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Abstract

In this thesis, we develop an inversion method that combines the use of a Kohn-Vogelius
type cost functional with a non-overlapping domain decomposition method as an iterative
solver. The idea behind this method is to iterate simultaneously on the solution of the direct
problem using the domain decomposition method and on the unknown of the inverse problem
using gradient descent on the Kohn-Vogelius cost functional. This type of approach falls into

7

the category of "one-shot inversion methods,” and its use has the potential to significantly
reduce the cost of inversion when the numerical solution of the direct problem is costly. We
are particularly interested in the case of geometric inverse problems where the unknown of
the inverse problem is the support of a physical parameter’s discontinuity. The developments
made in this area were modeled on the inverse electrical conductivity problem, where the goal
is to reconstruct the conductivity discontinuity interface from Cauchy data on the domain
boundary. We prove the local convergence of the method in simplified cases and numerically
show its efficiency for some two dimensional experiments with synthetic data. Additionally,
we extend our approach to the more complex case where we also iterate on the value of con-
ductivity. In this context, we have also developed an alternating inversion algorithm between
the geometry and the inner value of the conductivity, with an adaptive descent step.

Keywords: Inverse conductivity problem, Kohn-Vogelius cost functional, domain decom-

position method, combined inversion method, convergence analysis, identification.



Résumé

Dans cette these, nous développons une méthode d’inversion qui combine 1'utilisation d’une
fonctionnelle cotit de type Kohn-Vogelius avec une méthode de décomposition de domaine
sans recouvrement en tant que solveur itératif. L’idée derriere cette méthode est d’itérer si-
multanément sur la solution du probleme direct via la méthode de décomposition de domaine
et sur I'inconnue du probleme inverse en utilisant une descente de gradient sur la fonction-
nelle de Kohn-Vogelius. Ce type d’approche fait partie de la famille des méthodes dites
“one-shot inversion methods”, et son utilisation a le potentiel de réduire sensiblement le cofit
de I'inversion lorsque la résolution du probléme direct est cotiteuse. Nous nous intéressons
plus particulierement au cas des problemes inverses géométriques ou I'inconnue du probleme
inverse est le support d’une discontinuité d’un parametre physique. Les développements
réalisés sur cette thématique ont pris pour modele inverse le probléeme inverse de conduc-
tivité électrique, ou l'on cherche a reconstruire l'interface de discontinuité de la conductivité
a partir de données de Cauchy sur la frontiere du domaine. Nous prouvons un résultat de
convergence locale de la méthode dans des cas simplifiés et ’avons validée numériquement
pour certaines expériences bidimensionnelles avec des données synthétiques. De plus, nous
étendons notre approche au cas plus complexe ou 'on itére également sur la valeur de la
conductivité. Dans ce contexte, nous avons également développé un algorithme d’inversion
alternée entre la géométrie et la valeur intérieure de la conductivité, avec un pas de descente
adaptatif.

Mots-clés : Probleme inverse de conductivité, fonctionnelle cofit de Kohn-Vogelius, méthode
de décomposition de domaine, méthode d’inversion combinée, analyse de convergence, iden-

tification.
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Introduction

The goal of this thesis is to introduce and study a combined iterative inversion method that
uses an incomplete solver for the direct problem at each iteration for the inverse problem pa-
rameter. This type of approach has the advantage of reducing the iterative cost and speeding
up the convergence rate. Many variants of these combinations have been proposed in the liter-
ature [30, 14, 29, 32, 27, 42, 11]. We develop here an algorithm in the vein of so-called one-shot
iterative methods for optimization problems and we address two novel aspects for this type of
methods. The first one is to use a combination of the Khon-Vogelius energy functional and a
non overlapping domain decomposition method as an iterative solver. The second one is that
the inverse parameter is the geometry of an unknown object used as a part of the domain par-
titioning. We study all theses aspects in the framework of the inverse conductivity problem,
where the electric conductivity o is a piecewise constant function with a regular unknown
discontinuity interface Y. This is a classic inverse problem that has many applications and
has been extensively studied in the literature (we refer to [44, 45, 36, 37, 12, 7, 33, 50, 38, 43]).
The assumption on the conductivity is rather natural and arises, for example, in geophysi-
cal applications, medical imaging and nondestructive testing of materials where the medium
under investigation contains regions with different electric conducting properties. We are
particularly interested in the case of geometric inverse problems where one would like to
identify the discontinuity curve Y of o from boundary measurements. Our goal here is not to
address issues specific to this inverse problem but to rather use it as a toy model to illustrate
the feasibility of the combined inversion scheme and study convergence in some simplified

configurations.
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Introduction

The Kohn-Vogelius cost functional has been used in the solution of various inverse ge-
ometrical problems [46, 18, 7, 34]. It has been specifically applied to inverse conductivity
problem in [46, 7, 2, 3]. This functional seems to provide better stability and precision as
compared with a classical least squares cost functional [16, 2]. From the theoretical point of
view, it also has the advantage of being differentiable with respect to the discontinuity curve
under less restrictive smoothness assumptions [15, 17]. We shall review some results from
the literature on this functional and study its local convergence for the inverse conductivity
problem in the case of circular domains.

The implementation of this method requires the solution of two direct problems, one
associated with Neumann data and the other one associated with Dirichlet data coming
from the measurements. In order to evaluate these solutions we employ a non overlapping
domain decomposition method. We employ the so-called Optimized Schwarz Method (OSM)
where communications at the interfaces of the domains are enforced through Robin type
boundary conditions [48, 39, 40, 25, 21]. We here study the case where the inverse problem
unknown ¥ is part of the partitioning used in the domain decomposition method. We propose
a combined inverse algorithm where the Kohn-Vogelius cost functional is minimized using
a gradient descent scheme. At each gradient step, the exact solutions of the Neumann and
Dirichlet problems are approximated using only one or a few iterations of the OSM. Two
difficulties arise in this coupling. The first one is that the domain partitioning changes after
a gradient descent step which requires modifications in the OSM scheme. The second one
is that the gradient cannot be evaluated exactly and therefore a choice has to be made.
One should either evaluate the shape gradient with respect to incomplete exact solutions
or propose an approximation of the gradient of the exact cost functional. The first option
would require the introduction of two adjoint problems and therefore may render the method
more costly. This is why we adopt the second approach, that indeed lead to an incorrect
gradient at first iterations, but this gradient becomes closer to the exact one as the iterations
number increases. Concerning the first issue related to OSM, we solve it by rewriting the
OSM as an iterative scheme on the interface values. These values are then transported by
the gradient flow in the same way as the unknown geometry . We explicit this scheme in
the case of star shaped interfaces, but the approach can be easily extended to other type
or shape parametrizations. We study and prove local convergence of the resulting algorithm
in the very simplified case where the geometry is circular and the inverse shape problem
is the radius of the inner circle. We then numerically investigate the effectiveness and the

accuracy of this algorithm in the case of star shaped domains. We show in particular that

12



Introduction

only one OSM iteration would achieve a converge rate similar to classical gradient (where the
solutions are evaluated exactly at each iteration). Determining the optimal choice of OSM
iteration number in order to have the best convergence rate is an open issue. Numerical tests
suggests that this optimal choice is among the one using few number of OSM iterations.
These investigations are then partially extended to the more complex inverse problem where
both the discontinuity interface and the conductivity value in the inner domain are unknown

and have to be determined from boundary Cauchy data.

This thesis is composed of 4 chapters, and in the following, we detail the contributions of

each chapter.

Chapter 1: A Kohn-Vogelius method for an inverse conductivity

problem.

In this chapter, we introduce the direct and inverse problems together with the Kohn-Vogelius
cost functional. The chapter is organized as follows:
The first part is dedicated to the study of the existence and uniqueness of the solution of

the following Neumann boundary value problem

—div(eVu) =0 in Q,
(No) ou

o— = on I

where  is a simply connected bounded domain of RY, d = 1,2 or 3, with C'¥ boundary

[ =99, B €]0,1], v denotes the outward unit normal on I" and ¢ € L*(T") the current flux

through I" that satisfies the compatibility condition: / ¢ ds = 0. Indeed, to ensure uniqueness
r

of the solution to problem (N, ), we impose that / udr =0.
0

The second part of this chapter is dedicated to the study of the inverse conductivity
problem based on the Kohn-Vogelius approach for the identification of o € S}; where

S;d = {a = o1Xq, + 02Xq,; 01> 0500 >0; Q; CQ; ¥ =00 a ¢ Jordan curve; {2y = \5271} )
The inverse problem (Z.P) that we are investigating is formulated as follows:

Given the prescribed flux ¢ together with the potential measurement f,

(Z.P)

recover the function o € S,, such that the solution of (N,) also verifies f := uz,..

13



Introduction

Our adopted approach consists of transforming the inverse problem into an optimization
one by constructing a cost function J modeling the energy gap between the solution of the

Neumann problem and the solution of the following Dirichlet problem:

(D.) { —div(cVv) =0 in Q,
v=f on I.

More precisely, we define the Kohn-Vogelius cost function as
J(o) = / 0| V(u, —vy) |* dz,
Q

where u, € H'(Q2) the solution of the Neumann problem (N,) and v, € H!(Q), the solution
of the Dirichlet problem(D, ). Indeed, we prove that the solution & of the inverse problem is
a minimizer of J.

To numerically minimize the function J, we shall use a gradient descent algorithm based
on the derivative of J with respect to o. For that, we calculate its derivative with respect to
the conductivity values o; and o, in Section 1.6, while the existence and expression of the
shape derivative of J with respect to the singularity surface ¥ of ¢ have been studied by
Afraites et al. in [2].

Furthermore, as a preparatory step for the combined inversion algorithm introduced in
Chapter 3, addressing the geometrical inverse conductivity problem, we explicitly present
in Section 1.7 the gradient descent algorithm tailored to starlike interfaces . The ongoing
development of this gradient descent scheme, summarized in Algorithm 1, aims to effectively
identify the singularity curve ¥ of o with an exact direct solver. Additionally, we analyze the
convergence of this algorithm in some simplified geometries. This study serves as a first step
for the convergence analysis of the combined inverse scheme.

In the last part of the chapter, we present some numerical experiments obtained using

this inversion method.

Chapter 2: A non-overlapping Domain Decomposition Method.

In order to evaluate the solutions of the direct problems (N, ) and (D,) studied in Chapter 1,
this chapter employs a non-overlapping Domain Decomposition Method (DDM) known as the
Optimized Schwarz Method (OSM). The OSM enforces communications at the interfaces of
the domains through Robin-type boundary conditions [48, 39, 40, 25, 21]. The chapter begins
with a brief introduction to Domain Decomposition Methods (DDMs) and then presents the

14



Introduction

OSM as the chosen non-overlapping DDM. Next, we reformulate the direct problems (N, )
and (D,) as an equivalent multi-domain problem using Robin transmission conditions. The
convergence rate of OSM is investigated in one dimension and in the case of circular interfaces.
These findings are valuable for analyzing the convergence of the combined inversion algorithm.

Finally, we present some numerical illustrations on the convergence of OSM.

Chapter 3: A combined inversion method for a geometrical inverse

conductivity problem.

The content of this chapter is partially extracted from [19], in collaboration with S. Chaabane
and H. Haddar, published in Inverse Problems, 2023. It contains additional materials to those

in [19] on the convergence analysis for simplified geometries.

In this chapter, we assume that o, and o, are known bounded regular functions on 2 and
are positive definite and we will study the shape inverse problem which consists in identifying
the singularity support % of o from the knowledge of the flux ¢ together with the potential
J = ugz|,. For this, we develop in this chapter some inversion algorithms combining the
previous gradient algorithm as defined by Algorithm 1 in Section 1.7 of Chapter 1 with a
non-overlapping domain decomposition method (Optimized Schwarz Method) described in
Chapter 2, that respects the partitioning of the domain €2 into Q; U 25 U ¥. The main idea
consists in approximating the direct problems (N,(gry) and (Dy(gry) (at each iteration k of
Algorithm 1) using only one or a few OSM steps.

We shall present first the combined inversion algorithm in Section 3.2. We provide in
particular a local convergence result for some simplified cases in Section 3.3. Section 3.4 is
dedicated to some numerical experiments for testing the efficiency of the combined algorithm

and comparing with the classical one.

Chapter 4: A combined inversion method for the full inverse con-

ductivity problem

In this chapter, we extend the approach proposed in the previous one to a more complex
case involving iteration on the conductivity values. Specifically, we assume that oy is known,
and we aim to identify the conductivity o; and the interface ¥ by developing an alternating
inversion algorithm that incorporates both the geometry and the conductivity value with an

adaptive step descent to enhance its performance.
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The chapter is organized as follows. First, we discuss the issue of identifiability in the case
of piecewise constant conductivity, where we present a counterexample to illustrate that a
single or two pairs (¢, f) are not sufficient to uniquely determine the unknown parameters o,
and the geometry >. To address this, one needs to increase the number of linearly independent
pairs of measurements used. These additional measurements would enable a more reliable and
accurate resolution of the inverse problem. In this context, we reformulate the Kohn-Vogelius
cost function to develop an alternating inversion descent algorithm, which iteratively updates
the geometry > and the conductivity value oy using an adaptive step descent. This algorithm
is summarized in Algorithm 3 and detailed in Subsection 4.3.1. Additionally, in Subsection
4.3.2, we introduce a combined inversion algorithm, summarized in Algorithm 4, that incor-
porates coupling with OSM. In Subsection 4.3.3, we specifically prove in the one-dimensional
case that with only one flux, the non-alternating version of Algorithm 4 may not converge.
However, the convergence behavior in cases with multiple fluxes is more complex and is still
under investigation. To assess the performance and convergence of the proposed algorithms,
we conduct several numerical experiments in Section 4.4 and compare the efficiency of the
combined algorithm (Algorithm 4) to the full gradient algorithm (Algorithm 3).

In the last part of the thesis, we give a general conclusion and some perspectives.

16



CHAPTER 1

A Kohn-Vogelius method for an inverse conductivity problem

1.1 Introduction

The Kohn-Vogelius method is an identification technique that has been extensively used in
recent years to solve various types of inverse problems, particularly those involving the re-
trieval of discontinuous parameters. For instance, in [17], the method is applied to impedance
coefficient inverse problems, while in [15], it is used for generalized impedance coefficient
problems. Additionally, the Kohn-Vogelius method has been effectively employed in solving
different types of geometrical inverse problems as well [46, 18, 7, 34]. It has been specifically
applied to the inverse conductivity problem in [46, 7, 2, 3]. In comparison to classical least
squares cost functionals, the Kohn-Vogelius method seems to provide better stability and
precision [16, 2]. From a theoretical standpoint, it also has the advantage of being differen-
tiable with respect to the discontinuity curve, under less restrictive smoothness assumptions
(2, 15, 17].

In this chapter, we are interested in using this approach in the framework of the inverse
conductivity problem, which aims to recover the electrical conductivity & € S!, from the
known flux ¢ together with the potential f = ugzr, where uz is the solution of (Nz). We start
this chapter by studying the existence and uniqueness of the solution of the direct problem
(N,). Subsequently, we introduce the Kohn-Vogelius method, which consists of transforming

the inverse problem into an optimization one by constructing a cost function J that models
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1.2 Some technical tools

the energy gap between the solution of the Neumann problem (N, ) and the solution of the
Dirichlet problem (D,). More precisely, the latter is obtained by replacing the Neumann
condition Ua—z = ¢ on I' with a Dirichlet condition u = f on I', where f represents the
potential measurement. Furthermore, we prove that the solution & of the inverse problem is
a minimizer of J. To numerically minimize the function J, we shall use a gradient descent
algorithm based on the derivative of J with respect to o. For that, in Section 1.6, we calculate
its derivative with respect to the conductivity values oy and oy, while the existence and
expression of the shape derivative of J with respect to the singularity surface ¥ of o have
been studied by Afraites et al. in [2].

Furthermore, as a preparatory step for the combined inversion algorithm introduced in
Chapter 3, addressing the geometrical inverse conductivity problem, we explicitly present
in Section 1.7 the gradient descent algorithm tailored to starlike interfaces . The ongoing
development of this gradient descent scheme, summarized in Algorithm 1, aims to effectively
identify the singularity curve ¥ of o with an exact direct solver. Additionally, we analyze the
convergence of this algorithm in some simplified geometries. This study serves as a first step
for the convergence analysis of the combined inverse scheme. We conclude this chapter by

providing some numerical experiments obtained using this inversion method.

1.2 Some technical tools

In this section, we will present some technical tools needed in some proofs of this chapter.

We start by some theorems.

Theorem 1.2.1. (Rellich)[1] Let Q2 be a reqular bounded open domain of R?, d > 1, then the
injection map H'(Q) — L*(Q) is a compact operator.

Theorem 1.2.2. (trace operator) Let 2 be a C* bounded open domain of R, d > 1. Then,

the trace operator
7 HYQ)NC(Q) — L2002)NC°0Q)
v — Vlpe

can be extended by density into a continuous linear operator from HY(Q) in L*(09), also

noted 7. Hence, there exists a constant C' > 0, such that, for every v € H*(Q), we have

vllz200) < Cllvllae @) (1.1)
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1.3 The direct problem

Lemma 1.2.1. [13/

e Let E be a Banach space, then E is reflezive if and only if the closed unit ball B = {z €
E such that ||z|| < 1} is compact for the weak topology.

e Let F' be a convex part of a reflexive Banach space. Then, F' is weakly closed if and only if

F' is strongly closed.

Proposition 1.2.2. [5] Let Q be a compound domain of two distinct reqular open domains
Qy and Qy separated by an interface . Then, u € HY(Q) if and only if:

Uy = U|Ql € Hl(Ql),
U = UJ|Q2 - Hl(Qg),

U] = Uy ON 2.

1.3 The direct problem

Let € be a simply connected bounded domain of R? or R?® with C'% boundary I' := 09,
p €]0,1[. We denote by o: Q —— R the electric conductivity of 2. Let o, > 0 and Syq

be the set of admissible parameters:
Sua = {0 € L=(Q) such that 0 > 0, a.e. in Q}.

We denote by u € H'(Q2) the electric potential which satisfies the following Neumann

boundary value problem
—div(eVu) =0 in Q,
No
(No) a@ =¢ on I,
v

where v denotes the outward unit normal on T' (see Figure 1.1) and ¢ € L?(T") the current

flux through IT" that satisfies the compatibility condition:

/F¢> ds = 0. (1.2)

To ensure uniqueness of the solution to problem (N, ), we impose that

/Qu dx = 0. (1.3)
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1.3 The direct problem

We denote by V the following set:
V= {v € H(Q), such that /QU ) dx} .
One can see that the space V endowed with the following inner product:
(u,v) = /QVU-VU dx

is a Hilbert space.

In the sequel, we denote by |.|1 o the norm associated with this inner product. This gives

the following lemma:

Lemma 1.3.1. The application

N: 'V — R+
1
v o— | = (/Q|Vv]2 dx)

is a norm on V' equivalent to the usual norm |||/ q).

Proof. One can clearly see that
N() = |vfo < vl Vo eV
Let us then show that there exists a constant S > 0, such that for every v € V', we get

[0ll @) < BN (v).
Assuming by contradiction that there exists a sequence (uy,)nen+ of V, such that

1
N(un) < EHunHHl(Q)a

L. According to Rellich’s Theorem 1.2.1 and Lemma 1.2.1, there exists

[t |72 ()
a function W € H*(Q2) and a sub-sequence of W, still denoted by W,,, such that

and let W,, =

W, = W weakly in H*(Q),
W, — W strongly in L*(Q).
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1.3 The direct problem

Since N(W,,) <

1
n?
VW, — 0 strongly in L*(2), (1.4)

and by uniqueness of the limit, we deduce that VIW = 0 in 2. As Q) is a connected domain,

there exists a constant C' € R, such that W = C in ) and that we have

W, — W = C strongly in L*(Q),
VW, — VW =0 strongly in L*(9).

So
W, — W = C strongly in H' ().

As V is a closed subspace of H!(£2), therefore W € V and so

/de:/Cdx:(),
Q Q

then C' = 0, and consequently
W =0 in Q.

We deduce that the sequence W, converges to 0 strongly in H!(f2), which contradicts the
fact that ||[W, |l =1V neN.

1.3.1 Existence and uniqueness of the solution

Proposition 1.3.1. Let 0 € S,y and ¢ € L*(T') which verifies the compatibility condition
(1.2), then the problem (N,) has a unique solution in V denoted by u,.

Proof. Let u € V be a solution of (N, ), we multiply the equation —div(cVu) = 0 by a test

function v € H!() and we integrate, we obtain by using Green’s formula:

/UVU-Vvdx—/aauvds:O.
Q 0

r n

As a% = ¢ on I', we obtain

ov

/QaVu-Vv dx:/r¢vds. (1.5)

21



1.3 The direct problem

Therefore, the variational problem of (V) with the additionally condition (1.3) is given by

Find u € V, such that :

-
ay(u,v) = L(v) forallve V.

where:
as(u,v) = / oVu-Vvdr and ((v) = / ¢ v ds. (1.6)
Q r

First, we can see from the Cauchy-Schwarz inequality that
|ao (u, )| < o] |uhalv]10-

Consequently, the bilinear form a, is continuous on V x V. Moreover, from the condition
o > o, > 0, we deduce that a, is a coercive bilinear form on V' x V.

Using again the Cauchy-Schwarz inequality and the continuity of the trace operator described
in Theorem 1.2.2, ¢ is a continuous linear form on V.

Then, by the Lax-Milgram theorem, the problem (V' N,) has a unique solution.

