
HAL Id: tel-04401476
https://theses.hal.science/tel-04401476v1

Submitted on 17 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

When Random Forests Meet Neural Networks : A
Finite-Sample Analysis

Ludovic Arnould

To cite this version:
Ludovic Arnould. When Random Forests Meet Neural Networks : A Finite-Sample Analysis. Statistics
[math.ST]. Sorbonne Université, 2023. English. �NNT : 2023SORUS453�. �tel-04401476�

https://theses.hal.science/tel-04401476v1
https://hal.archives-ouvertes.fr

Sorbonne Université
LPSM

Doctoral School École Doctorale Sciences Mathématiques de Paris Centre

University Department Laboratoire de Probabilités, Statistique et Modélisation

Thesis defended by Ludovic Arnould

Defended on October 20, 2023

In order to become Doctor from Sorbonne Université

Academic Field Applied Mathematics

Speciality Statistics

When Random Forests Meet Neural
Networks

A Finite-Sample Analysis

Thesis supervised by Gérard Biau Supervisor
Claire Boyer Co-Supervisor
Erwan Scornet Co-Supervisor

Committee members

Referees Sylvain Arlot Université Paris Saclay
Jason Klusowski Princeton University

Examiners Sylvain Le Corff Sorbonne Université Committee President
Florence D’Alché-Buc Télécom Paris
Gilles Louppe University of Liège
Robin Genuer Université de Bordeaux

Supervisors Gérard Biau Sorbonne Université
Claire Boyer Sorbonne Université
Erwan Scornet Sorbonne Université

https://www.sorbonne-universite.fr/
http://lpsm.paris
https://www.sorbonne-universite.fr/
http://lpsm.paris
http://www.ed386.upmc.fr/
https://www.lpsm.paris/
mailto:ludovic.arnould@sorbonne-universite.fr

Colophon
Doctoral dissertation entitled “When Random Forests Meet Neural Networks”, written by Ludovic Arnould,
completed on January 16, 2024, typeset with the document preparation system LATEX and the yathesis class

dedicated to theses prepared in France.

https://www.sorbonne-universite.fr/
http://lpsm.paris
mailto:ludovic.arnould@sorbonne-universite.fr
https://en.wikipedia.org/wiki/LaTeX
https://ctan.org/pkg/yathesis

This thesis has been prepared at

Laboratoire de Probabilités, Statistique et Modélisation
Sorbonne Université
Campus Pierre et Marie Curie
4 place Jussieu
75005 Paris
France
T +33 1 57 27 93 16
Web Site https://www.lpsm.paris/

https://www.lpsm.paris/
https://www.lpsm.paris/
https://www.lpsm.paris/

Veni, vedi, scripsi.

Les hommes passent, les institutions
demeurent.

Mon Fromager

Remerciements

Il y a fort peu longtemps, au royaume Chtatistik, un homme combattait, en quête de gloire, de
richesses, mais surtout, de savoir. Seul ? Non. Il était accompagné, épaulé, tiré, tracté, porté
même parfois, par une foule d’individus, au premier rang desquels ses encadrants, qu’il se doit
de remercier ici. Ces remerciements sont pour moi l’occasion de rendre hommage à toutes celles
et ceux qui ont rendu cette thèse possible, joyeuse et riche en enseignements, à celles et ceux qui
m’ont permis de m’épanouir avant, pendant, et, je l’espère, c’est un vœu que je forme, après la
thèse.

On entend souvent des doctorants se plaindre de leur isolement, de l’absence de leurs en-
cadrants : cette pensée ne m’a jamais traversé l’esprit une seule seconde. Claire, Erwan, merci
d’avoir consacré tout ce temps et cette énergie à me guider, à orienter mes lectures, à remettre
sur le droit chemin mes errements mathématiques, à corriger inlassablement mes innombrables
fautes rédactionnelles. Merci de m’avoir montré l’importance de la rigueur mathématique et
rédactionnelle que vous avez poussée à des sommets que je n’apercevais même pas avant mon
entrée en thèse. Merci pour votre dynamisme et votre passion de la recherche dont je garderai
pour toujours des traces en moi, même si je n’en fais pas le cœur de mon activité professionnelle.
Claire, merci de m’avoir montré que l’on peut toujours chercher à tisser des liens avec des objets
mathématiques éloignés, que l’on peut clarifier encore et encore le discours et la rédaction pour
rendre la transmission de l’information la plus efficace et agréable possible, que l’on peut, enfin,
faire rentrer 12 journées de travail en 5 lorsque l’on est rigoureux, organisé et que l’on aime ce
que l’on fait. Erwan, merci de m’avoir transmis l’amour des forêts, de m’avoir montré l’art de
prendre du recul sur un calcul pour en dégager du sens et des voies de sortie, merci pour ta fine
intuition mathématique et pour ton approche tranquille et efficace du travail qui m’ont beaucoup
inspiré.

Merci à Patrick Lutz d’avoir été un collaborateur très doué et très aimable. Merci à Benjamin
Guedj de m’avoir accueilli chaleureusement à UCL le temps d’un trop court séjour. Merci Gérard
d’avoir toujours été aussi sympathique et merci pour ta réactivité infaillible qui mériterait la
création d’une nouvelle unité de temps : la biauseconde.

Merci à mon jury d’avoir consacré du temps et de l’attention à mes travaux. Thanks to Jason
Klusowski for reviewing my thesis. Merci à Sylvain Arlot pour son travail colossal de lecture
et d’évaluation de ma thèse. Sylvain, personne avant toi n’avait lu mes travaux avec autant
d’attention, merci du fond du cœur d’avoir fait cet effort, d’avoir aussi rigoureusement évalué
ma thèse et de m’avoir permis d’améliorer ce manuscrit.

J’ai trouvé au labo des conditions matérielles idéales pour réaliser ma thèse, partir en con-
férence, télé-travailler, et sans cela la qualité de mon travail en aurait souffert. Je dois donc
remercier le secrétariat, et avant tout ma gestionnaire Nathalie Bergame, ainsi que l’informaticien

v

Remerciements vi

Hugues Moretto, dont la réactivité et l’efficacité ont été sans faille pendant les trois années que
j’ai passées au LPSM.

Merci aussi aux personnes qui font le ménage dans nos locaux et qui, malgré des conditions
de travail difficiles dénoncées maintes fois par les syndicats, arrivent toujours à nous sourire
en nous disant bonjour. Merci aux gardiens de Jussieu qui font des clins d’œil sans demander
l’ouverture de mon sac quand j’arrive à vélo. Merci aux syndicats de doctorants, d’étudiants, et
de permanents qui donnent de leur temps et de leur énergie pour défendre l’amélioration (en ce
moment, la non-détérioration) de nos conditions de travail, d’étude et de recherche.

Merci au codeur anonyme de StackOverflow, au détricotteur de bugs, au sauveur de pro-
gramme, à l’optimisateur de boucles for, au chasseur de badges dorés et de réponses validées,
merci à toi qui m’a expliqué comment fonctionnait le parallélisme en Python, merci à tous les
bienfaiteurs invisibles rédacteurs de librairies OpenSource (Python, Numpy, Sklearn, Pytorch,
etc), merci au mathématicien médaillé Fields qui raconte ses découvertes mathématiques sur son
blog ou sur MathOverflow, au professeur à la retraite qui m’a expliqué comment cette somme
aux termes extra-terrestres pouvait s’évaluer par analogie avec la distribution gaussienne, au
doctorant qui prend le temps d’expliquer à un jeune étudiant comment résoudre cette équation
qu’il connaît par cœur et qui lui permettra de finir son devoir maison à temps.

J’aimerais aussi remercier toutes celles et ceux qui m’ont précédé sur le chemin sinueux des
mathématiques et de la recherche, qui l’ont défriché et balisé pour moi, qui m’ont initié à la
beauté de ses paysages.

Je dois avant tout remonter à mon professeur de mathématiques de collège, M. Bisson, dont
les expressions loufoques égayaient nos cours et nos raisonnements laborieux. Mon attrait
pour les mathématiques doit aussi beaucoup à mon professeur de première qui aurait souhaité
nous voir démontrer géométriquement, équipés d’un compas, d’un caillou et d’un dé à coudre,
l’irrationalité de pi en question bonus de DM. Plus tard, j’ai eu la chance de bénéficier, à Sorbonne
Université, de l’enseignement de professeurs aussi bons mathématiciens que bons pédagogues,
parmi lesquels Frédéric le Roux en Topologie, Thierry Lévy en Probabilités, Gérard Biau etMaxime
Sangnier en Apprentissage statistique, Etienne Roquain en Statistiques en grande dimension,
Ismaël Castillo en Statistiques Bayésiennes, Jean-Yves Chemin en Analyse fonctionnelle, Eddie
Aamari en Inférence géométrique, Anna Ben-Hamou en Inégalités de concentration.

Enfin, mon parcours en “sciences asociales" aurait sûrement été beaucoup plus court sans le
soutien de Fabien Moutarde, sans lequel ma carrière aurait bifurqué vers d’obscures contrées
juridiques, et sans lequel je n’aurais pas été initié aux promesses du Machine Learning qui
continue de m’émerveiller, encore et encore.

Ces trois années de thèses n’auraient pas eu la même saveur sans la présence de nombreux
amis, camarades et collègues au sein du laboratoire et dans les nombreux lieux qui m’ont servi,
au hasard d’une heure, d’une demi-journée ou, en cas d’épidémie mondiale, de mois entiers, de
bureaux éphémères. Je tiens donc d’abord à remercier chaleureusement, dans son ensemble, tout
le laboratoire du LPSM où j’ai pu trouver des conditions idéales pour mener à bien ma thèse, à la
fois sur les plans scientifiques et humains. Cet endroit restera toujours pour moi un sanctuaire
d’ouverture d’esprit, de curiosité intellectuelle et de bienveillance.

Ce caractère sacré tient beaucoup à la présence infaillible des permanents qui apportent chaque
jour, au labo, un lot de bonne humeur (oui même toi Antoine), de vie scientifique et de mots
croisés diaboliques. Merci aux éternels de la salle café, aux organisateurs du séminaire de
stats, aux finisseurs de mots croisés, aux jeunes, aux moins jeunes, aux joueurs de pétanques
communistes, aux amoureux du théâtre et de la littérature, aux cinéphiles, à Anna, Antoine,

Work in progress as of January 16, 2024

Remerciements vii

Arnaud, Badr, Claire, Eddie, Erwan, Etienne, Ismaël, Maxime, Olivier, Stéphane, Sylvain et à
tous les autres. Parmi les innombrables vertus des permanents, j’aimerais souligner leur capacité
manifeste à recruter d’excellents doctorants et stagiaires qui essayent toujours plus, chaque jour,
par leurs efforts acharnés, de se hisser à leur hauteur.

En comparaison aux récits de vie de labo d’autres doctorants de France et de Navarre rencon-
trés en conférence, je dirais que la particularité du LPSM doit beaucoup à son immense cortège
de doctorants dont un de ses millésimes les plus nobles fut, sans surprise, celui de l’année 2020.
Quels arômes goute-t-on dans ce grand cru aux nombreux cépages ? Au nez d’abord, on ressent
de la jeunesse, de la diversité, de la tolérance, de l’intelligence, de la joie. Nous buvons une gorgée,
et il nous faut alors nous prêter au difficile exercice de séparer et d’isoler cette infinie diversité
d’arômes, de réussir à dire quelque chose de plus que "hhhm très bon. Minéral ? Agrumes ?
", de rendre leur juste part, enfin, à celles et ceux qui ont donné son bon goût à ce vin. Merci
Miguel pour ton amitié et ton énergie débordante, pour avoir fait briller dans la nuit nos soirées
aux quais, pour m’avoir montré par la fenêtre un univers qui m’était méconnu : je parle bien sûr
des pommes au piment, des concombres au piment, des chips au piment, des shoots de piment,
bref du monde caché derrière cet ingrédient magique qui réchauffe les lèvres et qui fait frétiller
les papilles gustatives. Merci Ariane et Iqraa d’avoir magnifiquement contribué à égayer la salle
café et toutes les pauses qui s’y déroulèrent par vos rires incessants. Merci Ariane de m’avoir
littéralement montré la voie (la bleue, à l’escalade) et de m’avoir initié à l’infinie diversité de la
préparation des pâtes dont je sens que je n’ai effleuré que la partie visible de l’iceberg. Merci Iqraa
d’avoir pris soin de ma plante (devrais-je dire de l’avoir ressuscitée ?) pendant ces 3 années. P.S. :
Il te reste 45 minutes pour l’emballer dans un paquet-cadeau et pour changer son prénom auprès
de l’état civil avant de me la rendre ! Merci Alexis d’avoir allégé, par ton détachement, tes petites
blagues, et tes publications d’article auxquelles nos encadrants ont consacré une partie de leur
temps, l’écrasant fardeau de la piété filiale que je portais seul avant ton arrivée. Merci Francesco
pour ta bonne humeur que je n’ai jamais vue céder, pour ton approche très apaisée et très saine
des problèmes du quotidien et de la société en général. Merci Antonio d’avoir toujours dénoncé
haut et fort tes injustices et tes indignations, pour ton auto-dérision qui m’a toujours fait rire et
pour avoir adouci l’aridité des bureaux du LPSM en présentant quotidiennement à nos yeux un
assortiment de couleurs très satisfaisant à regarder. Merci Pierre pour les quelques discussions
scientifiques que nous avons eues et que j’aurais souhaité plus nombreuses, pour ta culture et
ton envie de chercher que j’admire. Merci Lucas pour ta bonhomie, tes clins d’œil charmeurs
auxquels il a été dur de résister pendant 3 ans, et merci d’avoir insisté pour me faire découvrir les
plaisirs de l’escalade. Merci Grace d’être toujours aussi chaleureux, aussi souriant et attentionné,
de ne pas hésiter à venir dans notre bureau pour poser des questions sur les Random Forest ou
simplement pour prendre des nouvelles. Asante sana ! Merci Mathis pour ton approche très
optimiste de la vie, ton amour de la musique et du soleil, pour les bonnes adresses près du canal
Saint-Martin. Merci Paul d’avoir été une agréable compagnie à Vienne et de nous avoir aussi
chaleureusement accueillis à dîner avec Camila. Merci Yazid d’avoir apporté, pour un temps trop
court, de l’humour, de l’intelligence et une belle soutenance de thèse au LPSM.Merci Claire d’être
souvent passée prolonger nos pauses, d’être aussi engagée contre les injustices et de partager cet
engagement avec moi. Merci Adeline de m’avoir si bien accueilli au LPSM et dans notre bureau
malheureusement trop succinctement partagé, d’être toujours aussi pleine d’énergie et de bonne
humeur.

Merci aux camarades qui aux creux des lits font des rêves d’un monde meilleur, à ceux, dont
je tairais le nom, qui m’ont accompagné en manifestation défendre le rejet de la LPPR, le rejet
de la réforme des retraites, la démission du gouvernement actuel, l’abolition des banques, du
capitalisme, du travail, et l’avènement d’un règne éclairé de doctorants, sans contre-pouvoir.

Un mot aussi, pour mes illustres prédécesseurs dans les pas desquels j’inscris les miens en

Work in progress as of January 16, 2024

Remerciements viii

soutenant ma thèse, Gloria, Nicklas, Thibault, Joseph et Kimia, que j’aurais souhaité connaître
plus longtemps.

Que restera-t-il une fois la bouteille finie, une fois que la particularité de chaque goût se sera
progressivement diluée dans le vaste brouillard de la mémoire, et que plusieurs condensations
successives auront concentré toutes les sensations de la dégustation en quelques images, quelques
sonorités, quelques visages, en quelques gouttes qui formeront dans mon esprit l’essence de "ma
thèse au LPSM" ? Des réminiscences joyeuses, l’image d’un sourire et l’idée d’avoir passé ici trois
des plus belles années de ma vie.

Enfin il reste un être au LPSM qui m’est singulier et qui incarne mes souvenirs les plus
heureux de ces années. Merci Camila d’avoir supporté mon snobisme, mon espagnol trébuchant,
ma samba bancale et mes Nocturnes boiteux, mes critiques et mes râlements intempestifs, mes
multiples maladies rares et mes cancers de l’estomac, du dos, des ongles et des tendons ; merci
d’être venue partager avec moi la froideur des légumes anglais et la chaleur de la cuisine indienne,
à Londres et à Dishoom, dem’avoir pris dans ta valise pour découvrir l’imposante et lamagnifique
Vienne, d’avoir partagé avec moi tous ces beaux moments dans les meilleurs restaurants et bars à
cocktail de Paris (souvent situés près du 14 rue Bouchardon), d’avoir admiré avec moi les plus
belles vierges à l’enfant et les plus belles collines du monde, en Toscane ; merci de m’avoir cédé
la place de ton chat dans ta chambre, d’avoir entretenu en permanence le stock de pesto et de
parmesan de chez toi ; merci d’avoir pris soin de moi, merci d’avoir partagé avec moi ces jours
que ta présence a rendus plus joyeux, merci, en somme, pour ton sourire et ton amour qui ont
coloré ma vie.

Tout au long de ma vie, j’ai rencontré des gens qui m’ont accepté et aimé tel que j’étais, avec
lesquels j’ai ri, pleuré, appris, joué au foot, bu des verres, étudié à la bibliothèque et joué aux jeux
vidéos ; des êtres intelligents, bienveillants, drôles, attentionnés, généreux, ouverts, passionnés,
en un mot, exceptionnels, qui m’ont apporté beaucoup de bonheur et d’émerveillement, et que
j’ai la chance et la fierté de compter aujourd’hui parmi mes amis les plus chers.

Yasmine, Solange, Hugo, je pense d’abord à vous en écrivant les lignes qui précèdent. Je ne
sais comment décrire proprement ni le plaisir que je prends à passer du temps avec vous, ni
toute l’admiration que j’ai pour vous, pour vos immenses qualités qui font de vous les amis avec
lesquels j’aimerais égoïstement tout faire et auxquels j’aimerais tout raconter, qui font de vous
des médecins, avocats et Administrateurs de l’État brillants et des sources intarissables de joie et
d’inspiration, pour moi et pour vos proches. Merci pour votre désir de partager avec moi tout ce
que vous apprenez et ce que vous accomplissez, avec intelligence et modestie. Votre présence à
mes côtés est une des raisons premières pour lesquelles j’apprécie autant la vie. Vous êtes pour
moi ce que sont la boussole et la gourde remplie de bon vin à l’explorateur perdu au milieu du
désert.

Afin de m’assurer un poste de ministre de l’Enseignement supérieur, de la recherche et de la
vérité vraie, je commencerai par clamer toute l’admiration que j’ai pour mon ami de lycée Hugo
Roussel, énarque, cuisinier, marathonien, juriste, clown à ses heures perdues, et, surtout, futur
Président de la République. Hugo, je ne vais pas m’épancher sur ton CV qui ferait rougir de
honte ce manuscrit et sur lequel il faudrait écrire un livre entier, mais j’aimerais quand même
insister sur ton exceptionnelle rigueur, tes capacités à étudier et à t’investir à fond dans tout ce
qui te plaît, des finances publiques à la cuisine, et à réussir tout ce que tu entreprends. Merci de
montrer l’exemple vertueux, de m’avoir traîné aux examens de HSK3, puis de HSK4 (gardons les
5 et 6 pour nous occuper à la retraite), aux conférences du Louvre (trop vite avortées pour cause
de pandémie), à la conférence Olivaint, de m’enseigner des astuces de cuisine. Merci de me faire
toujours autant rire et merci de t’investir autant dans notre amitié.

Work in progress as of January 16, 2024

Remerciements ix

Yasmine, j’ai l’impression que nous avons eu une connexion particulière et très rapide dès
la seconde, qui tient sûrement à cet indicible dans ton attitude qui entraîne les gens à te confier
leurs désirs secrets et leurs regrets cachés pour trouver une juste compassion et des conseils
éclairés. Merci pour ta capacité à toujours aborder posément un problème ou une situation et à
réussir à faire un pas de côté pour l’envisager sous un nouvel angle, qui a souvent apporté un
éclairage nouveau sur ma vie et qui contribuera à faire de toi une excellente avocate dont je saurai
exploiter les qualités (SCI Chalet des Thoules, BackMarket, on vous aura un jour !). Merci de
rire à mes blagues douteuses, merci pour ta tolérance et ta bienveillance qui te permettent de me
comprendre même lorsque je suis perdu dans les abîmes les plus sombres.

Solange, bien que tu sois la seule dont je ne puisse tirer des bénéfices directs au travers du
métier (pourquoi avoir choisi, parmi les milliers d’organes et de parties du corps sur lesquelles
on peut se spécialiser en médecine, la seule que je ne possède pas, l’utérus ?), je vais quand même
chanter tes louanges — qui n’en seront que plus sincères. Avant tout, j’aimerais souligner ton
énergie, ta force, ta soif de profiter de la vie qui te maintiennent debout, souriante et prête à
donner de toi-même après un trajet de 86 heures entre Dax et Sète en passant par Strasbourg à
vélo, par Munich en bus, Marseille en train, Montpellier en bateau puis Sète en blablacar, après
deux gardes de nuit d’affilée à l’hôpital, après trois jours de festival sauvage de techno-psy-trance
au milieu de la forêt. Merci pour ta passion inépuisable de la vie et de l’humain, qui sans doute
t’a conduite à choisir l’un des métiers les plus altruistes et les plus contraignants, qui te pousse à
t’intéresser à tout, à lutter contre les injustices, à créer du lien social et, plus important encore, des
situations favorables à la création de lien social (je parle bien de l’installation de guirlandes dans
tous les endroits que tu visites), à t’intéresser aux émotions des autres et à si bien les comprendre.

Solange, Yasmine, Hugo, je tiens tout autant à vous individuellement qu’à la magnifique
alchimie qui se dégage de notre groupe. Puisse-t-elle durer éternellement.

Merci Rémi de n’avoir jamais abandonné ton naturel, dont les conséquences parfois désas-
treuses ne sont aujourd’hui que des souvenirs très drôles, qui a toujours apporté une bouffée
d’air frais, de légèreté et d’intelligence spontanée à ton entourage. Merci d’avoir été aussi attentif,
aussi attentionné, merci pour ton humour, merci pour les infinies heures de jeu et de discussion
que nous avons passées à Paris, au 10, au 36, rue Bouchardon, à Banyuls, au moulin, au chalet, à
Ydra, pour toutes ces heures que nous avons passées, souvent jusqu’à très tard dans la nuit, à
s’amuser, à festoyer et à découvrir les richesses et les beautés que le monde a à offrir lorsqu’il est
exploré en compagnie d’un ami. Merci d’avoir été, avec Pierre, ma seconde famille, merci d’avoir
été pour moi un frère.

Merci Rami d’être toujours aussi amical, accueillant et énergique, merci pour ton humour
sans égale qui nous fait tous beaucoup rire et qui révèle une compréhension très fine de la nature
humaine, de nos désirs, de nos peurs et de notre mythologie collective.

Merci Elise, Lila, Noa, Rémi, Rami, Alfred, Arthur, Louis, la "bande de Répu" de m’accueillir
toujours aussi chaleureusement et amicalement que si l’on venait de se quitter la veille, merci
pour votre naturel, merci de m’avoir aidé à grandir aussi bien entouré, merci de faire encore
éclore ces bourgeons d’amitié, de jeunesse, de joie, d’intelligence et de convictions qui ont si bien
fleuri pendant notre enfance et que j’ai de plus en plus de mal à cultiver en me confrontant à
l’aridité du monde.

Merci Alice pour ton approche tranquille et optimiste dumonde qui te permet d’affronter, avec
humour, les déconvenues du quotidien et la détresse de se retrouver seule dans un supermarché
anglais où les deux ingrédients qui règnent en maître et qui imposent leur goût à tous les autres
sont le froid et le plastique. Merci de partager avec moi tes sensibilités pianistiques et olfactives,
merci de toujours chérir notre amitié, malgré la distance, depuis maintenant plus de 10 ans.

Clément, Chloé, notre rencontre a été le fruit d’un hasard (une pandémie, un confinement, un
billet d’avion pris pour le lendemain, un attrait commun pour la Tanzanie, un vol de portefeuille,

Work in progress as of January 16, 2024

Remerciements x

etc) et elle aurait dû durer quelques jours, puis quelques petites semaines et elle semble désormais
partie pour se prolonger à jamais. Ces mois passés à Zanzibar en votre compagnie et avec celle
de Léonard et Léa, puis de Paul et d’Erlend, resteront gravés dans ma mémoire au temple de
mes souvenirs les plus chers. Ce livret est malheureusement trop court pour les évoquer tous et
je ne mentionnerai que ces nombreuses heures, qui s’étiraient jusqu’à se fondre dans la chaleur
et l’humidité ambiante, passées à la table de chez Shah, à discuter, à apprendre à se connaître,
à travailler, à étudier le swahili avec Mwalimu, à déguster les délicieux chapatis rapportés du
Lookman ou des crevettes à la sauce magique, à somnoler tranquillement, sous le ventilateur et
dans la moiteur de l’après-midi. Pour rendre hommage à ce séjour, il faudrait aussi parler des
verres de jus devant le coucher du soleil, du sable blanc de Padje, des soirées glauques du Tatoo,
des journées de pêche, des ruelles sinueuses de StoneTown, de la beauté du swahili, des morsures
du soleil, des maux d’estomac, des pluies diluviennes, etc. Clément, merci d’arriver à créer aussi
facilement un espace de convivialité où l’on se sent à l’aise en toute situation, que ce soit pour
rire, pour faire la fête ou pour discuter, et qui a grandement contribué à ce que l’on puisse se
rapprocher aussi rapidement. Merci pour ton engagement politique et écologique sans lequel
nous n’aurions pas profité de ces 43 heures de voyages en train et en bus pour nous conduire en
Roumanie et pour nous y en ramener. Chloé, merci pour ton entrain à toute épreuve, ton envie
d’apprendre et ton ouverture d’esprit, ta capacité à plier le monde pour qu’il corresponde mieux
à tes désirs et à ceux de tes proches, merci pour ta force de décision et de cohésion sans laquelle
nous n’aurions pas fait la moitié de toutes nos activités.

Merci Alexandre pour ton amitié, ta gentillesse et ta tolérance, merci pour toutes ces petites
anecdotes et imitations sorties du tréfonds de ton immense mémoire qui mettent toujours judi-
cieusement en relation les tumultes du présent avec les richesses du passé. Merci Alex, Bertrand
et Nathalie d’être d’aussi agréables voisins et compagnons de dîner ou de voyage, à Paris, dans le
quartier le plus bobo de la capitale, à la mer, dans ce charmant petit village de la côte Atlantique
dont nous tairons le nom pour ne pas y attirer les foules, ou à la montagne, au "chalet", où nous
sommes réunis par la chaleur de la cheminée et par l’odeur de l’abondance qui fond doucement
sur les appareils à raclette.

Si je suis la personne que je suis aujourd’hui, si j’ai quelques convictions, quelques qualités et
un sourire à présenter à mon entourage et à la communauté humaine dans son ensemble, c’est
en premier lieu grâce à ma famille.

Mes parents, mon frère, comment vous dire merci pour tout l’amour que vous m’avez donné
? Je suis si ému en écrivant ces lignes que je ne sais pas par où commencer, sinon par vous dire
que sans vous auprès de moi, il y aurait un vide immense dans ma vie.

Maman, papa, je devrais dire d’abord que j’ai reçu tout ce dont j’avais besoin pour m’épanouir
en tant qu’enfant, adolescent et adulte heureux de vivre, heureux de se sentir aimé et bien
entouré. Que j’ai trouvé, sans avoir eu à le chercher, à la maison, un lieu où raconter mon dernier
exploit sportif, ma dernière bonne note obtenue à l’école, mon dernier mal-être, mon dernier avis
politique, mon dernier chagrin, mon dernier fantasme sur la technologie sauveuse du peuple,
ma dernière lecture, mon dernier morceau de piano, ma dernière soirée, bref, où j’ai pu tout dire,
sans crainte d’être jugé, face à des oreilles attentives et des yeux bienveillants. Ces centaines, ces
milliers et ces millions d’heures de discussion, à apprendre, à me tromper, à écouter, à rire, à
pleurer, à m’énerver, à se disputer, à me faire gronder, à négocier, à expliquer, constituent les
fondations et le socle de mon esprit et ce sont d’elles que découlent mes convictions, mes idées,
mes désirs, mes connaissances, mes valeurs, en somme, ma personne toute entière. Papa, Maman,
je n’aurais pas pu souhaiter meilleure éducation et je vous suis infiniment reconnaissant pour
tout ce que vous avez fait et tout ce que vous continuez à faire pour moi, pour Léonard, pour tout

Work in progress as of January 16, 2024

Remerciements xi

ce que vous nous avez apporté d’amour et d’enseignements. Je souhaite que cela dure toujours.
Merci Mamie de penser autant à nous, de te soucier de savoir si nous avons assez de brioche

pour le goûter et de nous avoir apporté de quoi nous en acheter, merci de te préoccuper de notre
santé, de nos études (qui touchent enfin au but), merci d’être toujours aussi aimante et aussi
heureuse de nous voir.

Merci Laurent, Corinne, Christian, Emma, Bixente pour tous ces joyeux déjeuners et dîners,
pour tous ces moments partagés avec la mamie, dans la bonne humeur et la bienveillance.

Dear Shari, I am so very happy to havemet you, thank you for givingme the warmest welcome
I have ever received from anyone. Thank you for sharing with me a portion of the immense love
you hold — a love that makes you shine, brings joy to all around you, and has taught me how to
grow into a better human being.

Léa, merci de t’être installée aussi naturellement dans la famille, auprès de Léonard. La liste
de nos souvenirs communs ne cesse de s’allonger et à chaque fois que tu étais là, en vacances, à la
maison, à un dîner, à un verre, à Zanzibar, au moulin, j’ai l’image d’un moment heureux auquel
ta présence a grandement contribué.

Léonard, tu es mon frère, mon meilleur ami, mon plus bel interlocuteur, ma fierté, mon
compagnon de jeu, celui qui me comprendra et qui me supportera toujours quoi qu’il advienne,
l’être qui m’est le plus cher.

Nous voici déjà arrivés à la conclusion de ces remerciements et de cette aventure pompeuse-
ment nommée doctorat. Avant de vous laisser vous délecter des quelque 223 pages que contient
ce manuscrit, j’aimerais remercier une dernière fois les êtres qui me sont chers, qui sont, en
somme, tous les êtres qui ont partagé avec moi leur goût de la vie, toutes celles et ceux qui m’ont
souri ces trois dernières années et dans le sourire desquels j’ai trouvé des marques affectueuses
de joie, d’intelligence, et de bienveillance. Merci.

Work in progress as of January 16, 2024

Abstract xii

When Random Forests Meet Neural Networks
A Finite-Sample Analysis

Abstract
In essence, this Ph.D. strives to fathom the crossroads of traditional tree-based methods and modern
neural architectures, exploring potential synergies, benefits, and theoretical underpinnings from a statistical
perspective. The theoretical setting is generally that of non-parametric regression with finite samples. Two
pieces of work (Chapters 2 and 3) involve the Deep Forest algorithm (DF, Zhou et al. 2017), which stacks
Random Forests (RF) in a Neural Network (NN) fashion. We theoretically analyse the benefit of stacking
trees in a simplified DF architecture (Chapter 2), while numerically we use pre-trained DF, among other
tree-based methods, to initialize NN training and thereby boost their performances (Chapter 3). In a further
development, we examine the behaviour of RF algorithms in the interpolation regime, thus extending
the study of interpolating estimators (such as neural networks and kernel methods) to random forests.
Rates of convergence are established for interpolating median RF, and the influence of interpolation on the
prediction performances is also measured through the volume of the interpolation zone, characterized for
interpolating Breiman forests (Chapter 4).
Finally, we present an ongoing implementation work consisting in training neural networks with differ-
ent objectives inspired from the PAC-Bayes framework in order to reach faster optimisation and better
generalisation performances.

Keywords: random forests, statistical learning, neural networks, interpolation, finite sample

Laboratoire de Probabilités, Statistique et Modélisation
Sorbonne Université – Campus Pierre et Marie Curie – 4 place Jussieu – 75005 Paris – France

Contents

Remerciements v

Abstract xii

Contents xiii

1 Introduction 1
Preliminaries - A Bit of Learning . 1
1.1 Random Forests . 2

1.1.1 Presentation . 3
1.1.2 Theoretical Insights and their Empirical Consequences 6

1.2 Neural Networks . 11
1.2.1 Presentation . 11
1.2.2 Challenges . 13

1.3 Interpolation - Regularization . 14
1.3.1 Motivation - Neural Networks . 15
1.3.2 Kernel Methods . 16
1.3.3 Random Forests . 17
1.3.4 The Interpolation Prism - Open Questions 18

1.4 Summary of Contributions . 19
1.4.1 Analysis of the Deep Forest Algorithm . 19
1.4.2 Initialization of NN from Tree-Based Methods 20
1.4.3 Theoretical Study of Interpolating RF . 20
1.4.4 PAC-Bayes Objective for NN Training . 20

2 Analyzing Deep Forest 26
Abstract . 26
2.1 Introduction . 26
2.2 Deep Forests . 28

2.2.1 Description . 28
2.2.2 DF Hyperparameters . 28

2.3 Refined Numerical Analysis of DF Architectures 29
2.3.1 Towards DF Simplification . 29
2.3.2 Tracking the Best Sub-Model . 30
2.3.3 A Precise Understanding of Depth Enhancement 32

2.4 Theoretical Study of a Shallow Tree Network . 33
2.4.1 The Network Architecture . 34
2.4.2 Problem Setting . 35

xiii

Contents xiv

2.4.3 Main Results . 36
2.5 Conclusion . 39
S1 Additional Figures . 40

S1.1 Computation Times for Section 2.3 . 40
S1.2 Table of Best Configurations, Supplementary to Section 2.3.2 40
S1.3 Fashion Mnist MGS Encoding . 40
S1.4 Additional Figures to Section 2.3.3 . 41
S1.5 Additional Figures to Section 2.3.2 . 47
S1.6 Additional Figures to Section 2.4 . 52

S2 Technical Results on Binomial Random Variables 55
S3 Proof of Lemma 2.4.2 . 59
S4 Proof of Lemma 2.4.3 . 62
S5 Proof of Proposition 2.4.5 . 63

S5.1 Proof of statement 1.: Risk of a Single Tree 63
S5.2 Proof of statement 2.: Risk of a Shallow Tree Network 65

S6 Proof of Proposition 2.4.6 . 74
S6.1 Proof of statement 1.: Risk of a Single Tree 74
S6.2 Proof of Statement 2.: Risk of a Shallow Tree Network 75

S7 Extended Results for a Random Chessboard . 85
S8 Proof of Proposition S1 . 86

S8.1 First Statement: Risk of a Single Tree . 86
S8.2 Second Statement: Risk of a Shallow Tree Network 89

3 Tree Sparse NN Initialization 95
Abstract . 95
3.1 Introduction . 95

3.1.1 Related Works . 96
3.1.2 Contributions . 97

3.2 Equivalence Between Trees and MLP . 97
3.2.1 Presentation of the Predictors in Play . 98
3.2.2 An Exact Translation of Tree-Based Methods into MLP 98
3.2.3 Relaxing Tree-Based Translation to Allow Gradient Descent Training 99

3.3 A New Initialization Method for MLP Training 100
3.3.1 Our Proposal . 100
3.3.2 Experimental Setup . 100
3.3.3 A Better MLP Initialization for a Better Optimization 102
3.3.4 A Better MLP Initialization for a Better Generalization 102
3.3.5 Analyzing Key Elements of the New Initialization Methods 104

3.4 Conclusion and Future Work . 105
S1 Details on Deep Forest (DF) and its Translation 105
S2 Details of the Translation of a Decision Tree into an MLP 106
S3 Illustration of our Initialisation Method . 108
S4 Detail on the MLP Translation Accuracy . 108

S4.1 On the Choice of Hyper-Parameters . 108
S4.2 A Fundamental Numerical Instability of the Neural Network Encoding . . 109

S5 Supplements to Numerical Evaluations . 111
S5.1 Data sets . 111
S5.2 Implementation Details . 112
S5.3 Working with an Arbitrary Width in P1 (Optimization Behaviour) 113

Work in progress as of January 16, 2024

Contents xv

S5.4 Additional Material for Protocol P2 (Generalization Behaviour) 113
S5.5 Hyper-Parameter Detting . 117
S5.6 Performances of Tree-Based Methods Used for Initialisation of MLP 122
S5.7 Additional Figures to Section 3.3.5 (Analyzing key elements of the new initial-

ization methods) . 122

4 RF Interpolation 127
Abstract . 127
4.1 Introduction . 127
4.2 Setting . 129
4.3 Centered RF . 130

4.3.1 Interpolation in CRF . 130
4.3.2 Inconsistency of the Standard CRF . 131
4.3.3 Consistency of Void-Free CRF under the Mean Interpolation Regime 132

4.4 Centered Kernel RF . 132
4.5 Semi-Adaptive RF: Median RF . 134

4.5.1 Consistency . 134
4.5.2 Volume of the Interpolation Area . 135

4.6 Breiman RF . 136
4.7 Conclusion . 138
S1 Summary of Contributions . 140
S2 Proofs . 140

S2.1 Reminders and Notations . 140
S2.2 Proofs of Section 4.3 (Centered RF) . 141
S2.3 Proofs of Section 4.4 (Theorem 4.4.1) . 152
S2.4 Proofs of Section 4.5 (Semi-Adaptive Forests) 162
S2.5 Proof of the Main Result (Median RF Consistency) 178
S2.6 Proofs of Section 4.6 (Interpolation Volume of Breiman RF) 186

S3 Experiments . 189
S3.1 Consistency Experiments . 189
S3.2 Interpolation experiments . 194

5 PAC-Bayes 200
Preambulum . 200
5.1 Introduction . 200
5.2 Training a NN under a PAC-Bayes Objective . 202

5.2.1 Data and Estimators . 202
5.2.2 Training Objectives . 202

5.3 Training Process . 203
5.4 PAC-Bayes Penalty and Flatness . 204

5.4.1 Evaluating the Optimization Loss Landscape Curvature 204
5.4.2 Experimental Protocol . 204
5.4.3 Results . 204
5.4.4 Generalization Performances under PAC-Bayes Inspired Training 205

5.5 Conclusion and Further Work . 206
5.A Appendix . 207

S1.1 Different Kinds of NN . 207
S1.2 PAC-Bayes Objectives . 207
S1.3 Additional Figures to the Flatness Experiment 208

Work in progress as of January 16, 2024

Contents xvi

S1.4 Additional Figures to the Generalization Experiment 208

Bibliography 213

Work in progress as of January 16, 2024

Chapter 1

Introduction

Many objects and concepts with complex relationships appear in this work. We present here the
main ones who are, by order of importance, i) Random Forests (RF), ii) Neural Networks (NN)
iii) interpolation and regularization.

Preliminaries - A Bit of Learning
This work is dedicated to the study of estimators in the context of supervised learning. This
framework corresponds to the most usual tasks of machine learning: given some labelled data
(such as classified images), our aim is to develop an algorithm to estimate the relationship between
the input features and the corresponding label in order to make predictions on unlabeled data
based on inputs only.

Supervised Learning In the context of supervised learning, we observe i.i.d. instances
(Xi, Yi)1⩽i⩽n of a random (i.e. complex) phenomenon (X,Y) of unknown distribution with
X ∈ X ⊂ Rd and Y ∈ Y ⊂ R. The variable Y is often referred to as the output or answer, which is
considered to be real-valued in this work (either continuous or discrete). Our goal is to predict
Y given the input X (also called the input variables). In statistical terms, we want to estimate the
conditional quantities E [Y |X = x] in regression, or P (Y |X = x) in classification, for all x ∈ X .
In order to achieve this goal, we introduce estimators, generically written fn : X → Y , whose
construction depends on the data (Xi, Yi)1⩽i⩽n.

Non-parametric Regression Consider the simple framework of nonparametric regression es-
timation, in which an input random vector X ∈ Rd is observed, and the goal is to predict the
random response Y ∈ R. Typically, we have

Y = f⋆(X) + ε (1.1)

where f⋆ : Rd → R and ε is a random noise independent of X verifying E [ε] = 0 and E
[
ε2
]
=

σ2 > 0. To determine how good an estimator fn is, we measure the distance between the
prediction of the estimator and the original label with the L2 cost averaged on the data, and we
call this distance the risk of fn:

Risk(fn) := E
[
(Y − fn(X))2

]
.

1

1.1. Random Forests 2

However, there is an inextricable randomness in Y that we cannot hope to predict. Therefore, we
write:

Risk(fn) = E
[
(f⋆(X) + ε− fn(X))2

]

= E
[
(f⋆(X)− fn(X))2

]
︸ ︷︷ ︸

R(fn)

+E
[
ε2
]

where R(fn) is called the excess risk of fn. Our target is thus the best estimator possible without
taking into account the additional noise ε. It is called the Bayes estimator and writes f⋆(x) =
E [Y |X = x]. We also refer to it as the regression function.

Our goal is thus to make the best possible use of the i.i.d. data points (Xi, Yi)1⩽i⩽n distributed
as (X,Y) in order to construct an estimator fn : Rd → R of the function f⋆.

Estimator Properties A good indicator of the quality of an estimator is the excess risk defined
above. Such an excess risk can be decomposed into two parts:

E
[
(fn(X)− f⋆(X))2

]
= E

[
(E [fn(X)|X]− f⋆(X))2

]
︸ ︷︷ ︸

bias

+E
[
(fn(X)− E [fn(X)|X])2

]
︸ ︷︷ ︸

variance

. (1.2)

1. The bias quantifies how close the estimator can be from f⋆ in expectation. In general, the
more complex the estimator, the lower the bias.

2. The variance, which measures the sensitivity of the estimator to the noise of the training
data. A priori, the more complex the estimator, the higher the variance (although modern
algorithms challenge this paradigm, as we will see in Section 1.3).

We should expect from a well-behaved estimator that, given an infinite amount of data, both
its variance and bias converge to 0. This is formalized in the following definition of consistency:
Definition 1.0.1. An estimator fn is said to be consistent 1 if lim

n→∞
R(fn) = 0.

Consistency is one of the most fundamental properties for an estimator. One of the goals of
the statistician is therefore to prove consistency and compute convergence rates under hypotheses
that are as general as possible. This property as well as the convergence rates often allow us to
better understand the behavior of the algorithm at hand and eventually to refine it. A traditional
proof technique consists in upper-bounding the bias and the variance separately in order to prove
consistency. In the following, we will very often discuss specific estimators from the bias-variance
perspective.

1.1 Random Forests
Although simple in appearance, the Random Forests (RF) algorithm achieves great performances
and raises many theoretical questions that resonate with the fundamentals of statistics. We first
draw an overview of these algorithms before diving into their theoretical challenges.

1Note that several types of consistency exist. We are mostly interested in L2 consistency, which we simply call
consistency in order to lighten the notations.

Work in progress as of January 16, 2024

1.1. Random Forests 3

1.1.1 Presentation
Introduced in the early 2000s, Random Forests (Breiman 2001a) (RF) are still among the most
popular machine learning algorithms. They are particularly efficient to deal with tabular data
in a supervised setting (both regression and classification), and are applied to a wide range of
applications (Díaz-Uriarte et al. 2006; Prasad et al. 2006; Chen et al. 2012; Belgiu et al. 2016).
The simplicity of the RF design and hyperparameter tuning, as well as its powerful predictive
performances, are key ingredients to its success. The algorithm relies on a “divide and conquer”
principle: sample fractions of the data, grow a randomized tree predictor on each subsample, then
aggregate the predictors together. Many variations of RF algorithms were built over the years;
unless specified otherwise, the generic term RF refers to Breiman’s original algorithm, detailed
below. As our theoretical studies focus on the regression setting, we present the algorithm in this
case. We start by presenting the decision tree construction, at the core of the RF algorithm.

Decision Tree Breiman RF use specific decision trees (DT) called Classification And Regression
Trees (CART, Breiman et al. 1984). CART recursively partitions the input space X with hyper-
planes, parallel to one of the axes. Each node of the tree thus takes the form of a hyper-rectangular
node included in X , the root cell. Starting from the root, at each step of the construction, a cell is
split into two parts. It goes on until a stopping criterion is reached (for instance, a pre-specified
number of splits). More precisely, given a cell A =

∏d
ℓ=1[aℓ, bℓ], in order to compute the next

split, we compute the optimal couple feature/split-value (jA, zA) satisfying:

(jA, zA) = argmax
(j,z)∈EA

LA(j, z), (1.3)

where EA = {(j, z) : j ∈ {1, . . . , d}, z ∈ (aj , bj)} is the set of eligible split in the cell A and where
LA measures a decrease in impurity (the variance in regression, the Gini criterion or the entropy
in classification). In regression, denoting X(j) the j−th coordinate of X , Lwrites for all A, j, z:

LA(j, z) =
1

Nn(A)

n∑

i=1

(Yi − ȲA)
21Xi∈A

− 1

Nn(A)

n∑

i=1

(
(Yi − ȲAL

1Xi∈AL
− ȲAR

1Xi∈AR

)2
1Xi∈A,

where AL = {X ∈ A : X(j) < z}, AR = {X ∈ A : X(j) ⩾ z}, and ȲA (resp., ȲAL
, ȲAR

) is the
average of the Yi’s belonging to A (resp., AL , AR), with the convention 0/0 = 0. Finally, for a
given point x, the prediction of a tree at the point x is made by averaging the values Yi for which
the Xi fall into the leaf of x (see eq. 1.4). We provide a schematic view of a DT in Figure 1.1.

Mathematical Definition of RF A random forest is a predictor consisting of a collection ofM
randomized regression trees. Randomness is introduced in the tree construction to ensure that
the trees are diverse enough for the averaging to be efficient. For the j-th tree in the family, the
predicted value at the query point X is denoted by fn(X; Θj ,Dn), where Θ1, . . . ,ΘM are inde-
pendent random variables, distributed the same as a generic random variableΘ and independent
of Dn. In practice, the variable Θ is used to resample the training set prior to the growing of
individual trees and to select the successive directions for splitting—more precise definitions

Work in progress as of January 16, 2024

1.1. Random Forests 4

Figure 1.1: Schematic view of a decision tree.

will be given later. In mathematical terms, the j-th tree estimate takes the form

fn(X; Θj ,Dn) =
∑

i∈D⋆
n(Θj)

1Xi∈An(X;Θj ,Dn)Yi

Nn(X; Θj ,Dn)
, (1.4)

where D⋆
n(Θj) is the set of data points selected prior to the tree construction, An(X; Θj ,Dn) is

the cell containing X , and Nn(X; Θj ,Dn) is the number of (preselected) points that fall into
An(X; Θj ,Dn). At this stage, we note that the trees are combined to form the (finite) forest
estimate

fM,n(X; Θ1, . . . ,ΘM ,Dn) =
1

M

M∑

j=1

fn(X; Θj ,Dn). (1.5)

An illustration of a RF is presented on Figure 1.2. To lighten the notations, we drop the depen-
dencies on Dn.

By lettingM tend to infinity, according to the law of large numbers, we obtain the infinite RF:

f∞,n(x) = EΘ[fn(x,Θ)].

Such object is easier to study theoretically than the finite forest, while being close to finite RF
when M is large (the distance between finite and infinite RF typically decreases as 1/M , see
(Scornet 2016a) for more details). Here, EΘ denotes the expectation w.r.t. Θ, conditional on Dn.

Tree randomness As stated above, in order to diversify the trees of a random forest, we introduce
two complementary processes of randomization. The bootstrap method involves randomly
sampling n observations with replacement from the dataset for each tree, essentially subsampling
rows if the data is seen as a Rn×d matrix. Conversely, feature subsampling selects a random
subset of features at each node for optimal splitting, akin to column subsampling in matrix
representation. Note that this process is repeated for each node of each tree, unlike bootstrap,
which is done only once for each tree, at the beginning of their construction. We draw a small
review of the theoretical analysis of these processes in the next section.

Parameters Several libraries in many programming languages implement the RF algorithm
(see, for instance, Scikit-learn in Python (Pedregosa et al. 2011) or the randomForest package

Work in progress as of January 16, 2024

1.1. Random Forests 5

Training Data

Bootstrap samples

. . .

Tree 1 Tree 2 Tree M

Average in regression
Majority vote in classification

Prediction

Figure 1.2: Schematic view of a RF.

in R). We will mention the parameters as they are named in the famous library Scikit-learn
(Pedregosa et al. 2011).

• Number of Trees. The first thing to set is the number of trees used in the forest. It can be
made arbitrarily large (even infinite in our theoretical studies) and is usually limited by
computing performances. The influence of the number of trees is well understood, it has
been studied in, e.g., Genuer et al. 2010; Díaz-Uriarte et al. 2006; Scornet 2016a. Roughly,
from a prediction performance perspective, the more trees the better.

• Stopping Criterion. The second parameter to define is the stopping criterion that is applied
to all the trees of the RF. It is possible to set this criterion in several ways, for instance by
fixing a limiting depth for each tree, a minimum number of points in each leaf, a minimum
impurity/variance value in each leaf, etc. As we discuss later, this parameter has a lot of
influence on the behavior of the RF: it determines the convergence rates of upper bounds on
the excess risk, for instance. As depth increases, the number of leaves increases as well, and
the number of points contained in each leaf decreases: the bias decreases but the variance
increases for a tree (the averaging effect is less efficient in each leaf).

• Max-Features. The parameter max-features determines, in each node, how many direc-
tions are randomly subsampled from {1, ..., d} for the computation of the best split. We
denote it as an integer m ∈ {1, ..., d}. The lower m, the more random the construction of a
tree and the more diverse the RF.

• Bootstrap parameters. Finally, a few parameters also calibrate the bootstrap procedure. In
particular, max-samples sets the number of points sampled to train each tree. Note that we
can also easily deactivate bootstrap in order to train each tree on the whole dataset, as we
will do in several theoretical studies of RF.

Work in progress as of January 16, 2024

1.1. Random Forests 6

Intuition Statistical wisdom advocates the optimization of a bias-variance trade-off as a funda-
mental principle to design a good estimator. Regarding each RF tree, this could a priori mean
enforcing each leaf to contain a certain amount of data points, or equivalently, limiting the depth
of each tree. Limiting the depth increases the bias, but as the prediction of a tree involves av-
eraging the Yi’s in each leaf, it helps to reduce the variance. However, in practice, RF are often
built with fully-grown trees (it is the default setting in the scikit-learn library) and exhibit
good performances in high-depth regimes. The latter strategy can be viewed as starting from
a strong learner (a fully grown tree) with a low bias as well as high noise sensitivity, and then
introducing regularization processes that reduce the variance while preserving a low bias.

The following section studies several aspects of the bias-variance tradeoff in RF, as well as the
regularization processes that allow RF (even those composed of fully-grown trees) to reduce
their sensitivity to data noise.

1.1.2 Theoretical Insights and their Empirical Consequences
Several decades have elapsed since the introduction of Classification andRegression Trees (CART)
and Random Forests (RF), yet a comprehensive mathematical understanding of their behavior
remains elusive. Random Forests, in particular, pose a range of theoretical challenges, and in this
section, the focus is on the aspects of consistency. Establishing necessary and sufficient conditions
for the consistency of these algorithms is an open problem. In the subsequent paragraphs, we
outline a few steps toward addressing this issue.

CART

First, with regard to proving the consistency of a single CART, the main difficulty lies in the strong
dependence of the CART construction on the data distribution. As CART’s construction takes into
account the positionsXi’s and the values Yi’s, analyzing its behavior requires several assumptions
on both the distribution of Y |X and that of X . We examine these desirable hypotheses following
a standard bias-variance decomposition obtained by applying Jensen inequality:

E
[
(fn(X,Θ)− f⋆(X))2

]
⩽ 2E

(

n∑

i=1

Wi(f
⋆(Xi)− f⋆(X))

)2

︸ ︷︷ ︸
bias

+2E

(

n∑

i=1

Wi(Yi − f⋆(X))

)2

︸ ︷︷ ︸
variance

(1.6)

whereWi =
1X∈An(Xi,Θ)Yi

Nn(Xi,Θ) .

Bias In order to obtain convergence of the bias, one strategy is to ensure that the variation
of f⋆ within each leaf can be made arbitrary small. To that end, one could assume that f⋆ is
continuous (or uniformly continuous (Scornet et al. 2015)), has bounded derivatives (Klusowski
2021a) or bounded variations (Klusowski 2021b). However, this is not sufficient to ensure that
the bias vanishes. Thus, a second assumption is needed to guarantee that the leaves of CART
become small enough on directions where the variation of f⋆ is not negligible. Consequently,
on these directions, CART should make enough splits to reduce the size of the leaves. To this
aim, it is necessary (but not sufficient) that the depth kn grows to infinity. The size of the leaf
is sufficiently reduced when we add a final hypothesis: in the case of additive models, thanks
to feature disentanglement, CART performs enough splits on each important direction so that
it achieves low variations of f⋆ in each leaf when the depth verifies kn = o(log2(n/ log(nd)))

Work in progress as of January 16, 2024

1.1. Random Forests 7

(Klusowski 2021b) or is such that the number of leaves tn satisfies tn(log n)9 = o(n) (Scornet et al.
2015). These results were later extended in Elie-Dit-Cosaque et al. 2022 who identified a broader
class of functions, which we call the “CART-friendly” class in the sequel, for which this condition
is verified, and CART consistency is obtained (see Definition 4.1 in Elie-Dit-Cosaque et al. 2022).
Finally, we also mention the first consistency proof of CART, where it is directly supposed that
the leaves shrink as n grows (Breiman et al. 1984). Other consistency results on more general
data-dependent partitioning algorithms (including CART) also require assumptions from which
we can deduce cell shrinking as n grows (Lugosi et al. 1996).

Variance Regarding the variance, we first recall that the predictions of CART in each leaf are
made by averaging all the Yi’s contained in the leaf. In a leaf, the variance decreases toward 0 if and
only if the number of data points is sufficient (i.e. grows to infinity) in order to average the noise
out. This situation is opposite to the one we faced when controlling the bias, in which the leaves
needed to be as small as possible, thus leading to a low number of observations per leaf. Therefore,
it is necessary to limit the depth and to make assumptions that guarantee a minimum number
of points in each leaf. The hypothesis considered in Wager et al. 2015 (Definition 1) perfectly
answers our needs: it assumes that each child node contains a minimum portion of the data
points belonging to the parent node and that the terminal nodes all contain aminimum number of
points. Wager et al. 2015 also require the use of weakly-dependent features. With these hypotheses,
they obtain a control on the estimation error of any tree of orderO(

√
log(d) log(n)/nleaf)with high

probability, with nleaf the minimum number of samples per leaf. Convergence of the estimation
error was also obtained without assumptions on the behavior of the tree: in the case of additive
models, (Scornet et al. 2015; Klusowski 2021b) for instance, with an extension to the “CART-
friendly” class introduced above (Elie-Dit-Cosaque et al. 2022). Indeed, for a limited depth, the
estimation error of CART can be controlled via the hypotheses introduced in Nobel 1996, namely
a subexponential growth of their shattering number, a restricted number of cells.

Consistency The above discussion enlightens the role of the depth parameter kn as a lever to
control the bias/variance trade-off. The higher kn, the lower the bias, the greater the variance. In
order to obtain the consistency of CART, one should calibrate kn such that (i) it tends to infinity
to decrease the bias towards 0 and (ii) the number of points in each leaf tends to infinity so
that the variance is reduced to 0. This is typically achieved when kn is of the order α log n, with
α ∈ (0, 1) (the tree roughly contains nα leaves, each leaf containing n1−α data points). Following
this general comment, Scornet et al. 2015 proves the first consistency result in the case of additive
models; it was later extended to a more general class of functions in Elie-Dit-Cosaque et al. 2022.
Recently, Klusowski 2021b proved consistency of CART and obtained the first (and only, to the
best of our knowledge) consistency rates. Note that these rates also hold in a high-dimensional
setting. More precisely, in the case of the additive models, Klusowski 2021b proves that the excess
risk of a CART fn verifies

R(fn) ⩽
||f⋆||TV
kn + 3

+ C
2kn log(nd)

n

where C is a constant and || · ||TV indicates the total variation norm. This bound is optimal when
kn = 1

2 log2(n). This is the first result providing consistency rates for CART, and it remains to
know whether this rate is improvable or not. Indeed, it is of the order O((log n)−1) which is
very slow: it is possible to obtain speed in O(

√
(log(n)d)/n) with similar assumptions (Tan et al.

2019). This matter is discussed in Section 4.3 of Klusowski 2021b. The interested reader can find
a summary of the work on CART consistency in Klusowski 2021b Section 1.1.

Work in progress as of January 16, 2024

1.1. Random Forests 8

Random Forests - Quantifying the Randomization Effects

The idea of averaging several randomized estimators, referred to as bagging, is a few years older
than the conception of RF (Breiman 1996). The benefits of bagging over a single learner were
soon identified (Bühlmann et al. 2002) and it was proved in Biau et al. 2008 that it is possible to
build a consistent estimator from the aggregation of non-consistent 1-NN which individually
have a high variance.

Regarding RF, the benefits of averaging several randomized CART are clearly observed in
practice, but hard to quantify mathematically. Several consistency proofs of RF rely on conditions
that already guarantee the consistency of a single DT: they remain in a regime where the number
of samples per leave tend to infinity (Scornet et al. 2015; Elie-Dit-Cosaque et al. 2022). Proving RF
consistency without relying on that of CART requires levering the RF randomization processes,
bootstrap and feature subsampling, which are quite difficult to analyze even individually. We
discuss their effects on variance reduction in the two following paragraphs.

Feature Subsampling In order to better understand the effect of feature subsampling, several
papers study the consistency of several kinds of RF when bootstrap is turned off. As Breiman RF
are difficult to study theoretically, we begin with the analysis of a simpler model, the Centered
Random Forests (CRF), which are built independently of the data (in each node, the cut is
performed at the middle along a random direction). When a RF is built depending on the Xi’s
only we call it semi-adaptive and when it is built independently of the data we call it non-adaptive
(it is sometimes called purely random forest in the literature).

To the best of our knowledge, Proposition 2 of Biau 2012b is one of the first results exhibiting a
vanishing estimation error, in a high depth regime, with bootstrap off, in the case of CRF (see also
Breiman 2004). It was recently improved in Klusowski 2021a where nearly-optimal convergence
rates for non-adaptive RF with bootstrap off are obtained. The upper bound on the risk of the
CRF fCRF

∞,n reads (in a slightly simplified manner):

R(fCRF
∞,n) ≲ 22kn log2(1− 1

2d) +
2kn

n
(log2 kn)

− d−1
2 + e−n2−kn/2 (1.7)

This bound isminimalwhen kn = (n(logd−1
2 n)1/2)1−α andα = 2 log2(1−p/2)/(2 log2(1−p/2)−1),

according to a classical bias-variance trade-off. Remarkably, the estimation error still converges to
0 in the regime kn = log2 n although it deteriorates the convergence rate. The variance reduction
thus directly benefits from the feature subsampling effect, but it is still not as efficient as limiting
tree depth. More precisely, compared to a single centered tree, the improvement on the estimation
error is in O((log2 kn)

− d−1
2). As shown in Lin et al. 2006 (and in Theorem 5 of Klusowski 2021b),

it is only improvable up to O((log2 kn)
−(d−1)) for any RF whose construction does not depend

on the Yi’s, in particular CRF. Indeed, the prediction of a RF at a given point only depends on a
few of its nearest neighbors (potentially chosen adaptively). Consequently, the averaging effect
is limited by the number of such neighbors, which scales as (log n)d−1 if the density of X is
bounded away from 0 in [0, 1]d.
Remark 1.1.1. Although lower bounded in the case of non-adaptive RF, the reduction of variance due
to feature subsampling can reach statistical optimality when combined with a wise split scheme, as used
in Mondrian RF (Mourtada et al. 2020). In a Mondrian tree (Lakshminarayanan et al. 2014), a cell is
split at a random time which depends on its perimeter (the greater, the bigger the split probability) and the
direction to split over is randomly chosen depending on the sizes of sides of the cell (the greater the length
of the side, the higher the probability). Mourtada et al. show that Mondrian RF achieve minimax rates on

Work in progress as of January 16, 2024

1.1. Random Forests 9

the class of s-Hölder functions for s ∈ (0, 2]. Moreover, when s ∈ (1, 2], these rates cannot be reached by a
single tree, which emphasizes the role played by the feature subsampling process.

Regarding the feature subsampling process, one parameter plays a key role: the max-features
parameter m, which indicates in each node how many directions are sampled as split candidates
for the best-split search. In the case of CRF, the choice of the direction is completely random,
which corresponds to m = 1. Setting m > 1 is only pertinent when dealing with adaptive
random trees, for which the splitting direction can be chosen in an adaptive manner, for which the
theoretical analysis is more complicated. An empirical analysis of the performance of a RF w.r.t.
the Signal-to-Noise Ratio (SNR) of the data is provided in Mentch et al. 2019. Their findings are
in line with the mathematical intuition that the lower the SNR, the more regularization is needed,
the lowerm should be. They also provide some insights on how feature subsampling reduces
the variance of an aggregation of randomized Ordinary-Least-Square (OLS) linear estimators: it
causes a regularization process similar to training an OLS with L2-penalty. In details, if fB is
the averaging of B OLS estimators, each one being computed on a random subset of features m
among d features, then,

fB −−−−→
B→∞

m

d
fOLS

where fOLS is the standard OLS estimator computed on all d features. We clearly see here the
influence of the max-features parameter, and it would be interesting to quantify a similar
phenomenon in the case of RF.

Another peculiar result from Kobak et al. 2020 suggests that the regularization effect of feature
subsampling is enhanced by simply artificially adding noisy features to the input data: it shows
that adding random noise features to the data X , computing an OLS on the augmented data and
selecting only d features of the estimator accounts for applying a ridge penalty to a classical OLS
estimator when the number of noisy features tends to infinity. Mentch et al. 2022 empirically
shows that augmenting the data with noisy features contributes to regularizing RF as well.

Bootstrap To the best of our knowledge, the benefits of any data subsampling process (including
bootstrap) have not been quantified yet in the case of Breiman RF. Nevertheless, the effects of
data subsampling without replacement are pretty well understood for Quantile RF or Median RF
(which cut at a given quantile of the sample of each node along a randomly chosen direction)
independently of the Yi’s. Scornet 2016a provides a first result on quantile RF consistency,
where the variance reduction only stems from the data subsampling process. In particular, RF
consistency is obtained even when trees are fully grown and individually inconsistent (although
convergence rates are not obtained, as the proof relies on Stone’s theorem). Consistency rates
were later obtained in Duroux et al. 2018, where it is proved that controlling the tree depth or the
data subsampling results in the same variance reduction. Indeed, reducing the subsampling size
mechanically limits the depth of each DT, which does not grow more leaves than the number of
samples. In detail, the upper bound on the excess risk writes:

R(fn,∞) ≲
2kn

n
+ d

(
1− 3

4d

)kn

It can be minimized by either optimizing the depth kn and neglecting the subsampling effect
(an = n), or by fixing k = log2 an (fully-grown trees) and calibrating the subsampling rate
an = n

log(1−3d/4)
log 2−log(1−3d/4) . This rate was improved for Median RF in Klusowski 2021a, and proved to

be minimax only when d = 1.

Work in progress as of January 16, 2024

1.1. Random Forests 10

Consistency of Breiman RF Overall, to the best of our knowledge, for a fixed dimension d,
the only consistency results on Breiman RF (without rates) can be found in Scornet et al. 2015;
Elie-Dit-Cosaque et al. 2022, mentioned above. Very recently, (Chi et al. 2022) took another step
forward by proving consistency of the original Breiman RF in a high-dimensional setting and
computing rates. The only non-standard assumption, with regard to that of non-parametric
regression, is a Sufficient Impurity Decrease (SID) condition which guarantees that each split
lessens the impurity of the current node sufficiently. Denoting α > 1 the SID parameter and
b ∈ (0, 1) the proportion of bootstrap samples for each tree, their bound (Theorem 1) roughly
writes:

R(f∞,n) ≲ α(⌈bn⌉)−η + (1− m

dα
)kn + (⌈bn⌉)−δ+c (1.8)

with kn ⩽ c log2(bn + 1), c ⩽ 1/4 η < 1/8, 2η < δ < 1/4 and C a constant. The second term
on the right-side of Equation (1.8) corresponds to the bias term and its behavior is in line with
the common observation that the higher kn, the lower the bias and the higherm, the more the
impurity of each tree decreases at each step of the construction, the better the bias. The first term
is part of both the variance and bias and is mostly non-informative: dependencies onm and kn
are hidden and as the computations are made per tree for a fixed number of samples, they do not
take advantage of the bootstrap effect on the variance reduction. The last term is, according to
the authors, a technical residual that corresponds to the impossibility to control the discrepancy
between the estimate E

[
1

NA

∑
Xi∈A Yi

]
and E [f⋆(X)|X ∈ A] when the cell A is too small; it also

limits the depth of the RF by enforcing c ⩽ δ.

Conclusion

In a nutshell, we summarize the main steps taken toward a theory of RF consistency and point
out a few directions to conduct further research:

● Bootstrap. The effect of data subsampling without replacement is well understood in the
case of semi-adaptive RF (see Scornet 2016a, Duroux et al. 2018). From a theoretical point
of view, its regularizing effect is high, as reducing the sample size accounts for limiting tree
depth. However, this is not exactly the bootstrap process, and it has yet to be quantified in
the case of Breiman RF.

● Feature subsampling. To the best of our knowledge, the only quantification of variance
reduction due to this effect is shown in the upper bound of the CRF estimation error in
Proposition 2 of Biau 2012b and Theorem 2 of Klusowski 2021a. Our recent work Arnould
et al. 2023 provides an analysis in the case of Median RF (see Chapter 4). The benefits of
feature subsampling on the variance reduction of non- and semi-adaptive RF are limited by
the number of nearest neighbors at each point (Lin et al. 2006). Full adaptivity (CART)
allows the algorithm to build a weighted average of the values of the nearest neighbors.
We think that quantifying the benefits of a weighted average over a simple average on the
estimation error for simple cases could shed some light on the feature subsampling effect.

● Overall understanding of RF. In general, the bias part of the excess risk is pretty well
understood in the case of decision trees, as it is directly linked to the size of a leaf. Then, the
extension to RF via averaging is pretty straightforward. One exception is the geometry of
CART, which remains hard to deal with, and extending the work of Scornet et al. 2015, Elie-
Dit-Cosaque et al. 2022 or Chi et al. 2022 could allow us to better understandwhat conditions
a function should satisfy in order to guarantee that the leaves of a CART shrink sufficiently.

Work in progress as of January 16, 2024

1.2. Neural Networks 11

In Elie-Dit-Cosaque et al. 2022, the authors offer a characterization of a particular set of
functions termed as "CART-friendly". For a function f to be classified as "CART-friendly",
it must satisfy the condition that if the expected value z ∈ Rd−1 7→ E[fj(z,X(j))1X(j)∈Aj

]
remains constant along the j-th side Aj of any given rectangle A =

∏
Aj , then f itself must

also remain constant throughout the entirety of that rectangle. Elie et al. have demonstrated
that certain functions, including additive and product functions, inherently belong to this
"CART-friendly" class. By achieving an explicit understanding of the "CART-friendly"
class, we would be able to gain a deeper comprehension of the conditions under which
both CART and Random Forests (RF) are anticipated to be consistent. Regarding the
variance of Breiman RF, the picture becomes a bit blurry. As detailed above, the effects of
both randomization processes have yet to be well analyzed individually before being put
together and/or being compared.

Finally, we mention that the theoretical study of RF is not limited to the consistency aspect.
Among other angles of studywe find variable importance, asymptotic normality or the connection
with kernel methods. The interested reader can find a starting point to these subjects in Biau et al.
2016 or in Criminisi et al. 2012.

1.2 Neural Networks
In this section, we succinctly overview neural network algorithms, beginningwith an examination
of fundamental principles and design considerations, followed by an introduction to the central
mathematical challenges posed by neural networks.

1.2.1 Presentation
Neural Networks (NN) are among the most famous machine learning algorithms. Their recent
successes at solving vision and natural language processing tasks made them famous far beyond
the machine learning community. A key element of their success is that they combine simple con-
ception and training principles (composing non-linear parametric transformations and learning
their parameters via Stochastic Gradient Descent (SGD)) with very flexible architectures.

Basic Principles Although more generic presentations of the algorithm can be found (Shrestha
et al. 2019), we restrain ourselves to Multi-Layer Perceptrons (MLP, Rumelhart et al. 1986) in a
supervised setting.

Architecture A NN is composed of several (L ∈ N) layers, each layer ℓ representing a com-
position of a non-linear function ϕ : R → R applied element-wise and an affine function
fℓ : x ∈ Rdℓ−1 → Wℓx + bℓ ∈ Rdℓ where Wℓ ∈ Rdℓ−1×dℓ and bℓ ∈ Rdℓ . The widths of the layers
correspond to the dimension of the latent spaces in which they inject the data d0, ..., dL. Obviously,
d0 = d and dL are fixed by the dimension of the inputX and output Y . Overall, a neural network
estimator fn writes

fn(x) = WL(ϕ⊙ (WL−1(...(ϕ⊙ (W0x+ b0))...) + bL−1) + bL, (1.9)

see Figure 1.3 for a schematic view. We concatenate all the parameters of the network
{(W0, b0), . . . , (WL, bL)} into a vector θ ∈ Rp where p =

∑L−1
ℓ=1 (dℓdℓ+1 + dℓ) + d0d1 and denote

fn,θ the corresponding NN. We sometimes refer to the parameters as the weights and the
biases of the NN. The design of a NN involves the choice of numerous hyper-parameters such

Work in progress as of January 16, 2024

1.2. Neural Networks 12

x

W1 W2 W3

y

Figure 1.3: Schematic view of a 3-layer neural network.

as the layer type (e.g., convolutional, recurrent, fully connected, ..., see paragraph “data type”
below), the number of neurons per layer, the number of layers (also referred to as “depth”), etc.
Hyperparameter selection (or search) is a whole area of research that is beyond the scope of the
current work.

Data Type One of the big advantages of NN is that their architecture can adapt to different
types of data, in particular images and text. Their empirical success was illustrated first and
foremost by Convolutional Neural Networks (CNN, LeCun et al. 1995) on the ImageNet dataset
(Deng et al. 2009). Convolutional operations indeed fit very well to image processing, as they
are invariant to translation of the input signal. Other kinds of networks such as Recurrent Neural
Networks (RNN, Rumelhart et al. 1985) or transformers (Vaswani et al. 2017) were also specially
designed to process sequential or temporal data. They leverage the sequential structure by using
memory processes and/or refined inner-product-like operations. In contrast, there is no natural
NN architecture that matches tabular data. By default, the MLP architecture is still largely used
due to its generalist nature. Improving the performances of MLP on tabular data is challenging,
and several levers can be considered: changes of hyperparameters, optimization schemes, or
initialization methods. In this work, we focus mostly on the initialization aspect, detailed below.

Training Recall that ideally, we would like to find the neural networkminimizing the theoretical
risk. However, the data distribution is unknown (and so is the theoretical risk), and we only
have access to a finite training sample, Dn = {(X1, Y1), ..., (Xn, Yn)} of i.i.d. copies of a generic
pair (X,Y) ∈ Rd × Y , to do so. Therefore, we learn a NN predictor by minimizing the empirical
risk (surrogate of the risk), that measures the performance of a NN fn on the training set Dn,i.e.,

rn(fn) :=
1

n

n∑

i=1

ℓ(f(Xi), Yi)

where ℓ is either the quadratic cost in a regression setting or the cross-entropy loss in a classification
setting. In order tominimize the training loss of aNNwith respect to theNNparameters, themost
usual training procedure consists of using Stochastic Gradient Descents (SGD, Ruder 2016). This
is an iterative procedure where, at each step t, a subset St (mini-batch) of the data is randomly
selected, and the parameters are updated as follows:

θt+1 = θt − η
1

|St|
∑

(Xi,Yi)∈St

∇θℓ(fn,θ(Xi), Yi) (1.10)

Work in progress as of January 16, 2024

1.2. Neural Networks 13

with η ∈ R the learning rate. There exists an abundant literature of studies and variations of this
algorithm (see Ruder 2016; Bottou et al. 2018 for a review). The stochastic gradient algorithm
requires an initial value θ0 as an input. Due to the non-convexity of the problem to be solved, the
initialization is a delicate issue.

Initialization Initialization is a crucial phase of the design of a NN as it will impact its opti-
mization behavior and, ultimately, the quality of the minimum obtained at the end of training.
Indeed, we are minimizing non-convex objectives based on algorithms conceived to deal with
convex problems, so it is very delicate to ensure convergence independently of the starting point.
As NN are very complex methods (often referred to as black-box models), it is hard to precisely
measure the impact of initialization on both their optimization behavior and their generalization
performances. The choice of the initialization scheme is thus often guided by empirical precepts
and mathematical intuition. We distinguish two kinds of initialization methods: random and
deterministic. A review on initialization of NN can be found in Section 4.2 of Sun 2020.

The success of NN is partially due to several widely used random initialization methods,
e.g., Glorot et al. 2010; He et al. 2015. For each layer, the weights are generally drawn according
to uniform or normal distributions with a variance decreasing w.r.t. the width of the layer. For
instance, a normalized Glorot initialization of a layer ℓ (Glorot et al. 2010) corresponds to a
uniform distribution

U
([

−
√

6

dℓ−1 + dℓ
,

√
6

dℓ−1 + dℓ

])
.

The goal of such a scheme is to maintain a constant signal amplitude throughout the network
which allows stable gradient back-propagation. The use of a uniform distribution instead of a
normal distribution or any other distribution is not clearly motivated.

It is also possible to initialize NN weights in a deterministic way. A typical method consists in
training a NN on another similar dataset and retrieving the weights to use them as a starting point
for the initial task on the original dataset (Zhuang et al. 2020).Another idea is to benefit from
the training of another kind of estimator on the original dataset (such as tree-based methods)
in order to initialize an MLP. This approach was considered in Welbl 2014 and Biau et al. 2019.
Remark that this scheme can constrain the NN architecture.

1.2.2 Challenges
The huge and sudden success of NN 10 years ago challenged our mathematical understanding of
many aspects of machine learning and statistics, the main ones being generalization, optimization,
and approximation. We stress the non-exhaustive character of this list: NN have been the sources
of an uncountable number of publications over the last 15 years, and the study of NN involves
many fields. It is hard to enumerate them all concisely, and we focus on the “main” ones
considered from a statistical perspective: i) approximation and ii) generalization. We refer the
reader to Sun 2020 for a thorough presentation of optimization, or to Belkin 2021 for a high-level
introduction to overparameterized NN.

Approximation The first universal approximation results on NN in the 1990s (Cybenko 1989;
Hornik et al. 1989) (Pinkus 1999 provides a detailed review of such results) suggested that NN
needed an exponential number of parameters (w.r.t. the dimension of the input space) in order
to become universal approximators. The benefits of using several hidden layers compared to a
single layer were still unclear. In practice, NN with many layers and (relatively) few parameters
per layer still achieve low training error (low bias). Many articles try to close the gap between

Work in progress as of January 16, 2024

1.3. Interpolation - Regularization 14

practice and theory by demonstrating approximation rates that seem closer to reality in terms
of number of parameters, dimension of the input space and hypothesis on f⋆. The problem of
evaluating the approximation power of NN can be addressed w.r.t. the regularity of the regression
function.

The first approximation results were based on typical regularity hypothesis in the sense of
functional analysis, i.e., smoothness hypothesis (including f⋆ being continuous, Lipschitz or Lp

(p ⩾ 1) on a compact set of Rd, etc.) Under these assumptions, the number of parameters
required by NN to approximate any f⋆ at precision ε is typically in O(εd) (Pinkus 1999).

Another line of search consists of looking for regularities that neural networks can leverage in
order to improve their approximation rates (w.r.t. their number of parameters). Three families
of such regularities can be identified: i) a hierarchical structure ii) a sparse structure and iii) a
NN-like continuous structure. The hierarchical structure can refer to a signal that is composed of
different levels of expression such as text (letters, words, phrases, etc.) and can be modelled as
a composition of different functions. Sparsity is a more traditional hypothesis that statisticians
consider. It can be seen as a way to model the fact that the signal is null in a part of the space. One
way to express it is to define f⋆ as living in a submanifold of dimension d′ living in an ambient
space of dimension d > d′. Finally, the last class mostly refers to the class of Barron functions
(Barron 1994), which can be seen as a continuous extension of NN in the space of functions. As
explained in Petersen 2020, under such assumptions, it is possible to obtain much better rates
that are independent of the ambient dimension of the input space.

Generalization Overparametrized NN are able to generalize well (reach a low error on a test
set) despite having a zero training error, i.e. perfectly fitting the training set. This observation,
empirical at first, is currently being studied by statisticians, who sometimes refer to it as the implicit
regularization occurring during NN training. We discuss in more details in Section 1.3 of this
type of favorable behavior that overparametrized / interpolating predictors can exhibit and that
requires generally a particular theoretical analysis. Another way of analyzing the generalization
error of overparameterized NN is to adopt a PAC-Bayes approach.

In one sentence, PAC-Bayes allows one to upper bound the excess risk of a probability distribu-
tionQ on the parameters θ of a NN by a sum of i) the empirical risk ofQ and ii) a Kullback-Leibler
(KL) divergence between Q and a reference distribution Q0. Remarkably, the first non-vacuous
generalization bounds on NN were obtained a few years ago in Dziugaite et al. 2017. After
that, many efforts have been conducted to improve the PAC-Bayes bounds in order to close the
gap between theory and practice that we will present in Chapter 5. Here, we simply guide the
interested reader to the great introduction of P. Alquier (Alquier 2023).

1.3 Interpolation - Regularization
In the previous sections, we have introduced NN and RF, two powerful estimators that have the
ability to perfectly fit the data, i.e. to reach a loss equal to 0 on the training set. This phenomenon
is called interpolation, and the purpose of this section is to provide a different light on the be-
havior of several estimators through the prism of interpolation. We first look at NN which are
historically the first successful interpolators, then at kernel methods which attain minimax rates
in interpolation regimes under mild assumptions, and finally at RF which are at the core of the
present work. Nice and friendly introductions to this subject can be found in Belkin 2021; Bartlett
et al. 2021.

Work in progress as of January 16, 2024

1.3. Interpolation - Regularization 15

1.3.1 Motivation - Neural Networks
The paradigm stating that highmodel complexity leads to bad generalization capacity has recently
been challenged by the behavior of NN: deeper and larger NN still empirically exhibit high
predictive performances (Goodfellow et al. 2016). NN are indeed the first algorithms to achieve a
very low training loss (close to 0) on large datasets while maintaining a low generalization gap, i.e.
a small difference between the training and the testing losses. In that sense, they avoid overfitting
the data and the traditional bias-variance tradeoff falls short to explain their good results and to
help designing this kind of estimator. The question raised by this observation can be expressed
as follows: how does an overparametrized NN interpolating the training data still maintains good
generalization performances? This question is vast and is explored in, e.g., Bartlett et al. 2021.
We focus here on a specific aspect, that is, what regularization processes allow very complex NN
with low bias to preserve a low variance?

