have been
proposed to train nonexpansive denoisers, or nonexpansive neural networks in general.
Controlling the Lipschitz constant of deep neural networks is a topic of interest in machine
learning, as it has been observed that it helps generalization and adversarial robustness.
However, training Lipschitz-constrained networks is difficult, as the computation of the
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Lipschitz constant of multi-layer models is NP-hard. Note that if we can train a network
to be nonexpansive, we can train a denoiser to be θ-averaged simply by parameterizing

D = θR + (1− θ) Id (3.89)

with R the constrained nonexpansive network.

Hard constraints consist in hard coding the Lipschitz condition by modifying the archi-
tecture of the network. See Neumayer et al. (2023) for a thorough discussion on existing
methods. The most common strategy is Spectral Normalization Miyato et al. (2018) which
normalizes, during training, each layer of a feed-forward neural network by its spectral
norm. More precisely, consider a feed-forward network with L+ 1 layers

R = aL ◦WL ◦ aL−1 ◦WL−1 ◦ .... ◦ a0 ◦W 0x (3.90)

where the bias terms are omitted for simplicity and (ak) are 1-Lipschitz activation functions
(e.g. ReLU). Spectral normalization normalizes the spectral norm of each weight matrix

Wk ←−
Wk

||Wk||S
(3.91)

where the spectral norm ||Wk||S = sup||x||≤1 ||Wkx|| corresponds to the Lipschitz constant
of the linear operator x→ Wkx. The Lipschitz constant of the full network being upper-
bounded by

∏L
k=0 Lip(ak) Lip(Wk) ≤ 1 , we get that the full network is nonexpansive. In

practice, for large networks with numerous layers, this upper-bound is quite pessimistic.
Spectral normalization has the tendency to over-constrain the overall Lipschitz constant
of R and severely reduces the expressivity of the model, or to create vanishing gradients
(Anil et al., 2019). Neumayer et al. (2023) mitigates this effect by replacing the suboptimal
ReLU activation by a more expressive learnable 1-Lipschitz linear spline.

Instead of constraining the spectral norm of Wk, it has also been proposed (Cisse
et al., 2017; Huang et al., 2018; Hasannasab et al., 2020; Hertrich et al., 2021) to project
each weight matrix Wk (or W T

k ) on the Stiefel manifold i.e. to impose W T
k Wk = Id (or

WkWk
T = Id).

While all these methods have been applied to denoisers parameterized with feed-forward
architectures for PnP (Ryu et al., 2019; Hertrich et al., 2021; Bohra et al., 2021), they
are not applicable to state-of-the-art UNet architectures because of the presence of skip-
connections. Moreover, for spectral normalization, the spectral norm is approximated with
a few power iterations Golub and Van der Vorst (2000) on the current training batch of
images. Therefore, the nonexpansivity is not rigorously hard constrained and may fail
when evaluated on singular input images which do not resemble training images.

Soft constraint Instead of imposing a hard constraint on the architecture, another strategy
consists in regularizing the training loss of the denoiser with an additional term. This
is common practice in GAN training to impose smoothness on the discriminator with
a gradient penalty (Gulrajani et al., 2017). In our case, we want to impose a precise
upper bound on the Lipschitz constant of the denoising network D. A differentiable map
R : Rn → Rn is nonexpansive if and only if the spectral norm of its Jacobian is everywhere
smaller than 1 i.e.

∀x ∈ Rn, ||JR(x)||S ≤ 1. (3.92)

Pesquet et al. (2021) then propose to regularize the standard training loss l(x,D(y)) via

Ex,y∼p(y|x)
[
l(x,D(y)) + µmax(||JD(x̃)||2S , 1− ε)

]
(3.93)
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where x̃ randomly interpolates on the segment [x,D(y)]. The strength of the penalty is
controlled by the parameters µ > 0 and ε ∈ (0, 1). The spectral norm of the Jacobian is
computed via power iterations. This algorithm requires only Jacobian-vector products
(and not the full Jacobian) which can be efficiently computed via automatic differentiation.
Note that in order to constrain the denoiser to be θ-averaged, one should apply the spectral
regularization on R = 1

θ
D + (1− 1

θ
) Id. The main disadvantage of this method is again

that the nonexpansivity is not guaranteed and is likely not to hold for specific images not
seen during training.

Nonexpansive denoisers are suboptimal It has been observed that constraining a
denoising neural network to be nonexpansive can severely degrade its denoising performance
compared to the same unconstrained network, see for example (Hertrich et al., 2021, Table
1), (Bohra et al., 2021, Figure 1), (Nair and Chaudhury, 2022, Table 3). Nonexpansivity
appears to be a non-realistic assumption for a Gaussian denoiser. A semi-theoretical
reason is given by Denoising Score Matching (DSM) (Equation (2.80)). DRS shows that
training a neural network to denoise (with the L2 loss) comes back to approximating the
optimal MMSE denoiser. However, the MMSE denoiser is not nonexpansive if pσ is not
log-concave. To see this, we recall the Tweedie formula

DMMSE
σ (x) = x+ σ2∇ log pσ(x) = ∇

(
1

2
||x||2 + σ2 log pσ(x)

)
(3.94)

and from Corollary 2,

DMMSE
σ is nonexpansive ⇔ x→ 1

2
||x||2 + σ2 log pσ(x) 1-smooth =⇒ − log pσ convex..

(3.95)
As pσ is not log-concave (at least for reasonable small σ values), it is unrealistic to assume
that a denoiser trained with L2 loss is nonexpansive.

Strongly convex data-fidelity term

The absence of nonexpansivity of the denoising operator Dσ can be compensated when the
data fidelity term f is strongly convex. Indeed, in that case, as presented in Proposition 19,
the gradient descent and proximal maps are contractive. Strongly convex data-fidelity
terms exclude numerous image restoration tasks, in particular all data-fidelity of the form
f(x) = 1

2
||Ax− y||2 with singular A, such as inpainting, deblurring, or super-resolution

with Gaussian noise assumption. However, it does encompass a few interesting inverse
problems, such as Poisson denoising or single photon imaging. With strongly-convex
f , Ryu et al. (2019) show fixed-point convergence of PnP-PGD and PnP-DRS without
requiring nonexpansivity of Dσ but under some constraint on the Lipschitz constant of
Id−Dσ.

Theorem 15 (PGD convergence Ryu and Boyd (2016), Theorem 1). For f L-smooth
and γ-strongly convex, assume Id−Dσ ε-Lipschitz with ε < 2γ

L−γ . Then for a stepsize
ε

γ(1+ε)
< τ < 2

L
− ε

L(1+ε)
, the operator TPnP−PGD is contractive and the PnP-PGD fixed-

point iterations converge geometrically towards its unique fixed point.

The proof simply combines the Lipschitz constant of the gradient descent map for
a strongly convex function (Proposition 19) with the fact that Dσ is (1 + ε)-Lipschitz.
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Note that one could instead assume that Dσ is
√

1 + ε̂-Lipschitz, which is called in the
literature Russell Luke et al. (2018) almost-nonexpansive with violation ε̂.

Theorem 16 (DRS convergence Ryu and Boyd (2016), Theorem 2). For f differentiable
and γ-strongly convex, assume Id−Dσ ε-Lipschitz with ε < 1. Then for a stepsize
τ > ε

γ(2ε+1)(1−ε) , the operator TPnP−DRS with β = 1
2
is contractive and the PnP-DRS

fixed-point iterations converge geometrically towards its unique fixed point.

The proof of this result uses the theory of averaged operators. The result is however
quite limiting, as it requires ε the Lipschitz constant of Id−Dσ to be quite small for the
constraint on the stepsize to be acceptable.

3.3.2 Convergence via minimization

The previous section consisted in proving convergence of the PnP and RED algorithms
towards the fixed-points of a certain operator. Besides the required nonexpansivity of
the denoiser, these fixed-point convergence results have different limitations. First, it is
necessary to assume existence of such fixed-points. When the operator is not contractive,
this is a condition which is difficult to verify in practice. Second, contrary to fixed-point of
real optimization algorithms, fixed-point of PnP and RED algorithms do not correspond
to critical points of a given functional. Therefore, the interpretation of the output of the
algorithm is limited.

Instead, in this manuscript, our primary approach revolves around transforming the
PnP and RED algorithms into genuine optimization algorithms designed to address the
critical points of a global objective function. This transformation will be accomplished
through the utilization of specific parameterizations of the plugged denoisers. Prior to our
work, several studies have pursued a related strategy for RED or PnP convergence.

RED convex convergence RED original paper Romano et al. (2017) introduced RED
algorithms as minimizers of an explicit objective. Given an off-the-shelf denoiser Dσ, they
construct an explicit regularizer gσ : Rn → R given by

gσ(x) =
1

2
〈x, x−Dσ(x)〉 (3.96)

They propose sufficient conditions on the denoiser for the following identity to be verified

∇gσ = Id−Dσ. (3.97)

This result was completed in Reehorst and Schniter (2018) which states the following
conditions on Dσ for the identity (3.97) to hold:

(i) Local homogeneity : There is δ > 0, ∀x ∈ Rn, Dσ ((1 + ε)x) = (1 + ε)Dσ(x) for
||ε|| ≤ δ.

(ii) Jacobian Symmetry (JS) : ∀x ∈ Rn, JDσ(x) = JDσ(x)T .

The Jacobian symmetry is a necessary and sufficient condition for a differential mapping
to be a conservative vector field, i.e. to write Dσ = ∇hσ for some differential potential
hσ : Rn → R. Romano et al. (2017) added the following assumption

(iii) Strong passivity : ∀x ∈ Rn, ||JDσ(x)||S ≤ 1 where ||.||S denotes the spectral norm,
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which implies nonexpansivity of Dσ = Id−∇gσ. From Corollary 2, this implies that gσ is
convex.

As presented in Section 2.4.2, RED algorithms were originally built using the iden-
tity (3.97) to replace the gradient of − log pσ. Therefore, if a denoiser Dσ verifies (3.97),
then the RED algorithm (e.g. RED-PGD (2.102)) takes its original form of a first order
optimization algorithm (e.g. a real PGD (2.98)) for minimizing λf + gσ. gσ being convex
and assuming f also convex, we get convergence of RED-GD and RED-PGD algorithms us-
ing the convex convergence properties of GD and PGD derived Section 3.2. We summarize
this analysis in the following Proposition.

Proposition 21 (Convergence of RED algorithms via convex minimization). Assume Dσ

verifying local homogeneity, Jacobian symmetry and strong passivity. Then Dσ verifies
Dσ = Id−∇gσ for gσ : x→ 1

2
〈x, x−Dσ(x)〉. Assume that f proper, lsc, convex. Then,

(i) For 0 < τ < 2
Lip(Id−Dσ) , RED-PGD (2.102) converges towards a global minimum of

λf + gσ.

(ii) If f is differentiable with Lf -Lipschitz gradient, for 0 < τ < 2
λLf+Lip(Id−Dσ) , RED-

GD (2.103) converges towards a global minimum of λf + gσ.

The Jacobian Symmetry (JS) property is verified when Dσ is a conservative vector field,
i.e. Dσ = ∇hσ for some differential potential hσ : Rn → R. It is thus verified by both the
theoretical MMSE and MAP denoisers (see Section 2.4.1). However, for practical generic
denoisers, such as BM3D or deep denoiser, Reehorst and Schniter (2018) provides evidences
that the JS property is not true. It is moreover difficult to constrain a deep denoiser to
verify this hypothesis. Additionally, we explained in Section 3.3.1 that nonexpansivity is a
suboptimal assumption for a denoiser and that enforcing this condition inevitably worsens
restoration performance.

Instead, in Chapter 4, we propose to train a deep denoiser which, by parametrization,
inherently satisfies relation (3.97) for some nonconvex deep potential gσ. Although,
the proposed denoiser will not be nonexpansive, we will show that RED algorithms still
converge towards the critical points of an explicit functional while achieving performant
restoration.

PnP convex convergence The authors of Sreehari et al. (2016) make use of Moreau’s
characterization of the proximity operator (Theorem 2) to give sufficient conditions for
the denoiser Dσ to be an explicit proximal map. We recall that according to Theorem 2,
if Dσ is nonexpansive and Dσ = ∇hσ for some convex potential hσ, then there exists
φσ : Rn → R ∪ {+∞} convex such that Dσ = Proxφσ .

As in the previous section on RED convergence, the authors assume Jacobian Symmetry
(JS) but also double stochasticity of the Jacobian of the denoiser. Indeed, from JS,
Dσ = ∇hσ for some potential hσ : Rn → R. Moreover, double stochasticity implies that
the eigenvalues of Dσ belong to (0, 1]. From this fact, we get that hσ is convex (as its
Hessian is positive) and that Dσ is nonexpansive. All in all, under these assumptions,
there is φσ : Rn → R ∪ {+∞} convex, such that

Dσ = Proxφσ (3.98)

As presented in Section 2.4.2, PnP algorithm were originally built using precisely Dσ =
Prox−τσ2 log p in proximal optimization algorithms. Then, with a plugged denoiser verifying
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relation (3.98), a PnP algorithm (with stepsize τ = 1) becomes again a real optimization
algorithm for minimizing λf+φσ. φσ being convex, assuming f convex, we get convergence
of PnP algorithms using the convex convergence properties of PGD, HQS or DRS derived
Section 3.2. We summarize this analysis in the following Proposition.

Proposition 22 (Convergence of PnP algorithms via convex minimization). Assume Dσ

verifying Jacobian symmetry and double stochasticity. Then there is φσ : Rn → R∪ {+∞}
convex, such that Dσ = Proxφσ . Assume f proper, lsc, convex. Then,

(i) If f is differentiable with Lf -Lipschitz gradient, for 0 < λ∇f < 2, PnP-PGD (2.109)
with τ = 1 converges towards a global minimum of λf + φσ.

(ii) PnP-DRS (2.111) with τ = 1 converges towards a global minimum of λf + φσ.

(iii) The PnP version of the Primal-Dual algorithm (2.71) (PnP-PD) with τ = 1 and
σ ||K||2 < 1 converges towards a global minimum of λf(K·) + φσ.

The stepsize τ = 1 is due to the fact that the denoiser writes as Dσ = Proxφσ and not
Dσ = Proxτφσ as it is normally the case in PGD and DRS algorithms.

However, these convergence results have the same limitations as the ones presented
above for RED: Jacobian Symmetry and nonexpansivity are not a satisfactory assumption
for a generic denoiser. In Chapter 5, we train a deep denoiser which inherently verifies
relation (3.98) for some nonconvex potential φσ. We then exploit the convergence
theory of proximal algorithms in the nonconvex setting to obtain convergence results for
PnP algorithms with this denoiser.
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In this chapter, we propose novel theoretical convergence guarantees for the Regulariza-
tion by Denoising (RED) algorithms introduced in Section 2.4.2. As detailed in the “RED
convergence” paragraph in Section 3.3.2, convergence of RED was proven by Romano
et al. (2017) under nonexpansivity and Jacobian symmetry of the plugged denoiser. We
explained that these assumptions are suboptimal or non-realistic for existing deep denoisers.
Instead of taking such general assumptions, in this work, we introduce a new denoiser that
satisfies, by construction, sufficient conditions for RED convergence.

To be more precise, we incorporate a denoiser that performs a deliberate gradient
descent step on a nonconvex potential, which is parameterized by a deep neural network.
This denoiser is inherently designed as a conservative vector field and inherently fulfills the
requisite Jacobian Symmetry condition outlined in (Romano et al., 2017). This condition
is enforced without compromising the denoising performance. The outcome is that the
RED-PGD (2.102) and RED-GD (2.103) algorithms take the form of precise PGD and GD
schemes. By leveraging the nonconvex convergence analysis of these algorithms, detailed
in Section 3.2, we can demonstrate that our RED algorithms are assured to converge
toward a stationary point of an explicit functional. These convergence guarantees avoid
the need for unrealistic assumptions regarding the denoiser, such as its nonexpansivity.
The convergence also doesn’t hinge on the strong convexity of the data-fidelity term, thus
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encompassing challenging image restoration tasks like deblurring, super-resolution, or
inpainting. Furthermore, as a supplementary outcome from the Denoising Score Matching
interpretation, our denoiser provides an explicit regularization term that approximates the
true smoothed image prior.

In Section 4.1, we present the Gradient-Step (GS) denoiser. In Section 4.2, we delve into
an analysis of the convergence for the derived RED algorithms utilizing the GS denoiser,
thereby termed as GSRED algorithms. Lastly, in Section 4.3, we present the training and
denoising capabilities of the GS denoiser, followed by an experimental validation of both
the convergence and the performance of our proposed restoration algorithms.

Most of the results presented in this chapter were published in (Hurault et al., 2022a).
The code implementing the proposed framework is available at https://github.com/
samuro95/GSPnP.

4.1 Gradient-Step denoiser

4.1.1 Parameterization and training

In order to define a convergent scheme, we first set up a Gradient-Step (GS) denoising
operator Dσ that takes the form of a gradient descent step

Dσ = Id−∇gσ, (4.1)

with gσ : Rn → R parameterized by a neural network. The gradient ∇gσ can be computed
exactly using automatic differentiation. Contrary to the original RED regularizer (Romano
et al., 2017) detailed in Section 3.3.2, by construction, our denoiser exactly represents a
conservative vector field.

The choice of the parameterization of gσ is fundamental for the denoising performance.
As already noticed by Salimans and Ho (2021), we experimentally found that directly
modeling gσ as a neural network (e.g. a standard network used for classification) leads to
poor denoising performance. In order to keep the strength of state-of-the-art unconstrained
denoisers, we rather use

gσ(x) =
1

2
||x−Nσ(x)||2 ,

which leads to Dσ(x) = x−∇gσ(x) = Nσ(x) + JNσ(x)T (x−Nσ(x)),

(4.2)

(4.3)

where Nσ : Rn → Rn is parameterized by a neural network and JNσ(x) is the Jacobian
of Nσ at point x. Thanks to our definition (4.3) for Dσ, we can parameterize Nσ with
any differentiable neural network architecture Rn → Rn that has proven efficient
for image denoising. With (4.3), our denoiser corresponds to applying the neural network
Nσ with an additive correction that makes the denoiser a conservative field.

Although the representation power of the denoiser is limited by the particular form
(4.3), we show in the experiment section that a such parameterization still yields state-
of-the-art denoising results. We train the denoiser Dσ for denoising Gaussian noise of
standard deviation σ by minimizing the MSE loss function

L(Dσ) = EX∼pX ,ξσ∼N (0,σ2I)

[
||Dσ(x+ ξσ)− x||2

]
,

or L(gσ) = Ex∼pX ,ξσ∼N (0,σ2I)|
[
||∇gσ(x+ ξσ)− ξσ||2

]
,

(4.4)

(4.5)

https://github.com/samuro95/GSPnP
https://github.com/samuro95/GSPnP
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when written in terms of gσ using equation (4.1). From the Denoising Score Matching
(Vincent, 2011) result, detailed in Section 2.4.1, we have

L(Dσ) = Ey∼pσ
[∣∣∣∣Dσ(y)− (y + σ2∇ log pσ(Y ))

∣∣∣∣2]+ const

= Ey∼pσ
[∣∣∣∣∇gσ(y)− σ2∇(− log pσ)(Y ))

∣∣∣∣2]+ const

(4.6)

(4.7)

where pσ = pX ∗ N (0, σ2I) is the marginal distribution of the noisy observation. Hence,
training the potential gσ by minimizing the denoising loss (4.4) is related to the approxi-
mation of the gradient of the log-smoothed image prior. Instead of directly approximating
this gradient with a neural network like score-based models (see Section 2.1.1), we realize
the approximation with another gradient field. Our potential gσ is an energy-based model,
parameterizing a probability density

p̂σ(x) =
exp(−gσ(x))

Z
(4.8)

and trained to minimize the divergence (4.7) between p̂σ and pσ.

4.1.2 More details on the regularization potential gσ.

We first underline that the main point of our method is to define the denoiser as
Dσ = Id−∇gσ. The choice for gσ is important for the denoising performance. With
respect to the RED convergence properties, this is nevertheless a secondary issue, as our
method would converge for other differentiable regularizers gσ.

In practice, as detailed in Section 4.3, we parameterize gσ as (4.2) with Nσ the DRUNet
architecture (Zhang et al., 2021) (represented Figure 2.1) where the non-differentiable
RELU activation function is replaced with the smooth ELU activation defined by

ELU(x) =

{
x if x ≥ 0

ex − 1 if x < 0 .
(4.9)

The proposed regularization gσ(x) = 1
2
||x−Nσ(x)||2 was previously mentioned in the

RED original paper (Romano et al., 2017) (but explicitly left aside) and used in the DAEP
paper (Bigdeli and Zwicker, 2017). The main difference between our regularizer and the
one proposed in RED and DAEP is the following:

• RED and DAEP both consider a generic given pretrained denoiser Dσ : Rn → Rn,
which is then associated with the regularizer gσ(x) = 1

2
||x −Dσ(x)||2 and used as

such in IR problems.

• In our method, we set gσ(x) = 1
2
||x−Nσ(x)||2 (with Nσ : Rn → Rn differentiable) and

then we train the denoiser as Dσ = Id−∇gσ with the loss function ||Dσ(x+ ξ)−x||2
for clean images x and additive white Gaussian noise ξ.

With this new formulation, we are ensured that Dσ = Id−∇gσ is inherently a conser-
vative vector field, without further assumptions on Nσ. In contrast to the original RED
paper, we aim at finding one setting of plug-and-play image restoration that allows for
a convergence proof with sufficiently general hypotheses. For this purpose, we have to
consider this very particular form of regularization.
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Nonconvexity of gσ With the above parameterization, the deep potential gσ has no
reason to be convex. If properly trained, it should be nonconvex. Indeed, with the
Denoising Score Matching result (4.7), gσ approximates − log pσ which is likely to be
highly nonconvex. We now show that gσ has Lipschitz gradient by construction and is
thus weakly convex (Corollary 2).

Lipschitz continuity of ∇gσ We now give a result which ensures that a large class of
neural networks trained with differentiable activation functions have Lipschitz gradients
with respect to the input image.

Proposition 23. Let H = hp ◦ . . . ◦ h1 be a composition of differentiable functions
hi : Rdi−1 → Rdi. Let us assume that for any i the differential map h′i is bounded and
Lipschitz. Then H ′ is Lipschitz.

Proof. Let us denote Hi = hi ◦ . . . ◦ h1 (and by convention, H0 = Id). Let ‖h′i‖∞ be the
best uniform bound on the operator norms ‖h′i(x)‖, x ∈ Rdi−1 (which is also the best
Lipschitz constant of hi). Let us also denote ‖h′i‖Lip the Lipschitz constant of h′i. The
chain rule gives that for any x, H ′(x) can be expressed as a composition of linear maps

H ′(x) = h′p(Hp−1(x))h′p−1(Hp−2(x)) . . . h′1(x). (4.10)

Therefore, for any x, y,

H ′(x)−H ′(y) =

p−1∑
i=0

h′p(Hp−1(x)) . . . h′i+1(Hi(x))h′i(Hi−1(y)) . . . h′1(y)

− h′p(Hp−1(x)) . . . h′i+1(Hi(y))h′i(Hi−1(y)) . . . h′1(y).

(4.11)

(4.12)

We can thus bound the operator norms

‖H ′(x)−H ′(y)‖ ≤
p−1∑
i=0

(
‖h′p(Hp−1(x)) . . . h′i+2(Hi+1(x))‖

‖h′i+1(Hi(x))− h′i+1(Hi(y))‖‖h′i(Hi−1(y)) . . . h′1(y)‖
)
.

(4.13)

(4.14)
and thus

‖H ′(x)−H ′(y)‖ ≤
p−1∑
i=0

( ∏
j 6=i+1

‖h′j‖∞
)
‖h′i+1‖Lip‖H ′i‖∞‖x− y‖ (4.15)

which concludes the proof because the chain-rule ensures that ‖H ′i‖∞ ≤ ‖h′i‖∞ . . . ‖h′1‖∞.

Proposition 23 applies for a neural network obtained as a composition of convolutional
layers with ELU activation functions, that is, by composing functions of the form

h(x) = ELU(Ax+ b). (4.16)
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It is easy to see that ELU defined in (4.9) is differentiable and that E ′ is 1-Lipschitz with
‖E ′‖∞ ≤ 1. Therefore,

h′(x) = ATELU ′(Ax+ b) (4.17)
is also bounded and Lipschitz.

Let us also mention that this proposition encompasses the case of U-nets which, in
addition to composing fully-connected layers, also integrate skip-connections. For example,
taking a skip-connection on a composition h3 ◦ h2 ◦ h1 amounts to defining

H(x) = h3
(
h2(h1(x)) , h1(x)

)
. (4.18)

This can be simply rewritten H = h3 ◦ h̃2 ◦ h1 where

h̃2(x) =
(
h2(h1(x)), h1(x)

)
. (4.19)

It is then clear that h̃2 has bounded Lipschitz differential as soon as h1 and h2 do.
Therefore, we can ensure the Lipschitz continuity of the Jacobian of Nσ and thus of the

Jacobian of Tσ(x) = x−Nσ(x). However, x → 1
2
||x||2 does not have bounded gradient,

thus we cannot directly show that gσ = 1
2
||.−Nσ||2 has everywhere Lipschitz gradient.

Instead, we can replace, in the definition of gσ, the L2 norm by a transformation which
flattens away from a large ball. For instance, gRσ (x) := 1

2
TRσ (x−Nσ(x)), where

TRσ (x) :=

{
1
2
||x||2 if ||x|| ≤ R

exp
(
−
(

2
R2 ||x||2 − 4

R
||x|| − log(R

2

2
) + 3

))
otherwise

(4.20)

TRσ is of class C2 and has bounded gradient. Thus gRσ is ensured to have Lipschitz gradient.
In practice, for R sufficiently large, the iterates produced by the algorithms presented in
the next section never reach ||x|| ≥ R and gRσ behaves as gσ in practice.

Subanalycity of gσ The ELU activation function is subanalytic as its graph can be
described with a finite number of analytic functions. Moreover, ELU and its inverse map
bounded sets to bounded sets. Therefore, by composition and sum (Lemma 5), the deep
neural network Nσ is subanalytic. As Nσ is also Lipschitz (by composition of Lipschitz
layers), it maps bounded sets to bounded sets. Thus, using that x→ 1

2
||x||2 (or the above

TRσ ) is subanalytic, again by composition (Lemma 5(iii)), gσ(x) = 1
2
||x−Nσ(x)||2 (or

the above gRσ (x) = 1
2
TRσ (x−Nσ(x))) is subanalytic. Moreover, gσ is non-negative, thus

when added to any positive subanalytic data-fidelity term f , F = λf + gσ verifies the
Kurdyka–Łojasiewicz property (Lemma 5 (i)). Let us precise that almost all data-fidelity
terms are subanalytic. For instance, Lp norms (for p ≥ 0 rational) are semialgebraic (Bolte
et al., 2014) and thus subanalytic, or the Kullback-Leiber divergence is analytic and thus
subanalytic.

4.2 Gradient-Step Regularization by Denoising (GSRED)

4.2.1 GSRED algorithm

Regularization by Denoising algorithms for image inverse problems are introduced in
Section 2.4.2. They write, for a data-fidelity f and a denoiser Dσ

(RED-PGD) xk+1 ∈ Proxτλf ◦ (τDσ(xk) + (1− τ)xk) .

(RED-GD) xk+1 = τDσ(xk) + (1− τ)xk − τλ∇f(xk)

(4.21)
(4.22)
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Using our Gradient-Step denoiser Dσ = Id−∇gσ, we refer to them as Gradient-Step RED
(GSRED) algorithms:

(GSRED-PGD) xk+1 ∈ Proxτλf ◦ (xk − τ∇gσ(xk)) .

(GSRED-GD) xk+1 = xk − τ(∇λf(xk) +∇gσ(xk))

(4.23)
(4.24)

The Gradient-Step denoiser makes RED algorithms write as real first order optimization
algorithm, respectively Proximal Gradient Descent (PGD) and Gradient Descent (GD),
for minimizing

F (x) = λf(x) + gσ(x). (4.25)

Therefore, using the Gradient-Step denoiser in RED algorithms is equivalent to in-
corporating the explicit regularization gσ to solve an inverse problem formulated by the
variational approach (4.25), with a first-order optimization algorithm.

Remark 15. Our paper (Hurault et al., 2022a) originally presented the Gradient-Step
denoiser for convergence of the PnP-HQS method. PnP-HQS, presented Section 2.4.2
writes

(PnP-HQS) xk+1 ∈ Dσ ◦ Proxτλf (xk) (4.26)

By switching the proximal and gradient steps and with a convex relaxation of the denoising
step with τ , PnP-HQS algorithm with Gradient-Step denoiser then writes

xk+1 ∈ Proxτλf ◦(τDσ + (1− τ) Id)(xk)

∈ Proxτλf ◦(Id−τ∇gσ)(xk)

(4.27)
(4.28)

i.e. we retrieve exactly the GSRED-PGD algorithm (4.23).

4.2.2 Convergence analysis

In this section, we introduce conditions on f that ensure the convergence of the GSRED
iterations (4.23) and (4.24) towards a solution of (4.25). For that purpose, gσ being
nonconvex, we make use of our convergence analysis given in Theorem 6 on the PGD
algorithm in the nonconvex setting. Note that, even if it means replacing gσ by gRσ with
large R, as explained in Section 4.1.2, we consider ∇gσ globally L-Lipschitz.

Convergence results

Applying Proposition 20 and Theorem 6, we get the following convergence theorems for
GSRED-PGD and GSRED-GD

Theorem 17 (Convergence of GSRED-PGD). Assume f : Rn → R ∪ {+∞} proper, lsc,
bounded from below. Let L be the Lipschitz constant of ∇gσ. Then, for τL < 1, the iterates
(xk) given by the GSRED-PGD algorithm (4.23) verify

(i) (F (xk)) is non-increasing and converges.

(ii) The sequence as finite length i.e.
∑+∞

k=0 ||xk+1 − xk||2 < +∞ and ||xk+1 − xk|| con-
verges to 0 at rate mink<K ||xk+1 − xk|| = O(1/

√
K)

(iii) If f is non-negative and subanalytic, and gσ is coercive, then the iterates (xk) converge
towards a critical point of F .
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Proof. (i) and (ii) come from Proposition 20 and (iii) from Theorem 6 with gσ in the role of
the smooth function and f for the other one. We showed in Section 4.1 that gσ is smooth,
non-negative and subanalytic. Theorem 6 required F to verify the Kurdyka–Łojasiewicz
(KŁ) property and the iterates to be bounded. The KŁ property of F is induced by the
non-negativeness and subanalyticity of f and gσ (see Section 3.1.2). A sufficient condition
for the boundedness of the iterates is the coercivity of the objective function, that is,
lim|x|→∞ F (x) = +∞ (because the non-increasing property gives F (xk) ≤ F (x0)). The
coercivity of F follows from the coercivity of gσ and the fact that f is lower-bounded.

Theorem 18 (Convergence of GSRED-GD). Assume f : Rn → R ∪ {+∞} Lf -smooth,
bounded from below. Let L be the Lipschitz constant of ∇gσ. Then, for τ(λLf + L) < 1,
the iterates (xk) given by the GSRED-GD algorithm (4.24) verify

(i) (F (xk)) is non-increasing and converges.

(ii) The sequence as finite length i.e.
∑+∞

k=0 ||xk+1 − xk|| < +∞ and ||xk+1 − xk|| con-
verges to 0 at rate mink<K ||xk+1 − xk|| = O(1/

√
K)

(iii) If f is non-negative and subanalytic, and gσ is coercive, then the iterates (xk) converge
towards a critical point of F .

Proof. This is again the application of Proposition 20 and Theorem 6 with the whole
objective function F = λf + gσ in the role of the smooth function and 0 for the other one.
The rest of the arguments are identical.

Remark 16. Using Theorem 8, if we assume that the data-fidelity term f is M-weakly
convex, the condition on the stepsize for GSRED-PGD can be relaxed to τ < max( 2

L+M
, 1
L

).
In particular, for convex f , it becomes τL < 2.

A common setting for image restoration is the convex smooth L2 data-fidelity f(x) =
1
2
||Ax− y||2 which satisfies all assumptions on f . Note however that our theory allows

to deal with a broader range of degradations with nonconvex (e.g. phase retrieval) and
nonsmooth (e.g. Poisson denoising) data-fidelity terms. See Section 2.1.2 for more details.
In practice, it is helpful to have f proximable, i.e. Proxf with closed-form formula.
Otherwise, Proxf needs to be calculated at each iteration with an internal optimization
procedure.

Coercivity of gσ Similar to Laumont et al. (2021), we can constrain F to be coercive
by choosing a convex compact set C ⊂ Rn where the iterates should stay and by adding
an extra term to the regularization gσ:

ĝσ(x) = gσ(x) +
1

2
||x− ΠC(x)||2 =

1

2
||x−Nσ(x)||2 +

1

2
||x− ΠC(x)||2 (4.29)

with ΠC the Euclidean projection on C. As gσ is differentiable, the gradient step becomes

(Id−τλ∇xĝσ)(x) = (Id−τλ∇xgσ) + τλ(x− ΠC(x)). (4.30)

In our experiments, we choose the compact set C as C = [−1, 2]n. In practice, we
observe that all the iterates always remain in C and that the extra regularization term
||x− ΠC(x)||2 is never activated.
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Backtracking to handle the Lipschitz constant of ∇gσ
The convergence of GSRED algorithms actually requires controlling the Lipschitz constant
of ∇gσ only on a small subset of images related to {xk}. Therefore, estimating L for all
images and setting the maximum stepsize τ accordingly will lead to suboptimal convergence
speed. In order to avoid small stepsizes, we use a backtracking line search strategy, already
used for nonconvex optimization in (Beck, 2017, Chapter 10) or (Ochs et al., 2014).