Reciprocally:

Let u be the solution of (VN,), ¢ € D(2) and ¢ = ¢ — C, where

C:M(lQ)/ngda;.

As ¢ €V, we get

Replacing ¢ by ¢ — C', we obtain
[oVu-Vpde=[6pds—C [ oas
Q r r
Therefore, /Q oVu -V dr =0 from the compatibility condition (1.2), then we get
< oVu,Vy >= 0, in the sense of distribution.

Then we get
—div(eVu) =0 in . (1.7)
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1.3 The direct problem

Let v € H'(Q) and © = (v — K), where

1
Kzi/vdx,
1(§2) Ja

then we have v € V and
/UVu-V@dx:/¢'z7ds,
Q r
therefore

/JVU-Vvdm:/gbvds—K/gbds,
Q r r

or / ¢ ds = 0 from (1.2). Consequently
r

/JVU-Vvdx:/gzﬁvds.
Q r

Applying Green’s formula, we obtain
. u 1
/ —div(eVu)v dz + / o—uvds = / pvds YveH (Q),
Q r on r

and according to (1.7), we get

Ju 1
/F(O(%”L_ )vdS—O,VUEH(Q).

Hence

ou
0o = ¢ onl. (1.8)

Then, u is the unique solution of (N,) which satisfies the compatibility condition (1.2).

1.3.2 Multi-domain formulation using the natural transmission con-
ditions

In this part, we assume that the domain €2 is composed of two distinct regular open domains
; and Q separated by an interface ¥ where € is the inner domain (see Figure 1.1 for

an illustration). Moreover, we also assume that the conductivity ¢ is a piecewise constant
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1.3 The direct problem

function which take only two distinct values o1 > 0,09 > 0:

0= 01X + 02XQs); (19>

where g, denotes the characteristic function of the domain €2;, i=1, 2.

Figure 1.1: Representative diagram for the decomposed problem where the domain € is

divided into two subdomains €2; and €2.

We denote by u; := U, ; the restriction of u to §2;, © = 1,2. We then have the following

lemma.

Lemma 1.3.2. The problem (N,) can be reformulated as an equivalent multidomain problem

consisting of the following subdomain problems

—O'iA'LLi = O m Qi,

(1.10)
02% =¢ onl,
v

together with the transmission conditions on the interface X

U = ug on ¥, (1.11)
ou ou
Ula—; = 026—; on X. (1.12)

Proof. Let u € H'(Q) be a solution of the direct problem (N, ). According to the Proposition
1.2.2, we obtain

U3 = Uz O .
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1.3 The direct problem

As —div(eVu) = 0 in © and using the conductivity distribution which defined by (1.9), we
obtain
—O'iAUZ‘ =0 in QZ,Z = 1, 2, (113)

then by Green’s formula, we can easily see that:

Ouy

o 2=¢ onT. (1.14)

02—

From the compatibility condition (1.2) and the variational formulation (V' N,) of (N,), we

obtain

/001Vu1-Vde+/Q o9Vus - Vo da::/gbvds Yo € HY(Q),
1 2 T

and by Green’s formula, we get

/ —alAulvdx—l-/al—vds / oo AUy v dr— /UQavd8+/azvds—/¢vd5
1951 Qo 3V

using equations (1.13) and (1.14), we obtain

8u1 8
/z(alﬁy_@ ay)vds—OVvEH (Q2),
then
Ou _ | Ous s,
g1 o = 09 o (@) .
Reciprocally:

Let u; € HY(Q), i = 1,2 a solution of (1.10)-(1.12), and u is the function defined as u; in
2y and wuy in 9, so according to the transmission condition (1.11) and Proposition 1.2.2, we
deduce that u € H'(Q).

Moreover, we have

/ oVu-Vovdr = / o1Vuy - Vo dx + 09Vuy - Vo do Yo € HH(Q),
Q Q1

Qo

then by Green’s formula and equation (1.10), we get
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1.4 The inverse conductivity problem

/aVu-Vvdx = / —alAulvdx—F/al—vds—/ ooAus v dx
Q 04 Qo

- /02820d5+/022vds
s "0
8u1 8
= /E<0'101/d8—0'2a )Ud5+/¢vd3

and by the transmission condition (1.12), we obtain
/aVu-Vvda::/¢vds Yo € HL(Q)
Q r
which concludes the proof. O

Remark 1.3.2. Equations (1.11) and (1.12) are the "natural” transmission conditions which

ensure the continuity of the electric potential u and the flux aa—u on the interface X.
v

For the numerical solution of the direct problem (XN,), we computed an approximate
solution using the finite element method P;. Some numerical experiments of (N,) were already
investigated in my master dissertation [41] for both one-dimensional and two-dimensional
domain cases. Additionally, we studied the effect of the refinement of the mesh on the accuracy
of the approximate solution. Furthermore, we investigated the impact of the discontinuity in
o on the state u,. To accomplish this, we introduced the coefficient kK = a as the ratio of the
discontinuity in ¢ and studied its influence on the regularity of the solu%%on u, of the direct
problem (N, ) across ¥ by fixing for example o7 = 1 and varying oy, we examined the effect
in detail. To conclude this part, we would like to briefly summarize the findings from these
tests. We observed that as the ratio x approaches 1, the solution u, becomes more regular

and the accuracy improves. Consequently, the state u, is highly sensitive to the jumps of o.

1.4 The inverse conductivity problem

In this section, we assume that the electric conductivity o of €2 is a piecewise constant function

with a regular discontinuity surface Y. More specifically, o € S}, where

S;d = {a = 01X, + 02Xa,; 0; > 0,1 =1,2; ¥ =00, N0 a C*? Jordan curve; Qy = Q\E},
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1.5 The Kohn-Vogelius cost function

The inverse conductivity source problem reads:

Given the prescribed flux ¢ together with the potential measurement f,

P
ZP) recover the function @ € Sy, such that the solution of (N,) also verifies uz, = f.

Note that, in general, a single couple (¢, f) is not sufficient to uniquely determine the
unknown parameter & (see for instance the counterexample presented in Chapter 4, Section
4.2 for the full inverse conductivity problem, and we refer to [31] for the geometrical inverse

conductivity problem).

In the following paragraphs, we shall provide a brief overview of the identifiability and
Lipschitz stability aspects related to the inverse conductivity problem, using the Dirichlet-

to-Neumann map A, defined by

Ay f — "gZIw where . = f.

In general, the inverse conductivity problem consists of determining the conductivity
o from the knowledge of the Dirichlet-to-Neumann map A, and Electrical Impedance To-
mography (EIT) is an imaging technique used to reconstruct an image of the conductivity
distribution o from the knowledge of A,. When ¢ is smooth enough, one can reconstruct o
from A, (see the works of Sylvester and Uhlmann [55], Nachmann [51, 52] and Novikov [53]).
However, when the conductivity distribution is only L*>°, Astala and Paivérinta have shown

in [7] that in dimension 2, the map A, determines o € L.

Noting that, in the case of piecewise constant conductivity parameters, some Lipschitz
stability results using the Dirichlet to Neumann map A, have been established in [4, 8, 24].
Additionally, recent studies have extended some Lipschitz stability results to the inverse geo-
metrical problem, considering polygonal interfaces in [9], and further extending to polyhedral

interfaces for 3D problems in [6].

1.5 The Kohn-Vogelius cost function

We present in this section a numerical method based on the Kohn-Vogelius cost function
that allows us to determine the unknown piecewise constant parameter &, which consists in

transforming the inverse conductivity problem (Z.P) into an optimization one by constructing
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1.5 The Kohn-Vogelius cost function

a cost function J measures the energy gap between the solution of the Neumann problem
(N,) and that of the following Dirichlet problem:

(D.) { —div(cVv) =0 in €,
v=f on I'.

In the sequel, we denote by
K ={we H(Q)/w, = f} and Ko = {w € H'(Q)/w), = 0}.
The variational problem of (D,) is given by

Find v € K, such that :

(VDo)
as(v,w) =0V w € Ky,

where the bilinear form a, is the same as in (1.6). Consequently, (D,) admits only one

solution in H!(€Q) denoted by v, or also v for simplicity.

We now define the Kohn-Vogelius cost function as

JZSad—>R

o — /QUV(UU —v,) - V(uy — v,) dx, (1.15)

where u, is the solution of the Neumann problem (N, ) and v, is the solution of the Dirichlet

problem (D,). We then have the following proposition.
Proposition 1.5.1. The solution & of the inverse problem (Z.P) is a minimizer of J.

Proof. We have J(o) > 0 for every o € Su4, and for 0 = 7, we obtain:
Uy = Vg = f onl.

Then, uz is also a solution of the boundary value problem (Dgz) which admits only one
solution. Therefore, uz = vz on the whole domain €. Consequently, J(&) = 0 and then 7 is

a minimizer of J.
O

To numerically minimize the function J, we shall use a gradient descent algorithm based

on the differentiability of J with respect to o € S.,,.
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1.6 Differentiability of the Kohn-Vogelius cost function

1.6 Differentiability of the Kohn-Vogelius cost function

We study in this part the differentiability of J with respect to the parameter o.

1.6.1 Derivative with respect to conductivity values

In this section, we establish a first-order asymptotic expansion of the solutions u, and v,

with respect to 0. We begin by proving the following lemma:

Lemma 1.6.1. Let ¢ € L*(T'), then there exists a constant o > 0 such that for all ¢ € Suq
we have
uol1.0 < a9l L2y

Proof. Let 0 € S,q and ¢ € L*(T"), then the solution u, of the direct problem (N,) verifying

2 —
/QU\VuU] dx—/r¢uo ds, (1.16)

From the condition ¢ > o, > 0 and the Cauchy-Schwarz inequality, we obtain

1
lug|? o < o [l z2r) o |l 2 (r)-

The continuity of the trace operator implies that there exists a constant oy > 0, such that

Qo
gt o < . 9l L2y [t |21 (02)-
*

By using the Lemma 1.3.1, there exists a constant a; > 0, such that

e
lug|1,0 < a||@| 2y, where a = 2 L
*

O

Proposition 1.6.2. Let 0 € S, and d € L>(Q), then there exists a unique function u'(d) €
V' wverifying
/chVul(d)-Vv dSB:—/Qd Vu, - Vudx YvelV. (1.17)

Moreover, the mapping:
d: L*(Q) — V
d +— ul(d)

1s linear and continuous.
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1.6 Differentiability of the Kohn-Vogelius cost function

Proof. For every d € L>(1), the linear mapping by defined on V' by:
ba(v) = —/ d Vu, - Vv dz
Q

is continuous, then by using the Lax-Milgram Theorem, there exists a unique function u!(d) €
V verifying (1.17). Moreover, the mapping ¢ is linear, and from the Cauchy-Schwarz inequality

and the condition o > o,, we have

ocul (@A) 0 < lldllz=(@ush.olu' (d)]10,

we then have
1
lul (d) |10 < - ][ oo (@) [uo]1,0-

*

O

Theorem 1.6.1. Let 0 € S,q, d € L™¥(R2) and h a small enough positive real. Let o, = o + hd,
we then have:
Uy, = Uy + h u'(d) + hei(h), where }llin(l) ler(h)| = 0. (1.18)
_>

Proof. From the variational problem (V' N,) we have:

/ oWV tgn - Vo do = / bvds Yuvev, (1.19)
Q Iy
/JVuU-Vvdx - /¢vds Voev, (1.20)
Q Iy
then,
/ o(Vtg, — Viuy) - Vo do = —/ hd Va,, - Vo da. (1.21)
Q Q
Moreover, if we denote by w;, = ugh}: Z and zj, = wy — u'(d), we obtain

/anh-Vvdx:—/ dVu, -Vode YoveV,
Q Q

/ oVz, - Vo dr = —/ d (Vu,, —Vu,)-Voder YvelV. (1.22)
Q )
Replacing v by zj, and using the condition ¢ > o, > 0, we obtain from the Cauchy-Schwarz
inequality:
1
1znl10 < ;|ld||LN(Q)|UUh — Ug |10, (1.23)
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1.6 Differentiability of the Kohn-Vogelius cost function

Similarly, replacing v by (u,, — u,) in the equation (1.21), we obtain
1
(o, = uolio < =] [ld]l1=@|uo, 10- (1.24)

Hence,

1 2
oo < (i) 1Bl o, o

and from the Lemma 1.6.1, we get
}1112[1) |zn]1.0 = 0.

O

Similarly to above, we also establish the following two results allowing us to show the

asymptotic expansion of the state v,.

Proposition 1.6.3. Let 0 € S,q and d € L>()), then there is a unique function v*(d) € K,
verifying
/ oVol(d) - Vo da = —/ d Vv, -Vwdr Yw € K. (1.25)
Q Q

Moreover, the mapping ¢ defined by

0 LOO(Q) — Ky
d — vl(d)

s linear and continuous.

Theorem 1.6.2. Let 0 € S,q, d € L*¥(2) and h a small enough positive real. Let o, = o + hd,

we then have:
Voh = Vg + h v (d) + hea(h), where }llirr(l) lea(h)| = 0, (1.26)
ﬁ.

As a consequence of the two previous theorems, we deduce that the function J is differ-

entiable at every parameter o, and we have the following theorem:

Theorem 1.6.3. Let o € Suq, d € L>®(Q2) and h a small enough positive real. Let o, = o+hd,
we then have
J(O’h) -

. J(o) _ 2 2
%%f‘/gdﬂwf" [V |?) da.

Proof. We have J(o) = Jy(0) + Jp(o) —2Jyp(0), where
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1.6 Differentiability of the Kohn-Vogelius cost function

JN(O')Z/QO'|VUU|2 de 5 Jp(o) :/QO'|VUU|2 dez 5 Jnp(o) :/QO'VUU.VUU dx.
For every o € S,4, we have Jyp(o) = / of ds, then
r

lim Inp(on) — Inp(o)
h—0 h

=0.

Moreover, we have from (1.18)
In(on) = /Q (0 + hd)|V (uy + hu'(d) + he(h))[? de,
where u!(d) satisfy the variational problem (1.17). Then,
In(op) = /Qa|Vua|2 dx +h (/Qd Vu,|? dz + Q/QO'VUU - Vu'(d) dx) + he(h),
where }1112% le(h)| = 0. By replacing v by u, in the equation (1.17), we then get
In(on) = I (o) — h /Q 4|V |* d + he(h), where lim |e(h)| = 0.

Therefore,
lim JN(O'h) — JN(U
h—0 h

) _ 2
- /Qd]Vua\ dz.

Similarly, by using equations (1.25) and (1.26), we can also prove

lim Z2(0) = Jplo) _ / d [V, |? da.
h—0 h Q
Hence ; ;
lim Jow) = Jlo) _ / d (Vv |* — |Vue|?) dz.
h—0 h Q

O

As a consequence of Theorem 1.6.3 with a direction d = xq,, we have the following corol-

lary.
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1.6 Differentiability of the Kohn-Vogelius cost function

Corollary 1.6.4. The mapping

Y [o, +oo[X[o., +oo[ — R

(017 02) — w(o-lv 02) = J(leQl + 02X92)

is differentiable at every points (o1, 02) €|o,, +00[X |0, +00[, and we have

877Z) — 2 2 .
G @102 = [ (Vel? = Vo) dri = 1.2 (127)

In order to recover the shape ¥ of o, a usual strategy consists to minimize a cost func-
tion like J. Many choices are possible, however, it turns out that the Kohn-Vogelius type
function leads to a minimization problem with nicer properties than the least squares fitting

approaches (we refer to [2] for a comparison of different objectives with one order methods).

1.6.2 Derivative with respect to the singularity interface

We present in this part the shape derivative of the Kohn-Vogelius cost function J with
respect to the singularity surface % of 0. However, the existence and expression of the shape
derivative has been studied in [2] and we outline in the following the main related results.
Let o € S1, with ¥ = Q;NQy, h > 0 and ¢ : R? — R? a C*# vector field such that ( =0
in a neighborhood of the boundary I'. Then, there exists hg > 0, such that for all h < hg, the
mapping Fj, = Id + h( is a C*# diffeomorphism transforming the domain  into itself. We
denote by Q1 1= Fi(21), Qo := Fr(Q2) and 04, = 01X0q, , + 02Xa, ,- Referring to [2, 3], the

shape derivative of the cost function J is given by the following theorem.

Theorem 1.6.5. The Kohn-Vogelius cost function J is differentiable with respect to the shape

Y and its derivative in the direction ( is given by:

2

1 ov A, |
DJ(0)-¢ =] [ Rl N P ol = [Vau?)| ¢ vd
(@)-¢ [a]zlm(aay aay)wvm [Veto) | € v s,
where [o] := 01 — 09 and V., denotes the tangential gradient operator. Noting that, the shape

derivative is to be understood in the sense that

J(on) = J(0)

= DJ(o) -+ e(h) where lim |e(h)| = 0.
h h—0
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1.7 The gradient algorithm in the case of starlike domains and a local
convergence analysis

1.7 The gradient algorithm in the case of starlike do-

mains and a local convergence analysis

As a preparatory step to the combined algorithm we explicit the gradient descent algorithm
in the case of starlike interfaces ¥. Let C be the set of C! piecewise Jordan curves of R?,
n € N and R = (Ry,...,R,—1) € (R)". Fori = 0,1,...,n, we denote by 0; := 27jz and
M; = (R;cos(6;), R;sin(6;)). Let ¥ := Xx be the interface defined as the union of the n

following arcs, ¢ =0,...,n — 1

A

S; = {M = M;(t) == (R;(t) cos(0;(t)), Ri(t)sin(f;(t)), t € [0, 1]} : (1.28)

where R;(t) := tRip1+(1—t)R; and 0;(t) := 0,1+ (1—1)0; (see Figure 1.2 for an illustration)
and where for the notation convenience we have set R,, = Ry. We also set S,, = Sy. We define

the interface operator 7, by:

T.: RO — C

B e En=TAR) = nL—Jl 5. (1.29)

For R € (R% )" sufficiently small, we denote by Q := € p the interior domain limited by the
interface ¥ and by Qs := Qy g = Q\Qy g. The unknown of the inverse problem is R € (R*)"
that corresponds with ¥ = Y.

Figure 1.2: Description of the geometry in the case of a starlike geometry parameterized by

(1.29), where the arc S; is shown in blue, and the interface Xp is shown in red.
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1.7 The gradient algorithm in the case of starlike domains and a local
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Let us set 0(R) := o1Xq, r + T2Xa, » and define the function J by

J: R — R

(1.30)
R +— J(R)=J(o(R)).

0
The partial derivative —j can be evaluated by applying Theorem 1.6.5 to a deformation

field ( = (;v on X where (; iis hat function defined by, for i =0,...,n —1,

G(M) =X arenr, y@wesiy T (1= OXpuennwessy

with S_1 = S,_1, Mz(t) is defined in (1.28) and v is the outward normal vector to ;. We
then get, by using Theorem 1.6.5 that the derivative of the cost function J with respect to

R; is given by the following formula:
0T 1 Mg(R) ? 2 2

_ 2 — ds.
o, ) =R [ L102 (’U(R) v F(IVrtat = Vet | Gids
(1.31)

A gradient descent scheme to solve the inverse problem is summarized in Algorithm 1.

8uU(R)
ov

- ]a(R)
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1.7 The gradient algorithm in the case of starlike domains and a local
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Algorithm 1: Gradient descent algorithm with exact direct solver

e Fix the number of parameters n € N* that serve to define the starlike interface.
e Consider an initial guess R® € (R )", the initial interface ¥ = Xgo = T, (R°) and

the corresponding conductivity o(R°) = o1xq
o k=0.

repeat until k < maximum number of iterations

+ o2X0 as defined above.

1,RO 2, RO

e Use a direct solver to calculate u,(gr) and v, (gey, the respective solutions of
(No(rr)) ang (Do (rr))-
g(Rk), fori =0,...,n — 1 using formula (1.31).

e Calculate

o Update ¥ = T, (R**) with

N
OR;

R =RF -7 > (RM,i=0,...,n—1,

where 7 > 0 is chosen sufficiently small (a step adaptation can be incorporated

here).

° Rk — Rk+1.

o k="FL+1.
end

The objective of the following three sections is to study the convergence of this algorithm

in specific simplified domains 2:
e The one-dimensional case in Section 1.7.1.
e The case of an annulus in Section 1.7.2.
e The case of an open disk in Section 1.7.3.
This study serves as a first step in the analysis of the combined inverse scheme introduced

in Chapter 3.

1.7.1 The one dimensional case

In this part, we study the convergence of Algorithm 1 in the particular case where the domain
Q2 =|0, 1], the inner domain Q; =0, 6[ and Qy =]d, 1| where 0 €]0, 1].
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Let (¢, f) € R* x R, we will consider the following model problems:

N —(ou')' =0 in]0,1][, R —(ov')' =0 in]0,1],
(No) 4 u(0) =0, ; (Do) g v(0) =0,
o' (1) = ¢. v(l) = f.