Implicit regularization Consider a typical regression model as introduced in Equation (1.1)
with

Y = f⋆(X) + ε

where ε is a random variable independent of all (Xi, Yi) that verifies E [ε] = 0, E [ε2] = σ2. If
the model is overparametrized, it can easily fit the data, and at locations Xi, the prediction of
is close to Yi = f(Xi) + εi which is noisy. The fact that overparametrized NN preserve a good
generalization score, despite interpolating the training data, means that its global sensitivity
to the noise is very low. In other words, regularization processes are strong enough to constrain
the noise sensitivity locally and allow the NN to properly estimate the signal in most of the
space. This phenomenon is often referred to as implicit regularization as, a priori, NN are trained
to minimize the empirical risk without explicit complexity penalty. This phenomenon seems
driven by two key components: the hyperparameters of the NN (i.e., width, depth, etc.) and the
optimization algorithm (SGD).

Indeed, as shown on Figure 1.4, increasing the number of parameters can decrease the gener-
alization error. It means that, as the number of parameters increases, a stronger regularization
process occurs. Either better minima appear (in terms of low complexity, such as quadratic
norm), or finding them via SGD becomes easier, or both options take place at the same time.

Regarding the first option, as observed in Belkin 2021, as the size of the functional class of
NN increases, the norm of the minimal interpolating NN within this class directly decreases (for
any norm or any complexity measure). Therefore, the bigger the class, the better the optimal NN
in terms of minimal norm or minimal complexity.

Regarding the second option, according to Belkin 2021, one of the key roles achieved by
overparameterization is to release the constraints on the learning problem which eases the search
for minimal-complexity estimators (e.g., in the sense of lowest norm). To give a simplistic
illustration, in the under-parameterized regime, increasing the generalization capacity of a linear
estimator can be done via the addition of a quadratic penalty to the objective. It writes

min
β∈Rd

||Xβ − y||22 + λ||β||22

with λ > 0 to tune according to a classical bias/variance trade-off. However, in the overparame-
terized regime, the constraint Xβ = y is easily satisfied, and we can simply look for

min
β∈Rds.t.Xβ=y

||β||22.

And indeed, it can be easily shown that in the simple cases of overparameterized linear regression,

Work in progress as of January 16, 2024

1.3. Interpolation - Regularization 16

Figure 1.4: Illustration of the double-descent phenomenon: adding parameters to a NN increase
its performances after the interpolation threshold. From Nakkiran et al. 2021.

training a linear estimator with GD applied to the quadratic loss yields the minimal-norm
estimator (see, e.g., Bartlett et al. 2021).

Several papers try to extend similar results to other settings, including shallow NN. As these
results fall outside the scope of this work, we do not examine them further and refer the interested
reader to Bach et al. 2021. Finally, remark that the impact of over-parameterization of NN goes far
beyond the generalization aspect. In particular, it affects their optimization behavior, as discussed
in Sun 2020; Belkin 2021.

1.3.2 Kernel Methods
Kernel methods provide great insights on the behavior of interpolating estimators. They have
been theoretically studied in Belkin et al. 2019b and Devroye et al. 1998 for instance. In Belkin
et al. 2019b, the authors prove that interpolating singular-kernel methods reach minimax rates in
a regression setting under standard assumptions on the regression function. The kernel used
is of the form K : x → 1||x||⩽1

||x|| which is exploding in 0. Plugging this kernel into a Nadaraya-
Watson-type estimator yields

fh(x) :=

∑n
i=1 YiK

(
x−Xi

h

)
∑n

i=1 K
(
x−Xi

h

) (1.11)

where h is a window parameter which sets the averaging level (the greater h, the greater the
averaging effect). This interpolating estimator can reach minimax-rates by calibrating h properly.
As illustrated in Figure 1.5, the estimator is globally smooth (thanks to the averaging effect) and
locally deviates from the signal in order to perfectly fit the training data (thanks to its singular
property). Therefore, the estimator is only affected locally by the data noise, which does not
deteriorate its convergence to the signal (minimax rate).

In contrast to standard underparametrized methods which suffer from the curse of dimension-
ality, it is suggested by several authors that regularization of kernel methods could benefit from
higher-dimensional settings. For instance, consistency of Laplace kernel method was disproved

Work in progress as of January 16, 2024

1.3. Interpolation - Regularization 17

Figure 1.5: Interpolating kernel estimator (from Belkin et al. 2019b).

if the input dimension is constant in Rakhlin et al. 2019. This idea is also supported by Liang
et al. 2020a where it is shown that, under several assumptions on the geometry of the data, as
d tends to infinity, a phenomenon of implicit regularization starts to occur and the variance
decreases toward 0. In Belkin et al. 2019b as well, the variance of the kernel estimator decreases
exponentially fast towards 0 w.r.t. the dimension d. The benefits of high dimension are also
mentioned in several other contexts (e.g., in terms of computation (Kainen 1997) or optimization
(Huang et al. 2020)) and are sometimes referred to as the “blessing of dimensionality” (Kainen
1997; Belkin et al. 2018). To elucidate this phenomenon, we remark that the disparity between
“local” and “global” scales augment exponentially with respect to dimensionality. Subsequently,
as by nature, the data appears in the form of several discrete points, data noise only manifests at a
local level, and a regularized estimator can effectively confine the noise’s impact to an assortment
of neighborhoods, which contract exponentially with d.

A good illustration of this effect can be found in Belkin et al. 2018 where a simplicial interpo-
lator (a variation of the 1-nearest neighbor estimator) reaches near-optimal convergence rates
in a high-dimensional setting. This behavior is in line with the smooth-spiky decomposition
mentioned in Bartlett et al. 2021 or in Wyner et al. 2017 for RF and boosting methods: they argue
that interpolating estimators can be seen as a sum of a smooth term capturing most of the signal
and a spiky one locally deviating from the signal to interpolate the data.

Finally, we also mention Wang et al. 2022 who recently proved consistency of interpolating
kernel methods, defined on Riemannian manifolds, whose kernels can be written as weighted
random partition kernels on the sphere.

1.3.3 Random Forests
Understanding the behavior of interpolating RF is a natural question, as RF are usually designed
with deep trees (see the default versions in Scikit-learn (Pedregosa et al. 2011) or randomForest
in R) and still yield good performances in generalization. Furthermore, as explained in 1.1.2, in
the interpolating (or high-depth) regime, the variance reduction is only due to the randomization
processes of the RF. Therefore, proving any variance reduction in this regime (or even better,
consistency) is of particular interest as it enlightens the benefitswe get from averaging randomized
trees in a RF fashion. Finally, from a more mathematical perspective, it also globally improves
our understanding of interpolating methods with respect to the behavior of complex/regularized
methods and to the smooth/spiky decomposition as introduced in Bartlett et al. 2021. For instance,
Wyner et al. 2017 argues that the interpolation property is a key element explaining the good
performances of RF. Their empirical analysis relates to the smooth-spiky decomposition already
discussed in the case of NN and kernel methods. They advocate that deep (and spiky) RF are

Work in progress as of January 16, 2024

1.3. Interpolation - Regularization 18

more robust to the noise compared to shallow (and “smooth”) RF as their high complexity could
allow them to circumscribe noise sensitivity locally, as illustrated on Figure 1.6. This hypothesis
is difficult to assess theoretically, as it would require a tight control over the dependence of the
estimation error on the depth of the RF kn.

Figure 1.6: Abstract illustration of the benefits of interpolation. (a) SVM estimator. (b) An
interpolating estimator robust to data noise (filled lines) and a classical SVM sensitive to data
noise (dashed lines). FromWyner et al. 2017.

1.3.4 The Interpolation Prism - Open Questions
After this brief presentation of the behavior of some interpolating estimators, it seems natural to
wonder if interpolation is intrinsically linked to their good performances or if they perform well
despite perfectly fitting the training data. To clarify our ideas, we begin with a short summary of
this section and introduce a short comparison with the standard underparametrized regime.

1. NN. Overparameterized NN trained with SGD benefit from an implicit bias and reach good
minima (in the sense of low complexity). Here, interpolation is a direct consequence of
overparameterization which, intuitively, eases the optimization problem w.r.t. the search
of a good minimum obtained via SGD. In practice, it seems that increasing the number
of parameters can improve both the train and test errors (see, e.g., the performances of
different NN on ImageNet w.r.t. their number of parameters [link]).

2. Kernel Methods. Singular kernel estimators are a great illustration of smooth-spiky in-
terpolators. Their noise robustness proceeds from their ability to deviate locally from the
signal (and thus interpolate). Although they can achieve minimax rates on the class of
β-Hölder functions (β ∈ (0, 2]), it is unclear whether the interpolating power of the kernel
benefits the estimator or not. Indeed, as shown in Larry Wasserman’s course on density
estimation [link] , non-singular kernel estimators can also reach minimax rates under the
same hypotheses.

3. RF. The design of deep RF is also a good case-study of interpolating estimators: from a
low-bias CART highly sensitive to data noise, a regularization process (diversification and
averaging) is introduced to diminish the variance while maintaining a low bias.

Can we draw a bigger picture from these elements, that is, can we establish a comparison
between the classical and interpolation regimes that is not specific to a kind of estimator? An
eventual path toward answering this question would be to introduce a measure to quantify either

Work in progress as of January 16, 2024

https://pytorch.org/vision/stable/models.html
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwiIh53G3IOAAxVcUqQEHQrxDgUQFnoECCUQAQ&url=https%3A%2F%2Fwww.stat.cmu.edu%2F~larry%2F%3Dsml%2Fdensityestimation.pdf&usg=AOvVaw1dBtbzgfbwdSrTntKbULIO&opi=89978449

1.4. Summary of Contributions 19

the regularization of the algorithm or its complexity. This obviously requires a proper definition
of complexity and/or of regularization based on, for instance, a specific norm, how many points
are averaged to make a prediction, etc. W.r.t. this quantity, the double-descent curve would be a
single descent, also observed in the case of RF or kernel methods as well.

Nevertheless, to design good estimators, regularizing a very complex method seems very
efficient, maybe more than optimizing a bias-variance tradeoff based on a limitation of the
complexity of the estimator.

1.4 Summary of Contributions
Two of my works (Chapters 2 and 3) study or use the Deep Forest algorithm (Zhou et al. 2017).
Deep Forest (DF) is a RF-based algorithm that stacks RF in a NN fashion, each RF of each
layer taking as input the outputs of the RF of the previous layer. The improvements of this
estimator, compared to a single RF, raise the question of how DT/RF benefit from the prediction
of previous DT/RF. We investigate this problem in Chapter 2. In Chapter 3, we try to improve the
performances of MLP on tabular data by leveraging pretrained tree-based methods (including
DF) to initialize the network.

Finally, in Chapter 4, we examine the behavior of RF algorithm in the interpolation regime,
thus extending the study of interpolating estimators (neural networks and kernel methods) to
random forests.

The first three chapters have been published in international conferences on machine learning.
The last chapter is dedicated to an ongoing work that has not been published yet. A more detailed
description of each chapter is to be found below.

• Chapter 2 focuses on studying the DF algorithm both empirically and theoretically. This
work, published in ICML 21 (Arnould et al. 2021), has been conducted under the supervi-
sion of my Ph.D. advisors Claire Boyer and Erwan Scornet.

• Chapter 3 presents an initialization scheme for NN derived from tree-based methods in
order to improve the generalization performances and optimization of the NN. This work
has been published in ICLR 2023 (Lutz et al. 2022). It is a joint work with Patrick Lutz
(Boston University), under the supervision of my Ph.D. advisors.

• Chapter 4 is a theoretical study of RF consistency in the interpolation regime. It has been
published in AISTATS 2023 (Arnould et al. 2023). This work was carried out under the
supervision of my Ph.D. advisors.

• Chapter 5 presents an attempt to leverage PAC-Bayes objective to improve the generalization
of NN. This work is currently supervised by Benjamin Guedj (UCL), it has not been
submitted for publication yet.

1.4.1 Analysis of the Deep Forest Algorithm
Chapter 2 focuses on the study of the Deep Forest estimator. More precisely, we analyze the
benefit of combining trees in network architectures, both theoretically and numerically. As DF
performance has already been validated by the literature (Zhou et al. 2017), the main goals of
our study are (i) to quantify the potential benefits of DF over RF, and (ii) to understand the
mechanisms at work in such complex architectures. We show in particular that much lighter
configuration can be on par with DF default configuration, leading to a drastic reduction of

Work in progress as of January 16, 2024

1.4. Summary of Contributions 20

the number of parameters in few cases. For most datasets, considering DF with two layers is
already an improvement over the basic RF algorithm. However, the performance of the overall
method is highly dependent on the structure of the random forests present in the first layer of
the DF architecture, which leads to instability problems. By establishing tight lower and upper
bounds on the risk, we prove that a shallow tree-network may outperform an individual tree in
the specific case of a well-structured dataset if the first encoding tree is rich enough. This is a first
step to understand the interest of extracting features from trees, and more generally the benefit
of tree networks.

1.4.2 Initialization of NN from Tree-Based Methods
In Chapter 3, we propose a new method to initialize a potentially deep MLP for learning tasks
with tabular data. Indeed, as discussed in Section 1.2.1, the performances of NN on tabular data
are lacking compared to other data types, and we leverage the strong performances of tree-based
methods to improve them. Our method consists in first training a tree-based predictor (RF, GBDT
or Deep Forest) and then using its translation into an MLP as initialization for the first two layers,
the deeper ones being randomly initialized. With the subsequent standard GD training, this
procedure is shown to outperform the widely used uniform initialization of MLP (Paszke et al.
2019). It improves the final generalization score of the MLP and accelerates the training process.
Initializing the first few layers of the MLP with the translation of the tree-based method and
initializing randomly the deeper layers proved to be very successful. This supports the idea that,
in our method, the (first) tree-based initialized layers act as relevant feature extractors that allow
the MLP to detect the dependence structure in the inputs.

1.4.3 Theoretical Study of Interpolating RF
Following the introduction of interpolating estimators in Section 1.3, we study in Chapter 4 the
trade-off between interpolation and consistency, in the context of regression, for different types
of RF. We prove theoretically that interpolation regimes and consistency cannot be achieved
simultaneously for non-adaptive centered RF. The major problem arises from empty cells in tree
partitions. We then study a more refined version of the CRF, the Kernel Random Forest (KeRF),
built by averaging over all connected data points. By neglecting empty cells, this method is
consistent for larger tree depths, but does not meet the exact interpolation requirement. Since
adaptivity seems to be the cornerstone to conciliate interpolation and consistency, we study the
interpolating Median RF, which is proved to be consistent in the exact interpolation regime.
For the first time, it is shown that the averaging effect of the feature randomization inside RF
(without bootstrap) is sufficient to “average the noise out” (interpolating trees being sensitive
to the noise), i.e. to decrease the variance toward 0. The bias of interpolating trees can still be
classically controlled. Numerical experiments show that Breiman RF are consistent when exactly
interpolating, i.e. when the whole data set is used to build each fully-grown tree (no bootstrap).
It seems that the key randomization mechanism at work in RF is sufficient to achieve consistency
in spite of interpolation. Finally, we prove that the volume of the interpolation zone (where the
noise sensitivity is maximum) for an infinite Breiman RF tends to 0 at an exponential rate in the
dimension d. This supports the idea that the decay of the interpolation volume could be fast
enough to retrieve consistency despite interpolation.

1.4.4 PAC-Bayes Objective for NN Training
This ongoing work is presented in Chapter 5 and has not yet been published. PAC-Bayes is
a mathematical framework used to derive generalization bounds. It is based on the work of

Work in progress as of January 16, 2024

1.4. Summary of Contributions 21

Perez-Ortiz et al. 2021 which introduces PAC-Bayes-inspired training objectives to optimize
(probabilistic) neural networks to obtain generalization guarantees. Our objectives are two-folds:
i) improving the generalization capacities of NN directly on the training set by reducing the
empirical generalization gap and ii) studying the curvature of NN hessian (via its eigenvalues)
when minimizing PAC-Bayes objectives. The last point is motivated by the belief that flatter
minima generalize better, as discussed in Section 1.2.2.

Work in progress as of January 16, 2024

Bibliography of the current chapter 22

Bibliography of the current chapter
Alquier, Pierre (2023). User-friendly introduction to PAC-Bayes bounds. arXiv: 2110 . 11216

[stat.ML].
Arnould, Ludovic, Claire Boyer, and Erwan Scornet (2021). “Analyzing the tree-layer structure

of Deep Forests”. In: International Conference on Machine Learning. PMLR, pp. 342–350.
— (2023). “Is interpolation benign for random forest regression?” In: International Conference on

Artificial Intelligence and Statistics. PMLR, pp. 5493–5548.
Bach, Francis and Lenaic Chizat (2021). Gradient Descent on Infinitely Wide Neural Networks: Global

Convergence and Generalization. arXiv: 2110.08084 [cs.LG].
Barron, Andrew R (1994). “Approximation and estimation bounds for artificial neural networks”.

In: Machine learning 14, pp. 115–133.
Bartlett, Peter L, Andrea Montanari, and Alexander Rakhlin (2021). “Deep learning: a statistical

viewpoint”. In: arXiv preprint arXiv:2103.09177.
Belgiu, Mariana and Lucian Drăguţ (2016). “Random forest in remote sensing: A review of

applications and future directions”. In: ISPRS journal of photogrammetry and remote sensing 114,
pp. 24–31.

Belkin, Mikhail (2021). “Fit without fear: remarkable mathematical phenomena of deep learning
through the prism of interpolation”. In: Acta Numerica 30, pp. 203–248.

Belkin, Mikhail, Daniel Hsu, and Partha Mitra (2018). “Overfitting or perfect fitting? risk bounds
for classification and regression rules that interpolate”. In: arXiv preprint arXiv:1806.05161.

Belkin, Mikhail, Alexander Rakhlin, and Alexandre B Tsybakov (2019b). “Does data interpolation
contradict statistical optimality?” In: The 22nd International Conference on Artificial Intelligence
and Statistics. PMLR, pp. 1611–1619.

Biau, G., L. Devroye, and G. Lugosi (2008). “Consistency of random forests and other averaging
classifiers”. In: Journal of Machine Learning Research 9.Sep, pp. 2015–2033.

Biau, Gérard (2012b). “Analysis of a random forests model”. In: The Journal of Machine Learning
Research 13, pp. 1063–1095.

Biau, Gérard and Erwan Scornet (2016). “A random forest guided tour”. In: Test 25.2, pp. 197–227.
Biau, Gérard, Erwan Scornet, and Johannes Welbl (2019). “Neural random forests”. In: Sankhya A

81.2, pp. 347–386.
Bottou, Léon, Frank E Curtis, and Jorge Nocedal (2018). “Optimization methods for large-scale

machine learning”. In: SIAM review 60.2, pp. 223–311.
Breiman, Leo (1996). “Bagging predictors”. In: Machine learning 24, pp. 123–140.
— (2001a). “Random forests”. In: Machine learning 45.1, pp. 5–32.
— (2004). “Consistency for a simple model of random forests”. In: University of California at

Berkeley. Technical Report 670.
Breiman, Leo, Jerome Friedman, Charles J Stone, and Richard A Olshen (1984). Classification and

regression trees. CRC press.
Bühlmann, Peter and Bin Yu (2002). “Analyzing bagging”. In: The annals of Statistics 30.4, pp. 927–

961.
Chen, Xi and Hemant Ishwaran (2012). “Random forests for genomic data analysis”. In: Genomics

99.6, pp. 323–329.
Chi, Chien-Ming, Patrick Vossler, Yingying Fan, and Jinchi Lv (2022). “Asymptotic properties of

high-dimensional random forests”. In: The Annals of Statistics 50.6, pp. 3415–3438.
Criminisi, Antonio, Jamie Shotton, Ender Konukoglu, et al. (2012). “Decision forests: A unified

framework for classification, regression, density estimation, manifold learning and semi-
supervised learning”. In: Foundations and trends® in computer graphics and vision 7.2–3, pp. 81–
227.

Work in progress as of January 16, 2024

https://arxiv.org/abs/2110.11216
https://arxiv.org/abs/2110.11216
https://arxiv.org/abs/2110.08084

Bibliography of the current chapter 23

Cybenko, G. (Dec. 1989). “Approximation by superpositions of a sigmoidal function”.
In: Mathematics of Control, Signals and Systems 2.4, pp. 303–314. issn: 1435-568X. doi:
10.1007/BF02551274. url: https://doi.org/10.1007/BF02551274.

Deng, Jia, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei (2009). “Imagenet: A large-
scale hierarchical image database”. In: 2009 IEEE conference on computer vision and pattern
recognition. Ieee, pp. 248–255.

Devroye, Luc, Laszlo Györfi, and AdamKrzyżak (1998). “The Hilbert kernel regression estimate”.
In: Journal of Multivariate Analysis 65.2, pp. 209–227.

Díaz-Uriarte, Ramón and Sara Alvarez de Andrés (2006). “Gene selection and classification of
microarray data using random forest”. In: BMC bioinformatics 7, pp. 1–13.

Duroux, Roxane and Erwan Scornet (2018). “Impact of subsampling and tree depth on random
forests”. In: ESAIM: Probability and Statistics 22, pp. 96–128.

Dziugaite, Gintare Karolina and Daniel M Roy (2017). “Computing nonvacuous generalization
bounds for deep (stochastic) neural networks with many more parameters than training
data”. In: arXiv preprint arXiv:1703.11008.

Elie-Dit-Cosaque, Kevin andVéroniqueMaume-Deschamps (2022). “Random forest estimation of
conditional distribution functions and conditional quantiles”. In: Electronic Journal of Statistics
16.2, pp. 6553–6583.

Genuer, Robin, Jean-Michel Poggi, and Christine Tuleau-Malot (2010). “Variable selection using
random forests”. In: Pattern recognition letters 31.14, pp. 2225–2236.

Glorot, Xavier and Yoshua Bengio (2010). “Understanding the difficulty of training deep feed-
forward neural networks”. In: Proceedings of the thirteenth international conference on artificial
intelligence and statistics. JMLR Workshop and Conference Proceedings, pp. 249–256.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016). Deep learning. MIT press.
He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun (2015). “Delving deep into rectifiers:

Surpassing human-level performance on imagenet classification”. In: Proceedings of the IEEE
international conference on computer vision, pp. 1026–1034.

Hornik, Kurt,Maxwell Stinchcombe, andHalbertWhite (1989). “Multilayer feedforward networks
are universal approximators”. In: Neural networks 2.5, pp. 359–366.

Huang, W Ronny et al. (2020). “Understanding generalization through visualizations”. In.
Kainen, Paul C. (1997). “Utilizing Geometric Anomalies of High Dimension: When Complexity

Makes Computation Easier”. In: Computer Intensive Methods in Control and Signal Processing: The
Curse of Dimensionality. Ed. by Miroslav Kárný and Kevin Warwick. Boston, MA: Birkhäuser
Boston, pp. 283–294. isbn: 978-1-4612-1996-5. doi: 10.1007/978-1-4612-1996-5_18. url:
https://doi.org/10.1007/978-1-4612-1996-5_18.

Klusowski, Jason M. (2021a). “Sharp analysis of a simple model for random forests”. In: Interna-
tional Conference on Artificial Intelligence and Statistics. PMLR, pp. 757–765.

— (2021b). “Universal consistency of decision trees in high dimensions”. In: arXiv preprint
arXiv:2104.13881.

Kobak, Dmitry, Jonathan Lomond, and Benoit Sanchez (2020). “The optimal ridge penalty for real-
world high-dimensional data can be zero or negative due to the implicit ridge regularization”.
In: The Journal of Machine Learning Research 21.1, pp. 6863–6878.

Lakshminarayanan, Balaji, Daniel M Roy, and Yee Whye Teh (2014). “Mondrian forests: Efficient
online random forests”. In: Advances in neural information processing systems 27.

LeCun, Yann, Yoshua Bengio, et al. (1995). “Convolutional networks for images, speech, and
time series”. In: The handbook of brain theory and neural networks 3361.10, p. 1995.

Liang, Tengyuan and Alexander Rakhlin (2020a). “Just interpolate: Kernel “ridgeless” regression
can generalize”. In.

Work in progress as of January 16, 2024

https://doi.org/10.1007/BF02551274
https://doi.org/10.1007/BF02551274
https://doi.org/10.1007/978-1-4612-1996-5_18
https://doi.org/10.1007/978-1-4612-1996-5_18

Bibliography of the current chapter 24

Lin, Yi and Yongho Jeon (2006). “Random forests and adaptive nearest neighbors”. In: Journal of
the American Statistical Association 101.474, pp. 578–590.

Lugosi, Gábor and Andrew Nobel (1996). “Consistency of data-driven histogram methods for
density estimation and classification”. In: The Annals of Statistics 24.2, pp. 687–706.

Lutz, Patrick, Ludovic Arnould, Claire Boyer, and Erwan Scornet (2022). “Sparse tree-based
initialization for neural networks”. In: arXiv preprint arXiv:2209.15283.

Mentch, Lucas and Siyu Zhou (2019). “Randomization as regularization: a degrees of freedom
explanation for random forest success”. In: arXiv preprint arXiv:1911.00190.

— (2022). “Getting better from worse: Augmented bagging and a cautionary tale of variable
importance”. In: Journal of Machine Learning Research 23.224, pp. 1–32.

Mourtada, Jaouad, Stéphane Gaïffas, and Erwan Scornet (2020). “Minimax optimal rates for
Mondrian trees and forests”. In: The Annals of Statistics 48.4, pp. 2253–2276.

Nakkiran, Preetum, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever
(2021). “Deep double descent: Where bigger models and more data hurt”. In: Journal of
Statistical Mechanics: Theory and Experiment 2021.12, p. 124003.

Nobel, Andrew (1996). “Histogram regression estimation using data-dependent partitions”. In:
The Annals of Statistics 24.3, pp. 1084–1105.

Paszke, Adam et al. (2019). “PyTorch: An Imperative Style, High-Performance Deep Learning
Library”. In: Advances in Neural Information Processing Systems 32. Curran Associates, Inc.,
pp. 8024–8035.

Pedregosa, F. et al. (2011). “Scikit-learn: Machine Learning in Python”. In: Journal of Machine
Learning Research 12, pp. 2825–2830.

Perez-Ortiz, Maria, Omar Rivasplata, Emilio Parrado-Hernandez, Benjamin Guedj, and John
Shawe-Taylor (2021). “Progress in Self-Certified Neural Networks”. In: arXiv preprint
arXiv:2111.07737.

Petersen, Philipp Christian (2020). “Neural network theory”. In: University of Vienna.
Pinkus, Allan (1999). “Approximation theory of the MLP model in neural networks”. In: Acta

numerica 8, pp. 143–195.
Prasad, AnanthaM, Louis R Iverson, and Andy Liaw (2006). “Newer classification and regression

tree techniques: bagging and random forests for ecological prediction”. In: Ecosystems 9,
pp. 181–199.

Rakhlin, Alexander and Xiyu Zhai (2019). “Consistency of interpolation with Laplace kernels is
a high-dimensional phenomenon”. In: Conference on Learning Theory. PMLR, pp. 2595–2623.

Ruder, Sebastian (2016). “An overview of gradient descent optimization algorithms”. In: arXiv
preprint arXiv:1609.04747.

Rumelhart, David E, Geoffrey E Hinton, James L McClelland, et al. (1986). “A general frame-
work for parallel distributed processing”. In: Parallel distributed processing: Explorations in the
microstructure of cognition 1.45-76, p. 26.

Rumelhart, David E, Geoffrey E Hinton, and Ronald J Williams (1985). Learning internal represen-
tations by error propagation. Tech. rep. California Univ San Diego La Jolla Inst for Cognitive
Science.

Scornet, Erwan (2016a). “On the asymptotics of random forests”. In: Journal ofMultivariate Analysis
146, pp. 72–83.

Scornet, Erwan, Gérard Biau, and Jean-Philippe Vert (2015). “Consistency of random forests”. In:
The Annals of Statistics 43.4, pp. 1716–1741.

Shrestha, Ajay and Ausif Mahmood (2019). “Review of deep learning algorithms and architec-
tures”. In: IEEE access 7, pp. 53040–53065.

Sun, Ruo-Yu (2020). “Optimization for deep learning: An overview”. In: Journal of the Operations
Research Society of China 8.2, pp. 249–294.

Work in progress as of January 16, 2024

Bibliography of the current chapter 25

Tan, Zhiqiang and Cun-Hui Zhang (2019). “Doubly penalized estimation in additive regression
with high-dimensional data”. In.

Vaswani, Ashish et al. (2017). “Attention is all you need”. In: arXiv preprint arXiv:1706.03762.
Wager, Stefan and Guenther Walther (2015). “Adaptive concentration of regression trees, with

application to random forests”. In: arXiv preprint arXiv:1503.06388.
Wang, Yutong and Clayton D Scott (2022). “Consistent Interpolating Ensembles via the Manifold-

Hilbert Kernel”. In: arXiv preprint arXiv:2205.09342.
Welbl, Johannes (2014). “Casting random forests as artificial neural networks (and profiting from

it)”. In: German Conference on Pattern Recognition. Springer, pp. 765–771.
Wyner, Abraham J, Matthew Olson, Justin Bleich, and David Mease (2017). “Explaining the

success of adaboost and random forests as interpolating classifiers”. In: The Journal of Machine
Learning Research 18.1, pp. 1558–1590.

Zhou, Z and J. Feng (2017). “Deep Forest: Towards An Alternative to Deep Neural Networks”.
In: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI-17,
pp. 3553–3559.

Zhuang, Fuzhen et al. (2020). “A comprehensive survey on transfer learning”. In: Proceedings of
the IEEE 109.1, pp. 43–76.

Work in progress as of January 16, 2024

Chapter 2

Analyzing Deep Forest

Abstract
Random forests on the one hand, and neural networks on the other hand, have met great success
in the machine learning community for their predictive performance. Combinations of both have
been proposed in the literature, notably leading to the so-called deep forests (DF, Zhou et al.
2017). In this paper, our aim is not to benchmark DF performances, but to investigate instead
their underlying mechanisms. Additionally, DF architecture can be generally simplified into
more simple and computationally efficient shallow forests networks. Despite some instability,
the latter may outperform standard predictive tree-based methods. We exhibit a theoretical
framework in which a shallow tree network is shown to enhance the performance of classical
decision trees. In such a setting, we provide tight theoretical lower and upper bounds on its excess
risk. These theoretical results show the interest of tree-network architectures for well-structured
data provided that the first layer, acting as a data encoder, is rich enough.

2.1 Introduction
Deep Neural Networks (DNNs) are among the most widely used machine learning algorithms.
They are composed of parameterized differentiable non-linear modules trained by gradient-based
methods, which rely on the backpropagation procedure. Their performance mainly relies on
layer-by-layer processing as well as feature transformation across layers. Training neural networks
usually requires complex hyper-parameter tuning (Bergstra et al. 2011) and a huge amount of
data. Although DNNs recently achieved great results in many areas, they remain very complex
to handle and unstable to input noise (Zheng et al. 2016).

Recently, several attempts have been made to consider networks with non-differentiable
modules. Among them the Deep Forest (DF) algorithm (Zhou et al. 2017), which uses Random
Forests (RF, Breiman 2001a) as neurons, has received a lot of attention in recent years in various
applications such as hyperspectral image processing (Liu et al. 2020), medical imaging (Sun et al.
2020), drug interactions (Su et al. 2019; Zeng et al. 2020) or even fraud detection (Zhang et al.
2019).

Since the DF procedure stacks multiple layers, each one being composed of complex nonpara-
metric RF estimators, the rationale behind the procedure remains quite obscure. However DF
methods exhibit impressive performances in practice, suggesting that stacking RFs and extracting
features from these estimators at each layer is a promising way to leverage on the RF performance

26

2.1. Introduction 27

in the neural network framework. The goal of this paper is not an exhaustive empirical study
of prediction performances of DF (see Zhou et al. 2017) but rather to understand how stacking
trees in a network fashion may result in competitive infrastructure.

Related Works. Different manners of stacking trees exist (see Ghods et al. 2020 for a general
survey on stacking methods), as the Forwarding Thinking Deep Random Forest (FTDRF),
proposed by Miller et al. 2017, for which the proposed network contains trees which directly
transmit their output to the next layer (contrary to Deep Forest in which their output is first
averaged before being passed to the next layer). A different approach by Feng et al. 2018 consists
in rewriting tree gradient boosting as a simple neural network whose layers can be made arbitrary
large depending on the boosting tree structure. The resulting estimator is more simple than DF
but does not leverage on the ensemble method properties of random forests.

In order to prevent overfitting and to lighten the model, several ways to simplify DF architec-
ture have been investigated. Pang et al. 2018 considers RF whose complexity varies through the
network, and combines it with a confidence measure to pass high confidence instances directly to
the output layer. Other directions towards DF architecture simplification are to play on the nature
of the RF involved (Berrouachedi et al. 2019b, using Extra-Trees instead of Breiman’s RF), on the
number of RF per layer (Jeong et al. 2020, implementing layers of many forests with few trees),
or even on the number of features passed between two consecutive layers (Su et al. 2019) by
relying on an importance measure to process only the most important features at each level. The
simplification can also occur once the DF architecture is trained, as in Kim et al. 2020 selecting
in each forest the most important paths to reduce the network time- and memory-complexity.
Approaches to increase the approximation capacity of DF have also been proposed by adjoining
weights to trees or to forests in each layer (Utkin et al. 2017; Utkin et al. 2020), replacing the forest
by more complex estimators (cascade of ExtraTrees Berrouachedi et al. 2019a), or by combining
several of the previous modifications notably incorporating data preprocessing (Guo et al. 2018).
Overall, the related works on DF exclusively represent algorithmic contributions without a formal
understanding of the driving mechanisms at work inside the forest cascade.

Contributions. In this paper, we analyze the benefit of combining trees in network architecture
both theoretically and numerically. As the performances of DF have already been validated
by the literature (see Zhou et al. 2017), the main goals of our study are (i) to quantify the
potential benefits of DF over RF, and (ii) to understand the mechanisms at work in such complex
architectures. We show in particular that much lighter configuration can be on par with DF
default configuration, leading to a drastic reduction of the number of parameters in few cases.
For most datasets, considering DF with two layers is already an improvement over the basic RF
algorithm. However, the performance of the overall method is highly dependent on the structure
of the first random forests, which leads to stability issues. By establishing tight lower and upper
bounds on the risk, we prove that a shallow tree-network may outperform an individual tree in
the specific case of a well-structured dataset if the first encoding tree is rich enough. This is a first
step to understand the interest of extracting features from trees, and more generally the benefit
of tree networks.

Agenda. DF are formally described in Section 2.2. Section 2.3 is devoted to the numerical
study of DF, by evaluating the influence of the number of layers in DF architecture, by showing
that shallow sub-models of one or two layers perform the best, and finally by understanding
the influence of tree depth in cascade of trees. Section 2.4 contains the theoretical analysis of
the shallow centered tree network. For reproducibility purposes, all codes together with all
experimental procedures are to be found in the supplementary materials.

Work in progress as of January 16, 2024

2.2. Deep Forests 28

2.2 Deep Forests

2.2.1 Description
Deep Forest (Zhou et al. 2017) is a hybrid learning procedure in which random forests are used
as the elementary components (neurons) of a neural network. Each layer of DF is composed of
an assortment of Breiman’s forests and Completely-Random Forests (CRF, Fan et al. 2003) and
trained one by one. In a classification setting, each forest of each layer outputs a class probability
distribution for any query point x, corresponding to the distribution of the labels in the node
containing x. At a given layer, the distributions output by all forests of this layer are concatenated,
together with the raw data. This new vector serves as input for the next DF layer. This process is
repeated for each layer and the final classification is performed by averaging the forest outputs of
the best layer (without raw data) and applying the argmax function. The overall architecture is
depicted in Figure 2.1.

Figure 2.1: Deep Forest architecture (the scheme is taken from Zhou et al. 2017).

2.2.2 DF Hyperparameters
Deep Forests contain an important number of tuning parameters. Apart from the traditional
parameters of random forests, DF architecture depends on the number of layers, the number of
forests per layer, the type and proportion of random forests to use (Breiman or CRF). In Zhou
et al. 2017, the default configuration is set to 8 forests per layer, 4 CRF and 4 RF, 500 trees per
forest (other forest parameters are set to sk-learn Pedregosa et al. 2011 default values), and
layers are added until 3 consecutive layers do not show score improvement.

Due to their large number of parameters and the fact that they use a complex algorithm
as elementary bricks, DF consist in a potential high-capacity procedure. However, as a direct
consequence, the numerous parameters are difficult to estimate (requiring specific tuning of
the optimization process) and need to be stored which leads to high prediction time and large
memory consumption. Besides, the layered structure of this estimate, and the fact that each
neuron is replaced by a powerful learning algorithmmakes the whole prediction hard to properly
interpret.

As already pointed out, several attempts to lighten the architecture have been conducted. In
this paper, we will propose and assess the performance of a lighter DF configuration on tabular
datasets.
Remark 2.2.1. DF was first designed to classify images. To do so, a pre-processing network called Multi
Grained Scanning (MGS) based on convolutions is first applied to the original images. Then the Deep
Forest algorithm runs with the newly created features as inputs.

Work in progress as of January 16, 2024

2.3. Refined Numerical Analysis of DF Architectures 29

2.3 Refined Numerical Analysis of DF Architectures
In order to understand the benefit of using a complex architecture like Deep Forests, we compare
different configurations of DF on six datasets in which the output is binary, multi-class or contin-
uous, see Table 2.1 for description. All classification datasets belong to the UCI repository, the
two regression ones are Kaggle datasets (Housing data and Airbnb Berlin 2020)1. Note that the
Fashion Mnist features are built using the Multi Grained Scanning process from the DF original
article (Zhou et al. 2017) (see S1.3 for the encoding details).

Dataset Type (Nb of classes) Train/Val/Test Size Dim
Adult Class. (2) 26048/ 6512/ 16281 14
Higgs Class. (2) 120000/ 28000/ 60000 28

Fashion Mnist Class (10) 24000/ 6000/ 8000 260
Letter Class. (26) 12800/ 3200/ 4000 16
Yeast Class. (10) 830/ 208/ 446 8
Airbnb Regr. 73044/ 18262/ 39132 13
Housing Regr. 817/ 205/ 438 61

Table 2.1: Description of the datasets.
In what follows, we propose a light DF configuration. We show that our light configuration

performance is comparable to the performance of the default DF architecture of Zhou et al. 2017,
thus questioning the relevance of deepmodels. Therefore, we analyze the influence of the number
of layers in DF architectures, showing that DF improvements mostly rely on the first layers of
the architecture. To gain insights about the quality of the new features created by the first layer,
we consider a shallow tree network for which we evaluate the performance as a function of the
first-tree depth.

2.3.1 Towards DF Simplification
Setting. We compare the performances of the following DF architectures on the datasets sum-
marized in Table 2.1:

1. the default setting of DF, described in Section 2.2;
2. the best DF architecture obtained by grid-searching over the number of forests per layer, the

number of trees per forest and the maximum depth of each tree. The selected architecture
is chosen with respect to the performances achieved on validation datasets;

3. a new light DF architecture, composed of 2 layers, 2 forests per layer (one RF and one CRF)
with only 50 trees of depth 30 trained only once;

4. the first layer of the best DF;
5. the first layer of the light DF;
6. a “Flattened best DF as RF" which consists in one RF with as many trees as in the best DF

with similar forest parameters (refer to Supplementary Materials S1.2 and Table S3 for
details);

7. a “Flattened light DF as RF" which corresponds to one RF with as many trees as in the light
DF with similar forest parameters.

1https://www.kaggle.com/raghavs1003/airbnb-berlin-2020
https://www.kaggle.com/c/house-prices-advanced-regression-techniques/data

Work in progress as of January 16, 2024

2.3. Refined Numerical Analysis of DF Architectures 30

Results. Results are presented in Figures 2.2 and 2.3. Each bar plot respectively corresponds
to the average accuracy or the average R2 score over 10 tries for each test dataset; the error bars
stand for accuracy or R2 standard deviation. The description of the resulting best DF architecture
for each dataset is given in Table S3 (Supplementary Materials).

Figure 2.2: Accuracy of different DF architectures for classification datasets (10 runs per bar plot).

Figure 2.3: R2 score of different DF architectures for regression datasets (10 runs per bar plot).

As highlighted in Figure 2.2, the performance of the light configuration for classification
datasets is comparable to the default and the best configurations’ one, while being much more
computationally efficient: faster to train, faster at prediction, cheaper in terms of memory (see
Table S2 in the Supplementary Materials for a comparison of computing time and memory
consumption). Moreover, except on the Letter dataset, the DF performs better than its RF
equivalent. The results for the Letter dataset can be explained by the fact that the CRFs within
the DF are outperformed by Breiman RFs in this specific case. Overall, for classification tasks, the
small performance enhancement of Deep Forests (Default or Best DF) over our light configuration
should be assessed in the light of their additional complexity. This questions the usefulness
of stacking several layers made of many forests, resulting in a heavy architecture. We further
propose an in-depth analysis of the role of each layer to the global DF performance.

2.3.2 Tracking the Best Sub-Model
Setting. On all the previous datasets, we train a DF architecture by specifying the maximal
number p of layers. Unspecified hyper-parameters are set to default value (see Section 2.2). For
each p, we consider the truncated sub-models composed of layer 1, layer 1-2, . . ., layer 1-p, where
layer 1-p is the original DF with p layers. For each value of p, we consider the previous nested
sub-models with 1, 2, . . . , p layers, and compute the predictive accuracy of the best sub-model.

Results. We only display results for the Adult dataset in Figure 2.4 (all the other datasets show
similar results, see Section S1.5 of the SupplementaryMaterials). The score (accuracy orR2-score)
corresponds to the result on the test dataset. We observe that, over 10 runs, adding layers to the
Deep Forest seems not to significantly change the accuracy score. Even if the variance changes

Work in progress as of January 16, 2024

2.3. Refined Numerical Analysis of DF Architectures 31

by adding layers, we are not able to detect any pattern, which suggests that the variance of the
procedure performance is unstable with respect to the maximal number of layers.

1 2 3 4 5 6 7 8 9 10 15
Number of layers

78.6

78.8

79.0

Ac
cu

ra
cy

1 2 3 4 5 6 7 8 9 10 15
Number of layers

79.0

79.1

79.2

79.3

Ac
cu

ra
cy

Figure 2.4: Adult dataset. Boxplots over 10 runs of the accuracy of a DF sub-model with 1
(Breiman) forest by layer (left) or 4 forests (2 Breiman, 2 CRF) by layer (right), depending on
the maximal number of layers of the global DF model.

1 2 3 4 5 6 7 8 9 10 15
Maximal number of layers

15
10

9
8
7
6
5
4
3
2
1

Be
st

 su
b-

m
od

el

0

1 0

0 1 0

0 1 0 0

0 2 2 3 0

1 0 0 1 0 0

1 0 2 0 0 0 0

1 1 0 1 1 0 0 0

0 3 1 0 0 3 0 0 1

1 0 1 0 1 2 0 2 1 0

10 9 10 5 7 8 5 4 4 4 7
0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10 15
Maximal number of layers

15
10

9
8
7
6
5
4
3
2
1

Be
st

 su
b-

m
od

el

0

1 0

0 0 0

0 0 0 0

0 1 1 1 0

0 1 0 1 1 0

0 1 0 0 0 1 0

1 0 0 0 1 0 0 0

2 0 0 0 0 0 1 0 1

1 0 1 0 0 0 0 0 0 0

10 9 8 8 10 9 9 8 7 6 9
0

2

4

6

8

10

Figure 2.5: Adult dataset. Heatmap counting the optimal layer index over 10 tries of a default
DF with 1 (Breiman) forest per layer (left) or 4 forests (2 Breiman, 2 CRF) per layer (right),
with respect to the maximal number of layers. The number corresponding to (n,m) on the x-
and y-axes indicates how many times out of 10 the layerm is optimal when running a cascade
network with a maximal number n of layers.

Globally, we observe that the sub-models with one or two layers often lead to the best perfor-
mance (see Figure 2.5 for the Adult dataset and SupplementaryMaterials S1.5). When the dataset
is small (Letter or Yeast), the sub-model with only one layer (i.e. a standard RF or an aggregation
of RFs) is almost always optimal since a single RF with no maximum depth constraint already
overfits on most of these datasets. Therefore the second layer, building upon the predictions
of the first layer, entails overfitting as well, therefore leading to no improvement of the overall
model. Besides, one can explain the predominance of small sub-models by the weak additional
flexibility created by each layer: on the one hand, each new feature vector size corresponds to the
number of classes times the number of forests which can be small with respect to the number

Work in progress as of January 16, 2024

2.3. Refined Numerical Analysis of DF Architectures 32

of input features; on the other hand, the different forests within one layer are likely to produce
similar probability outputs, especially if the number of trees within each forest is large. The
story is a bit different for the Housing dataset, for which the best submodel is between 2 and 6.
As noticed before, this may be the result of the frustratingly simple representation of the new
features created at each layer. Eventually, these numerical experiments corroborate the relevance
of shallow DF as the light configuration proposed in the previous section.

We note that adding forests in each layer decreases the number of layers needed to achieve a
pre-specified performance. This is surprising and is opposed to the common belief that in Deep
Neural Networks, adding layers is usually better than adding neurons in each layer.

We can conclude from the empirical results that the first two layers convey the performance
enhancement in DF. Contrary to NNs, depth is not an important feature of DFs. The following
studies thus focus on two-layer architectures which are deep enough to reproduce the improve-
ment of deeper architectures over single RFs.

2.3.3 A Precise Understanding of Depth Enhancement
In order to finely grasp the influence of tree depth in DF, we study a simplified version: a shallow
CART tree network, composed of two layers, with one CART per layer.

Setting. In such an architecture, the first-layer tree is fitted on the training data. For each sample,
the first-layer tree outputs a probability distribution (or a value in a regression setting), which is
referred to as “encoded data" and given as input to the second-layer tree, with the raw features as
well. For instance, considering binary classification data with classes 0 and 1, with raw features
(x1, x2, x3), the input of the second-layer tree is a 5-dimensional feature vector (x1, x2, x3, p0, p1),
with p0 (resp. p1) the predicted probabilities by the first-layer tree for the class 0 (resp. 1).

For each dataset of Table 2.1, we first determine the optimal depth k⋆ of a single CART tree via
3-fold cross validation. Then, for a given first-layer tree with a fixed depth, we fit a second-layer
tree, allowing its depth to vary. We then compare the resulting shallow tree networks in three
different cases: when the (fixed) depth of the first tree is (i) less than k⋆, (ii) equal to k⋆, and
(iii) larger than k⋆. We add the optimal single tree performance to the comparison.

Results. Results are displayed in Figure 2.6 for the Adult dataset only (see Supplementary
Materials S1.4 for the results on the other datasets). Specifically noticeable in Figure 2.6 (top),
the tree network architecture can introduce performance instability when the second-layer tree
grows (e.g. when the latter is successively of depth 7, 8 and 9).

Furthermore, when the encoding tree is not deep enough (top), the second-layer tree improves
the accuracy until it approximately reaches the optimal depth k⋆. In this case, the second-layer
tree compensates for the poor encoding, but cannot improve over a single tree with optimal
depth k⋆. Conversely, when the encoding tree is more developed than an optimal single tree
(bottom) - overfitting regime, the second-layer tree may not lead to any improvement, or worse,
may degrade the performance of the first-layer tree.

On all datasets, the second-layer tree is observed to always make its first cut over the new
features (see Figure 2.7 and Supplementary Materials).

In the case of binary classification, a single cut of the second-layer tree along a new feature
yields to gather all the leaves of the first tree, predicted respectively as 0 and 1, into two big leaves,
therefore reducing the predictor variance (cf. Figure 2.6 (middle and bottom)). Furthermore,
when considering multi-label classification with nclasses, the second-layer tree must cut over at
least nclasses features to recover the partition of the first tree (see Figure S15). Similarly, in the

Work in progress as of January 16, 2024

2.4. Theoretical Study of a Shallow Tree Network 33

1 2 3 4 5 6 7 8 9 10 11 12 13 14
rtr

ee
rtr

ee
_9

0.725

0.750

0.775

0.800

1 2 3 4 5 6 7 8 9 10 11 12 13 14
rtr

ee
rtr

ee
_9

0.725

0.750

0.775

0.800

1 2 3 4 5 6 7 8 9 10 11 12 13 14
rtr

ee
rtr

ee
_9

0.725

0.750

0.775

0.800

Figure 2.6: Adult dataset. Accuracy on the test dataset of a two-layer tree architecture w.r.t. the
second-layer tree depth, when the first-layer (encoding) tree is of depth 2 (top), 9 (middle), and
15 (bottom). rtree is a single tree of respective depth 2 (top), 9 (middle), and 15 (bottom),
applied on raw data. For this dataset, the optimal depth of a single tree is 9 and the tree with the
optimal depth is depicted as rtree_9 in each plot. The green dashed line indicates the median
score of the rtree. All boxplots are obtained by 10 different runs.

regression case, the second tree needs to perform a number of splits equal to the number of leaves
of the first tree in order to recover the partition of the latter.

X[15] <= 0.437
32560

[24719, 7841]

X[15] <= 0.159
25106

[22593, 2513]

True

X[14] <= 0.305
7454

[2126, 5328]

False

X[15] <= 0.054
18196

[17617, 579]

X[15] <= 0.28
6910

[4976, 1934]

X[14] <= 0.986
13270

[13137, 133]

X[14] <= 0.906
4926

[4480, 446]

4841
[4745, 96]

8429
[8392, 37]

2099
[1840, 259]

2827
[2640, 187]

X[12] <= 48.5
2902

[2334, 568]

X[6] <= 0.5
4008

[2642, 1366]

1927
[1595, 332]

975
[739, 236]

542
[299, 243]

3466
[2343, 1123]

X[14] <= 0.133
4130

[498, 3632]

X[1] <= 0.5
3324

[1628, 1696]

X[15] <= 0.985
2187

[9, 2178]

X[11] <= 629.0
1943

[489, 1454]

269
[9, 260]

1918
[0, 1918]

1922
[474, 1448]

21
[15, 6]

X[4] <= 13.5
288

[193, 95]

X[12] <= 41.5
3036

[1435, 1601]

258
[184, 74]

30
[9, 21]

1717
[892, 825]

1319
[543, 776]

Figure 2.7: Adult dataset. Focus on the first levels of the second-layer tree structure when the
first layer tree is of depth 9 (optimal depth). Raw features range from X[0] to X[13], X[14] and
X[15] are the features built by the first-layer tree.

In Figure 2.6 (middle), one observes that with a first-layer tree of optimal depth, the second-
layer tree may outperform an optimal single tree, by improving both the average accuracy and its
variance. We aim at theoretically quantifying this performance gain in the next section.

2.4 Theoretical Study of a Shallow Tree Network
In this section, we focus on the theoretical analysis of a simplified tree network. Our aim is to
exhibit settings in which a tree network outperforms a single tree. Recall that the second layer of
a tree network gathers tree leaves of the first layer with similar distributions. For this reason, we
believe that a tree network is to be used when the dataset has a very specific structure, in which

Work in progress as of January 16, 2024

2.4. Theoretical Study of a Shallow Tree Network 34

the same link between the input and the output can be observed in different subareas of the input
space. Such a setting is described in Section 2.4.2

Tomake the theoretical analysis possible, we study centered trees (see Definition 2.4.1) instead
of CART. Indeed, studying the original CART algorithm is still nowadays a real challenge and
analyzing stacks of CART seems out-of-reach in short term. As highlighted by the previous
empirical analysis, we believe that the results we establish theoretically are shared by DF. All
proofs are postponed to the Supplementary Materials.

2.4.1 The Network Architecture
We assume to have access to a dataset Dn = {(X1, Y1), . . . , (Xn, Yn)} of i.i.d. copies of the generic
pair (X,Y)with X living in [0, 1]d and Y ∈ {0, 1} being the label associated to X .

Notations. Given a decision tree, we denote by Ln(X) the leaf of the tree containing X and
Nn(Ln(X)) the number of data points falling into Ln(X). The prediction of such a tree at point
X is given by

fn(X) =
1

Nn(Ln(X))

∑

Xi∈Ln(X)

Yi

with the convention 0/0 = 0, i.e. the prediction for X in a leaf with no observations is arbitrarily
set to zero.

A shallow centered tree network. Wewant to theoretically analyze the benefits of stacking trees.
To do so, we focus on two trees in cascade and will try to determine, in particular, the influence
of the first (encoding) tree on the performance of the whole tree network. To catch the variance
reduction property of tree networks already emphasized in the previous section, we consider
a regression setting: let f⋆(x) = E[Y |X = x] be the regression function and for any function f ,
its quadratic risk is defined asR(f) = E[(f(X)− f⋆(X))2],where the expectation is taken over
(X,Y,Dn). We emphasize that although Y ∈ {0, 1}, we are not interested in classifying Y but
rather to estimate the regression function.
Definition 2.4.1 (Shallow centered tree network). The shallow tree network consists of two trees in
cascade:

• (Encoding layer)The first-layer tree is a cycling centered tree of depth k. It is built independently
of the data by splitting recursively on each variable, at the center of the cells. The first cut is made
along the first coordinate, the second along the second coordinate, etc. The tree construction is stopped
when exactly k cuts have been made. For each point X , we extract the empirical mean ȲLn(X) of the
outputs Yi falling into the leaf Ln(X) and we pass the new feature ȲLn(X) to the next layer, together
with the original features X .

• (Output layer) The second-layer tree is a centered tree of depth k′ for which a cut can be
performed at the center of a cell along a raw feature (as done by the encoding tree) or along the new
feature ȲLn(X). In this latter case, two cells corresponding to {ȲLn(X) < 1/2} and {ȲLn(X) ⩾ 1/2}
are created.

The resulting predictor composed of the two trees in cascade, of respective depth k and k′, trained on the
data (X1, Y1), . . . , (Xn, Yn) is denoted by fk,k′,n.

The two cascading trees can be seen as two layers of trees, hence the name of the shallow tree
network. Note in particular that fk,0,n(X) is the prediction given by the first encoding tree only
and outputs, as a classical tree, the mean of the Yi’s falling into a leaf containing X .

Work in progress as of January 16, 2024

2.4. Theoretical Study of a Shallow Tree Network 35

0 1
0

1

(a) Depth 4
0 1

0

1

(b) Depth 6
0 1

0

1

(c) Depth 8

Figure 2.8: Arbitrary chessboard data distribution for k⋆ = 6 and NB = 40 black cells (p is
not displayed here). Partition of the (first) encoding tree of depth 4, 6, 8 (from left to right) is
displayed in blue. The optimal depth of a single centered tree for this chessboard distribution is
6.

2.4.2 Problem Setting
Data generation. The dataX is assumed to be uniformly distributed over [0, 1]d and Y ∈ {0, 1}.
Let k⋆ be a multiple of d and let p ∈ (1/2, 1]. We build a regular partition of the space with cells
C1, . . . , C2k⋆ of generic form

d∏

k=1

[
ik

2k⋆/d
,
ik + 1

2k⋆/d

)
,

for i1, ..., id ∈ {0, ..., 2k⋆/d − 1}. We arbitrary assign a color (black or white) to each cell, which
has a direct influence on the distribution of Y in the cell. More precisely, for x in a given cell C,

P[Y = 1|X = x] =

{
p if C is a black cell,

1− p if C is a white one. (2.1)

We define B (resp. W) as the union of black (resp. white) cells and NB ∈ {0, . . . , 2k⋆} (resp.
NW) as the number of black (resp. white) cells. Note that NW = 2k

⋆ −NB. The location and the
numbers of the black and white cells are arbitrary. This distribution corresponds to a generalized
chessboard structure. The whole distribution is thus parameterized by k⋆ (2k⋆ is the total number
of cells), p and NB. Examples of this distribution are depicted in Figures 2.8 and 2.9 for different
configurations and d = 2.

Why such a structured setting? The data distribution introduced above is highly structured,
which can be seen as a restrictive study setting. However, the generalized chessboard is nothing
but a discretized quantification of the regression function r using only 2 values (see Equa-
tion (2.1)). Going further than quantification towards general discretization does not seem
appropriate for tree networks. To see this, consider a more general distribution such as

P[Y = 1|X = x] = Pij when x ∈ Cij ,

where Pij is a random variable drawn uniformly in [0, 1].
Lemma 2.4.2. Assume that the data follows the generalized chessboard distribution described above with
parameter k⋆, NB and p. Suppose that k ⩾ k⋆. In the infinite sample setting, the risks of a single tree and

Work in progress as of January 16, 2024

2.4. Theoretical Study of a Shallow Tree Network 36

a shallow tree network are given by R(fk,0,∞) = 0 and

R(fk,1,∞) ⩾
1

48

(
1− 8

2k⋆ − 1

)
+

1

22k
⋆

9

24
.

Lemma 2.4.2 highlights the fact that a tree network has a positive bias, which is not the case
for a single tree. Besides, by letting k⋆ tend to infinity (that is the size of the cells tends to zero),
the above chessboard distribution boils down to a very generic classification framework. In this
latter case, the tree network performs poorly since its risk is lower bounded by 1/48. In short,
when the data distribution is disparate across the feature space, the averaging performed by the
second tree leads to a biased regressor. Note that Lemma 2.4.2 involves a shallow tree network,
performing only one cut on the second layer. But similar conclusions could be drawn for a deeper
second-layer tree, until its depth reaches k⋆. Indeed, considering fk,k⋆,∞ would result in an
unbiased regressor, with comparable performances as of a single tree, while being much more
complex.

Armed with Lemma 2.4.2, we believe that the intrinsic structure of DF and tree networks
makes them useful to detect similar patterns spread across the feature space. This makes the
generalized chessboard distribution particularly well suited for analyzing such behavior. The risk
of a shallow tree network in the infinite sample regime for the generalized chessboard distribution
is studied in Lemma 2.4.3.
Lemma 2.4.3. Assume that the data follows the generalized chessboard distribution described above with
parameter k⋆, NB and p. In the infinite sample regime, the following holds for the shallow tree network
fk,k′,n (Definition 2.4.1).

1. Shallow encoding tree. Let k < k⋆. The risk of the shallow tree network is minimal for all
configurations of the chessboard if the second-layer tree is of depth k′ ⩾ k⋆ and if the k⋆ first cuts
are performed along raw features only.

2. Deep encoding tree. Let k ⩾ k⋆. The risk of the shallow tree network is minimal for all configu-
rations of the chessboard if the second-layer tree is of depth k′ ⩾ 1 and if the first cut is performed
along the new feature ȲLn(X).

In the infinite sample regime, Lemma 2.4.3 shows that the pre-processing is useless when the
encoding tree is shallow (k < k⋆): the second tree cannot leverage on the partition of the first
one and needs to build a finer partition from zero.

Lemma 2.4.3 also provides an interesting perspective on the second-layer tree which either
acts as a copy of the first-layer tree or can simply be of depth one.
Remark 2.4.4. The results established in Lemma 2.4.3 for centered-tree networks also empirically hold for
CART ones (see Figures 2.6,S12,S15,S17,S19,S21: (i) the second-layer CART trees always make their
first cut on the new feature and always near 1/2; (ii) if the first-layer CART is biased, then the first cuts
of the second-layer tree will not improve the accuracy of the first tree and the improvement of the deeper
cuts is not significant (see Figure 2.6 (top)); (iii) if the first-layer CART is developed enough, then the
second-layer CART acts as a variance reducer (see Figure 2.6 (middle)).

2.4.3 Main Results
Building on Lemma 2.4.2 and 2.4.3, we now focus on a shallow network whose second-layer tree
is of depth one, and whose first cut is performed along the new feature ȲLn(X) at 1/2. Two main
regimes of training can be therefore identified when the first tree is either shallow (k < k⋆) or
deep (k ⩾ k⋆).

Work in progress as of January 16, 2024

2.4. Theoretical Study of a Shallow Tree Network 37

0 1
0

1

(a) Depth 4
0 1

0

1

(b) Depth 6
0 1

0

1

(c) Depth 8

Figure 2.9: Chessboard data distribution for k⋆ = 6 and NB = 2k
⋆−1. Partition of the (first)

encoding tree of depth 4, 6, 8 (from left to right) is displayed in blue. The optimal depth of a
single centered tree for this chessboard distribution is 6.

In the first regime (k < k⋆), to establish precise non-asymptotics bounds, we study the
balanced chessboard distribution (see Figure 2.9). Such a distribution has been studied in the
unsupervised literature, in order to generate distribution for X via copula theory (Ghosh et al.
2002; Ghosh et al. 2009) or has been mixed with other distribution in the RF framework (Biau et al.
2008). Intuitively, this is a worst-case configuration for centered trees in terms of bias. Indeed, if
k < k⋆, each leaf contains the same number of black and white cells. Therefore in expectation the
mean value of the leaf is 1/2 which is non informative.
Proposition 2.4.5 (Risk of a single tree and a shallow tree network when k < k⋆). Assume that
the data is drawn according to a balanced chessboard distribution with parameters k⋆, NB = 2k

⋆−1 and
p > 1/2 (see Figure 2.9).

1. Consider a single tree fk,0,n of depth k ∈ N⋆. We have,

R(fk,0,n) ⩽

(
p− 1

2

)2

+
2k

2(n+ 1)
+

(1− 2−k)n

4
;

and

R(fk,0,n) ⩾

(
p− 1

2

)2

+
2k

4(n+ 1)
+

(1− 2−k)n

4

(
1− 2k

n+ 1

)
.

2. Consider the shallow tree network fk,1,n. We have

R(fk,1,n) ⩽

(
p− 1

2

)2

+
2k/2+3(p− 1

2)√
πn

+
7 · 22k+2

π2(n+ 1)
(1 + εk,p) +

p2 + (1− p)2

2

(
1− 2−k

)n

where εk,p = o(2−k/2) uniformly in p, and

R(fk,1,n) ⩾

(
p− 1

2

)2

.

First, note that our bounds are tight in both cases (k < k⋆ and k ⩾ k⋆) since the rates of the
upper bounds match that of the lower ones. The first statement in Proposition 2.4.5 quantifies
the bias of a single tree of depth k < k⋆: the term (p− 1/2)2 appears in both the lower and upper
bounds, which means that no matter how large the training set is, the risk of the tree does not
tend to zero. The shallow tree network suffers from the same bias term as soon as the first-layer
tree is not deep enough. Here, the flaws of the first-layer tree transfer to the whole network. In

Work in progress as of January 16, 2024

2.4. Theoretical Study of a Shallow Tree Network 38

all bounds, the term (1− 2−k)n corresponding to the probability of X falling into an empty cell
is classic and cannot be eliminated for centered trees, whose splitting strategy is independent of
the dataset.

Proposition S1 in the Supplementary Materials extends the previous result to the case of
a random chessboard, in which each cell has a probability of being black or white. The same
phenomenon is observed: the bias of the first layer tree is not reduced, even in the infinite sample
regime.

In the second regime (k ⩾ k⋆), the tree network may improve over a single tree as shown in
Proposition 2.4.6.
Proposition 2.4.6 (Risk of a single tree and a shallow tree network when k ⩾ k⋆). Consider a
generalized chessboard with parameters k⋆, NB and p > 1/2.

1. Consider a single tree fk,0,n of depth k ∈ N⋆. We have

R(fk,0,n) ⩽
2kp(1− p)

n+ 1
+
(
p2 + (1− p)2

) (1− 2−k)n

2
,

and

R(fk,0,n) ⩾
2k−1p(1− p)

n+ 1
+

(
p2 + (1− p)2 − 2kp(1− p)

n+ 1

)
(1− 2−k)n

2
.

2. Consider the shallow tree network fk,1,n. Letting

p̄2B =

(
NB

2k⋆ p
2 +

2k
⋆ −NB

2k⋆ (1− p)2
)
(1− 2−k)n,

we have

R(fk,1,n) ⩽ 2 · p(1− p)

n+ 1
+

2k+2εn,k,p
n

+ p̄2B,

where εn,k,p = n(1− 1−e−2(p− 1
2
)2

2k
)n, and for all n ⩾ 2k+1(k + 1),

R(fk,1,n) ⩾
2p(1− p)

n
− 2k+3(1− ρk,p)

n

n
+ p̄2B,

where 0 < ρk,p < 1 depends only on p and k.
Proposition 2.4.6 shows that there exists a benefit from using this network when the first-layer

tree is deep enough. In this case, the risk of the shallow tree network is O(1/n) whereas that
of a single tree is O(2k/n). In presence of complex and highly structured data (large k⋆ and
similar distribution in different areas of the input space), the shallow tree network benefits from
a variance reduction phenomenon by a factor 2k. These theoretical bounds are numerically
assessed in the Supplementary Materials (see Figures S35 to S40) showing their tightness for a
particular choice of the chessboard configuration.

Finally, note that although the dimension d does not explicitly appear in our bounds, it is
closely related to k⋆. Indeed, in high dimensions, modelling the regression function requires
a finer partition, hence a direct relation of the form k⋆ ≫ d. Therefore, obtaining an unbiased
estimator with a reduced variance as in Proposition 2.4.5 is more stringent in high dimensions,
since it requires to choose k ⩾ k⋆ ≫ d.

Work in progress as of January 16, 2024

2.5. Conclusion 39

2.5 Conclusion
In this paper, we study both numerically and theoretically DF and its elementary components.
We show that stacking layers of trees (and forests) may improve the predictive performance of
the algorithm. However, based on the empirical study, it seems that most of the improvements
rely on the first DF-layers. We show that the performance of a shallow tree network (composed
of single CART) depends on the depth of the first-layer tree. When the first-layer tree is deep
enough, the second-layer tree may build upon the new features created by the first tree by acting
as a variance reducer.

To quantify this phenomenon, we propose a first theoretical analysis of a shallow tree network
(composed of centered trees). Our study exhibits the crucial role of the first (encoding) layer:
if the first-layer tree is biased, then the entire shallow network inherits this bias, otherwise the
second-layer tree acts as a good variance reducer. One should note that this variance reduction
cannot be obtained by averaging many trees, as in RF structure: the variance of an averaging
of centered trees with depth k is of the same order as one of these individual trees (Biau 2012a;
Klusowski 2018), whereas two trees in cascade (the first one of depth k and the second of depth
1) may lead to a variance reduction by a 2k factor. This highlights the benefit of tree-layer
architectures over standard ensemble methods. We thus believe that this first theoretical study of
this shallow tree network paves the way of the mathematical understanding of DF.

First-layer trees, and more generally the first layers in DF architecture, can be seen as data-
driven encoders. More precisely, the first layers in DF create an automatic embedding of the
data, building on the specific conditional relation between the output and the inputs, therefore
potentially improving the performance of the overall structure. Since preprocessing is nowadays
an important part of all machine learning pipelines, we believe that our analysis is interesting
beyond the framework of DF.

Work in progress as of January 16, 2024

S1. Additional Figures 40

S1 Additional Figures

S1.1 Computation Times for Section 2.3

Yeast Housing Letter Adult Airbnb Higgs
Default DF time 13m19s 9m38s 20m31 13m57s 23m23s 43m53s
Light DF time 7s 6s 8s 8s 10s 13s

Default DF MC (MB) 11 6 174 139 166 531
Light DF MC (MB) 5 4 109 72 100 318

Table S2: Comparing the time and memory consumption of DF and Light DF.

S1.2 Table of Best Configurations, Supplementary to Section 2.3.2

Dataset Best configuration hyperparam. Optimal sub-model
Adult 6 forests, 20 trees, max depth 30 2
Higgs 10 forests, 280 trees, max depth None 2

Fashion Mnist 8 forests, 500 trees, max depth None (default) 2
Letter 8 forests, 500 trees, max depth None (default) 1
Yeast 6 forests, 200 trees, max depth 30 1
Airbnb 10 forests, 400 trees, max depth None 1
Housing 8 forests, 280 trees, max depth 100 14

Table S3: Details of the best configurations obtained in Figures 2.2 and 2.3.

To find the best configuration, we ran a grid search over the following parameters : number
of forests per layer (from 2 to 10) , number of trees per forest (from 30 to 1000), max depth of
each tree (from 5 to 100 plus None).

S1.3 Fashion Mnist MGS Encoding
The Fashion Mnist dataset was encoded using the MGS process with two forests, one Breiman
RF, one CRF, both of them having 150 trees, 10 samples per leaf minimum and other parameters
set to default. Three windows were used of sizes/strides. Then we apply a mean pooling process
of size (3,3) to each created filter.

Work in progress as of January 16, 2024

S1. Additional Figures 41

S1.4 Additional Figures to Section 2.3.3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
rtr

ee
rtr

ee
_9

0.725

0.750

0.775

0.800

1 2 3 4 5 6 7 8 9 10 11 12 13 14
rtr

ee
rtr

ee
_9

0.725

0.750

0.775

0.800

1 2 3 4 5 6 7 8 9 10 11 12 13 14
rtr

ee
rtr

ee
_9

0.725

0.750

0.775

0.800

Figure S10: Adult dataset. Accuracy of a two-layer tree architecture w.r.t. the second-layer tree
depth, when the first-layer (encoding) tree is of depth 2 (top), 9 (middle), and 15 (bottom).
rtree is a single tree of respective depth 2 (top), 9 (middle), and 15 (bottom), applied on raw
data. For this dataset, the optimal depth of a single tree is 9 and the tree with the optimal depth is
depicted as rtree_9 in each plot. The green dashed line indicates the median score of the rtree.
All boxplots are obtained by 10 different runs.

X[15] <= 0.437
32560

[24719, 7841]

X[15] <= 0.159
25106

[22593, 2513]

True

X[14] <= 0.305
7454

[2126, 5328]

False

X[15] <= 0.054
18196

[17617, 579]

X[15] <= 0.28
6910

[4976, 1934]

X[14] <= 0.986
13270

[13137, 133]

X[14] <= 0.906
4926

[4480, 446]

4841
[4745, 96]

8429
[8392, 37]

2099
[1840, 259]

2827
[2640, 187]

X[12] <= 48.5
2902

[2334, 568]

X[6] <= 0.5
4008

[2642, 1366]

1927
[1595, 332]

975
[739, 236]

542
[299, 243]

3466
[2343, 1123]

X[14] <= 0.133
4130

[498, 3632]

X[1] <= 0.5
3324

[1628, 1696]

X[15] <= 0.985
2187

[9, 2178]

X[11] <= 629.0
1943

[489, 1454]

269
[9, 260]

1918
[0, 1918]

1922
[474, 1448]

21
[15, 6]

X[4] <= 13.5
288

[193, 95]

X[12] <= 41.5
3036

[1435, 1601]

258
[184, 74]

30
[9, 21]

1717
[892, 825]

1319
[543, 776]

Figure S11: Adult dataset. Second-layer tree structure of depth 4 when the first-layer tree is of
depth 9 (optimal depth). Raw features range from X[0] to X[13], X[14] and X[15] are the features
built by the first-layer tree.

Work in progress as of January 16, 2024

S1. Additional Figures 42

1 2 3 4 5 6 7 8 9 10 11 12 13 14
rtr

ee
rtr

ee
_9

0.64

0.66

0.68

1 2 3 4 5 6 7 8 9 10 11 12 13 14
rtr

ee
rtr

ee
_9

0.64

0.66

0.68

1 2 3 4 5 6 7 8 9 10 11 12 13 14
rtr

ee
rtr

ee
_9

0.64

0.66

0.68

Figure S12: Higgs dataset. Accuracy of a two-layer tree architecture w.r.t. the second-layer tree
depth, when the first-layer (encoding) tree is of depth 2 (top), 9 (middle), and 15 (bottom).
rtree is a single tree of respective depth 2 (top), 9 (middle), and 15 (bottom), applied on raw
data. For this dataset, the optimal depth of a single tree is 9 and the tree with the optimal depth is
depicted as rtree_9 in each plot. The green dashed line indicates the median score of the rtree.
All boxplots are obtained by 10 different runs.

X[28] <= 0.449
120000

[56653, 63347]

X[26] <= 0.806
62135

[21448, 40687]

True
X[28] <= 0.631

57865
[35205, 22660]

False

X[5] <= 0.857
12737

[6639, 6098]

X[27] <= 0.898
49398

[14809, 34589]

X[25] <= 0.897
9215

[5368, 3847]

X[27] <= 0.773
3522

[1271, 2251]

X[26] <= 0.769
7070

[3821, 3249]

X[9] <= 1.15
2145

[1547, 598]

5279
[3065, 2214]

1791
[756, 1035]

2040
[1501, 539]

105
[46, 59]

X[25] <= 0.952
2712

[811, 1901]

X[27] <= 0.842
810

[460, 350]

2342
[637, 1705]

370
[174, 196]

454
[218, 236]

356
[242, 114]

X[25] <= 0.997
26134

[5419, 20715]

X[22] <= 1.016
23264

[9390, 13874]

X[26] <= 0.873
23140

[4187, 18953]

X[26] <= 0.91
2994

[1232, 1762]

7256
[1906, 5350]

15884
[2281, 13603]

1260
[755, 505]

1734
[477, 1257]

X[24] <= 1.079
11368

[5482, 5886]

X[24] <= 1.832
11896

[3908, 7988]

4805
[3022, 1783]

6563
[2460, 4103]

11190
[3508, 7682]

706
[400, 306]

X[27] <= 0.874
37641

[21016, 16625]

X[27] <= 1.026
20224

[14189, 6035]

X[5] <= 0.891
18584

[9405, 9179]

X[22] <= 1.065
19057

[11611, 7446]

X[26] <= 0.755
12750

[7165, 5585]

X[5] <= 1.701
5834

[2240, 3594]

7489
[4607, 2882]

5261
[2558, 2703]

5321
[2143, 3178]

513
[97, 416]

X[24] <= 1.058
6805

[4730, 2075]

X[25] <= 2.144
12252

[6881, 5371]

3727
[2857, 870]

3078
[1873, 1205]

10475
[5520, 4955]

1777
[1361, 416]

X[5] <= 1.064
12496

[7964, 4532]

X[24] <= 1.193
7728

[6225, 1503]

X[21] <= 0.97
8543

[5834, 2709]

X[25] <= 1.461
3953

[2130, 1823]

6845
[4887, 1958]

1698
[947, 751]

2013
[872, 1141]

1940
[1258, 682]

X[24] <= 1.009
4444

[4069, 375]

X[25] <= 1.634
3284

[2156, 1128]

3325
[3114, 211]

1119
[955, 164]

1845
[1105, 740]

1439
[1051, 388]

Figure S13: Higgs dataset. Second-layer tree structure of depth 5 when the first-layer tree is of
depth 2 (low depth). Raw features range from X[0] to X[13], X[14] and X[15] are the features
built by the first-layer tree.

Work in progress as of January 16, 2024

S1. Additional Figures 43

X[29] <= 0.53
120000

[56653, 63347]

X[28] <= 0.704
59865

[41080, 18785]

True

X[28] <= 0.266
60135

[15573, 44562]

False

X[29] <= 0.41
34156

[19886, 14270]

X[28] <= 0.848
25709

[21194, 4515]

X[17] <= 1.383
16326

[10386, 5940]

X[3] <= 2.719
17830

[9500, 8330]

14409
[9303, 5106]

1917
[1083, 834]

17566
[9303, 8263]

264
[197, 67]

X[29] <= 0.227
16524

[12669, 3855]

X[28] <= 0.926
9185

[8525, 660]

6611
[5305, 1306]

9913
[7364, 2549]

4417
[3910, 507]

4768
[4615, 153]

X[29] <= 0.849
32050

[5094, 26956]

X[28] <= 0.357
28085

[10479, 17606]

X[5] <= 1.759
16286

[3418, 12868]

X[29] <= 0.914
15764

[1676, 14088]

14704
[3250, 11454]

1582
[168, 1414]

12116
[1511, 10605]

3648
[165, 3483]

X[3] <= 1.351
8980

[2756, 6224]

X[28] <= 0.41
19105

[7723, 11382]

7364
[2172, 5192]

1616
[584, 1032]

11467
[4354, 7113]

7638
[3369, 4269]

Figure S14: Higgs dataset. Second-layer tree structure of depth 4 when the first-layer tree is of
depth 9 (optimal depth). Raw features range from X[0] to X[27], X[28] and X[29] are the features
built by the first-layer tree.

Work in progress as of January 16, 2024

S1. Additional Figures 44

5 10 15 20 25
rtr

ee

rtr
ee

_18

0.2

0.4

0.6

0.8

5 10 15 20 25
rtr

ee

rtr
ee

_18

0.2

0.4

0.6

0.8

5 10 15 20 25
rtr

ee

rtr
ee

_18

0.2

0.4

0.6

0.8

Figure S15: Letter dataset. Accuracy of a two-layer tree architecture w.r.t. the second-layer tree
depth, when the first-layer (encoding) tree is of depth 10 (top), 18 (middle), and 26 (bottom).
rtree is a single tree of respective depth 10 (top), 18 (middle), and 26 (bottom), applied on raw
data. For this dataset, the optimal depth of a single tree is 18 and the tree with the optimal depth
is depicted as rtree_18 in each plot. The green dashed line indicates the median score of the
rtree. All boxplots are obtained by 10 different runs.

X[28] <= 0.6
16000

[633, 630, 594, 638, 616, 622, 609, 583, 590, 599
593, 604, 648, 617, 614, 635, 615, 597, 587, 645

645, 628, 613, 628, 641, 576]

X[36] <= 0.4
15367

[633, 630, 594, 638, 616, 622, 609, 583, 590, 599
593, 604, 15, 617, 614, 635, 615, 597, 587, 645

645, 628, 613, 628, 641, 576]

True

633
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 633, 0

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

False

X[35] <= 0.475
14731

[633, 630, 594, 637, 616, 622, 609, 583, 590, 599
593, 604, 15, 617, 614, 635, 615, 595, 587, 645

12, 628, 613, 628, 641, 576]

X[36] <= 0.679
636

[0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 2, 0, 0, 633, 0, 0, 0, 0, 0]

X[40] <= 0.55
14102

[633, 630, 594, 637, 615, 622, 608, 583, 590, 599
593, 604, 15, 617, 614, 635, 615, 595, 587, 18, 12

628, 613, 628, 641, 576]

X[35] <= 0.875
629

[0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 627, 0, 0, 0, 0, 0, 0]

X[16] <= 0.6
13480

[633, 630, 594, 637, 615, 622, 608, 583, 590, 599
593, 604, 15, 617, 614, 635, 615, 595, 587, 18, 12

628, 613, 628, 19, 576]

622
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 622, 0]

X[31] <= 0.483
12858

[12, 630, 594, 637, 615, 622, 608, 583, 590, 599
593, 604, 15, 617, 614, 635, 615, 595, 587, 18, 12

628, 613, 627, 19, 576]

X[39] <= 0.1
622

[621, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0]

X[38] <= 0.475
12236

[12, 630, 594, 636, 615, 621, 607, 583, 590, 599
593, 604, 15, 614, 614, 19, 615, 595, 587, 18, 12

628, 613, 627, 19, 576]

X[13] <= 7.5
622

[0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 3
0, 616, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

X[39] <= 0.567
11631

[12, 630, 594, 636, 615, 621, 607, 582, 590, 599
593, 604, 15, 614, 614, 19, 615, 595, 587, 18, 12

628, 9, 627, 19, 576]

X[14] <= 10.5
605

[0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 604, 0, 0, 0]

X[32] <= 0.417
11026

[12, 630, 594, 636, 614, 621, 607, 582, 590, 599
593, 604, 15, 614, 614, 19, 615, 595, 587, 18, 12

628, 9, 23, 19, 576]

X[20] <= 0.1
605

[0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 604, 0, 0]

X[19] <= 0.417
10420

[12, 629, 594, 636, 614, 621, 607, 581, 590, 599
593, 604, 15, 614, 613, 19, 12, 595, 587, 18, 12

628, 9, 23, 19, 576]

X[7] <= 2.5
606

[0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0
1, 0, 603, 0, 0, 0, 0, 0, 0, 0, 0, 0]

X[29] <= 0.383
9783

[12, 628, 594, 17, 613, 620, 603, 579, 590, 599
592, 604, 15, 612, 608, 19, 12, 594, 587, 18, 12

628, 9, 23, 19, 576]

X[19] <= 0.855
637

[0, 1, 0, 619, 1, 1, 4, 2, 0, 0, 1, 0, 0, 2
5, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]

(...) (...) (...) (...)