The core of the proof from Proposition 20 was to establish the following sufficient
decrease property of F

F (xk) ≥ F (TGSRED(xk)) +

(
1

2τ
− L

2

)
||TGSRED(xk)− xk||2 (4.31)

where TGSRED is the fixed-point operator iterated by the GSRED-PGD (4.23) or GSRED-
GD (4.24) algorithm.

Without knowing the exact Lipschitz constant L, backtracking aims at finding the
maximal stepsize τ yielding a sufficient decrease property. Given γ ∈ (0, 1/2), η ∈ [0, 1)
and an initial stepsize τ0 > 0, the following update rule on τ is applied at each iteration k:

while F (xk)− F (TGSRED(xk)) <
γ

τ
||TGSRED(xk)− xk||2 , τ ←− ητ. (4.32)

Other procedures could be investigated in future work. For instance, Li and Lin (2015)
use a Barzilai-Borwein rule to initialize the backtracking line search. Scheinberg et al.
(2014) and Calatroni and Chambolle (2019) have also proposed a backtracking strategy
that allows for both decreasing and increasing stepsize.

Proposition 24. Under the assumptions of Theorem 17 (respectively Theorem 18), at
each iteration of the algorithm, the backtracking procedure (4.32) is finite ( i.e. a stepsize
satisfying F (xk)− F (TGSRED(xk)) ≥ γ

τ
||TGSRED(xk)− xk||2 is found in a finite number if

iterations), and with backtracking, the convergence results of Theorem 17 (respectively
Theorem 18) still hold.

Proof. From the sufficient decrease property (4.31), taking τ < 1−2γ
L

, we get 1
2
( 1
τ
−L) > γ

τ

so that
F (xk)− F (Tτ (xk)) >

γ

τ
||Tτ (xk)− xk||2 . (4.33)

Hence, when τ < 1−2γ
L

, the sufficient decrease condition (4.33) is satisfied and the back-
tracking procedure (τ ←− ητ) must end. With this sufficient decrease condition, the rest
of the proofs from Proposition 20 and Theorem 6 follow with the same arguments.

4.3 Experiments
In this section, we first study the performance of the GS denoiser. Next, we empirically
confirm that our GSRED algorithms are convergent while providing state-of-the art results
for different IR tasks.

4.3.1 Gradient-Step denoiser

Denoising Network Architecture We choose to parameterize Nσ with the architec-
ture DRUNet (Zhang et al., 2021) (represented in Figure 2.1), a U-Net in which residual
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σ(./255) 5 15 25 50 Time (ms)

FFDNet 39.95 33.53 30.84 27.54 1.9
DnCNN 39.80 33.55 30.87 27.52 2.3
DRUNet 40.31 33.97 31.32 28.08 69.8

DRUNet light 40.19 33.89 31.25 28.00 6.3
GS-DRUNet 40.26 33.90 31.26 28.01 10.4

Table 4.1: Average PSNR denoising performance and runtime of our GS denoiser on
256 × 256 center-cropped images from the CBSD68 dataset, for various noise levels
σ. While keeping small runtime, GS-DRUNet slightly outperforms its unconstrained
counterpart DRUNet light and outdistances the deep denoisers FFDNet and DnCNN.

blocks are integrated. One first benefit of DRUNet is that it is built to take the noise
level σ as input, which is consistent with our formulation. Also, the U-Net models have
previously offered good results in the context of prior approximation via Denoising Score
Matching (Ho et al., 2020). Furthermore, Zhang et al. (2021) show that DRUNet yields
state-of-the-art results for denoising but also for PnP image restoration. In order to ensure
differentiability w.r.t the input, we change RELU activations to ELU. We also limit the
number of residual blocks to 2 at each scale to lower the computational burden.

Training details We use the color image training dataset proposed by Zhang et al.
(2021) i.e. a combination of the Berkeley segmentation dataset (CBSD) (Martin et al.,
2001), Waterloo Exploration Database (Ma et al., 2017), DIV2K dataset (Agustsson and
Timofte, 2017) and Flick2K dataset (Lim et al., 2017). During training, the input images
are corrupted with a white Gaussian noise ξσ with standard deviation σ randomly chosen
in [0, 50/255]. With our parameterization (4.3) of Dσ, the network is trained to minimize
the L2 loss (4.4). For each input batch, ∇gσ is computed with automatic differentiation.
Note that for each batch, there are two backward passes through the network. The first
one for computing ∇gσ w.r.t. the input and the second one for computing the derivatives
w.r.t. the parameters. While the original DRUNet is trained with L1 loss, we stick to the
L2 loss to keep the Denoising Score Matching interpretation of gσ.

We train the model on 128× 128 patches randomly sampled from the training images,
with batch size 16, during 1500 epochs. We use the ADAM optimizer with learning rate
10−4, divided by 2 every 300 epochs. It takes around one week to train the model on a
single Tesla P100 GPU.

Denoising results We evaluate the PSNR performance of the proposed GS denoiser
(GS-DRUNet) on 256× 256 color images center-cropped from the original CBSD68 dataset
images (Martin et al., 2001). In Table 4.1, we compare, for various noise levels σ, our
model with the DRUNet (called “DRUNet light”) that has the same architecture as our
GS-DRUNet (but with 2 residual blocks instead of 4) and that is trained (with L2 loss)
without the conservative field constraint. We also provide comparisons with the original
DRUNet (Zhang et al., 2021) (with 4 residual blocks at each scale and trained with L1

loss) and two state-of-the-art denoisers encountered in the PnP literature: FFDNet (Zhang
et al., 2018) and DnCNN (Zhang et al., 2017a). For each network, we indicate in Table 4.1
the average runtime while processing a 256× 256 color image on one Tesla P100 GPU.

Our GS-DRUNet denoiser, despite being constrained to be an exact conservative field,
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reaches the performance of (and even slightly outperforms) its unconstrained counterpart
DRUNet light. Second, departing from the latter, we are able to reduce the processing time
by a large margin (÷7) while keeping PSNR close to the original DRUNet (around -0.05dB)
and maintaining a significant PSNR gap (around +0.5dB) with other deep denoisers like
DnCNN and FFDNet. Note that the time difference between GS-DRUNet and DRUNet
light is due to the computation of ∇gσ via backpropagation. These results indicate that
GS-DRUNet is likely to yield a competitive and fast PnP algorithm.

Lipschitz constant of ∇gσ The bound obtained in the proof of Proposition 23 is
exponential in the depth of the neural network. We now provide some experiments
showing that, in practice, the Lipschitz constant of ∇gσ does not explode. We show in
Figure 4.1, for various noise levels σ, the distribution of the spectral norms ||∇2gσ(x)||S
on the training image set X, estimated with power iterations. The computed value
varies a lot across images. Hence, approximating the Lipschitz constant of ∇gσ with
L = maxx∈X ||∇2gσ(x)||S would lead to under-estimated stepsizes and slow convergence
on most images. Backtracking solves this issue by finding at each iteration the optimal
stepsize allowing sufficient decrease of the objective function.

Figure 4.1: Histogram of the values of the spectral norm ||∇2gσ(x)||S evaluated on 128×128
images from the training dataset, degraded with white Gaussian noise with various standard
deviations σ (./255). Figure best seen in color.

4.3.2 Plug-and-play image restoration

We show in this section that, in addition to being convergent, our GSRED algorithms
reach state-of-the-art performance, among plug-and-play methods, in deblurring and super-
resolution (Sections 4.3.2 and 4.3.2) and realize relevant inpainting (Section 4.3.2). We seek
an estimate of a clean image x ∈ Rn, from an observation obtained as y = Ax+ ξν ∈ Rm,
with A a m× n degradation matrix and ξν a white Gaussian noise with zero mean and
standard deviation ν. The minimized objective function is

F (x) = λf + gσ =
λ

2
||Ax− y||2 +

1

2
||Nσ(x)− x||2 . (4.34)

The convergence of the iterates given by GSRED-PGD and GSRED-GD algorithms is
guaranteed by Theorems 17 and 18. We also demonstrate in Section 4.3.2 that our
framework can be extended to other kinds of objective functions. For example, inpainting
noise-free input images leads to a non-differentiable data-fidelity term f .
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Due to the large computational time of some compared methods, we use for evaluation
and comparison a subset of 10 color images taken from the CBSD68 dataset (CBSD10)
together with the 3 famous set3C images (butterfly, leaves, and starfish). All images are
center-cropped to the size 256 × 256. For each IR problem, we provide default values
for the parameters σ and λ that can be used to treat successfully a large class of images
and degradations. The influence of both parameters is then analyzed in Section 4.3.3.
Performance can be marginally improved by automatic hyperparameter tuning strategies.
For example, Vidal et al. (2020) propose a Bayesian method for setting the regularization
parameter and Wei et al. (2020) employ deep reinforcement learning to train a policy
network yielding well-suited parameters for PnP.

In our experiments, backtracking is performed with η = 0.9 and γ = 0.1. We set the
initial stepsize of GSRED-PGD (resp. GSRED-PG) to τ = 1 (resp. τ = 2

λ+1
) . At the

first iteration, the Gradient-Step in GSRED-PGD is thus exactly Dσ, and GSRED-PGD
exactly corresponds to PnP-HQS (see Remark 15). The algorithm is initialized with a
proximal step and terminates when the norm between consecutive values of the objective
function is less than 10−5 or the number of iterations exceeds K = 1000. After convergence
of both algorithms, we found it useful to apply an extra denoising step in order to discard
the residual noise.

Deblurring

For image deblurring, the degradation operator A = H is a convolution performed with
circular boundary conditions. Therefore, H = F∗ΛF , where F is the orthogonal matrix
of the discrete Fourier transform (and F∗ its inverse), and Λ is a diagonal matrix. The
proximal operator of the data-fidelity term f(x) = 1

2
||Hx− y||2 involves only element-wise

inversion, and writes

Proxτf (z) = F∗(In + τΛ∗Λ)−1F(τHTy + z). (4.35)

We demonstrate the effectiveness of our method on a large variety of blur kernels (repre-
sented in Table 4.2) and noise levels. As in Zhang et al. (2017b); Pesquet et al. (2021);
Zhang et al. (2021), we use the 8 real-world camera-shake kernels proposed in Levin et al.
(2009) as well as the 9× 9 uniform kernel and the 25× 25 Gaussian kernel with standard
deviation 1.6 (as in Romano et al. (2017)). We consider Gaussian noise with 3 noise levels
ν ∈ {2.55, 7.65, 12.75}/255 i.e. ν ∈ {0.01, 0.03, 0.05}.

For both GSRED algorithms and for all noise levels, we set σ = 1.8ν, 1/λ = 0.1
for motion blur (kernels (a) to (h)) and 1/λ = 0.075 for static blur (kernels (i) and
(j)). Initialization is done with x0 = y and we study in Section 4.3.3 the robustness to
initialization.

We compare in Table 4.2 our algorithms (GSRED-PGD and GSRED-GD) against the
patch-based method EPLL (Zoran and Weiss, 2011; Hurault et al., 2018), and the deep
PnP methods IRCNN (Zhang et al., 2017b), DPIR (Zhang et al., 2021) and MMO (Pesquet
et al., 2021).Both IRCNN and DPIR use PnP-HQS with a fast decrease of τ and σ in a
few iterations (8 iterations for DPIR) without guarantee of convergence. DPIR uses the
DRUNet denoiser from Table 4.1. MMO is the only compared method that guarantees
convergence by plugging a DnCNN denoiser trained with Lipschitz constraints (but the
network provided by the authors was trained for very low noise level).

GSRED-PGD and GSRED-GD perform almost equally well in terms of PSNR. However,
we observe that GSRED-PGD converges faster in practice than GSRED-GD (See for
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example Figure 4.2). Among all methods, they closely follow the state-of-the-art DPIR
in terms of PSNR for low noise level but perform equally or better for higher noise
levels. Other comparisons are also conducted on the full CBSD68 dataset in Table 4.3.
These results exhibit that both GSRED algorithms reach state-of-the-art in deblurring
for a variety of kernels and noise levels. We underline that the convergence of GSRED
algorithms are guaranteed, whereas DPIR can asymptotically diverge (see Section 4.3.3).

For qualitative comparison, we show in Figure 4.2 and 4.3 the deblurring obtained
with various methods on two different images. Note that our algorithms, compared to
competing methods, can recover the sharpest edges and the finest textures. We also give
convergence curves that empirically confirm the convergence of the values F (xk) and of the
residual min0≤i≤k ||xi+1 − xi||2 /||x0||2. The plotted evolution of the PSNR illustrates that
the minimization of F coincides with the maximization of the PSNR, which supports the
choice of the optimized functional F = f + λgσ. Note also that the empirical convergence
rate is faster than the O( 1

k
) theoretical worst case rate established in the convergence

theorems.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

ν Method Avg

0
.0
1

EPLL 28.32 28.24 28.36 25.80 29.61 27.15 26.90 26.69 25.84 26.49 27.34
IRCNN 32.96 32.62 32.53 32.44 33.51 33.62 32.54 32.20 28.11 29.19 31.97
MMO 32.35 32.06 32.24 31.67 31.77 33.17 32.30 31.80 27.81 29.26 31.44
DPIR 33.76 33.30 33.04 33.09 34.10 34.34 33.06 32.77 28.34 29.16 32.50

GSRED-PGD 33.52 33.07 32.91 32.83 34.07 34.25 32.96 32.54 28.11 29.03 32.33
GSRED-GD 33.51 33.01 32.86 32.74 33.99 34.21 32.88 32.49 27.84 28.76 32.23

0
.0
3

EPLL 25.31 25.12 25.82 23.75 26.99 25.23 25.00 24.59 24.34 25.43 25.16
IRCNN 28.96 28.65 28.90 28.38 30.03 29.87 28.92 28.52 25.92 27.64 28.58
DPIR 29.38 29.06 29.21 28.77 30.22 30.23 29.34 28.90 26.19 27.81 28.91

GSRED-PGD 29.22 28.89 29.20 28.60 30.32 30.21 29.32 28.92 26.38 27.89 28.90
GSRED-GD 29.26 28.92 29.16 28.65 30.29 30.20 29.22 28.81 26.16 27.68 28.84

0
.0
5

EPLL 24.08 23.91 24.78 22.57 25.68 23.98 23.70 23.19 23.75 24.78 24.04
IRCNN 27.00 26.74 27.25 26.37 28.29 28.06 27.22 26.81 24.85 26.83 26.94
DPIR 27.52 27.35 27.73 27.02 28.63 28.46 27.79 27.30 25.25 27.11 27.42

GSRED-PGD 27.45 27.28 27.70 26.98 28.68 28.44 27.81 27.38 25.49 27.15 27.44
GSRED-GD 27.47 27.28 27.63 26.98 28.66 28.44 27.71 27.27 25.35 26.98 27.38

Table 4.2: PSNR(dB) comparison of image deblurring methods on CBSD10 with various
blur kernels k and noise levels ν. Best and second-best results are bold and underlined.
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

ν Method Avg

0
.0
1

IRCNN 32.47 32.14 31.94 31.97 32.94 33.13 31.92 31.62 27.57 28.45 31.42
DPIR 33.26 32.82 32.48 32.65 33.57 33.85 32.49 32.22 27.65 28.26 31.93

GSRED-PGD 32.95 32.54 32.26 32.31 33.41 33.71 32.29 31.92 27.43 28.17 31.70

0
.0
3

IRCNN 28.43 28.11 28.28 27.87 29.42 29.21 28.37 27.97 25.52 26.96 28.01
DPIR 28.88 28.53 28.55 28.30 29.58 29.62 28.69 28.28 25.60 26.96 28.30

GSRED-PGD 28.64 28.32 28.55 28.06 29.71 29.60 28.69 28.31 25.79 27.10 28.28

0
.0
5

IRCNN 26.73 26.42 26.73 26.13 27.69 27.39 26.69 26.33 24.68 26.18 26.40
DPIR 27.04 26.80 27.07 26.53 28.00 27.85 27.17 26.72 24.75 26.32 26.82

GSRED-PGD 26.93 26.72 27.07 26.45 28.09 27.87 27.21 26.82 25.02 26.45 26.86

Table 4.3: PSNR(dB) performance of the fastest methods for image deblurring on the
full CBSD68 dataset, in the same conditions as Table 4.2. On CBSD10 (Table 4.2) or on
CBSD68, we observed very similar PSNR gaps between the compared methods, which
confirms that CBSD10 is large enough to compare accurately the methods.

(a) Clean (b) Observed
(20.97dB)

(c) IRCNN
(28.66dB)

(d) DPIR
(29.76dB)

(e) GSRED-PGD (29.90dB)
(f) GSRED-GD

(29.91 dB)

(g) F (xk) (h) γk (log scale) (i) PSNR(xk)

Figure 4.2: Deblurring with various methods of “starfish” degraded with the indicated
blur kernel and input noise level ν = 0.03. Note that our algorithms better recover the
structures. In (h), (i) and (j), we plot the evolution of the objective value F (xk), the
residual γk = min0≤i≤k ||xi+1 − xi||2 / ||x0||2 and the PSNR.
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(a) Clean (b) Observed
(18.31dB)

(c) IRCNN
(30.61dB)

(d) MMO
(30.23dB)

(e) DPIR
(30.85dB)

(f) GSRED-PGD
(30.74dB)

(g) GSRED-GD
(30.73dB)

(h) F (xk) (i) γk (log scale) (j) PSNR(xk)

Figure 4.3: Deblurring with various methods of an image from CSBD10 degraded with
the indicated blur kernel and input noise level ν = 0.01.

Super-resolution

For single image super-resolution, the low-resolution image y ∈ Rm is obtained from the
high-resolution one x ∈ Rn via y = SHx + ξν where H ∈ Rn×n is the convolution with
an antialiasing kernel. The matrix S is the standard s-fold downsampling matrix of size
m × n and n = s2 ×m. In this context, we make use of the closed-form calculation of
the proximal map for the data-fidelity term f(x) = 1

2
||SHx− y||2, given by Zhao et al.

(2016):

Proxτf (z) = ẑτ −
1

s2
F∗Λ∗

(
Im +

τ

s2
ΛΛ∗

)−1
ΛF ẑτ , (4.36)

where ẑτ = τHTSTy + z and Λ = [Λ1, . . . ,Λs2 ] ∈ Rm×n, with Λ = diag(Λ1, . . . ,Λs2) a
block-diagonal decomposition according to a s× s paving of the Fourier domain. Note
that Im + τ

d
ΛΛ∗ is a m×m diagonal matrix, and its inverse is computed element-wise. As

expected, with s = 1, equation (4.36) comes down to equation (4.35).
As in (Zhang et al., 2021), we evaluate super-resolution performance on 8 Gaussian

blur kernels represented in Table 4.4: 4 isotropic kernels with different standard deviations
(0.7, 1.2, 1.6 and 2.0) and 4 anisotropic kernels. Results are averaged between isotropic
and anisotropic. We consider downsampled images at scale s = 2 and s = 3 and Gaussian
noise with 3 different noise levels ν ∈ {0.01, 0.03, 0.05}. Our methods are compared
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against bicubic upsampling, IRCNN (“IRCNN+” from Zhang et al. (2021)) and DPIR.
GSRED algorithms are the only compared PnP methods with convergence guarantees.
For both GSRED algorithms, all our results are obtained with 1/λ = 0.065 and σ = 2ν.
Initialization of z0 is done with bicubic upsampling of y (with a shift correction (Zhang
et al., 2021)).

GSRED-PGD outperforms in PSNR all other PnP algorithms and GSRED-GD performs
on par with DPIR, over the considered range of blur kernels, noise levels and scale factors.

We show in Figures 4.4 and 4.5 the super-resolution of two images downsampled
respectively by factor 2 and 3, with isotropic kernels and noise levels respectively ν = 0.03
and ν = 0.01. GSRED algorithms recover accurately structures and color, while converging,
as attested by the plotted residual and functional convergence curves.

Kernels Method s = 2 s = 3 Avg
ν = 0.01 ν = 0.03 ν = 0.05 ν = 0.01 ν = 0.03 ν = 0.05

Bicubic 24.85 23.96 22.79 23.14 22.52 21.62 23.15
IRCNN 27.43 26.22 25.86 26.12 25.11 24.79 25.92
DPIR 28.62 27.30 26.47 26.88 25.96 25.22 26.74

GSRED-PGD 28.77 27.54 26.63 26.85 26.05 25.29 26.86
GSRED-GD 28.64 27.46 26.59 26.66 25.96 25.22 26.76

Bicubic 23.38 22.71 21.78 22.65 22.08 21.25 22.31
IRCNN 25.83 24.89 24.59 25.36 24.36 23.95 24.83
DPIR 26.84 25.59 24.89 26.24 24.98 24.32 25.48

GSRED-PGD 26.80 25.73 25.03 26.18 25.08 24.31 25.52
GSRED-GD 26.48 25.56 24.94 25.86 24.91 24.23 25.33

Table 4.4: PSNR(dB) comparison of image super-resolution methods on CBSD10 with
various scales s, blur kernels k and noise levels ν. PNSR results are averaged over kernels
at each row. The best and second-best results are respectively in bold and underlined.

Kernels Method s = 2 s = 3 Avg
ν = 0.01 ν = 0.03 ν = 0.05 ν = 0.01 ν = 0.03 ν = 0.05

IRCNN 26.97 25.86 25.45 25.60 24.72 24.38 25.50
DPIR 27.79 26.58 25.83 26.05 25.27 24.66 26.03

GSRED-PGD 27.88 26.81 26.01 25.97 25.35 24.74 26.13

IRCNN 25.41 24.52 24.18 24.94 24.04 23.61 24.45
DPIR 26.08 24.99 24.39 25.53 24.46 23.80 24.88

GSRED-PGD 25.98 25.07 24.53 25.47 24.56 23.92 24.92

Table 4.5: PSNR(dB) performance of the fastest method (IRCNN/DPIR/GS-PnP) for
image super-resolution on the full CBSD68 dataset with various blur kernels k and noise
levels ν, in the same conditions as Table 4.4. Once again, on CBSD10 (Table 4.4) or on
CBSD68, we observed very similar performance gaps between the compared methods, which
again confirms that CBSD10 is large enough to compare accurately the PnP methods.
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(a) Clean (b) Observed (c) IRCNN (22.82dB) (d) DPIR (23.97dB)

(e) GSRED-PGD
(24.79dB)

(f) GSRED-GD
(24.57dB)

(g) F (xk) (h) γk (log scale) (i) PSNR(xk)

Figure 4.4: Super-resolution with various methods on “leaves” downsampled by 2, with
the indicated blur kernel and input noise level ν = 0.03. Note that our algorithms recover
the sharpest leaves. In (h), (i) and (j), we plot the evolution of the objective value F (xk),
the residual γk = min0≤i≤k ||xi+1 − xi||2/||x0||2 and the PSNR.

(a) Clean (b) Observed (c) GSRED-PGD
(25.27dB)

(d) GSRED-GD
(25.25dB)

(e) F (xk) (f) γk (log scale) (g) PSNR(xk)

Figure 4.5: Super-resolution with our proposed algorithms on an image from CBSD10
downsampled by 3, with the indicated blur kernel and input noise level ν = 0.01.
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Inpainting (with non-differentiable data-fidelity term)

We now propose to apply our GSRED-PGD algorithm to image inpainting with the
degradation model

y = Ax (4.37)

where A is a diagonal matrix with values in {0, 1}. For inpainting, no noise is added to
the degraded image. In this context, the data-fidelity term is the indicator function of
A−1({y}) = {x | Ax = y}: f(y) = ıA−1({y}) (which, by definition, equals 0 on A−1({y})
and +∞ elsewhere). Despite being non-differentiable, f still verifies the assumptions of
Theorems 17 and convergence of GSRED-PGD is theoretically ensured. The proximal
map becomes the orthogonal projection ΠA−1({y})

Proxτf (x) = ΠA−1({y})(x) = Ay − Ax+ x (4.38)

In our experiments, the diagonal of A is filled with Bernoulli random variables with
parameter p = 0.5. We run our PnP algorithm with σ = 10/255. Given the form of f ,
we do not use the backtracking strategy and keep a fixed stepsize. Even if we do not
exactly know the Lipschitz constant of ∇gσ, we observed in Figure 4.1 that, for small
noise, it was almost always estimated as slightly larger than 1. We thus choose τ = 1 and
empirically confirm convergence with this choice in follow-up experiments (see Figure 4.6).
The algorithm is initialized with x0 = y + 0.5(Id−A)y (masked pixels with value 0.5) and
terminates when the number of iterations exceeds K = 100. We found it useful to run the
first 10 iterations of the algorithm at a larger noise level σ = 50/255. The reason is that
the algorithm first deals with high-scales structures that helps for creating more precise
details in the second run.

We show Figure 4.6 inpainting results on set3C images. Our algorithm restores the
input images with high accuracy, including its small details. Furthermore, convergence of
the residual at rate O( 1

k
) is empirically confirmed.

4.3.3 Additional experiments

Visualization of gσ In order to understand better the regularization gσ, we first propose
to visualize gσ(y) for y which has been degraded from a clean image x with different levels
of degradations. In Figures 4.7, we plot the average value of gσ(y) averaged over the
CBSD68 dataset, for respectively,

(i) Gaussian noise: y ∼ N (x, ν2 Id).

(ii) Poisson noise: y ∼ 1
α
P(αx) with P Poisson distribution.

(ii) Blur: y = kν ∗ x with kν Gaussian kernel of std ν and size (15, 15).

(iii) Missing pixels: y = Mpx where Mp diagonal with diagonal coefficients following
Bernoulli distributions with probability 1 − p (i.e. each pixel is masked with
probability p).

For Gaussian and Poisson noise, we observe the expected evolution: the more noisy the
image, the higher the value of gσ. The plots are more surprising when gσ is evaluated on
blurry images or images with missing pixels. The regularization seems to favor smooth and
piecewise constant regions. Indeed, on Figures 4.7 (c), gσ decreases when the input gets
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Clean Observed GS-PnP (31.65dB) (a) γk (log scale)

Clean Observed GS-PnP (33.65dB) γk (log scale)

Clean Observed GS-PnP (33.71dB) γk (log scale)

Figure 4.6: Inpainting results on set3C with pixels randomly masked with probability
p = 0.5. In the last column, we show the evolution of γk = min0≤i≤k ||xi+1 − xi||2/||x0||2
along the iterations.

more and more blurry. For missing pixels, in Figures 4.7 (d), gσ first increases when the
proportion of masked pixels increases, until approximately half of the pixels are masked
(p < 0.5). Then, for p from 0.5 to 1, gσ re-decreases with p. For p > 0.5, there are more
and more piecewise constant black regions on the image. gσ seems to favor such images.

Expansiveness of the denoiser As gσ is not necessarily convex, our GS-DRUNet
denoiser Dσ = Id−∇gσ is not necessarily nonexpansive and neither is the gradient-descent
step Id−λτ∇gσ. This is not an issue as, unlike previous theoretical PnP studies Terris et al.
(2020); Reehorst and Schniter (2018), our convergence results do not require a nonexpansive
denoising step. To advocate that our method converges without this assumption, we show
in Figure 4.8 the evolution of ||Dσ(xk+1)−Dσ(xk)||

||xk+1−xk||
along the algorithm that was run to obtain

the super-resolution results of Figure 4.4. Note that the Lipschitz constant of Dσ goes
above 1 but convergence is still observed as shown by the convergence curves in Figure 4.4.

Influence of the parameters We study more deeply the influence of the parameters
involved in the GSRED-PGD algorithm. Three parameters are involved: the stepsize τ ,
the denoiser level σ and the regularization parameter λ.

• The stepsize τ is automatically tuned with backtracking and is not tweaked heuristi-
cally, contrary to other competing PnP methods like DPIR.

• The first regularization parameter σ is linked to the used denoiser.
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(a) Gaussian noise y ∼ N (x, ν2 Id) (b) Poisson noise y ∼ 1
αP(αx)

(c) Gaussian blur y = kν ∗ x (d) Missing pixels y =Mpx

Figure 4.7: Evolution, for various σ, of gσ(y) where y has been obtained from x with
different degradations. (a) Gaussian noise with increasing std ν. (b) Poisson noise with
decreasing parameter α (c) Blur with Gaussian kernel of increasing std ν (d) Each pixel is
masked with increasing probability 1− p.

• The second regularization parameter λ is introduced in order to target the objective
function λf + gσ. It is a classical formulation of inverse problems, and the trade-off
parameter λ is usually tuned manually.

Thus, we have two parameters that we are free to tune manually. One additional
motivation for keeping both λ and σ as regularization parameters is to be able to use
our PnP algorithm with noise-blind denoisers like DnCNN that are independent on σ. In
practice, in our experiments, we first roughly estimated σ proportionally to the input noise
level ν and tweaked λ more precisely. Note that, for each inverse problem, our parameters
λ and σ are fixed for a large variety of kernels, images, and noise levels ν. The parameters
are not optimized for each image.

Figure 4.9 and Figure 4.10 respectively plot the average PSNR when deblurring the
CBSD10 images with different values of 1/λ and σ, at fixed ν = 0.03. Both parameters
control the strength of the regularization. We observe that λ and σ have a similar influence
on the output: for large λ or small σ, the regularization involved by the denoising pass is
not sufficient to counteract the noise amplification done by the proximal steps with large τ
(when τ →∞, Proxτf for f(x) = 1

2
||Ax− y||2 tends to the pseudo-inverse of A). On the

contrary, as expected, decreasing λ or increasing σ tends to over-smooth the output result.
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Figure 4.8: Lipschitz constant of Dσ along the iterates of the algorithm when performing
the super-resolution experiments presented in Figure 4.4. Note that the Lipschitz constant
goes above 1 i.e. Dσ is not nonexpansive, but we still empirically verified convergence (see
the convergence curves in Figure 4.4).

Influence of the initialization In Figure 4.11, we examine the robustness of GSRED-
PGD to the initialization. As can be seen on this experiment, the output image does
not change much even for relatively large perturbation of the initialization. We thus
observe a robustness to the initialization, both in terms of visual aspect and PSNR. We
also observed that initializing with a uniform image does not change the output of the
algorithm. We suggest that this robustness comes from the first proximal steps on the
data-fidelity term (with a large τ), which prevent the algorithm to be stuck in a poor
local minimum. Note that the use of large τ in the beginning of the algorithm is possible
thanks to the backtracking procedure.

Divergence of DPIR (Zhang et al., 2021) We illustrate here that, contrary to our
method, the DPIR algorithm is not guaranteed to converge and can even easily diverge.
In Figure 4.12, we plot the convergence curves of both DPIR and GSRED-PGD when
deblurring the “starfish” image degraded with a motion kernel and ν = 0.01. In the original
DPIR paper (Zhang et al., 2021), only 8 iterations are used with decreasing τ and σ. More
precisely, σ decreases uniformly in log-scale from 49 to the input noise level ν, and τ is set
proportional to σ2. In order to study the asymptotic behavior of the method, we propose
two strategies to run DPIR with 1000 iterations:

(i) Decreasing σ from 49 to ν over 1000 iterations instead of 8 (Figure 4.12, row 1).

(ii) Decreasing σ from 49 to ν in 8 iterations, and then keep the last values of σ and τ
unchanged for the remaining iterations (Figure 4.12, row 2).

As illustrated by the plot of
∑

i≤k ||xi+1 − xi||2 (third column), DPIR fails to converge
with both strategies, even if the residual ||xk+1 − xk||2 tends to decrease with the second
strategy. This divergence also involves a loss of restoration performance in terms of PSNR
(first column). On the other hand, as theoretically shown in this paper, the residual
||xk+1 − xk||2 with GSRED-PGD tends to 0 (reaches ∼ 10−13 before the activation of
backtracking, versus ∼ 10−4 for DPIR) and its series converges.
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1/λ = 0.05 1/λ = 0.1 1/λ = 0.5 1/λ = 10

Figure 4.9: Influence of the choice of the parameter λ for deblurring. Top: average PSNR
when deblurring the images of CBSD10, blurred with motion blurs or static blurs, w.r.t
1/λ. The other parameters remain unchanged. Bottom: visual results when deblurring
“starfish” with various λ (in the same conditions as Figure 4.2).

σ/ν = 1 σ/ν = 1.8 σ/ν = 4 σ/ν = 10

Figure 4.10: Influence of the choice of the parameter σ for deblurring. Top: average PSNR
when deblurring the images of CBSD10, blurred with the 10 kernels, for different values
of σ, with ν = 0.03. The other parameters remain unchanged. Bottom: visual results when
deblurring “starfish” with various σ, with ν = 0.03 (in the same conditions as Figure 4.2).
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σinit = 20/255 σinit = 40/255 σinit = 60/255

Figure 4.11: Influence of the initialization z0 on the deblurring result. Instead of initializing
with the blurred image z0 = y, as done in Section 4.3.2, we set z0 = y + ξσinit with ξσinit an
AWGN with standard deviation σinit. By increasing the noise level σinit, we investigate
the robustness of the result to changes in the initialization of the algorithm. Top: PSNR
values, along with values of σinit. Bottom: corresponding visual results on “starfish” with
various σinit (in the same conditions as Figure 4.2). The algorithm is robust to noisy
initialization up to a relatively large value of σinit.
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PSNR(xk) ||xk+1 − xk||2 / ||x0||2 (log scale)
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i≤k ||xi+1 − xi||2 / ||x0||2

Figure 4.12: Divergence of the DPIR algorithm versus convergence of GSRED-PGD when
deblurring the “starfish” image. The two first rows display results obtained with DPIR
with two different strategies used for decreasing σ: in the first row, σ is decreased from 49
to ν over 1000 iterations; in the second row, σ is decreased in 8 iterations and then kept
fixed for the remaining iterations.
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4.4 Conclusion
In this chapter, we introduce a new denoiser for convergence of RED algorithms. The
denoiser is trained to realize an exact gradient descent step on a regularization function that
is formulated through a neural network. Once plugged in RED algorithms, the iterative
schemes are proved to converge towards a stationary point of an explicit functional. One
strength of this approach is to simultaneously allow for a denoiser that is not nonexpansive
and a non strongly convex (and non-smooth) data-fidelity term. Experiments conducted
on ill-posed imaging problems (deblurring, super-resolution, inpainting) confirm the
convergence results and show that the proposed algorithms reach state-of-the-art image
restoration performance.