—

The solution of the direct problem (N, ) is calculated explicitly by the following proposition:

Proposition 1.7.1. The solution u, of the direct problem (]/V\(,) is given by the following

exTPression
ul(x)zﬂx in €,
01
Ug () = _ (1.32)
ug(z) = k2 T+ u¢ d in Q.
g9 0102

—

Proof. The solution of the direct problem (V) can be explicitly expressed as

w(z) =ay x in 4,
Up(T) =
(@) us(r) = By v 4+yn  in Qy,

Using the boundary condition o9u/(1) = ¢ and the transmission conditions (1.11) and (1.12),

we deduce that
éb 02 — 01

ay:=— ; fyi=— ; IN:i=
01 02 0102

¢ 6. (1.33)

O

In the sequel, we denote by & the solution of the inverse problem. Then the measurement

f is given by:
£ =2 [on(1=3) + 020 (1.34)

0102

and similary to Proposition 1.7.1, we have the following proposition:

—

Proposition 1.7.2. The solution v, of the Dirichlet problem (D,) is given by the following

exTPTession
sz .
p— Q
B Ul(x) (0_2_0_1)5_|_0_1 Y m 1, 135
2 (09 —01)0 + 04 (09 —01)0 4+ 01 >

The Kohn-Vogelius cost function J depends here only on the one variable § and its
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derivative is given by the following theorem

Theorem 1.7.3. The Kohn-Vogelius cost function J is derivable with respect to § and its

derivative is given by:

ey o] (0102f)? 2
T10) = o103 | (02 — 01)0 +01)% o (1.36)

where [0] = 01 — 0.

Proof. We have
J(é) = JN((S) —+ JD(é) — QJND(U),

where

1) 1

Iy (9) :/ allufjlzdaﬁL/& oo|ul |*dz,
0
6 1

Tn(6) :/ 01|v’|2dm+/ oot [2dz,

JInp(0) = / o1uL Y d:v+/ oaul v

From equations (1.32) and (1.35), we obtain:

o) =25 &
0102 (o))
__ o0af? 1.37
JD(5)_ (0_2_0_1>5+0_1a ( )
Inp(0) = &f.
Consequently,
() = Jy(d) + Jp(d)
I T a102]0]f?
0109 ((0g —01)0 + 01)%’
where [o] = 01 — 0. 0

Let € be a small enough positive real such that § € C' = [¢,1 — €] C]0, 1| and define the
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projection mapping Po by

Po: 0,1] — C
€ if v <e,
r +— Polx)=<( =z ifxeC,
l—¢ ifz>1-—c¢

Let us consider now the iterative sequence d* obtained by the gradient algorithm:

e,
ML = Po(8% — 7.J'(6%))

where 7 > 0 denotes the descent step of the gradient algorithm. We then have the following

proposition.

Proposition 1.7.1. Assume that o1 # 09 and let ¢ € R*. Then, for every § € C, J"(§) >0
and the sequence 6% is convergent for every T €]0,2a/M?|[, where o = réniél J"(6) and M =
S

ee ().

Proof. From (1.36), the Kohn-Vogelius cost function J is three differentiable on ]0, 1] and

we have
2[0)*(0102f)?
0109 [0'25 + 0'1(1 — 5)]
6[c]*(0102f)?

B)(§) =
/ (5> B 0109 [0'26—}-0'1(1—5)]4‘ (139>

J//(é‘) —

>0, forallo e C (1.38)

Then, the sequence d* converges to ¢ for every 7 €]0, 2a/ M?[ where:

a=minJ"(§) ; M = maxJ"(9).
seC seC

. Then we have the two following cases:
e If [0] > 0, then o = J"(¢) and M = J"(1 —¢).

e If [0] <0, then « = J"(1 —¢€) and M = J"(e).
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1.7.2 The case of an annulus

We study here the convergence of Algorithm 1 in the case of the annulus domain:
Q = {(x,y) € R? such that R} < 2° + y* < R3},
bounded by the circles
Iy = {(x,y) € R? such that 2* +9* = Ri}; I's = {(x,y) € R? such that 2 +y* = R}}.

Let R €]R;, Ry and ¥ = ¥y = {(v,y) € R? such that 2* +3* = R*}

A

I

Figure 1.3: Description of the geometry in the case of an annulus domain. 2, : Ry <r < R
andQQ:R<7‘<R2.

Discription of the problem

Let (¢, f) € R* x R and 0 = 01xq, + 02Xq,- We denote by (N,) and (D, ) the two following

problems:

—div(cVu) =0 inQ, —div(cVv) =0 in Q,
(Ny)q u=0 on Iy, . (D) v=0 on I'y,
0'% =¢ on I's. v=f on I's.
v

Using the polar coordinates (r, ), the solution u, of (N,) is given by:
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wr(r,0) = dy log (};) if (r,0) € [R1, R] x [0, 2],

Uqs(R) (7“, 9) = - r . )
UQ(Ta 0) = BN 1Og (R> +IN if (Ta ‘9) € [R7 RQ] X [07 27T]7
1

where: B
Gy = an(R) = 22
o1
5 > Ra¢
= R) = —
By = Bn(R) pat (1.40)
~ ~ (Ug—Ul)quf) (R)
= Ry=>~=> 2 =71 _
v == In(R) o104 0g Ri)’
and the solution v, of the Dirichlet problem (D,) is given by
ni(r,0) = ap log (;) if (r,0) € [R1, R] [0, 2],
1
UU(R)(T> 9) = ~ T .
walr,0) = Bo log (1) + 75 if (1,6) € [, Ra) x [0, 211,
2
where: f
- . o
ap = CYD(R) = R 2 R y
09 log <R1) + 01 log (RQ)
~ ~ o
Bp = Bp(R) = 7 o R (1.41)
09 log () + o1 log <2>
Ry R
Yp ==Ap(R) = f
In the sequel, we denote by R the solution of the inverse problem, we then have:
qub (RQ) (0’2 — Ul)R2¢ E
= us(Ry,0) = — log | = — "1 — . 1.42
=Ry, 0) = == log | - ) + == log | & (1.42)

The function J depends here only on the one variable R €] R, Rs[ and its derivative is
given by (1.31) for i = 0 with (5 = 1, namely,

T(R) = [o(R)] /02[ ! (‘am)a"gf;m ()

ov

Rdo

2 2
- ’a(R) ) + (IVovoml® = Vo))

0102

_ 2moi(01 —02) 9
= ) () - 3 () -

41
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Let us consider now the iterative sequence R* obtained by the gradient algorithm:

R° €]Ry, Ry,
Rk — RF _ Tj,(Rk),

where 7 > 0 denotes the descent step of the gradient algorithm. We say that the sequence
RF is locally convergent, if there exists ¢ > 0, such that, for every R® €|R — ¢, R + ¢, the

sequence R* converges. We then have the following proposition.

Proposition 1.7.2. Assume that oy # o5 and let € R*. Then, J"(R) > 0 and the sequence
R¥ is locally convergent if and only if the descent step T €]0,2/J"(R)|.

Proof. The function J is twice differentiable on |R;, Rs[ and we have
J"(R) = F{(R)F3y(R) + Fi(R)F3(R)

where
_ 2moy(01 — 02)

Fi(R) := R and Fy(R) := a3,(R) — ax(R).

From the fact ap(R) = ax(R), we deduce that
J"(R) = F(R)F}(R) = 2F(R)ap(R) (a(R) — dy(R)),

where:
oy f(01 — 03)

— 29
R [02 log (}];) + o log <%>]
1

dmoioy(o) — 09)? f2

~ R Ro\]"
R lO’g log <R1> + o1 log (};)1

An? R3(0) — 09)?

0102§2 [02 log (2) + o1 log <%)]

Moreover, the recurrent sequence R* can be written as R*™! = g(R*), where

then

j,/ (E) —

By using (1.42), we obtain

J"(R) = (1.44)

g(R) = R—1J'(R).
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Then, the sequence R* converges locally if and only if |¢/(R)| = |1 — J"(R)| < 1. From
the condition: oy # 09, we deduce from (1.44) that J”(R) > 0, and then the sequence RF
converges locally if and only if 7 €]0,2/J"(R)].

1.7.3 The case of an open disk

We study here the convergence of Algorithm 1 in the case n = 1, i.e {); is an open disk of
center (0,0) and radius R > 0. We also choose the domain 2 to be the open disk of center
(0,0) and radius Ry > 0. In this case the interface ¥ = Xi coincides with the circle of center

(0,0) and radius R (note that S_; = Sy = S1) as shown in the following figure

2

Figure 1.4: Description of the geometry in the case of an open disk domain of center (0,0)

and radius Ry. € is an open disk of center (0,0) and radius R.

The unknown of the inverse problem is R that corresponds with ¥ = 25 We impose the
current flux ¢(6) = mcos(mé) or ¢(8) = msin(md), 6 € [0,2x] and m € N*. The solution

of the direct problem (N,g)) with the additional condition / u ds = 0 can be explicitly
b
expressed as

m910)

u(r,0) =anr

w(r.0) = (A4 )4 g,

in Ql,
uG(R)(T> 0) =
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convergence analysis

where:
2Ry

" o1 (RE" + R™™) + 0o(R3™ — R2m)’
(02 + Ul)Rng
02 [0’1<R%m —+ RQm) + O'Q(R%m — RQm)] ’
(02 - Ul)REHHRQm
= R) = -
’YN ’}/N( ) g9 [O'l(R%m -+ R2m) + UQ(R%m - RQm)]

ay = ay(R)

By = Bn(R) =

The measurement f is then given by:

f(0) = Cf@>

m

where

w(R)  Re[o1(RE" — R™) + ou(R3" + R™™)]

Oy = By (R) Ry + NUY _ 2 S 2
= VB B T = o1 (R3™ + R*™) + 0o(R3™ — R

Consequently, the solution of the Dirichlet problem (D,gy) is

0
vi(r,0) = ap rmw in 4,
Vo(r)(7,6) = "oy 6l0)
UQ(’I“,@) = (ﬁD Tm—|—72> in Q,
r m
where:
20'2R£n0f

= R =
= anll) = ) ¢ oy (R + )’

(02 + O'1)R£n0f
o1(R5™ — R*™) 4 09(R5™ + R*™)’

(0'2 — O'l)RgnR2me
= R) = .
0 =70 (R) = ) & oy (17 +

Bp = PBp(R) =

Qm]'

(1.45)

(1.46)

(1.47)

The function J depends here only on the one variable R and its derivative is given by

(1.31) for ¢ = 0 with ¢y = 1, namely,

7 = o [ (%

_ T 9) pone1(42 (R) — a2.(R)).

02

2
6%(3)
— |U(R)al/
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1.7 The gradient algorithm in the case of starlike domains and a local
convergence analysis

Let us consider now the iterative sequence R* obtained by the gradient algorithm:
R = RF —7J'(R").

We then have the following proposition.

Proposition 1.7.3. Assume that o1 # o4 and let ¢(0) = m cos(mb) or ¢(0) = msin(mb), m €
N*. Then J"(R) > 0 and the sequence R* is locally convergent if and only if the descent step
T <2/J"(R).

Proof. The function J is twice differentiable on |0, Ro[ and we have
J"(R) = F{(R)F>(R) + F1(R)F;(R)

where Y )
Fi(R) == T = 0) et g Fy(R) == a3 (R) — a2 (R).

02

From the fact ay(R) = ap(R), we deduce that

where:
O/ (E) 4(0'2 — 01>mR?+1E2m71
N - =< =4<m 27
[1(R3™ + R™™) + oo(R3™ — B™™)]
and
m2m—1
o (B) - 4(o1 — 09)mosCrRY'R

—om —om2
[o1(R3" = R™™) + oo(R3" + B
By using (1.46), we obtain

4(oy — ag)mRQ"Hmel

O/ (R> = -2m -=2m -=2m -=2m :
P (1B =R + 0o(R3" + B [on (B3 + B™) + oo(R3™ — R))

Consequently

Fy(R) = 2an(R) (ap(R) - ay(R))
32m(o? — o2)Ry" R

<M YU <M YU 37
(B3 =R + oo(R3" + B [o1 (B + B™) + oa(R™ — R™))|

2m—1
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1.8 Numerical experiments and validation

—=4m—2
32mm3 (o} — 02)* Ry R

09 [0'1 (R%m — EZm) + O—Q(R%m + E2m)} |:O'1 (R%m + R2m> + UQ(R%m - E

2m) 3
(1.49)

The iterations for R* can be written as RFt! = g(R*), where
g(R) = R—1J'(R).

Then, the sequence R* converges locally if and only if |¢/(R)| = |1 — J"(R)| < 1. From
the condition: oy # 0y, we deduce from (1.49) that J”(R) > 0, and then the sequence RF
converges locally if and only if 7 €]0,2/J"(R)].

1.8 Numerical experiments and validation

In this section, we present some numerical results obtained by using a minimization algorithm
of gradient type. The numerical examples are based on synthetic data numerically simulated

using the FreeFem++ software [35]. Indeed, our algorithm on o; can be written as:

oJ

O'IH—1 K T
(90i

i =0; —

(c%),i=1,2.

where 7 > 0 is chosen sufficiently small (a step adaptation can be incorporated here i.e. T
is determined so that the functional J decreases) and 90, 1 = 1,2 are given by Corollary
1.6.4. In addition, our gradient descent algorithm for the identification of the interface ¥ is
described in Algorithm 1.

For our numerical validation, we choose for example the domain €2 an open disk of center
(0,0) and radius Ry = 2. Moreover, in most of the experiments below the exact interface
Y := g is represented by the parametrization (1.29) used in the inversion algorithms.

Indeed, we choose for example the case of n = 9 and R given by

R=(1,0.8,0.7,0.9,1,1.7,1.6,1.5,1.4),
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1.8 Numerical experiments and validation

the conductivity values a7 = 1, 5 = 2, the current flux ¢(0) = cos(f), 6 € [0,2n] and
the gradient descent step 7 = 0.05. The synthetic data f is represented by the values f;,
i = 1,..., Nr of the numerical solution at the nodes belonging to I'. In order to simulate
noise in the data f we artificially corrupt the computed values f; with random noise as

follows:

fiE = fl—{—é(l—QTZ)fz, ’L: 1,...,NP,

where r; are randomly chosen between 0 and 1 and € denotes the noise level.

Figure 1.5: Description of the geometry for the numerical experiments.

To gain insight into the behavior of the Kohn-Vogelius cost functional J with respect to

various parameters of the inverse problem, o7, 73, and Y5, we consider the following scenarios:
e Scenario 1: Only 7 is unknown (o3 and X5 are known).
e Scenario 2: Only 73 is unknown (7 and ¥ are known).
e Scenario 3: Both 7 and @3 are unknown (only X% is known).
e Scenario 4: Only ¥ is unknown (both o7 and o are known).

In Figures 1.6 and 1.7, we show the convexity of the function J with respect to o1 and o,
respectively. Additionally, Figures 1.8 and 1.9 respectively illustrate the scenario where only

o7 is unknown and the scenario where only 73 is unknown.
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12 . T . 1

1 0

— Curve of ﬂ

Aoy
0.8} 1k
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J versus the values of o;. —— versus the values of ;.

80’1

Figure 1.6: Convexity of the function J with respect to o;.
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(90'2

Figure 1.7: Convexity of the function J with respect to oy
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1.8.1 Scenario 1: only 77 is unknown

1 : , , 0.35 . . ’ v
B
0.3+ 1
09
025+ 1
08 02} -
0.7 015+ 1
0.1+ 1
0.6
0.05+ 1
0.5 : - - ; 0 : .
0 10 20 30 40 50 0 10 20 30 40 50
Values of o7. J versus the number of iterations.

Figure 1.8: Identification of &7 is shown on the left, and the evolution of J versus the number

of iterations is shown on the right.

1.8.2 Scenario 2: only 73 is unknown

0.3 : : . :
025+ .
0.2t .
015+ 1
0.1+ 1
0.05+ 1
0 10 20 30 40 50 0 10 20 30 40 50
Values of o9. J versus the number of iterations.

Figure 1.9: Identification of &3 is shown on the left, and the evolution of J versus the number

of iterations is shown on the right.
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1.8.3 Scenario 3: both 77 and 73 are unknown

We assume that the singularity support ¥z of @ is known, and we are interested in iden-
tifying the conductivity values o7 and &3 from the knowledge of ¢ and f. In the numerical
identification experiments, we illustrate the identification process in Figure 1.10 where the
geometry Y is parameterized by (1.29), intersecting the z-axis at the two singularity points

A and B (see Figure 1.5 for an illustration). Additionally, different noisy data are considered.

4 4

 Texact  Texact  Texact

"""""" Tinital " Tl = il

-0 3 =-==0 3 -
calculated calculated calculated
2 2
1 e ] S S ——
0 . 0
1 0 1 2 2 1 0 1 2 2 1 0 1 2

Figure 1.10: Values of o at the location where Y5 intersects the z-axis at the two singularity
points A and B with different noisy data: noise-free data (left), noise level € = 1% (middle),
and € = 3% (right).

1.8.4 Scenario 4: only X7 is unknown

Here, we assume that both of the conductivity values 7 and &3 are known, and we are
interested in identifying the singularity support X of & from the knowledge of ¢ and f.
As an initial guess, we choose R® = (1.7,1.6,1.55,1.4,1.3,1.3,1.2,1.4, 1.5).

In Figure 1.11, we show the reconstruction of ¥ obtained by Algorithm 1 for different
noisy data: free noisy data Figure 1.11(b), noise level ¢ = 3% Figure 1.11(c), and € = 5%
Figure 1.11(d). The exact shape and initial guess are depicted in Figurel.11(a).
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Figure 1.11: Reconstruction of ¥z by Algorithm 1 for different noisy data: free noisy data

(b), noise level € = 3% (c) and € = 5% (d). The exact shape and initial guess are shown in

Figure (a).

1.9 Conclusion

In this chapter, we have introduced the direct problem together with the Kohn-Vogelius
method as an inversion method for solving the inverse problem. First, we investigated the ex-
istence and uniqueness of the solution of the direct problem (N, ). Subsequently, we presented

the Kohn-Vogelius method, which consists of transforming the inverse problem (Z.P) into

-2t

Exact
= = =Reconstructed
-2 0 1 2
(b)
Exact
= = —Reconstructed
r~
-2 0 1 2




1.9 Conclusion

an optimization one by constructing the Kohn-Vogelius cost function J. We proved that & is
a minimum of J and subsequently calculated its derivative with respect to the conductivity
values 0, and o,. The existence and expression of the shape derivative of the Kohn-Vogelius
cost function with respect to the singularity interface ¥ of ¢ have been studied by Afraites
et al. in [2].

Furthermore, as a preparatory step for the combined inversion algorithm introduced in
Chapter 3 for a geometrical inverse conductivity problem, we explicitly present the gradient
descent algorithm tailored to starlike interfaces. We developed a gradient descent scheme,
summarized in Algorithm 1, to effectively identify the singularity curve ¥4 of &. Additionally,
we analyzed the convergence of this algorithm in some simplified geometries. This study serves
as an essential step in the convergence analysis of the combined inverse scheme.

To conclude the chapter, we provided some numerical experiments obtained using this
inversion method. These experiments illustrated the effectiveness and applicability of the

proposed method.
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CHAPTER 2

A non-overlapping Domain Decomposition Method

2.1 Introduction

In order to evaluate the solutions of the direct problems (V,) and (D, ) studied in Chapter 1,
this chapter employs a non-overlapping Domain Decomposition Method (DDM) known as the
Optimized Schwarz Method (OSM). The OSM enforces communications at the interfaces of
the domains through Robin-type boundary conditions [48, 39, 40, 25, 21]. The chapter begins
with a brief introduction to Domain Decomposition Methods (DDMs) and then presents the
OSM as the chosen non-overlapping DDM. Next, we reformulate the direct problems (N,)
and (D,) as an equivalent multi-domain problem using Robin transmission conditions. The
convergence rate of OSM is investigated in one dimension and in the case of circular interfaces.
These findings are valuable for analyzing the convergence of the combined inversion algorithm.

Finally, we present some numerical illustrations on the convergence of OSM.

2.2 On the domain decomposition methods

Domain Decomposition Methods (DDMs) were introduced as techniques for solving par-
tial differential equations based on a decomposition of the partial domain of the problem
into several subdomains. The problems on the subdomains are independent, which makes

DDMs suitable for parallel computing. Indeed, DDMs were originally introduced for prob-
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2.2 On the domain decomposition methods

lems on "complex” geometries, and they are now widely used as parallel algebraic solvers
and preconditioners for solutions of various problems. Moreover, DDMs are typically used as
preconditioners for Krylov space iterative methods, such as the conjugate gradient method,
GMRES, and LOBPCG.

The concept of domain decomposition methods was first introduced in 1869-1870 by
Hermann Schwarz [54] to prove the uniqueness of the solution to the Dirichlet problem (2.1)

in a domain with complex geometric shapes.

In overlapping DDMs, the subdomains overlap by more than the interface. The example
in Figure 2.1(left) shows such a situation, which include the Schwarz alternating method
introduced in Definition 2.2.1 and the additive Schwarz method. Many DDMs can be written
and analyzed as a special case of the abstract additive Schwarz method. Intuitively, the
existence of an overlap region allows more information to be exchanged at each iteration,

and therefore suggests better convergence of the method.

In non-overlapping DDMs, the subdomains intersect only on their interface. The example
in Figure 2.1(right) shows such a situation. In primal methods, such as Balancing domain
decomposition and BDDC, the continuity of the solution across subdomain interface is en-
forced by representing the value of the solution on all neighboring subdomains by the same
unknown. In dual methods, such as FETI, the continuity of the solution across the subdomain
interface is enforced by Lagrange multipliers. The FETT-DP method is hybrid between a dual
and a primal method. The two figures below show a typical example of DDMs, where the
first domain decomposition method was introduced by Schwarz for a complicated domain,

composed of two simple ones, namely a disk and a rectangle.

-
~'

—_
-
~'

]

Ql Qz

Figure 2.1: Typical example of domain decomposition method with overlap (left), as it ap-

pears in Schwarz’s article in 1870, and without overlap (right).