1
[0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

X[30] <= 0.167
605

[0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1, 0, 603, 0, 0, 0, 0, 0, 0, 0, 0, 0]

(...) (...)

600
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 0, 0, 0, 0, 0, 0, 0, 0, 600, 0, 0]

X[9] <= 10.5
5

[0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0]

4
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0]

1
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

604
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 0, 0, 0, 0, 0, 0, 0, 604, 0, 0, 0]

1
[0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

1
[0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

X[31] <= 0.778
621

[0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 3
0, 616, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

X[1] <= 8.5
9

[0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2
0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

X[19] <= 0.056
612

[0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
0, 610, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

6
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

X[12] <= 4.5
3

[0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

1
[0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

2
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

X[29] <= 0.045
603

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
0, 602, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

X[14] <= 3.5
9

[0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

592
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 592, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

X[10] <= 5.5
11

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
0, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

(...) (...)

1
[0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

8
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

617
[617, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

X[10] <= 6.5
5

[4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0]

1
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0]

4
[4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

X[15] <= 8.5
8

[0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0]

621
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 0, 0, 0, 0, 621, 0, 0, 0, 0, 0, 0]

X[3] <= 4.5
7

[0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0]

1
[0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

1
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

6
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0]

X[5] <= 6.5
2

[0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]

X[36] <= 0.929
634

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 2, 0, 0, 632, 0, 0, 0, 0, 0]

1
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]

1
[0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

X[2] <= 3.5
14

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 2, 0, 0, 12, 0, 0, 0, 0, 0]

620
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 0, 0, 0, 0, 0, 620, 0, 0, 0, 0, 0]

2
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0]

12
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0]

Figure S16: Letter dataset. Second-layer tree structure of depth 30 when the first-layer tree is of
depth 18 (optimal depth). We only show the first part of the tree up to depth 10. Raw features
range from X[0] to X[15]. The features built by the first-layer tree range from X[16] to X[41].

Work in progress as of January 16, 2024

S1. Additional Figures 45

1 2 3 4 5 6 7 8 9
rtr

ee
rtr

ee
_3

0.45

0.50

0.55

1 2 3 4 5 6 7 8 9
rtr

ee
rtr

ee
_3

0.45

0.50

0.55

1 2 3 4 5 6 7 8 9
rtr

ee
rtr

ee
_3

0.45

0.50

0.55

Figure S17: Yeast dataset. Accuracy of a two-layer tree architecture w.r.t. the second-layer tree
depth, when the first-layer (encoding) tree is of depth 1 (top), 3 (middle), and 8 (bottom). rtree
is a single tree of respective depth 1 (top), 3 (middle), and 8 (bottom), applied on raw data.
For this dataset, the optimal depth of a single tree is 3 and the tree with the optimal depth is
depicted as rtree_3 in each plot. The green dashed line indicates the median score of the rtree.
All boxplots are obtained by 10 different runs.

X[14] <= 0.48
1038

[173, 309, 320, 32, 27, 29, 107, 22, 16, 3]

X[10] <= 0.188
908

[167, 295, 316, 32, 27, 25, 10, 18, 15, 3]

True

X[2] <= 0.395
130

[6, 14, 4, 0, 0, 4, 97, 4, 1, 0]

False

X[8] <= 0.125
199

[99, 23, 20, 26, 4, 16, 4, 4, 2, 1]

X[14] <= 0.014
709

[68, 272, 296, 6, 23, 9, 6, 14, 13, 2]

X[6] <= 0.365
35

[1, 0, 1, 26, 2, 4, 0, 1, 0, 0]

X[0] <= 0.725
164

[98, 23, 19, 0, 2, 12, 4, 3, 2, 1]

2
[0, 0, 0, 0, 0, 2, 0, 0, 0, 0]

33
[1, 0, 1, 26, 2, 2, 0, 1, 0, 0]

149
[97, 22, 19, 0, 1, 3, 4, 2, 1, 0]

15
[1, 1, 0, 0, 1, 9, 0, 1, 1, 1]

X[0] <= 0.735
550

[67, 159, 258, 6, 23, 8, 2, 13, 12, 2]

X[2] <= 0.465
159

[1, 113, 38, 0, 0, 1, 4, 1, 1, 0]

517
[67, 158, 257, 0, 5, 4, 2, 12, 11, 1]

33
[0, 1, 1, 6, 18, 4, 0, 1, 1, 1]

16
[0, 6, 6, 0, 0, 0, 3, 0, 1, 0]

143
[1, 107, 32, 0, 0, 1, 1, 1, 0, 0]

X[7] <= 0.52
95

[5, 4, 0, 0, 0, 3, 79, 4, 0, 0]

X[6] <= 0.565
35

[1, 10, 4, 0, 0, 1, 18, 0, 1, 0]

X[1] <= 0.615
93

[5, 2, 0, 0, 0, 3, 79, 4, 0, 0]

2
[0, 2, 0, 0, 0, 0, 0, 0, 0, 0]

74
[1, 1, 0, 0, 0, 2, 67, 3, 0, 0]

19
[4, 1, 0, 0, 0, 1, 12, 1, 0, 0]

X[5] <= 0.415
31

[1, 7, 3, 0, 0, 1, 18, 0, 1, 0]

X[1] <= 0.43
4

[0, 3, 1, 0, 0, 0, 0, 0, 0, 0]

30
[1, 7, 3, 0, 0, 1, 18, 0, 0, 0]

1
[0, 0, 0, 0, 0, 0, 0, 0, 1, 0]

1
[0, 0, 1, 0, 0, 0, 0, 0, 0, 0]

3
[0, 3, 0, 0, 0, 0, 0, 0, 0, 0]

Figure S18: Yeast dataset. Second-layer tree structure of depth 4 when the first-layer tree is
of depth 3 (optimal depth). Raw features range from X[0] to X[7]. The features built by the
first-layer tree range from X[8] to X[17].

Work in progress as of January 16, 2024

S1. Additional Figures 46

5 10 15 20 25 30
rtr

ee

rtr
ee

_27

0.60

0.65

0.70

5 10 15 20 25 30
rtr

ee

rtr
ee

_27

0.70

0.71

0.72

5 10 15 20 25 30
rtr

ee

rtr
ee

_27
0.700

0.705

0.710

0.715

0.720

Figure S19: Airbnb dataset. R2 score of a two-layer tree architecture w.r.t. the second-layer tree
depth, when the first-layer (encoding) tree is of depth 10 (top), 27 (middle), and 32 (bottom).
rtree is a single tree of respective depth 10 (top), 27 (middle), and 32 (bottom), applied on raw
data. For this dataset, the optimal depth of a single tree is 27 and the tree with the optimal depth
is depicted as rtree_27 in each plot. The green dashed line indicates the median score of the
rtree. All boxplots are obtained by 10 different runs.

X[13] <= 171.188
91306

103.863

X[13] <= 83.279
77091
73.378

True
X[13] <= 329.417

14215
269.186

False

X[13] <= 50.646
49444
48.305

X[13] <= 122.644
27647

118.219

X[13] <= 35.15
28551
35.567

X[13] <= 66.062
20893
65.712

X[13] <= 26.292
13493
27.661

X[13] <= 43.062
15058
42.651

X[13] <= 20.708
4880

21.364

X[13] <= 31.268
8613

31.229

(...) (...) (...) (...)

X[13] <= 39.191
8297

39.133

X[13] <= 47.062
6761

46.968

(...) (...) (...) (...)

X[13] <= 57.873
10964
57.974

X[13] <= 74.354
9929

74.256

X[13] <= 54.183
5369

54.093

X[13] <= 61.917
5595

61.698

(...) (...) (...) (...)

X[13] <= 70.596
5073
70.12

X[13] <= 78.45
4856

78.577

(...) (...) (...) (...)

X[13] <= 102.225
16742

101.671

X[13] <= 144.208
10905

143.625

X[13] <= 92.528
8827

92.363

X[13] <= 112.053
7915

112.052

X[13] <= 87.688
4567

87.732

X[13] <= 96.826
4260

97.328

(...) (...) (...) (...)

X[13] <= 107.174
3951

107.059

X[13] <= 117.381
3964

117.028

(...) (...) (...) (...)

X[13] <= 132.695
5710

132.382

X[13] <= 156.846
5195

155.983

X[13] <= 127.536
3037

127.237

X[13] <= 137.9
2673

138.227

(...) (...) (...) (...)

X[13] <= 151.071
2910

150.158

X[13] <= 162.833
2285
163.4

(...) (...) (...) (...)

X[13] <= 239.056
11494

231.732

X[13] <= 489.712
2721

427.397

X[13] <= 203.375
6897

202.518

X[13] <= 275.25
4597

275.562

X[13] <= 187.686
3666

188.742

X[13] <= 218.875
3231

218.149

X[13] <= 179.125
1608

179.596

X[13] <= 195.417
2058

195.889

(...) (...) (...) (...)

X[13] <= 210.702
1754

210.014

X[13] <= 228.875
1477

227.809

(...) (...) (...) (...)

X[13] <= 258.667
2272

254.186

X[13] <= 297.8
2325

296.451

X[13] <= 248.467
1707

249.636

X[13] <= 266.038
565

267.933

(...) (...) (...) (...)

X[13] <= 283.375
1290

286.045

X[13] <= 309.333
1035

309.421

(...) (...) (...) (...)

X[13] <= 395.5
2158

384.342

X[13] <= 658.5
563

592.428

X[13] <= 357.409
1415

360.03

X[13] <= 432.667
743

430.642

X[13] <= 339.5
599

339.803

X[13] <= 372.654
816

374.877

(...) (...) (...) (...)

X[13] <= 411.946
416

414.519

X[13] <= 457.643
327

451.153

(...) (...) (...) (...)

X[13] <= 538.333
459

552.1

X[13] <= 835.25
104

770.413

X[13] <= 510.5
105

508.886

X[13] <= 591.007
354

564.918

(...) (...) (...) (...)

X[13] <= 741.0
91

749.264

X[13] <= 921.0
13

918.462

(...) (...) (...) (...)

Figure S20: Airbnb dataset. Second-layer tree structure of depth 28 when the first-layer tree is of
depth 26 (optimal depth). We only show the first part of the tree up to depth 5. Raw features
range from X[0] to X[12], X[13] is the feature built by the first-layer tree.

Work in progress as of January 16, 2024

S1. Additional Figures 47

1 2 3 4 5 6 7 8 9 10 11 12 13 14
rtr

ee
rtr

ee
_7

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14
rtr

ee
rtr

ee
_7

0.5

0.6

0.7

1 2 3 4 5 6 7 8 9 10 11 12 13 14
rtr

ee
rtr

ee
_7

0.5

0.6

0.7

Figure S21: Housing dataset. R2 score of a two-layer tree architecture w.r.t. the second-layer
tree depth, when the first-layer (encoding) tree is of depth 3 (top), 7 (middle), and 12 (bottom).
rtree is a single tree of respective depth 3 (top), 7 (middle), and 12 (bottom), applied on raw
data. For this dataset, the optimal depth of a single tree is 9 and the tree with the optimal depth is
depicted as rtree_7 in each plot. The green dashed line indicates the median score of the rtree.
All boxplots are obtained by 10 different runs.

X[61] <= 225978.391
1095

180657.652

X[61] <= 156410.578
874

150406.426

True
X[61] <= 330650.0

221
300293.724

False

X[61] <= 120926.516
494

123601.421

X[61] <= 183310.0
380

185252.932

X[61] <= 87625.188
215

104289.386

X[26] <= 137.0
279

138483.455

X[28] <= 173.0
28

67637.643

X[61] <= 106882.91
187

109777.348

X[33] <= 446.0
11

80022.727

X[2] <= 1.5
17

59623.765

(...) (...) (...) (...)

X[36] <= 1132.5
66

97962.136

X[2] <= 0.5
121

116222.008

(...) (...) (...) (...)

X[61] <= 136771.625
96

129038.594

X[3] <= 10076.0
183

143438.137

X[17] <= 1992.5
58

123342.759

X[3] <= 16543.5
38

137732.237

(...) (...) (...) (...)

X[29] <= 1085.0
126

139781.183

X[18] <= 1965.5
57

151521.93

(...) (...) (...) (...)

X[18] <= 1990.5
172

166852.058

X[36] <= 1481.5
208

200469.038

X[2] <= 0.5
87

158894.253

X[28] <= 112.0
85

174997.106

X[10] <= 8.5
78

161285.897

X[31] <= 1.5
9

138166.667

(...) (...) (...) (...)

X[31] <= 1.5
5

146620.0

X[36] <= 1765.5
80

176770.675

(...) (...) (...) (...)

X[33] <= 1127.0
68

184579.794

X[43] <= 0.5
140

208186.671

X[51] <= 89.0
18

165140.833

X[18] <= 2007.5
50

191577.82

(...) (...) (...) (...)

X[61] <= 195858.82
102

213268.725

X[8] <= 1.5
38

194545.368

(...) (...) (...) (...)

X[61] <= 260609.875
162

266326.043

X[61] <= 481233.75
59

393560.915

X[36] <= 1509.5
60

238024.2

X[61] <= 296666.672
102

282974.186

X[57] <= 8.5
6

216909.333

X[1] <= 77.5
54

240370.296

X[17] <= 2003.0
4

206625.0

X[46] <= 1.0
2

237478.0

(...) (...) (...) (...)

X[61] <= 229871.25
49

238295.204

X[0] <= 557.5
5

260706.2

(...) (...) (...) (...)

X[26] <= 26.0
74

272484.23

X[10] <= 1.0
28

310697.643

X[51] <= 201.0
27

262681.111

X[36] <= 2797.0
47

278115.809

(...) (...) (...) (...)

X[5] <= 0.5
4

286475.0

X[6] <= 2.5
24

314734.75

(...) (...) (...) (...)

X[61] <= 397000.0
53

373691.83

X[0] <= 787.0
6

569071.167

X[17] <= 2006.5
41

356169.707

X[44] <= 10.5
12

433559.083

X[36] <= 2749.0
30

346791.467

X[50] <= 212.0
11

381746.727

(...) (...) (...) (...)

X[58] <= 2007.5
8

421447.25

X[37] <= 0.5
4

457782.75

(...) (...) (...) (...)

X[26] <= 1835.5
3

531612.333

X[26] <= 693.5
3

606530.0

X[48] <= 756.5
2

546500.0

1
501837.0

(...) (...)

1
582933.0

X[59] <= 0.5
2

618328.5

(...) (...)

Figure S22: Housing dataset. Second-layer tree structure of depth 10 when the first-layer tree is
of depth 7 (optimal depth). We only show the first part of the tree up to depth 5. Raw features
range from X[0] to X[60], X[61] is the feature built by the first-layer tree.

S1.5 Additional Figures to Section 2.3.2

Work in progress as of January 16, 2024

S1. Additional Figures 48

1 2 3 4 5 6 7 8 9 10 15
Number of layers

78.6

78.8

79.0
Ac

cu
ra

cy

1 2 3 4 5 6 7 8 9 10 15
Number of layers

79.0

79.1

79.2

79.3

Ac
cu

ra
cy

Figure S23: Adult dataset. Boxplots over 10 tries of the accuracy of a DF with 1 forest by layer
(left) or 4 forests by layer (right), with respect to the DF maximal number of layers.

1 2 3 4 5 6 7 8 9 10 15
Maximal number of layers

15
10

9
8
7
6
5
4
3
2
1

Be
st

 su
b-

m
od

el

0

1 0

0 1 0

0 1 0 0

0 2 2 3 0

1 0 0 1 0 0

1 0 2 0 0 0 0

1 1 0 1 1 0 0 0

0 3 1 0 0 3 0 0 1

1 0 1 0 1 2 0 2 1 0

10 9 10 5 7 8 5 4 4 4 7
0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10 15
Maximal number of layers

15
10

9
8
7
6
5
4
3
2
1

Be
st

 su
b-

m
od

el

0

1 0

0 0 0

0 0 0 0

0 1 1 1 0

0 1 0 1 1 0

0 1 0 0 0 1 0

1 0 0 0 1 0 0 0

2 0 0 0 0 0 1 0 1

1 0 1 0 0 0 0 0 0 0

10 9 8 8 10 9 9 8 7 6 9
0

2

4

6

8

10

Figure S24: Adult dataset. Heatmap counting the index of the sub-optimal model over 10 tries of
a default DF with 1 (Breiman) forest per layer (left) or 4 forests (2 Breiman, 2 CRF) per layer
(right), with respect to the maximal number of layers.

1 2 3 4 5 6 7 8 9 10 15
Maximal number of layers

72.65

72.70

72.75

72.80

72.85

Ac
cu

ra
cy

1 2 3 4 5 6 7 8 9 10 15
Maximal number of layers

72.65

72.70

72.75

72.80

72.85

Ac
cu

ra
cy

Figure S25: Higgs dataset. Boxplots over 10 tries of the accuracy of a DF with 1 forest by layer
(left) or 4 forests by layer (right), with respect to the DF maximal number of layers.

Work in progress as of January 16, 2024

S1. Additional Figures 49

1 2 3 4 5 6 7 8 9 10 15
Maximal number of layers

15
10

9
8
7
6
5
4
3
2
1

Be
st

 su
b-

m
od

el
0

0 0

0 0 0

0 0 0 0

0 0 0 1 0

1 1 0 0 0 0

0 0 0 0 1 2 0

0 0 1 0 0 0 1 3

0 0 1 1 1 3 4 1 3

4 2 1 2 2 0 4 3 0 1

10 6 8 9 7 5 8 3 2 5 3
0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10 15
Maximal number of layers

15
10

9
8
7
6
5
4
3
2
1

Be
st

 su
b-

m
od

el

0

0 0

0 0 0

0 0 0 0

0 0 0 0 0

2 0 0 0 0 0

0 0 1 0 1 0 0

2 0 0 1 0 1 0 1

2 1 1 3 1 2 2 2 0

4 4 4 1 4 4 2 4 3 7

10 6 4 3 8 1 3 6 2 5 2
0

2

4

6

8

10

Figure S26: Higgs dataset. Heatmap counting the index of the sub-optimal model over 10 tries of
a default DF with 1 (Breiman) forest per layer (left) or 4 forests (2 Breiman, 2 CRF) per layer
(right), with respect to the maximal number of layers.

1 2 3 4 5 6 7 8 9 10 15
Maximal number of layers

96.9

97.0

97.1

97.2

Ac
cu

ra
cy

1 2 3 4 5 6 7 8 9 10 15
Maximal number of layers

96.40

96.45

96.50

96.55

96.60

Ac
cu

ra
cy

Figure S27: Letter dataset. Boxplots over 10 tries of the accuracy of a DF with 1 forest by layer
(left) or 4 forests by layer (right), with respect to the DF maximal number of layers.

1 2 3 4 5 6 7 8 9 10 15
Maximal number of layers

15
10

9
8
7
6
5
4
3
2
1

Be
st

 su
b-

m
od

el

0

0 0

0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

10 10 10 10 10 10 10 10 10 10 10
0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10 15
Maximal number of layers

15
10

9
8
7
6
5
4
3
2
1

Be
st

 su
b-

m
od

el

0

0 0

0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

10 10 10 10 10 10 10 10 10 10 10
0

2

4

6

8

10

Figure S28: Letter dataset. Heatmap counting the index of the sub-optimal model over 10 tries of
a default DF with 1 (Breiman) forest per layer (left) or 4 forests (2 Breiman, 2 CRF) per layer
(right), with respect to the maximal number of layers.

Work in progress as of January 16, 2024

S1. Additional Figures 50

1 2 3 4 5 6 7 8 9 10 15
Maximal number of layers

57

58

59
Ac

cu
ra

cy

1 2 3 4 5 6 7 8 9 10 15
Maximal number of layers

56.5

57.0

57.5

58.0

Ac
cu

ra
cy

Figure S29: Yeast dataset. Boxplots over 10 tries of the accuracy of a DF with 1 forest by layer
(left) or 4 forests by layer (right), with respect to the DF maximal number of layers.

1 2 3 4 5 6 7 8 9 10 15
Maximal number of layers

15
10

9
8
7
6
5
4
3
2
1

Be
st

 su
b-

m
od

el

0

0 0

0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

4 4 3 6 5 5 2 3 4 2

10 6 6 7 4 5 5 8 7 6 8
0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10 15
Maximal number of layers

15
10

9
8
7
6
5
4
3
2
1

Be
st

 su
b-

m
od

el

0

0 0

0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

10 10 10 10 10 10 10 10 10 10 10
0

2

4

6

8

10

Figure S30: Yeast dataset. Heatmap counting the index of the sub-optimal model over 10 tries of
a default DF with 1 (Breiman) forest per layer (left) or 4 forests (2 Breiman, 2 CRF) per layer
(right), with respect to the maximal number of layers.

1 2 3 4 5 6 7 8 9 10 15
Maximal number of layers

0.6738

0.6740

0.6742

R2
 sc

or
e

1 2 3 4 5 6 7 8 9 10 15
Maximal number of layers

0.6707

0.6708

0.6709

0.6710

0.6711

R2
 sc

or
e

Figure S31: Airbnb dataset. Boxplots over 10 tries of the accuracy of a DF with 1 forest by layer
(left) or 4 forests by layer (right), with respect to the DF maximal number of layers.

Work in progress as of January 16, 2024

S1. Additional Figures 51

1 2 3 4 5 6 7 8 9 10 15
Maximal number of layers

15
10

9
8
7
6
5
4
3
2
1

Be
st

 su
b-

m
od

el
0

0 0

0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

10 10 10 10 10 10 10 10 10 10 10
0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10 15
Maximal number of layers

15
10

9
8
7
6
5
4
3
2
1

Be
st

 su
b-

m
od

el

0

0 0

0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

10 10 10 10 10 10 10 10 10 10 10
0

2

4

6

8

10

Figure S32: Airbnb datase. Heatmap counting the index of the sub-optimal model over 10 tries
of a default DF with 1 (Breiman) forest per layer (left) or 4 forests (2 Breiman, 2 CRF) per layer
(right), with respect to the maximal number of layers.

1 2 3 4 5 6 7 8 9 10 15
Maximal number of layers

0.725

0.750

0.775

0.800

0.825

R2
 sc

or
e

1 2 3 4 5 6 7 8 9 10 15
Maximal number of layers

0.76

0.78

0.80

0.82

R2
 sc

or
e

Figure S33: Housing dataset. Boxplots over 10 tries of the accuracy of a DF with 1 forest by layer
(left) or 4 forests by layer (right), with respect to the DF maximal number of layers.

1 2 3 4 5 6 7 8 9 10 15
Maximal number of layers

15
10

9
8
7
6
5
4
3
2
1

Be
st

 su
b-

m
od

el

1

0 1

0 0 0

0 0 1 0

2 1 1 1 1

0 4 0 0 1 1

3 2 0 0 1 1 0

1 1 2 1 1 1 3 1

4 1 3 2 2 2 4 0 1

7 5 6 2 4 1 4 2 3 2

10 3 1 2 1 0 0 2 1 0 1
0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10 15
Maximal number of layers

15
10

9
8
7
6
5
4
3
2
1

Be
st

 su
b-

m
od

el

0

0 0

0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0 1

1 0 0 1 1 0 0 0

4 3 2 2 2 1 3 5 4

9 6 6 8 8 7 7 7 5 5

10 1 0 0 0 0 0 0 0 0 0
0

2

4

6

8

10

Figure S34: Housing dataset. Heatmap counting the index of the sub-optimal model over 10 tries
of a default DF with 1 (Breiman) forest per layer (left) or 4 forests (2 Breiman, 2 CRF) per layer
(right), with respect to the maximal number of layers.

Work in progress as of January 16, 2024

S1. Additional Figures 52

S1.6 Additional Figures to Section 2.4

2000 4000 6000 8000 10000 12000 15000
Number of train samples

8.0e-02

9.0e-02

1.0e-01
Ri

sk
lower bound
upper bound
mean risk
risk boxplot

Figure S35: Illustration of the theoretical bounds for a single tree of Proposition 2.4.5 1. for a
chessboard with parameters k⋆ = 4, NB = 2k

⋆−1, and p = 0.8. The single tree is of depth k = 2.
We draw a sample of size n (x-axis), and a single tree fk,0,n is fitted for which the theoretical risk
is evaluated. Each boxplot is built out of 20 000 repetitions. The outliers are not shown for the
sake of presentation.

2000 4000 6000 8000 10000 12000 15000
Number of train samples

0.0e+00

5.0e-04

1.0e-03

1.5e-03

2.0e-03

2.5e-03

Ri
sk

lower bound
upper bound
mean risk
risk boxplot

Figure S36: Illustration of the theoretical bounds for a single tree of Proposition 2.4.6 1. for a
chessboard with parameters k⋆ = 4, NB = 2k

⋆−1 and p = 0.8. The single tree is of depth k = 4.
We draw a sample of size n (x-axis), and a single tree fk,0,n is fitted for which the theoretical risk
is evaluated. Each boxplot is built out of 20 000 repetitions. The outliers are not shown for the
sake of presentation.

Work in progress as of January 16, 2024

S1. Additional Figures 53

2000 4000 6000 8000 10000 12000 15000
Number of train samples

0.000

0.002

0.004

0.006

0.008

0.010
Ri

sk
lower bound
upper bound
mean risk
risk boxplot

Figure S37: Illustration of the theoretical bounds for a single tree of Proposition 2.4.6 1. for a
chessboard with parameters k⋆ = 4, NB = 2k

⋆−1 and p = 0.8. The single tree is of depth k = 6.
We draw a sample of size n (x-axis), and a single tree fk,0,n is fitted for which the theoretical risk
is evaluated. Each boxplot is built out of 20 000 repetitions. The outliers are not shown for the
sake of presentation.

2000 4000 6000 8000 10000 12000 15000
Number of training samples

1.0e-01

1.2e-01

1.4e-01

1.6e-01

1.8e-01

2.0e-01

Ri
sk

lower bound
upper bound
mean risk
risk boxplot

Figure S38: Illustration of the theoretical bounds for a shallow tree network of Proposition 2.4.5
2. for a chessboard with parameters k⋆ = 4, NB = 2k

⋆−1 and p = 0.8. The first-layer tree is of
depth k = 2. We draw a sample of size n (x-axis), and a single tree fk,0,n is fitted for which
the theoretical risk is evaluated. Each boxplot is built out of 20 000 repetitions. The outliers are
not shown for the sake of presentation. Note that in such a case, the theoretical lower bound is
constant and equal to the bias term.

Work in progress as of January 16, 2024

S1. Additional Figures 54

2000 4000 6000 8000 10000 12000 15000
Number of training samples

0.0e+00

1.0e-04

2.0e-04

3.0e-04

4.0e-04

5.0e-04

Ri
sk

lower bound
upper bound
mean risk
risk boxplot

Figure S39: Illustration of the theoretical bounds for a shallow tree network of Proposition 2.4.6
2. for a chessboard with parameters k⋆ = 4, NB = 2k

⋆−1 and p = 0.8. The first-layer tree is of
depth k = 4. We draw a sample of size n (x-axis), and a single tree fk,0,n is fitted for which
the theoretical risk is evaluated. Each boxplot is built out of 20 000 repetitions. The outliers are
not shown for the sake of presentation. Note that in such a case, the theoretical lower bound is
constant and equal to the bias term. Note that the lower bound and the upper bound are merged.

5000 6000 8000 10000 12000 15000
Number of training samples

0.0e+00

5.0e-05

1.0e-04

1.5e-04

2.0e-04

Ri
sk

lower bound
upper bound
mean risk
risk boxplot

Figure S40: Illustration of the theoretical bounds for a shallow tree network of Proposition 2.4.6
2. for a chessboard with parameters k⋆ = 4, NB = 2k

⋆−1 and p = 0.8. The first-layer tree is of
depth k = 6. We draw a sample of size n (x-axis), and a single tree fk,0,n is fitted for which
the theoretical risk is evaluated. Each boxplot is built out of 20 000 repetitions. The outliers are
not shown for the sake of presentation. Note that in such a case, the theoretical lower bound is
constant and equal to the bias term.

Work in progress as of January 16, 2024

S2. Technical Results on Binomial Random Variables 55

S2 Technical Results on Binomial Random Variables
Lemma S1. Let Z be a binomial B(n, p), p ∈ (0, 1], n > 0. Then,

1.
1− (1− p)n

(n+ 1)p
⩽ E

[
1Z>0

Z

]
⩽

2

(n+ 1)p

2.
E
[

1

1 + Z

]
⩽

1

(n+ 1)p

3.
E
[

1

1 + Z2

]
⩽

3

(n+ 1)(n+ 2)p2

4.
E
[
1Z>0√

Z

]
⩽

2√
np

5. Let k be an integer ⩽ n. Then,

E [Z | Z ⩾ k] = np+ (1− p)k
P (Z = k)
n∑

i=k

P (Z = i)

.

6. Let Z be a binomial B(n, 1
2), n > 0. Then,

E
[
Z | Z ⩽ ⌊n+ 1

2
⌋ − 1

]
⩾

n

2
−
(√

n√
π
+

2
√
2n

π
√
2n+ 1

)
.

7. Let Z be a binomial B(n, 1
2), n > 0. Then,

E
[
Z | Z ⩾ ⌊n+ 1

2
⌋
]
⩽

n

2
+ 1 +

1√
π(n+ 1)

.

Proof. The reader may refer to the Lemma 11 of Biau 2012a to see the proof of 2., 3. and the right-
hand side of 1. The left-hand side inequality of 1 can be found in the Section 1 of Cribari-Neto
et al. 2000.

4. The first two inequalities rely on simple analysis :

E
[
1Z>0√

Z

]
⩽ E

[
2

1 +
√
Z

]

⩽ E
[

2√
1 + Z

]
.

Work in progress as of January 16, 2024

S2. Technical Results on Binomial Random Variables 56

To go on, we adapt a transformation from Section 2 of Cribari-Neto et al. 2000 to our setting:

E
[

2√
1 + Z

]
=

2

Γ(1/2)

∫ ∞

0

e−t

√
t
E
[
e−tZ

]
dt

=
2

Γ(1/2)

∫ ∞

0

e−t

√
t
(1− p+ pe−t)ndt

=
2

Γ(1/2)

∫ − log(1−p)

0

g(r)e−rndr,

with g(r) := p−1e−r
(
− log(1 + 1−e−r

p)
)−1/2

after the change of variable (1− p+ pe−t) = e−r.
Let’s prove that

g(r) ⩽
1√
rp

. (2.2)

It holds that log(1 + x) ⩽ 2x
2+x when −1 < x ⩽ 0, therefore

g(r)2 = p−2e−2r

(
− log(1 +

1− e−r

p
)

)−1

⩽ p−2e−2r 2p+ e−r − 1

2(1− e−r)
.

Furthermore,

2p ⩾ 2p
(
e−r + re−2r

)

⩾ 2p
(
e−r + re−2r

)
+ r

(
e−3r − e−2r

)

= re−2r(2p− 1 + e−r) + 2pe−r,

and then dividing by rp2,

2

rp
(1− e−r) ⩾

1

p2
e−2r(2p− 1 + e−r) ⇐⇒ 1

rp
⩾ p−2e−2r 2p+ e−r − 1

2(1− e−r)
,

which proves (2.2).
Equation (2.2) leads to

E
[

2√
1 + Z

]
⩽

2

Γ(1/2)

∫ − log(1−p)

0

1√
pr

e−rndr. (2.3)

Note that Γ(1/2) = √
π. After the change of variable u =

√
rn, we obtain :

E
[

2√
1 + Z

]
⩽

4√
npπ

∫ √
−n log(1−p)

0

e−u2

du ⩽
4√
npπ

∫ ∞

0

e−u2

du ⩽
2√
np

which ends the proof of (iv).
5.(a) We recall that p = 1/2. An explicit computation of the expectation yields :

Work in progress as of January 16, 2024

S2. Technical Results on Binomial Random Variables 57

E
[
Z | Z < ⌊n+ 1

2
⌋
]
=

1

P
(
Z ⩽ ⌊n+1

2 ⌋ − 1
)

⌊n+1
2 ⌋−1∑

i=1

i

2n

(
n

i

)

=
2

1

n

2n

(
2n

2
− 1

2

(
n− 1
n−1
2

))
1n%2=1

+
n

1
2 − 1

2P (Z = n/2)

n/2∑

i=1

i

(
n

i

)
− n

2

(
n

n/2

)
 1n%2=0

2n

= n

(
1

2
− 1

2n

(
n− 1
n−1
2

))
1n%2=1 +

n · 1n%2=0

1− P (Z = n/2)

(
1

2
− 1

2n

(
n

n/2

))
.

We use that for allm ∈ 2N∗,
(

m

m/2

)
⩽

2m√
π(m/2 + 1/4)

(2.4)

and
1

1− P (Z = m/2)
⩾ 1 +

√
2√
πn

where the last inequality can be obtained via a series expansion at n = ∞. Replacing the terms
by their bounds, we have :

E
[
Z | Z < ⌊n+ 1

2
⌋
]
⩾ n

((
1

2
− 1√

π(2m− 1)

)
1n%2=1

+

(
1 +

√
2√
πn

)(
1

2
− 2√

π(2n+ 1)

)
1n%2=0

)

⩾ n

(
1

2
− 1√

nπ
− 2

√
2

π
√
n(2n+ 1)

)

⩾
n

2
+
√
n

(
1√
π
− 2

√
2

π

√
(2n+ 1)

)

which ends the proof of this item (v)(a).

Work in progress as of January 16, 2024

S2. Technical Results on Binomial Random Variables 58

5.(b)We also begin with an explicit computation of the expectation :

E
[
Z | Z ⩾ ⌊n+ 1

2
⌋
]
=

1

P
(
Z ⩾ ⌊n+1

2 ⌋
)

n∑

i=⌊n+1
2 ⌋

i

2n

(
n

i

)

=
2

1

1

2n

(
2n−2 + 2n−1 +

1

2

(
n− 1
n−1
2

))
1n%2=1

+
n

1
2 + 1

2P (Z = n/2)

n∑

i=⌊n+1
2 ⌋

i

(
n

i

)
 1n%2=0

2n

=

(
n

2
+ 1 +

1

2n

(
n− 1
n−1
2

))
1n%2=1 +

n · 1n%2=0

1 + P (Z = n/2)

(
1

2
+

1

2n

(
n

n/2

))
.

The computation of the upper bound relies on the following inequalities : ∀m ∈ 2N∗,

(
2m

m

)
⩽

22m√
π(m+ 1/4)

(2.5)

as well as
1

1 + P (Z = n/2)
⩽ 1−

√
2√
πn

+
2

πn

where the last bound can be found via a series expansion at n = ∞. Replacing all terms by their
bound and simplifying roughly gives the result.
Lemma S2 (Uniform Bernoulli labels: risk of a single tree). LetK be a compact in Rd, d ∈ N. Let
X,X1, ..., Xn, n ∈ N∗ be i.i.d. random variables uniformly distributed over K, Y, Y1, ..., Yn i.i.d Bernoulli
variables of parameter p ∈ [0, 1] which can be considered as the labels of X,X1, ..., Xn. We denote by
f0,k,n, k ∈ N∗ a single tree of depth k. Then we have, for all k ∈ N∗,

(i)

E
[
(f0,0,n(X)− f⋆(X))2

]
=

p(1− p)

n
(2.6)

(ii)

2k · p(1− p)

n
+

(
p2 − 2k

n

)
(1− 2−k)n ⩽ E

[
(f0,k,n(X)− f⋆(X))2

]
⩽ 2k+1 · p(1− p)

n
+ p2(1− 2−k)n

(2.7)

Proof. (i) In the case k = 0, f0,0,n simply computes the mean of all the (Yi)’s overK:

E
[
(f0,0,n(X)− f⋆(X))2

]
= E

(
1

n

∑

i

Yi − p

)2

 (2.8)

= E

[
1

n2

∑

i

(Yi − p)2

]
(Yi independent) (2.9)

=
p(1− p)

n
. (2.10)

Work in progress as of January 16, 2024

S3. Proof of Lemma 2.4.2 59

(ii)

E
[
(f0,k,n(X)− f⋆(X))2

]
= E

 1

Nn(Ln(X))

∑

Xi∈Ln(X)

Yi − p

2

1Nn(Ln(X))>0

 (2.11)

+ p2P (Nn(Ln(X)) = 0)

= E

1Nn(Ln(X))>0

Nn(Ln(X))2

∑

Xi∈Ln(X)

(Yi − p)2

+ p2P (Nn(Ln(X)) = 0)

(2.12)

= p(1− p)E
[
1Nn(Ln(X))>0

Nn(Ln(X))

]
+ p2(1− 2−k)n (2.13)

Noticing thatNn(Ln(X)) is a binomialB(n, 1
2k
), we obtain the upper bound using Lemma S1

(i) :

E
[
1Nn(Ln(X))>0

Nn(Ln(X))

]
⩽ 2 · 2

k

n
(2.14)

the lower bound is immediately obtained by applying Lemma S1, (i):

E
[
1Nn(Ln(X))>0

Nn(Ln(X))

]
⩾

2k

n

(
1− (1− 2−k)n

) (2.15)

S3 Proof of Lemma 2.4.2
Recall that B (resp. W) is the union of black (resp. white) cells of the dataset.

Note that

E[(fk,1,∞(X)− f⋆(X))2] = E[(fk,1,∞(X)− f⋆(X))21X∈B]

+ E[(fk,1,∞(X)− f⋆(X))21X∈W]. (2.16)

Now, we analyze the first term in Equation (2.16). We have

E[(fk,1,∞(X)− f⋆(X))21X∈B] = E[E[(fk,1,∞(X)− f⋆(X))21X∈B|NB]] (2.17)

=
∑

i,j

E[E[
(1

NB

∑

i′,j′∈B
pi′j′ − pij

)2
1X∈Cij∩B|NB]]

=
∑

i,j

E

E[1X∈Cij1X∈B1NB>0

(1

NB

∑

i′,j′∈B
pi′j′ − pij

)2
|NB]

+
∑

i,j

E
[
E
[
1X∈Ci,j∩B1NB=0p

2
i,j | NB

]]
. (2.18)

Work in progress as of January 16, 2024

S3. Proof of Lemma 2.4.2 60

We begin with the second term in Equation (2.18). We have, for all i, j,

E
[
E
[
1X∈Ci,j∩B1NB=0p

2
i,j | NB

]]
= E

[
1X∈Ci,j1NB=0E

[
p2i,j1X∈B | X,NB

]] (2.19)
= E

[
1X∈Ci,j1NB=0E

[
p2i,j1pi,j⩾ 1

2

]]
. (2.20)

As pi,j is drawn uniformly in [0, 1],

E
[
p2i,j1pi,j⩾ 1

2

]
= E

[
p2i,j | pi,j ⩾

1

2

]
P
(
pi,j ⩾

1

2

)

=
7

24
.

Therefore,

E
[
E
[
1X∈Ci,j∩B1NB=0p

2
i,j | NB

]]
=

7

24
P (X ∈ Ci,j)P (NB = 0) (2.21)

=
1

22k
⋆

7

24
. (2.22)

Regarding the first term of Equation (2.18),

E[1X∈Cij1X∈B1NB>0

(1

NB

∑

i′,j′∈B
pi′j′ − pij

)2
|NB]

= E

1X∈CijE

1X∈B1NB>0

 1

NB

∑

i′,j′

(pi′,j′ − pi,j)

2 ∣∣∣X,NB

 (2.23)

= E
[
1X∈Cij

]
E

1pi,j⩾ 1

2
1NB>0

 1

NB

∑

i′,j′∈B
(pi′,j′ − pi,j)

2 ∣∣∣NB

 (2.24)

= E
[
1X∈Cij

]
E

1

N2
B

∑

i′,j′,i′′,j′′∈B
(i′,j′)̸=(i′′,j′′)

(pi′j′ − pij)(pi′′j′′ − pij)

+
∑

i′,j′∈B,
(i′,j′ ̸=(i,j))

(pi′j′ − pij)
2

∣∣∣NB, NB > 0, pi,j ⩾

1

2

 · P

(
pi,j ⩾

1

2
∩NB > 0

)
. (2.25)

Recall that pij is drawn uniformly over [0, 1]. Therefore, P (pi,j ⩾ 1
2 ∩NB > 0

)
= P

(
pi,j ⩾ 1

2

)
= 1

2 .

Work in progress as of January 16, 2024

S3. Proof of Lemma 2.4.2 61

Thus,

E[1X∈Cij
1X∈B1NB>0

(1

NB

∑

i′,j′∈B
pi′j′ − pij

)2
|NB]

=
1

2k⋆E

[
1

N2
B
(NB − 1)(NB − 2)Var(pi,j | pi,j ⩾

1

2
)

+
∑

i′,j′∈B,
(i′,j′ ̸=(i,j))

2Var(pi,j | pi,j ⩾
1

2
)
∣∣NB, NB > 0, pi,j ⩾

1

2

=
1

2k⋆ E
[

1

N2
B

(
(NB − 1)(NB − 2)

1

48
+ 2

1

48
(NB − 1)

) ∣∣NB, NB > 0

]
P
(
pi,j ⩾

1

2
∩NB > 0

)

=
1

2k⋆+1
E
[

1

48N2
B

(
N2

B −NB
)
| NB, NB > 0

]

=
1

48 · 2k⋆+1

(
1− E

[
1

NB
| NB, NB > 0

])
.

We now have:

E

E[1X∈Cij

1X∈B1NB>0

(1

NB

∑

i′,j′∈B
pi′j′ − pij

)2
|NB]

= E
[

1

48 · 2k⋆+1

(
1− E

[
1

NB
| NB, NB > 0

])]

=
1

48 · 2k⋆+1

(
1− E

[
1

NB
| NB > 0

])
.

Notice that NB is a binomial variable of parameters 2k⋆

, 1/2. Thus we can apply Lemma S1 to
deduce

E
[

1

NB
| NB > 0

]
= E

[
1Z>0

Z

]
1

P (Z > 0)

⩽
4

2k⋆ + 1

1

P (Z > 0)

Moreover, as P (Z > 0) ⩾ 1
2 , we have:

E

E[1X∈Cij

1X∈B1NB>0

(1

NB

∑

i′,j′∈B
pi′j′ − pij

)2
|NB]

 ⩾

1

48 · 2k⋆+1

(
1− 8

2k⋆ + 1

)

In the end, the first term of Equation (2.16) verifies

E[(fk,1,∞(X)− f⋆(X))21X∈B] ⩾
1

2

(1

48

(
1− 8

2k⋆ − 1

))
+

1

22k
⋆

7

24
.

Work in progress as of January 16, 2024

S4. Proof of Lemma 2.4.3 62

Similar computations show that the second term of Equation (2.16) verifies:

E[(fk,1,∞(X)− f⋆(X))21X∈W]. ⩾
1

2

(1

48

(
1− 8

2k⋆ − 1

))
+ E

[
E
[
1X∈Cij∩W1NW=0p

2
ij | NW

]]

⩾
1

2

(1

48

(
1− 8

2k⋆ − 1

))
+

1

2k⋆

1

22k
⋆ E
[
p2ij | pij <

1

2

]
(2.26)

⩾
1

2

(1

48

(
1− 8

2k⋆ − 1

))
+

1

22k
⋆

1

12
. (2.27)

All in all, we have

E[(fk,1,∞(X)− f⋆(X))2] ⩾
1

48

(
1− 8

2k⋆ − 1

)
+

1

22k
⋆

9

24
.

S4 Proof of Lemma 2.4.3
First, note that since we are in an infinite sample regime, the risk of our estimators is equal to
their bias term. We can thus work with the true distribution instead of a finite data set.

1. The risk of a second-layer tree cutting k′ times, k′ ⩾ k⋆ along the raw features equals 0
(thus being minimal) as each leaf is included in a cell. We now exhibit one configuration
for which any second-layer tree of depth k′ < k⋆ is biased. We consider the balanced
chessboard with parameters k⋆, NB = 2k

⋆−1 and p, defined in Proposition 2.4.5 and shown
in Figure 2.9. For all k < k⋆, each leaf of the first tree contains exactly half black and half
white cells, thus predicting 1/2 and having a risk of (p− 1

2)
2. Therefore a second-layer tree

building on raw features only would predict 1/2 everywhere and would also be biased.
If the second-layer tree performs a cut on the new feature provided by the first-layer tree,
it creates two leaves: all the leaves where the prediction of the first tree is greater than or
equal to 1/2 are gathered in the right leaf, all the other leaves are gathered in the left leaf.
The left leaf is empty and the prediction of the second-layer tree is also 1/2 everywhere.
Any new cut along the new feature would create one leaf predicting 1/2 on [0, 1]2 and other
leaves being empty. In any case, the second-layer tree is biased. Thus the minimal risk for
all configurations is obtained by a second-layer tree of depth k′ ⩾ k⋆ which cuts along the
raw features only.

2. When k ⩾ k⋆, the first tree is unbiased since each of its leaves is included in only one chess-
board data cell. Splitting on the new feature in the second-layer tree induces a separation
between cells for which P[Y = 1|X ∈ C] = p and cells for which P[Y = 1|X ∈ C] = 1− p
since p ̸= 1/2. Taking the expectation of Y on these two regions leads to a shallow tree
network of risk zero.

Work in progress as of January 16, 2024

S5. Proof of Proposition 2.4.5 63

S5 Proof of Proposition 2.4.5

S5.1 Proof of statement 1.: Risk of a Single Tree
Recall that if a cell is empty, the tree prediction in this cell is set (arbitrarily) to zero. Thus,

E
[
(fk,0,n(X)− f⋆(X))2

]

= E
[
(fk,0,n(X)− f⋆(X))21Nn(Ln(X))>0

]
+ E

[
(f⋆(X))21Nn(Ln(X))=0

]
, (2.28)

= E

 1

Nn(Ln(X))

∑

Xi∈Ln(X)

Yi − f⋆(X)

2

1Nn(Ln(X))>0

+ E

[
(f⋆(X))21Nn(Ln(X))=0

]
,

(2.29)

where

E
[
(f⋆(X))21Nn(Ln(X))=0

]
= E

[
(f⋆(X))21Nn(Ln(X))=01X∈B

]
+ E

[
(f⋆(X))21Nn(Ln(X))=01X∈W

]

=

(
p2

2
+

(1− p)2

2

)
P (Nn(Ln(X)) = 0) (2.30)

= (p2 + (1− p)2)
(1− 2−k)n

2
. (2.31)

We now study the first term in (2.29), by considering thatX falls intoB (the same computation
holdswhenX falls intoW). Letting (X ′, Y ′) a generic random variable with the same distribution
as (X,Y), one has

E

 1

Nn(Ln(X))

∑

Xi∈Ln(X)

Yi − p

2

1Nn(Ln(X))>01X∈B

 (2.32)

=
1

2
E

 1

Nn(Ln(X))

∑

Xi∈Ln(X)

(Yi − E [Y ′|X ′ ∈ Ln(X)])

2

1Nn(Ln(X))>0

 (2.33)

+ E
[
(E [Y ′|X ′ ∈ Ln(X)]− p)

2
1X∈B1Nn(Ln(X))>0

]

=
1

2
E

1Nn(Ln(X))>0

Nn(Ln(X))2
E

 ∑

Xi∈Ln(X)

(Yi − E [Y ′|X ′ ∈ Ln(X)])

2

| Nn(Ln(X))

+
1

2

(
p− 1

2

)2

P (Nn(Ln(X)) > 0) , (2.34)

where we used the fact that E [Y ′|X ′ ∈ Ln(X)] = 1/2 as in any leaf there is the same number of
black and white cells. Moreover, conditional to Nn(Ln(X)),∑Xi∈Ln(X) Yi is a binomial random
variable with parameters B(Nn(Ln(X)), 1

2). Hence we obtain :

Work in progress as of January 16, 2024

S5. Proof of Proposition 2.4.5 64

E

1Nn(Ln(X))>0

Nn(Ln(X))2
E

 ∑

Xi∈Ln(X)

(Yi − E [Y ′|X ′ ∈ Ln(X)])

2

|Nn(Ln(X))

 (2.35)

=
1

4
E
[
1Nn(Ln(X))>0

Nn(Ln(X))

]
. (2.36)

The same computation holds when X falls into W . Indeed, the left-hand side term in (2.148)
is unchanged, as for the right-hand side term, note that (12 − p)2 = (12 − (1− p))2. Consequently,

E

 1

Nn(Ln(X))

∑

Xi∈Ln(X)

Yi − f⋆(X)

2

1Nn(Ln(X))>0

 (2.37)

=
1

4
E
[
1Nn(Ln(X))>0

Nn(Ln(X))

]
+

(
p− 1

2

)2

(1− (1− 2−k)n). (2.38)

Injecting (2.38) into (2.29), we have

E
[
(fk,0,n(X)− f⋆(X))2

] (2.39)

=
1

4
E
[
1Nn(Ln(X))>0

Nn(Ln(X))

]
+

(
p− 1

2

)2

(1− (1− 2−k)n) + (p2 + (1− p)2)
(1− 2−k)n

2
(2.40)

=
1

4
E
[
1Nn(Ln(X))>0

Nn(Ln(X))

]
+

(
p− 1

2

)2

+

(
p2 + (1− p)2 − 2

(
p− 1

2

)2
)

(1− 2−k)n

2
(2.41)

=
1

4
E
[
1Nn(Ln(X))>0

Nn(Ln(X))

]
+

(
p− 1

2

)2

+
(1− 2−k)n

4
. (2.42)

Noticing thatNn(Ln(X)) is a binomial random variableB(n, 1
2k
), we obtain the upper and lower

bounds with Lemma S1 (i):

E
[
1Nn(Ln(X))>0

Nn(Ln(X))

]
⩽

2k+1

n+ 1
, (2.43)

and,

E
[
1Nn(Ln(X))>0

Nn(Ln(X))

]
⩾
(
1− (1− 2−k)n

) 2k

n+ 1
. (2.44)

Gathering all the terms gives the result,

E
[
(fk,0,n(X)− f⋆(X))2

]
⩽

(
p− 1

2

)2

+
2k

2(n+ 1)
+

(1− 2−k)n

4

and
E
[
(fk,0,n(X)− f⋆(X))2

]
⩾

(
p− 1

2

)2

+
2k

4(n+ 1)
+

(1− 2−k)n

4

(
1− 2k

n+ 1

)
.

Work in progress as of January 16, 2024

S5. Proof of Proposition 2.4.5 65

S5.2 Proof of statement 2.: Risk of a Shallow Tree Network
Let k ∈ N. Denote by Lk = {Li,k, i = 1, . . . , 2k} the set of all leaves of the encoding tree (of depth
k). We let LB̃k

be the set of all cells of the encoding tree containing at least one observation, and
such that the empirical probability of Y being equal to one in the cell is larger than 1/2, i.e.

B̃k = ∪L∈LB̃k
{x, x ∈ L}

LB̃k
= {L ∈ Lk, Nn(L) > 0,

1

Nn(L)

∑

Xi∈L

Yi ⩾
1

2
}.

Similarly,

LW̃k
= {L ∈ Lk, Nn(L) > 0,

1

Nn(L)

∑

Xi∈L

Yi <
1

2
}.

and

W̃k = ∪L∈LW̃k
{x, x ∈ L}

Proof of 2. (Upper-Bound)

Recall that k < k⋆. In this case, each leaf of the encoding tree contains half black square and half
white square (see Figure 2.9a). Hence, the empirical probability of Y being equal to one in such
leaf is close to 1/2. Recalling that our estimate is fk,1,n, we have

E
[
(fk,1,n(X)− f⋆(X))2

]

= E
[
(fk,1,n(X)− p)21X∈B1X∈B̃k

]
+ E

[
(fk,1,n(X)− p)21X∈B1X∈W̃k

]

+ E
[
(fk,1,n(X)− (1− p))21X∈W1X∈B̃k

]
+ E

[
(fk,1,n(X)− (1− p))21X∈W1X∈W̃k

]

+ E
[
(fk,1,n(X)− p)21X∈B(1− 1X∈B̃k

− 1X∈W̃k
)
]

+ E
[
(fk,1,n(X)− (1− p))21X∈W(1− 1X∈B̃k

− 1X∈W̃k
)
] (2.45)

Note that X /∈ B̃k ∪ W̃k is equivalent to X belonging to an empty cell. Besides, the prediction is
null by convention in an empty cell. Therefore, the sum of the last two terms in (2.45) can be
written as

E
[
p21X∈B1Nn(Cn(X))=0)

]
+ E

[
(1− p)21X∈W1Nn(Cn(X))=0)

]
=

p2 + (1− p)2

2

(
1− 1

2k

)n

.

(2.46)

To begin with we focus on the first two terms in (2.45). We deal with the last two terms at the
very end as similar computations are conducted.

Work in progress as of January 16, 2024

S5. Proof of Proposition 2.4.5 66

E
[
(fk,1,n(X)− p)21X∈B1X∈B̃k

]
+ E

[
(fk,1,n(X)− p)21X∈B1X∈W̃k

]

= E

E

 1

Nn(B̃k)

∑

Xi∈B̃k

Yi − p

2 ∣∣∣B̃k

P

(
X ∈ B̃k, X ∈ B|B̃k

)

+ E

E

 1

Nn(W̃k)

∑

Xi∈W̃k

Yi − p

2 ∣∣∣∣∣W̃k

P

(
X ∈ W̃k, X ∈ B|W̃k

)

 . (2.47)

Regarding the left-hand side term in (2.47),

E

 1

Nn(B̃k)

∑

Xi∈B̃k

Yi − p

2 ∣∣∣B̃k

 ⩽

(
p− 1

2

)2

, (2.48)

since p > 1/2 and, by definition of B̃k,
∑

Xi∈B̃k

Yi ⩾ Nn(B̃k)/2.

Now, regarding the right-hand side term in (2.47), we let

ZW̃k
= E

 ∑

Xi∈W̃k

Yi | N1, ..., N2k , W̃k

 ,

whereN1, ..., N2k denote the number of data points falling in each leafL1, . . . , L2k of the encoding
tree. Hence,

E

 1

Nn(W̃k)

∑

Xi∈W̃k

Yi − p

2 ∣∣∣W̃k

= E

 1

Nn(W̃k)2
E

 ∑

Xi∈W̃k

Yi − ZW̃k

2

+
(
ZW̃k

−Nn(W̃k)p
)2

(2.49)

+2

 ∑

Xi∈W̃k

Yi − ZW̃k

(
ZW̃k

−Nn(W̃k)p
)
| N1, ..., N2k , W̃k

∣∣∣W̃k

 (2.50)

The cross-term is null according to the definition of ZW̃k
, and since (ZW̃k

− Nn(W̃k)p) is

Work in progress as of January 16, 2024

S5. Proof of Proposition 2.4.5 67

(N1, ..., N2k , W̃k)-measurable. Therefore,

E

 1

Nn(W̃k)

∑

Xi∈W̃k

Yi − p

2 ∣∣∣W̃k

= E

 1

Nn(W̃k)2
E

 ∑

Xi∈W̃k

Yi − ZW̃k

2

| N1, ..., N2k , W̃k

∣∣∣W̃k

 (2.51)

+ E
[

1

Nn(W̃k)2
E
[(

ZW̃k
−Nn(W̃k)p

)2
| N1, ..., N2k , W̃k

] ∣∣∣W̃k

]

= In + Jn, (2.52)

where In and Jn can be respectively identified as variance and bias terms. Indeed,

E

 ∑

Xi∈W̃k

Yi − ZW̃k

2

| N1, ..., N2k , W̃k

is the variance of a binomial random variable B(Nn(W̃k),
1
2) conditioned to be lower or equal to

Nn(W̃k)/2. According to Technical Lemma S1, we have

In ⩽
1

4
E

 1Nn(W̃k)>0

Nn(W̃k)P
(
B(Nn(W̃k), 1/2) ⩽ Nn(W̃k)/2

)
∣∣∣W̃k

 ⩽

1

2
E
[
1Nn(W̃k)>0

Nn(W̃k)

∣∣∣W̃k

]
. (2.53)

Regarding Jn,

ZW̃k
−Nn(W̃k)p = E

 ∑

Xi∈W̃k

Yi | N1, ..., N2k , W̃k

−Nn(W̃k)p (2.54)

= E

2k∑

j=1

∑

Xi∈Lj

Yi1Lj⊂W̃k
| N1, ..., N2k , W̃k

−Nn(W̃k)p (2.55)

=

2k∑

j=1

E

 ∑

Xi∈Lj

Yi | N1, ..., N2k , W̃k

− pNj

1Lj⊂W̃k

, (2.56)

since 1Lj⊂W̃k
is W̃k -measurable and Nn(W̃k) =

2k∑

i=1

Nj . Noticing that

E

 ∑

Xi∈Lj

Yi | N1, ..., N2k , W̃k

 = E

 ∑

Xi∈Lj

Yi | Nj , W̃k

 , (2.57)

Work in progress as of January 16, 2024

S5. Proof of Proposition 2.4.5 68

we deduce

ZW̃k
−Nn(W̃k)p =

2k∑

j=1

E

 ∑

Xi∈Lj

Yi | Nj , W̃k

−Njp

1Lj⊂W̃k

(2.58)

and

(ZW̃k
−Nn(W̃k)p)

2 =

2k∑

j=1

fj1Lj⊂W̃k

2

(2.59)

with fj =
(
Njp− E

[∑
Xi∈Lj

Yi | Nj , W̃k

])
. For all j, such thatLj ⊂ W̃k,E

[∑
Xi∈Lj

Yi | Nj , W̃k

]

is a binomial random variable B(Nn(W̃k),
1
2) conditioned to be lower or equal to Nn(W̃k)/2.

Using Lemma S1 (6), we obtain :

fj ⩽ Nj

(
p− 1

2

)
+
√

Nj

(
1√
π
+

2
√
2

π
√
(2n+ 1)

)
(2.60)

⩽ Nj

(
p− 1

2

)
+
√

Nj +
2

π
. (2.61)

Therefore,

(ZW̃k
−Nn(W̃k)p)

2 ⩽

Nn(W̃k)

(
p− 1

2

)
+

2k∑

j=1

√
Nj1Lj⊂W̃k

+
2k+1

π

2

(2.62)

⩽

(
Nn(W̃k)

(
p− 1

2

)
+ 2k/2

√
Nn(W̃k) +

2k+1

π

)2

, (2.63)

since, according to Cauchy-Schwarz inequality,

2k∑

j=1

√
Nj1Lj⊂W̃k

⩽ 2k/2Nn(W̃k)
1/2. (2.64)

Overall

Jn ⩽ E

[
1

Nn(W̃k)2
E

[(
Nn(W̃k)

(
p− 1

2

)
+ 2k/2Nn(W̃k)

1/2 +
2k+1

π

)2

| N1, ..., N2k , W̃k

] ∣∣∣W̃k

]

(2.65)

⩽

(
p− 1

2

)2

+ 2kE
[
1Nn(W̃k)>0

Nn(W̃k)

∣∣∣W̃k

]

+
22k+2

π2
E
[
1Nn(W̃k)>0

Nn(W̃k)2

∣∣∣W̃k

]
+ 2k/2+1

(
p− 1

2

)
E
[
1Nn(W̃k)>0

Nn(W̃k)1/2

∣∣∣W̃k

]

+
2k+2

π

(
p− 1

2

)
E
[
1Nn(W̃k)>0

Nn(W̃k)

∣∣∣W̃k

]
+

2
3k
2 +2

π
E
[
1Nn(W̃k)>0

Nn(W̃k)3/2

∣∣∣W̃k

]
. (2.66)

Work in progress as of January 16, 2024

S5. Proof of Proposition 2.4.5 69

All together, we obtain

In + Jn

⩽

(
p− 1

2

)2

+

(
2k +

1

2
+

2k+2

π

(
p− 1

2

))
E
[
1Nn(W̃k)>0

Nn(W̃k)

∣∣∣W̃k

]
+

22k+2

π2
E
[
1Nn(W̃k)>0

Nn(W̃k)2

∣∣∣W̃k

]

+ 2k/2+1

(
p− 1

2

)
E
[
1Nn(W̃k)>0

Nn(W̃k)1/2

∣∣∣W̃k

]
+

2
3k
2 +2

π
E
[
1Nn(W̃k)>0

Nn(W̃k)3/2

∣∣∣W̃k

]

We apply Lemma S1(i)(iv) to Nn(W̃k) which is a binomial B(n, p′) where p′ = P(X ∈ W̃k|W̃k) :

E
[
1Nn(W̃k)>0

Nn(W̃k)

∣∣∣W̃k

]
⩽

2

(n+ 1)p′
,

E
[
1Nn(W̃k)>0

Nn(W̃k)1/2

∣∣∣W̃k

]
⩽

2√
n · p′ .

We deduce that

In + Jn ⩽ (p− 1

2
)2 +

2k/2+2(p− 1
2)√

πn · p′ +
2

(n+ 1) · p′
(
2k +

1

2
+

2k+2

π
+

23k/2+2

π
√
π

+ 3 · 2
2k+2

π2

)
.

Finally,

E
[
(fk,1,n(X)− p)21X∈B1X∈B̃k

]
+ E

[
(fk,1,n(X)− p)21X∈B1X∈W̃k

]

⩽

(
p− 1

2

)2

P
(
X ∈ B̃k, X ∈ B

)
+ E

[
(In + Jn)P

(
X ∈ W̃k, X ∈ B|W̃k

)]

Since for all B̃k, there is exactly the same number of black cells and white cells in B̃k, we have

P
(
X ∈ W̃k, X ∈ B|W̃k

)
=

P
(
X ∈ W̃k|W̃k

)

2
,

yielding

E
[
(fk,1,n(X)− p)21X∈B1X∈B̃k

]
+ E

[
(fk,1,n(X)− p)21X∈B1X∈W̃k

] (2.67)

⩽
1

2

(
p− 1

2

)2

+
2k/2+1(p− 1

2)√
πn

+
1

(n+ 1)

(
2k +

1

2
+

2k+2

π
+

23k/2+2

π
√
π

+ 3 · 2
2k+2

π2

)
(2.68)

⩽
1

2

(
p− 1

2

)2

+
2k/2+1(p− 1

2)√
πn

+
3 · 22k+2

(n+ 1)π2
(1 + ε1(k)) (2.69)

where ε1(k) = π2

3·2(2k+2)

(
2k + 1

2 + 2k+2

π + 23k/2+2

π
√
π

)
.

Work in progress as of January 16, 2024

S5. Proof of Proposition 2.4.5 70

The two intermediate terms of (2.45) can be similarly bounded from above. Indeed,

E
[
(fk,1,n(X)− (1− p))21X∈W1X∈B̃k

]
+ E

[
(fk,1,n(X)− (1− p))21X∈W1X∈W̃k

] (2.70)

= E

E

 1

Nn(B̃k)

∑

Xi∈B̃k

Yi − (1− p)

2 ∣∣∣B̃k

P

(
X ∈ B̃k, X ∈ W|B̃k

)

+ E

E

 1

Nn(W̃k)

∑

Xi∈W̃k

Yi − (1− p)

2 ∣∣∣∣∣W̃k

P

(
X ∈ W̃k, X ∈ W|W̃k

)

 , (2.71)

where, by definition of W̃k,

E

 1

Nn(W̃k)

∑

Xi∈W̃k

Yi − (1− p)

2 ∣∣∣W̃k

 ⩽

(
p− 1

2

)2

.

The first term in (2.71) can be treated similarly as above:

E

 1

Nn(B̃k)

∑

Xi∈B̃k

Yi − (1− p)

2 ∣∣∣B̃k

= E

 1

Nn(B̃k)2
E

 ∑

Xi∈B̃k

Yi − ZB̃k

2

| N1, ..., N2k , B̃k

∣∣∣B̃k

+ E
[

1

Nn(B̃k)2
E
[(

ZB̃k
−Nn(B̃k)(1− p)

)2
| N1, ..., N2k , B̃k

] ∣∣∣B̃k

]

= I ′n + J ′
n, (2.72)

where

ZB̃k
= E

 ∑

Xi∈B̃k

Yi | N1, ..., N2k , B̃k

 ,

and the cross-term in (2.72) is null according to the definition of ZB̃k
. Regarding I ′n, note that

E

 ∑

Xi∈B̃k

Yi − ZB̃k

2

| N1, ..., N2k , B̃k

is the variance of a binomial random variable B(Nn(B̃k),
1
2) conditioned to be strictly larger than

Nn(B̃k)/2. According to Technical Lemma S1, we have

I ′n ⩽
1

4
E

 1Nn(B̃k)>0

Nn(B̃k)P
(
B(Nn(B̃k), 1/2) > Nn(B̃k)/2

)
∣∣∣B̃k

 ⩽ E

[
1Nn(B̃k)>0

Nn(B̃k)

∣∣∣B̃k

]
. (2.73)

Work in progress as of January 16, 2024

S5. Proof of Proposition 2.4.5 71

To obtain the last inequality, notice that

P
(
B(Nn(B̃k), 1/2) > Nn(B̃k)/2

)
=

1

2
− 1

2
P
(
B(Nn(B̃k), 1/2) = Nn(B̃k)/2

)

⩾
1

2

(
1− 1√

π(n/2 + 1/4)

)
⩾

1

4

as soon as n ⩾ 4.
Regarding J ′

n, we have

E
[

1

Nn(B̃k)2
E
[(

ZB̃k
−Nn(B̃k)(1− p)

)2
| N1, ..., N2k , B̃k

]]
(2.74)

= E

 1

Nn(B̃k)2
E

2k∑

i=1

(
E

[∑

Xi∈Li

Yi | Nj , B̃k

]
−Nj(1− p)

)
1Lj⊂B̃k

2

| N1, ..., N2k , B̃k

 .

(2.75)

For all j, such that Lj ⊂ B̃k, E
[∑

Xi∈Lj
Yi | Nj , B̃k

]
is a binomial random variable B(Nj ,

1
2)

conditioned to be larger than ⌊(Nj + 1)/2⌋. Then, according to Technical Lemma (7)

E

 ∑

Xi∈Lj

Yi | Nj , B̃k

 ⩽

Nj

2
+ 1 +

1√
π(Nj + 1)

.

Hence,

E

[∑

Xi∈Li

Yi | Nj , B̃k

]
−Nj(1− p) ⩽ Nj(p−

1

2
) + 1 +

1√
π(Nj + 1)

(2.76)

⩽ Nj

(
p− 1

2

)
+
√
Nj +

2

π
, (2.77)

for Nj ⩾ 1. Thus,

E
[

1

Nn(B̃k)2
E
[(

ZB̃k
−Nn(B̃k)(1− p)

)2
| N1, ..., N2k , B̃k

]]
(2.78)

⩽ E

 1

Nn(B̃k)2
E

2k∑

i=1

(
Nj

(
p− 1

2

)
+
√
Nj +

2

π

)
1Lj⊂B̃k

2

| N1, ..., N2k , B̃k

 (2.79)

⩽ E

[
1

Nn(B̃k)2
E

[(
Nn(B̃k)

(
p− 1

2

)
+ 2k/2

√
Nn(B̃k) +

2k+1

π

)2

| N1, ..., N2k , B̃k

]]
. (2.80)

Work in progress as of January 16, 2024

S5. Proof of Proposition 2.4.5 72

All together, we obtain

I ′n + J ′
n ⩽

(
p− 1

2

)2

+

(
2k + 1 +

2k+2

π

(
p− 1

2

))
E
[
1Nn(B̃k)>0

Nn(B̃k)

∣∣∣B̃k

]
+

22k+2

π2
E
[
1Nn(B̃k)>0

Nn(B̃k)2

∣∣∣B̃k

]

+ 2k/2+1

(
p− 1

2

)
E
[
1Nn(B̃k)>0

Nn(B̃k)1/2

∣∣∣B̃k

]
+

2
3k
2 +2

π
E
[
1Nn(B̃k)>0

Nn(B̃k)3/2

∣∣∣B̃k

]

The computation is similar to (2.67), with p′′ = P
(
X ∈ B̃k | B̃k

)
:

In + Jn ⩽

(
p− 1

2

)2

+
2k/2+3(p− 1

2)√
πn · p′′ +

(
2k + 1 +

2k+2

π

(
p− 1

2

)
+

23k/2+2

π
+

22k+2

π2

)
2

(n+ 1)p′′

⩽

(
p− 1

2

)2

+
2k/2+3(p− 1

2)√
πn · p′′ +

22k+3

π2(n+ 1)p′′
(1 + ε2(k))

with ε2(k) =
π2

2(2k+3)

(
2k + 1 + 2k+2

π (p− 1/2) + 23k/2+2

π

)
. Finally,

E
[
(fk,1,n(X)− (1− p))21X∈W1X∈B̃k

]
+ E

[
(fk,1,n(X)− (1− p))21X∈W1X∈W̃k

]

⩽E
[
(I ′n + J ′

n)P
(
X ∈ W, X ∈ B̃k|B̃k

)]
+

(
p− 1

2

)2

P
(
X ∈ W, X ∈ W̃k

)

⩽E

[((
p− 1

2

)2

+
2k/2+3(p− 1

2)√
πn · p′′ +

22k+3

π2(n+ 1)p′′
(1 + ε2(k))

)
P
(
X ∈ W, X ∈ B̃k|B̃k

)]

+

(
p− 1

2

)2

P
(
X ∈ W, X ∈ W̃k

)
.

Since for all B̃k, there is exactly the same number of black cells and white cells in B̃k, we have

P
(
X ∈ W, X ∈ B̃k|B̃k

)
=

p′′

2
,

yielding

E
[
(fk,1,n(X)− (1− p))21X∈W1X∈B̃k

]
+ E

[
(fk,1,n(X)− (1− p))21X∈W1X∈W̃k

]

⩽
1

2

(
p− 1

2

)2

+
2k/2+2(p− 1

2)√
πn

+
22k+3

2 · π2(n+ 1)
(1 + ε2(k)). (2.81)

Gathering (2.46), (2.69) and (2.81), we have

E
[
(fk,1,n(X)− f⋆(X))2

]
⩽

(
p− 1

2

)2

+
2k/2+3(p− 1

2)√
πn

+
7 · 22k+2

π2(n+ 1)
(1 + ε(k))

+
p2 + (1− p)2

2

(
1− 1

2k

)n

where ε(k) = 6ε1(k)+ε2(k)
7 .

Work in progress as of January 16, 2024

S5. Proof of Proposition 2.4.5 73

Proof of 2. (Lower-Bound)

First, note that fk,1,n is constant on each element C of the partition built by the first layer tree.
Therefore, for all C,denoting Dn the dataset (X1, Y1), ...(Xn, Yn),

E
[
(fk,1,n(X)− f⋆(X))2)

∣∣X ∈ C,Dn

]
⩾ V ar

(
f⋆(X))2

∣∣X ∈ C
)
. (2.82)

As the first layer tree is shallow, each of its leaf contains several squares of the dataset and
E [f⋆(X)] = 1/2. Therefore,

E
[
(fk,1,n(X)− f⋆(X))2)

∣∣X ∈ C,Dn

]
⩾ E

[
(f⋆(X)− 1

2
)2)
∣∣X ∈ C,Dn

]
(2.83)

⩾ (p− 1

2
)2. (2.84)

Overall,

E
[
(fk,1,n(X)− f⋆(X))2)

]
⩾ (p− 1

2
)2. (2.85)

Work in progress as of January 16, 2024

S6. Proof of Proposition 2.4.6 74

S6 Proof of Proposition 2.4.6

S6.1 Proof of statement 1.: Risk of a Single Tree
As in the precedent proof, we distinguish the case where the cell containing X might be empty,
in such a case the tree will predict 0:

E
[
(fk,0,n(X)− f⋆(X))2)

]

= E
[
(fk,0,n(X)− f⋆(X))21Nn(Ln(X))>0

]
+ E

[
(f⋆(X))21Nn(Ln(X))=0

] (2.86)

= E
[
(fk,0,n(X)− f⋆(X))21Nn(Ln(X))>0

]
+ (p2 + (1− p)2)

(1− 2−k)n

2
. (2.87)

We denote by L1, ..., L2k the leaves of the tree. Let b ∈ {1, . . . , 2k} such that Lb belongs to B. We
have

E
[
(fk,0,n(X)− p)2)1X∈B1Nn(Ln(X))>0

]

=
∑

Lj⊂B
E

1Nn(Lj)>0

Nn(Lj)

∑

Xi∈Lj

(Yi − p)

2

1X∈Lj

 (2.88)

=
2k

2
· E

(
1Nn(Lb)>0

Nn(Lb)

∑

Xi∈Lb

(Yi − p)

)2

P (X ∈ Lb) (2.89)

=
1

2
E

(
1Nn(Lb)>0

Nn(Lb)

∑

Xi∈Lb

(Yi − p)

)2

 (2.90)

=
1

2
E

1Nn(Lb)>0

Nn(Lb)2
E

(∑

Xi∈Lb

(Yi − p)

)2

|Nn(Lb)

 (2.91)

=
1

2
E

[
1Nn(Lb)>0

Nn(Lb)2
E

[∑

Xi∈Lb

(Yi − p)2|Nn(Lb)

]]
(by independence of the Yi) (2.92)

=
1

2
E
[
1Nn(Lb)>0

Nn(Lb)
p(1− p)

]
. (2.93)

Remark that the above computation holds when X ∈ W after replacing p by (1 − p), B by
W and Lb by Lw: indeed when Y is a Bernoulli random variable, Y and 1 − Y have the same
variance. Hence, using Equation (2.87), the computation in (2.93) and its equivalence for W , we
obtain

E
[
(fk,0,n(X)− f⋆(X))2)

]

=
1

2
E
[
1Nn(Lb)>0

Nn(Lb)
p(1− p)

]
+

1

2
E
[
1Nn(Lw)>0

Nn(Lw)
p(1− p)

]
+ (p2 + (1− p)2)

(1− 2−k)n

2

= p(1− p)E
[
1Nn(Lw)>0

Nn(Lw)

]
+ (p2 + (1− p)2)

(1− 2−k)n

2
,

since Nn(Lb) and Nn(Lw) are both binomial random variablesB(n, 1
2k
). Therefore we can con-

Work in progress as of January 16, 2024

S6. Proof of Proposition 2.4.6 75

clude using Lemma S1 (i):

E
[
(fk,0,n(X)− f⋆(X))2)

]
⩽

2kp(1− p)

n+ 1
+
(
p2 + (1− p)2

) (1− 2−k)n

2

and

E
[
(fk,0,n(X)− f⋆(X))2)

]
⩾

2k−1p(1− p)

n+ 1
+

(
p2 + (1− p)2 − 2kp(1− p)

n+ 1

)
(1− 2−k)n

2
.

S6.2 Proof of Statement 2.: Risk of a Shallow Tree Network
Let k ∈ N. Denote by Lk = {Li, i = 1, . . . , 2k} the set of all leaves of the encoding tree (of depth
k). We let LB̃k

be the set of all cells of the encoding tree containing at least one observation, and
such that the empirical probability of Y being equal to one in the cell is larger than 1/2, i.e.

B̃k = ∪L∈LB̃k
{x, x ∈ L}

LB̃k
= {L ∈ Lk, Nn(L) > 0,

1

Nn(L)

∑

Xi∈L

Yi ⩾
1

2
}.

Accordingly, we let the part of the input space corresponding to LB̃k
as

B̃k = ∪L∈LB̃k
{x, x ∈ L}

Similarly,

LW̃k
= {L ∈ Lk, Nn(L) > 0,

1

Nn(L)

∑

Xi∈L

Yi <
1

2
}.

and

W̃k = ∪L∈LW̃k
{x, x ∈ L}

Proof of 2. (Upper-Bound)

Recall that k ⩾ k⋆. In this case, each leaf of the encoding tree is included in a chessboard cell. As
usual,

E
[
(fk,1,n(X)− f⋆(X))2)

]
= E

[
(fk,1,n(X)− f⋆(X))21Nn(Ln(X))>0

]
+

p2 + (1− p)2

2

(
1− 1

2k

)n

.

Work in progress as of January 16, 2024

S6. Proof of Proposition 2.4.6 76

Note that

E
[
(fk,1,n(X)− f⋆(X))21Nn(Ln(X))>0

]

= E

 1

Nn(B̃k)

∑

Xi∈B̃k

Yi − p

2

1X∈B1X∈B̃k

+ E

 1

Nn(W̃k)

∑

Xi∈W̃k

Yi − p

2

1X∈B1X∈W̃k

+ E

 1

Nn(B̃k)

∑

Xi∈B̃k

Yi − (1− p)

2

1X∈W1X∈B̃k

+ E

 1

Nn(W̃k)

∑

Xi∈W̃k

Yi − (1− p)

2

1X∈W1X∈W̃k

⩽
1

2
E

 1

Nn(B̃k)

∑

Xi∈B̃k

Yi − p

2

1Nn(B̃k)>0

+ E

[
1X∈W,X∈B̃k

]

+
1

2
E

 1

Nn(W̃k)

∑

Xi∈W̃k

Yi − (1− p)

2

1Nn(W̃k)>0

+ E

[
1X∈B,X∈W̃k

]
. (2.94)

Let L be a generic cell. The thourth term in (2.94) can be upper-bounded as follows:

E
[
1X∈B,X∈W̃k

]
=

2k∑

j=1

E
[
1X∈Lj1Lj⊂W̃k∩B

]
(2.95)

=

2k∑

j=1

E
[
1X∈Lj

]
E
[
1Lj⊂W̃k∩B

]
(2.96)

= P
(
Lj ⊂ W̃k ∩ B

)
. (2.97)

Work in progress as of January 16, 2024

S6. Proof of Proposition 2.4.6 77

by symmetry. Now,

P
(
L ⊂ W̃k ∩ L ⊂ B

)

= P

((
1

Nn(L)

∑

Xi∈L

1Yi=0 >
1

2

)⋂
(L ⊂ B)

)
(2.98)

⩽ E

P

 1

Nn(L)

∑

Xi∈L,L⊂B
1Yi=0 − (1− p) ⩾

1

2
− (1− p)

⋂ (L ⊂ B)

 (2.99)

⩽ E
[
e−2Nn(L)(p− 1

2)
2
]

(2.100)
(according to Hoeffding’s inequality)

=

n∏

i=1

E
[
e−2(p− 1

2)
21Xi∈L

]
(2.101)

(by independence of Xi’s)

=

(
e−2(p− 1

2)
2

2k
+ 1− 1

2k

)n

. (2.102)

Consequently,

E
[
1X∈B,X∈W̃k

]
⩽

(
e−2(p− 1

2)
2

2k
+ 1− 1

2k

)n

.