A similar denoiser was recently proposed by Cohen et al. (2021). However, they choose
to directly parameterize gσ by a scalar-valued deep network. In practice, this network is
built by adding a global average pooling to the output of the DnCNN architecture (Zhang
et al., 2017a). Their denoiser is then plugged in the RED-GD algorithm. Their restoration
algorithm is thus the same as GSRED-GD (4.24) but with a different regularizer gσ.
The authors do not show denoising performance but argue that the resulting algorithm
outperforms RED and PnP with DnCNN denoiser for deblurring and super-resolution.
We tried to apply the same average pooling strategy on the DRUNet architecture, but we
did not reach the same performance as GSDRUNet.

While the Gradient-Step Denoiser proves beneficial in achieving convergence for RED,
it does not ensure convergence for the PnP algorithms (presented in Section 2.4.2) when
used in its generic form. In the upcoming chapter, we will introduce a constraint on the
denoiser to address the issue of PnP convergence.
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Chapter 5

Proximal Denoiser for Convergent PnP
algorithms
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In this chapter, we shed a new light on the Gradient-Step denoiser proposed in
Chapter 4:

Dσ = Id−∇gσ (5.1)

where gσ : Rn → R is a scalar function parameterized by a differentiable neural network.
We have seen in Chapter 4 that, if this denoiser is used in RED algorithms, we can ensure
convergence of the iterates towards a stationary point of an explicit functional. However,
this strategy does not extend to the PnP algorithms presented in Section 2.4.2. Indeed,
while RED methods were built using a gradient descent step by a denoiser, PnP methods
were built by replacing a proximal operation by a denoiser.

It is therefore interesting to investigate under which conditions the Gradient-Step
denoiser (5.1) can actually be exactly a proximal map. We have seen with Moreau’s
Theorem 2 that a differentiable operator is a proximity operator of some convex potential
if and only if it is nonexpansive and the gradient of a convex function. We described
Section 3.3.2 how Sreehari et al. (2016) make use of this property to reach convergence of
PnP algorithms assuming that the plugged denoiser has symmetric and doubly stochastic
Jacobian. The Gradient-Step denoiser (5.1) has by construction symmetric Jacobian

93
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(because it writes as a gradient) and double stochasticity of the Jacobian is equivalent to
assume that the operators Dσ and Id−Dσ are both nonexpansive. However, we explained
in Section 3.3.1 that nonexpansivity is not a satisfactory assumption for a denoiser.

In this chapter, we rather exploit Theorem 3 i.e. the extension of Moreau’s theorem pro-
posed in (Gribonval and Nikolova, 2020). It characterizes proximity operators of nonconvex
potentials as gradient of convex functions, thus precisely avoiding the nonexpansivity
requirement of the denoiser. In Section 5.1, we prove that if Id−Dσ is contractive, then
Gradient-Step denoiser (5.1) is the proximity operator of a smooth and weakly convex
explicit potential. As described in Section 5.3.1, this condition is softly enforced while
training, with little consequence on the denoising efficacy.

With this denoiser, which we refer to “Proximal Gradient-Step denoiser”, the PnP
algorithms presented in Section 2.4.2 take the form of precise first-order optimization
algorithm. Leveraging the nonconvex convergence analysis of these algorithms realized in
Section 2.3, we provide in Section 5.2 new proofs of convergence of the iterates of PnP-
PGD (2.109) and PnP-DRS (2.111) towards stationary points of an explicit functional.

We will see in Section 5.2.1 that a limitation of this approach is that the proximal
denoiser prevents from controlling the stepsize of the overall PnP algorithm, which has to
be fixed to 1. Consequently, the stepsize condition for the convergence of the PnP-PGD
algorithm will translate to a restrictive condition on the regularization parameter λ. In
Section 5.2.3, we propose a relaxation of the PGD algorithm, called αPGD, such that
when used with the Proximal Gradient-Step denoiser, the corresponding PnP scheme can
converge for any regularization parameter λ > 0.

In Section 5.3, we provide experiments for both image deblurring and image super-
resolution applications. We demonstrate the convergence and the effectiveness of our PnP
algorithms with Proximal Gradient-Step denoiser.

Most of the results presented in this Chapter were published in (Hurault et al., 2022b)
and (Hurault et al., 2023a). The code implementing the proposed framework is available
at https://github.com/samuro95/ProxPnP.

5.1 Proximal Gradient-Step denoiser

5.1.1 The Gradient-Step denoiser as a proximity operator

The Gradient Step (GS) Denoiser (5.1) writes

Dσ = Id−∇gσ = ∇hσ, (5.2)

with a potential

hσ : x→ 1

2
||x||2 − gσ(x), (5.3)

obtained from a scalar function gσ : Rn → R parameterized by a differentiable neural
network. This denoiser Dσ is trained to denoise images degraded with Gaussian noise of
standard deviation σ. In Chapter 4, it is shown that, although constrained to be an exact
conservative field (5.2), it can realize state-of-the-art denoising.

In this chapter, we make use of the recent characterization of nonconvex proximity
operators (Gribonval and Nikolova, 2020) presented in Section 2.2.2, to show that this
denoiser can be written as a proximal operator. Applying Theorem 3, we have that if hσ
is convex, the GS denoiser Dσ = ∇hσ is linked to the proximity operator of some function
φσ : Rn → R ∪ {+∞}. The next proposition shows that, if hσ is strongly convex (which

https://github.com/samuro95/ProxPnP
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is true as soon as the residual Id−Dσ is contractive), there exists a smooth and weakly
convex φσ such that Dσ = Proxφσ is single-valued.

Proposition 25. Let gσ : Rn → R a Ck+1 function with k ≥ 1 and ∇gσ L-Lipschitz with
L < 1. Let Dσ := Id−∇gσ = ∇hσ. Then

(i) there is φσ : Rn → Rn ∪ {+∞}, L
L+1

-weakly convex, such that Proxφσ is one-to-one
and

Dσ = Proxφσ (5.4)

Moreover Dσ is injective, Im(Dσ) is open and there is a constant K ∈ R such that
φσ is defined on Im(Dσ) by

∀x ∈ Im(Dσ), φσ(x) = gσ(D−1σ (x))− 1

2

∣∣∣∣D−1σ (x)− x
∣∣∣∣2 +K

= h∗σ(x)− 1

2
||x||2 +K

(5.5)

where h∗σ stands for the convex conjugate of hσ (defined Section 2.41).

(ii) ∀x ∈ Rn, φσ(x) ≥ gσ(x) +K and for x ∈ Fix(Dσ), φσ(x) = gσ(x) +K.

(iii) φσ is Ck on Im(Dσ) and ∀x ∈ Im(Dσ), ∇φσ(x) = Dσ
−1(x)− x = ∇gσ(Dσ

−1(x)).
Moreover, ∇φσ is L

1−L-Lipschitz on Im(Dσ)

Remark 17. (i) Note that, despite φσ being possibly nonconvex, Dσ = Proxφσ is one-to-
one. Also note that Dσ is possibly not nonexpansive.
(ii) We could also assume weaker conditions than Id−Dσ contractive. For instance, only
assuming hσ convex, we get the existence of φσ s.t. Dσ(x) ∈ Proxφσ(x) ∀x but φσ looses
its weak convexity and Lipschitz-gradient properties.

Proof. (i) Dσ being L+ 1-Lipschitz, with Theorem 3, there is φσ : Rn → Rn ∪ {+∞} such
that ∀x ∈ Rn, Dσ(x) ∈ Proxφσ(x) and φσ

(
1− 1

L+1

)
= L

L+1
weakly convex. The weak

convexity constant being smaller than 1, x→ φσ(x) + 1
2
||x− y||2 is convex and Proxφσ is

one-to-one. According to (Gribonval and Nikolova, 2020, Theorem 4 (b)), there exists a
constant K ∈ R such that for any C ⊆ Im(Dσ) polygonally connected,

∀y ∈ C, φσ(Dσ(y)) = 〈y,Dσ(y)〉 − 1

2
||Dσ(y)||2 − hσ(y) +K

= gσ(y)− 1

2
||y −Dσ(y)||2 +K

(5.6)

(5.7)

Moreover, from Proposition 5,

〈y,Dσ(y)〉 = 〈y,∇hσ(y)〉 = hσ(y) + h∗σ(Dσ(y)). (5.8)

Combining (5.6) and (5.8), we get

φσ(Dσ(y)) = h∗σ(Dσ(y))− 1

2
||Dσ(y)||2 +K (5.9)

As ∇gσ is C2 and L < 1-Lipschitz, ∀x ∈ Rn, JDσ(x) = Id−∇2gσ(x) is positive definite and
Dσ is injective. We can consider its inverse D−1σ on Im(Dσ), and we get (5.5) from (5.7)
Also, the inverse function theorem ensures that Im(Dσ) is open in Rn. As Dσ is continuous,
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Im(Dσ) is connected and open, thus polygonally connected. Therefore, (5.6) is true on
the whole Im(Dσ).

(ii) We have

φσ(x) =
1

2
||x− x||2 + φσ(x)

≥ 1

2
||x−Dσ(x)||2 + φσ(Dσ(x))

= gσ(x) +K

(5.10)

where the first inequality comes from the definition of the proximal operator Dσ = Proxφσ
and the last equality is given by (5.5).

(iii) This is the application of (Gribonval and Nikolova, 2020, Corollary 6). For the
Lipschitz property, let x, y ∈ Im(Dσ), there exists u, v ∈ Rn such that x = Dσ(u) and
y = Dσ(v). Hence, we have

||∇φσ(x)−∇φσ(y)|| =
∣∣∣∣Dσ

−1(x)−Dσ
−1(y)− (x− y)

∣∣∣∣
= ||u−Dσ(u)− (v −Dσ(v))||
= ||∇gσ(u)−∇gσ(v)||
≤ L ||u− v||

(5.11)

because gσ is L-Lipschitz. Moreover, as JDσ(x) = ∇2hσ(x) = Id−∇2gσ(x), ∀u ∈ Rn,
〈∇2hσ(x)u, u〉 = ||u||2 − 〈∇2gσ(x)u, u〉 ≥ (1− L) ||u||2 and hσ is (1− L)-strongly convex.
Thus continuing from last inequalities

||∇φσ(x)−∇φσ(y)|| ≤ L

1− L
||∇hσ(u)−∇hσ(v)||

=
L

1− L
||Dσ(u)−Dσ(v)||

=
L

1− L
||x− y|| .

(5.12)

5.1.2 More details on the regularization φσ

Recall that in Chapter 4, the potential gσ was parameterized as

gσ(x) =
1

2
||x−Nσ(x)||2 , (5.13)

where Nσ : Rn → Rn is a C1 neural network with ELU activations. In order to apply
Proposition 25, we need gσ to be at least C2. We choose the same parameterization, but
we change ELU activations to softplus activations

s(x) =
1

α
log(1 + eαx) (5.14)

which are C∞. As seen in Section 4.1.2, as the softplus activation has Lipschitz gradient,
the gradient of gσ (or more precisely of its extended version gRσ (4.20)) is guaranteed
to be L-Lipschitz for some L > 0. However, we are not guaranteed to have L < 1 by
construction. As described in the experimental Section 5.3.1, in practice, we will softly
enforce this condition during training. Assuming that L < 1, the potential φσ obtained
with Proposition 25 then verifies:
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(i) φσ is lower-bounded. As gσ is non-negative, this follows directly from Proposi-
tion 25(ii).

(ii) φσ is L
L+1

-weakly convex from Proposition 25(i)

(iii) φσ is C1 and ∇φσ is L
1−1 -Lipschitz continuous on Im(Dσ) from Proposition 25(iii)

(iv) φσ is coercive when gσ is coercive. This follows directly from φσ(x) ≥ gσ(x)
(Proposition 25(ii)).

(v) φσ is real analytic and thus subanalytic on Im(Dσ) (see Section 3.1.2 for more
details on subanalytic functions). gσ is parameterized with the softplus activation,
which is a real analytic function. As explained in details in Section 3.1.2, by compo-
sition and sum of real analytic functions (Lemma 3(i)) Nσ and then subsequently gσ
are real analytic functions. Then, by Lemma 3(ii), ∇gσ and thus Dσ are also real
analytic. By the inverse function theorem (Lemma 3(iii)), as ∀x ∈ Rn, JDσ(x) > 0,
D−1σ is then real analytic on Im(Dσ). We finally obtain, using the expression of φσ
on Im(Dσ) (5.5), again by sum and composition, that φσ is real analytic (and thus
subanalytic) on Im(Dσ).

5.1.3 Relaxed Proximal Denoiser

Once trained, the Gradient-Step denoiser Dσ = Id−∇gσ can be relaxed with a parameter
γ ∈ [0, 1]

Dγ
σ = γDσ + (1− γ) Id = Id−γ∇gσ. (5.15)

Applying Proposition 25 with gγσ = γgσ which has a γL-Lipschitz gradient, we get that if
γL < 1, there exists a γL

γL+1
-weakly convex φγσ : Rn → Rn ∪ {+∞} such that

Dγ
σ = Proxφγσ , (5.16)

Hence, one can control the weak convexity of the regularization function by relaxing the
proximal denoising operator Dγ

σ. However, for high values of γ, the relaxed denoiser tends
to lose its denoising capacities.

5.2 PnP convergence analysis with Proximal Denoiser
PnP algorithms presented in Section 2.4.2 were built by replacing one proximal operation
with a denoiser Dσ in proximal optimization algorithms. When used with the Proximal
denoiser Dσ = Proxφσ that corresponds to the proximal operator of a nonconvex regular-
ization function φσ, PnP algorithms become again real proximal optimization algorithms,
with the noticeable particularity that a nonconvex function is involved. Moreover, as the
denoiser writes Dσ = Proxφσ and not Dσ = Proxτφσ with a stepsize τ > 1, we will need to
fix the stepsize to τ = 1. Indeed, Proxφ does not give permit to calculate Proxτφ explicitly
when τ 6= 1. Therefore, to be a provable converging proximal splitting algorithm, the
stepsize of the overall PnP algorithm has to be fixed to τ = 1.

In this section we study the convergence of PnP-PGD, PnP-DRS and PnP-ADMM
introduced in Section 2.4.2 with proximal denoiser. For that purpose, we target the
objective function

F := λf + φσ. (5.17)
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where f is a (possibly nonconvex) data-fidelity term, λ is a regularization parameter and
φσ is defined as in (5.5) from the function gσ defined in (5.13).

To obtain the following convergence results, we make use of the convergence analysis of
the standard PGD, DRS or ADMM algorithms in the nonconvex setting already developed
in Section 3.2. Moreover, in Section 5.2.3, we propose a new version of the PnP-PGD
algorithm that convergences for a wider range of regularization parameters.

5.2.1 Proximal PnP-PGD (ProxPnP-PGD)

We first study the convergence of the PnP-PGD algorithm with plugged Proximal Gradient-
Step Denoiser (5.4):

xk+1 = Dσ(Id−λ∇f)(xk) = Proxφσ(Id−λ∇f)(xk). (5.18)

It corresponds to the PGD algorithm (2.48) for minimizing λf+φσ with fixed stepsize τ = 1.
At each iteration, xk ∈ Im(Dσ), and thus φσ defined in (5.5) is tractable along the

algorithm. The value of the objective function (5.17) at xk is

F (xk) = λf(xk) + gσ(zk)−
1

2
||zk − xk||2 +K (5.19)

where zk = (Id−λ∇f)(xk−1) = D−1σ (xk). We assume here the data-fidelity term f differen-
tiable with Lipschitz gradient, but not necessarily convex. As φσ is not only nonconvex but
L
L+1

-weakly convex (from Proposition 25(i)), we can use the Theorem 8 on the convergence
of the PGD algorithm for nonconvex - weakly convex optimization.
Theorem 19 (Convergence of ProxPnP-PGD). Let f : Rn → R ∪ {+∞} be differentiable
with Lf -Lipschitz gradient, bounded from below. Assume that L the Lipschitz constant
of ∇gσ verifies L < 1. Then, for λLf < L+2

L+1
, the iterates (xk) given by the iterative

scheme (5.18) verify
(i) (F (xk)) is non-increasing and converges.

(ii) The sequence has finite length i.e.
∑+∞

k=0 ||xk+1 − xk||2 < +∞ and ||xk+1 − xk||
converges to 0 at rate mink<K ||xk+1 − xk|| = O(1/

√
K)

(iii) If f is non-negative and subanalytic, and gσ is coercive, then the iterates (xk) converge
towards a critical point of F .

Proof. This is a direct application of Theorem 8 with λf the smooth function and with
φσ the weakly convex function. The stepsize condition

τ < max(
2

λLf + L
L+1

,
1

λLf
) (5.20)

becomes, with τ = 1,

⇔ λLf +
L

L+ 1
< 2 or λLf < 1

⇔ λLf <
L+ 2

L+ 1

(5.21)

(5.22)

For (iii), as shown in Section 5.1.2, φσ is subanalytic on Im(Dσ), lower-bounded and
coercive if gσ is coercive. As f is assumed non-negative and subanalytic, by Lemma 5,
F = λf + φσ is then subanalytic (up to adding a constant to F to make φσ non-negative)
and thus KŁ on Im(Dσ). This is enough for the proof of Theorem 8 to remain true because
any limit point of (xk) is a fixed point of the PnP-PGD operator and thus belongs to
Im(Dσ).
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5.2.2 Proximal PnP-DRS and PnP-ADMM

Following the same strategy as for PnP-PGD, we now prove the convergence of the PnP-
DRS algorithm (2.111) with plugged Proximal Denoiser Dσ = Proxφσ and stepsize τ = 1.
The resulting algorithm, referred to ProxPnP-DRS, writes

yk+1 ∈ Proxλf (xk)

zk+1 = Dσ(2yk+1 − xk) = Proxφσ(2yk+1 − xk)
xk+1 = xk + 2β(zk+1 − yk+1)

(5.23a)
(5.23b)
(5.23c)

or equivalently
xk+1 ∈

(
β Rproxφσ ◦Rproxf +(1− β) Id

)
(xk). (5.24)

As shown in Lemma 1, for β = 1
2
, this scheme is equivalent to the ProxPnP-ADMM

algorithm i.e. PnP-ADMM with Proximal Denoiser:
zk+1 = Dσ(yk − uk)
yk+1 ∈ Proxλf (uk + zk+1)

uk+1 = uk + zk+1 − yk+1.

(5.25a)
(5.25b)
(5.25c)

The convergence of (5.25) will then directly follow from the convergence of (5.23).
Li and Pong (2016) and Themelis and Patrinos (2020) propose convergence proofs of

the DRS algorithm for the minimization of the sum of two nonconvex functions, one of the
two functions being differentiable with Lipschitz gradient. Their convergence results were
summarized in Theorem 10. We will adapt their results to obtain convergence results of our
ProxPnP-DRS algorithm. Depending on the differentiability of f , different convergence
results can be derived.

Differentiable data-fidelity term

We first consider f differentiable with Lipschitz gradient. In this case, we can keep λf
as the differentiable function in Theorem 10, and φσ as the other function (called g in
Theorem 10). For τ = 1, the Douglas-Rachford Envelope (3.54) then writes

FDR(x, y, z) = λf(y) + φσ(z) + 〈y − x, y − z〉+
1

2
||y − z||2 (5.26)

that is to say, along the iterates

FDR
k+1 = FDR(xk, yk+1, zk+1) = λf(yk+1) + gσ(2yk+1 − xk)

− 1

2
||zk+1 − (2yk+1 − xk)||2 + 〈yk+1 − xk, yk+1 − zk+1〉+

1

2
||yk+1 − zk+1||2 .

(5.27)

Using Theorem 10, we prove convergence of ProxPnP-DRS (and thus ProxPnP-ADMM)
towards stationary points of F = λf + φσ.

Theorem 20 (Convergence of ProxPnP-DRS with f differentiable). Let f : Rn →
R ∪ {+∞} be differentiable with Lf -Lipschitz gradient, bounded from below. Assume that
L the Lipschitz constant of ∇gσ verifies L < 1. Then, for λLf < 1, and β ∈ (0, 1), the
iterates (yk, zk, xk) given by the iterative scheme (5.23) verify

(i) (FDR(xk−1, yk, zk)) is non-increasing and converges.
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(ii) xk − xk−1 = β(yk − zk) vanishes with rate mink≤K ||yk − zk|| = O( 1√
K

).

(iii) If f is non-negative and subanalytic, and gσ is coercive, then the sequences (yk) and
(zk) converge to the same critical point of F .

Proof. Point (i) and (ii) directly follow from Theorem 10. For point (iii), Theorem 10
requires the iterates to remain bounded and FDR to verify the KŁ property. First, as
noticed in Section 5.1, if gσ is coercive, φσ is coercive too and by (Li and Pong, 2016,
Theorem 4) the iterates (xk, yk, zk) remain bounded. Second, as also shown in Section 5.1,
φσ is subanalytic on Im(Dσ) and non-negative. As f is assumed non-negative and lower-
bounded, by Lemma 5, (up to adding a constant to make φσ non-negative) FDR is then
subanalytic and thus KŁ on Rn × Im(Dσ)× Rn. The proof of point (iii) in (Li and Pong,
2016, Theorem 2) uses the fact that FDR is KŁ on any limit point (y∗, z∗, x∗) of the
algorithm. We thus need to verify that z∗ ∈ Im(Dσ) for the proof to remain valid. This is
indeed the case because, at the limit, we have z∗ = Dσ(2y∗ − x∗).

With this result, due to the fact that we are limited to τ = 1, the stepsize condition
for DRS convergence Theorem 9 becomes a restriction on the regularization parameter
λLf < 1. In the following section, we use the fact that φσ is weakly convex to avoid this
restriction.

Non-differentiable data-fidelity term

To cope with a possibly non-differentiable data-fidelity term, and to get rid of the restriction
on the trade-off parameter λ, we inverse the denoising and proximal steps in (5.23):

yk+1 = Dσ(xk) = Proxφσ(xk)

zk+1 = Proxλf (2yk+1 − xk)
xk+1 = xk + 2β(zk+1 − yk+1)

(5.28a)
(5.28b)
(5.28c)

and adapt the Douglas-Rachford Envelope accordingly

FDR,2(x, y, z) = λf(z) + φσ(y) + 〈y − x, y − z〉+
1

2
||y − z||2 (5.29)

that is to say, along the iterates

FDR,2
k+1 = FDR,2(xk, yk+1, zk+1) = λf(zk+1) + gσ(xk)

− 1

2
||yk+1 − xk)||2 + 〈yk+1 − xk, yk+1 − zk+1〉+

1

2
||yk+1 − zk+1||2 .

(5.30)

Convergence of this algorithm would be ensured with Theorem 9 for φσ with Lipschitz
gradient on Rn. However, Proposition 25 shows that φσ is differentiable only on Im(Dσ).
In our original publication (Hurault et al., 2022b), we assumed L < 1/2 and Im(Dσ)
convex in order to keep the descent lemma for φσ valid on Im(Dσ). Under this assumption,
we showed that we still have convergence of the iterates of (5.28). However, the convexity
of Im(Dσ) is difficult to verify and unlikely to be true in practice.

Instead, we come back to and adapt the original and general Theorem 10 from (Themelis
and Patrinos, 2020; Li and Pong, 2016) on the convergence of the DRS algorithm with non-
convex functions. The main adaptation concerns Theorem 10, point (i) which follows from
the sufficient decrease property of the Douglas-Rachford envelope FDR shown in (Themelis
and Patrinos, 2020, Theorem 1). We directly write the result in our particular case of
interest, with the following theorem.
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Theorem 21 (Convergence of ProxPnP-DRS with f non-differentiable). Let f proper, lsc,
bounded from below. Assume that L the Lipschitz constant of ∇gσ and β ∈ (0, 1) verify

β(2L3 − 3L2 + 1) + (2L2 + L− 1) < 0. (5.31)

Then, for all λ > 0, the iterates (yk, zk, xk) given by the iterative scheme (5.28) verify

(i) (FDR,2(xk−1, yk, zk)) is non-increasing and converges.

(ii) xk − xk−1 = β(yk − zk) vanishes with rate mink≤K ||yk − zk|| = O( 1√
K

).

(iii) If f is non-negative and subanalytic, and gσ is coercive, then the sequences (yk) and
(zk) converge to the same critical point of F .

Remark 18. The standard Douglas-Rachford algorithm is for β = 1/2. The restriction
on L is then

2L3 + L2 + 2L− 1 < 0 (5.32)

which is verified for approximately L < 0.376. Using a smaller β relaxes the constraint
on L until L < 0.5 when β → 0. For example for β = 0.25, the constraint is verified up to
approximately L < 0.45.

Remark 19. In addition to deal with non-differentiable data-fidelity terms, the advantage
of this result, compared to Theorem 20, is that the restriction on λ disappears, and the
convergence remains true for all regularization parameter λ. However, the restriction on L
the Lipschitz constant of ∇gσ is stronger, which should harm the denoising capacity of the
denoiser.

Proof. (i) As explained above, this point represents the main adaptation. Following the
initial proof from (Themelis and Patrinos, 2020, Theorem 1), we derive a new sufficient
decrease property for FDR,2.

We first rewrite the FDR,2 from (5.29) as

FDR,2(x, y, z) = λf(z) + φσ(y) + 〈y − x, y − z〉+
1

2
||y − z||2

= λf(z) + φσ(y) +
1

2
||(2y − x)− z||2 − 1

2
||x− y||2 .

(5.33)

(5.34)

As zk+1 = Proxτf (2yk+1 − xk) (5.28b), denoting ∀k > 0 FDR,2
k = FDR,2(xk−1, yk, zk),

FDR,2
k+1 = min

z∈Rn
λf(z) + φσ(yk+1) +

1

2
||(2yk+1 − xk)− z||2 −

1

2
||xk − yk+1||2

= min
z∈Rn

λf(z) + φσ(yk+1) + 〈yk+1 − xk, yk+1 − z〉+
1

2
||yk+1 − z||2 .

(5.35)

The optimality condition for (5.28a) is

xk − yk+1 ∈ ∂φσ(yk+1). (5.36)

As φσ is differentiable on Im(Dσ) and yk+1 ∈ Im(Dσ),

xk − yk+1 = ∇φσ(yk+1). (5.37)
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The Douglas–Rachford envelope FDR,2 then writes

FDR,2
k+1 = min

z∈Rn
λf(z) + φσ(yk+1) + 〈∇φσ(yk+1), z − yk+1〉+

1

2
||yk+1 − z||2 . (5.38)

We get, by comparing with the right term when z = zk,

FDR,2
k+1 ≤ λf(zk) + φσ(yk+1) + 〈∇φσ(yk+1), zk − yk+1〉+

1

2
||yk+1 − zk||2

= φσ(yk+1) + 〈∇φσ(yk+1), yk − yk+1〉+ 〈∇φσ(yk+1), zk − yk〉

+ λf(zk) +
1

2
||yk+1 − zk||2 .

(5.39)

From Proposition 25, φσ is M = L
L+1

weakly convex. Then with Corollary 1,

φσ(yk+1) + 〈∇φσ(yk+1), yk − yk+1〉 ≤ φσ(yk) +
M

2
||yk − yk+1||2 (5.40)

and

FDR,2
k+1 ≤ φσ(yk) + λf(zk) + 〈∇φσ(yk+1), zk − yk〉+

M

2
||yk − yk+1||2 +

1

2
||yk+1 − zk||2 .

(5.41)
Moreover

〈∇φσ(yk+1), zk − yk〉 = 〈∇φσ(yk), zk − yk〉+ 〈∇φσ(yk+1)−∇φσ(yk), zk − yk〉 (5.42)

and using

FDR,2
k = λf(zk) + φσ(yk) + 〈yk − xk−1, yk − zk〉+

1

2
||yk − zk||2

= λf(zk) + φσ(yk) + 〈∇φσ(yk), zk − yk〉+
1

2
||yk − zk||2

(5.43)

(5.44)

we get

FDR,2
k+1 ≤ FDR,2

k + 〈∇φσ(yk+1)−∇φσ(yk), zk − yk〉 −
1

2
||yk − zk||2 +

1

2
||yk+1 − zk||2 +

M

2
||yk − yk+1||2 .

(5.45)
Now using

1

2
||yk+1 − zk||2 =

1

2
||yk − yk+1||2 + 〈yk+1 − yk, yk − zk〉+

1

2
||yk − zk||2 (5.46)

we get

FDR,2
k+1 ≤ FDR,2

k + 〈(∇φσ(yk+1)−∇φσ(yk))− (yk+1 − yk), zk − yk〉+
1 +M

2
||yk − yk+1||2 .

(5.47)
From (5.28c) and (5.37)

zk − yk =
1

2β
(xk − xk−1) =

1

2β
(yk+1 − yk) +

1

2β
(∇φσ(yk+1)−∇φσ(yk)). (5.48)
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And we obtain

FDR,2
k+1 − F

DR,2
k ≤

(
1 +M − 1

β

)
1

2
||yk − yk+1||2 +

1

2β
||∇φσ(yk+1)−∇φσ(yk)||2 . (5.49)

Using the fact that ∇φσ is L
1−L Lipschitz on Im(Dσ) and that ∀k > 0, yk ∈ Im(Dσ), it

simplifies to

FDR,2
k+1 − F

DR,2
k ≤

(
1 +M +

1

β

(
L2

(1− L)2
− 1

))
1

2
||yk − yk+1||2 . (5.50)

The condition on the stepsize for FDR,2
k+1 ≤ FDR,2

k is thus

1 +M +
1

β

(
L2

(1− L)2
− 1

)
< 0

⇔ 2L+ 1

L+ 1
+

1

β

2L− 1

(1− L)2
< 0

⇔ β(2L3 − 3L2 + 1) + (2L2 + L− 1) < 0.

(5.51)

For completeness, recalling that Dσ = ∇hσ with hσ 1− L strongly convex, we have

||yk − yk+1|| = ||Dσ(xk)−Dσ(xk−1)|| ≥ (1− L) ||xk − xk−1|| (5.52)

and the sufficient decrease writes

FDR,2
k − FDR,2

k+1 ≥ (1− L)

(
1

β

(
1− L2

(1− L)2

)
− (1 +M)

)
1

2
||xk − xk−1||2 . (5.53)

(ii) This point directly follows from the above sufficient decrease condition.
(iii) For the original DRS algorithm, this point was proven in (Li and Pong, 2016,

Theorem 2). Given the above sufficient decrease property, assuming that (a) FDR,2 verifies
the KŁ property on Im(Dσ) and (b) that the iterates are bounded, the proof follows
equally. With the same arguments as in the proof of Theorem 20, both assumptions (a)
and (b) are verified when f is non-negative and subanalytic, and gσ is coercive.

5.2.3 Relaxed Proximal PnP-PGD (ProxPnP-αPGD)

Coming back to the Proximal PnP-PGD convergence result presented in Section 5.2.1,
note that in Theorem 19, the usual condition on the stepsize became a condition on
the regularization parameter λLf < L+2

L+1
< 2. The value of the regularization trade-

off parameter λ is then limited. This is an issue when restoring an image with mild
degradations for which relevant solutions are obtained with a low amount of regularization
and a dominant data-fidelity term in F = λf + g.

We could argue that this is a not a problem as the regularization strength is also
regulated by the σ parameter, which we are free to tune manually. However, it is observed
in practice, for instance for GSRED algorithm in Chapter 4, that the performance of PnP
method greatly benefits from the ability to tune the two regularization parameters.

Given the above limitation, our objective is to design a new convergent PnP algorithm
with proximal denoiser, and with minimal restriction on the regularization parameter λ.
Contrary to previous work on PnP convergence, we not only wish to adapt the denoiser but
also the original optimization scheme of interest. In this section, we propose a relaxation
of the general Proximal Gradient Descent algorithm, called αPGD, such that when used
with the proximal denoiser, the corresponding PnP scheme ProxPnP-αPGD can converge
for all regularization parameters λ.
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αPGD algorithm

We first introduce the αPGD algorithm for solving the general problem

min
x∈Rn

f(x) + g(x) (5.54)

for f, g : Rn → R ∪ {+∞} with f smooth and g weakly convex. The algorithms write, for
α ∈ (0, 1), 

qk+1 = (1− α)yk + αxk

xk+1 = Proxτg(xk − τ∇f(qk+1))

yk+1 = (1− α)yk + αxk+1.

(5.55a)
(5.55b)
(5.55c)

Algorithm (5.55) with α = 1 exactly corresponds to the PGD algorithm (2.48). This
scheme is reminiscent of (Tseng, 2008) (taking α = θk and τ = 1

θkLf
in Algorithm 1

of (Tseng, 2008)), which generalizes Nesterov-like accelerated proximal gradient methods
(Beck and Teboulle, 2009a; Nesterov, 2013). Inspired by Lan and Zhou (2018), this scheme
was derived from the Primal-Dual algorithm (Chambolle and Pock, 2011) with Bregman
proximal operator (Chambolle and Pock, 2016). We now describe this derivation.

Primal-Dual derivation Suppose we target a solution of (5.54) for f Lf -smooth and
strongly convex and g convex. As presented in Section 2.3.4, Chambolle and Pock (2016)
target a saddle point of the equivalent dual problem proposed with a Bregman Primal-Dual
algorithm 

yk+1 = arg min
y

1

σ
DhY (y, yk) + f ∗(y)− 〈x̄k, y〉

xk+1 = arg min
x

1

τ
DhX (x, xk) + g(x) + 〈x, yk+1〉

x̄k+1 = xk+1 + β(xk+1 − xk).