Let the domain €2 be the union of a disk and a rectangle, see the figure above, which is

o4



2.2 On the domain decomposition methods

on the left. Consider the Dirichlet problem which consists in finding « : 2 — R such that

—Au=0 1in €,

2.1
u=yg on 0f). 21)

Definition 2.2.1. (Original Schwarz algorithm) The Schwarz algorithm is an iterative method
based on solving subproblems alternatively in domains Q1 and Qo. It updates (u},ul) —
(ui ™, uz™) by

—Auftt =0 in (),

u =g on 00NN,
u =ul on 0Q N Q.
~Auytt =0 in Qy,

uf ™t =g on 0 N OS2,
uytt =ul™ on 0Qy, N Q.

Schwarz proved the convergence of the algorithm and thus the well-posedness of the
Poisson problem in complex geometries. For a more detailed history of Schwarz methods, one
may consult Martin Gander’s article [26], which explains the similarities and differences of

the methods presented here through numerous citations from major contributors in the field.

During the past few decades, a new class of nonoverlapping and overlapping Schwarz
methods has been developed for PDEs, known as Optimized Schwarz Methods (OSMs). These
methods, which were introduced by P. L. Lions in [48] for elliptic problems and by B. Després
in [20] for propagative wave phenomena, have gained significant popularity. They are based on
classical domain decomposition techniques but employ more effective transmission conditions
at the interfaces between subdomains compared to the traditional Dirichlet conditions. In
the case of elliptic problems, the original Schwarz method [54] only applies to overlapping
domain decompositions, and its performance in terms of iteration counts relies on the width
of the overlap. However, the algorithm introduced by P. L. Lions [48] can be applied to both
overlapping and nonoverlapping subdomains. It is based on improving Schwarz methods by
replacing the Dirichlet interface conditions by Robin interface conditions. Let o > 0, the

optimized Schwarz algorithm reads as
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2.3 Multidomain formulation using OSM

—Auptt =0 in
u =g on 0% N 01,
ouftt oul —
81 +outt = 5 2 +aul on 09 NQy.
nq Mo
—Aujt! =0 in (o,
up =g on 0, N 0,
ouf ™ ouy —
(92 +auytt = a—l +au} on 9y N Qy,
U n

where n; and nsy denote the outward normals which are shown in Figure 2.2.

Moreover, Robin interface conditions can be replaced by more general interface conditions
that can be optimized for a better convergence, see for instance [39, 40, 25]. Furthermore,
the convergence of the domain decomposition method remains slow in certain cases, which

is why higher-order transmission conditions have been developed.

0

Figure 2.2: Outward normals for overlapping (left) and nonoverlapping (right) subdomains
for Optimized Schwarz Method. Image from the book of V. Dolean et al. [21].

2.3 Multidomain formulation using OSM

Let us present here the OSM for solving the direct problems (NN,) and (D,) in the case
of non-overlapping subdomains. To ensure uniqueness of the solution to problem (N, ), we

impose that
/ uds=0. (2.2)
b

However, the advantage of using (2.2) is that it can be naturally encoded in the domain

decomposition scheme introduced later (see Lemma 2.3.2).
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2.3 Multidomain formulation using OSM

Figure 2.3: Outward normals for nonoverlapping subdomains €2; and €y for OSM.

2.3.1 The case of the direct problem (N,)

Lemma 2.3.1. Let u; := U, be the restriction of u to €;, i = 1,2. Then, problem (N,) can
be reformulated as an equivalent multidomain problem consisting of the following subdomain
problems
—0;Au; =0 in €,
Ous

O2——

e =¢ onl,

together with the transmission conditions on the interface 33,

U] = U9 on 2,

o (9u1 — &y aUQ on 3

13— =027 .
ov ov

Alternatively and equivalently, one may impose the Robin transmission conditions,

ou; ou;
j

oi~— Lt ou; = o0j——
ov

3 +au; ond foralli=1,2andj#1, (2.3)
v

where o > 0 is a fixed parameter that may be optimized to improve the convergence
rate of the iterative domain decomposition method (see [48, 39, 40, 25, 21]). The resulting
method is referred to as the Optimized Schwarz Method, which can be described as fol-

lows. Given arbitrary initial guesses (u?);<;<o € H?(Q;), we inductively build the sequences
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2.3 Multidomain formulation using OSM

uf € HY(),i = 1,2, by solving (in parallel) for all £ > 0

—o; Aut =0 in €2,
auZ—O—I
09 =0 on I,
ov
Oult! i oul , (2.4)
o1 +oau; =0y +ouy, on X,
v Ov
Ouy™! 041 Ouj ¢
P —QUy'  =01—=— —Qu; Oon 2.
v v

A direct use of (2.3) would require a numerical evaluation of the normal derivatives along
the interfaces X in order to compute the right-hand sides in the transmission conditions of
(2.4). This can be avoided by renaming the problematic quantities

out
/\KN =i 7 4+ au respectively for ¢ =1,2and j =1,2, j #i. (2.5)

where A v is the information coming from the neighboring subdomain Q; (j # 7) at step ¢

of the algorithm. One can easily verify that

z+1 Quy'! 0+1 Quy" 041
ANy = 09 +au, =0 auy  + 2 u
v v
aueﬂ Jultl
1 1
Aéﬁ& = Y auitt = A + aut™ — 20ttt
v v

Therefore, the parameters /\f’ ~ satisfy the induction

AN =Xy + 200 us™,

)\E-‘rl — )\1 — 2a uf-i—l (26)

Y

which can replace (2.5). We can now rewrite the iterative algorithm as follows. Given an
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2.3 Multidomain formulation using OSM

initial guess (A} y)1<i<2 € L*(X) solve for each iteration £ € N the two following problems:

—o; Aut! =0 in €,
aué—i-l
09 =¢ on I,
v
Ouy™! 041 ¢ (2.7)
o +au; =AMy onX,
ov ’
auﬁJrl
r+1 ¢
09 — au =)\ on X
o 2 2N )

where the boundary values /\f, ~, ¢ = 1,2 are updated using (2.6). For the convergence analysis
of this algorithm, we refer to [48, 28, 22]. Let us observe that condition (2.2) is ensured at
convergence as soon as it is verified by the initial guess ()\2 ~)1<i<o. This is what we summarize

in the following lemma.
Lemma 2.3.2. Let (\) y)1<i<2 € L*(X), such that/ N yds=0;i=1,2, then for { € N¥,
Z ?
we have: / M yds =0, and / uf ds = 0.
s 2

Proof. We prove this Lemma by induction. By integrating equations (2.7) for £ = 0 in ;

against a constant function in €2; we obtain

|
g :—UAO d}z()
/2u1 ¥ a s BN 5 ’
1
/u;ds:[—/AgNdH/(ﬁds} 0,
> [0 > ’ T

which proves the statement for ¢ = 1. Assume that
/)\ ds-/u-ds:O, fori=1,2.

By integrating equations (2.7) in ; against a constant function in §2; we obtain

/ufﬂds: {/)\ Nds} =0,
b
1
/ugﬂds:[ Rt Nds+/gz5ds} —0,
b «

and by using (2.6), we obtain

/Aﬁ;ds:/ AL s = 0,
X ’ b ’

29



2.3 Multidomain formulation using OSM

which prove the lemma.

The weak formulation of the relevant subdomain problems (2.7) is given by:

Find u{*™! € H'(Q) such that :
\%
(Vix) /Q o1 Vui™ Vo dx +/ oaut™v ds = / M yvds  forallve HY(D).
1 by >
Find w5t € H'(Qy) such that :

Va
(Vo) / oo Vust Vo da +/ aub ™ ds = —/ Ny v ds + / pvds forallve H (D).
Q2 s s 0 r

2.3.2 The case of the Dirichlet problem (D,)

Similarly to above, we also apply the OSM for solving the Dirichlet problem (D,). Let
v; i= v, be the restriction of v to Q;, i = 1,2. Then problem (D,) can be reformulated as

an equivalent multidomain problem consisting of the following subdomain problems

—O'Z‘A’Ui =0 in Qi>
vp=f onl,

together with the Robin transmission conditions:

ov; v,
O'ilzl:OéUi Y

3 :Jja—yjzl:owj on Y foralli=1,2and j # i. (2.8)

The OSM for this problem can be then formulated as: Given an initial guess ()\?7 pli<i<e €

L*(X) solve for each iteration ¢ € N the two following problems:

/41 _ .
—0;Av; =0 in €,
vit =f on T,
vt 2.9
1 1 .
OIW + wa—i_ = )\{}D on X, (2.9)
8U€+l
2 +1 e
O3 T Qv = Ayp on X,
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2.4 Convergence rate for OSM in some particular domains

where the parameters )\fj)l, 1 = 1,2, verify the induction

1 ¢ 0+1
ANp = )\27D—|—2a1)2 ,

2.10
A= A p—2a 0t (2.10)

Let K = {w € H'(Q)/w), = [} and Ky = {w € H'(Q2)/w,. = 0}, then, the weak

formulation of the relevant subdomain problems is given by:

Find vf™ € H'(Q), such that :

V;
) / o1 Vo Vuw dx+/ aviw ds :/ Mpwds  VweH ().
(951 ¥ 2 7

Find v{™! € K, such that :

V n
(Vo) /ﬂ oo VUit Vw dx +/ vyt w ds = —/ Npwds Ywe K.
2 by = 7

2.4 Convergence rate for OSM in some particular do-

mains

As a second step in the analysis of the combined inverse scheme introduced in Chapter 3, we
study the convergence rate of the OSM in some simplified cases of the domain 2. We begin

with the one dimensional case.

2.4.1 The one dimensional case

We consider the particular case where the domain 2 =]0, 1], £2; =]0, [ and 25 =]d, 1| where §
denotes the discontinuity point separating the two subdomains ©; and 2. Let (¢, f) € R*xR,

we will consider the following model problems:

—(ou")' =0 in]0,1], —(ov) =0 in]0,1],
(Ny){ u(0) =0, . (D){ v(0)=0,
oou' (1) = ¢. v(l) = f.
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2.4 Convergence rate for OSM in some particular domains

—

The OSM for the Neumann problem (N,) can be then formulated as: Given an initial guess

(A n)1<i<2 solve for each iteration £ € N the two following problems:

—o;(ufthy” =0 inQ,i=1,2,
up ™ (0) =0,
aa(uy™)' (1) = ¢, (2.11)

o1 (ui™)'(6) + aur™ () = Af x(9),
oa(uy™)'(6) — auy ™ (6) = A% n(9),

where the parameters )\ijVl (0), 1 = 1,2, verify the induction

AN (0) = X5 n(8) + 20 uy™ (9),
(2.12)

AN (8) = A x(0) — 20wy (9).

o~

Similarly to above, the OSM for the Dirichlet problem (D, ) can be then formulated as: Given

an initial guess (A} p)i<i<2 solve for each iteration £ € N the two following problems:

—o; (v =0 in Q;,i=1,2,
v (0) =0,
vy (1) =/, (2.13)

(v (0) + avt () = A p(d),

aa(vy ™)' (8) — awy ™ (8) = A% p(d),

where the parameters )\fjjl (0), 1 = 1,2, verify the induction

A (0) = X5 p(0) + 200 v37(9), (214)
Mp(8) =X p(6) — 20 v (d).
In the sequel, we set 5
o1 — Q&
*0) = —— 2.1
k(o) = 20 (215)
p*(9) == —1. (2.16)
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2.4 Convergence rate for OSM in some particular domains

¢*(0) := m (2.17)

Then, we have the following two propositions:

Proposition 2.4.1. For ¢ € R*, the OSM (2.11)-(2.12), initialized with X}y =0, i = 1,2,

geometrically converges for all « > 0 and the convergence rate is given by the spectral radius
p*(6) = /| k*(0)p*(0) | < 1.

Proof. The solutions of the problem (2.11) can be written as:

W (z) = ui™ (z) = o le in €2y,
W (@) = e in
where the constants o5, B4 and 74! are determined by the following equations:
o2 (uy™)' (1) =9,
o1 (ui™)'(8) + aug™(8) = M y(9), (2.18)

a2 (uz™)'(0) — auz™ () = X5 v (9).
From the second equation of (2.18), we obtain:

)\é
lp) = N _ 2.1
ul (33') (Ul —|-045)x ( 9)

and from the first and the third equations of (2.18), we obtain:

RV
KA i 1\

Uy (x) = o o

From the second equation of (2.12), we obtain:
Aoly = k(0) M n

In the same way we get:
Miv = p%(0) Aoy +1%(0),

where

n*(d) := 2¢. (2.20)
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2.4 Convergence rate for OSM in some particular domains

Therefore, the DDM iterations can be written as:

AN 0 p*(0)) (A 1*(9)
= + . (2.21)
Ay k*(5) 0 A N 0
Then, this induction converges if and only if p*(0) = /| k*(6)p®(d) | < 1, which is always
true for every o > 0 and § €0, 1[. O

Proposition 2.4.2. For f € R*, the OSM (2.13)-(2.14), geometrically converges for all

a > 0 and the convergence rate is given by the spectral radius

pU(6) = /| ke (6)q(8) | < 1.

Proof. The solutions of the problem (2.13) can be written as:

¢ ,
S (z) = 1)1+1 (x) = a%lx in €y,
v'l(z) = fp e +ap in Dy,
where the constants o5, 85 and 5™ are determined by the following equations:
vy (1) =/,
a1 (o) (8) + avtH(8) = A p(d), (2.22)

a2(v5"1)'(9) — vy ™H(8) = M) ().
From the second equation of (2.22), we obtain:

i
ALp

/+1 o
W) = G

(2.23)

and from the first and the third equations of (2.22), we obtain:

MNop+af

S (x) = ortal=0)

Uy

(x—1)+ f.
From the second equation of (2.14), we obtain:
Aol = k(0) X p-
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2.4 Convergence rate for OSM in some particular domains

In the same way we get:
Mip = a(8) Ay p +w?(6),

where ;
2009
) = ———FF——. 2.24
w?(9) ot a(l—9) (2.24)
Therefore, the DDM iterations can be written as:
Ao 0 ¢*(d)) (Mb w®(9)
— + . (2.25)
M) @ 0 ) Wy 0
This induction converges if and only if 5*(0) = /| k*(6)¢*(d) | < 1, which is always true for
a>0and 0<d <1,
O

Remark 2.4.3. Equations (2.15) and (2.17) deserve a few remarks.

1. Fora = %, the DDM iterations matriz of (2.21) is nilpotent and therefore the method
converges in mazximum 2 iterations.
2. For a = % or a = %, the DDM iterations matriz of (2.25) s nilpotent and

therefore the method converges in maximum 2 iterations.

2.4.2 The case of an annulus

We study in this part the convergence rate of OSM in the particular case where the domain

() is an annulus given by

Q = {(z,y) € R?, such that R} < 2% +¢* < R3},
and where the subdomains €2; and €2, are defined by:

0 ={(x,y) € R?, such that R% <z’ + y2 < Rz};

Qy = {(r,y) € R? such that R* < 2* + y* < R3},

let I'; and T’y respectively the interior and exterior boundary of Q and I" := 99 = I'; UT';(see

Figure 1.3 for an illustration). In this case the interface ¥ = X coincides with the circle of
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2.4 Convergence rate for OSM in some particular domains

center (0,0) and radius R. Let (¢, f) € R* x R and (N,), (D,) the two following problems

—div(cVu) =0 in €, —div(eVv) =0 in Q,

(V)] u=0 T (D)) =0 ony
a@zqﬁ on I's. v=f on I's.
ov

The OSM for the Neumann problem (N,) can be then formulated as: Given an initial guess

(A n)1<i<2 € L*(X), solve for each iteration £ € N the two following problems:

—o; Autt? =0 in Q;,i=1,2,
uftt =0 on I'y,
ug+1 5 .
Oo—F/— = o1 1o
v ’ (2.26)
aué—i-l
o1—— +auttt =X onY,
v ’
au€+1
lop) (‘3?/ —oub™ = )\g’N on X,

where the parameters )\fjvl, t = 1,2, verify the induction

1 041
ANN = Mgy t2auy,

2.27
Ay = Ay —20uf™. (2.27)

Similarly to above, the OSM for the Dirichlet problem (D,) can be then formulated as:

Given an initial guess (A p)i<i<z € L*(X), solve for each iteration £ € N the two following

problems:
—o; AviT! =0 in Q;,i=1,2,
it =0 on I'y,
vs =f  onDy,
01 (2.28)
U1
o1+ avt™ =M on X,
l/ K
8U€+1
2
Op—p = avs™ =X, onX,
V b
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2.4 Convergence rate for OSM in some particular domains

where the parameters )\f}l, 1 = 1,2, verify the induction

N5 = Mp+2avt,

2.29

A= A p—2a 0t (2.29)

In the sequel, we set

o1 —aRlog (5)

E*(R) = Rl , (2.30)
01+ aRlog <R1>

p(R) = —1, (2.31)
0y — aRlog (%)

“(R) = I (2.32)
0y + aRlog <R>

Then, we have the following two propositions:

Proposition 2.4.4. For ¢ € R*, the OSM (2.26)-(2.27), initialized with X}y = 0, i = 1,2,

geometrically converges for all « > 0 and the convergence rate is given by the spectral radius

p(R) == /| k*(R)p*(R) | < L.
Proof. The solutions of the problem (2.26) can be written as:

ui™ (r,0) = o log (]; > in Q,
1

041 -
u(r,0) = e+1 £+1 1 .
(r,0) = log R +9y  in Qy,
1

where the constants o, B4 and 74! are determined by the following equations:
41
u
02% =¢ on I'y,
outtt
o1 aly +ouf™ =X,y on3, (2.33)
8u€+1
lop (92 —ous™ =Xy onX.
V b
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2.4 Convergence rate for OSM in some particular domains

From the second equation of (2.33), we obtain:

R)\fN

uit(r,0) = (Ul Rl (151)) log <R1) : (2.34)

and from the first and the third equations of (2.33), we obtain:

Ry r Ro¢ R Y
UQ (n ) 09 8 R1 + OéO'QR 72 @ 8 R1 (0%

From the second equation of (2.12), we obtain:
Aoly = K(R) Al -

In the same way we get:

where

n*(R) :=2¢—. (2.35)
Therefore, the DDM iterations can be written as:
My 0 p*R)\ (M n*(R)
= + . (2.36)
Ay k*(R) 0 A N 0

This induction converges if and only if p®(R) = \/ | k2(R)p*(R) | < 1, which is always true
for « > 0 and R; < R < R».
O

Proposition 2.4.5. For f € R*, the OSM (2.28)-(2.29), initialized with X}, =0, i = 1,2,

geometrically converges for all « > 0 and the convergence rate is given by the spectral radius

P(R) == /| k*(R)g*(R) | < 1.

68



2.4 Convergence rate for OSM in some particular domains

Proof. The solutions of the problem (2.28) can be written as:

r
v (r, 0) = ot log <R > in Q,
041 _ 1
v (r,0) =
v5(r,0) = 5 log <R ) + 451 in Qy,
2
where the constants o5, 857 and v5™! are determined by the following equations:
vitt =f on I'y,
aU€+1
n— + ot = )‘?D on X,
aUZJrl
02 —avy™ =X, onX.

From the second equation of (2.37), we obtain:

R)\‘LD
<01 + aRlog (

v (r, 0) = 5 >) log (];> ,

Ry

and from the first and the third equations of (2.37), we obtain:

£+1<7, 9)

aRf+ RX) ! r
RN ° (
0y —aRlog <R2> F

From the second equation of (2.29), we obtain:
A = Ko (R) X
In the same way we get:
Mip = ¢ (R) Xy p +w(R),

where
20 0o f

oy + aRlog (%)

w(R) :=
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2.4 Convergence rate for OSM in some particular domains

Therefore, the DDM iterations can be written as:

A 0 ¢“(R)) (Mo w*(R)
= + : (2.40)
o) k@m0 )\, 0

This induction converges if and only if p*(R) = \/ | k2(R)q“(R) | < 1, which is always true
for « > 0 and R; < R < R».
O

Remark 2.4.6. Equations (2.30) and (2.32) deserve a few remarks.

1. For a = o , the DDM iterations matriz of (2.36) is nilpotent and therefore
R1 <)
og 7
the method converges in maximum 2 iterations.
01 09 . . . .
2. For a = Ry T = the DDM iterations matriz of (2.40) is
Riog () Rlog (=)
og R g5

nilpotent and therefore the method converges in maximum 2 iterations.

2.4.3 The case of an open disk

We consider in this part the case where the domain €2, is the open disk of center (0,0) and
radius R > 0 of R? and ), is the annulus domain R < |z| < Ry (see Figure 1.4 for an

illustration). The interface ¥ coincides with the circle of center (0,0) and radius R. We set

for m > 0, A
om — «
E(R) = ———— 2.41
m(F) om + aR’ ( )
oom(R3™ — R*™) — aR(R3™ + R*™) (2.42)

*(R) := )
PR = (R — o) + a (RS + o)

oom(R3™ + R*™) — aR(R3™ — R*™)
*“(R) := i 2.43
Gm(F) oom(R3™ + R?™) + aR(R3™ — R*™) ( )

Then, we have the two following propositions:

Proposition 2.4.7. For ¢(0) = mcos(mf) or ¢(8) = msin(m#), 0 € [0,27] and m € N*,
the OSM (2.6)-(2.7), initialized with )\?71\/ =0, 1= 1,2, geometrically converges for all o > 0
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2.4 Convergence rate for OSM in some particular domains

and the convergence rate is given by the spectral radius

P2 (R) = /| ke (R)pe(R) | < 1. (2.44)

Proof. For ¢(0) = mcos(mf)or ¢p(8) = msin(mé), 6 € [0,27] and m € N*, the solutions of

the problem (2.7) can be written as:

0
uit™(r,0) = o rm¢( ) in Q,
+1
u T (r,0) = 041 0
ué“(r,@) _ ( ]e\?l o N ) ¢(0) in Q,,
rm m
where the constants o, B4 and 74! are determined by the following equations:
aungl
= ¢(0 r
au€+1
o1 81y +auit' =My onX, (2.45)
a /+1
09 gj/ —oaub™ = )\éN on .