Similar calculations show that

E
[
1X∈W,X∈B̃k

]
= P

(
L ⊂ B̃k ∩ L ⊂ W

)

⩽

(
e−2(p− 1

2)
2

2k
+ 1− 1

2k

)n

. (2.103)

Therefore,

E
[
(fk,1,n(X)− f⋆(X))2)

]

⩽
1

2
E

 1

Nn(B̃k)

∑

Xi∈B̃k

Yi − p

2

1Nn(B̃k)>0

+
1

2
E

 1

Nn(W̃k)

∑

Xi∈W̃k

Yi − (1− p)

2

1Nn(W̃k)>0

+

(
e−2(p− 1

2)
2

2k
+ 1− 1

2k

)n

+
p2 + (1− p)2

2

(
1− 1

2k

)n

. (2.104)

Work in progress as of January 16, 2024

S6. Proof of Proposition 2.4.6 78

Now, the first term in (2.104) can be written as

E

 1

Nn(B̃k)

∑

Xi∈B̃k

Yi − p

2

1Nn(B̃k)>0

 (2.105)

= E

 1

Nn(B̃k)

∑

Xi∈B̃k

Yi − p

2

1Nn(B̃k)>01B=B̃k

+ E

 1

Nn(B̃k)

∑

Xi∈B̃k

Yi − p

2

1Nn(B̃k)>01B≠B̃k

 (2.106)

⩽ E

 1

Nn(B̃k)

∑

Xi∈B̃k

Yi − p

2

1Nn(B̃k)>01B=B̃k

+ P

(
B ̸= B̃k

)
(2.107)

Now, using a union bound, we obtain

P
(
B ̸= B̃k

)
⩽
∑

Lj⊂B
P
(
Lj ̸⊂ B̃k

)
+
∑

Lj⊂W
P
(
Lj ⊂ B̃k

)
(2.108)

⩽ 2k · P
(
L ̸⊂ B̃k ∩ L ⊂ B

)
+ 2k · P

(
L ⊂ B̃k ∩ L ⊂ W

)
(2.109)

⩽ 2k+1

(
e−2(p− 1

2)
2

2k
+ 1− 1

2k

)n

, (2.110)

according to (2.102) and (2.103). Additionally, the left term in (2.107) satisfies

E

 1

Nn(B̃k)

∑

Xi∈B̃k

Yi − p

2

1Nn(B̃k)>01B=B̃k

 ⩽ E

(

1

Nn(B)
∑

Xi∈B
Yi − p

)2

1Nn(B)>0

(2.111)

⩽ E

1Nn(B)>0

Nn(B)2

(∑

Xi∈B
Yi − pNn(B)

)2

(2.112)

= p(1− p)E
[
1Nn(B)>0

Nn(B)

]
, (2.113)

noticing that the square term of (2.112) is nothing but the conditional variance of a binomial
distributionB(Nn(B), p). By Lemma S1 (i) onNn(B)which is a binomial random variableB(n, p)
with p = 1/2 (exactly half of the cells are black),

E

 1

Nn(B̃k)

∑

Xi∈B̃k

Yi − p

2

1Nn(B̃k)>01Nn(B̃k)>0

 ⩽

2p(1− p)

n+ 1
.

Work in progress as of January 16, 2024

S6. Proof of Proposition 2.4.6 79

Hence

E

 1

Nn(B̃k)

∑

Xi∈B̃k

Yi − p

2

1B=B̃k

 ⩽

2p(1− p)

n+ 1
+ 2k+1

(
e−2(p− 1

2)
2

2k
+ 1− 1

2k

)n

. (2.114)

Similarly,

E

 1

Nn(W̃k)

∑

Xi∈W̃k

Yi − (1− p)

2

1Nn(W̃k)>0

 ⩽

2p(1− p)

n+ 1
+ 2k+1

(
e−2(p− 1

2)
2

2k
+ 1− 1

2k

)n

.

(2.115)

Finally, injecting (2.114) and (2.115) into (2.104), we finally get

E
[
(fk,1,n(X)− f⋆(X))2)

]
⩽

p2 + (1− p)2

2

(
1− 1

2k

)n

+ 2k+1 ·
(
e−2(p− 1

2)
2

2k
+ 1− 1

2k

)n

+
2p(1− p)

n+ 1
+

(
e−2(p− 1

2)
2

2k
+ 1− 1

2k

)n

,

which concludes this part of the proof.

Proof of 2. (Lower Bound)

We have

E
[
(fk,1,n(X)− f⋆(X))2)

]
= E

[
(fk,1,n(X)− f⋆(X))21Nn(Ln(X))>0

]
+

(
p2 + (1− p)2

2

)(
1− 1

2k

)n

,

where

E
[
(fk,1,n(X)− f⋆(X))21Nn(Ln(X))>0

]

⩾ E

 1

Nn(B̃k)

∑

Xi∈B̃k

Yi − p

2

1X∈B1X∈B̃k
1Nn(B̃k)>01B=B̃k

+ E

 1

Nn(W̃k)

∑

Xi∈W̃k

Yi − (1− p)

2

1X∈W1X∈W̃k
1Nn(W̃k)>01W=W̃k

⩾ P (X ∈ B)E

 1

Nn(B̃k)

∑

Xi∈B̃k

Yi − p

2

1B=B̃k
1Nn(B̃k)>0

+ P (X ∈ W)E

 1

Nn(W̃k)

∑

Xi∈W̃k

Yi − (1− p)

2

1W=W̃k
1Nn(W̃k)>0

 . (2.116)

Work in progress as of January 16, 2024

S6. Proof of Proposition 2.4.6 80

The first expectation term line (2.116) can be written as

E

 1

Nn(B̃k)

∑

Xi∈B̃k

Yi − p

2

1B=B̃k
1Nn(B̃k)>0

= P
(
B = B̃k

)
E

(

1

Nn(B)
∑

Xi∈B
Yi − p

)2

|B = B̃k

 (2.117)

According to (2.110),

P
(
B = B̃k

)
⩾ 1− 2k ·

(
1 +

e−2(p− 1
2)

2 − 1

2k

)n

. (2.118)

Similarly,

P
(
W = W̃k

)
⩾ 1− 2k ·

(
1 +

e−2(p− 1
2)

2 − 1

2k

)n

.

Furthermore,

E

(

1

Nn(B)
∑

Xi∈B
Yi − p

)2 ∣∣∣∣B = B̃k

= E

 1

Nn(B)2
E

(∑

Xi∈B
Yi −Nn(B)p

)2 ∣∣∣∣N1, ...N2k ,B = B̃k

∣∣∣∣B = B̃k

 (2.119)

Work in progress as of January 16, 2024

S6. Proof of Proposition 2.4.6 81

where we let Z =
∑

Xi∈B Yi. A typical bias-variance decomposition yields

E

(∑

Xi∈B
Yi −Nn(B)p

)2 ∣∣∣∣N1, ...N2k ,B = B̃k

 (2.120)

= E
[(

Z − E
[
Z | N1, ...N2k , B̃k = B

])2

+
(
E
[
Z | N1, ...N2k , B̃k = B

]
−Nn(B)p

)2
| N1, ...N2k , B̃k = B

]
(2.121)

⩾ E
[(

Z − E
[
Z | N1, ...N2k , B̃k = B

])2
| N1, ...N2k , B̃k = B

]

= E

∑

Lj⊂B
Zj − E

[
Zj | Nj , Lj ⊂ B̃k

]

2

| N1, ...N2k , B̃k = B

 (2.122)

=
∑

Lj⊂B
E
[(

Zj − E
[
Zj | Nj , Lj ⊂ B̃k

])2
| Nj , Lj ⊂ B̃k

]

+ 2
∑

Li,Lj⊂B,Li ̸=Lj

E
[(

Zi − E
[
Zi | Ni, Li ⊂ B̃k

])(
Zj − E

[
Zj | Nj , Lj ⊂ B̃k

])
| N1, ...N2k , B̃k = B

]

(2.123)

=
∑

Lj⊂B
E
[(

Zj − E
[
Zj | Nj , Lj ⊂ B̃k

])2
| Nj , Lj ⊂ B̃k

]
. (2.124)

with Zj =
∑

Xi∈Lj
Yi, and L1, . . . , L2k the leaves of the first layer tree. Note that Zj |Nj , Lj ⊂ B

are i.i.d binomial variable B(Nj , p). In (2.122) and (2.123), we used that that given a single
leaf Lj ⊂ B, E

[
Zj | N1, ...N2k , B̃k = B

]
= E

[
Zj | Nj , Lj ⊂ B̃k

]
. To obtain (2.124), we used that

conditional to N1, ...N2k , B̃k = B, Zi and Zj are independent. Therefore the double sum equals 0.

Work in progress as of January 16, 2024

S6. Proof of Proposition 2.4.6 82

Let j be an integer in {1, ..., 2k},

E
[(

Zj − E
[
Zj | Nj , Lj ⊂ B̃k

])2
| Nj , Lj ⊂ B̃k

]
(2.125)

= E
[
Z2
j | Nj , Lj ⊂ B̃k

]
− E

[
Zj | Nj , Lj ⊂ B̃k

]2
(2.126)

⩾ E
[
Z2
j | Nj

]
− E

[
Zj | Nj , Lj ⊂ B̃k

]2
(2.127)

= Njp(1− p) +N2
j p

2 −

Njp+

Nj

2
(1− p)

P
(
Zj =

Nj

2 | Nj

)

Nj∑

i=
Nj
2

P (Zj = i)

2

(2.128)

⩾ Nj(1− p)

(
p−Nj(1− p)P

(
Zj =

Nj

2
| Nj

)2

− 2Njp · P
(
Zj =

Nj

2
| Nj

))
(2.129)

⩾ Nj(1− p)

p− Nj(1− p)

π
(

Nj

2 + 1
4

) (4p(1− p))
Nj − 2Nj√

π
(

Nj

2 + 1
4

) (4p(1− p))
Nj/2

 (2.130)

⩾ Njp(1− p)−
(
2(1− p)2

π
+ 2

√
2(1− p)

)
·N3/2

j · (4p(1− p))
Nj/2 . (2.131)

We deduced Line (2.127) from the fact that Z2
j is a positive random variable, (2.128) from Lemma

(S1) (5), Line (2.129) from the fact that p > 1/2 and Line (2.130) from the inequality (2.4) on
the binomial coefficient. Injecting (2.123) and (2.131) into (2.119) yields

E

(

1

Nn(B)
∑

Xi∈B
Yi − p

)2 ∣∣∣∣B = B̃k

⩾ E

 1

Nn(Bk)2

∑

Lj⊂B

(
Njp(1− p)−

(
2(1− p)2

π
+ 2

√
2(1− p)

)
·N3/2

j · (4p(1− p))
Nj/2

) ∣∣∣∣B = B̃k

⩾ E
[
p(1− p)

Nn(B)
| B = B̃k

]
−
(
2(1− p)2

π
+ 2

) ∑

Lj⊂B
E
[
(4p(1− p))

Nj/2 | B = B̃k

]
(2.132)

⩾ p(1− p)E
[

1

Nn(B)
| B = B̃k

]
− 3 · 2k−1E

[
(4p(1− p))

Nb/2 | B = B̃k

]
(2.133)

Work in progress as of January 16, 2024

S6. Proof of Proposition 2.4.6 83

where the last inequality relies on the fact that the Nj , Lj ⊂ B are i.i.d, with b ∈ 1, ..., 2k be the
index of a cell included in B. Nj is a binomial random variable B(n, 2−k).

E
[
(4p(1− p))

Nj/2 | B = B̃k

]
⩽ E

[
(4p(1− p))

Nj/2
] 1

P
(
B = B̃k

) (2.134)

=
(√

4p(1− p) · 2−k + (1− 2−k)
)n 1

P
(
B = B̃k

) . (2.135)

From the inequality Line (2.118), we deduce that as soon as n ⩾ (k+1) log(2)

log(2k)−log(e−2(p−1/2)2−1+2k)
,

1

P
(
B = B̃k

) ⩽ 2. (2.136)

Therefore,

E
[
(4p(1− p))

Nj/2 | B = B̃k

]
⩽ 2

(√
4p(1− p) · 2−k + (1− 2−k)

)n
. (2.137)

Moreover,

E
[

1

Nn(B)
|B = B̃k

]
⩾

1

E
[
Nn(B)|B = B̃k

] (2.138)

⩾
P
(
B = B̃k

)

E [Nn(B)]
(2.139)

⩾
2

n
− 2k+1

n

(
1 +

e−2(p− 1
2)

2 − 1

2k

)n

(2.140)

where the last inequality comes from the probability bound line (2.118) and the fact that Nn(B)
is a binomial random variable B(n, 1/2).

Finally,

E

(

1

Nn(B)
∑

Xi∈B
Yi − p

)2

|B = B̃k

 (2.141)

⩾
2p(1− p)

n
− 3 · 2k

(
1− 2−k

(
1−

√
4p(1− p)

))n
− 2k+1p(1− p)

n

(
1 +

e−2(p− 1
2)

2 − 1

2k

)n

.

(2.142)

Work in progress as of January 16, 2024

S6. Proof of Proposition 2.4.6 84

Similarly, regarding the second term of (2.116), note that P
(
B̃k = B

)
= P

(
W̃k = W

)
and

E

(∑

Xi∈W
Yi −Nn(W)(1− p)

)2 ∣∣∣∣Nn(W),W = W̃k

= E

(∑

Xi∈W
1Yi=0 −Nn(W)p

)2 ∣∣∣∣Nn(W),W = W̃k

 .

Thus we can adapt the above computation to this term :

E

(

1

Nn(W)

∑

Xi∈W
Yi − p

)2 ∣∣∣∣W = W̃k

 (2.143)

⩾
2p(1− p)

n
− 3 · 2k

(
1− 2−k

(
1−

√
4p(1− p)

))n
− 2k+1p(1− p)

n

(
1 +

e−2(p− 1
2)

2 − 1

2k

)n

.

Rearranging all terms proves the result :

E
[
(fk,1,n(X)− f⋆(X))2

]
⩾

(
2p(1− p)

n
− 2k+2 ·

(
1− 2−k

(
1−

√
4p(1− p)

))n

− 2k+1p(1− p)

n
·
(
1 +

e−2(p− 1
2)

2 − 1

2k

)n)(
1− 2k ·

(
1 +

e−2(p− 1
2)

2 − 1

2k

)n)

+
p2 + (1− p)2

2

(
1− 1

2k

)n

⩾
2p(1− p)

n
− 2k+2 ·

(
1− 2−k

(
1−

√
4p(1− p)

))n
− 2k+1p(1− p)

n
·
(
1 +

e−2(p− 1
2)

2 − 1

2k

)n

− 2k+1p(1− p)

n
·
(
1 +

e−2(p− 1
2)

2 − 1

2k

)n

+
p2 + (1− p)2

2

(
1− 1

2k

)n

⩾
2p(1− p)

n
− 2k+2 ·

(
1− 2−k

(
1−

√
4p(1− p)

))n
− 2k+2p(1− p)

n
·
(
1− 1− e−2(p− 1

2)
2

2k

)n

+
p2 + (1− p)2

2

(
1− 1

2k

)n

⩾
2p(1− p)

n
− 2k+3 · (1− ρk,p)

n

n
+

p2 + (1− p)2

2

(
1− 1

2k

)n

where

ρk,p = 2−k min
(
1−

√
4p(1− p), 1− e−2(p− 1

2)
2
)
.

Note that, since p > 1/2, 0 < ρk,p < 1.

Work in progress as of January 16, 2024

S7. Extended Results for a Random Chessboard 85

Lemma S1. Let S be a positive random variable. For any real-valued α ∈ [0, 1], for any n ∈ N,

P (S ⩽ αn)V[S|S ⩽ αn] ⩽ V[S]

Proof. We start by noticing that:

An = P (S > αn)E
[
(S − E [S | S > αn])

2 | S > αn
]

+ P (S ⩽ αn)E
[
(S − E [S | S ⩽ αn])

2 | S ⩽ αn
]

⩽ P (S > αn)E
[
(S − a)

2 | S > αn
]
+ P (S ⩽ αn)E

[
(S − b)

2 | S ⩽ αn
]

for any (a, b) ∈ R2.
Then,

An ⩽ P (S > αn)E
[
(S − a)

2 | S > αn
]
+ P (S ⩽ αn)E

[
(S − a)

2 | S ⩽ αn
]

= E
[
(S − a)

2
]

for any a ∈ R.
Choosing a = E [S], we obtain

An ⩽ V[S].

Therefore,
P (S ⩽ αn)V[S | S ⩽ αn] ⩽ V[S].

S7 Extended Results for a Random Chessboard
Proposition S1 (Risk of a single tree and a shallow tree network when k < k⋆). Let N ∈
{1, ..., 2k⋆}. We consider the data distribution defined by a random chessboard with i.i.d. cells such that
for each cell Ci, i ∈ {1, ..., 2k⋆}

P (Ci ⊂ B) = N

2k⋆

and P (Ci ⊂ W) = 1 − N
2k⋆ . Notice that the (random) numbers NW and NB of white and black cells

satisfy 0 ⩽ NW = 2k
⋆ −NB ⩽ 2k

⋆ . We study the risk of the shallow tree network fk,1,n.
1. Consider a single tree fk,0,n of depth k ∈ N⋆,

R(fk,0,n) ⩽ 4(p− 1

2
)2

N

2k⋆

(
1− N

2k⋆

)(
1 +

1

2k⋆−k

)
+

2k−1

n+ 1

+

(
(1− p)2 − N

2k⋆ (1− 2p)

)
(1− 2−k)n

and

R(fk,0,n) ⩾ 4(p− 1

2
)2

N

2k⋆

(
1− N

2k⋆

)
+

2k

n+ 1
(1− p)2 + Ck⋆,k,N,p(1− 2−k)n

Work in progress as of January 16, 2024

S8. Proof of Proposition S1 86

where Ck⋆,k,N,p = (1− p)2 − N
2k⋆ (1− 2p)− (1−p)22k

n+1 − 4(p− 1
2)

2 N
2k⋆

(
1− N

2k⋆

) (
1 + 1

2k∗−k

).
2. Consider the shallow tree network fk,1,n, in the infinite sample regime,

R(fk,1,n) ⩾

(
p− 1

2

)2

min

(
1− N

2k⋆ ,
N

2k⋆

)2

and

R(fk,1,n) ⩽ 4

(
p− 1

2

)2(
1− N

2k⋆

)
N

2k⋆ + p2 min

(
N

2k⋆ , 1−
N

2k⋆

)
.

S8 Proof of Proposition S1

S8.1 First Statement: Risk of a Single Tree

To see the definitions of B̃ and W̃ refer to the notations of the second statement of the proof of
Proposition 2.4.5, in Appendix S6.2.

Recall that k < k⋆, meaning that a tree leaf may contain black and white cells. If a cell is
empty, the tree prediction in this cell is set (arbitrarily) to zero. Thus,

E
[
(fk,0,n(X)− f⋆(X))2

]

= E
[
(fk,0,n(X)− f⋆(X))21Nn(Ln(X))>0

]
+ E

[
(f⋆(X))21Nn(Ln(X))=0

] (2.144)

= E

 1

Nn(Ln(X))

∑

Xi∈Ln(X)

Yi − f⋆(X)

2

1Nn(Ln(X))>0

+ E

[
(f⋆(X))21Nn(Ln(X))=0

]
,

(2.145)

where the expectation is taken over the distribution of the chessboard, (X,Y) and the dataset
(Xi, Yi)1⩽i⩽n. Besides,

E
[
(f⋆(X))21Nn(Ln(X))=0

]
= E

[
(f⋆(X))21Nn(Ln(X))=01X∈B

]
+ E

[
(f⋆(X))21Nn(Ln(X))=01X∈W

]

= ((1− p)2 − NB

2k⋆ (1− 2p))(1− 2−k)n (2.146)

We now study the first term in (2.145), by considering that X falls into B (the same computation
holds when X falls intoW). We denote |Ln(X) ∩ B|| (resp. |Ln(X) ∩W|) the number of black
(resp. white) cells included in the cell containing X . Letting (X ′, Y ′) generic random variables

Work in progress as of January 16, 2024

S8. Proof of Proposition S1 87

with the same distribution as (X,Y), one has

E

 1

Nn(Ln(X))

∑

Xi∈Ln(X)

Yi − p

2

1Nn(Ln(X))>01X∈B

 (2.147)

= P (X ∈ B)E

 1

Nn(Ln(X))

∑

Xi∈Ln(X)

(
Yi − E

[
Y ′
∣∣∣∣X ′ ∈ Ln(X), |Ln(X) ∩ B|

])

2

1Nn(Ln(X))>0

+ P (X ∈ B)E
[(

E
[
Y ′
∣∣∣∣X ′ ∈ Ln(X), |Ln(X) ∩ B|

]
− p

)2

1Nn(Ln(X))>0

]
(2.148)

= P (X ∈ B) ·

E

1Nn(Ln(X))>0

Nn(Ln(X))2
E

 ∑

Xi∈Ln(X)

(
Yi − E

[
Y ′
∣∣∣∣X ′ ∈ Ln(X), |Ln(X) ∩ B|

])

2

| Nn(Ln(X)), |Ln(X) ∩ B|

+ P (X ∈ B)P (Nn(Ln(X)) > 0)E

[(
E
[
Y ′
∣∣∣∣X ′ ∈ Ln(X), |Ln(X) ∩ B|

]
− p

)2
]

= P (X ∈ B)
(
E
[
1Nn(Ln(X))>0

Nn(Ln(X))2
· VB

]
+ βB

)
(2.149)

where

βB = P (Nn(Ln(X)) > 0)E

[(
E
[
Y ′
∣∣∣∣X ′ ∈ Ln(X), |Ln(X) ∩ B|

]
− p

)2
]

(2.150)

and

VB = E

 ∑

Xi∈Ln(X)

(
Yi − E

[
Y ′
∣∣∣∣X ′ ∈ Ln(X), |Ln(X) ∩ B|

])

2

| Nn(Ln(X)), |Ln(X) ∩ B|

(2.151)

Similarly we define βW and VW by replacing in the expressions (2.150) and (2.151) B byW so
that:

E
[
(fk,0,n(X)− f⋆(X))2

]

= P (X ∈ B)
(
E
[
1Nn(Ln(X))>0

Nn(Ln(X))2
· VB

]
+ βB

)
+ P (X ∈ W)

(
E
[
1Nn(Ln(X))>0

Nn(Ln(X))2
· VW

]
+ βW

)

+ ((1− p)2 − NB

2k⋆ (1− 2p))(1− 2−k)n. (2.152)

This last expression can be read as a bias-variance decomposition. We already know the proba-
bility to be in a non-empty cell, see (2.146), then

P (X ∈ B) = E [P (X ∈ B|NB)] = E
[
NB

2k⋆

]
=

N

2k⋆ .

Work in progress as of January 16, 2024

S8. Proof of Proposition S1 88

We now make explicit the terms in Equation (2.152) starting with the bias term βB:

E
[
Y ′
∣∣∣∣X ′ ∈ Ln(X), |Ln(X) ∩ B|

]
=

p · |Ln(X) ∩ B|+ (1− p)|Ln(X) ∩W|
2k⋆−k

(2.153)

= (1− p) +
|Ln(X) ∩ B|

2k⋆−k
(2p− 1) (2.154)

= p+
|Ln(X) ∩W|

2k⋆−k
(1− 2p), (2.155)

where |Ln(X) ∩ B| stands for the number of black cells in Ln(X). In the same way, |Ln(X) ∩W|
stands for the number of white cells in Ln(X). Hence,

E

[(
E
[
Y ′
∣∣∣∣X ′ ∈ Ln(X), |Ln(X) ∩ B|

]
− p

)2
]
=

4(p− 1
2)

2

22(k⋆−k)
E
[
|Ln(X) ∩W|2

] (2.156)

Note that |Ln(X) ∩W||NB ∼ B(2k
⋆−k, 1−N/2k

⋆

). Thus, we have

E
[
|Ln(X) ∩W|2

]
=

N

2k

(
1− N

2k⋆

)
+

1

22k
(2k

⋆ −N)2. (2.157)

Therefore,

E

[(
E
[
Y ′
∣∣∣∣X ′ ∈ Ln(X), |Ln(X) ∩ B|

]
− p

)2
]
=

4(p− 1
2)

2

22(k⋆−k)

(
N

2k

(
1− N

2k⋆

)
+

1

22k
(2k

⋆ −N)2
)
.

(2.158)

Similar computations show that when X ∈ W ,

E

[(
E
[
Y ′
∣∣∣∣X ′ ∈ Ln(X), |Ln(X) ∩W|

]
− (1− p)

)2
]
=

4(p− 1
2)

2

22(k⋆−k)

(
N

2k

(
1− N

2k⋆

)
+

N2

22k

)
.

(2.159)

We deduce from Equations (2.158) and (2.159) that

βB + βW =
4(p− 1

2)
2

22(k⋆−k)
P (Nn(Ln(X)) > 0)

(
P (X ∈ B)

(
N

2k

(
1− N

2k⋆

)
+

1

22k
(2k

⋆ −N)2
)

+ P (X ∈ W)

(
N

2k

(
1− N

2k⋆

)
+

N2

22k

))

= 4(p− 1

2
)2

N

2k⋆

(
1− N

2k⋆

)(
1 +

1

2k⋆−k

)(
1− (1− 2−k)n

)
. (2.160)

Clearly,

βB + βW ⩾ 4(p− 1

2
)2

N

2k⋆

(
1− N

2k⋆

)(
1− (1− 2−k)n

)
. (2.161)

Work in progress as of January 16, 2024

S8. Proof of Proposition S1 89

Now we compute the variance term VB. Letting Z =
∑

Xi∈Ln(X) Yi,

Z|Nn(Ln(X)), |Ln(X) ∩ B| ∼ B(Nn(Ln(X)), p′)

where p′ = (1− p) + |Ln(X)∩B|
2k⋆−k (2p− 1) (see Equations (2.153) to (2.155)). Therefore, recall that

VB is nothing but the variance of the binomial random variable Z conditional on |Ln(X) ∩ B|
defined in Equation (2.151), consequently

VB = Nn(Ln(X))p′(1− p′). (2.162)

By independence of Nn(Ln(X)) and |Ln(X) ∩ B|, we can write that

E
[
1Nn(Ln(X))>0

Nn(Ln(X))2
· VB

]
= E

[
1Nn(Ln(X))>0

Nn(Ln(X))

]
E

 p′(1− p)′︸ ︷︷ ︸
(1−p)2⩽p′(1−p′)⩽1/4

 . (2.163)

From Technical Lemma S1, we deduce that

2k

n+ 1

(
1− (1− 2−k)n

)
⩽ E

[
1Nn(Ln(X))>0

Nn(Ln(X))

]
⩽

2k+1

n+ 1
.

Hence,

2k

n+ 1

(
1− (1− 2−k)n

)
(1− p)2 ⩽ E

[
1Nn(Ln(X))>0

Nn(Ln(X))
VB

]
⩽

2k−1

n+ 1
. (2.164)

By symmetry, VW is also the variance of a binomial random variable with parametersNn(Ln(X)),
1− p′ conditional on |Ln(X) ∩W|. Thus VB = VW . To conclude, combining Equations (2.152),
(2.161) and (2.164) leads to

R(fk,0,n(X)) ⩽ 4(p− 1

2
)2
(
1− N

2k⋆ (1−
N

2k⋆)

)
+

2k−1

n+ 1
+ ((1− p)2 − N

2k⋆ (1− 2p))(1− 2−k)n

and

R(fk,0,n(X)) ⩾ 4(p− 1

2
)2
(
1− N

2k⋆ (2−
N

2k⋆)

)
2k

n+ 1

(
1− (1− 2−k)n

)
(1− p)2

+ ((1− p)2 − N

2k⋆ (1− 2p))(1− 2−k)n.

S8.2 Second Statement: Risk of a Shallow Tree Network
Recall that we are in the infinite sample regime and that k < k⋆.

E
[
(fk,1,n(X)− f⋆(X)2

]

= E
[
(fk,1,n(X)− p)

2
1X∈B∩B̃

]
+ E

[
(fk,1,n(X)− (1− p))

2
1X∈W∩W̃

]

+ E
[
(fk,1,n(X)− (1− p))

2
1X∈W∩B̃

]
+ E

[
(fk,1,n(X)− p)

2
1X∈B∩W̃

]
. (2.165)

Work in progress as of January 16, 2024

S8. Proof of Proposition S1 90

We begin with the computation of the first term.

E
[
(fk,1,n(X)− p)

2
1X∈B∩B̃

]
= P

(
X ∈ B ∩ B̃

)
E
[
(fk,1,n(X)− p)

2 | X ∈ B ∩ B̃
]

(2.166)

= P
(
X ∈ B ∩ B̃

)
E
[(

E
[
Y ′ | X ′ ∈ B̃

]
− p
)2

| X ∈ B ∩ B̃
]
.

(2.167)

Regarding the probability term,

P
(
X ∈ B ∩ B̃

)
= P (X ∈ B)P

(
X ∈ B̃ | X ∈ B

)
(2.168)

⩽
N

2k⋆ . (2.169)

We denote by B1, ..., B2k the number of black cells in the leaves L1, ..., L2k . Then,

E
[
Y ′ | X ′ ∈ B̃

]
= E

(1− p) + (2p− 1)

∑2k

i=1 Bi1Li⊂B̃

|B̃|

= (1− p) + (2p− 1)E

2k∑

i=1

1Li⊂B̃

|B̃|
E
[
Bi

∣∣∣|B̃|
]

= (1− p) + (2p− 1)E
[

Bj

2k⋆−k
| Bj ⩾

|Lj |
2

]

where Lj is a leaf included in B̃. Moreover,

E
[
Bj | Bj ⩾

|Lj |
2

]
=

N

2k
+

(
1− N

2k⋆

)(
2k

⋆−k−1 − 1
) P

(
Bj = 2k

⋆−k−1 − 1
)

P (Bj ⩾ 2k⋆−k−1 − 1)

⩽
N

2k
+

(
1− N

2k⋆

)
2k

⋆−k−1.

Therefore,

E
[
Y ′ | X ′ ∈ B̃

]
⩽ (1− p) + (2p− 1)

1

2

(
1 +

N

2k⋆

)

and

E
[(

E
[
Y ′ | X ′ ∈ B̃

]
− p
)2

| X ∈ B ∩ B̃
]
⩾ (p− 1

2
)2
(
1− N

2k⋆

)2

. (2.170)

To compute the upper bound, note that

E
[
Bj | Bj ⩾

|Lj |
2

]
⩾ E [Bj] =

N

2k
.

Work in progress as of January 16, 2024

S8. Proof of Proposition S1 91

Thus,

E
[(

E
[
Y ′ | X ′ ∈ B̃

]
− p
)2

| X ∈ B ∩ B̃
]
⩽ 4

(
p− 1

2

)2(
1− N

2k⋆

)2

. (2.171)

We adapt the previous computations to the term E
[
(fk,1,n(X)− (1− p))

2
1X∈W∩W̃

]
from Equa-

tion (2.165). We have

E
[
(fk,1,n(X)− (1− p))

2 | X ∈ W ∩ W̃
]
⩾ (p− 1

2
)2

N2

22k⋆ (2.172)

and

E
[
(fk,1,n(X)− (1− p))

2 | X ∈ W ∩ W̃
]
⩽ 4

(
p− 1

2

)2
N2

22k⋆ (2.173)

Moreover, note that

E
[
(fk,1,n(X)− p)

2
1X∈B∩W̃

]
⩽ p2P

(
X ∈ B ∩ W̃

)
(2.174)

and

E
[
(fk,1,n(X)− p)

2
1X∈B∩W̃

]
⩾

(
p− 1

2

)2

P
(
X ∈ B ∩ W̃

)
. (2.175)

Similarly,

E
[
(fk,1,n(X)− p)

2
1X∈W∩B̃

]
⩽ p2P

(
X ∈ W ∩ B̃

)
(2.176)

and

E
[
(fk,1,n(X)− p)

2
1X∈W∩B̃

]
⩾

(
p− 1

2

)2

P
(
X ∈ W ∩ B̃

)
. (2.177)

Gathering Equation (2.165) and Equations (2.170) to (2.177) yields

E
[
(fk,1,n(X)− f⋆(X)2

]
⩾ (p− 1

2
)2
(
1− N

2k⋆

)2

P
(
X ∈ B ∩ B̃

)
+ (p− 1

2
)2

N2

22k⋆ P
(
X ∈ W ∩ W̃

)

+

(
p− 1

2

)2

P
(
X ∈ W ∩ B̃

)
+

(
p− 1

2

)2

P
(
X ∈ B ∩ W̃

)

⩾

(
p− 1

2

)2

min

(
1− N

2k⋆ ,
N

2k⋆

)2

Work in progress as of January 16, 2024

S8. Proof of Proposition S1 92

as well as

E
[
(fk,1,n(X)− f⋆(X)2

]

⩽ 4

(
p− 1

2

)2(
1− N

2k⋆

)2

P
(
X ∈ B ∩ B̃

)
+ 4

(
p− 1

2

)2
N2

22k⋆ P
(
X ∈ W ∩ W̃

)

+ p2P
(
X ∈ W ∩ B̃

)
+ p2P

(
X ∈ B ∩ W̃

)

⩽ 4

(
p− 1

2

)2(
1− N

2k⋆

)2
N

2k⋆ P
(
X ∈ B̃ | X ∈ B

)

+ 4

(
p− 1

2

)2
N2

22k⋆

(
1− N

2k⋆

)
P
(
X ∈ W̃ | X ∈ W

)

+ p2
(
1− N

2k⋆

)
P
(
X ∈ B̃ | X ∈ W

)
+ p2

N

2k⋆ P
(
X ∈ W̃ | X ∈ B

)

⩽ 4

(
p− 1

2

)2(
1− N

2k⋆

)2
N

2k⋆ + 4

(
p− 1

2

)2
N2

22k⋆

(
1− N

2k⋆

)

+ p2
(
1− N

2k⋆

)
P
(
X ∈ B̃

)
+ p2

N

2k⋆ P
(
X ∈ W̃

)

⩽ 4

(
p− 1

2

)2(
1− N

2k⋆

)
N

2k⋆ + p2 max

(
N

2k⋆ 1−
N

2k⋆

)
.

Work in progress as of January 16, 2024

Bibliography of the current chapter 93

Bibliography of the current chapter
Bergstra, J. S., R. Bardenet, Y. Bengio, and K. Balázs (2011). “Algorithms for Hyper-Parameter

Optimization”. In: Advances in Neural Information Processing Systems 24. Ed. by J. Shawe-Taylor,
R. S. Zemel, P. L. Bartlett, F. Pereira, and K. Q. Weinberger. Curran Associates, Inc., pp. 2546–
2554.

Berrouachedi, A., R. Jaziri, and G. Bernard (2019a). “Deep Cascade of Extra Trees”. In: Pacific-Asia
Conference on Knowledge Discovery and Data Mining. Springer, pp. 117–129.

— (2019b). “Deep Extremely Randomized Trees”. In: International Conference onNeural Information
Processing. Springer, pp. 717–729.

Biau, G. (2012a). “Analysis of a random forests model”. In: The Journal of Machine Learning Research
13.1, pp. 1063–1095.

Biau, G., L. Devroye, and G. Lugosi (2008). “Consistency of random forests and other averaging
classifiers”. In: Journal of Machine Learning Research 9.Sep, pp. 2015–2033.

Breiman, Leo (2001a). “Random forests”. In: Machine learning 45.1, pp. 5–32.
Cribari-Neto, F., N. L. Garcia, and K. LP Vasconcellos (2000). “A note on inverse moments of

binomial variates”. In: Brazilian Review of Econometrics 20.2, pp. 269–277.
Fan, Wei, Haixun Wang, Philip S Yu, and Sheng Ma (2003). “Is random model better? on its

accuracy and efficiency”. In: Third IEEE International Conference on Data Mining. IEEE, pp. 51–
58.

Feng, Ji, Yang Yu, and Zhi-Hua Zhou (2018). “Multi-layered gradient boosting decision trees”.
In: Advances in neural information processing systems, pp. 3551–3561.

Ghods, Alireza and Diane J Cook (2020). “A survey of deep network techniques all classifiers
can adopt”. In: Data Mining and Knowledge Discovery, pp. 1–42.

Ghosh, Soumyadip and Shane G Henderson (2002). “Chessboard distributions and random
vectors with specified marginals and covariance matrix”. In: Operations Research 50.5, pp. 820–
834.

— (2009). “Patchwork distributions”. In: Advancing the Frontiers of Simulation. Springer, pp. 65–86.
Guo, Yang, Shuhui Liu, Zhanhuai Li, and Xuequn Shang (2018). “BCDForest: a boosting cascade

deep forest model towards the classification of cancer subtypes based on gene expression
data”. In: BMC bioinformatics 19.5, p. 118.

Jeong, Mira, Jaeyeal Nam, and Byoung Chul Ko (2020). “Lightweight Multilayer Random Forests
for Monitoring Driver Emotional Status”. In: IEEE Access 8, pp. 60344–60354.

Kim, S., M. Jeong, and B. C. Ko (2020). “Interpretation and Simplification of Deep Forest”. In:
arXiv preprint arXiv:2001.04721.

Klusowski, Jason M. (2018). “Sharp analysis of a simple model for random forests”. In: arXiv
preprint arXiv:1805.02587.

Liu, B. et al. (2020). “Morphological Attribute Profile Cube and Deep Random Forest for Small
Sample Classification of Hyperspectral Image”. In: IEEE Access 8, pp. 117096–117108.

Miller, Kevin, Chris Hettinger, Jeffrey Humpherys, Tyler Jarvis, and David Kartchner (May 2017).
“Forward Thinking: Building Deep Random Forests”. In.

Pang,M., K. Ting, P. Zhao, and Z. Zhou (2018). “ImprovingDeep Forest by Confidence Screening”.
In: 2018 IEEE International Conference on Data Mining (ICDM), pp. 1194–1199.

Pedregosa, F. et al. (2011). “Scikit-learn: Machine Learning in Python”. In: Journal of Machine
Learning Research 12, pp. 2825–2830.

Su, R., X. Liu, L. Wei, and Q. Zou (2019). “Deep-Resp-Forest: A deep forest model to predict
anti-cancer drug response”. In: Methods 166, pp. 91–102.

Sun, L. et al. (2020). “Adaptive Feature Selection Guided Deep Forest for COVID-19 Classification
With Chest CT”. In: IEEE Journal of Biomedical and Health Informatics 24.10, pp. 2798–2805.

Work in progress as of January 16, 2024

Bibliography of the current chapter 94

Utkin, L. V and M. A Ryabinin (2017). “Discriminative metric learning with deep forest”. In:
arXiv preprint arXiv:1705.09620.

Utkin, L. V and K. D Zhuk (2020). “Improvement of the Deep Forest Classifier by a Set of Neural
Networks”. In: Informatica 44.1.

Zeng, X. et al. (2020). “Network-based prediction of drug–target interactions using an arbitrary-
order proximity embedded deep forest”. In: Bioinformatics 36.9, pp. 2805–2812.

Zhang, Y. et al. (2019). “Distributed deep forest and its application to automatic detection of
cash-out fraud”. In: ACM Transactions on Intelligent Systems and Technology (TIST) 10.5, pp. 1–
19.

Zheng, S., Y. Song, T. Leung, and I. Goodfellow (2016). “Improving the robustness of deep neural
networks via stability training”. In: Proceedings of the ieee conference on computer vision and
pattern recognition, pp. 4480–4488.

Zhou, Z and J. Feng (2017). “Deep Forest: Towards An Alternative to Deep Neural Networks”.
In: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI-17,
pp. 3553–3559.

Work in progress as of January 16, 2024

Chapter 3

Tree Sparse NN Initialization

Abstract
Dedicated neural network (NN) architectures have been designed to handle specific data types
(such as CNN for images or RNN for text), which ranks them among state-of-the-art methods for
dealing with these data. Unfortunately, no architecture has been found for dealing with tabular
data yet, for which tree ensemble methods (tree boosting, random forests) usually show the
best predictive performances. In this work, we propose a new sparse initialization technique
for (potentially deep) multilayer perceptrons (MLP): we first train a tree-based procedure to
detect feature interactions and use the resulting information to initialize the network, which is
subsequently trained via standard gradient descent (GD) strategies. Numerical experiments on
several tabular data sets show the benefits of this new, simple and easy-to-use method, both in
terms of generalization capacity and computation time, compared to default MLP initialization
and even to existing complex deep learning solutions. In fact, this wise MLP initialization raises
the performances of the resulting NN methods to that of gradient boosting on tabular data.
Besides, such initializations are able to preserve the sparsity of weights introduced in the first
layers of the network throughout the training, which emphasizes that the first layers act as a
sparse feature extractor (like convolutional layers in CNN).

3.1 Introduction
Neural networks are now widely used in many domains of machine learning, in particular
when dealing with very structured data. They indeed provide state-of-the-art performances
for applications with images or text. However, neural networks still perform poorly on tabular
inputs, for which tree ensemble methods remain the gold standards (Grinsztajn et al. 2022). The
goal of this paper is to improve the performances of the former by using the strengths of the
latter.

Tree ensemble methods Tree-based methods are widely used in the ML community, especially
for processing tabular data. Two main approaches exist depending on whether the tree building
process is parallel (e.g. Random Forest, RF, see Breiman 2001a) or sequential (e.g. Gradient
Boosting Decision Trees, GBDT, see Friedman 2001). In these tree ensemble procedures, the final
prediction relies on averaging predictions of randomized decision trees, coding for particular
partitions of the input space. The two most successful and most widely used implementations of

95

3.1. Introduction 96

these methods are XGBoost and LightGBM (see Chen et al. 2016; Ke et al. 2017) which both rely
on the sequential GBDT approach.

Neural networks Neural Networks (NN) are efficient methods to unveil the patterns of spatial
or temporal data, such as images (Krizhevsky et al. 2012) or texts (Liu et al. 2016). Their
performance results notably from the fact that several architectures directly encode relevant
structures in the input: convolutional neural networks (CNN, LeCun et al. 1995) use convolutions
to detect spatially-invariant patterns in images, and recurrent neural networks (RNN, Rumelhart
et al. 1985) use a hidden temporal state to leverage the natural order of a text. However, a dedicated
natural architecture has yet to be introduced to deal with tabular data. Indeed, designing such an
architecture would require to detect and leverage the structure of the relations between variables,
which is much easier for images or text (spatial or temporal correlation) than for tabular data
(unconstrained covariance structure).

NN initialization and training In the absence of a suitable architecture for handling tabular
data, the Multi-Layer Perceptron (MLP) architecture (Rumelhart et al. 1986) remains the obvious
choice due to its generalist nature. Apart from the large number of parameters, one difficulty of
MLP training arises from the non-convexity of the loss function (see, e.g., Sun 2020). In such
situations, the initialization of the network parameters (weights and biases) are of the utmost
importance, since it can influence both the optimization stability and the quality of the minimum
found. Typically, such initializations are drawn according to independent uniform distributions
with a variance decreasing w.r.t. the size of the layer (He et al. 2015). Therefore, one may wonder
how to capitalize on methods that are inherently capable of recognizing patterns in tabular data
(e.g., tree-based methods) to propose a new NN architecture suitable for tabular data and an
initialization procedure that leads to faster convergence and better generalization performance.

3.1.1 Related Works
How MLP can be used to handle tabular data remains unclear, especially since a corresponding
prior in the MLP architecture adapted to the correlations of the input is not obvious, to say the
least. Indeed, none of the existing NN architectures can consistently match the performance of
state-of-the-art tree-based predictors on tabular data (Shwartz-Ziv et al. 2022; Gorishniy et al.
2021; and in particular Table 2 in Borisov et al. 2021).

Self-attention architectures Specific NN architectures have been proposed to deal with tabular
data. For example, TabNet (Arik et al. 2021) uses a sequential self-attention structure to detect
relevant features and then applies several networks for prediction. SAINT (Somepalli et al. 2021),
on the other hand, uses a two-dimensional attention structure (on both features and samples)
organized in several layers to extract relevant information which is then fed to a classical MLP.
These methods typically require a large amount of data, since the self-attention layers and the
output network involve numerous MLP.

Trees and neural networks Several solutions have been proposed to leverage the correspon-
dence between tree-based methods and NN, in order to develop more efficient models for
processing tabular data. For example, TabNN (Ke et al. 2018) first trains a GBDT on the available
data, then extracts a group of features per individual tree, compresses the resulting groups, and
uses a tailored Recursive Encoder based on the structure of these groups (with an initialization
based on the tree leaves). Therefore, TabNN employs pre-trained tree-based methods to design
more efficient NN. Conversely, Sethi 1990 Brent 1991, and later Welbl 2014, Richmond et al. 2015

Work in progress as of January 16, 2024

3.2. Equivalence Between Trees and MLP 97

and Biau et al. 2019 propose to translate decision trees into very specific MLP (made of 3 layers)
and use GD training to improve upon the original tree-based method. Such procedures can
be seen as a way to relax and generalize the partition geometry produced by trees and their
aggregation. To our knowledge, such translations have not been used to boost the training of
general NN architectures.

3.1.2 Contributions
In this work, we propose a new method to initialize a potentially deep MLP for learning tasks
with tabular data. Our method consists in first training a tree-based predictor (RF, GBDT or Deep
Forest, see Section 3.2.1) and then using its translation into an MLP as initialization for the first
two layers, the deeper ones being randomly initialized. With subsequent standard GD training,
this procedure is shown to outperform the widely used uniform initialization of MLP -default
initialization in Pytorch Paszke et al. 2019) as follows.

1. Improved performances. For tabular data, the predictive performances of the MLP after
training are improved compared to MLP that use a random initialization. Our procedure
also outperforms more complex deep learning procedures based on self-attention and is on
par with classical tree-based methods (such as XGBoost).

2. Faster optimization. The optimization following a tree-based initialization is boosted in the
sense that it enjoys a faster convergence towards a (better) empirical minimum: a tree-based
initialization results in faster training of the MLP.

Initializing the first few layers of the MLP with the translation of the tree-based method and
initializing randomly the deeper layers is the most successful initialization scheme that we
experimented. This supports the idea that in our method, the (first) tree-based initialized layers
act as relevant feature extractors that allow the MLP to detect correlations in the inputs. In this
context, our approach is dedicated on improving the performance of standard MLP models;
therefore it is conceptually different from pre-existing procedures also relying on the translation of
tree-based models into NN: (Biau et al. 2019) aim at fine-tuning tree-based methods using a very
specific neural network framework (made of only 3 layers). We, on the other hand, use tree-based
methods to carefully initialize certain layers of a generic MLP, which is then substantially trained
using standard GD strategies.

Outline In Section 3.2, we introduce the predictors in play and describe how tree-basedmethods
can be translated into MLP.

The core of our analysis is contained in Section 3.3, where we describe in detail the MLP
initialization process and provide extensive numerical evaluations showing the benefits of this
method.

3.2 Equivalence Between Trees and MLP
Consider the classical setting of supervised learning in which we are given a set of input/output
samples {(Xi, Yi)}ni=1 drawn i.i.d. from some unknown joint distribution. Our goal is to construct
a (MLP) function to predict the output from the input. To do so, we leverage the translation of
tree-based methods into MLP.

Work in progress as of January 16, 2024

3.2. Equivalence Between Trees and MLP 98

3.2.1 Presentation of the Predictors in Play
Tree-based methods We consider three different tree ensemble methods: Random Forests
(RF), Gradient Boosting Decision Trees (GBDT) and Deep Forests (DF). They all share the
same base component: the Decision Tree (DT, see Breiman et al. 1984 for details). We call its
terminal nodes leaf nodes, which correspond to the cells of the final tree partition. RF (Breiman
2001b) is a predictor consisting of a collection of independently trained and randomized trees. Its
final prediction is made by averaging the predictions of all its DT in regression or by a majority
vote in classification. GBDT (Friedman 2001) aims at minimizing a prediction loss function by
successively aggregating DT that approximate the opposite gradient of that loss function (see
Chen et al. 2016 for details on XGBoost). DF (Zhou et al. 2017) is a hybrid learning procedure in
which random forests are used as elementary components (neurons) of a neural-network-like
architecture (see Figure S5 and Appendix S1 for details).

Multilayer Perceptron (MLP) The multilayer perceptron is a predictor consisting of a com-
position of multiple affine functions, with (potentially different) nonlinear activation functions
between them. Standard activation functions include, for instance, the rectified linear unit or the
hyperbolic tangent. Deep MLP are a much richer class of predictors than tree-based methods
which build simple partitions of the space and output piecewise constant predictions. Therefore,
any of the tree-based models presented above can be approximated and in fact exactly rewritten
as an MLP as follows.

3.2.2 An Exact Translation of Tree-Based Methods into MLP
From decision tree to 3-layer MLP Recall that a decision tree codes for a partition of the input
space in as many parts as there are leaf nodes in the tree. Given an input x, we can identify the
leaf where x falls by examining for each hyperplane of the partition whether x falls on the right
or left side of the hyperplane. The prediction is then made by averaging the outputs of all the
training samples falling into the leaf of x. A DT can be thus translated into a highly sparse 3-layer
MLP:

1. The first layer contains a number of neurons equal to the number of hyperplanes in the
partition, each neuron encoding by ±1 whether x falls on the left or right side of the
hyperplane.

2. The second layer contains a number of neurons equal to the number of leaves in the DT.
Based on the first layer, it identifies in which leaf x falls and outputs a vector with a single 1
at the leaf position and −1 everywhere else.

3. The last layer contains a single output neuron that returns the tree prediction. Its weights
encode the average output of all training samples for each leaf of the tree.

This procedure is explained in detail and formally in Biau et al. 2019 and in Appendix S2.

From RF/GBDT to 3-layerMLP Although RF and GBDT are constructed in different ways, they
both average multiple DT predictions to give the final result. Thus, to translate a RF or a GBDT
into an MLP, we simply turn each tree into a 3-layer MLP as described above, and concatenate
all the obtained networks to form a wider 3-layer MLP. When concatenating, we set all weights
between the MLP translations of the different trees to 0, since the trees do not interact with each
other in predicting the target value for a new feature vector. The step in which the responses
of the different trees are averaged can be combined with the third layer of the individual tree

Work in progress as of January 16, 2024

3.2. Equivalence Between Trees and MLP 99

0

1

3

6

8

2

5

7

9

10

4
0

1

2 3

4 5

6

7 8

9 10

x1

x2

0

1

3

6

8

2

4

5

7

9

10

HInput layer L Output layer

Figure 2: An example of regression tree (top) and the corresponding neural
network (down).

±1-bits that encodes for the precise location of x in the leaves of the tree.
The leaf node identity of x can now be extracted from this vector using a
weighted combination of the bits, together with an appropriate thresholding.

Let L = {L1, . . . , LK} be the collection of all tree leaves, and let L(x) be
the leaf containing x. The second hidden layer has K neurons, one for each
leaf, and assigns a terminal cell to x as explained below. We connect a unit
k from layer 1 to a unit k′ from layer 2 if and only if the hyperplane Hk is
involved in the sequence of splits forming the path from the root to the leaf
Lk′ . The connection has weight +1 if, in that path, the split by Hk is from
a node to a right child, and −1 otherwise. So, if (u1(x), . . . , uK−1(x)) is the
vector of ±1-bits seen at the output of layer 1, the output vk′(x) ∈ {−1, 1}
of neuron k′ is τ(

∑
k→k′ bk,k′uk(x) + b0

k′), where notation k → k′ means that
k is connected to k′ and bk,k′ = ±1 is the corresponding weight. The offset

6

0

1

3

6

8

2

5

7

9

10

4
0

1

2 3

4 5

6

7 8

9 10

x1

x2

0

1

3

6

8

2

4

5

7

9

10

HInput layer L Output layer

Figure 2: An example of regression tree (top) and the corresponding neural
network (down).

±1-bits that encodes for the precise location of x in the leaves of the tree.
The leaf node identity of x can now be extracted from this vector using a
weighted combination of the bits, together with an appropriate thresholding.

Let L = {L1, . . . , LK} be the collection of all tree leaves, and let L(x) be
the leaf containing x. The second hidden layer has K neurons, one for each
leaf, and assigns a terminal cell to x as explained below. We connect a unit
k from layer 1 to a unit k′ from layer 2 if and only if the hyperplane Hk is
involved in the sequence of splits forming the path from the root to the leaf
Lk′ . The connection has weight +1 if, in that path, the split by Hk is from
a node to a right child, and −1 otherwise. So, if (u1(x), . . . , uK−1(x)) is the
vector of ±1-bits seen at the output of layer 1, the output vk′(x) ∈ {−1, 1}
of neuron k′ is τ(

∑
k→k′ bk,k′uk(x) + b0

k′), where notation k → k′ means that
k is connected to k′ and bk,k′ = ±1 is the corresponding weight. The offset

6

0

1

3

6

8

2

5

7

9

10

4
0

1

2 3

4 5

6

7 8

9 10

x1

x2

0

1

3

6

8

2

4

5

7

9

10

HInput layer L Output layer

Figure 2: An example of regression tree (top) and the corresponding neural
network (down).

±1-bits that encodes for the precise location of x in the leaves of the tree.
The leaf node identity of x can now be extracted from this vector using a
weighted combination of the bits, together with an appropriate thresholding.

Let L = {L1, . . . , LK} be the collection of all tree leaves, and let L(x) be
the leaf containing x. The second hidden layer has K neurons, one for each
leaf, and assigns a terminal cell to x as explained below. We connect a unit
k from layer 1 to a unit k′ from layer 2 if and only if the hyperplane Hk is
involved in the sequence of splits forming the path from the root to the leaf
Lk′ . The connection has weight +1 if, in that path, the split by Hk is from
a node to a right child, and −1 otherwise. So, if (u1(x), . . . , uK−1(x)) is the
vector of ±1-bits seen at the output of layer 1, the output vk′(x) ∈ {−1, 1}
of neuron k′ is τ(

∑
k→k′ bk,k′uk(x) + b0

k′), where notation k → k′ means that
k is connected to k′ and bk,k′ = ±1 is the corresponding weight. The offset

6

Figure 3.1: (from Biau et al. 2019). Illustration of a decision tree, its induced feature space
partition and its corresponding MLP translation on a problem with 2 input variables.

translations, resulting in a final MLP translation with a total of three layers. Consider a RF with
M trees of depth k, the resulting MLP will containM ∗ (2k − 1 + 2k + 1) neurons which can be
very wide if the depth of each tree is high.

From Deep Forests to deeper MLP A Deep Forest is a cascade of Random Forests. As such, it
can be translated into an MLP containing the MLP translations of the different RF in cascade,
resulting in a deeper and wider MLP (note that the obtained MLP has a number of layers that is a
multiple of 3).Furthermore, in the Deep Forest architecture, the input vector is concatenated to the
output of each intermediate layer. To mimic these skip connections in the MLP, we add additional
neurons to each layer, except for the last three, which encode an identity mapping. Appendix
S1 gives more insights into DF and their MLP translations. In particular, perfect translation of a
DF suffers from numerical instabilities due to the replication of catastrophic cancellations (the
deeper the DF, the greater their amplitude, cf Appendix S4). This does not impact the sequel of
the study, which relies on MLP approximations introduced in Section 3.2.2.

3.2.3 Relaxing Tree-Based Translation to Allow Gradient Descent Training
As shown in the previous section, one can construct an MLP that exactly reproduces a tree-
based predictor. However this translation involves (i) piecewise constant activation functions
(sign) and (ii) different activation functions in a same layer (sign and identity when translating
DF). These constraints can hinder the MLP training, which relies on GD strategies (requiring
differentiability), as well as efficient implementation tricks, given that automatic differentiation
libraries only support one activation function per layer. Therefore, given a pre-trained tree-based
predictor (RF, GBDT or DF), we aim at relaxing its translation into a MLP, mimicking its behavior
as closely as possible but in a compatible way with standard NN training.

From tree-based methods to differentiable MLP To do so, Welbl 2014; Biau et al. 2019 consider
the differentiable tanh activation, well suited for approximating both the sign and identity
functions. Indeed, this can be achieved by multiplying or dividing the output of a neuron by a
large constant before applying the function tanh and rescaling the result accordingly if necessary,
i.e. for large enough a, c > 0, sign(x) ≈ tanh(ax) and x ≈ c tanh

(
x
c

)
.

However, we cannot choose a arbitrarily large as this would make gradients vanish during
the network optimization (the function being flat on most of the space), and hinder training. We
therefore introduce 4 hyper-parameters for the MLP encoding of any tree-based method that
regulate the degree of approximation for the activation functions after the first, second and third
layers of a decision tree translation, as well as for the identity mapping, respectively denoted by
strength01, strength12, strength23 and strength_id.

Work in progress as of January 16, 2024

3.3. A New Initialization Method for MLP Training 100

Hyperparameter choice The use of the tanh activation function involves extra hyper-parameters.
We study the influence of each one, by making them vary in some range (keeping the others
fixed to 1010, resulting in an almost perfect approximation of the sign and identity functions), see
Appendix S4.1 for details. Our analysis shows that increasing the hyperparameters beyond some
limit value is no longer beneficial (as the activation functions are already perfectly approximated)
and, across multiple data sets, these limit values are similar. We also exhibit relevant search
spaces that will allow us to find optimal HP values for each application.

3.3 A New Initialization Method for MLP Training
In this section, we study the impact of tree-based initialization methods for MLP training when
dealing with tabular data. The latter empirically proves to be always preferable to standard
random initialization and makes MLP a competitive predictor for tabular data. Our code is
publically available at https://github.com/LutzPatrick/SparseTreeBasedInit.

3.3.1 Our Proposal
Random initialization is the most common technique for initializing MLP prior to stochastic
gradient training. It consists in setting all layer parameters to random values of small magnitude
centered at 0. More precisely, all parameter values of the j-th layer are uniformly drawn in
[−1/

√
dj, 1/

√
dj]where dj is the layer input dimension; this is the default behavior of most MLP

implementations such as nn.Linear in PyTorch (Paszke et al. 2019).
We introduce new ways of initializing an MLP for learning with tabular data, by leveraging

the recasting of tree-based methods in a neural network fashion:
• RF/GBDT initialization. First, a RF/GBDT is fitted to the training data and transformed

into a 3-layer neural network, following the procedure described in Section 3.2. The first two
layers of this network are used to initialize the first two layers of the network of interest. Thus,
upon initialization, these first two layers encode the RF/GBDT partition. The parameters of
the third and all subsequent layers are randomly initialized as described above. See Figure
S7 in Appendix S3 for an illustration.

• DF initialization. Similarly as above, a Deep Forest (DF) using ℓ forest layers is first fitted
to the training data. The first 3ℓ− 1 layers of the MLP are then initialized using the first
3ℓ− 1 layers of the MLP encoding of this pre-trained DF. The parameters of the 3ℓ-th and
all subsequent layers are randomly initialized as explained above.

These tree-based initialization techniques may seem far-fetched at first glance, but they are
actually consistent with recent approaches to adapting Deep Learning models for tabular data.
The key to interpreting them is to think of the first (tree-based initialized) layers of the MLP as
a feature extractor that produces an abstract representation of the input data (in fact, this is a
vector encoding the tree-based predictor’s space partition in which the observation lies). The
subsequent randomly initialized layers, once trained, then perform the prediction task based on
this abstract representation.

3.3.2 Experimental Setup
Datasets & learning tasks We compare prediction performances on a total of 10 datasets: 3
regression datasets (Airbnb, Diamonds and Housing), 5 binary classification datasets (Adult,
Bank, Blastchar, Heloc, Higgs) and 2 multi-class classification datasets (Covertype and Volkert).

Work in progress as of January 16, 2024

https://github.com/LutzPatrick/SparseTreeBasedInit

3.3. A New Initialization Method for MLP Training 101

We mostly chose data sets that are used for benchmarking in relevant literature: Adult, Heloc,
Housing, Higgs and Covertype are used by Borisov et al. 2021 and Bank, Blastchar and Volkert are
used by Somepalli et al. 2021. Moreover, we add Airbnb and Diamonds to balance the different
types of prediction tasks. The considered datasets are all medium-sized (10–60k observations)
except for Covertype and Higgs (approx. 500k observations). Details about the datasets are
given in Appendix S5.1.

Predictors We consider the following tree-based predictors: Random Forest (RF), Deep Forest
(DF Zhou et al. 2019) and XGBoost (denoted by GBDT, Chen et al. 2016). The latter usually
achieves state-of-the-art performances on tabular data sets (see, e.g., Shwartz-Ziv et al. 2022;
Gorishniy et al. 2021; Borisov et al. 2021). We also consider deep learning approaches: MLP
with default uniform initialization (MLP rand. init.) or tree-based initialization (resp. MLP RF
init., MLP GBDT init. and MLP DF init.); and a transformer architecture SAINT Somepalli et al.
2021. This complex architecture is specifically designed for applications on tabular data and
includes self-attention and inter-sample attention layers that extract feature correlations that
are then passed on to an MLP. For regression and classification tasks, we use the mean-squared
error (MSE) and cross-entropy loss for NN training, respectively. We choose SAINT as a baseline
model as it is reported to outperform all other NN predictors on most of our data sets (all except
Airbnb and Diamonds, see Borisov et al. 2021; Somepalli et al. 2021).

(a) Housing (b) Airbnb

1 20 40 60 80 100
Training epochs

0.0

0.1

0.2

0.3

0.4

0.5

M
SE

Lo
ss

1 20 40 60 80 100
Training epochs

4000

6000

8000

10000

12000

14000

16000

M
SE

Lo
ss

(c) Adult (d) Bank

0 5 10 15 20 25 30 35 40
Training epochs

0.3

0.4

0.5

0.6

0.7

Cr
os

sE
nt

ro
py

Lo
ss

0 5 10 15 20 25 30 35 40
Training epochs

0.2

0.4

0.6

0.8

1.0

Cr
os

sE
nt

ro
py

Lo
ss

0.0 2.5 5.0
0.20

0.22

0.24

0.26

(e) Covertype* (f) Volkert

0 5 10 15 20 25 30
Training epochs

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Cr
os

sE
nt

ro
py

Lo
ss

0 5 10 15 20 25 30
Training epochs

0.0

0.5

1.0

1.5

2.0

Cr
os

sE
nt

ro
py

Lo
ss

0 2 4
1.0

1.1

1.2

1.3

MLP rand. init.
MLP RF init.

MLP GBDT init. Train set
Test set

Figure 3.2: Optimization behaviour of randomly, RF and GBDT initialized MLP evaluated over a 5 times
repeated (stratified) 5-fold of each data set, according to Protocol P1. The lines and shaded areas report the
mean and standard deviation. *evaluation on a single 5-fold cross validation.

Work in progress as of January 16, 2024

3.3. A New Initialization Method for MLP Training 102

Parameter optimization All NN are trained using the Adam optimizer (Kingma et al. 2014).
All hyper-parameters (HP) are determined empirically using the optuna library (Akiba et al.
2019) for Bayesian optimization.

For most HP, we use the default search spaces of Borisov et al. 2021. For all HP tuning the tree-
to-MLP translation, we have identified relevant search spaces (see Appendix S4.1). An overview
of all search spaces used for each method and the HP selected for experimental protocol P2 can
be found in Appendix S5.5. The quantity minimized during HP tuning is the model’s validation
loss, and the smallest validation loss that occurred during training for MLP-based models.

3.3.3 A Better MLP Initialization for a Better Optimization
In this subsection, the optimization of standard MLP is shown to benefit from the proposed
initialization technique. Experiments have been conducted on 6 out of the 10 data sets.

Experimental protocol 1 (P1) To obtain comparable optimization processes, we ensure that
all MLP-related hyper-parameters (width, depth, learning rate), are identical for all the MLP
regardless of the initialization scheme. These HP are chosen to maximize the predictive perfor-
mance of the standard randomly initialized MLP. All HP related to the initialization technique
(HP for the tree-based predictors and their translation) are optimized independently for each
tree-based initialization.

Results Figure 3.2 shows that for most data sets, the use of tree-based initialization methods for
MLP training provides a faster convergence towards a better minimum (in terms of generalization)
than random initialization. This is all the more remarkable since Protocol P1 has been calibrated
in favor of random initialization. Among tree-based initializers, GBDT initializations outperform
or are on par with RF initializations in terms of the optimization behavior on all regression and
binary classification problems. However, for multi-class classification problems, the advantages
of tree-based initialization seem to be limited. This is probably due to the fact that the MLP
architecture at play is tailored for random initialization, being thus too restrictive for tree-based
initializers. Experiments presented in Appendix S5.3 with fixed arbitrary widths corroborate
this idea: in this case, the RF initialization is beneficial for the optimization process. For the
Adult, Bank, and Volkert data sets, Figure 3.2 also shows the performance of each method at
initialization. None of these procedures leads to a better MLP performance at initialization (due
to both the non-exact translation from trees to MLP and to the additional randomly initialized
layers), but rather help guiding the MLP in its learning process.

3.3.4 A Better MLP Initialization for a Better Generalization
In this subsection, tree-based initialization methods are shown to systematically improve the pre-
dictive power of neural networks compared to random initialization. We compare our procedure
to the predictors described in Section 3.3.2, but also to 3 other NN techniques: one close to the
default uniform initialization (Xavier init., see Glorot et al. 2010), one using random orthogonal
matrices (LUSV init., see Mishkin et al. 2015) and the winning ticket lottery strategy (WT prun.,
see Frankle et al. 2018), which is a pruning method used during training to end up with a sparse
NN. The reader may refer to Appendix S5.4 for more details about these three techniques.

Experimental protocol 2 (P2) EachMLP is trained on 100 epochs, but withHP tuned depending
on the initialization technique. For maximum comparability, the optimization budget is strictly
the same for all methods (100 “optuna” iterations each, where one optuna iteration consists

Work in progress as of January 16, 2024

3.3. A New Initialization Method for MLP Training 103

Model
Data set Housing Airbnb Diamonds Adult Bank Blastchar Heloc Higgs Covertype Volkert

MSE ↓
MSE ↓
(x103)

MSE ↓
(x10-3)

AUC ↑
(in %)

AUC ↑
(in %)

AUC ↑
(in %)

AUC ↑
(in %)

AUC ↑
(in %)

Acc. ↑
(in %)

Acc. ↑
(in %)

Random Forest 0.263±0.009 5.39±0.13 9.80±0.35 91.6±0.3 92.8±0.3 84.5±1.2 91.3±0.6 80.4±0.1 83.6±0.1 64.2±0.3
GBDT 0.208±0.010 4.71±0.15 7.38±0.28 92.7±0.3 93.3±0.3 84.7±1.0 92.1±0.4 82.8±0.1 97.0±0.0 71.3±0.4

Deep Forest 0.225±0.008 4.68±0.16 8.23±0.29 91.8±0.3 92.9±0.2 83.7±1.2 90.3±0.5 81.2±0.0* 92.4±0.1* 66.3±0.4

MLP rand. init. 0.258±0.011 5.07±0.16 15.5±12.5 90.5±0.4 91.0±0.3 81.4±1.2 80.1±0.1 83.2±0.3 96.7±0.0 72.2±0.4
MLP Xavier init. 0.263±0.012 5.05±0.17 12.4±6.19 90.5±0.5 90.8±0.5 81.7±1.3 79.9±1.1 82.8±0.1 96.8±0.0 72.1±0.4
MLP LUSV init. 0.295±0.018 4.99±0.14 14.1±5.00 90.5±0.5 90.2±0.5 84.3±1.2 79.9±0.9 81.7±0.1 96.5±0.0 70.8±0.5
MLPWT prun. 0.248±0.011 5.26±2.11 9.83±5.07 90.6±0.4 90.9±0.5 84.4±1.2 89.6±0.7 82.9±0.1 97.0±0.0 71.5±0.4
MLP RF init. 0.222±0.009 4.66±0.16 7.93±0.22 92.1±0.3 92.4±0.4 84.4±1.2 91.7±0.4 83.6±0.1 96.7±0.0 74.1±0.4

MLP GBDT init. 0.206±0.007 4.70±0.09 8.15±0.35 92.2±0.3 92.5±0.3 84.6±1.2 91.5±0.6 83.0±0.0 96.2±0.0 73.5±0.5
MLP DF init. 0.234±0.016 4.81±0.13 8.28±0.24 91.9±0.4 92.2±0.3 84.2±1.0 91.4±0.6 83.3±0.1* 94.5±0.3* 71.3±0.5

SAINT 0.258±0.011 4.81±0.15 17.7±3.83 91.6±0.3 92.2±0.4 84.0±0.8 90.2±0.7 83.7±0.1* 96.6±0.1* 70.1±0.4

Table 3.1: Best scores and their standard deviations for Protocol 2. For each data set, predictors performing
at least as well as the best over all (resp. best DL) score up to its standard deviation are highlighted in
bold (resp. underlined). All scores are based on a 5 times repeated (stratified) 5-fold cross validation. For
each model, HP have been chosen via the “optuna” library with 100 iterations. See Appendix S5.4 for a
comparison with literature results. *score based on a simple 5-fold cross val.

of one hold-out validation). In particular, when using a tree-based initializer, we use 25 HP
optimization iterations to find optimal HP for the tree-based predictor, fix these HPs, and then
use the remaining 75 iterations to determine optimal HP for the MLP. For all NN approaches,
the model with the best performance on the validation set during training is kept (using the
classical early-stopping procedure). Performances are measured via the MSE for regression, the
AUROC score (AUC) for binary classification and the accuracy (Acc.) formulti-class classification,
averaging 5 runs of 5-fold cross-validation.

Results Table 3.1 shows that RF or GBDT initialization strictly outperform random initializa-
tion, in terms of final generalization performance, for all data sets except Covertype (for which
performances are similar). They also systematically achieve better results than the LUSV and
Xavier init. and are better on all but 2 datasets than the WT pruning procedure which is a more
refined procedure. Additionally, the MLP using both RF and GBDT initialization techniques
outperform SAINT on all medium-sized data sets and fall short on large data sets (Higgs and
Covertype).

Despite its simplicity , the proposed method (based on RF or GBDT) is on par with GBDT on
half of the data sets, ranking MLP as relevant predictors for tabular data. Note that the GBDT
used for initialization of the MLP is way less powerful than the best one found here (see details in
Tables S10 and S11). This shows that our procedure produces, with a relatively low initialization
cost, powerful MLP relevant for tabular data. Among the tree-based initializers, RF is on par with
or outperforms GBDT initialization on all data sets but Housing. DF initialization, for its part,
cannot compete with RF and GBDT initialization, despite showing some improvement over the
random one (except for Covertype and Volkert). This underlines that injecting prior information
via tree-based methods into the first layers of a MLP is, among all the aforementioned methods,
the best way to improve its performance.

The interested reader may find a comparison of the optimization procedures of all MLP
methods and SAINT (Figure S13) and tables summarizing all HP (Tables S10 and S11) in
Appendix S5.5. We remark that tree-based initializers generally bring into play wider networks
with similar depths (fixed width of 2048 and adaptive depth between 4 and 10) compared to MLP
with default initialization. Yet, for most data sets, the overall procedure is computationally more

Work in progress as of January 16, 2024

3.3. A New Initialization Method for MLP Training 104

efficient than state-of-the-art deep learning architectures like SAINT, both in terms of number of
parameters and training time (see Tables S6-S8 in Appendix S5.4).

3.3.5 Analyzing Key Elements of the New Initialization Methods

128 256 512 1024 2048
MLP width

0.21

0.22

0.23

0.24

0.25

0.26

M
SE

Lo
ss

MLP random init. MLP GBDT init.

Figure 3.3: Influence of width
on the generalization perfor-
mance for random and GBDT
initializations. Mean values over
5 times repeated 5-fold cross-
validation on Housing.

Influence of the MLP width We mainly use standard search
spaces from (Borisov et al. 2021) to determine the optimal hyper-
parameters for each model. However, the MLP width is an ex-
ception to this. The standard search spaces used in the literature
usually involve MLP with a few hundred neurons per layer (e.g.
up to 100 neurons in Borisov et al. 2021); yet, in this work, we
consider MLP with a width up to 2048 neurons. Large MLP are
actually very beneficial for tree-based initialization methods as
they allow the use of more expressive tree-based models in the
initialization step.

Figure 3.3 compares the performance of an MLP with ran-
dom/GDBT initializations and various widths. There is no gain
in prediction by using wider (thus more complex) NN, when
randomly initialized. This is corroborated by the results of Table
S4: for all regression and binary classification data sets, the performance of our (potentially much
wider) MLP with random initialization is consistently close to the literature values, and only
increases for multi-class classification tasks. However, anMLP initialized with GBDT significantly
benefits from enlarging the NN width (justifying a fixed width of 2048 for tree-based initialized
MLP). This confirms the idea that tree-based initialization helps to reveal relevant features to the
MLP, all the more as the width increases, and by doing so, boosts the MLP performance after
training.

Performance of the initializer Another interesting step in unraveling the essence of the new
initialization method is to understand which characteristics of a tree-based model are relevant to
its success as an initializer. Undoubtedly, its predictive accuracy plays an important role, but does
this aspect alone suffice to characterize the success of the new initialization method? Figure S14
compares the predictive performance of different RF/GBDT initializers and the performance of
the respective MLP after training. As the figure illustrates, a better performance of the tree-based
predictor used for initialization does not always lead to a better performance of the MLP after
training (see Airbnb and Volkert). This observation suggests that other aspects, such as the
expressiveness of the feature interactions captured by the initializer, the structure it induces on
the MLP or the weight distributions of the initializer, must also play a significant role in the
initialization method’s success.

MLP sparsity Finally, we investigate the structure that tree-based initialization induces on
the MLP after training. Figure 3.4 shows the weight distributions of the three first and the last
layers before and after MLP training, for random, RF and GBDT initializations on Housing (see
Appendix S5.7 for more data sets). It indicates that the weight distribution on the first two layers
change significantly during training when the MLP is randomly initialized: the weights are
uniformly distributed at epoch 0 but appear to be Gaussian after training. When RF or GBDT
initializers are used instead, the weights of the first two layers are sparsely distributed at epoch
0 by construction, and their distribution is preserved during training (notice the logarithmic
y-axis for these plots in Figure 3.4). Note that the (uniform) distribution of the weights in other
layers is also preserved through training (third and last lines of Figure 3.4). This means that

Work in progress as of January 16, 2024

S1. Details on Deep Forest (DF) and its Translation 105

our initialization technique, in combination with SGD optimization strategies, introduces an
implicit regularization of the NN optimization: the sparse structure of the initialization (on first
layers) is maintained. This is very similar to the CNN architecture (constrained by design), a
very successful class of NN designed for image processing. Besides, the weight distributions
are not squeezed towards zero during learning when sparse initialization is used, preventing
poor generalization performances according to previous works (Neal 2012; Blundell et al. 2015).

0.5 0.0 0.5
0

50

100

150

200

La
ye

r
1

0.5 0.0 0.5
0

100

200

300

400

10000 0
100

101

102

103

104

10000 0
100

101

102

103

104

30000 20000 10000 0
100

101

102

103

104

30000 20000 10000 0
100

101

102

103

104

0.2 0.0 0.2
0

5000

10000

15000

20000

25000

La
ye

r
2

0.2 0.0 0.2
0

25000

50000

75000

100000

125000

150000

175000

200000

0.4 0.2 0.0
100

101

102

103

104

105

106

0.4 0.2 0.0
100

101

102

103

104

105

106

10 0

101

102

103

104

105

106

10 0

101

102

103

104

105

106

0.5 0.0 0.5
0

5000

10000

15000

20000

25000

La
ye

r
3

0.5 0.0 0.5
0

100000

200000

300000

400000

0.05 0.00 0.05
0

10000

20000

30000

40000

50000

60000

70000

80000

0.05 0.00 0.05
0

50000

100000

150000

200000

250000

0.02 0.00 0.02
0

10000

20000

30000

40000

50000

60000

70000

80000

0.02 0.00 0.02
0

20000

40000

60000

80000

100000

0.0 0.1

before training

0

5

10

15

20

25

30

35

La
st

 L
ay

er

0.0 0.1

after training

0

100

200

300

400

500

0.02 0.00 0.02

before training

0

10

20

30

40

50

0.02 0.00 0.02

after training

100

101

102

0.02 0.00 0.02

before training

0

10

20

30

40

50

0.02 0.00 0.02

after training

101

Random init. RF init. GBDT init.

Figure 3.4: Histograms of the first three and last
layers’ weights before and after theMLP training
on Housing. Comparison between random, RF
and GBDT initializations.

Looking at Figure 3.4, one may get the impres-
sion that the weights in the first layers remain un-
changed during GD training, and that ultimately
no learning takes place in these layers. However,
numerical experiments (see Appendix S5.4) show
that the weights of all layers are modified during
learning; the first two layers actually undergo the
greatest changes.

3.4 Conclusion and Future Work
This work builds upon the permeability that exists
between tree methods and neural networks, in par-
ticular how the former can help the latter during
training, with tabular inputs. We proposed new
methods for smartly initializing the first layers of
standard MLP using pre-trained tree-based meth-
ods. The sparsity of this initialization is preserved
during training, which shows that it encodes rele-
vant correlations between the data features. Among deep learning methods, such initializations
of MLP always improve the performance compared to the widely used random initialization,
and provide an easy-to-use and more efficient alternative to SAINT (attention-based method) for
tabular data. The performance of this wisely-initialized MLP is remarkably approaching that of
XGBoost, which so far reigns supreme for learning tasks on tabular data.

Limitations & future work While our procedure is quite generic, some restrictions are notice-
able. First, our analysis only allows to initialize neural networks with tanh activation functions;
removing this limitation by considering ReLU is a good avenue for future work. Besides, while
quite reasonable, our initialization is more time-consuming than the random (default) one. More-
over, we need to further investigate the benefits of our initialization method on very large data
sets. Finally, another interesting direction could be using the efficient hyperparameter search in
tree-based methods to automatically determine a good default NN architecture.

S1 Details on Deep Forest (DF) and its Translation
The layers of DF are composed of an assortment of Breiman’s Random Forests and Completely-
Random Forests (CRF, Fan et al. 2003) and are trained one after another in a cascade manner. At
a given layer, the outputs of all forests are concatenated, together with the raw input data. This
new vector serves as input for the next DF layer. This process is repeated for each layer and the
final output is obtained by averaging the forest outputs of the best layer (without raw data).

Work in progress as of January 16, 2024

S2. Details of the Translation of a Decision Tree into an MLP 106

Figure 1: Illustration of the cascade forest structure. Sup-
pose each level of the cascade consists of two random forests
(black) and two completely-random tree forests (blue). Sup-
pose there are three classes to predict; thus, each forest will
output a three-dimensional class vector, which is then con-
catenated for re-representation of the original input.

neural networks.
We believe that in order to tackle complicated learning

tasks, it is likely that learning models have to go deep. Cur-
rent deep models, however, are always neural networks, mul-
tiple layers of parameterized differentiable nonlinear modules
that can be trained by backpropagation. It is interesting to
consider whether deep learning can be realized with other
modules, because they have their own advantages and may
exhibit great potentials if being able to go deep. This pa-
per devotes to addressing this fundamental question and il-
lustrates how to construct deep forest; this may open a door
towards alternative to deep neural networks for many tasks.

In the next sections we will introduce gcForest and report
on experiments, followed by related work and conclusion.

2 The Proposed Approach
In this section we will first introduce the cascade forest struc-
ture, and then the multi-grained scanning, followed by the
overall architecture and remarks on hyper-parameters.

2.1 Cascade Forest Structure
Representation learning in deep neural networks mostly re-
lies on the layer-by-layer processing of raw features. Inspired
by this recognition, gcForest employs a cascade structure, as
illustrated in Figure 1, where each level of cascade receives
feature information processed by its preceding level, and out-
puts its processing result to the next level.

Each level is an ensemble of decision tree forests, i.e., an
ensemble of ensembles. Here, we include different types
of forests to encourage the diversity, as it is well known
that diversity is crucial for ensemble construction [Zhou,
2012]. For simplicity, suppose that we use two completely-
random tree forests and two random forests [Breiman, 2001].
Each completely-random tree forest contains 500 completely-
random trees [Liu et al., 2008], generated by randomly select-
ing a feature for split at each node of the tree, and growing
tree until each leaf node contains only the same class of in-
stances. Similarly, each random forest contains 500 trees, by
randomly selecting

√
d number of features as candidate (d is

the number of input features) and choosing the one with the

Figure 2: Illustration of class vector generation. Different
marks in leaf nodes imply different classes.

best gini value for split. The number of trees in each forest is
a hyper-parameter, which will be discussed in Section 2.3.