(5.56a)

(5.56b)

(5.56c)

Notice that Lff ∗ is 1-strongly convex with respect to the norm ||.||2. Indeed, f smooth
and convex with a Lf -Lipschitz gradient implies f ∗ 1/Lf strongly-convex, i.e. Lff ∗ is
1-strongly convex. Then we can use hY = Lff

∗ (and hX = 1
2
||.||2) and the algorithm

becomes 
yk+1 = arg min

y

(
Lf
σ

+ 1

)
f ∗(y)− 〈x̄k +

Lf
σ
∇f ∗(yk), y〉

xk+1 ∈ arg min
x

1

2τ
||x− xk||2 + g(x) + 〈x, yk+1〉

x̄k+1 = xk+1 + β(xk+1 − xk)

(5.57a)

(5.57b)

(5.57c)
The optimality condition for the first update is(

Lf
σ

+ 1

)
∇f ∗(yk+1) = x̄k +

Lf
σ
∇f ∗(yk). (5.58)

Using the fact that (∇f)−1 = ∇f ∗, with the change of variable yk ←− ∇f ∗(yk), the
previous algorithm can then be rewritten in a fully primal formulation:

yk+1 =
x̄k +

Lf
σ
yk

1 +
Lf
σ

xk+1 ∈ Proxτg(xk − τ∇f(yk+1))

x̄k+1 = xk+1 + β(xk+1 − xk).

(5.59a)

(5.59b)
(5.59c)
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For α = 1

1+
Lf
σ

, β = 1− α, the algorithm writes


yk+1 = αx̄k + (1− α)yk

xk+1 ∈ Proxτg(xk − τ∇f(yk+1))

x̄k+1 = xk+1 + (1− α)(xk+1 − xk).

(5.60a)
(5.60b)
(5.60c)

or {
yk+1 = αxk + (1− α)yk + α(1− α)(xk − xk−1)
xk+1 ∈ Proxτg(xk − τ∇f(yk+1))

(5.61a)
(5.61b)

The latter is equivalent to (5.55) with yk in place of qk.

αPGD convergence Although the scheme is derived from the Bregman Primal Dual
algorithm, in our case, f is convex and not strongly convex and g is weakly convex and not
convex, thus the general convergence results from Chambolle and Pock (2016) of the convex
Bregman Primal Dual algorithm cannot be adapted to αPGD and a new convergence
result needs to be derived.

Theorem 22 (Convergence of αPGD (5.55)). Assume f and g proper, lsc, lower-bounded,
with f convex and Lf -smooth and g M-weakly convex. Then1 for α ∈ (0, 1) and τ <

min
(

1
αLf

, α
M

)
, the updates (5.55) verify

(i) F (yk) + α
2τ

(
1− 1

α

)2 ||yk − yk−1||2 is non-increasing and converges.

(ii) the sequence has finite length i.e.
∑+∞

k=0 ||yk+1 − yk||2 < +∞ and ||yk+1 − yk|| con-
verges to 0 at rate mink<K ||yk+1 − yk|| = O(1/

√
K)

(iii) All cluster points of the sequence yk are stationary points of F . In particular, if g is
coercive, then yk has a subsequence converging towards a stationary point of F .

Remark 20. With this theorem, αPGD is shown to verify convergence of the iterates and
of the norm of the residual to 0. Note that we do not have here the analog of Theorem 7
on the single-point convergence using the KŁ hypothesis. Indeed, the general nonconvex
convergence analysis with KŁ functions from Attouch et al. (2013), presented in Theorem 4,
is not applicable. This is due to the fact that objective function F (xk) by itself does not
decrease along the sequence, but F (xk) + δ ||xk+1 − xk||2 does (where δ = α

2τ

(
1− 1

α

)2).
Our situation is more similar to the variant of this result presented in (Ochs et al., 2014,
Theorem 3.7). Indeed, with F(x, y) := F (x) + δ ||x− y||2 and considering ∀k ≥ 1, the
sequence zk = (yk, yk−1) (with yk following our algorithm), we can easily show that zk
verifies the conditions H1 and H3 specified in (Ochs et al., 2014, Section 3.2). However,
condition H2 does not extend to our algorithm. We plan as future work to derive a new
version of (Ochs et al., 2014, Section 3.2) that fits to our case of interest.

Remark 21. When α = 1, Algorithms αPGD (5.55) and PGD (2.48) are equivalent, but
we get a slightly worst bound in Theorem 22 than in Theorem 20 (τ < min

(
1
Lf
, 1
M

)
≤

2
Lf+M

). Nevertheless, when used with α < 1, we next show that the relaxed algorithm is
more relevant in the perspective of PnP with proximal denoiser.

1As shown in the proof of Theorem 22, a better bound on τ can be found, but with little numerical
gain.
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Remark 22. The data-fidelity term f is here assumed convex with Lipschitz gradient. This
is verified by the classical L2 data-fidelity term that we use in our experiments Section 5.3.
However, this excludes several data-fidelity terms such as the L1 or the Kullback-Leiber
distances.

Proof. (i) and (ii) : We can write (5.55b) as

xk+1 ∈ arg min
y∈Rn

g(y) + 〈∇f(qk+1), y − xk〉+
1

2τ
||y − xk||2

∈ arg min
y∈Rn

g(y) + f(qk+1) + 〈∇f(qk+1), y − qk+1〉+
1

2τ
||y − xk||2

∈ arg min
y∈Rn

Φ(y) +
1

2τ
||y − xk||2 (5.62)

with Φ(y) := g(y) + f(qk+1) + 〈∇f(qk+1), y − qk+1〉. As g is M -weakly convex, so does Φ.
The three-points inequality of Corollary 1 (ii) applied to Φ thus gives ∀y ∈ Rn,

Φ(y) +
1

2τ
||y − xk||2 ≥ Φ(xk+1) +

1

2τ
||xk+1 − xk||2 +

(
1

2τ
− M

2

)
||xk+1 − y||2 (5.63)

that is to say,

g(y) + f(qk+1) + 〈∇f(qk+1), y − qk+1〉+
1

2τ
||y − xk||2 ≥ g(xk+1) + f(qk+1)+

〈∇f(qk+1), xk+1 − qk+1〉+
1

2τ
||xk+1 − xk||2 +

(
1

2τ
− M

2

)
||xk+1 − y||2 .

(5.64)

Using relation (5.55c), and the descent Lemma 15 as well as the convexity of f ,

f(qk+1) + 〈∇f(qk+1), xk+1 − qk+1〉

=f(qk+1) +

〈
∇f(qk+1),

1

α
yk+1 +

(
1− 1

α

)
yk − qk+1

〉
=

1

α

(
f(qk+1) + 〈∇f(qk+1), yk+1 − qk+1〉

)
+

(
1− 1

α

)(
f(qk+1) + 〈∇f(qk+1), yk − qk+1〉

)
≥ 1

α

(
f(yk+1)−

Lf
2
||yk+1 − qk+1||2

)
+

(
1− 1

α

)(
f(qk+1) + 〈∇f(qk+1), yk − qk+1〉

)
≥ 1

α

(
f(yk+1)−

Lf
2
||yk+1 − qk+1||2

)
+

(
1− 1

α

)
f(yk).

(5.65)

Since yk+1 − qk+1 = α(xk+1 − xk) (from relations (5.55a) and (5.55c)), by combining
relations (5.64) and (5.65), we now have for all y ∈ Rn,

g(y) +

(
1

α
− 1

)
f(yk) +

1

2τ
||y − xk||2 + f(qk+1) + 〈∇f(qk+1), y − qk+1〉 ≥

g(xk+1) +
1

α
f(yk+1) +

(
1

2τ
− αLf

2

)
||xk+1 − xk||2+

(
1

2τ
−M

2

)
||xk+1 − y||2 .

(5.66)
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Using again the convexity of f we get for all y ∈ Rn,

g(y) + f(y) +

(
1

α
− 1

)
f(yk) +

1

2τ
||y − xk||2 ≥

g(xk+1) +
1

α
f(yk+1) +

(
1

2τ
− αLf

2

)
||xk+1 − xk||2 +

(
1

2τ
− M

2

)
||xk+1 − y||2 .

(5.67)

Now, the weak convexity of g with relation (5.55c) gives

g(xk+1) ≥
1

α
g(yk+1) +

(
1− 1

α

)
g(yk)−

M

2
(1− α) ||yk − xk+1||2 . (5.68)

Combining (5.67) and (5.68), and using F = f + g leads to

∀y ∈ Rn

(
1

α
− 1

)
(F (yk)− F (y)) +

1

2τ
||y − xk||2 ≥

1

α
(F (yk+1)− F (y)) +

(
1

2τ
− αLf

2

)
||xk+1 − xk||2

+

(
1

2τ
− M

2

)
||xk+1 − y||2 −

M

2
(1− α) ||yk − xk+1||2 .

(5.69)

For y = yk, we get

1

α
(F (yk)− F (yk+1)) ≥ −

1

2τ
||yk − xk||2 +

(
1

2τ
− αLf

2

)
||xk+1 − xk||2

+

(
1

2τ
− M(2− α)

2

)
||xk+1 − yk||2 .

(5.70)

For constant α ∈ (0, 1), using that

yk − xk+1 =
1

α
(yk − yk+1)

yk − xk =

(
1− 1

α

)
(yk − yk−1)

(5.71)

(5.72)

we get

F (yk)− F (yk+1) ≥−
α

2τ

(
1− 1

α

)2

||yk − yk−1||2

+ α

(
1

2τ
− αLf

2

)
||xk+1 − xk||2

+
1

α

(
1

2τ
− M(2− α)

2

)
||yk+1 − yk||2 .

(5.73)

With the assumption ταLf < 1, the second term of the right-hand side is non-negative
and therefore,

F (yk)− F (yk+1) ≥ −
α

2τ

(
1− 1

α

)2

||yk − yk−1||2

+
1

α

(
1

2τ
− M(2− α)

2

)
||yk+1 − yk||2 .

= −δ ||yk − yk−1||2 + δ ||yk+1 − yk||2

+ (γ − δ) ||yk+1 − yk||2

(5.74)
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with

δ =
α

2τ

(
1− 1

α

)2

γ =
1

α

(
1

2τ
− M(2− α)

2

) (5.75)

(5.76)

We now make use of the following lemma.

Lemma 7 (Bauschke and Combettes (2011b)). Let (an)n∈N and (bn)n∈N be two real
sequences such that bn ≥ 0 ∀n ∈ N, (an) is bounded from below and an+1 + bn ≤ an ∀n ∈ N.
Then (an)n∈N is a non-increasing and convergent sequence and

∑
n∈N bn < +∞

To apply Lemma 7 we look for a stepsize satisfying

γ − δ > 0 i.e. τ <
α

M
. (5.77)

Hypothesis τ < min
(

1
αλLf

, α
M

)
gives that (F (yk) + δ ||yk − yk−1||2) is a non-increasing and

convergent sequence and that
∑

k ||yk − yk+1||2 < +∞.
Note that a slightly more precise bound can be found keeping the second term in (5.73).

For the sake of completeness, we develop it here. Keeping the assumption ταLf < 1
in (5.73), we can use that

xk+1 − xk =
1

α
(yk+1 − yk) +

(
1− 1

α

)
(yk − yk−1). (5.78)

Then, by convexity of the squared `2 norm, for 0 < α < 1, we have

||yk+1 − yk||2 ≤ α ||xk+1 − xk||2 + (1− α) ||yk − yk−1||2 (5.79)

and

||xk+1 − xk||2 ≥
1

α
||yk+1 − yk||2 +

(
1− 1

α

)
||yk − yk−1||2 (5.80)

which gives finally

F (yk)− F (yk+1) ≥(
α

(
1− 1

α

)(
1

2τ
− αLf

2

)
− α

2τ

(
1− 1

α

)2
)
||yk − yk−1||2

+

(
1

2τ
− αLf

2
+

1

α
(

1

2τ
− M(2− α)

2
)

)
||yk+1 − yk||2

= −1− α
2ατ

(
1− α2τLf

)
||yk − yk−1||2

+
1

2ατ

(
1 + α− α2τLf − τM(2− α)

)
||yk+1 − yk||2

= −δ ||yk − yk−1||2 + δ ||yk+1 − yk||2 + (γ − δ) ||yk+1 − yk||2

(5.81)

with
δ =

1− α
2ατ

(
1− α2τLf

)
γ =

1

2ατ

(
1− α2τLf + α− τM(2− α)

)
.

(5.82)

(5.83)
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The condition on the stepsize becomes

γ − δ > 0

⇔ τ <
2α

α3Lf + (2− α)M
.

(5.84)

And the overall condition is

τ < min

(
1

αLf
,

2α

α3Lf + (2− α)M

)
. (5.85)

(iii) The proof of this result is an extension of the proof of Proposition 20 in the
context of the classical PGD. Suppose that a subsequence (yki) is converging towards y.
Let us show that y is a critical point of F . From (5.55b), we have

xk+1 − xk
τ

−∇f(qk+1) ∈ ∂g(xk+1). (5.86)

First we show that xki+1 − xki → 0. We have ∀k > 1,

||xk+1 − xk|| =
∣∣∣∣∣∣∣∣ 1αyk+1 + (1− 1

α
)yk −

1

α
yk − (1− 1

α
)yk−1

∣∣∣∣∣∣∣∣
≤ 1

α
||yk+1 − yk||+ (

1

α
− 1) ||yk − yk−1||

→ 0.

(5.87)

From (5.55a), we also get ||qk+1 − qk|| → 0. Now, let us show that xki → y and qki → y.
First using (5.55c), we have

||xki − y|| ≤ ||xki+1 − y||+ ||xki+1 − xki ||

≤ 1

α
||yki+1 − y||+ (

1

α
− 1) ||yki − y||+ ||xki+1 − xki ||

→ 0.

(5.88)

Second, from (5.55a), we get in the same way qki → y. From the continuity of ∇f , we get
∇f(qki)→ ∇f(y) and therefore

xki − xki−1
τ

−∇f(qki)→ −∇f(y). (5.89)

If we can also show that g(xki)→ g(y), we get from the closeness of the limiting subdiffer-
ential (Proposition 2) that −∇f(y) ∈ ∂g(y) i.e. y is a critical point of F .

Using the fact that g is lsc and xki → y, we have

lim inf
i→∞

g(xki) ≥ g(y). (5.90)

On the other hand, with Equation (5.67) for k+ 1 = ki, taking i→ +∞, ||y − xki+1|| → 0,
||y − xki || → 0, f(yki)→ f(y), f(yki+1)→ f(y) and we get

lim sup
i→∞

g(xki) ≤ g(y), (5.91)

and therefore
lim
i→∞

g(xki) = g(y). (5.92)

As f is lower-bounded, if g is coercive, so is F and by (i) the iterates (yk) remain bounded
and (yk) admits a converging subsequence.
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ProxPnP-αPGD algorithm

Similar to the derivation of the PnP algorithms from first order algorithms in Section 2.4.2,
the αPGD algorithm (5.55) gives birth to the PnP-αPGD algorithm by replacing the
proximity operator Proxτg by a Gaussian denoiser Dσ. Now, similar to what was done
Section 5.2.1 with the PGD algorithm, in this section, we study the convergence of this
PnP-αPGD with our particular Proximal Gradient-Step Denoiser (5.4) Dσ = Proxφσ
and stepsize τ = 1. This corresponds to the following algorithm, which we refer to
ProxPnP-αPGD.

qk+1 = (1− α)yk + αxk

xk+1 = Dσ(xk − λ∇f(qk+1)) = Proxφσ(xk − λ∇f(qk+1))

yk+1 = (1− α)yk + αxk+1.

(5.93a)
(5.93b)
(5.93c)

Like ProxPnP-PGD (5.18), ProxPnP-αPGD scheme targets the critical points of the
explicit functional F = λf + φσ where φσ is obtained from the deep potential gσ via
Proposition 25. Applying the previous Theorem 22 on the convergence of the αPGD
algorithm with τ = 1 and g = φσ which is M = L

L+1
weakly convex, we get the following

convergence result for ProxPnP-αPGD.

Corollary 5 (Convergence of ProxPnP-αPGD (5.93)). Let f : Rn → R ∪ {+∞} convex
and differentiable with Lf -Lipschitz gradient, bounded from below. Assume that L the
Lipschitz constant of ∇gσ verifies L < 1. Let M = L

L+1
the weak convexity constant of φσ

obtained from gσ via Proposition 25. Then, for any α ∈ (0, 1) such that

λLfM < 1 and M < α < 1/(λLf ) (5.94)

the iterates given by the iterative scheme (5.93) verify

(i) F (yk) + α
2

(
1− 1

α

)2 ||yk − yk−1||2 is non-increasing and converges.

(ii) The sequence yk as finite length i.e.
∑+∞

k=0 ||yk+1 − yk||2 < +∞ and ||yk+1 − yk||
converges to 0 at rate mink<K ||yk+1 − yk|| = O(1/

√
K)

(iii) If gσ is coercive, then (yk) has a subsequence converging towards a critical point of F .

The existence of α ∈ (0, 1) satisfying relation (5.94) is ensured as soon as λLfM < 1.
As a consequence, when M gets small (i.e. φσ gets “more convex”) λLf can get arbitrarily
large. This is a major improvement compared to ProxPnP-PGD which was limited
(Theorem 19) to λLf < 2 even for convex φ (M = 0). To further exploit this property,
we now consider the relaxed denoiser Dγ

σ (5.15) that is associated to a function φγσ with a
tunable weak convexity constant Mγ.

Corollary 6 (Convergence of ProxPnP-αPGD with relaxed denoiser). Let φγσ the Mγ =
γL
γL+1

-weakly convex potential introduced in (5.16) and L < 1. Then, forMγ < α < 1/(λLf ),
the iterates yk given by the ProxPnP-αPGD (5.93) with γ-relaxed denoiser Dγ

σ defined
in (5.15) verify the convergence properties (i)-(iii) of Corollary 5 for F = λf + φγσ.

Therefore, using the γ-relaxed denoiser Dγ
σ = γDσ + (1− γ) Id, the overall convergence

condition on λ is now

λ <
1

Lf

(
1 +

1

γL

)
. (5.95)
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Provided γ gets small, λ can be arbitrarily large. Small γ means small amount of
regularization brought by denoising at each step of the PnP algorithm. Moreover, for
small γ, the targeted regularization function φγσ gets close to a convex function. It has
already been observed that deep convex regularization can be suboptimal compared to
more flexible nonconvex ones (Cohen et al., 2021). Depending on the inverse problem,
and on the necessary amount of regularization, the choice of the couple (γ, λ) will be of
paramount importance for efficient restoration.

5.3 Experiments

5.3.1 Proximal GS denoiser

In this section, we learn a denoiser Dσ = Id−∇gσ that verifies the conditions of Proposi-
tion 25, and that can thus be written as a proximal mapping. As explained in Section 5.1.2,
we design the potential gσ as

gσ(x) =
1

2
||x−Nσ(x)||2 (5.96)

where Nσ : Rn → Rn is a C∞ neural network with softplus activations. Remind that in this
Chapter, we do not regularize inverse problems directly with gσ but with the potential φσ,
obtained from gσ with Proposition 25. As detailed in Sections 5.1.2 and 5.2, this choice
of gσ enables φσ to verify the sufficient regularity conditions required for the convergence
of the PnP-PGD and PnP-DRS with Gradient-Step denoiser (5.2).

Denoising Network Architecture Similar to the original Gradient-Step denoiser
presented in Chapter 4, we choose to parameterize Nσ with the architecture DRUNet Zhang
et al. (2021) (represented in Figure 2.1), a UNet in which residual blocks are integrated.
DRUNet takes the noise level σ as input, which is consistent with our formulation. In
order to ensure continuous differentiability w.r.t. the input, we change RELU activations
to Softplus, which is C∞. We also limit the number of residual blocks to 2 at each scale to
lower the computational burden.

Training details We first train the GS denoiser, in the same conditions as Chapter 4,
with the L2 loss

L(σ) = Ex∼p,ξσ∼N (0,σ2)

[
||Dσ(x+ ξσ)− x||2

]
, (5.97)

where p is the distribution of a database of clean images. However, the resulting denoiser
does not verify ∇gσ = Id−Dσ contractive i.e. with L < 1 Lipschitz gradient, as required
by Proposition 25.

The link between the Lipschitz constant of Nσ and the one of ∇gσ being difficult to
establish, following Pesquet et al. (2021), we enforce L < 1 by regularizing the training
loss of Dσ with the spectral norm of the Hessian of gσ that reads ∇2gσ = J(Id−Dσ). More
specifically, we fine-tune the previously trained GS denoiser with the following loss:

LS(σ) = Ex∼p,ξσ∼N (0,σ2)

[
||Dσ(x+ ξσ)− x||2 + µmax(

∣∣∣∣J(Id−Dσ)(x+ ξσ)
∣∣∣∣
S
, 1− ε)

]
(5.98)

where ||.||S denotes the spectral (or operator) norm. During training, it is estimated with
50 power iterations. In practice, we fine-tune during 10 epochs, with σ ranging in [0, 25],
using various µ and ε = 0.1. The resulting denoiser is called Prox-DRUNet.
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Denoising results We evaluate the PSNR performance of the proposed Prox-DRUNet
denoiser, fine-tuned with the loss (5.98) with different values of µ. In Table 5.1, we
compare, for various noise levels σ, our model with DRUNet equipped with the same
architecture Nσ as our prox-DRUNet (2 residual blocks and softplus activations) and
trained with a L2 loss as in (5.97). We also present the results obtained with standard
GS-DRUNet from Chapter 4, which corresponds to the same architecture trained with the
loss (5.97), without the Lipschitz fine-tuning step. We also indicate the performance of
the classical FFDNet Zhang et al. (2018) and DnCNN Zhang et al. (2017a) denoisers.

σ(./255) 5 10 15 20 25

FFDNet 39.95 35.81 33.53 31.99 30.84
DnCNN 39.80 35.82 33.55 32.02 30.87
DRUNet 40.19 36.10 33.85 32.34 31.21

GS-DRUNet 40.27 36.16 33.92 32.41 31.28

Prox-DRUNet (µ = 10−3) 40.12 35.93 33.60 32.01 30.82
Prox-DRUNet (µ = 10−2) 40.04 35.86 33.51 31.88 30.64

Table 5.1: Average PSNR performance of our prox-denoiser and compared methods on
256×256 center-cropped images from the CBSD68 dataset Martin et al. (2001), for various
noise levels σ.

As can be seen in Table 5.1, the Lipschitz fine-tuning step inevitably decreases the
denoising performance, especially for larger values of µ and higher noise levels. Nevertheless,
for µ = 10−2 prox-DRUNet shows comparable performance with FFDNet and DnCNN.
The decrease in PSNR when constraining the Lipschitz constant of Id−Dσ is thus limited.

Lipschitz constant In our experiments, the Lipschitz constant of ∇gσ = Id−Dσ is
not hardly constrained to satisfy L < 1. This property is rather softly enforced by
penalization with the loss function (5.98). We now investigate the potential gap between
the theoretical assumption L < 1 and the practical considerations. We evaluate in Table 5.2
the maximum value of

∣∣∣∣J(Id−Dσ)(x)
∣∣∣∣
S
while denoising noisy images from the CBSD68

testing dataset. Here, the value
∣∣∣∣J(Id−Dσ)(x)

∣∣∣∣
S
is computed by running the power method

until convergence. Table 5.2 first illustrates that GS-DRUNet (µ = 0) does not check
the L < 1 Lipschitz property, especially for very noisy images. Next, for a large enough
penalization parameter (µ = 10−2), prox-DRUNet satisfies the L < 1 constraint, on the
CBSD68 testing dataset and at all studied noise levels.

Tables 5.1 and 5.2 exhibit a clear trade-off, controlled by µ, between denoising perfor-
mance and Lipschitz constant. Contrary to nonexpansive denoisers (see the paragraph
below), our constrained proximal denoiser provides high quality denoising while empirically
validating the Lipschitz constraint.

σ(./255) 0 5 10 15 20 25

GS-DRUNet (µ = 0) 0.94 1.26 2.47 1.96 2.50 3.27
Prox-DRUNet (µ = 10−2) 0.87 0.92 0.95 0.99 0.96 0.96
Prox-DRUNet (µ = 10−3) 0.86 0.94 0.97 0.98 0.99 1.19

Table 5.2: Maximal value of
∣∣∣∣J(Id−Dσ)(x)

∣∣∣∣
S
obtained with proximal denoisers on 256×256

center-cropped CBSD68 dataset, for various noise levels σ.
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We precise that in all the PnP experiments conducted with Prox-DRUNet, we em-
pirically verified that we still have ||∇2gσ(xk)||S < 1 on all the iterates xk where Dσ was
evaluated.

Comparison with a nonexpansivity constraint In this paragraph, we compare the
performance of the previous Prox-DRUNet denoiser, trained to have Lip(Id−Dσ) < 1, with
the performance of the same network trained to be nonexpansive i.e. Lip(Dσ) ≤ 1. To do
so, we use the same strategy to train DRUNet directly to be nonexpansive. More precisely,
the pretrained DRUNet denoiser Nσ is fine-tuned to denoise while being 1-Lipschitz with
the following loss:

Ex∼p,ξσ∼N (0,σ2)

[
||Nσ(x+ ξσ)− x||2 + µmax(||JNσ(x+ ξσ)||S , 1− ε)

]
(5.99)

with ε = 0.1 and different values of µ.
We analyze the denoising performance of the resulting denoiser nonexp-DRUNet

(Table 5.3) as well as the maximal value of the spectral norm ||JNσ(x)||S , on the CBSD68
testset (Table 5.4). Table 5.4 illustrates that the penalization parameter has to be set
to µ = 10−2 to make the Lipschitz constant lower than 1. On the other hand, as can be
observed in Table 5.3, such setting severely degrades denoising performance.

From this observation, we argue that it is less harmful for the denoising performance
to impose nonexpansivity on the denoiser residual Id−Dσ than on the denoiser itself.

σ(./255) 5 10 15 20 25

GS-DRUNet 40.27 36.16 33.92 32.41 31.28

prox-DRUNet (µ = 10−2) 40.04 35.86 33.51 31.88 30.64
prox-DRUNet (µ = 10−3) 40.12 35.93 33.60 32.01 30.82

nonexp-DRUNet (µ = 10−2) 34.92 32.90 31.42 30.30 29.42
nonexp-DRUNet (µ = 10−3) 39.71 35.71 33.50 32.00 30.89

Table 5.3: Average PSNR denoising performance of our prox-denoiser and compared
methods on 256× 256 center-cropped images from the CBSD68 dataset, for various noise
levels σ.

σ(./255) 0 5 10 15 20 25

DRUNet (µ = 0) 1.13 1.73 2.36 2.67 2.76 3.22
nonexp-DRUNet (µ = 10−2) 0.97 0.98 0.98 0.98 0.98 0.98
nonexp-DRUNet (µ = 10−3) 1.06 1.07 1.07 1.10 1.13 1.20

Table 5.4: Maximal value of
∣∣∣∣JDσ(x)∣∣∣∣S obtained with contractive denoisers Dσ = Nσ on

256× 256 center-cropped CBSD68 dataset, for various noise levels σ.

5.3.2 PnP restoration

In this section, we apply, with the proximal denoiser Prox-DRUNET, the PnP algorithms
ProxPnP-PGD (5.18), ProxPnP-αPGD (5.93), ProxPnP-DRSdiff (5.23) (diff specifies that
this PnP-DRS is dedicated to differentiable data-fidelity terms f) and ProxPnP-DRS (5.28)
for deblurring and super-resolution with Gaussian noise.
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We use the same experimental protocol as the one described in Chapter 4, Section
4.3.2. Refer to this section for more details. We recall that we seek an estimate of a clean
image x ∈ Rn, from a degraded observation obtained as y = Ax + ξν ∈ Rm, with A a
m× n degradation matrix and ξν a white Gaussian noise with zero mean and standard
deviation ν. With this formulation, the data-fidelity term is f(x) = 1

2
||Ax− y||2 and the

Lipschitz constant of ∇f is Lf =
∣∣∣∣ATA∣∣∣∣

S
. The blur kernels are normalized so that the

Lipschitz constant Lf = 1. The minimized objective function is

F (x) = λf(x) + φσ(x). (5.100)

We use for evaluation and comparison the 68 images from the CBSD68 dataset, center-
cropped to the size 256×256 and Gaussian noise with 3 noise levels ν ∈ {2.55, 7.65, 12.75}/255
i.e. ν ∈ {0.01, 0.03, 0.05}.

Hyperparameter selection Convergence of ProxPnP-PGD, ProxPnP-αPGD, ProxPnP-
DRSdiff and ProxPnP-DRS are respectively guaranteed by Theorem 19, Corollary 5,
Theorem 20 and Theorem 21. For each algorithm, we propose default values for the
different hyperparameters involved. These hyperparameter values are explicitly given in
Table 5.5. Note that we use the same choice of hyperparameters for both deblurring and
super-resolution. The λ parameter always satisfies the corresponding constraint required
for convergence. As each algorithm uses its own set of parameters depending on the
constraint on λ, each algorithm targets critical points of a different functional.

For both ProxPnP-PGD and ProxPnP-αPGD algorithm, we use the γ-relaxed version
of the denoiser (5.15). In practice, we found that the same choice of parameters γ and σ is
optimal for both PGD and αPGD, with values depending on the amount of noise ν in the
input image. We thus choose λ ∈ [0, λlim] where, following Theorem 19 and Corollary 5,
for ProxPnP-PGD λPGD

lim = 1
Lf

γ+2
γ+1

and for ProxPnP-αPGD λαPGD
lim = 1

Lf

γ+1
γ
≥ λPGD

lim . For
both ν = 0.01 and ν = 0.03, λ is set to its maximal allowed value λlim. As λαPGD

lim ≥ λPGD
lim ,

ProxPnP-αPGD is expected to outperform ProxPnP-PGD at these noise levels. Finally,
for ProxPnP-αPGD, α is set to its maximum possible value 1/(λLf ).

For ProxPnP-DRSdiff, λ is also set to its maximal possible 1
Lf

for theoretical conver-
gence.

For ProxPnP-DRS, Theorem 21 requires L < Lmax(β) via the constraint (5.31). As
Dσ is trained to ensure L < 1, we do not retrain the denoiser for a specific Lmax(β) value,
but we use again the γ-relaxed version of the denoiser Dγ

σ (5.15) with γ = Lmax(β). γ∇gσ
is then Lmax(β)-Lipschitz and Dγ

σ = Proxφγσ . In practice, we find β = 0.25 to be a good
compromise. For this choice of β, (5.31) is satisfied for Lmax(β) ≤ 0.45.

Deblurring For image deblurring, the degradation operator A = H is a convolution
performed with circular boundary conditions. As detailed in Section 4.3, the proximal
operator of f can be efficiently calculated using the discrete Fourier transform. We use
the same blur kernels than in Section 4.3 (8 real-world camera shake kernels, as well as
the 9× 9 uniform kernel and the 25× 25 Gaussian kernel with standard deviation 1.6).

Super-resolution For single image super-resolution (SR), an efficient closed-form cal-
culation of the proximal map for the data-fidelity term is provided in Section 4.3. We
evaluate SR performance on the 4 isotropic Gaussian blur kernels from Table 4.4 with
different standard deviations (0.7, 1.2, 1.6 and 2.0). We consider down-sampled images at
scales s = 2 and s = 3.
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ν(./255) 2.55 7.65 12.75

PGD
γ 0.6 1 1

λ = γ+2
γ+1

1.625 1.5 1.5

σ/ν 1.25 0.75 0.5

αPGD

γ 0.6 1 1
λ = γ+1

γ
2.66 2 2

α = 1
λ

0.37 0.5 0.5
σ/ν 1.25 0.75 0.5

DRS

β 0.25 0.25 0.25
γ = Lmax(β) 0.45 0.45 0.45

λ 5 1.5 0.75
σ/ν 2 1 0.5

DRSdiff
β 0.5 0.5 0.5
λ 1. 1. 1.
σ/ν 0.75 0.5 0.5

Table 5.5: Choice of the different hyperparameters involved for each ProxPnP algo-
rithm. The same set of hyperparameters are used for both debluring and super-resolution
experiments.

Numerical performance analysis We numerically evaluate in Table 5.7, for deblurring
and Table 5.8 for super-resolution, the PSNR performance of our four ProxPnP algorithms.
We give comparisons with the deep state-of-the-art PnP methods IRCNN (Zhang et al.,
2017b) and DPIR (Zhang et al., 2021) which both apply the PnP-HQS algorithm with
decreasing stepsize but without convergence guarantees. We also provide comparisons
with the GSRED-PGD method presented in Chapter 4. We finally indicate the deblurring
performance of nonexp-PnP-PGD, the PnP-PGD algorithm applied with the denoiser
nonexp-DRUNet trained to be nonexpansive (see Section 5.3.1).

Observe that, among ProxPnP methods, ProxPnP-DRS and ProxPnP-αPGD give
the best performance over the variety of kernels and noise levels. Indeed, ProxPnP-DRS
convergence is guaranteed whatever be the value of λ, which can thus be tuned to optimize
performance. ProxPnP-DRSdiff is, on the other hand, constrained to λ < 1. Similarly,
ProxPnP-PGD is constrained to λ < 2 when ProxPnP-αPGD restriction on λ is relaxed.
When a low amount of regularization (i.e. a large λ value) is necessary, an upper bound
on λ can severely limit the restoration capacity of the algorithm. Indeed, we observe that
when the input noise is low (ν = 2.55), ProxPnP-DRSdiff and ProxPnP-PGD perform
significantly worse. However, when the input noise is high, a stronger regularization is
necessary (i.e. a small λ value) and all methods perform comparably.