For ¢ = 1,2, we denote by j\f N = )\57 Nﬂ. Then, from the second equation of (2.45), we

¢(0)
obtain: <,
A ¢(0)
1, 0) = LY m 2.46

u (1, 9) R™Y(moy + ozR)r m (2.46)
and from the first and the third equations of (2.45), we obtain:
u“‘l(r 9) = R;”JrlRm-i—l ((0’2m — aR)Rm—l _ Uzj\g,Nngl) P . i rm o(0)

S o9 (0om(R3™ — R?™) + aR(R3™ + R?™)) R rm ] goRPTH m

N 6
From (2.6) and using the fact that A%} = )\fJ}\}M, we obtain:
’ m

354 = K (R) M

In the same way we get:

Ay = p&(R) Xy + 12 (R),
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2.4 Convergence rate for OSM in some particular domains

where Jp—
dmaR™ Ry’
*(R) := . 2.47
(7 oam(R3™ — R*™) + aR(R3™ + R*™) (247)
Therefore, the DDM iterations can be written as:
AN 0 B (Ma) (B
= + . (2.48)
i) k)0 )y 0
This induction converges if and only if p& (R \/ | k2 (R)p2 (R) | < 1, which is always true
fora>0,m>0and 0 < R < R,.
(I

We can state and prove similar convergence results as in Proposition 2.4.7.

0
Proposition 2.4.8. For f(0) = Cf(bfn), Cr e R, m € N*, the OSM (2.9)-(2.10) geometri-

cally converges for all o > 0 and the convergence rate is given by the spectral radius

= /| k& (R)ga(R) | < 1. (2.49)
_ . 900) : .
Proof. For f(0) = Cy——=, C; € R, the approximate solutions of the problem (2.9) can be
m
written as: p
Vit (r,0) = of! rmL( ) in Q,
v (r, 0) = " AELY 6(0)
vy (r,0) = < ol 2 ) in Q.
rm m
where the constants o5, 85 and 5! are calculated by the following equations:
vy = f(0) on T,
a,UZ+1
01 aly + Oﬂ){—‘rl = )\?D on E, (250)
o l+1
o2 gzy —avs™ =)\, on¥.

For i = 1,2, we denote by S\f’D = )\f’qu?;). Then, from the second equation of (2.50), we
btain:
o Nop é(0)
vy (r, 6 r 2.51
(r,0) = R™= 1(m01+aR) m (2:51)
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2.4 Convergence rate for OSM in some particular domains

and from the first and the third equation of (2.50), we get

(1) Ry R™! ((oom — aR)CiR™ =X pRY) (1 ym L Cr ] 000)
2 oom(R3™ + R¥™) + aR(R§™ — R*™)  \r™ R3™ m m
N 0
From (2.10) and using the fact that A7 = Af}lw, we obtain
’ ~om
j‘g?rDl = kgz(R) 5‘?D-
In the same way we get
Ml = d(R) Ay p + wi(R),
where CRm R
daocomCyR™ Ry
*(R) = . 2.52
wn(R) oom(R3™ + R?™) + aR(R3™ — R*™) (2:52)
Therefore, the DDM iterations can be written as:
W 0 gu(R)\ (Mp) ([wa(R)
= + . (2.53)
A KO(R) 0 N b 0

This induction converges if and only if p% (R) = \/ | k& (R)q%(R) | < 1, which is always true
fora>0,m>0and 0 < R < R,.

Remark 2.4.9. Equations (2.41), (2.42) and (2.43) deserve a few remarks.

RQm _ R2m
1. For a = % or a = Jj%m ERgm—l—RQm;’ the DDM iterations matriz of (2.48) is
nilpotent and therefore the method converges in maximum 2 iterations.
RQm RZm
2. For a = % or a = UQRm ERng—rng’ the DDM iterations matriz of (2.53) is

nilpotent and therefore the method converges in maximum 2 iterations.

3. One can see that for all @ > 0 and from the equations (2.44) and (2.49),

lim py(R)=1 and lim py(R) =1

m—-+00 m——+00
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2.4 Convergence rate for OSM in some particular domains

The following figures obtained by fixing: Ry = 2, R = 1.5, the conductivily parameters

o1 =1, 09 = 2 and the OSM parameter o = 2 confirm clearly these observations.

1.0 1.0
0.8 0.8
0.6 0.6
sE 5E
Q Q
0.4 0.4
0.2 0.2
0.0 0.0
0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160
m m

Figure 2.4: Evolution of the convergence rate p, (left) and p% (right) as a function of m € N*.
The OSM parameter o = 2.

We now discuss the influence of the OSM parameter on the convergence rate history
factors pt, and p%,. Let us fix, for example, m =1 and vary « as shown in Figure 2.5
and Figure 2.6. For sufficiently small values of o, the convergence rate curves for both
pS and pe, are smaller than 1 (see Figure 2.5). However, as a goes to infinity, p&, — 1

and pS, — 1 (see Figure 2.6).

74



2.5 Numerical illustrations
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a a

Figure 2.5: Evolution of the convergence rate p2, (left) and 5% (right) as a function of « €

0.1, 5].

1.000 1.0
0.975
0.950 08
0.925
0.6
% 0.900 b
0.875 04
0.850
0.825 0.2
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
a a

Figure 2.6: Evolution of the convergence rate p% (left) and p%, (right) as a function of « €
[5,200).

2.5 Numerical illustrations

In this section, we give some numerical illustrations obtained by using OSM for solving the

direct problem (N, ). For our numerical validation, we choose for example the case where the
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2.5 Numerical illustrations

domain 2 is the open disk of center (0, 0) and radius Ry = 2 shown in Figure 1.4. Numerically,
we solve the variational problems (V; ) and (V5 n) by using the finite element method P;.
We then perform some numerical experiments in FreeFem++ [35] for the case of circular

geometry and with the following setting:
e The conductivity parameters o1 = 1, g9 = 2.
e The OSM parameter a = 1.
e The initial boundary values \; y =0on X, i =1, 2.

Let us denote by upgys the approximate solution obtained by solving the direct problem with
OSM (2.6)-(2.7), and by u, the approximate solution obtained by solving the direct problem
with a direct solver. We assume that the current flux ¢(6) = m cos(m@) or ¢(6) = msin(mb),
0 € [0,2x], m € N*. The exact solution of the direct problem (N,) then can be explicitly
expressed as

m@ in Ql

ui(r,0) = ay r

Uoexact (T ) = " v (0)
uy(r, 0) = (5]\/ P4 ) in Qy,
rm m
where:
2R§n+1

(8% —=

N T GL(RI" T RP) + oo(R3™ — R2mY’
By = <02+01)R?+1

N T oy [on (R + R + oy (RY — RPm))’ (2.54)

_ (o9 — o) RGP RPM

= oy [o1(R3™ + R*™) 4 oo R3™ — R?™m)]

In Figure 2.8, we present the isovalues of the solution obtained by OSM (2.6)-(2.7) at
different iterations. For example, at iteration 0 Figure 2.8(a), iteration 1 Figure 2.8(b), and
iteration 9 Figure 2.8(c). Additionally, we display the exact solution in Figure 2.8(d). The
current flux is defined as ¢(f) = cos(f), 6§ € [0,27]. The mesh used for this numerical ex-
periment is depicted in Figure 2.7. We observe that after 9 iterations, the OSM approximate

solution converges to the exact solution.

76



2.5 Numerical illustrations
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Figure 2.7: Example of meshes used for the circular geometry problem. Subdomain €2, is on

the left and subdomain €25 is on the right.
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Figure 2.8: Isovalues of the solution obtained by OSM (2.6)-(2.7) at different OSM iterations
are displayed: at iteration 0 (a), at iteration 1 (b), and at iteration 9 (c). The exact solution

is shown in Figure (d). The current flux is given by ¢(6) = cos(f), 6 € [0, 27].

In Figure 2.9 we show a log-log plot illustrating the convergence of the error e/ mentioned

below as a function of the number of OSM iterations ¢. The relative error between the exact
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2.5 Numerical illustrations

solution uezqr and the OSM approximate solution of (2.6)-(2.7) can be written as:

/ _ ||uf)SM - 'LLeasotctHL?(Q)7 / c N.
||U6wact ||L2(Q)

1071

1072

1073

100 10! 102
Number of OSM iterations /

Figure 2.9: Convergence curve for the example depicted in Figure 2.8: Evolution of the relative

error e’ versus the number of OSM iterations £.

In Figure 2.10 we show a log-log plot illustrating the convergence of the approximation
errors ek and é5 mentioned below as a function of the number of OSM iterations.The errors,

denoted by e and &%, are defined as follows.

¢ ‘ ¢ ¢
U —u U+ U
ey = I 7 2HL%E),Vvherel]fzzgigg—z.
U |2 2
¢ ¢
o Ouy o Ouy out ous
"o &) 01— 4 09—
Al Y llrzs) h ¢ dv Jv
ey, = 7 , where V" =
VL2 2
We observe that the continuity gf the tra(%e and the normal trace of the electric potential u
u U
on X (i.e. u3 = up on ¥ and ala—l = 028—2 on Y) are satisfied only at convergence of the
v v

optimized Schwarz algorithm (2.6)-(2.7) as shown in Figure 2.10.

79



2.5 Numerical illustrations
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Figure 2.10: Convergence curves of the approximation errors e& and é% versus the number of

OSM iterations.

Numerically, to ensure better accuracy, it is preferable to have a sufficiently fine mesh.
Additionally, for the numerical validation of the theoretical resolution of the direct problem
using OSM, it is important to have a numerical solution that is sufficiently close to the exact
solution. That’s why we are studying the effect of refining the mesh by increasing the number

14

of nodes, and then calculating the relative errors e as a measure of accuracy.

We now discuss the influence of the numbers of points of discretization on the convergence
history. Let us denote by Np := %Ng, the number of the external boundary I' and we
discretize of the interior boundary > with Ny points uses for different refinements. In Figure
2.11, the convergence of the OSM for different refinements are shown with a logarithmic
scale. We observe that the refinement effect is clearly visible on the final accuracy. However,

the rate of convergence is not affected for the first iterations.
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Figure 2.11: Convergence curves for different refinements: error e* versus the number of OSM

iterations .

2.6 Conclusion

In conclusion, this chapter provided a brief introduction to Domain Decomposition Meth-
ods (DDMs) and presented the Optimized Schwarz Method (OSM) as the selected non-
overlapping DDM. The direct problems (N,) and (D,) were then reformulated as an equiva-
lent multi-domain problem using Robin transmission conditions. In addition, the convergence
rate of OSM was studied in both one dimension and the case of circular interfaces of R?,
providing valuable insights for analyzing the convergence of the combined inversion algo-
rithm. The chapter is concluded with numerical illustrations demonstrating the effectiveness

of OSM in solving the problem at hand.
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CHAPTER 3

A combined inversion method for a geometrical inverse conductivity

problem

The content of this chapter is partially extracted from [19], in collaboration with S. Chaabane
and H. Haddar, published in Inverse Problems, 2023. It contains additional materials to those

in [19] on the convergence analysis for simplified geometries.

3.1 Introduction

In this chapter, we assume that o and o5 are known bounded regular functions on €2 and are
positive definite and we will study the shape inverse problem which consists in identifying
the singularity support % of ¢ from the knowledge of the flux ¢ together with the potential
J = uz|,. For this, we develop in this chapter some inversion algorithms combining the
previous gradient algorithm as defined by Algorithm 1 in Section 1.7 of Chapter 1 with a
non-overlapping domain decomposition method (Optimized Schwarz Method) described in
Chapter 2, that respects the partitioning of the domain €2 into ©Q; U 25 U X. The main idea
consists in approximating the direct problems (N,(zry) and (Dy(gry) (at each iteration k of
Algorithm 1) using only one or a few OSM steps.

We shall present first the combined inversion algorithm in Section 3.2. We provide in
particular a local convergence result for some simplified cases in Section 3.3. Section 3.4 is

dedicated to some numerical experiments for testing the efficiency of the combined algorithm
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3.2 Combined inversion algorithm

and comparing with the classical one.

3.2 Combined inversion algorithm

We present in this section the combined inversion algorithm that couples Algorithm 1 with
OSM. Given an integer L > 0, an interface ¥ and an initial guess )y € L*(X), 7 = 1,2 we
denote by NE(X, A\ v, Ao.v) the L iterate of (2.7). More precisely, we set

NL<27 )‘(1),N7 )‘g,N) =u

r
NE(%, )\(1)7]\,, )\87]\,) = uk  in Qy,
where (uf) and (u$), £ =1,..., L verify the induction (2.7). We also set
AZ'I:N(Eﬂ )‘(l),Nv /\(Q),N) = )\ZI:N on E, 1= 1,27

where Ay is the iterate number L of (2.7).

Similarly, for some initial guess A}, € L*(¥), i = 1,2 we define:

DL(Z7 )‘?,Da )‘g,D) =

L
1
DL(Z,)\[LD, )\87,3) = in Q,
where (v{) and (v5), £ = 1,..., L verify the induction (2.9) and by
Af:D(E? )\(I),Dv /\(2),D> = /\ZI:D on E, 1= ]_, 2,

where A/}, is the iterate number L of (2.9).

Roughly speaking, the combined algorithm consists in replacing u,(gry and v, gy T€spec-
tively with N*(3,A) v, A y) and D*(X, X ,, A ) where ¥ = T,(R") as in Algorithm 1.
The main ambiguity in the construction of the induction is the update for A\; y and \; p on
¥ = T,(RF1) using the boundary values of the solutions at previous iterate. We choose to
transport these values using the same gradient flow that is used to update the interface. We
choose to transport these values on the new update of the interface (i.e ¥ = 7, (R**1)) using
the same mapping that transforms T,(R*) into 7, (R**!). We explicit this for starlike inter-
faces as in Algorithm 1 where we suppose that the number of subdivisions n of the interface

is kept fixed during iterations. A function A defined on ¥ = X5 can be parameterized on S,

83



3.2 Combined inversion algorithm

j=0,...,n—1 as a function of the variable ¢ € [0, 1] as follows
A(E) = AT () (31)

where Mj(t) is given by (1.28). The gradient flow as defined by Algorithm 1 preserves the
parametrization of X in terms of S;. Therefore the update for the boundary values on X can
be written easily in terms of the variable ¢ € [0, 1] since the latter is independent from the

iteration index.

There is also an ambiguity in defining the partial shape derivative given by (1.31) since
the OSM iterates are not continuous across > g nor are the fluxes in general. One can either
evaluate the shape gradient with respect to N*(3, A v, A ) and D(3, A 5, AJ ) or ap-
proximate the gradient of the exact cost functional using these approximate solutions of the
direct problems. The first option would require the introduction of two adjoint problems and
therefore may render the method more costly. This is why we adopt the second approach,
that indeed lead to an incorrect gradient at first iterations, but this gradient becomes close
to the exact one as the iterations number increases. More precisely, the gradient expression
given by (1.31) requires the trace and the normal trace values of the solutions to the Dirichlet
and Neumann problems which are continuous for the exact solutions. However, these values
are no longer the same if we use the restriction of solutions to 2; or {25 coming from incom-
plete OSM iterations. In the following algorithm, we choose to apply (1.31) using the traces
and the normal traces of uq R)|q, and v, R)|q, - With these notation the proposed combined

algorithm can be summarized as follows.
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3.2 Combined inversion algorithm

Algorithm 2: A combined inversion algorithm for a geometrical inverse problem

e Fix the number of parameters n € N* that serve to define the starlike interface.
e Consider an initial guess R® € (R )", the initial interface © = Xgo = T, (R’) and

the corresponding conductivity o(R°) = o1xq, .o + 02X0, 0-

e Choose as initial boundary values: A\, x(X) =0, A\; p(X) =0on X, i =1,2.
o k=0;

repeat until k < maximum number of iterations

1. Set )\?JV = /\i,N(E)a )\?VD = )\17[)(2) on E, 1= 1,2

2. Use L iterations of OSM to evaluate
Ug(Rk) = NL(Zv /\(1),N7 Ag,N)a )\Z[:N(Rk) - AﬁN(XL )‘(1),N7 )‘(2),N>‘
Vg (RF) = DL(Eﬂ )‘(I),Da )‘g,D)v /\zI:D(Rk> - Az!::D(E? >‘(1),D7 /\(2),D>'

9,
3. Evaluate a‘Ry(Rk), for j =0,...,n — 1 using formula (1.31) where the boundary
J

values are calculated using u, R¥)|0, and vy R9) |0,
4. Update ¥ = T, (RF1) with

aj .
k+1 . k k
R] 1.—R] T ](R ),]—O,...,TL 1,

where 7 > 0 is chosen sufficiently small. (A step adaptation can be incorporated here
but only after a few iterations, when the gradient becomes sufficiently accurate and

provides a descent direction).

5. Update the interface values on S; as
A (D) (V(1) = A (RM) (@), ¢ € [0,1],
\p(E)(M;(t)) = Mp(R)(1), t € [0,1],
following the identification (3.1).
6. RF = R

7. k=k+1.

end
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3.3 Local convergence analysis in some particular cases

Remark 3.2.1. As indicated earlier, in step 3 of Algorithm 2, we could have made the choice

to compute the derivative using uy(gry, — and Vygry, . This would not affect the theoretical
2

I lo
or numerical results below. We keep the choice made in Algorithm 2 for the remainder of this

thesis for the sake of conciseness.

3.3 Local convergence analysis in some particular cases

3.3.1 The one dimensional case

This section is dedicated to study the convergence analysis of Algorithm 2 in the one dimen-
sional case and where the number of OSM iterations L = 1, i.e we perform only one DDM
step per iteration. With the notation of Section 1.7.1 and Algorithm 2, the iterative scheme
leads to the following.

From Theorem 1.6.5 and equation (1.36), we have

7(6) = L9 (100 )P = lowily (9)F) (3.2)

0102

and the solutions after only one OSM step iterate are given in |0, [ by

Ua(ak)(l‘) = 04%(516)1’7 Uo(sk)(x) = 041L>(5k)5€7

where \L )
WO = G sy
Lo Ap(9)
pl0) = G ey

Hence, the gradient of the Kohn-Vogelius function with respect to § €]0, 1] is approxi-
mated by

105k o o1(01 — 02) L (sk\2 WL (5kY[2
IO = o ragiy (M@ = i (39)F)

The iterative scheme of Algorithm 2 now reads

b _ gk g U0 Z02) yn e D gy
’ =9 7—02(01 + adk)? <|>\1’D(5 ) |)\1’N(5 ) ) (3.3)
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3.3 Local convergence analysis in some particular cases

and the updates for the boundary values are given by

A (8 = p*(0*) AZ (01, 0%) + % (89), (3.4)
Ay (85FY) = k(%) AT N (08), (3.5)
Mp(0°F) = q%(6") A7 p(R*) + w(d%), (3.6)
A (6" = k*(0%) M p(6%). (3.7)

where p®(6%), n*(6%), k*(6%), ¢*(6*) and w*(d*) are respectively given by (2.16), (2.20), (2.15),
(2.17) and (2.24).

If we set X% := (6%, Af y (%), A% n (6%), M 5 (%), A5 (6%)), then the iterative scheme formed
by (3.3)-(3.7) can be synthetically written as

X4 = Q(x),
where the function G is given by

G : R — RS
X = <x7y727t7 h‘) — G<X) = <g1<X)>gZ(X)vg3(X>7g4(X)7g5<X))7

such that:
n(X) = - 021(5:1 +_ ;;2))2 (t* =),
92(X) = p*(x)z +n%(2),
93(X) k*(x)y,
g(X) = ¢“(z)h+ w(x),
g5(X) = k%(x)t.

From the analysis of section 2.4.1 we observe that the sequence /\f’ ~(0), i = 1,2 converges to
Ay (0), i = 1,2, where

5@ = Lo

with
= (01 +ad) and ¢y = (01 — ad).
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3.3 Local convergence analysis in some particular cases

Similarly, the sequence X{ ,(8), ¢ = 1,2 converges to A% (0), i = 1,2, where

Moreover, we have

/\T?N(g) =p° (E)AS?N (0) +n*(),
ACQ)?N(S) = ka(5>/\f>N(5)a
A5 (0) = g% (0)A5p (0) + w(9),
A5p(0) = K (O)ATp(9)-

Using the expression of f given by (1.34) one can easily check that )\ZON(E) = )\Z‘-’f’D(g)
and then X = (8, A% (8), A3 (8), A (8), A5 (3)) = (8, A% (8), Ay (8), Ay (8), Ay (8) ) is
a fixed point of G. We first establish in the following lemma that X is the unique fixed point
of G.

Lemma 3.3.1. The point X defined above is the unique fized point of G.