Given an instance, each forest will produce an estimate
of class distribution, by counting the percentage of different
classes of training examples at the leaf node where the con-
cerned instance falls, and then averaging across all trees in the
same forest, as illustrated in Figure 2, where red color high-
lights paths along which the instance traverses to leaf nodes.

The estimated class distribution forms a class vector, which
is then concatenated with the original feature vector to be in-
put to the next level of cascade. For example, suppose there
are three classes, then each of the four forests will produce a
three-dimensional class vector; thus, the next level of cascade
will receive 12 (= 3× 4) augmented features.

To reduce the risk of overfitting, class vector produced by
each forest is generated by k-fold cross validation. In detail,
each instance will be used as training data for k − 1 times,
resulting in k − 1 class vectors, which are then averaged to
produce the final class vector as augmented features for the
next level of cascade. After expanding a new level, the perfor-
mance of the whole cascade will be estimated on validation
set, and the training procedure will terminate if there is no sig-
nificant performance gain; thus, the number of cascade levels
is automatically determined. In contrast to most deep neural
networks whose model complexity is fixed, gcForest adap-
tively decides its model complexity by terminating training
when adequate. This enables it to be applicable to different
scales of training data, not limited to large-scale ones.

2.2 Multi-Grained Scanning
Deep neural networks are powerful in handling feature rela-
tionships, e.g., convolutional neural networks are effective on
image data where spatial relationships among the raw pixels
are critical [LeCun et al., 1998; Krizhenvsky et al., 2012]; re-
current neural networks are effective on sequence data where
sequential relationships are critical [Graves et al., 2013;
Cho et al., 2014]. Inspired by this recognition, we enhance
cascade forest with a procedure of multi-grained scanning.

As Figure 3 illustrates, sliding windows are used to scan
the raw features. Suppose there are 400 raw features and a
window size of 100 features is used. For sequence data, a
100-dimensional feature vector will be generated by sliding
the window for one feature; in total 301 feature vectors are
produced. If the raw features are with spacial relationships,
such as a 20 × 20 panel of 400 image pixels, then a 10 × 10
window will produce 121 feature vectors (i.e., 121 10 × 10

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3554

Figure S5: Illustration of the Deep Forest cascade structure for a classification problem with
3 classes. Each level of the cascade consists of two Breiman RFs (black) and two completely
random forests (blue). The original input feature vector is concatenated to the output of each
intermediate layer. Figure taken from (Zhou et al. 2019).

Forest

First Deep Forest layerInput More Deep Forest layers

. . .

Output

Identity mapping

Figure S6: Illustration of the MLP translation of a Deep Forest. Yellow nodes use the x 7→
2.1{x>0} − 1 activation function and green nodes use the identity activation function.

S2 Details of the Translation of a Decision Tree into an MLP
Recall that a decision tree codes for a partition of the input space in as many parts as there are
leaf nodes in the tree. To know in which partition cell an input feature vector x ∈ Rd falls into, we
move in the tree from the root to the corresponding leaf using simple rules: at eachm-th inner
node, x is passed onto the left child node if its im-th coordinate is less than or equal to some
threshold tm, and to the right child node otherwise. The decision rule at each inner node of the
tree introduces a split of the feature space into two subsets H−

m = {x ∈ Rd | x(im) ⩽ tm} and
H+

m = {x ∈ Rd | x(im) > tm}. Consistent with how the MLP translation works, we intentionally
define H−

m and H+
m such that at each inner node m, H−

m ∪ H+
m = Rd. Let N be the number

of inner nodes of the decision tree; note that the decision tree has exactly N + 1 leaf nodes,
since it is by definition a complete binary tree, see Figure 3.1 for an illustration. For a leaf node
ℓ ∈ {1, . . . , N + 1} of the tree, let P−

ℓ ⊂ {1, . . . , N} (respectively P+
ℓ) be the set of all inner nodes

whose left (respectively right) subtree contains ℓ, that is, P+
ℓ ∪ P−

ℓ is the set of all parent nodes

Work in progress as of January 16, 2024

S2. Details of the Translation of a Decision Tree into an MLP 107

of ℓ. Then, the decision tree sorts an observation x ∈ Rd into its leaf Rℓ if and only if

x ∈ Rℓ =

 ⋂

m∈P−
ℓ

H−
m

 ∩

 ⋂

m∈P+
ℓ

H+
m

 . (3.1)

In fact, {Rℓ}ℓ∈L is the feature space partition coded by the tree, see Figure 3.1 for an example.
Finally, the tree returns the average response of all training samples that fall into the same leaf
as the input data; let us call aℓ the average response of all training samples in Rℓ. The final
prediction of the decision tree g can therefore be expressed as

g(x) =

N+1∑

ℓ=1

aℓ1{x∈Rℓ}.

Let us now explore how anMLP can be designed to reproduce the prediction of a decision tree.
Consider anMLP of depth 3withN neurons on the first layer. For each inner nodem ∈ {1, . . . , N},
the m-th neuron of the first layer indicates on which side of the split introduced by this inner
node a given feature vector lies: it equals−1 if the feature vector lies inH−

m and+1 if it lies inH+
m.

This can be achieved applying the following affine transformation and a sign activation function
to the feature vector,

A1 : x ∈ Rd 7→ x(im) − tm and φ1 : x 7→
{
−1 if x ⩽ 0

1 if x > 0.

The second layer of the 3-layer MLP hasN +1 neurons. For each leaf node ℓ ∈ {1, . . . , N +1},
the ℓ-th neuron of the second layer indicates whether a given feature vector x ∈ Rd lies in Rℓ

or not: it equals +1 if x ∈ Rℓ and −1 if x /∈ Rℓ. Using equation (3.1), this can be achieved by
applying the following affine transformation and a sign activation function to the output of the
first layer,

A2 : x ∈ RN 7→
∑

m∈P+
ℓ

x(m) −
∑

m∈P−
ℓ

x(m) −
∣∣P+

ℓ ∪ P−
ℓ

∣∣+ 1

2
and φ2 : x 7→

{
−1 if x ⩽ 0

1 if x > 0.

The last layer of the MLP contains a single output neuron that returns the tree prediction.
Using the output of the second layer, this can be achieved by applying the following affine
transformation and an identity activation function,

A3 : x ∈ RN+1 7→ 1

2

(
N+1∑

ℓ=1

x(ℓ)aℓ +

N+1∑

ℓ=1

aℓ

)
and φ3 : x 7→ x (3.2)

where aℓ is the average response of all training samples inRℓ. Note that {aℓ}N+1
ℓ=1 is a set of real

numbers in regression problems and a set of probability vectors representing class distributions
in classification problems. An illustration of the MLP translation of a decision tree is shown in
Figure 3.1. This translation procedure is explained, for example, in Biau et al. 2019 with more
details.

Work in progress as of January 16, 2024

S4. Detail on the MLP Translation Accuracy 108

S3 Illustration of our Initialisation Method
We provide below an illustration (Figure S7) showing how the whole MLP is initialised using
both the tree-based method for the first layers and the random initialisation for the deeper layers.

Xi1

Xi2

1x≥0

1x≥0

1x≥0

1x≥0

1x≥0

1x≥0

1x≥0

1x≥0

1x≥0

1x≥0

Tree 1

Tree 2

Xi1

Xi2

tanh

tanh

tanh

tanh

tanh

tanh

tanh

tanh

tanh

tanh

tanh

tanh

tanh

tanh

tanh

tanh

tanh

tanh

tanh

tanh

tanh

tanh

tanh

tanh

. . .

(a) (b)

Figure S7: Illustration of the initialization technique on an MLP with 2 inputs and 1 output. In (a), a
pre-trained tree-based method composed of 2 trees is represented in a NN fashion involving indicator
functions as activation functions. In (b), an MLP of arbitrary depth and involving tanh activation functions
is represented at initialization: the weights of the first two layers are initialized using the information
captured in (a) (note that all connections marked in transparent blue are initialized to 0). The weights of
the subsequent layers are randomly initialized (orange).

S4 Detail on the MLP Translation Accuracy
Recasting aDeep Forest into a deepMLP using ourmethodmay suffer from numerical instabilities
altering the predictive behaviour. This is due to a phenomenon of catastrophic cancellation, more
likely to occur with deep MLP translations. This is explained in the following section.

S4.1 On the Choice of Hyper-Parameters
In Section 3.2.3, four hyper-parameters were introduced to approximate the sign and identity
functions through the layers of an elementary MLP.

We address here the choice of the HPs and propose an optimal range for these parameters in
the sense that they are as small as possible while guaranteeing a faithful MLP translation.

We focus on the analysis of deep forest translation, as the structure of all other tree-based
methods can be seen as a truncated variant of a deep forest. The deep forest is trained and
translated into an MLP on each data set (see Section 3.2) for different values of the HPs. To
identify the influence of each HP, we make them vary in some range while the other three HPs
are fixed to 1010, resulting in an almost perfect approximation of the respective sign and identity
functions. Figure S8 shows the predictive performance of a deep forest and its MLP translation
playing with different HPs.

Work in progress as of January 16, 2024

S4. Detail on the MLP Translation Accuracy 109

100

101

102

103

104

M
SE

Lo
ss

H
ou

si
ng

MLP
Deep Forest

0.5

0.6

0.7

0.8

0.9

Au
ro

cS
co

re
Bi

na
ry

Ad
ul

t

0.5

0.6

0.7

0.8

0.9

Au
ro

cS
co

re
Bi

na
ry

Ba
nk

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

Co
ve

rt
yp

e

100 101 102 103 104

strength01

0.0

0.2

0.4

0.6

Ac
cu

ra
cy

Vo
lk

er
t

10 1 100 101 102 103

strength12
10 1 100 101 102 103

strength23
10 1 100 101 102 103

strength_id

Figure S8: Comparison of the performance of a trained deep forest and its neural network
encoding. Deep forest architecture: maximal depth of 8 per tree, 8 trees per forest, 1 forests per
layer, 3 layers.

Figure S8 shows in particular that
(i) increasing theHPs beyond some limit value is no longer beneficial as the activation functions

are already perfectly approximated;
(ii) across multiple data sets, these limit values are similar.

One could note that the coefficients in the first layer of a decision tree translation should be of a
larger order of magnitude than those corresponding to the other activation functions to achieve
an accurate translation. To give some insight into why this is the case, recall that them-th neuron
of the first layer determines whether the input vector belongs to H−

m or H+
m, and note that its

outputs can be of arbitrarily small size because the vector can be arbitrarily close to the decision
boundaries. Note also that an MLP translation would better compromise on translation accuracy
to ensure sufficient gradient flow. Based on these observations, we remark that choosing the
HP of the following orders allows for maximum gradient flow while still providing an accurate
translation: strength01 ∈ [1, 104], strength12 ∈ [10−2, 102], strength23 ∈ [10−2, 102] and
strength_id ∈ [10−2, 102]. This will actually help us later on to calibrate the search spaces when
empirically tuning these HPs for each data set.

S4.2 A Fundamental Numerical Instability of the Neural Network Encoding
The encoding of a decision tree by a neural network proposed in Section 3.2.3 is numerically
unstable, i.e., it does not necessarily yield the same result as the tree itself, even when using
the original, non-approximated activation functions. This is the result of a catastrophic can-
cellation that occurs within the MLP translation. The term catastrophic cancellation describes

Work in progress as of January 16, 2024

S4. Detail on the MLP Translation Accuracy 110

the remarkable loss of precision that occurs when two nearly equal numbers are numerically
subtracted. For example, take the numbers a = 1 and b = 10−10, and perform the computation
(a + b) − a on a machine with limited precision, say to 8 significant digits. The machine will
return (a+ b)−a = 1− 1 = 0, although this result is clearly not correct. This phenomenon occurs
in the third layer of the MLP encoding, see equation (3.2). The two sums calculated in this layer
are almost equal in magnitude but have opposite signs, resulting in a catastrophic cancellation
that has a greater impact the more partitions of the input space the decision tree uses, i.e. the
deeper it is.

Figure S9 illustrates the effect of this phenomenon, comparing the mean approximation
error between a simple decision tree and its neural network encoding on the airbnb data set. In
Figure S9a, the result at the output layer of the tree was replaced by the exact training mean of
the corresponding decision tree partition, compensating for the catastrophic cancellation. No
such compensation was done for Figure S9b. This shows the grave implications of this instability:
the mean error grows exponentially with the depth of an individual tree.

(a) replacing the output layer’s result with the exact
training mean of the corresp. tree partition

(b) using the output layer’s result with catastrophic
cancellation

Figure S9: Illustration of the fundamental numerical instability of the decision tree encoding.

(a) Random Forest. (b) Deep Forest

Figure S10: Effects of numerical instabilities on more complex tree-based predictors. Airbnb data
set. Random Forests are composed of trees of depth 7. Deep forest architecture: tree depth of 7, 5
trees per forest, 1 forest per layer and a variable number of layers.

Although the errors introduced by this phenomenon may not be large for a given decision
tree, they might accumulate when several such trees are composed, for example in Random
or Deep Forests. Figure S10 compares the mean approximation error between Random/Deep
Forests of different complexities and their corresponding neural net encoding on the Airbnb

Work in progress as of January 16, 2024

S5. Supplements to Numerical Evaluations 111

data set. It shows that the composition of several trees in a cascade manner, as performed by the
Deep Forest, leads to a stronger amplification of their individual inaccuracies than the parallel
composition of trees, as performed by the Random Forest. This result is to be expected because
decision trees composed in parallel do not influence each other’s predictions, whereas in a cascade
architecture the results of the first layer of decision trees affect the input of the subsequent layers
and inaccuracies can thus develop stronger effects.

We note that this catastrophic cancellation can be easily circumvented by introducing an
additional layer. If this maps the output of the second layer from {−1, 1} to {0, 1}, the last
layer could then simply multiply each of these outputs by the average response of a partition set.
However, Figure S10 also shows that the error introduced by the catastrophic cancellation remains
relatively small, except for deep forests with many layers. Therefore, we did not immediately
address this issue and planned to fall back on this analysis if the MLP coding did not produce the
expected results later in our analysis. However, this somewhat imprecise MLP coding worked
well for all our purposes.

S5 Supplements to Numerical Evaluations

S5.1 Data sets
Data sets description In the sequel, we run numerical experiments on 10 real-world, hetero-
geneous, tabular data sets, all but two of which have already been used to benchmark deep
learning methods, see Borisov et al. 2021; Somepalli et al. 2021. The chosen data sets represent
a variety of different learning tasks and sample sizes. Tables S2 & S3 respectively give links to
the platforms storing the data sets (four of them are available on the UCI Machine Learning
Repository ML_Repo) and an overview of their main properties.

Data set Link
Housing Scikit-learn
Airbnb Inside Airbnb

Diamond OpenML
Adult UCI Machine Learning Repository
Bank UCI Machine Learning Repository

Blastchar Kaggle
Heloc FICO
Higgs UCI Machine Learning Repository

Covertype UCI Machine Learning Repository
Volkert AutoML

Table S2: Links to data sets.

Housing Airbnb Diamonds Adult Bank Blastchar Heloc Higgs Covertype Volkert
Dataset size 20 640 119 268 53 940 32 561 45 211 7 043 9 871 550 000 581 012 58 310

Num. features 8 10 6 6 7 3 21 27 44 147
Cat. features 0 3 3 8 9 17 2 1 10 0

Task Regr. Regr. Regr. Classif. Classif. Classif. Classif. Classif. Classif. Classif.
Classes - - - 2 2 2 2 2 7 10

Table S3: Main properties of the data sets.

Work in progress as of January 16, 2024

https://inria.github.io/scikit-learn-mooc/python_scripts/datasets_california_housing.html
http://insideairbnb.com/get-the-data/
https://www.openml.org/search?type=data&sort=runs&id=44059
https://archive.ics.uci.edu/ml/datasets/adult
https://archive.ics.uci.edu/ml/datasets/bank+marketing
https://www.kaggle.com/datasets/blastchar/telco-customer-churn
https://community.fico.com/s/explainable-machine-learning-challenge
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/covertype
https://automl.chalearn.org/data

S5. Supplements to Numerical Evaluations 112

The Housing data set contains U.S. Census household attributes and the associated learning
task is to predict the median house value for California districts (Housing). The Airbnb data
set is provided by the company itself and holds attributes on different Airbnb listings in Berlin,
such as the location of the apartment, the number of reviews, etc. The goal is to predict the price
of each listing. Similarly, the diamond data set contains characteristics of different diamonds
(e.g., carat weight or cut quality), and the goal is to predict the price of a diamond. The Adult
data set contains Census information on adults (over 16-year olds) and its prediction task is to
determine whether a person earns over $50k a year. The Bank data set is related with direct
marketing campaigns (phone calls) of a Portuguese banking institution, the classification goal
is to predict whether the client will subscribe a term deposit. The Blastchar data set features
information on customers of a fictional company that provides phone and internet services. The
classification goal is to predict whether a customer cancels their contract in the upcoming month.
The Heloc data set contains personal and credit record information on people that recently took
on a line of credit, the classification task being to predict whether they will repay this credit
within 2 years. On the Higgs data set (baldi2014searching), the classification problem is to
distinguish between signal processes that produce Higgs bosons and background processes that
do not. For this purpose, it contains kinematic properties measured by the particle detectors in
the accelerator that have been produced using Monte Carlo simulations. The Covertype data
set contains cartographic variables on forest cells and it’s task is to predict the forest cover type.
Finally, for the Volkert data set, different patches of the same size have been cut from images that
belong to 10 different landscape scenes (coast, forest, mountain, plain, etc.). Each observation
contains visual descriptors of one patch, the goal of this classification problem is to find the
landscape type of the original picture.

S5.2 Implementation Details
RFs are implemented using sklearn’s RandomForestRegressor and RandomForestClassifier
classes with default configuration for all parameters that are not mentioned explicitly. DFs are
implemented using the ForestLayer library (Zhou et al. 2019) and GBDTs are implemented
using the XGBoost library (Chen et al. 2016). MLPs are implemented and trained with pytorch,
using the mean-squared error and the cross entropy as objective function for regression and
classification problems respectively. The SAINTmodel is implemented using the library provided
by Somepalli et al. 2021.

All methods are trained on a 32 GB RAMmachine using 12 Intel Core i7-8700K CPUs, and
one NVIDIA GeForce RTX 2080 GPU when possible (only the GDBT and MLP implementations
including SAINT use the GPU). Hyper-parameter searches are parallelized on up to 4 of these
machines.

Hyper-parameter optimization We tune all hyper-parameters using the optuna library (Akiba
et al. 2019)with a fixed number of iterations for all models. In this context, an iteration corresponds
to a set of hyper-parameters whose performance is evaluated with respect to a given method. The
optuna library uses Bayesian optimization and, in particular, the tree-structured Parzen estimator
model (TPE) to determine the parameters to be explored at each iteration of hyper-parameter
optimization. This approach has been reported to outperform random search for hyper-parameter
optimization (Bayesian_optim_better_than_random_search).

Data pre-processing Machine learning pipelines often include pre-processing transformations
of the input data before the training phase, a necessary step, especially when using neural
networks (bishop1995neural). We follow the pre-processing that is used in Borisov et al. 2021

Work in progress as of January 16, 2024

S5. Supplements to Numerical Evaluations 113

Covertype* Volkert

0 5 10 15 20 25 30
Training epochs

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Cr
os

sE
nt

ro
py

Lo
ss

0 5 10 15 20 25 30
Training epochs

0.0

0.5

1.0

1.5

2.0

Cr
os

sE
nt

ro
py

Lo
ss

MLP rand. init.
MLP RF init.

MLP GBDT init. Train set
Test set

Figure S11: Optimization behaviour of randomly, RF and GBDT initialized MLP and SAINT evaluated
over a 5 times repeated (stratified) 5-fold of each data set, according to Protocol P1, but where the MLP
width is fixed to 2048 for all methods. The lines and shaded areas report the mean and standard deviation.
*evaluation on a single 5-fold cross validation.

and Somepalli et al. 2021. Hence, we normalize all continuous input features to zero mean and
unit variance. This corresponds to linearly transform the input features as follows

x̃:j =
x:j − µ

σ

where x:j is the j-th continuous feature of either train, validation or test observations, µ and σ
are the mean and standard deviation calculated over the train set only. This way we assure that
no information from the validation or test sets is used in the normalization step. Moreover, all
categorical features are label encoded, i.e. each level of a categorical variable is replaced with an
integer in {1, . . . , # levels}.

S5.3 Working with an Arbitrary Width in P1 (Optimization Behaviour)
Figure S11 shows the optimization behaviour of the randomly, RF and GBDT initialized MLP on
the multi-class classification problems. Note that in contrast to Figure 3.2 in this setting, which
is less restrictive for RF initialization, this method does indeed lead to a faster convergence and a
better minimum (in terms of generalization).

However, for these multi-class classification problems, the GBDT initialization tends to de-
teriorate the optimization compared to RF or random initialization methods. Indeed, RF are
genuinely multiclassification predictors whose splits are built using all output classes simultane-
ously whereas splits in GBDT are only built following a one-vs-all strategy. This implies that,
with a fixed budget of splits (and therefore of neurons), RF are likely to be more versatile than
GBDT.

S5.4 Additional Material for Protocol P2 (Generalization Behaviour)
Details About Additional NN Training Techniques

In Protocol 2, we assess the performances of generalization of the proposed methods, of the
predictors described in Section 3.3.2, but also on three additional NN techniques:

1. the Xavier initialization (Glorot et al. 2010) corresponds to a rescaled uniform initialization

Work in progress as of January 16, 2024

S5. Supplements to Numerical Evaluations 114

U ∼ U
[
±

√
6√

nj+1+nj

]
, where nj are the number of neurons in layer j. This random initial-

ization is very close to the one used by default in this paper and simply denoted “random
init";

2. the layer-sequential unit-variance orthogonal initialization (LSUV) (Mishkin et al. 2015)
consists in a simple initialization that combines elements of (Glorot et al. 2010) and
(saxe2013exact). In a first step, the weights of each layer are initialized as random or-
thogonal matrices. Then, the variance in the outputs on each layer on the training data is
scaled close to 1 by repeatedly dividing the layer’s weights by the empirically determined
standard deviation. Although targeted to Computer Vision applications, this approach
seems easily adaptable for our case;

3. the winning ticket network pruning (Frankle et al. 2018) is more a simplification approach
of the NN architecture during training than an initialization technique. That being said,
it remains interesting to compare this strategy to the one developed in the paper, as the
winning ticket network pruning enforces NN sparsity during training. This can be indeed
put in parallel to the sparsity of the first layers introduced by the proposed initialization and
preserved during training. The principle is to train a randomly initialized network, pruning
it to obtain a sparse NN with similar performance and then re-train the sparse network
a second time using the same instance of random initialization as before. These steps
are repeated a certain number of times. The winning ticket network pruning is therefore
computationally very intense and has to the best of our knowledge only been studied on
medium-sized data sets. We thus use a slightly different procedure than (Frankle et al.
2018) to determine winning tickets. First of all, we allocate at most N training epochs to
determining a winning ticket where N is the number of epochs during the final model
training itself. This fixed number of training epochs is then distributed among n pruning
rounds, each of which consists in training the model (for N/n epochs), pruning it, and
resetting all non-pruned weights to their initial (random) coefficients. This approach takes
the same time as one-shot pruning but proves to be more efficient.

Extension of Table 3.1 (Best Performances)

Table S4 provides a comparison of the performances obtained by ourselves and the literature
(where available) for each model. Notice that our results are broadly consistent with those in the
literature, with two exceptions. First, our random initialized MLP tends to perform better than in
the literature, which can be explained by the fact that we use a much larger search space than
usual for the MLP width (see Section 3.3.5 for a discussion on this). Second, our performance on
Higgs is significantly lower than in the literature. This can be explained by the fact that we only
include 5% of the original data set’s observations in our analysis due to hardware limitations that
do not allow us to train large MLP on 11M samples.

Benefits of Training the Feature Extractor via Gradient Descent

In Section 3.3, we demonstratedways in which our initializationmethod can be beneficial forMLP
training, resulting in faster convergence towards better minima (in the sens of generalization). A
natural question that might arise in this context is whether translating the tree-based method
into a MLP framework is actually beneficial. After all, one could be tempted to directly use the
tree-based method as a feature pre-processing (without translating it into an MLP) and feed the
resulting features into anMLP. In this case, theMLPwould be trained via gradient descentwithout
the feature extraction. However, it turns out that (i) the weights on the sparse feature extraction

Work in progress as of January 16, 2024

S5. Supplements to Numerical Evaluations 115

Model
Data set

Housing (†) Airbnb Diamonds Covertype (†) Volkert (§)

MSE ↓ MSE ↓ ×103 MSE ↓ ×10−3 Accuracy ↑ in % Accuracy ↑ in %
perf. in
literature

our
results

our
results

our
results

perf. in
literature

our
results

perf. in
literature

our
results

Random Forest 0.272±0.006 0.263±0.009 5.39±0.13 9.80±0.35 78.1±0.1 83.6±0.1 66.3±1.3 64.2±0.3
GBDT 0.206±0.005 0.208±0.010 4.71±0.15 7.38±0.28 97.3±0.0 97.0±0.0 69.0±0.5 71.3±0.4

Deep Forest - 0.225±0.008 4.68±0.16 8.23±0.29 - 92.4±0.1* - 66.3±0.4
MLP rand. init. 0.263±0.008 0.258±0.011 5.07±0.16 15.5±12.5 91.0±0.4 96.7±0.0 63.0±1.56 72.2±0.4
MLP RF init. - 0.222±0.009 4.66±0.16 7.93±0.22 - 96.7±0.0 - 74.1±0.4

MLP GBDT init. - 0.206±0.007 4.70±0.09 8.15±0.35 - 96.2±0.0 - 73.5±0.5
MLP DF init. - 0.234±0.016 4.81±0.13 8.28±0.24 - 94.5±0.3* - 71.3±0.5

SAINT 0.226±0.004 0.258±0.011 4.81±0.15 17.7±3.83 96.3±0.1 96.6±0.1* 70.1±0.6 70.1±0.4

Model
Data set

Adult (†) Bank (§) Blastchar (§) Heloc (†) Higgs (†)
AUC ↑ in % AUC ↑ in % AUC ↑ in % AUC ↑ in % AUC ↑ in %

perf. in
literature

our
results

perf. in
literature

our
results

perf. in
literature

our
results

perf. in
literature

our
results

perf. in
literature

our
results

Random Forest 91.7±0.2 91.6±0.3 89.1±0.3 92.8±0.3 80.6±0.7 84.5±1.2 90.0±0.2 91.3±0.6 79.7±0.0 80.4±0.1
GBDT 92.8±0.1 92.7±0.3 93.0±0.2 93.3±0.3 81.8±0.3 84.7±1.0 92.2±0.0 92.1±0.4 85.9±0.0 82.8±0.1

Deep Forest - 91.8±0.3 - 92.9±0.2 - 83.7±1.2 - 90.3±0.5 - 81.2±0.0*
MLP rand. init. 90.3±0.2 90.5±0.4 91.5±0.2 91.0±0.3 59.6±0.3 81.4±1.2 80.3±0.1 80.1±0.1 85.6±0.0 83.2±0.3
MLP RF init - 92.1±0.3 - 92.4±0.4 - 84.4±1.2 - 91.7±0.4 - 83.6±0.1

MLP GBDT init. - 92.2±0.3 - 92.5±0.3 - 84.6±1.2 - 91.5±0.6 - 83.0±0.0
MLP DF init. - 91.9±0.4 - 92.2±0.3 - 84.2±1.0 - 91.4±0.6 - 83.3±0.1*

SAINT 91.6±0.4 91.6±0.3 93.3±0.1 92.2±0.4 84.7±0.3 84.0±0.8 90.7±0.2 90.2±0.7 88.3±0.0 83.7±0.1*

Table S4: Best scores for Protocol P2. For each data set, our best overall score is highlighted in bold and our best Deep
Learning score is underlined. Our scores are based on 5 times repeated (stratified) 5-fold cross validation. For each of
our models, HP were selected via the optuna library (100 iterations). Sources for literature values: Borisov et al. 2021 (†)
and Somepalli et al. 2021 (§). *score based on a single 5-fold cross validation.

layer are indeed modified during gradient descent optimization and (ii) training the feature
extractor via gradient descent largely contributes to the competitive generalization performance
of our initialization method.

Figure S12 shows the histograms of the differences between allMLPparameters at initialization
(RF strategy) and after training. As the histograms indicate, the weights in all layer throughout
the MLP are modified during training. In particular, the weights of the first two (RF initialized)
layers are not stationary but change to a large extent.

Table S5 shows the generalization performance of MLP initialized with the RF strategy, and
compares the two scenarios in which the parameters of the first two layers (that is, the feature
extraction layers built using the RF) are modified or frozen during MLP training. These results
show that training the feature extraction layers is essential for the success of our initialization
method.

Number of Parameters of Best Neural Networks

In Table S6, we compare the number of parameters of each NN method. Although the tree-based
initialised MLP contain more parameters than the randomly initialized ones, the former are
mostly sparse and the execution times are close (see Table S7). Finally note that the number of
parameters of the RF/GBDT init. MLP is globally on par with that of SAINT (sometimes more,
sometimes less) but for a smaller execution times (Table S7) and mostly better performances
(Table S4).

Work in progress as of January 16, 2024

S5. Supplements to Numerical Evaluations 116

5 0 5
1e 2

101

103

D
ia

m
on

ds
5 0 5

1e 2

101

103

105

5 0 5
1e 2

101

103

105

5 0 5
1e 2

100

101

102

1 0 1
1e 2

101

103

Ba
nk

1 0 1
1e 2

101

103

105

1 0 1
1e 2

102

104

106

1 0 1
1e 2

102

104

106

1 0 1
1e 2

100

101

102

1 0 1

Layer 1
1e 1

101

103

Co
ve

rt
yp

e

1 0 1

Layer 2
1e 1

102

104

106

1 0 1

Layer 3
1e 1

102

104

106

1 0 1

Layer 4
1e 1

102

104

106

1 0 1

Layer 5
1e 1

101

103

105

1 0 1

Layer 6
1e 1

101

103

105

1 0 1

Layer 7
1e 1

101

103

Figure S12: Histograms of the difference between allMLPparameters at initialization (RF strategy)
and after training. Three data sets have been chosen for illustrative proposes. The behaviour in
the light of our analysis (see S5.4) is similar on the 7 other data sets.

Model
Data set Housing Airbnb Diamonds Adult Bank Blastchar Heloc Higgs Covertype Volkert

MSE ↓
MSE ↓
(x103)

MSE ↓
(x10-3)

AUC ↑
(in %)

AUC ↑
(in %)

AUC ↑
(in %)

AUC ↑
(in %)

AUC ↑
(in %)

Acc. ↑
(in %)

Acc. ↑
(in %)

MLP rand. init. 0.258±0.011 5.07±0.16 15.5±12.5 90.5±0.4 91.0±0.3 81.4±1.2 80.1±0.1 83.2±0.3 96.7±0.0 72.2±0.4
MLP RF init. frozen 0.262±0.018 14.5±2.71 13.7±1.48 91.1±0.3 90.9±0.5 84.4±0.9 91.0±0.6 75.9±0.2 92.2±0.2 69.4±0.5

MLP RF init. 0.222±0.009 4.66±0.16 7.93±0.22 92.1±0.3 92.4±0.4 84.4±1.2 91.7±0.4 83.6±0.1 96.7±0.0 74.1±0.4

Table S5: Best scores for Protocol 2. The scores are based on 5 times repeated (stratified) 5-fold cross
validation. MLP RF init. frozen refers to the MLP RF init. model where the parameters of the first two layers
(that are initialized using the Random Forest) are frozen during training, that is, they are kept at their initial
values.

Model
Data set Housing Airbnb Diamonds Adult Bank Blastchar Heloc Higgs Covertype Volkert

MLP rand. init. 2.47M 1.86M 363k 1.09M 52.4K 13.1M 11.3M 11.6M 1.14M 9.03M
MLP RF init. 33.6M 12.6M 8.42M 29.4M 8.43M 25.2M 16.8M 4.26M 21.1M 17.1M

MLP GBDT init. 8.41M 12.6M 12.6M 33.6M 8.43M 16.8M 25.2M 8.46M 4.32M 21.3M
MLP DF init. 88.1M 34.0M 59.3M 42.0M 46.2M 34.36M 25.8M 43.2M 57.6M 34.1M

SAINT 56.8M 27.0M 53.1M 7.20M 6.12M 322M 98.2M 43.2M 6.44M 169M

Table S6: Comparison of the number of parameters for each model.

Work in progress as of January 16, 2024

S5. Supplements to Numerical Evaluations 117

Model
Data set Housing Airbnb Diamonds Adult Bank Blastchar Heloc Higgs Covertype Volkert

MLP rand. init. 5.96 (32) 91.9 (98) 13.3 (31) 11.8 (37) 21.6 (62) 6.78 (34) 14.3 (60) 467 (32) 312 (69) 12.3 (31)
MLP RF init. 37.8 (29) 131 (44) 26.8 (25) 17.2 (19) 21.5 (23) 8.58 (18) 6.61 (15) 253(39) 2040 (91) 28.3 (25)

MLP GBDT init. 22.9 (49) 280 (95) 53.6 (37) 34.5 (31) 7.47 (3) 7.76 (7) 8.54 (8) 63.0 (5) 437 (66) 52.8 (37)
MLP DF init. 233 (72) 360 (48) 182 (31) 99.4 (54) 105 (26) 29.0 (52) 14.7 (19) 3280 (76) 5580 (95) 181 (31)

SAINT 81.9 (37) 640 (83) 394 (84) 15.6 (11) 52.7 (32) 7.23 (2) 51.0 (31) 2310 (19) 6580 (97) 394 (84)

Table S7: Comparison of the execution time in seconds for model initialization and training until the best
validation lost is reached. The number of training epochs is indicated in parentheses.

Model
Data set Housing Airbnb Diamonds Adult Bank Blastchar Heloc Higgs Covertype Volkert

MLP rand. init. 0.00/5.96 (32) 0.00/91.9 (98) 0.00/13.3 (31) 0.00/11.8 (37) 0.00/21.6 (62) 0.00/6.78 (34) 0.00/14.3 (60) 0.00/467 (32) 0.00/312 (69) 0.00/12.3 (31)
MLP RF init. 2.21/35.6 (29) 1.87/129 (44) 2.20/24.6 (25) 1.16/16.0 (19) 1.89/19.6 (23) 2.81/5.77 (18) 1.78/4.83 (15) 6.31/247 (39) 3.67/2040 (91) 3.70/24.6 (25)

MLP GBDT init. 5.35/17.5 (49) 4.19/276 (95) 4.65/48.9 (37) 2.32/32.2 (31) 4.27/3.20 (3) 6.07/1.69 (7) 4.65/3.89 (8) 4.18/58.8 (5) 2.30/435 (66) 3.88/48.9 (37)
MLP DF init. 15.1/218 (72) 5.31/355 (48) 7.19/175 (31) 8.36/91 (54) 9.25/96 (26) 6.64/22.3 (52) 5.64/9.04 (19) 18.9/3260 (76) 11.2/5570 (95) 5.87/175 (31)

Table S8: Comparison of the execution time in seconds for MLP initialization/training until the best
validation lost is reached. The number of training epochs is indicated in parentheses. A value of 0.00
indicates running times smaller than 5× 10−3 seconds.

Comparison of the Execution Times of the Best Neural Networks

Table S7 presents a comparison of the execution times of the training of different NN methods
using the hyper-parameters determined by the protocol P2. For each model, the total training
time (initialization + gradient descent optimization) is given, measured up to the point where
the best validation loss is reached (“early stopping”). It shows that RF/GBDT initialized MLP
train faster than SAINT and a bit slower than randomly initialized MLP. For completeness, Table
S8 gives the execution time for the initialization and training step separately.

Optimization Behaviour

For completeness, Figure S13 shows the optimization behaviour of the randomly, RF and GBDT
initialized MLP as well as SAINT under the Protocol P2.

S5.5 Hyper-Parameter Detting
Search Spaces

Table S9 shows the HP search spaces that were used to determine an optimal HP setting. The
same search spaces were used for the experimental protocols P1 and P2. Note that, in Table S9,
n_classes corresponds to the number of classes for classification problems and is 1 for regression
problems. Furthermore, the different search spaces given for SAINT were used for smaller/larger
data sets, where a data set qualifies as smaller if it has less that 50 explanatory variables.

Experimental Protocol P2

Tables S10 and S11 show the HP setting used for the experimental protocol P2. For the search
spaces and descriptions of the function of each HP see Table S9.

Work in progress as of January 16, 2024

S5. Supplements to Numerical Evaluations 118

Housing Airbnb Diamonds Adult

1 20 40 60 80 100
Training epochs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
SE

Lo
ss

0 20 40 60 80
Training epochs

5000

10000

15000

20000

25000

30000

35000

40000

M
SE

Lo
ss

0 5 10 15 20 25 30
Training epochs

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

M
SE

Lo
ss

0 10 20 30 40 50 60
Training epochs

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Cr
os

sE
nt

ro
py

Lo
ss

0 5 10
0.28

0.30

0.32

0.34

Bank Blastchar Heloc Higgs*

0 5 10 15 20 25 30 35 40
Training epochs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Cr
os

sE
nt

ro
py

Lo
ss

0 5 10

0.20

0.25

0 5 10 15 20 25 30
Training epochs

0.2

0.4

0.6

0.8

1.0

Cr
os

sE
nt

ro
py

Lo
ss

0 5 10 15 20 25 30
Training epochs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Cr
os

sE
nt

ro
py

Lo
ss

0 5 10 15 20 25 30
Training epochs

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Cr
os

sE
nt

ro
py

Lo
ss

Covertype* Volkert

0 20 40 60 80 100
Training epochs

0.0

0.5

1.0

1.5

2.0

Cr
os

sE
nt

ro
py

Lo
ss

0 5 10 15 20 25 30 35 40
Training epochs

0.0

0.5

1.0

1.5

2.0

Cr
os

sE
nt

ro
py

Lo
ss

MLP rand. init.
MLP RF init.

MLP GBDT init.
SAINT

Train set
Test set

Figure S13: Optimization behaviour of randomly, RF and GBDT initialized MLP and SAINT evaluated
over a 5 times repeated (statisfied) 5-fold of each data set, according to Protocol P2. The lines and shaded
areas report the mean and standard deviation. *evaluation on a single 5-fold cross validation.

Work in progress as of January 16, 2024

S5. Supplements to Numerical Evaluations 119

Method Parameter Search space Function

Random Forests
max_depth {1, . . . , 12}

see heren_estimators {1000}
max_features [0, 1]

GBDT

max_depth {1,. . . ,12}

see here
n_estimators {1000}
reg_alpha [10−8, 1]
reg_lambda [10−8, 1]
learning_rate [0.01, 0.3]

Deep Forest

forest_depth {1, 2, 3} Number of Deep Forest layers
n_forests {1} Number of forests per Deep Forest layer

n_estimators {1000}
RF parameters, see heremax_depth {1, . . . , 12}

max_features [0, 1]

MLP random init.

learning_rate [10−6, 10−1] learning rate of SGD training
depth {1, . . . , 10} number of layer
width {1, . . . , 2048} number of neurons per layer
epochs {100} number of SGD training epochs

batch_size {256} batch size of SGD training

MLP RF init.

max_depth {1, . . . , 11}
Parameters of the RF initializer, see heren_estimators 2048/2max_depth

max_features [0, 1]
learning_rate [10−6, 10−1] learning rate of SGD training

depth {3, . . . , 10} number of layer
width {2048} number of neurons per layer
epochs {100} number of SGD training epochs

batch_size {256} batch size of SGD training
strength01 [1, 104] MLP translation parameters, see Section 3.2.3strength12 [0.01, 100]

MLP GBDT init.

max_depth {1,. . . ,11}

Parameters of the GBDT initializer, see here
n_estimators 2048/(n_classes · 2max_depth)
reg_alpha [10−8, 1]
reg_lambda [10−8, 1]

learning_rate_GBDT [0.01, 0.3]
learning_rate [10−6, 10−1] learning rate of SGD training

depth {3, . . . , 10} number of layer
width {2048} number of neurons per layer
epochs {100} number of SGD training epochs

batch_size {256} batch size of SGD training
strength01 [1, 104] MLP translation parameters, see Section 3.2.3strength12 [0.01, 100]

MLP DF init.

forest_depth {1, 2, 3} Number of Deep Forest layers
n_forests {1} Number of forests per Deep Forest layer

n_estimators 2048/2max_depth

RF parameters, see heremax_depth {1, . . . , 12}
max_features [0, 1]
learning_rate [10−6, 10−1] learning rate of SGD training

depth {3, . . . , 10} number of layer
width {2048} number of neurons per layer
epochs {100} number of SGD training epochs

batch_size {256} batch size of SGD training
strength01 [1, 104]

MLP translation parameters, see Section 3.2.3strength12 [0.01, 100]
strength23 [0.01, 100]
strength_id [0.01, 100]

SAINT

epochs {100} number of SGD training epochs
batch_size {256}/{64} batch size of SGD training

dim [32, 64, 128]/[8, 16] number of neurons per layer in attention block
depth {1, 2, 3} number of layers in each attention block
heads {2, 4, 8} number of head in each attention layer

dropout {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8} dropout used during SGD training

Table S9: Hyper-parameter search spaces used for numerical evaluations.
Work in progress as of January 16, 2024

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://xgboost.readthedocs.io/en/stable/parameter.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://xgboost.readthedocs.io/en/stable/parameter.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html

S5. Supplements to Numerical Evaluations 120

Method Parameter Housing Airbnb Adult Bank Covertype Volkert

Random Forests
max_depth 12 12 11 12 12 12
n_estimators 1000 1000 1000 1000 1000 1000
max_features 0.437 0.623 0.596 0.943 0.811 0.688

GBDT

max_depth 12 9 6 7 11 10
n_estimators 1000 1000 1000 1000 1000 1000
reg_alpha 0.305 4.60×10−6 2.39×10−5 1.52×10−4 0.728 4.47×10−6

reg_lambda 1.13×10−2 1.75×10−8 1.35×10−6 1.07×10−3 6.51×10−4 1.71×10−6

learning_rate 3.82×10−2 0.238 1.08×10−2 1.34×10−2 0.181 0.107

Deep Forest

forest_depth 4 9 2 2 9 3
n_forests 1 1 1 1 1 1

n_estimators 1000 1000 1000 1000 1000 1000
max_depth 5 12 11 9 12 12
max_features 0.361 0.410 0.166 0.206 0.218 0.134

MLP random init.

learning_rate 9.01×10−4 4.21×10−4 2.07×10−4 1.1×10−4 1.15×10−4 2.29×10−4

depth 4 4 4 4 4 6
width 1100 959 1175 856 738 1482
epochs 100 100 100 100 100 100

batch_size 256 256 256 256 256 256

MLP RF init.

max_depth 8 10 8 8 10 8
n_estimators 8 2 8 8 2 8
max_features 0.442 0.321 0.613 0.650 0.897 0.825
learning_rate 1.04×10−4 1.72×10−4 1.55×10−5 1.01×10−4 1.04×10−5 1.45×10−4

depth 10 5 5 4 7 6
width 2048 2048 2048 2048 2048 2048
epochs 100 100 100 100 100 100

batch_size 256 256 256 256 256 256
strength01 1090 668 537 71.4 13.7 1.02
strength12 0.0749 1.09 62.7 34.5 1.05×10−2 5.53×10−2

MLP GBDT init.

max_depth 3 4 4 4 8 4
n_estimators 256 128 128 128 1 12
reg_alpha 1.30×10−7 1.10×10−2 1.26×10−8 0.413 1.33×10−2 6.76×10−6

reg_lambda 1.57×10−7 9.52×10−4 7.85×10−4 7.48×10−3 0.643 1.99 ×10−7

learning_rate_GBDT 0.211 0.297 0.202 0.285 0.112 0.272
learning_rate 1.11×10−5 1.97×10−5 4.77×10−5 6.22×10−4 6.19×10−5 1.63×10−4

depth 4 5 6 4 3 7
width 2048 2048 2048 2048 2048 2048
epochs 100 100 100 100 100 100

batch_size 256 256 256 256 256 256
strength01 575 7830 132 20.5 7280 4.08
strength12 5.60 0.461 66.0 5.52 93.4 7.11×10−2

MLP DF init.

forest_depth 6 3 3 2 3 2
n_forests 1 1 1 1 1 1

n_estimators 16 2 64 32 2 8
max_depth 7 10 5 6 10 8
max_features 0.350 0.598 0.992 0.322 0.633 0.342
learning_rate 1.04×10−5 6.67×10−5 1.54×10−5 3.08×10−5 1.58×10−5 2.31×10−4

depth 23 10 9 13 15 9
width 2048 2048 2048 2048 2048 2048
epochs 100 100 100 100 100 100

batch_size 256 256 256 256 256 256
strength01 515 36.6 41.0 15.5 51.6 1.41
strength12 0.162 0.242 10.6 0.213 0.124 0.154
strength23 1.94 10.4 47.8 1.94 4.26×10−2 0.149
strength_id 3.63×10−2 6.34×10−2 7.44 2.75×10−2 5.09×10−2 3.69

SAINT

epochs 100 100 100 100 100 100
batch_size 256 256 256 256 64 256

dim 128 64 32 32 8 16
depth 3 2 2 1 2 2
heads 2 8 2 8 4 8

dropout 0.2 0 0.4 0.8 0.5 0.8

Table S10: Hyper-parameters used for the experimental protocol P2.

Work in progress as of January 16, 2024

S5. Supplements to Numerical Evaluations 121

Method Parameter Diamonds Blastchar Heloc Higgs

Random Forests
max_depth 12 6 9 12
n_estimators 1000 1000 1000 1000
max_features 0.967 0.547 0.607 0.577

GBDT

max_depth 7 1 1 11
n_estimators 1000 1000 1000 1000
reg_alpha 0.341 7.15×10−7 0.123 2.29×10−8

reg_lambda 5.15×10−4 1.59×10−7 1.44×10−2 0.391
learning_rate 9.17×10−2 1.48×10−2 0.282 2.46×10−2

Deep Forest

forest_depth 4 7 10 3
n_forests 1 1 1 1

n_estimators 1000 1000 1000 1000
max_depth 12 2 4 12
max_features 0.454 0.641 0.196 0.163

MLP random init.

learning_rate 2.35×10−4 1.05×10−4 1.14×10−6 2.26×10−5

depth 9 8 8 9
width 1011 1475 1369 1284
epochs 100 100 100 100

batch_size 256 256 256 256

MLP RF init.

max_depth 10 5 7 9
n_estimators 2 64 16 4
max_features 0.904 0.425 0.728 0.670
learning_rate 6.67×10−5 5.07×10−6 7.33×10−6 2.17×10−5

depth 4 8 6 3
width 2048 2048 2048 2048
epochs 100 100 100 100

batch_size 256 256 256 256
strength01 19.8 4500 331 1.43
strength12 0.420 42.9 1.06 0.329

MLP GBDT init.

max_depth 3 1 3 5
n_estimators 256 1024 256 64
reg_alpha 4.56×10−2 1.63×10−5 6.21×10−7 2.58×10−6

reg_lambda 6.17×10−4 2.19×10−4 3.03×10−4 3.20×10−6

learning_rate_GBDT 0.214 4.72×10−2 8.42×10−2 0.290
learning_rate 8.94×10−5 5.60×10−6 4.54×10−4 1.36×10−4

depth 5 6 8 4
width 2048 2048 2048 2048
epochs 100 100 100 100

batch_size 256 256 256 256
strength01 3870 4690 6550 4780
strength12 56.6 21.0 31.8 0.423

MLP DF init.

forest_depth 3 2 2 3
n_forests 1 1 1 1

n_estimators 4 128 64 8
max_depth 9 4 5 8
max_features 0.695 0.516 0.280 0.572
learning_rate 2.04×10−5 2.00×10−6 1.91×10−5 9.33×10−6

depth 16 10 8 12
width 2048 2048 2048 2048
epochs 100 100 100 100

batch_size 256 256 256 256
strength01 21.0 93.0 97.8 1.12
strength12 0.119 20.0 0.987 9.22×10−2

strength23 5.34×10−2 0.283 27.1 0.207
strength_id 0.358 0.475 9.70 0.152

SAINT

epochs 100 100 100 100
batch_size 256 256 256 64

dim 64 128 64 16
depth 3 3 3 2
heads 4 8 2 8

dropout 0.2 0.5 0.8 0.8

Table S11: Hyper-parameters used for the experimental protocol P2.

Work in progress as of January 16, 2024

S5. Supplements to Numerical Evaluations 122

Housing
0.15

0.20

0.25

0.30

0.35

0.40

M
SE

Lo
ss

Airbnb

4000

5000

6000

7000

8000

Adult
0.900

0.905

0.910

0.915

0.920

0.925

0.930

0.935
Au

ro
cS

co
re

Bi
na

ry

Bank

0.910

0.915

0.920

0.925

0.930

0.935

0.940

Covertype
0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

Ac
cu

ra
cy

Volkert

0.55

0.60

0.65

0.70

0.75

0.80

RF init.
GBDT init.

Tree-model used for init.
MLP after training

Figure S14: Comparison of the performance of the RF and GBDT models used for initialization and the
final performance of the corresponding MLPs.

S5.6 Performances of Tree-Based Methods Used for Initialisation of MLP
Figure S14 compares the performance of RF and GBDTmodels and the performance of optimized
MLP, initialized with RF and GBDT respectively. We can notice that the difference in performance
between GBDT and RF does not systematically turn into the same difference in performance for
the corresponding trained networks. This suggests that beyond their respective performances, the
very structures of RF and GBDT predictors play an important role in the final MLP performances.

S5.7 Additional Figures to Section 3.3.5 (Analyzing key elements of the new
initialization methods)

Figures S15 and S16 show the same histograms as Figure 3.4 evaluated on the other data set
considered in protocol P2. Note the logarithmic y-axis for the first two RF and GBDT initialized
layers.

Work in progress as of January 16, 2024

S5. Supplements to Numerical Evaluations 123

Airbnb Diamonds

2 0
0

50

100

150

200

250

300

La
ye

r
1

2 0
0

200

400

600

800

1000

1200

1400

1600

75000 50000 25000 0
100

101

102

103

104

75000 50000 25000 0
100

101

102

103

104

1.0 0.5 0.0
1e6

100

101

102

103

104

1.0 0.5 0.0
1e6

100

101

102

103

104

0.5 0.0 0.5
0

2500

5000

7500

10000

12500

15000

17500

La
ye

r
2

0.5 0.0 0.5
0

20000

40000

60000

80000

100000

120000

140000

160000

10 5 0
100

101

102

103

104

105

106

10 5 0
100

101

102

103

104

105

106

1 0
100

101

102

103

104

105

106

1 0
100

101

102

103

104

105

106

0.5 0.0 0.5
0

2500

5000

7500

10000

12500

15000

17500

La
ye

r
3

0.5 0.0 0.5
0

20000

40000

60000

80000

100000

120000

140000

0.2 0.0 0.2
0

10000

20000

30000

40000

50000

60000

70000

80000

0.2 0.0 0.2
0

100000

200000

300000

400000

500000

600000

700000

0.05 0.00 0.05
0

10000

20000

30000

40000

50000

60000

70000

80000

0.05 0.00 0.05
0

25000

50000

75000

100000

125000

150000

175000

200000

1 0 1

before training

0

5

10

15

20

25

30

35

La
st

 L
ay

er

1 0 1

after training

0

10

20

30

40

50

60

70

0.2 0.0 0.2

before training

0

10

20

30

40

50

0.2 0.0 0.2

after training

100

101

102

0.2 0.0 0.2

before training

0

10

20

30

40

50

0.2 0.0 0.2

after training

102

0.5 0.0 0.5
0

20

40

60

80

100

La
ye

r
1

0.5 0.0 0.5
0

20

40

60

80

100

120

140

100 0
100

101

102

103

104

100 0
100

101

102

103

104

40000 20000 0 20000
100

101

102

103

104

40000 20000 0 20000
100

101

102

103

104

0.2 0.0 0.2
0

500

1000

1500

2000

2500

3000

3500

La
ye

r
2

0.2 0.0 0.2
0

5000

10000

15000

20000

25000

4 2 0
100

101

102

103

104

105

106

4 2 0
100

101

102

103

104

105

106

100 0
101

102

103

104

105

106

100 0
101

102

103

104

105

106

0.0 0.5
0

500

1000

1500

2000

2500

3000

3500

La
ye

r
3

0.0 0.5
0

5000

10000

15000

20000

25000

30000

35000

0.02 0.00 0.02
0

10000

20000

30000

40000

50000

60000

70000

80000

0.02 0.00 0.02
0

20000

40000

60000

80000

0.05 0.00 0.05
0

10000

20000

30000

40000

50000

60000

70000

80000

0.05 0.00 0.05
0

50000

100000

150000

200000

0.05 0.00 0.05

before training

0

2

4

6

8

10

12

14

16

La
st

 L
ay

er

0.05 0.00 0.05

after training

0

2

4

6

8

10

12

14

16

0.02 0.00 0.02

before training

0

10

20

30

40

50

60

0.02 0.00 0.02

after training

101

2 × 101

3 × 101

4 × 101

6 × 101

0.02 0.00 0.02

before training

0

10

20

30

40

50

0.02 0.00 0.02

after training

101

102

Adult Bank

0.25 0.00 0.25
0

50

100

150

200

250

300

350

400

La
ye

r
1

0.25 0.00 0.25
0

100

200

300

400

500

20000 10000 0
100

101

102

103

104

20000 10000 0
100

101

102

103

104

4000 2000 0
100

101

102

103

104

4000 2000 0
100

101

102

103

104

0.1 0.0 0.1
0

5000

10000

15000

20000

25000

La
ye

r
2

0.1 0.0 0.1
0

20000

40000

60000

80000

100000

120000

400 200 0
100

101

102

103

104

105

106

400 200 0
100

101

102

103

104

105

106

200 100 0

101

102

103

104

105

106

200 100 0

101

102

103

104

105

106

0.05 0.00 0.05
0

5000

10000

15000

20000

25000

La
ye

r
3

0.05 0.00 0.05
0

10000

20000

30000

40000

50000

60000

70000

80000

0.02 0.00 0.02
0

10000

20000

30000

40000

50000

60000

70000

80000

0.02 0.00 0.02
0

20000

40000

60000

80000

0.02 0.00 0.02
0

10000

20000

30000

40000

50000

60000

70000

80000

0.02 0.00 0.02
0

20000

40000

60000

80000

100000

120000

0.05 0.00 0.05

before training

0

10

20

30

40

50

60

La
st

 L
ay

er

0.05 0.00 0.05

after training

0

20

40

60

80

100

120

0.02 0.00 0.02

before training

0

20

40

60

80

100

0.02 0.00 0.02

after training

100

101

102

0.02 0.00 0.02

before training

0

20

40

60

80

100

0.02 0.00 0.02

after training

101

102

0.25 0.00 0.25
0

50

100

150

200

250

300

350

La
ye

r
1

0.25 0.00 0.25
0

100

200

300

400

500

1000 500 0
100

101

102

103

104

1000 500 0
100

101

102

103

104

200 100 0
100

101

102

103

104

200 100 0
100

101

102

103

104

0.1 0.0 0.1
0

2000

4000

6000

8000

10000

12000

14000

La
ye

r
2

0.1 0.0 0.1
0

10000

20000

30000

40000

50000

60000

200 100 0
100

101

102

103

104

105

106

200 100 0
100

101

102

103

104

105

106

20 10 0
100

101

102

103

104

105

106

20 10 0
100

101

102

103

104

105

106

0.1 0.0 0.1
0

2000

4000

6000

8000

10000

12000

14000

La
ye

r
3

0.1 0.0 0.1
0

10000

20000

30000

40000

50000

0.05 0.00 0.05
0

10000

20000

30000

40000

50000

60000

70000

80000

0.05 0.00 0.05
0

50000

100000

150000

200000

250000

0.0 0.1
0

10000

20000

30000

40000

50000

60000

70000

80000

0.0 0.1
0

50000

100000

150000

200000

250000

300000

350000

0.05 0.00 0.05

before training

0

10

20

30

40

50

La
st

 L
ay

er

0.05 0.00 0.05

after training

0

10

20

30

40

50

60

70

80

0.025 0.000 0.025

before training

0

20

40

60

80

100

0.025 0.000 0.025

after training

100

101

102

0.02 0.00 0.02

before training

0

20

40

60

80

100

0.02 0.00 0.02

after training

100

101

102

Blastchar

0.2 0.0 0.2
0

100

200

300

400

500

600

700

La
ye

r
1

0.2 0.0 0.2
0

200

400

600

800

3 2 1 0
1e7

100

101

102

103

104

3 2 1 0
1e7

100

101

102

103

104

3 2 1 0
1e7

101

102

103

104

3 2 1 0
1e7

101

102

103

104

0.05 0.00 0.05
0

10000

20000

30000

40000

La
ye

r
2

0.05 0.00 0.05
0

20000

40000

60000

80000

100000

120000

200 100 0

101

102

103

104

105

106

200 100 0

101

102

103

104

105

106

20 0 20
103

104

105

106

20 0 20
103

104

105

106

0.025 0.000 0.025
0

10000

20000

30000

40000

La
ye

r
3

0.025 0.000 0.025
0

10000

20000

30000

40000

50000

60000

70000

0.02 0.00 0.02
0

10000

20000

30000

40000

50000

60000

70000

80000

0.02 0.00 0.02
0

20000

40000

60000

80000

0.02 0.00 0.02
0

10000

20000

30000

40000

50000

60000

70000

80000

0.02 0.00 0.02
0

20000

40000

60000

80000

0.02 0.00 0.02

before training

0

10

20

30

40

50

60

70

La
st

 L
ay

er

0.02 0.00 0.02

after training

0

10

20

30

40

50

60

70

80

0.02 0.00 0.02

before training

0

20

40

60

80

100

0.02 0.00 0.02

after training

102

5 × 101

6 × 101

7 × 101

8 × 101

9 × 101

0.02 0.00 0.02

before training

0

20

40

60

80

100

0.02 0.00 0.02

after training

102

7 × 101

8 × 101

9 × 101

Figure S15: Histograms of the first three first and the last layers’ weights before and after the MLP
training on the Airbnb, Diamonds, Adult, Bank and Blastchar data sets. Comparison between
random, RF and GBDT initializations.

Work in progress as of January 16, 2024

S5. Supplements to Numerical Evaluations 124

Heloc Higgs

0.2 0.0 0.2
0

100

200

300

400

500

600

700

La
ye

r
1

0.2 0.0 0.2
0

100

200

300

400

500

600

700

2000 1000 0 1000
100

101

102

103

104

2000 1000 0 1000
100

101

102

103

104

50000 25000 0 25000
100

101

102

103

104

50000 25000 0 25000
100

101

102

103

104

0.02 0.00 0.02
0

5000

10000

15000

20000

25000

30000

35000

La
ye

r
2

0.02 0.00 0.02
0

5000

10000

15000

20000

25000

30000

35000

40000

5.0 2.5 0.0
100

101

102

103

104

105

106

5.0 2.5 0.0
100

101

102

103

104

105

106

50 0

102

103

104

105

106

50 0

102

103

104

105

106

0.02 0.00 0.02
0

5000

10000

15000

20000

25000

30000

35000

La
ye

r
3

0.02 0.00 0.02
0

5000

10000

15000

20000

25000

30000

35000

40000

0.02 0.00 0.02
0

10000

20000

30000

40000

50000

60000

70000

80000

0.02 0.00 0.02
0

20000

40000

60000

80000

0.05 0.00 0.05
0

10000

20000

30000

40000

50000

60000

70000

80000

0.05 0.00 0.05
0

50000

100000

150000

200000

250000

300000

0.02 0.00 0.02

before training

0

10

20

30

40

50

60

70

La
st

 L
ay

er

0.02 0.00 0.02

after training

0

10

20

30

40

50

60

70

0.02 0.00 0.02

before training

0

20

40

60

80

100

0.02 0.00 0.02

after training

102

4 × 101

6 × 101

0.02 0.00 0.02

before training

0

20

40

60

80

100

0.02 0.00 0.02

after training

101

102

0.2 0.0 0.2
0

100

200

300

400

500

600

700

800

La
ye

r
1

0.2 0.0 0.2
0

200

400

600

800

20 10 0
100

101

102

103

104

20 10 0
100

101

102

103

104

20000 0
100

101

102

103

104

20000 0
100

101

102

103

104

0.05 0.00 0.05
0

5000

10000

15000

20000

25000

30000

La
ye

r
2

0.05 0.00 0.05
0

10000

20000

30000

40000

50000

60000

70000

80000

2 1 0
100

101

102

103

104

105

106

2 1 0
100

101

102

103

104

105

106

2 1 0
100

101

102

103

104

105

106

2 1 0
100

101

102

103

104

105

106

0.05 0.00 0.05
0

5000

10000

15000

20000

25000

30000

35000

La
ye

r
3

0.05 0.00 0.05
0

20000

40000

60000

80000

0.1 0.0 0.1
0

20

40

60

80

100

0.1 0.0 0.1
0

50

100

150

200

250

300

0.1 0.0 0.1
0

10000

20000

30000

40000

50000

60000

70000

80000

0.1 0.0 0.1
0

100000

200000

300000

400000

0.025 0.000 0.025

before training

0

10

20

30

40

50

60

70

La
st

 L
ay

er

0.025 0.000 0.025

after training

0

20

40

60

80

0.1 0.0 0.1

before training

0

20

40

60

80

100

0.1 0.0 0.1

after training

100

101

102

0.025 0.000 0.025

before training

0

20

40

60

80

100

0.025 0.000 0.025

after training

100

101

102

Covertype Volkert

0.5 0.0 0.5
0

200

400

600

800

La
ye

r
1

0.5 0.0 0.5
0

500

1000

1500

2000

2500

3000

50 0 50
100

101

102

103

104

105

50 0 50
100

101

102

103

104

105

20000 0 20000
100

101

102

103

104

105

20000 0 20000
100

101

102

103

104

105

0.5 0.0 0.5
0

2000

4000

6000

8000

10000

La
ye

r
2

0.5 0.0 0.5
0

10000

20000

30000

40000

50000

60000

70000

0.10 0.05 0.00

101

102

103

104

105

106

0.10 0.05 0.00
100

101

102

103

104

105

106

500 250 0
100

101

102

103

104

105

106

500 250 0
100

101

102

103

104

105

106

0.25 0.00 0.25
0

2000

4000

6000

8000

10000

La
ye

r
3

0.25 0.00 0.25
0

10000

20000

30000

40000

50000

0.05 0.00 0.05
0

10000

20000

30000

40000

50000

60000

70000

80000

0.05 0.00 0.05
0

50000

100000

150000

200000

250000

0.5 0.0 0.5
0

50

100

150

200

250

300

0.5 0.0 0.5
0

500

1000

1500

2000

2500

3000

3500

4000

0.5 0.0 0.5

before training

0

20

40

60

80

100

120

La
st

 L
ay

er

0.5 0.0 0.5

after training

0

100

200

300

400

0.1 0.0 0.1

before training

0

50

100

150

200

250

300

0.1 0.0 0.1

after training

100

101

102

103

0.5 0.0 0.5

before training

0

50

100

150

200

250

300

0.5 0.0 0.5

after training

100

101

102

103

0.2 0.0 0.2
0

1000

2000

3000

4000

La
ye

r
1

0.2 0.0 0.2
0

2000

4000

6000

8000

10000

20 10 0
100

101

102

103

104

105

20 10 0
100

101

102

103

104

105

40 20 0
100

101

102

103

104

105

40 20 0
100

101

102

103

104

105

0.1 0.0 0.1
0

10000

20000

30000

40000

La
ye

r
2

0.1 0.0 0.1
0

25000

50000

75000

100000

125000

150000

175000

200000

0.4 0.2 0.0

101

102

103

104

105

106

0.4 0.2 0.0
100

101

102

103

104

105

106

0.2 0.0
101

102

103

104

105

106

0.2 0.0
100

101

102

103

104

105

106

0.1 0.0 0.1
0

10000

20000

30000

40000

La
ye

r
3

0.1 0.0 0.1
0

50000

100000

150000

200000

0.1 0.0 0.1
0

10000

20000

30000

40000

50000

60000

70000

80000

0.1 0.0 0.1
0

50000

100000

150000

200000

250000

300000

350000

0.1 0.0 0.1
0

10000

20000

30000

40000

50000

60000

70000

80000

0.1 0.0 0.1
0

100000

200000

300000

400000

0.1 0.0 0.1

before training

0

50

100

150

200

250

300

350

La
st

 L
ay

er

0.1 0.0 0.1

after training

0

100

200

300

400

500

600

700

0.05 0.00 0.05

before training

0

100

200

300

400

0.05 0.00 0.05

after training

100

101

102

103

0.05 0.00 0.05

before training

0

100

200

300

400

0.05 0.00 0.05

after training

100

101

102

103

Figure S16: Histograms of the first three first and the last layers’ weights before and after the MLP
training on the Heloc, Higgs, Covertype and Volkert data sets. Comparison between random, RF
and GBDT initializations.

Work in progress as of January 16, 2024

Bibliography of the current chapter 125

Bibliography of the current chapter
Akiba, Takuya, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama (2019).

“Optuna: A Next-generation Hyperparameter Optimization Framework”. In: Proceedings of the
25rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.

Arik, Sercan Ö and Tomas Pfister (2021). “Tabnet: Attentive interpretable tabular learning”. In:
Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 35. 8, pp. 6679–6687.

Biau, Gérard, Erwan Scornet, and Johannes Welbl (2019). “Neural random forests”. In: Sankhya A
81.2, pp. 347–386.

Blundell, Charles, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra (2015). “Weight
uncertainty in neural network”. In: International conference on machine learning. PMLR, pp. 1613–
1622.

Borisov, Vadim, Tobias Leemann, Kathrin Seßler, Johannes Haug, Martin Pawelczyk, and Gjergji
Kasneci (2021). Deep Neural Networks and Tabular Data: A Survey. doi: 10.48550/ARXIV.2110.
01889. url: https://arxiv.org/abs/2110.01889.

Breiman, Leo (2001a). “Random forests”. In: Machine learning 45.1, pp. 5–32.
— (2001b). “Random Forests”. In:Machine Learning 45.1, pp. 5–32. issn: 1573-0565. doi: 10.1023/

A:1010933404324. url: https://doi.org/10.1023/A:1010933404324.
Breiman, Leo, Jerome Friedman, Charles J Stone, and Richard A Olshen (1984). Classification and

regression trees. CRC press.
Brent, Richard P (1991). “Fast training algorithms for multilayer neural nets”. In: IEEE Transactions

on Neural Networks 2.3, pp. 346–354.
Chen, Tianqi and Carlos Guestrin (2016). “Xgboost: A scalable tree boosting system”. In: Pro-

ceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining,
pp. 785–794.

Fan, Wei, Haixun Wang, Philip S Yu, and Sheng Ma (2003). “Is random model better? on its
accuracy and efficiency”. In: Third IEEE International Conference on Data Mining. IEEE, pp. 51–
58.

Frankle, Jonathan and Michael Carbin (2018). “The lottery ticket hypothesis: Finding sparse,
trainable neural networks”. In: arXiv preprint arXiv:1803.03635.

Friedman, Jerome H (2001). “Greedy function approximation: a gradient boosting machine”. In:
Annals of statistics, pp. 1189–1232.

Glorot, Xavier and Yoshua Bengio (2010). “Understanding the difficulty of training deep feed-
forward neural networks”. In: Proceedings of the thirteenth international conference on artificial
intelligence and statistics. JMLR Workshop and Conference Proceedings, pp. 249–256.

Gorishniy, Yury, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko (2021). Revisiting Deep
Learning Models for Tabular Data. doi: 10.48550/ARXIV.2106.11959. url: https://arxiv.
org/abs/2106.11959.

Grinsztajn, Léo, Edouard Oyallon, and Gaël Varoquaux (2022). “Why do tree-based models still
outperform deep learning on tabular data?” In: arXiv preprint arXiv:2207.08815.

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun (2015). “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification”. In: Proceedings of the IEEE
international conference on computer vision, pp. 1026–1034.

Ke, Guolin, Jia Zhang, Zhenhui Xu, Jiang Bian, and Tie-Yan Liu (2018). “TabNN: A universal
neural network solution for tabular data”. In.

Ke, Guolin et al. (2017). “Lightgbm: A highly efficient gradient boosting decision tree”. In:
Advances in neural information processing systems 30.

Kingma, Diederik P and Jimmy Ba (2014). “Adam: A method for stochastic optimization”. In:
arXiv preprint arXiv:1412.6980.

Work in progress as of January 16, 2024

https://doi.org/10.48550/ARXIV.2110.01889
https://doi.org/10.48550/ARXIV.2110.01889
https://arxiv.org/abs/2110.01889
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.48550/ARXIV.2106.11959
https://arxiv.org/abs/2106.11959
https://arxiv.org/abs/2106.11959

Bibliography of the current chapter 126

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton (2012). “Imagenet classification with
deep convolutional neural networks”. In: Advances in neural information processing systems 25.

LeCun, Yann, Yoshua Bengio, et al. (1995). “Convolutional networks for images, speech, and
time series”. In: The handbook of brain theory and neural networks 3361.10, p. 1995.

Liu, Pengfei, Xipeng Qiu, and Xuanjing Huang (2016). “Recurrent neural network for text classi-
fication with multi-task learning”. In: arXiv preprint arXiv:1605.05101.

Mishkin, Dmytro and Jiri Matas (2015). “All you need is a good init”. In: arXiv preprint
arXiv:1511.06422.

Neal, RadfordM (2012). Bayesian learning for neural networks. Vol. 118. Springer Science & Business
Media.

Paszke, Adam et al. (2019). “PyTorch: An Imperative Style, High-Performance Deep Learning
Library”. In: Advances in Neural Information Processing Systems 32. Curran Associates, Inc.,
pp. 8024–8035.

Richmond, David L, Dagmar Kainmueller, Michael Y Yang, EugeneWMyers, and Carsten Rother
(2015). “Relating cascaded random forests to deep convolutional neural networks for semantic
segmentation”. In: arXiv preprint arXiv:1507.07583.

Rumelhart, David E, Geoffrey E Hinton, James L McClelland, et al. (1986). “A general frame-
work for parallel distributed processing”. In: Parallel distributed processing: Explorations in the
microstructure of cognition 1.45-76, p. 26.

Rumelhart, David E, Geoffrey E Hinton, and Ronald J Williams (1985). Learning internal represen-
tations by error propagation. Tech. rep. California Univ San Diego La Jolla Inst for Cognitive
Science.

Sethi, Ishwar Krishnan (1990). “Entropy nets: from decision trees to neural networks”. In: Pro-
ceedings of the IEEE 78.10, pp. 1605–1613.

Shwartz-Ziv, Ravid and Amitai Armon (2022). “Tabular data: Deep learning is not all you need”.
In: Information Fusion 81, pp. 84–90. issn: 1566-2535. doi: https://doi.org/10.1016/j.
inffus.2021.11.011. url: https://www.sciencedirect.com/science/article/pii/
S1566253521002360.

Somepalli, Gowthami, Micah Goldblum, Avi Schwarzschild, C. Bayan Bruss, and Tom Goldstein
(2021). SAINT: Improved Neural Networks for Tabular Data via Row Attention and Contrastive
Pre-Training. doi: 10.48550/ARXIV.2106.01342. url: https://arxiv.org/abs/2106.01342.

Sun, Ruo-Yu (2020). “Optimization for deep learning: An overview”. In: Journal of the Operations
Research Society of China 8.2, pp. 249–294.

Welbl, Johannes (2014). “Casting random forests as artificial neural networks (and profiting from
it)”. In: German Conference on Pattern Recognition. Springer, pp. 765–771.

Zhou, Z and J. Feng (2017). “Deep Forest: Towards An Alternative to Deep Neural Networks”.
In: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI-17,
pp. 3553–3559.

Zhou, Zhi-Hua and Ji Feng (Jan. 2019). “Deep forest”. In: National Science Review 6, pp. 74–86.
doi: 10.1093/nsr/nwy108.

Work in progress as of January 16, 2024

https://doi.org/https://doi.org/10.1016/j.inffus.2021.11.011
https://doi.org/https://doi.org/10.1016/j.inffus.2021.11.011
https://www.sciencedirect.com/science/article/pii/S1566253521002360
https://www.sciencedirect.com/science/article/pii/S1566253521002360
https://doi.org/10.48550/ARXIV.2106.01342
https://arxiv.org/abs/2106.01342
https://doi.org/10.1093/nsr/nwy108

Chapter 4

RF Interpolation

Abstract
Statistical wisdom suggests that very complex models, interpolating training data, will be poor at
predicting unseen examples. Yet, this aphorism has been recently challenged by the identification
of benign overfitting regimes, specially studied in the case of parametric models: generalization
capabilities may be preserved despite model high complexity. While it is widely known that
fully-grown decision trees interpolate and, in turn, have bad predictive performances, the same
behavior is yet to be analyzed for Random Forests (RF). In this paper, we study the trade-off
between interpolation and consistency for several types of RF algorithms. Theoretically, we
prove that interpolation regimes and consistency cannot be achieved simultaneously for several
non-adaptive RF. Since adaptivity seems to be the cornerstone to bring together interpolation
and consistency, we study interpolating Median RF which are proved to be consistent in the
interpolating regime. This is the first result conciliating interpolation and consistency for RF,
highlighting that the averaging effect introduced by feature randomization is a key mechanism,
sufficient to ensure the consistency in the interpolation regime and beyond. Numerical exper-
iments show that Breiman’s RF are consistent while exactly interpolating, when no bootstrap
step is involved. We theoretically control the size of the interpolation area, which converges fast
enough to zero, giving a necessary condition for exact interpolation and consistency to occur in
conjunction.

4.1 Introduction
Random Forests (RF, Breiman 2001a) have proven to be very efficient algorithms, especially on
tabular data sets. As any machine learning (ML) algorithm, Random Forests and Decision Trees
have been analyzed and used according to the overfitting-underfitting trade-off. Regularization
parameters have been introduced in order to control the variance while still reducing the bias. For
instance, one can increase the variety of the constructed trees (by playing either with bootstrap
samples or feature subsampling) or control the tree structure (by limiting either the number of
points falling within each leaf or the maximum depth of all trees).

However, the paradigm stating that high model complexity leads to bad generalization
capacity has been recently challenged: in particular, deeper and larger neural networks still
empirically exhibit high predictive performances (Goodfellow et al. 2016). In such situations,
overfitting can be qualified as "benign": complex models, possibly leading to interpolation of the

127

4.1. Introduction 128

training examples, still generalize well on unseen data (Bartlett et al. 2021).
Regarding parametric methods, benign overfitting has been exhibited and well understood in

linear regression (Bartlett et al. 2020; Tsigler et al. 2020; Liang et al. 2020b) and investigated in the
context of neural networks (Belkin et al. 2019a). Many researchers currently study the implicit
bias or implicit regularization of stochastic gradient (SGD) strategies used during neural network
training: the optimization of an over-parametrized one-hidden-layer neural network via SGD
will converge to a minimum of minimal norm with good generalization properties in a regression
setting (Bach et al. 2021), or with maximal margin in a classification setting (Chizat et al. 2020).

Regarding non-parametric methods, practitioners have noticed the good performances of
high-depth RFs for a long time (by default, several ML libraries such as the popular Scikit-Learn
grow trees until pure leaves are reached). More recently, the use of interpolating (or very deep)
trees for boosting and bagging methods has been discussed by Tang et al. 2018 and Wyner et
al. 2017. While Tang et al. 2018 criticize the relevancy of interpolating random forests, Wyner
et al. 2017 believe that the self-averaging process at hand in RF (or in boosting methods) also
produces an implicit regularization that prevents the interpolating algorithm from overfitting.
Note that the regularization properties of RF have also been studied in the light of their complexity
(Buschjäger et al. 2021) and tree depth (Zhou et al. 2021). This phenomenon can be put in parallel
with the results proved in Devroye et al. 1998 and Belkin et al. 2019b where they show that
an interpolating kernel method using a singular kernel (similar to K(x) = ||x||−α1||x||⩽1) is
consistent, reaching minimax convergence rate for β-Hölder regular functions. More recently,
Wang et al. 2022 showed the consistency of interpolating kernel methods, defined on Riemannian
manifolds, whose kernels can be written as weighted random partition kernels on the sphere
(similarly to the kernel random forest methods defined in Section 4.4).
Contributions and outline In this paper, we study the trade-off between interpolation and
consistency in the context of regression, for different types of RF:

• CenteredRF (Section 4.3). Weprove theoretically that interpolation regimes and consistency
cannot be achieved simultaneously for non-adaptive centered RF . The major problem arises
from empty cells in tree partitions. Therefore, we also study a slightly modified Centered
RF that does not take into account empty cells;

• Kernel RF (Section 4.4). We then study a more refined version of the CRF, the Kernel
Random Forest (KeRF), built by averaging over all connected data points. By neglecting
empty cells, this method is consistent for larger tree depths, but does not meet the exact
interpolation requirement yet;

• Median RF (Section 4.5). Since adaptivity seems to be the cornerstone to conciliate inter-
polation and consistency, we study the interpolating Median RF, which is proved to be
consistent in the exact interpolation regime . For the first time, it is shown that the averaging
effect of the feature randomization inside RF (without boostrap) is sufficient to "average
the noise out" (interpolating trees being sensitive to the noise), i.e. to decrease the variance
towards 0. The bias of interpolating trees can be still classically controlled;

• Breiman RF (Section 4.6). Numerical experiments show that Breiman RF are consistent
when exactly interpolating, i.e. when the whole data set is used to build each fully-grown
tree (no bootstrap). It seems that the key randomization mechanism at work in RF is
sufficient to reach consistency in spite of interpolation. Finally, we prove that the volume of
the interpolation zone (where noise sensitivity is maximum) for an infinite Breiman RF
tends to 0 at an exponential rate in the dimension d. This supports the idea that the decay of
the interpolation volume could be fast enough to retrieve consistency despite interpolation.

Work in progress as of January 16, 2024

4.2. Setting 129

Figure 4.1: Summary of theoretical contributions.

Please refer to Figure 4.1 for an overview of theoretical contributions. All proofs and details
on numerical experiments are given in Appendix S2 and S3.

4.2 Setting
Framework In a general non-parametric regression framework, we assume to be given a training
set Dn := ((X1, Y1), ..., (Xn, Yn)), composed of i.i.d. copies of the generic random variable (X,Y),
where the input X is assumed throughout the paper to be uniformly distributed over [0, 1]d, and
Y ∈ R is the output. The underlying model is assumed to satisfy Y = f⋆(X) + ε, where
f⋆(x) = E [Y |X = x] is the regression function and ε a random noise satisfying, almost surely,
E [ε|X] = 0 and V[ε|X] ⩽ σ2 < ∞, for some σ2 ⩾ 0. Given an input x ∈ [0, 1]d, the goal is to
estimate the associated response f⋆(x). We measure the performance of an estimator fn via its
excess risk, defined asR(fn) := E

[
(fn(X)− f⋆(X))2

], and its consistency property.
Definition 4.2.1 (Consistency). An estimator fn is consistent when lim

n→∞
R(fn) = 0.