We also provide visual comparisons for deblurring in Figure 5.1 and super-resolution
in Figure 5.2. Along with the output images, for each ProxPnP algorithm, we plot the
evolution of the corresponding provably-decreasing function. We recall in Table 5.6, for
each algorithm, the formula of each function that is proved to decrease and converge
along the iterations. We also plot the evolution of the norm of the residuals and of the
PSNR along the iterates. These plots empirically confirm the theoretical convergence
results. Observe that, despite being trained to guarantee convergence, ProxPnP-αPGD
and ProxPnP-DRS globally compare with the performance of the state-of-the-art DPIR
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method. Finally, note that, as for deblurring, the PnP performance is significantly reduced
when plugging a nonexpansive denoiser (nonexp-PnP-PGD) rather than a nonexpansive
residual.

Algorithm Decreasing function

ProxPnP-PGD F (x)

ProxPnP-αPGD Fα(y) = F (y) + α
2

(
1− 1

α

)2 ||y − y−||2
ProxPnP-DRSdiff FDR(x, y, z) = λf(y) + φσ(z) + 〈y − x, y − z〉+ 1

2
||y − z||2

ProxPnP-DRS FDR,2(x, y, z) = λf(z) + φσ(y) + 〈y − x, y − z〉+ 1
2
||y − z||2

Table 5.6: For each ProxPnP algorithm, the corresponding convergence theorem exhibits
a function that is proved to decrease along the iterates.

σ(./255) 2.55 7.65 12.75

IRCNN 31.42 28.01 26.40
DPIR 31.93 28.30 26.82

GSRED-PGD 31.70 28.28 26.86

ProxPnP-PGD 30.91 27.97 26.66
ProxPnP-αPGD 31.55 28.03 26.66
ProxPnP-DRSdiff 30.56 27.78 26.61
ProxPnP-DRS 31.51 28.01 26.63

nonexp-PnP-PGD 30.25 27.06 25.30

Table 5.7: PSNR (dB) of deblurring methods on CBSD68. PSNR are averaged over 10
blur kernels for various noise levels ν.

Method s = 2 s = 3

2.55 7.65 12.75 2.55 7.65 12.75

IRCNN 26.97 25.86 25.45 25.60 24.72 24.38
DPIR 27.79 26.58 25.83 26.05 25.27 24.66

GS-PnP 27.88 26.81 26.01 25.97 25.35 24.74

ProxPnP-PGD 27.68 26.57 25.81 25.94 25.20 24.62
ProxPnP-αPGD 27.92 26.61 25.80 26.03 25.26 24.61
ProxPnP-DRSdiff 27.44 26.58 25.82 25.75 25.19 24.63
ProxPnP-DRS 27.95 26.58 25.81 26.13 25.27 24.65

nonexp-PnP-PGD 27.13 26.20 25.40 23.83 24.57 24.01

Table 5.8: PSNR (dB) of SR methods on CBSD68. PSNR averaged over 4 blur kernels for
various scales s and noise levels ν.
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(a) Clean (b) Observed (20.97dB) (c) IRCNN (28.66dB) (d) DPIR (29.76dB)

(e) ProxPnP-PGD (29.35dB)
(f) ProxPnP-αPGD

(29.68dB)
(g) ProxPnP-DRSdiff

(29.38dB) (h) ProxPnP-DRS (29.51dB)

(i) F (xk) (j) Fα(xk) (k) FDR,1k (l) FDR,2k

(m) γk (log scale) (n) PSNR(xk)

Figure 5.1: Deblurring with various methods of “starfish” degraded with the indicated blur
kernel and input noise level ν = 0.03. We also plot for each algorithm the evolution of the
respective decreasing Lyapunov functions, the residual γk = min0≤i≤k ||xi+1 − xi||2/||x0||2
and the PSNR.
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(a) Clean (b) Observed (c) IRCNN (22.82dB) (d) DPIR (23.97dB)

(e) ProxPnP-PGD
(23.98dB)

(f) ProxPnP-αPGD
(24.22dB)

(g) ProxPnP-DRSdiff
(23.96dB)

(h) ProxPnP-DRS
(24.17dB)

(i) F (xk) (j) Fα(xk) (k) F (xk) (l) F (xk)

(m) γk (log scale) (n) PSNR(xk)

Figure 5.2: Super-resolution with various methods on “leaves” downsampled by 2, with the
indicated blur kernel and input noise level ν = 0.03. We plot the evolution of the respective
Lyapunov functions, the residual γk = min0≤i≤k ||xi+1 − xi||2/||x0||2 and the PSNR.
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5.4 Conclusion
In this chapter, we provided new convergence results for PnP schemes without altering their
restoration performance. We proposed to learn a denoiser Dσ which write as the proximity
operator of a weakly convex regularization function. This proximal denoiser is not limited
by nonexpansivity and competes with unconstrained state-of-the-art denoisers. We showed
that, by plugging this denoiser, PnP-PGD, PnP-ADMM and PnP-DRS algorithms are
guaranteed to converge to a stationary point of an explicit functional. Moreover, we
introduced a new convergent plug-and-play algorithm built from a relaxed version of
the Proximal Gradient Descent (PGD) algorithm, which converges for a wider range
of regularization parameters. Quantitative experiments on ill-posed IR tasks, including
data-fidelity terms that are not strongly convex, confirmed the relevance of the method,
and showed that it allows to precisely monitor convergence of the numerical schemes.

In the last two chapters, the studied PnP and RED algorithms were applicable when
the data-fidelity term was either smooth (PnP-PGD and RED-GD) or proximable (PnP-
DRS and RED-PGD). In our applications, we only considered the L2 data-fidelity term,
which is both smooth and proximable. However, this is not true any more for Poisson
Inverse problems, for which the Kullback-Leibler data-fidelity term is neither smooth, nor
proximable. In the next chapter, we use a different notion of smoothness, defined by a
Bregman divergence, for treating such Poisson inverse problems.
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Chapter 6

Bregman Plug-and-Play for Poisson
Inverse Problems
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With the Bayesian variational formulation of image inverse problems (2.5), the data-
fidelity terms is the negative log-likelihood f(x) = − log p(y|x) of the probabilistic observa-
tion model chosen to describe the physics of the acquisition. As explained in Section 2.1.2,
in numerous applications such as Positron Emission Tomography (PET) or astronomical
CCD cameras (Bertero et al., 2009), where images are obtained by counting particles
(photons or electrons), it is common to use the Poisson noise model y ∼ P(αAx) with
parameter α > 0. The corresponding negative log-likelihood is the Kullback-Leibler
divergence

f(x) =
m∑
i=1

yi log

(
yi

α(Ax)i

)
+ α(Ax)i − yi. (6.1)

So far in this manuscript, given an observation model and its associated data-fidelity
term, we proposed PnP and RED denoising priors for regularizing the inverse problem
with an explicit prior. Moreover, when using deep denoisers corresponding to exact
gradient-descent steps (Chapter 4) or proximal mappings (Chapter 5), we saw that RED
and PnP methods become real first order proximal optimization algorithms with known
convergence guarantees. A remarkable property of these priors is that they are decoupled
from the degradation model represented by f in the sense that one learned prior can
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serve as a regularizer for many inverse problems. However, for Poisson noise the data-
fidelity term (6.1) is neither smooth with a Lipschitz gradient, nor proximable for A 6= Id
(meaning that its proximal operator cannot be computed in a closed form), which limits
the use of proximal algorithms for minimizing a variational objective of the form λf + g.
Different method have been proposed to address this limitation. PIDAL (Figueiredo
and Bioucas-Dias, 2009, 2010) and related methods (Ng et al., 2010; Setzer et al., 2010)
solve (6.1) using modified versions of ADMM. As f is proximable when A = Id, the
idea is to add a supplementary constraint in the minimization problem and to adopt an
augmented Lagrangian framework. Similarly, (Boulanger et al., 2018) adopt the primal-
dual algorithm (2.71) which also splits A from the f update. However, no convergence is
established for nonconvex regularization.

In a different direction, Bauschke et al. (2017) address the minimization of objectives
of the form f + g by introducing a Proximal Gradient Descent (PGD) algorithm in the
Bregman divergence paradigm, called Bregman Proximal Gradient (BPG). The benefit of
BPG is that the smoothness condition on f for sufficient decrease of PGD is replaced by
the “NoLip” condition "Lh− f is convex" for a convex potential h. For instance, Bauschke
et al. (2017) show that the data-fidelity term (6.1) satisfies the NoLip condition for the
Burg’s entropy h(x) = −

∑n
i=1 log(xi). In the nonconvex setting, Bolte et al. (2018) prove

global convergence of the algorithm to a critical point of the objective. The analysis
however requires assumptions that are not verified by the Poisson data-fidelity term and
Burg’s entropy Bregman potential. Bregman optimization had been previously introduced
and analyzed by Censor and Zenios (1992); Chen and Teboulle (1993); Eckstein (1993).

Our primary goal is to exploit the BPG algorithm for regularizing inverse problems
using PnP and RED priors. A first Bregman adaptation for PnP and RED was proposed
by Al-Shabili et al. (2022) but without any theoretical convergence analysis. Moreover,
the interaction between the data-fidelity, the Bregman potential, and the denoiser was not
explored. Our analysis is built on the interpretation of the plugged denoiser as a Bregman
proximal operator.

Proxhg(y) = arg min
x

g(x) +Dh(x, y), (6.2)

where Dh(x, y) is the Bregman divergence associated with h. In Section 6.1, we show that
by selecting a suitable noise model, other than the traditional Gaussian one, the MAP
denoiser can be expressed as a Bregman proximal operator. Remarkably, the corresponding
noise distribution belongs to an exponential family, which allows for a closed-form posterior
mean (MMSE) denoiser generalizing the Tweedie’s formula. Using this interpretation, we
derive a RED prior tailored to the Bregman geometry. By presenting a prior compatible
with the noise model, we highlight the limitation of the decoupling between prior and
data-fidelity suggested in the existing PnP literature.

In order to safely use our MAP and MMSE denoisers in the BPG method, we introduce
the Bregman Score denoiser, which generalizes the Gradient Step denoiser from Chapter 4.
Our denoiser provides an approximation of the log prior of the noisy distribution of images.
Moreover, based on the characterization of the Bregman Proximal operator from (Gribonval
and Nikolova, 2020), we show under mild conditions that our denoiser can be expressed
as the Bregman proximal operator of an explicit nonconvex potential. In Section 6.2,
we review the BPG algorithm from (Bauschke et al., 2017) and prove new nonconvex
convergence results, extending the analysis from (Bolte et al., 2018). In Section 6.3, we use
the Bregman Score Denoiser within the BPG algorithm and propose a Bregman extension
of RED and PnP algorithms. Elaborating on the results from (Bolte et al., 2018) for
the BPG algorithm in the nonconvex setting, we demonstrate that these algorithms are
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guaranteed to converge towards stationary points of an explicit functional. We finally
show in Section 6.4 the relevance of the proposed framework in the context of Poisson
inverse problems.

The results from this chapter were published in (Hurault et al., 2023b) and the code is
available at https://github.com/samuro95/BregmanPnP.

6.1 Bregman denoising prior
The overall objective of this chapter is to efficiently solve ill-posed image restoration (IR)
problems involving a data-fidelity term f verifying the NoLip assumption for some convex
potential h

NoLip There is L > 0 such that Lh− f is convex on int domh. (6.3)

PnP provides an elegant framework for solving ill-posed inverse problems with a denoising
prior. However, the intuition and efficiency of PnP methods inherit from the fact that
Gaussian noise is well suited for the Euclidean L2 distance, the latter naturally arising in
the MAP formulation of the Gaussian denoising problem. When the Euclidean distance
is replaced by a more general Bregman divergence, the noise model needs to be adapted
accordingly for the prior.

In Section 6.1.1, we first discuss the choice of the noise model associated to a Bregman
divergence, leading to Bregman formulations of the MAP and MMSE estimators. Then
we introduce in Section 6.1.2 the Bregman Score Denoiser that will be used to regularize
inverse problems.

Notation For convenience, we assume throughout our analysis that the convex potential
h : Ch ⊆ Rn → R ∪ {+∞} is C2 and of Legendre type

Definition 10 (Legendre function, Rockafellar (1997)). Let h : C ⊆ Rn → R ∪ {+∞} be
a proper lower semi-continuous convex function. It is called:

(i) essentially smooth, if h is differentiable on int dom(h), with moreover
∣∣∣∣∇h(xk)

∣∣∣∣→∞
for every sequence (xk)k∈N of int dom(h) converging towards a boundary point of
dom(h).

(ii) of Legendre type if h is essentially smooth and strictly convex on int dom(h).

We also recall the following properties of Legendre functions, which are used without
justification in our analysis (see (Rockafellar, 1997, Section 26) for more details):

• h is of Legendre type if and only if its convex conjugate h∗ is of Legendre type.

• For h of Legendre type, dom(∇h) = int dom(h), ∇h is a bijection from int dom(h)
to int dom(h∗) and (∇h)−1 = ∇h∗.

From h of Legendre type, Dh(x, y) denotes its associated Bregman divergence

Dh : Rn × int domh→ [0,+∞] : (x, y)→
{
h(x)−h(y)−〈∇h(y), x− y〉 if x ∈ dom(h)
+∞ otherwise.

(6.4)

https://github.com/samuro95/BregmanPnP
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Examples We are interested in the two following Legendre functions

• L2 potential : h(x) = 1
2
||x||2, C = dom(h) = dom(h∗) = Rn, Dh(x, y) = 1

2
||x− y||2

• Burg’s entropy : h(x) = −
∑n

i=1 log(xi), C = dom(h) = Rn
++, dom(h∗) = Rn

−− and
Dh(x, y) =

∑n
i=1

xi
yi
− log

(
xi
yi

)
− 1.

6.1.1 Bregman noise model

We consider the following observation noise model, referred to as Bregman noise1,

for x, y ∈ dom(h)× int dom(h) pY |X(y|x) := exp (−γDh(x, y) + ρ(x)) . (6.5)

We assume that there is γ > 0 and a normalizing function ρ : dom(h)→ R such that the
expression (6.5) defines a probability measure. For instance, for h(x) = 1

2
||x||2, γ = 1

σ2

and ρ = 0, we retrieve the Gaussian noise model with variance σ2. As we will show in
Section 6.4, for h given by Burg’s entropy, pY |X corresponds to a multivariate Inverse
Gamma (IG) distribution.

Given a noisy observation y ∈ int dom(h), i.e. a realization of a random variable Y
with conditional probability pY |X , we now reconsider, the two optimal MAP and MMSE
denoising estimators, that were derived in Section 2.4.1 for the specific context of Gaussian
noise.

Maximum-a-posteriori (MAP) estimator The MAP denoiser selects the mode of
the a-posteriori probability distribution pX|Y . Given the prior pX , it writes

x̂MAP (y) = arg min
x
− log pX|Y (x|y) = arg min

x
− log pX(x)− log pY |X(y|x)

= Proxh− 1
γ
(ρ+log pX)

(y).

(6.6)

(6.7)

Under the Bregman noise model (6.5), the MAP denoiser writes as the Bregman proximal
operator (see relation (6.2)) of − 1

γ
(log pX + ρ). This acknowledges for the fact that the

introduced Bregman noise is the adequate noise model for generalizing PnP methods
within the Bregman framework.

Posterior mean (MMSE) estimator The MMSE denoiser is the expected value of the
posterior probability distribution and the optimal Bayes estimator for the L2 score. Note
that our Bregman noise conditional probability (6.5) belongs to the regular exponential
family of distributions

pY |X(y|x) = p0(y) exp (〈x, T (y)〉 − ψ(x)) (6.8)

with T (y) = γ∇h(y), ψ(x) = γh(x)− ρ(x) and p0(y) = exp (γh(y)− γ〈∇h(y), y〉). Indeed,
we have

pY |X(y|x) = p0(y) exp (〈x, T (y)〉 − ψ(x))

= exp (γh(y)− γ〈∇h(y), y〉) exp (γ〈x,∇h(y)〉 − γh(x) + ρ(x))

= exp (−γ(h(x)− h(y)− 〈∇h(y), x− y〉) + ρ(x))

= exp (−γDh(x, y) + ρ(x)) .

(6.9)

1The Bregman divergence being non-symmetric, the order of the variables (x, y) in Dh is important.
Distributions of the form (6.5) with reverse order in Dh have been characterized in (Banerjee et al., 2005)
but this analysis does not apply here.
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It is shown in (Efron, 2011) (for T = Id and generalized in (Kim and Ye, 2021) for
T 6= Id) that the corresponding posterior mean estimator verifies a generalized Tweedie
formula

∇T (y).x̂MMSE(y) = −∇ log p0(y) +∇ log pY (y). (6.10)

As T = ∇h and using

∇ log p0(y) = γ∇h(y)− γ∇h(y)− γ∇2h(y).y = −γ∇2h(y).y, (6.11)

we get
γ∇2h(y).x̂MMSE(y) = γ∇2h(y).y +∇ log pY (y). (6.12)

As h is strictly convex, ∇2h(y) is invertible and

x̂MMSE(y) = y +
1

γ
(∇2h(y))−1.∇ log pY (y). (6.13)

Note that for the Gaussian noise model, we have h(x) = 1
2
||x||2, γ = 1/σ2 and (6.13) falls

back to the more classical Tweedie formula (2.74) of the Gaussian posterior mean denoiser
x̂MMSE(y) = y + σ2∇ log pσ(y).

Moreover, in the specific Euclidean L2 case, we explained in Section 2.4.1 that with
the Denoising Score Matching (DSM) result from (Vincent, 2011), training a deep
denoiser by minimizing the denoising L2 comes back exactly to approximating the MMSE
denoiser. We now prove the same result for a general Bregman noise model.

Proposition 26. Denoting the denoiser Bθγ with training parameters θ, with the noise
conditional probability (6.5), we have:

Ey∼pY (y)

[
1

2

∣∣∣∣Bθγ(y)− x̂MMSE(y)
∣∣∣∣2] = E(x,y)∼pX,Y

[
1

2

∣∣∣∣Bθγ(y)− x
∣∣∣∣2]+ const (6.14)

where const denotes a constant w.r.t. θ. Minimizing w.r.t. θ the left term, which we call
Posterior Mean Matching (PMM) comes back to minimizing the right term, referred to
Denoising Score Matching (DSM) in Vincent (2011).

Proof. Departing from the PMM term and using Tweedie’s formula (6.13)

PMM(θ) = Ey∼pY (y)

[
1

2

∣∣∣∣Bθγ(y)− x̂MMSE(y)
∣∣∣∣2]

= Ey∼pY (y)

[
1

2

∣∣∣∣∣∣∣∣Bθγ(y)− y − 1

γ
(∇2h(y))−1.∇ log pY (y)

∣∣∣∣∣∣∣∣2
]
.

(6.15)

(6.16)

We set
sθγ(y) := γ∇2h(y).

(
Bθγ(y)− y

)
(6.17)

so that

PMM(θ) = Ey∼pY (y)

[
1

2γ2
∣∣∣∣(∇2h(y))−1.

(
sθγ(y)−∇ log pY (y)

)∣∣∣∣2] . (6.18)

The rest of the proof follows the same arguments as Vincent (2011). We can develop (6.18)
as

PMM(θ) = Ey∼pY (y)

[
1

2γ2
∣∣∣∣(∇2h(y))−1sθγ(y)

∣∣∣∣2]− S(θ) + const (6.19)
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with

S(θ) = Ey∼pY (y)

[
1

2γ2

〈
(∇2h(y))−1.sθγ(y), (∇2h(y))−1.∇ log pY (y)

〉]
=

1

2γ2

∫
y

〈
(∇2h(y))−1.sθγ(y), (∇2h(y))−1.

∇pY (y)

pY (y)

〉
pY (y)dy

=
1

2γ2

∫
y

〈
(∇2h(y))−1.sθγ(y), (∇2h(y))−1.∇pY (y)

〉
dy.

(6.20)

(6.21)

(6.22)

Using Bayes formula

∇pY (y) = ∇y

∫
x

pY |X(y|x)pX(x)dx

=

∫
x

pX(x)∇ypY |X(y|x)dx

=

∫
x

pX(x)pY |X(y|x)∇y log pY |X(y|x)dx

=

∫
x

pX,Y (x, y)∇y log pY |X(y|x)dx.

(6.23)

(6.24)

(6.25)

(6.26)

And thus we obtain

S(θ) =
1

2γ2

∫
y

〈
(∇2h(y))−1.sθγ(y), (∇2h(y))−1.

∫
x

pX,Y (x, y)∇y log pY |X(y|x)dx
〉
dy

=
1

2γ2

∫
y

∫
x

〈(∇2h(y))−1.sθγ(y), (∇2h(y))−1.∇y log pY |X(y|x)
〉
pX,Y (x, y)dxdy

= E(x,y)∼pX,Y

[
1

2γ2

〈
(∇2h(y))−1.sθγ(y), (∇2h(y))−1.∇y log pY |X(y|x)

〉]
.

(6.27)

(6.28)

(6.29)

Coming back to (6.19),

PMM(θ) = Ey∼pY (y)

[
1

2γ2
∣∣∣∣(∇2h(y))−1sθγ(y)

∣∣∣∣2]
− E(x,y)∼pX,Y

[
1

2γ2

〈
(∇2h(y))−1.sθγ(y), (∇2h(y))−1.∇y log pY |X(y|x)

〉]
+ const

(6.30)

Using the fact that

Ey∼pY (y)

[
1

2γ2
∣∣∣∣(∇2h(y))−1sθγ(y)

∣∣∣∣2] = E(x,y)∼pX,Y

[
1

2γ2
∣∣∣∣(∇2h(y))−1sθγ(y)

∣∣∣∣2] (6.31)

and factorizing, we get

PMM(θ) = E(x,y)∼pX,Y

[
1

2γ2
∣∣∣∣(∇2h(y))−1.

(
sθγ(y)−∇y log pY |X(y|x)

)∣∣∣∣2]+ const

= E(x,y)∼pX,Y

[∣∣∣∣∣∣∣∣Bθγ(y)− y +
1

γ
(∇2h(y))−1.∇y log pY |X(y|x)

∣∣∣∣∣∣∣∣2
]

+ const.

(6.32)

(6.33)
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Now from the Bregman noise model (6.5),

∇y log pY |X(y|x) = −γ∇yDh(x, y)

= γ∇2h(y).(y − x).

(6.34)
(6.35)

And thus
PMM(θ) = E(x,y)∼pX,Y

[∣∣∣∣Bθγ(y)− x
∣∣∣∣2]+ const. (6.36)

Therefore, with this Proposition and the Tweedie formula verified by the MMSE
denoiser, we get: given an off-the-shelf “Bregman denoiser” Bγ specifically devised to
remove Bregman noise (6.5) of level γ, if the denoiser is trained with the L2 loss, then it
provides an approximation of the score

−∇ log pY (y) ≈ γ∇2h(y). (y − Bγ(y)) . (6.37)

6.1.2 Bregman Score Denoiser

We propose to define a denoiser following the form of the MMSE (6.13)

Bγ(y) = y − (∇2h(y))−1 · ∇gγ(y), (6.38)

with gγ : Rn → R a nonconvex potential parameterized by a neural network. The denoiser
takes the form of a step of Natural Gradient-Descent (NGD) (Amari, 1998). The term
(∇2h(y))−1 · ∇gγ(y) corresponds to the steepest direction of gγ in the Riemannian metric
defined by the Hessian of h. This denoiser is a Bregman generalization of the Gaussian
noise Gradient-Step denoiser studied in the Chapter 4.

Using the MMSE Tweedie formula (6.13) and the Denoising Score Matching general-
ization derived in Proposition 26, training the denoiser (6.13) with the Bregman noise
(6.5) by minimizing the L2 loss comes back to minimize

Ey∼pY (y)

[∣∣∣∣∣∣∣∣(∇2h(y))−1.

(
∇gγ(y)− 1

γ
∇ log pY (y)

)∣∣∣∣∣∣∣∣2
]
. (6.39)

We get at optimality ∇gγ ≈ − 1
γ
∇ log pY , i.e. the score is properly approximated with an

explicit conservative vector field. We refer to this denoiser as the Bregman Score denoiser.

Is the Bregman Score Denoiser a Bregman proximal operator?

Using the characterization of Euclidean proximity operator from Theorem 3, we proved in
Chapter 5 that the Gaussian noise Gradient-Step denoiser can be the proximal operator
of a nonconvex potential. We want to generalize this property to our Bregman Score
denoiser (6.38).

A characterization of Bregman proximity operators A first step to achieve this
result is to extend Theorem 3 in the Bregman framework. Remind that in Theorem 3,
it was proven (by Gribonval and Nikolova (2020)) that an operator T : Rn → Rn is a
Euclidean proximity operator if and only if there is a convex function ψ such that for all
x, T (x) ∈ ∂ψ(x). In the following theorem, we generalize this result for T a Bregman
proximity operator, where we define the Bregman proximity operator as (6.2).
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Theorem 23. Let h of Legendre type on Rn. Let T : int dom(h) → Rn. The following
properties are equivalent:

(i) There is φ : Rn → R ∪ {+∞} such that for each y ∈ int dom(h)

T (y) ∈ arg min
x∈Rn

{Dh(x, y) + φ(x)}. (6.40)

(ii) There is a l.s.c ψ : Rn → R ∪ {+∞}, convex on int dom(h∗) such that T (∇h∗(z)) ∈
∂ψ(z) for each z ∈ int dom(h∗).

When they hold, φ (resp. ψ) can be chosen given ψ (resp. φ) with ∀z ∈ int dom(h∗)

ψ(z) = 〈T (∇h∗(z)), z〉 − h(T (∇h∗(z)))− φ(T (∇h∗(z))) (6.41)

or equivalently, ∀y ∈ int dom(h)

ψ(∇h(y)) = 〈T (y),∇h(y)〉 − h(T (y))− φ(T (y)). (6.42)

To summarize, T : Rn → Rn is a Bregman proximity operator (with potential h) if and
only if there is a convex function ψ such that for all x, T (∇h∗x) ∈ ∂ψ(x). Note that, in
the Euclidean case h(x) = 1

2
||x||2, we retrieve the result from Theorem 3.

Remark 23. Theorem 23 is an extension of (Gribonval and Nikolova, 2020, Corollary 5
a)) when h is strictly convex and thus ∇h invertible. In this corollary, the authors state
that (i) is equivalent to

(iii) There is a l.s.c g : Rn → R ∪ {+∞} convex such that ∇h(T−1(x)) ∈ ∂g(x) for each
x ∈ Im(T ).

However, (ii) and (iii) are not equivalent. We show here that (ii) implies (iii) but the
converse is not true. Let ψ convex, defined from (ii). Thanks to the Legendre-Fenchel
identity, we have that

∀z ∈ int dom(h∗), T (∇h∗(z)) ∈ ∂ψ(z)

⇔ ∀z ∈ int dom(h∗), z ∈ ∂ψ∗(T (∇h∗(z)))

⇔ ∀y ∈ int dom(h), ∇h(y) ∈ ∂ψ∗(T (y))

⇒ ∀x ∈ Im(T ), ∇h(T−1(x)) ∈ ∂ψ∗(x).

(6.43)
(6.44)
(6.45)
(6.46)

Therefore (ii) implies (iii) with g = ψ∗. However, the last line is just an implication.

Remark 24. The Bregman divergence being non-symmetric, the Bregman proximity oper-
ator could also be defined with the Bregman divergence in the other order i.e.
arg minx∈Rn{Dh(y, x) + φ(x)}. As done in Gribonval and Nikolova (2020), a characteriza-
tion can also be derived in this order but this out of the scope of this work.

Proof. We now prove Theorem 23. We follow the same order of arguments than (Gribonval
and Nikolova, 2020). We first prove, in the following Lemma, a general result reminiscent
to (Gribonval and Nikolova, 2020, Theorem 3) for a general form of divergence function
and then apply this result to Bregman divergences.
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Lemma 8. Let a : Y ⊆ Rn → R∪{+∞}, b : Rn → R∪{+∞}, A : Y → Z bijection from
Y to Z (with Z ⊂ Rn). Consider T : Y → Rn. Let D(x, y) := a(y) − 〈x,A(y)〉 + b(x).
The following properties are equivalent:

(i) There is φ : Rn → R ∪ {+∞} such that for each y ∈ Y

T (y) ∈ arg min
x∈Rn

{D(x, y) + φ(x)}. (6.47)

(ii) There is a l.s.c ψ : Rn → R ∪ {+∞} convex such that T (A−1(z)) ∈ ∂ψ(z) for each
z ∈ Z.

When they hold, φ (resp. ψ) can be chosen given ψ (resp. φ) with

∀z ∈ Z, ψ(z) = 〈T (A−1(z)), z〉 − b(T (A−1(z)))− φ(T (A−1(z))). (6.48)

Proof. We follow the same arguments as the proof of (Gribonval and Nikolova, 2020,
Theorem 3(c)).

(i) ⇒ (ii) :
Define

ρ(z) =

{
〈T (A−1(z)), z〉 − b(T (A−1(z)))− φ(T (A−1(z))) if z ∈ Z
+∞ else. (6.49)

Let z ∈ Z and y = A−1(z). From (i), T (y) is the global minimizer of x→ D(x, y) + φ(x)
or of x→ −〈x,A(y)〉+ b(x) + φ(x) and ∀z′ ∈ Z, y′ = A−1(z′),

ρ(z′)− ρ(z) = 〈T (A−1(z′)), z′〉 − b(T (A−1(z′)))− φ(T (A−1(z′)))

− 〈T (A−1(z)), z〉+ b(T (A−1(z))) + φ(T (A−1(z)))

= 〈T (y′), A(y′)〉 − b(T (y′))− φ(T (y′))

− 〈T (y), A(y)〉+ b(T (y)) + φ(T (y))

= 〈T (y), A(y′)− A(y)〉+ 〈T (y′), A(y′)〉 − b(T (y′))− φ(T (y′))

− 〈T (y), A(y′)〉+ b(T (y)) + φ(T (y))

≥ 〈T (y), A(y′)− A(y)〉 = 〈T (A−1(z)), z′ − z〉.

(6.50)

By definition of the subdifferential, this shows that

T (A−1(z)) ∈ ∂ρ(z). (6.51)

Let ρ̃ be the lower convex envelope of ρ (pointwise supremum of all the convex l.s.c
functions below ρ). ρ̃ is proper convex l.s.c. and ∀z ∈ Z, ∂ρ(z) 6= ∅. By (Gribonval and
Nikolova, 2020, Proposition 3), ∀z ∈ Z, ρ(z) = ρ̃(z) and ∂ρ(z) = ∂ρ̃(z). Thus, for ψ = ρ̃,
we get (ii).

(ii) ⇒ (i) :
Define η : Y → R by

η(y) := 〈T (y), A(y)〉 − b(T (y))− ψ(A(y)). (6.52)

By (ii), ∀z, z′ ∈ Z,
ψ(z)− ψ(z′) ≥ 〈T (A−1(z′)), z − z′〉 (6.53)
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which gives ∀y, y′ ∈ Y ,

ψ(A(y))− ψ(A(y′)) ≥ 〈T (y′), A(y)− A(y′)〉. (6.54)

This yields

η(y′)− η(y) = 〈T (y′), A(y′)〉 − b(T (y′))− ψ(A(y′))− 〈T (y), A(y)〉+ b(T (y)) + ψ(A(y))

≥ 〈T (y′)− T (y), A(y)〉 − b(T (y′)) + b(T (y)).

(6.55)

We can define φ : Rn → R ∪ {+∞} obeying dom(φ) = Im(T ) with

φ(x) =

{
η(y) for y ∈ T−1(x) if x ∈ Im(T )
+∞ otherwise. (6.56)

For x′ ∈ Im(T ), x′ = T (y′), using the previous inequality with η, we get

φ(x′)− φ(T (y)) = φ(T (y′))− φ(T (y))

= η(y′)− η(y)

≥ 〈T (y′)− T (y), A(y)〉 − b(T (y′)) + b(T (y))

= 〈x′ − T (y), A(y)〉 − b(x′) + b(T (y)),

(6.57)

that is to say, ∀x′ ∈ Im(T )

φ(x′) + b(x′)− 〈x′, A(y)〉 ≥ φ(T (y)) + b(T (y))− 〈T (y), A(y)〉. (6.58)

Given the definition of φ, this is also true for x′ /∈ Im(T ). Adding a(y) on both sides, we
get the desired result.

Theorem 23 is the specialization of the previous lemma with Bregman divergences.
Given h of Legendre-type, the divergence D(x, y) = a(y)− 〈x,A(y)〉+ b(x) becomes the
Bregman divergence Dh(x, y) defined in (6.4) for A(y) := ∇h(y), a(y) := 〈∇h(y), y〉−h(y)
and b(x) := h(x) if x ∈ dom(h) and +∞ otherwise.

Application to the Bregman Score Denoiser We now apply this characterization
to prove that the proposed Bregman Score Denoiser (6.38) can explicitly write as the
Bregman proximal operator of a nonconvex potential.

Proposition 27. Let h be C2 and of Legendre type. Let gγ : Rn → R ∪ {+∞} C2 and
Bγ(y) : int dom(h) → Rn defined from h and gγ in (6.38). Assume Im(Bγ) ⊂ int dom(h)
and that JBγ the Jacobian of Bγ is positive definite on int dom(h). Then for φγ : Rn →
R ∪ {+∞} defined by

φγ(x) :=

{
gγ(y)−Dh(x, y) for y = B−1γ (x) if x ∈ Im(Bγ)
+∞ otherwise (6.59)

we have that for each y ∈ int dom(h)

Bγ(y) ∈ arg min
x∈Rn

{Dh(x, y) + φγ(x)} (6.60)
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Remark 25. This result is the Bregman generalization of Proposition 25 on the char-
acterization of the Gradient Step denoiser as a proximity operator. The condition JBγ
positive definite on int dom(h) falls back to the condition ∇gγ strictly nonexpansive in
Proposition 25.