Proof. Let X = (z,y, z,t,h) a fixed point of G, then we have:

l=vy,
y =p*(x)z +n%(x),
z = k*(2)y,
E= g (@)h + w(2),
h = k*(x)t.
consequently
y 0 p*x)\ (v n*(x)
= -
z E*(x) 0 2 0
and
t 0  q%(x)) [t w(x)
= +
h kE*(x) 0 h 0
then we have:
- (]5(0'1 + CYSIJ)
y - 0_1 )

oo f (o1 + ax)

t = .
oax 4+ 01(1 — )
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3.3 Local convergence analysis in some particular cases

consequently,

f= ¢ [oox + 01(1 — )],
01029

where the mapping defined on ]0, 1] by :

(@) =~ [z +-or (1~ o)

is one to one. We deduce that, z = ¢, and then
X = (S, APy (8), Ay (8), A% (6), A%?D(g)) _x
O

Theorem 3.3.1. There exists k > 0 such that Algorithm 2 with L = 1 is locally convergent
for all T €]0, K[.

Proof. For short notation, let us set T =0, § = A% (9), and

ko= ko (T) = =2 (3.8)

Then from the previous Lemma, X = (7,7, k¥, 7, ky) is the unique fixed point of G. In order
to prove the local convergence we shall establish that G is a contraction in a neighborhood
of X. This requires the study of the Jacobian matrix DG(X). The latter is given by

1 dr 0 —dr 0
0O 0 -1 0 0
DGX)=1|b k 0 0 0],
c 0 0 ¢
b 0 E 0
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3.3 Local convergence analysis in some particular cases

where we have set for short notation

_ 1001 < 2¢(01 —03)

d = T Oy (X) = oo(o1 + ax)’ (39)
o %7 . —2a9

R Ot (3.10)
B % . 2a¢

¢ = NS et =Ty (3:11)

¢ = X = () (3.12)

For every (\,7) € R X R, we define the characteristic polynomial of DG(X)

1—X dr 0 —dr 0

a A -1 0 0

P\, 7) = det(DG(X)—X5)=| b k=X 0 0
c 0O 0 =X ¢

b 0 O k=X

and we denote by \;(17) € C, j = 1,...,5, the eigenvalues of DG(X). Then, we have
POAT) = (1= NN+ k)N = kg) — 7 d [eX* + (bg + b)A* + ckA]
and P(\;(7),7) =0for j=1,...,5.

I

Let p(7) = max{|/\j(7')|' jg=1,... ,5} be the spectral radius of DG(X). We remark
that for 7 = 0, we have

P(X0) = (1 =AM\ + k) (N — kq),

where |k| < 1 and |kg| < 1. Then, for 7 = 0, the eigenvalues of DG(X) verifies:
IA(0)] =1, and [X;(0)] <1 Vje{2,3,4,5}.
Thus, one can choose k > 0 sufficiently small, such that
N ()| <1V je{2,3,4,5}, and p(r) = |\o(7)| for all T €]0, &[.

To show that if p(7) < 1 for small enough 7 > 0, we use a first order Taylor expansion of
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3.3 Local convergence analysis in some particular cases

(A, 7) = P(X\, 7) in a neighborhood of the point (1,0). Indeed

P\, 1) = P(1,0)+ gi)(l,()) (A=1)+ (?9]:(1’ 0) 7+ e(A,7),

= C1(1—=X) = Cor +e(\, 1),

where  lim e )]

=0, and
(An)=1,0) /(1 — \)2 4 72

Cr:=1+k)(1—kq), (3.13)
Cy:=de(1+k) +b(1+q)].
This shows that for 7 sufficiently small
Xo(T)=1-— 97' + o(T). (3.14)

Ch

Clearly C; > 0 from the conditions |k| < 1 and |kq| < 1. Indeed, we also have

20
I+q = 02+a—(i_f),
then,
dag(oy — 09)

+B)+b1+9) = e Tall = 7))’

where k, b, ¢ and ¢ are respectively given by (3.8), (3.10), (3.11) and (3.12).

Hence, according to (3.9), we get

Cy = de(1+k)+b(1+q),

B 8ad? (o) — 09)? 50
oo+ ax)?(oy + a(l — 7)) '

Then Cy > 0 and from (3.14) there exists x > 0 such that p(7) = |A\o(7)| < 1 for all 7 €]0, &|.

This proves that G is a contraction for 7 €0, k[, which gives the desired result.
O
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3.3 Local convergence analysis in some particular cases

Remark 3.3.2. Using equations (3.8) and (3.12), we obtain

Ol = (1 + k?)(l — k‘q),
daoy |:O'2T+ o1(1 —T)}
(o1 +ax) (02 + a(l —T))

Therefore,
—= =J"(6) for alla>0, (3.15)

where J"(T) is given by (1.38).
This shows that for this specific case, the local convergence of Algorithm 2 is equivalent to

the local convergence of Algorithm 1 described in Section 1.7.1 of Chapter 1.

3.3.2 The case of an annulus

This section is dedicated to the study of the convergence analysis of Algorithm 2 in the case

of an annulus domain of R? where the number of OSM iterations L = 1. Using the same

notation as in Section 1.7.2 and Algorithm 2, the iterative scheme leads to the following.
From (1.43), we have

aua(R)
ov

TR = [o(R) /{ 1 (|o<R>8§ﬁ Rt

0102

- |0(R)

2
) + (IVrvom* = [Vertiorn) )

and the solutions after only one OSM step iterate are given in |Ry, Rs[ by

ot (1, 0) = k(B og (1) vt 0) = ab(R) log ().
R1 Rl

where %

a%(R) = 2 R )

<01 + aRlog (>>

L Fa

RA

b (R) = LD AR

(01 + aRlog <Rl)>

Then the gradient of the Kohn-Vogelius function with respect to R €| Ry, Rs[ is approxi-
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3.3 Local convergence analysis in some particular cases

mated by

0T R 2may (o) — o9) R

[ k ~Y
o9 | o1 +aR"log | —
Ry

(Mo (RM)E = INE (RYP)

The iterative scheme of Algorithm 2 now reads

210y (01 — 09) RF

Rk
oy | o1 +aRFlo
o vartios (7))

RM'=R' —7 5 (1M (R = M (RE)P) (3.16)

and the updates for the boundary values are given by

M (B = p(RY) Mg (RY) +1°(R), (3.17)
M (REY) = kY(RY) ALy (R"), (3.18)
M p(R*Y) = ¢*(R*) A7 p(R*) + w*(R"), (3.19)
A p(RFY) = k*(RF) AL p(RY). (3.20)

where p®(RF), n®(R*), k*(R"), ¢®(RF) and w®(RF) are respectively given by (2.31), (2.35),
(2.30), (2.32) and (2.39).
If we set X* := (Rk, A N (RE), AE N (RF), A (RF), )\§7D(Rk)), then the iterative scheme given

by equations (3.16)-(3.20) can be synthetically written as
Xk+1 — G(Xk),
where the function G is given by

G: RS — RS
X = ([L‘,y,Z,t, h) — G(X) = (gl(X)vQQ(X)ag3(X)7g4(X)795(X))a
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3.3 Local convergence analysis in some particular cases

such that:

2mo1(0] — 09)x
g(X) = z-7 11— 02) 5 (=),

o (0 —|—axlog<x)>
2| 01 -
Ry

92(X) = p(x)z+n%(2),
g3(X) = k%(2)y,
9(X) = ¢*(x)h+w*(2),
g5(X) = Ek%(x)t.

From the analysis of Section 2.4.2 we observe that the sequence )\f’ ~(R), i = 1,2 converges
to AXy(R), i = 1,2, where

_ 9%
Ulﬁ

Y = [01 + aRlog (f}iﬂ and 1y = [0'1 — aRlog (;)] .

Similarly, the sequence X! ,(R), i = 1,2 converges to A% (R), i = 1,2, where

Ay (R) (08

with

)‘?,OD(R) = - oot (08
R [02 log <R> + o1 log <)]
Ry
Moreover, we have
ATy = p° (E))‘S,ON(E) +n*(R),
/\C2>?N = ka(ﬁ))‘cﬁv(ﬁ)a
ATp = qa(ﬁ)/\cfp (R) +w*(R),
AYp = k“(ﬁ))\‘fD (R).

Using the expression of f given by (1.42) one can easily check that A% (R) = A?%(R) and
then X = (R, A3 (R), Ay (R), A (R), A5 (R)) = (B, Ay (R). A3y (R), Ay (R), Ao (R))
is a fixed point of G. We first establish in the following lemma that X is the unique fixed
point of G.

Lemma 3.3.2. The point X defined above is the unique fized point of G.
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3.3 Local convergence analysis in some particular cases

Proof. Let X = (z,y, z,t,h) a fixed point of G, then we have:

Y pa( )z +n(@),
2= k*(z)y,
t=q*(@)h +w(x),

h = k*(x)t.
Consequently
Y 0 p*(x)) (v n*(x)
= +
z E*(x) 0 2 0
and
t 0 ¢*(x))\ [t w®(x)
— —|— ,
h E*(x) 0 h 0

then we have:

ORs [01 + axlog (;;ﬂ

Y= )
o1

oo f {01 + azlog (}2”

[02 log (R1> + o1 log (RQH .
= i lrron () + oo ()]

where the mapping defined on | Ry, Ry[ by

= 52 o) o ()

is one to one. We deduce that, z = R, and then

Consequently,

X = (R, A%N(R), A3y (R), A (R), A (R) ) = X.
O

Theorem 3.3.3. There exists k > 0 such that Algorithm 2 with L = 1 is locally convergent
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3.3 Local convergence analysis in some particular cases

for all T €]0, K].

Proof. For short notation, let us set T = R, 7 = A{%(R), and

— R
= R

Then from the previous Lemma, X = (Z,7, k¥, 7, ky) is the unique fixed point of G. In order
to prove the local convergence we shall establish that GG is a contraction in a neighborhood
of X. This requires the study of the Jacobian matrix DG(X). The latter is given by

1 dr 0 —dr 0
a 0 -1 0 0
DG(X)=|b k 0 0f,
c 0 0 ¢
b 0 kK 0
where we have set for short notation
g = 109z AmoRa(oi—0y) (3.22)
T Oy — R
09 [01 + aRlog ()]
Ry
092~ —2Ry9
a = 9 (X) = = (3.23)
5 200 Ry (1 + log (]f))
b= B(X)=- VA (3.24)
O R |01+ aRlo It
1 g R
Ry
o 200 R, <log (> — 1>
c o= ‘294()() - ko2 (3.25)
x R [02 + aRlog (2)}
R
. 094 ~ Ry
¢ = X =@, (3.26)
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3.3 Local convergence analysis in some particular cases

For every (\,7) € R x R, we define the characteristic polynomial of DG(X)

1—X dr 0 —dr 0

a =X —1 0 0

P\, 7) = det(DG(X)—A5)=| b E =X 0 0
c 0O 0 =X gq

b 0 0 ko =X
and we denote by \;(7) € C, i =1,...,5, the eigenvalues of DG(X). Then, we have
POT) = (1= NN+ k)N —kg) =7 d[(c—a)\* + (bg + b)N + k(ag + )|,

and P(\;(7),7) =0 fori=1,...,5. Let p(7) := max {])\Z»(T)|, i=1,... ,5} be the spectral
radius of DG(X). We remark that for 7 = 0, we have

P(X,0) = (1= X)X+ k)(\ — kq),
where |k| < 1 and |kq| < 1. Then, for 7 = 0, the eigenvalues of DG(X) verifies:
IA1(0)] =1, and |N\;(0)] < 1V i€ {2,3,4,5}.
Thus, one can choose k > 0 sufficiently small, such that
INi(T)| <1 Vie{23,4,5}, and p(7) = |\o(7)] for all 7 €]0, x[.

To show that if p(7) < 1 for small enough 7 > 0, we use a first order Taylor expansion of
(A, 7) — P(A, 7) in a neighborhood of the point (1,0). Indeed

P\, 1) = P(1,0)+ ?;(1,0) (A—1)+ 68”:(1, 0) 7+ €\, 7),

= 01(1 - >\) — CQT+ 6()\,7'),

where  lim =0, and
A)=10) f(1 = \)2 4 72

{ Ch =1+ k)(1 = kq), o

Cy=d|(c—a)(1 + k) + (b+ ak)(1+q)|.
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3.3 Local convergence analysis in some particular cases

This shows that for 7 sufficiently small

Cy
Xo(T)=1-— aT + o(7). (3.28)

Clearly Cy > 0 from the conditions |k| < 1 and |kq| < 1. Indeed, we also have

2
1+k = N (3.29)

[01 + aRlog (5)]
1
20R [01 log (%) + 0y log <}—§>]
1

s [01 + aRlog (51)] {02 + aRlog (%)] | 0

—a — 2¢R2 (0'2 + OCP) . (331)

R |0y + aRlog (%)
—2¢Ry (01 + aR
brak = 2 (o R) _ (3.32)
R |0y + aRlog (RQ)
- ]
1+q = = SNt (3.33)
[02 + aRlog (Rﬂ

then
4CYRQ¢(01 - 02)

Vi [01 +aRlog (1]%%)] 72+ aRog Cj;)]

1

(c—a)(1+k)+ (b+ak)(14+q) = (3.34)

where k, ¢, ¢, a and b are respectively given by (3.21), (3.26), (3.25), (3.23) and (3.24). Hence,
according to (3.22), we also get

Cp = df(c—a)(1+k)+ (b+ak)(1+q)],
16am R3¢* (01 — 03)?

R\1? AN
o2R [al + aRlog (R)] {02 + aRlog <RZ)]
1

Then C5 > 0 and from equation (3.28) there exists x > 0 such that p(7) = |Ao(7)| < 1 for all

7 €]0, k[. This proves that G is a contraction for 7 €]0, [, which gives the desired result.
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3.3 Local convergence analysis in some particular cases

Remark 3.3.4. Using equations (3.29) and (3.30), we obtain

Ci = (1+k)(1—kq),

— R, R
4doiaR |01 lo () + o510 ()]
1 [ 1 108 = 2108 R,

2

o+ attos ()] [ox s ()]

gQ =J"(R) for alla >0, (3.35)
1
where J"(R) is given by (1.44).

This shows that for this specific case, the local convergence of Algorithm 2 is equivalent to

Therefore,

the local convergence of Algorithm 1 described in Section 1.7.2 of Chapter 1.

3.3.3 The case of an open disk

This section is dedicated to the convergence analysis of Algorithm 2 in the case of an open
disk domain of R? and where the number of OSM iterations L = 1, i.e., we perform only one
OSM step per iteration. Using the notation of Section 1.7.3 and Algorithm 2, the iterative

scheme leads to the following. The boundary values at iteration k& are of the form
~ 9 A 9
Ay (B = My (B 2D\ () = St 29,
’ ’ m ’ ’ m

for some constants Aly(R*) and Alp(R*) and for i = 1,2.

From (1.48), we have

8uU(R)
v

i [ o

0102

- ot

2
) + (|VTUO'(R)|2 - ]VTuU(R)F) Rd6.

Therefore according to equations (2.46) and (2.51), the solutions after only one OSM step
iterate are given in €2y by
¢(6)

0) = L Rk m
) UJ(Rk)(ra ) aD( )’I" m

¢(0)

U’U(Rk)(rv 0) = a%(Rk)rm
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3.3 Local convergence analysis in some particular cases

for R* < r < Ry with

My (R)
L o 1N
an(f):= R™Y(moy + aR)’
M (R

. R™Y(moy + aR)

Consequently, by step 3 of Algorithm 2, the gradient is approximated by

87J( o~ mm?(0? — 02)RF
8R N 02(01m+osz)2

(AL (BY)F = 1AL w (RE)P).

The iterative scheme of Algorithm 2 now reads

mm?(o} — o3)RF

k+1 _ pk
r =R TOg(alm—i—osz)Q

(AL (B = 1AL n (RE)P),

and the updates for the boundary values are given by

M (R = p(RY) M (RY) + 1 (RY),
5‘é,N(RkH) = kqan(Rk) A1L,N(Rk)a
M p(B) = g5(RY) A5 p(RF) 4w (RY),
5é,D(RMI) = kfﬁ(Rk) AIL,D(Rk)7

(3.36)

where p% (RF), n2 (R¥), k& (R*), ¢@ (R*) and w? (R*) are respectively given by (2.42), (2.47),

(2.41), (2.43) and (2.52).

If we set X* = (RF, AL\ (RF), A5 v (RF), ML (RF), A% p(R¥)), then the iterative scheme

formed by (3.36)-(3.40) can be synthetically written as

X = G(XH),

where G+ RS — RS, X = (2,9, 2,1, h) = (91(X), 92(X), g5(X), ga(X), g5(X)) are given by

B(X) = o= r T )
92(X) = pp(@)z + 1y (2),

gs(X) = k. (x)y,

94(X) = g (2)h 4wy, (z),

g5(X) = kX (x)t.



3.3 Local convergence analysis in some particular cases

From the analysis of section (2.4.3) we observe that the sequence S\f ~(R), i = 1,2 converges
to ;\ZON(F), i =1,2, where

—=m—1

2RI R

N = T on (R — )

(2

with
Y1 = (oym+aR) and 1y = (oym — aR).

Similarly, the sequence S\f p(R), i =1,2 converges to X;"D (R), i = 1,2, where

QO'QCfREREm_I

)= ) e (e T
Moreover, we have
Ay (R) = p (R)Asy (R) + 1 (R),
Aw(R) = ke (R) Ay (R),
A (R) = ¢35 (R)ASH (R) + wi(R),
A3 (R) = k& (R)A, (R)

Using the expression of Cy given by (1.46) one can easily check that A% (R) = A%, (R) and
then X = (R, A% (R), A% (R), A% (R), A (R) ) = (R, Ay (R), Ay (R), Ay (R), A% (R))
is a fixed point of G. We first establish in the following lemma that X is the unique fixed
point of G.

Lemma 3.3.3. The point X defined above is the unique fived point of G.

Proof. Let X = (z,y, z,t,h) a fixed point of G, then we have:

= k& ()t
Consequently
y 0 ph(@)) (v o ()
= -
z k¢ (z) 0 z 0



3.3 Local convergence analysis in some particular cases

and

then we have:

B 2R ™= (oym + ax)
YT (R3™ 4 a?™) 4+ o9 (R3™ — 22m)’
L 205C Ry ™ (oym + ax)

oy (R3™ — 22m) + oy (R3™ + 22m)

Therefore,
o, B o1 (R3™ — ™) 4 02 (R3™ + 2°™)]
T 0y [0 (R3" + 2?™) + 0o (R3™ — 2?m)]°

where the mapping defined on |0, Ry[ by :

_ Ry [on(RE™ — 2°™) + oo (RY™ + ™))
oy o1 (R3™ 4 22m) + oy (R3™ — 22m)]

g9(z)

is one to one. We deduce that, z = R, and then

X = (R, A% (R), A5y (R), Ap(R), A% (R)) = X.
O

Theorem 3.3.5. There exists ag > 0 such that for all o €]0, ag| Algorithm 2 with L =1 is
locally convergent for all T €]0,0,[ for some o, > 0.

Proof. For short notation, let us set 7 = R, § = ;\‘ff”N, and

o1m — aT Yy

om+aT Y

k:=ky(z)= (3.41)

Then from the previous Lemma, X = (Z,7, k¥, 7, ky) is the unique fixed point of G. In order

to prove the local convergence we shall establish that G is a contraction in a neighborhood
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3.3 Local convergence analysis in some particular cases

of X. This requires the study of the Jacobian matrix DG(X). The latter is given by

1 dr 0 —dr 0
a 0 p 0 O
DGX)=1|b kK 0 0 0
c 00 0 ¢
b 0 0 k£ O

where we have set for short notation

_ 2
d = 190y - 2 (o — 03)T : (3.42)
T dy oa(orm + aT)?
— 2m 2m 4m 4m
P %(y _ 2maos(4mR; + R} ) (3.4
Ox [oom(R3™ — 72m) + o (R3™ + —2m)]
4TTLOéRm+1Tm_1 oom? — aT R2m + 72m +ax R2m _ 2m
L AmaRy T (o — o) ) g IR
[mm(R%m — ") + aT(R3"™ + 527")}
092 1~ _
= 9, ) =r 4
993 ~— —201ma
b = X)=—"7"7— 3.46
Ox Fracie (o1m + a7T)? (3.46)
o 2 4 2m—2m =dm _ pdm
c = %(X) _ mooy(AmRy"T " + T R™) kg (3.47)
Oz [owm(RE™ + 72™) + aw(RZ™ — 7))
4moaaCy RPT™ ! |(09m? — aT)(R3™ — T°™) + azm(R3™ + 7°™
" — e 1 ) 2( : )], (3.48)
[azm(Rgm +7°") + az(R3" — sz)}
094 ~ _
= o (X) =gy (T). 4

For every (\,7) € R x R, we define the characteristic polynomial of DG(X)

1—X dr 0 —dr 0

a A P 0 0

P\, 1) = det(DG(X)—X5)=1| b E- =X 0 0
c 0O 0 =X gq

b 0 O E =X
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3.3 Local convergence analysis in some particular cases

and we denote by \j(7) € C, i =1,...,5, the eigenvalues of DG(X). Then, we have
P(A7) = (1= N\ = kp)(A* — kq) — 7 d |(c — )X’ + b(q — p)A* + (ag — cp)kA| ,  (3.50)
and P(\i(7),7)=0fori=1,...,5.

Let p(7) := max{|\;(7)|; i =1,...,5} be the spectral radius of DG(X). We remark that
for 7 = 0, we have

P(X,0) = (1 — AN — kp)(N* — kq),

and therefore, the eigenvalues of the DG(X) for 7 = 0 are given by

(04(0),22(0), 2(0), 2a(0), As(0)) = (1,y/hp, =/ y/ha, =/ ha )

where |kp| < 1, |kq| < 1, and kq # kp if a sufficiently small. Then, for 7 = 0 and « sufficiently

small, all eigenvalues of DG(X) are simple and verify:
IA(0)] =1, and [N(0)| <1 Vie{2,3,4,5}.