Estimator A Random Forest (RF) is a predictor consisting of a collection of M randomized
trees (see Breiman et al. 1984for details about decision trees). To build a forest, we generate
M ∈ N⋆ independent random variables (Θ1, . . . ,ΘM), distributed as a generic random variable
Θ, independent of Dn. In our setting, Θj actually represents the successive random splitting
directions and the resampling data mechanism in the j-th tree. The predicted value at the query
point x given by the j-th tree is defined as

fn(x,Θj) =

n∑

i=1

1Xi∈An(x,Θj)Yi

Nn(x,Θj)
1Nn(x,Θj)>0 ,

where An(x,Θj) is the cell containing x and Nn(x,Θj) is the number of points falling into
An(x,Θj). The (finite) forest estimate then results from the aggregation of M trees:

fM,n(x,ΘM) =
1

M

M∑

m=1

fn(x,Θm) ,

where ΘM := (Θ1, ...,ΘM). By letting M tending to infinity, we can consider the infinite forest
estimate, f∞,n(x) = EΘ[fn(x,Θ)], which has also played an important role in the theoretical

Work in progress as of January 16, 2024

4.3. Centered RF 130

understanding of random forests (see Scornet 2016afor more details). Here, EΘ denotes the
expectation w.r.t. Θ, conditional on Dn.

Several random forests have been proposed depending on the type of randomness they
contain (what Θ represents) and the type of decision trees they aggregate. Breiman forest is one
of the most widely used RF, which exhibits excellent predictive performances. Unfortunately,
its behavior is difficult to theoretically analyze, because of the numerous complex mechanisms
involved in the predictive process (data resampling, data-dependent splits, split randomization).
Therefore, in this paper, we simultaneously study the consistency and interpolation properties of
different simplified versions of RF, both adaptive (i.e. when trees are built in a data-dependent
manner) and non-adaptive.

All forests include a depth parameter, denoted kn, which limits the maximum length of each
branch in a tree, thus limiting the number of leaves (up to 2kn). In this work, we analyze how the
tuning of kn allows us to adjust the consistency and interpolation characteristics of the forest. The
classical notion of (exact) interpolation is defined below.
Definition 4.2.2 ((Exact) interpolation). An estimator fn is said to interpolate if for all training data
(Xi, Yi), we have fn(Xi) = Yi almost surely.

Recall that the prediction of a single tree at a point x is given by the average of all Yi such that
Xi is contained in the leaf of x. Therefore, each tree within a forest can be parameterized in order
to interpolate: it is sufficient to grow the tree until pure leaves (i.e. leaves containing labels of
the same values) are reached. In any regression model with continuous random noise, we have
Yi ̸= Yj for all i ̸= j almost surely. Therefore, an interpolating tree is a tree that contains at most
one point per leaf.

As the final prediction of the random forest is made by averaging the predictions of all its
trees, if all trees interpolate, the random forest interpolates as well. Consequently, throughout all
the theoretical analysis, we consider RF built without sub-sampling: each tree is built using the
whole dataset instead of bootstrap samples as in standard RF. We will discuss the empirical effect
of bootstrap in Section 4.6.
Remark 4.2.3. In a classification setting, it is possible to obtain pure leaves with more than one point per
cell (see Mentch et al. 2019 for more details).

4.3 Centered RF
We start our analysis of interpolation and consistency of RF with the simple yet widely studied
Centered Random Forest (CRF, see Biau 2012b). CRF are ensemble methods said to be non-
adaptive since trees are built independently of the data: at each step of a centered tree construction,
a feature is uniformly chosen among all possible d features and the split along the chosen feature is
made at the center of the current cell. Then, the trees are aggregated to produce a CRF. Although
simpler, the study of the mechanisms at hand in non-adaptive RF already provides good insights
about the inner behaviour of more general RF.

4.3.1 Interpolation in CRF
Lemma 4.3.1. The CRF fCRF

M,n interpolates if and only if all trees that form the CRF interpolate.
Since CRF construction is non-adaptive, it is impossible to enforce exactly one observation per

leaf. Hence trees do not interpolate and in turn, the interpolation regime (Definition 4.2.2) cannot
be satisfied for CRF. This leads us to examine a weaker notion of interpolation in probability.

Work in progress as of January 16, 2024

4.3. Centered RF 131

Proposition 4.3.2 (Probability of interpolation for a centered tree). Denote IT the event “a centered
tree of depth kn interpolates the training data". Then, for all n ⩾ 3, fixing kn = ⌊log2(αnn)⌋, with
αn ∈ N \ {0, 1}, one has

e−
n

αn−1 ⩽ P (IT) ⩽ e−
n

2(αn+1) .

According to Proposition 4.3.2, the probability that a tree interpolates tends to one if and
only if kn = ⌊log2(αnn)⌋ with αn = ω(n)1. Consequently, the regime αn = ω(n) completely
characterizes the interpolation of a centered tree. Proposition 4.3.2 can be in turn used to control
the interpolation probability of a centered RF.
Corollary 4.3.3 (Probability of interpolation for a CRF). We denote by IF the event “a centered forest
fCRF
M,n (.,ΘM) interpolates". Then, for kn = ⌊log2(αnn)⌋ with αn ⩾ 1,

P (IF) ⩽ e−
n

2(αn+1) . (4.1)

Therefore, the condition αn = ω(n) (corresponding to the interpolation of a single centered
tree with high probability) is necessary to ensure that w.h.p., the RF interpolates. Our analysis
stresses that a tree depth of at least kn = 2 log2(n) is required to obtain tree/forest interpolation.

In fact, choosing kn of the order of log2(n) characterizes another type of interpolation regime.
To see this, consider a centered tree of depth k, whose leaves are denotedL1, . . . , L2k . The number
of points falling into the leaf Li is denoted Nn(Li). Since X is uniformly distributed over [0, 1]d,
then, for all i = 1, . . . , 2k,

P (X ∈ Li) =
1

2k
and E [Nn(Li)] =

n

2k
. (4.2)

Definition 4.3.4 (Mean interpolation regime). A CRF fCRF
M,n satisfies themean interpolation regime

when each tree of fM,n has at least n leaves, i.e. if and only if kn ⩾ log2 n.
By Equation (4.2), the mean interpolation regime implies that for all leaves Li, E [Nn(Li)] ⩽ 1:

one could say that trees interpolate in expectation, in the mean interpolation regime.

4.3.2 Inconsistency of the Standard CRF
In both interpolation regimes (mean and in probability), trees need to be very deep, with a
growing number of empty cells as n tends to infinity, eventually damaging the consistency of the
overall CRF.
Proposition 4.3.5. Suppose that E [f⋆(X)2

]
> 0 and set α > 0. Then the infinite Centered Random

Forest fCRF
∞,n of depth kn ⩾ log2 αn is inconsistent.

Proposition 4.3.5 emphasizes the poor generalization capacities of the interpolating CRF
(under any interpolating regime), which could be expected given its non-adaptive construction.
Indeed, the non-consistency of the CRF stems from the fact that the probability for a random
point X to fall in an empty cell does not converge to zero, introducing an irreducible bias in the
excess risk.

1i.e. αn asymptotically dominates n.

Work in progress as of January 16, 2024

4.4. Centered Kernel RF 132

4.3.3 Consistency of Void-Free CRF under the Mean Interpolation Regime
Since limiting the impact of empty cells seems crucial for consistency, we study aCRF that averages
over non-empty cells only, which we call the Void-Free CRF. Note that predictions in empty leaves
are arbitrary set to 0. Denoting Λn(x,ΘM) the number of non-empty leaves containing x in the
forest with trees Θ1, . . . ,ΘM , the void-free CRF is written as

fVF
M,n(x,ΘM) =

1

Λn(x,ΘM)

M∑

m=1

fn(x,Θm)1Nn(x,Θm)>0.

The problematic terms that arise in the theoretical derivations of classical CRF vs.
void-free CRF are of different natures: the probability P (Nn(X,ΘM) = 0) of falling
into an empty leaf in a random tree of an (infinite) CRF compared to the probability
P [∀m ∈ {1, . . . ,M}, Nn(X,Θm) = 0] of falling into empty leaves in all trees in the (infinite) CRF.
Lemma 4.3.6 below controls this last term.
Lemma 4.3.6. Consider a finite void-free CRF fVF

M,n(·,ΘM) of depth k ∈ N. Let x ∈ [0, 1]d and denote
EM,n(x) the event “for all m ∈ {1, . . . ,M}, Nn(x,Θm) = 0”. Then,

P (EM,n(x)) ⩽ e−
kn

2k+1 + e−Md−k

. (4.3)

Consequently, if k = ⌊log2(n)⌋ and Mn = ω(nlog2 d), then lim
n→∞

P (EMn,n(x)) = 0.

As previously, the infinite void-free CRF is defined as fVF
∞,n(x) = EΘ [fn(x,Θ)|Nn(x,Θ) > 0].

Theorem 4.3.7. Assume that f⋆ has bounded partial derivatives. Then, the infinite void-free-CRF of
depth k = ⌊log2 n⌋ is consistent in a noiseless setting (σ = 0), and, for all n > 1,

R
(
fVF
∞,n(X)

)
⩽ Cd

(
n

log2 n

)2 log2(1− 1
2d)

+ (Cd + 2)n−1/(2 ln 2),

where Cd = 4d
(∑d

j=1 ||∂f⋆
j ||2∞

)
.

The overall rate is of order O (n2 log(1−1/2d)
) which is a typical approximation rate for CRF,

see Klusowski 2021a. As a matter of fact, Theorem 4.3.7 highlights that empty cells do not limit
the performance of the void-free-CRF in the mean interpolation regime.

However, this construction introduces a conditioning overNn(x,Θ) > 0 that prevents us from
bounding the variance in the case of noisy samples. Therefore, in the next section, we analyze
Centered Kernel RF (KeRF) with a different aggregation rule (empty cells still being neglected).

4.4 Centered Kernel RF
As formalized in Geurts et al. 2006 and developed in Arlot et al. 2014, slightly modifying the
aggregation rule of tree estimates provides a kernel-type estimator. Instead of averaging the
predictions of all centered trees, the construction of a Kernel RF (KeRF) is performed by growing
all centered trees and then averaging along all points contained in the leaves in which x falls, i.e.

fKeRF
M,n (x,ΘM) :=

∑n
i=1 Yi

∑M
m=1 1Xi∈An(x,Θm)∑n

i=1

∑M
m=1 1Xi∈An(x,Θm)

.

Work in progress as of January 16, 2024

4.4. Centered Kernel RF 133

One of the benefits of this construction is to limit the influence of empty cells, which can be
harmful both for consistency and interpolation (see Section 4.3). As earlier, the infinite KeRF is
defined as,

fKeRF
∞,n (x) =

∑n
i=1 YiKn(x,Xi)∑n
i=1 Kn(x,Xi)

,

where Kn(x, z) = PΘ [z ∈ An(x,Θ)] is the probability that x and z are in the same cell w.r.t. a
tree built according to Θ (see Scornet 2016b for details).

Interpolation conditions Since KeRF aggregates centered trees as CRF (but in a different way),
the results of Section 4.3 can be extended to KeRF: (i) the mean interpolation regime is met for
centered trees (hence for KeRF) when kn ⩾ log2 n; (ii) a necessary condition to attain the KeRF
interpolation in probability is kn > 2 log2(n). One can note that the depths required for both
interpolation regimes are still large, leading to as many empty cells for KeRF as for classical CRF
but the aggregation rule is such that they are not taken into account in KeRF predictions, which
gives hope that consistency could be preserved.

Consistency We study the convergence of the centered KeRF under themean interpolation regime.
To this end, we consider extra hypotheses on the noise and on the regularity of f⋆.
Theorem 4.4.1. Assume that f⋆ is Lipschitz continuous and that the additive noise ε is a centered
Gaussian variable independent fromX with finite variance σ2. Then, the risk of the infinite centered KeRF
of depth kn = ⌊log2(n)⌋ verifies, for all d > 5, for all n large enough,

R(fKeRF
∞,n) ⩽ 8L2d2n2 log2(1− 1

d) + Cd(log2 n)
− d−5

6 (log2(log2 n))
d/3,

where Cd > 0 is a constant dependent on σ2 and made explicit in the proof.
Theorem 4.4.1 states that the infinite centered KeRF estimator is consistent as soon as d > 5,

with a slow convergence rate of log(n)−(d−5)/6. The proof is based on the general paradigm of
bias-variance trade-off and is adapted from Scornet 2016b. At first sight, one might think that the
rate becomes better as the dimension d increases. However, the constant term highly depends on
the dimension, so that the established bound should be regarded for a fixed d.

Choosing kn = ⌊log2(n)⌋ in Theorem 4.4.1 allows us to have a mean interpolation regime
concomitant with consistency for KeRF, therefore highlighting that consistency and mean inter-
polation are compatible. This is not the case for CRF for which the mean interpolation regime
forbids convergence (Proposition 4.3.5). If a “mean” overfitting regime is benign for the consis-
tency of KeRF, it seems to be nonetheless malignant for the convergence rate. Indeed, Lin et al.
2006 provides a lower bound on the convergence rate of a deep non-adaptive RF (such as the
CRF), scaling in (log n)−(d−1). This leads us to believe that the convergence rate we obtain in
Theorem 4.4.1 is marginally improvable.

Interpolation of kernel estimators has been recently studiedwith singular kernel by Belkin et al.
2019b. Since KeRF are kernel estimators, one can wonder how sharp is our bound (Theorem 4.4.1)
compared to that of Belkin et al. 2019b, which is minimax. Due to the spikiness of the singular
kernel studied in Belkin et al. 2019b, interpolation arises for any kernel bandwidth. The latter
can be then tuned to reach minimax rates of consistency. The story is totally different for KeRF
since interpolation occurs only for specific tree depths kn ⩾ log(n) (where the depth parameter
is closely related to the bandwidth of classical kernel estimates). Less latitude for choosing the
depth then leads to sub-optimal rates of consistency (see Theorem 4.4.1). Of course, a better rate

Work in progress as of January 16, 2024

4.5. Semi-Adaptive RF: Median RF 134

of consistency in O(n1/(3+d log 2)) could be obtained as in Scornet 2016b when optimizing this
depth parameter, but leaving the interpolation world.

We numerically assess the performance of KeRF in the mean interpolation regime (see Ap-
pendix S3).

4.5 Semi-Adaptive RF: Median RF
So far, consistency has been analyzed in the mean interpolation regime. What about consistency
with exact RF interpolation? To analyze this phenomenon, we thus introduce semi-adaptive RF,
Median RF, whose constructions depend on the training inputs Xi’s (and not on the outputs
Yi’s).

The Median RF, studied e.g. in Duroux et al. 2018; Klusowski 2021a, is composed of median
trees that first randomly choose the direction to cut over and then cut at the median of the data
points contained in the current cells. In our analysis, for any cell containing nc observations,
the median is set as the middle of the segment of two consecutive order statistics: X(nc/2) and
X(nc/2+1) for an even number of observations, X(nc−1

2) and X(nc+1
2) otherwise.

4.5.1 Consistency
In order to obtain consistency for an adaptive RF, one needs to control two terms: the bias and
the variance terms. On the one hand, the bias is roughly controlled by the diameter of the leaf
times the supremum of the derivatives of f⋆ in the leaf. In the interpolating regime, the depth
is maximum so the diameter of the leaf is minimum and therefore the bias is smoothly upper
bounded.

On the other hand, a “low" depth regime is usually required to control the variance term, so
that each leaf of each tree contains an infinite number of points when n tends to+∞. This directly
“averages the noise out" and decreases the variance towards 0 within each tree. However, in the
interpolating case, each leaf contains only one point and we can only rely on the averaging effect
of the RF, induced by the random splitting mechanism, to upper bound the variance. Studying
the effect of the random splitting mechanism in full generality remains challenging. However, as
increasing the dimension also increases the diversity of the trees within the RF, it should naturally
be easier to control the variance of an interpolatingMedian RF in an asymptotic high-dimensional
setting, as we prove and discuss in Appendix S2.5.

The following theorem establishes the consistency of the interpolating Median RF in the
general setting of noisy data and fixed input dimension.
Theorem 4.5.1. Suppose that f⋆ has bounded partial derivatives and that n is a power of two. Then, the
infinite interpolating Median RF fMedRF

∞,n is consistent and verifies:

R
(
fMedRF
∞,n

)
⩽ C1d

(
d∑

ℓ=1

||∂ℓf⋆||2∞

)(
1− 3

4d

)log2 n

+ σ2C2,d(log2 n)
−(d−1)/2,

where C1 and C2,d are explicit constants, the former being independent of the dimension d (see the proof
for the exact computations).

The control of the bias term follows the general approach used in Duroux et al. 2018 with
substantial technical refinements. On the other hand, we propose a more general approach for
the control of the variance inspired by Biau 2012b; Klusowski 2021a, where we derive explicit
bounds specifically designed for Median RF. Note that the consistency achieved by Median RF

Work in progress as of January 16, 2024

4.5. Semi-Adaptive RF: Median RF 135

cannot be obtained for CRF under the interpolation regime due to the non-negligible probability
of falling into empty cells (see Proposition 4.3.2).

Theorem 4.5.1 is the first result ensuring consistency of RF despite exact interpolation. It is
even more impressive considering that bootstrap is off so that the averaging process in the RF is
only due to feature subsampling. More specifically, when dealing with interpolating trees, the
variance reduction does not come from averaging many points in the leaf of a given tree anymore
(since the tree depth is no longer limited), but results from averaging single points from the
leaves of different trees.

If interpolation remains compatible with consistency in the case of Median RF, it nevertheless
damages the convergence rate. Indeed, it has been proved that, for all α small enough, the
convergence rate of Median RF with trees of depth k = (1 − α) log2(n) is n−α (see Theorem 3
in Klusowski 2021a). In the case of interpolating Median RF, Theorem 4.5.1 highlights a phase
transition when k = log2(n), as the convergence rate is driven by the variance term, which is of
order (log2 n)−(d−1)/2. While being very slow, this rate is close to the lower bound (log2 n)

−(d−1)

established for non-adaptive interpolating RF (Lin et al. 2006). Actually, by assuming log2(n) ⩾ d,
our proof can be directly modified so that our upper bound matches the lower bound of Lin et al.
2006 (using the second statement of Lemma S.1 in (Klusowski 2021a) instead of the first one).

Note that Theorem 4.5.1 does not contradict Proposition 1 in Tang et al. 2018, as the condition
therein is not proved to be satisfied for interpolating median RF (nor for interpolating CRF).

We also provide numerical experiments (resp. Section 4.5.2 and S3.1) that illustrate the
consistency of the interpolating Median RF.

4.5.2 Volume of the Interpolation Area
In this section, we aim at quantifying the volume of the interpolation area of a Median RF, which
is a prerequisite for the RF consistency. To pursue our analysis, we first give a rigorous definition
of the interpolation area.
Definition 4.5.2. The interpolation area is the subspace of [0, 1]d where the forest prediction depends
only on one training point. For a given forest fM,n(.,ΘM), the interpolation area is denoted by2

A(fM,n(.,ΘM)) =

{
x ∈ [0, 1]d,∃!Xi ∈ Dn, Xi ∈

M⋂

m=1

An(x,Θm)

}
.

The interpolation zone is highly dependent on both the geometry of the training points Xi’s
and the construction of the trees. Analyzing the interpolation area for a finite Median RF turns
out to be quite a challenging task. Therefore, we focus our study on the core interpolation area
Amin written as

Amin =
⋂

M∈N,ΘM

A(fM,n(.,ΘM)).

The area Amin is the intersection of the interpolation zones of all possible forests, or equivalently
of a forest containing all possible trees (and therefore all possible cuts). As an example note
that in the case of median trees, every cut may occur with a positive probability. Therefore,
Amin matches the volume of the interpolation area of an infinite Median RF. In the following
proposition, we control the Lebesgue measure (denoted by µ) of the core interpolation area
AMedRF

min of an infinite Median RF.
2the symbol ∃! means “there exists a unique”.

Work in progress as of January 16, 2024

4.6. Breiman RF 136

Proposition 4.5.3. For all n ⩾ 2, for all d ⩾ 2, consider an infinite Median RF. Then,

EDn

[
µ(AMedRF

min)
]
⩽ 2

(
2

n

)d−1

.

The volume of the core interpolation area of an infinite Median RF tends to 0 polynomially in
n and exponentially in d.
Remark 4.5.4. Apart from a very restricted zone, the prediction of an infinite Median RF mostly relies on
more than one training point. More specifically, this is a necessary condition for consistency: the volume
of the area where the prediction involves only a finite number of points (a fortiori the interpolation zone)
should tend to 0. Indeed, by decomposing the risk as R(fn(X)1X∈AMedRF

min
) +R(fn(X)1X/∈AMedRF

min
), the

first term is at least of the order σ2µ(AMedRF
min). Therefore, it is not possible to cancel out the noise of the

training dataset when only a finite number of points is used for the prediction. The noise in such an area
remains of order σ2. Proposition 4.5.3 portends the predominant self-averaging property of adaptive RF,
and hence underpins the idea of good capabilities of Median RF in interpolation regimes.

4.6 Breiman RF
The widely-used Breiman RF is composed of several CART (Breiman et al. 1984), each one trained
on a bootstrap sample, and for which the successive splitting directions and thresholds are chosen
at each step (among a random subset of directions) in order to minimize the CART criterion.
Breiman RF exhibit excellent predictive performance even if their adaptivity to the data remains
a real hurdle to their theoretical analysis.

From the interpolation perspective, each CART being trained on a bootstrap sample, the RF
interpolation is not ensuredwhen considering fully-grown trees. Indeed, a tree cannot interpolate
a point that is not chosen in the bootstrap step. For this reason, we focus our study on the volume
of interpolation areas for Breiman RFwithout bootstrap and then analyze their empirical behavior
in interpolating regimes through a battery of numerical experiments.

Interpolation As a Breiman RF is built using both theXi’s and the Yi’s, it is difficult to determine
the depth necessary to reach the interpolation state. Depending on the data, the latter can be
of the order k ≈ log2(n) in the best case, if each cut creates approximately two groups of the
same size), or k ≈ n in the worst case, if only one point is separated from the others at each
step (low signal-to-noise ratios situations, see e.g., Ishwaran 2015). Note that by omitting the
bootstrap in the RF construction, the interpolation of Breiman RF directly results from aggregating
fully-grown trees.

Volume of the interpolation zone As shown in the next proposition, the volume of the core
interpolation area of Breiman RF tends to 0 as n tends to infinity.
Proposition 4.6.1. Consider an infinite Breiman forest constructed without bootstrap with each tree fully
developed. Suppose that for a given configuration of the training data, all cuts have a probability strictly
greater than 0 to appear. Then, the volume of the minimal interpolation zone verifies

E [µ(Amin)] ⩽
1

nd−1

(
1− 2−n

)d
.

Similarly to the Median RF, the bound on the interpolation volume for a Breiman forest enjoys
the same order of decay, improved by a constant exponential in the dimension. Since predictions

Work in progress as of January 16, 2024

4.6. Breiman RF 137

cannot be accurate in the interpolation area in a noisy setting, it is necessary that the volume of
this area decreases to zero in order to ensure the RF consistency (see Remark 4.5.4). Proposition
4.6.1 therefore suggests the good generalization properties of Breiman RF in interpolation regimes,
as several training points are mostly used for prediction.

Setting the number of eligible features for splitting to 1 is sufficient to ensure the hypothesis
on cuts in Proposition 4.6.1: one can obtain a tree in which all splits are performed along a single
direction. Note that this result could be extended to any RF composed of DT where each cut has
a non-zero probability to appear.

In Appendix S3, we numerically evaluate the volume of the interpolation zone and compare
it to the theoretical bounds in Proposition 4.6.1.

Empirical study of consistency We now present an empirical study of Breiman RF consistency
in interpolation regimes. In the theoretical analysis, we have focused on a specific type of
Breiman RF (without bootstrap and a max-features parameter equal to 1). We now examine the
characteristics of Breiman forests with their default parameters and study the regularization
processes that limit the noise sensitivity in the interpolation regime. In order to reach a better
estimation of the regression function, Breiman RF average several CARTs while introducing
randomness in the construction of each tree to diversify them. The first randomization comes
from the bootstrap: each tree is trained on a bootstrap sample (selecting n observations out of the
n original ones, with replacement). The other randomization results from a random selection of
splitting directions: at each node, a subset of {1, . . . , d} of size max-features is randomly selected
and the CART criterion is optimized along these directions only (settingmax-features to 1 provides
the maximum diversity whereas setting it to d results in the construction of a unique tree).

The benefit of these two aspects in the construction of the Breiman RF is numerically analyzed
when using interpolating Breiman trees. In Figure 4.2, we measure the excess risk of two RFs with
2000 trees and max-depth= None, where for the first one, bootstrap is used and the max-features
parameter is set to 1, whereas the second one excludes bootstrap and sets the max-features
parameter to ⌈d/3⌉ (default value in randomForest in R).

0.0000

0.0005

0.0010

0.0015

Ex
ce

ss
 ri

sk

Model 1

0.02

0.04

0.06

0.08

Model 2

no bootstrap, mf=ceil(d/3)+1
bootstrap on, mf=d

1000 5000 10000 15000 20000 30000 50000
n

0.02

0.04

0.06

0.08

Ex
ce

ss
 ri

sk

Model 3

1000 5000 10000 15000 20000 30000 50000
n

0.02

0.04

0.06

0.08

0.10
Model 4

Figure 4.2: Consistency of two Breiman RF: excess risk w.r.t. sample size n. Mean over 10 tries
(bold lines) andmean± std (filled zone), when using 2000 trees per forest, andmax-depth=None.
See Appendix S3 for the model definitions.

In Figure 4.2, we observe that the excess risk decreases to 0 for all models and for both

Work in progress as of January 16, 2024

4.7. Conclusion 138

forests. Indeed, each randomizing process alone induces enough diversity across trees for the
self-averaging property to be efficient, resulting in the consistency of the overall forests (see also
Scornet 2016a; Mentch et al. 2019; Mourtada et al. 2020 for insights about tree diversity in random
forests).

However, when using bootstrap, consistency comes at the cost of leaving the interpolation
regime, as only 2/3 of the data are used in average to build each tree (see Figures S18, S19 in Section
S3.2 for more details about the forest non-interpolation). In regards of this internal sampling
selection, the aggregation of interpolating bagged trees results in smoothing the decision process
of the entire forest, providing thereby a consistent but not interpolating estimate.

In turn, Breiman RF built with max-features= ⌈d/3⌉ seems consistent while preserving its
interpolating behavior. Within this configuration, the final RF still interpolates the data but the
volume of the interpolation zone is very small as shown in Figure S16. This is in line with the
vision of a locally spiky estimator developed inWyner et al. 2017 and Bartlett et al. 2021. Indeed, the
influence of the averaging effect is locally null near the data training points, but increases with the
distance from these points. Note that bootstrap and feature subsampling act differently. Bootstrap
smoothens predictions by averaging different observations, even at points of the training set,
which leads to an empty interpolation area. On the other hand, feature subsampling increases
tree partition diversity, which reduces but does not annihilate the interpolation area of the overall
forest.
Remark 4.6.2. One of the advantage of using deep (interpolating) trees, compared to shallow ones,
is that it allows the RF to build more diversified trees. Indeed, the number of possible trees roughly
grows exponentially with regard to the depth (also depending on n, d and the max-features parameter).
Especially when max-features is low, this should improve the averaging effect of the RF which is of
particular interest when dealing with noisy data.

In this regard, Breiman RF with max-features= ⌈d/3⌉ are similar to interpolating spiky non-
singular kernel methods, as studied in Belkin et al. 2019b, except for the leeway allowed for the
hyperparameters tuning. Indeed, as underlined for non-adaptive centered forests, the depth
kn (i.e. the tuned parameter) is constrained to a strict range to ensure both consistency and
interpolation. This is not the case for singular kernel methods, as they interpolate regardless of
the window parameter value.

4.7 Conclusion
In this paper, we study both empirically and theoretically the tradeoff between interpolation and
consistency of different types of random forests: when dealing with non-adaptive RF (CRF),
empty cells prevent consistency; so that aggregating only non-empty leaves (void-free CRF) leads
to convergence rates, only in a noiseless scenario. In a noisy setting, the kernel RF aggregates
leaves differently (also avoiding empty ones). For kernel RF, we establish a (slow) consistency
rate in the mean interpolation regime. We then study semi-adaptive RF that are closer to those
used in practice and that present the advantage of being able to exactly interpolate the training
data. The convergence of the median RF in the exact interpolation regime is established, showing
the power of such architecture (even when used without bootstrap). Our study also shows that a
prerequisite for consistency is that the minimal interpolation zone tends to zero as n tends to
infinity. We theoretically analyze this quantity for median and Breiman forests, emphasizing that
interpolation might occur in conjunction with consistency if the volume of such areas vanishes
fast enough. An experimental study supports the concomitance of consistency and interpolation
in Breiman RF, when no bootstrap step is involved.

Work in progress as of January 16, 2024

4.7. Conclusion 139

Contrary to Nadaraya-Watson methods involving singular kernels that interpolate regardless
of the bandwidth parameter, RF interpolate only for a specific choice of the depth, thus restricting
the regime in which interpolation and consistency occur in concordance. Overall, most simple
RF versions were relevant to study RF consistency when the tree depth was limited but are not
actually sufficient to handle deeper trees corresponding to interpolation regimes. For adaptive
forests, increasing the tree depth towards the interpolation regime results in a reduced bias, and
the variance reduction phenomenon only results from the split randomization effect. The higher
the dimension, the more diversified the trees, the stronger the averaging effect and the variance
reduction. Analyzing the strength of this phenomenon, which highly depends on the very shape
of tree partitions, is the cornerstone to prove the consistency of adaptive RF in a general regression
setting. We believe that interpolation remains benign for the consistency of adaptive RF, but can
damage their convergence rate (this was the case for KeRF in the mean interpolation regime and
for Median RF in the exact interpolation regime), at least when bootstrap is not used.

The analysis of the interpolation zone of RF introduced in this article is an important tool
for the understanding of RF prediction in interpolation regimes. Indeed the volume of the
interpolation area is actually a roundabout way to measure the diversity in the constructed
trees: if this volume is high, all trees end up building similar partitions. This diversity measure
could also be used as a regularization tool to reduce the RF complexity by keeping only the most
uncorrelated trees (in terms of partition) in a PCA fashion.

Work in progress as of January 16, 2024

S2. Proofs 140

S1 Summary of Contributions

Figure S3: Summary of theoretical contributions

S2 Proofs

S2.1 Reminders and Notations
Tree and RF estimator: We recall the prediction of the given by the j-th tree of the RF at point x:

fn(x,Θj) =

n∑

i=1

1Xi∈An(x,Θj)Yi

Nn(x,Θj)
1Nn(x,Θj)>0 ,

where An(x,Θj) is the cell containing x and Nn(x,Θj) is the number of points falling into
An(x,Θj). It is also written as follows:

fn(x,Θj) =

n∑

i=1

Wni(x,Θj)Yi,

where Wni(x,Θj) =
1Xi∈An(x,Θj)

Nn(x,Θj)
1Nn(x,Θj)>0. The (finite) forest estimate then results from the

aggregation of M trees:

fM,n(x,ΘM) =
1

M

M∑

m=1

fn(x,Θm) ,

whereΘM := (Θ1, ...,ΘM).

Work in progress as of January 16, 2024

S2. Proofs 141

S2.2 Proofs of Section 4.3 (Centered RF)
Proof of Lemma 4.3.1 (Link between tree and forest interpolation)

First, it is clear that if all trees of a forest interpolate, the forest interpolates. Now, suppose that
the forest fCRF

M,n interpolates a training point Xs, s ∈ {1, . . . , n}. Then, by definition of fCRF
M,n ,

fCRF
M,n (Xs,ΘM) =

1

M

M∑

j=1

n∑

i=1

YiWni(Xs,Θj)

=

n∑

i=1

Yi

 1

M

M∑

j=1

Wni(Xs,Θj)

= Ys,

whereWni(Xs,Θj) :=
1Xi∈An(Xs,Θj)

Nn(Xs,Θj)
1Nn(Xs,Θj)>0. Consequently,

fCRF
M,n (Xs,ΘM) = Ys (4.4)

⇐⇒ Ys

 1

M

M∑

j=1

Wns(Xs,Θj)− 1

+

∑

i ̸=s

Yi

 1

M

M∑

j=1

Wni(Xs,Θj)

 = 0. (4.5)

For (4.5) to hold almost surely, it is necessary that it holds conditional onX1, . . . , Xn,Θ1, . . . ,ΘM .
Since, for all j ∈ {1, . . . ,M}, the terms Wni(Xs,Θj) are measurable with respect to
X1, . . . , Xn,Θ1, . . . ,ΘM and Ys is independent of (Yi, i ̸= s) given X1, . . . , Xn,Θ1, . . . ,ΘM ,
equality (4.5) leads to, for all i ̸= s,

1

M

M∑

j=1

Wns(Xs,Θj) = 1, and 1

M

M∑

j=1

Wni(Xs,Θj) = 0. (4.6)

Since all weights Wni(X,Θ) take values in [0, 1], we have, for all j ∈ {1, . . . ,M} and for all i ̸= s

Wns(Xs,Θj) = 1 and Wni(Xs,Θj) = 0. (4.7)

Finally, for all j ∈ {1, . . . ,M}, the prediction of the jth tree at Xs is given by

fCRF
n (Xs,Θj) =

n∑

i=1

Wni(Xs,Θj)Yi (4.8)

= Ys, (4.9)

and therefore all trees of the forest interpolate the point Xs.

Proof of Proposition 4.3.2 (Probability of interpolation for a centered tree)

As all the leaves have the same volume and the data points are independent and uniformly
distributed, having at most one point per leaf is equivalent to distribute n balls into 2k boxes
containing at most one point with 2k ⩾ n as can be seen on Figure S4. Recalling that IT is the

Work in progress as of January 16, 2024

S2. Proofs 142

Tree partition

 n + 2^k -1
 elements

 Figure S4: Computing the interpolation probability (depth k = 3, n = 6)

event “a centered tree of depth kn interpolates the training data", we have

P (IT) =
(
2k

n

)
(
n+2k−1

n

)

=
2k!

(2k − n)!n!

n!(2k − 1)!

(n+ 2k − 1)!

=
2k × (2k − 1)× . . .× (2k − n+ 1)

(2k + n− 1)× (2k + n− 2)× . . . 2k
.

If we have k = log2(αnn) ∈ N, we have

P (IT) =
αnn

(αn + 1)n− 1
· αnn− 1

(αn + 1)n− 2
. . .

(αn − 1)n+ 1

αnn
.

In the general case where k = ⌊log2(αnn)⌋, that is αnn/2 ⩽ 2k ⩽ αnn, we can lower bound
the probability of the event IT as

P (IT) =
2k × (2k − 1)× . . .× (2k − n+ 1)

(2k + n− 1)× (2k + n− 2)× . . . 2k
⩾

(
2k − n+ 1

2k + n− 1

)n

⩾

(
2k − n

2k + n

)n

⩾ exp

(
n log

(
2k − n

2k + n

))
⩾ exp

(
n log

(
1− 2n

2k + n

))
⩾ exp

(
−n

(
2

2k

n − 1

))

⩾ exp

(
−
(

4n

αn − 2

))

since log(1− x) ⩾ −x/(1− x) and provided that αn > 2 for the last inequality. To upper bound
the probability, note that, for all r ∈ {1, . . . , ⌊n/2⌋}

2k − n+ r

2k + n− r
⩽

2k − n+ n
2

2k + n− n
2 − 1

⩽
2k − n

2

2k + n
2 − 1

,

Work in progress as of January 16, 2024

S2. Proofs 143

and, for all r ∈ {1, ..., n},

2k − n+ r

2k + n− r
⩽ 1.

Therefore, one can also upper bound the probability as

P (IT) =
2k × (2k − 1)× . . .× (2k − n+ 1)

(2k + n− 1)× (2k + n− 2)× . . . 2k

⩽

(
2k − n

2

2k + n
2 − 1

)⌊n/2⌋

⩽ exp

(⌊n
2

⌋
log

(
1− n− 1

2k + n
2 − 1

))

⩽ exp

(
−
⌊n
2

⌋(n
2

2k + n
2 − 1

))

⩽ exp

(
−
⌊n
2

⌋(1
2

2k

n + 1
2

))

⩽ exp

(
−
⌊n
2

⌋(1

2αn + 1

))
,

for all n ⩾ 2. Finally, for all n ⩾ 2, and for all αn > 2,

exp

(
− 4n

αn − 2

)
⩽ P (IT) ⩽ exp

(
−
⌊n
2

⌋(1

2αn + 1

))
.

Proof of Corollary 4.3.3 (Probability of interpolation for a CRF)

As it is necessary for all trees to interpolation for the forest to interpolate, the probability that the
forest interpolates is smaller than the probability that a single tree interpolates.

Proof of Proposition 4.3.5 (CRF inconsistency)

Let fCRF
∞,n be an infinite CRF with each tree of depth kn ⩾ log2(αnn), that is each tree has at

least αnn leaves, with αnn > 1. Let X be uniformly distributed on [0, 1]d. We write f̄CRF
n,∞ (X) =

E
[
fCRF
∞,n (X)|X,X1, ..., Xn

]. Then, denoting E the event “Nn,∞(X) = 0" (or equivalently, “X falls

Work in progress as of January 16, 2024

S2. Proofs 144

into a non-empty leaf"),

R(fCRF
∞,n (X)) = E

[(
fCRF
∞,n (X)− f⋆(X)

)2] (4.10)

⩾ E
[(
f̄CRF
n,∞ (X)− f⋆(X)

)2] (4.11)

= E

(

n∑

i=1

EΘ [Wni(X,Θ)f⋆(Xi)]− (1E + 1Ec) f⋆(X)

)2

 (4.12)

= E

(
1Ec

n∑

i=1

EΘ [Wni(X,Θ) (f⋆(Xi)− f⋆(X))]− 1Ef⋆(X)

)2

 (4.13)

⩾ E
[
f⋆(X)21E

] (4.14)
⩾ E

[
f⋆(X)2P (E|X)

]
. (4.15)

Besides,

P (E|X) = P (Nn,∞(X) = 0|X) (4.16)

⩾

(
1− 1

αnn

)n

, (4.17)

and as log(1− 1/x) ⩾ − 1
x−1 for x > 1,

(
1− 1

αnn

)n

= en log(1− 1
αnn) (4.18)

⩾ e−
n

αnn−1 . (4.19)

Thus,

R(fCRF
∞,n (X)) ⩾ e−

n
αnn−1E

[
f⋆(X)2

]
, (4.20)

which tends to 0 if and only if αn tends to zero as n tends to infinity. Since, by assumptions, αn

does not tend to zero and E
[
f⋆(X)2

]
> 0, the infinite CRF is inconsistent.

Proof of Lemma 4.3.6 (Probability of falling into an empty cell of the void-free CRF)

Recall that EM,n(x) is the event “for all m ∈ {1, . . . ,M}, Nn(x,Θm) = 0”. We have

EM,n(x) =

M⋂

j=1

{Nn(x,Θj) = 0} . (4.21)

Given a dataset, we distinguish two situations: either x falls into an area where it cannot be
connected to a point Xi for any tree, or the dataset is such that x could be connected to a point
Xi for a certain configuration of cuts within a tree. We write E1,n(x) the (Dn-measurable) event
{∀θ,Nn(x, θ) = 0}. Consequently, we have E1,n(x)c = {∃ θ,Nn(x, θ) ̸= 0}. Using these notations,

Work in progress as of January 16, 2024

S2. Proofs 145

we obtain

P (EM,n(x)) = P (EM,n(x) ∩ E1,n(x)) + P (EM,n(X) ∩ E1,n(x)c) (4.22)
= P (E1,n(x)) + P (EM,n(x) ∩ E1,n(x)c) (4.23)

where the first probability term of the second line is a probability taken overDn only, since E1,n(x)
does not depend on Θ. We control this probability thanks to the following Lemma.
Lemma S1. For all x ∈ [0, 1]d, we let E1,n(x) be the event {∀θ,Nn(x, θ) = 0}. Then, we have

P (E1,n(x)) ⩽ e−
n

2k+1 .

Proof. Let x ∈ [0, 1]d. The event E1,n(x) happens if all the points of the dataset fall into parts of
the space that cannot connect to x for any tree. In order to compute its probability, we compute
the size of the connection area of x for trees of depth k, denoted

Zc,k(x) =
{
z ∈ [0, 1]d : ∃θ, z ∈ An(x, θ)

}
. (4.24)

We recall that trees are built independently from the dataset and that all cuts are made in the
middle of the current node for a uniformly chosen feature at each step. We denote A(k1, ..., kd, x)
the cell of x obtained by cutting kj times along feature X(j) for all j ∈ {1, . . . , d}. Then, the
volume of the connection area Zc,k of x is

µ(Zc,k(x)) = µ

⋃

0⩽k1,...,kd⩽k∑
j kj=k

A(k1, ..., kd, x)

 (4.25)

⩾ µ

⋃

0⩽k1,k2⩽k
k1+k2=k

A(k1, k2, 0, ..., 0, x)

 . (4.26)

By σ-additivity of µ,

µ

⋃

0⩽k1,k2⩽k
k1+k2=k

A(k1, k2, 0, ..., 0, x)

= µ
(
A(k, 0, ..., 0, x)

)
+

k∑

j=1

µ

(
A(k − j, j, 0, ..., 0, x) \

j−1⋃

ℓ=0

A(k − ℓ, ℓ, 0, ..., 0, x)

)
. (4.27)

Given the shape of the cells A(k − j, j, 0, ..., 0, x), for all j ∈ {1, . . . , d}, we have (see Figure S5)

A(k − j, j, 0, ..., 0, x) \
j−1⋃

ℓ=0

A(k − ℓ, ℓ, 0, ..., 0, x)

=A(k − j, j, 0, ..., 0, x) \A(k − j + 1, j − 1, 0, ..., 0, x). (4.28)

Furthermore, note that, for all j ∈ {1, . . . , d}, the volume of each cell A(k − j + 1, j − 1, 0, ..., 0, x)
is 2−k (since k cuts have been performed). Therefore, for all j ∈ {1, . . . , k},

Work in progress as of January 16, 2024

S2. Proofs 146

1. µ(A(k − j, j, 0, ..., 0, x)) = µ(A(k − j + 1, j − 1, 0, ..., 0, x)) = 2−k

2. µ((A(k − j, j, 0, ..., 0, x) ∩A(k − j + 1, j − 1, 0, ..., 0, x)
)
= µ(A(k−j,j,0,...,0,x))

2 as can be seen
on Figure S5.

J=1

k=4

J=0

A(4,0) A(3,1)

(0,0)

Figure S5: Volume of leaf intersection µ
(
(A(k − j, j, x) ∩A(k − j + 1, j − 1, x)

) in dimension 2
with x = (0, 0), k = 4 cuts and j ∈ {0, 1}.

We deduce from these facts that, for all j,

µ
(
A(k − j, j, 0, ..., 0, x) \A(k − j + 1, j − 1, 0, ..., 0, x)) =

µ(A(k − j, j, 0, ..., 0, x))

2
(4.29)

= 2−(k+1) (4.30)

Hence, combining equations (4.27), (4.28) and (4.29), we have

µ

⋃

0⩽k1,k2⩽k
k1+k2=k

A(k1, k2, 0, ..., 0, x)

 = 2−k + k2−(k+1). (4.31)

Consequently, using inequality (4.26),

µ(Zc,k(x)) ⩾ k2−(k+1). (4.32)

Finally, as the Xi’s are uniformly distributed on [0, 1]d and E1,n(x) is realized when none of

Work in progress as of January 16, 2024

S2. Proofs 147

the Xis fall into Zc,k(x),

P (E1,n(x)) = P (∀i ∈ {1, . . . , n}, Xi /∈ Zc,k(x)) (4.33)
= (1− µ(Zc,k(x)))

n (4.34)
⩽
(
1− k2−(k+1)

)n
(4.35)

= en log(1−k2−(k+1)) (4.36)
⩽ e−

kn

2k+1 . (4.37)

Regarding the second term of (4.23), we have

P (EM,n(x) ∩ E2,n(x)) = P

M⋂

j=1

Nn(x,Θj) = 0

⋂

(
∃i ∈ {1, . . . , n}, Xi ∈ Zc,k(x)

)

 (4.38)

= E
[
E
[
1∃i∈{1,...,n},Xi∈Zc,k(x)1

⋂M
j=1 Nn(x,Θj)=0|Dn

]]
(4.39)

= E

1∃i∈{1,...,n},Xi∈Zc,k(x)P

M⋂

j=1

Nn(x,Θj) = 0|Dn

 (4.40)

= E
[
1∃i∈{1,...,n},Xi∈Zc,k(x)(1− pn)

M
] (4.41)

where pn = PΘ (Nn(x,Θ) > 0|Dn) and where the last line is obtained by independence of the
Θj ’s conditionally on Dn. Note that, if ∃i ∈ {1, . . . , n}, Xi ∈ Zc,k(x), then pn ⩾ d−k since a tree
connects x and a point in Zc,k(x)with probability at least d−k (i.e. by choosing the right cut at
each step). Hence,

1∃i∈{1,...,n},Xi∈Zc,k(x)(1− pn)
M ⩽ (1− d−k)M , (4.42)

which leads to

P (EM,n(x) ∩ E1,n(x)c) ⩽
(
1− d−k

)M (4.43)
⩽ e−Md−k

. (4.44)

Finally, gathering Lemma S1 and inequality (4.44) yields

P (EM,n(x)) ⩽ e−
kn

2k+1 + e−Md−k

. (4.45)

Proof of Proposition 4.3.7 (Consistency of void-free-CRF in a noiseless setting)

Recall that, in a noiseless setting (that is, for all i, Yi = f⋆(Xi)), the risk of the Void-free CRF can
be written as

E
[(
fVF
∞,n(X)− f⋆(X)

)2]

= E

(
1PΘ(Nn(X,Θ)>0)>0

PΘ (Nn(X,Θ) > 0)

n∑

i=1

f⋆(Xi)EΘ[Wni(X,Θ)1Nn(X,Θ)>0]− f⋆(X)

)2

 .

Work in progress as of January 16, 2024

S2. Proofs 148

We decompose f⋆(X) as

f⋆(X) =
(
1PΘ(Nn(X,Θ)>0)>0 + 1PΘ(Nn(X,Θ)>0)=0

)
f⋆(X)

in order to write

E

(
1PΘ(Nn(X,Θ)>0)>0

PΘ (Nn(X,Θ > 0))

n∑

i=1

f⋆(Xi)EΘ[Wni(X,Θ)1Nn(X,Θ)>0]− f⋆(X)

)2

= E

[(
1PΘ(Nn(X,Θ)>0)>0

PΘ (Nn(X,Θ > 0))

n∑

i=1

(f⋆(Xi)− f⋆(X))EΘ[Wni(X,Θ)1Nn(X,Θ)>0]

−f⋆(X)1PΘ(Nn(X,Θ)>0)=0

)2]

⩽ 2E

(
1PΘ(Nn(X,Θ)>0)>0

PΘ (Nn(X,Θ > 0))

n∑

i=1

(f⋆(Xi)− f⋆(X))EΘ[Wni(X,Θ)1Nn(X,Θ)>0]

)2

+ 2E
[(
f⋆(X)1PΘ(Nn(X,Θ)>0)=0

)2] (4.46)

The second term of the last inequality verifies

E
[(
f⋆(X)1PΘ(Nn(X,Θ)>0)=0

)2]
⩽ ||f⋆||2∞P (PΘ (Nn(X,Θ) > 0) = 0) . (4.47)

The event {PΘ (Nn(X,Θ) > 0) = 0} is (X,Dn)-measurable, it corresponds to the situation where
for any θ, Nn(X, θ) = 0, i.e. the dataset is such that it is impossible for a tree to connect X with
one of the Xi’s. This probability is controlled by Lemma S1:

P (PΘ (Nn(X,Θ) > 0) = 0) ⩽ e−
kn

2k+1 .

Denoting by µ
(
A

(j)
n (x,Θ)

)
the length of the jth side of the cell containing x and following a

computation from Klusowski 2021a,
n∑

i=1

Wni(X,Θ)|f⋆(X)− f⋆(Xi)|1Nn(X,Θ)>0

⩽
n∑

i=1

Wni(X,Θ)

d∑

j=1

||∂jf⋆||∞|X(j)
i −X(j)|

1Nn(X,Θ)>0 (4.48)

⩽
n∑

i=1

Wni(X,Θ)1Nn(X,Θ)>0

d∑

j=1

||∂jf⋆||∞(bj − aj) (4.49)

⩽ 1Nn(X,Θ)>0

d∑

j=1

||∂jf⋆||∞µ
(
A(j)

n (X,Θ)
)
. (4.50)

Work in progress as of January 16, 2024

S2. Proofs 149

Therefore,

E
[(
fVF
∞,n(X)− f⋆(X)

)2]

⩽ 2E

 1

PΘ(Nn(X,Θ) > 0)

d∑

j=1

||∂jf ||∞EΘ

[
1Nn(X,Θ)>0µ

(
A(j)

n (X,Θ)
)]

2

+ 2e−
kn

2k+1 (4.51)

⩽ 2d

d∑

j=1

||∂f⋆
j ||2∞E

[
1

PΘ(Nn(X,Θ) > 0)2
EΘ

[
1Nn(X,Θ)>0µ

(
A(j)

n (X,Θ)
)]2]

+ 2e−
kn

2k+1 . (4.52)

Note that the length µ
(
A

(j)
n (X,Θ)

)
of the j-th side of the cell An(X,Θ) and the event

{Nn(X,Θ) > 0} are not independent conditional on X1, ..., Xn, X . Indeed, given the geom-
etry of the dataset, it is possible that cutting along the jth direction isolates X from the dataset.
Therefore its length should be computed conditional on the event {Nn(X,Θ) > 0}.

To this aim, we denote for all κ ∈ N, An,κ(X,Θ) the cell containingX at depth κ in a centered
tree built with the extra randomness Θ. Conditional on Nn(X,Θ) > 0, the jth direction can be
chosen to split along if and only if it does not isolate X from the points of the dataset. Thus, we
denote by En,κ(j,X,Θ) the event "In a centered tree built with the randomized cuts Θ, at depth
κ, splitting the cell containing X along the jth direction does not isolate X". Then,

EΘ

[
1Nn(X,Θ)>0µ

(
A(j)

n (X,Θ)
)]

= EΘ

[
1Nn(X,Θ)>0µ

(
A(j)

n (X,Θ)
)
(1En,κ(j,X,Θ)c + 1En,κ(j,X,Θ))

]

(4.53)
⩽ EΘ

[
1Nn(X,Θ)>01En,κ(j,X,Θ)c

] (4.54)
+ EΘ

[
1Nn(X,Θ)>01En,κ(j,X,Θ)µ

(
A(j)

n (X,Θ)
)]

, (4.55)

since µ
(
A

(j)
n (X,Θ)

)
⩽ 1. We denote A(j),left

n,κ (X,Θ) (resp. A(j),right
n,κ (X,Θ)) the left (resp. right)

daughter of the cell An,κ(X,Θ) that has been split along the jth direction (note that the whole
cell is considered here, not only the projection on the j-th side). Then,

EΘ

[
1Nn(X,Θ)>01En,κ(j,X,Θ)c

]

= PΘ

(
En,κ(j,X,Θ)c

∣∣Nn(X,Θ) > 0
)
PΘ (Nn(X,Θ) > 0) (4.56)

= PΘ

((
Nn(A

(j),left
n,κ (X,Θ)) = 0

)
∩
(
X ∈ A(j),right

n,κ (X,Θ)
) ∣∣Nn(X,Θ) > 0

)
PΘ (Nn(X,Θ) > 0)

+ PΘ

((
Nn(A

(j),right
n,κ (X,Θ)) = 0

)
∩
(
X ∈ A(j),left

n,κ (X,Θ)
) ∣∣Nn(X,Θ) > 0

)
PΘ (Nn(X,Θ) > 0)

(4.57)
⩽ 2PΘ

(
Nn(A

(j),left
n,κ (X,Θ)) = 0

∣∣Nn(X,Θ) > 0
)
PΘ (Nn(X,Θ) > 0) . (4.58)

Work in progress as of January 16, 2024

S2. Proofs 150

Moreover,

EΘ

[
1Nn(X,Θ)>01En,κ(j,X,Θ)µ

(
A(j)

n (X,Θ)
)]

⩽ EΘ

[
µ
(
A(j)

n (X,Θ)
) ∣∣En,κ(j,X,Θ), Nn(X,Θ) > 0

]
PΘ (Nn(X,Θ) > 0) . (4.59)

DenotingKj,κ(X,Θ) the number of splits made on feature j up to depth κ to produce the cell
containing X , we obtain

EΘ

[
µ
(
A(j)

n (X,Θ)
) ∣∣En,κ(j,X,Θ), Nn(X,Θ) > 0

]

⩽ EΘ

[
2−Kj,κ(X,Θ)

∣∣En,κ(j,X,Θ), Nn(X,Θ) > 0
]
. (4.60)

We denote δj(X,Θ) ∈ {0, 1}k the vector indicating at which depth the jth direction is chosen
for splitting, that is δj,ℓ(X,Θ) = 1 if and only if the jth feature is used for splitting at depth ℓ. We
have

Kj,κ(X,Θ) =

κ∑

ℓ=1

δj,ℓ(X,Θ).

For ℓ = 1, . . . , κ, the random variables δj,ℓ(X,Θ) are distributed as Bernoulli random variables.
Conditional onEn,κ(j,X,Θ) andNn(X,Θ) > 0, we know that for all ℓ = 1, . . . , κ, the jth direction
was eligible for splitting at level ℓ. Therefore, the probability of selecting the jth direction at any
level 1 ⩽ ℓ ⩽ κ, is pℓ ⩾ 1/d (at worst, all variables are eligible for splitting, leading to pℓ = 1/d).
Besides, conditional on En,κ(j,X,Θ) and Nn(X,Θ) > 0, the random variables δj,ℓ(X,Θ) are
independent by construction of the centered forest. Indeed, conditional on En,κ(j,X,Θ) and
Nn(X,Θ) > 0, the jth direction can be chosen up to depth κ (independence is broken only when
the direction cannot be chosen at a given depth as the following one will not be chosen either).
Then,

EΘ

[
2−Kj,κ(X,Θ)

∣∣En,κ(j,X,Θ), Nn(X,Θ) > 0
]
=

κ∏

ℓ=1

EΘ

[
2−δj,ℓ(X,Θ)

∣∣En,κ(j,X,Θ), Nn(X,Θ) > 0
]

(4.61)

=

κ∏

ℓ=1

(pℓ
2

+ (1− pℓ)
)

(4.62)

⩽

(
1− 1

2d

)κ

. (4.63)

Therefore, injecting Equations (4.58) and (4.63) into (4.55), we get

EΘ

[
1Nn(X,Θ)>0µ

(
A

(j)
n (X,Θ)

)]

PΘ (Nn(X,Θ) > 0)
⩽ 2PΘ

(
Nn(A

(j),left
n,κ (X,Θ)) = 0

∣∣Nn(X,Θ) > 0
)
+

(
1− 1

2d

)κ

,

(4.64)

Work in progress as of January 16, 2024

S2. Proofs 151

which implies

EΘ

[
1Nn(X,Θ)>0µ

(
A

(j)
n (X,Θ)

)]

PΘ (Nn(X,Θ) > 0)

2

⩽ 4PΘ

(
Nn(A

(j),left
n,κ (X,Θ)) = 0

∣∣Nn(X,Θ) > 0
)
+ 2

(
1− 1

2d

)2κ

, (4.65)

using (a+ b)2 ⩽ 2a2 + 2b2 ⩽ 2a2 + 2b if b ⩽ 1. Plugging-in this expression into (4.52) leads to

E
[(
fVF
∞,n(X)− f⋆(X)

)2]
⩽ 4d

d∑

j=1

||∂f⋆
j ||2∞

(
1− 1

2d

)2κ

+ 2e−
kn

2k+1

+ 8d

d∑

j=1

||∂f⋆
j ||2∞P

(
Nn(A

(j),left
n,κ (X,Θ)) = 0

∣∣Nn(X,Θ) > 0
)
. (4.66)

Then,

P
(
Nn(A

(j),left
n,κ (X,Θ)) = 0

∣∣Nn(X,Θ) > 0
)

(4.67)

= E
[
P
(
Nn(A

(j),left
n,κ (X,Θ)) = 0

∣∣Nn(X,Θ) > 0, Nn(An,κ(X,Θ)), X,Θ
)
|Nn(X,Θ) > 0

]

= E
[
2−Nn(An,κ(X,Θ))|Nn(X,Θ) > 0

]
(4.68)

⩽ 2E
[
2−Nn(An,κ(X,Θ))

]
. (4.69)

The last line is obtained by making the expectation explicit and noting that P (Nn(X,Θ) > 0)
−1 ⩽

1/(1− e−1) ⩽ 2. Furthermore, conditional on X,Θ, Nn(An,κ(X,Θ)) is distributed as a binomial
of parameters n and µ (An,κ(X,Θ)) = 2−κ. Thus,

P
(
Nn(A

(j),left
n,κ (X,Θ)) = 0

∣∣Nn(X,Θ) > 0
)
⩽ 2E

[
2−Nn(An,κ(X,Θ))

]
(4.70)

⩽ 2E
[
E
[
2−Nn(An,κ(X,Θ))|X,Θ

]]
(4.71)

⩽ 2

(
1− µ (An,κ(X,Θ))

2

)n

(4.72)

= 2
(
1− 2−κ−1

)n (4.73)
⩽ 2 exp

(
− n

2κ+1

)
. (4.74)

Overall,

E
[(
fVF
∞,n(X)− f⋆(X)

)2]

⩽ 4d

d∑

j=1

||∂f⋆
j ||2∞

((

1− 1

2d

)2κ

+ 4 exp
(
− n

2κ+1

))
+ 2 exp

(
− kn

2k+1

)
. (4.75)

Work in progress as of January 16, 2024

S2. Proofs 152

Choosing κ = log2(n)− log2(log2(n)), that is 2κ = n/(log2(n)), we obtain

exp

(
2κ log

(
1− 1

2d

))
+ 4 exp

(
− n

2κ+1

)
⩽

(
n

log2 n

)2 log2(1− 1
2d)

+ 4n−1/(2 ln 2). (4.76)

Consequently, recalling that k = ⌊log2(n)⌋,

E
[(
fVF
∞,n(X)− f⋆(X)

)2]

⩽ 4d

d∑

j=1

||∂f⋆
j ||2∞

((

n

log2 n

)2 log2(1− 1
2d)

+ 4n−1/(2 ln 2)

)
+ 2n−1/(2 ln 2) (4.77)

⩽ Cd

(
n

log2 n

)2 log2(1− 1
2d)

+ (Cd + 2)n−1/(2 ln 2), (4.78)

where Cd = 4d

d∑

j=1

||∂f⋆
j ||2∞

 .

S2.3 Proofs of Section 4.4 (Theorem 4.4.1)
In this section, we prove the consistency of the infinite KeRF estimator in the mean interpolating
regime (Theorem 4.4.1). We follow the proof given in Scornet 2016b and first present two of its
results.
Lemma S2 (Scornet 2016b). Let k ∈ N and consider an infinite centered random forest of depth k. Then,
for all x, z ∈ [0, 1]d,

Kk(x, z) =
∑

k1,...,kd∑d
ℓ=1 kℓ=k

k!

k1! . . . kd!

(
1

d

)k d∏

j=1

1⌈2kjx(j)⌉=⌈2kj z(j)⌉.

Theorem S3 (Scornet 2016b). Let f⋆ be a L-Lipschitz function. Then, for all k,

sup
x∈[0,1]d

∣∣∣∣∣

∫
[0,1]d

kk(x, z)f
⋆(z)dz1 . . .dzd∫

[0,1]d
kk(x, z)dz1 . . .dzd

− f⋆(x)

∣∣∣∣∣ ⩽ Ld

(
1− 1

2d

)k

.

Proof of Theorem 4.4.1. Let x ∈ [0, 1]d and recall that

fKeRF
∞,n (x) =

∑n
i=1 YiKk(x,Xi)∑n
i=1 Kk(x,Xi)

.

Work in progress as of January 16, 2024

S2. Proofs 153

Thus, letting

An(x) =
1

n

n∑

i=1

(
YiKk(x,Xi)

E [Kk(x,X)]
− E [Y Kk(x,X)]

E [Kk(x,X)]

)
,

Bn(x) =
1

n

n∑

i=1

(
Kk(x,Xi)

E [Kk(x,X)]
− 1

)
,

andMn(x) =
E [Y Kk(x,X)]

E [Kk(x,X)]
,

the estimate fKeRF
∞,n (x) can be rewritten as

fKeRF
∞,n (x) =

Mn(x) +An(x)

1 +Bn(x)
,

which leads to

fKeRF
∞,n (x)− f⋆(x) =

Mn(x)− f⋆(x) +An(x)−Bn(x)f
⋆(x)

1 +Bn(x)
.

According to Theorem S3, we have

|Mn(x)− f⋆(x)| =
∣∣∣∣
E [f⋆(X)Kk(x,X)]

E [Kk(x,X)]
+
E [εKk(x,X)]

E [Kk(x,X)]
− f⋆(x)

∣∣∣∣

⩽

∣∣∣∣
E [f⋆(X)Kk(x,X)]

E [Kk(x,X)]
− f⋆(x)

∣∣∣∣

⩽ C

(
1− 1

2d

)k

,

where C = Ld. Take α ∈]0, 1/2]. Let Cα(x) be the event
{
|An(x)| ⩽ α

}
∩
{
|Bn(x)| ⩽ α

}. On the
event Cα(x), we have

|fKeRF
∞,n (x)− f⋆(x)|2 ⩽ 8|Mn(x)− f⋆(x)|2 + 8|An(x)−Bn(x)f

⋆(x)|2

⩽ 8C2

(
1− 1

2d

)2k

+ 8α2(1 + ∥f⋆∥∞)2.

Thus,

E[|fKeRF
∞,n (x)− f⋆(x)|21Cα(x)] ⩽ 8C2

(
1− 1

2d

)2k

+ 8α2(1 + ∥f⋆∥∞)2. (4.79)

Consequently, to find an upper bound on the rate of consistency of fKeRF
∞,n , we just need to

Work in progress as of January 16, 2024

S2. Proofs 154

upper bound

E
[
|fKeRF

∞,n (x)− f⋆(x)|21Cc
α(x)

]
⩽ E

[∣∣∣ max
1⩽i⩽n

|Yi|+ |f⋆(x)|
∣∣∣
2

1Cc
α(x)

]

(since fKeRF
∞,n is a local averaging estimate)

⩽ E
[∣∣∣2∥f⋆∥∞ + max

1⩽i⩽n
|εi|
∣∣∣
2

1Cc
α(x)

]

⩽

(
E

[
2∥f⋆∥∞ + max

1⩽i⩽n
|εi|
]4
P [Cc

α(x)]

)1/2

(by Cauchy-Schwarz inequality)

⩽

((
16∥f⋆∥4∞ + 8E

[
max
1⩽i⩽n

|εi|
]4)

P [Cc
α(x)]

)1/2

.

According to Lemma S5, there exists a constant C ′ > 0 such that, for all n,

E
[
max
1⩽i⩽n

ε4i

]
⩽ C ′σ4(log n)2. (4.80)

Thus, there exists C ′′ such that, for all n > 1,

E
[
|fKeRF

∞,n (x)− f⋆(x)|21Cc
α(x)

]
⩽ C ′′σ2(log n)(P [Cc

α(x)])
1/2. (4.81)

The last probability P [Cc
α(x)] can be upper bounded by using Chebyshev’s inequality. Indeed,

with respect to An(x),

P
[
|An(x)| > α

]
⩽

1

nα2
E

[
Y Kk(x,X)

E [Kk(x,X)]
− E [Y Kk(x,X)]

E [Kk(x,X)]

]2

⩽
1

nα2

1

(E [Kk(x,X)])2
E

[
Y 2Kk(x,X)2

]

⩽
2

nα2

1

(E [Kk(x,X)])2

(
E

[
f⋆(X)2Kk(x,X)2

]

+ E

[
ε2Kk(x,X)2

])

⩽
2(∥f⋆∥2∞ + σ2)

nα2

E
[
Kk(x,X)2

]

(E [Kk(x,X)])2
(4.82)

=
C0

nα2

E
[
Kk(x,X)2

]

(E [Kk(x,X)])2
(4.83)

with C0 = 2(∥f⋆∥2∞ + σ2) a constant. Meanwhile with respect to Bn(x), we obtain, still by
Chebyshev’s inequality,

P
[
|Bn(x)| > α

]
⩽

1

nα2

E
[
Kk(x,X)2

]

(E [Kk(x,X)])2
(4.84)

Work in progress as of January 16, 2024

S2. Proofs 155

which matches the control made by Scornet 2016b. Consequently,

P [Cc
α(x)] ⩽ P

[
|An(x)| > α

]
+ P

[
|Bn(x)| > α

] (4.85)

⩽
C0 + 1

nα2

E
[
Kk(x,X)2

]

(E [Kk(x,X)])2
. (4.86)

Besides, for all x ∈ [0, 1]d, for all k, E [Kcc
k (x,X)] = 1

2k
(see in Scornet 2016b the proof of theorem

VI.1 p.11). Since Kk(x,X) ⩽ 1, we know that

E [Kcc
k (x,X)] =

1

2k
⩾ E

[
Kcc

k (x,X)2
]
⩾ (E [Kcc

k (x,X)])2 =
1

22k
, (4.87)

which leads to

P [Cc
α(x)] ⩽ 22k

(
C0 + 1

nα2

)
E
[
Kk(x,X)2

]
, (4.88)

but to pursue, we need a tighter upper bound on E
[
Kcc

k (x,X)2
] than that obtained from (4.87).

Such a control is provided in Lemma S4 below, which is original, and departs from the work of
Scornet 2016b.
Lemma S4. For all d ⩾ 2, for all k large enough, for all x ∈ [0, 1]d,

E
[
Kcc

k (x,X)2
]
⩽ 2−kk−

d−1
2

(
C1 + C2 (log2(k))

d
)
, (4.89)

where

C1 = 1 +
2dd/2

(4π)(d−1)/2
and C2 = 5d

(
d− 1

2

)d

. (4.90)

Proof of Lemma S4. From Lemma S2, we know that

E
[
Kcc

k (x,X)2
]
= E

∑

k1,...,kd∑d
j=1 kj=k

k!

k1!...kd!

(
1

d

)k d∏

j=1

1⌈2kjx(j)⌉=⌈2kjX(j)⌉

2
 . (4.91)

Developing the square within the expectation, we obtain two terms, the first one A being the
sum of squares and the second one, B, being the cross-product terms. The first term A takes the
form

A := E

∑

k1,...,kd∑d
j=1 kj=k

(
k!

k1!...kd!

)2(
1

d

)2k d∏

j=1

1⌈2kjx(j)⌉=⌈2kjx(j)⌉

 (4.92)

=
∑

k1,...,kd∑d
j=1 kj=k

(
k!

k1!...kd!

)2(
1

d

)2k d∏

j=1

P
(
⌈2kjx(j)⌉ = ⌈2kjX(j)⌉

)
. (4.93)

Work in progress as of January 16, 2024

S2. Proofs 156

Note that, for all j, P (⌈2kjx(j)⌉ = ⌈2kjX(j)⌉
)
= 2−kj , and

d∏

j=1

2−kj = 2−k. Therefore,

A =
∑

k1,...,kd∑d
j=1 kj=k

(
k!

k1!...kd!

)2(
1

d

)2k

2−k. (4.94)

Thanks to Richmond et al. 2009, we know that, for all d ⩾ 2,
∑

k1,...,kd∑d
j=1 kj=k

(
k!

k1!...kd!

)2

∼
k→+∞

d2k+d/2

(4πk)(d−1)/2
. (4.95)

Therefore, for all k large enough, we have

∑

k1,...,kd∑d
j=1 kj=k

(
k!

k1!...kd!

)2

⩽
2d2k+d/2

(4πk)(d−1)/2
. (4.96)

Thus, letting C1 = 2dd/2/(4π)(d−1)/2, for all k large enough,

A ⩽ C12
−kk−(d−1)/2. (4.97)

Regarding the second term B,

B := E

∑

(k1,...,kd)
̸=(ℓ1,...,ℓd),∑d

j=1 kj=
∑d

j=1 ℓj=k

k!

k1! . . . kd!

k!

ℓ1! . . . ℓd!

(
1

d

)2k d∏

j=1

1⌈2kjx(j)⌉=⌈2kjX(j)⌉1⌈2ℓjx(j)⌉=⌈2ℓjX(j)⌉

(4.98)

=
∑

(k1,...,kd)
̸=(ℓ1,...,ℓd),∑d

j=1 kj=
∑d

j=1 ℓj=k

k!

k1! . . . kd!

k!

ℓ1! . . . ℓd!

(
1

d

)2k

P

d⋂

j=1

(
(⌈2kjx(j)⌉ = ⌈2kjX(j)⌉) ∩ (⌈2ℓjx(j)⌉ = ⌈2ℓjX(j)⌉)

)

 .

Work in progress as of January 16, 2024

S2. Proofs 157

A small computation yields

P

d⋂

j=1

(
(⌈2kjx(j)⌉ = ⌈2kjX(j)⌉) ∩ (⌈2ℓjx(j)⌉ = ⌈2ℓjX(j)⌉)

)

= P

d⋂

j=1

⌈2ℓjx(j)⌉ = ⌈2ℓjX(j)⌉
∣∣∣∣∀j, ⌈2kjx(j)⌉ = ⌈2kjX(j)⌉

 2−k (4.99)

= 2−k
d∏

j=1

P
(
⌈2ℓjx(j)⌉ = ⌈2ℓjX(j)⌉

∣∣∣∣⌈2kjx(j)⌉ = ⌈2kjX(j)⌉
)

(4.100)

= 2−k2−
∑d

j=1(ℓj−kj)1ℓj⩾kj (4.101)
= 2−

∑d
j=1 kj(1ℓj⩾kj

+1ℓj<kj
)−

∑d
j=1(ℓj−kj)1ℓj⩾kj (4.102)

= 2−
∑d

j=1 kj1ℓj<kj
−
∑d

j=1 ℓj1ℓj⩾kj (4.103)
= 2−

∑d
j=1 max(kj ,ℓj). (4.104)

Therefore,

B =

(
1

d

)2k ∑

(k1,...,kd)
̸=(ℓ1,...,ℓd),∑d

j=1 kj=
∑d

j=1 ℓj=k

k!

k1! . . . kd!

k!

ℓ1! . . . ℓd!

(
1

2

)∑d
j=1 max(kj ,ℓj)

. (4.105)

=

(
1

d

)2k ∑

(k1,...,kd)
̸=(ℓ1,...,ℓd),∑d

j=1 kj=
∑d

j=1 ℓj=k

k!

k1! . . . kd!

k!

ℓ1! . . . ℓd!

(
1

2

)k+ 1
2

∑d
j=1 |kj−ℓj |

(4.106)

=

(
1

2d2

)k ∑

(k1,...,kd)
̸=(ℓ1,...,ℓd),∑d

j=1 kj=
∑d

j=1 ℓj=k

k!

k1! . . . kd!

k!

ℓ1! . . . ℓd!

(
1

2

) 1
2

∑d
j=1 |kj−ℓj |

. (4.107)

For all q > 0, define the set Kq = {ℓ = (ℓ1, . . . , ℓd),k = (k1, . . . , kd)|
d∑

j=1

|kj − ℓj | ⩾ 2q}, so that

B =

(
1

2d2

)k ∑

(k,ℓ)∈Kq

ℓ̸=k∑d
j=1 kj=

∑d
j=1 ℓj=k

k!

k1! . . . kd!

k!

ℓ1! . . . ℓd!

(
1

2

) 1
2

∑d
j=1 |kj−ℓj |

+

(
1

2d2

)k ∑

(k,ℓ)/∈Kq

ℓ̸=k∑d
j=1 kj=

∑d
j=1 ℓj=k

k!

k1! . . . kd!

k!

ℓ1! . . . ℓd!

(
1

2

) 1
2

∑d
j=1 |kj−ℓj |

= B1 +B2. (4.108)

Work in progress as of January 16, 2024

S2. Proofs 158

Regarding B1, we have

B1 ⩽

(
1

2d2

)k ∑

(k,ℓ)∈Kq

ℓ̸=k∑d
j=1 kj=

∑d
j=1 ℓj=k

k!

k1! . . . kd!

k!

ℓ1! . . . ℓd!
2−q (4.109)

⩽

(
1

2d2

)k

2−q

∑

k,
∑d

j=1 kj=k

k!

k1! . . . kd!

∑

ℓ,
∑d

j=1 ℓj=k

k!

ℓ1! . . . ℓd!

 (4.110)

⩽ 2−k−q, (4.111)

as
∑

k,
∑d

j=1 kj=k

k!

k1! . . . kd!
= dk. (4.112)

We now define, for all k,Kq(k) := {ℓ = (ℓ1, . . . , ℓd),
d∑

j=1

ℓj = k,
d∑

j=1

|kj − ℓj | ⩾ 2q}. Regarding
B2, we have

B2 ⩽

(
1

2d2

)k ∑

k,ℓ/∈Kq

ℓ̸=k∑d
j=1 kj=

∑d
j=1 ℓj=k

k!

k1! . . . kd!

k!

ℓ1! . . . ℓd!
(4.113)

=

(
1

2d2

)k ∑

k,
∑d

j=1 kj=k

k!

k1! . . . kd!

∑

ℓ/∈Kq(k)
ℓ̸=k∑d

j=1 kj=
∑d

j=1 ℓj=k

k!

ℓ1! . . . ℓd!
. (4.114)

(4.115)

Note that for all ℓ, k!
ℓ1!...ℓd!

is maximal when maxi ℓi is minimal. Therefore, for all k ⩾ 2d,

k!

ℓ1! . . . ℓd!
=

k!

Γ(ℓ1 + 1) . . .Γ(ℓd + 1)
(4.116)

⩽
k!

Γ(⌊k/d⌋+ 1) . . .Γ(⌊k/d⌋+ 1)
(4.117)

⩽
k!

Γ(k/d)d
. (4.118)

Using an inequality from Batir 2008, we obtain

k!

Γ(k/d)d
⩽

kk+1/2e−k

kkd−ke−kkd/2

⩽ dkk−(d−1)/2.

Work in progress as of January 16, 2024

S2. Proofs 159

Overall, for all k ⩾ 2d,

B2 ⩽

(
1

2d

)k ∑

k,
∑d

j=1 kj=k

k!

k1! . . . kd!

∑

ℓ/∈Kq(k)
ℓ̸=k∑d

j=1 kj=
∑d

j=1 ℓj=k

k−(d−1)/2 (4.119)

⩽ k−(d−1)/2

(
1

2d

)k ∑

k,
∑d

j=1 kj=k

k!

k1! . . . kd!
Card(Kq(k)). (4.120)

We now want to upper bound the cardinal of Kq(k). Denoting by BL1
(0, 2q) the ball of radius

2q with respect to the L1 norm, note that

Card(Kq(k)) ⩽ Card({x ∈ Nd ∩BL1
(k, 2q)}) (4.121)

⩽ Card({x ∈ Nd ∩BL1(0, 2q)}). (4.122)

Since,

BL1
(0, c) ⊂ BL∞(0, c) ⊂ BL∞(0, ⌈c⌉),

we have,

Card(Kq(k)) ⩽ Card({x ∈ Nd ∩BL∞(0, ⌈2q⌉)})
⩽ (2⌈2q⌉+ 1)

d

⩽ (4q + 3)
d
.

Thus, we have, for all k ⩾ 2d,

B2 ⩽ k−(d−1)/2

(
1

2d

)k

(4q + 3)
d

∑

k,
∑d

j=1 kj=k

k!

k1! . . . kd!
(4.123)

⩽ k−(d−1)/2 (4q + 3)
d
2−k, (4.124)

as
∑

k,
∑d

j=1 kj=k

k!

k1! . . . kd!
= dk. (4.125)

Finally, for all q, we have

B = B1 +B2 (4.126)
⩽ 2−k−q + k−(d−1)/2 (4q + 3)

d
2−k. (4.127)

Let q =
(
d−1
2

)
log2(k). For all q ⩾ 3, that is for all k ⩾ 26/(d−1), and for all k ⩾ 2d,

B ⩽ 2−k
(
k−

d−1
2 + k−(d−1)/2C2 (log2(k))

d
)
, (4.128)

Work in progress as of January 16, 2024

S2. Proofs 160

where

C2 = 5d
(
d− 1

2

)d

. (4.129)

Finally, for all k large enough

E
[
Kcc

k (x,X)2
]
⩽ A+B1 +B2 (4.130)
⩽ 2−kk−

d−1
2

(
C1 + 1 + C2 (log2(k))

d
)
. (4.131)

According to inequality (4.88) and Lemma S4, we have, for all k large enough

P [Cc
α(x)] ⩽

C0 + 1

nα2
2kk−

d−1
2

(
C1 + C2 (log2(k))

d
)
. (4.132)

Consequently, according to inequality (4.81), we obtain, for all k large enough

E
[
|fKeRF

∞,n (x)− f⋆(x)|21Cc
α(x)

]

⩽ C ′′σ2 log n

(
C0 + 1

nα2
2kk−

d−1
2

(
C1 + C2 (log2(k))

d
))1/2

⩽ C ′′σ2(C0 + 1)1/2(max(C1, C2))
1/2 log n

n1/2α
2k/2k−

d−1
4

((
1 + (log2(k))

d
))1/2

⩽ C3
log n

n1/2α
2k/2k−

d−1
4 (log2(k))

d/2
,

where C3 = C ′′σ2(C0 + 1)1/2(2max(C1, C2))
1/2. Then using inequality (4.79), for all k large

enough

E
[
fKeRF
∞,n (x)− f⋆(x)

]2

⩽ E
[
|fKeRF

∞,n (x)− f⋆(x)|21Cα(x)

]
+ E

[
|fKeRF

∞,n (x)− f⋆(x)|21Cc
α(x)

]

⩽ 8L2d2
(
1− 1

2d

)2k

+ 8α2(1 + ∥f⋆∥∞)2

+ C3σ
2(log n)

2k/2

αn1/2
k−

d−1
4 (log2 k)

d/2.

Optimizing the right hand side in α, that is choosing

α3 = (log n)
2k/2

n1/2
k−

d−1
4 (log2 k)

d/2 C3

8(1 + ∥f⋆∥∞)2
, (4.133)

we get

E
[
fKeRF
∞,n (x)− f⋆(x)

]2
⩽ 8L2d2

(
1− 1

2d

)2k

+ 4C
2/3
3 (1 + ∥f⋆∥∞)2/3(log n)2/3

2k/3

n1/3
k−

d−1
6 (log2 k)

d/3.

Work in progress as of January 16, 2024

S2. Proofs 161

Choosing kn = log2(n), we obtain, for all n large enough,

E
[
fKeRF
∞,n (x)− f⋆(x)

]2
⩽ 8L2d2n2 log2(1− 1

d)

+ 4C
2/3
3 (1 + ∥f⋆∥∞)2/3(log n)2/3(log2 n)

− d−1
6 (log2(log2 n))

d/3. (4.134)

Finally,

E
[
fKeRF
∞,n (x)− f⋆(x)

]2
⩽ 8L2d2n2 log2(1− 1

d) + C4(log2 n)
− d−5

6 (log2(log2 n))
d/3. (4.135)

with

C4 = 18× 22/3 × (log 2)2/3C ′′2/3(∥f⋆∥2∞ + σ2 + 1)(max(C1, C2))
1/3. (4.136)

Lemma S5. Consider n i.i.d. random variables ε1, . . . , εn, distributed as N (0, 1). Then, for all n ⩾ 21,

E
[
max
1⩽i⩽n

ε4i

]
⩽ 32e(log n)2.