Remark 26. It is enough to assume JBγ positive semi-definite, to get the same result
changing y = B−1γ (x) by y ∈ B−1γ (x) in the definition (6.59) of φγ. We nevertheless
prefer to write it as above to ensure that φγ is real analytic when Bγ is real analytic (see
Section 6.4.2).

Proof. In order to apply Theorem 23, we define ψγ : Rn → R ∪ {+∞} by

ψγ(y) =

{
−h(y) + 〈∇h(y), y〉 − gγ(y) if y ∈ int dom(h)
+∞ otherwise. (6.61)

Eventually, Proposition 27 is an application of Theorem 23 with T = Bγ : Rn → Rn

defined on int dom(h) by

Bγ(y) = ∇(ψγ ◦ ∇h∗) ◦ ∇h(y). (6.62)

We verify that the above expression corresponds to the initial definition of Bγ from (6.38).
Indeed, for y ∈ int dom(h),

Bγ(y) = ∇(ψγ ◦ ∇h∗) ◦ ∇h(y)

= ∇2h∗(∇h(y)).∇ψγ ◦ ∇h∗ ◦ ∇h(y)

= ∇2h∗(∇h(y)).∇ψγ(y).

(6.63)
(6.64)
(6.65)

h is assumed strictly convex on int dom(h), for y ∈ int dom(h), the Hessian of h, denoted
as ∇2h(y) is invertible. By differentiating,

∇h∗(∇h(y)) = y (6.66)

we get
∇2h∗(∇h(y)) = (∇2h(y))−1, (6.67)

so that
Bγ(y) = (∇2h(y))−1.∇ψγ(y). (6.68)

With the definition (6.61), we directly get

Bγ(y) = (∇2h(y))−1.∇ψγ(y) = y − (∇2h(y))−1.∇gγ(y). (6.69)

and we retrieve the definition of Bγ from (6.38).
For applying Theorem 23, we need to verify that ψγ ◦ ∇h∗ is convex on int dom(h∗).

We first calculate for y ∈ int dom(h)

JBγ (y) = ∇ (∇(ψγ ◦ ∇h∗) ◦ ∇h(y))

= ∇2h(y).∇2(ψγ ◦ ∇h∗)(∇h(y)).

(6.70)
(6.71)

By Proposition 14 and bijectivity of ∇h∗ between int dom(h∗) and int dom(h), we have

ψγ ◦ ∇h∗ strictly convex on int dom(h∗)

⇔ ∀z ∈ int dom(h∗),∀u ∈ Rn, 〈∇2(ψγ ◦ ∇h∗)(z)u, u〉 > 0

⇔ ∀y ∈ int dom(h), ∀u ∈ Rn, 〈∇2(ψγ ◦ ∇h∗)(∇h(y))u, u〉 > 0.

(6.72)
(6.73)
(6.74)
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Now, using the fact that ∇2h(y) is positive definite, it follows

⇔ ∀y ∈ int dom(h),∀u ∈ Rn, 〈∇2h(y).∇2(ψγ ◦ ∇h∗)(∇h(y))u, u〉 > 0

⇔ ∀y ∈ int dom(h),∀u ∈ Rn, 〈JBγ (y)u, u〉 > 0

⇔ JBγ positive definite on int dom(h).

(6.75)
(6.76)
(6.77)

Therefore, assuming the latter, from Theorem 23, we get that there is φγ : Rn → R ∪ {+∞}
such that for each y ∈ int dom(h)

Bγ(y) ∈ arg min{Dh(x, y) + φγ(x)}. (6.78)

Finally, Theorem 23 also indicates that φγ can be chosen given ψγ with

φγ(x) = 〈Bγ(y),∇h(y)〉 − h(Bγ(y))− ψγ ◦ ∇h∗(∇h(y)) for y ∈ B−1γ (x). (6.79)

As we assumed JBγ positive definite (and not only positive semi-definite), we get that this
inverse is unique: ∀y ∈ int dom(h),

φγ(Bγ(y)) = 〈Bγ(y),∇h(y)〉 − h(Bγ(y))− ψγ ◦ ∇h∗(∇h(y))

= 〈Bγ(y)− y,∇h(y)〉 − h(Bγ(y)) + h(y) + 〈y,∇h(y)〉 − h(y)− ψγ(y)

= −Dh(Bγ(y), y) + 〈y,∇h(y)〉 − h(y)− ψγ(y)

= −Dh(Bγ(y), y) + gγ(y).

(6.80)

More details on the positive definite assumption Proposition 27 requires the
positive definiteness of JBγ on int dom(h). As detailed in Lemma 2, in the Euclidean case
h(x) = 1

2
||x||2, the positive definiteness is verified by the true MMSE denoiser. We also

show that in Section 6.4, that this is verified by the MMSE denoiser when h is Burg’s
entropy. We suppose that the positive definiteness of the Jacobian of the MMSE denoiser
is true for any h Legendre function, but we still did not manage to prove it.

To conclude this section, the Bregman Score Denoiser provides, via exact gradient or
proximal mapping, two distinct explicit nonconvex priors gγ and φγ that can be used for
regularizing image inverse problems in a plug-and-play fashion.

6.2 Bregman Proximal Gradient (BPG) algorithm
Let F and R be two proper, lower semi-continuous and lower-bounded functions with F
of class C1 on int dom(h). It is proposed in Bauschke et al. (2017) to minimize Ψ = F +R
using the following BPG algorithm:

xk+1 ∈ Tτ (xk) = arg min
x∈Rn

{R(x) + 〈x− xk,∇F (xk)〉+
1

τ
Dh(x, x

k)}. (6.81)

Recalling the general expression of proximal operators defined in relation (6.2), when
∇h(xk)− τ∇F (xk) ∈ dom(h∗), the previous iteration can be written as

xk+1 ∈ ProxhτR ◦∇h∗(∇h− τ∇F )(xk). (6.82)

With formulation (6.82), the BPG algorithm generalizes the Proximal Gradient Descent
(PGD) algorithm with a different geometry defined by h.
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If F verifies the NoLip condition (6.3) for some L > 0 and if τ < 1
L
, one can prove

that the objective function Ψ decreases along the iterates (6.82). Global convergence of
the iterates is also shown in (Bolte et al., 2018). However, they take assumptions on F
and h that are not satisfied in the context of Poisson inverse problems. For instance, h is
assumed strongly convex on the full domain Rn, which is not satisfied by Burg’s entropy.
Additionally, F is assumed to have Lipschitz-gradient on bounded subsets of Rn, which is
not true for F the Poisson data-fidelity term (6.1). Following the structure of their proof,
we extend in Proposition 28 and Theorem 24 the convergence theory from (Bolte et al.,
2018) for a more general set of assumptions (Assumption 4) described below, which is
verified for Poisson inverse problems. For the rest of the section, we take the following
general assumptions.

Assumption 1.

(i) h : Rn → R is of Legendre-type.

(ii) F : Rn → R is proper, C1 on int dom(h), with dom(h) ⊂ dom(F ).

(iii) R : Rn → R is proper, lower semi-continuous with domR∩ int dom(h) 6= ∅.

(iv) Ψ = F +R is lower-bounded, coercive and verifies the Kurdyka-Łojasiewicz (KŁ)
property.

(v) For x ∈ int dom(h), Tτ (x) (defined in (6.81)) is nonempty and included in int dom(h).

Note that, since R is nonconvex, the mapping Tτ is not single-valued in general.
Assumption 1(v) is required for the algorithm to be well-posed. As shown in (Bauschke
et al., 2017; Bolte et al., 2018), one sufficient condition for Tτ (x) 6= ∅ is the supercoercivity of
the function h+λR for all λ > 0, that is lim||x||→+∞

h(x)+λR(x)
||x|| = +∞. As Tτ (x) ⊂ dom(h),

Tτ (x) ⊂ int dom(h) is true when dom(h) is open (which is the case for Burg’s entropy for
example).

The convergence of the BPG algorithm in the nonconvex setting is studied by the authors
of (Bolte et al., 2018). Under the main assumption that Lh− F is convex on int dom(h),
they show first the sufficient decrease property (and thus convergence) of the function
values, and second, global convergence of the iterates. However, Lh− F is not convex on
the full domain of int dom(h) but only on the compact subset dom(R). One can verify
that all the iterates (6.81) belong to the convex set

Conv(domR) ∩ int dom(h), (6.83)

where Conv(E) stands for the convex envelope of E. We will show that it is enough to
assume Lh− F convex on this convex subset, and we take the following assumption.

Assumption 2. There is L > 0 such that, Lh−F is convex on Conv(domR)∩int dom(h).

Equipped with this set of assumptions„ we can prove a result similar to (Bolte et al.,
2018, Proposition 4.1).

Proposition 28. Under Assumptions 1 and 2, let (xk)k∈N be a sequence generated by
(6.81) with 0 < τL < 1. Then the following properties hold

(i) (Ψ(xk))k∈N is non-increasing and converges.

(ii)
∑

kDh(x
k+1, xk) <∞ and min0≤k≤K Dh(x

k+1, xk) = O(1/K).

Proof. We adapt here the proof from (Bolte et al., 2018) to the case where Lh− F is not
globally convex but only convex on the convex subset Conv(domR) ∩ int dom(h).
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Sufficient decrease property We first show that the sufficient decrease property of
Ψ(xk) holds. This is true because the characteristic inequality of convex differentiable
functions from Proposition 14 holds when convexity holds only on a subset.

Using Proposition 14, we have Lh − F convex on C, if and only if, ∀x, y ∈ C,
DLh−F (x, y) ≥ 0, i.e. DF (x, y) ≤ LDh(x, y). The rest of the proof is identical to the one
of (Bolte et al., 2018) and we recall it here for sake of completeness. Given the optimality
conditions in (6.81), all the iterates xk ∈ C satisfy

R(xk+1) + 〈xk+1 − xk,∇F (xk)〉+
1

τ
Dh(x

k+1, xk) ≤ R(xk). (6.84)

Using DF (x, y) ≤ LDh(x, y), we get

(R(xk+1) + F (xk+1))− (R(xk) + F (xk)) ≤ −1

τ
Dh(x

k+1, xk) + LDh(x
k+1, xk)

= (L− 1

τ
)Dh(x

k+1, xk) ≤ 0
(6.85)

which, together with the fact that Ψ is lower bounded, proves (i). Summing the previous
inequality from k = 0 to K − 1 gives

0 ≤
K−1∑
k=0

Dh(x
k+1, xk) ≤ τ

1− τL
(Ψ(x0)−Ψ(xK)) ≤ τ

1− τL
(Ψ(x0)− inf

x∈C
Ψ(x)) < +∞.

(6.86)

Thus (Dh(x
k+1, xk))k is summable and converges to 0 when k → +∞. Finally

min
0≤k≤K

Dh(x
k+1, xk) ≤ 1

K + 1

K∑
k=0

Dh(x
k+1, xk)

≤ 1

K + 1

τ

1− τL
(Ψ(x0)− inf

x∈C
Ψ(x)).

(6.87)

(6.88)

Global convergence To prove global convergence of the iterates upon the Kurdyka-
Łojasiewicz (KŁ) property, (Bolte et al., 2018, Theorem 4.1) is based on the hypotheses (a)
dom(h) = Rn and h is strongly convex on Rn and (b) ∇h and ∇F are Lipschitz continuous
on any bounded subset of Rn. These assumptions are not verified for h being the Burg’s
entropy h(x) = −

∑
log(xi) or F the Poisson data-fidelity term (6.1). Indeed, in that case,

dom(h) = Rn
++, and h is strongly convex only on bounded sets. Moreover, F and h are

not Lipschitz continuous near 0. However, thanks to the proven decrease of the iterates
and as Ψ is assumed coercive, the iterates remain bounded. We can adopt the following
weaker assumptions to ensure that the iterates do not tend to +∞ or 0.

Assumption 3.

(i) h is strongly convex on any bounded convex subset of its domain.

(ii) For all α > 0, ∇h and ∇F are Lipschitz continuous on {Ψ(x) ≤ α}.
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Under these assumptions, we prove the equivalent of (Bolte et al., 2018, Theorem 4.1).

Theorem 24. Under Assumptions 1, 2 and 3, the sequence (xk)k∈N generated by (6.81)
with 0 < τL < 1 converges to a critical point of Ψ.

Proof. The proof of this theorem is a direct application of the abstract Theorem 4 on the
convergence with the KŁ property. We need to verify that the sequence generated by our
algorithm verifies the assumptions H1, H2 and H3 from Theorem 4. Then we can conclude
on the single-point convergence using the fact that Ψ is KŁ.

H1:. From (6.85), we get

Ψ(xk)−Ψ(xk+1) ≥
(

1

τ
− L

)
Dh(x

k+1, xk). (6.89)

Besides, h is assumed to be strongly convex on any bounded convex subset of its domain.
Furthermore, notice that Conv(C(x0))∩dom(h) is a convex subset of dom(h) as intersection
of convex sets. Therefore, there is σh > 0 such that

∀x, y ∈ Conv(C(x0)) ∩ dom(h), Dh(x, y) ≥ σh ||x− y||2 . (6.90)

With the convention Dh(x, y) = +∞ if x /∈ dom(h) or y /∈ int dom(h),

∀x, y ∈ Conv(C(x0)), Dh(x, y) ≥ σh ||x− y||2 . (6.91)

As ∀k ≥ 1, xk ∈ C(x0), we get

Ψ(xk)−Ψ(xk+1) ≥ σh

(
1

τ
− L

)
||xk+1 − xk||2 , (6.92)

which proves (H1).
H2:. Given (6.81), the optimality condition for the update of xk+1 is

0 ∈ ∂R(xk+1) +∇F (xk) +
1

τ
(∇h(xk+1)−∇h(xk)). (6.93)

For
ωk+1 = ∇F (xk+1)−∇F (xk) +

1

τ
(∇h(xk)−∇h(xk+1)) (6.94)

we have
ωk+1 ∈ ∂Ψ(xk+1) = ∂R(xk+1) +∇F (xk+1) (6.95)

and
||ωk+1|| ≤

∣∣∣∣∇F (xk+1)−∇F (xk)
∣∣∣∣+

1

τ

∣∣∣∣∇h(xk)−∇h(xk+1)
∣∣∣∣ . (6.96)

By assumption, ∇F and ∇h are Lipschitz continuous on C(x0) = {Ψ(x) < Ψ(x0)}. As
seen before, ∀k ≥ 1, xk ∈ C(x0). Thus, there is b > 0 such that

||ωk+1|| ≤
∣∣∣∣∇F (xk+1)−∇F (xk)

∣∣∣∣+
1

τ

∣∣∣∣∇h(xk)−∇h(xk+1)
∣∣∣∣ ≤ b

∣∣∣∣xk+1 − xk
∣∣∣∣ . (6.97)

H3:. By coercivity of Ψ and decrease of the iterates Ψ(xk) (see Proposition 28), the
iterates remain bounded. Let (xki) be a subsequence converging towards x∗. Using the
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optimality in the update of xk we have

R(xk) + 〈xk − xk−1,∇F (xk−1)〉+
1

τ
Dh(x

k, xk−1)

≤ R(x∗) + 〈x∗ − xk−1,∇F (xk−1)〉+
1

τ
Dh(x

∗, xk−1)

⇔ R(xk) ≤ R(x∗) + 〈x∗ − xk−1,∇F (xk−1)〉+
1

τ
Dh(x

∗, xk−1)− 1

τ
Dh(x

k, xk−1).

(6.98)

(6.99)

(6.100)

From (6.92) and the fact that (Ψ(xk))k converges, we have that
∣∣∣∣xk − xk−1∣∣∣∣ → 0.

Thus (xki−1)i also converges towards x∗. In addition, since h is continuously differentiable,
Dh(x

∗, xk−1) = h(x∗) − h(xk−1) − 〈∇h(xk−1), x∗ − xk−1〉 → 0. Passing to the limit in
(6.100), we get

lim sup
i→+∞

R(xki) ≤ R(x∗). (6.101)

By lower semicontinuity of R and continuity of F , we get the desired result:

R(xki) + F (xki)→ R(x∗) + F (x∗). (6.102)

Backtracking The convergence actually requires controlling the NoLip constant. In
order to avoid small stepsizes, we propose to adapt the backtracking strategy of (Beck,
2017, Chapter 10) to the BPG algorithm. Given γ ∈ (0, 1), η ∈ [0, 1) and an initial stepsize
τ0 > 0, the following backtracking update rule on τ is applied at each iteration k:

while Ψ(xk)−Ψ(Tτ (xk)) <
γ

τ
Dh(Tτ (xk), xk), τ ←− ητ. (6.103)

Proposition 29. At each iteration of the algorithm, the backtracking procedure (6.103) is
finite and with backtracking, the convergence results of Proposition 28 and Theorem 24
still hold.

Proof. For a given stepsize τ , we showed in equation (6.85) that

Φ(xk)− Φ(Tτ (xk)) ≥
(

1

τ
− L

)
Dh(Tτ (xk), xk). (6.104)

Taking τ < 1−γ
L

, we get 1
τ
− L > γ

τ
so that

Φ(xk)− Φ(Tτ (xk)) >
γ

τ
Dh(Tτ (xk), xk). (6.105)

Hence, when τ < 1−γ
L

, the sufficient decrease condition is satisfied and the backtracking
procedure (τ ←− ητ) must end. Replacing the former sufficient decrease condition (6.104)
with (6.105), the rest of the proofs from Proposition 28 and Theorem 24 are identical.

6.3 PnP and RED restoration with Bregman Score De-
noiser

We now regularize inverse problems with the explicit prior provided by the Bregman
Score Denoiser (6.38). We consider two variants of BPG for regularizing inverse problems
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involving a data-fidelity term f satisfying some NoLip assumption. These algorithms
respectively correspond to Bregman generalizations of the RED Gradient-Descent (2.103)
and the Plug-and-Play PGD (2.109) algorithms. For the rest of this section, we consider
the following assumptions.

Assumption 4.

(i) h : Ch → R ∪ {+∞} is of class C2 and of Legendre type.

(ii) f : Rn → R ∪ {+∞} is proper, lower-bounded, coercive, of class C1 on int dom(h),
with dom(h) ⊂ dom(f), and is subanalytic.

(iii) NoLip : Lfh− f is convex on int dom(h).

(iv) h is assumed strongly convex on any bounded convex subset of its domain and for all
α > 0, ∇h and ∇f are Lipschitz continuous on {x ∈ dom(h),Ψ(x) ≤ α}.

(v) gγ given by the Bregman Score Denoiser (6.38) and its associated φγ obtained from
Proposition 27 are lower-bounded and subanalytic.

Even though the Poisson data-fidelity term (6.1) is convex, our convergence results also
hold for more general nonconvex data-fidelity terms. Assumption 4 (iv) generalizes (Bolte
et al., 2018, Assumption D) and allows proving global convergence of the iterates. The
subanalytic assumption of f , gγ and φγ allows for the Kurdyka-Łojasiewicz (KŁ) property
to be verified by the objective functions f + gγ and f + φγ (see Section 3.1.2 for more
details).

6.3.1 Bregman Regularization-by-Denoising (B-RED)

We first generalize the RED Gradient-Descent (RED-GD) algorithm (4.24) in the Bregman
framework. Classically, RED-GD is a simple gradient-descent algorithm applied to the
functional λf + gγ where the gradient ∇gγ is assumed to be implicitly given by an
image denoiser Bγ (parameterized by γ) via ∇gγ = Id−Bγ. Instead, our Bregman Score
Denoiser (6.38) provides an explicit regularizing potential gγ whose gradient approximates
the score via the Tweedie formula (6.13). We propose to minimize Fλ,γ = λf + gγ on
dom(h) using the Bregman Gradient Descent algorithm

xk+1 = ∇h∗(∇h− τ∇Fλ,γ)(xk) (6.106)

which also writes as the BPG algorithm (6.81) with R = 0

xk+1 = arg min
x∈Rn

{〈x− xk, λ∇f(xk) +∇gγ(xk)〉+
1

τ
Dh(x, xk)}. (6.107)

As previously detailed, in the context of Poisson inverse problems, for h being Burg’s
entropy, Fλ,γ = λf + gγ verifies the NoLip condition only on bounded convex subsets of
dom(h). Thus, we select C a non-empty closed bounded convex subset of dom(h). For
the algorithm (6.107) to be well-posed and to verify a sufficient decrease of (Fλ,γ(x

k)), the
iterates need to verify xk ∈ C. We propose to modify (6.107) as the Bregman version of
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Projected Gradient Descent, which corresponds to the BPG algorithm (6.81) with R = iC ,
the characteristic function of the set C:

(B-RED) xk+1 ∈ Tτ (xk) = arg min
x∈Rn

{iC(x) + 〈x− xk,∇Fλ,γ(xk)〉+
1

τ
Dh(x, x

k)}.

(6.108)

For general convergence of B-RED, we need the following assumptions

Assumption 5.

(i) C is a non-empty closed, bounded, convex and semi-algebraic subset of dom(h) such
that C ∩ int dom(h) 6= ∅.

(ii) gγ has Lipschitz continuous gradient on C and there is Lγ > 0 such that Lγh− gγ is
convex on C ∩ int dom(h).

In (Bolte et al., 2018; Bauschke et al., 2017), the NoLip constant L needs to be known
to set the stepsize of the BPG algorithm as τL < 1. In practice, the NoLip constant
which depends on f , gγ and C is either unknown or over-estimated. In order to avoid
small stepsize, we adapt the backtracking strategy (exposed in the previous section) to
automatically adjust the stepsize while keeping convergence guarantees. Using the general
nonconvex convergence analysis of BPG realized in Section 6.2, we can show sufficient
decrease of the objective and convergence of the iterates of B-RED.

Theorem 25. Under Assumption 4 and Assumption 5, the iterates (xk) given by the
B-RED algorithm (6.108) with the backtracking procedure (4.32) verify

(i) (Fλ,γ(xk)) is non-increasing and converges.

(ii)
∑

kDh(x
k+1, xk) <∞ and min0≤k≤K Dh(x

k+1, xk) = O(1/K).

(iii) (xk) converges to a critical point of Ψ = iC + Fλ,γ.

Proof. The B-RED algorithm corresponds to the BPG algorithm (6.81) with F = Fλ,γ =
λf + gγ and R = iC . Theorem 25 is a direct application of Proposition 29, that is to say,
of the convergence results of Proposition 28 and Theorem 24 with backtracking. Given
Assumptions 4 and 5, we verify that Assumptions 1, 2 and 3, required for Proposition 28
and Theorem 24, are verified:

Assumption 1. R = iC verifies dom(R) ∩ int dom(h) = C ∩ int dom(h) 6= ∅. Moreover, R
is semi-algebraic as the indicator function of a closed semi-algebraic set. gγ and f being
both assumed subanalytic and lower-bounded, by Lemma 5, λf + gσ is then subanalytic
(up to adding a constant to make f and gσ non-negative). Ψ = Fλ,γ + iC is then also
subanalytic, and thus KL. Ψ is also lower-bounded and coercive as f is lower-bounded
and coercive and gγ is lower-bounded. Finally, for x ∈ int dom(h), Tτ (x) is non-empty as
h+ λiC is supercoercive.

Assumption 2. By summing convex functions, using Assumption 4(iii) and Assumption 5(ii),
L = λLf+Lγ verifies Lh−(λf+gγ) convex on Conv(domR)∩int dom(h) = C∩int dom(h).

Assumption 3. As gγ is assumed to have globally Lipschitz continuous gradient (Assump-
tion 5(ii)), this follows directly from Assumption 4(iv).
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6.3.2 Bregman Plug-and-Play (B-PnP)

We now consider the equivalent of PnP Proximal Gradient Descent algorithm in the
Bregman framework. Given a denoiser Bγ with Im(Bγ) ⊂ dom(h) and λ > 0 such that
Im(∇h− λ∇f) ⊆ dom(∇h∗), it writes

(B-PnP) xk+1 = Bγ ◦ ∇h∗(∇h− λ∇f)(xk). (6.109)

We use again as Bγ the Bregman Score Denoiser (6.38). Assuming that JBγ is positive
definite on int dom(h), Proposition 27 states that the Bregman Score denoiser Bγ is the
Bregman proximal operator of some nonconvex potential φγ verifying (6.59). The algorithm
B-PnP (6.109) then becomes

xk+1 ∈ Proxhφγ ◦∇h
∗(∇h− λ∇f)(xk), (6.110)

which writes as a Bregman Proximal Gradient algorithm, with stepsize τ = 1,

xk+1 ∈ arg min
x∈Rn

{φγ(x) + 〈x− xk, λ∇f(xk)〉+Dh(x, x
k)}. (6.111)

Similar to what happened in Chapter 5 in the Euclidean case, with Proposition 27, we have
Bγ(y) ∈ Proxhφγ (y) i.e. a proximal step on φγ with stepsize 1. We are thus forced to keep a
fixed stepsize τ = 1 in the BPG algorithm (6.111) and no backtracking is possible. Using
Section 6.2, we can show that B-PnP converges towards a stationary point of λf + φγ.

Theorem 26. Assume Assumption 4 and JBγ positive definite on int dom(h). Then
for Im(∇h− λ∇f) ⊆ dom(∇h∗), Im(Bγ) ⊆ dom(h) and λLf < 1 (with Lf specified in
Assumption 4), the iterates (xk) given by the B-PnP algorithm (6.109) verify

(i) ((λf + φγ)(xk))k is non-increasing and converges.

(ii)
∑

kDh(x
k+1, xk) <∞ and min0≤k≤K Dh(x

k+1, xk) = O(1/K).

(iii) (xk) converges to a critical point of λf + φγ.

Remark 27. The condition Im(Bγ) ⊆ dom(h) and the required positive definiteness of
JBγ come from Proposition 27 while the condition Im(∇h− λ∇f) ⊆ dom(∇h∗) allows the
algorithm B-PnP (6.109) to be well-posed. These assumptions will be discussed with more
details in the context of Poisson image restoration in Section 6.4.

Proof. It corresponds to the BPG algorithm (6.81) with F = λf and R = φγ . Theorem 26
is a direct application of the convergence results of Proposition 28 and Theorem 24. We
now denote Ψ = λf + ψγ. Given Assumptions 4, we verify that Assumptions 1, 2 and 3
are verified:

Assumption 1. For R = φγ, we have Im(Bγ) ⊂ dom(φγ) and as for y ∈ int dom(h),
Im(Bγ) ⊂ int dom(h) (by equation 6.60), we get dom(R) ∩ int dom(h) 6= ∅. φγ and
f being both assumed subanalytic and lower-bounded, by Lemma 5, λf + φσ is then
subanalytic (up to adding a constant to make f and φσ non-negative) and thus KŁ. Ψ
is coercive because f is coercive and φγ is lower-bounded. Finally, Tτ (x) well-posed is
ensured via Proposition 27.

Assumption 2. This is the NoLip property of f given by Assumption 4.

Assumption 3. This is directly given by Assumption 4(iv).
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6.4 Application to Poisson inverse problems
We consider ill-posed inverse problems involving the Poisson data-fidelity term f introduced
in (6.1). The Euclidean geometry (i.e. h(x) = 1

2
||x||2) is not suitable for such f which

does not have a Lipschitz gradient. In (Bauschke et al., 2017, Lemma 7), it is shown that
an adequate Bregman potential h (in the sense that there exists Lf such that Lfh− f is
convex) for (6.1) is the Burg’s entropy

h(x) = −
n∑
i=1

log(xi), (6.112)

for which dom(h) = Rn
++ and Lfh− f is convex on int dom(h) = Rn

++ for Lf ≥ ||y||1. For
further computation, note that the Burg’s entropy (6.112) satisfies ∇h(x) = ∇h∗(x) = − 1

x

and ∇2h(x) = 1
x2
.

The Bregman score denoiser associated to the Burg’s entropy is presented in Section 6.4.1.
The corresponding Bregman RED and PnP algorithms are applied to Poisson Image
deblurring in Section 6.4.2.

6.4.1 Bregman Score Denoiser with Burg’s entropy

We now specify the study of Section 6.1 to the case of the Burg’s entropy (6.112). In this
case, the Bregman noise model (6.5) writes for x, y ∈ Rn

++ as

p(y|x) = exp (−γDh(x, y) + ρ(x))

= exp(ρ(x)) exp
(
− γ(h(x)− h(y)− 〈∇h(y), x− y〉)

)
= exp(ρ(x)) exp

(
−γ
( n∑
i=1

− log(xi) + log(yi)− 1 +
xi
yi

))

= exp(ρ(x) + nγ)
n∏
i=1

(
xi
yi

)γ
exp

(
−γxi

yi

)
.

(6.113)

For γ > 1, this is a product of Inverse Gamma (IG(α, β)) distributions with parameters
βi = γxi and αi = γ − 1. This noise model has mean (for γ > 2) γ

γ−2x and variance (for
γ > 3) γ2

(γ−2)2(γ−3)x
2. In particular, for large γ, the noise becomes centered on x with

signal-dependent variance x2/γ. We suppose γ > 3 for the rest of this section, such that
p(y|x) has finite second-order moment.

Furthermore, using Burg’s entropy (6.112), the optimal posterior mean (6.13) and the
Bregman Score Denoiser (6.38) respectively write, for y ∈ Rn

++,

x̂MMSE(y) = y − 1

γ
y2∇(− log pY )(y)

Bγ(y) = y − y2∇gγ(y).

(6.114)

(6.115)

Bregman Proximal Operator Considering Burg’s entropy (6.112) in Proposition 27
we get that, if JBγ(y) is positive definite on int dom(h) = Rn

++, the Bregman Score
Denoiser (6.115) satisfies Bγ(y) = Proxhφγ .

In order to apply the B-PnP algorithm, we need to verify the positive definiteness of
JBγ(y). We here investigate the validity of the assumption. First, when specialized to
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Burg’s entropy, we show that it can be verified using the following condition on the deep
potential gγ.

Lemma 9.

∀y ∈ int dom(h), JBγ (y) positive definite
⇔ ∀y ∈ int dom(h), ∀d ∈ Rn, 〈∇2JBγ (y)d, d〉 > 0

⇔ ∀y ∈ Rn
++, ∀d ∈ Rn, 〈y4∇2gγ(y)d, d〉 <

n∑
i=1

(
y2(1− 2y∇gγ(y))

)
i
d2i .

(6.116)
(6.117)

(6.118)

Proof. We now derive the calculations leading to the above equivalence. We saw in (6.70)
that

JBγ (y) = ∇2h(y).∇2(ψγ ◦ ∇h∗)(∇h(y)) (6.119)

such that

∀y ∈ int dom(h), ∀d ∈ Rn, 〈∇2JBγ (y)d, d〉 > 0

⇔∀y ∈ int dom(h), ∀d ∈ Rn, 〈∇2(ψγ ◦ ∇h∗)(∇h(y))d, d〉 > 0.

(6.120)
(6.121)

Differentiating ηγ := ψγ ◦ ∇h∗ twice gives

∇ηγ(x) = ∇2h∗(x).∇ψγ(∇h∗(x)) (6.122)

and
∇2ηγ(x) = (∇2h∗(x))2.∇2ψγ(∇h∗(x)) +∇3h∗(x).∇ψγ(∇h∗(x)) (6.123)

Evaluating on ∇h(y)

∇2ηγ(∇h(y)) = (∇2h∗(∇h(y)))2.∇2ψγ(y) +∇3h∗(∇h(y)).∇ψγ(y). (6.124)

For Burg’s entropy and y ∈ int dom(h) = Rn
++,

∇2ηγ(∇h(y)) = y4∇2ψγ(y) + 2y3Diag(∇ψγ(y)). (6.125)

Using the definition (6.61) of ψγ specialized for Burg’s entropy

ψγ(y) = −h(y)− gγ(y)− 1, (6.126)

∇ψγ(y) = −∇h(y)−∇gγ(y) =
1

y
−∇gγ(y) (6.127)

and
∇2ψγ(y) = −∇2h(y)−∇2gγ(y) = − 1

y2
−∇2gγ(y), (6.128)

we get
∇2ηγ(∇h(y)) = y2

(
y2∇2ψγ(y) + 2yDiag(∇ψγ(y))

)
= y2

(
−1− y2∇2gγ(y) + 2− 2y∇gγ(y)

) (6.129)
(6.130)

and the equivalence (6.116) follows.

We now show that this condition holds for the MMSE denoiser.
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Lemma 10. For h Burg’s entropy, and thus for the noise model (6.113), the MMSE de-
noiser x̂MMSE(y) = E[x|y] satisfies the condition "JBγ (y) is positive definite on int dom(h)"
from Proposition 27.

Proof. Recall that the MMSE denoiser corresponds to the Bregman Score Denoiser

Bγ(y) = ∇(ψγ ◦ ∇h∗) ◦ ∇h(y) = ∇ηγ ◦ ∇h(y) (6.131)

in the particular case where we have exactly

gγ(y) = −1

γ
log pY (y). (6.132)

Note that in the Euclidean case (i.e. for the L2 Bregman divergence h = 1
2
||.||2 and

pY = pσ = p ∗ N (0, σ2 Id)), it is shown in Gribonval (2011) to be verified by the MMSE
denoiser. We now show the same result for Burg’s entropy Bregman potential. For x ∈ Rn

++

h(x) = −
n∑
i=1

log(xi), (6.133)

Recall that, in this case, the Bregman noise model writes

p(y|x) = exp(ρ(x) + nγ)
n∏
i=1

(
xi
yi

)γ
exp

(
−γxi

yi

)
= α(x)

n∏
i=1

(yi)
−γ exp

(
−γxi

yi

)
.