Consequently, there exists a small enough number § > 0 such that all eigenvalues of DG(X)
are simple for all 7 €]0, §[ and

lim \;(7) = A\(0) Vie {1,2,3,4,5}.

7—0

Thus one can choose ¢ > 0 sufficiently small such that |\;(7)| < 1 for i € {2,3,4,5},
(1) = [Xo(7)| for all 7 €]0, §]. Moreover Tlii)noﬁ(T) = 1. To show that if p(7) < 1 for small
enough 7 > 0, we use a first order Taylor expansion of (A, 7) — P(A,7) in a neighborhood
of the point (1,0). Indeed

P\, 1) = P(1,0)+ aa];(l,()) (A—1)+ 8—P(l,O) T+ €\, 7)

or
= Ci(1=X)—Cor+e(AT)

where  lim e )]
(A,7)—(1,0) (1 _ )\)2 + 72

(3.51)
Cy == d[(c — a)(1 = kp) + (q — p)(b + ak)].



3.3 Local convergence analysis in some particular cases

This shows that for 7 sufficiently small

Cy
Xo(T)=1-— aT + o(7). (3.52)

Clearly C; > 0 from the conditions |kp| < 1 and |kq| < 1. Let o €]0, ap| where ay is as
in Lemma 3.3.4. Then we also have that Cy > 0. We then infer from equation (3.52) the
existence of 6, > 0 such that p(7) = |Ao(7)| < 1 for all 7 €]0,0,[. This proves that G is a
contraction for 7 €]0, d,[, which gives the desired result.

a

Lemma 3.3.4. There ezists ag > 0 such that Cy > 0 for all 0 < o < g where Cy = Coy(av)
is given by (3.51).

Proof. We first observe that

—m—1
2mo Ry R

o1 (R3"+R™") + oo (R3" —R™)

y ~ ky~ as a — 0.

Then, using a first order Taylor expansion of a, b, ¢, d, k, p, ¢, in a neighborhood of a =0

we get the following equivalences as o« — 0

p 271 (02 —02)T_ 4mm(o? — o) Ry R"
0102 0109 {01 <R2 + R ) + o9 (R2 - R )}
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3.3 Local convergence analysis in some particular cases

b —20_ N —40zRgLHEm_1
moy Y o] (R%m + EWL) + 09 (R%m — E2m) ’
b 1o 20R
moy
20R (R3"+R™")
b ~ 1 - 2m
moy (R%m —R )
20R (R3" - R™")
q ~ 1- 2 2m
mo (RQm +R )
—2a (4mR"R™" - R"™ + R,"")  AmaRyTR" (R34 R
a ~ o 2 y+ o 2
moy (R3™ —R™) oy (R3" - R™")
daRyHR™! {mol (R%m — R2m> + (moy — 01) (R%m + Ezmﬂ
T (B =) [ (R4 ) o0 (2 — )
o (4mR3"R™ + R - R,"") - 4maCyRyR™ (R3" - R™")

ma (R3™ + B™) (B3 + B
404R;”+1Fm71 {mal (R%m + ﬁzm) + (moy — o1) (R%m — ﬁzmﬂ
oy (R3™ + ﬁm) (o1 (B3 + ﬁm) + oy (R — ﬁ’")}

Then we infer that

16@(01 — mag)Rg’mHE?)m_l

T (R =R oy (B + B 4 on (B3 - B
o~ 20R [0y (B3 + R™) + aggizgm - R")] 50
™mo109 (R%m — R )
gy o 2F o (R —R™) +0n (B3 + R 555)

mo,0y (R%m + PQm)
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3.3 Local convergence analysis in some particular cases

. 8a R R
Mmoo (R%m — §4m) ’

daRPHRE™! [(mal — 09) (Rgm — RQm) + (moy — 01) (R%m + Emﬂ

b+ak~b+a ~ - (R%m - EQm) [01 (R%m T RQm) P (R%m _ Ezmﬂ

Consequently,

32&2 (01 — mag)R§m+1F3m

(e=a)i=kp) ~ moy03 (R%m — §4m) (R%m — EQm)

I

3202 Ry R [(moy — 03) (RZ" — R™™) + (moy — 01) (R" + "))
mo3 (R" —R™) (R3" = R™) |00 (R3" + R™") + 0 (R3" = R™")]’

(¢ —p)(b+ ak)

and from equations (3.51) and (3.53), we obtain

1287a%m (02 — 02)? Rim 2R

Oy~
i oto} (Ry" —R") [0 (R + ") + 0o (RZ" - R™")]

;> 0.

Remark 3.3.6. Cy, Cy and DG(X) deserve a few remarks.

1. Using equations (3.51), (3.54) and (3.55), we obtain

10°R oy (R + B™) + o0 (B3 = R™)| [o0 (R3™ = R™™) + 0 (RZ™ + R™")]

—4m )
m2o?o? (Rém — R )

Cy ~

as a — 0. Therefore,
Co

Cy
This shows that the local convergence of Algorithm 2 is equivalent to the local conver-

gence of Algorithm 1, as described in Section 1.7.3 for this specific case.

~ J"(R) asa — 0. (3.56)

C _
2. We conjecture that the exact equality 52 = J"(R) also holds true for all a > 0.
1
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3.3 Local convergence analysis in some particular cases

3. We observe that

1 0000

00100
DG(X)~A=1|0 10 0 0| asm— +00

00 0O01

00010

and the spectral radius of the matriz A is equal 1. Consequently

lim p(DG(X)) = 1.

m—+00
The following proposition proves the conjecture of the above Remark in the particular
case where 01 =1, 00 =2, Ry =1 and m = 1.

Proposition 3.3.5. Let us fit oy =1, 09 =2, Ry =1 and m = 1. Then, for all o > 0 and
R €]0, Ry[, we have the following equality:

Cy

G_gm (357)

Proof. Let m =1, 0y =1, 09 = 2, and Ry = 1, we first observe that

¢, = i
23— )
_ 2(1+ aR)
y = ———
3— R

According to equations (3.41), (3.45), (3.49), (3.42), (3.47), (3.43), and (3.46), we can obtain
the simplified expressions for k, p, q, d, ¢, a, and b as follows:

6T R
(1+aR)(B-R")
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3.3 Local convergence analysis in some particular cases

b o~ %"
 (14aR)B-F)
_ 21-R)—aR(1+R)
LT Rt aR1+ B
_ 201+R)-aR(1-R)
L ) taR(-B)

S8
3-F)[aR1+R)+20-R)|

S
3-R)[aRO1-F)+20+R)|

Then we infer that

16aR’(aR — 2)

e =) [0R(1-R")+20+R)| [aR(1+R") +201-R")]’

1-— k‘p = — QEYP(g _2R2) —2.7°

(1+aR) [aR(1+R)+2(1 - R)|
1-— k’q = p— %Xﬁ(g +2R2) —2.71"

(1+0aR) [aR(1-R)+2(1+ )|

- 16aR’
S ORI+ R)+20-F)|[0R1-R)+20+R)|
10R 2R - a3+ R
b+ak = — o — — —5 -
(3-R)(1+aR) |[aR(1+R)+2(1-R)|
Consequently,

10°R*(9- R
(1+aR)? [aR(1+ R +2(1 - R)| [aR1 - R*) + 201+ R")|’

Cr:=(1—-kp)(1—-kq) =

32(12E3(a§ —2)

(c—a)(1—kp) = — 7 = — R E— — 5
(1+aR) [aR1+R)+2(1-R)| [aRO1-R)+2(1+R)]
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3.4 Numerical experiments and validation

640°F [2R—a(3+R)]
(3-R)(1+aR) [aR(1+R)+2(1 - R2)]2 [0R(1-R)+201+R)] ’

(q—p)(b+ak) =

and from equation (3.51), we obtain

576 o*7 R
(3-R)*(1+aR)?[aR1+R)+201 - )| [aR(1-F)+2(1+R)|

Cy, =

Hence,
-2
C 1447 R -
2 T S 0Va>0and R0, R,
G B+R)B-R)

and from equation (1.49), we deduce that

027 "o
a—j(R).

3.4 Numerical experiments and validation

The goal of this section is to test the efficiency of Algorithm 2 in comparison with the stan-
dard descent gradient described in Algorithm 1. We shall employ synthetic data numerically
generated using a finite elements solver designed with the help of FreeFem++ [35]. Indeed, we
use a direct solver to generate the data, while the OSM is used in the inversion for Algorithm
2. We further avoid any inverse crime by making sure that the meshes used for generating
the data have no connections with the ones used in the inversion. Actually, the latter vary
during iterations since the interface ¥ changes. Moreover, in most of the examples below
the geometry of 3 can not be exactly represented by the parametrization (1.29) used in the

inversion algorithms.

For all the examples below, the domain  is the open disk of center (0,0) and radius
Ry = 2, the current flux ¢(6) = cos(), 6 € [0,2n], the conductivity parameters o; = 1,
0o = 2 and the OSM parameter a = 1. The measured data f is represented by the values
fi, i = 1,..., Np of the numerical solution ., at the nodes belonging to I'. In order to
simulate noise in the data f we artificially corrupt the computed values f; with random noise

as follows
f; = fz+6(1 _QTi)fia Z: 1,...,NF,
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3.4 Numerical experiments and validation

where r; are randomly chosen between 0 and 1 and e denotes the noise level. In addition
to representing the obtained geometrical reconstructions we shall also give the evolution of
the dimensionless square-root cost functional (/7 /Jy during iterations where J is given by
(1.30) and

Jo ::/0|Vunum|2dx.
Q

3.4.1 Discussion of Algorithm 2 for a kite shape

In the first example we choose X to be a kite defined by
x(t) = cos(t) + 0.5 cos(2t) — 0.4 and y(t) = 1.2sin(t), t € [0, 27]. (3.58)

For the inversion algorithms we use the parametrization (1.29) with n = 19. The initial
guess is Rg-) = 1.8, for j = 0,...,n — 1. The results of the inversion are given in Figure
3.1(b) for Algorithm 1 and Figure 3.1(c) for Algorithm 2 with L = 1, i.e only one OSM
step is used at each gradient descent iteration. We observe that we qualitatively obtain the
same accuracy for both algorithms. The evolution of the cost functional is depicted in Figure
3.2(left). We remark that the cost functional increases in the first iterations for Algorithm 2,
which means that the approximated OSM solution is not yet sufficiently close to the exact
one and therefore the approximate gradient is not yet a descent direction. This is corrected
as the iteration number increases. Whence the iteration number is sufficiently large we notice
that the speed of convergence represented by the slope of the curves is roughly the same
between the two algorithms. This indeed shows the superiority and relevance of Algorithm 2
which achieves comparative performances with potentially much cheaper numerical cost per
iteration. Figure 3.2(middle) and (right) show the effect of increasing the number L of OSM
steps. We naturally observe that as this number increases, Algorithm 2 becomes closer to
Algorithm 1. Let us also mention that, other numerical tests not reported here suggest that
this observation also holds when we fix L, for instance L = 1, and decrease the descent step

7 (see also Figure 3.7(right)).
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Exact
= = =Reconstructed

-1

0 1 2

(b) Algorithm 1

Exact
= = =Reconstructed
2
1
0
-1
-2
-2 0 1 2

(c) Algorithm 2

Figure 3.1: Comparison between Algorithm 1 and Algorithm 2 with L = 1 for the case of the

kite parameterized by (3.58) and for noise free data. The exact shape and initial guess are

shown in Figure (a). The gradient descent parameter 7 = 0.05 for both algorithms.

Exact
= = =Initial
2
1
0
-1
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(a) Initial guess
0
— Algorithm 1
05 - - = Algorithm 2, L=1
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Figure 3.2: Comparison of the evolution of log;,(1/J/Jo) between Algorithm 1 and Algorithm
2 with L = 1 (left), L = 2 (middle) and L =5 (right) for the example shown in Figure 3.1.

The gradient descent parameter is 7 = 0.05.

Figure 3.3 shows the reconstructions obtained by Algorithm 2 for the example discussed

112

in Figure 3.1 but for noisy data with noise level € = 1% (left), € = 3% (middle) and € = 5%

(right). We observe robustness of the obtained results and a good accuracy which is very
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3.4 Numerical experiments and validation

similar to the one obtains with Algorithm 1.

Exact
= = —Reconstructed

Exact

= = —Reconstructed

Exact
= = —Reconstructed

Figure 3.3: Reconstructions obtained by Algorithm 2 with L = 1 for the example discussed
in Figure 3.1 but for noisy data with noise level € = 1% (left), € = 3% (middle) and € = 5%

(right).

3.4.2 The example of other geometries

We report in Figure 3.4 and Figure 3.5 the reconstructions obtained by Algorithm 2, L =1

for other geometries, keeping the same parameters as in Example 3.4.1 and with noise levels

e = 3% and ¢ = 5%. The parametrizations of these geometries are given by Table 3.1.

Geometry type

Parametrization (x(t),y(t))

Peanut shaped 1.5\/0082(t) + 0.23 sin?(t)(cos(t), sin(t))

Pear

555G ) sin(t))

Star

(1.2 4 0.4 sin(5t))(cos(t), sin(t))

Table 3.1: The boundary parametrization of the geometries.

We clearly observe good performances in terms of robustness and accuracy.

113




3.4 Numerical experiments and validation

Exact | 3 Exact | 3 Exact
---------- Initial weeeene [niial “reeeee [niial
= = =Reconstructed = = =Reconstructed = = =Reconstructed

Figure 3.4: Reconstructions obtained by Algorithm 2 for the geometries discussed in Table

3.1 but for noisy data with noise level € = 3%.

Exact Exact Exact

---------- Initial | 3 sweees [nitial 3

= = =Reconstructed = = =Reconstructed
2
1
0
-1
-2

2 1 0 1 2 2 1 0 1 2 2 1 0 1 2

Figure 3.5: Reconstructions obtained by Algorithm 2 for the geometries discussed in Table

3.1 but for noisy data with noise level € = 5%.

3.4.3 Discussion on the choice of I and 7

As mentioned earlier for a given 7, it is not clear which value of L would lead to potentially
best performances of Algorithm 2. We provide here some elementary numerical investigations
in the case where the exact geometry is given by the parametrization 7, (1.29) for given n.

In that case it is possible to use a stopping rule related to the accuracy of the reconstruction,
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3.4 Numerical experiments and validation

e* defined as o .
. IR R,

IRl

where Y is the exact interface.

In the example below we choose n = 9, R = (1,0.8,0.7,0.9,1,1.7,1.6,1.5,1.4) and the
initial guess R = (1.7,1.6,1.55,1.4,1.3,1.3,1.2,1.4,1.5) (see Figure 3.6(a)).

Exact Exact Exact
= = =Initial = = —Reconstructed = = —Reconstructed
2 2
1 1
0 0
1 1
2 -2
-2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2
(a) Initial guess (b) Algorithm 1 (c) Algorithm 2

Figure 3.6: Comparison between Algorithm 1 and Algorithm 2 with L = 1 to achieve 5%
relative accuracy in the case of the geometry given by Figure (a) and for noise free data. The

gradient descent parameter 7 = 0.1 for both algorithms.

Table 3.2 gives the number of iterations K and the CPU time needed to achieve an
accuracy e* ~ 5% for noise free data. We also indicate the virtually total cost 2K L that
represents the total number of iterations for direct problems. We observe that L. = 1 provides
the lowest values for KL and L = 2 or L = 3 comparative performances. Figure 3.7 display
the evolution of the cost functional for different values of 7 indicating that the number of
iterations K becomes closer to the one for gradient descent (Algorithm 1) as 7 — 0. These
observations show again the relevance of Algorithm 2 and that a few OSM iterations are

sufficient to provide good solution for the inverse problem.
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7=0.1 7 =0.05 7 = 0.005
L | K |2KL | CPU time || K | 2KL | CPU time || K | 2KL | CPU time
1 53] 106 35.782 95 | 110 38.055 359 | 718 245.219
2129 116 19.482 41 | 164 27.711 355 | 1420 | 240.439
3129 174 20.314 39 | 234 26.006 355 | 2130 | 243.784
411 30 | 240 22.305 41 | 328 28.919 354 | 2832 | 259.115
o 1| 30 | 300 24.263 39 | 390 30.149 354 | 3540 253.93

Table 3.2: Total number of iterations and CPU time for Algorithm 2 to achieve 5% relative

accuracy in the case of the geometry given by Figure 3.6 and for noise free data.
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Figure 3.7: Comparison of the evolution of log,,(1/J /Jo) between Algorithm 1 and Algorithm
2 applied to the example of Figure 3.6 with different gradient descent parameter 7 = 0.1 (left),

7 = 0.05 (middle) and 7 = 0.005 (right).

Remark 3.4.1. Figure 3.7 shows that the combined algorithm has almost the same number

of iterations as the full gradient descent. This clearly indicates that the combined algorithm

is potentially more cost-effective than the full gradient algorithm. However, the difference in

execution time indicated in Table 3.2 is considerably similar. This can be explained by the

fact that the direct problems we considered have small discrete systems. This may no longer

be the case for large-scale problems, such as 3D problems.
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3.5 Conclusion

3.5 Conclusion

In this chapter, we have considered the geometric inverse conductivity problem. We have de-
veloped a combined inversion algorithm, summarized in Algorithm 2, to identify the singular-
ity curve % of o. This algorithm consists in mixing a gradient descent algorithm, summarized
in Algorithm 1, with an Optimized Schwarz Method described in Chapter 2. We have proved
the local convergence of Algorithm 2 in some simplified cases of domains. We complemented
these results by showcasing some two-dimensional experiments to test the efficiency of the

combined algorithm and compare it with the classical one.
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CHAPTER 4

A combined inversion method for the full inverse conductivity problem

4.1 Introduction

In this chapter, we extend the approach proposed in the previous one to a more complex case
involving iteration on the conductivity value. More precisely, we assume that oy is known,
and we aim to identify the conductivity o, and the interface 3 by developing an alternating
inversion algorithm that incorporates both the geometry and the conductivity value with an

adaptive step descent to enhance its performance.

The chapter is organized as follows. We first discuss the issue of identifiability in the case
of a piecewise constant conductivity, where we present a counterexample to illustrate that
a single or two pairs (¢, f) are not sufficient to uniquely determine the unknown parameter
o1 and the geometry ¥. To address this, one needs to increase the number of linearly inde-
pendent used pairs of measurements. These additional measurements would enable a more
reliable and accurate resolution of the inverse problem. In this context, we reformulate the
Kohn-Vogelius cost function in order to develop an alternating inversion descent algorithm,
which alternates between updating the geometry > and the conductivity value oy using an
adaptive step descent. This algorithm is summarized in Algorithm 3, which is detailed in Sub-
section 4.3.1. Additionally, in Subsection 4.3.2, we introduce a combined inversion algorithm
summarized in Algorithm 4 that incorporates the coupling with OSM. In Subsection 4.3.3, a

qualitative theoretical study is given in a simplified configuration. To assess the performance
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4.2 Identifiability

and convergence of the proposed algorithms, we conduct several numerical experiments in
Section 4.4 and compare the efficiency of the combined algorithm (Algorithm 4) to the full
gradient algorithm (Algorithm 3).

4.2 Identifiability

We consider in this section the inverse conductivity problem that consists in recovering the
conductivity value &7 and the discontinuity interface 3 of an electrical conductivity & € Suq
from the knowledge of the flux ¢ together with the potential f = Uz, where uz is the solution
of (N7). We give a counterexample proving that a single couple (¢, f) is not sufficient in

general to uniquely determine the unknown parameter o and the interface >.

Example 4.2.1. Consider the particular case where the domain § is the open disk of center
(0,0) and radius Ry = 3. We denote by ¥ and X' the following interfaces:

Y = {(z,y) € R? such that 2* +y* = Ry = 3},

Y = {(z,y) € R? such that 2* +y* = R%, = T},

and by €; respectively Q;, i € {1,2} the subdomains of Q0 limited by T and X, respectively T

and X' as shown in the following two figures:

/ / /
0 = 01X, T 02X, 0 = 01X + 02X,

Figure 4.1: The two partitions of €2 for the counterexample.
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4.3 Numerical algorithm in the case of starlike domains

Let (¢, f) a single couple of measurement defined by

¢: [0,27] — R f:[0,2n] — R
6 r— 2005(6) ’ 6 r— 1;005(6),
we see that 4
uy(r,0) = =rcos(h) in Q,
_ 3
uy(r,0) =

us(r, 0) = (7‘ + 1) cos(f) in ),
r

is the unique solution of the problem (N,) for o1 =1, 03 =2 and Ry = /3, and

uy(r,0) = ir cos(f) m Qll,
u,(r,0) = 1 /
ug(r,0) = <r + r) cos(f) in £y,

3
is the unique solution of the problem (N_/) for o} = Bt oy = 0y and Ry = /7.

Consequently, only one measurement is not sufficient to determine the unknown parameter
o. In fact, even two linearly independent pairs of measurements (¢1, f1), (¢2, fo) are not
sufficient to determine the piecewise constant conductivity & (take the same example below

replacing cos(#) by sin(f)).

4.3 Numerical algorithm in the case of starlike domains

As a preparatory step for the combined algorithm, we first present the gradient descent
algorithm in the case of starlike interfaces ¥ (see Figure 1.2 for an illustration), similar to
Section 1.7, which is detailed in Chapter 1.