Proof. We have, for all p ⩾ 1,

E
[
max
1⩽i⩽n

|εi|4
]
≤
(
E
[
max
1⩽i⩽n

|εi|4p
])1/p

⩽

(
E

[
n∑

i=1

|εi|4p
])1/p

, (4.137)

using Jensen’s inequality (by concavity of x 7→ x1/p for p ⩾ 1). The p-th moment of a Gaussian
variable N (0, 1) can be computed as follows

E [|ε1|p] =
∫ ∞

0

P [|ε|p ⩾ u]du (4.138)

=

∫ ∞

0

P [|ε| ⩾ t] ptp−1dt (4.139)

⩽
∫ ∞

0

2 exp(−t2/2)ptp−1dt, (4.140)

using classical tail inequalities for Gaussian variables. Now, setting s = t2/2 and recalling that
Γ(z) =

∫∞
0

exp(−t)tz−1dt, we have
∫ ∞

0

2 exp(−t2/2)ptp−1dt = 2p

∫ ∞

0

exp(−s)(2s)
p−2
2 ds (4.141)

= 2p2
p−2
2 Γ(p/2). (4.142)

According to Theorem 2.2 in Batir 2008, we have, for all x > 0

Γ(x+ 1) <
√
2πxx exp(−x)

(
x2 +

x

3
+

1

18

)1/4

. (4.143)

Work in progress as of January 16, 2024

S2. Proofs 162

Let

f : x 7→ exp(−x)

(
x2 +

x

3
+

1

18

)
, (4.144)

one can show that f is non-increasing on [1/2,∞). Thus, for all x ⩾ 1/2,

Γ(x+ 1) <
√
2πxxf(1/2)1/4 (4.145)

<
√
2πxx exp(−1/2)

(
1

2

)1/4

(4.146)

< 2xx. (4.147)

Hence, for all p ⩾ 3,

E [|ε1|p] ⩽ 4p2
p−2
2 (p/2)p/2, (4.148)

which leads to

E
[
max
1⩽i⩽n

|εi|4
]
⩽

(
E

[
n∑

i=1

|εi|4p
])1/p

(4.149)

⩽ n1/p
(
16p2

4p−2
2 (2p)2p

)1/p
(4.150)

⩽ 16n1/pp2
(p
2

)1/p
(4.151)

⩽ 32n1/pp2. (4.152)

Choosing p = log n yields, for all n ⩾ e3,

E
[
max
1⩽i⩽n

|εi|4
]
⩽ 32e(log n)2. (4.153)

S2.4 Proofs of Section 4.5 (Semi-Adaptive Forests)
Lemma S6. For all α ∈ [0, 1), the depth kAdaCT

n of a semi-adaptive centered tree verifies

lim
n→∞

P
(
kAdaCT
n (X,Θ) ∈ [log2(n)± log1−α

2 (n)]
)
= 1.

Lemma S6 states that the asymptotic behavior of kAdaCT
n (X,Θ) is equivalent to log2 n up to a

negligible factor. The log(n) equivalent matches the condition for the mean interpolation regime
in the case of CRF exhibited in Section 4.3.

Work in progress as of January 16, 2024

S2. Proofs 163

Proof of Lemma S6

For all 0 ⩽ j ⩽ k, we let Aj,n(X,Θ) be the cell containing X in the tree truncated at level j.
Similarly, we let Nj,n(X,Θ) the number of observations in this cell. Then,

P (kn(X,Θ) ⩾ k) = P (Nk−1,n(X,Θ) ⩾ 2) (4.154)
= E [P (Nk−1,n(X,Θ) ⩾ 2|X,Θ)] (4.155)

= 1−
(
1− 1

2k−1

)n

− n

2k−1

(
1− 1

2k−1

)n−1

. (4.156)

Using the inequality log(1− x) ⩽ −x for all x ∈ [0, 1) yields,

P (kn(X,Θ) ⩾ k) ⩾ 1− exp
(
− n

2k−1

)
− n

2k−1
exp

(
−n− 1

2k−1

)
(4.157)

⩾ 1−
(
1 +

n

2k−1

)
exp

(
− n

2k−1

)
. (4.158)

Letting k = (1− εn) log2(n) in (4.158) yields

P (kn(X,Θ) ⩾ k) ⩾ 1− (1 + 2nεn) exp (−2nεn) . (4.159)

Note that, setting εn = c1(log2 n)
−α for any α ∈ [0, 1) implies that

nεn = exp (εn log n) (4.160)

tends to infinity. Therefore, for all c1 > 0 and all αin[0, 1),

lim
n→∞

P
(
kn(X,Θ) ⩾ log2(n)− c1(log2 n)

−α
)
= 1. (4.161)

Besides,

P (kn(X,Θ) ⩽ k) = 1− P (kn(X,Θ) > k) (4.162)

=

(
1− 1

2k

)n

− n

2k

(
1−+

1

2k

)n−1

. (4.163)

Using the inequality log(1− x) ⩾ −x/(1− x) for all x ∈ [0, 1), we have

P (kn(X,Θ) ⩽ k) ⩾ exp

(
− n

2k − 1

)
+

n

2k
exp

(
− n− 1

2k − 1

)
(4.164)

⩾
(
1 +

n

2k

)
exp

(
− n

2k − 1

)
. (4.165)

Letting k = (1 + εn) log2(n) in (4.165) yields

P (kn(X,Θ) ⩾ k) ⩾
(
1 + 2n−εn

)
exp

(
− n

n1+εn − 1

)
(4.166)

⩾
(
1 + 2n−εn

)
exp

(
− n−εn

1− 1
n1+εn

)
, (4.167)

which tends to 1 for the choice εn = c2(log2 n)
−α, for any α ∈ [0, 1) and any c2 > 0.

Work in progress as of January 16, 2024

S2. Proofs 164

Proof of Theorem 4.5.1 (Consistency of Median RF)

Preliminary results In all the preliminary results, we use the fact that the spacing between two
consecutive order statistics, that originate from an i.i.d. sample uniformly distributed on [0, 1] of
size nj is distributed as a beta distribution Beta(1, nj). We also recall that, for all α, β,

V [B(α, β)] = αβ

(α+ β)2(α+ β + 1)
and E [B(α, β)] = α

α+ β
. (4.168)

Lemma S7 (Control of a cell side of a fully-developed median RF). Assume that n ⩾ 16 is a power
of two. For all x ∈ [0, 1]d, for all ℓ ∈ {1, . . . , d} and depth k ∈ N∗, with k ⩽ ⌊log2 n⌋, we have

E

[
µ
(
A

(ℓ)
k,n(x,Θ)

)2]
⩽ C1

(
1− 3

4d

)k

, (4.169)

with C1 ⩽ 256 exp
(

42+
√
5

2−
√
2

)
.

Proof of Lemma S7. Fix x ∈ [0, 1]d. For all ℓ, let δℓ(x,Θ) be the vector whose components are
defined as δj,ℓ(x,Θ) = 1 if the j-th cut is made along direction ℓ and 0 otherwise. Without
loss of generality, we let ℓ = 1 and fix x ∈ [0, 1]d. For all j ∈ {0, . . . , k}, we denote A

(1)
j,n(x,Θ)

the cell containing x at level j, projected onto the first direction, and nj = n2−j the number of
observations falling into this cell.

Recall that we consider the median forest in which splits are performed at the middle of two
consecutive order statistics in a cell, so that each resulting cell contains exactly the same number
of observations. With these notations in mind, we want to upper bound, for all j,

E

[
µ
(
A

(1)
j,n(x,Θ)

)2
|δ1(x,Θ)

]
,

where, for now, the split randomization δ1(x,Θ) is considered fixed and may be omitted in the
notations. Let us fix j ⩽ k − 1, define

A
(1)
j,n(x,Θ) = [M1,j ,M2,j],

and assume that the next cut is made along the first axis at position Mj . Then,

µ
(
A

(1)
j+1,n(x,Θ)

)2

= (Mj −M1,j)
21x∈[M1,j ,Mj] + (M2,j −Mj)

21x∈[Mj ,M2,j] (4.170)
= (Mj −M1,j)

2 +
(
(M2,j −Mj)

2 − (Mj −M1,j)
2
)
1x∈[Mj ,M2,j] (4.171)

= (Mj −M1,j)
2 + (M1,j +M2,j − 2Mj) (M2,j −M1,j)1x∈[Mj ,M2,j]. (4.172)

We denote X ′
1, ..., X

′
nj

the points contained in the cell A(1)
j,n(x,Θ). Note that the second term

Work in progress as of January 16, 2024

S2. Proofs 165

in (4.172) can be decomposed as

(M1,j +M2,j − 2Mj) (M2,j −M1,j)1x∈[Mj ,M2,j]

=
(
X ′

(1) +X ′
(nj)

−X ′
(nj/2)

−X ′
(nj/2+1) +M1,j −X ′

(1) +M2,j −X ′
(nj)

)
(M2,j −M1,j)1x∈[Mj ,M2,j]

(4.173)

=

(
X ′

(1) +X ′
(nj)

2
−X ′

(nj/2)
+

X ′
(1) +X ′

(nj)

2
−X ′

(nj/2+1) +M1,j −X ′
(1) +M2,j −X ′

(nj)

)

× (M2,j −M1,j)1x∈[Mj ,M2,j] (4.174)

⩽

(
X ′

(1) +X ′
(nj)

2
−X ′

(nj/2)
+

X ′
(1) +X ′

(nj)

2
−X ′

(nj/2+1) +M2,j −X ′
(nj)

)
(M2,j −M1,j).

(4.175)

Injecting (4.175) into (4.172), taking the expectation and using Cauchy-Schwarz inequality
leads to

E

[
µ
(
A

(1)
j+1,n(x,Θ)

)2]
⩽ E

[
(Mj −M1,j)

2
]

+

E

(
X ′

(1) +X ′
(nj)

2
−X ′

(nj/2)

)2

E

[
(M2,j −M1,j)

2
]

1/2

+

E

(
X ′

(1) +X ′
(nj)

2
−X ′

(nj/2+1)

)2

E

[
(M2,j −M1,j)

2
]

1/2

+

(
E

[(
M2,j −X ′

(nj)

)2]
E
[
(M2,j −M1,j)

2
])1/2

. (4.176)

Considering the second term, we have

E

(
X ′

(1) +X ′
(nj)

2
−X ′

(nj/2)

)2

= E

(
X ′

(nj)
−X ′

(1)

2
− (X ′

(nj/2)
−X ′

(1))

)2

 (4.177)

= E

(X ′

(nj)
−X ′

(1))
2E

(
1

2
−

(X ′
(nj/2)

−X ′
(1))

(X ′
(nj)

−X ′
(1))

)2

|X ′
(1), X

′
(nj)

 . (4.178)

where
(X ′

(nj/2)
−X ′

(1))

(X ′
(nj)

−X ′
(1))

|X ′
(1), X

′
(nj)

∼ B
(nj

2
− 1,

nj

2

)
,

with E[B(nj

2 − 1,
nj

2)] =
nj−2

2(nj−1) .

Work in progress as of January 16, 2024

S2. Proofs 166

Thus,

E

(
1

2
−

(X ′
(nj/2)

−X ′
(1))

(X ′
(nj)

−X ′
(1))

)2

|X ′
(1), X

′
(nj)

 =

(
1

2
− nj − 2

2(nj − 1)

)2

+V
[
B
(nj

2
− 1,

nj

2

)]

(4.179)

=
1

4(nj − 1)2
+

1

4

nj − 2

(nj − 1)2
(4.180)

=
1

4(nj − 1)
. (4.181)

Consequently,

E

(
X ′

(1) +X ′
(nj)

2
−X ′

(nj/2)

)2

 =

1

4(nj − 1)
E
[
(X ′

(nj)
−X ′

(1))
2
]

(4.182)

⩽
1

4(nj − 1)
E
[
(M2,j −M1,j)

2
]
. (4.183)

Similarly,

E

(
X ′

(1) +X ′
(nj)

2
−X ′

(nj/2+1)

)2

 =

1

4(nj − 1)
E
[
(X ′

(nj)
−X ′

(1))
2
]

(4.184)

⩽
1

4(nj − 1)
E
[
(M2,j −M1,j)

2
]
. (4.185)

By Lemma S8,

E

[(
M2,j −X ′

(nj)

)2]
⩽

5

(nj − 1)2
E
[
(M2,j −M1,j)

2
]
.

Gathering all previous inequalities into (4.172) yields

E

[
µ
(
A

(1)
j+1,n(x,Θ)

)2]
⩽ E

[
(Mj −M1,j)

2
]
+

1√
nj − 1

E
[
(M2,j −M1,j)

2
]

+

√
5

(nj − 1)
E
[
(M2,j −M1,j)

2
]
. (4.186)

Considering the first term in (4.186), we have

(Mj −M1,j)
2 =

(
X ′

(nj/2)
+X ′

(nj/2+1)

2
−X ′

(1) +X ′
(1) −M1,j

)2

(4.187)

⩽
(
X ′

(nj/2+1) −X ′
(1) +X ′

(1) −M1,j

)2
(4.188)

⩽
(
X ′

(nj/2+1) −X ′
(1)

)2
+
(
X ′

(1) −M1,j

)2
+ 2

(
X ′

(nj/2+1) −X ′
(1)

)(
X ′

(1) −M1,j

)
.

Work in progress as of January 16, 2024

S2. Proofs 167

Taking the expectation and using Cauchy-Schwarz inequality, we obtain

E
[
(Mj −M1,j)

2
]
⩽ E

[(
X ′

(nj/2+1) −X ′
(1)

)2]
+ E

[(
X ′

(1) −M1,j

)2]

+ 2

(
E

[(
X ′

(nj/2+1) −X ′
(1)

)2]
E

[(
X ′

(1) −M1,j

)2])1/2

. (4.189)

Now,

E

[(
X ′

(nj/2+1) −X ′
(1)

)2]
= E

(
X ′

(nj)
−X ′

(1)

)2
E

(
X ′

(nj/2+1) −X ′
(1)

X ′
(nj)

−X ′
(1)

)2

|X ′
(1), X

′
(nj)

 ,

(4.190)

where

E

(
X ′

(nj/2+1) −X ′
(1)

X ′
(nj)

−X ′
(1)

)2

|X ′
(1), X

′
(nj)

 = E

[
B
(nj

2
,
nj

2
− 1
)2]

(4.191)

= V
[
B
(nj

2
,
nj

2
− 1
)]

+
(
E
[
B
(nj

2
,
nj

2
− 1
)])2

(4.192)

=
nj

2

(nj

2 − 1
)

(nj − 1)2nj
+

(
nj/2

nj − 1

)2

(4.193)

=
1

4

nj − 2

(nj − 1)2
+

(
1

2

nj

nj − 1

)2

(4.194)

=
1

4

n2
j + nj − 2

(nj − 1)2
(4.195)

⩽
1

4

(nj + 1/2)
2

(nj − 1)2
. (4.196)

Therefore,

E

[(
X ′

(nj/2+1) −X ′
(1)

)2]
⩽

1

4

(nj + 1/2)
2

(nj − 1)2
E

[(
X ′

(nj)
−X ′

(1)

)2]
. (4.197)

Injecting this expression into (4.189), we have

E
[
(Mj −M1,j)

2
]
⩽

1

4

(nj + 1/2)
2

(nj − 1)2
E

[(
X ′

(nj)
−X ′

(1)

)2]
+ E

[(
X ′

(1) −M1,j

)2]

+
(nj + 1/2)

(nj − 1)

(
E

[(
X ′

(nj)
−X ′

(1)

)2]
E

[(
X ′

(1) −M1,j

)2])1/2

. (4.198)

According to Technical Lemma S8, we have

E

[(
X ′

(1) −M1,j

)2]
⩽

5

(nj − 1)2
E [M2,j −M1,j] .

Work in progress as of January 16, 2024

S2. Proofs 168

Hence,

E
[
(Mj −M1,j)

2
]

⩽
1

4

(nj + 1/2)
2

(nj − 1)2
E
[
(M2,j −M1,j)

2
]
+

5

(nj − 1)2
E
[
(M2,j −M1,j)

2
]

+
(nj + 1/2)

(nj − 1)

(
E
[
(M2,j −M1,j)

2
] 5

(nj − 1)2
E
[
(M2,j −M1,j)

2
])1/2

(4.199)

⩽

(
1

4

(nj + 1/2)
2

(nj − 1)2
+

5

(nj − 1)2
+

(nj + 1/2)
√
5

(nj − 1)2

)
E
[
(M2,j −M1,j)

2
]

(4.200)

⩽
1

4

(nj + 1/2)
2

(nj − 1)2

(
1 +

20

(nj + 1/2)
2 +

4
√
5

(nj + 1/2)

)
E
[
(M2,j −M1,j)

2
]

(4.201)

⩽
1

4

(
1 +

3

2(nj − 1)

)2
(
1 +

20

(nj + 1/2)
2 +

4
√
5

(nj + 1/2)

)
E
[
(M2,j −M1,j)

2
]

(4.202)

⩽
1

4

(
1 +

9

2(nj − 1)

)(
1 +

20

(nj + 1/2)
2 +

4
√
5

(nj + 1/2)

)
E
[
(M2,j −M1,j)

2
]
, (4.203)

for all nj ⩾ 4, since (1 + x)2 ⩽ 1 + 3x if x ⩽ 1.
Consequently,

E
[
(Mj −M1,j)

2
]

⩽
1

4

(
1 +

9

2(nj − 1)

)(
1 +

30

nj − 1

)
E
[
(M2,j −M1,j)

2
]

(4.204)

⩽
1

4

(
1 +

69

2(nj − 1)
+

90

(nj − 1)2

)
E
[
(M2,j −M1,j)

2
]

(4.205)

⩽
1

4

(
1 +

35 + 6

nj − 1

)
E
[
(M2,j −M1,j)

2
]

(4.206)

⩽
1

4

(
1 +

41

nj − 1

)
E
[
(M2,j −M1,j)

2
]
, (4.207)

for all nj ⩾ 16. Recall that, until now, we have fixed δ1(x,Θ) and omitted the explicit conditioning
in the proof to lighten notations. Thus, plugging-in the previous inequality into (4.186) yields,
for all nj ⩾ 16,

E

[
µ
(
A

(1)
j+1,n(x,Θ)

)2
|δ1(x,Θ)

]

⩽
1

4

(
1 +

41

nj − 1

)
E
[
(M2,j −M1,j)

2 |δ1(x,Θ)
]

+
1√

nj − 1
E
[
(M2,j −M1,j)

2
∣∣δ1(x,Θ)

]
+

√
5

(nj − 1)
E
[
(M2,j −M1,j)

2 ∣∣δ1(x,Θ)
]

(4.208)

⩽
1

4

(
1 +

42 +
√
5√

nj − 1

)
E

[
µ
(
A

(1)
j,n(x,Θ)

)2 ∣∣δ1(x,Θ)

]
. (4.209)

Work in progress as of January 16, 2024

S2. Proofs 169

Recall that δ1(x,Θ) is the vector whose components are defined as δj,1(x,Θ) = 1 if the j-th
cut is made along the first direction and 0 otherwise. We let K1 = ∥δ1(x,Θ)∥1 be the number of
times the first direction is split. By induction, we have

E

[
µ
(
A

(1)
k,n(x,Θ)

)2]
= E

[
E

[
µ
(
A

(1)
k,n(x,Θ)

)2
|δ1(x,Θ)

]]
(4.210)

⩽ E

∏

j:δj,1=1,

j⩽k−4

1

4

(
1 +

42 +
√
5√

nj − 1

)
 (4.211)

⩽ 44E

4−K1

∏

j:δj,1=1,

j⩽k−4

(
1 +

42 +
√
5√

nj − 1

)
 . (4.212)

The product can be upper bounded as follows, with C = 42 +
√
5,

log

 ∏

j,δj,l=1,j⩽k−4

(
1 +

C√
nj − 1

)
 ⩽ log

∏

j:δj,1=1,

j⩽k−4

(
1 +

C
√
nj+1

)

 (4.213)

=
∑

j:δj,1=1,

j⩽k−4

log

(
1 +

C
√
2 · 2j/2
n1/2

)
(4.214)

⩽
C
√
2

n1/2

k−4∑

j=0

2j/2 (4.215)

⩽
C
√
2√

2− 1

2(k−3)/2

n1/2
(4.216)

⩽
C

2
√
2− 2

. (4.217)

Thus,

E

[
µ
(
A

(1)
k,n(x,Θ)

)2]
⩽ 44 exp

(
C

2
√
2− 2

)
E
[
4−K1

]
. (4.218)

Since K1 ∼ Bin(k, 1/d), we have

E
[
4−K1

]
=

(
1− 1

d
+

1

4d

)k

(4.219)

=

(
1− 3

4d

)k

. (4.220)

Finally,

E

[
µ
(
A

(1)
k,n(x,Θ)

)2]
⩽ 44 exp

(
C

2
√
2− 2

)(
1− 3

4d

)k

, (4.221)

Work in progress as of January 16, 2024

S2. Proofs 170

with C = 42 +
√
5.

Lemma S8 (Technical Lemma). 1. Let x ∈ [0, 1]d and consider the cell An,j(x,Θ) containing x at
depth j ⩽ k − 1. W.l.o.g. restrict the study to the one-dimensional cell A(1)

n,j(x,Θ) corresponding
to the cell An,j(x,Θ) along the first dimension only, and set A(1)

n,j(x,Θ) = [M1,j ;M2,j]. The
one-dimensional cell A(1)

n,j(x,Θ) contains nj points denoted X ′
1, . . . X

′
nj

(random subsample of the
initial training sample). Call X ′

(1), . . . , X
′
(nj)

the ordered version of X ′
1, . . . X

′
nj
. Then,

E

[(
X ′

(1) −M1,j

)2]
⩽

5

(nj − 1)2
E
[
(M2,j −M1,j)

2
]
,

and

E

[(
M2,j −X ′

(nj)

)2]
⩽

5

(nj − 1)2
E
[
(M2,j −M1,j)

2
]
.

2. Consider now the cellAn,j(X1,Θ) containingX1 at depth j ⩽ k−1. W.l.o.g. restrict the study to the
one-dimensional cell A(1)

n,j(X1,Θ) corresponding to the cell An,j(X1,Θ) along the first dimension
only, and set A(1)

n,j(X1,Θ) = [M1,j ;M2,j] = [M1,j(X1,Θ);M2,j(X1,Θ)]. The one-dimensional
cell A(1)

n,j(X1,Θ) contains nj points denoted {X ′
1, . . . X

′
nj−1} ∪ {X1} (random subsample of the

initial training sample containing X1 and projected on the first axis). Call X ′
(1), . . . , X

′
(nj−1) the

ordered version of X ′
1, . . . X

′
nj−1. Then,

E
[
X ′

(1) −M1,j |X1

]
⩽

1

nj
E [(M2,j −M1,j)|X1] ,

and

E
[
M2,j −X ′

(nj−1)|X1

]
⩽

1

nj
E [(M2,j −M1,j)|X1] .

Proof of Lemma S8.
Notations W.l.o.g. consider the following development according to the first direction only.

Let x ∈ [0, 1]d. Recall that we consider the cell A(1)
j,n(x,Θ) = [M1,j ;M2,j] containing x at depth

j ⩽ k − 1. The cut at M1,j (resp. M2,j) has been obtained at an anterior depth j1 ⩽ j (resp.
j2 ⩽ j), as the middle of two order statistics of a previous subsample:

M1,j =
M1,j,− +M1,j,+

2
and M2,j =

M2,j,− +M2,j,+

2
,

withM1,j,− < M1,j,+ andM2,j,− < M2,j,+. The following computations can be also conducted in
a similar way when M1,j = 0 or M2,j = 1. The current cell A(1)

j,n(x,Θ), includes now nj points of
the original training sample, which are denoted byX ′

1, . . . , X
′
nj
. Remark that asM1,j,− andM2,j,+

refer to anterior order statistics of a previous subsample (including the pointsX ′
1, . . . , X

′
nj
), then

X ′
1, . . . , X

′
nj

are i.i.d. uniformly distributed in [Mj,1,−;M2,j,+]. Denote by X ′
(1), . . . , X

′
(nj)

, the
ordered statistics of the current subsample X ′

1, . . . , X
′
nj

in A
(1)
j,n(x,Θ) for some fixed x.

Work in progress as of January 16, 2024

S2. Proofs 171

First statement - Control of E[(X ′
(1) −M1,j)

2]. We have

E

[(
X ′

(1) −M1,j

)2]
⩽ 2E

[
(M1,j,+ −M1,j)

2
]
+ 2E

[(
X ′

(1) −M1,j,+

)2]
. (4.222)

Note that, by definition ofM1,j , the quantityM1,j,+−M1,j corresponds to a half spacing between
two points in the cell previously built by cutting on the first direction at depth j1, denoted
A

(1)
j1,n

(x,Θ). By construction, the spacings between two consecutive points in A
(1)
j1,n

(x,Θ) were
the same in distribution. Since points have been removed between A

(1)
j,n(x,Θ) and A

(1)
j1,n

(x,Θ),
the spacings are larger between consecutive points in A

(1)
j,n(x,Θ) than between consecutive points

in A
(1)
j1,n

(x,Θ). This leads to

M1,j,+ −M1,j =
M1,j,+ −M1,j,−

2
⩽

X ′
(2) −X ′

(1)

2
.

Therefore, since all variables are bounded,

E
[
(M1,j,+ −M1,j)

2
]
⩽

1

4
E

[(
X ′

(2) −X ′
(1)

)2]

⩽
1

4
E

(X ′

(nj)
−X ′

(1))
2E

(
X ′

(2) −X ′
(1)

)2

(
X ′

(nj)
−X ′

(1)

)2 |X ′
(1), X

′
(nj)

 .

Regarding the inner expectation,

E

(
X ′

(2) −X ′
(1)

)2

(
X ′

(nj)
−X ′

(1)

)2 |X ′
(1), X

′
(nj)

 = E

[
B (1, nj − 2)

2
]

(4.223)

= V [B (1, nj − 2)] + (E [B (1, nj − 2)])
2 (4.224)

=
nj − 2

(nj − 1)2nj
+

(
1

nj − 1

)2

(4.225)

⩽
2

(nj − 1)2
. (4.226)

Finally,

E
[
(M1,j,+ −M1,j)

2
]
⩽

1

2(nj − 1)2
E

[(
X ′

(nj)
−X ′

(1)

)2]
(4.227)

⩽
1

2(nj − 1)2
E
[
(M2,j −M1,j)

2
]
. (4.228)

Work in progress as of January 16, 2024

S2. Proofs 172

Regarding the second term in (4.222), we have

E

[(
X ′

(1) −M1,j,+

)2]
= E

[
E

[(
X ′

(1) −M1,j,+

)2
|M1,j,+, XM2,j ,−

]]

= E

(M2,j,− −M1,j,+)

2
E

(

X ′
(1) −M1,j,+

M2,j,− −M1,j,+

)2

|M1,j,+,M2,j,−

⩽ E
[
(M2,j,− −M1,j,+)

2
E
[
B(1, nj − 1)2

]]

⩽
2

n2
j

E
[
(M2,j,− −M1,j,+)

2
]

⩽
2

n2
j

E
[
(M2,j −M1,j)

2
]
.

Finally,

E

[(
X ′

(1) −M1,j

)2]
⩽

(
1

(nj − 1)2
+

4

n2
j

)
E
[
(M2,j −M1,j)

2
]

⩽
5

(nj − 1)2
E
[
(M2,j −M1,j)

2
]
.

The second point of the first statement can be proved in the exact same manner.

Second statement - Control of E[X ′
(1) −M1,j |X1]. In this part, we study the cell A(1)

n,j(X1,Θ).
The cell A(1)

n,j(X1,Θ) contains nj data points (including X1). We denote by X ′
1, . . . , X

′
nj−1 the

observations falling into A
(1)
n,j(X1,Θ), different from X1. Note that, these nj − 1 observations are

still i.i.d. uniformly distributed in [M1,j,−;M2,j,+]. We denote byX ′
(1), . . . , X

′
(nj−1), the subsample

X ′
1, . . . , X

′
nj−1. We have

M2,j −M1,j = M2,j −X ′
(nj−1) +

nj−2∑

q=1

(
X ′

(nj−q) −X ′
(nj−q−1)

)
+X ′

(1) −M1,j . (4.229)

Thus,

E
[
X ′

(1) −M1,j |X1

]
+ E

[
M2,j −X ′

(nj−1)|X1

]
= E [M2,j −M1,j |X1]− (nj − 2)E

[
X ′

(2) −X ′
(1)|X1

]
.

(4.230)

Work in progress as of January 16, 2024

S2. Proofs 173

The variables X ′
(1) and X ′

(2) being order statistics of a subsample independent of X1, one gets

E
[
X ′

(2) −X ′
(1)|X1

]
= E

[
E

[
X ′

(2) −X ′
(1)

M2,j,+ −M1,j,−
|X1,M1,j,−,M2,j,+

]
(M2,j,+ −M1,j,−)|X1

]

(4.231)
= E [E [B(1, nj − 1)] (M2,j,+ −M1,j,−)|X1] (4.232)

=
1

nj
E [(M2,j,+ −M1,j,−)|X1] (4.233)

⩾
1

nj
E [(M2,j −M1,j)|X1] . (4.234)

Finally,

E
[
X ′

(1) −M1,j |X1

]
+ E

[
M2,j −X ′

(nj−1)|X1

]
⩽

(
1− nj − 2

nj

)
E [(M2,j −M1,j)|X1] , (4.235)

=
2

nj
E [(M2,j −M1,j)|X1] , (4.236)

and, by symmetry,

E
[
X ′

(1) −M1,j |X1

]
⩽

1

nj
E [(M2,j −M1,j)|X1] , (4.237)

and

E
[
M2,j −X ′

(nj−1)|X1

]
⩽

1

nj
E [(M2,j −M1,j)|X1] . (4.238)

Lemma S9 (Control of the leaf side and volume of a fully developed median RF). Assume that
n ⩾ 4 is a power of two. Consider a median tree of depth k and denote An,k(X1,Θ) the leaf containing
X1. For all ℓ ∈ {1, . . . , d}, we denote Kℓ the number of splits along the ℓ-th direction and nj = 2−j . Let
also δℓ(X1,Θ) be the vector whose components are defined as δj,ℓ(X1,Θ) = 1 if the j-th cut of the cell
A

(ℓ)
n (X1,Θ) is made along direction ℓ and 0 otherwise. Then,

E
[
µ(A

(ℓ)
n,k(X1,Θ))|X1, δℓ(X1,Θ)

]
⩽ 2−Kℓ+2

∏

j:δj,ℓ=1,

j⩽k−2

(
1 +

2√
nj − 1

)
. (4.239)

In particular, letting C2 = 4 exp(5/(
√
2− 1)), we have

E
[
µ(A

(ℓ)
n,k(X1,Θ))|X1, δℓ(X1,Θ)

]
⩽ C2 2

−Kℓ , (4.240)

and

E [µ(An,k(X1,Θ))|X1, δ1(X1,Θ), . . . , δd(X1,Θ)] ⩽ C22
−k. (4.241)

Proof. We write A(ℓ)
n,j(X1,Θ) = [M1,j ,M2,j] the cell of the RF containing X1 along the direction ℓ,

Work in progress as of January 16, 2024

S2. Proofs 174

at depth j. To lighten the notations, we omit the dependencies inX1, in Θ and in ℓ. We also write
X ′

1, ..., X
′
nj

the data points contained in the cell A(ℓ)
n,j(X1,Θ), and we denote by X ′

(1), ..., X
′
(nj−1)

the ordered version of {X ′
1, ..., X

′
nj
} \ {X1}. We suppose that the next cut is occurring on the ℓ-th

direction and compute the size of the new cell containing X1, A(ℓ)
n,j+1(X1,Θ), so that 4 different

events are possible:

1. X1 is in the first "part" of the cell, i.e. X1 ∈
[
M1,j , X

′
(nj/2−1)

]
;

2. X1 is in the second "part" of the cell, i.e. , X1 ∈
[
X ′

(nj/2+1),M2,j

]
;

3. X1 is in the "middle (left)" of the cell, i.e. X1 ∈
[
X ′

(nj/2−1), X
′
(nj/2)

]
;

4. X1 is in the "middle (right)" of the cell, X1 ∈
[
X ′

(nj/2)
, X ′

(nj/2+1)

]
.

The length of the following cell can be therefore decomposed with respect to the previous
events:

µ
(
A

(ℓ)
n,j+1(X1,Θ)

)

=

(
X ′

(nj/2−1) +X ′
(nj/2)

2
−M1,j

)
1
X1∈

[
M1,j ,X′

(nj/2−1)

]

+

(
M2,j −

X ′
(nj/2)

+X ′
(nj/2+1)

2

)
1
X1∈

[
X′

(nj/2+1)
,M2,j

]

+

(
X1 +X ′

(nj/2)

2
−M1,j

)
1
X1∈

[
X′

(nj/2−1)
,X′

(nj/2)

]

+

(
M2,j −

X ′
(nj/2)

+X1

2

)
1
X1∈

[
X′

(nj/2)
,X′

(nj/2+1)

] (4.242)

⩽
(
X ′

(nj/2)
−M1,j

)
1
X1∈

[
M1,j ,X′

(nj/2−1)

] + (M2,j −X ′
(nj/2)

)
1
X1∈

[
X′

(nj/2+1)
,M2,j

] (4.243)

+
(
X ′

(nj/2)
−M1,j

)
1
X1∈

[
X′

(nj/2−1)
,X′

(nj/2)

] + (M2,j −X ′
(nj/2)

)
1
X1∈

[
X′

(nj/2)
,X′

(nj/2+1)

]
(4.244)
(4.245)

Work in progress as of January 16, 2024

S2. Proofs 175

µ
(
A

(ℓ)
n,j+1(X1,Θ)

)

⩽
(
X ′

(nj/2)
−M1,j

)
1X1∈[M1,j ,X′

(nj/2)
] +
(
M2,j −X ′

(nj/2)

)
1X1∈[X′

(nj/2)
,M2,j] (4.246)

=
(
X ′

(nj/2)
−M1,j

)
+ 2

(
M1,j +M2,j

2
−X ′

(nj/2)

)
1X1∈[X′

(nj/2)
,M2,j] (4.247)

=
(
X ′

(nj/2)
−X ′

(1)

)
+
(
X ′

(1) −M1,j

)
+ 2

(
X ′

(1) +X ′
(nj−1)

2
−X ′

(nj/2)

)
1X1∈[X′

(nj/2)
,M2,j]

−
((

X ′
(1) +X ′

(nj−1)

)
)− (M1,j +M2,j)

)
1X1∈[X′

(nj/2)
,M2,j] (4.248)

⩽
(
X ′

(nj/2)
−X ′

(1)

)
+
(
X ′

(1) −M1,j

)
+ 2

(
X ′

(1) +X ′
(nj−1)

2
−X ′

(nj/2)

)
1X1∈[X′

(nj/2)
,M2,j]

+ (M2,j −X ′
(nj−1)). (4.249)

Therefore,

E
[
µ
(
A

(ℓ)
n,j+1(X1,Θ)

) ∣∣∣∣X1, δℓ(X1,Θ)

]

⩽ E

[
(X ′

(nj−1) −X ′
(1))E

[
X ′

(nj/2)
−X ′

(1)

X ′
(nj−1) −X ′

(1)

|X1, δℓ(X1,Θ), X ′
(1), X

′
(nj−1)

]
∣∣X1, δℓ(X1,Θ)

]

+ 2E

[
E

[∣∣∣∣∣
X ′

(nj−1) +X ′
(1)

2
−X ′

(nj/2)

∣∣∣∣∣

∣∣∣∣X1, δℓ(X1,Θ), X ′
(1), X

′
(nj−1)

] ∣∣∣∣X1, δℓ(X1,Θ)

]

+ E
[
X ′

(1) −M1,j

∣∣∣∣X1, δℓ(X1,Θ)

]
+ E

[
M2,j −X ′

(nj−1)

∣∣∣∣X1, δℓ(X1,Θ)

]
. (4.250)

Regarding the first term of (4.250), remark that by property of the uniform distribution, condi-
tional on X ′

(1) and X ′
(nj−1), the order statistics between 1 and nj − 1 follow Beta distributions

independently from X1 and δℓ(X1,Θ). Therefore,

X ′
(nj/2)

−X ′
(1)

X ′
(nj−1) −X ′

(1)

∣∣X ′
(1), X

′
(nj−1) ∼ B(nj/2− 1, nj/2− 1),

so that

E

[
X ′

(nj/2)
−X ′

(1)

X ′
(nj−1) −X ′

(1)

∣∣∣∣X1, δℓ(X1,Θ), X ′
(1), X

′
(nj−1)

]
=

nj/2− 1

2(nj/2− 1)
=

1

2
.

Work in progress as of January 16, 2024

S2. Proofs 176

Overall the first term of (4.250) verifies

E

[
(X ′

(nj−1) −X ′
(1))E

[
X ′

(nj/2)
−X ′

(1)

X ′
(nj−1) −X ′

(1)

∣∣X1, δℓ, X
′
(1), X

′
(nj−1)

] ∣∣∣∣X1, δℓ(X1,Θ)

]

= E

[
X ′

(nj−1) −X ′
(1)

2

∣∣X1, δℓ(X1,Θ)

]
(4.251)

⩽ E
[
M2,j −M1,j

2

∣∣X1, δℓ(X1,Θ)

]
. (4.252)

Regarding the second term of (4.250), we have

E

[∣∣∣∣∣
X ′

(nj−1) +X ′
(1)

2
−X ′

(nj/2)

∣∣∣∣∣

∣∣∣∣X1, δℓ, X
′
(1), X

′
(nj−1)

]

= E

[∣∣∣∣∣
X ′

(nj−1) −X ′
(1)

2
−
(
X ′

(nj/2)
−X ′

(1)

)∣∣∣∣∣

∣∣∣∣X1, δℓ, X
′
(1), X

′
(nj−1)

]
(4.253)

=
(
X ′

(nj−1) −X ′
(1)

)
E

[∣∣∣∣∣
1

2
−

X ′
(nj/2)

−X ′
(1)

X ′
(nj−1) −X ′

(1)

∣∣∣∣∣

∣∣∣∣X1, δℓ, X
′
(1), X

′
(nj−1)

]
(4.254)

= (X ′
(nj−1) −X ′

(1))E
[∣∣∣∣
1

2
− B(nj/2− 1, nj/2− 1)

∣∣∣∣
]

(4.255)

⩽ (X ′
(nj−1) −X ′

(1))

√√√√E

[∣∣∣∣B(nj/2− 1, nj/2− 1)− 1

2

∣∣∣∣
2
]

(4.256)

⩽
M2,j −M1,j

2
√
nj − 1

, (4.257)

where the last inequality is simply obtained by computing the variance of a Beta distribution.
Therefore,

2E

[
E

[∣∣∣∣∣
X ′

(nj−1) +X ′
(1)

2
−X ′

(nj/2)

∣∣∣∣∣

∣∣∣∣X1, δℓ(X1,Θ), X ′
(1), X

′
(nj−1)

] ∣∣∣∣X1, δℓ(X1,Θ)

]

⩽
1

2
√
nj − 1

E
[
M2,j −M1,j

∣∣∣∣X1, δℓ(X1,Θ)

]
. (4.258)

The third and fourth terms of (4.250) have the same expression, controlled by Lemma S8:

E
[
X ′

(1) −M1,j

∣∣∣∣X1, δℓ(X1,Θ)

]
= E

[
M2,j −X ′

(nj−1)

∣∣∣∣X1, δℓ(X1,Θ)

]
(4.259)

⩽
1

nj
E
[
M2,j −M1,j

∣∣X1, δℓ(X1,Θ)
]
. (4.260)

Work in progress as of January 16, 2024

S2. Proofs 177

Finally, gathering (4.252), (4.258) and (4.260) yields

E
[
µ
(
A

(ℓ)
n,j+1(X1,Θ)

) ∣∣∣∣X1, δℓ(X1,Θ)

]
⩽ E

[
M2,j −M1,j

∣∣X1, δℓ(X1,Θ)
]
(
1

2
+

1

2
√

nj − 1
+

2

nj

)

(4.261)

⩽
1

2

(
1 +

5√
nj − 1

)
E
[
M2,j −M1,j

∣∣X1, δℓ(X1,Θ)
]

(4.262)

=
1

2

(
1 +

5√
nj − 1

)
E
[
µ
(
A

(ℓ)
n,j(X1,Θ)

) ∣∣X1, δℓ(X1,Θ)
]

(4.263)

for all nj ⩾ 4. An iterative product yields

E
[
µ
(
A

(ℓ)
n,k(X1,Θ)

) ∣∣X1, δℓ(X1,Θ)
]
⩽ E

∏

j:δj,ℓ=1,

j⩽k−2

1

2

(
1 +

5√
nj − 1

)
∣∣X1, δℓ(X1,Θ)

 (4.264)

=
∏

j:δj,ℓ=1,

j⩽k−2

1

2

(
1 +

5√
nj − 1

)
(4.265)

= 2−Kℓ+2
∏

j:δj,ℓ=1,

j⩽k−2

(
1 +

5√
nj − 1

)
, (4.266)

which proves the first statement. Recalling that nj = n2−j ,
k∑

j=0

log

(
1 +

5
√
4/3√
n

2j/2

)
⩽

5
√

4/3√
n

2(k+1)/2 − 1√
2− 1

(4.267)

⩽
5
√
4/3√

2− 1

2(log2 n)/2

√
n

(4.268)

=
5
√
4/3√

2− 1
, (4.269)

we have

E
[
µ
(
A

(ℓ)
n,k(X1,Θ)

) ∣∣X1, δℓ(X1,Θ)
]
⩽ 2−Kℓ+2 exp

(
5
√

4/3√
2− 1

)
, (4.270)

Work in progress as of January 16, 2024

S2. Proofs 178

which proves the second statement. Note that

E
[
µ (An,k(X1,Θ))

∣∣X1, δ1(X1,Θ), . . . , δd(X1,Θ)
] (4.271)

=E

[
d∏

ℓ=1

µ
(
A

(ℓ)
n,k(X1,Θ)

) ∣∣X1, δ1(X1,Θ), . . . , δd(X1,Θ)

]
(4.272)

=

d∏

ℓ=1

E
[
µ
(
A

(ℓ)
n,k(X1,Θ)

) ∣∣X1, δℓ(X1,Θ)
]

(4.273)

⩽
d∏

ℓ=1

∏

j:δj,ℓ=1,

j⩽k−2

1

2

(
1 +

5√
nj − 1

)
(4.274)

⩽
∏

j⩽k−2

1

2

(
1 +

5√
nj − 1

)
(4.275)

⩽4× 2−k
∏

j⩽k−2

(
1 +

5√
nj − 1

)
(4.276)

⩽4× 2−k exp

(
5
√
4/3√

2− 1

)
. (4.277)

S2.5 Proof of the Main Result (Median RF Consistency)
Theorem S10 (Upper bound on the risk of the median forest). Consider a generic pair (X,Y) of
random variables such that Y = f⋆(X) + ε, where ||∂ℓf⋆||2∞ exists for all ℓ ∈ {1, . . . , d}, X is uniformly
distributed on [0, 1]d and the noise ε satisfies, almost surely, E[ε|X] = 0 and V[ε|X] ⩽ σ2. Consider
n ⩾ 16 i.i.d. observations, where n is a power of two, distributed as the generic pair (X,Y). Then, the risk
of the infinite median forest trained on this data set satisfies

E
[(
fMedRF
∞,n (X)− f⋆(X)

)2]
⩽ C1d

(
d∑

ℓ=1

||∂ℓf⋆||2∞

)(
1− 3

4d

)log2 n

+ σ2C2,d(log2 n)
−(d−1)/2,

(4.278)

with

C1 = 1024 exp

(
42 +

√
5

2−
√
2

)
and C2,d = 2

(
32 exp

(
5
√

4/3√
2− 1

))d

dd/2. (4.279)

In particular, the infinite median forest is consistent, that is

lim
n→∞

E
[(
fMedRF
∞,n (X)− f⋆(X)

)2]
= 0. (4.280)

Work in progress as of January 16, 2024

S2. Proofs 179

Proof. We begin with a simple bias/variance decomposition:

E
[(
fMedRF
∞,n (X)− f⋆(X)

)2]

= E

(
EΘ

[
n∑

i=1

Wni(X,Θ)Yi

]
− f⋆(X)

)2

= E

(

n∑

i=1

EΘ [Wni(X,Θ)] (f⋆(Xi) + εi)− f⋆(X)

)2

= E

(

n∑

i=1

EΘ [Wni(X,Θ)] (f⋆(Xi)− f⋆(X)) +

n∑

i=1

EΘ [Wni(X,Θ)] εi)

)2

= E

(

n∑

i=1

EΘ [Wni(X,Θ)] (f⋆(Xi)− f⋆(X))

)2

+ E

(

n∑

i=1

EΘ [Wni(X,Θ)] εi)

)2

 ,

where the penultimate line comes from the fact that
n∑

i=1

EΘ [Wni(X,Θ)] = EΘ

[
n∑

i=1

Wni(X,Θ)

]
= 1, (4.281)

(since all leaves contain exactly one observation), and the last line results from a null cross
product.

Controlling the bias We have,

E

(

n∑

i=1

EΘ [Wni(X,Θ)] (f⋆(Xi)− f⋆(X))

)2

= E

(
EΘ

[
n∑

i=1

Wni(X,Θ)(f⋆(Xi)− f⋆(X))

])2

 (4.282)

⩽ E

(

n∑

i=1

Wni(X,Θ)(f⋆(Xi)− f⋆(X))

)2

 (4.283)

⩽ E

(

n∑

i=1

1X∈An(Xi,Θ)(f
⋆(Xi)− f⋆(X))

)2

 (4.284)

⩽ E

[
n∑

i=1

1X∈An(Xi,Θ) (f
⋆(Xi)− f⋆(X))

2

]
, (4.285)

Work in progress as of January 16, 2024

S2. Proofs 180

becauseWni(X,Θ) = 1X∈An(Xi,Θ) and by applying twice Jensen inequality (third and fifth lines).
Noticing that,

1X∈An(Xi,Θ)|f⋆(X)− f⋆(Xi)| ⩽
d∑

ℓ=1

||∂ℓf⋆||∞|X(ℓ)
i −X(ℓ)|1X∈An(Xi,Θ)

⩽
d∑

ℓ=1

||∂ℓf⋆||∞µ(A(ℓ)
n (X,Θ))1X∈An(Xi,Θ),

we get,

E

[
n∑

i=1

1X∈An(Xi,Θ) (f
⋆(Xi)− f⋆(X))

2

]
⩽ E

n∑

i=1

1X∈An(Xi,Θ)

(
d∑

ℓ=1

||∂ℓf⋆||∞µ(A(ℓ)
n (X,Θ))

)2

⩽ E

(

d∑

ℓ=1

||∂ℓf⋆||∞µ(A(ℓ)
n (X,Θ))

)2

 (4.286)

⩽

(
d∑

ℓ=1

||∂ℓf⋆||2∞

)
d∑

ℓ=1

E
[
µ(A(ℓ)

n (X,Θ))2
]
. (4.287)

where the last inequality directly results from Cauchy-Schwarz inequality. By Lemma S7, since
k = ⌊log2 n⌋,

(
d∑

ℓ=1

||∂ℓf⋆||2∞

)
d∑

ℓ=1

E
[
µ(A(ℓ)

n (X,Θ))2
]
⩽ Cd

(
d∑

ℓ=1

||∂ℓf⋆||2∞

)(
1− 3

4d

)log2 n

, (4.288)

with

C = 1024 exp

(
42 +

√
5

2−
√
2

)
. (4.289)

Controlling the variance Following Biau 2012b, the variance term of the median forest writes

E

(

n∑

i=1

EΘ [Wni(X,Θ)] εi

)2

 = E

[
n∑

i=1

(EΘ [Wni(X,Θ)])
2
ε2i

]
(4.290)

= E

[
n∑

i=1

(EΘ [Wni(X,Θ)])
2
E
[
ε2i |X,X1, . . . , Xn

]
]

(4.291)

⩽ E

[
n∑

i=1

(EΘ [Wni(X,Θ)])
2
σ2

]
(4.292)

⩽ σ2nE
[
(EΘ [Wn1(X,Θ)])

2
]
, (4.293)

Work in progress as of January 16, 2024

S2. Proofs 181

where we have used the fact that the cross products are null (since E[εi|Xi] = 0). Since each leaf
of the median tree contains exactly one observation, denoting Θ′ an i.i.d. copy of Θ, we have

(EΘ [Wn1(X,Θ)])
2
= EΘ [Wn1(X,Θ)]EΘ′ [Wn1(X,Θ′)]

= EΘ,Θ′ [Wn1(X,Θ)Wn1(X,Θ′)]

= EΘ,Θ′
[
1X∈An(X1,Θ)1X∈An(X1,Θ′)

]
.

Consequently,

E

(

n∑

i=1

EΘ [Wni(X,Θ)] εi

)2

 ⩽ σ2nE

[
1X∈An(X1,Θ)1X∈An(X1,Θ′)

]
.

For all ℓ, we let A(ℓ)
n (X1,Θ) be the cell An(X1,Θ) projected onto the ℓ-th dimension. Let also

δℓ(X1,Θ) be the vector whose components are defined as δj,l = 1 if the j-th cut of the cell
A

(ℓ)
n (X1,Θ) is made along direction ℓ and 0 otherwise. We define similarly δℓ(X1,Θ

′) for the cell
A

(ℓ)
n (X1,Θ

′). We also let Kℓ = ∥δℓ(X1,Θ)∥1 (resp. K ′
ℓ) be the number of times the ℓ-th direction

is split in the tree built with Θ (resp. Θ′). Then,

E

(

n∑

i=1

EΘ [Wni(X,Θ)] εi

)2

⩽ σ2nE
[
1X∈An(X1,Θ)∩An(X1,Θ′)

]

= σ2nE

[
d∏

ℓ=1

µ
(
A(ℓ)

n (X1,Θ) ∩A(ℓ)
n (X1,Θ

′)
)]

= σ2nE

[
E

[
d∏

ℓ=1

µ
(
A(ℓ)

n (X1,Θ) ∩A(ℓ)
n (X1,Θ

′)
) ∣∣∣∣∣X1, δℓ(X1,Θ), δ1(X1,Θ

′), . . . , δd(X1,Θ
′)

]]

= σ2nE

[
d∏

ℓ=1

E

[
µ
(
A(ℓ)

n (X1,Θ) ∩A(ℓ)
n (X1,Θ

′)
) ∣∣∣∣∣X1, δℓ(X1,Θ), δ1(X1,Θ

′), . . . , δd(X1,Θ
′)

]]

= σ2nE

[
d∏

ℓ=1

E

[
µ
(
A(ℓ)

n (X1,Θ) ∩A(ℓ)
n (X1,Θ

′)
) ∣∣∣∣∣X1, δℓ(X1,Θ), δℓ(X1,Θ

′)

]]
.

The penultimate equality is obtained by conditional independence. Indeed, as the data are
uniformly distributed, each coordinate follows a uniform distribution independently from the
other coordinates. Thus, in a given cell, cutting along another direction preserves the distribution
of the data points along direction ℓ (it is akin to removing half of them uniformly). Consequently,
when knowing the number of cuts on each direction, having information on the length of the cell
along a direction does not provide information on the distribution of the data on other directions.
The last equality is deduced from the same argument. All the cuts on other direction than ℓ
have the same influence along direction ℓ: they remove half the data points but preserve the
distribution of the remaining ones. Therefore, conditional on δℓ, the length of the cell along

Work in progress as of January 16, 2024

S2. Proofs 182

direction ℓ is independent from δℓ′ for all ℓ′ ̸= ℓ Now,

E

[
µ
(
A(ℓ)

n (X1,Θ) ∩A(ℓ)
n (X1,Θ

′)
) ∣∣∣∣∣X1, δℓ(X1,Θ), δℓ(X1,Θ

′)

]

⩽ E
[
min(µ(A(ℓ)

n (X1,Θ)), µ(A(ℓ)
n (X1,Θ

′))

∣∣∣∣X1, δℓ(X1,Θ), δℓ(X1,Θ
′)

]

=
1

2

(
E

[
µ(A(ℓ)

n (X1,Θ))

∣∣∣∣X1, δℓ(X1,Θ)

]
+ E

[
µ(A(ℓ)

n (X1,Θ
′))

∣∣∣∣X1, δℓ(X1,Θ
′)

])

− 1

2
E
[
|µ(A(ℓ)

n (X1,Θ))− µ(A(ℓ)
n (X1,Θ

′))|
∣∣∣∣X1, δℓ(X1,Θ), δℓ(X1,Θ

′)

]
.

Moreover,

E
[
|µ(A(ℓ)

n (X1,Θ))− µ(A′(ℓ)
n (X1,Θ))|

∣∣∣∣X1, δℓ(X1,Θ), δℓ(X1,Θ
′)

]

= E
[
|µ(A(ℓ)

n (X1,Θ))− µ(A(ℓ)
n (X1,Θ

′))|
(
1Kℓ<K′

ℓ
+ 1Kℓ⩾K′

ℓ

) ∣∣∣∣X1, δℓ(X1,Θ), δℓ(X1,Θ
′)

]

⩾ E
[(

µ(A(ℓ)
n (X1,Θ))− µ(A(ℓ)

n (X1,Θ
′))
) ∣∣∣∣X1, δℓ(X1,Θ), δℓ(X1,Θ

′)

]
1Kℓ<K′

ℓ

+ E
[(

µ(A(ℓ)
n (X1,Θ

′))− µ(A(ℓ)
n (X1,Θ))

) ∣∣∣∣X1, δℓ(X1,Θ), δℓ(X1,Θ
′)

]
1Kℓ⩾K′

ℓ

⩾
(
E
[
µ(A(ℓ)

n (X1,Θ))|X1, δℓ(X1,Θ)
]
− E

[
µ(A(ℓ)

n (X1,Θ
′))|X1, δℓ(X1,Θ

′)
])
1Kℓ<K′

ℓ

+
(
E
[
µ(A(ℓ)

n (X1,Θ
′))|X1, δℓ(X1,Θ

′)
]
− E

[
µ(A(ℓ)

n (X1,Θ))|X1, δℓ(X1,Θ)
])
1Kℓ⩾K′

ℓ
.

Letting Bℓ = E
[
µ(A

(ℓ)
n (X1,Θ))|X1, δℓ(X1,Θ)

]
and B′

ℓ = E
[
µ(A

(ℓ)
n (X1,Θ

′))|X1, δℓ(X1,Θ
′)
]
, we

have

E

[
µ
(
A(ℓ)

n (X1,Θ) ∩A(ℓ)
n (X1,Θ

′)
) ∣∣∣∣∣X1, δℓ(X1,Θ), δℓ(X1,Θ

′)

]

⩽
1

2
(Bℓ +B′

ℓ)−
1

2
(Bℓ −B′

ℓ)1Kℓ<K′
ℓ
− 1

2
(B′

ℓ −Bℓ)1Kℓ⩾K′
ℓ

⩽ Bℓ1Kℓ⩾K′
ℓ
+B′

ℓ1Kℓ<K′
ℓ
.

Now, according to Lemma S9, letting C2 = 4 exp(5/(
√
2 − 1)), we have Bℓ ⩽ C22

−Kℓ and
B′

ℓ ⩽ C22
−K′

ℓ . Therefore,

E

[
µ
(
A(ℓ)

n (X1,Θ) ∩A(ℓ)
n (X1,Θ

′)
) ∣∣∣∣∣X1, δℓ(X1,Θ), δℓ(X1,Θ

′)

]
⩽ C22

−Kℓ1Kℓ⩾K′
ℓ
+ C22

−K′
ℓ1Kℓ<K′

ℓ

⩽ C22
−max(Kℓ,K

′
ℓ).

Work in progress as of January 16, 2024

S2. Proofs 183

Overall,

E

(

n∑

i=1

EΘ [Wni(X,Θ)] εi

)2

⩽ σ2nE

[
d∏

ℓ=1

E

[
µ
(
A(ℓ)

n (X1,Θ) ∩A(ℓ)
n (X1,Θ

′)
) ∣∣∣∣∣X1, δℓ(X1,Θ), δℓ(X1,Θ

′)

]]
(4.294)

⩽ σ2nE

[
d∏

ℓ=1

C22
−max(Kℓ,K

′
ℓ)

]
(4.295)

⩽ σ2Cd
2n E

[
2−

∑d
ℓ=1 max(Kℓ,K

′
ℓ)
]

(4.296)

⩽ σ2Cd
2n 2−knE

[
2−

∑d
ℓ=1 |Kℓ−K′

ℓ|
]
, (4.297)

since
d∑

ℓ=1

max(Kℓ,K
′
ℓ) =

1

2

d∑

ℓ=1

Kℓ +
1

2

d∑

ℓ=1

K ′
ℓ +

1

2

d∑

ℓ=1

|Kℓ −K ′
ℓ|

= kn +
1

2

d∑

ℓ=1

|Kℓ −K ′
ℓ|.

According to Lemma S.1 from Klusowski 2021a (see Supplementary Materials), one has

E
[
2−

∑d
ℓ=1 |Kℓ−K′

ℓ|
]
⩽

8d dd/2

k
(d−1)/2
n

. (4.298)

Finally, combining (4.297) and (4.298), the variance of the median forest is upper bounded by

E

(

n∑

i=1

EΘ [Wni(X,Θ)] εi

)2

 ⩽ σ2Cd

2n 2−kn
8d dd/2

k
(d−1)/2
n

(4.299)

⩽ 2σ2
(
8 C2 d

1/2
)d

(log2 n)
−(d−1)/2, (4.300)

since kn = ⌊log2(n)⌋. All in all,

E
[(
fMedRF
∞,n (X)− f⋆(X)

)2]

⩽ Cd

(
d∑

ℓ=1

||∂ℓf⋆||2∞

)(
1− 3

4d

)log2 n

+ 2σ2
(
8 C2 d

1/2
)d

(log2 n)
−(d−1)/2

with C2 = 4 exp(5/(
√
2− 1)) and

C = 1024 exp

(
42 +

√
5

2−
√
2

)
. (4.301)

Work in progress as of January 16, 2024

S2. Proofs 184

Controlling the Variance of an Interpolating Median RF in an Asymptotic High-Dimensional
Setting

The following result shows the decrease of the variance of the Median RF under an asymptotic
high-dimensional framework. It is also numerically illustrated in Section S3.1.
Proposition S11. For all d > log2 n, the variance of the infinite interpolating Median RF fMedRF

∞,n verifies

V (fMedRF
∞,n) = E

(

n∑

i=1

EΘ [Wni(X,Θ)] εi

)2

 ⩽

4C2
2σ

2

n
+ 2C2σ

2

(
1− exp

(
− log22 n

d− log2 n

))
,

where C2 = 4 exp
(
5/(

√
2− 1)

). Suppose that the input dimension d dominates log22 n asymptoti-
cally (d ≫ log22 n), then the variance tends to 0 (as n, d tends to infinity), with a rate of the order of
max(log

2 n
d , 1

n).
The proof is given below. This results shows that the Median RF benefits from an increase of

the dimension as it will improve its averaging effect and help to reduce the variance. Of course,
in such a setting, the variance is only one part of the story, and a control on the bias becomes
a real hindrance (as the approximation error may explode), unless extra model assumptions
are formulated. For instance, consider for any input dimension d the case of a linear model, i.e.
Y = X⊤θ + ε for θ ∈ Rd and such that ∥θ∥2 ⩽ C/

√
d, with C > 0 a constant.

One can actually show that in such a setting, the bias term remains bounded as n (and d)
grows towards infinity (using for example the analysis conducted in the next theorem). This
echoes in particular the behavior of ridgeless least squares estimator in modern interpolation
regimes (see (Hastie et al. 2022)).
Proof of Proposition S11. A typical bias-variance decomposition yields (see e.g. Biau 2012b)

V (fMedRF
∞,n) ⩽ σ2nP (X ∈ An(X1,Θ) ∩An(X1,Θ

′)) (4.302)

with Θ′ an independent copy of Θ. Recalling that the depth is chosen as k = ⌊log2 n⌋. Consider
the event

E = E(Θ,Θ′, X1, k) := {Θ and Θ′ do not cut on common directions on the path to X1}.

Denote M(Θ, X1) the number of distinct directions chosen by the tree Θ to produce the leaf
containing X1 (upper bounded by log2 n). Then,

P (E) ⩾ E

[(
d−M(Θ, X1)

d

)log2 n
]

(4.303)

⩾

(
d− log2 n

d

)log2 n

(4.304)

= exp

(
log2 n log

(
1− log2 n

d

))
(4.305)

⩾ exp

(
− log22 n

d− log2 n

)
, (4.306)

using, for all x ∈ [0, 1), log(1 − x) ⩾ −x/(1 − x). The above probability tends to 1 as soon as

Work in progress as of January 16, 2024

S2. Proofs 185

d ≫ log22 n. Then,

P (X ∈ An(X1,Θ) ∩An(X1,Θ
′)) (4.307)

= P ({X ∈ An(X1,Θ) ∩An(X1,Θ
′)} ∩ E) + P ({X ∈ An(X1,Θ) ∩An(X1,Θ

′)} ∩ Ec)

⩽ P (X ∈ An(X1,Θ)|X ∈ An(X1,Θ
′), E)P (X ∈ An(X1,Θ

′)) + P ({X ∈ An(X1,Θ)} ∩ Ec) .
(4.308)

Applying Lemma S9 (Line (4.241)) yields

P (X ∈ An(X1,Θ
′)) = E [µ (An(X1,Θ

′)] (4.309)
= E [E [µ(An(X1,Θ))|X1, δ1(X1,Θ), . . . , δd(X1,Θ)]] (4.310)
⩽ C22

−k (4.311)

with C2 = 4 exp
(

5√
2−1

)
. Moreover, conditional on E, {X ∈ An(X1,Θ)} and {X ∈ An(X1,Θ

′)}
are independent as Θ and Θ′ do not share any common direction on the path toX1 and therefore
the splits in Θ and Θ′ are performed on independent sample components (by uniformity of X
and X1). Therefore, also by Lemma S9,

P (X ∈ An(X1,Θ)|X ∈ An(X1,Θ
′), E) = E [µ (An(X1,Θ))] (4.312)

= E [E [µ(An(X1,Θ))|X1, δ1(X1,Θ), . . . , δd(X1,Θ)]]
(4.313)

⩽ C22
−k. (4.314)

Similarly, the volume µ (An(X1,Θ)) is independent of the directions chosen to build the leaf,
therefore

P ({X ∈ An(X1,Θ)} ∩ Ec) = P (X ∈ An(X1,Θ))P (Ec)

⩽ C22
−k

(
1− exp

(
− log22 n

d− log2 n

))
.

Overall,

P (X ∈ An(X1,Θ) ∩An(X1,Θ
′)) ⩽ C2

22
−2k + C22

−k

(
1− exp

(
− log22 n

d− log2 n

))

and

V (fMedRF
∞,n) ⩽ C2

2nσ
22−2k + nσ2C2

(
1− exp

(
− log22 n

d− log2 n

))
2−k. (4.315)

Since k = ⌊log2 n⌋, we have 2−k ⩽ 2/n and

V (fMedRF
∞,n) ⩽

4C2
2σ

2

n
+ 2C2σ

2

(
1− e−

log22 n

d−log2 n

)
. (4.316)

Work in progress as of January 16, 2024

S2. Proofs 186

Proof of Proposition 4.5.3 (Interpolation Volume of Median RF)

It is possible to conduct a one-dimensional analysis and then to extend the result to the multi-
dimensional case by a simple multiplication. Indeed all the leaves are determined coordinate per
coordinate, therefore the interpolation area is the product of all interpolation areas along each
direction.

Let Z1, . . . , Zn be n i.i.d. random variables uniformly distributed over [0, 1]. As in the infinite
Median RF, the univariate trees, i.e., built by cutting along one direction only, appear almost
surely. Then, the length of a leaf of such tree is bounded in expectation by Z(k+1) −Z(k−1) where
Z(i) indicates the i-the statistical order. Moreover, it is known that Z(k) follows a Beta distribution
of parameters (k, n− k + 1). Therefore,

E
[
Z(k+1) − Z(k−1)

]
=

k + 1

n+ 1
− k − 1

n+ 1
(4.317)

⩽
2

n
. (4.318)

Now, asX1, ..., Xn are i.i.d. and uniformly distributed over [0, 1]d, for any data point x ∈ [0, 1]d

we simply have that

E [µ(Amin,x)] ⩽
2d

nd
.

Finally, since by definition all interpolation zones are disjoint and the interpolation area is the
union of n interpolation areas, we have

E [µ(Amin)] ⩽
2d

nd−1

which ends the proof.

S2.6 Proofs of Section 4.6 (Interpolation Volume of Breiman RF)
Proof of Proposition 4.6.1. Before diving into the computations, let us recall two facts about
Breiman RF construction. First, in CART, each cut is made at the middle of two consecutive
points in a given direction. Second, considering all univariate trees (trees whose splits are
performed along one single direction), the probability of cutting between all pairs of successive
points along all dimensions is strictly positive. Therefore, for a given pointXi, one can define the
minimal interpolation zone around Xi as

Amin,Xi
:=

⋂

M∈N,ΘM

AXi,ΘM
. (4.319)

The boundaries of this area are given for each direction by the cuts between Xi and its neighbor
points respectively to the considered direction, as illustrated on Figure S6.

1. The interpolation zone is the union of n interpolation zones, each one containing a sin-
gle Xi. We denote A(mM,n(.,ΘM)) = AX1,ΘM

∪ ... ∪ AXn,ΘM
with AXi,ΘM

= {x ∈
[0, 1]d,mM,n(x,ΘM) = Yi}. We begin with a one-dimensional analysis, and consider,
without loss of generality, the first variable. We let Z1 := X

(1)
1 , ..., Zn := X

(1)
n the first

components of the observations X1, . . . , Xn. As X1, . . . , Xn are i.i.d. and follow a uniform

Work in progress as of January 16, 2024

S2. Proofs 187

Minimal
interpolation

zone

Potential
interpolation

zone

Figure S6: Different interpolation zones of a data point (in red).

distribution over [0, 1]d, Z1, ..., Zn are i.i.d. and uniformly distributed on [0, 1]. We consider
the interpolation area at x = Zn and we reason conditional on Zn in the following. The
length (volume) of Amin,x restricted to the first dimension is simply given by the sum of
the distance from x to its closest point on the left side and to its closest point on the right
side (divided by 2 as the cut are made in the middle of two points). Therefore,

µ(Amin,x) =
1

2

(
x− max

{Zi,Zi<x}∪{0}
Zi + min

{Zi,Zi>x}∪{1}
Zi − x

)
. (4.320)

All computations are made conditionally on x. Denoting Nx the cardinal of the set {Zi :
Zi < xwith 1 ⩽ i < n}, we have for any t ∈ [0, x/2),

P
(
1

2

(
x− max

{Zi,Zi<x}∪{0}
Zi

)
⩽ t

∣∣x
)

(4.321)

= 1− P
(

max
{Zi,Zi<x}∪{0}

Zi < x− 2t
∣∣x
)

(4.322)

= 1− E
[
E
[
P
(
(Zi1 < x− 2t) ∩ ... ∩ (ZiNx

< x− 2t)
∣∣Nx, Zi1 < x, ..., ZiNx

< x, x
)] ∣∣x

]

(4.323)
= 1− E

[
P (Z1 < x− 2t|Z1 ⩽ x, x)

Nx
∣∣x
]

(4.324)

= 1−
n−1∑

k=0

P (Nx = k|x)P (Z1 < x− 2t|Z1 < x, x)
k (4.325)

= 1−
n−1∑

k=0

P (Nx = k|x)
(
x− 2t

x

)k

(4.326)

= 1−
(
(1− x) + x

(
x− 2t

x

))n−1

(4.327)

= 1− (1− 2t)n−1 (4.328)

where the penultimate equality is obtained by noticing that Nx is a binomial of parameters
(n− 1, x) and computing its probability-generating function. So for all t ⩾ 0,

P
(
1

2

(
x− max

{Zi,Zi<x}∪{0}
Zi

)
⩽ t|x

)
= 1− (1− 2t)n−11t<x/2.

Work in progress as of January 16, 2024

S2. Proofs 188

By symmetry,

P
(
1

2

(
min

{Zi,Zi>x}∪{1}
Zi − x

)
⩽ t|x

)
= 1− (1− 2t)n−11t>(1−x)/2.

Overall, using the fact that for any positive variable Z with cumulative function FZ , E [Z] =∫
(1− FZ), we have

E [µ(Amin,x)|x] =
∫ x/2

0

(1− 2u)n−1du+

∫ (1−x)/2

0

(1− 2u)n−1du

=
1

2n
(2− (1− x)n − xn)

⩽
1

n

(
1− 1

2n

)
.

Now, as X1, ..., Xn are i.i.d. and uniformly distributed over [0, 1]d, for any data point x ∈
[0, 1]d we simply have that

Amin,x =
d×

j=1

Amin,x(j) .

Therefore,

E [µ(Amin,x)] ⩽
1

nd

(
1− 2−n

)d
.

Finally, since by definition all interpolation zones are disjoint, we have

E [µ(Amin)] ⩽
1

nd−1

(
1− 2−n

)d
.

2. It is enough to notice that the minimal interpolation zone is the intersection of all the
potential interpolation zones. It is reached when the forest contains all the possible cuts.
Then, as the probability of any given cut appearing is strictly greater than 0 by hypothesis,
the probability of its appearance in the infinite forest is one. Therefore almost surely, when
M grows to infinity, the interpolation zone of the forest reaches the minimal interpolation
zone.

Work in progress as of January 16, 2024

S3. Experiments 189

S3 Experiments
For all experiments, we consider four different regression models, most of which have been
already considered in Laan et al. 2007: Model 1 is additive without noise (d = 2), Model 2
is polynomial with interactions (d = 8), Model 3 is the sum of elementary terms that contain
non-polynomial interactions (d = 6) and Model 4 (d = 5) corresponds to a generalized linear
model:

• Model 1: d = 2, Y = 2X2
1 + exp(−X2

2)

• Model 2: d = 6, Y = X2
1 +X2

2X3e
−|X4| +X5 −X6 +N (0, 0.5)

• Model 3: d = 8, Y = X1X2 +X2
3 −X4X5 +X6X7 −X2

8 +N (0, 0.5)

• Model 4: d = 5, Y = 1/(1 + exp(−10(
∑d

i=1 Xi − 1/2))) +N (0, 0.05)

• Model 5: d = 4, Y = − sin(2X1X2) +X2
2 +X3 − eX4 +N (0, 0.5)

• Model 6: d = 8, Y = 1{X1⩾0} +X3
2 + 1{X3+X5−X6−X7−X8⩾1} + e−X2

2 +N (0, 0.5)

• Model 7: d = 4, Y = X1 + 2(X2 − 1)2 + sin(2πX3)
2−sin(2πX3)

+ 2 sin(2πX4) + 2 cos(2πX4) +

4 sin(2πX4)
2 + 4 cos(2πX4)

2 +N (0, 0.5)

• Model 8: d = 4, Y = X1 + 3X2
2 − 2eX3 +X4.

All the experiments are conducted using Python3. We use Scikit-learn RandomForestRe-
gressor class to implement the Breiman RF model. We coded CRF, KeRF and AdaCRF models
ourselves, mainly relying on numpy and joblib libraries for computation optimisation. Experiments
were run on 4 16-cores CPU and took at most a few hours to run.

S3.1 Consistency Experiments
For all consistency experiments, the dataset was divided into a train dataset (80% of the data)
and a test dataset (20%) of the data.

The parameters of the estimators were set as follows:
• all RF estimators have 500 trees to mimic the behavior of the infinite RF.
• parameter bootstrap is set to False for all estimators in order preserve the interpolation

property, or set to True when specified.
• all other parameters are set to default value.

Consistency of KeRF in the Mean Interpolation Regime

We train a centered KeRF (with M = 500) of depth fixed to ⌊log2 n⌋ + 1 (mean interpolation
regime) for different sample sizes n and evaluate the empirical quadratic risk on the test set.

Results On Figure S7, for all models, the risk decreases toward zero as the number of samples
n increases (with slow convergence rates). These numerical results, even though obtained for a
finite KeRF with a large number M = 500 of centered trees, support the theoretical consistency
of the infinite KeRF in the mean interpolation regime (see Theorem 4.4.1).

Work in progress as of January 16, 2024

S3. Experiments 190

0.001

0.002

0.003

Ex
ce

ss
 ri

sk

Model 1

0.04

0.06

0.08

0.10

0.12
Model 2

1000 5000 10000 15000
n

0.02

0.04

0.06

0.08

0.10

Ex
ce

ss
 ri

sk

Model 3

1000 5000 10000 15000
n

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

Model 4

Figure S7: KeRF consistency results: excess risk w.r.t. sample sizes. For each sample size n, the
experiment is repeated 30 times: we represent the mean over the 30 tries (bold line) and the
mean ± std (filled zone).

Consistency of Median RF in the Interpolation Regime

We analyze the empirical performances of Median RF in noiseless and noisy settings on the
models specified above. For each model, given a training set, we train Median RF (withM = 500
trees) until pure leaves are reached, and measure its excess risk on a test set.

Figure S8 shows that the excess risk of a Median RF decreases as n grows. These empirical
performances lend support to the idea that Median RF are consistent even with a finite number
of trees and beyond the noiseless setting.

Consistency of Breiman RF, Additional Models to Figure 1

Work in progress as of January 16, 2024

S3. Experiments 191

0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

Ex
ce

ss
 ri

sk
Model 1

0.04

0.06

0.08

0.10

Model 2

1000 5000 10000 15000
n

0.02

0.04

0.06

0.08

Ex
ce

ss
 ri

sk

Model 3

1000 5000 10000 15000
n

−0.0005

0.0000

0.0005

0.0010

0.0015
Model 4

Figure S8: Consistency results for a Median RF with M = 500 trees: excess risk w.r.t. the sample
size n. For each sample size, the experiment is repeated 30 times: we represent the mean over the
30 tries (bold line) and the mean ± std (filled zone).

−0.05

0.00

0.05

0.10

Ex
ce

ss
 ri

sk

Model 1

0.00

0.02

0.04

0.06

Model 2
no bootstrap, mf=ceil(d/3)+1
bootstrap on, mf=d

1000 5000 10000 15000 20000 30000 50000
n

0.05

0.10

0.15

0.20

0.25

Ex
ce

ss
 ri

sk

Model 3

1000 5000 10000 15000 20000 30000 50000
n

−0.92

−0.90

−0.88

−0.86

Model 4

Figure S9: Consistency of Breiman RF: excess risk w.r.t the sample size n. RF parameters: 2000
trees, max-depth set to None, max-features= 1. Boxplots over 10 tries.

Work in progress as of January 16, 2024

S3. Experiments 192

−0.05

0.00

0.05

0.10

Ex
ce

ss
 ri

sk

Model 5

0.00

0.02

0.04

0.06

Model 6
no bootstrap, mf=ceil(d/3)+1
bootstrap on, mf=d

1000 5000 10000 15000 20000 30000 50000
n

0.05

0.10

0.15

0.20

0.25

Ex
ce

ss
 ri

sk

Model 7

1000 5000 10000 15000 20000 30000 50000
n

0.00

0.01

0.02

0.03

0.04
Model 8

Figure S10: Consistency of Breiman RF: excess risk w.r.t the sample size n. RF parameters: 2000
trees, max-depth set to None, max-features= 1. Boxplots over 10 tries.

Work in progress as of January 16, 2024

S3. Experiments 193

Consistency of Breiman RF with Max-Feature= 1

On Figure S11, we see that the excess risk of a Breiman RF with the max-features parameter set
to 1 is decreasing towards 0 as n increases. This RF seems consistent for all models.

0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

Ex
ce

ss
 ri

sk

Model 1

0.02

0.04

0.06

0.08

0.10
Model 2

1000 5000 10000 15000
n

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Ex
ce

ss
 ri

sk

Model 3

1000 5000 10000 15000
n

0.0000

0.0005

0.0010

0.0015

Model 4

Figure S11: Consistency of Breiman RF: excess risk w.r.t sample size. RF parameters: 500 trees,
max-depth set to None, max-features= 1, no bootstrap. Mean over 30 tries (doted line) and std
(filled zone).

Decrease of the Variance of the Breiman RF in a High-Dimensional Setting

Numerical experiments show the decrease of the variance of interpolating Breiman RF when d
increases. The model involves no signal and only noise (with specified variance σ2).

2 10 50 100 500
d

0

10

20

30

Ex
ce

ss
 ri

sk

σ= 10

2 10 50 100 500
d

0

1000

2000

3000

σ= 100

Figure S12: Decrease of the variance of an interpolating Breiman RF with max-features=1 w.r.t.
dimension d. 10 repetitions per boxplot, 5000 training points and 50000 testing points were used
for each repetition. The Breiman RF contains 1000 trees.

Work in progress as of January 16, 2024

S3. Experiments 194

2 10 50 100 500
d

0

10

20

30

Ex
ce

ss
 ri

sk

σ= 10

2 10 50 100 500
d

0

1000

2000

3000

σ= 100

Figure S13: Decrease of the variance of an interpolating Breiman RF with max-features=⌊d/3⌋
w.r.t. dimension d. 10 repetitions per boxplot, 5000 training points and 50000 testing points were
used for each repetition. The Breiman RF contains 1000 trees.

0.0000

0.0005

0.0010

0.0015

Ex
ce

ss
 ri

sk

Model 1

−0.02

0.00

0.02

0.04

0.06

0.08

0.10

Ex
ce

ss
 ri

sk

Model 2
no bootstrap, mf=ceil(d/3)+1
bootstrap on, mf=d
bootstrap on, mf=ceil(d/3)+1

1000 5000 10000 15000 20000 30000 50000
n

−0.02

0.00

0.02

0.04

0.06

0.08

0.10

Ex
ce

ss
 ri

sk

Model 3

1000 5000 10000 15000 20000 30000 50000
n

0.000

0.025

0.050

0.075

0.100

0.125
Model 4

Figure S14: Consistency of Breiman RF: excess risk w.r.t sample size. RF parameters: 2000 trees,
max-depth set to None, max-features= 1. Boxplots over 10 tries.

Comparison of Breiman RF with and without Bootstrap

S3.2 Interpolation experiments
Volume of the Interpolation Zone w.r.t Sample Size n

We numerically evaluate the volume of the interpolation area of a Breiman RF (with 5000 trees,
see Figure S17 in Appendix S3.2 for details about this choice) when the sample size n increases.

In Figure S15, the volume of the minimal interpolation zone is shown to tend polynomially
fast to 0 (linear in the logarithmic scale) for all considered models as the dataset size increases,
matching the behavior of the theoretical bound established in Proposition 4.6.1.

One could notice the slight gap between the theoretical and experimental curves, which
actually reflects the gap between an infinite forest (for which Proposition 4.6.1 holds) and its
approximation by a finite forest (5000 trees here). This gap naturally tends to increase with
n (when the number of trees is fixed) as the approximation of the infinite RF by a finite one
deteriorates with n.