(6.134)

where α(x) = exp(ρ(x) + nγ)
∏n

i=1 x
γ
i > 0. We verify that ∀y ∈ int dom(h) = Rn

++

〈∇2ηγ(∇h(y))d, d〉 > 0. (6.135)

We showed in Lemma 9 that, ∀y ∈ Rn
++

∇2ηγ(∇h(y)) = Diag
(
y2(1− 2y∇gγ(y))

)
− y4∇2gγ(y). (6.136)

Similar to Gribonval (2011), for simplicity, we first write the proof in the single variable
case (n = 1).

We have ∇gγ(y) = −1
γ

p′Y (y)

pY (y)
and ∇2gγ(y) = 1

γ

[p′Y (y)]2−p′′Y (y)py(y)

p2Y (y)
, and thus

η′′γ(x) = y2
(

1 +
2y

γ

p′Y (y)

pY (y)
− y2

γ

[p′Y (y)]2 − p′′Y (y)py(y)

p2Y (y)

)
=

y2

γp2Y (y)

(
γp2Y (y) + 2yp′Y (y)pY (y)− y2[p′Y (y)]2 + y2p′′Y (y)py(y)

)
(6.137)

(6.138)

Moreover

pY (y) =

∫
z

α(z)pX(z)y−γ exp

(
−γ z

y

)
dz =

∫
x

u(z, y)dz. (6.139)

p′Y (y) =
−γ
y
pY (y) +

γ

y2

∫
z

zu(z, y)dz =
−γ
y
pY (y) +

γ

y2
I(1)(y) (6.140)
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where we denote I(1)(y) =
∫
z
zu(z, y)dz.

p′′Y (y) = (γ2 + γ)
1

y2
pY (y)− 2(γ2 + γ)

1

y3
I(1)(y) + γ2

1

y4
I(2)(y), (6.141)

where we denote I(2)(y) =
∫
z
z2u(z, y)dz.

Eventually, we get, after simplification,

η′′γ(x) =
y2

γp2Y (y)

γ2

y2
(
I(2)(y)pY (y)− [I(1)(y)]2

)
=

γ

p2Y (y)

∫
z

∫
z′

(
z2

2
+
z′2

2
− zz′

)
u(z, y)u(z′, y)dzdz′

=
γ

p2Y (y)

∫
z

∫
z′

(z − z′)2

2
u(z, y)u(z′, y)dzdz′

=
γy−2γ

p2Y (y)

∫
z

∫
z′

(z − z′)2

2
exp

(
−γ z + z′

y

)
α(z)α(z′)pX(z)pX(z′)dzdz′ ≥ 0

(6.142)

(6.143)

(6.144)

(6.145)

As α(x) > 0, the previous term is 0 if and only if pX(z)pX(z′) = 0 when z 6= z′, which
would imply pX(z) = 0 ∀z. This is impossible since pX is a proper pdf.

The extension for n > 1 is straightforward and (z − z′)2 becomes 〈z − z′, d〉2.

With the Denoising Score Matching result of Proposition 26, we showed that a denoiser
trained to denoiser the Bregman noise with the L2 loss actually approximates the MMSE
denoiser. The fact that the Jacobian condition is verified by the MMSE then justifies that
it is also likely to be verified by a denoiser properly trained with L2 loss. We will check
the validation of the hypothesis of positive definiteness of the Jacobian after training our
Bregman Score Denoiser.

Denoising in practice Like in Chapters 4 and 5, we parameterize the deep potential gγ
as

gγ(y) =
1

2
||y −Nγ(y)||2 , (6.146)

where Nσ is the deep convolutional neural network architecture DRUNet (Zhang et al.,
2021), with 2 residual blocks at each scale and Softplus activations. We condition the
network Nγ on γ similarly to what is done for DRUNet. We stack to the 3 color channels
of the input image an additional channel containing an image with constant pixel value
equal to 1/γ. ∇gγ is computed with automatic differentiation. We train Bγ to denoise
images corrupted with random Inverse Gamma noise of level γ, sampled from clean images
via p(y|x) =

∏n
i=1 IG(αi, βi)(xi). To sample yi ∼ IG(αi, βi), we sample zi ∼ G(αi, βi) and

take yi = 1/zi. Denoting as p the distribution of a database of clean images, training is
performed with the L2 loss

L(γ) = Ex∼p,y∼IGγ(x)
[
||Bγ(y)− x||2

]
, (6.147)

with 1/γ uniformly sampled in (0, 0.1). Training is performed with ADAM during 1200
epochs. The learning rate is initialized with learning rate 10−4 and is divided by 2 at
epochs 300, 600 and 900.
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Denoising performance We evaluate the performance of the proposed Bregman Score
DRUNet (B-DRUNet) denoiser (6.146). We compare the performance of B-DRUNet (6.146)
with the same network DRUNet directly trained to denoise inverse Gamma noise with L2

loss. Qualitative and quantitative results presented in Figure 6.1 and Table 6.1 show that
the Bregman Score Denoiser (B-DRUNet), although constrained to be written as (6.115)
with a conservative vector field ∇gγ, performs on par with the unconstrained denoiser
(DRUNet).

γ 10 25 50 100 200
DRUNet 28.42 30.91 32.80 34.76 36.79

B-DRUNet 28.38 30.88 32.76 34.74 36.71

Table 6.1: Average denoising PSNR performance of Inverse Gamma noise denoisers B-
DRUNet and DRUNet on 256× 256 center-cropped images from the CBSD68 dataset, for
various noise levels γ.

(a) Clean (b) Noisy
(17.85 dB)

(c) DRUNet
(32.56 dB)

(d) B-DRUNet
(32.56 dB)

Figure 6.1: Denoising of a 256× 256 image corrupted with Inverse Gamma noise of level
γ = 25.

Validation of the positive definiteness hypothesis Given the trained Bregman
Score Denoiser Bγ = y − y2∇gγ(y), we propose to empirically verify the validity of the
hypothesis of from Proposition 27 i.e. JBγ positive definite on int dom(h) = Rn

++. We
showed in Lemma 9 that this is equivalent to ∀y ∈ Rn

++,∀d ∈ Rn

〈
∇2ηγ(∇h(y))d, d

〉
=

n∑
i=1

(
y2(1− 2y∇gγ(y))

)
i
d2i −

〈
y4∇2gγ(y)d, d

〉
≥ 0. (6.148)

In order to verify this assumption locally, we represent in Figure 6.2

c(γ, ξ) = min
x∈{Xi},d∈{Di}

〈
∇2ηγ

(
−1

yξ

)
d, d

〉
= min

x∈{Xi},d∈{Di}

n∑
i=1

(
y2ξ (1− 2yξ∇gγ(yξ))

)
i
d2i −

〈
y4ξ∇2gγ(yξ)d, d

〉
(6.149)

(6.150)

where the minimum is taken over

• {Xi}i: the images from an evaluation dataset of clean images, here the 68 images
from CSBD68.
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• {Di}: 100 random images realizations of a uniform random variable Di ∼ U [0, 1]n.

and yξ is obtained from x by interpolating between ŷξ ∼ pξ(y|x) a noisy version of x and
Bγ(ŷξ) with α ∼ U [0, 1] as

yξ = αŷξ + (1− α)Bγ(ŷξ). (6.151)

In the figures, we represent c(γ, ξ) with respect to:

• in the x-axis: the denoiser strength, i.e. the γ parameter of the denoiser.

• in the y-axis: the noise level ξ in the input image. Figure 6.2(a), the noise model is
Inverse Gamma noise pξ(y|x) = IG(ξ − 1, ξx) i.e. the noise model used for training
the denoiser. In figure 6.2(b), the noise model is Poisson pξ(y|x) = P(ξx) i.e. the
noise model of the degradation on which our plug-and-play algorithms are evaluated,
and in Figure 6.2(c), the noise model is Gaussian pξ(y|x) = N (x, ξ2 Id).

We observe that for a large variety of noise levels γ and even far away from the image
manifold i.e. for large noise, we verify the positive definite assumption.

6.4.2 Bregman Plug-and-Play for Poisson Image Deblurring

We now derive the explicit B-RED and B-PnP algorithms in the context of Poisson
image restoration. Choosing C = [0, R]n for some R > 0, the B-RED and B-PnP algo-
rithms (6.108) and (6.109) write

(B-RED) xk+1
i = arg min{x∇Fλ,γ(xk)i +

1

τ

(
x

xki
− log

x

xki

)
: x ∈ [0, R]}

=

{
xki

1+τxki∇Fλ,γ(xk)i
if 0 ≤ xki

1+τxki∇Fλ,γ(xk)i
≤ R

R else

(B-PnP) xk+1 = Bγ
(

xk

1 + τxk∇f(xk)

)
.

(6.152)

(6.153)

(6.154)

Verification of the assumptions for convergence In this paragraph, we verify that
the Burg’s entropy h in (6.112) and the Poisson data likelihood f defined in (6.1) verify
all the assumptions required for convergence of B-RED (6.152) and B-PnP (6.154) in
Theorems 25 and 26. We remind the expressions of h and f :

h(x) = −
n∑
i=1

log(xi), (6.155)

f(x) =
m∑
i=1

yi log

(
yi

α(Ax)i

)
+ α(Ax)i − yi, (6.156)

for A ∈ Rm×n. Note that as done in Bauschke et al. (2017), denoting (ai)1≤i≤n the columns
of A, we assume that ai 6= 0m and ∀1 ≤ j ≤ m,

∑n
i=1 ai,j > 0 such that Ax ∈ Rm

++ if
x ∈ Rn

++. This is verified for A representing the blur with circular boundary conditions
with the (normalized) kernels used in Section 4.3.2.
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(a) Inverse Gamma noise
pξ(ŷξ|x) = IG(ξ − 1, ξx).

(b) Poisson noise
pξ(ŷξ|x) = IG(ξx).

(c) Gaussian noise
pξ(ŷξ|x) = IG(x, ξ2 Id).

Figure 6.2: Plot of c(γ, ξ) = minyξ,d

〈
∇2ηγ

(
−1
yξ

)
d, d
〉
w.r.t the denoiser parameter γ and

the noise level in the input image ξ. From {xi} the natural images from the CBSD68
testset and 100 random d ∼ U [0, 1]n, the image yξ is obtained from x ∈ {xi} via the
interpolation y = αŷξ + (1− α)Bγ(ŷξ) where ŷξ is a noisy version of x sampled with (a)
Inverse Gamma (b) Poisson (c) Gaussian noise distributions. Bγ is the trained Bregman
Score Denoiser.

We first verify Assumptions 4.

(ii) f is real analytic and thus subanalytic on Rn
++.

(iii) It is shown in (Bauschke et al., 2017, Lemma 7) that f verifies the NoLip assumption,
i.e. Lfh − f is convex on Rn

++, for Lf ≥ ||y||1. y stands for the Poisson degraded
observation, appearing in the definition of f .

(iv) First, h is strongly convex on every bounded subset of Rn
++. Indeed, for C a bounded

subset of Rn
++, as ∇2h(x) = 1

x2
Id, we have ∀x ∈ C, ∀d ∈ Rn, 〈∇2h(x)d, d〉 >

1
||z||2∞,C

||d||2. Second, h and f are Lipschitz continuous everywhere on Rn
++ except
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close to 0. For both B-RED and B-PnP Ψ(x)→ +∞ when x→ 0 and {Ψ(x) ≤ α}
avoids the case x→ 0.

(v) We remind the parameterizations Bγ = Id−∇gγ and gγ(y) = 1
2
||x−Nγ(x)||2 with

a U-Net Nγ (with softplus activations). As explained in details in Section 3.1.2,
by composition and sum of real analytic functions (Lemma 3(i)) Nγ and then
subsequently gγ are real analytic functions.

By the inverse function theorem (Lemma 3(iii)), as ∀y ∈ int dom(h), JBγ (y) > 0, B−1γ
is then real analytic on Im(Bγ). We finally obtain, using the expression (6.59) of
φγ on Im(Bγ), again by sum and composition, that φγ is real analytic (and thus
subanalytic) on its domain.

Eventually, gγ is non-negative and we now prove that we have ∀y ∈ Rn, φγ(y) ≥ gγ(y).
If y /∈ int dom(h), as Im(Bγ) ⊂ int dom(h), φγ(y) = +∞, this is verified. If
y ∈ dom(h), as Dh(y, y) = 0, we have

φγ(y) = φγ(y) +Dh(y, y)

≥ φγ(Bγ(y)) +Dh(Bγ(y), y)

= gγ(y),

(6.157)

where the inequality comes from (6.60) and the last equality from (6.59). Therefore
φγ is also lower-bounded.

Second, we verify Assumption 5 required for the convergence of B-RED.

(i) [0, R]n is a non-empty closed, bounded, convex and semi-algebraic subset of Rn
++.

(ii) With the parameterization gγ(y) = 1
2
||x−Nγ(x)||2 with a neural network Nγ. gγ

can be shown to have Lipschitz gradient on B(0, R) (see Section 4.1.2). We have
∀x ∈ (0, R]n, ∀d ∈ Rn,

〈∇2gγ(x)d, d〉 ≤ Lip(gγ) ||d||2 ≤ Lip(gγ)R
2

n∑
i=1

d2i
x2i

= Lip(gγ)R
2〈∇2h(x)d, d〉,

(6.158)

which proves that, for Lγ = Lip(gγ)R
2, Lγh− gγ is convex on (0, R]n.

We finally discuss the additional assumptions required for the convergence of B-PnP in
Theorem 26.

(i) Im(Bγ) ⊆ dom(h) = Rn
++. We train the denoiser Bγ to restore images in [ε, 1]n (with

ε = 10−3), the denoiser is thus softly enforced to have its image in this range. In
practice, we empirically verify during the iterations that we always get xk > 0.

(ii) JBγ positive definite on int dom(h). See the paragraph “Validation of the positive
definiteness hypothesis” Section 6.4.1.

(iii) Im(∇h− λ∇f) ⊆ dom(∇h∗). We now show that this condition is true if λ ||y||1 < 1.
For x > 0

∇h(x)− λ∇f(x) = −1

x
− λ∇f(x) = −x+ xλ∇f(x)

x
. (6.159)
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Thus we need to verify that ∀1 ≤ i ≤ n, 1 + λxi∇f(x)i > 0. For f the Poisson
data-fidelity term, using (Ax)j =

∑n
k=1 aj,kxk, we have ∀1 ≤ i ≤ n,

∇f(x)i =
m∑
j=1

−yj
aj,i∑n

k=1 aj,kxk
+ αaj,i (6.160)

and

1 + λxi∇f(x)i = 1 + αλ

m∑
j=1

aj,ixi − λ
m∑
j=1

yj
aj,ixi∑n

k=1, aj,kxk
. (6.161)

We assumed that A has positive entries and
∑m

j=1 aj,i = ri > 0. Therefore, using
0 ≤ aj,ixi∑n

k=1,aj,kxk
< 1, we get

1 + λxi∇f(x)i ≥ 1− λ ||y||1 (6.162)

which is positive if λ ||y||1 < 1.

(iv) The stepsize condition λLf < 1. Using the NoLip constant proposed in (Bauschke
et al., 2017, Lemma 7) Lf = ||y||1, the condition boils down to λ ||y||1 < 1. The
condition λ ||y||1 < 1 is too restrictive in practice, as the value of ||y||1 can be huge,
especially for large images. This is due to the fact that the NoLip constant Lf ≥ ||y||1
can be largely over-estimated. Indeed, in the proof of (Bauschke et al., 2017, Lemma
7) as well as in the proof of the previous point, the upper bound

aj,ixi∑n
k=1, aj,kxk

< 1 (6.163)

can be loose in practice. For B-RED this is not a problem, as we use automatic
stepsize backtracking. However, for B-PnP, backtracking is not possible as the
stepsize is fixed to τ = 1. In order to still guarantee the convergence, we adopt the
following backtracking-like strategy to adjust the regularization parameter λ :

– Choose an initial value for λ > 0.

– At each iteration of the B-PnP algorithm, check sufficient decrease of the
objective function F = λf + φγ i.e.

F (xk)− F (xk+1) ≤ δDh(xk+1, xk). (6.164)

If at some iteration, this condition is not satisfied before convergence, we alert
the user and restart the algorithm with λ←− ηλ for some η ∈ (0, 1). We also
let the user know that, for optimal performance, it might be necessary to adjust
the regularization parameter γ of the denoiser, in order to compensate for this
decrease of λ.

In our deblurring experiments, for the proposed value of λ, over the variety of blur
kernels and noise levels experimented, the sufficient decrease property was always
verified and this backtracking algorithm was never activated. This illustrates that
||y||1 is a rough approximation of the NoLip constant.
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Poisson deblurring Equipped with the Bregman Score Denoiser, we investigate the
practical performance of the B-RED and B-PnP algorithms for image deblurring with
Poisson noise. In this context, the degradation operator A is a convolution with a blur
kernel.

The hyperparameters γ, λ are optimized for each algorithm and for each noise level α
by grid search. In practice, we first initialize the algorithm with 100 steps with large τ and
γ so as to quickly initialize the algorithm closer to a relevant stationary point. More details
are given in the next paragraph. The algorithm terminates when the relative difference
between consecutive values of the objective function is less than 10−8 or the number of
iterations exceeds K = 500.

We show in Figures 6.3 and 6.4 that both B-PnP and B-RED algorithms provide good
visual reconstruction. Moreover, we observe that, in practice, both algorithms satisfy the
sufficient decrease property of the objective function as well as the convergence of the
iterates.

(a) Clean (b) Observed
(14.91dB)

(c) B-RED
(23.01dB)

(d) B-PnP
(22.96dB)

(e) (λf + gγ)(xk)
B-RED

(f) (λf + φγ)(xk)
B-PnP

(g) ||xi+1 − xi||2

Figure 6.3: Deblurring from the indicated motion kernel and Poisson noise with α = 40.
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(a) Clean (b) Observed (16.21dB) (c) B-RED (24.50dB) (d) B-PnP (24.51dB)

(e) (λf + gγ)(xk)
B-RED

(f) (λf + φγ)(xk)
B-PnP

(g) ||xi+1 − xi||2

Figure 6.4: Deblurring from the indicated Gaussian kernel and Poisson noise with α = 60.



6.4. APPLICATION TO POISSON INVERSE PROBLEMS 151

Choice of hyperparameters For B-RED, stepsize backtracking is performed with
γ = 0.8 and η = 0.5.

When performing plug-and-play image deblurring with our Bregman Score Denoiser
trained with Inverse Gamma noise, for the right choice of hyperparameters λ and γ, we
may observe the following behavior. The algorithm first converges towards a meaningful
solution. After hundreds of iterations, it can converge towards a different stationary point
that does not correspond to a visually good reconstruction. We illustrate this behavior in
Figure 6.5 where we plot the evolution of the PSNR and of the function values f(xk) and
gγ(xk) along the algorithm.

(a) PSNR(xk) (b) f(xk) (c) gγ(xk)

Figure 6.5: Evolution of the PSNR, f(xk) and gγ(xk) when deblurring with B-RED with
the initialization parameters from Table 6.2 and without hyperparameter update after
100 iterations. We observe a first phase of fast decrease of both the data-fidelity term
and regularization term values, resulting in a fast PSNR increase. After approximately
100 iterations, the regularization keeps on decreasing and the iterates converge towards a
different stationary point with low PSNR.

This phenomenon can be mitigated by using small stepsize, large γ and small λ values
at the expense of slowing down significantly the algorithm. To circumvent this issue, we
propose to first initialize the algorithm with 100 steps with initial τ , γ and λ values and then
to change these parameters for the actual algorithm. Note that it is possible for B-RED to
change the stepsize τ but not for B-PnP which has fixed stepsize τ = 1. For B-PnP, as done
in Chapter 5 in the Euclidean setting, we propose to multiply gθ by a parameter 0 < η < 1
such that the Bregman Score denoiser becomes Bηγ(y) = y − η(∇2h(y))−1.∇gγ(y). The
convergence of B-PnP with this denoiser follows identically. The overall hyperparameters λ,
γ, τ and η for B-PnP and B-RED algorithms for initialization and for the actual algorithm
are given in Table 6.2.

α 20 40 60
B-RED Initialization τ = 1 γ = 50 λ = 1.5 λ = 2. λ = 2.5

Algorithm τ = 0.05 γ = 500 λ = 0.5 λ = 0.5 λ = 0.5
B-PnP Initialization η = 1 γ = 50 λ = 1.5 λ = 2. λ = 2.5

Algorithm η = 0.05 γ = 500 λ = 0.025 λ = 0.025 λ = 0.025

Table 6.2: B-RED and B-PnP hyperparameters

Quantitative performance and comparison with existing methods. We verify
the efficiency of both algorithms over a variety of blur kernels (real-world camera shake,
uniform and Gaussian). We present in Figure 6.6 the four blur kernels used for evaluation.
We provide in Table 6.3 a quantitative comparison between our 2 algorithms B-RED and
B-PnP and three other methods:
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(a) (b) (c) (d)

Figure 6.6: The 4 blur kernels used for deblurring evaluation. (a) and (b) are real-world
camera shake kernels from Levin et al. (2009). (c) is a 9 × 9 uniform kernel. (d) is a
25× 25 Gaussian kernel with standard deviation 1.6.

(i) PnP-PGD corresponds to the plug-and-play proximal gradient descent algorithm
xk+1 = Dσ ◦ (Id−τ∇f) with Dσ the DRUNet denoiser (same architecture than
B-RED and B-PnP) trained to denoiser Gaussian noise.

(ii) PnP-BPG corresponds to the B-PnP algorithm xk+1 = Dσ ◦ ∇h∗(∇h − τ∇f)(xk)
with again the DRUNet denoiser Dσ trained for Gaussian noise.

(iii) ALM Unfolded (Sanghvi et al., 2022) uses the Augmented Lagrangian Method
for deriving a 3-operator splitting algorithm that is then trained specifically in an
unfolded fashion for image deblurring with a variety of blurs and noise levels α. The
publicly available model being trained on grayscale images, for restoring our color
images, we treat each color channel independently.

For both (i) and (ii) the parameters σ and τ are optimized for each noise level α. Note that
contrary to the proposed B-PnP and B-RED algorithms, the three compared methods do
not have any convergence guarantees. We observe that our algorithms perform best when
the Poisson noise is not too intense (α = 40 and α = 60) but that PSNR performance
decreases for intense noise (α = 20). We assume that this is due to the fact that the
denoising prior trained on Inverse Gamma noise is not powerful enough for such a strong
noise. As a future direction, we plan on investigating how to increase the regularization
capacity of the Inverse Gamma noise denoiser to better handle intense noise.

α 20 40 60
PnP-PGD 23.81 24.41 24.45
PnP-BPG 23.85 24.26 24.71

ALM Unfolded (Sanghvi et al., 2022) 23.39 23.91 24.22
B-RED 23.58 24.54 24.90
B-PnP 23.29 24.54 24.80

Table 6.3: PSNR (dB) of Poisson deblurring methods on the CBSD68 dataset. PSNR
averaged over the 4 blur kernels represented in Figure 6.6 for each noise levels α.

6.5 Conclusion
In this chapter, we derive a complete extension of the plug-and-play framework in the
general Bregman paradigm for non-smooth image inverse problems. In Table 6.4, we
provide an overview of the different notions generalized from the Euclidean to the Bregman
geometry.

Given a convex potential h adapted to the geometry of the problem, we propose a
new deep denoiser, parameterized by h, which provably writes as the Bregman proximal
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operator of a nonconvex potential. We argue that this denoiser should be trained on a
particular noise model, called Bregman noise, that also depends on h. By plugging this
denoiser in the BPG algorithm, we propose two new plug-and-play algorithms, called B-
PnP and B-RED, and show that both algorithms converge to stationary points of explicit
nonconvex functionals. We apply this framework to Poisson image inverse problems.
Experiments on image deblurring illustrate numerically the convergence and the efficiency
of the approach.

The central significance of our work stems from its theoretical study, but we recognize
certain limits within our experimental results. First, when applied to deblurring with
Poisson noise, our proposed algorithms do not outperform existing methods in terms
of PSNR. Second, while we prove that B-RED is convergent without restriction, the
convergence of B-PnP depends on a specific condition of positive definiteness of the denoiser.
Despite being confirmed with experiments and having robust theoretical foundations, this
assumption could potentially not be verified when applied to non-natural images that
significantly differ from those in the training dataset.

Bregman
potential Euclidian 1

2
||x||2 h : Rn → R strictly convex, C2

Smoothness ∇f L-Lipschitz Lh− f convex

Distance 1
2
||x− y||2 Bregman divergence Dh(x, y)

Proxhf arg minx f(x) + 1
2
||x− y||2 arg minx f(x) +Dh(x, y)

GD Id−τ∇F ∇h∗(∇h− τ∇F )

PGD Proxτg ◦(Id−τ∇f) Proxhτg ◦∇h∗(∇h− τ∇f)

Plug-and-Play noise Gaussian exp (−γDh(x, y) + ρ(x))

MAP Prox−σ2 log p(y) Proxh− 1
γ
log p

(y)

MMSE y + σ2∇ log pσ(y) y + 1
γ
∇2h(y)−1 · ∇ log pγ(y)

GS Denoiser Dσ(y) = y −∇gσ(y) Dγ(y) = y −∇2h(y)−1 · ∇gγ(y)

It is a Prox if . . . Dσ injective Dγ injective

RED-GD Id−τ∇(λf + (Id−Dσ)) ∇h∗ (∇h− τ∇(λf + (Id−Dσ)))

PnP-PGD Dσ ◦ (Id−λ∇f) Dγ ◦ ∇h∗(∇h− λ∇f)

Table 6.4: Equivalences between the different notions used for analyzing plug-and-play in
the standard Euclidean geometry (Chapters 4 and 5) and their Bregman generalization
proposed in this chapter. “GD” stands for Gradient Descent and “PGD” for Proximal
Gradient Descent.
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Chapter 7

Conclusion and Perspectives

7.1 Summary of the contributions

In this manuscript, we analyzed the convergence of plug-and-play algorithms for solving
image inverse problems. After introducing the PnP and RED schemes, we addressed
the convergence of both families of algorithms when used with a particular denoiser,
called Gradient-Step (GS) denoiser. This denoiser writes as a gradient-descent step on
a smooth and nonconvex potential parameterized by a deep neural network. We prove
that if the GS denoiser has positive definite Jacobian, then it is a proximity operator.
The convergence of PnP and RED algorithms with GS denoiser then follows from the
established convergence of first-order optimization algorithms (PGD, DRS or ADMM) in
the nonconvex (or weakly convex) setting. Despite the constraints on the denoiser, our RED
and PnP algorithms reach state-of-the-art performance, among plug-and-play methods,
in various ill-posed inverse problems. These algorithms are however not applicable when
the noise affecting the measurements is Poissonian. In the last chapter of the manuscript,
we proposed a generalization of our previous study in a different geometry defined by a
Bregman divergence, which proves useful for solving Poisson inverse problems. We defined
a Bregman extension to the Gradient-Step denoiser, called Bregman Score denoiser, which
can again be shown to be a (Bregman) proximity operator under positive definiteness of
its Jacobian. This denoiser should be trained on a Bregman noise model, which generalizes
Gaussian noise in this new geometry. From the Bregman Proximal Gradient (BPG) scheme,
we proposed the Bregman PnP and RED algorithms. When used with the Bregman Score
denoiser, both schemes are shown to converge towards stationary points of an explicit
nonconvex functional.

7.2 Other scientific productions

During my PhD, I engaged in various collaborative projects whose specific contributions
were not detailed in this manuscript. Here is a brief summary of those contributions.

An analysis of generative methods for multiple image inpainting (Ballester
et al., 2022). In this book chapter, we analyze in details the recent learning-based
methods for diverse image inpainting. The goal of these methods is to provide a set
of distinct and coherent solutions for a given damaged image. They capitalize on the
probabilistic nature of certain generative models to sample various solutions that coherently
restore the missing content. We present a quantitative and qualitative comparisons of a

155
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variety of methods regarding both the quality and the diversity of the set of inpainted
solutions. The analysis is performed on different datasets and different type of masks. Our
analysis allows us to identify the most successful generative strategies in both inpainting
quality and inpainting diversity.

Self-consistent velocity matching of probability flows (Li et al., 2023). This
paper resulted from a three-month research visit to MIT with Justin Salomon’s group. In
this work, we introduce a new framework that does not require discretization for solving a
wide range of mass-conserving partial differential equations. This includes for example
the time-dependent Fokker-Planck equation and the Wasserstein gradient flow. We give a
more in-depth discussion of this contribution in the upcoming perspective section.

DeepInverse (https://deepinv.github.io/deepinv/). In collaboration with
J. Tachella, D. Chen and M. Terris, we developed DeepInverse, a Pytorch library for
imaging with deep learning. The goal of the library is to simplify the implementation of
deep learning based methods for imaging inverse problems, by combining popular and
state-of-the-art learning-based reconstruction approaches in a common and simplified
framework. The objective was to keep a very general and simple structure to make it
easy for the user to implement its own regularization, data-fidelity term or optimization
algorithm on top of the library.

For variational image restoration, we implemented first a collection of optimization
algorithms (PGD, DRS, ADMM, Primal-Dual . . . ) for minimizing general objectives of the
form λf + g. Then, we proposed two base classes for representing the data fidelity term f
and the prior term g. Both classes come with methods for computing the gradient and the
Prox of these terms. The Prior class can be used to implement explicit user-defined priors
but also implicit priors, like PnP and RED. In particular, we implemented in the library
all the PnP and RED algorithms presented in Section 2.4.2 as well as the Gradient Step
(Chapter 4) and Proximal (Chapter 5) denoisers. All the visual results are convergence
curves shown in the manuscript can be directly obtained with the library.

Moreover, all the blocks are created with PyTorch modules such that any parameter of
the algorithm can be easily trained in an unfolded fashion, be it the regularization, the
data-fidelity term or the regularization parameters.

7.3 Research perspectives
This thesis paves the way for numerous research avenues. Within this section, we explore
different research directions that could be pursued based on the findings presented in this
manuscript.

7.3.1 PnP convergence with Proximal denoiser

How to enforce the Lipschitz condition? In Chapter 5, in order to apply Proposi-
tion 25 to the Gradient Step denoiser Dσ = Id−∇gσ and make it a proximity operator,
we required the deep potential gσ to have contractive gradient. This condition was softly
enforced during the training of gσ by regularizing the training loss with a term penalizing
the spectral norm of the Hessian of gσ (see (5.98)). With only a soft regularization of the
training loss, there is no theoretical guarantee for the 1-Lipschitz condition to be true.
This is a limitation of this work. Indeed, even though we empirically verified that ∇gσ

https://deepinv.github.io/deepinv/


7.3. RESEARCH PERSPECTIVES 157

is contractive on natural noisy images, the condition may not be verified for particular
images that do no look like the ones from the training dataset. For instance, when applied
to medical, astronomical or microscopic images, it should be necessary to retrain the
denoiser on images of the same kind.

In order to hardly enforce this condition, one needs to choose an architecture accordingly.
Instead of the Lipschitz continuity of ∇gσ, a sufficient condition for Proposition 25 to
remain true is the convexity of hσ = 1

2
||x||2 − gσ. Therefore, a possible solution to hardly

enforce Dσ to be a Prox is to parameterize hσ with an Input Convex Neural Network
(ICNN) (Amos et al., 2017) or with other types of convex parameterizations. For instance,
Goujon et al. (2023) propose convex potentials of the form

h(x) =

p∑
i=1

ψi(w
T
i x) (7.1)

where ψi are convex profile functions and wi are learnable weights. Instead of parameterizing
ψi directly, with φi = ψ′i, then

∇h(x) = W Tφ(Wx) (7.2)

and ∇h writes as a bias-free 1-layer CNN with activation function φ. They propose to
parameterize φ with trainable non-decreasing and non-expansive linear splines (which make
ψi splines of order 2) In practice, this potential h is used as a regularizer in a variational
formulation of the form (2.2). In our context, we could directly parameterize the denoiser
Dσ = ∇hσ with such a 1-layer (σ dependent) neural network. As for ICNN, the capacity
of this model is strongly limited and is likely to provide inferior performance.

ProxPnP limits on the regularization parameter λ In Chapter 5, we address with
PnP-αPGD (5.93) the limitation of the regularization parameter due to the use of the
Proximal Denoiser Dσ = Proxφσ with PnP-PGD (5.18). More precisely, contrary to
PnP-PGD, which restrict the sum of Lf the Lipschitz constant of ∇f and M the weak
convexity constant of φγ, for PnP-αPGD, the condition for convergence (Corollary 5) is
on the product between these two terms. Thus, for M → 0 we are free to choose λ as
small as desired. We thus proposed a way to control the weak convexity constant M of φγ
with a γ-relaxed version of the Gradient Step denoiser (Section 5.1.3).

However, the nonconvex convergence theory for the PnP-αPGD is not fully established.
In particular, we proved in Corollary 5 the decrease of a Liapunov function, convergence
of the residual ||xk+1 − xk|| → 0 and convergence of a subsequence towards a stationary
point of the objective. However, we still did not manage to prove, like for PnP-PGD,
single-point convergence of the whole sequence using the Kurdyka-Łojasiewicz property.
As explained in Remark 20, we would need to adapt the abstract convergence result
(presented in Theorem 4) from Attouch et al. (2013).

Moreover, the γ-relaxation of the Gradient Step denoiser adds again an extra hy-
perparameter that needs to be tuned. It means that PnP-αPGD has in total four
hyperparameters to tune: σ, λ, γ and α. Even though we proposed default values in
Chapter 5, this can be challenging and time-consuming for the user.