4.3.1 An alternating gradient descent algorithm

Recall that the unknown of the inverse problem is o7 and R € (R*)", n € N* that serve to
define the starlike interface 3 = X%. The Kohn-Vogelius cost function J given by formula

(1.15) can then be seen as a function of oy and R;, i =0,...,n — 1 with R,, = R.
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4.3 Numerical algorithm in the case of starlike domains

Let us set o(oy, R) := O1XQ r T 02X 5 and define the function J; by

Tp o [os,00x(RL)" — R

(4.1)
(017 R) — j¢(0-17 R) - J<0(017 R))v

0
The partial derivative 8}?’ t=20,...,n—1, can be evaluated by applying Theorem 1.6.5

to a deformation field ( = Qyz on X where (; is hat function defined by

G(M) =X prenr, v@esiy T (1= OXpuennwessy

with S_; = S,_1, Mz(t) is defined in (1.28) and v is the outward normal vector to €y r. We
then get, by using Theorem 1.6.5 that the derivative of the cost function [J, with respect to

) (4.2)

and by using Corollary 1.6.4, the derivative of the cost function J, with respect to o1 € [0, 0]

R; is given by the following formula:

2

9. 1
Sr R =l R) | [m (

+ (’vTUO'(O'l,R)|2 - ‘VTUU(ULR)F) ]C’L dS,

aua(al,R)
v

ava(al ,R)
ov

o(o1, R) —|o(o1, R)

is given by the following formula:

oY
(01, ) 1= 5 (1,02) = /Q (Vo2 = |Vito(orr|2) da. (4.3)
1I,R

07,
80'1

Our algorithm is based on minimizing the cost functional Jj, one also has to avoid (as
much as possible) the presence of local minima. We numerically observed that this can be done
by increasing the number of used fluxes ¢. More specifically, given N, linearly independent

fluxes ¢1, ¢2, ..., ¢n,, the cost functional J (o1, R) that we shall consider is

Ng
J(01,R) =Y Ty, (01, R).
j=1

The derivative of J with respect to o7 and R can be written as

0F k0T,

Y
80'1 j=1 @0’1

(4.4)
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4.3 Numerical algorithm in the case of starlike domains

and N
N4 20Ty,
= Lo fori=0,....,n—1 4.5
aRZ Jz:l aRZ Y or 7 Y Y n Y ( )
where —% ig given by formula (4.3), and % s given by formula (4.2), which is based on

)

01
Theorem 1.6.5.

The gradient descent algorithm, which alternates iterations on o; and R;, is summarized
in Algorithm 3.
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4.3 Numerical algorithm in the case of starlike domains

Algorithm 3: An alternating gradient descent algorithm with an exact direct solver

e Given Ny linearly independent fluxes ¢1, ¢a, ..., dn, .
e Fix the number of parameters n € N* that serve to define the starlike interface.
e Consider an initial guesses o} and R? € (R% )", the initial interface

Y = Yo = To(R") and the corresponding conductivity

o(0%, R) = o%x0
o k=0.

repeat until k < maximum number of iterations

+ 02X

1,RO 2,R0 "

e Use a direct solver to calculate u,+ gry and v, gry, the respective solutions
of (Na(a’f,Rk)) and (Da(af,Rk))-

e Calculate ggj(af, R¥), for j =0,...,n — 1 using formula (4.2).

e Update X = 7, (RF!) with

0T :
k+1 k k pk
Rj+ = R; TgaRj(al,R),j—O,...,n 1,

where 75 > 0 is chosen sufficiently small that the cost functional decreases (a
step adaptation can be incorporated here).

e Calculate ty gk grr1y and v,k gr1y, the respective solutions of (Ny(ok grt1y)

and (Da(o’f,Rk"'l)) :

e Calculate aj(alf, R using formula (4.3).
g1
e Update for oft?

k+1 k aj

g =07 — Tg; =
1 1 o
180’1

where 7, > 0 is chosen sufficiently small that the cost functional decreases (a

(oF, B,

step adaptation can be incorporated here).

° Rk — Rk+1.

° a{“ = a]fH.

oek=FL+1.
end

A non-alternating scheme would consist of using an iteration step as follows:

R = Ry~ 7 0T (o ),
J
oTJ
af“ =of — Ta—al(alf, Rk),
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4.3 Numerical algorithm in the case of starlike domains

where 7 is a sufficiently small step. The inconvenience of this scheme is that it may converge

slowly if 7 and R are not of the same order of magnitude.

4.3.2 An alternating combined inversion algorithm

We now introduce an alternative combined inversion algorithm, which combines Algorithm
3 with OSM. While this algorithm shares similarities with the combined algorithm explored
in Chapter 3 for the inverse geometric problem, it differs in that we now assume knowledge
of only g5. Our objective is to simultaneously determine both the conductivity o; and the
interface . To achieve this, we present an improved alternating inversion algorithm that

effectively incorporates both geometric and conductivity information associated with o;.

0

Given an integer L > 0, an initial guess o7, an interface ¥ and an initial guess /\2 N €

L*(X), i = 1,2 we denote by N¥(o1,%, A1 x, Ao n) the L™ iterate of (2.7). More precisely, we

set
NL(U% 2, )‘?,N> A%N) =u

L
1
L 0 0 0 L :
N (0'1727 )\1,N7 )\2,N) . u2 mn QQ,

where (uf) and (u), £ = 1,..., L verify the induction (2.7). We also set

ALN(O-?7E7)\(1),N’)\27N) = )\Z[:N on 27 Z - 1,2,

2

where A"y is the iterate number L of (2.7).

Similarly, for some initial guess A}, € L*(X), i = 1,2 we define:

DL<O-?7 27 )‘(1),D7 )\(2),D> = Uf

D"(0?,5, X} p, NS p) :=v§  in €y,
where (vf) and (v5), £ =1,..., L verify the induction (2.9) and by
ALD(O-(I),E, )\(I),D’ )\gyD) = )\’LI:D on E, Z - 1, 2,

2,

where A/ is the iterate number L of (2.9).
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4.3 Numerical algorithm in the case of starlike domains

Algorithm 4: An alternating combined inversion algorithm

e Given Ny linearly independent fluxes ¢1, ¢, . .., dn, .

e Fix the number of parameters n € N* that serve to define the starlike interface.

e Consider an initial guesses o and R® € (R*)", such that ¥ = Yo = 7,(R°) and
the corresponding conductivity o(o?, R%) = J?Xgl w0 T 02X, o

e Choose as initial boundary values: \; y(X) = 0, ),\i,D(Z) = Oyon Y, i=1,2.

o k=0;

repeat until k < maximum number of iterations

1. Set )\?JV = /\i,N(Z)a )‘?,D = )\z,D(Z) on E, 1= 1,2

2. Use L iterations of OSM to evaluate
L/ __k L k k L k
Ug(ok RE) = N (017 X, /\(1),N7 )‘g,N)’ )‘i,N(O-h R ) - Ai,N(Ul ;2 )‘(1),N7 /\(Q),N)'
L/ _k L k k L k
Yo(ok,RE) = D (01 ;2 )‘(I),Dv Ag,D)? /\i,D(Ul R ) - Ai,D(Jl ;2 )‘(l),Dv )‘g,D)'

0
3. Evaluate 8‘;(011“, R¥), for j =0,...,n — 1 using formula (4.2) where the boundary
J

values are calculated using Ug(ok k) and Uo(ok R¥) ), -

121

0
4. Update ¥ = T, (R"') with RF*! := RY — rzgg(af,Rk), Jj=0,...,n—1, where
J
7s: > 0 is chosen sufficiently small (A step adaptation can be incorporated here but
only after a few iterations, when the gradient becomes sufficiently accurate and

provides a descent direction).

5. Update the interface values on S; as \; y (3)(M;(t)) = Aoy (of, RP)(t),
X (D) (M;(t)) = Aep(of, RF)(t), t € [0, 1], following the identification (3.1).

6. Repeat step 2 with ¥ = T, (RF1).

0
7. Evaluate 8‘7(016, R using formula (4.3).
01

0
8. Update for oy: of ™ = oF — Tala'j(alf, R*™ | where 7,, > 0 is chosen sufficiently
01

small (A step adaptation can be incorporated here).

° Rk — Rk—H.
o ok = gkt
o k=Fk+1.

end 125




4.3 Numerical algorithm in the case of starlike domains

A non-alternating scheme would consist of using an iteration step as follows:

N4

R;‘H_IZR?_ aR]( 17Rk>
k+1 k OT | k ok (47)
gy =01 Tﬁial(ghR ),

where 7 is a sufficiently small step. The inconvenience of this scheme is that it may converge

slowly if 01 and R are not of the same order of magnitude.

4.3.3 On the local convergence study of the non-alternating ver-

sion of Algorithm 4.

We will investigate the convergence of the non-alternating version of Algorithm 4 (see sys-
tem (4.7)) in the simplified one-dimensional case where 2 =]0, 1] and the number of OSM
iterations L = 1, meaning we perform only one OSM step per iteration. In particular, we
prove that with only one flux (N, = 1), the algorithm may not converge (consistent with the
non-uniqueness issue mentioned in Section 4.2).
In this part, we consider the configuration studied in Section 3.3.1 and use the same
notation. From Theorem 1.6.5 and equation (1.36), we have
aj(al,é) _ (01— 03)

00 0109 (|0—1U;(01,§)<O_17 5>|2 - |0'1Ui7(0175)(0'1, 5)|2) ,

and from formula (4.3), we have

L (010 = [ Wy 01D = o (o, )P

Moreover, the solutions after only one OSM step iterate are given in |0, §[ by

cr(o‘1 ,5’“)(3:) Oé%(af, §k)x7
U(o‘l,ék)(‘r) = Oéé<0-lf7 5k>x7
where X (01.6)
L §) = BN o
aN(017 ) (0_1 n Oé(;) )
/\L (0'1 5)
L §) =L 2
aD(Ula ) (0_1 +C¥(5)
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4.3 Numerical algorithm in the case of starlike domains

Hence, the gradient of J with respect to 6 €]0, 1] and with respect to oy are approximated
by

0T 5"

Fo; 09 = Tz (Mo (e, 891 = (ot 89P7)
aikkNUf(Uf 02) SEVIZ — |\E k cky|2
8(5 (0175)—0_2<0_ +Oé5k) (|>‘ ( )| |)‘1,N(0175 )‘ )

Our non-alternating version of Algorithm 4 (see system (4.7)) can be written as:

gt — gty 1oL = 2) (IAE 5 (0F, 65)2 = [AE (o, 65)) (4.8)
0_2(0 —I—CK(Sk) 1,D\Y1> 1L,LN\M1>»

S S L (] A 5" 4.9

g1 oy —T (| 1D(‘717 7~ | lN(glv )|) (4.9)

(o} + adk)?

and the updates for the boundary values are given by

Mn(or™, 65 = p*(o1,6%) Agn(07,6%) +n°(o1,0%), (4.10)
)‘g,N( P 5k+1) - ka<0f>5k) )‘{/,N(Jf75k)’ (4 11)
M p(or ™M) = ¢%(07,6%) Agplor, 0%) + w? (o1, 6%), (4.12)
)\iD( ! 5k+1) = ka(afvék) )‘fD(O-f75k)> (413)

where
pa(alf,ék) = -1,
ﬁa(U]fa 5k) = 2¢:
ka( k 5k) _ O-lf B a(sk
71  of +adk’
ar k ock\ 02—a<1—5k)
q(0-176) - 0_2+a(1_5k)7
2009 f
af k <k _ 2
w(oy,0") = s + a1 — 0F)’
and 5
f== [71(1 — 3) + 020] . (4.14)

If we set X" := (of, 0%, My (07, 0%), AS y(of, 6%), AL p(af, 6%), AJ p(of, 6%)), then the iter-
ative scheme formed by (4.9)...(4.13) can be synthetically written as

X = G(X),
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4.3 Numerical algorithm in the case of starlike domains

where the function G is given by

G RS — RS
X = (o, 7,9, 2,t,h) = G(X) = (90(X), 91(X), 92(X), g3(X), 94(X), g5(X)) ,

such that: .
X) = — T (t* — ?
gO( ) Zo T(l’o +O{$)2< Y )a
To(Lo —02) 5 o
X) = x— " —
9 T TO'Q(.ZU() + O{I)Q( ) )7

(X)

(X) = —2+29,

935(X) = k%(xo, 2)y,

(X) = ¢“(wo,x)h + w(xg,x),
(X) = k%(wo, )t

From the analysis of Section 2.4.1, we observe that the sequence )\57 ~(71,0), 1 = 1,2 converges

to \jy(@1,0), i = 1,2, where

A5 (@1.5) = s,
01
with

Y1 = (1 +ad) and Py = (o7 — ad).

Similarly, the sequence )\f, p(71,0), i = 1,2 converges to A (@1, 0), i = 1,2, where

__ < oaf
AZS 0) = — —1);.
Z,D(Jl? ) 0_254_0_71(1_5)1/)
Moreover, we have

Aoy (@1, ) = — AN (a1, ) + 29,

)‘S?N (0-717 5) =k (0-717 5))‘??N (071’ 3)7

Ap (71, 6) = ¢*(71, 0)A5p (071, 0) + w (71, 0),
A%?D(Tb 5) = k()[(o-il? S)AfD (717 3)

Using the expression of f given by (4.14), one can easily check that A\}% (771, 0) = A% (@71, 0)
and then

(O-ila g7 )\T?N (Ta 3)7 A;?N (717 5)7 )\T?D (0-717 5)7 AS?D (O-ila 5))

>
|
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4.3 Numerical algorithm in the case of starlike domains

is a fixed point of G.

For short notation, let us set Z = 0, Ty = o1 § = A\{% (77, 0), and

ki k(T T) = 20T _ P2 (4.15)

Since X = (7o, T, 7, k¥, 7, ky) is a fixed point of G and the Jacobian matrix DG(X) of G is

given by
1 0 st 0 —s7 O
01 dr 0 —dr O
_ 00 0 -1 0 0
DG(X) =
r b k 0 0
0 ¢ O 0 ¢
r b 0 k0
where we have set for short notation
1090~ 2Ty
= ——(X)= —F
s T Oy (X) (To + ax)?’
d = l%(Y) = —2%@_ 02)7
T 0y 09(To + ax)
093 ~ 20T J
= = (X)= ——F—
: 81:0( (To + ax)?’
093 ~ —2a¢
b = —(X)= ——
ox (X) (To + ax)’
994 ~ 209
= ——(X) =
¢ o X = o Faa o)
oas —
¢ = S (X) = @),

For every 7 > 0, we denote by p(7), the spectral radius of the Jacobian matrix DG(X).

The following proposition proves that the non-alternating version of Algorithm 4 (see

equations (4.8) and (4.9)) cannot be convergent in general for any 7 > 0.

Proposition 4.3.1. p(7) > 1 for any 7 > 0.
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4.4 Numerical validation and results

Proof. For every (A, 7) € R x R, we define the characteristic polynomial of DG(X)

1—A 0 st 0 —sT
1—X dr 0 —dr
0 -2 -1 0
r b E =X 0
-\

e}

PO\T) = det(DG(X) — M) =

o
o
[aw]
_ O O O O

Then, we have
POAT) = (A=1) (X = M+ ag(r)X* + aa(1)A? + an(1)A + ag) ,

where

as(1): = cdr —k(qg—1),
az(7): = (qg+1)(db+ sr)T+ k(q—1),
a)(7): = kedr — Kq,

a: = k.

Consequently, for all 7 > 0, Ay = 1 is an eigenvalue of DG(X).
O

Remark 4.3.1. Let us remark that despite this non-convergence issue, we have numerically
observed that for geometries other than circles, the algorithm may converge with only one flux
(but eventually to a local minimum). The convergence study in the case of multiple fluzes is

more complicated and is still in progress.

4.4 Numerical validation and results

The goal of this section is to test the efficiency of Algorithm 4 in comparison with the full
gradient descent algorithm described in Algorithm 3. For our numerical validation example,
we choose an open disk of center (0,0) and radius Ry = 2. The exact conductivity values
are given by a7 = 1, a3 = 2, and the OSM parameter @ = 1. As for the fluxes, we choose
¢1 = cos(#) and ¢o = sin(#), 6 € [0,2x], defined on the boundary I'. Additionally, we select
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4.4 Numerical validation and results

3 to be a kite defined by

x(t) = cos(t) + 0.5 cos(2t) — 0.4 and y(t) = 1.2sin(t), t € [0, 27]. (4.16)
Exact.
= = =|nitial
ol . |

Figure 4.2: Description of the geometry for the kite parameterized by (4.16)

For the inversion algorithms, we utilize the parametrization (1.29) with n = 19. The
initial guess is set to R? =1.1for j =0,...,n— 1. The results of the inversion when we use
only one flux ¢ are given in Figure 4.3 for Algorithm 3 and Figure 4.4 for Algorithm 4 with
L =1 (i.e., only one OSM step is used at each gradient descent iteration). We observe that
both algorithms yield qualitatively similar accuracy, and both may converge with only one
flux. The results when we use two fluxes ¢, and ¢, are shown in Figure 4.5 for Algorithm 3
and in Figure 4.6 for Algorithm 4 with L = 1. The evolution of the cost functional for both
algorithm in the case of two fluxes is depicted in Figure 4.7. We clearly observe improvement
in the reconstructions for both algorithms with qualitatively the some accuracy and number
of iterations. This is once again a clear demonstration on the relevance of combined algorithm

for solving this type of inverse problems.
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1.2
Exact —
= = =Reconstructed !
2 L
1.15
1 k
1.1
0 L
At 1.05
-2 [ 1 N L L L
0 10 20 30 40 50

-2 -1 0 1 2 .
lterations

Figure 4.3: Reconstructions obtained by Algorithm 3 using flux ¢; and for noise-free data.

The initial guess is shown in Figure 4.2.

1.2
Exact —_—
- - —Reconstructed !
2 L
1.15
'1 L
1.1
0 [
Al 1.05
-2 [ 1 L L | |
0 10 20 30 40 50

lterations

Figure 4.4: Reconstructions obtained by Algorithm 4 with L = 1 using flux ¢; and for

noise-free data. The initial guess is shown in Figure 4.2.
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; 1.2
Exact —_—
= = =Reconstructed 1
2t 1.15
1¢ 1.1
0r 1.05
1t 1
2| 0.95 - - ‘ ‘
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-2 -1 0 1 2 .
lterations

Figure 4.5: Reconstructions obtained by Algorithm 3 using two fluxes ¢; and ¢, and for

noise-free data. The initial guess is shown in Figure 4.2.

1.2
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- - —Reconstructed 1
2t 1.15
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0r 1.05
-1t 1

27 0.95 : : ‘ ‘
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lterations

Figure 4.6: Reconstructions obtained by Algorithm 4 with L = 1 using two fluxes ¢; and ¢9,

and for noise-free data. The initial guess is shown in Figure 4.2.
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-1 T . : ; .
— Algorithm 3
-= -Algorithm 4, L=1
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_4 1 1 1 1 1
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lterations

Figure 4.7: Comparison of the evolution of log,,(J) between Algorithm 3 and Algorithm 4
with L = 1 for the example shown in Figures 4.5 and 4.6.

4.5 Conclusion

In this chapter, we have extended the combined inversion method proposed in the previous
one to address more complex cases involving iteration on the conductivity value. Specifi-
cally, we assume that o, is known, and our objective is to identify the conductivity o, and
the interface 3. We first discussed the issue of identifiability in the case of piecewise con-
stant conductivity. We presented a counterexample to illustrate that a single or two pairs
of measurements (¢, f) are insufficient to uniquely determine the unknown parameters o4
and Y. To overcome this limitation, we emphasized the need to increase the number of
linearly independent measurement pairs. Furthermore, we introduced a combined inversion
algorithm, Algorithm 4, which incorporates the coupling with OSM. For the convergence
analysis, we have specifically proved in the one-dimensional case that with only one flux, the
algorithm may not converge. However, the convergence behavior in cases with multiple fluxes
is more complex and is still under investigation. We conducted several numerical experiments
comparing the efficiency of Algorithm 4 against the full gradient algorithm, summarized in
Algorithm 3. The numerical observations showed that the algorithm may converge with only

one flux for geometries other than circles, but it may lead to a local minimum. For multiple
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fluxes, the combined algorithm has comparable performances as the full gradient one, but

indeed with the potential of being much more cheap.
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Conclusions and perspectives

In this thesis, we have developed a combined inversion algorithm that mixes the use of the
Kohn-Vogelius cost functional and the Optimized Schwarz Method to solve an inverse geomet-
rical problem in connection with impedance tomography. The latter consists of retrieving the
interface discontinuity of the conductivity from measurements of Cauchy data. The proposed
algorithm uses an incomplete OSM iteration at each gradient descent step for the interface.
We have proved the convergence of the scheme for some simplified configurations of the ge-
ometry. We have also demonstrated the efficiency and relevance of the method through some
2D numerical experiments. These examples showed, in particular, that only one OSM iter-
ation is sufficient to obtain comparable accuracy performances as the full gradient method.
A full demonstration of the potential of this combined method can only be done through
3D experiments, for which the solution of the forward problem is costly. This is one of the

perspectives of this work.

In the last part of this manuscript, we started the investigations of the inverse problem
where the inner values of the conductivity are also unknown. We proposed an extension of
the combined algorithm through alternate gradient steps on the geometry and the conduc-
tivity values. Preliminary numerical results confirm our conclusions on the efficiency of the
combined algorithm. The theoretical investigations on the convergence are more challenging
as we are faced with non-uniqueness issues in the case of one Cauchy pair of measurements.

These aspects are also part of the perspectives of this work.
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