Work in progress as of January 16, 2024

S3. Experiments 195

−2.6

−2.4

−2.2

−2.0

−1.8

lo
g

vo
lu

m
e

Model 1

−18

−16

−14

−12

Model 2
th. bound
emp. result

50 100 500
n

−13

−12

−11

−10

−9

lo
g

vo
lu

m
e

Model 3

50 100 500
n

−11

−10

−9

−8

−7

Model 4

Figure S15: Log volume of the interpolation zone of a Breiman RF with 5000 Trees, max features
set to 1, no bootstrap. Mean over 10 tries (red line) and mean ± std (filled zone). The theoretical
bound (Proposition 4.6.1) is represented in green.

Increasing max-feature parameter We plot on Figure S16 the log-volume of the interpolation
zone of a Breiman RF with the max-features parameter set to ⌈d/3⌉ (the default value proposed
in R randomForest package). The volume decreases polynomially in n but slower than when
max-features= 1 (Figure S15) which is to be expected: choosing max-features= 1 should increase
the diversity of the splits and therefore reduce the volume of the interpolation zone.

−2.4

−2.2

−2.0

−1.8

lo
g

vo
lu

m
e

Model 1

−15

−14

−13

−12

−11

−10

Model 2

50 100 500
n

−11

−10

−9

−8

lo
g

vo
lu

m
e

Model 7

50 100 500
n

−9.5

−9.0

−8.5

−8.0

−7.5

−7.0

−6.5

Model 9

Figure S16: Log volume of Breiman RF interpolation zone w.r.t. sample size n. RF parameters:
500 trees, no bootstrap, max features= ⌈d/3⌉. Mean over 10 tries (bold line) and std (filled zone).

Volume of the Interpolation Zone w.r.t Number of Trees M

In this section, we empirically measure how fast decreases the volume of the interpolation zone
of a Breiman RF when its number of treesM increases, and how close the interpolation zone gets
from the minimal interpolation zone.

To this end, for a fixed sample size n = 500, we numerically evaluate the volume of the
interpolation area when the numberM of trees in the forest grows. This volume is anticipated to

Work in progress as of January 16, 2024

S3. Experiments 196

be a non-increasing function ofM (forM = 1, note that the interpolation volume is 1, the volume
of [0, 1]d), but its decrease rate highly depends on the data geometry, making its theoretical
evaluation difficult. The numerical results in Figure S17 show a fast decay towards zero of the
interpolation volume for all models, already tiny from M = 500 trees. Furthermore, it seems to
converge to the theoretical bound (dotted line) derived in Proposition 4.6.1 for an infinite RF
with a max-feature parameter equal to 1.

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

Lo
g

vo
lu

m
e

Model 1

−15

−10

−5

0
Model 2

empirical volume
theoretical upper bound
 of the minimal interpolation
 zone

5 50 500 1000
M

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

Lo
g

vo
lu

m
e

Model 3

5 50 500 1000
M

−10

−8

−6

−4

−2

0
Model 4

Figure S17: Log volume of Breiman RF interpolation zone w.r.t. the number M of trees. RF
parameters: no bootstrap, max features = 1. Mean over 10 tries (bold line) and std (filled zone).
Sample size n = 500.

Analysis of the Interpolation Property of Breiman RF with Bootstrap

In this experiment, we try to measure how close a Breiman RF with bootstrap on is from exactly
interpolating (with other parameters being 500 trees, max-depth set to None, max-features= d).
To this end, we measure the difference between the true train labels (the Yis) and the predicted
ones (the Ŷis) by computing

Iloss :=
1

n

n∑

i=1

|Yi − Ŷi|
Yi

.

The closer is this quantity to 0, the closer is the forest from interpolating. On Figure S18, we plot
different quantiles of the above quantity as n varies.

For instance, if we take the 0.8-quantile in red on Figure S18 and look at the upper-right plot
(model 2), we read that the Iloss roughly equals 0.6 for 80% of the points. This quantity seems
globally constant in n. Finally, the quantiles are smaller in the case of a strong signal-to-noise
ratio (models 1 and 4) than in the case of a bigger one (models 2 and 3).

On Figure S19, we also plot the quantiles of the Iloss for the four different models while the
number of trees varies. Adding trees does not significantly change the value of the different
quantiles.

Work in progress as of January 16, 2024

S3. Experiments 197

0.002

0.004

0.006

0.008

0.010

I-l
os

s q
ua

nt
ile

Model 1 0.5
0.6
0.7
0.8
0.9

0.2

0.4

0.6

0.8

1.0

1.2

Model 2

1000 5000 10000 15000
n

0.2

0.4

0.6

0.8

1.0

1.2

I-l
os

s q
ua

nt
ile

Model 3

1000 5000 10000 15000
n

0.015

0.020

0.025

0.030

Model 4

Figure S18: Iloss of a Breiman RF w.r.t sample size n. RF parameters: 500 trees, bootstrap on,
max-features= d, max-depth set to None. Mean over 30 tries (doted lines) and std (filled zones).

0.004

0.006

0.008

0.010

0.012

0.014

0.016

I-l
os

s q
ua

nt
ile

Model 1 0.5
0.6
0.7
0.8
0.9

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Model 2

10 50 100 200 500
M

0.25

0.50

0.75

1.00

1.25

1.50

I-l
os

s q
ua

nt
ile

Model 3

10 50 100 200 500
M

0.015

0.020

0.025

0.030

0.035

0.040
Model 4

Figure S19: Iloss of a Breiman RFw.r.t number of trees. Parameters: bootstrap on, max-features= d,
max-depth set to None. Sample size n = 1000. Mean over 30 tries (doted lines) and std (filled
zones).

Work in progress as of January 16, 2024

Bibliography of the current chapter 198

Bibliography of the current chapter
Arlot, Sylvain and Robin Genuer (2014). “Analysis of purely random forests bias”. In: arXiv

preprint arXiv:1407.3939.
Bach, Francis and Lenaic Chizat (2021). Gradient Descent on Infinitely Wide Neural Networks: Global

Convergence and Generalization. arXiv: 2110.08084 [cs.LG].
Bartlett, Peter L, Philip M Long, Gábor Lugosi, and Alexander Tsigler (2020). “Benign overfitting

in linear regression”. In: Proceedings of the National Academy of Sciences 117.48, pp. 30063–30070.
Bartlett, Peter L, Andrea Montanari, and Alexander Rakhlin (2021). “Deep learning: a statistical

viewpoint”. In: arXiv preprint arXiv:2103.09177.
Batir, Necdet (2008). “Inequalities for the gamma function”. In:Archiv derMathematik 91.6, pp. 554–

563.
Belkin, Mikhail, Daniel Hsu, Siyuan Ma, and Soumik Mandal (2019a). “Reconciling modern

machine-learning practice and the classical bias–variance trade-off”. In: Proceedings of the
National Academy of Sciences 116.32, pp. 15849–15854.

Belkin, Mikhail, Alexander Rakhlin, and Alexandre B Tsybakov (2019b). “Does data interpolation
contradict statistical optimality?” In: The 22nd International Conference on Artificial Intelligence
and Statistics. PMLR, pp. 1611–1619.

Biau, Gérard (2012b). “Analysis of a random forests model”. In: The Journal of Machine Learning
Research 13, pp. 1063–1095.

Breiman, Leo (2001a). “Random forests”. In: Machine learning 45.1, pp. 5–32.
Breiman, Leo, Jerome Friedman, Charles J Stone, and Richard A Olshen (1984). Classification and

regression trees. CRC press.
Buschjäger, Sebastian and Katharina Morik (2021). “There is no Double-Descent in Random

Forests”. In: arXiv preprint arXiv:2111.04409.
Chizat, Lenaic and Francis Bach (2020). “Implicit bias of gradient descent for wide two-layer

neural networks trained with the logistic loss”. In: Conference on Learning Theory. PMLR,
pp. 1305–1338.

Devroye, Luc, Laszlo Györfi, and AdamKrzyżak (1998). “The Hilbert kernel regression estimate”.
In: Journal of Multivariate Analysis 65.2, pp. 209–227.

Duroux, Roxane and Erwan Scornet (2018). “Impact of subsampling and tree depth on random
forests”. In: ESAIM: Probability and Statistics 22, pp. 96–128.

Geurts, P., D. Ernst, and L. Wehenkel (2006). “Extremely randomized trees”. In: Machine learning
63.1, pp. 3–42.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016). Deep learning. MIT press.
Hastie, Trevor, Andrea Montanari, Saharon Rosset, and Ryan J. Tibshirani (2022). “Surprises

in high-dimensional ridgeless least squares interpolation”. In: The Annals of Statistics 50.2,
pp. 949 –986. doi: 10.1214/21-AOS2133. url: https://doi.org/10.1214/21-AOS2133.

Ishwaran, Hemant (2015). “The effect of splitting on random forests”. In: Machine learning 99.1,
pp. 75–118.

Klusowski, Jason M. (2021a). “Sharp analysis of a simple model for random forests”. In: Interna-
tional Conference on Artificial Intelligence and Statistics. PMLR, pp. 757–765.

Laan, Mark J Van der, Eric C Polley, and Alan E Hubbard (2007). “Super learner”. In: Statistical
applications in genetics and molecular biology 6.1.

Liang, Tengyuan, Alexander Rakhlin, and Xiyu Zhai (2020b). “On the multiple descent of
minimum-norm interpolants and restricted lower isometry of kernels”. In: Conference on
Learning Theory. PMLR, pp. 2683–2711.

Lin, Yi and Yongho Jeon (2006). “Random forests and adaptive nearest neighbors”. In: Journal of
the American Statistical Association 101.474, pp. 578–590.

Work in progress as of January 16, 2024

https://arxiv.org/abs/2110.08084
https://doi.org/10.1214/21-AOS2133
https://doi.org/10.1214/21-AOS2133

Bibliography of the current chapter 199

Mentch, Lucas and Siyu Zhou (2019). “Randomization as regularization: a degrees of freedom
explanation for random forest success”. In: arXiv preprint arXiv:1911.00190.

Mourtada, Jaouad, Stéphane Gaïffas, and Erwan Scornet (2020). “Minimax optimal rates for
Mondrian trees and forests”. In: The Annals of Statistics 48.4, pp. 2253–2276.

Richmond, Lawrence Bruce and Jeffrey Shallit (2009). “Counting abelian squares”. In: Electronic
Journal of Combinatorics.

Scornet, Erwan (2016a). “On the asymptotics of random forests”. In: Journal ofMultivariate Analysis
146, pp. 72–83.

— (2016b). “Random forests and kernel methods”. In: IEEE Transactions on Information Theory
62.3, pp. 1485–1500.

Tang, Cheng, Damien Garreau, and Ulrike von Luxburg (2018). “When do random forests fail?”
In: Advances in neural information processing systems 31.

Tsigler, Alexander and Peter L Bartlett (2020). “Benign overfitting in ridge regression”. In: arXiv
preprint arXiv:2009.14286.

Wang, Yutong and Clayton D Scott (2022). “Consistent Interpolating Ensembles via the Manifold-
Hilbert Kernel”. In: arXiv preprint arXiv:2205.09342.

Wyner, Abraham J, Matthew Olson, Justin Bleich, and David Mease (2017). “Explaining the
success of adaboost and random forests as interpolating classifiers”. In: The Journal of Machine
Learning Research 18.1, pp. 1558–1590.

Zhou, Siyu and Lucas Mentch (2021). “Trees, forests, chickens, and eggs: when and why to prune
trees in a random forest”. In: arXiv preprint arXiv:2103.16700.

Work in progress as of January 16, 2024

Chapter 5

PAC-Bayes

Preambulum
We inform the reader that the following material is a work in progress. The content presented
herein has not yet been subjected to the rigorous scrutiny that typically accompanies finalized
research. Consequently, some results and statements may lack comprehensive proof or thorough
validation. We did our best to mention when such results are not rigorously demonstrated and
what further experiments will be conducted to make up for the current shortcomings.

5.1 Introduction
The recent success of Neural Networks (NN) is largely due to a combination of overparametriza-
tion and artifacts to improve generalization (e.g., dropout layers, see Srivastava et al. 2014).
Through Stochastic Gradient Descent (SGD), a NN can be effectively trained to minimize the
empirical risk in a supervised setting, often achieving a perfect fit to training data while still
generalizing well to unseen data. The mechanisms underpinning this empirical behavior remain
poorly understood theoretically. As a consequence, it remains difficult in practice to design NN
architectures and/or training procedures that specifically enhance the generalization properties.
The main proposal of this work is thus to study a training scheme inspired from the theoretical
PAC-Bayes framework to improve the generalization capacities of any NN in a supervised setting.

For many years, statistical theory has advocated the compromise between bias and variance
to design good estimators. To sum up, increasing the approximation capacities of a model by
adding parameters should also, at some point, increase the variance, directly accountable for
poor generalization performances. However, the success of deep and wide NN results from the
fact that very complex methods in terms of number of parameters, both interpolate the training
data and generalize well (Goodfellow et al. 2016). Since then, many researchers have tried to
explain, both empirically and theoretically, the good generalization performances of NN despite
their high complexity (see Paragraph Related Works below).

Several attempts to study the generalization capacities of NN exploit the PAC-Bayes theory
that allows us to efficiently control the generalization gap, i.e. the difference between the empirical
and the theoretical risk. The first non-vacuous bounds on NN were obtained a few years ago in
Dziugaite et al. 2017. After that, many efforts have been conducted to improve the PAC-Bayes
bounds in order to close the gap between theory and practice (see, e.g., Zhou et al. 2018; Letarte
et al. 2019; Lan et al. 2020; Tsuzuku et al. 2020; Clerico et al. 2023).

200

5.1. Introduction 201

Taking advantage of this control, in a recent work, Pérez-Ortiz et al. 2021 introduced a new
training objective to minimize an upper bound on the theoretical risk, instead of minimizing only
the empirical one, in order to improve the guarantees on the generalization performance of a NN.
The bound is a typical combination of the empirical risk and a PAC-Bayes penalty, which controls
the generalization gap. Their method also leverages the flatness of the loss landscape to minimize
the PAC-penalty. The connection between the flatness of a minimum and its generalization
capacity has drawn a lot of attention lately (see for instance He et al. 2019; Jiang et al. 2019; Keskar
et al. 2016) and seems to be a promising direction to both explain the generalization power of
overparametrized networks and to develop new training methods (Foret et al. 2020; Du et al.
2021; He et al. 2019).

Contributions Through extensive numerical experiments, we study and extend the training
scheme of Pérez-Ortiz et al. 2021. We aim at showing that it improves the generalization power
of a NN and also increases the flatness of the loss landscape. Our main contribution would thus
be twofold:

1. Link between generalization and loss flatness. We would like to verify if adding the
PAC-Bayes penalty to the training objective increases the flatness of the loss landscape,
thus exhibiting a link between the generalization power of a NN and the flatness of its loss
landscape. The former is measured via the top eigenvalues of the hessian of the network
parameters, using an approximation method developed in Golmant et al. 2018.

2. PAC-Bayes penalty for improved generalization. We would like to use the PAC-Bayes
penalty to enhance the generalization performances of the NN measured on a test set.
Compared to Pérez-Ortiz et al. 2021, we do not focus on obtaining a bound on the theoretical
risk of the network but rather to improve the empirical performances of a NN evaluated on
a test set, which also allows us to slightly diverge from the theoretical framework.

RelatedWorks Traditional complexitymeasures (VCdimension, Rademacher complexity...) fail
to capture the good generalization performances of over-parametrized NN (Belkin 2021). On the
other hand, the PAC-Bayes framework has shown very promising results in this direction. Since
the first non-vacuous bound obtained in 2017 (Dziugaite et al. 2017), many papers have improved
the bounds on the generalization gap for several kinds of NN architectures as mentioned above (
Zhou et al. 2018; Letarte et al. 2019; Lan et al. 2020; Tsuzuku et al. 2020; Clerico et al. 2023). Other
theoretical approaches include the study of benign overfitting in the case of linear regression
(Bartlett et al. 2020; Tsigler et al. 2020; Liang et al. 2020b), also investigated in the context of neural
networks (Belkin et al. 2019a). The influence of training via SGD on the generalization power
of NN is also pointed out and studied by researchers interested in the implicit bias or implicit
regularization: the optimization of an over-parametrized one-hidden-layer neural network via
SGD will converge to a minimum of minimal norm with good generalization properties in a
regression setting (Bach et al. 2021), or with maximal margin in a classification setting (Chizat
et al. 2020). However, these approaches often focus on simplified architectures, which cannot
fully explain the behavior of DNN used in practice. On the other hand, based on numerical
observations, several empirical measures have been proposed to quantify the generalization
properties of NN (Jiang et al. 2019). In the former, they notice that sharpness-based measures
seem to be the most correlated to generalization performances. The connection between the
flatness of the minima and their generalization power has been studied extensively from both
theoretical and empirical perspectives (Dziugaite et al. 2017; Jiang et al. 2019; Keskar et al. 2016).
Taking advantage of this connection, very recently, several papers have considered minimizing
the sharpness of the loss of NN in order to improve their generalization (namely Sharpness

Work in progress as of January 16, 2024

5.2. Training a NN under a PAC-Bayes Objective 202

Aware Minimization procedures). For instance, Foret et al. 2020 minimizes the maximum of the
loss in a ball of small radius at each step, instead of minimizing simply the loss. Several variants
of this method have been later introduced (see e.g., Kwon et al. 2021; Du et al. 2021). On another
note, He et al. 2019 and Izmailov et al. 2018 both propose to average the weights of several NN
(either the same network at different steps of the training or different NN) to reach flatter regions,
which empirically improves the generalization.

5.2 Training a NN under a PAC-Bayes Objective

5.2.1 Data and Estimators
We consider a classification task in a supervised learning setting. We have a dataset S = {(x1, y1),
. . . , (xn, yn)} of independent pairs drawn from an unknown distribution P on the space X × Y .
Typically, X = Rd and Y = {1, ...,K} where K is the number of classes (depending on the
dataset at hand). We denote ℓ the cross-entropy loss used to assess the quality of the prediction:
ℓ : (π(x), y) → −y log π(x)where π(x) is a probability vector.

The neural network weights are represented by a vectorw ∈ Rp. In this work, wewill consider
several kinds of Convolutional Neural Networks (CNN) (detailed in Appendix S1.1). We denote
fw : X → Y the associated neural network. Neural networks are usually trained to minimize
the empirical risk rn(w) =

1
n

∑n
i=1 ℓ(fw(xi), yi) via SGD. Its theoretical counterpart, the risk, is

denoted R(w) := E [ℓ(fw(X), Y)].
In a PAC-Bayes setting, we consider Probabilistic Neural Networks (PNN) which are (data-

dependent) probability distributions over the weight space Rp. An estimator can be built in
several ways from a PNN: by sampling from the PNN distribution (randomized estimator), by
taking the mean of the distribution (mean estimator), etc. The risk of a PNN Q is defined as
R(Q) = Ew∼Q[R(w)] and the empirical risk as rn(Q) = Ew∼Q[rn(w)] (we omit the dependence on
the data to lighten the notations). To train a PNN, instead of simply minimizing the empirical risk,
we minimize a sum of the empirical risk plus a penalty term which is derived from a PAC-Bayes
bound as shown in the next section.

5.2.2 Training Objectives
A PAC-Bayes bound controls the discrepancy between the empirical and theoretical risks with
high probability over the data. We first provide an example of a PAC-Bayes bound fromMcAllester
1999.
Theorem 5.2.1 (Mc Allester, 1999). Given a prior distribution Q0, δ ∈ (0, 1), then, with probability at
least 1− δ over S, for all Q, we have

R(Q) ⩽ rn(Q) +

√√√√KL(Q||Q0) + log
(

2
√
n

δ

)

2n

The prior distribution can be arbitrary chosen or built from a subset of the training data as we
will see later. The PAC-Bayes framework is quite flexible and allows one to derive a wide variety
of bounds. An overview of all the bounds that we use is given in Appendix S1.2. We can use
these bounds as new objectives to train a NN instead of implementing a simple empirical risk

Work in progress as of January 16, 2024

5.3. Training Process 203

minimization, that is

ϕ(Q) := rn(Q) +

√√√√KL(Q||Q0) + log
(

2
√
n

δ

)

2n

becomes the new objective to minimize. Since, with high probability R(Q) ⩽ ϕ(Q), minimizing
ϕ(Q) directly accounts for minimizing an upper bound on the theoretical risk, which is the true
objective to minimize. In practice, as very powerful NN are used, the empirical risk often reaches
0; therefore the real challenge is to decrease the penalty term, especially the KL part.

5.3 Training Process
Pérez-Ortiz et al. 2021 developed a strategy in order to find a distribution Q minimizing the
objective previously introduced. This training scheme is also the one used in this work, and we
summarize it here:

1. Parametrization of Q and Q0. In order to parametrize the distributions, we rewrite the
weights w = µ+ σ ⊙ V with µ ∈ Rp, σ ∈ Rp and V a random vector of size p following a
Gaussian or Laplace distribution PV . Learning Q accounts for learning its parameters µ
and σ.

2. Choice of the priorQ0. In order to decrease the KL term in the bound,Q0, parametrized by
µ0 and σ0, has to be chosen specifically. First, we initialize and train a classical (deterministic)
network on a subset of the data (e.g., 50% of the data). It provides weights W0 that will
serve as µ0 for the prior distribution Q0. Then σ0 is simply chosen from a grid search (see
details below).

3. Learning Q. Given the initialization Q0 with parameters (µ0, σ0), we can learn the param-
eters µ and σ via SGD. As usually done, we apply SGD on random batches of data for a
given number of iterations. For each batch, we sample the parameters w ∼ Q, we compute
the loss of the corresponding network on the data batch and then compute the gradient
of the objective ϕ w.r.t. µ and σ: ∇µϕ = ∂ϕ

∂W + ∂ϕ
∂µ and ∇σϕ = ∂ϕ

∂W · V
1+exp(−σ) +

∂ϕ
∂σ . This

computation can be decomposed into two terms, the gradient of the empirical risk and
the gradient of the PAC-Bayes penalty. The computation of the gradient of the empirical
risk is direct: ∇µℓ(fw(x), y) and ∇σℓ(fw(x), y). The KL term being explicit w.r.t. µ and σ
(when PV is a Gaussian or Laplace distribution), we can also compute its gradient w.r.t. the
parameters. Considering two one-dimensional Gaussian distributions Q and Q0, it writes
as follows: KL(Q||Q0) =

1
2

(
log(σ0

σ) + (µ1−µ0)
2

b0
+ b1

b0
− 1
)
.

4. Re-initialization. In order to improve the training performances of the network, after a
condition is met (number of epochs...), we actualize the prior by setting Q0 = Q. This
allows the posterior to move further away from the initial distributionQ0, an area for which
the empirical risk can remain high.

More details, such as the KL computation between two Gaussian distributions, can be found
in Pérez-Ortiz et al. 2021.

As we show in the following section, this training scheme reduces the curvature of the loss
landscape w.r.t. the weights of the network.

Work in progress as of January 16, 2024

5.4. PAC-Bayes Penalty and Flatness 204

5.4 PAC-Bayes Penalty and Flatness
In this section, we compare the flatness of the loss optimization landscape of a neural network
trained via empirical risk minimization and one trained with a PAC-Bayes penalty added to the
empirical risk.

5.4.1 Evaluating the Optimization Loss Landscape Curvature
In order to measure the curvature of the NN loss optimization landscape, we compute the highest
eigenvalues of the Hessian of the loss rn at point w ∈ Rp. The Hessian structure provides
information on local curvature, and therefore on flatness. This characterization of the flatness of
a minimum1 has been considered in, e.g., Ghorbani et al. 2019; Chaudhari et al. 2019; Foret et al.
2020; Gilmer et al. 2021. When the number of parameters exceeds a few thousands, computing
the eigenvalues of the Hessian is cumbersome. We thus rely on an approximation algorithm
implemented in Golmant et al. 2018.

5.4.2 Experimental Protocol
We consider a deterministic network det-net and a probabilistic one, the latter referring to the
posterior net of the pair prior-net, posterior-net, both having the same architecture. The
training parameters are also identical (optimizer, learning-rate, batchsize, etc.). We measure the
top eigenvalue of the Hessian of the network parameters for both networks at initialization and
at the end of training. The deterministic net is trained in a standard way via SGD to minimize
the empirical risk, and the probabilistic one is trained according to the procedure described in
Section 5.3. Regarding the probabilistic network, the prior network is trained for a fixed number
of epochs and the posterior network is trained with early stopping: as soon as the training loss
decreases below a given threshold ε, we stop the training. The same early stopping condition is
used to train the deterministic network. In this manner, the eigenvalues are evaluated when both
networks reach the same training state.

We consider three different kinds of convolutional architectures ordered by size: MobileNet
(roughly 200k parameters, Howard et al. 2017), DenseNet (8M parameters, Huang et al. 2017)
and ResNet101 (44.5M parameters, He et al. 2016). MobileNet stacks light blocks of convolu-
tional/normalization layers. DenseNet employs dense connectivity by receiving feature maps
from all preceding layers to facilitate feature reuse and gradient flow. Finally, ResNet adds
residual connections to the classical convolutional layers, allowing the signal to propagate much
deeper. Details about these models are given in Appendix S1.1.

In order to show that the decrease of the top eigenvalues is robust to the change of hyperparam-
eters, we run the experiment on MNIST dataset for different training/architecture configurations
of MobileNet specified as follows: 3 different depths (1, 2 or 4 mobile blocks), 2 widths (small,
large), 3 different learning rates (1e-3, 5e-3, 1e-3), 3 different PAC-Bayes inspired objectives
(fquad, bbb and flamb defined in Section S1.2), dropout on (with probability 0.1) or off and a KL
penalty set at 1 or 0.1. We also evaluated this protocol on CIFAR for all the networks mentioned.

5.4.3 Results
As can be seen on Figure 5.1, on theMNIST dataset, in average over all theMobileNet architectures,
the top eigenvalues of the Hessian decrease when we consider the posterior network and its
penalized objective. The prior and deterministic network have the same architecture and training

1Other definitions are discussed in Dinh et al. 2017.

Work in progress as of January 16, 2024

5.4. PAC-Bayes Penalty and Flatness 205

objectives, therefore at initialization their top eigenvalues are of the same order. The eigenvalues
at initialization are much higher than at the end of training which is to be expected as they fall at a
randompointwhich has no reason to be flat over all directions. The posterior network is initialized
at the end of the training of the prior network: between "prior end" and "posterior initialization"
only the training objective changes and this already brings a decrease of the eigenvalues of the
Hessian. Overall, the smallest top eigenvalues are obtained at the end of the training of the
posterior network. Similar results are observed for the DenseNet and ResNet NN on both MNIST
and CIFAR as can be seen in Section S1.3.

pr
ior

 in
iti

ali
za

tio
n

pr
ior

 en
d

po
ste

rio
r i

nit
ial

iza
tio

n

po
ste

rio
r e

nd

de
t.

ini
tia

liz
at

ion

de
t.

en
d

0

20

40

60

80

Ei
ge

nv
al

ue

Figure 5.1: NN hessian top eigenvalue of deterministic, prior and posterior MobileNet. For each
network, the top eigenvalue is computed at the initialization of the network ("... initialization" on
the x axis) and at the end of training ("... end" on the x axis) Boxplot over 3 times, MNIST dataset.

Adding the PAC-penalty, which controls the generalization gap, to the training objective
flattens the loss around the minimum reached by the network. Although the bound is based on
several theoretical hypotheses that might not be verified in practice (such as i.i.d. data samples),
this outcome is still encouraging and sheds further insight into the connection between general-
ization and the smoothness of the loss landscape. Further experiments should be implemented
to explore this connection. In particular, it would be nice to unveil a mathematical link between
the value of the generalization penalty and the curvature of the loss landscape. It would require
a more theoretical analysis with more experiments on hand-made examples.

In the following section, we try to enhance the generalization power of the networks with the
PAC-Bayes penalty.

5.4.4 Generalization Performances under PAC-Bayes Inspired Training
After showing that the PAC-Bayes penalty allows NN to reach flatter minima, we would like
to show that it also help to improve the performances of NN on the test set. Generalization
performances can be measured through both the generalization score on a test set which was not
used during training and the generalization gap, i.e. the difference between the train score and
the test score. Due to the sharpness decrease observed in Section 5.4, one could expect pbnet to

Work in progress as of January 16, 2024

5.5. Conclusion and Further Work 206

have a smaller generalization gap and therefore, for equal train losses, a better test loss. We are
currently running experiments to confirm this intuition.

In the following experiment, we compare the generalization performances of a deterministic
network and its probabilistic counterpart trained with PAC-Bayes penalty. We train the posterior
network according to the training process described in Section 5.3. In order to build the prior,
we keep 10% of the data as a validation set: as soon as the network reaches a generalization gap
superior to a given threshold, we stop its training and switch to training the pbnet.

As we are interested in obtaining good empirical performances instead of preserving theoreti-
cal guarantees, we slightly adapt the training scheme to enhance the performances of the network.
Indeed, we observed that the posterior network was hard to optimize far from its initialization
point, as the KL part of the loss grows quite fast. Consequently, we update the prior network
several times during the training in order to reset at 0 the KL loss between the prior and posterior
networks. We also added a penalty to theKL term for all the PAC-Bayes objectives in order to
allow the posterior network to explore the parameter space more broadly.

However, the deterministic and posterior networks have the same performances, especially
in generalization. Neither the test accuracy nor the generalization gap of pbnet significantly
improve.

0 25 50 75 100 125 150 175 200

0.4

0.6

0.8

1.0

1.2

1.4

1.6
Train loss
Test loss
Train acc
Test acc
Train loss post
Test loss post

Train acc post
Test acc post
Train loss det post
Test loss det post
Train acc det post
Test acc det post

140 150 160 170 180 190 200

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Train loss
Test loss
Train acc
Test acc
Train loss post
Test loss post

Train acc post
Test acc post
Train loss det post
Test loss det post
Train acc det post
Test acc det post

Figure 5.2: Comparison of a deterministic and a posterior MobileNet during training. Left:
training from epoch 0 to epoch 220. Right: zoom on epochs 137-220 (beginning of posterior
training). CIFAR10 Dataset.

As shown on Figures 5.3, similar results are obtained when we directly train the network
according to the previous scheme from epoch 0 (the prior net is simply a random initialization in
this case). Similar results are obtained with DenseNet and ResNet as shown in Section S1.4.

5.5 Conclusion and Further Work
Although the results of Section 5.4.3 were promising w.r.t. the connection between the generaliza-
tion penalty and the loss flatness, it seems that in practice, on real datasets, we do not observe
the expected improvement on the test error. This could be explained by the distance taken from
the theoretical framework where the PAC upper bound holds. However, when sticking to the
theoretical framework, the optimization of the posterior network is much more complicated as
the KL term limits the minimization of the empirical risk.

The connection between the PAC penalty and the flatness of the loss landscape seems quite
clear empirically, even though it has to be made more rigorous. However, the last link in the chain,

Work in progress as of January 16, 2024

5.A. Appendix 207

0 25 50 75 100 125 150 175 200

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8 Train loss
Test loss
Train acc
Test acc

Train loss post
Test loss post
Train acc post
Test acc post

Figure 5.3: Comparison of a deterministic and a posterior MobileNet during training. The
posterior network is trained from epoch 0 and the prior is updated every 5 epochs.

the reduction of the generalization gap, remains missing. As in the case of complex, real data,
optimizing the posterior network is hard without moving away from the theoretical framework,
more experiments should be implemented on a hand-made setting. In particular, it should be
tested if for a similar value of the empirical risk, the deterministic and the PAC networks have
different values of the loss flatness and/or of the generalization gap.

5.A Appendix

S1.1 Different Kinds of NN
We detail here the architectures of the networks used in the experiments. The DenseNet and
ResNet NN refer to densenet121 and resnet101 of the torchvision.models package. The Mo-
bileNet architecture is slightly modified compared to the original one: GroupNorm layers are used
instead of BatchNorm layers and the lengths of the layers are smaller.

S1.2 PAC-Bayes Objectives
Several objectives can be used to train a NN (Pérez-Ortiz et al. 2021):

ϕlambda(Q,λ) :=
rn(Q)

1− λ/2
+

KL(Q||Q0) + log
(

2
√
n

δ

)

nλ(1− λ/2)
,

ϕquad(Q) :=

√√√√
rn(Q) +

KL(Q||Q0) + log
(

2
√
n

δ

)

2n
+

√√√√KL(Q||Q0) + log
(

2
√
n

δ

)

2n

2

Work in progress as of January 16, 2024

5.A. Appendix 208

and

ϕbbb(Q) := rn(Q) + η
KL(Q||Q0)

n
.

The last objective, ϕbbb, is quite handy as it is possible to penalize the KL term with the η
parameter.

S1.3 Additional Figures to the Flatness Experiment

pr
ior

 in
iti

ali
za

tio
n

pr
ior

 en
d

po
ste

rio
r i

nit
ial

iza
tio

n

po
ste

rio
r e

nd

de
t.

ini
tia

liz
at

ion

de
t.

en
d

Eigenvalue Type

0

10

20

30

40

50

60

Ei
ge

nv
al

ue
s

Figure S4: NN hessian top eigenvalue of deterministic, prior and posterior DenseNet. For each
network, the top eigenvalue is computed at the initialization of the network ("... initialization"
on the x axis) and at the end of training ("... end" on the x axis). Boxplot over 3 times, MNIST
dataset.

S1.4 Additional Figures to the Generalization Experiment

Work in progress as of January 16, 2024

5.A. Appendix 209

pr
ior

 in
iti

ali
za

tio
n

pr
ior

 en
d

po
ste

rio
r i

nit
ial

iza
tio

n

po
ste

rio
r e

nd

de
t.

ini
tia

liz
at

ion

de
t.

en
d

Eigenvalue Type

0

10

20

30

40

50

60

Ei
ge

nv
al

ue
s

Figure S5: NN hessian top eigenvalue of deterministic, prior and posterior DenseNet. For each
network, the top eigenvalue is computed at the initialization of the network ("... initialization"
on the x axis) and at the end of training ("... end" on the x axis). Boxplot over 3 times, CIFAR10
dataset.

0 50 100 150 200
0.0

0.5

1.0

1.5

2.0
Train loss
Test loss
Train acc
Test acc
Train loss post
Test loss post

Train acc post
Test acc post
Train loss det post
Test loss det post
Train acc det post
Test acc det post

150 160 170 180 190 200 210 220
0.0

0.2

0.4

0.6

0.8

1.0

Train loss
Test loss
Train acc
Test acc
Train loss post
Test loss post

Train acc post
Test acc post
Train loss det post
Test loss det post
Train acc det post
Test acc det post

Figure S6: Comparison of a deterministic and a posterior DenseNet during training. Left: training
from epoch 0 to epoch 220. Right: zoom on epochs 149-220 (beginning of posterior training).
CIFAR10 Dataset.

Work in progress as of January 16, 2024

5.A. Appendix 210

0 25 50 75 100 125 150 175 200
0.0

0.5

1.0

1.5

2.0

Train loss
Test loss
Train acc
Test acc

Train loss post
Test loss post
Train acc post
Test acc post

Figure S7: Comparison of a deterministic and a posterior DenseNet during training. The posterior
network is trained from epoch 0 and the prior is updated every 5 epochs.

0 50 100 150 200
0

1

2

3

4

Train loss
Test loss
Train acc
Test acc
Train loss post
Test loss post

Train acc post
Test acc post
Train loss det post
Test loss det post
Train acc det post
Test acc det post

170 180 190 200 210
0.0

0.2

0.4

0.6

0.8

1.0

Train loss
Test loss
Train acc
Test acc
Train loss post
Test loss post

Train acc post
Test acc post
Train loss det post
Test loss det post
Train acc det post
Test acc det post

Figure S8: Comparison of a deterministic and a posterior Resnet during training. Left: training
from epoch 0 to epoch 220. Right: zoom on epochs 164-220 (beginning of posterior training).
CIFAR10 Dataset.

Work in progress as of January 16, 2024

Bibliography of the current chapter 211

Bibliography of the current chapter
Bach, Francis and Lenaic Chizat (2021). Gradient Descent on Infinitely Wide Neural Networks: Global

Convergence and Generalization. arXiv: 2110.08084 [cs.LG].
Bartlett, Peter L, Philip M Long, Gábor Lugosi, and Alexander Tsigler (2020). “Benign overfitting

in linear regression”. In: Proceedings of the National Academy of Sciences 117.48, pp. 30063–30070.
Belkin, Mikhail (2021). “Fit without fear: remarkable mathematical phenomena of deep learning

through the prism of interpolation”. In: Acta Numerica 30, pp. 203–248.
Belkin, Mikhail, Daniel Hsu, Siyuan Ma, and Soumik Mandal (2019a). “Reconciling modern

machine-learning practice and the classical bias–variance trade-off”. In: Proceedings of the
National Academy of Sciences 116.32, pp. 15849–15854.

Chaudhari, Pratik et al. (2019). “Entropy-sgd: Biasing gradient descent into wide valleys”. In:
Journal of Statistical Mechanics: Theory and Experiment 2019.12, p. 124018.

Chizat, Lenaic and Francis Bach (2020). “Implicit bias of gradient descent for wide two-layer
neural networks trained with the logistic loss”. In: Conference on Learning Theory. PMLR,
pp. 1305–1338.

Clerico, Eugenio, George Deligiannidis, and Arnaud Doucet (2023). “Wide stochastic networks:
Gaussian limit and PAC-Bayesian training”. In: International Conference on Algorithmic Learning
Theory. PMLR, pp. 447–470.

Dinh, Laurent, Razvan Pascanu, Samy Bengio, and Yoshua Bengio (2017). “Sharp minima can
generalize for deep nets”. In: International Conference on Machine Learning. PMLR, pp. 1019–
1028.

Du, Jiawei et al. (2021). “Efficient sharpness-aware minimization for improved training of neural
networks”. In: arXiv preprint arXiv:2110.03141.

Dziugaite, Gintare Karolina and Daniel M Roy (2017). “Computing nonvacuous generalization
bounds for deep (stochastic) neural networks with many more parameters than training
data”. In: arXiv preprint arXiv:1703.11008.

Foret, Pierre, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur (2020). “Sharpness-aware
minimization for efficiently improving generalization”. In: arXiv preprint arXiv:2010.01412.

Ghorbani, Behrooz, Shankar Krishnan, and Ying Xiao (2019). “An investigation into neural net
optimization via hessian eigenvalue density”. In: International Conference on Machine Learning.
PMLR, pp. 2232–2241.

Gilmer, Justin et al. (2021). “A loss curvature perspective on training instability in deep learning”.
In: arXiv preprint arXiv:2110.04369.

Golmant, Noah, Zhewei Yao, Amir Gholami, Michael Mahoney, and Joseph Gonzalez (Oct.
2018). pytorch-hessian-eigenthings: efficient PyTorch Hessian eigendecomposition. Version 1.0. url:
https://github.com/noahgolmant/pytorch-hessian-eigenthings.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016). Deep learning. MIT press.
He, Haowei, Gao Huang, and Yang Yuan (2019). “Asymmetric valleys: Beyond sharp and flat

local minima”. In: Advances in neural information processing systems 32.
He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun (2016). “Deep residual learning

for image recognition”. In: Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 770–778.

Howard, Andrew G et al. (2017). “Mobilenets: Efficient convolutional neural networks for mobile
vision applications”. In: arXiv preprint arXiv:1704.04861.

Huang, Gao, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger (2017). “Densely
connected convolutional networks”. In: Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 4700–4708.

Work in progress as of January 16, 2024

https://arxiv.org/abs/2110.08084
https://github.com/noahgolmant/pytorch-hessian-eigenthings

Bibliography of the current chapter 212

Izmailov, Pavel, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, andAndrewGordonWilson
(2018). “Averaging weights leads to wider optima and better generalization”. In: arXiv preprint
arXiv:1803.05407.

Jiang, Yiding, Behnam Neyshabur, Hossein Mobahi, Dilip Krishnan, and Samy Bengio (2019).
“Fantastic generalizationmeasures andwhere to find them”. In: arXiv preprint arXiv:1912.02178.

Keskar, Nitish Shirish, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping
Tak Peter Tang (2016). “On large-batch training for deep learning: Generalization gap and
sharp minima”. In: arXiv preprint arXiv:1609.04836.

Kwon, Jungmin, Jeongseop Kim, Hyunseo Park, and In Kwon Choi (2021). “ASAM: Adaptive
Sharpness-Aware Minimization for Scale-Invariant Learning of Deep Neural Networks”. In:
Proceedings of the 38th International Conference on Machine Learning. Ed. by Marina Meila and
Tong Zhang. Vol. 139. Proceedings of Machine Learning Research. PMLR, pp. 5905–5914. url:
https://proceedings.mlr.press/v139/kwon21b.html.

Lan, Xinjie, Xin Guo, and Kenneth E Barner (2020). “PAC-Bayesian generalization bounds for
multilayer perceptrons”. In: arXiv preprint arXiv:2006.08888.

Letarte, Gaël, Pascal Germain, Benjamin Guedj, and François Laviolette (2019). “Dichotomize
and generalize: PAC-Bayesian binary activated deep neural networks”. In: Advances in Neural
Information Processing Systems 32.

Liang, Tengyuan, Alexander Rakhlin, and Xiyu Zhai (2020b). “On the multiple descent of
minimum-norm interpolants and restricted lower isometry of kernels”. In: Conference on
Learning Theory. PMLR, pp. 2683–2711.

McAllester, David A (1999). “PAC-Bayesian model averaging”. In: Proceedings of the twelfth annual
conference on Computational learning theory, pp. 164–170.

Pérez-Ortiz, María, Omar Rivasplata, John Shawe-Taylor, and Csaba Szepesvári (2021). “Tighter
risk certificates for neural networks”. In: Journal of Machine Learning Research 22.

Srivastava, Nitish, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov
(2014). “Dropout: a simple way to prevent neural networks from overfitting”. In: The journal
of machine learning research 15.1, pp. 1929–1958.

Tsigler, Alexander and Peter L Bartlett (2020). “Benign overfitting in ridge regression”. In: arXiv
preprint arXiv:2009.14286.

Tsuzuku, Yusuke, Issei Sato, and Masashi Sugiyama (2020). “Normalized flat minima: Exploring
scale invariant definition of flat minima for neural networks using pac-bayesian analysis”. In:
International Conference on Machine Learning. PMLR, pp. 9636–9647.

Zhou, Wenda, Victor Veitch, Morgane Austern, Ryan P Adams, and Peter Orbanz (2018). “Non-
vacuous generalization bounds at the imagenet scale: a PAC-bayesian compression approach”.
In: arXiv preprint arXiv:1804.05862.

Work in progress as of January 16, 2024

https://proceedings.mlr.press/v139/kwon21b.html

Bibliography

Akiba, Takuya, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama (2019).
“Optuna: A Next-generation Hyperparameter Optimization Framework”. In: Proceedings of the
25rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.

Alquier, Pierre (2023). User-friendly introduction to PAC-Bayes bounds. arXiv: 2110 . 11216
[stat.ML].

Arik, Sercan Ö and Tomas Pfister (2021). “Tabnet: Attentive interpretable tabular learning”. In:
Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 35. 8, pp. 6679–6687.

Arlot, Sylvain and Robin Genuer (2014). “Analysis of purely random forests bias”. In: arXiv
preprint arXiv:1407.3939.

Arnould, Ludovic, Claire Boyer, and Erwan Scornet (2021). “Analyzing the tree-layer structure
of Deep Forests”. In: International Conference on Machine Learning. PMLR, pp. 342–350.

— (2023). “Is interpolation benign for random forest regression?” In: International Conference on
Artificial Intelligence and Statistics. PMLR, pp. 5493–5548.

Bach, Francis and Lenaic Chizat (2021). Gradient Descent on Infinitely Wide Neural Networks: Global
Convergence and Generalization. arXiv: 2110.08084 [cs.LG].

Barron, Andrew R (1994). “Approximation and estimation bounds for artificial neural networks”.
In: Machine learning 14, pp. 115–133.

Bartlett, Peter L, Philip M Long, Gábor Lugosi, and Alexander Tsigler (2020). “Benign overfitting
in linear regression”. In: Proceedings of the National Academy of Sciences 117.48, pp. 30063–30070.

Bartlett, Peter L, Andrea Montanari, and Alexander Rakhlin (2021). “Deep learning: a statistical
viewpoint”. In: arXiv preprint arXiv:2103.09177.

Batir, Necdet (2008). “Inequalities for the gamma function”. In:Archiv derMathematik 91.6, pp. 554–
563.

Belgiu, Mariana and Lucian Drăguţ (2016). “Random forest in remote sensing: A review of
applications and future directions”. In: ISPRS journal of photogrammetry and remote sensing 114,
pp. 24–31.

Belkin, Mikhail (2021). “Fit without fear: remarkable mathematical phenomena of deep learning
through the prism of interpolation”. In: Acta Numerica 30, pp. 203–248.

Belkin, Mikhail, Daniel Hsu, Siyuan Ma, and Soumik Mandal (2019a). “Reconciling modern
machine-learning practice and the classical bias–variance trade-off”. In: Proceedings of the
National Academy of Sciences 116.32, pp. 15849–15854.

Belkin, Mikhail, Daniel Hsu, and Partha Mitra (2018). “Overfitting or perfect fitting? risk bounds
for classification and regression rules that interpolate”. In: arXiv preprint arXiv:1806.05161.

Belkin, Mikhail, Alexander Rakhlin, and Alexandre B Tsybakov (2019b). “Does data interpolation
contradict statistical optimality?” In: The 22nd International Conference on Artificial Intelligence
and Statistics. PMLR, pp. 1611–1619.

Bergstra, J. S., R. Bardenet, Y. Bengio, and K. Balázs (2011). “Algorithms for Hyper-Parameter
Optimization”. In: Advances in Neural Information Processing Systems 24. Ed. by J. Shawe-Taylor,

213

https://arxiv.org/abs/2110.11216
https://arxiv.org/abs/2110.11216
https://arxiv.org/abs/2110.08084

Bibliography 214

R. S. Zemel, P. L. Bartlett, F. Pereira, and K. Q. Weinberger. Curran Associates, Inc., pp. 2546–
2554.

Berrouachedi, A., R. Jaziri, and G. Bernard (2019a). “Deep Cascade of Extra Trees”. In: Pacific-Asia
Conference on Knowledge Discovery and Data Mining. Springer, pp. 117–129.

— (2019b). “Deep Extremely Randomized Trees”. In: International Conference onNeural Information
Processing. Springer, pp. 717–729.

Biau, G. (2012a). “Analysis of a random forests model”. In: The Journal of Machine Learning Research
13.1, pp. 1063–1095.

Biau, G., L. Devroye, and G. Lugosi (2008). “Consistency of random forests and other averaging
classifiers”. In: Journal of Machine Learning Research 9.Sep, pp. 2015–2033.

Biau, Gérard (2012b). “Analysis of a random forests model”. In: The Journal of Machine Learning
Research 13, pp. 1063–1095.

Biau, Gérard and Erwan Scornet (2016). “A random forest guided tour”. In: Test 25.2, pp. 197–227.
Biau, Gérard, Erwan Scornet, and Johannes Welbl (2019). “Neural random forests”. In: Sankhya A

81.2, pp. 347–386.
Blundell, Charles, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra (2015). “Weight

uncertainty in neural network”. In: International conference on machine learning. PMLR, pp. 1613–
1622.

Borisov, Vadim, Tobias Leemann, Kathrin Seßler, Johannes Haug, Martin Pawelczyk, and Gjergji
Kasneci (2021). Deep Neural Networks and Tabular Data: A Survey. doi: 10.48550/ARXIV.2110.
01889. url: https://arxiv.org/abs/2110.01889.

Bottou, Léon, Frank E Curtis, and Jorge Nocedal (2018). “Optimization methods for large-scale
machine learning”. In: SIAM review 60.2, pp. 223–311.

Breiman, Leo (1996). “Bagging predictors”. In: Machine learning 24, pp. 123–140.
— (2001a). “Random forests”. In: Machine learning 45.1, pp. 5–32.
— (2001b). “Random Forests”. In:Machine Learning 45.1, pp. 5–32. issn: 1573-0565. doi: 10.1023/

A:1010933404324. url: https://doi.org/10.1023/A:1010933404324.
— (2004). “Consistency for a simple model of random forests”. In: University of California at

Berkeley. Technical Report 670.
Breiman, Leo, Jerome Friedman, Charles J Stone, and Richard A Olshen (1984). Classification and

regression trees. CRC press.
Brent, Richard P (1991). “Fast training algorithms for multilayer neural nets”. In: IEEE Transactions

on Neural Networks 2.3, pp. 346–354.
Bühlmann, Peter and Bin Yu (2002). “Analyzing bagging”. In: The annals of Statistics 30.4, pp. 927–

961.
Buschjäger, Sebastian and Katharina Morik (2021). “There is no Double-Descent in Random

Forests”. In: arXiv preprint arXiv:2111.04409.
Chaudhari, Pratik et al. (2019). “Entropy-sgd: Biasing gradient descent into wide valleys”. In:

Journal of Statistical Mechanics: Theory and Experiment 2019.12, p. 124018.
Chen, Tianqi and Carlos Guestrin (2016). “Xgboost: A scalable tree boosting system”. In: Pro-

ceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining,
pp. 785–794.

Chen, Xi and Hemant Ishwaran (2012). “Random forests for genomic data analysis”. In: Genomics
99.6, pp. 323–329.

Chi, Chien-Ming, Patrick Vossler, Yingying Fan, and Jinchi Lv (2022). “Asymptotic properties of
high-dimensional random forests”. In: The Annals of Statistics 50.6, pp. 3415–3438.

Chizat, Lenaic and Francis Bach (2020). “Implicit bias of gradient descent for wide two-layer
neural networks trained with the logistic loss”. In: Conference on Learning Theory. PMLR,
pp. 1305–1338.

Work in progress as of January 16, 2024

https://doi.org/10.48550/ARXIV.2110.01889
https://doi.org/10.48550/ARXIV.2110.01889
https://arxiv.org/abs/2110.01889
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324

Bibliography 215

Clerico, Eugenio, George Deligiannidis, and Arnaud Doucet (2023). “Wide stochastic networks:
Gaussian limit and PAC-Bayesian training”. In: International Conference on Algorithmic Learning
Theory. PMLR, pp. 447–470.

Cribari-Neto, F., N. L. Garcia, and K. LP Vasconcellos (2000). “A note on inverse moments of
binomial variates”. In: Brazilian Review of Econometrics 20.2, pp. 269–277.

Criminisi, Antonio, Jamie Shotton, Ender Konukoglu, et al. (2012). “Decision forests: A unified
framework for classification, regression, density estimation, manifold learning and semi-
supervised learning”. In: Foundations and trends® in computer graphics and vision 7.2–3, pp. 81–
227.

Cybenko, G. (Dec. 1989). “Approximation by superpositions of a sigmoidal function”.
In: Mathematics of Control, Signals and Systems 2.4, pp. 303–314. issn: 1435-568X. doi:
10.1007/BF02551274. url: https://doi.org/10.1007/BF02551274.

Deng, Jia, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei (2009). “Imagenet: A large-
scale hierarchical image database”. In: 2009 IEEE conference on computer vision and pattern
recognition. Ieee, pp. 248–255.

Devroye, Luc, Laszlo Györfi, and AdamKrzyżak (1998). “The Hilbert kernel regression estimate”.
In: Journal of Multivariate Analysis 65.2, pp. 209–227.

Díaz-Uriarte, Ramón and Sara Alvarez de Andrés (2006). “Gene selection and classification of
microarray data using random forest”. In: BMC bioinformatics 7, pp. 1–13.

Dinh, Laurent, Razvan Pascanu, Samy Bengio, and Yoshua Bengio (2017). “Sharp minima can
generalize for deep nets”. In: International Conference on Machine Learning. PMLR, pp. 1019–
1028.

Du, Jiawei et al. (2021). “Efficient sharpness-aware minimization for improved training of neural
networks”. In: arXiv preprint arXiv:2110.03141.

Duroux, Roxane and Erwan Scornet (2018). “Impact of subsampling and tree depth on random
forests”. In: ESAIM: Probability and Statistics 22, pp. 96–128.

Dziugaite, Gintare Karolina and Daniel M Roy (2017). “Computing nonvacuous generalization
bounds for deep (stochastic) neural networks with many more parameters than training
data”. In: arXiv preprint arXiv:1703.11008.

Elie-Dit-Cosaque, Kevin andVéroniqueMaume-Deschamps (2022). “Random forest estimation of
conditional distribution functions and conditional quantiles”. In: Electronic Journal of Statistics
16.2, pp. 6553–6583.

Fan, Wei, Haixun Wang, Philip S Yu, and Sheng Ma (2003). “Is random model better? on its
accuracy and efficiency”. In: Third IEEE International Conference on Data Mining. IEEE, pp. 51–
58.

Feng, Ji, Yang Yu, and Zhi-Hua Zhou (2018). “Multi-layered gradient boosting decision trees”.
In: Advances in neural information processing systems, pp. 3551–3561.

Foret, Pierre, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur (2020). “Sharpness-aware
minimization for efficiently improving generalization”. In: arXiv preprint arXiv:2010.01412.

Frankle, Jonathan and Michael Carbin (2018). “The lottery ticket hypothesis: Finding sparse,
trainable neural networks”. In: arXiv preprint arXiv:1803.03635.

Friedman, Jerome H (2001). “Greedy function approximation: a gradient boosting machine”. In:
Annals of statistics, pp. 1189–1232.

Genuer, Robin, Jean-Michel Poggi, and Christine Tuleau-Malot (2010). “Variable selection using
random forests”. In: Pattern recognition letters 31.14, pp. 2225–2236.

Geurts, P., D. Ernst, and L. Wehenkel (2006). “Extremely randomized trees”. In: Machine learning
63.1, pp. 3–42.

Ghods, Alireza and Diane J Cook (2020). “A survey of deep network techniques all classifiers
can adopt”. In: Data Mining and Knowledge Discovery, pp. 1–42.

Work in progress as of January 16, 2024

https://doi.org/10.1007/BF02551274
https://doi.org/10.1007/BF02551274

Bibliography 216

Ghorbani, Behrooz, Shankar Krishnan, and Ying Xiao (2019). “An investigation into neural net
optimization via hessian eigenvalue density”. In: International Conference on Machine Learning.
PMLR, pp. 2232–2241.

Ghosh, Soumyadip and Shane G Henderson (2002). “Chessboard distributions and random
vectors with specified marginals and covariance matrix”. In: Operations Research 50.5, pp. 820–
834.

— (2009). “Patchwork distributions”. In: Advancing the Frontiers of Simulation. Springer, pp. 65–86.
Gilmer, Justin et al. (2021). “A loss curvature perspective on training instability in deep learning”.

In: arXiv preprint arXiv:2110.04369.
Glorot, Xavier and Yoshua Bengio (2010). “Understanding the difficulty of training deep feed-

forward neural networks”. In: Proceedings of the thirteenth international conference on artificial
intelligence and statistics. JMLR Workshop and Conference Proceedings, pp. 249–256.

Golmant, Noah, Zhewei Yao, Amir Gholami, Michael Mahoney, and Joseph Gonzalez (Oct.
2018). pytorch-hessian-eigenthings: efficient PyTorch Hessian eigendecomposition. Version 1.0. url:
https://github.com/noahgolmant/pytorch-hessian-eigenthings.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016). Deep learning. MIT press.
Gorishniy, Yury, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko (2021). Revisiting Deep

Learning Models for Tabular Data. doi: 10.48550/ARXIV.2106.11959. url: https://arxiv.
org/abs/2106.11959.

Grinsztajn, Léo, Edouard Oyallon, and Gaël Varoquaux (2022). “Why do tree-based models still
outperform deep learning on tabular data?” In: arXiv preprint arXiv:2207.08815.

Guo, Yang, Shuhui Liu, Zhanhuai Li, and Xuequn Shang (2018). “BCDForest: a boosting cascade
deep forest model towards the classification of cancer subtypes based on gene expression
data”. In: BMC bioinformatics 19.5, p. 118.

Hastie, Trevor, Andrea Montanari, Saharon Rosset, and Ryan J. Tibshirani (2022). “Surprises
in high-dimensional ridgeless least squares interpolation”. In: The Annals of Statistics 50.2,
pp. 949 –986. doi: 10.1214/21-AOS2133. url: https://doi.org/10.1214/21-AOS2133.

He, Haowei, Gao Huang, and Yang Yuan (2019). “Asymmetric valleys: Beyond sharp and flat
local minima”. In: Advances in neural information processing systems 32.

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun (2015). “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification”. In: Proceedings of the IEEE
international conference on computer vision, pp. 1026–1034.

— (2016). “Deep residual learning for image recognition”. In: Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 770–778.

Hornik, Kurt,Maxwell Stinchcombe, andHalbertWhite (1989). “Multilayer feedforward networks
are universal approximators”. In: Neural networks 2.5, pp. 359–366.

Howard, Andrew G et al. (2017). “Mobilenets: Efficient convolutional neural networks for mobile
vision applications”. In: arXiv preprint arXiv:1704.04861.

Huang, Gao, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger (2017). “Densely
connected convolutional networks”. In: Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 4700–4708.

Huang, W Ronny et al. (2020). “Understanding generalization through visualizations”. In.
Ishwaran, Hemant (2015). “The effect of splitting on random forests”. In: Machine learning 99.1,

pp. 75–118.
Izmailov, Pavel, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, andAndrewGordonWilson

(2018). “Averaging weights leads to wider optima and better generalization”. In: arXiv preprint
arXiv:1803.05407.

Jeong, Mira, Jaeyeal Nam, and Byoung Chul Ko (2020). “Lightweight Multilayer Random Forests
for Monitoring Driver Emotional Status”. In: IEEE Access 8, pp. 60344–60354.

Work in progress as of January 16, 2024

https://github.com/noahgolmant/pytorch-hessian-eigenthings
https://doi.org/10.48550/ARXIV.2106.11959
https://arxiv.org/abs/2106.11959
https://arxiv.org/abs/2106.11959
https://doi.org/10.1214/21-AOS2133
https://doi.org/10.1214/21-AOS2133

Bibliography 217

Jiang, Yiding, Behnam Neyshabur, Hossein Mobahi, Dilip Krishnan, and Samy Bengio (2019).
“Fantastic generalizationmeasures andwhere to find them”. In: arXiv preprint arXiv:1912.02178.

Kainen, Paul C. (1997). “Utilizing Geometric Anomalies of High Dimension: When Complexity
Makes Computation Easier”. In: Computer Intensive Methods in Control and Signal Processing: The
Curse of Dimensionality. Ed. by Miroslav Kárný and Kevin Warwick. Boston, MA: Birkhäuser
Boston, pp. 283–294. isbn: 978-1-4612-1996-5. doi: 10.1007/978-1-4612-1996-5_18. url:
https://doi.org/10.1007/978-1-4612-1996-5_18.

Ke, Guolin, Jia Zhang, Zhenhui Xu, Jiang Bian, and Tie-Yan Liu (2018). “TabNN: A universal
neural network solution for tabular data”. In.

Ke, Guolin et al. (2017). “Lightgbm: A highly efficient gradient boosting decision tree”. In:
Advances in neural information processing systems 30.

Keskar, Nitish Shirish, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping
Tak Peter Tang (2016). “On large-batch training for deep learning: Generalization gap and
sharp minima”. In: arXiv preprint arXiv:1609.04836.

Kim, S., M. Jeong, and B. C. Ko (2020). “Interpretation and Simplification of Deep Forest”. In:
arXiv preprint arXiv:2001.04721.

Kingma, Diederik P and Jimmy Ba (2014). “Adam: A method for stochastic optimization”. In:
arXiv preprint arXiv:1412.6980.

Klusowski, Jason M. (2018). “Sharp analysis of a simple model for random forests”. In: arXiv
preprint arXiv:1805.02587.

— (2021a). “Sharp analysis of a simple model for random forests”. In: International Conference on
Artificial Intelligence and Statistics. PMLR, pp. 757–765.

— (2021b). “Universal consistency of decision trees in high dimensions”. In: arXiv preprint
arXiv:2104.13881.

Kobak, Dmitry, Jonathan Lomond, and Benoit Sanchez (2020). “The optimal ridge penalty for real-
world high-dimensional data can be zero or negative due to the implicit ridge regularization”.
In: The Journal of Machine Learning Research 21.1, pp. 6863–6878.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton (2012). “Imagenet classification with
deep convolutional neural networks”. In: Advances in neural information processing systems 25.

Kwon, Jungmin, Jeongseop Kim, Hyunseo Park, and In Kwon Choi (2021). “ASAM: Adaptive
Sharpness-Aware Minimization for Scale-Invariant Learning of Deep Neural Networks”. In:
Proceedings of the 38th International Conference on Machine Learning. Ed. by Marina Meila and
Tong Zhang. Vol. 139. Proceedings of Machine Learning Research. PMLR, pp. 5905–5914. url:
https://proceedings.mlr.press/v139/kwon21b.html.

Laan, Mark J Van der, Eric C Polley, and Alan E Hubbard (2007). “Super learner”. In: Statistical
applications in genetics and molecular biology 6.1.

Lakshminarayanan, Balaji, Daniel M Roy, and Yee Whye Teh (2014). “Mondrian forests: Efficient
online random forests”. In: Advances in neural information processing systems 27.

Lan, Xinjie, Xin Guo, and Kenneth E Barner (2020). “PAC-Bayesian generalization bounds for
multilayer perceptrons”. In: arXiv preprint arXiv:2006.08888.

LeCun, Yann, Yoshua Bengio, et al. (1995). “Convolutional networks for images, speech, and
time series”. In: The handbook of brain theory and neural networks 3361.10, p. 1995.

Letarte, Gaël, Pascal Germain, Benjamin Guedj, and François Laviolette (2019). “Dichotomize
and generalize: PAC-Bayesian binary activated deep neural networks”. In: Advances in Neural
Information Processing Systems 32.

Liang, Tengyuan and Alexander Rakhlin (2020a). “Just interpolate: Kernel “ridgeless” regression
can generalize”. In.

Work in progress as of January 16, 2024

https://doi.org/10.1007/978-1-4612-1996-5_18
https://doi.org/10.1007/978-1-4612-1996-5_18
https://proceedings.mlr.press/v139/kwon21b.html

Bibliography 218

Liang, Tengyuan, Alexander Rakhlin, and Xiyu Zhai (2020b). “On the multiple descent of
minimum-norm interpolants and restricted lower isometry of kernels”. In: Conference on
Learning Theory. PMLR, pp. 2683–2711.

Lin, Yi and Yongho Jeon (2006). “Random forests and adaptive nearest neighbors”. In: Journal of
the American Statistical Association 101.474, pp. 578–590.

Liu, B. et al. (2020). “Morphological Attribute Profile Cube and Deep Random Forest for Small
Sample Classification of Hyperspectral Image”. In: IEEE Access 8, pp. 117096–117108.

Liu, Pengfei, Xipeng Qiu, and Xuanjing Huang (2016). “Recurrent neural network for text classi-
fication with multi-task learning”. In: arXiv preprint arXiv:1605.05101.

Lugosi, Gábor and Andrew Nobel (1996). “Consistency of data-driven histogram methods for
density estimation and classification”. In: The Annals of Statistics 24.2, pp. 687–706.

Lutz, Patrick, Ludovic Arnould, Claire Boyer, and Erwan Scornet (2022). “Sparse tree-based
initialization for neural networks”. In: arXiv preprint arXiv:2209.15283.

McAllester, David A (1999). “PAC-Bayesian model averaging”. In: Proceedings of the twelfth annual
conference on Computational learning theory, pp. 164–170.

Mentch, Lucas and Siyu Zhou (2019). “Randomization as regularization: a degrees of freedom
explanation for random forest success”. In: arXiv preprint arXiv:1911.00190.

— (2022). “Getting better from worse: Augmented bagging and a cautionary tale of variable
importance”. In: Journal of Machine Learning Research 23.224, pp. 1–32.

Miller, Kevin, Chris Hettinger, Jeffrey Humpherys, Tyler Jarvis, and David Kartchner (May 2017).
“Forward Thinking: Building Deep Random Forests”. In.

Mishkin, Dmytro and Jiri Matas (2015). “All you need is a good init”. In: arXiv preprint
arXiv:1511.06422.

Mourtada, Jaouad, Stéphane Gaïffas, and Erwan Scornet (2020). “Minimax optimal rates for
Mondrian trees and forests”. In: The Annals of Statistics 48.4, pp. 2253–2276.

Nakkiran, Preetum, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever
(2021). “Deep double descent: Where bigger models and more data hurt”. In: Journal of
Statistical Mechanics: Theory and Experiment 2021.12, p. 124003.

Neal, RadfordM (2012). Bayesian learning for neural networks. Vol. 118. Springer Science & Business
Media.

Nobel, Andrew (1996). “Histogram regression estimation using data-dependent partitions”. In:
The Annals of Statistics 24.3, pp. 1084–1105.

Pang,M., K. Ting, P. Zhao, and Z. Zhou (2018). “ImprovingDeep Forest by Confidence Screening”.
In: 2018 IEEE International Conference on Data Mining (ICDM), pp. 1194–1199.

Paszke, Adam et al. (2019). “PyTorch: An Imperative Style, High-Performance Deep Learning
Library”. In: Advances in Neural Information Processing Systems 32. Curran Associates, Inc.,
pp. 8024–8035.

Pedregosa, F. et al. (2011). “Scikit-learn: Machine Learning in Python”. In: Journal of Machine
Learning Research 12, pp. 2825–2830.

Perez-Ortiz, Maria, Omar Rivasplata, Emilio Parrado-Hernandez, Benjamin Guedj, and John
Shawe-Taylor (2021). “Progress in Self-Certified Neural Networks”. In: arXiv preprint
arXiv:2111.07737.

Pérez-Ortiz, María, Omar Rivasplata, John Shawe-Taylor, and Csaba Szepesvári (2021). “Tighter
risk certificates for neural networks”. In: Journal of Machine Learning Research 22.

Petersen, Philipp Christian (2020). “Neural network theory”. In: University of Vienna.
Pinkus, Allan (1999). “Approximation theory of the MLP model in neural networks”. In: Acta

numerica 8, pp. 143–195.

Work in progress as of January 16, 2024

Bibliography 219

Prasad, AnanthaM, Louis R Iverson, and Andy Liaw (2006). “Newer classification and regression
tree techniques: bagging and random forests for ecological prediction”. In: Ecosystems 9,
pp. 181–199.

Rakhlin, Alexander and Xiyu Zhai (2019). “Consistency of interpolation with Laplace kernels is
a high-dimensional phenomenon”. In: Conference on Learning Theory. PMLR, pp. 2595–2623.

Richmond, David L, Dagmar Kainmueller, Michael Y Yang, EugeneWMyers, and Carsten Rother
(2015). “Relating cascaded random forests to deep convolutional neural networks for semantic
segmentation”. In: arXiv preprint arXiv:1507.07583.

Richmond, Lawrence Bruce and Jeffrey Shallit (2009). “Counting abelian squares”. In: Electronic
Journal of Combinatorics.

Ruder, Sebastian (2016). “An overview of gradient descent optimization algorithms”. In: arXiv
preprint arXiv:1609.04747.

Rumelhart, David E, Geoffrey E Hinton, James L McClelland, et al. (1986). “A general frame-
work for parallel distributed processing”. In: Parallel distributed processing: Explorations in the
microstructure of cognition 1.45-76, p. 26.

Rumelhart, David E, Geoffrey E Hinton, and Ronald J Williams (1985). Learning internal represen-
tations by error propagation. Tech. rep. California Univ San Diego La Jolla Inst for Cognitive
Science.

Scornet, Erwan (2016a). “On the asymptotics of random forests”. In: Journal ofMultivariate Analysis
146, pp. 72–83.

— (2016b). “Random forests and kernel methods”. In: IEEE Transactions on Information Theory
62.3, pp. 1485–1500.

Scornet, Erwan, Gérard Biau, and Jean-Philippe Vert (2015). “Consistency of random forests”. In:
The Annals of Statistics 43.4, pp. 1716–1741.

Sethi, Ishwar Krishnan (1990). “Entropy nets: from decision trees to neural networks”. In: Pro-
ceedings of the IEEE 78.10, pp. 1605–1613.

Shrestha, Ajay and Ausif Mahmood (2019). “Review of deep learning algorithms and architec-
tures”. In: IEEE access 7, pp. 53040–53065.

Shwartz-Ziv, Ravid and Amitai Armon (2022). “Tabular data: Deep learning is not all you need”.
In: Information Fusion 81, pp. 84–90. issn: 1566-2535. doi: https://doi.org/10.1016/j.
inffus.2021.11.011. url: https://www.sciencedirect.com/science/article/pii/
S1566253521002360.

Somepalli, Gowthami, Micah Goldblum, Avi Schwarzschild, C. Bayan Bruss, and Tom Goldstein
(2021). SAINT: Improved Neural Networks for Tabular Data via Row Attention and Contrastive
Pre-Training. doi: 10.48550/ARXIV.2106.01342. url: https://arxiv.org/abs/2106.01342.

Srivastava, Nitish, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov
(2014). “Dropout: a simple way to prevent neural networks from overfitting”. In: The journal
of machine learning research 15.1, pp. 1929–1958.

Su, R., X. Liu, L. Wei, and Q. Zou (2019). “Deep-Resp-Forest: A deep forest model to predict
anti-cancer drug response”. In: Methods 166, pp. 91–102.

Sun, L. et al. (2020). “Adaptive Feature Selection Guided Deep Forest for COVID-19 Classification
With Chest CT”. In: IEEE Journal of Biomedical and Health Informatics 24.10, pp. 2798–2805.

Sun, Ruo-Yu (2020). “Optimization for deep learning: An overview”. In: Journal of the Operations
Research Society of China 8.2, pp. 249–294.

Tan, Zhiqiang and Cun-Hui Zhang (2019). “Doubly penalized estimation in additive regression
with high-dimensional data”. In.

Tang, Cheng, Damien Garreau, and Ulrike von Luxburg (2018). “When do random forests fail?”
In: Advances in neural information processing systems 31.

Work in progress as of January 16, 2024

https://doi.org/https://doi.org/10.1016/j.inffus.2021.11.011
https://doi.org/https://doi.org/10.1016/j.inffus.2021.11.011
https://www.sciencedirect.com/science/article/pii/S1566253521002360
https://www.sciencedirect.com/science/article/pii/S1566253521002360
https://doi.org/10.48550/ARXIV.2106.01342
https://arxiv.org/abs/2106.01342

Bibliography 220

Tsigler, Alexander and Peter L Bartlett (2020). “Benign overfitting in ridge regression”. In: arXiv
preprint arXiv:2009.14286.

Tsuzuku, Yusuke, Issei Sato, and Masashi Sugiyama (2020). “Normalized flat minima: Exploring
scale invariant definition of flat minima for neural networks using pac-bayesian analysis”. In:
International Conference on Machine Learning. PMLR, pp. 9636–9647.

Utkin, L. V and M. A Ryabinin (2017). “Discriminative metric learning with deep forest”. In:
arXiv preprint arXiv:1705.09620.

Utkin, L. V and K. D Zhuk (2020). “Improvement of the Deep Forest Classifier by a Set of Neural
Networks”. In: Informatica 44.1.

Vaswani, Ashish et al. (2017). “Attention is all you need”. In: arXiv preprint arXiv:1706.03762.
Wager, Stefan and Guenther Walther (2015). “Adaptive concentration of regression trees, with

application to random forests”. In: arXiv preprint arXiv:1503.06388.
Wang, Yutong and Clayton D Scott (2022). “Consistent Interpolating Ensembles via the Manifold-

Hilbert Kernel”. In: arXiv preprint arXiv:2205.09342.
Welbl, Johannes (2014). “Casting random forests as artificial neural networks (and profiting from

it)”. In: German Conference on Pattern Recognition. Springer, pp. 765–771.
Wyner, Abraham J, Matthew Olson, Justin Bleich, and David Mease (2017). “Explaining the

success of adaboost and random forests as interpolating classifiers”. In: The Journal of Machine
Learning Research 18.1, pp. 1558–1590.

Zeng, X. et al. (2020). “Network-based prediction of drug–target interactions using an arbitrary-
order proximity embedded deep forest”. In: Bioinformatics 36.9, pp. 2805–2812.

Zhang, Y. et al. (2019). “Distributed deep forest and its application to automatic detection of
cash-out fraud”. In: ACM Transactions on Intelligent Systems and Technology (TIST) 10.5, pp. 1–
19.

Zheng, S., Y. Song, T. Leung, and I. Goodfellow (2016). “Improving the robustness of deep neural
networks via stability training”. In: Proceedings of the ieee conference on computer vision and
pattern recognition, pp. 4480–4488.

Zhou, Siyu and Lucas Mentch (2021). “Trees, forests, chickens, and eggs: when and why to prune
trees in a random forest”. In: arXiv preprint arXiv:2103.16700.

Zhou, Wenda, Victor Veitch, Morgane Austern, Ryan P Adams, and Peter Orbanz (2018). “Non-
vacuous generalization bounds at the imagenet scale: a PAC-bayesian compression approach”.
In: arXiv preprint arXiv:1804.05862.

Zhou, Z and J. Feng (2017). “Deep Forest: Towards An Alternative to Deep Neural Networks”.
In: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI-17,
pp. 3553–3559.

Zhou, Zhi-Hua and Ji Feng (Jan. 2019). “Deep forest”. In: National Science Review 6, pp. 74–86.
doi: 10.1093/nsr/nwy108.

Zhuang, Fuzhen et al. (2020). “A comprehensive survey on transfer learning”. In: Proceedings of
the IEEE 109.1, pp. 43–76.

Work in progress as of January 16, 2024

https://doi.org/10.1093/nsr/nwy108

	Remerciements
	Abstract
	Contents
	1 Introduction
	Preliminaries - A Bit of Learning
	1.1 Random Forests
	1.1.1 Presentation
	1.1.2 Theoretical Insights and their Empirical Consequences

	1.2 Neural Networks
	1.2.1 Presentation
	1.2.2 Challenges

	1.3 Interpolation - Regularization
	1.3.1 Motivation - Neural Networks
	1.3.2 Kernel Methods
	1.3.3 Random Forests
	1.3.4 The Interpolation Prism - Open Questions

	1.4 Summary of Contributions
	1.4.1 Analysis of the Deep Forest Algorithm
	1.4.2 Initialization of NN from Tree-Based Methods
	1.4.3 Theoretical Study of Interpolating RF
	1.4.4 PAC-Bayes Objective for NN Training

	2 Analyzing Deep Forest
	Abstract
	2.1 Introduction
	2.2 Deep Forests
	2.2.1 Description
	2.2.2 DF Hyperparameters

	2.3 Refined Numerical Analysis of DF Architectures
	2.3.1 Towards DF Simplification
	2.3.2 Tracking the Best Sub-Model
	2.3.3 A Precise Understanding of Depth Enhancement

	2.4 Theoretical Study of a Shallow Tree Network
	2.4.1 The Network Architecture
	2.4.2 Problem Setting
	2.4.3 Main Results

	2.5 Conclusion
	S1 Additional Figures
	S1.1 Computation Times for Section 2.3
	S1.2 Table of Best Configurations, Supplementary to Section 2.3.2
	S1.3 Fashion Mnist MGS Encoding
	S1.4 Additional Figures to Section 2.3.3
	S1.5 Additional Figures to Section 2.3.2
	S1.6 Additional Figures to Section 2.4

	S2 Technical Results on Binomial Random Variables
	S3 Proof of Lemma 2.4.2
	S4 Proof of Lemma 2.4.3
	S5 Proof of Proposition 2.4.5
	S5.1 Proof of statement 1.: Risk of a Single Tree
	S5.2 Proof of statement 2.: Risk of a Shallow Tree Network

	S6 Proof of Proposition 2.4.6
	S6.1 Proof of statement 1.: Risk of a Single Tree
	S6.2 Proof of Statement 2.: Risk of a Shallow Tree Network

	S7 Extended Results for a Random Chessboard
	S8 Proof of Proposition S1
	S8.1 First Statement: Risk of a Single Tree
	S8.2 Second Statement: Risk of a Shallow Tree Network

	3 Tree Sparse NN Initialization
	Abstract
	3.1 Introduction
	3.1.1 Related Works
	3.1.2 Contributions

	3.2 Equivalence Between Trees and MLP
	3.2.1 Presentation of the Predictors in Play
	3.2.2 An Exact Translation of Tree-Based Methods into MLP
	3.2.3 Relaxing Tree-Based Translation to Allow Gradient Descent Training

	3.3 A New Initialization Method for MLP Training
	3.3.1 Our Proposal
	3.3.2 Experimental Setup
	3.3.3 A Better MLP Initialization for a Better Optimization
	3.3.4 A Better MLP Initialization for a Better Generalization
	3.3.5 Analyzing Key Elements of the New Initialization Methods

	3.4 Conclusion and Future Work
	S1 Details on Deep Forest (DF) and its Translation
	S2 Details of the Translation of a Decision Tree into an MLP
	S3 Illustration of our Initialisation Method
	S4 Detail on the MLP Translation Accuracy
	S4.1 On the Choice of Hyper-Parameters
	S4.2 A Fundamental Numerical Instability of the Neural Network Encoding

	S5 Supplements to Numerical Evaluations
	S5.1 Data sets
	S5.2 Implementation Details
	S5.3 Working with an Arbitrary Width in P1 (Optimization Behaviour)
	S5.4 Additional Material for Protocol P2 (Generalization Behaviour)
	S5.5 Hyper-Parameter Detting
	S5.6 Performances of Tree-Based Methods Used for Initialisation of MLP
	S5.7 Additional Figures to Section 3.3.5 (Analyzing key elements of the new initialization methods)

	4 RF Interpolation
	Abstract
	4.1 Introduction
	4.2 Setting
	4.3 Centered RF
	4.3.1 Interpolation in CRF
	4.3.2 Inconsistency of the Standard CRF
	4.3.3 Consistency of Void-Free CRF under the Mean Interpolation Regime

	4.4 Centered Kernel RF
	4.5 Semi-Adaptive RF: Median RF
	4.5.1 Consistency
	4.5.2 Volume of the Interpolation Area

	4.6 Breiman RF
	4.7 Conclusion
	S1 Summary of Contributions
	S2 Proofs
	S2.1 Reminders and Notations
	S2.2 Proofs of Section 4.3 (Centered RF)
	S2.3 Proofs of Section 4.4 (Theorem 4.4.1)
	S2.4 Proofs of Section 4.5 (Semi-Adaptive Forests)
	S2.5 Proof of the Main Result (Median RF Consistency)
	S2.6 Proofs of Section 4.6 (Interpolation Volume of Breiman RF)

	S3 Experiments
	S3.1 Consistency Experiments
	S3.2 Interpolation experiments

	5 PAC-Bayes
	Preambulum
	5.1 Introduction
	5.2 Training a NN under a PAC-Bayes Objective
	5.2.1 Data and Estimators
	5.2.2 Training Objectives

	5.3 Training Process
	5.4 PAC-Bayes Penalty and Flatness
	5.4.1 Evaluating the Optimization Loss Landscape Curvature
	5.4.2 Experimental Protocol
	5.4.3 Results
	5.4.4 Generalization Performances under PAC-Bayes Inspired Training

	5.5 Conclusion and Further Work
	5.A Appendix
	S1.1 Different Kinds of NN
	S1.2 PAC-Bayes Objectives
	S1.3 Additional Figures to the Flatness Experiment
	S1.4 Additional Figures to the Generalization Experiment

	Bibliography