Different from αPGD, another possible modification of the PGD algorithm is the
Primal-Dual Davis-Yin (PDDY) algorithm (Salim et al., 2022). It is a Primal Dual version
of the Davis-Yin splitting method (Davis and Yin, 2017) for minimizing the sum of three
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functions. It is shown by Condat and Richtárik (2022) (Algorithm 3 with Rt = Id, γ = ατ
and 1 + ω = 1

α
) that, when one of the three functions is 0 , the latter can be written as

x̂k+1 = xk − ατ(∇λf(xk) + uk)

dk+1 = x̂k+1 − Proxτg(x̂k+1 + τuk)

uk+1 = uk +
α

τ
dk+1

xk+1 = x̂k+1 − αdk+1.

(7.3)

Note that for α = 1, it falls back to the standard PGD algorithm. For convex f and g,
adapting the convergence of the PDDY algorithm (Condat and Richtárik, 2022, Theorem
2), we get that for ατλLf < 2 and α ∈ (0, 1], (xk) converges towards a minimizer of λf + g.
Therefore, with τ = 1, convex convergence is proven provided αλLf < 2. The constraint
on λ can be counter-balanced by α which can be as small as desired. However, this is
proven only for convex f and g. No convergence results for the PDDY algorithm in the
nonconvex setting has been proposed so far. This is a research perspective that would be
interesting to follow.

7.3.2 Continuous-time optimization

Gradient Flow (GF) interpretation Given the regularization gσ (resp. φσ), our RED
(resp. PnP) algorithms are exact optimization algorithms for finding critical points of
F = λf + gσ (resp. F = λf + φσ). We assume for simplicity that all the functions are
differentiable. Let g account for gσ or φσ. We assume that we have, thanks to the denoising
operation, tractable ∇g or Proxg. These optimization algorithms are different first-order
discretizations of the gradient flow

dx(t)

dt
= −∇(λf + g)(x(t)). (7.4)

Indeed, forward Euler discretization of (7.4) gives the Gradient Descent algorithm applied
to the full objective F = λf + g while Backward Euler discretization corresponds to
the proximal point algorithm on F . A Gradient Flow interpretation of the Proximal
Gradient Algorithm can be obtained by mixing forward and backward discretizations on
the right-hand side of (7.4). It is less straightforward but also possible to derive a flow
interpretation of the DRS algorithm (França et al., 2021).

First, it is interesting to directly analyze convergence in the continuous-time setting,
independently to the choice of discretization. As explained by Bach (2021), all the
traditional annoying issues regarding the choice of step-size, with line-search, constant,
decreasing or with a weird schedule are unnecessary. Moreover, the use of differential
calculus makes proving properties really simple. For instance, without further Lipschitz
continuity assumption, it is possible to show that the objective function F decreases along
the flow:

dF (x(t))

dt
= ∇F (x(t))T

dx(t)

dt
= − ||∇F (x(t))||2 ≤ 0. (7.5)

Single-point convergence of x(t) for nonconvex and lower-bounded F can also directly
be shown on the GF if F verifies the Kurdyka–Łojasiewicz property, introduced in
Section 3.1.2.

Second, one can derive acceleration schemes by higher-order discretizations in space
of the gradient flow ODE, with for instance Heun or Runge-Kutta methods. It is also
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possible to accelerate by replacing the Gradient Flow ODE by second-order ODEs in time.
For instance, Nesterov’s Accelerated Gradient Method corresponds to the forward Euler
discretization of (Su et al., 2014)

d2x(t)

dt2
+

3

t

df(x(t))

dt
= −∇f(x(t)) (7.6)

It would be interesting to study whether the proposed αPGD algorithm (5.55) from
Chapter 5, which was inspired from acceleration methods of PGD, corresponds to a
discretization of the Gradient Flow or of any higher-order ODE.

Finally, such analysis could be also generalized to the Bregman paradigm: the Bregman
proximity operator (6.2) or the BPG algorithm (6.81) correspond to discretizations of the
following Gradient Flow on the Hessian manifold (Gunasekar et al., 2021):

dx(t)

dt
= −(∇2h(x(t)))−1 · ∇F (x(t)) (7.7)

Non-constant σ parameter Another benefit of the continuous perspective is to use a
time-varying σ parameter. In our manuscript, we interpreted PnP and RED algorithms
as first-order optimization algorithms for minimizing a fixed objective λf + gσ. As the
λ parameter, the σ parameter is then a fixed regularization parameter which cannot be
iteration-dependent. However, it has been observed in practice (Zhang et al., 2021) that
the performance of plug-and-play algorithms can be improved by starting with large σ and
annealing σ along the iterations. It is also common practice for score-based generative
models (Song and Ermon, 2019; Song et al., 2020c). Recall that with Denoising Score
Matching we have, for all σ seen during training, gσ ≈ − log pσ with pσ = pX ∗ Gσ a
Gaussian smoothed version of the true image prior pX . It verifies a weak convergence
pσ → pX when σ → 0. Decreasing σ along the iterations is a coarse-to-fine approach to
progressively restore the details in the estimated image. Although we cannot interpret
PnP/RED algorithms with decreasing σ as minimizers of a fixed objective, we can still
interpret them as discretizations of an ODE of the form

dx(t)

dt
= −∇

(
λf + gσ(t)

)
(x(t)) (7.8)

where σ = σ(t) is time-dependent. This ODE is not a gradient flow anymore. It takes
the form of the conditional diffusion ODE introduced in Song et al. (2020c). Using the
fact that gσ → g ≈ − log pX when σ → 0, an interesting question is to study whether a
discretization of this ODE with σ(t)→ 0 would converge to a critical point of λf + g.

7.3.3 Convergent regularization method

A recent line of works (Ebner and Haltmeier, 2022; Hauptmann et al., 2023) studies condi-
tions under which condition PnP is a convergent regularization method. In regularization
theory, a convergent regularization method (Clason, 2020) is a well-posed and stable
algorithm that converges to a solution of the noiseless operator equation. More formally,
consider an observation yδ = Ax∗ + ξ with a noise bounded by δ i.e. ||ξ|| ≤ δ. Then we
define the family (Rλ) of reconstruction mappings given by the solution of the variational
formulation

Rλ(y
δ) ∈ arg min

x

1

2

∣∣∣∣Ax− yδ∣∣∣∣2 + gλ(x) (7.9)
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where we choose for simplicity a L2 data-fidelity term, g is a regularization term and
λ = λ(δ, yδ) a regularization parameter that depends on the noise level δ and the input
yδ. In classical regularization theory, gλ = λg and (Rλ) is a convergent regularization
method if there exists a parameter choice δ → λ(δ, yδ) such that λ(δ, yδ) → 0 and such
that the reconstructions Rλ(δ,yδ)(y

δ) converge (point-wise) to the pseudo-inverse solution
x† = A†yδ when the noise vanishes i.e. δ → 0. This is however too restrictive for image
variational regularization techniques. Moreover, with this notion, we cannot define σ as a
regularization parameter. Instead, Hauptmann et al. (2023) consider a more general notion
of convergent variational regularization method. It is verified if there exists a parameter
choice δ → λ(δ, yδ) such that, when δ → 0, λ → λ0 and Rλ(δ,yδ)(y

δ) → x† where x† is a
gλ0-minimizing solution, i.e. gλ0(x†) = minx∈Rn {gλ0(x) : Ax = y}

In the context of our work, for instance for GS-RED (Chapter 4), the regularization
term is λgσ with two regularization parameters σ and λ. We proved that the GS-RED
algorithms converge to a solution R(yδ, σ, λ) which is a critical point of f + λgσ. We can
now ask if the regularization converges in the sense of regularization theory, i.e. if there
is an appropriate choice of σ and λ w.r.t. δ such that σ → σ0, λ → λ0 and R(yδ, σ, λ)
converges to a gσ0-minimizing solution when δ → 0.

The first difficulty for showing such a result is that the dependence of gσ w.r.t σ is hard
to characterize explicitly. Hauptmann et al. (2023) empirically showed the convergence
of our proposed gradient-step regularization λgσ w.r.t λ and keeping σ fixed. They plot
in their Figure 2 (page 18), for a deblurring problem, the distance

∣∣∣∣R(yδ, λ(δ))− x†
∣∣∣∣

between the solution R(yδ, λ(δ)) of the algorithm GSRED-PGD run with λ(δ) = cδ + λ0
and the solution x† of the algorithm run with λ = λ0. We observe on this plot that∣∣∣∣R(yδ, λ(δ))− x†

∣∣∣∣→ 0 when δ → 0.
Proving formally this convergence w.r.t σ is an open research perspective. Convergence

w.r.t. λ is easier to deal with. It is proven in (Scherzer et al., 2009, Proposition 3.32) for a
strictly convex and coercive objective. However, in our case, the objective is not convex.
Following the same proof as (Scherzer et al., 2009, Theorem 3.26), we can however still
show the following weak convergence result:

Proposition 30. Given an observation y, assume g : Rn → R ∪ {+∞} proper, lsc,
lower-bounded and coercive. Let λ : [0,+∞]→ [0,+∞] such that

λ(δ)→ 0 and
δ2

λ(δ)
→ 0 as δ → 0. (7.10)

Let δk → 0 and a sequence of observations yk = yδk such that ||y − yk|| ≤ δk. Set λk = λ(δk)
and Fk(x) = 1

2
||Ax− yk||2 + λkg(x). Let (xk) a sequence of minimizers defined by

xk ∈ arg min
x

Fk(x). (7.11)

Then (xk) has a converging subsequence. Moreover, any converging subsequence of (xk)
converges towards x† a g-minimizing solution and g(xk) → g(x†). If the g-minimizing
solution is unique, then xk → x†.

Although interesting, the main limitation of the above result is that with condi-
tion (7.11), we need to find global minimizers xk ∈ arg minx Fk(x). For nonconvex g, this
is out of reach, and we can only expect critical points of this objective. Following the
proof, we can however replace (7.11) by the weaker condition

∀k, Fk(xk) ≤ Fk(x
†) for any x† g-minimizing solution. (7.12)
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But it is still hard to verify this condition in practice. Moreover, this result does not solve
the convergence w.r.t. the σ regularization parameter.

7.3.4 Bayesian Plug-and-Play

Posterior sampling The goal of this thesis is to study the convergence of algorithms for
finding a point solution of the MAP problem xMAP ∈ arg max pY |X(x|y). We introduced
an explicit approximation of the smoothed prior gσ ≈ − log pX ∗ Gσ and estimated the
maximum of the corresponding posterior

pσ(x|y) ∝ p(y|x)p̂σ(x) ∝ exp (−(λf(x) + gσ(x))) (7.13)

Instead of just looking for its mode, it would be interesting to say more on this ap-
proximation of the posterior. pσ(x|y) is intractable due to the intractable normalization
constant. It is however reasonable to sample from it. Having access to an algorithm that
samples from this posterior first provides an approximation of the posterior mean E[x|y]
by averaging all the samples. It also permits to estimate the uncertainty on the result by
calculating the pixel-wise variance between all generated samples.

Sampling can be reformulated as an optimization problem over the space of distributions.
Assuming that the target distribution π = pσ(.|y) is regular enough, it is a solution of the
problem

arg min
µ

D(µ, π) (7.14)

for some dissimilarity functional D. Similarly to the Euclidean case, this minimization
problem can be solved using a Gradient Flow differential equation, called Wasserstein
Gradient Flow (WGF)

∂µt
∂t

= div (µt∇W2D(µt, π)) (7.15)

There are many possibilities for the choice of D, the most popular being the Kullback-
Leibler divergence, for which the WGF corresponds to the Fokker-Planck equation

∂µt
∂t

= − div(µt∇ log π) + ∆µt

= div (µt∇(λf + gσ)) + ∆µt

(7.16)

(7.17)

Similar to the Euclidean case, in order to solve the Fokker-Planck equation, it is possible to
discretize the WGF with forward or backward schemes. These methods are limited because
they require explicit access to the distribution µk (see the next paragraph). Instead, one
can use the connection between WGF and Stochastic Differential Equations (SDE): a
stochastic process Xt governed by the following SDE

dXt = ∇ log π(Xt)dt+
√

2τdWt s.t X0 ∼ µ0 (7.18)

with Wt a Brownian motion, has marginal µt following the WGF (7.16). The Unadjusted
Langevin Algorithm (ULA) creates samples by forward discretization of this SDE. It writes,
for Zk ∼ N (0, Id),

Xk+1 = Xk + τ∇ log π(Xk) +
√

2τZk

= Xk − τ(λ∇f(Xk) +∇g(Xk)) +
√

2τZk.

(7.19)

(7.20)
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Thus, sampling from the posterior using ULA is done by iterating a step of gradient descent
on the variational objective, followed by adding some random Gaussian noise. Although
ergoticity of the ULA Markov Chain can be shown under some assumptions, at each step,
the chain accumulates some error and ultimately does not target the distribution π. ULA
can nevertheless be corrected at every iteration by a Metropolis-Hastings accept-reject
step, leading to the Metropolis-Adjusted Langevin Algorithm (MALA) algorithm (Roberts
and Tweedie, 1996). At every iteration (7.19), the proposal Xk+1 is accepted or rejected
according to a test involving the value of π(Xk+1)

π(Xk)
. The correction step ensures that the

MALA Markov chain has the correct stationary distribution.

We can create a RED-ULA scheme following the same arguments as for the derivation
of the RED-GD algorithm in Section 2.4.2. In particular, given a generic denoiser Dσ

that approximates the true MMSE denoiser, with ∇(− log pσ) ←− Id−Dσ, we get the
RED-ULA algorithm

Xk+1 = Xk − τ(λ∇f(Xk) + (Xk −Dσ(Xk)) +
√

2τZk. (7.21)

The convergence of this algorithm is thoroughly studied by Laumont et al. (2021). However,
using a generic denoiser, there is no explicit target distribution π. Therefore, the Metropolis-
Hastings corrective step cannot be performed. Using the Gradient-Step (GS) denoiser
Dσ = Id−∇gσ with a nonconvex deep potential gσ, we recover an explicit objective
− log π = λf + gσ and the MALA algorithm could be used to sample exactly from this
target distribution. Moreover, the convergence of the RED-ULA (respectively RED-MALA)
algorithm with GS denoiser would directly follow from the established convergence of
ULA (respectively MALA) for non log-concave distributions (Durmus and Moulines, 2017;
Raginsky et al., 2017; Mangoubi and Vishnoi, 2019).

We can also generalize the PGD algorithm for sampling with the Proximal Gradi-
ent Langevin Algorithm (PGLA) algorithm (Wibisono, 2018; Salim et al., 2020) which
corresponds to a “Forward-Backward” discretization of the SDE (7.18)

Xk+1 = Proxτgσ(Xk − τλ∇f(Xk) +
√

2τZk). (7.22)

Same as ULA, this Markov chain is biased and can be corrected via Metropolis-Hastings.
Following the same derivation as PnP algorithms in Section 2.4.2, given a generic

denoiser Dσ assumed to approximate the MAP denoiser, with Proxgσ ←− Id−Dσ we get
the PnP-PGLA algorithm

Xk+1 = Dσ(Xk − τλ∇f(Xk) +
√

2τZk). (7.23)

To the best of our knowledge, this scheme has not been studied in the literature for
plug-and-play sampling. Once again, using the proximal denoiser introduced in Chapter 5
Dσ = Proxφσ , the Metropolis-Hastings correction can be performed and convergence results
for PnP-PGLA towards the objective distribution exp (−(λf + φσ)) could be established.

Discretization-free sampling The main difficulties for solving the Wasserstein Gradi-
ent Flow (7.16) are related to time discretizations of the flow. Using forward Euler on the
WGF requires closed-form access to the density at each time-step, which is generally not
available. Backward discretization corresponds to the so-called JKO scheme (Jordan et al.,
1998). It has been proposed in different works (Fan et al., 2021; Mokrov et al., 2021) to
approximate each JKO step µk by Φk

θ#µ0 with a neural network Φk
θ optimized at each
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step. However, this is a very time-consuming strategy as one needs to run a full training
at each time step, and an unpredictable accumulation of errors may occur.

In contract, we proposed in (Li et al., 2023) a discretization-free framework to solve a
wide class of mass-conserving PDEs that take the form

∂µt
∂t

(x) = − div (µtft(x, µt)) (7.24)

The WGF (7.16) corresponds to the special case ft(x, µ) = −∇W2D(µt, π)(x). The
idea is to use the fact that (given an initial condition µ0), µt is uniquely determined by
its velocity field vt, and conversely vt is uniquely determined by µt. Both quantities are
linked via the continuity equation

∂µt
∂t

= − div (µtvt) . (7.25)

Therefore, if a probability flow µt with velocity field vt satisfies the following fixed-point
equation

vt(x) = ft(x, µt) (7.26)

then the PDE (7.24) is solved. In (Li et al., 2023), we parameterize the velocity field
vθt with a time-dependent neural network (for instance with a neural ODE (Chen et al.,
2018)) and propose an efficient iterative procedure to minimize

min
θ

∫ T

0

EX∼µθt
[∣∣∣∣vθt (X)− ft(X,µθt )

∣∣∣∣2] dt. (7.27)

Our algorithm achieves comparable or better performance in various test cases (Gaussian
mixture sampling, Ornstein-Uhlenbeck processes, porous medium equation) compared
to JKO methods while using a lower computational budget and without discretizing
time. We did not experiment with image data but we plan to extend our model for such
high-dimensional modalities.

Uncertainty estimation Beyond single-point MAP estimation, with the frameworks
presented in this manuscript, we are unable to estimate the uncertainty in the proposed
solutions. Quantification of the uncertainty is important in many applications such as
medical imaging, where humans should make decisions based on the proposed solution of
the inverse problem. Given an explicit regularization g (for example gσ from Chapter 4 or
φσ from Chapter 5), in this manuscript we proposed estimations of

x̂MAP = arg min
x

λf(x) + g(x) = arg max
x

log p(x|y) (7.28)

A first method to estimate uncertainty is to generate many samples x̂i from the above
posterior (see the previous paragraphs for more details on posterior sampling algorithms)
and then to visualize the image of standard deviation between samples. As an example,
we show Figure 7.1, standard deviation images obtained by Laumont et al. (2021) after
sampling their plug-and-play regularized posterior (for the inpainting problem) with the
RED-ULA (7.21) scheme. The main limitation of this method is that it requires to generate
thousands of samples, which is extremely time-consuming.

It has also been proposed to quantify posterior uncertainty by estimating the highest
posterior density (HPD) region. The latter is the region of the parameter space where lies



164 CHAPTER 7. CONCLUSION AND PERSPECTIVES

Figure 7.1: Images taken from (Laumont et al., 2021) of standard deviation between
samples of the inpainting plug-and-play posterior, obtained with the RED-ULA (7.21)
scheme. Uncertainty is located around edges and in textured areas.

most of the posterior probability mass (Pereyra, 2017). For α ∈ (0, 1), a HPD region Cα
is defined as

Cα = {x : λf(x) + g(x) ≤ γα} where γα is chosen such that
∫
x∈Cα

p(x|y) = 1− α

(7.29)

For log-concave posterior (i.e. f + g convex), Pereyra (2017) leverages probability
concentration inequalities to approximate Cα by

{x : λf(x) + g(x) ≤ λf(xMAP ) + g(xMAP ) + n(

√
1

n
log(

3

α
) + 1)} (7.30)

This result can then be used to perform hypothesis tests on questionable structures
identified in the MAP estimate (Repetti et al., 2019; Tang and Repetti, 2023). Computing
the MAP being much cheaper than estimating the posterior distribution, this method is
much more time-efficient than sampling approaches.

However, a limitation of this method is that it requires the minimized objective λf + g
to be convex, which is not true in our framework. It could be interesting to investigate if
a related result could be derived for nonconvex objectives, for instance by assuming local
convexity around critical points.

7.3.5 Connection with Optimal Transport

In Chapter 5, we proposed a denoiser Dσ = Id−∇gσ = ∇hσ which is the gradient of a
convex function hσ. Our denoiser is parameterized with gσ a neural network. As explained
in Section 2.4.1, the theoretical MMSE denoiser also writes, with Tweedie formula (2.74)
as Dσ = Id−∇gσ = ∇hσ where gσ = −σ2 log pσ and where hσ = 1

2
||x||2 − gσ is convex.

Operators that write as the gradient of a convex function play an important role in optimal
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transport. We now recall the optimal transport problem with the simple L2 cost in Rn.
Given two probability measures (µ, ν) on Rn, and for the L2 cost function,

• the Monge problem consists in finding a map T : Rn → Rn (the Monge map) that
realizes

inf
T

{∫
Rn

1

2
||x− T (x)||2 dµ(x) : T#µ = ν

}
(7.31)

• the Kantorovich problem is a relaxation of the Monge problem, with existence
guarantee, which consists in finding an optimal transport plan that realizes

min
γ

{∫
Rn×Rn

1

2
||x− y||2 : γ ∈ Π(µ, ν)

}
(7.32)

where Π(µ, ν) denotes the probability measures on Rn × Rn with marginals µ and
ν. With a dual formulation, one can show that it is equal to the maximum of the
following problem

max
ψ c-convex

{∫
ψdµ+

∫
ψcdν

}
(7.33)

where f c(y) = infx c(x, y)− f(x) denotes the c-transform of f . A c-convex function
is a function which writes as f c for some function f . ψ is called the Kantorovich
potential. When the cost is c(x, y) = 1

2
||x− y||2, f c(x) = 1

2
||x||2 − f ∗(x) where f ∗

is the convex conjugate.

Brenier theorem (Brenier, 1991) states that if µ is absolutely continuous, Monge and
Kantorovich formulations are equivalent, i.e. the optimal transport plan is unique and
writes as (Id×T )#µ with T the Monge map. Moreover, it states that the unique Monge
map writes as T = ∇h the gradient of a convex function. Conversely, any map of the form
T = ∇h for a convex potential h is an optimal transport plan from µ to T#µ.

The proof of Brenier theorem is based on the equality between (7.32) and (7.33).
Indeed, by definition of the c-transform,

∀x, y ψ(x) + ψc(y) ≤ c(x, y) (7.34)

and by equality between (7.33) and (7.32), for (x0, y0) ∈ support(γ)

ψ(x0) + ψc(y0) = c(x0, y0) (7.35)

Therefore x→ ψ(x)− c(x, y0) is minimal at x = x0. For the L2 cost c(x, y) = 1
2
||x− y||2,

the optimality equation is ∇ψ(x0)− (x0 − y0) = 0 or

y0 = ∇
(

1

2
||x0||2 − ψ(x0)

)
= ∇h(x0) (7.36)

and h = 1
2
||x||2 − ψ(x) is convex by definition of the c-transform for the L2 cost.

Therefore the MMSE denoiser (and GS denoiser) Dσ = ∇hσ defines an optimal
transport map, for the L2 cost, between pσ = pX ∗Gσ the distribution of images noised
with Gaussian noise of standard deviation σ and Dσ#pσ. An open question is then to
relate the distributions Dσ#pσ and pX .
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Another interesting perspective is to study the link between Brenier theorem and
Theorem 3 from Gribonval and Nikolova (2020) which characterizes proximity operators
as gradient of convex functions, i.e. to relate optimal transport and proximity operators.
From Theorem 3, there is φ : Rn → R ∪ {+∞} such that ∀x ∈ Rn the Brenier map
T (x) = ∇h(x) ∈ Proxφ(x). The proof of Theorem 3 from Gribonval and Nikolova (2020)
is based on the construction of φ (or h) on Im(T ) as

φ(T (x)) = 〈x, T (x)〉 − 1

2
||T (x)||2 − h(x) (7.37)

Then the idea of the proof is to show equivalence between

h(y)− h(x) ≥ 〈y − x, T (x)〉 ∀y (7.38)

which means T (x) ∈ ∂h(x) (and ∀x, ∂h(x) 6= ∅ i.e. h is convex), and

1

2
||y − T (x)||2 + φ(T (x)) ≤ 1

2
||y − x||2 + φ(x) ∀y (7.39)

which means T (x) ∈ Proxφ(x).

Note that using Proposition 5,

〈x, T (x)〉 = 〈x,∇h(x)〉 = h(x) + h∗(T (x)) (7.40)

we can rewrite φ(T (x)) as

φ(T (x)) = h∗(T (x))− 1

2
||T (x)||2 (7.41)

Therefore, on Im(T ), φ writes as

φ(x) = h∗(x)− 1

2
||x||2 (7.42)

We thus have φ = −ψc with ψ the Kantorovich potential solution of (7.33). Actually, the
relation T = Prox−ψc could have already been shown using the equality between (7.33)
and (7.32). Indeed, after (7.35), we can also observe that y → −ψc(y) + c(x0, y) is minimal
at y = y0. For the L2 cost c(x, y) = 1

2
||x− y||2 it corresponds to

y0 = T (x0) ∈ Prox−ψc(x0). (7.43)

Similarly, using for the cost a Bregman divergence, we could show in this way a characteri-
zation of Bregman proximity operators reminiscent of Proposition 27.

7.3.6 Bregman Plug-and-Play

Does the Bregman MMSE denoiser have positive-definite Jacobian? As re-
ported in Lemma (2), it is shown in Gribonval (2011) that the MMSE denoiser with
Gaussian noise has positive definite Jacobian. Moreover, in Chapter 6, we proved in
Lemma 10 that, in the particular case of h being Burg’s entropy, the MMSE denoiser
with Bregman noise model (6.5) has also positive definite Jacobian. We assume that this
remains true for any Bregman potential h but we did not have time to prove it. It would
be interesting to generalize this result because it would back up the assumption from
Proposition 27 on the fact that the introduced Bregman Score denoiser (which is trained
to approximate the MMSE denoiser) is positive definite.
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Another Bregman version of the PGD algorithm In our analysis Chapter 6, we
departed from the BPG algorithm (6.81) which extend the PGD scheme in the Breg-
man paradigm. The BPG update writes as the composition of a Bregman proximity
operator with a step of mirror descent. However, the proposed Bregman Score de-
noiser (6.38) does not write as a mirror descent step but as a natural gradient descent step
Bγ(y) = y − (∇2h(y))−1 · ∇gγ(y). As explained in Gunasekar et al. (2021), both mirror
descent and natural gradient descent schemes are different forward discretizations of the
same Riemannian Gradient Flow. Instead of departing from the BPG algorithm, it could
then make more sense to depart from an algorithm of the form

xk+1 = Proxhτg ◦
(
xk − (∇2h(xk))

−1∇f(xk)
)

(7.44)

The Bregman Score denoiser would then naturally replace the gradient step in this scheme.
We would first need to study if this algorithm actually converges to a critical point of f + g
under a NoLip condition (Lh− f convex) on f .

Learned Bregman potential In Chapter 6, we introduced the Bregman Score de-
noiser (6.38) to regularize inverse problems with a data-fidelity term f . The denoiser
depends on a convex potential h previously chosen such that the NoLip property is verified,
i.e. Lh− f is convex for some L > 0. For instance, for Poisson inverse problems, f is a
Kullback-Leibler divergence and h Burg’s entropy allows Lh− f for L ≥ ||y||1. However,
as explained in Section 6.4.2, this bound on L is too restrictive in practice when dealing
with large images. Also, for other non-smooth data-fidelity terms, finding such h by hand
could be difficult.

We may wonder if one could train a Bregman potential hθ parameterized by a scalar
neural network, along with the Bregman Denoiser. Given a data-fidelity term f and
L > 0, hθ needs (a) to be strictly convex and (b) to verify Lhθ − f convex. The first
constraint could be hardly enforced, for example by parameterizing hθ by an Input Convex
Neural Network (ICNN) (Amos et al., 2017). The second constraint is harder to deal with.
In Chapter 5, convexity of hσ is softly enforced by regularizing the training loss with a
penalization on the spectral norm of the Hessian of x → 1

2
||x||2 − hσ(x), estimated via

power iterations. The same strategy could be adopted here for the potential Lh− f .

Bregman diffusion models To go further, it would be interesting to study if it could
be beneficial to generalize Gaussian diffusion models to Bregman diffusion models. Similar
to RED, diffusion models (or score-based generative models) (Song et al., 2020c; Karras
et al., 2022) sample from a target distribution pX using the Denoising Score Matching result
(or Tweedie formula) to replace the score ∇ log(p ∗Gσ) by a Gaussian noise denoiser in a
Langevin-based algorithm. It actually comes back to RED-ULA (7.21) with well-chosen
varying stepsizes τk and decaying noise levels σk → 0. In particular, these parameters are
chosen such that, departing from white Gaussian noise x0 ∼ N (0, σ2 Id), at iteration k,
we have xk ∼ pX ∗ N (0, σ2

k Id). This ensures that for k →∞, x∞ ∼ pX . This property is
based on the fact that the Langevin scheme adds fresh Gaussian noise at every iteration
and that the addition of independent Gaussians is Gaussian. A Bregman diffusion model
would first require extending the Langevin diffusion SDE (7.18) to the Bregman geometry,
where the Gaussian Brownian motion is replaced by its equivalent with the Bregman noise
model (6.5). Then, using the generalization of the Denoising Score Matching result that
we established in Proposition 26, the equivalent Bregman score-based generative algorithm
would follow.
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7.3.7 Monotone operator perspective

In Section 3.2, we proved convergence of the optimization algorithms GD, PGD or DRS
applied to convex functions by viewing them as fixed-points algorithms. We used the fact
that the zeros of the subdifferential of a convex function corresponds to its minimizers.
These optimization problems can be generalized by replacing the subdifferential of a convex
function by a more general maximally monotone operator. We refer to (Bauschke and
Combettes, 2011a, Chapter 20) for definitions and details on monotone operators.

Monotone operators form a general class of operators that include the subdifferentials
of convex functions but also other kinds of operators, for instance, positive semidefinite
matrices. In this more general formalism, the problem

arg min
x

f(x)⇔ 0 ∈ ∂f(x) (7.45)

for proper, lsc, convex f generalizes to the inclusion problem 0 ∈ A(x) with A a maximally
monotone operator. In this formalism, the proximity operator of f generalizes to the
resolvent of A

JA : A→ (A+ Id)−1 (7.46)

which is defined everywhere for maximally monotone operators. Also, gradients of differ-
entiable L-smooth convex functions generalize to β = 1

L
-cocoercive operators. Hence, all

the considered first-order optimization algorithms can be generalized for solving monotone
inclusion problems. For instance, the PGD algorithm naturally extends to

xk+1 = JτA ◦ (Id−τB)(xk) (7.47)

for finding the zeros of A+B where A is maximally monotone and B is 1
L
-cocoercive. It

is also theoretically interesting to work with monotone operators because it considerably
simplifies the proofs. All the proofs of convergence of convex optimization algorithms
in Section 3.2 were derived from Krasnonel’skii-Mann iterations (Theorem 5). We just
needed to verify that the proximal map and the gradient descent map of a convex function
are averaged operators. The proofs in the general monotone operator formalism follow
identically, using that

• An operator is firmly nonexpansive if and only if it is the resolvent of a maximally
monotone operator (Bauschke and Combettes, 2011a, Proposition 28.3).

• An operator is firmly nonexpansive if and only it is 1-cocoercive.

Besides, the two above properties generalize the characterization from Moreau (Theorem 2)
of proximity operators of convex functions as nonexpansive gradients of convex functions:
An operator is 1-cocoercive if and only it is the resolvent of a maximally monotone operator.

However, in Section 3.2, for studying the convergence of optimization in the nonconvex
setting, we could not use this fixed-point strategy, and we had to build instead more
complicated proofs for each algorithm. Indeed, the Prox and gradient descent maps of
nonconvex functions are not averaged.

Even though it seems difficult to extend to the fully nonconvex setting, Bauschke
et al. (2021) propose, with ρ-monotone operators, an extension of monotone operators for
including weakly convex functions. Given the fact that both introduced regularizers gσ
from Chapter 4 (as a Lipschitz function) and φσ in Chapter 5 are weakly convex, such a
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theory could permit to get convergence of our RED and PnP algorithms with simplified
proofs.

For f : Rn → R ∪ {+∞}, proper lsc, and ∂f the limiting subdifferential of f (defined
Section 2.2.1). Then, for ρ ∈ R, f is ρ-convex if and only if ∂f is ρ-maximally monotone.

In parallel, Bauschke et al. (2021) also generalize θ-averaged operators (Definition 9)
for θ > 1: for θ ∈ [0,+∞), T is θ-conically nonexpansive if there exists R nonexpansive
such that T = θR + (1− θ) Id. In particular, θ-conically nonexpansive operators are not
necessarily nonexpansive.

Then, the link between monotonicity and averagedness is generalized in this new
framework:

• An operator T : Rn → Rn is θ-conically nonexpansive if and only if Id−T = JA
where A is a maximally ρ-monotone operator and ρ = 1

2θ
− 1. (Bauschke et al., 2021,

combinaison of Corollary 3.8, Proposition 2.11 and Lemma 2.8).

• An operator T : Rn → Rn is θ-conically nonexpansive if and only if Id−T is
1
2θ
-cocoercive (Bauschke et al., 2021, Corollary 3.5).

Furthermore, the two above properties generalize the characterization from Gribonval and
Nikolova (2020) (Theorem 3) of proximity operators of weakly convex functions as gradients
of smooth convex functions. We summarize this result in the following Proposition.

Proposition 31. Let T : Rn → Rn and L > 0. Then the following are equivalent

(i) T is 1
L
-cocoercive.

(ii) There is A : Rn → Rn such that T = JA and A is
(
1
L
− 1
)
-maximally ρ-monotone.

It would be interesting to analyze if there is a further generalization of monotone
operators that would correspond to general nonconvex functions, in order to fully generalize
Theorem 3.

Finally, Bartz et al. (2022) propose to extend the fixed-point convergence of PGD or
DRS algorithms for the inclusion problems 0 ∈ A(x)+B(x) where A and B are ρ-monotone.
However, they require the sum A + B to be monotone. In the optimization case, this
means that the overall objective remains convex, which is not the case in our framework.
It would be interesting to investigate the convergence with general ρ-monotone objective
with ρ < 0.
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